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Abstract 

We report herein the synthesis and properties of a range of group 8 dimetallic paddlewheel 

complexes incorporating a range of formamidinate and amidate ligands. The potential of 

some of these complexes as aerobic oxidation catalysts is explored and the electronic 

structures probed via the aid of DFT calculations under B3LYP and PBE0 on the model 

complex Ru2(dmf)4 (where dmf = N,N’-diphenylformamidinate). 

Attempts to extend a previous synthetic precedent for the synthesis of Fe2
II,II(DPhF)4 (where 

DPhF = N,N’-Diphenylformamidine) to other diiron tetra-formamidinates are reported, and 

the structure of the first novel symmetrically basic beryllium acetate structured tetra-iron 

cluster species Fe4
II
(O)(DMOPhFm)6 (IX) (where DMOPhFm = N,N’-bis(3,5-

dimethoxyphenyl)formamidine) published. 

An alternative assignment for the redox process observed in the cyclic voltammogram of 

Ru2
II,II(formamidinate) complexes is reported as evidenced by UV-Vis spectroelectrochemical 

analysis. Additionally, the nature of an unknown reversible interaction of the species 

Ru2
II,II

(DMOPhFm)4 (X) (and Ru2
II,II

(4FPhFm)4 (XI) (where 4FPhFm = N,N’-bis(4-

flourophenyl)formamidine) on exposure to dioxygen is explored by a wide range of 

analytical techniques. A provisional computational model of this interaction is proposed and 

compared to the available data but requires some further refinement in order to better 

model the phenomenon observed experimentally.  
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1 Introduction 

1.1 Group 8 catalysts for the generation of alternative fuels 

When considering catalysts, few areas of the periodic table hold quite as much proven 

potential as the transition metals of group 8. To the synthetic chemist the later transition 

metals in particular provide a versatile tool-kit for catalytic functionalization,1,2 whilst early 

transition metals such as iron are utilised extensively as catalysts both industrially3,4 and in 

nature to great effect. 

Industrially, group 8 catalysts are already integral to a wide range of processes, including the 

Haber-Bosch synthesis of ammonia5 which is perhaps the single most pivotal example of 

industrial catalysis in history. In the course of the development of the process, Haber6,7 and 

latterly Bosch8 considered all of the naturally occurring group 8 metals, noting a readily 

observable correlation between their activity and stability descending the group. Later 

transition metals showed a greater degree of activity but significantly lower stability than 

their early transition metal alternatives. 

In nature, iron catalysis is ubiquitous. Iron provides the active, functional core of a vast 

number of biologically critical enzymes which may be broadly divided into those that adopt 

a haem structure and those that do not (non-haem). Examples of the former include the 

highly diverse and metabolically critical cytochrome P450 family, whilst the latter includes 

examples of dimetallic chemistry such as in the enzyme methane monooxygenase (MMO).  

These families of enzymes conduct a rich and varied array of oxidative chemistry which in 

the case of cytochrome P450 has been the focus of significant research for many years. Such 

efforts have focused on both understanding their mechanistic operation,9–14 and in the 

development of functional synthetic models15 to replicate their function. In contrast, some 

other non-haem systems such as that of MMOs have seen far less development. MMOs are 

of particular interest for their ability to perform partial oxidation of saturated organic 

substrates. This has potentially critical applications in current industrial processes and in 

strategies to leverage these products (e.g. Methanol) as potential alternative fuels. 
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1.2 Methanol as a viable alternative fuel 

The prospect of providing for a burgeoning global populace and increasing energy demand 

with declining fossil fuel reserves presents a significant scientific, engineering and societal 

challenge. This challenge is then further complicated by the simultaneously need to mitigate 

the impact of global warming of current energy usage. Due to the multifaceted nature of 

this challenge it is highly unlikely that a single technological solution will be found.16–18 In 

addition to developing new technologies therefore there is also a significant need to 

improve upon the efficiency of current major industrial processes, and to diversify the range 

of usable fuels at our disposal.3,17 

Methanol in particular presents and attractive option as one such alternative fuel as it is 

highly adaptable and able to be readily used with both existing internal combustion 

engines19,20 and emerging technologies such as direct methanol fuel cells (DMFCs).17,21 As a 

liquid fuel, it presents none of the additional safety considerations that have hampered the 

uptake of gaseous alternative fuels such as hydrogen3,16,17,22 and additionally could utilise 

the existing petroleum industry infrastructure without significant modification.17,23  

Improvements to the highly energy intensive process currently used to synthesise methanol 

would provide both a more viable alternative transport fuel to current crude oil derived 

petroleum and improve energy security.17,19,20,24 Like many catalysed industrial processes 

however, despite iterative improvement in catalyst design and process optimisation 

compared to biological systems, current practice remains highly inefficient.25,26 

The potential to improve the efficiency of partially oxidised fuel synthesis would also have a 

profound impact on related Fischer-Tropsch chemistry, which is conducted on an increasing 

scale globally especially in Qatar, South Africa and Malaysia.24,27  
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1.3 Industrial methanol synthesis 

As a common bulk chemical, methanol is already synthesised in significant volume, primarily 

for the synthesis of secondary bulk chemicals (e.g. formaldehyde), various polymer 

precursors and as a common solvent. Current industrial practice sees it synthesised from 

synthesis gas (syngas), which itself is most commonly derived from otherwise unusable 

sources of natural gas. Any hydrocarbon source, such as coal or biomass could however in 

principle be used.28,29 Despite the extensive industrial use of this process for over half a 

century some elements of the mechanism by which this reaction occurs are still not fully 

understood and remain controversial.30,31 

1.3.1 Syngas production 

Synthesis gas generation may be conducted via several methods including catalytic steam 

methane reforming (SMR), partial oxidation (POX) and auto-thermal reforming (ATR). The 

most significant difference between these methods is the ratio of syngas components (H2 : 

CO) produced, however economic and scale considerations render SMR the predominantly  

method used in practice.3,32 

The SMR methodology uses the markedly endothermic reformation of methane with steam 

over a Ni/MgAl2O4 spinel catalyst33 (1.1) coupled with the somewhat exothermic water gas 

shift (WGS) reaction (1.2) to minimise the required energy input, resulting in the overall 

reaction shown (1.3). 

CH4 + H2O � CO + 3H2 ΔH°298 = +205 KJ mol-1 (1.1) 

CO + H2O � CO2 + H2 ΔH°298 = -41 KJ mol-1 (1.2) 

CH4 + 2H2O � CO2 + 4H2 ΔH°298 = +156 KJ mol-1 (1.3) 

This process still requires quite extreme conditions, typically operating at 800°C and 

pressures of 30-40 bar to ensure efficient operation; i.e. mandating significant energy input 

and tight regulatory control. Given the volume expansion expected from the reaction 

stoichiometry the chosen conditions may appear counter-initiative; but these conditions are 

required for efficient catalyst operation. This is due to the ability of the nickel catalyst used 

to catalyse the reverse reaction regenerating CH4 under uncontrolled, non-ideal 
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conditions.34 In order to maximise conversion, both the temperature and pressure are 

modulated between the two stages of the reactor, with an initial stage at conditions noted 

above, followed by a cooler second stage at 400 °C and 25 bar. Current operating conditions 

are the product of studies that balance favourable reaction kinetics with the need to ensure 

catalyst longevity and overall efficiency. Other, typically noble metal catalysts, derived from 

Pd, Pt, Rh and in particular Ru have been shown to act as more efficient and robust catalysts 

for syngas generation,33,35,36 however these are not widely used industrially due to their 

prohibitive cost. 

1.3.2 Methanol synthesis 

Once the reformation of methane to synthesis gas is complete the generation of methanol is 

achieved via the passing of syngas over a CuO/ZnO/Al2O3 catalyst30 at 200-300 °C and 50-

100 bar.34,37 The pressure used ostensibly serves to drive the reaction equilibrium in favour 

of the desired products. This reaction may then be described as follows:38 

CO + H2O � CO2 + H2 ΔH°298 = -41 KJ mol-1 (1.2) 

CO2 + 3H2 � CH3OH + H2O ΔH°298 = -50 KJ mol-1 (1.4) 

CO + 2H2 � CH3OH + H2O ΔH°298 = -91 KJ mol-1 (1.5) 

It is necessary to include the WGS reaction as part of this description as methanogenesis 

may occur via CO2 (1.4) or CO (1.5). The best yields for this process are however obtained 

from CO/CO2/H2 syngas mixture; generation via either CO/H2 or CO2/H2 in isolation proceeds 

at lower yield.32,39 
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1.4 Other synthetic routes to methanol 

In addition to the industrially performed synthesis of methanol via the generation of syngas 

a number of other, more direct means of methane oxidation have been extensively 

reported in the literature. The main issue common to all these alternative methods is one of 

selectivity; due simply to the inherent difficulty in achieving alkane partial cf. complete 

oxidation. Alkanes are by nature comparatively stable, whereas the intended products, e.g. 

MeOH are actually marginally more reactive. The C-H bond strength in MeOH is, for 

example, 23 kJ mol-1 less than observed in CH4.40 This then renders the products more likely 

to undergo further unwanted oxidation proliferating the generation of unwanted by-

products. 

1.4.1 Transition metals and their oxides 

A very wide range of transition metals and their oxides (both free and supported) have been 

investigated for use as direct 1 step partial oxidation catalysts. These may be loosely divided 

into those intended for high (10+ bar) and low (~1 bar) operation and which both typically 

require temperatures between 600-800°C. Of those studied FePO4 showed the best 

reported selectivity for methanol, >50 % at <660 K but only achieved a methane conversion 

of 1.2%.41–44 Despite decades of active research it has been shown that such catalysts will 

never likely be viable. This is because gas phase and radical reactions exhibit greater 

influence on product distribution than the metal catalyst surface used under the conditions 

required for catalytic activity.45–47 Further explanation may be found in a number of 

excellent and very comprehensive reviews on the topic.48–54 

1.4.2 Targeting stable analogues 

A number of the reported strategies for facile conversion of methane to methanol actually 

proceed via the intentional formation of closely related methanol analogues, such as esters 

or acids55 which then require further workup to obtain the intended product. 

The best example of this is perhaps provided by Periana et al.
56,57 who demonstrated the 

conversion of methane to methyl bisulphate through use of the bipyrimidyl Pt (II) complex, 

(bpym)PtCl2 (where bpym = 2,2'-Bipyrimidine) at ca. 220°C in H2SO4. (Figure 1.4.1) Despite 
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having been one of the most favourable methane to methanol conversion efficiencies of any 

strategy at 73% this methodology is still ultimately too flawed to see practical usage. As a 

catalytic system its turnover is several orders of magnitude too low, recovery of the 

intended product is both protracted and prohibitively expensive, and the re-oxidation of SO2 

to H2SO4 is neither scalable nor practical.3
 Other analogous catalysts based on Pt(II)42 and 

similar metals Pd(II)55,58,59 and Rh(III)60 have also been reported whilst other work by Periana 

et al. has also seen the use of a similar scheme for Hg(II)61 and Ag(III).62 

 

Figure 1.4.1 - Scheme of the proposed mechanism for the oxidation of methane using (bpym)PtCl2 

Mechanistically this catalytic but short lived process is somewhat analogous to aqueous 

chloroplatinum (IV) catalytic systems as developed by Shilov,40,63 one of the earliest 

examples of C-H activation. This approach has since been further developed more recently 

by Muehlhofer et al.
64,65 whose Pd (II) carbene in trifluroacetic acid (TFA) shows greatly 

extended catalyst lifetime, provides facile product recovery via distillation and operates in 

milder conditions (90°C / 30 bar). 
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1.5 Applications of (mono) ruthenium compounds in 

synthetic chemistry 

1.5.1 General properties 

Ruthenium is a remarkably versatile element which finds wide and varied uses across the 

traditional synthetic disciplines. This is in part due to the wide range of oxidation states it 

can adopt, ranging from Ru-2 in unorthodox lanthanide ruthenides66–68 such as CeRu2, to 

highly aggressive oxidants such as RuO4 wherein Ru is formally RuVIII.69,70 Examples of all 

intermediate oxidation states are known with the singular exception of Ru-1, affording it the 

widest usable oxidation state range of any 2nd row transition metal.70–72  

Along with other d8 metals, some lower oxidation state complexes such as those of Ru (III) 

(d5) and Ru (IV) (d4) possess the potential for both paramagnetism and/or differing spin 

states. Whilst the vast majority of reported ruthenium complexes are low spin (LS), in recent 

years a number of non-low spin examples have been reported.73–75 Of these examples it is 

notable that recent reports have indicated that an intermediate spin did not have the same 

effect on substitutional lability as is observed between iron complexes of differing spin 

states.73 

1.5.2 (Mono) ruthenium (II) – A versatile metallocentre 

The strong optical absorptions of many ruthenium (II) containing species such as 

[Ru(bpy)3]Cl2 (where bpy = 2,2'-bipyridine) has led to the extensive investigation of related 

complexes in recent decades. These have found use as photosensitizers,76–79 imaging 

agents,80,81 and as components of larger systems e.g. synthetic mimics of photosystem II.82,83 

The rich photochemistry of such species has similarly led to their investigation and 

utilisation in molecular electronics84 as both inorganic sensors85,86 and molecular 

switches.87,88 They also find to their usage as photoredox catalysts in their own right.89–92 

Development of photoredox catalysts has been of renewed interest in recent years was the 

subject of a series of recent reviews.93–95 The prior art in the field of ruthenium chemistry as 

a whole ably demonstrates that precise control of the optical, electronic and magnetic 

properties of a ruthenium centre may be readily effected by judicious control of its 
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coordination environment and the steric demands and constraints this may impose on the 

metal centre.96–98 In so doing it is then possible to tune the properties and chemistry of a 

ruthenium centre for a wide range of applications. 

Considering the extensive development of mono ruthenium complexes however, especially 

those of Ru2+, it is surprising how comparatively little is known of the chemistry of related 

dimetallic Ru2
4+ complexes. It follows logically that a dimetallic centre should offer a greater 

scope for electronic tunability and that this consequently might give rise to similarly useful 

reactive activity. This is evident from the numerous enzymatic examples of dimetallic 

metallocentres in Nature and can be readily observed through interrogation of their 

probable electronic structure via computational modelling using density functional theory 

(DFT). 

1.5.3 Ruthenium as a catalytic synthetic tool 

As synthetic tools ruthenium complexes provide catalysts for range of synthetically 

important processes,1 perhaps the most well-known of which are the Grubbs99,100 and their 

related Hoveyda-Grubbs101,102 olefin metathesis catalysts (Figure 1.5.1). Grubbs was jointly 

(with Chauvin and Schrock) awarded the Nobel Prize in Chemistry in 2005 for his work in the 

development two generations of olefin metathesis catalysts. The Hoveyda-Grubbs catalyst is 

a modification of the original 1st and 2nd generation Grubbs catalysts wherein the phosphine 

ligand is supplanted by a chelating pendant ortho-isopropoxy group on the existing 

benzylidene ligand. This has the effect of affording greater stability of the active catalyst but 

at a reduction to the overall rate of reaction as noted in an excellent recent review of the 

area.2 
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Figure 1.5.1 - (Left) Grubbs 1st & 2nd Generation catalysts with their Hoveyda analogues (right) 

Beyond olefin metathesis, ruthenium systems have found diverse applications in the 

selective activation and functionalization of C-H bonds which was the subject of a recent 

review of the area by Dixneuf.1 These predominantly Ru (II) dichloride dimer species such as 

those illustrated below (Figure 1.5.2) provide a means to achieve a means to achieve a wide 

range of transformations. These include: arene and alkene arylation or hydroarylation; 

arene alkylation; electrophilic substitution of arene C-H bond by acylation, sulfonation, 

aminocarbonylation and alkoxycarbonylation; and arene oxidative dehydrogenative cross-

coupling.1 

 

Figure 1.5.2 - Mono Ru catalysts - clockwise from top left: [RuCl2(C6H6)]2, [RuCl2(p-cymene)]2, [RuCl2(cod)]n and 

Ru(O2CMes)2(p-cymene) 
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1.6 Dimetallic Complexes 

1.6.1 Recognition of M-M multiple bonding 

The field of M-M multiple bonding is, by contrast to traditional inorganic chemistry 

relatively young. The development of this field started in the 1960s in response to a number 

of compounds whose properties it was determined could not be accurately rationalised 

under traditional Wernerian coordination chemistry. 

Wernerian coordination chemistry did not account for, nor did it consider, the potential for 

metal-metal interactions even amongst recognised polynuclear complexes. Instead the 

structure of such complexes was rationalised as being of multiple monomeric complexes 

joined via shared ligands, which whilst correct for the complexes he reported, is insufficient 

for rationalising some more complex systems. 103 

The most widely noted of the early examples which provided inconsistent with his theories 

is that of Blomstrand et al.
104–106 and their observations on a compound they believed to be 

of the form Mo3X6. Whilst these reports predate Werners birth they were the subject of 

several editions of his published series Neuere Anschauungen auf dem gebiete der 

Anorganischen Chemie wherein he proposed the structure below (Figure 1.6.1).103 

 

Figure 1.6.1 - Proposed structure of polynuclear Mo3X6 by Werner wherein X denotes a halide 

It was not until the advent of X-ray crystallography and the early experiments by 

Brosset107,108 and latterly by Pauling109 that the first concrete indications of close M-M 

contracts was established. Brosset then even postulated this as potentially constituting a 

bonding interaction110,111 yet in the wake of both his and Pauling’s observations this idea 

was developed further. 
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In 1957, focus on the topic was renewed with the presentation of unequivocal evidence 

presented by Dahl et al.
112 indicating the necessity of a metal-metal bond in Mn2(CO)10. This 

discovery caught the attention of the laboratories of Bertrand and Robinson who in 1963 

then independently reported113–115 [Re3Cl12]3- which, by virtue of molecular orbital (MO) 

analysis, was determined to contain the first instance of a multiply bonded M-M 

interaction.116 

In the years that followed the chemistry of rhenium halides was rapidly expanded, providing 

the first reported instance of a quadruple M-M bond in Re2Cl8 in 1964 (Figure 1.6.2a).117 This 

remained the highest degree bond order reported in an isolated complex until 2005 when 

Power reported the first instance of a quintuply bonded complex (Figure 1.6.2b).118 

 

Figure 1.6.2 - a) Cotton's Re2Cl8 Quadruple bond; b) Power's dichromium quintuple bond 

 

1.6.2 Multiple bonding 

Since the initial description of a formal quadruple bond by Cotton et al. in 1964117 an 

enormous body of work has been done on a significant proportion of the d block, and 

beyond resulting in the addition of thousands of novel compounds to the literature. 

Symmetry dictates that when two transition metals are placed adjacent to one another that 

you will only observe 5 non-zero overlaps of the d orbitals which collectively allow the 

formation of up to a quintuple bond. These positive orbital overlaps occur between pairs of 

equivalent of orbitals on the two atoms, such that where z is defined as the M-M axis is 

possible to observe: a σ-type overlap between a the pair of overlapping dz
2 orbitals; 2 π 
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combinations between equivalent dxz, and dyz orbitals and two δ combinations arising from 

overlap of dxy and dx
2

-y
2 combinations. This is shown graphically below (Figure 1.6.3). Overall 

under Hückel MO theory this would give a nominal σ2π2
4δ2

4 configuration for a formal bond 

order of 5. It is only in low coordinate environments such as that observed in Power’s 

dichromium example that this second δ overlap is practically observed. 

 

 

Figure 1.6.3 - Qualitative M2 2-coordinate MO diagram, of the type reported by Power, 

Despite plausible initial expectations of the two δ orbitals to exhibit degeneracy this is not 

observed in the DFT calculations conducted by Power, who highlighted a 0.41eV energy 

difference which was attributed to the steric constraints imposed by the ligand backbone.118 
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It should be noted however that the dx
2

-y
2 combination is simply too high in energy to 

contribute to M-M bonding at all in many instances and may be omitted from description of 

the frontier orbitals as is the case for 4 coordinate environments as is observed for Re2Cl8 

and all paddlewheel type compounds we will report. In this instance the MO description 

shown above (Figure 1.6.3) is no longer valid and instead MO diagrams of are of the form 

shown in Figure 1.6.4 below.  

 

Figure 1.3.4 - A qualitative MO for a typical 4-coordinate paddlewheel type dimetallic complex 

Note that in addition to the increased separation observed between the two δ bonding 

orbital overlaps of pairs of dxy and d x
2

-y
2, (of which d x

2
-y

2 is now omitted in Figure 1.3.4), the 

HOMO is now the anti-bonding combination of the lower energy dxz
 overlap.  
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1.7 Diruthenium complexes – Chemistry of the MM bond 

As with many dimetal complexes most diruthenium species adopt a paddlewheel 

configuration (Figure 1.7.1) and whilst many bridged and higher order clusters species are 

known, ruthenium generally has a more tightly defined range of coordination environments 

than other 2nd and 3rd row TMs.  

 

Figure 1.7.1 - Schematic of 'paddlewheel' coordination environment 

The structure of these paddlewheel complexes is generally achieved via templation with O-

O bridging ligands, typically carboxylates to form a species of the form Ru2(O2CR)4 and 

subsequent ligand metathesis. 

1.7.1 Ru2
5+ Complexes 

The bulk of the prior art with regards to diruthenium chemistry concerns the mixed valence 

Ru2
II/III state, this is both readily accessible via air stable starting materials via the synthesis 

of Ru2
II/III(OAc)4 as developed by Wilkinson119–121 and also represents the most 

thermodynamically favoured of the available oxidation states.103,122,123 This stabilisation is 

derived from the half-filled HOMOs and the near degeneracy of the π* and δ* orbitals which 

in many instances facilitates a paramagnetic (σ2π4π*2δ*1) configuration. 
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1.7.1.1 O-O bridged complexes – the common starting materials 

The first reported example of a Ru2
II/III complex is that provided by Wilkinson119 for 

Ru2
II/III(OAc)4Cl. Along with the majority of the early reported examples this consisted of a 

simple tetra carboxylate paddlewheel complex with a comparatively short Ru-Ru distance of 

~2.28 Å.103,121 A revised synthesis for this complex was provided by Wilkinson in 1973 and 

may be summarised as below.120 

 

As was noted in the initial report by Wilkinson119 and later confirmed by Cotton121 these Ru2 

(II/III) complexes formed infinite polymeric, zig-zagging chains in the solid state, forming Ru 

– Ru – Cl –Ru – Ru  bridging interactions between neighbouring dimetal centres (Figure 

1.7.2). This arrangement is not notable perturbed by changing the counter ion, however it 

remains possible to isolate non-polymeric diadduct such as [Ru2(O2CR)4L2]X where X is a 

suitably charged counter ion.124 This is often achieved via reaction with AgBF4 or similar salt 

to remove the halide, where after other ligands are free to coordinate in the vacant axial 

positions resulting in the inclusion of axial functionalistaion. Whilst alternative synthetic 

methods utilising microwave heating have in some instances yielded linear chains, there is a 

noted thermodynamic drive towards the zig-zag packing arrangement. 

 
Figure 1.7.2 - Zig-zag packing arrangement observed for Ru2

II,III(OAc)4Cl in solid state 
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1.7.1.2 N-O Bridged complexes 

The synthesis of amidate and hydroxypyridinate (HN(O=C)R) bridge complexes is typically 

conducted via one of three methods, all originating from the corresponding tetra 

tetraacetate: 

Substitution – As with most dimetal complexes, it is often possible to achieve at least partial 

substitution of the dimetal coordination environment by ligand exchange facilitated via 

elevated temperatures. However in the case of weakly binding ligands such as amides this 

strategy is often ineffectual when conducted in the presence of solvent, especially 

methanol, which tends to result in disproportionation and decomposition.103  

Melt reactions – Limited success has been reported when utilising melt reactions with 

sufficiently unhindered amides such as Ru2(HNOCPh)4Cl, however this remains ineffective 

for volatile or bulky ligands.125–128 

Soxhlet scrubbed substitution – A recent report by the Ren group129 indicated they had 

success in thermodynamically driving substitutions to completion via combination of high 

temperatures and the utilisation of a Soxhlet extraction setup. Such a setup is equipped with 

a thimble containing K2CO3 which act as a scrubbing agent by removing the liberated acetic 

acid. On cycling the reaction mixture is continually scrubbed of free acetic acid driving the 

formation of the more weakly bound tetra-amidate. 

As with any complexes with asymmetric donor atoms, N-O bridged complexes can adopt up 

to 4 different structural isomers, however in most instances the preference observed is 

largely dictated by the steric bulk of the ligand. Substituted hydroxypyridines of the form 

Ru2(Xhp)4Cl (e.g. where Xhp = 2-hydroxypyridine) display a clear preference for the (4,0) 

isomer (Figure 1.7.3)128, but where the X substituent is sufficiently bulky the cis-(2,2) is 

readily adopted.128,130 By contrast amidate complexes such as Ru2(HNOCPh)4Cl are almost 

exclusively trans-(2,2),126 but those complexes reported lack the bulk to consider the impact 

of sterics on such a preference. 
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Figure 1.7.3 - Structural isomers, Clockwise from top left: (4,0); Cis-(2,2); (3,1); Trans-(2,2). This notation provides a 

means by which to indate the directionality of the bound ligand in a given isomer. 

1.7.1.3 N-N Bridged complexes 

By contrast to N-O bridging ligands, substitution of N-N ligands is easier, and is generally 

conducted in THF or as melt reactions. Such reactions typically proceed without the need to 

utilise a Soxhlet extraction setup or other methodology to drive the reaction to completion 

besides simply heating. The typical Ru2
II/III(OAc)4Cl starting material used to obtain these 

complexes affords the required tetra-substituted N-N complex in most instances simply by 

elevation of reaction temperature to 160 °C for several days. Intermediate levels of ligand 

substitution can be achieved via moderation of the reaction conditions and reaction 

stoichiometry. 

Non-symmetrical ligands such as amino pyridinates in complexes of the form Ru2(Xap)4Cl 

(e.g. where Xap = 2-(2-methylanilino)pyridinate) which one might expect to exhibit a 

distribution of structural isomers again show a clear preference (4,0). As steric constraints 

increase these can be forced to adopt (3,1) readily in spite of this resulting in unfavourable 

rotation about the M-M axis.131 Modification of the electron donor/acceptor ability of the 

ligand has been shown to lead to a distribution of all four isomers as noted for some 
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perfluorinated derivatives of Ru2(F5ap)4Cl (where F5ap = 2-(2,3,4,5,6-

pentafluoroanilino)pyridinate.131,132 

1.7.2 Ru2
4+ Complexes 

By marked comparison to the extensive body of research on mono ruthenium (II) complexes 

and even those of the related diruthenium Ru2
II/III oxidation state, the chemistry of 

diruthenium Ru2
II/II complexes is poorly represented in the literature. The highly sensitive 

nature of diruthenium Ru2
II/II complexes compounds has often been noted as providing a 

significant barrier to their study.103,133–135 

Only a comparatively small number of Ru2
II/II compounds are known and many of these were 

synthesised indirectly from related diruthenium Ru2
II/III complexes. Common methods to 

achieve this include the use of bulk electrolysis136,137 or via disproportionation reactions in a 

poor solvent.138 Due to the use of indirect, in-situ generation however the clean isolation of 

many reported species was precluded, as was their full characterisation.  

Relative to the more robust complexes of Ru2
II/III, complexes of Ru2

II/II show significantly 

greater thermal instability, and in many instances extreme sensitive towards air and 

moisture.103,139 Consequently, the synthesis of these reactive complexes presents a number 

of additional synthetic challenges. The inherent sensitivity and reactively of these species 

often precludes some traditional post-synthetic purification techniques including column 

chromatography, largely for practical reasons. The propensity for some samples to interact 

deleteriously with some commonly used solvents equally frustrates their clean isolation and 

analysis in some instances.103,139 

The syntheses of complexes of this form are consequently conducted with very significant 

emphasis on extensive pre-purification of starting materials and solvents to minimise the 

potential for side reactions. Additionally the variety of competing interactions present 

during the formation of dimetallic complexes often necessitates the preformation of the 

dimetallic unit via the use of substitionally labile templating ligands such as 

carboyxlates.134,135 Consequently most synthetic pathways to Ru2
II/II(L)x complexes are 

conducted via the preformation of Ru2
II/II tetracarboxylates such as those reported by 

Wilkinson.140,141  
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Typically whilst quoted as Ru2
II/II(X)4, such complexes may exist as solvates, having great 

affinity for Lewis bases which readily occupy the axial positions. Ligands or solvents with 

strong π-acceptor character however have the potential to result in M-M bond cleavage and 

the generation of unwanted monometallic side products, as often occurs in the presence of 

PPh3.103,133,142,143 

1.7.2.1 O-O bridged complexes – the common starting materials 

Despite their common use as starting materials for the synthesis of Ru2
II/II complexes the 

initial literature precedent for these complexes was the subject of some confusion. Initial 

publication of the synthesis of Ru2
II/II(OAc)4 by Wilkinson133 was subsequently shown to be a 

oxo-decomposition product of the form Ru3O(L)6 by X-Ray diffraction studies conducted by 

Cotton & Norman.142,143 It wasn’t until 1984 that the first confirmed example of a Ru2
II/II 

complex, again that of Ru2
II/II(OAc)4 was reported.144 Wilkinson’s initial synthesis via the 

Ru2
II/III analogue and 1 electron reduction via a Grignard reagent was then surpassed by a 

simpler procedure the following year. This method utilised alkali metal salts of the intended 

carboxylate in conjunction with ruthenium blue.140 The wide range of potential competing 

side products135 and the enigmatic nature of the ‘RuCl2’ ‘Ruthenium blue’ cluster species 

from which the target compounds were derived133,134 was the source of several key 

publications in earlier years building toward the above synthetic precedent. Attempts 

however to resolve the structure of ‘Ruthenium blue’, have to date failed to elucidated 

significant further information but it is generally accepted to be a cluster anion source of 

RuCl2.103,134 

 

Several alternative means of obtaining Ru2
II/II complexes from their Ru2

II/III
 analogues have 

also since been published using other reductants such as Zn/Hg amalgams, or in some 

instances other mild acids. The latter of these has no proven mechanism but, in conjunction 

with similar reports, is generally presumed to occur via a disproportionation 

pathway.103,145,146 
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Determining the ground state electronic structure of such complexes was found to be a 

complex and non-trivial problem. The ground state determined by theoretical calculations 

utilising differing levels of theory was the subject of several conflicting reports. Attempts to 

provide supporting evidence in favour of the differing reported ground states via inference 

from other supporting techniques such as EPR and PES which were similarly 

inconclusive.147,148 

Initial calculations under a self-consistent field X-alpha scattered wave (SCF-Xα-SW)149,150 

method contended a general electronic configuration of σ2π4δ2π*3δ*1,151 whilst other more 

contemporary Hartree-Fock (HF) Ab initio simulations147 tended to favour a σ2π4δ2δ*2π*2 

ground state. The later of these more closely correlates with the observed Ru–Ru bond 

lengths in X-ray crystallographic studies.152 The source of this discrepancy is perhaps the 

marked closeness in energy of the δ and π orbitals in these complexes and the differing 

biases of the methods employed. Further to this the relative energetic stability of these two 

orbitals is also known to be strongly impacted by ligand field effects.103 

Attempts to validate either of the above configurations via leveraging alternative techniques 

are frustrated by inconclusive results. EPR153 and PES spectra148 show nothing definitive 

which may indicate something in of itself however both results could equally be attributed 

to the large zero-field splitting associated with these species.140 Variable temperature 

magnetic susceptibility determination, whilst of proven utility in larger analogues, (such as 

long chain carboxylates154), has to date proven equally non-infomative.140
 

Recent outputs from our group have highlighted the effects of added steric bulk on the 

ligand backbone and the L-M-M-L bond torsion this can impose. Increased torsion angle was 

observed to decrease the M-M atomic orbital overlap and results in a shorter than expected 

M-M bond length. In some instances this was even shorter than that of the corresponding 

Ru2
II/III analogue.155–157  

1.7.2.2 N-O Bridged complexes 

Synthesis of Ru2
II/II(NO)4 presents the same challenges as with their Ru2

II/III analogues with 

the additional thermal restrictions inherent to the less thermally robust tetracarboxylate 

starting material. As Ru2
II/II(OAc)4 more readily decomposes on prolonged heating than its 
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Ru2
II/III analogue some additional modifications to the synthetic procedure are often needed. 

A single literature precedent for an NO bridge Ru2
II/II species however that predates even the 

Ru2
II/II O-O bridged complexes, that of Ru2

II/II(mhp)4, (where mhp = 

methylhydroxypyridinate). This is however synthesised from Ru2
II/III(OAc)4Cl.158 Modern 

synthetic approaches rely on melt reactions utilising an excess of ligand or the use of 

stoichiometric quantities of alkali metal ligand salts.  

Structural isomerism amongst hydroxypyridinate bridged NO complexes is largely dictated 

but the incumbent steric bulk of the ligand, choosing primarily to favour trans-(2,2) where 

substituent in the 6- position is large, or polar configurations (4,0) or (3,1) when the 

substituent is small. In the case of (3,1) configurations the unfavourable interaction 

between two ligands is mitigated by the axial coordination of solvent in all reported 

instances. 

Very few examples of Ru2
II/II(NO)4 complexes utilising other ligand types are known, and at 

the time of writing no known amidate complexes have been reported. However, due to the 

increasing interest in Ru2
II/III(NO)4 amidate complexes in the group of Ren in the application 

of such complexes to aerobic catalysis, this may soon change. 

1.7.2.3 N-N Bridged complexes 

The synthesis of Ru2
II/II(NN)4 complexes proceeds via ligand metathesis utilising NN ligands 

such as amidinates, triazenates and naphthyridines (Figure 1.7.4), and is typically facile at 

elevated temperatures. The degree of substitution can also be controlled via stoichiometry 

and moderation of temperature to generate a range of substituted products. Control over 

the degree of substitution allows further post synthetic modification and inclusion of the 

dimetal unit in larger arrays or molecular wires. The synthesis of these complexes may be 

conducted using the alkali metal ligand salt, or in many instances simply via excess ligand 

which in many instance offers cleaner results. Several of the reported Ru2
II/II(NN)4 complexes 

in the literature were also generated via bulk electrolysis from the corresponding, markedly 

more stable Ru2
II/III(NN)4 analogue. 
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Figure 1.7.4 - Common NN Ligand archetypes, clockwise from top: diaryl formamidinate, diaryl triazenate, naphthyridine 

Ru2
II/II(NN)4 formamidinate complexes are diamagnetic having an electronic configuration 

σ2π4δ2π*4 and exhibit the longest Ru-Ru bond lengths observed for Ru2
II/II paddlewheel 

complexes, typically ~2.474 Å. In contrast to carboxylate bridged complexes exposure to 

strong π-acid ligand such as THF and CO does not lead to M-M cleavage and decomposition. 

Instead these ligands bind strongly in an axial position forming a mono adduct. Ruthenium 

amidinates have also been shown to display exceptionally air sensitive. The current 

literature characterisation provided for the only directly synthesised complex of this type, 

Ru2
II/II(DFM)4, where DFM = (ptol)NCHN(p-tol),- by Cotton was not able adequately explain 

this sensitivity.103,139  

Ru2
II/II(NN)4 naphthyridine complexes have garnered significant attention from the groups of 

Kadish and Bear who have investigated the structural property relationship between 

isomers of a range of Ru2
II/II(NN)4  and Ru2

II/III(NN)4 complexes.159 The Ru2
II/II(NN)4  analogues 

are generated  via melt reactions or prolonged reflux in MeOH so as to cause 

disproportionation of the (II/III) starting material to corresponding (II/II).160 

Though only nominally a single atom different, in contrast to the widely reported sensitivity 

of Ru2
II/II(NN)4 formamidinates, a number of the reported triazenates complexes synthesised 

have been air stable.141 Despite their stability in air however such complexes will readily 

form strong bis-adducts with Lewis bases that exhibit strong π-acceptor character such as 

NO and CO whilst they remain unreactive towards pyridine and PPh3.103 
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1.8 Synthetic model systems of complex biologically active 

metallocenters 

Biological systems are typically highly complex in form and operation, as such it is often 

beneficial to be able to model them with simpler synthetic inorganic complexes. This allows 

us to better understand their mechanistic operation, and ideally, to replicate their 

function.161,162 

Simple, small molecule model systems serve a range of functions and are often far easier to 

probe spectroscopically and study than their natural parent systems. Small molecule 

analysis being inherently less complex than that of the study of an entire enzyme or its 

wider protein supported structure which may be several hundred times the size. Small 

model system allows greater flexibility in both their design and synthesis allowing the rapid 

evaluation of steric, electronic and ligand environment effects on the modelled metal core. 

As a result of the wide range of potential applications for such models, they are generally 

divided into one of three types, depending on their intended purpose.163 

1. ‘Speculative models’ allow the inference and deduction of structural or 

compositional data of a given biological system by comparison of available 

spectroscopic data with that obtained for the model complex.164,165 This approach is 

of particular importance where a crystal structure for a given protein or enzyme is 

unavailable or the identity of the active species is otherwise unknown. 

2. Similarly, once the structure of a biological system’s active site is known, 

‘corroborative models’ allow for the further examination and elucidation of 

structure-activity relationships within the site.165–167 This often allows further 

investigation of coordination, orientation and solvation effects on activity and active 

species stability. 

3. The third class of synthetic model system is the ‘functional mimic’; such models are 

often the culmination of extensive modelling work, combining mechanistic and 

structural information to design a model that replicates the functionality of a 

biological system. These models will often be markedly different and more complex 

than speculative or corroborative models, as to achieve functionality it is often 

necessary to consider the influence of the wider protein or enzyme environment. To 



Page 24 

that end influence outside of the first/second coordination sphere need be 

considered and the model adapted accordingly. 

1.8.1 Ruthenium as a functional mimic of biological Iron 

When designing functional mimics, it is often preferable to include some degree of 

metallocenter isolation however, the use of suitable sterically demanding ligands can itself 

result in a marked decrease in catalytic activity due to poor substrate diffusion into the 

active site.168–170 One alternative to this approach is to reduce the steric demand of the 

ligand system and substitute the metal cofactors for chemically related but less reactive 

alternatives. This then affords the potential for greater catalytic activity by better allowing 

substrate access. Given the periodicity of elements the selection of appropriate substitutes 

is trivial, with 2nd row transition metals generally being the substitute of choice. Second row 

transition metals often represent a suitable mid-point between catalytic activity and 

stability, showing a greater degree of kinetic inertness than periodically related first row 

metals. This enables complexes of 2nd row transition metals to often display a degree of 

catalytic activity but under less rigorously shielded conditions than required for their first 

row equivalent. These models then allow the elucidation of the structure-property and 

electronic structural information that may in turn be used to infer the probable behaviour of 

periodically related species. Such an approach is of particular utility where the first row 

transition metal species and its related intermediates are either insufficiently stable for in-

situ analysis or which are spectroscopically silent. 

1.8.2 Catalytic RuNi mimic of FeNi system – Informing mechanistic 

and structural design 

A particularly good example of metal cofactor substitution in a functional mimic can be 

found in recent work by Ogo.171 He and his collaborators reported a [RuNi] hetero dimetallic 

functional mimic of the [FeNi] hydrogenase active site as found in Desulfovibrio gigas (D. 

gigas), a subspecies of the gram negative sulphate reducing genus Desulfovibrio.172 Species 

such as this have been of interest for their ability to couple the reversible oxidation of 

molecular hydrogen to other process via various Ferredoxin cofactors. It is hoped such 

hydrogenases may represent a potential future means of more efficient hydrogen 



Page 25 

production.163,172 Since the solution of the X-ray crystal structure of the hydrogenase from 

D. gigas,
173 a significant number biomimetic complexes have been synthesised. The 

particular significance of the work reported by Ogo et al. is that, whilst direct FeNi functional 

mimics initially proved elusive, by adaption of the model mimic to include Ru his showed 

catalytic activity.171 This became the impetus for a renewed effort towards understanding 

the mechanistic underpinning of the means by which this functional mimic operated. 

Several subsequent DFT studies probing its structure provided significant insight into the 

how the electronic structure of this mimic enables its functionality.174–176 Not only did the 

initial model provide the base for iterative improvement of Ogo’s mimic174,177 but the 

subsequent studies eventually led shortly thereafter to a number of iron based FeNi mimics 

that showed partial functionality themselves.178,179  
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1.9 Methane monooxygenase 

As with many useful chemical processes, the partial oxidation of methane to methanol is a 

well-established process in nature. This particular process is known to occur in a range of 

methanotrophic bacteria that are commonly found in largely anaerobic sediments in 

stagnant water. These bacteria utilise methane evolved from biomass decomposition as 

their primary means of energy uptake.25 Methylococcus capsulatus (M. Caps.) is a prominent 

and well-studied example of such a bacterium which utilises methane in this way, providing 

its sole source of nutritional carbon. The internal conversion of methane to methanol 

provides both a source of energy by its further oxidation to CO2, and also as a means of 

internal energy storage.180 

Methanotrophs such as M. capsulatus achieve the initial conversion of methane to 

methanol by use of an enzyme called methane monooxygenase (MMO), which facilitates 

this reaction under ambient conditions. MMOs are part of a larger class of enzyme termed 

bacterial multi-component monooxygenases (BMMs) which have been of particular 

scientific interest for their potential use in a range of biocatalytic and biodegradation 

applications. 

1.9.1 Enzyme structure 

Methane monooxygenase itself is known to exist in two discrete and differing forms; the 

particulate membrane bound form pMMO, and the soluble form sMMO. The X-ray crystal 

structures of both forms have been solved, revealing a hydroxyl bridged non-heme diiron(III) 

active site in sMMO26 (Figure 1.9.3) and what is thought to be a dicopper core181 in 

pMMO.182 Due to the inherent difficulty of isolating pMMO and the limiting resolution (2.8 

Å) obtained in the better of the two reported crystal structures, the exact identity of the 

active site in pMMO remains unknown and highly contested. Many differing metal cofactor 

configurations have been proposed including mono-,183,184 di-,185 and tri-nuclear186,187 

copper in addition to a number of Fe/Cu mixed clusters.188,189 More recent developments in 

the field have tended to give credence to the proposed dicopper core model as being the 

most accurate of the models proposed,190,191 however this research is still very much on-
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going. As we are primarily concerned with sMMO however this shall not be covered further 

in this review. 

1.9.1.1 sMMO structure and operation 

Structurally sMMO, as with other BMMs, consists of a number of distinct protein subunits 

each with a distinct function: a hydroxylase (MMOH), a nicotinamide adenine dinucleotide 

(NADH) reductase (MMOR), and a regulatory protein (MMOB).192 The structure of sMMO is 

dominated by MMOH, itself consisting of a dimer of three distinct polypeptide chains. The 

chains dubbed αβγ form a hemispherical, handed motif with the larger αβ chains pointing 

outward from the coiled γ chain. Two sets of these motifs are then joined α-α and β-β 

forming an overall pseudo spherical motif with both of the diiron containing α sections the 

located on the same face with the regulatory protein MMOB (B) and reductase MMOR (R) 

able to bind as indicated below (Figure 1.9.1).193 

 

Figure 1.9.1 - Half sites mechanism and structure of sMMO; Hydroxylase MMOH (grey), NADH reductase MMOR (red) 
and regulatory protein MMOB (blue). 

In order to facilitate the intended partial oxidation it is necessary for the various component 

subunits to bind, process and shuttle all four of the required substrates: hydrocarbons, 

dioxygen, electrons and protons. This control is achieved and facilitated by the complex 

interplay between the enzyme subunits’ relative binding affinities and cooperative effects. 
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The structure of MMOH for example is such that redox processes in the α polypeptide unit, 

such as the reductive activation of the diiron core from Fe(III) to Fe(II), strain the protein 

framework in such a way that other remote areas of other bound protein subunits may 

undergo partial re-arrangement. This re-arrangement then serves to selectively gate the 

entry of the larger substrates toward the active diiron core.194 Equally subtle changes can 

affect inter-subunit binding affinity such that protective temporary binding between 

subunits may occur to establish and stabilise intermediate charge separated states. This, for 

example, allows the temporary storage of the substrate electrons in MMOR. Electrons are 

initially obtained from NADH oxidation at a [2Fe-2S]-ferredoxin (FD) cofactor, itself bound in 

a flavin adenine dinucleotide (FAD) cofactor. The consumption of these electrons is coupled 

to hydrocarbon oxidation by the requirement of MMOB to be bound to MMOH. This 

facilitates the structural changes in MMOH required for the shuttling of electrons from 

MMOR-FAD to the active site in MMOH.195,196 There are two main proposed schematic 

explanations for the inter-subunit binding behaviour required to achieve this: the half sites 

model (Figure 1.9.1) and the non-interacting sites model (not shown).197  

Once the various required substrates have been obtained and suitably delivered to the 

diiron active site in the α-chain of MMOH, the catalytic partial oxidation may proceed. The 

proposed catalytic cycle for this overall process is shown overleaf (Figure 1.9.2). 
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Figure 1.9.2 - Proposed mechanism for sMMO catalytic cycle. R indicates involvement of MMOR and at each step the 
regulatory protein MMOB is either bound or required to be (re)bound to MMOH in order for the cycle to progress. PCET 

– proton coupled electron transfer 

In its resting, oxidised state (MMOHox) the diiron core, is (µ2-OH)2 bridged; upon reductive 

activation and the binding of MMOR the active species MMOHred is formed and it is only this 

activated form which exhibits reactivity towards dioxygen. The two labelled intermediates Q 

and Hperoxo (also known as intermediate P) meanwhile perform the actual oxidation of the 

alkyl substrate. These two intermediates have been of particular interest to researchers as 

they both display very differing chemistry. Intermediate Q is known to be the active species 

with respect to methane,198–200 whilst other hydrocarbon substrates (e.g. Et2O) are known to 

interact only with P.201 Despite many years of research however, many elements of the 

mechanism by which this cycle proceeds, including the means by which the O-O bond in 

dioxygen is cleaved, are not yet fully resolved.202 Recent modelling studies on this particular 

point do suggest however, that such a cleavage is most likely homolytic.203,204  
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1.9.2 Active site coordination environment 

Beyond the functional operation of the enzyme, of particular interest to many chemists is 

the geometry and arrangement of the diiron core coordination environment. It is hoped 

that through understanding and suitably mimicking this environment it may then be 

possible to replicate a degree of catalytic activity using small, non-protein bound catalysts 

under ambient conditions. This is a major goal in this field of research, as such 

developments could potentially revolutionise industrial methanogenesis, negating the need 

for the highly energy intensive processes currently employed such as SMR (Section 1.3). 

Both sMMO,. and other related BMMs such as ribonucleotide reductase (RNR) and the Δ9 

stearoyl-acyl carrier protein Δ9
 desaturase (Δ9 D), have very similar active site coordination 

environments: all containing a diiron core ligated by two histidine imidazole rings and four 

carboxylates. Despite this however the coordination environments of these BMMs are 

clearly distinct with the metals exhibiting differing coordination numbers and often ligated 

by a varying number of water and hydroxide ligands; carboxylate binding modes may also 

change from bridging to chelating in differing conditions.205 In the case of MMOH, the 

hydroxylase component of sMMO this environment is as shown below (Figure 1.9.2).

 

Figure 1.9.3 - Active site coordination environment of MMOH (M. Caps) in the active reduced form (a) shown left, and 
inactive oxidised form (b) shown right. 

Crystal structures of two forms of sMMO are known that, that observed in M. Caps. and in 

the closely related methanotrope Methylosinus trichosporium OB3b (M. Trich.). The 

determination of the coordination environments of their active sites has enabled the 

synthesis of a range of model diiron complexes with a view to better understanding their 

functional operation. 
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1.10 Iron complexes designed as MMOH mimics 

1.10.1 Diiron carboxylates 

One of the most numerous classes of early MMOH mimics is based on iron carboxylate 

complexes. These were synthesised under mild conditions by combination of an appropriate 

source of Fe2+, typically as a metal salt, with an alkyl metal salt of the intended carboxylate 

under strictly anaerobic conditions. Given the labile nature of carboxylate ligands and the 

rapid kinetics of ligand exchange observed however, it was quickly discovered that poor 

ligand selection lead to a range of unwanted monomeric and polymeric products. In order 

to successfully synthesise diiron (II) systems, the associated steric bulk of the ligand requires 

tight control.  

Very bulky ligands m-terphenyl ligands e.g. 2,6-bis(4-tert-butylphenyl)benzoate, (Figure 

1.10.1 – Bottom left), may only generate monomeric species as their bulk precludes the 

formation of larger species. In contrast sterically undemanding ligands such as benzoate, 

(Figure 1.10.1 – Bottom right), tend to form polymeric chains. Without any significant steric 

constraints there is no means to control nuclearity.  

 

Figure 1.10.1 - Effect of carboxylate steric bulk on nuclearity of Iron carboxylate complexes. 

The more interesting species however are formed by ligands of intermediate bulk, often 

forming a mixture of structures with differing connectivity. Of those structures formed, the 

paddlewheel complexes formed using less-hindered m-terphenyl ligands was noted to 

provide the most promising model. The coordination environment of such complexes 

resembles the first coordination sphere of the MMOH core (Figure 1.9.3), whilst the bulk of 

the ligands provides significant degree of encapsulation to the dimetal centre. In so doing 
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such complexes partially replicate the hydrophobic pocket observed in nature around the 

diiron core in the protein interior.206 Attempts to synthesise these complexes generally 

resulted in a mixture of the windmill, triply bridged and paddlewheel structures and it was 

found that these may interconvert in solution via carboxylate shifts showing both 

dependence on the axial donor ligands (L) and temperature, with the paddlewheel being 

preferred at lower temperatures (Figure 1.10.2). 

 

Figure 1.10.2 - Inter-conversion of Fe2(O2CArTol)4L2 (where e.g. [O2CArTol]- =2,6-diphenylbenzoate) between three 
differing structures via carboxylate shifts. Note that the centre configuration differs from the discrete trigonal lantern 

conformer shown previously in Figure 1.10.1 which represents a more fundamental reconfiguration. 

The ability to perform carboxylate shifts is critical to the rearrangement of MMOH to 

accommodate dioxygen (Figure 1.9.2) which in addition to formation of high valent Fe (IV) 

species on reaction with oxygen both serve to further validate the use of Fe2(O2CArTol)4L2 

systems as a model of MMOH.205  

1.10.2 Specialised diiron carboxylate MMOH mimics 

One of the complications in both understanding and modelling systems like MMOH is the 

variability inherent to the structures in question. The core of MMOH, buried deep in the 

protein, exists in a highly ordered environment which is extremely difficult to accurately 

replicate in a naked complex. Often there are only subtle changes that differentiate active 

sites in otherwise functionally disparate BMMs. Such changes within the primary 

coordination sphere may include: hydration, overall hydrophobicity, carboxylate binding 

mode, relative geometry, spacing, coordination number and protonation site occupancy. In 

the primary coordination sphere of naked model complexes it remains possible to exert 

some degree of control over such factors, albeit to a far lesser extent that is possible within 

a structured protein. This may be achieved either through ligand pre-organisation or 
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modification of synthetic procedures. Structural and electronic contributions from the wider 

protein environment however are much harder to model or control without over-

complicating ligand design. The following sections explore a number of examples where one 

of more of these considerations been addressed. 

1.10.2.1 Effects of complex hydration 

The addition of water to a model system of the form Fe2(O2CR)4 (where R = ArTol
, or ArFPh) has 

been shown to act to quantitatively shift the equilibrium between the three available 

isomeric forms of such complexes (Figure 1.10.2) strongly toward the windmill 

configuration. This inter-conversion is thought to be facilitated via carboxylate shifts 

induced by H2O coordination.207–209  

The action of H2O in enabling rapid ligand exchange and coordinative reconfiguration 

additionally has a profound effect on the reaction kinetics observed with target substrates 

e.g. O2.210 Complexes of the form Fe2(O2CR)4L2, (where R = as above; L = 4-cyanopyridine or 

4-acetylpyridine) may be formed in when using the respective pyridines as solvents. These 

show a similar bias towards the windmill configuration even in anhydrous conditions 

enabling the effect of hydration to be determined  

 

Figure 1.10.3 – The impact of hydration on the rate of dioxygen activation. 
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Kinetics experiments following the rate of oxygenation of these complexes may be 

monitored by observation of the intensity of the associated metal to ligand charge transfer 

(MLCT) band in the UV-vis region. Such studies show that water exposure had the effect of 

increasing the rate of oxidation by an order of magnitude relative to the anhydrous control 

(Figure 1.10.3).210 

1.10.2.2 Protein environment mimics 

In addition to providing the exact conformational and structural environment for 

metallocenters to perform their required function, proteins provide a protective, 

encapsulating shield that protects the reactive dimetal core. Without this shield, as is often 

observed with attempts at synthesising functional mimics, these metallocenters may 

undergo deleterious hydrolysis or polymerisation reactions leading to their subsequent 

deactivation or decomposition. This can to an extent be alleviated through diligent and 

deliberate choice of ligand (vide supra), however such ligands often only serve to loosely 

shield the immediate core. Even then such shielding may also be negated when the model 

complex is able to interconvert into differing, less well shielded conformations as is the case 

with m-terphenyl carboxylates (Figure 1.10.3).  

In order to improve upon the shielding afforded by existing m-terphenyl ligands it becomes 

necessary to increase the overall size of the ligand, building outward from the central m-

terphenyl motif. Increasing the steric bulk of such ligands however is not without issue, 

practicably only the central phenyl ring of the m-terphenyl unit may be modified as 

modifications to the pendant phenyl rings causes a marked preference toward mononuclear 

Fe species (See Section 1.10.1). The addition of excessive steric bulk, in addition to 

introducing solubility issues, also has the potential to place significant steric constraints on 

the active metallocenter. In some instances this may effectively deactivate the complex by 

forbidding the conformer inter-conversion (Figure 1.10.2) required for catalyst activity. 

Consequently, a degree of flexibility in the added steric bulk was noted to be a critical 

requirement.  

Engineering flexible bulky ligands to encompass the dimetallic core does however have 

serious downsides. Unlike a protein which may gate substrate access to the active site at the 
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dimetal core such behaviour cannot be achieved easily in smaller molecules. As such, the 

use of very bulky ligands may also unintentionally shield the dimetal core from intended 

substrates, severely hindering overall catalyst operation and utility. A balance between 

these competing considerations is then necessary in order to achieve a workable 

compromise. 

 

Figure 1.10.4 – Structure of [Fe2(µ-O2C-[G3])2(O2C-[G3])2(4-RPy)2 where O2C-[G3] = 3,5-bis[[3,5-bis[(3,5-
didodecoxyphenyl)methoxy]phenyl]methoxy]-2,6-diphenyl-benzoate, a third generation dendritic poly(benzylether) 

ligand as developed by Lippard et al. 

One class of molecules which presents an attractive option as shielding ligands are 

dendrimers. Such ligands have been of proven utility in the modelling of other haem 

enzymes169 and have been increasingly used in modelling of non-haem systems170 including 

sMMO.168 The inherent flexibility, both in their physical structure and in the variability of 

their construction make these incredibly useful ligands. They readily facilitate catalytic 

activity and whilst still allowing some substrate access,211 and even stabilise some otherwise 

unstable intermediates and oxygen adducts.212 
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Lippard et al. in particular championed the application of dendritic ligands (Figure 1.10.4) to 

Fe carboxylate MMOH mimics, synthesising a number of dendritically encapsulated versions 

of earlier reported m-terphenyl complexes with a view to studying the effects of such 

encapsulation.168 As expected, whilst the dendritic shell markedly affected the oxygenation 

kinetics, decreasing the rate of gas uptake by over 300-fold,168 the resultant oxygenated 

superoxo- adduct was significantly stabilised. In the naked complexes such intermediates 

are often too unstable to be detected via standard spectroscopic techniques. In contrast this 

method afforded oxygenated species that were stable indefinitely below -5°C. This 

facilitated characterisation of the generated intermediate in-situ via: Mössenbauer, UV-vis, 

Electron paramagnetic resonance (EPR), and X-ray absorption techniques. The ability to 

observe such oxygenated intermediates is of critical importance to the synthetic model 

chemist as their identification and characteristic spectra provide significant insight to the 

mechanisms by which natural systems may proceed.  

1.10.3 Catalysis with carboxylate mimics 

Despite the availability of a number of methodologies to obtain spectroscopically 

observable oxygenated species of the general form Fe2(O2CR)4L2 (vide infra), the use of such 

species for bulk catalysis has yet to be satisfactorily demonstrated. Whilst a number of 

published examples of oxidative behaviour for these species have been reported to date, 

these either involve the use of incorporated substrates as part of the overall ligand 

framework or proceed via stoichiometric rather than catalytic means.  

There are a number of reasons posited, pertaining to both steric and electronic 

considerations, for the elusive nature of such expected catalytic behaviour. The main steric 

argument suggests that substrate access is either largely hindered by the ligand shell or 

that, where such access is possible, the rate at which it occurs is insufficient to achieve 

catalytic activity prior to high valent Fe (IV) re-oxidative decomposition. Additionally, an 

electronic argument posits that intermolecular electron transfer in the bulk state may have 

the effect of largely quenching the population of the active species on a prohibitively short 

timescale, thereby eliminating the possibility of catalytic activity. 
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In order to investigate the oxidative properties of species such as Fe2(O2CR)4L2 a range of 

suitably substituted N-donor ligands (L) were devised including N,N-dibenzyl-

ethylenediamine213 (A) and a range of ortho substituted pyridines214,215 (B) and their 

oxidative properties investigated (Figure 1.10.3).216 

 

Figure 1.10.5 - Partial oxidation and C-H activation of ligand tethered substrates. 

From these studies it was observed that the degree of substrate oxidation was primarily 

dependent on the proximity of the substrate to the diiron core. A marked decrease in yield 

was observed for systems substituted in the meta and para positions of the pyridyl ligand. 

Additionally it was observed that the use of sterically equivalent, but more electron-

donating carboxylate and pyridyl ligands, increased the degree of conversion. This would 

indicate that such modifications may be required to better stabilise a particularly 

electrophilic intermediate.214–216 

1.10.3.1 Other related examples of catalytic behaviour 

Whilst bulk catalysis with non-bound substrates has not been forthcoming, a number of 

closely related complexes have displayed novel catalytic properties. For example it was 

noted that of the early mixed carboxylate and pre-organised N-donor backbone diiron 

complexes [Fe2(μ-OC2CArTol)2(Me3TACN)2](OTf)2 (where TACN = 1,4,7-trimethyl-1,4,7-

triazacyclononane) displayed what was initially thought to be bulk catalytic oxidation. This 

however was not the case; instead a novel means of coupling the catalytic conversion of aryl 
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phosphines to their corresponding oxides and the catalytic ring-opening of THF was 

discovered (Figure 1.10.6).217 

 

Figure 1.10.6 - Catalytic cycle for the coupled oxidation of aryl phosphines and novel ring-opening of THF 

In so far as catalytic oxidative behavior of related species is concerned, save bound 

substrate models the closest reported example is that of a related triiron complex also 

reported by Lippard. This complex facilitated the catalytic conversion of cyclohexane to 

cyclohexanol, but initial studies indicate that the observed triiron cluster was itself not the 

active species.218 The search for this elusive active species however formed the prelude to 

Lippard’s later work on sMMO and related mimics.219 

1.10.4 Diiron complexes containing pre-organised N-donor 

ligands  

Whilst a significant number of diiron carboxylate complexes have been reported in the 

literature over the course of several decades of research into sMMO, there are relatively 

few examples of complexes containing predominantly N-donor ligands. MMOH itself 

contains only two N-donor imidazole ligands coordinated to its dimetal core (Figure 1.9.3). 

Consequently, most attempts to model MMOH have been restricted to the use of tetra-

carboxylates and weak, typically functionalised pyridyl, N-donor ligands. 

The inclusion of additional N-donor ligands results in complexes which are no longer strictly 

biomimetic with respect to MMOH and such complexes often show markedly different 

structural, spectral and electronic properties. These bioinspired complexes exhibit differing 
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coordination stoichiometry, relative orientation and geometry of their dimetal cores whilst 

ligand coordination through a less electronegative atom (N cf. O) results in markedly 

different molecular orbital (MO) energies, and by consequence ground states of different 

configurations.220  

Changes in the distribution and population of MOs can result in a preference for low-spin 

iron complexes and intermediates (cf. high-spin iron as observed for carboxylate rich mimics 

and MMOH itself).219,221 The observed change in spin markedly affects the chemistry of such 

complexes, leading to the formation of intermediates not observed for carboxylate rich 

complexes including the closest known synthetically derived analogue of MMOH 

intermediate Q.219,221 In addition to the observation of this mechanistically important 

intermediate such complexes, despite their differing spin states and non-biomimetic 

structure, remain the only class of MMOH inspired models to achieve C-H and O-H 

activation and partial oxidation of small molecule substrates.219 

1.10.4.1 Models of key intermediates synthesised using pre-organised N-donor ligands 

In 2007, Xue and Que Jr. et al. reported a significantly more active biomimetic model of 

sMMO. The study of this model complex showed it to closely approximate the proposed 

electronic structure of intermediate Q in the catalytic cycle of sMMO (Figure 1.9.2). Initially 

this then saw the development of a synthetic precedent for the diamondoid FeII,II
2(μ-O)2 

core that was proposed via bulk electrolysis of a secondary species and using substituted 

tris(2-pyridymethyl)amine (TPA) ligands giving the overall motif show below (Figure 

1.10.7).221 

 

Figure 1.10.7 - Synthetic precedent of diamondoid Fe2
II,II(μ-O)2 core supported by TPA ligands. R = H, Me, OMe, Et 
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Subsequent developments of this species saw its adaption to mimic the generation and 

chemical behaviour of the previous theorised intermediate in the catalytic cycle P, and its 

conversion to a Q-like species (Figure 1.9.2). The development of this model system 

afforded a complex with a limited degree of catalytic activity towards the desired 

substrates.222 Rather than P itself, it is actually the generated peroxo- intermediate, termed 

P* that is thought to demonstrate this useful activity which is thought to proceed via the 

mechanism (Figure 1.10.8). 

 

Figure 1.10.8 - Reaction scheme showing the synthetic route from model of intermediate P (1) to model of intermediate 
Q (3); shaded oxygen atoms were isotopically labelled to establish their origin and inclusion in products. 

The use of larger, multi N-donor ligands such as TPA derivatives results in the generation of 

complexes that, whilst biomimetic in function, differ significantly from MMOH in structure 

(Figure 1.10.7 cf. Figure 1.9.3). Despite such differences in structure these complexes 

remains some of the most competent, and functional models, published to date.219,221,223 

This then validates the exploration of the use of other, related N-donor ligands and their 

complexes in augmenting our understanding of complex biological systems such as sMMO.  

Unfortunately in the instance of the intermediate Q model cited, the catalytic activity 

reported is still three orders of magnitude lower than corresponding mono iron complexes 

utilising the same ligand backbone. 221,223 In addition the dimetal complex shows very 

limited thermal stability.221,223  
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Building on this collaboration Xue and Que Jr. et al. have since demonstrated that both C-H 

and even O-H activation can be achieved with activities 3 orders of magnitude higher than 

their previous system by moving towards a more open oxoiron [HO–FeIV–O–FeIV=O]3+ 

species. Critically this introduces a terminal Fe=O mode which both opens up the core and 

also facilitates switching from the (S=1) FeIV=O centre to a high-spin (S=2) state. As 

intermediate Q is also theorised to possess high spin, this change was then doubly 

beneficial, as it not only did it provide greater activity but also achieved this in a way that 

more closely mimics the biological system. In spite of such gains however, even the best of 

the current model complexes still utterly pales in comparison to the activity of sMMO 

itself.223 
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1.11 Formamidinate ligands 

 

Figure 1.11.1 – General form of the diaryl formamidine backbone. 

First synthesised in 1853 by Gerhardt,224,225 the synthesis of these compounds has 

undergone a series of evolutions226 culminating in their more convenient synthesis reported 

by Taylor in 1963227. As highly versatile ligands, diaryl formamidinates have been the subject 

of widespread use within organometallic and coordination chemistry,225 and particularly in 

the emergent study of MM multiply bonded compounds.228 Despite being iso-electronic to 

carboxylates, carboxamidates and triazenates, diaryl formamidinates have a proven ability 

to form paddlewheel type complexes with a far wider range of transition and S-block metals 

than any other known ligand, including carboxylates.229 

1.11.1 Use as directing and capping ligands 

Due to the highly substitutionally labile nature of carboxylates, many synthetic procedures 

for the generation of dimetallic complexes start with the parent tetracarboxylate, typically 

of the form M2(RCO2)4Xz (where X = counter ion, z = 0-2 as required). Softer, N donor ligands 

such as formamidinates are often then employed as a means to control and direct 

subsequent ligands substitution reactions. 

Variation of reaction temperature and overall stoichiometry allows control of the degree of 

substitution of parent tetracarboxylate complexes to enable the isolation of the desired 

substitution product i.e. M2(RCO2)4-y(RNCNR)yXz (where y = 1-4; X = Counter-ion, if 

appropriate).138,230–233 Similarly moderation of the steric bulk of the aryl substituent (Ar-R) of 

the ligand, can dictate the cis- or trans- substitution preference for the disubstituted 

product M2(RCO2)2(RNCNR)2Xz.
138 In combination, these strategies can be used to generate 

discrete bridged dimers, and 1-3D coordination polymers. The former strategy enabled the 

generation bridged dimers of the form [M2(RNCNR)3]L1 was have found particular interest as 

bimetallic analogues of the Creutz-Taube ion.231 The directing ability of the second strategy 



Page 43 

has been used extensively in the investigation of molecular wires234–238 and other 

supramolecular assembies.138,233,239,240 

1.11.2 Coordination modes 

As might be expected with a binding moiety that is iso-electronic with carboxylates the 

primary coordination modes of diaryl formamidinates are the same: monodentate (η1-N), 

chelating (η1, η1-N,N’), and bridging (μ-η1, η1-N,N’) modes (Figure 1.11.2). As with 

carboxylates, of these three chelating (μ-η1, η1-N,N’) and bridging (η1, η1-N,N’) are generally 

preferred. This is due to the 4e- (cf. the 2e- of the monodentate) binding interaction 

observed and the greater stability this provides to the resultant complex. It is further 

possible to strongly influence the predisposition toward bridging or chelating behaviour via 

modification of ligand steric demands and electronic donor/withdrawal effect(s) of the aryl 

substituents.241 

 

Figure 1.11.2 - Amidinate binding modes: monodentate (η1-N), bidentate chelating (η2-N,N’) and bimetallic bridging (μ-
η1, η1-N,N’) 

Despite their simplistic appearance, the coordination behaviour of diaryl formamidinates is 

however not non-trivial. This becomes particularly apparent when they are converted to 

their respective alkali metal salts, which is common practice for the subsequent synthesis of 

dimetallic transition metal formamidinate complexes.103 These salts have been observed to 

display particular sensitivity the conditions used beyond that characteristic of typical 

organic-alkali metal salts.241 It thought that such sensitivity is a consequence of the highly 

variable binding configurations these compounds can adopt (vide infra). 241–246  
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1.11.3 Unusual Coordination modes 

Cotton reported the first structure of a formamidinate-alkali metal salt, [Li2(μ-

DTolF)2(Et2O)2] (where DTolF = N,N'-bis(p-tolyl)formamidine) ,in 1997.229 This came some 20 

years after their widespread use in the synthesis of dimetallic complexes both by himself 

and others since the late 1970s. Cotton’s sole rationalisation for the 20 year delay in the 

structural characterisation of these widely used reagents was the difficult in isolating a 

suitable crystal prior to rapid loss of associated ethereal solvent. It seems highly unlike that 

this presented the only barrier to the isolation of such complexes. More recently, the groups 

of Junk and Jones241–246 have indicated that the coordinative flexibility of these species may 

have a significant negative impact on the stability of such salts.  

 

Figure 1.11.3 – Less common amidinate binding modes: Asymmetric N,N' chelation (η1, η1-N,N’); Asymmetric N,C=N(π) 
chelation (η1, η2-N,C=N’(π); and N,Ar-chelating, N’-bridging (η1, η6-N,Ar). 

In addition to the more typical, expected binding modes shown previous (Figure 1.11.2) 

there are several published examples of formamidinates having adopted strained or 

otherwise unexpected binding modes in place of that expected (Figure 1.11.3). In most of 

the reported instances, these more unusual binding modes are chiefly observed with low 

valent alkali metals or where the coordination environment is already otherwise 

constrained.  

The distortions observed are usual manifested via deviation from the expected symmetrical 

chelating (η2-N,N’) and bimetallic bridging (μ-η1, η1-N,N’) modes as evident from bond 

distances in the solid state. These deviations typically include a break in the otherwise 

expected symmetrical N-C-N bonds of the amidinate backbone, indicative of retention of 
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the N=C-N’ double bond observed in conjunction with elongation of one of the N-[metal] 

contacts. The configuration observed is then intermediate between a monodentate 

interaction (η1-N), and that of a bidentate chelating (η2-N,N’) configuration. Differentiation 

of the N-C-N’ bonds of the ligand implies that this requires a break in the charge delocalised 

configuration of the bound ligand, whilst retaining some formal donation. The source of this 

retained donation may be characteristic of the N’ lone-pair (η1,η1-N,N’) or from the now 

retained C=N’(π) bonding orbital (η1, η2-N,C=N’(π).244 In the extreme case of the latter (η1, 

η6-N,Ar) from one of formamidinate aryl rings may be observed in preference to 

coordination of the N’ nitrogen. The tantalum complex MeTaCl-[C6H11NC(Me)NC6H11]2 

provides perhaps the best example of the asymmetric, imino N-donating (η1, η1-N,N’) 

binding mode (Figure 1.11.4).247 

 

Figure 1.11.4 - Asymmetric N,N'-lone pair donation (η1, η1-N,N’) in the complex MeTaCl-[C6H11NC(Me)NC6H11]2 

Structurally characterised examples of the related η1, η2-N,C=N’(π) coordination modality 

are significantly less well documented in the literature. Perhaps the best example of this 

behaviour is found in the complex [Li{N(2,6-(R)2C6H3)C(H)N(2,6-(R)2C6H3)}(pmdeta)] (where 

pmdeta = N,N,N’,N’’,N’’-pentamethyldiethylenetriamine) reported by Junk and Jones.244 For 

R = Me, two isomeric structures are observed within the asymmetric unit, (Figure 1.11.5) 

whilst for R = iPr only the E-anti conformer is observed. In both instances the C=N(π) 

interaction is shorter than might be expected if no bonding interaction were present with 

C=N(π) – M distances of 2.448(15) (Me) and 2.596(13) (iPr).244 



Page 46 

 

Figure 1.11.5 - Two observed isomeric structures of [Li{N(Ar)C(H)N(Ar)}(pmdeta)] observed within its crystallographic 
asymmetric unit. 

The η1, η2-N,C=N’(π) binding mode is also observed for some mono- and diruthenium 

complexes, several examples of which are found in the work of Nagashima and coworkers. 

These include the diruthenium species [(η5-C5Me5)Ru(µ2-iPrNC(Me)=NiPr)Ru(η5-C5Me5)][X] 

(where X= B(C6F5)4 or PF6)248–250 (Figure 2.1.6), and the related mono ruthenium complexes 

of the form (η5-C5Me5)Ru(amidinate).251 This then serves to demonstrate the capacity of 

these unorthodox binding modes to significantly contribute to the stabilisation of larger 

transition metals and that such behaviour is not merely restricted to alkali metals. What 

makes these examples of particularly interest however that they are formally Ru2
4+ and as 

such this has potential to impact those compounds reported herein (Chapter 3).103,249,250 

 

Figure 1.11.6 - Structural example of N-C-N(π) - Metal donation in the complex [(η5-C5Me5)Ru(µ2-iPrNC(Me)=NiPr)Ru(η5-
C5Me5)][X] 

The last of these three rarely-observed binding modes, (η1, η6-N,Ar), is particularly unusual 

in that it demonstrates that significant complex stabilisation also may be inferred from 

persistent π–Ar interactions. Whilst π–Ar are not uncommon with some ligands it remains 
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unusual to observed this mode of coordination in preference for the N,N’ modes typically 

observed. Adoption of this coordination mode has typically only been noted when using 

ligands of significant steric bulk with smaller metals.243 The example shown previously 

(Figure 1.11.3) is that of the complex [K(η6:η1-Ar)(η6:η1-Ar)][K(THF)2] (Where Ar = N,N’-

di(mesityl)formamidine); this chemistry has since been extended to related potassium246 

and their sodium and lithium analogues.243 

One of the downsides to this capacity of amidinates to adopt multiple binding modes, 

especially in low oxidation state metal complexes is that the nuclearity and nature of the 

coordination environments in resultant species are often very hard to predict. In many 

instances where conditions have not been optimised for a given product this results in a 

mixture of products being obtained. Cotton in particular observed this for a number of 

transition metal formamidinate complexes of V,252,253 Ti,254 Co,255 Cr,256 W,256 Rh,257 Fe258–263 

and Ru.122,138,139,264 Such studies indicated that whilst one might expect a M(L)2 or M2(L)4 

configuration, others including M(L)3, M2(L)3, M2(µ-L)2(L)2 and other higher order clusters 

may also commonly be formed. 

  



Page 48 

1.12 Summary 

In this introduction we have provided an overview of the wide range of themes that will be 

central to the content of this thesis. The industrial and societal context for this work is found 

in the need to both improve the efficiency of current industrial practise regarding critical 

highly energy intensive processes and to provide a means to diversify the supply of suitable 

fuels to society. 

The previous research efforts to achieve significant gains in efficiency to current industrial 

practise have been summarised and the chemistry of dimetallic complexes introduced. 

Particular focus has been made of the chemistry of diruthenium complexes and the 

biological potential template for such chemistry provided in nature by MMOs.  

Research efforts towards the development of functional small molecule mimics of sMMO 

are then summarised with a particular focus on the factors and features that both enable 

the isolation and function of these reactive compounds. Finally the chemistry of the 

formamidinate family of ligands is introduced along with its uses in inorganic transition 

metal coordination chemistry and the highly variable nature of its interactions with differing 

metal centres.  

In subsequent chapters we will present a range of compounds inspired by the sMMO 

biological system, and intended to further the goal of achieving a functional catalytic mimic 

of this enzyme. The complexes reported will primarily (Chapters 2-3) contain formamidinate 

ligands as introduced herein, however Chapter 4 will address the diruthenium chemistry of 

the closely related amidate ligands. 
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2 Attempted synthesis of diiron (II,II) ‘NN’ tetra-

formamidinate complexes 

2.1 Aims 

• To develop a synthetic methodology suitable for the general synthesis of a range of 

diiron (II,II) tetra-formamidinate complexes based on the two published literature 

examples. The general form of the target complexes is shown below (Figure 2.1.1): 

 

Figure 2.1.1 - General structure of the target diiron (II,II) tetra-formamidinate complexes; 3 of the 4 ligands are shown in 
a truncated form for clarity. 

• To explore the impact of varying electron donating or withdrawing aryl substituents 

of the supporting formamidinate ligands on the resultant physical, spectroscopic and 

electronic properties of the diiron complexes formed. 

• Where target species are isolated, to test their viability and activity of the as aerobic 

oxidation catalysts for the partial oxidation of simple organic substrates such as 9,10-

dihydroanthracene. 
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2.2 Introduction 

2.2.1 Developing biologically inspired diiron complexes 

The previous work of Xue, Que Jr. and others in developing functional models of the key 

reactive intermediates Q and P* (Section 1.10.4) has demonstrated the value of N-donor 

ligands to better understand the function of sMMO (Figure 1.9.2). 202,221–223,265  

 

Figure 2.2.1 - Mono iron (II) complexes that show catalytic activity towards alkane supported by pre-organised tetra-
dentate N-Donor ligands such as TPA (Left) and ‘iso-bpmen’ (Right) (where bpmen = (CH2Pyr)MeN(CH2CH2)NMe(CH2Pyr)) 

Mono-iron complexes (Figure 2.2.1) closely related to their previous dimetallic analogues 

(Figure 1.10.7) utilise similar pre-organised ligands but have further been shown to be 

effective catalysts for the oxidation of alkanes.266–270 These mono-iron complexes retain the 

best published catalytic activity for iron (II) alkane oxidation to date.270  

Despite being more bio-inspired rather than biomimetic these complexes provide both 

excellent models of key intermediates and also allow replication of intended catalytic 

functionality. The proven utility of these complexes provides a precedent to explore the 

chemistry of other related N-donor coordinated diiron Fe2
4+ systems, such as those 

incorporating amidinate ligands. 

Biological systems such as sMMO require a significant degree of coordinative flexibility from 

their ligand environment in order to achieve their function207,210,219 (Section 1.10.2.1). 

Consequently, the use of other highly adaptable ligands such as amidinates presents a 

particularly attractive synthetic target. Amidinates are isoelectronic to carboxylates, yet 

have a greater proven utility as a ligand with a wider range of metals,229 behaviour which is 
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a potential consequence of the highly variable coordinative binding modes they can adopt 

(Section 1.11.2). 

2.2.2 Previous synthetic precedents 

To date the literature only contains two structurally characterised Fe2
II,II(formamidinate)4 

complexes: Fe2(DPhF)4, where HDPhF = N,N’-Diphenylformamidine and Fe2(μ-DPhBz)2(η2-

DPhBz)2, where HDPhBz = N,N'-diphenylbenzamidine.258,259 The former, Fe2(DPhF)4, is 

synthesised via the related FeCl2(H[amidinate])2 di-adduct by addition of MeLi. The latter, 

Fe2(μ-DPhBz)2(η2-DPhBz)2, by contrast is synthesised directly by combination of FeCl2, 

H[amidinate] and MeLi in one step.258,259 Both of these compounds are highly distorted in 

the solid state, yielding structures significantly different to most transition metal 

paddlewheel structures.  

In the solid state the Fe2(DPhF)4 contains two pairs of trans-orientated ligands each biased 

towards opposing ends of the metal-metal vector whilst the Fe-N bond lengths display 

contraction between on ligand pair and elongation towards the other (Figure 2.2.1). This 

results in a pseudo-tetrahedral coordination environment at the iron centres and serves to 

reduce the overall symmetry from D4h to D2d. A recent computational study by Berry 

suggests this is the probable product of Jahn-Teller distortion of a proposed orbitally 

degenerate π3
 ground state as would be observed for Fe2(DPhF)4 under D4 symmetry.271 

 

Figure 2.2.2 – Distorted geometries of diiron (II,II) tetraformamidinate complexes 1. (Left) Distorted paddlewheel 
structure as observed for Fe2(DPhF)4; (Right) A more typical paddlewheel complex, as observed for related complexes 

Ru2
4+ reported in chapter 3.  

The use of the more bulky HDPhBz ligand in Fe2(μ-DPhBz)2(η2-DPhBz)2 had been intended to 

favour a more regular paddlewheel structure than had been observed previously for 

Fe2(DPhF)4. In place of a more regular paddlewheel structure however a second highly 
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distorted structure was instead obtained (Figure 2.2.3) that shows closer relation to a 

windmill-type (Figure 1.10.2) configuration. 

 

Figure 2.2.3 - Distorted geometries of diiron tetraformamidinate complexes 2. (Left) The distorted diiron core of Fe2(μ-
DPhBz)2(η2-DPhBz)2. The bonding interactions shown as dashed bonds were deemed intermediate in character. 

The bonding in this distorted structure differs significantly from that typically seen in square 

pyramidal or trigonal bipyramidal 5-coordinate environments and is contorted such that the 

only symmetry element it possessed in the reported structure is a centre of inversion.259 

Four of the Fe-N contacts are approximately equidistant at 2.065(3) Å whilst the fifth 

contact (shown dashed) is considerably longer at 2.477(4) Å, yet still clearly contributes to 

the overall coordination environment of the iron centre.259  

Modification of the steric bulk of the ligand backbone has been noted by others to heavily 

influence both the observed binding mode of the ligand and the nuclearity of the product 

obtained.272–277 Suitable examples of this may be found in the work of Hessen and Sciarone 

who have reported a range of mono-iron FeII(amidinate)2 compounds with related but more 

sterically demanding benzamidinate ligands.272,274–277 Similar examples of even more bulky 

bis(amidinate) complexes incorporating a meta-terphenyl backbone have also been 

reported by Arnold and Schmidt.278 In reference to the targeted synthesis of Fe2(DPhBz)4 

however it is clear that modification of the steric bulk of the ligand alone is still insufficient 

to selectively obtain the target Fe2
II,II(formamidinate)4 in a paddlewheel configuration 

complex. Consequently the effects of changes to other reaction variables need be 

considered if this configuration is to be obtained selectively. 

2.2.3 Formation of unwanted by-products 

The chemistry of iron (II) salts in combination with amidinates and their low valent alkali 

metal salts has been observed to be highly complex,262,263,272 with wide ranging products 
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dependant on reaction conditions, stoichiometry, ligand steric constraints and choice of 

alkyllithium reagent used.225,258,259,261,262,272,274–277,279  

During previous work by Cotton towards the synthesis of  diiron paddlewheels of the form 

Fe2(amidinate)4,258,259 he reported on a range of unwanted additional products may be 

obtained under non-optimal conditions. These by-products included:  

The mono-nuclear products FeII(amidinate)2
272,274–277

 and FeIII(amidinate)3;225,261,279
 the 

dinuclear Fe2
I,II(amidinate)3 lantern260,280,281 (Figure 1.10.1) and Fe2

II,II(µ-L)2(L)2 windmill 

complexes259 (Figure 2.2.3); and other higher order clusters such as 

Li2(amidinate)2Fe4O4(amidinate)6
262 and Fe4

II(O)(amidinate)6
263 (Section 2.3.5.3). The last 

two of these were observed on exposure to excess lithiation and moisture/oxygen 

respectively. 

Of these the most interesting are perhaps the lantern complex product Fe2
I,II(DPhF)3 and the 

cluster product Fe4
II(O)(amidinate)6. The former of these despite similarities in appearance 

to the target species Fe2
II,II(DPhF)4 differs very significantly, but both are remarkable high 

spin (HS) complexes with very different electronic structures. Fe2
II,II(DPhF)4 shows an overall 

spin of S=4, but its’ electronic structure remains poorly understood despite recent efforts at 

modelling it.271 The electronic structure of Fe2(DPhF)3 was not discussed in the initial 

publication of its synthesis but subsequent DFT modelling103,281 has shown it to adopt a 

majority σ2π4π*2σ*1δ2δ*2 ground state with a rather exceptionally high spin configuration of 

S = 7/2 in agreement with that originally proposed by Cotton on the basis of EPR.280 these 

are some of the highest spin diiron complexes known in the literature.281 

The cluster species of the form Fe4
II(O)(amidinate)6 that have been adopts a distorted basic 

beryllium acetate structure which are curiously unevenly bridged about the edges of the 

Fe4O tetrahedron at its core. Such arrangements have more generally been compared to 

that of diamond in connectivity and are observed for a range of transition metal.103,282 This 

diamondoid structure, by comparison with other coordinative arrangements such as the 

paddlewheel or lantern appears to be significantly more thermodynamically stable. 

Considering the greater shielding of the metal core this configuration provides such 

determination does not seem reasonable. That such species have been reportedly form on 
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exposure to oxygen and/or moisture would also tend to indicate that were it unstable it 

would most probably decay further monomeric products as is typically observed on the 

oxidative decay of other configurations such as the paddlewheel. Similar exposure of 

Fe2
II,II(DPhF)4 was noted to result in an immediate deep burgundy colour followed almost 

immediately by decomposition to an intractable brown solid. The identity of this 

decomposition species is however highly unlike to resemble that of this cluster, which 

retains iron as iron (II) despite the postulated presence of dioxygen in its formation. 

2.2.4 Development of other synthetic routes to 

Fe2
II,II(formamidinate)4 complexes 

2.2.4.1 General considerations 

A survey of the literature provides evidence of a wide range of potential factors that are 

thought to influence the formation of the products obtained by reactions between 

amidinates, their alkali metal salts and the corresponding salts of iron (II). However, the 

action of many of these factors remains poorly understood. The products obtained typically 

display extreme sensitivity to air, moisture, temperature and the use of many common non-

donor solvents.103,258,259,262,263,275,283 In addition the study of related mono-iron (II) amidinate 

species, some of which are postulated to be potential intermediates to the target 

Fe2
II,II(formamidinate)4 complexes, have also further strongly suggested many such species 

display significant sensitivity towards ambient light.272 

Amongst the transition metal amidinates he studied, Cotton indicates that the chemistry of 

diiron amidinates is amongst the most complex seen.103 Such comment was made in regard 

to both the highly varied nature of the products obtained and the often extreme impact on 

selectivity observed on minor changes in the conditions and reagents used. Cotton 

proposed for example, that selectivity was influenced by both the alkylating agent used to 

generate the formamidinate salt,258–260 the effects of non-stoichiometric lithiation, and the 

presence of even trace amounts of water or oxygen.262,263 He noted that switching lithiating 

agent from n-butyllithium to methyllithium was sufficient to favour the formation of the 

Fe2
II,II(amidinate)4 paddlewheel geometry as opposed to the Fe2

I,II(amidinate)3 trigonal 

lantern (Figure 1.10.1) The formation of the latter was thought to be the result of 
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nucleophilic attack of the iron centre by the alkyllithium resulting in further reduction of the 

iron and β-elimination of a alkene.258,260 Despite this however, a later revised synthesis 

toward the same reported lantern complex utilises MeLi under closely related conditions 

indicating the alkyllithium choice probably is not the sole determining factor for his earlier 

observation.280 

The study of related compounds such as diiron tetracarboxylates284 has similarly indicated 

that the use of different metal salts, or even differing morphologies of the same metal salt, 

can have a profoundly affect the products obtained. Similar investigation with 

formamidinates has not been reported in the literature, however this may reasonable be 

considered as another potential variable with which to improve selectivity. Whilst Cotton 

chiefly used FeCl2 many more contemporary reports suggest better results are often 

obtained with iron (II) triflate.266,268–270,284,285 

2.2.4.2 Consideration of kinetics effects 

Relative to later transition elements such as ruthenium the kinetics observed for reactions 

of iron (II) are very fast, with reactions typically proceeding readily at room 

temperature.229,258 Whilst this has the advantage of potentially enabling rapid synthesis, it 

also has a logical and more negative impact on the stability of products on isolation and 

storage at similar temperatures. This was observed previously as both a tendency towards 

further reaction and equally in the extremely rapidly decomposition of such species on 

exposure to unfavourable conditions.258,259,262,272,274–277  

The rapid kinetics observed similarly frustrates synthetic efforts in limiting the lifetime of 

potentially critical reaction intermediates. Where the isolation of such intermediates is 

critical, as reported for the synthesis of Fe2
II,II(DPhF)4 (Section 2.3.3) this may limit the utility 

of some synthetic methods but reports of related compounds indicate this isolated instance.  

The more rapid kinetics of the generation of diiron complexes also predisposes such 

complexes to a similarly enhanced rate of decomposition in unfavourable conditions relative 

to later transition metal congeners, often rendering their analysis more difficult. The short-

lived nature of such intermediates species similarly frustrates efforts to improve the 

mechanistic understanding of this chemistry.  
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Most synthetic methods for the generation of M2(amidinate)4 transition metal complexes 

require the use elevated temperatures; most commonly this is achieved as either solid state 

melt reaction or via high temperature ligand metathesis reactions in solution. This is 

typically required to provide many of the somewhat more kinetically inert later transitions 

metals to react. The low thermal stability of the iron (II) products however precludes the use 

of such approaches and necessitates the devising of suitable low temperature alternatives.  

The most commonly practised alternative is to use alkali metal salts of the intended ligands 

in combination with the metal salt directly. However, such efforts are often then greatly 

complicated by the presence of highly reactive alkali metal species present in solution. 

258,259,262,263,275,283 
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2.3 Results and discussion 

2.3.1 Ligand synthesis 

2.3.1.1 General synthetic considerations 

 

Figure 2.3.1 - General scheme for formamidinate synthesis. H[DMOPhFm]: R = OMe, R’ = H; H[4FPhFm]: R = H, R’ = F; 
H[3,5-(CF3)2PhFm]: R = CF3, R’ = H; H[TMOPhFm]: R = R’ = OMe. 

The chemistry of formamidinates is well established,225,226 with the literature precedent227 

for their synthesis not having seen significant development since the 1960s.225–227 A typical 

contemporary synthesis of formamidinates may proceed as shown (Figure 2.3.1).286,287 The 

synthesis of some amidinates with more strongly electron withdrawing functionality often 

cite the need for the addition of a catalytic amount of acetic acid.286,287 

The role of acid catalysis in the synthesis of amidinates was studied extensively in the 50s 

and 60s by Roberts288–291 and latterly Taylor227 who both sort to rationalise these disparate 

approaches though study of the involved reaction kinetics (Figure 2.3.2).225,227 

 

Figure 2.3.2 – Rate constants of forward and reverse reactions during amidinate synthesis. 

In the absence of acid catalysis two equivalents of most amine substrate are rapidly and 

exclusively converted to the N,N’-disubstituted formamidine indicating the rate constants k2 

and k1 are fast and show no strong dependence on [H+]. The inclusion of excess 

orthoformate does not affect the observed selectivity which would further suggest that k2 

>> k1. The reverse reaction rate k-2 for the reformation of the imido ester by contrast was 

found to be slow but showing high dependence on [H+].  
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Under non-acid catalysed conditions where k2 > k1  >>> k-2 kinetic control was observed, 

with the second reaction (2) proceeding effectively irreversibly. The removal of liberated the 

ethanol from (2) by boiling the reaction mixture to dryness further serves to drive the 

equilibrium of reaction (2) in favour of the amidinate.  

The inclusion of acid catalysis is of great utility in synthesising N,N’-disubstituted 

formamidinates for which the un-catalysed yield are unexpectedly low227,292 such as those of 

highly fluorinated anilines.286,287,293,294 Acid catalysis renders reaction (2) highly reversible 

with k-2 ≈ k2 resulting in thermodynamic control. Isolation of the target amidinate in good 

yield shows strong dependence on the selective and progressive removal of liberated 

ethanol. Exclusive selectivity towards the amidinate is lost under acid conditions and some 

formation of the imido ester is consistently observed.227  

2.3.1.2 Choice of formamidinate ligands 

 

Figure 2.3.3 - Formamidinate ligands synthesised. 

Choice of ligands was informed by a comprehensive review of the literature with the 

intention of providing a range of electron withdrawing and donating substituents which 

have not been utilised previously with Fe2
4+, Ru2

4+ or Ru2
5+ complexes. It was intended that 

this novel range of ligands would allow a direct comparison between complexes of both 

metals, and separately between the two differing oxidation states of ruthenium. 
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Similar independent studies of the effects of ligand substitution on molecular properties 

have been conducted previously for a wide range of related metal tetra-formamidinates 

such as those of Mo2
4+,295 Rh2

4+,296 Ni2
4+,297 Cr2

4+,298 and Ru2
5+.228 However, corresponding 

data for Fe2
4+ and Ru2

4+ formamidinates is notably absent from the literature.103,228 

2.3.1.3 Synthesis of formamidinate ligands 

The synthesis of all required ligands was readily achieved in good to excellent yield (Section 

2.5.4) via direct reaction of 2 equivalents of the suitably substituted aniline with 1 

equivalent of triethyl orthoformate at reflux (160 °C) for a period of 4 hours (Figure 2.3.1). 

All of the ligands synthesised are novel with the exception of H[4FPhFm] which has been 

reported previously. Since their initial synthesis the ligand H[3,5-(CF3)2PhFm] has since been 

reported elsewhere.299  

Despite the literature precedent286 for the required inclusion of acid catalysis with highly 

fluorinated aniline substrates, this was not observed to be necessary for those synthesised 

and used in this study.  

Formally solventless, the only liquids present are the orthoformate and the ethanol 

liberated in the course of the reaction. Once the reflux has completed both of these may be 

readily boiled off by removal of the reflux condenser which serves to simplify the work up 

and increase overall yield due to the added thermodynamic drive in favour of the intended 

products.  

Isolation of the product formamidinates was achieved via recrystallisation of the residual 

solid from the reaction using hot hexane. This afforded H[DMOPhFm] and H[4FPhFm] as 

large off-white crystalline blocks in excellent yield. Both ligands were then further purified 

by sublimation at reduced pressure.  

The remaining ligands including the bulky H[TMOPhFm] and the highly fluorinated H[3,5-

(CF3)2PhFm] showed significantly reduced solubility in most solvents and necessitated some 

variation from the work described previously. The fluorinated ligand H[3,5-(CF3)2PhFm] 

required recrystallisation from hot toluene due to its low solubility in hexane and its high 
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melting point limited the utility of sublimation in further purification. In practice sublimation 

was only effective in removal of more volatile starting materials. 

The most bulky ligand H[TMOPhFm] despite differing from the related H[DMOPhFm] by 

only two Ar-OMe groups (Figure 2.3.3) was unexpectedly insoluble in all common solvents. 

It displayed show only very sparing solubility in MeCN and DMSO. It is postulated that the 

additional Ar-OMe functionality serves to sterically inhibit Ar-O-Me bond rotation, limiting 

both conformational freedom and disrupting intermolecular hydrogen-bonding. Added 

steric pressure may lower the ability of the oxygens of the pendant methoxy- groups to act 

as H-bond acceptors lowering solubility in polar solvents whilst  

The insolubility of H[TMOPhfm] rendered all attempts at recrystallisation ineffective. 

Attempts at purification by sublimation were frustrated by its low volatility and simply 

resulted in decomposition at temperatures in excess of 250 °C. However, Mass 

spectrometry and elemental analysis indicate the intended product was cleanly obtained 

(vide infra). 

2.3.1.4 Ligand characterisation 

Compounds were identified and chiefly characterised via 1H, 13C 19F NMR spectroscopy and 

HR-ESI-MS, whilst individual batch purity was assessed via determination of variations in Mp. 

IR data were found to be of little diagnostic utility and is subsequently only provided for new 

compounds.  

Observed Mp deviation between batches was well within experimental error, typically <0.15 

°C and in accordance with literature values where present. The exception to this was 

H[4FPhFm] which was consistently observed to have a Mp of 146.1 +/- 0.1 °C which is 

significantly higher than the reported literature value of 99-100 °C.286 This disparity is 

attributed to the reference sample being of lower purity, as has been noted previous for 

other related formamidinate samples produced via differing methods.289,290 Samples 

produced via acid catalysed synthetic routes are often contaminated by small quantities of 

the imido ester which serves to depress the reported Mp value relative to an authentic 

sample. 
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2.3.1.5 X-Ray crystallography 

Crystal structures of the ligands employed were not routinely obtained as those of similar 

compounds are prevalent throughout the literature. However, crystals of the novel ligand 

H[DMOPhFm] suitable for X-Ray diffraction were adventitiously isolated from 

recrystallisation mixtures intended to isolated the targeted dimetallic products. These 

crystals were obtained from DCM/n-pentane mixtures via vapour diffusion on storage at -18 

°C for one week.  

 

Figure 2.3.4 - Crystal structure of H[DMOPhFm]. Hydrogen atoms are omitted for clarity and thermal elipsoids are drawn 
at the 50% probability level.  

In good accord with a great number of similar reported formamidinates, H[DMOPhFm] 

forms a distantly H-bonding dimer in the solid state.300–303 As is generally observed for such 

compounds neither of the aryl rings is co-planar with the R-NCN-R bridge, giving the 

compound a significant distinct torsion of 73.3° between the planes of the aryl rings. 

Observed C=N (1.286(2) Å) and C-NH (1.349(3) Å) bond lengths are in well within the ranges 

typically observed for closely related compounds300–303 and show close particularly good 

agreement to that reported for the related m-OMe substituted compound.303 Complete 

crystallographic information for H[DMOPhFm] is included in appendix B-1.  
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2.3.2 Synthesis and characterisation of FeCl2(H[amidinate])2 

diadducts 

The primary utility of FeCl2(H[amidinate])2 di-adducts is as more soluble forms of the 

corresponding parent M2+ salts, and as starting materials for the synthesis of related 

dimetallic complexes.103,255,304,305 As starting materials the pre-coordination of the 

formamidinates serves as a means to control overall stoichiometry and influence the 

coordination mode of the ligand.305 This synthetic approach to dimetallic complex synthesis 

has seen the development of analogous formamidinate di-adducts of a range of other 

metals including cobalt,255,304,305 nickel103,304 platinum305 and manganese103,304 for 

subsequent use in the targeted synthesis of their dimetallic tetraformamidinate analogues. 

2.3.2.1 Synthetic methodology 

 

Figure 2.3.5 - General scheme for the synthesis of FeCl2(H[amidinate])2 di-adducts 

With a view to replicating the synthetic procedure for Fe2
II,II(DPhF)4 published by 

Cotton258,259 which utilises the mono iron species FeIICl2(DPhF)2 as its starting material a 

range of analogous FeCl2(H[amidinate])2 di-adducts were synthesised using the previously 

described ligands H[DMOPhFm], H[4FPhFm], H[TMOPhFm] and H[3,5-(CF3)2PhFm]. A 

general scheme for the formation of these adducts is provided above (Figure 2.3.4) 
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The formation of the target diadducts proceeds via reflux of a suspension of FeCl2 and the 

appropriate ligand in toluene for 24-48 hours. The progress of the reaction was monitored 

via the mass spectrometry technique MALDI-TOF-MS (see Section 2.3.2.2). The previously 

reported length of time for which this suspension was held at reflux (5 hours) was found to 

be insufficient for generation of the target species with the ligands employed. After 5 hours 

the reaction mixtures were observed by MS to contrain the corresponding mono-adduct in 

addition to the intended products FeCl2(H[DMOPhFm])2 (I) (Figure 2.3.6) and 

FeCl2(H[4FPhFm])2 (II). 

Extension of the time the suspensions were held at reflux from 5 to 24 hours facilitates the 

complete conversion to the intended di-adducts. Any remaining residual free ligand was 

then removed via sublimation under reduced pressure to yield FeCl2(H[DMOPhFm])2 (I) and 

FeCl2(H[4FPhFm])2 (II) cleanly. These products were obtained in good (>80%) yield as an off-

white/cream coloured solids. Further heating of the reaction mixture was not found to 

provide any further increase in the yield. 

It is noted that attempts to generate similar di-adducts via alternative methods such as the 

use of melt reactions, have been previously reported for other formamidiante ligands but 

were found to present additional complications due to the inclusion of oily by-products.258 

In contrast no such complications were observed using the modified methodology described 

above. 

The attempted synthesis of FeCl2(H[TMOPhFm])2 (III) and FeCl2(H[3,5-(CF3)PhFm])2 (IV) 

provided some additional complications, arising chiefly from the significantly lower solubility 

of the parent ligands in toluene even at elevated temperatures. The lower solubility of both 

ligands and products caused a significant reduction in the observed rate of adduct formation 

and effectively precluded clean isolation of (III) or (IV) from reaction mixtures containing 

residual ligand and mono-adduct impurities via post-synthetic work-up. 

Extension of the reflux period to 48 hours provides some further degree of conversion in 

favour of the di-adduct products (III) and (IV) but a mixture of the mono- and di- adduct 

products is still consistently obtained for both (III) (Appendix A-1-2) and (IV). Further 
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extension of the reflux conditions is not observed to result in significant further change prior 

to eventual decomposition of the products. 

The use of more soluble forms of FeCl2, such as Fe4Cl8(THF)6 was explored as a means to 

improve upon results obtained with commercial FeCl2. However, this was not observed to 

have a significant effect on the product distribution obtained implying that ligand solubility 

plays a more significant role in the progress of the reaction. 

2.3.2.2 Choice of Mass spectral technique - MALDI-TOF-MS 

MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass 

spectrometry) was used extensively in the work reported herein as its features provides one 

of the valued and well suited means of analysing air sensitive species of which we are 

aware.  

Most of our target compounds are neutral, non-volatile, and cover a wide 200-2500 m/z 

range. The use of a ‘soft’ ionisation method also enables the identification of the parent ions 

of the analysed specie, which in turn then in turn greatly aids in the monitoring and 

optimisation of reaction conditions. Avoiding the use of hard ionisation techniques also 

avoids the complications of fragmentation and also provides higher sensitivity than 

alternative techniques such as FAB and ESI.  

Unlike some other methods the ability to introduce samples in the solid state is also of great 

advantage as this allows the preparation of solid, matrix-incorporated samples on the metal 

target within the protective environment of the glovebox. Combination of this and the 

ability to transport the target under argon (in a secondary sealed vessel) served to minimise 

the potential for samples to decompose prior to analysis.  
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2.3.2.3 Characterisation of FeCl2(H[amidinate])2 diadducts 

The products obtained were identified primarily via MALDI-TOF-MS and the isotopic 

distributions of the product parent ions compared to those calculated using IsoPro 3.1 (a 

freeware isotopic distribution calculator).306  

FeCl2(H[DMOPhFm])2 (I) and FeCl2(H[4FPhFm])2 (II) were obtained as free flowing off-white 

microcrystalline solids and identified by MALDI-TOF-MS by their [M-Cl] ions at m/z = 723.4 

and 555.2 respectively. The isotopic distribution patterns obtained for (I) (Figure 2.3.6) and 

(II) by MALDI-TOF-MS spectra agree very closely with that calculated with IsoPro (vide 

supra). As (I) and (II) were chiefly intended as intermediates species rather than particular 

target compounds of interest they were not subjected to further analysis.  

 

Figure 2.3.6 - Complete conversion to the target di-adduct (I) under extended reflux for 24 hours. Expansion shown of 
the target m/z. 

As discussed previously neither FeCl2(H[TMOPhFm])2 (III) nor FeCl2(H[3,5-(CF3)2PhFm])2 (IV) 

were cleanly isolated but the presence of the target species was identified via MALDI-TOF-

MS (e.g. Appendix A-1-1) as the [M-Cl]+ ion at m/z = 843.5 and 1026.9 respectfully. In 
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addition to the intended parent ions the presence of significant free ligand and the 

corresponding mono-adducts was also observed.  

2.3.3 Attempted synthesis of Fe2
II,II(formamidinate)4 complexes via 

FeCl2(H[amidinate])2 intermediates 

 

Figure 2.3.7 - Reaction scheme for the attempted synthesis of Fe2(DMOPhFm)4 (V) and Fe2(4FPhFm)4 (VI). The synthesis 
of the analogous compounds utilising the last two ligands was not attempted due to issues with synthesis of the 

associated starting materials (vide infra). 

The methodology published by Cotton for the synthesis of Fe2(DPhF)4, (where HDPhF = N,N’-

Diphenylformamidine)258 and synthetic efforts to replicate this chemistry with other ligands 

are summarised in Figure 2.3.7. For Cottons published example, that of H[DPhF] (where R = 

R’ =H) on addition of 2 equivalents of MeLi a fine microcrystalline precipitate of an 

undefined but synthetically critical intermediate was reported. Successful isolation of the 

target compound Fe2(DPhF)4 was indicated to be contingent on the timely isolation and 

immediate re-dissolution of this intermediate in a 50:50 THF:toluene mixture. The reactive 

intermediate was noted to be unstable both in the initial ethereal reaction mixture on 

standing and on isolation in the solid state.258,259 
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2.3.3.1 Synthetic methodology 

The synthesis of Fe2(DMOPhFm)4 (V) and Fe2(4FPhFm)4 (VI) was attempted in a similar 

fashion to that reported for Fe2(DPhF)4, utilising the previously synthesised diadducts 

FeCl2(H[DMOPhFm])2 (I) and FeCl2(H[4FPhFm])2 (II).  

Attempts to synthesis the target tetra-formamidinates (V) and (VI) start with the suspension 

of the diadduct starting materials (I) and (II) respectively in diethyl ether and the cooling of 

these suspensions to 0 °C in an ice bath. Addition of MeLi to these suspensions did not 

result in the generation of a precipitate of the unstable intermediate observed by Cotton. 

Attempts were made to isolate the intermediate by removal of solvent, but MALDI-TOF-MS 

of the resultant solid indicated decomposition to unidentified low mass species. 

As noted by Cotton for the HDPhF analogue, the intermediate formed after addition of MeLi 

is highly unstable and its precipitation is integral to the success of this reaction under the 

reported procedure. Small differences in the aryl substitution between the ligands used 

(Figure 2.3.8) appear sufficient to adversely increase the solubility of the ligands and 

preclude the isolation of the reactive intermediate. 

 

Figure 2.3.8 - Comparison of formamidinate ligands used, herein (top) and previously by Cotton (bottom). 
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Attempts were made to induce precipitation of the critical intermediate via use of minimal 

initial solvent (<5 ml total volume) and the further cooling of the reaction to -78 °C following 

addition of MeLi similarly failed to yield the described precipitate. 

Further modifications to the procedure including the use of different the reaction solvent 

systems and the attempted use of other alkyllithium reagents such as nBuLi compounds 

similarly failed to provide an evidence of a precipitate. 

In the absence of observable precipitation the reaction procedure was modified to enable 

monitoring of the reaction via mass spectrometry. Samples were taken for MALDI-TOF-MS 

immediately after addition of MeLi, at 10 minute intervals thereafter, and on removal of all 

volatiles in vacuo at the end of the experiment.  

The residual solid from the reactions was then immediately extracted into a minimal volume 

of 50:50 THF:toluene and layered with n-pentane with the intention of inducing re-bulk 

crystallisation. Despite continued and repeated efforts the only crystals suitable for 

structural characterisation via X-Ray crystallography obtained were those of the parent free 

ligand of (I) and (V) -  H[DMOPhFm]. 
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2.3.3.2 Characterisation of resultant product mixtures 

 

Figure 2.3.9 - FeCl2(H[DMOPhFm])2 (I) after addition of MeLi at t=0 showing the formation of a new lower mass ion 
corresponding to a m/z loss approximating that of a further –Cl loss. 

MALDI-TOF-MS samples taken immediately after the addition of the alkyllithium reagent, 

indicate that the peaks corresponding to the starting diadducts (I) and (II) respectively begin 

to rapidly decay in the initial few minutes of the reaction whilst a new secondary peak 

indicative of loss of chlorine from the parent ion was briefly observed at the slightly reduced 

m/z values of m/z = 686.2 and 520.1 respectively. After 2 hours, the only observed m/z ions 

in MS are those of low mass decomposition products indicating that the species 

corresponding to these new m/z ions are similarly unstable in the reaction media, and on 

attempted isolation in the solid state. 

Cotton proposed that the unknown reactive intermediate was likely of the form 

[Fe(amidinate)2Cl2]2-, but owing to the instability of the species was unable to provide and 

structural characterisation to support this.283 As there is no indication of the new parent m/z 

ion having broadened or doubled to indicate the formation of a M2+ species it was 
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postulated that this species may instead be that of the corresponding bis(amidinate) (Figure 

2.3.9).  

 

Figure 2.3.10 - Postulated unstable reactive intermediate as inferred from MALDI-TOF-MS spectra following MeLi 
addition 

It is postulated that the interconversion of the diadduct to the bis(amidinate)may proceed 

via abstraction of two N-H protons, followed by the elimination of LiCl, both of which might 

reasonably be expected to occur on addition of suitably non-hindered alkyllithium reagents. 

The effective change in ligand binding mode from monodentate η1-N to chelating η2-N,N’ 

(Figure 2.3.11) also allows iron to adopt a pseudo-tetrahedral configuration for which it 

shows a distinct preference.103,258,259,272,274–277 Further, the decomposition of bis(amidinate) 

iron complexes of this type in solution is not without precedent, as similar complexes such 

as FeII[tBuC(NCy)]2 are known to display significant light sensitivity.272 

Subsequent work by the groups of Hessen and Sciarone would tend to support the theory 

that the bis(amidinate presents a more plausible rationalisation of the observed unstable 

intermediate. Since Cotton’s initial publication Hessen and Sciarone have identified and 

structurally characterised a range of closely related mono-iron amidinate compounds that 

exhibit comparable coordination environments (Figure 2.3.11).272,274,275,277 This work also 

serves to further highlight the extreme reactivity and instability of these compounds, which 

in most instances was what lead to the adventitious isolation of these novel species. 
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Figure 2.3.11 – Illustration of differing hapticity and bridging connectivity reported for intermediates towards the 
formation of MII

2(amidinate)4 complexes for iron and chromium. Aryl (R) and amidinate backbone (R’) functionality is 
omitted for clarity. 

Cottons di-adducts (A) have been described previously (vide supra). Hessen reported the 

related paramagnetic complex FeII[tBuC(NCy)]2 (B) for which both synthesis and products 

displayed significant sensitivity to ambient light.272 Hessen and Sciarone later reported 

complexes such as [{PhC(NAr)2}FeIICl(μ2-Cl)Li(THF)3] which maybe isolated only in donor 

solvents, decaying to the related (B) type compound on standing in non-donor solvents or 

by reaction with some alkylating agents such as LiCH(SiMe3)2.275 Similarly, Cotton reported 

that the complex Cr2
II,II(μ2-Cl)2(DXylF)2(THF)2 (where DXylF = N,N’-bis(2,6-xylyl)- 

formamidinate) may be isolated utilising THF as the reaction solvent, whilst again a (B) 

product is obtained where toluene is utilised instead.283 

Both the initial (B) complex and those later described by Hessen and Sciarone such as 

FeII[Dipp)]2 (where Dipp = N,N’-Bis(2,6-diisopropylphenyl)benzamidinate) are also highly 
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paramagnetic, matching that observed by Cotton. Hessen and Sciarone further showed that 

these compounds are capable of supporting highly strained geometries and high spin state 

iron. Square planar274 and 5-coordinate complexes277 high spin (S = 2) FeII complexes of this 

form have since been reported and structurally characterised. In both instances the steric 

demands of the ligands are thought to be central both to the enforcement of such 

conformers and relative selectivity and stability of the target products.274,277 

2.3.4 Attempted synthesis of Fe2
II,II(formamidinate)4 complexes via 

direct methods 

 

Figure 2.3.12 - Summary of synthetic efforts towards the generation of novel diiron (II) tetra-amidinates 

In his attempts to reduce the distortion observed in the diiron core of Fe2(DPhF)4 Cotton 

proposed the synthesis of the more bulky benzamidinate complex of Fe2(DPhBz)4 (where 

HDPhBz = N,N'-diphenylbenzamidine)259 Unexpectidly however, in place of the intended 

paddlewheel complex the distorted windmill species Fe2(μ-DPhBz)2(η2-DPhBz)2 was 

obtained instead.. 

In contrast to the published procedure for Fe2(DPhF)4 however, the published synthesis of 

Fe2(μ-DPhBz)2(η2-DPhBz)2  shows no dependence on the isolation of a precipitated reactive 
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intermediate. Consequently, this was deemed the most suitable synthetic on which to base 

further attempts towards the generation of Fe2(DMOPhFm)4 (V). 

Cotton’s reported synthesis of Fe2(μ-DPhBz)2(η2-DPhBz)2  proceeds via direct combination of 

FeCl2 and the free benzamidinate followed by the addition of MeLi at -77 °C. On addition a 

sharp colour change from yellow to red/brown was observed, and the reaction then slowly 

allowed to warm to room temperature. It is indicated that it is necessary to remove a small 

amount of an unknown solid on warming, followed by the need to rapidly filter the mixture 

prior to generation of an unknown precipitate. However, as the nature of these species and 

a more precise indication of the required timings of these steps is not well defined these 

elements complicate efforts to accurately replicate the procedure.  

Attempts to synthesis Fe2(DMOPhFm)4 (V) under the conditions published by Cotton were 

unsuccessful and did not induce a similarly rapid colour change to a red/brown mixture, but 

a distinct yellow -> orange/brown colour change was noted. Further, on warming to room 

temperature and prolonged standing no particulate solid or precipitate formation was 

observed and as such it was not possible to remove these species as indicated in the 

methodology.  

Analysis via MALDI-TOF-MS provided the primary means to follow and characterise the 

residual solid from the reactions which was consistently observed to contain a mixture of 

disparate products. These mixtures included a species at m/z = 1444.4 that was consistent 

with a postulated THF solvate of (V), Fe2(DMOPhFm)4(THF) (Mmonoisotopic = 1444.5). This 

product was consistently observed in combination with several other products whose m/z 

ions ranging from 1000-2135 but the identity of which could not be readily resolved. Further 

characterisation was precluded as it was not possible to cleanly isolate individual products 

from the mixtures obtained and synthetic efforts moved to optimise the reaction conditions 

in favour of the postulated THF solvate of (V).  

2.3.4.1 Optimisation of product conditions 

Despite attempts to optimise a wide range of reaction variables the same series of products 

was consistently obtained, with only differences in their relative proportions noted. As 
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intractable product mixtures were obtained, no yields for these reactions could be 

determined. 

On replication of published conditions the product mixtures were initially thought to include 

Fe2(DMOPhFm)4(THF), a solvate of (V) observed by MALDI-TOF-MS with m/z = 1444. Efforts 

to optimise the reaction conditions to favour the clean isolation of this product were 

unsuccessful.  

Subsequent experimentation using 2-Me THF, and in the absence of THF, eventually 

disproved the initial assignment of the m/z = 1444 peak as Fe2(DMOPhFm)4(THF). A 

tentative alternative assignment is therefore provided (Section 2.3.6) for all major product 

species (m/z = 1129, 1444, and 2131) as representing a series of increasingly large poly-iron 

(II) cluster products. 

The products obtained are postulated to be the result of thermodynamic control trending 

towards the largest and most thermodynamically stable cluster species (m/z =2131) 

Fe4
II
(O)(DMOPhFm)6 (IX). The identity of this species was confirmed by X-Ray 

crystallography and was observed to adopt the known low energy basic beryllium acetate 

structure.263,282 Unlike previously reported structures of this type for iron amidinates263 the 

observed structure is not distorted and shows regular bridging behaviour as has been 

previously reported for related Zn, Co and Mn complexes.263 Two separate structures of (IX) 

were determined; however only one was of sufficient quality for publication. 

Despite variation of iron (II) salt and alkyllithium used no clear dependence of any of the 

major product m/z species was observed. This contrasts strongly with that previously 

reported for the related complex Fe2
II(DPhF)4

258,259 and with other previously reported 

complexes utilising the same HDPhF ligand.258–263,280,281 In the chemistry examined herein 

reaction temperature and time were ultimately observed to have the most significant 

impact on the distribution of the cluster products obtained.  

Prolonged exposure to donor solvents and trace moisture was noted to significantly alter 

the distribution of the products obtained. Product mixtures containing predominantly the 

lower mass products at m/z = 1129 and 1444 assigned as Fe3
II,II,I

(O)(amidinate)3 (VII) and 

Fe3
II
(O)(amidinate)4 (VIII) respectively were observed to favour the formation of (IX) on 
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extended contact with THF. It was further noted that exposure of such reaction mixtures to 

trace moisture similarly favoured the formation of (IX) even in samples isolated in the solid 

state. Trace water content has been cited as a driving force towards clusters of similar form 

to (IX) from dizinc tetra-amidinates, however iron analogues are by contrast proposed to 

form via exposure to oxygen.263 Conduction of solvent sensitivity studies (Section 2.3.5.7) 

within a securely oxygen free glovebox environment indicate that such chemistry proceeds 

does in fact proceed via H2O rather than O2 as previously reported.263 Such transformation 

has never previously been noted to proceed in the solid state, nor on prolonged contact 

with other donor solvents such as THF however a precedent for such sensitivity can be 

found in related bis(amidinate chemistry) of iron275 and dichromium tetra-amidinates.283 

With a view to aiding further development of synthetic method development towards 

Fe2
II,II(formamidinate)4 complexes a comparative analysis of the reaction variables test with 

the previous available literature is provided in the following sub-sections. 

2.3.4.2 Variation of the iron (II) salt starting material 

Attempts to modify the reaction to utilise alternative metal salts such as Fe4Cl8(THF)6,307 

Fe(OTf)2·xMeCN284 and Fe(OAc)2
308,309 were then attempted with the intention of providing 

a means to selectively isolate a single product associated with the 1444.4 m/z (Figure 

2.3.12). 
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Figure 2.3.13 - Initial reaction conditions utilised for initial metal variation studies. 

The use of Fe4Cl8(THF)6 or Fe(OTf)2·xMeCN was not found to significantly alter the major 

products formed compared to FeCl2 nor the relative distribution in which they were 

obtained. The use of Fe(OAc)2 by contrast yielded only low m/z decomposition products. The 

drying of Fe4Cl8(THF)6 yields a more soluble polymorph of FeCl2. As the use of this 

polymorph showed no significant advantage over commercial FeCl2 however its use was 

discontinued in favour of the commercial alternative. 

The use of Fe(OTf)2·xMeCN was noted to result in the formation of few lower valent low m/z 

species compared to the other salts. For example, no indication of the formation of the 

corresponding mono-iron diadduct FeII(OTf)2(DMOPhFm)2 was observed via MALDI-TOF-MS. 

Deliberate attempts to form diadducts analogous to (I) by refluxing of the free ligand with 

Fe(OTf)2·xMeCN or Fe(OAc)2 further fail to yield such species and instead yield the 

bis(amidinate) (Figure 2.3.13). 

In agreement with that noted in the study of diiron tetracarboxylates by Lippard, the most 

synthetically useful iron starting materials are Fe(OTf)2·xMeCN and FeCl2. The former shows 

comparable utility to metal perchlorates without the associated safety implications284,310 

whilst the latter has been shown in related mono iron bis(amidinate chemistry to facilitate 

the formation of otherwise unstable reactive intermediates.274 
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Figure 2.3.14 - Scheme of attempted synthesis of analogues of (I) using different metal salts 

2.3.4.3 Pre-formation of lithium amidinate salts 

The first major deviation from the published method that was explored was the generation 

of the alkali metal formamidinate salt prior to addition of the iron (II) salt rather than the 

reported one-pot synthesis.259 This was done to minimise the potential for nucleophilic 

attack by the RLi on the Fe (II) centre and the formation of reduced species containing Fe2 

(I,II)260,280 or Fe(0)275
 via reductive β-elimination of an alkene. 

Synthetic attempts conducted in this manner have previously been reported261,279 to yield 

the oxidised tris-substituted mono-iron species FeIII(DPhF)3. In contrast to such reports no 

evidence of the analogous species FeIII(DMOPhFm)3  was observed in synthetic attempts 

towards (V) (Figure 2.3.14). 
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Figure 2.3.15 - Scheme of initial reactions utilising differing alkyllithium reagents. (Top) The formation of the mono-iron 
tris-substituted species FeIII(DMOPhFm)3. (Bottom) The formation of the reduced diiron (I,II) trigonal lantern product 

Fe2
I,II(DMOPhFm)3. Excess starting materials present after the reactions generating unintended side-products are 

omitted for clarity. 

2.3.4.4 Variation of the Alkyl lithium reagent 

The use of MeLi, nBuLi or tBuLi in combination with H[DMOPhFm] was not observed to 

significantly alter the identity, or distribution, of the major products obtained under the vast 

majority of conditions tested contrasting strongly with previous reports by Cotton.258–

260,262,280 

Under deliberately aggressive conditions, (e.g. addition of nBuLi or tBuLi at 0 °C cf. -78 °C,) 

the inclusion of a species with a m/z ion consistent with the β-elimination product 

Fe2
I,II(DMOPhFm)3 was observed in the product mixture (Figure 2.3.15). This was however 

only ever noted as a minor product (Appendix A-2-2), even under conditions further 

modified to intentionally favour its formation (e.g. use of a 3:2 ligand:metal stoichiometry.) 

No formation of the β-elimination product Fe2
I,II(DMOPhFm)3 was observed where the 

addition of the alkyllithium was conducted under more typical conditions at -78°C. This 

contrasts with an initial report by Cotton for the synthesis of Fe2
I,II(DPhF)3 from 

FeIICl2(DPhF)2 conducted under very similar conditions.260 A subsequent report however 

provides a revised synthetic approach to this complex which eschews the use of nBuLi 

entirely in favour of MeLi.280 
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More recent reports from the groups of Hessen and Sciarone on related bulky mono-iron 

bis(benzamidiante) complexes suggest that sensitivity towards some alkyllithium reagents 

such as nBuLi,274,276,277 and MeLi272 may be offset by provision of sufficient steric bulk from 

the ligand. In some instances they also report the use of other more bulky non-nucleophilic 

bases such as lithium diisopropylamide (LDA) and lithium bis(trimethylsilyl)amide (LiHMDS) 

which despite their non-nucleophilic nature do in some instances still result in the formation 

of β-elimination products.275  

2.3.4.5 Impact of the use of sodium amidinate salts 

In addition to the use of differing alkyllithium reagents, the corresponding sodium salt 

Na[DMOPhFm] was also generated via reaction with NaH in THF and its impact on the 

products obtained explored Figure (2.3.15). 

 

Figure 2.3.16 - Reaction scheme for the attempted failed synthesis of X and synthesis of Y using Na[DMOPhFm]. 

As might be expected for these more reactive species the largest poly-iron species 

Fe4
II
(O)(DMOPhFm)6 (IX) is obtained almost exclusively in combination with FeCl2 or 

Fe(OTf)2·xMeCN. Attempts to replicate similar chemistry with Fe(OAc)2 show only low mass 

products postulated to be indicative of decomposition. 

The two starting materials FeCl2 and Fe(OTf)2·xMeCN despite both showing the singular 

presence of (IX) by MALDI-TOF-MS vary significantly in appearance. Reactions using the 

former display and immediate yellow -> deep green colour change on addition of the 

sodium salt. The latter retains its initial yellow colour, turning orange over the course a few 

minutes in a manner consistent with the generation of (IX) observed with alkyllithium 

reagents. 
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The identity and nature of the strongly green coloured species obtained via use of FeCl2 is 

not readily apparent by MALDI-TOF-MS which shows only (IX). Experimental observations 

however match closely with reports of the formation of FeIII(amidinate)3 species as 

published by Kilner279 and later by Cotton261 potentially indicating that the Fe (II) present 

may have been oxidised to a corresponding Fe (III) species. Despite repeated attempts no 

crystals of this green product suitable for X-Ray diffraction could be obtained. 

2.3.4.6 Achieving control of the product distribution obtained 

During extended reactions where the yellow/orange mixture of iron and alkali amidinate 

salts were allowed to stir for 16-24 hours, the higher mass product (IX) was observed to 

dominate the product distribution obtained. Reactions stopped by evacuation of all volatile 

components in vacuo and extraction into DCM after shorter time periods (1-16 hours) 

showed increased population of the lower mass products proposed as 

Fe3
II,II,I

(O)(amidinate)3 (VII) and Fe3
II
(O)(amidinate)4 (VIII). Selectivity for (VII) was further 

enhanced by extension of the time taken to warm the reaction mixture from -78 °C to room 

temperature to 1-3 hours and the use of 1:1 metal:ligand stoichiometry. 

Preventing further reaction of isolated samples mixtures containing mostly (VII) and (VIII) 

proved more difficult that expect as both readily react further to yield (IX) as the primary 

product on prolonged exposure to donor solvents such as THF. This may be observed by 

comparison of MALDI-TOF-MS spectra for the same sample made and allowed to stand in 

THF and DCM (Appendix A-2-3 + Appendix A-2-4) for 3-4 hours. The authenticity of the DCM 

sample was confirmed by comparison to a MALDI-TOF-MS sample prepared in toluene with 

which it was consistent.  

A similar trend towards (IX) was observed for samples isolated in the solid state that were 

subject to contact with trace moisture over the course of 1 month (Appendix A-2-5). The 

source of this trace moisture was thought to be residual moisture adsorbed on the glass of 

the some sample vials. Removal of such trace water was common practise with reaction 

vessels by heating via blow-torch under high vacuum but such rigorous drying was not 

always possible with sample storage vials. 
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Similar trends have previously been reported for analogous transition metal 

M2
II(amidinate)4 complexes (where M = Zn, Mn or Co) which interconvert to their 

corresponding M4(O)(amidinate)4 on exposure to oxygen or moisture.263 Where such efforts 

have been applied to diiron analogues of these however, differing distorted structures were 

obtained.263 In contrast to such reports, we report the structure of the first symmetrically 

bridged iron (II) complex of this form (IX) (Section 2.3.6.3). 

The presence of donor solvents such as water and THF is known to facilitate the rapid 

coordinative reconfiguration of diiron carboxylate complexes; this was shown by Lippard to 

significantly enable reactivity with biologically relevant substrates such as dioxygen.210 

Consequently, the potential to undergo coordinative rearrangement is of critical importance 

for biological modelling. In the instance of (IX) such rearrangements appear irreversible as 

the product obtained shows greater thermodynamically stability than the parent species 

(VII) and (VIII). 
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2.3.5 Characterisation of poly-iron (II) cluster species obtained 

during the attempted synthesis of Fe2(DMOPhFm)4 (V) 

2.3.5.1 MALDI-TOF-MS 

Assigned compound ID Maverage 
Mmonoisotopic 

[M+] 
[M-Cl] 

FeII(DMOPhFm)2 686.5 686.2 - 

FeIICl2(H[DMOPhFm])2 757.5 756.1 721.2 

FeIII(DMOPhFm)3 1001.9 1001.3 - 

Fe2
I,II(DMOPhFm)3 1057.7 1057.3 - 

Fe3
II,II,I(O)(DMOPhFm)3 1129.6 1129.2 - 

[Li(THF)4][FeII(DMOPhFm)3] 1297.3 1296.6 - 

Fe2
II,II(DMOPhFm)4 1373.1 1372.4 - 

Fe2
II,II(DMOPhFm)4(THF) 1445.2 1444.5 - 

Fe3
II(O)(DMOPhFm)4 1444.9 1444.3 - 

Fe4
II(O)(DMOPhFm)5Cl 1851.6 1850.4 1815.4 

Fe4
II(O)(DMOPhFm)6 2131.5 2130.5 - 

Fe4
IIIO4(DMOPhFm)6Li2(H[DMOPhFm])2 2826.1 2824.8 - 

Table 2.3.1 – Predicted mass ions for analogues of previously reported species and postulated cluster products in order 
of increasing m/z. Expected mass ions are highlighted in bold. 

The products mixtures obtained in the attempted synthesis of Fe2(DMOPhFm)4 (V) from by 

direct combination of iron (II) and alkali metal formamidinate salts were noted to all contain 

a small number of identical m/z ions. These species were consistently observed at m/z = 

1129, 1444, and 2131. A number of additional species were also commonly, but not 

consistently observed at m/z = 1057, 1550, 1575 and 1816. Assignments for these m/z ions 

are provided above (Table 2.3.1) and an example of a typical un-optimised product mixture 

is given overleaf (Figure 2.3.16) with inserts showing expansions of the isotopic distribution 

of the parent ions. 



Page 83 

 

Figure 2.3.17 - A typical un-optimised product mixture obtained during attemtpts to synthesise (V). Assignments are 
given above for ions for which an identity was determined. The doubly charged mass ion at m/z = 1573 was could not be 

assigned. 

The m/z ion observed at m/z = 1444 was observed as the major product in initial testing 

(Figure 2.3.16) and was tentatively assigned as the THF solvate of the intended tetra-

substituted product Fe2
II,II(amidinate)4(THF) with Mmonoisotopic = 1444.2. Later experiments 

substituting 2-methyl THF as an alternative co-solvent to however still yielded the same 

species at 1444 disproving this initial assignment. 

Consideration of other previously reported related species such as the partial reduction 

product Fe2
I,II(amidinate)3 enabled the assignment of some further m/z ions. In this way the 

infrequently observed species at m/z = 1057 was assigned as the corresponding β-

elimination product Fe2
I,II(DMOPhFm)3 (Appendix A-2-2). As this species was however both 

uncommonly observed and had no discernible impact on the distribution of the more 

common products it was not thought not to be a probable intermediate in their formation. 

Application of similar comparative analysis to previously cited products263 led to the 

tentative assignment of the m/z ion at m/z = 2130 to the tetra-iron cluster species 
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Fe4
II
(O)(DMOPhFm)6 (IX). This assignment was then subsequently confirmed by the 

structural characterisation of (IX) by X-Ray crystallography. 

In light of the identification of the major product at m/z = 2130 as a poly-iron cluster 

species, similar formulations were proposed for the remaining major product m/z ions at 

m/z = 1129 and 1444. These two species were proposed as being Fe3
II,II,I

(O)(DMOPhFm)3 

(VII) and Fe3
II
(O)(DMOPhFm)4 (VIII) respectively however no firm evidence to support these 

assignments could be obtained. 

Attempts made to optimise the reaction conditions to favour (VII) (Appendix A-2-3) and 

(VIII) (Figure 2.3.16) increased selectivity but despite this neither was isolated exclusively. 

The observed trend of further reactivity toward the formation of (IX) (Section 2.3.5.7) 

provides some explanation of this behaviour. 

2.3.5.2 Isotopic distribution as a diagnostic indicator of product nuclearity 

Compounds containing metals with a number of highly abundant isotopes show 

corresponding complex m/z ions. In many instances the complexity of these isotopic 

distributions provides significant diagnostic utility in facilitating the determination of 

nuclearity of a given metal within the observed species where the likely components are 

known (Section 3.3.2). 
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Figure 2.3.18 - Examination of isotopic distribution observed for the m/z ions of a range of iron amidinate species. 
Calculated isotopic distributions using Isopro 3.1  

In contrast to more isotopically rich later transition metals such as ruthenium however, iron 

contains comparatively few abundant isotopes which severely limits the application of this 

practice to its complexes. Low isotopic variation observed for the metal results in 

contributions from the more numerous non-metallic elements (C, N, H, O) of the supporting 

ligands dominating the shape of the m/z ions of observed. Consequently, there is very little 

observable difference between species containing Fe1, Fe2 and Fe3 and only a small 

difference for M4 (Figure 2.3.17). 
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2.3.5.3 X-Ray crystallography 

Crystals of Fe4
II
(O)(DMOPhFm)6 (IX) were obtained via vapour diffusion of n-pentane into a 

saturated solution of DCM at -18 °C over one week. Subsequent attempts to grow crystals of 

(VII) and (VIII) from product mixtures in which they were the predominate product only 

yielded an additional structures of (IX) (Section 2.3.5.7) and H[DMOPhFm] (Section 2.3.1.5). 

The crystals of (IX) obtained were extracted from the crystallisation vessel and initial crystal 

selection was conducted with the crystals under argon immersed in dried, de-gassed 

fomblin® oil. Suitably sized crystals were then mounted atop a mylar® tip in a small glob of 

oil and rapidly transferred to the diffractometer wherein they were held within a cooled 

stream of nitrogen at 100 K. 

 

Figure 2.3.19 Solid state structure of Fe4
II(O)(DMOPhFm)6 (IX). Hydrogens and modelled disorder of one phenyl ring are 

omited for clarity. Thermal elipsoids are drawn at the 50% probability level. Selected bond lengths are provided in table 
2.3.2; Complete X-Ray difraction tables are provided elsewhere in appendix B-2. 
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The structure of the complex Fe4
II
(O)(DMOPhFm)6 (IX) (Figure 2.3.18) resembles both that 

of the basic beryllium acetate282,311–313 Be4O(OAc)6 (from which this structure type derives 

its name) and similar amidinate complexes of Fe, Mn, Co and Zn.263 

The central (μ4-OFe4)6+ core of (IX) was disordered across two configurations (Figure 2.3.19)  

and the free-refinement of the occupancy of these disordered elements affords a 50:50 

observed split in occupancy. 

 

Figure 2.3.20 - Illustration of the two different occupied configurations of (M4O)6+ core  

The immediate coordination environment of the (Fe4O)6+ core is more apparent where 

phenyl substituents are further omitted (Figure 2.3.20). Each Fe atom was observed to 

coordinate to 3 surrounding ligand nitrogen atoms forming a μ-η1
,η

1-N,N’ bridge to each of 

its other Fe neighbours (Figure 2.3.20). 

 

Figure 2.3.21 - Immediate coordination environment of the u4-OFe4 core. Ligand phenyl substitutions are omitted for 
clarity and thermal elipsoids are drawn at the 50% probability level. 

Only two related iron to (IX) are known in the literature: Fe4(O)(DPhF)6 and Fe4(O)(DBiPhF)6 

(where DBiPhF = N,N'-bisbiphenylformamidinate).263 Despite in one instance using the same 
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ligand the related complex Mn4(O)(DPhF)6 which also shows similar connectivity263 and the 

same disordered core as (IX), the reported iron complexes are significantly different. 

In providing a rationalisation of the difference in the observed structures of (IX) and the 

previous reported relate iron complexes Fe4(O)(DPhF)6 and Fe4(O)(DBiPhF)6 it is helpful to 

visualise the core of (IX) showing both disordered components of its (μ4-OFe4)6+ core. The 

sum of these two disordered configurations can be considered to collectively define a Fe8 

cube which greatly aids visualisation of the core structure and the relative arrangement of 

the supporting ligands (Figure 2.3.19 + Figure 2.3.21). 

 

Figure 2.3.22 -- Solid state structure of Fe4
II(O)(DMOPhFm)6 (IX). Hydrogens and modelled disorder of one phenyl ring 

are omited for clarity. Both disordered components of the (μ4-OFe4)6+ tetrahedral core are shown. Thermal elipsoids are 
drawn at the 50% probability level. 
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The bridging formamidinate ligands in (IX) occupy positions directly bisecting each face of 

the imagined Fe8 cube (Figure 2.3.21 + 2.3.22 – Left), presumably so as to minimise the 

energy of bonding interacts between ligand and either arrangement of the disordered core. 

The thermal ellipsoids of the bridging nitrogen atoms were observed to elongate in plane 

defined the Fe-Fe’ edges of the cube, further suggesting that only small variations in 

position are needed to bind to both core configurations. Similar elongation in not observed 

in the carbon of the RN-C(H)-NR amidinate backbone which appears to behave as a pivot 

point. Such distortions in the ligand orientation have been similarly reported previously263 

for the related complex Mn4(O)(DPhF)6 which shares the same kind of disordered core as 

(IX) and the associated averaging of the ligand position (2.3.22- Left).  

 

Figure 2.3.23 - Differing relative orientation of bridging ligands in: (Left) Disordered M4O cores such as for (IX) and 
Mn4(O)(DPhF)6; and (Right) ordered M4O cores like that of Fe4(O)(DPhF)6. 

Only two related iron to (IX) are known in the literature: Fe4(O)(DPhF)6 and Fe4(O)(DBiPhF)6 

(where DBiPhF = N,N'-bisbiphenylformamidinate).263 Despite in one instance using the same 

ligand as the Mn complex isostructural with (IX) these iron complex however differ 

significantly from (IX) in connectivity.  

The previously reported complexes in contrast to (IX) possess well-defined Fe4O cores (vide 

infra) and display a more typical vertex-to-vertex orientation of the bridging ligands (Figure 

2.3.22 – Right). The distribution of these bridging ligands around the core however provides 

the most significant change relative to (IX). Both previous complexes were asymmetrically 

bridged about tetrahedral Fe4O core (Figure 2.3.23 – Right). In contrast the bridging ligands 

in (IX) are symmetrically arranged about each edge (Figure 2.3.23 – Left + Figure 2.3.20). 
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Figure 2.3.24 - Differing bridging configurations: (Left) Symmetrically bridged about each edge; (Right) Asymmetically 
bridged, 2 doubly bridged, 2 singly bridged and 2 non-bridged edges. 

These difference in reported structure make (IX) the first example symmetrically bridged 

example of a Fe4
II(O)(formamidinate)6 within the literature and finally provide a suitable 

tetra-iron comparator to known analogous structures of Mn, Co and Zn amindinate 

clusters.263 

Despite showing a more regular ligand bridging arrangement the tetrahedral core of (IX) still 

shows some deviation from an ideality, which may again best visualised as a cube defined by 

the combined atomic positions of the iron atoms in both core configurations. This may be 

oberved by elipsing the equivilent Fe1-Fe4’ and Fe4-Fe1’ vectors as shown, resulting in the 

overlay of the differing remaining Fe-O bonds (Figure 2.3.24). 

 

Figure 2.3.25 - Illustration of the distortions to the M4O caused by sym elongation for the Fe2-O1 bond and contraction 
of the Fe3-O bond.All non-core atoms have been omitted for clarity. 



Page 91 

Elongation of the Fe2-O1 bond to 2.084 Å and contraction of the Fe3-O1 bond to 1.839 Å 

relative to the average Fe-O distance of 1.947 Å (Table 2.3.2-B) serves to further distort the 

core slightly from an ideal tetrahedral configuration (Figure 2.3.20). As might be expected 

this then also leads to slight lengthening of the corresponding Fe3-N bonds (2.272-2.196 Å) 

over the average Fe-N bond length of 2.171 Å (Table 2.3.2-A).  

Bond ID Bond length /Å  Bond ID Bond length /Å 

Fe1-N1 2.067(5)  O-Fe1 1.9598 

Fe1-N3 2.109(5)  O-Fe2 2.084 

Fe1-N6 2.259(6)  O-Fe3 1.839 

Fe2-N2 2.280(6)  O-Fe4 1.906 

Fe2-N4 2.120(5)  Fe-O (Average) 1.947 

Fe2-N6 2.174(6)    

Fe3-N1 2.216(3)  Bond ID Distance /Å 

Fe3-N4 2.272(5)  Fe1-Fe2' 3.226 

Fe3-N5 2.196(4)  Fe1-Fe3 3.129 

Fe4-N2 2.090(4)  Fe1-Fe4' 3.139 

Fe4-N3 2.216(5)  Fe2'-Fe3 3.293 

Fe4-N5 2.049(4)  Fe2'-Fe4' 3.199 

Fe-N (Average) 2.171  Fe3-Fe4' 3.080 

   Fe-Fe (average) 3.178 

Table 2.3.2 - (A - Left) Fe-N bond lengths; (B – Right top) Fe-O bond lengths; (C – Right bottom) Fe-Fe distances 

The observed Fe-Fe distances are too long to be considered bonding and do not show any 

considerable variation from the average of 3.178 Å (Table 2.3.2-C). These distances do 

however contrast strongly with the previous reported structures of Fe4(O)(DPhF)6 and 

Fe4(O)(DBiPhF)6 where far closer Fe-Fe contacts of as little as 2.85 Å were observed.263 

Both instances are considerable longer than the already long Fe-Fe bond observed in the 

previously reported structures of Fe2
I,II(DPhF)3

260,280
 and Fe2

II,II(DPhF)4
258,259 at 2.232(8) Å and 

2.462(2) Å respectively. The latter of these is itself very close to that observed in metallic 

iron at 2.52 Å. 
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2.4 Conclusions 

The synthesis of a range of formamidinate ligands is reported, H[DMOPhFm] and 

H[TMOPhFm] of which are novel. The first of these was also adventitiously structurally 

characterised via X-Ray crystallography and showed good agreement with the previously 

reported structures of related formamidinates. 

Of the ligands synthesised 2 are converted to their respective FeCl2(H[amidinate])2 

diadducts FeCl2(H[DMOPhFm])2 (I) and FeCl2(H[4FPhFm])2 (II). Attempts to use (I) and (II) 

under reported literature conditions258,259 to generate compounds Fe2(DMOPhFm)4 (V) and 

Fe2(4FPhFm)4 (VI) were unsuccessful. In contrast to the reported account a reactively critical 

intermediate could not be isolated. Failure to isolate this intermediate is attributed to the 

difference in solubility between the ligands in use herein and that presented in the 

literature. Further, by review of the surrounding literature a probable identity of this 

previously unknown intermediate is reported as that of the related bis-amidinate complex 

FeII(amidinate)2. This determination is supported by limited Mass spectrometry (MS) 

evidence of the generation of such species in-situ. 

The attempted synthesis of Fe2(DMOPhFm)4 (V) was then attempted under a second set of 

literature conditions259 but was similarly unsuccessful. The products obtained in all instances 

were mixtures of which only the largest component, that of Fe4(O)(DMOPhFm)6 (IX) was 

able to be structurally characterised. This complex adopts the basic beryllium acetate and is 

the first reported instance of such an iron complex to display symmetrical bridging about 

the Fe4O core. 

Extensive attempts to optimise the reaction conditions to synthesis Fe2(DMOPhFm)4 (V) 

were made, but were ultimately unsuccessful. Examination of the reaction variables 

indicated that, in contrast to previous reports, the most significant degree of selectivity 

obtained over the product distribution was achieved by variation of reaction temperature 

and time. Products were further observed to interconvert from lower order clusters toward 

(IX) on prolonged exposure to donor solvents or even by exposure to trace moisture when 

stored at room temperature in the solid state. 
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2.5 Experimental 

2.5.1 Physical measurements 

1H and 13C NMR spectra were collected at room temperature on Bruker Avance 250, 400 or 

DRX500 spectrometers as indicated. Chemical shifts were assigned relative to the residual 

solvent peak and are given to 0.01 ppm for 1H and 0.1 ppm for 13C. 

Mass spectra were obtained either by ESI or MALDI-TOF-MS as indicated. ESI spectra were 

collected on a Waters Premier LCT operating in ESI mode whilst MALDI-TOF-MS spectra 

were obtained using a Bruker Reflex III mass spectrometer operating in reflectron, positive 

ion mode using an N2 laser. MALDI samples were prepared as solutions in THF (unless 

otherwise indicated) and using the matrix DCTB (trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-

propenylidene]malononitrile). Calculated monoisotopic mass values were obtained via use 

of the IsoPro 3.1 isotopic calculator and are cited to 2 decimal places.306 

Electrochemical measurements were conducted using an Metrohm Autolab PGSTAT100 

potentiostat-galvanostat in a nitrogen purged 0.1M solution of [nBu4N][PF6] in the stated 

solvent using a standard three electrode system. This consisted of a polished Pt microdisc 

working electrode, Pt wire counter electrode, and an Ag/AgCl pseudo reference electrode; 

all quoted values are given relative to the FeCp2/FeCp2
+ redox couple of ferrocene a small 

amount of which was added at the end of data collection and used as an internal standard. 

UV-Vis-NIR spectra were recorded using a Varian Cary 5000 spectrophotometer equipped 

with a 0.5mm path length quartz cuvette. Infrared spectra were obtained using either as 

solid samples with a Perkin-Elmer Spectrum RX I FT-IR spectrometer equipped with a 

DuraSamplIR II diamond ATR probe and universal press; or as solutions in a stated solvent 

using a Perkin-Elmer Spectrum One FT-IR spectrometer in a quartz glass cell. 

Elemental analysis was conducted by the Microanalytical Service of the University of 

Sheffield Department of Chemistry using a Perkin-Elmer 2400 Series II CHNS/O Analyser. 

This data is provided for synthesised ligands only. Attempts to use this technique for the 

analysis of dimetallic complex products consistently resulted in immediate visual sample 

decomposition on exposure to air and/or moisture prior to the start of the analysis. The 
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data subsequently obtained was irreproducible and due to the visible decomposition could 

not be considered representative of the initial sample. 

Melting points were obtained using a Linkam HFS91 heating stage with a TC92 controller, 

and are uncorrected. 

2.5.2 X-ray Crystallography 

X-ray crystallography was conducted using either a Bruker APEX II Smart 4000, or APEX II 

Kappa system as indicated, both utilising CCD detectors and MoK radiation at λ= 0.71073 Å 

in conjunction with an Oxford Cryosystems cryostat set to 100 K. Raw data was integrated, 

equivalent reflections merged and an empirical absorption correction applied (SADABS) 

based on comparison of symmetry-equivalent measurements.314 Structures were solved 

using direct methods, unless otherwise stated, using the SHELXS-97 suite of programs (2008 

revision)315 and refined by full-matrix least squares on weighted F2 values for all reflections 

using SHELXTL (Bruker 2008).316 All expected hydrogens were included in the models 

generated and were input at calculated positions using a riding model as follows: U(H) = 1.5 

x Ueq (C) for methyl hydrogen atoms and U (H) = 1.2 x Ueq (C) for methine, methylene and 

aromatic hydrogen atoms. Where possible disordered solvent was modelled and its 

inclusion in the structure noted; however where the location of solvent on special positions 

prohibited is accurate modelling the electron density associated with it was removed via 

PLATON/SQUEEZE317,318 

2.5.3 Materials 

All manipulations were conducted under an inert atmosphere of argon using standard 

Schlenk-line techniques or in a MBraun glovebox. Reagents were obtained from Strem, 

Sigma-Aldrich Chemical Co., Apollo Scientific Ltd, Fluorochem Ltd, Fischer Scientific Ltd and 

Alfa Aesar and unless otherwise indicated reagents were used as received.  

All solvents used were dried in accordance with standard procedures:319 Tetrahydrofuran 

(THF) was purified by distillation over sodium wire and benzophenone where possible, but 

otherwise dried over CaH2; acetonitrile, 1,2-dichlorobenzene (DCB), 1,2-dichloroethane 

(DCE), dichloromethane (DCM), hexanes, mesitylene, n-pentane, toluene, and o-xylene were 
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dried by fractional distillation over CaH2; methanol was dried over Mg/I2 and fractionally 

distilled. Solvents were stored in Schlenk-type glassware and where appropriate over pre-

dried 4Å molecular sieves. All solvents were additionally degassed thoroughly with argon 

immediately prior to use.  

The metal salt starting materials Fe4Cl8(THF)6,307 Fe(OTf)2·xMeCN284 and Fe(OAc)2
308,309 were 

all synthesised according to established literature procedures.  
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2.5.4 Ligand synthesis 

2.5.4.1 Formamidinate ligands (RNC(H)NR) 

Synthetic procedures for N,N'-bis(4-fluorophenyl)formamidine,287 hereafter H[4-FPhFm], 

and N,N'-bis[3,5-bis(trifluoromethyl)phenyl]formamidine,320 hereafter H[3,5-(CF3)2PhFm] 

are known, as are general procedures for non-fluorinated analogues.227,290,292,321 The 

modified procedure proposed by Fackler et al.
286 for highly fluorinated formamidines was 

found to be unnecessary in the case of the above compounds; consequently all 

formamidines used were synthesised via the same modified, scaled up procedure outlined 

below. N,N'-bis(3,5-dimethoxyphenyl)formamidine, hereafter H[DMOPhFm], and N,N'-

bis(3,4,5-trimethoxyphenyl)formamidine hereafter H[TMOPhFm] are novel compounds. 

To a round-bottomed flash containing 27 mmol of the substituted aniline was added 14 

mmol of anhydrous triethyl orthoformate and the flask was then fitted with a reflux 

condenser. The mixture was then heated to reflux for a period of 3 hours, after which time 

the condenser was removed and the mixture boiled to dryness. The resultant solid was then 

isolated by recrystallization from minimal volume of hot toluene. Where required, products 

were then further purified by sublimation in vacuo. Products were obtained in high purity 

with first crop yields of 79-93%. 

H[DMOPhFm] – N,N'-bis(3,5-dimethoxyphenyl)formamidine 

 

Yield = 87 %. Mp: 149.1 °C. 1H NMR (CDCl3, 400 MHz): δ 3.72 (s, 12H, ArOCH3), 6.19-6.23 (m, 

6H, ArH), 8.25 (s, 1H, NC(H)N), 9.84 (s, 1H NH). 13C NMR (CDCl3, 250 MHz DEPTQ/CPD): δ 

55.3 (s, m-OCH3), 95.9 (s, o-ArC), 97.5 (s, p-ArC), 147.2 (s, i-ArC), 149.8 (s, N=C(H)-N), 161.6(s, 

m-ArC). HR-ESI-MS: calcd. monoisotopic MW for C17H20N2O4 m/z: 316.1423, found m/z: 

316.13 (M+
, 100%). IR (cm-1): 3342w, 2997w, 2938w, 2840w, 1664s, 1580s, 1513m, 1456m, 
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1423m, 1317m, 1281m, 1243m, 1191s, 1143s, 1062s, 1001s, 958m, 940m, 812s, 794s, 

740m, 667s. Elemental analysis calcd. for C17H20N2O4: C, 64.54%; H, 6.37%; N, 8.86%; found: 

C, 64.35%; H, 6.39%; N, 8.79%.  

H[TMOPhFm] – N,N'-bis(3,4,5-trimethoxyphenyl)formamidine 

 

Yield = 85 %. Mp: 256.2 °C. 1H NMR (CDCl3, 400 MHz): δ 3.80 (s, 12H, m-OCH3), 3.86 (s, 6H, p-

OCH3), 6.28 (s, 4H, o-ArH), 8.13 (s, 1H, NC(H)N). 13C NMR (CDCl3, 400 MHz DEPTQ/CPD): δ 

56.1 (s, m-OCH3), 61.0 (s, p-OCH3), 96.8 (s, o-ArC), 134.5 (s, m-ArC), 129.7 (s, p-ArC),149.6 (s, 

i-ArC), 153.9 (s, N=C(H)-N). HR-ESI-MS: calcd. monoisotopic MW for C19H24N2O6 m/z: 

376.1634, found m/z: 376.11 (M+
, 100%). IR (cm-1): 3337w, 2987w, 2965w, 2924w, 2838w, 

1668s, 1583s, 1503s, 1458s, 1414s, 1323m, 1283s, 1222s, 1124s, 1006s, 984s, 832s, 755m, 

716m, 634m. Elemental analysis calcd. for C19H24N2O6: C, 60.63%; H, 6.43%; N, 7.44%; found: 

C, 60.37%; H, 6.42%; N, 7.48%.  

H[4-FPhFm] – N,N'-bis(4-fluorophenyl)formamidine 

 

Yield = 93%. Mp: 146.1 °C. 1H NMR (DMSO, 400 MHz): δ 7.02-7.45 (br m, 8H, ArH), 8.10 (s, 

1H, NC(H)N), 9.72 (s, 1H NH). 13C NMR (DMSO, 400 MHz DEPTQ/CPD): δ 115.9 (d, m-ArC), 

120.8 (br s, o-ArC), 148.6 (s, i-ArC), 157.3 (s, N=C(H)-N), 159.7 (s, p-ArC-F). 19F NMR (DMSO, 

400 MHz): δ 121.67 (s, 1F, Ar-F). HR-ESI-MS: calcd. monoisotopic MW for C13H10F2N2 m/z: 

232.0812, found m/z: 233.09 (M+
, 100%). With the exception of Mp (lit. value is 99-100 °C) 

data correlates with that published in the literature.286 
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H[3,5-(CF3)2PhFm] – N,N'-bis(3,4,5-trimethoxyphenyl)formamidine 

 

Yield = 79%. Mp: 263.8 °C (decomp.). 1H NMR (DMSO, 400 MHz): δ 7.62 (br m, 4H, o-ArH), 

7.83 (br m, 2H, p-ArH), 8.68 (s, 1H, NC(H)N), 10.59 (s, 1H NH). 13C NMR (DMSO, 400 MHz 

DEPTQ/CPD): δ 115.7 (m, ArC), 119.4 (br m, ArC), 123.8 (q, Ar-CF3), 131.4 (q, ArC), 151.4 (s, 

p- N=C(H)-N). 19F NMR (DMSO, 400 MHz): δ 61.71 (s, 1F, Ar-CF3). HR-ESI-MS: calcd. 

monoisotopic MW for C17H8F12N2 m/z: 468.0496, found m/z: 469.06 (M+
, 100%). Data 

correlates with published values.320  
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2.5.5 Synthesis of FeCl2(H[formamidinate])2 intermediates 

The synthesis of these mono-iron intermediates was conducted via a modified version of the 

procedure published by Cotton258 for FeCl2(DPhF)2. Below is an example of the general 

procedure used. 

FeCl2(H[DMOPhFm])2 (I) 

A 25ml Schlenk was charged with 0.51 g (4 mmol) of FeCl2 and 2.56 g (8.1 mmol) of 

H[DMOPhFm] and 15 ml of toluene then added via cannula. The resultant mixture was then 

heated at reflux for 24 hours, rapidly filtered through a fine sintered glass frit whilst hot and 

then allowed to cool slowly to room temperature. Addition of 20 ml of cold (~5 °C) n-

pentane to the orange filtrate caused the immediate precipitation of the target compound 

which is the isolated by filtration. The yellowish white solid obtained on the frit is then 

carefully washed with a further 2x 5ml of cold n-pentane and dried in vacuo. Target species 

were primarily identified by MALDI-TOF-MS spectrometry with samples prepared in a 

toluene/DCTB solution. 

Yield: 2.60 g, 86 %. MALDI-TOF-MS: calcd. monoisotopic MW for FeC34H40N4O8Cl2 m/z: 758.16, 

found m/z: 723.18 (M-Cl, 100%) 

FeCl2(H[4FPhFm])2 (II) 

Yield: 1.94 g, 82 %. MALDI-TOF-MS: calcd. monoisotopic MW for FeC26H20N4F4Cl2 m/z: 590.04, 

found m/z: 555.07 (M-Cl, 100%.) 

Attempted synthesis of FeCl2(H[TMOPhFm])2 (III) 

Length of reflux increased to 48 hours. It was not possible to cleanly isolate the intended 

product. Low solubility of the ligand and it’s adducts frustrated efforts at recrystallisation 

and further optimisation of reaction and work-up conditions. 

Yield: N/A. MALDI-TOF-MS: calcd. monoisotopic MW for FeC38H48N4O12Cl2 (di-adduct) m/z: 

878.19, found m/z: 843.23 (M-Cl, 100%.);   
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Attempted synthesis of FeCl2(H[(3,5-CF3)PhFm])2 (IV) 

Length of reflux increased to 48 hours. It was not possible to cleanly isolate either intended 

product (IV) or the mono-adduct FeCl2(H[(3,5-CF3)PhFm])1 (IVa). Low solubility of the ligand 

and it’s adducts frustrated efforts at recrystallisation and further optimisation of reaction 

and work-up conditions. 

Yield: N/A. MALDI-TOF-MS: calcd. monoisotopic MW for FeC17H7N2F12Cl2 (mono-adduct) 592.91 

m/z:, found m/z: 557.92 (M-Cl, 100%.)  
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2.5.6 Attempted synthesis of Fe2
II,II(formamidinate)4 complexes via 

FeCl2(H[amidinate])2 intermediates 

Using the method reported by Cotton,258,259 both as stated, and in a modified form as 

outlined below the synthesis of the compounds Fe2(DMOPhFm)4 (V) and Fe2(4FPhFm)4 (VI) 

was attempted. An example of the modified synthetic procedure is provided below: 

A small 25ml Schlenk was charged with 0.190 g (0.25 mmol) of FeCl2(H[DMOPhFm])2 and 10 

ml of diethyl ether then added via syringe. The mixture was then cooled to 0 °C and 0.32 ml 

(0.51 mmol) of a 1.6M solution of methyllithium in Et2O added via micro-syringe. The 

reaction mixture was then allowed to stir for 5 minutes before removal of all volatiles in 

vacuo. Once removal of volatiles was complete the resultant orange/yellow residual solid 

was extracted into 5 ml of 50:50 THF:toluene, transferred via a filter cannula to a second 

Schlenk. Crude samples were taken for MS analysis and the remaining sample layered with 

20 ml of n-pentane and stored at -18 °C to facilitate crystallisation.  

Further modifications to the above procedure included variation of:  

• Alkyllithium reagent used: MeLi; nBuLi;  

• Reaction solvents: THF; 50:50 THF:toluene; 50:50 THF:Et2O; toluene 

• Reaction temperature on alkyl base addition: 0 °C; -78 °C 

• Reaction length after alkyl base addition: 5 min; 15 mins; 30 mins; 1 hour; 24 hours 

Neither Fe2(DMOPhFm)4 (V) nor Fe2(4FPhFm)4 (VI) were successfully isolated via this 

method or variations thereon. 
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2.5.7 Attempted synthesis of Fe2
II,II(formamidinate)4 complexes via 

alternative methods 

Utilising a more traditional organometallic synthetic approach103 the direct synthesis of the 

target compounds was attempted from a range of Iron (II) salts. A typical example of 

synthetic approach employed is outlined below: 

Attempted synthesis of Fe2(DMOPhFm)4 (V) 

A small, 25 ml Schlenk was charged with 0.192 g (0.61 mmol) of H[DMOPhFm] and 10 ml of 

THF before being cooled to -78 °C. Once cooled 0.25 ml (0.62 mmol) of a 2.5M solution of n-

butyllithium in hexanes was added via syringe and the resultant clear yellow solution was 

allowed to stir for 10 minutes.  

A second 25 ml Schlenk was charged with 0.131 g (0.3 mmol) of Fe(OTf)2·2MeCN. The cold 

solution in the first Schlenk was then transferred via cannula into the second and an 

immediate clear yellow -> cloudy orange colour change observed. The second Schlenk was 

then allowed to warm to room temperature and an initial (time = 0) sample taken for 

MALDI-TOF-MS analysis.  

After stirring for 2 hours the orange/brown solution was filtered through a packed Celite 

plug to remove the fine suspension of LiCl and reduced to minimum volume in vacuo. A 

second MALDI-TOF-MS sample was then taken and the remaining solution layered with 25 

ml of n-pentane and cooled to -18 °C to facilitate the growth of crystals for structural 

determination via X-Ray diffraction. Where crystals were obtained a sample of the 

recrystallisation solution was then resubmitted for MALDI-TOF-MS for verification purposes. 

Further to the above outlined procedure a series of reaction variables were considered and 

modified with a view to affecting changes in the distribution of the observed products, 

these included: 

• Metal salt used: FeCl2, Fe4Cl8(THF)6,307 Fe(OTf)2·xMeCN284 and Fe(OAc)2
308,309 

• Alkyllithium reagent used: MeLi; nBuLi; tBuLi 

• Use of alternate alkyl metal bases: NaH; KH  

• Reaction solvents: THF; 50:50 THF:Et2O; 2-Methyl THF; Toluene 
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• Reaction temperature on alkali base addition: 0 °C; -20 °C; -78 °C 

• Rate of warming to room temperature: immediate; over 1 hour. 

• Rate of alkyl base addition: single addition at once; addition over 10 minutes via 

syringe pump. 

• Reaction length after alkyl base addition: 5 min; 15 mins; 30 mins; 1 hour; 24 hours 

• Work up solvents: THF; 50:50 THF:Et2O; 2-Methyl THF; Toluene; MeOH; iPrOH; n-

pentane, hexanes, MeCN, DCM; DCE; DCB. 

Fe2(DMOPhFm)4 (V) was not successfully synthesised via this method and a mixture of 

products was consistently obtained. The synthesis of Fe2(4FPhFm)4 (VI) by this method was 

not attempted. 

2.5.7.1 Structural determination of Fe6(O)(DMOPhFm)6 

Crystals of the related cluster species Fe4(O)(DMOPhFm)6 (VII) were obtained from two 

reactions both utilising FeII(OTf)2 and nBuLi as described in the previous section with the 

following modifications: 

Reaction stirring time (after addition of all reagents) was extended to 24 hours after which 

all volatiles were removed in vacuo. The resulting solid was then extracted into DCM, 

filtered through Celite and reduced to minimum volume. Crystals suitable for X-ray 

diffraction were grown by vapour diffusion of n-pentane at -18°C over a period of 1 week. 

MALDI-TOF-MS: calcd. monoisotopic MW for Fe4C102H114O25N12 m/z: 2130.5415, found m/z: 

2131.7 (M+
, 100%).  
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3 Structural, electronic and computational studies of 

diruthenium ‘NN’ formamidinate complexes 

3.1 Aims 

• To synthesise a range of diruthenium (II,II) tetra-formamidinate complexes using 

ligands with varied electron donating or withdrawing aryl substituents. The general 

form of these complexes is shown below in Figure 2.1.1. 

 

Figure 3.1.1 - General structure of a diruthenium (II,II) tetra-formamidinate complex; 3 of the 4 ligands are shown in a 
truncated form for the sake of clarity. 

• To determine the physical, spectroscopic and electronic properties of these 

compounds. 

• To generate a series of computational model complex for these compounds using 

the hybrid functionals B3LYP and PBE0 and examine the accuracy the predictions of 

these models make vs. experimental data. 

• To test the viability and activity of the synthesised complexes as aerobic oxidation 

catalysts. 
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3.2 Introduction 

3.2.1 Previous catalytic applications of related dimetallic Ru2 (II,III) 

and Ru2 (II,II) complexes 

Beyond sMMO, dimetallic systems have been the subject of extensive investigation for their 

potential to catalyse a wide array of industrially and synthetically important processes.103 In 

this respect, diruthenium species have proven of particular interest due to their potential to 

conduct a wide range of chemistries comparable to those of the multitude of other iron 

based catalysts observed in nature. 

The mixed valence complexes of Ru2 (II/III) have been of particular interest due to both their 

formally intermediate oxidation state of +2.5, offering chemical potential not present in 

monometallic species and additionally their ability to incorporate useful functionality into 

the axial position, with respect to the M-M vector, by substitution for Cl-. 

Other related diruthenium complexes have also been shown to display catalytic activity 

towards a diverse range of substrates. One noteworthy formamidinate bearing example 

being that of that of the C-H amination catalyst Ru2
II,III(D(3,5-Cl2)-PhF)4(N3) (where D(3,5-Cl2)-

PhF = N,N’-bis(3,5-dichlorophenyl)formamidinate) as reported by Berry322,323 (Figure 3.1.1). 

The axial transfer behaviour of these complexes has since also been extended to include 

related ‘NO’ bridging species such as [Ru2(chp)4N3] (where chp = 2-chloro- 6-

hydroxypyridinate).324 In addition, the group of Du Bois has recently published a related 

‘NO’ bridged complex, Ru2
(II,III)(hp)4Cl (where hp = 2-oxypyridinato) which is able to conduct 

this chemistry on an intramolecular level.325 
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Figure 3.2.1 - Berry's Axial C-H amination in the complex Ru2
II,III(D(3,5-Cl2)-PhF)4(N3) (Left), to  generate the species 

Ru2
II,III(D(3,5-Cl2)-PhF)3(D(3,5-Cl2-2NH)-PhF) (right) 

3.2.1.1 Related catalytic active oxidation catalysts 

The group of Ren recently reported that catalytic sulphide oxidation may similarly be 

accomplished via used of the closely related tetra-carboxylate complexes Ru2(esp)2Cl (where 

esp = tetramethyl-1,3-benzenedipropionate), its [BF4] salt and even the common starting 

material Ru2(OAc)4Cl326 (Figure 3.2.2). 

 

Figure 3.2.2 - Ren's Ru2
(II,III)(RCO2)4 catalysised oxygenation of organic sulfides by tert-butyl hydroperoxide 

Looking towards their closely related Ru2 (II,II) tetra-carboxylates, separate reports from the 

groups of Jasra327 and Naota328 have reported Ru2
(II,II)(OAc)4 and Ru2

(II,III)(RCO2)3(CO3) were 

catalytically active aerobic alcohol oxidation catalysts. 
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3.2.1.2 Catalysts for water splitting 

One of the more actively pursued areas of current catalysis research is the facile division of 

water into molecular oxygen and hydrogen. Many of the recent reports in this area have 

emerged from the group of Nocera who has focused on utilising photo-activated catalysts to 

drive the oxidation half-cell reaction.329–338 

As collective understanding of diruthenium systems has developed in recent years, catalytic 

examples of both the required anodic/cathodic have been separately reported, making 

diruthenium complexes one of the few classes able to perform both functions.  

The reductive catalytic system for the generation of H2 was provided by the group of Mori, 

who reported this behaviour for the complex [Ru2
(II,III)(p-BDC)2Br]n (Where p-BDC = 1,4-

benzenedicarboxylate) supported within a larger metal organic framework (MOF).339 

The catalyst proposed in a recent publication by Dunbar et al. for the corresponding water 

oxidation half-cell reaction was, rather surprisingly one that has been known in the 

literature since 1984, Ru2(OAc)4. This is particularly interesting not just because it has been 

known for 30 years, but due to the fact that in Wilkinson’s subsequent publication in 1985 it 

was noted that the dihydrate was sufficiently stable to afford crystals for structural 

determination by X-ray crystallography.140 That this potentially provides proof of the ability 

of Ru2 (II,II) complexes to activate their axial ligands towards useful reactivity is of great 

interest. 

3.2.2 Focusing on Ru2 (II/II) formamidinates 

Our work, presented in this chapter will consider Ru2
(II,II)(amidinate)4 complexes, which 

despite the proven chemical utility of Ru(II) in mono metallic complexes (see chapter 1), 

have yet to receive significant attention.103 Of the less a dozen examples of these complexes 

present in the literature, only an isolated few are directly synthesised and isolated. Most 

reported instances of these species are generated and studied in-situ by bulk-

electrolysis136,137 or chemical reduction154,340 of their related  Ru2 (II,III) analogues. In 

addition when utilising methanol as the solvent, there have been a number of reported 
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instances of generation of Ru2 (II,II) complexes via disproportionation of the parent Ru2 

(II,III) analogue; however no mechanism for this behaviour has yet been confirmed.138,146 

3.2.3 Synthetic precedent for the direct synthesis of 

Ru2
(II/II)(amidinate)4 complexes 

The first direct synthesis of a Ru2
(II,II)(amidinate)4 complex was provided by Cotton in 1991139 

for the complex Ru2
(II,II)(DFM)4 (where DFM = N,N'-bis(p-tolyl)formamidinate), which 

proceeds via the combination of the corresponding tetra-acetate Ru2
(II,II)(OAc)4 and the 

lithium formamidinate salt. In the reported synthesis a number of pertinent observations 

are made relating to the isolated product including the extreme air sensitivity of the species; 

the rapid colour change from red -> purple on exposure to air and the apparent reactivity 

with some common solvents including chloroform. In addition, despite the report of 

methanol inducing disproportionation in some related Ru2 (II, III) species coming in the same 

year from Cottons lab,146 and the noted solvent sensitivity of the product obtained, the 

reported procedure still utilises methanol during the work-up. 

The reported characterisation of this complex was conducted in reference to the previously 

reported, structurally similar and better studied triazenato complex Ru2
(II,II)(RNNNR)4 (where 

RNNNR = N,N’’-bis(p-tolyl)triazenate).257,341 It was expected that Ru2
(II,II)(DFM)4 would exhibit 

very similar properties, however this was not observed experimentally for UV-Vis or CV 

data.139 Calculations conducted for the model complex Ru2(HNCN(H)NH)4 at the SCF-Xα level 

of theory,139 and based on assumptions dervived from the parallel study of the related 

triazenato complex were found to be insufficient to fully describe it the electronic structure 

beyond a qualitative assignment. The level of theory used provided a good estimation of the 

relative order of the complex MOPs but was unable to provide satisfactory predictions for 

the experimentally observed UV-vis or IR spectra.  

The assumption that the triazenate complex should be sufficiently similar to allow the use of 

a common model was later shown by Cotton be invalid, as the ground state configuration is 

poorly defined for the formamidinate complexes and variations allow to the relative re-

organisation of the energies of the π* and δ* orbitals.103,342 Finally the reported cyclic 

voltammogram reported that assigned the two redox processes as a reduction and 
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oxidation respectively could not account for the apparent reactivity toward oxygen.122,139
 

Despite this inconclusive nature of the characterisation reported, no significant follow-up 

work on these compounds was published making this one of only two papers that address 

the characterisation of this class of compounds within the literature. 

Only two papers have been published directly concerning such complexes since 1991; the 

first of which, also by Cotton compares Ru2
(II,II)(DFM)4 to its Ru2

(II,III) analogue.122 This report 

similarly comments the CV data warrants further investigation, but fails to ever deliver this 

or any further characterisation data on the Ru2
(II,II) analogue to which the papers’ title 

alludes.122 The second subsequent report concerning Ru2
(II,II)(form)4 complexes, whilst 

related is of little synthetic utility and concerns the isolation of the CO adduct of the 

electrolysis generated species Ru2
(II,II)(dpf)4 (where dpf = N,N'-bis(phenyl)formamidinate).136 

One additional complex, Ru2(DAniF)4 (where DAnif = N,N'-bis(p-anisyl)formamidinate), was 

generated via the adventitious, solvent dependant disproportionation of Ru2(O2CMe)4Cl in 

MeOH during work relating to similar Ru2 (II,III) species. Despite their apparent efforts 

however, this behaviour was found to be isolated to this specific ligand / tetracarboxylate 

pair. Ru2(DAniF)4 in conjunction with Ru2(DFM)4 and the related axial CO adduct 

Ru2
(II,II)(dpf)4(CO) remain the only three discrete, monomeric and structurally characterised 

Ru2
(II,II) tetra formamidinates in the literature.  

Beyond the initial work by Cotton and the singular report concerning the CO adduct by 

Kadish, Ru2
(II,II) formamidinate complexes have not been the subject of significant further 

intentional synthetic work until recent years.103 The Creutz-Taube analogue study by Cotton 

et al., in 2004 provided some renewed interest in the area but then chemistry of Ru2
(II,II) 

formamidinate complexes still remains poorly understood. In this they remain a noteworthy 

exception to the otherwise broad scope of transition metal formamidinate complexes 

reported in recent decades including those of V,252,253 Ti,254 Co,255 Cr,256 W,256 Rh,257 Fe258–263 

and Ru2
(II,III).122,138,139,264 A review of more general trends in transition metal formamidinate 

complexes was provided in a by Tong Ren, an ex-student of Cotton, in 1998.228 
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3.3 Results and discussion 

3.3.1 Ligand synthesis 

The synthesis of the formamidinate ligands used is discussed in the preceding chapter 

(Section 2.3.1) 

3.3.2 Attempted synthesis of Ru2
II,II(formamidinate)4 complexes using 

alkali metal formamidinate salts 

 

Figure 3.3.1 - General procedure for the attempted synthesis of diruthenium tetraformamidinates via akali metal salts 

Cotton reported the synthesis of the diruthenium tetraformamidinate complex Ru2
II,II(DFM)4 

(where DFM = N,N'-bis(p-tolyl)formamidinate) as generated via direct reaction ligand 

metathesis reactions between the in-situ generated lithium formamidinate salt and 

Ru2
II,II(OAc)4 (Figure 3.3.1).139  

In contrast to related diiron analogues the use of specific alkyllithium reagents is not 

indicated as necessary and the lithium salts are generated in a routine manner. nBuLi in is 

added to a solution of the free ligand in THF at -78 °C, generating a yellow solution and the 

resultant salt solution allowed to warm to room temperature. Addition of a solution of 

Ru2
II,II(OAc)4 was then noted to induce a colour change to deep red over 30 minutes under 

stirring and the reaction stopped by removal of all volatile components after 8 hours. 
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Subsequent washing with methanol and then hexane was reported to facilitate the clean 

isolation of the desired tetra-kis product. 

Attempts to synthesise X, XI, XII and XIV via this reported procedure (Figure 3.3.1) were 

unsuccessful. MALDI-TOF-MS analysis indicated that the product mixtures obtained 

consistently showed the presence of the intermediate bis- and tris- substituted partial 

metathesis products, i.e. Ru2
II,II(OAc)4-n(amidinate)n (n = 2 or 3 respectively). The desired 

tetrakis- compound was also observed, never as the sole product under the reported 

conditions.  

Attempts were made to optimise the reaction conditions to enable the isolation of the 

tetra-kis product in isolation including: extension of the reaction time to up to 48 hours; 

inclusion of a significant ligand excess; the use of differing alkyllithium reagents (MeLi, nBuLi, 

tBuLi), and the use of other alkali bases such as NaH to generate the corresponding sodium 

salts. Despite the use of these modified conditions however, these attempts to isolate the 

tetra-kis product exclusively were ultimately unsuccessful. 

3.3.3 Synthesis of Ru2
II,II(formamidinate)4 complexes by direct 

metathesis 

 

Figure 3.3.2 - General scheme for the synthesis of X, XI and XIII  

The tetrakis- products Ru2
II,II

(DMOPhFm)4 (X) and Ru2
II,II

(4FPhFm)4 (XI) may be synthesised 

from Ru2
II,II(OAc)4 via refluxing of the protonated ligand in either THF or toluene for 48 hours 
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(Figure 3.3.2).Further prolonged reflux was not observed to result in significant changes in 

yield prior to eventual thermal decomposition of the target products. 

Attempts to synthesise the more bulky tetrakis- products Ru2
II,II

(3,5-(CF3)2PhFm)4 (XII) and 

Ru2
II,II

(TMOPhFm)4 (XIV) do not proceed under the stated conditions, and prolonged reflux 

beyond results in eventual decomposition. However, the tris- substituted product of the 

former, Ru2
II,II

(3,5-(CF3)2PhFm)3(OAc) (XIII), may be obtained as the sole product by where 

the reflux step to is extended to 72 hours. The synthesis of Ru2
II,II

(3,5-(CF3)2PhFm)4 (XII) and 

Ru2
II,II

(TMOPhFm)4 (XIV) requires more forcing conditions (Section 3.3.4). 

This new synthetic route to Ru2
II,II

(amidinate)4 complexes presents a more optimal means to 

generate these highly reactive species. The removal of additional reagents serves to both 

simplify the methodology and to the remove the potential range of alkali metal inclusion by-

products that may be formed. In contrast to the previously published procedure where the 

by-products are primarily alkali salts, direct metathesis as described proceeds via the 

liberation of acetic acid. Due to the high temperature at which the reflux step is conducted 

however, more volatile by-products such as acetic acid are effectively excluded from the 

reaction and lost into the inert gas manifold. Any remaining acetic acid may similarly easily 

removed in conjunction with any excess ligand present upon completion of the reaction in 

vacuo. Where necessary, the reflux may stopped part way and this evacuation step 

conducted to further drive the reaction equilibria (Figure 3.3.2) towards the intended tetra-

kis product. 

3.3.3.1 Alternative method utilising THF 

The use of non-donor solvents is generally preferred in the synthesis and study of highly 

reactive species due to negative interactions commonly observed with donor solvents.103 

These range from reductive moderation of observed redox behaviour141 to promoting 

unexpected reactivity e.g. disproportionation in methanol,138,146 or even catalytic ring 

opening (Figure 1.10.6) as observed in some diiron (II,II).complexes.217 Consequently the use 

of toluene is preferable but as donor solvents such as THF may also provide some utility in 

stabilising some related complexes275,283 an alternative method utilising THF is also 
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reported. This will be discussed in greater detail in Section 3.3.8. There was no significant 

difference between products obtained via either method based on the analysis conducted. 

3.3.4 Synthesis of bulky Ru2
II,II(formamidinate)4 complexes under 

harsh conditions 

 

Figure 3.3.3 – Synthesis of XIV and the attempted synthesis of XII under more extreme conditions 

The synthesis of Ru2
II,II

(TMOPhFm)4 (XIV) and Ru2
II,II

(3,5-(CF3)2PhFm)4 (XII) presented some 

additional challenges. Significantly elevated conditions were required to prevent the 

metathesis reactions from stopping at the tris- substituted products such as  XIII. However, 

synthetic efforts were also limited by the thermal stability of the reactant/product mixture 

over prolonged periods (>72 hours). Modification of the procedure described previously for 

X, XI and XIII to utilise a higher boiling solvent system was therefore explored as a means to 

generate these compounds. 

After 72 hours Ru2
II,II

(TMOPhFm)4 (XIV) was observed as the sole product by MALDI-TOF-MS 

however, as was noted in the synthesis of both related iron complexes (Section 2.3.2.2) and 

the parent ligand (Section 2.3.1.4), these species are almost completely insoluble in most 

common solvents, and only very sparingly soluble in the best instance. Consequently, there 

was no immediate way to remove the significant excess of ligand present or to otherwise 

isolate XIV cleanly to facilitate further characterisation. 
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By contrast to XIV, even on prolonged reflux for 96 hours, the tetra-kis product Ru2
II,II

(3,5-

(CF3)2PhFm)4 (XII) was only ever obtained in small quantities and as part of binary mixtures 

with the related tris- product XIII. The use of higher boiling solvents such as 1,2-DCB was 

tested but either solvent or reflux temperature in that instance was observed to greatly 

increase the observed decomposition rate at which the reaction mixture decomposed. 

For both (XII) and (XIV) the combination of unwanted products, intractable excess ligand, 

very low solubility and the presence of significant decomposition products greatly frustrated 

attempts to characterise the products generated by methods other that MALDI-TOF-MS. 

Consequently, subsequent analysis shall focus on the more soluble products 

Ru2
II,II

(DMOPhFm)4 (X) and Ru2
II,II

(4FPhFm)4 (XI) and to a lesser extent the tris- substituted 

product Ru2
II,II

(3,5-(CF3)2PhFm)3(OAc) (XIII). 
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3.3.5 Computational studies of Ru2(amidinate)4 complexes and a 

proposed oxo-adduct. 

In order to better understand the complex electronic structure of the products obtained DFT 

calculations were conducted on the model complex Ru2(dmf)4 (dmf = N,N’-

diphenylformamidinate). 

 

Figure 3.3.4 - The model complex [Ru2(dmf)4]0 

To date the only reported theoretical calculations for complexes of the form 

Ru2
II,II(amidinate)4 are those provided by Cotton in his published synthesis of Ru2

(II,II)(DFM)4 

(where DFM = N,N'-bis(p-tolyl)formamidinate).122,139 These calculations were conducted 

utilising the Self-Consistent Field-Xσ-Scattered Wave (SCF-Xσ-SW) methodology, an early 

implementation of DFT which has seen been superseded by other methodologies343 for the 

simplified complex [Ru2
(II,II)(HNC(H)NH)4]0/+1. Justification for the validity of this simplification 

was afforded by comparison to a parallel study of the related complex [Ru2
(II,II)(HNNNH)4]0/+1 

wherein the energy of the δ* >> π*.139 A subsequent comparison with the related Ru2 (II,III) 

analogue Ru2
(II,III)(DFM)4Cl by Cotton in 1995122 demonstrated that this assumption is invalid 

with the (II,II) -> (II,III) oxidation invoking extensive change of the electronic structure from 

σ2π4δ2π*4δ*0 in the (II,II) to σ2π4δ2π*2δ*1 for the (II,III). Having established that the prior 

calculations were conducted under now proven invalid assumptions however, no further 

investigation was made into Ru2
II,II(amidinate)4 complexes. 
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SCF-Xσ-SW is a less computationally expensive alternative to traditional ab initio Hartree-

Fock and Post-HF methodologies which included a limited implementation of electron 

correlation and spin. This provided a simple approximation of HF that could be conducted in 

a greatly reduced computational timeframe.343 This methodology was often sufficient to 

provide a qualitative description of M-M bonding interactions, and was successfully applied 

to complexes of Mo,344–346 Rh347 and Ru145,257,341,348 by Norman et al. Despite this early 

precedent however, the accuracy of calculated values for experimentally determinable 

properties, such as calculated UV/Vis spectra, was generally very poor.343  

During the 1990s Becke published both the foundation for349–351 and perhaps most widely 

used example of a hybrid functional – B3LYP350–352 (Becke, 3-parameter, Lee-Yang-Par). Both 

this and other hybrid functionals such as PBE0 have since served to vastly improve the 

quality of the results that may be obtained from DFT calculations, often offering far better 

agreement with experimental properties that those conducted using SCF-Xσ-SW.343,353 

This allows for the better modelling of many molecular properties, which are otherwise 

poorly defined in traditional ab initio functionals and in a less computationally intense 

manner. This results in a methodology that is both computationally easier to conduct whilst 

still showing comparable or better correlation with experimental results.354,355 

3.3.5.1 Limitations of B3LYP 

Of the hybrid functionals proposed by Becke, the most widely used is B3LYP350–352 (Becke, 3-

parameter, Lee-Yang-Parr). B3LYP is not without its limitations however, yet it remains a 

very widely used benchmark.343 

Of its limitations the most notable is in how B3LYP models exchange and correlation energy 

in metals especially in extended systems356 This is the primarily a limitation of the LYP 

functional as it does not provide distinct treatment of opposite- and parallel-spin 

correlations.356,357 Consequently, it lacks the ability to adequately describe such interactions 

over moderate ranges and may this may in turn be attributed to similar limitations in the 

Salvetti theory from which B3LYP is derived.358,359 
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In practise this has meant that B3LYP is not always the most practical choice of hybrid 

functional for metallic systems as has been noted in the observations in many recent 

computational studies of closely related diruthenium156,360–363 and diosmium364,365 

complexes. In these instances the related Perdew–Burke–Ernzerhof exchange correlation 

functional (PBE0)353,366,367 affords results more consistent with experimental evidence for 

these types of system. 156,360–362,364,365 PBE0 similarly has its limitations, most notably a 

tendency to disproportionally stabilise higher energy excited states.368,369 Despite this, PBE0 

remains a preferable alternative to B3LYP for dimetal systems including Ru and Os.156,356,360–

362 

3.3.5.2 Computational methodology 

Geometry optimisation was conducted for the model complex Ru2(dmf)4 in gas phase and 

the singlet state under both B3LYP350–352 and PBE0353,366,367 functionals with the relativistic 

SDD basis set for ruthenium370 and 6-31G*(5d) Pople basis set371 (For C, H, N, O) using the 

Gaussian09 suite of programs (revision A.02). This was conducted under C4 (B3BLP) and D4 

(PBE0) symmetry constraints and Structures were confirmed to be minima on the potential 

energy surface by frequency analysis. The electronic absorption spectra was calculated using 

the time-dependent DFT (TD-DFT) method372–374 

Unrestricted open–shell calculations were conducted in every instance. Where calculations 

require description of singul`ar occupancy molecular orbitals and/or the of independent 

spin states, the electronic description of the molecular orbitals is conducted independently 

for both alpha and beta spin states resulting in separate alpha and beta manifolds.375 
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3.3.5.3 [Ru2(dmf)4]0 

A comparison of selected key calculated physical properties under the two different 

functionals with those determined crystallographically for Ru2(DMOPhFm)4 (X) is given 

below in Table 3.3.1. 

B3LYP PBE0 Ru2(DMOPhFm)4 
Ru–Ru 2.518 2.494 2.4998(5) 

Ru–N (average) 2.07 2.042 2.05 

N–C{H} (average) 1.33 1.324 1.329 

N–Ru–Ru–N (average) 6.5 6.1 5.8 

Table 3.3.1 - Comparison of calculated and experimental crystallographic data for Ru2(DMOPhFm)4 (X) 

As can be seen from the above, calculations conducted utilising PBE0 provided the best 

approximation of the experimental physical data and modelling the geometry of the dimetal 

core. Consequently, subsequent discussion shall focus primarily on calculations conducted 

using this hybrid functional. 

The electronic structure of the converged models was determined as σ2π4δ2π*4δ*0 and is 

shown in the frontier MO diagram overleaf for PBE0 (Figure 3.3.5), whilst cartoons of the 

shapes of the bonding MOs eigenstates are provided on the following page (Figure 3.3.6). 

The frontier MO diagram shown for the neutral model [Ru2(dmf)4]0 in Figure 3.3.5 is shown 

with just the HOMO populated for the sake of visual clarity, however it should be implicit 

that all lower energy MOs are fully populated. Those combinations that are non-bonding 

with respect to the metal- metal bond or which arise from ligand-π combinations have been 

included for completeness but are shown in grey. 

The HOMOs are a degenerate pair of Ru2- π* combinations, separated from the LUMO and 

LUMO+1 combinations (Ru2- δ* and Ru2- σ*) by 2.45 eV and 3.51 eV respectively. Overall 

then it can be seen that the Ru2- δ* has been significantly destabilised by the Ru-ligand 

nitrogen lone pair anti-bonding interactions (grey) resulting in the observed overall 

σ2π4δ2π*4δ*0 electronic configuration. 
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Figure 3.3.5 - Diagram of frontier MOs of [Ru2(dmf)4]0, HOMO, LUMO; HOMO is populated in isolation for clarity and 
ligand based orbitals, whilst included for completeness, are shown in grey. 

Application of TD-DFT allows this model to calculate the allowed optical transitions that 

might be observed experimentally in the UV-Vis region. However, as might be expected for 

compounds with such complex electronic structures there are a large number of predicted 

transitions many of which with very low associated oscillatory strength (f). For the sake of 

brevity only those transitions with f > 0.04 are show below in Table 3.3.2 

Energy 
(eV) 

Wavelength 
(nm) 

Molar 
Absorptivity 

(M-1 cm-1) 
Assignment 

1.64 755 0.0092 Ru2-π* -> Ru2-δ* 

2.02 613 0.0688 Ligand-π -> Ru2-δ* 

2.26 548 0.0052 Ru2-δ -> Ru2-δ* 

2.92 424 0.1946 Ru2-π/ Ligand-π -> Ru2-δ* 

3.06 405 0.0174 Ligand-π -> Ru2-σ* 

3.28 378 0.0086 Ru2-π* -> Ligand-π* 

Table 3.3.2 - Predicted UV-Vis transitions generated via TD-DFT for the model complex [Ru2(dmf)4]0 
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Figure 3.3.6 – Molecular orbital surfaces for [Ru2(dmf)4]0 drawn at the 0.03 isovalue 

The cartoons shown above in Figure 3.3.6 provide a very visual indication of the description 

of the bonding interactions present within the dimetal core. 
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Of the transitions shown previously, (Table 3.3.2) it is probably that only those 

corresponding to the LCMT at 613 nm and the MLCT at 424 nm will be observed with any 

significant intensity. Despite this however, as a significant number of the remaining 

transitions involve ligand π combinations it is noteworthy to consider the impact of the 

inclusion of the modelled phenyl rings. Many of these ligand- π  combinations such as 

HOMO-3 show a distribution of electron density across the aryl rings of the ligand to varying 

degrees (Figure 3.3.7). Similarly many of the metal dominated MOs at lower energy such as 

the Ru2-π combinations HOMO-7, HOMO-8 also display a degree of ligand-π character. This 

validates the inclusion of the phenyl rings into the computational model and provides stark 

contrast to the previous study wherein these were modelled as simple hydrogens. It is clear 

even from the below, that delocalisation of electron density to these rings provides a 

significant contribution to the overall electronic structure of the complex. 

 

Figure 3.3.7 - MO surfaces for [Ru2(II,II)(PhNC(H)NPh)4]0 drawn at the 0.03 isovalue; L->R, these are: HOMO-3 (Ligand π); 
HOMO-7 (δ*); HOMO-8 (π*[1]); HOMO-1 (π*[2]) as referred to in the above text 

3.3.5.4  [Ru2(PhNC(H)NPh)4]+ 

The structure of the 1+ charged model, which equates to Ru2 (II,III), was minimised under 

the presumption of C4 symmetry and within a DCM solvent mask as with the neutral model. 

As in the previous study by Cotton the converged model possesses an electronic structure 

consistent with σ2π4δ2π*2δ*1 (Figure 2.3.15) and the greater stability of this confirmation 

readily displayed in the relative energies of the frontier MOs cf. those observed for the 

neutral model. 



Page 122 

 

Figure 3.3.8 - Diagram of frontier MOs of [Ru2(PhNC(H)NPh]+, HOMO, LUMO; SOMOs (δ* in α, and π* in β) are populated 
in isolation for clarity and ligand based orbitals, whilst included for completeness, are greyed out. 

By contrast to the neutral model, the contributions from ligand orbitals, many of which 

exhibit π character and are delocalisation across the aryl rings, are clearly of greater 

significance than in the neutral (II,II) model. This is exemplified within a charged species 

where it becomes necessary to model both spin manifolds. In the β spin manifold for 

example just such a combination is now formally the HOMO. This combination, in distinct 

from many of the ligand π character MOs in that is it predominately centred on the donor 

nitrogen π combination similar to that observed for the HOMO-3 combination for the 

neutral species (Figure 3.3.6).  

Comparison of the respective α and β spin manifolds affords the singularly occupied δ*1π*2 

set of SOMOs which are now notably closer in energy than the neutral model at an average 

separation of 0.9 eV [1.6(α), 0.28(β)] as compared to 2 eV in [Ru2(dmf)4]0. What might 

otherwise be expected to be the facile addition of a single electron in the transition from 

(II,III) → (II,II), then clearly also necessitates a comprehensive rearrangement of the wider 

electronic structure.  
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This determination provides significant potential insight into the commonly noted difficulty 

in isolation of (II,II) formamidinate species generated from their (II,III) analogues.103 It may 

further provides some rationalisation to the apparent thermodynamic preference towards 

the Ru2(II,III) oxidation state. 

Conversion of the (II,III) → (II,II)  is likely disfavoured due to the need to not just populate a 

presumed (II,III)- transition state approximating σ2π4δ2π*2δ*2, but also to facilitated the 

complete electronic reconfiguration to the higher energy σ2π4δ2π*4δ*0
 ground state of the 

(II,II) [Ru2(dmf)4]0 model.  

The reverse process, that of (II,II) → (II,III) by contrast requires no change in overall 

electronic configuration, merely the loss of 1e- from the π*, and is thermodynamically 

favoured by subsequent relaxation of the probable σ2π4δ2π*3δ*0, (II,II)+ transition state to 

the 2π4δ2π*2δ*1 of (II,III). The differentiation in the reversibility of these processes following 

on presumption of the generation of electronically intermediate transition states, if a valid 

description, should then be reflected in the electrochemistry of respective (II,II) and (II,III) 

compounds. 
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3.3.5.5 Generation of a dioxygen adduct model of [Ru2(dmf)4(OO)]  

Attempts to model the interaction between dioxygen and the diruthenium tetraamidinate 

complexes X and XI present a number of very significant challenges both practical and 

computationally. 

Firstly the nature of the interaction is poorly defined. Experimental evidence from 

electrochemistry indicates that the interaction is both week and distorts rather than 

fundamentally alters the electronic structure of the dimetal core. This then presents two 

practical challenges, defining the orientation of the oxo-adduct to peroxo- or superoxo- and 

simultaneously considering how to model such a distant, potentially anti-ferromagnetically 

coupled interaction. This is a direct consequence of combination of the un-paired spin from 

triplet oxygen and a dimetallic core able to reconfigure into a range of differing electronic 

configurations as seen for the II,II and II,III states. 

It was concluded that the most likely orientation of the oxo-adduct would be as a peroxo 

due in part to steric considerations but this then provides a high degree of rotational 

freedom to the O-O vector which renders attempts to optimise the geometry of the model 

complex far more challenging. 

Several iterative scenarios were considered which reflected the likely nature of the ground 

state, however as many of these failed to converge during geometry optimisation it became 

readily apparent that predetermination of the state was not a realistic option. Consequently 

attempts were made to optimise the geometry of the singlet, triplet and quartet ground 

states assuming no overall change in charge, which on observation of the lack of change 

observed in the electrochemistry seems a reasonable assumption. In order to facilitate 

convergence it was necessary to implement an ultra-fine mesh potential energy surface as 

the stabilisation observed for the global energy minima was notably small. 

Of these geometry optimisations the only one to converge and permit further analysis was 

that of the quartet ground state and only in the absence of any solvent mask or other 

additional considerations. Consequently the PBE0 calculations for NN0 and NN+ were 

similarly repeated in the absence of a solvent mask, as reported in the previous section to 

better facilitate a comparative analysis. 
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Figure 3.3.9 – Peroxo- adduct model NN-OO complex [Ru2(dmf)4(OO)] 

 

Using the minimised structure it is then possible to generate qualitative MO cartoons to 

show the localisation of the MOs within the model as show overleaf in Figure 3.3.11, whilst 

MO energies are summarised in Table 3.3.8 that follows thereafter. 

The model for the peroxo-adduct does not differ massively from that seen in the neutral 

free tetraformamidinate but it can readily be seen (Figure 3.3.11) that the new calculated 

LUMO+1, LUMO and HOMO (shown top, L ->R) have significant contributions from the 

bound dioxygen adduct. 
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Figure 3.3.10 - MO surfaces for the α-manifold of the model NN-OO, drawn at the 0.03 isovalue. L->R, by row these are: 
LUMO+1 (M2 σ* + O2 π*); LUMO (O2 π*); HOMO (O2 π*); HOMO-1 (M2 δ*); HOMO-2 (Ligand π); HOMO-3 (Ligand π); 
HOMO-4 (Ligand π); HOMO-5 (M2 π*) 

Where previously ligand-π contributions were observed to dominate many of the frontier 

MO combinations it is clear that under this model the inclusion of O2 renders it the as 

intrinsic to almost every MO combination. The impact of the introduction of a peroxo-

adduct can therefore, on the basis of this modelling exercise be reasonably expected to 

have a very considerable impact of the electronic configuration of the dimetal core. Its 

introduction induces a similar re-configuration to that observed on transitioning from the Ru 

(II,II) to (II,III) and further underlines the configuration flexibility of these dimetallic units. 
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α manifold 
  MO # Character PBE0 (eV) Assignment 

236 LUMO+4 -0.37 Ligand π* 

235 LUMO+3 -0.43 Ligand π 

234 LUMO+2 -0.63 Ligand π* 

233 LUMO+1 -1.02 M2 σ* + O2 π 

232 LUMO -1.16 O2 π* 

231 HOMO -4.91 O2 π* 

230 HOMO-1 -5.01 M2 δ* 

229 HOMO-2 -5.77 Ligand π 

228 HOMO-3 -5.82 Ligand π 

227 HOMO-4 -5.89 Ligand π 

226 HOMO-5 -6.39 M2 π* 

Table 3.3.3 - MO assignements of the α manifold of NN-OO 

 

Figure 3.3.11 - MO surfaces for the β-manifold of the model NN-OO, drawn at the 0.03 isovalue. L->R, by row these are: 
LUMO+1 (M2 δ*); LUMO (M2 π*); HOMO (O2 π*); HOMO-1 (Ligand π); 
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Table 3.3.4 - MO assignements of the β manifold of NN-OO 

3.3.5.6 Comparison of UV-Vis-NIR and IR spectra generated via PBE0 calculations 

 

Figure 3.3.12 - Predicted electronic excitation spectra for the modelled complexes 

Figure 3.3.13 Provides a visual summation of the output for the TD-DFT modelling process. 

This graph shows the predicted UV-Vis spectra for the 3 modelled states. The free neutral 

complex, that of the corresponding (II,III) state wherein a single electon has been lost, and 

the modelled peroxo-adduct complex. It was intended that visual comparision between the 

predicted spectra and that seen for X or XI in the UV-Vis on exposure to dioxygen might 

provide some insight into the potential nature of the observed interaction. However, due to 

the complexities inherent in modelling such a poorly defined and understood species as the 
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proposed peroxo-adduct it is not immediately clear how much can readily be concluded 

from such a comparison. 

On the one hand, the UV-vis spectra predicted for the modelled peroxo-adduct does not 

correlate at all with that seen experimentally but it remains unclear if this is due to the 

model having been devised based on flawed assumption – or – if the model simply does not 

possess the required descriptive power to model this interaction. PBE0 like any hybrid 

functional provides a compromise between complexity, descriptive rigor and the required 

computational time to run the calculations. As in this case the modelled dimetal core is 

readily able to quite fundamentally re-configure itself due to small overall changes as is seen 

between II,II and II,III configurations. In this instances PBE0 may not be sufficient to 

effectively model the variety of potential outcomes sufficiently, and like is observed with 

B3LYP the construction of these functionals does itself provide a significant bias in the 

predictions that they provide. The peak data from the above figure are collated below in 

Table 3.3.10. 

  Wavelength (nm) 
Absorption 
(mol dm-3) 

NN0 

423 15064 

613 5142 

NN+ 

723 11741 

492 5036 

NN-OO 

685 1233 

489 8686 

Table 3.3.5 - Peak data for calculated electronic excitation spectra for the three computed models 

As can be seen from comparison of this data to that obtained experimentally, (section 3.3.8) 

there is unfortunately no strong correlation between the experimental and calculated 

spectra, with no predicted transition occurring in close proximity to the 542 nm excitation 

observed for the O2 generated species experimentally. Consequently what can be concluded 

from this computational study is that whilst a model has been successfully obtained, this 

does not provide a suitable description for the species generated experimentally. 
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3.3.6 Characterisation of diruthenium complexes 

Characterisation of the synthesised complexes was primarily conducted via MALDI-TOF-MS, 

and where possible, X-Ray crystallography. Computation calculations were used in addition 

to complement and rationalise the observed transitions in the UV-Vis-NIR spectrum, and 

structural properties observed crystallographically. 

The diamagnetic nature of the complexes obtained was confirmed for (X-XIV) via 1H and 13C 

NMR spectroscopy, which in conjunction with MALDI-TOF-MS was used during optimisation 

of reaction conditions as a means to identify the presence of remaining free ligand via the 

small, observed shift, (<0.25 ppm), on coordination to the metal centre.  

IR spectra of the compounds obtained are dominated via vibrational modes of the common 

Ar-NCN-Ar ligand backbone with IR spectra of the complexes only differing from that of the 

corresponding ligand in the fingerprint region (1000-750 cm-1) and by the notable loss of the 

N-H transition. The IR spectra of the complexes then predominantly reflected the identity of 

the ligand used. 

3.3.6.1 MALDL-TOF-MS 

Assigned compound ID Maverage 
Mmonoisotopic 

[M+] (Calcd.) 

Mmonoisotopic 

[M+] (obs.) 

Ru2
II,II(DMOPhFm)4  (X) 1463.5 1463.7 1464.3 

Ru2
II,II(4FPhFm)4  (XI) 1127.0 1128.1 1128.2 

Ru2
II,II(3,5-(CF3)2PhFm)3(OAc)  (XIII) 1662.9 1664.0 1664.0 

Ru2
II,II(TMOPhFm)4  (XIV) 1703.7 1704.4 1704.4 

Ru2
II,II(3,5-(CF3)2PhFm)4  (XII) 2071.1 2072.0 2072.1 

Table 3.3.6 – Predicted mass ions for analogues of isolated and non-cleanly isolated products in order of increasing 
mass. Expected mass ions are highlighted in bold 

Initial experiments utilising alkali metal formamidinate salts commonly saw the inclusion of 

additional lower m/z species consistent with either low-valent lithium bridged dimers of the 

form Li2(amidinate)2 or other non-ruthenium containing species. As discussed, one of the 

advantages of the new proposed reaction methodology is that the mass-spectra obtained 

for the crudes products are notably free of such unwanted species. 
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In contrast to the mixed products observed previously with diiron (Section 2.3.5) and when 

utilising alkali metal salts (Section 3.3.2) products X-XIV are, with the exception of XII, all 

observed as single m/z ions. Even under the harshest conditions tested XII, as previously 

discussed, wass observed as a binary mixture of the tris- and tetra-kis products. A typical 

mass spectra for the cleanly isolated complexes is included below for X (Figure 3.3.5) along 

with an expansion of the isotopic distribution of the parent ion at 1464.3 m/z.  

 

Figure 3.3.13 - MALDI-TOF-MS spectrum of Ru2
(II,II)(DMOPhFm)4 prepared in DCTB matrix using DCM. Inset – 

magnification of parent m/z ion peak and associated isotopic distribution. 

The small deviation between calculated and observed mass for X in the example given is 

within the error associated with the calibration of the instrument. Internal calibration is 

conducted on a per-use basis that provides a calibrated m/z range of 500-5000 over 5 points 

and as such provides a compromise between usable range and accuracy. However, as this is 

conducted on a per-use basis repeat analysis of samples serves to ensure the accuracy and 

validity of the results obtained. Typical precision across disparate analytical runs is more 

typically +/- 0.5 m/z. 

As was briefly discussed previously for the related diiron chemistry (Section 2.3.5.2), the 

isotopic distribution of the parent ion provides a great deal of useful information. With 
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heavier, more isotopically rich elements such as ruthenium and Molybdenum (Chapter 5) 

this provides a fingerprint that can be compared against that calculated with an isotopic 

calculcator. This allows a very facile means to determine the nuclearity of the originating 

species with respect to the included metal (Figure 3.3.5).  

 

Figure 3.3.14 - Isotope m/z distribution pattern of Ru1 (Blue), Ru2 (Red), and Ru3 (Green) 

Many programs provide this functionality such as Chemdraw™, but that used herein is the 

comparable freeware calculator IsoPro v3.1 as this provided the more useful interface.306 To 

give some indication of the power this simple approach provides consider the comparison 

provided overleaf (Figure 3.3.6) for the isotopic distribution of X (left), with that calculated 

(right). 
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Figure 3.3.15 - (Left) Expansion of m/z peak of Ru2
II,II(DMOPhFm)4 (X) (from Figure 3.3.4); (Right) Isotopic distribution 

calculated for C68H76N8O16Ru2 using IsoPro v3.1 

As can be readily seen from the above that calculated shows very close accord with 

experimental data and by comparison to those patterns for Ru1-3 (Figure 3.3.5) the species in 

question contains at least Ru2. In practice the added complexity seen for X arises from 

isotopic contributions from other non-metallic elements in the ligand and is readily 

distinguishable from that calculated for any Ru3 product. 
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3.3.6.2 X-Ray crystallography 

Crystals suitable for X-Ray diffraction of Ru2
II,II

(DMOPhFm)4 (X) and Ru2
II,III

(3,5-

(CF3)2PhFm)3(OAc)2 (XIII-b) were grown by layering of n-pentane on saturated solutions in 

DCM at -18 °C over the course of a week. Suitable crystals of Ru2
II,II

(OAc)4(HDMOPhFm)2 

(XV).were obtained by vapour diffusion of n-pentane into a saturated solution in THF at -18 

°C over the course of several days. Despite repeated attempts crystals of XI-XIV could not be 

obtained. 

Ru2
II,II

(DMOPhFm)4 (X)  

 

Figure 3.3.16 - Crystal structure of the complex Ru2
II(DMOPhFm)4. Disordered pentane occupying a special position 

about the edge of the unit cell is not shown for clarity. Thermal ellipsoids are drawn at the 50% probability level. 

Synthesis of (X) provided multiple batches of crystals suitable for analysis from a range of 

solvents including pyridine, THF and DCM. Of these three, the first two provided relatively 

poor diffracting crystals that provided structures of similar quality (Rint>15%).The third 
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structure finally yielded a crystal structure suitable for publication.376 All of the solved 

structures were functionally identical in form and features. 

The asymmetric unit consists of only one Ru coordinated to 4 amidinate nitrogen atoms and 

one of the two formamidinate phenyl rings with the remainder of the structure being 

generated by symmetry operations to yield the structure as shown (Figure 3.3.7). Notable 

bond lengths and distances are provided below (Table 3.3.2), and full cif tables provided in 

the appendix (Appendix B-4). The cited structure has had a single disordered pentane 

solvate (located bisecting the unit cell edge) removed via the squeeze function of Planton. 

For the sake of clarity and completeness the .cif table for the structure preceding this 

operation is also provided (Appendix B-3) but will not be addressed further herein. 

Bond ID Bond length /Å  Bond ID Bond length /Å 

Ru-Ru' 2.4998(5)  N1-C33 1.333(5) 

Ru-N1 2.064(3)  N4-C33 1.331(5) 

Ru-N2 2.033(3)  N2-C34 1.320(5) 

Ru-N3 2.075(3)  N3-C34 1.328(5) 

Ru-N4 2.029(3)    

Ru-N (average) 2.05  Torsion Angle /° 

   N1-Ru1-Ru'-N4' 6.1(1) 

   N2-Ru1-Ru'-N3' 5.6(1) 

Table 3.3.7 - Selected bond lenths and torsions for Ru2
II,II(DMOPhFm)4 (X). 

In comparison to closely related tetracarboxylates which have a typical Ru-Ru bond length 

of 2.23-2.31 Å the observed Ru-Ru bond length for X is significantly longer at 2.4998(5) Å. 

Tetracarboxylate complexes adopt a σ2π4δ2δ*2π*2 electronic structure, with a formal Ru-Ru 

bond order of two, whilst tetraamidinates are proposed to adopt a σ2π4δ2π*4 configuration 

in which the strongly antibonding π* orbitals are populated in preference to the δ*. 

Consequently, Relative to equivalent tetracarboxylates, tetraformamidinates show 

significant expected elongation of the Ru-Ru bond. 

The two complexes of the same form as X published previously by Cotton, Ru2
II,II(DTolF)4 and 

Ru2
II,II(DTolF)4, show Ru-Ru bond lengths of 2.454(1) and 2.474(1) Å, respectively. These are 
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in good agreement, if slightly shorter, than that determined for X.
139 The longest known 

example of a Ru2
4+ bonding interaction remains that of the related mono-carbonyl complex 

Ru2(DPhF)4(CO), with a Ru–Ru bond length of 2.554(1) Å.136 

There is a notable deviation from the expected D4h symmetry clearly present upon looking 

down the Ru-Ru vector with an observed N-Ru-Ru-N torsion angle averaging 5.9°. This 

torsion is largely a consequence of the steric bulk of the ligand which is minimised by partial 

deviation from D4h symmetry. Previous work within our group155,156 has described the 

propensity for more bulky carboxylate ligands to favour the increased internal rotation 

about the M-M bond to relieve steric tension; however such treatment considers the 

involvement of populated δ* orbitals which are unpopulated in the case of Ru2(II,II)(form)4 

complexes.155,156 

Another notable feature of this structure is the unusually long c axis of the unit cell (52.4 Å) 

which due to the inclusion of an α-helical twist in the packing arrangement of the 

asymmetric unit. Tetra-kis substituted paddlewheel complex are known to commonly 

deviate from co-planarity about the L-M-M-L vector and typically due to the steric demands 

of the ligand backbone.103,156 In many instances these slight dihedral twists are localised the 

ASU, but where, as with X, these effects are driven by steric bulk at the periphery of the 

ligands these effects may cause wider crystal packing effects as was observed for X.  

This effect is particularly notable with increasing aryl substituent bulk in formamidinates. 

The twist seen between the phenyl rings of the formamidinate with respect to the –N–C–N–

backbone is directly driven by the need to accommodate this added bulk. In some instances 

this can even be sufficiently severe to effectively block further ligand substitution as seen 

for XIII (vide infra). 
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Ru2
II,III

(3,5-(CF3)2PhFm)3(OAc)2  (XIII-b). 

 

Figure 3.3.17 - Crystal structure of Ru2
II,III(3,5-(CF3)2PhFm)3(OAc)2 (XIII-b). Hydrogens are omitted for clarity and thermal 

ellipsoids are drawn at the 50% probability level. 

Bond ID Bond length /Å  Bond ID Bond length /Å 

Ru-Ru 2.3043(4)  Ru1-O1 2.068(2) 

Ru1-N1 2.076(2)  Ru1-O3 2.097(2) 

Ru1-N5 2.062(2)  Ru2-O2 2.039(2) 

Ru1-N7 2.078(2)    

Ru2-N2 2.048(2)  Torsion Angle /° 

Ru2-N3 2.021(2)  O1-Ru1-Ru2-O2 6.67(8) 

Ru2-N8 2.048(2)  N1-Ru1-Ru2-N2 6.28(9) 

Ru-N (average) 2.06  N3-Ru2-Ru1-N5 5.2(1) 

   N7-Ru1-Ru2-N8 8.9(1) 

Table 3.3.8 - Selected bond lengths and torsions of Ru2
II,III(3,5-(CF3)2PhFm)3(OAc)2 (XIII-b). 
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Whilst attempts to grow crystals of the tris-subtituted product XIII were unsuccessful, 

crystals of the closely related Ru2
5+ species XIII-b (Figure 3.3.8) were adventitiously obtained 

from a toluene/n-pentane layer of a residual aliquot of the crude reaction mixture.  

The Ru-Ru bond length of 2.3043(4) Å XIII-b is short by the standards of other comparable 

Ru2
5+ formamidinates, which are typically observed in the range of 2.305-2.506 Å. However, 

in such instances variation of the axial ligand is known to have considerably greater impact 

than changes in aryl functionalisation.103 In XIII-b it is further apparent that this interaction 

is significant from the Ru1-O3 axial bond length at 2.097(2) Å. This very closely approximates 

that seen for the bound bridging acetate at 2.039(2)-2.068(2) Å indicating the strength of 

the axial interaction. The increased ability of the axial acetate ligand to act as a π-acceptor 

allows electron density to be effectively shifted from M-M anti-bonding combinations to the 

M-L π resulting in the observed shortening of the Ru-Ru bond. 

Disproportionation products are not uncommon in the chemistry of related species, and 

indeed this been previously been used as a synthetic strategy to generate target Ru2
4+ 

compounds from Ru2
5+ starting materials.103,138,340 However, despite not being 

representative of XIII, which can be shown to be a Ru2
4+ complex electrochemically (vide 

infra), the structure of XIII-b still provides a critical insight into the complications in 

synthesising the related target tetra-kis product XII. 

The three initially bound [3,5-(CF3)2PhFm]+ ligands are sufficiently bulky that the ligand 

arrangement about the dimetal core distorts significantly. This distortion of the ligand 

environment is most evident from the L-M-M-L torsion angles which, as can be seen in Table 

3.3.3, differ quite markedly even between ligands that might reasonably be expected to be 

otherwise equivalent. The ligand shown top in Figure 3.3.8 displays a torsion angle almost 

~50% greater than that seen for both the equivalent ligand diametrically opposing it (shown 

bottom), and that observed in less hindered complexes such as X (vide supra). In addition to 

steric considerations, the highly fluorinated nature of the ligand also introduces significant 

electrostatic repulsion between proximal fluorine atoms further favouring a more distorted 

ligand arrangement. This contrasts with less distorted systems like X where rather than 

repulsion, stabilising inter-ligand hydrogen bonding are clearly evident within the packing of 

the crystal lattice. 



Page 139 

The distortion in the ligand configuration in XIII-b serves to effectively shield the remaining 

potential substitution site, occupied by an acetate ligand against further attack. In this way, 

formation of the intended product XII is severely limited and serves to explain why under 

lower temperature methods XIII was isolated as the major product.  

Complete cif tables for XIII-b are provided in appendix B-5 
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Ru2
II,II

(OAc)4(H[DMOPhFm])2 (XV). 

 

Figure 3.3.18 - Crystal structure of intermediate Ru2
II,II(OAc)4(H[DMOPhFm])2 (XV). Hydrogens are omitted for clarity and 

thermal ellipsoids are drawn at the 50% probability level. 

Bond ID Bond length /Å  Bond ID Bond length /Å 

Ru-Ru 2.289(1)  O1-C1 1.26(1) 

Ru1-O1 2.085(6)  O2-C1 1.27(1) 

Ru1-O2 2.087(6)  O3-C3 1.27(1) 

Ru1-O3 2.061(5)  O4-C3 1.27(1) 

Ru1-O4 2.080(5)  Ru-O (Average) 1.27 

Ru1-N1 2.370(7)    

N1-C13 1.31(1)  Torsion Angle /° 

N2-C13 1.32(1)  O1-Ru-Ru’-O2 0.0(2) 

   O3-Ru-Ru’-O4 0.7(2) 

Table 3.3.9 - - Selected bond lengths and torsions of Ru2
II,II(OAc)4(H[DMOPhFm])2 (XV). 

Crystals of XV were obtained adventitiously whilst attempting to elucidate the structure of 

an unknown purple by-product as isolated from the synthesis of X conducted in THF. This 

alternative method is detailed in the experimental, but proved less robust than the reported 

procedure using toluene as the reaction solvent. Crystals suitable for X-Ray diffraction were 
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grown by layering the filtrate from completed reactions, from which X could be successfully 

isolated, with n-pentane and storage at -18 °C for 1 week. 

It is critical to note that this species is chemically distinct from the purple oxidative products 

that were generated reversibly during oxidative studies. Unlike these oxidative products 

that will be discussed further in a subsequent section (Section 3.3.8) this purple product was 

stable for prolonged periods provided an inert atmosphere was rigorously maintained. 

The Ru-Ru bond length observed for XV of 2.289 Å is typical for Ru2
4+ tetracarboxylate 

complexes, which have reported with bond lengths of 2.252-2.311 Å. In contrast to 

formamidinates these complexes typically show no significant dependence on the nature of 

the axial ligand and as such XV is comparable to Ru2
II,II(OAc)4(H2O)2 which has a Ru-Ru 

distance of 2.262(3) Å. 

The structure of XV whilst of limited utility to this study provides some insight into the 

probable associative mechanism by which the intended tetra-kis products X-XIV are formed 

in THF. Following initial axial coordination of the ligands, it is proposed that the intended 

substitution products are obtained by concerted loss of acetate and formamidinate ligand 

migration.  

The equivalence of the N1-C13 and N2-C13 bonds in the –N–C–N– amidinate backbone 

suggests that the formamidinate is delocalised but still present in its protonated 

H[amidinate] form. Further, the observed N1-Ru1 bond length is still relatively long at 

2.370(7) Å compared to that seen in X at an average of 2.06 Å. 

Complete cif tables for XIII-b are provided in appendix B-6 
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3.3.6.3 Electrochemistry 

The CV spectra of Ru2
II,II(formamidinate)4 complexes has only featured twice in the literature 

to date as despite the small handful of these complexes that have been reported many were 

themselves generated by bulk electrolysis of other related species. 

In the initial publication of its synthesis by Cotton Ru2
II,II(DFM)4 was found to display two 

redox processes at 0.713 and -0.568 V (versus Fc/Fc+), which were assigned as the Ru2
4+/5+ 

oxidation and Ru2
3+/4+ reduction, respectively. In both this initial publication and a related 

report concerning an axial CO adduct published by Kadish136 these CV spectra are assigned 

by reference to a better studied triazenate complex, Ru2
(II,II)(PhNNNPh)4. It was a stated 

assumption that these were expected to be approximately equivalent for the purpose of the 

analysis conducted.122,136,139 However, Cotton also noted in his initial report that this 

assignment failed to adequately explain the extreme air sensitivity observed for these 

complexes,139 and later recognised the proposed equivalence to triazenates to be flawed 

assumption.122 Despite this however, no alternative analysis or subsequent assignment was 

presented. 

The cyclic voltammogram recorded for Ru2
II,II

(DMOPhFm)4 (X) and Ru2
II,II

(4FPhFm)4 (XI) 

(offset above) in dichloromethane containing a 0.1M solution of nBu4NPF6 are shown 

overleaf in Figure 3.3.21. For X two reversible redox processes are observed at -0.584 V and 

0.643 V. Based upon the results of the UV–Vis spectroelectrochemical study, vide infra, we 

assign both of these observed processes as consecutive oxidations corresponding to the 

Ru2
4+/5+ and Ru2

5+/6+ redox couples, rather than an oxidation and reduction. 
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Figure 3.3.19 - Cyclic voltammogram of Ru2
(II,II)(DMOPhFm)4 (X) and Ru2

(II,II)(4FPhFm)4 (XI) recorded in in a 0.1M solution 
of nBu4NPF6 in DCM, with a scan rate 100 mv s-1. (Traces are offset by 5x10-6 Amps above/below zero on the Y-axis to aid 

readability.) 

In each instance, two separate 1e- redox couples are observed, which were then internally 

refererenced to the Fc/Fc+ couple and are sumerised in below (Table 3.3.15). 

Oxidative couple 2-2 to 2-3 2-3 to 3-3 

 
Epc (V) Epa (V) E1/2 (V) ΔEP Epc (V) Epa (V) E1/2 (V) ΔEP 

Ru2
II,II(DMOPhFm)4 -0.75 -0.65 -0.70 0.11 0.55 0.64 0.60 0.09 

Ru2
II,II(4FPhFm)4 -0.47 -0.38 -0.43 0.09 0.13 0.25 0.19 0.12 

Table 3.3.10 - Electrochemical data for Ru2
II,II(DMOPhFm)4 (X) and Ru2

II,II(4FPhFm)4 (XI) 

Whilst we report the CV data for (X-XI) it is noteworthy that attempts to obtain satisfactory 

data for the related tris-substituted product (XIII-XIV) despite repeated attempts were 

unsuccessful. This was in due in part to the very low current response obtained in the 

solvents tested (DCM,THF, MeCN, MeOH) which is itself a reflection of the very low 

solubility of these more bulky complexes.  

In addition to the two observed redox couples observed in (X-XI), a small unknown current 

response was noted at ca. 0.05 V in (X-XI), which is most evident in (X). It was initially 

thought that this was due to the inclusion of residual ferrocene but was found to persist 

despite thorough washing, over multiple samples, differing batches and even with a 
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completely new set of electrodes. A similar peak is visible, but not reported or otherwise 

assigned in the CV of Ru2
II,II(DFM)4 reported by Cotton.139 The identity of this is not 

immediately clear but appears to be largely non-variant between the 3 complexes despite 

other processes showing significant variance. It is postulated that this may represent the 

formation and disassociation of an axial adduct of the (II,III) species observed in this region 

of the CV as this behaviour has been previously noted for such species.103  

  



Page 145 

 

 

Figure 3.3.20 - Effect of variable scan rate in CV of (top) Ru2
II,II(DMOPhFm)4 and (bottom) Ru2

II,II(4FPhFm)4. 
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3.3.6.4 Reversibility of observed redox processes 

The CV of both (XI) proceeds from the left and may be readily oxidised from (II,II) to (II,III) at 

E1/2 = -0.70 V (X) and -0.43 V (XI) respectively, with a corresponding colour change, in both 

instances, from a deep red to a dark purple. The redox wave associated with the process 

shows a high degree of both chemical and electrochemical reversibility as shown by the 

small observable deviation in ΔEP with increasing scan rate (Figure 3.3.22). In (X) there is also 

some indication of potential absorption of the (II,II) species onto the electrode surface 

resulting in the introduction of the hump observed on the upper oxidative half-wave..  

That this redox couple appears to represent the (II,II) to (II,III) oxidation cf. the previous 

reported reduction has important implications, most notably in potential interactions with 

dioxygen. It has been repeatedly103,122,136,139 noted that these species are extremely 

sensitive towards dioxygen and the potential of this oxidative redox couple could potentially 

explain this behaviour as it is more than sufficient to reduce O2. The nature of this 

interaction will be considered in greater detail in a subsequent chapter. 

The second oxidative redox process observed in the CV of (X-XI) representing the (II,III) to 

(III,III) couple also appears to demonstrate a significant degree of electrochemical 

reversibility; however in the case of (X) this does not appear to be as chemically reversible 

as observed in (XI). In (XI) there is what appears to be a second oxidative wave just 

preceding this second redox process; as described above however this is most likely derived 

from the unknown process at 0.05 V overlapping cf. a probable indication of absorptive 

behaviour at the electrode surface. This distinction is however not one that can be made 

empirically based on the spectra of (XI) in isolation. 

On comparison of (X) and (XI) it is clear that the general reported trend103,228 for the 

functionalization of formamidinate, in affording chemical tunability to a dimetal core also 

extends to Ru2 (II,II) as well. Variation from m-OMe to p-F affords a 200 and 300 mv 

variation in the observed E½ values of the (II,II) to (II,III) and (II,III) to (III,III) respectively. That 

such variation in ligand electron donor/acceptor behaviour facilitates such behaviour in 

these species, whilst not-unexpected had until now yet to be proven. 
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3.3.6.5 UV-Vis-NIR spectroscopy 

3.3.6.6 Initial UV-Vis-NIR studies 

The UV-vis-NIR spectrum of the isolated compounds X, XI and XIII, was recorded in DCM 

under protective atmosphere of argon and corrected for molar absorptivity to generate the 

comparative plot shown in Figure 3.3.23; peak data and relative assignments are provided in 

table 3.3.16 

 

Figure 3.3.21 - Relative intensity of observed electronic transitions of compounds (X, XI, XIII), corrected for molar 
absorptivity 

With the aid of TD-DFT calculations for the model complex Ru2(dmf)4, the results of which 

are summarised in Table 3.3.2 of the DFT section it is possible to make tentative assignment 

of the nature of the transitions observed as is shown for (X) in Figure 3.3.24 overleaf. Such 

assignments do however make the assumption that trends observed in the solid state 

persistent in solution.  
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Complex 
Peak 

wavelength (λ) 
molar absorptivity 
ε·103(m-1 cm-1)  

Ru2
(II,II)(DMOPhFm)4 

399 5720 

432 4688 

497 5560 

548 3039 

888 2174 

Ru2
(II,II)(4FPhFm)4 

390 2925 

420 2460 

487 2718 

545 1551 

907 868 

Ru2
(II,II)(3,5-(CF3)2PhFm)3(OAc) 

423 1118 

490 953 

650 468 

929 269 

Table 3.3.11 - UV-Vis-NIR peak data for compounds (1-3) 

Ru2(DMOPhFm)4 (1) 

 

Figure 3.3.22 - Assignment of observed electronic transitions by comparison to TD-DFT derived predictions  
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[Ru2
(II,II)(PhNCHNPh)4]0 

Wavelength 
(nm) 

Oscillator 
strength 

(f) 
Assignment Description 

789 0.0035 π* → σ* M2 π* to σ* (HOMO/HOMO-1) to (LUMO +1) 

663 0.0347 LMCT Lπ → δ* Ligand π to M2 δ* (HOMO-3/HOMO-4) to (LUMO) 

571 0.0055 δ → δ* M2 δ to δ* (HOMO-2) to (LUMO) 

455 0.098 π → δ* M2 π  to δ*(HOMO-7/HOMO-8) to (LUMO) 

431 0.0049 LMCT Lπ → σ* Ligand π to M2 σ* (HOMO-3/HOMO-4) to (LUMO+1) 

394 0.0051 LMCT Lπ → σ* Ligand π to M2 σ* (HOMO-5) to (LUMO+1) 

388 0.0041 
MLCT π* → 

Lπ* 
M2 π* to Ligand π* (HOMO/HOMO-1) to (LUMO+3) 

365 0.0033 LMCT Lπ → δ* Ligand π to M2 σ* (HOMO-10/HOMO-11) to (LUMO) 

338 0.0405 LMCT Lπ → δ* Ligand π to M2 σ* (HOMO-13) to (LUMO) 

332 0.0025 π → δ* M2 π  to δ*(HOMO-7/HOMO-8) to (LUMO) 

Table 3.3.12 - - Calculated electronic transitions for [Ru2(PhNC(H)NPh)4]0 (where oscillator strength, f > 0.0025) 

As can be seen from comparison of tables 2.3.4 and 2.3.5, not all predicted transitions are 

observed and some, most notable the predicted transition at 789 nm, show strong variation 

due to ligand induced electronic effects. Despite these variations it can be seen that the 

model complex [Ru2
(II,II)(PhNCHNPh)4]0

 provides a good approximation to what is 

experimentally observed. 

Of the transitions observed that which gives the compound its characteristic brick red colour 

observed at 885.5 nm represents is, as one might expect that from the HOMO -> LUMO (π*  

-> δ. At higher energy and just below the solvent window at 394.9nm can be seen the MCLT 

from the metal π -> Lπ* to one of the many ligand π* combinations whilst a LMCT from a MO 

largely nitrogen lone pair in character back to the metal delta star can be seen as a shoulder 

at 553.3nm (Nlp -> δ*). The most dominant of the remaining two transitions observed, just 

greater in oscillator strength than the MLCT, is that of the delta to sigma star (δ -> σ*). The 

last observed transition involves another LMCT originating from a ligand π character MO 

back to the δ*. 
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3.3.6.7 Spectroelectrochemistry 

Spectroelectrochemistry is the practise of combining the powerful techniques of cyclic 

voltammetry and UV-Vis-NIR spectroscopy allowing the probing of electrochemically 

generated species. 

As the UV-Vis-NIR spectra of (X) is known, collection of UV-Vis-NIR spectra in the three 

regions defined by the two redox couples observed for (X) in its corresponding CV (Figure 

2.3.16), the facile identification of the potential range in which the neutral complex exists 

may be achieved. In this instance the unperturbed (II,II) UV-Vis-NIR spectra is observed in 

for hold potentials below the -0.7 v redox couple strongly indicating that this does in fact 

represent an oxidation cf. the previous assignment provided by Cotton.122,139 

Once the initial spectra observed in the absence of a applied potential has been established 

the applied potential is then swept beyond the first redox couple and the observed changes 

recorded by sequence of recorded spectra (Figure 2.3.20).  

 

Figure 3.3.23  - Observed changes afforded to the UV-Vis-NIR spectra of (1) on modification of the applied potential from 
-0.8 v to -0.6v corresponding to the previously assigned (II,II) to (II,III) redox couple 
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As can be seen from Figure 2.3.20, the transition from Ru2 (II,II) to (II,III) is accompanied by 

the loss of the fine structure previously observed between 350-520 nm and the transition 

888 nm, replaced by a plateau from 516 -620 nm and a new transition growing in at 701 nm 

with comparable molar absorptivity of 7400 M-1 cm-1
. 

 

Figure 3.3.24 - Observed changes afforded to the UV-Vis-NIR spectra of (1) on modification of the applied potential from 
0.4 v to 0.8v corresponding to the previously assigned (II,III) to (III,III) redox couple 

As seen, the species present at -0.6 v now undergoes a second transformation with the UV 

spectra reflecting this in a loss of the previous plateau in the 500-600 nm region to reveal a 

peak at  535 nm (5016 M-1 cm-1) and a second, more broad transition growing in at 853 nm 

(7571 M-1 cm-1). 

The progressive conversion of the electrochemically generated species shown in Figures 

2.3.20-21 are however, as reflected by the redox wave shape in the electrochemistry highly 

reversible allowing the regeneration of the original (II,II) species by re-application of a 

suitable (-0.8 V) potential with no observable degradation loss or bleaching as is shown in 

Figure 2.3.22 below. 
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Figure 3.3.25 - UV-Vis-NIR spectra of reverse process, affording the regeneration of Ru2 (II,II) 
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3.3.7 Aerobic oxidation studies 

3.3.7.1 Initial catalyst screening 

In light of the successful aerobic oxidation studies conducted by Jasra327 and Naota328 

utilising diruthenium tetraacetates to conduct simple alcohol oxidation, the conditions used 

were replicated of the study of the oxidative behaviour of  X an IX. 

 

Figure 3.3.26 - Catalysis screening with benzyl alcohol under the conditions reported by Naota et al. percentages shown 
indicate degree of conversion after the alloted time. 

All catalytic activity reactions were assessed via two methods, 1H NMR and GC-MS. GC-MS 

allowed the following of reaction progress and an approximation of analyte concentration 

by calibration of the TIC readout count associated with a target eluent verses a set of pre-

made internal standards. These standards contained pre-set concentration ratios of 

products from 0-100% of the concentrations used in the catalyst tests. On completion of the 

reaction a sample was taken for 1H NMR to determine if any observable change had 

occurred. Control reactions were additionally run at ambient temperature to validate the 

need for thermal input. 

Initial tests conducted using benzyl alcohol (Figure 3.3.28) showed zero measurable 

conversion after 36 hours under the conditions used by both GC-MS and 1H NMR. This 

indicated that despite the rapid colour change on exposure of X or XI to molecular oxygen 

that the generated species is not active towards the oxidation of the target substrate. In 
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addition to the reported conditions a range of other solvent systems were also tested in 

order to rule out the impact of particular solvent and donor/non-donor solvent effects: 

 

Figure 3.3.27 - Degree of substrate conversion after 36 hours at 80 °C with X or XI and a range of different solvents as 
indicated. 

All of the other tested solvents showed the same behaviour as that observed for the initial 

solvent systems with the exceptions of MeOH and MeCN. Methanol causes the accelerated 

decomposition of the catalyst in < 1hour whilst MeCN solutions displayed the opposite 

effect and retained the deep purple colour of the exposed solution for considerably longer 

often up to 24 hours. In light of this considerable effort was taken to utilise this to obtain 

crystals of the species generated but such efforts we unsuccessful. It is not known why or 

how MeCN partially stabilises this meta-stable species. 

With attempts to replicated the conditions previously reported a range of alternative readily 

oxidised substrates were tested including 9,10-dihydroanthracene and cyclohexene. 

Duplication of the above described test screening was similarly unsuccessful at obtaining 

measurable conversion to either partially oxidised products. In all instance the target 

substrate was retained and unmodified. 

3.3.7.2 Use of oxo-transfer and peroxo-reagents 

As the nature of the interaction between O2 and X or XI was not well understood a series of 

tests were conducted to assess the impact of other co- oxidants on the catalyst-substrate 

mixtures. Reports from the Ren group for related diruthenium (II,III) tetraamidinates in 

combination with such reagents as tert-Butyl hydroperoxide have been reported to useful 
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catalytic behaviour towards biologically important substrates such as organic 

sulphides.129,326 

  X XI 
mCPBA 

Immediate 
 decomposition 

PhIO 

H2O2 

TBHP 

Table 3.3.13 - Table of interaction results between Ru2(formamidinate)4 and oxidatant 

As can be seen from Table 3.3.17 exposure of X or XI to common oxidants like hydrogen 

peroxide and tert-butyl hydrogen peroxide (TBHP) and other nucleophilic oxidants like 

meta-chlorobenzoic acid and Iodosylbenzene results in immediate decomposition to a black 

intractable mixture of low mass products. 
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3.3.8 Reversible interaction with dioxygen 

3.3.8.1 UV-Vis-NIR spectra of dioxygen exposed Ru2(DMOPhFm)4  

The UV-Vis-NIR spectra of Ru2(DMOPhFm)4 was recorded in DCM and the effects bubbling 

both inert and reactive gasses though the sample cuvette on the resultant UV-Vis spectra 

was probed.  

 

Figure 3.3.28 - UV-Vis-NIR spectra of O2 exposure experiment with Ru2(DMOPhFm)4. Identity of traces provided is 
indicated in the legend. 

As can be seen in Figure 3.3.30 aboveon exposure to oxygen exposure the UV spectrum 

obtained bears similarities to that obtained for the Ru2 (II,III) analogue generated in the 

spectroelectrochemical conducted in Section 3.3.6.4. This Ru (II,II) to (II,III) transition was 

observed to result in the loss of the lower wavelength fine structure and the transition at 

888 nm; whilst a new peak grew in at 701nm.  

The spectrum obtained for this oxygen interaction species, whilst similar that of the Ru2 

(II,III), it remains notably different in several key respects indicating in originates from a 

different species. Whilst it shares the loss of lower wavelength fine structure in the 390-510 
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nm region and the single higher wavelength peak (888 nm), the new observed transition 

that grows in occurs at the significantly shorter wavelength of 542 nm compared to 724 nm 

for the generated Ru2 (II,III) species. This is more readily apparent when the two spectra are 

over-laid as shown below in Figure 3.3.31. 

 

Figure 3.3.29 – Comparison of UV-Vis-NIR spectra of O2 exposure product of Ru2
(II,II)(DMOPhFm)4 and the Ru2(II,III) 

species of the same complex previously generated via electrochemistry. 

That these two species differ significantly implies that the product of exposure of 

Ru2
(II,II)(DMOPhFm)4 to air cannot merely be the discreet Ru2

(II,III) analogue. Instead it 

suggests that that observed is distinct and is representative of a new species entirely. 

The literature contains numerous examples of the effects of axial ligation on the properties 

of diruthenium complexes,103,147,148,152,228,234–238,377–379 more than sufficient for a sizable 

Chem. Rev. article, however several publications are of particular note to the present 

problem. These include the effects of replacement of the axial halides in Ru2 (II,III) 

complexes with phenylacetylides and exploiting of their strong π-acceptor ability. to 

facilitate the generation of stabilised Ru2 (III,III) species. In this way the axial ligand may be 

used to stabilise chemical transformations that might otherwise lead to immediate 

decomposition. In the instance of synthetic routes to Ru2 (III,III) species this often via 
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proceeds via deliberate aerobic oxidation.236 In this way what would otherwise be a 

decomposition process may be turned into a useful synthetic tool and further highlights the 

criticality of understanding how axial ligand interactions affect the chemistry of the dimetal 

core.  

The deliberate aerobic oxidation of some related Ru2 (II,III) formamidinates using suitably 

designed axial ligands, 235,236,378and in complexes incorporating related non-formamidine 

NCN donor ligands provides a suitable proof of concept for the utility of this 

methodology.379 From consideration of the UV-Vis-NIR spectrum in isolation it is impossible 

to draw any immediate conclusions, however it is apparent from the electrochemistry that 

the impact of oxygen exposure is a weak interaction rather than representative of a 

chemical redox process or wider change235,236,380 (See Section3.3.8.2). 

Whilst the examples of Ru2 (III,III) species are relatively rare outside of those supported by 

conjugated aromatic π-systems, recent reports from the group of Berry and separately by 

Ren infer the possibility of a simpler (II,III)-oxo adduct may not be an unreasonable theory. 

In his recent report regarding the use of Ru2
(II,III)(OAc)4 as a sulphide oxidation catalyst, in 

conjunction with TBHP,  Ren invokes a proposed an axial M-M-peroxo adduct as the active 

species. Similarly, recent work in the Berry group regarding axial nitrides has ably 

demonstrated the significant impact such M-L interactions can have on the properties and 

reactivity of diruthenium formamidinates specifically.322–324,381 

3.3.8.2 Electrochemistry of dioxygen exposed Ru2(DMOPhFm)4  

As with the UV-Vis-NIR exposure study, the electrochemistry of Ru2(DMOPhFm)4 was first 

replicated as conducted in chapter two, followed by the examination of the oxygen 

exposure generated species followed by the attempted regeneration of the parent (II,II) 

complex (Figure 5.3.3). 
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Figure 3.3.30 - Cyclic voltammogram of Ru2(II,II)(DMOPhFm)4 and Ru2(II,II)(4FPhFm)4 recorded in in a 0.1M solution of 
nBu4NPF6 in DCM, with a scan rate 100 mv s-1. (Trace of regeneration product offset by 1x10-5 Amps above zero on the 

Y-axis for ease of readability. 

The important thing to grasp from figure 3.3.32 is that all the obtained voltammograms 

contain the same fundamental redox processes. The potentials and which all but one of 

these processes occur remains unchanged despite exposure of the solution to dioxygen. 

What is observed to change between the red, initial CV and that post exposure, shown in 

purple is that the oxidative half of the first redox wave is retarded by almost half a volt! The 

corresponding reduction half-wave remains unchanged, indicating that the electronic 

structure has not fundamentally changed as might be expected if oxygen exposure had 

oxidised the complex. Instead what is seen is that oxygen exposure serves to stabilise the 

tetra-amidinate complex, significantly towards further oxidation to the II,III state. What 

makes this particularly interesting is that this occurs in the absence of evidence of 

irreversible change. On re-purging of the solution with inert gas, the green CV trace is 

obtained showing that the original species X has been re-generated with minimal losses 

It is proposed that shift in the oxidative process is  a reflection of the raising of the oxidation 

potential that might be expected if a stabilising interaction were made with dioxygen via a 

probable axial interaction. The transient, labile nature of this adduct would explain the 
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observed increase in stability towards further oxidation but similarly explain our present 

difficulty in obtaining a significant analytical handle on the nature of this species. If the 

interaction itself is weak there is no reason why it might be expect to be visible via MS, and 

indeed no indication of such a species has been observed. Similarly whilst attempts to 

observe this species via exploiting any potential magnetic properties arising from the 

inclusion of triplet oxygen were hoped to provide some diagnostic information, however the 

species was both EPR silent and showed not notable shift in any chemical shifts during 

repeated Evens NMR experiments. 

Whilst informative as to the lack of probable chemical change, the UV-Vis-NIR and 

electrochemistry in isolation remain insufficient to facilitate the identification of the species 

generated. In an attempt to further probe the nature of this apparent oxo-adduct samples 

were analysed via a range of additional techniques including Evans NMR, magnetic 

susceptibility, EPR, and IR and .Raman. 

3.3.8.3 Infrared spectroscopy 

The IR spectra, as briefly noted in chapter two were not expected to offer much diagnostic 

information due to the dominance of the IR spectra by ligand based vibrational modes. The 

one asymmetric stretch that might afford some diagnostic information is that of the 

bridging NCN linkage. This is however rather central to then complex and surrounded on all 

sides with the mass of the aryl rings serving to obscure any active IR active vibrational 

modes such as VNCN which might have been informative to a significant degree. 
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Figure 3.3.31 - IR spectrum of Ru2(DMOPhFm)4  and its oxygen exposure product collected as the thin films in DCM. 

Despite collection of data as a thin film cf. in bulk solution, high DCM concentration precluded the effective subtraction 
of solvent background in the narrow band of 1259-2171 cm-1 

DCM was not found to be the most well suited solvent for the collection of the IR spectra of 

the initial and peroxo-adduct of (X) due to the number of solvent associated bands this 

introduces to the spectra. Attempts to use other, more preferable solvents for this task such 

as carbon tetrachloride, or alternative methods such as Nujol mulls were frustrated by the 

apparent reaction of (X) with the former and the lesser clarity afforded with the later cf. 

DCM. At present we cannot explain the nature of the reactivity of (X) with CCL4, but it is 

presumed decay occurs in a similar manor to that observed for CHCl3 as previously noted by 

Cotton.139 

3.3.8.4 Determination of magnetic susceptibility  

The conduction of magnet susceptibility determinations was attempted via 3 established 

methodologies: Evans NMR,382–385 EPR386 and room temperature determination utilising a 

gouy balance.342 Both the initial complex, and the proposed oxo-adduct were however 

found to show no magnetic moment or other indication of paramagnetism.  
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3.4 Conclusions 

A range of diruthenium, tetra formamidinate complexes (X-XIV) have been successfully 

synthesised and a number of these and related species have been structurally characterised. 

The significant differences in the steric demands of the ligands used were observed to vastly 

alter the easy with which the intended tetra-kis products could be obtained and in some 

instances which evidence of the target species was obtained via MS, there was no practical 

way to extract or use some species e.g. XIV due to its incredibly low solubility. 

The synthesis of these complexes was attempted via existing literature routes, which were 

found to be insufficient to obtain the target compounds. Consequently new synthetic routes 

were developed to obtain the target compounds and where possible these synthetic 

challenges were explained in reference to subsequent structural evidence. The attempted 

synthesis of XII provides a good example of this where synthetic efforts were frustrated by 

the bulk and electrostatic repulsion between adjacent ligands leading to the isolation of XIII 

as the preferred product. 

Spectroelectrochemical analysis yielded an alternative assignment of the electrochemical 

processes in the CV of Ru2(Formamidinate)4 complexes. This suggested that in contrast to 

the one reductive and one oxidative redox processes that these were in fact representative 

of two successive oxidations. This then provides a more practical explanation of the extreme 

oxygen sensitivity of the species generated. 

The potential for the use of X and XI as aerobic oxidation catalysts was explored extensively 

utilising common, readily accessible substrates such a 9,10-dihydroanthrecene and benzyl 

alcohols. Unfortunately the tested complexes showed absolutely no significant activity 

across the range of solvents, substrates and experimental conditions tested. Attempts to 

utilise further utilised these complexes with common oxidants such as H2O2 mCPBA, TBHP 

and PhIO in place of aerobic oxidation proved similarly unsuccessful and instead resulted in 

immediate decomposition of the dimetallic complex.  

A DFT study of the model complexes [Ru2(dmf)4]0, [Ru2(dmf)4]+ and [Ru2(dmf)4(OO)] utilising 

two differing hybrid functionals was conducted which demonstrated that calculations using 

PBE0 provides a better model of the experimentally observed structural data. The series of 



Page 163 

DFT models was extended to include a proposed structure of an axial peroxo-adduct that 

might potentially present that seen experiementally on exposure of the target compounds 

to dioxygen. However, comparison between data obtained experimentally and that derived 

from this model showed that this model was not representative of the observed species. It 

is not immediately clear is this is a consequence of limitations of the model and the 

computational componentry used or a simply a consequence of this presenting a very 

difficult computational problem.  
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3.5 Experimental 

For details of physical measurement procedures please refer to Section 2.5.1; for X-ray 

crystallographic details please refer to Section 2.5.2; for general information on the sourcing 

and pre-treatment of reactants and reagents please refer to Section 2.5.3 and the additional 

considerations outlined below: 

Ru2(OAc)4,140 was synthesised according to established literature procedures and its purity 

assessed via IR.140,141 

3.5.1 Ruthenium formamidinate complexes 

Synthesis of Ru2
II,II

(DMOPhFm)4, (X) 

Method A) 

 Ru2(OAc)4 0.065 g (0.15 mmol), 0.195 g (0.615 mmol, 4.1 mol. equiv.) of H[DMOPhFm] and 

20 ml of toluene were combined in a small, ca. 50ml Schlenk. The resultant mixture was 

then heated at reflux for 48 hours. Upon completion the reaction mixture was allowed to 

cool to room temperature, filtered through a fine Celite plug, reduced to minimum volume 

and the product precipitated from with hexanes as a bright, brick red solid which is then 

isolated by filtration. The recovered solid was then washed with 2x 5ml aliquots of n-

pentane and dried in vacuo. Yield: 0.126 g, 57% 

Crystals of [Ru2(DMOPhFm)4·C5H12] obtained suitable for X-ray diffraction were grown from 

DCM / n-pentane by vapour diffusion in a freezer at -18°C over several days. MALDI-TOF-

MS: calcd. monoisotopic MW for Ru2C68H76O16N8 m/z: 1464.30, found m/z: 1464.31 (M+
, 

100%). IR (DCM) [cm-1]: 835.50 (w), 1066.44 (m), 1154.19 (s), 1194.20 (m), 1204.81 (s), 

1338.84 (w), 1362.94 (w), 1394.76 (w), 1418.87 (w), 1424.18 (w), 1439.71 (w), 1456.96 (m), 

1464.19 (m), 1472.38 (m), 1489.74 (w), 1506.62 (m), 1535.46 (s Sh), 1538.92 (s), 1558.68 

(m), 1596.77 (s), 1653.18 (m), 1684.03 (m), 2310.78 (m Sh), 2321.87  (m Br), 2363.82 (m Br). 

UV-VIS-NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 399 (5720); 432 (4688); 497 (5560); 

548 (Sh. ca. 3039); 888 (2174). 
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Method B ) A variation on A) utilising THF and incorporating a different work-up. Method A 

should be used in preference; this method is provided for reference only. 

A solution of Ru2(OAc)4 0.065 g (0.15 mmol), and 0.195 g, (0.615 mmol 4.1 mol. equiv.) of 

H[DMOPhFm] in 15 ml of THF was heated at reflux for 16 hours after which time it was 

allowed to cool. Volatiles components were removed in vacuo at 60°C for 1 hour followed 

by the addition of a solution of two further equivalents of H[DMOPhFm], 0.095 g, 0.3 mmol 

in 15ml of THF. The resulting solution was then heated at reflux for a further 24 hours. Upon 

completion the reaction mixture was allowed to cool to room temperature and was then 

filtered through a fine sintered frit to isolating a bright, brick red product mixture from the 

purple filtrate. The recovered solid was then recrystallized from DCM/n-pentane, re-isolated 

via filtration, was washed with 2x 5ml aliquots of n-pentane and dried in vacuo. Yield: 0.116 

g, 53 %. 

Synthesis of Ru2
II,II

(4FPhFm)4, (XI) 

Readily synthesised via either 1A or 1B without additional modification, resulting in the 

isolation of a bright orange/red powder. Via 1A – yield: 0.095 g, 56%; and via 1B – Yield: 

0.099 g, 59%. Repeated attempts to grow crystals of (XI) suitable for X-ray diffraction 

utilising a range of solvents were ultimately unsuccessful. MALDI-TOF-MS: calcd. 

monoisotopic MW for Ru2C52H36N8F8 m/z: 1128.10, found m/z: 1128.2 (M+
, 100%). UV-VIS-

NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 390 (2925); 420 (Sh ca. 2490); 487 (2718); 545 

(Sh ca. 1551); 907 (868). 

Synthesis of Ru2
II,II

 (3,5-(CF3)2PhFm)3(OAc), (XIII)  

Whilst attempting to optimised the reaction conditions to generate the tetra-substituted 

complex (XII), Ru2(3,5-(CF3)2PhFm)4, the tris-substituted complex (XIII) was isolated as the 

sole product utilising the procedure 1B and an extended 72 hour reflux. All attempts at 

generating crystals of (XIII) for further structural analysis failed. MALDI-TOF-MS: calcd. 

monoisotopic MW for Ru2C68H28N8F48 m/z: 1663.95, found m/z: 1664.0 (M+
, 100%). UV-VIS-

NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 423 (1118); 490 (Sh ca. 953); 650 (Sh ca. 468); 

929 (269). 
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Synthesis of Ru2
II,II

(3,5-(CF3)2PhFm)4, (XII) 

0.065 g (0.15 mmol) Ru2(OAc)4 and 0.561 g (1.2 mmol, 8 equiv.) of  H[3,5-(CF3)2PhFm] are 

combined in a small, ca. 50 ml Schlenk which is then fitted with a high efficiency reflux 

condenser. 20ml of a 3:1 mixture of mesitylene:toluene is then added and the resultant 

mixtures heated to reflux for 72 hrs. Once complete cooling to 5 °C overnight effects the 

precipitation of excess ligand which is removed via filtration. The retained filtrate is then 

reduced to minimal volume, and the product (XII) recovered by precipitation with hexanes 

and subsequent filtration. Product is afforded as a deep orange-red powder which is washed 

with 2x 5ml aliquots of n-pentane and dried in vacuo. In most instances a secondary, hot 

recrystallization from toluene is typically required to remove excess residual ligand to afford 

the target product (XII) cleanly. Yield: 0.040g, 13%. Product was found to shown very low 

solubility in most common solvents which greatly frustrated attempts a further analysis and 

rendered attempts and growing crystals of (4) all but impossible. MALDI-TOF-MS: calcd. 

monoisotopic MW for Ru2C68H28N8F48 m/z: 2071.98, found m/z: 2072.1 (M+
, 100%). 

Attempted synthesis of Ru2
II,II

(TMOPhFm)4, (XIV) 

Synthesis of Ru2(TMOPhFm)4 does not proceed beyond the tris-substituted product 

Ru2(TMOPhFm)3(OAc) (not isolated) under the conditions of method 1A) or 1B) and requires 

a similar modified procedure to (XII) which is outlined below. 

0.065 g (0.15 mmol) Ru2(OAc)4, 0.451 g (1.2 mmol, 8 equiv.) of  H[TMOPhFm] and 150 ml of 

a 3:1 mixture of mesitylene:toluene are combined in a large, ca. 250 ml Schlenk which is 

then fitted with a high efficiency reflux condenser. The resultant slurry is then heated to 

reflux for 72 hrs. On completion and the reaction mixture is immediately filtered hot and the 

recovered light red powder dried to in vacuo to afford the desired product (XIV) in low yield 

(<10%.) Subsequent attempts at recrystallization, or further purification to effect the 

removal of remaining excess ligand are greatly frustrated by its insolubility in all common 

solvents. Attempts to utilise higher boiling solvents in excess of 200 °C are similarly 

ineffective and simply results in complex decomposition. MALDI-TOF-MS: calcd. 

monoisotopic MW for Ru2C76H92N8O24 m/z: 1704.43, found m/z: 1704.4 (M+
, 100%). 
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3.5.2 Aerobic oxidation  

An example oxidative catalysis experiment for X was conducted as follows: A 10 ml was 

charged with 0.073 g (0.05 mmol) of Ru2(DMOPhFm)4 (X), a small stirrer bar and sealed 

under argon with a rubber septum within the glovebox. To this was added 7.5 ml of a 

degassed 1:1 H2O:toluene mixture to give a bright, brick red, solution of X. The solution was 

transferred to a stirrer hotplate fitted with ambient temperature water and allowed to stir 

for 2 minutes. After this time 9.65 ml (1.0 mmol) of benzyl alcohol was added via syringe 

and after 10 seconds under stirring a low bubble of molecular O2 was introduced to the 

solution via needle. Addition of O2 causes an immediate abrupt colour change of the 

solution from brick red to deep purple. The reaction was then warmed to 80 °C over the 

course of ~5 minutes and the mixture allowed to stir for 36 hours. Small 0.25 ml aliquots 

were removed at regular intervals and analysed via GC-MS. The reaction mixtures turned 

from purple to black over 1-3 hours. 

On completion of the reaction a sample was submitted for 1H NMR in DCM for the purpose 

of comparison to the non-exposed and non-substrate containing control samples. 
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4 Diruthenium complexes with bulky amidate ligands 

4.1 Aims 

• To develop a synthetic methodology suitable for the general synthesis of a range of 

diruthenium (II,II) and (II,III) bulky tetra-formamidate complexes of the form shown 

below (Figure 4.1.1) 

 

Figure 4.1.1- General form of diruthenium (II, III) amidates 

• To explore the impact of varying electron donating or withdrawing aryl substituents 

of the ligand backbone on the resultant physical, spectroscopic and electronic 

properties of the diiron complexes formed. 

• Where target species are isolated, to test their viability and activity of the as aerobic 

oxidation catalysts for the partial oxidation of simple organic substrates such as 9,10-

dihydroanthracene. 
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4.2 Introduction 

The chemistry of diruthenium complexes bearing ‘NO’ type bridging ligands, began in 

earnest in in the 1980s, with the publication of the electrochemical studies of the Ru (II, III) 

complex Ru2(HNOCCF3)4 in 1983125 particular drawing attention towards the amidate subset 

of these  

In binding via a terminal, typically primary, amide, these complexes offer an intermediate 

mix of the better developed chemistries of both carboxylates and N donor ligands such as 

formamidinates. Initial reports of these species noted their propensity to often forego the 

common zig-zag arrangement often seen in Ru2 (II,III) chloride bridged species, in favour of 

the formation of asymmetric dimers.126,127 These dimers display significant variation in the 

Ru-Cl distances between and within adjacent dimers in an alternating fashion (Figure 4.2.1 

overleaf).  

It is particularly unusual that this pseudo-dimerisation appears to occur spontaneously 

within the polymeric zig-zag chains and in complexes without any appreciable steric 

pressure from the ligand backbone. Similarly, despite the formal capacity of the ligand to 

afford up to 4 distinct isomeric products, it is notable that all of the handful of structurally 

characterised complexes, exhibit the  trans 2,2- regio isomer as the only observed 

product.103 
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Figure 4.2.1 - Alternating long - short - long Ru - Cl distances observed in pseudo-dimeric zig-zag chains; R= Ph (omitted 
for clarity). 

Amidate complexes also have a history of mediating some unorthodox ligand derived 

processes, such as ligand to metal arylation in interactions with aryl phosphines;127,387–389 

whilst more recent reports have shown they additionally have the capacity for oxidative 

catalysis.129 

The amidate complexes within the literature to date are limited to those of simple 

substituted benzamide derivatives.103,390 The recent attention drawn to the synthesis of 

such complexes129,390 has however provided the impetus for our investigation of a wider 

range of more sterically bulky and encompassing ligand architectures. These include the 

meta-terphenyl- and 2,4,6-triisopropyl- substituted ligand backbones which have seen 

already seen widespread use to great effect in other carboxylate complexes of transition 

metals and are described herein. 

In consideration of our wider work with Ru2 (II,II) complexes, in addition to the exploration 

of Ru2(II,III) amidates, we additionally report the first two examples of Ru2 (II,II)(amidate)4 

complexes  
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4.3 Results and discussion 

4.3.1 Ligand Synthesis 

H[pTmtPhCO2] – [2,6-bis(p-tolyl)benzoic acid] 

 

4.3.1.1 Amidation of corresponding carboxylic acid to primary amide via HATU mediated 

peptide coupling 

Conversion of the carboxylic acid to its corresponding primary amide was conducted in 

excellent, near quantitative yield in all instances under mild conditions via HATU mediated 

coupling of the respective acid with aqueous ammonia. This approach had previously been 

proposed for more complex protected polypeptides using HOBt by Wang391 for which 

traditional acid chloride formation conditions would lead to substrate degradation 

Whilst it is quite possible to prepare these amides via the traditional route of formation of 

the acid chloride followed by amination under Schotten–Baumann conditions, this route 

was however found to be both more protracted and ultimately lower yielding. This was due 

in part of the hydrophobicity and bulk of the substrate which made clean isolation of the 

products via simple aqueous workup more challenging, practically mandating the need for 

column chromatography, which due to the >10g typical scale of these reactions was less 

than desirable. 

In contrast the peptide coupling route is both more elegant and greatly simplifies the work-

up required. 
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4.3.2 Synthesis of Ru2(II/II)(amidate)4 complexes 

Synthesis of Ru2
II,II

(Ben)4 (XVI) and Ru2
II,II

(pTPhAm)4 (XVII) is readily achieved via 

combination of excess ligand, elevated temperature afforded by reflux in toluene and 

mesitylene respectively, and the active scrubbing of liberated acetic acid via use of the 

Soxhlet extraction assembly. 

The use of the Soxhlet extractor to facilitate the removal of the liberated acetic acid 

provides an elegant solution to driving an otherwise very slow reaction towards the 

intended products. In the synthesis of amidate complexes from carboxylates one of the 

significantly retarding factors is the lower binding affinity of the amidate moiety often 

necessitating both harsh and protracted conditions to achieve complete substitution. On 

practical observation of the degree to which this impedes the progress of an un-Soxhlet 

scrubbed reaction it is perhaps unsurprising that the literature examples to date have been 

restricted to small, non-bulky functionalised benzamides. Utilisation of this methodology 

provides a practical and viable means to obtain tetra-substituted amidates even using such 

bulky ligands as the terphenyl amide H[pTPhAm]. 

Such synthetic approaches are not without their limitations however, and the synthesis of 

the Ru2 (II,II) analogue of Ru2
II,III

(TiPBAm)4Cl (XX) was not possible via this procedure as the 

H[TiPBAm] ligand to readily sublimed away under heating. 
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4.3.3 Synthesis of Ru2(II/III)(amidate)4 complexes 

Synthesis of Ru2
II,III

(Ben)4Cl (XVIII), Ru2
II,III

(pTPhAm)4Cl (XIX) and Ru2
II,III

(TiPBAm)4 (XIX) may 

be achieved in good to moderate yield via this procedure provided it is conducted in high 

concentration in minimal solvent. The use of more conventional sized Soxhlet extraction 

glassware showed a considerable >10% drop in yield cf. the smaller micro (~10 ml extraction 

volume) setup. This is likely due to the fact that total solvent volume is largely proscribed by 

the combination of Soxhlet extractor volume and relative reflux high temperature is 

required to achieve the effective operation of the Soxhlet with such high boiling solvents. 

Extensive use of insulating material was required to ensure effective operation of the 

extractor whilst the protracted reflux of Ru2
II,III

(pTPhAm)4Cl (XIX) and Ru2
II,III

(TiPBAm)4 (XIX 

necessitates the use of higher temperature heating media such as silicone oil. The 

propensity of this oil to spontaneously polymerise on addition of impurities and minor water 

contamination (e.g. condensation run-off from condenser tubing) is a legitimate concern in 

the 5 days synthetic procedure. 

4.3.4 Characterisation 

Characterisation of the complexes was primarily conducted via MALDI-TOF-MS, 

Electrochemistry and UV-Vis-NIR spectroscopy. The diamagnetic nature of complexes 

Ru2
II,II

(Ben)4 (XVI) and Ru2
II,III

(pTPhAm)4 (XVII) was confirmed via 1H and 13C NMR 

spectroscopy, but as with the Ru(II,II) complexes in chapter 2 NMR was otherwise found to 

be of limited diagnostic utility. NMR was used in conjunction with MALDI-TOF-MS during 

optimisation of reaction conditions as a means to identify the presence of remaining free 

ligand via the small, invariantly (<0.25 ppm) change in chemical shift observed on 

coordination to the metal centre.  
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4.3.5 Electrochemistry 

 

 
Figure 4.3.1 - Cyclic voltammograms for(top) Ru2(II,II)(amidate)4and (bottom) Ru2(II,III)(amidate)4 complexes recorded in 
in a 0.1M solution of nBu4NPF6 in DCM, with a scan rate 100 mv s-1. (Traces are offset by 5x10-6 Amps above/below zero 

on the Y-axis for ease of readability.) 
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4.3.6 UV/Vis spectroscopy 

4.3.6.1 Ru2(II,II)(amidate)4 complexes 

 

Spectra obtained in DCM. Relative to the spectra obtained by the related 

Ru2
(II,II)(formamidinate)4 complexes of chapter 3, the Ru2

(II,II)(amidate)4 complexes 

Ru2
II,II

(Ben)4 (XVI) and Ru2
II,III

(pTPhAm)4 (XVII) show far weaker absorbing spectra with little 

to no observable features, typical of amidate complexes in general, save for a series of 

smaller shoulders and weak transitions. Peak data is provided in Table 4.3.1 

Complex 
Peak 

wavelength (λ) 
molar absorptivity 

ε·103(M-1 cm-1)  

Ru2
(II,II)(Ben)4 

410 790 

682 260 

918 145 

Ru2
(II,II)(pTPhAm)4 

640 102 

957 24 

Table 4.3.1 - Peak data for Ru2
(II,II)(amidate)4 complexes Ru2

II,II
(Ben)4 (XVI) and Ru2

II,III
(pTPhAm)4 (XVII) 
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4.3.6.2 Ru2(II,III)(amidata)4 complexes 

The Ru2(II,III)(amidate)4 complexes of Ru2
II,III

(Ben)4Cl (XVIII), Ru2
II,III

(pTPhAm)4Cl (XIX) and 

Ru2
II,III

(TiPBAm)4Cl (XX) show a few additional transitions to that observed for their direct 

Ru2(II,II) analogues, but are still very poor absorbing in the UV-Vis-NIR. This is reflected in 

the shades of brown in which the products are isolated. Peak data is provided in Table 4.3.2 

below for reference. 

 

Complex 
Peak 

wavelength (λ) 
molar absorptivity 

ε·103(M-1 cm-1)  

Ru2
(II,III)(Ben)4Cl 

418 709 

494 493 

937 71 

Ru2
(II,III)(4FPhFm)4Cl 

479 143 

961 34 

Ru2
(II,III)(TiPBAm)4Cl 

457 80 

973 14 

Figure 4.3.2 - Peak data for Ru2
(II,III)(amidate)4 complexes (3-5) 
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4.4 Conclusions 

The synthesis of a range of bulk amidate complexes was conducted using a modified form of 

a previously reported Soxhlet scrubbed synthetic method.129 The reaction conditions used 

to generate these of bulky amidates were optimised to afford them in good in yield but the 

products obtained were frequently intractable and highly polymeric, particularly the 

Ru2(II,III).products which effectively form polymers in the solid state which greatly hindered 

their isolation and characterisation. The first two complexed generated, Ru2
II,II

(Ben)4 (XVI) 

and Ru2
II,III

(pTPhAm)4 (XVII) were Ru2(II,II) whilst the remaining products Ru2
II,III

(Ben)4Cl 

(XVIII), Ru2
II,III

(pTPhAm)4Cl (XIX) and Ru2
II,III

(TiPBAm)4Cl (XX) formally Ru2(II,III). These last 

three complexes represent the first examples of bulky Ru2(II,III) amidates in the literature. 

Perhaps because this added bulk renders them incredibly difficult to work with once 

isolated in the solid state. A limited characterisation of these complexes, (XVI-XX) is 

presented however the intractable nature of the products severely limited what data could 

be readily obtained. It is also apparent from the UV-Vis-NIR spectra of these species that 

there are very few identifying features present in these compounds 
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4.5 Experimental 

For details of physical measurement procedures please refer to section 2.5.1; for X-ray 

crystallographic details please refer to section 2.5.2; for general information on the sourcing 

and pre-treatment of reactants and reagents please refer to section 2.5.3 and the additional 

considerations outlined below: 

Ru2(OAc)4
140 and Ru2(OAc)4Cl135 were synthesised according to established literature 

procedures. Both diruthenium starting materials were analysed via MALDI-TOF-MS and IR 

(CO2 vibrational mode frequency), and data obtained compared to reference data in 

accordance with previously a publish method.140,141 H[Ben], N-phenylbenzamide, was 

purchased and purified by sublimation at 65 °C, 5 x 10-2 mbar prior to use. 
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4.5.1 Ligand Synthesis 

H[pTmtPhCO2] – [2,6-bis(p-tolyl)benzoic acid] 

Modification of the general literature for the synthesis of m-terphenyls developed by Hart et 

al.
392–394 affords the 2,6-bis(p-tolyl)benzoic acid in good yield when coupled with a greatly 

simplified workup. An example procedure is provided below starting from the appropriate 

aryl bromide (A) or directly from the aryl Grignard if available (B). 

A) Prep of RAr-MgBr – In a large, ca. 500 ml 3-necked RBF was placed 2.75 g, (0.113 mol) of 

magnesium turnings and a large oval stirrer bar, the vessel fitted with a b24 condenser in 

the middle of the three necks, which then had a 250ml pressure equalising dropping funnel 

affixed above it. This setup attached to a Schlenk line via two closable rotaflow™ type taps, 

one atop the dropping funnel and condenser assemble and the other installed into one of 

the remaining necks of the RBF containing the Mg turnings. The system was then evacuated 

and placed under inert atmosphere (3x) in accordance with standard Schlenk-line 

techniques and the large stirrer bar allowed to mechanically grind the magnesium turnings 

overnight prior to use. 

To the ground magnesium turnings was added 2-4 small Iodine pellets and warmed to 

afford a purple iodine vapour after which it was then allowed to cool, coating the 

magnesium. To this ground, activated magnesium powder was added a solution of 17.96 g 

(0.105 Mol) of 4-bromo toluene in 100ml THF, dropwise over ca. 30 mins. On completion of 

the addition the resultant solution was heated to reflux for 1 hour to afford an opaque 

white solution of (p-tolyl)magnesium bromide. Continues as per B) 

B) General procedure – To a solution of 0.105 mol (p-tolyl)magnesium bromide in 100ml 

THF, afforded from a commercial source, or via A), that has been charged into the 500 ml 

RBF as described in the experimental setup of A), was added, dropwise over 1 hr, a solution 

of 8.187 g (0.03 mol) 2,6-dichloro iodobenzene in 100 ml of THF. On completion of the 

addition the reaction mixture is heated to reflux for 4 hours before subsequently being 

allowed to cool to room temperature. Quenching via the bubbling of an excess of CO2 from 

a separate, vented vessel overnight via large bore cannula affords the corresponding 

carboxylate as a heavy white precipitate. 
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Removal of the THF in vacuo followed extraction into toluene, acidification via by washing 

with 2x 150ml of 10M HCL and drying over MgSO4 then affords a binary mixture of the 

carboxylates H[pTmtPhCO2H] and (p-tolyl)benzoic acid. Recrystallisation from hot toluene 

followed by removal of any remaining (p-tolyl)benzoic acid sublimation 30 °C, 2x10-2 mbar 

overnight affords the target ligand H[pTmtPhCO2] as a very pale cream coloured solid in 

excellent yield. Yield: 8.067 g, 89%. Mp: 181.2 °C. 1H NMR (DMSO, 400 MHz): δ 2.36 (s, 6H 

CH3), 7.24-7.40 (m, 10H Ar-H), 7.52 (t, 1H Ar-H), 12.78 (s, 1H O-H); 13C NMR (DMSO, 400 

MHz, DEPTQ/CPD): δ 20.74, 128.31, 128.61, 128.93, 133.98, 136.77, 137.46, 138.73, 170.24. 

HR-ESI-MS: calcd. monoisotopic MW for C21H18O2 m/z: 302.1385, found m/z: 302.138 (M+
, 

100%). IR (ATR, cm-1): 3853.7 (s), 3748.4 (s), 1701.4 (s), 1653.1 (s) (consistent with 

literature.) Elemental analysis calcd. for C21H18O2: C, 83.42%; H, 6.00%; O, 10.58%; found: C, 

83.40%; H, 6.02%. 

4.5.1.1 Amidation of bulky carboxylic acids to primary amides via HATU mediated 

peptide-type coupling 

Conversion of the carboxylic acid to its corresponding primary amide was conducted via 

HATU mediated coupling of the respective acid with aqueous ammonia. This represents a 

hybridisation of the procedures demonstrated by Wang using the related coupling agent 

HOBt391 and those of Bracker with respect effecatious workups when utilising HATU in 

DMF.395 An example procedure for the synthesis of 2,6-bis(p-tolyl)benzamide as follows: 

A 500 ml RBF is charged with 1 g, (3.3mmol) of 2,6-bis(p-tolyl)benzoic acid, 1.38 g, (3.6 

mmol, 1.1 mol. equiv.) of HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxid hexafluorophosphate) and 50 ml dry, distilled DMF with the vessel 

under inert, argon atmosphere. To this solution is added 1.9 ml, (10.9 mmol, 3 mol. equiv.) 

of DIPEA/DIEA/Hünigs base, resulting in a yellow solution that was allowed to stir for 30 

minutes. After this time 0.3 ml, (7.3 mmol, 2.2 equiv) of fresh 35% ammonium hydroxide 

solution was then injected and the reaction stirred for 16 hrs at room temperature. On 

completion the reaction was quenched via addition of ca. 350 ml of brine / saturated NaCl 

solution and cooled to 4 °C for 6 hrs. The bulky amide product precipitates preferentially on 

cooling and is isolated via filtration, washed with 2x 100ml deionised water and 

recrystallised from hot hexane yielding the desired product in near quantitative yield. 
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H[pTPhAm] – [2,6-bis(p-tolyl)benzamide] 

Yield: 0.977 g, 98%. Mp: 213-216 °C. 1H NMR (CDCl3, 400 MHz): δ 2.41 (s, 6H CH3), 5.30 (d, 2H 

N-H), 7.23-7.51 (m, 11H Ar-H); 13C NMR (CDCl3, 400 MHz, DEPTQ/CPD): δ 21.2, 128.62, 

129.1, 129.1, 129.1, 134.9, 137.3, 137.6, 139.9, 171.2. HR-ESI-MS: calcd. monoisotopic MW 

for C21H19NO m/z: 301.1467, found m/z: 301.147 (M+
, 100%). IR (ATR, cm-1): Consistent with 

literature. Elemental analysis calcd. for C21H19NO: C, 83.69%; H, 6.35%; N, 4.65%; O, 5.31%; 

found: C, 83.34%; H, 6.28%; N, 4.44%. 

H[TiPBAm] – [2,4,6-triisopropylbenzamide] 

Conducted on 2x stated scale. 

Yield: 1.58 g, 97%. Mp: 200 °C (sublimed). 1H NMR (DMSO, 400 MHz): δ 1.15-1.27 (m, 18H 

iPr-CH3); 2.87 (sep, 2H p-iPr-H), 3.00 (sep, 2H o-iPr-H), 7.02 (s, 2H Ar-H),7.56 (d, 2H N-H); 13C 

NMR (DMSO, 400 MHz, DEPTQ/CPD): δ 24.5, 24.9, 30.8, 34.2, 120.6, 135.6, 144.1, 148.7, 

172.1. HR-ESI-MS: calcd. monoisotopic MW for C16H25NO m/z: 247.1936, found m/z: 247.194 

(M+
, 100%). IR (ATR, cm-1): Consistent with literature. Elemental analysis calcd. for C16H25NO: 

C, 77.68%; H, 10.19%; N, 5.66%; O, 6.47%; found: C, 77.63%; H, 9.98%; N, 5.57%. 
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4.5.2 Diruthenium (II/II) complexes 

Complexes were synthesised via a optimised variations of the method reported by Ren103,129 

for which a general method is outlined below: 

General synthetic procedure: 

A Schlenk was charged with (0.2 mmol) of Ru2
(II,II)(OAc)4, (1.2 mmol, 10 mol. equiv.) of 

H[ligand] and fitted with a micro-Soxhlet adaptor and a high thermal efficiency condenser. A 

glass microfiber extraction thimble filled with an excess of K2CO3 and topped with sand was 

fitted into the Soxhlet and 40 ml of toluene added. The resultant mixture was allowed to 

reflux for 48 hours and then allowed to cool to room temperature. 

On cooling any observed precipitate (chiefly ligand) was removed via filtration prior to 

concentration to minimal volume (ca. 2-5 ml). Product was then precipitated via addition of 

hexanes and recovered via filtration. Further purification via sublimation to remove excess 

ligands was typically required.  

Alternate work-up: Where precipitation did not occur on addition of hexanes, solvent was 

removed in vacuo and excess ligand removed in situ via sublimation. Product was obtained 

via recrystallisation from hot toluene.  

Synthesis of Ru2
(II,II)

(Ben)4, (1) 

Synthesised as per the general method and utilising the primary work-up conditions. 

Product obtained as light-ish brown solid. Yield:  0.122, 62%. MALDI-TOF-MS: calcd. 

monoisotopic MW for Ru2C52H40N4O4 m/z: 988.1136, found m/z: 987.1(M-Cl, 100%). UV-VIS-

NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 410 (Sh. ca. 790), 682 (260), 918 (145). 

Synthesis of Ru2
(II,II)

(pTPhAm)4, (2) 

Synthesised as per the general method with the following modifications: reaction solvent 

was changed to mesitylene and reaction time at reflux extended to 4 days. Product isolation 

proceeded via the primary work-up conditions. Product obtained as dark brown solid. Yield:  

0.090, 32%. MALDI-TOF-MS: calcd. monoisotopic MW for Ru2C84H72N4O4 m/z: 1404.3640, 
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found m/z: 1404.4(M-Cl, 100%). UV-VIS-NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 640 

(Sh. ca. 102), 957 (24). 

4.5.3 Diruthenium (II/III) complexes 

Synthesis of Ru2
(II,III)

(Ben)4Cl, (3) 

Synthesised via a variation of the procedure utilised for the corresponding Ru (II, II) 

analogues with the following modifications: 

In addition to other reagents Schlenk was additionally charged with 0.135 g (20 mol. equiv.) 

of LiCl. Product isolated via primary workup as brown solid. Yield: 0.137 g, 73%. MALDI-TOF-

MS: calcd. monoisotopic MW for Ru2C52H40N4O4Cl m/z: 1023.0825, found m/z: (M-Cl, 100%). 

UV-VIS-NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 418 (709), 494 (493), 937 (71). 

Synthesis of Ru2
(II,III)

(pTPhAm)4Cl, (4) 

Synthesised via variation of the method used for Ru2
(II,III)(Ben)4Cl as described below: 

Mesitylene utilised in place of toluene as reaction solvent and reflux extended to 5 days. 

Product isolated via primary work up, followed by removal of excess ligand via sublimation 

and recrystallisation from a hot 80:20 methanol:toluene mixture affording the product as a 

dark orange brown solid. Yield: 0.131 g, 45%, MALDI-TOF-MS: calcd. monoisotopic MW for 

Ru2C84H72N4O4Cl m/z: 1436.3329, found m/z: 1404.7 (M-Cl, 100%). UV-VIS-NIR (DCM; 345-

3300) [λmax, nm (ε, M-1 cm-1)]: 479 (143), 961 (34). 

Synthesis of Ru2
(II,III)

(TiPBAm)4Cl, (5) 

Synthesised as per Ru2
(II,III)(pTPhAm)4Cl with the modification of the use of 1,2-

dichlorobenzene as the reaction solvent. Product as a dark brown solid. Yield: 0.103 g, 42%. 

MALDI-TOF-MS: calcd. monoisotopic MW for Ru2C64H96N4O4Cl m/z: 1223.52, found m/z: 

1222.6 (M-Cl, 100%). UV-VIS-NIR (DCM; 345-3300) [λmax, nm (ε, M-1 cm-1)]: 457 (80) 973 (14). 
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Appendix A – MALDI-TOF-MS Spectra 

A-1 FeCl2(H[amidinate])2 intermediates 

A-1-1 FeCl2(H[TMOPhFm])2 (III) 

 

A-2 Attempted synthesis of Fe2(DMOPhFm])4 

A-2-1 Formation of Fe2
II,I(DMOPhFm)3on addition of nBuLi at 0 °C 
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A-2-2 Product mixtures favouring Fe3
II,II,I(O)(amidinate)3 (VII) 

 

A-2-3 Mixtures of (VII) & (VIII) as isolated in DCM 
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A-2-4 Mixtures of (VII) & (VIII) on prolonged exposure to THF 

 

A-2-5 Mixtures of (VII) & (VIII) on exposure to trace H2O on storage 
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Appendix B – Crystal and structure refinement tables 

B-1 H[DMOPhFm] 

Identification code H[DMOPhFm]  

Empirical formula C17H20N2O4  

Formula weight 316.35  

Temperature/K 100  

Crystal system triclinic  

Space group P-1  

a/Å 6.2333(3)  

b/Å 10.7462(6)  

c/Å 12.5093(7)  

α/° 79.972(3)  

β/° 88.296(3)  

γ/° 75.924(3)  

Volume/Å3 800.28(7)  

Z 2  

ρcalcg/cm3 1.313  

μ/mm-1 0.094  

F(000) 336.0  

Crystal size/mm3 0.4 × 0.2 × 0.1  

Radiation MoKα (λ = 0.71073)  

2Θ range for data collection/° 3.3 to 55.2  

Index ranges 
-8 ≤ h ≤ 8,  

-13 ≤ k ≤ 13,  

-16 ≤ l ≤ 16  
Reflections collected 13717  

Independent reflections 3675 [Rint = 0.0598, Rsigma = 0.0487]  

Data/restraints/parameters 3675/0/212  

Goodness-of-fit on F2 1.048  

Final R indexes [I>=2σ (I)] R1 = 0.0448, wR2 = 0.1142  

Final R indexes [all data] R1 = 0.0584, wR2 = 0.1228  

Largest diff. peak/hole / e Å-3 0.23/-0.23  
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B-2 Fe4(O)(DMOPhFm)6  (IX) 

Identification code (IX) / NJP246-P-1 

Empirical formula C102H114N12O25Fe4 

Formula weight 2131.45 

Temperature/K 100 

Crystal system Triclinic 

Space group P-1 

a/Å 13.3180(7) 

b/Å 14.2526(6) 

c/Å 14.8626(7) 

α/° 106.728(2) 

β/° 113.190(2) 

γ/° 90.521(2) 

Volume/Å3 2459.3(2) 

Z 1 

ρcalcg/cm3 1.439 

μ/mm-1 0.661 

F(000) 1114.0 

Crystal size/mm3 0.25 x 0.2 x0.15 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 3.02 to 55.1 

Index ranges 
-16 ≤ h ≤ 17, 
 -18 ≤ k ≤ 18,  
-19 ≤ l ≤ 19 

Reflections collected 25875 

Independent reflections 11151 [Rint = 0.0540, Rsigma = 0.0657] 

Data/restraints/parameters 11151/0/711 

Goodness-of-fit on F2  
1.272 

 

Final R indexes [I>=2σ (I)]  
R1 = 0.0789, wR2 = 0.1828 

 

Final R indexes [all data]  
R1 = 0.1029, wR2 = 0.1925 

 

Largest diff. peak/hole / e Å-3 0.37/-0.50 
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B-3 Ru2(DMOPhFm)4  (X) 

Identification code (X) / njp243_p4(1) 

Empirical formula C73H88N8O16Ru2 

Formula weight 1535.65 

Temperature/K 100(2) 

Crystal system Tetragonal 

Space group P41212 

a/Å 11.3950(3) 

b/Å 11.3950(3) 

c/Å 52.4067(15) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 6804.8(3)  

Z 4 

ρcalcg/cm3 1.499 Mg/m3 

μ/mm-1 0.520 

F(000) 3192 

Crystal size/mm3  

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 2.13 to 27.50 

Index ranges 
-14≤h≤14, 

 -14≤k≤14, 

 -67≤l≤68 

Reflections collected 127548 

Independent reflections 7813 [R(int) = 0.0395] 

Data/restraints/parameters 7813 / 45 / 439 

Goodness-of-fit on F2 1.318 

Final R indexes [I>=2σ (I)] R1 = 0.0593, wR2 = 0.1387 

Final R indexes [all data] R1 = 0.0594, wR2 = 0.1387 

Largest diff. peak/hole / e Å-3 2.163 and -1.347 eA-3 
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B-4 Ru2(DMOPhFm)4  (X) 

Identification code (X) / njp243_P4(1)  -sqz 

Empirical formula C68H76N8O16Ru2  

Formula weight 1463.51  

Temperature/K 100.0  

Crystal system tetragonal  

Space group P41212  

a/Å 11.3950(3)  

b/Å 11.3950(3)  

c/Å 52.4067(15)  

α/° 90.00  

β/° 90.00  

γ/° 90.00  

Volume/Å3 6804.8(3)  

Z 4  

ρcalcg/cm3 1.429  

μ/mm-1 0.516  

F(000) 3024.0  

Crystal size/mm3 0.61 × 0.52 × 0.1  

Radiation MoKα (λ = 0.71073)  

2Θ range for data collection/° 3.1 to 55  

Index ranges 
-14 ≤ h ≤ 14, 

 -14 ≤ k ≤ 14,  

-67 ≤ l ≤ 68  

Reflections collected 127819  

Independent reflections 7816 [Rint = 0.0395, Rsigma = 0.0156]  

Data/restraints/parameters 7816/0/384  

Goodness-of-fit on F2 1.287  

Final R indexes [I>=2σ (I)] R1 = 0.0472, wR2 = 0.1129  

Final R indexes [all data] R1 = 0.0477, wR2 = 0.1131  

Largest diff. peak/hole / e Å-3 0.56/-1.08  
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B-5 Ru2(3,5-(CF3)2PhFm)3(OAc)2  (XIII-b) 

Identification code XIII-b / mo_SamNP_1_0m 

Empirical formula C72H35F48N8O4Ru2 

Formula weight 2190.22 

Temperature/K 150 

Crystal system triclinic 

Space group P-1 

a/Å 14.0156(6) 

b/Å 14.5012(6) 

c/Å 23.7576(10) 

α/° 85.4172(12) 

β/° 78.3431(12) 

γ/° 64.1648(11) 

Volume/Å3 4256.1(3) 

Z 2 

ρcalcg/cm3 1.709 

μ/mm-1 0.512 

F(000) 2150 

Crystal size/mm3 0.2 × 0.1 × 0.1 

Radiation MoKα (λ = 0.71073) 

2Θ range for data collection/° 4 to 61.2 

Index ranges 
-20 ≤ h ≤ 20, 

 -20 ≤ k ≤ 20, 

 -34 ≤ l ≤ 34 

Reflections collected 135371 

Independent reflections 26148 [Rint = 0.0444, Rsigma = 0.0439] 

Data/restraints/parameters 26148/0/1113 

Goodness-of-fit on F2 1.099 

Final R indexes [I>=2σ (I)] R1 = 0.0545, wR2 = 0.1383 

Final R indexes [all data] R1 = 0.0815, wR2 = 0.1483 

Largest diff. peak/hole / e Å-3 1.54/-1.46 
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B-6 Ru2(OAc)4(H[DMOPhFm])2  (XV) 

Identification code njp255_0m  

Empirical formula C21H26N2O8Ru  

Formula weight 535.51  

Temperature/K 100  

Crystal system triclinic  

Space group P-1  

a/Å 8.262(5)  

b/Å 12.492(5)  

c/Å 14.200(5)  

α/° 69.413(5)  

β/° 76.462(5)  

γ/° 74.484(5)  

Volume/Å3 1305.9(11)  

Z 2  

ρcalcg/cm3 1.362  

μ/mm-1 0.643  

F(000) 548.0  

Crystal size/mm3 0.2 × 0.15 × 0.1  

Radiation MoKα (λ = 0.71073)  

2Θ range for data collection/° 3.1 to 55.32  

Index ranges 
-10 ≤ h ≤ 10,  

-15 ≤ k ≤ 16,  

-17 ≤ l ≤ 18  

Reflections collected 11299  

Independent reflections 5627 [Rint = 0.1230, Rsigma = 0.2237]  

Data/restraints/parameters 5627/0/271  

Goodness-of-fit on F2 0.850  

Final R indexes [I>=2σ (I)] R1 = 0.0890, wR2 = 0.1877  

Final R indexes [all data] R1 = 0.1749, wR2 = 0.2154  

Largest diff. peak/hole / e Å-3 2.92/-1.44  

 

 


