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Abstract 

This thesis explores the realization of low facet reflectivity using self-aligned stripe 

buried waveguide configuration and its implementation in optoelectronic devices such 

as superluminescent diodes (SLDs) and semiconductor optical amplifiers (SOAs).  

I explored the development of the buried waveguide in AlGaAs/GaAs material system 

,since its first presentation in 1974 by Tsukada, in order to identify the problems 

associated with this technology. 

A novel window-faceted structure is demonstrated. The experimental measurements 

demonstrated effective reflectivity <10
-14

 as a result of both divergence and absorption 

within these window-like regions (i.e. not transparent). Its implementation to suppress 

lasing in tilted and normal-to-facet waveguide SLDs was thoroughly investigated in 

chapters 3 and 4. In the tilted devices, ~40mW output power with spectral modulation 

depth < 2% is demonstrated. In the latter types of SLDs, up to 16mW output power with 

<5% spectral modulation depth was recorded, which is the highest power demonstrated 

for such configurations. The performance of the two types of devices was measured 

without the application of anti-reflective coatings on the rear facet, which makes them 

inherently broadband.  

By incorporating a windowed facet at each end of a waveguide I could realize an SOA 

with window structured facet. Promising results were demonstrated in this configuration 

including 33dB gain and <6dB noise figure, which are comparable to the state-of-the-

art.  

A trial was held to extend the concept of absorptive rear window to visible wavelengths 

available in the GaInP/AlGaInP material system. Problems associated with such devices 

were explored briefly and two solutions are suggested. Simulations were performed to 

realize design of an optimized device. Unfortunately, the experimental implementation 

of the design was not successful but suggestions for strategies to overcome these 

problems are discussed  
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Chapter one: Introduction and 
background 

1.1 Introduction:  

This thesis describes the implementation of a recently developed Gallium Arsenide 

based (GaAs-based) self-aligned stripe (SAS) technology incorporating Gallium Indium 

Phosphide (GaInP) layer, which was born out of attempts to realize GaAs buried 

heterostructure, in realization of extremely low effective facet reflectivity. The low 

reflectivity facet was used to present high performance superluminescent diodes (SLDs) 

and semiconductor optical amplifiers (SOAs) for use in enhanced optical coherence 

tomography (OCT). Since the whole thesis is based on cutting edge buried waveguide 

technology, in this chapter I review the literature on buried heterostructure laser designs 

with more particular focus on self-aligned stripes at the end of the review. At the end of 

the chapter, I briefly outlined the contents of the thesis and the main findings for each of 

the four experimental chapters which followed the experimental methods described in 

chapter two.  

1.2 Project motivation:  

SLDs and SOAs have been used as optical broadband emitters in OCT since its 

presentation in 1991 by Huang et.al. [1]. SLDs are used alone usually relying on their 

ability to provide more than 50nm spectral bandwidth in spectral-domain OCT (SD-

OCT). On the other hand, SOAs are usually accompanied with a narrow linewidth 

tunable light source (e.g. tunable semiconductor laser or external cavity laser) in order 

to provide high brightness light source in swept-source OCT (SS-OCT). 1.3μm 

wavelength was the main interest for plenty of efforts since OCT presentation in order 

to enhance the imaging quality. Most of this development was focused on the Indium 

Phosphide based (InP-based) devices which can offer wavelengths in the 1250-1600nm 
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by the Indium Gallium Arsenide Phosphide/ Indium Phosphide (InGaAsP/InP) material 

system.  

The recent interests of OCT development are the retina, choroid, and vitreous 

imaging for diagnosis/therapy [2], [3].  The main obstacle faces such wavelengths in the 

case of living tissues is the high absorption of such wavelength in the biological fluids 

such as water, haemoglobin, and oxidized haemoglobin as reported by Huang  and 

shown in Figure 1-1 [4].  

 

Figure 1-1: A re-print of the biological window graph published by Huang  in their 

paper [4].  

Figure 1-1 shows absorption minima in the spectral region that can be offered by 

GaAs-based devices. This fact increased the interest in developing GaAs-based SLDs 

and SOAs which emit in such wavelengths and can be used as OCT broadband sources 

as can be seen in Figure 1-2 which plots the bandgap as a function of the lattice constant 

for a range of III-V semiconductor material. It was proven that the quality of the 

resultant image of an OCT system is in direct relation to the emitted light quality which 

is governed by the quality of the source. 
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Figure 1-2: A Figure 1-showing the bandgap and the operating wavelength as a 

function of the lattice constant of the III-V semiconductor material. Examination of the 

figure can show that InGaAsP/InP operates mainly in the 1.1-2μm while the 

GaAs/AlGaAs system can operate from ~0.6-1.1μm in case no strain was applied. In 

case of strained quantum structures, operating wavelength of GaAs-based material can 

be extended up to 1600nm.  

A number of methods were used to transform the diode laser into SLD/SOA which 

will be reviewed briefly in chapters 3 and 5. One of these methods is windowed (buried) 

facet structure. Such facet is usually achieved by a process includes etching and 

overgrowth. This process was developed in the InP platform to create windowed SLDs 

[5]and windowed SOAs[6]. The problem associated with such structures in the GaAs-

based devices is that Aluminium Gallium Arsenide (AlGaAs) is key element in any 

structure and exposure of Al-containing layer during the etching process results in poor 

quality overgrowth. This problem was solved by incorporating GaInP protecting layer 

as suggested by B.J. Stevens  [7]. In this thesis I used this method to present broadband 

devices with high performance which are suitable for biomedical OCT imaging in 

chapters 3, 4, and 5. In addition to that, I suggested in chapter 6 GaAs-based devices 

emit at the very edge of the GaAs-based spectral range. These devices can be realized 
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via a similar method to those presented in chapters 3-5 with one key factor difference in 

their optical confinement method.  

1.3 Optical Coherence Tomography 

Optical coherence tomography is a high resolution imaging technique first presented 

by Huang et.al.[1], this method enables measurement of the thickness layers that 

comprise the scanned tissues with no need of further processing or specific preparation 

for the tissue [8]. In any imaging system the key features to be considered is the axial 

resolution and penetration depth. While the classical imaging technologies such as 

ultrasound provide very deep imaging the resolution is limited to larger than 10μm, 

ultrahigh resolution <1μm can be achieved by confocal microscopy but the imaging 

penetration is limited to less than 1mm. The essential properties that can be offered by 

OCT compared to other imaging techniques is that the axial resolution from 10-2μm can 

be achieved for a relatively deep imaging, which plays a key role in tissue diagnosis and 

imaging. Fujimoto located OCT with respect to the other imaging techniques as shown 

in Figure 1-3 below in his book [8].  

 

Figure 1-3: The conventional imaging techniques used for biomedical imaging from 

clinical to laboratory based systems as reported by Fujimoto in [8].  
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OCT operated in two domains, time-domain OCT (TD-OCT) in which OCT was 

presented for the first time and Fourier- or spectral-domain OCT (FD-OCT or SD-OCT) 

which replaced the old approach nowadays. 

1.3.1 TD-OCT  

The technique presented for the first time by Huang et.al. [1] was based on a non-

coherent light source (SLD) emits a light which is split by a 50:50 beam splitter to a 

form a reference and information signals. By detecting the interference between them 

based on the time difference, the tomography of the specimen is detected. This type of 

OCT is called time-domain OCT. Figure 1-3 below shows a simplified diagram of the 

operation.  

 

Figure 1-4: simplified schematic of time-domain optical coherence tomography [1]. 

TD-OCT had a limited sensitivity and a signal-to-noise-ratio that is lower than the 

one provided by SD-OCT.  

1.3.2 SD-OCT 

The SD-OCT differs from the TD-OCT by considering the frequency of the 

information (or the wavelength) in order to extract the thickness of the tissue layers. 

Instead of using a moving mirror and compare white optical powers of the information 

and the reference signals in terms of the time variation which results in a phase shift 

between the two signals as occurs in TD-OCT, SD-OCT compares the reflected optical 
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intensity across a range of wavelengths, since each wavelength results in a constructive 

interference[9]. This is performed by either changing the detected wavelength using a 

spectrometer or a line-detector as happens in the case where SLD is used (as shown in 

Figure 1-5 below), or by using a fixed detector and alter the injected wavelength.  

 

Figure 1-5: a simplified schematic of a spectral-domain OCT utilizing broadband 

emitter 

In the latter case, a tunable laser is commonly used as the initial light source and it is 

usually combined with an SOA to amplify the signal to the desired level. The OCT 

operation is called a Swept-Source OCT (SS-OCT) which a simplified diagram of its 

configuration is shown in Figure 1-6 below.  

 

Figure 1-6: Simplified schematic of swept-source OCT. 
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1.3.3 Impact of light source on the OCT operation 

The light source used in the OCT apparatus is the most essential part of the setup. 

The properties of the source govern the image quality. The equation that governs the 

axial resolution, ∆z, of the OCT system is shown in equation (1-1) below such that 

 ∆𝑧 =
2 ln 2

𝜋

𝜆2

∆𝜆
              ……(1-1) 

where λ is the light source wavelength and ∆λ is the bandwidth of the source. 

Examining equation (1-1) reveals that the axial resolution is directly proportional to the 

squared value of the source and inversely proportional to the bandwidth of the source. 

This means that in order have a better resolution the light source bandwidth should be 

increased at the same wavelength or decrease the operating wavelength.  

While the broadband emitters are not the main interest in this thesis, I presented a 

study on realization of buried semiconductor laser device operate at 650nm in chapter 6. 

This can be developed into a broadband emitter operating in that wavelength using the 

same concepts I presented.  

The other feature that can affect the OCT operation is the output power of the light 

source, which directly related to the setup sensitivity [9]and the signal-to-noise-ratio 

[10] of the system. 

In chapter 3 of this thesis I presented a tilted SLD that can operate with output power 

up to 38mW with no observable noise if it was run under pulsed operation. Also I 

demonstrated a very high gain and low signal-to-noise-ratio SOA which can benefit if it 

was used for SS-OCT.  

1.4 Superluminescent diodes:  
Superluminescent diodes are widely used essential opto-electronic elements in a 

broad range of applications such as optical-communication [11], [12], fibre-optic 



8 | P a g e  
 

gyroscopes [13], sensing [14], [15], and optical coherence tomography both industrial 

[16] and biomedical [15].  

1.4.1 Device Emission: 
SLDs make use of Amplified Spontaneous Emission (ASE), provides relatively 

broadband emission with relatively high brightness. In a laser diode the ASE is found as 

a transitional state between the broadband low brightness spontaneous emission of the 

laser below threshold (essentially act as light emitting diodes (LED)), and the very 

narrow band very high brightness amplified stimulated emission above lasing threshold 

where lasing occurs. This process is demonstrated in Figure 1-7 which plots the three 

emissions in three different colours with their related emission in the in-set. Amplified 

spontaneous emission is the spontaneous emission that undergoes amplification through 

stimulated emission as it travels through an optical cavity under population inversion. 

Generally the SLD emission can be described as a broadband high brightness emission. 

While the bandwidth of the LED can be as wide as 300nm or more, a bandwidth of ~ 

30-50nm is typical for the SLD [8]. ASE (the superluminescence) occurs in all of the 

laser devices for a small range of injection current prior to lasing threshold, when 

feedback of coherent photons with a specific band of wavelengths start to stimulate the 

excited carriers to make the transitions at that band. Figure 1-7 shows the common LI of 

the any laser device with the spectral transitions from spontaneous emission to 

amplified stimulated emission. 
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Figure 1-7: The Common Light-vs-Current Characteristic curve of any semiconductor 

laser. In this process three types of emission is emitted from the same device according 

to the pumping level 1) The spontaneous emission (the blue line) it is low brightness 

wide spectrum, this emission results from almost random transitions along the device 

spectral band, 2) the amplified stimulated emission (the red line) which is a very narrow 

band as shown in the related inset with very high brightness and this is because the 

transitions are now more driven by the wavelengths already active in the device cavity, 

3) the transition in between is the Amplified Spontaneous Emission which has a high 

brightness (sometimes compared to the laser) and wide band, the ASE results from a 

driven transition from multiple wavelengths rather than just one as in laser.  

An SLD exploits this by suppressing the optical feedback through reduction of 

reflectivity provided by the optical facets to effectively extend lasing threshold to such a 

point that it will not be reached. More comprehensive study regarding the applications 

and the used techniques to achieve low facet reflectivity is presented in chapter 3.   

1.5 Semiconductor Optical Amplifier 
Semiconductor Optical Amplifiers (SOA) are key devices used in wide variety of 

applications since their presentation by Crowe and Craig Jr. from IBM in 1964 [17]. 

Applications like optical communications [18] [18], OCT [19], high power lasers [20], 
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optical signal processing [21] and optical logic gates [22], and wavelength conversion 

[23] are all covered by SOAs.  

Since optical communications and optical fibre applications were the main fields of 

interest for a very long time, the main bandwidths that SOA were developed in was 

1550 [18], 1300 [19], [24], and 850 [25]. As the erbium doped fibre amplifier EDFA 

technology grew bigger and the presentation of the optical coherence tomography the 

need for amplifier to enhance these devices performance increased. The 980nm 

amplifiers and 1050nm amplifiers were presented by implementing InGaAs strained 

quantum wells in the GaAs/AlGaAs material systems [20]. Emissions at 1550 and 

1300nm were usually achieved by implementing InGaAsP/InP material systems, while 

the 850n was achieved by the GaAs actives. Recently, reports on 1550nm band using 

different material systems such as AlGaInAs [26] and GaInNAsSb[27] in order to 

enhance the SOA performance (e.g. noise reduction, temperature performance 

enhancement) in the 1550nm. The 1300nm band also reported with diluted nitride 

(GaInNAs) [28]. 

As most of the semiconductor devices privileged over their counterparts, SOA size 

and volume production cost are considered their main advantages. Integratability with 

other semiconductor components as lasers, LEDs, or SLDs is opening a new field of 

applications especially when the coupling losses are minimized when the SOA is 

integrated monolithically.  

1.5.1 Operation principle:  

The simplest description for the SOA is that the input light signal stimulates the free 

injected carriers to recombine and emit photons coherent to the injected optical signal. 

Figure 1-8 explains the operation schematically.  
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Figure 1-8: The simplest schematic diagram of the SOA showing a buried waveguide 

within a p-i-n junction (shaded red-blue-green) in which the input signal with intensity 

Iin enters the active waveguide and get amplified to the Iout output signal. The SOA gain, 

G, is the ratio of Iout to Iin. The device gain is related to the material gain, g, where (G ∝ 

gL) such that L is the active cavity length. The right figure on the other hand is the two-

level energy system showing that the amplification of the I/P signal to O/P is due to the 

transition of the excited carriers from the upper level to the lower level. Maintaining the 

population of the excited carriers defines the devices performance.  

The gain relates directly to the device ability to produce spontaneous 

emission/amplified spontaneous emission which is the spontaneous emission rate Rspont. 

As the pumping current increases the gain at specific input power increases as we can 

see in all gain measurement done by developers [25], [29]–[33]. What happens when 

the input power increases is the thing that governs the modal limit of the device. The 

increase in the photon density (more optical power) of the input signal results in an 

increase in the free-carriers recombination according to the Rspont of the device, this 

increase will reach a point that the free carriers’ population cannot maintain this rate so 

this rate will decrease and eventually reduce the gain provided. When the gain is 

decreased by 3dB from the maximum value it is called the saturation gain and the 

associated output power is donated as the saturation output power. Further discussion 

regarding the reflectivity reduction and device evaluation is presented in chapter 5.  
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1.6 Buried Heterostructure Lasers:  

Isolating the medium carrying transmitted signals is a concept first developed in 

1960 when International Telephone and Telegraph (ITT) Corp. developed what they 

called a cylindrical and flexible waveguide to be used in transmission of television, 

radio and telephone signals during heavy traffic periods [34]. This development enabled 

operation of a long distance service with a decreased number of repeaters. In spite of the 

fact that the whole technology is quite different from the semiconductor laser 

technology yet it was the first developed technology with a waveguide that is isolated 

from the surrounding environment.  

Optical waveguides in the semiconductors capture light in a small cavity made of a 

semiconductor material of refractive index n1 surrounded by a semiconductor material 

that has a refractive index n2 such that n1>n2 (See Figure 1-9). This difference in the 

refractive index causes limited expansion of the optical mode outside the core by total 

internal reflection.  

 

Figure 1-9: simplest Buried Heterostructure schematic diagram showing the two 

materials with different refractive indices and the optical mode confined 

The semiconductor laser in the first 12 year of its development did not have a 

waveguide that is buried within the structure but they mostly tended to have a mesa 

(ridge) structure that operates by the difference in the refractive indices between the air 

(n=1) and the active semiconductor material (n> 1, n=f(λ)) [35][36]. The development 

of a buried stripe was delayed until the maturity of the heterostructure junction in 

n1 

n2 

Optical 

mode 
Optical 
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GaAs/AlGaAs material system. In 1974 Tsukada submitted a paper [37] demonstrating 

the first buried structure which was a GaAs filament in an n- and p- AlGaAs cladding. 

The fabrication process was very simple where grooves where etched chemically on the 

n-AlGaAs grown surface followed by growth of a few microns thick GaAs active layer 

and ending the structure with p-AlGaAs layer using liquid phase epitaxy (LPE). In the 

buried structure the optical confinement is realized through the step-index change 

between the core material (guiding) and the surrounding material and carrier 

confinement is realized through the n-p-n-p (i.e. a reverse biased) structure that 

effectively cancels the electric field at either sides of the active core. Tsukada described 

how the small lateral sizes gave rise to smaller current densities compared to the ridge 

devices presented at that time. With the help of Y. Shima, Tsukada presented a thermal 

characterization and compared it to an epi-side up mesa (ridge) waveguide laser [38]. 

Their study demonstrated superior characteristics of the buried structure and less 

sensitivity to change in temperature. Figure 1-10 shows a schematic representation of 

the structure Tsukada presented in [37] The structure was a simple pn junction of 

AlGaAs material with a GaAs filament in the middle which has a smaller bandgap, the 

operating wavelength of the device was 817nm.  
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Figure 1-10: The processing of Tsukada’s device (a) and the electroluminescence (EL) 

spectrum shows lasing (top (b)) and the farfield pattern which proved the single spatial 

mode operation  [37]. 

The advantages of the buried heterostructure encouraged development of more 

complicated structures such as DFB laser by adding a grating to the structure to allow 

wavelength selectivity. Examples of such structures are described by Nakamura  [39] 

and Burnham  [40] in 1975 and 1976, respectively. The latter one was identical to 

Tsukada’s structure but with the addition of a distributed feedback (DFB) corrugated 

layer closer to the p-side of the structure as shown in Figure 1-11a[40]. Buried 

heterostructure lasers were also realized with DBR mirrors at each end, as the one 

presented by Tsang and Wang in 1976 [41]. Successful wavelength selection was 

presented in this study which device structure is shown in Figure 1-11b.  
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Figure 1-11: The same device presented by Tsukada [37] earlier with integrated 

gratings. (a) Schematic diagram of the device presented by Burnham  [40] and the EL 

below the diagram shows the wavelength selection and (b) is the device presented by 

Tsang and Wang with integrated DBR at each facet with the EL showing the wavelength 

singularity.  

 A theoretical analysis of implementing the buried structure side-to-side with double 

heterostructure configuration suggested greater reduction in the threshold current 

density (Jth) [42]. Following that, Kirkby  presented a simpler technique to process the 

buried heterostructure [43]. In this technique channels were etched in the substrate prior 

the growth of the whole laser structure, which enabled stripe formation without the need 

of growth interception. A simplified procedure can be explained in Figure 1-12a, first 

the n
+
-GaAs substrate was etched down first to provide grooves with specific widths 

which would be the active stripe widths. Following chemical etching, (n-AlGaAs, p-

GaAs, p-AlGaAs, and p
+
-GaAs contact layer) were grown successively by LPE. As a 

result of the substrate etching, the active p-GaAs will be surrounded by n-AlGaAs from 

3 directions and topped with p-AlGaAs (see Figure 1-12 b), limiting the recombination 

to the stripe area.  
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Figure 1-12: A schematic diagram of the channelled substrate buried laser presented by 

Kirkby and Thompson [9] where (a) is the growth process starting with chemical 

etching (1) then depositing the n-AlGaAs layer (2), later depending on the substrate 

tomography the p-GaAs active is grown (3) and finaly the top p-AlGaAs. (b) showing 

the schematic diagram of the grown devices. 

A number of articles described the superiority of buried stripes over other laser 

structures, such as that by Takahashi et.al. [44], which directly compared between 

buried structure and the stripe lasers, and the more comprehensive reviews provided by 

Panish [45] and Tsukada et.al. [46]. This study opened a new field of interest around the 

buried heterostructure laser different structures, growth methods, and operating 

conditions where demonstrated over the next 10-15 years. Buried heterostructure 

technology was first demonstrated in the InP-based system by Hsieh and Shen in 1977 

[47], who compared the “new” technology with oxide and proton bombardment defined 

stripes that were common at the time. The new platform enabled the device to work at 

the wavelengths offering the minimum absorption/dispersion in the glass fibres and 

development of buried heterostructure in these wavelengths had much of attention in the 

telecoms developments over the subsequent decades. The buried structures showed a 

decrease in the threshold current density to half the value required for the oxide defined 

geometry, with a differential quantum efficiency of 10%.  

Efforts were made to enhance the buried structure by adding more elements to 

improve the optoelectronic confinement in both vertical and parallel directions. One of 

the earliest reports by Tsang and Logan [48] demonstrated a buried structure 

incorporating a reverse biased pn-junction at either sides of the stripe to provide 
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electrical confinement. The new methods used in this design is that the two reverse 

biased pn-junctions in order to limit the current spread along the whole from top to 

bottom as shown in Figure 1-13 below.  

Figure 1-13: Tsang and Logan device showing the biased area, where red shaded areas 

were reversed biased and the green ones were forward biased. (b) shows the threshold 

current density as a function of the channel width with the inset showing LI curves of 

the devices as published in [48]. 

They presented two configurations to achieve current confinement via the two pn 

junctions. The authors proved that the precise alignment of the two junctions (or the two 

stripe regions) did not have a significant effect on the device performance. This was 

proven by making a shift of 10μm between the top and bottom stripes in a group of the 

devices, Figure 1-14 b shows that the two groups of lasers were identical.  

M.J. Adams [49] presented an analytical study of the optical waveguiding in both 

vertical and parallel directions, which can enable the single mode operation of the laser 

system if the structure was tuned properly. This became the main method goal to be 

achieved by the following enhancement presented to the buried heterostructure in the 

AlGaAs material system. In addition to that the fact that a small refractive index step 

could benefit toward a single mode operation more than the high step by releasing the 

higher order modes to the material outside the stripe rather than capturing them into the 

active stripe. Since then different methods were developed to achieve this sort of 

optoelectronic confinement in the system. The main method used is to change the 
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effective refractive index of a number of layers rather than relying on the actual 

refractive index between two materials as in Tsukada’s design. The effective refractive 

index of a material was found to be affected by the thickness of the material; this 

concept was implemented by Ito [50], they presented a laser structure that contained 

only AlGaAs material with different AlAs mole fraction. In this structure the inner 

layers were made of AlxGa1-xAs layer (x=~0.25) and the cladding layers were made of 

an AlxGa1-xAs with an x value of ~0.4 while the active was AlxGa1-xAs of x=0.1 to 

produce a laser that can operate in the ~850 nm. The measured LI curve was recorded 

with no kinks up to 2×Jth which was the maximum achieved until that time.  

Another method to achieve single mode operation was by absorbing the higher order 

modes. An example of this was presented by Aiki et.al. [51]. In this structure 

GaAs/AlGaAs structure was grown on a grooved n
+
-GaAs substrate but, unlike the 

channelled substrate laser (CSL) mentioned earlier, the layers were planarized rather 

than transferring the depth variation to the upper layers. This resulted in a similar 

expansion of the optical modes along the active layer. Because of the difference in the 

GaAs substrate between the in-stripe and out-of-stripe areas, the optical mode was 

absorbed in the areas outside the stripe as shown in Figure 1-14. This is because the 

GaAs was actually absorptive to the lasing wavelength produced here (~850nm). This 

configuration achieved single mode operation and stable LI with no kinks up to 2Jth.  

 

Figure 1-14: Schematic diagram of the laser structure published in [51], the elimination 

of the higher order mode was done by absorption of the higher order modes since they 

would be located where the GaAs substrate was closer to the GaAs active.  
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Wang and Figueroa presented a structure that could achieve optoelectronic 

confinements via a structure referred to as an Inverted Ridge Waveguide IRW [52]. This 

structure was tested with two sets of dimensions with 8×30μm
2
 and 3.5×6μm

2
 (d×w). 

The structure was grown in two steps LPE, first, p- and n-GaAs layers were deposited 

on the n+-GaAs substrate, then, the wafer was patterned and etched to the required 

widths, the etching was performed from the n-GaAs grown layer to the n
+
-GaAs 

substrate. Following the etching, n- and p-Al0.7GaAs guiding layers, sandwiching the 

GaAs active layer, were grown and the structure is finished by adding the contact p
+
-

GaAs layer. The final structure is shown in Figure 1-15 below with the p-n-p-n layer is 

highlighted on the sides of the IRW.  

 

Figure 1-15: Schematic diagram of the device presented by Wang and Figueroa [52]. 

The red highlighted regions are the regions where current blocking is performed by p-

n-p-n junction. 

The structure provided a good optoelectronic confinement, however, high threshold 

current densities were exhibited compared with the other reports as a result of using 

bulk actives where the active GaAs layer thickness varied between 1-1.3μm.  

One of the early examples of the use of different materials in the GaAs-platform to 

grow semiconductor laser structures was the incorporation of a small concentration 

(~1%) of phosphorous in the GaAs alloy to produce a high resistance polycrystalline 

GaAsP layer for carrier confinement. This was the main point presented by Itoh  [53] in 

which they showed that creating a layer of GaAs1-xPx (0≤x≤0.01) under a specific 

pressure conditions resulted in an increase in the layer resistance to 3 orders of 
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magnitude compared to that of a pure GaAs layer. They found that setting the arsine 

(AsH3) pressure to 11.4 times the trimethyl-gallium (TMG) pressure results in a series 

resistance of the GaAsP layer of 5×10
3
. This 1% of phosphorous does not cause a large 

lattice mismatch to GaAs and so did not affect the crystallography of the whole 

structure for the chosen layer thicknesses. The whole laser structure of GaAs/AlGaAs 

containing the required optical confinement layers were grown first, then a ridge mesa 

was etched chemically and the GaAsP0.01 layer was overgrown to planarize the 

structure, as shown in Figure 1-16 a, using MOVPE. Following this the contact p
+
-GaAs 

layer was grown to complete the structure. This configuration was one of the first high 

linearity, low threshold current examples where the threshold current density was four 

times lower than a reference dielectric-defined stripe laser of the same material, as 

shown in 16 b. Linear LI was exhibited up to several multiples of threshold current 

density.  

 

Figure 1-16: Embedded-stripe laser structure as published by Itoh  [53] and the 

comparison in the threshold current reduction between the embedded-stripe laser and 

the oxide-stripe laser as a function of active stripe width.  

The easiest way to achieve electronic confinement only is to rely on different types 

of doping in the same crystal. A study was presented by Lee et.al. in 1978 [54] 

concerning the zinc diffusion speed with respect to the aluminium composition in 

AlGaAs alloy and compared it to GaAs as a reference. It was found that by changing the 

Al composition from 0 in GaAs to 0.7 in Al0.7GaAs the diffusion depth was changed 
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from 1.5μm to 5-6μm under the same conditions. The study showed large uncertainty 

for Al-compositions > 0.5 yet two trends could be expected from the study. For 

moderate temperature the diffusion depth started to level-up and even decrease, whilst 

at higher temperatures case with a short contact time or a low temperature with long 

contact time the diffusion tended to expand even more and can be expected to reach 

~8μm.  

Changing the shape of the channel etched in the substrate, and consequently the 

active stripe, can improve the beam quality of the output laser due to the enhancement 

of the optical confinement. This was proved by Wang and Figueroa in their paper 

presented in 1978 [55] when they used different etchant to form their IRL structure. 

This caused the resulted channel to have a curved shape rather than a squared shape. 

This improved the confinement since the circular beam shape can fit better in the 

circular channel. This increased the confinement factor to a point where ~90% of the 

beam overlapped the active region, where losses were minimized for the operating 

wavelength. Farfield and spectral measurements proved the single-mode behaviour of 

the device both in horizontal and vertical directions with respect to the growth axis. 

Again, the electronic confinement in this IRL structure was provided by the p-n-p-n 

junction at either side of the stripe.  

The challenges at that time that faced the buried heterostructure in GaAs/AlGaAs 

system was the low power since the output power is proportional to the active stripe 

width, which were typically ~1μm to maintain single mode operation. Tsang  presented 

a laser structure that benefited from a moderate Al composition between the active 

GaAs and the burying high refractive index material, where the Al-composition was 

0<x≤1[56]. Figure 1-17 a shows a schematic diagram of the laser structure presented 
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and highlighting the new guiding layer added and the LI curves for a group of identical 

devices are shown in Figure 1-17 b.  

 

Figure 1-17: the laser structure presented by Tsang  in [56] (a) and the LI curves of 

identical devices had an active stripe of 10×380μm
2 

(b). A record output power of 

260mW with single longitudinal and transvers modes.  

 This separate confinement heterostructure laser operated in the fundamental mode 

over a wide range of pumping current and this led to the demonstration of the first “high 

power” buried laser as shown in Figure 1-17 b. A Pulsed output power as high as 

260mW was recorded from devices with 10μm wide buried stripe with a single mode 

operation in both transverse and longitudinal directions. To provide the electronic 

confinement for the device an n-AlGaAs was grown and a stripe etched on the top of the 

device before the metallization.  

Aiki et.al. presented a more comprehensive study of buried heterostructure lasers 

with channelled substrates in [57], in which theoretical calculations proved the 

relationship between the active thickness and width with both the effective refractive 

index and the internal losses for buried heterostructure laser operating at 830nm.  

The main limit to the output power in GaAs/AlGaAs laser was the COD due to 

oxidation of aluminium containing layers that were exposed at the facets and/or the 

dislocation that occurred in the crystal structure due to the increase in the junction 

(a) 

(b) 



23 | P a g e  
 

temperature up to the melting points as a result of the very high optical flux intensity at 

the facets. Various solutions to overcome this problem were presented. One of the 

earliest was the buried facet structure presented by Takahashi et.al. when they presented 

a standard stripe geometry configuration laser structure with actives terminated prior to 

the facet [58]. The structure was simple, with no optical or electronic confinement 

applied. The devices were grown in common two-step LPE method in which portions of 

the active p-GaAs were etched down to the n
+
-GaAs substrate prior to regrowth as 

shown in Figure 1-18. The resulted wafer had lines of active p-GaAs separated by 

150μm window regions in which no GaAs was grown. Three different structures were 

evaluated 1) a standard stripe laser device with no unpumped windows at the facets, 2) a 

device that had an unpumped window at one of the facets, and 3) a device that had 

unpumped windows at each end. The results plotted in Figure 1-18 showed 

improvements in lasers with buried facets, which were not affected by the environment, 

as the standard lasers (Type 1) were. Lasers with no buried facets or one buried facet 

experienced increase in the threshold current after being boiled in DI water, while the 

buried facet devices showed a constant threshold current throughout the experiment 

[58].  

 

Figure 1-18: the structure of buried facet laser device presented by Takahashi  [58] 

(left) and a simulation of facet damage by boiling the device in deionized water (right). 

The figure showed protection of the device facet by burying them.  

Kano et.al. demonstrated a laser in the 1.3-1.6μm wavelength region where the fibre 

loss is minimized [59]. The device comprised an InGaAsP active with InP burying layer 
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which provided the current confinement. The demonstrated structure could operate via 

CW operation at room temperature with 60mA Ith (equivalent to 4kA/cm
2
) with 9mW 

output power at 120mA and differential efficiency of 14%.  

Single mode operation was achieved not only by the index-guided structures but also 

by using gain guiding. An example of this was demonstrated by Bar-Chaim et.al. [60], 

in which they used ion implantation (Beryllium was used as doping ion) to confine 

carriers to specific areas in which was limited to. Outside of this, absorption by 

unpumped active material resulted in loss, confining the optical mode to the gain region. 

By comparing different Be-doped Al-compositions with different annealing 

temperatures and junction depths, parameters for achieving minimum surface resistivity 

were determined. A 3.5×125μm
2 

device had a low threshold current of 21mA (pulsed) 

and output power of 10mW with differential efficiency of 45%. A 2.3μm FWHM spot 

size was obtained for 3.5μm stripe width.  

R. Lang suggested [61] that the three main mechanisms for mode instability were 

spatial hole burning, negative dependence of refractive-index on the carrier density, and 

lack of the perfect symmetry in the laser structures due to the poor growth control in 

LPE compared to Metal Organic Vapor Phase Epitaxy (MOVPE) and Molecular Beam 

Epitaxy (MBE), and the presence of >100μm thick GaAs substrate on the n-side of the 

device. Since the development of (MOVPE) as a crystal growth offering superior 

control on layer thickness and doping concentration compared to LPE, improved device 

characteristics could be demonstrated.  

Zinc diffusion was commonly used to produce buried double heterostructure lasers. 

Studies showed controllable diffusion under dielectric masks. In such cases only a 

single epitaxial growth was required to complete the growth and diffusion is used to 

produce the pn junction in the structure. A number of publications studied the effect of 
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diffusion on the refractive index of the device such as that discussed by Ueno and 

Yonezu [62] who formed a pn-junction stripe in a planar of a structure with all n-doped 

layers except the contact layer which was p
+
-GaAs. Following the growth, p-doping was 

provided by zinc diffusion through a mask of SiO2. By increasing the doping levels in 

the layers a step-index was formed between the n- and p-doping. This step provided the 

optical confinement required for single mode operation, with fundamental mode 

operation measured using nearfield, farfield, and EL measurements. When the device 

was doped selectively to p-type in the middle and n-type at either side, a gain-guided 

type buried stripe was formed similar to the devices demonstrated by Bouley et.al. [63] 

and Thompson et.al. [64]. In the first one, the gain guiding was not achieved by zinc 

diffusion only but by using the proton implantation applied to the areas around the 

stripe to increase the resistance and decrease the leakage current. This configuration 

resulted in a laser with Ith=35mA for a 12×150μm
2
 device. However, the optical 

confinement was insufficient to result in single mode operation to high power levels.  

To overcome the problem of COD, a window structure was used in a similar manner 

to that presented by Takahashi [58] but here using selective zinc diffusion to define the 

active stripe. Yonezu et.al. [65] demonstrated devices with 5 or 10μm active width and 

250μm length in addition to a 100μm separation between the devices in the processed 

wafer which formed the window used to protect the facet. The key factor in this study 

was the use of gain control via the doping level. The high doping level in the active 

region resulted in high differential quantum efficiency and a very high pulsed output 

power (1.5-1.8 W).The reduced difference in the doping concentration lowered the 

COD threshold of the device to 700mW of the same device configuration. Figure 1-19 

shows the main results achieved. The pulsed power was measured up to a maximum of 

1.5W. Darklines defects appears in the SEM images resulted from the dislocations in 
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the crystal structure caused by the sudden increase in the optical power density 

(localized heating).  

 

Figure 1-19: The window structure laser presented by Yonezu  [65] where stripes are 

opened and different configuration can be achieved. The SEM image shows the dark 

line defects in the low doped light emitting region (~1E18 cm
-2

) device. The LI curve is 

the one recorded for the highly doped (1E18 cm
-2

) in which an output power of 1.8W 

was achieved. 

In the late 1970s, the main motivation for buried heterostructure laser was associated 

with application of semiconductor lasers in optical communications. The fact that 

buried heterostructure (buried stripe) lasers provide the best geometry for optical fibre 

coupling. Nakamura’s and Hakki’s papers are good examples of theoretical studies into 

operation stability. Nakamura focused on the design aspects and available geometries 

that could present stable single mode operation, and the pulse response of the devices 

[66]. Hakki presented a theoretical study on the factors that cause mode instability in the 

buried stripe lasers [67]. Gain saturation in the active medium was found to affect the 

mode stability directly, where devices with unsaturated gain worked more stable than 

devices with saturated gain as the internal feedback loop can be affected by gain 

saturation.  

Kano and Sugiyama presented an InGaAsP/InP buried stripe laser emitting at 1.3μm 

[68]. The process used to achieve the buried structure included two LPE growths 

interrupted by etching to define the optical waveguide. Low threshold current ~60mA 
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was recorded in both pulsed and CW operation at room temperature, which increased to 

~120 and 160mA for the pulsed and CW operation, respectively, for ambient 

temperature of 85°C. The maximum CW output power recorded was 40mW with 

differential quantum efficiency up to 24% per facet. 

Tsang et.al. [69] developed an enhanced melt-back overgrowth technique to achieve 

an improved interface between the grown layers. This resulted in a threshold current 

decrease to 70mA from the 180mA Ith reported in an earlier version. This enhancement 

enabled the authors to integrate DFB gratings on both sides of the active stripe to limit 

the higher order modes which otherwise appeared in high power operation. The 

structure provided the transverse optical confinement of the buried heterostructure, as 

well as a longitudinal mode selection through the DFB grating [70]. Single longitudinal 

and transverse mode lasers were demonstrated up to 3×Ith, and wavelength tunability 

over the temperature range between 0 to 35°C. In early 1980 Tsang and Logan applied 

the newly developed (MBE) technology to produce buried heterostructure lasers by a 

hybrid growth method [71], as shown in Figure 1-20. The initial double heterostructure 

was grown using MBE then, after the mesas were defined, LPE was used under 

enhanced conditions developed earlier to produce high quality interfaces between the 

MBE and the LPE grown layers. This resulted in very low threshold currents compared 

to the earlier versions of this structure, with 15mA and 26mA Ith and 68% differential 

efficiency recorded for 250 and 360μm long lasers both with 5μm wide active stripes, as 

shown in Figure 1-20. The uniformity of the heterostructure layers, through use of 

MBE, played a major role in this reduction.  
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Figure 1-20: The buried structure that was grown by the melt-back method developed 

by Tsang  where (a) is the standard buried stripe and (b) is the one with integrated DFB 

gratings. (c) is the threshold current as a function of ambient temperature for the buried 

device in (a) while (c) and (d) are the nearfield pattern and the LI and EL 

measurements for the DFB integrating devices, respectively. 

The strip-buried heterostructure was the most common buried laser device 

configuration used at that time to produce single mode lasers in optical communications 

systems and optical disc read/write. The stripe-buried heterostructure design was 

presented by Nelson et.al. [72] grew an InGaAsP/InP junction upon an InP substrate. 

Through use of a Si3N4 mask, a mesa was chemically etched before layers of n- and p-

InP were grown by LPE melt-back to bury the stripe and provide enough optoelectronic 

confinement. In spite of the fact that the threshold current was still relatively high 

~120mA for a 5×120 μm
2
 active area, a single-mode output power up to 100mW and 

500mW maximum output power before thermal roll over were recorded.  

Most of the stripe laser structures presented includes dielectric mask deposition. This 

mask needs to be removed completely and leave clean semiconductor material in order 

to obtain very low series resistance when the p-contact is processed. In fact, this process 

always has a possibility of leaving some contamination on the device surface, which 

will affect the electrical features of the device and might result in a relatively high series 
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resistance. Self-aligned stripe are commonly processed through two-step growth process 

interrupted by etching process without the need for any post growth dielectric 

deposition. Figure 1-21 shows a simplified version of a self-aligned stripe laser showing 

the upper and lower cladding separated by the current confinement layer. 

 

Figure 1-21: simplified schematic diagram of self-aligned stripe buried waveguide. (a) 

1
st
 growth stopping at the current blocking layer. (b) etching through the current 

blocking layer. (c) the overgrowth of the upper cladding. 

An early example of the self-aligned stripe devices is the one demonstrated by 

Coleman and Dapkus [73] which they presented it in the AlGaAs/GaAs material 

system. The wafer was grown by a two-step MOCVD method. An undopped GaAs 

active of 70nm was grown between upper and lower cladding, followed by etching and 

regrowth to complete the structure. The threshold current was 75 and 90mA for pulsed 

and CW operations, respectively, of a 450μm.  

The main problem associated the use of two-step epitaxy methods for realization of 

buried waveguides in GaAs is the oxidation of the Al-containing layers when exposure 

to atmosphere following the etching and prior to the overgrowth. Solutions like the one 

suggested by Yariv et.al. when a single LPE growth was developed to overcome the 

oxidation problem [74]. This process started by depositing and etching Si3N4 slabs for 

selective area growth. The selectivity caused the structure to have pyramid-like shape 

with a flat top to enable the contact. The elimination of any oxidation resulted in a better 

interface, which led to low Ith ~9mA for150μm and high characteristics temperature up 
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to 175°C, and a differential quantum efficiency of 45%. Single mode operation was 

observed up to 12mW/facet.  

Chinone et.al. presented a buried heterostructure laser that is very similar to the 

separate confinement heterostructure (SCH) laser [75] in which additional layers were 

inserted, sandwiching the active layer, the proposed structure is shown in Figure 1-22 a. 

These additional layers had a larger refractive index than the index of the cladding 

layers and smaller than that of the active region in causing ∆n to be decreased from ~0.4 

to ~0.1 for the operating wavelength of 850nm. The threshold current for this device 

was ~25mA for a 2.5×300μm
2
 device and a highest differential quantum efficiency of 

85% was recorded as shown in Figure 1-22 c. 

 

Figure 1-22: A schematic diagram of the buried optical guide laser presented by 

Chinone  [75] (a), a COD comparison between the conventional buried heterostructure 

and the presented lasers, and (c) the primary results showing the LI of the device and 

the vertical/horizontal farfield of the device which proved single-mode operation. 

 This technique was also used by Saito and Ito with a thinner active layer [76].  Their 

structure, shown in Figure 1-23 a, was more similar to the SCH used today. With fine-

tuning of the layers the device could operate with threshold current as low as 5mA with 

an increase in the COD up to 120mW/facet due to the accompanying increase in spot 

size and the corresponding decrease in the optical density at the facets. The devices 

a 

b 

c 
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presented in [76] showed single-mode lateral power scalability with stripe width. Figure 

1-23 shows the structure presented both in Chinone [75] and Saito & Ito [76]with some 

related performance Figures.  

 

Figure 1-23: The BOG device presented Saito & Ito [76] is shown in a, the increase of 

the COD threshold power can be seen in b and fundamental mode operation was 

achieved as can be seen in c. 

Ishikawa et.al. [77] presented an enhanced waveguide called the separate multi-clad 

layer (SML) stripe geometry laser in the GaAs/AlGaAs system. Wave guiding in this 

structure was based on the step refractive index (effective refractive index) in the 

layered material to divert the light to the stripe rather than absorbing the higher order 

modes, in order to achieve single mode operation. The authors compared this 

configuration to the self-aligned stripe laser. The SML structure enabled the device to 

work with a fundamental mode + leaky modes. The improved waveguiding enabled the 

device to work in single mode up to 20mW with a threshold current of 60mA for a 

device measuring 200μm long and 5μm wide. These devices presented by Chinone et.al. 

[75], Saito and Ito [76], and finally Ishikawa et.al.[77] all employed the Separated 

confinement Heterostructure SCH.  

Following the implementation of a guiding layer offering refractive index between 

the high index of the active and the low one of the cladding layer as the lasers shown by 

Ishikawa et.al.[77] and Saito & Ito [76] which gave more stability to the optical mode, 

b 

a 

c 
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Tsang and Logan added a graded index layer and used it as a separate confinement layer 

[78] by putting an AlGaAs layer with gradual increase (or decrease) in the Al-

composition. Figure 1-24 shows the difference between the step index SCH and the 

graded index SCH. Using the graded index SCH, A threshold current as low as 2.5mA 

was achieved. The growth method was a hybrid technique between MBE growth of the 

planar wafer and LPE used to overgrow the burying layer. MBE provided the required 

control for grading the SCH composition and thickness, as well as the better surface 

uniformity for the laser structure, while LPE provided the route to create the n-p-n 

blocking layer. A differential quantum efficiency of 80% was demonstrated.  

 

Figure 1-24: A schematic diagram showing the difference between the step-index SCH 

and the graded index SCH structures (left) and on the right are the LI (pulsed and CW) 

and the EL measurements of the low threshold current buried heterostructure laser 

presented by Tsang  [78].  

Tsang, Logan and Ditzenburger demonstrated in 1982 a buried structure that could 

emit multiple wavelengths, which could be of use in WDM [79]. The multimode 

operation could be achieved by tilting the active waveguide by θ° in order to decrease 

the effective reflectivity of the facets and cause the radiative transitions to result be from 

multiple energy levels rather than one. They used similar structure reviewed earlier [71]. 

Tilting the active stripe by 5° with respect to the normal to the facet was sufficient to 
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destroy the optimum coherence normal to the facet and allow competing spectral modes 

oscillating in the cavity to be amplified. The proposed device and he associated results 

including LI curves, EL spectra, and the farfield patterns are all shown in Figure 1-25. 

Single spatial mode operation was maintained in this device since the active stripe was a 

few microns as can be seen in 26 b. The differential efficiency was improved by 

inclining the active stripe by 2.5° and 5°, as shown in 26 c, due to the marginal decrease 

in the facet reflectivity, this reduction allowed more optical energy to escape the device. 

A successful multimode operation was observed via the EL measurement as shown in 

25 d  

 

Figure 1-25: The tilted cavity buried laser configuration is shown in (a) with single 

mode operation is shown by the farfield pattern shown in (b), a comparison between 

devices with cavities tilted 0°, 2.5°, and 5° with respect to the cleaved facets (c). The EL 

spectra measured at a range of pumping currents (d) shows the benefit of tilting the 

cavity to achieve multi spectral mode.  

With the advent of improved uniformity, interference quality, and control of MOVPE 

and MBE compared to LPE. Performing a structure fully grown by MOVPE or MBE 

became a priority. An early example was that demonstrated by Milano et.al. [80], who 

used metalorganic chemical vapour deposition (MOCVD) twice to grow a buried 

heterostructure laser. Enhancement of the surface morphology and the growth interface 

between the two growth steps enabled leakage current to be minimized and the optical 

quality of the structure to be improved, leading to threshold currents of 9mA for 

a 

c 

d 

b 
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6×250μm
2
 sized laser (compared to 45mA of a similar structure and dimensions grown 

using a hybrid or just LPE). Another example of buried structures grown by the newer 

technology was the twin-channel structure presented by Ackley and Hom [81] which 

was grown using MOVPE. This was a simple structure of P-I-N diode laser grown on 

an n
+
-GaAs channelled substrate. The channels were v-grooves obtained by selective 

etching in the <111> plane. Similar to the earlier examples, the optical confinement was 

achieved using very low refractive index material (air) adjacent to side of the active 

stripe, forming cladding layers , which is in addition to the high Al-composition layer 

above and below the optical mode in the centre of the waveguide. Ion implantation 

outside the grooves limited the current injection to the central area, as shown in Figure 

1-27. The device exhibited single mode operation. The uniform and controllable growth 

using MOVPE enabled active layer thickness as thin as 50nm (one of the thinnest 

available at that time) which allowed the threshold current to be decreased down to 

40mA for a 2×300μm
2

 sized device. Application of asymmetric AR-coating of Al2O3 

increased the COD threshold power up to 80mW/ facet (47mW/μm).  

Tsang et.al. reduced active layer thickness down to 25-30nm [78] essentially using a 

quantum well (QW). The main benefits of this were the low threshold current which 

was <5mA and high differential efficiency, which resulted from the high electrical-

optical conversion. Thornton et.al. realized buried heterostructure lasers incorporating 

multiple QWs [82]. In this structure the electrical confinement was achieved through 

use of impurity diffusion method in which Si was diffused to a specific area around the 

active stripe and by raising the diffusion temperature to ~850°C for 7 hours the 5QW 

active area was disordered and its resistivity increased. 

Another example of the single step epitaxy trials similar to Yariv’s device described 

earlier [74] using LPE growth is the device presented by Yoshikawa et.al. [83]. In this 
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device MOCVD was used to benefit from the mass transport phenomenon to grow the 

device upon the ridge-etched substrate. The first step was to form the undercut ridge 

profile by chemical etching. Following this, the wafer was entered the MOCVD reactor 

and the growth was completed by growing a buffer n
+
-GaAs layer, then the 

GaAs/AlGaAs P-I-N structure of an active between two cladding layers. Figure 1-26 

shows an SEM image of the grown device and some of the related results including LI, 

Farfield, and the threshold current as a function of temperature. If the growth was 

stopped at this point it would be easy to notice that two regions were created 1) on the 

ridge which formed the active stripe in the final structure and 2) the exact same 

structure adjacent to the ridge which was electrically isolated by the n-AlGaAs burying 

layer. To achieve this, the ridge height should be > the thickness of the 

cladding/core/cladding structure. An n-AlGaAs burying layer covered the structure and 

the growth was completed with an n-GaAs layer to protect the whole structure from 

oxidation. Selective Zn diffusion above the formed stripe p-doped this area and 

provided the current confinement required. The presented structure operated via the 

fundamental mode with ~30mA threshold current for 2×250μm
2
. The characteristic 

temperature, To, was 190°C, indicative of excellent crystal growth using this method.  
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Figure 1-26: The single growth device developed by Yoshikawa  [83] is shown in the 

SEM image. The LI curve at room temperature and the Ith as a function of the 

temperature is also shown showing a characteristic temperature of ~190K, the Farfield 

pattern shown is a proof of the fundamental mode operation. 

An early method to design a semiconductor laser with a strained active layer buried 

in the GaAs/AlGaAs system was reported by York  [84]. The device had a single 

InGaAs/GaAs quantum well active that contained In0.23Ga0.77As layers sandwiching the 

In0.41Ga0.59As layer to relax the strain between the QW and the surrounding GaAs layer, 

this laser structure operated at ~1074nm wavelength. Al0.2Ga0.8As layer formed the p- 

and n-cladding layers to finish the structure. The final structure did not exhibit any 

dislocation or polycrystalline growth due to the use of a SiO2 layer between the two 

growth steps to define the ridge for etching before the regrowth of the burying AlGaAs 

layer. COD threshold power was increased since the burying layers were all transparent 

to the operating wavelength. High power up to 130mW/facet could be obtained with 

high linearity up to 30 times the threshold current. The differential efficiency and the 

threshold current measured were 61% and 7-9mA for a device with 3.5μm wide and 

405μm
 
long. 

Another early example of an InGaAs SQW active device on the GaAs-based system 

with operating wavelength in the 900-1000nm (designed for Er-doped fibre application 

as pumping sources) region is the device presented by Major et.al. [85]. Active stripe 
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were defined using impurity induced definition. A thin GaAs layer of 69nm thickness 

sandwiched a 15nm InGaAs quantum well which was confined by Al0.8Ga0.2As 

confining layer and topped with a 150nm p
+
-GaAs contact layer. The first GaAs layer 

was etched chemically through a Si3N4 mask and another layer of SiO2 was used as the 

impurity source. After cleaning of photoresist and SiN layer from the unwanted areas, 

the wafer was annealed in a furnace for 7 hours at 850°C. The diffusion of Si caused the 

layers underneath it to disorder and destroy the pn-junction in the areas outside the 

active stripe. A 2μm wide stripe could operate with 7mA threshold current and up to 

20mW output power was achieved before nonlinearity took-place as a result of self-

heating.  

A shift in the operational wavelength could also be achieved through disordering the 

bandgap structure of the system to select a range of wavelengths shorter than the 

originally given wavelengths in both GaAs and InP [92][93].   

To improve the device performance from that of Major et.al. design low threshold 

current GRINSCH structures were integrated with the strained quantum well 

InGaAs/GaAs. Offsey et.al. [88] demonstrated threshold current ~12mA for a device 

with 3μm wide and 400μm long active stripe with an operating wavelength of 1030nm.  

Chen et.al. used the MBE-LPE hybrid epitaxy method to present a SQW 

semiconductor laser operating at 980nm for application in pumping Er-doped fibre 

amplifier [89]. The first growth by MBE involved growing a single InGaAs quantum 

well, sandwiched by a GRINSCH AlGaAs layer. Following this, mesa etching and 

subsequent overgrowth of p- and n-AlGaAs burying layers was performed using LPE. 

As-cleaved devices showed maximum efficiency of 90% with single mode operation. 

When the rear and front facets were coated with High-Reflective/Anti-Reflective 

(HR/AR) coating of 90% and 5%, respectively, the output power from the AR-coated 
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was increased to 330mW. Thermal roll-over limited the power at this level due to high 

injection current density. No COD was observed over the measured range, as a result of 

AlGaAs and GaAs materials being transparent to the 980nm wavelength. According to 

the report COD threshold power was more than 100mW/μm. LPE overgrowth was 

replaced by MOVPE overgrowth for this material system as shown by Liou et.al. [90] 

where they presented a structure similar to the design of Chen et.al. grown using a two-

step MOVPE. The structure had similar differential quantum efficiency with threshold 

current decreased to only 8mA for a 4×400μm
2
 and 3mA for a 2.5×400μm

2
 devices. 

Comparison the pulsed to the CW operation revealed the LI to be identical up to 10×Ith, 

attributed to improved thermal characteristics resulting from improved surface and 

interface quality.  

Oxidation was the main problem facing any buried structure AlGaAs/GaAs system 

during device processing. Vail et.al. presented a replacement of the AlGaAs/GaAs 

system by incorporating InGaAsP layer to create the separate confinement 

heterostructure instead of AlGaAs [91]. Following the growth of the GRINSCH 

InGaAsP sandwiching a single InGaAs quantum well in an InGaP guiding layers a mesa 

was etched and the AlGaAs optoelectronic confinement layers were grown to finish the 

structure.  

Shima et.al. presented a buried ridge heterostructure (BRH) laser by selectively 

growing an AlGaAs burying layer utilizing chloride during the MOCVD process[92]. 

The authors grew two structures which operated at two wavelengths 780nm for CD 

drivers and 980nm for fibre amplifier pumping. The targeted ∆n was 5×10
-3

 to achieve 

strong index guiding at high powers. This index step was achieved by fixing the Al-

composition to 0.7 in the confinement layer, with the cladding layers being comprised 

of Al0.4GaAs. By tuning the chloride flow rate, growth selectivity could be achieved and 
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laser diodes were realized operating at 780nm and 980 with good operating parameters 

(high power, low threshold, and linear (single mode) operation).  The narrow stripes 

width used enabled high coupling efficiency.  

Reviewing the presented buried waveguide structures shows that most of the 

techniques used to realize buried structures included etching through the active layer 

and exposing it and the Al-containing layer to the atmosphere. Although both 

processing and growth techniques were developed to overcome this problem, it had to 

be executed to perfection and also it might not be so commercially applicable. For that 

reason the self-aligned stripe is explored in the following section in which the active is 

left intact.  

1.7 Self-aligned stripe background:  

The term stripe comes from the fact that the final wafer has a planar top. The 

realization of buried stripe configuration includes deposition of dielectric for selective 

etching, growth, doping, or oxidization. This process has to be followed by a thorough 

etching and cleaning and sometimes even a successive overgrowth process. This is a 

source of a potential contamination which may cause an increase in the series resistance 

for the associated contacts.  Self-aligned stripe (SAS), is a process that enable 

realization of stripe geometry without the need of dielectric deposition. Instead an etch 

process in a current blocking layer followed by an overgrowth is used to achieve the 

stripe geometry. Depending on the material crystallography and the direction of the 

growth of such material the stripe is formed and the material is self-aligned in the 

designated location within the epitaxial structure. This technique provides protection to 

the active layer of the structure since the SAS realization process is limited to the 

current blocking layer which is usually located at a distance above the active layer.  
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Nishi et.al. [93] presented this technique for the first time in the InGaAsP/InP 

material system which operated in the 1.3μm. The device shown in Figure 1-27 was 

realized in a slightly different process included deposition of SiO2 and opening windows 

in them to define the stripes, recently the stripes are defined using basic 

photolithography patterning followed by selective chemical etching. The device was 

grown by two growth LPE process. Single mode operation was achieved in a laser of 

8μm wide and 310μm long. This device had threshold current of ~120mA with 

differential quantum efficiency of 0.17/facet.  

  

Figure 1-27: The self-aligned stripe laser presented by Nishi  [93]. In addition to the 

schematic diagram of the structure, the LI curve and the EL spectrum is shown.  

In 1985, Watanabe et.al. [94] developed a processing method including etching, 

growth, etch-back, and overgrowth of a GaAs/AlGaAs system to realize a self-aligned 

stripe structure, as shown in Figure 1-28. The process started by growing the lower n-

cladding and the confinement layers in addition to the active GaAs and topping it with 

an n-GaAs layer which form the seed of the electrical confinement layer. Half the n-

GaAs layer was etched following an overgrowth of the other part of the n-current 

confinement layer finishing the current confinement. Using the left n-GaAs material on 

the top which was melted and removed and an overgrowth of the p-AlGaAs layer and 

the p+-GaAs capping layer finished the whole structure.  
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Figure 1-28: The self-aligned stripe device developed by Watanabe  [94] is shown in (a) 

with the performance measurements EL, LI, and farfield proving the mode singularity is 

shown in (b), (c), and (d). 

Yamada et.al. [95] presented a structure that was grown on a grooved p-GaAs 

substrate and exploited the effective refractive index change caused by thickness 

variation in the layer grown upon this corrugated surface to achieve optical 

confinement. Electrical confinement was achieved by growing a shallow n-GaAs layer, 

grown selectively via a SiN mask which was initially used to form the grooves. Despite 

the differences in the methodologies used to realize the two structures above, they both 

operated with almost the same threshold current and fundamental mode confinement. 

A process developed by Nido et.al. [96] was used to fabricate a self-aligned stripe 

device by MOVPE growth only [96]. This device had features in common with the two 

devices above and it avoided exposure of the Al-containing layers to air by performing 

the stripe etching and overgrowth inside vacuumed chamber in the MOVPE reactor. 

The process method can be described using Figure 1-29. The GaAs layers sandwiching 

the AlGaAs layer were selectively etched utilising the difference in the etching rates 

between the GaAs (fast) and the Al0.45GaAs (slow). The first growth comprised of a 

70nm AlGaAs active layer with separate confinement structure and lower cladding 

layer, while the final three layers were the n-GaAs current blocking layer, an AlGaAs 

etch stop layer, and a GaAs layer protecting the AlGaAs layer. The wafer was patterned 

a 

b 

c 

d 
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using standard photolithography to form the stipes followed by chemical etching to the 

lower GaAs layer through the etch stop layer. By maintaining the flow rate of HCl and 

AsH3 to 5cc/min and 50cc/min, respectively, and the ambient temperature to 850°C, the 

n-GaAs current blocking layer could be etched and stopped just before the Al0.45GaAs 

cladding layer. Following this process cleaning and overgrowth was held without the 

need to remove the wafer from the reactor which ensured both cleanliness and 

protection against oxidation. Figure 1-29 shows a schematic diagram of the process 

steps and some results that were published.  

 

(a)     (b)    (c) 

Figure 1-29: The in-situ process developed by Nido  [96] is shown in (a-b) while an 

SEM image of the final device is shown in (c) showing high quality surface. 

A number of alternative approaches were employed to provide electrical and optical 

confinement. One example that utilized impurity induced disorder to achieve vertical 

electrical confinement. In such processes the impurity was selectively diffused at the 

sides of what became later an active stripe in order to modify the optoelectronic 

properties of the material adjacent to the stripe. An example of this was presented by 

Zou et.al. [97] who grew the full separate confinement heterostructure laser structure 

comprised strained InGaAs quantum wells active layer. Following the growth, a 

dielectric layer was deposited and a mask formed by opening windows in the dielectric 

layer. Si-diffusion was applied through the opened windows and, because the Si is more 

uniformly diffuse in the GaAs/AlGaAs system than the zinc, the diffusion occurred only 

in the areas underneath the opened windows [97]. The diffusion caused disorder in the 
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band structure of the structure at the sides of the stripe which changed both the electrical 

and optical features of the stripe, enabling the formation of a buried stripe in the 

structure. A fundamental mode operation was achieved.  

Another method was to use selective oxidation in an oxidization furnace such that the 

oxidized layer provides resistive path. This method, developed by Kish et.al. [98], was 

prepared by first growing the whole structure up to the capping p+-GaAs layer. The 

capping layer was then removed by wet etching from the area around the active stripe 

and the Al0.8Ga0.2As layer was exposed. The wafer was then inserted in a furnace with a 

steady rate of nitrogen gas bubbled in water at 450°C in order to oxidize the upper 

AlGaAs cladding layer. SEM and TEM images proved a steady and controlled process 

where the oxide did not expand to the area under the p
+
-GaAs capping layer. The 

native-oxide provided excellent electrical confinement due to the very high resistance in 

the area outside the stripe and also the optical confinement was achieved as the 

measured refractive index of the native oxide was found to be ~1.6 providing a 3.1-1.6 

index step [98]. The device operated in a fundamental mode over the measured range of 

power and current.  

Although the native-oxide and the IID structures showed good output features, they 

did not match the performance of the analogous multi-step-growth devices in term of 

mode stability, efficiency and thermal properties. The researchers tended to develop 

different methods to achieve the self-aligned stripe structure by changing the processing 

conditions or changing the material systems, but the main goal was to keep the Al-

containing layer away from the atmosphere to eliminate any probability for oxidation.  

Ishikawa et.al. presented a more comprehensive study on wavelength tuning in the 

spectral range between 980-1020nm by changing the quantum well composition InxGa1-

xAs and the separate confinement layer AlyGa1-yAs [99].  Broad area laser structures, 
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showed low current density, stable and high differential and internal efficiency, high 

characterisation temperature, and low internal loss. Following this study, the broad area 

laser structure was integrated with an In0.5Ga0.5P-GaAs confinement layer, as shown in 

Figure 1-30, to provide the electrical confinement by use if a p-n-p-n structure and the 

optical confinement by the real index step (i.e. buried heterostructure). The integration 

of an InGaP layer increased the design flexibility of the device where the step-index can 

be changed from 1×10
-2

 down to 2×10
-3

 by changing the InGaP layer thickness over the 

whole range of the Al-composition studied in this paper. This range of index provided 

enough confinement to operate in a stable fundamental mode. The processed devices 

were HR/AR coated on the rear and front facets of the device, respectively, before 

testing in pulsed operation. The low thermal resistance of the InGaP layer resulted in 

high internal efficiencies up to 85% and high output power where powers ~550mW 

were achieved for the 980nm devices and output power up to 415mW was achieved for 

the devices that operate at 1020nm. Despite comprising a structure based on overgrowth 

up on exposed AlGaAs, the device operated for ~2400 hours at an output power level 

greater than 100mW with no obvious degradation. The LI measured from an AR/HR 

coated devices, 550mW maximum power to the measured range was measured from the 

980nm and while 415mW maximum power was measured from 1020nm operating 

device. The figure also shows farfield for the two devices at 100mW output power 

which showed single-mode operation at least up to this level. Differential efficiency of 

~0.49W/A was expected for the two devices.  
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Figure 1-30: The InGaAs DQW device developed by Ishikawa  [99] is shown in (a) the 

ability to operate from 980nm to 1020nm with modified facet reflectivities is shown by 

the LI curves with the farfield inset. 

An alternative approach was to exclude the aluminium from the material system used 

to grow the devices in a way similar to the device presented by Sin et.al. [100], in which 

they used InGaP cladding layers instead of AlGaAs. InGaP lattice matched to GaAs for 

indium compositions ~0.5 and has Eg=~1.9e.V. Such material is transparent to 

wavelengths >700nm, and this can benefit in using them as optical confinement due to 

the smaller refractive index than GaAs or InGaAs. In this structure a standard buried 

ridge configuration was used where two layers of n- and p-InGaP layers sandwiching 

the GaAs-InGaAs single quantum well active were grown and topped with a p
+
-GaAs 

contact layer. Following the first growth a ridge was created by etching the layers down 

to the lower n-InGaP layer. Finally, the two layers of p-InGaP and n-InGaP were grown 

to form the p-n-p-n current blocking structure outside the active stripe. The device 

performed well with low threshold currents down to <5mA for a 350μm long laser with 

the ability to perform at high power as the maximum power measured was ~95mW at 

190mA, and high temperature operation as the device operated at 100°C with <13mA 

threshold current and 23mW output power.  

Whilst replacement of AlGaAs with InGaP cladding can provide sufficient ∆Eg and 

optical confinement it does not offer the flexibility of AlxGa1-xAs, which is lattice 

matched to GaAs for all compositions of Alx, therefore lacks the design flexibility of the 
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AlGaAs, which by changing the Alx can tailor the optical mode. To this point, 

aluminium oxidation was the main problem facing the development of buried 

waveguide in the AlGaAs/GaAs material system. A number of methods were used to 

avoid oxidation of Al-containing layers. Solutions varied from the melt-back method 

used in the LPE growth (which is not being used recently), to the single growth 

processes as the one shown by a number of examples shown earlier or performing in-

situ growth/etching/overgrowth process developed by others, and ending with the 

solution of changing the cladding material from AlGaAs to Al-free cladding. Despite 

the improved performance of the previous examples in this section and section 1.6, the 

improvement targeted a specific wavelength or material system.  

Stevens et.al. [7] suggested an alternative process to benefit from the flexibility of 

AlxGa1-xAs and the fact that GaInP does not suffer oxidization when exposed to 

atmosphere. They introduced a structure that incorporates GaAs/Ga0.5In0.5P/GaAs 

optoelectronic confinement layer, lattice matched to GaAs, to realize a self-aligned 

stripe laser structure [7]. This layer enabled formation of the stripe by wet selective 

etching easily without exposure of rich Al-containing cladding layer to oxygen. Figure 

1-31 shows a simplified schematic of the process followed in realization of this 

structure. The structure was grown by two-step growth process which both ends at Al-

free containing layer, namely upper GaAs etch stopping layer for the first growth and 

the p
+
-GaAs contact layer for the latter overgrowth. The first growth started with growth 

of lower cladding, the active layer, a 300nm p-clad as a separation between the active 

and the optoelectronic confinement layer. Following the first growth, the wafer was 

taken outside the reactor and selective etching to define the stripes was performed. The 

etchant used was highly selective to GaAs. This resulted in a smooth and clean GaAs 

surface when the GaInP layer is removed. Following a thorough cleaning of the wafer, 
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it was returned to the reactor to perform the overgrowth of the upper cladding and p
+
-

contact layer.  

 

Figure 1-31: A simplified schematic showing the process followed by Stevens  [7] to 

realize self-aligned stripe laser with GaInP layer. 

The published data demonstrated lasing in the fundamental optical mode for stripes < 

5μm wide and output powers of ~100mW were recorded from 3μm wide stripe and an 

external quantum differential efficiency was ~50%. The recorded characteristic 

temperature was ~80 K. 

 In addition to the QW active region, QD active layer operating at ~1250nm was 

implemented in this structure to test the structure durability for delicate active layer. The 

measured data showed no shift in the emitted wavelength compared to the 

photoluminescence (PL) measurement performed for the unprocessed material. This 

proved that, in addition to the protection from oxidization offered by the GaInP layer, 

the optoelectronic confinement layer protect the active layer during the fabrication 

process which included two annealing processes and SiN deposition at high 

temperature.  

It was found that the self-aligned stripe process can present, in addition to the 

protection of Al-containing layer, an extra protection to the active layer during the post 

regrowth step. Since the scope of the thesis is to implement buried facets, which will be 

defined and explained in chapter 3, whose realization process include termination of the 

GaAs/GaInP/GaAs layer 

Etched channel Overgrown upper 
cladding 

Optical 
waveguide 

Lower 
cladding + 

Active  

Lower 
cladding + 

Active  

Lower 
cladding + 

Active  
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buried waveguide prior to the cleaved facet to use it to achieve ultralow reflectivity, it 

was decided to use the self-aligned stripe process presented by Stevens et.al. to realize 

these facets. 

 The structure developed by Stevens et.al. is discussed in more details in chapter 2 

and its implementation to realize low reflectivity facets is discussed in chapters 3-5 

where it was used as SLDs and SOAs.  

1.8: Thesis outlines:  

An abstract overviews of the experimental chapters presented in this thesis are 

outlined below. 

1.8.1 Chapter two  

To avoid replication of the growth and fabrication processes to realize the devices 

presented in chapters 3-5 the common information is discussed in this chapter. The 

epitaxial structure and growth, the fabrication process, and the experimental setups are 

described in the first three sections in this chapter, followed by a spectral and gain 

characterization of the DQW material to be used. The wafer provided devices with tilted 

and normal-to-facet waveguides which are used in the subsequent three chapters in 

different configurations.  

1.8.2 Chapter three 

In the third chapter I characterized the devices with tilted cavities with a window at 

one end as superluminescent diodes (SLDs). Starting by explaining the differences 

between the SLD and the semiconductor laser device, the methods commonly used to 

convert one to the other are outlined. In my devices I employed the rear unpumped 

window configuration to achieve low facet reflectivity in addition to tilting the active 

stripe with respect to the crystal axis. Before characterizing the tilted device, I 

characterized the proposed window as a feedback suppression element by measuring the 



49 | P a g e  
 

reflectivity of straight cavity devices. Since the spectral modulation depth (SMD) is a 

key factor in evaluating the SLD performance, I first determined the SMD power 

dependence of the structure by use of a simplified theoretical model based on the 

measured reflectivity and comparing with actual SMD measured from devices with 

different cavity geometries. Results demonstrated a significant thermal effect on the 

device performance and so different cavity configurations were explored in order to 

optimize the device performance. First the structure was mounted epi-side down to 

increase the heat sinking, second this epi-side down mounted device was tested under 

pulsed conditions, and third a resistor was integrated at the unpumped window region of 

the device to control absorption of the window.  

1.8.3 Chapter four  

The outcomes of the third chapter increased my interest in such device performance 

in SLDs with waveguides processed normal-to-facet since the low Reff is suggestive of 

the potential to use this more desirable configuration. In chapter four such devices are 

processed and characterized thoroughly with different geometries. A number of design 

parameter limitations are discussed in this chapter such as the active cavity dimensions, 

and the propagated beam divergence angle.  

1.8.4 Chapter five 

Following on the footsteps of a number of researchers in the InP world I presented a 

study on windowed SOAs, using the same GaAs-based material combination as the 

previous two chapters but which had a window region at each end of a waveguide. This 

chapter describes the experimental design and the measurement of the four main 

parameters used to evaluate an optical amplifiers performance which revealed excellent 

performance in number of aspects. Based on this characterization the device showed 

contrasting performance points associated mainly with the material used as an active 

layer. The recorded small signal gain of the device was >33dB which is considered in 
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the high range of quantum well amplifiers. The bandwidth of the device was limited due 

to the limited bandwidth of the structure. The saturation output power, Psat, was 

<10dBm which is considered low compared with the common Psat reported in the 

literature, this low value is expected to be resulted from the low pumping current 

density which was <2kA.cm
-2

.  

1.8.5 Chapter six  

The GaAs-based material system enables emission across the spectral region 600-

1600nm however due to absorption by GaAs at wavelengths shorter than 700nm, it is 

not possible to simply extend the SAS scheme studied in chapters 3-5 to such regions. 

In this chapter, I use the AlGaInP/GaInP system to design a buried structure that could 

operate at ~645nm wavelength. As an introduction to this chapter, a review of the 

development of the red laser is first presented. Next, the problems associated with this 

spectral range are outlined. These two problems being the shallow energy barrier and 

the high refractive index of the material used when Al-free containing layers are used. 

The first problem was addressed by placing a multiquantum barrier (MQB) layer in the 

active portion, and the second problem was addressed by changing the principle of 

operation used to confine the light to an anti-resonance reflecting optical waveguide 

(ARROW). Simulations were made to optimize the design. However, reliance on 

aluminium-containing layers could not be overcome, and an (Al0.3Ga07)0.5In0.5P 

needed to be etched down and exposed to air. The chapter concluded with suggestions 

of how this could be overcome in future iteration.  
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Chapter two: Methodology.  

2.1 Introduction.  
This chapter focuses on the materials grown and the methods used to fabricate the 

devices explored in later chapters. The wafer structure and its subsequent processing 

steps are described at the beginning of this chapter, followed by a description of the 

setups used to characterize the processed devices.  

2.2 Growth and fabrication: 
The material described in this chapter was used in the investigations detailed in chapters 

3, 4 and 5. In order to avoid repetition of the same information regarding the growth, 

processing, and sample preparation, I describe the whole process used in the following 

sections. Minor deviation from this regarding specific devices will be mentioned 

whenever occurred.  

2.2.1 Growth, stripe formation and regrowth: 
The superluminescent diodes (SLDs) studied in this thesis employ self-aligned stripe 

(SAS) optical waveguides. The realization of these SLDs is achieved via two-step 

growth method previously utilized for realization SAS laser [1]. The active layer 

consists of two 7.6nm In0.17GaAs quantum wells (QWs) separated by 20nm GaAs and 

sandwiched by a 100nm GaAs confinement layer. The structure emits at central 

wavelength ~980nm.  

The wafers used in chapters 3-5 were all grown and overgrown using Thomas Swan 

horizontal MOVPE reactor. The growth process starts by depositing an n-GaAs buffer 

layer and a 1.5μm n-Al0.41GaAs cladding layer on an n
+
-GaAs substrate. Following the 

AlGaAs deposition, the active region described above is grown and topped with 300nm 

p-Al0.41GaAs separation layer, prior to growth of a 600nm thick GaInP (lattice matched 
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to GaAs) current blocking layer, which will provide both optical and electronic 

confinements. This layer is sandwiched in between two 10nm layers of GaAs in order to 

use the lower GaAs layer as an etch stopper and to protect the lower Al-containing 

layers from exposure to atmosphere. The growth temperatures were set to 715°C to 

grow AlGaAs, 703°C for QW growth, and 715°C for GaInP growth. Figure 2-1a shows 

the schematic diagram of the grown structure to this point and Figure 2-1 b shows 

wavelength as a function of lattice constant for the GaAs and InP systems. 

 

Figure 2-1: (a) schematic diagram of the grown structure ending at the second GaAs 

layer works as etch stopping layer (the GaAs substrate was excluded in this figure). (b) 

Energy Gap and Wavelength as a function of lattice constant for common III-V material 

[2],  

Stripes are formed in this wafer by etching down regions through the n-GaInP layer 

and filling the gaps created with p-AlGaAs upper cladding. First the wafer was 

patterned using standard vacuum photolithography utilizing SPR350 photoresist. This 

specific photoresist is originally chosen due to its resolution, potentially able to resolve 

600nm features, so, widths down to 1μm are available using this combination. The 

sample patterning starts with spinning SPR350 at 4000RPM leaving 1μm thick 

photoresist coating the wafer. After UV exposure through UV300 optics of an MJB-3 

mask aligner, the wafer is developed using MF26A and finished with O2 asher cleaning 

to remove any residue from the stripes. Following the patterning, the wafer is dry etched 
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using inductive coupled plasma (ICP) etcher, using SiCl4/Ar to remove the upper 10nm 

GaAs and penetrate into the GaInP. Then the wafer is etched chemically using 

C6H8O7/HCl (1:1) selective etchant to totally remove the GaInP and abruptly stop at the 

lower GaAs protecting layer which cannot be etched by this solution. The photoresist is 

then removed to re-grow the upper cladding and contact layers. The resist removal is 

done by dipping the wafer into a warm EKC830 photoresist stripper and then rinsing it 

in isopropyl acetate (IPA) before 1min O2 plasma ash.  The final step before reloading 

the wafer into the MOVPE reactor is to wash the sample in 1% buffer HF for 30sec and 

rinse in D.I. water.   

 The mask used to pattern this wafer has periods of stripes each with 5000μm length 

grouped in to sets of five elements. Two configurations can be taken from this wafer, 

the first one is the full active devices in which the active stripe is extended from end to 

end, the second configuration is the configuration in which the active stripes are stopped 

prior to the cleaved facet. Also, the wafer is divided into two regions. The first has 

stripes aligned along the <010> direction which can form SAS lasers (used later in the 

length dependant gain measurement) and devices that have normal-to-facet stripes and 

window regions will be used in estimation of the effective reflectivity of the window 

section (see section 3.5 for more details). The second has the same configuration but 

stripes tilted 10° w.r.t the <010> plane.  

The designated target for this work is to present SLDs with window structures, which 

could easily coupled to standard single mode fibres. For that reason, the mask included 

3 and 4μm width and 5000μm long stripes to allow or more geometrical selection 

flexibility. Figure 2-2a shows a schematic diagram of the etched planner wafer with the 

stripe formed. It also shows cross-section TEM images of test stripes in Figure 2-2b.  
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Figure 2-2: (a) a schematic diagram showing the etched planner wafer, (b) a TEM 

image of a cross-section of a test stripe showing the long side wall , and (c) a section 

taken in the longitudinal direction (along the stripe) showing the ends of the stripe. 

Following formation of the stripes, a 100nm of undoped GaAs was first deposited, 

followed by 1.5μm p-Al0.42GaAs, which was grown to form the p-cladding layer. The 

structure was finished with 300nm of p
+
-GaAs capping layer. The doping density was 

set to 5×10
17

cm
-2

 in the n-GaInP and the p-AlGaAs separation layers, while the doping 

concentration of the cladding layers were stepped so that the 750μm closer to the active 

was maintained at 5×10
17

cm
-2

 while the 750μm farther from the active region was 

selected to have slightly higher doping of 1×10
18

cm
-2

. The contact layer was doped to 

2×10
19

cm
-2

 and the active region containing the quantum wells, the GaAs barrier, and 

the GaAs guiding layers are left undopped.  

The <111> cut caused a slight aluminium variation above the angled edges, which is 

typical for overgrowth of AlGaAs on non-planar surfaces, and has previously been used 

for growing quantum wire [3].  

Figure 2-3a shows a schematic diagram of the final grown SAS structure, while the 

PL spectrum is recorded from unprocessed planar wafer at room temperature is shown 

in Figure 2-3b.  
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Figure 2-3: (a) A schematic diagram of the fully grown wafer with a self-aligned stripe 

etched and refilled. (b) the photoluminescence spectrum of the fully grown sample at 

room temperature.  

Photoluminescence emission recorded from planar wafer at room temperature shows 

a peak at 990nm and a FWHM bandwidth of 18nm. Such a narrow bandwidth is 

expected for a material designed originally as a laser device active medium with 

identical quantum wells. This type of active is unusual for SLD devices which usually 

employ broadening techniques (e.g. QW chirping) to achieve a broader emission. The 

intention of my work was not to present broadband SLDs but to present a technique that 

can provide ultra-low facet reflectivity used to suppress the parasitic Fabry-Pérot 

resonance within the SLD. For this reason I used an active that provides high gain with 

narrow bandwidth to make lasing suppression more difficult and in this way I can 

investigate the maximum limits of the proposed low reflectivity facet. Suppressing the 

lasing in broadband actives is expected to be easier bearing in mind that the gain is 

smeared over a broad range of wavelengths and the peak gain is correspondingly low. 

The wafer was processed with both straight waveguides (i.e. normal to cleaved 

facets) and 10° tilted waveguides using the same mask. The only penalty in this mask 
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design is that the adjacent devices in the same group have some difference in the active 

and passive parts length.  For each pair of adjacent devices, the length uncertainty is 

~70.5μm. This penalty will be apparent if we compared two devices at each end of a 

cleaved chip. 

2.2.2 Post growth process: 
Laser and SLD devices were processed from the overgrown material described 

earlier by the following process flow shown below.  

1- P-ohmic contact metallization  

The wafer is first patterned with PMGI and SPR 350 to provide a better lift-off 

photoresist profile. A 1 minute cleaning in the O2 asher is used after the patterning, 

then, 20μm wide Au/Zn/Au 20/10/250nm thick layer is deposited above the active 

SAS stripes regions. The deposition is done using the thermal evaporator under low 

pressure (~10
-5

 mbar).  

Following the deposition, lift-off is performed using acetone and the sample was 

annealed for 3 seconds at 360°C to minimize the contact series resistance.  

2- Electrical isolation trenches  

To isolate the adjacent devices trenches are etched. We stop the etching at n-GaInP 

layer since it already has high series resistance between the adjacent devices. As 

done with the metallization, the etching is started with patterning the wafer to 

protect the metal coated areas (the ohmic contacts) of the device. Trenches were 

etched down using HBr:C2H4O2:K2Cr2O 1:1:1 wet chemical etching. Later, the 

photoresist was removed using EKC830 photoresist stripper and a three step 

solvent cleaning was performed to prepare the etched wafer for the next step. 

Figure 2-4 shows the etched wafer with the ohmic contact stripes on it and 

demonstrates the effect of the trenches on the carrier flow highlighted by the arrows 

in the figure 2 (i.e. isolation trenches provided individually separated devices but 
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they are sufficiently far from the stripes so as not to interfere  with the operation of 

the SAS. 

 

Figure 2-4: A comparison between the (a)non-etched, and (b) etched. The 

carriers flow without etching will spread to the adjacent devices in the first 

case will the carriers will be driven to the device underneath the pumping 

area only.  

3- SiN deposition and Bond-Pads windows 

The ohmic contact is only 20μm wide, which is not wide enough to bond the 

individual devices for electrical connection using the gold wire ultrasound bonder. 

A dielectric layer (namely SiN) is deposited to enhance the electrical isolation 

between the adjacent devices. By the plasma enhanced chemical vapour deposition 

(PECVD), 500nm of SiN was deposited on the wafer surface.  

The deposition of SiN required a window opening to connect the devices. To do 

this the surface was patterned using SPR350 and the patterned wafer was loaded in 

the Reactive Ion Etching (RIE) for dry-etching. O2/CHF3 gas mixture was used in 

the process to etch away 500nm of the SiN from the areas covered with metal to 

open up the contact.  

Following a thorough cleaning to remove any photoresist residue, the wafer was 

patterned by the same photolithography method used earlier. The patterned wafer 

was loaded to the thermal evaporator and Ti-Au layers of 20 and 300nm 
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thicknesses were deposited and Lift-off was performed. Figure 2-5 shows the 

processed device to this stage.  

 

Figure 2-5: Device structure after depositing SiN, windows etching and 

bond pads deposition. 

4- Wafer thinning and n-contact 

To improve heat sinking and allowing cleaving, the wafer was thinned down to 

<120μm.  

The final step in the device processing before dicing the wafer into individual 

devices was to create the back contact. An InGe/Au (20/300nm) alloy was 

deposited on the backside of the thinned wafer and annealed at 340°C in an RTA. 

Figure 2-6 shows the final processed device.  

 

Figure 2-6: the final grown structure  
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5- Cleaving and packaging 

Although the wafer was cleaved in different manners according to the device 

(section) required, the mechanism is the same. Cleaving was performed in a Loomis 

LSD-100 scribe and break system. Chips were mounted on a range of sub-mounts 

using InPbAg coating paste.   

Goldwireball bonder, at a rate of two bonds per 250μm, was performed to connect 

the SLDs to the lead-out of the submount.  

2.3 Measurement setups:  
The measurement setups used in the experiments included in the thesis are described 

briefly in the following sections  

2.3.1 light-current characteristics: 
The setup shown schematically in Figure 2-7 is used as a mean to measure the 

emitted optical power from the characterized device as a function of the injected 

current. This setup implemented an InGaAs NIR photodetector connected to a Hewllet 

Packard (HP) 1810 power meter. The current was supplied from a CW current source 

integrated with a temperature controller in a laser diode modular controller ILX LDC 

3900.  The whole set of equipment was connected to a desktop PC controller running 

Labview that enables both manual and automatic control.  
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Figure 2-7: Light-Current Characteristic setup 

2.3.2 Low resolution electroluminescence (EL) setup:  
This setup was used to measure the EL spectrum of the tested device with a 

resolution range between 10 nm to 0.1nm. Usually, this setup is used as initial screening 

of the devices, in order to determine whether the devices exhibits lasing or not. The 

setup consists of current sources (pulsed and CW) for current injection into the devices 

under test, which are situated on a temperature controlled stage. The emitted light is 

collected by a multimode fibre fixed on an X-Y-Z translation stage, and the collected 

light in the fibre is delivered to an HP 70004A optical spectrum analyser (OSA). Again, 

the whole setup is driven by a desktop computer, enabling automatic or manual data 

collection. The spectral range, maximum resolution, and  number of samples per scan is 

governed by the limits available in the OSA, which are 600-1700nm, 0.1nm, and 2048 

sample points respectively. The setup is shown schematically in Figure 2-8 with all its 

parts highlighted.  
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Figure 2-8 Low resolution EL measurement setup. 

 

2.3.3 High resolution EL setup: 
The high resolution EL setup, shown schematically in Figure 2-9 is very similar to 

the low resolution counterpart, but replaces the multimode (MM) fibre with a single 

mode fibre. 

Positioning of the single fibre is much less tolerant to mis-alignment compared to the 

MM case. For this reason, the XYZ stage is now attached to an adaptive positioner that 

enables the position of the lensed fibre tip to be automatically controlled to sub-μm 

alignment precision, which will enable high and consistent coupling efficiency and 

more accurate data collection The OSA used in this setup is the Q3804 Advantest 

optical  spectrum analyser. The resolution range is now expanded from 0.5nm to 

0.01nm while the number of sample points is almost increased to five folds to reach 

10001 sample points over the same wavelength range. The rest of the apparatus is the 
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same as that shown for the low resolution EL setup. This setup is used to inspect the 

Fabry-Pérot modes of the device as it can resolve them easily. 

 

Figure 2-9: Setup used for the high resolution EL measurements  

2.3.4 Photocurrent setup: 

The photocurrent setup, shown in Figure 2-10 below, is used in this thesis to identify 

the absorption peaks of the unpumped material which corresponded to  emission peaks 

if forward bias is applied to the structure. When optical excitation is applied to a 

semiconductor structure, e
-
 and h

+
 pairs are excited through interband absorption. If the 

charge carriers are able to escape before they have the chance to recombine, then a 

photocurrent (PC) signal results. The PC signal provides a quantative representation of 

the absorption spectrum of the sample (where 𝐼𝑝𝑐 ∝ 𝛼𝐿). Excitation light is modulated 

by a mechanical optical chopper, enabling the small PC signal (usually in nA range) to 

be extracted from the background using lock-in amplifier. The spectrometer of the setup 

is synchronised with the lock-in amplifier through a desktop PC.  
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Figure 2-10: Setup used for photocurrent measurement.  

2.3.5 Farfield setup: 

The farfield setup used for the measurements described in the thesis is simply an XY 

plane detector covered with a swinging slit, and intensity data to produce even the 

farfield in the x (horizontal) direction or Y (vertical) direction and 3-dimensional 

measurement. The swinging slit is positioned at a specific distance from the output facet 

of the device, this distance need to be accurately inserted to the running program since it 

will be the reference point to be used in the measurement. The divergence angle is 

calculated by the program from comparing the exposed length in the slit and the 

distance between the slit and the output facet. The running device is operated under 

conditions controlled as in the previous measurements. 
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Figure 2-11: The setup used for farfield measurement.  

2.3.6 SOA characterization setup 

In order to characterize the SAS waveguides as semiconductor optical amplifiers, a 

setup was assembled based around a Thorlabs TLK1050 tunable laser with a maximum 

power of 16mW and a central wavelength around 1050nm. This laser was used as an 

input signal while the output is observed on an HP 70004 optical spectral analyser. The 

tunable laser is centred at 1050nm±40nm; unfortunately this is some distance away 

from the central wavelength of the grown material which was at 993nm. However, a 

3dB intensity of ASE of the two devices can meet at ~997nm as can be seen in Figure 2-

12.  
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The assembly is shown in Figure 2-13. A variable attenuator is fitted at the output of the 

tunable laser in order to control the intensity of the injected light. Also, since the SOA 

can have any polarization (a typical property of the edge emitting device) a polarizer 

was inserted between the attenuator and the input facet of the SOA to tailor the tunable 

laser polarization to the polarization of the SOA. The polarization effect can be sensed 

as an intensity of the amplified signal on the OSA, when the two devices have the same 

polarization the maximum intensity will be observed while the intensity drops once the 

polarization differs. The light was driven in the setup using a single mode lensed fibre 

to achieve the best coupling efficiency. The lasing peak was tuned using a thermo-

electrical controller (TEC) integrated with a CW current source feeding the tunable 

laser. The SOA was pumped using a separate CW current source.  

 

Figure 2-13:  The assembly used to characterize the material as a semiconductor 

optical amplifier. 
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2.4 Photocurrent Spectroscopy:  
Photocurrent is one of the spectroscopy techniques used to investigate the behaviour 

of the semiconductor structure. Presented for the first time by Tarricone et.al. in 1992 

[4]. If an optical signal with specific energy (E) is applied to a specific quantum 

structure (QW or QD), the carriers within these structures will be excited accordingly.  

If this energy a greater than or equals the bandgap (Eg) of this structure the excited 

carriers will possibly escape the bond of the structure and become free charge carriers. 

If a complete circuit is connected to this structure, the charge carriers appear in the form 

of dark current.  

This technique is considered the opposite of the other two techniques presented 

before it (the electroluminescence [5][6], and photoluminescence [7]) where in the latter 

two the optical emission from the excited structure is collected at a range of 

wavelengths to identify the emission peaks. Figure 2-14 shows a simplified schematic 

of the latter two spectroscopy methods. 

 

Figure 2-14: The Electroluminescence (a) and Photoluminescence (b) mechanisms in 

simple two level system with active and cladding region having Ea and Ew, 

respectively. In (a) an external source pump the structure with excited electrons which 

undergoes transitions in the active region and emit light with a specific bandwidth 

corresponding to the available sub-bands in the active. On the other hand, the external 

optical source with energy >Ew in the PL spectroscopy excites the electrons from the 

valance band in the cladding layers, these excited electrons relax to the lower energy 

levels available in the active layer and do the transition which results in light emitted 

associated with the emission peaks available.  

To detect the higher energy emission in EL and PL spectroscopies requires filling the 

quantum states with enough energy to move to shorter wavelength (higher energy). On 
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the other hand, since the photocurrent is resulted from the free carriers created from any 

transition, higher order emission does not require any state filling as long as an emission 

with enough energy is applied. For that reason, the photocurrent spectroscopy method is 

superior over EL and PL methods in detecting all the available absorption peaks in the 

case of unbiased structure.  

These peaks are the emission peaks in the cases of active (forward biased) devices. 

Figure 2-15 shows a schematic of the photocurrent spectroscopy mechanism and a PC 

spectrum measured by Polland et.al. [8] for a GaAs/Al0.4Ga0.6As structure. 

 

Figure 2-15: a simple schematic of QW/QB system showing the concept of photocurrent 

(a) and the PC spectrum published by Polland et.al. [8]  (b). The incident optical energy 

excites the electron in the undopped region these excited carriers can be collected in 

form of dark current, the intensity of the current collected is related directly to the 

absorption capability of the device at the associated wavelengths. Polland et.al 

presented devices that could absorb light with photon energy around 1.65eV which 

correspond to GaAs and Al0.4GaAs.  

2.4.1 Sample Preparations 
Measuring the photocurrent requires a sample to be prepared with optical access 

mesa and annular top contact. Such mesa diodes are prepared with diameter equal to 

100μm in design with top contacts (Au/Zn/Au) that was 100μm outer diameter and 

80μm inner diameter. The required mesas were processed at the same time as the stripes 

were done in some areas in the mask, these mesas also had the current blocking layer 
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etched away to create a p-i-n junction. Figure 2-16 shows the mesa diode used to 

characterise the material using the photocurrent technique. 

 

Figure 2-16: A simplified schematic diagram showing the epitaxial structure with the 

band structure of the active layer and the surrounding area. The energy diagram shows 

the material that can provide a radiative recombination if the photocurrent technique is 

used.  

2.4.2 Measurement and Results 
The sample was set on the photocurrent setup described in 2.3.4. The measurement 

was conducted with no applied bias on the structure and no temperature control. The 

output in this case will show the natural absorption peaks of the grown material. Such 

absorption would be expected in the unpumped regions of window structure devices, 

where the active region remains intact below the current blocking layer. The light 

source used is a broadband mercury lamp which provides light signal from the UV 

wavelengths up to the near IR. The wavelength was swept using the monochromator 

from 750nm up to 1050.  

Figure 2-17 shows the absorption spectrum measured from this mesa diode. Six 

peaks are observed in the spectrum, taking into account that the Al0.4GaAs absorption 

peak is located ~620nm it can be assumed that the six peaks appeared are the absorption 

peaks of the In0.17GaAs (990, 960, and 915nm) quantum wells and GaAs (855, 813, and 

776nm) quantum barrier and guiding layers. The thick GaAs layers results in higher 

absorption compared to the thin InGaAs quantum wells. The GaAs 776nm is expected 
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to be e1-lh1 of the strained GaAs barrier between the two quantum wells while the 

810nm is the e1-hh1 transition. The 850nm is the common absorption/emission central 

wavelength of the relaxed GaAs material, such material is available in the guiding layer 

sandwiching the active DQW layer. 

 

Figure 2-17: The photocurrent spectra showing the absorption peak available. 

The three peaks that appear between 910nm and 993nm correspond to the absorption 

maxima related to the strained In0.17GaAs QWs. The maximum absorption is at the QW 

basic e1-hh1 transition at 990nm which appears usually at the pumping levels used in 

most of the devices presented in the thesis. The higher order transitions, second and 

third peaks, require high pumping levels to fill the states in between the ground state 

and the higher ones. The second and third absorption peaks cannot be observed usually 

by pumping the related device electrically at room temperature especially the shortest, 

the ~960nm absorption/emission peak can be observed in the EL spectrum at room 

temperature if the pumping level was high enough to fill in the quantum states in the 

first transitions to move to the next one (the 960nm).  

2.5 Length dependant measurement:  
A number of techniques are available to accurately characterise the optical gain, such as 

segmented-contact method [9], or Hakki-Pauli method [10]. However, perhaps the 
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simplest and the quickest method is the length dependant method shown in this section. 

Devices with different cavity lengths are processed from the same material used. All the 

devices will have the same internal properties and differ only in their cavity lengths. By 

measuring the slope efficiency as a function of cavity length, both the optical gain and 

the internal losses can be extracted. By tracing the variation of the threshold modal gain 

as the threshold current density changed, a gain vs threshold current curve can be 

constructed relating the modal gain Go to the transparency threshold current density (Jo), 

the relationships are described thoroughly by Coldren and Corzine in [2]. 

Devices with straight waveguides were used as SAS lasers to measure the gain of the 

grown material. Multiple laser cavity lengths were selected and a particular focus was 

made on devices shorter than 1000μm in order to achieve high threshold current density. 

The reason of that is to ensure accuracy of the fit to the experimental data at high 

current densities employed in the SLD devices. The gain measurement procedure can be 

summarized by measuring the LI of the devices to ~1kA.cm
-2 

after the threshold. Then 

by extracting the internal losses combined with the mirror losses, the material gain Go 

can be estimated.  

The devices were first cleaved to obtain devices with 250, 350, 400, 500, 600, 700, 750, 

1000, and 1500 microns. The devices were operated to maximum a current of 25mA for 

the shortest devices up to 70mA for the 1500μm devices. These values are equivalent to 

3.333kA.cm
-2

 and ~1kA.cm
-2

, for the 250μm devices, respectively. The threshold 

current density for each device was found and set in groups according to their cavity 

lengths.  The threshold current densities are plotted in Figure 2-18 as a function of the 

reciprocal cavity length (1/L) in order to find the transparency current density Jo, which 

is the threshold current density for an infinitely long device. The measurement showed 

Jo to be 560kA.cm
-2

.  
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Figure 2-18: shows the threshold current density curve as a function of the reciprocal 

cavity length.  

From the examination of the LI curve of every device beyond the threshold the slope 

efficiency (dP/dI) was extracted, representing the ratio of the collected output power to 

the injected current. From this ratio the differential efficiency can be found by:  

𝜂𝑑 =
𝑞.𝜆

ℎ 𝑐
 .

∆𝑃

∆𝐼
              …… eq. (2-1) 

While q is the elementary charge, λ is the central wavelength of the emitted light 

(990nm), h is Plank’s constant and c is the light speed in the vacuum. The differential 

efficiency is the number photons leaving the laser to the number of electrons injected in 

it, including the losses inside the laser cavity and the light reflected back into the laser 

cavity due to the facet reflectivity. If the inverse value of the differential quantum 

efficiency is calculated for each cavity length, then the value of the 0μm long device is 

the internal quantum efficiency since in this case the other parameters are not presented. 

Figure 2-19 shows the differential quantum efficiency as a function of cavity lengths.  
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Figure 2-19: Reciprocal ηdifferential as a function of cavity length. 

From the relationship between ηi and ηd the internal losses can be extracted where:  

1

𝜂𝑑
=  

1

𝜂𝑖
. [1 +

𝛼𝑖

ln (
1

𝑅
)

. 𝐿]             …… eq. (2-2) 

where αi is the internal losses, L is the cavity length and R is the reflectivity of the 

facets. Rearrangement of eq. 2-2 allows the internal losses to be calculated:  

𝛼𝑖 =  
ln(

1

𝑅
).[

𝜂𝑖
𝜂𝑑

−1]

𝐿 
              …… eq. (2-3) 

To achieve lasing, the gain should be greater than the combined losses of the device 

(αi+αm). The threshold gain is the value of gain for that specific device where the gain 

of the material is exactly equal to the losses. For simplicity, the losses were limited to 

mirror losses and internal losses.  

Internal losses can be extracted following the procedure described above while the 

mirror losses depend on both the reflectivity of the facets, and the active cavity length. 

Since both of them are constant for a specific device, each device will have a constant 

mirror losses added to the internal losses. This will result in a specific threshold gain Gth 

for each device. By putting the resulted Gth as a function of the relating threshold current 
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density Jth , the resulted curve has  a logarithmic behaviour which can be fit to the 

equation relates the four parameters Go, Gth, Jth, and Jo:  

𝐺𝑡ℎ = 𝐺𝑜 . ln
𝐽𝑡ℎ

𝐽𝑜
       …… eq. (2-4) 

If Jo is fixed to the value extracted from the measured data, the calculated Gth can fit 

the measured data if the material gain Go is between 80 and 85cm
-1

. The final GJ figure 

shows that three curves can be fitted for the three widths in the mask used. 

 

 

Figure 2-19: The Modal Gain as a function of Current density, square dots are the 

threshold gain estimated at the measured current density. 

2.6 Summary and Conclusions:  
In this chapter two main subjects were highlighted, the first one was the measurement 

setups used in this thesis to characterize the devices and the material used in this study. 

Measurement setups are explained briefly combined with schematics that show how 

they are connected and how they operate. 5 systems are demonstrated, the Light-current 

characteristics setup which can be used to measure the emitted power from the device in 

free-space. Additional information such as the efficiency of the device and the heating 

effect can be extracted from such measurements using this setup. This setup specifically 

helped measuring the modal gain of the developed structure by the length dependant 
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gain measurement method. The second and the third setups are very similar in function 

in which they both measure the electroluminescence of the developed material. The low 

resolution setup is used mainly to confirm the spectral range of the devices presented in 

the thesis, the high resolution setup on the other hand is used in the characterization of 

the superluminescent diodes that will be presented in the third and fourth chapter of the 

thesis. The maximum resolutions of these systems are 0.1nm for the low resolution 

setup and 0.01nm for the high resolution one. The fourth setup presented in this chapter 

the photocurrent setup is used to identify the absorption peaks of the grown material as 

detailed in section 2.4. The fifth setup shown in 2.3.5 is the farfield setup which is used 

to define the farfield pattern of the light/laser emitting devices studied in this thesis. 

Finally the sixth setup is the one used to characterize the semiconductor optical 

amplifier as will be detailed in chapter five.  

The second part of this chapter is the one related to the material grown and used in 3 of 

the next 4 chapters of the thesis where first started with detailed growth and processing 

methods used to achieve the self-aligned stripe devices (SAS). The final wafer included 

sections that included windowed and non-windowed areas with tilted and straight 

waveguides. The tilted waveguides are studied thoroughly in the upcoming chapters 

where the straight waveguides are characterized as laser devices with different cavity 

geometries to measure the modal gain of the grown structure. The gain was estimated 

by setting a curve showing the threshold current density as a function of the threshold 

gain of the devices, the modal gain Go was found to be fluctuating between the 90 and 

75 cm
-1

.  

Since the absorption (or in the suitable conditions emission) peaks play an important 

role in the device performance, the photocurrent of the device was measured at a range 

of wavelengths. The main peaks detected by this measurement was the ground state 
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peak at 992nm, the first excited state peak at 960nm and the  second excited state at 

915nm. Extra peaks related to the cladding layers of GaAs and AlGaAs is detected too 

in the short wavelength part of the spectrum shown in Figure 2-(4). The photocurrent 

measurement was done on the mesa diodes that were available on the same grown 

wafer.  

2.7 Future Work 
Further investigation can be done on the material gain where two other methods are 

available which are Hakki-Paoli [1], and the segmented contact methods[2]. These two 

methods are done in the pre-lasing range of pumping.  
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Chapter 3: Tilted Self-Aligned Stripe 
SLDs with Low Facet Reflectivity.  

3.1 Introduction: 
In this chapter I describe the design and characterisation of window-structured self-

aligned stripe SLDs based on the structure described in 2.2. Analysis of the spectral 

modulation depth (SMD) and its dependence on the device geometry and the pumping 

levels revealed a high output power could be attained with low spectral modulation 

depth, which was not achievable before without the additional application of AR-

coating.  

The presence of the active medium in a “window-like” region at the back facet 

enhances feedback suppression compared to the transparent window counterparts. The 

SLDs were able to suppress lasing to very high pumping levels, despite being 

manufactured from a material based on an active medium designed for low threshold 

current lasers. With improved heatsinking, I was able to present SLDs that are 

competitive with commercially available devices. SLD output with spectral modulation 

depth of 1-2% and output power up to 38mW was achieved under pulsed operation and 

5.5% SMD at 30mW output power in CW operation. A relationship between the 

emission band in the active stripe and the absorption band in the window region is 

revealed and suggestions for potential improvements are discussed at the end of the 

chapter.  

3.2 Background:  
SLDs played essential role in the development of applications such as optical-

communication [1], [2], fibre-optic gyroscopes [3], sensing [4], [5], and both industrial 

[6]and biomedical [5] optical coherence tomography. 
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As mentioned earlier, ASE is described as high brightness broadband emission. This 

type of emission combines the benefits of the low brightness broadband emission of the 

spontaneous emission, and the very high brightness narrow bandwidth stimulated 

emission. Figure 1-7 showed a common LI curve of a semiconductor laser highlighting 

the transitions take place during the operation from the linear increase in spontaneous 

emission at low pumping current, then the exponential increase which represent the 

amplified spontaneous emission, and ending with the linear increase in intensity of the 

amplified stimulated emission.  

The common bandwidth of SLDs ~30-50nm [7] which is narrower than the common 

bandwidth of LEDs which can exceed 400nm. However, recent reports demonstrated 

SLDs with bandwidth up to 150nm for improved application of OCT [8]. As mentioned 

above, ASE appears when the spontaneous emission undergoes amplification in a gain 

medium with population inversion before reaching the threshold gain. The feedback 

provided by the device facets enable stimulation of excited carriers to emit light 

coherent to the propagated light. In order to stop turning ASE into amplified stimulated 

emission, feedback should be suppressed. Feedback suppression can be achieved by 

reduction of facet reflectivity to effectively extend lasing threshold to such a point that it 

will not be reached.  

3.2.1 Single Pass Amplification 
Single pass amplification can be described using Figure 3-2. This type of emission 

results from amplification of incoherent light generated at point x=0 propagating in an 

optical cavity of length L. To keep this emission broadband the reflectivity of the device 

facets/mirrors should ideally be zero in order to suppress feedback and permit light to 

pass through the cavity only once, where it subject to amplification according to the 

gain provided by the material, G. Figure 3-1 shows a simplified version of a two-level 

energy system in a semiconductor device in which spontaneous emission is taking 
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place. If we assume that the spontaneous emission generated at facet number 1 (at x=0) 

of an edge emitting SLD traveses the optical cavity to x=L, the generated photon 

population at x=L (facet 2) is proportional to exp(GL).  

 

Figure 3-1: A simple two-level energy system showing that the light generation and its 

amplification depend on the transitions from the excited to ground levels. Both of them 

start as non-coherence, while the light travels along the active that have a gain profile 

shown in the right-hand side-figure with an exponential rate. In SLDs the reflectivity 

should be zero to disable any amplification for the amplified wavelengths.  

 The gain envelope shown in Figure 3-1 represents a probability of the transitions to 

occur in the system. With the presence of feedback the probability of having more 

transitions at the central wavelength and though more amplification, this results in faster 

accumulation of optical density in the related wavelength and eventually lasing. The 

effect of feedback suppression is mainly to keep the probability of all the transitions to 

remain the same as they are and so no mode is preferable to be amplified than the 

others. 

3.2.2 Common structures  
The basic form of an SLD is very similar to that of an edge emitting laser but with an 

essential difference in the reflectivity of the facets. Facet reflectivity should ideally be 

zero in order to achieve the single pass amplification. Reduction of facet reflectivity to 

zero remains a significant challenge, one which has been discussed widely during a 

number of attempts to reduce facet reflectivity using a variety of methods which I will 
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outline in the next section. If facet reflectivity cannot be reduced to zero there will exist 

some residual reflectivity which results in an unwanted feedback loop in the active 

waveguide. This feedback allows formation of Fabry-Pérot mode from the standing 

wave set up within the cavity. These parasitic Fabry-Pérot modes appear as ripples, or 

spectral modulation, in the electroluminescence spectrum of the SLD. With sufficient 

electrical pumping these modes could eventually reach threshold and lase. The period of 

the spectral modulation therefore corresponds to the Fabry-Pérot spacing which can be 

calculated from the cavity length between the two facets, L, the propagated 

wavelengths, λ, and the related refractive index, n: 

∆𝜆 =
𝜆2

2𝑛𝐿
       …… eq. (3-1) 

This ripple is considered as a noise superimposed upon the SLD performance and its 

existence has a negative effect in all intended applications. In communications 

applications it can affect the coding of the transmitted signal, for example in wavelength 

division multiplexing, WDM. To understand the effect of ripple on such events, assume 

two signals sent in two close-by wavelengths, one of them is 0 (with low intensity) and 

1 (with high intensity). The modulation can alter the values of the two signals. In optical 

coherence tomography (OCT) applications the ripple affects the operation in two 

aspects. The first one is that the ripples amplitude appear as ghost images accompanied 

by the original image, whilst they also decrease the resolution of the whole system since 

the resolution is directly related to the squared value of the device bandwidth [9]. Figure 

3-2 below shows the Fourier transform of a practical SLD with some spectral 

modulation on the top of the electroluminescence spectrum.  
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Figure 3-2: The fast fourier transform of a signal with high SMD values showing the 

components that appear as ghost images in the final image. Image taken from[7]. 

3.2.3 Spectral Modulation Depth  
The noise added to the electroluminescence spectrum of the device can be quantified 

as the ratio between peaks and valleys formed. This ratio is called the spectral 

modulation depth and will be briefly described below  [10]. Figure 3-3 shows a typical 

SLD EL spectrum with the associated ripple. Around the peak intensity of the spectrum 

the ripple can be observed as a region of noise atop of the broad SLD emission. The 

inset plots the ripple over a reduced range showing three periods. The spectral 

modulation depth is the peak-to-valley difference ratio to their sum as in eq. (3-2) which 

returns a unit-less quantity.  

 

Figure 3-3: A common electroluminescence spectrum of a practical SLD (facet 

reflectivities ≠0) measured by a spectrum analyser with resolution high enough to 

detect the optical modes. The mode spacing of the EL is highlighted in the zoomed in 

wave of the top part of the spectrum. The peak and valley intensities are spotted in the 

inset. Those intensities are used to determine the spectral modulation depth of the SLD. 
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Spectral modulation depth,  

 𝑆𝑀𝐷 =
𝐼𝑝𝑒𝑎𝑘−𝐼𝑣𝑎𝑙𝑙𝑒𝑦

𝐼𝑝𝑒𝑎𝑘+𝐼𝑣𝑎𝑙𝑙𝑒𝑦
      …… eq. (3-2) 

where Ipeak and Ivalley, are peak and valley intensities, respectively.  

Examination of eq. (3-2) reveals that SMD values are in the range 0 to 1 (or 0% to 

100%), with the SMD of the device that has ideal/very-good performance tending to 

zero.  

Shidlovski quantified the accepted range of ripples in SLDs [7], with devices 

exhibiting 1% spectral modulation depth considered noise free and treated as ideal. 

With particular attention of applications of SLD as the light source for OCT, he 

suggested the 5% SMD as a suitable maximum limit for the OCT application. 

Commercial suppliers like Superlume and Thorlabs offer their SLDs with 1%-6% 

spectral modulation depth depending on the output power and the operating wavelength.  

3.2.4 Output Power  
Output powers greater than 10mW are typically required for most of SLD 

applications.  However, power in SLD is usually accompanied by large spectral 

modulation depths. This is because SMD and the output power are both related to gain 

as we will see in section 3.6. Therefore an increase in the gain to increase the output 

power results in an increase in SMD. In applications where high power must be 

accompanied with low SMD, further pressure exists on reduction of facet reflectivity, R.  

3.2.5 Research fields  
Many articles discussed design criteria and device performance of SLD whether 

describing a method for higher power [10]–[24],broader output spectra [1], [12], [13], 

[22], ripple level [11], [17]–[19], [21], [25], [26], or other performance features [10], 

[27]–[29] they all aimed to deliver an SLD that can provide the highest power with the 
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widest spectrum without the penalty of high ripples. Other reports were more concerned 

about the ripple development with the increase of the output power. Reports such as the 

one of Kwong et.al.  [23] and Alphonse et.al.  [17], [18], and [25] suggested that ripples 

do not develop randomly with increasing the power but they follow a specific trends 

regarding the amplitude increase and the mode spacing variation. Finally some reports 

were more interested in investigating other methods for low effective reflectivity.  

3.4 Techniques used to achieve low facet reflectivity:  
A number of methods have been used to reduce the facet reflectivity in SLDs, 

including AR-coating, tilted facets, and windows, and variety of combinations of these. 

These methods seek to reduce the reflectivity, R, directly or reduce the effective facet 

reflectivity, Reff, and are outlined below.  

3.4.1 Anti-Reflective (AR) Coating:  
This method is considered one of the oldest used to suppress the facet reflectivity. 

Anti-reflective coatings have long been used since their presentation by Bauer G. as a 

mean to decrease the reflectivity of the optical surfaces (e.g. mirrors, lenses, etc.) [30].  

Decreasing the reflectivity in this method is done by depositing a specific thickness of 

the related transparent optical material. For a simple single layer AR-coating, depending 

on the wavelength emitted by the device (λ) and the refractive index of the coating 

material at that wavelength (n), a coating layer is required whose thickness, d, is   

𝑑 =
𝜆

4𝑛
         …… eq. (3-3) 

Figure 3-4 shows a simplified schematic of two devices with and without AR-

coating. This method has been used widely in the fabrication of optoelectronic 

components such as SLDs, SOAs, solar cells, and DFB lasers.  
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Figure 3-4: Simplified schematic showing two devices, one with AR-coating on both 

facets (SLD) and one without (laser). The main difference between them is the facet 

reflectivity to be 0.33 in the laser device and 10
-4

-10
-3 

in the SLD.  

Since the layer thickness which controls the facet reflectivity is governed by the 

refractive index of the deposited material at a specific wavelength, the bandwidth of the 

AR-coating is usually limited compared with other methods, especially if the coating 

comprised a single layer. A multilayer coating has been used to achieve reflectivity as 

low as 10
-4

 -10
-5

 for broadband devices [31], [32]. Furthermore, R is limited by the 

quality of the facet coating. Although <10
-5

 reflectivity is theoretically available using 

AR-coating, thickness control to 20Å is required as suggested by Alphonse et.al. [19]. 

3.4.2 Tilted Optical Cavity:  
This method was first presented by Tsang et.al.  in 1983 [33] for multimode laser and 

it has been developed to realize broadband emission. It is based on deflection of light 

outside the waveguide by mis-orienting the SLD waveguide with respect to the crystal-

axis by an angle ~5-10°. This simple method of reducing Reff is naturally broadband 

(compared to AR-coating) and has been used to enable Reff ~10
-4

 [19], [27].  

Feedback suppression is via deflection of the reflected light from the facet to the 

cladding layers as shown in Figure 3-5. According to the material used and operating 

wavelength the tilting angle can be selected accordingly but generally angles between 6 
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and 10° are chosen to process SLDs. Angles greater than 10° cause extensive 

deformation of the output beam that cause increase in the coupling losses.  

 

Figure 3-5: A simplified schematic of a tilted cavity SLD. The optical mode reflects to 

the cladding layer (grey) rather than the active waveguide which reduce the 

constructive feedback of the resonating signal. Reflectivity down to 10
-4

 is achieved and 

lowered to 10
-6

 when AR-coating is added.  

The advantage of this method over the previous method is that it is less wavelength-

dependent which makes it more flexible, especially given the recent push towards 

broader active materials such as these using QDs or hybrid QD/QW material. The tilted 

cavity configuration is able to achieve facet reflectivity down to 10
-6 

when combined 

with AR coating[34].  

An example of such devices was reported by Alphonse et.al.  [19] in which the tilted 

cavity is combined with the AR-coating to achieve low reflectivity facets of 10
-6

. The 

disadvantage of this method is the excess material used and the quality of the output 

beam and the corresponding coupling efficiency and packaging complicity (further 

discussion will be given in chapter 4).  

3.4.3 Transparent Window:  
Another method commonly used to achieve low effective reflectivity, Reff, is to 

terminate the active waveguide before achieving the rear facet. This method was the 

first method used to fabricate SLDs when Miller et.al.  included a transparent window 

at the rear facet to provide the required loss to push the threshold current to a sufficient 

high level to enable the device to provide amplified spontaneous emission [35] to a 

higher power before the onset of lasing.  
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The feedback suppression in this method comes from spreading out of the optical 

beam in the transparent, unguided, window region in such a way that light which 

travelled all the way to the rear facet will have spread out laterally and after reflecting 

back only a small percentage will be coupled back into the active waveguide. This can 

be seen in Figure 3-6 below which shows a simple schematic of the transparent window 

structure SLD. The divergence angle of the propagated beam, which eventually governs 

the resultant effective reflectivity, is determined by the index step, the interface shape, 

and also the waveguide widths.  

 
Figure 3-6: A schematic of an SLD with a windowed rear facet. The optical waveguide, 

which is the pumped part of the device, is terminated at a distance x from the rear facet, 

which is usually unpumped. The optical mode propagates from the active waveguide to 

the unguided window. According to the index step between, n1, and, n2, of the core and 

cladding, respectively, the optical beam divert at divergence angle, θ.  
This chapter focuses on characterization of an SLD device with a rear window 

combined with the tilted cavity configuration to achieve very low effective facet 

reflectivity. 

3.5 GaAs-Based Buried Facets (Window Facets): 
The catastrophic optical damage (COD) that limited operation in high power laser 

diodes resulted from two reasons. The first one, which has the larger effect and the 

quicker to notice, is the fast damage due to localized heating due to high optical 

densities nearby or at the facet. Such high density can result from light generation (due 

to radiative recombination), reflection from the facet, and local heating generated by the 

non-radiative recombination. The other reason that causes COD is the facet erosion due 
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to the surrounding atmosphere (oxygen, water vapour etc.), yet, the facet degradation 

due to this takes long running time (multiple thousands of running hours) to be 

noticed[36]. 

A method to prevent COD is to implement a short transparent window at each facet. 

By comparative study, Takahashi proved that adding ~15μm window to the facet can 

minimize the erosion [37]. The transparent window is also used to stop the facet 

degradation due to the localized heat, which is caused by the high optical density. 

Leaving an unpumped section prior to the facet was sufficient enough to decrease the 

optical density, and eventually decrease the facet degradation [36][38]. 

The dimensions used for COD threshold increase were limited to few tens of 

microns. Figure 3-7 demonstrate a windowed device having two regions, an active core 

of AlxGaAs with refractive index of 3.5 and a window section of AlyGaAs with 

refractive index of 3.3. The device is presented in two cases in Figure 3-7. The first one, 

shown in figure 3-7a, is the one used for the increase of the threshold power of COD 

where only a very short window is used. The other case is the windowed SLD where the 

window length is now hundreds of microns as shown in Figure 3-7b. The short window 

used for COD will not change the threshold current of the device dramatically. 

However, increasing the length of the unpumped region allows the light to expand more 

and by duplicating the length for a full loop only a small percentage of the original 

signal is feedback into the active waveguide.  
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Figure 3-7: shows a comparison between devices with the same features except the 

window length where (a) device with short window of 4 a.u. length and (b) of 140a.u. 

length 

The device configuration shown in Figure 3-7 has two materials active (grey) with 

high refractive index for the operating wavelength and passive (white) with lower 

refractive index. A step index change, ∆n, is considered between the active and the 

passive materials. At the interface the propagated light beam will undergo divergence 

which alters the beam size. Since the materials and the active geometry are identical in 

the two devices, the propagated beam size is only governed by the separation between 

the termination of the active stripe and the rear facet. For material system with a specific 

∆n, the light beam will diverge by θ° and the beam size is increased by x.tan(θ) where x 

is the window length. Assuming that the window length of the device in Figure 3-8b is 

10 times the one which is in Figure 3-7a, this means that beam size of the first is 

increased 20 times than that of the second. This increase will cause the effective 

reflectivity of the case in Figure 3-7b to reduce much less than the one in Figure 3-7a. 

Based on this idea, Tien-Pei Lee presented the first SLDs with rear window section 

and also the first ever presentation of SLDs [35]. Such configuration is usually 

combined with anti-reflective coating and/or tilting the active waveguide.  

In chapter two I showed that the pattern of the processed wafer can provide devices 

with unpumped rear section and since the active section is left intact the section is not 

only unpumped but also absorptive to the central emission wavelength of the processed 
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devices. In the following sections the proposed window-like SLD devices are discussed 

and analysed starting with the facet reflectivity and followed by the device performance.  

3.5.1The proposed window-like structure 
The window structure studied here is also based on the beam expansion in an 

unpumped laterally unguided region. However, in this structure the active region 

remains intact below the optoelectronic confinement layer. The presence of the active 

region in the unpumped window section increases its ability to decrease the effective 

reflectivity through absorption of light by the unpumped active medium, in the case of 

the presented devices, by the virtually limitless absorption provided by the QWs. This is 

in contrast to traditional window facets in which the window is formed by etching 

through the active region. Therefore, light propagating through the window will be 

absorbed, meaning that only a very small portion of the light will be coupled back to the 

active waveguide. Figure 3-8 shows the effect of the absorption in the rear part of the 

device.  

 

Figure 3-8: a simplified schematic of a window structure with an absorption factor 

αwindow combines all the losses caused by the window whether it’s a material loss or due 

to geometry. 

Although the buried facet structure described here is not transparent, I will continue 

to refer it as window throughout the thesis  

3.5.2 Estimation of the buried-facet reflectivity 
The mask used to process the devices could provide SLDs with both electrically 

pumped active and unpumped (and therefore absorbing) sections. When the device is 

Pbeam∝ 𝛼𝑤𝑖𝑛𝑑𝑜𝑤 
Pbeam∝ 2 𝛼𝑤𝑖𝑛𝑑𝑜𝑤 
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processed normal-to-the facet with no AR-coating on either facet, the effect of the 

presence of the window can be determined from measuring the effective reflectivity. To 

measure the effect of the unpumped window region on the structure, devices with a 

1mm active stripe were fabricated with a range of window lengths and compared to a 

1mm long laser (i.e. without a window section).  

Figure 3-9 shows the device used in this experiment, and traces the modal gain, g-α, 

added to an optical signal generated at the front facet and took a round trip to the rear 

facet.   

In a Fabry-Pérot laser device with facets reflectivity Rf (front) and Rr (rear), a 

material gain g, losses α, and cavity length L, the modal gain, G, of a round trip starting 

from the front facet can be calculated by:  

𝐺 = 𝐺𝑡ℎ𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼)𝐿       …… eq. (3-4) 

where Gth is the threshold gain required to overcome internal losses. 

An identical device but with an additional window section at the rear facet can be 

described in a similar manner. Two factors need to be added which are the window 

length, Lw, and the losses contributed by the window, αw. This loss term combines both 

the absorption in the active DQW region and the losses due to the geometry (e.g. beam 

expansion) as the schematic shown in Figure 3-9 b. The modal gain for a round trip 

through this structure can be estimated as.  

𝐺 = 𝐺𝑡ℎ𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼𝑎)𝐿−2(𝛼𝑤𝐿𝑤)    …… eq. (3-5)  
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Figure 3-9: A schematic tracing the gain of the laser device (a) and the SLD device (b). 

3.5.2 Facet effective reflectivity:  
The effective facet reflectivity can be calculated from comparison of the threshold 

gain (the gain required to start lasing) of the device with window of length= Lw to the 

standard Fabry-Pérot laser (Lw=0). The difference in the Gth between the two devices 

comes from the excess loss associated with the presence of the rear window section.  

In the case of a laser at threshold, modal gain G is Gth, so substituting in (3-4):  

𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼𝑎)𝐿 = 1      …… eq. (3-6) 

Similarly for the device with rear window section, equation (3-5) becomes:  

𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼𝑎)𝐿−2(𝛼𝑤𝐿𝑤) = 1    …… eq. (3-7)  

Since the two equations (3-6) and (3-7) are equalities of 1, they can be combined 

into:  

𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼𝑎)𝐿−2(𝛼𝑤𝐿𝑤) = 𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼𝑎)𝐿   …… eq. (3-8)  
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Assuming that (𝑔 − 𝛼𝑎) is the amount of gain required to reach lasing threshold Gth 

for the laser device and the other device with the absorber, rearranging eq. (3-8) into:  

2(𝐺𝑡ℎ 𝑆𝐿𝐷)𝐿𝑆𝐿𝐷 − 2(𝛼𝑤𝐿𝑤) = 2(𝐺𝑡ℎ 𝐿𝑎𝑠𝑒𝑟)𝐿𝑙𝑎𝑠𝑒𝑟  …… eq. (3-9)  

By reformulating (3-9) the integrated window losses αw can be calculated as  

𝛼𝑤 =
𝐺𝑡ℎ 𝑆𝐿𝐷𝐿𝑎 𝑆𝐿𝐷−𝐺𝑡ℎ 𝑙𝑎𝑠𝑒𝑟 𝐿𝑙𝑎𝑠𝑒𝑟

𝐿𝑤
    …… eq. (3-10) 

Back to the original equations (3-4) and (3-5), they are exactly the same accept the 

part added to represent the rear window. Comparing the two equations gives a formula 

that can predict the effective reflectivity of a device with rear absorber structure. Where  

𝐺 = 𝐺𝑡ℎ𝑅𝑓𝑅𝑟𝑒2(𝑔−𝛼)𝐿       …… eq. (3-4) 

𝐺 = 𝐺𝑡ℎ𝑅𝑓𝑅𝑟𝑒−2(𝛼𝑤𝐿𝑤)𝑒2(𝑔−𝛼𝑎)𝐿    …… eq. (3-5)  

𝑅𝑒𝑓𝑓 = 𝑅𝑟𝑒−2(𝛼𝑤𝐿𝑤)      …… eq. (3-11)  

3.5.4 Experimental measurements:  
To characterise the effective reflectivity of the rear window structure, normal-to-

facet SLDs were fabricated. The SLDs have 1mm active stripe and different window 

lengths varied from 250μm to 2250μm with an increment of 250μm. The output power 

from the SLDs is measured as a function of current and the threshold current was 

recorded. From the transparency threshold current, Jo, and the material gain, Go, the 

threshold gain, Gth, of the SLD can be estimated by  

𝐺𝑡ℎ = 𝐺𝑜. 𝑙𝑛
𝐽𝑡ℎ

𝐽𝑜
      …… eq. (3-12) 

Fixing the active stripe of the SLD to 1mm enabled comparison with a 1mm laser 

(without a window), where eq. (3-10) can be applied to estimate the excess losses 
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provided by the window. The effective reflectivity, Reff, of the window facet can then be 

determined using equation (3-11), and taking into account that Rr is the reflectivity for 

an as-cleaved uncoated facet (0.33). Figure 3-10 shows threshold current density, and 

threshold gain plotted as a function of window length. The Figure 3-shows an increase 

in threshold current, as a result of increase in the threshold gain, as the window length 

increases. Recalling the length dependent measurement described in section 2.5, the 

threshold current density, Jth, for a 1mm laser device was around 740 A.cm
-2

 (in the case 

of the measured device it was 725 A.cm
-2

) which represented a threshold gain, Gth, of 

~24cm
-1

 (23.5 cm
-1

 in the case of the measured device). Jth was increased about 6 times 

from 725 to 4250A.cm
-2

 when the window length was changed from 0 in the laser up to 

2250μm in the SLD. By comparing the threshold current density, Jth, to the transparency 

current density, Jo, and taking into account modal gain, Go, the threshold current of the 

SLD device with 2250μm is increased up to 173.8cm
-1

.  

 

Figure 3-10: the threshold current density, Jth, (a) and the gain threshold, Gth, (b). An increase 

in Jth from 0.725 to >4.25kA.cm
-2

 resulted from an increase in Gth from just off 23cm
-1

 up to > 

170cm
-1

. 

 Figure 3-11 shows the excess losses (a) and the effective reflectivity (b) measured as 

a function of window lengths for an SLD with 4μm wide and 1mm long active stripe.  
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Figure 3-11: The window excess loss (a) and the effective reflectivity measured for 

different window lengths.  

The excess losses increased dramatically as can be seen in Figure 3-11a, starting 

from 0cm
-1

 in the laser device (with no window) up to 82cm
-1

 when the window length 

is 1mm. The excess loss starts to level up following this value with a slight decrease to 

~70cm
-1

 in the longer window lengths. This saturation is expected to result when the 

propagated beam size is already 100μm, the same as the separation between the 

trenches. Following that point the expanded light will reflect at the trenches and no 

more expansion will take place, so the losses will be mainly related to the material 

absorption.  

On the other hand, the effective reflectivity of the rear facet is found to be related to 

both the length of the window, lw, and the excess losses, αw, as can be concluded from 

equation 10. For that reason the effective reflectivity did not saturate as the excess 

losses did, but decreased throughout the range of window lengths. The minimum 

reflectivity recorded for 4μm wide stripes in this experiment was 8.4×10
-15

.  

The mask used in device fabrication gave 3 different stripe widths 3, 4 and 5μm. 

When the length dependant gain measurements done as described in section 2.5 the 

4μm wide stripes was considered the central and the main trend while the trends 

related to 3 and 5μm are considered as the limits of the values as shown in Figure 3-19 

in chapter two. In order to estimate the windowed-facet reflectivity as accurate as 
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possible the modal gain resulted from the 3 and 5μm wide stripes was used to find the 

excess losses and the effective reflectivities based on the measurements done for 4μm 

wide stripe.  

3.6 Expected Spectral Modulation Depth.  

In any Fabry-Pérot resonator with an active medium in between the mirrors, Fabry-

Pérot modes are developed which will lase once threshold has been reached. In the case 

of SLDs, the low facet reflectivity should ideally suppress the internal feedback 

permitting only single pass amplification. However, it is practically impossible to obtain 

zero (Reff) and therefore there is always a residual feedback that causes these modes to 

develop. Residual Fabry-Pérot oscillation can be observed in the EL spectrum as a 

spectral modulation, typically at the peak of the emission. As a result of the long 

cavities used in SLDs, the resolution of the OSA must be high enough to resolve the 

individual closely spaced modes. Figure 3-12 shows the difference between the EL 

spectrum of the same device measured once with OSA that has resolution lower than 

required (a) and other with resolution high enough to resolve the individual modes (b).  

 

  

Figure 3-12: The EL of the same SLD (a) when the resolution of the OSA is less than 

required and (b) when the OSA resolution is high enough to resolve the Fabry-Pérot 

modes. The inset in (b) is a portion cut from the top of the spectrum showing the 

individual modes. Note in the inset that many points can be recorded for one period 

which ensures the detection of the peak and the valley. 

SLDs with different cavity lengths are assumed to simulate the development of the 

spectral modulation depth as a function of the output power from each device.   
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The output power of an ideal SLD (0% facet reflectivity and no self-heating) can be 

calculated by considering the spontaneous emission rate in the cross-sectional area at 

the central wavelength of the output emission; this rate is amplified along the active 

cavity of length, L, by the modal gain, G. The amplified spontaneous emission, P, is 

calculated as [39]: 

𝑃 =
(ℎ∗𝐴𝑏𝑒𝑎𝑚∗𝜆)

𝑅𝑠𝑝𝑜𝑛𝑡
×

(𝑒𝐺𝐿−1)

𝐺
     …. (3-12) 

Where h is Plank’s Constant, Abeam is the beam cross-sectional area, λ is the central 

wavelength, Rspont is the spontaneous emission rate, G is the modal gain, and L is the 

active length. Rspont is the rate of light that is generated spontaneously within the active 

volume (area (s) × thickness (d)) with quantum efficiency ηsp when current I is injected 

[39] 

𝑅𝑠𝑝𝑜𝑛𝑡 =
𝜂𝑠𝑝∗𝐼

𝑠∗𝑑∗𝑞
       …. (3-13) 

q is the elementary charge. For simplicity the injected current is fixed, which will give a 

fixed spontaneous emission rate. A plot of the output power as a function of modal gain 

can be generated, which takes an exponential path towards higher gain. This is plotted 

in Figure 3-13 for active stripe lengths 1, 2, and 3mm. In the case of non-ideal facets 

(i.e. reflectivity ≠ 0%) emissivity (1-R) is still ~1, and has negligible effect on the 

output. Self-heating due to current density injection is also assumed to be zero which 

would otherwise results in gain reduction and/or a shift in the central wavelength. 
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Figure 3-13: The simulated output power from an ideal SLD as a function of Gain. 

Reflectivities are zeros for front and rear facets 

The modal gain of a semiconductor laser can be determined from the Fabry-Pérot 

modulation depth as described by Hakki and Paoli [40]. For a given cavity length, L, 

and effective reflectivity for both rear and front facets, Rr and Rf, respectively, the 

modal gain, G, can be extracted using the measured peak-to-valley ratio, M, across the 

electroluminescence (EL) spectrum using:  

G = −
1

L
(ln

√M+1

√M−1
+ ln √RrRf)   …. (3-14)  

M can be defined as a function of the modal gain G by rearranging (3-14) such that  

M = (
e−GL+R

e−GL−R
)

2

      …. (3-15) 

where R = √RrRf . 

If the valley is considered as the basic intensity I while the peak is the basic intensity 

in addition to the increase in the intensity due to the gain I+∆I, M can be defined as 

M =
I+∆I

I
       …. (3-16) 
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The spectral modulation depth (SMD) of an SLD is defined by equation (3-2) as the 

ratio of the difference to the summation of the peak (Imax) and valley (Imin) of each 

spectral mode. 

SMD =
Imax−Imin

Imax+Imin
  

SMD =
(I+∆I)−I

(I+∆I)+I
  =

M−1

M+1
      …. (3-17) 

Substituting equation (3-15) in equation (3-17), the spectral modulation depth can be 

related to the Gain as shown in the following equation.  

𝑆𝑀𝐷 =
(

e−GL+R

e−GL−R
)

2

−1

(
e−GL+R

e−GL−R
)

2

+1

     …. (3-18) 

SMD is plotted as a function of gain in Figure 3-14 for SLDs stripe lengths 1, 2, and 

3mm, the reflectivities are considered constant for the three devices. We observe that 

SMD also takes an exponential path until it reaches 100%.  

 

Figure 3-14: The Spectral Modulation Depth (SMD) as a function to gain.  

Since the output power and the SMD are both functions of the modal Gain, a plot of 

SMD versus power can be constructed. This is shown in Figure 3-15 for a reflectivity 

provided by a tilted device with 2mm window and for stripe lengths 1, 2, and 3mm. The 

resultant curves are in agreement with Kwang et.al. [23], in the regime of low Reff, who 
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made similar studies on SLDs using AR coating and a grounded internal absorber. In 

Figure 3-15, the SMD is observed to increase with an increase in the output power. The 

gradient of the curves is observed to reduce with increasing cavity length, implying that 

the SMD/power condition can be optimised through choice of active stripe length 

(lower SMD at higher powers for longer active stripe lengths). 

 

Figure 3-15: The spectral modulation depth as a function to the output power for 

different cavity lengths. The lowest SMD calculated was obtained from the wider 

devices as shown (the green line is 3mm long active) while the shortest exhibited the 

highest SMD (blue line, 1mm long stripe).  

3.7 Output Power Characterization:  
Window-structured SLDs were grown following the process described in section 2.2, 

where 3 and 4μm wide self-aligned stripes were formed in a 2-step growth process. 

SLDs were cleaved and characterized with a range of active stripe and window lengths.  

SLDs were characterized using the LI characterization setup described in 2.3.1 to 

obtain parameters such as maximum output power, slope efficiency, and the 

temperature dependence.  

Devices with 1, 1.5, 2, 2.5, and 3 mm long active stripes were cleaved. These SLD 

had varying windows length due to the mask design issue mentioned in 2.2.2. The LI 

curves recorded from these SLDs demonstrated typical superluminescence and 

eventually rolled over at current densities greater than 4kA.cm
-2

. The lack of laser 
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threshold or kinks in the LI curve suggested that the SLDs did not experience any lasing 

throughout the current range operated in. this was later confirmed by the low and high 

resolution EL spectra collected from the devices but this will be discussed in more 

details in later section. Figure 3-16 shows the LI curves of devices with 1.7, 2.1 and 

3mm active stripes and 1, 1, and 2mm windows, respectively. The fractions in the 

devices lengths came from the way the mask was designed; I put the numbers this way 

just seeking data accuracy. The slope efficiency was extracted for each of the devices 

from the LI curves in Figure 3-16. Slope efficiency of 1.7 was ~10%, 14 % for the 

2.1mm and ~16% for 3mm.  

 

Figure 3-16: LI curves of the epi-side-up SLD devices. As expected the longest device 

has the maximum differential efficiency.  

3.7.1 Geometry effect on the output power.  
In order to ascertain the effect of the device geometry on the performance of the 

SLD, a set of SLD were tested and compared to each other. All measurements were 

conducted using pulsed injection for a bare chip unmounted SLDs using the LI 

characterisation setup described in 2.3.1.  

First, fixed active length was chosen (1800μm) with three different window lengths 

77μm, 2500μm and 3600μm at the rear facet. They were tested at room temperature 

under pulsed conditions (10μsec pulse width, 1% repetition). Figure 3-17a plots the LI 
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curves for the three devices. The performance of the three devices was very similar, 

with output power >25mW achievable in all SLDs. In fact, although there appears to 

exist a trend of increasing power with increased window length the difference is very 

small, and the three devices in Figure 3-17a were, within experimental uncertainty, 

identical. Therefore I believe that the window length has a negligible effect on 

performance for window length > 77μm.  

 

Figure 3-17: The results of the experiment that revealed the device geometry on the 

device performance. (a) The stripe geometry is fixed to 1800×4μm with different 

window lengths. (b) The window length and the stripe widths are fixed to 500μm and 

4μm while the stripe length is changed according to the number shown in the figure, 

and (c) the stripe and window lengths are fixed to 1800 and 2500μm while the stripe 

widths were 3 and 4.  

Comparison of Figure 3-17 and Figure 3-16 suggests that the main contributor to the 

difference observed in Figure 3-16 is from the increase in active stripe length. This was 

confirmed from the next set of devices in which devices with a fixed window length and 

three different stripe lengths were tested. Figure 3-17b compares 3 SLDs with 500μm 

long window and active stripe lengths 1300, 2500, and 3600μm. Output power is 

observed to increase with increasing stripe length, with output power 50mW for the 

device with 3600μm long active stripe compared to <12mW for the 1300μm at the same 

current density.  
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Up until now, I have concentrated on SLDs with 4μm stripe width. Our mask design 

allowed for two stripe widths 3 and 4μm. Figure 3-17c compares SLDs with these two 

widths. The slope efficiency of 3 and 4μm wide stripe SLDs can be grouped according 

to the width, with ×2 increase in power for 4μm compared to the 3μm width SLDs.  

3.7.2Temperature Effect:  
The temperature dependence of the devices was explored by testing a device with 

2.1mm active stripe and 1mm window and another device with 3mm active stripe and 

2mm long window. The two devices were mounted epi-side up on gold coated c-mount 

and operate in CW over a temperature range from 10 to 70°C. The pumping current was 

limited to 250mA which is equivalent to 2.98kA.cm
-2

 and ~2.1kA.cm
-2

 current densities 

for 2.1 and 3mm long stripes, respectively. These are the currents at which self-heating 

is minimized using the c-mounts used. I focused on these two lengths since they have 

shown better performance than the one with 1.7mm long stripe. The LI curves of the 

two tested devices are shown in Figure 3-18 over the temperature range mentioned 

above. The results show the expected reduction in the slope efficiency with increasing 

the temperature. By sweeping the temperature from 10-70°C the slope efficiency 

decreased from 15% to 8% in the 2.1mm devices while in 3mm device the efficiency 

dropped more to be ~3.6% in the 3mm device. Although the current density is lower in 

the 3mm device leading to less heat being generated in the junction through Joule 

heating, the reduction in the output power with increasing the temperature is greater in 

the 3mm long stripe SLD than the 2mm SLD. 

A possible reason for this behaviour could be due to the amount of heat stored in the 

device and the ability of the window section to maintain the temperature. The amount of 

unpumped semiconductor material surrounding the buried stripe and the material of the 

rear window play an important role in distributing the heat across the structure. With 

stabilized thermal control the junction temperature can be maintained. Another reason 
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that can affect the device performance this way is the heat dissipation, generated in the 

intrinsic region, provided by the rear window. Move of the heat generated in the shorter 

stripe can dissipate, reducing the temperature of the junction, compared to the longer 

stripe which may suffer a thermal gradient along the stripe with the heat generated 

toward the front facet unable to dissipate through the window.  

 

Figure 3-18: LI curve at different heat-sink temperature. (a) for 2.1mm active stripe 

devices, and (b) for 3mm active stripes. The arrows show the lowest to highest 

temperature as set on the heat-sink.  

This evidence supports the idea that the unpumped window region at the rear facet 

can provide an extra route for heat sinking for the active stripe to the surrounding 

semiconductor, since the heat transfer at the semiconductor/semiconductor interface is 

higher than the one at the semiconductor/air or semiconductor/metal.  

3.8 Spectral Characterization:  
Spectral characterization of the SLD emission was performed using two different 

setups which are the low resolution EL and the high resolution EL. These apparatus are 

described in sections 2.3.2 and 2.3.3, respectively. Low resolution EL was used to 

confirm no-lasing in the range of pumping current at which the device was tested. The 

other important piece of data extracted by the low resolution EL was central 

wavelength, the red-shift which provides an indication of junction temperature. High 

resolution EL was used to investigate spectral modulation depth of the ripple that 
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appears in the EL spectrum at various power levels. All spectral measurements were 

taken at room temperature unless it is stated differently.  

3.8.1 Low resolution spectral characterization 
Low resolution EL spectra were examined at the maximum power of SLDs with 1.7, 

2.1 and 3mm active stripes and 1, 1, and 2mm windows. The devices were mounted on 

gold coated c-mounts and tested under CW current at room temperature. Lasing was not 

spotted in the three devices throughout the measurement range.  

 All devices exhibited red-shift in central wavelength, example of such shift is shown 

in Figure 3-19a below, which plots the EL spectra for SLD with 3mm active stripe and 

2mm long window and Figure 3-19b shows the shift occurred in the peak wavelength in 

more currents that was not added to Figure 3-19a seeking figure clarity.  

 

Figure 3-19: EL spectra of the SLD that has 3mm long active stripe and 2mm window at 

different pumping currents (a) and the peak red-shift (b).  

The spectra obtained at the maximum power for the three devices under test are 

plotted in Figure 3-20 for current densities 3.5, 4.5 and 4kA.cm-2 for 1.7, 2.1, and 3mm 

devices, respectively. By comparing the central wavelength shift of each device with the 

central wavelength which was indicated by the photoluminescence measured at room 

temperature with optical pumping “no self-heating” ( Figure 2-3b), we can notice that 

the peak wavelength was shifted from 990nm, up to 1010, 1005, and 1001nm for the 

1.7, 2.1 and 3mm device, respectively. This shift can attribute  to Joule’s heating of the 

active junction by ~50°C assuming a shift of ~0.4nm/°k for GaAs [41]. The reason of 
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this contrast in the shift between the three devices is the active area of the stripe, bearing 

in mind they are all 4μm wide stripes.  

 

Figure 3-20: The Low resolution EL spectra of the 1.7, 2.1 and 3mm device at the 

maximum power of each device. A red-shift in the central wavelength is noticed in all 

devices with different values and the no-lasing state is confirmed to the maximum power 

3.8.2 High resolution spectral characterization 
Following the confirmation that the SLDs are not lasing over a reasonable range of 

current injection, devices were characterized using high resolution EL setup described 

in 2.3.3 in order to measure the spectral modulation depth of each device at various 

output powers. 

In order to fully detect the modulation on the top of the EL spectra of the devices the 

resolution of the OSA should be smaller than the Fabry-Pérot mode spacing of the 

device. Inspection of mode spacing of spectral modulation around the central 

wavelength revealed mode spacing commensurate with the standing wave between the 

front facet and the stripe/window interface and not between the two end facets. Since 

the OSA in the high resolution setup has a minimum resolution of 0.01nm, the lengths 

of the measured devices were limited to these that can provide at least five sample 

points within a full wave of the ripple (i.e. the spectral length that shows two successive 

peaks). This is demonstrated in the schematic in Figure 3-21. 
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Figure 3-21: A single wave period highlighting the required number points to detect the 

peak and valley in a single period. The minimum sample spacing in the used spectrum 

analyser is 0.01for that reason 0.05nm mode spacing is needed.  

Therefore, considering minimum mode spacing of 0.05nm to unsure at least 5 sample 

points, at a central wavelength of 990nm, the maximum cavity length is 6.125mm. The 

total lengths of the measured devices were 1.7+1, 2.1+1, and 3+2mm stripe + window, 

so, even if the reflection was from the two end mirror, they are in the allowable range of 

lengths.  

The high resolution EL spectra of the three devices were measured, and the SMD 

associated with each device over a range of output powers was extracted as plotted in 

Figure 3-22. The three devices showed the trend expected in the simulation done in 

section 3.6. In three devices, SMD is increased by increasing the output power 

(corresponds to an increase in the pumping current). The maximum SMD recorded for 

these three devices were 19.7% at 17mW, 34.6% at 41.2mW, and 17.3% at 43mW for 

SLDs with active stripes of 1.7, 2.1, and 3mm, respectively. Figure 3-22 also shows that 

for each device, the rate of SMD increase as the power increase changes at some point I 

called this point, point-A. Point-A for each device was 12mW, 31.5mW, and ~40mW 

for devices that have active stripes of 1.7, 2.1, and 3mm, respectively.  

Sample spacing  

Wavelength of the ripple or mode spacing 
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Figure 3-22: The spectral modulation depth value for devices with three active lengths 

(1.7mm (blue), 2.1mm (red), and 3mm (green) active stripes).  

This difference in the SMD rate before and after point-A resulted because of a 

sudden change in the effective reflectivity of the rear facet. This change is associated 

with the red-shift in the central wavelength of the emission band due to Joule’s heating. 

At low powers, the absorption band of the window in coherent to the emission band of 

the active stripe. This way, most of the light spread in the unpumped region will be 

absorbed by the window. In the second section of the SMD vs output power after point-

A, the pumping current will be high which results in higher red-shift in the emission 

band. This results in a reduction in the overlap between the two bands and eventually a 

decrease in the effective reflectivity. The shift in the emission band is plotted in Figure 

3-23 in two cases, high and low output powers, for the device that has 2.1mm active 

stripe as an example of the three devices. The selection of this length was because of the 

obvious step between the two sides around point-A.  
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Figure 3-23: The high resolution EL spectra of the same device at two output power 

levels 23mW (blue) and 41mW (red). The figure shows the shift of the central 

wavelength in the high power with respect to the photocurrent (black). 

The acceptable value for SMD in most of SLD applications should be at most 5%, 

this means that the SMD values measured from the discussed devices is about 3-4 times 

the acceptable range in the best case. On one hand, the measured data is taken  from 

devices with no AR-coating, which suggests further reduction can be achieved from the 

very same devices after applying the AR-coating. On the other hand, the outcomes of 

the latest experiment suggest that devices with improved heat dissipation can perform 

better. The excess un-thinned GaAs substrate (about 150μm) is the main reason of this 

insufficient cooling to this system, regarding that the device is mounted on a c-mount 

placed on a cooled surface to room temperature.  

3.9 Excess heat avoidance: 
In order to develop a set of design criteria for window structured SLD and 

investigate the main parameters governing their behaviour it is necessary to separate the 

effects of self-heating from SLD operation. Joule heating was responsible for the poor 

operation of the devices presented in section 3.8, with devices mounted on gold coated 

c-mounts epi-side up and subjected to high current densities ~4kA.cm
-2

. Therefore, 
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improvement in heatsinking was required before detailed investigation could be carried 

out.  

3.9.1 Epi-side down configuration:  
Under electrical pumping, it is the top side of the device that gets hot. Therefore, if 

the device is mounted epi-side down, this should bring the active (hot) layer closer to 

the cooled heatsink surface, as opposite to the previous case where heat involved have 

to be extracted via the GaAs substrate.  

Two devices with comparable dimensions 1.7 and 3mm long active stripes both 4μm 

wide stripes were mounted epi-side down so that the excess substrate does not 

contribute in the cooling process, this should improve the heat sinking and fixing the 

central wavelength to a value closer to the absorption band in the window region. The 

devices had undergone the basic LI and the low resolution EL tests to identify the power 

level and confirm the no-lasing state first. Figure 3- 24 shows the CW EL spectra for 

devices with 1.7mm long stripe (a) and 3mm long stripe (b).  

 

Figure 3-24: Low resolution spectra for SLDs mounted epi-side down, (a) for the device 

with 1.7mm stripe and 1mm window, and (b) for device 3mm active stripe and 2mm 

window. The shift detected in the 3mm active stripe was ~5nm from 990 to 995nm while 

the shorter active device showed a shift of ~7nm from 991nm to 998nm.   
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Later on, the SMD of the two devices were investigated using the high resolution 

EL. The maximum power of the 1.7mm device almost doubled this time where a 

32.5mW power was collected while a power of 31mW was collected from the 3mm 

device at 400mA pumping level. The SMD vs output power curve was extracted from 

the measured data using the same technique. Significant improvement in the SMD level 

was observed, in the 1.7mm Device, SMD of 19% was recorded at 32.5mW while an 

SMD of only 8% at 20mW which is the A-point in this device. The performance of the 

3mm Device is improved as well to the measured power level. The spectral modulation 

depth was found to be only 5.5% at 30mW, which is less than half the previously 

measured value (~12.5% at 29mW). Again all the values were recorded without the 

application of AR-coating to the tested devices, which can result in even better 

performance when 10
-3

 or 10
-4

 effective reflectivity is added to the already available by 

the rear section and the tilted waveguide.  Figure 3-2 5 below shows a comparison in the 

SMD development of the two devices to those of the epi-side up configurations.  

 
 

Figure 3-25: SMD comparison for the device with 1.7mm (a) and 3mm (b) active 

stripes. The blue rhombus marks are associated with the epi-side up devices while the 

red squares are the SMD of the epi-side down devices. Comparing the two cases shows 

a significant improvement in both cases due to the red-shift reduction in the epi-side 

down devices.  

The simulation done previously in section 3.6 is repeated for the epi-side down 

devices to confirm the trends. For each device, the effective reflectivity of the facets 
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was selected such that the front facet is considered 10
-4

 since it is a tilted facet [27], and 

the rear facet reflectivity was selected by multiplying the reflectivity provided by the 

associated window length by the 10
-4

 reflectivity of the tilted facet. The effective 

reflectivity of the window section is selected from the measured data in 3.5 while the 

10
-4

 reflectivity was selected since it is the most repeated number in GaAs broadband 

structure, a study presented Alphonse suggested this number for example [20]. 

Examining the simulation done to the device with 3mm long active stripe showed a 

very good coherence to experimental value in which a linear increase in the spectral 

modulation depth is obvious as the output power increases to values larger than 1mW. 

In contrast to this case, the 1.7mm showed a kink at 20mW power level at which the 

slope of the SMD increase became steeper. As discussed earlier in 3.8, this increase in 

the slope was because of the decrease in the rear facet reflectivity.  

By examining the central wavelength shift in the low resolution EL spectra of the 

device that had 1.7mm active stripe, the EL spectrum at the maximum power is shifted 

~8nm to 998nm. Recalling the photocurrent spectrum measured in 2.5, the relative 

photocurrent at 998nm is ~55%. If we assumed linear relationship between the effective 

reflectivity of the window and the absorption (which is commensurate to the 

photocurrent measured at this wavelength), the reflectivity can be assumed to be half the 

value estimated under no red-shift conditions. Based on this assumption, simulation is 

held of the exact same parameters except that the reflectivity is doubled. The coherence 

between the experimental and simulation work is resumed. Figure 3-26 shows the 

simulations held for the two devices.  
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Figure 3-26: Comparison between the experimental SMD measured from the epi-side-

down devices and the outcomes of the simulation held for the same devices.  

An SLD of 1mm active stripe and 1mm active window is mounted epi-side down to 

study the window. The device initial screening showed an output power up to ~20mW. 

The development of the SMD as a function of output power and the LI curve of the 

measured device is shown in Figure 3-27 below. SMD had the same behaviour of the 

one shown in the device of 1.7mm stripe.  

 

Figure 3-27: The initial screening of a device with 1mm stripe and 1mm window 

showing the LI curve (a) and the low resolution spectra with peak red-shift to 1001nm 

(b). SMD as a function of output power for this device is shown in (c). Beyond 10mW 

the modulation developed very quickly to achieve ~50%. 
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Figure 3-28 shows the high resolution EL spectra at the maximum output power. In 

this power the central wavelength of the emission envelope is located at 1μm. The 

spectrum is actually split around the central wavelength to two areas, the first one where 

the absorption of the window is in the >50% region at shorter than 1μm wavelengths, 

the SMD in that region is very low. On the other hand, the range of wavelengths longer 

than 1μm showed high SMD levels since the relative absorption decreased to less than 

10% at wavelength ≥ 1005nm.  This is confirmed by determining SMD throughout the 

wavelength range as shown in Figure 3-28. We can notice SMD as low as 5% at the 

central wavelength and the short range of the wavelengths while this SMD increases up 

to 35% on the longer wavelength side.  

 

Figure 3-28: a comparison between the left and right side of the peak wavelength in the 

full EL spectrum (a) taken at maximum power, and the SMD measured (b). The SMD in 

the longer wavelength region (lower absorption) is always higher than the short 

wavelength region. 

The window transform from the absorptive window at low output powers to the 

transparent window based on the wavelength shift can be proved by examining the 

fabry-pérot mode spacing along the wavelength range. Increasing the optical cavity 
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length results in decrease of the Fabry-Pérot mode spacing as eq. (3-1) suggests. Figure 

3-29 shows the measured mode spacing as a function of wavelength for a device with 

1mm long stripe and 1mm long window. The mode spacing decreases from 0.075nm, at 

993nm, to 0.052 at 1010nm.  

 

Figure 3-29: The mode spacing of the 1mm active stripe and 1mm window device along 

the measured spectrum. The mode spacing decreased from 0.075nm to 0.052nm due to 

optical cavity lengthening from stripe only to stripe + window length.  

3.9.2 Pulsed Operation  
Since the higher SMD was observed at longer wavelength as a result of emission red-

shifting with respect to the absorption peak in the window region, one might expect to 

suppress this effect if Joules heating in the stripe can be minimized. To reduce the effect 

of self-heating and test the “ideal” case of the proposed structure (i.e. when not limited 

by our device fabrication process and the packaging series resistance), the device that 

was mounted epi-side down with 1.7mm active stripe was tested under pulsed operation 

at room temperature. A pulse train of 10μsec pulse width and 1msec pulse duration (1% 

duty cycle) was applied to the device with variable amplitude. Figure 3-30 shows the 

device performance under pulsed conditions. The pulsed LI (Figure 3-30a) showed an 

increase of about 20% output power as the output power recorded was 38mW compared 

to 32.5mW recorded for the continuous wave operation at the same injected current 

(300mA). Perhaps a more significant difference is the reduction of the red-shift from 

0.05

0.06

0.07

0.08

990 995 1000 1005 1010 1015

m
o

d
e 

sp
ac

in
g 

(n
m

) 
 

Wavelength (nm)  



123 | P a g e  
 

~6nm in CW to <1nm in the pulse operation, this difference is also recorded at the same 

pumping currents (300mA in both cases). The low resolution EL spectra recorded at 

power levels from 5-35mW in a step of 5mW and at the maximum power recorded in 

this pumping range is plotted in Figure 3-30b. Two insets are included in this Figure 3-

the first one shows the high resolution EL spectrum at the maximum power and a 

magnified portion of the high resolution EL which demonstrate the mode spacing. This 

wavelength stability resulted in an SMD at the highest power (38mW) of only 1-2% 

which is considered the ideal SLD operation reported in the literature [7], the tolerable 

range for applications like OCT and fibre optic gyroscope FOG.  

Figure 3-30: The basic characterization of the 1.7mm epi-side-down device where the 

LI is shown in (a), the low resolution is shown in (b), and the high resolution at the 

maximum power measured is shown in the inset. Due to the negligible red-shift in the 

central wavelength the device worked with 1-2% SMD at 38mW compared to ~20% at 

32mW in CW operation.  

3.9.3 Window absorption band control using on-chip resistor:  
CW operation of the SLD results in red-shift of the emission until it is no longer 

resonant with the absorption available in the window section, and lasing suppression is 

only contributed to the divergence of light in the window section. Section 3.9.2 

described how the absence of self-heating can delay the onset of large SMD, however, 

this is not always practical. Here I suggest an alternative approach based on control of 

(a) 

(b) 
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absorption in the window section via use of a resistor placed above it. When a voltage is 

applied across the resistor, the heat generated will red-shift the absorption spectrum.  

Figure 3-23 showed the effect of red-shift with respect to the absorption band. Poor 

heatsinking in the device studied earlier could be attributed to resistive electrical contact 

and/or poor packaging when the device is mounted epi-side up with thick (~120μm) 

GaAs substrate. 

The first modification to the standard configuration was to flip the device and mount 

it epi-side down to improve the heat sinking at the p-side of the device instead of the n-

side. This improvement is a result of bringing the heat-generating part of the chip into 

contact with the heat sink rather than heat needing to conduct via the more resistive 

GaAs substrate. Figure 3-25 showed the differences in performance of identical devices 

and how the development of the Fabry-Pérot modes has been suppressed to a certain 

level in the case of the epi-side down device.  

Another method to spectrally control the device is to red-shift the absorption band in 

the window region and tunes it to the central wavelength emitted by the active stripe. 

The easiest way to tune the wavelength of a semiconductor structure is to heat the 

structure up or cool it down. In the case of red-shift it needs to be heated up. Heating up 

the whole structure was not a viable option as the energy structure of the chip will also 

shift. Also, heating the window section through the substrate was not so practical as the 

spatial temperature control was not precise enough to control window temperature 

alone. Therefore, my suggestion to use a heating source, such as an on-chip-resistor, 

which can be placed at a specific location on the surface of the chip immediately above 

the window region and its temperature controlled in order to locally modify the 

absorption properties of the material. At the onset of Joule heating in the self-aligned 

stripe which manifest itself as a red-shift of the SLD emission, the voltage across the 
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resistor can be increased to realize a commensurate red-shift of the absorption spectrum 

in the window region, bringing the two into resonance again, where the window can 

absorb the light propagating through it.  

Whilst integration of a thin film heating element with the fabrication process for the 

SLD would present the most effective methodology (as will be describe later), the 

simplest method to trial the concept is to integrate a film type resistor on the rear 

window section of the device. Figure 3-31 shows this configuration. The SLD used has 

a 3mm long active stripe and 2mm window. The reason for choosing this long window 

was mainly for assurance that the heat generated will be as localized as possible, 

bearing in mind that the surface is covered with 500nm of SiN as part of the fabrication 

process. A film resistor of 8.5Ω was fixed on the surface using thermal glue. Although it 

is not the perfect way to create an on-chip heat source, the presence of this low value 

resistor can provide enough control of the thermal energy provided, whilst the use of the 

thermal glue will aid better heat distribution along the window rather than just a point.  

 

Figure 3-31: configuration used to heat up the rear window. 

The resistor was driven by an external DC voltage source. Knowing the voltage 

provided combined with the resistor value, the output thermal power can estimated to 

be: 

𝑃 =
𝑉2

𝑅
       …. (3-19)  

Film type resistor 

SiN 500nm film 

Un-pumped window Active Stripe 

Thermal 
Glue 
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where P is the thermal power in watts, V is the potential difference in volts, and R the 

resistance of the mounted resistor. 

The applied voltage across the resistor was changed between 0 and 6.5V with a step 

of 0.5V. At each step, the high resolution EL was measured with resolution of 0.01nm. 

The output power was fixed during the measurements. After measuring the EL 

spectrum, the spectral modulation depth was calculated at each step by the same 

formula shown in eq. (3-2). Figure 3-32 below shows the SMD as a function of the 

applied power. The level of the spectral modulation depth decreased gradually as the 

applied power increased beyond 2.5W.  

 

Figure 3-32: The spectral modulation depth measured in the CW EL as a function of the 

applied power.  

Although the results prove the concept, a better configuration can provide improved 

spectral control. The main problem associated with these measurements was the offset 

of using the SiN layer deposited for electrical isolation of the SLD. The 500nm thick 

insulating SiN deposited on the semiconductor prevented sufficient heat transfer from 

the resistor to the semiconductor, limiting even distribution and control of the actual 

amount of thermal energy required. Also a measurement of the actual temperature of the 

semiconductor material was not available in the configuration used. An on-chip 

thermistor can be added to measure the temperature of the window section.  
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A modification to the design is required to include a metallic alloy filament directly 

on the GaAs surface so that minimum is dissipated in the dielectric covering the device, 

since the thermal conductivity of the dielectric is lower than the one of the 

semiconductor the thermal “current” prefers to expand to the semiconductor part, and 

since it is made from the same material the heat flow will be isotropic under the contact 

point. The thickness need to be achieved is ~2.2μm, 300nm contact GaAs, 1.5μm 

AlGaAs 900nm, n-InGaP and AlGaAs. This means that a 5μm resistive contact will be 

more than enough. Figure 3-33 shows the concept and the design suggested for spectral 

control by on-chip-resistor. 

 

Figure 3-33: The concept and simplified design for an on-chip-heater for window 

spectral control. The orange portions are the alloy surfaces to be used as a resistor with 

a small separation (pointed by the small blue arrows in (a)) defines the resistance used. 

As shown in (b) the integrated heater should be located on a distance enough to isolate 

the two sections thermally. 

3.10 Summary and conclusion: 
In this chapter tilted windowed SAS superluminescent diodes (SLDs) fabricated 

from 980 nm emitting DQW material were investigated. The methods to achieve 

superluminescence from laser were briefly introduced followed by a thorough study of 

the mechanism behind operation of the window structure. From the characterization of 

devices processed normal-to-facets the effective reflectivity (Reff) of the rear window 

was determined. The experimental measurement showed a reflectivity as low as 10
-14

 

when a 2250μm window was integrated with the active device. This is resulted from a 

combination of the mode spreading out in the laterally unguided area of the device (in 

5μm 

Unpumped Active 

Active 
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Generated heat 

Trenches 
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the window), and the absorption taking place in the unpumped window region, in which 

the active layer was not intact during the fabrication process.  

Based on the effective reflectivity estimation in section 3.5 a simple simulation was 

designated to estimate the behaviour of the spectral modulation depth (SMD) for the 

operating devices. It was found that in addition to the window effect, the active stripe 

geometry has a significant effect on the spectral modulation depth of the output 

emission. 

The experimental characterization of the windowed tilted SLD showed output power 

in the level of +40mW for devices with active stripes longer than 2mm. The window 

existence did not affect the slope efficiency of the devices with specific active stripe 

geometry, in contrast the active stripe geometry showed a significant effect on the 

output power. The LI curves at various temperature values a role for the rear window in 

temperature distribution and maintenance during the CW operation.  

The spectral screening of the devices confirmed that the devices did not lase 

throughout the operation range. The spectral modulation depth of the devices were 

measured and showed similar behaviours in the three tested devices. The SMD trend, 

suggested by the simulation held, with increasing the output power was confirmed 

experimentally. Though, the devices did not show the level of SMD expected by the 

simulation. The device with the best performance in this category was the one that had 

an active stripe of 3000×4μm
2
. The measured SMD at 43mW was ~17%. Although this 

value is more than 3 times higher than the value that Shidlovsky stated as the acceptable 

value for applications such as OCT, it gave an indication that the window used was 

capable to suppress the lasing in an active material that was designed originally for low 

threshold laser operation.  
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All of the tested devices experienced different levels of Joule’s heating which 

resulted in a red-shift in the emission peak. This shift results in detuning of the emission 

peak with respect to the absorption peak in the window region. This causes the window 

to change gradually from absorptive to transparent window, in the latter case only mode 

spreading and the cavity tilt contribute in lasing suppression. This was the reason of 

high SMD determined from those devices.  

Three methods were used to bring back the emission and absorption peaks, in the 

active and window regions, respectively, into resonance. The first one was to mount the 

devices’ hot layer closer to temperature-controlled-surface of the heatsink. The second 

option used to minimize the self-heating was to pump the structure under pulsed 

operation. The third and last option was an attempt to control the spectral properties of 

the absorbing window region by integrating a heating element on the unpumped 

window region.  

The epi-side down showed a significant improvement in heat-sinking appeared as 

smaller red-shift in the central peak. The experimental results showed better correlation 

with the simulation results. An epi-side down device with 3mm long and 4μm wide 

active stripe with 2mm unpumped window emitted 30mW of ASE output power with 

only 5.5% SMD. This enhancement in the SMD was a result of minimized red-shifting 

down to 3nm as shown in the low resolution EL.  

The pulsed operation enabled testing the device under its ideal circumstances at 

which the series resistance of the ohmic contacts and the imperfect fabrication process 

was minimized. Less than 1nm shift was detected by the low resolution EL and SMD of 

only 1-2% was recorded at 38mW output power. The pulsed operation proved that the 

presented window can suppress the back reflections to extremely low levels that results 

in an ideal SLD in case the required heat sinking is used.  
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The last experiment done was a more realistic method to tune the device performance 

to the optimum operation conditions. Integrating a resistor to the rear section of the 

device is proved to enable absorption band tailoring to the requirement of the emission 

bandwidth. An epi-side up mounted device is prepared to test the resistor effect on the 

SMD behaviour. At the same output power this device showed a reduction of SMD 

level from ~15% to below 10% when the power applied by the resistor exceeded 4W.  

3.11 Future Work 
1- Further investigation of the new window ability and its effect on the device 

performance. Parameters such as the effect of the active layer gain, and the effective 

refractive index step between the active stripe and the unpumped window region 

need to be investigated for future development.  

2- Integration of the rear window to an active that is designed for wide spectrum 

operation. This can decrease the problem results from the peak shift by increasing the 

relative overlap between the active and window parts.  

3- Design of a proper spectral controller for the rear section, a start point is to integrate 

an on-wafer resistor with the suitable metal alloy. The main point is to get rid of the 

500nm thick SiN layer that prevents adequate thermal pumping of the window.  

4- A study of the refractive index change due to the variables changed during the 

operation in both active and window, and how will this affect the final operation. 

Changes like the one caused by the carrier injection, or the heat rise.  
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Chapter 4: Normal-to-Facet 
Superluminescent diodes 

4.1 Introduction:  

The early reports of Superluminescent diodes described structures in which the 

optical cavity was aligned normal to the cleaved facets. Such devices relied upon the 

well matured AR-coating method to suppress optical feedback from the cavity end 

mirrors. Whether AR-coating alone or used together with an integrated transparent 

window at one end, these were the most preferred method used for SLD fabrication. In 

1983 Tsang et.al.  presented a laser structure which had an optical waveguide tilted with 

respect to the (010) axis with facets cleaved along the (100) plane. They proved 

experimentally that this structure can decrease the device spectral coherence and operate 

in multimode [1]. This was the first step that developers took toward presenting SLDs 

with tilted facets to decrease the optical feedback, relying on the simplicity of the device 

fabrication. Usually this technique is combined with AR-coating for low facet 

reflectivities. 

Utilizing the window structure presented in this thesis, SLDs with normal facets are 

discussed in Chapter three with the measurement held to estimate the effective 

reflectivity of the window facet. Such devices are expected to have a reflectivity ~10
-11

 

with sufficiently long window sections (≥1.5mm).  

This very low effective reflectivity should allow suppression of lasing threshold to 

very high currents. In fact, in chapter three normal-to-facet devices with 1mm long 

active stripe exhibited a shift of threshold current from <30mA in the 1mm laser 

(normal facet device with no window) to 170mA for a normal facet device that has 

1mm long active stripe and 2.25mm rear window section. This suppression of threshold, 

together with the very low effective reflectivity determined from my experiment 
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supported the idea of studying the performance of SLD devices with their waveguides 

processed normal to the cleave facets. In the straight waveguides the additional 

contributions to the reduction of the effective reflectivity that comes from tilting the 

waveguide (which is commonly ~10
-4

-10
-3

) will be sacrificed, however two important 

advantages will be enabled. The first one is that the beam shape will overcome the 

distortion problem associated with the tilt. The beam shape of two devices, one with its 

optical waveguide aligned to the (010) axis (a laser) and other with a tilted waveguide 

with respect to the (010) axis (e.g. SLD) is compared when projected on the (100) 

plane. Since the divergence angle in the two devices is considered the same it all comes 

to the difference in the optical paths (11 and l2). We can see that the paths are equal in 

the case of the normal to facet devices (Figure 4-1 a) when projected on the (001) plane 

while l1<l2 due to the tilt in the second device (Figure 4-1 b). This difference is 

transferred into the farfield pattern shown in (Figure 4-1 c and d) where the first one has 

an elliptical shape while the other one has a crescent shape which will decrease the 

coupling efficiency in the tilted devices when used with a standard couplers and 

connections in the networks.  

 

Figure 4-1: The farfield patterns of a straight cavity (e.g. diode laser) and tilted cavity 

(e.g. SLD). The crescent shape is obvious in the SLD farfield pattern. 
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Another advantage of processing the SLD with normal to facet waveguides is the 

semiconductor material saving in cleaving individual chips, which has a significant 

impact on cost savings in volume production. The excess material lost on both sides of 

the devices can be visualized using Figure 4-2. The chip size is bound by the dotted 

lines, with the extra area shaded in grey being the chip that will be wasted in cleaving. 

Whilst the width of chip for the normal to facet devices is only limited by the 

substrate thickness (as the device width should be at least three times the thickness to 

have successful cleave), the width of the tilted chip is governed by the device total 

length L and the angle of the alignment (θ) where the width of a successful cleave will 

be ≥ 𝐿. 𝑠𝑖𝑛(𝜃).  

 

Figure 4-2: Visual comparison between two pieces of semiconductor which is required 

to be cleaved into individual devices. The only parameter that limits the width of the 

straight SLD is the chip thickness. On the other hand the piece with tilted SLD should 

be cleaved into chips that have width governed by the total length and the device tilting 

angle.  

4.2 Device preparation:  

Normal-to-facet SLDs were fabricated from the same material as that described in 

chapters 2 and 3. The dimensions of devices studied in this chapter were based on the 

outcomes of chapter 3. The study conducted regarding the device length suggested that 

Lost material  

θ° 

w ≥ L . sin (θ) 

L 

w ≥ 3 × thickness  
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the longer the device the better performance so initially a 2mm long stripe was selected 

as the active part of the device. The active stripe was 3μm wide and 2mm long stripe as 

shown in Figure 4-3.  

To achieve amplified spontaneous emission (ASE) operation, the resultant effective 

reflectivity of the two facets of the device has to be close to 10
-10

 as suggested by V.R. 

Shidlovski [2]. Since the front facet is not tilted in this case it will have a rather high 

reflectivity compared to the tilted SLD in chapter three, for this reason extra attention 

has to be paid to the selection of the rear window length. According to Snell’s law, the 

as-cleaved facet will have a reflectivity ~33% due to the semiconductor/air interface 

unless an AR-coating is applied, in which case reflectivity < 0.1% is achievable. The 

effective reflectivity experiment I described in section 3.5 suggests that effective 

reflectivity of the rear facets for devices that has 1.5mm long window section is about 

1.65×10
-11

. Therefore, to guarantee a rear facet with low effective reflectivity, a window 

with 2mm long was selected to be integrated. This length should provide an effective 

reflectivity of ~2.287×10
-13

.  

To compensate for the 10
-4

 contribution to the effective reflectivity provided by 

tilting the front facet, this facet was coated by Helia Photonics Ltd in order to provide 

reflectivity down to 10
-4

. I decided to coat the front facet as a consequence of the initial 

measurements performed on a 1mm long devices earlier in which the as-cleaved facet 

has an order of magnitude lower output power compared to their tilted counterparts. The 

reason of this low power is that a large portion of the light bounces back into the active 

stripe and develops to a stimulated emission on the opposite direction (towards the rear 

facet). The feedback results also in carrier depletion which decreases the population of 

the free carriers and the recombination rate which is directly related to the ASE output 

power as analysed by Suhara [3].  
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Taking these factors into consideration, the initially designed normal-to-facet SLD, 

which is shown schematically in Figure 4-3, comprised a 2mm active stripe with a 2mm 

rear window section. The front facet was coated with a single layer AR-coating 

designed to provide a reflectivity of 10
-4

. The rear facet should provide a reflectivity 

down to 2.28×10
-13

 which suggests a resultant theoretical reflectivity of the two facets 

(R1 * R2 ~ 2.28×10
-17

). To enhance the heat sinking of the device, the chip was 

mounted epi-side down on a gold coated c-mount. 

 

Figure 4-3: The normal-to-facet device dimensions. The figure highlights the AR-

coating (dark red) on the front face.  

4.3 Results 

The performance of the device was first investigated using the LI setup described in 

chapter two (2.3.1). Output power was recorded up to 6.5mW in CW operation at 20°C 

from pumping the device up to 450mA (7.5kA.cm-2) before it starts lasing at 500mA 

and output power closer to 7.8mW as shown in Figure 4-4a below. Low resolution EL 

spectra were recorded as described in chapter 2 (2.3.2) at (150, 200, 250, 400, 450, and 

500mA), the EL spectra are shown in Figure 4-4b. In the current range (0-450mA), no 

lasing was observed. However, beyond ~450mA a lasing peak started to develop at a 

wavelength ~1010nm. As was the case for the tilted SLDs discussed in chapter three the 
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lasing is occurring outside the absorption band provided in the window region due to 

Joule heating within the active stripe.  

 

Figure 4-4: the LI curve (a) and the EL spectra at different current levels (b). The 

lasing peak occurred outside the power level shown in the LI curve.  

The farfield pattern of the device was measured for the maximum ASE current 

(350mA) using the Farfield setup described in 2.3.5, the current level selected is the one 

comparable to the maximum current of the 1.7mm tilted SLD characterized earlier in 

chapter three. The measurements reveal an elliptical output beam instead of the 

crescent-shaped profile recorded from the tilted device. Figure 4-5 shows the farfield 

profile of the two devices.  

 

Figure 4-5: A comparison between the farfield patterns of the tilted cavity SLD (a) and 

the developed normal-to-facet cavity SLDs (b). The elliptical shape was maintained in 

the second configuration.  

So, by applying the conclusions drawn from the third chapter to the case of the 

normal-to-facet SLD, we see that a device with an active stripe of 2mm long × 4μm 

width and 2mm rear window has successfully emitted amplified stimulated emission, 
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with the lasing threshold was suppressed to a current level as high as 450mA (compared 

to only 40mA in the corresponding laser cavity (i.e. no window)). The output power 

collected from the device was +6mW, which is considered a low level of output power 

compared with its tilted stripe counter parts from the same wafer discussed in chapter 

three. The reasons for this low power can be 1) the front facet reflectivity is still high 

compared with the tilted SLDs, and 2) the quality of the semiconductor structure of the 

SLDs presented in this chapter is worse than the one presented in chapter three because 

these devices are taken from a piece of the semiconductor closer to the edge of the 

processed wafer. Also, in spite of the fact that the 4μ provided output powers more than 

30mW in the case of tilted devices, it looks like wider stripes are required in order to 

increase the spontaneous emission initially generated in the stripe before the 

amplification took place. 

4.4 Further Development  

In a bid to improve normal-to-facet SLD performance and to further investigate the 

design criteria associated with this device scheme, another batch of normal-to-facet 

SLDs were fabricated. For this batch, an identical planar starting wafer was used; 

however, another overgrowth was required. Therefore the active media are identical, 

yet, the completed structure may have undergone run-to-run variation according to the 

reproducibility of the stripe etch and the regrowth process. Furthermore, for this batch 

of devices the stripe widths were also changed from (3 and 4μm) to (5, 7, and 10μm). 

The new widths are less compatible with fibre coupling, yet, it should provide more 

ASE power. Devices were cleaved with various active stripe lengths and a fixed 

window length. The stripe lengths were chosen to be 0.5, 0.75, 1, 2, and 3mm while the 

window length was fixed to 1mm. According to section 3.3 the 1mm window should 

provide an effective facet reflectivity of ~2.35×10
-8

. As before, a single layer of 125nm 

thick SiN was deposited in order to decrease the reflectivity of the front facet below 5%. 
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4.4.1 Widths variation effect:  

Using a device that has 1mm active stripe, the effect of varying the cavity width was 

investigated by changing the stripes width. The ASE output power was measured as a 

function of the injected current using the light-current measurement setup described in 

section 2.3.1. A few tens of milliwatts output power was recorded as shown in Figure 4-

6a, which plots the output from 1mm long active stripes with 5, 7, and 10μm stripe 

widths. The output power can be described as a combination of the spontaneous 

emission which was amplified by increasing the spontaneous emission rate and 

stimulated emission which results from the feedback within the active waveguide. At 

some point along the LI curve, the dominating emission will turn from amplified 

spontaneous emission into lasing. This process is investigated by monitoring the 

spectral modulation development in the high resolution EL spectrum measured from the 

devices. Examples of such emission are shown in Figure 4-6b, where the high resolution 

EL spectra were recorded for 5, 7, and 10μm wide stripes at 16mW. If we examine the 

spectral modulation depth of the three devices in Figure 4-6b we can notice that they are 

working in a similar manner to that discussed for the tilted devices, where the device 

that has a 5μm wide stripe experiencing an SMD of more than 10% for this current 

level, while the 10μm while device emitted EL with SMD <5%. The 7μm device 

exhibited SMD in between these two values. At the same time, we can observe the EL 

expansion sides of the central peak, especially in the 5μm wide stripes. This expansion 

is expected to the right hand side is expected since the pumping level was at 4.4kA.cm
-2

 

at 16mW by which Joule heating took place and caused red-shift, while the expansion 

on the short-wavelength side was not observed in the previous batch or in the tilted 

devices. Usually the peak development to the shorter wavelength side is a result of 

transition from a higher order excited state when the ground state is saturated. It is 

worth mentioning that in spite of the peaks that were developed on either sides of the 
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central peak in the 5μm device, they are still outside the central absorption band in 

which the devices experienced the lowest SMD.  

 

Figure 4-6: The output power as a function of current for the 1mm long normal-to-facet 

devices of three widths (5, 7, and 10μm) wide stripes. Output powers ≥ 20mW is 

recorded in which amplified spontaneous emission and amplified stimulated emission 

undergo competition to dominate. These dominations are more apparent in the high 

resolution EL spectra shown in (b) at 15mW power level. At this level, the domination of 

a specific emission type depends on the device stripe width where we can find mostly 

ASE in the 10μm and very small stimulated emission on the long wavelength side, and 

on the other hand very high stimulated emission spread all over the 5μm device 

spectrum. 

4.4.2 1mm Stripe Spectral Modulation Depth  

The spectral modulation depth is a Figure of merit usually used to assess an SLD 

performance, as described earlier. The normal to facet devices are no exceptions to this. 

The high resolution EL spectra of the three devices was recorded using the high 

resolution EL setup detailed in 2.3.3 from 2mW output power up to the lasing power 

which varied in the three devices from 14mW in the 5μm wide device up to 32mW in 

the 10μm wide device. Figure 4-7 shows the SMD development as the output power 

increases in the three devices.  
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Figure 4-7: The spectral modulation depth of 1mm long devices with 5, 7, and 10μm 

wide stripes. The device emitted two peaks because of the heat distribution (the carrier 

injected heavily at one side of the stripe and almost none on the other side of the stripe 

due to device front facet coating. The ripple development at the two peaks is recorded in 

this figure. (a) is the peak at  990nm or the original peak, the ripples were developed 

fairly low compared to the other peak, the maximum SMD was 16% for the device with 

5μm wide stripe and the minimum was <4%. (b), on the other hand, is the long 

wavelength peak where the device experienced very high SMD due to window 

transparency in this range of wavelengths. The maximum was 95% for the 5μm and the 

least SMD was also for the 10μm wide active with ~56%. 

As shown in Figure 4-6 as an example of the EL spectra for the three devices, the 

devices generally had two peaks, one developed at ~990nm which is the original peak 

observed in the tilted devices, and the other one is the one developed at the longer 

wavelength side of the spectrum due to Joule heating. Figure 4-7 shows the 

development of the SMD for the two peaks in the three devices.  

Two behaviours were observed, the first one is a rather slow development in the 

magnitude of the ripple size. Generally, the central wavelength peak showed an 

acceptable level of spectral modulation, especially taking into account that the material 

is a laser gain material designed for low threshold current operation. In such gain media 

it is difficult to supress the lasing, especially if straight waveguides are used.  

On the other hand, the long wavelength peak experienced a rapid development in the 

ripple magnitude from no observable ripple to lasing. The location of this peak varies 

from one device to another, with the narrower device resulting in a longer wavelength 

peak. The long wavelength peak was observed in a range of wavelengths varied from 
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1009nm in the widest device up to 1015nm in the narrowest. The highest SMD levels 

recorded for the three devices were ~95%, 76.6%, and 57% for 5μm, 7μm, and 10μm 

wide stripes, respectively. Such SMD levels resulted from the fact that the window 

region is now totally transparent to the peak wavelength.  

4.4.3 Length variation effect:  

Since the width comparison of the 1mm active stripe devices showed that the 10μm 

wide device experienced the best performance, I decided to focus on this width with 

different cavity length. Two devices shorter than 1mm (0.5 and 0.75mm) and two 

longer (2, and 3mm) were tested in order to observe the effect of the length variation.  

In the 500μm and 750μm devices the emission spectrum was broadened due to state 

filling (on the shorter wavelength side) and due to self-heating (on the long wavelength 

side) (as seen in Figure 4-7). The pumping level of the EL spectra plotted in Figure 4-7 

for the 0.5 and the 0.75mm long devices was 4.4kA.cm
-2

 and 3.5kA.cm
-2

, respectively. 

The main problem associated with the older batch of SLDs is the wavelength shift from 

the central wavelength towards the longer wavelength due to Joule heating. By 

increasing the pumping level the EL spectra showed ripples developing in the spectral 

areas outside the central emission range which subsequently become lasing peaks. 

 The wider active waveguide enabled broader emission spectra in the short cavity 

devices because of the high pumping level mentioned above. Keeping in mind that an 

imperfect AR-coating, which was a simple single SiN layer, was applied to the front 

facet could result in a higher reflectivity and correspondingly higher levels of feedback, 

together with strong feedback at wavelengths outside the bandwidth of the coating. The 

0.5mm long SLDs exhibited SMD development at short wavelengths even more than 

the longer wavelength. It is worth mentioning that the developed SMD is still outside 
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the absorption bands as revealed in Figure 4-8 when the PC spectrum is plotted on the 

same figure.  

 

Figure 4-8: The EL spectra of a normal-to-facet SLDs one has 500×10μm
2
 (left) and 

other has 750 × 10 μm
2
 dimensions at different pumping level. Both devices exhibited 

peak developments on both sides of the central wavelength (990nm), the short-

wavelength peak developed because of the state filling, and the long-wavelength peak 

developed because of the Joule’s heating effect.  

Taking into account that the window will be less absorptive to both the shorter 

wavelength and the longer wavelength compared to the original emission/absorption 

wavelength, the development of SMD will be much easier than that in the central 

wavelength.  

On the other hand, devices with longer active stripes required higher current (not 

current density) to achieve similar pumping levels in the older batch, this caused local 

heating underneath the bonding points and the heating caused a red shift in the central 

wavelength. Although it was not sufficient to cause the central emission wavelength to 

shift outside the absorption region, the longer wavelength portion of the spectrum faced 

a lower absorption (almost transparent at some point) window. As a result, enough long 
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wavelength energy was coupled back to the active stripe where it could be amplified. 

With further increase of current, a lasing peak develops to the long wavelength side of 

the spectrum. Figure 4-9 shows another comparison between the PC spectra and the 

lasing region that appeared in the EL spectra of the devices with 2 and 3mm active 

stripes and 1mm window.  

 

Figure 4-9: The EL spectra of two devices 2mm (left) and 3mm (right) both has 10μm 

wide stripes at different pumping levels showing the peak on the long wavelength side 

and outside the absorption peak which is defined by the photocurrent shown in the blue 

line on both graphs. 

The lasing at longer wavelengths in devices longer than 1mm demonstrated here may 

have revealed a limit for the normal-to-facet SLDs in terms of possible active lengths 

that could be used in their design. 

4.4.4 Stripe width effect in > 1mm devices: 

The problems exhibited in the longer devices questioned my conclusions drawn from 

chapter three, which was “the device with larger active area should perform better”. The 

set of devices tested for 2 and 3mm long devices operated somehow in the opposite 

manner in which the narrower devices (i.e. the ones that had 5 and 7μm) started to lase 

at marginally higher current. Yet, a device of a comparable active length performed the 

best in the last batch. This leads us to examination of the major difference between the 

two batches. In the old batch, the stripe widths were to 3 and 4μm while in the new 
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batch the stripes are widened to 5, 7, and 10μm. The fact that the effective real index 

step between the active stripe area and the window area is only 0.002-0.003 raised a 

question about the divergence angle of the beam spread in the unguided window region.  

The divergence angle of the beam spread from the stripe/window interface was 

investigated by simulating the structure grown and processed (as shown in chapter two) 

by the commercial software FIMMPROP supplied by PhotonDesign Ltd. This software 

simulate the propagation and distribution of light in the semiconductor structure 

focussing on the effect of the refractive index of the layers included in the structure on 

the device operation. Two structures were simulated representing the active and the 

window regions and the two sections were aligned (by the software) successively to 

simulate a light beam propagated from the active stripe part to the window part. This 

software does not simulate the device gain or the resultant output power. The active part 

was 100μm long and had three widths (5, 7, and 10μm) and the window portion was 

extended to 1000μm to emulate the tested devices window section in this chapter. 

Figure 4-10 plots the output of the simulation performed for 5μm wide stripe active as 

an example of the other devices, on a colour scale from Dark Blue where the intensity is 

at minimum up to White to represent the maximum intensity.  

 

 

Figure 4-10: The simulation outcomes as shown in the FIMMPROP output screen, the 

figure is a plane view of the device describes how the optical mode propagates in the 

window unguided region.  

Unguided window region 
Stripe 
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For each stripe width, 2D slices were taken across the beam propagated in the 

window region at Xμm from the interface. The full width half maximum (FWHM) of 

the propagated beam is recorded as shown in Figure 4-11, the beam width was increased 

from 5, 7, and 10μm for the three devices at the interface to 54.4, 43.3, and 34.1μm, at 

800μm for the devices 5, 7, and 10μm, respectively. Comparing the FWHM at each 

point to the first one can yield the divergence angle of the beam with respect to each 

width and their average. The angle can be found from the arctan of the difference 

between the propagated length (x) and the expansion added (y)  

∅ = arctan (
𝑥1−𝑥

𝑦1−𝑦
)       …. (4-1) 

where x1 is 100μm and y1 is the related beam width.   

 

Figure 4-11: The full width half maximum (FWHM) of the propagated beam intensity 

shown in (a) which reflects the beam divergence angle in (b). 

The divergence angle measurement of the three stripe widths shows that the 10μm 

wide stripe resulted in the narrowest divergence angle (the maximum it reached was 

only 2°), while the 5μm offered at least 3.5° divergence angle, this value is expected to 

be higher in narrower stripe SLDs. This resulted from the fact that the index step is very 

small (0.002-0.003) which provides a very small divergence. The difference between 

the devices all comes to the stripe widths. This is very similar to the effect of the slit 

separation in Young’s slit experiment. In the tilted stripe batch this effect was not 
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noticed because the device was tilted and most of the propagated mode is already 

deflected to the cladding layers due to the axis misalignment.  

The effect of the stripe width in the normal-to-facet SLD is explained schematically 

using Figure 4-12. Examining Figure 4-12 reveals that the probability to couple the 

reflected light from the rear facet is increased in the 10μm stripe due to the small 

divergence of the light beam at the interface. This increased the difficulty to suppress 

lasing in the new batch.  

 

Figure 4-12: A Comparison between two devices having 1 mm window one with active 

of 3μm and other with 10μm stripe. The green line is the portion of the reflected beam 

coupled back in the active and the red one is the portion that is dissipated. 

Depending on the optical power emitted from the active stripe to the unpumped area 

and the absorption in the window region, the effect of the stripe width was determined. 

The problem that appeared in this batch can be solved quickly by 1) increasing the 

window length to increase the beam spreading, and 2) decrease the rear facet reflectivity 

by depositing AR-coating on it.  

4.5 Heat Effect Reduction:  

Following the argument presented in chapter three, minimization of the self-heating 

can result in better performance as the emission central wavelength will not shift in the 

same manner as observed in the CW characteristics described here. For this reason, 

devices with 0.75 and 2mm active stripe length were tested using the low resolution 

setup to investigate the device performance.  
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4.5.1 Shorter Than 1mm Device 

Recalling the performance of devices with active stripes < 1mm, the EL spectra 

showed development of two peaks in addition to the original peak at 990nm. The 

reasons for these peaks were state filling and Joule heating for the short and long peaks, 

respectively. To verify that, devices with 0.75mm long stripes and different stripe 

widths were tested under pulsed current injection with 10μsec pulse width and 1% duty 

cycle using the low resolution setup. Figure 4-13 shows the EL spectra measured for the 

three devices at different pumping levels.  

 

Figure 4-13: The low resolution EL recorded for devices with 0.75mm long stripe and 

varied stripe widths, the stripe widths in the figure shown were 5μm in (a), 7μm in (b), 

and finally 10μm in(c). In the three sub-figures the arrow shows the direction of 

increasing the pumping current.  

The recorded spectra verified the spectral broadening due to state filling in the short 

devices while no peak was detected by this resolution at the long wavelength side 

(>1000nm). I expect that this is due to prevention of Joule heating when the device was 

operated in the pulsed mode. Examining Figure 4-13 can reveal that the short 

wavelength peak appeared due to state filling as the peak developed very obviously in 

the narrower device to the level that made it higher than the original peak. This 

development decreased when we move from the 5μm wide stripe to moderate 

development in the 7μm, and in the 10μm wide device the peak did not develop at all as 

can be seen in the related figure.  
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4.5.2 Longer Than 1mm Device  

The CW measurement carried out previously for the 2mm stripe SLD showed peak 

development on the longer wavelength side only. The reason for this was attributed to 

the red-shift of the central wavelength. The same SLD was tested again under pulsed 

conditions similar to that of the 0.75mm mentioned above. Figure 4-14 shows low 

resolution EL spectra at three pumping levels.  

 

Figure 4-14: The low resolution EL of a device that has dimensions of 2mm × 10μm. 

The device experienced lasing at the right hand side of the spectrum at power ~7mW. 

This level is a bit higher than the CW operated. 

Although lasing still takes place at around 7mW output power, it is increased by ~2-

3mW from the previous level in the CW operation. Lasing in these devices with such 

low power and low current density can be explained by as the pumping level increases 

the spontaneous emission rate increases, as in Suhara’s book analysis [3]. This increase 

is usually accompanied by increase in the width of the EL spectrum of the device. 

Because the device now has an active stripe of 2mm, enough gain will be added to the 

transparent portion of the spectrum (in the range >1000) and more forced transitions 

will take place which causes the emission of the device to move from the amplified 

spontaneous emission to the amplified stimulated emission. This might be considered as 

the modal limit for such devices, this limit can be changed from one device to another 

according to many factors described in chapters 3 and 4.  
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4.6 Summary and Conclusions:  

In chapter four I tested the grown structure in a normal-to-facet optical waveguide 

configuration. This configuration has two main advantages, first the output beam profile 

has been maintained to elliptical shape rather than the crescent shape that resulted from 

tilting the facets. This should increase the device coupling efficiency to standard single 

mode optical fibre couplers and connectors. Second is the decrease in the production 

cost by minimization of the use of semiconductor material real estate, especially for 

long cavity devices.  

The first trial was to test a 2mm long active with 2mm rear window device epi-side 

down. The device was coated with anti-reflective coating on the front facet to decrease 

the carrier depletion by the reflected light at the cleaved facet. Output power recorded 

was 6.5mW before lasing took place at 1010nm (20nm away from the device central 

wavelength).  

Another batch of devices was prepared from the same planner and different 

overgrowth run (same material used in all re-growths). The difference between the older 

batch and this one is the designated stripe widths, in this one 5, 7, and 10μm wide 

stripes can be fabricated. Devices with various active lengths were cleaved and all with 

1mm window length. The devices were reported in CW and pulsed operations. 

For this batch specifically, the device showed 3 different behaviours. The first one is 

the one identical to the devices/batch reported in chapter three, this length was tested in 

three stripe widths 5, 7, and 10μm and as expected the best performance was for the 

10μm where power up to 20mW was recorded with spectral modulation depth of <10%, 

while the 5μm device started to lase at the long wavelength side at ~14mW. In these 

three devices two peaks were noticed, the original one (the one resulted from the room 

temperature operation of the quantum well) and a long wavelength are. The latter is 
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very likely to be caused by Joule heating at the junction. The spectral modulation depth 

was tracked at both peaks. Spectral modulation at the original peak achieved maximum 

values of~16% for 5μm, 10%for 7μm, and less than 4% for the 10μm wide stripes. Yet, 

all the devices lased at long wavelength (20-25nm away from the designated central 

wavelength). The power at which the devices started to lase varied according to the 

device width, the lasing output powers were 14, 22, and 30mW for the devices with 5, 

7, and 10μm stripe widths, respectively.  

To thoroughly investigate the device limits, two shorter and two longer devices were 

measured. The performance was also in contrast in the two groups of devices. The 

shorter ones exhibited short wavelength peak development and at higher currents 

another peak appears at the long wavelengths due to heating. The lasing at long 

wavelength observed in the longer devices occurred due to two reasons, the first one is 

the localized heating since the injected current was high. The second reason is 

accumulated gain in these wavelengths when the current is increased, this gain could 

overcome the excess losses provided by the window which is mainly due to the beam 

divergence in the case of long wavelengths. 

 Another reason expected for lasing especially in the long stripe devices is the low 

divergence angle at the interface since the index step is as low as 0.002-0.003. This 

angle didn’t play a great roll in the tilted stripe SLDs batch since the waveguide was 

tilted already. On the other hand, the straight devices always experienced lasing at some 

point even with actives of 3μm wide (which provide larger divergence angle than the 

one provided by 5-10μm).  

4.7 Future Work 
1- Testing the configuration with an active that is designed for superluminescence 

operation rather than a laser active. 
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2- Design the same structure with a different upper cladding and/or different current 

blocking layer to increase the index step between them, this can increase the 

divergence angle and eventually decrease the percentage of the reflected light 

coupled back into the active stripe.  

3- Design a different interface edge that increases the divergence angle of the incident 

light at the interface using the same material. Interfaces having a see-saw, sinusoidal, 

or spherical shapes can do the job.  
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Chapter Five: Self-Aligned Stripe 
Semiconductor Optical Amplifier. 

5.1 Introduction:  

So far I described the GaAs-based Self-aligned Stripe as SLDs with one windowed 

facet in tilted (chapter 3) and normal-to-facet (chapter 4) configurations. In this chapter 

we explored the potential for SASs actives with two windowed facets as semiconductor 

optical amplifiers (SOAs). A brief literature review is presented reviewing the state-of-

the-art in SOAs and the requirements that need to be met. At the end of the chapter I 

presented a self-aligned stripe SOA operating at ~995nm and discussed the SOA 

characterization results.  

5.2 SOA Background 

Semiconductor Optical Amplifiers (SOA) are key devices used in wide variety of 

applications since their presentation by Crowe and Craig Jr. from IBM in 1964 [1]. 

Applications like optical communications [2] and [3], OCT [4], high power lasers [5], 

optical signal processing [6]and optical logic[7], wavelength conversion [8]and other 

applications are all covered by SOAs.  

Since optical communications and optical fibre applications were the main field of 

interest for a very long time, the main bandwidths that SOA were developed in were 

1550 [2], 1300 [3], [4], and 850 [9]. As the erbium doped fibre amplifier EDFA 

technology grew bigger and the presentation of the optical coherence tomography the 

need for amplifier to enhance these devices performance increased. The 980nm 

amplifiers and 1050nm amplifiers were presented by implementing InGaAs strained 

quantum wells in the GaAs/AlGaAs material systems [5]. Emissions at 1550 and 

1300nm were usually achieved by implementing InGaAsP/InP material systems, while 

the 850n was achieved by the GaAs actives. Recently, reports on 1550nm band using 
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different material systems such as AlGaInAs [10] and GaInNAsSb[11] in order to 

enhance the SOA performance (e.g. noise reduction, temperature performance 

enhancement) in the 1550nm. The 1300nm band also reported with diluted nitride 

(GaInNAs) [12]. 

As most of the semiconductor devices privileged over their counterparts, SOA size 

and volume production cost are considered their main advantages. Integratability with 

other semiconductor components as lasers, LEDs, or SLDs is opening a new field of 

applications especially when the coupling losses are minimized when the SOA is 

integrated monolithically.  

5.2.1 Operation principle:  

The simplest description for the SOA is that the input light signal stimulates the free 

injected carriers to recombine at the wavelength it propagates at. Figure 5-1 explains the 

operation schematically.  

 

Figure 5-1:The simplest schematic diagram of the SOA showing a buried waveguide  within 

a p-i-n junction (shaded red-blue-green) in which the input signal with intensity Iin enters 

the active waveguide and get amplified to the Iout output signal. The SOA gain is the ratio of 

Iout to Iin. The device gain is not similar to the material gain g provided by the device studied 

earlier yet it is not so irrelevant where (G ≡ gL). The right Figure 5-on the other hand is 

the two-level energy system showing that the amplification of the I/P signal to O/P is due to 

the transition of the excited carriers from the upper level to the lower level. Maintaining the 

population of the excited carriers defines the devices performance.  
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When a light signal (coded or not) with a specific wavelength (λ) enters the SOA 

waveguide, it excites the free carriers. If energy E, is provided, (where E=
ℎ 𝑐 

𝜆
, h = plank 

constant, c= light speed in free space, and λ= the propagated light wavelength) the free 

carriers will overcome the bandgap and recombine. This results in accumulation of 

photons that has the same properties of the input ones and sensed as increase in the 

output power if the same power meter is used to measure the input and the output 

powers. This increase is a basic property of any SOA and is called the small signal gain 

G, where [13] 

𝐺 = 10 log
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
             …… (5-1)  

The gain relates directly to the ability of the device to produce spontaneous emission 

or amplified spontaneous emission which is the spontaneous emission rate Rspont. As the 

pumping current increases the gain at specific input power increases as we can see in all 

gain measurement done by developers [9], [14]–[18]. What happens when the input 

power increases, is the thing that governs the modal limit of the device. The increase in 

the photon density (more optical power) of the input signal results in an increase in the 

free carrier recombination according to the Rspont of the device, this increase will reach a 

point that the free carrier population cannot maintain this rate so this rate will decrease 

and eventually reduce the gain provided.  

5.2.2 The four parameters: 

As mentioned above, each device has limits that is govern by the geometrical and 

epitaxial structure or the material used. Mukai and Yamamoto suggested 4 figures of 

merit to evaluate the device performance [16]. They named these parameters to be: 1) 

Gain, 2) Bandwidth, 3) Saturation Power, and 4) Noise Figure. 

Gain is described as shown in the equation above, by including the coupling losses 

that can take place the gain is considered as the small signal gain. The recent 
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applications of SOAs include a coupling to single or multimode fibre to perform. When 

the coupling losses are not considered in the gain measurement they usually refer it to 

fibre-to-fibre gain. The difference between the two gain types can be large especially if 

the fibre coupling is not optimized and the fibre-to-fibre gain will not reflect the actual 

amplification ability of the SOA. Common values of the device gain  

As in any semiconductor optical device, the operation is limited to a specific band 

governed by the available energy levels within the epitaxial structure in order to do the 

transitions. By fixing the input power and the pumping level of the SOA, the gain will 

vary along the spectral range of the device. The wavelength values at which the gain 

reaches -3dB of the maximum gain are considered as the bandwidth limits of the device. 

Generally, the operating bandwidths of the devices are between 30 and 100nm for 

MQW active devices [19], [20]. The recent reports of SOAs increased this limit to 

100nm and more [21] by using either QD actives [22], [23]or variable widths and 

compositions QWs [24].  

For a specific pumping level and spontaneous emission rate, the input power results 

in specific output power according to the gain. As the input power increases the 

spontaneous emission increases. Since the increase in the spontaneous emission results 

from an increase in the carrier recombination, extra free carriers need to be replaced. As 

long as the free carrier level is fixed the gain level will be the same. Once the density of 

the free carrier does not meet the requirements to maintain the spontaneous emission 

rate, the gain will decrease. When the gain is dropped 3dB below the maximum gain, 

this value is denoted by saturation gain and the related output power is called the 

saturation output power. Common value of saturation power is 10-15dBm in quantum 

well devices, increases in the quantum dots devices up to >20since more transitions 

states are available.  
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The noise in the SOAs is the amount of unwanted spontaneous emission added to the 

output signal. The signal to noise ratio SNR can be found for the input and the output 

signals as shown in Figure 5-2 c. The ratio of SNR at the input and output of the device 

is denoted as the noise Figure of the device. Figure 5-2 shows general figures of the 

SOA devices with the four performance parameters highlighted on it. 

 

Figure 5-2: The four parameters described above are shown in this Figure 5-(a) is the 

small-signal-gain as a function of the input or the output power (most commonly the 

output) shows the maximum gain and the saturation power which is the power at which 

the gain decreases by 3dB w.r.t the peak gain. (b) is the fibre-to-fibre gain black line 

combined with the lasing peak movement along the wavelength, the bandwidth is also 

shown in this sub-figure. Finally (c) is examples of an input signal (blue line) and the 

amplified output signal (red line) from where we can extract the noise figure, the 

comparison between peak and valley values can show the SNR for each signal and the 

ratio of SNRs of the input to output declares the noise figure.  

5.2.3 Structures used  

Reviewing the four parameters evaluating any SOA, we can notice that it all 

governed with the spontaneous emission generated. It is true that the gain clamps when 

the device turns from spontaneous to stimulated emission, yet, the gain clamp usually 

occurs for the central wavelength (in the cleave/cleave device) and all the spontaneous 

emission will be suppressed. In the case of SOA it is required to increase the pumping 
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current as high as possible to provide more and extra free carriers; this will result in 

even higher gain or higher saturation power or both. So, as in the case of SLD it is 

required to suppress the lasing of the device to move the emission in the amplified 

spontaneous emission region. This is done by reducing the facet reflectivity to 

minimum. The methods used are very similar to the one used for SLDs.  

The first method used was the AR-coated when Craig Jr. and Crowe presented the 

first laser amplifier [1]. Again, this is done by depositing dielectric layers with λ/4 

thickness. The main problem in this technique is that reduction of reflectivity less than 

10
-4

 requires 1) multilayer coating, and 2) layer thickness control <20nm scale [25]. 

Adding to that, the since the reflectivity is wavelength dependent, the reflectivity of the 

facet will vary across the wavelength range even with the perfect coating. Yet, this 

method is still very active nowadays when combined with the other two methods.  

The second method used was the tilted facet, tilting the facet by itself can result in 

effective facet reflectivity down to 10
-3

 and it is widely used with the buried waveguides 

SOA. This method as mentioned in 3.1 is considered the easiest to fabricate SOAs, it is 

wavelength independent, although the divergence angle depends on the refractive index 

of the material at the operating wavelength. Semiconductor optical amplifiers were 

fabricated usually tilted 5-8° with respect to normal-to-facet axis. Increasing the tilt 

angle does not result into continuous decrease in the facet reflectivity. As reported by 

Gerard Alphonse [26] Reff has a cosine shape function with peak value (maximum 

reflectivity) decreases exponentially as the tilt angle increases.  

The last method used to suppress facet reflectivity is the buried facet (transparent 

window facet). This is done by terminating the waveguide before the cleaved facet. 

Although this has its advantages such as easy of fabrication and wavelength 

independency, yet, there is a major drawback in this configuration regarding the concept 
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used to achieve the low reflectivity. This method depends on mode divergence when the 

light propagates in the unpumped region. In the case of SLD all was required is to 

increase the amount of decoupled light, so the device with longer window had better 

performance. In the amplifier case we cannot keep increasing the window lengths since 

this will result in more divergence of the propagated mode and eventually coupling 

efficiency reduction. For that reason usually the window devices are combined with AR 

coating on both facets. Figure 5-3 shows the three configurations of SOAs as reported 

by Stubkjaer et.al. [27].  

 

Figure 5-3: The three configurations used to decrease the facet reflectivity for SOAs as 

reported by Stubkjaer et.al. [27] 

5.3 Sample Preparation: 

SOA were prepared from the same material as the SLDs in chapters 3 and 4. So this 

SOA has a central wavelength at ~990nm. A typical configuration of SOA is the 

window structure, in which the active waveguide is terminated before reaching the 

device facets [28]. Usually this method is also combined with AR-coating provides an 

effective reflectivity down to 1E-5. This type of structure can be realized in GaAs 

process, but with waveguide terminated prior to both facets. Au/Zn/Au top contact layer 

was deposited on the entire stripe followed by the required electrical isolation by 

trenches and SiN deposition, finished by bond pads deposition in windows opened in 

the SiN over the stripes and lapping to reduce the device thickness to ~120μm before 

deposition of InGe/Au as back contact layer, the process is exactly the same as the one 
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detailed in chapter 2 (read section 2.2.2 for full process description). The final tested 

SOA included 4μ wide × 5000μm long active SAS and a 100μm long window at each 

facet. A schematic cross-section through and along the stripe is shown in figures 4a and 

4b, respectively. Also a plan view highlighting tilting angle is shown in Figure 5-4c. 

According to the effective reflectivity measurement done in chapter 3 (see Figure 5-8 in 

section 3.5.4), 100μm window can provide ~0.1 effective reflectivity in addition to the 

reduction in reflectivity provided by the tilted waveguide geometry it is expected to 

achieve 10
-5

 – 10
-4

 effective reflectivity can be achieved. The device is mounted on a 

gold coated c-mount epi-side up, the windows at each end of the device were hung over 

the mount by ~20μm on either sides for more alignment freedom of the input and output 

fibres during the measurements  

 

Figure 5-4: A schematic diagram showing the device epitaxial structure taken across 

(a) and along (b) the buried stripe, also the top view (c) showing the waveguide tilt with 

respect to the normal to facet axis.  

5.4 SOA Characterization: 

The experimental setup used to characterise the SOA is described in section 2.3.6. 

The Tunable laser used is Thorlabs TKL1050 as an external cavity tunable laser with a 

central wavelength at 1050nm and a 60nm scanning range and 8mW typical output 

power (16mW maximum). Although the range is shifted ~20nm from central 

wavelength of the SOA, by increasing the tunable laser pumping current to 120mA, 

peak intensity up to -10dBm can be obtained at wavelength in the range 990-1020nm, 
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this spectral range covers the longer wavelength part of the SOA spectrum, a slight drop 

in this intensity occurs when the wavelength is shorter than 993nm. Figure 5-2 shows 

the typical performance of the tunable laser kit as provided by Thorlabs Ltd. [29]. This -

10dBm output power is found to be enough to characterize the SOA under test 

especially that the side mode suppression ratio (SMSR) can be maintained to 30dB over 

the whole spectral range. The spectral range to be tested as will be seen in later section 

is 990nm – 1020nm.  

 

Figure 5-5: The basic characterisation of the TLK-L1050M tunable laser module as 

confirmed by Thorlabs [29]. (a) The typical tuning range of the laser that shows the 

power at wavelength shorter than 1000nm can drop to -10dB or less. (b) On the other 

hand shows the LI curve at room temperature of the fibre coupled tunable laser. The 

typical power collected is 8mW as the user’s manual detailed. 

5.4.1 Initial Screening  

The SOA was operated first as an SLD to confirm the no lasing could be observed 

over an appropriate range of power/pumping current. Figure 5-(6a) shows the ASE 

spectra of the device at 130, 200, 300 and 360mA pumping currents (equivalent to 

output powers from the device facet 0.18, 3.8, 10.7 and 14.8mW). While the  spectra 

were recorded using the low resolution EL setup, the LI curve shown in Figure 5-(6b) is 

measured by the light-current characteristic apparatus. Both experimental setups are 

described in chapter 2 (2.3.1, 2.3.2). The data demonstrates that the device didn’t lase 

and suggests that the bandwidth can be around 7nm around the central wavelength. This 

(a) (b) 
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narrow bandwidth was a result of using an active layer with two quantum wells 

designed originally for low threshold laser operation.  

   

Figure 5-6: The ASE emission showing the non-lasing case (a) and the LI and VI curves 

of the tested device, the blue line is the light collected directly from the front facet of the 

device and the red line represents the voltage measured at each current value. The 

device resistance is found to be 2.29Ω. 

5.5 Results  

The four main parameters that are used in the evaluation of any SOA device 

performance as introduced by Mukai et.al. in 1981 [16] are the amplification 

bandwidth, device gain, saturation output power, and the noise figure. The bandwidth of 

the device is the range of wavelengths that the device shows amplification above -3dB 

drop from the peak gain, this value is usually marginally wider than the ASE bandwidth 

of the device since the device still provide ASE at these points which can be 

advantageous in signal amplification. While the gain describes the amount of 

amplification provided by the SOA to the original signal, the saturation output power is 

the power at which the gain at specific conditions decreases by 3dB from the maximum 

gain. Finally the noise figure is the ratio of the input to output signal- to-noise ratios. 

The noise in the SOA is the excess ASE in the input or the amplified signals. The four 

parameters were measured and the data collected is shown in the following.  
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5.5.1 Amplification bandwidth 

In order to determine the SOA bandwidth, the input laser peak was swept to measure 

the fibre to fibre gain of the device at different wavelengths. I extracted the fibre-to-

fibre gain without taking into account the coupling losses of the system, therefore a gain 

lower than the maximum capability of the chip is expected to result. Higher gain is also 

expected if a professionally coupled fibre is associated in the design. As shown in the 

EL curve in Figure 5-6a, the ASE spectrum covers the range ~985-1010nm. Figures 5-

7a and 5-7b plot the swept laser peak from 990nm to 1020nm wavelength at the input 

and output ends of the SOA, respectively. The pumping current of the tunable laser was 

set at 120mA while the current applied to the SOA was fixed at 400mA. While the 

tunable laser was operated at 20°C the SOA was left without a temperature control. The 

reason for this was partially to naturally push the central wavelength of the SOA to 

longer wavelength by Joule heating. The peak wavelength was successfully red-shifted 

from 990nm to 993nm, however, but this also caused the optical power of the device to 

drop by a certain amount, but this reduction was not measured. Unfortunately, the 

wavelength range of the tunable laser does not extend to cover wavelengths shorter than 

990nm. The tunable laser peak power also drops to below -50dBm at wavelengths 

shorter than 990nm.  
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Figure 5-7: The injected signal wavelength sweep and the fibre to fibre gain of the 

tested SOA. (a) is the sweep input signal, (b) the amplified signal swept along 990-

1020nm, and (c) the fibre-to-fibre gain is shown in which the output is compared to the 

input signal.  

Figure 5-7c shows the measured fibre-to-fibre gain along the spectral range. The 

maximum fibre-to-fibre gain is measured to be 15.5dB at ~995nm. The amplification 

bandwidth of the device is measured (as mentioned in section 5.2.2) at -3dB from the 

maximum measured gain, in this case the -3dB cut-off gain points are the ones at which 

the gain is ~12.5dB. According to the measured data shown in Figure 5-7c, the cut-off 

points are 991nm and 1002nm. The bandwidth of this SOA under these conditions is 

~11nm. This narrower bandwidth compared to the common amplifier bandwidths [21] 

resulted from the fact that the active layer is designed as a laser active targeting narrow 

bandwidth and high gain rather than broadband and a gain distributed over a wide 

spectrum. This active is comprised of two identical quantum wells layers and no effort 

was made to chirp the emission in any way.  

5.5.2 Small signal gain and saturation output power  

The small signal gain, or chip gain, describes the amount of amplification within the 

SOA chip, and therefore all fibre coupling losses should be taken into account. In 
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measuring chip gain, the wavelength of the tunable laser is fixed to a specific 

wavelength and the input power is varied. The wavelength of the tunable laser is fixed 

at 997nm. This wavelength was selected in order that the input peak would be applied at 

a wavelength within the 3dB band of the SOA, whilst also ensuring that the peak 

intensity of the tunable laser is ≥-10dBm. 

The coupling losses result from the imperfect alignment and other optical properties 

of both the waveguide and the traveling light such as the insertion angle of the fibre, the 

divergence angle of the propagated beam, and the losses due to the reflection from the 

fibre facet. Although all the optical fibres used to transmit the light in this apparatus are 

lensed fibres, they are AR-coated for 1300nm operation. For that reason, the reflectivity 

from the fibre is expected to be higher than usual, which will increase the coupling 

losses especially at the output facet of the SOA. Also, because the fibres are not welded 

in place in a fixed package, , misalignment is highly possible at both facets.  

Recalling the figure describing the SOA characterisation kit shown in chapter 2 

(Figure 2-12 section 2.3.6), the points at which potential losses can occur are 

highlighted in Figure 5-8, in red squares and circles. The points in the red circles are 

coupling losses resulting from fixed connections in which the losses are already 

considered in the next step or neglected. These points are (starting from the tunable 

laser) the tunable laser injection into the attenuator, from the attenuator into the 

polarizer, from the polarizer into the input fibre, and from the output fibre into the 

optical spectrum analyser.  
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Figure 5-8: The experimental setup used to characterise the buried waveguide structure 

as an SOA device highlighting the coupling points where losses can occur.  

On the other hand, the connection points highlighted in red squares shown in Figure 

5-8 are actually the ones that provide the greatest coupling losses and have to be 

considered in the small signal gain measurement. Estimation of coupling losses can be 

done by holding a comparison between the free-space power at a specific input current 

and the power measured from the fibre output end. This comparison was held for both 

the input and output facets of the SOA. 

After continuous alignment of each fibre using the xyz-stage, the position that results 

in maximum power recorded by the power head is fixed. The maximum output powers 

are recorded and compared to the power measured in Figure 5-6b in the initial 

screening. Table 1 below summarizes the power measurements performed for selected 

currents at both input and output facet. 
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Table 1: The output power collected from the facets (input and output) and their 

associated efficiency as they are compared to the power from the output facet as shown 

in Figure 5-5b.  

Pumping 

Current  

(mA) 

Facet 

Power 

(mW) 

Pfibre-out 

(mW) 

Efficiency 

(%) 

Pfibre-in 

(mW) 

Efficiency 

(%) 

130 0.184039 0.053541 29.09191 0.048417 26.308 

165 1.559925 0.488257 31.3 0.414645 26.5811 

200 3.800125 1.100136 28.95 0.979714 25.7811 

225 5.515161 1.627524 29.51 1.421257 25.77 

250 7.247383 2.170885 29.95405 1.877547 25.90655 

280 9.312739 3.004738 32.26481 2.428865 26.0811 

300 10.67355 3.366491 31.5405 2.764354 25.8991 

330 12.7 3.9751 31.3 3.2996 25.9811 

360 14.8 4.52 30.54054 3.86 26.08108 

The measurement done for the 360mA pumping current is shown also in Figure 5-9 

below. Considering that the power delivered to the front facet is 100μW (-10dBm) as 

measured in the OSA, only 26% of this power is coupled to active waveguide at the 

SOA input facet. This amount is amplified by the amount G and emitted from the output 

facet of the SOA. Only 31% of this light is coupled to the output fibre and delivered to 

the OSA. These two values need to be taken into account when measuring the gain at 

360mA to estimate the chip-gain accurately.  

 

Figure 5-9: Tracing the light signal from the tunable laser to the spectrum analyser 

showing the coupling losses in numbers.  
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Another point to be considered in the gain measurement is the difference in the 

polarizations of the injected signal and the SOA. This polarization changes in the edge 

emitting devices from run to run. In case the two signals are out of phase, the amplified 

signal is minimized and maximized if they are in phase. For that reason a manual 

polarizer was inserted to obtain the maximum output. The polarizer used is a FPC24 

manual fibre polarization controller supplied by Thorlabs. When the light propagates 

through a circular optical fibre, its polarization can be changed by changing the rotation 

diameter. The rotation diameter alteration is done by changing the paddle location 

which will cause strain in the crystal structure and eventually cause the polarization of 

the propagated light to alter. 

The small signal gain graph contains two pieces of information. The first one is the 

maximum gain provided by the chip in the case of perfect coupling (coupling efficiency 

=100%), and the second one is the saturation power which is the power at which the 

optical gain starts to fall lower than 3dB from the maximum gain. In order to produce 

this gain, variable input power is required and so an attenuator is placed prior to the 

polarizer. The lasing peak (the input power) was varied from -10dBm to -45dBm as 

appeared on the OSA. By repetition, it was found that input power less than -45dBm 

could not be detected on the output facet because of the background ASE emitted from 

the SOA.  

By comparing the coupled input and output signals, the small signal gain of the 

device can be calculated. Figure 5-10 shows the measured small signal gain as a 

function of the output power at λ=997nm. The maximum gain achieved when the SOA 

is pumped with 1.8kA.cm
-2

 was 33.5dB. The saturation gain defined as Gmax-3dB was 

30.5dB and the saturation output power (Pout at Gsat was found to be 7.75dBm. Typically 
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published values for the maximum gain (Gmax) of a double (or multiple) quantum well 

active SOA are 15-25dB.  

 

Figure 5-10: The small-signal gain of the developed SOA at different pumping currents 

with a zoomed-in version showing the saturation gain and the saturation output power.  

The larger gain exhibited in our device is a result of using an active that was 

designed to distribute most of the gain to a very small wavelength range rather than 

smearing the gain over a wider range to achieve broadband operation. Yet, using this 

method to achieve high gain exposes a penalty of low saturation output power compared 

to the common values (usually for quantum well system is higher than 10dBm) [20], 

[30]–[32]. 

5.5.3 Noise figure 

The last parameter to explore is the noise Figure 5-(NF), which is a quantified value 

for the degradation in the signal-to-noise ratio (SNR) in the amplified signal due to the 

added amplified spontaneous emission. Figure 5-11 shows examples of the input and 

the output signals. If we examine Figure 5-11, we can notice the difference between the 

two signals. In most of the SOA applications, the signals are transmitted as laser pulses 

(stimulated emission pulses). Examining Figure 5-11 again reveals that most of the 

input signal is actually a stimulated emission signal. For this reason the SNR of the 

input signal is very high. On the other hand, the output signal contains two main 
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emissions. The first one is the amplified signal which is the stimulated emission. The 

other one is the amplified spontaneous emission that was the main reason for the 

amplification. Although in the Figure 5-shown the difference looks like very high 

(~25dB in the picture shown), eventually making the SNR too high. The SNR drops 

significantly in the case of low input (output) powers. For that reason the noise Figure 

5-of the SOA should be quantified.  

Extracting the noise Figure 5-requires calculation of input and output signal-to-noise 

ratios (SNR) such that [33] 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
𝐼𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝐼𝑠𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
)         ……. (5-2)  

where Istimulated emission and Ispontaneous emission are the intensities of the notated emissions 

in linear scale. The noise Figure 5-is measured by comparing the input to output SNR, 

where  

𝐹𝑑𝐵 = 10 log (
𝑆𝑁𝑅𝐼𝑁,𝑙𝑖𝑛𝑒𝑎𝑟

𝑆𝑁𝑅𝑂𝑈𝑇,𝑙𝑖𝑛𝑒𝑎𝑟
)          …… (5-3)  

Taking into account that SNRIN,linear (SNROUT,linear) is the linear signal to noise ratio 

for the input (output) signals.  

 

Figure 5-11: The input (left) and output (right) with the signal and the background 

highlighted. 

(Input) (Output) 
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The determination of the noise Figure 5-started with measuring the EL spectra of the 

input and output signals in the spectral range 990-1020nm in a step of 1nm. The peaks 

of the signals and the associated ASE value are plotted as a function of wavelength in 

Figure 5-12a for the two signals. We can notice that in spite of the fact that the SMSR 

of the tunable laser is maintained to >30dBm, the peak intensity of the tunable laser 

started to drop below -10dBm (100μW). The amplified signal, on the other hand, had 

two regions regarding the SMSR, the first one was for wavelengths longer than 995nm 

and the other region was at shorter wavelength. The reason of that is probably the 

decrease in the injected signal and eventually further decrease of the output signal peak 

compared to the ASE noise. The SNRs of the two signals are plotted in Figure 5-12b 

shown below. As expected the SNR of the input signal was more stable and consistent 

along the spectral range compared to the one of the output signal. The SNR of the input 

signal can be braced within a range of 7dB (40-47dB) while the SNR of the output 

signal started with only 20dB at 990nm and risen up to 35 or more at 1010nm before it 

drops again following that to 30dB. Finally the noise Figure 5-of the device along the 

mentioned wavelength range is determined at each point. The minimum value recorded 

was 5.9dB at 1003nm.  

   

Figure 5-12: The noise Figure 5-of the device by comparing the signal to noise ratio of 

the input and the output.  
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Although this value is still in the typical NF range published which is reported by 

many to be (5-12dB) [13], [28], [33]. Yet, the problem appeared in the shorter 

wavelength (closer to the central wavelength of the device), the noise Figure 5-in that 

range is very high. The reason of that is expected to be the incompatibility of the 

tunable laser for specifically this SOA at this wavelength range. This incompatibility 

resulted in decrease in the SNRout while the SNRin was the same along all the range 

since the SMSR is maintained in the tunable laser (the input) signal unlike the amplified 

signal.  

5.6 Discussion.  

Device characterisation returned various outcomes regarding the SOA performance, 

the device features were strongly dependence on the active layer used in the device (the 

2 identical quantum wells). Although such active enabled high gain operation compared 

with most of the similar devices published, the device operated in a narrow bandwidth, 

lower than expected saturation power, and a noise Figure 5-that had a problem on the 

shorter wavelength range. The reason of the narrow bandwidth came from the fact that 

the active layer was designated for low threshold current laser devices in which the 

transitions are very limited in the spectral range.  

The saturation output power appears because of the carrier depletion which results in 

a reduction in the stimulated emission rate [13] Figure13 below shows two cases one 

when the rate of carrier replacement is close to or exceed the recombination rate which 

maintain the stimulated emission rate and another case where the carriers are depleted.  
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Figure 5-13: A simplified 2-level-system showing the difference at non-saturated 

(a) and saturated (b) cases. Where in (a) the pumping enable the replacement of 

the carriers used in amplification which maintain the population inversion while 

in (b) the carriers depleted in the amplification are not replaced so the 

population inversion was destroyed.  

So as a starting point, increasing the carriers density can increase the Saturation 

output power, this can be noticed in Figure 5-14 below where the gain as a function of 

output power at 300 and 360mA. Although the gain was very close, the saturation 

output power was increased from 6dB at 300mA to 7.75dBm in the case of 360mA, this 

supports the whole argument.  

 

Figure 5-14: The gain as a function of output power at 300mA (blue line and markers) 

and 360mA (red line and markers) pumping currents. The maximum gains are the two 

pumping levels are 30 and 33.5dB for 300 and 360mA, respectively. The saturation 

output powers are ~5.7dBm for the lower pumping level and 7.75dBm for the higher 

one. This supports the theory of increased saturation power at higher pumping level at 

gain level close to the maximum.  
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Nevertheless, Carney et.al. [34]stressed that it is not the amount of carriers you pump 

in that governs the saturation power alone but also the carrier distribution along the 

active layer, this recommend additional current spread control technique such as 

segmented contact SOA . [34] [Carney et.al. optics express and their older paper]. In 

their paper they proved that pumping the output part of the device heavier than other 

parts as the gain goes higher can extend the saturation power to higher level even when 

the pumped current density over the whole active remained the same [34]. 

Carney et.al. also discussed the effect of current distribution profile along the active 

stripe on the noise Figure 5-of the device. We first have to put in mind that because the 

noise Figure 5-is directly proportional to the population inversion factor nsp which is 

defined as [34] 

𝑛𝑠𝑝 =
𝛾

𝛾−𝛼
              ……. (5-4) 

where ɣ and α are the stimulated emission and the absorption rates, respectively, the 

minimum noise Figure 5-to be achieved for ideal SOA is 3dB where the noise Figure 5-

(nf) is twice the population inversion factors [34]–[36]. The increase in the pumping 

current should result in a decrease in the measured noise Figure 5-of the same device at 

different current levels as stated again by Carney et.al. [34]. This can noticed in Figure 

5-15 where the noise Figure 5-of the device at varied current level is recorded. A 

decrease from 8 to 5.8dB was found at the same spectral point.  
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Figure 5-15: The noise Figure 5-of the tested SOA at 100mA tunable laser pumping 

current and two different level of pumping at 350 and 400mA for the SOA. 

The increase in the noise Figure 5-shown in Figure 5-(13b) is primarily caused by the 

decrease in the tunable laser intensity causing more domination of the amplified 

spontaneous emission, this eventually decreases the SNR of the output signal and raises 

noise Figure 5-of the device since the SNR of the input signal is maintained to 40dB or 

more. This can be justified by examining Figure 5-16 below where the output signal is 

plotted for -8 and -15dBm under the same conditions.  

 

Figure 5-16: The input (left) and output (right) signals at -10 and -15dBm measured 

under the same conditions, the peaks in the two graphs are at identical wavelengths 

997nm. They are only shifted by the axes for clarity. The difference between the ASE 

levels in the output signals is obvious in the right hand side figure. The ASE emission 

increased from -26 to -20dBm in the output signal which caused the SNRout reduction 

and noise Figure 5-increase. 

0

2

4

6

8

10

12

14

16

18

20

990 995 1000 1005 1010 1015 1020 1025

N
o

is
e

 F
ig

u
re

 5
-(

d
B

) 

Wavelength (nm) 

350(100) Noise figure

400(100) Noise Figure

990 995 1000 1005 1010 1015 1020

-70

-60

-50

-40

-30

-20

-10

0

970 980 990 1000 1010 1020

Wavelength (nm) 

In
te

n
si

ty
 (

d
B

m
) 

Wavelength (nm) 

(a) 

-10 In -15 In

990 995 1000 1005 1010 1015 1020

-60

-50

-40

-30

-20

-10

0

10

970 980 990 1000 1010 1020

Wavelength (nm) 

In
te

n
si

ty
 (

d
B

m
) 

Wavelength (nm) 

(b) 

-10 Out -15 Out



180 | P a g e  
 

We can notice the increase in the noise emission when comparing it to the amplified 

peak. The ASE emission peak was increased from -26dbm to -20dbm in the -8 and -

15dBm, respectively. From the equation above that relates the population inversion to 

the absorption, it can be expected that the small 100μm window at the output facet 

specifically contributed in this increase in the noise figure, yet, further investigation is 

required to prove or disprove the effect of the window.  

5.6 Summary and Conclusions: 

Chapter five discusses the use of the processed material detailed in chapter 2 in a 

semiconductor optical amplifier (SOA) configuration. This configuration has a 100μm 

window at each end. Due to the mask limitation only 5mm long actives could be 

produced.  

In this chapter, the free space power and the device EL spectrum were tested to 

identify the device spectral range and use the power as a reference level to measure the 

coupling losses later. The amplifier was characterised using the SOA characterization 

setup briefly detailed in chapter two.  

The four basic parameters that evaluate the SOA performance were measured for this 

amplifier, these four parameters are: the amplifier bandwidth, small signal gain, 

saturation power, and the signal to noise figure. The four parameters were affected 

directly by the active layer features. The first parameter to that has a direct relation is 

the amplification bandwidth of the device which was 11nm. This is expected for a 

device that has an ASE bandwidth of only 6.2nm.  

In order to measure the device gain more accurately, the coupling losses of the 

system were estimated. After estimation of the coupling losses the small-signal-gain 

was found to be 33.5dB which is larger than most of the double quantum well devices. 

This high gain came with a penalty of low saturation power of only 7.7dBm the reason 
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of that is the low pumping level applied to the device, increasing the pumping level (the 

current density) will result in higher saturation power. Finally, the signal to noise ratio 

was measured for the input and output signals to determine the noise Figure 5-(NF) if 

the device. The noise Figure 5-is estimated to be 5.8dB at its minimum value. The 

minimum value for this parameter is 3dB in the ideal amplifier that is not modified for 

parametric amplification. 

5.7 Future Work:  

1. The device tested was only a confirmation that window type SOA is available with 

the presented window. Validation of good operation has to be done with more 

geometrical varieties for both the active stripe and the rear window sections. 

2. Due to the equipment and the proposed cavity length (5000μm) I was incapable of 

measuring the device ripple since it requires a spectrum analyser with resolution < 

0.1nm. It is recommended to measure the gain ripple at the output spectra of the 

device using the proper equipment.  

3. Active layer designed for semiconductor optical amplifiers is recommended to be 

implemented in such a window structure SOA in order to investigate more 

thoroughly.  

4. The implementation of broader active can enhance the device performance in terms 

of bandwidth, saturation output power, and noise figure.  
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Chapter Six: Index-Guided buried 
waveguide in the visible range in the 
GaAs-Based material system 

6.1 Introduction 
The self-aligned stripe, SAS, investigated in chapters 3, 4, and 5 focussed on the 

emission at 980nm. Such a scheme is applicable for wavelengths longer than the GaAs 

bandgap (λ=850nm) and all the way up to 1300nm and beyond (bearing in mind that the 

GaAs-based devices can extend up to 1600nm). For wavelengths <800nm where the 

GaAs used in SAS design becomes absorptive, an alternative strategy is required for 

buried waveguide. The extreme wavelength in GaAs is the case of red emission ~620nm 

which will be investigated in this chapter.  

In this chapter a buried waveguide laser based on a different method of light 

confinement, Anti-Resonance Reflecting Optical Waveguide (ARROW), is 

investigated, since appropriate low index cladding for conventional waveguides cannot 

be formed. The difference between the buried heterostructure and the ARROW is that 

the buried heterostructure uses the total internal reflection as a mean of confinement 

while the ARROW depends on the reflections taking place when an incident light 

propagates from low to high index mediums. The phenomenon is similar to reflections 

in mirrors or at a water surface where light is reflected to the air (n=1) from the higher 

index. The use of ARROW scheme is better suited to the material available in the 

AlGaInP/GaInP/GaAs region.  

The chapter starts with a chronological history to the development of red laser, 

including a study into the main problems associated with realization of high 

performance. Two methods used to overcome these problems, namely the multiquantum 
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barrier MQB and the ARROW, are reviewed briefly. Results of this study are fed into 

simulation used to design a red laser based on the MQB and ARROW principles. 

Following the simulation, experimental implementation of the simulated design 

discussed and results presented.  

Unfortunately the experimental implementation was not a successful attempt due to 

technical problem and material shortage. Methods used to grow high Al-containing 

layers and processing them afterward are not matured to this point in our labs, this 

resulted delay in these two steps and eventually prevented another enhanced attempt 

after the one presented in this chapter.  

6.2 Red Laser Background  
The first semiconductor laser operating at red wavelengths (~640nm) which was 

presented by Nathan et.al. in 1962 [1]. Yet, the development of such wavelength had to 

wait for a while until the technique developed from only GaAs active layer to AlxGa1-

xAs actives appeared with high Al-compositions and then to the AlGaInP/GaInP 

material systems in order to achieve larger bandwidth.  

The development of the red emitting semiconductor laser can be described by three 

different stages of development. Initially, the wavelength coverage was extended from 

the faded red (~720nm) [2] down to the very bright red ~630nm [3] in order to replace 

the HeNe laser at 633nm. The output power was then extended to a level where 

applications such as ranging and levelling could be addressed. The output power and the 

single wavelength operation was improved from multiple milliwatts in the early 

examples up to 2.1W from a single device [4]. The third stage was to improve the beam 

quality. Beam divergence is important in high-brightness applications such as THz 

generation and photodynamic therapy where the output power needs to be contained 
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within a small diameter spot. Also, with burgeoning applications in telecoms and DVD 

storage, the device reliability was required for long lifetime operation in the 1990s.  

The first heterostructure red laser was presented by Kressel et.al. [2] in 1968, where 

a structure that could emit at 845nm and 728nm depending on the operating current 

where the longer wavelength lased first. Presenting a laser device that operate in the red 

region with no proper optoelectronic confinement was a challenge that was overcome 

by Kressel and Nelson who implemented a confinement layer to present a structure in 

the GaAs/AlGaAs material that can emit in the red region of the spectrum [5] [6].  

As with development of other wavelengths, all of the presented structures aimed for 

low threshold current and high quantum efficiencies. The best way to achieve this is 

through carrier confinement. An early structure applying current blocking layers was 

presented by Itoh et.al. in 1975 [7]. The stripe geometry in Itoh’s structure overcame the 

problems associated with alternative methods used to form the stripes, such as the 

isolated stripe (using dielectric) or bombardment stripe. In the dielectric defined stripes 

the main problem was the poorer heat dissipation resulting from the poor thermal 

properties of the device. The bombardment stripe suffered high absorption in addition to 

the accurate and complex post bombardment/implantation annealing required. The 

proposed structure which was called the heteroisolation stripe laser (HIS) in which an n-

doped layer was deposited at the top of the structure and after etching down to define 

the stripe a contact layer topped the structure. This modification enabled the structure to 

operate via pulsed operation at 668nm and CW operation at 762nm with a rather high 

current density (1.1×10
-5

 A.cm
-2

) [7]. At this time, the operating wavelength was still 

longer than the obvious red region in the CW and it was operated at ambient 

temperature lower than the room temperature. The first who reported such operation 

was Kressel and Hawrylo in 1976 when they presented a laser device that emitted at 
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740nm at room temperature [8]. By decreasing the active width from 100μm to only 

13μm by defining a stripe using SiO2, successful CW operation was reported at room 

temperature of 13μm wide  and 500μm long device [8].  

By the implementation of the new growth techniques (MOVPE, MBE and MOCVD 

growth methods) in the late 1970s /early 1980s, devices with active regions comprising 

InGaP quantum wells started to appear. In such devices, strained quantum well regions 

were utilized to reduce the threshold current. Examples include those by Geels et.al. [9] 

using In0.4Ga0.6P and Shirma et.al. [10] using In0.62Ga0.38P to realize wavelengths shorter 

than 650nm, or In0.5Ga0.5P lattice matched to the GaAs-substrate. The GaInP quantum 

wells are usually accompanied by (AlxGa1-x)0.5In0.5P optical guiding layers in which the 

aluminium composition, x, was (0.7≤x≤0.5). Only few devices were reported with Al 

composition < 0.5, such as the one reported by Smowton and Blood [11] in which they 

compared 3 different guiding layers with three different Al compositions 0.5, 0.4, and 

0.3 and confirming that the lowest composition provided the highest confinement 

factors among the three values. Some researchers included AlInP cladding layers [12], 

however, varying the Al-composition in AlInP can change the bandgap of the structure 

from direct to indirect, resulting in extra non-radiative recombination [11].  

Higher output power was realize from an array of devices as the one demonstrated by 

Geels et.al. [13] and single diode like the devices presented by Tukiainen et.al. [4]. 

Geels array provided output power up to 90W from a 1cm bar of lasers [13] while 

Tukiainen’s laser 2.24W [4]. Improved crystal quality led to increased lifetime of the 

operated devices from 1000h, as the one presented by Fuji et.al. (tested at 5mW output 

power at 60°C) [14] up to 10000h at 30mW output power at 60°C as shown by Shirma 

et.al.[10].  
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The limiting factor presenting realization of a buried heterostructure in the red 

material system apart from the oxidation problem was the high diffusion of the zinc 

dopants in the p-doped layers. Oshini et.al. [15] used magnesium as a replacement for 

zinc. However, they faced the problem of the so called reactor memory, which they 

overcame by turning the doping source ON and OFF during the growth. By applying 

this to the layer just above the active layer, a successful buried ridge device with current 

blocking layer structure was presented. Alternatively, using carbon as a dopant rather 

than magnesium as in the devices presented by Kaspari et.al. [16], and Sumpf [17], 

prevented the occurrence of diffusion whilst also solving the problem of reactor 

memory.  

In the last decade efforts have been concentrated on enhancing the optical beam 

produced by using a flared waveguide integrated with a straight one, such as the one 

presented by Kaspari et.al. [16] and Sumpf et.al.[18]. The straight waveguide is used to 

generate the initial amplified stimulated emission and the flared part is used to amplify 

this emission. The vertical farfield generally decreases for the devices include a flared 

section in the front window. The other method used to decrease the output beam 

divergence was the farfield reduction layer (FRL) which was suggested by Qiu et.al. 

[3]. This helped to enhance the output beam and also decreased the threshold current, 

since the layer is formed from a higher refractive index which increases the optical 

confinement.  

6.3 Problems in Red material 
Unlike the IR spectral range the structures which operated in the red range of the 

spectrum exhibited two main problems. The first one is the shallow energy step as the 

bandgap difference for the layers used usually in the structure. The second problem is 
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the high refractive index of the Al-free material; this problem appears when a buried 

structure is required with an anti-oxidation protection layer.  

6.3.1 Problems in Total Internal Reflection  
The main problem associated with realization of buried heterostructures in the visible 

range of GaAs-based material systems is the method used to provide optical 

confinement to the optical mode. Higher refractive index material is required for the 

optical confinement layer (which also can be used as a current blocking layer for 

electrical confinement). The material system used to grow most red emitting lasers is 

InGaP/AlGaInP on a GaAs substrate. To obtain a higher refractive index, higher Al-

composition layers are required.  

In spite of the fact that some authors presented buried structures with high Al-

composition layers, the presented structures required complicated processing method or 

in-situ masking and etching, otherwise the etched surfaces suffer oxidation due to the 

presence of the aluminium in them. 

6.3.2 ARROW structure  
The problems associated with processing waveguides based on the total internal 

reflection as the method to confine the optical mode led the way to develop different 

configurations for optical waveguides. One configuration that can be used for optical 

guidance is the anti-resonant reflecting waveguide. In this waveguide the reflection 

occurs when the light beam hit the interface between the low refractive index medium 

and the high refractive index medium while propagating from low to high refractive 

index.  

Early efforts toward realization of such waveguides were led by Duguay et.al. [19] 

when they presented an Anti-Resonant Reflection Optical Waveguide (ARROW) in the 

SiO2-Si material system. The structure comprised a stack of polycrystalline silicon 
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layer sandwiched between two SiO2 layers deposited on a silicon substrate. The 

refractive index of polycrystalline silicon is much larger than that of SiO2 for the 

wavelength tested (a He-Ne laser 632.8nm). The confinement was achieved successfully 

in the vertical direction (the growth direction) with low losses per unit length as the 

insertion losses for different waveguide lengths were measured [19]. In their structure 

two main reflections took place, the first one was at the SiO2-air interface at which the 

optical mode experienced total internal reflection back to the SiO2 layer. On the other 

side of the layer (Poly Si-SiO2) anti-resonant reflection occurs with different incident 

angles. The other anti-resonant reflection is at the lower SiO2 Si substrate, as shown in 

Figure 6-1. The reflectivity achieved by this configuration was around 99.96%. Duguay 

et.al. presented a set of empirical formulas to help select the anti-resonant layer and the 

lower SiO2 layer [19]. 

 

Figure 6-1: The ARROW structure in the Si system reproduced from Duguay et.al. [19] 

The main difference between the waveguides that depend on total internal reflection 

and the ones using the anti-resonant reflection is in the wavelength spectrum that can be 

covered in a specific structure. In the first type of waveguides the critical angle limits 

the wavelengths that can undergo total internal reflections, while in the ARROW one 

the wavelengths that can be confined are the ones that can meet the condition of anti-

resonance in the Fabry-Pérot cavities, which is related to N/2λ (N is a natural multiple).  

The ARROW structure can be used to confine the optical mode not only in the 

vertical but in the lateral direction and with various optical material systems. Based on 

the analysis made on the poly-Si/SiO2 system, Duguay et.al. [20] transferred the 
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technology to the InP-based material, realizing a passive waveguide of InGaAsP/InP 

with losses per unit length equal to 4dB.cm
-1

.  

The success of preparing ARROW vertical waveguides (in the growth direction) led 

to increased interests in their use. A pair of papers discussed the coherent arrays 

utilizing the ARROW waveguides to couple the emission from multiple devices [20] 

[21]. This paved the way the way to present the first active ARROWs (laser devices 

with ARROW cavities as the main waveguides)[23]–[25]. These structures were grown 

in the GaAs/AlxGa1-xAs system where the Al-composition, x, defined the refractive 

index step between the core and the high and low index reflecting layers. Of particular 

note here is that the wavelength which the device design was based on is the lateral 

wavelengths rather than emission wavelength. These wavelengths are defined by Mawst 

et.al. in their papers [21], [22] as:  

𝜆𝑥 =
2𝜋

√𝑛𝑥
2𝑘0

2−𝛽2
              …… eq. (6-1) 

where x=1 for the high index reflecting layer and x=2 for the low index core or 

reflecting layers, ko is the free space propagating constant 
2𝜋

𝜆𝑜
 where λ0 here is the 

original emission wavelength. Finally, β is the propagating constant which related the 

propagated wavelength (or wavenumber) to the effective refractive index of the 

waveguide such that (𝛽 = 𝑘. 𝑛𝑒𝑓𝑓).  

In order to achieve anti-resonance in a Fabry-Pérot cavity the length of the cavity 

(the width of the layers in here) should be an odd integer of quarter of the lateral 

wavelength calculated in (6-1) (λ/4), while the resonance widths should be a multiple of 

half the wavelength. So, in general the core width has to be 
𝑛𝜆0

2
 depending whether and 

the reflecting layer thickness is 
𝑚𝜆1(2)

2
 (n = natural number and m= odd natural number). 
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The index profile of the simple structure containing a core and two reflecting layers on 

each side is shown in Figure 6-2.  

 

 

Figure 6-2: The refractive index profile (left) and the simulated intensity distribution 

(right) of the lateral ARROW waveguide presented by Mawst et.al. [23] 

The active single core ARROW developed by Mawst et.al. emitted up to 500mW 

from a 1mm long cavity with AR/HR facet coating for the front/rear facets. The farfield 

pattern showed a beam divergence of 9°. The summary of the device performance is 

shown in Figure 6-3. On the other hand the operating wavelength was 980nm.  

 

Figure 6-3: The farfield pattern of the single core ARROW structure presented by 

Mawst et.al. originally in [23] and developed in [24]and [25] to emit 500mW as shown 

in the LI characteristics shown in (b). 

The development of the ARROW structure was continued by Mawst et.al. when they 

developed a Master Oscillator Power Amplifier (MOPA) comprising 3 cores operating 

at 980nm. This device benefitted from the fabrication flexibility of the ARROW and 

(a) 

(b) 
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intermodal discrimination in the ROW structures [26]. Integration of this MOPA design 

with an ARROW laser produced light of up to 1W operating at 980nm [26].  

Modification to the main ARROW structure by using a single material and a single 

reflecting layer has been shown to decrease the error margin. Mawst et.al. presented this 

modification theoretically in [27] and applied it experimentally in [28] in an Al-free 

material system. Later, they presented a single mode DFB laser with ARROW structure 

in [29]and [30] in 1998, and then they compared the ARROW and Simplified ARROW 

(S-ARROW) laser structures operating in a fundamental spatial mode up to 2W from a 

single core cavity device [31]. 

6.3.3 The shallow bandgap step in (AlxGax-1)yIny-1P material system and 

the multiquantum barrier MQB. 
Figure 6-4 shows the bandgap as a function of lattice constant for the AlGaInP 

material system. Examining this figure can determine the energy step between the core 

and the cladding, or the quantum wells and the barriers. A number of reports used AlInP 

as a cladding material. AlInP has the advantage of being lattice matched to Gas. 

However, use of AlInP will add in the fabrication process as a result of oxidation that 

can ultimately affect the device performance. Furthermore, with continuous operation 

and self-heating even this bulk barrier is not sufficient to stop carriers thermalizing out 

of the well, limiting CW operation.  
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Figure 6-4: The band gap as a function of lattice constant for the (AlGa)InP “shaded” 

and the related material systems. Taken from [32] 

Multiquantum Barriers (MQB) have been suggested by Iga et.al. [33] as an addition 

to the cladding layers. MQB helps to increase the electron reflectivity at the barriers and 

therefore increasing the thermal operational limit of the device by preventing carrier 

escape. The MQB section comprises a superlattice of high and low refractive index 

materials. The thicknesses of wells and barriers in the superlattice, and the number of 

repetitions determine the reflectivity of the electron or the virtual added potential to the 

barrier. Based on the classical form of the electron reflection of the barrier the electron 

is simply reflected back as long as the barrier has potential higher than the core (active), 

in the quantum form of the reflection both transmission and reflection of the incident 

electron take place with certain probabilities. From the quantum form increasing the 

number of barriers lead to increase in the reflectivity and this reflectivity can be 

expected using the classical form. Iga et.al. solved first order Schroidenger equation to 

estimate the resultant increase in the potential barrier when an MQB superlattice of 

GaAs/AlAs (or InGaAs/InP) is added to the GaAs (or InP) based device which was 

shown in Figure 6-5.  
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Figure 6-5: Simulation of Electron reflectivity as presented by Iga et.al. [34] for bulk, 

single barrier, and the multiquantum barrier cases. Two material systems are presented 

GaAs/AlAs (dotted line) and GaInAs/InP (solid line).  

Following the work presented in the GaAs/AlAs superlattice, Takagi et.al. presented 

the MQB in the (AlxGa1-x)0.5In0.5P material system to enhance performance of the red 

lasers [35]. Following the same technique and procedure used by Iga et.al. above, 

Takagi et.al. calculated the barrier potential through variation of well thickness, barrier 

thickness, separation from the active (or first barrier thickness), and number of pairs 

included in the superlattice. Fine tuning of these parameters was calculated to increase 

the potential barrier to more than twice the original [35].  

Later examples of devices incorporating MQBs in their structure showed 

enhancement in current blocking (electron reflection) in red and increased the 

characteristic temperature of the operating devices. Examples in the red emitting 

devices in the ranges (615-670nm) like [36]–[44], at 980nm in [45], 1.3μm [46]–[48] 

and 1.55μm [49], [50]. Other experimental examples of successful implementation of 

the MQB are the electron blocking layers in the n-i-n structure [51], electron filter like 

in [52]. Exceptionally high characteristic temperature was achieved in the 
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GaAs/AlGaAs system implementing a InGaAs/AlGaAs MQB with shorter periods 

where characteristic temperatures above 300K and lasing observation at temperatures as 

high as 238°C [53]. More recently, application of the MQB to GaN based high 

brightness LEDs operating at short wavelength [54] showed higher efficiency and 

improved thermal properties.  

6.4 The Proposed Red ARROW Laser:  
 A buried heterojunction laser that operates at 650nm was designed as a first step 

towards transferring GaAs-based regrowth technology down to the visible range. The 

proposed design is built using GaAs lattice-matched (AlxGa1-x)0.49In0.51P with (0<x<0.8) 

according to the required refractive index. Two design stages were required in order to 

achieve the final design. The first stage was to prepare the optimized active layer 

structure that could achieve low threshold current CW operation. The second stage was 

to design the index-guided optical waveguide. Based on the literature survey done, a 

single-core standard anti-resonant reflecting optical waveguide (ARROW) was selected 

in AlGaInP structure, while the guiding layer included a multiquantum barrier (MQB) 

for leakage current reduction. This structure is illustrated in Figure 6-6.  

Figure 6-6: The proposed ARROW structure with general dimensions which have to be 

set in the final design.  
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Figure 6-6 shows the main parameters that have to be designed for a successful 

buried structure. The required beam size is preferred to be less than 10μm for both 

single mode operation and better fibre coupling. The ARROW structure has two 

reflecting layers with low and high refractive index, thickness and width of the high 

refractive index should be selected to meet the requirements, the thickness is noted as 

reflecting layer high index thickness (RLHT) and the width is reflecting layer high 

index width (RLHW). The second reflecting layer which has lower refractive index 

requires only selection of the width of the layer as its thickness will be the overgrowth 

applied later on; the width of this layer is noted by reflecting layer low index width 

(RLLW). The separation between the active layers and the current blocking layer is 

another parameter that should be tuned so that the latter will not cause the optical mode 

to be displaced to the higher refractive index layer. A trade off took place between the 

current blocking layer thickness and the separation from the active layer.  

The commercial simulation software Fimmwave is used to simulate the waveguide 

structure where the related parameters are selected by changing only one of parameters 

at a time systematically.  

6.4.1 The multiquantum barrier active design:  
An active structure supplied by IQE PLC operating at 650nm was used as a starting 

point to design a multiquantum barrier active region. The IQE structure included a triple 

quantum well sandwiched by a guiding layer of GaInP/(AlxGa1-x)InP material system 

lattice matched to GaAs where x=0.5. The cladding material was (AlxGa1-xInP) in which 

x=0.7, the cladding layer was meant to provide enough optical confinement using the 

refractive index step between the cladding and the guiding/barrier layers. Figure 6-7 

shows the structure and the refractive index profile of the system developed by IQE.  
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Figure 6-7: Index profile of the triple quantum well laser structure developed by IQW. 

A multiquantum barrier superlattice was integrated into this original structure in 

addition to two extra wells to increase the gain of the structure. Simulation of the 

original and modified structures was performed using LaserMod commercial software 

supplied by RSOFT. This software enables the user to simulate a photonic 

semiconductor structure under conditions ranging from the ideal condition (no self-

heating or carrier induced losses) to the general conditions where losses resulted from a 

range of causes. The structure assumes ideal contacts so the series resistance of the 

contacts are set to zero. The software optionally takes into account the lattice constant 

variation between the simulated layers, where the strain induced bandgap alteration and 

other properties can be considered. The light-current curve can be simulated using 

LaserMod and it was used a means to compare simulated structures with identical 

physical dimensions and differing only by their active regions. The dimensions used in 

the simulations were a 50 μm width and 500μm length (broad area lasers).  

The starting point was simulation of the original triple well IQE material and 

comparing it to five quantum well structure. The reason of using the quantum well was 

primarily to increase effective refractive index of the active layer to benefit from it later 

in the waveguide design. Increasing the number of quantum wells helped increase the 

effective refractive index but the penalty paid was an increase in the threshold current in 

spite of the fact that the modal and material gains of the two structures are comparable, 
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as shown in Figure 6-8. Figure 6-8 shows the simulated LI curves of the IQE 3QW (a) 

and the 5QW (b) and the modal gain of the two structures in (c) and (d), respectively. 

This increase came from the increase in the number of wells which required an increase 

in the carriers’ population.  

Figure 6-8: A comparison between the LIV curves (a) and (b), and the modal gain (c) 

and (d), for devices with 3 and 5 QWs, respectively.  

Changing the reference point now from three quantum wells system to five quantum 

wells without MQB layer, the MQB layer is integrated in the attempt to decrease the 

threshold current of the structure. The MQB section was based on the one presented by 

Smowton and Blood [44], the MQB section presented by them included eleven periods 

of 4.3nm thick Ga0.5In0.5P wells and 10 periods of 4.5nm thick Al0.5In0.5P barriers. Since 

the structure used (Al0.7Ga0.3)InP as a cladding layer, the cladding barrier layers in the 

MQB superlattice was selected to be (Al0.7Ga0.3)InP instead of Al0.5In0.5P to decrease 

the relative complexity of the growth process, in term of decreasing the number of 

calibrations needed. Six periods of Well/Barrier was simulated and three parameters 

were varied one at a time to achieve the best combination. The three variable parameters 
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were the combination of QW/QB width, the separation between the active and the MQB 

superlattice, and finally the number of QW/QB pairs.  

First the width of both QW and QB was changed to 1/2, 1.5/2.5, 2/1, 2/2, 2/3, 3/3, 

and 3/4nm QW/QB. Just by integrating the reference structure with the MQB caused the 

threshold current to be reduced at least 10mA. This confirmed the effect of the 

multiquantum barrier superlattice on the electron confinement, where the electrons are 

reflected back from the superlattice with almost zero probability of the electron being 

transmitted through the supperlattice as Iga et.al. suggested [33]. Figure 6-9 shows a 

summary of threshold currents from the simulated LI curves. The threshold current was 

decreased from 67mA in the structure with no MQB to 55-57mA for all structures 

except the width combinations 1/2 and 1.5/2.5 in which less than 55mA threshold 

current was achieved. The minimum threshold current ever estimated was for the 

1.5/2.5nm QW/QB thickness combination. During the alteration of the wells and 

barriers widths the whole MQB region was placed at 30 nm separation from the active 

medium on the p-cladding side of the device.  

  

Figure 6-9: A summary of the threshold currents simulated for different widths of Wells 

and Barriers in the MQB section. The numbers in brackets over the figure marks are the 

widths for (well, barrier). 
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altered to determine whether or not the separation affects the threshold current. The 

separation ranged from 26-36nm. Figure 6-10 summarized the development of the 

threshold current as a function of the separation of the two regions. Comparing the 

26nm separation case with the largest separation of 38nm only marginal change can be 

recorded between the 26 and the 38nm separations, for that reason the separation was 

set to 35nm separation in my design.  

 

Figure 6-10: A summary of the effect of the separation between the active and the MQB 

section on the threshold current.  

The last parameter to be changed was the number of periods in the MQB. Fixing the 

QW/QB widths to 1.5/2.5nm and the separation to 35nm, the number of periods in the 

MQB was set as 4 and 8, with the simulation plotted in Figure 6-11 showing no change 

in the LI characteristics between 4, 6, and 8 periods.  
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Figure 6-11: LI curves of MQB containing structure with 4, 6, and 8 QWs. The figure 

shows identical behaviours of the three devices suggesting that the number of wells does 

not affect the superlattice electron reflectivity.  

Based on these simulations, the final active layer design is chosen to include, five 

GaInP quantum wells each of 5nm thickness with 7nm barriers of (Al0.5Ga0.5)InP, a 

35nm separation of the (Al0.7Ga0.3)InP, 6 periods in the MQB with 2nm GaInP wells 

and 3nm (Al0.7Ga0.3)InP barriers. The n- and p- cladding was selected to be 

(Al0.7Ga0.3)InP. All the layers selected for growth were lattice matched to GaAs to avoid 

any strain. The wavelength targeted was ~650nm which can be achieved with strain-free 

active design.  

6.4.2 Anti-Resonance Reflecting Optical Waveguide Design: 
Based on the analysis presented by Mawst et.al. [23]–[31], the optical waveguide of 

the red device was designed. First, the refractive index of the AlGaInP material system 

is calculated for a range of bandgaps (wavelengths) in order to select the most 

appropriate combination for the structure [55]. The primary goal was to select a 

combination of layers that would enable processing of the material without exposure of 

aluminium containing layers to the atmosphere as achieved in the 990nm self-aligned 

stripe devices discussed in chapters 2-5. For this reason, it is important to learn the 

refractive index dependence on the possible compositions of layers that can be accessed. 
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Figure 6-12 shows the calculated refractive index of the (AlxGa1-x)InP from x=0 to 

x=1. The calculated refractive index did not take into account the effect of the doping 

on the refractive index.  

Figure 6-12: The calculated refractive index of (AlxGa1-x)InP lattice matched to GaAs 

substrate for different bandgap (i.e. Wavelengths), the general values are shown in (a) 

while (b) shows a zoomed in one to the range of the red light wavelengths. The arrows 

shown represent the increase of the Al-composition (x) from 0 to 1.  

The option was to use a GaP/InGaP/GaP combination equivalent to the 

GaAs/InGaP/GaAs current blocking layer combination used in the 990nm structure 

discussed in chapters 3-5, where the GaAs layers acted as an etch stoppers as well as 

protection for the Al-containing layers during the fabrication process. Due to the large 

difference in the lattice constant between GaP and GaAs, a very thin layer of GaP can 

be grown before dislocations starts to take place. This layer thickness is estimated to be 

<5nm which is not enough to work as etch stopper, for that reason a strained 

Ga0.65In0.35P layer is suggested since a selective etching is available between the strained 

and unstrained GaInP. The GaInP layer here was meant to be used as etch stopper as 

well as a protective layer for the high Al-containing layers below it.  

However, upon investigation of the optical mode shown in the Fimmwave simulation 

shown in Figure 6-13, it was found that the high index for the GaInP layer which 

dislocates the optical mode from the active MQW region to be guided within the current 

blocking layer. This problem could not be overcome even with layer thickness as low as 
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70nm. The problem with such thin layers is that they could not provide sufficient 

current blocking based on the doping levels commonly known in the GaInP/AlGaInP 

material. For most of the visible lasers structure found in the literature the common 

doping levels is 10
18

-10
19

 cm
-3

, with this levels of carriers population the depletion 

region is usually ~80nm. Considering that the structure is n-p-n, this means that two 

depletion region should be taken into account. Which means the thickness of the layer 

should be > 160nm.  

 

Figure 6-13: The simulated near field of a structure that has a current blocking layer of 

only 70nm, yet, the optical mode is still dislocated to the low Al-composition layer 

rather than the active MQW layer.  

A solution could be to replace the GaInP high index layer with a layer that has a 

small concentration of aluminium to change the GaInP to (AlxGa1-x)1-yInyP with 

(0<x<0.4). For GaAs lattice matched AlGaInP y should be around 0.5 as the lattice 

constant figure shows in Figure 6-4. From the simulated refractive index values shown 

in Figure 6-12 and considering that the lasing wavelength is simulated to be 649nm as 

estimated by the LaserMod software, the lateral wavelength in the low refractive index 

material, λo, was calculated by the formula given in [22] 

𝜆𝑥 =
2𝜋

√𝑛𝑥
2𝑘2−𝛽2

             ……. eq. (6-1) 

Only 70nm thick layer 

of (AlxGa1-x)InP with 

x<0.3  

The optical mode 
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where x=0 for low refractive index material (core and outer reflecting layer) and x=1 for 

high refractive index material, nx is the refractive index of the related material. 

According to the calculated refractive indices, the lateral wavelength in the cladding 

layers λo (0.7 aluminium composition in the AlGaInP) was 1.262×10
-6

m, for an 

aluminium composition between 0 and 0.4, the lateral wavelength λ1 was found to be 

(6.8×10
-7

 to 1.05×10
-6 

m).  

The need for a specific thickness to form the current blocking layer imposed 

limitation on using AlGaInP with aluminium composition lower than 0.3 as the 

simulation shows dislocation of the optical mode from the active as the current blocking 

layer absorbs the light generated in the intrinsic region as shown in Figure 6-13 above. 

For this reason, the Al-composition > 20% is required so that the effective refractive 

index of the active region (including the wells and the (Al0.5Ga0.5)InP guiding layer) is 

kept higher than that of the current blocking layer. By calculating the depletion region 

for the pn-junctions to the sides of the current blocking layer based on the common 

carrier populations in both n- and p- sides, it is found that the depletion length of the 

two sides combined are ~160nm. Based on this estimation, a current blocking layer 

thickness of at least 200nm is needed to allow error margins. 

By simulation trials using Fimmwave over a range of Al-compositions, it was found 

that (Al0.3Ga0.7)0.5In0.5P has the lowest value of Al-mole that does not cause dislocation 

to the optical mode.  

The widths of the features of the ARROW structure are governed by the lateral 

wavelengths of the low and high refractive index material combination used. These 

lateral wavelengths are governed by the refractive index of the material used and the 

propagating wavelength as shown in equation 1 above.  
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The principle of the vertical ARROW presented by Koch et.al. [19] and the lateral 

one presented by Mawst et.al.  [21]–[31] stated that the core width should be half of the 

lateral wavelength of the propagating light, 
𝜆𝑥

2
, and the reflecting layers width should be 

one quarter of the lateral wavelength of the propagating light, 
𝜆𝑥

4
. Three regions will be 

used in the device as shown in Figure 6-6, the core which should be resonant to the 

fundamental mode and this condition can be met by setting the width of the core to 

natural multiples of 
𝜆𝑜

2
, and the high and low refractive index reflecting layers which 

should be anti-resonant to the lateral wavelengths, to achieve that the widths of the high 

and low indices layers should be odd natural multiples of 
𝜆1

4
 and 

𝜆𝑜

4
, respectively. Figure 

6-14 shows the three sections with the related dimensions. Since the core is selected to 

be (Al0.7Ga0.3)0.5In0.5P, the related lateral wavelength, λo, was found to be 1.262μm. On 

the other hand the current blocking layer material is selected to be (Al0.3Ga0.7)0.5In0.5P 

and according to this the lateral wavelength of the high refractive index is found to be 

0.7284μm. Based on these values the widths of the related layers were selected.  

 

Figure 6-14: A schematic diagram showing the three main regions in ARROW 

structure.   

The core width was selected to be 3μm, this value is very close to  5 ×
𝜆0

2
 (3.1541) 

which satisfy the condition put by Koch et.al. and Mawst et.al. The reflecting layers on 

the other hand was selected based on quarter lateral wavelengths value to be 1 for the 

Core 

High refractive index reflector 

Low refractive index reflector 

nλ
o
/2 

nλ
o
/4 

nλ
1
/4 
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high refractive index reflecting layer, and 1.5 for the low refractive index reflecting 

layer. These two values are 5 times quarter the lateral wavelength in both high and low 

index cases. Table 1 shows a summary of the odd multiples of the two wavelengths.  

Table 1: λ1 (high index material lateral wavelength) and λo (low index material lateral 

wavelength calculations. Highlighted the quarter wavelength (yellow) and the widths 

used in the design (red).  

λ1 7.28399E-07 λo 1.26162E-06 

Multiple n Width (n×λ1/4) Multiple n Width (n×λo/4) 

1 1.821×10
-7

 1 3.15406×10
-7

 

3 5.46299×10
-7

 3 9.46218×10
-7

 

5 9.10499×10
-7

 5 1.57703×10
-6

 

7 1.2747×10
-7

 7 2.20784×10
-6

 

 

Figure 6-15 shows a schematic diagram of my final design I suggested for the 

ARROW laser that emits at around 650nm wavelength. The 1.5μm thicknesses of the 

lower cladding and the overgrowth are fixed to (Al0.7Ga0.3)0.5In0.5P. The 800nm 

separation between the active and the ARROW layer is included in order to prevent 

dislocation of the optical mode from the active region.  

 

Figure 6-15: Illustration of the final ARROW structure from the simulation outcomes. 

This schematic diagram is not drawn to scale.  

Active + MQB 

200μm 

1.5μm 

3μm 
1μm 

1.5μm 

800nm   

200nm 

300nm 

1.5nm 
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The colour coding in Figure 6-15 is made according to the material for simpler 

reading where the light blue is an n-doped (Al0.7Ga0.3)InP lower cladding layer, the red 

layer is an un-doped Active MQW and MQB layer as discussed earlier, The pink areas 

are p-doped (Al0.7Ga0.3)InP, and the dark blue layer is n-doped (Al0.3Ga0.7)InP. The 

black ellipses in the centre represent the optical mode confined by the ARROW 

structure which was simulated by the FIMMWAVE. The confined mode is shown in the 

simulation result in Figure 6-16.  

 

Figure 6-16: The simulated near field pattern of the ARROW laser as simulated by 

FIMMWAVE  

6.5 Experimental Implementation of the Simulated Device.  
In order to justify the simulations done in the previous sections, structures are grown 

and characterized. A broad area lasers without MQB was grown first as reference device 

performance. The second growth was a MQB broad area lasers to address the efficiency 

of including the MQB in the structure. The last structure grown was the ARROW 

structure which included a two-step growth intersected by patterning.  

6.5.1 The full clad structure:  
The structure was grown on an n-doped GaAs-substrate with crystal orientation 100 

tilted 10degrees toward 111. Table 2 summarize the epitaxial structure of the full clad 

laser with and without the MQBs section. Both of the structures had the same cladding 

. 
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layers which was (Al0.7Ga0.3)y-1InyP cladding lattice-matched to GaAs where the In-

composition was set to 0.51. Two higher refractive materials were used in the active 

part (Al0.5Ga0.5)0.49In0.5P for barrier or guiding layers and GaInP for quantum well. 

Table 2: The epitaxial structure of the full clad lasers used to investigate the MQB 

impact on the device performance. 

 

The two devices differ in their active layers. The reference structure included the 5 

quantum wells only and these wells are separated by (Al0.5Ga0.5)0.49In0.51P barriers. The 

other structure prepared to investigate the MQB effect on the device performance. This 

structure included 35nm of (Al0.7Ga0.3)0.49In0.51P between the quantum wells stack and 

the MQB superlattice, this section was added on the p-side of the structure. The MQB 

comprises six periods of 2nm GaInP well and 3nm (Al0.5Ga0.5)0.49In0.51P barrier. Figure 

6-17 shows a simplified schematic of the grown structure and its index profile. A 

reference wafer was also grown in which the separation and the MQB were not included 

leaving a 5QW guided active layer sandwiched between (Al0.7Ga0.3)0.49In0.51P cladding 

layers.  

Layer Material composition Thickness Doping type and 

carrier 

concentration 

Lower 

Cladding 

Layer 

(Al0.7Ga0.3)0.49In0.51P 1μm n-type 10
18

cm
-3

 

Lower 

guiding layer 

(Al0.5Ga0.5)0.49In0.51P 80nm Undopped 

Active layer  GaInP QW/ 

(Al0.5Ga0.5)0.49In0.51P QB  

 Undopped 

Upper 

Guiding layer 

(Al0.5Ga0.5)0.49In0.51P  80nm Undopped  

Lower 

Cladding 

Layer 

(Al0.7Ga0.3)0.49In0.51P 1μm p-type 10
18

cm
-3

 

1
st
 Contact 

layer 

GaInP 50 P-type 2×10
18

cm
-3

 

2
nd

 contact 

layer 

GaAs 200nm P-type 2×10
19

cm
-3
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Figure 6-17: epitaxial structure (left) and refractive index profile (right) of the grown 

MQB containing wafer.  

These two wafers were processed into broad area (50μm wide) lasers for basic 

characterization. To prepare such devices, the p-contact was formed by depositing an 

alloy of Au/Zn/Au with thicknesses of (5/10/200)nm which was annealed at 360°C for 

3sec to create the p-contacts. In order to electrically isolate adjacent devices trenches 

were etched using 1:1:1 HBr:C2H4O2:K2Cr2O7 (diluted with DI water 50:50 ratio) 

etchant to a depth of ~1μm. Before deposition of back (n-type) contacts the wafers were 

thinned down to ~150μm. For the back contacts, an InGe/Au alloy was deposited with 

thicknesses 20/250nm followed by annealing at 340°C. The wafer was cleaved into 

300μm and 500μm long devices. 300μm was at the limit of what was possible to cleave 

which is typically 2-3 times the substrate thickness.  

6.5.2 The ARROW buried structure.  
To realize the buried structure designed above, two growths are required. The first 

growth should include the layers up to the protecting layer above the 

(Al0.3Ga0.7)0.49In0.51P ARROW forming layer. The original intention was to sandwich 

the n-doped (Al0.3Ga0.7)0.49In0.51P current blocking layer was sandwiched by two GaP 

protection layers. Because GaP has a large lattice mismatch with GaAs, growing GaP 

layer > 4-5nm will cause unwanted strains in the structure. For this reason strained 

GaInP with a thickness less than 15nm was used instead. This thickness is sufficient for 

it to be used as an etch stop layer whilst not causing sever material strain that. 10nm of 

Upper cladding 

Upper guide 

MQB Section 

MQW Active 

Lower guide 

Lower cladding 

GaInP 

Al0.5GaInP 

Al0.7GaInP 
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undopped Ga0.7In0.3P was grown below and above the 300nm of n-(Al0.3Ga0.7)0.49In0.51P 

current blocking layer and the doping level was set to 10
18

 cm
-2

 in this layer.  

To form the optical waveguide, the wafer was patterned using standard 

photolithography. Two mask patterns were used to achieve the final processed structure 

shown in Figure 6-15 in section 6.4.  The first stage defined the core and the reflecting 

layers laterally. The high index reflecting layers was left un-etched while the lower 

index reflector and the core were etched down to the strained GaInP lower layer by 

SiCl4 and Ar using the inductive coupled plasma (ICP) dry etching. The second mask 

was used to cover the ARROW part of the layer and etch the surroundings by 100nm. 

The second etching was also done by SiCl4 and Ar utilizing ICP and relied on multiple 

trials to achieve the proper time for 100nm etching.  

To complete the ARROW lasers structure the patterned wafer should be overgrown 

with 1μm thick p-(Al0.7Ga0.3)0.49In0.51P, 50nm GaInP and the p
+
-GaAs contact layers. 

The second etch step was designed to terminate within the (Al0.3Ga0.7)0.49In0.51P layer. 

Typically, one would not wish to overgrow upon Al-containing layers. However, 

incorporating low composition AlGaInP is necessary in design of appropriate refractive 

index structure for the ARROW. Furthermore, it was not believed that the affinity of 

oxygen to such a low Al-composition would be sufficiently low that good quality 

growth could be achieved. 

6.6 Device Characterization 

6.6.1 The LI characteristics of the reference laser structure:  
Devices were tested under pulsed conditions with small pulse widths used in order to 

reduce the effect of self-heating. The set-up used is the same LI setup described in 



213 | P a g e  
 

section 2.3.1 but with a pulsed current source rather than a continuous one. First the 

reference full clad grown structures were cleaved into 300 and 500μm long devices.  

Presentation of room temperature LI curves are shown in Figure 6-18, for 300μm 

lasers, with the pulse width varied between 100nsec and 500ns while the pulse width 

was fixed to 1% of the pulse period.  

When the pulse width is increased from 100nsec to 500nsec, the threshold current 

dropped significantly from >500mA down to 200mA. The reason for such difference 

can be the high internal losses of this red structure. The minimum threshold current and 

the maximum slope efficiency were found to be for 300nsec pulse width and 30μsec 

pulse duration. Figure 6-17 shows the effect of the pulse width variation on the 

threshold current and the slop efficiency. The measurement shows that the device has a 

strong temperature dependency where the threshold current is almost fixed for 300-

500nsec while the slop efficiency decreases by increasing the pulse width.  

  

Figure 6-18: LI characteristics comparison of various pulse widths (left) and the 

differential efficiency and threshold current comparison as a function of pulse width for 

a 300μm device.  

500μm long lasers were found to operate with improved characteristics. The 

threshold current reduced from 200mA (1.33kA.cm
-2

) down to 135mA (540A.cm-2) 

under the same condition as the 300μm long device. The reason for this is the increased 
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active length which results in a reduction in mirror losses. Figure 6-19 shows the LI 

curve of the 500μm long broad area laser (a) and both the threshold current and the 

slope efficiency as a function of pulse widths. The same self-heating problem can be 

observed in the 500μm long devices, which also exhibited a large variation in the slope 

efficiency and an increase in the threshold current.  

  

Figure 6-19: LI curve of the 500μm device from the reference wafer at 300nsec pulse 

width and 30μsec pulse duration (left) and a comparison of the threshold current and 

the slope efficiency for various pulse widths (right).  

The threshold current of the 500μm reference device in pulsed shows a high increase 

in the threshold current required for the same device simulated via LaserMod software 

where the simulated device had a threshold current of ~70mA while the measured data 

showed a threshold current almost doubled, this can be caused by the high series 

resistance of the processed device. This fact is confirmed by examining the threshold 

current shift when the pulse width is increased more than 1μsec in Figure 6-19b.  
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The low resolution EL spectra was measured for the 500μm long devices beyond the 

threshold current point between 400-800mA (1.6-3.2kA.cm
-2

) at room temperature, the 

EL measurement is plotted in Figure 6-20a. The central wavelength shows a shift of  

roughly 16nm from the central wavelength of the unprocessed material PL spectrum 

(not shown) by applying pulsed pumping only, this means that the junction temperature 

is risen by 160°C for a device that operate at 300nsec pulse width and 30μsec pulse 

duration if 0.1nm/°C is assumed for GaAs based devices.  Such an increase in the 

junction temperature, even when applying such a short pulse, is indicative of self-

heating.  

 

Figure 6-20: EL spectra of 500μm long device from 400 to 800mA (main figure) and the 

peak wavelengths as a function of increasing current (inset figure).  

6.6.2 MQB laser characterisation:  

400μm long MQB lasers were tested under the same conditions as the reference 

lasers above. The results are shown in Figure 6-21 below which plots the pulsed LI 

curves of such device at room temperature (a) and the threshold current and slope 

efficiency as a function of pulse width in (b). Unfortunately the MQB samples did not 

show the same behaviour as the reference ones but instead exhibited a 3× increase of 

threshold current density compared with the reference lasers.  
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Figure 6-21: LI curves comparison for a 400μm long device from the MQB containing 

wafer (left) and the comparison of the threshold current and slope efficiency for 

different pulse widths (right).  

A possible reason for this increase could be the added non-radiative recombinations 

in the MQB section where the simulation of this structure shows an increased carrier 

population around that area (in spite of the decrease of the threshold current). This is in 

addition to the self-heating problem which was evident even in the reference structure.  

6.6.3 Arrow structure observations:  
Although the original incorporation of GaInP in the current blocking layer design 

was as a protective layer to protect the rich Al-composition layers from exposure to 

oxygen during processing, the high index of GaInP for wavelengths as short as 645nm 

meant that it could not be used in this way. Instead the device was designed to have an 

opto-electronic confinement layer with 15% aluminium (Al0.3Ga0.7)0.5In0.5P in it, it was 

accused that the affinity to oxygen of this compound would be very small and that 

oxidation of this layer would be negligible with rapid transportation of the patterned 

wafer into MOVPE reactor for overgrowth, in addition to performing an in-situ anneal 

to remove any oxides from the surface prior to overgrowth. The surface would also have 

benefited from an HF wash prior to loading, to remove any surface oxides.  
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However, even with 9min anneal at 690°C under H2 overpressure, good quality 

overgrowth was not possible. The surface and the patterned features can be seen in 

Figure 6-22 which shows optical microscopic images of (a) InGaP surface, (b) ARROW 

patterned surface without annealing and (c) ARROW patterned with annealing at 

690°C. Improvement was made on the surface quality by increasing the temperature but 

more attempts needed.  

 

Figure 6-22: Microscopic images of three surfaces, (a) GaInP layer only which is 

considered as a reference, (b) an ARROW patterned surface with no annealing prior to 

overgrowth, while (c) is an ARROW overgrown material with annealing. The 

enhancement is obvious between (b) and (c) yet more work is needed to enhance it to 

the level of Al-free overgrowth quality.  

6.7 Future Work 
1. The growth and processing methods are not mature enough in the University of 

Sheffield in this range of the spectrum, further development in the processing method 

and MOVPE growth technique used in this thesis and possibly MBE. Techniques 

that can overcome the problem of extra heating resulted in the devices presented in 

this chapter would open a new field of work for developers in this field in The 

University of Sheffield. 

2. Specifically for the MQB lasers, more rigorous simulation of MQB structures should 

be performed and experimentally verified to achieve the expected performance 

(decrease in the threshold current and increase in characteristic temperature). 

Different well/barrier width, different material combinations, and different 

separations can be explored. Another design that can be tested is to have an MQB 

(a) (b) (c) 
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section with variable widths of quantum wells and barriers within the same structure 

as shown in Figure 6-23a and also various material compositions of the wells and the 

barriers as in 1b.  

 
Figure 6-23: Proposed variable wells/barriers widths (a) and different well 

compositions (b). Variation of either of the two parameters can randomize the energy 

sub-bands and decrease the probability of electron tunnelling.  

3. The ARROW structure can be developed in three ways. The first is to continue to 

develop a process for realization of the design in section 6.5. Another way would be 

to investigate different material combinations in different geometries in order to 

allow use of GaInP as the current blocking layer rather than AlGaInP, to completely 

avoid the need to regrow over Al-containing material. The third direction is to use 

the anti-resonance waveguide in both lateral and the vertical directions, by 

combining the concept of Mawst et.al. [23]–[31] of the lateral mode devices and the 

concept presented by Koch et.al. [20] of the vertical anti-resonant waveguide in the 

InP material system and apply it in the GaInP/AlGaInP system. The two dimensioned 

ARROW structure would serve to produce diode lasers with low divergence angle 

since the confinement method is not based on total internal reflection. The main 

challenge to face the developer is to grow enough material to planarize the patterned 

area of the wafer. This can be done by selective or masked growth process. This 

selective growth method is similar to the selective QD growth method developed by 

Ozaki et.al. [56]. Figure 6-24 can summarize the idea in simplified schematic 

diagram of the structure cross-section.  

(a) (b) 
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Figure 6-24: The suggested structure in which anti-resonance reflecting waveguide 

is applied in both vertical and lateral directions. 
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Chapter 7: Summaries and 
Conclusion 

In this chapter I briefly summarize the outcomes of the chapters 2-6 and conclude the 

work done during the period of study.  

7.1 Summaries:  
The summary for each chapter are listed in the following sub-sections for each 

chapter. 

7.1.1 Chapter two summary:  
In this chapter two main subjects were highlighted, the first one was the 

measurement setups used in this thesis to characterize the devices and the material used 

in this study. While there was no novel thing presented in term of the characterisations 

setups, the chapter highlighted the structure used to achieve the presented devices.  

1. Double quantum well active layer was implemented in this structure which resulted 

in a narrow bandwidth structure as shown by the photoluminescence measurement 

performed.  

2. The modal gain of the devices used in here is expected to be 75-90 cm
-1

 as the 

length dependant measurement showed. 

3. The photocurrent measurement held for the structure suggested that quantum well 

absorption peak will be 990, 960 and 915nm. 

4. On the other hand, the peaks appeared in the wavelength range shorter than 850 is 

expected to be related to the GaAs material used as separate confinement layer and 

quantum barrier. The  

7.1.2 Chapter three conclusions: 
In this chapter tilted SAS superluminescent diodes (SLDs) fabricated from the wafer 

discussed earlier in chapter two were presented. The methods to achieve 
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superluminescence from laser are briefly introduced followed by a thorough study of the 

introduced window structure is given in the early sections of the chapters.  

1. The intact active layer enabled realization of window-like natural absorber at the 

rear end of the device rather than just a transparent window. This absorber in 

addition to the propagated mode spreading suppressed the feedback to the active 

stripe efficiently. 

2. With this effective suppression, the window like structure could achieve reflectivity 

as low as 8×10
-13

 from a facet that had 2.25mm window.  

3. According to the measured facet effective reflectivity, simulation was held to 

estimate the behaviour of the devices with identical window part and three active 

parts with identical length and three different widths. The trend obtained from the 

simulation suggests that the wider active perform better.  

4. Tilted cavity SLDs were fabricated from the material described in chapter 2 in two 

configurations epi-side up and epi-side down. The epi-side up presented a very 

good start to characterize the presented SLDs where 3mm active stripe device 

offered >40mW ASE with 17% spectral modulation depth.  

5. The trend shown in the simulation was confirmed from such devices. The reason of 

this higher than expected SMD was the fact that the central emission wavelength 

red-shifted with respect to the absorption peak due to Joule’s heating. This caused 

the rear absorbing window to turn into a transparent window. 

6. To improve the heat sinking of the device in order to decrease the red-shift, the 

devices were mounted epi-side down. This configuration actually enhanced the 

performance of the device where output power of 30mW was collected from 3mm 

long active device with only 5.5% SMD.  
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7. The enhancement appeared obviously when a 1.7mm active device emitted 32mW 

output power with 20% while the epi-side up counterpart showed the SMD at half 

the output power level. 

8. The effect of the heat was confirmed by running the device in pulsed operation in 

which 38mW was collected from the 1.7mm device with only 1-2% (ideal case) 

SMD.  

9. Another configuration was tested by heating up the window region to red-shift the 

absorption peak to the emission peak. Although the conditions of this experiment 

wasn’t ideal but promising drop in SMD from 16%-10% was recorded from 

applying 5W of thermal power to the window region.  

7.1.3 Chapter four conclusions:  
In chapter four I tested the grown structure in a normal-to-facet optical waveguide 

configuration. This configuration benefited in two main aspects, first the output beam 

profile is maintained to elliptical shape rather than the crescent shape that resulted from 

tilting the facets, this should increase the device coupling efficiency to standard 

couplers and connectors, and second is the decrease in the production cost by 

minimization of the semiconductor material losses especially for long cavity devices. 

The first benefit was reflected to the coupling efficiency of the devices.  

1. The farfield measurement showed output beam enhancement by changing the beam 

shape from crescent back to elliptical shape. This will increase the coupling 

efficiency of such devices.  

2. The first trial was to test a 2mm long active with 2mm rear window device epi-side 

down. The device was coated with anti-reflective coating on the front facet to 

decrease the carrier depletion by the reflected light at the cleaved facet. Output 

power recorded was 6.5mW before lasing took place at 1010nm (20nm away from 

the device central wavelength).  
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3. Wider SLDs were fabricated from new batch with stripe widths 5, 7, and 10μm in 

order to investigate the effect of device geometry on these devices. The effective 

reflectivity of 1mm long window section was able to maintain laser suppression in 

all of the devices but other limitations appeared to affect the performance of such 

devices.  

4. The behaviour of devices with 1mm stripe and 1mm window was identical to the 

devices/batch reported in chapter three. The spectral modulation depth of 10μm 

wide stripe device for 20mW was <10%.  

5. In the shorter than 1mm devices the state filling caused the device to lase at shorter 

wavelength, while in the longer than 1mm devices Joule’s heating caused the 

devices to lase at longer wavelengths.  

6. The lasing always occurs in the normal-to-facet devices because of the stripe 

alignment normal to the cleaved facet. Bearing in mind that the step index is only 

0.002-0.003 between the active and window sections, this will result in a small 

divergence angle of the propagated beam. In the case of emission outside the 

absorption band of the window (where the window is transparent of such 

wavelengths), there is always reflected optical intensity that is coupled in the active 

stripe and amplified.  

7.1.4 Chapter five conclusions: 
Chapter five discusses the use of the processed material detailed in chapter 2 in a 

semiconductor optical amplifier (SOA) configuration. This configuration has a 100μm 

window at each end. Due to the mask limitation only 5mm long active was available.  

1. The lasing suppression was successful in these devices in the pumping range 

measured as the initial screening showed. 

2. The four parameters investigated by Mukai and Mamamoto were measured for the 

presented devices to evaluate its performance.  
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3. The device had 11nm bandwidth, 33.5dB small signal gain, 7.7dBm saturation 

output power, and 5.8dB noise figure.  

4. The reason of the narrow bandwidth is the material used as the original bandwidth 

measured by free space was 6.2nm. 

5. The high gain (33.5dB) resulted from the active layer properties where identical 

two quantum wells were used as an active layer. 

6. The low saturation power occurred mainly due to the low pumping currents, this 

low pumping levels caused the carriers to be depleted in the case of high stimulated 

emission rate.  

7. The increase in the noise figure in the wavelengths shorter than 997nm resulted 

from the drop in the input signal intensity to lower than -10dBm. This caused 

SNRout to decrease and resulted in higher noise figure.  

7.1.5 Chapter six summary: 
Although this chapter did not show a successful realization of ARROW laser 

operating in the visible range of GaAs-based material due to the technical difficulties, 

some conclusions can be drawn from the simulation work done.  

1. The simulations done for the active structure showed an obvious improvement of 

the device performance sensed as a decrease in the threshold current of the device.  

2. Buried structures are available by implementing a higher refractive index layer to 

work as an optical and electrical confinement layer.  
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7.2 Conclusion: 
In this thesis I mainly presented broadband devices which implemented a window-

like facet to suppress the optical feedback. Although this rear section was tested with an 

active medium that was designed originally for low threshold current laser devices, 

feedback suppression was observed to a very high pumping level. This high level of 

feedback suppression enabled presentation of windowed-facet devices in three different 

configurations, tilted SLDs, normal to facet SLDs, and SOAs. These devices operated at 

990nm wavelength. The active chosen was designed originally for low threshold laser. 

The reasons behind selecting this active were first: a well-known active with enough 

gain was needed in order to test the window (since the effect of such type of window 

was not very well understood) and second: such active enabled testing the window to its 

maximum limit.  

The effective reflectivity of the windowed facet was measured to a record low 

effective reflectivity < 10
-14

 for an unpumped region of 2.25mm long. This value 

resulted from a combination of mode spreading and absorption in the unpumped region. 

Both of them can be engineered to achieve even better results by increasing the active 

medium absorption and increase the mode spreading by increasing the effective 

refractive index step between the pumped and unpumped sections although it might 

increase the reflection at the interface. Since the rear section has an absorption peak at 

the emission peak of the active part, this method is inherently broadband and there is no 

need for further processing to tailor the absorption band to the emission spectrum.  

In spite of such a low effective reflectivity, spectral modulation still appears in the 

EL spectra of the tilted SLDs, the reason of that is most probably because of the high 

gain generated in the active stripe which the rear section could not totally overcome. 

The magnitude of such spectral modulation was dependent upon the device dimensions 

in which the longest cavities gave the best output (lowest spectral modulation depth at 
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highest power). The best performance under CW operation was attained from a device 

with 3mm long and 3μm wide active stripe and integrated with 2mm long window 

section mounted epi-side down. The output power was 30mW with only 5% spectral 

modulation depth. These values were enhanced to 38mW and 1-2% spectral modulation 

depth when the same device is tested under pulsed conditions. The reason of this 

difference between the pulsed and CW operation modes is related to the difference in 

the heat dissipation mechanisms in the two cases.  

The effective reflectivity of the device was found to be active-junction-temperature 

dependent such that the uncontrolled shift in the emission wavelength, due to heating, 

causes the absorption in the rear section to be non-resonant with the emission from the 

active section, and decreases the effective reflectivity of the rear facet which eventually 

causes the spectral modulation depth to increase. Minimizing the emission wavelength 

shift or tailoring absorption band will improve the device performance. The active 

medium used exposed the limits of such window devices, it is expected for the device to 

operate much better in case broadband active medium is used.  

 The same structure was implemented in a normal-to-facet configuration in order to 

maintain the elliptical shape of the output beam and reduce the gross cost of the device 

by saving the excess semiconductor material wasted in the tilted SLDs configuration. 

The implementation was successful under specific dimensions. Devices performance 

can be improved by engineering the beam divergence at the active/window sections 

interface which depends mainly on the waveguide widths and the refractive index, also 

the shape of the interface may increase the beam divergence. The experiments done 

proved that the implementation of the windowed facet and high performance are 

expected with the suitable broadband active medium.  
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Two windowed facets were used in the same device to test the structure as an SOA. 

The effective reflectivity resulted from the unpumped window and tilting the active 

waveguide was enough to suppress the lasing over a suitable range of pumping power. 

Implementing such an active enabled high gain operation as high as 31dB with pumping 

level less than 2kA.cm
-2

. However, the use of such active resulted in a penalty which 

was the narrow bandwidth and the low saturation output power. The noise figure of the 

amplifier was measured to be around 5-7dB which is within the common values of the 

linear SOAs.  

The last chapter of the thesis included an attempt to extend the concept explored in 

chapters 2-5 to the edge of the GaAs-based operating wavelength. Red emitting devices 

implementing AlGaInP active layer was designed. The red devices had two main 

problems toward the index guided buried laser, these two problems can be summarized 

by the shallow bandgap and the high refractive index for the material that does not 

contain Al in it. Two solutions were suggested by the literature for the two problems, 

the first one was solved by integrating a multiquantum barriers (MQB) layer close to the 

quantum wells in order to reflect the electrons back and virtually increase the gap. The 

second problem was solved by implementing a buried structure that uses anti-resonance 

reflection instead of the total internal reflection to form an optical waveguide. The 

structure is called Anti-Resonance Reflecting Optical Waveguide (ARROW).  

A structure included five quantum wells, a MQB layer, and an ARROW waveguide 

was simulated with successful operation. The simulated devices showed an improved 

performance of the devices compared to a reference device included only 5 quantum 

wells. Unfortunately the experimental implementation of the devices did not show 

coherent performance compared to the simulation. The self-heating was very high in the 

broad area lasers tested with the MQB which demand more investigation toward better 
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heat sinking. The overgrowth, on the other hand, was the main problem faced the 

experimental attempt to form the ARROW structures. It showed high contamination due 

to Al exposure in the etched layer which resulted in poor quality overgrowth. More 

attempts are needed to try different configurations of ARROW structures.  

 

 


