
Evolving Variability Tolerant Logic

James Alan Hilder

Degree of Ph.D.

September, 2010

Intelligent Systems Group,

Department of Electronics

Abstract

Intrinsic variability occurs between individual MOSFET transistors caused by atomic-scale

differences in the construction of devices. The impact of this variability will become a major

issue in future circuit design as the devices scale below 50nm. In this thesis, the background

to the causes and effects of intrinsic variability, in particular that of random dopant placement

and line-edge roughness, is discuss. A system is developed which uses a genetic algorithm to

attempt to optimise the dimensions of transistors within standard-cell libraries, with the aim of

improving performance and reducing the impact of intrinsic variability in terms of the effect

on circuit delay and power consumption. The genetic algorithm uses a multi-objective fitness

function to allow a number of circuit characteristics to be considered in the evolution process.

The system is tested using different standard-cell libraries from open-source and commer-

cial providers, with developments and alterations to the system that have been made through-

out the course of the experiments discussed. Comparisons of the performance with other

optimisation techniques, hill climbing and simulated-annealing, are discussed. The optimisa-

tion process concludes with the use of e-Science techniques to allow for detailed statistical

analysis of the evolved designs on high-performance computing clusters. The observed results

for two-input logic gates demonstrate that the technique can be effective in the reduction of

statistical spread in the delay and power consumption of circuits subject to intrinsic variability.

The thesis finishes with the investigation of larger circuits which are assembled from the

optimised cells. A proposed design methodology is introduced, in which the processes of

logic design are broken into small blocks, each of which uses techniques from evolutionary

computation to improve performance. This includes an investigation into the application of

a multi-objective fitness function to improve the performance of logic circuits evolved us-

ing Cartesian Genetic Programming, which produces designs for logic multiplier and display

driver circuits which are competitive with human-produced designs and other evolved designs.

These designs are assessed for their variability tolerance, with the multiplier circuit demon-

strating an improvement in delay variability.

Contents

List of Figures ix

List of Tables xi

Declaration xiii

Hypothesis xiv

Acknowledgments xv

1 Introduction 1
1.1 Background . 1

1.2 The Nano-CMOS Project . 2

1.3 Objectives . 3

1.4 Structure of Thesis . 5

2 Transistor Variability 6
2.1 Introduction . 6

2.2 The Metal-Oxide Semiconductor Field-Effect Transistor 7

2.2.1 Structure of Field-Effect Transistors 8

2.2.2 Function of Field-Effect Transistors 9

2.2.3 Structure of CMOS Integrated Circuits 13

2.2.4 Dielectric Materials . 14

2.2.5 The CMOS Fabrication Process . 15

2.2.6 Transistor Sizing . 20

2.3 Transistor Scaling . 23

2.3.1 Moore’s Law . 23

2.3.2 Technology Roadmaps . 25

i

CONTENTS CONTENTS

2.3.3 Lithography Scaling . 27

2.4 Causes of Transistor Variability . 28

2.4.1 Variability due to Manufacturing Process 29

2.5 Intrinsic Variability . 29

2.5.1 Random Dopant Placement . 30

2.5.2 Line-Edge Roughness . 32

2.5.3 Surface Roughness . 34

2.5.4 Poly-Silicon Grain-Edge Boundaries 34

2.5.5 Temporal Variability . 35

2.5.6 Interconnect Variability . 36

2.6 Modelling Variability . 37

2.6.1 The SPICE Circuit Analysis Tool 37

2.6.2 Simulation Techniques for modelling Variability 42

2.6.3 Simulation of Intrinsic Variability in Future MOSFETS 44

2.6.4 A tool for simulating variability: RandomSPICE 47

2.6.5 A Variability-Aware Design Flow For VLSI Circuits 49

2.7 Effect of Intrinsic Variability . 49

2.7.1 Impact on Threshold Voltage . 50

2.7.2 Impact on Yield . 52

2.7.3 Techniques to Limit Impact of Variability 53

2.7.4 Body-Biasing and Adaptive Supplies 53

2.7.5 A Special Case: Impact on SRAM 54

3 Evolutionary Algorithms 57
3.1 Introduction . 57

3.1.1 Biological Background . 57

3.1.2 History of Evolutionary Computation 59

3.1.3 Operation of an Evolutionary Algorithm 60

3.2 Types of Evolutionary Algorithm . 69

3.2.1 Genetic Algorithm . 69

3.2.2 Evolutionary Programming . 70

3.2.3 Evolutionary Strategies . 70

3.2.4 Genetic Programming . 71

3.2.5 Hybrid Methods . 73

3.3 Multi-Objective Selection . 74

3.3.1 Pareto Optimality . 74

ii

CONTENTS CONTENTS

3.3.2 Types of Multi-Objective Evolutionary Algorithms 75

3.3.3 NSGA-II . 77

3.4 Alternative Optimisation Algorithms . 78

3.4.1 Hill Climbing Algorithms . 78

3.4.2 Simulated Annealing . 79

3.5 Application of Evolution Algorithms . 80

3.5.1 General . 80

3.5.2 Uses within Electronic Circuit Design 81

3.5.3 Evolution of Analogue Circuits . 81

3.5.4 Intrinsic Evolution . 87

3.5.5 Evolution of transistor models . 89

4 A System for Evolving Logic 91
4.1 Introduction . 91

4.1.1 Overview of MOTIVATED . 92

4.1.2 CGP-based Topology Design . 92

4.2 SGA for Parameter Optimisation . 94

4.2.1 Template Netlist . 95

4.2.2 Genotype . 100

4.2.3 Selection Process . 100

4.2.4 Mutation Process . 100

4.3 Fitness Calculation . 101

4.3.1 Circuit Test-Bench . 101

4.3.2 Fitness Objectives . 104

4.3.3 Multi-Objective Ranking . 110

4.4 Run Parameters . 110

4.4.1 System Parameters . 112

4.4.2 Evolution Parameters . 112

4.4.3 Circuit Parameters . 112

4.5 Graphical User Interface . 113

4.6 Use of High-Performance Computation to Accelerate MOTIVATED 114

4.6.1 Background to Grid Computing . 114

4.6.2 The MAVEN Cluster . 114

4.6.3 The Sun Grid Engine System . 115

4.6.4 Alterations to code to enable cluster operation 115

4.6.5 Alterations to code to enable Grid operation 116

iii

CONTENTS CONTENTS

4.6.6 Performance Observations . 117

5 Optimising Standard Cell Libraries 121
5.1 Early Results: Evolving Transistor Topologies using the SGA 121

5.1.1 Methodology . 121

5.1.2 Results . 124

5.1.3 Observations . 124

5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells . . . 125

5.2.1 Two-stage Cycle for Incorporating Variability 126

5.2.2 Methodology . 127

5.2.3 Results . 128

5.2.4 Observations on Results . 134

5.3 Comparison with Other Optimisation Algorithms 137

5.3.1 Steepest-Ascent Hill Climbing . 137

5.3.2 SAHC With Random Walk . 138

5.4 Optimising Using Multiple-Voltage Sources within 2-Input Combinatorial

Logic Cells . 139

5.4.1 Methodology . 139

5.4.2 Results . 141

5.4.3 Observations . 146

5.4.4 The D-Type Problem . 146

5.5 Optimising CGP Evolved Designs . 148

5.5.1 Using CGP To Evolve Standard-Cell Topologies 148

5.5.2 Evolved Designs . 148

5.5.3 Results . 149

5.6 Detailed optimisation using HPC Cluster . 152

5.6.1 Methodology . 152

5.6.2 Results . 155

5.6.3 Observations . 157

6 Optimising Larger Circuits 164
6.1 Evolving Block-Level Topologies . 165

6.1.1 Conventional CGP To Evolve Logic Circuits 166

6.1.2 Use of Multi-Objective Fitness . 167

6.1.3 Test Circuits . 168

6.1.4 Methodology . 169

iv

CONTENTS CONTENTS

6.1.5 Evolved Results . 170

6.1.6 2-Bit Multiplier . 171

6.1.7 3-Bit Adder . 173

6.1.8 3-Bit Multiplier . 173

6.1.9 7-Segment Display Driver . 177

6.1.10 Observations on Results . 177

6.2 Variability in Evolved Designs . 178

6.2.1 Methodology . 178

6.2.2 Results . 180

6.2.3 Observations . 183

6.3 Proposed System to Optimise Circuits at a Block Level 183

6.3.1 Methodology . 183

6.3.2 Creation of Optimised Standard-Cell Libraries 185

6.3.3 Creating of Larger Logic Topologies 185

6.3.4 Optimising Larger Designs using SGA and Optimised Library 185

7 Conclusion 187
7.1 Can a genetic algorithm diminish the impact of intrinsic-variability? 187

7.1.1 Is a Genetic Algorithm the best approach? 190

7.2 Can a complete design process for variability tolerant circuits be created by

combining evolutionary techniques? . 191

7.3 The Original Objectives of the nano-CMOS Project 192

7.3.1 How can evolutionary techniques be used to limit the effects of pa-

rameter variations? . 192

7.3.2 How can evolutionary techniques be used within device models to al-

leviate parameter fluctuation problems? 193

7.3.3 How can parameter variation datasets be best used by evolutionary

techniques to improve system performance? 194

7.4 Future Work . 194

A Additional Results 197
A.1 Creation of Schematics . 197

A.2 Results Tables . 198

A.2.1 Results . 198

v

CONTENTS CONTENTS

B Pseudocode 204
B.1 Mutation Operator . 204

B.2 NSGA-II Implementation . 205

C Netlists 207
C.1 Template Netlists . 207

C.1.1 Template Netlist used in Early Experiments 207

C.1.2 Template Netlists used in VSCLIB Optimisation 208

C.1.3 Template Netlists used in multiple-voltage source experiments 210

C.1.4 Template Netlists for CGP evolved topologies 212

D Glossary and List of Abbreviations 214

Bibliography 233

vi

List of Figures

2.1 MOSFET Circuit Symbols . 8

2.2 Structure of a MOS Field-Effect Transistor 8

2.3 Parasitic Capacitances in an NMOS Transistor 12

2.4 Fabrication steps of an n-Well CMOS Circuit 21

2.5 Fabrication steps of an n-Well CMOS Circuit 22

2.6 Transistor counts in various Microprocessors and GPUs 25

2.7 Clock-speeds of Intel Microprocessors . 26

2.8 Intrinsic Variability in a Simulated Transistor 30

2.9 Atomic structures of 22nm and 4nm Transistors with RDD 31

2.10 Line-Edge Roughness Patterns in Negative Photoresist 33

2.11 Poly-silicon Grain Boundaries . 34

2.12 Small-Signal Model for a MOS Transistor 38

2.13 Hierarchical Simulation Methodology for Variability 50

2.14 Threshold Voltage Fluctuations due to Intrinsic Variability 51

2.15 6-T SRAM Schematic and Block Diagram 56

3.1 Block diagram of an evolution algorithm . 61

3.2 Cauchy and Gaussian Distributions . 66

3.3 Examples of Crossover Operations . 68

3.4 Example of Non-Dominated Fronts . 75

3.5 Extrinsic and Intrinsic Evolution . 84

4.1 Screen captures of the MOTIVATED GUI . 93

4.2 The workflow of the SGA for Optimising Topologies 96

4.3 Template-Netlist Decoding Example . 97

4.4 Test Bench used for most experiments . 102

4.5 Input Waveforms for 2-Input Logic Cells . 103

vii

LIST OF FIGURES LIST OF FIGURES

4.6 Calculation of delay and slew-rate . 108

4.7 Benchmark performance of MOTIVATED . 119

4.8 Performance improvement in multithreaded and cluster-based runs 120

5.1 Test bench used in early experiments . 122

5.2 Evolved AND and OR Gates . 123

5.3 SPICE output from evolved AND and OR Gates 124

5.4 Two stage cycle for optmisation . 126

5.5 Test circuits for SCL Optimisation . 129

5.6 Uniform stage results for the smaller circuits 132

5.7 Uniform stage results for the larger circuits 133

5.8 Variability in optimised NAND, AND, NOR and OR Designs 135

5.9 Variability in optimised XNOR, XOR and D-Type Designs 136

5.10 Output traces from D-Type circuits . 137

5.11 Test bench for multiple voltage source optimisation 140

5.12 Results after uniform stage when optimising voltage-sources only 143

5.13 Results after uniform stage when optimising transistor widths only 144

5.14 Results after uniform stage when optimising widths and voltage-sources . . . 145

5.15 Variability within the multiple-voltage source experiments 147

5.16 CGP Evolved XOR and XNOR Designs . 149

5.17 Populations at end of uniform stage for CGP-evolved Designs 150

5.18 Comparison of variability between VSCLIB and CGP-Evolved Designs . . . 151

5.19 Revised cycle for optmisation using HPC Cluster 153

5.20 Detailed study of variability: Buffer . 158

5.21 Detailed study of variability: NAND Gate 159

5.22 Detailed study of variability: OR Gate . 160

5.23 Detailed study of variability: XOR Gate . 161

5.24 Comparison of delay between optimised and reference designs 162

6.1 Workflow for optimisation of larger circuits 165

6.2 Example of Boolean-CGP Genotype and Mapping 166

6.3 Seven-Segment Display Driver Layout . 169

6.4 Evolved 2-Bit Adder . 172

6.5 Evolved 2-Bit Multiplier . 173

6.6 Evolved 3-Bit Adder . 174

6.7 Evolved 3-Bit Multiplier . 175

viii

LIST OF FIGURES LIST OF FIGURES

6.8 Evolved 7-Segment Display Driver . 176

6.9 Test Bench used for Assessing the 2-Bit Multiplier in NGSPICE 179

6.10 Variability in the 2-Bit Adder Circuits . 182

6.11 Variability in the 2-Bit Multiplier Circuits 184

ix

List of Tables

2.1 Key product characteristics in ITRS 2009 Roadmap 26

2.2 Lithography Technologies used in CMOS Production 28

2.3 Different distributions of SPICE-based Simulation Software 40

2.4 Revisions of NGSPICE used in this thesis 40

2.5 Performance comparison of SPICE MOSFET Models 42

2.6 RandomSPICE command-line options . 49

2.7 Threshold Voltage Variability in a Simulated Device 51

3.1 Differences between Evolutionary Algorithms 69

3.2 Comparison of 1st and 2nd generation MOEAs 76

3.3 Examples of Evolutionary Algorithms in Electronic Circuit Design 82

4.1 Mutation Probabilities . 100

4.2 List of circuit fitness objectives MOTIVATED 105

4.3 MOTIVATED Run Parameters . 111

5.1 Run parameters in early experiments . 123

5.2 Fitness objectives in the two stages of evolution 127

5.3 The run parameters used in the experiments 130

5.4 Number of generations in uniform stage . 130

5.5 The run parameters used in the multiple-voltage source experiments 141

5.6 Fitness objectives used in the single-stage optimisation run 154

5.7 The run parameters used in the single-stage optimisation run 155

5.8 Improvement in delay and power for optimised designs over reference designs. 156

5.9 Improvement in delay variability for optimised designs over reference designs. 158

6.1 The 5 test circuits evolved with MO-Boolean-CGP 169

6.2 Run parameters for MO-Boolean-CGP . 170

x

LIST OF TABLES LIST OF TABLES

6.3 CGP Results Before MO-Optimisation . 171

6.4 CGP Results After MO-Optimisation . 172

6.5 Comparison of results for evolved and conventional logic designs 181

A.1 VSCLIB Optimisation Results . 199

A.2 VSCLIB Optimisation Results Continued 200

A.3 Comparison of SGA, SAHC and SAHC with random walk 201

A.4 Multiple Voltage Source results after variability-stage 202

A.5 Comparisons of results between SCL and CGP Designs 203

xi

Declaration

The work discussed in this thesis has been developed with Dr. James A. Walker, as part

of the nano-CMOS project. Except where explicitly stated otherwise, the bulk of the work

discussed in the experiments is setup and developed by myself, with the assistance of Dr.

Walker. The development of the MOTIVATED system, described in Chapter 4, has been equally

split between the myself and Dr. Walker. Many of the results discussed have previous been

described in the published works, detailed below in chronological order. The first-named

author for all these papers can be considered the person who conducted the majority of the

work in constructing the experiments and writing the papers. All the papers listed have been

the subject of a peer-review process, with the exception of the first conference paper which

was accepted as a late-breaking paper.

Conference Papers

• James A. Hilder and Andy M. Tyrrell. An evolutionary platform for developing next-

generation electronic circuits. In proceedings of Genetic and Evolutionary Computation

Conference (GECCO), Late-breaking papers. London, UK, 7–11 July 2007. Pages

2483–2488. ACM.

• James Alfred Walker, James A. Hilder and Andy M. Tyrrell. Evolving variability-

tolerant CMOS designs. In proceedings of the 8th International Conference on Evolv-

able Systems (ICES): From Biology to Hardware. Prague, Czech Republic, 21–24

September 2008. Pages 308–319. Berlin, Germany: Springer.

• James A. Hilder, James Alfred Walker and Andy M. Tyrrell. Optimisation of vari-

ability tolerant logic cells using multiple voltage supplies. In proceedings of the IEEE

Workshop on Evolvable and Adaptive Hardware (WEAH), part of the IEEE Symposium

Series on Computational Intelligence (SSCI). Nashville, TN, USA, 30 March–2 April

2009. Pages 17–24. IEEE Press.

xii

• James A. Hilder, James Alfred Walker and Andy M. Tyrrell. Optimising variability

tolerant standard cell libraries. In proceedings of the 11th Congress on Evolutionary

Computation (CEC). Trondheim, Norway, 18–21 May 2009. Pages 2273–2280. Piscat-

away, NJ: IEEE.

• James Alfred Walker, James A. Hilder and Andy M. Tyrrell. Towards evolving industry-

feasible intrinsic variability tolerant CMOS designs. In proceedings of the 11th

Congress on Evolutionary Computation (CEC). Trondheim, Norway, 18–21 May 2009.

Pages 1591–1598. Piscataway, NJ: IEEE.

• James A. Hilder, James Alfred Walker and Andy M. Tyrrell. Designing variability tol-

erant logic using evolutionary algorithms. In proceedings of the 5th International Con-

ference on Ph.D Research in Microelectronics & Electronics (PRIME). Cork, Ireland,

12–17 July 2009. Pages 184–187. IEEE Press.

• James A. Hilder, James Alfred Walker and Andy M. Tyrrell. Use of a multi-objective

fitness function to improve cartesian genetic programming circuits. In proceedings of

NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Anaheim, CA,

USA, 15–18 June 2010. Pages 179–185. IEEE.

• James Alfred Walker, James A. Hilder and Andy M. Tyrrell. Measuring the Perfor-

mance and Intrinsic Variability of Evolved Circuits. In proceedings of the 9th Inter-

national Conference on Evolvable Systems (ICES): From Biology to Hardware. York,

UK, 6–8 September 2010. Pages 1–12. Berlin, Germany: Springer.

Journal Papers

• James Alfred Walker, Richard Sinnott, Gordon Stewart, James A. Hilder and Andy M.

Tyrrell. Optimizing electronic standard cell libraries for variability tolerance through

the nano-CMOS grid. Philosophical Transactions of The Royal Society A: Mathemati-

cal, Physical & Engineering Sciences. 2010. Vol 368. Pages 3967–3981.

• James Alfred Walker, James A. Hilder, Dave Reid, Asen Asenov, Scott Roy, Camp-

bell Millar and Andy M. Tyrrell. The Evolution of Standard Cell Libraries for Future

Technology Nodes. Accepted for publication in Genetic Programming and Evolvable

Machines.

xiii

Hypothesis

The impact of intrinsic-variability within standard-cell designs can be diminished through

the optimisation of transistor dimensions using a Multiple-Objective Evolutionary Algorithm.

This method can then be combined with other established evolutionary techniques, to create

a complete design process for intrinsic-variability tolerant logic circuits, without the need for

human designs and intervention.

xiv

Acknowledgments

There are many people whom I wish to thank for their knowledge, support and encouragement

throughout my study for this work. Firstly, I must thank my colleague and mentor Dr. James

A. Walker, without whom I sincerely doubt that the results presented herein would have been

possible - and I also give the greatest of thanks to my supervisor, Prof. Andy Tyrrell, for all

the ideas, support and experience he has offered throughout the last four years. I must also

mention Prof. Jon Timmis, Mr. Tim Clarke and Dr. Stephen Smith, for their knowledge,

support and understanding both before, during and after I began this work.

I would then like to mention everybody else on the nano-CMOS project, and everybody in

the Intelligent Systems Group at York, all people I consider friends, with whom it has been a

priviledge to have worked with throughout this project. I thank Mr. Thom Blake, Mr. Geoff

Burgess and Mr. Gerrard Huck, for being supportive and inspirational housemates with whom

I have had the pleasure of living during the last four years. My family, especially my mum,

dad and brother, who have always been there when needed, and all my friends. Finally, saving

the best till last, I thank Beth, for keeping me fed, watered and sane whilst writing this, without

your support I could not have finished this.

xv

Chapter 1

Introduction

1.1 Background

The semiconductor industry is a huge global industry, with annual sales now in excess of $250

billion, built on principles of ever increasing power, capacity and speed [6]. For semiconduc-

tor companies to produce more powerful microprocessors and more capacious memory chips,

it is necessary to periodically shrink the size of components that make up these circuits - the

MOS transistors that are assembled in pairs to form the building block logic and memory cells.

For many years this reduction in the size of transistors, named device scaling, happened with

relative ease, with many technological breakthroughs in the lithographic and fabrication pro-

cesses that were needed to create smaller devices. Individual transistors have shrunk from the

10-µm devices that populated Intel’s 4004 microprocessor to 32nm in the cutting-edge devices

of today 1. Given the atomic radius of a silicon atom is 0.11nm, it is clear that transistors are

now approaching a size where they can be considered in terms of their atomic volume instead

of traditional dimensions.

In the construction of a transistor, dopant atoms are implanted into the silicon lattice.

Whilst the processes are tightly controlled, it is not possible to perfectly control the exact

quantity and resting position of these dopants. As a consequence, no two transistors will be

exactly the same, which results in differences in the electronic characteristics of each device.

Whilst historically these differences have been small enough to be ignored, in recent years

the extent of the variations and their random nature has grown to a point whereby transistor

variability is now one of the major limiting factors that is curtailing the progression of scaling.

Conventional methods to simulate transistors and circuits, and work-flows for creating designs,
1The figures actually represent the expected DRAM half-pitch - half the distance between cells in a block of

dynamic RAM - rather than minimum transistor channel length, which is generally slightly shorter.

1

Chapter 1: Introduction 2

do not cater for the effects of variability; within a few years transistors will be scaled to a

point where device failure rates and impaired performance will demand drastically different

techniques in the design on circuits. Variability can be modelled, but it requires vast three

dimensional statistical simulations that consider the electronic flow at an atomic level, which

consumes colossal computational resources.

In this thesis, attempts to develop methods which will reduce the impact of this unavoid-

able variability are made. A system to attempt to optimise circuits through automatic ad-

justment of transistor dimensions within a conventional software simulation package is intro-

duced. The optimisation system is based on ideas that come from the world of evolutionary

computation, in which algorithms inspired by Darwinian models of evolution are used to ac-

celerate the search process.

1.2 The Nano-CMOS Project

The research described in this thesis has formed part of a four-year EPSRC funded project en-

titled “Meeting the design challenges of nano-CMOS Electronics”, which is herein known as

the nano-CMOS project. The project includes research groups from Glasgow, Manchester, Ed-

inburgh and Southampton Universities and also the National E-Science Centre in Edinburgh, in

addition to here at the Intelligent Systems Group, within the Department of Electronics at the

University of York. The project secured four years of funding from the EPSRC, beginning in

October 2006, with substantial further backing from several key industrial partners including

Fujitsu, ARM, Wolfson Microelectronics, Freescale, National Semiconductor and Synopsys.

The overall goal of the research project is to design accurate models for the simulation of

the next generations of MOS transistors devices, focussing primarily on devices in the 45nm

- 18nm range. Statistically-based modelling techniques are necessary in the extraction and

evaluation of device parameters, as individual transistor elements contain inherent stochastic

parameter fluctuations which cannot be removed by refining the manufacturing process.

Device variability is caused by both unavoidable intrinsic parameter fluctuations and also

microscopic differences which can occur at many different stages within the silicon manu-

facturing process. Accounting for this device variability, through the use of new tools and

techniques within the design tool-chains, will add a significant complexity to the overall de-

sign process, and will require the coordination of many teams of device experts and the tools

they use. A detailed overview of the background to device fluctuations, their causes and the

methods used to model them, along with suggested methods of overcoming their implications,

is covered in Chapter 2.

3 1.3 Objectives

The nano-CMOS project is led by the Device Modelling Group within the Electronics De-

partment at the University of Glasgow, where sets of statistical models which include intrinsic

parameter fluctuations have been developed for devices based on 45nm, 35nm and 18nm tech-

nology nodes. The simulations have used both in-house and commercial tools. Libraries of

transistor compact models, which can be used in traditional software simulation tools such as

SPICE, have been extracted from the analysis of the simulation results. The Microsystems

Technology Group at the University Glasgow have worked to develop integrated circuit & de-

vice simulators and circuit level compact models using these results. A team at the Electronic

Systems Design Group at the University of Southampton have attempted to incorporate the

variability statistics higher up the design tool chain by means of extracting behavioural mod-

els for standard cell libraries, and a team from the Mixed-Mode Design Group at the University

of Edinburgh are developing techniques for using the models to perform noise simulation and

circuit level. The variability-aware compact models have been made available on a computing-

grid to the Advance Processor Technologies Group at the University of Manchester, who are

investigating the impact of device variability on existing design styles (including a large-scale

multiprocessor architecture) [21].

A central focus of the whole project is the close involvement with the e-Science commu-

nity and the use of cluster-based and Grid computing resources. Grid computing is a special

form of parallel computation technology which provides the framework to share processing

load across many computers, often distributed at different locations, which are networked to-

gether. This allows distributed groups of users to collaborate by sharing not just computing

resources, but also designs, work-flows and data-sets, allowing new ways of performing col-

laborative research. At the heart of the nano-CMOS project is the development of the prototype

of a ‘nano-CMOS Design Grid’, in which each project partner has attempted to grid-enable

their code and work flows to allow for the secure and efficient interactions between sites nec-

essary for the progress of the overall project. This has been achieved through the nano-CMOS

portal2 which is the web-based hub for initiating simulations and transferring results, and the

use of distributed file-servers based on the Andrew File System (AFS).

1.3 Objectives

The project proposal expressed the ISG’s intended involvement in the project by suggesting

three key questions to be answered, all relating to methods in which evolutionary algorithms

and associated ideas could be used to assist or improve the modelling of next-generation de-
2Accessed through the secure server at https://www.nanocmos.ac.uk/.

Chapter 1: Introduction 4

vices, be it within the creation of the models, or in using the models to create improved per-

formance of devices and circuits.

• How can evolutionary techniques be used to limit the effects of parameter variations?

• How can evolutionary techniques be used within device models to alleviate parameter

fluctuation problems?

• How can parameter variation datasets be best used by evolutionary techniques to im-

prove system performance?

Over the course of the four year project, the research at York has primarily focussed on

addressing the first question above, although all three questions have been addressed in some

capacity, as is discussed in the conclusions of this thesis. Two separate routes have been inves-

tigated in an attempt to find solutions to the first question. Dr. James Walker has focussed on

investigating if the use of evolutionary techniques, notably a reworking of Cartesian Genetic

Programming, could be used to design novel topologies of logic cells, which offered improved

performance over conventional designs when subjected to the effects of transistor variability. I

have attempted to reduce the impact of variability through the optimisation of transistor dimen-

sion within conventional and evolved standard cells through the use of a Genetic Algorithm.

This has been followed with an investigation to see if other established evolutionary techniques

can be combined in a design flow to create completely novel variability tolerant circuits. As

such, the following statements can be considered the hypothesis which the research presented

in thesis attempts to prove:

The impact of intrinsic-variability within standard-cell designs can be diminished through

the optimisation of transistor dimensions using a Multiple-Objective Evolutionary Algorithm.

This method can then be combined with other established evolutionary techniques, to create

a complete design process for intrinsic-variability tolerant logic circuits, without the need for

human designs and intervention.

5 1.4 Structure of Thesis

1.4 Structure of Thesis

The thesis is organised as follows. Chapter 2 provides a detailed overview of the problem

of transistor variability. This commences with a description of the MOS transistor and its

physical operation, including the processes involved in creating large scale integrated circuits.

An analysis of the different causes and consequences of device variability is then given, fo-

cussed on the stochastic variations caused by atomic level differences. This is followed by

descriptions of the systems used to model variability and simulate transistor-based circuits,

emphasising the tools that are used in this thesis. The chapter concludes with a look a the

consequences of variability on logic design and what potential solutions exist to surmount the

issues.

Chapter 3 gives an outline of the field of evolutionary computation, looking at the history

and operations of the main types of evolutionary algorithms, including a detailed analysis of

multi-objective optimisation techniques which are used in this research. A summary of some

of the major developments of evolutionary techniques applied to field of electronic engineering

is given at the conclusion of the chapter.

Chapter 4 introduces the framework of tools that have been developed to combine the

variability-aware compact models, described in Chapter 2, with the multi-objective evolution-

ary algorithms discussed in Chapter 3. This includes a detailed description of the Simple

Genetic Algorithm, which is used to optimise transistor dimensions within standard cell li-

braries.

The application of the algorithm is covered in Chapter 5, which discussed the results ob-

tained when applying the algorithm to different sets of publicised libraries of cells. The de-

velopments made to the system throughout the course of the experiments are discussed, with

comparisons to other optmisation techniques given.

Chapter 6 proposes the development of evolution inspired algorithms further into the logic

design framework, by means of combining the optimisation techniques discussed in Chapters

4 & 5 with a system for creating logic topologies at a block-level. This aims to create the

beginning seed of a system by which large logic designs can be completely evolved and opti-

mised without the need for traditional design methods. Concluding remarks and observations

are given in Chapter 7.

Chapter 2

Transistor Variability

2.1 Introduction

Complimentary Metal-Oxide Semiconductor (CMOS) form the backbone of almost all mod-

ern digital circuits. The first example of integrating multiple components on a monolith of

semiconductor was demonstrated by Jack Kilby in 1958 [83]. The first CMOS based devices

were assembled by Fairchild Semiconductor in 1963 [174], with the first commercial CMOS

integrated circuits, the ‘CD4000’ series, released by RCA in 1968 [107]. The vast majority of

very large scale integration (VLSI) 1 circuits are assembled from CMOS-based logic, includ-

ing microprocessors, programmable hardware such as FPGAs, memory and many other types

of circuits. Designs are build using complementary, symmetrical pairs of p-type and n-type

MOSFETs arranged to create logic and memory functions.

The semiconductor industry itself is built upon the principles of CMOS devices increasing

in complexity and performance with each product generation. The physical sizes of die (the

functional block of the integrated circuit as fabricated on silicon) are fundamentally limited

by the physical properties of the silicon wafer and economic constraints; thus in order to

achieve increasing complexity, the dimensions of individual transistors have to periodically

shrink. Transistor have now shrunk to a point where their construction can now be considered

in terms of atoms instead of conventional dimensions, however it is not possible to guarantee

the atomic layout and structure of any two transistors will be identical. The atomic variations

between transistors results in significant differences in their operating characteristics, which

creates new problems in the design, simulation and operation of large circuits which are not
1VLSI is herein used to describe all integrated circuits with upwards of one hundred thousand devices. This

includes ultra large scale integration (ULSI), with tens of millions of devices per chip, and gigascale integration
(GSI), with billions of devices per chip [113].

6

7 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

currently solvable using conventional design techniques.

In this chapter the causes, effects and potential solutions to the problem of atomic-level

variability in transistors are considered. The chapter begins with a background overview of

the MOSFET transistor, the key building block in created large scale integrated circuits. The

structure and basic operation of the MOSFET are reviewed based on the traditional circuit

models and theory. The process of utilising MOSFETs to create integrated circuits is then

discussed, with the basic building block cells required to make CMOS logic gates and an

overview of the steps in the manufacturing process of a CMOS integrated circuit, from wafer

through to packaged device. A review of the history and proposed future of transistor scaling

is then discussed, followed by a detailed analysis of the different types of transistor variability

which occur in modern and future devices, focussed on the atomistic variabilities on which the

work in this thesis is based. The following section is an overview of the techniques used to

simulate circuits incorporating the effects of variability. The chapter concludes with a synopsis

of the specific problem areas of device variability in modern logic and potential solutions to

overcome the issues.

2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

The Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) is a four-terminal device,

available with either an n-type or a p-type channel. It is often used in pairs to form digital oper-

ations, and it is also used extensively in modern analogue circuits as current sources, voltage-

controlled resistors and for power switching. Unlike a bipolar junction transistor (BJT), in

which the output current is controlled by the input current at the base terminal, the FET con-

trols output current based on the input voltage at the gate terminal. Field-effect transistors

exist as both Junction FET (JFET) and Insulated-Gate FET (IGFET); the MOSFET is a type

of IGFET where the metal gate electrode is electrically insulated from the substrate via a thin

layer of silicon oxide.

The schematic symbols for the main types of MOSFET transistors, along with their asso-

ciation voltage and current definitions, is illustrated in Figure 2.1. The substrate connection in

a FET, often labelled as B or bulk, in most often connected to the source; in many devices this

connection is made internally, hence both the schematic and packaged device are often seen

with only three terminals.

In a MOSFET transistor, the drain current ID is controlled by the gate-source junction

voltage VGS . This relationship gives the transconductance, gm, using the following formula:

Chapter 2: Transistor Variability 8

Figure 2.1: Four-terminal schematic circuit symbols for enhancement and depletion mode
MOSFET transistors

gm =
∆ID

∆VGS
(2.1)

Transconductance gm is measured in mho or Siemens, although with ID typically being

measured in the range of µA or mA, it is more common to find values represented in terms

of millisiemens (mS). MOSFETs are available which cover a vast range of power handlings,

with large discrete devices able to sink several hundred Watts, and the very low gate-leakage

makes them suitable for numerous applications [79].

2.2.1 Structure of Field-Effect Transistors

The structure of a typical NMOS and PMOS transistor illustrated in Figure 2.2. In a fabricated

CMOS circuit, a lightly doped p− silicon is used as the device substrate, allowing a n-channel

device to be directly formed with two heavily doped n+ regions; a p-channel device requires

the creation of an additional lightly doped n− well, as can be seen in Figure 2.2b. The heavily

doped regions form the Source and Drain connections, with the gate electrode separated by a

thin layer of oxide.

(a) NMOS Transistor (b) PMOS Transistor

Figure 2.2: Physical cross-sectional structure of a NMOS and PMOS transistor, based on
illustrations from [154, 160]

9 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

Early MOS transistors were built with a metal gate electrode (typically aluminium) on

top of an oxide insulating layer on top of a semiconducting substrate. More recent designs

replaced the metal gate electrode with one made from a polycrystalline silicon material which

can tolerate the high temperatures in the annealing process better (although the name MOS

has been retained). Some of the most recent design have an insulating layer with a high

dielectric constant (known as high-κ models) have reverted back to using a metal layer as the

gate electrode. To improve the performance in terms of speed and power consumption, the

scaling of individual components is reduced allowing it to operate at a faster speed or with

lower power wastage.

2.2.2 Function of Field-Effect Transistors

The basic function of a MOS transistor can be evaluated by considering the behaviour of a

n-MOS device under different conditions. With all terminals grounded, the source and drain

electrodes are separated by a pair of back-to-back P-N junctions, resulting in a very high

resistance; the gate and substrate form a capacitor with the SiO2 acting as a dielectric. If a

negative voltage is applied to the gate, negative charges will accumulate in the poly-silicon

gate and increased positive charges will be attracted to the channel. If either the source or

drain are then given a positive-bias, only a negligible current will flow between them; this is

the leakage current of the device.

When a positive potential is applied between the gate and source (VGS), holes are repelled

away from the substrate-oxide interface which results in a depletion region. An increase in the

gate voltage results in negative charges being attracted to the channel; once enough exist the

channel will change from being a p− region to a n region and is said to be inverted. The gate-

source voltage at which this inversion takes place (i.e. when the concentrations of electrons

under the gate equals the concentration of holes deep in the p− substrate is the transistor

threshold voltage, VT . In the simplest approximation, when VGS is below VT no current flows

between source and drain - the device is in its cut-off region. If VGS is above VT , the channel

electrically joins source and drain and current can flow freely [15].

Clearly this is an over-simplification; in reality when VGS is close to VT a gradual change

of charge occurs in the channel, resulting in small current flow from source to drain; the device

is considered to be in ‘weak inversion’ and working in the sub-threshold region.

Chapter 2: Transistor Variability 10

MOSFET as a capacitor

In a condition where the channel is present, the accumulated negative charge is proportional to

VGS and is dependant on the oxide-thickness tox with the transistor operating as a capacitor.

The gate capacitance per unit area is defined as follows:

Cox =
εoxε0
tox

(2.2)

in which ε0 is the permittivity of free space, ≈ 8.854 × 10−12 Fm−1, and εox is the

relative permittivity of SiO2, ≈ 3.9. The total capacitance of the device can be calculated by

multiplying equation 2.2 by the device area:

Cgs = WLCox (2.3)

This allows the charge in the device channel to be calculated as follows:

QT = Cgs (VGS − VT) (2.4)

MOSFET as a resistor

An increase in VD allows a current to flow between drain and source through the channel.

When VD is of a small value well below VT , the charge-density in the channel will not increase

significantly. The device effectively operates as a resistor of length L and width W , which

relates the drain-source current IDS and voltage VDS based on the gate voltage as follows:

IDS = µnCox (VGS − VT)
W

L
VDS (2.5)

MOSFET in linear region

As VD increase, the charge density profile across the channel changes. It is generally assumed

to be a linear gradient between source and drain, which results in a revised equation to relate

IDS to VDS ; the current follows a linear relation to VGS and a quadratic relation to VDS [15]:

IDS = µnCox

(
VGS − VT −

VDS
2

)
W

L
VDS (2.6)

11 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

MOSFET in saturation region

Once VD is increased the point where the drain-gate voltage VDG equals threshold voltage

VT , the charge density in the channel adjacent to the drain becomes zero and consequentially

the current ID approaches its maximum value; the transistor is said to be in saturation region.

The charge concentration in the channel can be approximated as being constant beyond this

point, which allows a new current expression to be derived. Given that VDG ≥ VT and VDS =

VGS + VDG, we can define a condition VDSsat = VGS − VT . Replacing VDS with VDSsat in

equation 2.6 yields the saturation region current equation:

IDS = µnCox (VGS − VT)2
W

2L
(2.7)

In reality a further increase in VD results in an effect named channel length modulation, in

which the channel length is decreased and the pinch-off region is increase. To account for this

effect, a revised saturation region current equation incorporates a modulation factor λ which

is inversely proportional to channel length L, as shown:

IDS = µnCox (VGS − VT)2
W

2L
[1 + λ (VDS − VDSsat)] (2.8)

When VDS increases well beyond VDSsat the device can enter a condition known as break-

down, in which current can increase dramatically with VDS . The causes of device breakdown

differ between short and long channel devices; in the former it is a breakdown of the par-

asitic bipolar transistor formed whilst in the latter it is a breakdown of the drain-body p-n

junction [42].

Body-Effect

All the previous equations have assumed the substrate connection is connected to the source;

this is certainly the most common form of operation, but is not a prerequisite condition. Where

the source and substrate are at different potentials, a number of second-order effects exist

which are named ‘body effect’; this can be modelled as an increase in threshold voltage, as

shown in the following formula derived by Gray and Meyer, in which VSB is the source-

substrate potential and VT,n0 is the threshold voltage with zero VSB [69].

VT,n = VT,n0 + γ
(√

VSB + 2|φF | −
√

2|φF |
)

(2.9)

Chapter 2: Transistor Variability 12

Figure 2.3: Cross-sectional structure of a NMOS transistor in saturation mode highlighting
the parasitic capacitances [160, 15]

Parasitic Effects in a MOS Transistor

A MOS transistor in the saturation region includes several parasitic capacitive effects, which

are illustrated in the cross-sectional model shown in Figure 2.3. The most significant effect oc-

curs from the capacitors formed between the gate and source of the device; these are depicted

in the diagram as Cg:ch and Cg:soverlap . The capacitor formed between the gate poly-silicon

and the channel can be approximated to a linear capacitor dependant on the device area and

oxide thickness, which roughly equates to: [136]

Cg:ch ≈
2

3
WLCox (2.10)

There is an additional contribution from the capacitance that occurs in the narrow overlap

between the gate and the n+ doped source region, which results from horizontal spreading of

the dopant during the fabrication process. Considering the length of the overlap to be Loverlap
the resulting parasitic capacitance is equal to:

Cg:soverlap = WLoverlapCox (2.11)

Equations 2.10 and 2.11 can be combined to give a gate-source capacitance Cg:s as fol-

lows:

Cg:s ≈W
(

2

3
L+ Loverlap

)
Cox (2.12)

A similar overlap exists between the gate and drain regions resulting in a gate-drain ca-

13 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

pacitance:

Cg:d = Cg:doverlap = WLoverlapCox (2.13)

The other parasitic capacitances occur between at the interfaces between the source, chan-

nel and drain regions with the substrate and field-implant regions. The most significant are

Cs:b, and Cd:b, formed by the depletion regions which occur at the reverse-biased p-n junc-

tions at the source and drain. If Leff is the defined as the length of the n+ source and drain

regions, the capacitances can be calculated as follows [160]:

Cs:b,d:b =
WLeff

(1 + VD,S/Φb)
MJ
× CJ (2.14)

where Φb is the working potential of the bulk, andMJ andCJ are process-dependant con-

stants. The capacitances between the source and drain regions with the field-implant regions

are considered to be side-wall effects and can be calculated as follows:

Cs:bsidewall,d:bsidewall
=

W + 2Leff

(1 + VD,S/Φb)
MJsidewall

× CJsidewall
(2.15)

In addition to the parasitic capacitances, there are additional resistances and leakage cur-

rents which must be considered. There are ohmic resistances at the source and drain connec-

tions, typically of the order of 10Ω for VLSI CMOS, which become significant in high-drain

current applications. Leakage currents exist between the source & drain regions and the sub-

strate bulk, which can be approximated by reverse-biased diodes using the Shockley ideal

diode equation [160]:

IBD,BS = Is

[
e

(
qVBD,BS

kT

)
− 1

]
(2.16)

where q is the elementary charge, 1.602× 10−19C, k is the Boltzmann constant, 1.381×
10−23JK−1, T is the temperature in Kelvins and Is is the reverse saturation current of a P-N

junction.

2.2.3 Structure of CMOS Integrated Circuits

Almost all modern VLSI (very large scale integration) circuits are assembled from CMOS

based logic, including microprocessors, memory and many other integrated circuits. Most

devices are built upon complementary, symmetrical pairs of p-type and n-type MOSFETs to

create logic functions. CMOS is widely used in modern devices as it possesses low static

power-supply drain and high noise immunity, with significant power only being drawn when

Chapter 2: Transistor Variability 14

the transistors are in a transitional state (switching between on and off states). This allows

CMOS logic circuits to be built with far lower power consumption (and consequentially less

heat production) than other traditional logic designs such as TTL.

Early CMOS devices were significantly slower than equivalent TTL (transistor-transistor

logic) devices, although the low-power consumption led to their inclusion in early digital

watches where battery life was more important than processing speed. For many years CMOS

logic devices were built to be tolerant of a wide range of supply voltages, allowing them to

interface easily with TTL with its industry-standard 5 volt power supply. By the early 1990’s

the desire to increase circuit density and speed led to a drop in CMOS supply voltages and

the continued reduction of the geometric dimensions of devices. The most modern CMOS

devices have been built to operate from supply voltages of 1 volt or less, with gate lengths for

individual transistors now well under 100nm [154].

Much of the current research and development within the semiconductor industry is con-

cerned with the development of System-on-a-Chip (SoC) technologies, which involves the in-

tegration of high-performance CMOS log and embedded memory (both SRAM or DRAM for

convention, volatile random-access, alongside EEPROM or FLASH as long-term non-volatile

storage), along with analogue CMOS components for base-band functions and RF-BiCMOS

for mobile-radio and tuner functions. BiCMOS combines bipolar devices with CMOS devices,

allowing for increased speed and drive currents in specific applications. To allow for both the

high-integration density and high performance, it is necessary to continually scale down the

size and operating voltages of the CMOS components.

2.2.4 Dielectric Materials

The traditional dielectric material used in the creating of CMOS devices has been silicon diox-

ide (SiO2). As devices have become smaller, the thickness of this dielectric layer has steadily

decreased, which naturally leads to an increase in gate capacitance; this has the effect of im-

proving drive current and overall device performance. However, recent technology nodes have

seen the width of the dielectric layer reduce to below 2nm, which has resulted in a dramatic

increase in leakage current. This is due to quantum tunnelling, a quantum mechanical phe-

nomenon observed where a particle passes through a barrier despite have a lower mechanical

energy than the potential energy of the barrier [137]. The effect of this increased leakage

current results in a increased overall power consumption of the device, and consequentially a

reduced device reliability.

The gate-oxide layer of a MOSFET device can be modelled as a plate capacitor, the value

of which is dependant on the area of the layer, the thickness of the layer, and the relative di-

15 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

electric constant of the material κ. Ignoring any quantum mechanical and depletion effects, the

capacitance of the layer is given in Equation 2.17, in which A denotes the capacitor area, t is

the thickness of the oxide layer and ε0 in the permittivity of free space (8.854×10−12Fm−1).

C =
κε0A

t
(2.17)

To increase the gate capacitance, the options are either increasing the dielectric area, re-

ducing the thickness of the dielectric, or increasing the dielectric constant of the material.

Increasing the area negates advantages obtained in the shrinking of the technology; reducing

the oxide-layer thickness results in unmanageable leakage current as described before. There-

fore modern devices have turned to attempting to overcome these limitations with the use of a

high-κ dielectric material. In such devices, the layer thickness is often increased over its SiO2

equivalent as a means of reducing leakage current (and increasing device reliability) whilst

maintaining a similar overall capacitance.

2.2.5 The CMOS Fabrication Process

In order to understand the causes and effects of transistor variability that occurs in CMOS, it is

necessary to have a degree of understanding of the fabrication process that occurs. This section

briefly describes the steps taken to convert raw materials in a packaged integrated circuit.

Growth of Silicon Ingot

The first stage in the fabrication process is the growth of a large, cylindrical ingot of single-

crystal silicon, based on a method discovered by Jan Czochralski in 1916. High-purity silicon

is melted in a quartz crucible in a controlled environment, with an argon atmosphere. A seed

crystal is dipped into the molten silicon, and with a high degree of precision is slowly rotated

and retracted, in a process commonly known as Czochralski pulling [43]. A tightly-controlled

addition of dopant atoms, typically boron or phosphorus (although arsenic and antimony are

also used) can be added to the molten silicon mix to create n-type or p-type doped silicon.

Throughout the history of semiconductor fabrication, the ingots have periodically got wider

and longer, with most major manufacturers currently producing 200-mm and 300-mm wide

ingots, and 450-mm fabrication plants likely to appear around 2012 [2] 2. A number of tech-

nical problems need to be overcome for each step in wafer-width, with 450-mm ingots set to

be 3 times heavier than their 300-mm equivalents, approaching 1000kg per ingot, and twice as
2The 2009 ITRS roadmap has set the date for introduction of 450mm wafers between 2014 and 2016, noting

the transition is critical to meet the demands of 30% cost reduction per die and 50% cycle time improvement [3]

Chapter 2: Transistor Variability 16

long to grow and cool, resulting in significantly increased process times. Other techniques to

Czochralski pulling are used for certain types of devices, such as the float-zone technique for

power devices and the Bridgman-Stockbarger technique, used in gallium-arsenide and other

non-silicon semiconductor growth [16].

The grown ingots, which can be in excess of 1 meter in length, are then sliced into wafers

using multi-wire wafer saws or electrical-discharge machinery techniques [162]. The resultant

wafers are generally between 275µm and 1000µm in thickness, with 300 mm ingots generally

being sliced to 775µm thickness wafers, and forthcoming 450 mm ingots likely to be 925µm

in thickness [2]. The wafers are polished to ensure an even width and cleaned with weak acid

solutions to remove any unwanted particles and damage caused by the sawing process.

Oxidation

The first step in processing the cleaned wafer is that of the growth of the layer of SiO2 on

the surface; the oxide layer grows both into the silicon and as above the original surface,

with approximately 44% of the total oxide-width formed below the surface. The oxide layer is

most often accomplished through a process named thermal oxidation, in which controlled high

temperatures (typically between 700 ◦C and 1300 ◦C) promote the growth of the SiO2. This

takes place in an oxidation furnace, in which the wafers are placed in quartz ‘boats’ with the

oxidising agent diffusing over the surface of the wafer at atmospheric pressure. The oxidising

agent is eitherO2 in dry oxidation, orH2O (steam) in wet oxidation; dry oxidation is preferred

as it results in fewer defects [154, 1, 16].

Diffusion and Ion-Implantation

Diffusion and Ion-Implantation are the two processes in which dopant atoms are introduced

into the silicon wafer; diffusion was used extensively in IC fabrication in the past but for

high-density CMOS circuits ion-implantation is now more commonly used. In the diffusion

process, impurity atoms which are at the surface of the wafer are moved into the bulk of the

material under high temperatures, between 800 ◦C and 1400 ◦C, in a diffusion furnace.

In the ion-implantation process, ions of a particular dopant are accelerated by an elec-

tric field and physically lodge within the silicon substrate. The typical depth of penetration

varies between 0.1µm and 0.6µm, dependant on the angle and velocity at which the ions

strike the wafer. Ions are implanted off-axis from the wafer to ensure they experience colli-

sions with lattice atoms, avoiding a ‘channelling’ of ions deep in the silicon. The process of

ion-implantation causes damage to the crystal lattice of the silicon, which results in certain

numbers of the implanted ions being electrically inactive. These inactive ions are recovered

17 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

through the process of annealing, in which the wafer is heated to roughly 800 ◦C, which al-

lows the implanted ions to move to electrically active locations within the lattice, although the

annealing process can lead to some unintended diffusion of the dopants; this can be minimised

through careful optimisation of the annealing time and temperature [112, 16].

Ion-implantation is generally preferable to diffusion in the creation of modern silicon in-

tegrated circuits as it allows a greater precision in the control of doping concentrations as the

current of the ion-beam can be accurately measured during implantation; doping concentra-

tions can be controlled to within ±5%. It also has the advantage of being a room-temperature

process (except for the annealing process), and the ability to implant through a very thin oxide

layer; the diffusion process requires that the surface be free of SiO2. The final advantage is

a greater control over the depth-profile of implanted dopants; if needed, a concentration peak

can be placed well below the surface of the silicon [154].

Deposition

At different stages in the fabrication process, thin films of dielectrics, semiconductors and

metals have to be deposited on the silicon wafer. Several different techniques for deposition

exist, including sputtering, evaporation and chemical-vapour deposition (CVD). The process

of sputtering involves placing the wafer on an anode within a vacuum, with a cathode coated

in the material to be deposited. Positive ions are bombarded against the cathode by means

of a strong DC, radio-frequency or magnetic field, which results in the target material being

dislodged onto the wafer through the process of direct momentum transfer. In the evaporation-

deposition process, a solid material is heated within a vacuum until it evaporates. The evapo-

rated molecules then strike the cooler surface of the wafer, condensing into a solid film on the

surface [16].

The CVD process operates by way of reacting a silicon-rich gas such as SiH4 with an

oxygen-rich precursor which results in a chemical reaction, depositing SiO2 on the substrate.

The process can be occur at low-pressure in LPCVD, or at high-pressure in plasma-enhanced

(PECVD) systems. Unlike the thermal oxidation process, CVD can occur at relatively low

temperatures and does not consume any of the silicon from the surface of the wafer; the process

of CVD can also be used to deposit other dielectric materials on the surface, including the

polycrystalline silicon frequently used in modern devices and silicon nitride (Si3N4) [154].

Photolithography

Photolithography is the process that creates the complex patterns used to isolate the positions

of different device areas on the completed silicon wafer; it refers to the complete process of

Chapter 2: Transistor Variability 18

taking a circuit image, invariably created on a computer, to creating a photomask, and trans-

ferring it to the wafer. The first stage of the process is the creation of a transparent quartz

plate which contains the required pattern, called a reticle. The reticle is coated with a UV-light

absorbing layer, typically iron-oxide, then further coated with a thin layer of electron-beam

resist - an organic polymer which chemically changes when exposed to energetic particles. A

computer controlled electron-beam exposes the resist layer selectively based on the desired

patterns. The reticle is then developed in a chemical solution which removes the unwanted ar-

eas. Two main types of photoresist exist: positive-resist, in which exposed areas are removed,

and negative-resist in which unexposed areas are removed. A plasma then etches off the un-

coated areas of iron-oxide, leaving the patterned reticle. Many different reticles, often over

a dozen, are needed throughout the fabrication process, each corresponding to the patterns

required at different process steps. The reticle will typically contain the pattern for a single

die as opposed to the entire wafer, and is scaled many times larger than the desired pattern to

be created, being reduced and repeated several times to create the complete image across the

wafer.

To transfer the image from the reticle onto the silicon wafer, the wafer is first coated

with a thin (0.5µm) uniform coating of a UV-sensitive photoresist, deposited by spinning

the wafer rapidly at ≈3000rpm. An ultra-violet lightsource is focussed through the reticle

and a reduction lens onto the wafer, causing exposed regions to become acidified. Different

photoresists and lightsources determine the minimum feature size that can be created; these

are discussed in greater detail in Sections 2.3.3 and 2.5.2. The exposed wafers are developed

in a Sodium Hydroxide solution, which etches the exposed photoresist away, then cured by

baking at roughly 125 ◦C to harden. Complete wafers are exposed in a die-by-die basis using

a step-and-repeat process, which utilises laser controlled mask aligners featuring a very high

degree of precision. The complete process of photolithography, including the techniques used,

the chemicals used for photoresist and the exposure methods used to create the masks and

features on-wafer are critical to the scaling process, and can themselves lead to variability in

produced devices, as will be discussed later [16, 154].

Etching

Etching is the process of removing the unwanted material after the photoresist pattern has been

formed. The etching process can be characterised by two desirable characteristics: selectivity

and anisotropy. Selectivity is the ability of the process to remove just the desired area, leaving

the masked areas and underlying substrate intact. Anisotropy is the ability to etch in one

direction, and one direction only. Neither can be perfectly achieved; any etching process will

19 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

result in some degree of removal of undesired areas and some degree of undercutting [16].

Originally etching was a wet process, using a dilute Hydrogen Fluoride solution to remove

areas of SiO2. Hydrofluoric acid has strong selectivity - it is very effective at removing the

oxide whilst leaving the silicon substrate and photoresist-covered areas intact; unfortunately

it etches isotropically, meaning it removes the oxide as quickly laterally as it does vertically,

etching the oxide beneath the photoresist too much to cope with modern feature sizes. Other

wet etching processes exist to remove other unwanted areas: phosphoric acid for metal areas,

nitric acid for poly-silicon and phosphoric acid for silicon nitride, although for modern sub-

micron processes a dry etching process is generally used to avoid the undercutting effect [154,

16]. Additionally, dry etching is a cleaner process, negating the need to carefully remove the

acidic residue, it also offers greater compatibility with vacuum-processing techniques such as

molecular-beam epitaxy, and is generally easier to automate [112].

Modern CMOS manufacture uses a plasma-based dry etching process named Reactive-Ion

Etching (RIE). An etch-gas is pumped into a chamber, in which an RF voltage accelerates the

electrons to high kinetic energies. Collisions between the electrons and neutral atoms creates

ions and radicals; the ions are bombarded onto the wafer normal to the surface, ensuring an

anisotropic etch, whilst the radicals simultaneously create a very selective isotropic etch. The

resultant etch is thus a compromise of selectivity and anisotropy, allowing smaller feature sizes

than could be manufactured with wet etches [154].

Metallisation and back-end processing

Once the semiconductor devices are fabricated, interconnections and contacts for wire-bonds

are created through the process of metallisation. For silicon substrates, an aluminium alloy

(typically 95% Al, 4% Cu and 1% Si) is deposited using the sputtering process. The alu-

minium is then patterned and etched using RIE, before being sintered at roughly 450 ◦C to

ensure a good ohmic contact with the silicon. A protective overcoat of silicon nitride is then

deposited using chemical vapour deposition [16]. Pure aluminium is unsuitable for metalli-

sation in VLSI CMOS because of electromigration effects (changing shape when subject to

currents) and junction spiking; the silicon-aluminium commonly used to alleviate these prob-

lems leads to a high contact resistance, which is undesirable with the minute contacts formed

in submicron devices; this has lead to the study and use of other materials, notably copper, as

interconnects in modern devices [55].

The wafer now contains a quantity of complete die; the next step in the process is to divide

up the wafer using a saw or scribe into individual circuits, mount the devices in the appropriate

packages, and apply gold or aluminium bond wires between the aluminium contact points and

Chapter 2: Transistor Variability 20

the package leads; this is phase is known as back-end processing.

Fabrication steps for n-well Silicon

To illustrate how the above processes are combined in the creation of integrated circuits, a

step-by-step outline is given in Figures 2.4 & 2.5. These diagrams show the steps to create

transistors on the silicon wafer for the n-well silicon-gate CMOS process, one of the most

frequently used in modern devices. A real-world GSI device would likely have many more

steps and metal layers than are shown in the diagrams due to the scale of the device and

complexity of interconnections.

2.2.6 Transistor Sizing

The sizing of transistors within a logic or memory circuit is a key area of optimisation in

CMOS design. The size dictates critical circuit parameters, such as delay, energy consump-

tion and fan-out. The sizing determines the dynamic energy consumption through means of

changing the switched capacitances, and also the leakage current of the circuit; it also affects

energy consumption by determining the minimum operating voltage at which the circuit can

correctly function [63].

The three major sources of power dissipation are summarised by Chandrakasan et al in

Equation 2.18 [39]. The first term is the dynamic or switching component, the product of

loading capacitance CL, supply voltage Vdd, voltage swing V and the clock frequency fclk; pt
is the activity factor, the probability of a power-consuming transition occurring 3. The second

term is the leakage current Ileakage which arises from sub-threshold effects and substrate in-

jection. The final term is the short-circuit current Isc which occurs when NMOS and PMOS

transistors are simultaneously active, creating a direct path from supply to ground; this is gen-

erally a factor of static designs and is generally avoided in dynamic logic, except for when

static pull-up devices are used, or a significant clock skew is present. It is clear that signifi-

cant dynamic power improvement can be gained through the use of low-threshold devices and

minimising supply voltages, however, this has the general trade-off of increasing sub-threshold

currents causing a rise in static power dissipation.

Transistor sizing in a fabricated circuits is governed by a set of criteria known as design

rules; these rules are a list of process-specific critical geometrical size and spacing constraints

that must be adhered to when designing the lithographic masks, originating from limitations

imposed by the lithographic process and physical constraints [163].
3The voltage swing is generally the same as supply voltage, thus switching power is generally proportional to

Vdd
2.

21 2.2 The Metal-Oxide Semiconductor Field-Effect Transistor

(a) The first step of the process is the growth of a thin
SiO2 oxide layer on the surface of a lightly p− doped
wafer.

(b) The n-well is created by first depositing and devel-
oping photoresist around the area to be masked, then
subjecting the wafer to a n− implantation. The pho-
toresist is then removed and a high-temperature drives
the implanted ions into the substrate.

(c) A layer of silicon nitride is deposited over the en-
tire wafer. Another layer of photoresist is deposited
and developed on the silicon nitrite in areas where de-
vices will reside, known as moats.

(d) The silicon nitrite is removed from the other areas.
A global n−-type field is implanted to these areas to
ensure parasitic p-channel devices are not accidentally
turned on via interconnect lines.

(e) The photoresist is removed then the process is re-
peated with a p−-type field to ensure n-channel de-
vices are not turned on.

(f) A thick SiO2 field oxide is the grown over the en-
tire wafer in all areas except where Si3N4 resides. The
oxide grows under the edges of the silicon nitride, re-
sulting in the ‘bird’s beak’ shaped field-oxide regions.

(g) The Si3N4 is removed and the whole wafer is cov-
ered with a very thin layer of SiO2; this forms the gate
oxide of the transistors. A thicker poly-silicon layer is
then deposited over the entire wafer.

(h) The poly-silicon is patterned and etched where
transistor gates and interconnect lines are needed. A
SiO2 layer is then grown over the poly-silicon and
anisotropically etched, leaving thin oxide spacers on
either side of each gate.

(i) To create the n-channel devices, photoresist is ap-
plied to mask unwanted areas, then n+ ions are im-
planted into the substrate in areas not protected by pho-
toresist, field oxide, poly-silicon and oxide spacers to
create the source/drain regions.

(j) The oxide spacers around the poly-silicon gate of
the n-channel transistors are then etched away, fol-
lowed by a lighter n− implantation, to create a lightly-
doped region.

Figure 2.4: The early fabrication steps involved in constructing an n-Well CMOS Circuit
(continued on next side).

Chapter 2: Transistor Variability 22

(a) The lightly doped drain and source regions created
by the n− implantation can be seen in this figure. This
area of higher resistivity close to the poly-silicon gate
helps to minimise impact ionisation. The photoresist
is removed.

(b) The previous steps are then repeated to create the
p-channel devices; photoresist is applied to mask the
n-channel devices, an successive p+ and p− implan-
tations are applied to create the p-channel drain and
source with lightly doped regions.

(c) With the transistors now created, the process of ter-
minating contacts and interconnect the devices begins.
A thick layer of oxide, typically borophosphosilicate
glass (BPSG) is deposited.

(d) The BPSG in areas where contacts are needed is
etched away. A layer of aluminium is deposited on the
surface, forming contact with the relevant poly-silicon
areas, and unwanted aluminium areas are etched away.

(e) A thick dielectric area is applied before the sec-
ond layer of metals. This is typically a sandwich of
SiO2 applied with chemical-vapour deposition, fol-
lowed by a spun-on layer of glass, followed by a final
CVD SiO2 layer, to minimise stray capacitance and
ensure planarity.

(f) The vias (inter-metal connections) between the
metal layers are isolated with photoresist and etched,
before a second metal layer is deposited over the whole
wafer.

(g) The second metal layer is selective etched to leave
only the wanted interconnect regions. A thick layer,
usually SiN3, known as the passivation protection
layer, is applied over the entire surface of the wafer.
The areas where contacts are needed are etched from
the SiN3 and a final layer of metal is deposited and
selectively etched.

(h) The wafer is split, individual die are packaged and
wires are bonded from the relevant contacts to pins
on the package. It should be noted that a modern IC
may have many more metal layers, each separated by
dielectric-sandwich layers, than pictured here, and that
the bond wires, whilst often smaller than 15µm, are
much larger than device channels.

Figure 2.5: The later fabrication steps involved in constructing an n-Well CMOS Circuit.
Based on [16, 154].

23 2.3 Transistor Scaling

Ptotal = pt (CL · Vdd · V · fclk) + Ileakage · Vdd + Isc · Vdd (2.18)

The aspect ratios of devices (W/L) determine the values of critical input voltages VIL,VIH
and VI . Another import criteria in the layout and sizing of CMOS logic is the proportion of

the aspect ratios between n-and-p CMOS pairs; it is quite common to employ higher ratios for

PMOS transistors to compensate for the fact that k′n > k′p.

2.3 Transistor Scaling

The semiconductor industry, which underpins much of the worlds technology industry, is fun-

damentally built on a business model in which more computationally powerful and more en-

ergy efficient circuits are successively released. A more powerful circuit can be created by

either increasing the operating speed of an existing design, or increasing the complexity of a

design by way of increasing the number of functional blocks. The maximum operating speed

of a device is determined by its physical dimensions of devices, with smaller transistors and

interconnecting paths able to operate at higher frequencies than large devices. The number of

functional blocks is also constrained by the device sizes; whilst it is possible to increase the

die size, the increased likelihood of having imperfections within the enlarged die lowers the

yield to a point where it is no longer financially viable4.

2.3.1 Moore’s Law

Gordon E. Moore, one of the co-founders of Intel, observed in his 1965 paper “Cramming

more components onto integrated circuits”, that the number of components within an inte-

grated circuit had doubled every year since their invention in 1958. He predicted that the trend

would continue at the rate of high growth for at least a further 10 years, allowing single-wafer

circuits with 65,000 devices by 1975 [121]. In his 1975 speech “Progress in Digital Integrated

Electronics” he predicted a further steady growth, with the number of devices on an integrated

circuit set to double every two years [122]. A colleague of Moore’s, David House, noted that

when combined with improvements in the operating characteristics of individual devices, such

as operating frequency and power consumption, that the overall performance of an integrated

circuit would effectively double at the faster rate of every 18 months. The prediction, com-

monly known as ‘Moore’s Law’, has accurately stood the test of time (in many regards the

actual speed of the development has been faster than 18 months) since 1975 [80].
4ULSI die are rarely larger than 300mm2. The Itanium-2 at 596mm2 is amongst the largest single die even

produced, however the very high unit cost could partially offset the lower yield expected [77].

Chapter 2: Transistor Variability 24

Moore’s Law is illustrated to be an accurate reflection of growth in Figure 2.6. The figure

shows the number of transistors on a selection of cutting-edge microprocessors and graphics

processing units (GPUs) manufactured by two of the leading companies in each respective

area, Intel and Nvidia. A curve showing the expected number of transistors following Moore’s

prediction of a doubling every two years is indicated. Certain devices, such as the HPC-

oriented Itanium processor, tend to fall above the curve, though it should be noted these are

generally very large (in terms of die area) and expensive devices. It can also be seen that

the number of devices on a GPU has accelerated rapidly, to a point where cutting-edge GPUs

now generally have more transistors than their microprocessor equivalents. GPUs are now

regularly built on the most advanced technology-processes available, with the Nvidia GF100

‘Fermi’ chip being fabricated on TSMC’s 40nm process [134]. As there is a trend for work

traditionally done by the CPU to be off-loaded to the massively-parallel GPUs to increase

speed and efficiency, it is likely that GPUs will be one of the major driving forces behind

future transistor scaling [148].

Figure 2.7 illustrates the maximum clock speeds of selected range of Intel microprocessors

at their release date. It is clear that from the mid-1980’s to early 2000’s Intel were successful

in aggressively scaling clock-speed, achieving a doubling roughly every two years through-

out this period (often referred to as the years of ‘happy scaling’). Since the mid-2000’s, the

clock-speed achievable from devices has plateaued rapidly, with the 3.8GHz frequency of

the Pentium 4 HT-670, released in May 2005, still unsurpassed in retail devices. More re-

cent performance enhancements have come not from ramping clock speed, but instead from

enhancements to instruction-per-cycle-per-core (IPC2) and the development of multiple core

processors. Single-core processors are now used only in the lowest-end budget computers such

as netbooks, with dual-and-quad core systems commonplace and hex/octal cores beginning to

appear at the time of writing [77, 5].

In recent years the die size of leading-edge memory and logic product demonstrations

in technical forums such as the IEEE International Solid State Circuits Conference (ISSCC)

have grown at a rate of roughly 12% per year; the die growth has been necessary to accom-

modate the 40% to 60% more bits/capacitors/transistors per year in accordance with Moore’s

Law. Despite the die-size growth, semiconductor industries have managed a trend of reducing

the leading-edge product cost by approximately 30% per year; to achieve this techniques to

continuously enhance productivity and yield are necessary, through the processes of reduc-

ing feature size (at roughly 30% every two to three years) and periodically increasing wafer

size [3].

25 2.3 Transistor Scaling

Figure 2.6: A comparison of the transistor counts in various Intel Microprocessors and Nvidia
GPUs at different release dates, with a curve showing the projected counts following Moore’s
predictions of a doubling every 24 months [77, 5, 134]

2.3.2 Technology Roadmaps

Rules that propose the cyclical reduction scaling of devices were initially proposed by Robert

Dennard in 1974; these rules have been followed relatively accurately for close to four

decades [41]. Since 1992, the Semiconductor Industry Association, a trade association which

represents the American semiconductor industry, has published roadmaps which plan to antic-

ipate the evolution of the semiconductor market, and control the technological advances in IC

production. Initially this roadmap was focussed on the American semiconductor market and

named the National Technology Roadmap for Semiconductors (NTRS); since 1998 a closer

involvement with semiconductor manufacturers in Europe and the Far-East led to the creation

of the first global roadmap - the International Roadmap for Semiconductors (ITRS). Since

1998, the roadmap has been updated annually by the working groups affiliated with the SIA,

which now contains close to one thousand companies [3].

Chapter 2: Transistor Variability 26

Figure 2.7: The maximum clock-speeds and core-counts of various Intel Microprocessors at
different release dates [77, 5]

The SIA-ITRS published in 1999 projected an annual reduction of 11% in gate length

every year through to 2015 (allowing the same drive current to be maintained whilst at a

reduced operating voltage). The lateral size reduction leads to a similar reduction in the gate

and junction capacitances which leads to a reduction in the gate delay of 10% per year [178].

Whilst the number of components on a single chip increases, the reduced operating voltage

allows the total power consumption to either remain at a stable plateau or reduce. Some of the

most significant elements to be found in the most recent release of the roadmap and the time

of writing are given in Table 2.1, which outlines the progress that is intended by the major

semiconductor manufacturers up to the year 2025. By this time, the major semiconductors

fabricators aim to be achieving physical gate-lengths of under 8nm, and SRAM cell-areas

under 0.02µm2, which compares to current leading-edge gate lengths of ≈25nm and SRAM

cell areas of ≈0.45µm2 [3].

Table 2.1: Key Lithography-related Product Characteristics as listed in 2009 ITRS
Roadmap [3]

Short Term Long Term
2009 2011 2013 2015 2017 2019 2021 2023

DRAM 1
2 Pitch (nm) 52.0 40.0 32.0 25.0 20.0 15.9 12.6 10.0

Printed Gate Length (nm) 47.0 35.0 28.0 22.0 17.7 14.0 11.1 8.8
Physical Gate Length (nm) 29.0 24.0 20.0 17.0 14.0 11.7 9.7 8.1

27 2.3 Transistor Scaling

2.3.3 Lithography Scaling

One of the key factors that dictates the progress of device-scaling is the available lithogra-

phy processes which can be used. Lithography technologies have generally kept pace with

integrated circuit development, and the advances predicted (or even dictated) by the industry-

wide reliance on Moore’s Law. Much research is done to ensure that the process of optical

lithography can continue to improve in terms of minimum feature size and reliability to keep

pace with technology-node targets. For devices larger than 130nm gate-length, most of the

semiconductor industry relied on the exposure from a 248nm wavelength KrF laser to create

the patterning of devices on integrated circuits. Numerous different enhancements such as

phase-shift masking, sub-resolution assist and off-axis illumination exist which allowed the

248nm laser to produce sub-250nm designs; collectively these enhancements fall under the

umbrella terms of Reticle Enhancement Technologies (RET) and sub-wavelength lithography.

Of the RET techniques, two-mask phase-shift technology has proven the most effective, al-

lowing the production of sub-30nm gate length patterning, albeit at heightened expense in

mask-writing and inspection costs [154, 178]. Most manufacturers moved to a 193nm wave-

length lightsource for their 130-nm technologies, retaining developed RETs. This wavelength

has remained in used throughout the 90nm and 65nm technology nodes [33].

Optical lithography is constrained by the fundamental limits, which are described by the

set of Rayleigh-scattering equations [31]. As the exposure wavelength scales proportionally

with the minimum-linewidth, there is a strong motivation to shrink the wavelength as low as

possible. To achieve this, a number of optical and non-optical lithography technologies have

been proposed and researched, and are outlined in Table 2.2; some are currently used in actual

fabrication, others are of an early-experimental natures and some are still theoretical. The

important characteristic for each type of lithography are the wavelength of the lightsource, λ,

the numerical-aperture NA of the lens used in the aligner, and the depth-of-focus DOF. The

depth-of-focus indicated the range of distances from the focal plane at which the image is still

sharp [154].

However, to achieve the sub-10nm gate-length goals proposed in the SIA roadmaps it is

likely that a shift away from the 193nm lithography with two-mask phase-shift will be nec-

essary. The most recent ITRS roadmaps predict that extreme-ultraviolet (EUV) lithography,

using a 13 nm lightsource, will be the most likely light source for the next major generation

of semiconductors, the 22 nm half-pitch node, although there are still several issues regarding

the reliability of the light-source, the photoresist sensitivity and the availability of defect-free

masks before this is ready for high volume manufacturing [155, 33].

Chapter 2: Transistor Variability 28

Table 2.2: Historical, current and proposed future lithography technologies used in CMOS
Production. The top three technologies are those which have been historically used. EUV
is likely to be the next major technology in use, with the remaining technologies confined to
laboratory tests [155, 33, 154, 178, 175, 3]

Technology Wmin Exposure NA DOF Notes
(nm) Mechanism (µm)

356nm Hg UV-Lamp 250 Photons ≥ 0.5 Widely used throughout 1990’s
248nm KrF laser 130-250 Photons ≥ 0.75 Used down to ≈ 130nm
193nm ArF laser 45-150 Photons ≥ 0.75 0.4 In current use, down to ≈ 22nm
Extreme Ultra-Violet 13 Photons 0.1 1.1 Most likely future technology
157nm F2 laser 100-150 Photons ≥ 0.75 0.28
126nm Ar2 laser 22 Photons 0.5 0.5
EBDW 22 Electrons - - Electron Beam Direct Write
SCALPEL 0.24-0.16 Electrons 0.001 400
X-ray 30 Photons - -

2.4 Causes of Transistor Variability

Variability is an unavoidable reality of all CMOS integrated circuits due to the fact that it is not

possible to create identical devices with perfect precision. It manifests itself as differences in

the delay and power consumption characteristics of individual devices, and is exacerbated as a

result of scaling circuits beyond a point where performance and power-dependant parameters

can be controlled. The relative precision of individual device dimensions, and associated

interconnects, reduces with the scaling of devices.

Traditionally, the significant variability in bulk-MOSFETs has been due to imperfections

caused within the manufacturing process; such variability can be bound with known con-

straints, and provided that it is kept within practical ranges, is relatively easy to account for

in the simulation and design processes. However, as technologies scale into the sub-50nm

domain, atomistic constraints - problems caused by the precise atomic structure of the dopant-

areas within a device - are becoming increasingly significant. The impact of such atomistic

variations were small enough to be ignored in the days of ‘happy-scaling’, when the impact

of manufacturing variations vastly outweighed their impact, but in future devices they will

become a major obstacle. Many different advances and novel techniques have been devel-

oped, and will undoubtedly be made in the forthcoming years, to reduce the loss of precision

that occurs in the manufacturing process, but the fundamental quantum-mechanical limita-

tions cannot be overcome, and their impact will increase exponentially as devices shrink fur-

ther [20, 129].

The methods for modelling and account for the two different types of variability are dif-

29 2.5 Intrinsic Variability

ferent. In this thesis we shall refer to the former - variability caused by the range of precision

in the manufacturing process - ‘deterministic’ variability, as it falls within known bounds and

can be accounted for using relatively simple tolerance-aware models. The atomistic variabil-

ity, which is stochastic in nature, is considered as ‘intrinsic’ variability. Other authors have

used the terms ‘resolvable’ and ‘fundamental’ to differentiate the types of variability, as the

former can be fixed with technology improvements over time, whilst the latter requires a dis-

ruptive invention to circumvent [98]. The theory, models and experiments that are described

in this thesis are concerned with intrinsic variability, although the deterministic variability

which is caused by imperfections in manufacturing is discussed briefly below for comparative

purposes.

2.4.1 Variability due to Manufacturing Process

Numerous variations occur due to imperfections introduced in the manufacturing process. One

of the most significant contributors is patterning proximity effects and optical-proximity cor-

rections (OPC) that occur through the many lithography steps involved in the fabrication pro-

cess, particularly when RET techniques are used [38]. Additionally many other proximity ef-

fects associated with other manufacturing processes: stress, polishing (particularly chemical-

mechanical polishing), annealing and droop exist, which add to variations in device charac-

teristics. Over time, manufacturing improvements have seen the impact of such variabilities

reduce to a level in which fully functional designs can be reliably created to operate within

a set of bounds, which falls under the umbrella term of Design For Manufacturing (DFM)

rules [118]. Automated software tools allow the model-based simulation of OPC, RET and

etch effects, followed by circuit simulation of the resulting shapes, to be incorporated directly

into the design flow, in a process named Desing Manufacturability Checking (DMC) [54].

2.5 Intrinsic Variability

This section discusses the different types of intrinsic variability that will exist in future MOS-

FET devices, paying particular attention to the atomistic variability which is used in the models

discussed in this thesis. A 3D-model of a transistor illustrating the effect of random dopant

placement, line-edge roughness, surface roughness and poly-silicon grain edge boundary ef-

fects is shown in Figure 2.8; these causes of these effects are now discussed in more detail.

Chapter 2: Transistor Variability 30

Figure 2.8: The main types of intrinsic variability illustrated on a 3D-simulated model of a
35nm MOSFET device [22]

2.5.1 Random Dopant Placement

Traditionally, transistor models have been based on assumptions of statistical averaging of the

dopant concentrations, which results in smooth carrier concentration and potential profiles.

This assumption is valid provided the number of dopants, and their specific position within

the device, result in negligible differences between devices. However as devices scale well

into the sub-100nm lengths, the number of dopant atoms within the active region of a device

is relatively low. This results in devices which exhibit behaviour determined by the actual

number and specific placement of dopant atoms; certain parts the device will become active

before others, leading to a lower average threshold voltage than would be anticipated with a

continuously doped device. Furthermore, significant variations of threshold voltage will be

seen between individual devices on an intra-chip level, with the possibility of neighbouring

devices exhibiting a substantial range of threshold voltages [138].

Where the dopants are considered on a per-atom basis with stochastic placement, these are

named Random Discrete Dopants (RDD). Random dopants occur due to fabrication processes

of modern MOSFET devices. The dopants atoms are implanted into the silicon at very high

energies which leads to a scattering process; thermal annealing then allows implanted atoms

to replace silicon atoms within the crystal lattice, a process which diffuses their position fur-

ther. The nature of these processes mean it is impossible to precisely control the quantity and

positions of the individual dopant atoms; every device will have its own unique distribution

of dopants and with it a threshold voltage determined by the influence of dopant atoms on the

potential. The atomic structures of simulated 22nm and 4nm with random dopants placements

are illustrated in Figure 2.9; the 22nm device is representative of minimum sized devices that

31 2.5 Intrinsic Variability

(a) 22nm Device (b) 4nm Device

Figure 2.9: The atomic structures of 22nm and 4nm stylized transistors illustrating random
discrete dopant placements [22]

will be created within the next five years, whilst the 4nm device, which has less than ten dopant

atoms within the active region, is representative of the fundamentally minimum-sized devices

that could be fabricated in silicon; beyond this scale it is highly unlikely that satisfactory

functional devices could be assembled due to the lack of clearly defined regions.

The potential problem of random dopant placement and is consequences to threshold volt-

age variation have been acknowledged for nearly 40 years, being discussed in a 1972 paper

by Hoeneisen and Mead, in which it was predicted that once devices reached channel lengths

of 150nm, one-in-a-million devices would experience threshold voltage variations in excess

of 20% [73]. A further detailed analysis of the effect on threshold and breakdown voltages

caused by dopant quantity and placement was given by Keyes in 1975 [81]. The problems

of dopant-placement induced variability were then confirmed in experimental observations on

actual fabricated devices by Mizuno et al in 1993, in which the VT variability in a fabricated

transistor array with 8,192 devices with channel lengths of Leff = 0.5µm and Leff = 0.3µm

was analysed. It was observed that the standard deviation of threshold voltages increased in

the devices with smaller channel lengths, confirming that a portion of the overall VT variability

was independent to oxide-thickness variability and instead caused by the stochastic placement

of dopant atoms [120, 119]. However it is within the last 10 years that the random dopants

have become a real issue for semiconductor designers and manufacturers due to their impact

on threshold voltages [144]. The number of dopant atoms present within the channel region

a minimum-sized MOS transistor of is now typically around one hundred; in a set of devices

simulated by Asenov et al, with effective channel length Leff = 30nm and channel width

Chapter 2: Transistor Variability 32

Weff = 50nm, the number of dopant atoms within the channel depletion followed a Poisson

distribution around a mean value N̄d = 130. At this scale and smaller, even assuming a per-

fectly uniform lithography, the randomness of the doping profile leads to significant variation

in the actual effective channel length [20].

For contemporary bulk MOSFETs, which continue to be the prevailing design used in the

45- and 32-nm technology generations, random dopants are the dominant source of statistical

variability [138]; the contribution of RDD to VT variability has been demonstrated to be within

the 60% to 65% range in fabricated 65- and 45- nm bulk MOSFETs [98]. Alternative technolo-

gies such as silicon-on-insulator (SOI) and FinFET devices (a non-planer double-gated design

built on a SOI substrate [75]) are able to significantly reduce the impact of RDD variability

as they have lower dopant concentrations near the interfaces [19]; such technologies add vast

complexity to fabrication, and consequentially increase costs, and are largely reserved for spe-

cialist applications at the present time. Besides threshold voltage variations between devices,

RDD also impact a number of other major device parameters, such as sub-threshold swing,

sub-threshold leakage current and drain current.

2.5.2 Line-Edge Roughness

Line-Edge Roughness is defined to be any unwanted roughness in a semiconductor fea-

ture [155]. It primarily arises from the discrete molecular nature of the different photoresists

that are used in the fabrication process. In the fabrication of a integrated circuit, the silicon

wafer is spin coated with photoresist, which is subsequently exposed to UV light through a

photo-mask, and baked to cure the photoresist. A developer solution is the used to remove

either the exposed or unexposed areas of photoresist (the resist can be either positive, in which

exposed areas are soluble to the developer, or negative, in which unexposed areas are soluble,

resulting in an inverse of the image presented by the photomask). The primary cause of the

roughness is because larger polymer aggregates in the photoresist take a longer time to be dis-

solved by the developer; the magnitude of the roughness has been shown to be closely related

to the granule size and molecular weight of the resist [179, 138]. An illustration of line-edge

roughness patterns created with negative photoresist is given in Figure 2.10.

Line-Edge Roughness has naturally always occurred, but has until recent technology nodes

been so small compared to the actual linewidth as to create relatively insignificant variance;

it has been demonstrated by Croon et al that LER has little affect on devices down to 80 nm

gate lengths [51]. However, despite regular scaling down of linewidth, the edge roughness has

remained relatively static, typically in the order of ±5 nm, with occasionally greater differ-

ences depending on how the poly-line was formed [132]; these simulations have been corrob-

33 2.5 Intrinsic Variability

Figure 2.10: Line-Edge Roughness Patterns in Negative Photoresist [138]

orated by results of LER measured in physical devices using scanning electron microscopy

(SEM) [176]. This results in a situation where LER will become increasing significant; vari-

ous simulations have shown that if the magnitude of roughness remains at present levels, LER

will have significant impact in sub-32 nm channel length devices and become the dominant

form of stochastic variability at around 18 nm channel-lengths, outweighing the impact of

RDD [51, 23]. This is a major problem for the semiconductor industry, as LER currently

lags behind the requirements set out in the ITRS roadmap [155]; the current roadmaps set

requirements for sub-1nm precision in LER before 2025.

Whilst LER is primarily attributed to the photoresist and lithographic process, Diaz et

al identified that two distinct types of LER could be distinguished. That attributable to the

resist/lithography they denoted as short-range LER, noting its high spatial frequency and short

characteristic length of 1nm when caused by 193- and 248- nm lithography. Additionally,

they noted a long-range LER with characteristic lengths in excess of 10nm, which could be

attributed to poly-silicon surface roughness (see following sections) and stitching steps from

the mask-creation process [56]. Additionally, varying light strength from the lithography light-

source can contribute to long-range LER; this may become increasing important with future

EUV light-sources as they have significantly less power than the current lasers used [155].

Chapter 2: Transistor Variability 34

(a) Atomic-Force Microscopy im-
age of Poly-Silicon Grains

(b) Corresponding traced image
used as template for simulations

(c) Schematic of random grain
boundaries in a simulated 30 × 30
nm MOSFET

Figure 2.11: Grain boundaries in poly-silicon and their reproduction in a 3D-simulation [36].

2.5.3 Surface Roughness

Surface-Roughness is vertical deviation of any realised surface when compared to its ideal

form; in the context of MOSFET variability it is the asperity of the interfaces between the

silicon substrate and the SiO2 gate insulation. The shrinking of surface layers, in particular

the oxide layer, leads to variations in the parasitic capacitances between the terminals resulting

in addition VT variability [123]. The roughness has the effect of limiting the effective mobility

within the MOS devices, preventing devices from operating in the ballistic transport regime, in

which electrons can transport with negligible resistivity; as a consequence surface roughness

is one of the primary limiting factors of maximum on-current in sub-100nm devices [58], and

the problem is exacerbated in Ultrathin-Body SOI MOSFETs due to the strong dependence

between body thickness ts and the low-field electron mobility [78].

2.5.4 Poly-Silicon Grain-Edge Boundaries

Polycrystalline structures are extensively in modern CMOS devices as gate materials, also

finding use in on-chip rails and as emitters in bipolar devices in BiCMOS circuits. Poly-silicon

grain boundary (PSGB) variability occurs due to the random arrangement of grains within the

gate material due to this polycrystalline structure; polycrystalline silicon is rich in defects

at the grain-boundary regions which can act as charge-traps [35]. Traditional analysis uses

gradual channel approximation, which ignores the effects that grain boundaries have on the

channel current. However, with the scaling down of gate-oxide thickness, implanted ions can

penetrate through the poly-silicon and insulator into the device channel, resulting in localised

35 2.5 Intrinsic Variability

stochastic variations on the lower surface of the poly-silicon [57].

Simulations at Glasgow on 30 × 30 nm MOSFET devices, as depicted in Figure 2.11(c),

investigated the impact on VT of different sized poly-Si grains. A peak in the magnitude of

the σVT was observed when the average grain size matched the channel length, i.e. 30nm.

With smaller grains, a significant reduction in the standard deviation was observed, at the

expensive of a steady increase in the average threshold voltage as a consequence of the increase

in quantity of grain boundaries across the channel. With 30nm average grain size, the average

VT was roughly 370mV, with σVT ≈ 50mV. At 10nm average grain size, average VT was

roughly 580mV with σVT ≈ 30 mV. PSGB is likely the second most significant caused of VT
variability for devices between 35nm and 18nm channel lengths, behind RDD, however it is

likely RDD and LER will become far more significant beyond these technology nodes [36].

2.5.5 Temporal Variability

In additional to the the previously described stochastic variabilities, further variations between

devices can occur over time; these are currently modelled and characterised differently and

shall be consider to be temporal, or dynamic, variability. Whilst traditionally a fabricated tran-

sistor could either be considered to be working or broken, it is now becoming necessary to

consider and account for time-dependant instability and device degradation. Whilst the mod-

els discussed in this paper do not in include the any time-dependant breakdown, it will become

increasing important to consider such failures in future circuit simulation and design; some of

the techniques proposed in this thesis to reduce intrinsic-variability failures, such as redun-

dancy and error-correction, may also be suitable to reduce overall circuit failures caused by

time-dependant breakdowns. The three major sources of randomly distributed time-dependant

failures are Negative-Bias Temperature Instability, hot-electron injection and electromigra-

tion [109].

Other significant sources of temporal variability on a VLSI circuit include ‘heat flux’,

which concerns the spread of localised heat across an entire microprocessor die. Typically an

area of cache-memory has a lot lower heat flux than an execution unit; these localised vari-

ations add stresses to the power-distribution grid resulting in time-dependant supply voltage

variations. Degradation of a devices saturation current, due to hot-carrier degradation effects

and oxide wear-out, occurs over a number of years. In previous generations this has been

small enough to be accounted for using design margins; however this degradation is expected

to escalate beyond the 32-nm technology node [33].

Another effect which should be mentioned here is soft-errors caused by radiation. Radi-

ation from alpha-particles caused by radioactive impurities, and more significantly neutrons

Chapter 2: Transistor Variability 36

from terrestrial cosmic rays, hitting a integrated circuit, has the effect of create localised charge

on nodes; this has the potential to flip the output of a memory cell or logic gate. Research by

Hazucha et al has shown a steady 8% increase in the soft-error rate (SER) per technology

generation through the 0.25µm, 0.18µm, 0.13µm and 90nm generations, and an 18% increase

in SER when a 10% supply voltage reduction was used with 90nm technology [72]. When the

increased rate of SER is combined with the doubling of cells per each generation following

Moore’s law, the overall probability of a single-bit soft-error is over 100 times more likely in

a proposed 16 nm chip than in a 180 nm chip [33].

Negative-Bias Temperature Instability

The most pressing cause of temporal variability in CMOS devices is Negative-Bias Temper-

ature Instability (NBTI). This primarily effects p-MOS transistors which are operating with

negative gate voltage, although the same instability mechanism also affects n-MOS transistors

when they are negatively-biased. NBTI is caused by the creation of interface traps and oxide

charge when pMOS devices are supplied with negative-gate bias at elevated temperatures; this

results in broken Si-H bonds at the interface between the silicon and insulator [13].

NBTI has become a significant reliability issue in recent years due to a number of fac-

tors: transistor scaling has increased the gate-electric field strengths; chips also now operate at

higher temperatures and changes in fabrication have also increased the effects of NBTI, with

nitrogen being added to thermally-grown SiO2, and buried-channel p-MOS devices have been

replaced with surface-channel devices. Whilst the existence of NBTI has documented since

as early as 1966, it is only very recently that the various techniques to model it have begun to

closely correlate with experimental data obtained from actual devices [146]. There is conflict-

ing research with regards to the long term effects of NBTI; some research has suggested that

full recovery occurs within a few seconds of stress-induced NBTI events, whilst other research

has identified that NBTI damages is only partially-recoverable, with an element of permanent

damage (and shift in threshold-voltage) caused by NBTI stress events [110]. Regardless of

this discrepancy, given the frequency of device-switching in modern electronics, a significant

VT shift for a number of seconds will create significant problems for circuit design.

2.5.6 Interconnect Variability

The effects of atomistic variability are not limited to the transistor devices themselves; the

interconnections found between devices also suffer from variability due to microscopic vari-

ations in their structure, resulting in deviation in the conductance and, most significantly, ca-

37 2.6 Modelling Variability

pacitance of the path. As the interconnecting paths reduce in size with transistor scaling, a

similar increase in interconnect variability will be observed as is with device variability. Metal

line width and thickness variations occur due to both manufacturing deficiencies and the dis-

crete nature of the materials involved in the process, comparable to the line-edge and surface

roughness variabilities found within devices [30].

For VLSI components to be successfully designed it is necessary to model interconnection

variation and account for similar levels of variability as may be seen within the transistor

device dimensions themselves, although the construction of parametric interconnect models is

hampered by a rapid increase in model complexity and with it computation cost [103]. Whilst

interconnect variability will have a significant impact on the design of forthcoming circuits,

the tools to simulate or model it were not available for the experiments described in this thesis.

2.6 Modelling Variability

Basic modelling of MOSFET devices such as would be performed by hand utilises the large

signal and small signal models. The large signal modelling is first utilised to find the DC

conditions and operating point of the device. A linearised small-signal model, as illustrated in

Figure 2.12 may then be used to simplify calculations once the DC operation point has been

found, which will be valid only with small changes from the DC state. The large and small

signal models offer a useful insight into the operation of a MOS device, but they ignore a large

number of second-order effects that exist in the device, including channel length reduction due

to overlapping regions, mobility reduction due to electric fields, drain-induced barrier lower-

ing, velocity saturation and intrinsic parasitic resistances [15]. This renders them unsuitable

for modelling the performance of VLSI circuits. For greater accuracy SPICE simulators have

support for over 60 different device models of MOS transistor, with many different levels of

complexity and many different fabrication technologies modelled [160].

2.6.1 The SPICE Circuit Analysis Tool

Circuit simulation programs operate by converting a text-based representation of a circuit,

containing component types, values and interconnections (forthwith known as a netlist), then

translate this into a set of non-linear differential equations. Depending on the software, these

equations are solved using either the Newton-Raphson method, sparse-matrix techniques or

implicit integration methods [11]. On of the most widely developed and used bases for circuit

simulations is SPICE (“Simulation Program with Integrated Circuit Emphasis”). It is a well-

established design tool and is widely used as a verification tool before designs are committed

Chapter 2: Transistor Variability 38

Cgd

Cgs Cds
g v

m gs
v

gs g
0

1

Drain

Source

Gate

Figure 2.12: Small-Signal Model Equivalent Circuit for a MOS Transistor in Common-Source
Configuration, based on illustrations from [160, 48]

to fabrication.

SPICE allows for a number of different types of circuit-analysis to be undertaken. The

original version allowed non-linear DC analysis, small-signal steady-state sinusoidal (AC)

analysis with noise analysis, and non-linear, time-domain transient analysis. Additional re-

visions added DC transfer-curve analysis and transfer-function analysis [128]. Additionally,

small-signal analysis of sensitivity, pole-zero and distortion can also be calculated in more

recent revisions, along with parametric sweeps to analyse circuits under changing operating

conditions [12].

Background and History of SPICE

Computer-aided circuit analysis was first popularised with the Electric Circuit Analysis Pro-

gram (ECAP), developed by IBM in the mid-1960’s; this was the first time a system could

automatically convert a nodal-description of the circuit into a set of equations and solve them.

Subsequent improvements to the ECAP system included SPECTRE, NET, CIRCUS, CAN-

CER and TRAC [28]. It is, however, the subsequent SPICE software which has received

the most development, which can be attributed to its development at a public university with

public-domain availability, and the inclusion of BJT and FET models, resulting in suitability

and scalability at simulating both analogue and digital circuits [127].

SPICE is a general purpose analogue circuit simulation tool, originating from the Com-

puter Aided Design group of the Electronics Research Laboratory at the University of Califor-

nia, Berkeley, in the early 1970’s. The developers who had worked on the proprietary CAN-

CER program redeveloped a new public-domain circuit simulator, first presented in 1973. By

revising the CANCER code, they removed the proprietary constraints, and importantly added

then-advanced device models for the BJT, JFET and MOSFET devices. Given the prevalence

39 2.6 Modelling Variability

of BJTs in integrated circuits of the time, special emphasis was given to the BJT model in

the original SPICE software. However, a key function of the original SPICE software was the

possibility of using external device models via .MODEL cards, which would prove to be a key

feature in allowing modern devices to be simulated [128].

The original version and its successor SPICE-2 were coded in Fortran-66, and used a

process of nodal analysis to solve circuit equations [12]. The original version was tested on a

CDC 6400 mainframe computer, with a memory limited to around 140 thousand octal words.

This limited the size of circuits that could be simulated in the first version to roughly 50 nodes

and 25 bipolar transistors [127]. SPICE-3, the base of the distribution discussed and used in

this thesis, was developed in 1989 and is written entirely in C. The original release of Spice-

3 (which shall be considered to be ‘Berkeley SPICE’) contains around 217,000 lines of C

source code, spread across 878 separate files. It is regularly used to simulate circuits with

several thousand nodes and active devices, generally limited by the memory-footprint of the

computer [90].

SPICE functions by analysing the input file to determine all the circuit elements connected

to each node, then applying Kirchoff’s current-law to create a set of simultaneous equations

for the circuit; the admittance of each branch being the known quantity and the voltages being

the unknowns. The equations are formed into an admittance matrix, which is solved using the

Newton-Raphson method [28].

Variants of SPICE

Several different packages exist which are based upon the Berkeley SPICE core but add a

number of features and enhancements. Some of these are free-to-use, open-source variants,

whilst many others are commercial designs. The Berkeley SPICE is limited in its input and

output options, working in a ASCII environment; many of the alternatives add features such as

interactive alteration of circuits, graphical post-processing and the ability to run on different

computing platforms such as personal computers and clusters. Several of the different varieties

of SPICE are listed in Table 2.3 [28, 12, 177].

For the work in this thesis, the NGSPICE simulator has been chosen. It is an actively main-

tained open-source, free to use variant of SPICE, which works correctly with the variability-

aware transistor models that have been created (see section 2.6.1). The lack of licensing restric-

tions made it particularly suited to Grid-based evaluation; many of the commercial versions of

SPICE, notably HSPICE, have licensing terms which work on a per-installation basis, which

places obstacles in the way of a cluster or Grid-based platform where the software is to be

distributed across many nodes. Throughout the duration of this thesis a number of revisions of

Chapter 2: Transistor Variability 40

Table 2.3: Different distributions of SPICE-based Simulation Software

Name Vendor Licence Platform1 Notes

HSpice R© Synopsys R© Commercial W,L,S [157]
Multisim National Instruments Commercial W
NGSpice gEDA Project Free (GPL) W,L,M First release 1999 [130]
PSpice R© Cadence R© Commercial W,L First released 19842 [37]
SmartSpice Silvaco Commercial W,L Multithreaded, 64-bit [150]
SpiceOpus University of Ljubljana Free W,L
T-Spice Tanner EDA Commercial W

1 W=Windows, L=Linux, M=Mac/OSX S=Solaris
2 PSpice is now part of the OrCAD and Allegro toolchains

Table 2.4: Revisions of NGSPICE used in this thesis

Version Release Date Notes

ngspice 17 30-08-2005
ngspice 18 01-12-2008 Allows parametrical netlists, .lib statements
ngspice 19 23-04-2009 Bug fixes in memory management, revised BSim models
ngspice 20 16-11-2009 Added .measure statements, updated to BSIM 4.6.5
ngspice 21 21-06-2010 Latest release, updated BSIMSOI model

the NGSPICE software have been released, often adding significant functionality which has

improved the operation or performance of the software described in this thesis; generally it has

not been possible to repeat all results with the latest version due to the time taken to compute

each set of results. A brief synopsis of the NGSPICE versions used is given in Table 2.4.

The BSIM Transistor Model

All variants of SPICE contain different models for field-effect transistors. The original version

of SPICE used a model originally proposed by Shichman and Hodges, which is now consid-

ered to be the SPICE ‘Level 1’ model. This is a large signal model, which is solved using the

formula shown in Equation 2.19, in which µO is the surface mobility of the n-channel device,

Cox is the capacitance per unit area of the gate oxide, W is the effective channel width and L

is the effective channel length [149].

iD =
µ0CoxW

L

[
(vGS − VT)− vDS

2

]
vDS (2.19)

A small-signal model can be derived from the above equation, which is suitable accurate

for large MOSFET devices provided the length and width of the MOS device are greater than

41 2.6 Modelling Variability

10µm and the substrate doping is low. Once devices approached this size, a far more accurate

model was required, which resulted in the development of the SPICE Level-3 model at Berke-

ley. This model adds narrow and short-channel effects to the basic large-signal model which

requires a number of additional parameters to be considered. These include drain current,

threshold voltage, effective carrier mobility, saturation voltage and channel length modula-

tion; sub-threshold conduction is also present in the model. Despite containing 19 different

parameters the model is not accurate enough to simulate modern devices; it is useful for de-

vices down to 0.8µm in size [64].

At geometries below 0.8µm, the standard SPICE models fail to accurate reflect the ob-

served characteristics of devices. In 1984, the BSIM1 model was introduced to address the

need for a more accurate sub-micron model; the model contained 60 parameters and ap-

proached the modelling problem as a multi-parameter curve fitting exercise; whilst some of

the parameters were related to device physics, it was largely a non-physical model. In 1991 an

updated model, BSIM2, was released, to account for more accurate modelling of output resis-

tance changes resulting from source/drain parasitic resistance, inversion-layer capacitance and

hot-electron effects. This model upped the parameter count to 99, which results in significant

expertise in designing and fitting models to specific devices. In 1994 a third model, BSIM3,

was released, which returned the main function of the model to being based on device-physics

rather than curve-fitting; as a consequence fewer parameters were needed (40 for BSIM3v2)

and improved performance in modelling analogue circuits was observed. The subsequent

BSIM3v3 simulation model includes modelling for all the relevant parasitic effects down to

0.15µm channel length devices, using extra parameters and additional values for the capaci-

tances and resistances of metal lines to describe an individual transistor. This level of detail led

to the BSIM3v3 model becoming the industry standard MOS transistor model [16]. A com-

parison of the performance and minimum channel lengths and oxide thickness for different

SPICE models is given in Table 2.5.

The most recent series of BSIM models is BSIM4, originally released in the year 2000,

which aims to address the physical effects observed in sub-100nm devices. It is essentially

an extension of BSIM3, and continues the physics-based approach to modelling. It adds a

more accurate model for intrinsic input resistance, a channel thermal-noise model and a gate

direct tunnelling for multi-layer gate dielectrics, amongst 24 other total developments over

BSIM3v3. The latest revision as of time of writing is BSIM4.6.5, released in September 2009

[124]. Due to the vast number of calculations and models necessary to describe the BSIM3

and BSIM4, they are not included here; they are covered in detail in [18, 64] for the BSIM3

series models and [124] for the BSIM4 series.

Chapter 2: Transistor Variability 42

Table 2.5: Performance comparison of MOSFET Models available in SPICE [42, 16, 64]

Model Minimum L Minimum Tox Subthreshold Small Signal
(µm) (µm) Accuracy Accuracy

MOS Level 1 5 50 Not modelled Poor
MOS Level 2 2 25 Poor Poor
MOS Level 3 1 20 Poor Poor
BSIM1 0.8 15 Fair Poor
BSIM2 0.35 7.5 Good Fair
BSIM3v2 0.25 5 Good Good
BSIM3v3 0.15 4 Good Good
BSIM3v4 0.13 3 Good Good
BSIM4v6 < 0.09 < 3 Good Good

2.6.2 Simulation Techniques for modelling Variability

A range of techniques have been used to model the various effects of intrinsic variability in

sub-micron transistors, which range dramatically in terms of the computational complexity.

To simulate a device at this level, the self-consistent solution to two equations must be found:

these are the Poisson equation, which computes the electrostatic potential between the fixed

and mobile charge through the use of boundary conditions, and the transport model equation

which models the electron and current density. Three different approaches to solving the

equations are outlined here: the simplest is known as Drift-Diffusion simulation (DD), which

represents a low order approximation of the Boltzmann transport equation (BTE). A method

based on Monte Carlo statistical methods provides an indirect method of solving the BTE,

improving on the accuracy offered by drift-diffusion. These two approaches are discussed in

greater detail in the following section.

The most complex in terms of computational demand are techniques using quantum-

mechanical approaches, most notably Non-Equilibrium Green’s Function (NEGF) modelling.

To solve Green’s functions it is necessary to invert very large matrices containing Hamiltonian

elements - it is only within the previous year that full 3D-simulations of variability in tran-

sistors using NEGF have been undertaken [111]. However, once channel lengths are scaled

below ≈ 10nm, quantum effects begin to dominate and the Monte-Carlo approaches lose their

validity [138].

Historically, a number of other methods have been used to simulate and model effects of

intrinsic variability using a number of different techniques in both 2D- and 3D- domains. Diaz

et al proposed an analytical model to estimate the effects of LER on drive current and off-

43 2.6 Modelling Variability

state leakage in sub-100nm devices. Their model functions by partitioning a device into small

unit cells, which each assume a constant gate length [56]. Many trials at combining both DD

and Monte-Carlo simulations in hybrid techniques have been developed which use the Monte-

Carlo techniques only in regions where it is mandatory to produce accurate results [86].

Drift-Diffusion Simulation

In the simulation of a steady-state NMOS device, the DD approach operates by self-

consistently solving the steady-state current continuity equation with Poisson’s equation. To

solve these equations it is necessary to calculate the current-density (Jn), which is expressed

as the superposition of the drift component (Jndrift), which is related to the electric field (E),

and the diffusions components (Jndiff), related to the gradient of the electron density (n). The

current-density equations are as follows [184, 138]:

Jndrift = qnµnE (2.20)

Jndiff = qDn
dn

dx
(2.21)

where Dn is the diffusion coefficient, q is the electronic charge, and µ is the mobility. The DD

model makes many assumptions to obtain a closed system of equations from the BTE, ignoring

non-local effects and assuming thermal equilibrium between the carrier and the lattice. This

results in a drawback with the model: its failure to capture non-equilibrium carrier transport

effects results in an underestimate of the on-state drain current. The electric field that exists

within the active region of a submicron device can be very high, and often undergoes rapid

variations over distances which are comparable to the carrier’s mean free path. DD assumes

that carriers can make instant responses to changes in the electric field, however in reality they

have mass and require a finite time and distance to equilibrate with the field [86, 138].

Despite these shortcomings the DD is still effective when studying the sub-threshold

regime of operation in a device due to the weak coupling between current and Poisson’s equa-

tion in this region, and as such is suitable for the study of statistical threshold voltage variabil-

ity in sub-100nm devices. To improve the validity of such simulations in very small devices it

is possible to account for some non-local quantum effects through the use of density-gradient

(DG) corrections, which add an extra driving force term to the current density equation [138]:

Jn = Jndrift + Jndiff + DG = qnµnE + qDn
dn

dx
+ 2qnµn∇

(
bn
∇2√n√

n

)
(2.22)

Chapter 2: Transistor Variability 44

in which b is a term which expresses the magnitude of the density gradient dependence.

This driving force term can be thought of as a “quantum diffusion” current, which has the

effect of pushing carriers away from the Si:SiO2 interface. This adds to the model a number

of quantum tunnelling effects, and also has the additional benefit of correctly capturing the

effect of RDD on the potential distribution of the device.

Monte Carlo Simulation

In Monte-Carlo Simulation, the Boltzmann transport equation is solved in a stochastic manner,

which avoids the limitations that exist in DD simulation. The BTE is virtually impossible to

solve directly in all but the most trivial of cases, which results in the popularity of Monte Carlo

methods to find solutions. The movement of carries within a device is simulated, which can be

considered as a series of free flights and random scattering events at the end of each free flight.

The scattering events include interactions between carriers and phonons, fixed impurities and

other carriers. The free flight trajectories are calculated using Newtonian physics, with the

scattering events adding quantum mechanical calculations. The methods used require a high

quality source of random numbers, which are used to determine flight times and scattering

events based on appropriate probability distributions.

2.6.3 Simulation of Intrinsic Variability in Future MOSFETS

The modelling techniques described in the previous section stress the computational demands

for simulating the effects of RDD and other intrinsic variabilities in a single device. It is

clear that simulation of a complete circuit, even of minimal nature such as a logic gate, is not

practical using the methods outlined above. The problem is exacerbated when considering

repeating the process many thousands of times as will be necessary within a evolutionary

approach. In order to be able to achieve the goal of simulating variability-aware circuits, it

is necessary to harness the techniques described above to create compact models which can

be used with SPICE. This section describes the process undertaken by the Device Modelling

Group (DMG) at Glasgow University to create libraries of such compact models.

The Atomistic Simulator

The “Atomistic Simulator” is a tool which has been developed and revised at the DMG in

Glasgow over a number of years. The simulator functions by solving the nonlinear-Poisson

and current-continuity equations used in the drift/diffusion approximation, discussed previ-

ously, in a 3D simulation domain. The simulator includes the density gradient corrections for

45 2.6 Modelling Variability

holes and electrons which allows the effect of discrete dopants to be correctly determined.

A detailed description of the design and operation of the Atomistic Simulator can be found

in [138].

Before the introduction of the 3D Atomistic Simulator, simulations of RDD, LER and

oxide-thickness variations had been studied using numerical simulations and idealised devices.

In 2006, the Atomistic Simulator was used to create the first 3D models combining all of these

effects, to simulate the fluctuations found in conventional MOSFET structures scaled to fit

five successive technology generations proposed by the 2003 ITRS roadmap; these were 35-

, 25-, 18-, 13- and 9-nm channel lengths. The simulations used density-gradient quantum

corrections which were calibrated to a real 35nm MOSFET device [22].

For the simulation of poly-silicon grain boundary effects, the Atomistic Simulator has

been enhanced to include potential pinning and doping non-uniformities along grain bound-

aries within the poly-silicon gate. This approach ignores mobility variations which are as-

sociated with fluctuations in the channel due to surface potential pinning in the poly-silicon;

mobility variations have little effect of threshold voltage but do impact on the on-current of

the device [36].

Creation of BSIM Model Libraries

The following stage in the process of generating a platform allowing the modelling of vari-

ability using standard software tools is the creation of libraries of models which reproduce the

variability simulated by the atomistic simulator. The atomistic simulator is used generate sets

of IV curves for each of the transistors it simulates. A BSIM4 5 model based on the device

being simulated, which is generally provided by the foundry which makes the device, is used

as the base model for the library. For each simulated device, a carefully selected set of BSIM

parameters are adjusted to match the extracted IV curves as closely as possible; this choice of

chosen by hand and has evolved throughout the duration of the nano-CMOS project, whilst

the actual fitting of curves uses a automated curve-fitting process. At the end of this process, a

library of BSIM4 models which reflect the IV characteristics of simulated devices is created,

which can then be used by the tool described in Section 2.6.4 to allow variability simulations

using the SPICE simulation package.
5The actual models used have included version subversions of the BSIM4 series as new libraries and versions

of the BSIM model have been created. The libraries in this thesis are based on BSIM4v4 and BSIM4v5.

Chapter 2: Transistor Variability 46

Use of Grid Computing to Accelerate Simulation

Whilst the drift/diffusion techniques are substantially faster than Monte Carlo techniques and

orders-of-magnitude faster that solving NEGF, the amount of time require to create statistically

accurate libraries cannot be underestimated; ULSI devices with in excess of 109 transistors are

now commonplace and thus it is necessary to know the variability that occurs deep in the tails

of the distribution at 6σ and beyond to be able to model how devices such as SRAM will

function 6. The simulation of a single 35nm device was benchmarked on a single-core of an

Intel Xeon 2.66GHz machine at ≈ 32.5 minutes, of which ≈ 95% of the time was spent solv-

ing the Poisson’s and density gradient correction equations, and the remainder solving current

continuity 7. The creation of the libraries used in this thesis required in total approximately 60

CPU years of work [138].

In order to facilitate this, the use of modern large-scale computing clusters and grids was

essential. The calculations were primarily carried out on ScotGrid and an in-house cluster

at the DMG, totalling approximately 1,000 high-performance cores based on Intel Xeon and

AMD Opteron CPUs. A number of technical issues had to be overcome in the process of

enabling the simulations to run on Grid-based systems, which are themselves a relatively new

computational paradigm and not ideally suited to the tasks of job submission and data man-

agement when simulations of thousands of jobs in parallel are required; the problems faced

by the DMG are similar to those faced by ourselves in the running of several thousand SPICE

simulations in parallel and thus many of the lessons learned at Glasgow ultimately directed

our decision to primarily focus on cluster-based simulations.

Job submission on ScotGrid was performed using the Globus software tool-kit, however

this is limited to single-job submission and monitoring. To overcome this limitation the Ganga

frontend, developed at CERN, allows multiple jobs to be submitted and monitored concur-

rently, albeit hampered by the deficiencies present in the Grid-middleware, most notably slow

submission time, requiring in excess of one hour to submit a batch of 500 jobs. Additional

problems occurred due to bugs in Ganga and the middleware and incompatibilities between

updates of the different software stacks; this resulted in occasions where entire batches of

jobs were lost, at significant expense in terms of time and resources 8. In contrast, the local

cluster based approach used Sun Grid Engine (SGE) with its inherent support of parallel sub-

mission and added ease in job-tracking and data-management due to the localised nature of
6Corresponds to 3.4 defective devices per million.
7The same simulation was carried out without the density gradient corrections and took only ≈ 2.5 minutes,

however the corrections are needed for accurate simulation of such small devices [138]
8It is estimated that not less than 30% of all jobs submitted by DSG to ScotGrid over the course of the nano-

CMOS project required resubmitting [138].

47 2.6 Modelling Variability

the resource [138].

Libraries used in the Thesis

Two different variability libraries have been used in most of the experiments in this thesis, with

the earlier library being based on a Toshiba 35×35nm device, with only the effects of RDD

simulated. This library only has single width devices, with larger widths assembled from

parallel pairings of devices. This library was replaced by a later library based on 35×35nm

high performance models, which include the effects of LER and surface-roughness in addition

to RDD. They also feature higher accuracy and the inclusion of multi-width models, with the

library containing devices which are 35nm (1×), 70nm (2×), 140nm (4×), 210nm (6×) and

280nm (8×) wide. Both libraries contain 200 NMOS and 200 PMOS devices for each width 9.

2.6.4 A tool for simulating variability: RandomSPICE

The process for creating libraries of BSIM compact models by the DMG has been described

above. This section describes the tool, RandomSPICE, which is also developed by the DMG,

that allows SPICE simulation of a given circuit based on randomised selections of transistors

from the given libraries. The tool, written in Python, takes as its input a standard SPICE netlist,

and produces a batch of equivalent netlists in which the MOSFET devices are replaced with

models from the variability-aware libraries.

In the versions of RandomSPICE used in this thesis, the channel-lengths of the transis-

tor devices are fixed to a single size; future revisions will include the ability to vary channel

length (between a set of discrete values), however at the time of experiments the functionality

was limited to single-length transistors. However, the channel width can be set to any inte-

ger multiple of the channel-length; again with future revisions sub-integer multiples may be

possible 10.

As RandomSPICE and the libraries it used have been developed in parallel with the soft-

ware in this thesis, certain developments which alter the way it operates have taken place

throughout the experiments. In the earlier version of RandomSPICE, a device with a channel

width four times the channel length in the input netlist would be replaced in each resultant

output netlist with a parallel subcircuit of four devices, all of the same width as length. In later
9It is the opinion of the author that a larger number of devices would be needed to accurately model the

behaviour of circuits containing transistors whose characteristics are at the extreme tails of distributions, however
larger libraries were not available for the simulations in this thesis.

10In real-world fabricated devices, it is generally possible to create devices at sub-multiple lengths through the
use of lithographies with RET. For example, one may find a library based on 32-nm minimum channel lengths
which includes devices with 48-nm channel lengths and widths.

Chapter 2: Transistor Variability 48

versions, models were created with channel widths at 1×, 2×, 4× and 8× the channel length,

thus the same transistor could be replaced with a single device in the output netlist; this of-

fered both increased accuracy of modelling and a significant reduction in simulation time due

to the reduced node-count and netlist size of the output netlist 11. For example, the following

single-line extract from an input netlist represents a single NMOS device of width ‘4 units’

(140nm) and length ‘1 unit’ (35nm):

MN1 D G S B ATOMN L=35n W=140n

This line will be parsed by the RandomSPICE software which will detect that it is a MOS-

FET device (given by the initial ‘M’ character). It will keep the node connections intact, but

determines which type of model to used from the 6th element (ATOMN). This tells the soft-

ware to replace the device with the atomistic NMOS devices; it is possible to also use the token

UNIFN in the user wishes to use the uniform (non-atomistic) devices for comparison purposes.

This line will be replaced in each output netlist with, in earlier releases of RandomSPICE, with

a randomised subcircuit such as the following:

XMN1 D G S B SUBMN1

.SUBCKT SUBMN1 SUBMN1_0 SUBMN1_1 SUBMN1_2 SUBMN1_3

M_SUBMN1_1 SUBMN1_0 SUBMN1_1 SUBMN1_2 SUBMN1_3 NCH56 L=3.5e-08 W=3.5e-08

M_SUBMN1_2 SUBMN1_0 SUBMN1_1 SUBMN1_2 SUBMN1_3 NCH123 L=3.5e-08 W=3.5e-08

M_SUBMN1_3 SUBMN1_0 SUBMN1_1 SUBMN1_2 SUBMN1_3 NCH17 L=3.5e-08 W=3.5e-08

M_SUBMN1_4 SUBMN1_0 SUBMN1_1 SUBMN1_2 SUBMN1_3 NCH192 L=3.5e-08 W=3.5e-08

.ENDS SUBMN1

The four model cards associated with the four transistors randomly chosen from the library

(NMOS numbers 56, 123, 17 and 192 in the above example) would be appended to the end of

the netlist. In later releases, with the ability to use libraries containing multi-unit widths, the

above subcircuit would be replaced with a single transistor.

RandomSPICE allows operating parameters to be specified both through command-line

interpretation and via XML; in this thesis it has been used exclusively through command-line

interpretation as this was the only option in the earliest releases. The primary command line

options of importance are outlines in Table 2.6.
11Each unique transistor in the output netlist includes a complete BSIM4 model card, which is ≈ 6,800 bytes

and 300 lines long.

49 2.7 Effect of Intrinsic Variability

Table 2.6: RandomSPICE command-line options

Option Definition

-f <string> Specifies the input netlist filename
-n <int> Specifies the number of output netlists to create
-r <int> Specifies the random seed for model selection

-d <string> Specifies path to the required compact model library
-S <string> Specifies which type of SPICE (ngspice or HSpice)

-u Forces uniform-only simulation

2.6.5 A Variability-Aware Design Flow For VLSI Circuits

One of the primary goals of the nano-CMOS project as a whole was to attempt to create a

method for variability-aware analysis in digital circuits. Whilst it is possible to simulate VLSI

circuits using SPICE, the number of transistors involved and the vast number of test criteria

needed to analyse a circuit mean such simulations are neither realistic nor practical. As such,

much on-going research by other project partners involves investigating methods by which the

statistical variability models could be included in design tools used further up the hierarchical

tool-chain, illustrated in Figure 2.13. This has involved investigating whether techniques such

as statistical static timing analysis (SSTA) can be adapted to include the impacts of device

variability, allowing larger circuits to be simulated using commercial tools.

The focus at York has been on developing tools that create and optimise the circuits which

fit into the lower end of the hierarchy, focussing on circuit simulation software and standard-

cells. Whilst some research has been carried out on larger circuits, it has still been within the

domain of SPICE simulation using the extracted compact models.

2.7 Effect of Intrinsic Variability

Intrinsic variability has already had significant adverse effects on MOSFET scaling and inte-

gration. To date it has been seen to have negative impact on the yield and reliability of SRAM,

it causes timing uncertainty logic circuits, and limits the progress in the scaling down of supply

voltage with the knock-on effect of exacerbating the power dissipation problems that already

exist in bleeding-edge microprocessors [36].

The observations that have already been made by the Device Modelling Group at Glas-

gow on 35 nm simulated devices reveal how significant the effects of intrinsic parameters can

be; these results from pioneering simulations were later ratified with detailed experiments on

actual devices. The random dopant fluctuations lead to sizeable differences between devices,

Chapter 2: Transistor Variability 50

Figure 2.13: A hierarchical simulation methodology necessary to capture the impact of intrin-
sic variability on design [151].

whilst the microscopic scale of the device means that the trapping of a single electron within

the channel region can lead to drive current fluctuations in excess of 15%. Such fluctuations

will lead to increased time-domain variability and increase noise levels, leading to uncertain

operation in VLSI designs. When other intrinsic variations are also considered, including

line-edge, surface and interface roughness, it becomes evident that ‘identical’ transistors at

this scale will have significantly different geometries and pattern definition thus variations in

gate-tunnelling, quantum confinement and surface/bulk mobility. Assuming a future device

with fault-less manufacturing was possible, the intrinsic effects will still create devices with

such significant variation that conventional design topologies would likely fail [22].

2.7.1 Impact on Threshold Voltage

The impact on threshold voltage caused by the primary causes of intrinsic variability in a set of

200 35 × 35nm devices as simulated by the atomistic simulator are outlined in Table 2.7. The

most significant contributor to VT variation at this channel length is caused by RDD [139].

It had traditionally been assumed that the distribution of VT was symmetrical, following a

Gaussian distribution. However, larger simulations based on 100,000 devices at 35nm and

51 2.7 Effect of Intrinsic Variability

Table 2.7: Threshold Voltage Variability caused by Intrinsic Parameter Fluctuations in a 35 ×
35 nm Atomistic-Simulated Device [139]

Fluctuation VT σVT

Random Discrete Dopants 133 mV 33.2 mV
Line-Edge Roughness 126 mV 19.0 mV
Oxide-Thickness 122 mV 1.8 mV
RDD & LER Combined 126 mV 38.7 mV

(a) LER following ITRS roadmap (b) LER static at ±4nm

Figure 2.14: Threshold Voltage variation due to intrinsic parameter fluctuations considering
different LER predictions [22]

140,000 and 13nm were later carried out by the DMG to more accurately assess the shapes of

the distributions of parameter fluctuations due to RDD. These simulations demonstrated that

the distributions are asymmetric, with the asymmetry increasing at the smaller channel length,

confirmed by non-zero values for the skew and kurtosis of the distributions: the resultant dis-

tribution can be closely fit to a Pearson Type-IV distribution; this has significant consequences

when the VT of devices in the extreme tails of the distribution are considered [138].

The impact on VT due to the different causes of intrinsic variability illustrated in Fig-

ure 2.14, which compares the predicted threshold voltage variation if improvements follow

the ITRS roadmap for LER improvements, to that if LER remains at its current rate of±4nm.

If technological improvements in the mask cannot be made, LER will become the dominant

cause of intrinsic variability once the channel length falls below 15nm [22].

One key consequence of VT variability is the impact on delay. In digital circuits, a higher

drain current results in faster capacitor charging and consequentially higher frequency of oper-

ation. The delay time for a switching MOSFET is indicated in Equation 2.23, in whichC is the

device capacitance, VDD the supply voltage and ID the drain current. In the expanded equa-

Chapter 2: Transistor Variability 52

tion the effect of an increase in VT can be seen; any increase in VT will result in a reduction in

ID and lead to an increase in delay time [146].

td =
C|VDD|
ID

=
2LC

WµeffCox(VDD − VT)2
(2.23)

2.7.2 Impact on Yield

Since integrated circuits were first created, there is a real-world reality that only a certain

percentage of the die upon a wafer are functional. Historically, random imperfections and

defects in the wafer and in the subsequent fabrication processes result in a certain number of

failed die. The yield of a process is the percentage of the functional devices: [163]

Y =
Number of Working Die

Number of Total Die
× 100% (2.24)

The impact of stochastic variations was already becoming a significant issue when the

90nm technology node was introduced around 2002. At this scale a standard deviation in

threshold voltage of 40mV was typical, which statistically resulted in a threshold voltage

difference of over 250mV between two identical transistors in a memory cell per million

cells [161].

Circuit Optimisation

One method to improve the performance and reliability of circuits when subject to the effects

of variability is the careful optimisation of device dimensions and topologies. Whilst tradition-

ally transistors are sized to optimise for a number of criteria, such as minimal delay, low power

and balanced rise/fall times, the techniques used do not account for the fluctuations that can

occur. The optimisation technique described in the thesis attempts to identify, through the use

of an evolutionary algorithm, if variability in circuit performance can be minimised through

optimisation of transistor dimensions. The Vt variability that occurs at a single transistor level

manifests itself as a spread in the characteristic delay, switching power and leakage currents

through complete circuits.

Redundancy and Fault-Tolerant Techniques

An alternative technique is based on the assumption that certain transistors or cells will have

problems - be it poor performance, intermittent instability or complete failure (such as stuck-

on or stuck-off faults in logic and memory cells). The use of fault-tolerance techniques, re-

53 2.7 Effect of Intrinsic Variability

dundancy and error correction techniques are well established in electronics and computation,

although generally they have existed at a more macro-scale than will likely be needed if pre-

dicted levels of variability are realised in the sub-30nm nodes.

For many years microprocessor manufacturers have increased their effective yields by

carefully verifying the functionality of devices in the testing phase and disabling processing

cores and blocks of cache memory which are defective, selling the reduced-functionality re-

sultant chip as a lower cost product, although to date the defective areas are largely a result

of wafer and manufacturing imperfections. This process may still be an effective way of re-

moving non-functional and substandard blocks that occur due to intrinsic variability in future

devices, however it is likely that many more defective units will exist and thus a much finer

scale of block-scrappage will be required, adding significant complexity to the design of the

chip to allow for this and a significantly more thorough testing and validation process. Al-

ternatively, redundancy, voting and error-correction techniques may be used more extensively

throughout the chip, however the increase in transistor count and delay that these processes

will add negates the benefits of the reduction in transistor scale.

2.7.3 Techniques to Limit Impact of Variability

The main semiconductor design and fabrication companies are having to adapt their design

processes in an effort to overcome the effects of variability. Intel are confident that device

scaling can be continued in line with Moore’s law, allowing ICs with several billion transistors.

However, within these devices a significant number of transistors will ‘fail’ in manufacture due

to parameter variations with several more failing over the early lifespan of the device due to

temporal variations. These faults may be either intermittent or permanent in nature, resulting in

the need for dynamic on-chip self-test, error-detection and reconfiguration strategies or other

methods to adapt to the variations. This will necessitate some form of on-chip redundancy

resulting in an increase in the number of transistors needed to perform a function. For example,

multi-bit error correction codes (ECC) can be used within RAM arrays to improve yields. Such

strategies can be used successfully with bit-error rates as high as 0.01% but cannot cope with

failure rates higher than 1% as is expected in sub-20nm length devices, thus new techniques

for designing reliable systems on unreliable technology are needed [66].

2.7.4 Body-Biasing and Adaptive Supplies

One technique that has been used in design to minimise the impact of variability is the use

of body-biasing techniques, in which devices have forward or reverse body bias applied. Ap-

Chapter 2: Transistor Variability 54

plying a reverse body-bias can reduce the sub-threshold leakage, generally at the expense of

operating frequency. Alternatively a forward bias can increase the frequency of the cell at the

cost of a moderate increase in leakage power [33].

A similar technique is to use adaptive supply voltages. This can be on a chip-wide scale

or a more localised scale, with different functional blocks operating at different voltages.

Material Techniques

One method already discussed to help reduce the impact of intrinsic variability is the use

of different materials in the construction of devices. One of the most promising emerging

technologies at withstanding device variability is the use of ultra-thin body (UTB) silicon-on-

insulator MOSFETs. Such devices can tolerate a much lower dopant concentration within the

channel region than conventional designs, thus lowering the impact of random-discrete dopant

induced variability. Working UTB MOSFETs have already been demonstrated in laboratories

with channel lengths as low as 6nm, however optimal scaling requires that the body-thickness

is in the range of nanometres, where surface roughness at the top and bottom of the Si-SiO2

interface will introduce local variations within the silicon body thickness. Samsudin et al used

the 3D atomistic drift-diffusion simulator at Glasgow to create a sample set of 10nm channel

length UTB-SOI MOSFET models, and observed that the effects of random dopants within

the source and drain regions will be one of the critical sources of device mismatch. However,

the simulated 10nm UTB-SOI based SRAM cells actually offered a better static-noise margin

than similar results obtained using conventional 35nm MOSFETs, resulting in a more stable

overall operation. When scaled down to 5nm - roughly the extent of current SIA roadmap pre-

dictions, the results suggest that other technologies may be needed to allow stable operation.

Interpolation of the results suggest than SRAM may be functional to around 7.5nm, beyond

which alternative technologies such a double-gates MOSFETs will be needed [143, 142].

2.7.5 A Special Case: Impact on SRAM

The one type of device that is most significantly affected by device variability is the SRAM

memory cell, which is essential in modern devices when a high-clock speed register is needed

such as in microprocessor cache memory. Device variability makes it harder to reduce the

device operating voltage (VDDmin) after reducing device scale, which in turn can lead to read

and write failures, data retention failures and differential signal failures. As a consequence

of the operative voltage the leakage currents are proportionally increased. Within the sense

55 2.7 Effect of Intrinsic Variability

amp the device variability will cause increased input offset voltage in the differential bit-level

sensing, and decreased accuracy within the timing tracking circuits. The consequences of

all this are that whilst the area is reducing roughly 50% per node (at 65nm node, bit cell

area is approximately 0.5µm2 reducing to 0.25µm2 in 45nm node), it is difficult to get the

performance to scale with it; the VDD is not scaling by the same amount and the leakage is

increased [45].

At the present bleeding-edge technology nodes, device variability caused by intrinsic pa-

rameter fluctuations have eliminated almost all of the available noise margin in SRAM cells

that are based on standard MOSFET designs. In a typical modern system-on-a-chip, which

may contain well in excess of 1 billion transistors, it is common for SRAM to occupy 50% of

the overall chip area or greater. Thus the overall reliability of SOC designs is highly depen-

dant on the reliability of the on-chip memory. As the stability margin on SRAM cells reduces,

individual cells may either fail to hold their state or register a new state correctly. Those

cells which are found on the tails of the statistical distributions will fail to work properly; as

the distributions widen with technology scaling, increased cell density and VDD reduction,

new techniques to either increase redundancy in memory or increase stability margins will be

essential [29, 65].

SRAM Construction

The typical SRAM memory bit uses 6 cross-connected transistors, arranged as illustrated in

Figure 2.15a. Additional sub-circuits are used to address the correct memory bit and drive

signal lines to usable values; these will typical consist of a precharge circuit, control logic

and a sense-amplifier, as illustrated in Figure 2.15b. This arrangement, with a pair of n-FET

pass gates driving cross-couple inverters, has been widely adopted as the industry standard

embedded memory [65].

Alternative topologies and techniques to reduce variability

Whilst the mass-produced SRAM cells are typically based upon this 6-transistor design, a

number of alternative designs have been implemented. Some of these techniques aim to over-

come the limitations imposed by the various types of device variability and improve the re-

liability of SRAM cells. They include read-assist and write-assist features to help overcome

the occurrence of read failure and write failure, alternative bit-cell layouts utilising different

arrangements to the standard 6-transistor cell, and power management techniques to reduce

the leakage current and control temperatures.

Chapter 2: Transistor Variability 56

(a) Standard 6-T SRAM Schematic (b) Block diagram of 6-T SRAM including precharge cir-
cuit, control logic and sense-amplifier

Figure 2.15: Schematic and block diagram of conventional 6-T SRAM

One such design is the 4T-2R SRAM cell, which replaces the PMOS devices with resis-

tors; this design is significantly smaller in terms of area consumed, and overcomes problems

attributed to NBTI, but it does not offer the high speed offered by 6T SRAM [154]. Li et al

have developed a method for simulating the effects of transistor failure due to hot-carrier

injection, time-depended dielectric breakdown and NBTI. They simulated a complete 6-T

SRAM structure, combining a single memory-bit with the necessary precharge, write-control

and sense amplifier circuits. Accelerated time-dependant transistor-failure models were then

used to determine normalised lifetimes of all the transistors, and those determined to be the

most-damaged were replaced with failed-transistor equivalent models in a SPICE simulation.

Whilst the research was based around 0.25µm models and was concerned with time-dependant

failure rather than the intrinsic-fluctuations covered in this thesis, some of the principles and

methods used in the analysis are followed in the simulation of device generation with next-

generation models [104].

This chapter has discussed the causes and effects of intrinsic variability on the

MOS transistor and CMOS integrated circuits. This includes a review of the

techniques to model variability through to the creation of compact models, which

are used in the research within this thesis. The following chapter discusses the

concepts and application of evolutionary algorithms, search techniques which are

inspired by the ideas within Darwinian evolution.

Chapter 3

Evolutionary Algorithms

3.1 Introduction

This chapter discusses the field of biologically inspired algorithms, with special emphasis

on evolutionary computation - computational procedures which are inspired by the principles

and processes of natural evolution. The basic principles that underpin and describe all such

algorithms are outlined followed by a more detailed review of some of the extensions to these

basic principles in the most commonly used paradigms. The application of such techniques

in the field of electronic circuit design and optimisation with examples of both extrinsic and

intrinsic evolution is then covered with a look at important results from the past twenty years

right up to the current state-of-the-art developments.

3.1.1 Biological Background

The foundations of evolutionary biology stem from the theory proposed by Charles Darwin

in his 1859 work short-titled “On the Origin of Species”, which provided alongside the root

ideas of molecular genetics, the notion of ‘survival of the fittest’ [52]. The theory suggests

that when a population of individuals has to compete for limited resources, those individuals

which are best adapted to their environment will be the most likely to survive and reproduce:

this phenomenon is named ‘natural selection’. In order for new features and characteristics

to be introduced into a population it is necessary that new individuals can have some form of

variation, which is caused by a second phenomenon known as ‘mutation’.

In the process of mutation random changes are introduced to individuals within a popu-

lation with a certain probability, during the reproduction process, which results in new traits

and characteristics in the off-spring. If these traits prove to be advantageous the process of

57

Chapter 3: Evolutionary Algorithms 58

natural selection will see the features reproduced, as the adaptation improves the likelihood of

reproduction, whilst detrimental features will be gradually be discarded. Basic lifeforms such

as plants and singled-celled organisms are able to asexually reproduce, however the vast ma-

jority of higher life-forms reproduce through sexual mating [40]. This means all individuals

which are able to produce offspring with each other belong to the species, with new species

arising once two sub-populations of a species have diversified to the extent such that sexual

reproduction is no longer possible, as may occur through geographical separation. It is widely

accepted that this fundamental diversification took place at early stages of life on the Earth,

leaving no free ecological niches for new species to develop; barring a major-scaled ecological

disaster, it is unlikely for entirely new species to evolve [160]. The process of evolution is thus

a cycle of reproduction, mutation and selection, and these form the basis of all evolutionary

algorithms [87, 26].

The Darwinian principles as discussed above describe the evolutionary process at a macro-

scopic level. Considering the microscopic level - the method in which information is trans-

ferred from parent to off-spring - is the field of molecular genetics. All living organisms

contain an encoding which contains a chemical description of how to assemble the organism.

The encoding is named a genotype and in the real world it contains the complete set of infor-

mation on how to assemble the physiological and morphological appearance of the organism -

its phenotype - in the form of a genetic encoding. All the information in the two parent geno-

types can be inherited by the produced offspring, with a random amount of ‘recombination’

between the two sets of genetic material and a further random mutation.

It is important here to distinguish carefully between the genotype and phenotype, as to

where the processes involved in evolution take place. The mutation and recombination take

place exclusively in the genome, whilst the selection process is exclusively the subject of the

phenotype. Information is passed in one direction only, from genotype and phenotype, and

never the other way - the skills and experiences learned by the parent throughout its life do

not influence the genome and thus are lost upon its death. Ontogenesis, the self-organising

building process which develops the phenotype from the information within the genotype is

so complex it is far from being fully understood, however it is known that their is an inherent

random element which results in no two phenotypes being exactly the same as each other,

even if they share identical genetic material. In brief, portions of the genetic material, held in

the structure of deoxyribonucleic acid (DNA), is copied into strands of messenger ribonucleic

acid (RNA). The RNA is subsequently translated into one of 22 standard amino acids, which

are concatenated to form a large variety of proteins [76]. These proteins have the ability to

excite or inhibit the generation of other proteins; this allows the cells to be able to differentiate

59 3.1 Introduction

between one of hundreds of distinct morphological types, such as hormone secretion cells,

nervous system cells, skin cells and blood cells, which combine to create the complex organs

of the body [14].

The evolutionary process thus occurs when four conditions are satisfied: there is a popu-

lation of entities, the entities have the ability to reproduce, there is variety in the reproduced

entity’s, and there is a variation in an entities survival chance that is associated with its envi-

ronment. In the natural world variety is found within the chromosomes of an entity, resulting

in variation in both structure and behaviour of the entity. These structural and behavioural

differences result in variation in the survival and reproduction rates of entities, as those which

can adapt better to their environment outlive and reproduce more than those which are less

fit. Over a number of generations the population will contain more of the well-adapted enti-

ties [87].

3.1.2 History of Evolutionary Computation

Evolutionary computation is often considered a subfield of the computer-science study of ar-

tificial intelligence, in which a population is iteratively improved based on the primitive bio-

logical mechanisms that are found in evolution. The earliest examples of the application of

Darwinian evolutionary operators of mutation and selection towards improved computational

solutions can be found in the late 1950’s, such as the work by Dr. George Box aimed at im-

proving the productivity within the chemical industry, published in 1957 [34]. The lack of

available computing platforms to develop such algorithms resulted in relatively slow growth

until the mid 1970’s. From this period onwards the field has seen steady 1 growth in terms

of the number of publications and conferences. The majority of all implementations of evolu-

tionary computation can be shown to descend from three independently developed, although

strongly related, approaches. These are genetic algorithms (GA), evolutionary strategies (ES)

and evolutionary programming [27]. The original objective of both genetic algorithms and

evolutionary programming is the optimisation of parameters within a process; this differs from

evolutionary strategies, which were developed with the goal of implementing artificial intelli-

gence by simulating learning processes [160]. The different types of algorithm are discussed

in detail in Section 3.2.
1For a while, the growth in the number of publications and conferences in the field was exponential [27]

Chapter 3: Evolutionary Algorithms 60

3.1.3 Operation of an Evolutionary Algorithm

Almost all examples of evolutionary algorithms require at least five key functional operations

to be specified. Firstly the data structure which represents the genotype must be determined.

This must contain all of the relevant parameters that are required for expressing a candidate

solution. Then, the mapping or developmental process which creates a phenotype from the

genotype must be defined2. A process to determine a measure of how well each decoded

phenotype performs at its given objective - the fitness function - must be assessed for all the

individuals. A selection strategy for choosing members for the new population (and often a

strategy for recombination of genetic material from multiple parents) must be implemented.

Finally a method for introducing variations into the new population, normally by mutating the

genotypes within the new population needs to be constructed. The operation principle of a

typical evolution algorithm is demonstrated in the block diagram of Figure 3.1.

Genotype Definition

It is necessary for the genotype to contain all the variables and parameters necessary for the

genotype-phenotype mapping process to completely develop the candidate solution. Generally

the data types are chosen so that they allow an efficient coding and easy implementation of

variation operations (crossover and mutation), such as binary bit-strings and integer or floating

point arrays.

Initial Population

The first process in any evolutionary algorithm is the creation of an initial population. Most

often this will be a set of randomised genotypes, although this is not always the case. In

certain circumstances the first generation may be populated with ‘known’ solutions, which

may be for example a set of genotypes which correspond to the current best human-created

solutions in the case of an optimisation problem, or the termination-population of a previously

run algorithm. The initial population could also be a group of clones of one single genotype,

although in general it is desirable to have a level of diversity in any population.
2In some very trivial or simple algorithms, such as boolean functions, there may be no difference between

genotype and phenotype and thus no mapping. Alternatively the mapping may be performed by a separate prede-
fined structure, such as on an FPGA chip in intrinsic evolution where the genotype is passed directly to the external
hardware.

61 3.1 Introduction

Figure 3.1: Block diagram of the main operations in a generic evolutionary algorithm.

Chapter 3: Evolutionary Algorithms 62

Genotype→ Phenotype Mapping

The Genotype→ Phenotype Mapping process is the stage that reproduces ontogenesis in the

natural world. It takes a genotype as its input, and produces a phenotype representation of

an individual, being a state that is ready to be calculated by the fitness function. In many

algorithms the phenotype may take the form of a standard data type or structure. In the case of

extrinsic evolution of electronic circuits, the phenotype may be considered the SPICE netlist

or hardware description language module, thus the mapping is the process of converting the

genotype on which the algorithm operates into a netlist, ready for analysing by the simulation

software.

The mapping may be either fixed architecture or self-organising. In a fixed architecture the

structure of the phenotype is predetermined but the values are described within the genotype;

this is the case for many parameter optimisation algorithms and most examples of intrinsic

electronic evolution, where the mapping toggles the activation of certain function blocks on

the hardware device. In a full self-organising system all aspects of the phenotype may be

described from the genotype mapping; in the case of extrinsic evolution this may include the

choice of components, connection topology and component values within a netlist [160].

Calculation of an Individuals Fitness

The process of evaluating an individuals fitness essentially contains the description of the

problem to be solved and a method for rating each individuals effectiveness at solving that

problem - the fitness function. This process takes the phenotype as its input an returns a

single score, or a set of scores, as its output. Determining the appropriate fitness function for

a problem is one of the most important and often difficult tasks as the process requires the

implementation of a method for probing the individual to obtain results, and the subsequent

fitness landscape can take on a vast number of different shapes. If the fitness landscape is

scattered with many local optima there is a risk that the algorithm will prematurely converge

and struggle to find the global optima.

The process of testing the individuals and calculating a score from the results is also gen-

erally by far the most time consuming in the algorithm, to the extent that in many cases all

the other computation time can be considered negligible. Many problems will have multiple

objectives to be optimised, thus it may be necessary for the fitness function to either combine

and weight numerous scores into a final value using a mathematical function, or alternatively

use one of a number of multiple-objective strategies that rank the entire population based on

their performance across the whole gamut of objectives.

63 3.1 Introduction

Selection Operation

The function of the selection strategy is to determine which members of the current generation

should either directly survive, produce offspring, or die out. The evolutionary strategy may

allow for survivors from a generation to pass through to the new generation unaltered - it is

common practice in many strategies to preserve the fittest member of one generation, thus

ensure every future generation will have a member at least as strong as any in the previous

generation; such strategies are named elitist strategies. Parent selection strategies normally

select two parents which are passed to the crossover algorithm, and from them a new offspring

is created, containing characteristics of both. A number of different selection strategies have

been implemented in different algorithms, and it is obviously possible to combine the strate-

gies with different weights. A brief description of some of the most relevant strategies is given

below:

• Tournament Selection is perhaps the simplest strategy to implement, and also one of the

most computationally efficient to calculate. A group of q randomly selected individuals

compete in a tournament; the fittest is promoted to the new population or as a new

parent. The selective pressure of the strategy can be finely tuned by careful adjustment of

the tournament size q. Generally all the members are available to compete for selection

in all the tournaments, and the fittest is deterministically selected, although variations

exist. A tournament between only two individuals is termed a binary tournament. Given

that no sorting of the population is required the time complexity is O(λ) making it

suitable for use with very large populations sizes [27, 26].

• Fitness Proportional Selection maps the fitness scores across a fixed interval (typically

[0,1]) using a linear, or otherwise, fitness scaling function, which allows for the distor-

tion of different fitness regions. This strategy allows the promotion of specific regions

of fitness and complex weightings to be implemented if they appear likely to improve

the algorithm’s performance, however, the most appropriate scaling function is likely to

be highly problem specific [160, 26].

• Rank-based Selection converts all the fitness scores into a rank value and selects individ-

uals based only on this rank score. Such a strategy is easy to implement and eliminates

the need to create a fitness scaling such as used in proportional selection. Unlike in pro-

portional selection, the fittest member of a rank-based strategy will always be assigned

the same selection probability, which reduces the likelihood of an individual with a

vastly superior fitness score engulfing the population. However, when vast population

Chapter 3: Evolutionary Algorithms 64

sizes are used, the act of ranking each and every individual can demand substantial

memory and processing time [26].

• Diversity-based Selection is a method of selection designed to maintain a diverse popu-

lation allow more of the potential search space to be explored. A metric for measuring

the difference between individuals within the population is introduced and from this se-

lection occurs, penalising crowded areas of the fitness landscape. With such a strategy

the mean fitness and number of weak individuals and traded for the diversity of the pop-

ulation, reducing the likelihood of diverging towards local optima and stagnating [160].

• Disruptive Selection penalises members of the population with average fitness scores.

One such function takes the form u(x) = |f(x)− f(t)| where f(x) is the fitness value

for individual x, and f(t) is the mean of all solutions at that point in time; both the

very good and very weak individuals will be promoted ahead of average solutions. The

use of such a strategy is highly problem dependent and would only work with a limited

number of mutation strategies [26].

• (µ, λ)evolution strategies use a deterministic selection scheme, in which µ parents create

λ offspring through recombination and mutation, with the best µ offspring selected to

replace the parents. This is a non-elitist strategy thus the best individuals of future

generations can perform worse than the best of the current generation.

• (µ+ λ)evolution is an elitist alternative to (µ, λ) selection in which the best µ individ-

uals from the union of parents and offspring are selected for the future generation. This

ensures that a monotonic course of evolution is guaranteed.

• (µ, κ, λ)strategies form a group including both the above strategies, in which κ defines

the maximum generation lifespan of an individual. For (µ, λ) evolution κ = 1 and for

(µ+ λ) evolution κ =∞ [27].

• Multi-Objective Selection strategies are used when multi-objective algorithms are run

with multiple fitness values being produced. Whilst multiple objectives can be com-

bined to create single scores in the fitness function, it is also possible to keep the values

separate and this allows a far more diverse set of candidate solutions. The different

multi-objective selection strategies are discussed in further detail in Section 3.3.

65 3.1 Introduction

Mutation Operation

Mutation is one of the two ‘variation’ operators: it adds the element of random variation to the

new population. It is generally usual for all the members of the new population to be subject

to the mutation operation, aside from elitist schemes which preserve the fittest member(s) as

is. Different strategies have been used for various data-types within the genotype. A bit-wise

mutation, where randomly selected bits of the genotype are inverted, is one of the most simple

operations and can theoretically be applied to all computed algorithms. However, when the

genotype uses a non-binary encoding a bit-wise strategy can clearly have a wide range of

consequential effects and in certain cases may lead to non-solvable solutions or other problem

states.

Generally the mutation strategy will operate using the same data type as individual genes.

When integer or floating-point data types are used, the mutation operation may alter a value

to a new random value using some defined distribution centred on the original value. Alter-

natively the mutation operation may select a completely new random value (possibly within a

defined range). The strategies have different consequential effects on the new population and

the progress of an algorithm; limiting the mutation range will tend to improve the mean fitness

score and gradually find local optima yet imposes more restriction on the search space than a

wide-range or full-range strategy.

The distribution used within the mutation strategy has been subject to a body of research,

where it has been noted that the best performing distribution cannot easily be predicted as it

is dependent on the fitness landscape that results from the problem in hand. In a classical EP

algorithm the mutation will use a Gaussian distribution. One alternative, such as that used

in Fast Evolutionary Programming (FEP) [180], is the Cauchy distribution, which in its one-

dimensional form is defined by the equation below:

ft(x) =
1

π

t

t2 + x2
, −∞ < x <∞ (3.1)

The shape of the Cauchy distribution, illustrated in Figure 3.2, is initially similar to a

Gaussian over the central region, but approaches the axis very slowly such that it has an infinite

variance. This extra variance increases the possibility of an algorithm escaping from a local

optima, and has been demonstrated to perform significantly better than a Gaussian strategy

in multi-modal problems with complex fitness landscapes [181]. Other distribution functions

for mutation strategies that have been investigated include the use of Laplace distributions by

Montana and Davis [26].

Chapter 3: Evolutionary Algorithms 66

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -3 -2 -1 0 1 2 3 4

Cauchy Distribution, t=1
Gaussian Distribution, N(0:1)

Figure 3.2: Comparison of the Cauchy and Gaussian Distributions

An important parameter of all evolutionary algorithms is the mutation rate (the probability

of one bit or gene mutating). For bit-string based genotypes a very common choice is to mutate

an average of one bit in each operation (a mutation rate of 1/l where l is the genotype length).

In early algorithms mutation was often considered a minor or background operator with far

greater emphasis placed on recombination; as a consequence very low mutation rates were

often used. Schaffer et al researched the problem and found their optimal rates were in the

range 0.05 to 0.1% [145], with further analysis on their results by Müllenberg arriving at the

formula N ×m×
√
n = 1.7, where N is the population size, n is the genotype length and m

is the mutation rate [126]. However, more recent studies have revealed that the optimal size

differs for every different problem and over the course of the optimisation. These studies have

demonstrated that the use of much larger initial mutation rates which dynamically decrease

over time, or the use of self-adaptive mutation rates which encode the current mutation rate as

part of the genotype, can prove effective [25, 152].

Recombination Operation

The second variation operator that is used in evolutionary algorithms is recombination or

‘crossover’ - the way by which offspring genotypes are assembled from two or more parents.

Numerous different implementations of crossover are possible dependent on the data types

used in the genotype; different methods can have drastically different effects on the offspring,

as illustrated in Figure 3.3. The proportion of parent string which undergo the crossover op-

eration is determined by the crossover rate, although there may be additional rates depending

on the recombination method [26]. The most simple form is a one-point crossover, in which

the genotypes from two parents are combined into a single offspring genotype. A crossover

67 3.1 Introduction

position is randomly selected, with the resultant genotype formed by the concatenation of the

substring of parent A up to the crossover point with parent B from the crossover point. Some

of the most frequently used alternative crossover strategies are outlined in the list below [27]:

• Uniform crossover operations do not have predetermined crossover points; instead the

decision to make a breakpoint is made independently at each position. In its simplest

form, with a binary genotype, the crossover will randomly select each bit or gene of

the offspring genotype from either parent A or parent B, as shown in Figure 3.3a. This

can be neutrally weighted, or one parent can be given dominance at a predetermined

rate. Alternatively the likelihood of switching the source parent can be below p = 0.5

at each position. Optionally an alternate offspring can also be created from the inverse

selection, thus for each given gene parent A will contribute to either offspring C or D,

and parent B the other [32].

• N-Point crossover arranges the genomes and splits them at N randomly selected cross-

ing points. The offspring are then composed from alternating sections of the genome

pair. Figure 3.3b shows an example of 2-Point crossover.

• Arithmetical crossover is used with integer or floating-point value genes and selects a

distribution between the respective value from both parents using a chosen distribution;

this can affect all genes or only a randomly selected number. In guaranteed average

crossover, as shown in Figure 3.3c, the value is always the mean of the two values. In

geometrical crossover the value is calculated by the square root of the product of the

two parent values [114].

• Multi-parent recombination creates offspring from more than two parent genotypes,

using adapted versions of crossover strategies such as those listed above.

Termination Criteria

A final consideration to give to any evolution algorithm is if and when to terminate. For certain

problems, there may be a single, correct solution, at which point the algorithm can terminate.

An example of this is the creation of boolean logic functions where the only fitness objective

is the functionality of the circuit - once a design is realised that perfectly realises the target

truth table, the program can terminate. For many problems, particularly those focussed on

optimisation, there may be no perfect solution, and as such termination will be desirable either

after a predetermined amount of time (or number of generations), or when a certain quality

Chapter 3: Evolutionary Algorithms 68

(a) Uniform Crossover

(b) 2-Point Crossover

(c) Guaranteed Average Crossover

Figure 3.3: Examples of some of the frequently used crossover operations in evolutionary
algorithms

69 3.2 Types of Evolutionary Algorithm

Table 3.1: The Implementation Differences between the primary forms of Evolutionary Algo-
rithm [47]

Algorithm Type Representation Evolutionary Operators

Genetic Algorithms Originally binary, also
real-values

Mutation, recombination and
selection

Evolutionary Programming Real-values Mutation and (µ+ λ) selection
Evolutionary Strategies Real-values and strategy-

parameters
Mutation, recombination and
(µ+ λ) or (µ, λ) selection

of solution has been realised, or when a certain amount of time has passed since the last im-

provement. The setting of termination criteria is very problem specific, and care must be taken

to balance allowing enough time for acceptable solutions to be found against allowing too

much time such that the population spends much time in a state of stagnation. As computation

resources become cheaper and more available there is arguably less need to concern about set-

ting specific termination criteria, provided the algorithm can be terminated by a user without

losing the data relating to the best solutions found to date.

3.2 Types of Evolutionary Algorithm

This section outlines the principle operation and differences between the main strands of EC

algorithm: this covers the three original forms - the Genetic Algorithm, Evolutionary Program-

ming and Evolutionary Strategies - along with the more recently developed fields of Genetic

Programming and its descendant Cartesian Genetic Programming. The key implementation

differences of the original forms are given in Table 3.1.

3.2.1 Genetic Algorithm

Genetic Algorithms (GAs) were established by John Holland, with the theoretical foundations

and early applications explored in his 1975 book “Adaptation in Natural and Artificial Sys-

tems” [74]. The fundamental principles are based on the ability of a simple representation

to encode a complicated structure, with simple evolutionary transformations improving the

structure. In a GA these representations are akinned to what is named a chromosome within

biology, and a group of chromosomes forms a population. Selection, mutation and cross-over

operations are performed on the population with the aim of improving an individuals fitness,

being the measure of how well it performs at the required function.

Chapter 3: Evolutionary Algorithms 70

One adaptation of standard GAs that has proved effective in the field of optimisation within

complex landscapes is the Parallel Genetic Algorithm (PGA). In a PGA, the global popula-

tion is split into distributed subgroups, of which the best members are sent to neighbouring

subgroups every k generations. If a sub-population is found to stagnate for a number of gen-

erations, one individual within it will switch from following the GA to attempting a local

hill-climbing strategy (see Section 3.4.1) [125].

3.2.2 Evolutionary Programming

Another set of evolutionary computation paradigms is Evolutionary Programming (EP), first

defined by Fogel in 1964, which differs from GAs in its top-down approach to optimisation.

EP was created as an alternative approach to artificial intelligence, which progressively created

organisms of increasing intellect over time as opposed to being reliant on heuristics. In a

GA the concept of different building blocks within the genome is key, which comes with

the implicit assumption that the fitness of a member can indeed be described as a function of

different block parts of the genome. In contrast in EP each member is judged solely on its final

fitness score and no effort is made to subdivide and extract building blocks from the genome,

thus crossover or recombination operations do not appear in standard EP with variation coming

from the mutation operator alone [26].

As first defined, EP involves a population of finite state machines, to which an ‘environ-

ment’ is presented as a sequence of symbols. The output symbol is observed and compared

to the next input symbol, with the differences accumulated to provide an overall fitness score.

Offspring machines are mutated through the randomised use of one of five mutation modes:

change an output symbol, change the initial state, change a state transition, add a state and

delete an existing state [62].

3.2.3 Evolutionary Strategies

Evolutionary Strategies (ES) were developed independent to GAs and EP by three students,

Ingo Rechenberg, Hans-Paul Schwefel and Peter Bienert, in 1964, when working on a method

to minimise drag on a flexible plate within a wind tunnel. They had employed an iterative

search strategy in which individual folds were adjusted one at a time, however discovered

that the search strategy always got stuck at a local minimum, a S-shaped fold, never realising

the optimal form of a flat plate. By introducing small random changes, the local minimum

could be bypassed - and combining this mutation with a decision to select the mutated design

or step-back, ES were born [26]. The early ES were all (1 + 1) strategies, such that there

71 3.2 Types of Evolutionary Algorithm

is just one parent and mutation, and the mutated individual is progress provided it scores as

good as the parent or better. Later computer simulations into the theory led to multimembered

strategies based upon continuous decision variables, with µ > 1 parents and λ > µ children

(see 3.1.3) [147].

3.2.4 Genetic Programming

Genetic Programming can be considered as specialisation of a GA, however the design of the

representation and genetic operator leads to a conceptually different approach to solving EC

problems. It is a domain-independent method that evolves populations of computer programs

to solve given problems. The objective is to create an automatic system, accepting a high-

level statement of a problem as its input and creating some form of computer program to solve

the problem without human-intervention in the programming. A large number of randomly

created programs forms the initial population, to which analogues of the Darwinian principles

of survival-of-the-fittest and the operations of sexual recombination and genetic mutation are

applied [26].

One of the first documented examples of a system designed to evolve computer functions

was described by Nichael Cramer in 1985. This system extended the algorithmic programming

language, PL, which allowed four basic operators: increment, zero, loop and goto, and added

to these a set operator (which sets a first variable to the value of the second) and a block

operator (which groups to other statements as arguments then performs them sequentially).

This system was applied to evolve a two-input, one-output multiplier using a population size

of fifty over thirty generations. Despite the very small test size the system produced the desired

function 72% more often than a flat-fitness control sample[50].

The first runs of what is conventionally accepted as a GP were in 1987 with the system

being first described in detail by John R Koza in his 1988 patent filing Non-Linear Genetic

Algorithms for Solving Problems[94]. The programs that are generated within the algorithm

were originally implemented in the LISP programming language which represents programs as

data structures; more recently some of the syntax and tree-structure of LISP language has been

retained whilst the programs themselves have been implemented in many other programming

languages [26, 89].

A program in this sense is an entity which has data inputs, performs computations and

produces data outputs, where computations can be arithmetic calculations, conditional com-

putations or iterative and recursive loops. More elaborate programs can also store results in a

memory cache, allowing sections can be divided and reused as subroutines with the passing

of dummy input variables and return values. One form of code reuse has been given the name

Chapter 3: Evolutionary Algorithms 72

Automatically Defined Functions [90]. Automatically Defined Functions (ADFs) are a method

of exploiting modularity that may exist within a problem with the goal of improving GP per-

formance. Evolved simultaneously with the main program, ADFs are subroutine blocks that

can be reused within a solution. The approach was first suggested by Koza and Rice who ob-

served significant performance enhancements in many different scenarios where the evolved

solution had multiple instances of blocks of code [88].

Evolutionary Module Acquisition (EMA), described by Angeline and Pollack, is an alter-

native approach towards the implementation of ADFs which helps protect promising partial

solutions and can speed acquisition time. Module acquisition in this manner allows promising

partial solutions to be protected from the stochastic nature of the evolutionary operators. In

this approach a randomly selected group of program elements are frozen from manipulation

and the reproductive advantage this gives to the individual is evaluated. These frozen groups

will be replicated “as is” into subsequent offspring. This is done by adding two new operators

into the reproduction process: compress which selects a module to freeze from manipulation,

and expand which has the opposite effect. These operators have no effect on the fitness of the

evolved results, instead they help ensure that fit sections can be preserved in possible offspring

[17].

An extension to the principle is the atomisation operator which represents a compressed

module as a new component within the genotype, allowing additional compression of modules

and the possibility of modules containing modules ultimately leading to a hierarchical arrange-

ment. Both ADFs and EMAs have demonstrated the ability to improve algorithm performance

in a number of situations where the problem can be split into modules and the principles of

code reuse have been widely researched since their introduction [168, 17].

Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a graph-based genetic programming paradigm

within which the genotype is represented as a list of integers and functions are linked by con-

nections, originally developed from a representation used for the evolution of digital building

block circuits. The genotype is a string of integers which represent both the functions and

interconnections between graph nodes, inputs and outputs [117]. One of the key distinctions

between CGP and other forms of genetic programming is that CGP can encode non-connected

graphs where it is not possible to walk between all of the pairs of nodes; however, at least one

connected subgraph is always encoded. The presence of disconnected subgraphs (which can

be altered or mutated without affecting the connected graph) implies a many-to-one genotype-

phenotype mapping [115].

73 3.2 Types of Evolutionary Algorithm

CGP itself has now been applied to a number of different fields in the field of Electronic

Evolution. When applied to the task of evolving boolean 3-bit multiplier problems one of the

evolved solutions used only 21 gates which is 20% less than conventional designs [115]. Other

applications include analogue & digital filter design [177], and further afield to image process-

ing and evolutionary art, artificial life and bio-inspired developmental models and molecular

docking [116].

One important aspect of CGP which distinguishes it from other algorithms is the presence

of redundant genes, which is analogous to junk DNA. Individual genes can themselves be

turned on or off by mutation operations during the evolution, and it has been demonstrated

that these “junk” genes offer beneficial roles within the evolutionary search space. Studies

to evaluate the effect of the inherent redundancy within CGP have concluded that the best

performance in terms of computational efficiency have occurred in scenarios where there are

extremely high levels of redundancy [116].

Standard CGP does not include the use of ADFs (although it has outperformed traditional

GP with ADFs on a number of occasions). Recently a new implementation named Embedded

CGP (ECGP) has been developed which includes ADFs based on the EMA approach, allowing

modules to be constructed and called by the main CGP code [168]. Another implementation

of CGP has recently been used by Gadja and Sekanina with the specific goal of reducing the

number of transistors in digital circuits using a gate-level evolutionary design, extending from

earlier work by Miller et al, with early results highlighting the computation efficiency of the

search method over Koza’s GP method [67].

3.2.5 Hybrid Methods

Hybrid evolutionary systems are those which enhance a standard evolutionary method with

some addition domain knowledge, problem-specific heuristics and possibly existing algo-

rithms with the aim of improving performance (either of the existing algorithm, the evolu-

tionary system or both). In the cases where an existing, non-evolutionary algorithm is to

be hybridised, the technique will generally be to preserve the algorithms current encoding

and positive features whilst incorporating relevant crossover and mutation operators. An al-

ternative class of hybrid systems exist within which the EA acts as a component part of a

larger system comprising of many other algorithms. One specific form of hybrid algorithm

uses Lamarckian inheritance, whereby characteristics or knowledge acquired by individuals

throughout their lifetime is in some form passed on to off-spring. Such algorithms are suited

only to problems where a reverse phenotype→ genotype mapping is possible, including any

acquired characteristics.

Chapter 3: Evolutionary Algorithms 74

3.3 Multi-Objective Selection

It is not generally possible to accurately rate the performance of a logic circuit, or indeed any

electronic circuit, based on a single score. Circuit operating speed and power consumption

are generally inversely proportional and these two primary characteristics can each be bro-

ken down further. The operational delay between an input-change and corresponding output

change will vary based on the prior-state conditions, the output load and the relevant path

between input and output. When considered as a whole circuit, numerous different delay char-

acteristics can be considered. Likewise, the power consumption can be separated into static

and dynamic power and will also vary between different input and output states and transitions.

Whilst an exhaustive sweep of every possible combination of input-and-output transitions at all

practicable loads is not a realistic simulation option (especially when several thousand circuits

need to be simulated, as is the case within an evolutionary algorithm), it is clear that useful

characterisation of a circuit performance must take into consideration a number of different

circuit parameters. As such, the problem represents a Multi-Objective Optimisation problem,

and its solution will require the use of a Multi-Objective Evolutionary Algorithm (MOEA).

3.3.1 Pareto Optimality

MOEA’s are adaptations of traditional single-objective algorithms which provide a number

of solutions, which provide trade-offs of performance between objective functions that mu-

tually conflict. Whilst a traditional global optimisation problem will work towards a single

solution, the aim of an MOEA is to find a set of trade-offs; rather than a single optimal solu-

tion, a set of results which are all considered equally optimal is provided. This set of results

forms what is commonly known as a Pareto-optimal front, formally generalised by Vilfrado

Pareto in 1893 [133], which can be formally mathematically considered through the following

definition [47]:

x ∈ Ω is Pareto-Optimal w.r.t. Ω if and only if there is no x′ ∈ Ω for which

v = F (x′) = (f1(x
′), ..., (fk(x

′)) dominates u = F (x) = (f1(x), ...fk(x))
(3.2)

In other words, discovered solutions to a problem are considered to be Pareto Optimal

when their individual objective components cannot all be simultaneously improved. If, for

a given solution x, there is no alternative solution x′ in which fitness is improved in one

objective without causing detriment in another. All such solutions form part of the Pareto-

optimal front and are considered to be non-dominated. An example of Non-Dominated Front

75 3.3 Multi-Objective Selection

Figure 3.4: An example of individuals in a 2-objective problem. The top three Non-Dominated
Fronts, including the Pareto-optimal front, are shown.

(NDF) highlighting the Pareto-optimal front is given in Figure 3.4.

3.3.2 Types of Multi-Objective Evolutionary Algorithms

There exist several publicised techniques and algorithms which are used to find solutions to

multi-objective problems via evolutionary search. The earliest examples can be found in work

published by Ito et al in 1983 which concerned insulation systems within piping networks, and

the Vector Evaluation Genetic Algorithm (VEGA) as proposed by David Schaffer in his 1984

PhD thesis. VEGA was based on a simple GA, however the selection process was modified

such that sub-populations were created at the end of each generation based on performance

at each different objective function in turn, which were then shuffled to create the new pop-

ulation. Whilst this approach retained the individuals that excelled at individual objectives,

well-balanced individuals that didn’t excel at any objective would not survive the selection

process [46]. Goldberg observed the shortcomings of VEGA and other MOEAs that had

been created and pointed out the need to use the ideas of Pareto-optimality to create effective

MOEAs, in which the population is ranked such that it moves towards the Pareto front [68].

This suggestion resulted in a number of new algorithms, which shall be considered first

generation MOEAs, which can be characterised by the algorithms simplicity. Following com-

parative studies on these on algorithms, revisions were made which aimed to improve the

efficiency, primarily through the use of elitism, and diversity of the algorithms, resulting in

the second generation MOEAs. The primary operation of the most widely adopted first- and

second- generation MOEAs are outlined in Table 3.2 [46, 47].

Chapter 3: Evolutionary Algorithms 76

Table 3.2: Comparison of the features and characteristics of the most widely adapted first- and
second- generation Multi-Objective Evolutionary Algorithms [46, 47]

Name Notes

Fi
rs

tG
en

er
at

io
n

MOGA Multi-Objective Genetic Algorithm ranks individuals based on the
number of chromosomes in the population by which it is domi-
nated, thus all non-dominated individuals are equally ranked.

NPGA Niched-Pareto Genetic Algorithm uses tournament selection be-
tween two individuals, in which each is compared to a random
subset of the entire population. If either is non-dominated and the
other isn’t, the non-dominated individual is advanced to the next
generation, whilst all other results are considered a tie with the
selected individual determined through fitness sharing.

NSGA Non-dominated Sorting Genetic Algorithm ranks the entire pop-
ulation based on non-domination and assigns each rank a fitness
value based on population size.

Se
co

nd
G

en
er

at
io

n

SPEA Strength Pareto Evolutionary Algorithm stores an archive of pre-
viously found non-dominated solutions, which is added to at each
generation. Each individual of the current population is compared
to the strengths of all the archived solutions. The archive is peri-
odically pruned to ensure its size remains below a certain thresh-
old.

SPEA-II Strength Pareto Evolutionary Algorithm II enhances SPEA with a
finer grained fitness measures which accounts for both the number
of individuals that are dominated and those with are dominating.
It adds a nearest-neighbour density estimation to enhance the effi-
ciency of the search, and amends the archive truncation to ensure
boundary solutions are preserved.

PAES Pareto Archived Evolutionary Strategy combines a historical
archive of non-dominated solutions with a (1+1) evolution strat-
egy. To ensure diversity, each solution is given a coordinate posi-
tion within an adaptive grid, with a procedure to ensure a balanced
weight across all locations.

NSGA-II Non-dominated Sorting Genetic Algorithm II is an improved ver-
sion of NSGA. It is discussed in detail in Section 3.3.3.

77 3.3 Multi-Objective Selection

3.3.3 NSGA-II

The Non-dominated Sorting Genetic Algorithm-II addresses many of the criticisms that had

been directed at the NSGA approach. It adds elitism to the strategy, which has been shown

to improve performance. It is also faster to calculate, reducing the computational complexity

from O(MN3) to O(MN2), where M is the number of objectives and N is the population

size. Finally, it removes the reliance on the sharing parameter which preserved diversity in the

original NSGA algorithm [53].

NSGA-II functions operates by ranking and sorting each individual in the population ac-

cording to its non-domination level. One individual dominates another if, and only if, it scores

better in at least one objective function and equal to or better in all others. It is therefore possi-

ble for a great number of solutions to fall within the same NDF, and as such there needs to be an

additional function to determine which individuals in the same NDF should be given a higher

probability to survive. This additional descrimination between individuals in the same front,

referred to as niching, occurs through the use of a crowding distance measure, as described

below.

NSGA-II has been used for many applications the field of evolutionary electronics, includ-

ing the synthesis of CMOS operational amplifiers, electro-mechanical system design, antenna

design [46] and development of transistor circuits on programmable hardware [160]. It has

been selected as the multi-objective algorithm used in this project based on a number of com-

parative studies with other 2nd generation MOEA studies, which suggest it is generally the

best-performing or close to best performing when a moderate range of objective functions are

used; other algorithms outperform it when few (under 4) or many (over 10) objectives are

used, however for the range likely to be used in the project, the NSGA-II offers competitive

performance [185, 47, 160]. The pseudo-code for the implementation of NSGA-II used in this

thesis can be found in Appendix B.2.

Crowding Distance Measure

The crowding distance, Cdist is a measure of the density of solutions that exist within the

vicinity of a particular individual p within the fitness landscape. It is calculated for each of

the members within each non-dominated front respectively, based on the average distance to

the nearest neighbours of p through each and every objective. The purpose of the crowding

distance measure is to guide evolution towards a uniform distribution of results across the

Pareto-optimal front, by means of promoting well-spaced individuals over densely packed

ones. To achieve this Cdist is used as a secondary ranking for the individuals within a given

Chapter 3: Evolutionary Algorithms 78

NDF [160].

3.4 Alternative Optimisation Algorithms

An important characteristic of evolutionary algorithms is the fact that only two of the key

operational modules, namely the genotype → phenotype mapping, and the fitness function,

need to be implemented in a problem specific way. All the other steps in the process are

independent of the problem definition; no prior knowledge of how a candidate solution works,

nor further information about the optimised system, is included within the algorithm. As

such EAs can be considered to be ‘black-box’ approaches to solving optimisation problems;

they are applicable to a vast number of optimisation tasks, although their performance above

alternative strategies is never guaranteed.

There are other algorithms which fit the same black-box heuristics of EAs. The most

simple are the exhaustive or brute-force search, in which every possible location within the

search space is assessed in a linear fashion, and the plain random search, in which different

possible locations within the search space are assessed entirely at random. The former strat-

egy is practical in none but the simplest and smallest of search spaces, although it is easy to

implement and has the benefit over all other strategies of absolutely guaranteeing finding the

optimal solution within a finite, predetermined number of assessments; as such it provides a

useful benchmark to which other algorithms may be compared. Aside these simplistic algo-

rithms, there are a further set of approaches which take into account the fitness landscape and

aim to advance solutions in a generation-by-generation; these are hill-climbing and simulated

annealing.

3.4.1 Hill Climbing Algorithms

Hill-climbing advances the primitive techniques of exhaustive and random searches by in-

cluding information about the search space. A hill-climbing algorithm takes an initial starting

position within the landscape, and attempts to improve on the current position by evaluating

the fitness of local neighbours, moving towards the state that appears to be the best. The

simple hill-climbing algorithm examines potential new states in a fixed order and selects the

first one that improves upon the current state. This clearly adds bias based on the ordering,

so a more robust solution is found in the steepest ascent hill climbing algorithm (SAHC). In

SAHC, all possible successors are evaluated with the one that offers the greatest improvement

selected. A major problem for these basic algorithms is they only find local maxima; once

a position is found in which all local neighbours are worse than the current state stagnation

79 3.4 Alternative Optimisation Algorithms

occurs. Additionally landscapes with plateaus, in which all local neighbours appear the same,

and ridges, in which the target direction of the global maxima is along a narrow ridge, create

situations in which the algorithm can get stuck [49].

There are many variations on the steepest-ascent hill climbing algorithm which aim to

improve performance, particularly at avoiding stagnation at a local-maxima. Stochastic hill

climbing adds a random element to the selection process with the probabilities of the different

possible uphill moves weighted by their gradient; this generally converges more slowly than

steepest-ascent but can perform better in certain landscapes. First-choice hill climbing gen-

erates successors at random until one is found to outperform the current state; this strategy

is observed to work well in vast multivariate problems where a state has many thousands of

potential successors. Random-restart hill climbing conducts a series of shorter hill-climbing

searches from random starting positions with the aim of finding the global optima. Much as

with evolutionary optimisation strategies, the success of a hill-climbing algorithm is very de-

pendent - for landscapes with few local maxima, random-restart hill climbing can very rapidly

find a good solution, however for a complex, spiked landscape, as is typical with an NP-hard

problem, the algorithm will rapidly find strong local maxima but may miss the global max-

ima [140].

3.4.2 Simulated Annealing

Simulated Annealing (SA), invented by Kirkpatrick et al in 1983 [85], is an algorithm that

essential combines hill-climbing with an element of random walk, to attempt to avoid the

problem of getting stuck in local maxima, whilst being far more efficient that simply relying

on random walk. The name stems from the metallurgy process of annealing in which metals

are tempered by heating them to a high temperature, then gradually cooling them. The process

is astutely described by Russell and Norvig using the following analogy: Consider a rough,

bumpy landscape in which there is a ball, where the aim is to get the ball to reach the lowest

point - a gradient descent problem. The process works by shaking the environment roughly,

allowing the ball to fall and settle, then repeating the process with decreasing force until the

ball has settled at the lowest point and doesn’t get dislodged by the shaking [140].

Simulated Annealing is used in multi-variate combinatorial problems where the goal is to

minimise the system energy - a global function that is based on all the variables. SA is an ex-

tension of Metropolis Monte-Carlo (MMC) simulation, in which information about the shape

of the search landscape is learned through a process of initial random sampling followed by

iterative small changes. When the small changes result in a decrease in energy, the new state is

accepted. If, however, the energy value is increased, the new state is probabilistically accepted

Chapter 3: Evolutionary Algorithms 80

based on the Boltzmann Acceptance Criterion (BAC) e(−δE/t), in which δE is the increase

in energy and T is the ‘temperature’ of the system, calculated from the percentage of steps

that result in a rise in energy. A random value between 0 and 1 is chosen, with the new state

accepted when the value is lower than the BAC; the allows the process to escape from local

minima. In SA, successive iterations of MMC are run using progressively lower temperatures,

with successive temperatures calculated from a cooling schedule. Popular cooling schedules

include Tnew = Told − δT and Tnew = Told × Q where Q is a constant below 1.0; the choice

of the schedule, the initial temperature and the amount of cooling each iteration need to be

carefully selected according to the landscape and parameters of the problem to solve [49]. It

is noted that in addition to hill climbing and simulated annealing, there are numerous other

optimisation algorithms that have been applied to similar tasks. These include, amongst many

others, particle swarm optimisation, quantum annealing and tabu search; for reasons of time

and space a detailed analysis and comparison of all these techniques has not been included

here.

3.5 Application of Evolution Algorithms

Whilst various algorithms can be demonstrated to find optimal solutions to trivial problems,

the potential for EC is far greater when solving non-linear multi-variable optimisation prob-

lems. It is particularly in problem areas with stochastic, temporal or chaotic components where

EC demonstrates the most potential as conventional methods can either miss optimal solutions

or use excessive computational resources, or in certain circumstance conventional methods

simply do not exist to solve the problem at hand. In this section a number of different practical

problems to which evolutionary computation methods have been applied are discussed, with

special focus on the problems associated with electronic engineering design and optimisation.

3.5.1 General

Some of the most common optimisation areas in which evolutionary computation methods

have been exploited are in routing, scheduling and packing. Routing problems are examples

of combinatorial optimisation which have many real-world applications. One well known

example is the Travelling Salesman Problem, which is finding the lowest cost route whilst

travelling through all the nodes of a weighted graph. This problem is considered NP-hard

and with such problems exact algorithms require exponential amounts of compute time as the

number of nodes increases, thus methods to accelerate the discovery of near-optimal solutions,

such as EAs, are implemented. Routing has many applications within the field of electronic

81 3.5 Application of Evolution Algorithms

engineering, scaling from the placement of component and tracks in PCB manufacture to the

routing of tracks in semiconductor lithography [26, 87].

Scheduling problems try to best arrange a series of activities to fit within a time-frame

whilst considering limited resources and other constraints. Scheduling algorithms have many

applications in computer science, and are needed in the design of computer operating sys-

tems to efficiently allocate tasks and memory caches, particularly in multi-processor environ-

ments [61].

Packing problems generally try to determine the optimal fit of a number of various sized

objects into fixed sized containers. Many real-world problems with EE have similar require-

ments, such as the optimal distribution of sub-circuits within a VLSI integrated circuit, or

the optimal distribution of integrated circuits on a wafer in the silicon manufacturing process.

Packing problems are also found in communications, for example the optimal distribution of

communication channels for various users and bit-rates [26].

3.5.2 Uses within Electronic Circuit Design

A significant number of different applications of EC have been made in the field of electronic

engineering; research within this area is often given the name of Evolutionary Electronics

(EE). Examples of EE can be separated into extrinsic evolution, in which simulation software

performs the analysis to create fitness scores, and intrinsic evolution, in which dedicated hard-

ware, typically based on reconfigurable VLSI chips, is probed to obtain fitness scores; the

two domains are illustrated in Figure 3.5. Examples of the creation of topologies and compo-

nent optimisation for both digital and analogue circuits exist in both the extrinsic and intrinsic

domains. A synopsis of notable examples is given in Table 3.3 [183].

3.5.3 Evolution of Analogue Circuits

Analogue circuit simulation in particular is a design area which has many times demonstrated

the effectiveness of genetic algorithms. Unlike digital systems, which are generally system-

atic in their design thus well suited to automation, analogue circuit design has proven hard to

create tools for, with most designs drawing heavily from intuition [183]. Despite the advent of

digital electronic systems, analogue devices are still widely used in modern electronic devices

both at discrete and integrated levels. Oscillators and clock-generators are necessary for all

synchronous digital systems, filters and A-D & D-A converters are used extensively in com-

munications and signal processing [11]. Traditional human circuit design methods general use

a specific design principle, such as symbolic analysis, or are based on intuition and ad-hoc

Chapter 3: Evolutionary Algorithms 82

Table 3.3: Examples of Evolutionary Algorithms in Electronic Circuit Design

Function Author Notes

Analogue
Computation

Koza, 1997 Use of GP to evolve analogue computational cir-
cuits. The functions were square, cube, square-root
and cube root. The circuits used BJ transistors and
passive components.[91]

Digital compu-
tation

Koza, 1992 GP used to evolve boolean functions, multiplexers
& parity functions[87].

Miller, 1998 Evolution of binary multiplexers, adders and mul-
tipliers using CGP. The results included a design
for 3-bit multiplier that is 20% more efficient in
terms of gates than the best known conventional
design[115].

Langeheine, 2002 Optimisation on actual logic gates on FPTA chip.
Correct DC functionality for all gates except X-OR
was obtained[101].

Hadjam, 2007 Multi-expression algorithm used in multi-island
cluster approach for accelerating evolution of 3-bit
multipliers and other designs[71].

Filters Koza, 1995 Use of GP to evolve low-pass filter designs using
SPICE small signal analysis[94].

Koza, 1996 Inclusion use of ADF in filter evolution re-
sults in the emergence of ladder and elliptical
topologies[90].

Lohn, 1998 Butterworth and practical stethoscope low-pass
filter circuits evolved using linear byte-code
representation[106].

Grimbleby, 2000 Use of hybrid GA to evolve bass-band filter prob-
lem, using GA to evolve topology and a conven-
tional algorithm for values.[70]

Koza, 2000 Evolution of generic low-pass filter with a free
variable using GP[95].

Fan, 2001 Bond-graph approach used to evolve topology and
component values for high-pass, low-pass and
band-pass filters[59].

Chao, 2005 CGP used to evolve low-pass filter topologies using
SPICE simulation[177].

Wang, 2007 Two-layer GP approach used for evolving low-pass
filter and voltage amplifiers[172].

83 3.5 Application of Evolution Algorithms

Function Author Notes

Integrated Cir-
cuits

Koziel, 2003 Use of an adaptive EA to lower the power con-
sumption of CMOS circuits during high-level syn-
thesis, with the goal of reducing average and peak
temperatures[96].

Salomon, 2007 EA used to optimise dual-threshold CMOS circuits
from ICSAS test suite at gate level[141].

Operational
Amplifier

Kruiskamp, 1995 Synthesis of topology and sizing of 100-dB op-
erational amplifiers using the DARWIN system.
Building blocks input, 2nd gain and output stages
were defined, from which the best arrangements
and sizings were evolved[97].

Koza, 1996 Automatic design of 5-dB audio range amplifier.
Evolved topology contains an identifiable volt-
age gain and a Darlington emitter-follower output
stage[92].

Koza, 1997 GP used to evolve 96-dB gain operational ampli-
fier. Analysis used SPICE DC-sweep and includes
penalty for DC bias and linearity errors. Solution
used 25 transistors and made use of ADFs and a
parallel island model[93].

Trefzer, 2006 Used multi-objective approach on FPTA with 11
different fitness criteria[160].

Oscillators Aggarwal, 2006 GA used to invent oscillators using symbolic anal-
ysis, reproduced with SPICE and also with actual
components[9].

Mixed Mode Streeter, 2006 GP used to evolve analogue and mixed mode cir-
cuits for which patented human-designed solutions
have been made since 2000. Circuits included vari-
able capacitor and cubic signal generator[153].

Transistor
Models

Aggarwal, 2006 Design of posynomial models for 0.18um technol-
ogy NMOS transistor[11].

Li, 2007 Extraction of CMOS device models parameters us-
ing an adaptive sampling based GA[105].

Chapter 3: Evolutionary Algorithms 84

Figure 3.5: Comparison of the Principles of Extrinsic and Intrinsic Evolutionary Electronics

designs. There are exhaustive approaches which can use computational power to tackle the

problems, but these rapidly become infeasible when complex active elements are introduced

to the design, or when topological constraints are added; automated design and verification of

such analogue circuits is not yet a practical option [9].

In a mixed-signal integrated circuit, with both analogue and digital stages, the design

of the analogue stage generally consumes a large fraction of the design time whilst being a

small portion of the overall circuit. Much of this time is spent after a candidate topology has

been selected in the process of iteratively adjusting component values and transistor sizes in

order to meet the design specifications, particularly when temperature and other constraints

are considered [131].

For analogue circuit synthesis, the available computer-aided design tools almost invariably

consist of circuit analysis and simulation packages. Many extrinsic evolution examples have

involved the use of the SPICE circuit simulation package, described previously in Section

2.6.1, for the circuit analysis, which are parsed to create fitness values relating to the problem.

Each candidate circuit is loaded into the simulation software, which will produce the results

of one or more standard circuit analysis operations, including DC transfer, AC small-signal

and transient analysis. The choice of analysis will depend on the target function of the circuit,

for example basic filters will use an AC small-signal analysis whilst logic functions may use

transient and DC analysis.

A major disadvantage of using such simulators within an evolutionary system is that, in

general, they treat all circuit components as purely mathematical entities, ignoring physical

85 3.5 Application of Evolution Algorithms

limitations and interactions that may exist with real-world components. The evolutionary

system must thus be aware of any such limitations, which requires checking for violating con-

ditions within evolved circuits and penalising circuits which may simulate with high fitness

but would not be realisable in real-world conditions. For example, in a circuit using bipolar-

junction transistors, many simulators will allow base-emitter voltages to exceed the nominal

0.7V value and may allow collector current to exceed the maximum value. Whilst the sim-

ulator can reveal if these conditions are met, it will still allow the analysis to be performed

regardless [183].

A major obstacle faced in the field of EE is the resource requirement when evolving large-

scale circuits. Whilst EE algorithms are often able to find adequate solutions to smaller prob-

lems reasonably quickly, the large number of individuals and number of generations required

to reach convergence in solutions for more complex problems can prove impractical. Conse-

quentially, many efforts have recently been made to accelerate the EE process, including the

use of custom simulation [82] and the use of cluster-based distributed algorithms [71].

Circuit Representation

In the extrinsic evolution of analogue circuits different methods of representing a circuit in a

genotype have been implemented. Koza et al introduced the circuit constructing tree method

allowing circuits characterised by cyclic graphs to be encoded into GP trees. The trees contain

‘component creating functions’ and ‘connection-modifying functions’, allow circuits to be

develop from an embryonic circuit. Component creating functions insert a passive or active

component into the developing circuit whilst the connection-modifying functions modify the

developing topology. This allows, for example, the creation of a series or parallel composition

of a particular component [87, 94, 183].

Alternatively a string representation is used to encode the circuit. This may be imple-

mented by assigning each circuit component to a gene within the genotype string, thus the

length of the string will determine the number of circuit components. Each gene will contain

the information about the type of component (e.g. resistor, capacitor, inductor, transistor) and

one or more component values3 along with its connection nodes. In this manner the topology,

circuit size and values are all encoded within the genotype. The use of a string representation

is also typical in intrinsic evolution, where in some cases the genotype is passed directly to

memory of the reconfigurable hardware board [183].
3Active components may require two or more values, for example a FET model may require at very least the

device width and length.

Chapter 3: Evolutionary Algorithms 86

Filters

Electronic filter design has been the target objective for the testing of many evolutionary meth-

ods and platforms. They are relatively easy to analyse and tend to use recurrent topologies thus

are apt for testing ADFs and similar repetitive-structure forming methods. At the same time

they are essential sub-circuits in most signal processing and communication tasks and strong

designs can have commercial value. Koza used a GP genotype representation to describe ana-

logue low-pass filter netlists which were evolved using SPICE. The fitness scoring function

used by Koza has subsequently been used by others to compare efficiency of the evolution-

ary methods. Koza’s group refined their initial tests by including the use of ADFs within the

algorithm and later evolving generic filters containing a free variable, allowing one standard

design to be applied to a range of target cut-off frequencies [94, 90, 95].

Since Koza’s initial work, a number of different other techniques have been used to evolve

analogue filter designs. Lohn used a GA with a linear circuit representation to successfully

evolve low-pass designs of low and medium complexity, using a simple encoding system with

few primitives [106]. Higuchi et al attempted to use intrinsic evolution for the creation of

real-time adaptive filters. Aggarwal et al designed a system, named OptimFilt, suitable for

evolving optimal coefficients for a transfer-function approximation of filters [10]. Khalifa et

al included a nodal admittance matrix based fitness calculation for evolving the topologies

and values for analogue low-pass and high-pass filters. By incorporating the fitness scoring

function within the algorithm code a running speed far faster than equivalent systems running a

version of SPICE, although the accuracy of the circuit analysis is lower. They aim to develop

the problem to a multi-objective function including parasitic component effects [82]. Chao

Wu adapted CGP to assemble circuits using a LISP-like language for the evolution of ‘Koza’

low-pass filters [177].

Oscillators

Human-competitive examples of sine-wave oscillators have been developed by Aggarwal et

al which avoid the use of SPICE by using symbolic analysis, using the same method used in

traditional design. The symbolic transfer function for an evolved circuit is parsed to assign a

fitness score, using a first-order model for the active element. Whilst some accuracy is lost

with the models used, a key advantage is all the circuits created are interpretable by humans

(which is often not the case with circuits evolved and simulated in SPICE). Most of the circuits

which are created in this method can still be analysed in SPICE, and the reasons behind those

that don’t can be resolved [11, 9, 84].

87 3.5 Application of Evolution Algorithms

Operational Amplifiers

Noren and Ross used a genetic algorithm to optimise component value and transistor scal-

ing within predefined operational amplifier topologies. The designs optimised included those

based on BJT and CMOS transistor models, although the simulation used a basic square-

law model rather than the industry standard BSIM3v3 which would add significantly to the

processing time [131]. Whilst this produced results with transfer characteristic matching the

specifications, it is still sizeable step to produce a commercially acceptable amplifier. Along

with the required gain and transfer characteristic, many other factors need to be accounted for,

such as bandwidth, slew-rate, noise, power consumption, CMRR, PSRR and overall circuit

size. This requires a multi-objective fitness function to be developed, often requiring multiple

analysis runs in SPICE. Multiple-objective operational amplifiers designs have been developed

using both extrinsic and intrinsic methods [183, 160].

3.5.4 Intrinsic Evolution

A major recent field in the evolution of electronic designs is intrinsic evolution, the practice

of directly evolving electronic circuits onto directly onto reprogrammable hardware, allowing

the direct sampling of physical circuits without relying on software simulation. Numerous

different devices ranging from available widely off-the-shelf ICs and development boards to

custom-made ASICs, have been used to research intrinsic evolutions. One of the first examples

of intrinsic evolution was by Thompson, with the evolution of a circuit capable of discrimi-

nating between two square waves (of frequencies 1KHz and 10KHz), utilising the underlying

physical properties of the Xilinx 6126 chip. The field-programmable gate array (FPGA) used

was programmed with a program which cannot be explained using conventional design meth-

ods, working instead directly on inherent electrical paths within the individual chip used, thus

demonstrating that evolutionary methods can be used to produce designs which fall outside

the scope of any traditional design methodologies [159].

Another type of device used for intrinsic evolution is Field Programmable Analogue Ar-

rays (FPAAs), which contain multiple analogue functions, programmable using binary pat-

terns. The arrangement and construction is similar to that of FPGA although the functions are

considered in terms of analogue rather than digital performance. Zebulum et al used a Mo-

torola MPAA020 switched-capacitor based device to evolve oscillator designs [183]. Another

type of FPAA which has been used in evolutionary electronics is the Zetex TRAC (Totally

Reconfigurable Analogue Hardware), which contains two parallel sets of ten interconnectable

operational amplifiers having various connected components which may be switched on or off,

Chapter 3: Evolutionary Algorithms 88

allowing one of eight distinct circuit functions. Flockton and Sheehan used a test board con-

taining 4 TRAC devices and an analogue interface allowing the programming of the devices,

analogue signal generation and output signal detection to all be controlled by a PC. They de-

signed a set of building blocks that could be implemented using the test board which could be

connected together without risking damage to the components [60].

The Field Programmable Transistor Array (FPTA) is a device specifically created for the

evolution and research of analogue circuits at transistor level. A FPTA was designed by Jörg

Langeheine within the Electronic Vision Group at the University of Heidelberg. The work

arose from Thompson’s work evolving a tone-discriminator which exploited the underlying

analogue core of the FPGA being used, from which the idea of substrate specifically for con-

figuring transistor-based analogue circuits was drawn. The Heidelberg FPTA consists of a

16 x 16 arrangement of configurable PMOS and NMOS transistor cells in a checkerboard

pattern. Each cell contains 20 transistors of different sizes, with lengths of 0.6,1,2,4 & 8

µm and widths of 1,2,4 & 8 µm. The transistors can be connected in parallel, allow any

effective unit width between 1 & 15 µm allowing 80 possible size arrangements for each tran-

sistor cell. Another FPTA device has been developed by JPL with similar intentions to the

Heidelberg device although including configurable capacitors and resistors in addition to tran-

sistors [100, 101, 102]. Amongst the circuits successfully evolved using the Heidelberg FPTA

are the complete set of logic gates and other basic functions such as comparators. Trefzer

used a multi-objective approach for evolving a complete operational amplifier on the device.

This used twelve different fitness values, including DC offset, slew-rate, settling time, phase-

shift and harmonic distortion in addition to gain. To evaluate all these values five different

test modes were used. The evolved solutions included what could clearly be identified as a

differential input stage [160].

Major drawbacks of custom designs such as the Heidelberg FPTA are the length of time

and costs involved in the design, verification and manufacture of such an application specific

chip, given its very limited potential market. Ideally one could create an FPTA using the very

latest technologies, however it is unlikely that the most recent technology nodes would be

available for such a run; the Heidelberg FPTA is manufactured using a 600 nm process and

each device cost in excess of US $5K. Another significant issues is that with the nature of FP-

TAs relying on switching elements leading to parasitic non-linear resistance and capacitance.

Whilst such effects may be exploited by the algorithm (such as in Thompson’s frequency dis-

criminator) such results are idiosyncratic and non-portable [158]. A key advantage of intrinsic

methods is that all the properties of the silicon may be fully explored. Whilst simulation

software only analysis the electronic properties of circuits, intrinsic methods will include any

89 3.5 Application of Evolution Algorithms

electromagnetic and thermal properties in the device [183]. This may result include properties

which are unique to an individual piece of silicon, in a specific environment. This can however

also be a disadvantage if the goal is to create generic, market-ready designs.

Intrinsic evolution generally requires a dedicated and often expensive arrangement of hard-

ware in addition to the computing platform limiting the scope and distribution of simulations.

Another disadvantage of intrinsic evolution is that the results may be hard to represent using

traditional symbolic representations, and they may themselves be limited to the specific indi-

vidual chip used (thus rendering them of little real-world value). In contrast, circuits which

have been extrinsically simulated are generally already presented symbolically and can be im-

plemented and reproduced using real world components [115]. Whilst custom made circuits

such as the Heidelberg FPTA are potentially powerful analogue design tools, the time and

expense involved in creating such devices limits their availability for research.

3.5.5 Evolution of transistor models

One particularly significant field where genetic algorithms have been used is in the creation

of transistor models themselves. Without considering device level variability, transistor mod-

els will differ dependent on the semiconductor technology used in fabrication, with different

substrate materials, doping concentrations, feature size and fabrication methodology all com-

bining to lead to different IV characteristics, which must be modelled. The overall circuit

behaviour is further complicated by interactions between the complex models of individual

devices. Not all performance measures have closed-form expressions, and thus require the

use of numerical and iterative functions to be determined. Aggarwal and O’Reilly used a

GA to create transistor models allowing all the small signal parameters and certain large sig-

nal parameters to be expressed as a posynomial function of the transistor width, length and

drain current. The models created are significantly more accurate than statistically fitted mod-

els [11]. Li utilised a GA with adaptive sampling to automatically extract complete parameter

sets for BSIM3 models [105].

This chapter has discussed the history and implementation of the major fields of

evolutionary computation, which special emphasis on the multiple objective algo-

rithms that are used in the thesis. This includes a comparison of alternative search

techniques applicable to similar optimisation problems, including simulated an-

nealing. The following chapter introduces the software framework that has been

Chapter 3: Evolutionary Algorithms 90

developed to allow for multi-objective algorithms to be used in collaboration with

variability-aware transistor models and the SPICE simulation package.

Chapter 4

A System for Evolving Logic

4.1 Introduction

This chapter describes the system that has been created for the purpose of evolving and opti-

mising logic circuits using evolutionary algorithms. The goal has been to create a framework

of tools that allows the creative use of different evolutionary algorithms, and other biologi-

cally inspired design and optimisation techniques, incorporating the variability-aware transis-

tor models as part of the circuit evaluation process. By modularising the different functional

elements as different ‘tools’ it has been possible to create a system which allows efficient

reuse of code, enabling different algorithms to be effectively inserted into the ‘evaluation loop’

as required; completely separate algorithms for optimising standard-cell logic and designing

novel logic topologies can be used with minimal changes to the rest of the code-base. The

framework of tools has been named MOTIVATED, an acronym for Multi-Objective Toolkit for

Intrinsic-Variability Aware Transistor-level Evolutionary Design.

In this section, the different functional blocks that make up the toolkit are described in

turn, with specific detail applied to the genetic algorithm used for optimising cell topologies,

henceforth known as Simple Genetic Algorithm (SGA) 1. The toolkit was developed and re-

vised throughout the duration of the nano-CMOS research project by the author and Dr. James

Walker; the author created the SGA optimisation algorithm, Dr. Walker created the CGP-based

topology design system, with work on the rest of the toolkit shared between the developers.
1The choice of the name ‘Simple Genetic Algorithm’ was chosen at the time of implementation not due to the

(lack of) complexity in the algorithm itself, but rather to differentiate it from the CGP-based approach at evolving
logic topologies that had also been developed. It should be noted that whilst it is named as a GA based on the
original implementation, by the final experiments it is much closer to an evolutionary strategy in function; this is
due to the removal of crossover and switch from a tournament to a (µ+λ) selection strategy throughout the course
of experiments.

91

Chapter 4: A System for Evolving Logic 92

4.1.1 Overview of MOTIVATED

MOTIVATED consists of a number of tools, mainly written in Java, that allow for the different

EC algorithms to be run. Originally it was written to run as a standalone application on a single

machine, however later revisions have allowed a number of different modes of operation to be

executed, largely to allow the time consuming SPICE simulations to be farmed onto local or

remote computation clusters, a process described in Section 4.6. The tools include a graphical

user interface, which allows the control and monitoring of evolutionary runs as they progress,

including the option to view the SPICE output of different individuals in the population plotted

to graphs. An set of screen captures of the different GUI components of the software is shown

in Figure 4.1.

4.1.2 CGP-based Topology Design

Whilst the results in this thesis primarily concern the use of the MOTIVATED for the optimi-

sation of standard-cell logic using the SGA system, brief mention is given here of the system

created by Dr. James Walker for the evolution of novel logic-cell topologies based upon an

modified form of Cartesian Genetic Programming, based on Clegg et al’s representation [44].

Some of the circuits evolved with this algorithm are used later in this thesis in an example

of completely-evolved digital design. With the algorithm, a fixed-length floating-point CGP

genotype is decoded to a variable length phenotype, making use of the neutrality present in

CGP 2. The algorithm diverges from conventional CGP in the genotype → phenotype map-

ping, which translates the direct-graph CGP representation into a transistor-circuit topology;

this mapping allows multiple connections including loops to be created within the phenotype

circuit, whilst maintaining the feed-forward nature of the genotype.

The genotype is encoded with three floating-point, single precision values for each transis-

tor, corresponding to the drain, gate and source connections. The two inputs to each transistor,

and the two output-nodes for the genotype, are also encoded with a single floating-point value.

The output nodes act as the root for the directed graph, such that two graphs can be extracted,

one encoding the NMOS and the other the PMOS transistors. The encoding ensures that

the decoded genotype follows CMOS design rules with complementary pairs of NMOS and

PMOS devices, and also that all circuits are fully connected with no dangling connections.

The detailed description of the decoding process, including the reasoning behind the design

decisions, is discussed fully in [169].
2Neutrality in CGP occurs as nodes may not be connected to other nodes; neutrality has be demonstrated

previously to be beneficial to the evolution process [117]. Additional neutrality occurs through the the quantisation
of floating-point values into integers in the genotype [166]

93 4.1 Introduction

Figure 4.1: Screen captures of some of the key graphical-user interface components of the
MOTIVATED system during the early stages of a SGA run.

Chapter 4: A System for Evolving Logic 94

4.2 SGA for Parameter Optimisation

The steps in the process of optimising circuits using SGA are illustrated in Figure 4.2. The

initialisation of the algorithm follows a number of steps. First, the passed parameter file,

described in Section 4.4 is parsed and verified, with default parameters added if unspecified in

the parameter file. The parameters includes reference to a template netlist file, which is parsed

and verified. The template netlist determines the necessary genotype length. The graphical-

user interface, and classes which are responsible for handling RandomSPICE and NGSPICE,

processing output data, calculating fitness, and writing the output and log files are initiated.

If a previous saved population file is not specified, a population of randomised genotypes is

created as described in Section 4.2.2.

Before the main algorithm loop begins, a sample netlist based on the target problem is

evaluated, specified by a parameter in the parameters file. This netlist is evaluated using the

same methods as all the other netlists, described in the following sections, with the exception

that the functionality is always considered to be 0 (i.e. functionally correct). The logic state of

the output of this netlist is sampled at the mid-point of each clock-cycle, and stored in a array;

this is the logic state that all the subsequent netlists will be tested against - from these results

a target waveform is created, which assumes zero delay in the transistion between states. The

fitness scores extracted for this sample netlist have no effect on the operation of the algorithm,

but provide a useful benchmark to which subsequent evolved circuits can be compared. Once

these steps have all been initiated without problem, the main algorithm evolution loop can

begin.

The first step of the main evolution loop is to save the current genotype an population

archive file, which allows the algorithm to restarted at a later time if it is terminated by the

user, through a system-error or because the end-generation is met. Each genotype is mapped

into a RandomSPICE-compatible netlist, with extra components and the necessary SPICE

analysis instructions added as described in Section 4.3.1.

The next stages of the evolution loop are the most time consuming, involving the use of

the external RandomSPICE and NGSPICE software, and the post-processing of the SPICE

output data; as a consequence the option of running these stages on an computation cluster

has been implemented, discussed in Section 4.6. The RandomSPICE software is launched for

each netlist, creating a predefined number of NGSPICE netlists for each individual, set by the

noRandomspiceRuns option in the parameters file. NGSPICE is then called successively

for each of these circuits, with the output data saved to a shared directory 3. The output data
3In later revisions of RandomSPICE, the calling of NGSPICE for each netlist was available as part of the

Python script. In later versions of MOTIVATED the SPICE output data is piped directly into the output parser to

95 4.2 SGA for Parameter Optimisation

is the read by a class which converts the tab-separated SPICE into the arrays of voltage and

current values for each time step. These arrays are converted into a set of fitness scores for the

different selected objectives using processes described in Section 4.3.2.

The following stage in the evolution loop ranks the all the individuals using the NSGA-II

algorithm, described in Section 4.3.3. The fittest µ parents are the selected and λ mutated off-

spring for each parent are then created for the next generation, determined by the noParents

and noOffspring parameters. The mutation operation is described in Section 4.2.4. The

graphical user interface, described in Section 4.5 is updated with the results, and where appro-

priate the data files belonging to previous generations are archived or deleted to limit storage

usage. The final process is to increment the generation counter, terminating the algorithm if the

value set by generationLimit is reached; if not, the loop repeats for the next generation.

4.2.1 Template Netlist

The SGA takes as its input a plain-text file which is based upon the circuit topology section

of a SPICE netlist. This template netlist contains a number of special ‘marker’ strings which

are ultimately replaced with either numerical values or character strings through the decoding

process, based upon values within the genotype. An example of the template netlist decoding

procedure is illustrate in Figure 4.3, in which the widths of four transistors, and the values of

two voltage sources, are encoded by the genotype.

Marker String

A marker string can be included at any place within the template netlist. It follows a string

syntax, with the template-netlist parsing routine throwing a error and terminating the run if

any invalidly formatted marker is found. The string always begins with a ‘$’ character and

is followed by a fixed number of integer and floating-point values which correspond to the

different parameters required by the token, terminating with a ‘\’ character. The first number

following the ‘$’ character determines the functional mode of the token; this must be an integer

value between 0 and 2. This is followed by either 3 or 4 other comma-separated integer values,

the quantity determined by the functional mode. For all modes, the second value is the position

marker which corresponds to the gene within the genotype which is used to decode the value;

the value must be greater than zero but does not have a strict top-bound and does not have to

be unique. It is possible - indeed it is a ‘feature’ - that the same gene can be used to decode

multiple marker strings within the netlist.

reduce disc access and increase efficiency.

Chapter 4: A System for Evolving Logic 96

Figure 4.2: The steps in the workflow of the Simple Genetic Algorithm cycle, highlighting the
initialisation phase and the evolution cycle.

97 4.2 SGA for Parameter Optimisation

Figure 4.3: An example of a template netlist and its decoding procedure. The widths of the
four transistors and voltages of the two voltage sources are encoded using Type 0 and Type
1 marker strings, which are decoded using to numerical values based on the genes within the
genotype.

Chapter 4: A System for Evolving Logic 98

For markers where the functional mode is 0, the string will be replaced in the decoded

netlist by an integer value. Two additional integer parameters, rlow and rhigh define the linear-

distributed range between which the decoded value v will fall such that rlow ≤ v < rhigh.

The mode can be used to control, for example, circuit topology, by controlling which node a

specific terminal is connected to. For example, in the following extract from a netlist:

MP1 0 $0,1,0,4\ VDD VDD ATOMP L=70n W=280n

MN1 3 $0,2,1,4\ 0 0 ATOMN L=70n W=140n

In the example, the gate-node of the PMOS transistor MP1 will be assigned a value be-

tween 0 and 3, determined by the first gene in the genotype. The drain-node of the NMOS

transistor MN1 will be assigned a value between 1 and 3, determined by the second gene

within the genotype. Thus the SGA can be used, through creative netlists, to manipulate

circuit topologies, although as with all evolved-topology circuits that are to be simulated in

SPICE, efforts must be made to avoid hanging branches and unsolvable loops.

For markers where the functional mode is 1, the string is replaced in the decoded netlist

by a floating point value. The difference between mode 0 and mode 1 is the addition of an

extra parameter which defines a constant by which the decoded value is to be multiplied.

The constant can be any double-precision floating point value. This marker string is the type

used extensively in the bulk of the experiments described in this thesis which concern the

optimisation of transistor sizes within cell libraries. As RandomSPICE requires that transistor

widths be unit-multiples of the base transistor size, this mode allows a transistor width to be

specified within a bounded range as follows:

MP2 3 1 VDD VDD ATOMP L=35n W=$1,3,2,10,35\ n

MN2 3 1 0 0 ATOMN L=35n W=$1,4,1,10,35\ n

In the example, the PMOS transistor MP2 will be assigned a width than is a multiple of

35nm, ranging from 70nm to 350nm. The NMOS transistor MN2 will be assigned a width

between 35nm and 350nm. The versions of RandomSPICE used in the thesis only allow for

transistors to be multiples of a unit width, so the above example would be used with a 35nm

library. Future released of RandomSPICE will allow an arbitrary value for the transistor width

(accurate as long as it is above the minimum feature size); however there are still fundamental

limits as to what transistor dimensions can actually be realised in a given fabrication process

due to the lithography process used. Thus in future released, the following line might be a

realistic option for optimising transistor widths:

99 4.2 SGA for Parameter Optimisation

MN3 3 1 0 0 ATOMN L=35n W=$1,3,2,20,17.5\ n

The above would allow for the transistor width to take a value between 35nm and 350nm

at 17.5nm (half-feature size) intervals. The final functional mode of the marker strings, mode

‘2’, allows a comment character (*) to be inserted into the netlist with a defined probability,

otherwise the marker string is replaced with no value. When the comment character appears

at the beginning of a line in a SPICE netlist, the line is treated as a comment and thus ignored.

This mode takes three values: r, p, and s, which must be set to either 0 or 1. If s is zero, the

comment character will be inserted when n mod r > p. When s is one, the comment character

is inserted if n mod r ≤ p. As multiple lines can use the same value from within the genotype,

this allows for situations where two different lines within the netlist can be effectively toggled

dependent on the gene value. For example, in the following netlist section:

$2,1,10,5,0\R1 1 0 10K

$2,1,10,5,1\L1 1 0 10mH

Both lines correspond to the first gene within the genotype. If this gene has the value 26,

then the first line will begin with a comment (as 26 mod 10 > 5) and the second line will

begin as if the marker string wasn’t present, as a result SPICE will see an inductor between

nodes 1 and 0:

*R1 1 0 10K

L1 1 0 10mH

If however, the gene has the value 134, the opposite would occur (as 134 mod 10 ≤ 5), so

SPICE will see a circuit with a resistor between nodes 1 and 0:

R1 1 0 10K

*L1 1 0 10mH

Through a combination of the above modes, skeleton netlists can be created which allow

different blocks to be switched on an off. As SPICE netlists allow the formation of sub-

circuits, in which complex sub-circuits can be represented with single lines in the top-most

level, it is possible to use the mode 2 markers to choose between, for example, two different

standard cell topologies, such as a high-speed XNOR gate or a low-power XNOR gate.

Chapter 4: A System for Evolving Logic 100

Table 4.1: Probability of number of genes mutated nm when mutationRate= 1.0

Genes Mutated 1 2 3 4 5+

Probability 0.736 0.184 0.061 0.015 0.004

4.2.2 Genotype

The genotype in SGA is comprised of a fixed-length array of integers, using the standard Java

data-type int. These are stored as 4-byte, two’s complement values ranging from −231 to

(231 − 1). The length of the genotype is predefined by the number of unique position markers

within the template netlist. The population is thus stored as a two-dimensional array of type

int, whose length is determined by the number of parents and offspring specified in the

parameters file, described in Section 4.4.

4.2.3 Selection Process

The algorithm uses a (µ + λ) strategy, with the value µ set by the noParents parameter

and λ set by noOffspring in the parameters file. All the individuals in the population

are ranked using the NSGA-II algorithm based on their set of objective scores, described in

Section 4.3.2. The best µ ranked individuals from the population are promoted to the new

generation, with each producing λ offspring, which undergo the mutation process, described

below.

4.2.4 Mutation Process

The mutation process determines the number of genes to mutate nm, by creating a random

Poisson-distributed integer in which λ=mutationRate. The Poisson integer is created us-

ing the multiplication method described by Knuth [24] 4. If the returned value of nm is zero,

it is changed to 1, ensuring that in every mutation operation at least one gene will be adjusted

to avoid wasted processing cycles evaluating unchanged genotypes. The Poisson distribution

is chosen to ensure that it is possible, if unlikely, for more than one gene to be mutated at any

one time, to help avoid stagnation at local optima. For all the experiments described in this

thesis the value of mutationRate has been set to 1.0. The results in the probability chart

shown in Table 4.1, with the pseudocode for the mutation operation given in Appendix B.1.
4It is noted that this an inefficient method of creating random Poisson values when λ is a high value, however

it is highly unlikely in the context of this algorithm to ever need such a large value, due to the small number of
parameters to be optimised.

101 4.3 Fitness Calculation

A for-loop is then started of length nm steps, in which a gene is selected at random from

the genotype, and replaced with a new random integer. Alternative schemes for the selection

of the new value were tested, in which the new value is based on the current value added to a

random Gaussian and Cauchy distributed value, described in Section 4.2.4, with the relevant

σ2 or γ values set using the mutationWidth parameter. However, these schemes were

found to be less effective at evolving the discrete values for transistor dimensions in a number

of early runs, thus the integer-replacement mutation has been used throughout the experiments

described in this thesis.

4.3 Fitness Calculation

This section defines the methods that convert the template netlist into a complete RandomSPICE-

or SPICE-ready netlist that can analysed, and from the output data retrieved assessed for per-

formance at a number of different fitness objectives.

4.3.1 Circuit Test-Bench

The netlists discussed to date are effectively ‘black-box’ shells. In order to allow a standard

system in which to evaluated logic circuits as part of the MOTIVATED cycle, the input netlists

are populated with numerous extra components and control lines necessary to provide a test-

bench for the circuits and enable SPICE to perform the correct analysis on the circuit. These

comprise four key parts: a power supply stage, which provides the supply voltage and the

voltage and current meters necessary to determine the power consumption of the test circuit,

an input stage, which provides a realistic set of input signals to the test circuit, an output

stage, which provides a suitable load to the test circuit, and the SPICE control stage, which

includes all the analysis instructions needed for SPICE to produce the desired set of output

scores based.

The test bench as used in most of the experiments within this thesis is shown in Figure 4.4.

The test bench has seen many revisions and alterations throughout the project for a number of

reasons. These include the desire to produce more accurate results, with the aim of reproduc-

ing the results observed from commercially available analysis tools such as those created by

Synopsys and Cadence, and the need to adapt the test-bench to be compatible with the most

recent versions of NGSPICE and RandomSPICE (see Sections 2.6.1 & 2.6.4).

Chapter 4: A System for Evolving Logic 102

Figure 4.4: The test bench used in most of the experiments described in this thesis. The
evolved netlist is connected to an input stage, a power supply stage an output load stage.

Power Supply Stage

The power supply stage contains a DC source rated at VDD × 2 connected to a potential

divider. The potential divider allows the voltage-drop and current drawn by the test-circuit

to be accurately measured using the voltmeter and ammeter. These calculations are used to

create the power scores for the circuit under test.

Input Stage

The system allows a choice of input stages to be selected, specified by the run parameters.

Originally, an input stage consisting of a potential divider, as shown in Figure 4.4, was used.

For most of the later experiments this was replaced with a standard cell-library buffer which

uses uniform transistors. This is based on the test arrangements used in the commercial Syn-

opsys tools, and provides more accurate input slews for the performance analysis of the circuit.

Input Signals

After a study of the different analysis options available in NGSPICE, it was determined that

the most accurate and efficient way to analyse the performance of 2-input logic circuits would

be through the use of a single SPICE transient analysis, which covers the entire range of

possible state-changes between the two inputs. Other possible solutions included the use of

103 4.3 Fitness Calculation

Figure 4.5: The input waveforms used for evaluating the performance of two-input logic cir-
cuits, and the associated target output waveforms.

several different sets of transient analysis, each covering one or two state changes; however,

this was observed to take significantly longer to process through SPICE, presumably due to

the considerable time taken to determine initial conditions for each analysis. This analysis is

achieved using a pair of synchronous pulse-sources providing the input voltages to the two

circuit inputs; the first of these source is held at a logic-low for two cycles, then at a logic-high

for two cycles. The second source is held at a logic low for three cycles, the high for two

cycles. This pattern allows the entire range of state-changes to be simulated over a period

of 21 clock-cycles, as illustrated in Figure 4.5. The target outputs that are expected from the

different primary logic gates are also illustrated in the figure.

Output Stage

In the output stage, the circuit under test is connected to a inverter, to provide a load for the

circuit under test. Different values for the inverter allow different fan-outs for the circuits to be

simulated. The voltage and current at the output is measured to create the circuit functionality,

delay and slew assessments.

Chapter 4: A System for Evolving Logic 104

SPICE Control and Measurements

The SPICE control loop defines the measurements that are necessary to calculate the output

scores. An example of the control loop is given below:

* SPICE Control Loop

.OPTIONS NOPAGE NOMOD

.control

ic v(1)=0 v(2)=0

tran 0.2ps 4200.0ps 0ps 0.2ps uic

linearize v(10) v(1) v(2) v(6) i(VMDD) i(VMI1) i(VMI2) i(VMO1)

print v(10) v(1) v(2) v(6) i(VMDD) i(VMI1) i(VMI2) i(VMO1)

.endc

.END

The tran statement established the transient analysis that is used; in the example shown, a

0.2pS sample period is used with a 5GHz clock rate. The linearize statement ensures

that sample calculations are created at each time step. The print statement ensures that the

output for the eight voltmeters and ammeters is written to the output file. NGSPICE writes the

output in tab-separated columns of data with each line representing a new time-step.

4.3.2 Fitness Objectives

For each MOTIVATED run, a number of different fitness objectives can be selected, chosen

through the use of a comma-separated list of integers for the objectives field in the pa-

rameter file (described in Section 4.4. For the earlier version of MOTIVATED there were 31

different standard objective scores calculated, listed in Table 4.2. The calculation methodology

and reasoning behind these objectives are discussed in the following sections.

Circuit Functionality

The first objective, assigned number ‘0’, evaluates if the circuit is functioning as expected, and

is generally used on all runs. The firstObjPriority parameter, when enabled, weights

this objective above all others; any circuit which fails to function correctly will always be

ranked lower than one that does. The objective functions by sampling the voltage output of

the circuit at the first sample point which occurs after half a clock-cycle has passed since a

change of input state. The desired logic state at each clock-cycle is defined as illustrated in

Figure 4.5. When a logic low is required, the observed output voltage must be below the value

105 4.3 Fitness Calculation

Table 4.2: List of circuit fitness objectives MOTIVATED

Index Name Definition

0 Functionality The count of transition errors
1 Start-Mid Error The cumulative voltage error between the observed signal

and the ideal output for the first half of each clock-cycle
2 Mid-End Error As above for the second half of each clock-cycle
3 Start-End Error As above for the complete clock-cycle
4 Weighted Error As above but weighted so later samples have greater impact
5 Cumulative Delay The sum of all transition delay periods
6 Worst Delay The worst case transition delay
7 StdDev Delay The standard deviation of transition delays
8 Cumulative Slew The sum of all transition slew-rates
9 Worst Slew The worst case transition slew-rate
10 StdDev Slew The standard deviation of slew-rates
11 Power Supply The cumulative power drawn from the supply
12 Power Inputs The cumulation power drawn from the inputs
13 Power Combined The above values combined
14 Voltage Supply The cumulative voltage drop measured from the supply
15 Voltage Inputs The voltage drop from the inputs
16 Voltage Combined The above values combined
17 Current Supply The absolute current measured from the supply
18 Current Inputs The current measured from the input
19 Current Combined The above values combined
20 Weighted P. Supply As (11) but weighted so the later samples have greater impact
21 Weighted P. Inputs As (12) but weighted
22 Weighted P. Combined As (13) but weighted
23 Weighted V. Supply As (14) but weighted
24 Weighted V. Inputs As (15) but weighted
25 Weighted V. Combined As (16) but weighted
26 Weighted I. Supply As (17) but weighted
27 Weighted I. Inputs As (18) but weighted
28 Weighted I. Combined As (19) but weighted
29 Number of transistors The count of MOSFETs in the netlist
30 Transistor Area The sum of individual transistor areas in the netlist

+100 Lowest Score The lowest score across all RandomSPICE runs
+200 Highest Score The highest score across all RandomSPICE runs
+300 Range Range of scores (highest-lowest) across RandomSPICE runs
+400 Mean The mean score across all RandomSPICE runs
+500 StdDev The standard-deviation of scores across RandomSPICE runs

Chapter 4: A System for Evolving Logic 106

defined in parameter lowThreshold: if it is, a score of 0 is given for that clock-period,

otherwise a score of 1 is given. When a logic high is required, the output voltage must be

above highThreshold. The scores are then summed over the whole 21 clock-cycles; a

functionally correct circuit will have a score of zero, and a completely functionally incorrect

circuit (such as a OR-gate when a NOR-gate is expected) will score 21.

Whilst not strictly necessary for the optimisation of circuits, an additional alteration was

made for circuits which produced a static output, to improve the effectiveness of a metric

when evaluating CGP-evolved topologies. Circuits which exhibit a steady-state output, such

as stuck at 0V, VDD, or an intermediate value in which no transistions from logic low to high or

vice-versa were made, are given an overall score of 22. This alteration ensures circuits which

demonstrate some measure of logic capability are promoted above those with no functionality

whatsoever: for example, without this measure, a circuit which connected ground to the output

would return a functionality score of 4 if the desired function was an AND-gate, whilst a OR-

gate would return a score of 10, meaning the grounded circuit will be ranked higher than the

OR-gate circuit. With the added alteration, the grounded circuit will score 22, thus the OR-gate

circuit will be ranked higher, in recognition of the fact it does at least perform a function. Any

circuit which, for whatever reasons, fails to produce SPICE output, is given a maximal score

for functionality of (231)− 1. In general practice with both the SGA and the CGP algorithms

this shouldn’t happen, bar a system or network failure, however with previous designs of the

CGP based topology design it was possible to create circuits which would cause SPICE to

throw errors [167].

When optimising transistor dimensions, the topological arrangement of transistors remains

constant, thus at first glance it might appear the functionality objective is unnecessary. How-

ever, if the clock-rate or other parameters are set such that extremely poor-performing ar-

rangements of dimensions (such as all-minimum sized transistors) produce circuits which fail

to change states before the measurement is taken, they will be penalised to a low-ranked posi-

tion. Without this objective, such circuits would likely have a high-rank when transistor area

and power are used as objectives.

Error Measurements

The second sets of objectives are considered error measurements: they measure how far the

output voltages at each sample point are from the ideal value specified by the target waveform.

At every sample point, the difference between the output voltage and the ideal target output

voltage are measured. These values are summated across all the sample points to create an

overall error score. Four different error score objectives have been created, which analyse

107 4.3 Fitness Calculation

different regions. The first measures the error between the start of the transition, the point at

which the changing input voltage(s) cross the 50% threshold (VDD/2), and half-way through

the clock cycle - this is called the Start-Mid Error. The second measures the error from

half-way through the clock cycle to the end of the clock cycle - this is the Mid-End Er-
ror. As the functionality test requires that the output waveform has crossed the relevant high

or low threshold by half-way through the clock cycle, the Start-Mid Error will invariably

much greater than the Mid-End Error, and is generally roughly proportional to the delay

rate. The Mid-End error measures the later stage of the transition, an is a useful indicator of

any problematic oscillation in the output. Two other error scores can be calculated: firstly,

the Start-End Error is the error over the complete cycle, a summation of the previous two

measures, and finally a Weighted Error linearly weights each step with its position in the

clock-cycle: the first value is multiplied by 1, the second by 2, up to the final point which is

multiplied by the number of samples in the clock cycle. This error value thus penalises heavily

for circuits which exhibit severe ringing, or when the output is not pulled fully high or low.

The error objectives are primarily used in the CGP-topology system. In the SGA, the cir-

cuits generally all perform as expected and the delay, slew-rate and power scores (described

below) are more effective indicators of circuit performance. However, when evolving topolo-

gies, arrangements exist which exhibit unwanted effects that many not be indicated by the

mentioned objectives. One typical example of this is a topology which, due to the arrange-

ment of devices between the output and supply, fails to produce a logic high output at VDD,

falling somewhere between highThreshold and VDD. Despite this it can still pass the

functionality test and produce respectable scores for delay, slew and power due to the way

in which they are measured. Such a circuit would however score very poorly in the different

error objectives described here.

Delay and Slew-Rate

The first set of objectives which are used to discriminate between different functionally correct

circuits involve the calculation of delay times and slew-rates. These calculations are made in

the clock-cycle in the analysis in which an output transistion for low to high or vice-versa

is anticipated. The methodology for calculating delay and slew-rates is designed to reflect

that used in commercial tools used in the semiconductor industry such as those developed by

Synopsys and Cadence. The definitions of delay and slew-rate are illustrated in Figure 4.6.

The is calculated by counted the number of sample-points in an output transition, between

when the input-signal crossing the 50% threshold (VDD/2) and when the output signal crosses

the threshold. This will result in an integer value, which, when multiplied by the sample-rate,

Chapter 4: A System for Evolving Logic 108

Figure 4.6: The calculations used for calculating the delay and slew-rates in a single clock-
cycle.

describes the delay period for that specific transition. In the case where the output never

crosses the 50% mark within 1 clock-cycle, due either to very poor circuit performance or an

incorrect topology for the target output, the delay period for that given transition will be set

equal to the clock-period, however by definition the circuit will also have failed the function-

ality test for the transition.

The slew-rate for a transition is the count of sample-points between the output signal

crossing the highThreshold voltage and it crossing the lowThreshold voltage for a

falling transition, and vice-versa for a rising transition. As with the delay calculation, if this

condition is not reached within a complete clock-cycle, the given count is equal to clock-rate,

but once again the circuit will have failed the functionality test.

The above measurements are used to calculate the delay and slew-rate periods for a single

state transition. The actual objectives allow three different methods for combining these scores

across the whole 21-cycle analysis. The first of these is the cumulative score, which combines

all the delay-times or slew-rates into a single figure. The second is the worst-case, which

compares all the given delay or slew-rate periods and returns the highest value. The final is the

standard-deviation, which calculates the mean delay or slew-rate across all the transitions and

from this the standard deviation. Of these options, the worst-case and standard-deviation are

the two objectives which have been used in most the experiments in this thesis. The worst-case

is a useful metric as it reveals to the developer the delay and slew that must be accounted for

when combining designs. The standard deviation is equally important as having wide-ranging

delay or slew rates can cause problems when many gates are nested; in general it is desirable

to have balanced rise-fall and fall-rise times across all output transitions wherever possible.

109 4.3 Fitness Calculation

Voltage, Current and Power

The bulk of the remainder of the objective scores are based on the voltages and currents drawn

by the circuits. The voltage scores are based drop in voltage between the supply and the

relevant voltmeters (shown in Figure 4.4; separate scores are available to measure the drop

from the main supply and from the two circuits inputs. The difference is measured at each

sample point and summated over the entire analysis. The current scores summate the absolute

current measured at the ammeters. The power score is calculated by integrating the product

of the currents and voltages across the entire analysis. The relevant scores from the supply

and inputs are also summated into a combined score. For each of the power, voltage and

current objectives, there is also an equivalent weighted options, which, as for the weighted

error objective, multiplies the score at each sample position by its position within the clock

cycle.

Whilst the power score provides a useful indication of power consumption by the test

circuit, it was realised that for more effective results it would be necessary to migrate towards

using a method for power measurement which matched that used by commercial tools. Such a

system separates the power into dynamic power (the power consumed during the switching of

states and through short-circuit currents) and static power (the steady state power consumed

through leakage). This adaptation was made after many of the experiments described in this

thesis and is discussed in more detail in the following chapter.

Transistor Area and Transistor Count

The final two objectives are transistor area and transistor count. These are calculated when the

initial netlist are created as they are not dependent on SPICE analysis and are not dependent

on variability. The transistor area is the summation of the areas of all individual transistors in

the netlist, which are calculated from the product of the channel length and width parameters

in the individual models. This objective is designed to be a rough approximation of the overall

area that would be consumed in a fabricated circuit, although in actual fabrication many other

factors will determine the realised size, such as the proximity between devices and the neces-

sary interconnections; a circuit with one transistor will scores the same as a circuit with two

transistors each at half width of that in the original circuit, whilst in reality the latter would

require a greater area of silicon. Despite this, when evaluating topologically identical circuits,

the transistor area metric does provide a worthwhile indication of the expected fabricated area.

The transistor count objective is primarily for use with the CGP algorithm for evolving topolo-

gies, and functions by summing the number of MOSFET device lines present in the netlist.

Chapter 4: A System for Evolving Logic 110

When two circuits perform identically at all other objectives, it is clear that the design with

fewer transistors is more desirable.

Variability Scores

All the objectives described so far consider the single-circuit scores. When RandomSPICE

is used, multiple copies of the same circuit (using different variability transistor models) are

evaluated in SPICE, thus a sets of SPICE output are returned. This means for each of the de-

sired objectives, a score for each individual circuit is returned. These scores can be combined

of five different ways, which are selected objectives field by adding 100, 200, 300, 400 or

500 to the objective indexes. The first two of these methods return the lowest of the scores, or

highest of the scores, respectively. Generally, the highest is more likely to be a useful metric

of a circuits performance, as it will give the worst-case example of the objective across the dif-

ferent variability-aware circuits. The third method returns the range - the difference between

the highest and lowest score - for the objective. The fourth method returns the mean value,

and the fifth the standard-deviation of the set of results.

4.3.3 Multi-Objective Ranking

Once all the objective scores are calculated, the entire population is ranked using an imple-

mentation of the NSGA-II algorithm. If the firstObjPriority parameter is enabled, then

circuit functionality is considered to be primary rank and the NSGA-II rankings secondary to

this. The process first sorts all the individuals into non-dominated fronts, then calculates the

distances between individuals in each of the fronts and ranks those well spaced the highest.

The returns a unique rank for each of the individuals in the population to the selection pro-

cess. The NSGA-II algorithm is described in Section 3.3.3, and pseudo-code of the ranking

algorithm used within MOTIVATED is given in Appendix B.2.

4.4 Run Parameters

When the main MOTIVATED system is initiated, it is passed a parameter file which defines all

the parameters necessary for the required evolutionary run. The complete set of parameters is

given in Table 4.3. The parameters given relate to the system setup, considered to be system

parameters, also to the specifics of the evolutionary algorithm to be performed, considered to

be evolution parameters, and the parameters to be used in the SPICE analysis, considered to

be circuit parameters.

111 4.4 Run Parameters

Table 4.3: MOTIVATED Run Parameters

Parameter Name Type Definition

Sy
st

em
Pa

ra
m

et
er

s

mode int The evolutionary algorithm to be run, 1=CGP, 2=SGA
targetPath string The location where the template netlist is stored
targetFilename string The filename of the template netlist
outputPath string The location where output data is to be saved
debug boolean Enables debug mode with verbose output logging
problem string A title for the evolutionary run
extractionMode boolean
spiceThreads int The number of threads of SPICE to run in parallel for

MP acceleration
screenPrint int The number of generations between on-screen refreshes
cleanUpLimit int The number of previous generations worth of output

data to keep before deletion or archiving
archiveFiles boolean If enabled, netlists and SPICE output data are archived

to a single .tgz file per generation
populationFile string If specified, the algorithm initiates with a previously

saved population

E
vo

lu
tio

n
Pa

ra
m

et
er

s

objectives CS int The comma-separated objective set to be evaluated
firstObjPriority boolean
noParents int The number of parents (µ) to preserve for the next gen-

eration
noOffspring int The number of off-spring (λ) to produce per parent
mutationMode int The mutation mode. 0=random value, 1=Gaussian dis-

tributed, 2=Cauchy
mutationRate float The mutation rate - for SGA the number corresponds to

the Poisson parameter λ in setting the number of genes
to mutate per operation, for CGP it corresponds to the
% mutation rate

mutationWidth float The value of σ2 when Gaussian and γ when Cauchy
mutation is used

generationLimit int The termination generation for the algorithm

Sp
ic

e
Pa

ra
m

et
er

s

clockRate float Specifies the clock-rate in GHz
sampleRate int Specifies the number of SPICE transient analysis steps

per clock-cycle
inputInverter boolean Adds an inverter to the input-stage
inputDivider boolean Adds a potential-divider to the input-stage
voltage float Specifies VDD for the circuit
lowThreshold float Specifies Vlow threshold for fitness calculation
highThreshold float Specifies Vhigh threshold for fitness calculation
noRandomspiceRuns int The number of RandomSPICE circuits to be created for

each netlist
dmgModels boolean True if RandomSPICE & intrinsic-variability aware

models are to be used
modelLibrary string Location of filename of model-library for Random-

SPICE to use
uniformModels boolean True if the uniform (non intrinsic-variability) models

are to be used

Chapter 4: A System for Evolving Logic 112

4.4.1 System Parameters

The system parameters define the information needed to setup the system. The most important

parameters are mode, which determines which of the two evolutionary systems to run: CGP

for topology design, or the SGA for optimisation. A special mode, set by extractionMode,

allows the extraction of detailed analysis of a single circuit using a large number of variabil-

ity runs; no evolutionary algorithm or GUI is launched in this mode. The spiceThreads

parameter allows the execution of RandomSPICE and SPICE to be parallelised across mul-

tiple threads, to improve performance on multi-CPU workstations. Improvements observed

through increase this parallelisation are discussed in Section 4.6.6. The remaining system pa-

rameters are concerned with the paths and filenames of the input and output files and minor

GUI settings.

4.4.2 Evolution Parameters

The evolution parameters are those which directly affect the evolutionary algorithm being

run. The firstObjPriority setting is used to control if the circuit functionality ob-

jective is considered as the primary objective, meaning that in no circumstances can a cir-

cuit which has a worse (higher) functionality score than another can rank above it. The

noParents and noOffspring parameters correspond to µ and λ respectively. The

mutationMode parameter has three options: random value mutation, Gaussian-distributed

and Cauchy-distributed mutation, with the relative widths of the latter distributions deter-

mined by mutationWidth, with the likelihood of mutation set by mutationRate. The

generationLimit defines the generation number at which the algorithm will terminate.

4.4.3 Circuit Parameters

The circuit parameters govern the settings that are used in RandomSPICE and SPICE and the

specifics of the additional components added to each template netlist in the formation of the

final RandomSPICE or SPICE ready netlists. The clockRate parameter defines, in GHz,

the clock-rate at which the input waveforms are set; the value chosen should be slow enough

to ensure that the output of a circuit is likely to have changed state by half-way through the

clock period, but fast enough such that a useful discrimination between the performance of

different circuits can be evaluated, without needing to set the sampleRate unnecessarily

high. The sampleRate defines how many analysis measurements are taken in each clock

cycle, thus when multiplied by 21 indicates the total number of analysis steps each SPICE

evaluation will undertake. The voltage parameter specifies VDD for the circuit, with the

113 4.5 Graphical User Interface

thresholds at which circuit functionality and slew-rates are calculated set by lowThreshold

and highThreshold. The inputDivider and inputInverter control if a potential-

divider and/or inverter are added to the circuit inputs.

The noRandomspiceRuns parameter defines the number of unique netlists that will

be created by RandomSPICE and simulated with SPICE in the creation of variability-aware

output results. The dmgModels parameter is set to true if RandomSPICE is to be used;

when false, the RandomSPICE stage is omitted, with circuits passed straight to NGSPICE.

The uniformModels parameter is set to true if it is desired for circuits to be passed through

RandomSPICE but the uniform (i.e. not intrinsic-variability aware) models to be used. If

dmgModels is set to zero, or uniformModels is set to true, the noRandomspiceRuns

parameter is ignored and only one circuit per individual is evaluated.

4.5 Graphical User Interface

The graphical user interface for the MOTIVATED system contains a number of different frames

and tools allow the control and feedback information relating to the current run. The main

frame of the system, shown in the top left of Figure 4.1, appears once all the needed files have

been loaded, the target netlist evaluated and the main run started. At the top of the frame,

the title of the problem and information about the current generation is shown, along with the

current member that is being evaluated when run locally (this information is less accurate when

run on the cluster as many individuals will be run in parallel, so it only displays the count which

are known to have been completed). Below this is a pair of tables; the uppermost table contains

the relevant scores for the target-netlist so they can be compared to the evolved results. The

larger main table contains the list of promoted parents from the previous generation, initially

ordered by fitness rank, with the fittest circuits at the top. The rows can be sorted by clicking

on an objective column header, easing the process of locating the circuits which perform the

best in any given objective.

Any of the individuals shown in either table can be selected, allowing one of the additional

information frames to be opened through selecting the relevant button. One of these frames

displays a stripped-down display of the netlist which includes only the transistors, their con-

nections and their dimensions. Another frame charts all the different Spice analysis for the

chosen circuit alongside the target circuit, allowing the observed results to be compared. The

other main features of the GUI of note are the ability to display the graphically display the

progress of each of the objectives, with the relative scores from the initial generation nor-

malised to 100%, to see in which objectives progress is being made and where evolution is

Chapter 4: A System for Evolving Logic 114

stagnating. The run parameters can also be displayed, including detailed information about

the current status of the run when using the cluster and approximations of the run-speed of the

algorithm. Finally the user can control certain aspects of the algorithm, such as allowing the

operation to be paused/resumed and allowing the current generation to be saved for restarting

at a future occasion (with different parameter settings if desired).

4.6 Use of High-Performance Computation to Accelerate MOTI-
VATED

The system described to this point allows the complete evolution cycle to be run on a sin-

gle machine, albeit with parallel operation of the SPICE processing when multiple processing

cores are available. The most time consuming stage of the algorithm is the analysis of the in-

dividual circuits in SPICE, with the creation of the randomised netlist in RandomSPICE also

taking a considerable amount of time. The remainder of the process - the selection and muta-

tion processes - consume a very small fraction of the overall compute time. As a consequence,

a vast speed-up can potentially be realised if the RandomSPICE and SPICE operations can be

distributed to cluster and Grid computer systems.

4.6.1 Background to Grid Computing

Grid-Computing is a form of high-performance computing (HPC) that distinguishes itself

from conventional cluster and super-computer systems by means of the loose-coupled na-

ture, with heterogeneous resources distributed geographically across a number of sites. Grid-

computation systems are operated through a set of tools termed middleware which control the

tasks of job creation, submission, monitoring and data movement, all protected with a set of

security provisions. One of the main HPC resources that has been utilised as part of the nano-

CMOS project is ScotGrid, the Scottish Grid Service. This is primarily hosted at Glasgow,

with additional nodes in Edinburgh and Durham. The Glasgow site houses 310 worker nodes,

which comprises 280 Opteron 280 2.4GHz cores and 680 Xeon E5420 2.5GHz cores, with

2GB RAM provided for each core. The system also includes 24 nodes dedicated to providing

the Grid Server architecture and 20 dedicated storage nodes, providing 500TB storage [8].

4.6.2 The MAVEN Cluster

In order to accelerate the process of performing the SPICE calculations locally, a local cluster-

computer has been built within the Intelligent Systems Group at the University of York. The

115 4.6 Use of High-Performance Computation to Accelerate MOTIVATED

cluster, named MAVEN, contains twelve quad-core processing nodes, each housing an Intel

Q9550 2.83GHz CPU and 8GB of RAM; this results in 48 effective processing nodes as seen

by the SGE system. Local storage on each processing node is provided with an Intel X25-

V 40GB solid state drive. A head-node which doubles as a file-server exists as the access

point to the cluster, also equipped with an Intel Q9550 and 8GB of RAM, also housing 4

Samsung 1TB hard disc drive RAID array. Initially the MAVEN cluster used the Kerrighed

open-sourced single-system image cluster software to provide job submission, however this

was later transferred to the Sun Grid Engine (SGE) 5 system.

4.6.3 The Sun Grid Engine System

SGE is an open-source batch-queuing system that controls the submission, scheduling, dis-

patching and management of jobs on cluster-computing systems. It operates atop a number

of Unix-like operating systems, providing the management of resources across a number of

local or distributed nodes. On the MAVEN cluster, SGE version 6.2u5 runs on the Ubuntu

9.4 operating system on all the nodes and file-server. Jobs are submitted to a job-queue on a

per-user basis using simple command line functions. Once resources are available, the jobs are

seamlessly distributed to the available nodes and run until termination or user-interruption [4].

4.6.4 Alterations to code to enable cluster operation

The alterations to the MOTIVATED code to enable it to operate on the MAVEN cluster using

SGE are relatively simple, thanks to the nature of SGE’s command-line based job submission

system. As the RandomSPICE operations are already initiated through command-line style

procedure calls in the standard single-machine MOTIVATED framework, only minor changes

are needed to submit the operations as SGE jobs. To do this, the RandomSPICE jobs are

wrapped into sets .sh shell-scripts. These scripts are then submitted as jobs on the cluster

through an SSH connection, using the SGE qsub command. An extra thread is then started

which periodically polls the SGE system to detect the status of the submitted jobs. Once all

the jobs are completed, the MOTIVATED system can process the output data and extract the

required fitness scores.

A later alteration to the system moved the post-processing of SPICE data, in which the

fitness scores are calculated based on the SPICE output files, to be run as part of the submitted

job scripts. This alteration reduced the amount of data-processing that needed to be done

on the local system. As a result of this alteration, all the data needed for the locally run
5Now known as Oracle Grid Engine

Chapter 4: A System for Evolving Logic 116

MOTIVATED system is the sets of fitness scores, which are saved on the shared AFS file system.

A seperate branch of the MOTIVATED code based was created which is responsible for cluster-

based operation; the code and parameters are identical to that previously described with the

exception of the routines where RandomSPICE and SPICE are launched and where the output-

data is processed.

4.6.5 Alterations to code to enable Grid operation

In addition to the code alterations to allow distributed analysis of the SPICE netlists on the

local MAVEN cluster, the systems has also been adapted to allow the RandomSPICE and

SPICE applications to be run remotely on Grid-based high-performance computing (HPC)

clusters. The infrastructure that has been developed to support job creation and submission

as part of the nano-CMOS project as a whole comprises of a number of web services, each

of which provides a particular category of functionality, that is to say a particular type of

submission or job to a particular type of resource. These services all take the form of Apache

Axis 2 Web Services, in which Apache RAMPART performs the encryption, time-stamping and

signing of messages to provide the message-level security. Interaction with these services is

implemented through a number of command-line client applications, written by the e-Science

teams working on the nano-CMOS project, which are distributed in a single self-contained

bundle.

Running a job on a Grid involves a two-step process, in which an application service is

invokes which is responsible for the creation of the job, followed by a submission service

which submits the job to a particular HPC resource; the submission service can be bypassed

using direct Globus submission. The job creation and submission processes are closely linked

to a data management system which exploits the distributed Andrew File System (AFS). To

create a job, the user passes an input file to the application service, which contains the input file

for the underlying application (RandomSPICE) wrapped with a set of additional information

needed to run the job on the HPC resource. This information includes a reference to a relevant

‘template’ AFS directory where run data will be stored, and the number of sub-jobs, which can,

dependent on the HPC resource, be distributed and executed in parallel. One the job-creation

request has been received, the application service duplicates the template directory for each

sub-job and creates a record of the new job in the data service, written in Job Submission

Description Language (JSDL). Once these steps are complete, a Uniform Resource Identifier

(URI) is returned to the user which acts as the unique identifier for the job. One a job has been

submitted, the user invokes the submission client application, which provides the user with a

list of available HPC resources on which the job can be run. Different software is then used

117 4.6 Use of High-Performance Computation to Accelerate MOTIVATED

to implement to the different types of HPC resource - the Java Commodity Grid Kit is used to

submit to Globus resources, such as ScotGrid or a bespoke submission service for Sun Grid

Engine clusters such as MAVEN [171].

Whilst the infrastructure for running the RandomSPICE and SPICE applications as part of

the evolutionary loop within MOTIVATED has been implemented, due to a number of reasons

its use has been minimal. Primarily, the overhead in time associated with the job creation and

submission steps has largely negated the advantages of using the Grid when all but the largest

population sizes are used. As most tests have evaluated populations with fewer than one thou-

sand individuals, this time penalty results in a slower rate of evolution than could be achieved

locally on the MAVEN cluster. However, the Grid-based system has proven invaluable in the

process of performing a detailed evaluation of extracted designs, allowing analysis of circuits

based on 100,000 different RandomSPICE simulations, which provide a far greater degree of

accuracy in the statistical data retrieved, as described in Section 5.6.2.

4.6.6 Performance Observations

For reasons detailed in the previous section, the most effective performance of the MOTIVATED

system was observed when run using the local MAVEN cluster. Due to the nature of the SGE

system and the fact that as a shared resource it is not always possible to guarantee 100% usage,

a certain performance improvement cannot be guaranteed. However, a set of small benchmark

runs were evaluated on the system at a period when no external jobs were allocated. There

are a number of important considerations to make to ensure efficient and effective use of the

cluster-based system: firstly, it is necessary for the workload to be equally balanced across all

the available nodes. Furthermore, it is desirable for all the individual jobs to terminate as close

to each other as possible, as the MO ranking mandates that all results are available to compare

and sort. A final consideration is that the workload is of a practical length; by this, setting a

very short workload to each node, such as a single SPICE evaluation, will be inefficient due to

a number of reasons: whilst the job submission process on SGE is rapid compared to that for

Grid-submission systems, it can take a number of seconds from submission to the initiation of

jobs; having multiple jobs start simultaneously adds delays due to the shared file system; the

polling process adds a slight delay between the completion of the final job on the cluster and

the acknowledgement of completion on the remote system on which MOTIVATED is running.

As a consequence, it is generally desirable to have more than one SPICE netlist evaluated by

each available node, thus a multiple of 48 is generally chosen for the population size.

The time taken for NGSPICE to process a netlist on a single node can be broken in two

parts; firstly the relatively static time taken to load the software, read the netlist and calculate

Chapter 4: A System for Evolving Logic 118

the initial conditions, secondly the time taken to perform the transient analysis and write the

corresponding output data to the file-system. Typically the first of these processes generally

takes around half a second on the systems used 6; a precise figure is hard to extrapolate due to

the various loads on the filesystem. The time taken to perform the transient analysis is roughly

linear in line with the number of steps to be calculated in the analysis, determined from the

combination of the sample-rate, the clock-speed and the length of the transients.

A set of performance benchmarks were carried out to evaluate the difference in perfor-

mance between running RandomSPICE, NGSPICE and the data handling on a local worksta-

tion to the performance when running on Maven. For these tests, two different test circuits

were optimised, first a four-transistor NAND gate and secondly a nine-transistor XOR gate

from the VSCLIB standard-cell library (described in Section 5.2.2). For each individual, Ran-

domSPICE creates 10 netlists which are evaluated in NGSPICE. The tests were carried out at

three different sample rates for SPICE transient analysis, firstly taking 50 samples per clock-

cycle (a 10pS sample-rate based on the 2GHz clock-frequency, for a total of 1050 data points),

then with 100 samples per clock-cycle (5pS sample-rate, 2100 data points) and finally at 200

samples per clock (2.5pS sample-rate, 4200 data points). The test were carried out using sin-

gle, dual and quad-SPICE threads on the local workstation (which has a quad core Intel Q6600

CPU) and the using all 48-logical nodes on the MAVEN cluster, with overall population sizes

of 48, 96 and 192 (i.e. one, two and four RandomSPICE runs per node respectively). On

both systems other processes and jobs were minimised to ensure maximum CPU availability,

and the tests were repeated three times with an average result taken. Each algorithm was ter-

minated after 10 generations, with the average time to evaluated one individual calculated by

dividing the total time the algorithm was running by the number of individuals evaluated.

The results for the benchmarks are shown in Figure 4.7, with the relative performance

increases above single-threaded operation on an overall and per-core basis illustrated in Fig-

ure 4.8. Across the runs operating just on the workstation, a speed-up of between 1.46× and

1.82× (µ = 1.60×, σ = 0.15) was observed when moving from single-threaded to dual-

threaded operation. When moving to four threads, the speed-up measured was between 2.72×
and 3.50× (µ = 3.17×, σ = 0.37) the single-thread performance, demonstrating that the

evolutionary loop is very scalable through parallel threading of the RandomSPICE and SPICE

operations. The largest improvement in performance was actually found with the smaller cir-

cuits and lower sample rates; it is suggested that this is likely due to the hard disc access

being the bottleneck, with smaller reads and writes to the disc needed with smaller circuits.
6This figure is roughly the same on both the 2.66GHz Intel Q6600-based local machines and the nodes in the

MAVEN cluster.

119 4.6 Use of High-Performance Computation to Accelerate MOTIVATED

 0

 20

 40

 60

 80

 100

NAND
10 pS

EXOR
10 pS

NAND
5 pS

EXOR
5 pS

NAND
2.5 pS

EXOR
2.5 pS

E
v
a
l
u
a
t
i
o
n
s

p
e
r

M
i
n
u
t
e

Circuit and Sample-Rate

Benchmark performance of Motivated

Workstation - 1 Thread
Workstation - 2 Threads
Workstation - 4 Threads

Cluster - Population Size 48
Cluster - Population Size 96

Cluster - Population Size 192

Figure 4.7: Benchmarks of the performance of MOTIVATED at evaluating different circuits on
a single workstation and on the MAVEN cluster

When moving to the Maven cluster, the performance speed up over the single-threaded work-

station ranges from 15.8× to 21.0× (µ = 18.35×, σ = 1.95) when a population size of 48

is used (equivalent to 1 RandomSPICE run per compute node), rising up to 18.3× to 24.7×
(µ = 20.92×, σ = 2.36) when a population of 96 is used. A much smaller increase in per-

formance is observed when the population size is again doubled to 192, with a performance

speed up of 19.2× to 25.0× (µ = 21.93×, σ = 2.52). When the cluster computation is com-

pared to the four-threaded single workstation performance, a speed-up of between 6.82× and

7.77× (µ = 7.27×, σ = 0.31) is observed, with a greater improvement found when using the

smaller NAND circuit than the EXOR circuit, and also when the lower sample rates are used.

This again points towards a data-storage (or network transport) bottleneck, which is probably

a side-effect of all the worker nodes sharing the fileserver resources.

Chapter 4: A System for Evolving Logic 120

 0

 5

 10

 15

 20

 25

Workstation
1 Thread

Workstation
2 Threads

Workstation
4 Threads

Cluster
Pop. 48

Cluster
Pop. 96

Cluster
Pop. 192

 0

 20

 40

 60

 80

 100

R
e
l
a
t
i
v
e

O
v
e
r
a
l
l

P
e
r
f
o
r
m
a
n
c
e

R
e
l
a
t
i
v
e

P
e
r
f
o
r
m
a
n
c
e

P
e
r

C
P
U

(
%
)

Relative performance of Motivated

Overall Performance
Performance Per CPU

Figure 4.8: The relative performance improvement when MOTIVATED is run both multi-
threaded, single workstation mode, and on the MAVEN cluster, across all the benchmark runs,
weighted so the single-threaded performance = 1.

This chapter has discussed the algorithm that will be used for optimising the tran-

sistor dimensions with logic circuits, and the set of tools that allow the algorithm

to be used in conjunction with RandomSPICE and NGSPICE, both locally on a

workstation and on a HPC cluster based on Sun Grid Engine. The following chap-

ter details the experiments that have been carried out to attempt to optimise logic

circuits using the system.

Chapter 5

Optimising Standard Cell Libraries

The chapter describes the experiments that have been carried out with the aim of optimising

standard cell libraries, and the results that have been achieved. The results are given in approx-

imate chronological order of when the experiments were carried out; it is important to point

out that the system used to evolve circuits itself, and the model libraries used, have themselves

evolved over the period of the experiments, guided by observations made from the results, and

performance, and also by the progress made at other nano-CMOS project partners, notably the

DMG responsible for creating the transistor models.

5.1 Early Results: Evolving Transistor Topologies using the SGA

The first experiments that were carried out using the SGA system actually attempted to evolve

circuit topologies, as opposed to just optimising transistor dimensions within known designs.

The results from these experiments, and similar parallel experiments into evolving topologies

using an early CGP-based implementation, guided many of the decisions that have been made

in future revisions to the MOTIVATED system, described in the previous chapter, and so are

included here.

5.1.1 Methodology

In the experiments, an early implementation SGA system was launched to evolve AND and

OR gate circuits simultaneously. As the algorithm setup and parameters predate the system

described in the previous chapter, the main differences are outlined below.

121

Chapter 5: Optimising Standard Cell Libraries 122

(a) Test Bench (b) Inputs Pulses and Target Outputs

Figure 5.1: The test bench, input waveforms and target outputs as used in the early experiments
in evolving 2-input logic topologies

Template Netlist

The template netlist used for the circuit evolution contained 6 NMOS transistors and 6 PMOS

transistors. The genotype contained 60 genes, with 5 genes corresponding to each of the

12 transistors in the netlist. Of these 5, the first determined if the transistor was enabled or

disabled; if the integer value was even, the transistor line would be commented out in the

produced netlist. The next 3 genes corresponded to the drain, gate and source connections

of the transistor, each being able to take a value between 0 and 10 (with 0 corresponding

to the ground node, 3 to VDD and 4 to the output connection of the circuit). The final gene

determined the channel width of the transistor, with the length set to 35nm and the width being

an integer multiple of 35nm between 1× and 8×. The actual template netlist used is given in

Appendix C.1.1.

Test Bench

The test-bench added to each netlist, with the relevant voltage sources, input and output circuits

is shown in Figure 5.1a. The input voltage sources are connected to 1KΩ potential dividers,

and provide pulsed square-waves with no rise\fall slew, as shown in Figure 5.1b, which also

shows the two target output waveforms for the AND gate and OR gate. The output of the

circuit is connected to a buffer (a nested pair of inverters), which was chosen to provide a

realistic loading.

Evolutionary Parameters

The experiments predated the use of the NSGA-II algorithm to calculate fitness. Instead,

fitness was calculated using a 2-step ranked fitness function. The primary fitness function

corresponded to the functionality of the circuit, with the secondary fitness calculated from the

maximum cumulative error between the output traces and the target waveform. For circuits

123 5.1 Early Results: Evolving Transistor Topologies using the SGA

Table 5.1: The run parameters used in the early experiments to evolve AND and OR gate
topologies using SGA. Population, mutation and crossover parameters were chosen based on
observations from prior experiments.

Parameter Value

Population Size 2000
Genotype Length 60
Transistor Count 12 (6 pairs)
Target Functions AND, OR
Mutation Rate (%) 5
Crossover Rate (%) 10
Tournament Size 4
RandomSPICE Runs 20
Supply Voltage (VDD) 0.8
Clock (GHz) 5
Sample Duration (pS) 4

where the functionality score was tied, the secondary fitness function would be used to dis-

criminate between individuals. Scores were calculated for each individual for performance as

both AND-gates and OR-gates. For each individual tested, 20 RandomSPICE netlists were

created and analysed.

At the end of each generation, a new population was created, with half the members chosen

based on their AND-gate score and the other half based on their OR-gate score. The algorithm

used tournament selection to determine which individuals would be promoted to the future

generation, without the use of elitism (i.e. all the members in the new generation were subject

to the evolutionary operators). A simple form of crossover was included, in which 10% of the

new population was created from 2 tournament-selected parents, using a uniform crossover

method. The parameters used in these experiments are shown in Table 5.1.

Figure 5.2: Schematics of the evolved AND and OR gates

Chapter 5: Optimising Standard Cell Libraries 124

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

V
ou

t

Sample

SPICE Output - Evolved AND Gate

(a) Evolved AND Gate

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

V
ou

t

Sample

SPICE Output - Evolved OR Gate

(b) Evolved OR Gate

Figure 5.3: SPICE output voltage from designs shown in Figure 5.2

5.1.2 Results

The algorithm was run for approximately twenty days on a single-core workstation, terminat-

ing at the end of the 85th generation. At this point, 170,000 different individuals had been

evaluated, which equals a total of 3.4 million SPICE evaluations (roughly 2 per second). The

first functionally correct OR-gate design appeared in generation 26, with the first functionally

correct AND-gate appearing shortly after in generation 29. The topological arrangement of

the fittest designs, which are illustrated in Figure 5.2, first appeared in generation 50 for the

AND-gate and 62 for the OR-gate; the improvements in later generations upon this design

were changes to the individual transistor widths within the arrangement, up to the fittest de-

signs extracted in generation 85 which are shown in the figure. The output traces from which

the fitness scores were calculated for these two circuits are shown in Figure 5.3.

5.1.3 Observations

The details of these early experiments have been included here not because they produced re-

alistic real-world designs, but rather because they taught a lot about the potential pit-falls that

could occur in creating variability-aware standard cell designs, and as a consequence heavily

influenced the future direction in the development of the MOTIVATED system. One of the key

things learnt was the need for a far more effective method for determining the fitness of a

circuit; the evolved designs actually produced better fitness scores than conventional standard-

cell designs using the given test-bench and scoring criteria, however in reality were woefully

performing designs, due to vast power consumption caused by short-circuit currents. Both

the topologies evolved with the SGA, and also topologies evolved using a CGP representa-

125 5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells

tion (described in [167]), produced designs which contained source or drain connections of

transistors to input rails, feedback from outputs to inputs, and other arrangements which do

not reflect conventional CMOS design philosophies. However, as the fitness function looked

solely at output voltage, such arrangements were allowed and not penalised. The following

points were concluded from the experiments which ultimately resulted in the MOTIVATED

system described in the previous chapter:

• To evaluate circuits accurately, a fitness function that takes into account the power con-

sumption at both supply and inputs, and the delay of the circuit, is needed.

• The fitness function thus needs to be able to simultaneously optimise for parameters

which are generally inversely proportional.

• The method for including variability in the designs needed to be carefully considered.

• The CGP system is more efficient at evolving topologies, although alterations needed to

be made to ensure circuits were arranged from complementary pairs of transistors.

• The SGA system did prove effective at optimising the transistor values once functionally-

correct topologies had been found.

Thus, following these experiments, it was decided to focus on evolving topologies using

a revised design of the CGP-system, and use the SGA for optimising dimensions existing

(and evolved) designs. The revised test-bench, multi-objective fitness function and selection

strategies described in the previous chapter were implemented, with both algorithms unified

into the single characterisation architecture that became MOTIVATED.

5.2 Optimising Transistor Widths within 2-Input Combinatorial
Logic Cells

This section describes the experiments and results obtained when the MOTIVATED system,

using the SGA, was applied to the problem of optimising transistor dimensions within a open-

source standard-cell library. The experiments described in the section were the first in which

the MOTIVATED system with its multi-objective fitness function based on NSGA-II were used,

having been developed from observations on the early results described in the previous sec-

tion. Whilst the experiments described here were based on the system described in Chapter

4, they predate the construction of the MAVEN cluster and with it the SGE based method for

distributing the workload; as such all the experiments described in this section were processed

on a single, quad-core workstation.

Chapter 5: Optimising Standard Cell Libraries 126

Figure 5.4: Two stage cycle use to optimise circuits in MOTIVATED

5.2.1 Two-stage Cycle for Incorporating Variability

Based on observations of the time taken to run early simulations, it was realised that there was

neither the computational resources, nor time available to follow a similar methodology, at the

time the experiments were carried out. As a consequence, it was decided to attempt to see if a

two-stage process could be used successfully. The two stage process, illustrated in Figure 5.4,

operates as follows: initially, the algorithm optimised the transistor widths with the goal of

finding high-speed, low-power and balanced delay times, using the uniform BSIM transistor

models that the variability models are based on (specified by using the uniformModels

parameters). After a predetermined number of generations, the algorithm retains the current

population and switches to using the variability-enhanced RandomSPICE models, with the ob-

jectives switched so that variability-tolerance accounted for. The motivation for the two stage

process is to reduce the time needed to produce the initial fronts of circuits. The variability-

aware circuits take much longer to evaluate, both because of the number of circuits evolved

in RandomSPICE, and also because the each of the RandomSPICE circuits take a lot longer

to process, due to the increase in number of nodes and number of models that have to be

accounted for.

127 5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells

Table 5.2: Fitness objectives in the two stages of evolution

Objective Uniform Stage Variability Stage

1 Functionality Worst-Case Functionality
2 Circuit Area Circuit Area
3 Supply Power Score Worst-Case Supply Power Score
4 Max delay Worst-Case Max delay
5 σ delay Worst-Case σ delay
6 Max slew-time Std-Dev Max delay
7 σ slew-time Std-Dev σ delay

5.2.2 Methodology

Objectives

The objectives for each of the two stages in the experiments are shown in Table 5.2. During

the first stage of the algorithm, known as the uniform stage, the objectives include the worst-

case transition delay times and slew-rates to help promote the fastest circuits, and also the

standard-deviation of the transition delay times and slew-rates to identify the most balanced

circuits. The worst-case power supply scores helps to promote the circuits with the lowest

power consumption. The first is run for a predetermined number of generations, then the

entire final population is passed to the second-stage of the process, the variability stage.

For the variability stage, circuit functionality and six circuit performance objectives are

used with the multi-objective strategy. Circuit area is the combined total of the transistor

widths; this value remains constant and is not affected by variability. The overall worst-case

delay score (the worst switching speed across all transitions in all of the RandomSPICE runs)

represents the delay-time of the cell that must be accounted for when it is to be included in

larger circuits. As a measure for the extent of variability, the standard-deviation of the worst-

case delay across all of the randomised MOSFET runs is used as an objective. It is desirable

to keep the switching-delays as constant as possible between the different input transitions

over all random runs, so the worst-case of the delay standard-deviations is used as another

objective. Finally as a indication of the power requirements, the overall worst-case summation

of the power scores at each sample point is used. This value is best considered as being

proportional to the energy used in driving the load through the 21-clock cycles in the most

power-demanding of the variability runs.

Chapter 5: Optimising Standard Cell Libraries 128

Test Circuits

The experiments cover a set of seven different two-input logic circuits from a standard cell

library (SCL). The circuit layouts have been translated from the vsclib library, which are de-

signed for a standard bulk 130nm process [135]. The model library used with RandomSPICE

is based on a 35nm × 35nm Toshiba transistor, with the effects of RDD added; the libraries

available at the time these experiments were carried out did not include the additional effects

of LER or PSGB.

The test circuits comprised of six standard two-input logic gates and a D-type flip-flop.

Given that only device widths were being evolved, it was anticipated that the smaller logic

circuits would serve as a test of the effectiveness and reliability of the system, whilst the

exclusive-gates and flip-flop should provide a large enough search space to evaluate algorithm

performance. Each of the circuits was converted to a template netlist, in which one gene

per transistor is used to assign a width to the device. The allowed ranges for the transistor

widths were set to between 2 and 20 units (70nm - 700nm) for the NMOS transistors and 4 to

28 units (140nm to 980nm) for the PMOS transistors. These ranges are chosen to reflect the

design rules for the allocated space available to transistors within the chosen SCL library [135].

The schematics for each of the test circuits is shown in Figure 5.5, whilst the corresponding

template netlists that are used can be found in Appendix C.1.2.

Run Parameters

The parameters used for the runs are shown in Table 5.3. A larger population size is used for

the more complex tests. Each promoted parent produced 4 mutated offspring; the mutation

rate chosen means there is 74% likelyhood of a single gene being mutated, as discussed in

Section 4.2.4. Clearly for the smaller circuits, particular the NAND and NOR gates with only

four genes in the genotype, this corresponds to a significant mutation in each cycle. In the

variability stage of the algorithm, 50 RandomSPICE output netlists are evaluated for each

individual. The input signals followed a 4GHz clock-frequency, which was measured to be

slow enough to ensure all transitions would be complete within the required half clock-cycle,

even in the worst-performing circuits. The sampleRate parameter was set to 50 samples

per clock, corresponding to a 4 pS interval between samples.

5.2.3 Results

For each of the test runs, the algorithm was run using the uniform models for a predetermined

number of generations as listed in Table 5.3 then stopped. The number of generations in this

129 5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells

Figure 5.5: Schematics of the seven test circuits from the VSCLIB SCL for optimisation using
the SGA [135]

Chapter 5: Optimising Standard Cell Libraries 130

Table 5.3: The run parameters used in the experiments

Parameter Tests 1&3 Tests 2&4 Tests 5&6 Test 7

Population size 100 100 200 400
Number of Parents 20 20 40 80
Genotype length 4 6 9 24
Mutation rate 1 1 1 1
VDD (V) 0.8 0.8 0.8 1.0
Clock (GHz) 4 4 4 4
Sample Period (pS) 5 5 5 5
Uniform Stage Generations 200 300 500 1000
Variability Stage Generations 50 50 50 50
RandomSPICE Circuits 50 50 50 50

stage was chosen based on previous work and the length of the genotype. As is shown in

Table 5.4, the number of possible arrangements of transistor width grows rapidly with the size

of the problem circuit; for the NAND and NOR gate, the number of circuits tests after the

uniform stage is close to 9% of the total number of possible combinations within the search

space. For the AND and OR gate this figure drops to below 0.028%, beyond which only a tiny

fraction of the total number of combinations can be assess.

Uniform Stage

A comparison of the results seen in the initial random population, compared with the popula-

tion at the end of the uniform stage, are illustrated in Figures 5.6 & 5.7, which shows each of

Table 5.4: The number of generations for the uniform stage of evolution, and the correspond-
ing number of possible combinations within the search space for each of the test circuits

Circuit Transistors Generations Evaluations Possible Combinations

1 NAND 4 (2N,2P) 200 20,000 225,625
2 AND 6 (3N,3P) 300 30,000 1.072×108

3 NOR 4 (2N,2P) 200 20,000 225,625
4 OR 6 (3N,3P) 300 30,000 1.072×108

5 XNOR 9 (4N,5P) 500 100,000 1.273×1012

6 XOR 9 (5N,4P) 500 100,000 9.672×1011

7 D-Type 24 (12N,12P) 1000 500,000 1.319×1032

131 5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells

the circuits selected as a parent at the end of the initial generation, and final generation of the

uniform stage, along with a marker for the circuit based on the reference cell-library design 1.

The first column in each of the two charts plots the worst switching-delay against the sup-

ply power. The second column plots the worst-switching delay against the standard-deviation

of all switching delays, to evaluate how well balanced the circuit switching is. It is clear from

the results of the uniform stage that the smallest logic gates, the NAND and NOR, are already

well optimised, with the reference design falling very close to the optimal power-delay front.

However, when moving towards the larger circuits, a greater improvement is observed in the

extracted Pareto optimal-front for power-delay: for the exclusive gates, the algorithm has pro-

duced designs which outperform the reference design. This was most significant in the case

of the XOR design, where designs have been found with a 15% improvement in delay and at a

lower power consumption than the reference design. At first glance the results for the D-Type

flip-flop appear to indicate the greatest improvement, however, as will be discussed shortly in

Section 5.4.4, the result is misleading.

From this final generation of parents, three circuits were chosen which demonstrated po-

tential improvements over the reference design for each of the test circuits. The first circuit

chosen is considered the high-speed circuit - this is not necessarily the overall lowest-delay,

but rather the circuit which demonstrated the best balance of low-delay and low standard de-

viation across delays: for some circuits the absolute lowest-delay would come at such a power

penalty that it was deemed unsuitable for selection. The second circuit chosen was the one

which best fit the criteria of minimising circuit power consumption whilst operating at a simi-

lar delay (±5%) to the reference design; this is considered the balanced speed-power circuit.

The final circuit extracted is the one which scores the lowest supply-power score altogether,

this is the low-power circuit. It is important it note that these designs were extracted by hand,

through analysis of the different objective scores in the final generation, as opposed to using

an automatic or rule-based system of extraction.

Variability Stage

The variability stage of the algorithm was then initiated using the final population of the uni-

form stage. After 50 generations the run was terminated. The circuit which demonstrated

the overall lowest standard deviation of worst-case delay time, whilst still performing close

to or better than the reference SCL design in terms of both power and delay (no more than

5% greater in terms of delay or power) was selected from the final population by hand. This
1The reference cell-library design used transistor dimensions proportional to those suggested in the VSCLIB

designs for bulk 130-nm process

Chapter 5: Optimising Standard Cell Libraries 132

8

10

12

14

16

18

20

22

24

26

28

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

NAND: Power V Delay

Generation 0

Generation 200

SCL Design

 0

 5

 10

 15

 20

 25

 30

 35

 40

 60 70 80 90 100 110 120 130 140 150

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

NAND: Delay V StdDev Delay

Generation 0

Generation 200

SCL Design

10

15

20

25

30

35

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

AND: Power V Delay

Generation 0

Generation 300

SCL Design

 0

 5

 10

 15

 20

 25

 30

 60 70 80 90 100 110 120 130 140 150

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

AND: Delay V StdDev Delay

Generation 0

Generation 300

SCL Design

10

12

14

16

18

20

22

24

26

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

NOR: Power V Delay

Generation 0

Generation 200

SCL Design

 10

 15

 20

 25

 30

 35

 40

 45

 50

 60 70 80 90 100 110 120 130 140 150

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

NOR: Delay V StdDev Delay

Generation 0

Generation 200

SCL Design

10

15

20

25

30

35

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

OR: Power V Delay

Generation 0

Generation 300

SCL Design

 0

 5

 10

 15

 20

 25

 30

 60 70 80 90 100 110 120 130 140 150

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

OR: Delay V StdDev Delay

Generation 0

Generation 300

SCL Design

Figure 5.6: The state of the populations before and after the uniform stage of the algorithm for
the NAND, AND, NOR and OR gates, including the reference design scaled from the VSCLIB
library.

133 5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells

20

25

30

35

40

45

50

55

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XNOR: Power V Delay

Generation 0

Generation 500

SCL Design

 5

 10

 15

 20

 25

 30

 35

 40

 60 70 80 90 100 110 120 130 140 150

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

XNOR: Delay V StdDev Delay

Generation 0

Generation 500

SCL Design

20

25

30

35

40

45

50

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XOR: Power V Delay

Generation 0

Generation 500

SCL Design

 5

 10

 15

 20

 25

 30

 35

 60 70 80 90 100 110 120 130 140 150

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

XOR: Delay V StdDev Delay

Generation 0

Generation 500

SCL Design

5

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200 220 240

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

D-TYPE: Power V Delay

Generation 0

Generation 1000

SCL Design

 0

 10

 20

 30

 40

 50

 60

 70

 80 100 120 140 160 180 200 220 240

S
t
d
D
e
v

D
e
l
a
y

(
p
S
)

Worst Delay (pS)

D-TYPE: Delay V StdDev Delay

Generation 0

Generation 1000

SCL Design

Figure 5.7: The state of the populations before and after the uniform stage of the algorithm
for the XNOR, XOR and D-Type flip-flop, including the reference design scaled from the
VSCLIB library.

Chapter 5: Optimising Standard Cell Libraries 134

circuit is considered the variability-tolerant circuit within the results.

In addition to the best extracted variability-tolerant design, each of the three extracted

designs from the uniform stage, alongside the reference design, were then tested using the

RDD-aware variability models for 50 RandomSPICE runs, to assess their variability tolerance.

The speed-power plots extracted from all of these runs are illustrated in Figures 5.8 & 5.9.

From these results it is observed that some of the extracted designs (notably the balanced

NAND gate, high-speed XOR gate and both the high-speed and balanced D-Type designs)

perform significantly better than the reference design in terms of variability-tolerance. The

largest improvements again appear to be found in the larger circuits, particularly the D-Type,

where the high-speed design appears to operate over 30% faster than the reference design,

whilst consuming 25% less power and showing significantly less variability in delay times

when the RDD-aware models are used. Detailed results for the scores from these tests can be

found in Tables A.1 & A.2 within Appendix A.

5.2.4 Observations on Results

The variability-tolerant circuits for both the NAND and NOR gate runs are very similar in

layout and score to the respective high-speed design evolved in the uniform stage. They con-

sume more power than the reference designs, with both designs scoring roughly 12% higher

on power-score, but demonstrate far less deviation in delay. In the XOR run the variability-

tolerant circuit is both faster and more power efficient whilst also improving delay variation.

After the second stage of the XNOR run, a circuit performing faster than the previously ex-

tracted high-speed circuit was found, which also improved on the delay variability score, albeit

at a higher power consumption than the reference design.

The results did demonstrate that the SGA system could be used to optimise circuits, both

using uniform models for traditional objectives of low-power and high-speed, and using vari-

ability models for creating dimension arrangements which minimised the impact of variability

on the ranges of delay and power consumption. However, they also highlighted a number of

issues with the system, not least the compromises that were essential to be made in order to

complete the evolution runs in a sensible time-frame through the use of the two-stage pro-

cess. The observations on performance cemented the need to distribute the problem of SPICE

evaluation on HPC systems, particularly when the RandomSPICE and variability models were

used.

The variability-tolerant D-Type circuit demonstrated the largest improvement over the

reference design in terms of power score, worst-case delay and standard-deviation of worst-

case delay, which appears to suggest larger circuits may benefit the most from optimisation.

135 5.2 Optimising Transistor Widths within 2-Input Combinatorial Logic Cells

5

10

15

20

25

 60 80 100 120 140

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

AND Gate

AND - Reference

AND - High-Speed

AND - Balanced

AND - Low-Power

AND - Var-Tol

5

10

15

20

25

 60 80 100 120 140

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

NOR Gate

NOR - Reference

NOR - High-Speed

NOR - Balanced

NOR - Low-Power

NOR - Var-Tol

5

10

15

20

25

 60 80 100 120 140

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

OR Gate

OR - Reference

OR - High-Speed

OR - Balanced

OR - Low-Power

Figure 5.8: Variability within the optimised VSCLIB NAND, AND, NOR and OR designs

Chapter 5: Optimising Standard Cell Libraries 136

20

25

30

35

40

 60 80 100 120 140

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XNOR Gate

XNOR - Reference

XNOR - High-Speed

XNOR - Balanced

XNOR - Low-Power

XNOR - Var-Tol

20

25

30

35

40

 60 80 100 120 140

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XOR Gate

XOR - Reference

XOR - High-Speed

XOR - Balanced

XOR - Low-Power

XOR - Var-Tol

15

20

25

30

35

40

45

 100 120 140 160 180

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

D-Type Flipflop

DTYPE - Reference

DTYPE - High-Speed

DTYPE - Balanced

DTYPE - Low-Power

DTYPE - Var-Tol

Figure 5.9: Variability within the optimised VSCLIB XNOR, XOR and D-Type designs

137 5.3 Comparison with Other Optimisation Algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 50 100 150 200

O
u
t
p
u
t

V
o
l
t
a
g
e

Time (pS)

Data
Clock

Var. Tol
Reference

Figure 5.10: Output traces from D-Type circuits

Indeed, initial analysis on the output circuit appeared to confirm this, with the variability output

traces of the variability-tolerant D-Type circuit when switching to logic high are illustrated in

Figure 5.10, alongside the reference case. In the figure the best and worst case output are

marked either side of the mean output values across 50 RandomSPICE runs. However, whilst

the algorithm proved effective at optimising the circuit to fit the test criteria well, it was later

discovered that an underlying flaw existed in the test-setup for the D-Type flip-flop, as is

discussed in Section 5.4.4.

5.3 Comparison with Other Optimisation Algorithms

At this point, a number of tests were conducted to evaluate the performance of the SGA system

when compared with other optimisation algorithms. The comparisons were made using using

the MOTIVATED system with the same circuit test-bench, SPICE parameters and objectives

as given in the previous set of tests. Variability was not considered in these tests due to the

time taken to run variability-aware experiments on a single workstation, so the comparative

tests were based on the optimisation of circuits for power and delay using uniform models

only, and are compared with the results at the end of the uniform-stage in the previous sets of

experiments. It is acknowledged that this is undesirable as other optimisation algorithms may

indeed perform well at the variability stage. Only two test circuits from the VSCLIB were

used in the comparison tests: firstly the NAND gate, and secondly the XOR gate.

5.3.1 Steepest-Ascent Hill Climbing

The first set of tests was based on a steepest-ascent hill climbing algorithm. To allow this

algorithm to be used with the current MOTIVATED system, it was implemented as a adap-

tation of the mutation operation within the SGA framework. To allow this, the population

at each generation consists of µ parent and λ offspring, where mu is set to the number of

Chapter 5: Optimising Standard Cell Libraries 138

objectives 2 and where λ is 2× the number of genes within the genotype. In the replaced

mutation operation, each of the offspring has one gene adjusted a single unit up or down from

the parent’s value respectively, such that all λ offspring represent the entire set of possible so-

lutions with one transistor value shifted. These are then assessed by SPICE and ranked using

the multi-objective fitness function, using the same method as before, with the highest ranked

individuals being promoted to the next generation. A memory of previously visited circuits

is stored, with the algorithm terminated once a generation in which all of the new individuals

have previously been assessed is found.

The algorithm was used with two test circuits: the NAND gate and the XOR gate from

the VSCLIB, as used in the previous experiment and illustrated in Figure 5.5. For the first

test, the algorithm was launched with an initial population in which every NMOS transistor

was set to 4-units of width (140nm) and every PMOS transistor was set to 8-units of width

(280nm) 3. For the NAND gate circuit, the algorithm terminated after 19 generations. The six

parents from the final population were all found in the final population of the equivalent run

in the SGA algorithm: for this circuit, the SAHC had proven far more efficient. However, for

the XOR circuit, the algorithm terminated after 42 generations, and the extracted parents from

the final population were less effective that those found in the SGA run in all objective scores

with the exception of circuit area. These results indicate that the landscape for the NAND gate

circuit is relatively smooth, despite the number of dimensions, thus very suited to the SAHC

algorithm; in contrast the landscape for the XOR circuit clearly contains many local optima.

5.3.2 SAHC With Random Walk

The SAHC algorithm was adapted so that it both began with a randomised population, and so

that in each generation an extra randomised parent circuit was included in the population, to

add a periodical random walk to the algorithm. The algorithm was once again applied to the

NAND and XOR circuits, although this time 5 runs for each test were carried out, with the

algorithms terminated after 357 generations for the NAND circuit and 848 generations for the

XOR circuit; these values were chosen so that an equivalent numbers of circuits would have

been assessed in both the SAHC run and the SGA run described previously.

As expected, in all five runs for the NAND gate circuit, results were found which matched

those from the SGA algorithm, confirming that both the extracted results are indeed the best

that can be acheived for the given objective scores, and also that the underlying shape of the

search space for the NAND circuit is devoid of many local optima. For the XOR circuit,
2Excluding the functionality objective
3As there is algorithm is purely deterministic there was no need to do more than one run.

1395.4 Optimising Using Multiple-Voltage Sources within 2-Input Combinatorial Logic Cells

there were significant differences observed across the five runs, with the best observed results

across all the SAHC algorithm runs producing better results than the SGA in certain fitness

objectives (area and σ delay), and worse in others (power). Given both were given a similar

length of circuit evaluations, it is hard to determine categorically which is the more efficient,

although the results do suggest that the SGA may be more effective in larger circuits, with

more complex fitness landscapes, whilst the SAHC clearly outperforms it in smaller circuits

with simple landscapes. A detailed comparison of all the results between the SGA, the SAHC

and the SAHC with random walk can be found in Table A.3 within Appendix A.

5.4 Optimising Using Multiple-Voltage Sources within 2-Input
Combinatorial Logic Cells

This section describes the another set of experiments and results obtained when the MOTI-

VATED system, using the SGA, was applied to the problem of optimising transistor dimensions

within a open-source standard-cell library. These experiments, carried out shortly after those

described in the previous section, amended the skeleton netlist by different supply voltages

to drive each of the pairs of CMOS transistors within the netlist. As with the experiments

described in the previous section, all the experiments described in this section were processed

on a quad-core workstation.

The motivation behind this experiment stems from recent developments in the manufac-

ture of microprocessors and other ULSI circuits is the use of multiple voltage supply rails.

In the simplest implementation a pair of supplies is used, one at a higher voltage than the

other [99]. Functional blocks that require higher drive or lower delay will generally use the

higher voltages, with all other blocks connected to the lower voltage. This implementation

can reduce power requirements in sections of the device whilst keeping up to target specifi-

cations for drive and speed; it is proposed that future designs might benefit from the use of

different supply rails at a finer circuit level, so in these experiments each PMOS transistor can

be connected to an independent supply, with the value of each supply evolved alongside the

transistor widths.

5.4.1 Methodology

The evolutionary process repeats the two-stage process that was described in the previous sec-

tion, and uses the same versions of MOTIVATED, RandomSPICE and NGSPICE as used in the

previous section, utilising the RDD-aware model library based on a 35nm Toshiba device. The

experiments are again based on the two-input logic circuits found in the VSCLIB cell library.

Chapter 5: Optimising Standard Cell Libraries 140

Figure 5.11: Test arrangement for optimising multiple source voltage circuits

The differences between the two experiments are found in the template netlists, which include

an additional voltage supply, as illustrated in the adapted test-bench of Figure 5.11. The tem-

plate netlists for the experiments can be found in Appendix C.1.3. The fitness objectives used

in the experiments are the same as those shown in Table 5.2.

Test Circuits

Three different logic circuits from the VSCLIB standard-cell library were chosen, based on

the observations from the experiments described in the previous section. The test circuits

comprised the 2-input XOR-gate with 2 supply sources, the 2-input XNOR gate with 3 supply

sources and the D-type flip-flop with 8 supply sources 4. These three circuits are used for

three different sets of tests. In the first set, the transistor widths are all static, based the scaled-

down dimensions found in SCL reference design, and only the value of the voltage sources are

determined by the algorithm. These tests are denoted by MVS in the tables and figures.

In the second set of tests, denoted WO, the multiple voltage sources are omitted with the

transistor widths being determined by the algorithm. Each of the circuits is converted to a

SPICE netlist within which each of the transistors is assigned a width between 2-20 units for

NMOS transistors and 4-28 units for PMOS transistors, where each unit is a 35nm width
4The chosen netlists include the D-Type flip-flop, as the experiments predate the detailed analysis on the circuit

in which the problems with the test-benchmark were discovered.

1415.4 Optimising Using Multiple-Voltage Sources within 2-Input Combinatorial Logic Cells

Table 5.5: The run parameters used in the multiple-voltage source experiments

Parameter X-OR Gate X-NOR Gate D-Type

Voltage Supplies 2 3 8
Transistors 9 9 24
Genotype length (MVS) 2 3 8
Genotype length (WO) 9 9 24
Genotype length (MVS+W) 11 12 32
Population size 200 200 200
Number of Parents 50 50 50
Mutation rate 1 1 1
VDD (V) 0.8 0.8 0.8
Clock (GHz) 4 4 2.5
Sample Period (pS) 2 2 2
Uniform Stage Generations 300 300 300
Variability Stage Generations 20 20 20
RandomSPICE Circuits 50 50 50

transistor. In the final set of tests, denoted MVS+W, both the transistor widths and multi-

ple voltage sources are determined by the algorithm. The template netlists for the MVS+W
circuits can be found in Appendix C.1.3.

Run Parameters

The parameters used in these experiments were adjusted slightly from those described in the

previous section, as shown in Table 5.5. Due to time constraints, fewer generations were used

in both the uniform and variability stages, and a smaller population size was used. To attempt

to improve the accuracy of results, a higher sample rate was used. This compromise was

deemed necessary to allow the future experiments to be carried out, which likely offered more

practical designs, whilst still gauging the potential performance of the MVS technique.

5.4.2 Results

For each of the three test designs the algorithm was run using the uniform transistor models,

starting with an initial random population. The results for the fixed width (MVS) circuits,

in which only the voltage sources are evolved, are illustrated in Figure 5.12, which compare

the power and delay performance of the initial random populations to those at the end of the

uniform stage. The XOR and XNOR results suggest that the benefits of adjusting the voltage

Chapter 5: Optimising Standard Cell Libraries 142

sources within the reference design have limited benefit in improving circuit power consump-

tion or delay. Of the evolved designs, those with the lowest delays generally had close to zero

voltage on the evolvable voltage sources, and those circuits which demonstrated an improve-

ment in power score over the reference design did so with a delay time significantly worse than

the reference design. The D-Type, which has many more connections to the supply and thus

more scope for optimisation via evolution of supply voltages, demonstrated more promising

results, with arrangements which appeared performed as fast as the standard reference design

whilst consuming less power, due to the reduction in supply voltage in non-critical parts of the

circuit.

Uniform Stage

The results for the uniform stage of the algorithm optimising widths only (WO) are shown in

Figure 5.13. Given the setup for this particular set of circuits is very similar to those described

earlier, it is not surprising that similar results were seen: these results show that the initial

population contains some very poor-performing circuits, including several circuits which fail

to operate at the required speed, however by the end of the stage the algorithm has successfully

optimised the population of circuits so that all the promoted parents are functioning correctly,

with many individuals operating at faster speed and lower power than the reference design

from the cell-library, particularly so with the D-type circuit. These results once again illustrate

the significant potential for the use of evolutionary methods in the optimisation of transistor

dimensions within a standard cell, with all three tests suggesting the conventional methods use

to design the reference circuits may not be resulting in the optimal balance of circuit delay and

power consumption.

The final set of test results from the uniform stage are illustrated in Figure 5.14, which

compares the initial to final population when both transistor widths and supply voltages are

evolved simultaneously (MVS+W). These tests show the worst performing initial population

of the three tests, due to the wide range of possible transistor dimensions and supplies, and the

impact that these values have on the circuit functionality. By the final generation the evolved

populations have vastly improved and show an easily identifiable power-vs-delay pareto front.

The final population of these tests include both circuits which perform faster, and circuits

which require less power, than the corresponding final populations of the supply-voltage only

and width-only tests.

1435.4 Optimising Using Multiple-Voltage Sources within 2-Input Combinatorial Logic Cells

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XOR GATE FIXED-WIDTH: Power V Delay

Generation 0

Generation 500

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XNOR GATE FIXED-WIDTH: Power V Delay

Generation 0

Generation 500

10

20

30

40

50

60

70

80

90

100

 100 150 200 250 300

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

D-TYPE FIXED-WIDTH: Power V Delay

Generation 0

Generation 500

Figure 5.12: The state of the population before and after the uniform stage for the evolved
voltage-source (MVS) circuits

Chapter 5: Optimising Standard Cell Libraries 144

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XOR GATE WIDTHS ONLY: Power V Delay

Generation 0

Generation 500

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XNOR GATE WIDTHS ONLY: Power V Delay

Generation 0

Generation 500

10

20

30

40

50

60

70

80

90

100

 100 150 200 250 300

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

D-TYPE WIDTHS ONLY: Power V Delay

Generation 0

Generation 500

Figure 5.13: The state of the population before and after the uniform stage for the evolved
transistor width (WO) circuits

1455.4 Optimising Using Multiple-Voltage Sources within 2-Input Combinatorial Logic Cells

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XOR GATE WIDTHS+MVS: Power V Delay

Generation 0

Generation 500

10

15

20

25

30

35

40

45

 80 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XNOR GATE WIDTHS+MVS: Power V Delay

Generation 0

Generation 500

10

20

30

40

50

60

70

80

90

100

 100 150 200 250 300

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

D-TYPE WIDTHS+MVS: Power V Delay

Generation 0

Generation 500

Figure 5.14: The state of the population before and after the uniform stage for the evolved
width and voltage-source (MVS+W) circuits

Chapter 5: Optimising Standard Cell Libraries 146

Variability Stage

For each of the nine experiments, the algorithm was then restarted using the final popula-

tion from the uniform stage, and run for twenty generations with each individual creating 50

variability-aware netlists. At the end of this short variability-aware run, two circuits were cho-

sen from the final population which demonstrate potential improvements over the reference

design. The first circuit is the one which best fits the criteria of minimising circuit power

consumption and area without severely affecting circuit-delay and variability tolerance (larger

circuits will typically switch faster and consume more power); this is considered the low-

power circuit. The second circuit is the one which demonstrates the best balance of low-delay

and low standard deviation across delays; this is considered the high-speed circuit. The power

score against delay for each of the designs is illustrated in Figure 5.15, in which each of the

fifty RDF-aware outputs is plotted with a outlined shape, along with the same circuit using the

uniform-models plotted with a solid shape. A detailed breakdown of the scores for each of

these circuits can be found in Table A.4, in Appendix A.

5.4.3 Observations

From the variability results it is clear that arrangements optimised for low-power consumption

show significant variability in delay time when the RDF models are used; the low-power ar-

rangements typical contain very narrow transistors which will vary the most between random

circuits. In contrast, the arrangements optimised for high-speed are far less variable. When

compared to the results for optimising dimensions alone, it appears that extending the evolu-

tion to optimise the supply voltages for the transistors within the cell can extend the power and

delay front producing circuits that are faster or lower in power than those which are optimised

using transistor widths alone. However, this clearly adds a significant degree of complexity

to the actual fabrication of larger circuits. From a performance point of view, these experi-

ments once again underlined the need to migrate towards an HPC solution for optimising with

variability models.

5.4.4 The D-Type Problem

In both the standard optimisation runs and those using multiple-voltage sources, some of the

best results were observed when optimising the D-Type flip-flop function; in some cases the

results were so dramatically improved over the reference design that suspicions were aroused

about the suitability of the test setup. Upon further analysis of the circuit, it was realised that

whilst the evolved designs functioned as expected under the given test-conditions, this did not

1475.4 Optimising Using Multiple-Voltage Sources within 2-Input Combinatorial Logic Cells

0

5

10

15

20

25

30

35

40

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

Multiple Voltage Sources: XOR Gate

Reference
MVS - High-Speed
MVS - Low-Power
WO - High-Speed
WO - Low Power
MVS+W - High-Speed
MVS+W - Low Power

0

10

20

30

40

50

 60 70 80 90 100 110 120 130 140 150

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

XNOR Gate

Reference
MVS - High-Speed
MVS - Low-Power
WO - High-Speed
WO - Low Power
MVS+W - High-Speed
MVS+W - Low Power

20

30

40

50

60

70

80

90

 100 120 140 160 180 200

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

D-Type Flipflop

Reference
MVS - High-Speed
MVS - Low-Power
MVS+W - High-Speed
MVS+W - Low Power

Figure 5.15: Variability within the extracted circuits of the multiple voltage-source exper-
iments. In each chart, the scores for each of the RDD-aware results are plotted using an
outlined shape. The same circuit when evaluated with uniform models is plotted using a solid
shape.

Chapter 5: Optimising Standard Cell Libraries 148

mean they functioned fully as a D-type memory cell, due to limitations in the test-setup. The

reason for this is that in the used test bench, both the clock-input and the D-input to the flip-

flop can change simultaneously, whilst in a realistic test the D-type input must change state

before the clock-input does. As a result, whilst the circuits optimised did perform very well

at the given test, they failed when applied to a more accurate test based on a standard D-Type

timing cycle. The result underlined the pitfalls that can occur if any inaccuracies exist in the

testing setup when evolving circuits: the algorithm worked exactly as intended, however a

human error in the setup produced misleading results. Whilst an amendment to the test setup

to allow accurate analysis of flip-flops and memory cells is possible (and has now been created

in work that post-dates this thesis), it was decided to focus on two-input logic circuits for the

remainder of the experiments.

5.5 Optimising CGP Evolved Designs

A final set of experiments carried out using the MOTIVATED system prior to SGE-cluster

implementation being created involved optimising the transistor widths in designs that had

previously been evolved using CGP.

5.5.1 Using CGP To Evolve Standard-Cell Topologies

As part of his research in the nano-CMOS project, Dr. James Walker has devised a system

for evolving standard-cell topologies, based on an adapted representation of previous work he

had conducted in Cartesian Genetic Programming, as previously discussed in Section 4.1.2.

As a result of this work, two novel topologies for XOR and XNOR gates had been extracted.

Using the same methodology and settings described in Section 5.2, the optimisation process

was applied to the new topologies to see how they performed in terms of power, speed and

variability tolerance.

5.5.2 Evolved Designs

The best designs that were extracted from the CGP runs are illustrated in Figure 5.16. The

evolved XOR design uses 10 transistors, and the evolved XNOR uses 8 transistors. Both

of the evolved designs are structurally and characteristically similar to conventional CMOS

designs, however differ from any designs found in the VSCLIB and NANGATE cell-libraries,

and are considered as fair as the public-domain literature is available to be novel in their

topologies. During the CGP evolution process within MOTIVATED all the transistors within

149 5.5 Optimising CGP Evolved Designs

(a) (b)

Figure 5.16: CGP-evolved designs for the XOR gate (a) and the XNOR gate (b).

the circuits were given static width dimensions of 5-units for NMOS (175nm) and 10-units

for PMOS (350nm). The goals of the optimisation process using the SGA was to optimise

these dimensions to extract circuits which improved performance in terms of delay, power and

variability tolerance. The template netlists for these circuits used by the SGA can be found in

Appendix C.1.4.

5.5.3 Results

The MOTIVATED system was used with the SGA to optimise the two evolved circuits with

uniform models, using exactly the same parameters as in the previous runs on the VSCLIB

described in 5.2 in order that the two sets of results can be directly compared. A comparison

of the initial and final populations at the end of the uniform stage of the evolutionary run are

shown in 5.17. For both circuits a marked improvement in the best power and delay scores

can be seen when compared to the unoptimised design (with all NMOS transistors at 5 units

wide and all PMOS transistors at 10 units wide); however, when compared directly to the

VSCLIB results from Figure 5.7, the pareto fronts are less defined with a greater scattering

in the output, particularly in the case of the XOR design. The algorithm was then restarted

using the variability models as before. At the end of this run, three circuits were extracted:

a high-speed design (HS), a design balanced between high-speed and low-power (SP) and a

low-power design (LP).

The fitness scores for these three extracted circuit are compared with the equivalent scores

Chapter 5: Optimising Standard Cell Libraries 150

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 100 120 140 160 180 200 220 240 260

V
d
d

P
o
w
e
r

Worst Delay (pS)

Generation 0
Generation 1000

Unoptimised

(a)

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 120 140 160 180 200 220 240 260 280 300

V
d
d

P
o
w
e
r

Worst Delay (pS)

Generation 0
Generation 1000

Unoptimised

(b)

Figure 5.17: The worst case delay and power statistics of the population at the initial genera-
tion and after the uniform-stage of optimisation for the CGP-evolved XOR (a) and XNOR (b)
standard cell designs.

based on the SCL designs in Table A.5, found in Appendix A. Although the optimised evolved

designs for the XOR and XNOR are much slower than the SCL designs, they are also signif-

icantly lower in power consumption, and are smaller in transistor area (this is not surprising

for the evolved XNOR, as it contains one fewer MOSFET than the SCL design, so it natu-

rally has an advantage). The effects of variability on the worst-case delay scores and power

scores for both the SCL designs and the CGP-evolved designs are compared in Figure 5.18.

The optimised VSCLIB SCL designs show less variability than the CGP evolved designs, both

terms of power and delay. However, this is partly a consequence of the VSCLIB designs being

larger and consuming more power, both of which have been shown to reduce the effects of

variability [22].

The range of delays across the variability runs is far greater in the CGP evolved designs

than the SCL designs; at the greatest extreme, the low-power evolved XOR design ranged

between 190 pS and 322 pS delay across RandomSPICE circuits, which is in stark contrast

to the range of 80 pS to 86 pS delay observed for the high-speed VSCLIB design. These

experiments thus revealed that whilst the CGP-evolved designs offered benefits over the SCL

designs if low-power circuits are required, they performed poorly when variability was consid-

ered, whilst the conventional designs actually demonstrated a far better degree of variability-

tolerance. This does, however, emphasise both the importance that topology choices have in

created variability-tolerant designs, and the sacrifices in terms of delay-variability that have to

be made when low-power cells are needed.

151 5.5 Optimising CGP Evolved Designs

15

20

25

30

35

40

 50 100 150 200 250

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

HS-XOR - Var
HS-XOR - Uni
SP-XOR - Var
SP-XOR - Uni
LP-XOR - Var
LP-XOR - Uni

(a) VSCLIB XOR

15

20

25

30

35

40

 50 100 150 200 250
P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

HS-XNOR - Var
HS-XNOR - Uni
SP-XNOR - Var
SP-XNOR - Uni
LP-XNOR - Var
LP-XNOR - Uni

(b) VSCLIB XNOR

0

5

10

15

20

25

 100 150 200 250 300

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

HS-XOR - Var
HS-XOR - Uni
SP-XOR - Var
SP-XOR - Uni
LP-XOR - Var
LP-XOR - Uni

(c) CGP-Evolved XOR

0

5

10

15

20

25

 100 150 200 250 300

P
o
w
e
r

S
c
o
r
e

(
x
1
0
0
0
)

Worst Delay (pS)

HS-XNOR - Var
HS-XNOR - Uni
SP-XNOR - Var
SP-XNOR - Uni
LP-XNOR - Var
LP-XNOR - Uni

(d) CGP-Evolved XNOR

Figure 5.18: Comparison of the impact of RDD variability on the worst-case delay and power
statistics between the conventional VSCLIB designs (top row) and the CGP evolved designs
(bottom row) for the high-speed, balanced and low-power XOR and XNOR gate extractions.

Chapter 5: Optimising Standard Cell Libraries 152

5.6 Detailed optimisation using HPC Cluster

The experiments described in the previous sections highlighted the strong points and the flaws

in the SGA optimisation system. On the positive note, when the test parameters were carefully

setup, improvements in the performance of standard cells could be observed, both in terms of

the traditional delay and power characteristics, but also in terms of variability tolerance. How-

ever, if there are any problems in the test arrangement, the evolution could produce misleading

results, as was seen in the studies of a D-Type flip-flop. Furthermore, the two-stage system

that was needed to produce results on a single workstation was seriously compromised, as it

primarily optimised the power and delay objectives with the variability tolerance effectively

tagged on as a extra goodwill measure once the main phase of optimisation was complete. To

genuinely optimise cells for variability tolerance, it would be essential to include variability in

the objectives from the outset, and in order to achieve this additional computational resources

would be essential.

The goal for this experiment were to revisit the task of optimising a standard-cell library,

however this time optimise using the variability models throughout the process (i.e. a sin-

gle stage process), extracting designs that exhibit improved variability tolerance alongside

both higher speed and lower-power designs than the reference design from the library. By

including variability scores as objectives from the offset, the multi-objective algorithm will be

promoting designs which exhibit such a tolerance throughout the duration of the algorithm.

To achieve this, the MOTIVATED system was revised as discussed in Section 4.6 to allow the

RandomSPICE, NGSPICE and score calculations to be all processed in parallel on the MAVEN

cluster, as illustrated in Figure 5.19.

5.6.1 Methodology

In addition to the changes to the workflow to allow the HPC operation described above, a

number of other differences were made between these experiments and the previous based

on experience from the previous tests and advances in the available technology. The models

used by RandomSPICE in these tests were based on bulk 35nm Toshiba devices, and included

the effects of LER and surface roughness in addition to RDD. The standard cell library from

which cells were selected for optimisation was changed to one which was closer to the 35nm

dimensions used by the variability library.

153 5.6 Detailed optimisation using HPC Cluster

Figure 5.19: The revised single stage cycle to optimise circuits using the MAVEN HPC cluster
for variability analysis.

Test Circuits

For these tests cells from the fourth release of the Nangate 45nm Open Cell Library was

used [7]. This is an open-source standard-cell library which is designed for university research

in developing workflows and new algorithms, and contains 38 different functions which range

from buffers up to S–R flip-flops, at a range of drive strengths. Nangate is a fast-growing

multinational developer of Electronic Design Automation (EDA) software with headquarters

in Denmark and USA.

Four test circuits were chosen from the library for optimisation. These are a buffer, a

NAND gate, an OR gate and an XOR gate. The first two were chosen as they are extensively

used in many circuits, and, based on the previous experimental data, are generally already

heavily optimised for power and speed 5. In contrast, the previous experiments on the VSCLIB

suggested there was significant room for improvement in the OR and XOR circuits, both with

and without the consideration of variability, so it was desired to see if this was a side-effect of

the reduction process in scaling from a 130nm library down to 35nm device, or whether it was

a trend which would be repeated in the more modern cell library.

Objectives

Based on the observations from previous experiments, six objectives were selected for use in

the optimisation process, which are shown in Table 5.6. The first priority is, as with all the
5This is to say that the reference designs have generally fallen on the optimised pareto-front for power vs delay.

Whilst faster designs may be extracted, these will come at a power penalty, and vice-versa with low power designs.

Chapter 5: Optimising Standard Cell Libraries 154

Table 5.6: Fitness objectives used in the single-stage optimisation run

Objective Function Variability Statistics Index1

1 Functionality Worst-Case 100
2 Worst-Case Delay Mean 406
3 Worst-Case Delay Range 306
4 Worst-Case Delay σ 506
5 Standard-Deviation Delay Mean 407
6 Supply Power Score Mean 411

1 The index value is that used in the parameters file to describe the objective, see Table 4.2.

other experiments, the circuit functionality, so the worst-case result across of the Random-

SPICE circuits is taken; as such, if any of the circuit fails the functionality test, that individual

will be demoted below all fully successful individuals.

To promote the fastest circuits through each generation of evolution, the second objective

is the mean-value of the worst-case propagation delays across the RandomSPICE runs. In ad-

dition to the mean value, the range and the standard deviation (σ) of the worst-case delays are

included as the third and fourth objectives; there will likely be a degree of correlation between

these scores as results which show an excessive range will likely also have a high standard

deviation: having both objectives in the set will increase the likelyhood of a variability tol-

erant circuit being promoted to the next generation due to the increased number of fronts in

which it will dominate other individuals. The fifth objective is the mean value, across all the

RandomSPICE circuits, of the standard-deviation of all the delays within the test sequence.

This will advance circuits which offer balanced switching times across all transitions. The

final objective is the mean value of the power supply score across all runs. Based on both

previous experiments and general logic design rules, it was decided the variation in delay is a

more significant problem than variation in power, thus the objectives which aim to minimise

variability focus on delay; the final objective serves to promote individuals which consume a

low average power across all the RandomSPICE circuits.

Run Parameters

The run parameters used for this set of experiments are given in Table 5.7. Based on previous

results and tests on the new circuits it was found that the clock speed could be boosted as high

as 10GHz without causing excessive functionality failures; only the very worst performing

circuits would fail the functionality test at these clock speeds and thus fall to the bottom ranks,

155 5.6 Detailed optimisation using HPC Cluster

Table 5.7: The run parameters used in the single-stage optimisation run

Parameter Buffer NAND Gate OR Gate XOR Gate

Genotype length 4 4 6 10
Population size 80 80 80 80
Number of Parents 40 40 40 40
Mutation rate 1 1 1 1
VDD (V) 1.0 1.0 1.0 1.0
Clock (GHz) 10 10 10 10
Sample Period (pS) 0.5 0.5 0.5 0.5
Number of Generations 100 100 100 100
RandomSPICE Circuits 50 50 50 50

and such circuits would not be desirable in future populations anyway. As a consequence

of the increase in clock speed it was possible to reduce the sample period to 0.5pS, which

ensured that sufficient discrimination between similar circuits would exist. To both speed up

the generation rate and optimise the cluster-based workflow, only one offspring was produced

per each parent, with a total population size of 80 6. This resulted in each node evaluating

one circuit per generation, with the exception of the initial generation in which two would be

evaluated. The mutation rate was unchanged from the previous experiments. All of the runs

were set to terminated after 100 generations, with the initial and final populations saved for

analysis.

5.6.2 Results

When the run was complete, the set of scores for the final population was compared the scores

for the reference design. Unlike in the previous experiments, it was decided to extract a single

circuit which demonstrated a potential improvement over the reference design which appeared

to offer the most variability tolerance, without accepting a penalty in the delay or power over

the refence design. Thus, whilst the decision process for extracting the circuits considered all

of the available objective scores, priority was given to the two which concerned the variability

in the propagation delay: the range of the worst-case delays and the standard-deviation of

the worst-case delays. The motivation for extracted just one variability tolerant (with regards

delay) circuit was to allow for a detailed and time consuming post-run analysis of this circuit

to be made.
6At the time these tests were run, the MAVEN cluster had 10 functioning worker nodes, each with 4 cores, thus

appearing as 40 logical nodes to the SGE system.

Chapter 5: Optimising Standard Cell Libraries 156

Table 5.8: The relative improvement observed between the optimised design and the reference
design for the mean worst-case delay and power scores.

Parameter Buffer NAND Gate OR Gate XOR Gate

Mean Worst-case delay (%) 12.6 1.4 11.8 9.0
Mean Power Score (%) 14.5 7.1 4.0 27.6

The circuit chosen for each test was the one which offered the best scores for these two val-

ues whilst scoring at least as good as the reference design in both power and delay. For all four

experiments, circuits which met these criteria could be found: Table 5.8 shows the improve-

ment in the mean worst-case delay and power scores between the extracted optimised design

and the reference design for the four tests. As before with the VSCLIB, the improvement seen

in the NAND circuit is marginal, which can likely be attributed to both the minimal length

of the transistor chain within the cell 7, and the fact that the cell is already likely extensively

optimised both due to its small size and heavy-use in larger circuits.

Detailed Variability Analysis using Scot-Grid

Whilst the results from the final population appear to indicate a degree of variability tolerance

in the extracted designs, this is only measured over 50 different RandomSPICE simulations.

In order to more deeply analyse the results, a much larger statistical study of each circuit is

necessary. Whilst it would be possible to do such detailed simulations on the MAVEN cluster,

it was decided to exploit the greater HPC resources offered through the e-Science ties in the

nano-CMOS project. This allowed access to the Scot-Grid cluster, on which all the neces-

sary infrastructure to run large scale statistical Spice simulations, using RandomSPICE and

NGSPICE, was already in place. Using this resource, each of the four extracted circuits were

evaluated using 100,000 RandomSPICE simulations, with the data stored on the distributed

AFS filesystem. For these tests the sample-rate was increased to a more detailed 0.1pS per

sample. This process, which would have taken months on a single machine, or days on the

MAVEN cluster, was completed in a few hours 8.

The results from the detailed analysis of the extracted circuits are shown in Figures 5.20

to 5.23. In these plots, the scatter clouds for the sets of RandomSPICE circuits from the ex-
7The NAND-gate has a chain length of 1, meaning that no transistor drains are connected to the gate of another

transistor. The buffer and OR gate have chain lengths of 2, the XOR has a chain length of 3.
8The round-trip time from submitting the jobs to receiving locally all the completed data was under 8 hours,

although it is not known what the utilisation level of the Scot-Grid system was, or what other jobs were being run
or queued simultaneously.

157 5.6 Detailed optimisation using HPC Cluster

tracted, optimised design and the original reference design from the cell library are compared,

with the worst-case delay score plotted on the (x-axis) and the power score plotted on the

(y-axis). Included in the plot are histograms which show the distributions of worst-case delay

and power score across all the runs. From the scatter plots, it is clear that in all four tests a

circuit has been extracted which outperforms the reference design both in terms of worst-case

delay and power score.

From analysis of the delay histograms, it can be seen that in all tests that the spread in delay

distribution is narrower - considerably so in the case of the buffer and OR gate. Perhaps of even

greater significance is that the extent of the tails of the distribution, the outlying circuits which

perform particularly poorly, has been greatly reduced in the buffer, OR and XOR designs.

This is particularly important as it is the outliers that exist in the distribution that will affect

the overall timing of a larger circuit, and reduce yield if not correctly accounted for. The best

improvement in this regard is seen in the OR gate: the mean worst-case delay is improved

11.8% between the reference and optimised design, reducing from 17.5pS to 15.6pS, however

an even greater improvement is seen in the worst-performing circuits. In the optimised designs,

the worst-case delay ranges from 14.6ps to 17.2pS, a 2.6pS range, with all circuits falling

within 10% of the mean value. In the reference design, the range is much wider at 16.2pS to

21.2pS, with a 5.0pS range: five circuits in the 100,000 test cases have a delay that is over

20% slower than the mean value.

These observations are further supported by box and whisker plots for the worst-case delay

in the four cells, which are illustrated in Figure 5.24. The bottom and top of the box in these

plots indicates the inter-quartile range for the delay data across the RandomSPICE results (the

location of the 25th and 75th percentile). The whiskers indicate the extent of 1.5×IQR, with

outliers beyond this range indicate with crosses on the plots. The plots clearly show the extent

to which the extreme outliers in the distributions for the buffer, OR and XOR gates have been

greatly reduced. This is confirmed in Table 5.9, which shows the percentage improvement in

the range of the worst-case delays from the reference designs to the optimised designs. As

suggested from the earlier plots, the NAND gate offers no improvement in IQR and only a

modest improvement in the overall range, however the results suggest a significant improve-

ment in tolerance in the buffer and especially the OR gate designs, which is close to doubling

the reference design in terms of delay-variability tolerance.

5.6.3 Observations

This final set of optimisation experiments display clear improvements in both the operational

characteristics of propagation delay and power consumption, in addition to a significantly im-

Chapter 5: Optimising Standard Cell Libraries 158

Figure 5.20: Detailed analysis of variability in the reference and optimised buffer designs,
plotting the output from 100,000 RandomSPICE simulations. The histograms show the distri-
butions for the worst-case delay (x-axis) and the power score (y-axis).

Table 5.9: The relative improvement observed between the optimised design and the reference
design for the inter-quartile range (IQR) and overall range of the worst-case delay scores across
100,000 variability circuits.

Statistic Buffer NAND Gate OR Gate XOR Gate

IQR (%) 54.5 0.0 87.5 10.0
Range (%) 91.7 10.8 96.1 32.1

159 5.6 Detailed optimisation using HPC Cluster

Figure 5.21: Detailed analysis of variability in the reference and optimised NAND gate de-
signs, plotting the output from 100,000 RandomSPICE simulations. The histograms show the
distributions for the worst-case delay (x-axis) and the power score (y-axis).

Chapter 5: Optimising Standard Cell Libraries 160

Figure 5.22: Detailed analysis of variability in the reference and optimised OR gate designs,
plotting the output from 100,000 RandomSPICE simulations. The histograms show the distri-
butions for the worst-case delay (x-axis) and the power score (y-axis).

161 5.6 Detailed optimisation using HPC Cluster

Figure 5.23: Detailed analysis of variability in the reference and optimised XOR gate de-
signs, plotting the output from 100,000 RandomSPICE simulations. The histograms show the
distributions for the worst-case delay (x-axis) and the power score (y-axis).

Chapter 5: Optimising Standard Cell Libraries 162

(a) Buffer (b) NAND Gate

(c) OR Gate (d) XOR Gate

Figure 5.24: Comparison of the mean worst-case delays in the reference and optimised cells
for the buffer, NAND, OR and XOR gates. In the box-whisker plots, the line in the center
of the box denotes the median value, with the upper and lower edges of the box denoting the
inter-quartile range (IQR), the middle 50% of the distribution. The whiskers denote the extend
of 1.5×IQR, with the crosses outside this range denoting the outliers in the distribution.

163 5.6 Detailed optimisation using HPC Cluster

proved variability-tolerance, over the reference designs. As the reference designs are based on

a cell library which is close in transistor length to that of the library used, this demonstrates

the potential power of the MOTIVATED system in the field of transistor dimension optimisa-

tion. With variability-tolerance being the primary goal of this set of experiments, the fact that

the extracted circuits demonstrate improvements in both delay and power over the reference

designs in addition to improved variability-tolerance is very promising.

In this chapter, the experiments into optimising transistor dimensions within

standard-cell libraries have been discussed. Initially the SGA was tested to evolve

circuit topologies. From the results of these experiments the MO-system was in-

troduced, with the algorithm used to optimise widths and independant voltage-

sources within the VSCLIB SCL. Following these results, the HPC-based system

was introduced, allowing more detailed optimisation with variability considered

from the start of the process. This allowed the detailed optimisation of cells se-

lected from the NANGATE SCL, with promising results. In the following chapter,

a system which enables all stages of the process of generating variability-tolerant

logic circuits is proposed. To evolve the topologies of the larger circuits at a

cell-level, an adaptation to the existing CGP algorithm is discussed, in which the

multi-objective algorithm used within these experiments is employed to improve

the extracted designs. Two of the extracted designs are then assessed for variabil-

ity tolerance and compared to conventional designs.

Chapter 6

Optimising Larger Circuits

In this chapter, an approach is introduced which proposes a system to combine different evo-

lutionary computation techniques, with the aim of creating larger variability tolerant logic cir-

cuits from scratch. This involves the use of three different evolutionary algorithms: the simple

genetic algorithm discussed previously for optimising both standard cells, a CGP-derived tech-

niques for evolving the topology of standard cells, and a different adapted version of CGP for

evolving logic circuits at a block-level. The block-level designs are then optimised again using

the simple genetic algorithm to select the most appropriate standard cells from the optimised

libraries. The basic steps of the work-flow are outlines in Figure 6.1. With this approach, it is

intended to demonstrate that evolutionary techniques can be combined into a work flow with

the aim of sidestepping the need for human design in the creation of logic circuits.

The motivations for these experiments are two-fold. Firstly, there was a desire within the

nano-CMOS project to investigate larger circuits than standard-cells, however the tools nec-

essary to investigate much larger circuits with variability using VHDL or a similar language

were not going to be available within the time-frame of the research, thus circuit simulations

would be limited to the SPICE-based analysis, and with it a moderate limit on the maximum

size of circuits that could realistically be simulated. Secondly, it was realised that through the

earlier research, methods to evolve topologies of standard-cells and then optimise those cells

for variability-tolerance were in place. It was known from previous research by Dr. James

Walker et al in CGP that the algorithm could be used to generate novel logic topologies for

circuits such as adders and multipliers based on the combination of boolean-logic functions

provided by the standard cells. It was hypothesised that combining the existing CGP system

with the NSGA-II multi-objective strategy used by MOTIVATED would result in circuits with

improved characteristics in terms of the count of gates, depth of gates and count of transistors

over those evolved with conventional CGP. Additionally, the ability of the SGA to selectively

164

165 6.1 Evolving Block-Level Topologies

Figure 6.1: Flow diagram of the tools used to create evolved, optimised logic circuits. If the
conventional SCLs are not included in the workflow, a completely evolved path exists in which
no human-designed topologies are needed.

enable and disable functional blocks based on entries within the genotype, would allow the ex-

isting MOTIVATED system to further optimise the evolved logic functions by selecting specific

cells from a library of optimised standard-cells.

6.1 Evolving Block-Level Topologies

The CGP algorithm used to create block-level topologies builds on previous work by Miller

and Walker, adding a multi-objective fitness function to improve the performance and effi-

ciency of the extracted circuits. As this form of CGP evolves logic circuits at a Boolean-logic

level, the algortihm will herein be named MO-Boolean-CGP, in order to differentiate it from

the previously described algorithm for creating transistor-level topologies through an adapted

CGP.

Chapter 6: Optimising Larger Circuits 166

Output A

Output C

Input A

0

Input B

1

Input C

2

Input D

3

Output B

Output D

AND

4

AND

5

AND

7

AND

8

9

12

OR XOR

106

AND

XOR AND

XOR

11

13

0 0 2 0 0 3 3 4 5 0 1 2

4 9 12 13

4 5 10

11 oA oB oC oD

0 1 3 2 5 7 2 6 9

0 5 7

76 98

13

0 11 8

12

2 11 8

Figure 6.2: Example of a CGP genotype and its mapping to a 2-bit multiplier circuit [165]

6.1.1 Conventional CGP To Evolve Logic Circuits

As originally described by Miller and Walker, a typical CGP genotype, and its corresponding

decoded phenotype and logic circuit representation are illustrated in Figure 6.2. In the example

illustrated, the genotype decodes to represent a functionally-correct 2-bit multiplier circuit.

The first element of each node represents the nodes functionality (e.g. 0 = a logical AND gate),

where the remaining two elements of each node represent the inputs to the logic block; the first

n values representing the circuit inputs, and the other values representing existing decoded

logic blocks. The final k elements of the genotype (4 in the given example) represent the circuit

output connections, each having a single input. The genotype→phenotype mapping does not

mandate that all nodes are connected to each other, resulting in a bounded variable-length

phenotype, with genes that are entirely inactive, and have a neutral effect on the resulting

fitness. This neutrality is one of the important characteristics of CGP, and has been shown to

be very beneficial to the evolutionary process in several research papers [182]. The complete

genotype→phenotype decoding procedure is covered in more detail in [165].

Whilst various mutation and recombination strategies are possible with CGP, MO-

Boolean-CGP is entirely mutation-based without any form of crossover [44]. A point-mutation

operator is used in which a given number of genes, from any position within the genotype, are

changed to a different value; the new value is chosen at random but will fall within the valid

range of values which depends on the gene’s actual position within the genotype. For exam-

167 6.1 Evolving Block-Level Topologies

ple, if the gene selected for mutation is one which determines the nodes functionality, the new

value will within the range of 0 : 6, as the function set comprises the set of six standard 2-input

logic gates plus NOT function. However if the gene selected for mutation is an input gene,

the new value will fall within a range covering the program inputs, and the output label of any

previous node.

6.1.2 Use of Multi-Objective Fitness

Whilst the above standard CGP strategy has successfully been used to automatically create

number of functionally correct logic circuits before, including 4-bit adders, 4-bit multipli-

ers and 8-bit parity circuits, the algorithm has generally terminated once a functionally cor-

rect circuit is found, thus the evolved circuits are often far larger in terms of gates and path

lengths than optimal designs. To attempt to create more efficient results, the algorithm has

been adapted such that it operates in a two-stage process. In the first stage, the algorithm

operates as above with fitness calculated solely in the terms of bit-errors based on the target

truth-table. Once a functionally correct circuit is found, a second stage is initiated, in which

all functionally correct circuits are ranked used a multi-objective strategy.

The multi-objective chosen is again based on the NSGA-II, allowing reuse of the code

created within MOTIVATED. For each circuit evaluated the primary fitness measure is the cir-

cuit functionality; circuits which are not functionally correct are not evaluated further and not

included in the fronts used by NSGA-II. For circuits which pass the functionality test, four

fitness scores are calculated which are equally weighted within the fitness calculation. The

first of these objectives is the number of logic gates used; minimising the number of gates will

generally result in the most compact circuit schematics. In other research to optimise designs

based on CGP and other evolutionary algorithms, number of gates has been fitness criteria to

which circuits are optimised. Whilst having a minimum number of gates is a clear goal in

terms of creating compact, space-efficient schematics, and is an interesting optimisation tar-

get, there are a number of reasons why it is not necessarily the best target for an optimised

circuit. It must be remembered that not all gates are equal; exclusive-gates (XOR and XNOR)

contain more transistors than AND and OR gates, which themselves contain more transistors

than NAND and NOR gates. The number of transistors impacts on the die-area, power con-

sumption and maximum operating speed in a fabricated design. Logic effort theory reveals

how NAND gates themselves are preferable to NOR gates in terms of delay, due to the lower

input-capacitances [156]. For these reasons we look at not just the number of logic gates, but

also the number of transistors, and also the lengths of the paths between input and output.

The secondary objective is the number of transistors used, based on the logic-gate arrange-

Chapter 6: Optimising Larger Circuits 168

ments found within the VSCLIB open-source standard cell library. Each inverter is considered

to be 2 transistors, each NAND and NOR function is 4 transistors, each AND and OR gate is 6

transistors and the XNOR and XOR gates are 9 transistors each. Whilst there will be a degree

of correlation between gate-count and transistor-count, there are important differences which

may affect which design is considered more useful; a minimised number of gates will gener-

ally result in a more compact gate-level schematic and thus might be preferable if the design is

to appear in print, however the minimised number of transistors will result in a more-compact

fabricated design and thus may be more efficient in actual fabrication. Whilst this gate-count

may appear to be a relatively redundant objective, there are a significant number of examples

of papers within the EC field which assess performance of circuits solely on gate-count. The

reader is referred to [164] and [115] for examples of this practice.

The third objective is the longest gate-level path length between input and output. For this

objective, all gates are equally weighted, with the resultant scores being the sum of gates in

the longest path between an output and any of its inputs. This objective effectively attempts

to minimise the width of the printed schematic, assuming gates are spaced in uniform rows

between input and output. The final objective is the longest approximated delay between input

and output based on the switching delays within the cell library; the approximated score is

based on the count of transistor gates that are traversed in the longest path between input and

output. It is acknowledged that a more accurate score could be calculated from the logic-effort

formulae, however this would significantly add to processing time for each evaluation. As with

the previous objectives, there will be a degree of correlation between these two objectives,

however minimising the former will produce the most compact-width circuits when drawn

as a gate-level schematic whilst the latter will minimise the worst-case switching delay in an

actual fabricated circuit.

Most previous published work based on the CGP algorithm for evolving digital circuits

has made use of a 1 + λ selection process, and as such has generally used a very small pop-

ulation size; for effective use of a multiple-objective fitness function it is necessary to use a

significantly larger population, in order to arrange resultant circuits into Pareto-fronts and ex-

tract a range of circuits from the primary front [53]. For this reason, the population size was

set to 100.

6.1.3 Test Circuits

Five different combinatorial logic target circuits have been evolved, as shown in Table 6.1.

The first two circuits tested are a 2-bit full-adder and multiplier; such circuits are fundamental

building blocks for larger scale logic designs in arithmetic logic units, and have been widely re-

169 6.1 Evolving Block-Level Topologies

Table 6.1: The 5 test circuits evolved with MO-Boolean-CGP

Test Circuit Inputs Outputs

A 2-Bit Full-Adder 5 3
B 2-Bit Multiplier 4 4
C 3-Bit Full-Adder 7 4
D 3-Bit Multiplier 6 6
E Hex to 7-Segment Display Driver 4 7

Figure 6.3: Hexadecimal Seven-Segment Display Driver layout and outputs

searched in both conventional digital design and in the biologically-inspired and non-standard

computation fields.

To evaluate algorithm performance on more complex circuits 3-bit full-adders and multi-

pliers are also investigated; conventional designs for circuits will use tens of logic gates thus

they represent a greater challenge for the algorithm to find solutions for but also provide greater

scope for design-improvement in the second-stage of the algorithm where working designs are

improved.

The final test design is a hexadecimal 7-segment display driver, as illustrated in Figure

6.3. This circuit was chosen as it has a greater number of inputs and outputs than the previous

circuits with little correlation or pattern between the outputs; as such it represents a challenge

for the MO optimisation stage to see if any parallelism can be extracted from gates, which can

be shared between the different output paths. To evaluate the circuits the truth-table for the

required function is encoded into an input and output file which can be directly read by the

CGP algorithm.

6.1.4 Methodology

The MO-Boolean-CGP algorithm was set to evolve the test-circuits, allowing solutions to

be built using a complete set of two-input logic gates (NAND, NOR, AND, OR, XOR and

Chapter 6: Optimising Larger Circuits 170

Table 6.2: The evolution parameters use by the MO-Boolean-CGP Algorithm in the different
test-cases

Parameter 2-bit Adder & Multiplier Other Circuits

Number of runs 20 20
Population size 100 100
Number of nodes 3 3
Genotype length (genes) 300 300
Mutation rate (%) 2 2
End Generation 20,000,000 50,000,000

XNOR) alongside a single-input inverter function. For each of the test-cases, twenty runs were

executed for a predetermined number of generations as described in Table 6.2, with the 5 best

individuals at the end of each run saved for analysis. The end generation was set artificially

high to ensure that the algorithm had entered a phase of stagnation; the value was determined

on shorter runs conducted previously. Also recorded was the generation and fitness scores of

the first circuit in each run that was functionally correct, as this result is where conventional

CGP run would terminate. The mutation rates and genotype length were chosen based on the

optimal values from previous work by Walker using conventional CGP.

6.1.5 Evolved Results

The results for the first functionally correct circuit in each run are shown in Table 6.3. These

results illustrate the outputs that could be expected for a standard-CGP algorithm, without the

multi-objective optimisation stage, whereby once a functionally correct circuit is found the

program terminates. The table shows both the best extracted result alongside the averaged

results for all the runs. It is clear from the figures that whilst the CGP algorithm is effective at

finding functionally correct results, there is little optimisation and some of the results are large

in terms of transistor count and circuit area; every run found a functionally correct circuit well

in advance of the predefined end-generation.

Table 6.4 contains both the best observed, and average scores, for the test-circuits at the

termination of the algorithm. Each algorithm was left running for more generations after a

solution was found to observe progress. Naturally a significant improvement in all scores was

noticed by the end of each run, with certain populations reaching an optima and stagnating well

before the end-generation. With the smaller circuits the same set of results appeared in most

of the runs; the larger circuits had more varied runs with more diverse populations towards

171 6.1 Evolving Block-Level Topologies

Table 6.3: Observed results for the MO-Boolean-CGP experiments before Multi-Objective
Optimisation

2-Bit 2-Bit 3-Bit 3-Bit Hex to 7-Seg
Adder Multiplier Adder Multiplier Display Driver

Generation 317 111 3,576 4,974 10,257
Gate Count 16 13 28 41 41

Best Transistor Count 92 64 192 225 223
Longest Gate-Path 5 4 7 7 8

Longest Transistor-Path 16 10 20 20 18

Generation 3,942 282 20,019 292,195 39,070
Gate Count 23.2 16.8 38 57.9 67.5

Mean Transistor Count 134 78 223 326 384
Longest Gate-Path 7.3 5.5 8 9.7 11.1

Longest Transistor-Path 21.6 12.4 25.2 28.2 32.7

the end of the run. To generate the schematics for the extracted circuits that are shown in the

following figures, an evolutionary algorithm was used which directly converts the output from

the MO-Boolean-CGP program to a scalable vector graphics. This algorithm is described in

Appendix A.1.

2-Bit Adder

After the MO optimisation, all the runs for the 2-bit Full-Adder discover circuits which con-

tained 10 gates, 60 transistors and a gate-path length of 5. In addition, 3 of the runs discover

a circuit utilising 13 gates and 63 transistors but with a shorter gate-path length of 4, as is

shown in Figure 6.4. Both these circuits better those discovered using conventional CGP

alone, although working solutions are discovered quickly by the standard algorithm and given

the relatively simple function it is possible that running the conventional algorithm several

times may discover the same results.

6.1.6 2-Bit Multiplier

In the case of the 2-bit multiplier, all five runs found an identical optimised solution, shown

in Figure 6.5. This solution was found after 698,000 generations in the slowest run and after

an average of 240,000 generations over all the runs; the solution has 7 gates and 35 transistors

with a longest-gate path of 2 and a longest-transistor path of 6; no improvements in any of the

objectives were found over the course of the algorithm. As this solution was not bettered in

Chapter 6: Optimising Larger Circuits 172

Table 6.4: Results for the MO-Boolean-CGP experiments after Multi-Objective Optimisation

2-Bit 2-Bit 3-Bit 3-Bit Hex to 7-Seg
Adder Multiplier Adder Multiplier Display Driver

Gate Count 10 7 15 28 22
Best Transistor Count 60 35 90 148 125

Longest Gate-Path 4 2 5 5 4
Longest Transistor-Path 11 6 12 13 11

Gate Count 10 7 15.6 31.64 26.95
Mean Transistor Count 60 35 94.6 177.3 146.5

Longest Gate-Path 4.4 2 5.6 5.86 5.05
Longest Transistor-Path 11 6 13.6 15.82 13.85

Figure 6.4: Evolved 2-Bit Adder design with minimum gate-path length

173 6.1 Evolving Block-Level Topologies

Figure 6.5: Evolved 2-Bit Multiplier design with minimum scores in all objectives

any of the objectives, the promoted population in each generation rapidly became filled with

this solution.

6.1.7 3-Bit Adder

Most of the runs for the 3-bit adder circuit discovered circuits which utilised 15 gates and

a gate-path depth of 5. One run also discovered the circuit illustrated in Figure 6.6, which

utilised 18 gates and has a deepest gate-path depth of 6, but offers a lower longest transistor-

path length score of 12. The observed improvement during the MO-stage is steady and regular

until the circuits with less than 18 gates are discovered, at which point progress typically

stagnates.

6.1.8 3-Bit Multiplier

The most compact 3-bit multiplier extracted after the MO optimisation utilised 28 gates, as

illustrated in Figure 6.7. Another optimised design had a longest gate-path length of 5 gates,

but used a total of 31 gates. The results show promise when compared with results from

other researchers. A better result in terms of gate-count for this circuit has been extracted in

Chapter 6: Optimising Larger Circuits 174

Figure 6.6: Evolved 3-Bit Adder design with minimum transistor-path length

175 6.1 Evolving Block-Level Topologies

Figure 6.7: Evolved 3-Bit Multiplier design with minimum gate count

Chapter 6: Optimising Larger Circuits 176

Figure 6.8: Evolved 7-Segment Display Driver with minimum gate count

work by Wang and Lee [173], however their evolved design featured a wider propagation-gate

delay with a path length of 6 gates. The Wang and Lee method utilised an adapted version

of CGP incorporating a Self-Adaptive Mutation Rate Control (SAMRC) to enhance algorithm

performance. Wang and Lee observed a reduction in average gate-count from 52.97 down to

31.70 with the addition of a MO optimisation phase; similar results are observed here with a

reduction from 57.90 to 31.64 average gates pre- and post- MO optimisation. It is noted that

the results from Vassilev and Miller which produce a 3-bit multiplier from only 23 gates make

use of non-standard gates such as one-inverted-input AND and use a much smaller library of

gates for optimisation; however the produced circuit has a longest gate path length of 8 gates

plus an additional two inverted input [164]. The most efficient human-designed topologies for

this circuit use 30 gates [115].

177 6.1 Evolving Block-Level Topologies

6.1.9 7-Segment Display Driver

Of the larger circuits under test, the most consistent improvement through multi-objective

optimisation was seen with the seven-segment hexadecimal display driver. Across the twenty

runs, the initial circuit to matched the target functionality contained on average 67.5 gates and

an average longest gate-path length of 11.1; the best observed circuits had a gate count of 41

and a gate-path length of 8. By the end of the optimisation phase, each run had individuals

within the population with gate-counts under 30 and gate-path lengths of 6 or less; the most

gate-efficient circuit had only 22 gates and is shown in Figure 6.8; another circuit utilised

26 gates but managed a gate-path length of just 4. The best solutions exploit shared gates

between most of the output paths that would be hard to identify using traditional logic-design

methods such as Karnaugh mapping and suggests that MO-CGP could be very beneficial in

combinatorial-logic problems with several distinct outputs.

6.1.10 Observations on Results

The goal of the research on MO-Boolean-CGP was not to create an algorithm that is more

computationally efficient than conventional CGP (or for that matter any other logic-building

algorithm), but to demonstrate that the use of an MO could effectively improve the character-

istics of a circuit, albeit at the cost of increased computational resources. In all of the runs the

algorithm was run for a significant length of time, with 2 billion circuit-evaluations in each

of the 2-input logic runs and 5 billion in all of the other runs, a significant computational de-

mand and well beyond the point where stagnation had appeared in the populations. The basic

CGP algorithm itself found working solutions for the problems in a much shorter time: for

the 3-bit multiplier - generally the slowest of the test-circuits to find a solution - a solution

was, on average, found after 30 million circuit-evaluations. In the worst-performing example,

a solution was not found until 169 million circuit-evaluations had been performed. However,

a key observation that holds true across all of the runs is that the post-MO result betters any of

the pre-MO results in every objective.

For the smaller circuits, the evolved designs have been identical replicas of human-created

designs. For the larger circuits, some of the designs have bettered published human-created

designs in certain criteria, and matched or bettered the performance of designs created by other

EC based algorithms. Previous work on CGP has identified that whilst circuits can effectively

be created for smaller digital building block circuits, once circuits are scaled beyond a certain

size it becomes exponentially difficult to evolve designs; whilst 3-bit and 4-bit multipliers

and adders have been created, it is unlikely that a 16-bit or 32-bit multiplier or adder could

Chapter 6: Optimising Larger Circuits 178

feasibly be evolved in a practical time without the use of modular techniques such as ADFs;

as the MO extension to CGP is reliant on the standard algorithm creating functional circuits

before the MO section begins, it does nothing to reduce the difficulty in evolving such designs.

The MO extension does, however, appear to effectively enhance and optimise populations in

which functional designs have already been realised.

6.2 Variability in Evolved Designs

In this section, two of the evolved designs discussed in the previous section are examined at a

finer detail using the SPICE simulation software, in a set of experiments which were carried

out by Dr. James Walker. They evolved designs are compared to established conventional

designs for the same circuits, are evaluated for both traditional metrics of power-requirements

and propagation delay. In order to assess the circuit performance within SPICE, it is necessary

to convert the standard-cell description of the circuits into a transistor based netlist. For this,

the standard-cells from the reference VSCLIB library, described in Section 5.2, were used.

In the process of creating the test netlists, each standard-cell within all of the test circuits is

directly replaced with the transistor-level VSCLIB netlist for the cell as a subcircuit.

6.2.1 Methodology

Once the base SPICE netlists containing all the required standard-cells has been created, an

input, supply and load stage are added to the netlist, as illustrated in Figure 6.9 1. The chosen

arrangement allows the voltage and current that is found at the inputs, supply and outputs

to be measured, with the load capacitors providing a suitable output load that ensure that

realistic output scores are calculated. For these tests, the designs a given piece-wise linear

sources, which approximate a transistor response, with a predetermined rise/fall time. In this

arrangement, one input is held at logic high for a clock cycle, then switch low for a clock

cycle, and high again for a final clock cycle, with the other three inputs all held at logic high.

This process is then repeated for the remaining inputs (three for the multiplier circuit, four for

the adder). A transient analysis is then used with NGSPICE to observe the relevant voltages

and currents, which takes place over a period of 12 clock-cycles for the 2-bit multiplier circuit

and 15 clock-cycles for the 2-bit adder due to the extra input.
1The test-bench for the adder circuit has an additional input due to the Carry In input to the circuit

179 6.2 Variability in Evolved Designs

Figure 6.9: The Test Bench used to evaluate the 2-Bit Multiplier circuit in NGSPICE.

Chapter 6: Optimising Larger Circuits 180

Delay and Power Consumption Calculations

These tests were carried out after the release of Version 20 of the NGSPICE software. One of

the major updates that has been introduced in the newest releases of NGSPICE is the ability

to use .MEASURE statements within the control loop of the analysis, which allow the calcu-

lations of propagation delay and dynamic power to be calculated directly by the NGSPICE

software. This offers major advantages to the MOTIVATED system: it both massively reduces

the amount of output data the needs to be processed and removes the need to write the routines

necessary to perform the calculations, and as an additional benefit it ensures that the values

calculated match those generated by the commercial HSpice software. As before, the propa-

gation delay is the measure of the time taken from an input crossing the 50% VDD threshold,

to when the corresponding output signal crosses the same threshold. As before, the slowest

overall propagation delay across all outputs and transistions is the value considered to be the

most relevant, as it determines the maximum operating frequency at which the test circuit can

reliably be used.

The dynamic power is defined as being the integral of the product of the supply voltage and

current entering the test circuit, over the region in which the design is in a switching state. The

switch region is defined as being the duration from which the input begins to switch (either

rising or falling) up to the point where the slowest output has reached a stable state; as with

delay, it is the worst-case dynamic power across all the outputs and switching states that is

considered as the metric for evaluating power performance.

The above measurements are carried out with uniform models to extract set of non-

variability scores for the power and delay in each test-circuit. In order to measure variability in

the test circuits, a set of results using the Toshiba 35nm variability enhanced models through

RandomSPICE is also carried out, with the same delay and power characteristics measured

in the results. For each of the test circuits, 1000 RandomSPICE netlist are evaluated on the

MAVEN cluster.

6.2.2 Results

The variability results for the 2-Bit adder circuits are shown in Figure 6.10. In these plots,

the measured propagation delay and dynamic power for each of the 1,000 RandomSPICE

circuits is shown in a scatter plot. Each scatter plot contains the five different delays and

powers that are observed when each of the circuit inputs are individually manipulated. This

method of selectively manipulating each input clearly highlights which are the critical paths

for timing and power in both the conventional and the evolved design. Similar comparative

181 6.2 Variability in Evolved Designs

Table 6.5: Comparison of the results for the conventional and MO-Boolean-CGP evolved 2-bit
adder and 2-bit multiplier circuits, based on the CGP objective scores and the SPICE analysis

2-bit Adder 2-bit Multiplier

Metric Conventional Evolved Conventional Evolved

CGP

Gate Count 10 10 8 7
Transistor Count 64 60 54 35
Longest Gate Path 4 4 3 2
Longest Transistor Path 12 11 9 5

NGSPICE
Propagation Delay 2.98e−11 3.79e−11 4.56e−11 3.28e−11

Dynamic Power 3.37e−7 1.05e−6 3.73e−15 4.39e−15

studies for the 2-Bit multiplier circuits are given in Figure 6.11. Table 6.5 compares the non-

SPICE characteristics alongside the measured worse-case SPICE characteristics of all four test

circuits.

In comparison between the evolved designs and the conventional designs, the results are

mixed: for the evolved adder circuit, it is outperformed by the conventional design, particularly

in power consumption with a 312% higher dynamic-power score observed, whilst operating

27% slower. In contrast, for the evolved multiplier circuit, an improvement of 28% in delay is

observed over the conventional design and the expense of a 17% increase in power consump-

tion. The improvement in the propagation delay for the evolved multiplier can be attributed

to the reduced worst-case path length over the conventional design. However, both the con-

ventional and evolved adder circuits are similar in path lengths, so it is perhaps surprising to

see such an increase in delay in the evolved design, and the increase in power for both of the

evolved designs is also surprising given the reductions in gate and transistor count. These

observations highlight the limitations of the MO-Boolean-CGP algorithm which does not take

into account power explicitly in the evolution objectives, and suggests that in future work the

inclusion of a power metric may increase the performance of the algorithm; this however,

would require that each circuit is analysed in SPICE or a similar circuit simulation package

in the evolutionary process, significantly adding to the time taken to assess designs. When

the variability-spreads for the circuits are considered, it is clear that the evolved 2-bit adder

designs shows an increase in variability over the conventional design in both the spread of

delay and power. However, the 2-bit multiplier exhibits a greater variability-tolerance over the

conventional design in both power and delay statistics. The evolved 2-bit multiplier design has

a reduction of 39% in the inter-quartile range, and a 27% reduction in the overall range, of the

delay distribution across the 1,000 RandomSPICE circuits when compared to the conventional

Chapter 6: Optimising Larger Circuits 182

(a) Conventional 2-Bit Adder

(b) Evolved 2-Bit Adder

Figure 6.10: Statistical intrinsic-variability analyses for the conventional and MO-CGP
evolved 2-bit adder designs. The kernel density estimate plots above the main scatter plot
shows the distribution in delay, with the plot to the right showing the distribution in power.

183 6.3 Proposed System to Optimise Circuits at a Block Level

design. Similarly, a reduction of 25% IQR and 17% in overall range for the power distribution

for the critical path is observed. Thus, whilst the evolved design consumes 17% more power

than the conventional design, it more than compensates for this with the improvement in delay

and variability-tolerance.

6.2.3 Observations

The results from the variability analysis demonstrate that the MO-Boolean-CGP system has

the potential to evolve circuits which exhibit improved performance over conventional de-

signs, both in the conventional metrics of propagation delay and dynamic power, and in terms

of variability-tolerance, as seen in the 2-bit multiplier circuit. However, as is seen with the

2-bit adder circuit, this improvement is not guaranteed, even if the gate count and path length

statistics suggest it is likely. One solution which would ensure that the circuits are demonstrat-

ing improvements during the evolution process would be to integrate the SPICE analysis into

the evolutionary process, however this would drastically increase the computational resources

and time needed to evaluate individuals.

6.3 Proposed System to Optimise Circuits at a Block Level

In this final section, as system to optimise evolved (or conventional) designs using an adapta-

tion of the SGA system is briefly proposed. Whilst experiments to test the proposal have not

been carried out, the aim of the proposal is to introduce a final stage in the evolution process

by which CGP evolved boolean-topologies can be optimised using libraries of standard-cells,

using the methods described in Chapter 5. Although the original goals of creating and eval-

uating a completely evolved logic-design process have not been realised, most of the integral

steps necessary have already been created.

6.3.1 Methodology

The proposed methodology for evolving variability-tolerant is described in this section. This

involves four main steps: the optional creation of novel standard-cell topologies, the creation

of variability-tolerant standard cell libraries, the creation of larger logic topologies using the

MO-Boolean-CGP system and finally the proposed optimisation of these circuits using an

adapted form of the SGA system.

Chapter 6: Optimising Larger Circuits 184

(a) Conventional 2-Bit Multiplier

(b) Evolved 2-Bit Multiplier

Figure 6.11: Statistical intrinsic-variability analyses for the conventional and MO-CGP
evolved 2-bit multiplier designs. The kernel density estimate plots above the main scatter plot
shows the distribution in delay, with the plot to the right showing the distribution in power.

185 6.3 Proposed System to Optimise Circuits at a Block Level

6.3.2 Creation of Optimised Standard-Cell Libraries

The first steps in the process are to create SCLs which are optimised for both various tradi-

tional circuit characteristics alongside variability-tolerance. These structural topologies for the

cells may be evolved using the CGP topology design system, or be based on conventional SCL

designs. For a given set of variability models and cell-library, each cell would be optimised in

turn, with a set of optimised results extracted from the final populations of the SGA system.

As with most SCLs, it is likely that a high-performance (i.e. low-delay, high-power) circuit

and a low-power circuit would be extracted, with possible additional balanced arrangements

that fall between these on the power:delay front. However, in contrast to standard SCL optimi-

sation methodologies, all extracted circuits would include variability-tolerance as objectives

in the optimisation process, ensuring that for a given delay or power performance the observed

variability would be minimised.

6.3.3 Creating of Larger Logic Topologies

The MO-Boolean-CGP system described in this chapter has demonstrated the ability to gener-

ate novel topologies for larger designs which are assembled through the combination of cells.

The variability analysis done on these circuits has shown that the evolved designs can offer im-

proved performance over conventional designs, however this is not guaranteed. By including a

measure of power, and possibly variability, in the design process, it may be possible to steer the

evolution process to producing more reliable circuits. As with conventional CGP (and other

development processes such as GP) the algorithm exponentially increases in the time required

when evolving larger circuits; as the MO does not begin until functionally correct circuits are

created it cannot improve on the performance of conventional CGP in this regard. However, it

is proposed that techniques such as ADFs, which have previously been used to accelerate the

progress of CGP when evolving larger multiplier circuits, could be used here to accelerate the

progress of evolution [170].

6.3.4 Optimising Larger Designs using SGA and Optimised Library

The final stage in the proposed system involves using the SGA system to optimise the larger

cell-level designs. To achieve this, rather than optimisng transistor dimensions as is done in

the standard-cell optimisation, the system will instead choose which of the available choices

for each cell, that exist in the optimised SCL, to insert into the netlist. By using the type 2

marker-strings in the template netlist, as described in Section 4.2.1, different potential cells

can be enabled/disabled as required. For example, given a multiplier circuit evolved with the

Chapter 6: Optimising Larger Circuits 186

MO-Boolean-CGP system, a template SPICE netlist for the circuit could be automatically

generated in which each of the cells is shown in the netlist with a pair of subcircuits. The

relevant gene in the genotype, when decoded, will determine whether the given cell should be

replaced with the high-performance or the low-power variant of the cell.

The circuits will then all be evaluated in SPICE using the methodology described in 6.2.1,

with variability analysis added as needed. Through the evolution process, the best performing

combinations of circuits in terms of power, delay and variability-tolerance will be promoted to

the final population. This system would allow the reuse of the MOTIVATED system with only

minor modifications needed to the testing process. However, given the size of the circuits to

be evolved in SPICE, the use of HPC to perform the circuit analysis will be essential in order

to acheive results in an acceptable timeframe.

In this chapter, a system which enables all stages of the process of generating

variability-tolerant logic circuits, such as adders and multipliers, has been pro-

posed. To evolve the topologies of the larger circuits at a cell-level, an adaptation

to the existing CGP algorithm has been discussed, in which the multi-objective

algorithm used previously is employed to promote circuits with lower transis-

tor and gate counts, and shorter path lengths. The results of this algorithm when

compared to the tradition CGP algorithm, other EC algorithms and human-created

designs, is discussed. Two of the extracted circuits: a 2-bit adder and a 2-bit mul-

tiplier, are assessed for variability tolerance, with the multiplier circuit demon-

strating an improvement over the traditional design. At the end of the chapter the

methodology in which all the algorithms discussed in this thesis could be com-

bined to create a framework for evolving variability-tolerant logic is discussed.

The following final chapter of this thesis contains concluding remarks about the

experiments conducted and potential future work.

Chapter 7

Conclusion

In this thesis, a system has been created in which different evolutionary algorithms can be

used to create circuits which offer an element of tolerance to the intrinsic variability that will

become a major issue in future CMOS design. The majority of the work carried out has

been on the use of a genetic algorithm, the SGA, to optimise the transistor widths within 2-

input logic cell designs. In this algorithm, a multi-objective fitness function, based on the

NSGA-II algorithm, has been used to rank a population of circuits based on their performance

at a number of different circuit characteristics. The circuits are assessed using the SPICE

simulation software, both with conventional BSIM models, and a special tool, RandomSPICE,

which generates batches of netlist in which standard BSIM transistor models are replaced

with randomly selected models from libraries of transistors. The transistors in these libraries

have parameters tuned to match the output curves of IV data extracted from 3D-atomistic

simulations of intrinsic variability in MOSFETs.

In this conclusion, the statements given in the hypothesis are addressed, with additional

comments on the three questions that were given in the project proposal to be answered. A

look at both the successes and the short-comings of the system that has been created is given,

with a discussion of the future work that can be taken to achieve cell-library optimisation with

real commercial value.

7.1 Can a genetic algorithm diminish the impact of intrinsic-
variability?

This section addresses the first part of the hypothesis to this thesis, involving the use of the

multiple-objective genetic algorithm to diminish the impact of intrinsic-variability in standard

187

Chapter 7: Conclusion 188

cell designs, through means of optimising device dimensions. The experiments which attempt

to corroborate this part of the hypothesis, given in Chapter 5, have produced results in which

the impact of variability can be seen to be reduced in the observed delay and power character-

istics of the cell.

The majority of the time spent developing solutions and running experiments has been

focussed on solving the problem of cell-library optimisation. The early work, discussed in

Section 5.1, focussed on the creation of novel topologies for standard cells. This was per-

haps over ambitious - the designs for the topologies of logic gates are well established, and,

particularly for the smaller cells, it is highly unlikely that topologies that offer improved per-

formance in terms of delay, power consumption and transistor count are achievable. Despite

this, the studies proved invaluable in directing the future research of the project. The studies

demonstrated the potential strength of the SGA system was in optimising dimensions within

established topologies. The CGP system has created novel topologies for the XOR and XNOR

gates, which, whilst offering poor variability-tolerance, did offer a significantly lower power

requirement than the conventional SCL designs, thus may have some use in specialist applica-

tions or within parts larger circuits where delay is not critical.

The most clear lessons learnt from these early experiments was the need to establish an

improved method for assessing the performance of circuits. This resulted in the choice of the

NSGA-II multi-objective algorithm, with its strength of promoting those individuals which of-

fered performance across a number of different objectives. By using such a algorithm, it was

possible to generate populations in which Pareto-fronts of circuits which contained optimal

balances of key characteristics including worst-case delay, standard-deviation of delays, and

power. This technique meant that the user could run the algorithm knowing that any given

time the circuits could be extracted which offered the best delay, power or balance of objec-

tives at any time, without having to run several algorithms optimising for each characteristic

individually.

The first sets of runs using the revised MO strategy resulted in promising results in terms

of optimising for power and worst-case delay, but were hampered in their variability-tolerance

through the fundamental flaw in the two-stage process used, in which the populations were

initially optimised for traditional characteristics using uniform models, then reassessed for

variability-tolerance using the variability-models. This strategy was necessary at the time in

order to be able to extract results within a sensible time-frame, due to the limited computational

resources at the time. Furthermore, whilst the results for optimisation of transistor widths in

two-input logic circuits, given in Section 5.2, demonstrated significant improvements over

the widths scaled from the SCL used, this is perhaps not a true fair comparison. The cell

189 7.1 Can a genetic algorithm diminish the impact of intrinsic-variability?

library used was designed for 130nm channel lengths, which is far enough removed from the

35nm lengths used that the scaling-down of transistor width may not give realistic results,

due to the significant differences in the operational characteristics of the 130nm and 35nm

devices. Furthermore, the limitation of using unit-widths added further inaccuracies in the

scaling process, as many of the widths in the cell-library used sub-unit multiples of 130nm,

which had to be rounded up or down.

A set of experiments into allowing multiple supply-voltage rails within cells, using the

same libraries and models as in the previous experiments, produced results which suggested

this may be a solution which can further reduce variability. It was intended to follow up this

research at a later time using the improved HPC-based framework, allowing variability to be

considered in results from the beginning, and to further study the effects of allowing similar

dynamic body-biassing connections with the body connection of each device connected to

independant supply rails. Unfortunately there was not time to carry out these analysis, but it is

considered that this would be worthwhile future research in the field of minimising the impact

of variability. Such techniques clearly add a significant complexity to the design of fabricated

devices, but the use of multiple supply rails is undoubtedly a field which will increase in use

and complexity in future microprocessor and other ULSI designs.

From both of these sets of experiments, three important lessons were learned for the future

tests. Firstly, whilst the two-stage approach did produce circuits which demonstrated improved

power, delay and variability-tolerance over the SCL designs, it was not an effective way of

designing for variability-tolerance. To ensure that the populations are always focussed on

variability, it is necessary to include the variability-analysis provided by RandomSPICE right

from the start of evolutionary routine. To achieve this, it is virtually essential to use some

form of high-performance computation in order to achieve results in a realistic time-frame.

After extensive research of possible options, including the use of Grid technologies, it was

decided that the most time-effective solution would be the use of a local cluster running Sun

Grid Engine software, so the MAVEN cluster was purchased, and the MOTIVATED software

adapted to allow parallel operation of the SPICE evaluation and data-processing sections on the

cluster. The second key lesson learned was the need to carefully validate the test arrangement

to ensure that it was correctly evaluating the circuit under test. The failure to do so in the

previous experiments had resulted in the misleading results for the D-Type flip-flop, which

had seemingly evolved very high-performing optimised designs due to a flaw in the test-setup.

Finally, the need to migrate to a more modern cell library, designed for a similar process,

would be necessary to increase the reliability of comparisons.

These issues were addressed in the final set of optimisation experiments carried out, which

Chapter 7: Conclusion 190

are found in Section 5.6. In these tests, two-input logic cells the Nangate Open-45nm cell li-

brary were used; at the time of the tests these were the closest available cells to the 35nm

devices modelled in the variability library. The introduction of the MAVEN cluster allowed the

variability-aware models to be introduced into the test process from the offset, with each indi-

vidual being evaluated over 50 variability runs. From the final generation of the run, a single

optimised cell was extracted for each test circuit, which demonstrated the best variability-

tolerance whilst offering an improved power and delay score over the reference design. To

improve the statistical accuracy of the results, each extracted circuit and its equivalent refer-

ence design were the re-evaluated for over 100,000 variability runs using the Scot-Grid cluster.

This allowed a far greater confidence in the accuracy of results and a more detailed study of

the tails of the distribution - the very worst performing circuits.

The results from these experiments were very positive, indicating a clear improvement in

the variability-tolerance of the extracted designs for the buffer, XOR and XNOR gate over the

reference design, with a particularly significant lessening of delay-variability in the extreme

tails of the extracted designs over the reference designs. From the results of these tests, it is

clear that the variability-tolerance of cells can be improved through optimisation of the widths

of transistors, and that the genetic algorithm approach can automate the process of doing this

optimisation.

7.1.1 Is a Genetic Algorithm the best approach?

The question of whether or not a genetic algorithm is actually the most suitable algorithm for

the purpose of optimising cell libraries is very valid, and it is hard to draw a firm conclusion

on based on this the studies carried out in this thesis. For the smaller circuits, the actual

range of possible combinations - let alone sensible combinations - is small enough that other

algorithms would make more sense. Indeed, with the models used, an exhaustive search is

quite a possible solution for optimising the smaller 2-input logic gates. However, it must be

stressed that the model libraries used are in their infancy, and as such are limited in the scope

due to the restrictions on available device width and length options. At the time of writing,

new libraries are being created which will vastly increase the range of valid width options, as

well as introducing variable length options, thus vastly increasing the size of the search space

for even the smallest circuits.

Analysis of the transistor dimensions within the publicly available cell libraries reveals

that the range of values for device widths is far greater than those used in the experiments

in this thesis: in the Nangate library, one can find transistors with channel widths that are

specified at 1nm apart; this alone results in 35 times more possible values than discussed in

191
7.2 Can a complete design process for variability tolerant circuits be created by combining

evolutionary techniques?

this thesis, before channel lengths are taken into account. In the VSCLIB library, differences

of 5nm are found between devices. Whether such fine grained specifications of transistors is

actually achievable (or, at least, practical given the extra costs of the lithography processes) in

fabrication is not so clear, but it is certain that a finer discretisation than is currently available

in the models would be desirable for the optimisation process.

The hill-climbing approach demonstrated a decent performance improvement over the

SGA on smaller circuits, arriving at the same solutions in less evaluations. In the larger cir-

cuits, with an increased search space and more local optima, the SGA generally found better

solutions overall. As expected, both algorithms have their merits, and an algorithm which

combines elements of both would potential offer increased performance over the SGA. A

number of possible techniques for such an algorithm exist, such as the Parallel Genetic Al-

gorithm, and have been demonstrated for other optimisation problems in the past, including

methods which maintain split the population with half performing a hill-climbing or simu-

lated annealing technique. One option which would be simple to implement is to maintain the

SGA algorithm, but modify the mutation operator such that a number of the offspring feature

a wide-ranging mutation as is presently used, whilst the others use a much smaller adjustment

on a single parameter, as would be found in a hill-climbing algorithm.

7.2 Can a complete design process for variability tolerant circuits
be created by combining evolutionary techniques?

Whilst the primary focus of the research in this thesis has focussed on the optimisation of

standard-cell libraries, the goal of developing a system which would allow the creation of

larger variability-tolerant circuits was partially addressed. This began with the construction

of novel standard-cell designs using the CGP algorithm within MOTIVATED. Whilst novel

designs were evolved, their performance was generally poor compared to the well established

conventional designs, particularly when variability was considered. However, to completely

rule out the system would be foolhardy, as there are not any well established design rules

for creating variability-tolerant designs, and the ability of a system to potential automate this

process must hold some merit. Further work in developing the system may yield improved

results, particularly when larger standard-cell designs are used with more potential valid ar-

rangements. The second step of the process is the generation of optimised libraries of cells;

this has been partially achieved with the SGA system and is certainly achievable given enough

development time.

The MO-Boolean-CGP algorithm developed to improve the performance of evolving

Chapter 7: Conclusion 192

boolean-logic designs using CGP demonstrated potential at reducing the gate and transistor

counts, and corresponding path-lengths, of the evolved designs. Indeed some of the evolved

designs were both more compact than traditional human-created designs, and corresponding

designs that have been published using alternative EC algorithms. When analysed for using

SPICE for performance and variability-tolerance, the circuits demonstrated a mixed response,

with the 2-bit adder circuit performing worse than the conventional design, but a significant

improvement in performance observed in the 2-bit multiplier, in all circuit characteristics ex-

cept power consumption. These results suggested that further developments of the system,

possibly including SPICE analysis periodically as part of the assessment process, may im-

prove the extracted designs.

The final task necessary to positively address the statement from the hypothesis was

unfortunately not addressed during the research, however it is proposed that the existing

SGA\MOTIVATED system could be used, with minor modifications, to optimise the cells

within a given evolved design by means of selecting the most appropriate design from an

existing optimised cell-library. Without having accomplished this part of the process, it is

hard to draw positive conclusions to the hypothesis in this regard. The ultimate goal is a sys-

tem which integrates these algorithms into an automated package, in which the user presents

the truth-table for a logic problem and a corresponding variability-aware set of BSIM models,

and all the steps are followed, without user-intervention, through to creating an optimised,

variability-tolerant design. Whilst such a design is a long way from realisation at this date, it

does represent an interesting project for future research.

7.3 The Original Objectives of the nano-CMOS Project

Whilst the results discussed in this thesis set out to address the proposal of the hypothesis,

there are also the three original questions that were created in the original proposal for the

nano-CMOS project which the ISG were to answer. To varying degrees, all three questions

have been address to some extent both in the work covered here and in other studies conducted

by myself and Dr. James Walker. In this section, answers to how the three questions have been

addressed and how they might be further enhanced in the future are given.

7.3.1 How can evolutionary techniques be used to limit the effects of parameter
variations?

The research in this thesis has largely focussed on finding a solution to this question, and as

such the optimisation of transistor-dimension within standard cells is the method which has

193 7.3 The Original Objectives of the nano-CMOS Project

demonstrated the most successful results to date. Attempts to generate novel topologies, whilst

producing designs which required less power than conventional designs, did not produce re-

sults which demonstrated a greater tolerance to variations caused by intrinsic variability. How-

ever, the attempts to optimise dimensions within known designs, particularly using the HPC

method developed towards the end of the project, demonstrated a significant improvement in

variability tolerance over the reference designs.

7.3.2 How can evolutionary techniques be used within device models to alleviate
parameter fluctuation problems?

It is probably this question which has been covered the least in the body of work carried out

by the ISG. This is perhaps due to the arguably vague wording of the question itself, as it can

be interpreted in different ways. If device models are assumed to mean the BSIM models used

for simulating a single device, then at present these do not have the capability to account for

parameter fluctuations; as such, it is hard to really consider the problems caused. It would

be a reasonable assumption to predict that at some point in the foreseeable future, the BSIM

model, or its successor, might be redesigned in such a way that intrinsic variability is directly

accounted for within the parameters, in such a way that each instance of a device will have

unique parameters based on the statistical sets of IV data extracted from simulations such as

those carried out by the DMG; that is to say that SPICE and the models will themselves include

a system not dissimilar to the RandomSPICE system discussed in this thesis.

It is perhaps a more fitting question to ask: ‘‘How can evolutionary techniques be used

within the creation of device models which include the effects of parameter fluctuations”. In the

process of 3D-atomistic modelling, huge volumes of data are extracted, which are reduced to

sets of IV curves. The process of creating device models from this data involves the adjustment

of a few of the BSIM model parameters to fit each of the curves. At the DMG, this work has

been done almost entirely by one person, who can be considered an expert at the process of

knowing which parameters to adjust to match the curves, a process which requires an in-depth

knowledge of both the inner workings of the BSIM model and also the atomistic simulator.

This is both painstakingly time-consuming and risky in the sense that loss of that person’s

expertise will jeopardise the whole process of model creation. Furthermore, this method to

date has been used to create only the unit-width models (models in which the channel width is

a unit-multiple of the length).

At the time of writing, the DMG are close to releasing a revised version of RandomSPICE

which allows for both variable lengths and widths of devices. To achieve this, the model li-

brary includes transistors of width 1-unit, 2-unit, 4-unit, 6-unit and 8-unit (where the unit is

Chapter 7: Conclusion 194

the minimum feature size). For devices which fall between these values, the RandomSPICE

software adjusts four BSIM parameters based on curves which interpolate these values. Ini-

tially, the formula for this curve fitting was calculated by hand. In recent unpublished work,

Dr James Walker has successfully investigated if the use of a genetic algorithm can improve

the parameters used for this curve fitting process, with promising results. Whilst this research

is at an early age, it has already produced results which significantly improve the accuracy of

the problem, at the same time removing the need for detailed expertise in the problem area. It

is proposed that a similar routine may also help with the problem of curve-fitting in creating

the unit-width models, potentially both speeding up the model-extraction process and reducing

the reliance on a single person’s expertise in the field.

7.3.3 How can parameter variation datasets be best used by evolutionary tech-
niques to improve system performance?

This question has not been solely answered by the work at York, but also significantly by

the group at Glasgow, who developed the RandomSPICE software. It is the RandomSPICE

tool, and the associated BSIM models which go with it, that have allowed variability to be

brought into a conventional simulation system. The integration of RandomSPICE within the

evolutionary cycle of MOTIVATED allows variability characteristics of each circuit to be taken

into account in the fitness scoring process. To enable the system to be used effectively, it is

necessary to exploit the inherent parallelism in the fitness evaluation process and distribute

the RandomSPICE, SPICE and objective-score calculation methods across available HPC re-

sources. This has focussed on the use of local-clusters, although the use of Grid-based systems

has been exploited in performing subsequent detailed analysis of circuits.

7.4 Future Work

A major obstacle faced throughout the experiments that have been carried out in this project

is that the effects of intrinsic variability are not included in any of the standard tools or mod-

els used in circuit simulation. As such, the processes to include variability have had to be

developed alongside the tools to optimise designs using genetic algorithms, resulting in an

ever-changing platform. As the four key components to the process: the MOTIVATED system,

RandomSPICE, NGSPICE and the model-libraries themselves, have all undergone numerous

updates throughout the course of the thesis, and are only now approaching a state of maturity

in which reliable and accurate optimisation can be carried out.

For the RandomSPICE tool and the model-libraries, only now is a system being created

195 7.4 Future Work

in which both lengths and widths of transistors can be adjusted, and with it sub-unit multiples

for both parameters. This will hugely increase the search space as the number of possible

combinations for transistor dimensions grows. Furthermore it will increase the realism of

the optimised designs when compared to reference designs, which already include sub-unit

widths and in some cases lengths. The libraries themselves have grown in both the number of

intrinsic-variability effects they include, with the earliest libraries only including the effects

of RDD, and also the accuracy of the simulated effects. The NGSPICE software, which has

been essential due it its licence-free operation, has itself recently undergone many updates,

allowing for the updated BSIM models and significantly allowing the .MEASURE state-

ments. These statements increase the speed and accuracy of extracting relevant characteristic

data for delay, slew and power from the simulated circuits, and also increase compatibility

with the commercial SPICE variants, particularly HSPICE, which is essential for acceptance

by industry.

The MOTIVATED system itself has adapted to cater for these developments. One of the

most important ongoing areas of development is in adjusting the methods by which circuit

characteristics are extracted, to ensure that results correlate directly with commercial tools.

Whilst the delay and slew-rates are calculated using recognised methods, the power character-

istics in all the experiments in this thesis have considered power-consumption from the supply

as a single metric. In reality it is necessary to consider the dynamic and static components

of power separately, and much recent work by Dr. James Walker has been done in separat-

ing these. The test-bench has been adjusted to reflect the test-bench used in commercial tools,

which evaluate circuits under different load conditions through repeated tests with different ca-

pacitances at the output. At the time of writing, the latest version of MOTIVATED can produce

objective scores which closely match the data analysis from commercial SYNOPSYS tools.

Whilst the focus of the optimisation problems discussed in this thesis has been concerned

primarily with 2-input combinatorial logic circuits, there is most definately the scope to op-

timise other types of cells which are critical to CMOS design, most notably SRAM cells, as

discussed in Section 2.7.5. SRAM consumes a large percentage of area in modern micropro-

cessors and has been identified as an area in which intrinsic variability is likely to have an early

impact. The reason why the tests in this thesis have steered towards standard-cell combinato-

rial logic has been based on the need to optimise such cells as part of the nano-CMOS project,

with the aim of simulating variability in larger circuits 1. However, with modest changes to

the circuit test-bench and fitness calculation metrics, it would be possible to optimise various
1A target of nano-CMOS project as a whole has been to simulate variability in the communications-controller

of an ARM CPU that forms part of the SpiNNaker system.

Chapter 7: Conclusion 196

memory cells and flip-flops accurately using the MOTIVATED system.

There is certainly a position for automatic optimisation techniques similar to that used

by MOTIVATED to be used in commercial environments for the designs of standard-cells.

This is corroborated by letters of support and interest in using such tools submitted from

staff at Arm, IBM and Xilinx, as part of a recent successful funding application for a proof-

of-concept project into creating commercial tools based on the MOTIVATED system. The

funded project, which goes under the name of CATS (Computer-Aided Transistor Scaling) will

investigate the creation of a commercial optimisation system which integrates directly with

the tools provided by Synopsys for cell-library optimisation, using models provided by Gold-

Standard Simulations (GSS), a spin-off company based at Glasgow which is commercialising

the RandomSPICE software and the creation of variability models [108].

Although there is still a way to go, the goal of creating a system which can automatically

generate variability-tolerant optimised standard-cell libraries for a given set of variability mod-

els, with the minimum amount of human-intervention, is both realistic and acheivable. The

prospect of a similar system which can go a step beyond this and generate complete optimised

circuits to match a given truth-table is something that will take a lot longer, with many more

developments in evolutionary technologies needed, to tackle all the scalability issues faced in

such a problem. However, if the problems facing semiconductor growth can be overcome, the

continual increase in computing-power and ever decreasing costs may provide the resources

needed to make such a system feasible.

Appendix A

Additional Results

This appendix includes additional results information for the experiments described in Chap-

ters 5 & 6, and additional material relevant to the experiments conducted.

A.1 Creation of Schematics

In the course of the MO-Boolean-CGP experiments described in Chapter 6, efforts were made

to find a system suitable for creating schematic diagrams based on the output. However,

there were no suitable free or open-source solutions that could be found. As a consequence,

and given the significant time taken to convert even the smallest of circuits into a schematic

diagram, it was decided to create a system to automate the process, and directly generate

suitable schematic diagrams based on the output matrix received from the MO-Boolean-CGP

program. To achieve this, an evolutionary algorithm was used, which is briefly described in

this section.

The first step in the process is to parse the output matrix file from the CGP system, which

details each of the standard-cells in the evolved design, with its corresponding input and output

connection; the width is predetermined from the maximum length between input and output in

this matrix. A population of random integer genotypes is then created, which is twice as long

as the number of cells in the matrix. The decoding process arranges each column of cells in

the output circuit based on the values within the genotype. At this point any empty columns

are removed from the matrix, then the cells are wired as determined by the input matrix, with

the total length of all the wires and the total number of crossed wires calculated. A fitness

score based on the combination of the total wire length and an additional penalty for each

occurrence of crossed wires is then calculated; the fittest circuits are those with the shortest

combined fitness score.

197

Chapter A: Additional Results 198

The fittest member of the population is preserved to the next generation, which the re-

mainder undergoing a tournament selection to select parents, with a predetermined percentage

using 2-point crossover and the remainder using single-parent mutation. The algorithm is re-

peated for a predefined number of generations, at which point the best overall circuit: that with

the shortest interconnect length and fewest crossed-interconnects, is extracted. In the extrac-

tion process, the circuit is automatically rendered to a scalable vector .SVG file, in which the

required standard-cell symbols are added at the required locations, based on images originally

rendered in the Inkscape vector graphics program. The interconnecting wires are then drawn

as needed.

A.2 Results Tables

A.2.1 Results

199 A.2 Results Tables

Ta
bl

e
A

.1
:

R
es

ul
ts

fo
r

th
e

re
fe

re
nc

e
an

d
op

tim
is

ed
N

A
N

D
,A

N
D

,N
O

R
an

d
O

R
de

si
gn

s
fr

om
th

e
op

tim
is

at
io

n
ru

ns
ba

se
d

on
th

e
V

SC
L

IB
bu

lk
-1

30
nm

SC
L

,u
si

ng
R

D
D

-a
w

ar
e

To
sh

ib
a

35
nm

M
od

el
s

U
ni

fo
rm

M
od

el
s

R
D

F
M

od
el

s:
W

or
st

C
as

e
R

D
F

M
od

el
s:

St
d-

D
ev

C
ir

cu
it

D
es

ig
n

A
re

a
W

C
D

el
ay

σ
D

el
ay

Po
w

er
W

C
D

el
ay

σ
D

el
ay

Po
w

er
W

C
D

el
ay

σ
D

el
ay

Po
w

er

R
ef

er
en

ce
18

20
54

3.
33

7
19

.5
4

66
6.

30
9

19
.5

5
2.

13
6

0.
65

9
0.

05
7

H
ig

h-
Sp

ee
d

23
45

52
7.

05
7

22
.4

7
55

7.
51

4
22

.5
3

0.
70

0
0.

72
8

0.
07

1
N

A
N

D
B

al
an

ce
d

15
75

53
6.

82
5

16
.8

8
59

7.
27

2
16

.9
1

0.
91

6
0.

50
1

0.
05

5
L

ow
-P

ow
er

42
0

97
13

.1
1

8.
46

8
14

7
31

.9
0

8.
58

0
9.

30
0

3.
71

2
0.

04
1

V
ar

ia
bi

lit
y

To
le

ra
nt

23
10

53
7.

40
3

22
.6

6
56

7.
63

2
22

.7
5

0.
56

5
0.

53
2

0.
07

7

R
ef

er
en

ce
19

60
68

6.
44

8
17

.1
7

76
8.

57
8

17
.3

2
1.

36
2

0.
75

6
0.

06
6

H
ig

h-
Sp

ee
d

23
80

60
4.

10
9

17
.9

7
72

5.
37

4
18

.1
4

1.
77

5
0.

26
1

0.
08

0
A

N
D

B
al

an
ce

d
13

65
68

4.
74

9
12

.7
9

83
6.

79
8

12
.9

9
2.

23
3

0.
36

7
0.

06
7

L
ow

-P
ow

er
73

5
92

6.
70

1
10

.1
9

10
9

13
.8

1
10

.2
7

4.
00

0
2.

25
5

0.
03

3
V

ar
ia

bi
lit

y
To

le
ra

nt
35

70
65

5.
98

3
13

.9
0

72
8.

01
3

14
.0

2
1.

09
5

0.
62

0
0.

04
9

R
ef

er
en

ce
18

20
72

18
.5

0
19

.9
9

78
20

.1
7

20
.2

4
1.

01
9

0.
73

7
0.

06
5

H
ig

h-
Sp

ee
d

19
25

69
12

.6
0

22
.2

2
74

14
.5

5
22

.3
2

0.
59

1
0.

58
3

0.
05

8
N

O
R

B
al

an
ce

d
14

35
72

15
.9

2
18

.4
6

79
18

.4
7

18
.5

8
0.

97
5

0.
76

7
0.

05
0

L
ow

-P
ow

er
59

5
11

0
25

.5
0

11
.6

0
12

6
30

.4
0

11
.6

7
2.

59
2

2.
21

9
0.

03
5

V
ar

ia
bi

lit
y

To
le

ra
nt

21
00

71
19

.0
1

22
.3

7
76

20
.3

9
22

.5
5

0.
65

8
0.

39
7

0.
05

4

R
ef

er
en

ce
22

40
68

4.
54

8
22

.2
6

77
6.

20
4

22
.6

3
1.

56
9

0.
38

9
0.

08
6

H
ig

h-
Sp

ee
d

23
10

62
3.

47
9

21
.6

4
72

5.
07

2
21

.9
4

1.
16

6
0.

36
5

0.
07

5
O

R
B

al
an

ce
d

15
75

68
3.

04
1

16
.7

9
81

5.
14

1
17

.0
6

1.
72

0
0.

41
2

0.
06

4
L

ow
-P

ow
er

63
0

96
3.

77
4

11
.7

2
13

0
12

.1
9

11
.9

6
5.

55
6

1.
98

1
0.

05
6

V
ar

ia
bi

lit
y

To
le

ra
nt

22
95

66
4.

21
0

21
.9

7
75

6.
31

4
22

.9
5

1.
01

4
0.

30
9

0.
08

0

Chapter A: Additional Results 200

Ta
bl

e
A

.2
:R

es
ul

ts
fo

rt
he

re
fe

re
nc

e
an

d
op

tim
is

ed
X

N
O

R
,X

O
R

an
d

D
-T

yp
e

fli
p-

flo
p

de
si

gn
s

fr
om

th
e

op
tim

is
at

io
n

ru
ns

ba
se

d
on

th
e

V
SC

L
IB

bu
lk

-1
30

nm
SC

L
,u

si
ng

R
D

D
-a

w
ar

e
To

sh
ib

a
35

nm
M

od
el

s

U
ni

fo
rm

M
od

el
s

R
D

F
M

od
el

s:
W

or
st

C
as

e
R

D
F

M
od

el
s:

St
d-

D
ev

C
ir

cu
it

D
es

ig
n

A
re

a
W

C
D

el
ay

σ
D

el
ay

Po
w

er
W

C
D

el
ay

σ
D

el
ay

Po
w

er
W

C
D

el
ay

σ
D

el
ay

Po
w

er

R
ef

er
en

ce
33

60
90

13
.5

9
31

.8
3

10
0

14
.8

2
32

.1
2

1.
34

1
0.

70
7

0.
10

1
H

ig
h-

Sp
ee

d
45

15
85

16
.7

0
36

.1
6

95
17

.7
6

36
.7

8
1.

35
4

0.
55

4
0.

14
5

X
N

O
R

B
al

an
ce

d
30

45
91

12
.4

8
30

.0
8

10
2

13
.9

3
30

.6
7

1.
61

6
0.

57
3

0.
15

5
L

ow
-P

ow
er

19
25

10
4

14
.2

6
22

.1
0

11
8

17
.1

4
22

.2
2

2.
61

0
1.

61
9

0.
07

8
V

ar
ia

bi
lit

y
To

le
ra

nt
47

60
82

15
.9

3
35

.2
7

89
16

.9
3

35
.6

5
1.

08
4

0.
54

1
0.

10
5

R
ef

er
en

ce
37

45
92

17
.9

4
35

.8
3

10
4

19
.7

7
36

.1
3

1.
90

9
0.

37
4

0.
07

3
H

ig
h-

Sp
ee

d
39

55
76

10
.1

4
36

.3
2

82
11

.3
5

36
.6

4
1.

00
4

0.
56

3
0.

07
1

X
O

R
B

al
an

ce
d

26
25

92
14

.0
1

27
.5

6
10

6
16

.6
9

27
.7

2
2.

08
4

0.
73

1
0.

07
1

L
ow

-P
ow

er
14

00
11

5
11

.4
6

20
.4

8
15

2
19

.3
0

20
.6

6
6.

16
8

2.
39

4
0.

08
6

V
ar

ia
bi

lit
y

To
le

ra
nt

38
15

79
14

.8
4

35
.1

5
89

17
.1

4
35

.4
7

0.
91

1
0.

57
4

0.
08

2

R
ef

er
en

ce
76

30
14

1
15

.5
39

.8
1

16
8

21
.5

63
.4

2
4.

40
7

1.
84

1
4.

25
4

H
ig

h-
Sp

ee
d

48
65

90
0.

47
1

29
.3

5
10

6
4.

02
7

30
.3

5
2.

15
0

0.
93

1
0.

82
6

D
-T

yp
e

B
al

an
ce

d
33

25
10

4
0.

47
1

19
.8

0
12

5
5.

90
6

20
.1

6
3.

64
4

1.
69

9
0.

53
6

L
ow

-P
ow

er
25

90
14

5
7.

78
8

17
.4

4
18

0
20

.5
17

.6
7

6.
42

0
4.

31
6

0.
32

3
V

ar
ia

bi
lit

y
To

le
ra

nt
47

95
10

8
3.

09
1

25
.9

9
12

2
5.

5
26

.3
2

1.
88

6
1.

26
5

0.
64

1

201 A.2 Results Tables

Ta
bl

e
A

.3
:

T
he

be
st

ob
se

rv
ed

re
su

lts
fo

r
th

e
un

if
or

m
op

tim
is

at
io

n
of

th
e

N
A

N
D

an
d

X
O

R
ci

rc
ui

ts
co

m
pa

ri
ng

th
e

SG
A

,S
A

H
C

an
d

SA
H

C
w

ith
ra

nd
om

w
al

k.

N
A

N
D

G
at

e
X

O
R

G
at

e

W
or

st
-C

as
e

W
or

st
-C

as
e

A
lg

or
ith

m
A

re
a

D
el

ay
σ

D
el

ay
Po

w
er

A
re

a
D

el
ay

σ
D

el
ay

Po
w

er

Si
m

pl
e

G
en

et
ic

A
lg

or
ith

m
8

52
3.

21
6

8,
46

8
18

76
5.

81
2

20
,4

84

St
ee

pe
st

-A
sc

en
tH

ill
C

lim
bi

ng
6

54
5.

12
0

10
,2

10
14

82
7.

12
4

25
,1

92

St
ee

pe
st

-A
sc

en
tH

ill
C

lim
bi

ng
W

ith
R

an
do

m
W

al
k

B
es

tO
ve

ra
ll

6
52

3.
19

8
8,

46
8

14
76

5.
67

0
20

,5
66

M
ea

n
Sc

or
e

ac
ro

ss
5

ru
ns

6
52

3.
24

4
8,

52
0

14
76

6.
02

4
21

,0
24

Chapter A: Additional Results 202

Ta
bl

e
A

.4
:R

es
ul

ts
fo

rt
he

re
fe

re
nc

e
an

d
op

tim
is

ed
de

si
gn

s
af

te
rt

he
va

ri
ab

ili
ty

-s
ta

ge
of

th
e

m
ul

tip
le

-v
ol

ta
ge

so
ur

ce
op

tim
is

at
io

n
te

st
s

on
th

e
V

SC
L

IB
ce

ll
lib

ra
ry

M
V

S
O

nl
y

W
id

th
s

O
nl

y
M

V
S

+
W

id
th

s

C
ir

cu
it

M
od

el
s

O
bj

ec
tiv

e
R

ef
er

en
ce

L
ow

H
ig

h
L

ow
H

ig
h

L
ow

H
ig

h
Po

w
er

Sp
ee

d
Po

w
er

Sp
ee

d
Po

w
er

Sp
ee

d

A
re

a
37

45
37

45
37

45
14

00
39

55
91

0
23

80
U

ni
fo

rm
W

C
D

el
ay

92
81

70
11

5
76

93
60

X
-O

R
U

ni
fo

rm
Po

w
er

35
.8

3
30

.3
4

31
.8

0
20

.4
8

36
.3

2
12

.2
2

22
.5

3
V

ar
ia

bi
lit

y
W

C
D

el
ay

10
4

90
77

15
2

82
11

4
71

V
ar

ia
bi

lit
y

σ
(W

C
D

el
ay

)
1.

90
9

1.
87

6
1.

06
2

2.
39

4
0.

56
3

4.
98

6
1.

93
5

V
ar

ia
bi

lit
y

σ
(P

ow
er

)
0.

07
3

0.
13

5
0.

15
6

0.
08

6
0.

07
1

0.
08

6
0.

11
4

A
re

a
33

60
33

60
33

60
19

25
45

15
98

0
20

65
U

ni
fo

rm
W

C
D

el
ay

90
85

71
10

4
85

98
68

X
-N

O
R

U
ni

fo
rm

Po
w

er
31

.8
3

27
.2

6
27

.8
0

22
.1

0
36

.1
6

12
.1

7
18

.9
8

V
ar

ia
bi

lit
y

W
C

D
el

ay
10

0
95

81
11

8
95

12
7

87
V

ar
ia

bi
lit

y
σ

(W
C

D
el

ay
)

1.
34

1
1.

63
4

1.
45

0
1.

61
9

0.
55

4
5.

58
9

3.
16

4
V

ar
ia

bi
lit

y
σ

(P
ow

er
)

0.
10

1
0.

14
0

0.
14

4
0.

07
8

0.
14

5
0.

08
4

0.
13

7

A
re

a
76

30
76

30
76

30
25

90
48

65
25

90
53

90
U

ni
fo

rm
W

C
D

el
ay

14
1

12
6

10
1

14
5

90
10

1
90

D
-T

Y
PE

U
ni

fo
rm

Po
w

er
39

.8
1

33
.5

7
85

.7
1

17
.4

4
29

.3
5

17
.4

4
30

.2
6

V
ar

ia
bi

lit
y

W
C

D
el

ay
16

8
14

7
11

6
18

0
10

6
18

0
10

7
V

ar
ia

bi
lit

y
σ

(W
C

D
el

ay
)

4.
40

7
2.

79
5

2.
02

2
4.

31
6

0.
93

1
4.

31
6

2.
67

5
V

ar
ia

bi
lit

y
σ

(P
ow

er
)

4.
25

4
3.

68
9

4.
64

4
0.

32
3

0.
82

6
0.

32
3

1.
06

6

203 A.2 Results Tables

Ta
bl

e
A

.5
:

C
om

pa
ri

so
n

of
th

e
un

if
or

m
-s

ta
ge

an
d

va
ri

ab
ili

ty
-s

ta
ge

re
su

lts
be

tw
ee

n
th

e
op

tim
is

ed
V

SC
L

IB
st

an
da

rd
ce

ll
an

d
C

G
P-

E
vo

lv
ed

X
O

R
an

d
X

N
O

R
de

si
gn

s
se

le
ct

ed
fo

r
hi

gh
-s

pe
ed

(H
S)

,l
ow

-p
ow

er
(L

P)
,a

nd
a

ba
la

nc
e

be
tw

ee
n

hi
gh

-s
pe

ed
an

d
lo

w
-p

ow
er

(S
P)

SC
L

X
O

R
SC

L
X

N
O

R
E

vo
lv

ed
X

O
R

E
vo

lv
ed

X
N

O
R

Pr
op

er
ty

H
S

SP
L

P
H

S
SP

L
P

H
S

SP
L

P
H

S
SP

L
P

Uniform

A
re

a
3,

95
5

2,
62

5
1,

40
0

4,
51

5
3,

04
5

1,
92

5
2,

59
0

1,
19

0
63

0
2,

55
5

66
5

49
0

Po
w

er
36

,3
20

27
,5

65
20

,4
82

36
,1

64
30

,0
88

22
,1

17
12

,9
59

6,
94

2
5,

64
2

16
,0

47
6,

40
2

5,
31

6
D

el
ay

1
76

92
11

5
85

91
10

4
11

6
16

0
23

0
12

2
20

0
24

8
Sl

ew
R

at
e1

28
40

52
26

38
54

32
48

60
54

12
0

13
0

Variability

B
es

tD
el

ay
2

80
94

12
4

88
94

10
8

12
4

15
4

19
0

13
0

19
8

24
8

W
or

st
D

el
ay

2
86

10
4

15
2

96
10

2
12

2
14

0
24

0
32

2
20

6
29

6
35

6
σ

D
el

ay
2.

71
4.

52
11

.1
6

3.
12

4.
49

7.
10

8.
59

18
.7

9
50

.2
6

13
.6

2
38

.1
3

49
.8

3
σ

Sl
ew

R
at

e
4.

97
6.

12
12

.3
2

5.
12

5.
97

14
.9

1
8.

92
13

.9
7

18
.0

5
15

.6
7

39
.2

0
38

.9
5

1
W

or
st

-c
as

e
sc

or
es

ac
ro

ss
al

lt
ra

ns
is

tio
ns

2
T

he
be

st
an

d
w

or
st

ca
se

s
fo

rt
he

w
or

st
-c

as
e

de
la

y
sc

or
es

ac
ro

ss
al

lt
ra

ns
is

tio
ns

,a
cr

os
s

al
lR

an
do

m
sp

ic
e

ci
rc

ui
ts

Appendix B

Pseudocode

The pseudo-code for some of the primary functional blocks of the SGA system are given in

this appendix.

B.1 Mutation Operator

Algorithm 1 Mutation Operation. The genotype is replaced with a new genotype gnew in
which nm values are replaced with new random integer values, where nm is determined by a
random Poisson value based on mutationRate.

Copy old genotype to new genotype gnew
nm = 0 {Create new Poisson value}
p = 1
L = e−mutationRate

repeat
nm + +
u = new random double [0,1]
p = p× u

until p < L
if nm > 1 then
nm −− {Make sure at least 1 value is adjusted}

end if
for i = 0 to nm do
ng = new random int [0,genotypeLength]
v = new random int
gnew[ng] = v

end for
return gnew

204

205 B.2 NSGA-II Implementation

B.2 NSGA-II Implementation

Algorithm 2 Assign Crowding Distance. This calculates the rank of each individual within
a NDFs, by assign a distance cdistance to each one based on the density of solutions within the
vicinity of p that are found within the fitness landscape. Based on [53].

for all p do
set cdistance = 0

end for
for all NDFi do

for obj = 1 to no.objectives do
sort q of NDFi by obj
normalise values
cdistance[q0] =no.objectives
cdistance[qno.individuals] =no.objectives {Preserve the two extremes}
for i = 1 to no.individuals−1 do
cdistance[qi]+ = cdistance[qi−1] + cdistance[qi+1]

end for
end for

end for

Chapter B: Pseudocode 206

Algorithm 3 Non-Dominated Sorting. Classifies individuals into non-dominated fronts, de-
pendant on how many individuals p dominates & how many individuals dominate p. When no
individual dominates p, it is part of the first NDF: the Pareto-optimal front. Based on [53].

for p = 1 to populationSize do
nd = 0 {Set number of individual which dominate p to 0}
Sp = 0 {Create empty list of individuals dominated by p}
for q = 1 to populationSize do

Assume p dominates q and q dominates p
for ojb = 1 to no.objectives do

if pobj > qobj then
p does not dominate q

else if pobj < qobj then
q does not dominate p

end if
end for
if p dominates q and q dominates p then

neither dominate
end if
if p dominates q then

add q to Sp
else if q dominates p then
np + +

end if
end for
if np = 0 then

NDF0+ = p
end if

end for{Pareto-Optimal Front Found}
i = 0
while NDFi is not empty do

for all p in NDFi do
for all q in Sp do
nq −−
if nq = 0 then

NDFi+1+=q
end if

end for
end for
i++

end while{All NDFs Found}

Appendix C

Netlists

C.1 Template Netlists

C.1.1 Template Netlist used in Early Experiments

The template netlist used for the early experiments, described in Section 5.1, is given below. It

should be noted that the encoding scheme predates that described in Section 4.2.1, in that each

marker string has only two values: the first corresponds to the type, and the second the gene

index. The relevant ranges for all markers, and values for multiplication for type 1 markers,

were hard-coded into the decoding scheme.

*Template netlist for AND\OR Gate Evolution

$2,0 MN1 $0,1 $0,2 $0,3 3 ATOMP L=3.5e-08 W=$1,4e-09

$2,5 MN2 $0,6 $0,7 $0,8 3 ATOMP L=3.5e-08 W=$1,9e-09

$2,10 MN3 $0,11 $0,12 $0,13 3 ATOMP L=3.5e-08 W=$1,14e-09

$2,15 MN4 $0,16 $0,17 $0,18 3 ATOMP L=3.5e-08 W=$1,19e-09

$2,20 MN5 $0,21 $0,22 $0,23 3 ATOMP L=3.5e-08 W=$1,24e-09

$2,25 MN6 $0,26 $0,27 $0,28 3 ATOMP L=3.5e-08 W=$1,29e-09

$2,30 MP1 $0,31 $0,32 $0,33 3 ATOMP L=3.5e-08 W=$1,34e-09

$2,35 MP2 $0,36 $0,37 $0,38 3 ATOMP L=3.5e-08 W=$1,39e-09

$2,40 MP3 $0,41 $0,42 $0,43 3 ATOMP L=3.5e-08 W=$1,44e-09

$2,45 MP4 $0,46 $0,47 $0,48 3 ATOMP L=3.5e-08 W=$1,49e-09

$2,50 MP5 $0,51 $0,52 $0,53 3 ATOMP L=3.5e-08 W=$1,54e-09

$2,55 MP6 $0,56 $0,57 $0,58 3 ATOMP L=3.5e-08 W=$1,59e-09

207

Chapter C: Netlists 208

C.1.2 Template Netlists used in VSCLIB Optimisation

The seven template netlists used in the optimisation of transistor widths using two-input logic

gates and memories. The netlists are taken from the VSCLIB-013 standard cell library, which

is available at www.vlsitechnology.org [135]. The node connections for these circuits

are set by the defaults within MOTIVATED: ground is 0, VDD is 10, the two inputs are 1 and

2 and the output is 6. All other internal nodes are here numbered from 20 upwards. These

node choices are based on the implementation of the CGP-based topology evolution; they are

preserved in the SGA system for compatibility purposes.

NAND Gate

* VSCLIB 2-INPUT NAND GATE

MP1 6 1 10 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 2 10 10 ATOMP L=35n W=&1_4_28_35\e-09

MN1 6 2 20 0 ATOMN L=35n W=&2_2_20_35\e-09

MN2 20 1 0 0 ATOMN L=35n W=&3_2_20_35\e-09

NOR Gate

* VSCLIB 2-INPUT NOR GATE

MP1 20 1 10 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 2 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MN1 6 2 0 0 ATOMN L=35n W=&2_2_20_35\e-09

MN2 6 1 0 0 ATOMN L=35n W=&3_2_20_35\e-09

AND Gate

* VSCLIB 2-INPUT AND GATE

MP1 20 1 10 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 21 2 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MP3 6 21 10 10 ATOMP L=35n W=&2_4_28_35\e-09

MN1 21 2 0 0 ATOMN L=35n W=&3_20_35\e-09

MN2 21 1 0 0 ATOMN L=35n W=&4_2_20_35\e-09

MN3 6 21 0 0 ATOMN L=35n W=&5_2_20_35\e-09

209 C.1 Template Netlists

OR Gate

* VSCLIB 2-INPUT NOR GATE

MP1 20 1 10 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 2 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MN1 6 2 0 0 ATOMN L=35n W=&2_2_20_35\e-09

MN2 6 1 0 0 ATOMN L=35n W=&3_2_20_35\e-09

XNOR Gate

* VSCLIB 2-INPUT XNOR GATE

MP1 20 1 10 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 2 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MP3 21 20 10 10 ATOMP L=35n W=&2_4_28_35\e-09

MP4 6 22 21 10 ATOMP L=35n W=&3_4_28_35\e-09

MP5 22 2 10 10 ATOMP L=35n W=&4_4_28_35\e-09

MN1 20 1 0 0 ATOMN L=35n W=&5_2_20_35\e-09

MN2 6 22 20 0 ATOMN L=35n W=&6_2_20_35\e-09

MN3 6 20 22 0 ATOMN L=35n W=&7_2_20_35\e-09

MN4 22 2 0 0 ATOMN L=35n W=&8_2_20_35\e-09

XOR Gate

* VSCLIB 2-INPUT XOR GATE

MP1 20 1 10 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 21 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MP3 6 20 21 10 ATOMP L=35n W=&2_4_28_35\e-09

MP4 21 2 10 10 ATOMP L=35n W=&3_4_28_35\e-09

MN1 20 1 0 0 ATOMN L=35n W=&4_2_20_35\e-09

MN2 6 2 20 0 ATOMN L=35n W=&5_2_20_35\e-09

MN3 22 20 0 0 ATOMN L=35n W=&6_2_20_35\e-09

MN4 6 21 22 0 ATOMN L=35n W=&7_2_20_35\e-09

MN5 21 2 0 0 ATOMN L=35n W=&8_2_20_35\e-09

D-TYPE Flip-flop

* VSCLIB DFNT1 D-type Rising-Edge Flip-flop

MP1 20 1 10 10 ATOMP L=35n W=&0_2_28_35\e-09

Chapter C: Netlists 210

MP2 21 20 10 10 ATOMP L=35n W=&1_2_28_35\e-09

MP3 22 2 10 10 ATOMP L=35n W=&2_2_28_35\e-09

MP4 24 21 22 10 ATOMP L=35n W=&3_2_28_35\e-09

MP5 24 20 25 10 ATOMP L=35n W=&4_2_28_35\e-09

MP6 25 27 10 10 ATOMP L=35n W=&5_2_28_35\e-09

MP7 27 24 10 10 ATOMP L=35n W=&6_2_28_35\e-09

MP8 28 21 29 10 ATOMP L=35n W=&7_2_28_35\e-09

MP9 28 20 27 10 ATOMP L=35n W=&8_2_28_35\e-09

MP10 29 31 10 10 ATOMP L=35n W=&9_2_28_35\e-09

MP11 31 28 10 10 ATOMP L=35n W=&10_2_28_35\e-09

MP12 6 31 10 10 ATOMP L=35n W=&11_2_28_35\e-09

MN1 20 1 0 0 ATOMN L=35n W=&12_2_20_35\e-09

MN2 21 20 0 0 ATOMN L=35n W=&13_2_20_35\e-09

MN3 23 2 0 0 ATOMN L=35n W=&14_2_20_35\e-09

MN4 24 20 23 0 ATOMN L=35n W=&15_2_20_35\e-09

MN5 24 21 26 0 ATOMN L=35n W=&16_2_20_35\e-09

MN6 26 27 0 0 ATOMN L=35n W=&17_2_20_35\e-09

MN7 27 24 0 0 ATOMN L=35n W=&18_2_20_35\e-09

MN8 28 20 30 0 ATOMN L=35n W=&19_2_20_35\e-09

MN9 28 21 27 0 ATOMN L=35n W=&20_2_20_35\e-09

MN10 30 31 0 0 ATOMN L=35n W=&21_2_20_35\e-09

MN11 31 28 0 0 ATOMN L=35n W=&22_2_20_35\e-09

MN12 6 31 0 0 ATOMN L=35n W=&23_2_20_35\e-09

C.1.3 Template Netlists used in multiple-voltage source experiments

For conciseness, only the MVS+W circuits, in which both the width and voltage-source can

be optimised, are shown here.

XOR Gate

* VSCLIB 2-INPUT XOR GATE

* Multi-Voltage Source (Fixed Bias) Skeleton Netlist

MP1 20 1 50 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 21 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MP3 6 20 21 10 ATOMP L=35n W=&2_4_28_35\e-09

211 C.1 Template Netlists

MP4 21 2 51 10 ATOMP L=35n W=&3_4_28_35\e-09

MN1 20 1 0 0 ATOMN L=35n W=&4_2_20_35\e-09

MN2 6 2 20 0 ATOMN L=35n W=&5_2_20_35\e-09

MN3 22 20 0 0 ATOMN L=35n W=&6_2_20_35\e-09

MN4 6 21 22 0 ATOMN L=35n W=&7_2_20_35\e-09

MN5 21 2 0 0 ATOMN L=35n W=&8_2_20_35\e-09

VSUB1 10 50 DC &9_0_50_10\m

VSUB2 10 51 DC &10_0_50_10\m

XNOR Gate

* VSCLIB 2-INPUT XNOR GATE

* Multi-Voltage Source (Fixed Bias) Skeleton Netlist

MP1 20 1 50 10 ATOMP L=35n W=&0_4_28_35\e-09

MP2 6 2 20 10 ATOMP L=35n W=&1_4_28_35\e-09

MP3 21 20 51 10 ATOMP L=35n W=&2_4_28_35\e-09

MP4 6 22 21 10 ATOMP L=35n W=&3_4_28_35\e-09

MP5 22 2 52 10 ATOMP L=35n W=&4_4_28_35\e-09

MN1 20 1 0 0 ATOMN L=35n W=&5_2_20_35\e-09

MN2 6 22 20 0 ATOMN L=35n W=&6_2_20_35\e-09

MN3 6 20 22 0 ATOMN L=35n W=&7_2_20_35\e-09

MN4 22 2 0 0 ATOMN L=35n W=&8_2_20_35\e-09

VSUB1 10 50 DC &9_0_50_10\m

VSUB2 10 51 DC &10_0_50_10\m

VSUB3 10 52 DC &11_0_50_10\m

D-Type Flip-flop

* VSCLIB DFNT1 D-type Rising-Edge Flip-flop

* Multi-Voltage Source (Fixed Bias) Skeleton Netlist

* Circuit has 8 sub-voltage sources beginning at node 50

MP1 20 1 50 10 ATOMP L=35n W=&0_2_14_70\n

MP2 21 20 51 10 ATOMP L=35n W=&1_2_14_70\n

MP3 22 2 52 10 ATOMP L=35n W=&2_2_14_70\n

MP4 24 21 22 10 ATOMP L=35n W=&3_2_14_70\n

MP5 24 20 25 10 ATOMP L=35n W=&4_2_14_70\n

MP6 25 27 53 10 ATOMP L=35n W=&5_2_14_70\n

Chapter C: Netlists 212

MP7 27 24 54 10 ATOMP L=35n W=&6_2_14_70\n

MP8 28 21 29 10 ATOMP L=35n W=&7_2_14_70\n

MP9 28 20 27 10 ATOMP L=35n W=&8_2_14_70\n

MP10 29 31 55 10 ATOMP L=35n W=&9_2_14_70\n

MP11 31 28 56 10 ATOMP L=35n W=&10_2_14_70\n

MP12 6 31 57 10 ATOMP L=35n W=&11_2_14_70\n

MN1 20 1 0 0 ATOMN L=35n W=&12_2_14_35\n

MN2 21 20 0 0 ATOMN L=35n W=&13_2_14_35\n

MN3 23 2 0 0 ATOMN L=35n W=&14_2_14_35\n

MN4 24 20 23 0 ATOMN L=35n W=&15_2_14_35\n

MN5 24 21 26 0 ATOMN L=35n W=&16_2_14_35\n

MN6 26 27 0 0 ATOMN L=35n W=&17_2_14_35\n

MN7 27 24 0 0 ATOMN L=35n W=&18_2_14_35\n

MN8 28 20 30 0 ATOMN L=35n W=&19_2_14_35\n

MN9 28 21 27 0 ATOMN L=35n W=&20_2_14_35\n

MN10 30 31 0 0 ATOMN L=35n W=&21_2_14_35\n

MN11 31 28 0 0 ATOMN L=35n W=&22_2_14_35\n

MN12 6 31 0 0 ATOMN L=35n W=&23_2_14_35\n

VSUB1 10 50 DC &24_0_30_10\m

VSUB2 10 51 DC &25_0_30_10\m

VSUB3 10 52 DC &26_0_30_10\m

VSUB4 10 53 DC &27_0_30_10\m

VSUB5 10 54 DC &28_0_30_10\m

VSUB6 10 55 DC &29_0_30_10\m

VSUB7 10 56 DC &30_0_30_10\m

VSUB8 10 57 DC &31_0_30_10\m

C.1.4 Template Netlists for CGP evolved topologies

XOR Gate

* CGP Evolved 10-T XOR Design

M0 15 1 0 0 ATOMN L=35n W=&0_1_20_35\e-9

M1 16 17 15 0 ATOMN L=35n W=&1_1_20_35\e-9

M2 6 16 0 0 ATOMN L=35n W=&2_1_20_35\e-9

M3 17 2 0 0 ATOMN L=35n W=&3_1_20_35\e-9

213 C.1 Template Netlists

M4 15 1 18 10 ATOMP L=35n W=&4_1_28_70\e-9

M5 18 17 10 10 ATOMP L=35n W=&5_1_28_70\e-9

M6 17 2 10 10 ATOMP L=35n W=&6_1_28_70\e-9

M7 6 16 10 10 ATOMP L=35n W=&7_1_28_70\e-9

M8 16 15 18 10 ATOMP L=35n W=&8_1_28_70\e-9

M9 16 1 17 10 ATOMP L=35n W=&9_1_28_70\e-9

XNOR Gate

* CGP Evolved 8-T XNOR Design

M0 15 1 0 0 ATOMN L=35n W=&0_2_14_35\e-9

M1 6 17 15 0 ATOMN L=35n W=&1_2_14_35\e-9

M2 17 2 0 0 ATOMN L=35n W=&2_2_14_35\e-9

M3 15 1 18 10 ATOMP L=35n W=&3_2_14_70\e-9

M4 18 17 10 10 ATOMP L=35n W=&4_2_14_70\e-9

M5 17 2 10 10 ATOMP L=35n W=&5_2_14_70\e-9

M6 6 15 18 10 ATOMP L=35n W=&6_2_14_70\e-9

M7 6 1 17 10 ATOMP L=35n W=&7_2_14_70\e-9

Appendix D

Glossary and List of Abbreviations

ADF Automatically Defined Function

AFS Andrew File System; a distributed file-system

ASIC Application-Specific Integrated Circuit

BAC Boltzmann Acceptance Criterion

BiCMOS Bipolar-CMOS; circuits comprising both BJT and MOSFETs

BJT Bipolar Junction Transistor

BSIM Berkeley Short-channel IGFET Model; a SPICE transistor model

series

BTE Boltzmann Transport Equation

CGP Cartesian Genetic Programming

CMOS Complimentary-MOS; logic design based on NMOS:PMOS pairs

CPU Central Processing Unit

CVD Chemical Vapour Deposition

DMG Device Modelling Group; research group at Glasgow University

DNA Deoxyribonucleic Acid

DRAM Dynamic Random Access Memory

EC Evolutionary Computation

ECC Error Correcting Code

EDA Electronic Design Automation

EE Evolutionary Electronics

EEPROM Electronically Erasable Programmable Read-Only Memory

EMA Evolutionary Module Acquisition

EP Evolutionary Programming

214

215

EPSRC Engineering and Physical Sciences Research Council

ES Evolutionary Strategy

EUV Extreme Ultra-Violet; proposed future lithography source

FET Field Effect Transistor

FLASH A non-volatile form of memory

FPAA Field-Programmable Analogue Array

FPGA Field-Programmable Gate Array

FPTA Field-Programmable Transistor Array

GA Genetic Algorithm

GPU Graphics Processing Unit

GSI Giga-Scale Integration; billions of transistors per chip

HPC High-Performance Computation

IC Integrated Circuit

IGFET Insulated-Gate Field Effect Transistor

IPC Instructions Per Clock; a CPU performance metric

IQR Inter-Quartile Range

ISG Intelligent Systems Group; research group at University of York

ITRS International Technology Roadmap for Semiconductors

JFET Junction Field Effect Transistor

LER Line-Edge Roughness

LPCVD Low-Pressure Chemical Vapour Deposition

MAVEN A cluster computer using Sun Grid Engine

MMC Metropolis Monte-Carlo Simulation

MO Multi-Objective

MOEA Multi-Objective Evolutionary Algorithm

MOS Metal-Oxide Semiconductor

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

MOTIVATED Multi-Objective Toolkit for Intrinsic Variability Aware

Transistor-level Evolutionary Design

nano-CMOS EPSRC funded research project into transistor variability

NBTI Negative-Bias Temperature Instability

NEGF Nonequilibrium Green’s Function

NGSPICE A free SPICE simulator

NMOS N-Channel MOS Transistor

NSGA-II Non-dominated Sorting Genetic Algorithm II

Chapter D: Glossary and List of Abbreviations 216

NTRS National Technology Roadmap for Semiconductors

OPC Optical Proximity Corrections

PCB Printed Circuit Board

PECVD Plasma Enhanced Chemical Vapour Deposition

PMOS P-Channel MOS Transistor

PSGB Poly-silicon Grain Boundaries

RAM Random Access Memory

RANDOMSPICE Software written at Glasgow University for creating variability-

aware netlists

RDD Random Discrete Dopants

RDF Random Dopant Flunctuations; variability caused by RDD

RET Reticle (or Resolution) Enhancement Technology; techniques to

improve the accuracy of photolithography

RIE Reactive-Ion Etching

RNA Ribonucleic Acid

SA Simulated Annealing

SAHC Steepest Ascent Hill-Climbing

SCL Standard-Cell Library; library of building-block logic circuits

SGA Simple Genetic Algorithm

SGE Sun Grid Engine; clustering software

SIA Semiconductor Industry Association

SOI Silicon-on-Insulator

SPICE Simulation Program with Integrated Circuit Emphasis; a mixed-

mode electronics simulator

SRAM Static Random Access Memory

SSH Secure Shell; a network protocol for remote administration of

Unix computers

TTL Transistor-Transistor Logic; integrated circuits based on BJTs

ULSI Ultra-Large Scale Integration; millions of transistors per chip

UTB Ultra-thin Body

VHDL VHSIC Hardware Discription Language

VHSIC Very-High Speed Integrated Circuit

VLSI Very-Large Scale Integration; thousands of transistors per chip

VT Threshold Voltage

Bibliography

[1] Thermal oxidation. Online: http://www.siliconfareast.com/

oxidation.htm.

[2] Industry agrees on first 450-mm wafer standard. EE Times. On-

line: http://www.eetimes.com/electronics-news/4079657/

Industry-agrees-on-first-450mm-wafer-standard, October 2008.

[3] International technology roadmap for semiconductors executive summary 2009. On-

line: http://www.itrs.net/links/2009ITRS/Home2009.htm, 2009.

[4] Grid engine manual pages. Online: http://gridengine.sunsource.net/

background.html, September 2010.

[5] Intel product information. Online: http://ark.intel.com/, 2010.

[6] July semiconductor sales up 37 percent year-on-year. Semiconductor Industry Associa-

tion. Online: http://www.sia-online.org/cs/papers_publications/

press_release_detail?pressrelease.id=1805, August 2010.

[7] Nangate 45nm open cell library. Online: http://www.nangate.com/

openlibrary, September 2010.

[8] ScotGrid: Scotting grid service, equipment page. Online: http://www.

scotgrid.ac.uk/equipment, September 2010.

[9] Varun Aggarwal, Varun Jain, Selcuk Kilinc, and Ugur Cam. Automatic design of trust-

worthy sine-wave oscillators by genetic algorithms, 2006.

[10] Varun Aggarwal, Wesley O. Jin, and Una-May O’Reilly. Filter approximation using

explicit time and frequency domain specifications. In GECCO, 2006.

217

BIBLIOGRAPHY 218

[11] Varun Aggarwal and Una-May O’Reilly. Design of posynomial models for mosfets:

Symbolic regression using genetic algorithms. In Genetic Programming Theory and

Practice IV. Springer, 2006.

[12] Bashir Al-Hashimi. The Art of Simulation Using PSpice, Analog and Digital. CRC

Press, 1995.

[13] M. A. Alam. A critical examination of the mechanics of dynamic NBTI for PMOSFETs.

In Electron Devices Meeting, 2003 IEDM Technical Digest, pages 14.4.1 – 14.4.4. IEEE

International, December 2003.

[14] Bruce Alberts, Dennis Bray, Alexander Johnson, Julian Lewis, Martin Raff, Keith

Roberts, and Peter Walter. Essential Cell Biology: An Introduction to the Molecular

Biology of the Cell. Garland Publishing, 1997.

[15] Massimo Alioto and Gaetano Palumbo. Model and Design of Bipolar and MOS

Current-Mode Logic: CML, ECL and SCL Digital Circuits. Kluwer Academic Pub-

lishers, 2005.

[16] Phillip E. Allen and Douglas R. Holberg. CMOS Analog Circuit Design, Second Edi-

tion. Oxford University Press, 2002.

[17] P. J. Angeline and J. B. Pollack. Evolutionary module acquisition. In D. Fogel and

W. Atmar, editors, Proceedings of the Second Annual Conference of Evolutionary Pro-

gramming, pages 154–163, La Jolla, CA, 25–26 1993.

[18] P. Antognetti and G. Massobrio. Semiconductor Device Modelling with SPICE. Mc-

Graw Hill, 1987.

[19] A. Asenov and S. Saini. Suppresion of random dopant-induced threshold voltage fluctu-

ations in sub-0.1-µm mosfets with epitaxial and δ-doped channels. IEEE Transactions

on Electron Devices, 46(8):1718–1724, 1999.

[20] Asen Asenov. Random dopant induced threshold voltage lowering and fluctuations in

sub-50-nm MOSFETs: a statistical 3D ’atomistic’ simulation study. Nanotechnology,

10:153–158, 1999.

[21] Asen Asenov. Meeting the design challenges of nano-CMOS electronics proposal.

2006.

219 BIBLIOGRAPHY

[22] Asen Asenov. Variability in the next generation CMOS technologies and impact on

design. In International Conference of CMOS Variability, 2007.

[23] Asen Asenov, Savas Kaya, and Andrew R. Brown. Intrinsic parameter fluctuations in

decananometer MOSFETs introduced by gate line edge roughness. IEEE Transactions

on Electron Devices, 50(5):1254–1260, 2003.

[24] A. C. Atkinson. The computer generation of poisson random variables. Journal of the

Royal Statistical Society. Series C (Applied Statistics), 28(1):29–35, 1979.

[25] Thomas Bäck. Optimal mutation rates in genetic search. In Proceedings of the 5th

International Conference on Genetic Algorithms, pages 2–8, 1993.

[26] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz, editors. Evolutionary Com-

putation 1: Basic Algorithms and Operators. Institute of Physics, 2000.

[27] Thomas Bäck, Ulrich Hammel, and Hans-Paul Schwefel. Evolutionary computation:

Comments on the history and current state. IEEE Transactions on Evolutionary Com-

putation, 1(1):3–17, 1997.

[28] Walter Banzhaf. Computer-Aided Circuit Analysis Using SPICE. Prentice-Hall, 1989.

[29] K. Bernstein et al. High-performance CMOS variability in the 65-nm regime and be-

yond. Advanced Silicon Technology, 50, 2006.

[30] Yu Bi, D. Ioan, and N.P. van der Meijs. Process variation aware modeling of intercon-

nect capacitance. In Prorisc 2008 Proceedings. Technologiestichting STW, 2008.

[31] C. F. Bohren and D. Huffmen. Absorption and Scattering of Light by Small Particles.

John Wiley, 1983.

[32] Lashon B. Booker, David B. Fogel, Darrell Whitley, Peter J. Angeline, and A. Eiben.

Recombination. In Evolutionary Computation 1: Basic Algorithms and Operators,

pages 256–307. Institute of Physics Publishing, 2000.

[33] Shekhar Borkar. Design reliable systems from unreliable components: The challenges

of transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

[34] George E. P. Box. Evolutionary operation: A method for increasing industrial produc-

tivity. Journal of the Royal Statistical Society, Series C (Applied Statistics), 6(2):81–

101, 1957.

BIBLIOGRAPHY 220

[35] S. D. Brotherton. Polycrystalline silicon thin film transistors. Semiconductor Science

and Technology, 10:721–738, 1995.

[36] Andrew R. Brown, Gareth Roy, and Asen Asenov. Poly-Si-gate-related variability in

decananometer MOSFETs with conventional architecture. IEEE Transactions on Elec-

tron Devices, 54(11):3056–3063, 2007.

[37] Cadence R©. Cadence PSpice A/D & PSPICE advanced analysis: Advanced circuit sim-

ulation and analysis for analog and mixed-signal circuits. Technical report, Cadence R©,

2010.

[38] Luigi Capodieci. From optical proximity correction to lithography-driven physical de-

sign (1996-2006): 10 years of resolution enhancement technology and the roadmap

enablers for the next decade. In Proceedings of SPIE, the International Society for

Optical Engineering, volume 6154(3), 2006.

[39] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low-power

CMOS digital design. IEEE Journal of Solid-State Circuits, 27(4):473–484, 1992.

[40] Demian D. Chapman, Mahmood S. Shivji, Ed Louis, Julie Sommer, Hugh Fletcher, and

Paulo A. Prodohl. Virgin birth in a hammerhead shark. Biology Letters, 3(4):425–427,

2007.

[41] Pallab Chatterjee. Device scaling: The treadmill that fueled three decades of semicon-

ductor industry growth. IEEE Solid-State Circuits Newsletter, 12(1):14–18, 2007.

[42] Yuhua Cheng and Chenming Hu. MOSFET modeling & BSIM3 User’s Guide. Kluwer

Academic Publishers.

[43] T. F. Ciszek. Techniques for the crystal growth of silicon ingots and ribbons. Journal

of Crystal Growth, 66(3):655–672, 1984.

[44] J. Clegg, J. A. Walker, and J. F. Miller. A new crossover technique for cartesian genetic

programming. In Proc. of GECCO, 2007.

[45] Mike Clinton. Variation tolerant SRAM design technologies. In Masayuki Mizuno and

Vivek De, editors, Proceedings of VLSI Circuits Short Circuits Short Course Program:

“Design for Variability in Logic, Memory and Microprocessors”, pages 150–186. VLSI

Circuit Syposium, June 2007.

221 BIBLIOGRAPHY

[46] Carlos A. Coello Coello. Twenty years of evolutionary multi-objective optimization:

A historical view of the field. IEEE Computational Intelligence Magazine, 1(1):28–36,

2006.

[47] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evolutionary

Algorithms for Solving Multi-Objective Problems, 2nd edition. Springer, 2007.

[48] M. J. Cooke. Semiconductor devices. Prentice-Hall, 1990.

[49] Ben Coppin. Artificial Intelligence Illuminated. Jones and Bartlett, 2004.

[50] Nichael Lynn Cramer. A representation for the adaptive generation of simple sequential

programs. In John J. Grefenstette, editor, Proceedings of an International Conference

on Genetic Algorithms and their Applications, Carnegie-Mellon University, Pittsburgh,

PA, July 1985.

[51] J. A. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere,

W. Sansen, and H. E. Maes. Line edge roughness: characterization, modeling and

impact on device behavior. In International Electron Devices Meeting, 2002.

[52] Charles Darwin. On the origin of species by means of natural selection, or the preser-

vation of favoured races in the struggle for life. John Murray, 1859.

[53] K. Deb, Pratap A., S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6:181–

197, 2002.

[54] Nitin Deo. Addressing manufacturing variation at advanced nodes with silicon-contour-

based dfm. In Cadence Designer Network, CDNLive EMEA, Munich, Germany, April

2008.

[55] Sunil Dhingra, Rajnish Sharma, M. S. Yadav, and P. J. George. Chemical bath depo-

sition of thin copper film for metallization on silicon. In R. Mukhopadhyay, editor,

Proceedings of the D.A.E. Solid State Physics Symposium, pages 217–218, 1999.

[56] C. H. Diaz, Tao Hun-Jan, Ku Yao-Ching, A. Yen, and K. Young. An experimentally val-

idated analytic model for gate line-edge roughness (LER) effects on technology scaling.

IEEE Electron Device Letters, 22(6):287–289, 2001.

[57] W. Eccleston. The effect of polysilicon grain boundaries on MOS based devices. Mi-

croelectronic Engineering, 48:105–108, 1999.

BIBLIOGRAPHY 222

[58] David Esseni. On the modeling of surface roughness limited mobility in SOI MOS-

FETs and its correlation to the transistor effective field. IEEE Transactions on Electron

Devices, 51(3):394–401, 2004.

[59] Zhun Fan, Jianjun Hu, Kisung Seo, Erik D. Goodman, Ronald C. Rosenberg, and Baihai

Zhang. Bond graph representation and gp for automated analog filter design. In Erik D.

Goodman, editor, Genetic and Evolutionary Computation Conference Late Breaking

Papars GECCO - 2001, pages 81–86, San Francisco, CA, July 2001.

[60] Stuart J. Flockton and Kevin Sheehan. Intrinsic circuit evolution using programmable

analogue arrays. Lecture Notes in Computer Science, 1478:144–153, 1998.

[61] David B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. IEEE Press, 2000.

[62] L. J. Fogel, A. J. Owens, and M. J Walsh. Artificial Intelligence through Simulated

Evolution. Wiley, 1966.

[63] Device Sizing for Minimum Energy Operation in Subthreshold Circuits. Benton h.

calhoun and alice wang and anantha chandrakasan. In IEEE Custom Integrated Circuits

Conference, 2004.

[64] D. P. Foty. MOSFET Modeling with SPICE: Principles and Practice. Prentice-Hall,

1997.

[65] David J. Frank. High performance CMOS variability in the 65nm regime and beyond. In

International Conference on CMOS Variability: “The Impact of Variability on Design”,

Royal College of Physicians, London, October 2007.

[66] Steve Furber. Dealing with variability in modern circuit design. In International Con-

ference on CMOS Variability, 2007.

[67] Zbysek Gajda and Lukas Sekanina. Reducing the number of transistors in digital cir-

cuits using gate-level evolutionary design. In Genetic And Evolutionary Computation

Conference: Proceeding of the9th annual conference on Genetic and evolutionary com-

putation, volume 1, pages 245–252, London, England, 2007.

[68] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, 1989.

223 BIBLIOGRAPHY

[69] P. Gray and R. Meyer. Analysis and Desing of Analog Integrated Circuits (3rd edition).

John Wiley, 1993.

[70] James B. Grimbleby. Automatic analogue circuit synthesis using genetic algorithms.

Circuits, Devices and Systems, IEE Proceedings, 147:319–323, December 2000.

[71] Fatima Z. Hadjam, Claudio Moraga, and Mohammed Benmohamed. Cluster-based

evolutionary design of digital circuits using improved multi-expression programming.

In Genetic and Evolutionary Computation GECCO 2007, Late Breaking Papers, 2007.

[72] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S. Hare-

land, P. Armstrong, and S. Borkar. Neutron soft error rate measurements in a 90-nm

CMOS process and scaling trends in SRAM from 0.25-µm to 90-nm generation. In

International Electron Devices Meeting (IEDM), 2003.

[73] B. Hoeneisen and C. A. Mead. Fundamental limitations in microelectronics – i. MOS

techonology. Solid-State Electronics, 15(1):819–829, 1972.

[74] John H. Holland. Adaptation in Natural and Artificial Systems. Bradbord Books, 1992.

[75] Xuejue Huang, Wen-Chin Lee, Charles Kuo, Digh Hisamoto, Leland Chang, Jakub

Kedzierski, Erik Anderson, Hideki Takeuchi, Yang-Kyu Choi, Kazuya Asano, Vivek

Subramanian, Tsu-Jae King, Jeffrey Bokor, and Chenming Hu. Sub 50-nm FinFET:

PMOS. In Electron Devices Meeting, IEDM Technical Digest International, 1999.

[76] Maturana Humberti R and Francisco J. Varela. The Tree of Knowledge: The Biological

Roots of Human Understanding. Shambhala, 1998.

[77] Intel. Microprocessor quick reference guide, 2008. Online: http://www.intel.

com/pressroom/kits/quickreffam.htm.

[78] Seonghoon Jin, Massimo V. Fischetti, and Ting-Wei Tang. Modeling of surface-

roughness scattering in ultrathin-body SOI MOSFETs. IEEE Transactions on Electron

Devices, 54(9):2191–2203, 2007.

[79] Martin Hartley Jones. A Practical Introduction to Electronic Circuits. Cambridge Uni-

versity Press, 2000.

[80] Michael Kanellos. Moore’s law to roll on for another decade. CNET News. Online:

http://news.cnet.com/2100-1001-984051.html.

BIBLIOGRAPHY 224

[81] R. W. Keyes. Physical limits in digital electronics. Proceeding of the IEEE, 63(5):740–

767, 1975.

[82] Yaser M. A. Khalifa, Badar K. Khan, and Faisal Taha. Multi-objective optimization tool

for a free structure analog circuits design using genetic algorithms and incorporating

parasitics. In Genetic and Evolutionary Computation Conference, GECCO 2007 Late

Breaking Papers, pages 2527–2534, London, England, July 2007.

[83] J. S. Kilby. Miniaturized electronic circuits, 1964.

[84] Selçuk Kilinç, Varun Jain, Varun Aggarwal, and Ugur Cam. Catalogue of variable

frequency and single-resistance controlled oscillators employing a single differential

difference complementary current conveyor. Frequenz: Journal of RF-Engineering and

Telecommunications, 04:142, 2006.

[85] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671–680, 1983.

[86] Hans Kosina and Siegfried Selberherr. A hybrid device simulator that combines monte

carlo and drift-diffusion analysis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and System, 13(2):201–210, 1994.

[87] John R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[88] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.

MIT Press, Cambridge, MA, 1994.

[89] John R. Koza. Routine human-competitive machine intelligence by means of genetic

programming. Applications and Science of Neural Networks, Fuzzy Systems, and Evo-

lutionary Computation VI, proceedings of the SPIE, 52:1–15, 2004.

[90] John R. Koza, David Andre, Forrest H. Bennett III, and Martin A. Keane. Use of au-

tomatically defined functions and architecture-altering operations in automated circuit

synthesis with genetic programming. In Genetic Programming 1996: Proceedings of

the First Annual Conference, pages 132–149, Stanford University, CA, 28–31 1996.

MIT Press.

[91] John R. Koza, Forresst H. Bennett III, Jason Lohn, Frank Dunlap, Martin A. Keane,

and David Andre. Automated synthesis of computational circuits using genetic pro-

225 BIBLIOGRAPHY

gramming. In Proceedings of the 1997 IEEE International Conference on Evolutionary

Computation, pages 447–452. IEEE Press, 13-16 1997.

[92] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Automatic

WYWIWYG design of both the topology and component values of electrical circuits

using genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel, and

Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual

Conference, pages 123–131. MIT Press, 1996.

[93] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Evolution

using genetic programming of a low-distortion 96 decibel operational amplifier. In

Barrett Bryant, Janice Carroll, Dave Oppenheim, Jim Hightower, and K. M. George,

editors, Proceedings of the 1997 ACM Symposium on Applied Computing, pages 207–

216, Hyatt Sainte Claire Hotel, San Jose, CA, 28 -2 1997.

[94] John R. Koza, Forrest H Bennett III, David Andre, and Martin A. Keane. Genetic

Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, 1999.

[95] John R. Koza, Martin A. Keane, Jessen Yu, and William Mydlowec. Automatic synthe-

sis of electrical circuits containing a free variable using genetic programming. In Darrell

Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg

Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2000), pages 477–484, Las Vegas, Nevada, USA, 10-12 2000. Morgan Kauf-

mann.

[96] Slawomir Koziel and Wladyslaw Szczesniak. Reducing average and peak temperatures

of VLSI CMOS circuits by means of evolutionary algorithm applied to high level syn-

thesis. Microelectronics Journal, 34:1167–1174, 2003.

[97] Wim Kruiskamp and Domine Leenaerts. DARWIN: CMOS opamp synthesis by means

of a genetic algorithm. In Proceeding of the 32nd ACM/IEEE conference on Design

automation, pages 433–438, San Francisco, CA, 1995. ACM Press.

[98] K. J. Kuhn. Reducing variation in advanced logic technologies: Approaches to process

and design for manufacturability of nanoscale cmos. In IEDM Digest of Technical

Papers, pages 471–474, 2007.

[99] V. Kursun and E. G. Friedman. Multi-voltage CMOS Circuit Design. Wiley, 2006.

BIBLIOGRAPHY 226

[100] Jörg Langeheine, Joachim Becker, Simon Fölling, Karlheinz Meier, and Johannes

Schemmel. A CMOS FPTA chip for intrinsic hardware evolution of analog electronic

circuits. In 3rd NASA / DoD Workshop on Evolvable Hardware, pages 172–175, Long

Beach, CA, July 2001. IEEE Computer Society.

[101] Jörg Langeheine, Karlheinz Meier, and Johannes Schemmel. Intrinsic evoltion of quasi

DC solutions for transistor level analog electronic circuits using a CMOS FPTA chip.

2002.

[102] Jörg Langeheine, Karlheinz Meier, and Johannes Schemmel. Intrinsic evolution of ana-

log electronic circuits using a CMOS FPTA chip. In International Congress on Evolu-

tionary Methods for Design, Optimization and Control with Applications to Industrial

Problems, 2003.

[103] Peng Li, Frank Liu, Xin Li, Lawrence T. Pileggi, and Sani R. Nassif. Modeling intercon-

nect variability using efficient parametric model order reduction. Design, Automation

and Test in Europe, 2005.

[104] Xiaojun Li, Jin Qin, Bing Huang, Xiaohu Zhang, and Joseph B. Bernstein. SRAM

circuit-failure modeling and reliability simulation with SPICE. IEEE Transactions on

Device and Materials Reliability, 6(2), June 2006.

[105] Yiming Li. An automatic parameter extraction technique for advanced cmos device

modeling using genetic algorithm. Microelectronic Engineering, 84:260–272, February

2007.

[106] Jason D. Lohn and Silvano P. Colombano. Automated analog circuit synthesis using

a linear representation. In Proc of the Second Int’ll Conf on Evolvable Systems: From

Biology to Hardware, volume 84, pages 125–133, Berlin, 1998. Springer-Verlag.

[107] Bo Lojek. History of semiconductor engineering. Springer, 2007.

[108] Gold Standard Simulations Ltd. Online: http://www.

goldstandardsimulations.com.

[109] Mark Lundstrom. EE-612: Lecture 19: Device variability. Technical report, Purdue

University, 2006.

[110] H. Karbasi S. Winters S. Minehane J. Babcock M. Ershov, S. Saxena. Dynamic re-

covery of negative bias temperature instability in p-type metal-oxide-semiconductor

field-effect transistors. Applied Physics Letters, 83:1647–1649, 2003.

227 BIBLIOGRAPHY

[111] A. Martinez, J. R. Barker, N. Seoane, A. R. Brown, and A. Asenov. Dopants and

roughness induced resonances in thin Si nanowire transistors: A self-consistent NEGF-

poisson study. Journal of Physics Conference Series, Progress in Nonequilibrium

Green’s Functions IV, 220:1–15, 2010.

[112] J. W. Mayer. Ion implantation in semiconductors. International Electron Devices Meet-

ing (IEDM), pages 3–5, 1973.

[113] James Meindl. Gigascale integration: Is the sky the limit? IEEE Circuits and Devices

Magazine, 12(6):19–24, 1996.

[114] Zbigniew Michalewicz, Girish Nazhiyath, and Maciej Michalewicz. A note on useful-

ness of geometrical crossover for numerical optimization problems. In Proceedings of

the 5th Annual Conference of Evolutionary Programming, pages 305–312, 1996.

[115] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the evolutionary design of digital

circuits - part I. Genetic Programming and Evolvable Machines, 1:8–35, 2000.

[116] J. F. Miller and S. L. Smith. Redundancy and computational efficiency in cartesian

genetic programming. IEEE Transactions on Evolutionary Computing, 10:167–174,

2006.

[117] J. F. Miller and P. Thomson. Cartesian genetic programming. In Proc. of EuroGP,

2000.

[118] Masayuki Mizuno and Vivek De, editors. Proc. of VLSI Circuits Short Course Pro-

gram,“Design for Variability in Logic, Memory and Microprocessor”, Kyoto, Japan,

2007.

[119] T. Mizuno, J. Okamura, and A. Toriumi. Experimental study of threshold voltage fluc-

tuation due to statistical variation of channel dopant number in MOSFETs. IEEE Trans-

actions on Electron Devices, 41(11):2216–2221, 1994.

[120] Tomohisa Mizuno, Jun ichi Okamura, and Akira Toriumi. Experimental study of thresh-

old voltage fluctuations using an 8k MOSFET array. In Symposium on VLSI Technology,

Digest of Technical Papers, pages 41–42, 1993.

[121] Gordan E. Moore. Cramming more components onto integrated circuits. Electronics,

38, 1965.

BIBLIOGRAPHY 228

[122] Gordon E. Moore. Progress in digital integrated electronics. In Electron Devices Meet-

ing, 1975.

[123] Victor Moroz. Design for manufacturability: OPC and stress variations. In Interna-

tional Conference on CMOS Variability, 2007.

[124] Tanvir Hasan Morshed et al. BSIM4.6.4 MOSFET Model - Users Manual. University

of California, Berkeley, CA94720, 2008.

[125] H. Mühlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as a function

optimizer. Parallel Computing, 17:619–632, 1991.

[126] Heinz Mühlenbein. How genetic algorithms really work: I. Mutation and hillclimbing.

In Parallel Problem Solving from Nature 2, pages 15–25. Elsevier, 1992.

[127] Laurence W. Nagel. The life of SPICE. Talk transcript, BCTM ’96, September 1996.

[128] Laurence W. Nagel and D. O. Pederson. SPICE (simulation program with integrated

circuit emphasis). Technical Report UCB/ERL M382, EECS Department, University

of California, Berkeley, 1973.

[129] National Microelectronics Institute. International Conferenceon CMOS Variability:

“The Impact of Variability on Design”, Royal College of Physicians, London, Octo-

ber 2007.

[130] Paolo Nenzi. NgSPICE: Product History Page. gEDA, 2010. Online: http://

ngspice.sourceforge.net/history.html.

[131] Kenneth V. Noren and John E. Ross. Analog circuit design using genetic algorithms. In

Second Online Symposium for Electronics Engineers, 2001.

[132] Phil Oldiges, Qinghuang Lin, Karen Petrillo, Martha Sanchez, Meikei Ieong, and Mike

Hargrove. Modeling line edge roughness effects in sub 100 nanometer gate length

devices. In SISPAD Proceedings, 2000.

[133] Vilfredo Pareto. Cours d’économie politique. The Annals of the American Academy of

Political and Social Sciences, 9(128):128–131, 1897.

[134] D. Patterson. The top 10 innovations in the new NVIDIA fermi architecture, and the

top 3 next challenges. Technical report, NVidia Corp., 2009.

229 BIBLIOGRAPHY

[135] Graham Petley. VLSI and ASIC technology standard cell library design. Online: www.

vlsitechnology.org.

[136] Jan M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, 1995.

[137] Mohsen Razavy. Quantum Theory of tunnelling. World Scientific, 2003.

[138] David T. Reid. Large-scale simulations of intrinsic parameter fluctuations in nano-

scale MOSFETs. PhD thesis, University of Glasgow, 2010.

[139] Gareth Roy, A. R. Brown, Fikru Adamu-Lema, Scott Roy, and Asen Asenov. Sim-

ulation study of individual and combined sources of intrinsic parameter fluctuations

in conventional nano-mosfets. IEEE Transactions on Electron Devices, 53(12):3063–

3070, 2006.

[140] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd

edition). Prentice-Hall, 2003.

[141] Ralf Salomon and Frank Sill. High-speed, low-leakage integrated circuits: An evolu-

tionary algorithm perspective. Journal of Systems Architecture, 53:321–327, 2007.

[142] K. Samsudin, B. Cheng, A. R. Brown, S. Roy, and A. Asenov. Integrating intrinsic

parameter fluctuation description into BSIMSOI to forecast sub-15nm UTB SOI based

6T SRAM operation. Solid-State Electronics, 50:86–93, 2006.

[143] K. Samsudin, B. Cheng, A. R. Brown, S. Roy, and A. Asenov. Sub-25nm UTB SOI

SRAM cell under the influence of discrete random dopants. Solid-State Electronics,

50:660–667, 2006.

[144] Nobuyuki Sano and Masaaki Tomizawa. Random dopant model for three-dimensional

drift-diffusion simulations in metal-oxide-semiconductor field-effect-transistors. Ap-

plied Physics Letters, 79(14):2267–2268, 2001.

[145] J. David Schaffer, Rich Caruana, Larr J. Eshelman, and Rajarshi Das. A study of control

parameters affecting online performance of genetic algorithms for function optimiza-

tion. In Proceeding of the 3rd International Conference on Genetic Algorithms, pages

51–60, 1989.

[146] Dieter K. Schroder. Negative bias temperature instability: What do we understand?

Microelectronics Reliability, 6:841–852, 2007.

BIBLIOGRAPHY 230

[147] Hans-Paul Schwefel and Günter Rudolph. Contemporary evolution strategies. In

F. Morana et al., editors, Advances in Artificial Life, pages 893–907. Berlin: Springer,

1995.

[148] Larry Seiler, Doug Carmean, Eric Spangle, Tom Forsyth, and Pradeep Dubey. Larrabee:

a many-core x86 architecture for visual computing. ACM Transactions of Graphics

(TOG), 27(3), 2008.

[149] Harold Shichman and David A. Hodges. Modeling and simulation of insulated-gate

field-effect transistor switching circuits. IEEE Journal of Solid State Circuits, SC-

3:285–289, 1968.

[150] Silvaco. SmartSpice: Analog circuit simulator. Online. http://www.silvaco.

com/products/circuit_simulation/smartspice_35.pdf, 2010.

[151] R. Sinnott, A. Asenov, D. Berry, D. Cumming, S. Furber, C. Millar, A. Murray, S. Pick-

les, S. Roy, A. Tyrrell, and M. Zwolinski. Meeting the design challenges of nano-CMOS

electronics: An introduction to an upcoming epsrc pilot project. In UK e-Science All

Hands Meeting, Nottingham, UK, 2006.

[152] Jim Smith and T. C. Fogarty. Self adaptation of mutation rates in a steady state genetic

algorithm. In Proceedings of the 3rd IEEE Conference on Evolutionary Computation,

pages 318–323, 1996.

[153] Matthew J Streeter, Martin A. Keane, and John R. Koza. Automatic synthesis using GP

of both the topology and sizing for five post-2000 patented analog and mixed-analog

digital circuits. In Southwest Symposiumon Mixed-Signal Design, 2003.

[154] Ben G. Streetman and Sanjay Banerjee. Solid State Electronic Devices. Prentice-Hall,

2000.

[155] C. R. M. Struck, R. Flauta, M. J. Neumann, K. N. Kim, R. Raju, R. L. Bristol, and D. N.

Ruzic. Grazing incidence broad ion beams for reducing line-edge roughness. Journal

of Micromechanics and Microengineering, 20:1–6, 2010.

[156] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort - Designing Fast CMOS

Circuits. Morgan Kaufmann, 1999.

[157] Synopsys. HSPICE R©The Gold Standard for Accurate Circuit Simula-

tion. Online: http://www.synopsys.com/Tools/Verification/

231 BIBLIOGRAPHY

AMSVerification/CircuitSimulation/HSPICE/Documents/

hspice_ds.pdf.

[158] Michael A. Terry, Jonathan Marcus, Matthew Farrel, Varun Aggarwal, and Una-May

O’Reilly. GRACE: generative robust analog circuit exploration. In Franz Rothlauf,

Jurgen Branke, Stefano Cagnoni, Ernesto Costa, Carlos Cotta, Rolf Drechsler, Eve-

lyne Lutton, Penousal Machado, Jason H. Moore, Juan Romero, George D. Smith,

Giovanni Squillero, and Hideyuki Takagi, editors, Applications of Evolutionary Com-

puting, EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInterac-

tion, EvoMUSART, EvoSTOC, volume 3907 of LNCS, pages 332–343, Budapest, 2006.

Springer-Verlag.

[159] Adrian Thompson. On the automatic design of robust electronics through artificial

evolution. 1999.

[160] Martin Albrecht Trefzer. Evolution of Transistor Circuits. PhD thesis, Ruperto-Carola-

University of Heidelberg, Germany, 2006.

[161] H. P. Tuinhout. Impact of parametric mismatch and fluctuations on performance and

yield of deep-submicron cmos technologies. In ESSDERC Proceedings, 2002.

[162] Yoshiyuki Uno, Akira Okada, Yasuhiro Okamoto, and Tameyoshi Hirano. High per-

formance slicing method of monocrystalline silicon ingot by wire edm. Initiatives of

Precision Engineering at the Beginning of a Millenium, 1:219–223, 2001.

[163] John P. Uyemura. CMOS Logic Circuit Design. Kluwer Academic Publishers, 2003.

[164] V. K. Vassilev and J. F. Miller. Embedding landscape neutrality to build a bridge from

the conventional to a more efficient three-bit multiplier circuit. In Gecco, 2000.

[165] J. A. Walker and J. F. Miller. Evolution and acquisition of modules in cartesian genetic

programming. In Proc. of EuroGP, 2004.

[166] J. A. Walker and J. F. Miller. The automatic acquisition, evolution and reuse of modules

in cartesian genetic programming. IEEE Transactions on Evolutionary Computation,

12:397–417, 2008.

[167] James A. Walker, James A. Hilder, and Andy M. Tyrrell. Evolving variability-tolerant

CMOS designs. In Proc. of ICES, pages 308–319. Springer-Verlag, 2008.

BIBLIOGRAPHY 232

[168] James Alfred Walker. The Automatic Acquisition, Evolution and Re-use of Modules in

Cartesian Genetic Programming. PhD thesis, University of York, December 2007.

[169] James Alfred Walker, James A. Hilder, and Andy M. Tyrrell. Evolving industry-feasible

intrinsic variability tolerant cmos design. In IEEE Conference of Evolutionary Compu-

tation (CEC), 2009.

[170] James Alfred Walker and Julian Francis Miller. Improving the evolvability of digital

multipliers using embedded cartesian genetic programming and product reduction. In

International Conference of Evolvable Systems: From Biology to Hardware, pages 131–

142, 2005.

[171] James Alfred Walker, Richard Sinnott, Gordon Stewart, James A. Hilder, and Andy M.

Tyrrell. Optimizing electronic standard cell libraries for variability tolerance through

the nano-CMOS grid. Philosophical Transactions of the Royal Society A, 368:3967–

3981, 2010.

[172] Feng Wang, Yuanxiang Li, Li Li, and Kangshun Li. Automated analog circuit de-

sign using two-layer genetic programming. Applied Mathematics and Computation,

185:1087–1097, 2007.

[173] Jin Wang and Chong Ho Lee. Evolutionary design of combinational logic circuits using

VRA processor. IEICE Electronics Express, 6:141–147, 2009.

[174] Frank M. Wanlass. Low stand-by power complementary field effect circuitry, 1967.

[175] R. K. Watts. Submicron Integrated Circuits, chapter Lithography, pages 470–508. Wiley

Interscience, 1989.

[176] S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, and K. Ronse. Metrology method

for the correlation of line edge roughness for different resists before and after etch.

Microelectronic Engineering, 57–58:665–672, 2001.

[177] Chao Wu. Evolutionary design of analogue circuits. Master’s thesis, University of York,

2005.

[178] C. Wyon. Future technology for advanced MOS devices. Nuclear Instruments and

Methods in Physics Research B, 186:380–391, 2002.

233 BIBLIOGRAPHY

[179] T. Yamaguchi, H. Namatsu, M. Nagase, K. Yamakazi, and K. Kurihara. Nanometer-

scale linewidth fluctuations caused by polymer aggregates in resist films. Applied

Physics Letters, 71(16):2388–2390, 1997.

[180] Xin Yao and Yong Liu. Fast evolutionary programming. In Proceedings of the Fifth

Annual Conference on Evolutionary Programming, pages 451–460. MIT Press, 1996.

[181] Xin Yao, Yong Liu, Ko-Hsin Liang, and Guangming Lin. Fast evolutionary algorithms.

In Natural Computing Series, Advances in evolutionary computation: theory and ap-

plications, pages 45–94. Springer-Verlag, 2003.

[182] T. Yu and J. F. Miller. Neutrality and the evolvability of boolean function landscape. In

Proc. of EuroGP, 2001.

[183] Ricardo S. Zebulum, Marco Aurélio Pacheco, and Marley Vellasco. Analog circuits

evolution in extrinsic and intrinsic modes. In ICES ’98: Proceedings of the Second In-

ternational Conference on Evolvable Systems, pages 154–165, London, 1998. Springer-

Verlag.

[184] Bart Van Zeghbroeck. Principles of Semiconductor Devices. Colorado University, 2001.

[185] Eckart Zitzler, Marco Laumanns, and Lother Thiele. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm. Technical Report 103, ETH-Zurich, Gloriastrasse 35,

CH-8092 Zurich, Switzerland, 2001.

