

A Framework Enabling the Cross-Platform
Development of Service-based Cloud

Applications

By:
Fotis Gonidis

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Computer Science

December 2015

South East European Research Centre

The University of Sheffield
Faculty of Engineering

Department of Computer Science

A Framework Enabling the Cross-Platform
Development of Service-based Cloud

Applications

By:
Fotis Gonidis

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

December 2015

South East European Research Centre

i

Abstract

Among all the different kinds of service offering available in the cloud, ranging from

compute, storage and networking infrastructure to integrated platforms and software

services, one of the more interesting is the cloud application platform, a kind of

platform as a service (PaaS) which integrates cloud applications with a collection of

platform basic services. This kind of platform is neither so open that it requires every

application to be developed from scratch, nor so closed that it only offers services

from a pre-designed toolbox. Instead, it supports the creation of novel service-based

applications, consisting of micro-services supplied by multiple third-party providers.

Software service development at this granularity has the greatest prospect for bringing

about the future software service ecosystem envisaged for the cloud.

Cloud application developers face several challenges when seeking to integrate the

different micro-service offerings from third-party providers. There are many

alternative offerings for each kind of service, such as mail, payment or image

processing services, and each assumes a slightly different business model. We

characterise these differences in terms of (i) workflow, (ii) exposed APIs and (iii)

configuration settings. Furthermore, developers need to access the platform basic

services in a consistent way. To address this, we present a novel design methodology

for creating service-based applications. The methodology is exemplified in a Java

framework, which (i) integrates platform basic services in a seamless way and (ii)

alleviates the heterogeneity of third-party services. The benefit is that designers of

complete service-based applications are no longer locked into the vendor-specific

vagaries of third-party micro-services and may design applications in a vendor-

agnostic way, leaving open the possibility of future micro-service substitution.

The framework architecture is presented in three phases. The first describes the

abstraction of platform basic services and third-party micro-service workflows,. The

second describes the method for extending the framework for each alternative micro-

service implementation, with examples. The third describes how the framework

executes each workflow and generates suitable client adaptors for the web APIs of

each micro-service.

ii

iii

Acknowledgements

Carrying out a research work and writing the PhD thesis may become a lifelong

experience, which to a certain extend has the potential to shape the way you think,

react and face the challenges in your life. Above all though, it is a journey through

uncharted routes to a destination, which is not clear and by no means visible when

you set off. You have a direction but you are not aware of where exactly you will end

up and which path you need to follow to reach your goal. And it is this factor of the

“unknown” that makes this journey so unique, full of surprises, mystery and

unexpected encounters.

Actually, when you start your PhD there is one thing known and certain, that is the

emotional fluctuations. There are days, when you are excited and full of motivation,

followed by days of disappointment and frustration. There are moments you feel that

you found your way to your destination followed by ones that you loose it again.

Nevertheless, when you reach the end of your journey, there is only one feeling left,

that is fulfilment. You feel that you have fulfilled the promise to yourself, which is to

accomplish the assignment you undertook when you started this journey. And it is this

feeling, which gives value to all the good and bad moments you have been through.

Carrying out a research work and writing the PhD thesis is primarily a lonely process.

Nevertheless, it would be unfair if I didn’t mention that throughout my personal

journey there were several people who were always standing next to me and

supporting me with their own unique way. And it is thanks to those people that I am

in position now to present this thesis. However, the gratitude I feel for those people

cannot fit within the limits of this section. Therefore, I would prefer to express my

deep gratitude personally and with a special way to each one of those persons.

iv

v

Greeks, with Protagoras (c. 485 – c. 415 B.C.) being the first,

say that to every thesis an equal thesis is opposed

vi

vii

Table of Contents

Chapter	1	 Introduction	...	1	

1.1	 Motivation	for	the	research	work	...	6	

1.2	 Aim	of	the	thesis	...	9	

1.3	 Standardisation	and	Intermediation	as	solution	approaches	10	

1.4	 Bird	eye	view	of	SCADeF	(Service-based	Cloud	Application	Development	

Framework)	..	11	

1.5	 Thesis	Objectives	..	12	

	 Theoretical	objectives	..	12	1.5.1

	 Technical	objectives	...	13	1.5.2

	 Experimental	objectives	..	13	1.5.3

	 Thesis	contributions	..	13	1.5.4

1.6	 Thesis	Outline	...	14	

PART	A	Literature	review	on	cross-platform	development	of	cloud	applications	...	19	

Chapter	2	 Background	on	cloud	computing	and	cloud	platforms	21	

2.1	 Evolution	of	cloud	computing	...	22	

	 Virtualisation	technique	..	23	2.1.1

	 Client-Server	architecture	...	23	2.1.2

	 Grid	Computing	...	24	2.1.3

	 Service-oriented	Computing	..	24	2.1.4

	 Early	commercial	cloud	products	..	25	2.1.5

	 Cloud	computing,	why	now	and	not	then?	...	25	2.1.6

2.2	 Cloud	computing	in	three	service	models	..	26	

2.3	 Cloud	platforms	..	28	

	 Early	cloud	platform	offerings	...	28	2.3.1

	 Evolution	of	cloud	platforms	...	29	2.3.2

2.4	 Cloud	applications	...	30	

2.5	 Summary	..	32	

Chapter	3	 Survey	of	cloud	platforms	..	33	

3.1	 Cloud	platforms	characteristics	...	34	

	 Cloud	platforms	reports	..	35	3.1.1

viii

	 Cloud	platform	framework	of	features	..	37	3.1.2

3.2	 Cloud	platforms	comparison	...	41	

3.3	 Classification	of	Cloud	Platforms	...	43	

3.4	 Determining	the	target	cloud	platform	category	of	this	research	work	48	

3.5	 Cloud	application	platforms	and	platform	basic	services	48	

3.6	 Summary	..	51	

Chapter	4	 Related	work	on	the	field	of	cross-platform	development	of	service-

based	cloud	applications	...	53	

4.1	 Standardisation	approach	...	55	

	 Cloud	Standardisation	efforts	..	55	4.1.1

	 Positioning	of	the	cloud	standards	based	on	the	cloud	computing	service	4.1.2

model…..	..	58	

	 Standardisation	approach	with	respect	to	cross-platform	development	of	cloud	4.1.3

applications	..	59	

4.2	 Intermediation	approach	..	61	

	 Position	of	the	research	work	with	respect	to	the	cloud	application	lifecycle	..	62	4.2.1

	 Clustering	of	work	promoting	cloud	platform	agnostic	applications	65	4.2.2

	 Library-based	solutions	..	66	4.2.3

	 Middleware	solutions	..	73	4.2.4

	 Model-driven	Engineering	(MDE)	based	solutions	..	83	4.2.5

	 Positioning	of	the	related	work	with	respect	to	the	cloud	computing	service	4.2.6

levels….	...	91	

	 Focus	of	the	presented	research	work	..	93	4.2.7

PART	B	The	Service-based	Cloud	Application	Development	Framework	(SCADeF)	.	99	

Chapter	5	 High-level	architecture	of	the	SCADeF	framework	101	

5.1	 Variability	points	across	the	platform	basic	service	providers	103	

5.2	 Solution	Direction	...	105	

5.3	 Requirements	of	the	SCADeF	framework	..	107	

	 Support	of	workflow	modelling	capabilities	..	108	5.3.1

	 Automating	the	execution	of	the	workflow	..	108	5.3.2

	 Addressing	the	API	variability	..	109	5.3.3

	 Automatic	generation	of	the	client	adapters	..	109	5.3.4

	 Generic	nature	of	the	framework	..	109	5.3.5

ix

	 Ability	to	substitute	the	platform	basic	service	providers	110	5.3.6

	 Distinct	user	roles	..	110	5.3.7

	 Management	of	the	platform	basic	services	and	the	configuration	variables	 110	5.3.8

5.4	 High-level	architecture	of	the	SCADeF	framework	...	111	

	 Platform	Service	Workflow	Description	..	113	5.4.1

	 Platform	Service	API	Description	...	115	5.4.2

	 Modelling	and	Execution	Flow	of	the	Development	Framework	116	5.4.3

5.5	 Summary	..	118	

Chapter	6	 Modelling	Stage	of	the	Platform	Service	Workflow	121	

6.1	 The	cloud	payment	service	example	...	122	

6.2	 Platform	Service	Modelling	Phase	...	123	

	 Study	the	Workflow	of	the	Platform	Service	Providers	123	6.2.1

	 Build	the	Platform	Service	Connector	...	130	6.2.2

6.3	 Vendor	Implementation	Phase	..	135	

	 Build	Provider	Connectors	...	135	6.3.1

6.4	 Summary	..	136	

Chapter	7	 Execution	Stage	of	the	Platform	Service	Workflow	139	

7.1	 The	Platform	Service	Execution	Controller	(PSEC)	..	140	

7.2	 PSEC	sequence	of	execution	..	141	

7.3	 Design	patterns	used	in	the	SCADeF	framework	..	144	

7.4	 Summary	..	146	

Chapter	8	 Modelling	Stage	of	the	Platform	Service	API	147	

8.1	 API	variability	example	...	148	

8.2	 High-level	overview	of	the	API	abstraction	mechanism	149	

8.3	 The	e-mail	service	example	...	150	

8.4	 Platform	Service	Modelling	Phase	...	151	

	 Analysis	of	the	API	of	the	platform	basic	service	providers	153	8.4.1

	 Build	Platform	Service	Reference	API	..	156	8.4.2

8.5	 Vendor	Implementation	Phase	..	159	

	 Build	the	Provider-Specific	API	..	159	8.5.1

8.6	 Configuration	Settings	...	161	

	 Classification	of	the	configuration	settings	...	161	8.6.1

	 Service	Description	File	including	the	configuration	settings	163	8.6.2

x

8.7	 Summary	..	165	

Chapter	9	 Execution	Stage	of	the	Platform	Service	API	167	

9.1	 Execution	Phase	..	168	

	 API	Client	Generator	..	169	9.1.1

	 Code	generation	of	the	configuration	settings	..	173	9.1.2

9.2	 Alternative	design	approach	...	174	

9.3	 Limitations	of	the	current	approach	..	177	

	 Design	Issue	1:	Missing	parameters	..	177	9.3.1

	 Design	Issue	2:	Missing	operations	..	180	9.3.2

	 Design	Issue	3:	Handling	the	response	of	a	service	operation	180	9.3.3

9.4	 Summary	..	181	

PART	C	Conclusion	and	Future	Work	...	183	

Chapter	10	 Conclusion	–	Future	Work	..	185	

10.1	 Summary	of	the	thesis	..	185	

10.2	 Fulfillment	of	the	Contributions	..	187	

10.3	 Future	Work	...	194	

	 Incorporating	billing	and	recommendation	capabilities	into	the	SCADeF	10.3.1

framework	..	194	

	 Construction	of	a	complete	development	environment	to	support	the	creation	10.3.2

of	service-based	cloud	applications.	...	195	

	 Enhance	the	functionality	of	the	SCADeF	framework	with	additional	platform	10.3.3

basic	services	and	providers	...	195	

	 Measure	the	performance	of	the	SCADeF	framework	196	10.3.4

	 Investigating	the	use	of	ontologies	as	enablers	for	the	homogenisation	of	the	10.3.5

service	description	of	the	platform	basic	service	providers	...	196	

	 Extending	the	scope	of	the	SCADeF	framework	beyond	the	cloud	application	10.3.6

platforms	..	197	

10.4	 List	of	publications	by	the	author	..	198	

APPENDIX:	A		Payment	Service	Providers	..	201	

A.1	Spreedly	...	202	

A.2	Braintree	..	203	

A.3	Viva	Payment	...	204	

A.4	Google	Wallet	..	205	

xi

A.5	Amazon	Flexible	Payments	...	206	

A.6	Stripe	...	207	

A.7	PayPal	Express	Checkout	..	208	

A.8	AuthoriseNetSIM	..	209	

A.9	Chargify	..	210	

APPENDIX:	B			Service	Description	Editor	..	211	

B.1	Add	new	platform	basic	service	provider	..	211	

B.2	Add	operations	to	the	new	service	provider	...	213	

APPENDIX:	C		Example	of	Auto-generated	source	code	215	

List	of	acronyms	..	217	

References	..	219	

xii

xiii

List of Figures

Figure 1: Representative examples in the evolution of the programming style 2	

Figure 2: Bird eye view of the SCADeF framework ... 11	

Figure 3: History of cloud computing .. 22	

Figure 4: The 3 service models of cloud computing according to NIST 26	

Figure 5: A Cloud Platform ... 28	

Figure 6: Cloud platform framework of features ... 37	

Figure 7: Classification of Cloud platforms .. 46	

Figure 8: Cloud application Platform ... 49	

Figure 9: Service-based cloud applications .. 50	

Figure 10: Cloud computing standards classification .. 59	

Figure 11: Aspects during the cloud application lifecycle .. 62	

Figure 12: Simplified view of jClouds blobstore service internal design 70	

Figure 13: MDE approach in developing cloud portable applications 84	

Figure 14: Positioning of the work with respect to the three levels of cloud computing

 ... 92	

Figure 15: Example of micro-service approach using the Heroku platform 96	

Figure 16: Conceptual View of the Development Framework 106	

Figure 17: Interaction between the Service-based Cloud Application and the Platform

Basic Services .. 108	

Figure 18: Modelling and Execution Stage of the SCADeF framework 111	

Figure 19: High-level architecture of the SCADeF framework 113	

Figure 20: Workflow description part of the SCADeF framework 114	

xiv

Figure 21: The task flow of the SCADeF framework .. 117	

Figure 22: Simplified view of the payment process .. 122	

Figure 23: Simplified view of the payment process including the payment service

provider .. 122	

Figure 24: “Transparent redirect” Payment Process .. 125	

Figure 25: State machine diagram of the “transparent redirect” payment process ... 125	

Figure 26: “Server to server” payment process ... 127	

Figure 27: State machine diagram of the “server to server” payment process 127	

Figure 28: “Hosted payment pages” payment process .. 128	

Figure 29: State machine diagram of the “hosted payment page” payment process . 129	

Figure 30: State machine diagram of the abstract payment process 129	

Figure 31: Reference Meta-Model .. 130	

Figure 32: Role of the CloudActions and the CloudMessages 131	

Figure 33: Cloud Payment Service Connector .. 133	

Figure 34: Cloud Payment Service Provider Connector ... 136	

Figure 35: Platform Service Execution Controller .. 140	

Figure 36: Payment service execution flow .. 143	

Figure 37: Factory Pattern ... 144	

Figure 38: Front Controller .. 145	

Figure 39: Template Method ... 145	

Figure 40: Overview of the API service description mechanism 150	

Figure 41: E-mail Platform Service ... 151	

Figure 42: Mapping of the provider specific API to the Reference API 152	

xv

Figure 43: Steps for the definition of the Reference API .. 152	

Figure 44: Configuration settings .. 162	

Figure 45: Code generation process .. 170	

Figure 46: Components involved in the code generation process 171	

Figure 47: Code generation sequence diagram .. 172	

Figure 48: Callback mechanism for passing additional parameters 179	

Figure 49: Add new platform basic service provider .. 212	

Figure 50: Add Information related to the new service provider 212	

Figure 51: Add information related to the operations of the service provider 213	

Figure 52: E-mail service interface ... 215	

Figure 53: Postmark implementation .. 216	

xvi

xvii

List of Tables

Table 1: Cloud platforms with respect to the application development features 44	

Table 2: Summary of Middleware solutions ... 81	

Table 3: Summary of Model-driven engineering based solutions 90	

Table 4: Requirements of the SCADeF framework ... 107	

Table 5: API variability in the "SendE-mail" operation of the e-mailing service 148	

Table 6: API variability in the "chargeCard" operation of the cloud payment service

 ... 149	

Table 7: List of mailing operations supported by the service providers 154	

Table 8: Send e-mail operation parameters ... 155	

Table 9: Bounce operation parameters .. 156	

Table 10: Search operation parameters ... 156	

Table 11: Create mailing list operation parameters ... 156	

Table 12: Reference API ... 157	

xviii

xix

List of Listings

Listing 1: Code generation template [178] .. 85	

Listing 2: Payment service states description file ... 134	

Listing 3: Reference API captured in the Service Description File 158	

Listing 4: Mapping of provider specific API to the Reference API 160	

Listing 5: Configuration settings captured in the Service Description File 164	

Listing 6: Part of the Google Authentication configuration settings 173	

Listing 7: Additional parameters included in the Service Description File 178	

xx

Introduction

1

Chapter 1

Introduction

Since the early years of electronic computers and modern computing in the middle of

the 20th century [1] several paradigms shifts have taken place to shape the field of

software application development and empower developers to produce code faster and

better (Figure 1). During the 1960s, software was characterised by complex and

tangled control structure, which was mainly a result of the use of “GO TO” statements

[2]. As Dijkstra specifically points out, the rampant use of the “GO TO” statements

made it extremely complicated for programmers to follow the execution flow of the

program and thus understand and maintain the software [3]. This style of

programming has been widely known as “spaghetti code” [2].

In response to the need for structured and less complex code, structured and

procedural programming appeared in the late 1960s and during the 1970s. These

paradigms eliminated the “GO TO” statements and made the code more readable [4].

At the same time software engineering principles were introduced and adopted during

software development, such as reusability, the separation of concerns, and modularity

[2]. Modularity imposes that the computer programs are built from distinct units of

code called modules. Each module implements a concrete task and exposes a well-

defined interface via which it communicates with the rest of the computer program.

Modularisation reduced development time since separate groups could work in

parallel on each module and improved the maintainability of the software by enabling

developers to better understand the software systems [5].

Introduction

2

Nevertheless, software continued to grow in size and to become more complex.

Therefore, alternative development paradigms gained popularity to cope with this

complexity and attempted to shift the software development from statement-oriented

coding to system building by connecting various components [6]. In other words, as

noted by Nierstrasz et al. [7], “applications can be largely constructed rather than

programmed”. This paradigm, which was known since the late 1960s [8], is

component-based software development. Components are highly reusable units of

software functionality and can act as the building blocks of software systems [9]. At

the same time the use of global variables is discouraged. Programmers could create

better applications by reusing tried-and-tested software components.

Figure 1: Representative examples in the evolution of the programming style

From around 2000, the widespread use of Internet protocols such as the Hypertext

Transfer Protocol (HTTP) [10] and generic data transfer formats, such as the

Extensible Mark-up Language (XML) [11], paved the way for Service-Oriented

Computing (SOC) [12]. This paradigm shift decouples component-based software

systems into distributed collections of services. The service, which is the core concept

of the SOC, is considered to be an autonomous, reusable, and portable unit of

software, accessed through a standard web Application Programming Interface (API).

Applications could now be built rapidly out of collections of services, which were

offered by various providers.

Introduction

3

In recent years a new computing paradigm has emerged and attempts to shape the way

software applications are developed, namely cloud computing. This paradigm shift

has decoupled software services from the platform and hardware resources on which

they run, creating a highly distributed web of services, platform, and infrastructure.

The continuous emergence of new computing paradigms is evidence of human

ingenuity in attempting to satisfy the demand for increasingly complex software

systems, for as Wirth says [4]:

“Our society depends to an ever increasing degree on computing techniques.”

Keeping this in mind, and having as motivation our continuous striving to empower

developers to produce code faster and better, this thesis looks to exploit cloud

computing, and cloud platforms in particular, to enhance the software development

process. Specifically, it proposes a development framework, which will enable the

developers to create uniform software applications out of distributed, heterogeneous

software services, independently of the concrete provider`s implementation.

The following paragraphs introduce the reader to the field of cloud computing, and

cloud platforms and emphasise their role in the development of software applications.

Cloud computing refers to a “virtually infinite” number of IT resources, which can be

provisioned on-demand automatically, a feature originally introduced by Grid

Computing, are charged on a pay-per-use basis, and can be scaled elastically

according to the demand [13]. Application developers leverage the development

resources provisioned by cloud providers in order to build software applications

rapidly and with low-cost. Furthermore, Independent Software Vendors (ISVs) see an

opportunity to develop and launch their software products through major cloud

providers, such as Amazon [14] and Google [15] and thus reach a large number of

potential customers [16]. Large organisations and companies exploit cloud

computing offerings in order to minimise their IT infrastructure expenses. Instead of

owning and maintaining an underutilised data centre, they can lease and be charged

only for the resources they actually use. Likewise, small and medium enterprises can

reduce drastically their upfront capital costs [17]. End users can access their data and

the applications online from anywhere around the world by using web-based

Introduction

4

Customer Relationship Systems (CRM) and Enterprise Resource Planning (ERP)

systems.

Due to the wide range of capabilities involved, which affect a broad target group

ranging from large companies to individual users, cloud computing is further divided

into three service models [18]:

! Software as a Service (SaaS): SaaS provides complete software applications

such as CRM and office solutions for companies and end users who are not

necessarily involved in the IT industry.

! Platform as a Service (PaaS): PaaS offers programming resources such as web

servers, run-time containers, and databases and aims at the software developers

who seek to reduce the time and effort needed to develop applications.

! Infrastructure as a Service (IaaS): IaaS refers to low-level hardware resources

such as compute, storage, and network resources and mainly targets large

organisations and companies.

Due to the wide range of advantages that cloud computing offers to its end users,

spanning the whole IT industry, its popularity has grown continuously, and it has

already reached a certain maturity [19] and mainstream adoption [20]. Particularly,

Gartner [21], a leading research and market analysis company, names cloud

computing as one of the top 10 strategic technology trends for 2015 [22].

PaaS has received particular attention, due its great appeal to software developers

who attempt to harness the offered benefits throughout the whole lifecycle of the

application development. The research firm IDC [23] estimated a compound annual

growth rate of 30% for the cloud platform offerings which will reach $22 billion by

2019 [24].

In its basic model a cloud platform provides developers with the programming

resources required to build and deploy software applications, also referred to as cloud

applications. Such resources include several programming languages, such as Java

and PHP, databases such as MySQL [25], and a selection of web servers, such as

Apache Tomcat [26] and Microsoft IIS [27]. A detailed description of cloud platforms

and cloud applications is provided in the Section 2.3 and 2.4 of the next Chapter.

Introduction

5

Due to the popularity of cloud platforms, new offerings have been constantly

launched, providing additional capabilities such as monitoring, logging and reporting

tools.

Apart from the resources offered to assist software engineers in the application

development process, certain cloud platform providers offer additional functionality,

which can be directly integrated into the application. Example of such cloud

platforms are Heroku [28], OpenShift [29] and Engine Yard [30] . The functionality is

provided in the form of many independently-functioning software components which

can be accessed by the application using the Representational State Transfer protocol

(REST) [31].

The additional functionality, which is provided by certain cloud platforms, is referred

to in this thesis as a platform basic service. Examples of platform basic services are

the e-mail service, the authentication service, and the payment service. Instead of

building applications that offer similar services from scratch, software developers can

leverage these platform basic services in order to reduce the development effort and

time. Cloud applications that are based on platform-basic services will, in this thesis,

be referred to as service-based cloud applications. The particular category of

platforms which offer the platform basic services is also known as cloud application

platforms (CAP) [32] and this term is adopted for the rest of this thesis1.

In parallel with the proliferation of the cloud application platforms and the platform

basic services another software development approach has emerged and gains

momentum, namely the micro-services [33]. The micro-services are defined as small

and independently deployed services that work together [33]. Their key characteristic

is that the communication between the services is achieved via network calls rather

than library calls, via an exposed API.

Thus, software applications can be built as a combination of collaborating micro-

services. The benefit of such an approach is that the application can leverage various

technologies. Each service can be built using the appropriate technology and tools

1 The terms platform basic service, cloud application platform and service-based cloud application are
further clarified in the Sections 3.6 of Chapter 3.

Introduction

6

without affecting the rest of the application. Furthermore, the application becomes

more resilient since if one micro-service fails it can be replaced without cascading the

failure to other components. Likewise, scaling and deployment can be managed more

efficiently since they are restricted to particular micro-services. On the other hand

micro-services may cause efficiency issues especially across the interfaces using

network protocols.

A closer consideration of the micro-service architecture and the CAPs may reveal a

strong connection between the two fields. Particularly, the notion of the platform

basic services, which are offered via the CAPs, can be correlated with the concept of

micro-services. As it has already been described both concepts refer to autonomous

pieces of reusable software, which expose certain functionality via an API, and can be

accessed through networks calls. As a result, the service-based cloud applications,

which refer to applications built on CAPs and using a number of platform basic

services can be considered as a realisation of the micro-services software

development paradigm.

1.1 Motivation for the research work

The growing appeal of platform basic services to software developers becomes

evident from the ever-increasing number of such services being offered by cloud

application platforms. Indicatively, it is mentioned, that Heroku, one of the leading

cloud application platforms, now counts almost 150 platform basic services [34].

These services may be provided either natively by the owners of the platform, or

through the agency of ISVs, whose products are hosted by the platform. An

increasing number of providers have led to the outcome that multiple providers offer

the same category of platform basic service. For example, the e-mail service is

offered by the following providers: SendGrid [35] via Heroku and OpenShift

platform, Mailgun [36] via Engine Yard and Heroku, Postmark [37] via Heroku.

Likewise, there are several providers implementing the payment service such as:

Spreedly [38] and Stripe [39] offered via Heroku1. Although the various providers

may offer the same category of service, they often differentiate themselves in several

1 The list of the platform basic service providers and the cloud application platforms at this point of the
thesis is provided for explanatory purposes and should not be considered as exhaustive.

Introduction

7

features such as the pricing, the quality of the product and the provided functionality.

Therefore, application developers can choose from a wide range of available options

the one, which best meets the requirement at hand.

The existence of a multitude of platform basic service providers should be seen as a

positive thing for the consumers, since it increases market competition and thus forces

the providers to strive for more quality products and cheaper prices. However, in

order for the cloud platform consumers to harness the benefits stemming from the

pluralism of the providers, they need to be able to deploy seamlessly the ones which

each time better meet the requirements at hand. In reality, this cannot be achieved out

of the box due to the heterogeneity among the platform basic service providers which

adds to the already existing heterogeneity among the cloud platform offerings. The

heterogeneity lies primarily in the resources that the platforms offer. For example,

certain programming languages and frameworks, such as the popular JavaEE [40]

framework, is only supported by certain cloud platforms such as OpenShift.

Likewise, diversity may arise in the provided databases. A detailed list of the

differences, which may be encountered across the platform offerings, is stated in

chapter 3.

Particularly, in the case of the cloud application platforms, an additional level of

heterogeneity arises among the providers who offer platform basic services.

Specifically, the following variability issues, thoroughly discussed in Chapter 4, may

arise:

! The differences in the workflow: For a specific kind of service, different

providers may adopt a different workflow in order to complete an operation. For

example, in the case of the payment service various implementations exist that

support completing a purchase request, and these can follow different workflows.

! The differences in the web API: As explained earlier in this Section, the

consumers access the platform basic services via their exposed API. Depending

on the concrete provider, the expected parameters in the API may change. For

example, in the case of the e-mail service, SendGrid, Mailgun, and Postmark

expose a different API for the operation “send e-mail”.

Introduction

8

! Management of the configuration and authentication variables: In order to

configure a service and authenticate the user, several variables may be required.

Indicatively, the Google authentication service requires among others the

following variables: a) the redirect URL, b) the client ID, c) the scope. The

number and the type of the settings vary according to the provider. Considering

the large number of platform basic services out of which a service-based cloud

application may be composed, the management of the settings may become a

time consuming and strenuous process.

The heterogeneity among the platform basic service providers may create an

uncertainty to the software developers, willing to leverage platform basic services,

regarding the optimal provider to be used. In turn, this may reduce the trust towards

the cloud platform providers and becomes a hindrance to their wider adoption.

Representatively, Gigaom research [41], a major technology market analysis

company, states that despite the steady annual growth of the PaaS market, it still

enjoys a slower adoption rate compared to the IaaS and SaaS market [42]. Among the

reasons behind this is the confusion that IT managers experience with heterogeneous

PaaS interfaces and technologies.

To challenge this current state of affairs, we believe that software developers should

be empowered to create their applications without having to deal with all the

inconsistencies across different cloud platforms. In other words, to the extent that this

is possible, the underlying technologies that power each platform should be made

transparent to the users. Therefore, applications can be built in a platform agnostic

manner and only at the deployment stage the target platform is selected.

There are multiple benefits associated with granting cloud applications the ability to

be deployed across multiple cloud platforms. Software developers are not required

each time to cope with the peculiarities and the proprietary technology of each cloud

platform. Instead, the application is only developed once and then it is deployable

across multiple platforms. This fact further insulates the developers against the

deficiencies of particular cloud platforms, by giving them the freedom to switch to

another platform offered by a different provider. For example, a provider may fail to

meet the pre-determined service level agreements (SLAs) either by reducing the

Introduction

9

quality of the offered service, or increasing the price or even by terminating

unexpectedly the services offered [43]. In such a case the software developers will be

able to deploy the same applications on a different cloud platform and thus minimise

the disruption caused to the users of these applications. Eventually, the ability to

deploy a cloud application securely and robustly across multiple cloud platforms will

promote a wider adoption of the PaaS offerings by the software developers.

1.2 Aim of the thesis

To this end the aim of this research work is to propose a methodology and build a

development framework which enables the creation of cloud platform agnostic

applications. Recapitulating the famous slogan invented by Sun Microsystems [44],

“Write once, run everywhere.” [45]

,which refers to the fact that Java applications can run on any device with the Java

Virtual Machine [46] installed, the target of this research work is to empower

software developers to code their cloud applications once and deploy them on any

cloud platform. Essentially, developers should remain focused on the creation of the

application and not on the process of learning the peculiarities and specific technology

of each target platform.

However, although such a vision sounds highly appealing, its feasibility remains

disputed. The large diversity across cloud platform offerings does not allow the

engineering of a solution that abstracts over the whole variety of the platform specific

technologies. The field of cloud platforms can be ranged between offerings, which

provision the basic development resources offerings, which provide additional

platform basic services, and platforms which follow a concrete high-level

development paradigm based on graphical interfaces. Chapter 3 analyses the

heterogeneity among the cloud platforms and draws the requirements that a platform

needs to meet in order to be accommodated by the solution proposed in this research

work. Essentially, this thesis focuses on the design of service-based cloud

applications, namely those cloud applications, which are based on platform basic

services.

Introduction

10

Specifically, this thesis proposes the Service-based Cloud Application Development

Framework (SCADeF), which aims to provide the tools and the methodology to

support:

i. The consistent integration of different categories of platform basic services with a

service-based cloud application.

ii. The seamless use of the various platform basic service providers in a manner that

is transparent and technology-agnostic to the software engineer.

Such a vision entails the alleviation of the three variability points across platform

basic services, namely: (i) the differences in the workflow, (ii) the differences in the

web APIs of the various providers and (ii) the management of the configuration and

the authentication variables. Essentially, software developers shall focus on building

the functionality of the application and then will be able to choose automatically the

concrete platform basic service provider which implements this functionality.

1.3 Standardisation and Intermediation as solution approaches

Towards enabling the development of platform agnostic cloud applications, two

approaches have become prominent, namely standardisation [47] and intermediation

[48]. The first involves the definition of a common set of standards adopted by all

cloud providers. This set of standards could include well-defined APIs, which enable

the uniform access to the platform basic services, and standard formats to store and

retrieve data from the databases. An example of the standardisation approach is the

Cloud Data Management Interface (CDMI) [49] which puts forwards a common

HTTP interface in order for the consumer to access cloud file storage services. CDMI

is supported by major IT companies such IBM [50] and Hewlett Packard [51].

The second approach, intermediation, involves the introduction of an intermediate

layer which decouples application development from any specific platform provider

technologies. An example of a widely adopted intermediation approach is the Java

Database Connectivity (JDBC) [52] driver technology, which grants Java uniform

access to any kind of database by hiding the specific underlying implementation.

Introduction

11

While standardisation seems an efficient approach to enable cross-platform

development of cloud applications, the establishment of a standard is a strenuous and

time-consuming process, which requires the consensus of major stakeholders1 and

thus lies beyond the scope and the capabilities of this research work. Therefore, in

this thesis work the intermediation approach is adopted.

1.4 Bird eye view of SCADeF (Service-based Cloud Application

Development Framework)

Figure 2 shows a high-level view of the SCADeF framework, the proposed solution.

SCADeF mediates between the software developers and the platform basic service

providers. The developers create their applications using the high level functionality

offered by the framework, which then undertakes the tasks to integrate the application

with the concrete service providers. As seen from Figure 2, the framework supports a

number of different platform basic services and providers. For each category it

provides a reference implementation, which is exposed to the developer, and the

specific implementation of each supported provider. When a platform basic service is

required, the reference implementation is used while the specific vendor

implementation remains transparent.

Figure 2: Bird eye view of the SCADeF framework

1 Such as large companies, organizations and potentially governmental institutions

Introduction

12

SCADeF adopts a three phase process in order to support additional platform basic

services and concrete providers:

1. Platform Service Modelling Phase: During this phase, the abstract functionality

of a platform basic service, which is exposed to the application developers, is

modelled.

2. Vendor Implementation Phase: During this phase, the concrete implementation

of each of the service providers is mapped to the abstract functionality defined in

the previous step.

3. Execution Phase: During this phase, the development framework will undertake

the tasks to mediate between the application and the concrete providers.

The whole process of supporting a platform basic service provider with SCADeF and

the mediation between the application and the concrete providers remains transparent

to the software developer. The latter focuses on building the functionality of the

application and is not distracted from the specific implementations of the various

service providers. Therefore, the proposed framework facilitates the seamless use of

platform basic services and providers offered by different cloud application platforms

and with this respect aims to contribute to the cross-platform development of the

cloud applications.

1.5 Thesis Objectives

This Section presents the aims and objectives for the work described in this thesis, as

well as a summary of contributions, and a synopsis of the rest of the thesis report.

 Theoretical objectives 1.5.1

1. Introduce and explain the concept of the cloud application platform and the

service-based cloud application as a specialisation of the concepts cloud platform

and cloud application respectively.

2. Survey the existing cloud platform offerings and classify them according to their

application development and deployment features.

3. Identify the variability issues which need to be addressed in order to enable the

cross-platform development of service-based cloud applications.

Introduction

13

4. Propose a methodology to alleviate the variability issues.

5. Examine certain means such as the use of XML templates and ontologies in order

to capture the differences in the web APIs of the platform basic service providers.

 Technical objectives 1.5.2

1. Experiment with a number of cloud platforms and platform basic services in

order to extract the requirements of the development framework.

2. Design the architecture to support the cross-platform development of service-

based cloud applications.

3. Implement the development framework based on the architecture.

4. Provide the toolset for:

i. The administrator of the development framework to be able to add

platform basic services and their respective providers to the framework.

ii. The user of the development framework to be able to make use of it

during the development of the service-based cloud application.

 Experimental objectives 1.5.3

1. Experiment with a set of real case platform basic services and a respective

number of providers implementing those services.

2. Validate the overall approach of the development framework and demonstrate its

capability to contribute to the cross-platform development of service-based cloud

applications.

 Thesis contributions 1.5.4

The main contributions of the thesis are listed below:

C1: Clarification of the notions of cloud applications platforms and platform basic

services and a subsequent exemplification of how these notions could be

leveraged to accelerate the cloud-based development process and lead to the

creation of service-based cloud applications.

C2: The formulation of a methodology which enables the design of service-based

cloud applications independent of the concrete platform basic service providers.

Introduction

14

C3: The design of the Service-based Cloud Application Development Framework

(SCADeF) to support the above methodology.

C4: The construction of a toolset to enable the operation of SCADeF by the software

developers.

C5: Manifestation of how the micro-service architectural style could be applied in the

field of cloud computing with the use of cloud application platforms and

platform basic services.

1.6 Thesis Outline

PART A: Literature review on cross-platform development of cloud applications

Chapter 2: This chapter presents a selected overview of the field of cloud computing.

Its aim is to introduce the reader to the concepts, which will be used throughout

the rest of the thesis. It provides a definition of cloud computing followed by a

brief review of the technologies that led to this novel paradigm, namely

virtualisation, grid, and distributed computing as well as the SOC. Next, it

breaks down the term cloud computing into the three service models: IaaS,

PaaS and SaaS. The remainder of the chapter focuses on the PaaS level and

attempts to provide a concise definition of the term cloud platform as well as

defining the author’s notion of a cloud application, which will be used

throughout the rest of the thesis.

Chapter 3: The chapter presents an analytic survey of current cloud platforms. The

scope of the survey is to examine the available cloud platform offerings and

analyse them based on a certain framework of features. The purpose of this

survey is to allow the categorisation of the platforms into certain groups, where

the platforms in each group expose similar characteristics. This supports the

goal to narrow down the research focus onto a specific group, which will benefit

most from the framework proposal. According to the analysis of the survey,

three clusters can be defined:

1. The first group includes cloud platforms, which support widely used and

standard technologies, such as MySQL and Java.

Introduction

15

2. The second group offers additional functionality in the form of platform

basic services.

3. The third group adopts a different development paradigm, which relies

on web-based graphical environment.

This thesis focuses on the second group namely, the cloud application

platforms. The remaining of the chapter further clarifies the terms of the cloud

application platform and the applications, which are deployed on them namely,

the service-based cloud applications.

Chapter 4: Chapter 4 surveys the field of cross-platform development of cloud

applications. The scope of this chapter is to illustrate the approaches followed

by the related work on the field. Specifically, two approaches are considered:

(i) standardisation and (ii) intermediation. The latter one is further divided into

three sub-categories: a) Library-based solutions, b) Model-driven engineering

based solutions and c) middleware solutions. The role of the chapter is two-

fold:

1. It aims to identify potential gaps in the area of the cross-platform

development of cloud application, which are not covered by the existing

work.

2. It pinpoints weaknesses stemming from the methodologies and the tools

adopted by the related work.

The combination of the outcome of the two aims leads to the precise

contextualisation of this research work.

PART B: The Service-based Cloud Application Development Framework

(SCADeF)

Chapter 5: This Chapter describes the high level architecture of the proposed

SCADeF framework, which aims to facilitate the cross-platform development of

the service-based cloud applications. Particularly, the framework addresses the

variability issues encountered when dealing with multiple platform basic

services and providers. These are the:

Introduction

16

1. The differences in the workflow required completing the operations of

the service providers.

2. The differences in the API exposed by the various service providers.

3. The management of the configuration and authentication variables

required by each provider.

In order to address these issues, as stated in Section 1.4, SCADeF consists of

two parts. The first one, the Platform Service Workflow part, addresses the first

variability issue, namely the differences in the workflow across the various

platform basic service providers. Likewise, the second part, the Platform

Service API, aims to alleviate the differences in the APIs as well as in the

various configuration and authentication variables required by the service

providers.

For each of the two parts SCADeF defines three phases. During the first one,

the Platform Service Modelling Phase, the abstract functionality of the platform

basic service is modelled. Subsequently, during the Vendor Implementation

Phase the concrete implementation of each supported provider is infused. The

Execution Phase is responsible for executing the workflow, which was defined

during the first two phases, and generating the API client adapter required to

interact with each concrete provider. Therefore, as seen in Figure 2 the

application developer is able to access the required platform basic service

providers by only interacting with the reference implementation provided by the

SCADEF framework. The Chapters 6-9 describe in details the process of

adding a new platform basic service and concrete provider to SCADEF.

Chapter 6: This Chapter focuses on the Platform Service Workflow part, namely the

one that addresses the first variability issue regarding the differences in the

workflow across the various platform basic service providers. The first step

towards addressing the workflow variability is to define a reference workflow,

which abstracts the provider specific ones. For that reason a Reference Meta-

Model is provided, including the concepts required to build the reference

workflow. The result is the Platform Service Connector (PSC), which contains

the abstract functionality of the platform basic service. Subsequently, the

Introduction

17

implementation of each concrete provider is built and mapped on the abstract

one contained in the.

Chapter 7: After having created the abstract functionality for each platform basic

service supported by the SCADeF framework and having included the concrete

provider implementation, Chapter 7 describes how the functionality is executed.

Specifically, the aim of the framework is to undertake the task of executing the

workflow, which has been defined during the Platform Service Modelling and

the Vendor Implementation Phase. For that reason the Platform Service

Execution Controller is constructed to manage the execution of each state

contained in the workflow. Therefore, the details of the execution of the

operations defined in the platform basic services remain transparent to the

application developers.

Chapter 8: A similar process to the description of the platform service workflow is

defined for the description of the Platform Service API part. Chapter 8 focuses

on the second variability point, which is associated to the differences in the API

across the platform basic service providers. Similar to Chapter 8, this Chapter

describes the way the Reference API is constructed. The Reference API

describes the functionality offered by the platform basic service and is unique

for each category of service supported by SCADeF. The next step is to map

each vendor specific API to the reference one. Therefore, the application

developers interact only with the Reference API while the vendors’ specific

APIs remain transparent.

Chapter 9: After having defined the Reference API and having mapped the

provider’s specific ones, Chapter 9 focuses on the Execution Phase during

which the API client adapters are generated. They contain the source code

required to invoke the operations offered by the platform basic service

providers. The API client adapters are generated automatically using a code

generator technique. Thus the application developers access only the Reference

API defined in the previous Chapter and they are not required to manually

implement the web calls in order to invoke the operations of the service

providers. The outcome of the generation is a set of interfaces with the

Introduction

18

operations offered by the platform basic service and the respective

implementation of the specific providers supported by the SCADeF framework.

The software developers access only the service interfaces while the concrete

implementation remains transparent. This contributes to the initial aim of this

research work, which is to “hide” the providers’ implementation from the

software developers.

PART A: Conclusion and future work

Chapter 10: This Chapter concludes the research thesis. Specifically, it summarises

the research work and states how contributions, which were defined in Section

1.5 have been fulfilled. Furthermore, the Chapter recommends future work to

be carried out as continuation of this research thesis.

PART A
Literature review on cross-platform development of cloud applications

19

PART A
Literature review on cross-platform development of

cloud applications

Chapter 2 – Background on cloud computing and cloud platforms

Chapter 3 – Survey of cloud platforms

Chapter 4 – Related work on cross-platform development of cloud
applications

PART A
Literature review on cross-platform development of cloud applications

20

Background on cloud computing and cloud platforms

21

Chapter 2

Background on cloud computing and

cloud platforms

Cloud computing is still an evolving field and new offerings are constantly launched,

while the terms and concepts around this paradigm are still being shaped. To this end,

the Chapter attempts to provide background information on the field of cloud

computing and the concepts which are involved, such as cloud platforms and cloud

applications. Cloud computing has not been developed from ground up but has rather

evolved from previous well-established computing paradigms. In order for the reader

to understand the underpinnings of this new paradigm, a brief history of its evolution

is provided and a comparison with previous computing models, such as the grid and

SOC is made. The aim of the comparison is to pave the way for clarifying the notions

of cloud platforms and cloud applications.

As mentioned in the Introduction, the research topic of this thesis is the cross-platform

development of cloud applications. The topic involves two core terms: (i) the cloud

platforms and (ii) the cloud application. Therefore, after having introduced the field

of cloud computing the chapter aims at introducing the field of cloud platforms and

providing the author’ notion of the cloud application, which will be adopted

throughout the rest of the thesis.

Particularly, Section 2.1 attempts a short history of the evolution of cloud computing

and provides the relevant information in order for the reader to gain a deeper view on

how core concepts of this thesis, such as cloud platforms and applications have been

evolved. To this end it examines previous computing paradigms, such as grid and

Background on cloud computing and cloud platforms

22

SOC. In Section 2.2 the three service models, as defined by the National Institute of

Standards and Technology (NIST) [18], are introduced namely: the IaaS, the PaaS

and the SaaS. The second half of the Chapter focuses on the terms of cloud platform

and cloud application. Thus, Section 2.3 attempts to illustrate the field of cloud

platforms by mentioning specific characteristics and major providers such as the

Google App Engine (GAE) and Heroku.

Finally, Section 2.4 describes the notion of cloud application. The term is often used

by different parties to denote applications which are deployed in all three levels of

cloud computing (SaaS, PaaS, IaaS) [53], [54]. However, in the context of this

research thesis a cloud application refers to those applications which are developed

using the resources offered by the cloud platforms and are subsequently deployed on

them.

2.1 Evolution of cloud computing

While cloud computing has emerged as a revolutionary computing paradigm, it does

not actually constitute a novel technology, but it has rather evolved from previous

established computing paradigms. This Section, as shown in Figure 3, presents a brief

timeline of cloud computing and attempts to compare it with previous computing

paradigms.

Figure 3: History of cloud computing

Background on cloud computing and cloud platforms

23

Historically, the term cloud computing was first envisaged by the computer scientist

McCarthy and dates all the way back to 1961 [55] [56] :

“If computers of the kind I have advocated become the computers of the future,
then computing may someday be organized as a public utility just as the
telephone system is a public utility… The computer utility could become the
basis of a new and important industry.”

McCarthy was the first one to envision computing being ubiquitous and easily

available to the public.

 Virtualisation technique 2.1.1

In 1967 IBM developed the CP-67 virtual machine operating system, one of the first

attempts at virtualising mainframe operating systems [1]. Particularly, CP-67 was a

hypervisor which enabled the sharing of memory across virtual machines and at the

same time provided each user with a dedicated virtual memory space. Virtualisation

is a technology which abstracts over the hardware resources and thus allows sharing

of the physical resources, such as processing power, storage and networks [57].

While virtualisation has been applied since the 1960s in mainframe computing, it has

only been in recent years that it has become a widespread concept in other kinds of

computing, thanks to advances in computing power and high-speed networks. Thus,

virtualisation constitutes an essential element of cloud computing, which decouples

the allocation of the physical resources from their geographical location; and includes

the notions of rapid elasticity and resource pooling. [58].

 Client-Server architecture 2.1.2

In the early 1990s the client-server computing model emerged and became part of the

mainstream [59]. In this computing paradigm a client initiates a request to the server

and the latter processes the request and responds with the result [60]. Essentially, it

relies on the distributing computing model, which promotes the communication of the

various system components via message exchange [59]. The client-server model may

be considered as the evolution of the mainframe systems model, which was

characterised by centralised computing and restricted access [59] [61]. Cloud

computing is still based on the client-server model, but there are certain differences as

noted in [58] and [62]. First, cloud computing implements a management layer which

Background on cloud computing and cloud platforms

24

monitors the workload and is able to alleviate traffic congestion by deploying and

releasing additional resources as needed. Furthermore, via cloud computing the

services are offered on demand and they are highly configurable. In addition cloud

computing adopts a business model based on the pay-per use approach.

 Grid Computing 2.1.3

In the mid-1990s another model of computing emerged as an evolution of distributed

computing, namely the Grid [63]. Grid computing denotes the large-scale sharing of

resources across virtual organisations usually required by compute and data intensive

scientific and engineering applications [64]. Cloud computing is sometimes

considered to have been a development arising from the grid [58], [65]. However,

there are significant differences between the two paradigms. Grid computing mainly

focuses on the collaboration among the users in order to share resources for scientific

and research purposes, while cloud computing rather targets the business and web-

based applications adopting a pay-per-use policy. Additionally, while grid computing

focuses on the sharing of virtualized infrastructure resources, cloud computing

introduces two additional levels, namely the SaaS and the PaaS. Furthermore, grid

computing aims to combine existing computing resources to provide high

performance computer (HPC) capabilities to those without access to expensive HPC

machines. On the other hand cloud computing leverages virtualisation techniques to

enable a single physical server to be allocated to many users concurrently [58].

 Service-oriented Computing 2.1.4

Moving to the late of 1990s and early 2000s a new computing paradigm arose which

became known as (SOC). The goal of SOC was to push forward the rapid, cost-

efficient and easy development of distributed applications as composition of services

[66]. A service in this context was a packaged software component capable of being

re-used in multiple applications and most importantly it was self-describing, such that

it could be discovered and integrated automatically with other similar services [67].

Thus, service-based applications [68] were developed from a combination of loosely-

coupled services, which each exposed a well-defined interface, hiding at the same

time their underlying implementation. Cloud computing exploits the principles of

Background on cloud computing and cloud platforms

25

SOC in order to offer its resources to the public in a similar way. Thus cloud

resources, such as storage, computation, and message queuing may be offered in the

form of services via standardised technologies, such as the Web Service Description

Language (WSDL) [69] and the Simple Object Access Protocol (SOAP) [70] or the

REST [31]. At the same time, widely explored concepts in the domain of SOC, such

as service governance and SLAs are also leveraged by cloud providers [70]. On the

other hand, the emergence of the cloud computing paradigm has brought about a

number of concepts which were hitherto not extensively explored, such as the pay-

per-use business model and automatic resource scaling [67].

 Early commercial cloud products 2.1.5

In 2002 Amazon launched the Amazon Web Services (AWS), a suite of cloud-based

services, which offered computation and storage resources. Cloud computing, in the

form which is known today, started after 2006 when Amazon launched the Elastic

Compute Cloud (EC2) [72], which allowed small companies to rent virtual machines

[73]. Google and Microsoft followed shortly afterwards with the release of their own

cloud services, namely the GAE [74] in 2008 and the Microsoft Azure [75] in 2009

respectively.

 Cloud computing, why now and not then? 2.1.6

From the above, it is clear that cloud computing has evolved from a number of

previous well-established computing paradigms and has exploited technologies which

were already established. Then why did cloud computing become widespread only

the last couple of years? According to [13] it is the new technology trends and

business models, such as the effortless use of credit cards to purchase online services,

which has promoted the provisioning of cloud resources. Furthermore, enterprises

and organisations have ascertained that their IT resources were historically largely

underutilised and they could reduce their costs by renting the resources they actually

need [65]. Last but not least the advances in the networking technology offered by

the Internet have made feasible the sharing of cloud resources.

Background on cloud computing and cloud platforms

26

Thus, nowadays cloud computing has turned into a significant paradigm serving a

wide range of consumers from large enterprises to individual end users. However,

there are still barrier to uptake such as security, privacy and interoperability.

2.2 Cloud computing in three service models

While cloud computing initially referred to the provision of low-level hardware

resources such as compute and storage, it evolved also to include the sharing of

additional IT resources, such as run-time programming environments for software

developers and complete software products for end users, such as software for CRM.

Due to the wide range of heterogeneous resources, which are covered under the

umbrella term of cloud computing, the latter is divided into certain service models.

The most established classification, shown in Figure 4, is provided by NIST, which

proposes the following three service models of cloud computing [18]:

Figure 4: The 3 service models of cloud computing according to NIST

! Infrastructure as a Service (IaaS): IaaS provides the consumers with low-level

IT resources, such as processing, storage and networks, which the latter can use

to install and run any arbitrary software including operating systems and

applications. Thus IaaS allows enterprises and developers to expand their IT

resources on demand. However, consumers’ access is limited to the operating

systems, storage and the deployed applications and they do not have control of

the underlying infrastructure. Example of IaaS offerings are: Amazon Elastic

Compute (EC2) [72] and Google Compute Engine [76] which offer virtual

Background on cloud computing and cloud platforms

27

machines as well as Amazon Simple Storage [77] and Microsoft Azure Storage

[78] which provide dynamically scalable storage solutions.

! Platform as a Service (PaaS): Cloud providers in the PaaS level offer software

programming capabilities such as run-time programming environments, libraries,

databases and software tools. Software developers exploit these capabilities in

order to create their applications, which are then deployed on the cloud

infrastructure. Similar to the IaaS level, consumers’ control is restricted to the

deployed applications while they are restrained from accessing the underlying

infrastructure such as the servers and the operating systems. Some representative

examples of PaaS offerings are: GAE [74], a platform to develop and deploy

applications in several programming languages such as Java, Python and Go.

Heroku [28], is another major platform which offers programming resources and

third party services, such e-mail service and payment service. Zoho Creator [79]

offers a web-based programming environment for rapid and specific purpose

application development such as the creation of CRM applications.

! Software as a Service (SaaS): In the SaaS level providers make available

complete software applications, which are executed on their infrastructure, via a

web-browser or a desktop program interface. This model signals a shift from the

traditional way that software applications were distributed, installed and upgraded

on the consumers’ own IT platforms. Rather consumers can directly access an

application online via a web client and are charged on a pay-per-use basis. At the

same time SaaS providers can use a shared application codebase to serve multiple

customers via a multi-tenancy architecture [43], which may also occur in the

databases. Furthermore, the process of maintaining and upgrading the software is

handled entirely by the provider and remains transparent to the consumers.

Similar to the IaaS and PaaS level, consumers only control the software

application and they do not have access to the underlying resources that the

application is relying on. Example of SaaS providers are Salesforce [80] which

mainly offers CRM-oriented applications and SAP which provides ERP solutions.

Background on cloud computing and cloud platforms

28

2.3 Cloud platforms

As described in the previous Section, at the PaaS level, cloud providers offer their

solutions via cloud platforms. Cloud platforms are rapidly gaining momentum and

have become particularly popular among software developers, who use them to build

and deploy rapidly their web applications. There are two major groups of consumers

of cloud platform offerings [81]:

1. Independent Software Vendors (ISVs). By leveraging cloud platform resources

ISVs can quickly develop and launch new software products and at the same time

minimise their capital costs. On top of that by offering their software products

via a major cloud platform, such as the GAE, they can reach a far larger global

market.

2. IT departments of organisations and companies. Rather than developing from

scratch and maintaining the required software on premise, IT departments may

choose to leverage the capabilities offered by the cloud platforms. Additionally,

cloud platforms can be exploited for testing purposes and for building proof of

concepts.

 Early cloud platform offerings 2.3.1

When the cloud platforms first appeared in the late 2000s, they set out to provide the

basic programming resources required by the developers in order to build and deploy

their applications (Figure 5).

Figure 5: A Cloud Platform

Background on cloud computing and cloud platforms

29

A representative set of these resources is [82] [83] :

1. Programming languages and frameworks. Developers are offered a variety of

languages and frameworks such as Java, PHP, Java Spring [84] and .NET [85].

2. Web servers. Several pre-configured and ready to be used web servers are

offered by the cloud platforms, such as Apache Tomcat and Microsoft IIS.

3. Databases. Software developers can directly connect their applications with one

of the offered databases, such as MySQL and PostgreSQL [86].

4. Storage services. In addition to databases, certain platforms such as GAE and

Amazon offer additional types of block file storage space.

5. Firewalls and load balancers. Apart from the programming resources cloud

platforms offer capabilities related to the execution of the applications, such as

firewalls to ensure a certain level of security and load balancers in order to

distribute uniformly the incoming workload.

Exploiting the basic programming resources offered by these cloud platforms,

software developers are able to reduce the effort and cost, which is required to set up

and maintain the programming stack. However, they still need to build the whole

functionality of the application from the ground up. This means that cloud platforms

offer the essential development resources but not any additional functionality such as

an e-mail service which could contribute to the reduction of the development time.

 Evolution of cloud platforms 2.3.2

Since the first generation of cloud platforms and following their rising popularity

among software developers [87], a growing number of platform vendors have

launched new platform products with extended capabilities. Thus platforms are now

extending their functionality beyond traditional programming resources to include

tools that support not only the development but also the deployment, execution and

management phases of the application. Examples of such tools are the deployment

plug-ins for Integrated Development Environments (IDEs) like Eclipse or NetBeans,

which automate the deployment process of the application on the platform and also

provide tools to perform logging and monitoring of the application.

Background on cloud computing and cloud platforms

30

Gradually the PaaS market has experienced a significant shift from the basic

technology provided by traditional cloud vendors such as GAE, Microsoft Azure and

Amazon Elastic Beanstalk (AEB) [88] to a wide range of capabilities supported by the

platform offerings today [89]. In order to meet the consumers’ need for ever lower

application development times, platform vendors seek to introduce additional

capabilities in their offerings. Thus on top of the tools provided up until that point to

support the development, deployment, and management of the application, platform

vendors attempt now to provide the consumers with software functionality, which can

be incorporated directly in the application. This functionality is provided through the

platform in the form of an autonomous and reusable software component, which

exposes its operations via a standardised interface, using the REST protocol.

Examples of such functionality are the authentication service, the e-mail service, the

message queue service, and the image processing service. Platforms which nowadays

offer such functionality include Heroku, OpenShift, and Engine Yard. Thus software

developers do not need to build complete applications from the ground up. Rather

they can reuse the functionality provided by the cloud platforms in order to decrease

significantly the required time and effort.

In an attempt to reduce even further the effort and time required to build an

application, some platform vendors have launched offerings that adopt a different

development paradigm. Rather than expecting the developers to program their

applications and deploy the source code on the platform, platform vendors offer web-

based graphical environments, where the users can simply create applications by

combining drag-and-drop elements and other pre-designed features offered by the

platform. The applications which can be created have a specific narrow scope and are

usually CRM and ERP-oriented. Examples of such cloud platforms include Zoho

Creator [79] and App Cloud1 [90].

2.4 Cloud applications

Having explained and clarified the notion of cloud platforms in the previous Section,

this Section attempts to define the author’s notion of a cloud application. As

1 Formerly known as Force.com

Background on cloud computing and cloud platforms

31

mentioned in the Introduction cloud platforms and cloud applications are the core

concepts of this research work, which concerns the cross-platform development of

cloud applications.

As described earlier in the Sections 2.1 and 2.3 cloud computing is still an evolving

field. Although, there is established terminology that is widely accepted, such as the

notions of IaaS and PaaS, there are still some terms, which mainly due to their

generic nature may be used by different parties to denote different concepts. For

example the term cloud service may often be used as such to denote services provided

at the IaaS, PaaS and the SaaS level. While technically the use of the term is not

wrong, confusion may be caused among parties with different backgrounds.

Therefore, Breiter and Behrendt [91] correctly break down the definition of cloud

service and refer to the particular subcategories of infrastructure services, platform

services and software services.

Likewise, this Section attempts to clarify the notion of the cloud application, which

will be adopted in the rest of the thesis. Similar to the term cloud service, the term

cloud application may be used to denote different concepts each time, depending on

the viewpoint of a particular cloud computing service model. For instance, looking at

the IaaS level, a cloud application may refer to an application, which is directly

deployed on the infrastructure resource, such as virtual machines leased from an IaaS

provider such as Amazon. For example Instagram [92], a popular online photo-

sharing service, had been deployed on Amazon EC2 infrastructure before it was

moved, in 2013, to Facebook’s data centre [93]. Likewise, a cloud application may

also denote applications offered at the SaaS level. Salesforce provides the following

definition for cloud applications [53]:

“Cloud computing applications, or apps, are the cloud-based services also

known as Software as a Service (SaaS).”

The same understanding of the term is also adopted by Oracle and thus they refer

to cloud applications as SaaS applications [54].

However, in this research work the term cloud application is specifically used to

denote those applications which are developed and deployed on a cloud platform.

Background on cloud computing and cloud platforms

32

Therefore, the cloud application is built using the platform resources, such as

programming frameworks, databases, logging tools and is executed on the

platform’s infrastructure such as the available web servers.

The author’s notion of cloud applications is further narrowed down in the next

Chapter.

2.5 Summary

This Chapter presented a selective overview of the cloud computing terms associated

with this research topic. Particularly, the terms which were introduced are the cloud

computing, the cloud platforms and the cloud applications. In order for the reader to

gain a deeper understanding of how cloud computing and platforms evolved, the

Chapter presented a brief comparison with preceding computing paradigms such as

the grid and the SOC.

Subsequently, the Chapter focused on the Platform as a Service level and the

clarification of the term cloud platform. Several types of cloud platforms were

mentioned followed by their specific characteristics. Finally, the author’s notion

about cloud applications was provided. When referring to cloud applications this

research thesis denotes the applications which are developed with the use of cloud

platform resources and which are deployed on them.

The next Chapter continues the examination of the cloud platforms and attempts a

systematic analysis of their characteristics.

Survey of cloud platforms

33

Chapter 3

Survey of cloud platforms

As it is already mentioned in the Introduction of the thesis, the focus of this research

work is to contribute to the cross-platform development of cloud applications. The

aim is to enable the software developers create their applications once and then be

able to deploy them on multiple cloud platforms. Towards this direction, it needs to

be examined whether it is feasible to engineer a solution which is able to “hide” from

the software developers the peculiarities and the proprietary technologies of the whole

spectrum of available platform offerings. However, Section 2.3 has already

introduced the concept of cloud platforms and has shown that the field of PaaS

imposes a significant heterogeneity in the available offerings with respect to the cross-

platform development of cloud applications. For example OpenShift [29] provides

low-level widely used and standardised programming resources as opposed to the

Zoho Creator [79] which adopts a high-level web-based application development

paradigm.

Therefore, before proceeding with the topic of the cross-platform development of

cloud applications, the nature of the available cloud platforms needs to be analysed

and their specific technologies needs to be extracted and examined. To this end the

Chapter presents a survey of the existing major cloud platform providers and

examines them based on the development and deployment resources, which they offer

to the consumers. The aim is to identify the concrete category of the cloud platforms,

along with their specific characteristics, where this research work will focus on. The

rest of the Chapter is organised as follows:

Survey of cloud platforms

34

Section 3.1 attempts to identify and present specific characteristics associated with the

cloud platforms. The set of features is based primarily on related reports on the field

of PaaS and additionally on the experience obtained by the author after examining the

cloud platforms listed in Table 1. The Section concludes to two categories of

features, the first one involves the management and the execution of the cloud

applications, whereas the second one is related to the development and the

deployment process.

Subsequently, Section 3.2 evaluates and compares the cloud platform offerings based

on the previously defined set of features. Specifically, since the research work

focuses on the cross-platform development and deployment of cloud applications, the

comparison considers the second category of features, which is related to the

development and deployment process.

Based on the comparison of the cloud platforms Section 3.3 attempts to group them

and classify them into certain clusters according to the programming paradigm, which

they adopt, i.e. whether they allow the deployment of source code (OpenShift) or they

solely offer web-based graphical development environment (App Cloud). Based on

the classification of the cloud platforms, the remaining of the Chapter defines the

concepts of the cloud application platform, the platform basic service, and the

service-based cloud application, which are adopted throughout the rest of the thesis.

3.1 Cloud platforms characteristics

As shown in Chapter 2, Cloud platforms are becoming increasingly popular among IT

departments and ISVs. ISVs can rapidly develop new applications and offer them to a

large number of customers through the platform. Due to their emerging appeal, a

large number of cloud platform offerings are already available on the market. The

available platforms form a wide spectrum of existing solutions from which a

developer may choose. These solutions may vary significantly from each other.

In order to enable a better understanding of the cloud platform offerings and the

differences among them, the platforms are compared against a concrete list of

characteristics (features). The chosen set of characteristics is drawn both from a

synthesis of several cloud platform surveys and also from the author`s experience of

Survey of cloud platforms

35

the field. The examined work is divided in two categories. The first one includes

work that has been produced by academic organizations or standardisation bodies: the

NIST [83], Kourtesis et al., [32], Kolb and Wirtz [94], N. Khan et al.[95], M. Rad et

al.[96]. The second one includes reports that have been produced by independent

research companies: Forrester [97] and Saugatuck Technology [98].

 Cloud platforms reports 3.1.1

NIST has published an extensive report including recommendations for potential

cloud computing users [83]. The report focuses on issues related to each of the three

service models (SaaS, PaaS and IaaS) and proposes best practices for minimizing the

exposure to the risks imposed by cloud computing. Particularly for the PaaS service

model, which is the main interest of this survey, NIST stresses the issues of

application development and security across the various cloud platforms. NIST

recommends that users choose cloud platforms that offer generic interfaces to access

infrastructure resources, such as file storage services, message queue service etc.,

standard languages and standard data access protocols such as SQL. However, special

attention is required to avoid database compromise through SQL injection. Moreover,

NIST it suggests that platform users should analyse the security mechanisms of the

platforms to secure data and applications and ensure reliable data deletion.

Kourtesis et al. [32] focus on the concept of software co-development in relation to

cloud platforms. With the term “co-development” they refer to the characteristic of a

cloud platform that allows ISVs to develop services and offer them via the platform.

These services may also be referred to as cloud platform services. The authors are

particularly interested in the way software co-development is addressed by cloud

platforms as a mean for enriching the platform`s core functionality and making a

service publicly available to a large number of potential clients. The third-party

service can either reside on the platform`s infrastructure or be provisioned by a third-

party infrastructure. A cloud-based application can make use of these cloud platform

services in order to enrich its functionality. Popular cloud platform which are

addressed in this thesis and provide software co-development capabilities are: App

Cloud, Heroku, GAE, and Microsoft Azure.

Survey of cloud platforms

36

Kolb [94] attempts to address the issue of application portability across the cloud

platforms. Towards this direction, a taxonomy of the PaaS model based on available

cloud platform offerings is created. The identified platform characteristics are, among

others, the basic programming capabilities such as the run-time environment’s and the

frameworks, the ability of the platform to scale horizontally and vertically as well the

provisioning of additional platform specific functionality either natively or via ISVs.

Khan et al. [95] attempt to pinpoint how cloud computing differs from cluster and

grid computing. In this context, the three computing paradigms are evaluated against

several characteristics. Specific features that are considered are: scalability, ability to

negotiate SLAs, and pricing models. Moreover, the report takes into account the

issues of security and privacy, of standard used technologies and the possibility for

third party service integration. Then the authors focus on cloud computing and

discuss the three service models (SaaS, PaaS, IaaS). Particularly for PaaS, they

evaluate GAE and Microsoft Azure against the ability to negotiate dynamically the

Quality of Service (QoS), the use of web APIs and interfaces to access the services,

and the available programming frameworks.

Rad et al. [96] focus on the basic characteristics of cloud platforms. They are

particularly interested in those characteristics which are related to the development of

cloud applications. They specifically consider the programming languages and

frameworks that the platforms support, the database and file storage offerings, the

ability to integrate platform services with the client applications and the deployment

methods. The authors evaluate commercial cloud platforms such as Microsoft Azure,

Salesforce and GAE. They also mention certain issues related to the management of

the applications that need to be addressed by the cloud platforms. Such issues are:

security, performance and availability of the services that the platform offers.

Forrester, a research and IT market analysis company, has issued an enterprise-

oriented report [97] to help ISVs choose the best cloud platform for their partnerships.

They attempt a high level classification of the cloud platforms according to the type of

IDE that they provide to the developers and the application development paradigm

that they adopt. Then several cloud platforms such as: GAE, Microsoft Azure, App

Cloud, Heroku, and Zoho Creator are evaluated against the following three categories

Survey of cloud platforms

37

of features: development and management of cloud applications, cloud vendor`s

strategy and product roadmap, and cloud vendor`s market presence.

Saugatuck, an IT research and strategy consulting company, has produced a report

[98] to enable ISVs and software developers to evaluate the different cloud platform

offerings. The report pinpoints the following set of characteristics that should be

considered when choosing a cloud solution: performance oriented features, such as

scalability, reliability and availability, flexible deployment methods, industry standard

technologies and methodologies, data and application security, and application

integration capability with third party applications. Then the report proposes a cloud

development stack and narrows down to specific characteristics for each stack. Some

of the features which are considered for the layers directly related to the application

development are: security, database offerings, a file storage service, development and

deployment tools and methodologies. For all the layers of the proposed cloud

development stack, the management capabilities should be considered.

 Cloud platform framework of features 3.1.2

After reviewing and analysing the previously mentioned reports about cloud platforms

and based on the author’s own experience of the field, a set of characteristics have

been compiled that is considered necessary to be evaluated when comparing the cloud

platform providers. The characteristics are grouped into two main categories, as

shown in Figure 6:

Figure 6: Cloud platform framework of features

Management	and	Execu^on	of	

the	cloud	applica^on	

• Reliability	 of	 the	 pla`orm	

(SLAs/QoS)	

• Pricing	models	

• Elas^city	of	applica^ons	
• Security	and	privacy	
• Monitoring	of	applica^ons	

• Infrastructure	of	the	pla`orm	

• Physical	loca^on	of	the	
infrastructures	

Development	and	Deployment	

of	the	cloud	applica^on	

• Programming	 languages	 and	

frameworks	

• Database	offerings	
• Cloud	storage	service	
• Deployment	u^li^es	

• Development	tools	

• Pla`orm	specific	func^onality		

• Scope	of	applica^ons	
• Applica^on	development	^me	

Survey of cloud platforms

38

1. Management and execution of the cloud application: A cloud platform acts

as the middleware on which the application is running. Therefore features in

this category are related to the behaviour of the cloud platform, once the

application is deployed and is executing on it.

2. Development and deployment of the cloud application: Features that are

included in this category are related to the development and the deployment

stage of the application.

Therefore these two categories can serve as a starting point, for the evaluation of the

cloud platforms.

 Management and execution of the cloud application 3.1.2.1

1. Reliability of the platform: Reliability ensures that the platform does not

violate the agreed SLAs. Platforms may suffer from outage resulting in

unavailable services, which in turn may lead to unacceptable profit loss for

the clients.

2. Pricing models: Cloud platforms charge the users based on the consumed

resources such as the storage, the number of database instances and the

computing capacity. They may also apply charges for custom services that

they offer. The pricing models may vary significantly across platforms and

therefore should be well considered when choosing the target platform.

3. Elasticity of applications: Elasticity is related with the ability of the

platform to scale up an application to multiple servers when the load

increases. It also implies the release of the idle resources when the load

decreases. Elasticity represents how efficiently a platform can respond to

load fluctuations. This characteristic may be of major significance in

applications where the load varies unpredictably.

4. Security and privacy: A major impediment for the wide adoption of cloud

platforms by companies and organizations are the issues of security and

privacy. Security refers mainly to the fact that the hosted application and data

should be well secured against external hackers’ attacks. Privacy, on the

other hand, refers to the fact that the platform provider will not exploit

clients` hosted data for own profit by revealing them for commercial or other

Survey of cloud platforms

39

purposes or that information on European citizens is not processed outside

Europe.

5. Monitoring of applications: Cloud platforms monitor the resources

consumed by the hosted applications. This way they can ensure the timely

provisioning of additional resources, or the release of idle resources,

depending on the workload of the application.

6. Infrastructure of the platform: Certain cloud platforms own the

infrastructure where the clients’ applications are running whereas other

platforms are renting the infrastructure resources from an IaaS provider. The

users of the cloud platforms may be interested in knowing where the

applications are physically hosted since this affects the reliability, security,

and privacy factor of the platform.

7. Physical location of the infrastructure: A characteristic, closely related to

the previous one, is the physical location where the application is hosted. The

physical location of an application may impact the performance of an

application. Consider, for example, that an application is hosted in a data

centre in the USA and the majority of the users come from China. There is a

time overhead in accessing the remote server in the USA. For that reason

major platform providers are building data centres all around the world.

There may also be legal issues related to the physical server location that

hosts an application.

 Development and deployment of the cloud application 3.1.2.2

1. Programming languages/frameworks: There is a wide variety of

programming languages and frameworks from which a developer can choose

to develop an application. Depending on the selection a cloud platform can be

chosen accordingly to provide the selected languages and frameworks.

2. Database offering: A database is an essential part of many applications.

There is a wide range of database implementations offered by the cloud

platforms. They range from the popular SQL to the emerging NoSQL [99]

databases.

Survey of cloud platforms

40

3. Cloud storage service: Apart from the use of a database, an application may

be required to store other files as binary large objects (“Blobs”). Some

platforms offer this possibility via a storage service.

4. Deployment utilities: Once the application is developed, it needs to be

deployed on the cloud platform. Platforms may offer a command line tool or,

additionally, a plug–in for a popular development tool such as Eclipse. In

some platforms, where the application is developed online via a web-browser,

the deployment is realised automatically through the web-browser.

5. Development style: Depending on the characteristics of the platform and

especially on the platform`s application scope and the application development

time, the development tools that are available to the users may vary. In

general, platforms with generic application scope integrate their Software

Development Kit (SDK) with a popular IDE, such as Eclipse. Platforms with

specific application scope usually offer an online development environment

via a web-browser.

6. Scope of applications: Cloud platforms may vary according to the scope of

application that a developer can create. There are generic platforms where the

developer can deploy any source code provided that it is compatible with the

technologies offered by the platform. On the other hand there are application

specific platforms that are specialised in certain application domains such as

platforms devoted to CRM systems. Such platforms do not require any source

code. Instead developers use the available tools provided by the platform.

7. Platform specific functionality via APIs: In some cloud platforms the

functionality offered by applications can be enhanced in planned ways by

integrating available 3rd party applications via APIs. In this case the

platforms act as a framework and a marketplace where ISVs can offer their

3rd party applications. The users are able to combine these applications in

order to build their own products.

8. Application development time: The time that a user needs in order to create

an application varies across the cloud platforms. It is closely related to the

previous characteristic, namely the platform`s application scope. In the case

where the platform has a generic scope, application development normally

takes more time because the user needs to code all the functionality from

Survey of cloud platforms

41

scratch. In the case where the platform is application specific, it may not be

necessary for the user to write any source code at all. There are available

functionality blocks or templates that the user can customise and integrate in

his application via a graphical interface. In the latter case the application

development time is dramatically decreased.

In this Section several features were listed that are related to the cloud platforms.

This list is not exhaustive. However, it may provide an adequate knowledge and

serve as starting point for the evaluation and comparison of the cloud platforms.

3.2 Cloud platforms comparison

There is a wide range of cloud platforms that are commercially available and new

offerings are continuously emerging. The scope of this survey is not to present an

exhaustive list with all the available offerings but rather to provide the reader with an

insight into the different types of cloud platform. The aim of this research work lies

in the creation of cloud applications, which are agnostic to the underlying target

platforms. In this context the comparison of the cloud platforms will contribute to the

understanding of the nature of the platforms and eventually lead to the selection of the

cloud platforms, exposing similar characteristics, where this thesis will focus on.

The research interest of the author lies in the application development domain rather

than in the management and the provided quality of service of the platform.

Therefore, the description of the platforms provided in this Section is based on the

various application development paradigms that they adopt and are evaluated against

the development and deployment characteristics presented in 3.1.2.1.

The cloud platforms which are evaluated in the next Sections are: 1) Rapidcloud [100]

, 2) Shelly Cloud [101] , 3) OpenShift [29], 4) AEB [88], 5) GAE [74], 6) Heroku

[28], 7) Engine Yard [30], 8) Appfog [102], 9) Bluemix [103], 10) Zoho Creator [79],

11) App Cloud [90].

The selection of the platforms is representative and serves the purpose of

demonstrating the diverse set of technologies and programming paradigms that the

platforms may offer.

Survey of cloud platforms

42

Table 1 lists the cloud platforms, considered in this survey, according to their

development and deployment characteristics.

Specifically, regarding the programming languages and frameworks different

platforms may support different languages and frameworks such as Java, Ruby and

.NET. In addition, platforms such as Zoho Creator and App Cloud do not offer any

programming support. Instead they choose to provide a graphical environment that

developers can exploit to developer their cloud applications.

A similar diversity is observed in the database offerings. Specifically, different

platforms support different set of SQL and NoSQL databases. For example AEB

offers, among others, SimpleDB [122], while GAE offers the proprietary Cloud SQL

[124] and App Engine Datastore [125].

Regarding the Cloud storage service, there are platforms, such as AEB and GAE,

which provide the developers with storage space. By contrast platforms such as

Rapidcloud and Appfog do not offer any storage service.

With respect to the deployment utilities examples of available options are an IDE

plugin and a Command Line Interface (CLI). For example Openshift, GAE and AEB

provide both a CLI and an IDE plug-in. By contrast, App Cloud and Zoho Creator do

not offer any deployment utilities since developers are not expected to deploy any

source code.

The development style may also vary depending on the cloud platform. The majority

of the offerings, such as Heroku, Openshift, GAE, and AEB enable developers to

create applications by writing source code using a programming language. On the

other hand, platforms such as Zoho Creator and App Cloud offer the developers a

graphical interface that the latter can use to create cloud applications.

Depending on the development style the scope of the cloud applications, which can

be developed in each platform, is determined. For example platforms, such as Zoho

Creator and App Cloud, which offer a graphical development environment, support

the creation of CRM-oriented applications.

Survey of cloud platforms

43

In addition, certain platforms may choose to offer platform specific functionality via

APIs that developers can exploit, such as e-mail service, image service and payment

service. Examples of such platforms are Openshift, Heroku and EngineYard.

Depending on whether the cloud platform offers platform specific functionality the

expected application development time may also vary.

3.3 Classification of Cloud Platforms

Table 1 summarises the classificatory features that are related to the development and

deployment of a cloud application and evaluates the cloud platforms against these

features. Whereas in Section 3.2 a selection of the most widely used platforms was

presented, Table 1 adds to the list of available cloud platforms with further less well-

known offerings. Subsequently, a classification of these cloud platforms is attempted.

Survey of cloud platforms

44

Table 1: Cloud platforms with respect to the application development features

 Features

Cloud

Platforms

Programming

languages and

frameworks

Database offerings Cloud

storage

service

Deployment

utilities

Development

via graphical

user interface

Platform

application scope

Platform specific

functionality via

APIs

Application

development time

Rapidcloud Java, Play MySQL, Memcached, Redis No GitHub, Bitbucket No Generic No High

Shelly Cloud Ruby, Grape, Rack,

Rails, Sinatra

MySQL, PostgreSQL,

MongoDB, Redis

 CLI

Apprenda Java, .NET Microsoft SQL, Oracle

RDBMS

No CLI, Visual Studio

plugin

No Generic No High

ConPaas Java, PHP MySQL, Scalarix NoSQL No CLI No Generic No High

OpenShift Java, PHP, Ruby,

Node.js,Python, Perl

MySQL, PostgreSQL,

MongoDB

Yes CLI, Eclipse plugin No Generic Yes Medium

Amazon Elastic

Beanstalk

Java, PHP, Python,

Ruby, Node, .NET

Amazon RDS PostgreSQL,

DynamoDB, SimpleDB

Yes CLI, Eclipse plugin No Generic Yes Medium

GAE Java, Python, PHP,

Go

Cloud SQL, App Engine

Datastore

Yes CLI, Eclipse plugin No Generic Yes Medium

Microsoft Azure .NET, Node.js, Java,

Python, Ruby, PHP

AzureSQL, DocumentDB,

Redis

Yes CLI, Eclipse plugin,

Visual Studio plugin

No Generic Yes Medium

Heroku Java, Node.js,

Python, Ruby, PHP

PostgreSQL Yes CLI, Eclipse plugin No Generic Yes Medium

Engine Yard PHP, Ruby, Node.js PostgreSQL, Redis, MySQL Yes CLI, GitHub No Generic Yes Medium

Survey of cloud platforms

45

Features

Cloud

Platforms

Programming

languages and

frameworks

Database offerings Cloud

storage

service

Deployment

utilities

Development

via graphical

user interface

Platform

application scope

Platform specific

functionality via

APIs

Application

development time

Appfog Java, Node.js, PHP,

Python, Ruby

PostgreSQL, MySQL,

MongoDB, Redis

No CLI No Generic Yes Medium

Bluemix Java, Node.js, PHP,

Python, Ruby,

MySQL, PostgreSQL,

MongoDB, Redis

Yes CLI, Eclipse plugin No Generic Yes Medium

Jelastic Java, PHP, Ruby,

Node.js, Python,

MySQL, MongoDB, Neo4j,

Redis, PostgreSQL

Yes Git, Bitbucket,

Eclipse plugin,

No Generic Yes Medium

AppHarbor .NET MySQL, Microsoft SQL, No Git, Bitbucket, No Generic Yes Medium

Pivotal Cloud

Foundry

Java, Ruby, Python,

Go, PHP, Node.js

MySQL, Redis, Cassandra,

MongoDB, Neo4j

Yes CLI, Eclipse plugin No Generic Yes Medium

Standing Cloud Java, PHP, Ruby,

Python

MySQL, PostgreSQL, Redis,

MongoDB, Memcached

Yes CLI No Generic Yes Medium

OracleCloudPaaS Java, Node.js Oracle SQL, Oracle NoSQL Yes CLI, Eclipse plugin No Generic Yes Medium

Zoho Creator Deluge Custom database via GUI Yes None Yes Specific No Low

App Cloud Apex Custom database via GUI Yes None Yes Specific No Low

Caspio - Custom database via GUI Yes None Yes Specific No Low

Rollbase - Custom database via GUI Yes None Yes Specific No Low

Survey of cloud platforms

46

Based on Table 1, we anticipate that some platforms may achieve short application

development times, while in some others the developer is expected to spend a

relatively longer amount of time in order to create the application. The platforms with

shorter expected development time offer custom proprietary technologies,

functionality via a graphical interface and may not support the deployment of generic

applications written in a standard programming language. On the other hand the

platforms with relatively longer development time provide support for open source

technologies and they do not offer additional functionality via platform specific

services.

Therefore the surveyed cloud platforms may be classified into three categories (Figure

7). The classification is primarily based upon the application development time and

whether the cloud platforms provide additional functionality in order to speed up the

creation of the applications.

Figure 7: Classification of Cloud platforms

1. The first category includes the platforms that provide support for widely used

and open source technologies. Developers can code their applications using

standard programming languages and databases offerings. Platforms in this

category have a generic application scope and users can upload the source

code of their application. They do not provide additional custom functionality

via APIs, which in turn increases the application development time. However,

the fact that they offer only standard programming technology without native

APIs minimises the dependency of the application on any specific platform

and thereby the vendor lock-in effect. Furthermore platforms, which fall in

Survey of cloud platforms

47

this category, may be preferred by experienced developers, who are familiar in

developing applications using traditional programming tools and languages.

Moreover, they may be preferable in the case of existing applications which

are deployed on a cloud platform in order to save management time and cost.

Examples of cloud platforms in this category are Rapidcloud and Shelly

Cloud.

2. The second category includes platforms that, similar to the first category, offer

standard programming languages and databases, such as Java and MySQL.

However, in order to decrease the application development time they also

offer platform specific services via APIs, such as the payment and the e-mail

service. Developers may exploit these services to speed up the creation of the

application. However, the more such services are used by an application, the

bigger the dependency is upon the platform. Cloud solutions in this category

may suit developers with coding experience that need to rapidly develop new

applications and therefore use ready functionality offered by the platforms.

Examples of platforms in this category are Heroku, Engine Yard and

Openshift.

3. The third category includes platforms that adopt a different application

development paradigm, characterised by tools for online development via a

web browser, using visual interfaces and design templates. Developers are

provided with a generic graphical application framework that they can

customise in order to meet their requirements. These platforms have a specific

application scope that is oriented in CRM systems and similar business

applications. The development time can be dramatically decreased due to the

automated development processes. However, this is done at the expense of a

high dependency of the application upon the platform and the limited scope of

applications. Since little or no coding is required in order to create an

application, these platforms are suitable for business experts that need to

develop rapidly office applications, from scratch, with little or no coding

experience at all. Examples of cloud platforms in this category are App Cloud

and Zoho Creator.

Survey of cloud platforms

48

3.4 Determining the target cloud platform category of this

research work

It becomes obvious that there are significant variations between cloud platform

offerings available on the market. As it has already been mentioned in the

Introduction of the thesis, the large heterogeneity among the platform providers may

hinder the engineering of a solution enabling the development of platform agnostic

applications across the whole spectrum of the available platforms. Therefore, the

effort of this research work needs to be concentrated on a specific cluster of platforms

that present similar characteristics.

The first category of cloud application platforms consists of offerings that are

strongly characterised by the use of standard and widely adopted technologies.

Therefore, the cloud application development process does not deviate from the

traditional programming style, which imposes the use of established programming

languages and tools such as Java, MySQL and the Eclipse IDE. On the other side of

the spectrum, the third category of platforms comprises offerings adopting highly

proprietary environments, which do not allow the deployment of any source code.

Instead the whole development phase takes place via web-based graphical tools. As a

result no programmatic solution can be engineered to address the development of

cloud applications targeting this category of platforms.

Consequently, the focus of the presented research work is on the second category of

cloud platforms, namely the ones that offer additional platform services via

proprietary APIs allowing at the same time developers to create and deploy their own

source code. Platforms in this category are also known as cloud application platforms

[32].

3.5 Cloud application platforms and platform basic services

As mentioned in the previous Section and also noted in [32], a cloud application

platform is a special category of cloud platforms. As shown in Figure 8, the key

characteristic of the platforms of this kind is that, apart from the basic platform

Survey of cloud platforms

49

resources such as run-time environments and databases, they offer additional platform

specific functionality also referred to as platform basic services.

Figure 8: Cloud application Platform

The platform basic services expose a certain functionality, which can be exploited by

software developers in order to speed up the process of application development.

They are usually provisioned via a REST API via the marketplace of the platform. A

marketplace allows ISVs to create their own services and provision them through the

cloud platform. Such an example is the marketplace of OpenShift and Heroku.

Examples of platform basic services are the payment service, the image processing

service and the e-mail service:

1. Payment service: A payment service undertakes the task to perform electronic

transactions via credit or debit cards. This service can be used by cloud

applications, which sell products or services online. Instead of having

developers create from scratch the functionality, which handles electronic

transactions, a payment service can be exploited to complete the operation.

Example of payment service providers are Stripe [39] and Spreedly [38]

offered via Heroku platform

2. Image processing service: This service offloads the task for the application

developers to perform image transformations, such as crop, resize, apply a

filter etc. Instead these operations are carried out by the service, in this way

saving application development time and processing power. Example of

image service providers are Google and Cloudinary [130], which is offered via

Heroku and Engine Yard.

Survey of cloud platforms

50

3. E-mail service: As the name implies, the E-mail service enables the

application to send, receive, and store e-mails without the need for the

developers to set up and maintain a dedicated e-mailing server. Rather this

task is outsourced to the e-mail service providers. Example of e-mail

providers are Google, Amazon, and SendGrid via Heroku.

The services mentioned above are only representative examples of what a platform

basic service may look like. There are several cloud application platforms offering a

constantly growing number of platform basic services as mentioned in the previous

Sections. For an extended list of available platform basic services the reader may

look up the Heroku marketplace [131] as well as the marketplace offered by Engine

Yard [132] and OpenShift [133]. Along with the increase in the number of available

cloud application platforms, there is a steady proliferation in the number of platform

basic services offered via the platforms. Currently, Heroku offers almost 150

services, OpenShift, which recently (2014) launched its own marketplace, counts

almost 30 services, and Engine Yard provides 64 platform basic services. The on-

going increase of the available platform basic services and their growing popularity

among application developers is leading to a new paradigm of application

development, where applications are not created from the ground up, but rather are

synthesised from a number of platform basic services. Figure 9 introduces the term

service-based cloud application, which describes a software application, which is

deployed on a cloud application platform (CAP) and utilises a number of available

platform basic services.

Figure 9: Service-based cloud applications

Survey of cloud platforms

51

At the initial stage of this research work, there were a limited number of CAPs, such

as the GAE and the Heroku. However, over the course of the research work,

additional CAPs have constantly been launched such as Engine Yard, Appfog, Jelastic

and AppHarbor. This fact highlights the momentum that platform basic services gain

and their impact in the domain of cloud application development. Therefore, the

presented research work focuses on these cloud application platforms, namely the

second category of the classification performed in Section 3.3 and specifically on

methodologies and techniques which enable the development of service-based cloud

applications as those that have been defined in this Section.

3.6 Summary

This chapter presented a survey of cloud platform offerings. Due to the large

heterogeneity among the available offerings, the survey contributed to the

clarification of the differences between the various platforms and to further

contextualization of the presented research work. Since the research focus lies on the

cross-platform development and deployment of cloud applications, the survey was

based on certain platform characteristics related to the development and deployment

phase.

Based on the analysis which followed, the survey concluded that there are three

relevant categories of cloud platforms, when considering the problem of cross-

platform development. The first one includes cloud platforms, which adopt widely

used programming technologies and have a generic application scope. They do not

offer any platform basic services and thus they have a relatively high application

development time. The second category presents similar characteristic with the first

one. However, in order to speed up the development process, platforms in this

category offer additional platform basic services via APIs, which can be exploited by

the developers. The third category includes platforms, which adopt a different

application development paradigm. Rather than deploying their source code,

developers create their applications based on web-based graphical environment.

This research work chooses to focus on the second category of platforms, also

referred to as cloud application platforms. The reason is that they promote the

Survey of cloud platforms

52

traditional programming style and the deployment of source code, while at the same

time they attempt to provide additional proprietary functionality via the use of so-

called platform basic services. The combination of both open source and proprietary

technology and the way that application developers can exploit it, motivated the

choice of the presented research work. Moreover, as mentioned in Section 3.5, cloud

application platforms gain momentum and new offerings are constantly launched.

After having surveyed the field of cloud platforms and concluded to the concrete

category where this research work will focus on, the next step is the survey and

analysis of the related work on the field of the cross-platform development. The aim

of the literature review is to identify potential gaps in the research areas covered by

the related work and to expose any weaknesses involved. Thus the review will further

contribute to the precise contextualization of this research work with respect to the

concrete area that the work will focus on and the approach to be adopted in order to

address the issue of cross-platform development.

Related work on the field of cross-platform development of service-based cloud
applications

53

Chapter 4

Related work on the field of cross-

platform development of service-

based cloud applications

The preceding Chapters have introduced the scope of this research work, which is the

cross-platform development of cloud applications. Particularly, specific concepts

related to the research work have been defined, such as the platform basic services,

the cloud application platforms, and the service-based cloud applications. Due to the

diverse ecosystem of the cloud platforms, as shown in Chapter 2 and Chapter 3, this

research work focuses on a specific cluster of platforms exposing similar

characteristics with respect to the cloud application development. For this reason,

Chapter 3 presented a survey of the field of the cloud platforms, which in turn led to

the classification of the platforms into three categories based on their development

paradigm and on the additional functionality, which they may offer to the developers.

As discussed in Section 3.3, the first category includes the platforms, which adopt

widely used technologies and basic development capabilities without offering

additional custom functionality. At the other end of the spectrum, the third category

contains offerings, which adopt a high-level graphical development paradigm

including narrowed scope and proprietary functionality. The middle category, where

this research thesis focuses on, includes the platforms, which provide support for

widely used programming technologies and additionally offer custom functionality

Related work on the field of cross-platform development of service-based cloud
applications

54

via the use of the platform basic services. These platforms are also known as cloud

application platforms.

In order to proceed with the exploration of the field of cross-platform development of

cloud applications, a review of existing work needs to be carried out. The aim of the

review is to reveal the precise context of the relevant work on the field including the

methodologies and tools that have been used. At the same time the strengths and

limitations of the examined work will lead to the refinement of the context of the

presented research and contribute to the selection of the appropriate approach and

tools in order to advance the presented research topic. Therefore, the aim of this

Chapter is two-fold: First, to identify potential gaps in the areas explored by related

work and second to detect any weaknesses in the adopted methodologies.

Two general approaches have been adopted in order to address cross-platform

development and enable the software engineers to leverage resources offered by the

various cloud platforms, namely the standardisation and the intermediation approach.

Section 4.1 examines the standardisation approach. This approach focuses on the

definition of common set of standards for the cloud offerings. The adoption of such

standards by all cloud providers would enable developers to create their applications

independently of specific cloud environments and then deploy them on the cloud

provider of their choice. However, for reasons not necessarily related to technology,

it is very difficult for all cloud providers to eventually agree on a common set of

standards. Therefore, as it has already been mentioned in the Introduction of the

thesis, this research work focuses on the intermediation approach. The field of

standardisation is briefly examined in order to give the reader an insight on the

reasons that led this research work adopt the intermediation rather than the

standardisation approach.

Section 4.2 examines the alternative approach towards enabling the development of

platform agnostic cloud applications, namely the intermediation. Contrary to the

standardisation approach where the consensus of the platform vendors is required,

intermediation focuses on the introduction of an intermediate layer that decouples

application development from specific platform APIs and supported formats. This

Related work on the field of cross-platform development of service-based cloud
applications

55

approach can be applied using mainly three techniques: (i) library-based solutions, (ii)

middleware platforms and (iii) model-driven engineering (MDE) techniques. The

techniques and related work adopting each of the techniques are discussed in the

Sections 4.2.3, 4.2.4 and 4.2.5 respectively. Next, Section 4.2.6 positions the

examined work with respect to the three service models, the IaaS, the PaaS, and the

SaaS. The conclusion, which is drawn in Section 4.2.7, is that the work carried out in

the PaaS model is significantly less compared to the IaaS. Moreover, little or no

work has been done towards addressing the variability across the various platform

basic services and the respective providers.

4.1 Standardisation approach

Cloud computing covers a wide area of heterogeneous offered services. It is not yet

clearly defined what are the exact services and in which form they are offered to the

users. Moreover, cloud services are provided to the users via proprietary APIs and

technologies that vary across the cloud providers. Consequently, confusion may be

caused to the users regarding the most suitable service and the feasibility to move

across cloud providers without being enforced to comply by the specific technology

and APIs of each provider. In an effort to reduce the confusion and establish trust

towards cloud computing services, several organizations undertake the task of putting

forward standards related to the way that cloud services shall operate and be offered

to the users.

 Cloud Standardisation efforts 4.1.1

 Open Virtualisation Format (OVF) 4.1.1.1

Open Virtualization Format (OVF) is a specification for packaging and distributing

Virtual Machines (VMs), defined by the Distributed Management Task Force

(DMTF) [134]. Conflicts may occur when trying to port a VM from one vendor to

another due to the proprietary formats. OVF attempts to bridge the differences among

the vendors by putting forward a standard format for VMs. Among the key properties

of OVF is that it is platform independent. Thus the architecture of the format is not

Related work on the field of cross-platform development of service-based cloud
applications

56

bound to a particular platform or operating system and so enabling virtual machines to

be deployed on different cloud infrastructure providers.

 Open Cloud Compute Interface (OCCI) 4.1.1.2

Open Cloud Computing Interface (OCCI) is a standard created by Open Grid Forum

(OGF). OCCI attempts to standardise the way users access and manage infrastructure

resources and therefore to abstract the various proprietary APIs that vendors are

currently using. OCCI defines the following infrastructure resources, which can also

be viewed in the technical report “Open Cloud Computing Interface – Infrastructure”

[135]:

1. Compute: Compute resources refer to VMs. Operations defined in the OCCI

API include: start, stop, restart, and suspend a virtual machine.

2. Storage: Storage resources refer to data storage devices. The actions that can

be performed are: set the device online or offline, create a backup, take a

snapshot or resize the storage space.

3. Network: Network interconnects the available resources. Users can set the

network to active or inactive.

 Unified Cloud Interface (UCI) 4.1.1.3

The Unified Cloud Interface (UCI) [136] was proposed by the Cloud Computing

Interoperability Forum (CCIF) [137] in order to create an API for abstracting

resources offered by various cloud providers. Similar to OCCI the goal of the UCI

was to abstract infrastructure resources. On top of that, it aimed at the higher service

levels such as the PaaS. The use of semantic technologies such as OWL and RDF

would enable the definition of a standardised model of the cloud computing stack.

However, UCI remains inactive since 2010 and no further information is provided. It

has been included in this chapter for historic reasons and for the sake of completeness.

 Cloud Infrastructure Management Interface (CIMI) 4.1.1.4

The Cloud Infrastructure Management Interface (CIMI) [138] has been proposed by

the DMTF [139] as a standardised management interface for Infrastructure resources.

Cloud Infrastructure consumers can leverage CIMI in order to manage machine,

Related work on the field of cross-platform development of service-based cloud
applications

57

network, and monitoring resources. Specifically, operations that are supported by the

standard include creation of VMs, start and stop the VMs as well obtaining credentials

for logging on. Consumers can also manage the network resources for creating virtual

networks and connecting storage devices.

The focus of CIMI is on the Infrastructure service level and does not extend beyond

that to other levels such as the PaaS or SaaS.

 Cloud Data Management Interface (CDMI) 4.1.1.5

Cloud Data Management Interface (CDMI) is a cloud storage standard defined by

Storage Networking Industry Association (SNIA) [140]. Cloud storage service can be

used to store files. Several cloud providers offer storage service, such as Google

Storage, Amazon Simple 3, and Azure Blob. However, each provider is using a

proprietary API to let developers use the service. Consequently, users need to comply

each time with the provider`s specific API. CDMI attempts to standardize the way

users, access and manage cloud storage services. It defines a restful HTTP interface

through which clients can access and manage the resources of the cloud storage

providers.

 Topology and Specification for Cloud applications (TOSCA) 4.1.1.6

Contrary to the previously mentioned standards, which mainly focus on the IaaS

level, TOSCA is a standardisation effort from OASIS (Advancing Open Standards for

the Information Society) [141], which aims at the cross-deployment of cloud

applications Even cloud platform services that consist of standard technologies,

widely supported by multiple cloud platforms, require a certain level of configuration

and human intervention before being deployed across cloud platforms. TOSCA

envisions automating the process of deploying an application across platforms.

Essentially the proposed standard attempts to specify a uniform way to define the

resources that a cloud application relies on, such as web servers and databases, so that

the latter are automatically instantiated and configured by the target cloud platform.

Related work on the field of cross-platform development of service-based cloud
applications

58

 Cloud application Management Platform (CAMP) 4.1.1.7

The Cloud application Management Platform (CAMP) [142] is a standard proposed

by OASIS, aiming at the management of the cloud applications across various cloud

platforms. Specifically, it defines a RESTful API which is language and framework

agnostic and allows users to perform certain management operations independent of

the target platform [143]. The API covers the whole lifecycle of the application and

can be utilised by the users in order to deploy the application on the platform, start

and stop it, as well as monitor and update the application with new versions [144].

CAMP is closely related with TOSCA described in Section 4.1.1.6 since they have

been both initiated by the same organisation, OASIS. While TOSCA defines a

standard way to describe the resources of a cloud application such as the web servers,

the database etc. and its topology, CAMP aims at the definition of a uniform API in

order to manage the deployment and execution of the application.

 Positioning of the cloud standards based on the cloud computing service 4.1.2

model

As described in the previous Sections, there are several standardisation efforts, which

span across the levels of cloud computing (IaaS, PaaS, SaaS). This Section positions

the described standards with respect to the service level that they focus on and

subsequently Section 4.1.3 attempts to identify whether there is an established cloud

standard addressing the cross-platform development of cloud applications which can

be exploited by the presented research work.

Figure 10 positions the standardisation approaches across the three service levels.

Specifically, OVF is positioned in the IaaS level since it addresses the virtual machine

image migration.

Related work on the field of cross-platform development of service-based cloud
applications

59

Figure 10: Cloud computing standards classification

CDMI addresses the cloud storage resources migration and management and thus is

also placed in the IaaS level. At the same level are positioned OCCI, CIMI, and UCI

which all focus on the management of the infrastructure cloud resources such as

compute and networking.

TOSCA and CAMP are both related with the deployment of the cloud applications on

the cloud platforms and are placed on the PaaS level. The first one defines a standard

way to describe the application in order to make it deployable across multiple cloud

providers while the latter addresses the cloud application management operations.

 Standardisation approach with respect to cross-platform development of 4.1.3

cloud applications

The adoption of the standards, described in the previous Sections, by all the cloud

providers would enable users to utilise cloud resources in a uniform way

independently of the specific provider environment. Particularly, in the context of

this research work standardisation could enable the development of cloud applications

based on standards and therefore “shield” them against platform proprietary

Related work on the field of cross-platform development of service-based cloud
applications

60

technologies. However, there are two main reasons why standardisation approach

could not be leveraged by this research thesis:

i. The establishment of a standard is a strenuous and time-consuming process

requiring the consensus the interested stakeholders.

ii. The majority of the existing cloud standards focus on the IaaS rather than on

the PaaS level.

Cloud providers may appear reluctant to adopt and agree in common standards since

the direct competition among the providers will be increased [145] [146] [147].

Proprietary APIs and technologies is a way to increase clients’ reluctance to move to

another provider (i.e. lock-in). Furthermore, a detailed definition of a standard

requires the consensus of the providers on technical details. Even when* providers

are willing to collaborate, the whole process is strenuous and time consuming due to

the complexity at the technical level. Finally, the definition of a quality standard,

which brings benefit to the stakeholder, requires skills, judgement and experience of

the subject matter. Lack of these qualities may result in the definition of poor

standards which act as an impediment rather than catalyst for the exploitation of the

subject technology [145].

In addition to the issues related with the creation of standards, the existing

standardisation efforts have not reached a maturity level sufficient to overcome the

heterogeneities which rises due to the proprietary vendor APIs and technologies [146].

Similar to the web service standards which had been formulated during the first

decade of 2000, time is needed for a well-defined and established set of cloud

standards to emerge [47].

As seen in Figure 10 and also pinpointed in several articles [47] [148] [149], most

standardisation efforts are taking place at the IaaS level. NIST further highlights this

issue by identifying the areas of standardisation gaps. It is clearly shown a gap in the

PaaS and SaaS level with respect to the available standards. Only in the recent years

standards start to emerge at the PaaS level, whereas SaaS is still largely unexplored.

Related work on the field of cross-platform development of service-based cloud
applications

61

Lewis [47] tries to explain the fact why the majority of standards cover the IaaS level.

It is primarily mentioned that the complexity of the provisioning of the cloud

offerings at the IaaS level is not insurmountable and therefore an IT department can

extend its resources with additional ones offered by the cloud providers. Moreover,

there is not much heterogeneity among the IaaS offerings other than the pricing and

the SLAs. Therefore, the definition of standards at the IaaS level is feasible.

However, while moving upwards in the cloud computing stack the complexity in the

offerings rise. Thus, at the PaaS level an organisation needs to make a decision on

programming languages and frameworks, deployment options, specific functionality

offered via platform basic services. As a result the heterogeneity among the platform

providers rises. Therefore, standardisation efforts at this level become more

challenging.

This Section discussed the standardisation efforts at the three service levels of cloud

computing. It became clear that although standardisation is an efficient approach to

promote the wide exploitation of cloud offerings and enable the cross-platform

development of cloud applications, there are still not established and widely

supported set of standards. Moreover, the majority of the approaches focus on the

IaaS level. Efforts at the PaaS level are limited and focus mainly on the deployment

process of the cloud applications. With respect to the Figure 10 there are no

standards aiming at the exploitation of the platform basic services as those offered by

the cloud application platforms.

4.2 Intermediation approach

While standardisation approach constitutes an efficient solution, which allows users to

exploit cloud services in a uniform way, it was shown in the previous Section that

there are significant limitations, which dictate the enforcement of alternative

directions. Such an alternative direction is the intermediation approach. This is,

introducing an intermediate layer, which decouples application development from

specific platform provider technologies. The intermediate layer prevents developers

from being bound to specific platforms APIs, programming languages, or platform

basic services.

Related work on the field of cross-platform development of service-based cloud
applications

62

Prior describing specific work exploiting the intermediation approach, the scope of

the presented research work needs to be further narrowed down.

 Position of the research work with respect to the cloud application 4.2.1

lifecycle

In the literature there is extensive work [148] [150] [151] carried out describing the

various phases of the cloud application development and management. According to

this the lifecycle of the cloud application primarily consists of three main phases: (i)

The development phase, (ii) the deployment phase, and (iii) the execution of the

application. For each phase certain aspects have been identified (Figure 11). This

Section attempts to illustrate the cloud application lifecycle and subsequently to

identify the concrete aspect where this research work focuses on.

Figure 11: Aspects during the cloud application lifecycle

Regarding the development phase, Maximilien et al. [150] from IBM focus on the

creation of platform agnostic application able to leverage multiple concrete providers.

PaaSage [151], a European research project, highlights the definition of constraints

such as scalability rules. Petcu [148] compiles a comprehensive list of non-functional

requirements. Similar to the previous work the main focus lies on the independence

Related work on the field of cross-platform development of service-based cloud
applications

63

of the cloud application from the specific providers’ resources as well on the ability to

define functional and non-functional requirements.

With respect to the deployment phase, Maximilien et al. [150] put forward the need

for recommendation systems which propose the best deployment topology. PaaSage

additionally mentions the ability to select the optimal cloud providers while Petcu,

among others, pinpoints the need for automated deployment procedures and for

service authentication using single sign-on.

The execution phase, according to Maximilien et al. [151], involves the requirements

for automated scaling up and down of the cloud application, the ability to perform

management operations such as back-up and restore, and the requirements related to

the security and privacy issues. PaaSage additionally mentions the monitoring of the

application and the ability to adapt the provisioning of the resources and the

deployment of the application components in order to meet the constraints as those

have defined during the development phase. Petcu [148] also pinpoints the above

mentioned issues.

Figure 11 summarises the main aspects involved in each of the three phases of the

cloud application lifecycle as those are mentioned in the literature and also arose

based on the authors’ experience on the field.

Indicatively, in the development phase the following aspects are listed:

! The cloud application development. It is self-explanatory and implies the design

and implementation of the application taking into account the capabilities and the

offerings of the cloud platforms such as: the available runtime environments, the

data stores, the databases, and the platform basic services.

! The definition of SLAs and constraints. In order for the cloud application to meet

a certain quality level, rules and SLAs needs to be defined and embedded in the

application. Examples of such rules may regard the response time of the

application and the resources up to which the application may scale to keep up

with the quality standards.

Related work on the field of cross-platform development of service-based cloud
applications

64

! The development of the application in a platform provider agnostic manner. This

aspect ensures that the application implementation is not bound to a specific

provider technology and API and thus it is able to leverage multiple cloud

providers.

In the deployment phase the following aspects are defined:

! Instantiation of the platform components. Based on the requirements of the

application for resources, the platform components are instantiated. Such

components may be the runtime container and the database instances.

! Automated deployment of the application on the cloud platform. The various

components of the cloud application are automatically deployed on the platform

resources, which have previously been instantiated.

! Discovery and recommendation of platform service providers. There is a

plethora of available platform service offerings [48]. Recommendation systems

undertake the task to find and recommend the optimal offering which best meets

the requirements of the application.

In the execution phase the aspects, which arise, are:

! Monitoring of the cloud application and reassurance of compliance to the SLAs.

This implies monitoring the application performance and checking whether

certain constraints or SLAs are violated.

! Based on the monitoring, which takes place, the application should be able to

adapt itself in order to ensure compliance to the defined constraints. Example of

adaptation action is the ability of the application to scale up and down according

to the incoming workload.

! Metering and billing of the application. The resources that a cloud application

consumes are metered and the total incurring cost is calculated.

! Security and Privacy. Since the advent of the cloud computing, security and

privacy are important impediments to its widely adoption [152]. Cloud users are

concerned with the level of security and privacy that is applied to their

applications and their data.

Related work on the field of cross-platform development of service-based cloud
applications

65

The scope of this research work lies primarily in the development phase and

particularly in the platform agnostic development of the cloud applications. This

means that the applications are not bound to a specific platform provider during the

design and implementation. The primary motivation stems from the need to alleviate

the burden from the developers to study and cope with the peculiarities of each

platform provider. The main focus of the developers should be the development of

the business logic of the application and thus the specific platform technologies and

APIs should be transparent to them.

In addition, Petcu [148] summarises the benefits of creating platform agnostic

applications which can leverage resources from multiple platform environments.

! Quality assurance may be easier to be achieved and maintained. In case that a

platform service provider fails to live up to the agreed SLAs, the application may

be deployed on a different platform provider.

! The fluctuation of the prices may be another determinant for the concrete service

provider. Sudden increase in the price of a service may lead the application

developers to choose an alternative service provider.

! Legal constraints may impose that different service providers are selected in

various geographical regions.

! In case of a sudden increase in the workload the application should be capable of

consuming resources from an alternative platform provider.

In the next Sections, representative work aiming at enabling the development of cloud

platform agnostic applications is presented.

 Clustering of work promoting cloud platform agnostic applications 4.2.2

In the literature there is a variety of research efforts contributing to the development

of platform agnostic applications by following various solution directions. Petcu and

Vasilakos [153], among others, classify the research efforts in library-based and

model-driven oriented solutions. The former ones provide the developers with an

intermediate API which is provider agnostic and abstracts various concrete platform

providers. The latter solutions deploy model-driven engineering (MDE) techniques in

Related work on the field of cross-platform development of service-based cloud
applications

66

order to enable the creation of platform independent models, which are then

undergoing model transformations to target specific platform environments.

Similar to Petcu and Vasilakos [153], Ferry et al. [155], among others, highlight

approaches based on MDE techniques and library-based solutions.

Guillen et al. [154] also put forward the idea of exploring MDE techniques in the

development of cloud platform agnostic applications. In addition, they refer to

middleware solutions, which create an abstraction layer between the deployed

application and the target platform environment. Based on the previously mentioned

solution directions the work presented in the next Sections are clustered in three

categories, namely: i) Library-based solutions, ii) middleware solutions, and iii)

MDE-based solutions.

 Library-based solutions 4.2.3

Library-based solutions are code wrappers, which as the name implies wrap the

specific provider implementations and provide a single common API to the

developers.

Code or library wrappers, as it is also mentioned in [156], are objects or piece of code

which encapsulates other objects or piece of code respectively controlling this way the

methods execution. In other words library wrappers hide the detailed implementation

of the specific technology and expose to the user a single interface, which is

independent of the underlying implementation details. The ability of “hiding” the

implementation details is what promotes the platform independence since the user is

able to take advantage of multiple different implementations without the need to

adjust the source code each time to the respective implementation. The concept of

wrapper libraries has been extensively used by software engineers and also has been

endorsed as best practices in relevant literature for the creation of software which is

independent of the deployed environment [156] [157] [158] [159].

Example of code wrappers are database gateways, which have been widely used to

enable data wrapping [156]. Data wrapping refers to the uniform access to multiple

databases using a single interface. There are multiple database offerings, such as

Related work on the field of cross-platform development of service-based cloud
applications

67

MySQL, PostgreSQL etc., each one providing different native access to the database.

Therefore a data wrapper offers a single interface for the developer to use while it

“hides” the detailed implementation for accessing each of the databases. Widely

adopted data wrappers are the Java Database Connectivity (JDBC) drivers [52].

JDBC is an API for Java language, which specifies the interface that the developers

can use to access a database. A JDBC driver exposes the JDBC API and implements

the access to the database. Thus, developers who adopt the JDBC API and use JDBC

drivers can switch databases without the need to modify the source code of the

program. Another example of data wrapper is the Open Database Connectivity

(ODBC) drivers [160]. Similar to JDBC, ODBC is an API that defines the way users

can access various databases. Contrary to JDBC, ODBC API was developed by

Microsoft and primarily targets applications created with the .NET framework [161].

Library wrappers can be implemented using the widely adopted design patterns [162].

Design patterns describe certain classes and their interrelationships in order to address

a general design problem. The use of such patterns promotes composability,

maintainability, and portability. Particularly for library wrappers the following design

patterns can be used:

! Adapter: The adapter design pattern can be used to adjust an interface of a class

in order to be compatible with the one that the client expects to use. For example

the client needs to perform a certain request using a specific interface. Instead of

implementing the request manually, an existing library can be reused. However,

the interface that the library exposes is incompatible with the client`s one.

Adapter undertake the tasks to call the library`s interface on behalf of the client.

! Strategy: Strategy is a design pattern where the concrete implementation of an

algorithm can be determined during run-time. This pattern is used when there are

several concrete implementations for a specific operation and the user does not

know at design time, which one will be invoked during run-time.

Next we discuss existing work in the field of cross-platform development of cloud

applications, which adopts the approach of the library wrapper.

Related work on the field of cross-platform development of service-based cloud
applications

68

 jClouds 4.2.3.1

jClouds [163] is an open source library that can be used by application developers in

order to abstract cloud vendors` specific API. It offers two types of services: a file

storage service and a compute service.

File storage service allows an application to store and read files from a remote store

provided by a cloud provider. jClouds` storage service, called blobstore, consists of

the following structure:

! Container: Container is the namespace for the files to be stored. It can be

perceived as the top level directory.

! Blob: Blob is the unstructured data that is stored in the container. More

specifically blob refers to files.

! Folder: Similar to the folders that can be created in the filesystem of a PC,

jClouds` storage service allows the user to organise the blobs into folders.

Major cloud storage services that jClouds can abstract are: Azureblob by Microsoft

Azure and Amazon S3 by Amazon.

Regarding the Compute Service, jClouds provides abstraction for managing server

instances. Using jClouds Compute API, developers can get information about

running instances or create new ones. Major compute service providers that are

supported by jClouds are: Amazon EC2, Eucalyptus and Rackspace.

From a technical point of view jClouds is a client implementation of the REST API

that cloud providers expose to allow developers to use the cloud storage service. To

further illustrate the internal mechanism of jClouds let us consider a case example. A

developer needs to use the cloud storage provided by Amazon S3, Google cloud

storage, and Microsoft Azure in order to store a file. There are three approaches to

achieve this. The first one is to manually implement and perform an HTTP request

using the properties required by each provider. For example Amazon`s HTTP request

syntax is the following:

PUT /myfile.txt HTTP/1.1

Host: myBucket.s3.Amazonaws.com

Related work on the field of cross-platform development of service-based cloud
applications

69

Date: <Date>

Authorization: <AWS Authentication String>

Content-Type: text/plain

Content-Length: 11434

Expect: 100-continue

The equivalent HTTP request to Google Cloud Storage should look like the
following:

PUT /myfile.txt HTTP/1.1

Host: bucket.storage.googleapis.com

Date: <Date>

Content-Length: <request body length>

Content-Type: <MIME type>

Authorization: <authentication string>

This approach however, requires high development effort and can be error prone. The

second approach to store the file to the cloud storage is to download and use a client

library from each respective cloud provider, provided that there is one available. A

client library implements the previously mentioned HTTP requests and wraps the

implementation around a method call. So the same request in Amazon S3, using the

client Java library, looks like the following:

s3.putObject(new PutObjectRequest(<bucketName>,

<FileName>, <FileContent>));

A similar method call is available in the equivalent Google Cloud Storage client

library. Obviously the second way is much easier and faster to develop that the first

one. However, for each different cloud storage service the equivalent library needs to

be installed. This fact increases the library dependencies, the total size of the

application, and potentially adds a performance overhead. The third way to store the

file is to use jClouds library. This library implements the HTTP requests for each of

the supported cloud provider such as Amazon S3 and Windows Azure. So the same

operation using jClouds could be performed using the following method call:

Related work on the field of cross-platform development of service-based cloud
applications

70

<CloudProvider>.putFile(<FileName>,<FileContent>);

The advantage over the second mentioned way is that developers can use the same

method call to store the file in each of the supported cloud providers. Additionally,

there is no need to install each cloud provider`s client library since JClouds accesses

each cloud storage using direct HTTP requests. The deployment of jClouds is

straightforward and requires to include the respective libraries in the developer`s

project. There is relatively extended documentation that allows the developers to

easily familiarize themselves with the API.

In Figure 12, a simplified view of the jClouds internal design is shown. The

framework consists of the main components, which are platform independent and

describe an abstract cloud service. Additionally, it contains the components that are

platform specific and implement the abstract service. In this case the cloud storage,

also known as blobstore service is described.

Figure 12: Simplified view of jClouds blobstore service internal design

The main elements that are depicted in Figure 12 are the following:

! ContextBuilder: ContextBuilder is the main class that gives access to each of the

supported services, namely the compute and the blobstore service. It is

associated with the ProviderMetadata and the Blobstore.

Related work on the field of cross-platform development of service-based cloud
applications

71

! ProviderMetadata: ProviderMetadata is an interface defining a template with

all the properties required by jClouds in order to generate the REST request for

the providers. Examples of properties included in the interface are: provider`s

name, endpoint, credentials` names, and custom properties defined for each

provider.

! BlobStore: BlobStore is an interface defining the common operations that are

offered by all supported providers. Examples of operations are: putblob, getblob

and, removeblob

! BaseBlobStore: BaseBlobStore in an abstract class, which implements some of

the operations defined in the BlobStore interface. Particularly it implements the

ones that are commonly implemented by the providers.

! AzureBlobStore: AzureBlobStore is a concrete class, which inherits the

BaseBlobStore class. It implements the operations that are defined in the

BlobStore interface and are not implemented by the BaseBlobStore class.

Additionally, it implements certain operations, which are provider specific.

! AzureBlobMetadata: AzureBlobMetadata is a concrete class that implements

the ProviderMetadata class. It basically fills in the information about the specific

provider that is needed by jClouds in order to generate the REST requests.

While jClouds proves to abstract efficiently the various cloud storage providers, the

design solution imposes certain limitations. The implementation of the HTTP calls to

the storage providers are hardcoded. Therefore if providers change the syntax of their

APIs, then the solution immediately becomes outdated and potentially not functional.

There is no flexibility to allow any dynamic reconfiguration of the API. Moreover,

the design does not provide a generic architecture in order to allow future expansion

and integration of more platform specific services. In terms of programming

language supportability jClouds is limited to Java and Closure implementation.

Moreover, it does not support Google Storage, which is one of the major file storage

cloud providers. In the context of a cloud application, jClouds is limited in the file

storage field, compared to other similar solutions that also provide abstraction for

database and message queue services.

Related work on the field of cross-platform development of service-based cloud
applications

72

 LibCloud 4.2.3.2

Similar to jClouds, LibCloud [164] offers abstraction for certain cloud resources.

Particularly, using LibCloud application developers can access the following cloud

resources:

! Cloud Servers such as Amazon EC2 and Rackspace CloudServers

! Cloud Storage such as Amazon S3 and Rackspace CloudFiles

! Load Balancers such as the Amazon Elastic Balancer and GoGrid LoadBalancers

! Cloud Domain Name System (DNS) services such as the Amazon Route 53 and

the Zerigo.

From a technical perspective LibCloud adopts the same design principles as jClouds.

However, contrary to the previous solutions, LibCloud targets cloud application

written in Python programming language.

 Other related cloud libraries 4.2.3.3

The solutions listed above, namely jClouds and LibCloud are among the most

prominent ones in the domain of library-based solutions and among the earliest to

appear. However, in the recent years further libraries have been created to serve

additional programming languages. Their design principle is similar to the above

listed solutions.

For the sake of completeness of this survey we list the additional libraries.

1. Fog [165]: Fog is a library targeting applications written in Ruby

programming language. The supported cloud services and some major

respective providers are:

a) Compute service supporting AWS, Google, and Openstack.

b) Storage service supporting AWS, Googl,e and Rackspace.

c) DNS service supporting AWS, Rackspace, and IBM

d) Content Distribution Network (CDN) service supporting AWS, Rackspace,

and HP.

2. Pkgcloud [166]: Pkgcloud is a library targeting applications written in node.js

programming language. Pkgcloud provides abstraction for the following

Related work on the field of cross-platform development of service-based cloud
applications

73

services: (i) compute, (ii) storage, (iii) database, (iv) DNS, (v) load balancers,

and (vi) network. Some major supported providers are: Amazon, Windows

Azure and Google. A complete list of the supported services and the

respective providers can be found in the [166].

3. Elibcloud [167]: Elibcloud is a wrapper around LibCloud and targets

applications written in Erlang programming languages. Eliblcoud provides

abstraction for cloud services such as: compute and key value stores. Major

providers that are supported are AWS, HP Cloud, and Rackspace. A complete

list of the supported services and the respective providers can be found in the

[167].

 Discussion on the Library-based solutions 4.2.3.4

Library-based solutions provide an efficient way to abstract traditional cloud

resources such as cloud storage and compute service. They can be integrated easily

with the cloud application by including the respective packages of the libraries in the

software project, which is under development. In addition, they have a significantly

low learning curve since the developers are only required to examine the exposed

API. Furthermore, there are available libraries supporting the popular programming

languages such as Java, Pytho,n and Ruby.

On the other hand in the library-based solutions the provider specific implementation

is usually hardcoded in the source code. This means that such solutions are not easily

updated and expanded with additional services. Moreover, they do not provide a

widely shared description of their API, which makes their integration with the cloud

applications and with additional providers a more challenging procedure.

Furthermore, a certain performance overhead is imposed which may not be negligible

in time critical applications. The overhead is imposed due to the run-time translation

from the abstract API to the provider specific API.

 Middleware solutions 4.2.4

As noted in [168], in the early years of 2000 the term middleware used to refer to the

software layer abstracting the distributing applications from the underlying operating

Related work on the field of cross-platform development of service-based cloud
applications

74

systems. Middleware primarily focuses on hiding the complexity in the networks

environment by abstracting the applications from handling operations such as protocol

handling, data replication and network faults. Even further a middleware seek to hide

the heterogeneities of the computer architectures, operating systems, and

programming languages and thus enabling the development and management of

applications independently of the underlying infrastructure technologies.

However, the notion of “middleware” is not a recent concept. As mentioned in [168],

the first middleware elements were built by researchers circa 40 years ago. At that

time the middleware components were following the advances in hardware

technology and in the networking of the workstations. They were mainly deployed

for providing remote procedure calls, file, and directory service. According to

Gartner the earliest Unix-based middlewares were the Transaction Processing

Monitors (TPM) [169] such as the Encina developed by IBM and Tuxedo developed

by BEA Systems.

In the recent years, Gartner refers to platform middleware as being the runtime

hosting environment to execute application program logic [170]. It provides the

applications with means of communications with other applications, which are

potentially deployed in different hosting environments. It also manages the execution

of the application by controlling the memory and the operating system processes as

well as by providing security, monitoring, and load balancing mechanisms. Examples

of modern middleware systems are application servers supporting the .NET and J2EE

[171] programming models as well message-based systems such as IBM’s Message

Queue Service (MQS) [172]. However, the applications of middleware are not

restricted to enterprise computing but they have expanded to other domains such as

smart devices and networking equipment which entail additional requirements such as

high performance and high availability [173].

Therefore, middleware may have two primary scopes: i) they abstract the

heterogeneities of the underlying resources that the application is running on. ii) They

handle the execution of the application and its communication with components,

which are hosted in different run-time environments.

Related work on the field of cross-platform development of service-based cloud
applications

75

With respect to the presented research work, middleware platforms are examined in

the domain of cloud computing. Middleware solutions primarily seek to abstract the

cloud applications from directly accessing the underlying resources, which are

provided by the cloud vendors in the IaaS and PaaS level. This way the applications

remain agnostic to the heterogeneities among the cloud providers. As it was analysed

in the previous chapter, the heterogeneity mainly arises due to the differences in the

programming languages and frameworks, the data stores, the APIs through which

platform basic services are provisioned as well as the differences in the underlying

virtual machines.

Middleware solutions span across all three phases of the cloud application lifecycle

namely: (i) the development, (ii) the deployment and (iii) the execution. Certain

requirements are identified in each phase [148] [150]. Specifically, in the

development phase the middleware should provide the means for the creation of

applications, which are agnostic to specific programming frameworks and providers

as well as enabling the definition of constraints and scalability rules. During the

deployment phase, support for automatic deployment on the target cloud platform

should be provided. During the execution phase, the middleware should monitor the

applications and perform adaptation actions when required.

In the next subsections concrete middleware solutions are examined. As mentioned in

4.2.1 the scope of the presented research work lies in the development of cloud

applications in such a way that they remain agnostic of the target platform

environment. Therefore, the development aspect will be the focus of the analysis of

the middleware solutions.

 mOSAIC 4.2.4.1

mOSAIC [174] is an EU research project aiming at developing a middleware platform

which abstracts cloud application from specific provider technologies. Furthermore,

mOSAIC offers monitoring and scalability capabilities.

Developers need to follow a specific application development paradigm in order to be

compliant with the platform. A mOSAIC application consists of one or more

components, which can use cloud resources via the mOSAIC API. The components

Related work on the field of cross-platform development of service-based cloud
applications

76

are only allowed to communicate with each other indirectly via an abstracted message

queue. The cloud resources, which the application has access to, are related to

storage, such as database and file stores and communication, such as message queues.

With respect to enabling provider agnostic cloud applications, mOSAIC API is the

core feature that allows application decoupling from native APIs [175]. The API

consists of several layers and each one of those increases the abstraction, until the

developer sees a single consistent interface. At the lowest layers there is the native

protocol and the native API provided as a library by the cloud vendor for a certain

programming language. At this level there is no uniformity since each vendor may

use a proprietary API. One layer upwards there is the driver API, which wraps the

native API thus providing the first level of uniformity. Interoperability API aims at

providing programming language interoperability. This level ensures that Java and

Python code communicates with the Drivers in the same way, using similar messages.

The first layer that the developer is expected to use is the Connector API. The

applications use specific connectors to access cloud resources, e.g. key-value store.

Connectors are cloud independent, which means that same key-value store connector

type can intermediate the access to specific platform stores. The last level of

abstraction is the Cloudlet API, which is similar to the existing Java Servlet

technology that provides standard programming components in J2EE environment. A

Cloudlet is a component through which the developer may invoke the different

functionalities offered by the Connector API. Cloudlets live inside the cloudlets

container, which are managed by the mOSAIC platform. This way the platform can

manage the applications and ensure scalability.

Contrary to jClouds that was discussed in Section 4.2.3.1, mOSAIC provides a

complete application stack, which allows the users to create applications that are

managed by the platform. However, mOSAIC platform requires that developers use

certain programming concepts such as cloudlets and a specific programming

paradigm, which is event-driven. Therefore it imposes a significant learning curve for

the developers. Moreover, the use of a specific programming paradigm creates a

lock-in effect to the specific middleware. Furthermore, mOSAIC acts as a middleware

platform and mainly focuses on the abstraction of IaaS rather than PaaS resources.

Related work on the field of cross-platform development of service-based cloud
applications

77

 PaaSage 4.2.4.2

PaaSage [176] is an EU research project aiming at the development and deployment

of platform agnostic cloud applications which are able to leverage multiple cloud

providers. The focus of PaaSage is to assist in all the stages of the cloud application

lifecycle, namely: (i) the development stage by enabling the modelling of the

application and the specification of requirements and SLAs, (ii) the deployment stage

by choosing the optimal cloud providers, and (iii) the execution stage by monitoring

the performance of the application and taking adaptation actions when required.

PaaSage consists of two parts, a family of Domain Specific Languages (DSLs) that

allows the modelling of the application and the platform components, which

undertake the tasks of deploying, monitoring and adapting the application.

The available DSLs cover the various stage of the application lifecycle. Specifically,

CloudML [155] enables the modelling and deployment of the application in a provider

independent manner. Saloon allows the developers to specify goals and requirements

and select compatible cloud providers. WS-Agreement is used for creating SLAs and

monitoring the application at run-time while SRL [177] is used for specifying

scalability rules.

Regarding the platform components, the reasoner takes into account the requirements,

which have been defined during the modelling stage, and tries to find the optimal

deployment plan for the cloud application. Subsequently, the Executionware is

responsible for deploying the application, monitoring its performance, and taking any

required adaptation action.

With respect to enabling the creation of platform agnostic applications and their

deployment to multiple cloud providers, the PaaSage offers two main components.

The first is the CloudML [155] language which enables the modelling of the

application in a provider independent manner. The latter is the Execution Engine,

which is responsible for the deployment of the application in multiple cloud

providers. In order to support multiple providers PaaSage leverages the jClouds

library, described in Section 4.2.3.1. Therefore, up until now PaaSage mainly focus

on the IaaS level rather than the PaaS.

Related work on the field of cross-platform development of service-based cloud
applications

78

 MODAClouds 4.2.4.3

MODAClouds [178] is a EU research project addressing the issue of developing and

managing cloud applications, which are independent of the target cloud provider. It

covers several phases of the lifecycle of the cloud application such as the provider-

agnostic design of the application, the semi-automatic translation of the models in to

source code and the deployment in the target environments. Moreover, it provides

run-time support by monitoring the application and performing adaptation actions.

MODAClouds comprises three main tools [179]: (i) The Creator4Clouds which offers

an IDE for modelling and deploying provider agnostic cloud applications, (ii) the

Venues4Clouds, which is the decision support system to identify the optimal cloud

resources based on the application requirements and (iii) the Energizer4Clouds which

consists of the run-time execution environment.

With respect to the development and deployment of platform provider agnostic

applications, MODAClouds relies on two components: (i) The CloudML modelling

language, which is also leveraged by PaaSage project described in the previous

Section and (ii) the execution platform. The execution platform contains the adapters,

which enables the application to leverage multiple cloud providers. Specifically, the

platform reuses existing libraries and middlewares such as jClouds, described in

Section 4.2.3.1 and mOSAIC, described in Section 4.2.4.1.

 JCloudScale 4.2.4.4

JCloudScale is a Java-based middleware which contributes to various phases of the

cloud application lifecycle such as the development, deployment and monitoring

[180]. Specifically, the middleware enables the creation of applications which are

cloud provider agnostic. It undertakes the task of instantiating the required virtual

machines, deploying the application and monitoring it in a way that the application is

unaware of the concrete cloud provider that it is executed on.

The basic notions of JCloudScale are the CloudObjects and the CloudHosts. The

latter represent the virtual machines offered by the cloud provider. The CloudObjects

can be Java classes implementing methods of the applications, which execute on the

Related work on the field of cross-platform development of service-based cloud
applications

79

CloudHosts. The middleware intercepts the execution of the application by invoking

the methods defined in the CloudObjects, assigning their execution to specific

CloudHosts and eventually returning the results back to the application. The whole

process is transparent to the developers and to the application.

The developers create the application in Java without including any information about

specific cloud providers. Then, annotations are used to define the CloudObjects to be

executed on the CloudHosts and the scaling policies of the application. The

middleware undertakes the task to distribute the code to the selected target

applications and coordinate the execution of the application.

Contrary to the previous solutions, JCloudScale follows a declarative programming

paradigm, which is based on annotations. Declarative programming may empower

separation of concerns since the annotations are used for the deployment process and

are not mixed with the source code containing the business logic of the application.

Moreover, it reduces the dependence of the application to the middleware since the

developers can decide whether they execute the application without the JCloudScale

middleware by disabling the aspect oriented mechanism responsible for the annotation

handling. However, JCloudScale’s focus is on the abstraction of IaaS providers

rather than the PaaS. Specifically, it is limited to supporting Openstack-based private

clouds and Amazon EC2. Furthermore, as reported in [180], the middleware adds a

performance overhead to the application, which is proportional to the number of used

CloudHosts and can be significant in time-critical applications.

 Multiclapp 4.2.4.5

Multiclapp is a framework enabling cross-deployment of cloud applications. The

main concept is the cloud artifacts [181]. These are software components, which

encapsulate a piece of the business logic of the application and are deployed in a

specific provider. Cloud artefacts consists of the source code of the application, the

adapters which enable the application to consume some of the services offered by the

platform such as the database and the client interoperability which allows cloud

artefacts deployed in different cloud environments to communicate with each other.

Related work on the field of cross-platform development of service-based cloud
applications

80

Information about the deployment of the application is included in the deployment

plan. Based on the plans, the main component of the framework, which is the source

transformation engine, generates the cloud artefacts. The service generation engine

produces the service clients required for the communication of the cloud artefacts

while the cloud adaptation engine generates the adapters required by each artefact to

use the service of the cloud provider.

In order to enable the creation of provider agnostic applications, Multiclapp uses the

deployment plans to gather the information related to the deployment topology and

concrete providers and to separate it from the source code of the applications.

Contrary to JCloudScale where it is based on annotations, the Multiclapp uses XML

files to hold the deployment plans. Moreover, an Eclipse-based IDE is available.

This makes it more developer friendly contrary to the JCloudScale, which uses a

Command Line Interface (CLI) tool. Furthermore, Maven [182], a popular

dependency management tool, is used by both solutions to manage the project

dependencies and libraries.

 OpenTosca 4.2.4.6

OpenTosca is a middleware, which has been developed to support the deployment and

execution of the TOSCA-based cloud applications. It comprises three tools. The first

one called Winery [183], is a graphical environment which supports the modelling of

the application. OpenTosca Container [184] is responsible for deploying and

executing the application while Vinothek is a self-service portal where developers can

inspect the deployed applications.

The OpenTosca Container, which is the middleware and run-time environment,

further consists of three components: (i) the Implementation Artifact Engine, (ii) the

Plan Engine and (iii) the Controller. The Implementation Artifact Engine runs any

artifacts defined in the cloud applications. An artifact may represent a SOAP web

service, which is required by the application. The Plan Engine is responsible for

executing the managing plan, which contains the topology of the application, namely

the components such as web servers, virtual machines, databases that need to be

Related work on the field of cross-platform development of service-based cloud
applications

81

instantiated to host the application. The third component, the Controller, offers

functionality for managing, installing and un-installing components of the application.

In order for OpenTosca to be able to coordinate the deployment of the application, the

application is written and packaged in a particular way defined by TOSCA standard.

Thus the cloud application becomes heavily dependent on the TOSCA specification

and cannot be deployed on a non-TOSCA compatible environment. This contradicts

the JCloudScale approach described in Section 4.2.4.4, which is based on annotations

that developers can easily disable. Moreover, application developers need to become

familiar with the specific application modelling and packaging style imposed by

TOSCA as well as with the development tools, which results in a significant learning

curve.

 Discussion on the Middleware solutions 4.2.4.7

Table 2 summarises the middleware solutions presented in the previous Sections.
Table 2: Summary of Middleware solutions

Related Work Description Comments

mOSAIC • Multi-layer abstraction API.
• Coudlet is the core component for each

cloud resource.
• Event-based programming.

• Specific programming paradigm.
• Lock–in effect to the platform.
• Abstraction of IaaS resources.

PaaSaage • Asist in the development, deployment
and execution (monitoring) of the
application.

• Family of DSLs and platform
components.

• DSLs cover the modelling, deployment,
monitoring rules.

• Executionware handles deployment,
monitoring and takes adaptation actions.

• Reuse of jClouds library to
enable abstraction of cloud
resources.

• Abstraction of mainly IaaS
resources.

MODAClouds • Provider agnostic modelling of cloud
applications.

• Semi-automatic translation into source
code and performance monitoring.

• 3 main tools: 1. Creator4Clouds, an IDE
for modelling and deployment. 2.
Venues4Clouds decision support system
for finding the optimal cloud resources, 3.
Energizer4Clouds run-time execution
environment.

• Regarding the abstraction of
cloud resources, MODAClouds
adopts similar techniques as
PaaSaage.

• Reuse of jClouds and mOSAIC.
• Abstraction mainly of IaaS

resources.

JCloudScale • Java-based middleware for development,
deployment and monitoring of
applications.

• Application composed of CloudObjects,

• Declarative programming based
on annotations. Separation of
concerns since annotations are
not mixed with the source code

Related work on the field of cross-platform development of service-based cloud
applications

82

which run on CloudHosts (VMs).
• Declarative programming style.

• Performance overhead
proportional to the number of
CloudHosts used.

• Limited to abstraction of VMs
from IaaS providers

MultiClapp • Framework enabling cross-deployment of
cloud applications

• Application is composed of: 1. Cloud
Artefacts, containing the business logic,
2. Adapters, allowing the application to
consumer cloud resources and 3. Client
interoperability, allowing artefacts from
different clouds to communicate.

• Deployment plans are created to support
the deployment of the application.

• Contrary to annotations used by
JCloudScale, MultiClapp uses
XML files to create the
deployment plans.

• Cloud adaption engine generates
the adapter required for
consuming the cloud resources.

OpenTosca • Middleware for development,
deployment and execution of cloud
applications based on TOSCA standard.

• Consists of 3 tools: 1. Winery, graphical
tool for modelling the application, 2.
OpenTosca container enables deployment
and execution, 3. Vinothek, allows the
monitoring of deployed applications.

• Developers need to become
familiar with TOSCA standard
and all the relevant tools.

• Potential Lock-in to TOSCA
way of packaging and modelling
the application

Middleware solutions intermediate between cloud applications and cloud providers

and thus contribute to the development of applications, which are agnostic to the

concrete cloud environment. Similar to library-based solutions, middleware attempts

to abstract cloud resources such as virtual machines, storage and message queues.

However, contrary to the cloud libraries, middleware platforms often handle several

aspects of the cloud application lifecycle such as the discovery and recommendation

of the optimal cloud providers, the deployment of the application, as well as the

monitoring and scaling of the application during the execution phase.

On the other hand the middleware platforms require a much higher installation and

configuration time due to the fact that the majority are still in a research stage

(OpenTosca, mOSAIC, PaaSage) and also due to the several components that they

consist of (deployer, recommender, monitor etc.). The complexity of the middleware

platforms also contribute to the significantly higher learning curve compared to the

one of the cloud libraries. On top of that, the specific programming model that is

usually adopted adds to the complexity and to the time required by the users to

become familiar with the middleware. For example mOSAIC uses an event-driven

programming model while OpenTosca requires that cloud applications are packaged

with a specific structure and that specific configuration files are included. The fact

Related work on the field of cross-platform development of service-based cloud
applications

83

that most of the middleware platforms expect that cloud application are written and

packaged in a specific way creates a lock-in effect to the particular middleware.

Therefore, while applications try to remain agnostic to the concrete cloud providers,

they become aware and potentially locked in to the middleware platforms. Moreover,

as it is specifically mentioned by JCloudScale approach described in Section 4.2.4.4,

middleware solutions impose a performance overhead, which may be considerable in

performance-critical production applications. In addition, contrary to the cloud

libraries where there are available solutions for each popular programming language,

approaches in this category mainly focus on Java oriented cloud applications.

 Model-driven Engineering (MDE) based solutions 4.2.5

In the previous Sections, a number of approaches were listed that attempt to enable

the creation of platform agnostic cloud applications. Apart from the use of library

wrappers and middleware platforms, model-driven engineering (MDE) techniques can

also be exploited.

MDE is an approach to system and software development in which software models

play an indispensable role [185]. MDE is based on two core ideas: Abstraction and

Automation. As seen in Figure 13, abstraction enables the engineers and software

developers to begin with the creation of applications independently of the target

platform by creating a platform independent model (PIM). This intermediary model

does not include specific platform characteristics. Consequently, engineers can focus

on the system-level application development ignoring low-level and error prone

details. An inherent benefit of abstraction, which is particular interesting for this

research proposal, is the potential to improve cross-platform development of cloud

applications by decoupling the development from the specific platform technology.

Automation refers, among others, to the ability to change the level of abstraction

automatically using model transformations. While application development may

begin creating the PIMs, that abstract specific implementations, the PIMs are used to

subsequently generate the platform specific models (PSMs), targeting a specific

platform implementation and eventually generate the source code for the target cloud

Related work on the field of cross-platform development of service-based cloud
applications

84

platform. Model transformations can automate the whole process of generating the

platform specific implementations.

Figure 13: MDE approach in developing cloud portable applications

Particularly, this research work focuses on a special type of model transformations,

namely the code generators. Code generators are a subcategory of the Model-to-Text

transformations, as proposed by Czarnecki and Helsen [186] and Mens and Gorp

[187].

Code generators include transformations where the output is a set of strings. Typical

example of this category is the code generators where the input can be a UML model

and the output can be Java code. The Model-to-Text approach can further be divided

into two sub-categories: visitor-based and template-based approach.

Visitor-based approach: The visitor-based approach includes a visitor mechanism to

traverse the internal structure of the input model and generate output text in a text

stream. An example of this approach is JAMDA [188], a Model (UML) to Java

generator. JAMDA provides users with a set of APIs for manipulating the models and

a visitor mechanism for generating code.

Template-based approach: Contrary to the visitor-based approach where the whole

output text is generated during the transformation, in the template-based approach

there are pre-defined templates. During the transformation the source model is read to

Related work on the field of cross-platform development of service-based cloud
applications

85

fill in the information missing from the output template. Listing 1, depicts part of a

code generation template. Keywords like public, class, etc. are part of the template.

The source model is traversed in order to fill in the missing information like the name

of the class etc. XPand [189] is an example of Model-to-Text approach based on the

template approach. XPand is part of the OpenArchitectureAware MDD generator

framework.

Listing 1: Code generation template [178]

public class <<name>> {

<<FOREACH attrs AS>>

private <<a.type.name>> <<a.name>>;

<<ENDFOREACH>>

As it was mentioned earlier in this Section there are two phases in MDE. The first

one involves building the abstract model of the software system while the second one,

involves automating the process of the code generation for a specific platform. In the

coming Sections existing work that covers both phases are examined.

 Reference model for developing cloud applications 4.2.5.1

Traditional software architectures lack the ability to describe concepts, such as

scalability and resources requirements, which a cloud application consists of.

Moreover, platform providers often introduce their own standards that influence the

way applications are written. Therefore, there is a particular interest towards the

direction of defining a generic model, which can capture the concepts that cloud

applications comprise. Such a model can be used as a blueprint by developers for

building uniform cloud applications.

Hamdaqa, Livogiannis and Tahvildari from University of Waterloo [190] propose a

cloud application meta-model which is able to describe the main cloud application

components.

According to the meta-model, a cloud application “has” one or more cloud tasks. A

cloud task is a composable unit, which consists of a set of actions that provide a

specific functionality. Cloud tasks can be classified into:

Related work on the field of cross-platform development of service-based cloud
applications

86

1. CloudFrontTask: CloudFrontTask is the entry point to the cloud application

that handles the user requests, which are distributed by a load balancer. It is

usually a web application.

2. CloudCrossCuttingTask: CloudCrossCuttingTask is responsible for

monitoring cloud resources (compute, storage and load balance). It is also

responsible for logging, maintaining quality of services of the cloud

application, deployments of tasks, launching instances etc.

3. CloudRotorTask: CloudRotorTask runs in the background and is responsible

for general development work or for helping other tasks by performing

particular functionality.

4. CloudPersistenceTask: CloudPersistenceTask manages the access control

and the login to cloud storage.

Each cloud task has some Configuration Data. Configuration Data contains

information about the size of the VM, number of instances, database size, bandwidth

etc. Cloud tasks can communicate with each other using EndPoints. An EndPoint

may be internal or external (publicly visible) and uses an access mechanism that

defines the way messages can be exchanged. Finally 3 types of storage are described:

Blobs, Table, and Queues.

The Reference Meta-Model defines a relative adequate amount of concepts in order to

enable the modelling of the application and the description of IaaS resources such as

the provisioning of virtual machines. However, there is no information regarding the

PaaS resources such as specific web servers, programming frameworks and platform

basic services. Moreover, up until now there are no complimentary tools developed

in order to enable the creation of the models and the generation of source code .

 CloudML 4.2.5.2

CloudML [155] is a DSL used within the PaaSage EU project [176] to enable the

modelling of cloud applications in a provider independent way and their subsequent

deployment in multiple cloud providers. The meta-model of the DSL is Ecore

models, which conform to the Ecore meta-model. The Ecore is provided by the

Related work on the field of cross-platform development of service-based cloud
applications

87

Eclipse Modelling Framework (EMF), which is, the modelling framework supported

by Eclipse community.

CloudML defines the following core concepts:

! Virtual Machines: The Virtual machine type represents a generic virtual

machine. It can be parameterised by defining certain values, such as the number

of cores, the size of the memory, and the operating system.

! Application components: The application component type represents a

component to be deployed on a virtual machine. Such components may be a

Tomcat servlet container or a MongoDB database.

! Ports: A port refers to the interface of a feature of an application component.

There are two cases for a port. A port can be provided, which means that it can

be used to access a feature of an application component. Alternatively, the port

can be required meaning that that the application component depends on the one

which offers the feature.

! Relationship: A relationship is formed between two ports. It can either be a

form of communication, via HTTP or a form of containment, meaning that one

component contains the other one.

CloudML allows the modelling of the application at two levels of abstraction. During

the first level, the cloud provider independent models are created (CPIM). These

models define the deployment of the application in a provider independent way.

During the second level, the cloud provider specific models (CPSM) are formed

which contain information about the specific cloud providers where the application

will be deployed on.

Compared to the reference model presented in 4.2.5.1, CloudML defines significantly

less concepts and thus allows the definition of a cloud application only at a higher

level of abstraction. For example, to the best of our knowledge, CloudML does not

offer any concepts to describe the particular storage mechanisms of the cloud

application. However, contrary to the reference model, CloudML is accompanied

with a set of tools, which leverage the created models and can automate the

deployment of the application. Moreover, the scope of CloudML overlaps with the

Related work on the field of cross-platform development of service-based cloud
applications

88

TOSCA standard, described in Section 4.1.1.6, which focus on the modelling of the

deployment topology of a cloud application. However, TOSCA has reached a mature

level and constantly gains supporters from industry and academia. As a result

CloudML joined forces with the technical committee of TOSCA and attempts to

become a TOSCA-compliant language.

 Pim4Cloud 4.2.5.3

Pim4Cloud [191] is a modelling language which supports the modelling of the

deployment of the cloud application and the relationships between its components in

a provider agnostic way. It is developed in the context of the REMICS EU research

project [192].

The main concepts of the Pim4Cloud modelling language are: (i) the cloud

application which describes the application to be deployed in a cloud provider, (ii) the

cloud resources such as, processing, storage and communication which are offered by

the providers and the (iii) the cloud providers which describe the entity which offers

the resources.

The concepts defined in the Pim4Cloud are capable of describing the IaaS resources.

Regarding the PaaS level, the language does not provide any supporting elements

mainly due to the high degree of heterogeneity in this level. Moreover, Pim4Clouds

focuses on the description of the resources required by a cloud application and can be

used for the discovery of the provider which offers those resources. However, it does

not cover the rest of the application lifecycle such as monitoring, adaptation and SLAs

definition [193]. In addition, contrary to CloudML, Pim4Cloud does not provide run-

time support of the created models. This means that fully automatic deployment of

the applications is not supported. On the other hand, the language is developed as a

UML profile, meaning that it extends the UML, a widely used modelling language.

This fact eases the integration of Pim4Cloud models with the UML models and makes

the language easy to be used by the software developers.

Related work on the field of cross-platform development of service-based cloud
applications

89

 MobiCloud 4.2.5.4

One step beyond the modelling languages, which allows the description of the generic

architecture of cloud applications is to create a DSL for developing applications at a

higher level of abstraction. Ajith Ranabahu et al. have been working on such a DSL

called MobiCloud [194].

MobiCloud DSL is a modelling language that closely resembles the Model-View-

Controller (MVC) design pattern [195] by providing constructs for each of the three

key components: model, view, and controller. This approach allows developers to

reuse the same model to generate source code targeting different platforms. Code is

automatically generated to target specific platforms.

On top of the DSL a graphical interface has been created. Using drag and drop

components, users can create their applications, while the concrete syntax of the

language is automatically generated.

Contrary to the previous approaches, MobiCloud provides full automation for the

generation of source code. This means that developers only need to create the models

using the user interface and then the whole source code is generated and is ready to be

deployed in the target platform. However, MobiCloud has a very limited scope.

Developers, using the user interface can only create simple CRUD (Create, Read,

Update, and Delete) applications. Moreover, it cannot exploit any functionality,

which is provided by the cloud platforms such as cloud storage, noSQL databases, and

platform specific services. The code generator is limited to Java source code and the

supported platforms are GAE and Amazon EC2.

Related work on the field of cross-platform development of service-based cloud
applications

90

 Discussion on Model-driven engineering based solutions 4.2.5.5

Table 3 summarises the MDE-based solutions presented in the previous Sections.

Table 3: Summary of Model-driven engineering based solutions

Related Work Description Comments

Reference model
for developing
cloud applications

• Meta-model describing the components
of the cloud application.

• Application consists of cloud tasks.
Each cloud task has some configuration
data (VM size number of instances
etc.) and communicates through
Endpoints.

• Relative adequate concepts to
model a cloud application.

• No information regarding the
description of PaaS resources.

• No tools for source code

generation

CloudML • DSL used within PaaSaage project.
• CloudML uses Ecore models provided

by Eclipse Modelling Framework.
• CloudML defines the following

concepts: Virtual Machines,
Application components, Ports,
Relationships.

• Contrary to the previous work,
CloudML defines significantly
less concepts.

• Tools to support source code
generation.

• CloudML overlaps with TOSCA
and thus attempts to become
TOSCA-compliant language.

Pim4Cloud • Modelling language for the deployment
of cloud applications.

• Main concepts of Pim4Cloud are: 1
Cloud application, 2. Cloud resources
(processing, storage and
communication) and 3. Cloud
providers.

• The defined concepts target the
IaaS resources.

• Contrary to CloudML,
Pim4Cloud does not provide
run-time environment.

• Language developed as UML
profile.

MobiCloud • DSL providing constructs for the MVC
pattern.

• Graphical environment is provided.

• MobiCloud supports generation
of source code.

• Very limited scope. Only CRUD
applications are supported.

Model-driven engineering technique involves the creation and manipulation of

models, which at an initial stage are language and provider independent. Therefore,

the same models can be reused for multiple programming languages. As it was

discussed in 4.2.5, code generation is a kind of model transformation. Code

generations are particularly useful in the domain of MDE because of their ability to

automatically generate code from abstract models in any programming language.

Thus the number of code lines that the developer needs to write can be reduced

significantly. Furthermore, model transformations can be implemented to target a

particular platform each time. Therefore, the performance overhead, which was

Related work on the field of cross-platform development of service-based cloud
applications

91

imposed to the deployed application, by the library wrapper or the middleware

platforms, is eliminated. Consequently the size of the application can be also reduced.

On the other head, the application lacks the ability to switch providers at run-time.

The models need to be adjusted to the new target provider and the updated source

code needs to be generated before it is redeployed on the cloud platform. This task

takes place at design-time. Moreover, software engineers need to become familiar

with the model-driven approach of application development, which can be a strenuous

process. In addition, while in principle tools such as code generators are available to

exploit the abstract models and perform transformations to target specific execution

environments, in reality this is not always the case. Most of the existing work, which

was presented, does not provide fully support for the automatic deployment and

execution of the cloud applications.

 Positioning of the related work with respect to the cloud computing 4.2.6

service levels

Throughout the previous Sections existing work has been presented aiming at the

development of cloud applications, which are agnostic to their actual deployment and

execution environment. Based on the solution approach that is adopted each time, the

work has been clustered in three categories, namely: (i) the library-based solutions,

(iii) middleware solutions and (iii) the Model-driven engineering based solutions. As

seen from Figure 14, this Section positions the related approaches with respect to the

service level of cloud computing that they focus on and attempts to identify any

potential gaps.

Specifically, the library-based solutions are mainly focused on the abstraction of IaaS

resources and particularly on the provisioning of virtual machines. Additionally, they

offer an abstract API for the users to leverage cloud storage services from multiple

providers. Only specific cloud libraries such as the Pkgcloud provide support for a

certain number of databases such as the Azure tables, the MongoDB and the

CouchDB. Still the Pkglcoud only supports a limited set of operations offered by

those databases.

Related work on the field of cross-platform development of service-based cloud
applications

92

Figure 14: Positioning of the work with respect to the three levels of cloud computing

Similar to the cloud libraries, the middleware platforms primarily target resources

offered by IaaS providers. Specifically, their main purpose is to abstract the

provisioning of virtual machines from multiple cloud providers. Certain middleware

extend their scope to the abstraction of databases such as mOSAIC, which supports

Riak, a key-value pair database. With respect to the basic PaaS resources such as web

servers and programming frameworks, Multiclapp [181], supports among others the

Windows Azure platform and specifically the Apache Tomcat web server [17] and the

Glassfish application server [196]. OpenTosca [184], on the other hand, provides

support for the PHP programming language, the Apache Tomcat and MySQL

database.

Regarding the MDE-based approaches, the majorities allow the description of the

cloud application in an agnostic way with respect to the compute and storage services

that the applications consume. For example software engineers are enabled to define

the number of virtual machines instances required along with their characteristic such

Related work on the field of cross-platform development of service-based cloud
applications

93

as the size of memory and the processing power. Additionally, the modelling

languages offer the capability of defining certain constraints and scalability rules to be

considered during the monitoring and adaptation phase of the cloud applications.

With respect to the PaaS resources, MobiCloud is able to generate automatically, the

complete source code required to deploy the cloud application to the GAE platform.

The source code contains the configuration files required by the GAE platform as well

as the files needed to connect to the SQL database. However, as mentioned in 4.2.5.4,

the applications supported by MobiCloud have a very limited scope.

 Focus of the presented research work 4.2.7

As it became obvious in the previous Section, the majority of the research effort

focuses on the abstraction of cloud resources offered in the IaaS level such as,

computational and storage resources. Significantly less work has been carried out in

the PaaS level and this work mainly targets the various databases and to a certain

extend the programming frameworks.

However, little or no work has been conducted regarding the platform basic services

offered by the cloud application platforms as those were discussed in the previous

chapter. As mentioned in Section 3.5, a platform basic service is a piece of software

offering a certain functionality which can be reused by multiple users during the

development of a service-based cloud application. The service is usually offered via

a web API. Examples of such services are the payment service, the e-mail and the

authentication service. The platform basic services have the ability to speed up the

application development since the latter rather than being developed from the ground

up they can be synthesised from services offered by the cloud application platform.

To this end this research thesis focuses on the platform basic services. It primarily

attempts to facilitate developers to exploit those services in a consistent way

independently of the concrete category of service, such as payment or e-mail service.

At a second level the work focuses on enabling developers to use platform basic

services, which are not bound to a specific service provider. In other words the

application should be agnostic to the specific providers that are used each time. This

is achieved via creating an abstraction between the applications and the platform basic

Related work on the field of cross-platform development of service-based cloud
applications

94

service providers. The decision of the author to focus on the platform basic services

has been based primarily on two facts:

i. The concept of the platform basic services has not been addressed by the

related work examined in this Chapter.

ii. The platform basic services gain constant momentum, as seen in Section 3.5,

and have the potential to implement the micro-service development paradigm

[33], as briefly mentioned in the Introduction of this thesis and further

analysed in Section 4.2.7.2.

 Limitations of the related work with respect to the platform basic services 4.2.7.1

The solutions described throughout this Chapter entail certain limitations that were

described both in each of the solutions separately and collectively in Sections 4.2.3.4,

4.2.4.7 and 4.2.5.5. In addition they have a different scope as discussed in 4.2.6. On

top of that they lack certain characteristics, which the presented work attempts to

accommodate and which are the following:

! Enable the description of the functionality of the service in a way that can be

publicly available and shared among both the service providers and application

developers. Consequently, the latter are eased during the integration of the

service whereas the former can adhere to the commonly used and agreed service

description. This will further pave the way for the homogenisation of the

offerings of the various service providers.

! Allow reconfiguration and expansion of the service description. The domain of

cloud application platforms and platform basic services is highly dynamic and

the providers constantly offer new functionality. Therefore the proposed solution

should be able to reflect these changes in a straightforward and rapid manner.

! Provide a generic methodology to enable integration of additional platform basic

services and providers. Following the previous characteristic, the proposed

solution should offer a concrete methodology to enable new services and

providers to be supported.

Related work on the field of cross-platform development of service-based cloud
applications

95

 Micro-service development paradigm and the connection to the platform 4.2.7.2

basic services

Micro-service is a relatively new approach to software development which promotes

the creation of applications composed of single purpose, independently deployed

services [33]. These services are running independently in their own process and are

also deployed independent of the rest of the application. They usually communicate

through a lightweight mechanism, which is HTTP-based [197].

The use of services in the development of software applications is not a new concept.

The notion of services and components have been exploited and implemented in the

monolithic applications. However, in that case the services are usually packaged in a

single Web Application Archive (WAR) file and communicate with each other via

library calls. This fact deteriorates considerably the scalability and the maintenance

of the application.

Service-oriented Architecture (SOA) [12] focused on the design of more flexible

applications by enabling the use of loosely-coupled services. However, the

complexity of its architecture and the fact that it is based on a heavyweight

communication protocol (SOAP) may have acted as impediment to its wide adoption.

On the other hand as Oracle states, micro-services are emerged as a mean of regaining

flexibility, which may have been lost in SOA as a result of the latter becoming rigid

[198].

There are several benefits associated with the micro-service approach of application

development [33]. First, the fact that the services are completely independent of each

other eases the deployment process and improves its scalability. Rather than scaling

everything together, as it mainly happens in monolithic applications, micro-services

allow to focus on scaling only the required resources. Furthermore, the applications

become more resilient. When a failure occurs, it affects only a specific part of the

system since the services are isolated and run on independent hardware resources.

This fact further implies that the replaceablity of the application is optimised. A

service can be replaced independently of the other parts of the application.

Related work on the field of cross-platform development of service-based cloud
applications

96

The prospects of the micro-services approach also become evident from the fact that

prominent software enterprises, such as Oracle and IBM, embraces and promote this

new software development architectural style.

As it has already been mentioned in the Introduction of this thesis, the advent of cloud

computing has paved the way and provided the means for the realisation of the micro-

service development approach. Specifically, the service-based cloud applications and

the platform-basic services may constitute an instantiation of the micro-service based

applications and the micro-services respectively. The platform basic services, as they

have been defined in Section 3.5, are pieces of reusable software which expose a

certain functionality. They are primarily accessible over the HTTP protocol via a

RESTful API. However, the same notion of small autonomous piece of functionality

applies for the micro-services as described earlier in this Section. Therefore, the

author believes that the cloud application platforms via which the platform basic

services are provided can realise the micro-service approach and offer to the

developers the benefits associated with it.

Figure 15: Example of micro-service approach using the Heroku platform

Heroku, as mentioned in Section 3.5, is a major cloud application platform, which

provides developers with platform basic services. Figure 15 shows how the

developers can leverage the platform basic services in order to build service-based

cloud applications. Rather than creating the whole functionality from the ground up

the developers may use the offered services in order to decrease the development time

and effort. Specifically, Figure 15 depicts an application, which utilises the payment

Related work on the field of cross-platform development of service-based cloud
applications

97

and the e-mail service. There are several additional services that may be used such as

the image and the Simple Messaging System (SMS) services.

However, there are various categories of platform basic services and multiple

providers. The developers in order to gain the complete benefits of the cloud

application platforms and the micro-service approach, as discussed in Section 4.2.7,

they need to be able to exploit the services in a consistent way and choose seamlessly

the concrete providers.

Towards this direction, the next part of this thesis, Part B, further strengthens the

argument for a solution targeting the abstraction of platform basic services and

clarifies the concrete variability points among the services and the providers, which

need to be addressed. Subsequently, a methodology is proposed and the SCADeF

development framework is described to enable the service-based cloud applications
integrate with platform basic providers without being exposed to the concrete

providers’ implementation.

Related work on the field of cross-platform development of service-based cloud
applications

98

PART B
The Service-based Cloud Application Development Framework (SCADeF)

99

PART B
The Service-based Cloud Application Development

Framework (SCADeF)

Chapter 5 – High-level architecture of the SCADeF framework

Chapter 6 – Modelling Stage of the Platform Service Workflow

Chapter 7 – Execution stage of the Platform Service Workflow

Chapter 8 – Modelling Stage of the Platform Service API

Chapter 9 – Execution stage of the Platform Service API

PART B
The Service-based Cloud Application Development Framework (SCADeF)

100

High-level architecture of the SCADeF framework

101

Chapter 5

High-level architecture of the

SCADeF framework

In the previous chapters the domain of cloud computing was introduced and the field

of cloud platforms was examined and analysed. Special attention was paid to the

cloud application platforms, which focus on the provisioning of platform basic

services. As explained in detail earlier in Chapter 3, the platform basic services can

be considered as piece of software, which provides certain functionality and can be

reused by multiple users. It is typically accessible via a HTTP-based API. Examples

of platform basic services include the e-mail, authentication and the payment service.

As proposed in Section 4.2.7.2, the rise of the cloud application platforms has the

potential to lead to a paradigm shift in software development where the platform basic

services act as the building blocks for the creation of service-based cloud

applications. However, due to heterogeneity among the offered solutions, software

engineers are required to spend a considerable amount of time on examining the

various services and the providers, before selecting the one, which better meets their

requirements.

In Chapter 4 we reviewed several initiatives proposing different methodologies and

frameworks for the design of service-based cloud applications leveraging

heterogeneous resources. Most of the approaches focus on the abstraction of

traditional cloud resources, such as the abstraction of virtual machines and cloud

storage at the IaaS level. By contrast, the focus of this PhD thesis is the abstraction of

High-level architecture of the SCADeF framework

102

the platform basic services offered at the PaaS level by the cloud application

platforms.

Moreover, previous work has been done on the abstraction of the deployment

infrastructure such as web servers. Rather than focusing on the deployment process,

our efforts concentrate on the integration process of the platform basic services with

cloud applications.

Furthermore, the proposed solutions in earlier work are primarily either in the form of

software libraries acting as code wrappers or in the form of middleware platforms

mediating between the cloud application and the cloud resources. In the former case,

the wrappers offer limited application scope, as mentioned in Chapter 4, since they

are designed to mediate between specific software interfaces. In the latter case

specific programming paradigms are adopted with a considerable learning curve for

the software engineers. On top of that middleware solutions are complex

environments, which may impose a performance overhead.

Work has been also carried out in the field of automatic generation of the web client

adapters required to communicate with the service providers. However, no

capabilities are offered for constructing and providing a Reference API. Therefore,

using the existing solution it is not possible to abstract the various providers` specific

web APIs. In a broader view, there is a lack of a concrete methodological approach to

the development of service-based cloud applications.

Therefore, the SCADeF framework described in this Chapter attempts to address the

limitations of the existing solutions in the field of the cross-platform development of

service-based cloud applications. Specifically, the focus of the proposed work is on

the platform basic services offered by the cloud application platforms and on

engineering a methodology to enable heterogeneous platform basic services and

providers to be integrated seamlessly with the service-based cloud applications.

In order to achieve this, the differences across the platform basic services and the

providers need to be alleviated. As it is analysed in Section 5.1, these differences

primarily arise from the diverse workflow and API exposed by each provider as well

High-level architecture of the SCADeF framework

103

as the multiple configuration and authentication variables required to set up the

service.

Towards addressing these variability issues the framework splits in two parts, the

Platform Service Workflow Description and the Platform Service API Description.

As the names imply the first part addresses the differences in the workflow of the

operations of the providers while the second part involves the differences in the API

and configuration and authentication variables.

Each part contains three phases. The Platform Service Modeling Phase defines the

abstract functionality of the platform basic service, including the reference workflow

and the Reference API. Subsequently, the Vendor Implementation Phase describes

the concrete provider functionality and the Execution Phase makes the service

available to the developer. Section 5.2 states the high-level solution direction while

the remaining Sections of the Chapter describe in detail the parts and the phases of the

SCADeF framework.

5.1 Variability points across the platform basic service providers

Prior to the description of the proposed development framework, the motivation and

the specific focus of the solution should be stated.

Preliminary work of the author on several platform basic service providers offered by

Heroku, GAE, AWS marketplace, and OpenShift have shown that the following three

variability points needs to be addressed in order to decouple application development

from vendor specific implementations:

i. Differences in the workflow for the execution of the operations offered by the

platform basic service providers.

ii. Variability in the web API exposed by the providers.

iii. Management of the configuration and authentication settings required during

the interaction with the services.

High-level architecture of the SCADeF framework

104

 Differences in the workflow 5.1.1.1

Stateful services require more than one state in order to complete an operation [199].

The number and the implementation of the states may differ both across the various

types of platform basic services and the concrete service providers.

Such an example is the payment service that enables developers to accept payments

through their applications. As it is explained in Section 6.2, the process involves two

states: (i) waiting for client’s purchase request and (ii) submitting the request to the

payment provider. However, depending on the concrete payment provider there may

be variations in the states involved. Additionally, the authentication service is a

different type of platform basic service, which enables a cloud application to

authenticate its users. The service involves two states: (i) redirecting the user to the

authentication service provider and (ii) receiving the access token to collect the user`s

information.

We believe that software engineers require support to overcome this degree of

heterogeneity. They should be able to model the interaction of cloud applications

with platform basic services irrespective of the type of service or concrete provider.

For that reason the commonalities when integrating various types of services and

providers should be extracted. Furthermore, a coordination mechanism is required to

handle the operation flow and automatically execute the actions defined in each state.

 Differences in the API 5.1.1.2

There are several platform providers implementing a given platform basic service.

However, they expose different APIs resulting in conflicts when an application

developer attempts to integrate with one or another. As an example we consider the

e-mail service and two service providers, the Amazon Simple E-mail Service (SES)

[200] and SendGrid [35], an add-on mail service offered via the Heroku application

platform. Upon the request for sending an e-mail the four following parameters are

required: (i) the recipient, (ii) the sender, (iii) the content and (iv) the title of the e-

mail. The concrete naming of the parameters as required by Amazon SES is

respectively: (i) Source, (ii) Destination.ToAddresses, (iii) Message.Subject, and (iv)

Message.Body.Text whereas regarding the SendGrid the anticipated parameters are:

(i) from, (ii) to, (iii) subject, and (iv) text.

High-level architecture of the SCADeF framework

105

Therefore, for the same category of platform service, namely e-mail service, software

engineers are required to adjust their code to the web API of each of the respective

service providers.

 Management of the configuration and authentication variables 5.1.1.3

In addition to the construction of the web calls and the operation workflow handling,

platform basic services require certain configuration settings and authentication

tokens to be present during the interaction with the cloud application. Indicatively,

we refer to the Google Authentication service and the following set of required

variables: a) the redirect URL, b) the client_id, c) the scope, and d) the state. The

number and the type of the settings vary according to the provider. Considering the

large number of services that an application may be composed of, the management of

the settings may become a time consuming and strenuous process.

As explained above a cloud application may interact with several platform basic

services in various ways. If we count up the large number of services out of which an

application may be composed of, it is clear that the integration and management of the

services may become a time consuming and strenuous process. In order to support

the consistent modelling and integration of services as well as the decoupling from

vendor specific implementations, the SCADeF framework is proposed.

5.2 Solution Direction

As mentioned earlier in this Chapter and also seen in Figure 16, there exist multitudes

of a particular type of platform basic service, since the services are offered by many

different providers. For example, there are 4 different service providers offering the

E-mail service, the SendGrid [26] and the Mailgun [27] offered by Heroku, the

Google Mail [201] and the Amazon Simple E-mail Service [200]. On top of that, there

exist various categories of platform basic services such as the payment, the e-mail,

and the message queue service.

To support developers in using platform basic services from various environments, a

new approach to creating service-based cloud applications should be adopted. The

key concept is for users not to develop applications directly against the proprietary

High-level architecture of the SCADeF framework

106

cloud provider’s environment. Rather, they should use either standard and widely

adopted technologies or abstraction layers, which decouple application development

from specific target technologies and APIs. Taking that into account this thesis

proposes the SCADeF framework, which promotes uniform access to platform basic

service and providers.

Figure 16: Conceptual View of the Development Framework

The objective of the framework is two-fold: (i) First to enable the integration of

platform basic services in a consistent way and (ii) second to facilitate the seamless

use of the platform basic service providers by alleviating the heterogeneities among

them. Thus application developers can focus on the design of the application without

dealing with the peculiarities of each provider.

The main components of SCADeF, as it will be explained in the next Chapters, are the

Reference Meta-Model and the Service API editor. The former includes the concepts

enabling the consistent modelling of the various platform basic services while the

latter enables the description and the abstraction of the provider specific web APIs.

Inspired by the Model-driven Engineering [202] design approach, described in

Section 4.2.5, the framework adopts a three phase process in order to enable the

abstraction of the platform basic service providers. First the abstract functionality of

the platform basic service is described. During this phase the workflow of the service

is modelled and the Reference API is defined. In the next phase the concrete vendor

implementation is infused. The specific workflow and web API is mapped on the

High-level architecture of the SCADeF framework

107

reference one defined in the first phase. During the third phase, the framework

handles the execution of the workflow and automatically generates the client adapters

to invoke the providers’ web API.

In the next Sections the requirements of the proposed framework are listed.

5.3 Requirements of the SCADeF framework

There are certain requirements identified for the development framework as listed in

Table 4. They have primarily been defined upon the objective of addressing the

variability points, which were listed in 5.1, namely, the differences in the workflow,

in the web API and in the settings and tokens required by each concrete platform

service provider. Furthermore, the definition of the requirements has been based on

those defined in related development frameworks [181], [203], as well as on the

author’s personal experience on the field of cloud application platforms and platform

basic services.

Table 4: Requirements of the SCADeF framework

R1 SCADeF should provide workflow modelling capabilities

R2 SCADeF should automate the execution of the workflow

R3 SCADeF should address the API variability

R4 SCADeF should automatically generate the client adapters

R5 SCADeF should be generic enough, so that additional platform basic services

and providers can be supported.

R6 SCADeF should be able to substitute the platform basic service providers.

R7 SCADeF should accommodate two distinct user roles, namely the

administrator and the consumer.

R8 SCADeF should manage the platform basic services and the configuration

variables

High-level architecture of the SCADeF framework

108

 Support of workflow modelling capabilities 5.3.1

As mentioned in Section 5.1, the first variability point across the various platform

basic service providers is the differences in the workflows for the completion of the

operations. Therefore, the development framework should provide the application

developers with the necessary building blocks to enable the workflow modelling in a

consistent way. Independent of the type of the platform basic service or the concrete

provider, two basic request types are present, as seen in Figure 17:

i. The outgoing request from the application to the platform basic service

provider using the web API of the latter.

ii. The incoming requests from the client or the platform service to the

application which needs to be received and handled by the latter. The

framework should enable the modelling of these request types.

Figure 17: Interaction between the Service-based Cloud Application and the Platform Basic
Services

 Automating the execution of the workflow 5.3.2

In the previous requirement, it was stated that the framework needs to provide the

tools for modelling the states of the platform basic service providers. Following that

requirement the framework should also facilitate the execution of the states. Thus,

rather than enforcing the developer to coordinate manually the execution of an

operation, an execution engine should be able to handle the operation workflow

automatically and thus decoupling the application developer from directly accessing

the provider specific implementation.

High-level architecture of the SCADeF framework

109

 Addressing the API variability 5.3.3

The second variability point, as mentioned in Section 5.1 is the differences in the APIs

exposed by the platform basic service providers. In order to effectively abstract the

vendor specific implementations, the framework should address the peculiarities in

the various web APIs exposed by the providers. Two further dimensions are implied:

i. The capability of defining a Reference API for each category of platform basic

service. The Reference API is exposed to the application developers and can

be used to access all the supported providers.

ii. The mapping of the vendor specific API to the equivalent reference one. The

framework should be capable of mapping each vendor specific API to the

reference one. Thus the application developers are not required to interact

with the specific APIs.

 Automatic generation of the client adapters 5.3.4

Following the previous requirement regarding the variability in the API, the

framework should additionally be able to generate the code required to perform the

invocation requests to the provider specific API. The majority of the providers expose

a web API based on HTTP requests. By offering code generation capabilities,

application developers are alleviated from the task of having manually to code the

invocation requests each time integration with a new service provider is required.

 Generic nature of the framework 5.3.5

One of the main requirements of the framework is its capability to support new

platform basic services and providers. Rather than being static our objective is to

ensure its flexibility so that it is continuously expanded and updated with new types of

platform basic services and providers. This is partially achieved by the first and third

requirement, namely by providing the generic building blocks to model the workflow

of the platform basic service and also the capability of defining the Reference API for

the service which is supported by the framework.

High-level architecture of the SCADeF framework

110

 Ability to substitute the platform basic service providers 5.3.6

As mentioned earlier in this Chapter, there exist multiple providers implementing a

particular platform basic service. Under certain cases an application may require to

switch to a different provider at run-time. For example in the scenario of a sudden

increase in the workload a particular provider may become unresponsive. In this case

the application should be able to choose an alternative provider in order to continue its

operations without disruptions. Therefore, the framework should enable the users to

determine the concrete service providers at run-time and be able to switch providers

according to which one best meets the requirements at hand each time.

 Distinct user roles 5.3.7

The framework should support the following two distinct users:

i. The administrator: The administrator should be capable of enhancing the

framework with new platform basic services and providers. As stated in the

Section 5.3.5, the framework rather than being static needs to be expandable

and be able to support additional services and providers. This is an essential

characteristic in order for the framework to keep up with the increasing

number of cloud application platforms.

ii. The consumer: The consumer is the person who is using the framework.

Usually, this is the application developer who needs to exploit the platform

basic services during the application development.

Therefore, the framework should provide the required tools for the above two

mentioned users.

 Management of the platform basic services and the configuration 5.3.8

variables

As proposed in Section 5.1.1.3 the third variability point when dealing with multiple

platform basic services and providers is the large number of configuration settings

that the developer needs to manage. This may become a tedious and error prone

process. Therefore, the framework should enable the application developers both to

add or remove services seamlessly from the application and also manage the

High-level architecture of the SCADeF framework

111

configuration settings and the authentication tokens required by each of the concrete

providers.

5.4 High-level architecture	of the SCADeF framework

This Section describes the high level architecture of SCADeF. In particular, it focuses

on the components of the framework and the processes, which are required to execute

the supported platform basic services and to add new services and providers.

Figure 18 shows that the processes split into two stages, namely the Modelling and the

Execution Stage. As it is described in the next Section, the first stage involves the

phases and the components required to add a new platform basic service and provider

into the framework. The Execution Stage involves the components required to

execute the platform basic services supported by the SCADeF framework and thus

gives the cloud application access to the concrete service providers.

Following the two stages described in the previous paragraph, two distinct users of the

framework (roles) are defined: the administrator and the consumer. The first uses the

components, available during the Modelling Stage, in order to enrich the framework

with additional services and providers. The latter makes use of the framework during

its Execution Stage in order to integrate platform basic services with the cloud

application.

Figure 18: Modelling and Execution Stage of the SCADeF framework

High-level architecture of the SCADeF framework

112

As it can be observed in Figure 18, the process of adding a new platform basic service

and provider to the framework can be divided into the following two parts [204]:

i. Platform Service Workflow Description: As explained earlier in 5.1, certain

platform basic services require more than one step to complete an operation,

such as the authentication and the payment service. Thus the states that are

involved in the execution of an operation shall be defined and described in a

way that is capable for the framework to handle automatically the workflow.

ii. Platform Service API Description: One of the main objectives of the

framework is to provide the developers with a single API for each platform

basic service, independent of the concrete provider. Therefore, as it is

described in details in Chapter 8, this part involves the definition of the

Reference API, the description of the web API of each concrete provider

supported by the framework and the subsequent mapping of the provider

specific web API to the Reference API.

Each of the two parts of the development process involves the Modelling and the

Execution Stage. As shown in Figure 18 the two stages consist of the following

phases: (a) Platform Service Modelling Phase, (b) Vendor Implementation Phase, (c)

Execution Phase.

In the next Sections for each of the two parts, namely the Platform Service Workflow

Description and the Platform Service API Description, the three phases are introduced

and the high-level components involved are described. Figure 19 illustrates the

components that constitute the SCADeF framework. The components are split into

two categories, highlighted by the use of two styles, according to whether they are

used, or created, by the administrator. The ones highlighted in orange colour are

provided by the framework and are used by the administrator. The one highlighted

by stripes are the platform service components and are produced by the administrator

using the framework components.

High-level architecture of the SCADeF framework

113

Figure 19: High-level architecture of the SCADeF framework

 Platform Service Workflow Description 5.4.1

 Platform Service Modelling Phase 5.4.1.1

During this phase the abstract states of each platform basic service are described. The

following components are involved in this phase:

1. Reference Meta-Model: The Reference Meta-Model contains the concepts

required to model the states of the platform basic service. Section 6.2.2.1 of

discusses in details the involved concepts.

2. Platform Service Connector: The Platform Service Connector (PSC) is the

abstract representation of the platform basic service functionality and hides the

specific implementation of the concrete service providers. It contains the

states that are involved in each operation provided by the service. It is

generated by the administrator of the framework using the concepts of the

Reference Meta-Model. The PSC is used by the consumer of the framework to

obtain access to the functionality of the service.

High-level architecture of the SCADeF framework

114

 Vendor Implementation Phase 5.4.1.2

Based on the abstract model defined in the previous phase, the vendor specific

implementation is infused. Specifically, the workflow required by each provider is

mapped to the abstract one defined for the particular service.

1. Provider Connector: The Provider Connector (PC) is the module, which

contains the specific implementation of the concrete service providers. It is

constructed by the administrator of the framework based on the PSC, which is

built during the modelling phase.

 Execution Phase 5.4.1.3

The Execution Phase takes place at run-time. During that phase the Platform Service

Execution Controller (Figure 19) handles the execution of the workflow. Particularly,

it accepts as inputs the PSC and the PC. Then it executes the workflow defined by the

states and transitions in the PSC. For each state it checks whether a specific provider

implementation exists in the PC. If it does so, then it executes the specific

implementation. Otherwise it executes the one specified in the PSC.

Figure 20 shows the interrelations of the various components of the Platform Service

Workflow Description part of the SCADeF framework in order to achieve the

abstraction of the concrete service providers from the cloud application. The PC

communicates directly with the service provider. It implements the abstract model

inherited from the PSC for the specific provider [205]. The cloud application

developer uses the Platform Service Execution Controller (PSEC) in order to execute

the workflow for the specific platform service, as it is defined in the PSC.

Figure 20: Workflow description part of the SCADeF framework

High-level architecture of the SCADeF framework

115

In the following Chapters, each of the components depicted in Figure 20 is analysed

and its role in the SCADeF framework is examined.

 Platform Service API Description 5.4.2

 Platform Service Modelling Phase 5.4.2.1

As mentioned in Requirement 3 (R3) in Section 5.3, the framework shall be capable

of addressing the variability in the provider specific web APIs by enabling the

definition of a Reference API. One Reference API is defined, by the administrator of

the framework, for each type of platform basic service, which is supported by the

framework. It contains the set of operations offered by the specific service.

Consumers leverage the Reference API in order to gain access to the specific service

providers, which are supported by the framework. In Chapter 8 a detailed description

of the definition process of the Reference API is presented.

1. The Service Description Editor: The Service Description Editor (SDE) is

used to define the Reference API and configuration and authentication settings

required by the platform basic service providers. It is implemented as an

Eclipse plug-in and includes a user interface, which is used by the

Administrator of the framework. Further information regarding the SDE can

be found in the Appendix B.

2. Platform Service Reference API: The Platform Service Reference API is a

template describing the web API of the specific platform basic service. A

Reference API is constructed, by the administrator, for each platform basic

service and is accessible by the consumer of the framework. Its role is to

remove the barrier from the consumer to study the various providers’ specific

APIs. Instead the consumer accesses all the supported providers via the

Reference API.

3. Template API repository: The Template API Repository contains the

collection of the Platform Service Reference APIs that have been defined

using the SDE.

High-level architecture of the SCADeF framework

116

 Vendor Implementation Phase 5.4.2.2

During this phase the specific web API of each of the platform basic service providers

supported by SCADeF, is described and mapped to the Reference API.

1. Provider Specific API: The Provider Specific API holds the description of

the concrete service provider API and the subsequent mapping to the Platform

Service Reference API.

 Execution Phase 5.4.2.3

During the Execution Phase the web clients [206] required for the application to

connect to the concrete service providers, are generated. The web clients are source

code, which implement the HTTP requests – responses.

1. API Client Generator: The API Client Generator, as the name implies, is

responsible for the generation of the web clients for each concrete service

provider. It receives the Platform Service Reference API and the Provider

Specific API and produces a Java library, which can be used by the application

developer in order to connect to the concrete service provider.

2. Platform Service Registry: This component is a registry of all the platform

basic services that the application uses. Its role is to keep track of the

consumed services and to provide an easy way for the software developer to

deploy and release services.

 Modelling and Execution Flow of the Development Framework 5.4.3

This chapter stated the variability points that may arise when application developers

deal with multiple platform basic services and providers, namely: (i) the variation in

the workflow of the execution of the various platform service providers, (ii) the

variation in the exposed web APIs, and (iii) the management of the configuration and

the authentication variables that the various service providers require.

Thereafter, the SCADeF framework was proposed to address the above mentioned

issues and assist the application developers in the design and execution process of the

service-based cloud applications. The development framework consists of two parts:

(i) the description of the Platform Service Workflow, which attempts to alleviate the

heterogeneity in the workflow of the various platform service providers and (ii) the

High-level architecture of the SCADeF framework

117

description of the Platform Service API, which aims at the homogenisation of the

various web APIs.

For each part two stages are defined, namely the Modelling and the Execution. The

first stage involves the integration of new platform basic services and providers in the

framework and is handled by the administrator of the framework as mentioned earlier

in Section 5.4. During the Execution Stage the application developers are able to

make use of the supported services and providers. A task flow is defined in order to

enable the administrators to enrich the framework with services and the application

developers to utilise those services [207].

Figure 21: The task flow of the SCADeF framework

Figure 21 depicts the task flow of the SCADeF framework. There are two separate

task flows defined, one for the description of the workflow of the platform basic

service and one of the API. For each part the following tasks are defined:

1. Platform Service Workflow Description:

Task 1a. Examination of the workflow of the available service providers for a

given platform basic service. Particularly, this task involves the

description of the states required in each of the providers in order to

execute an operation. The output consists of the definition of an

abstract state machine diagram, which accommodates all the

examined providers.

High-level architecture of the SCADeF framework

118

Task 2a. Based on the abstract state machine diagram the PSC, defined in

5.4.1, is constructed.

Task 3a. Based on the PSC the PC, which contains the vendor specific

implementation, is built.

Task 4a. The last task involves the execution of the platform basic service

and is performed by the application developer in order to integrate

the service in the cloud application. For that reason the Platform

Service Execution Controller (PSEC) is used.

2. Platform Service API Description:

Task 1b. Examination of the web APIs exposed by the available service

providers for a given platform service. Similar to Task 1a the

various web APIs need to be examined in order to create a

Reference API sufficiently generic to abstract the provider specific

APIs.

Task 2b. Based on the API analysis of Task 1b, the Platform Service

Reference API is defined.

Task 3b. This task involves the mapping of the provider specific API to the

reference one.

Task 4b. During the Execution Phase the API Client Generator is invoked

and the web clients are generated. The application developers use

the latter in order to invoke the specific service providers.

5.5 Summary

This Chapter introduced the reader to the SCADeF framework, which aims to

facilitate the application developers to build service-based cloud applications by

seamlessly utilising the platform basic services and the concrete providers. To this

end, the framework adopts a concrete methodology, as stated in Section 5.4.3, in order

to address the three variability points, as proposed in Section 5.1 namely, the

differences in the workflow and in the API across the various platform basic service

providers, as well as the management of the various required configuration and

authentication settings.

High-level architecture of the SCADeF framework

119

Specifically, the framework provides the components and the tools to enable the

description of two parts, namely: (i) the workflow and (ii) the API of the platform

basic services. For each part two stages are defined: (i) the Modelling and (ii) the

Execution. During the first stage the functionality of new platform basic services and

providers are modelled and inserted in the framework. The latter stage enables the

application developers to utilize the framework by integrating the supported services

to their cloud applications. The Modelling Stage further includes the Platform

Service Modelling and the Vendor Implementation Phase, while the Execution Stage

involves the Execution Phase. Each phase requires certain tasks to be performed.

The next Chapters examine in details the tasks that have been defined in each phase

(Figure 21) and the components, which are involved (Figure 19). Particularly,

Chapter 6 and Chapter 7 analyse the Modelling and the Execution Stage of the

Platform Service Workflow Description part respectively. Subsequently, Chapter 8

and Chapter 9 examine the Modelling and the Execution Stage of the Platform Service

API Description part respectively.

High-level architecture of the SCADeF framework

120

Modelling Stage of the Platform Service Workflow

121

Chapter 6

Modelling Stage of the Platform

Service Workflow

The preceding Chapter introduced the reader to the SCADeF framework, which is

proposed in this research work. The aim of the framework is to provide the

developers with the functionality of the platform basic services while at the same time

hides the specific vendor implementations. To this end the process of providing a

new service and hiding the provider implementation consists of two parts namely the

description of the workflow and the API. Each part further involves two stages, as

described in Section 5.4 and shown in Figure 18 namely, the Modelling and the

Execution Stage.

The aim of this Chapter is to describe the Modelling Stage of the Platform Service

Workflow. This part contributes to the alleviation of the variations in the workflow

observed among the concrete service providers. For example in the case of the cloud

payment service, as mentioned in Section 5.1, there are several providers such as

Spreedly, PayPal and Braintree, adopting a different workflow during the operation

of charging a card. This Chapter describes how an abstract workflow can be defined

and subsequently how the abstract one can accommodate the providers’ specific

workflows. This process takes place during the Workflow Modelling and the Vendor

Implementation Phase respectively.

The structure of this Chapter is as follows:

Modelling Stage of the Platform Service Workflow

122

Section 6.1 describes the cloud payment service. This service will be used as an

example throughout the rest of this Chapter.

Then Section 6.2, describes the Platform Service Modelling Phase. Particularly, this

phase involves studying the workflows of the various service providers in order to

conclude to the reference workflow, which is exposed to the developers. For that

reason several payment service providers have been examined. Subsequently, the

reference workflow needs to be modelled so that the framework can handle it. The

Section describes the tools and the components involved in the modelling phase.

Once the reference workflow is modelled, Section 6.3 discusses how the vendor

implementation is modelled and inserted in the framework. This process involves the

construction of the PC.

6.1 The cloud payment service example

The payment service enables a website or an application to accept online payments

via electronic cards such as credit or debit cards. The added value that such a service

offers is that it relieves the developers from handling electronic payments and keeping

track of the transactions by intermediating between the cloud application and the

payment authorities (Figure 22 and Figure 23). The payment provider undertakes the

task to verify the payment and subsequently informs the application about the

outcome of the transaction.

Figure 22: Simplified view of the payment process

Figure 23: Simplified view of the payment process including the payment service provider

Modelling Stage of the Platform Service Workflow

123

Electronic payments tend to become an essential part of a cloud application. The E-

commerce field is already well established and has gained wide acceptance in many

domains of business. As a result several cloud platforms offer a payment service. For

example Heroku offers Spreedly, a payment service created by an ISV, Amazon offers

Stripe via its marketplace and GAE offers its own native payment service called

Google Wallet [208].

The payment service has been chosen because of its inherent relative complexity

compared to other services such as e-mail or image processing service. The

complexity lies in the fact that the purchase transaction requires more than one state to

be completed and there is a significant heterogeneity among the available payment

providers with respect to the involved states. Moreover, any application which

performs billing transactions requires compliance with the Payment Card Industry

Data Security Standard (PCI-DSS) [209] in order to maximise its reliability.

Acquiring the compliance may be a time consuming and costly process. Therefore,

by using an existing cloud payment service provider, developers may skip the process

of becoming PCI-DSS compliant. 	

6.2 Platform Service Modelling Phase

As depicted in Figure 21, the Platform Service Modelling Phase involves two Tasks:

(i) the analysis of the workflow of the available platform service providers and (ii) the

construction of the PSC.

 Study the Workflow of the Platform Service Providers 6.2.1

The first step towards describing the workflow of the payment service is to explore

the concrete payment providers and extrapolate the common states in which they may

co-exist. For that reason several providers, have been studied and of those 9 major

payment service providers, listed in the Appendix A. They are primarily provisioned

either via a major cloud platform such as GAE and Amazon AWS or via platform

service marketplaces such as Heroku add-ons and Engine Yard add-ons. After

studying the payment process of each of those payment providers we have been able

Modelling Stage of the Platform Service Workflow

124

to cluster them in three categories, namely: (i) the transparent redirect, (ii) the server

to server, and (iii) the hosted payment process category.

The clustering has been performed according to the payment process that each of the

providers adopt. A detailed description of the process per provider can be found in

the Appendix A.

 Transparent Redirect 6.2.1.1

The transparent redirect process is depicted in Figure 24. The following steps are

applied in order to complete the payment process.

1. The client requests a new purchase from the application (e.g. an e-shop)

2. The application displays the fill out form, where the client is required to fill in

his personal and card details.

3. Once the form is submitted, the client is redirected to the payment provider

and the latter receives the card details.

4. The payment provider sends to the application a transaction token which

corresponds to the client`s card details.

5. The application uses the transaction token to request a new charge for the

amount of the purchase.

6. The payment provider executes the transaction.

7. The bank or the payment processor responds to the payment provider with the

outcome of the transaction.

8. The payment provider responds to the application with the outcome of the

transaction.

9. The application displays the outcome to the client.

Modelling Stage of the Platform Service Workflow

125

Figure 24: “Transparent redirect” Payment Process

Figure 25 shows the UML state machine diagram of the cloud application throughout

the transaction. Two states are observed1. While the cloud application remains in the

first state, it waits for a payment request. Once the client requests a new payment, the

cloud application should display the fill out form where the user enters the payment

details.

Figure 25: State machine diagram of the “transparent redirect” payment process

Subsequently, the cloud application moves to the next state where it waits for the

transaction token issued by the payment provider. The transaction token uniquely

identifies the current transaction and can be used by the cloud application to complete

the purchase. Once the user submits the form, the user is redirected to the payment

provider who validates the card details. Then a request to the cloud application is

submitted including the transaction token. Once the token is received, the application

submits a request to the provider with the specific amount to be charged. The

provider completes the transaction and responds with the outcome. Depending on the

outcome, the cloud application displays a success or failure page to the client.

1 The number of requests is determined by the number of incoming requests to the cloud application. In this

example, the application receives two requests and thus two states are defined.

Waiting	for	user's	payment	request waiting	for	transaction	token

User	requests	
payment	/	Display	

fIllout	form

Token	received	/	Submit	
purchase	request	and	
display	the	outcome

Modelling Stage of the Platform Service Workflow

126

Transparent redirect is a technique deployed by certain payment providers in which,

during a purchase transaction the client’s card details are redirected to the provider.

The main advantage of this payment process is that the cloud application does not

handle any electronic card data and therefore it is not required to be PCI compliant

[209].

Payment providers, which adopt the transparent redirect technique, can be

accommodated by the state machine diagram shown in Figure 25.

 Server to server 6.2.1.2

The server to server process is depicted in Figure 26. The following steps are applied

in order to complete the payment process.

1. The client requests a new purchase from the application (e.g. an e-shop).

2. The application displays the fill out form, where the client is required to fill in

his personal and card details.

3. The client fills in the card details and submits the form. The card details are

received by the cloud application.

4. The application uses the card details to request a new charge for the amount of

the purchase.

5. The payment provider executes the transaction.

6. The bank or the payment processor responds to the payment provider with the

outcome of the transaction.

7. The payment provider responds to the application with the outcome of the

transaction.

8. The application displays the outcome to the client.

Modelling Stage of the Platform Service Workflow

127

Figure 26: “Server to server” payment process

Figure 27 shows the state machine diagram of the cloud application throughout the

transaction. Similar to the transparent redirect process, two states are observed.

While the cloud application remains in the first state, it waits for a payment request.

Once the client requests a new payment, the cloud application should display the fill

out form where the user enters the payment details.

Figure 27: State machine diagram of the “server to server” payment process

Subsequently, the cloud application moves to the next state where it waits for the card

details of the client. Once the user submits the form, the application receives the card

details. Thereafter, the application submits a request to the provider with the specific

amount to be charged. The provider completes the transaction and responds with the

outcome. Depending on the outcome, the cloud application displays a success or

failure page to the client.

The server to sever payment process is easier to implement than the transparent

redirect. However, in this case the application handles electronic card details and

therefore it is required to be partially PCI compliant. This adds an extra cost for the

application development. In order to avoid this cost, the payment providers which

adopts this process provides the developers with software libraries which encrypt and

securely handle the card details ensuring this way PCI compliance.

Waiting	for	user's	payment	request Waiting	for	card	details

User	requests	
payment	/	Display	

fIllout	form

Card	details	received	/	
Submit	purchase	request	
and	display	the	outcome

Modelling Stage of the Platform Service Workflow

128

 Hosted Payment Pages 6.2.1.3

The hosted payment process is depicted in Figure 28. The following steps are applied

in order to complete the payment process.

Figure 28: “Hosted payment pages” payment process

1. The client requests a new purchase from the application (e.g. an e-shop).

2. The application requests a new charge for the amount of the purchase.

3. The payment provider responds with the redirect URL for the payment form

with the predefined amount.

4. The application redirects the user to the payment form hosted by the payment

provider.

5. The client fills in the card details and submits the form. The card details are

received by the payment provider.

6. The payment provider executes the transaction.

7. The bank or the payment processor responds to the payment provider with the

outcome of the transaction.

8. The application displays the outcome to the client.

Figure 29 shows the state machine diagram of the cloud application throughout the

transaction. Similar to the previous two processes, two states are observed. While the

cloud application remains in the first state, it waits for a payment request. Once the

client requests a new payment, the cloud application requests from the payment

provider a new charge with the predefined amount. The provider responds with the

Modelling Stage of the Platform Service Workflow

129

redirect URL or an ID, which guide the client to the payment form hosted by the

payment provider. Thereafter, the cloud application moves to the second sate where

it waits for the transaction code from the provider. Once it receives it, it sends a

request to the provider confirming the transaction. The provider responds with the

outcome of the transaction.

Figure 29: State machine diagram of the “hosted payment page” payment process

The hosted payment pages payment process differs from the previous methods in the

sense that the payment form is hosted by the payment provider and not by the

application. This way the client is ensured that the card is charged exactly the agreed

amount.

 Reference Payment Service Workflow 6.2.1.4

After having studied the payment service providers, clustered them according to the

payment process and built the respective state charts we can conclude that the

providers can be grouped in one state machine diagram which includes two states

(Figure 30):

1. Initial State: Waiting for user`s payment request. Transition Event: Payment

request arrives. Action: Calculates and displays the fill out form

2. Second State: Waiting for Transaction details. The transaction details can

either be the card details or the transaction token. Transition Event:

Transaction details are received. Action: Application handles the purchase

transaction, which involves requesting a new charge, and displaying the

outcome of the transaction to the user.

Figure 30: State machine diagram of the abstract payment process

Waiting	for	user's	payment	request waiting	for	transaction	token

User	requests	payment	/	
Request	payment	form	/	

Display	fIllout	form

Token	received	/	Submit	
purchase	request,	receive	
and	display	the	outcome

Waiting	for	user's	payment	request waiting	for	transaction	details

User	requests	
payment	/	Calculate	and	

Display	fIllout	form

Transaction	details	
received	/	Handle	purchase	

transaction

Modelling Stage of the Platform Service Workflow

130

 Build the Platform Service Connector 6.2.2

The next task of the Platform Service Modelling phase is the construction of the PSC.

As mentioned in 5.4.1, the PSC contains the abstract model of the workflow of the

platform service. In order to enable the construction of the PSC, the Reference Meta-

Model depicted in Figure 31 is defined.

Figure 31: Reference Meta-Model

 The Reference Meta-Model 6.2.2.1

The concepts of the meta-model have been defined based upon the need of the

application to communicate with the platform basic services and coordinate the

execution of the workflow for the completion of the operations. There are two basic

operations, which the cloud application should be capable to perform in order to

integrate a platform basic service. Firstly, it needs to be able to receive the requests

which are initiated either by the user of the application or by the platform basic

service. Secondly, the cloud application should be capable of sending requests to the

service provider using the web API of the latter. 	

Following the requirements that the Reference Meta-Model should meet, the

following concepts are defined:

CloudAction: CloudActions are used to model the communication with platform

basic services, which require more than one step in order to complete an operation.

The whole process required to complete the operation can be modelled as a state

machine. Each step in the process can be modelled as a concrete state that the

platform service can exist in. For each state a CloudAction is defined. When the

Modelling Stage of the Platform Service Workflow

131

appropriate event arrives the appropriate CloudAction is triggered to handle the event

and subsequently causes the transition to the next state. The events in this case are the

incoming requests arriving either from the client of the application or from the service

provider, as shown in Figure 32. A separate CloudAction is defined to handle each

incoming request and subsequently signals the transition to the next state.

CloudActions leverage the Servlet programming model [210] in order to receive the

requests and respond to the callers.

Figure 32: Role of the CloudActions and the CloudMessages

CloudMessage: CloudMessages can be used to perform requests from the cloud

application towards the service provider using the web API of the latter (Figure 32).

CloudMessages can either be used in stateless services, where the operation is

completed in one step or within CloudActions when the latter are required to submit a

request to the service provider. A different CloudMessage is defined to implement

each one of the operations offered by the service provider via the web API. For

example in the case of the e-mail service, a CloudMessage is defined to send an e-

mail using the web API of the service provider and including the required fields:

recipient, sender, title and body.

PlatformServiceStates: The PlatformServiceStates is an XML file, which holds

information about the states, involved in an operation and the corresponding

CloudActions, which are initialised to execute the behaviour required in each state.

The use of an XML file instead of a Java Enumeration type [211] to encode the states

promotes the flexibility of the framework when the latter is required to change the

states or the actions involved in an operation at run-time. An excerpt of a Platform

ServiceState file is shown in Listing 2.

CloudActions

CloudMessages

Service	Provider

External	Requests

Incoming	Requests

Application	
Client

Incoming	Requests

use

Modelling Stage of the Platform Service Workflow

132

ConfigurationData: Certain configuration settings are required by each platform

service provider. That information is captured in the ConfigurationData. Example of

settings which needs to be defined are the clients’ credentials required to perform web

requests, authentication tokens and the redirect URL parameter which is often

requested by the service provider in order to perform requests to the cloud

application. An excerpt of the ConfigurationData is depicted in Listing 5.

The motivation for the definition of the separate concepts of the CloudActions and the

CloudMessages stems from the basic software design principles of modularisation,

separation of concerns and reusability [212] [213]. Separation of concerns ensures

that a software application is composed of distinct units each one addressing a

specific issue. In turn software modularisation is enabled which further improves the

maintainability of the software. Reusability allows certain pieces of source code to be

reused within the software application improving this way the productivity. In the

framework design, CloudActions are responsible for defining a template for serving

the incoming requests. CloudMessages implement a specific web request to the

service providers and can be reused by different CloudActions.

 The Platform Service Connector (PSC) 6.2.2.2

The Reference Meta-Model is used to construct the PSC. The PSC essentially

consists of CloudActions and CloudMessages, which are used for the communication

of the application with the platform basic services, and the PlatformServiceStates file

which describes the sequence of execution of the CloudActions.

The PSC is created based upon the state machine diagram which is defined during the

Task 1a of Figure 21 and is an abstract representation of the workflow of the

examined platform basic service providers. Two rules are applicable during the

construction of the PSC. The rules are based on the definition of the CloudActions

and the CloudMessages mentioned earlier in 6.2, where the former are used to handle

incoming requests where the latter perform web requests to the service providers.

Rule 1. For each state where the application waits for an external request

(either from the user of the application or the service provider) a

CloudAction is defined to handle the request.

Modelling Stage of the Platform Service Workflow

133

Rule 2. For each request initiated by the cloud application towards the service

provider, a CloudMessage is defined.

In the case of the cloud payment service Figure 33 shows the Cloud Payment Service

Connector. It is constructed based on the state machine diagram defined in Figure 30

and using the concepts of the Reference Meta-Model. It consists of the following

blocks:

Figure 33: Cloud Payment Service Connector

FilloutForm: The FilloutForm is a CloudAction which receives the request for a new

purchase transaction and responds to the client with the fill out form in order for the

latter to enter the card details. The communication is realised using the servlet

technology.

 HandlePurchaseTransaction: The HandlePurchaseTransaction is a CloudAction

which receives the request from the service provider containing the transaction token.

Then a request is submitted to the provider including the transaction token and the

amount to be charged. The provider replies with the outcome of the purchase and

subsequently the action responds to the client with a success or fail message

accordingly.

SubmitPurchaseRequest: The SubmitPurchaseRequest is a CloudMessage used

internally by the HandlePurchaseTransaction action. Its purpose is to perform the

request to the service provider, using the exposed web API, to complete the purchase

Modelling Stage of the Platform Service Workflow

134

transaction. It receives the provider’s respond stating the outcome and forwards it to

the action.

ConfigurationData: The ConfigurationData contains the service settings required to

complete the purchase operation. Particularly, the following pieces of information are

listed: the redirectUrl, the username, and the password.

PaymentServiceStates: In the PaymentServiceStates file the states and the

corresponding actions involved in the transaction are defined. The framework uses

the file in order to guide the execution of the actions. A part of the description file is

shown in Listing 2.

Listing 2: Payment service states description file

<StateMachine>

 <State name="WaitingPaymentRequest"

 action="org.paymentserviceframework.FilloutFormAction"

 nextState="WaitingTransactionDetails"/>

 <State name="WaitingTransactionDetails"

 action="org.paymentserviceframework.SendTransactionAction"

 nextState="Finish" />

</StateMachine>

The state description file essential corresponds to a Finite State Machine (FSM). An

FSM defines the states of a system, the transitions between the states as well as the

events which trigger a transition, and the produced output. In this research work an

FSM represents the interaction of the cloud application with the platform basic

service provider. Such an FSM is represented by the state diagram shown in Figure

30. Typically, a state transition table is required to define the transition from one state

to the next one. However, the platform basic services, which have been examined,

expose only a single transition from each state to the next one. Thus, a simplified

version of a state transition table has been defined (Listing 2). In future, in case

multiple transitions are possible from each state, the state description file can be

extended to accommodate those transitions.

At this point the Cloud Payment Service Connector (PSC) does not contain any

provider specific information. Therefore, any payment service provider which

adheres to the specified model can be accommodated by the abstract model.

Modelling Stage of the Platform Service Workflow

135

6.3 Vendor Implementation Phase

During the Vendor Implementation Phase the provider specific connectors are

constructed.

 Build Provider Connectors 6.3.1

After having defined the PSC, the specific implementation and settings of each

concrete provider needs to be infused (Task 3a of Figure 21). For each CloudAction

and CloudMessage defined in the PSC, the respective provider specific blocks should

be defined forming the PC.

In the case of the payment service example, the Cloud Payment Provider Connector

for the Spreedly provider is shown in the lower part of the Figure 34. It contains the

following blocks:

SpreedlyFilloutForm: This is a type of CloudAction implementing the FilloutForm.

SpreedlyHandlePurchaseTransaction. This is a type of CloudAction implementing

the HandlePurchaseTransaction.

SpreedlySubmitPurchaseRequest: This is a type of CloudAction implementing the

SubmitPurchaseRequest.

ConifgurationData: This file contains the specific configuration settings, which are

required by the service provider. Therefore the file needs to be updated accordingly

in order to match the specific provider. For example in the case of Spreedly on top of

the generic payment service settings such as the redirect URL and the credentials, the

GatewayToken is also expected.

Should the provider’s implementation accurately match the model, the provider

specific CloudActions and CloudMessages can reuse the functionality of the generic

model. In case where the provider’s implementation diverges from the generic model

the model’s functionality can be overridden.

Modelling Stage of the Platform Service Workflow

136

Figure 34: Cloud Payment Service Provider Connector

6.4 Summary

This Section concludes the description of the Modelling Stage of the workflow of the

platform services. At this point, the workflow of the platform service has been

described and an abstract model, namely the PSC, has been constructed. For each

service provider which is supported by SCADeF, a specific vendor implementation

has been implemented and inserted in the PC component. Both the PSC and the PC

have been constructed with the use of the concepts defined in the Reference Meta-

Model.

The work presented in this Chapter supports the Requirement 1 (R1), listed in Section

5.3, regarding the capability of the framework to support the workflow modelling of

the platform basic services and the concrete providers. This task is performed by the

administrator of the framework, which is responsible for enriching the framework

with additional services and providers. Therefore, the Requirement 7 (R7), regarding

the distinct role of the administrator is also fulfilled. Moreover, the ability of the

Modelling Stage of the Platform Service Workflow

137

framework to accommodate additional services and providers contributes to the

Requirement 5 (R5), which refers to the generic and flexible nature of the framework.

The next Chapter describes the components and the mechanism available for

executing the workflow, which was captured during the Modelling Stage. The

execution mechanism allows application developers to use the operations defined in

the supported platform basic services.

Modelling Stage of the Platform Service Workflow

138

Execution Stage of the Platform Service Workflow

139

Chapter 7

Execution Stage of the Platform

Service Workflow

Chapter 6 showed how the PSC and the PC containing the reference and the provider

specific workflows respectively can be constructed. The next step is to allow the

SCADeF framework to control the execution of the workflow when a specific

operation is invoked by the application. This way the software developers do not

need to coordinate the execution of the workflow and be aware of the specific

sequence of steps required by each provider. To this end the aim of this Chapter is to

describe how the framework can handle automatically the execution of the workflow.

Particularly, Section 7.1 describes the main component, which is responsible for the

execution of the workflow, namely the Platform Service Execution Controller

(PSEC). During the Execution Phase the PSC and the PC, are managed by the PSEC.

Then, Section 7.2 illustrates the sequence of events which take place during the

execution of the workflow. For that reason the payment service workflow defined in

Section 6.2.1.4 is used.

Section 7.3 concludes the Chapter by mentioning major design patterns, which have

been adopted throughout the design of SCADeF, such as the Front Controller and the

Factory pattern.

Execution Stage of the Platform Service Workflow

140

7.1 The Platform Service Execution Controller (PSEC)

The PSEC automates the execution of the workflow required to complete an

operation. It consists of the main following components shown in the upper part of

the Figure 35.

Figure 35: Platform Service Execution Controller

Front Controller: The Front Controller [210] serves as the entry point to the

framework. It receives the incoming requests by the application user and the service

provider.

Dispatcher: The Dispatcher [210] follows the well-known request-dispatcher design

pattern. It is responsible for receiving the incoming requests from the Front

Controller and forwarding them to the appropriate handler, through the ICloudAction,

Execution Stage of the Platform Service Workflow

141

which is explained below. As stated in Section 6.2, the requests are handled by the

CloudActions. Therefore the Dispatcher forwards the request to the appropriate

CloudAction. In order to do so the Dispatcher gains access to the platform service

states description file and based on the current state it triggers the corresponding

action.

ICloudAction: ICloudAction is the interface which is present at the framework at

design time and which the Dispatcher has knowledge about. Every CloudAction

implements the ICloudAction. That facilitates the initialisation of the new

CloudActions during run-time through reflection [214]. ICloudAction defines a

method called execute(), which all CloudActions need to implement. 	

Communication patterns: The framework supports two types of communication

pattern. The first one makes use of the Java Servlets and in particular the HTTP

Servlet Request and Response objects [210]. These objects are used by the

CloudActions in order to handle incoming requests and respond back to the caller.

The second type of communication is via the use of the REST protocol, which enable

the CloudMessages to perform external requests to the service providers.

Platform Service Registry: The Platform Service Registry, as the name implies,

keeps track of the services that the cloud application consumes. Every service, which

is used by the application, is listed in the Platform Service Registry. Its purpose is to

provide the software engineer with a mechanism for deploying and releasing services.

7.2 PSEC sequence of execution

In order to illustrate how the PSEC enables the execution of the workflow, the

example of the payment service is described. Figure 36 shows the execution flow of

the payment service. Particularly, it depicts the transition from the first to the second

state as depicted in Figure 30.

1. The client submits a purchase request to the cloud application.

2. The Front Controller receives the request. As mentioned above, it is the entry

point to the framework. All incoming requests are received by this

Execution Stage of the Platform Service Workflow

142

component. Subsequently, the Front Controller forwards the request to the

Dispatcher.

3. The Dispatcher needs to instantiate the appropriate CloudAction to handle the

request. In order to do that it reads the PaymentServiceStates description,

which lists the states and the respective actions to be called. The

ActionFactory is used to instantiate all CloudActions.

4. Once the Dispatcher obtains an instance of the concrete CloudAction

(FilloutFormAction), it calls the execute() method. As mentioned earlier in

Section 7.1, all CloudActions implement the interface ICloudAction.

5. The Payment Service Provider sends the transaction token to the

CloudApplication.

6. The Front Controller receives the request and forwards it to the Dispatcher.

7. The Dispatcher calls the ActionFactory and receives the concrete Action,

HanldePurchaseRequest CloudAction.

8. The HandlePurchaseRequest CloudAction needs to submit a charge request to

the payment provider. As stated in Section 6.2.2.1, CloudMessages are

responsible for submitting web requests. Therefore, it obtains an instance of

the SubmitPurchaseRequest CloudMessage using the CloudMessageFactory.

9. The SubmitPurchaseRequest CloudMessage sends a web request to the service

provider. Then it receives the response and forwards it back to the

CloudAction. The CloudAction evaluates the response and replies accordingly

to the client who initiated the request.

Execution Stage of the Platform Service Workflow

143

Figure 36: Payment service execution flow

Front
Controller Dispatcher

FilloutForm
CloudAction

CloudMessage
Factory

SubmitPurchaseRequest
CloudMessage

Dispatch	Request
Read	

PaymentServiceStates

ActionFactory

Create	
CloudAction

Return	
CloudAction

Execute

Create	
CloudMessage

<<External	System>>
PaymentServiceProvider

Submit	Request

Http	Request

Http	Response

Response

Return	CloudMessage

<<External	System>>
Client

PurchaseRequest

PurchaseRequest

HandlePurchaseRequest
CloudAction

Display	FilloutForm

Send	Transaction	
Tolen

Dispatch	Request

Read	
PaymentServiceStates

Create	
CloudAction

Return	
CloudAction

Execute

Respond	with	
Outcome

Execution Stage of the Platform Service Workflow

144

7.3 Design patterns used in the SCADeF framework

Throughout the design of the development framework, design patterns have been

adopted [162]. They describe certain classes and their interrelationships in order

to address a general design problem. The use of such patterns promotes

composability, maintainability and portability, features that should accompany the

development of modern software. Particularly, the following software design

patterns have been adopted:

1. Factory: This pattern, depicted in Figure 37, is used to enable the creation

of concrete objects without the client knowing which exact object is

instantiated. This way the client is decoupled from the process of object

creation and thus new types of objects can be added without the need to

change the client`s code. The factory pattern is used to instantiate

CloudActions. The Dispatcher is the client who requests the concrete

objects. New CloudActions can be added without the need to change the

Dispatcher`s code.

Figure 37: Factory Pattern

2. Front Controller: The Front Controller pattern, shown in Figure 38,, is

used in web-based applications and constitutes the entry point to the

application. The Front Controller component receives all incoming

requests and forwards them to the Dispatcher. The latter determines how

the requests are handled. The controller may perform initial tasks

applicable to all incoming requests such as authentication and

authorization. In the development framework, the Front Controller

receives the requests either from the client of the application or from the

Client

+CreateProduct()

Factory

+execute()

«interface»
Product

End1

End2

+execute()

ConcreteProductA

+execute()

ConcreteProductB

Execution Stage of the Platform Service Workflow

145

service provider and forwards them to the Dispatcher who decides on

which action should handle the request.

Figure 38: Front Controller

3. Template Method: The Template Method pattern, in Figure 39,, defines a

sequence of steps to execute a task. It allows subclasses to alter the way

certain steps are executed without changing the order. In the development

framework, this pattern is used to construct the internal behavior of the

CloudActions.

Figure 39: Template Method

 The CloudActions in the PSC define the steps required to handle the

request. However, the way these steps are executed may vary across the

service providers. Therefore, the CloudActions defined in the PC may

override the ones in the PSC. For example, the HandlePurchaseRequest

CloudAction, defines two steps: (i) submit charge request to the service

Client Controller

Dispatcher

Send	Request

Delegate	
Request

+templateMethod()
-primitiveOperationA()
-primitiveOperationB()

AbstractClass

+templateMethod()
-primitiveOperationA()
-primitiveOperationB()

ConcreteClass

Execution Stage of the Platform Service Workflow

146

provider and (ii) display transaction outcome. While, these steps are

applicable across the supported payment providers, the way they are

implemented differs. Thus the PCs are constructed to capture the

differences.

7.4 Summary

This chapter focused on the Execution Stage of the workflow of the platform basic

service. During this stage, the Platform Service Execution Controller (PSEC)

automates the execution of the workflow and thus the consumers of the framework

can use the various platform basic services without being concerned with the

specific workflow of the concrete providers. The work presented in this chapter

supports the Requirement 2 (R2), regarding the automatic execution of the

workflow by the development framework.

The next Chapter focuses on the Modelling Stage of the Platform Service API

Description part. Specifically, it describes the definition of the Reference API and

the subsequent mapping of the provider specific web API to the reference one.

Modelling Stage of the Platform Service API

147

Chapter 8

Modelling Stage of the Platform

Service API

Section 5.1 stated the main variability points that may arise across the different

categories of platform basic services and the corresponding providers which the

proposed development framework addresses. Those are: a) the differences in the

workflow during the execution of the operations of the various service providers,

b) the differences in the web API published by the providers, and c) the variations

in the configuration and authentication settings required by each provider.

Chapter 6 described the methodology, which is followed in order to address the

differences in the workflows. Particularly, it involved the definition of the

reference workflow and the subsequent mapping of the provider specific workflow

to the reference one. Chapter 7 discussed the way the execution of the workflow

can be automated by the SCADeF framework.

An analogous process is followed in this chapter in order to alleviate the

differences among the web APIs offered by the various service providers.

Addressing the heterogeneities among the APIs will further promote the wide

exploitation of the platform basic services. It will also contribute towards

enabling the software engineers to choose seamlessly the optimal service

providers, given each time certain requirements such as the cost and the quality of

the offered service. The configuration settings, which is the third variability

defined in Section 5.1, is also required during the construction of the web APIs

Modelling Stage of the Platform Service API

148

and thus contributes to the heterogeneity raised among the providers. Therefore

this chapter additionally describes the way the various configuration settings are

handled by SCADeF.

The structure of the Chapter is as follows:

Sections 8.1, 8.2 and 8.3 introduce the reader to the heterogeneities which may

arise among the web APIs of the various providers and gives a high level overview

of the proposed solution. The example of the e-mail service is used throughout

this Chapter to demonstrate how the proposed solution can abstract the differences

in the web APIs of the e-mail service providers.

Then, Sections 8.4 and 8.5 describe the Modelling Stage of the API description,

which is divided into the Platform Service Modelling Phase and the Vendor

Implementation Phase respectively, as shown in Figure 18 of Section 5.4.

Particularly, Section 8.4 defines the methodology for creating the Reference API

exposed to the developers while Section 8.5 focuses on capturing the provider

specific API and mapping it into the reference one. In order to complete the

construction of the API several configuration settings may be required depending

on the provider. Section 8.6 describes the way they are captured and handled by

the framework.

8.1 API variability example

Table 5 and Table 6 show two examples of API variability, which may be

encountered across certain service providers.

Table 5: API variability in the "SendE-mail" operation of the e-mailing service

SendGrid (Heroku) from to subject text

Amazon Simple

E-mail Service

Source Destination.

ToAddresses

Message.

Subject

Message.

Body.Text

Postmark (Heroku) From To Subject TextBody

Modelling Stage of the Platform Service API

149

The first one lists the parameters expected by three e-mailing service providers,

namely the SendGrid [35], the Amazon Simple E-mail Service [200] and the

Postmark [37] for the operation of sending an e-mail. The differences in the

parameters in the API of the three service providers are illustrated.

Likewise, the second table displays the parameters expected by two payment

service providers, namely Spreedly and Stripe, for the operation of charging a

payment card. There is a significant heterogeneity in the API offered by the

providers.

Table 6: API variability in the "chargeCard" operation of the cloud payment service

Spreedly

(Heroku)

amount payment_method_token currency_code

Stripe (Amazon) amount card currency

Both examples demonstrate the differences in the parameters across the APIs of

several providers offering the same platform basic service. This variation results

in changes in the code when different providers need to be deployed. Therefore a

mechanism is required to undertake the task of describing the provider specific

APIs and hiding the peculiarities of each provider from the software engineers.

8.2 High-level overview of the API abstraction mechanism

Figure 40 shows an overview of the abstraction mechanism. The developer

initiates the development of the application using a popular development

environment such as Eclipse [215] and a programming language such as Java.

When the application requires a platform basic service that is supported by the

framework, the API description of the service is inserted in the framework.

Consequently, the service description is parsed and the source code for the

particular service is generated. The abstraction mechanism consists of two main

parts, the API service description and the generation of the source code. The first

one involves the definition of a Reference API which is exposed to the users of the

framework and the subsequent mapping of the provider specific API to the

reference one. The second part includes the abstract platform service models,

Modelling Stage of the Platform Service API

150

which contain the template code common to all the services and the code

generator. The latter receives the abstract models and the Service Description

File, which was produced by the first part and subsequently, generates the source

code, which is included in the main software application. The whole process, as it

is explained in the next Sections, remains transparent to the users

Figure 40: Overview of the API service description mechanism

As mentioned in 5.4 the process of adding a platform service and service provider

to the framework is completed in three phases: a) the Platform Service Modelling

Phase, b) The Vendor Implementation Phase and c) the Execution Phase.

In this chapter the first and second phase are examined, namely the ones including

in the Modelling Stage of the Platform Service API Description.

8.3 The e-mail service example

In order to illustrate how the SCADeF framework can facilitate the API

abstraction, the example of the e-mail platform service will be followed. This

service has been chosen as an example, since it continuously gains attention and

Modelling Stage of the Platform Service API

151

has the tendency to become an essential part of the majority of the service-based

cloud applications, according to Gartner, the leading information technology

research company [216]. Furthermore, e-mail services are provided by all the

major cloud application platforms such as Heroku, OpenShift, Engine Yard, and

AWS.

The e-mail platform service (Figure 41) enables software developers to use

mailing functionality within their service-based cloud application without the need

to set up and maintain their own e-mailing servers. Instead service providers who

offer this service expose an API, which can be used in order to perform mailing

operations such as: send an e-mail, create mailing lists, retrieve sent e-mails etc.

Figure 41: E-mail Platform Service

8.4 Platform Service Modelling Phase

Similar to the Platform Service Workflow Description part, where it is shown how

the operation flow of the platform basic service providers can be abstracted, the

goal of this phase is to demonstrate how a Reference API, which abstracts the

respective web API of the concrete service providers, can be defined. Figure 42

shows the mapping of the provider specific APIs to the Reference API. The

software engineers can use the Reference API and gain access to the providers who

are supported by it. This Section describes the definition of the Reference API for

a given platform basic service.

Service-based	
Cloud	Application

E-mail	Platform	
Service

Recipient

Modelling Stage of the Platform Service API

152

Figure 42: Mapping of the provider specific API to the Reference API

The Reference API is defined based on the following steps, which are also shown

in Figure 43..

Figure 43: Steps for the definition of the Reference API

1. Study the service providers implementing the particular platform basic

service and conclude to a certain set to be included in the Reference API.

A large number of available platform basic service providers needs to be

examined in order to obtain an insight of the platform service and the

offered functionality. Then, we need to decide on the concrete list of the

providers to be considered for the Reference API. The decision is

primarily based on whether the service provider is supported by a cloud

application platform such as Heroku and Engine yard. Furthermore, the

provider needs to support the majority of the common operations and also

publish a RESTful API.

2. Study the APIs of the selected providers. After the examination of the

selected providers, the common operations and the parameters, to be

included in the Reference API, are determined. These operations and

Provider	API	A

Provider	API	B

Provider	API	C

Reference	API

Modelling Stage of the Platform Service API

153

parameters should be supported by all or the majority of the selected

providers.

3. Define the parameters and the operations for the Reference API. The final

step includes the definition of the naming of the operations and the

parameters of the Reference API that is exposed to the users of the

framework. The names are chosen so that they are self-descriptive and as

close as possible to the original ones.

Step 1 and Step 2 are included in the Task 1b of Figure 21 of Section 5.4.3,

whereas the Step 3 is included in the Task 2b.

 Analysis of the API of the platform basic service providers 8.4.1

 The e-mail service providers 8.4.1.1

E-mail service providers were examined and analysed in order to derive a common

set of operations offered by the majority of providers, as well as the expected

parameters for each operation. The concrete service providers, which are

considered, are primarily those offered via major cloud application platforms such

as Heroku, Engine Yard and OpenShift. These are the following: Mailgun,

SendGrid, Postmark, Mailjet [217].

Mailgun is a transactional e-mail service provider which enables developers to

send and receive e-mails via its RESTful API. It is offered via major application

platforms such as: Heroku, Rackspace, Engineyard, CloudControl [218] and

Appfog [96].

SendGrid has been found in 2009 and has become the industry`s leading cloud-

based e-mail delivery service. The company offers both transactional and

marketing e-mail delivery. SendGrid is offered by Heroku, Rackspace [219],

Engine Yard, OpenShift and Cloudbees [220].

MailJet is an e-mail delivery platform for transactional and marketing e-mails.

The company was founded in 2010. MailJet is primarily offered via Content

Management Systems such as WordPress, Joomla and Drupal. It has been

selected as a candidate for the Reference API, due to its growing popularity in the

Modelling Stage of the Platform Service API

154

domain of e-mail services and also due to the fact that it provides its functionality

via a RESTful API.

Similar to the previous providers, Postmark offers capabilities to the users for

sending, receiving, and manipulating e-mails via a RESTful API. Postmark is

available via Heroku and Engine Yard application platforms.

 The e-mail service operations to be examined 8.4.1.2

Table 7 depicts the operations on which we focus and the operations that each

provider supports. As mentioned at the beginning of this Section the example

serves the purpose of illustrating how the abstraction mechanism can be employed

in practice. Therefore, only a common subset of the operations offered by each of

the e-mail service providers is included. Whereas this chapter analyses what is

common in the APIs offered by different platform service providers, the following

Chapter 9 will also discuss how to handle operations, which are offered only by

specific providers.

Table 7: List of mailing operations supported by the service providers

Providers

Operations

Mailgun SendGrid Postmark Mailjet

Send E-mail ! ! ! !

Create

Mailing List

! ! " !

Search ! " ! !

Bounce ! ! ! !

1. Send E-mail: This is the basic operation of the e-mail service enabling an

application to send e-mails.

2. Create Mailing Lists: Most of the providers allow the creation of mailing

lists to enable bulk send of e-mails.

3. Search: This operation enables the software engineers to retrieve sent e-

mails based on certain criteria.

Modelling Stage of the Platform Service API

155

4. Bounce: E-mails, which have not been delivered due to invalid address can

be retrieved using the bounce operation.

Next, for each operation, we list the parameters expected by each provider

respectively. For each operation a table is provided followed by the explanation of

the parameters. The explanation is provided only for the first provider of the table

and is also valid for the parameters of the rest of the providers listed in the same

row.

 Send e-mail operation parameters 8.4.1.3
Table 8: Send e-mail operation parameters

Mailgun SendGrid Postmark Mailjet

to to To to

cc cc Cc cc

bcc bcc Bcc bcc

text text TextBody text

from from From from

subject subject Subject subject

1. to: It denotes the recipient of the e-mail.

2. cc: It denotes the recipients who are included in the “carbon copy” list.

3. bcc: It denotes the recipients who are included in the “blind carbon copy”

list.

4. text: This parameter includes the body of the e-mail.

5. from: It denotes the sender of the e-mail.

6. subject: As the name implies, the parameter contains the subject of the e-

mail.

Modelling Stage of the Platform Service API

156

 Bounce operation parameters 8.4.1.4
Table 9: Bounce operation parameters

Mailgun SendGrid Postmark Mailjet

limit limit count limit

skip offset offset skip

1. limit: It denotes the maximum number of bounced e-mails to be listed.

2. skip: It denotes the number of bounced e-mails to be skipped.

 Search operation parameters 8.4.1.5
Table 10: Search operation parameters

Mailgun SendGrid Postmark Mailjet

limit " count limit

recipient " recipient to_email

from " fromemail from

tag " tag from_domain

1. limit: It denotes the maximum number of e-mails to be returned.

2. recipient: Search criterion based on the recipient.

3. from: Search criterion based on the sender of the e-mails.

4. tag: Search criterion based on the tagging of the e-mails.

 Create mailing list operation parameters 8.4.1.6
Table 11: Create mailing list operation parameters

Mailgun SendGrid Postmark Mailjet

name List " Name

1. name: It denotes the name of the mailing list.

 Build Platform Service Reference API 8.4.2

The last step in the process of creating the Reference API, as shown in Figure 43,

is to define the reference parameters for each operation, which are exposed to the

Modelling Stage of the Platform Service API

157

developers. The administrator of the framework determines the parameters’

naming. The main purpose of the reference parameters is to abstract the provider

specific ones.

Table 12 shows the reference parameters for each of the operations, which are

included in the Reference API.

Table 12: Reference API

Send E-mail Bounce Search Create Mailing List

to limit limit listName

cc offset recipient

bcc from

text limit

from tag

subject

By nature, abstraction can only accommodate the common functionality of the

providers under consideration. Therefore, inevitably certain provider specific

functionality is left out. Sections 9.3.1 and 9.3.2 discusses how the framework can

handle the additional functionality.

 The Service Description File 8.4.2.1

The information, which is included in the Reference API, namely the operations

and the parameters of platform basic service are captured and represented in an

XML file. An excerpt of the file, which is known as Service Description File, is

shown in the Listing 3.

The XML file includes the name of the service, namely e-mail service, the

supported operations, as those defined earlier in the Section and the parameters

included in each operation, which are captured in the key attribute. Next, the

service providers’ information will be added in the Service Description File.

Modelling Stage of the Platform Service API

158

Listing 3: Reference API captured in the Service Description File

<c:services>
 <c:service name="E-mailService">
 <c:operation name="bounce">
 <c:parameters>
 <c:parameter>
 <c:key>limit</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>offset</c:key>
 </c:parameter>
 </c:parameters>
 </c:operation>
 <c:operation name="search">
 <c:parameters>
 <c:parameter>
 <c:key>limit</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>recipient</c:key>
 </c:parameter>
 </c:parameters>
 </c:operation>
 <c:operation name="createMailingList">
 <c:parameters>
 <c:parameter>
 <c:key>listName</c:key>
 </c:parameter>
 </c:parameters>
 </c:operation>
 <c:operation name="sendMail">
 <c:parameters>
 <c:parameter>
 <c:key>to</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>cc</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>bcc</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>from</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>text</c:key>
 </c:parameter>
 <c:parameter>
 <c:key>subject</c:key>
 </c:parameter>
 </c:parameters>
 </c:operation>
 <c:service>

</c:services>

Modelling Stage of the Platform Service API

159

8.5 Vendor Implementation Phase

After having defined the Reference API, the next task (task 3b of Figure 21) is to

build the provider specific API.

 Build the Provider-Specific API 8.5.1

The construction of the provider-specific API entails mapping the Reference API

onto the provider`s API. The mapping is required by the API Client Generator in

order to generate the client adapter as it is described in Section 9.1.1.

The mapping of the APIs is represented in XML template files. There are certain

reasons why XML files were selected to capture the API. First XML provides a

simple way to read and encode information. There are multiple library parsers

available, which enable the creation and the manipulation of XML files.

Furthermore, XML provides extensibility and thus allows new tags to be added

when required. Being a W3C [221] standard, makes the language an industrial

standard and therefore promotes portability and interoperability. It is not the first

time that XML is used to describe the service related information. Major web

service description languages such as WSDL [69] , WADL [222], and SA-WSDL

[223] are based on XML. An alternative solution, adopted by related work such as

jClouds and mOSAIC, is to hardcode the information related with the web API in

the source code. However, such an approach impacts adversely on the

maintainability and the extensibility of the approach. Every update, which occurs

in the API, needs to be propagated manually to the source code.

 The Service Description File including the vendor’ API 8.5.1.1

Listing 4 shows an excerpt from the Service Description File including the MailJet

mailing provider. In the excerpt we observe the mapping of the provider specific

API to the reference one for the operations described earlier in the Section. The

mapping is represented as a key-value pair. For example, for the operation

“bounce” there are two pairs of parameters. The first one is key: offset, value: skip

where the key represents the Reference API and the value represents the provider`s

API. The second one is key: limit, value: limit, where it coincides that the key and

Modelling Stage of the Platform Service API

160

the value are the same. Likewise, the mapping of the rest of the parameters and

the operations are completed.

Listing 4: Mapping of provider specific API to the Reference API

<c:services>
 <c:service name="E-mailService">
 <c:providers>
 <c:provider name="Mailjet"

baseUrl="htps://api.mailjet.com/v3"
userName="testuser"
password="pass1">

<c:operation name="bounce"
 endpoint="/reportEmailbounce"
 method="GET">

 <c:parameters>
 <c:parameter>
 <c:key>limit</c:key>
 <c:value>limit</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>offset</c:key>
 <c:value>skip</c:value>
 </c:parameter>
 </c:parameters>
 </c:operation>
 <c:operation name="search"

endpoint="/reportEmailsent"
method="GET">

 <c:parameters>
 <c:parameter>
 <c:key>limit</c:key>
 <c:value>limit</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>recipient</c:key>
 <c:value>to_email</c:value>
 </c:parameter>
 </c:parameters>
 </c:operation>
 <c:operation name="createMailingList"
 endpoint="/messageList"

 method="GET">
 <c:parameters>
 <c:parameter>
 <c:key>listName</c:key>
 <c:value>Name</c:value>
 </c:parameter>
 </c:parameters>
 </c:operation>
 </c:provider>
 </c:providers>
 </c:service>
</c:services>

Apart from the mapping of the parameters, the Service Description File includes

information about the configuration settings required by the specific service

providers. Next Section discusses the various types of the configuration settings

and the way they are handled by SCADeF.

Modelling Stage of the Platform Service API

161

8.6 Configuration Settings

The variability in the configuration settings is the third variability point when

dealing with multiple platform basic services and service providers, as mentioned

in Section 5.1. The fact that a service-based cloud application may depend on

several platform basic services results in a significant number of configuration

settings, which need to be handled by the software engineers. These settings

spread across different service providers and operations. Therefore, the process of

maintaining the required settings, and distributing them where needed, may

become strenuous and error prone.

This Section attempts to identify and classify the various configuration settings

into certain categories. For example there are settings, which are required by all

operations of a service provider whereas there may be others applicable only for

specific operations. An analogy can be drawn with class variables versus method

variables, where the former are valid for all the methods of the class, whereas the

scope of the latter is only the body of the method for which they are defined [211].

Subsequently, a mechanism is described for handling the settings according to the

category to which they belong and thus offloading this task from the users of the

framework.

 Classification of the configuration settings 8.6.1

The configuration settings are classified based on two factors. The first one

determines whether the setting is expected by the service provider as a parameter

in the web request or is needed in order to construct the request. The second factor

examines whether the settings are applicable for all the operations of a service

provider or only to a particular operation.

Based on the above two factors the configuration settings can be classified in two

categories each one divided in two sub-categories (Figure 44).

Modelling Stage of the Platform Service API

162

Figure 44: Configuration settings

1. Settings required as parameters in the web request: The first category

of settings includes the ones who are required by the service provider and

needs to be included as parameters in the web request. Example of such

settings is the gateway_token required by Spreedly and the client_id

required by the Google Authentication service. Settings in this category

can further be classified in two sub-categories.

a. Provider specific settings: Settings in this category are common

for all the operations of a service provider and need to be present

during the operation invocation. The client_id in the Google

Authentication service is such an example, as shown later in the

next Section, since it is required as parameter across all the

operations during the authentication process.

b. Operation specific settings: Settings in this category are applicable

only to specific operations. Thus they need to be included only in

the invocation of the specific operations. Such an example is the

gateway_token required by the Spreedly payment service during the

operation of charging a card and is used to denote the particular

payment gateway to be deployed to execute the transaction.

2. Settings required to construct the web request: Contrary to the previous

category, settings which are classified in this category are needed in order

to construct the HTTP request to invoke a service provider’s operation.

Such examples are the endpoint and the credentials required during the

web request. The complete list of the settings and further information

Modelling Stage of the Platform Service API

163

about the HTTP requests is provided during the description of the

Execution Phase in Section 9.1.2 of the next Chapter.

a. Provider specific settings: Examples of settings, which belong in

this category, are the base_URL and the user’s credentials. The

first declares the URL of the service provider against which API

requests are made. The credentials are used in each request in order

for the service provider to be able to authenticate the users.

b. Operation specific settings: Example of setting, which belongs in

this category, is the endpoint that denotes the specific operations to

be invoked.

Independently from the category the configuration settings are required to be

present when a web request is made to the service provider. For that reason they

are included in the Service Description File, which contains the information for

the construction of the web clients as mentioned in 8.5. The reasoning behind the

classification performed in this Section is that the code generator handles them

separately during the generation of the web clients as it is described in Section

9.1.2 of the next Chapter.

 Service Description File including the configuration settings 8.6.2

A real-world example where the various categories of configuration settings are

included is shown in Listing 5. It represents part of the Service Description File

for the Google Authentication service.

The settings that are used in order to construct the HTTP requests are encoded as

XML attributes. As described earlier in Section 8.6.1 there are the provider

specific and the operation specific settings. In this example the provider specific

setting is encoded in the XML element <serviceProvider> and are the base_URL

and the name. The operation specific settings are encoded in the each operation

separately, inside the <operation> XML element. These are the endpoint the

(HTTP) method1, and the name.

1 The endpoint and the HTTP method are part of the HTTP request and are further described in
Section 9.1 of the next Chapter.

Modelling Stage of the Platform Service API

164

Listing 5: Configuration settings captured in the Service Description File

<c:serviceProvider name="GoogleAuthentication"
 baseUrl="https://accounts.google.com/o/oauth2">

 <c:ProviderParameterSettings>
<c:parameters>

 <c:parameter>
 <c:key>client_id</c:key>
 <c:value>433112534981</c:value>
 </c:parameter>

 <c:parameter>
<c:key>redirect_uri</c:key>
<c:value>http://localhost:8090/oauth2callback</c:value>

 </c:parameter>
<c:parameters>

 </c:ProviderParameterSettings>
 <c:operations>

 <c:operation name="requestCode" endpoint="/auth" method="POST">
 <c:OperationParameterSettings>

 <c:parameters>
 <c:parameter>
 <c:key>reponse_type</c:key>
 <c:value>token</c:value>
 </c:parameter>

 <c:parameter>
 <c:key>scope</c:key>

 <c:value>force</c:value>
 </c:parameter>

 <c:parameters>
 </c:OperationParameterSettings>
 </c:operation>

 <c:operation name="requestToken" endpoint="/token" method="POST">
 <c:OperationParameterSettings>

 <c:parameters>
 <c:parameter>
 <c:key>client_secret</c:key>
 <c:value>D9yv8uq1gVF30z17dWr6ffQEF</c:value>
 </c:parameter>

 <c:parameter>
 <c:key>grant_type</c:key>

 <c:value>authorization_code</c:value>
 </c:parameter>

 <c:parameters>
 </c:OperationParameterSettings>
 </c:operation>
 </c:operations>
</c:serviceProvider>

The settings, which are required as parameters in the web requests, are encoded as

key-value XML elements. Particularly, the provider specific settings are nested in

the <ProviderParameterSettings>. These are the client_id and the redirect_uri

and are used in both operations of the service. The operation specific settings are

nested inside the <OperationParameterSettings> XML element. In the case of the

requestCode operation these settings are the response type and the force. In the

Modelling Stage of the Platform Service API

165

requestToken operation the operation specific settings are the client_secret and the

grant_type1.

Using the method described in this Section, the various configuration settings are

encoded in the Service Description File. Thus, they can be handled by the

framework and specifically by the code generator as it is described in Section 9.1.2

of the next Chapter.

8.7 Summary

This Chapter focused on the mechanism via which the SCADeF framework aims

to address the variability in the APIs that the various service providers publish. It

includes the definition of the Reference API that is exposed to the application

developers and constitutes a common description of the operations and the

parameters offered by the providers. Subsequently, during the Vendor

Implementation Phase, the providers’ specific APIs are mapped to the reference

one.

In addition, a classification scheme of the configuration settings has been

proposed. According to that the settings which are required for the construction of

the HTTP request are distinguished from the ones used as parameters in the

request. Moreover, depending on whether the settings are valid for a single

operation or are used across all the operations of the provider, they are classified

as operation specific or provider specific respectively.

The information related both to the API and the configuration settings are captured

in the Service Description File, defined in Section 8.4.2.1. This paves the way for

the automatic generation of the source code of the client adapters, which is

described in the next chapter.

The work presented in this chapter supports the Requirement 3 (R3), listed in

Section 5.3, regarding the alleviation of the API variability across the various

1 The detailed description of each of the parameters used in the Google authentication service can
be found in the following URL: https://developers.google.com/identity/
protocols/OAuth2WebServer

Modelling Stage of the Platform Service API

166

service providers. It additionally fulfils the Requirement 8 (R8), which dictates

the management of the configuration and the authentication tokens required by the

providers. Furthermore, the methodology described in this Chapter, regarding the

abstraction of the provider specific APIs, aims to enable the administrator to

enrich the framework with additional platform basic services and providers.

Therefore, this Chapter supports the Requirement 7 (R7) related to the distinct role

of the administrator as well as the Requirement 5 (R5) associated to the generic

and expandable nature of the framework.

Execution Stage of the Platform Service API

167

Chapter 9

Execution Stage of the Platform

Service API

Chapter 8 described the methodology through which the Reference API can be

defined and the provider specific API can be mapped to the reference one. At the

same time the configuration settings required for each concrete provider are also

captured. The information is stored in the Service Description File. This

information can be exploited in order to generate automatically the source code

required to invoke the operations of the service providers.

The aim of this Chapter is to demonstrate the Execution Phase during which the

code generation takes place. The outcome of the generation is a set of interfaces

with the operations offered by the platform basic service and the respective

implementation of the specific providers supported by SCADeF. The software

developers access only the service interfaces while the concrete implementation

remains transparent. This contributes to the initial aim of this research work,

which is to “hide” the providers’ implementation from the software developers.

The structure of the Chapter is as follows:

Section 9.1 describes the API Client Generator component which is responsible

for the code generation. Specifically, certain code generation techniques are

mentioned such as the visitor-based and the template-based. Subsequently, the

Section discusses the process adopted by this research work and states the concrete

input and output components of the code generator. The way the configuration

Execution Stage of the Platform Service API

168

settings are handled by the code generator is also described. A hybrid approach is

followed which means that code is generated both at design and at run-time.

Section 9.2 compares the hybrid approach with alternative design methods such as

a complete run-time approach. Finally, Section 9.3 concludes the Section by

mentioning certain limitations of the proposed solution and how these can be

addressed.

9.1 Execution Phase

The web API usually follows the principles of the REST architectural style. REST

is an architectural style to develop web applications. Contrary to the more

complex protocol SOAP, REST relies on simple HTTP request- response

mechanism.

The basic parts when forming an HTTP request are:

1. Request URI: The URI, uniquely identifies the resource at which the

request is targeted.

2. Request Method: There are four dominant HTTP methods used in the

REST web API and identify the action to be performed: a) GET is used to

retrieve resources, b) POST enables the creation of new resources, c) PUT

is often used for updating operations and d) DELETE enables the deletion

of resources.

3. Request Parameters: Parameters can be included in the request in two

ways. In the case of the GET method, the parameters most often are

appended in the URI. On the contrary, POST requests incorporate the

parameters in their body.

4. Credentials: The credentials are used to authenticate the sender of the

request and are usually in the form of: username:password.

5. Request Header: The header specifies the meta-data of the request such as

the media type of the body, the date and the authentication credentials for

HTTP authentication.

Execution Stage of the Platform Service API

169

The construction of the web client, namely the HTTP requests, may be an error-

prone and time-consuming process for the developers. Thus the proposed client

generator undertakes the task of generating the source code, which implements the

requests to the platform basic service providers. At the same time the interfaces,

which abstract the various concrete implementations, are also generated.

 API Client Generator 9.1.1

The API Client Generator essentially consists of a code generator, which enables

the automatic generation of the source code required to invoke the APIs of the

concrete service providers. As mentioned in Section 4.2.5, there are two major

code generation approaches, namely the Visitor-based and the Template-based.

The former uses a visitor mechanism to scan through the structure of the input

model and accordingly it produces the output code in a text stream. This approach

is more suitable when there is a significant variation among the input and output

models and thus no template can be defined to accommodate the generated code.

 By contrast, the latter approach is recommended when large part of the output

model is common for all the input models and only specific pieces of information

vary. In this case pre-defined templates of the output code are used and during the

transformations only the missing information is filled based on the input models as

was depicted in Listing 1.

This research work adopts a template-based approach. The task of the code

generator is to produce the web clients. Therefore, code templates are constructed

to keep the common source code of the web client and only the information

pertaining to the individual service provider is filled each time.

 Code Generation Process 9.1.1.1

The process of the code generation is depicted in Figure 45. The code generator

accepts as input the following:

The Service Description File: As mentioned in Section 8.5, this file contains

the services which are used by the application, the concrete providers which

Execution Stage of the Platform Service API

170

are supported, as well as the mapping between the Reference API and the

provider specific API.

The Template files: These files contain the source code, which is common

among the generated classes, also known as boilerplate code.

The code generator reads the Template Files and fills in the missing information

regarding the services and the concrete providers as those obtained from the

Service Description File. Subsequently, the following Java classes are generated

(Example of generated code can be seen in Appendix D):

A set of Java interfaces, which give access to the platform basic services. One

interface is generated for each service supported by the framework. It contains

the operations provided by the services and the Reference API as described in

the Service Description File.

A set of Java classes, which give access to the provider implementations. For

each concrete service provider, which is supported by the framework, a Java

class is generated which implements the service interface. It essentially

includes the provider`s information (URL, credentials, configuration settings)

and the concrete parameters as those are specified in the web API.

Figure 45: Code generation process

Code	Generator

Service	Description	File

Template	Files

Service	Interfaces Provider	Implementations

Execution Stage of the Platform Service API

171

 Components involved in the code generation process 9.1.1.2

Figure 46 describes the components involved in the code generation process.

Those with stripes are components provided by the SCADeF framework, whereas

the ones with blue color are generated by the code generator.

Figure 46: Components involved in the code generation process

Specifically, the components involved are:

1. Service Description File: This contains information about the generated

services and the concrete providers.

2. Platform Service Registry: This reads the Service Description File and

generates accordingly, the service interfaces, and the concrete

implementation for each provider described in the file.

3. IService: This is an interface to all the services supported by the

framework. It is “known” to the Platform Service Registry at design time.

4. IConcreteService: This is an interface to each concrete category of service

providers. There is a separate interface for the mailing service, the

payment service and the authentication service. The ConcreteService

interfaces are generated by the Platform Service Registry based on the

Service Description File.

Execution Stage of the Platform Service API

172

5. ConcreteProvider: The ConcreteProviders contain the specific

implementation of each specific service provider, which is described in the

Service Description File. They essentially contain the actual web client

implementation, which is generated by the Platform Service Registry.

 Accessing the output files of the code generation process 9.1.1.3

Once the code generation process is completed, the software developers (here

referred to as the Client) can make use of the generated services and providers.

Figure 47 shows the sequence followed in order for the Client to gain access to the

services and the concrete provider.

1. Initially, the Platform Service Registry reads the Service Description File,

which has been edited by the user of the framework at design time.

Consequently, the service interfaces and the concrete implementations are

generated. It also keeps track of the concrete providers selected to

implement each service.

2. When the Client requires a specific service, it requests it from the Platform

Service Registry. The latter determines the concrete provider, which

implements the service and returns an instance to the Client.

Figure 47: Code generation sequence diagram

Client
PlatformService

Registry

Read	Service	Description	File	
and	run	the	code	generator

GetService

Determines		and	instantiate	the	
concrete	Provider

Return	Concrete	Provider

Execution Stage of the Platform Service API

173

 Code generation of the configuration settings 9.1.2

The previous Section discussed the code generation of the Reference API, which is

exposed to the software developers as well as the web client, which is required for

the invocation of the operations of the service providers. As mentioned in Section

8.6 during the invocation of the operation several configuration settings are

required.

The configuration settings where categorised based on whether they are used for

the construction of the web request or as parameters during the submission of the

web request to the provider. This Section discusses how the code generator

handles them depending on the category in which they belong. Listing 6 depicts

part of the configuration settings for the Google Authentication service.

Listing 6: Part of the Google Authentication configuration settings

<c:serviceProvider name="GoogleAuthentication"
 baseUrl="https://accounts.google.com/o/oauth2">
 <c:ProviderParameterSettings>

<c:parameters>
 <c:parameter>
 <c:key>client_id</c:key>
 <c:value>433112534981</c:value>
 </c:parameter>

 <c:parameter>
 <c:key>redirect_uri</c:key>
 <c:value>http://localhost:8090/oauth2callback</c:value>
 </c:parameter>

<c:parameters>
 </c:ProviderParameterSettings>
 <c:operations>

 <c:operation name="requestCode" endpoint="/auth" method="POST">
 <c:OperationParameterSettings>

 <c:parameters>
 <c:parameter>
 <c:key>reponse_type</c:key>
 <c:value>token</c:value>
 </c:parameter>

 <c:parameter>
 <c:key>scope</c:key>

 <c:value>force</c:value>
 </c:parameter>

 <c:parameters>
 </c:OperationParameterSettings>
 </c:operation>
 </c:operations>
</c:serviceProvider>

The XML attributes baseURL, endpoint and method are required for the

construction of the HTTP request. The code generator is aware of the context of

these attributes and accesses their values in order to fill in the Template File,

Execution Stage of the Platform Service API

174

which contains the boilerplate code for all the web requests. By contrast, the XML

elements client_id, redirect_uri, response_type and scope, which are nested in the

XML element <parameter>, are used as parameters in the web request. In this

case the code generator does not need to know the context of this elements. It only

appends them in the list of the parameters during the invocation of the operation,

together with their corresponding values.

The separation of the settings into provider and operation specific follows the

concept of class inheritance [211]. Inheritance contributes to code reuse by

placing the common behaviour among the classes, such as class variables and

methods, to a super class. Likewise, the settings which are common to all

operations, are placed in a higher level of hierarchy, namely the provider specific

settings Section. Thus the user of the editor saves time and effort by defining them

only in one place in the Service Description File, and also the code generator

accesses them only once.

9.2 Alternative design approach

This Chapter described the way the software developers can use the services

supported by SCADeF and the construction process of the web clients for the

invocation of the concrete service providers. The intention of the author is

twofold: firstly, to standardise and automate the process of using a service and

invoking the concrete provider; and secondly, to keep a familiar programming

style for the users.

Therefore a hybrid solution has been adopted, where the construction process

takes part partially at design-time and partially at run-time. The service interfaces

and the concrete providers who are described in the Service Description File are

generated at design-time. Thus the software developers can use the interfaces in

order to gain access to the specific services while at the same time the concrete

providers are not yet determined. Then at run-time when a service invocation

occurs, the respective provider is determined and instantiated, based on the

consumer’s selection which is captured in the Service Description File.

Additional providers can be supported at run-time. They are included in the

Execution Stage of the Platform Service API

175

Service Description File and the Platform Service Registry undertakes the

generation of the respective web clients. The whole process is transparent to the

user of the framework. Consequently, new service providers can be selected at

run-time, which further promotes the substitutability of the software.

The proposed solution best meets the requirements listed in 5.3. However, this is

not the only possible solution. An alternative design suggests that both the service

and the provider selection take place at run-time and no code is generated at

design-time. This implies that there are no separate interfaces for each service as

well as no implementation for each concrete provider. Instead there is a generic

web client mechanism, which is configured each time accordingly to serve a

request for a particular service and a specific provider.

Contrary to the proposed solution, the benefit of the alternative approach is that at

run-time additional providers as well as categories of services can be added. Since

there are no service interfaces generated at design-time a new service along with

its operations can be described in the Service Description File and subsequently

the web client mechanism constructs the concrete service invocation upon request.

However, the alternative approach presents a number of drawbacks. The fact that

both the service and the provider are configured at run-time implies that the user

should provide the following pieces of information: 1) the name of the service, 2)

the name of the operation, and 3) concrete parameters. These pieces of

information should match accurately the ones specified in the Service Description

File. This fact adds a burden for the user and makes the process error prone.

Furthermore, the programming style of this approach deviates from the traditional

one where the developers have at hand the interfaces with the provided operations

and the expected parameters. Several IDEs, such as Eclipse, Visual Studio and

Netbeans offer convenient auto-completion features based on the classes available

at design-time. Such features are not applicable for the alternative approach.

Moreover, the construction of the web requests at real-time may impose a

performance overhead. This overhead may be a deterrent factor for time-critical

applications.

Execution Stage of the Platform Service API

176

A second look at the benefit that this approach offers may reveal that it might not

be that useful for the users. The ability to invoke a new category of service at run-

time, such as the payment service or the e-mailing service, implies that the

application should be capable of “understanding” the new service and efficiently

communicate with it. However, such a case would require additional changes in

the business logic of the application, which could only be performed at design

time. Therefore the benefit of adding a new service at run-time is raised.

An intermediate approach between the proposed one and the alternative which was

presented in this Section is to generate the service interfaces at design-time

whereas let the web request to be constructed on the fly at run-time. The service

interfaces, which contain the operations supported by each service, are generated

automatically by the code generator. Thus the software developers can make use

of them while developing the cloud application. By contrast, the concrete

implementation of the service providers is not generated automatically as

suggested by the presented approach in Section 9.1.1. Instead an engine

undertakes the task of constructing the web request on the fly by fetching the

necessary information from the Service Description File once an operation from

the service operation is invoked.

This approach entails two limitations. Since the construction of the request takes

place at run-time a performance overhead is imposed which may not be negligible

in time critical applications. Moreover, in case the developer needs to interfere to

the provider implementation in order to change it or enhance it, the framework

needs to be bypassed and a separate implementation needs to be created. By

contrast, the proposed approach involves the generation of the provider

implementation. In this case the software developer can have direct access to the

implementation and modify it accordingly.

Keeping the previous remarks in mind, the decisions for the final design of the

SCADeF framework, which was described in this chapter, were based on the

requirements for maintaining a balance between the flexibility of the framework

and the provision of a user-friendly tool, which adopts a familiar programming

style for the developers.

Execution Stage of the Platform Service API

177

9.3 Limitations of the current approach

This Section discusses certain design concerns encountered throughout the

construction of the API abstraction mechanism described in Chapter 8 and Chapter

9. They are essentially centered on the issue of the software API abstraction and

how to achieve a balance between an efficient abstraction without compromising

the functionality and the peculiarities of the service providers. Similar issues have

been encountered by related approaches dealing with cloud service API

abstraction, such as jClouds, mOSAIC, openTOSCA as we discuss later in this

Section.

 Design Issue 1: Missing parameters 9.3.1

Not all the platform service providers offer exactly the same set of parameters for

a given operation. Additional, optional parameters may be available by specific

providers offering extra functionality. Table 13 lists the supplementary parameters

available by the e-mailing service providers described in this chapter for the

operation “send email”.

Table 13: List of additional parameters offered by the e-mailing service providers for the
operation “send email”

Mailgun SendGrid Postmark Mailjet

o:deliverytime Tag date Mj-prio

o:testmode ReplyTo ccname Mj-trackclick

o:campaign TrackOpens bccname

 Headers fromname

The parameters are self-explanatory and thus no further description is provided.

For further details on the functionality of the parameters the reader may look up

the API of the service providers which is described on their website. The link to

the providers’ website is provided in the references Section.

There are two possible solutions to address the design issue. The first one

involves direct access of the user of the framework to the native web client for the

Execution Stage of the Platform Service API

178

specific provider. Therefore, when the users require a specific parameter, which is

not available by the Reference API, they can bypass it and instead access the low

level API for the specific provider.

SCADeF directly accommodates this solution. The additional parameters are

included in the Service Description File and the code generator produces the

native operations with the additional parameters. Listing 7 shows the additional

parameters, which are included in the “send email” operation of the Postmark e-

mail service provider within the element extra.
Listing 7: Additional parameters included in the Service Description File

<c:services>
 <c:service name="E-mailService">
 <c:providers>

<c:provider name="PostMark"
baseUrl="htps://api.postmarkapp.com"
serName="testuser"
password="pass1">

 <c:operation name="sendEmail"
 endpoint="/email"
 method="POST">

 <c:parameters>
 <c:parameter>
 <c:key>to</c:key>
 <c:value>to</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>cc</c:key>
 <c:value>cc</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>bcc</c:key>
 <c:value>Bcc</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>from</c:key>
 <c:value>From</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>text</c:key>
 <c:value>TextBody</c:value>
 </c:parameter>
 <c:parameter>
 <c:key>subject</c:key>
 <c:value>Subject</c:value>
 </c:parameter>
 </c:parameters>
 <c:extra>
 <c:parameter>date</c:parameter>
 <c:parameter>ccname</c:parameter>
 <c:parameter>bccname</c:parameter>
 <c:parameter>fromname</c:parameter>
 </c:extra>
 </c:operation>
 </c:provider>
 </c:providers>
 </c:service>

</c:services>

Execution Stage of the Platform Service API

179

A similar solution is also offered by jClouds, the mOSAIC and the openTOSCA.

They provide access to the native drivers, when the users need a specific

functionality of the service providers. The benefit of this first solution is that it

tackles the issue in a simple and straightforward manner. However, it breaks the

encapsulation and cancels the abstraction mechanism.

A second solution proposes a callback mechanism through which the extra

parameters are passed from the user (client) to the web client for constructing the

web request. Figure 48 describes the mechanism.

Figure 48: Callback mechanism for passing additional parameters

1. Initially, the client invokes an operation of the Service Provider through the

IService interface, which describes the Reference API. It includes the

parameters as those listed in the Reference API.

2. The web client of the particular service provider executes a callback

function asking the client for any additional parameters for the given

function.

3. The client provides the additional parameters, if any. Subsequently, the

web client constructs and executes the web request.

This second solution is better aligned with the abstraction framework, since it

makes use of the Reference API. In this sense it is more elegant than the first

solution. However, with respect to the complexity involved, it requires that users

become familiar with the callback mechanism and how they can make use of it.

Execution Stage of the Platform Service API

180

Therefore, regarding the simplicity and the ease of use, the first solution proves to

be more effective.

 Design Issue 2: Missing operations 9.3.2

Not all the platform service providers offer the same set of operations. There may

be providers who offer additional operations and thus more functionality. This

issue is similar to the one discussed above. In order to cope with this, the first

solution above is adopted, namely the users gain access to the native web client

which implements the additional operations. The operations are described in the

Service Description File and the code generator produces the supplementary

operations.

 Design Issue 3: Handling the response of a service operation 9.3.3

The current implementation of the API abstraction mechanism is able to abstract

and unify the specific APIs exposed by the service providers as described

throughout the Chapter 8 and Chapter 9. However, at this stage it does not act

upon the response received by the providers. This means that it is up to the

developer to handle the returned response of an operation.

Translating the outcome message from the provider means that the framework

makes the application aware of the context of the message content. This allows

the application to use the message for performing a business action or invoking

another web service. However, this touches upon the field of service orchestration

where a business process can interact with internal or external web services [224].

There are established and mature tools such as Business Process Execution

Language (BPEL) and the WSDL explaining how orchestration can be achieved.

By contrast the focus of the SCADeF framework is to abstract the differences in

the web API of the various platform basic service providers rather than

orchestrating the execution and invocation of the various services.

However, SCADeF can be extended in order to accommodate the response of the

providers. The same methodology, as described in Chapter 8 and Chapter 9, can

be adopted. According to that a reference response, which is exposed to the

Execution Stage of the Platform Service API

181

software developers, is defined. Subsequently, the various providers’ responses

are captured and mapped to the reference one. Then at run-time when a response

is received, it is handled by a mechanism according to the pre-defined mapping.

9.4 Summary

This chapter described the Execution Phase of the Platform Service API

Description part. This phase involved the components and the mechanism of the

SCADeF framework, which enables the automatic generation of the client

adapters. Specifically, the outcome of the code generation process is a set of

service interfaces, which contains the operations offered by the platform basic

service, described in Section 9.1.1.1 and 9.1.1.2 as well as the Reference API,

defined in Section 8.4.2. Additionally, the web clients required to invoke each

concrete service provider are also generated. The process of the code generation

and the subsequent invocation of the concrete provider API remain transparent to

the user. The latter interacts only with the service interfaces.

The work presented in this chapter fulfills the Requirement 4 (R4) listed in Section

5.1, regarding the automatic generation of the client adapters. Additionally, the

capability of the real-time generation of the web clients supports the Requirement

6 (R6), which is related to the substitutability of the service providers. R6 paves

the way towards enabling the application developers to choose seamlessly the

service provider at real-time based on certain criteria such as the price, the quality

of service, and the geographical region. The features described both by the R4 and

the R6 enable the application developers to leverage the framework in order to

seamlessly use the various platform basic service providers. Therefore the

Requirement 7 (R7) regarding the distinct role of the application developer is also

fulfilled.

The chapter also discussed alternative design approaches and certain limitations

that the proposed development framework entails. These are the handling of the

potential mismatch of the parameters and the operations between the concrete

providers as well as the handling of the providers’ response. In the first case, the

software developers can gain direct access to the provider specific functionality.

Execution Stage of the Platform Service API

182

In the latter case, a reference response can be defined and exposed to the

developers. Subsequently, the providers’ response is mapped to the reference one

in the same method as the providers’ API is mapped to the Reference API.

PART C
Conclusion and Future Work

183

PART C
Conclusion and Future Work

Chapter 10 – Conclusion and Future Work

PART C
Conclusion and Future Work

184

Conclusion – Future Work

185

Chapter 10

Conclusion – Future Work

This final chapter brings together the findings of the thesis, as well as putting

forward new ideas for further work. At this point Section 10.1 presents a summary

of the research work. Then Section 10.2 examines, in retrospective, the fulfillment

of the contributions as those were set in the Introduction. Finally, Section 10.3

discusses future work, which could be motivated by this thesis.

10.1 Summary of the thesis

The research reported in this thesis focused on enabling the developers to leverage

platform basic services, offered via the cloud applications platforms, in order to

create service-based cloud applications. As discussed in Section 3.5, there are

multiple benefits associated with the use of platform basic services, such as the

rapid application development, the provision of a variety of ready to be used

functionality and the integration possibilities using a lightweight HTTP-based

API. However, as analysed in Chapter 5, there are various platform basic service

providers offering their own custom implementation. In order for the applications

to fully exploit the various platform basic service providers, they should be able to

seamlessly choose the ones, which each time better serves the requirements at

hand such as the quality of service, the pricing, and the security and privacy.

Towards this direction, the main question that this research work focused on was:

how to enable the service-based cloud applications to integrate various platform

basic services without being bound to the concrete implementation exposed by the

concrete providers. In other words this work had to explore the degree to which

Conclusion – Future Work

186

the specific functionality exposed by the various platform basic service providers

could be abstracted and become transparent to the software developers seeking to

consume these services.

The experimentation with various platform basic services such as the payment

service, the e-mail service, the image processing service, the authentication service

and their respective providers showed that the providers tended to converge on a

similar set of functionality and operations. Similar to traditional cloud resources,

such as compute and storage services, where there are several abstraction

frameworks, such as the jClouds and the LibCloud and standardisation approaches

such as the OCCI and the CDMI as shown in Chapter 4, the growing popularity of

the platform basic service leads to an overlapping set of offered operations as

shown in Chapter 8. Thus it was feasible in this research work to formulate a

methodology for defining the reference implementation that is exposed to the

software developers and thereby abstract the specific providers’ implementation.

The next step was to break down the specific providers` implementation and

identify the concrete variability issues, which arise and needed to be addressed

during the integration of the application with the various platform basic service

providers. As stated in Section 5.1, these were:

The differences in the workflow, which is required to complete an operation,

across the various providers.

The differences in the web API exposed by the providers.

The management of the configuration settings and the authentication tokens

required by each provider.

Chapters 5-9 focused on the proposition of the methodology, which alleviates the

above mentioned variability issues and thereby enables the developers to use

seamlessly the various platform basic services provided by the cloud application

platforms. In support of the methodology the SCADeF framework was designed,

comprising specific tools and components, to put into practice the proposed

methodology using real examples of platform basic services having multiple

variations and providers.

Conclusion – Future Work

187

Specifically, throughout the thesis the following platform basic services and their

respective providers have been implemented and integrated into the development

framework:

1. The payment service. The concrete providers that were demonstrated

were: a) Spreedly, b) Stripe, c) Viva payments, and d) Braintree.

2. The E-mail service. The concrete providers implementing the e-mail

service were: a) SendGrid, b) Mailgun, c) Postmark, and d) Mailjet.

3. The Authentication service. The concrete authentication providers were: a)

the Google authentication service and b) the Facebook authentication

service.

In conclusion, the proposed methodology and the SCADeF framework, which are

summarised in the following Section 10.2, have demonstrated the feasibility of the

creation of service-based cloud applications, as a collection of platform basic

services, independent of the concrete providers’ implementation and thereby

contribute towards the vision of empowering developers to produce code in a

faster and better manner.

10.2 Fulfillment of the Contributions

This Section examines the contributions of the research thesis, against the goals

that were defined in Section 1.5.4 and explains to what degree they have been

fulfilled throughout the thesis.

C1: Clarification of the notions of cloud applications platforms and platform

basic services and a subsequent exemplification of how these notions

could be leveraged to accelerate the cloud-based development process

and lead to the creation of service-based cloud applications.

As stated in Chapter 2 and explicitly analysed in Chapter 3, the field of cloud

platforms is characterised by heterogeneity among the platform offerings and

different styles of application development. As discussed in Section 1.1, The

heterogeneous PaaS interfaces and technologies lead to a confusion on the

consumers’ side which in turn may result in a slower adoption rate of PaaS market

Conclusion – Future Work

188

compared to the IaaS and SaaS. To this end Chapter 3 presented a survey of

available commercial cloud platforms and aimed to distinguish among the various

categories.

Specifically, the survey revealed that the platforms could be classified into three

categories according to the development style, which they adopt. The first one

contains offerings which support widely used and standardised technologies such

as programming languages, databases and web servers. The second group offers

additional functionality via platform basic services. Thus the development time is

reduced since the applications are not created from the ground up but they can

rather be synthesised from a number of platform basic services. The third

category adopts a different development style, which is based on an online

graphical framework, which can be customised by the users according to their

needs.

As stated in Section 3.4, this research work focused on the platforms of the second

category because they adopt a traditional programming style and additionally offer

custom functionality which can speed up the application development. These

platforms were referred to as cloud application platforms.

The clustering of the survey and the clarification of the notion of the cloud

application platform aims to provide a common understanding of the variants of

the cloud platforms and underpin any future work carried out by researchers in this

area.

In addition, this thesis contributed to the clarification of the concept of the

platform basic service, which was hitherto not explicitly defined in the relevant

literature. Specifically, Chapter 3 described the platform basic service as an

autonomous and independently deployed unit of functionality, which is offered

usually by ISVs, via the cloud application platforms, and through an HTTP-based

protocol.

As highlighted in Chapters 3 and 4 the concepts of the cloud application platforms

and platform basic services may constitute a major paradigm shift in the

development of applications in the context of cloud computing and cloud

platforms in particular. Applications will no longer have to be constructed from

Conclusion – Future Work

189

the ground up. Rather they can be synthesized from a number of platform basic

services. leading to the creation of the so called service-based cloud applications.

Among others, major benefits are that applications can be built in significantly less

time, and rely on well tested functionality offered by third party providers.

At the same time a new software service ecosystem, envisaged for the cloud, is

being brought about. In this ecosystem the cloud application platform acts as the

common medium which brings all the interested parties together. ISVs are the

parties who create and offer the platform basic services via the platform. They can

either deploy the services in the platform or they can merely use the platform as a

mean to offer their API and increase their popularity. Finally, service-based cloud

applications utilise the offered platform basic services and are deployed on the

cloud application platforms. In turn, these applications can be offered via the

platform in the form of platform basic services.

C2: The formulation of a methodology, which enables the development of

service-based cloud applications independent of the concrete platform

basic service providers.

As discussed in Section 3.5, there is a growing popularity of the cloud application

platforms and the platform basic services. Specifically, Heroku offers currently

almost 150 services, while in the recent years additional platforms have launched

their own marketplaces such as Openshift and EngineYard. This fact provides

significant possibilities to the application developers who can exploit the various

platform basic services and choose each time the concrete providers that better

serves the requirement at hand (such as quality of service, security and pricing).

However, in order for the service-based cloud applications to completely leverage

the various platform basic service providers, they need to be able to choose

seamlessly each time the concrete provider. This has been one of the original aims

of this thesis as discussed in Section 1.5, namely the cross-platform development

of service-based cloud applications. This means that cloud applications are

developed independently of the concrete implementation of the platform basic

service providers offered by the target cloud application platforms.

Conclusion – Future Work

190

This aim has been addressed by the methodology exposed throughout the Chapters

5-9. According to this discourse, the platform basic service providers are studied

in order to conclude to a certain group, exposing a common set of functionality.

Subsequently, the abstraction of the providers’ implementation takes place,

consisting of two parts:

i. Platform Service Workflow Description. Certain platform basic services,

such as the Payment service, require more than one step to complete an

operation such as the “purchase request”. Thus, this part describes the way

the steps involved in an operation, as these are implemented by the various

providers, can be captured.

ii. Platform Service API Description. This part involves the definition of a

Reference API, to which the software developers have access, the

description of the providers’ specific API, and the subsequent mapping of

the providers’ API to the reference one.

For each of the two parts three phases are defined:

Phase 1. Platform Service Modeling Phase: During this phase the abstract

functionality offered by the platform basic service is defined,

including the reference workflow and the Reference API that is

exposed to the developers.

Phase 2. Vendor Implementation Phase: During this phase the specific

workflow and API exposed by each service provider, are captured

and mapped to the respective reference ones defined in the first

phase.

Phase 3. Execution Phase. During this phase the workflow, which has been

defined in the previous two phases, is executed in order to complete

the operation requested by the application. Moreover, the web API

client required to invoke the specific operations of the concrete

provider is generated. The whole process remains transparent to

the application and the software developer.

This set of parts and phases, which have been proposed, enables the development

of service-based cloud applications, agnostic to the concrete platform basic

Conclusion – Future Work

191

service providers. For each phase specific tasks have been defined as outlined in

Section 5.4.3. In addition a set of tools have been constructed such as the SDE and

the API client generator in order to assist in the implementation of the tasks. Thus,

the combination of the defined parts, phases and tools constitutes the proposed

methodology.

Furthermore, a side contribution of the methodology is the fact that it enables

partially the portability of the cloud applications across the various cloud

applications platforms (CAPs). The portability involves the platform basic

services and is achieved by allowing an application to be ported across the various

CAPs without the need to reengineer the integration with the platform basic

service providers.

C3: The design of the SCADeF framework to support the above

methodology.

One of the main challenges and contributions of this thesis was to propose a

methodology, which sets the research underpinnings for enabling the creation of

service-based cloud applications, independent of the concrete implementation of

the platform basic service providers. However, this research work proceeded even

further to demonstrate how the methodology could be instantiated in practice.

As a result an additional contribution, presented in this thesis, was the construction

of a development framework, which supports and implements the proposed

methodology for the development of platform agnostic service-based cloud

applications. The SCADeF framework consists of the following tools and

components, which are used throughout the process of abstracting a platform basic

service provider, as it was described throughout the Chapters 5-9:

1. The Reference Meta-Model. The Reference Meta-Model, described in

Section 6.2.2.1, is used during the Platform Service Modeling Phase of the

Workflow Description part and contains two major concepts, the

CloudAction and the CloudMessage. The first is used to handle incoming

requests to the framework either by the application or by the service

provider. The latter contains the provider specific API and is used

Conclusion – Future Work

192

internally by the CloudAction in order to invoke specific operations of the

service providers.

2. The Service API description editor. This editor is used during the

Platform Service Modelling Phase of the API Description part in order to

define the Reference API, the provider specific API and the subsequent

mapping of the latter to the former one.

3. The API Client Generator. This component, described in Section 9.1.1, is

used during the Execution Phase of the API Description part and is

responsible for generating the web API client required to invoke the

operations of the concrete service providers.

4. The Platform Service Execution Controller. This component, described in

Section 7.1, is used during the Execution Phase of the Workflow

Description part and handles the execution of the workflow required to

complete the operations. Thus the whole process remains transparent to

the software developers.

C4: The construction of a toolset to enable the operation of the SCADeF

framework by software developers.

Following the construction of the SCADeF framework, a toolset was built in order

to help developers leverage the capabilities of the development framework. The

toolset which is described in Appendix B comprises a graphical service description

editor and has been implemented in the form of Eclipse plug-in. It can be used

from both users who have been defined in the Requirement 7 in Section 5.3.7

namely, the administrator and the consumer.

As shown in Appendix B, the administrator, using the graphical editor, is able to

add new platform basic services and providers to SCADeF. For each provider the

supported operations are added. Then for each operation, the provider specific

API is matched to the Reference API as it was proposed in Section 8.4. At the

same time the configuration variables, discussed in Section 8.6, are inserted.

The consumer can browse through the available services and select the ones

required in the application, as seen in Appendix B. All the information regarding

the APIs, the configuration settings and the consumer’s choice, is translated

Conclusion – Future Work

193

automatically into the Service Description File, defined in Sections 8.4.2.1, 8.5.1

and 8.6.2, which is required by the API Client Generator in order to generate the

client for each provider and the respective service interfaces as described in

Section 9.1.1.

C5: Manifestation of how the micro-service architectural style could be

applied in the field of cloud computing with the use of cloud application

platforms and platform basic services.

As stated in Section 4.2.7.2, the micro-service architectural style proposes the

development of applications based on a collection of micro-services. The latter

were defined as services, which run and are deployed independently of the rest of

the application. The fact that each micro-service is independent of the rest of the

application improves the scalability of the whole system. Each micro-service can

be scaled separately without affecting the overall system. At the same time the

application becomes more resilient since any failures can be isolated. In addition,

the micro-services can be replaced, when required, since they are loosely coupled

with the rest of the application (They usually communicate via a HTTP-based

API). As reported in Section 4.2.7.2, the multiple benefits of the micro-services,

contribute to the increasing popularity of this novel architectural style and major

software enterprises, such as Oracle and IBM, embrace and promote this style of

application development.

Towards contributing to the further promotion and adoption of the micro-services

this thesis demonstrated how platform basic services, a core concept of this

research work, have the potential to put into practice the micro-service

architectural style in the field of cloud computing and cloud platforms in

particular. As demonstrated in Section 4.2.7.2, the platform basic services share

the same characteristics with the micro-services, namely they are deployed

independently, they offer a concrete set of functionality and become available via

an HTTP-based API. On top of that, as discussed in Section 3.5, there is a large

number of third-party platform basic service providers, offered via the cloud

application platform, that can be exploited during the application development.

Thus by leveraging the methodology and the SCADeF framework proposed

Conclusion – Future Work

194

throughout the Chapters 5-9, the platform basic services can be exploited for the

creation of service-based cloud applications in accordance with the proposition of

using the micro-services to create software applications.

10.3 Future Work

 Incorporating billing and recommendation capabilities into the 10.3.1

SCADeF framework

As dictated by the aims that were set for this research work, the prototype

implementation of the development framework has shown how the specific

implementation of the various platform basic service providers can remain

transparent to the software developers. However, the framework can be extended

with additional features and functionalities.

Specifically, a billing mechanism can be implemented in order to provide the

software developers with precise information about the cost of the service-based

cloud applications. As mentioned in Chapter 2 and 3, the cloud applications use

cloud resources such as web servers, databases and platform basic services and are

charged on a subscription plan. Therefore, the total cost of the application varies

according to the consumed resources. A billing mechanism could monitor the

consumption of the resources or collaborate with existing monitoring mechanisms

and provide either at run-time the current cost of the application or at design-time

in advance an estimation of the cost based on the resources and the concrete

service providers selected by the software developers.

Furthermore, the growing number of platform basic service providers, as stated in

Chapter 3, may create an extra workload for software developers, who have to find

the optimal choice. To this end a recommendation system can provide proposals

about the most appropriate provider, given certain criteria such as the price, the

offered quality, the security and privacy of the service. The use of ontologies may

contribute to the formalisation and homogenisation of the platform basic service

descriptions offered by the various CAPs. Then, the services descriptions may be

retrieved by the recommendation system, which can analyse them and based on

Conclusion – Future Work

195

reasoning techniques it can classify them according to specific characteristic, such

as the price and the SLAs and thereby propose the optimal choice to the users.

 Construction of a complete development environment to support the 10.3.2

creation of service-based cloud applications.

Improvements can be made to the prototype implementation of the SCADeF

framework in order to extend its functionality. Specifically, the graphical editor

can be enriched with additional features such as the definition of the CloudActions

and their operations. Once the CloudActions are defined in the editor, the

boilerplate code could be generated automatically.

The current version of the framework supports the creation of service-based cloud

applications using the Java programming language. However, the framework

could be extended to support additional programming languages such as Python

and PHP.

The long-term vision of the author is the construction of a complete IDE which

supports developers throughout the development phase of a service-based cloud

application via extended functionality such as the billing and recommendation

mechanism mentioned in Section 10.3.1.

 Enhance the functionality of the SCADeF framework with additional 10.3.3

platform basic services and providers

In order to prove that the proposed methodology is able to support the

development of service-based cloud applications using platform basic services,

the prototype implementation of the development framework included three

categories of platform basic services and ten respective providers as shown

throughout the Chapters 5-9 and also stated in Section 10.1.

Future tasks, could involve enriching the framework with additional platform

basic services and providers such as the image and video processing service and

the SMS service.

Conclusion – Future Work

196

 Measure the performance of the SCADeF framework 10.3.4

The proposed methodology and the development framework, which was

implemented, demonstrated how the service-based cloud applications could be

created leveraging platform basic services independent of the concrete providers’

implementation. However, since time-critical applications were out of the scope

of this thesis, the potential performance overhead of the framework has not been

measured.

Therefore, in order to extend the eligibility of the framework for time-critical

applications the performance overhead could be examined. However, the

expected overhead is anticipated to be relatively small since, as stated in Section

9.1, the source code of the target service provider is directly invoked without the

execution of any intermediate transformations.

 Investigating the use of ontologies as enablers for the homogenisation 10.3.5

of the service description of the platform basic service providers

As discussed in Section 8.5.1, XML files are used by the framework in order to

capture the API of the platform basic service providers. XML is widely used for

encoding information and there are multiple parsers available. However, the use of

ontologies could constitute an alternative approach for capturing the providers’

functionality. According to Gruber [225], ontologies are formal explicit

knowledge over a shared conceptualisation that is standardized or commonly

accepted by certain group of people. In the context of this research thesis, they

can be leveraged in order to describe the APIs of the various service providers.

Towards this direction, initial work has been published by the author [226].

In particular, the characteristic of ontologies that could be exploited is that

ontologies can describe unambiguously the providers’ API and thus avoid any

semantic conflicts. Additionally, ontologies can inherit concepts from other

ontologies and can be reused if necessary. Therefore, they do not need to be

constructed from the ground up but they can rather be based on an established one

such as the Linked USDL (Universal Service Description Language) [227] and the

Minimal Service Model (MSM) [228].

Conclusion – Future Work

197

Furthermore, ontologies are commonly accepted and shared descriptions of a

domain. As such they can increase the consensus for a common description of a

service. To this end, future work could investigate whether the use of ontologies

might have the potential to extend the scope of this thesis and rather than

abstracting the providers’ specific API, they could contribute to the

homogenisation of the various APIs and to their convergence towards a common

API. For example, an ontology could be created and published for each category

of platform basic services describing the operations and the Reference API. Then,

the concrete providers could adhere to this ontology and create their service

offering accordingly. However, such an approach would require the contribution

of a well-established and recognisable institution, which could undertake the task

of creating and disseminating the ontologies.

 Extending the scope of the SCADeF framework beyond the cloud 10.3.6

application platforms

Throughout the period this research has been carried out, additional work has been

under consideration, which had to be left out of the scope of this thesis.

Furthermore, additional thoughts and opportunities for further exploration have

appeared. To this end, this Section states future work, which could be motivated

by the research topic presented in this thesis.

As discussed in Section 10.2 one of the contributions of this research work was the

clustering of the cloud platforms into three categories, on the basis of the software

development style they adopt, and the subsequent clarification of the cloud

application platforms. Platforms in the first category offer a low-level of vendor

lock-in at the expense of a higher application development time. By contrast,

platforms in the third category allow for rapid application development using

graphical environment at the expense of a high level lock-in.

The clustering was dictated by the early finding that the issue of cross-platform

development application couldn’t be addressed at the whole spectrum of the cloud

platforms. Rather the research efforts had to narrow down to a specific subset of

platforms exposing similar characteristics. As reported in Chapter 4, this thesis

Conclusion – Future Work

198

chose to focus on the platform basic services and the way the concrete

implementation of those services can be abstracted away from the software

developers. Towards this direction, the methodology and the SCADeF framework

proposed throughout the Chapters 5-9, demonstrated how the service-based cloud

applications can remain agnostic to the concrete implementations of the platform

basic services, which are offered via the cloud application platforms.

Future work can focus on the way the applicability of the framework can be

extended to also include cloud platforms from the two other categories, as those

defined in Section 3.3. Specifically, platforms in the first category can leverage the

SCADeF framework in order to increase the functionality they offer to their users

and at the same time maintain the low level of vendor lock-in. In particular, users

will be able to use the platform basic services, which are available via the cloud

application platforms, through the framework without being bound to the concrete

implementations. In this case, the framework can reside in the platform and can be

provided to the applications as a service via the use of libraries. Thus, the

framework will facilitate the provision of platform basic services in the

applications deployed in the platforms of the first category.

10.4 List of publications by the author

This Section presents a list of publications, which were produced as an outcome of

this research work, and their relations with the thesis’ chapters.

No. Publication Chapters

1.
F. Gonidis, I. Paraskakis, and D. Kourtesis, “Addressing
the Challenge of Application Portability in Cloud
Platforms,” in the 7th South-East European Doctoral
Student Conference, Thessaloniki, 2012, pp. 565–576.

Chapters 4

2.
F. Gonidis, I. Paraskakis, and D. Kourtesis, “Cloud
application portability. An initial view,” in the 6th Balkan
Conference in Informatics, Thessaloniki, 2013, pp. 275-
282.

Chapters 3,4

3.

F. Gonidis, I. Paraskakis and A. J. H. Simons, “Existing
approaches for cross platform development and deployment
of cloud applications,” in the 8th South-East European
Doctoral Student Conference, Thessaloniki, 2013, pp. 270-
274.

Chapter 4

Conclusion – Future Work

199

4.

F. Gonidis, I. Paraskakis and A.J.H Simons, "On the role of
ontologies in the design of service-based cloud
applications," in the 2nd Workshop on Dependability and
Interoperability in Heterogeneous Clouds. Porto, 2014, pp.
1-12.

Chapters 8,9

5.

F. Gonidis, I. Paraskakis and A.J.H Simons, “A
development framework enabling the design of service-
based cloud applications,” in the 2nd International
Workshop on Cloud Service Brokerage. Manchester, 2004,
pp. 139-152.

Chapters 6,7

6.

F. Gonidis, I. Paraskakis and A.J.H Simons, “Leveraging
platform basic services in cloud application platforms for
the development of cloud applications,” in 6th International
Conference on Cloud Computing Technology and Science,
Singapore, 2014, pp.751-754.

Chapters 5-9

7.

F. Gonidis, I. Paraskakis and A.J.H Simons, “Rapid
development of service-based cloud applications: The case
of cloud application platforms,” International Journal of
Systems and Service-Oriented Engineering (IJSSOE), vol.5,
no. 4, 2015, pp.1-25.

Chapters 5-9

Conclusion – Future Work

200

 APPENDIX: A

Payment Service Providers

201

APPENDIX: A

Payment Service Providers

Appendix A lists the activity diagrams of the payment service providers, tested

during the definition of the payment service reference workflow.

APPENDIX: A

Payment Service Providers

202

A.1 Spreedly

 APPENDIX: A

Payment Service Providers

203

A.2 Braintree

APPENDIX: A

Payment Service Providers

204

A.3 Viva Payment

 APPENDIX: A

Payment Service Providers

205

A.4 Google Wallet

APPENDIX: A

Payment Service Providers

206

A.5 Amazon Flexible Payments

 APPENDIX: A

Payment Service Providers

207

A.6 Stripe

APPENDIX: A

Payment Service Providers

208

A.7 PayPal Express Checkout

 APPENDIX: A

Payment Service Providers

209

A.8 AuthoriseNetSIM

APPENDIX: A

Payment Service Providers

210

A.9 Chargify

 APPENDIX: B

Service Description Editor

211

APPENDIX: B

Service Description Editor

The Service Description Editor (SDE) is a prototype tool, which enables the

software developers to leverage the SCADeF framework, which is proposed in this

research work. Specifically it facilitates two actions:

i. It allows the administration of the framework to add new platform basic

services and concrete providers.

ii. It allows the consumers of the framework to select the concrete service

providers they want to integrate with the service-based cloud applications.

B.1 Add new platform basic service provider

Figure 49 shows the main window of the SDE. The platform basic services and

the respective providers, supported by the framework are listed in the left side of

the window such as the payment and the mailing service. The administrator of the

framework has the option to add a new payment service provider by clicking the

“Add a payment service provider” option.

APPENDIX: B

Service Description Editor

212

Figure 49: Add new platform basic service provider

Next, a new view appears requesting the information required by the specific

provider. Figure 50, illustrates the example of the Spreedly payment service

offered by the Heroku platform.

Figure 50: Add Information related to the new service provider

Specifically, the provider (Name, BaseUrl) and the user (UserName, Password

and Redirect url) specific information should be filled in. Next, the “Add

operation” option allows the definition of the operations supported by the

 APPENDIX: B

Service Description Editor

213

provider. The isUsed option, which appears at the bottom of the window, enables

the software developers to integrate the specific provider with the service-based

cloud application.

B.2 Add operations to the new service provider

Figure 51, depicts how an operation can be defined for a service provider.

Specfically, the chargeCard operation is defined for the Spreedly payment

provider. The provider (Name, Endpoint) and the user (GatewayToken) specific

information are filled in. In the lower part of the window, the “Dynamically

Mapped Parameters” are requesting. The “KEY” contains the Reference API

parameters for the specific service, while the “VALUE” column contains the

respective parameters of the specific provider.

Figure 51: Add information related to the operations of the service provider

APPENDIX: B

Service Description Editor

214

 APPENDIX: C

Example of Auto-generated source code

215

APPENDIX: C

Example of Auto-generated source

code

Figure 56 and Figure 53 depict the source code, which is generated, for the e-mail

service interface and the Postmark implementation respectively.

Figure 52: E-mail service interface

APPENDIX: C

Example of Auto-generated source code

216

Figure 53: Postmark implementation

217

List of acronyms

1. AEB – Amazon Elastic Beanstalk

2. API – Application Programming Interface

3. AWS – Amazon Web Services

4. CAP – Cloud Application Platform

5. DSL – Domain Specific Language

6. GAE – Google App Engine

7. HTTP - Hypertext Transfer Protocol

8. IaaS – Infrastructure as a Service

9. IDE – Integrated Development Environment

10. ISV – Independent Software Vendors

11. PaaS – Platform as a Service

12. PC – Provider Connector

13. PSC – Platform Service Connector

14. PSEC – Platform Service Execution Controller

15. REST – Representational State Transfer Protocol

16. SaaS – Software as a Service

17. SCADeF – Service-based Cloud Application Framework

18. SDE – Service Description Editor

19. SLA – Service Level Agreement

20. SOAP – Simple Object Access Protocol

21. SOC – Service-oriented Computing

22. TOSCA – Topology and Specification for Cloud Application

23. XML - Extensible Mark-up Language

218

219

References

[1] G. Pallis, “Cloud Computing: The new frontier of internet computing,”
IEEE Internet Comput., vol. 14, no. 5, pp. 70–73, Sep. 2010.

[2] T. Mikkonen and A. Taivalsaari, “Web applications: spaghetti code for the
21st century,” Sun microsystems Inc., Mountain View, CA, 2007.

[3] E. W. Dijkstra, “Programming: From Craft to Scientific Discipline,” in the
International Computing Symposium, Liege, 1977.

[4] N. Wirth, “The Development of Procedural Programming Languages
Personal Contributions and Perspectives,” in Modular Programming
Languages, W. Weck and J. Gutknecht, Eds. Springer Berlin Heidelberg,
2000, pp. 1–10.

[5] D. L. Parnas, “On the Criteria to Be Used in Decomposing Systems into
Modules,” Commun ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[6]	 W.	Pree,	“Component-based	software	development-a	new	paradigm	in	
software	 engineering?,”	 in	 the	 4th	 International	 Computer	 Science	
Conference,	Hong	Kong,	1997,	pp.	523–524.	

[7]	 O.	 Nierstrasz,	 S.	 Gibbs,	 and	 D.	 Tsichritzis,	 “Component-Oriented	
Software	 Development,”	 Commun.	 ACM,	 vol.	 35,	 no.	 9,	 pp.	 160–165,	
1992.	

[8] M. Mcllroy, “Mass Produced Software Components,” Proc. NATO Conf.
Software Eng., pp.88-98, Jan. 1969.

[9]	 A.	Repenning,	A.	 Ioannidou,	M.	Payton,	W.	Ye,	and	J.	Roschelle,	“Using	
components	for	rapid	distributed	software	development,”	IEEE	Softw.,	
vol.	18,	no.	2,	pp.	38–45,	Mar.	2001.	

[10] R.		Fielding,	J.		Gettys,	J.		Mogul,	H.		Frystyk,	L.		Masinter,	P.		Leach,	and	
T.	 	 Berners-Lee.	 	 (1999).	 	 Hypertext	 Transfer	 Protocol	 --	 HTTP/1.1	
[Online].	 	 Available:	 http://www.w3.org/Protocols/rfc2616/rfc2616.	
html.	

[11] Tim Bray, Jean Paoli, C. M. Sperber-McQueen, Eve Maler, Francois
Yergeau, and John Cowan, “Extensible Markup Language (XML),” W3C,
2006.

[12]	 M.	Bichier	 and	K.-J.	 Lin,	 “Service-oriented	 computing,”	Computer,	 vol.	
39,	no.	3,	pp.	99–101,	Mar.	2006.	

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia, “A
view of cloud computing,” Comm.ACM, vol. 53, no. 4, Apr. 2009.

[14] Amazon Web Services. (2013). [Online]. Available: https://aws. amazon.
com

220

[15] Google Cloud. (2015). [Online]. Available: https://cloud.google.com
[16] F. Gonidis, I. Paraskakis, and D. Kourtesis, “Cloud application

portability. An initial view,” in 6th Balkan Conference in Informatics,
Thessaloniki, 2013, pp. 275-282.

[17] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18,
May 2010.

[18] P. Mell and T. Grance, “The NIST definition of cloud computing,” Natl.
Inst. Stand. Technol., Gaithersburg, 800-145, MD, 2011.

[19] J. Staten, L. E. Nelson, D. Bartoletti, L. Herbert, W. Martorelli, and H.
Baltazar, “Predictions 2015: The days of fighting the cloud are over,”
Forrester Research Inc., Cambridge, MA, 2014.

[20] D. M. Smith, D. C. Plummer, and D. W. Cearley, “The What, Why and
When of Cloud Computing,” Gartner Inc., Stamfodrd, CT, G00168582,
2009.

[21] Gartner Inc. (2015). [Online]. Available: http://www.gartner.com/
[22] (2014). Gartner Identifies the Top 10 Strategic Technology Trends for

2015 [Online]. Available: http://www.gartner.com/newsroom/id/3143521
[23] International Data Corporation, IDC. (2015). [Online]. Available:

https://www.idc.com
[24] L. Carvalho, M. Fleming, A. Hilwa, R. P. Mahowald, and B.McGrath,

“Worldwide competitive public cloud platform as a service 2014–2018
Forecast and 2013 Vendor Shares,” IDC, Framingham, MA, 243315, 2014.

[25] S. M. M. Tahaghoghi and H. E. Williams, Learning MySQL. Get a
handle on your data. Sebastopol, CA: O’Reilly Media, 2006.

[26] Apache Tomcat. (2015). [Online]. Available: http://tomcat.apache.org
[27] K. Schaefer, J. Cochran, S. Forsyth, D. Glendenning, and B. Perkins,

Professional Microsoft IIS 8. Hoboken, N.J.: Wiley / Wrox, 2012.
[28] Heroku. (2015). [Online]. Available: https://www.heroku.com

[29] Openshift. (2015). [Online]. Available: https://www.openshift.com
[30] Engine Yard. (2015). [Online]. Available: https://www.engineyard.com

[31] R. T. Fielding, “Architectural styles and the design of network-based
software architectures”. Ph.D. dissertation, Univ. of California, Irvine,
CA, 2005.

[32] D. Kourtesis, K. Bratanis, D. Bibikas, and I. Paraskakis, “Software Co-
development in the era of cloud application platforms and ecosystems: The
case of CAST,” in Collaborative Networks in the Internet of Services, vol.
380, L. M. Camarinha-Matos, L. Xu, and H. Afsarmanesh, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 196–204.

[33] S. Newman, Building microservices. Sebastopol, CA: O’Reilly Media,
2015.

221

[34] Heroku Add-ons. (2015). [Online]. Available:
https://elements.heroku.com/ addons

[35] Sendgrid. (2015). [Online]. Available: https://sendgrid.com
[36] Mailgun. (2015). [Online]. Available: https://www.mailgun.com

[37] Postmark. (2015). [Online]. Available: https://postmarkapp.com
[38] Spreedly. (2015). [Online]. Available: https://spreedly.com/

[39] Stripe. (2015). [Online]. Available: https://stripe.com/
[40] E. Jendrock, I. Evans, D. Gollapudi, K. Haase, and C. Srivathsa, The

Java EE 6 tutorial: Basic concepts, 4th ed. Upper Saddle River, NJ, USA:
Prentice Hall Press, 2010.

[41] Gigaom research. (2015). [Online]. Available:
http://research.gigaom.com

[42] D. S. Linthicum. (2014). Why PaaS growth is disproportional to other
sectors [Online]. Available: http://research.gigaom.com/2014/10/why-
paas-growth-is-disproportional-to-other-sectors/

[43] J. KinCaid. (2009). Coghead Grinds To A Halt, Heads To The Deadpool
[Online]. Available: http://techcrunch.com/2009/02/18/coghead-grinds-to-
a-halt-heads-to-the-deadpool/.

[44] Sun Microsystems. (2015). [Online]. Available:
http://www.oracle.com/sun

[45] N. Langley. (2002). Write once, run anywhere Computer [Online].
Available: http://www.computerweekly.com/feature/Write-once-run-
anywhere

[46] T. Lindholm and F. Yellin, Java Virtual Machine Specification, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[47] G. A. Lewis, “The Role of Standards in Cloud Computing
Interoperability,” Carnegie Mellon, Pittsburgh, PA, CMU/SEI-2012-TN-
012, Oct. 2012.

[48] F. Gonidis, I. Paraskakis, and D. Kourtesis, “Addressing the Challenge of
Application Portability in Cloud Platforms,” in 7th South-East European
Doctoral Student Conference, Thessaloniki, 2012, pp. 565–576.

[49] “Cloud Data Management Interface (CDMI),” Storage Networking
Industry Association (SNIA), 1.1.0, Aug. 2014.

[50] IBM. (2015). [Online]. Available: http://www.ibm.com

[51] Hewlett Packard. (2015). [Online]. Available: http://www.hp.com
[52] R. Cattell, Jdbc database access with Java: A tutorial annotated reference.

Boston, MA, USA: Addison-Wesley Longman Publishing Co. Inc., 1997.
[53] Salesforce. (2015). 10 great cloud applications and services for SMEs

[Online]. Available: http://www.salesforce.com/uk/socialsuccess/cloud-
computing/10-great-cloud-applications-services-smes.jsp

222

[54] Oracle. (2012) Cloud application. Driving enterprise-grade cloud
applications: The benefits of cloud without compromise [Online].
Available: http://www.oracle.com/us/c-central/cio-executive-insights/ess-
oracle-cloud-1731443.pdf

[55] S. L. Garfinkel and H. Abelson, Architects of the information society:
Thirty-Five Years of the Laboratory for Computer Science at MIT.
Cambridge, MA: The MIT Press, 1999.

[56] Hewlett-Packard. (2011). Five myths of cloud computing [Online].
Available:
http://www.hp.com/hpinfo/newsroom/press_kits/2011/HPDiscover2011/DI
SCOVER_5_Myths_of_Cloud_Computing.pdf

[57] M. A Vouk, “Cloud computing–issues, research and implementations,”
CIT J. Comput. Inf. Technol., vol. 16, no. 4, pp. 235–246, 2008.

[58] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,”
Future Gener Comput Syst, vol. 28, no. 3, pp. 583–592, Mar. 2012.

[59] A. Sinha, “Client-server computing,” Commun ACM, vol. 35, no. 7, pp.
77–98, Jul. 1992.

[60] I. Chengalur-Smith and P. Duchessi, “The initiation and adoption of
client–server technology in organizations,” Inf. Manage., vol. 35, no. 2,
pp. 77–88, Feb. 1999.

[61] T. G. Lewis, “Where is client/server software headed?,” Computer, vol.
28, no. 4, pp. 49–55, Apr. 1995.

[62] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environment
Workshop, Austin, TX, 2008, pp. 1–10.

[63] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” Int J High Perform Comput Appl,
vol. 15, no. 3, pp. 200–222, Aug. 2001.

[64] I. Foster and C. Kesselman, Eds., The grid: Blueprint for a new
computing infrastructure. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999.

[65] S. Marston, Z. Li, S. Bandyopadhyay, and A. Ghalsasi, “Cloud
computing - The business perspective,” in 44th Hawaii International
Conference on System Sciences, Kauai, HI, 2011, pp. 1–11.

[66] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: A research roadmap,” Int. J. Coop. Inf. Syst., vol.
17, no. 02, pp. 223–255, Jun. 2008.

[67] Y. Wei and M. B. Blake, “Service-Oriented Computing and Cloud
Computing: Challenges and Opportunities,” IEEE Internet Comput., vol.
14, no. 6, pp. 72–75, 2010.

[68] M. N. Huhns and M. P. Singh, “Service-oriented computing: key
concepts and principles,” IEEE Internet Comput., vol. 9, no. 1, pp. 75–
81, Jan. 2005.

223

[69] Erik Christensen, Greg Meredith, Francisco Curbera, and Sanjiva
Weerawarana, “Web Services Description Language (WSDL),” World
Wide Web (W3C), wsdl-20010315, Mar. 2001.

[70] D. Box, D. Ehnebuske, G. Kakivaya et al. (2010). Simple Object Access
Protocol (SOAP) 1.1. [Online]. Available: http://www.w3.org/TR/2000/
NOTE-SOAP-20000508

[71] D. S. Linthicum, Cloud computing and SOA convergence in your
enterprise: A step-by-step guide. Boston, MA: Addison-Wesley
Professional, 2009.

[72] Amazon Elastic Compute Cloud. (2015). [Online]. Available:
https://aws.amazon.com/ec2/

[73] A. Mohamed (2009). A history of cloud computing [Online]. Available:
http://www.computerweekly.com/feature/A-history-of-cloud-computing

[74] GAE. (2015). [Online]. Available: https://appengine. google.com/

[75] Windows Azure. (2013). [Online]. Available: https://azure.microsoft.com
[76] Google Compute Engine. (2015). [Online]. Available:

https://cloud.google. com/compute/
[77] Amazon Simple Storage Service. (2015). [Online]. Available: https://

aws.amazon.com/s3/
[78] Storage Documentation | Windows Azure. (2015). [Online] Available:

http://www.windowsazure.com/en-us/documentation/services/storage/
[79] Zoho Creator. (2015). [Online]. Available:

https://www.zoho.com/creator/
[80] SalesForce. (2015). [Online]. Available: http://www.salesforce.com

[81] Y. V. Natis, E. Knipp, R. Valdes, M. Pezzini, D. Sholler, D. W.
Cearley, D. M. Smith, and J. Thompson, “Who’s who in application
platforms for cloud computing: The enterprise generalists,” Gartner Inc,
Stamfodrd, CT, G00170223, 2009.

[82] M. Carlson, M. Chapman, A. Heneveld, S. Hinkelman, D. Johnston-
Watt, A. Karmarkar, T. Kunze, A. Malhotra, J. Mischkinsky, A. Otto,
V. Pandey, G. Pilz, Z. Song, and P. Yendluri, “Cloud application
management for platforms,” OASIS, 2012.

[83] Lee Badger, Tim Grance, Robert Patt-Corner, and Jeff Voas, “NIST cloud
computing synopsis and recommendations,” National Institute of Standards
and Technology, MD 20899 - 8930, 2012.

[84] R. Johnson, J. Holler, A. Arendsen, T. Risberg, and C. Sampaleanu,
Professional Java development with the Spring framework. Hoboken, N.J.:
Wiley / Wrox, 2005.

[85] H. Lam and T. L. Thai, .NET framework essentials, 2nd edition.
Sebastopol, CA: O’Reilly Media, 2002.

[86] B. Momjian, PostgreSQL: Introduction and concepts. Indianapolis, IND:
Addison-Wesley, 2001.

224

[87] Y. V. Natis, B. J. Lheureux, M. Pezzini, D. W. Cearley, E. Knipp, and
D. C. Plummer, “PaaS road map: A continent emerging,” Gartner Inc,
Stamford, CT, G00209751, 2011.

[88] Amazon Elastic Beanstalk. (2015). [Online]. Available:
https://aws.amazon. com/elasticbeanstalk/

[89] D. Zeginis, F. D’Andria, S. Bocconi, J. Gorronogoitia Cruz, O. Collell
Martin, P. Gouvas, G. Ledakis, and K. A. Tarabanis, “A user-centric
multi-PaaS application management solution for hybrid multi-Cloud
scenarios,” Scalable Comput. Pract. Exp., vol. 14, no. 1, Apr. 2013.

[90] App Cloud. (2015). [Online]. Available: http://www.salesforce.com/
platform/ solutions/automate-business-processes/

[91] G. Breiter and M. Behrendt, “Life cycle and characteristics of services in
the world of cloud computing,” IBM Journal of Research and
Development, vol. 53, no. 3, pp. 527-534, Jul 2009.

[92] Instagram. (2015). [Online]. Available: https://instagram.com
[93] R. Branson, P. Canahuati, and N. Shortway. (2014). Migrating From

AWS to FB [Online]. Available: http://instagram-
engineering.tumblr.com/post/ 89992572022/migrating-aws-fb

[94] S. Kolb and G. Wirtz, “Towards application portability in platform as a
service,” in 8th International Symposium on Service Oriented System
Engineering, Oxford, 2014, pp. 218–229.

[95] Nawsher Khan, A. Noraziah, Elrasheed I. Ismail, Mustafa Mat Deris, and
Tutut Herawan, “Cloud computing: Analysis of various platforms,” Int. J.
E-Entrep. Innov., vol. 3, no. 2, p. 51-59, 2012.

[96] M. Pastaki Rad, A. Sajedi Badashian, G. Meydanipour, M. Ashurzad
Delcheh, M. Alipour, and H. Afzali, “A survey of cloud platforms and
their future,” in International Conference on Computational Science and
its Applications, Suwon, 2009, pp. 788–796.

[97] S. Ried and J. R. Rymer, “The Forrester waveTM: Platform-as-a-service
for vendor strategy professionals, Q2 2011,” Forrester, 2011.

[98] Saugatuck Technology Inc. (2010). Development in the cloud: A
Framework for PaaS and ISV flexibility [Online]. Available: http://
www.galeos.cz/
uploads/Soubory/DatasheetyProgress/saugatuck_progress_cloud_dev_fram
ework.pdf

[99] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec, vol.
39, no. 4, pp. 12–27, Dec. 2010.

[100] Rapidcloud. (2015). [Online]. Available: https://rapidcloud.io
[101] Shelly Cloud. (2015). [Online]. Available: https://shellycloud.com

[102] AppFog. (2015). [Online]. Available: https://www.appfog.com
[103] IBM Bluemix. (2015). [Online]. Available: http://www.ibm.com/cloud-

computing/bluemix/

225

[104] Play. (2015). [Online]. Available: https://www.playframework.com
[105] Grape. (2015). [Online]. Available: https://www.ruby-

toolbox.com/projects/ grape
[106] Rack. (2015). [Online]. Available: http://rack.github.io

[107] V. Viswanathan, “Rapid web application development: A Ruby on Rails
tutorial,” IEEE Softw., vol. 25, no. 6, pp. 98–106, Nov. 2008.

[108] A. Harris and K. Haase, Sinatra: Up and running. Ruby for the web,
simply. Sebastopol, CA: O’Reilly Media, 2011.

[109] Redhat. (2015). [Online]. Available: http://www.redhat.com
[110] D. Golding, Beginning CakePHP. New York, NY: Apress, 2008.

[111] JBoss Application Server. (2015). [Online]. Available:
http://jbossas.jboss. org

[112] zend Server. (2015). [Online]. Available:
http://www.zend.com/en/products/ zend_server

[113] A. A. Donovan, B. W. Kernighan, The Go programming language.
Boston, MA: Addison-Wesley, 2015.

[114] webapp2. (2015). [Online]. Available: https://webapp-improved.appspot.
com

[115] A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django: Web
Development Done Right (Expert’s Voice in Web Development). Berkeley,
CA: Apress, 2009.

[116] J. K. VanDyk, Pro Drupal development. New York, NY: Apress, 2007.

[117] Cloud Foundry. (2015). [Online] . Available:
https://www.cloudfoundry.org

[118] K. Banker, MongoDB in action. Greenwich, CT, USA: Manning
Publications Co., 2011.

[119] J. L. Carlson, Redis in action. Greenwich, CT, USA: Manning
Publications Co., 2013.

[120] B. Fitzpatrick, “Distributed caching with memcached,” Linux J, vol. 2004,
no. 124, p. 5–, Aug. 2004.

[121] Amazon DynamoDB. (2015). [Online]. Available:
http://aws.amazon.com/ dynamodb/

[122] S. Ramanathan, S. Goel, and S. Alagumalai, “Comparison of cloud
database: Amazon’s SimpleDB and Google’s Bigtable,” in International
Conference on Recent Trends in Information Systems, Kolkata, 2011, pp.
165–168.

[123] MC Brown, Getting Started with Couchbase Server. Sebastopol, CA:
O’Reilly Media, 2012.

[124] Cloud SQL. (2015). [Online]. Available: https://cloud.google.com/sql/
[125] Cloud Datastore. (2015). [Online]. Available: https://cloud.google.com/

datastore/docs/concepts/overview

226

[126] E. Redmond. (2015). A little Riak book [Online]. Available:
http://littleriakbook.com

[127] Google Cloud Storage. (2015). [Online]. Available: https://cloud.google.
com/storage/

[128] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: Transparency and collaboration in an open software repository,”
in ACM Conference on Computer Supported Cooperative Work, New
York, NY, 2012, pp. 1277–1286.

[129] Bitbucket. (2015). [Online]. Available: https://bitbucket.org
[130] Cloudinary. (2015). [Online]. Available: http://cloudinary.com

[131] Heroku add-on services. (2015). [Online]. Available: https://elements.
heroku.com

[132] Engineyard add-ons. (2015). [Online]. Available:
https://addons.engineyard. com

[133] Openshift marketplace. (2015). [Online]. Available: https://marketplace.
openshift.com

[134] “Open virtualization format specification,” Distributed Management Task
Force, DSP0243, 2013.

[135] T. Metsch and A. Edmonds, “Open cloud computing interface -
infrastructure,” Open Grid Forum, GFD-P-R.184, 2011.

[136] A. Chaddha, “Cloud interoperability and standardisation,” SETLabs Brief.,
vol. 7, no. 7, pp. 19–26, 2009.

[137] Cloud Computing Interoperability Forum (CCIF). (2012). [Online].
https://groups.google.com/forum/#!forum/cloudforum

[138] D. Doug and P. Gilbert, “Cloud Infrastructure Management Interface
(CIMI) Primer,” Distributed Management Task Force (DMTF), DSP2027,
2012.

[139] Distributed Management Task Force (DMTF). (2015). [Online].
Available: https://www.dmtf.org

[140] “Cloud Data Management Interface (CDMITM),” Storage Networking
Industry Association (SNIA), Version 1.0.2, 2012.

[141] OASIS - Advancing open standards for the information society. (2015).
[Online]. Available: https://www.oasis-open.org

[142] OASIS Cloud Application Management for Platforms. (2015). [Online]
Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev =camp

[143] G. Katsaros, M. Menzel, A. Lenk, J. Rake-Revelant, R. Skipp, and J.
Eberhardt, “Cloud Application Portability with TOSCA, Chef and
Openstack,” in IEEE International Conference on Cloud Engineering,
Boston, MA, 2014, pp. 295–302.

[144] J. Durand, A. Otto, G. Pilz, and T. Rutt, “Cloud application management
for platforms,” OASIS, camp-spec-v1.1-cs01, 2014.

227

[145] K. Bakshi and M. Skilton, “Cloud computing portability and
interoperability,” The Open Group, Reading, UK, G135.

[146] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical review of vendor
lock-in and its impact on adoption of cloud computing,” in International
Conference on Information Society, London, 2014, pp. 92–97.

[147] M. Singhal, S. Chandrasekhar, T. Ge, R. Sandhu, R. Krishnan, G.-J.
Ahn, and E. Bertino, “Collaboration in multicloud computing
environments: Framework and security issues,” Computer, vol. 46, no. 2,
pp. 76–84, Feb. 2013.

[148] D. Petcu, “Consuming resources and services from multiple clouds,” J.
Grid Comput., vol. 12, no. 2, pp. 321–345, Jun. 2014.

[149] M. D. Hogan, F. Liu, A. W. Sokol, and T. Jin, “NIST cloud computing
standards roadmap,” NIST, SP500‐291-v1.0, 2011.

[150] E. M. Maximilien, A. Ranabahu, R. Engehausen, and L. C. Anderson,
“Toward cloud-agnostic middlewares,” in 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and
applications, New York, NY, 2009, pp. 619–626.

[151] D. Baur, S. Wesner, J. Domaschka, “Towards a Model-based execution-
ware for deploying multi-cloud applications,” in 2nd International
Workshop on Cloud Service Brokerage, Manchester, 2014, pp. 124-138.

[152] S. Subashini and V. Kavitha, “Review: A survey on security issues in
service delivery models of cloud computing,” J Netw Comput Appl, vol.
34, no. 1, pp. 1–11, Jan. 2011.

[153] D. Petcu and A. V. Vasilakos, “Portability in clouds: approaches and
research opportunities,” Scalable Comput. Pract. Exp., vol. 15, no. 3, pp.
251-270, Dec. 2014.

[154] J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, “A Service-oriented
framework for developing cross cloud migratable software,” J Syst Softw,
vol. 86, no. 9, pp. 2294–2308, Sep. 2013.

[155] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in Sixth International Conference on Cloud
Computing, Santa Clara, CA, 2013, pp. 887–894.

[156] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” Computer, vol. 37, no. 7, pp. 56–64, Jul.
2004.

[157] J. Mooney, “Bringing portability to the software process,” Dept. of
Statistics and Comp. Sci., West Virginia Univ., Morgantown, WV, 1997.

[158] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert, “A survey
of black-box modernization approaches for information systems,” in
International Conference on Software Maintenance, San Jose, CA, 2000,
pp. 173–183.

228

[159] D. V. Silakov and A. V. Khoroshilov, “Ensuring portability of
software,” Program. Comput. Softw., vol. 37, no. 1, pp. 41–47, Jan.
2011.

[160] K. Geiger, Inside ODBC. Redmond, WA: Microsoft Press, 1995.

[161] J Richter, Applied Microsoft .NET framework programming. Redmond,
Washington: Microsoft Press, 2002.

[162] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software. Boston:MA:
Addison-Wesley Professional Computing Series, 1995.

[163] jclouds. (2015). [Online]. Available: http://www.jclouds.org

[164] Apache Libcloud. (2015). [Online]. Available: https://libcloud.apache.org
[165] fog. (2015). [Online]. Available: http://fog.io

[166] pckgcloud. (2015). [Online]. https://github.com/pkgcloud/pkgcloud
[167] elibcloud. (2015). [Online]. Available: https://github.com/esl/elibcloud

[168] K. Geihs, “Middleware challenges ahead,” Computer, vol. 34, no. 6, pp.
24–31, Jun. 2001.

[169] P. A. Bernstein, “Transaction processing monitors,” Commun ACM, vol.
33, no. 11, pp. 75–86, Nov. 1990.

[170] Y. V. Natis, D. W. McCoy, B. Gassman, J. Sinur, J. Thompson, M.
Pezzini, L. F. Kenney, T. Friedman, M. R. Gilbert, G. Phifer, W. R.
Schulte, and B. J. Lheureux, “Who’s who in middleware, 1Q04,” Gartner,
Stamford, CT, G00120308, 2004.

[171] D. Alur, D. Malks, J. Crupi, G. Booch, and M. Fowler, Core J2EE
patterns (core design series): Best practices and design strategies.
Mountain View, CA: Sun Microsystems, Inc., 2003.

[172] M. E. Taylor, “WebSphere MQ Primer: An introduction to messaging and
webSphere MQ,” IBM, REDP-0021-01, 2012.

[173] C. Zhang and H. A. Jacobsen, “Quantifying aspects in middleware
platforms,” in the 2Nd International Conference on Aspect-oriented
Software Development, New York, NY, 2003, pp. 130–139.

[174] D. Petcu, B. Martino, S. Venticinque, M. Rak, T. Máhr, G. Lopez, F.
Brito, R. Cossu, M. Stopar, S. Šperka, and V. Stankovski, “Experiences
in building a mOSAIC of clouds,” J. Cloud Comput. Adv. Syst. Appl.,
vol. 2, no. 1, p. 12, Dec. 2013.

[175] D. Petcu, C. Craciun, M. Neagul, I. Lazcanotegui, and M. Rak,
“Building an interoperability API for Sky computing,” in International
Conference on High Performance Computing and Simulation, Istanbul,
2011, pp. 405–411.

[176] K. Jeffery, G. Horn, and L. Schubert, “A vision for better cloud
applications,” in International Workshop on Multi-cloud Applications and
Federated Clouds, New York, NY, 2013, pp. 7–12.

229

[177] K. Kritikos, J. Domaschka, and A. Rossini, “SRL: A scalability rule
language for multi-cloud environments,” in 6th International Conference
on Cloud Computing Technology and Science, Singapore, 2014, pp. 1–9.

[178] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F.
D’Andria, G. Casale, P. Matthews, C.-S. Nechifor, D. Petcu, A.
Gericke, and C. Sheridan, “MODAClouds: A model-driven approach for
the design and execution of applications on multiple Clouds,” in ICSE
Workshop on Modeling in Software Engineering, Zurich, 2012, pp. 50–56.

[179] MODAClouds Multi-Cloud DevOps Toolbox. (2015). [Online]. Available:
http://multiclouddevops.com/technologies.html

[180] R. Zabolotnyi, P. Leitner, W. Hummer, and S. Dustdar, “JCloudScale:
Closing the gap between IaaS and PaaS,” ACM T. Internet Techn., vol.
15, no. 3, pp. 1-20, Sep. 2015.

 [181] J. Gullien, J. Miranda, J. M. Murillo, C. Canal, “Developing migratable
multicloud applications based on MDE and adaptation techniques,” in
Second Nordic Symposium on Cloud Computing & Internet Technologies,
Oslo, 2013, pp. 30-37.

[182] Apache Maven Project. (2015). [Online]. Available:
https://maven.apache. org

[183] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
modeling tool for TOSCA-based cloud applications,” in 11th International
Conference on Service Oriented Computing, Berlin, 2013, pp. 700–704.

[184] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA – A runtime for TOSCA-based cloud
applications,” in 11th International Conference on Service Oriented
Computing, Berlin, 2013, pp. 692–695.

[185] Bran Selic, “MDE basics with a UML focus,” presented at the 12th
International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Model-Driven Engineering,
Bertinoro, 2012.

[186] K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621 –645,
Jul. 2006.

[187] T. Mens and P. Van Gorp, “A taxonomy of model transformation,”
Electron. Notes Theor. Comput. Sci., vol. 152, pp. 125–142, Mar. 2006.

[188] Paul Boocock. (2012). “Jamda Model Compiler Framework,” The
JAMDA project [Online]. Available:
http://jamda.sourceforge.net/docs/index.html.

[189] “XPand,” Eclipse Modeling M2T - Home. (2012). [Online]. Available:
http://www.eclipse.org/modeling/m2t/?project=xpand.

[190] M. Hamdaqa, T. Livogiannis, and L. Tahvildari, “A reference model for
developing cloud applications,” in 1st International Conference on Cloud
Computing and Services Science, Noordwijkerhout, pp. 98–103, 2011.

230

[191] P. Mohagheghi, A. J. Berre, A. Henry, F. Barbier, A. Sadovykh,
“REuse and Migration of legacy applications to interoperable cloud
services,” in Third European Conference ServiceWave, Ghent, 2010, pp.
195-196.

[192] P. Mohagheghi and T. Sæther, “Software engineering challenges for
migration to the service cloud paradigm: Ongoing work in the REMICS
Project,” in IEEE World Congress on Services, Washington, DC, 2011,
pp. 507–514.

[193] G. Baryannis, P. Garefalakis, K. Kritikos, K. Magoutis, A.
Papaioannou, D. Plexousakis, and C. Zeginis, “Lifecycle management of
service-based applications on multi-clouds: A research roadmap,” in
International Workshop on Multi-cloud Applications and Federated
Clouds, New York, NY, 2013, pp. 13–20.

[194] A. H. Ranabahu, E. M. Maximilien, A. P. Sheth, and K. Thirunarayan,
“A domain specific language for enterprise grade cloud-mobile hybrid
applications,” in SPLASH Workshops, New York, NY, 2011, pp. 77–84.

[195] Robert Eckstein, Java SE application design with MVC. Sun
Microsystems Inc, 2007.

[196] “GlassFish Server. (2015). [Online]. Available: https://glassfish.Java.net
[197] D. Namiot and M. Sneps-Sneppe, “On Micro-services architecture,”

International Journal of Open Information Technologies, vol. 2, no. 9,
2014, pp. 24-27.

[198] Bob Rhubart, “Microservices and SOA,” Oracle Mag., Mar. 2015.
[199] S. Pautasso, O. Zimmerman andF. Leymann, “Restful web services vs.

"big"' web services making the right architectural decision.” In 17th
International Conference on World Wide Web, Beijing, 2008, pp. 805-814.

[200] Amazon Simple E-mail Service. (2015). [Online]. Available: https://
aws.amazon.com/ses/

[201] Google Mail. (2015). [Online]. Available: https://cloud.google.com/
appengine/docs/Java/mail/

[202] S. Kent, “Model driven engineering,” in the Third International
Conference on Integrated Formal Methods, Turku, 2002, pp. 286–298.

[203] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue,
“OmniVoke: A framework for automating the invocation of web APIs,” in
the Fifth IEEE International Conference on Semantic Computing, Palo
Alto, CA, 2011, pp. 39–46.

[204] F. Gonidis, I. Paraskakis and A.J.H Simons, “Leveraging platform basic
services in cloud application platforms for the development of cloud
applications,” in the Sixth International Conference on Cloud Computing
Technology and Science, Singapore, 2014, pp. 751-754.

[205] F. Gonidis, I. Paraskakis and A.J.H Simons, “A development framework
enabling the design of service-based cloud applications,” in the Sceond

231

International Workshop on Cloud Service Brokerage. Manchester, 2004,
pp. 139-152.

[206] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Trans Internet Technol, vol. 2, no. 2, pp. 115–150,
May 2002.

[207] F. Gonidis, I. Paraskakis and A.J.H Simons, “Rapid development of
service-based cloud applications: The case of cloud application platforms,”
International Journal of Systems and Service-Oriented Engineering
(IJSSOE), vol.5, no. 4, 2015, pp.1-25.

[208] Google Wallet. (2014). [Online]. Available: http://www.google.gr/wallet/
[209] “Payment Card Industry (PCI) Data Security Standard,” PCI Security

Standards Council, Version 2.0, 2010.
[210] Jason Hunter and William Crawford, Java servlet programming.

Sebastopol, CA:O’Reilly Media, 2001.
[211] Ken Arnold, James Gosling, and David Holmes, The Java programming

language. Boston, MA:Addison Wesley Professional, 2005.
[212] W. L. Hürsch and C. V. Lopes, “Separation of concerns,” Northeastern

University, Boston, MA, NU-CCS-95-03, 1995.
[213] J. S. Poulin, “Measuring software reusability,” in Third International

Conference on Software Reuse: Advances in Software Reusability, Rio De
Janeiro, 1994, pp. 126–138.

[214] I. R. Forman, N. Forman, D. J. V. Ibm, I. R. Forman, and N. Forman,
Java Reflection in Action. Greenwich, CT, USA: Manning Publications
Co., 2004.

[215] S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P.
McCarthy, The Java developer’s guide to Eclipse. Boston, MA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[216] T. Austin, “The cloud email and collaboration services market, 2011
Update,” Gartner, Stamford, CT, G00215500, Aug. 2011.

[217] MailJet. (2015). [Online]. Available: https://www.mailjet.com
[218] CloudControl. (2015). [Online]. Available:

https://www.cloudcontrol.com
[219] Rackspace. (2015). [Online]. Available: http://www.rackspace.com

[220] CloudBees. (2015). [Online]. Available: https://www.cloudbees.com
[221] World Wide Web Consortium. (2015). [Online]. Available:

http://www.w3. org
[222] Marc Hadley, “Web Application Description Language (WADL),” World

Wide Web (W3C), 20090831, 2009.
[223] Joel Farrell and Holger Lausen, “Semantic annotations for WSDL and

XML Schema (SAWSDL),” World Wide Web (W3C), 20070828, 2007.

232

[224] C. Peltz, “Web services orchestration and choreography,” Computer, vol.
36, no. 10, pp. 46–52, Oct. 2003.

[225] T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowl Acquis, vol. 5, no. 2, pp. 199–220, Jun. 1993.

[226] F. Gonidis, I. Paraskakis and A.J.H Simons, “On the role of ontologies in
the design of service-based cloud applications,” in Second Workshop on
Dependability and Interoperability in Heterogeneous Clouds. Porto, 2014,
pp. 1-12.

[227] C. Pedrinaci, J. Cardoso, and T. Leidig, “Linked USDL: A vocabulary
for web-scale service trading,” in 11th International Conference Extended
Semantic Web Conference, Crete, 2014, pp. 68–82.

[228] M. Maleshkova, C. Pedrinaci, N. Li, J. Kopecky, and J. Domingue,
“Lightweight semantics for automating the invocation of Web APIs,” in
International Conference on Service-Oriented Computing and
Applications, Irvine, CA, 2011, pp. 1–4.

