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Abstract

Life on earth has been found thriving in a number of extreme environments, including

those of high salinity, high and low temperatures and pH, and high pressure. Organisms

which live in the presence of large quantities of salt are known as halophilic (meaning

salt–loving), such as in the Dead Sea.

Proteins are fundamental components of all living organisms. They are large, com-

plex molecules that carry out many processes within a cell. Halophilic proteins are of

great interest due to their ability to remain soluble, flexible and functional under highly

saline conditions. Intriguingly, these proteins are unstable in a low saline environment,

suggesting a delicate balance between the intermolecular interactions of the protein, salt

and solvent. How have halophilic proteins adapted to survive in highly saline environ-

ments?

To probe the effect of salt on the mechanical stability of a protein, a combination

of molecular biology and single molecule force spectroscopy (SMFS) was used. Protein

engineering was utilised to create chimeric polyprotein constructs including a obligate

halophilic and a mesophilic protein. SMFS experiments have been carried out using these

polyprotein constructs in 0.5 M and 2 M KCl. The studies suggest that an increase in

the hydrophobic interactions of a mesophilic protein cause an increase in its mechanical

stability. The results also indicate that an obligate halophilic protein does not have an

increased mechanical stability in the increased salt concentration. Further studies in

combination with molecular dynamics simulations have the potential to gain atomistic

information on the mechanical unfolding behaviour of a halophilic protein.
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Chapter 1

Introduction

Life on earth has been found thriving in a number of different extreme environments,

including those of high salinity, high and low temperatures, pH and high pressure [1].

Organisms live in the presence of large concentrations of salt, such as in the Dead Sea,

which has been reported to have an average overall salt concentration of 322.6 gL−1

including individual ion concentrations of Mg2+ (40.7 gL−1), Na+ (39.2 gL−1), Ca2+ (17

gL−1), K+ (7 gL−1), Cl− (212 gL−1) and Br− (5 gL−1) [2]. These organisms are known

as halophilic (meaning salt–loving).

This thesis presents protein engineering experiments to construct halophilic and non–

halophilic polyproteins and single molecule force spectroscopy experiments to gain infor-

mation on the stability and dynamics of halophilic proteins. The first chapter will begin

by introducing proteins, their structure and interactions. The study of protein stability

will then be outlined. In order to fully understand halophilic proteins it is necessary to

describe the co–solutes (proteins and salt) and their interactions with the solvent. To do

this, information will be provided on salt, its interactions with water and current liter-

ature available on the stability of a protein in salt. A review on the literature available

on halophilic proteins will then be presented and the major conclusions summarised.

Finally I will introduce the study of proteins using single molecule force spectroscopy,

highlighting important studies carried out and where more research needs to be done.
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The chapter will finish with a discussion of all of the information given and will outline

the aims of this project.

1.1 Protein structure and function

Proteins are naturally occurring, unbranched polymers of subunits called amino acids

(figure 1.1). They are a vital component of all living organisms; they are responsible

for almost all functions of a cell, its internal organization and the manufacture of other

molecules. In order to understand the function of living organisms at the molecular level,

it is therefore vital to understand proteins. Proteins are made up of at least 40 amino

acids that are joined together by a peptide bond [3]. Proteins can have a wide range of

sizes, some are over 10000 amino acids in length. Since the 3D structure of a protein

was first documented in 1958 by Kendrew et al. and later improved by Perutz et al.,

over 115,000 protein structures have now been recorded [4–6].

Figure 1.1: The structure of an amino acid. Each amino acid consists of a main–
chain backbone structure (The amine nitrogen, a carbonyl oxygen and the two intervening
carbons) and a unique side–chain group (R), which give them different chemical properties.

This section will describe the building blocks and hierarchical structures of proteins,

introduce the importance of protein folding and the interactions which govern this, and

give some examples of their important roles. The section will finish with a description

of how protein stability is defined.
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1.1.1 Protein structure

The wide variation in the function of proteins is possible due to their precise and complex

structural arrangement. An overview of this hierarchical structure is shown in figure 1.2.

Figure 1.2: The hierarchical structure of a protein. A) The amino acid sequence is
referred to as the primary structure of a protein where each amino acid is represented by
its three letter abbreviation. B) The secondary structure describes the local conformations
of the polypeptide chain. C) The spatial arrangement of these secondary structure elements
forms the tertiary structure; this is the 3 dimensional structure of the protein. The C– and
N–termini are shown as C and N. D) Many proteins consist of a number of polypeptide
chains arranged into a multimeric complex, giving the protein its quaternary structure.

1.1.1.1 Primary structure

Proteins are made up of a sequence of sub–units called amino acids, each linked by a

covalent peptide bond, to form unbranched polypeptide chains, represented in figure

1.2 A). Each protein has its own unique amino acid sequence with varying chain length.

There are 20 naturally occurring amino acids that have been identified, which differ from

each other with respect to one side chain R–group, see figure 1.1. The R–group gives

each amino acid its unique properties such as their hydrophobicity or charge. They are

usually classified into 6 groups, shown in figure 1.3.
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Figure 1.3: The 22 naturally occurring amino acids. The amino acids are grouped
according to the properties of their side chains. Non–polar (green), polar (orange), aromatic
(yellow), acidic (purple), basic (blue), special cases (pink), which include sulphur–containing-
and imino–moieties, and rare (grey). Each amino acid has an L– configuration.
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1.1.1.2 Secondary structure

The restricted torsional angles of the polypeptide backbone and interactions between the

amino acids give rise to specific secondary structure elements of helices, sheets and loops,

see figure 1.4. The most common structures are right–handed –helices and parallel and

anti–parallel β–sheets. α–helices are stabilised by hydrogen bonds between the amino

acids, β–sheets form rigid structures within the protein and loops connect the other

secondary structures together.

Figure 1.4: Examples of secondary structure elements. The figure shows the atomic
structure with intramolecular hydrogen bonds as dashed lines in front of the representative
ribbon structure. The carbonyl oxygen is shown in red, the amide nitrogen is shown in blue
and the backbone carbons are shown in grey. The figure shows an α–helix as well as parallel
and anti–parallel β–sheets.

1.1.1.3 Tertiary structure

The 3D protein structure is governed by the interactions, described in section 1.1.2,

between structural elements of the protein. The core of the folded protein is generally

rich in non–polar amino acids, while the surface contains mainly polar and charged amino

acids. The different folds of proteins can be classified according to the arrangement of

the secondary structure elements relative to each other.
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1.1.1.4 Quaternary structure

The weak interactions that enable protein folding may also bind together a number of

polypeptides to produce larger structures, represented in figure 1.2 D). One example

of this is hemoglobin, which binds two α–globin polypeptide chains and two β–globin

polypeptide chains to form a quaternary structure. The formation of this structure is

crucial to the function of the protein. The 3D structures of proteins are available from the

Protein Data Bank (PDB), which is a repository of information about the 3D structures

of large biological molecules [6]. Each protein structure is given a unique, 4 digit PDB

code, see figure 1.5.

Figure 1.5: The 3D structures of two proteins. Figure A) shows the 3D structure
of protein L (PDB code: 1HZ6) and figure B) shows the 3D structure of I27 (PDB code:
1TIT) [6–8]

.

1.1.2 Interactions of protein residues

Proteins are able to form complex 3D structures due to the inter– and intramolecular

interactions between the sections of the polypeptide chain and its surrounding environ-

ment. The side chain R–groups of amino acids interact in a number of ways, all of which

are crucial for protein folding [9]. An overview of the dominant interactions between

amino acid residues is shown in figure 1.6. The interactions of the amino acid residues of

a protein is a huge subject that has been well researched. A large amount of literature
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is available on the subject, a brief description of each interaction is given below [10–12].

Figure 1.6: The dominant interactions between protein residues. The figure shows
atomic representations of hydrophobic interactions, electrostatic interactions, a disulphide
bond and a hydrogen bond. The approximate strength of each bond in kJmol−1 and the
approximate interaction length in nm is shown for each interaction [13–18].

1.1.2.1 Van der Waals interactions

Van der Waals interactions are caused by the disturbance of an electron cloud on an

atom when approaching another atom, creating a temporary dipole, see figure 1.7 for a

representation. These are weak interactions and non–specific but can become important

when molecular surfaces are brought close together. Van der Waals interactions may

occur between any atoms but they are relatively weak. Each of these interactions are <

4 kJ mol−1 per atom [16]

Figure 1.7: The dipoles of van der Waals interactions. The nucleus of the atom is
represented in purple and the electron cloud is represented in blue. An interaction is formed
between the partially positive and partially negative ends of the atoms.
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Although Van der Waals forces are weak and transient, they are an important com-

ponent of protein structure. Due to the close proximity of amino acids residues when a

protein is folded, the total number of Van der Waals interactions is very large. Van der

Waals forces can play important roles in protein–protein association [19]. When unfolded,

the interfaces of the subunits are surrounded by water molecules, all atoms on the sur-

face of the interface are therefore able to form Van der Waals contacts with water. In

order to have a favourable association, contacts with the solvent must be replaced by

contacts between the protein subunits. This means the proteins need to have good steric

complementarity.

1.1.2.2 Covalent interactions

Covalent bonds form when two atoms share one or more pairs of valence electrons. E.g.

H2, each hydrogen atom has one unpaired electron and is therefore unstable. When

the two atoms are close they can share their unpaired electrons, i.e. both electrons can

orbit both nuclei (see figure 1.8). The molecule formed is stable; it has no net charge

and both hydrogen atoms can be considered to have two electrons in their outer energy

levels, satisfying the octet rule [20,21].

Figure 1.8: Schematic of a covalent bond. The figure shows a schematic of the covalent
bond formed between two hydrogen atoms. The electrons are represented in yellow.

Unlike ionic bonds, covalent bonds act between two specific atoms, forming discreet

molecules. Covalent interactions form strong bonds and are often irreversible, for ex-

ample a C–C single bond has a strength of 340–350 kJmol−1 [22]. A covalent interaction

may be formed between the sulphide atoms of cysteine residues to form a di–sulphide

bridge.
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1.1.2.3 Electrostatic interactions

Interactions between fully charged groups form ionic bonds, which involves the transfer

of a pair of electrons from one atom to another. Interactions may also occur between

partially charged (polar) groups. The estimated strength of a charge–charge interaction

in a protein is about 87 kJmol−1, these interactions in the presence of water are shielded

by water molecules and the interactions are, therefore, experimentally found to be weaker

(about 5–20 kJmol−1) [16]. There are 3 positively charged and 2 negatively charged

naturally occurring amino acids, shown in figure 1.3. These amino acids can interact to

stabilise the folded structure of a protein (see figure 1.6).

The importance of electrostatic interactions to the stability of a protein is still under

discussion. The effect of modifying the charged amino acids of a protein seem to be highly

dependent on context [23]. Proteins from thermophilic organisms have been shown to have

an increased number electrostatic interactions compared to their mesophilic counterparts,

which are suggested to stabilise the protein [24,25]. The electrostatic interactions of a

protein may be studied by changing the pH of its environment. This will either protonate

or deprotonate the charged residues. A number of studies have investigated the effect of

pH on the thermodynamic stability of a protein [26]. Studies have also changed the salt

concentration of the environment to investigate the charge screening of the amino acid

residues of a protein [26].

1.1.2.4 Hydrogen bonds

A hydrogen bond is a specific type of electrostatic interaction where one electronegative

atom (an atom with a high attraction for an electron), called the hydrogen bond acceptor,

interacts with a hydrogen atom (which is highly electropositive) attached to another

electronegative atom, called the hydrogen bond donor, shown in figure 1.9. The electron

density is attracted to the donor atom, away from the hydrogen, causing a dipole. The

partially charged hydrogen atom can then interact with the electron density from the

acceptor atom.
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Figure 1.9: Schematic of a hydrogen bond. The figure shows a hydrogen bond between
two water molecules where O represents an oxygen and H represents a hydrogen.

Hydrogen bonds are stronger than Van der Waals interactions but weaker than ionic

and covalent bonds [16]. They account for a large amount of protein interactions. They

are the driving force for the formation of secondary structure elements such as β–sheets

and also the interaction of the protein with water molecules [27].

1.1.2.5 Salt bridges

Salt bridges are described as a form of particularly strong hydrogen bonds, formed

from the interaction between two charged residues. In a salt bridge interaction, a proton

transfers from a carboxylic acid group to an amine or guanidine group. These interactions

are generally formed using Lys or Arg and Asp or Glu. Salt bridges have been shown

to be important for the stability of thermophilic and hyperthermophilic proteins [28].

Increasing the thermostability of a protein can be achieved by optimising the long–range

electrostatic interactions in salt bridges [29].

1.1.2.6 Hydrophobic interactions

Fully charged and partially charged amino acids are able to readily form bonds with

water molecules. Amino acids with non–polar residues cannot form hydrogen bonds

with water. They tend to aggregate in order minimise their interaction with the water

molecules (see figure 1.10) [30].
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Figure 1.10: A non–polar molecule in water. The non–polar molecule is shown in
yellow, oxygen is shown in red and hydrogen is in white. The two non–polar molecules
cluster together to minimise the surface contact area with the water.

The hydrophobic effect is described as the driving force for initial folding of proteins

where the non–polar residues in a polypeptide chain, group and form a hydrophobic

core [31].

1.1.3 Protein stability

In order for most proteins to function, they must remain folded in a unique 3D structure,

the native state. A protein can adopt its native state structure by self–assembly. The

unique 3D structure of a protein depends on its sequence of amino acids. Although

the amino acid sequence of a protein may be easily determined, the process of folding

is complex and involves many interactions. Protein folding can often occur through

multiple intermediates, which are shown al local minima in figure 1.11 A). In order to

understand how a protein remains folded, it is possible to study the stability of its native

state.

1.1.3.1 Thermodynamic stability

If a protein is in a two–state system, the molecules will be in equilibrium between the

number of unfolded and folded states. The equilibrium constant, KU , describes the ratio
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of the unfolding and folding rates, KU = kU
kF

. It can, therefore, be used to determine

which state the protein favours [32]. Intermediates structures are generally unstable and

have very short lifetimes.

Native
KU−−⇀↽−− Unfolded

The thermodynamic stability of a protein can be defined as the difference in free

energy between its folded and unfolded states, ∆GU , which can be calculated using

equation 1.1 [33–35], were R is the gas constant and T is the temperature.

∆GU = −RT lnKU (1.1)

Where ∆Go
U is equal to ∆GU in standard conditions:

∆Go
U > 0 native state favoured

∆Go
U < 0 unfolded state favoured

∆Go
U = 0 equal mix of N and U

The are two important components of ∆G given in the equation, ∆G = ∆H −

T∆S [35]:

i) Enthalpy

The enthalpy, H, of a system is defined H = U − PV, where U is the internal

energy, P is the internal pressure and V is the internal volume of the system.

Under physiological conditions, the pressure and volume are almost negligible so

in the majority of biological systems, the enthalpy is equal to the internal energy.

ii) Entropy

The thermodynamic entropy defined ∆S = qrev
T , where qrev is heat transferred

between two states and T is absolute temperature. The change in thermodynamic

entropy is defined as the measure of the energy dispersed in a process.
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1.1.3.2 Kinetic stability of a protein

The process of protein folding is often represented using an energy landscape, shown in

figure 1.11. Energy landscapes are generally depicted as funnels to show that energy de-

creases, on average, as the native 3D structure is formed, reaching a global minimum [36].

If the energy landscape was smooth, protein folding would proceed without occupying

any folding intermediates [37]. An energy landscape with stable, partially folded interme-

diates is depicted with local minima, referred to as kinetic traps.

Figure 1.11: A representation of an energy landscape for protein unfolding and
a basic free energy diagram A) A representation of an energy landscape showing the
unfolded state, U, the native state, N, an intermediate, I, and a transition state, TS. Proteins
can have complex energy landscapes where protein folding can occur through many folding
intermediates but is biased towards the native state. B) A basic two-state free energy
diagram, where the unfolded and folded states are separated by a single barrier. The diagram
shows ∆G, the thermodynamic stability, ∆GK , unfold the kinetic stability for unfolding,
GTS , the free energy of the transition state, GU the free energy of the unfolded state and
GN the free energy of the native state.

Figure 1.11 B) depicts a two state unfolding reaction. In a two–state unfolding

reaction, the folded and unfolded states are separated by a single energy barrier. This

barrier is known as the transition state of the protein, TS. The kinetic stability describes

the height of the barrier separating the two states, which is also known as the activation

energy of this reaction. The kinetic stability can be determined by studying the rate

of unfolding of a protein [38]. A kinetically stable protein has a high energy TS, which

results in a very slow unfolding rate. Even if ∆GU is favourable for unfolding, e.g. at

high concentrations of denaturant, the high activation energy of the TS will significantly
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slow down the unfolding rate of the protein.

The physical basis for kinetic stability is still under debate. Studies have found

that the addition of hydrophobic residues, di–sulphide bonds, an increased number of

electrostatic ion pairs and co–ordination of metal ions all increase the kinetic stability

of a protein [39–42].

1.2 Salt and its effect on proteins

This section will introduce the background information necessary before introducing

halophilic proteins. Firstly the section will introduce the chemical structure of a salt.

The structure of water and the effect of salt ions on the structure of water will then be

described. Lastly the section will introduce the information currently available on the

effects of salt ions on proteins.

1.2.1 What is a salt?

A salt is defined as a chemical compound consisting of an assembly of cations and

anions [43]. Ionic bonds form when one atom donates an electron to another atom, e.g.

sodium chloride (NaCl) [44]. When solid sodium and gaseous chlorine react, each sodium

atom gives one electron to a chlorine atom, forming ions (Na+ and Cl−). The resulting

positively charged atoms or molecules are called cations and the resulting negatively

charged atoms or molecules are called anions. The charges on these atoms attract and

associate to form a stable crystal lattice.
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Figure 1.12: Formation of the salt, NaCl. The electrons are represented in yellow,
sitting on black circles that represent the energy levels. Chlorine is shown in green and
sodium is shown in purple.

1.2.2 Water and its interactions

In vivo, most proteins exist in an aqueous solution. It is therefore important to un-

derstand the structure and interactions of water. The oxygen and hydrogen atoms in a

water molecule both attract the electrons shared in their covalent bond [44]. The strength

of this attraction is named the electronegativity of an atom. The attraction for the elec-

trons is stronger for the oxygen atom, as it is more electronegative. The shared electrons

are therefore much more likely to be found orbiting the oxygen atom, causing a partial

negative charge on the oxygen and a partial positive charge on the hydrogen. Molecules

that have partial charge separation are called polar, figure 1.13 shows a polar water

molecule.

Figure 1.13: A polar water molecule. Electrons are represented in yellow, sitting on
black circles that represent energy levels. The partial charges of the atoms are shown.
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The partial charge of one polar molecule attracts the partial charge of another, caus-

ing an interaction between polar molecules, named dipole–dipole interactions. When a

hydrogen atom, bonded to a highly electronegative atom, such as oxygen, interacts with

another highly electronegative atom, this is called a hydrogen bond. Hydrogen bonds

form between water molecules.

1.2.2.1 Interaction of water with salt ions

Water molecules can be attracted to any substance that has an electrical charge, either

full (ionic) or partial (polar). A polar substance is held together by strong intermolecular

dipole–dipole interactions. The polar groups of the substance can interact favourably

with water molecules allowing spontaneous dissolution. When a salt is placed into water

the electrical attraction of the water molecules disrupts the forces holding together the

lattice, causing the ions to dissociate, shown in figure 1.14. The crystal lattice dissociates

into freely movable ions, increasing the entropy of the solution due to the increased

disorder.

Figure 1.14: Schematic of a dissociation of salt ions in water. The water molecules
are represented by red and white circles.

The highly electronegative oxygen of water, with two lone pairs of electrons, is at-

tracted to the positive metal ion. The water molecule rotates so that its polarized charge

faces the opposite charge of the ion. As the water molecule moves towards the ion, it
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breaks its hydrogen bonds with other water molecules. The hydrogens of the water

molecules interact with the negative ions. The association, or solvation, of the water

molecules around each salt ion creates an effectively larger radius and, therefore, in-

creases the distance between the positive and negative ions and weakens their attractive

force. The structure of the water molecules of the hydrated ions is more ordered, de-

creasing entropy. Absolute values of enthalpy and entropy values for a selection of ions

can be found in table 1.1.

The amount of energy needed to break up 1 mole of the salt crystal lattice is the

termed the lattice dissociation enthalpy. The greater the force of attraction between salt

ions, the greater the energy needed to break the ionic lattice. The radius of the ion and

the ionic charges are the most important considerations:

i) The smaller the ion radius or the greater the ion charge, the greater the lattice

enthalpy. Smaller ions are able to move closer together causing a larger attractive

force

ii) A larger charge on the ion causes a greater attractive force for water molecules.

Hydration enthalpy is a measure of the energy released when attractions are set up

between positive or negative ions and water molecules. The overall free energy of the

solution depends on the quantities of the lattice enthalpy, the hydration enthalpies and

change in entropy of the system.

Ion Radius (pm) ∆G◦hyd (kJmol−1) ∆H◦hyd (kJmol−1) ∆S◦hyd (kJmol−1)

Na+ 102 -371 -404 -110
K+ 138 -300 -321 -70

Mg2+ 72 -1836 -1931 -320
Ca2+ 100 -1517 -1586 -230
Cl− 181 -334 -361 -90
Br− 196 -309 -330 -70

Table 1.1: Absolute values of the change in free energy of hydration, ∆G◦
hyd, enthalpy of

hydration, ∆H◦
hyd and entropy of hydration ∆S◦

hyd, along with radius for the salt ions found

in abundance in the dead sea [2,45].
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1.2.3 The effect of ions on the structure of water

Salt ions have been shown to exert strong electric fields on surrounding water molecules,

which disrupts the hydrogen bond network of waters [46]. The water molecules reorient

around the ions causing the formation of hydration spheres, see figure 1.15. The effect

of ions on water has been generally described as arising from a balance between the

water–water interactions and ion–water interactions.

Figure 1.15: The hydration layer of a sodium ion and a chloride ion in water.
The water molecules are represented by red and white circles.

A controversial issue still under discussion is the extent to which ions affect the

structure and dynamics of surrounding water molecules. Hribar et al. used a simple

molecular model to calculate how ions affect neighbouring water molecules. The model

predicted that small ions have a larger degree of ordering in water compared to larger

ions. This is due to the difference in charge densities of the ions, and the balance of forces

that determine the water structure, i.e. electrostatics (dipole interactions) and hydrogen

bonding. Small ions have high charge densities therefore causing strong electrostatic

ordering of nearby waters, reducing the number of hydrogen bonds. Large ions have low

charge densities, so water–water hydrogen bonds dominate [47].

Some experiments have shown little effect on the dynamics of water molecules beyond

the first hydration sphere of the ion [48–50]. One study by Cappa et al. used X–ray

absorption spectroscopy to examine the effects of cations on water [49]. The results showed

only a small influence of monovalent cations on the unoccupied molecular orbitals of

water and the distortion of the hydrogen bond network was found to be negligible.
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Recent studies, using new spectroscopy techniques accompanied by computer simu-

lations, have now suggested the influence of ions on the structure of water does in fact

reach beyond the first hydration shell [51–54]. Teilrooij et al. examined water dynamics

around a range of ions using terahertz and femtosecond infrared spectroscopy, which al-

lowed detection of water reorientation dynamics along different molecular axes [53]. The

results showed the structure of the hydration sphere of a strongly hydrated ion, e.g.

SO2−
4 , was greatly dependant on the properties of the counterion. If the counterion was

weakly hydrated e.g. Cs+, the strongly hydrated ion was found to be surrounded by

a semi–rigid hydration sphere, where movement of the water molecule was restricted

only in a certain direction. If the counterion was strongly hydrated, e.g. Mg2+, the

hydrogen–bond network restricted the movement of water in multiple directions.

1.2.4 The effect of salt on a protein

To study halophilic proteins, it is important to highlight firstly the effects of salts on a

mesophilic protein, a protein that is not halophilic. The effects of salts on the precipita-

tion of proteins were first examined by Hofmeister in 1988 [55,56]. He studied the effects

of a number of salts on proteins purified from egg white. By keeping either the cation or

the anion constant, he was able to separate the cationic and anionic effects. The anions

and cations were then ordered according to their ability to precipitate the proteins, the

list is shown in figure 1.16. Protein precipitation was used as a marker for the solubility

of a protein in various salts. Later Hofmeister attempted to explain his observations

using the hydration of the ion [57].

The terms ‘kosmotrope’ (order–maker) and ‘chaotrope’ (disorder–maker) were origi-

nally used to describe solutes that either stabilised, or destabilised respectively, proteins

and membranes [56]. Kosmotropes stabilise proteins and hydrophobic aggregates in so-

lution and reduce solubility. They were described as having the ability to order water

molecules beyond their immediate hydration shells and effectively ‘steal’ water from the

protein, leading to a ‘salting–out effect’ [47,58]. Chaotropes were described as lacking the

ability to order water molecules beyond their immediate hydration shells. They promote
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Figure 1.16: The Hofmeister series of ion specific effects on proteins. The series
of cations are shown in the top diagram and the series of anions are shown in the bottom
diagram. The colours, green to red, represent the kosmotropes going to chaotropes. The
properties of the ions are given underneath for kosmotropes and chaotropes.

protein denaturation, destabilise hydrophobic aggregates and increase solubility, leading

to a ‘salting in’ effect. Section 1.2.3 shows some of the flaws in this argument.

The effects of ions on the stability of a protein are now generally ascribed to one of

the following mechanisms:

i) screening of electrostatic interactions

ii) the Hofmeister effect

iii) ion specific binding

A vast amount of literature is available that describe the effects of salts on pro-

teins [47,56,58–63]. Here, a few select examples have been presented to describe each mech-

anism mentioned.

1.2.4.1 Protein stability in low salt concentrations

Oppositely charged ions are attracted to each other. As salt ions are free to move

in a solution, anions will likely to be found near cations and vice versa [21]. The overall

solution is electrically neutral but close to one ion, there will be an excess of counter ions.

The time–averaged sphere surrounding the central ion, which has an excess of counter
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ions, will have a net charge equalling that of the central ion but with the opposite charge.

This sphere is named the screening layer. The free energy of the central ion is lowered

due to the presence of its screening layer. The thickness of this layer effectively cuts off

the long–range coulomb interactions. This theory predicts that the measured free energy

of a protein should vary linearly with the square root of the ionic strength. The ionic

strength of a solution is proportional to the concentration of salt and to the charge of

the component ions but is independent of the ion type [64]. This theory is only valid in

low concentrations of salt, i.e. lower than about 100 mM. Salt ions at low concentration

can exhibit either a stabilizing or a destabilising effect on a protein, this varies with the

properties of each protein.

This effect of the screening of surface charge–charge interactions, which is indepen-

dent of ion type, has been demonstrated in a study by Kumar et al [63]. A range of salts

with a constant cation and anions ranging from kosmotropes to chaotropes was exam-

ined (Na2SO4, NaCl, NaBr, and NaNO3). The effect of these salts on the stability of

the protein diferric–ovotransferrin (Fe2oTf) as a function of pH and urea was measured.

Low concentrations of salt, e.g. 0.1(±0.02) M Na2SO4 for each of the salts examined,

were found to destabilize the Fe2oTf protein (assessed by equilibrium experiments), in-

dependent of salt type. The destabilisation of the protein was suggested to be due to

weakening of Coulombic interactions at the protein surface.

1.2.4.2 Protein stability in high salt concentrations

The Hofmeister series is shown in figure 1.16. The species to the left of Cl− in this figure

are referred to as kosmotropes, they bind effectively with water molecules. These strongly

hydrated salt ions are excluded from the protein surface, leading to an increase in the

hydrophobic interactions within the protein [65–67]. Increased hydrophobic interactions

cause an increase in the stability of a protein. The ions to the right of Cl− are known as

chaotropes, the weakly hydrated ion shown preference for binding to the protein, thus

destabilising it [68]. These specific binding sites lead to net anion inclusion in the protein

surface. Once these sites are saturated, as salt concentration increases, there becomes a
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net anion exclusion of salt ions from the surface. This causes ’salting out’ behaviour.

An exact mechanistic explanation of effects of various ions on protein stability is

still an active area of research [60,62,68]). A study by Rembert et al. used a combina-

tion of NMR, thermodynamic measurements and molecular dynamics simulations to

identify specific binding sites of salt ions of the Hofmeister series on an uncharged 600–

residue polypeptide [68]. They found evidence that most significant binding affinities of

the polypeptide backbone were observed for the weakly hydrated anions, e.g. I− and

SCN−. The binding was observed for both the backbone amide moiety and α–carbon.

The interactions of the backbone with cations were found to be less pronounced. The

hydrophobic side chains of the polypeptide were reported not to contribute significantly

to anion binding or the resulting ’salting–in’ behaviour. Both strongly hydrated anions

(SO2−
4 ) and cations (Na+) were found to be repelled from the polypeptide backbone and

hydrophobic side chains. The study suggests that the exclusion of the strongly hydrated

ions from the polypeptide/water interface leads to hydrophobic collapse and a ’salting

out’ effect on entropic grounds (i.e. excluded volume effect). It should be mentioned that

strongly hydrated ions could bind to charged side chains, which may lead to salting–in

behaviour when these residues are present in the protein sequence.

1.2.4.3 Protein stability effects of ion specific binding

Observations of specific ion effects at low salt concentrations are attributed to specific

binding to stabilise a protein. Lytic transglycosylase from E. coli (Slt35) was reported

to contain a single metal ion–binding site that resembled a structural domain or found

in a large family of calcium–binding proteins [66]. The report of this structural feature

was described as only the second observation of such a domain in a prokaryotic protein.

The crystal sturctue of the protein was determined by van Asselt et al., which showed

that both Ca2+ ions and Na+ ions could bind to the domain. Temperature–induced

unfolding experiments demonstrated that Ca2+ ions were bound preferentially and only

Ca2+ thermally stabilised Slt35, showing Ca2+ binding is important for the stability of

the protein.
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A vast number of studies are available investigating ion–protein interactions using

both theoretical and experimental methods. Very few studies have applied the infor-

mation gained to the specific problem of how halophilic proteins have adapted to their

environment [69].

1.3 Halophilic organisms and their proteins

This section will review the literature on 3 halophilic proteins, which have been stud-

ied most extensively, highlighting the key relevant findings. Subsequently the section

will review the literature on the protein of interest for this thesis, 2Fe–2S ferredoxin

from Haloarcula marismortui. Further studies of haloadaptation using designed model

halophilic proteins will then be presented. Finally the key findings drawn from the

literature will be summarised.

1.3.1 Adaptation of organisms

A major obstacle for halophilic organisms to overcome is the water loss caused by os-

mosis [70]. Osmosis is the flow of solute, a substance dissolved in a solvent, in high

concentration across a semi–permeable membrane to a region of lower concentration [71].

The increase in inorganic ions on the outside of the cell causes a concentration gradient

across the cell membrane. Water molecules permeate through the cell membrane to

restore concentration equilibrium. In order to overcome this problem, organisms have

evolved two approaches:

i) The first is the “salt–out” strategy, balancing the osmotic pressure by increasing

the amount of certain organic solutes inside the cell, such as polyols (e.g. glycerol

and arabitol), low molecular weight carbohydrates (e.g. sucrose and trehalose),

amino acids and their derivatives (e.g. proline and glutamate), unique organic

zwitterions and methylamines [72,73].

ii) The second is the “salt–in” strategy, where the organism increases the amount
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of inorganic ions inside the cell [74]. This process is energetically cheaper but the

intracellular proteins of these organisms must be capable of functioning in the

presence of a large amount of ions. These halophilic proteins are of great interest

due to their ability to remain soluble, flexible and functional under highly saline

conditions.

1.3.2 Halophilic proteins

A number of studies have been carried on halophilic proteins to identify how these pro-

teins are able to function in such high salt concentrations [75–77]. Although many common

characteristic adaptations of halophilic proteins have been found, the mechanism of sta-

bilisation by these adaptations is still under investigation.

1.3.2.1 Halophilic Malate Dehydrogenase

The most extensively studied halophilic protein is malate dehydrogenase from the Haloar-

cula marismortui (HmMDH), shown in figure 1.17 [78–86]. Haloarcula marismortui is a

halophilic red archaeon, which was first isolated in the 1960s by Ginzburg et al. from the

Dead Sea [87–89]. It is an extremely halophilic organism, i.e. it uses the “salt–in” strategy.

The dominant ions within the cytoplasm of Haloarcula marismortui have been found at

concentrations of 3.7–4 M potassium, 0.5–0.7 M sodium and 2.3–2.9 M chlorine [87].

HmMDH has been shown to be able to function at the high concentrations of

KCl/NaCl, similar to its physiological environment [91]. Consequently, most mesophilic

proteins would precipitate at such high KCl/NaCl concentrations (see section 1.2.4.2).

HmMDH has been found to be unstable at salt concentrations lower than 2.5 M KCl

or NaCl [91]. Instability at low salt concentration appears to be a common feature of

halophilic proteins. Zaccai et al. measured the stability of HmMDH in varying con-

centrations of MgCl2 by monitoring the enzymatic activity at different incubation times

with various solvents [79]. Mg2+ is a salting in ion, usually favouring the folded state

of a protein (see section 1.2.4.2) and is also present in high concentrations in the Dead
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Figure 1.17: The 3D structure of HmMDH. This figure was created using PDB file
1HLP and Pymol [86,90].

Sea [2]. The study reported that HmMDH was stabilised by concentrations of 0.3 – 1.3

M MgCl2. This unexpected behaviour, therefore, showed a new model was required to

describe halophilic protein stabilisation in various salts.

Halophilic proteins have been found regularly to have weakened hydrophobicity [75].

This is important to increase the solubility of the protein in a high salt environment

by allowing greater interaction with the water molecules, although this is not enough

to stabilise the structure. The stabilisation model, proposed by Zaccai et al, states

that further stabilisation of the protein structure is needed in high salt conditions [79].

Halophilic proteins are thought to have a structure which is able to compete for water

ions against the large amount of salt. The increased amount of acidic residues on the

surface of the protein is a possible mechanism for achieving this through coordination

with hydrated salt ions. This coordination of hydrated salt ions causes a reduction in

entropy, which could be compensated for by the favoured formation of hydrated ion bonds

to the carboxyl groups. This method of stabilisation is therefore enthalpy driven. Zaccai

et al. provided evidence for this model, showing Na ions and Cl ions were included

in the hydration shell of HmMDH using small angle neutron scattering. The local
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concentrations of Na+ and Cl− ions around the protein were found to be higher than

concentrations in the bulk [78].

Extensive work on the structure of HmMDH suggested that active protein in solution

was a dimer that, at high salt concentrations, had significantly larger solvent interactions

than for mesophilic proteins [76]. This structure was thought to be evidence for coordi-

nated hydrated salt ions described by salt stabilisation model for halophilic proteins

proposed by Zaccai et al [79]. Further study of the structure of the protein found it was

actually tetrameric [80]. As a consequence of this, repeated analysis of experiments using

densimetry, X–ray and small angle neutron scattering found that the water binding of

HmMDH was now similar to that of a mesophilic homologue. The salt binding, however,

remained higher so the stabilisation model proposed by Zaccai et al. of hydrated ion

binding remained valid.

The crystal structure of HmMDH was solved by Dym et al in 1995 and the resolution

was improved in 2000 by Richard et al., shown in figure 1.17 [81,86]. The protein was

crystallised in 1.8 M NaCl and resolved to 2.6 Å resolution. The structure of HmMDH

was shown to have twice as many acidic residues as the mesophilic homologue and a

significant increase in the number of salt bridges [92]. The major interactions connecting

each monomer were found to be electrostatic in nature instead of hydrophobic as in the

mesophilic homologue, probably arising from the increased number of charged residues.

Only two sodium ions were found in the crystal structure for each tetramer, which were

bound to two glutamic acid residues that are part of the monomer–monomer interfaces.

Two chloride ions were also found in interactions with lysine residues as part of the salt

bridge clusters found at the dimer–dimer interface [86]. It was suggested that introducing

the protein to low salt concentration would lower the probability of binding the salt ions

in these positions, allowing the tetramer to dissociate into monomers, which it does so

at 2 M NaCl. The dissociation of the monomers inhibits the protein from functioning.

A review of the studies on HmMDH, written by Mevarech et al., concludes by mod-

ifying the solvation–stabilisation mechanism proposed by Zaccai et al. [85]. Two roles

are given for the high amount of acidic residues found in halophilic proteins, maintain-
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ing the solubility of the protein through interactions with the water and counteracting

the increased hydrophobic effect from high salt concentration through repulsion of like

charges. The high salt dependence of the protein was suggested to be due to a few,

specific, low affinity binding sites on the protein. Large amounts of salt would therefore

be needed to overcome the low affinity. The differing stability of halophilic proteins in

low salt conditions could then be explained by the hydrophobicity of a given protein and

the affinity of the specific ion sites.

1.3.2.2 Halophilic Dihydrofolate Reductase

Another well studied halophilic protein is dihydrofolate reductase from Haloferax vol-

canii, (HvDHFR), shown in figure 1.18 [93–95]. Haloferax volcanii is a halophilic archaeon,

which was also isolated from the Dead Sea (initially named Halobacterium volcanii) [96,97].

Figure 1.18: The 3D structure of HvDHFR. This figure was created using PDB file
2ITH and Pymol [90,94].

A study carried out by Bohm and Janike examined protein instability in low salt

conditions,instead of protein stability, in high salt conditions [93]. HvDHFR was found

to be active in KCl concentrations as low as 0.5 M, although has optimal activity at 3–4

M. The increased amount of acidic residues on the surface, noted as a regular feature

of halophilic proteins, were viewed as a destabilising effect. Repulsion of these groups

in a low salt environment would lead to instability and denaturing of the protein. Cir-
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cular Dichroism (CD) spectroscopy studies showed that when HvDHFR is in low salt

conditions, about 0.25 M, the protein was completely unfolded. When the protein was

put in a low pH environment, however, salt ions were not needed for stability. Decreas-

ing the pH provides protons, which are able to substitute for the salt ions. HvDHFR

was further investigated by computational modelling [93]. A 3D structure of HvDHFR

was produced using the amino acid sequence, modelled on the known 3D structure of a

mesophilic homologue. The pKa value of the ionisable groups that cause the pH depen-

dence, mentioned above, was estimated to be around 5.3. This value is higher than any

single amino acid. It was therefore postulated that clusters of charged residues give to

the high pKa and this effect is important for halophilic adaptation.

The crystal structure of HvDHFR was reported in 1998 (figure 1.18), showing a slight

increase in the number of acidic residues compared to the mesophilic homologues [94]. The

positions of acidic residues predicted by the Bohm model (described above) were shown

to be inaccurate; the negative charges tend to orient themselves in opposite directions.

Compared to that of a mesophilic homologue from E. coli, the crystal structure also

revealed there was no significant increase in the number of salt bridges (28 for HvDHFR

and 27 for EcDHFR), as was found for HmMDH [92,98].

A study carried out by Wright et al. used CD spectroscopy and fluorescence studies

to look at the effect of salt concentration on HvDHFR and a mesophilic homologue [95].

The study pointed out the importance of the hydrophobic residues in the stabilisation of

HvDHFR. The weaker hydrophobicity of HvDHFR compared to mesophilic homologues,

was shown to be brought about by the apparent preference of small hydrophobic residues

(Ala and Val) over large ones (Phe, Tyr, Trp, Ile, Leu, and Met). It was suggested that

this allows the protein to have the flexibility necessary to function despite the increase in

the hydrophobic effect due to the high concentration of salt. At low salt concentration,

the protein is thought to unfold because of the destabilisation caused by the decrease in

the hydrophobic effect.
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1.3.2.3 2Fe–2S Ferredoxin from Halobacterium salinarum (HsFd)

2Fe–2S ferredoxin from Halobacterium salinarum (HsFd) is a halophilic protein that has

also been studied, shown in figure 1.19. Halobacterium salinarum, despite its name is also

a halophilic archeon, which was first isolated from salted fish about 80 years ago [99,100].

Figure 1.19: The 3D structure of HsFd. This figure was created using PDB file 1E0Z
and Pymol [90,101].

The halophilic protein, HsFd, was studied by Bandyopadhyay et al. by investigating

the structure of the protein in low salt concentrations [102]. A time–dependant loss of

secondary structure was shown using CD Spectroscopy when the protein was diluted

from high ionic strength solutions (4.5 M NaCl) into solutions with less than 1 M NaCl.

Similar results were also found in the region of the 2Fe–2S cluster using absorbance

spectroscopy and for the tryptophan residues using fluorescence measurements. This

study points out an inserted domain with many acidic residues in the amino acid sequence

of HsFd compared to the mesophilic ferredoxins (discussed in section 1.3.2.4 for HmFd).

Stabilisation of the protein is suggested to be most likely due to extensive solvation of

theses acidic residues, where solvation is defined as the binding of water and/or salt. It

is suggested that the screening of electrostatic charges through solvation is insufficient

to explain the stability of halophilic proteins in very high salt conditions. The increased

hydrophobic effect in high salt conditions provides extra stabilisation.
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Further investigations by Bandyopadhyay revealed the structure of HsFd in low salt

conditions still contained significantly more secondary structure than HsFd, which had

been completely unfolded in the presence of 8 M urea [103,104]. This suggested that HsFd

is not completely unfolded in low salt but is an intermediate structure. At pH 5 it

was found that a high concentration of salt was not needed to stabilise the structure,

supporting the need for charge stabilisation to stabilise the structure mentioned previ-

ously. Bandyopadhyay also found that HsFd could be stabilised by the presence of small

amounts of polylysine, a polycation [103]. It is expected that polylysine forms salt bridges

with the carboxyl groups of the surface acidic residues, again supporting the argument

for the increased stability through charge screening. It was shown in CD spectroscopy

and fluorescence studies that polylysine was not able to fully substitute for high salt

concentration, showing that the screening of electrostatic charges is insufficient for full

stabilisation.

The NMR structure of HsFd was solved in 1995 by Marg et al., shown in figure

1.19 [101]. HsFd was found exhibit greater kinetic stability upon a decrease in salt con-

centration (0.05 M NaCl) than other halophilic proteins, such as HmMDH [85]. Surpris-

ingly, the NMR structure was found to be unaltered when HsFd was in 1.5 M and 0.45

M NaCl, suggesting this salt concentration has no effect on the overall structure of the

protein. Marg et al. conclude that “the decreased protein stability observed at lower

salt concentrations does not reflect structural differences, but is rather due to a lowered

energy barrier of unfolding”.

1.3.2.4 Introduction to 2Fe–2S Ferredoxin from Haloarcula marismortui

(HmFd)

The protein of interest for this thesis is 2Fe–2S ferredoxin from Haloarcula marismortui

(HmFd), shown in figure 1.20. The organism, Haloarcula marismortui, was described in

section 1.3.2.1. Experimental results using this protein are presented in chapter 3.

The X–ray crystal structure of HmFd was reported in 1996 by Frolow et al., shown in

figure 1.20 [105]. HmFd was found to contain a 4–stranded β sheet, distorted into a barrel–
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Figure 1.20: The 3D structure of HmFd This figure was created using PDB file 1DOI
and Pymol [90,105].

like structure with 5 surrounding α helices. Four sulphur atoms, from cysteine residues,

bind Fe atoms that are involved in a 2Fe–2S cluster, see figure 3.1. The 2Fe–2S cluster

is located in the hydrophobic core of the protein. In accordance with the commonly

observed features of halophilic proteins, HmFd has a large number of acidic residues

predominantly located on the surface. The protein contains 34 carboxylate groups, which

constitute 26.6% of the protein and only six basic residues, located in the C–terminal

half of the structure, making HmFd the highest density of negatively charged residues

in the Protein Data Bank [105]. Mesophilic homologues of HmFd, AbFd and human Fd

have 10% and 19% acidic residue content respectively [106,107]. HmFd appears to have

an extra 22 residue domain inserted into the loop region between two anti–parallel beta

strands near the N–terminus when compared to the structures of homologous mesophilic

ferredoxins [105–107]. The extra domain contains 15 negatively charged residues and no

positively charged ones, and folds into two α–helices. HmFd only contains five salt

bridges in the monomer structure whereas other halophilic proteins, such as HmMDH

which contains many more [81]. It is suggested that HmFd is stabilised by its 2Fe–

2S cluster and does not need further stabilisation from extra salt bridges. HmFd has

been reported to be active at salt concentrations as low as 0.4 M NaCl, although no

experimental data has currently been published about the protein stability in varying

salt concentrations [108].
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A study by Elcock and McCammon carried out a theoretical analysis of the contribu-

tion of electrostatic interactions to the stability of HmFd [109]. They initially investigate

the salt dependence of the pKa values of the acidic residues aspartate and glutamate,

and the basic residues arginine and lysine in HmFd and a mesophilic homologue. The

pKa is defined by equation 1.2.

pKa = −log10Ka (1.2)

Where:

Ka =
[A−] [H+]

[HA]
(1.3)

HA is an acid which dissociates in the conjugate base of the acid A− and a hydrogen

ion. A change in value of pKa indicates a change in the environment of a residue within

a protein [110]. For example, when a protein is unfolded the residue is surrounded by

solvent, when a protein is folded the residue may form interactions with other residues.

For the acidic residues, the study reports an upward shift in the pKa values compared to

the mesophilic homologue [109]. This is due to the greater contribution of unfavourable

interactions upon deprotonation from the higher number of acidic residues in HmFd

than in the mesophilic homologue [106,107]. The pKa shift was found to be larger in low

salt conditions than in high salt conditions, so it was suggested less counter–ions were

available to shield the electrostatic charges of the acidic residues. It was estimated, using

these findings, between pH 5–7 the destabilisation is due to deprotonation of the acidic

residues. Increasing the salt concentration allows shielding for the charges of the acidic

residues. The increased amount of salt also destabilises the salt bridges. At pH 11, HmFd

would be stable in 1 M salt or above. At higher pH values, a larger salt concentration

is needed to shield the larger amount of deprotonation caused by the increased pH. It

was estimated in this study that HmFd would be increasingly stable in 0.04 M NaCl as

pH is lowered. Experimental results do not show this as the protein in pH 5 is shown to

aggregate. That calculation is based on a system that only exists in 2 states, folded and

unfolded, therefore the possibility of aggregation of the protein is not taken into account

in this calculation. Although these calculations only take into account the electrostatic

contribution to stability, excellent agreement was shown between their theoretical results
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and experimental data to determine the stability of HmMDH at various pH and salt

conditions.

It was concluded that the increased amount of charged residues in the halophilic

HmFd are not to provide stabilisation at higher salt concentrations, but simply to prevent

aggregation. Evidence was provided for this theory by comparing the salt dependence

of halophilic HmFd with a mesophilic homologue at pH 7. It was concluded that both

proteins are stabilised with increasing salt concentration, although the effect is more

pronounced with the halophilic protein.

1.3.3 Using model halophilic proteins to study the adaptations of

halophilic proteins

Tadeo et al. carried out a large scale systematic mutation study, followed by a ther-

modynamic and structural characterisation on three different proteins: the halophilic

DNA ligase, Hv1ALigN, a mesophilic homolgue, Ec1ALigN, and the mesophilic protein

L from Streptococcus magnus (ProtL) [111].

The first step of the investigation was to examine the effect of salt on the stability

of the three wild type proteins. CD and fluorescence experiments showed the halophilic

protein, Hv1ALigN, was stabilized by salt (3.2 M KCl or NaCl) while the stability of

both mesophilic proteins were independent of ionic strength.

Next the following mutations were carried out including:

i) charge preservation mutations to modify chain length (E to D, DN to EQ, K to R,

and R to K – where XY to WZ represents a mutation from X or Y to W or Z)

ii) size preserving mutations to modify protein charge (NQ to DE and DE to NQ)

iii) mutations that modify both size and charge (K to QES and DES to K).

The change in free energy between the unfolded and the folded state of the protein

in 3.2 M salt, ∆GU-F
3.2 M salt, was determined by equilibrium denaturation experiments.

This was carried out, for each variation of each protein. For example Hv1ALigN ExnD,
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∆GU-F
3.2 M salt was calculated for each mutation, i.e. Hv1ALigN ExD where only one

glutamic acid has been mutated to an aspartic acid, Hv1ALigN Ex2D where two glutamic

acids has been mutated to aspartic acids up to Hv1ALigN Ex8D. ∆GU-F
3.2 M salt was then

plotted in a graph against the number of substituted residues. An increase in the value

of ∆GU-F
3.2 M salt with the number of substituted residues (i.e. a positive slope) represents

a protein becoming increasingly salt stabilised.

Mutation type i) – Reducing one or more amino acids in the protein sequence by

one methylene group (E and Q to D and N) introduced a salt stabilising effect for the

mesophilic proteins and improved the halophilic adaptation of the halophilic protein.

This was shown by an increase in ∆GU-F
3.2 M salt with the number of substituted residues,

the black circles in figures 1.21 A0 to C). The opposite mutation, increasing one or more

amino acids by one methylene group (D and N to E and Q), was found to have reverse

effect, see the white squares in figures 1.21 A) to C).

Mutation type ii) – No changes were observed in the salt stabilisation values for the

modification of charge in the halophilic protein (figure 1.21 D) black circles) and only a

small increase in the halophilic character was observed for the mesophilic proteins (figure

1.21 E) and F) black circles). The results showed charge modification has little effect

on the modulation of the halophilicity of the three proteins. As a check, the solubility

of wild type Prot L was recorded along with that of Prot L with 4 lysines mutated

to glutamines (Kx4Q) and ProtL with 4 lysines mutated to glutamic acids (Kx4E). A

dramatic increase in solubility of the ProtL Kx4E mutant protein was found compared

to the solubility of the wild type Prot L, shown in table 1.2. The results suggested that

acidic residues are favoured in halophilic proteins due increase the solubility of protein

in an environment of reduced water activity.

ProtL variant Solubility (mg/mL)

WT 50 ± 8
Kx4Q 56 ± 7
Kx4E >85 ± 8

Table 1.2: The measured solubility of ProtL variants in 20 mM phosphate, 2M ammonium
sulphate at pH 6.0, and 25 ◦C [111].
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Figure 1.21: The effect of charge and side chain length in protein haloadaptation.
The effect of the chain size (figures A) to C)) and charge (figures D) to F)) in haloadaptation
of ProtL, Hv1ALigN, and Ec1ALigN was investigated by measuring the free energy at 3.2
M salt (KCl or NaCl) versus the number of substituted residues in the multiple mutations
(n in XYxnWZ). ∆e is defined as the residual theoretical charge upon mutation (mutant
minus wild type). Error bars result from propagation of the experimental uncertainties
in the Tm values, by Monte–carlo analysis. Dashed lines represent the ∆GU-F

3.2 M salt values
for wild type proteins. Figures B) and C) show the introduced a salt stabilising effect for
the mesophilic proteins and figure A) shows the improved the halophilic adaptation of the
halophilic protein. Figures D) to F) show the charge modification had little effect on the
value of ∆GU-F

3.2 M salt for each mutation for all the three proteins. Figure taken from [111].
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Mutation type iii) – Changing K for R, Q, S, or E in ProtL leads to salt stabilization

for all replacements, independent of their charge, shown as white shapes in figure 1.22

A). ProtL was shown to be destabilized by NaCl if a sufficient number of lysines were

introduced (white squares in figure 1.22 B)). When three lysines are introduced into the

surface of the halophilic protein, a decrease in the stability was observed at high salt

concentration (black circles in figure 1.22) It was suggested that the low prevalence of

lysine residues in a halophilic protein can be explained by destabilising effect of long

lysine side chain at high salt concentration.

Figure 1.22: The low prevalence of lysines in the amino acid composition of
halophilic proteins. The effect of lysines on protein haloadaptation was investigated
by measuring the change in stability induced by salt (∆GU-F

3.2 M salt) versus the number of
substituted residues in the lysine involving mutations (n in XYxnWZ). Error bars result
from propagation of the experimental uncertainties in the Tm values. Dashed and dotted
lines represent the ∆GU-F

3.2 M salt for wild type ProtL, Hv1ALigN, and Ec1ALigN. Figure A)
shows the increased salt stabilisation when changing K for R, Q, S, or E. Figure B) shows
the decrease in stabilisation on the halophilic protein when three lysines are introduced.
Figure taken from [111].

To study the effect of changes in surface area, the NMR structures of two mutants of

protein L, ProtL Kx5Q and ProtLKx6E, were determined. ProtL Kx6E was found to be

an obligate halophile (i.e. unfolded at low salt concentrations), the structure of ProtL

Kx6E is shown in figure 1.23. The structures of the mutants were shown to be very

similar to the wild type. The data was used to calculate the changes in the accessible

solvent area in the folded protein upon mutation. High correlations were found between

the slope of the salt stabilisation of the protein and the slope of the decrease in the

accessible surface area. The authors suggest that surface packing may, therefore, be

important for halophilicity. Proteins with a decreased solvent accessible surface are
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preferred in an environment where water molecules also have to solvate the ions.

Figure 1.23: The 3D structure of ProtL Kx6E, PDB code: 2KAC. Figure A) shows
the 10 lowest energy–refined conformers. Figure B) shows the 3D cartoon ribbon structure
of the protein. Figure C) shows close–up views for a representative selection of ProtL WT
and ProtL Kx6E side chains that have been aligned. Lysine side chains are coloured in
magenta whereas glutamic acid side chains are coloured in blue. Figure taken and edited
from [111].

.

The stability of these ProtL mutants was determined in the absence of salt by chem-

ical denaturation experiments. A reduction in the solvent accessible area showed a

progressive destabilisation of the protein, which was suggested to be due to a reduction

in the protein’s hydrophobicity. As a consequence, mutations increasing salt stabilisa-

tion also cause a destabilisation of the protein in the absence of salt. This effect would

convert a mesophilic protein into an obligate halophile.
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A later study by the same group examined the dynamics of water molecules around

the halophilic model protein, ProtL Kx6E, to determine whether the introduction of

charged residues into a protein gives rise to ‘exceptional’ hydration, which has been

reported for a number of halophilic proteins [112]. Using frequency– and temperature–

dependent 17O magnetic relaxation, the study found dynamics of the water molecules of

ProtL Kx6E do not differ from the wild type protein L or from other previously studied

mesophilic proteins.

Recently, the same group carried out a study in attempt to emulate the process of

evolution of halophilic proteins using a range of natural and designed model halophilic

polypeptides [69]. They used NMR in combination with other biophysical techniques to

separate and quantify the energetic contributions of each residue to the overall haload-

aptation. They pointed out a refined model for haloadaptation was required to describe

quantitatively the contribution of specific amino acids to the stabilisation of the protein

in both unfolded and native states.

The results showed:

i) The native state is stabilized by a number of weak electrostatic interactions between

cations in the solute and the negatively–charged residues but not between anions

in the solute and positively charged Lys residues.

ii) No such ion–protein interactions were shown by the unfolded protein, which re-

sulted in exclusion of ions from the hydration layer of the protein.

In the absense of ions, only intramolecular electrostatic interactions in the native

state are important for differentiating between mesophilic and halophilic proteins. The

free energies of their unfolded states can be assumed to be similar. The NMR relaxation

data collected also showed that the dynamics were very similar. In a high salt concentra-

tion, the native state of a halophilic protein is stabilized by a number of intermolecular

electrostatic interactions, causing inclusion of the ions into the proteins hydration layer.

In a high salt concentration, the unfolded state of a halophilic protein is destabilized due

to its inability to form such electrostatic interactions as the carboxylate groups lack the

preorientation required to interact. The ions, therefore, compete with the protein for
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hydration. This competition is more exaggerated for halophilic proteins with their large

amount of hydrophilic negatively charged residues. This creates an energetic penalty on

the unfolded state that increases with the salt concentration, which is larger for halophilic

than for mesophilic proteins.

1.3.4 Summary of the literature review on halophilic proteins

To be able to function in such high salt conditions, a halophilic protein needs to be

soluble in salting out conditions and needs to have sufficient flexibility to function. A

decrease in hydrophobicity is commonly found in halophilic proteins. It is likely this

is to counteract the increased hydrophobicity from high salt, shown by the studies on

HvDHFR [95]. A number of studies, not described above, have discussed the importance

of the decrease in hydrophobicity for haloadaptation [113,114].

The increase in amount of acidic residues is the most common method reported for

the halophilic adaptation of proteins. The role of these acidic residues in the stabilisation

of proteins in high salt environments is not yet clear. Three separate theories for the

role of these acidic residues have emerged:

i) The large number of acidic residues in halophilic proteins are destabilising, i.e. the

charges repel and favour the unfolded state of a protein. Salt ions interact with

the acidic residues, screening the repulsion from like charges and increasing the

stability [93,109]. This theory is supported by experiments on a number of halophilic

proteins which show that lowering pH can stabilise a halophilic protein when in low

salt conditions [93,104]. The charges are instead screened by the increased amount of

hydrogen ions. The presence of salt in solution must, therefore, have a significant

effect on the stability of the protein through some form of interaction with the

charged residues, i.e. they cannot be stabilised by interaction with water alone.

ii) The halophilic protein stabilisation is described through the coordination of hy-

drated salt ions, although structural evidence of this also has not been found [79,80].

X–ray crystallography studies seem to show fewer interacting salt ions than sug-

gested by this theory. This led to a modification of the model where salt ions
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are needed to bind to only a few specific sites on the protein to allow stabili-

sation [85]. The destabilising effect brought about by the repulsion of the acidic

residues increases the flexibility of the protein, again counteracting the increased

hydrophobicity from high salt. This model fits with the structural data, X–ray

crystal structures of halophilic proteins do not appear to have many bound salt

ions. The model does not account for the lowering of pH stabilising a halophilic

protein when in low salt conditions. It is possible that specific ion binding sites

are important for specific halophilic proteins, e.g. HmMDH, which shows evidence

of salt ions binding through complex salt bridges.

iii) This model describes cumulative weak interactions between hydrated cations and

negative residues of the protein in the native state of a halophilic protein, in line

with the previous halophilic model by Zaccai el al [79]. But they show these weak

interactions only explain one part of the picture; the other driving force behind

haloadaptation is the simultaneous destabilization of the unfolded state [69]. Ev-

idence of the interaction of hydrated cations with the carboxylic group of the

negative residues is shown using a novel NMR methodology.

1.4 Probing protein stability and dynamics using Single

Molecule Force Spectroscopy (SMFS)

The haloadaptation of a protein, discussed in section 1.3, is very complex and has many

contributing factors. A tool is needed to decipher the importance of specific interac-

tions that contribute to to the stability of a halophilic protein. One such approach is

Single Molecule Force Spectroscopy (SMFS) which is a technique used to investigate the

mechanical stability of proteins. Protein unfolding is typically studied on bulk systems

using a range of denaturants e.g. chemically or thermally. Measurements using SMFS

allow examination of the range of states that may be experienced by a single protein,

e.g. subpopulations of proteins that unfold by different pathways and rare unfolding

intermediates, which would be overlooked in bulk experiments.
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This section will describe a few examples of how force is utilised in nature. The use of

polyproteins for the collection of SMFS data will then be explained, along with the use of

SMFS data to extract details about the energy landscape of a protein. Factors affecting

the mechanical stability of a protein will then be introduced, giving descriptions of

studies carried out to investigate each example. The section will finish with a discussion

on the importance of the electrostatic interactions on the stability of a protein, including

experiments performed to date using SMFS.

1.4.1 Force in nature

Mechanical force commonly occurs in biological systems and is utilised in many activi-

ties. A number of processes require the forced unfolding of proteins [115]. One example

of the use of mechanical force in nature is the translocation of proteins across a mem-

brane [116–118]. If a protein is initially folded, mechanical force may be used to unfold the

protein to allow translocation, shown in figure 1.24 A. The details of this unfolding mech-

anism are still not fully understood but two possible models have been proposed [119,120].

The first is the Brownian ratchet mechanism, which assumes that the protein chain ran-

domly slides through the channel. The protein binds to an intramitochondrial protein,

the chaperone mtHsp70, which traps any unwanted motion in the peptide chain. The

second is the power stroke mechanism, which proposes that mtHsp70 is used to pull the

protein through the channel by utilising a conformational change upon ATP hydrolysis.

Mechanical force is also used in cell signalling [121,122]. By changing their conformation

and interactions, proteins can send signals. Cells are able to sense and respond to these

forces. The large muscular protein, titin, contains a protein kinase domain at its C–

terminal end, which has been shown to be activated using mechanical force [123].

The function of a number proteins is to withstand mechanical force, e.g. fibronectin,

which is found in the extracellular matrix [124,125]. Fibronectin fibrils can stretch under

the influence of cell traction forces, allowing for better cell migration and adhesion.

Another example is titin, a large fibrous protein found in the muscle [126]. These proteins

possess elastic properties to act as shock absorbers to prevent damage of skeletal and
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Figure 1.24: Schematics of examples of force used in nature. Figure A. shows the
translocation of a protein into a mitochondrion through the membrane. Figure B. shows the
chaperone, ClpX, which is involved in protein degradation to remove unwanted or misfolded
proteins. Figure C. shows an example of protein that functions due to its capacity to
withstand mechanical force, the α–helical protein spectrin. It makes up the cytoskeleton of
red blood cells to form an elastic mesh to withstand external forces. Figure taken and edited
from [115].
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cardiac muscle sarcomeres.

1.4.2 Introduction to SMFS experiments

The Atomic Force Microscope (AFM) was first invented in 1986 [127]. It is an instrument

that was designed to probe the interaction forces between a sharp tip and the surface of a

sample with subnanometre resolution. The AFM has been mostly utilised in biophysics

for the imaging of biomolecules [128,129]. The use of the AFM was developed to measure

the unfolding force of a protein a decade after the invention [130].

The AFM uses a sharp tip at the end of a flexible cantilever to probe the unfolding

properties of a protein, shown in figure 1.25. The protein solution is applied to a freshly

cleaved gold surface, the height of which can be controlled using a piezo. During an

SMFS experiment, the gold surface is brought into contact with the tip. At this point

a protein may be adsorbed on the cantilever tip. An external force is applied across

the protein by increasing the distance between two points, stretching the protein into

an unfolded, extended state. The displacement of the cantilever, with respect to the

extension of the protein, is measured using a photodetector. Further details of an SFMS

experiment can be found in section 2.7.3. The technique allows individual proteins to

be unfolded and refolded in order to study mechanical stability, folding pathways and

features of the transition states.

1.4.3 Advantages of the use of poly–proteins for SMFS studies

Polyproteins are comprised of a single polypeptide chain of repeating single protein

domains. Naturally occurring polyproteins, such as titin, were the first to be analysed

using SMFS [131]. Natural polyproteins are, however heterogenous [132]. Each of the

protein domains are similar but are not identical, therefore, their mechanical properties

may differ. The development of techniques to engineer artificial polyproteins has made

it possible to examine repeating domains of proteins, where each domain is identical.

Thus allowing unambiguous identification of the mechanical properties of the protein.
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Figure 1.25: Overview of the the SMFS experiment. Protein solution is applied to
a freshly cleaved gold surface, the height of which is controlled using a piezo. The protein
is adsorbed on the cantilever tip and an external force is applied across the protein. The
displacement of the cantilever, with respect to the extension of the protein, is measured
using a photodetector. Figure taken and edited from [115].
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During an SMFS experiment the cantilever tip comes into contact with a gold surface,

which contains many protein constructs. A number of these constructs could interact at

any point along each protein. Rarely will the tip interact with the end of a folded pro-

tein construct. A resulting force is exerted on the tip by these ‘non–specific’ interactions,

which typically occurs when the tip is close to the substrate. Non–specific interactions

produce a large amount of ‘noise’ which may mask the force peaks from proteins with

small force peaks. They also may be difficult to distinguish these peaks from bona fide

interactions with the protein of interest. Engineered poly–proteins contain multiple iden-

tical tandem repeats, which produce periodical sawtooth pattern force–extension curves.

The repetitive pattern creates a “fingerprint” that allows unambiguous quantification of

the mechanical properties of the protein of interest.

1.4.4 What determines the mechanical stability of a protein?

One of the main aims of SMFS studies is to understand the protein structure characteris-

tics, e.g. topology, hydrogen bonding, hydrophobic core, that determine the mechanical

properties of a protein [133–135].

1.4.4.1 The secondary structure of a protein is highly important for me-

chanical stability

A pioneering SMFS study was carried out in 1997 on the muscle protein titin [131]. Titin

was found to have a high mechanical stability and could withstand high forces (150-350

pN). A computational study by Lu et al. used molecular dynamics simulations to stretch

the single titin Ig domains [136]. The results showed the peak unfolding force was due to

the shearing of hydrogen bonds between two sets of β–strands. The region of importance

for mechanical force in a protein structure has since been referred to as the ‘mechanical

clamp’ [137,138]. A number of mechanical clamps have since been identified in many other

proteins and ranked according to their unfolding force [133,135].

An all–α–helical protein, calmodulin, was found to have a low mechanical unfolding
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force of 15 pN at a pulling velocity of 600 nms−1. An α–helix has a homogeneous dis-

tribution of intrahelix hydrogen bonds. Molecular dynamics simulations predicted that

the intra–helix hydrogen bonds of an α–helix were broken sequentially, a process that re-

quired little force [139]. Other all α–helical proteins have shown a similar behaviour [140,141]

(see figure 1.26).

Figure 1.26: A selection of proteins that have been mechanically characterised,
comparing unfolding force, structure and extension. The approximate unfolding
force (at pulling velocities of about 500 ± 200 nms1) is plotted against the length of the
protein. Structural information is colour–coded; mostly/all β–sheet is shown in orange/red
respectively, mostly/all α–helical is shown in light/dark blue respectively. Figure taken and
edited from [115].

1.4.4.2 The direction of the applied force affects the mechanical stability of

a protein

The pulling direction has also been shown to affect the mechanical properties of pro-

teins [142]. A study by Brockwell at al. used protein immobilisation to probe the me-

chanical properties of the protein, E2lip3, in two different pulling directions [143]. When

the protein was immobilised between residues 1 and 41, the hydrogen bonds between its

β–strands were sheared with a mechanical unfolding force of 177 ± 3 pN at a pulling ve-

locity of 700 nm/s, shown in figure 1.27 A). When the protein was immobilised between
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residues 1 and 75, the hydrogen bonds between its β–strands were broken one by one

and E2lip3 was shown to unfold without showing any mechanical resistance, shown in

figure 1.27 B). The results indicated that the mechanical properties of a protein could

not simply be defined by amino acid sequence, topology or kinetic stability.

Figure 1.27: A schematic of a change of pulling direction on two β–strands.
Figure A) shows the shearing of the hydrogen bonds (depicted as red dashed lines) between
two β–strands. Figure B) shows the peeling of the hydrogen bonds between two β–strands.

A later study by Dietz et al. measured the mechanical properties of a folded protein

structure when extended in defined directions [144]. This was possible by adding two cys-

teine residues at precise points in the GFP amino acid sequence, to create di–sulphide

linkages and form a polyprotein. The positions of the cysteines in the protein define

where the force is applied to the structure. The results from 5 chosen pulling directions

showed a wide range of unfolding forces from 100 pN to 600 pN, see figure 1.28. It was

concluded that the GFP structure must contain two unfolding pathways of similar sta-

bility while pulling in one direction. The study also identified an intermediate structure

that was pulling direction–dependant.

1.4.5 The use of chimeric polyproteins to study mechanically unchar-

acterised proteins

There are two types of polyprotein used for SFMS experiments:
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Figure 1.28: Directional deformation response of the GFP fold. The width of the
lines, shown connecting the points of force application, represents the average unfolding force
in that particular direction. The colour of the lines show the directional spring constant,
i.e., protein rigidity in the respective direction. The colours and widths are described in the
key. Figure taken and edited from [144].

i) Homo-polyproteins, containing tandem repeats of one protein

ii) Hetero-polyproteins, containing repeats of two types of protein.

Hetero-polyproteins may contain a protein that has been previously well studied using

SMFS. The advantage of this is the identification of a well defined fingerprint, a marker.

Previously unstudied proteins may be added to the polyprotein to allow identification

of their mechanical properties. A number of proteins have now been well characterised

and which could be used as marker proteins, such as I27.

I27 is the 27th Ig domain from the I–band region of the human cardiac muscle pro-

tein, titin. It is regularly used in hetero–polyprotein constructs for SMFS to provide an

easily identifiable fingerprint [145–148]. I27 has a known structure, has a high mechanical

stability and has been previously well characterised using SMFS with a simple unfold-

ing pathway [132,134,136,147,149–154]. The protein is 89 amino acids in length and has a

β–sandwich topology consisting of 7 β–strands that are folded into 2 β–sheets. SMFS

experiments combined with molecular dynamics simulations have been used to identify

the unfolding pathway of the protein [136,155,156]. Initially, the A strand (shown in figure

1.29) breaks away from the rest of the protein causing a small deformation in the un-

folding peak of the sawtooth pattern. Subsequently, the hydrogen bonds between the A
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and G β–strands rupture and the rest of the protein unfolds with little resistance. The

A–G hydrogen bond breakage has the highest energy barrier and is therefore the rate

limiting step of the unfolding process.

Figure 1.29: The structure of I27. A) shows the 3D topology of the protein. This figure
was created using PDB file 1TIT and Pymol [8,90]. B) shows the secondary structure of the
protein where the arrows represent β–sheets.

A range of proteins have now been characterised using the chimeric polyprotein

approach [29,145,148,157–161]. Chimeric polyproteins have been utilised for the study of

the intrinsically disordered protein, human α–Synuclein [157]. SMFS experiments were

shown to be able to differentiate between three different classes of conformations in an

intrinsically disordered domain including random coil, mechanically weakly folded and β–

like by adding specific agents to cause an imbalance in the conformational equilibrium.

A featureless mechanical unfolding fingerprint was assigned to the stretching of αSyn

moiety having a random coil conformation. The fingerprint signature of mechanically

weak confirmations showed single or multiple small peaks. Finally unfolding curves,

which showed a worm–like chain behaviour, were observed for β–like conformations. A

study by Hoffmann et al. provides a methodology for the use of Gibson assembly cloning

to generate a recombinant polyprotein rapidly [161]. The technique was exploited to

facilitate the mechanical characterization of the second polypeptide transport associated

domain from BamA of E. coli (EcPOTRA2) by assembling the chimeric polyprotein

(I27-EcPOTRA2)3-I27.
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1.4.6 The use of SMFS to study specific interactions

SMFS experiments have provided insight into the impact of specific structural interac-

tions on the mechanical stability of a protein. The technique has been shown to be a

very useful tool to study the importance of hydrogen bonding for protein mechanical

stability, many examples are described in section 1.4.4 [132,135,136,143,151,162].

The role of solvent hydrogen bonds on the mechanical stability of I27 has been studied

by Dougan at al. [151]. The strength of hydrogen bonds with the solvent was controlled

by the substitution of water (H2O) for deuterium oxide (D2O). SMFS experiments found

that D2O was a worse solvent for protein I27 than H2O, where a bad solvent is one which

favours chain–chain interactions over chain–solvent reactions, promoting chain contrac-

tion and a good solvent is one which favours chain–solvent interactions, promoting chain

expansion [163]. D2O was shown to be a worse solvent for protein I27 by the increase in the

unfolding force of the protein in D2O
[151]. They reported that the hydrophobic interac-

tions of I27 are enhanced in D2O, which caused an increase in mechanical strength of the

protein. The results of this study provided the first single–molecule level measurement

of the influence of D2O on the hydrophobic effect during protein folding. These results

are in contrast with the behaviour of simple hydrocarbons in D2O, which suggests D2O

as a better solvent due to its larger compressibility [164]. Proteins are complex molecules

that contain both hydrophobic and hydrophilic residues, therefore, the differing result

is not surprising. The study showed that even though the increase in hydrogen bond

strength of the solvent, upon substitution with D2O, is small, SFMS experiments were

able to differentiate the changes.

1.4.6.1 The effect of electrostatic interactions on the mechanical stability of

a protein

Only a limited number of studies have been carried out to investigate the role of other

interactions on the mechanical properties of a protein. The first evidence of the inves-

tigation of electrostatic effects of the mechanical stability of a protein was shown in a
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study by Chyan et al [165]. Polymers of the protein ubiquitin were synthesised and char-

acterised using SMFS in a range of PBS buffers with adjusted pH, ranging from 2–10.

It was found that in a pH range (around 6-10) the unfolding force of the protein was

consistent, 230–240 pN, see figure 1.30. As the pH of the solution was lowered below 6,

the force required to unfold the protein was reduced. Unfolding events were not observed

at a pH above 10, which was suggested to be due to aggregation of the polymers. Chyan

et al. suggested that the charge–charge interactions in the native state of the protein

have a stabilising effect on the protein at neutral pH but become destabilising when the

pH is lowered. Although the study by Chyan et al showed the first investigation into

effect of electrostatics on the stability of a protein, the results reported the average effect

of all charged residues and no information on the contribution of individual residues was

obtained.

Figure 1.30: The unfolding force and the unfolding rate at zero force of Ubiquitin
as a function of pH. Each point in the force curve is the av. unfolding force of all points
measured from the measured force–extension traces. The zero force unfolding rate data were
obtained from Monte Carlo simulation, by fitting the simulated data to the experimental
data at a specific pH value. Figure taken and edited from [165]

A molecular dynamics (MD) study by Craig et al. on the unfolding of the fibronectin,

10FnIII, predicted that the mechanical stability of the protein could be tuned by the

protonation of a few amino acids in the force bearing β–strands [166]. An increase in the

unfolding force was predicted by lowering the pH from 7 to 4.7 due to protonation of three

carbonyl amino acid side chains. The MD simulations showed that two of the protonated

carbonyl groups formed a new hydrogen bond between their side chains. A later exper-

imental investigation, to test the prediction from Craig et al. found that decreasing the

pH did not cause a significant increase the mechanical stability of the protein, suggesting

that some simulations may overestimate the contribution of electrostatic interactions to
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the mechanical stability of proteins [167]. It should be noted, however, that the protein

10FnIII contains a number of charged residues, not just the three investigated. Varying

the pH of the solvent will affect all of these charged residues. The hypothesis of the MD

simulation study was, therefore, not directly examined by experiment.

In order to measure the effect of electrostatic interactions on the mechanical stability

directly, a later study carried out by Zheng et al. used protein GB1, which was previously

shown to be thermodynamically stable in a wide range of pH [168]. A bi–histidine motif

was engineered into the force–bearing region of GB1. By varying the pH of the solvent

from 8.5 to 3, the histidine residues could switch between protonated and deprotonated

states. This was used to modify the electrostatic interactions between the two histidine

residues. The results showed the measured unfolding force of the engineered protein

decreased by 34% by decreasing the pH from 8.5 to 3. It was suggested this was due

to the increased electrostatic repulsion between the two positively charged histidines at

acidic pH.

A recent study by Tych et al. examined the impact of salt bridges on the me-

chanical properties of of three cold shock proteins; one from the mesophilic organism

Bacillus subtilis (BsCSP), one from the hyperthermophilic organism Thermotoga mar-

itima (TmCSP) and a mutated variation of BsCSP, named the charge triple mutant

(CTM) [29]. MD simulations revealed that TmCSP contains a larger number of salt

bridges than BsCSP. In order to determine if a larger number salt bridges in CSP affect

the mechanical properties of the a protein, a charge triple mutant of BsCSP was pro-

duced by inserting an ionic cluster from TmCSP into the BsCSP structure. The CTM

protein was found to be mechanically softer than BsCSP, i.e. the distance between the

folded state and the TS barrier, ∆xU , was larger. ∆xU is a measure of the deformation

of the native state protein before unfolding. This increase in the mechanical softness for

the CTM showed the protein closely mimicked the mechanical properties of TmCSP.
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1.4.7 Extracting the energy landscape of a protein from SMFS exper-

iments

The use of SFMS experiments in combination with Monte Carlo techniques can be

used to examine properties of the unfolding transition state of the protein under applied

force [29,148,152,161]. As mechanical unfolding is a kinetic process, the rate at which force is

applied to the protein affects its mechanical unfolding force. At a faster pulling velocity,

the unfolding force of a protein will be higher as thermally activated unfolding will be

less likely per unit time. By measuring the speed dependence of the unfolding force in

combination with Monte Carlo techniques it is possible to extract the distance from the

unfolded to the transitions state, ∆xU , (or as described by Tych et al. the mechanical

softness) and the unfolding rate at zero force, kU
[29]. The parameters of the energy

landscape are shown in figure 1.31.

Figure 1.31: Energy landscape of a protein under applied force. The figure shows
a schematic of a two-state protein free energy profile (black line) going from it native state,
N, to its unfolded state, U, through the transition state, TS, at an unfolding rate, kU .
The dashed line shows the tiled energy landscape under application of force, lowering the
energy barrier, ∆GN−TS , to the unfolded state, U*. The distance from the unfolded to the
transitions state is shown, ∆xU .
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1.5 Discussion and aims

The aim of this project is to use protein engineering to produce a polyprotein containing

a halophilic protein and to carry out SMFS experiments using the AFM to characterise

the mechanical unfolding behaviour of a halophilic protein. The mechanical stability

of a protein, which is determined in SMFS experiments, is derived from the kinetic

description of the protein. It is not correlated with thermodynamic stability and hence

an unfolding event only depends on the unfolding activation energy [147]. SMFS results

will provide insight into the kinetic stability of a halophilic and mesophilic protein with

increasing salt concentration, as well as the underlying energy landscape.

Since a unique feature of halophilic adaptation is an increase in amount of acidic

residues, halophilic proteins allow the study of the contribution of electrostatic inter-

actions to the mechanical stability of a protein. Only a limited number of studies are

currently available that have investigated the role of the electrostatic contribution to

mechanical stability, therefore the importance of electrostatic interactions is still under

discussion.
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Chapter 2

Materials and methods

This chapter gives details of the materials used and the experimental procedures carried

out in this thesis including molecular biology, protein expression and purification, Sin-

gle Molecule Force Spectroscopy (SMFS) experiments and biophysical characterisation.

Other procedures specific to individual experiments are described in the appropriate

results chapters (chapters 3,4, 5).

2.1 Materials

2.1.1 Chemicals

A list of chemicals used is found in table 2.1.

Item Supplier

Bacterial growth medium component

Tryptone, granulated Fisher Scientific
Yeast extract, granulated Fisher Scientific
Agar, granulated Fisher Scientific
LB Broth Miller, granulated VWR
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N–Z–amine (casein hydrolysate) Sigma
Ready mixed Auto–induction medium Formedium
Ampicillin disodium salt Formedium
Carbenicillin Formedium
Chloroamphenicol Formedium
IPTG, dioxane free Formedium
Ammonium iron(II) sulphate hexahydrate Sigma

Molecular biology

Deoxynucleotide solution mix New England Biolabs (NEB)
Ethylenediaminetetraacetic acid Acros organics
Acetic acid Sigma
Bromophenol blue Sigma
Xylene cyanol Sigma
Sucrose Fisher Scientific
Restriction enzymes New England Biolabs (NEB)
Bovine serum albumin New England Biolabs (NEB)
Antartic phosphatase New England Biolabs (NEB)
Antartic phosphatase buffer New England Biolabs (NEB)
T4 DNA ligase New England Biolabs (NEB)
T4 DNA ligase buffer New England Biolabs (NEB)

Protein electrophoresis

Tris–Tricine SDS buffer 10X (cathode) Bio–Rad
Acrylamide 30% (w/v) Severn Biotech
Presicion Plus Dual Xtra Protein Marker Bio–Rad
Instant Blue Stain Expedeon
TEMED Sigma
Ammonium persulphate Sigma
SDS Fisher

Agarose gel electrophoresis

Agarose Melford
DNA ladders New England Biolabs (NEB)

Protein preparation

Bugbuster protein extraction reagent Novagen
Urea Sigma
Tris base Melford
DTT Melford
Sodium chloride Fisher

56



Potassium chloride Fisher
Imidazole Fisher
DNaseI Sigma
RNase A Sigma
PMSF Sigma
4–Aminobenzamidine dihydrochloride Sigma
Protease inibitor cocktail tablets, EDTA free ThermoFisher Scientific
Ni Sepharose Fast Flow GE Healthcare Life Sciences
Ammonium bicarbonate Sigma
AcTEVTM protease ThermoFisher Scientific
1,11–bismaleimido–triethyleneglycol
(BM(PEG)3)

ThermoFisher Scientific

Miscellaneous

β–mercaptoethanol Sigma
Ethanol Fisher
Hydrochloric acid Fisher
Glycerol Fisher
Magnesium sulphate Sigma
Potassium phosphate monobasic Sigma
Potassium phosphate dibasic Sigma

Table 2.1: List of chemicals used and suppliers

2.1.2 Media

The types of media that were used for this study are listed in table 2.2. For agar plates,

15 gL−1 agar was added to the liquid medium prior to autoclaving.

2.1.3 Antibiotics

Antibiotics used in this study are listed in table 2.3

Each stock solution was made up using deionised water or ethanol, sterilised by

passing through a 0.2 µm filter and stored in 1 mL aliquots at -20◦C.
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Medium Ingredients Amount

Luria–Bertani (LB) medium Ready mixed LB–Broth 25 g
Purite 18 MΩcm H2O to 1 L

Terrific Broth (TB) medium Tryptone 12 g
Yeast extract 24 g
Glycerol 4 mL
Potassium phosphate monobasic 2.31 g
Potassium phosphate dibasic 12.54 g
Purite 18 MΩcm H2O to 1 L

NZY Broth Sodium chloride 5 g
Magnesium sulphate 2 g
Yeast extract 5 g
NZ amine (casein hydrolysate) 10 g
Purite 18 MΩcm H2O to 1 L

Auto–Induction Medium (AIM) Ready mixed Auto–induction medium 34.85 g
Purite 18 MΩcm H2O to 1 L

Table 2.2: Types of media used

Antibiotic Stock solution Final concentration used

Ampicillin 100 mg/mL in H2O 100 µg/mL
Carbenicillin 100 mg/mL in H2O 100 µg/mL
Chloroamphenicol 100 mg/mL in 100% ethanol 25 µg/mL

Table 2.3: Types of antibiotic used
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2.1.4 E. coli strains

5 different cell strains were used for this project, shown in table 2.4.

Strain Supplier Genotype/Description

Cloning cells

XL1–Blue Stratagene recA1 endA1 gyrA96 thi–1 hsdR17 supE44
relA1 lac [FproAB lacIqZ∆M15 Tn10 Tetr)]
XL1–Blue cells are suitable for routine cloning
purposes.

SURE2 Stratagene e14-(McrA-) ∆(mcrCB–hsdSMR–mrr)171
endA1 supE44 thi–1 gyrA96 relA1 lac
recB recJ sbcC umuC::Tn5(Kan′) uvrC
[FproAB lacIqZ∆M15 Tn10 (Tetr) Amy Camr]
SURE 2 cells are suitable for the cloning of un-
stable plasmids.

Expression cells

JM83 Stratagene rpsL ara ∆(lac–proAB) Φ80dlacZ∆M15
JM83 cells are suitable for transformation and
protein expression.

BL21(gold) Stratagene E. coli B F− ompT hsdS(rB
− mB

−) dcm+ Tetr

gal endA Hte
BL21 cells are suitable for transformation and
protein expression.

BLR(DE3)PlysS Stratagene E. coli B F− ompT hsdS(rB
− mB

−) dcm+ Tetr

gal λ (DE3) endA Hte [pLysS Camr]
BLR cells also help stabilise target plasmids that
contain repeats in the sequence. DE3 cells con-
tain T7 Polymerase, therefore they are used to
express proteins with a T7 promoter. PLysS
produce T7 Lysozyme in order to reduce the
amount of protein expression before induction
by IPTG.

Table 2.4: Types of E. coli cell strains used and their genotypes

2.1.5 Plasmids

All plasmids used in this project are shown in table 2.5.
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Vector Supplier Properties

pCR2.1/ ThermoFisher
Scientific

The pCR2.1 vector has a T7 promotor up-
stream of the gene sequence, which is specifi-
cally recognised by T7 RNA Polymerase (ex-
pressed in certain expression cells) and al-
lows transcription of the gene to occur. The
plasmid also includes an ampR gene and a
kanR which are ampicillin and kanamycin re-
sistance genes.

pET3a/ Stratagene The pET3a vector has a T7 promotor up-
stream of the gene sequence. The vector also
includes a T7 terminator to end transcrip-
tion. An N–terminal T7 tag is included to
facilitate detection of the target protein e.g.
recognised by an antibody for western blot-
ting. The plasmid also includes an ampR
gene as mentioned above.

pET15b/ Stratagene The pET15b plasmid codes an N–terminal
His–tag sequence to facilitate purification of
the target protein . The vector has a T7 pro-
motor, a T7 terminator and an ampR gene
as mention above. The vector also codes for
a Lac repressor which reduces protein expres-
sion in the absense of IPTG

pMAL–c5x/ NEB The pMAL–c5x vector includes a malE gene
encoding maltose–binding protein (MBP) to
express an MBP fusion protein. A tac pro-
moter is coded in the vector, to bind E. coli
RNA polymerase for transcription. The vec-
tor also codes for a Lac repressor. Factor Xa
is encoded in the vector, after the malE gene,
which allows cleavage of MBP from the target
protein. The plasmid also includes an ampR
gene.

Table 2.5: Types of protein expression vectors used and their properties
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2.1.6 Oligonucleotides

All oligonucleotides were ordered from Eurofins MWG Operon.

2.1.7 Equipment

A list of equipment used is shown in table 2.6.

2.2 Molecular biology methods

2.2.1 Polymerase chain reaction (PCR)

Oligonucleotide primers were designed to modify and/or amplify required gene sequences.

The estimated melting temperature of the primers (Tm) was calculated using equation

2.1 where nAT corresponds to the number of Adenine and Thymine base pairs and nGC

corresponds to the number of Guanine and Cytosine base pairs.

Tm = (nAT × 2) + (nGC × 4) (2.1)

The composition of a typical PCR experiment is shown in table 2.7. A negative

control was also set up that did not include the template DNA. The temperature for a

typical PCR reaction is shown in table 2.8 where x is 5◦C below the calculated primer

Tm.

2.2.2 Agarose gel electrophoresis

The agarose gel was prepared by adding 1-2% (w/v) agarose to Tris-acetate ethylenedi-

aminetetraacetic acid (TAE) buffer (40 mM Tris-HCl, 20 mM acetic acid, 1 mM EDTA,

pH 8.0) and heating in a microwave for approximately 2 minutes until the agarose was
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Item Supplier Use

InGenius gel documen-
tation system

Syngene Imaging SDS–PAGE gels

vcx–130PB Vibra–
cellTM Tip sonicator

Sonics & Materials, Inc Homogenising cell solutions
and lysing cells

HAIVA cell disrupter Constant Systems Ltd Lysing cells

PowerDry PL 300
Lyophiliser

Heto Lyophilising protein samples

3020 Bench pH meter Jenway Measuring the pH of a solu-
tion

PTC–100 PCR thermo-
cycler

Bio–Rad PCR reactions

Orbital Floor Incubator
Shaker

Sanyo Gallenkamp Large scale culture grows

Avanti J-26 XP high
performance centrifuge

Beckman Harvesting cells on a large
scale

Eppendorf 5810R re-
frigerated bench-top
centrifuge

Fisher Harvesting cells on a small
scale

ÄKTAprime protein
purification system

GE Healthcare Running columns to purify
proteins

Ultrospec 2100 pro
spectrometer

GE Healthcare DNA, protein and cell concen-
tration measurements

ChirascanTM CD spec-
trometer

Applied Photophysics Thermodynamic protein sta-
bility measurements

Table 2.6: List of biology equipment used and suppliers
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Ingredient Amount

Template DNA 100 ng
Forward primer 0.5 µM
Reverse primer 0.5 µM
Deoxynucleotide solution mix 200 µM
Magnesium sulphate 2 mM
Ventr DNA polymerase buffer (10x) 1x
Ventr DNA polymerase 1 U
Purite 18 MΩcm H2O to 50 µL

Table 2.7: Composition of a typical PCR reaction

Step Temperature Time

Initial denaturation 98◦C 5 minutes
Denaturation 98◦C 30 seconds
Annealing x◦C 30 seconds
Elongation 72◦C 1 minute per kb
Repeat last 3 steps x 25
Final elongation 72◦C 5 minutes

Table 2.8: Temperature cycling program for a typical PCR reaction
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completely dissolved. The agarose solution was cooled to 50◦C before addition of 5 µL

10 mg/ml ethidium bromide for a final concentration of 0.33 µg/ml. The agarose gel was

then poured in a cast, which included a lane comb, and left to set at room temperature.

The lane comb was removed from the agarose gel, which was then placed in a running

tank. TAE was added onto the tank until the gel was completely submerged. DNA

samples and size ladders were prepared by adding 6 x gel loading buffer (0.25% (w/v)

bromophenol blue , 0.25% (w/v) xylene cyanol, 40% sucrose in H2O) and were loaded

into the wells. The running tank was connected to a power unit and run at 100 Volts for

approximatly 1 hour. The resulting DNA was imaged using UV trans-illumination and

DNA fragment sizes were estimated by comparison with 1kbp or 100bp DNA ladders.

2.2.3 Extraction of DNA from agarose gels

DNA was extracted from agarose gels using the QIAquickr gel extraction kit (Qiagen).

DNA bands were cut out from the agarose gel using a scalpel and extracted using the

protocol of the manufacturer. The DNA was eluted into a clean 1.5 mL eppendorf tube

by carefully adding 50 µL Purite 18 MΩcm H2O to the centre of the column followed by

centrifugation at 1000 rpm for 60 s.

2.2.4 Digestion of DNA using restriction enzymes

Restriction digests were set up using the required restriction enzymes. The appropriate

buffer for each reaction was chosen to allow at least 75% enzyme activity for each restric-

tion enzyme. The composition of a typical restriction digest reaction is shown in table

2.9 below. In addition, three control reactions were also carried out simultaneously; one

containing only restriction enzyme I, one containing only restriction enzyme II and one

reaction not containing any restriction enzymes. The reactions were incubated at 37◦C

for 1 hour.
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Ingredient Amount

Plasmid DNA 3 µg
NEB buffer (10x) 1x
NEB Bovine Serum Albumin (BSA) (100x) 1x
Restriction enzyme I 10 U
Restriction enzyme II 10 U
Purite 18 MΩcm H2O to 25 µL

Table 2.9: Composition of a typical restriction enzyme digestion reaction

2.2.5 Desphosphorylation of DNA

When digested plasmid DNA was used for subsequent ligation reactions, 5’ phosphate

groups were removed from the vector DNA to prevent re-ligation using the following

ingredients listed in table 2.10. The reaction was incubated at 37◦C for 15 minutes and

subsequently heat inactivated at 65◦C for 5 minutes.

Ingredient Amount

Vector DNA 1-5 µg
Antarctic Phosphatase reaction buffer (10x) 1x
Antarctic Phosphatase 5 U

Table 2.10: Composition of a dephosphorylation reaction

2.2.6 Ligation of DNA

Ligation reactions were carried out using T4 DNA ligase. The composition of a ligase

reaction is shown in table 2.11. 50 ng of vector DNA (X) was combined with a 3-fold

molar excess of insert DNA (Y). A control reaction was also set up, which did not include

any insert DNA. The reactions were incubated at 16◦C overnight before cooling on ice.

2.2.7 Transformation of ligations into XL1-Blue supercompetent cells

E. coli Homemade XL1-Blue supercompetent cells were thawed on ice for 10 minutes.

2 µL β-mercaptoethanol was added to 100 µL of cells in a 14 mL round bottom falcon

tube and incubated on ice for 10 minutes. 5 µL of ligated DNA solution was added to the
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Ingredient Amount

Vector DNA X ng
Insert DNA Y µg
T4 DNA ligase buffer 10x
T4 DNA ligase 1 U
Purite 18 MΩcm
H2O

20 µL

Table 2.11: Composition of a ligation reaction

cell suspension and a negative control was also set up containing no DNA; substituting

sterile H2O for the DNA ligation components. The solutions were further incubated on

ice for 30 minutes and then heat shocked by submerging the tubes in a water bath at

42◦C for 30 seconds. The cells were then returned to ice for 2 minutes before addition

of 900 µL of sterile NZY medium and incubation at 37◦C for 1 hour, with shaking at

200 rpm. After incubation, the cells were pelleted by centrifuging the sample at 1000

rpm for 10 minutes and discarding 800 µL of the medium. The pellet was resuspended

in the remaining medium and the cells were spread onto LB agar plates containing 100

µg/mL ampicillin. Plates were incubated overnight at 37◦C.

2.2.8 Small scale purification of DNA from E.coli

A single colony of cells, containing the plasmid to be purified, was used to inoculate 10

ml LB broth containing the appropriate antibiotic and incubated overnight at 37◦C in a

shaking incubator at 200 rpm. DNA was isolated from the culture using the QIAprepr

Spin Miniprep Kit (Qiagen) by following the protocol of the manufacturer. The DNA

was eluted by using Purite 18 MΩcm H2O.

To determine the DNA concentration of the eluted sample, the A260 was measured

using an Amersham Biosciences Ultrospec 2100 Pro UV/Visible Spectrophotomer. An

A260 value of 1 is equal to 50 µg/mL of double stranded DNA.
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2.2.9 Large scale purification of DNA from E.coli

A single colony, containing the plasmid to be purified, was used to inoculate 50 ml

LB broth containing the appropriate antibiotic and incubated overnight at 37◦C in a

shaking incubator at 200 rpm. DNA was isolated from the culture using the QIAprepr

Spin Midiprep Kit (Qiagen) by following the protocol of the manufacturer. The DNA

was eluted by using Purite 18 MΩcmcm H2O. The DNA concentration was calculated

as outlined in section §2.2.8.

2.2.10 DNA sequencing

DNA was sent to Beckman Coulter Genomics for sequencing, which was used to confirm

the success of cloning.

2.3 Preparation of ‘His-tagged’ hetero poly-proteins

2.3.1 Transformation of DNA into E. coli for protein expression

E. coli cells, of the required strain, were thawed on ice for 10 minutes. 5 µL of plasmid

DNA was added to 50 µL of cells in an eppendorf tube and incubated on ice for 30

minutes. The cell suspension was then heat shocked by submerging the tubes in a water

bath at 42◦C for 45 seconds. The cells were then returned to ice for 2 minutes before

addition of 450 µL of sterile LB medium and then incubated at 37◦C for 1 hour, with

shaking at 200 rpm. After incubation, 200 or 20 µL of cells were spread onto LB agar

plates containing 100 µg/mL ampicillin. The agar plates were incubated overnight at

37◦C.
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2.3.2 Small scale over-expression of protein

A single cell colony of cells was picked and used to inoculate 10 mL LB medium con-

taining the required antibiotic. This starter culture was incubated overnight at 37◦C

with shaking at 200 rpm. 2 mL of the starter culture was used to inoculate 100 mL

of the appropriate medium, which also contained the required antibiotic in a 250 mL

conical flask. The culture was incubated at 37◦C with shaking at 200 rpm. Cell growth

was monitored until an OD600 of 0.7 was reached and a 1 mL sample was taken. The

culture was then induced by adding sterile IPTG to a final concentration of 1 mM. The

cells were grown for up to 5 hours, 1 mL samples were taken every hour and OD600 was

measured.

The cell samples were pelleted by centrifuging at 13000 rpm for 2 minutes in a

bench-top centrifuge and removing the medium. The pellets were then resuspended in

2x reducing SDS loading buffer and analysed using SDS-PAGE (see section §2.6.1)

The remaining cells were harvested by centrifugation at 6000 rpm, 4◦C for 20 minutes

and the supernatant was discarded.

2.3.3 Small scale protein purification using Ni-NTA agarose beads

60 µL Ni Sepharose resin, suspended in a 1:1 slurry with 20% ethanol, was placed in a

1.5 mL eppendorf tube and centrifuged at 13000 rpm for 1 minute. After removing the

supernatant, the beads were washed with 600 µL wash buffer (50 mM Tris-HCl, 500 mM

NaCl, 20 mM Imidazole, pH 8.0). The solution was again centrifuged at 1500 rpm for 1

minute and the buffer was removed.

The harvested cells from the small scale expression (see section §2.3.2) were resus-

pended in 2.5 mL Bugbuster protein extraction reagent and incubated at room tempera-

ture for 20 minutes. The solution was centrifuged at 4000 rpm, 4◦C for 20 minutes. The

supernatant was applied to the beads and allowed to equilibrate for 30 minutes. After

this binding period, the protein suspension was centrifuged at 1000 rpm to allow removal
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of unbound protein. The beads were washed three times as described previously. The

protein was eluted from the beads by adding 100 µL elution buffer (50 mM Tris-HCl,

500 mM NaCl, 250 mM Imidazole, pH 8.0) and the eluted protein solution was removed

from the beads after centifuging. Finally, samples of the cell lysate, washes and elution

were taken, diluted by a ratio of 1:1 in 2x reducing SDS loading buffer and analysed

using SDS-PAGE (see section §2.6.1)

2.3.4 Large scale over-expression of protein

A single colony of cells was picked and used to innoculate 110 mL LB medium in a

sterile 250 mL conical flask, also containing the required antibiotic. The culture was

incubated overnight at 37◦C with shaking at 200 rpm. 10 mL of starter culture was used

to innoculate each of 10 x 2 L conical flasks filled with 1 L of the selected medium, also

containing the required antibiotic. The expression procedure outlined in section §2.3.2

was followed. The cells were harvested by centrifugation using a Beckman Coulter Avanti

J-26 XP centrifuge at 6000 rpm, 4◦C for 15 minutes.

2.3.5 Large scale cell lysis

The cell pellet was resuspended in a lysis buffer (50 mM Tris-HCl, 500 mM NaCl, 20

mM imidazole, 1 mM PMSF, 2 mM benzamidine, pH 8.0) and a small amount of DNase

was added. The solution was stirred using a magnetic stirrer and incubated at 4◦C

until the lysate was no longer viscous. The solution was then passed through a glass

homogeniser until a the solution was fully homogenised. The cells were then lysed using

a cell disrupter. The insoluble extract was then removed by centrifuging the sample at

16000 rpm for 30 minutes at 4◦C and the supernatant was collected.
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2.3.6 Large scale protein purification using Ni-NTA affinity chro-

matography

The cell lysate was filtered through a 0.45 µm syringe filter and purified using an XK

50/20 column containing 30 mL of Ni Sepharose resin connected to an ÄKTA Prime

chromatography system. The column was washed with one column volume of water and

one column volume of lysis buffer (see section §2.3.5) at which point the recorded ab-

sorbance at 280 nm (A280) was zeroed. The lysate was loaded onto the column and then

the column was washed with lysis buffer until the A280 returned to zero. To elute the

bound protein, an elution buffer (50 mM Tris-HCl, 500 mM NaCl, 250 mM imidazole,

pH 8.0) was added to the column in a stepped process (25%, 50%, 75% and 100%),

progressing to the next step each time the A280 reached a constant value. 2 mL frac-

tions were collected during this process, which were analysed by SDS-PAGE (see section

§2.6.1) to allow identification of the fractions that contained the desired protein. Elution

fractions containing the desired protein were pooled together.

The pooled fractions were then diaysed using 3500 MWCO dialysis tubing, against 5

L 18 MΩcm H2O containing 5 mM ammonium bicarbonate at 4◦C. The dialysis solution

was changed three times after incubation for 3 hours. The dialysed protein solution was

then snap frozen in falcon tubes on dry ice and ethanol and lyophilsed.

2.3.7 Large scale protein purification using size exclusion chromatog-

raphy

A Superdex 75 gel filtration column connected to an ÄKTA Prime chromatography

system was washed with one column volume of water and one column volume of gel

filtration buffer (25 mM Tris-HCl, 500 mM NaCl, pH 8.0). The lyophilised sample

was resuspended in 9 mL gel filtration buffer and injected onto the column using 3

mL per run. Gel filtration buffer was run through the column at a rate of 3 mL/min

while collecting 2 mL fractions. The collected fractions were analysed by SDS-PAGE

(see section §2.6.1) to allow identification of the fractions that contained the desired
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protein. Elution fractions containing the desired protein were pooled together. The

pooled fractions were then diaysed as explained in section §2.3.6. The dialysed protein

solution was then snap frozen in falcon tubes on dry ice and ethanol and lyophilsed.

2.3.8 Large scale protein purification using anion exchange chromatog-

raphy

A 5 mL HiTrap Q HP anion exchange column connected to an ÄKTA Prime chromatog-

raphy system was washed with one column volume of water and one column volume

of anion exchange buffer (25 mM Tris-HCl, pH 8.0). Lysophilised protein sample was

resuspended in anion exchange buffer. The protein was loaded onto the column and

the column was washed with one column volume of anion exchange buffer. Protein was

eluted from the column by adding anion exchange elution buffer (25 mM Tris-HCl, 1M

NaCl, pH 8.0) in gradient from 0% to 100% over 20 column volumes, 2 mL fractions

were collected during this process. The collected fractions were analysed by SDS-PAGE

(see section §2.6.1) to allow identification of the fractions that contained the desired pro-

tein. Elution fractions containing the desired protein were pooled together. The pooled

fractions were then diaysed as explained in section §2.3.6. The dialysed protein solution

was then snap frozen in falcon tubes on dry ice and ethanol and lyophilsed.

2.4 Preparation of homo-polyproteins

2.4.1 Protein production

The required protein, bound to maltose binding protein (MBP) at the N-terminus sep-

arated by a Tobacco Etch Virus protease (TEVp) cleavage sequence, was produced fol-

lowing the methods outlined in sections §2.3.4, §2.3.5, §2.3.6 and §2.3.7.
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2.4.2 Cleaving MBP fusion proteins using TEVp

The protein was resuspended in TEVp cleavage buffer (25 mM Tris-HCl, 500 mM NaCl,

14 mM β-mercaptoethanol, pH 8.0) to a concentration of 5 mg/mL. To produce a 1:3

molar ratio of TEVp to protein, 90 µL of 6 mg/ml TEVp was added per 1 mL of 0.5

mg/ml protein solution used. The solution was incubated at 25◦C for 15 minutes. 30 µL

samples were collected before and after this process which were analysed by SDS-PAGE

(see section §2.6.1).

2.4.3 Protein purification using Ni-NTA agarose beads

625 µL Ni Sepharose resin, suspended in a 1:1 slurry with 20% ethanol, was placed in

a 1.5 mL eppendorf tube and centrifuged at 13000 rpm for 1 minute. After removing

the supernatant, the beads were washed with 625 µL wash buffer (50 mM Tris-HCl, 500

mM NaCl, 20 mM imidazole, pH 8.0). The solution was again centrifuged at 13000 rpm

for 1 minute and the buffer was removed.

The protein-TEVp solution was applied to the beads and allowed to equilibrate for 30

minutes. After this binding period, the protein suspension was centrifuged at 1000 rpm

to allow removal of unbound protein, this fraction contained the desired protein (does

not contain His-tag). The beads were washed three times as described previously. The

supernatant from the first wash was pooled together with the unbound protein fraction.

The TEVp and MBP proteins were eluted from the beads by addition of 100 µL elution

buffer (50 mM Tris-HCl, 500 mM NaCl, 250 mM imidazole, pH 8.0) and the eluted

protein solution was removed from the beads after centifuging. Finally, samples of the

cell lysate, washes and elution were taken, diluted in 2x reducing SDS loading buffer and

analysed using SDS-PAGE (see section §2.6.1)
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2.4.4 Polymerisation of proteins using a crosslinker

The protein was resuspended in crosslinking buffer (50mM Tris-HCl, 500 mM NaCl,

pH 7.4) to a concentration of 2 mg/mL. 10 mM 1,8-bis(maleimido)diethylene glycol

(BM(PEG)3) crosslinker was added to form a 1:1 ratio of crosslinker to protein. The

solution was incubated at 25◦C for 2 hours. The solution was then purified to remove

smaller poly-proteins (see section §2.3.7).

2.5 Purification of insoluble proteins

2.5.1 Protein production

The required protein was expressed and cells were lysed following the methods outlined

in sections §2.3.4 and §2.3.5, this time retaining the insoluble fraction of the lysate

and discarding the supernatant. The solid faction was then resuspended in unfolding

buffer (8 M Urea, 50 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, 1 mM PMSF,

2 mM benzamidine, pH 8.0) and centrifuged at 16000 rpm for 30 minutes at 4◦C, the

supernatant was collected.

2.5.2 Refolding using Ni-NTA affinity chromatography

The cell lysate was filtered through a 0.45 µm syringe filter and purified using an XK

50/20 column containing 30 mL of Ni Sepharose resin connected to an ÄKTA Prime

chromatography system. The column was washed with one column volume of water and

one column volume of unfolding buffer (see section §2.5.1) at which point the recorded

absorbance at 280 nm (A280) was zeroed. The lysate was loaded onto the column and

then the column was washed with lysis buffer until the A280 returned to zero. A wash

buffer (0.9 M arginine, 50 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, 1 mM PMSF,

2 mM benzamidine, pH 8.0) was then added to the column in a 0-100% gradient over

5 column volumes to refold the protein. The protein was then eluted from the column
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following elution steps described in §2.3.6.

2.6 General protein analysis methods

2.6.1 Sodium dodecyl sulphate polyacrylamide electrophoresis (SDS-

PAGE)

SDS-PAGE was used to separate protein samples by molecular weight in order to deter-

mine protein yield and purity. A two-layered gel system was used, which consisted of

a stacking gel and a resolving gel. The components of each gel are listed in table 2.12.

Two glass plates were set up according to manufacturers instructions (Atto mini-gel

kit), including a 1.5 mm spacer. Firstly the resolving gel was poured between the 2 glass

plates, leaving a 2 cm gap at the top. The stacking gel was immediately poured on top

of the resolving gel and a comb was inserted to create wells for sample loading. The gels

were left for 1 hour to set.

Component Resolving (x2) Stacking (x2)

30% (w/v) acrylamide: 0.8% (w/v) bisacrylamide 5.1 mL 0.67 mL
3 M Tris-HCl, 0.3% (w/v) SDS, pH 8.45 5.00 mL 1.24 mL
H2O 2.82 mL 3.05 mL
Glycerol 2 mL -
10% (w/v) ammonium persulphate 150 µL 80 µL
Tetramethylethylenediamine (TEMED) 15 µL 8 µL

Table 2.12: Composition of a an SDS-PAGE gel

Samples, resuspended in 2x reducing SDS loading buffer (50 mM Tris-HCl, 100 mM

DTT, 2% (w/v) SDS, 0.1% (w/v) bromophenol blue, 10% (v/v) glycerol, pH 6.8), were

boiled at 100◦C for 2 minutes before cooling on ice for 2 minutes. The samples were then

centrifuged at 13000 rpm for 2 minutes. 15 µL of each sample was added to separate

wells in the gel and 10 µL of a molecular weight marker was also added to one well to

allow identification of the molecular weights of the sample gel bands.

Gel electrophoresis was carried out using cathode buffer (100 mM Tris-HCl, 100 mM

74



tricine, 0.1% (w/v) SDS, pH 8.3) in the inner reservoir of the gel tank and anode buffer

(400 mM Tris-HCl, pH 8.8) in the outer reservoir. A current of 30 mA was applied across

the gel until the samples entered the resolving gel. The current was then adjusted to 60

mA until the dye front reached the bottom of the gel. The gels were then removed from

the glass plates and stained using InstantBlue stain. The gels were then photographed

using a transilluminator with InGenius gel documentation system (Syngene).

2.6.2 Western blot

An SDS-PAGE gel was run using the technique described in section §2.6.1, using a pre-

stained molecular weight marker and stained using Coomasie Blue stain. Protein bands

from SDS-PAGE gels were transferred to Polyvinylidene Fluoride (PVDF) membranes

using a Bio-Rad Trans-Blot semi-dry transfer cell. PDVF was activated by soaking in

methanol and then in transfer buffer (25mM Tris-HCl, 192 mM glycine, 20% (m/v)

methanol). 6 pieces of blotting paper were also soaked in transfer buffer. Residual buffer

was removed, then the piece of PDVF was placed on top of 3 pieces of blotting paper.

Next the SDS-PAGE gel was placed on top and finally 3 more pieces of blotting paper.

The sandwich was pressed to remove any trapped air bubbles and placed on the bottom

electrode. Once the top electrode was added on top, the transfer cell was set at 400

mA, 12 V and left for 1 hour. Once finished, the PVDF was removed from the cell and

submerged in PBS buffer containing 10% dried skimmed milk and incubated overnight

at 4◦C on a rotary shaker.

The membrane was then transferred into a falcon tube with 5 mL PBS, 5% dried

skimmed milk containing the 1st appropriate antibody and incubated for 1 hour at 4◦C

on a rotary shaker. The solution was discarded and PBS buffer containing 10% dried

skimmed milk was added and placed on a rotary shaker for 5 minutes, after which the

solution was discarded. This process was repeated 3 times.

The membrane was then transferred into a falcon tube with 5mL PBS, 5% dried

skimmed milk solution containing the second appropriate antibody, using the same tech-

nique, the process was again repeated 3 times. 1 mL of each SuperSignal West Pico
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Chemiluminescence Substrate from Thermo Scientific was then added according to man-

ufacturer’s instructions. The membrane was washed with dH2O and sealed in a piece of

clear plastic. The membrane was then exposed to an X-ray photographic film in a dark

room.

2.6.3 Mass spectrometry

The molecular weight of the expressed protein was measured using Electrospray Ionisa-

tion Mass Spectrometry (ESI-MS). Samples were lyophilised and then ESI-MS experi-

ments were carried out by the mass spectrometry facility managed by Dr James Ault.

0.05 mg of protein was unfolded in a 50% (v/v) acetonitrile, 0.1% (v/v) formic acid pH

∼2.5 in water.

2.7 Single Molecule Force Spectroscopy (SMFS)

SMFS experiments in this project were carried out using a custom built Atomic Force

Microscope AFM instrument. This section will introduce the AFM and describe the

process used to set up and calibrate an SMFS experiment. I will then conclude with an

explanation of the data analysis procedure carried out for all experiments.

2.7.1 The Atomic Force Microscope (AFM)

An overview of the AFM can be seen in figure 2.1.
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Figure 2.1: Overview of the Atomic Force Microscope.

2.7.1.1 Cantilevers

The measuring probe of the microscope consists of a cantilever with an integrated tip at

its end that is able to interact with a sample. Here, probes were used which contained 6

silicon nitride cantilevers with lengths from 85–310 µm and thickness of 0.55 µm, each

with a silicon nitride tip (obtained from Bruker, CA), shown in figure 2.2. The cantilevers

used in this project have a small spring constant, ranging from 25 to 35 pN/nm, enabling

a resolution in the force measurement in the order of piconewtons to be obtained.

Figure 2.2: Overview of a cantilever. Image taken from Bruker AFM Probes [169].
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2.7.1.2 The photodiode

The AFM measures small deflections of the cantilever so requires a sensitive detection

method. Here, a laser beam is reflected off the cantilever onto a photodiode. Movements

of the tip are measured by the any deviation of the laser light from the centre of the

photodiode. Any deviation from the centre will cause a change in the amount of laser

light detected in each quadrant of the photodiode, which can be used to determine the

force exerted in the cantilever.

2.7.1.3 The piezo

To measure the unfolding force of a protein, the sample must be moved away from the

cantilever with very accurate precision. This is done with the use of the piezoelectric

effect, where certain crystals expand or contract in the direction in which a voltage is

applied. The use of a piezo allows accurate control over the position to the surface

on a nanometre length scale. The PicoCubeTM XYZ Stage was obtained from Physik

Instrumente Ltd, Bedford, which a 5 x 5 x 5 µm travel range with a ∼0.5 nm resolution.

2.7.1.4 Use of a gold surface

The polyprotein constructs are bound to the gold surface at one end. This is achieved

by the addition of two cysteine residues at the C-terminus, which contain thiol groups.

The thiol group binds to the gold surface (figure 2.3), tethering the poly-protein. Gold

surfaces were produced by glueing a glass slide onto a gold tempered silicon wafers

(ordered from Platypus technologies) using epoxy and incubating at 120◦ for 2 hours. A

fresh slide was cleaved from the surface at the start of each experiment.

2.7.1.5 The fluid cell

The buffer droplet is contained in a fluid cell (not shown in figure 2.1), depicted in figure

2.4. The fluid cell holds the cantilever in position while containing the buffer in an o-ring
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Figure 2.3: The reaction of a thiol group with a gold surface. Where P represents
the polyprotein.

to prevent evaporation. MTFML fluid cells were obtained from Bruker, which hold one

cantilever.

Figure 2.4: Overview of a fluid cell. Image taken from Bruker AFM Probes [169].

2.7.2 Calibration of the cantilever

2.7.2.1 Theory behind the calibration

A crucial part of the SMFS experiment is the calibration of the cantilever. In order to get

the most accurate measurement a calibration is performed at the start of every experi-

ment and is checked during each experiment. Here, the thermal noise method was used

to calculate the spring constant of the cantilever using the equipartition theorem [170].

The equipartition theorem states that each degree of freedom has the same thermal

energy in a thermodynamic system. Each degree of freedom, x, of the cantilever has
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energy given by equation 2.2, where kB is Boltzmann’s constant and T is the absolute

temperature.

Ex =
1

2
kBT (2.2)

When the tip is large distance from the gold surface, only thermal fluctuations of the

cantilever will cause motion. This motion is limited to the vertical direction, z. The time

average of the vibrations of the cantilever, caused by thermal fluctuations will, therefore,

be directly related to the spring constant of the cantilever.

The spring constant of the cantilever, kc, can then be calculated using the equation

2.3, where 〈z2〉 is the time-average square of the thermal fluctuation of the cantilever in

the z direction.

1

2
kBT =

1

2
kc〈z2〉 (2.3)

2.7.2.2 The calibration method

Initially, the cantilever is submerged in the buffer droplet and the laser position is op-

timised. This is done by maximising the amount of light detected by the photodiode.

The laser spot is also centred on the photodiode ready for calibration.

A power spectrum is then taken, shown in figure 2.5 and the area under the resonant

peak, zu is calculated. zu estimates the voltage obtained from the time-average square

of the thermal fluctuation.
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Figure 2.5: Power spectrum for the calibration of a cantilever in liquid at 23 ◦C.
Measured by monitoring the deflections of the cantilever in equilibrium with the buffer far
from the surface. The first peak shows the resonant frequency of the cantilever oscillation.
The red markers define the edges of the resonance peak, placed in the two outside minima.

The gold surface is then moved up to the cantilever. A force-displacement curve is

obtained by pushing at a force of 1500 pN, shown in figure 2.6. The gradient of the

measured slope of displacement against detector voltage is used to to determine the

conversion factor of the displacement of the cantilever in metres to the voltage changes

of the detector, i.e. the sensitivity, S, given by equation 2.4 [171].

S =
∆V

∆z
(2.4)

Figure 2.6: Force-displacement curve for the calibration of a cantilever in liquid.
The slope of the deflection against voltage gives the sensitivity of the diode.
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The value of zu, previously calculated in volts, is then converted into metres, z,

using the sensitivity measured by the force-displacement curve. The spring constant of

the cantilever can then be calculated using equation 2.3 [172].

2.7.3 A SMFS experiment

2.7.3.1 Setting up a SMFS experiment

Lyophilised protein samples were resuspended in the appropriate buffer to a final concen-

tration of 0.5 g/mL and filtered through a 0.45 µm filter. 40 µL of the solution was then

applied onto a freshly cleaved template-stripped gold surface. The sample was incubated

at room temperature for 30-60 minutes to allow the sample to bind to the gold surface

before gently removing the solution and adding 40 µL of buffer to reduce the amount of

unbound protein.

2.7.3.2 Overview of a SMFS experiment

The gold surface, with bound polyprotein, was moved towards the silicon nitride tip at a

constant velocity until a contact force of 1500 pN is achieved. At this point poly-protein

may be adsorbed on the cantilever tip. The surface is then retracted away from from tip

at a constant velocity. If a poly-protein does adsorb, a restoring force will be exerted

by the poly-protein on the tip, causing the cantilever to bend. The movement of the

cantilever is measured by the photodiode and is then used to calculate the applied force,

shown in figure 2.7 A). The resulting AFM trace is shown in different colours.
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Figure 2.7: Schematic of a SMFS experiment using a poly-protein. A) represents
the poly-protein construct adsorbed onto the tip, B) represents the mechanical unfolding
of the first protein domain, C) represents the mechanical unfolding of the second protein
domain, D) represents the mechanical unfolding of the rest of the protein domains and E)
represents the detachment of the poly-protein from the tip. The resulting AFM trace is
shown, where the grey line is the approach or the surface to the cantilever.

Once a particular force is reached, one of the proteins will unfold and the force exerted

on the cantilever diminishes. The protein unravels as the gold substrate is moved further

from the cantilever. When the exposed structure has fully unravelled, further movement

will again be resisted by the restoring force of the poly-protein. This is depicted in figure

2.7 B) shown in blue.

Again, once a particular force is reached, one of the proteins will unfold and the

process repeats, shown in figure 2.7 C) in green. This process will repeat for each of

the domains in the poly-protein chain, 2.7 D) shown in orange. Once each domain in

the poly-protein chain has fully unfolded, a typically larger force is needed to detach
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the extended structure from the cantilever tip, shown in figure 2.7 E) shown in red. In

this project, each SMFS experiment was carried out for up to 10 hours at retraction

velocities of 400, 700, 1200 and 2000 nm/s. The traces collected were filtered according

to the criteria stated for each experiment.

2.7.4 Analysing data collected from SMFS experiments

2.7.4.1 The Worm-Like Chain (WLC) model for polymer elasticity

The simplest way to describe a linear polymer is a random coil, a chain of monomer

units that are able to freely rotate about each linkage. A real polymer is semi flexible,

i.e. the rotation is restricted. The restriction may arise due to the chemical structure of

each monomer or from the formation of a secondary structure.

When a polymer is extended at a constant velocity, it is elongated and work is needed

to overcome the reduction of entropy. This creates a restoring force, F (x), in the chain

at a given extension, x. The WLC is an empirical model that describes the relationship

between the extension of a polymer and the entropic restoring force generated, using

equation 2.5 [173]. Persistence length, p, is a measure of the stiffness of a chain. It can

be described as the distance over which the correlations between sections of the chain

are lost. If a chain is very flexible, correlations between sections of the chain will be

lost quicker, therefore p is small. The p for a protein is about the length of one amino

acid, estimated at 0.4 nm. Lc is the contour length, which is the full extension on the

polymer, which is measured for each poly-protein trace.

F (x) =
kBT

p

[
1

4

(
1− x

Lc

)−2
− 1

4
+

x

Lc

]
(2.5)

A study by Marko et al. has shown that the WLC model describes the stretching

of DNA very well [173,174]. The WLC model has also been used to describe poly-protein

unfolding in number of publications [148,149,153,175,176].
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For this project, it is fitted to each unfolding event in a force-extension trace, see

figure 2.8. This was used as an initial check to see if the unfolding event behaved as

expected for an unfolding protein, i.e. the shape of the curve fitted well to the unfolding

event. As another check, the change in contour length upon unfolding, ∆Lc, for each

unfolding event was then measured and compared to literature values where available.

Figure 2.8: A force-extension trace fitted with the worm-like chain model for
polymer elasticity. The worm-like chain fit is in red and the change in contour length
upon unfolding is marked as ∆Lc

2.7.4.2 Analysis of the force-extension traces from SMFS experiments using

chimera-polyproteins

The analysis procedure described here is for a chimera polyprotein (hetero-polyprotein),

the structure of which is shown in figure 2.9. Each trace that fulfilled the acceptance

criteria (described for each experiment) and could be fitted correctly with the worm-like

chain was then analysed.

First, the peak to peak distance, p2p, and the unfolding force, FUN, for each unfolding

event was measured, shown in figure 2.9 A). The p2p and FUN values that came from

protein x were separated from the values that came from protein y and pooled for each

pulling velocity (proteins x and y depicted in figure 2.9). The mean and median values

for p2p and FUN were also calculated for each pulling velocity.

The p2p and FUN data values for both protein x and y were then plotted in a scatter
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Figure 2.9: Overview of the analysis carried out for SMFS experiments. The
poly-protein is shown containing 4 repeats of protein x in blue and one protein y in orange.
A) represents a typical force-extension trace for this protein, showing the measurement of
the unfolding force, FUN, and peak to peak distance, p2p. The unfolding events for protein
x are shown in blue and those for protein y are shown in orange. B) represents a scatter
plot formed for one pulling velocity. C) represents the histograms plotted for the UN for
both proteins, normalised for the number of unfolding events for each protein. D) represents
the speed dependence diagram plotted, showing the linear fit for each protein and standard
errors for each value.
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diagram of the p2p vs. FUN, an example for which is shown in figure 2.9 B). The scatter

diagram is used to see if the values recorded formed a cluster for each protein and also

to see if the cluster centred around literature values if available. Next, histograms were

plotted with the p2p and FUN data, depicted in figure 2.9 C). The values were normalised

for the number of unfolding events for each protein. Each histogram was fitted with a

gaussian distribution curve,the centre of the gaussian for each histogram was recorded.

Finally the mean FUN value for each pulling velocity was plotted in a speed dependence

diagram, showing log10 (pulling velocity) vs. FUN. An example of a speed dependence

diagram is shown in figure 2.9 D). A linear fit is performed for each of the proteins.

The properties of the distribution of the FUN data, depicted by the histogram, and the

slope of the linear from the speed dependence diagram can be used to provide more

information about the mechanical unfolding energy landscape of a protein [147].

87



Chapter 3

Results 1: SMFS and polyprotein

engineering experiments to

examine the mechanical

fingerprint of a halophilic protein

3.1 Introduction

This chapter will introduce and describe the experiments completed on the protein

Haloarcula marismortui Ferredoxin (HmFd). The chapter will begin by explaining how

the halophilic protein, (HmFd) was chosen. The organism, Haloarcula marismortui, and

the protein, HmFd, will then be introduced, including what is known about the struc-

ture and stability of the protein. The experimental data collected, analysed and the

conclusions drawn from SMFS experiments using the hetero-polyprotein, I273-HmFd-

I27 will then be presented. Next, two techniques used in attempt to synthesise further

halophilic polyprotein constructs will be described, including all the experimental steps

carried out. The chapter will finish by concluding of all results shown.
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3.1.1 Choosing a halophilic protein to study using SMFS experiments

3.1.1.1 Identifying a protein that will have high mechanical stability

A large number of proteins have now been mechanically unfolded using SMFS experi-

ments [115,154,162,177–179] The force required to unfold a protein has been shown to range

from tens to hundreds of piconewtons [133,148,180]. A collection of studies have been car-

ried out to determine the structural features that control the stability of a protein under

mechanical force (see section 1.4.4.1) [133–135]. These studies show that the mechanical

unfolding force of a protein can be predicted by the secondary structure and topology.

Proteins that are predominantly α–helical tend to need lower forces to overcome the

energy barrier to unfolding, whereas proteins with a high β–sheet content tend to need

high forces. This is thought to be due, in large part, to the shearing apart of two β

strands by pulling apart from distal ends, which requires all non-covalent interactions

between the strands to rupture at once [154]. Proteins that have a β-sandwich topology

with directly hydrogen bonded β-strands, such as the Ig-like fold of I27, therefore have

a high mechanical resistance [135,139].

The halophilic protein, HmFd comprises a 4-stranded β–sheet with direct hydrogen

bonds, formed into a barrel-like structure, with 5 flanking α-helices [105]. It is, therefore,

predicted to have significant mechanical stability. The structure of HmFd also includes

an Iron-Sulphur (Fe-S) cluster bound to four cysteine residues, 63, 68 and 71, which are

located in the loop region connecting helix α3 and strand β3 and 102, which is located

after helix α43, shown in figure 3.1. A review of the literature available for the halophilic

protein, HmFd, can be found in section 1.3.2.4.

3.1.1.2 Mechanical unfolding of a structurally similar protein, Rubredoxin

Pyrococcus furiosus Rubredoxin (Pf Rd), a protein also containing an Fe–S cluster, has

been studied using SMFS experiments [159,181–186]. These studies showed that the Fe–S

bond could be ruptured using this technique and the mechanical force could be charac-
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Figure 3.1: The structure of HmFd. A) shows the 3D topology of the protein. This
figure was created using PDB file 1DOI and Pymol [90,105]. B) shows the secondary structure
of the protein where the arrows represent β–sheets and the rectangle represents an α=-helix.
The blue circles represent the cysteines which bind to the FeS cluster. The N–terminus is
shown on β–strand, β1 and the C–terminus is on the α–helix, α5.

terised. SMFS experiments in this study were carried out in DTT to create a reducing

environment to ensure Fe was in the +2 oxidation state [159].

The mechanical unfolding of Pf Rd (53 amino acids) showed firstly the secondary

structure of the protein either side of the Fe-S cluster unravel without producing a resis-

tive force on the cantilever tip (residues 1-4, 42-53) [187]. The strength of the Fe-S cluster

then produces a resistive force which bends the cantilever [159]. The Fe-S cluster then

ruptures, which allows the amino acid residues which are held by the cluster (residues

5-41) to unravel. The average measured peak to peak value, 12.6 ±1.3 nm, reflected the

distance between residues 5-41, estimated to be 12.1 - 13.9 nm.

The measured unfolding force was 211 ± 86 pN at a pulling speed of 400 nm/s, with

a wide distribution range from 100 pN to 500 pN. The level of interaction between two

atoms is determined by the mixing of their atomic orbitals, described by the covalency.

An Fe-S bond has a high covalency due to the mixing of the Fe d-orbital and the S

p-orbital. This unfolding force was surprisingly low since other highly covalent bonds

have been found to be highly mechanically stable e.g. a disulphide bond which has a

lower covalency than Fe-S has a mechanical strength >1 nN [188,189].
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Further experiments with Pf Rd have been carried out to investigate the effect of

covalency of the Fe-S cluster and the effect of the hydrogen bonds surrounding the Fe-S

cluster on the mechanical stability of Pf Rd [182]. The direction of pulling force, the exact

mechanism of the release of Fe and the reversible unfolding-refolding and the chemical

reactivity of the Fe centre of rubredoxin have also been investigated [183–186].

Given the structural similarity of Pf Rd to HmFd, it was suggested that HmFd could

be an ideal protein to study using SMFS.

3.2 Objectives

The objective of this chapter was to complete a series of SMFS experiments on a polypro-

tein construct containing HmFd to obtain experimental data and allow identification of

the mechanical fingerprint of the protein.

3.3 Single molecule force spectroscopy on I273-HmFd-I27

In this section I will show data collected and analysed from three stages of SMFS exper-

iments using I273-HmFd-I27:

i) I273-HmFd-I27 in 63 mM salt at a pulling speed of 400 nm/s (Ionic strength =

0.16 M)

ii) I273-HmFd-I27 in 500 mM and 2000 mM salt at a pulling speed of 400 nm/s (Ionic

strength = 0.66 M)

iii) I273-HmFd-I27 in 63 mM salt at a pulling speed of 2000 nm/s (Ionic strength =

2.15 M)
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3.3.1 Procedure for SMFS experiments using I273-HmFd-I27

The polyprotein I273-HmFd-I27 was provided by Dr. Toni Hoffman. Single molecule

force spectroscopy (SMFS) experiments were performed using a custom built AFM. The

spring constant of each silicon nitride cantilever, obtained from Veeco (Santa Barbara,

CA), was calculated in buffer by applying the equipartition theorem (see section 2.7.2.1).

Proteins were resuspended in the appropriate buffer at a concentration of 0.5 g/mL

and applied onto a freshly cleaved template-stripped gold surface. The sample was

incubated at room temperature for 30 minutes before mechanical unfolding experiments

were carried out. Data was collected for timescales of up to 10 hours.

Figure 3.2: Schematic of the (I27-HmFd)3-I27 construct. The construct has a His-
tag, shown as a red triangle, at the N-terminal end and 2 cysteine residues, shown as green
circles, at the C-terminal end.

3.3.2 SMFS experiments using I273-HmFd-I27 at 400 nm/s in in 63

mM sodium phosphate buffer

Example traces from these experiments are shown in figure 3.3. Figures A), B), C) and

D) each show a force-extension trace with 3 I27 unfolding events. The traces show a

range of events that may correspond to the unfolding of HmFd.

3.3.2.1 Analysis of the SMFS data for I273-HmFd-I27 at 400 nm/s in in 63

mM sodium phosphate buffer

Traces were accepted for analysis only if they contained 3 or more protein unfolding

events, which corresponded to I27. Traces were not accepted if there were large surface

interactions at the start of the trace, there were peaks with double tips or if there was

not a clear detachment peak.
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Figure 3.3: Example traces from SMFS experiments using I273-HmFd-I27 at
400 nm/s in 63 mM sodium phosphate buffer. Figures A), B), C) and D) each
showing 3 I27 unfolding events and a range of events that could correspond to HmFd. The
traces are taken from experiments carried out on 8 different days. The polyprotein was in
63 mM sodium phosphate, pulled at a constant velocity of 400 nm/s.
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Traces were initially analysed by fitting the WLC model to confirm the number of

I27 unfolding events, see section 2.7.4.1 for an explanation. For each protein unfolding

event the peak unfolding force, FUN, and the peak to peak distance, p2p, were recorded,

overall values are recorded in tables 3.1 and 3.2. The mean FUN obtained for I27 was 173

± 2 pN and the p2p distance was 24.4 ± 0.1 pN. The values recorded were consistent

with previous studies of I27 by SMFS by Hoffmann et al., of FUN = 168 ± 7 pN and

p2p = 23.7 (error not quoted) [148].

Protein No. events Mean FUN (pN) Median FUN (pN) SD

I27 195 173 173 21
HmFd 88 114 104 43

Table 3.1: Unfolding force data and standard deviation for I273-HmFd-I27 in 63mM sodium
phosphate buffer at 400 nm/s

Protein No. I27 events Mean p2p (nm) Median p2p (nm) SD

I27 195 24.4 24.3 1.3
HmFd 88 15.1 13.3 7.8

Table 3.2: Peak to peak distance data and standard deviation for I273-HmFd-I27 in 63mM
sodium phosphate buffer at 400 nm/s

The values were plotted on a scatter diagram showing the unfolding force (FUN) for

each protein unfolding event against the measured peak to peak distance, p2p (figure

3.4). The diagrams show clear clusters of data points for I27 (grey), centred around

the reference I27 data [148]. Other unfolding events, which are not expected to be I27,

are also shown in the scatter plot (orange). There is no clear group of unfolding events

which may correspond to HmFd. The wide spread of unfolding peaks may be due to

non-specific interactions with the surface or impurities in the sample. They could also

indicate a complex unfolding pathway for HmFd. Complex unfolding pathways have

previously been reported for other proteins [160,190,191].

Histograms were then produced for the FUN data and the p2p distances for both

I27 (grey) and other events (orange), figure 3.5. Each histogram can be fitted with a

Gaussian curve. The histograms for I27 show a clear Gaussian distribution for both the
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p2p and FUN data. There is a slight trend for the other data, i.e. a Gaussian can be fitted

to the data, showing the results for a mechanical resistance for HmFd are promising but

no definite unfolding force can be defined.

3.3.2.2 Refined analysis of the SMFS data for I273-HmFd-I27

In an attempt to extract some evidence of the unfolding of HmFd, the stringency of

analysis was increased by only accepting traces that included four I27 unfolding events.

If four I27 proteins have unfolded, the whole polyprotein construct must have been picked

up from the surface and the HmFd protein must have been subjected to force, see figure

3.2 for the structure of the polyprotein. The FUN and p2p distances of I27 for each

experiment are recorded in tables 3.3 and 3.4. The mean FUN obtained for I27 in 63 mM

salt at 400 nm/s was 168 ± 5 pN and the p2p distance was 24.0 ± 0.3 pN, consistent

with previous studies [148].

Salt conc. Velocity No. events Mean FUN (pN) Median FUN (pN) SD

63 mM 400 nm/s 16 168 162 19

Table 3.3: Unfolding force data and the standard deviation for I27 in I273-HmFd-I27 using
a more stringent analysis. The data shown only includes traces that have 4 I27 unfolding
events.

Salt conc. Velocity No. events Mean p2p (nm) Median p2p (nm) SD

63 mM 400 nm/s 16 24.0 24.2 1.1

Table 3.4: Peak to peak distance data and the standard deviation for I27 in I273-HmFd-
I27 using a more stringent analysis. The data shown only includes traces that have 4 I27
unfolding events.

The refined data analysis values were plotted on a scatter diagram showing FUN

versus the p2p distance (figure 3.6 A)). The diagrams show clear clusters of data points

for I27 (grey), centred around the reference I27 data [148]. Where only one unfolding

event assigned to HmFd occurred in the same trace (in addition to the 4 I27 unfolding

events), each data point was coloured orange. Where two unfolding events assigned to

HmFd occurred in the same trace, each data point was coloured red. It is clear that not
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Figure 3.4: Scatter diagram of unfolding force vs. peak to peak distance of I273-
HmFd-I27 taken from 8 SMFS experiments in 63 mM sodium phosphate, pulled
at a constant velocity of 400 nm/s. The figure shows the data obtained for I27 in grey,
clustered around the previously determined reference value for I27 in yellow [148]. The points
which correspond to other peaks within the unfolding trace, interpreted as HmFd (orange)
show no clear cluster.

Figure 3.5: Data collected from SMFS experiments for I273-HmFd-I27 in 63
mM sodium phoshate at a pulling velocity of 400 nm/s. Figure A) shows the pooled
data for the unfolding force of each HmFd unfolding event. Figure B) shows the pooled data
for the peak to peak distance of each HmFd unfolding event. Figure C) shows the pooled
data for the unfolding force of each I27 unfolding event. Figure D) shows the pooled data
for the peak to peak distance of each I27 unfolding event.

96



enough data is available to clearly show the mechanical unfolding behaviour of HmFd.

Figure 3.6: The refined data analysis of SMFS experiments using I273-HmFd-
I27 at 400 nm/s. Figure A) shows the scatter diagram of the unfolding force vs. peak
to peak distance for I273-HmFd-I27. The figure shows I27 in grey, clustered around the
reference value for I27 in yellow [148]. Where only one unfolding event assigned to HmFd
occurred in the same trace (in addition to the 4 I27 unfolding events), each data point was
coloured orange. Where two unfolding events assigned to HmFd occurred in the same trace,
each data point was coloured red. There is no clear agreement of HmFd (orange) or HmFd
(red). Figure B) shows a scatter diagram comparing the lengths of the measured Lc of I273-
HmFd-I27 in 63 mM salt to the calculated contour length Lc. All figures show the measured
contour length in green. Figures C) and D) show example traces that contain 4 I27 unfolding
events have an full extension length between 166.25 and 190.00 nm. The traces are taken
from experiments carried out on 8 different days. The polyprotein was in 63 mM sodium
phosphate, pulled at a constant velocity of 400 nms−1. Trace D) has unfolding events that
could correspond to HmFd. The worm like chain fits for the I27 unfolding events are shown
in red. All figures show data collected across 8 experiments carried out in 63 mM sodium
phosphate, pulled at a constant velocity of 400 nm/s.

The unfolded extension of the full construct before detachment was recorded for

each trace that included 4 unfolding events corresponding to I27. If HmFd is unfolded,

as expected, the recorded extension should correspond to the contour length of the

polyprotein, Lc. Using knowledge of the number of amino acids in each protein, the

length of an amino acid [132,192], and details of the linkers in the polyprotein construct,
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Lc of the construct can be calculated as follows:

Lc = (length of amino acid (nm)× total no. of amino acids) (3.1)

Lower estimate = (0.35× 475) = 166.25 nm (3.2)

Upper estimate = (0.40× 475) = 190.00 nm (3.3)

The recorded extension of the unfolded polyprotein was plotted on a scatter diagram,

the upper and lower estimates of Lc were shown as dashed lines (figure 3.6 B)). All four

traces fall within the boundaries, suggesting the full polyprotein is unfolding in all of

these traces. The traces with the correct extension length were then examined. Two

example traces are shown in figure 3.6 C) and D). Trace D) has unfolding events that

could correspond to HmFd but no correlation between the peak to peak distances or

unfolding forces can be seen.

3.3.3 SMFS experiments using I273-HmFd-I27 in 500 mM and 2000

mM salt

Further SMFS experiments, using the same experimental procedure, were carried out in

a range of salt concentrations to see if there was any effect on the results. Since halophilic

proteins tend to be unstable at low salt concentrations, it is likely HmFd would follow

the same trend. Increasing the salt concentration may then increase the stability of the

protein, which could then show mechanical stability. The two extra buffers used for these

experiments were:

i) 500 mM NaCl, 63 mM sodium phosphate, pH 7.4

ii) 2000 mM NaCl, 63 mM sodium phosphate, pH 7.4

Analysis was carried out only using traces that included four I27 unfolding events. FUN

and p2p data for I27 in each experiment are recorded in tables 3.5 and 3.6.

Interestingly, the unfolding force of I27 was found to increase slightly with the in-

creasing salt concentration. The values were plotted on scatter diagrams, showing FUN
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Salt conc. Velocity No. events Mean FUN (pN) Median FUN (pN) SD

500 mM 400 nm/s 51 184 184 31
2000 mM 400 nm/s 10 185 188 17

Table 3.5: Unfolding force data and the standard deviation for I27 in I273-HmFd-I27 in
varying salt concentrations. The data shown only includes traces that have 4 I27 unfolding
events.

Salt conc. Velocity No. events Mean p2p (nm) Median p2p (nm) SD

500 mM 400 nm/s 51 23.9 24.1 1.3
2000 mM 400 nm/s 10 23.6 23.9 1.3

Table 3.6: Peak to peak distance data and the standard deviation for I27 in I273-HmFd-I27
in varying salt concentrations.

for each protein unfolding event against the measured p2p (figure 3.7 A) and B)). The

diagrams show clear clusters of data points for I27 (grey), centred around the reference

I27 data [148]. Where only one unfolding event assigned to HmFd occurred in the same

trace (in addition to the 4 I27 unfolding events), each data point was coloured orange.

Where two unfolding events assigned to HmFd occurred in the same trace, each data

point was coloured red. There is no clear agreement of HmFd (orange) or HmFd (red)

in either diagram.

The unfolded extension of the full construct before detachment was recorded for

each trace that included 4 unfolding events corresponding to I27. The measured length

of the unfolded polyprotein was plotted on a scatter diagram (for each condition), the

upper and lower estimates of Lc were shown as dashed lines, shown in figures 3.7 C) and

D). Both traces fall within the boundaries in figure C), suggesting the full polyprotein

is unfolding in 2000 mM salt. Only 3 of 13 traces fall within the boundary limits in

figure D), suggesting there are other factors affecting the traces. Theses factors could

include impurities in the sample, interference of the polyprotein by other polyproteins

or non-specific interactions. The traces with the correct extension length were then

examined. One example trace in 2000 mM salt is shown in figure 3.7 E). The traces has

two unfolding events that could correspond to HmFd but no correlation between the

peak to peak distances or unfolding forces can be seen.
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Figure 3.7: The data analysis of SMFS experiments using I273-HmFd-I27 in
500 mM and 2000 mM salt. Figures A) and B) show the scatter diagrams of the
unfolding force vs. peak to peak distance for I273-HmFd-I27 in 500 mM and 2000 mM salt
respectively. The figures both show I27 in grey, clustered around the reference value for I27
in yellow [148]. Where only one unfolding event assigned to HmFd occurred in the same trace
(in addition to the 4 I27 unfolding events), each data point was coloured orange. Where two
unfolding events assigned to HmFd occurred in the same trace, each data point was coloured
red. Figures C) and D) show scatter diagrams comparing the measured Lc I273-HmFd-I27
in 500 mM and 2000 mM salt to the calculated contour length Lc. All figures show the
measured contour length in green. Figure E) shows an example trace that contains 4 I27
unfolding events and has a full extension length between 166.25 and 190.00 nm. The trace
has two unfolding events that could correspond to HmFd. The worm like chain fits for the
I27 unfolding events are shown in red.
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3.3.4 SMFS experiments using I273-HmFd-I27 at 2000 nm/s

Further SMFS experiments, using the same experimental procedure, were carried out

at a different pulling velocity. At a faster pulling velocity, force is applied faster to the

protein. This results in a higher unfolding force as the likelihood of unfolding due to

thermal fluctuations is decreased. The rate of the increase in unfolding force with pulling

velocity can be different for each protein. If I27 and HmFd have the same unfolding

force at 400 nm/s, therefore masking the HmFd unfolding force, they may have different

unfolding forces at 2000 nm/s [193]. Analysis was carried out only using traces that

included four I27 unfolding events. The FUN and p2p data for I27 are recorded in tables

3.7 and 3.8.

Salt conc. Velocity No. events Mean FUN (pN) Median FUN (pN) SD

63 mM 2000 nm/s 16 208 209 34

Table 3.7: Unfolding force data and the standard deviation for I27 in I273-HmFd-I27 at 2
pulling velocities. The data shown only includes traces that have 4 I27 unfolding events.

Salt conc. Velocity No. events Mean p2p (nm) Median p2p (nm) SD

63 mM 2000 nm/s 16 23.6 23.7 1.5

Table 3.8: Peak to peak distance data and the standard deviation for I27 in I273-HmFd-I27
at 2 pulling velocities.

The values were plotted on a scatter diagram showing FUN against p2p (figure 3.8

A)). The diagram shows not enough data is available to clearly show the mechanical

unfolding behaviour of HmFd, as described for the previous experiments.

The unfolded extension of the full construct before detachment was recorded for each

trace that included 4 unfolding events corresponding to I27. The measured length of the

unfolded polyprotein was plotted on a scatter diagram, the upper and lower estimates

of Lc were shown as dashed lines, figure 3.8 B). None of the traces fall within the

boundaries suggesting there are other factors affecting the traces. These factors could

include impurities in the sample, interference of the polyprotein by other polyproteins

or non-specific interactions.
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Figure 3.8: The data analysis of SMFS experiments using I273-HmFd-I27 at
2000 nm/s. Figure A) shows the scatter diagram of the unfolding force vs. peak to peak
distance for I273-HmFd-I27 at 2000 nm/s. The figure shows I27 in grey, clustered around
the reference value for I27 in yellow [148]. Unfolding events, interpreted as HmFd, are shown
in orange. Figure B) shows a scatter diagram comparing lengths of the measured Lc of
I273-HmFd-I27 at 2000 nm/s to the calculated Lc. The figure shows the measured contour
length in green.
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3.3.5 Summary

The results show it was possible to obtain the expected force-extension data for the

reference protein, I27. It is likely that HmFd does have a mechanical resistance to force

(figure 3.5). Full characterisation of the unfolding force and peak to peak distance was

consequently unsuccessful for HmFd. The possible unfolding pathways of HmFd will be

discussed further in section 6.1.

Conclusion: More repeats of HmFd are needed in the polyprotein con-

struct in order generate a larger amount of data to carry out effective me-

chanical unfolding characterisation.

3.4 Production of a the hetero-polyprotein, (I27-HmFd)3-

I27

As it was not possible to identify the mechanical fingerprint of HmFd from the construct

containing only one HmFd, a polyprotein containing more repeats of HmFd would make

identification of the fingerprint easier by increasing the amount of data collected for

HmFd in each AFM experiment. This would also remove HmFd from being close to

the gold surface where nonspecific interactions can interfere with the protein unfolding.

The design of the polyprotein chimera chosen is shown in figure 3.9 and includes 4

repeats of I27 and 3 repeats of HmFd. This chimera polyprotein design has been used to

characterise other previously unstudied proteins [29,146,148]. This section will describe the

experiments completed in the attempt to synthesise the polyprotein chimera containing

I27 and HmFd. Further explanation of the techniques used can be found in chapter 2,

including a basic description of each step and the protocols used. An overview of the

synthesis method can be seen in figure 3.10.
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Figure 3.9: Schematic of the (I27-HmFd)3-I27 construct. The construct has a His-
tag, shown as a red triangle, at the N-terminal end and 2 cysteine residues, shown as green
circles, at the C-terminal end.

Figure 3.10: Schematic of the synthesis of (I27-HmFd)3-I27. Where A) represents
the PCR reactions to add the correct restriction sites to the HmFd inserts, B) represents
digestion of the HmFd inserts and the plasmid to create sticky ends, C) represents the
ligation of the each HmFd gene into the plasmid, D) represents the digestion of the whole
polyprotein gene from the plasmid, E) represents the ligation of the whole polyprotein
gene into an expression plasmid, F) represents the transformation of the plasmid into an
expression E. Coli strain, G) represents the expression of the polyprotein, H) represents
purification of the polyprotein. The restriction sites are shown in different colours, blue -
SpeI, green - BssHII, yellow - ApaI, orange - SacI, red - AatII and purple - SacII.
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3.4.1 Molecular biology for (I27-HmFd)3-I27

The pET3a-(I27)7 and pCR2.1-(I27)3-HmFd-I27 plasmids were provided by Dr. David

Brockwell. A 500 µL sample of the plasmid, pET3a-(I27)7, was produced by first trans-

forming 2 µL plasmid into XL1 Blue competent cells (§2.3.1), which were grown in

colonies on agar plates. A colony was picked, grown in 50 mL LB medium, contain-

ing 100 µg/mL ampicillin, and DNA was purified using a QIAprepr Spin Midiprep Kit

(§2.2.9).

The HmFd gene to be inserted into position 4 of the polyprotein gene was produced

from the pCR2.1-(I27)3-HmFd-I27 plasmid using the following procedure. The cassette

was isolated by digesting the pCR2.1-(I27)3-HmFd-I27 plasmid at position 4 using re-

striction enzymes ApaI and SacI using the protocol described in §2.2.4. The cassette

was separated from the unwanted DNA by agarose gel electrophoresis, the procedure

for which is outlined in §2.2.2, and subsequently extracted from the gel, as described in

§2.2.3. The cassette was then ready to be inserted into the plasmid.

Figure 3.11: The plasmid pET3a-(I27)7 was digested at position 4 using restric-
tion enzymes ApaI and SacI. Agarose gel electrophoresis was used to purify and check
the size of the cassette. The gel shows a correctly sized product for I27 - 279 bp

The (I27)7 vector was digested using the same restriction enzymes as above and

dephosphorylated to prevent self-ligation (§2.2.5). Agarose gel electrophoresis was used

to isolate and check the size of DNA removed. The gel, figure 3.11, shows the excised
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DNA to be about the correct size for I27, which is 279 bp. This shows one of the I27

genes was correctly removed from the pET3a-(I27)7 plasmid.

Next, the HmFd insert for position 4 was ligated into the digested pET3a-(I27)7

plasmid (see §2.2.6). A control ligation was also performed using all components in the

reaction mixture, except for the insert HmFd DNA. The resulting plasmid pET3a-(I27)3-

HmFd-(I27)3 was transformed into XL1 Blue Supercompetent cells, as well as the control

reaction, and spread on agar plates. After incubating overnight, colonies were found on

the plates with cells that had been transformed with the ligation reaction mixture. No

colonies were found on plates with cells transformed with the negative control ligation

mixture. 6 colonies were picked, grown in LB medium and the DNA was purified for

each colony using a QIAprepr Spin Miniprep Kit (§2.2.8). To determine whether the

vector now contained the desired insert, 1µg of plasmid from each colony was digested

with the restriction enzymes ApaI and SacI. The results were analysed using agarose gel

electrophoresis, shown in figure 3.12.

Figure 3.12: The plasmid pET3a-(I27)3-HmFd-(I27)3 was digested at position 4
using restriction enzymes ApaI and SacI. The gel shows a successful ligation product
with the correctly sized band for HmFd - 420 bp in tubes B and D. Unsuccessful ligation
products with the correctly sized band for I27 - 279 bp in tube C and the control containing
no insert DNA.

Polymerase Chain Reaction (PCR) was used to introduce unique restriction enzyme

sites to the 5′ and 3′ ends of the HmFd cassettes for positions 2 and 6. The restriction

enzymes of choice were SpeI and BssHII for position 2 and AatII and SacII for position 6

(§2.2.1). The template plasmid used for PCR was the original plasmid (I27)3-HmFd-I27.

The agarose gel of the PCR products, used to separate the products from the rest of the
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reaction mixture, is shown in figure 3.13.

Figure 3.13: Agarose gel electrophoresis was used to purify and check the size
of the PCR product. PCR was used to add short linker regions to each end of the
HmFd insert, encoding the recognised sequence for restriction enzymes SpeI and BssHII
(for position 2). The BsCSP gene in tube A is unrelated to this project.

The digestion, using the appropriate restriction enzymes, and ligation process was

then repeated for position 6 to form (I27)3-(HmFd-I27)2, followed by 2 to form (I27-

HmFd)3-I27. After each ligation process, the DNA was verified firstly using an analytical

digest and then by sequencing. The agarose gel obtained for the analytical digestion of

(I27)3-(HmFd-I27)2 in the 6th position is shown in figure 3.14. The plasmid pET3a-(I27-

HmFd)3-I27 was then ready to be used for expression of the (I27-HmFd)3-I27 protein.

Figure 3.14: The plasmid pET3a-(I27)3-(HmFd-I27)2 was digested at position
6 using restriction enzymes SpeI and BssHII. The gel shows a successful ligation
product with the correctly sized band for HmFd - 420 bp in tubes C and F. Unsuccessful
ligation products with the correctly sized band for I27 - 279 bp in tubes B, C and E
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3.4.2 Expression of the hetero-polyprotein, (I27-HmFd)3-I27

The first step was to test for over-expression of the desired polyprotein on a small scale

(§2.3.2). Once the final plasmid pET3a-(I27-HmFd)3-I27 was confirmed by sequencing, it

was transformed into E.coli BLR[DE3] cells (§2.3.1). 1 mL of an overnight culture of the

cells was used to inoculate 100 mL LB medium and the culture was incubated at 37◦C,

200 rpm. Protein expression was induced with addition of 1 mM IPTG at an optical

density at 600 nm (OD600) of 0.4. After further incubation for 3 hours, the cells were

harvested by centrifugation and analysed using SDS-PAGE (§2.3.2). This polyprotein

has an N-terminal hexa-histidine tag, therefore the cells were lysed and the resultant

polyprotein was purified on Ni-NTA affinity resin (§2.3.3). The protein production and

purification stages were analysed using SDS-PAGE at each stage, results are shown in

figure 3.15.

Figure 3.15: Small scale expression and purification of (I27-HmFd)3-I27, anal-
ysed by SDS-PAGE with Coomassie blue staining. The gel shows no band with
significant intensity at 87.7 kDa which would correspond to (I27-HmFd)3-I27 in any of the
expression or purification steps.

To further analyse the expression of (I27-HmFd)3-I27, western blotting was carried

out. While SDS-PAGE analysis with Coomassie blue staining shows all proteins in a

solution, Western blotting uses antibodies to selectively recognise and only stain proteins

with a specific amino acid sequence, e.g. a hexa-histidine tag (§2.6.2). The small scale

expression and purification steps were repeated and analysed using SDS-PAGE with

Coomassie blue staining and western blotting. The western blot, shown in figure 3.17
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showed signs of protein degradation in all samples taken at different timepoints through

(I27-HmFd)3-I27 expression. Each band must contain the histadine tag to be labelled

with the antibody and, therefore, must come from the expressed polyprotein breaking

down into smaller segments. Least degradation of the product can be seen at an ex-

pression time of 0.5 hours. The corresponding Coomassie stained gel is shown in figure

3.16. It was concluded that shorter expression times were more desirable, although the

reduced amount of growth time for E. coli would produce less protein.

In order to try and increase the protein yield over a shorter timescale, the OD600 at

which protein expression is induced was varied. By increasing the OD600 of induction,

the amount of cells will be increased. The expression at induction OD600 values of 0.7, 1,

1.5 and 3 was analysed using SDS-PAGE and western blotting, shown in figures 3.18 and

3.19 respectively. Although the final OD600 after incubation for 0.5 hours was highest for

the induction OD600 of 3, the intensity of the (I27-HmFd)3-I27 band was significantly

reduced in the western blot.

To try and reduce the amount of degradation of the protein, the expression process

was carried out with 5 x 100 mL samples at a temperature of 16 ◦C and incubated

for 3 hours. The subsequent purification of one of the 100 mL samples was carried

out at 4 ◦C and a protein inhibitor cocktail was used in all buffers. No evidence of the

expression of (I27-HmFd)3-I27 can been using SDS-PAGE analysis, shown in figure 3.20.

It was therefore concluded that the (I27-HmFd)3-I27 polyprotein construct could not be

obtained using this method in sufficient quantities and another production route should

be used.

The plasmid containing 2 repeats of HmFd, in the fourth and sixth positions, created

during the initial molecular biology steps (§3.4.1), was then transformed into BLR[DE3]

cells and 2 test cultures of 100 mL were grown. In one test culture, expression was

induced with 1 mM IPTG at OD600 of 0.4 which was harvested after 3 hours. In the

other test culture, expression was induced at OD600 of 0.7, which was harvested after 0.5

hours and the resulting polyprotein was purified. The protein production and purification

stages were analysed using SDS-PAGE (data not shown). The analysis showed clear
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Figure 3.16: Small scale expression and purification of (I27-HmFd)3-I27, anal-
ysed by SDS-PAGE with Coomassie blue staining. Again, the gel shows no band
with significant intensity at 87.7 kDa which would correspond to (I27-HmFd)3-I27 in any of
the expression or purification steps.

Figure 3.17: Small scale expression of (I27-HmFd)3-I27, analysed by Western
blotting. The gel shows a band with significant intensity at 87.7 kDa, which corresponds
to (I27-HmFd)3-I27 in all of the expression time points. The figure showed signs of protein
degradation in all expression time points. Least degradation of the product can be seen at
an expression time of 0.5 hours.
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Figure 3.18: Four small scale expressions and purifications of (I27-HmFd)3-
I27 with stepwise increasing induction optical densities, analysed by SDS-PAGE
with Coomassie blue staining. Again, the gel shows no band with significant intensity at
87.7 kDa which would correspond to (I27-HmFd)3-I27 in any of the expression or purification
steps.

Figure 3.19: Four small scale expressions and purifications of (I27-HmFd)3-
I27 with stepwise increasing induction optical densities, analysed by Western
blotting. The gel shows a band with significant intensity at 87.7 kDa, which corresponds
to (I27-HmFd)3-I27 in all of the expression expressions at induction OD600s 0.7, 1 and 1.5
with the largest band at OD600 of 0.7. The figure showed signs of protein degradation after
0.5 hours.
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Figure 3.20: Small scale expression and purification of (I27-HmFd)3-I27 at 16
◦C, analysed by SDS-PAGE with Coomassie blue staining. The gel shows no band
with significant intensity at 87.7 kDa which would correspond to (I27-HmFd)3-I27 in any of
the expression or purification steps.

impurities, which were again likely to be from degradation.

3.4.3 Summary

The results presented show attempts to synthesise a hetero-polyprotein construct con-

taining four repeats of I27 protein and three repeats of HmFd. Construction of the hetero

construct DNA was successful but the polyprotein construct could not be obtained using

this method in sufficient quantities and another production route should be used.

Conclusion: An alternative technique is needed to produce a polyprotein

containing more than one repeat of HmFd.
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3.5 Production of a homo-polyprotein of HmFd using mal-

tose binding protein

The results will be presented for the synthesis of a polyprotein of HmFd, shown in

figure 3.21, using a fusion protein, Maltose binding protein (MBP) [194]. MBP facilitates

the solubility, purification and proper folding of its fusion partners. A wide variety

of polypeptides that are prone to aggregation have been recovered in soluble form as

MBP fusion proteins [195,196]. After cleavage of HmFd from the fusion protein, cysteines,

added to each end of HmFd allow for polymeristion via thiol coupling to a maleimide

crosslinker, shown to be a successful method for the polymerisation of Rubredoxin [197].

An overview of the synthesis method can be seen in figure 3.22.

Figure 3.21: Schematic of the poly-HmFd construct. The construct is polymerised
by N- and C-terminal cysteine residues, shown as green circles, at the C-terminal end.

3.5.1 Molecular biology for poly-HmFd

The HmFd insert was modified and amplified from the pET3a plasmid by PCR using

Phusionrpolymerase (NEB). Primers were designed to create an NdeI restriction site,

a TEV protease recognition site and a cysteine at the 5 end of the HmFd insert and a

cysteine upstream of a BamHI restriction site at the 3 end. The primers used are shown

in table A.1. The primers and other PCR products were separated from the desired

insert using agarose (1.5% w/v) gel electrophoresis, shown in figure 3.23.

The HmFd insert was digested using the restriction enzymes BamHI and NdeI. The

vector, pMAL-c5x, was digested in an identical manner and was then 5 dephosphorylated.

Agarose gel electrophoresis was used to separate the digested insert and the digested 5

dephosphorylated vector from other cleavage products. The gel is shown in figure 3.24.
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Figure 3.22: Schematic of the synthesis of poly-HmFd using MBP. Where A)
represents the digestion of the HmFd insert and the plasmid to create sticky ends, B)
represents the ligation of the HmFd gene into the plasmid, C) represents the transformation
of the plasmid into an expression E. Coli strain, D) represents the expression of MBP-
HmFd protein, E) represents cleavage of the HmFd monomer from MBP, F) reresents the
purification of the HmFd monomer and G) represents the crosslinking of HmFd monomer
to form a polymer. The restriction sites are shown in different colours, yellow - NdeI, orange
- BamHI.
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Figure 3.23: Agarose gel electrophoresis was used to clean the PCR product for
HmFd. The gel shows the corect size band for HmFd - 420 bp in all products and no band
corresponding to HmFd in the control lane (no template DNA).

Figure 3.24: The plasmid pMAL-c5x and insert HmFd digest were digested
using restriction enzymes NdeI and BamHI. Agarose gel electrophoresis was used to
check the size of DNA. The gel shows a correctly sized product for the the plasmid - 5677
bp (tubes A-D) and HmFd - 420 bp.
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A reaction was set up to ligate the digested HmFd insert into 5 dephosphorylated

pMAL-c5x, using T4 quick ligase (Promega). In addition, a negative control containing

no insert DNA was also assembled. 7 µL of these reactions were transformed into E.coli

XL1-Blue supercompetent cells. DNA was purified using a QIAprepr Spin Miniprep

Kit from nine single colonies picked from agar plates after transformation and used to

innoculate 10 mL LB medium. Each sample was digested with NdeI and BamHI to

check if the insertion of HmFd into pMAL-c5x had been successful. These digests were

analysed by agarose gel electrophoresis, shown in figure 3.25. The ligation of HmFd into

pMAL-c5x appeared to be successful for all plasmid samples, indicated by presence of a

band at 417 bp. The success of cloning the pMAL-c5x-HmFd construct was subsequently

confirmed by DNA sequencing.

Figure 3.25: The plasmid pMAL-c5x-HmFd was digested using restriction en-
zymes NdeI and BamHI. The gel shows a successful ligation product with the correctly
sized band for HmFd - 420 bp in all tubes

3.5.2 Expression of MBP-HmFd

A test expression of the pMAL-c5x-HmFd construct was carried out after transformation

of the plasmid into E.coli BL21 expression cells. The trials were performed at a 100 mL
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scale in LB medium, TB medium and M9 medium containing either no salt, 0.5 M

NaCl, 0.2 mM (NH2)2Fe(SO4)2, or both 0.5 M NaCl and 0.2 mM (NH2)2Fe(SO4)2 in

250 mL conical flasks. Expression of the constructs was induced by IPTG at an OD600

of 0.4. Subsequent SDS-PAGE analysis (figures 3.26, 3.27, 3.28 and 3.29) showed a

band corresponding to the expected size of MBP-HmFd (58.8 kDa) in the soluble lysate

fraction after induction of MBP-HmFd in all tested media, which was not present in the

lysate before induction.

The next step was to carry out a large scale expression with 10 x 1 L TB medium in

2.5L conical flasks. TB medium with 0.5M NaCl was chosen as the medium due to the

large expression band at 3 hours shown in figure 3.27. The expression was unsuccessful

as the cells did not grow fast enough, i.e. the OD600 did not reach 0.4 within 10 hours.

A test large scale expression was then set up using the following conditions:

• 1 L TB medium with 0.5 M NaCl, 2.5 L conical flask

• 1 L TB medium in a 2.5 L conical flask

• 0.5 L TB medium with 0.5 M NaCl, 2.5 L conical flask

• 0.5 L TB medium with 0.5 M NaCl, 2.5 L baffled flask

The only successful growth was that of 1 L TB medium in a 2.5 L conical flask without

salt. It was concluded that the salt must affect the growth of the cells on a large scale.

Another test large scale expression was then set up using 1 L TB medium in a 2.5

L conical flask without salt with induction at an OD600 of 0.7. This time analysing

the expression products at each hour using SDS-PAGE to find the most ideal time for

harvesting the cells. The results showed expression was not successful as no band at 58.8

kDa, corresponiding to MBP-HmFd was present in any of the expression lanes (figure

3.30). BL21 cells were, therefore, shown to cease expression the protein, likely due to

the batch of cells used rather than the general properties of BL21 cells.

The pMAL-c5x-HmFd construct plasmid and the original pMAL-c5x plasmid, were

later transformed into JM83 expression cells. Expression trials were set up using 100

ml LB medium and expression was induced at an OD600 of 0.7, collecting samples at
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Figure 3.26: Three small scale expressions and purifications of MBP-HmFd in
M9, LB and TB media, analysed by SDS-PAGE with Coomassie blue staining.
The gel shows a band with significant intensity at 58.8 kDa which would correspond to
MBP-HmFd after 3 hours of incubation after induction.

Figure 3.27: Three small scale expressions of MBP-HmFd in M9, LB and TB
media with 0.5 NaCl, analysed by SDS-PAGE with Coomassie blue staining.
The gel shows a band with significant intensity at 58.8 kDa which would correspond to
MBP-HmFd after 3 hours of incubation after induction.
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Figure 3.28: Three small scale expressions of MBP-HmFd in M9, LB and TB
media with 0.2 mM Ammonium iron(II) sulfate, analysed by SDS-PAGE with
Coomassie blue staining. The gel shows a band of significant intensity at 58.8 kDa which
would correspond to MBP-HmFd after 3 hours of incubation after induction. This is shown
next to a control experiment showing the expression of MBP from the pMAL-c5x plasmid.

Figure 3.29: Three small scale expressions of MBP-HmFd in M9, LB and TB
media with 0.5 NaCl and 0.2 mM Ammonium iron(II) sulfate, analysed by SDS-
PAGE with Coomassie blue staining. The gel shows a band with significant intensity at
58.8 kDa which would correspond to MBP-HmFd after 3 hours of incubation after induction.
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Figure 3.30: A 1 L test expression of MBP-HmFd in TB medium, monitored at
each hour, analysed by SDS-PAGE with Coomassie blue staining. The gel shows
no band at 58.8 kDa which would correspond to MBP-HmFd.

each hour of incubation afterwards. SDS-PAGE analysis of the expression is shown in

figure 3.31. A clear band in the induced lysate can be seen between 50 and 75 kDa

that is not present in the lysate before induction. This indicates successful expression

of MBP-HmFd (58.8 kDa). The control expression shows successful production of MBP

(43.8 kDa) indicated by a band between 50 and 37 kDa. SDS-PAGE analysis was then

used to monitor the expression of MBP-HmFd at each hour after induction, shown in

figure 3.32. The strongest MBP-HmFd band is after 2 hours of induction. This was

chosen as the ideal time to harvest cells.

A 10 L expression of pMAL-c5x-HmFd in JM83 expression cells was set up using 10

x 1 L TB medium in 2.5 L conical flasks. Cultures were allowed to grow for 2 hours

after induction before harvesting by centrifugation. SDS-PAGE analysis (figure 3.33) of

the lysate revealed this expression was successful, showing the expected 58.8 kDa band

in the lysate after expression for 2 hours.

The cell pellet was resuspended and cell lysis was carried out using a cell disrupter

system. MBP-HmFd was purified from the soluble fraction by anionic exchange chro-

matography using a 5 mL Hi-Trap Q column, with the resulting elution profile shown in

figure B.1 and SDS-PAGE of the fractions show in figure 3.34.
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Figure 3.31: Small scale expressions of two samples of MBP and three samples
of MBP-HmFd in JM83 expression cells in 100 mL LB medium, analysed by
SDS-PAGE with Coomassie blue staining. The gel shows a band with significant
intensity at 58.8 kDa which would correspond to MBP-HmFd after 3 hours for all three
samples and a band at 43.8 kDa both samples corresponding to MBP.

Figure 3.32: Small scale expression of MBP-HmFd in JM83 expression cells
in 100 mL LB medium, monitored at each hour, analysed by SDS-PAGE with
Coomassie blue staining. The MBP-HmFd band (58.8 kDa) is strongest after 2 hours of
incubation after induction.
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Figure 3.33: Large scale expressions MBP-HmFd in JM83 expression cells in
LB medium, analysed by SDS-PAGE with Coomassie blue staining. The gel shows
a band with significant intensity at 58.8 kDa which would correspond to MBP-HmFd after
2 hours of incubation after induction.
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Figure 3.34: Purification of MBP-HmFd from the lysed cells after expression us-
ing anionic exchange chromatography, analysed by SDS-PAGE with Coomassie
blue staining. The gel shows a band with significant intensity at 58.8 kDa which would
correspond to MBP-HmFd in fraction 28.
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After pooling of the fractions containing MBP-HmFd, the protein was further purified

by anionic exchange chromatography using a Source 15Q column. The elution profile

from this column is shown in figure B.2 and SDS-PAGE analysis of each fraction is

shown in figure 3.35. The fractions containing MBP-HmFd identified by SDS-PAGE

were pooled, dialysed into H2O and lyophilised.

Figure 3.35: Further purification of MBP-HmFd using anionic exchange chro-
matography with a SOURCETM 15Q column, analysed by SDS-PAGE with
Coomassie blue staining. The gel shows a band with significant intensity at 58.8 kDa
which would correspond to MBP-HmFd in fraction 47 and smaller amountes in fractions 50,
54.

3.5.3 Cleaving HmFd from MBP

0.5 mg of MBP-HmFd was resuspended in buffer containing 50 mM Tris.HCl, 0.5 M NaCl

and 2 mM DTT. TEV protease was added to two separate reactions with final molar

ratios of MBP-HmFd to TEV protease of 1:1 and 10:1. Both reactions were incubated

at room temperature. Samples of each reaction were taken at 0 hrs, 15 mins, 30 mins,

1 hr and 3 hrs to find the optimal conditions for maximum cleavage with minimal non-

specific proteolysis (§2.4.2). The samples were analysed by SDS-PAGE, showing a band

decreasing in intensity over time at the expected weight for MBP-HmFd (58.8 kDa) and

a band increasing in intensity over time at the expected weight for MBP (43.8 kDa) in

figure 3.36. This implies HmFd is successfully being cleaved from the the MBP-HmFd
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construct by TEV protease. There does not, however, appear to be a band increasing in

intensity at the expected weight for HmFd (15.0 kDa).

Figure 3.36: Trial cleavage of HmFd from MBP using TEV protease at two
different ratios of protease:protein, analysed by SDS-PAGE with Coomassie blue
staining. The gel shows the MBP-HmFd band at 58.8 kDa reducing in intensity from 0
hours to 3 hours and the MBP band at 43.8 kDa increasing from 0 to 3 hours. There is no
band at 15.0 kDa of significant intensity that increased with time, which would correspond
to the production of cleaved HmFd.

To facilitate identification of any cleaved HmFd product, if present, MBP-HmFd was

further purified by size exclusion chromatography with a Superdex 75 30/300 column

prior to TEV cleavage. The SDS-PAGE analysis of the fractions obtained is shown in

figure 3.37. Fractions 24-28 were pooled together, dialysed into H2O and lyophilised.

Another trial digestion was then set up on the purified protein with a final molar

ratio of MBP-HmFd to TEV protease of 3:1. Again, samples were taken at 0 hrs, 15

mins, 30 mins, 1 hr and 3 hrs. The SDS-PAGE analysis, figure 3.38, showed a band

decreasing in intensity over time for MBP-HmFd (58.8 kDa) and a band for MBP (43.8

kDa) but again no band increasing in intensity at the expected weight for HmFd (15.0

kDa).

A third trial cleavage was then attempted at a 4 x higher concentration of MBP-
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Figure 3.37: Further purification of MBP-HmFd using size exclusion chromatog-
raphy, analysed by SDS-PAGE with Coomassie blue staining. The gel shows a band
with significant intensity at 58.8 kDa which would correspond to MBP-HmFd in fractions
24-28, these fractions were pooled together for further use.

HmFd with the same reaction conditions. A control reaction was also set up which

contained only TEVp and no MBP-HmFd. A band with very low intensity which could

correspond to HmFd can be found in the SDS-PAGE analysis when run with and without

DTT in the loading buffer (see figure 3.39 and 3.40) but the intensity is too low to be of

use. The analysis was also carried out without DTT to make sure it was not affecting

the cleaved HmFd, since DTT can co-ordinate to metal atoms. The control reaction

shows TEVp reducing over time. Precipitated material produced in the reaction was

also analysed but found no evidence of cleaved HmFd (figure 3.41).

A final TEVp cleavage attempt was carried out by performing the cleavage and then

purifying the reaction product using a SUP75 30/300 size exclusion column. The SDS-

PAGE analysis of the fractions is shown in figure 3.42. No evidence of cleaved HmFd can

be seen. Eluted fractions were then analysed using a UV/Vis spectrometer to record full

wavelength absorbance scans. HmFd has a distinctive wavelength absorption at about

420 nm due to the presence of the iron-sulfur cluster [102]. Unfortunately, this distinctive
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Figure 3.38: Trial cleavage of HmFd from MBP using TEV protease after futher
purification of MBP-HmFd using size exclusion chromatography, analysed by
SDS-PAGE with Coomassie blue staining. The gel shows the MBP-HmFd band at
58.8 kDa reducing from 0 hours to 3 hours and the MBP band at 43.8 kDa increasing from
0 to 3 hours. It is also possible to see the TEVp band at 27 kDa reducing over time.
There is no band with significant intensity at 15.0 kDa increasing in intensity, which would
correspond to the production of HmFd
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Figure 3.39: Repeat trial cleavage of HmFd from MBP using TEV protease after
purification of MBP-HmFd using size exclusion chromatography, concentrated
using centrifugation and analysed by SDS-PAGE with Coomassie blue staining.
Again, The gel shows the MBP-HmFd band at 58.8 kDa reducing in intensity from 0 hours
to 3 hours and the MBP band at 43.8 kDa increasing in intensity from 0 to 3 hours. It is
also possible to see the TEVp band at 27 kDa reducing in intensity over time. There is a
band with very low intensity which could correspond to HmFd (15.0 kDa) after cleavage for
3 hours but is too low to be of use.
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Figure 3.40: Repeat trial cleavage of HmFd from MBP using TEV protease
after purification of MBP-HmFd using size exclusion chromatography, analysed
by SDS-PAGE with Coomassie blue staining without the use of DTT in the
loading buffer. The gel shows the MBP-HmFd band at 58.8 kDa reducing from 0 hours
to 3 hours, the MBP band at 43.8 kDa increasing from 0 to 3 hours and the TEVp band at
27 kDa reducing over time. There is a band with very low intensity which could correspond
to HmFd but is too low to be of use.

absorption could not be seen in the analysed fractions (data not shown).

3.5.4 Summary

The results presented show the work carried out in attempt to synthesise a homo–

polyprotein construct containing only HmFd. The results show that the construction of

this polyprotein was also unsuccessful using the techniques shown.

Conclusion: Construction of a polyprotein containing HmFd was unsuc-

cessful using the techniques shown, therefore, an alternative protein must be

used.
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Figure 3.41: Precipitate formed in the repeat trial cleavage of HmFd from
MBP using TEV protease after purification of MBP-HmFd using size exclusion
chromatography, analysed by SDS-PAGE with Coomassie blue staining. The gel
shows the MBP-HmFd band at 58.8 kDa, the MBP band at 43.8 kDa and the TEVp band at
27 kDa but no band with significant intensity at 15.0 kDa, corresponding to the production
of HmFd.

Figure 3.42: Repeat trial cleavage of HmFd from MBP using TEV protease im-
mediatly purified using size exclusion chromatography, analysed by SDS-PAGE
with Coomassie blue staining. The gel shows the MBP-HmFd band at 58.8 kDa in
fractions 41-55 and the MBP band at 43.8 kDa in fractions 33-44 but no evidence of a band
at 15.0 kDa, corresponding to the production of HmFd.
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3.6 Chapter summary

This chapter initially presented the work that was carried out on a hetero-polyprotein

construct I273-HmFd-I27 using SMFS. Although force-extension data was successfully

collected, the full characterisation of the unfolding force and peak to peak distance was

unsuccessful for HmFd. A further discussion of the SMFS analysis can be found in

section 6.1. It was concluded that more repeats of HmFd were needed in a polyprotein

construct in order generate a larger amount of data to carry out effective mechanical

unfolding characterisation.

This chapter also describes two techniques used in attempt to synthesise further

polyprotein constructs, a hetero-polyprotein, (I27-HmFd)3-I27, and a homo-polyprotein,

poly-HmFd using the fusion protein, Maltose-biding protein (MBP). The production of

both of these polyprotein constructs was shown to be unsuccessful using the techniques

shown. A discussion of the possible reasons for this is given in section 6.1.

131



Chapter 4

Results 2: The effect of salt on

the mechanical stability of an

obligate halophilic and mesophilic

hetero-polyproteins

4.1 Introduction

This chapter will introduce and describe the experiments completed on the protein Pep-

tostreptococcus magnus Protein L (ProtL). The chapter will begin by introducing the

protein, Protein L. Studies carried out on the effects of salt on the protein and muta-

tions to increase the salt stability of the protein will then be introduced. All exper-

imental steps to synthesise two polyproteins will be described, (I27-ProtL WT)3-I27

and (I27-ProtL Kx6E)3-I27, where ProtL Kx6E is protein L that has had six lysine

residues mutated to glutamic acid residues. The experimental data collected, analysed

and concluded from SMFS experiments using the polyproteins, (I27-ProtL WT)3-I27

and (I27-ProtL Kx6E)3-I27 in two salt concentrations will then be presented. The re-

analysis of the SMFS experimental data by separating data sets will then be presented

132



for both polyproteins. Finally the investigation into the effects of the unfolding history

on the SMFS results for the two polyproteins will be presented.

4.1.1 Halophilic protein model: Protein L

The B1 domain of Protein L from Streptococcus magnus (ProtL) is a small protein that

has a simple topology (figure 4.1). It is one domain of a large multi-domain virulence

factor composed of a tandem array of highly homologous domains, and has previously

mechanically characterised using AFM by Brockwell et al [145,146].

Figure 4.1: The structure of Protein L. A) shows the 3D topology of the protein. This
figure was created using PDB file 1HZ6 and Pymol [7,90]. B) shows the secondary structure
of the protein where the arrows represent β-strands and the rectangle represents an α-helix.
The two bold outlined β–strands show the mechanical clamp of the protein.

The effect of salt concentration on the thermodynamic stability of wild type Protein

L has been studied by Tadeo et al. (previously described in section 1.3.3) [111]. It was

shown that ProtL WT has fully reversible thermal and chemical unfolding, monitored

by circular dichroism and fluorescence spectroscopy. The stability of Prot L, represented

by the free energy change of unfolding (∆GU-F), was unaffected by the presence of 3.2

M KCl/NaCl. A systematic mutation study was performed, including the generation

of charge preservation variants, size preserving variants and variants that changed both

size and charge. ∆GU-F
3.2 M salt was determined for each variation of ProtL by equilibrium

denaturation experiments.

133



Previous comparative studies of mesophilic and halophilic proteins from the same

family have shown that halophilic proteins tend to have a reduced number of lysine

residues [75]. Tadeo reported that changing K for R, Q, S, or E in ProtL leads to salt

stabilization for all replacements, independent of their charge, shown in figure 1.22. It

was suggested that the low prevalence of lysine residues in a halophilic protein can be

explained by a destabilising effect of long lysine side chain at high salt concentration.

The NMR structure of ProtL Kx6E was determined (PDB code 2KAC). ProtL Kx6E

was found to be an obligate halophile (i.e. unfolded at low salt concentrations).

4.1.1.1 The chosen halophilic protein model: Protein L Kx6E

In order to test the mechanical stability of a salt stabilised protein compared to that of

the mesophilic homologue, a wild type ProtL (ProtL WT) and a Protein L with six lysine

residues in the ProtL sequence mutated to glutamic acids (ProtL Kx6E)(figure 4.2) was

chosen to be expressed and purified. Poly-proteins that include these proteins were then

characterised using force extension experiments. One of the glutamic acid residues in

Protein L is position 61, which is located in β-strand IV, the mechanical clamp region of

Prot L, shown in figure 4.2. Two other glutamic acids reside in the secondary structure,

positions 23 and 28, of the protein, while the remaining three are within the loop regions,

41, 42, 54.

4.1.2 Previous SMFS studies carried out on Peptostreptococcus mag-

nus Protein L (ProtL)

Protein L is a small protein that found in the bacterial cell wall of Peptostreptococcus

magnus. It binds specifically to immunoglobulins (Ig) of a number of animal species [198].

Protein L has been first studied using SMFS in 1995 by Brockwell at al [145,146,199]. It is

a small protein with a simple topology that was predicted to have mechanical stability

due to its hydrogen-bonded parallel terminal β-strands (I and IV), see figure 4.1. The

mechanical unfolding of the protein was shown to be highly reproducible in a two state

transition with a well defined unfolding pathway. Molecular dynamics simulations of
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Figure 4.2: The positions of the ProtL Kx6E mutations. The figure shows the
secondary structure of the protein, where the arrows represent β–strands and the rectangle
represents an α–helix. The two bold outlined β–strands show the mechanical clamp of the
protein. The numbers given are the positions of mutations within the secondary structure.
All positions of mutations are outlined in red, the remaining mutations (41, 42, 54) are all
positioned in the loop regions of the protein.

Protein L mechanical unfolding were used to investigate the process on an atomistic

scale [146]. Firstly, the β-stand at the N-terminus (I) reorients to the direction of the

applied force, which disrupts the bonds between β-stand I and the hydrophobic core (see

figure 4.3 A)). Since this only causes a very small extension, the force is quickly applied

to the rest of the protein. The full protein then unfolds after the bonds (hydrogen bonds

and hydrophobic contacts) are sheared between the N- and C-terminus β-stands (I and

IV) as a single step.

To gain greater insight into the role of side chains on the mechanical properties of

protein L, a contact maps was constructed (figure 4.3 B)). The amino acid residues that

form β–strands I and IV of Protein L have a total of 65 contacts. The two β–strands

only form 22 long-range contacts. Ubiquitin is a protein that is structurally very similar

to protein L but has a significantly higher mechanical stability (∼70 pN higher) at the

same pulling velocities. It was calculated to have a similar total number of contacts but

significantly more long-range contacts, 38. It was suggested that a protein with a larger

number of long-range contacts that entangle each unit may need a higher force to unfold

the protein [146].

The effect of side-chain packing on the mechanical strength of protein L was also
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Figure 4.3: The mechanical clamp region of Protein L. Figure A) shows the two
β-stands (I and IV) that form the mechanical clamp for Protein L. The numbers of the
corresponding residues have been included and interstrand hydrogen bonds, calculated using
DSSP, are shown as red dashed lines [146,200]. Figure B) shows a contact map of protein L
(bottom left) and ubiquitin (top right). Side-chain contacts (nearest distance between atoms
of two residues <5 Å, calculated by CSU software) made by pairs of amino acids within
structural unit 1 (β-hairpin I and the helix - green) or within structural unit 2 (β-hairpin
2 - red) [201]. Contacts made between these structural units are shown in black. β-strands
are shown as arrows and α-helices are shown as rectangles alongside each contact map. The
two structural units are colored green (unit 1) and red (unit 2) in each protein and are also
shown superimposed onto the three-dimensional structure of protein L(left) and ubiquitin
(right). Figure adapted from [146].
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examined using SMFS experiments [145]. The mechanical stability of 5 different Protein

L mutants, designed to change the number of interactions of β-stands (I and IV) with

the hydrophobic region, was measured. One variant, I60V, showed a significant decrease

in the mechanical stability (∼36 pN) compared to the wild type. Two other variants

also showed significant results; L10F, a variant that increases core packing, increased

the mechanical strength of Protein L by ∼13 pN compared to ProtL WE. I60F, which

increases both core and long-range contacts, increased the mechanical strength ∼72

pN. This study highlighted the importance of hydrophobic contacts on the mechanical

properties of Protein L.

4.2 Objectives

The objective of this chapter was, firstly, to produce two polyprotein constructs, (I27-

ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27. Secondly, to complete a series of SMFS

experiments on a polyprotein construct containing ProtL WT and the halophilic model

protein, ProtL Kx6E to obtain experimental data to:

i) allow identification of the mechanical fingerprint of ProtL WT and ProtL Kx6E

ii) characterise the speed dependence of the unfolding force of both ProtL WT and

ProtL Kx6E

iii) investigate the effect of salt on the mechanical stability of both ProtL WT and

ProtL Kx6E.

4.3 Production of the hetero-polyprotein, (I27-ProtL

WT)3-I27

This section will describe the experiments completed to synthesise a polyprotein chimera

containing I27 and ProtL WT. The design of the polyprotein chimera chosen is shown in

figure 4.4 and includes 4 repeats of I27 and 3 repeats of ProtL WT. Further explanation

of the techniques used can be found in chapter 2, including a basic description of each
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step and the protocols used.

Figure 4.4: Schematic of the (I27-ProtL WT)3-I27 construct. The construct has a
His-tag, shown as a red triangle, at the N-terminal end and 2 cysteine residues, shown as
green circles, at the C-terminal end.

4.3.1 Expression of (I27-ProtL WT)3-I27

The pET3d-(I27-ProtL WT)3-I27 was provided by Dr David Brockwell. pET3d-(I27-

ProtL WT)3-I27 plasmid was transformed into competent E. coli strain BL21 (DE3)

PLysS (§2.3.1). 10 mL of an overnight culture of the cells was used to inoculate 10 x 1

L LB medium in 2.5 L conical flasks. The cultures were incubated at 37◦C, 200 rpm.

Expression of the construct was induced by IPTG at an OD600 of 0.7. Cultures were

allowed to grow for a further 3 hours before harvesting by centrifugation (§2.3.4). The

cell pellet was resuspended in an appropriate buffer and cell lysis was performed using a

cell disrupter system. (I27-ProtL WT)3-I27 was purified from the soluble fraction by Ni

affinity chromatography, using a Ni Sepharose column and the His-tagged protein was

eluted by competition with imidazole. Fractions containing (I27-ProtL WT)3-I27 were

pooled, dialysed into H2O and lyophilised. SDS-PAGE analysis of the fractions is shown

in figure 4.5.

The polyprotein was further purified by size exclusion chromatography using a Su-

perdex 75 10/300 GL column. SDS-PAGE analysis (figure 4.6) of the resulting fractions

show a band with significant intensity at 65.1 kDa corresponding to (I27-ProtL WT)3-

I27 in fractions 36-42. The lanes also contain other bands, showing further purification

of the polyprotein is needed. The fractions containing (I27-ProtL WT)3-I27 were again

pooled, dialysed into H2O and lyophilised.

To attempt to remove the extra unwanted proteins in the sample, purification by Ni

affinity chromatography was repeated using a 1 mL His-Trap column to reduce binding
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Figure 4.5: Large scale purification of (I27-ProtL WT)3-I27 using Ni-NTA chro-
matography, analysed by SDS-PAGE with Coomassie blue staining. The gel shows
a band with significant intensity at 65.1 kDa which would correspond to (I27-ProtL WT)3-
I27 in fractions 49-53.

Figure 4.6: Purification of (I27-ProtL WT)3-I27 using size exclusion chromatog-
raphy, analysed by SDS-PAGE with Coomassie blue staining. The gel shows a
band with significant intensity at 65.1 kDa which would correspond to (I27-ProtL WT)3-I27
in fractions 36-42.
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of unwanted proteins. The polyprotein was eluted by increasing the concentration of

imidazole in a 0-40% ratio over 5 column volumes. The SDS-PAGE of the fractions

shown in figure 4.7. The number of protein bands in each lane is significantly reduced,

showing the purified polyprotein, although a few unwanted bands can still be seen. The

fractions containing (I27-ProtL WT)3-I27 were again pooled, dialysed into H2O and

lyophilised.

Figure 4.7: Further purification of (I27-ProtL WT)3-I27 using Ni affinity chro-
matography, analysed by SDS-PAGE with Coomassie blue staining. The gel shows
a band of significant intensity at 65.1 kDa which would correspond to (I27-ProtL WT)3-I27
in all fractions tested.

To try and remove the final contaminants, the polyprotein was purified by anionic

exchange chromatography using a 5 mL Hi-Trap Q column (§2.3.8). The SDS-PAGE

analysis of the fractions is shown in figure 4.8. A number of bands that do not correspond

to the polyprotein can still be seen. Since the polyproteim could not be fully purified

after a number of purification steps, the process of purification needed to be optimised.

In order to optimise the first step of purification of the polyprotein, Ni affinity chro-

matography, three components were varied:

i) The concentration of imidazole in the wash buffer. An increased imidazole con-

centration is desirable to stop unwanted proteins from binding to the column. If

the concentration of imidazole is too high, the amount of his-tagged polyprotein

bound to the column will be reduced.
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Figure 4.8: Purification of (I27-ProtL WT)3-I27 using ionic exchange chromatog-
raphy, analysed by SDS-PAGE with Coomassie blue staining. The gel shows a band
of significant intensity at 65.1 kDa which would correspond to (I27-ProtL WT)3-I27 in frac-
tions 44-51.

ii) The salt concentration in all buffers. The addition of salt in a buffer helps screen

ionic interactions and helps prevent non-specific binding of unwanted proteins to

the column and also prevent aggregation of proteins.

iii) Inclusion of glycerol in the buffers can prevent the aggregation of proteins.

Firstly, 4 x 1 mg samples of polyprotein were resuspended in buffers containing 10

mM, 20 mM, 30 mM and 40 mM imidazole. (I27-ProtL WT)3-I27 was purified using

Ni-NTA affinity resin (§2.3.3). The resin was also washed with buffers containing the

appropriate concentration of imidazole for each purification. SDS-PAGE analysis of one

fraction for each sample after elution with 250 mM Imidazole is shown in figure 4.9.

20 mM imidazole was chosen as the optimal concentration in the resuspending buffer

because the fractions corresponding to 30 and 40 mM imidazole show a reduced intensity

in the band corresponding to (I27-ProtL WT)3-I27.

Next, 3 x 1 mg samples of polyprotein were resuspended in wash buffers containing

0.5 M, 1 M and 2 M NaCl all with no glycerol. 3 x 1 mg samples of polyprotein were also

resuspended in wash buffers containing 0.5 M, 1 M and 2 M NaCl all with 25% glycerol.

(I27-ProtL WT)3-I27 was then purified by Ni affinity chromatography for each sample,

using Ni-NTA affinity resin and the His-tagged protein was eluted by competition with
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Figure 4.9: The 1st optimisation of the purification of (I27-ProtL WT)3-I27
using Ni-NTA chromatography, analysed by SDS-PAGE with Coomassie blue
staining. The gel shows one lane for each concentration of imidazole. The intensity of each
band is reduced with the increasing concentration of imidazole.

imidazole. SDS-PAGE analysis of one fraction for each sample is shown in figure 4.10.

The gel shows that neither the salt concentration or the glycerol concentration affect the

purification of the polyprotein.

4.3.2 Repeat expression of (I27-ProtL WT)3-I27 after optimisation of

the purification technique

Expression of the polyprotein was then repeated using 10 x 1 L LB medium in 2.5

L conical flasks. The cultures were incubated at 37◦C, 200 rpm. Expression of the

construct was induced by IPTG at an OD600 of 0.7. Cultures were allowed to grow for

a further 3 hours before harvesting by centrifugation.

The cell pellet was resuspended in an appropriate buffer containing 20 mM imidazole.

Protease inhibitor cocktail tablets were added to remove any proteases that might be

present. Cell lysis was performed using a cell disrupter system. (I27-ProtL WT)3-I27

was purified from the soluble fraction using Ni-NTA affinity resin and the His-tagged

protein was eluted by competition with imidazole. The amount of resin used to purify

the polyprotein was optimized for its binding capacity. Fractions containing (I27-ProtL
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Figure 4.10: The 2nd optimisation of the purification of (I27-ProtL WT)3-I27
using Ni-NTA chromatography, analysed by SDS-PAGE with Coomassie blue
staining. The gel shows one lane for each sample. The gel shows that neither the salt
concentration or the glycerol concentration affect the purification of the polyprotein.

WT)3-I27 were pooled, dialysed into H2O and lyophilised.

Polyprotein was further purified by size exclusion chromatography using a Superdex

75 column 10/300 GL. SDS-PAGE analysis of the resulting fractions, shown in figure 4.11,

shows a band with with significant intensity at 65.1 kDa corresponding to (I27-ProtL

WT)3-I27 in fractions 35-37 with no other unwanted protein bands. The elution profile

is shown in figure C.1. These fractions were pooled, dialysed into H2O and lyophilised.

5 mg of (I27-ProtL WT)3-I27 was obtained, ready to be used for SMFS analysis.

4.3.3 Summary

The results presented show the work carried out to optimise the purification of a hetero-

polyprotein construct (I27-ProtL WT)3-I27. Production of the hetero construct was

successful using this technique and produced enough sample for SMFS experiments.

Conclusion: This method of production of the hetero-polyprotein con-

struct (I27-ProtL WT)3-I27 was successful.
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Figure 4.11: Purification of re-expressed (I27-ProtL WT)3-I27 using size ex-
clusion chromatography, analysed by SDS-PAGE with Coomassie blue staining.
The gel shows a band with significant intensity at 65.1 kDa which would correspond to
(I27-ProtL WT)3-I27 in fractions fractions 35-37 with no other unwanted protein bands.

4.4 Production of a the hetero-polyprotein, (I27-ProtL

Kx6E)3-I27

This section will describe the experiments completed to synthesise a polyprotein chimera

containing I27 and ProtL Kx6E. The design of the polyprotein chimera chosen is shown

in figure 4.12 and includes 4 repeats of I27 and 3 repeats of ProtL Kx6E.

Figure 4.12: Structure of the (I27-ProtL Kx6E)3-I27 construct. The construct has
a His-tag, shown as a red triangle, at the N-terminal end and 2 cysteine residues, shown as
green circles, at the C-terminal end.

4.4.1 Expression of (I27-ProtL Kx6E)3-I27

The pET3d-(I27-ProtL Kx6E)3-I27 was provided by Dr David Brockwell. pET3d-(I27-

ProtL Kx6E)3-I27 plasmid was transformed into competent E. coli strain BL21 (DE3)

PLysS. 10 mL of an overnight culture of the cells was used to inoculate 10 x 1 L LB
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medium in 2.5 L conical flasks. The cultures were incubated at 37◦C, 200 rpm. Expres-

sion of the construct was induced by IPTG at an OD600 of 0.7. Cultures were allowed to

grow for a further 3 hours before harvesting by centrifugation. The cell pellet was resus-

pended in an appropriate buffer and the cells were lysed using a cell disrupter system.

(I27-ProtL Kx6E)3-I27 was purified from the soluble fraction by Ni affinity chromatog-

raphy using a Ni Sepharose column. Fractions containing (I27-ProtL Kx6E)3-I27 were

pooled, dialysed into H2O and lyophilised, SDS-PAGE analysis of the fractions is shown

in figure 4.13. The gel shows a band at 65.1 kDa which would correspond to (I27-ProtL

Kx6E)3-I27 in fractions 39 and 40. The band does not have a large intensity, indicating

only a small amount of (I27-ProtL Kx6E)3-I27 was expressed.

Figure 4.13: Large scale purification of (I27-ProtL Kx6E)3-I27 using Ni-NTA
chromatography, analysed by SDS-PAGE with Coomassie blue staining. The gel
shows a band with significant intensity at 65.1 kDa which would correspond to (I27-ProtL
Kx6E)3-I27 in fractions 39 and 40 and in the expression band.

(I27-ProtL Kx6E)3-I27 was then purified by size exclusion chromatography using a

Superdex 75 column. SDS-PAGE analysis of the resulting fractions, figure 4.14, shows a

band with significant intensity at 65.1 kDa corresponding to (I27-ProtL Kx6E)3-I27 in

fractions 33-41. The lanes also contain other bands, showing further purification of the

polyprotein is needed. Size exclusion chromatography separates proteins by size, larger

proteins should be eluted in the later fractions compared to smaller fractions. Figure 4.14

shows proteins with a variety of sizes in each lane, suggesting the protein was degrading
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after purification.

Figure 4.14: Purification of (I27-ProtL Kx6E)3-I27 using size exclusion chro-
matography, analysed by SDS-PAGE with Coomassie blue staining. The gel shows
a band with significant intensity at 65.1 kDa which would correspond to (I27-ProtL Kx6E)3-
I27 in fractions 33-41.

4.4.2 Repeat expression of (I27-ProtL Kx6E)3-I27 to reduce degrada-

tion of the polyprotein

Expression of the polyprotein was then repeated using 10 x 1 L LB medium in 2.5 L

conical flasks, using the same process stated above. The cell pellet was resuspended in an

appropriate buffer, containing 20 mM imidazole. Protease inhibitor cocktail tablets were

added to inactivate any proteases that might be present. Cell lysis was performed using

a cell disrupter system. (I27-ProtL Kx6E)3-I27 was purified from the soluble fraction

using Ni-NTA affinity resin and the His-tagged protein was eluted by competition with

imidazole. The amount of resin used the purify the polyprotein was optimized for its

binding capacity. Fractions containing (I27-ProtL Kx6E)3-I27 were pooled, dialysed into

H2O and lyophilised.

The re-expressed polyprotein was further purified by size exclusion chromatography

using a Superdex 75 column. The elution profile is shown in figure C.2. SDS-PAGE
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analysis of the resulting fractions, shown in figure 4.15, shows a band with with significant

intensity at 65.1 kDa corresponding to (I27-ProtL Kx6E)3-I27 in fractions 35-37. A single

contaminant is present at ∼60 kDa. It was deduced that, given the relative intensity

of this, the fractions were sufficiently pure for SMFS analysis. These fractions were

pooled, dialysed into H2O and lyophilised. Using this technique, only 1 mg (I27-ProtL

Kx6E)3-I27 was produced, which was not enough for analysis by SMFS.

Figure 4.15: Purification of re-expressed (I27-ProtL Kx6E)3-I27 using size ex-
clusion chromatography, analysed by SDS-PAGE with Coomassie blue staining.
The gel shows a band with significant intensity at 65.1 kDa which would correspond to
(I27-ProtL Kx6E)3-I27 in fractions fractions 35-37.

4.4.3 Repeat expression of (I27-ProtL Kx6E)3-I27 to improve the yield

of the polyprotein

To try and produce a larger amount of protein, expression trials were set up using LB,

TB and auto-induction media. Expression of the polyprotein was carried out using 1 L of

each medium in 3 x 2.5 L conical flasks. The cultures were incubated at 37◦C, 200 rpm.

Expression of the construct was induced by IPTG at an OD600 of 0.7. Samples were

taken at each hour after induction (up to 6 hours) with a final sample being taken after

incubation overnight. The SDS-PAGE analysis for each sample is shown in figures 4.16,

4.17 and 4.18. The largest expression of polyprotein was found to be in auto-induction

medium with overnight incubation. The amount of cells at the optimal protein expression

time was also largest in auto-induction medium (OD600 = 5.51).
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Figure 4.16: Test expression of (I27-ProtL Kx6E)3-I27 in 1 L LB medium, mon-
itored at each hour, analysed by SDS-PAGE with Coomassie blue staining. The
(I27-ProtL Kx6E)3-I27 (65.1 kDa) has the highest intensity 5 hours after induction.

Figure 4.17: Test expression of (I27-ProtL Kx6E)3-I27 in 1 L TB medium, mon-
itored at each hour, analysed by SDS-PAGE with Coomassie blue staining. The
(I27-ProtL Kx6E)3-I27 (65.1 kDa) has the highest intensity 2 hours after induction.

Figure 4.18: Test expression of (I27-ProtL Kx6E)3-I27 in 1 L auto-induction
medium, monitored at each hour, analysed by SDS-PAGE with Coomassie blue
staining. The (I27-ProtL Kx6E)3-I27 (65.1 kDa) has the highest intensity after incubation
overnight.
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A large scale expression of (I27-ProtL Kx6E)3-I27 was then set up in 10 x 1 L Auto-

induction medium in 2.5 L conical flasks. The cultures were incubated at 37◦C, 200

rpm and were allowed to grow overnight before harvesting by centrifugation. The cell

pellet was resuspended in an appropriate buffer and the cells were lysed using a cell

disrupter system. (I27-ProtL Kx6E)3-I27 was purified from the soluble fraction by Ni

affinity chromatography using a Ni Sepharose column. Fractions containing (I27-ProtL

Kx6E)3-I27 were pooled, dialysed into H2O and lyophilised, SDS-PAGE analysis of the

fractions is shown in figure 4.19. The insoluble fraction was also analysed using SDS-

PAGE since the yield of polyprotein in the soluble fraction was small. Evidence of

(I27-ProtL Kx6E)3-I27 was found in the insoluble fraction, shown by a band at 65.1 kDa

in figure 4.19.

Figure 4.19: Purification of (I27-ProtL Kx6E)3-I27 using Ni-NTA chromatogra-
phy, analysed by SDS-PAGE with Coomassie blue staining. The gel shows a band
with significant intensity at 65.1 kDa which would correspond to (I27-ProtL Kx6E)3-I27 in
fractions 54-62. The insoluble sample also shows a band with significant intensity at 65.1
kDa.

Half of the insoluble fraction was then resuspended in 8 M urea buffer. The other half

was resuspended in a 6 M guanidinium chloride buffer. Both samples were purified in a

denatured form using by Ni affinity chromatography using a 1 mL His-trap Ni Sepharose

column The elution profile for the sample in 6 M guanidinium chloride is shown in figure

C.3. Fractions containing (I27-ProtL Kx6E)3-I27 were pooled. SDS-PAGE analysis of

the fractions is shown in figures 4.20 and 4.21. The resulting polyprotein from this

purification was unfolded.
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Figure 4.20: Large scale purification of (I27-ProtL Kx6E)3-I27 from the insoluble
fraction using Ni-NTA chromatography in 8 M urea, analysed by SDS-PAGE
with Coomassie blue staining. The gel shows a band with significant intensity at 65.1
kDa which would correspond to (I27-ProtL Kx6E)3-I27 in all fractions, including initial flow
through fractions (12-16), which were re-purified on the column afterwards.

Figure 4.21: Large scale purification of (I27-ProtL Kx6E)3-I27 from the insoluble
fraction using Ni-NTA chromatography in 6 M GdmCl, analysed by SDS-PAGE
with Coomassie blue staining. The gel shows a band with significant intensity at 65.1
kDa which would correspond to (I27-ProtL Kx6E)3-I27 in fractions 44-56.
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Further purification of the polyprotein was carried out with the sample unfolded in

urea since the SDS-PAGE analysis showed fewer unwanted protein bands. To refold

the polyprotein, (I27-ProtL Kx6E)3-I27, purified using 8 M urea, was bound to a Ni

Sepharose column and then refolded washing the column with a 0.9 M arginine buffer.

The His-tagged polyprotein was eluted by competition with imidazole.

Given the success of this method, a large scale expression of (I27-ProtL Kx6E)3-

I27 was repeated using the same procedure. The relative amounts of soluble/insoluble

protein were found to be highly variable. Given the relative amount of soluble protein

purified, it was decided that this method should be optimised.

4.4.4 Repeat expression of (I27-ProtL Kx6E)3-I27 to reduce degrada-

tion of the polyprotein at an increased yield

In order to reduce the amount of degradation of the polyprotein, the polyprotein was

re-expressed in cells cultivated in 20 L x auto-induction medium. The length of time of

the purification process was reduced by carrying out using Ni-NTA affinity resin. The

amount of resin used to purify the polyprotein was optimized for its binding capacity after

elution with imidazole. The solution was concentrated and injected onto a Superdex 75

10/300 GL column, to remove the dialysis and lyophilisation steps, and purified by size

exclusion chromatography. The elution profile is shown in figure C.4. Each step of the

purification process was carried out at 4 ◦C. SDS-PAGE analysis of the full procedure

is shown in figure 4.22. A band with significant intensity at 65.1 kDa corresponding

to (I27-ProtL WT)3-I27 is observed in fractions 36-38 with minimal contamination of

unwanted protein bands. These fractions were pooled, dialysed into H2O and lyophilised.

4 mg of (I27-ProtL Kx6E)3-I27 was obtained, ready to be used for SMFS analysis.

4.4.5 Summary

The results presented show the work carried out to synthesise a hetero-polyprotein con-

struct (I27-ProtL Kx6E)3-I27. Production of the hetero construct was successful using
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Figure 4.22: Purification of (I27-ProtL WT)3-I27 in one day at 4 ◦C, analysed
by SDS-PAGE with Coomassie blue staining. The gel shows a band with significant
intensity at 65.1 kDa which would correspond to (I27-ProtL Kx6E)3-I27 in fractions 36-38.

this technique and produced enough for SMFS analysis after optimisation of the method

used.

Conclusion: This method of production of the hetero-polyprotein con-

struct (I27-ProtL Kx6E)3-I27 was successful.

4.5 Single molecule force spectroscopy on (I27-ProtL

WT)3-I27 in 0.5 M KCl

This section will show data collected from SMFS experiments using (I27-ProtL WT)3-

I27 in 0.5 M KCl, 5 mM MOPS, pH 7.4. The analysis carried out on this data will also

be presented.

4.5.1 Procedure for SMFS experiments using (I27-ProtL WT)3-I27 in

0.5 M KCl

Proteins were resuspended in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer at a concentration

of 0.5 µg/mL and applied onto a freshly cleaved template-stripped gold surface. The
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sample was incubated at room temperature for 30 minutes before mechanical unfolding

experiments were carried out. Example traces from these experiments are shown in figure

4.23. The traces show the poly-protein does have mechanical resistance as expected and

the rising edge of each unfolding event could be fitted with the Worm-Like Chain (WLC)

model (§2.7.4.1).

4.5.2 Analysis of the SMFS data for (I27-ProtL WT)3-I27 in 0.5 M

KCl

Traces were accepted for analysis if they contained at least 2 I27 unfolding events. Traces

were not accepted if there were large surface interactions at the start of the trace, there

were splitting of peaks or if they lacked a clear detachment peak. For each protein

unfolding event the peak unfolding force, FUN, and the peak to peak distance, p2p, were

recorded. The mean of all the FUN, median FUN and p2p distance values collected at

each pulling velocity were calculated and recorded in tables 4.1, C.1 and C.2 respectively.

The values recorded for I27 were consistent with previous studies of I27 by SMFS

by Hoffmann et al. (FUN = 168 ± 7 pN, 194 ± 4 pN, p2p = 23.7 (error not quoted) at

400 and 2000 nm/s respectively [148]. The values recorded for ProtL WT were consistent

with previous studies of ProtL by SMFS by Brockwell et al. (FUN = 136 ± 1 pN, 152 ±

5 pN, p2p = 16.5 ± 0.1, 16.9 ± 0.2 at 400 nm/s and 700 nm/s respectively [146].

Pulling velocity
(nm/s)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 96 138 23 110 178 23
700 114 145 23 134 179 24
1200 111 160 30 119 196 31
2000 119 169 25 127 203 28

Table 4.1: Mean unfolding force data and standard deviation for (I27-ProtL WT)3-I27 in
0.5M KCl, 5mM MOPS, pH 7.4.

The next step was to plot the data for each pulling velocity in scatter diagrams,

showing the FUN and p2p, shown in figure C.5. The diagrams show clear clusters of data
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Figure 4.23: Example traces from SMFS experiments using (I27-ProtL WT)3-
I27 in 0.5 M KCl, 5 mM MOPS, pH 7.4. Figures A), B), C) and D) all show 4 I27
unfolding events and 3 ProtL unfolding events at 400, 700, 1200 and 2000 nm/s respectively.
Blue hexagons represent ProtL WT unfolding events and light grey squares represent I27
unfolding events.
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points for each experiment centred around the reference Protein L and I27 data [146,148].

Histograms were then produced for the unfolding force data and the peak to peak dis-

tances for each pulling velocity, shown in figure 4.24. Each histogram was fitted with a

gaussian curve.

4.5.3 Summary

The results presented show the data from SMFS experiments carried out using the

hetero-polyprotein construct (I27-ProtL WT)3-I27. The mechanical fingerprint of the

polyprotein was successfully characterised and the unfolding force and peak to peak

distance values were calculated. These were shown to agree with published data for

both I27 and ProtL, showing the SMFS experiments were successful.

Conclusion: The hetero-polyprotein construct (I27-ProtL WT)3-I27 can

successfully be characterised using SMFS.

4.6 Further single molecule force spectroscopy exper-

iments on (I27-ProtL WT)3-I27 and (I27-ProtL

Kx6E)3-I27

This section will show data collected from SMFS experiments using:

i) (I27-ProtL Kx6E)3-I27 in 0.5 M KCl, 5 mM MOPS, pH 7.4

ii) (I27-ProtL WT)3-I27 in 2 M KCl, 5 mM MOPS, pH 7.4

iii) (I27-ProtL Kx6E)3-I27 in 2 M KCl, 5 mM MOPS, pH 7.4.

The analysis carried on this data will also be presented.

Single molecule force spectroscopy (SMFS) experiments were carried out using the

same procedure described in section 4.5.1. Although in 2 M KCl, the sample was in-

cubated at room temperature for 60 minutes before mechanical unfolding experiments
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Figure 4.24: Histograms of the unfolding force data and peak to peak distance
data for poly-ProtL WT at 400, 700, 1200 and 2000 nm/s in 0.5 M KCl. All
figures show ProtL WT in blue and I27 in light grey. Figures A), B), C) and D) show the
peak to peak distance data and figures E), F), G) and H) show the unfolding force data
from each pulling velocity respectively. All histograms are fitted with a gaussian curve. The
poly-protein was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events
and modal unfolding force of the gaussian fit are displayed on each histogram for ProtL WT
and I27.
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were carried out. The longer incubation time was to improve the binding on cysteine

residues to the gold surface. Example traces from these experiments are shown in figures

4.25, 4.26 and 4.27.

4.6.1 Analysis of the SMFS data for (I27-ProtL WT)3-I27 and (I27-

ProtL Kx6E)3-I27

The analysis procedure described in section 4.5.2 was followed. The mean FUN, me-

dian FUN and p2p distance values collected at each pulling velocity were calculated and

recorded in tables 4.2, C.3 and C.4 for (I27-ProtL Kx6E)3-I27 in 0.5 M KCl, tables

4.3, C.5 and C.5 for (I27-ProtL WT)3-I27 in 2 M KCl and tables 4.4, C.7 and C.8 for

(I27-ProtL Kx6E)3-I27 in 2 M KCl.

Scatter diagrams are shown in figures C.6 for (I27-ProtL Kx6E)3-I27 in 0.5 M KCl,

C.8 for (I27-ProtL WT)3-I27 in 2 M KCl and C.10 for (I27-ProtL Kx6E)3-I27 in 2 M

KCl. Histograms are shown in figures C.7 for (I27-ProtL Kx6E)3-I27 in 0.5 M KCl, C.9

for (I27-ProtL WT)3-I27 in 2 M KCl and C.11 for (I27-ProtL Kx6E)3-I27 in 2 M KCl.

4.6.2 Summary

The mechanical fingerprint of each polyprotein was successfully characterised and the

unfolding force and peak to peak distance values were calculated.

Conclusion: The hetero-polyprotein constructs, (I27-ProtL WT)3-I27 and

(I27-ProtL Kx6E)3-I27 can both successfully be characterised using SMFS

in 0.5 M and 2 M KCl.
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Figure 4.25: Example traces from SMFS experiments using (I27-ProtL Kx6E)3-
I27 in in 0.5 M KCl, 5 mM MOPS, pH 7.4. Figures A), B), C) and D) all show 4 I27
unfolding events and 3 ProtL unfolding events at 400, 700, 1200 and 2000 nm/s respectively.
Purple hexagons represent ProtL Kx6E unfolding events and grey squares represent I27
unfolding events.
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Figure 4.26: Example traces from SMFS experiments using (I27-ProtL WT)3-
I27 in 2 M KCl, 5 mM MOPS, pH 7.4. Figures A), B), C) and D) all show 4 I27
unfolding events and 3 ProtL unfolding events at 400, 700, 1200 and 2000 nm/s respectively.
Blue hexagons represent ProtL WT unfolding events and light grey squares represent I27
unfolding events.
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Figure 4.27: Example traces from SMFS experiments using (I27-ProtL Kx6E)3-
I27 in in 2 M KCl, 5 mM MOPS, pH 7.4. Figures A), B), C) and D) all show 4 I27
unfolding events and 3 ProtL unfolding events at 400, 700, 1200 and 2000 nm/s respectively.
Purple hexagons represent ProtL Kx6E unfolding events and grey squares represent I27
unfolding events.
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Pulling velocity
(nm/s)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 74 124 22 93 186 25
700 56 133 23 71 188 27
1200 75 135 25 106 195 33
2000 104 154 26 132 210 30

Table 4.2: Mean unfolding force data and standard deviation for (I27-ProtL Kx6E)3-I27
in 0.5M KCl, 5mM MOPS, pH 7.4.

Pulling velocity
(nm/s)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 71 155 23 81 197 24
700 50 159 24 62 213 30
1200 82 170 32 92 220 29
2000 68 172 31 86 214 34

Table 4.3: Mean unfolding force data and standard deviation for (I27-ProtL WT)3-I27 in
2M KCl, 5mM MOPS, pH 7.4.

Pulling velocity
(nm/s)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 8 137 14 11 199 16
700 49 132 22 67 196 33
1200 53 142 28 65 199 27
2000 23 154 24 30 224 34

Table 4.4: Mean unfolding force data and standard deviation for (I27-ProtL Kx6E)3-I27
in 2M KCl, 5mM MOPS, pH 7.4.
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4.7 Comparing the data analysis of the SMFS data for all

4 systems

In order to illuminate the changes in unfolding force values between the different con-

structs and salt concentrations used, speed dependence diagrams were plotted for all 4

systems. This section will include 4 speed dependence diagrams to highlight differences

between each set of data. The differences will be further discussed in sections 6.2 and

6.3. For each speed dependence diagram, the mean FUN value for each pulling velocity

was plotted against the log10(pulling velocity). A linear fit is performed for each of the

proteins. The speed dependence diagrams for the following data groups are shown in

figure 4.28:

A) (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M KCl

B) (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 2 M KCl

C) I27 in 0.5 M and 2 M KCl

D) ProtL in 0.5 M and 2 M KCl

Figure 4.28 A) and C) highlights the difference in unfolding force between ProtL

WT and ProtL Kx6E, which is consistent at all pulling velocities. Figure 4.28 B) and

C) shows that the difference in unfolding force between ProtL WT and ProtL Kx6E is

consistent in a higher salt concentration. The reduction of the unfolding force for the

halophilic protein is likely to be due to a reduced number of interactions across the two

sub-units of protein L that are sheared apart in the unfolding pathway of Protein L [145].

A discussion of the reduction in the unfolding force of ProtL Kx6E compared to ProtL

WT can be found in section 6.2.

Figure 4.28 A) and D) show that the I27 unfolding force values are similar for both

constructs but the I27 from (I27-ProtL WT)3-I27 is slightly lower than for I27 in (I27-

ProtL Kx6E)3-I27 in 0.5 M KCl. Figure 4.28 B) and D) shows the linear fit for I27 from

(I27-ProtL WT)3-I27 is slightly higher than for I27 in (I27-ProtL Kx6E)3-I27 in 2 M

KCl. The difference in unfolding force for each construct could be due to an unfolding

history effect, which is examined in section 4.10.
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Figure 4.28: Speed dependence diagram of the unfolding force vs. log10(pulling
velocity) for all 4 systems. A) shows speed dependence of (I27-ProtL WT)3-I27 and
(I27-ProtL Kx6E)3-I27 in 0.5 M KCl. B) shows the speed dependence of (I27-ProtL WT)3-
I27 and (I27-ProtL Kx6E)3-I27 in 2 M KCl. C) shows the speed dependence of I27 in 0.5 M
and 2 M KCl. D) shows the speed dependence of ProtL in 0.5 M and 2 M KCl. The linear
fit for each set of data is also plotted as full lines in 0.5 M KCl and dashed lines in 2 M KCl.
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Figure 4.28 B) shows that all data points collected in 2 M KCl do not lie on, or close

to, the linear fit. This suggests that these data may be unreliable. The linear fits for the

the data collected at 2 M KCl should, therefore be interpreted with caution. Although

each data point does not sit on the linear fit, the data points does seem to follow the

same trend so hypotheses may be formed. A diagram of the comparison all of the data

in one diagram can be found in figure C.12.

Figure 4.29 shows the percentage increase in the unfolding force for each protein with

increased salt concentration, calculated using equation 4.1. This figure highlights the

consistent increase in unfolding force of I27 from both constructs and ProtL WT, i.e. all

3 mesophilic proteins, from 0.5 to 2 M salt, with percentage increase averages of 8.6% for

ProtL WT, 13.1% for I27 (WT) and 6.8% for I27 (Kx6E). ProtL Kx6E does not show

such a consistent increase in force from 0.5 M to 2 M KCl with a percentage increase

average of 1.6%. It should be noted that the value quoted for ProtL Kx6E at 400 nm/s

in 2 M does not fit the same trend as it shows a large increase in unfolding force from

0.5 M KCl. This value comes from only 8 data points and is, therefore, likely to be

inaccurate. It was, therefore, omitted from the calculation of the average percentage

increase.

Percentage change =
FUN

2M − FUN
0.5M

FUN
0.5M

(4.1)

The increase in force in 2 M KCl for the mesophilic proteins is likely due to an

increase in the hydrophobic effect acting on the protein in the higher salt concentration

(see section 1.2.4). The increased hydrophobic effect may not affect ProtL Kx6E as this

protein has an increased number of negatively charged residues, which are able to remain

flexible. This hypothesis is further discussed in section 6.3.

4.7.1 Summary

The results presented in this section show the speed dependence diagrams formed from

SMFS experiments carried out using the constructs (I27-ProtL WT)3-I27 and (I27-ProtL

Kx6E)3-I27 in 0.5 M and 2 M KCl. Although it is possible to form hypotheses from the
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Figure 4.29: Percentage change in the unfolding force of each protein between
0.5 and 2 M KCl. The median unfolding force of each protein in 2 M KCl is shown as a
percentage change from its unfolding force in 0.5 M KCl. Where ProtL Kx6E is represented
in purple, ProtL WT is represented in blue, I27 from the construct, (I27-ProtL Kx6E)3-I27
is represented in grey and I27 from the construct, (I27-ProtL WT)3-I27, is represented in
light grey. *the data for ProtL Kx6E at 400 nm/s comes from only 8 data points and is likely
to be inaccurate. It was, therefore, omitted from the calculation of the average percentage
increase.
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presented speed dependence diagrams, the data collected in 2 M KCl does not form an

accurate speed dependence plot as expected, i.e. all data points do not lie on the linear

fit.

The linear fit of the speed dependence is very important because it allows access to

information about the unfolding energy landscape of the protein. Monte Carlo (MC)

simulations use this information and the distribution of forces generated to extract the

distance from the unfolded to the transitions state, ∆xU , and the unfolding rate at zero

force, kU
[145,146].

Conclusion: Data analysis refinement is needed to increase the accuracy

of the data for MC simulations.

4.8 Refining the data analysis of the SMFS data

This section will introduce the refinement analysis procedure carried out on the SMFS

data for (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M and 2 M KCl. There

are a number of elements that may affect the results of an SMFS experiment, the temper-

ature of the room, the calibration of the cantilever, build up of protein on the cantilever,

movement of the cantilever in its holder during an experiment and evaporation of the

solvent. For example, if one experiment is not calibrated correctly, it will skew the re-

sults for the whole set if data it is included in. In each experiment a new cantilever is

used to identify any errors in the calibration of the cantilever and reduce these errors

as much as possible. Each cantilever comes from the same batch. In order to reduce

the effect of these elements on the data, the data was refined by producing histograms

for each experiment carried out, i.e. for each day, rather than pooling all of the data.

The comparison of these histograms was used to decide whether a data set should be

accepted. A data set was accepted if:

• the data set contained 5 or more ProtL unfolding events in total

• one or both of the unfolding force histograms for I27 and ProtL showed a gaussian

distribution.
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Table 4.5 shows the total number of experiments carried out (across all speeds) for each

protein and salt concentration, and the number of accepted data sets for each. It is

interesting to note the number of accepted data sets in 2 M KCl is significantly less than

for those in 0.5 M KCl. This is likely due to the salt concentration affecting the binding

of the polyprotein to the cantilever tip and gold surface, reducing the amount of data

collected in one experiment. This will be discussed further in section 6.3.

Protein construct KCl conc. No. experiments No. data sets accepted

(I27-ProtL WT)3-I27 0.5 M 16 12
(I27-ProtL WT)3-I27 2 M 29 6
(I27-ProtL Kx6E)3-I27* 0.5 M 36 12
(I27-ProtL Kx6E)3-I27 2 M 38 5

Table 4.5: Number of accepted data sets vs. number attempted for each system, *includes
first experimental optimisation

The mean and the median of the FUN and the p2p distance values were calculated

for each separate data set for all systems and recorded in tables 4.6, C.9, C.10, 4.7, C.11,

C.12, 4.8, C.13, C.14, 4.9, C.15 and C.16.

The next step was to plot the data for each pulling speed in scatter diagrams, showing

FUN and p2p. The scatter diagrams for (I27-ProtL WT)3-I27 in 0.5 M KCl are shown

in figures C.13, C.14, C.15 and C.16 for 400 nm/s, 700 nm/s, 1200 nm/s and 2000 nm/s

respectively. . The scatter diagrams for (I27-ProtL Kx6E)3-I27 in 0.5 M KCl are shown in

figures C.17, C.18, C.19 and C.20. The scatter diagrams for (I27-ProtL WT)3-I27 in 2 M

KCl are shown in figures C.21, C.22, C.23 and C.24. The scatter diagrams for (I27-ProtL

Kx6E)3-I27 in 2 M KCl are shown in figures C.25, C.26 and C.27. The scatter diagrams

all show clear clusters of data points for each experiment centred around the reference

Protein L and I27 data where applicable [146,148]. Histograms were then produced for

the FUN and p2p distances for each data set. The histograms for the accepted data

sets for (I27-ProtL WT)3-I27 in 0.5 M KCl are shown in figures C.28, C.29, C.30 and

C.31. The histograms for each accepted data set for (I27-ProtL Kx6E)3-I27 in 0.5 M

KCl are shown in figures C.32, C.33, C.34 and C.35. The histograms for the accepted

data sets for (I27-ProtL WT)3-I27 in 2 M KCl are shown in figures C.36, C.37, C.38

and C.39. The histograms for the accepted data sets for (I27-ProtL Kx6E)3-I27 in 2 M
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Pulling velocity
(nm/s)

Events Mean FUN (pN) SD events Mean FUN (pN) SD

ProtL I27

400 36 136 22 42 169 21
400 31 142 20 35 184 20
400 29 137 26 33 183 25

138 2 179 5

700 49 140 24 55 174 21
700 29 152 25 43 184 27
700 36 147 19 36 181 24

146 4 180 3

1200 19 154 30 24 193 29
1200 43 162 33 47 195 31
1200 49 160 26 48 200 31

159 3 196 2

2000 36 168 24 39 201 34
2000 39 165 25 43 200 24
2000 44 175 23 45 207 24

169 3 203 2

Table 4.6: Mean unfolding force data and standard deviation for (I27-ProtL WT)3-I27 in
0.5M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and standard
error of the 3 unfolding force values for each pulling velocity.
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Pulling velocity
(nm/s)

Events Mean FUN (pN) SD events Mean FUN (pN) SD

ProtL I27

400 39 132 21 46 187 21
400 28 131 25 32 185 24
400 35 120 20 39 184 29

128 4 185 1

700 21 134 26 25 187 32
700 20 123 17 27 188 34
700 15 144 19 29 186 20

133 6 188 1

1200 19 138 25 27 209 25
1200 31 131 23 42 195 40
1200 25 137 25 37 184 25

135 2 196 7

2000 29 156 29 40 211 39
2000 44 149 25 54 206 23
2000 31 159 24 38 215 28

155 3 210 3

Table 4.7: Mean unfolding force data and standard deviation for (I27-ProtL Kx6E)3-I27
in 0.5M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and standard
error of the 3 unfolding force values for each pulling velocity
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Pulling velocity
(nm/s)

Events Mean FUN (pN) SD events Mean FUN (pN) SD

ProtL I27

400 32 157 26 41 197 22
400 29 152 23 36 196 30

154 2 197 1

700 17 155 18 20 209 38
700 30 157 25 35 216 31

156 1 212 3

1200 32 165 33 36 226 22

165 2 226 4

2000 27 163 26 40 218 34

163 5 218 5

Table 4.8: Mean unfolding force data and standard deviation for (I27-ProtL WT)3-I27 in
2 M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and standard
error of the 3 unfolding force values for each pulling velocity

Pulling velocity
(nm/s)

Events Mean FUN (pN) SD events Mean FUN (pN) SD

ProtL I27

700 34 130 23 43 186 27
700 16 141 16 23 211 28

135 4 200 10

1200 25 142 26 32 200 34

142 7 200 5

2000 17 154 32 23 222 34
2000 10 153 15 15 235 30

153 1 236 6

Table 4.9: Mean unfolding force data and standard deviation for (I27-ProtL Kx6E)3-I27
in 2 M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and standard
error of the 3 unfolding force values for each pulling velocity
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KCl are shown in figures C.40, C.41 and C.42 for 700 nm/s, 1200 nm/s and 2000 nm/s

respectively. Each histogram was fit to a Gaussian curve.

4.8.1 Summary

The results presented show the refined data analysis from SMFS experiments carried out

using the hetero-polyprotein constructs (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-

I27 in 0.5 M and 2 M KCl. In order to increase the accuracy of the data, data sets were

separated into separate experiments and either accepted or rejected based on set criteria.

Although three data sets were accepted for each speed for both polyproteins in 0.5 M

KCl, only a few data sets were accepted for both polyproteins in 2 M, shown in table

4.5. This highlights the difficulties in obtaining SMFS data in a high salt concentration.

This will be discussed further in section 6.3.

Conclusion: A refined data analysis was carried out for both (I27-ProtL

WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M and 2 M KCl. A significant

reduction in the amount of accepted data was shown for both polyproteins

in 2 M KCl.

4.9 Comparing the refined data analysis of the SMFS data

for (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in

0.5 M and 2 M KCl

In order to illuminate the changes in unfolding force values between the different con-

structs and salt concentrations used, speed dependence diagrams were plotted for the

refined analysis of all 4 systems. The FUN value for each pulling velocity was plotted

against the log10 (pulling velocity). A linear fit is performed for each of the proteins.

The speed dependence diagrams for the refined analysis of the following data groups are

shown in figure 4.30:
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A) (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M KCl

B) (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 2 M KCl

C) I27 in 0.5 M and 2 M KCl

D) ProtL in 0.5 M and 2 M KCl

Figure 4.30: Speed dependence diagram of the unfolding force vs. log10(pulling
velocity) for the refined analysis of all 4 systems. A) shows speed dependence of
(I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M KCl. B) shows the speed depen-
dence of (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 2 M KCl. C) shows the speed
dependence of I27 in 0.5 M and 2 M KCl. D) shows the speed dependence of ProtL in 0.5
M and 2 M KCl. The linear fit for each set of data is also plotted as full lines in 0.5 M KCl
and dashed lines in 2 M KCl.

Figures 4.30 A) - D) all show the same trends as the first analysis (figure 4.28),

showing the refined data analysis does not affect the interpretation of the behaviour

of each polyprotein. The data for ProtL Kx6E is shown to be more accurate with

refined data analysis, i.e. the linear fitting agrees with all three data points. This figure

highlights that with the refined speed dependence, the linear fit of ProtL Kx6E in 2 M

KCl now follows the same fit for ProtL Kx6E in 0.5 M KCl. Confirming the hypothesis

that the salt concentration does not affect the unfolding force of the halophilic ProtL
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Kx6E (see section 4.7).

The accuracy of the data for figure 4.30 A) does not improve with the refined analysis.

This is not surprising as this data was described as accurate previously. The refined data

analysis does not improve the accuracy of the I27 data for both constructs in 2 M KCl,

shown in figures 4.30 B) and D). None of the data points sit on the linear fit. This is

possibly due to the lack of data in 2 M KCl, highlighted in table 4.5. A diagram of the

comparison all of the data in one diagram can be found in figure C.43.

4.9.1 Summary

The results presented in this section show the speed dependence diagrams formed from

the refined data anlysis of SMFS experiments carried out using the constructs (I27-ProtL

WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M and 2 M KCl.

It is clear the reduced amount of data in 2 M KCl severely affects the accuracy of

the data. The refined data analysis does show promise for ProtL Kx6E in 2 M KCl.

The linear fit of ProtL Kx6E data in 2 M KCl now follows the same fit for ProtL Kx6E

in 0.5 M KCl, confirming the hypothesis that the salt concentration does not affect the

unfolding force of the halophilic ProtL Kx6E.

Conclusion: An increased number of unfolding events per day is needed

to help improve the accuracy speed dependence plot and, therefore, form

solid conclusions.

4.10 Analysing the unfolding history of the SMFS data

for (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27

in 0.5 M and 2 M KCl

Many previous SMFS studies assumed that in a hetero-polyprotein, the domain with the

fastest unfolding rate must unfold first at a given force [147]. Also it was assumed that all
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unfolding forces are equivalent in a homo-polyprotein, the only differences originating

from thermal fluctuations of the polyprotein [132,202]. The unfolding force of a protein

has been shown to depend on two competing effects, with every domain that unfolds, the

probability of an extra domain unfolding is reduced [152]. As a consequence the unfolding

force of later events is larger than earlier events. The other effect comes from that

fact that later unfolding events have a lower loading rate, i.e. the force is applied to

the domain in a longer time-scale, causing a reduction in the unfolding force of later

events. The use of a polyprotein for determining the unfolding force for a single protein

is justified by the dependence of the unfolding force on the unfolding history is less than

the thermal fluctuations of the cantilever [203].

In order to check the effect of the unfolding history on the measured values of the

unfolding force, all traces from were named either type A or type B:

• Type A - All traces where all ProtL unfolding events occur before the I27 unfolding

events

• Type B - All traces where the unfolding events are in a different order, e.g. any

traces that have one or more I27 unfolding events occurring before a ProtL unfold-

ing event.

The traces were separated for each pulling velocity and the mean unfolding force for each

trace type was calculated.

4.10.1 The unfolding history of the SMFS data for all 4 systems

The calculated mean unfolding force for each trace type for is shown in the tables 4.10,

4.11, 4.12 and 4.13.

The results show that (I27-ProtL WT)3-I27 has a large amount of type B traces as

well as type A in both 0.5 M and 2 M KCl (tables 4.10 and 4.12). ProtL WT has an

unfolding force of 138 pN at 400 nm/s, which sometimes unfolds after the I27 (shown in

table 4.1. (I27-ProtL Kx6E)3-I27 for both 0.5 M and 2 M KCl, on the other hand, does

not have a large amount of type B, they are mostly type A (tables 4.11 and 4.13). ProtL
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Kx6E has a smaller unfolding force (124 pN at 400 nm/s, shown in table 4.2) compared

to ProtL WT, which is less likely to unfold after the I27.

The unfolding forces of ProtL for type A compared to type B traces are very similar

for all pulling velocities for both ProtL WT and ProtL Kx6E (for all tables). This

suggests the unfolding history does not have an effect on the mean unfolding force of

Protein L. The unfolding force of I27 from type A is higher in force than for type B for

all pulling velocities. This suggests that the unfolding history does have an affect on the

mean unfolding force of I27. Although since there are less type B traces for (I27-ProtL

Kx6E)3-I27 than for (I27-ProtL WT)3-I27, the unfolding history should have less of an

effect on I27 from (I27-ProtL Kx6E)3-I27 than I27 from (I27-ProtL WT)3-I27.

4.10.2 Summary

The results presented in this section show the unfolding history analysis of SMFS experi-

ments carried out using the constructs (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27

in 0.5 M and 2 M KCl. The results suggest the unfolding history does not have an effect

on the mean unfolding force of ProtL, i.e. the unfolding history does not account for the

difference in force between ProtL WT and ProtL Kx6E. The results also suggest that the

unfolding history does have an affect on the mean unfolding force of I27, it is expected

that the unfolding force I27 from the wild type construct will have a lower unfolding

force than I27 from the halophilic construct. This trend is shown to be consistent for

the speed dependence diagram of both constructs in 0.5 M KCl, figure 4.28 A). It is

also consistent for the speed dependence diagram of both constructs in 2 M KCl, figure

4.28 B) at 400 and 2000 nm/s but not at 700 and 1200 nm/s. This could be due to the

inaccuracy of the data in 2 M KCl or from additional effects from being in a construct

with a highly negatively charged protein. This will be discussed further in section 6.3.

Conclusion: the unfolding force of I27 from the wild type construct has a

lower unfolding force than I27 from the halophilic construct in 0.5 M KCl,

which may be due to the effect of unfolding history.
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4.11 Chapter summary

This chapter first presented the work that was carried out on to synthesise two hetero-

polyprotein constructs

i) (I27-ProtL WT)3-I27

ii) (I27-ProtL Kx6E)3-I27.

Production of both constructs was shown to be successful.

This chapter also presents the experimental data collected and analysed from SMFS

experiments using these polyprotein constructs in two salt concentrations. A further

discussion of the results can be found in sections 6.2 and 6.3. Initial analysis showed

some inaccuracy of the data collected in 2 M KCl and refinement of the data analysis

procedure was needed. Re-analysis of the SMFS experimental data by separating data

sets was then be presented for both polyproteins. A significant reduction in the amount

of accepted data was shown for both polyproteins in 2 M KCl and it was concluded that

an increased number of unfolding events per day was needed. Finally an investigation of

the unfolding history effects on the SMFS results for the two polyproteins was presented.

The results showed that the unfolding history effect causes the I27 from the wild type

construct to have a lower unfolding force than I27 from the halophilic construct. This

trend was shown to be consistent for the speed dependence diagram of both constructs

in 0.5 M KCl.
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Chapter 5

Results 3: Synthesis and

characterisation of two

homo-polyproteins to optimise

the collection of SMFS data

5.1 Introduction

This chapter will describe all experiments carried out to synthesise and mechanically

unfold two homo-polyproteins containing wild type Protein L and a halophilic model

protein, Protein L Ex6D. First, the studies by Tadeo at al., which were described in

section 1.3.3, will be be revisited. The rationale for using the halophilic model protein,

ProtL Ex6D, as a model halophilic system for the homo-polyprotein studies will then

be explained [111]. Next the synthesis techniques in the literature which have previously

been used to produce homo-polyproteins will be reviewed. The results of my studies will

then be presented, which includes:

i) Experimental results will be presented for the synthesis of a homo-polyprotein
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of Protein L (poly-ProtL WT) that includes two mutations to provide cysteine

residues at either end of the protein with the use of a crosslinker.

ii) The data collected from force spectroscopy experiments carried out on the poly-

ProtL WT sample will then be presented and discussed.

iii) All the experimental steps carried out to synthesise a homo-polyprotein construct

using ProtL Ex6D (poly-ProtL Ex6D), using the same technique used for poly-

ProtL WT will be presented.

iv) All the experimental steps carried out to synthesise poly-ProtL Ex6D using second

technique, which utilises maltose binding protein (MBP) will be presented.

v) Finally, the data collected from force spectroscopy experiments carried out on the

poly-ProtL Ex6D sample will then be presented and discussed.

5.1.1 Properties of ProtL Ex6D

A study was carried out by Tadeo at al. on the mechanism of salt stabilisation of

halophilic proteins using a systematic investigation of mutated variants of ProtL, this

study was described in more detail in section §1.3.3. A range of mutations were investi-

gated, including charge preservation mutations, size preserving mutations and mutations

changing both size and charge [111]. ∆GU-F
3.2M salt was determined for each mutation of

ProtL by equilibrium denaturation experiments and was plotted against the number

of substituted residues. The results for ProtL glutamic acid to aspartic acid (E to D)

mutations is shown in figure 5.1 as black circles.

Figure 5.1: The free energy of ProtL at 3.2 M NaCl) versus the number of
substituted residues of glutamic acid for aspartic acid. Figure taken from [111].
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Halophilic proteins have been previously reported to have a large increase in the

number of acidic residues, mainly aspartic acids, although the reason for this increase is

not yet fully understood [75]. The study by Tadeo et al. showed that a salt dependant

stabilising effect was generated for ProtL by reducing one or more amino acids in the

protein sequence by one methylene group (e.g. E and Q to D and N) while conserving

charge [111]. The opposite mutation, increasing one or more amino acids by one methylene

group (D and N to E and Q), was found to have reverse effect by destabilised Prot L in

3.2 M NaCl, shown in figure 5.1 as white squares.

It was found that charge variation has a smaller effect on salt stabilisation compared

to size variation. ProtL Ex6D was, therefore, chosen as a halophilic model protein

because of the increased salt stabilisation to see if this had a noticeable effect on the

mechanical stability of the protein.

5.1.2 Synthesis techniques of homo polyproteins

Homo-polyproteins may be formed by crosslinking monomer proteins, this provides a

faster method of producing polyproteins than a recombinant method [197]. The disad-

vantage of this method is that it provides less control over the precise orientation or

sequence of domains (if a hetero-polyprotein is being produced) and length of polypro-

teins produced.

The crosslinking of proteins using cysteines was originally carried out using solid state

synthesis by formation of a disulphide bridge between the side chains [202]. The technique

was later shown to be successful and regularly used for proteins in solution [144,204,205].

Polymerisation via this method allows precise control over the binding position along

the protein chain and, therefore, over the position of force application [204].

The formation of disulphide bonds between protein monomers is a slow process and

the use of disulphide bonds limits the study of the mechanical properties of a protein

in different redox conditions [186]. Zheng et al. developed a method of polymerisation of

a protein using a crosslinker [197]. This procedure provided a much less time-consuming
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method of polyprotein formation while still allowing study under different redox condi-

tions. This method was thus chosen for the synthesis of the polyproteins in this chapter.

The crosslinker chosen was 1,11-bismaleimidotriethyleneglycol (BM(PEG)3), shown

in figure 5.2. It contains two maleimide groups, which react with sulphydryl groups to

form a thioether linkage, depicted in figure 5.3. The reaction is not reversible. It has

three polyethylene glycol (PEG) units that provide a spacer arm of 17.8 Å.

Figure 5.2: Structure of 1,11-bismaleimidotriethyleneglycol (BM(PEG)3.

Figure 5.3: Schematic of the reaction of a maleimide with a thiol. Where P
represents the protein and C represents the crosslinker.

5.2 Objectives

The objective of this chapter was firstly to produce a homo-polyprotein of ProtL WT

to determine if the planned method of polyprotein production would yield a construct

suitable for analysis by AFM. The second objective was to produce a homo polyprotein of

the halophilic protein L variant. The third objective was to carry out an AFM experiment

using the halophilic model polyprotein and identify a mechanical fingerprint. The final

objective was to analyse the SMFS data produced and determine whether this method of

polyprotein production is suitable for increasing the amount of data produced in SMFS

experiments.
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5.3 Experimental Results

5.3.1 Production of a homo-polyprotein of wild type Protein L

This section will describe the experiments completed to synthesise a homo-polyprotein

of Protein L, shown in figure 5.4.

Figure 5.4: Structure of the poly-ProtL WT construct. The construct is polymerised
by N- and C-terminal cysteine residues, shown as green circles.

The cysteine residues, located at each terminus of the protein monomer, facilitate

the production of a polyprotein via maleimide-thiol coupling [206]. Further explanation

of the techniques used can be found in chapter 2, including a basic description of what

each step is and the protocols used to carry the technique out. A schematic of the overall

process used to produce the polyprotein is shown in figure 5.5. Steps A) and B) in the

figure were carried out by Dr David Brockwell.

5.3.1.1 Expression of ProtL WT

pET15b-ProtL WT plasmid was transformed into competent E. coli BL21 (DE3) pLysS

cells using the protocol described in §2.3.1. A 9 L growth of ProtL WT was set up using

9 x 1 L LB medium in 2.5 L conical flasks. Expression of the construct was induced

by IPTG at a final concentrations of 1 mM at an OD600 of 0.7. Cultures were allowed

to grow for a further 3 hours before harvesting by centrifugation. SDS-PAGE analysis

showed the expression of ProtL WT; a band at the expected sizes of ProtL WT of 8.1

kDa was found in the lysate 3 hours after induction. The cell pellet was resuspended in

an appropriate buffer and cell lysis was performed using a cell disrupter system. ProtL

WT was purified from the soluble fraction by Ni affinity chromatography (see §2.3.6).
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Figure 5.5: Schematic of the synthesis of poly-ProtL WT. Where A) represents
the digestion of the ProtL insert and the plasmid to create sticky ends, B) represents the
ligation of the ProtL WT gene into the plasmid, C) represents the transformation of the
plasmid into an expression E. coli strain, D) represents the expression of ProtL WT protein,
E) represents purification of the ProtL WT monomer and F) represents the crosslinking of
ProtL monomer to form a polymer.
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SDS-PAGE analysis of the fractions is shown in figure 5.6. Fractions containing ProtL

WT were pooled, dialysed into H2O and lyophilised.

Figure 5.6: Large scale purification of ProtL WT using Ni-NTA chromatography,
analysed by SDS-PAGE with Coomasie blue staining. The gel shows a band of
significant intensity above 6 kDa, which would correspond to ProtL WT in all Ni fractions.
ProtL WT was shown to run slightly lower than expected.

The protein was further purified by size exclusion chromatography using a Superdex

75 HiLoad 26/600 column. SDS-PAGE analysis (figure 5.7) of the resulting fractions

shows a band with significant intensity above 6 kDa, with no other protein bands, in-

dicating resulting ProtL WT samples contain no other proteins. Fractions containing

ProtL WT were again pooled, dialysed into H2O and lyophilised.

5.3.1.2 Crosslinking of ProtL WT

A sample of ProtL WT was resuspended in buffer containing 50 mM Tris, pH 7.4 to a

concentration of 2 mg/ml and a volume of 5 mL. 1,11-bis(maleimido)triethylene glycol

(BM(PEG)3) was added to three separate reactions with final molar ratios of ProtL

WT to BM(PEG)3 of 1:0.8, 1:1 and 0.8:1. All 3 reactions were incubated at room

temperature. Samples of each reaction were quenched in 50 mM cysteine at separate

time-points of 2 hrs, 4 hrs and overnight to find optimal conditions. The samples were
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Figure 5.7: Purification of ProtL WT using size exclusion chromatography, anal-
ysed by SDS-PAGE with Coomasie blue staining. The gel shows a band with signif-
icant intensity above 6 kDa, which would correspond to ProtL WT in fractions 25-38.

analysed using SDS-PAGE, shown in figure 5.9. A wide range of polymeric species was

formed. The molecular weight of a specific polymer of ProtL WT can be calculated using

equation 5.1, where MWpolymer is the molecular weight of the polymer, MWmonomer is

the molecular weight of the monomer (ProtL WT including His–tag = 8.1 kDa), MWRS

is the molecular weight of the repeating section (ProtL WT not including the His–tag

= 6.9 kDa), n is the number of protein monomers in the polymer and MWCL is the

molecular weight of the cross linker. A representation of this calculation is shown in

figure 5.8.

Figure 5.8: Representation of the estimation of crosslinking length. Where the
His–tag is represented by a red triangle, the cysteines are represented by dark green circles,
ProtL WT is represented by blue hexagons and the crosslinker is represented by green
squares.
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MWpolymer = MWmonomer + (MWRS)n−1 + (MWCL)n+1 (5.1)

Figure 5.9: The crosslinking of ProtL WT using BM(PEG)3 using 3 different
ratios at 2 hours, 4 hours and overnight, analysed by SDS-PAGE with Coomasie
blue staining. The gel shows a band of significant intensity above 6 kDa which would
correspond to the monomer ProtL WT, 16.0 kDa - (ProtL WT)2, 23.3 kDa - (ProtL WT)3,
30.5 kDa - (ProtL WT)4, 37.8 kDa - (ProtL WT)5, 45.0 kDa - (ProtL WT)6, 52.3 kDa -
(ProtL WT)7 and 59.5 kDa - (ProtL WT)8.

The polymerised ProtL WT solution was dialysed into H2O and lyophilised. The

polyprotein was purified by size exclusion chromatography using a Superdex 75 column

to remove monomer, dimer and trimer polyprotein constructs. The SDS-PAGE analysis

of the fractions is shown in figure 5.10.

To carry out the crosslinking on a large scale, 5 mg ProtL WT was resuspended in

buffer 50 mM Tris, pH 7.4 to a concentration of 2 mg/ml. BM(PEG)3 was added with

a final molar ratios of ProtL WT to BM(PEG)3 of 1:1 . The reaction was incubated at

room temperature and quenched after 6 hours.

The resultant product was purified by size exclusion chromatography using a Su-

perdex 75 10/300 column to remove smaller constructs. SDS-PAGE analysis showed the
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Figure 5.10: Purification of crosslinked ProtL WT using size exclusion chro-
matography, analysed by SDS-PAGE with Coomasie blue staining. The gel shows
a band with significant intensity above 6 kDa which would correspond to the monomer ProtL
WT in fractions 29-31, at 16.0 kDa - (ProtL WT)2 and 23.2 kDa - (ProtL WT)3 in fractions
24-28, 30.5 kDa - (ProtL WT)4, 37.8 kDa - (ProtL WT)5 and 45.0 kDa - (ProtL WT)6 in
fractions 18-23.

separation of the resultant poly-ProtL WT by size, figure 5.11.

5.3.1.3 Summary

The results presented show the work carried out to synthesise a homo polyprotein con-

struct of ProtL WT. Construction of the homo construct was successful using this tech-

nique.

Conclusion: Production of the polyprotein of ProtL WT using a

crosslinker between cysteine residues was shown to be a successful approach.

5.3.2 Single Molecule Force Spectroscopy on poly-ProtL WT

In this section I will show data collected from SMFS experiments using poly-ProtL WT.

I will also present the analysis carried on this data.
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Figure 5.11: Large scale purification of crosslinked ProtL WT using size ex-
clusion chromatography, analysed by SDS-PAGE with Coomasie blue staining.
The gel shows a band with significant intensity above 6 kDa which would correspond to the
monomer ProtL WT, 16.0 kDa - (ProtL WT)2, 23.3 kDa - (ProtL WT)3, 30.5 kDa - (ProtL
WT)4, 37.8 kDa - (ProtL WT)5, 45.0 kDa - (ProtL WT)6, 52.3 kDa - (ProtL WT)7 and
59.5 kDa - (ProtL WT)8.
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5.3.2.1 Procedure for SMFS experiments using poly-ProtL WT

In order to validate this synthesis method for the production of poly-ProtL WT for SMFS

analysis, three SMFS experiments were carried out. The results of these experiments

were then compared with previous results obtained for SMFS experiments on ProtL5

synthesised using recombinant expression [146].

Single molecule force spectroscopy experiments were performed using a custom built

AFM. The spring constant of each silicon nitride cantilever, obtained from Veeco (Santa

Barbara, CA), was calculated in buffer by applying the equipartition theorem (see section

2.7.2.1). Proteins were resuspended in 63 mM sodium phosphate buffer at a concentra-

tion of 0.5 µg/mL and applied onto a freshly cleaved template-stripped gold surface. The

sample was incubated at room temperature for 30 minutes before mechanical unfolding

experiments were carried out at a pulling speed of 400 nm/s.

Example traces from these experiments are shown in figure 5.12. The traces show

the polyprotein does have mechanical resistance as expected and leading edge of each

sawtooth could be fitted with the Worm-Like Chain (WLC) model (§2.7.4.1).

5.3.2.2 Analysis of the SMFS data for poly-ProtL WT

Traces were accepted for analysis only if they contained 2 or more protein unfolding

events. The traces were fitted with the WLC model (see section 2.7.4.1 for further

details) to confirm the number of ProtL WT unfolding events.

The unfolding forces (FUN) and peak to peak distances (p2p) of ProtL WT for each

experiment are recorded in tables 5.1 and 5.2. The average FUN obtained for ProtL WT

was 133 ± 2 pN and the p2p distance was 16.4 ± 0.1 pN. The values recorded were

consistent with previous studies of ProtL WT (data collected using a pentameric ProtL

WT construct) by SMFS by Brockwell et al. at this pulling velocity, of FUN = 136 ± 1

pN and p2p = 16.5 ± 0.1 nm [146].

The next step was to plot the data in a scatter diagram showing the FUN and p2p for
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Figure 5.12: Example traces from SMFS experiments using poly-ProtL WT
at 400 nm/s in PBS buffer. Figures A), B), C) and D) showing 6, 9, 10 and 5 protein
unfolding events respectively. The traces are taken from 3 data sets from experiments carried
out on 3 different days.

Protein No. events Mean FUN (pN) Median FUN (pN) SD

ProtL WT 36 137 135 31
ProtL WT 25 132 131 24
ProtL WT 40 130 132 23

133 133 2

Table 5.1: Unfolding force data and standard deviation for poly-ProtL WT at 400 nm/s
in PBS buffer for three separate experiments. The numbers quoted in bold are the mean
and standard error of the 3 unfolding force values.

Protein No. events Mean p2p (nm) Median p2p SD

ProtL WT 36 16.2 16.2 0.9
ProtL WT 25 16.6 16.6 1.0
ProtL WT 40 16.3 16.2 1.0

16.4 16.4 0.1

Table 5.2: Peak to peak distance data and standard deviation for poly-ProtL WT at 400
nm/s in PBS buffer for three separate experiments. The numbers quoted in bold are the
mean and standard error of the 3 peak to peak values.
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each experiment, shown in figure 5.13. The diagrams show clear clusters of data points

for each experiment centred around the previously published Protein L data [146].

Histograms were then produced for the FUN data and the p2p distances for each

experiment, figure 5.14. Each histogram can be fitted with a Gaussian curve.

Figure 5.13: Scatter diagrams of the unfolding force versus peak to peak distance
for poly-ProtL WT. All figures show ProtL WT in blue. Figures A), B) and C) show
the data from 3 data sets from experiments carried out on 3 different days. The polyprotein
was in PBS buffer, pulled at a constant velocity of 400 nm/s. The ProtL WT data show
a cluster in each of the 3 diagrams. A reference value of unfolding force and peak to peak
distance, taken from Brockwell et al. for data accumulated at an identical speed, is shown
as a yellow square, error bars are negligable [146].
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Figure 5.14: Histograms of the unfolding force data and peak to peak distance
data for poly-ProtL WT. All figures show ProtL WT in blue. Figures A), B) and C)
show the peak to peak distance data and figures D), E) and F) show the unfolding force
data. All histograms are fitted with a Gaussian curve. The polyprotein was in PBS buffer,
pulled at a constant velocity of 400 nm/s. The number of unfolding events are displayed on
each histogram for ProtL WT.
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5.3.2.3 Summary

All three experiments carried out had a large number of unfolding events for ProtL

WT. If time was taken to optimise the experiments for this sample, i.e. perform with

a range of concentrations and with a range of incubation times, it is likely the number

of unfolding events in each experiment could be increased. The use of this a homo-

polyprotein construct in SMFS experiments was, therefore, shown to be promising as an

alternative poly protein construct that could provide large amounts of data for SMFS

experiments.

Conclusion: This method of production of the polyprotein of ProtL WT

by crosslinking provides a viable alternative to the standard recombinant

method.

5.3.3 Production of a homo-polyprotein of the halophilic model pro-

tein, Protein L Ex6D

In this section I will describe the first set of experiments I carried out to synthesise a

homo polyprotein of ProtL Ex6D, shown in figure 5.15. These experiments were carried

out using the same technique as shown in §5.3.1, the schematic for which is shown in

figure 5.5.

Figure 5.15: Structure of the poly-ProtL Ex6D construct. The construct is poly-
merised by N- and C-terminal cysteine residues, shown as green circles.

5.3.3.1 Molecular biology for ProtL Ex6D

pEX-A-ProtL Ex6D plasmid was ordered from Eurofins. pET-15b-ProtL WT was pro-

vided by Dr. David Brockwell.
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To produce a larger, 500 µL, sample of the ordered plasmid, 2 µL was transformed

into XL1 blue competent cells (§2.3.1). One colony was picked, the cells were grown

in 50 mL LB medium and the DNA was purified using a QIAprepr Spin Midiprep Kit

(§2.2.9).

The ProtL Ex6D gene was digested from the pEX-A plasmid using restriction en-

zymes NcoI and MluI §2.2.4. The excised cassette was separated from the plasmid DNA

by agarose gel electrophoresis §2.2.2, and extracted from the gel, as described in §2.2.3.

The pET-15b vector was digested using the same restriction enzymes as above and de-

phosphorylated (§2.2.5). Agarose gel electrophoresis was used to clean and check the

size of DNA removed. The gel, figure 5.16, shows the digested sections with controls.

Figure 5.16: The plasmids pET15b and pEX-A-ProtL Ex6D were digested using
restriction enzymes NcoI and MluI. Agarose gel electrophoresis was used to clean and
check the size of DNA removed. The gel shows a correctly sized product for the removal of
ProtL Ex6D from pEX-A - 201 bp.

Next, the ProtL Ex6D insert was ligated into the digested pET-15b plasmid (see

§2.2.6). A control ligation was also performed using all components in the reaction

mixture, except for the insert DNA. The resulting plasmid, pET-15b-ProtL Ex6D was

then transformed into XL1 blue Supercompetent cells, as well as the control reaction,

and spread on agar plates. After incubating overnight, colonies were found on the plates

with cells that had been transformed with the ligation reaction mixture and none for the

negative control ligation mixture. A few colonies were picked, the cells were grown in

LB medium and the DNA was purified for each colony using a QIAprepr Spin Miniprep
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Kit (§2.2.8). To determine whether the vector now contained the desired insert, 1µg of

plasmid from each colony was digested with the restriction enzymes NcoI and MluI. The

results were analysed using agarose gel electrophoresis, shown in figure 5.17. Plasmid

DNA containing the insert, positively identified from the analytical digestion was sent

off for sequencing.

Figure 5.17: The plasmid pET15b-ProtL Ex6D was digested using restriction
enzymes NcoI and MluI. The gel shows a successful ligation product with the correctly
sized band for ProtL Ex6D - 201 bp in all tubes tested.

5.3.3.2 Expression of ProtL Ex6D

A test expression of the pET15b-ProtL Ex6D construct was carried out after transforma-

tion of the plasmid into E.coli BL21 expression cells. The trial was performed at a 100

mL scale in LB medium in 250 mL conical flasks. A sample of pET15b-ProtL WT was

also expressed as a control. Expression of the constructs was induced by 1 mM IPTG at

an OD600 of 0.7 and the cells were harvested after 3 hours. The cells were lysed and the

resultant protein was purified on Ni-NTA affinity resin §2.3.3. The protein production

and purification stages were analysed using SDS-PAGE at each stage, results are shown

in figure 5.18. ProtL WT was again shown to run slightly lower than expected. The gel

shows a band at 5 kDa in the expression and elution lanes for ProtL WT but there is

no evidence for the expression of ProtL Ex6D.
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Figure 5.18: Small scale expression and purification of ProtL Ex6D, analysed by
SDS-PAGE with Coomasie blue staining. The gel shows a band of significant intensity,
corresponding to Protein L, in the expression and purification steps for ProtL WT. No such
band, however, is present in the expression and purification steps for ProtL Ex6D.

5.3.3.3 Summary

The results presented show the work carried out to synthesise a homo polyprotein con-

struct of ProtL Ex6D. Construction of the DNA for this construct was successful but

the protein did not show any sign of expression.

Conclusion: An alternative technique is needed for of production of Poly-

ProtL Ex6D.

5.3.4 Production of a homo polyprotein of ProtL Ex6D using a Maltose

Binding Protein fusion

In this section, the results will be presented for the synthesis of a homo polyprotein of

ProtL Ex6D by fusing the protein L frame with Maltose binding protein (MBP) (§3.5).

An overview of the synthesis method can be seen in figure 5.19. Note that the MBP

encoding plasmid (pMAL-c5x) was modified by Dr David Brockwell, before use with

Protein L Ex6D, to contain a His tag N-terminal to the MBP protein, in order to aid
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purification.

Figure 5.19: Schematic of the synthesis of poly-ProtL Ex6D using MBP. Where
A) represents the digestion of the ProtL Ex6D insert and the plasmid to create sticky
ends, B) represents the ligation of the ProtL WT gene into the plasmid, C) represents the
transformation of the plasmid into an expression E. Coli strain, D) represents the expression
of MBP-ProtL Ex6D protein, E) represents cleavage of the ProtL Ex6D monomer from MBP,
F) represents the purification of the ProtL Ex6D monomer and G) represents the crosslinking
of ProtL Ex6D monomer to form a polymer.

5.3.4.1 Molecular biology for MBP-ProtL Ex6D

The modified pMAL-c5x-HmFx plasmid from section §3.5 and the ProtL Ex6D gene

from section §5.3.3 were used to carry out these experiments.

Silent mutations were carried out in order to remove BamHI and EcoRI restriction

sites from within the ProtL Ex6D sequence. This was done using a Quikchange muta-
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genesis kit. The products were transformed into XL1 blue cells and after incubation a

colony was picked, grown in 10 mL LB medium and DNA was purified using a QIAprepr

Spin Miniprep Kit. The success of the mutation of the DNA was verified by sequencing.

The mutated ProtL Ex6D insert was modified and amplified from the pET15b plas-

mid by PCR (§2.2.1). Primers were designed to create BamHI and EcoRI restriction

sites on the N- and and C-terminal ends of the Prot Ex6D sequence respectively, to

create a TEVp recognition sequence and to remove the His-tag. The agarose gel of the

PCR products, used to separate the products from the rest of the reaction mixture, is

shown in figure 5.20.

Figure 5.20: Agarose gel electrophoresis was used to clean and check the size of
the PCR product for ProtL Ex6D. Short linker regions were added to each end of the
ProtL Ex6D insert, encoding the recognised sequence for restriction enzymes BamHI and
EcoRI. A band can be seen in all tubes at 231 bp, corresponding to the PCR product of
ProtL Ex6D.

To produce a 500 µL sample of the pMAL-c5X plasmid (including His-tag), 2 µL of

DNA was transformed into XL1 blue competent cells and grown on agar plates. One

colony was picked, the cells were grown in 50 mL LB medium and the DNA was purified

using a QIAprepr Spin Midiprep Kit.

The purified PCR product (ProtL Ex6D) was digested using restriction enzymes

BamHI and EcoRI. The insert was separated from the the plasmid DNA by agarose
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gel electrophoresis and extracted from the gel, shown in figure 5.21. The pMAL-c5x

vector was digested using the same restriction enzymes as above and dephosphorylated.

Agarose gel electrophoresis was used to clean and check the size of DNA removed. The

gel, figure 5.21, shows the digested sections with controls.

Figure 5.21: The plasmid pMAL-c5x and insert ProtL Ex6D were digested at
using restriction enzymes BamHI and EcoRI. Agarose gel electrophoresis was used
to clean and check the size of DNA removed. The gel shows a correctly sized product for
ProtL Ex6D - 211 bp.

The ProtL Ex6D insert was then ligated into the digested pMAL-c5x plasmid along

with a control ligation containing all components in the reaction mixture, except for

the insert DNA. The resulting plasmid, pMAL-ProtL Ex6D was then transformed into

SURE2 Supercompetent cells, as well as the control reaction, and spread on agar plates.

After incubating overnight, colonies were found on the plates with cells with the ligation

reaction mixture and none for the negative control ligation mixture. A few colonies were

picked, the cells were grown in LB medium and the DNA was purified for each colony

using a QIAprepr Spin Miniprep Kit.

An analytical digestion was then carried out using restriction enzymes BamHI and

EcoRI with 1µg of plasmid from each colony. The results were analysed using agarose gel

electrophoresis, shown in figure 5.22. Plasmid DNA that contained the insert identified

from the analytical digestion was sent off for sequencing.
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Figure 5.22: The plasmid pMAL-c5x-ProtL Ex6D was digested using restric-
tion enzymes BamHI and EcoRI. The gel shows a successful ligation product with the
correctly sized band for ProtL Ex6D - 211 bp in tubes all lanes except G.

5.3.4.2 Expression of MBP-ProtL Ex6D

A test expression of the pMAL-ProtL Ex6D construct was carried out after transfor-

mation of the plasmid into E.coli JM83 expression cells. The trial was performed at

a 100 mL scale in LB medium in 250 mL conical flasks. Expression of the construct

was induced by IPTG at an OD600 of 0.7 and the cell growth and protein expression

was monitered by taking samples at 0, 1, 2, 3, 4 hours after expression and overnight.

The resultant protein was purified on Ni-NTA affinity resin. The protein production

and purification stages were analysed using SDS-PAGE, shown in figure 5.23. The gel

shows a band corresponding to the expected size of MBP-ProtL Ex6D (50.9 kDa) in the

expression lanes (except for 0 hours as expected) and elution lane.

A large scale, 10 L growth of MBP-ProtL Ex6D was then set up using 10 x 1 L

LB medium in 2.5 L conical flasks. Protein expression was induced by IPTG at an

OD600 of 0.7. Cultures were allowed to grow for a further 4 hours before harvesting by

centrifugation.

The cell pellet was resuspended in lysis buffer and the cells were lysed using a cell
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Figure 5.23: A small scale expression and purification of MBP-ProtL Ex6D,
analysed by SDS-PAGE with Coomasie blue staining. The gel shows a band of sig-
nificant intensity at 50.9 kDa which would correspond to MBP-ProtL Ex6D in the expression
and purification steps.

disrupter system. MBP-ProtL Ex6D was then purified from the soluble fraction by Ni

affinity chromatography, using a Ni Sepharose column. The soluble lysate was passed

through the column so the His-tagged MBP-ProtL Ex6D would bind. After washing away

non-specifically bound protein, the protein was eluted by competition with imidazole in

the elution buffer. SDS-PAGE analysis of the fractions is shown in figure 5.24. Fractions

shown to contain MBP-ProtL Ex6D were pooled, dialysed into H2O and lyophilised.

5.3.4.3 Cleaving ProtL Ex6D from MBP

Two test cleavage reactions were set up; 2 mg of MBP-ProtL Ex6D was resuspended

in buffer containing 50 mM Tris.HCl and 2 mM DTT and another 2 mg of MBP-ProtL

Ex6D was resuspended in buffer containing 50 mM Tris.HCl, 0.5 M NaCl and 2 mM

DTT. Commercial AcTEVp was added to the two separate reactions with final molar

ratios of MBP-HmFd to TEV protease of 1:3. Both reactions were incubated at room

temperature and samples of each reaction were taken at separate time-points of 0, 1, 2, 4

and 6 hrs to find optimal conditions. The samples were analysed by SDS-PAGE, and this
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Figure 5.24: Large scale purification of MBP-ProtL Ex6D using Ni-NTA chro-
matography, analysed by SDS-PAGE with Coomasie blue staining. The gel shows
a band with significant intensity at 50.9 kDa which would correspond to ProtL Ex6D in
fractions 43-48, these fractions were pooled.

showed a band decreasing in intensity over time at the expected weight for MBP-ProtL

Ex6D (50.9 kDa) and a band increasing in intensity over time at the expected weight

for MBP (43.8 kDa) in figure 5.25. This implies MBP is successfully being cleaved from

the the MBP-HmFd construct by TEV protease. There is also a band, increasing in

intensity, at the expected weight for ProtL Ex6D (7.2 kDa), showing ProtL Ex6D was

successfully cleaved from MBP. It should be noted that the weight of ProtL Ex6D is less

here since the protein no longer contains a His-tag.

A large scale cleavage experiment was then set up using 10 mg MBP-ProtL Ex6D

resuspended in the buffer containing 0.5 M NaCl. Expressed and purified TEVp (§2.4.2)

was then added to the reaction with a final molar ratio of MBP-HmFd to TEV protease

of 1:3. The reaction was incubated at room temperature and samples were taken at 15

mins, 30 mins, 1 hour, and 3 hours. The samples were analysed by SDS-PAGE, figure

5.26, showing a band corresponding to MBP-ProtL Ex6D (50.9 kDa) only at 0 hours,

a band at the expected weight for MBP (43.8 kDa), a band at the expected weight for

TEVp (27 kDa) and a band, increasing in intensity, at the expected weight for ProtL
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Figure 5.25: Trial cleavage of ProtL Ex6D from MBP using TEV protease at
two different salt concentrations, analysed by SDS-PAGE with Coomasie blue
staining. The gel shows the MBP-ProtL Ex6D band at 50.9 kDa reducing in intensity from
0 hours to 6 hours and the MBP band at 43.8 kDa increasing from 0 to 6 hours. There is a
band at 7.2 kDa that increases in intensity over time, which corresponds to the production
of ProtL Ex6D.
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Ex6D (7.2 kDa), showing ProtL Ex6D was successfully cleaved from MBP using the

purified TEVp.

Figure 5.26: Trial cleavage of ProtL Ex6D from MBP using a purified sample
of TEV protease at a ratio of protease to protein 1:3, analysed by SDS-PAGE
with Coomasie blue staining. The gel shows the MBP-ProtL Ex6D band at 50.9 kDa at
0 hours and the MBP band at 43.8 kDa increasing in intensity over time. There is a band
with significant intensity at 7.2 kDa increasing in size, which corresponds to the production
of ProtL Ex6D.

ProtL Ex6D was then purified using using Ni-NTA affinity resin. Both MBP and

TEVp contained His-tags, therefore would bind to the resin, leaving only ProtL Ex6D

in the flow through. Analysis by SDS-PAGE (Figure 5.27) shows the flow through that

contains ProtL Ex6D (7.2 kDa) with a small contamination of MBP (43.8 kDa) and

TEVp (27 kDa) that have not bound to the resin. The elution clearly shows only MBP

and TEVp.

ProtL Ex6D was then further purified by size exclusion chromatography using a

Superdex 75 column to remove the remaining MBP and TEVp. SDS-PAGE analysis

showed the pure ProtL Ex6D, figure 5.28. Fractions 64-75 were pooled, dialsed into H2O

and lyophilised.
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Figure 5.27: Trial cleavage of ProtL Ex6D from MBP purified using Ni-NTA
chromatography, analysed by SDS-PAGE with Coomasie blue staining. The gel
shows a band at 43.8 kDa corresponding to MBP in the flow through, wash steps and in the
elution. There is a band at 7.2 kDa corresponding to ProtL Ex6D in the flow through of
the column.

5.3.4.4 Crosslinking of ProtL Ex6D

A 0.7 mg of ProtL Ex6D was resuspended in buffer containing 50 mM Tris, pH 7.4

to a concentration of 2 mg/ml. 1,11-bis(maleimido)triethylene glycol (BM(PEG)3) was

added to a final molar ratio of ProtL Ex6D to BM(PEG)3 of 1:1. The reaction was

incubated at room temperature. After 3 hours the resultant product was purified by size

exclusion chromatography using a Superdex 75 column to remove smaller unpolymerised

monomeric or low molecular weight polymeric ProtL Ex6D. SDS-PAGE analysis showed

the separation of the resultant poly-ProtL Ex6D by size (figure 5.29). The elution

profile is shown in figure D.3. A wide range of polymeric species were formed, bands

corresponding to ProtL Ex6D monomer (7.2 kDa), dimer (15.1 kDa) and trimer (22.4

kDa), up to at least an octomer are visible. The molecular weight of each polymer can

be calculated, using equation 5.1. The before sample also shows signs of crosslinking,

which is likely due to disulphide bonding that has not been reduced by the DTT in the

loading buffer. Fractions 15-19 were pooled, dialsed into H2O and lyophilised in 0.1 mg

aliquots.
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Figure 5.28: Trial cleavage of ProtL Ex6D from MBP purified using Ni-NTA
chromatography and size exclusion chromatography, analysed by SDS-PAGE
with Coomasie blue staining. The gel shows a band at 43.8 kDa corresponding to MBP
in the supernantant and fractions 47-59. There is a band at 7.2 kDa corresponding to ProtL
Ex6D in the supernatant and fraction 67.
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Figure 5.29: The crosslinking of ProtL Ex6D using BM(PEG)3 and purification
using size exclusion chromatography, analysed by SDS-PAGE with Coomasie
blue staining. The gel shows a band of significant intensity at 7.2 kDa which would
correspond to the monomer ProtL Ex6D, 15.1 kDa - (ProtL Ex6D)2, 22.4 kDa - (ProtL
Ex6D)3, 29.6 kDa - (ProtL Ex6D)4, 36.9 kDa - (ProtL Ex6D)5, 44.1 kDa - (ProtL Ex6D)6,
51.4 kDa - (ProtL Ex6D)7 and 58.6 kDa - (ProtL Ex6D)8.
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5.3.4.5 Summary

The results presented show the work carried out to synthesise a homo polyprotein con-

struct of ProtL Ex6D using the fusion protein, Maltose binding protein. Construction

of the DNA for this construct was successful and the protein was successfully expressed,

cleaved and crosslinked to form a homo polyprotein.

Conclusion: This method of production of the polyprotein of ProtL Ex6D

was successful.

5.3.5 Single Molecule Force Spectroscopy on poly-ProtL Ex6D

In this section I will describe the SMFS experiments carried out using poly-ProtL Ex6D

and the analysis of the results. I will finish by discussing the usefulness of the construct

for experimentation using SMFS.

5.3.5.1 Procedure for SMFS experiments using poly-ProtL Ex6D

The next step was to see how useful poly-ProtL Ex6D was for SMFS experiments. 0.1

mg of poly-ProtL Ex6D was resuspended in 0.6 mL buffer (0.5 M KCl, 5 mM MOPS, pH

7.4 buffer). The solution was incubated on a freshly cleaved gold surface for 30 minutes.

A mechanical unfolding experiment was carried out at a pulling speed of 1200 nm/s.

Figure 5.30 shows example traces from the experiment.

5.3.5.2 Analysis of the SMFS data for poly-ProtL Ex6D

Firstly, only traces that contained at least 2 protein unfolding events were accepted. The

traces were fitted with the WLC model (see section 2.7.4.1 for further details) to confirm

that bona fide ProtL Ex6D unfolding events were being observed. For each ProtL Ex6D

unfolding event, the FUN and p2p were recorded (see tables 5.3 and 5.4 respectively).
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Figure 5.30: Example traces from the SMFS experiment using poly-ProtL Ex6D
at 1200 nm/s in 0.5 M KCl buffer. Figures A), B), C) and D) showing 4, 3, 5 and 3
protein unfolding events respectively. The polyprotein was in 0.5 M KCl buffer, pulled at a
constant velocity of 1200 nm/s.

Protein No. events Mean FUN (pN) Median FUN (pN) SD

ProtL Ex6D 38 158 160 23

Table 5.3: Unfolding force data and standard deviation for poly-ProtL Ex6D at 1200 nm/s
in 0.5 M KCl buffer.

Protein No. events Mean p2p (nm) Median p2p (nm) SD

ProtL Ex6D 38 16.8 16.7 0.8

Table 5.4: Peak to peak distance data and standard deviation for poly-ProtL Ex6D at
1200 nm/s in 0.5 M KCl buffer.
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Next, the values were plotted in a scatter diagram showing the FUN for each protein

unfolding event against the measured p2p distance (figure 5.31). The plot shows an

average p2p for ProtL Ex6D of 16.8 ± 0.1 nm and an average FUN of 158 ± 4 pN. The

p2p distance is slightly higher than the value recorded for ProtL WT in the poly-ProtL

WT construct in PBS buffer (16.4 ± 0.1 nm).

Figure 5.31: Scatter diagram of the unfolding force vs. peak to peak distance
for poly-ProtL Ex6D in 0.5M KCl at 1200 nms1. The figure shows ProtL Ex6D in
pink. The ProtL Ex6D points show a cluster in the diagram.

The clear cluster in the scatter plot, figure 5.31 validates the use of this method of

synthesising the poly-ProtL Ex6D construct for SMFS experiments. The histograms for

the FUN and p2p data, figure 5.32 show a Gaussian distribution.

Figure 5.32: Histogram of the unfolding forces for poly-ProtL Ex6D. The figure
shows ProtL Ex6D in pink. Figure A) shows the peak to peak distance data and figure
B) shows the unfolding force data. Both histograms are fitted with a Gaussian curve. The
number of unfolding events are displayed on each histogram for ProtL Ex6D.
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5.3.5.3 Summary

The above results show the data collected and analysed from one SMFS experiment

on poly-ProtL Ex6D at 1200 nm/s in 0.5 M KCl. For this data set, there were 38

unfolding events. This is larger than most data sets (the number of unfolding events

in one day) recorded for ProtL Kx6E in chapter 4. As above, if time was taken to

optimise the experiments for this sample it is likely the number of unfolding events in

each experiment could be increased. Further discussion of the results can be sound in

section 6.2. The use of this a homo-poly protein construct in SMFS experiments was,

therefore, shown to be promising as an alternative poly protein construct for a halophilic

model protein that could provide large amounts of data for SMFS experiments.

Conclusion: The polyprotein of ProtL Ex6D, formed by crosslinking, pro-

vides an alternative construct to use in SMFS experiments, which could

provide more data on a shorter timescale.

5.4 Chapter summary

This chapter presented the work that was carried out on to synthesise two homo-

polyprotein constructs:

i) poly-ProtL WT

ii) poly ProtL Ex6D

Production of both constructs was shown to be successful.

The experimental results for SMFS experiments for both homo-polyprotein con-

structs was presented. The results showed that the method of production of the polypro-

teins by crosslinking provides a viable alternative to the standard recombinant method,

which could provide more data on a shorter timescale. Further discussion of the SMFS

results for poly-ProtL Ex6D can be found in section 6.2.

214



Chapter 6

Discussion and future work

The aim of this project was to use protein engineering to produce polyprotein constructs

containing a halophilic protein and to carry out Single Molecule Force Spectroscopy

(SMFS) experiments using the Atomic Force Microscope (AFM) to characterise the

mechanical unfolding behaviour of a halophilic protein.

This chapter presents a discussion of all of the results presented in this thesis. First,

the data collected for SMFS experiments with the hetero-polyprotein construct I273-

HmFd-I27 is discussed. Possible unfolding pathways for HmFd are suggested and com-

pared to the data. This is followed with a discussion about the attempts to express

and purify further poly-protein constructs containing HmFd and hypotheses as to why

the expression may not have been successful. The data collected for SMFS experiments

with three hetero-polyprotein constructs, (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-

I27 and poly-ProtL Ex6D, in 0.5 M KCl is discussed. Reasons for differences between the

measured unfolding forces for the three constructs are explained. Next, the data collected

for SMFS experiments with two hetero-polyprotein constructs, in 0.5 M is compared to

data collected in 2 M KCl. An explanation for the differences found between the two

constructs is presented. Finally, possible future directions of this project are outlined.
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6.1 The mechanical fingerprint of HmFd

Chapter 3 presents the work that was carried out on a hetero-polyprotein construct,

I273-HmFd-I27 using SMFS. Although force-extension data was successfully collected,

the unambiguous characterisation of the unfolding force, FUN, and peak to peak distance,

p2p, was consequently unsuccessful for HmFd.

The histograms plotted for HmFd, figure 3.5, reveal it is possible to see a slight trend

in the measured unfolding force, i.e. a gaussian can be fitted to the data. It is, therefore,

likely that HmFd does have mechanical resistance but the unfolding behaviour could not

be characterised using this analysis technique due to insufficient data.

Refinement of the data analysis was carried out by only accepting traces where the

full construct had unfolded. The p2p values of the HmFd candidate unfolding events

are shown in table 6.1. Examples of the corresponding traces are shown in figures 3.6

and 3.7.

Salt conc. Ionic strength Velocity HmFd event number p2p distance (nm)

63 mM 0.17 M 400 nm/s 1 15.6
63 mM 0.17 M 400 nm/s 2 6.5
63 mM 0.17 M 400 nm/s 1 18.8

500 mM 0.66 M 400 nm/s 1 14.9
500 mM 0.66 M 400 nm/s 1 6.0

2000 mM 2.15 M 400 nm/s 1 17.8
2000 mM 2.15 M 400 nm/s 2 12.7
2000 mM 2.15 M 400 nm/s 1 14.8
2000 mM 2.15 M 400 nm/s 2 21.5

Table 6.1: Peak to peak distance data for HmFd in I273-HmFd-I27 for only full length
traces. The event number corresponds the order of HmFd unfolding events where traces
have more than one. Example traces for these unfolding events are shown in figures 3.6 and
3.7.

Given the measured p2p values, it is interesting to consider the possible unfolding

pathway of HmFd. To do this, the structure of HmFd was simplified by only drawing

the β–strands (figure 6.1 A). It is assumed that the β–sheet structure of a protein that

is most important for mechanical stability (see section 1.4.4.1). The number of amino
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acids and, therefore, the total extension on the protein was calculated for each mechanical

unfolding scenario illustrated in figure 6.1.

Figure 6.1: Estimating the possible unfolding pathway of HmFd. Figures A)–D)
show all possible regions that may have mechanical resistance and the extension of the chain
upon unfolding each region. Each amino acid is estimated to have a length of 0.35-0.4 nm.
Figure A) shows the length of chain that will readily unfold, which is comprised of 14 amino
acids. Figure B) shows the shearing of β–strands 1 and 4. Figure C) shows the peeling of
β-strands 1 and 2 and the peeling of β–stands 3 and 4. Figure D) shows the rupture of
the Fe–S cluster. Red arrows represent the number of amino acids exposed upon unfolding,
green arrows represent initial separation before unfolding. In this schematic the α-helices
are not shown because they are assumed to not show mechanical resistance.

It is clear from figure 6.1 that HmFd is likely to have a complicated unfolding pathway

that may result in more than one mechanical clamp motif. Figure 6.1 A) shows the length

of protein that will readily unfold, which is composed of 14 amino acids making up an

α-helix, this is expected to unravel as soon as force is applied to the protein and will not
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have any mechanical resistance (see section 1.4.4). Figure 6.1 B) shows the separation of

β-strands 1 and 4. As the force is acting on opposite ends on the β-strands, the hydrogen

bonds between the β-strands will need to be ruptured simultaneously. Observation of

the mechanical resistance of this separation event is highly likely (i.e. it is likely to be

greater than the thermal noise, ∼ 15 pN). Figure C) shows the separation of β-strands

1 and 2 and the separation of β-stands 3 and 4. For both of these events, the force is

acting on the same ends of the β–strands, the hydrogen bonds can be broken one by one.

Mechanical resistance of these two separation events is likely to be very low (see section

1.4.4.2). Figure D) shows the rupture of the Fe-S cluster.

A plausible unfolding pathway for HmFd might be:

i) The 14 amino acids (4.9-5.6 nm) at the C-terminus forming α-helix 5 will unravel

as soon as force is applied to the protein with no mechanical resistance.

ii) The force is quickly applied to the β–strands 1 and 4. The hydrogen bonds of

β–strands 1 and 4 are sheared, creating an unfolding force. β–strands 1 and 2 and

β–stands 3 and 4 readily unfold. The extension for this event is 74 amino acids

(26.3–29.6 nm), the separation before extension is 1.2 nm, therefore the extension

upon shearing of β–strands 1 and 4 is estimated as 25.2–28.4 nm.

iii) The force is then applied to the Fe-S cluster. A further extension of 40 amino acids

(14.0-16.0 nm) after rupture of the Fe-S bond (see section 3.1.1.2). The separation

before extension is 0.6 nm, therefore, the extension upon rupture of the Fe–S bond

is estimated as 13.4–15.4 nm.

If the Fe-S cluster is not present in the protein, the final 40 amino acids will extend

during step ii) giving an estimated extension 38.7–44.4 nm.

The values of the extension measured for the SFMS data, shown in table 6.1, do not

show a significant correlation with the estimated extension values in the steps above. A

few values agree with the extension estimated for the rupture of the Fe-S cluster (13.4–

15.4 nm) but it is not possible to correctly identify the unfolding pathway based on the

limited SMFS data collected.
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It is possible that HmFd was expressed without the Fe-S cluster. Marg et al. recorded

expression of the apo-protein of a mutant variant of ferredoxin from Halobacterium sali-

narum (HsFd) when expressed in E. coli [101]. If the Fe-S cluster is not present in the

protein, it is possible that the cysteine residues, no longer bound, are free to interact

with the gold surface. If the cysteines do bind to the gold surface, it would then be

very unlikely to see unfolding traces with the full construct unfolding. The polyprotein

construct is bound to the gold surface at the C-terminal end by two cysteine residues

(see figure 3.2). If HmFd is bound to the gold surface, it is likely only the 3 I27 domains

and the first 75 amino acids of HmFd will unfold. Only a small number of full unfolding

traces were recorded (i.e. containing 4 unfolding events).

It is therefore clear that the mechanical fingerprint cannot be characterised using

the SMFS data presented here. More copies of HmFd are needed in the polyprotein

construct in order to generate a larger amount of data to carry out effective mechanical

unfolding characterisation. Chapter 3 also described two techniques used in an attempt

to synthesise polyprotein constructs containing multiple copies of HmFd. However the

production of a polyprotein containing HmFd was shown to be unsuccessful using the

techniques presented.

It has been reported that the excess of negatively charged amino acids, typically

found in halophilic proteins, can create problems for expression in a host system that

is a different species, such as E. coli. Halophilic proteins typically misfold and ag-

gregate in conditions of low ionic strength, so the purification of halophilic enzymes

from E. coli has been shown to involve the recovery of insoluble protein from inclusion

bodies [207]. Further to this, archaeal proteins that are expressed in bacterial hosts do

not include posttranslational modifications, such as acetylation or ubiquitination [208].

HmFd has been found to be acetylated in vivo, the amino acid sequences contains a

unique acetylated lysine close to its C-termini, therefore causing further complications

for the expression of HmFd in E. coli [209].
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6.2 Modifying the mechanical stability of protein L using

specific mutations

Chapters 4 and 5 presents the work that was carried out on mesophilic and mutated

variants of Protein L. Figure 6.2 shows the differences in the amino acid structures for

the mutations carried out on Protein L.

Figure 6.2: The amino acid structures of the two mutations carried out on
Protein L. The figure shows the difference in the amino acid R-groups for A) lysine to
glutamic acid (Kx6E) and B) glutamic acid to aspartic acid (Ex6D). The changed portions
of the amino acid are shown in red.

ProtL Kx6E has six lysine residues mutated to six glutamic acid residues. Here the

length and the charge of the R-group varies, shown in figure 6.2 A). ProtL Ex6D has six

glutamic acid residues mutated to six aspartic acid residues. Here only the length of the

R-group varies, shown in figure 6.2 B).

The importance of the mechanical clamp region on the mechanical stability of a

protein has been outlined in section 1.4.4. The mechanical clamp for ProtL has been

shown to be the N- and C-terminal β-stands (I and IV). After the hydrogen bonds

between these strands are sheared, the protein unfolds in a single step. This process is

dicussed further in section 4.1.2. The N- and C-terminal β-stands (I and IV) of ProtL

WT are shown in figure 6.3 A), along with the intervening hydrogen bonds. Both of the
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ProtL variants (Kx6E and Ex6D) have one of their six substitutions occuring within the

mechanical clamp region, the exact position of the mutation is shown in figure 6.3 B)

for ProtL Kx6E and figure 6.3 C) for ProtL Ex6D.

Figure 6.3: The mechanical clamp region of Protein L for WT, Kx6E and Ex6D.
The figures show the two β-stands (I and IV) that form the mechanical clamp for Protein
L. The numbers of the corresponding residues have been included and interstrand hydrogen
bonds, calculated using DSSP, are shown as red dashed lines [146,200]. Figure A) shows the
mechanical clamp of ProtL WT, figure B) shows the position of the mutated amino acid of
ProtL Kx6E within the mechanical clamp region and C) shows the position of the mutated
amino acid of Ex6D within the mechanical clamp region. All other mutations occur outside
of the mechanical clamp region for both ProtL Kx6E and ProtL Ex6D.

The mutation in the mechanical clamp region of ProtL Kx6E is located adjacent to

one of the hydrogen bonding residues. It is, therefore, highly likely that the change in

length and the charge of the R-group will have an effect on the strength of the hydrogen

bonds. Figure 4.28 A) and C) highlights the difference in the measured unfolding force

between ProtL WT and ProtL Kx6E from the SFMS analysis. This difference is con-

sistent at all pulling velocities. The reduction of the unfolding force from ProtL WT to

ProtL Kx6E protein is likely due to disruption of the contacts, which could be hydrogen

bonds, hydrophobic contacts etc., involved in the mechanical clamp.

The mutation in the mechanical clamp region of ProtL Ex6D is located at top of

β–strand I, a few residues away from hydrogen bonding residues. It is, therefore, un-

likely that the change in length the R-group will have an effect on the strength of the

hydrogen bonds. Only one SMFS experiment was carried out for poly-ProtL Ex6D so it

is not possible to give an exact description of how this variation affects the mechanical
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properties of the unfolding force of Protein L. The mean unfolding force for ProtL Ex6D

was measured at 158 ± 4 pN. This is very similar to the mean unfolding force measured

for ProtL WT from the hetero-polyprotein construct, (I27-ProtL WT)3-I27) at 158 ± 4

pN at 1200 nm/s (value taken form the first analysis, shown in table 4.1). The similarity

of the unfolding forces of ProtL WT and ProtL Ex6D protein suggests that this mutation

does not disrupt the contacts involved in the mechanical clamp.

The peak to peak distance reflects the number of amino acids unfolded during the

structural transitions. A change in this value between Protein L variants may indicate

a change in the unfolding pathway of the protein. The values for the extension of the

protein upon unfolding (p2p distance) are all very similar for each variant of Protein L:

i) ProtL WT from the hetero–polyprotein construct, (I27-ProtL WT)3-I27) = 16.4-

16.6 nm (the variation between the different speeds shown in table C.2).

ii) ProtL WT from the homo–polyprotein construct (poly-ProtL WT) = 16.4 nm

(shown in table 5.2).

iii) ProtL Kx6E from the hetero–polyprotein construct, (I27-ProtL Kx6E)3-I27) =

16.2-16.4 nm (the variation between the different speeds shown in table C.4).

iv) ProtL Ex6D from the homo–polyprotein construct (poly-ProtL Ex6D) = 16.8 nm

(shown in table 5.4).

Mutating a protein has been shown previously to have significant effects on its me-

chanical properties [29,145,155,168]. A study by Sadler et al. also measured the mechanical

stability of ProtL variants. Although no mutations occur in exactly the same position

relative to this study, a few were adjacent.

The mutations for ProtL Kx6E occurred at residue numbers 23, 28, 41, 54 and 61, and

the mutations for ProtL Ex6D occurred at residue numbers 2, 3, 21, 27, 32 and 46. Sadler

et al. carried out a single mutation at position 22, which is located in β–strand II. This

was shown to have no effect on the mechanical stability of Protein L. Another mutation

carried out by Sadler et al. was in position 60, which is located in β–strand IV and is one

of the important hydrogen bonding residues in the mechanical clamp. When mutated

from an isoleucine to a valine, the mechanical stability of Protein L was significantly

222



reduced (36 pN at 447 nm/s) relative to the wild type. When mutated instead to a

phenylalanine residue, the mechanical stability of Protein L was significantly increased

(72 pN at 447 nm/s). The study showed the only mutation that caused a significant

change to the unfolding force of the protein was at this location, position 60. It was

previously reported that the mechanical strength of Protein L may be modulated by the

number of hydrophobic contacts across the two sub-units that are sheared apart [146].

Residue I60 has 10 contacting side chains in the core, 6 of these contacting side chains

occur between the sub-units, as shown by the two units depicted in red and green on

figure 4.3 B).

K61 for protein L has 5 contacting side chains in the core, 3 of these contacting

side chains occur between the sub-units. When mutated to glutamic acid (K61E), the

number of contacting side chains is reduced to 3 with only 1 occurring between sub-units.

This mutation has, therefore, reduced the number of hydrophobic contacts across the

two sub-units, resulting in a lower unfolding force relative to the wild type. The contact

map for ProtL Kx6E is shown in figure 6.4. Only this one mutation (K61E) of the 6

mutations (K23E, K28E, K41E, K42E, K54E and K61E) is shown to change the number

of contacting side chains occur between the sub-units.

Only one of the positions of mutations of ProtL Ex6D (E46D) has a contacting side

chain that occurs between the sub-units of protein L. These mutations are therefore

unlikely to modify the mechanical properties of protein L. This agrees with the SMFS

data collected.

This study supports the claims by Sadler et al. that modulating the hydrophobic

contacts across mechanical interfaces may be a generic method to tune the mechanical

strength of a protein [145].
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Figure 6.4: Contact maps of ProtL WT and ProtL Kx6E. The contact maps of
ProtL WT (bottom left) and ProtL Kx6E (top right). Side-chain contacts (nearest distance
between atoms of two residues <5 Å, calculated by CSU software) made by pairs of amino
acids within structural unit 1 (β I + II and the helix - white) or within structural unit 2 (β
III + IV - grey) [201]. Contacts made between the structural units of ProtL WT are shown
in blue and contacts made between the structural units of ProtL Kx6E are shown in purple.
β-strands are shown as arrows and α-helices are shown as rectangles alongside each contact
map. The two structural units are coloured white (unit 1) and grey (unit 2) in each protein
and are also shown superimposed onto the three-dimensional structure of ProtL WT(left)
and ProtL Kx6E (right).
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6.3 How does an increase in salt concentration affect pro-

tein mechanical properties?

Chapter 4 presents the work carried out on ProtL WT and ProtL Kx6E. The chap-

ter presents the SMFS data collected for two hetero-polyprotein constructs, (I27-ProtL

WT)3-I27 and (I27-ProtL Kx6E)3-I27, at four pulling velocities and two KCl concentra-

tions (0.5 M and 2 M KCl).

Previous studies that have examined the effect salt concentration for me-

chanical protein unfolding

A few studies have studied the effect salt concentration for mechanical unfolding

or other SMFS studies [210–214]. One study by Leake et al. used optical tweezers to

measure the change in persistence length of the protein (0.4-2.7 nm) by increasing the

ionic strength (from 15 to 300 mM) of its environment [210]. Another study, carried

out by Zhang et al. examined the salt dependent binding of single–stranded DNA to

Bacillus subtilis DNA-Binding Protein, using a NaCl concentrations of 0.1 M and 0.5

M, reporting a higher unbinding force in 0.5 M NaCl [213]. A very interesting study by

Pirzer et al. used SMFS experiments to probe the influence of a number of salts from the

Hofmiester series on the adhesion of recombinant spider silk proteins onto various solid

substrates [212]. A spider silk protein was covalently bound at one end to an AFM tip

and was brought into contact with a substrate and the desorption force was measured.

The study showed a small rise in the desorption forces with the kosmotropicity of the

anions (at a concentration of 1 M salt) from 80 ± 2 pN for NaClO4 to 87 ± 2 pN for

NaF. By contrast, the kosmotropicity of the cations was found not to have any effect

on the desorption force. The study also observed that the force measured had a linear

dependence on the concentration of three salts (NaCl, NaH2PO4 and NaI) from 0 M to

4 M salt. NaI was found to reduce desorption force with increasing salt concentration

and NaH2PO4 and NaI were both found to increase desorption force with increasing salt

concentration. Finally a study by Gronau at al. used steered molecular dynamics to

simulate the response of a spider silk protein domain under mechanical force [214]. They

225



reported a lower unfolding force for the protein dimer in 0.5 M NaCl than 0 M NaCl (266

and 383 pN respectively) due to the breaking of the salt bridges at the interface between

to two monomers in the higher salt concentration. None of these studies measure the

mechanical strength of a protein in a salt concentration of 2 M.

What effect does an increased salt concentration have on the mechanical

stability of a mesophilic and a halophilic protein?

This section will discuss the speed dependence diagrams from the first set of data

analysis carried out, which was presented in section 4.7. The comparison of all of the

mean unfolding forces for these data is shown in figure 4.28. Although the data collected

in 2 M KCl does not form an accurate speed dependence plot as expected, i.e. all

data points do not lie on the linear fit, it was possible to form hypotheses based on the

presented speed dependence diagrams.

In the present study, ProtL Kx6E was shown to be mechanically weaker than ProtL

WT in 0.5 M KCl. This trend was shown to remain at 2 M KCl (figure 4.28 B) and

C)). Figure 4.29 depicts the change in the unfolding force from 0.5 M to 2 M KCl for

each protein as a percentage of the unfolding force of the protein in 0.5 M KCl. The

figure highlights the consistent increase in unfolding force of I27 from both constructs

and ProtL WT, i.e. all 3 mesophilic proteins, from 0.5 to 2 M salt. The average increases

were calculated as 8.6% for ProtL WT, 13.1% for I27 (WT) and 6.8% for I27 (Kx6E).

ProtL Kx6E does not show a consistent increase in force from 0.5 M to 2 M KCl with a

average increase of 1.6%.

Section 1.2.4 discusses the effect of salt on a mesophilic protein including three mod-

els. These will be discussed in the context of this new data on protein L.

i) The electrostatic screening of surface charge-charge interactions. This theory is

only valid in low concentrations of salt, i.e. lower than about 100 mM. The effect of 2 M

KCl on the proteins, therefore, cannot be explained using electrostatic screening alone

(see section 1.2.4.1).

ii) The increase in the unfolding force in 2 M KCl, compared to 0.5 M KCl for the
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mesophilic proteins may be due to an ion specific binding effect. In order to check this

effect, the SMFS experiments would need to be carried out in a range of salts.

iii) The increase in the unfolding force in 2 M KCl, compared to 0.5 M KCl for the

mesophilic proteins may be due to the high concentrations of hydrated salt ions being

excluded from the protein surface, leading to an increase in the hydrophobic interactions

within the protein [65–67]. Increased hydrophobic interactions cause an increase in the

stability of a protein.

Changes in hydrophobic effects on the mechanical strength of a protein have pre-

viously been studied by SMFS. Two studies carried out by Sadler et al. and Bu et

al. studied the effects of mutations on the mechanical properties of a protein [145,215].

Both of these studies reported significant effects on the measured unfolding force due to

mutations within the hydrophobic core. One study by Dougan et al [151]. examined the

influence of the solvent on protein mechanical stability. They reported that hydrophobic

interactions are enhanced in D2O, which caused an increase in mechanical strength of the

protein. The results of this study provided the first single-molecule level measurement

of the influence of D2O on the hydrophobic effect during protein folding.

Why is it important for the stability of the obligate halophilic protein not

to increase in high salt?

SMFS in this project is used to measure the stability of a protein. However, nature

must balance protein stability with conformational flexibility to obtain optimal protein

function. The flexibility of a protein is closely linked to its function [216]. For a protein

to interact with another molecule, it must have the ability to change its conformation.

Any perturbation to the flexibility of protein may, therefore, interfere with its function.

Evidence of the reduced flexibility of a protein in salt has been shown previously by

Majumdar et al. who studied the effects of salts from the Hofmeister series on the local

flexibility of an IgG1 monoclonal antibody, using hydrogen/deuterium exchange with

mass spectrometry [217]. They showed that the addition of 0.5 M NaCl caused only a few

significant changes in the local flexibility, with an overall trend of decreased flexibility.
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The protein in 0.5 M Na2SO4 and 0.5 M NaSCN both exhibited an overall trend of

increased flexibility. For a protein to function in high salt it must, therefore, remain

flexible by overcoming the increased hydrophobic effect acting on the protein.

Negatively charged residues, especially aspartic acid have been shown to be char-

acteristic for flexible but ordered proteins [218]. Soluble halophilic enzymes have highly

negative surface charge densities, therefore, their flexibility may be achieved by repul-

sion between those charges [85]. Since ProtL Kx6E has an increased number of negatively

charged residues compared to ProtL WT, it may remain flexible in the high salt con-

centration, despite the increased hydrophobic interactions. This may explain why the

mechanical stability of the protein did not increase in 2 M KCl. Evidence of this effect

is shown in figure 4.29, where ProtL Kx6E does not show such a consistent increase in

force from 0.5 M to 2 M KCl. Further evidence of this effect is shown for the overlapping

linear fits for ProtL Kx6E in 0.5 M and 2 M KCl in the refined data analysis speed

dependence diagrams, figure 4.30.

Why does the change in thermodynamic stability of ProtL WT and ProtL

Kx6E in an increased salt concentration differ from the change in the mea-

sured mechanical stability?

The thermodynamic stability of ProtL WT, measured by Tadeo et al., was shown to

be independent of salt concentration [111]. The thermodynamic stability of ProtL Kx6E

was shown to increase with the concentration of NaCl (see section 4.1.1.1 for further de-

tails). It has been shown previously that the thermodynamic stability does not correlate

with the mechanical stability of a protein [139,219]. This is because the thermodynamic

stability is be defined as the difference in free energy between its folded and unfolded

states, whereas the mechanical stability describes the kinetic stability of localised areas

of the protein, i.e. the mechanical clamp [135]. It should also be mentioned that the

buffer Tadeo et al. used to measure the thermodynamic stability of the protein (20 mM

phosphate buffer at pH 6.0) is different to that used here to measure the mechanical

stability (5 mM MOPS, pH 7.4)
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6.3.1 Difficulties of SMFS experiments in a high concentration of salt

SMFS experiments carried out in 2 M KCl were found to be particularly difficult. The

number of protein unfolding events recorded for one day was significantly reduced (see

table 4.5). There are a number of factors that could be affecting the number of unfolding

events observed in a high salt environment over a certain time period. The salt could

interfere with the binding of the cysteine residues to the gold surface as the chemistry of

the sulphur-gold bonding is not fully understood [220]. In order to try and accommodate

for this possibility, the protein solution in 2 M KCl was incubated on the gold surface

for an hour instead of 30 minutes for the protein solution in 0.5 M KCl. Non-specific

interactions occur when the AFM tip comes into contact with the protein construct. A

high salt concentration might affect the strength of the interaction. If this interaction is

reduced, the protein will have less chance of binding to the tip and, therefore, a lower

hit rate will be observed.

6.4 Future directions

6.4.1 Production of a polyprotein containing HmFd

A future attempt at the expression of a polyprotein construct containing more repeats

of HmFd could be carried out using an expression system specifically designed for the

conditional overexpression of halophilic proteins in halophilic organisms [221–223]. A series

of plasmid vectors and host strains for this purpose were developed by Allers et al. in

Haloferax volcanii [221]. This organism was introduced in section 1.3.2.2. The plasmids

utilise a tryptophan–inducible promoter that promotes rapid and strong induction of

protein expression to increase protein yield.

Since the expression of I273-HmFd-I27 was previously shown to be successful, the

inclusion of only one HmFd domain in a polyprotein with four I27 domains must be

preferable. The polyprotein could be redesigned to move the HmFd domain further

away from the surface. This would decrease the chance of ‘non–specific’ interactions
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interfering with the HmFd unfolding pathway. The chimera polyprotein, I272-HmFd-

I272, would be an ideal candidate alternative since only three I27 domains would need

to unfold to be sure the HmFd domain had been subjected to force. This would make a

HmFd statistically more likely.

6.4.2 Further characterisation of ProtL Kx6E compared to ProtL WT

To further investigate the effect that mutating six lysine residues to glutamic acid residues

has on the stability of ProtL, the thermodynamic stability of the wild type and the ProtL

Kx6E variant could be measured. Although the study carried out by Tadeo et al., which

introduced ProtL Kx6E, does examine the thermodynamic stability, this is carried out

in a different buffer with NaCl instead of KCl. Since potassium is found in higher

concentrations than sodium in the cytoplasm of halophilic organisms, it is important

to characterise the protein in KCl [224]. These experiments should be performed using

Circular Dichroism (CD) and fluorescence spectroscopy.

CD spectroscopy is a form of light absorption spectroscopy that measures the in-

teractions of chiral molecules with circularly polarised light. Ellipticity is the unit of

CD and is recorded as a function of the wavelength of the light going through the sam-

ple. The absorption at particular wavelengths can give information about the secondary

structure of a protein [225]. CD spectroscopy can be used to follow the unfolding of a

protein as a function of temperature. As temperature is increased, the protein can un-

dergo conformational changes and the secondary structure may change. These changes

can, therefore, be measured using CD and the melting temperature, Tm, of the protein

can be calculated. Fluorescence spectroscopy measures the intensity of photons emitted

from a sample after it has absorbed photons. Fluorescence from the amino acid trypto-

phan has been shown to be sensitive to the polarity of its local environment [226]. The

native state of a protein can be altered by increasing the temperature, as the protein

unfolds, the tryptophan, previously buried in the hydrophobic core, can be exposed to

the solvent. Changes in intrinsic protein fluorescence can be used to monitor the protein

unfolding. Again, the Tm of the protein can be calculated. CD and fluorescence spec-
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troscopy are more high-throughput techniques so the thermodynamic stability of ProtL

WT and ProtL Kx6E could be measured by equilibrium denaturation, using urea or

guanidinium chloride, in a wider range of salt concentrations (or wider range of salts)

for a wider picture of how both proteins are affected by salt.

Monte Carlo (MC) simulations can be used to determine the underlying energy land-

scape parameters: ∆xU , the distance from the unfolded to the transition state and

kU , the unfolding rate at zero force. This enables the height of the TS to be deter-

mined [148,152,227]. The simulations are used to produce histograms of FUN for each pro-

tein domain (e.g. I27 and ProtL WT for (I27-ProtL WT)3-I27). For each pulling velocity,

the values of the unfolding rate constant at zero force, kU , and the distance between the

folded state and the transition state, ∆xU , are optimised iteratively until the values of

mean force and standard deviation of the peak unfolding force histograms agree with

the values obtained for the experimental data. The dependence of the mechanical force

of a protein on the pulling velocity should be described by a linear fit. The simulations

use this linear fit as well as the average spring constant of the cantilever, temperature,

persistence length, contour length, the linker length (the amino acids between proteins

in a polyprotein), the length of a single folded and unfolded protein domain and the dis-

tribution of forces generated. Since the FUN values measured for (I27-ProtL WT)3-I27)

and (I27-ProtL Kx6E)3-I27) in 0.5 M KCl do show a linear fit to the pulling velocity,

MC simulations could be used to extract values of kU and ∆xU and, therefore, learn

more about the energy landscape of the model halophilic protein, ProtL Kx6E.

The effect of the mutations on the structural properties of the unfolding transition

state of protein L compared to that of the wild type can be investigated using molecular

dynamics (MD) simulations. Mechanical unfolding of polyproteins can be modelled using

MD simulations. This technique has been used to gain atomistic detail of the unfolding

process of a number of proteins [29,146,156,204].

A larger mutation study could be carried out on Protein L to further examine the

effect of mutations on the mechanical stability of Protein L. The contact map, figure 6.4,

suggests that the mutation at position 61 is the cause of the lower unfolding force of ProtL
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Kx6E compared to ProtL WT. This hypothesis could be further examined by varying

the number of mutations of K to E carried out. It would be interesting to determine

if a mutation at position 61 alone resulted in the observed reduction of the mechanical

stability of the protein. If this is not the case, it would be interesting to quantify the

additional contribution of each sequential mutation to the reduced mechanical stability,

going from ProtL KxE to ProtL Kx6E.

SMFS experiments could be carried out on variants of the mutation position 61 in

Protein L. The mutation of lysine to glutamic acid varies both the length and charge of

the amino acid side chain. If the charge remained constant but the length of the side

chain was varied, would the unfolding force of Protein L change?

6.4.3 Examining the behaviour of a halophilic protein L in high salt

concentrations

A homo-polyprotein of a halophilic model protein, poly-ProtL Ex6D, formed by crosslink-

ing, was shown as a viable alternative construct to use in SMFS experiments in chapter

5. It was suggested that the construct could provide more data on a shorter timescale

and, therefore, increase the accuracy of data collected by providing enough data to use

a refined data analysis technique. In order to accurately characterise the mechanical

unfolding behaviour of ProtL Kx6E in higher salt concentrations, a homo-polyprotein

of ProtL Kx6E would, therefore, need to be produced. Once the mechanical unfolding

data has been collected and analysed using the refined analysis technique. If accurate

mechanical unfolding data is collected, Monte Carlo (MC) simulations could then be

used to determine the parameters controlling the energy landscape of the protein in an

increased salt concentration, as described above.

Modelling the data using MD simulations could again be used to gain atomistic detail

of the mechanical unfolding process of a protein in an increased salt concentration. These

simulations provide a method to experimentally map the structure of the transition state.

Obtaining atomistic details of the mechanical unfolding process of a halophilic protein in

a high and low concentration of salt could lead to a greater understanding of the effect
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of salt on the mechanical stability of a protein and the associated underlying molecular

mechanisms.

This study could be developed to examine the effect of the Hofmeister salts on the

mechanical stability of the protein. If the hypothesis that the increase in the concen-

tration of KCl causes an increase in the hydrophobic interactions within the protein

and, therefore, the mechanical stability of the protein, is correct, the properties of the

salt should affect the outcome. For example, would an increase in concentration of a

chaotropic salt cause a decrease in the mechanical stability of a mesophilic protein? Also

would an increase in an extremely kosmotropic salt cause a larger increase in the stability

of a mesophilic protein?

This project has shown that SMFS is a useful tool to examine the effect of salt on the

stability of a halophilic protein. Further study using SMFS experiments in combination

with MD simulations has the potential to gain atomistic information of the mechanical

unfolding behaviour of a halophilic protein in high and low salt concentrations.
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Appendix A

Supplementary information for

materials and methods

Primer name Nucleic acid sequence

HmFd F
caccatcaccatatggaaaacctgtactttcagggctgttctggctctccgaccgt

ggaatatctgaact
HmFd R

gtgatggtgggatccttaacagccagaaatcacgcggttctgcagataat

PL WT a75g atggatccacacaaactgcagagttcaaaggaacatttgaaaaag

PL WT a75g anti ctttttcaaatgttcctttgaactctgcagtttgtgtggatccat

PL WT a57t taacctaatctttgcaaatggttccacacaaactgcagaattc

PL WT a57t anti gaattctgcactttgtgtggaaccatttgcaaagattaggtta

PL Ex6D a57t taacctaatctttgcaaatggttccacacaaactgcagatttc

PL Ex6D a57t anti gaaatctgcagtttgtgtggaaccatttgcaaagattaggtta

PL WT F
catcaccatggatccggttgtggtgaagaagtaacaat

PL WT R
atggtgatggaattcctatccacaaaatttaatattttttgtat

PL Ex6D F
catcaccatggatccggttgtggtgatgatgtaacaat

Table A.1: All primers where red letters are non–complementary, underlined letters are
restriction sites, blue letters is a TEV site and green letters are linker regions (containing
cysteine).
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Protein Amino acid sequence

HmFd P T V E Y L N Y E V V D D N G W D M Y D D D
V F G E A S D M D L D D E D Y G S L E V N E
G E Y I L E A A E A Q G Y D W P F S C R A G
A C A N C A A I V L E G D I D M D M Q Q I L S
D E E V E D K N V R L T C I G S P D A D E V K
I V Y N A K H L D Y L Q N R V I

ProtL WT (Tadeo/hetero) M E E V T I K A N L I F A N G S T Q T A E F K
G T F E K A T S E A Y A Y A D T L K K D N G
E Y T V D V A D K G Y T L N I K F A G

ProtL WT (homo) M G C E V T I K A N L I F A N G S T Q T A E F
K G T F E K A T S E A Y A Y A D T L K K D N
G E W T V D V A D K G Y T L N I K F C G

ProtL Kx6E (hetero) M E E V T I K A N L I F A N G S T Q T A E F E
G T F E E A T S E A Y A Y A D T L E E D N G K
W T V D V A D E G Y T L N I E F A G

ProtL Ex6D (homo) M G C G D D V T I K A N L I F A N G S T Q T A
D F K G T F D K A T S D A Y A Y A D T L K K
D N G D W T V D V A D K G Y T L N I K F C G

Table A.2: Amino acid sequences of proteins used. Sequences do not include the His–tag
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Appendix B

Supplementary information for

Results 1

Figure B.1: Elution profile of the purification of MBP-HmFd on a Hi-Trap Q
column. The figure shows the absorbance in blue, the concentration of buffer 2 in green
and fraction number in red.
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Figure B.2: Elution profile of the purification of MBP-HmFd on a SOURCETM

15Q column. The figure shows the absorbance in blue, the concentration of buffer 2 in
green and fraction number in red.
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Appendix C

Supplementary information for

Results 2

Figure C.1: Elution profile of the purification of (I27-ProtL WT)3-I27 on a size
exclusion column. The figure shows the absorbance in blue and fraction number in red.
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Figure C.2: Elution profile of the purification of (I27-ProtL Kx6E)3-I27 on a
size exclusion column. The figure shows the absorbance in blue and fraction number in
red.

Figure C.3: Elution profile of the purification of (I27-ProtL Kx6E)3-I27 using
Ni-affinity chromatography in 6 M GdmCl. The figure shows the absorbance in blue
and fraction number in red.

Pulling velocity
(nms−1)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 96 136 23 110 178 23
700 114 146 23 134 179 24
1200 111 160 30 119 195 31
2000 119 165 25 127 201 28

Table C.1: Median unfolding force data and standard deviation in (I27-ProtL WT)3-I27
in 0.5M KCl, 5mM MOPS, pH 7.4.
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Figure C.4: Elution profile of the purification of (I27-ProtL Kx6E)3-I27 on a
size exclusion column at 4 ◦C. The figure shows the absorbance in blue and fraction
number in red.

Pulling velocity
(nms−1)

Events Mean p2p (nm) SD Events Mean p2p (nm) SD

ProtL I27

400 96 16.5 0.7 110 23.8 0.7
700 114 16.4 0.7 134 23.8 0.7
1200 111 16.6 0.8 119 23.9 0.8
2000 119 16.6 0.8 127 23.8 0.7

Table C.2: Mean peak to peak distance data and standard deviation in (I27-ProtL WT)3-
I27 in 0.5M KCl, 5mM MOPS, pH 7.4.

Pulling velocity
(nms−1)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 74 122 22 93 187 25
700 56 135 23 71 186 27
1200 75 139 25 106 189 33
2000 104 151 26 132 212 30

Table C.3: Median unfolding force data and standard deviation for (I27-ProtL Kx6E)3-I27
in 0.5M KCl, 5mM MOPS, pH 7.4.
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Figure C.5: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 at 4 pulling velocities in 0.5 M KCl. All figures show
ProtL WT in blue and I27 in light grey. Figures A), B), C) and D) show the data from
400, 700, 1200 and 2000 nms−1 respectively. The poly-protein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer. The ProtL WT and I27 points show a cluster around their respective
reference points. A reference value of unfolding force and peak to peak distance is shown as
a yellow square for ProtL WT and I27, error bars are negligible.

241



Figure C.6: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 at 4 pulling velocities in 0.5 M KCl. All figures show
ProtL Kx6E in purple and I27 in grey. Figures A), B), C) and D) show the data from 400,
700, 1200 and 2000 nms−1 respectively. The poly-protein was in 0.5 M KCl, 5 mM MOPS,
pH 7.4 buffer.
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Figure C.7: Histograms of the unfolding force data and peak to peak distance
data for poly-ProtL Kx6E at 400, 700, 1200 and 2000 nms−1 in 0.5 M KCl. All
figures show ProtL Kx6E in purple and I27 in grey. Figures A), B), C) and D) show the
peak to peak distance data and figures E), F), G) and H) show the unfolding force data
from each pulling velocity respectively. All histograms are fitted with a gaussian curve. The
poly-protein was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL Kx6E and I27.

243



Pulling velocity
(nms−1)

Events Mean p2p (nm) SD Events Mean p2p (nm) SD

ProtL I27

400 96 16.2 0.7 110 23.7 0.7
700 114 16.2 0.7 134 23.5 0.9
1200 111 16.2 0.8 119 23.7 0.7
2000 119 16.4 0.9 127 24.0 0.9

Table C.4: Mean peak to peak distance data and standard deviation in (I27-ProtL Kx6E)3-
I27 in 0.5M KCl, 5mM MOPS, pH 7.4.
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Pulling velocity
(nms−1)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 71 155 23 81 198 24
700 50 158 24 62 214 30
1200 82 173 32 92 224 29
2000 68 172 31 86 214 34

Table C.5: Median unfolding force data and standard deviation for (I27-ProtL WT)3-I27
in 2M KCl, 5mM MOPS, pH 7.4.

Pulling velocity
(nms−1)

Events Mean p2p (nm) SD Events Mean p2p (nm) SD

ProtL I27

400 96 16.7 0.7 110 23.9 0.7
700 114 16.8 0.7 134 24.1 0.7
1200 111 16.4 0.7 119 23.9 0.8
2000 119 16.7 0.8 127 24.0 0.8

Table C.6: Mean peak to peak distance data and standard deviation in (I27-ProtL WT)3-
I27 in 2 M KCl, 5mM MOPS, pH 7.4.

Pulling velocity
(nms−1)

Events Mean FUN (pN) SD Events Mean FUN (pN) SD

ProtL I27

400 8 143 14 11 201 16
700 49 136 22 67 201 33
1200 53 142 28 65 201 27
2000 23 154 24 30 224 34

Table C.7: Median unfolding force data and standard deviation for (I27-ProtL Kx6E)3-I27
in 2M KCl, 5mM MOPS, pH 7.4.
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Figure C.8: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 at 4 pulling velocities in 2 M KCl. All figures show ProtL
WT outlined in blue and I27 outlined in light grey. Figures A), B), C) and D) show the
data from 400, 700, 1200 and 2000 nms−1 respectively. The poly-protein was in 2 M KCl, 5
mM MOPS, pH 7.4 buffer.

246



Figure C.9: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 at 400, 700, 1200 and 2000 nms−1 in 2 M KCl.
All figures show ProtL WT outlined in blue and I27 outlined in light grey. Figures A), B),
C) and D) show the peak to peak distance data and figures E), F), G) and H) show the
unfolding force data from each pulling velocity respectively. All histograms are fitted with
a gaussian curve. The poly-protein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The
number of unfolding events and modal unfolding force of the gaussian fit are displayed on
each histogram for ProtL WT and I27.
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Figure C.10: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 at 400, 700, 1200 and 2000 nms−1 in 2 M KCl. All
figures show ProtL Kx6E outlined in purple and I27 outlined in grey. Figures A), B), C)
and D) show the data from each pulling velocity respectively. The poly-protein was in 2 M
KCl, 5 mM MOPS, pH 7.4 buffer.
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Figure C.11: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 at 400, 700, 1200 and 2000 nms−1 in 2 M KCl.
All figures show ProtL Kx6E outlined in purple and I27 outlined in grey. Figures A), B),
C) and D) show the peak to peak distance data and figures E), F), G) and H) show the
unfolding force data from each pulling velocity respectively All histograms are fitted with
a gaussian curve. The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The
number of unfolding events and modal unfolding force of the gaussian fit are displayed on
each histogram for ProtL Kx6E and I27.
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Pulling velocity
(nms−1)

Events Mean p2p (nm) SD Events Mean p2p (nm) SD

ProtL I27

400 96 16.4 0.6 110 24.0 0.5
700 114 16.5 0.7 134 24.1 0.6
1200 111 16.4 0.8 119 23.5 0.7
2000 119 16.6 0.8 127 24.1 0.8

Table C.8: Mean peak to peak distance data and standard deviation in (I27-ProtL Kx6E)3-
I27 in 2 M KCl, 5mM MOPS, pH 7.4.

Figure C.12: Speed dependence diagram of the unfolding force vs. log10(pulling
velocity) for all 4 systems in one. The figure shows the speed dependence of (I27-ProtL
WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M and 2 M KCl. The linear fit for each set of
data is also plotted as full lines in 0.5 M KCl and dashed lines in 2 M KCl.
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Pulling velocity
(nms−1)

Events Median FUN (pN) SD events Median FUN (pN) SD

ProtL I27

400 36 135 22 42 171 21
400 31 136 20 35 182 20
400 29 135 26 33 183 25

135 1 179 4

700 49 142 24 55 176 21
700 29 155 25 43 188 27
700 36 147 19 36 178 24

148 4 180 4

1200 19 154 30 24 195 29
1200 43 162 33 47 197 31
1200 49 160 26 48 193 31

159 3 195 1

2000 36 169 24 39 197 34
2000 39 161 25 43 197 24
2000 44 176 23 45 205 24

169 4 200 3

Table C.9: Median unfolding force data and standard deviation for (I27-ProtL WT)3-I27
in 0.5M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and standard
error of the 3 unfolding force values for each pulling velocity
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Pulling velocity
(nms−1)

Events Mean p2p (nm) SD events Mean p2p (nm) SD

ProtL I27

400 36 16.6 0.6 42 23.9 0.7
400 31 16.6 0.8 35 23.6 0.7
400 29 16.1 0.6 33 23.7 0.6

16.5 0.1 23.8 0.1

700 49 16.2 0.7 55 23.8 0.6
700 29 16.6 0.7 43 23.8 0.7
700 36 16.6 0.7 36 23.8 0.7

16.4 0.1 23.8 0

1200 19 16.7 0.8 24 24.1 1.1
1200 43 16.6 0.8 47 23.8 0.6
1200 49 16.6 0.7 48 23.9 0.7

16.6 0 23.9 0.1

2000 36 16.5 0.8 39 24.0 0.7
2000 39 16.6 0.7 43 23.8 0.8
2000 44 16.7 0.8 45 23.7 0.7

16.6 0.1 23.8 0.1

Table C.10: Mean peak to peak distance data and standard deviation for (I27-ProtL
WT)3-I27 in 0.5M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean
and standard error of the 3 peak to peak distance values for each pulling velocity
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Pulling velocity
(nms−1)

Events Median FUN (pN) SD events Median FUN (pN) SD

ProtL I27

400 39 135 21 46 189 21
400 28 134 25 32 182 24
400 35 121 20 39 184 29

130 5 185 2

700 21 138 26 25 183 32
700 20 126 17 27 188 34
700 15 144 19 19 186 20

136 6 186 2

1200 19 143 25 27 210 25
1200 31 135 23 42 188 40
1200 25 139 25 37 181 25

139 2 193 9

2000 29 161 29 40 210 39
2000 44 145 25 54 209 23
2000 31 155 24 38 215 28

154 3 212 2

Table C.11: Median unfolding force data and standard deviation for (I27-ProtL Kx6E)3-
I27 in 0.5M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and
standard error of the 3 unfolding force values for each pulling velocity
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Pulling velocity
(nms−1)

Events Mean p2p (nm) SD events Mean p2p (nm) SD

ProtL I27

400 39 16.4 0.7 46 23.6 0.7
400 28 16.1 0.8 32 23.8 0.8
400 35 16.2 0.6 39 23.5 0.6

16.2 0.1 23.7 0.1

700 21 15.9 0.6 25 22.9 0.7
700 20 16.3 0.7 27 23.8 0.8
700 15 16.3 0.5 19 23.8 0.9

16.2 0.2 23.5 0.2

1200 19 16.3 0.7 27 23.9 0.5
1200 31 15.9 0.5 42 23.5 0.7
1200 25 16.4 0.9 37 23.9 0.7

16.2 0.1 23.8 0.1

2000 29 16.8 0.9 40 23.8 1.0
2000 44 16.2 0.9 54 24.1 0.8
2000 31 16.2 0.9 38 23.9 0.8

16.4 0.2 24.0 0

Table C.12: Mean peak to peak distance data and standard deviation for (I27-ProtL
Kx6E)3-I27 in 0.5M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean
and standard error of the 3 peak to peak distance values for each pulling velocity

Pulling velocity
(nms−1)

Events Median FUN (pN) SD events Median FUN (pN) SD

400 32 158 26 41 202 22
400 29 149 23 36 194 30

154 4 198 3

700 17 151 18 20 206 38
700 30 156 25 35 223 31

157 2 213 7

1200 32 177 33 36 231 22

177 6 231 4

2000 27 163 26 40 222 34

163 5 222 5

Table C.13: Median unfolding force data and standard deviation for (I27-ProtL WT)3-I27
in 2 M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and standard
error of the unfolding force values for each pulling velocity
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Pulling velocity
(nms−1)

Events Mean p2p (pN) SD events Mean p2p (pN) SD

400 32 16.9 0.7 41 24.1 0.7
400 29 16.4 0.7 36 23.7 1.7

16.6 0.2 23.9 0.1

700 17 17.0 0.6 20 24.0 0.7
700 30 16.6 0.7 35 24.0 0.6

16.8 0.2 24.0 0

1200 32 16.3 0.7 36 23.8 0.6

16.3 0.1 23.8 0.1

2000 27 16.6 0.8 40 24.1 0.7

16.6 0.2 24.1 0.1

Table C.14: Mean peak to peak distance data and standard deviation for (I27-ProtL
WT)3-I27 in 2 M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and
standard error of the unfolding force values for each pulling velocity

Pulling velocity
(nms−1)

Events Median FUN (pN) SD events Median FUN (pN) SD

ProtL I27

700 34 131 23 43 188 27
700 16 142 16 23 212 28

137 4 200 10

1200 25 142 26 32 203 34

142 7 203 5

2000 17 151 32 23 226 34
2000 10 155 15 15 247 30

153 2 236 8

Table C.15: Median unfolding force data and standard deviation for (I27-ProtL Kx6E)3-
I27 in 2 M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean and
standard error of the unfolding force values for each pulling velocity
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Pulling velocity
(nms−1)

Events Mean p2p (nm) SD events Mean p2p (nm) SD

ProtL I27

700 34 16.7 0.7 43 24.3 0.5
700 16 16.2 0.6 23 23.8 0.7

16.5 0.2 24.1 0.2

1200 25 16.3 0.9 32 23.3 0.7

16.3 0.2 23.3 0.1

2000 17 16.7 0.6 23 24.2 0.8
2000 10 16.4 0.9 15 24.0 0.7

16.6 0.2 24.1 0.1

Table C.16: Mean peak to peak distance data and standard deviation for (I27-ProtL
Kx6E)3-I27 in 2 M KCl, 5mM MOPS, pH 7.4. The numbers quoted in bold are the mean
and standard error of the unfolding force values for each pulling velocity
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Figure C.13: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 400 nms−1. All figures show ProtL WT in blue and I27 in light grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.14: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 400 nms−1. All figures show ProtL WT in blue and I27 in light grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.15: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 1200 nms−1. All figures show ProtL WT in blue and I27 in light grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.16: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 2000 nms−1. All figures show ProtL WT in blue and I27 in light grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.17: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 400 nms−1. All figures show ProtL Kx6E in purple and I27 in grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.18: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 700 nms−1. All figures show ProtL Kx6E in purple and I27 in grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.19: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 1200 nms−1. All figures show ProtL Kx6E in purple and I27 in grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.20: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 0.5 M KCl at a pulling
velocity of 2000 nms−1. All figures show ProtL Kx6E in purple and I27 in grey. Figures
A), B) and C) show the data from each data set. The polyprotein was in 0.5 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.21: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 with separated data sets in 2 M KCl at a pulling
velocity of 400 nms−1. All figures show ProtL WT outlined in blue and I27 outlined in
light grey. Figures A) and B) show the data from each data set. The polyprotein was in 2
M KCl, 5 mM MOPS, pH 7.4 buffer.
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Figure C.22: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL WT)3-I27 with separated data sets in 2 M KCl at a pulling
velocity of 700 nms−1. All figures show ProtL WT outlined in blue and I27 outlined in
light grey. Figures A) and B) show the data from each data set. The polyprotein was in 2
M KCl, 5 mM MOPS, pH 7.4 buffer.

Figure C.23: Scatter diagram of the unfolding force vs. peak to peak distance for
(I27-ProtL WT)3-I27 with separated data sets in 2 M KCl at a pulling velocity
of 1200 nms−1. All figures show ProtL WT outlined in blue and I27 outlined in light
grey. The figure shows the data from one data set. The polyprotein was in 2 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.24: Scatter diagram of the unfolding force vs. peak to peak distance for
(I27-ProtL WT)3-I27 with separated data sets in 2 M KCl at a pulling velocity
of 2000 nms−1. All figures show ProtL WT outlined in blue and I27 outlined in light
grey. The figure shows the data from one data set. The polyprotein was in 2 M KCl, 5 mM
MOPS, pH 7.4 buffer.
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Figure C.25: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 2 M KCl at a pulling
velocity of 700 nms−1. All figures show ProtL WT outlined in purple and I27 outlined
in grey. Figures A) and B) show the data from each data set. The polyprotein was in 2 M
KCl, 5 mM MOPS, pH 7.4 buffer.
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Figure C.26: Scatter diagram of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 2 M KCl at a pulling
velocity of 1200 nms−1. All figures show ProtL Kx6E outlined in purple and I27 outlined
in grey. The figure shows the data from one data set. The polyprotein was in 2 M KCl, 5
mM MOPS, pH 7.4 buffer.

Figure C.27: Scatter diagrams of the unfolding force vs. peak to peak distance
for (I27-ProtL Kx6E)3-I27 with separated data sets in 2 M KCl at a pulling
velocity of 2000 nms−1. All figures show ProtL WT outlined in purple and I27 outlined
in grey. Figures A) and B) show the data from each data set. The polyprotein was in 2 M
KCl, 5 mM MOPS, pH 7.4 buffer.
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Figure C.28: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 400 nms−1 in 0.5 M
KCl. All figures show ProtL WT in blue and I27 in light grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL WT and I27.
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Figure C.29: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 700 nms−1 in 0.5 M
KCl. All figures show ProtL WT in blue and I27 in light grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL WT and I27.
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Figure C.30: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 1200 nms−1 in 0.5 M
KCl. All figures show ProtL WT in blue and I27 in light grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL WT and I27.
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Figure C.31: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 2000 nms−1 in 0.5 M
KCl. All figures show ProtL WT in blue and I27 in light grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL WT and I27.
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Figure C.32: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 400 nms−1 in 0.5 M
KCl. All figures show ProtL Kx6E in purple and I27 in grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL Kx6E and I27.
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Figure C.33: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 700 nms−1 in 0.5 M
KCl. All figures show ProtL Kx6E in purple and I27 in grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL Kx6E and I27.
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Figure C.34: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 1200 nms−1 in 0.5 M
KCl. All figures show ProtL Kx6E in purple and I27 in grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL Kx6E and I27.
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Figure C.35: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 2000 nms−1 in 0.5 M
KCl. All figures show ProtL Kx6E in purple and I27 in grey. Figures A), B) and C) show
the peak to peak distance data and figures D), E) and F) show the unfolding force data from
each data set respectively. All histograms are fitted with a gaussian curve. The polyprotein
was in 0.5 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding events and modal
unfolding force of the gaussian fit are displayed on each histogram for ProtL Kx6E and I27.
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Figure C.36: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 400 nms−1 in 2 M KCl.
All figures show ProtL WT outlined in blue and I27 outlined in light grey. Figures A), B)
and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL WT and I27.
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Figure C.37: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 700 nms−1 in 2 M KCl.
All figures show ProtL WT outlined in blue and I27 outlined in light grey. Figures A), B)
and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL WT and I27.

Figure C.38: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 1200 nms−1 in 2 M
KCl. All figures show ProtL WT outlined in blue and I27 outlined in light grey. Figures A),
B) and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL WT and I27.
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Figure C.39: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL WT)3-I27 with separated data sets at 2000 nms−1 in 2 M
KCl. All figures show ProtL WT outlined in blue and I27 outlined in light grey. Figures A),
B) and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL WT and I27.

Figure C.40: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 700 nms−1 in 2 M
KCl. All figures show ProtL Kx6E outlined in purple and I27 outlined in grey. Figures A),
B) and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL Kx6E and I27.
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Figure C.41: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 1200 nms−1 in 2 M
KCl. All figures show ProtL Kx6E outlined in purple and I27 outliined in grey. Figures A),
B) and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL Kx6E and I27.

Figure C.42: Histograms of the unfolding force data and peak to peak distance
data for (I27-ProtL Kx6E)3-I27 with separated data sets at 2000 nms−1 in 2 M
KCl. All figures show ProtL Kx6E outlined in purple and I27 outlined in grey. Figures A),
B) and C) show the peak to peak distance data and figures D), E) and F) show the unfolding
force data from each data set respectively. All histograms are fitted with a gaussian curve.
The polyprotein was in 2 M KCl, 5 mM MOPS, pH 7.4 buffer. The number of unfolding
events and modal unfolding force of the gaussian fit are displayed on each histogram for
ProtL Kx6E and I27.
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Figure C.43: Speed dependence diagram of the unfolding force vs. log10(pulling
velocity) for the refined analysis of all 4 systems in one. The figure shows the speed
dependence of (I27-ProtL WT)3-I27 and (I27-ProtL Kx6E)3-I27 in 0.5 M and 2 M KCl. The
linear fit for each set of data is also plotted as full lines in 0.5 M KCl and dashed lines in 2
M KCl.
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Appendix D

Supplementary information for

Results 3

The data from the 3 experiments was then pooled together to see if there was an effect

in the final values. The unfolding force and the peak to peak distances are shown in

tablesD.1 and D.2 respectively.

Protein No. events Mean FUN (pN) Median FUN (pN) SD

ProtL WT 101 133 133 27

Table D.1: Pooled unfolding force data and standard deviation for poly-ProtL WT at 400
nms−1 in PBS buffer.

Protein No. events Mean p2p (nm) Median p2p (nm) SD

ProtL WT 101 16.4 16.3 1.0

Table D.2: Pooled peak to peak distance data and standard deviation for poly-ProtL WT
at 400 nms−1 in PBS buffer.

The data was again plotted in a scatter diagram showing the unfolding force for each

protein unfolding event against the measured peak to peak distance for each experi-

ment(figure D.1.
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A histogram was then produced for the unfolding force data and the peak to peak

distances for the pooled data. Figure D.2 shows both histograms can be fitted correctly

with a gaussian curve.

Figure D.1: Scatter diagram of the pooled unfolding force vs. peak to peak
distance data for poly-ProtL WT The figure, where ProtL WT is blue, shows a clear
cluster for the combined ProtL WT data.

Figure D.2: Histograms of the pooled unfolding force data and peak to peak dis-
tance data for poly-ProtL WT. Both figures show ProtL WT in blue. Both histograms
are fitted with a gaussian curve. The poly-protein was in 63 mM sodium phosphate, pulled
at a rate of 400 nms−1.
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Figure D.3: Elution profile of the purification of poly-ProtL Ex6D on a size
exclusion column. The figure shows the absorbance in blue and fraction number in red.
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[68] K.B. Rembert, J. Paterová, J. Heyda, C. Hilty, P. Jungwirth, and P.S. Cre-
mer. Molecular mechanisms of ion-specific effects on proteins. J. Am. Chem.
Soc., 134(24):10039–10046, 2012. doi: 10.1021/ja301297g. URL http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=
AbstractPlus&list_uids=22687192$\delimiter"026E30F$npapers:
//6ef7d602-1904-44f2-bd27-ffa0776e3fdb/Paper/p298.

291

http://pubs.acs.org/doi/pdf/10.1021/ja073097z
http://pubs.acs.org/doi/pdf/10.1021/ja073097z
http://dx.doi.org/10.1016/S0006-3495(04)74298-8
http://linkinghub.elsevier.com/retrieve/pii/S1367593106001517
http://linkinghub.elsevier.com/retrieve/pii/S1367593106001517
http://www.ncbi.nlm.nih.gov/pubmed/19685917
http://pubs.rsc.org/en/content/articlepdf/2011/cp/c1cp20538b
http://link.springer.com/10.1007/s00775-014-1145-2
http://link.springer.com/10.1007/s00775-014-1145-2
http://www.sciencedirect.com/science/article/pii/S0076687994400679
http://www.sciencedirect.com/science/article/pii/S0076687994400679
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1233672/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1233672/
http://www.ncbi.nlm.nih.gov/pubmed/10570954
http://www.ncbi.nlm.nih.gov/pubmed/10570954
http://pubs.acs.org/doi/pdf/10.1021/jp800816a
http://pubs.acs.org/doi/pdf/10.1021/jp800816a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=22687192$\delimiter "026E30F $npapers://6ef7d602-1904-44f2-bd27-ffa0776e3fdb/Paper/p298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=22687192$\delimiter "026E30F $npapers://6ef7d602-1904-44f2-bd27-ffa0776e3fdb/Paper/p298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=22687192$\delimiter "026E30F $npapers://6ef7d602-1904-44f2-bd27-ffa0776e3fdb/Paper/p298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=22687192$\delimiter "026E30F $npapers://6ef7d602-1904-44f2-bd27-ffa0776e3fdb/Paper/p298


[69] G. Ortega, T. Diercks, and O. Millet. Halophilic Protein Adaptation Results from
Synergistic Residue-Ion Interactions in the Folded and Unfolded States. Chemistry
& Biology, pages 1597–1607, 2015. doi: 10.1016/j.chembiol.2015.10.010. URL
http://linkinghub.elsevier.com/retrieve/pii/S1074552115004147.

[70] D.J. Kushner. Life in High Salt and Solute Concentrations. In Microbial Life
in Extreme Environments, pages 317–368. Academic Press, London, 1978. doi:
DOI:10.1002/jobm.19790190621.

[71] M.B.V. Roberts. Biology: A Functional Approach. Biology Series. Nelson Thornes,
Cheltenham, 1986.

[72] D.D. Martin, R.A. Ciulla, and M.F. Roberts. Osmoadaptation in archaea. Applied
and environmental microbiology, 65(5):1815–1825, 1999. URL http://aem.asm.
org/content/65/5/1815.short.

[73] P.H. Yancey, M.E. Clark, S.C. Hand, R.D. Bowlus, and G.N. Somero. Living with
water stress: evolution of osmolyte systems. Science, 217(4566):1214–1222, 1982.
doi: 10.1126/science.7112124. URL http://www.sciencemag.org/content/217/
4566/1214.full.pdf.

[74] J.H. Christian and J.A. Waltho. Solute concentrations within cells of halophilic
and non-halophilic bacteria. Biochim. Biophys. Acta, 65:506–508, 1962. doi:
10.1016/0006-3002(62)90453-5. URL http://www.sciencedirect.com/science/
article/pii/0006300262904535.

[75] J.K. Lanyi. Salt-dependent properties of proteins from extremely
halophilic bacteria. Bacteriol. Rev., 38(3):272–90, 1974. URL http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=413857&tool=
pmcentrez&rendertype=abstract.

[76] H. Eisenberg, M. Mevarech, and G. Zaccai. Advances in Protein Chem-
istry Volume 43. In Advances in Protein Chemistry, volume 43 of Advances
in Protein Chemistry, pages 1–62. Elsevier, Amsterdam, 1992. doi: 10.
1016/S0065-3233(08)60553-7. URL http://www.sciencedirect.com/science/
article/pii/S0065323308605537.

[77] P. Von Hippel and T. Schleich. The Effects of Neutal Salts on the Stuctural
and Conformational Stability of Macromolecules in Solution. In Structure and
stability of biological macromolecules, pages 417–575. Dekker, New York, 1969.
doi: 10.1016/0032-3861(69)90115-3.

[78] G. Zaccai, E. Wachtel, and H. Eisenberg. Solution structure of halophilic malate
dehydrogenase from small-angle neutron and X-ray scattering and ultracentrifuga-
tion. J. Mol. Biol., 190(1):97–106, 1986. doi: 10.1016/0022-2836(86)90078-1. URL
http://www.sciencedirect.com/science/article/pii/0022283686900781.

[79] G. Zaccai, F. Cendrin, Y. Haik, N. Borochov, and H. Eisenberg. Stabilization
of halophilic malate dehydrogenase. J. Mol. Biol., 208(3):491–500, 1989. doi:
10.1016/0022-2836(89)90512-3. URL http://www.sciencedirect.com/science/
article/pii/0022283689905123.

[80] F. Bonnete, C. Ebel, G. Zaccai, and H. Eisenberg. Biophysical study of halophilic
malate dehydrogenase in solution: revised subunit structure and solvent inter-
actions of native and recombinant enzyme. J. Chem. Soc., Faraday Trans., 89:

292

http://linkinghub.elsevier.com/retrieve/pii/S1074552115004147
http://aem.asm.org/content/65/5/1815.short
http://aem.asm.org/content/65/5/1815.short
http://www.sciencemag.org/content/217/4566/1214.full.pdf
http://www.sciencemag.org/content/217/4566/1214.full.pdf
http://www.sciencedirect.com/science/article/pii/0006300262904535
http://www.sciencedirect.com/science/article/pii/0006300262904535
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=413857&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=413857&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=413857&tool=pmcentrez&rendertype=abstract
http://www.sciencedirect.com/science/article/pii/S0065323308605537
http://www.sciencedirect.com/science/article/pii/S0065323308605537
http://www.sciencedirect.com/science/article/pii/0022283686900781
http://www.sciencedirect.com/science/article/pii/0022283689905123
http://www.sciencedirect.com/science/article/pii/0022283689905123


2659–2666, 1993. doi: 10.1039/FT9938902659. URL http://dx.doi.org/10.
1039/FT9938902659.

[81] O. Dym, M. Mevarech, and J.L. Sussman. Structural features that stabi-
lize halophilic malate dehydrogenase from an archaebacterium. Science, 267
(5202):1344–1346, 1995. doi: 10.1126/science.267.5202.1344. URL http://www.
sciencemag.org/content/267/5202/1344.abstract.

[82] D. Madern, C. Pfister, and G. Zaccai. Mutation at a single acidic amino acid en-
hances the halophilic behaviour of malate dehydrogenase from Haloarcula maris-
mortui in physiological salts. Eur. J. Biochem., 230:1088–1095, 1995. doi:
10.1111/j.1432-1033.1995.tb20659.x. URL http://onlinelibrary.wiley.com/
doi/10.1111/j.1432-1033.1995.1088g.x/pdf.

[83] D. Madern and G. Zaccai. Stabilisation of halophilic malate dehydrogenase from
Haloarcula marismortui by divalent cations: effects of temperature, water iso-
tope, cofactor and pH. Eur. J. Biochem., 249(2):607–611, 1997. doi: 10.1111/j.
1432-1033.1997.00607.x. URL http://onlinelibrary.wiley.com/doi/10.1111/
j.1432-1033.1997.00607.x/pdf.

[84] D. Madern, C. Ebel, M. Mevarech, S.B. Richard, C. Pfister, and G. Zaccai. In-
sights into the molecular relationships between malate and lactate dehydrogenases:
Structural and biochemical properties of monomeric and dimeric intermediates of
a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic ar-
chaeon Halo. Biochemistry, 39(5):1001–1010, 2000. doi: 10.1021/bi9910023. URL
http://pubs.acs.org/doi/pdf/10.1021/bi9910023.

[85] M. Mevarech, F. Frolow, and L.M. Gloss. Halophilic enzymes: proteins with a grain
of salt. Biophys. Chem.., 86(2):155–164, 2000. doi: 0.1016/S0301-4622(00)00126-5.
URL http://www.ncbi.nlm.nih.gov/pubmed/11026680.

[86] S.B. Richard, D. Madern, E. Garcin, and G. Zaccai. Halophilic adaptation: Novel
solvent protein interactions observed in the 2.9 and 2.6 ÅResolution structures of
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let. Structural Basis for the Aminoacid Composition of Proteins from Halophilic
Archea. PLoS Biol., 7(12):e1000257, 2009. doi: 10.1371/journal.pbio.1000257.
URL http://dx.plos.org/10.1371/journal.pbio.1000257.

295

http://www.ncbi.nlm.nih.gov/pubmed/18313895
http://www.ncbi.nlm.nih.gov/pubmed/18313895
http://pubs.acs.org/doi/pdf/10.1021/bi0485169
http://pubs.acs.org/doi/pdf/10.1021/bi0485169
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1300954&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1300954&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406782
http://www.nature.com/nsmb/journal/v3/n5/pdf/nsb0596-452.pdf
http://www.nature.com/nsmb/journal/v3/n5/pdf/nsb0596-452.pdf
http://www.pnas.org/content/86/3/835.full.pdf
http://www.pnas.org/content/86/3/835.full.pdf
http://link.springer.com/article/10.1007%2FBF00763220
http://www.sciencedirect.com/science/article/pii/0003986178900565
http://www.sciencedirect.com/science/article/pii/0003986178900565
http://www.sciencedirect.com/science/article/pii/S0022283698919040
http://www.sciencedirect.com/science/article/pii/S0022283698919040
http://dx.plos.org/10.1371/journal.pbio.1000257


[112] J. Qvist, G. Ortega, X. Tadeo, O. Millet, and B. Halle. Hydration dynamics of
a halophilic protein in folded and unfolded states. J. Phys. Chem. B, 116(10):
3436–3444, 2012. doi: 10.1021/jp3000569. URL http://pubs.acs.org/doi/pdf/
10.1021/jp3000569.

[113] A. Siglioccolo, A. Paiardini, M. Piscitelli, and S. Pascarella. Structural adaptation
of extreme halophilic proteins through decrease of conserved hydrophobic contact
surface. BMC Struct. Biol., 11(1):50, 2011. doi: 10.1186/1472-6807-11-50. URL
http://www.biomedcentral.com/1472-6807/11/50.
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[178] G. Žoldák and M. Rief. Force as a single molecule probe of multidimensional
protein energy landscapes. Curr. Opin. Struct. Biol., 23(1):48–57, 2013. doi:
10.1016/j.sbi.2012.11.007. URL http://linkinghub.elsevier.com/retrieve/
pii/S0959440X12001911.

[179] A. Galer-Prat, A. Gomez-Sicilia, A.F. Oberhauser, and M. Carrion-Vazquez. Un-
derstanding biology by stretching proteins: recent progress. Curr. Opin. Struct.
Biol., 20(1):63–69, 2010. doi: 10.1016/j.sbi.2010.01.003. URL http://www.ncbi.
nlm.nih.gov/pubmed/20138503.

[180] T. Bornschlögl and M. Rief. Single-molecule dynamics of mechanical coiled-coil
unzipping. Langmuir, 24(4):1338–1342, 2008. doi: 10.1021/la7023567. URL http:
//pubs.acs.org/doi/pdf/10.1021/la7023567.

[181] P. Zheng and H. Li. Direct measurements of the mechanical stability
of zinc-thiolate bonds in rubredoxin by single-molecule atomic force mi-
croscopy. Biophys. J., 101(6):1467–73, 2011. doi: 10.1016/j.bpj.2011.08.
021. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
3177063&tool=pmcentrez&rendertype=abstract.

[182] P. Zheng, S.I.J. Takayama, A.G. Mauk, and H. Li. Hydrogen bond strength
modulates the mechanical strength of ferric-thiolate bonds in rubredoxin. J.
Amer. Chem. Soc., 134(9):4124, 2012. doi: 10.1021/ja2078812. URL http:
//pubs.acs.org/doi/pdf/10.1021/ja2078812.

[183] P. Zheng, C. Chou, Y. Guo, Y. Wang, and H. Li. Single Molecule Force Spec-
troscopy Reveals the Molecular Mechanical Anisotropy of the FeS 4 Metal Center
in Rubredoxin. J. Amer. Chem. Soc., 134:17783–17792, 2013. doi: dx.doi.org/10.
1021/ja406695g. URL http://pubs.acs.org/doi/pdf/10.1021/ja406695g.

[184] P. Zheng, S.I.J. Takayama, A.G. Mauk, and H. Li. Single molecule force spec-
troscopy reveals that iron is released from the active site of rubredoxin by a
stochastic mechanism. J. Amer. Chem. Soc., 135(21):7992–8000, 2013. doi:
10.1021/ja402150q. URL http://pubs.acs.org/doi/pdf/10.1021/ja402150q.

[185] P. Zheng, Y. Wang, and H. Li. Reversible Unfolding-Refolding of Rubredoxin:
A Single-Molecule Force Spectroscopy Study. Angew. Chem. Int. Ed., 53(51):
14060–14063, 2014. doi: 10.1002/anie.201408105. URL http://doi.wiley.com/
10.1002/anie.201408105.

[186] P. Zheng, G.M. Arantes, M.J. Field, and H. Li. Force-induced chemical reactions
on the metal centre in a single metalloprotein molecule. Nat. Commun., 6:7569,
2015. doi: 10.1038/ncomms8569. URL http://www.nature.com/doifinder/10.
1038/ncomms8569.

302

http://www.nature.com/nmat/journal/v6/n2/pdf/nmat1825.pdf
http://www.nature.com/nmat/journal/v6/n2/pdf/nmat1825.pdf
http://www.sciencedirect.com/science/article/pii/S1046202304000556
http://linkinghub.elsevier.com/retrieve/pii/S0959440X12001911
http://linkinghub.elsevier.com/retrieve/pii/S0959440X12001911
http://www.ncbi.nlm.nih.gov/pubmed/20138503
http://www.ncbi.nlm.nih.gov/pubmed/20138503
http://pubs.acs.org/doi/pdf/10.1021/la7023567
http://pubs.acs.org/doi/pdf/10.1021/la7023567
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3177063&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3177063&tool=pmcentrez&rendertype=abstract
http://pubs.acs.org/doi/pdf/10.1021/ja2078812
http://pubs.acs.org/doi/pdf/10.1021/ja2078812
http://pubs.acs.org/doi/pdf/10.1021/ja406695g
http://pubs.acs.org/doi/pdf/10.1021/ja402150q
http://doi.wiley.com/10.1002/anie.201408105
http://doi.wiley.com/10.1002/anie.201408105
http://www.nature.com/doifinder/10.1038/ncomms8569
http://www.nature.com/doifinder/10.1038/ncomms8569


[187] M.W. Day, B.T. Hsu, L. Joshua-Tor, J.B. Park, Z.H. Zhou, M.W. Adams, and
D.C. Rees. X-ray crystal structures of the oxidized and reduced forms of the
rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus fu-
riosus. Protein Sci., 1:1494–1507, 1992. doi: 10.1002/pro.5560011111. URL
http://onlinelibrary.wiley.com/doi/10.1002/pro.5560011111/epdf.

[188] M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H.E. Gaub. How
Strong is a Covalent Bond? Science, 283(5408):1727–1730, 1999. doi: 10.1126/
science.283.5408.1727. URL http://www.jstor.org/stable/2897510.

[189] M.A. Lantz. Quantitative Measurement of Short-Range Chemical Bonding Forces.
Science, 291(5513):2580–2583, 2001. doi: 10.1126/science.1057824. URL http:
//www.sciencemag.org/cgi/doi/10.1126/science.1057824.

[190] M. Bertz and M. Rief. Mechanical unfoldons as building blocks of maltose-binding
protein. J. Mol. Biol., 378(2):447–58, 2008. doi: 10.1016/j.jmb.2008.02.025. URL
http://www.sciencedirect.com/science/article/pii/S0022283608002106.

[191] Q. Peng and H. Li. Atomic force microscopy reveals parallel mechanical unfolding
pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism. Proc.
Natl. Acad. Sci. USA, 105(6):1885–1890, 2008. doi: 10.1073/pnas.0706775105.
URL http://www.pnas.org/content/105/6/1885.full.pdf.

[192] D.N. Greene, T. Garcia, R.B. Sutton, K.M. Gernert, G.M. Benian, and A.F.
Oberhauser. Single-molecule force spectroscopy reveals a stepwise unfolding of
Caenorhabditis elegans giant protein kinase domains. Biophys. J., 95(3):1360–
1370, 2008. doi: 10.1529/biophysj.108.130237. URL http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2479574/.

[193] E. Evans and K. Ritchie. Dynamic strength of molecular adhesion
bonds. Biophys. J., 72(4):1541–1555, 1997. doi: 10.1016/S0006-3495(97)
78802-7. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184350/pdf/
biophysj00037-0057.pdf.

[194] R.B. Kapust and D.S. Waugh. Escherichia coli maltose-binding protein is un-
commonly effective at promoting the solubility of polypeptides to which it is
fused. Protein Sci., 8(8):1668–1674, 1999. doi: 10.1110/ps.8.8.1668. URL
http://onlinelibrary.wiley.com/doi/10.1110/ps.8.8.1668/epdf.

[195] M.R. Dyson, S.P. Shadbolt, K.J. Vincent, R.L. Perera, and J. McCafferty. Pro-
duction of soluble mammalian proteins in Escherichia coli: identification of pro-
tein features that correlate with successful expression. BMC Biotechnol, 4:
32, 2004. doi: 10.1186/1472-6750-4-32. URL http://www.ncbi.nlm.nih.gov/
pubmed/15598350.

[196] I. Kataeva, J. Chang, H. Xu, C. Luan, J. Zhou, V.N. Uversky, D. Lin, P. Horanyi,
Z.J. Liu, L.G. Ljungdahl, J. Rose, M. Luo, and B. Wang. Improving Solubility
of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 Proteins
Expressed into Esherichia coli. J. Proteome Res., 4:1942–1951, 2005. doi: 10.
1021/pr050108j. URL http://pubs.acs.org/doi/pdf/10.1021/pr050108j.

[197] P. Zheng, Y. Cao, and H. Li. Facile method of constructing polyproteins for
single-molecule force spectroscopy studies. Langmuir, 27(10):5713–5718, 2011. doi:
10.1021/la200915d. URL http://www.ncbi.nlm.nih.gov/pubmed/21486060.

303

http://onlinelibrary.wiley.com/doi/10.1002/pro.5560011111/epdf
http://www.jstor.org/stable/2897510
http://www.sciencemag.org/cgi/doi/10.1126/science.1057824
http://www.sciencemag.org/cgi/doi/10.1126/science.1057824
http://www.sciencedirect.com/science/article/pii/S0022283608002106
http://www.pnas.org/content/105/6/1885.full.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2479574/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2479574/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184350/pdf/biophysj00037-0057.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184350/pdf/biophysj00037-0057.pdf
http://onlinelibrary.wiley.com/doi/10.1110/ps.8.8.1668/epdf
http://www.ncbi.nlm.nih.gov/pubmed/15598350
http://www.ncbi.nlm.nih.gov/pubmed/15598350
http://pubs.acs.org/doi/pdf/10.1021/pr050108j
http://www.ncbi.nlm.nih.gov/pubmed/21486060
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