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Nazariyah Binti Yahaya- Metabolic interactions between Plasmodiophora 
brassicae and Arabidopsis thaliana  
 
Abstract 
Clubroot (Plasmodiophora brassicae) is a serious agricultural problem affecting 
Brassica crops. It also infects Arabidopsis thaliana plants. During infection, this 
biotrophic pathogen manipulates the development and metabolism of its host 
leading to the development of galls. In turn, its own development is strongly 
influenced by the host. The aim of this study was to understand the metabolic 
interaction between A. thaliana plants and P. brassicae. An initial non-targeted 
approach was used to obtain metabolic `fingerprints’, which were then combined 
with host transcriptomic data. In addition, a targeted approach was applied 
focusing on carbohydrate metabolism. Hypotheses were identified using 
transcriptomic data and tested using mutants of A. thaliana and analysis of 
reporter gene expression. 

Changes in plant development occurring as a consequence of clubroot 
infection correlated with changes in metabolic status were investigated. Following 
P. brassicae infection, metabolite profiles altered at the beginning of cortical 
infection, although plant primary growth did not show clear differences between 
uninfected and infected tissue at this stage. This suggests that these changes in 
metabolites depended on responses of the plant to infection rather changes in 
plant development. 

The accumulation of the amino acids glutamate, aspartate and alanine are 
likely to be related to pathogen nutrition.  Metabolites such as proline protect 
plants from osmotic and oxidative stress. Meanwhile, compounds associated with 
plant defence such as cinnamic acid and phaseic acid accumulated at 16 DPI 
and decreased at 26 DPI. The accumulation of vitamin B6 precursor and 
compounds associated with folate biosynthesis were accompanied with 
increasing host gene expression associated with the synthesis of these 
metabolites. The accumulation of other metabolites such as thiosulfate was 
accompanied with the repression of genes associated with their degradation. This 
suggests that P. brassicae has the potential to suppress the expression of host 
metabolism genes to obtain nutrients from the host.   

Transcriptomic analysis showed that sucrose synthase (SUS) and sugar 
permeases were induced during gall formation. The impact of inactivating these 
genes (and cytosolic invertase CINV) on gall formation was examined. In wildtype 

plants the hypocotyl width was not affected at 16 DPI, but increased by 26 DPI. 
Similar results were seen in cinv1,2 and sus1-,4 plants at 16 DPI. By 26 DPI, 
cinv1,2 and sus1-4 plants showed a smaller hypocotyl width than Col-0 plants 
when uninfected, but this difference was not evident in sus1-4 plants when 
infected. Infected cinv1,2 plants were smaller than Col-0 plants at 26 DPI, 
although plasmodia colonized host cells and pathogen development was similar 
to that in Col-0 plants. This indicates that P. brassicae itself makes the gall a sink. 
Meanwhile, sweet11,12 mutants displayed slower P. brassicae development due 
to a change in carbohydrate partitioning. SWEET::GUS expression patterns 
support the hypothesis that sucrose was transported to plasmodia via these 
transporters.  
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Abbreviations 

 

DPI    days post inoculation 

ROS   reactive oxygen species 

SAR   systemic acquired resistance 

CINV   cytosolic invertase 

SUS   sucrose synthase 

Col-0   Columbia ecotype (Arabidopsis) 

SE-CC  sieve element-companion cell complex 

SUT/SUC  active sugar transporter protein 

UDP   uridine-5’-diphosphate 

CWINV  cell wall invertase 

GUS    β-glucuronidase 
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Chapter 1. General Introduction 

 

1.1 Introduction 

Plant pathogens such as necrotrophs, biotrophs and hemibiotrophs can be 

distinguished based on the survival of host tissues during nutrient acquirement 

by the pathogen and based on the mechanism of infection (Oliver and Ipcho, 

2004). Necrotroph, biotroph and hemibiotroph pathogens manipulate their host 

to obtain nutrients. During the infection process, a necrotrophic pathogen 

secretes its effectors to suppress host defence, and degrades host 

macromolecules such as plant cell wall components to colonize host cells. This 

type of pathogen kills the host to obtain nutrients. Biotrophic pathogens on the 

other hand obtain nutrients from the living host. Biotrophic pathogens can also 

secrete effectors to suppress the host defence system, and alter host metabolism 

through the manipulation of host gene expression and transporters for nutrient 

uptake without killing their host. Hemibiotroph pathogens show elements of both 

biotrophic and necrotrophic lifestyles, including deriving nutrients from living host 

cells and requiring host cell death to grow and complete their life cycle (Muencha 

et al. 2008).  

 

Successful colonization and growth of pathogens depends on the effectiveness 

with which pathogens obtain nutrients from their host. This is related to the 

adaptation and exploitation of the nutrient environment during host development 

and metabolism by the pathogen. For instance, some pathogens modify host 

development by inducing gall formation to optimize the production of nutrients for 

the pathogen whereas others form special feeding structures such as haustoria 

to absorb nutrients from the host (Voegele et al., 2001, Divon and Fluhr, 2007). 

Penetration of pathogens inside the host could activate the plant defence. 

Moreover, during infection plant metabolism might be adjusted to enable 

pathogen nutrient acquisition.  
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1.1.2. How Do Pathogens Alter Host Development? 

Many pathogens modify plant development as part of their infection strategy, but 

a broad spectrum of impacts exists from subtle manipulation of host metabolism 

through to extensive tumour formation (Figure 1.1). For instance, Blumeria 

graminis lives in the host epidermis and shows only the subtlest effects on plant.  

The obligate root pathogen Spongospora subterranea on the other hands 

establishes a long-term feeding relationship with the living cells of its host to 

complete its life cycle without killing the host. It causes powdery scab disease on 

potato crops, forms dark spots on potato tubers that contain a mass of powdery 

spores in the early stages, and develops tumours on plant roots at the later stages 

of infection. Meanwhile, the biotrophic smut fungus Ustilago maydis causes a 

strong effect on the development of its host. U. maydis infects and induces 

tumours on above ground tissues of crops (mostly grasses) such as maize, 

barley, wheat, and sugar cane.  Moreover, Agrobacterium causes crown gall 

disease and the epiphyte pathogen Rhodococcus fascians causes leafy gall 

formation.  

 

Figure 1.1.Spectrum of plant development alteration in response to specific plant diseases 
caused by the biotrophic pathogens a) Powdery mildew, b) rice blast fungus, c) Potato scab, d) 
Leafy galls, e) Crown galls, f) Clubroot, and g) Corn smut. Yellow line shows the severity of the 
impact of disease on plant development.  

 

The ability of plant pathogens to induce tumours as they colonise habitats is 

dependent on their ability to reprogram different plant developmental states. For 

instance, crown galls only develop on host stems when Agrobacterium species 

A. tumefaciens successfully transfers and integrates T-DNA into the host genome 
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(Gohlke and Deeken, 2014, Chilton et al., 1977). During infection, Agrobacterium 

expresses multiple virulence genes and effector proteins that assist with the 

transport of T-DNA into host cells. The T-DNA integrates into the host genome 

and induces auxin and cytokinin biosynthesis to control plant response. This 

results in uncontrolled host cell proliferation and leads to the formation of crown 

galls (Gelvin 2010, 2012, Ward et al., 1988, Thompson et al., 1988).  

 

In R. fascians infected plants, hyperplasia symptoms which lead to the 

development of leafy galls do not show as dramatic an impact on plant 

development as in plants infected with Agrobacterium. In this case, there is no 

evidence of DNA transfer from the R. fascians genome. Instead, the linear 

virulence plasmid of R. fascians consists of a fas operon that encodes cytokinins. 

R. fascians cytokinins, especially cis-zeatin and 2-methylthio-zeatin which are 

weak substrates for all host cytokinin oxidases, directly affect plant responses 

and development by continuously stimulating tissue proliferation (Stes et al., 

2013, Pertry et al., 2009). In addition, cytokinins from R. fascians also stimulate 

the host to produce indole-3-acetic acid and the polyamine putrescine. Indole-3-

acetic and putrescine function in activating meristem initiation and target the 

expression of a D3-type cyclin (Stes et al., 2012). This could initiate new meristem 

formation as well as reprogramming existing meristems to stimulate more cell 

division in host cortical cells by inducing them to re-enter the cell cycle (Goethals 

et al., 2001). As a result, adventitious meristems develop and differentiate into 

leafy gall on the upper part of the host plant. The leafy gall formed provides a 

special habitat niche for R. fascians to obtain energy from their host.   

 

Some pathogens such as Magnaporthe oryzae and U. maydis form an 

appressorium, a specialized infection structure to penetrate the plant surface 

(Ryder et al., 2015, Perez-Nadales et al., 2014, Castanheira et al., 2014, Perez-

Martin et al., 2006). However, the disease development differs between these 

pathogens. Rice blast fungus, which is caused by M. oryzae, exhibits disease 

lesions on the plant surface while corn smut fungus caused by U. maydis induces 

tumour formation on the plant cob (Figure 1.1). M. oryzae is a filamentous 
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ascomycete and uses a dome-shaped structure to break the plant cortical surface 

by mechanical force (Ryder et al., 2015, Perez-Nadales et al., 2014). Hyphae are 

formed on the plant plasma membrane and disease lesions are formed on the 

plant surface (Perez-Nadales et al., 2014). The disease lesion consists of 

conidiophores that produce conidia to infect a new plant (Perez-Nadales et al., 

2014). In contrast, U. maydis, which is a basidiomycete fungus, uses a filament 

in which the cell cycle is arrested to grow on the plant surface (Castanheira et al., 

2014, Perez-Martin et al., 2006). Filaments stop growing in response to 

unidentified plant signals and form an appressorium structure that is differentiated 

into a haustoria, which is used to penetrate plant surface. Cell cycle arrest in the 

pathogen filament is important in infection. Once the filament of U. maydis enters 

the plant, cell cycle arrest is released (Castanheira et al., 2014). U. maydis 

releases its several effectors into the specific plant tissue to induce tumours 

(Djamei and Kahmann, 2012). One of the effector is See1 (seedling efficient 

effector1), which functions to reactivation of plant DNA synthesis for de novo 

tumour formation in leaf cells. This effector function in an organ-specific manner, 

which does not affect tumour formation in immature tassel floral tissues, the organ 

that contains highly proliferating tissue (Redkar et al., 2015). In floral tissue, 

specifically in the anther, tumour is formed from redirecting host cell division and 

cell expansion into tumour pathways by delayed cell-fate specification (Gao et 

al., 2013).  

 

1.1.3. How Do Pathogens Avoid Plant Defence Responses? 

The plant defence system consists of defence against unwanted visitors. Plants 

activate their basal resistance which is a first line of plant defence against entire 

groups of pathogens. Plant basal resistance is triggered when  pattern recognition 

receptors (PRRs) located in the plant surface,  detect pathogen-associated 

molecular patterns (PAMPs). PAMPs could be specific proteins, 

lipopolysaccharides and cell wall components. PRRs activate PAMP-triggered 

immunity (PTI). PAMPs of plants detect cell wall damage and trigger plant 

defence through the activation of ROS and the secretion of antimicrobial 

compounds such as glucosinolate. In response to plant PTI, the pathogen 
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secretes its virulence factors, also called ‘effectors’, inside the host cytoplasm. If 

the pathogen successfully delivers its effectors to suppress plant PTI, it is able to 

obtain nutrients from the host and spread (Jones and Dangl, 2006).  

 

The second layer of plant defence is the activation of effector-triggered immunity 

(ETI), which occurs after nucleotide binding/leucine-rich repeat (NLR) receptors 

recognize pathogen effectors. In the plant ETI system, plants trigger a 

hypersensitive response, leading to programmed cell death at the infected site 

and surrounding cells to restrict spreading of the pathogen. Necrosis of cells, 

which is a result of the hypersensitive response, occurs often in plants attacked 

by necrotrophic pathogens. The combination of PTI and ETI responses can 

enhance the accumulation of the phytohormone salicylic acid (SA) and induce 

systemic acquired resistance (SAR), which leads to the suppression of the 

jasmonate (JA)/ethylene (ET) defense pathway, cell wall remodelling and 

biosynthesis of secondary metabolites (Wittek et al., 2015, Gruner et al., 2013). 

SAR produces long-distance signals that can travel from the root tissue to the 

leaves of infected plants and induces the expression of pathogenesis-related 

(PR) proteins systemically (Gruner et al., 2013, Lovelock et al., 2013). Successful 

colonization indicates that pathogens can avoid host defence responses in 

multiple ways. Pathogens may subsequently release new effectors which 

manage to suppress plant ETI and enable them to colonize host tissues. Figure 

1.2 shows a ‘ZigZag’ model that illustrates the plant immune system in response 

to pathogen infection. 

 

Some pathogens such as Venturia inaequalis, which is the causal agent of apple 

disease scab, proliferate in the subcuticular tissue above the epidermal host cells 

and remain undetected by the plant defence response (Bowen et al., 2011). 

During powdery mildew fungus infection, the host senses the presence of the 

extrahaustorial membrane of Golovinomyces orontiihaustoria by expressing the 

plant resistance protein RPW8.2 (Micali et al., 2011). In response to such plant 

resistance proteins, pathogens secrete various types of effectors. These effectors 

function in multiple ways, including manipulating and reprogramming host  
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Figure 1.2. A ‘ZigZag’ model that illustrates the plant immune system in response to the pathogen 
infection. Figure is taken from Jones and Dangl (2006).  

 

metabolism and targeting host immune response pathways.  The biotrophic smut 

fungus U. maydis, which uses haustoria to penetrate inside host tissues, secretes 

lytic enzymes after it recognizes and responds to plants signals (Lanver et al., 

2014). Before penetration occurs, U. maydis secretes the effector chorismate 

mutase (CMU1) into the host plant to suppress plant defence. CMU1 re-channels 

choristamate, a precursor of SA, to reduce SA biosynthesis (Djamei and 

Kahmann, 2012).  

 

Furthermore, nutrient compounds, which are important to plant and pathogen 

growth, can be used to suppress plant defence or to increase plant resistance 

against pathogens. For instance, Uromyces fabae takes up glucose and fructose 

from the host and converts these compounds into mannitol by expressing its 

mannitol dehydrogenes genes in haustoria, and stores the mannitol inside its 

spores (Voegele et al., 2001, 2005). Mannitol is present in both spores extracts 

and apoplastic fluid of infected leaves (Voegele et al., 2005). The presence of 

mannitol in the apoplast of plant cells can suppress plant ROS signalling, which 

is induced by the plant defence in response to pathogen infection. Besides the 

mannitol in spores functions as a carbohydrate storage compound (Voegele et a. 

2005).   
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1.1.3. How Does The Pathogen Manipulate Host Metabolism to Obtain 

Nutrients? 

Plant development is accompanied by source-sink transitions. Source tissues, 

where photosynthesis is active, export carbohydrate to sink tissues such as roots 

and developing leaves, where photosynthesis is less active or inactive. Long-

distance sugar transport from source to sink tissue is facilitated by phloem loading 

and unloading processes through the sieve element-companion cells (SE-CC) 

complex. The allocation of carbon and regulation of source-sink transitions are 

dependent on sink strength. An increase in carbohydrate utilisation in sink tissues 

can increase sugar import and change sink strength through the regulation of the 

source-sink transitions (Roitsch et al., 1999). For instance, competition for 

common sugars occurs when the sink strength of each plant organ changes 

because of pathogen infection or due to the development of various sink organs, 

such as developing leaves and galls. Pathogen infection in sink tissues can 

increase the export of carbon from source tissues by increasing the phloem 

loading process. In contrast, pathogen infection in source tissues may alter the 

host photosynthetic process, decrease the export of carbon and decrease 

phloem loading to reduce the carbon allocation to uninfected tissues. The phloem 

loading and unloading processes in source and sink tissues respectively are 

accompanied by the activities of sugar transport and hydrolysis (Doidy et al., 

2012).  

 

However, the alteration of host metabolism and source-sink transition during 

pathogen infection are dependent on the infection phase, type of pathogen and 

mode of pathogen nutrition.  For example, in infected tissues, the absorption of 

nutrients from the host by the pathogen is dependent on the phase of infection. 

During the penetration process, the pathogen is in a state of starvation. It is 

dependent on nutrients derived from internal stores of the spore. Spores store 

valuable nutrient sources such as trehalose, glycogen, polyols, mannitol, and 

lipids (Divon and Fluhr, 2007). Once pathogens enter the host, their internal 

energy sources are exhausted. In order to absorb nutrients from the host, 

pathogens need to establish themselves rapidly by preparing a mechanism that 
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enables nutrient uptake from the host. Some pathogens such as U. maydis 

develop a haustorium structure to absorb nutrients from the host, while some 

pathogens develop mechanisms to manipulate host metabolism to establish a 

new sink tissue such as a gall.   

 

For instance, during plant interaction with the root knot nematode (Meloidogyne 

spp)  and the cyst nematode (Heterodera schachtii), both parasitic animals,  the 

pathogens form a haustoria structure and gall-like organs on their infected host, 

without destroying the infected plants. Root knot nematodes change the 

development of host phloem and xylem through the formation of giant cells in the 

central cylinder. This results in the formation of galls on plant roots (Bartlem et 

al., 2013, Fester et al., 2008).  Feeding cells of root knot nematodes contain high 

levels of proteins, glucose, glucose-6-phosphate, and ATP. Nematode-induced 

giant cells, which act as sinks for photosynthesis, express highly a sucrose 

transporter (SUC1) (Hammes et al., 2005).  Similarly, cyst nematodes induce the 

formation of syncytia in the root vascular cambium of infected plants. Syncytia 

act as a strong sink, to which sucrose is unloaded via the apoplastic route using 

the SUC2 transporter to unload sucrose into the apoplastic space between sieve 

elements and companion cells (Juergensen et al., 2003). The formation of 

phloem containing SE-CC complexes increases in nematode-infected 

Arabidopsis tissues, indicating an increase in phloem unloading processes (Hoth 

et al., 2005). Nutrients in companion cells are absorbed by nematode-induced 

syncytia through symplastic pathways (Hoth et al., 2005), which results in the 

accumulation of soluble sugars and starch (Hofmann and Grundler, 2008). Starch 

synthesis and degradation genes are highly expressed in nematode-induced 

syncytia, suggesting that starch serves as a long and short-term carbohydrate 

source to the nematode (Hofmann et al., 2008). Nematode feeding activity in 

syncytia increases the mobilization of sucrose from the shoot to infected tissues, 

as this results in the formation of a new sink tissue (Hofmann and Grundler, 

2008).  
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Some pathogens such as Agrobacterium transfer their metabolite biosynthesis 

genes into the host genome to synthesise nutrients. Crown gall tumours produce 

nutrients called opines, induced by Agrobacterium T-DNA that is integrated into 

the host genome and expressed in the plant nuclei. Opines provide a source of 

carbon, nitrogen, phosphorous and sulfur to Agrobacterium in plant tumours 

(Dessaux et al., 1993, Flores-Mireless et al., 2012). Each strain of Agrobacterium 

transfers more than one opine biosynthetic gene and different Agrobacterium 

strains transfer diverse types of opine biosynthetic genes (Flores-Mireless et al., 

2012). For instance, Agrobacterium derived opine synthase (Ocs) uses S-

methylmethionine and pyruvate as a substrate to produce opines (Flores-

Mireless et al., 2012). The Agrobacterium T-DNA, which is integrated into the 

host genome, also encodes other opine metabolism genes including those 

encoding permeases, enzymes which convert opines to digestible compounds, 

and regulatory proteins. These genes are important to control the transport of 

opines from plant tumour to Agrobacterium, and increase the efficiency of the 

uptake process (Vladimirov et al., 2015, Lang et al., 2014).  

 

Some pathogens are capable of altering carbohydrate metabolism and 

photosynthetic processes in infected leaves of the host.  For instance, white 

blister rust disease, which is caused by the biotrophic oomycete Albugo candida, 

results in the appearance of white or creamy raised pustules scattered on the 

abaxial surface of the leaves. Pustule development and opening are regulated by 

enzymatic digestion of the host epidermal cell wall (Heller and Thines, 2009). The 

pustule releases white sporangia on the adaxial surface of A. candida-infected 

leaves, and infected leaves become yellow during disease progression (Verma 

and Petrie, 1980). The A. candida genome lacks enzymes that are required for 

nitrate and sulfur assimilation (Links et al., 2011). The development of the fungal 

mycelium of A. candida is associated with a reduction in photosynthetic rate and 

the accumulation of soluble carbohydrates in the infected regions of leaves (Chou 

et al., 2000). The accumulation of soluble carbohydrate in leaves is closely 

related to the repression of photosynthetic genes. In addition, during A. candida 

infection, this accumulation of soluble carbohydrate in leaves induces cell wall 
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invertase activity. Cell wall invertase is involved in the hydrolysis of sucrose to 

hexose sugars.  The increase in cell wall invertase activity in the infected leaf 

causes a reduction of sucrose export to the other parts of the plant, and increases 

phloem unloading to the infected leaf (Chou et al., 2000) through alteration of the 

source-sink transition. Furthermore, Xanthomonas campestris, which infects 

pepper (Capsicum annuum) leaves, suppresses the host cell wall invertase to 

prevent sugar-mediated defence signalling (Sonnewald et al., 2012). This 

indicates that plant pathogens can change host metabolite flow in order to 

compete with the host for carbon sources or to avoid plant defence responses. In 

contrast with A. candida, Puccinia striiformis f. sp. triticia, an agent of stripe rust 

disease on wheat, induces the expression of the host genes related to 

photosynthesis to promote photosynthetic rate and increase the production of 

sucrose in infected leaves for its own benefit (Chang et al., 2013).   

 

Biotrophic plant pathogens obtain nutrients from the host using specific 

mechanisms to avoid a host defence response.  For example, U. maydis 

expresses a plasma membrane-localized sucrose transporter for transporting 

disaccharide sugars (SRT1) that competes with host sucrose transporters 

(Djamei and Kahmann, 2012). Similarly, U. fabae expresses the HXT1 gene, 

which is required on the haustoria plasma membrane to take up D-glucose and 

D-fructose from the host (Voegele et al., 2001). Moreover, in hemibiotrophic 

pathogens, the transition from the biotrophic to the necrotrophic phase is related 

to plant carbon source availability. For instance, witches broom disease, which 

exhibits a long biotrophic phase, disrupts the carbon cycle in the apoplast of 

infected cacao plants by increasing the activity of host cell wall invertase to 

maintain hexose levels by breaking down sucrose. Carbon depletion in the 

apoplastic space at the end of the biotrophic phase is sensed by the pathogen. 

Fungal necrotrophic effectors then stimulate senescence and plant necrosis, 

which results in a decrease in photosynthetic rate and eventually death of infected 

plants (Barau et al., 2015). Necrosis, which is stimulated in the necrotrophic 

phase in senescence-infected tissues, is required to avoid carbon remobilization 

to the other parts of the plant. Necrotrophic pathogens access the nutrients from 
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the dead cells that remain in the infected plants and infect the active growing 

tissues nearby to repeat the biotrophic phase (Barau et al., 2015).  

 

During plant infection with the necrotrophic pathogen Botrytis cinerea, the 

pathogen induces phytotoxic metabolites, oxidative burst, oxalic acid and host-

selective toxins (HST) to cause host cell death (Van Kan 2006). The accumulation 

of reactive oxygen species (ROS) and the presence of virulence factors of B. 

cinerea in grapevine (Vitis vinifera) plants induce the expression of VvSWEET4, 

a glucose transporter that is localised on the host plasma membrane (Chong et 

al., 2014). The expression of VvSWEET4 during B. cinerea infection in host plants 

enhances sugar efflux into the apoplast, which subsequently causes an 

accumulation of hexose sugars in the apoplast of plant cells. This suggests that 

sugar in the apoplast is taken up by a fungal sugar transporter which induces the 

susceptibility of host plants in response to B. cinerea (Chong et al., 2014). After 

B. cinerea takes up sugar from the host, extensive plant cell death is seen in 

infected plants. This indicates that sugar acquisition from plant cells by the 

pathogen occurs during pathogen-induced cell death. Besides, the process of 

sugar uptake by B. cinerea from plant cells does not occur in senescent leaves, 

which are present as a consequence of programmed cell death in plants (Chong 

et al., 2014). Moreover, plants that are colonized by B. cinerea have a high pectin 

content in their cell wall (Van Kan 2006). Methylated pectin of the host, which can 

be demethylated by pectin methylesterases and depolymerised by 

endopolygalacturonase of B. cinerea, is a carbon source for fungal growth (Van 

Kan 2006). Endopolygalacturonase is a type of pectinase, which is involved in 

fungal penetration into host epidermal cells.  

 

1.2. Plasmodiophora brassicae Causes Clubroot Disease 

Plasmodiophora brassicae is a soil obligate biotrophic pathogen and causes 

clubroot disease, which is a serious disease affecting the plant family 

Brassicaceae (Howard et al., 2010) including the model plant system Arabidopsis 

thaliana (Mithen and Magrath, 1992). The pathogen causes economically 

significant problems in humid and temperate areas including the United Kingdom 
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(UK) and in particular, Scotland (Dixon 2009). Elsewhere it causes major 

problems in North America, Australia and New Zealand (Dixon 2009). Clubroot 

disease mostly infects vegetable crops, including those which provide an 

essential source of vegetable oils (Canola oils, Brassica napus), that are used in 

human foodstuffs and potentially in biofuels. In Britain, Brassica crops are the 

most valuable fresh vegetables, which are grown in South West Kent, East 

Anglia, South Wales, Yorkshire, Lancashire, the Lothians and Fife (Dixon 2009). 

Formation of galls on the roots of clubroot infected plants is the main symptom 

associated with the development of the disease. The developing gall acts as a 

strong sink for carbohydrate and other nutrients. This may result in dwarfing of 

the aerial parts of plants, for example in Chinese cabbage (Ludwig-Muller and 

Schuller, 2008) and loss of oil content as in canola plants (Dixon 2009).  

 

P. brassicae is classified as a Phytomyxea supergroup of Rhizaria based on its 

ribosomal RNA gene sequence (Figure 1.3).  The groups in Rhizaria are 

composed of unicellular eukaryotic species that are difficult to maintain in 

laboratory culture. S. subterranea is a parasite of the plant genera Solanum and 

it is in the same group as P. brassicae (Burki et al., 2010). The Phytomyxea group 

is a monophyletic group of eukaryotes composed of obligate biotrophic parasites 

of green plants. Under suitable environmental conditions, pathogens that are 

categorized in this group can induce physiological changes in their host, avoid 

host defence responses and require a specific host to complete their life cycle 

(Neuhauser et al., 2011).  

 

 

Figure 1.3: Phylogeny of Rhizaria super group. A figure taken from Burki et al., (2010). 
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1.2.1 The Life Cycle of P. brassicae 

The life cycle of P. brassicae is composed of two generations and three stages: 

survival in the soil, root hair infection and cortical infection (Figure 1.4, Kageyama 

and Asano, 2009). The first stage in P. brassicae life cycle is survival in the soil 

as a resting spore. Resting spores contain 25% chitin in their cell wall (Thornton 

et al., 1991) and this composition of their cell wall allows them to survive in the 

soil for several years or even decades depending on the environment of the soil 

(Kageyama and Asano, 2009).  

 

Haploid resting spores germinate to primary zoospores in the presence of a 

compatible or a non-compatible host, and other germination factors such as a soil 

temperature of 15 oC and a soil pH of 6.0 – 6.4 assist in triggering the expression 

of pathogen serine protease protein (Feng et al., 2010, Webster and Dixon, 

1991). The expression of serine protease stimulates the secretion of root 

exudates from plant root hairs and acts as an initial signal for P. brassicae resting 

spore germination (Feng et al., 2010). Primary zoospores can only survive for a 

limited time in the absence of a compatible or non-compatible host (Suzuki et al., 

1992, Takahashi, 1994).  

 

The second stage of the P. brassicae life cycle is root hair infection, also known 

as primary infection. At this stage, motile primary zoospores attach to the root 

hair surface and form cysts to produce tubular structures, which consist of a 

projectile-like structure to assist in the penetration of host cell walls (Ludwig-

Muller and Schuller, 2008). P. brassicae injects a small spherical amoeba from 

their cell contents into the host root hairs. This amoeba enlarges, propagates and 

develops to a primary multinucleate plasmodium inside the host root hair. The 

primary multinucleate plasmodium cleaves to form zoosporangia in a 

membranous envelope and releases secondary zoospores into the soil to re-

infect plant root hairs and either repeat the zoosporangia stage or continue to 

cortical infection in the main root tissues (Naiki et al., 1984, Kageyama and 

Asano, 2009). Re-infection of root hairs by secondary zoospores causes the  
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Figure 1.4 Life cycle of Plasmodiophora brassicae. Root hairs (RH), zoospores (ZS), primary plasmodium (PP), binucleate plasmodium (BP), 
multinucleate secondary plasmodium (PL), sporulating plasmodium (SP) and resting spores (RS). Figure taken from Ludwig-Muller and Schuller (2008). 
A, Primary infection in hairy root of Brassica napus plants. B, Small gall formation in root of B. napus plants. Figure taken from Graveland et al., (1992).  
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presence of various developmental stages of P. brassicae afterwards. Secondary 

zoospores can also move from root hairs to the main root and hypocotyl tissues 

through the xylem and continue to cortical infection.  

 

In the cortical infection stage, P. brassicae infection either by diploid or haploid 

secondary zoospores, lead to gall formation. A diploid secondary zoospore is 

formed by the fusion of two haploid secondary zoospores (Tommerup and Ingram 

1971; Ludwig-Muller and Schuller, 2008). However, there is a lack of evidence 

on the existence of diploid secondary zoospores. Most evidence shows that all 

the secondary zoospores with a size between 9.6 to 14.4 µM are present in a 

uninucleate form during cortical infection (McDonald et al., 2014, Schwelm et al., 

2015).  In this stage, secondary zoospores infect host cortical tissues, develop 

into a binucleate secondary plasmodium and spread within the host cortical 

tissues by mitosis (Tommerup and Ingram, 1971). Then plasmodia develop into 

a new generation of resting spores (Kageyama and Asano, 2009). 

 

Disintegration of clubroot galls releases a second generation of resting spores 

into the soil to complete the pathogen’s life cycle (Tommerup and Ingram, 1971, 

Kageyama and Asano, 2009). Populations of long-lived spores are increased 

when the host is repeatedly grown in the infected soil and this may increase 

disease severity in host crops (Faggian and Strelkov, 2009).   

 

1.2.2 How does P. brassicae Alter Host Development? 

Similarly to R. fascians, P. brassicae reprograms host cortical cell division of 

existing meristems which leads to the formation of clubroot galls (Malinowski et 

al., 2012). This contrasts with the findings of Devos et al. (2006), who suggest 

that gall formation occurs through de novo meristem formation. Besides, the 

reprogramming of existing host meristems infected by P. brassicae is similar to 

that seen in plants infected with root-knot nematodes and cyst nematodes. Both 

pathogens manipulate the host vascular cambium by increasing the number of 

phloem cells in order to obtain nutrients from the host.  
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During primary infection, primary zoospores attach to root hairs of B. rapa or to 

the root epidermal cell wall 18 hours after inoculation (Tommerup and Ingram, 

1971). Then, primary zoospores penetrate the cell walls and develop to primary 

plasmodia inside the host cytoplasm. Six days post inoculation (DPI), plasmodia 

enlarge and the number of nuclei increase inside numerous root hairs. At 8 DPI, 

a new generation of resting spores are released during sporogenesis (Tommerup 

and Ingram, 1971). The secondary stage of infection is associated with the 

development of gall formation. During cortical infection, infected roots of B. napus 

show some swelling and disruption of the two layers of cells between the root 

cortex and stele at 21 DPI. The breakdown of the root cortex and cellular division 

and cell expansion within the root stele occur in sections of B. napus root tissue 

infected with P. brassicae at 28 DPI. After 35 DPI, infected roots of B. napus show 

the development of small galls with extensive thickening (Graveland et al., 1992).  

Extensive cell division, but little cell expansion occurs at several places within the 

galls. Meanwhile, extensive cell division within the stele and the breakdown of 

cortical cells are seen in sections of thickened roots of B. napus infected with P. 

brassicae, suggesting that P. brassicae moves from the epidermal cells to the 

stele (Graveland et al., 1992).  

 

In A. thaliana plants, primary infection occurs in a similar manner to other 

Brassica plants (Mithen and Magrath, 1992). Primary infection occurs in primary 

and secondary roots of A. thaliana at 10 DPI. At this stage, sections of A. thaliana 

roots containing plasmodia show the presence of cell wall breakage due to the 

movement of plasmodia between cells (Mithen and Magrath, 1992). During 

cortical infection, galls develop on primary, secondary and lateral roots, but most 

predominantly in hypocotyl tissue at 21 DPI (Mithen and Magrath, 1992). At this 

stage, hypocotyl sections show extensive cell division and disorganization of cell 

structure within infected tissues (Mithen and Magrath, 1992). In uninfected A. 

thaliana plants, cell division is stimulated at the onset of secondary hypocotyl 

thickening in the continuous ring of vascular cambium. However, in infected 

plants, the continuous ring of vascular cambium is disrupted through the 

presence of swollen host cells (Malinowski et al., 2012). Swollen host cells 



 

 

17 
 

contain secondary plasmodia and a new generation of resting spores at late 

stages of infection. Extensive cell division occurs in the discontinuous vascular 

cambium in infected tissue and outside the vascular cambium, especially in 

phloem parenchyma cells (Malinowski et al., 2012). The extensive cell division 

and cell expansion lead to the development of galls in infected hypocotyl tissues 

of A. thaliana plants (Mithen and Magrath, 1992). 

 

During secondary hypocotyl thickening in uninfected plants, the expression of 

AINTEGUMENTA (ANT), which is used as a marker for meristematic activity, is 

reduced in the proliferating area of vascular cambium cells that are ready to stop 

dividing. The reduction of meristematic activity triggers vascular differentiation. 

Cells which are located on the inner side of the continuous ring of vascular 

cambium differentiate into xylem parenchyma and mature xylem cells. Vascular 

cambium cells, which are located on the opposite side of the xylem, differentiate 

into phloem parenchyma and phloem bundles.  Following P. brassicae infection, 

ANT promoter activity is extended into the proliferating area of vascular cambium 

and phloem parenchyma to inhibit those cells from exiting the cell cycle 

(Malinowski et al., 2012). As a consequence, in P. brassicae-infected plants, the 

vascular differentiation process is disturbed due to pathogen colonization. 

Infected hypocotyl tissues show a reduction in the formation of xylem cells. The 

development of gall formation is associated with the reduction of xylogenesis in 

vascular differentiation cells. However, the formation of immature xylem cells or 

xylem parenchyma cells is similar between uninfected and infected hypocotyl 

tissues. In contrast, the formation of phloem parenchyma cells and phloem 

bundles is increased. Besides, the expression of genes associated with phloem 

development and of the sucrose H+ symporter, which are specifically expressed 

in phloem cells, is increased at the onset of gall formation and at the late gall 

formation stage in infected tissue (Malinowski et al., 2012).  

 

The alteration of plant development by P. brassicae seems to be associated with 

their strategy to absorb nutrients from the host’s living cells. The increase in 

phloem parenchyma and phloem bundles may increase sink strength during 
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clubroot gall formation. Figure 1.5 shows a cellular model of changes in vascular 

system differentiation in hypocotyl tissues of A. thaliana plants in response to P. 

brassicae infection. In uninfected plants, proliferated vascular cambium cells 

differentiate to form phloem and matured xylem. However, in infected plants, the 

number of proliferated vascular cambium cells is increased. In addition, the 

number of phloem cells is increased, but the number of mature xylem cells is 

reduced (Figure 1.5).  

 

 

 

Figure 1.5. A cellular model of plant development alterations in response to P. brassicae infection. 
Figure taken from Malinowski et al., (2012).  
 

 

1.2.3 The Role of Plant Growth Regulators in P. brassicae-infected Plants  

The development of disease symptoms in infected plants is closely related to 

alterations in hormone metabolism, such as cytokinin, auxin, and brassinosteroid 

metabolism. There are various types of cytokinins in plants that are classified by 

the configuration of their N6-side chain, either as isoprenoid or aromatic (Mok and 

Mok, 2001). Isoprenoid cytokinins are N6-(Δ2-isopentenyl)-adenine (iP), trans-

zeatin (tZ), cis-zeatin (cZ) and dihydrozeatin (DZ). Figure 1.6 shows a model of 

cytokinin biosynthesis in plants to synthesise active cytokinins forms iP, tZ, DZ 

and cZ.  
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Figure 1.6. A model for cytokinin biosynthesis in plants. In this model, active cytokinins 
isopentenyladenine (iP) is directly synthesised through DMAPP and trans-zeatin is synthesised 
through HMBDP substrate with AMP or ATP/AMP as an additional substrate. Cis-zeatin is derived 
from DMAPP and tRNA. Figure taken from Sakakibara (2006).  
 

 

In cytokinin biosynthesis, isoprenoid side chains of iP and tZ are derived from the 

methylerythritol phosphate (MEP) pathway, while the cZ isoprenoid side chain 

originates from the mevalonate (MVA) pathway (Sakakibara 2006). Synthesis of 

iP and tZ starts when the isopentenyl group of dimethylalyl diphosphate (DMAPP) 

or hydroxymethylbutenyl diphosphate (HMBDP) is transferred  to the N6 of AMP, 

ADP or ATP  through the activity of adenosine-phosphate isopentenyltransferase 

(IPT).  Meanwhile, the synthesis of  cZ is derived from the reaction of IPT activity 

with DMAPP and tRNA.  The occurrence of cZ or tZ in plants depends upon the 

substrate specificities of IPT genes and is species specific. The major active 

cytokinins present in Arabidopsis plant are tZ and iP with very low amounts of cZ 

(Sakakibara 2006). Meanwhile cZ is reported to be present in chickpea (Cicer 

arietinum L. cultivar kaniva) (Emery et al., 1998) and maize (Zea mays) 
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(Yonekura-Sakakibara et al., 2004). In A. thaliana plants, cytokinin biosynthesis 

occurs as a result of the activity of IPT1, 3, 4-8 which are ATP/ADP IPTs as well 

as IPT2 and IPT 9 which are tRNA IPTs (Miyawaki et al. 2006).  

 

Several studies demonstrate the accumulation of cytokinins in root tissues of P. 

brassicae-infected plants (Dekhuijzen and Overeem, 1971, Dekhuijzen 1981, 

Devos et al. 2005) . This is said to induce local abnormal cell division in P. 

brassicae-infected tissues, which leads to the gall formation. Extracts of clubroot-

infected turnips species contain cytokinins at three times the concentration of 

healthy turnips. The cytokinin in this tissue extract is believed to be involved in 

controlling cell division of both host and pathogen (Dekhuijzen and Overeem, 

1971, Dekhuijzen 1981). It has been suggested that young plasmodia can directly 

synthesise low amounts of trans-zeatin (Muller and Hilgenberg, 1986). Muller and 

Hilgenberg (1986) demonstrate the uptake of labelled adenine and the 

conversion of adenine to trans-zeatin by plasmodia. Zeatin, which is the 

predominant active cytokinin in Chinese cabbage plants species, is decreased in 

infected tissues at 6, 13 and 21 DPI  (Devos et al. 2005). The occurrence of zeatin 

in Chinese cabbage plants  was not distinguished by Devos et al. (2005), and 

could be present as either cis or trans isomers. In addition, zeatin riboside (ZR) 

is decreased at those times (Devos et al. 2005). In Arabidopsis, iP adenine 

concentration is two times higher in P. brassicae-infected tissue compared with 

uninfected tissue. The occurrence of isopentenyl adenosine (iPA) which could not 

be detected in uninfected tissues, occurred in measureable amounts in infected 

plants at 4 DPI (Devos et al. 2006). This is an unusual concentration for what 

would normally be relatively abundant compounds in Arabidopsis plants. Beside 

the concentration of zeatin, which is not distinguished between cis and trans-

isomers, is not significantly different between uninfected and infected plants at 

the very early stages of P. brassicae infection (4 DPI). Therefore, improved 

microanalytical techniques are required to obtain precise quantification of 

cytokinins in milligram amount of tissue (Malinowski et al., 2016).  Devos et al. 

(2006) suggests the increase of iP and iPA in infected root tissue at very early 

stages of infection correlates with the increase of cell division which results in de 
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novo biosynthesis of new meristem that leading to gall formation.  It has been 

assumed that iP and iPA are originated from P. brassicae.  

 

It has been shown that cytokinins are necessary for vascular cambium formation 

since deletion IPT1,3,5,7 genes stops the secondary thickening process in 

hypocotyl of A. thaliana plants (Miyawaki et al., 2006). In infected A. thaliana 

plants, gall formation occurs as a result of a reprogramming of the meristem, and 

not via de novo meristem formation. Blocking host vascular cambium activity 

through expression of the cell cycle inhibitor ICK1/KRP1 during secondary 

thickening leading to reduce gall size does not stop the development of P. 

brassicae (Malinowski et al. 2012). Inactivation of host iP and tZ biosynthesis in 

ipt1,3,5,7 mutant abolish vascular cambium development in uninfected plants. 

When infected, no additional cell division occurs but cell expansion and lack of 

differentiation is still evident. Also plasmodia development is slowed. It is likely P. 

brassicae development is dependent on host cytokinins. Cytokinins iP and tZ are 

significantly lower in infected A. thaliana plants compared with uninfected plants 

at 16 DPI when the gall is initiated and 26 DPI when a large gall has developed 

in the hypocotyl and upper roots of infected plants.  The reduction of iP and tZ 

concentration in infected tissue is consistent with the down regulation of host 

gene expression associated with cytokinin biosynthesis at 16 and 26 DPI 

(Malinowski et al., 2016).  

 

It has been reported that the isopentenyl-transferase (IPTs) genes are present in 

the P. brassicae genome (Schwelm et al., 2015). However, the substrate and the 

product of P. brassicae IPT genes remains unclear and needs to be explored 

(Malinowski et al., 2016). Malinowski et al. (2016) reported that P. brassicae has 

the biosynthetic pathways for synthesis of isopentenyl pyrophosphate from acetyl 

CoA via MVA pathway and the conversion of this compound to DMAPP through 

isopentenyldiphosphate-delta-isomerase. Genes involved in this biosynthetic 

process are expressed during gall formation. In the A. thaliana quadruple mutant 

ipt 1,3,5,7, deficient in host cytokinin biosynthesis, the expression of cytokinin-

responsive genes ARR4, ARR5, ARR6 and ARR7 is elevated in response to P. 
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brassicae infection. This suggests that expression of these genes occurs as a 

cytokinin response resulting from the occurrence of a small amount of P. 

brassicae-derived cytokinin. However, cytokinin originated from P. brassiace is 

not enough to trigger the formation of the vascular cambium in host plants  

(Malinowski et al. 2016).  

 

In cytokinin signal transduction, three cytokinin receptor proteins have been 

identified in A. thaliana plants including AHK2, AHK3 and AHK4 (Heyl and 

Schmulling, 2003). These receptor proteins transduce signals to activate 

Arabidopsis response regulator (ARR) proteins to activate plant defence 

responses and regulate source/sink relations, and are correlated in various plant 

developmental processes including cell division (Heyl and Schmulling 2003, Choi 

et al., 2011, Roitsch and Ehness, 2000). The expression of the ARR5 gene is 

closely correlated with cytokinin content. Siemens et al., (2006) reported that the 

expression of GUS under the ARR5 promoter is increased in infected roots.  

Devos et al. (2006) reported an increase of ARR5::GUS expression at very early 

infection stages consistent with the occurrence of iP and IPA which suggested 

that these originated from P. brassicae. Malinowski et al. (2016) on the other 

hands reported that ARR5::GFP expression in infected tissue is ≤ that observed 

in uninfected tissue at the onset and during late gall formation, when the 

secondary thickening process occurs and is consistent with the transcriptomic 

data in that study. It has been suggested that repression of ARR5 reflects the 

repression of genes associated with cytokinin metabolism. In uninfected plants, 

ARR5::GFP is expressed in growing primary root tips and tissues undergoing 

secondary thickening. Cross sections of hypocotyl tissue specifically shows that 

this gene is localised in phloem bundles exterior the continuous ring of vascular 

cambium. Expression of ARR5 gene is closely associated with phloem 

development as phloem is a rich source of transported cytokinin. This gene is 

repressed when gall formation is initiated at 16 DPI (Malinowski et al., 2016).  

 

Metabolic regulation of cytokinins content occurs through irreversible cleavage of 

the N6 side chain of isoprenoid cytokinins including cis-zeatin, cytokinin 9-
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glucoside, through cytokinin oxidase (CKX) activity (Spichal 2012). Following P. 

brassicae infection, the A. thaliana genes CKX1 and CKX6 are down-regulated 

in infected roots before clubroot symptoms become apparent and in the presence 

of gall formation (Siemens et al., 2006), specifically in cells containing large 

plasmodia (Schuller et al., 2014). GUS under the CKX1 promoter is expressed in 

specific root tissues. The expression of GUS under CKX1 promoter activity is 

reduced during early infection, but not observed at late infection especially at 

branching points of root tissue (Siemens et al., 2006). Meanwhile, GUS under 

CKX6 promoter activity, which is predominantly expressed in the whole root-

vascular cylinder of uninfected plants, is reduced in infected root tissue at early 

stages of infection and the stained cells are irregular at late stages of infection 

(Siemens et al., 2006). The overexpression of host CKX genes in P. brassicae-

infected A. thaliana plants is correlated with reduced cytokinins content, 

increased disease tolerance, with the formation of tiny clubroot galls observed, 

possibly due to the degradation of pathogen cytokinins (Siemens et al., 2006). 

The down-regulation of  CKX1 and CKX6 genes are consistent with those 

reported by Malinowski et al. (2016). However, they suggest that cytokinin 

oxidase reducing cytokinin content in infected tissue which leads to a reduction 

in vascular cambium development and small galls. Therefore, manipulation of 

host cytokinins metabolism slows P. brassicae development whereas other 

changes to vascular  cambium activity would not be effective to slow the P. 

brassicae development (Malinowski et al., 2012, 2016).     

 

Generally Chinese cabbage plants contain higher levels of free indole-3-acetic 

acid (IAA) in response to P. brassicae infection when compared with uninfected 

plants (Ludwig-Muller et al., 1993, Raa 1971). It has been suggested that the 

increase in the level of IAA within infected cells is most likely due to a change in 

the balance between synthesis and degradation in clubroot galls (Raa 1971).  The 

accumulation of auxin in P. brassicae-infected tissue is demonstrated by the up-

regulation of the auxin related gene nitrilase I (NTI1) during the colonization 

process and the upregulation of NTI2 during the maturation of pathogen spores 

(Siemens et al., 2006). A lack of NIT1 gene in infected plants contributes to a 
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smaller gall formation (Grsic-Raush et al., 2000). This suggests that loss of NIT 

gene which is important at early P. brassicae infection  could reduce the size of 

gall formation. Meanwhile, NTI2 and another auxin biosynthesis gene, CYP79B2 

are up-regulated in infected cells containing large plasmodia (Schuller et al., 

2014). The up regulation of NIT2 is found in infected cells containing sporulating 

plasmodia (Grsic-Rausch et al., 2000), which indicates that auxin is involved in 

the cell enlargement required to develop a gall at the late stages of P. brassicae 

infection. In addition, GUS coupled to the synthetic DR5 auxin response element 

in transgenic A. thaliana plants clearly shows a high signal along the cell layers 

of the hypocotyl tissue, especially near gall formation (Devos et al., 2006).  In 

uninfected plants, DR5: GUS is expressed in the plant meristematic area and in 

vascular tissues (Devos et al., 2006). GUS under control of the DR5 auxin 

response element is predominantly expressed in the epidermis cells of infected 

roots. Auxin resistant mutant alh1, which defects at the site of auxin transport, 

shows three times lower infection ratio than wild type in response to P. brassicae 

infection indicating IAA from the host not able to extend to the site of infection 

(Devos et al., 2006). However, clubroot symptom progression in alh1 mutants is 

similar to wild types with the evident hypocotyl size two times larger than 

uninfected mutant plants.    

 

P. brassicae genomic analysis reveals the presence of the auxin-responsive 

Gretchen Hagen 3 (GH3) protein, which helps to maintain hormonal balance in 

biological systems by binding plant hormones to amino acids (Schwelm et al., 

2015). Meanwhile, host genes that encode GH3 proteins are predominantly up-

regulated in P. brassicae-infected tissue (Siemens et al., 2006). It seems like both 

pathogen and host are responding to auxin accumulation and competing between 

each other with different aims. Pathogens respond to auxin by inducing abnormal 

host cell division and cell expansion to enable colonization, while hosts respond 

to auxin to activate their defence systems.  However, the mechanism of how 

auxin plays a role in plant defence during clubroot infection is not fully understood 

and requires further exploration.  
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The plant hormone Brassinosteroid (BR) has been reported to be involved in the 

alteration of plant development during P. brassicae infection (Schuller et al., 

2014). Most genes associate with BR biosynthesis and signalling pathways are 

up-regulated in root tissues of P. brassicae-infected A. thaliana plants, which 

indicates that these genes play a role in clubroot development (Schuller et al., 

2014).  It has been demonstrated that inhibiting the BR synthesis pathway using 

the inhibitor propiconazole reduces the size of galls in P. brassicae-infected 

plants, which increases disease tolerance towards P. brassicae infection 

(Schuller et al., 2014). Besides, br1-6 mutant plants, which have a deletion in a 

BR signalling component, show a lower disease severity with a reduction of gall 

size compared to wild type plants. Upon infection, genes involved in 

brassinosteroid metabolism and degradation are either down-regulated or not 

regulated at all, except BAS1 which is strongly up-regulated in infected root 

tissues.  BAS1 degrades brassinolide, a brassinosteroid active compound 

(Schuller et al., 2014).  

 

It has been suggested that BR is involved in xylem formation through the BR-

related transcription factors VND6 and VND7 (Schuller et al., 2014). Both genes 

are down-regulated in P. brassicae-infected plants, which indicates the reduction 

of xylogenesis during gall development (Schuller et al., 2014, Malinowski et al., 

2012). Malinowski et al., (2012) demonstrated that disrupting meristematic 

activity in the vascular cambium during gall development can reduce the gall size 

in P. brassicae-infected plants. Moreover, BR is suggested to be involved in 

abnormal cell expansion, which leads to clubroot gall formation, together with 

auxin (Schuller et al., 2014). BR induces the transcription factor ARF, which is 

involved in the activation of auxin-responsive genes. It has been suggested that 

PP2A, which is a BR signalling regulator, triggers the inactivation of the ARF2 

repressor resulting in auxin-dependent gene expression via the positive regulator 

ARF. The ARF2 repressor inhibits auxin-dependent gene expression by binding 

to auxin-response elements in the promoter of BR/auxin related genes (Schuller 

et al., 2014).  
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1.2.4. How Does the Host Respond to P. brassicae Infection? 

Plants have a complex and multi-layered defence system. Successful 

colonization indicates that P. brassicae can avoid host defence responses in 

multiple ways. During primary infection, the host starts to recognize P. brassicae 

as an unwanted visitor and induces its chemical and molecular defences 

(McDonald et al., 2014, Ludwig-Muller et al., 2015). In incompatible interactions 

between A. thaliana plants and P. brassicae infection, host cells necrosis occurs 

which results in small nodules and tiny swelling in infected plants (Kobelt et al. 

2000). The resistant A. thaliana plants to P. brassicae restrict the pathogen 

growth (Kobelt et al., 2000). In compatible interactions on the other hand, P. 

brassicae can induce its effector proteins to suppress the host defence response 

(McDonald et al., 2014). It has been predicted that the P. brassicae genome 

contains 553 secreted proteins, expressed at different stages of development 

(Schwelm et al., 2015). These secreted proteins could potentially be effectors to 

suppress host defence responses. For instances, Ludwig-Muller et al. (2014) 

discovered P. brassicae secrets the methytransferase (PbBSMT) enzyme to 

modify host salicylate acid (SA), which is involved in plant defence.  

 

The ability of P. brassicae to enter and colonize host tissues is also dependent 

on their strategy to avoid plant defence systems and re-channel plant metabolites 

for their requirements.  Putrescine, spermidine and spermine polyamines are 

increased in the infected regions of B. rapa roots and in susceptible A. thaliana 

Col-0 plants  (Walters and Shuttleton, 1985, Jubault et al., 2008). It has been 

suggested that P. brassicae induces the synthesis of these polyamines in  

susceptible plants as part of their strategy for colonization (Jubault et al., 2008). 

During cortical infection, P. brassicae re-channels the catabolism of the amino 

acid arginine by increasing the production of polyamines, increasing the 

metabolic flux from the degradation of arginine to ornithine, glutamate and 

proline, and inhibits the synthesis of nitrogen oxide in order to inactivate host 

mediated host defence (Jubault et al., 2008, Wagner et al., 2012). In contrast, 

root tissues of partially resistant A. thaliana Bur-0 plants, which show slow 

disease development upon P. brassicae infection, contain less of the amino acid 
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proline, accompanied by low arginase activity, and contain a high accumulation 

of agmatine. Agmatine is decarboxylated arginine as well as an initial compound 

in the synthesis of polyamines (Jubault et al., 2008). It seems that proline may be 

a source of nitrogen for secondary development of P. brassicae while arginine 

may be a compound which increases resistance in plants to P. brassicae 

infection. 

 

During gall formation, a plant triggers its plant defence systems in response to P. 

brassicae cortical infection. Several studies have demonstrated changes in 

metabolites that are involve in plant defence in infected plants. Pedras et al. 

(2008) showed that phytoalexins and phytoanticipins, which are involved in 

antimicrobial and constitutive defence, are changed in roots of oilseed rape 

(Brassica napus) infected with P. brassicae. For instance, the phytoanticipin 

indolyl-3-acetonitrilase is increased in infected plants at the early stage of cortical 

infection, while indolyl glucosinolate is decreased at the late stage. The 

phytoalexins brassicanal and brassilexin are produced at later stages of infection 

in oilseed canola infected with P. brassicae (Pedras et al., 2008). However, there 

is a lack of information on how these metabolites are involved in plant defence 

during P. brassicae infection. Defence metabolites might be produced in 

uninfected cells of infected tissues to prevent the spreading of the pathogen, or 

they may be transported out of uninfected cells to infected cells.  

 

Camalexin, which is a primary phytoalexin that is involved in A. thaliana plant 

defence, is increased in infected A. thaliana Bur-0 plants indicating that this 

compound is correlated to disease development upon P. brassicae infection 

(Lemarie et al., 2015).  It has been suggested that camalexin biosynthesis is 

involved in the second layer of defence and could be a potential resistance factor 

in plants upon P. brassicae infection. Moreover, in P. brassicae susceptible A. 

thaliana plants, camalexin is decreased upon infection (Lemarie et al., 2015). It 

seems like P. brassicae suppresses this plant defence reaction during the 

infection interaction, but how this happens is not yet fully understood. In contrast, 

Siemens et al., (2008) reported that camalexin is increased in A. thaliana root 
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galls which suggests that camalexin does not influence the development of 

clubroot disease in A. thaliana plants (Siemens et al., 2008).  

 

Indole glucosinolates are also suggested to be involved in plant defence. Chinese 

cabbage and A. thaliana plants that are susceptible to P. brassicae infection 

contain high concentrations of indole glucosinolates in their infected tissues 

(Ludwig-Muller et al., 1993, 1999b). However, it has also been suggested that 

cruciferous plants are suitable hosts to P. brassicae due to the presence of large 

quantities of indole glucosinolates in their vacuoles. P. brassicae infection causes 

cell damage and subsequently triggers the release of indole glucosinolates from 

the vacuole into the cytoplasm (Ludwig-Muller et al., 1999a). However, it has 

been reported that indole glucosinolate does not influence the development of 

clubroot disease in A. thaliana plants (Siemens et al., 2008). 

Flavonoids such as naringenin, quercetin and kaempferol are also accumulated 

in root galls of P. brassicae-infected A. thaliana plants (Paesold et al., 2010). In 

addition, genes associated with flavonoids biosynthesis are up-regulated before 

and after the presence of clubroot galls. Flavonoid compounds are not involved 

in plant defence, since the deletion of flavonoid biosynthesis genes causes 

tolerance, with the formation of smaller galls in mutant plants observed (Paesold 

et al., 2010). Application of prehexadiane-calcium (PRoCa), an inhibitor of 

flavonoid synthesis, can reduce the abundance of the flavonols quercetin and 

kaempferol in clubroot infected plants (Paesold and Ludwig-Muller, 2013). P. 

brassicae-infected plants with PRoCa treatment develop better root systems, 

although galls are still visible (Paesold and Ludwig-Muller, 2013).  

 

However, flavonoids are not involved directly in clubroot development. It has been 

suggested that the role of flavonoids in P. brassicae infection is related to the 

distribution of auxin in the root system. Flavonoids inhibit auxin transport by 

modifying auxin efflux carriers (Paesold et al., 2010). Mutant lines with deletions 

in flavonoid synthesis genes including tt4, tt5 and tt6 have a similar auxin 

concentration to wild type plants. It has been demonstrated using IAA:GUS 

transgenic plants that application of flavonoids can cause an accumulation of 
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auxin in the infected cells containing plasmodia (Paesold et al., 2010). However, 

in the absence of flavonoids, auxin is distributed to the whole root system which 

subsequently reduces the size of gall formation in P. brassicae-infected root 

tissues (Paesold et al., 2010).  

 

1.2.5 The Role of Plant Hormones in Defence against P. brassicae Infection 

Several studies also demonstrate the alteration of the metabolism of salicylic acid 

(SA) during P. brassicae infection. SA is reported to be involved in promoting the 

expression of pathogenesis related genes PR-1 and PR-2 during the host 

acquired resistance (SAR) response. It accumulates in the root and leaves of P. 

brassicae-infected A. thaliana plants, particularly at the late stages of infection. 

At this stage, P. brassicae-infected plants exhibit stunted phenotypes (Ludwig-

Muller et al., 2015). Application of exogenous SA to root tissues of P. brassicae-

infected B. oleracea plants results in reduced gall size (Lovelock et al., 2013). 

This suggests that SA is a phytohormone that can potentially enhance plant 

resistance to P. brassicae infection (Lovelock et al., 2013). In contrast, the activity 

of SA in root tissues of P. brassicae-infected plants might be suppressed by the 

production of methylated SA (MeSA) by P. brassicae (Ludwig-Muller et al., 2015). 

Host deficiency in the production of MeSA (inactive SA) does not alter the 

development of gall formation. Ludwig-Muller et al. (2015) discovered that P. 

brassicae can modify SA through secreting its methytransferase (PbBSMT) 

enzyme. PbBSMT modifies host SA into MeSA in root tissues. MeSA in root 

tissues is transported to leaves of infected plants and converted back to active 

SA by host MeSA esterase to trigger the SAR response.   

 

Although ethylene (ET) does not appear to have a direct role in defence 

responses to P. brassicae infection, alteration in ET signalling have been 

implicated in disease development. The role of ET in plants during P. brassicae 

infection can be explored using ET biosynthesis pathway, ET signalling and ET 

response genes. During P. brassicae infection, the ET precursor 

aminocyclopropane-1-carboxylic acid (ACC) is decreased due to the upregulation 

of ACC oxidase to release ET, both when the gall is not present and when the 
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gall is present (Knaust and Ludwig-Muller, 2013). This suggests that ET is 

accumulated in infected plants due to the high expression of ACC oxidase. Genes 

associated with ET signalling are clearly down-regulated in the presence of gall 

formation.  In the ET signalling pathway, deletion of ETO2 genes causes 

overexpression of ET biosynthesis genes which reduces the size of galls but does 

not increase the tolerance against P. brassicae infection because the galls are 

present in the whole root tissue, despite the fact that they are smaller (Knaust 

and Ludwig-Muller, 2013). Meanwhile, deletions in ET receptors (etr1 and ein4) 

or positive regulators of ET response genes (ein2 and ein3) increase the 

susceptibility of A. thaliana plants towards P. brassicae infection with the 

presence of more pathogen structures within the root than in wild type plant, with 

various sizes of galls observed. This suggests that ET signalling is required to 

restrict gall growth in hosts susceptible to P. brassicae infection (Knaust and 

Ludwig-Muller, 2013).  

 

The ET signaling pathway is more related to plant development by promoting 

radial growth in Arabidopsis (Etchells et al. 2012). Overproducing ET in eto1 

mutant shows an early onset of secondary growth in vascular cambium cell 

division through high expression of ET responsive genes ERF109 and ERF108 

(ET response factor), which results in larger vascular bundles when compared 

with wild type plants. ET responsive genes ERF109 and ERF108 act in promoting 

cell division in vascular bundles during primary and secondary plant growth 

(Etchells et al. 2012). This is not in agreement with the involvement of ET 

pathways in reduction of gall size in P. brassicae-infected eto1 mutants.  

 

The ein2 mutant which has a complete loss of ET signalling, does not show a 

reduction in vascular cell number which indicates that ET signaling and ET 

responsive genes act differently in vascular tissue (Etchells et al., 2012). EIN2 

has been demonstrated to enhance cell division in mutants with defects in the 

receptor kinase PXY (Phloem Intercalated with Xylem), which acts to repress the 

ET/ERF pathway by binding to peptide derived from ESR-like, CLE41 and 

CLE44.  CLE41 promotes cell division in vascular cambium. However, pxy 
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mutants show no evidence of an increase in vascular cells, but rather shows a 

small reduction in vascular cell number.  The pxy, ein2 double mutant shows 

evidence of a reduction in vascular cell numbers compared with the single 

mutants. However, pxy and ein2 single mutants are similar to wild types, 

indicating that EIN2 maintains vascular tissue in the pxy mutant (Etchells et al., 

2012). This suggests that ET/ERF signaling could be an alternative of 

PXY/CLE41 pathway to promote cell division in vascular cambium of A. thaliana 

plants.  

 

EIN5 on the other hand, is involved in mRNA decay. Vascular cell division in the 

ein5 mutant is similar to wild type. The pxy ein5 double mutant shows a reduction 

in vascular cell division similar to pxy erf109 and pxy erf108 double mutants 

(Etchells et al., 2012). The ein5 mutant shows a reduction in EIN3 accumulation 

and results in accumulation of EBF1 and EBF 2. This suggests that EIN5 

destabilizes EIN3 family transcription factors in wild type plants to inhibit EIN3 

degradation and induce ET responsive genes. The ein5 mutant shows a 

tolerance response following P. brassicae infection with a small gall size 

compared with wild type plants (Akhtar 2014). This may suggest that the activity 

of cell division in vascular cambium of P. brassicae-infected plants which leads 

to gall formation is reduced in ein5 mutants. Figure 1.7 shows a model for the 

regulation of ET and PXY signalling act in aligned  pathway in vascular 

development. These two signalling pathways are associated with regulation of 

ERF transcription factors which is involved in controlling the number of vascular 

cell divisions (Figure 1.7).  

 

1.2.6 How does P. brassicae Manipulate Host Metabolism? 

As a biotrophic pathogen, P. brassicae is dependent on the host for its nutrients. 

However, during the germination and penetration phase, P. brassicae survives 

using nutrients that are stored in their resting spores, such as trehalose and lipids. 

Trehalose is hydrolysed into glucose by germinated spores of P. brassicae, and 

used as an energy source to support the germination process (Schwelm et al., 

2015).  
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Figure 1.7. A model of ethylene and PXY signalling act in aligned pathway in vascular 
development Figure taken from Etchells et al. (2012).  

 

In addition, genes involved in converting lipids to energy are highly expressed in 

germinating spores (Schwelm et al., 2015). Moreover, the development of P. 

brassicae inside host tissues causes an accumulation of lipids, amino acids, 

sugar and starch, and these metabolites are strongly associated with the 

enlargement of clubroot galls (Williams et al., 1968). The concentration of starch 

in gall tissues is associated with the activity of host enzymes involved in the 

synthesis and degradation of starch (Keen and Williams, 1969). During 

vegetative growth of P. brassicae, the activity of starch synthetic enzymes is 

increased, followed by the accumulation of starch in the hypocotyl tissues. A high 

specific activity of alpha-amylase occurs in isolated plasmodia (Keen and 

Williams, 1969).  This indicates that a high metabolic activity is present in infected 

root tissues. This activity increases the mobilization of energy sources from shoot 

to root, which results in newly formed sink tissue. Besides, in clubroot-infected 
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plants, there are massive transport flows of sucrose through the phloem to sink 

tissues (Keen and Williams, 1968). Meanwhile, rates of photosynthesis in leaves 

of P. brassicae-infected plants are not different to those of uninfected plants, but 

carbohydrate content is low due to the export of carbohydrate from the leaves to 

the developing gall (Evans and Scholes, 1996).  

 

During sporogenesis, starch synthetic enzymes are down regulated and starch 

degradation enzymes are up regulated. During sporogenesis, starch and sugar 

concentrations decrease at late gall formation, specifically in host cell cytoplasm 

that contains a new generation of P. brassicae resting spores (Williams et al., 

1968). This indicates that starch and sugars are taken up by the pathogen directly 

or indirectly, which subsequently causes a lower concentration of these 

metabolites during sporogenesis and a higher accumulation of trehalose in P. 

brassicae spores (Keen and Williams, 1969).  Besides, during sporogenesis, 

amino acid levels continue to increase in late gall formation, also specifically in 

host cell cytoplasm that contained a new generation P. brassicae resting spores 

(Williams et al., 1968). Specifically, the amino acids that increase in abundance 

in infected B. napus plants are aspartate, asparagines and glutamine (Wagner et 

al., 2012). 

 

1.3 Hypotheses, Aims and Objectives of the Project 

The work presented in this thesis was carried out to understand the metabolic 

interaction between A. thaliana and P. brassicae. It is hypothesised that P. 

brassicae hijacks normal plant development and causes the accumulation of 

metabolites that are involved in metabolism and signalling. Previously, it had 

been shown that P. brassicae hijacks the vascular cambium by increasing cell 

division, reducing the number of xylem and increasing the number of phloem 

produced in cell differentiation during secondary thickening (Mallinowski et al., 

2012). The response to infection of Col-0 in terms of plant development, 

specifically of hypocotyl cellular structures was therefore examined. Further to 

this, it was investigated whether the changes in plant development in response 

to clubroot infection were correlated with a change in metabolic status. In this 
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study, the metabolites that change in response to infection were identified, and 

the relevant metabolic pathways and the expression of genes involved were 

examined. Finally, a targeted approach was applied by focusing on carbohydrate 

metabolism in A. thaliana during clubroot infection. Specific hypotheses were 

identified by using transcriptomic analysis data and tested by using A. thaliana 

mutant plants and reporter genes.  

 

The aims of this thesis: 

1. Understand the metabolic interaction between A. thaliana plants and P. 

brassicae using an indirect approach to obtain metabolic `fingerprinting’. 

2. Verify metabolomics data by combining this data with host transcriptomic 

data obtained from a previous study 

3. Understand carbohydrate metabolism in A. thaliana plants during P. 

brassicae infection by testing specific hypotheses.  

 

The project objectives were: 

1. To identify when metabolic changes occur and to identify metabolic 

pathways that change in response to P. brassicae infection in A. thaliana 

Col-0 plants.  

2. To identify the metabolites that respond to P. brassicae infection, and 

determine how the intensity of these metabolites changes over the 

duration of the experiment. 

3. To analyse the gene expression patterns that are responsible for the 

alteration of metabolites in response to P. brassicae infection. 

4. To test specific hypotheses that were produced from transcriptomic data, 

focusing on carbohydrate metabolism.  
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Chapter 2: Plant Metabolic Fingerprinting in P. brassicae-Infected 

Arabidopsis thaliana 

 

2.1 Introduction 

During clubroot infection, P. brassicae obtains carbon and other compounds such 

as organic nitrogen, vitamins, and minerals by manipulating host development 

and metabolism. In turn, its own development is strongly influenced by the host. 

These changes in host and pathogen development are brought about by changes 

in host and pathogen gene expression. The metabolism is at the interface 

between the two. The metabolome is a set of all of the metabolites of an 

organism. Its composition represents the activity of protein functions and 

substrates with multiple regulatory loops. However, the metabolites in P. 

brassicae infected plants do not originate from one organism alone; they also 

result from metabolite exchange between host and pathogen. This chapter 

looked to use a non-targeted approach to explore global changes in metabolites 

that occurs when P. brassicae infects its host A. thaliana plants. 

 

2.1.1. Metabolomics Technology 

Metabolic analyses allow the measurement of thousands of metabolites per 

sample in minutes. There are two major approaches used in metabolic studies; 

targeted metabolomics and untargeted metabolomics. Targeted metabolomics 

analyses specific groups of compounds to test a specific biological hypothesis 

about particular compounds with the further aim to understand those compounds 

in depth and their activities under specific physiological conditions (Roberts et al., 

2012). For instance, targeted metabolomics is suited to the study of plant 

immunity against pathogen infection since many classes and types of metabolites 

involved in plant defence are known (Heuberger et al., 2014). Untargeted 

metabolomics deals with all the measurable compounds in a sample, including 

unknown chemicals. This approach could potentially be used for discovering 

novel targets in a particular experimental system (Roberts et al., 2012). In 

addition, this approach is suited to discovering unknown secondary metabolites 

involved in plant defence. Moreover, it is a very useful approach to explore the 
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pathogen of interest (Heuberger et al., 2014). The untargeted metabolomic 

approach used here was metabolic fingerprinting with mass spectrometry (MS). 

The compounds detected using this approach are not readily identifiable. As such 

it is suitable for identifying unique patterns in a particular tissue. There are 

multiple techniques available in MS applications, with samples injected directly 

or following separation by chromatographic methods (liquid, gas or 

electrophoretic). The method used here employed direct injection MS (DI-MS) 

with a time of flight (TOF) mass analyser system to provide a very rapid technique 

to analyse a large number of metabolites with greater mass to charge (m/z) 

accuracies (Shulaev 2006; Sumner et al., 2003). This method loses the 

compounds that have low ionization efficiencies at the mass spectrometer 

interface (Shulaev 2006, Shulaev et al., 2008).  

 

Briefly, metabolite extracts are obtained using a chloroform/methanol/water mix 

to separate polar and non-polar metabolites. Samples from uninfected and 

infected plants are injected into the mass spectrometer individually and the 

compounds in each sample are ionised using the electrospray ionisation method, 

in either positive or negative ion mode. In positive ion mode, metabolites often 

receive additional H+, Na+, or K+ adducts. After ions are formed in the source, 

they are accelerated into the mass analyser (TOF-MS) and separated in a 

vacuum according to their mass to charge ratio (m/z). The ions then pass to the 

ion detector, producing an electrical current that is amplified and detected to 

generate an image current in Total Ion Chromatograms (TIC). Figure 2.1 shows 

the basic components of the mass spectrometer, including an ion source, a mass 

analyser and an ion detector.  

 

2.1.2 Combination of MarVis Filter and MetaboAnalyst to Analyse MS Data 

Mass spectra consist of several thousand peaks. From these spectra, MS data 

from each experimental condition and replicate need to be aligned before further 

analysis. The aligned sample data contains more variables than detected peaks. 

This is because detected peaks in each spectrum are slightly different between 

each technical and biological replicate. For better comparison between 
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treatments in statistical analysis, it is important to reduce the number of variables 

by filtering the data based on variance using specialized methods (Shulaev et al., 

2008, Hackstadt and Hess, 2009). The MarVis filter software provides a complete 

pipeline for processing MS data, including statistical ranking, filtering, adduct 

detection, isotope correction, and molecular formula calculation (Kaever et al., 

2012).  

 

 

Figure 2.1. Basic components in Mass Spectrometry. 

 

Metabolic fingerprinting data from direct MS requires a classification tool to 

identify metabolic signature patterns associated with different experimental 

treatments.  It can be obtained using multivariate statistical analysis from 

unsupervised or supervised algorithms (Sumner et al., 2003). MetaboAnalyst 

software provides univariate and multivariate analysis (Xia et al., 2012, 2015).  

Univariate analysis explores each variable from two data sets separately, while 

multivariate analysis explores multiple variables from two data sets at a time. In 

addition, MetaboAnalyst can be used to visualize metabolic signature patterns 

and the most significantly different variables between treatments, using univariate 

analysis to produce fold-change plots or hierarchical clustering heat maps. 

MetaboAnalyst can also be used for multivariate analysis including Principle 

Component Analysis (PCA) and Partial Least Square – Discriminant Analysis 

(PLS-DA).   
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2.1.3 Accumulation of Metabolites in P. brassicae-Infected Plants 

Accumulation of metabolites in infected tissues strongly influences host 

development and correlates with the enlargement of clubroot galls (Williams et 

al., 1968). Cell enlargement and cell proliferation in clubroot galls are influenced 

by the plant growth regulators cytokinin and auxin, which subsequently establish 

galls as sink tissue for photosynthetic products (Ludwig-Muller et al., 2009). 

Zeatin and zeatin riboside, which are responsible for increased cell division in 

infected tissues, accumulate 10-100 times higher in infected Brassicae napus 

(turnip) tissue than in uninfected tissue (Dekhuijzen and Overeem 1971). 

Dekhuijzen and Overeem (1971) suggested that these cytokinins are derived 

from the host. However, further study discovered that zeatin and zeatin riboside 

synthesised from plants and clubroot galls are potentially different, which indicate 

that these compounds in infected P. brassicae tissue are derived from plasmodia 

(Dekhuijzen 1981). Besides, the P. brassicae genome contains isopentenyl-

transferase (IPTs) genes involved in cytokinin biosynthesis as well as PbGH3, a 

gene that can modify auxin (Schwelm et al., 2015). In addition, the 

reprogramming of existing meristematic activity during the secondary thickening 

of infected tissues could also influence the development of gall formation 

(Malinowski et al., 2012).  

 

The development of P. brassicae inside host tissues also influences the type and 

the concentration of metabolites. Early work using metabolite analyses on 

hypocotyls of cabbage infected with clubroot showed that concentrations of DNA, 

RNA, lipids, amino acids, sugar, and starch increase during spore germination 

until the vegetative growth stage of plasmodia, and changes in the concentrations 

of these metabolites are strongly associated with the enlargement of clubroot 

galls (Williams et al., 1968). Lipids which increase during spore germination 

remain constant in abundance until sporogenesis indicating plasmodia are lipid-

rich throughout infection (Williams et al., 1968). In sporogenesis which occurs 

during late gall formation, starch, sugars, RNA, and DNA concentrations 

decrease and amino acid levels continue to increase specifically in host cell 

cytoplasm that contains P. brassicae resting spores (Williams et al., 1968). The 
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fluctuation of starch and sugar concentration in the host during P. brassicae 

infection may indicate that starch and sugars are taken up by the pathogen 

directly, or indirectly through host enzyme activity leading to the synthesis and 

degradation of starch (Keen and Williams, 1969). During vegetative growth of P. 

brassicae, the activity of starch synthetic enzymes is increased, follow by an 

accumulation of starch in the hypocotyl tissues. During sporogenesis, starch 

synthetic enzymes are down-regulated and starch degradation enzymes are up-

regulated. A high specific activity of alfa-amylase occurs in isolated plasmodia 

(Keen and Williams, 1969). This results in a lower concentration of starch during 

sporogenesis and could potentially cause an accumulation of trehalose in P. 

brassicae spores (Keen and Williams, 1969, Brodmann et al., 2002).   

 

P. brassicae requires certain metabolites from the host in order to complete its 

life cycle. The P. brassicae genome lacks genes that function in sulfur and 

nitrogen uptake and in the biosynthesis of several amino acids, such as histidine, 

tryptophan, threonine, arginine, lysine, and thiamine (Schwelm et al., 2015). 

Studies in rapeseed also show that the accumulation of several amino acids such 

as serine, glutamine, aspartate, histidine, asparagine, glutamate and arginine 

could increase host disease susceptibility (Wagner et al., 2012).   

 

2.1.4 Aims and Objectives 

This chapter has an in-depth microscopic analysis of the infection process at 7, 

9, 11, 14, 18, 21, 23, 25 and 28 DPI in A. thaliana Col-0 plants and contrasts this 

with uninfected Col-0 plants, defining the changes in primary and secondary 

growth of cellular structures that occur throughout infection. The second part of 

the chapter describes the direct injection ESI-MS approach used to obtain 

metabolic signatures in response to clubroot infection at 7 to 28 DPI. Peak picking 

and sample alignment, data filtering, quality checking and normalization are 

described. Univariate and multivariate analysis were then performed in order to 

select the most significantly different variables between treatments, fold-change 

analysis was used to classify and discriminate the biological replicate samples 

based on treatments, and hierarchical clustering analysis, PCA and PSL-DA were 
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carried out. The last part of this chapter covers the identification of predicted 

metabolites with coefficient scores between 100-80 as generated by PLS-DA, to 

identify novel metabolites and known metabolites that change at each stage of 

clubroot infection for further analysis in the future.  

 

Aims: 

1. To examine the cellular structure of A. thaliana hypocotyl tissues in 

response to P. brassicae infection. 

2. To identify the metabolite patterns in each stage of P. brassicae infection. 

3. To identify the putative metabolites that change upon P. brassicae 

infection.  

 

Objectives:  

1. To establish the cellular structure of hypocotyl tissue in uninfected Col-0 

plants and in infected Col-0 plants as the infection progresses. 

2. To conduct a metabolic analysis by using direct injection electrospray 

ionization mass spectrometry (ESI-MS).  

3. To examine metabolite changes in Col-0 plants during infection by using 

the ‘MALDIquant’ R Package, MarVis Filter, and MetaboAnalyst 3.0.  

4. To identify the metabolite compounds that change during infection.  
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2.2    Materials and Methods 

2.2.1 Preparation of P. brassicae Resting Spore Inoculum 

Resting spores of P. brassicae were originally isolated from clubroot-infected 

roots of Brassicae oleracea obtained from Penyrheol, South Wales, according to 

Mithen and Magrath (1992).  This isolate is defined as European Clubroot 

Definition set 16/2/12 (Devos et al., 2005).  To maintain stock P. brassicae 

inoculum, Brassica rapa var Wong Bok seeds (Chiltern Seeds, Ulverston, UK) 

were sown on moist M3 compost (Levington) and placed into a growth chamber 

with a temperature of 20oC, a photoperiod of 16 hours and irradiance of 100 µmol 

m-2 sec-1.  Plants were watered from the bottom three times per weeks to avoid 

the compost drying out. Seven days after germination seedlings were 

transplanted individually into moist M3 compost in pots and returned to the growth 

chamber. Fourteen days after germination plants were inoculated with P. 

brassicae spores by pipetting 5 ml of spore suspension with a concentration 2 X 

106 spores ml-1onto the soil around the base of the plant. The large galls, which 

developed within 6-8 weeks, were harvested, rinsed, and stored at -20oC until 

required.  

 

Galls from B. rapa (Chinese cabbage) were placed in a blender (KENWOOD) 

and homogenised with 300ml of distilled H2O until no large pieces of tissue 

remained. The homogenate was passed through three layers of muslin and the 

resulting filtrate was centrifuged at 7500 g for 30 minutes at 4oC. The supernatant 

was discarded and starch, lipids, and other plant material were removed from the 

pellet using a spatula. The remaining layer of spores was re-suspended in 40 ml 

distilled H2O. Then, the spore solution was re-centrifuged and processed as 

described above. Spores were re-suspended in 40 ml distilled H2O and stored at 

4oC. Spore concentration was calculated using the method described in the next 

section.   

 

2.2.2 Counting P. brassicae Active Resting Spores 

A fluorescent staining technique was used to determine spore concentration and 

pathogenicity, according to Donald et al., (2002). Following this technique, the 
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spore suspension was stained with equal volumes of 50 µg/ml ethidium bromide 

(EB) and 100 µg/ml calcofluor white (CFW, disodium salt of 4, 4'-bis-(4-anilino-

bis-diethylamino-S-triazin-2-ylamino)-2,2'-stilbene-disulphonic acid) (Fluorescent 

brightener, Sigma). Stained spores were pipetted onto a haemocytometer and 

counted under a fluorescent microscope (BX51; Olympus). The light source was 

a mercury lamp (HBO 200 W/2), and the filter consisted of an exciter filter U-

MWIBA2 (460-490 nm). Images in bright field and fluorescent light were captured 

using a CCD camera (DP71; Olympus, www.microscopy.olympus.eu).  

 

2.2.3 Plant Growth Conditions and Inoculation with P. brassicae Spores 

All experiments were carried out at a growth irradiance of 100 μmol m-2 sec -1, 

with a 10 h photoperiod and day/night temperatures of 22oC/20oC.  

 

Seeds of plants were stratified at 4oC in the dark for 4 days to break dormancy 

and transferred to the above growth chamber conditions afterwards. Seven days 

after germination, seedlings were transferred into pots containing a mix of 

moistened M3 compost and perlite at a 3:1 ratio. They were infected 14 days after 

germination using 2 ml of spore suspension with spore concentration of 2 X 106 

spores ml-1.  

 

2.2.4 Technovit Sectioning of Hypocotyl Samples 

Three hypocotyl samples of approximately 5 mm in length were harvested and 

excised from uninfected and infected plants at the 10 time points (7, 9, 11, 14, 

16, 18, 21, 23, 25, and 28 DPI). Samples were placed in 100% ethanol for at least 

30 minutes. Ethanol was removed and replaced with fresh ethanol for another 30 

minutes. Samples were pre-infiltrated with Technovit 1 solution (1g Hardener 1 

powder/100 ml of base liquid from a Technovit 7100 kit, TAAB, Bershire, UK) and 

100% Ethanol at a 1:1 ratio for at least 1 hour. Then, the samples were infiltrated 

with 100% Technovit 1 for at least 15 minutes. Technovit 1 was removed and 

replaced with fresh 100% Technovit 1 for at least three days.  

 

http://www.microscopy.olympus.eu/
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In the sample embedding process, hypocotyls with a length of 5 mm were placed 

vertically in 1.5 ml Eppendorf lids in a solution of Hardener 2 and Technovit 1 in 

a 1:15 ratio according to kit instructions and left at least overnight to allow the 

resin to set. The embedded samples were removed from tube lids and mounted 

onto ‘Histobloc’ mounting blocks (TAAB with order no. T395, Berkshire, UK) using 

Technovit 3040 (Yellow powder: 3040 in a ratio 3:1).  

 

Mounted material was sectioned using a Leica RM2145 (Leica Instruments 

GmbH, www.leicamicrosystems.com) microtome for 7 μm (Technovit) sections. 

After mounting Technovit sections in DePeX (R) (GURR) mounting medium, 

images were captured using a CCD camera (DP71; Olympus, 

www.microscopy.olympus.eu) mounted on a light microscope (BX51; Olympus). 

Three representative plants from each time point were selected and 30 sections 

per plant were stained with a drop of 0.1% (w/v) toluidine blue in 100 mM buffer 

at pH7 (Sigma-Aldrich, Dorset, UK).  

 

2.2.5 Metabolite Extraction 

Hypocotyl and root tissue samples with a length of approximately 5 mm were 

excised for each tissue, weighted, placed individually into a grinder tube, and 

immediately frozen in liquid nitrogen. The frozen samples were stored at -80oC 

before proceeding to the metabolite extraction method. 

 

In metabolite extraction procedures, the frozen sample in a grinder tube was 

homogenized under liquid nitrogen with a micro-pestle. Pre-chilled single-phase 

solvent A (Methanol: Chloroform: H2O ratio 5:2:2) was added to homogenized 

samples with a ratio of 100mg fresh weight sample to 1 ml solvent. The mixture 

was vortexed for 10 seconds and left on ice for five minutes, and this step was 

repeated once more. The samples were vortexed and centrifuged at 17000 g for 

2 minutes at 4 OC. The supernatant was transferred to a pre-chilled Eppendorf 

tube and the pellet re-extracted with solvent B (Methanol: Chloroform ratio 1:1), 

using half the volume of Solvent A.  The mixture was vortexed for 10 seconds 

and left on ice for 10 minutes. The samples were vortexed and centrifuged at 
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17000 g for 2 minutes at 4 OC. Supernatant from solvent B was transferred to the 

tube containing supernatant from solvent A. Metabolites in methanol and 

chloroform were separated by adding H2O to half the volume of Solvent B.  The 

samples were vortexed and centrifuged at 17000 g for 2 minutes at 4 OC. The 

methanol phase (at the top) and the chloroform phase (at the bottom) were placed 

in separate tubes. The metabolites in methanol and chloroform were stored at -

80oC, before proceeding to the next procedure. A summary of the metabolite 

extraction used in this thesis is shown in Figure 2.2.   

 

2.2.6 Direct Injection Mass Spectrometry 

Samples in methanol/H2O were diluted at a ratio of 1:100 in 50% methanol, 50% 

H2O and 0.1% formic acid and 0.1 mg/ml of phenylalanine (SIGMA) as a 

standard. Ten µL of diluted samples or standard were loaded into a syringe. The 

sample running method was set up in Analyst software (http://sciex.com/). 

Samples in the syringe were injected into the spraying nozzle of a Qstar mass 

spectrometer with a running speed of 6 µL/hour. The spraying nozzle was kept at 

positive potential (Positive ion mode) and samples were run into the machine for 

seven minutes for each sample. Molecular ions were accelerated into the mass 

analyser (Time of Flight, +TOF-MS) and separated in a vacuum according to their 

mass-to-charge ratio (m/z). Masses with a mass range between 50 and 1000 

were detected in positive ion mode, and a total ion current chromatogram (TIC) 

was generated. The TIC was selected after three minutes running time to 

generate three mass spectra. Each mass spectrum represents a one-minute 

region of the TIC chromatogram. Data from each mass spectrum with m/z value 

and intensity was saved in a .txt file.  

 

2.2.7 Binning Data 

Data in .txt files was transferred to a single csv file, containing m/z value and 

intensity from 10 time points, with a maximum of 12 biological replicates for each 

treatment and three technical replicates for each biological sample. Two .csv files, 

of which one file contained m/z values and intensities and the second file 

contained a total ion current (TIC) value for each data set, were imported into the  
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Figure 2.2. Flow chart summarising the steps in metabolite extraction of plant tissues. 

 

 

 

 

Homogenized hypocotyl (100 mg fresh weight) under liquid nitrogen

Added 1 ml of Solvent A (Methanol: Chloroform: H20 ratio 5:2:2) 

Centrifuged at 17000 g for 2 minutes at 4oC

Transferred supernatant into pre-chilled Eppendorf tube

Re-extracted the pellet with 0.5ml Solvent B (Methanol: Chloroform 
ratio 1:1)

Centrifuged at 17000 g for 2 minutes at 4oC

Transferred supernatant from extraction in Solvent B into tube 
containing supernatant from extraction in Solvent A

Added 0.25 ml of H2O to the supernatant Solvent A and B mixture

Vortexed and centrifuged at 17000 g for 2 minutes at 4oC

Placed methanol phase (at the top) and chloroform phase (at the 
bottom) in separate tubes

Stored tubes at -80oC

Vortexed for 10 seconds and left on 

ice for 5 minutes, repeated 2 times 

Vortexed for 10 seconds, left on ice 

for 10 minutes 
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R program (https://www.r-project.org/). The binning process was carried out 

using a script written in the ‘MALDIquant’ package (Gibb and Strimmer 2012). 

Each run was normalized according to the TIC value obtained from the absolute 

intensities of three regions of the chromatogram. This was allowed to minimize 

the ionization efficiency variation that occurs between runs. A summary of the 

workflow used in the ‘MALDIquant` package is shown in Figure 2.3.  Data was 

exported to a binned .csv file. The average of all technical replicates for each 

sample was then calculated. Data from each infection stage was saved into a 

separate .csv file for further analysis.  

 

2.2.8 Data Filtering Using MarVis-Suite 2.0 

Each infection stage dataset in .csv format was imported separately into MarVis 

Filter from the Marvis-Suite 2.0 package (http://marvis.gobics.de/). Ion features 

from each dataset were sorted and ranked according to the p-values of ANOVA. 

Adduct and isotope correction were performed on full datasets using predicted 

sets of adduct rules for the positive ionization mode and a mass tolerance 0.05 

Da. After correction, the data sets were filtered for a p-value of 0.05. Data sets 

with p-values ≤ 0.05 were firstly exported to a .csv files for data processing, 

normalization and statistical analysis. The same dataset was used for annotation 

of known metabolites from public biological databases (described below).    

 

2.2.9 Data Processing and Statistical Analysis Using MetabolAnalyst3.0 

Web-Based Package 

The imported file from MarVis Filter was uploaded into MetaboAnalyst3.0 

(http://www.metaboanalyst.ca/). The uploaded data were read and a data 

integrity check was performed during data processing. The intensity of variables 

with zero values was either excluded from the downstream analysis or replaced 

with a small value (half of the minimum positive value in the original data). No 

data filtering process was applied using this package. Processed data were 

normalised to median intensity and using automatic scaling (mean-centred and 

divided by the standard deviation of each variable) to generate a normal  

https://www.r-project.org/
http://www.metaboanalyst.ca/
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Figure 2.3 A summary of workflow written in ‘MALDIquant’ package according to Gibb and 
Strimmer (2012). 
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distribution data before submitting to univariate and multivariate statistical 

analysis.  

 

2.2.10 Identification of Metabolites Using MarVis Filter for Ion Correction 

and MarVis Pathways 

Data sets with p-value ≤ 0.05, which were obtained from section 2.2.8, were 

imported to MarVis pathways for identification of metabolites using A. thaliana-

specific pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

with a tolerance 0.05 Da. A summary of data filtering, processing, statistical 

analysis and data annotation is shown in Figure 2.4.  
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Figure 2.4. A summary of work flow for data filtering, data processing, statistical analysis and 
metabolite identification 

 

 

Binned data was imported to MarVis Filter provided in MarVis-Suite 2.0 package

Ion features from each dataset was sorted and ranked according to the p-
value of ANOVA

Adduct and isotope correction according to adduct rules for the positive 
ionization mode and mass tolerance 0.05

The data set was filtered according to a significance level for p-value of ≤ 0.05

The data set was 
exported to csv. file

Csv. file was 
uploaded into 

MetaboAnalysis 3.0 

The uploaded data 
was checked for 

data quality during 
data processing

Normalization

Univariate and 
multivarite analysis

The data set was exported to 
MarVis pathways

The data set was annotated 
according to KEGG database 
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2.3 Results 

2.3.1 Quantification of P. brassicae Resting Spores  

P. brassicae resting spores were quantified using fluorescent staining. This 

technique was used to examine the viability of the inoculum directly as well as 

distinguishing between starch grains and pathogen spores in the P. brassicae 

spore suspension (Figure 2.5). The spore suspension was stained with equal 

volumes of ethidium bromide and calcofluor white (see section 2.2.2). According 

to Takahashi and Yamaguchi (1988), the walls of all spores exhibit intense blue 

fluorescence due to calcofluor white binding to chitin. The cytoplasm of active 

spores exhibited a pale blue fluorescence but inactive spores exhibited red 

fluorescence as they were unable to exclude ethidium bromide which then bound 

to the spore DNA (Figure 2.5 B).      

 

2.3.2 Primary Growth in P. brassicae-Infected A. thaliana Col-0 Plants 

Transverse sections of the hypocotyls of uninfected and infected wild type A. 

thaliana (Col-0) plants were taken at 7, 9 and 11 DPI, in order to record the 

changes in the cellular structure that occurred during clubroot infection when the 

host was in the primary phase of growth. Toluidine blue was used to stain the 

cross section with all cell types stained purple except xylem cells, which stained 

a light blue. Figure 2.6 shows the primary growth of cellular structures in 

hypocotyls of A. thaliana plants infected with P. brassicae. The tissue of the 

hypocotyl consists of epidermis, endodermis, cortex, and stele. The stele 

includes all the tissue inside the cortex. An epidermis, which is one cell thick, 

surrounds the hypocotyl. No obvious difference in cellular organization was 

observed between uninfected and infected Col-0 plants at 7, 9 and 11 DPI (Figure 

2.6 A). 

 

Figure 2.6 (B) shows stele tissue, which consists of the pericycle and vascular 

tissues. The pericycle is the meristematic layer inside the cortex. Inside the 

pericycle is the hypocotyl vascular tissue. The vascular tissue consists of primary 

phloem bundles, primary xylem, and procambium during primary root growth. At 

this stage, the vascular cambium is not yet formed.   
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Figure 2.5. (A) Bright field (B) Active spore with pale blue fluorescence (White arrow) and inactive spore with red fluorescence in cytoplasm (Red arrow).  
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A) 7, 9 and 11 DPI 

 

 

B) 7 DPI 

 

Figure 2.6 A time course study of the hypocotyl in a) uninfected and clubroot-infected A. thaliana 
(Col-0) plants at A) 7, 9 and 11 DPI, B) infected hypocotyls at 7 DPI. Cx, cortex; St, stele; Py, 
pericycle; En, endodermis; Pc, procambium; Ep, epidermis; P, phloem; X, xylem. Scale bar= 
1mm.  
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2.3.3 Secondary Growth in P. brassicae-Infected A. thaliana Col-0 Plants 

Transverse sections of the hypocotyl of uninfected and infected wild type A. 

thaliana (Col-0) plants were taken at 14, 18, 21, 23, 25 and 28 DPI (Figure 2.7), 

in order to record the changes in cellular structure and secondary growth that 

occur during clubroot infection.  

 

As shown in Figure 2.7, hypocotyls underwent secondary thickening. This 

resulted in the gradual disintegration of the epidermis and endodermis cell layers 

(Gendreau et al., 1997). The hypocotyls of P. brassicae-infected plants were 

larger than those of uninfected plants (Figure 2.7 A, C). Infected hypocotyl tissue 

showed the presence of plasmodia inside host cells (Figure 2.7 B). Several 

infected cells containing plasmodia were approximately 10 times larger than the 

equivalent uninfected cells (Figure 2.7). Consequently, infected hypocotyls 

became swollen and distorted, leading to the development of a gall. In Figure 2.7 

(C), xylem formation was disrupted in infected plants at 23 DPI, while phloem cell 

numbers were increased in infected plants at 28 DPI.  

 

2.3.4 The Use of Electrospray Ionisation-Mass Spectrometry (ESI-MS) in 

Non-Targeted Metabolomics during Clubroot Infection 

Electrospray ionisation-mass spectrometry (ESI-MS) was used to obtain 

metabolite fingerprints of uninfected and P. brassicae-infected hypocotyl tissues 

at different stages of infection. In this study, hypocotyl tissues of uninfected and 

P. brassicae-infected plants were extracted using chloroform/methanol/water, 

separating polar metabolites and non-polar metabolites. Methanol/water soluble 

metabolites were used for further analysis using direct injection ESI-MS. In ESI-

MS, intact molecular ions were produced via protonation when the spraying 

nozzle was kept at a positive potential (Positive ion mode). Molecular ions were 

accelerated into the mass analyser (Time of Flight, +TOF-MS) and separated in 

a vacuum according to their mass-to-charge ratio (m/z). Ions passed to the ion 

detector produced an electrical current that was amplified, detected, and 

displayed as a Total Ion Chromatogram (TIC) for seven minutes for each 

biological sample (Figure 2.8). 
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A) 14, 18 and 21 DPI 

 

 

B) 21 DPI 
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C) 23, 25 and 28 DPI 

 

 

Figure 2.7 A time course study of the hypocotyl of uninfected and clubroot-infected A. thaliana 
(Col-0) plants A) at 14, 18 and 21 DPI B) at 21 DPI in close-up image and C) 23, 25 and 28 DPI.  
En, endodermis; X, xylem; Ep, epidermis; P, phloem; Pp, phloem parenchyma; Xp, xylem 
parenchyma. Scale bar= 1mm. 

 

 

Figure 2.8 A typical Total Ion Chromatogram (TIC) of P. brassicae-infected hypocotyl tissue at 7 

DPI 
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The TIC was selected after three minutes running time to generate an ESI-Mass 

spectrum. The three ESI-Mass spectra produced from each biological replicate 

represented three technical replicates and the output files were saved in comma 

separated value (. csv) format for further analysis. Generally, ESI-Mass spectra 

for uninfected and P. brassicae-infected hypocotyl tissues showed the presence 

of similar m/z peaks (Figure 2.9). ESI-Mass spectra were analysed statistically to 

identify differences between treatments at each time point.  

 

 

A)  

 

 

Figure 2.9 Typical ESI-Mass spectra of A) Uninfected B) Infected hypocotyl at 18 DPI 

 

A binning step was performed since the peaks of each ESI-Mass spectrum 

showed some variation in technical and biological replicates. In this study, the 

‘MALDIquant’ package was used for the binning process. As described in Gibb 

and  Strimmer (2012), the ‘MALDIquant’ package provides a complete analysis 

tool for MALDI-TOF data, but it can also be used for other mass spectrometry 
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data including direct injection ESI+TOF-MS. Before binning, the input data 

contained between 4399 to 6000 peaks. The output data after the binning process 

contained 34254 variables.  

 

2.3.5 Data Processing and Normalization 

The binned spectral data from direct injection mass spectrometry represented 10 

infection stages and two experimental conditions with each condition containing 

12 biological replicate samples from hypocotyl tissue. Each infection stage 

dataset in .csv format was imported separately into MarVis Filter. Each dataset 

contains 12 biological replicate samples from uninfected and P. brassicae-

infected plants and 34254 variables. 

 

Ion features from each dataset were sorted and ranked according to the p-values 

resulting from an ANOVA test on uninfected and infected samples. The data sets 

were filtered according to a significance level for p-values of 0.05. The filtered 

data was saved in .csv files and uploaded to MetaboAnalyst 3.0. The uploaded 

data was read and a data integrity check was performed during data processing. 

There were no missing values found in any data set. Table 2.1 shows a summary 

of the data processing I carried out in order to improve the results of downstream 

analysis.  

 

Then, the processed metabolite data were normalised to their mean intensity and 

by automatic scaling (data were mean-centred and divided by the standard 

deviation of each variable). This was used to generate a normal distribution plot 

of density versus normalized intensity for each infection stage (Figure 2.10). 

Normalisation was performed to minimize and standardise non-biological 

variation in order allow comparisons between uninfected and P. brassicae-

infected samples.  
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Table 2.1 Summary of data processing data using ‘MALDIquant’ package for binning, MarVis 
Filter for filtering and MetaboAnalyst 3.0 for checking the data quality. Total peaks in binned 
spectra=34254.  

Time 
point 
(DPI) 

Total peaks in 
mass spectrum 

Total metabolites 
with p-value≤0.05 

Total 
processed 
metabolites  

7 4811 1050 368 
9 5998 825 519 

11 5094 980 498 
14 6051 697 388 
16 4366 817 427 
18 2658 517 371 
21 5740 2550 1993 
23 5684 896 608 
25 5743 2960 2661 
28 2158 941 752 

 

2.3.6. Univariate Analysis and Fold-Changes 

Univariate analysis provided in MetaboAnalyst 3.0 was used to identify differential 

accumulation of metabolites in P. brassicae-infected plants. The analysis allows 

pairs of treatments to be contrasted and allows a top table of differential 

accumulation of metabolites for each contrast, including the log Fold-change (FC) 

in metabolite intensity. In FC analysis, the algorithm first counted the total number 

of pairs with a FC that was consistently above or below the specified FC for each 

metabolite. A metabolite above the FC threshold 2 was defined as significant 

based on statistical analysis between two means of infected samples and 

uninfected samples. Figure 2.11 shows log2FC of intensity per spectra bins at 7 

to 28 DPI.  Metabolite with FCs above 1 and below -1 on were defined as 

increased and decreased respectively in infected samples. Table 2.2 shows the 

total number of metabolites that increased or decreased in abundance at each 

stage of infection. The total number of significant metabolites increased in late 

gall formation compared to either early infection or the onset of gall formation 

(Figure 2.11, Table 2.2). 
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Figure 2.10 Box plots and kernel density plot before and after normalization to sample median and auto scaling of samples at 7, 9, 11, 14, 16, 18, 21, 23, 
25 and 28 DPI.  

 

                 7DPI                    9 DPI                    11 DPI                 14 DPI                 16 DPI 

 

                18 DPI                21 DPI              23 DPI               25 DPI               28 DPI 
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Figure 2.11 Fold-changes of samples at 7, 9, 11, 14, 16, 18, 21, 23, 25 and 28 DPI. The red circles represent metabolites features above the 
threshold FC of 2. A value above the threshold FC of 2 on the log scale represents metabolite features that were up-regulated in infected 
samples, while values below threshold -2 on the log scale represent metabolite features that were down-regulated in infected samples. 
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Table 2.2: Total of metabolite features that increased and decreased in infected samples at each 

stage of infection from 7 to 28 DPI.  

Time 
point 
(DPI) 

Total metabolites 
decreased  

Total metabolites 
increased 

7 33 84 
9 64 9 
11 88 12 
14 35 15 
16 39 38 
18 31 48 
21 440 177 
23 34 128 
25 407 568 
28 305 151 

 

2.3.7. Clustering Analysis of Uninfected and P. brassicae-Infected A. thaliana 

Col-0 Plants  

Next, the metabolite features that responded to P. brassicae at every stage of 

infection were clustered using hierarchical clustering and visualized in a heat map. 

The analysis began when each sample formed a separate cluster and the algorithm 

proceeds to combine them until all samples belong to one cluster as visualized in 

the heat map (Figure 2.12). Along the side of the heat map is a dendrogram showing 

how the variables and the samples are independently clustered. Rows represent m/z 

variables, while the columns represent biological replicates of each treatment. M/z 

variables were colour coded by a gradient depending on the Log10 of the intensity 

value - those variables that had high intensity are dark brown and those that had low 

intensity are dark blue. The heat map represents the top 50 m/z variables according 

to the most significant p-values when uninfected and infected samples are compared 

using a t-test (Figure 2.12). As mentioned in section 2.2.9, data sets that uploaded 

into Metaboanalyst for univariate and multivariate statistical analysis were filtered 

according to a significant p-value of ≤ 0.05.  
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Figure 2.12 Metabolomics data is visualised in the heat map (distance measure using Euclidean, and 
clustering algorithm using ward) at 7, 9, 11, 14, 16, 18, 21, 23, 25 and 28 DPI. Samples were 
uninfected hypocotyl (CH) and infected hypocotyl (IH) of A. thaliana Col-0 plants, with a total number 
of biological replicates between 7 and 12.  
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Comparisons between different biological replicates of samples at each stage of 

P. brassicae infection were made, which indicated that the metabolite intensities 

in the heat maps were different between treatments and similar in biological 

replicates. The metabolite pattern of uninfected and infected samples began to 

differ at 7 DPI and the difference continued until 28 DPI. At 7 DPI, uninfected and 

infected samples, which were clustered in two different clusters, showed that a 

first group of metabolites were increased in infected samples and decreased in 

uninfected samples and vice versa for a second group of metabolites (Figure 

2.12). Although some infected samples in each stage of infection showed a 

similar metabolite pattern to uninfected samples especially at 11 DPI, almost half 

of all biological replicates showed a similar response to P. brassicae infection.  

 

2.3.8 Multivariate Analyses of Metabolite Responses to Clubroot Infection 

in Uninfected and P-brassicae-Infected Col-0 A. thaliana Plants 

Multivariate analysis of metabolic data from the uninfected and infected tissues 

was performed using Principle Component Analysis (PCA) and Partial Least 

Square – Discriminant Analysis (PLS-DA).  The two dimensions of the PCA score 

plot used the two most informative components based on the variance of 

individual components, respectively, of the total variance. Figure 2.13 shows 

Principal component (PC) 2 plotted against PC1 in a PCA from the data set at 7 

to 28 DPI.  In the PCA model, the highest accumulated variance between any 

two PCs could clearly discriminate uninfected samples from infected samples. 

PC1 distinguished infected samples from uninfected samples at 7, 14, 18, 25 and 

28 DPI, while PC2 distinguished infected samples from uninfected samples at 9, 

11, 21 and 23 DPI (Figure 2.13). At 16 DPI, infected and uninfected samples were 

distinguished by both PCs, indicating variables in both PC are changed in 

response to P. brassicae infection at the onset of gall formation.  

 

PLS-DA distinguished uninfected and P. brassicae-infected samples at each 

stage of infection using supervised methods in contrast with PCA, which used an 

unsupervised method. Supervised methods are used to build models that 

discriminate between labelled data. In this study, PSL-DA identifies the 
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parameters that are significant for each cluster and uses the most important 

parameters to discriminate between uninfected and infected samples. In the PLS-

DA model, the highest pairwise explained variance between two components 

could clearly discriminate uninfected samples from infected samples. Besides, 

the PLS-DA plot visualized the relationship between sample groups; any samples 

that were difficult to discriminate will group very closely in the plot and can be 

considered to be very similar, whereas samples that do not group closely can be 

considered to be more different.  Figure 2.14 shows Component 2 plotted against 

Component 1 in PSL-DA from the data set at 7 to 28 DPI. Component 1 separated 

infected samples from uninfected samples at 7, 11, 14, 16, 18, 25 and 28 DPI, 

while Component 2 separated both different treatments at 21 DPI (Figure 2.14). 

This indicates that variables in Component 1 changed in response to P. brassicae 

earlier in infection, at the onset of gall formation and during late gall formation.  

 

Following this, PLS-DA coefficients with a score range between 80 and 100 for 

uninfected and infected tissues were investigated. The coefficient score is a 

weighted sum of absolute measurements between the mean value of a variable 

in infected tissues and the corresponding mean value of the variable in uninfected 

tissue. At each stage of infection, variables with a similar coefficient score range 

were selected in order to identify the variables that were most important in 

response to P. brassicae infection at particular stages.  The infection stage at 14 

DPI showed the greatest total number of variables with a coefficient score range 

between 80 and 100, while the infection stage at 18 DPI showed the fewest 

number of variables in this range (Figure 2.15).  This indicates that infected plants 

at 14 DPI exhibited strong responses to infection by altering the concentration of 

more compounds when compared with other infection stages. At 7 DPI, 26 

variables with a coefficient score range between 80 and 100 were increased in 

concentration in infected plants, which is similar to the 14 variables at 23 DPI and 

contrasts with the number of variables at 14 DPI (Figure 2.15). This indicates that 

the concentration of specific metabolites was altered at specific infection stages.   
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Figure 2.13 Principle component (PC) 1 and 2 with individual variance components at 7, 9, 11, 14, 16, 18, 21, 23, 25 and 28 DPI. Samples 
were uninfected hypocotyl (CH) and infected hypocotyl (IH) of A. thaliana Col-0 plants, with a number of total biological replicates between 7 
and 12.  
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Figure 2.14   PSL-DA analysis at 7, 9 and 11, 14, 16, 18, 21, 23, 25 and 28 DPI. Samples were uninfected hypocotyl (CH) and infected 
hypocotyl (IH) of A. thaliana Col-0 plants, with a number of total biological replicates between 7 and 12. 
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Figure 2.15 Variables with coefficient scores between 100-80 % identified by PLS-DA. The coloured 
boxes on the right indicate the relative intensity of the corresponding metabolites between uninfected 
(box at the right) and P. brassicae-infected (box at the left) samples at each stage of infection.  
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2.3.9 Putative Metabolites that Changed in Response to P. brassicae Infection  

MarVis pathways were used to annotate selected variables according to a particular 

coefficient score range (Figure 2.15). Selected variables were annotated according 

to known metabolites from the Kyoto Encyclopedia of Genes and Genomes (KEGG). 

Identified putative metabolites could be divided into two groups at each stage of 

infection (Table 2.3). The first group of metabolites contained compounds that 

accumulated in response to P. brassicae infection and the second group of 

metabolites contained those decreased in abundance upon exposure to infection.  

At 7 DPI, the putative metabolites increased in infected tissues included adenosine 

5’-monophosphate involved in zeatin and purine metabolism, and 6, 7-

dimethoxycoumarin, an enzyme of coumarin biosynthesis involved in plant 

secondary metabolism. Putative metabolites involved in glucosinolate metabolism 

decreased at 9 and 16 DPI and increased at 11 DPI in infected tissue. Moreover, 

putative metabolites associated with amino acid metabolism including L-serine 

increased at 9 DPI, whereas 3-iodo-L-tyrosine, D-glutamine and 3-

aminopropionontrile decreased at 16, 18 and 28 respectively. Besides, putative 

metabolites associated with cofactor and vitamin metabolism including porphyrin 

and chlorophyll metabolism increased at 7 DPI and folate biosynthesis decreased at 

14 DPI in infected tissue. Full lists of putative compound annotations are given in 

Table 2.3. Selected variables with a coefficient score range between 80 and 100 that 

are not shown in Table 2.3 were either classified as unknown chemical compounds, 

originated from bacteria or known as synthetic drugs including antibiotics, pesticides, 

insecticides and fungicides.     
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Table 2.3. Putative metabolites with corrected mass (Mz), and m+H adducts, detected mass per 
charge by mass analyser (FormerY), exact mass according to KEGG and the pathways they are 
involved in. A red line refers to a high intensity signal of metabolites and a green line refers to a low 
intensity signal in infected tissue at 7 to 28 DPI. Listed metabolites are those variables which have a 
PLS-DA coefficient score with a range between 80 and 100.  
 

Mz FormerY 
Exact 
mass  Pathway Putative compound 

7 DPI           

            

434.18 435.19 434.23 Glutathione metabolism Glutathionylspermidine 

347.02 348.02 347.06 Zeatin biosynthesis Adenosine 5'-monophosphate 

556.21 557.22 556.23 
Porphyrin and chlorophyll 
metabolism 3-Vinylbacteriochlorophyllide d  

83.03 84.04 83.05 Purine metabolism 5-Aminoimidazole 

206.06 207 206.06 Coumarins biosynthesis  6, 7-dimethoxycoumarin 

9 DPI           

            

368.13 369.13 368.10 
Glucosinolate biosynthesis 
from tryptophan   indolylmethyl-desulfoglucosinolate  

479.12 480.13 480.16 
Glucosinolate biosynthesis 
from tryptophan  

indole-3-acetohydroximoyl-
glutathione 

325.09 326.1 325.10 

Amino sugar and 
nucleotide sugar 
metabolism  N-Glycoloyl-neuraminate 

391.07 392.07 391.06 
Glucosinolate biosynthesis 
from dihomomethionine β-D-glucopyranose 

            

105.07 106.07 105.0426 
Cysteine and methionine 
metabolism  L-Serine 

11 DPI           

            

578.15 579.15 579.17 Anthocyanin biosynthesis Pelargonidin 3-O-rutinoside 

            

481.03 482.03 481.07 
Glucosinolate biosynthesis 
from homomethionine 3-benzoyloxypropyl-glucosinolate 

240.17 241.18 240.12 
Arginine and proline 
metabolism Homocarnosine 

14 DPI           

            

809.16 810.17 809.13 
Glycolysis / 
Gluconeogenesis Acetyl-CoA 

774.21 775.22 774.25 Folate biosynthesis 7;8-Dihydromethanopterin 

878.49 879.5 878.44 
Porphyrin and chlorophyll 
metabolism Hydrogenobyrinate diamide 

396.98 397.99 395.01 Folate biosynthesis  Molybdopterin 
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16 DPI           

            

379.20 380.20 379.53 
Glucosinolate biosynthesis 
from hexahomomethionine 

9-methylthiononylhydroximoyl-
cysteinylglycine  

541.10 542.11 541.06 Calcium signaling pathway Cyclic ADP-ribose 

306.98 307.99 306.97 Tyrosine metabolism 3-Iodo-L-tyrosine 

18 DPI           

            

372.16 373.16 372.14 
Phenylpropanoid 
biosynthesis Syringin   

146.1 147.1 146.07 
D-Glutamine and D-
glutamate metabolism D-Glutamine 

21 DPI           

            

382.17 383.18 382.13 Carotenoid biosynthesis trans,trans-Farnesyl diphosphate 

620.13 621.14 621.11 Anthocyanin biosynthesis 
Cyanidin 3-O-3'',6''-O-
dimalonylglucoside 

28 DPI           

            

126.01 127.02 126.04 Pyrimidine metabolism Thymine 

364.1 365.11 364.39 Gibberellin inactivation Gibberellin A8 

195.14 196.15 195.14 

Biosynthesis of alkaloids 
derived from histidine and 
purine Dolichotheline  

83.03 84.038 83.07 

Tropane, piperidine and 
pyridine alkaloid 
biosynthesis Piperideine 

456.2 457.21 456.24 

Ubiquinone and other 
terpenoid-quinone 
biosynthesis  Phytyl diphosphate 

            

70.036 71.044 70.05 beta-Alanine metabolism  3-Aminopropiononitrile 
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2.4  Discussion 

The first aim of this chapter was to establish the structure of hypocotyl tissue in 

uninfected and infected Col-0 plants as the infection progresses. I have established 

that P. brassicae causes developmental impacts on the host during infection. 

Microscopic analysis of the cellular structure of plant hypocotyl tissues was 

performed to visualize changes before a gall becomes apparent, at the onset of gall 

formation, and during late gall formation. During plant primary growth, no obvious 

impact of clubroot infection was observed in the development of infected hypocotyl 

tissue (Figure 2.6). At 14 DPI, uninfected tissue underwent secondary hypocotyl 

thickening, but secondary hypocotyl thickening of infected tissue, specifically in the 

vascular cambium, was hijacked by P. brassicae (Figure 2.4a). The number of xylem 

cells (Figure 2.7 c, 23 DPI) was reduced, as reported by Malinowski et al., (2012) 

and shown in the results presented here. In addition, the host cells became distorted 

and swollen. Swollen host cells contained plasmodia. Meristematic activity within the 

vascular cambium was altered with a reduction in xylogenesis and an increase in 

phloem parenchyma. Malinowski et al (2012) demonstrated that cell division 

increases and becomes more widespread across the hypocotyl leading to the 

development of a gall.   

 

2.4.1 How Does Infection Influence Host Metabolite Patterns in Plants? 

Does a change in plant cellular structure lead to a change in the plant metabolome? 

As clubroot disease is caused by a biotrophic pathogen, it was not surprising that 

this pathogen causes accumulation of metabolites and alters plant signals and 

hormones. The pathogen manipulates host metabolism to counteract defence 

responses. The pathogen may be able to induce favourable nutritional conditions 

after successfully colonizing host cells. The second aim of this chapter was to identify 

the metabolite patterns at each stage of P. brassicae infection. To meet this aim, 

metabolic fingerprinting using DI-MS was performed. The un-targeted metabolite 

analysis performed allows the comparative analysis of metabolite levels in different 

samples at different stages of infection. The method which was used in this study, 
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was selective, repeatable, reproducible, sensitive, and high-throughput, with output 

data that is compatible with other platforms, and that allows reliable identification of 

metabolites (Maag et al., 2015).  

 

In this study, metabolites detected using DI-MS were selectively measured, and 

some were not measured. This was because only polar metabolites in 

methanol/water extracted from hypocotyl tissues of P. brassicae-infected and 

uninfected A. thaliana plants at 7 to 28 DPI were used in the metabolomic analysis. 

In addition, metabolites, which are detected by the TOF mass analyser system, 

strongly depend on the positive ionization conditions. The TOF mass analyser 

system provides a very rapid technique to analyse a large number of metabolites 

with great mass to charge ratio (m/z) accuracies (Shulaev 2006; Sumner et al., 

2003). Moreover, a large dataset containing between 2158 and 6051 detected peaks 

in each spectrum was obtained in this study. These data were subjected to binning 

using Maldiquant (Gibb and Strimmer, 2012). Binned data contained 34254 

variables, which were subjected to filtering using MarVis and statistical analysis 

using MetaboAnalyst 3.0 (Xia et al., 2015).  

 

Statistical analysis was used to create an observation that gives a general 

comparison between uninfected and infected samples. As uninfected and P. 

brassicae-infected A. thaliana Col-0 plants share similar genotypes, the only factor 

that influenced the difference between uninfected and P. brassicae-infected plants 

was the response to infection. It was not surprising that metabolome pattern between 

uninfected and infected plants were very similar; infected plants showed subtle 

metabolite responses to the infection.  Heat maps show that between plant variation 

occurred between biological replicates (Figure 2.12). The data obtained is 

repeatable and reproducible since half of the biological replicates showed similar 

response to P. brassicae infection.  The comparison between uninfected and 

infected tissue as visualized using a heat map indicated that the differences between 

the two treatments was initiated at early stages of cortical infection (7 DPI) and 
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continued until late gall formation. In addition, multivariate analysis using PCA 

indicated that variables in one or both PCs distinguished between biological 

replicates of uninfected and infected samples, although some variables overlapped. 

However, more than half of the biological replicates of each treatment grouped 

together. Similar results were observed in the PLS-DA plot, which indicated that 

metabolite levels in infected samples were different from those in uninfected samples 

at the very beginning of cortical infection in hypocotyl tissues, until the end of the 

experiment.  

 

Previously, a targeted metabolomics analysis based on a combination of ultra-

performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) 

and GC-MS identified metabolite profiles in susceptible and resistant genotypes of 

Brassica napus following P. brassicae infection (Wagner et al., 2012). It has been 

reported that the accumulation of several amino acids is positively correlated with 

disease susceptibility (Wagner et al., 2012). Besides, susceptible genotypes of B. 

napus alter their metabolic activity earlier than resistant genotypes (Wagner et al., 

2012).   

 

In another study of a plant-pathogen interaction, non-targeted metabolomics has 

been applied to identifying resistance related (RR) metabolites based on liquid 

chromatography-high resolution mass spectrometry (LC-HRMS) in susceptible and 

resistant genotypes of diploid potato against late blight (Yogendra et al., 2015). It 

has been suggested that resistance to late blight is mainly associated with cell wall 

thickening, after RR metabolites were discovered to include hydroxycinnamic acid 

amides, which are involved in phenylpropanoid, flavonoids and alkaloids 

biosynthesis (Yogendra et al., 2015). RR metabolites were mapped onto metabolic 

pathways and potato and other genomics databases were searched to identify the 

candidate RR genes (Yogendra et al., 2015). The candidate RR genes, which are 

further confirmed using transcriptomic analysis, show an increase in transcript 

expression in resistant genotypes when compared with susceptible genotypes, 
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indicating the role of these genes in resistance against late blight (Yogendra et al., 

2015).   

 

Furthermore, a different study found that following rice blast infection, changes in 

metabolite patterns, which are obtained using flow injection electrospray mass 

spectrometry (FIE-MS), are similar among host plants including barley, rice and 

Brachypodium distachyon (Parker et al., 2009).  Targeted metabolite profiling by GC-

TOF-MS was used to further confirm that host metabolic re-programming occurred 

in response to rice blast infection (Parker et al., 2009). It has been revealed that 

Magnaporthe grisea, the agent of rice blast disease, suppresses the host 

hypersensitive reaction through manipulation of host phenylpropanoid metabolism, 

which allows the pathogen to enter inside the host (Parker et al., 2009).  During plant 

colonization and rapid proliferation of M. grisea, metabolites associated with nutrient 

metabolism are increased, which indicates that those metabolites are required for 

the pathogen (Parker et al., 2009).  

 

2.4.2 What are the Potential Metabolites that Change in Response to P. 

brassicae Infection?  

The third aim of this chapter was to identify putative metabolites that change upon 

P. brassicae infection. To meet this aim, we focused on metabolite changes during 

early stages of cortical infection until late gall formation, specifically in hypocotyl 

tissue.  A small number of variables with a coefficient score range between 80 and 

100 were identified and annotated using MarVis according to the KEGG database 

(Table 2.3). These potential putative metabolites then need to be validated either by 

integration with other ‘omics’ data (e.g. Yogendra et al., 2015) or by combining this 

initial identification with other MS separation methods such as gas chromatography-

MS, liquid chromatography-MS or MS-MS (Heuberger et al., 2014). 

 

At early stages of cortical infection at 7, 9 and 11 DPI, no obvious impact of P. 

brassicae infection was observed on plant growth or on the development of infected 
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hypocotyl tissues (Figure 2.6). However, statistical analysis of metabolite patterns 

showed that some metabolites were altered in response to P. brassicae infection at 

early stages. This indicates that the plant metabolism of P. brassicae infected plants 

did not have an impact on plant primary growth or vice versa. Potential metabolites 

that could be induced during early infection stages may be involved in plant 

recognition of secondary zoospores. This could subsequently induce plant defence, 

increased energy production and plant metabolism. Those metabolites that are 

important to supporting plant development include those involved in synthesis of the 

plant cell wall, which leads to protection of the plant against P. brassicae during early 

infection stages. Some of the putative metabolites that increased in infected tissue 

at early infection stages are associated with amino acid metabolism. This includes 

L-serine, homocarnosine, metabolites involved in purine metabolism such as 5-

aminoimidazole, and adenosine 5’-monophosphate which is involved in zeatin 

biosynthesis (Table 2.3). However, when a precursor of metabolites synthesis such 

as adenosine 5’-monophosphate is increased, it does not indicate that the product 

also increases- alternatively precursors in a biosynthetic pathway may accumulate 

if downstream steps are reduced. Meanwhile, some secondary metabolites, include 

glutathionyl spermidine, which is part of glutathione metabolism, 6,7-

dimethoxycoumarin, which is part of coumarin biosynthesis, and 3-

benzoyloxypropyl-glucosinolate, were increased in infected tissue during early 

infection.  

 

Moreover, at the onset of gall formation (14, 16, 18 DPI), putative metabolites that 

are changed in abundance at this stage may be involved in plant defence, which is 

associated with oxidative stress, and a signal such as methyl salicylate to trigger 

systemic acquired resistance (SAR) (Ludwig-Muller et al., 2015). In this study, 

almost all metabolites with a coefficient score of 80-100 in our PLS-DA decreased in 

infected tissue at the onset of gall formation. These metabolites are involved in folate 

biosynthesis and glucosinolate and phenylpropanoid biosynthesis (Table 2.3). This 

suggests that metabolites involved in plant defence could potentially be suppressed 
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by plasmodia. In addition, I speculate that metabolites which are potentially 

associated with plant development, for example those involved in cell expansion and 

cell division, could be altered to initiate gall formation.  

 

Finally, at late gall formation, the cellular structure of infected tissue contained 

swollen and distorted cells. The cytoplasm of infected cells contained secondary 

plasmodia and a new generation of spores. At this stage, it has been suggested that 

large plasmodia that colonize infected cells have acquired a high metabolic activity 

compared with small plasmodia (Schuller et al., 2014), which are mostly present 

during onset gall formation. This suggests that most of the metabolites that change 

at late gall formation are important to the pathogen. Identified metabolites with a 

coefficient score of 80-100 in our PLS-DA which are involved in carotenoid and 

anthocyanin biosynthesis decreased in infected tissue at late gall formation. In 

contrast, putative metabolites associated with pyrimidine metabolism, gibberellin 

inactivation, and the biosynthesis of alkaloids and piperidine increased at 28 DPI, 

when a large gall was visible (Table 2.3).  

 

Previous studies reported that gene expression and protein levels in infected and 

uninfected samples are different at early stages of primary infection and late stages 

of cortical infection (Agarwal et al., 2011, Cao et al., 2008, Siemens et al., 2006). 

However, these studies reported that the response of infected plants to P. brassicae 

occurs in the root tissue, but not in the hypocotyl tissue where the cortical infection 

is present. Moreover, Schuller et al., (2014) reported that the expression of genes 

associated with plant metabolism in infected cells is different between cells 

containing small and large plasmodia. This finding supports our result that different 

stages of infection acquired or dispersed different types of metabolites.  

 

Details of specific putative compounds, and their pathways and function during P. 

brassicae infection are discussed in Chapter 3 of this thesis. Only a few metabolites 

with a coefficient score with range between 80 and 100 in our PLS-DA were identified 
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after annotation using MarVis. For this reason, in the next chapter, metabolites with 

a significant p-value of 0.05 are annotated using MarVis. Then, those metabolites 

that are altered in response to infection are integrated with transcriptomic data that 

was obtained from a previous study to better understand the changes in metabolism 

of infected tissue (Malinowski et al., unpublished).  

 

2.5 Conclusion 

Non-targeted metabolomics was a useful approach to study the global changes in 

plant metabolism in response to P. brassicae infection.  Following P. brassicae 

infection, an alteration of metabolites occurred at the very beginning of cortical 

infection, although the plant primary growth did not show clear differences between 

uninfected and infected hypocotyl tissue at this stage. This suggests that this change 

in metabolites depended on responses of the plant to P. brassicae infection, rather 

than on an alteration of plant development.  
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Chapter 3: Investigating the Metabolism of Clubroot-Infected Plants by 

Integrating Metabolomic and Transcriptomic Approaches 

 

3.1. Introduction 

Data presented in the previous chapter showed that when A. thaliana was infected 

with P. brassicae, an alteration of plant metabolism occurred between 7 and 28 DPI. 

It indicates that metabolic changes occurred before host cell expansion and cell 

division altered. These findings were consistent with data from previous studies on 

Chinese cabbage and rapeseed showing an alteration in metabolites in gall tissue 

(Williams et al., 1968, Keen and Williams, 1969, Wagner et al., 2012). Previous 

studies also reported that gene expression and protein levels in infected and 

uninfected tissues of A. thaliana plants are different at early stages of primary 

infection and late stages of cortical infection  (Agarwal et al., 2011, Siemens et al., 

2006, Devos et al., 2006).  

 

Agarwal et al. (2011) have reported the use of microarrays to examine gene 

expression following inoculation of susceptible A. thaliana with P. brassicae at 4, 7 

and 10 days after inoculation (DAI). These time points are within the primary infection 

stages, which take place in the root. The 4 DAI is the first time point the pathogen 

can be detected using quantitative real-time PCR (qPCR) in plant root tissue, while 

7 and 10 DAI represent different pathogen stages of the primary phases of the P. 

brassicae lifecycle (Agarwal et al., 2011). Meanwhile, Devos et al. (2006) reported 

the use of a proteomic approach to examine protein expression following inoculation 

of susceptible A. thaliana with P. brassicae at 4 DAI. Siemens et al. (2006) used 

microarray analysis to examine gene expression following inoculation of susceptible 

A. thaliana with P. brassicae at 10 and 23 DAI, specifically in root tissue. These time 

points are within the cortical infection stages, which take place in the root and 

hypocotyl. The 10 DAI time point represents the growth stages of pathogen as young 

vegetative plasmodia, where no visible galls have developed, while 23 DAI 

represents the growth stages of the pathogen where secondary plasmodia, 
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sporangia and resting spores exist, and galls are visible in the root tissue. Schuller 

et al. (2014) reported A. thaliana transcriptional changes in cells containing specific 

developmental stages of P. brassicae by using laser microdissection and pressure 

catapulting (LMPC) to isolate individual cells. 

 

3.1.1 Alteration of Plant Metabolism Correlates with Plant Development during 

P. brassicae Infection 

The development of disease symptoms in infected plants is closely related to 

alterations in the metabolism of hormones such as cytokinin, auxin and 

brassinosteroids (BR). Several studies have demonstrated the accumulation of 

cytokinins in root tissues of P. brassicae-infected plants. These are said to induce 

abnormal cell division in local P. brassicae-infected tissues leading to the gall 

formation (Dekhuijzen and Overeem, 1971, Dekhuijzen 1981, Muller and 

Hilgenberg, 1986, Devos et al., 2005, 2006, Siemens et al., 2006). Cytokinins being 

necessary for vascular cambium formation (Miyawaki et al., 2006). In infected A. 

thaliana plants, gall formation occurs as a result of a reprogramming of the meristem, 

and not via de novo meristem formation. Blocking host vascular cambium activity 

through expression of the cell cycle inhibitor ICK1/KRP1 during secondary 

thickening leading to reduced gall size does not stop the development of P. 

brassicae (Malinowski et al. 2012). Inactivation of host iP and tZ biosynthesis in 

ipt1,3,5,7 mutant abolishes vascular cambium development in uninfected plants. 

When infected, no additional cell division occurs but cell expansion and lack of 

differentiation is still evident. Also plasmodia development is slowed (Malinowski et 

al., 2016).   

 

The accumulation of auxin in P. brassicae-infected tissue demonstrates that auxin 

is involved in cell enlargement to develop a gall at later stages of P. brassicae 

infection (Ludwig-Muller et al., 1993, Raa 1971, Schuller et al., 2014, Grsic-Rausch 

et al., 2000, Devos et al., 2005, 2006). Most genes associated with BR biosynthesis 

and signalling pathways are up-regulated in root tissues of P. brassicae-infected A. 
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thaliana plants, which indicates that these genes play a role in clubroot development 

(Schuller et al., 2014). BR is involved in xylem formation through BR-related 

transcription factors VND6 and VND7 during gall development (Schuller et al., 2014, 

Malinowski et al., 2012).  

 

Cell expansion in infected tissues changes the plant cells’ turgor, causing cell 

distortion and destruction of plant primary cell walls.  Agarwal et al. (2011) have 

reported that the expression of genes associated with cell wall modification and cell 

growth such as pectinesterase and expansin are up-regulated at 4 DAI. Expression 

of genes encoding enzymes that synthesise components of plant cell walls are 

down-regulated at 4 DAI. For instance down-regulated genes at 4 DAI include those 

involved in lignin biosynthesis such as 4-coumarate-CoA ligase, cinnamyl coenzyme 

A reductase and cinnamyl alcohol dehydrogenase and genes involved in the 

synthesis of glycoprotein and arabinogalactan. It has been suggested that cell wall 

lignification, callose deposition and cell wall thickening which are important for early 

plant defence during pathogen attack has been suppressed in compatible interaction 

of A. thaliana plants and P. brassicae to allow the pathogen to spread in plant tissue. 

In addition, Devos et al. (2006) identified proteins involved in cell architecture are 

down-regulated in infected tissue at 4 DAI. Those proteins are tubulin β4, tubulin α, 

tubulin β-1,4 and tubulin β-2/β-3. The down-regulation of these proteins is suggested 

to be associated with the loss of cell structure during the compatible interaction 

between A. thaliana plants and P. brassicae. In addition pectin methylesterase which 

is up-regulated in infected tissue, is involved in cell degradation and is associated 

with alterations in the cell wall to facilitate infection (Devos et al., 2006).  

 

Expression of genes associated with growth and cell cycle control are strongly 

induced at 10 DAI including several genes encoding cyclins. This suggests that cell 

division which leads to gall formation is stimulated at the very beginning of P. 

brassicae cortical infection in root tissue. At 23 DAI, expression of genes associated 

with cell expansion and elongation in gall development are mostly up-regulated in 
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infected tissue of A. thaliana plants (Siemens et al., 2006). In addition, genes 

associated with cell wall metabolism are down-regulated in large hypertrophied cells 

indicating those cells are losing cell structure (Schuller et al., 2014).  

 

3.1.2 The Host Facilitates Nutrient Acquisition during  P. brassicae Infection 

Compatible plant pathogens are able to avoid or suppress host immunity, making 

plants more susceptible to infection. Plants play an active role in supporting disease 

progression.  Once pathogens are able to enter inside hosts, the plant provides a 

suitable environment and facilitates nutrient provision, especially for biotrophic 

pathogens like P. brassicae. The accommodation of P. brassicae inside the host 

involves the development of a gall as a new sink tissue, which is important for 

nutrition uptake. In biotrophic interactions, the plant provides carbon, sulfur, nitrogen 

and other nutrients to infecting pathogens. The demand for carbon in infected tissue 

requires that there is compensation by carbon allocation from uninfected tissues, in 

particular photosynthetically active tissue and the developing inflorescence tissue. 

Flowering in P. brassicae-infected plants is therefore delayed due to the effect of 

competing carbon sinks between developing galls and inflorescence tissue (Mithen 

and Magrath, 1992, Koch et al., 1991, Dixon 2009). Besides, in P. brassicae-infected 

plants, rates of photosynthesis in leaves are no different to those in uninfected 

plants, but carbohydrate content is low due to the export of carbohydrate from leaves 

to the developing gall (Evans and Scholes, 1996). The P. brassicae infected tissue 

becomes an important sink so that nutrients, including amino and nucleotide sugars, 

amino acids, nucleotides, sulfur, vitamins, cofactors and secondary metabolites, are 

accumulated there. 

 

Generally, at 4 DAI, differentially expressed genes in response to P. brassicae 

infection are involved in biosynthesis degradation, ultilisation and assimilation of 

amino acid, cofactors, plant secondary metabolites, aromatic compounds, 

nucleoside and nucleotides, plant hormone, cell structures, fatty acid and lipids as 

well as photosynthesis. Expression of genes associated with metabolism such as 
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phenylpropanoids, lipid and carbohydrate are up-regulated at 4 DAI. At 7 and 10 

DAI, differential genes expression in response to P. brassicae infection include those 

involved in biosynthesis, degradation, ultilisation and assimilation of amino acid, 

plant hormones, cell structure, sugars and polysaccharides. In addition, genes 

associated with plant basal resistance including pathogen recognition and signal 

transduction are expressed differently following P. brassicae infection at 4 DAI.  

(Agarwal et al., 2011). This indicates that the accommodation of P. brassicae inside 

the host during primary infection stages could alter plant metabolism in order to 

induce plant defence or facilitate nutrient provision. At 23 DAI, differentially 

expressed genes  include those involved in photosynthesis, starch, lipid and 

secondary metabolism such as flavonoid metabolism. Genes associated with 

several transport process including sugar, lipid, ion and nutrient containing nitrogen, 

sulfur and phosphate compounds are not altered as much at 10 DAI compared with 

23 DAI. This indicates that the infected tissue becomes a sink for favorable nutrients 

for the pathogen at 23 DAI (Siemens et al., 2006).  

 

It has been reported that genes associated with major metabolic pathways are 

differentially expressed including carbohydrate synthesis, tricarboxylic acid (TCA) 

cycle and lipid metabolism. Cells containing small plasmodia and large plasmodia 

show major differential gene expression compared with the expression of genes 

between time points. This indicates that different growth stages of P. brassicae 

development manipulate different host metabolic activity (Schuller et al., 2014). Cells 

in the inner cortex layer containing small plasmodia at 14 and 21 DAI show up-

regulation of genes associated with tetrapyrrole, light reaction, nitrogen and sulfur 

metabolism, glycolysis, TCA cycle and fermentation. Cells located at the outer cortex 

layer that contain large plasmodia show down-regulation of genes expression 

associated with terpenoid biosynthesis and up-regulation of genes expression 

associated with mevalonate pathway (Schuller et al., 2014). The mevalonate 

pathway is involved in multiple cellular process by synthesizing sterol isoprenoids. 

Isoprenoids such as isopentenyl tRNA, is used in cytokinin biosynthesis. However, 
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this is not a major route of cytokinin biosynthesis in A. thaliana plants (Sakakibara 

2006). In addition, genes associated with the shikimate pathway and flavonoid 

synthesis are up-regulated in cells containing large plasmodia at 14 and 21 DAI 

(Schuller et al., 2014).    

 

3.1.3 Aims and Objectives 

Chapter 2 described the effect of an early event of cortical infection on the hypocotyl 

tissue of P. brassicae-infected A. thaliana plants until successful P. brassicae 

colonization inside host cells. In addition, the changes in global metabolites were 

analysed during these events. This chapter focuses on the identification of the 

metabolites in hypocotyl tissue of A. thaliana plants with a significant p-value of ≤ 

0.05 in response to P. brassicae infection, and are annotated using MarVis. 

Metabolites are grouped according to their pathways and function. Then, the 

concentration of metabolites that change are visualised using heat maps, with the 

identification of putative metabolites included in the appendix. The metabolome is 

an interface between the plant and the pathogen and is influenced by transcribed 

genes from both. Therefore the metabolites of specific pathways that change in 

response to P. brassicae infection were integrated with plant transcriptomic data in 

hypocotyl tissue at 16 and 26 DPI. This approach was taken in order to validate the 

non-targeted metabolomic approach. The pathogen genome of Schwelm et al., 

(2015) has been referred to in order to understand pathogen influences.  

 

Aims: 

1. To understand how the metabolites change over time and how compounds in 

particular biosynthetic pathways alter. 

2. To understand how gene expression in particular biosynthetic pathways 

change. 
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Objectives:  

1. To identify metabolite changes during infection using MarVis Pathway and 

Kyoto Encyclopedia of Genes and Genomes (KEGG). 

2. To examine the concentration of metabolites during P. brassicae infection 

based on specific pathways and functions.  

3. To integrate host gene expression with metabolite concentration during P. 

brassicae infection.  
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3.2 Materials and Methods 

3.2.1 Metabolomic Analysis 

Metabolomic data used in this Chapter is obtained from the processed data of 

Chapter 2 (Refer to sections 2.2.8 and 2.2.10, Figure 2.4). Identified putative 

metabolites, with their intensity signal, among biological replicates of uninfected and 

infected plants at 7 to 28 DPI based on their potential functions and pathways were 

visualised using heat maps (http://www.metaboanalyst.ca/, refer to section 2.2.9).  

 

3.2.2 Microarray Analysis 

Malinowski et al. (unpublished) uses microarray technology to examine A. thaliana 

gene expression in clubroot infected plants at the onset 16 days post inoculation 

(DPI) and 26 DPI stages of gall formation in the hypocotyls and upper roots of 

clubroot-infected plants. Each biological treatment has three biological replicates 

and one technical replicate. Each biological sample contains a pool of RNA samples 

from multiple plants (8 plants). Pooling samples from multiple plants in each 

biological replicates can reduce the biological component of variation, but it can 

reduce the variability due to sample handling or measurement error.  

 

RNA from these biological samples is extracted. RNA mixtures resulting from this 

extraction contain messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA 

(rRNA) and small ribosomal RNA (srRNA). Random primers are used in order to 

synthesis cDNA from mRNA, together with mixture of biotin-labelled nucleotides and 

reverse transcriptase enzyme.  Malinowski et al. (unpublished) uses the Affymetrix 

Ara Gene-1-1.ST Exon chip based on the TAIR10 annotation of the Arabidopsis 

genome.  

 

GeneChip (Affymetrix) uses oligonucleotides as a probe. Each oligonucleotide is 

around 20-25 bases long and there is a median of 25 probes across the full length 

of the gene which provides up to 26 unique probes per transcript. Those multiple 

probes per gene are synthesized in situ in Affymetrix before hybridization to labelled 

http://www.metaboanalyst.ca/
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cDNA. Samples which are not hybridized on the array are removed during washing 

step. A fluorescent dye, phycorerythrin bound to streptavidin is added to the array 

which stains the bound cDNA by binding the biotin. After that, a fluorescent scanner 

is used to measure the signal intensity per probe and produces an expression value 

for each probe which correlates to gene expression. The Raw data set is produced 

in CEL files, one file per microarray.  

 

The raw data output is normalized by using R package `oligo’ with the RMA (Robust 

multi-array average)  option. R package ‘oligo’ identified the CEL file which is 

imported into the R session. The raw data can be visualised as a pseudo-image, 

smoothed histogram to compare the distribution of intensities across samples, box 

plot which assesses data distribution and MA plot to assess the dependency of log-

ratios on the average log-intensity of the data (Carvalho and Irizarry, 2010). Then, 

the raw data is preprocessed using RMA option. The RMA algorithm is used in 

ExpressionFeatureSet object to adjust the background of the data, normalized the 

data to identify and remove the source of variation other than differential expression, 

as well as transformed the data into log-transformed (Irizarry et al., 2003).  

 

Statistical analysis is performed by using the linear model (‘limma’) package. In this 

step, differential gene expression for selected comparisons either for each probe or 

for each gene is measured by using this equation:  

 

Equation 1 

      Expression value=     biological treatment +     biological variation +     technical  

              variation + noise.                                           

 

The output of these analyses is differential gene expression that can be log-

intensities value between selected samples, a probability (corrected for false 

discovery using Benjamin-Hochberg method) that the expression values are truly 
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different according to an adjusted p-value, and an average value for expression in 

the samples analysed as measured using the equation 1.  

 

3.2.3 Integration of Metabolomic and Transcriptomic Analysis 

Transcriptomic data at 16 and 26 DPI in root and hypocotyl tissue was obtained from 

previous work (Malinowski et al., unpublished).  The expression of gene with log2 

FC≥1 and ≤-1, p-value ≤0.05) in particular KEGG pathways was visualised using the 

KEGG mapper (http://www.genome.jp/kegg/tool/map_pathway2.html). Metabolites 

that differently changed was coloured brown (increase) and blue (decrease) in 

KEGG pathways with the alteration of genes expression.  
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3.3 Results and Discussion 

3.3.1 Identification of Putative Metabolites that Respond to P. brassicae 

Infection  

As described in Section 2.2.8, metabolites with a p-value of ≤ 0.05 in differences 

between uninfected and infected samples were annotated according to known 

metabolites from Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 

The metabolites identified as changing during P. brassicae infection were grouped 

according to their potential functions and pathways (Figure 3.1).  As shown in Figure 

3.1, the total number of metabolites that changed in response to P. brassicae 

infection increased during the later stages of gall formation (25 and 28 DPI) 

compared with earlier in the infection (7 to 11 DPI) or at the onset of gall formation 

(14-18 DPI). Most of the metabolites that changed in response to P. brassicae 

infection were terpenoids, polyketides and other secondary metabolites (Figure 3.1).  

 

3.3.2 Alteration of Metabolites Involved in Carbohydrate Metabolism of P. 

brassicae-infected Plants 

Carbohydrate metabolism maintains the pools of hexoses, pentose and triose 

sugars in plant cells. These metabolites provide an energy source and form 

structural elements in living cells such as the cell wall. A comparison of the signal 

intensities of metabolites associated with carbohydrate metabolism is shown as a 

heat map (Figure S1). The patterns in the heat map figure indicates the similarity or 

differences among biological replicates at 7, 16 and 25 DPI. Specific putative 

metabolites whose concentration altered at 7, 16 and 25 DPI in response to P. 

brassicae infection are shown in Table S1 of the Appendix. Overall, metabolites 

associated with changes in carbohydrate metabolism were also associated with 

amino sugar and nucleotide sugar metabolism.  
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Figure 3.1. Total numbers of metabolites that were altered in carbohydrate, energy, lipid, nucleotides, amino acids, cofactors, vitamins, 
chemical structure, membrane transport and signal transduction during P. brassicae infection, at 7 to 28 DPI.  
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To better understand the changes in metabolism occurring within the infected 

hypocotyl, the alterations in metabolite concentrations found in this study were 

integrated with transcriptomic data at 16 and 26 DPI obtained from a previous 

study (Malinowski et al., unpublished). At 16 DPI, compounds with an exact mass 

607.08, which were predicted to be UDP-N-acetylglucosamine (UDP-GlcNAc), 

UDP-N-Acetyl-D-mannosamine (UDP-ManNAc) or UDP-N-Acetyl-D-

galactosamine (UDP-GalNAc), accumulated in infected tissue. These three 

putative compounds share similar mass and cannot be distinguished in this study. 

The accumulation of these putative compounds of amino sugar and nucleotide 

sugar metabolism in infected tissue was accompanied by the down-regulation of 

the host gene UDP-N-acetylglucosamine diphosphorylase (2.7.7.23) and an up-

regulation of chitinase (3.2.1.14, AT2G43610) that hydrolyses chitin to N-Acetyl-

D-glucosamine (GlcNAc) (Figure 3.2).  

 

Plant chitinase is involved in plant defence against oomycete plant pathogens 

(Lee et al., 2000, Kim and Hwang, 1994), fungi (Yokotani et al., 2014, Hong and 

Hwang, 2002, Hietala et al., 2004) and bacteria (Ott et al., 2006, Kim et al., 2015). 

The chitinase gene is not only activated by chitin, an important structural 

component of the fungal cell wall, but also by pathogen protein effectors (Ott et 

al., 2006). Recently, it has been reported that in pepper plants, chitinase and 

receptor-like cytoplasmic protein kinase form a complex to activate plant cell 

death and plant defence. This complex is formed after plant responses to the 

ROS and nitrite oxidase burst that is triggered by Xanthomonas campestris (Xcv) 

infection (Kim et al., 2015). Furthermore, the up-regulation of the chitinase gene 

is positively correlated with the accumulation of salicylic acid (SA) which 

subsequently induces resistance against avirulent pathogens (Ahmad et al., 

2014). On the other hand, chitinase, which acts as a positive regulator of early 

basal resistance in response to pathogen infection, is suppressed by virulent 

pathogens (Ott et al., 2006). The up-regulation of chitinase after the 

establishment of infection is considered to be too late to reduce and prevent 

pathogen colonization, however (Hietala et al., 2004).  
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Figure 3.2. The expression of genes involved in amino sugar and nucleotide sugar metabolism 
in P. brassicae-infected tissue at 16 DPI. Light blue boxes show down-regulated gene expression 
(log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, 
p≤0.05), green boxes show genes that do not show a significant change in expression between 
uninfected and infected tissue. White boxes show genes that have not been identified in A. 
thaliana. Blue circles show metabolites that potentially decreased and orange circles show 
metabolites that potentially increased in P. brassicae-infected tissue (p-value ≤0.05) at 16 DPI. 
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The P. brassicae genome contains chitin-related Carbohydrate-Active enZymes 

(CAZymes) domain protein models that belong to GH18 chitinase, CE4 and CBM18 

groups. Pd1-chitinase genes which belong to GH18 chitinase group, are expressed 

during spore formation and germination. This suggests that these genes are 

important in resting spore cell wall modification and degradation. Meanwhile, CBM18 

domains which bind to chitin presumably function to protect the pathogen from 

breakdown by chitinase. The CE4 domain protein converts chitin into chitosan which 

is a weaker inducer of plant immune system. Besides P. brassicae could release a 

LysM effector to avoid their chitin compound being recognized by the host immune 

system (Schwelm et al., 2015).  

  

It has been observed that, at late stages of P. brassicae infection, large galls are 

present in infected plants (Mithen and Magrath, 1992).  This is since cell expansion 

in plant tissue reduces the pressure of water pushing the plasma membrane against 

the cell wall (Hamann et al., 2009) and as a result P. brassicae-infected cells became 

distorted (Chapter 2, result section). The presence of galls therefore indicates that 

the primary cell wall has been compromised. At late stages of the infection, the 

concentration level of Beta-L-arabinose 1-phosphate (L-Ara-1P), glucuronate-1P 

(GlcA-1P) and galacturonate (GalA-1P) increased in infected tissue (Figure 3.3, 3.4). 

L-Ara-1P is derived either from free arabinose via a salvage pathway or through de 

novo synthesis involving epimerisation of UDP-D-xylose by UDP-xylose-4-

epimerase. Since the A. thaliana gene encoding UDP-xylose-4-epimerase (5.1.35) 

was down-regulated in infected hypocotyl tissue at 26 DPI (Figure 3.3), this suggests 

that L-Ara-1P was derived from free arabinose of the pentose and glucuronate 

interconversion pathway. Moreover, the A. thaliana gene encoding UDP-

arabinopyranose mutase (5.4.99.30) was up-regulated, leading to the production of 

UDP-L-arabinofuranose (UDP-L-Araf).  
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Figure 3.3. The expression of genes involved in amino sugar and nucleotide sugar metabolism in P. 
brassicae-infected tissue at 26 DPI. Light blue boxes show down-regulated gene expression (log2 
fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green 
boxes show genes that do not show a significant change in expression between uninfected and 
infected tissue. White boxes show genes that have not been identified in A. thaliana. Blue circles 
shows metabolites that potentially decreased and orange circles show metabolites that potentially 
increased in P. brassicae-infected tissue (p-value ≤ 0.05) at 25 DPI.  
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Plant primary cell walls consist of cellulose, hemicellulose and pectin. Pectin is 

composed of various components including glucuronate, galacturonate, arabinose 

and galactose (Loewus and Loewus, 1983, Harholt et al., 2010).  

 

Following P. brassicae infection, A. thaliana genes encoding UDP-glucuronate 4- 

epimerase (5.1.3.6) and alpha-1,4-galacturonosyltransferase (2.4.1.43) leading to 

pectin synthesis, were down-regulated at 26 DPI (Figure 3.3). This suggests that the 

plant primary cell wall lost its strength due to a decrease in pectin synthesis which 

subsequently resulted in an abundance of free L-Ara-1P, GlcA-1P and GalA-1P. 

Pectin polysaccharide which is a large polymer in the middle lamella, plays a role in 

cell adhesion. When a plant mother cell divides into two daughter cells, adhesion 

between the daughter plant cells is maintained. As plant cells expand, adherent walls 

between two daughter cells remained fused along the line of the middle lamella. 

However, abnormal cell adhesion in reinforcing zones could cause cell separation 

(Jarvis et al., 2003) letting a single cell expand. This may lead to disorganisation of 

cell structure in P. brassicae-infected tissues.  

 

During infection, necrotrophic fungi such as Botrytis cinerea enter the host cell by 

secreting enzymes such as polygalacturonase to depolymerize pectin structure in 

order to decrease the strength of plant cell walls (Ferrari et al., 2003). As a result of 

this depolymerisation, oligogalacturonides are released from pectin and could act as 

a carbon source for the pathogen (Ridley et al., 2001, D'Ovidio et al., 2004). In 

response to B. cinerea polygalacturonase and accumulation of oligogalacturonidase, 

the plant up-regulates the expression of polygalacturonase-inhibiting proteins 

(PGIPs) that could serve to limit the pathogen colonization (D'Ovidio et al., 2004, 

Ferrari et al., 2003). Compared to other pathogens such as the oomycetes, 

Bigelowiella natans and Reticulomyxa filose, however, the P. brassicae genome 

lacks the domain of the plant cell wall degrading carbohydrate-active enzymes 

(CAZymes) that are involved in pectin degradation (Schwelm et al., 2015). At 16 DPI, 

the expression of the PGIP1 gene was increased in hypocotyl and root tissues of P. 
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brassicae-infected A. thaliana plants, while at 16 and 26 DPI, PGIP2 was strongly 

decreased in both tissues (Table 3.1). This result contrasts with necrotrophic 

pathogens. In response to P. brassicae infection, the expression of PGIP1 was 

induced at 16 DPI, but not at 26 DPI, when plasmodia had successfully colonized 

host cells.  This indicates that P. brassicae does not enter host cells via degradation 

of pectin localized in the plant primary cell walls, corroborating the previous 

suggestion that secondary plasmodia inside cortical cells are distributed by host 

cytoplasmic movement and host cell division, but not through degradation of the 

plant cell wall itself (Kageyama and Asano, 2009).  

 

 

Figure 3.4. Fold-change of differential intensity of glcA-1P or GalA-1P and L-ara-1P during P. 
brassicae infection at 18 to 28 DPI (P-value ≤ 0.05).  
 
 
Table 3.1 Expression of genes encoded polygalacturonase inhibiting protein in clubroot-infected 
plants at 16 and 26 dpi in hypocotyl and root tissues. Expression values are log2-fold change in 
infected plants relative to uninfected plants at a significance of p-value ≤0.05.  

n.s.=not significant. 

Average value= average of log-intensities value between uninfected and infected samples. Genes 
with average value ≤3 are not showing in this table.  
Biological replicates= three plants in each treatment.   
Expression value scale: 
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3.3.3 Alteration of Metabolites Involved in Energy and Nucleotide Metabolism 

of P. brassicae-infected Plants 

A comparison of the signal intensities of metabolites associated with energy, lipid 

and nucleotide metabolism is shown as a heat map (Figure S2). The metabolites 

associated with changes in energy metabolism were also associated with sulfur 

metabolism, whilst the changes of nucleotide metabolism occurred in those also 

associated with purine and pyrimidine metabolism (Table S2).  

 

In infected A. thaliana plants, the regulation of the sulfur metabolism pathway was 

altered by P. brassicae presumably to prevent plants activating their defence 

mechanism. The sulfur metabolism pathway involves thiosulfate as the electron 

donor and sulfate as the electron acceptor. In A. thaliana plants, thiosulfate is 

synthesised from mercaptopyruvate by 3-mercaptopyruvate sulfurtransferase 

activity which is a part of the cysteine and methionine metabolism pathway. Electron 

transfer from thiosulfate to sulfate is regulated by a sulfur-oxidation reaction through 

the cytochrome C-1 (SOX) gene. Thiosulfate can also be converted to sulfite through 

the regulation of thiosulfate sulfur transferase. Then, sulfite is converted to sulfate 

by sulfite oxidase. Sulfite can also be converted into sulfide by sulfite reductase. The 

reaction from sulfite and O-acetyl-serine substrate through cysteine synthase A/O-

acetylserine (Thio) lyase releases the amino acid L-cysteine. In this context, 

following P. brassicae infection, pathogen colonization at 25 DPI caused an 

accumulation of thiosulfate and O-Acetyl-L-Serine (Figure 3.5). Sulfite and amino 

acid L-cysteine, however, decreased in infected tissue at 25 DPI (Figure 3.5).   

 

The changes found here in sulfur metabolism occurring within the infected hypocotyl, 

together with the alterations in thiosulfate, sulfite, O-Acetyl-L-Serine and L-cysteine 

concentrations were integrated with transcriptomic data at 16 and 26 DPI obtained 

from a previous study (Malinowski et al., unpublished). This showed that the 

expression of the A. thaliana 3-mercaptopyruvate sulfurtransferase gene to 

synthesise thiosulfate and pyruvate from 3-mercaptopyruvate was not significantly  
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Figure 3.5. The expression of genes involved in sulfur metabolism in P. brassicae-infected tissue at 
26 DPI. Light blue boxes show down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red 
boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes show genes that do 
not show a significant change in expression between uninfected and infected tissue. White boxes 
show genes that have not been identified in A. thaliana. Blue circles show metabolites that potentially 
decreased and orange circles show metabolites that potentially increased in P. brassicae-infected 
tissue (p-value ≤ 0.05).  
 

different between infected and infected tissue (data not shown). The expression of 

the A. thaliana SOX gene, which converts thiosulfate to sulfate, was down-regulated 

in infected hypocotyl tissue at 16 DPI (data not shown) and 26 DPI (Figure 3.5). 

Furthermore, expression of thiosulfate sulfur transferase (2.8.1.1) and sulfite oxidase 

(1.8.3.1), which convert thiosulfate to sulfite and sulfite to sulfate, respectively, 

appeared not to be significantly different between infected and uninfected tissues at 
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16 DPI (data not shown) and 26 DPI (Figure 3.5).  On the other hand, genes 

encoding cysteine synthase A/O-acetylserine (Thio) lyase (2.5.1.47), which convert 

the substrates O-Acetyl-L-serine and sulfide to L-cysteine were up-regulated at 16 

and 26 DPI (Figure 3.5). 

 

Thiosulfate is a compound that could potentially supply sulfur molecules to P. 

brassicae. Given that results in this study show that thiosulfate increased in 

hypocotyl tissue of P. brassicae-infected plants at 7, 21, 25 and 28 DPI (Figure 3.5 

and 3.6), The down-regulation of the host’s SOX gene in infected tissue at 16 and 

26 DPI is hypothesised caused the accumulation of thiosulfate. The P. brassicae 

genome on the other hands, contains the SOX gene, which could oxidize thiosulfate 

and is also the gene encoding thiosulfate sulfur transferase (Schwelm et al., 2015), 

which converts thiosulfate to sulfite. Probably, P. brassicae regulates the sulfur cycle 

to increase the production of thiosulfate as its sulfur source and suppress the host’s 

sulfur metabolism genes. 

 

The sulfur metabolism pathway correlates with plant defence through sulfite. Sulfite 

can act as a plant defence response when it is oxidized by sulfite oxidase to release 

sulfate and H2O2 (Bloem et al., 2015, Riemenschneider et al., 2005a). However, the 

expression of the host’s sulfite oxidase (1.8.3.1) was found not to be significantly 

different between infected and uninfected tissues at 16 DPI (data not shown) and 26 

DPI (Figure 3.5).  Meanwhile, the P. brassicae genome contains a gene encoding 

persulfide dioxygenase (Schwelm et al., 2015). Persulfide dioxygenase serves to 

oxidize sulfur/S-sulfanylglutathione and release glutathione, sulfite, H+ and S-

sulfinoglutathione, acting in plant defence. The expression of A. thaliana persulfide 

dioxygenase (1.13.11.18) was not shown to be significantly different in infected and 

uninfected tissues (Figure 3.5), however, and I therefore hypothesise that P. 

brassicae induced the accumulation of thiosulfate by repressing host SOX gene. 

Therefore, P. brassicae converts thiosulfate to glutathione as a sulfur transport 

compound so as to avoid the plant activating its own defence response through 
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expression of the sulfite oxidase gene, and thus finally causing a low accumulation 

of sulfite. Besides, it has been reported that glutathione accumulates in root tissue 

of P. brassicae-infected Brassica napus plants (Wagner et al., 2012). The role of 

glutathione in clubroot infection remains unclear, however, in respect to whether it is 

involved in plant defence or is required for the development of the pathogen (Wagner 

et al., 2012). If plasmodia potentially produce glutathione, this compound is probably 

beneficial for their growth. Transcriptomic data from Malinowski et al. (unpublished) 

shows up-regulation of genes encoding Glutathione-S-transferase which plays a role 

in detoxification (data not shown).   

 

Furthermore, the O-Acetyl-L-Serine component of sulfur metabolism increased at 25 

DPI in infected tissue (Figure 3.5). It has been reported that the exogenous supply 

of O-Acetyl-L-Serine could increase thiol content and restrict the synthesis of 

cysteine (Neuenschwander et al., 1991, Smith et al., 1997). In this study, this 

accumulation of O-Acetyl-L-Serine was accompanied by the up-regulation of genes 

encoding cysteine synthase A/O-acetylserine (Thio) lyase (2.5.1.47) at 16 and 26 

DPI (Figure 3.5). The desulphydrase activity of O-acetylserine (thio) lyase could 

trigger plant defence mechanisms through the production of sulfite as a plant 

defence compound (Riemenschneider et al., 2005b). The fact that this compound 

decreased in infected tissue in this study suggests that plant defence responses 

were repressed by P. brassicae infection.  Moreover, in this study, it showed that the 

expression of genes encoding sulfur transporters in hypocotyl and root tissues of P. 

brassicae-infected plants were generally down-regulated except for SULTR3; which 

was up-regulated (Table 3.2). I suggest that plasmodia obtain sulfur from the sulfur 

metabolism of the host which subsequently reduces the distribution of sulfur from 

root to the shoot.  
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Figure 3.6. Fold-change of differential thiosulfate intensity during P. brassicae infection at 7, 21, 25 
and 28 DPI (p-value ≤ 0.05).  
 
Table 3.2. Expression of genes encoding sulfur transporters in clubroot-infected plants at 16 and 26 
DPI in hypocotyl and root tissues. Expression values are log2-fold change in infected plants relative 
to uninfected plants at a significance of p-value ≤0.05.  
 

 
n.s=not significant. 
Average value= average of log-intensities value between uninfected and infected samples. Genes 
with average value ≤3 are not showing in this table.  
Biological replicates= three plants in each treatment.   
Expression value scale: 

 

 

Following infection of A. thaliana by P. brassicae, potential metabolites involved in 

purine and pyrimidine metabolism, changed at 7, 16 and 25 DPI (Table S2 in 

appendix section).  Purine and pyrimidine nucleotides are essential precursors for 
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SULTR3;4 AT3G15990 n.s n.s n.s -1.26 8.33

SULTR3;1 AT3G51895 n.s n.s 0.67 n.s 8.11

SULTR3;2 AT4G02700 n.s 0.86 n.s 1.87 4.35

SULTR1;1 AT4G08620 -1.29 n.s n.s -1.97 4.70

SULTR2;1 AT5G10180 -1.43 -1.41 n.s -1.47 8.62

SULTR4;1 AT5G13550 -0.77 n.s -0.86 n.s 7.60

SULTR3;5 AT5G19600 -5.29 -6.41 -2.24 -6.07 7.43

Hypocotyl Root

Low High

-3 -2 -1 0 1 2 3
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DNA and RNA synthesis, both for the plant and pathogen. In addition, purine and 

pyrimidine metabolism can be energy sources and precursors for the synthesis of 

products such as sucrose, polysaccharides and phospholipids. 

 

At 16 DPI, inosine monophosphate (IMP) of purine metabolism increased in infected 

tissue (Figure 3.7). IMP is synthesised through de novo purine nucleotide 

biosynthesis from 5-phosphoribosyl-1-pyrophosphate (PRPP). At 25 DPI, D-Ribose 

5’-phosphate, 1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide (AICAR) and 

1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole (SICAR), 

increased in infected tissue at 25 DPI (Figure 3.8). The transcriptomic data showed 

that expression of A. thaliana genes associated with de novo purine biosynthesis did 

not differ significantly between uninfected and infected plants at 26 DPI (Figure 3.8). 

 

In pyrimidine metabolism, de novo biosynthesis of pyrimidine nucleotides starts from 

carbamoyl phosphate and glutamine to produce Uridine monophosphate (UMP) via 

orotate compound (Stasolla et al., 2003, Garavito et al., 2015). Following infection 

of A. thaliana by P. brassicae, orotate, UDP, dUMP and UMP were found to have 

accumulated in infected tissue at 25 DPI (Figure 3.9). Since the A. thaliana gene 

encoding apyrase (3.6.1.5) that hydrolyses UDP to UMP was down-regulated and 

uridylate kinase (2.7.4.22) that phosphorylates UMP to UDP was up-regulated in 

infected tissue at 26 DPI, this indicates that plant RNA synthesis also increased in 

response to P. brassicae infection (Figure 3.9). This suggests that UMP, which is a 

precursor of other pyrimidine nucleotides (Garavito et al., 2015), was also important 

in the pyrimidine metabolism of P. brassicae-infected plants. This further indicates 

that de novo biosynthesis of pyrimidine nucleotides increased in the late gall 

formation, which consists of actively dividing cells. The number of actively dividing 

is increased in hypocotyl of A. thaliana plants upon P. brassicae infection at 16 until 

26 DPI, but abruptly stops at 32 DPI (Malinowski et al., 2012).  
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Figure 3.7. The expression of genes involved in purine metabolism in P. brassicae-infected tissue at 16 DPI. Light blue boxes show down-
regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes 
show genes do not show a significant change in expression between uninfected and infected tissue. White boxes show genes that have not 
been identified in A. thaliana. Blue circles show metabolites that are potentially decreased and orange circles show metabolites that are 
potentially increased in P. brassicae-infected tissue (p-value ≤ 0.05).  
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Figure 3.8. The expression of genes involved in purine metabolism in P. brassicae-infected tissue at 26 DPI. Light blue boxes show down-
regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes 
show genes do not show a significant change in expression between uninfected and infected tissue. White boxes show genes that have not 
been identified in A. thaliana. Blue circles shows metabolites that are potentially decreased and orange circles show metabolites that are 
potentially increased in P. brassicae-infected tissue (p-value ≤ 0.05).  
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Figure 3.9. The expression of genes involved in pyrimidine metabolism in P. brassicae-infected tissue at 26 DPI. Light blue boxes show down-
regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes 
show genes that do not show a significant change in expression between uninfected and infected tissue. White boxes show genes that have 
not been identified in A. thaliana. Blue circles show potentially decreased metabolites and orange circles show potentially increased 
metabolites in P. brassicae-infected tissue (p-value ≤ 0.05).  
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Catabolism of pyrimidine nucleotides is an important pathway to maintain 

pyrimidine homeostasis and the recycling of nitrogen from pyrimidine to nitrogen 

metabolism (Zrenner et al., 2009). β-alanine, methylmalonate and 3- 

aminoisobutyric acid following catabolism of pyrimidine nucleotides accumulated 

in infected tissue at 25 DPI (Figure 3.9). Methylmalonate is a secondary product 

of oxidized thymine and β-alanine which is a precursor of pantothenic acid, is 

derived from uracil (Garavito et al., 2015, Katahira and Ashihara, 2006).  

 

The transcriptomic data showed that A. thaliana gene expression associated with 

the synthesis of β-alanine, methylmalonate and 3-aminoisobutyric acid were not 

significantly different between uninfected and infected tissue at 26 DPI (Figure 

3.9). Although it has been reported that pyrimidine catabolism recycles pyrimidine 

nitrogen to nitrogen metabolism when the cell is under nitrogen limitation (Zrenner 

et al., 2009), this study reveals no evidence of any A. thaliana gene expression 

associated with the catabolism of pyrimidine in response to P. brassicae infection. 

The accumulation of compounds associated with pyrimidine catabolism occurs 

under the control of plasmodia therefore has been assumed in this study . It is 

possible that the plasmodia use these compounds as a carbon or nitrogen 

source.   

 

3.3.4 Alteration of Metabolites Involved in Amino Acid Metabolism of P. 

brassicae-infected Plants 

A comparison of the signal intensities of metabolites associated with amino acid 

metabolism is shown as a heat map (Figure S3). Specific putative metabolites 

associated with amino acid metabolism, whose concentration altered in response 

to P. brassicae infection at 7, 16 and 25 DPI are shown in Table S3 of the 

Appendix.  

 

Following P. brassicae infection, amino acid glutamate, aspartate, alanine and 

proline all increased in infected tissue, while tryptophan and cysteine decreased 

(Figure 3.10). Glutamate was found to have increased at 11, 18, 25 and 28 DPI 

in infected tissue (Figure 3.10). The accumulation of glutamate was accompanied 
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by the up-regulation of gene encoding glutamine synthetase at 16 DPI (data not 

shown) and 26 DPI (Figure 3.11). It has been reported that glutamate 

accumulates in root tissue of P. brassicae-infected Brassica napus plants 

(Wagner et al., 2012). This may suggest that glutamate is required for the 

development of P. brassicae inside a susceptible host (Wagner et al., 2012). 

Besides, glutamate can be catabolized with the production of energy.  

 

 

Figure 3.10. Fold-change of differential intensities of tryptophan, cysteine, aspartate, glutamate, 
alanine and proline during P. brassicae infection at 7 to 28 DPI (p-value ≤ 0.05).  
 

Aspartate accumulated in response to infection at 25 DPI, but the A. thaliana 

gene encoding aspartate aminotransferase and aspartate kinase at 16 DPI (data 

not shown) and 26 DPI were down regulated in infected tissue (Figure 3.11). 

Aspartate aminotransferase transfers the nitrogenous group of glutamate to the 

carboxyl group of oxaloacetate and releases 2-oxoglutarate and aspartate, whilst 

aspartate kinase transfers the phosphorus group to the carboxyl group of 

aspartate and releases 4-phospho-L-aspartate. The P. brassicae genome 

contains a gene encoding aspartate kinase (Schwelm et al., 2015). In addition, 

the gene encoding homoserine O-succinyltransferase is present in P. brassicae 

genome, but is not present in the A. thaliana genome. This gene synthesises O-
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Succinylhomoserine and releases coenzyme A (CoA). Consequently, it seems as 

if the accumulation of aspartate in infected tissue was regulated by the plasmodia. 

Aspartate can be catabolized with the production of energy.  

 

 

Figure 3.11. The expression of genes involved in the biosynthesis of amino acid in P. brassicae-
infected tissue at 26 DPI. Light blue arrows show down-regulated gene expression (log2 fold-
change ≤ -1, p≤ 0.05), red arrows show up-regulated gene expression (log2 FC ≥1, p≤0.05), green 
arrows show genes that do not show a significant change in expression between uninfected and 
infected tissue and black arrows show genes that have not been identified in A. thaliana. Blue 
circles show potentially decreased metabolites and orange circles show potentially increased 
metabolites in P. brassicae-infected tissue (p-value ≤ 0.05).  
 

Moreover, alanine aminotransferase activity transfers the nitrogenous group of 

glutamate to the methyl group of pyruvate and releases 2-oxoglutarate and 
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alanine. Alanine was also found to be accumulated in infected tissue at 11 and 

25 DPI (Figure 3.10), and the gene encoding alanine aminotransferase was up-

regulated in response to P. brassicae infection at 16 (data not shown) and 26 DPI 

(Figure 3.11). This result also corroborates the accumulation of alanine in root 

tissue of B. napus plants in response to P. brassicae infection (Wagner et al., 

2012), indicating that plasmodia requires the amino acid alanine.  

 

Furthermore, proline accumulated in infected tissue at 25 and 28 DPI (Figure 

3.10). Since proline is synthesised from glutamate, its synthesis can be initiated 

after the carboxyl group of glutamate receives the phosphorous-containing group 

from glutamate 5-kinase to form glutamate 5-phosphate. The glutamate 5-

phosphate is dehydrogenased by glutamate semialdehyde dehydrogenase to 

become glutamate semialdehyde. Genes encoding both of the enzymes were 

down-regulated at 16 DPI (data not shown), whilst at 26 DPI they were up-

regulated in infected tissue (Figure 3.11). Glutamate semialdehyde is cyclized 

spontaneously to form delta-pyrroline-5-carboxylate and becomes proline by the 

activity of pyrroline-5-carboxylate reductase. The gene encoding the latter 

enzyme was also found to be up-regulated in infected tissue at 26 DPI (Figure 

3.11). It has been reported that proline accumulates only at the later stages of 

infection of P. brassicae-infected B. napus plants, when the concentration of P. 

brassicae DNA is relatively high compared to the early stage of infection (Wagner 

et al., 2012). In addition, accumulation of proline in plants that are partially 

resistant to P. brassicae infection is delayed when compared with clubroot-

susceptible plants (Jubault et al., 2008). This indicates that proline is not involved 

in the plant defence response since partially resistant plants show a stronger 

induction of plant defence at the very beginning of P. brassicae infection (Jubault 

et al., 2013).  

 

It has been suggested that since proline could act as an osmotic protectant, it 

could possibly accumulate inside plasmodia, either for their growth or to protect 

them from the osmotic and oxidative stress of the host environment (Jubault et 

al., 2008). Proline is a compatible solute associated with host stress including 
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drought. The reduction of xylem formation in infected plants could have limited 

water transport to the whole plants, mimicking drought conditions. The 

accumulation of proline in infected tissue with P. brassicae might protect plants 

from the osmotic stress. The role of proline to protect plants from oxidative stress 

on the other hand, is associated with the production of reactive oxygen species 

(ROS) by the plant in order to kill pathogens. ROS could kill pathogens directly 

by causing oxidative damage to macromolecules, or indirectly by activating plant 

systemic acquired resistance (SAR) (Wittek et al., 2015). This indicates that 

during P. brassicae infection, surrounding host cells are in a condition of oxidative 

stress leading to macromolecular damage. Following P. brassicae infection, 

proteins associated with ROS detoxification are decreased after 12 hours’ 

infection and increased after 24-72 hours’ infection (Cao et al., 2008, Devos et 

al., 2006). The ROS detoxification process is required so as to avoid 

macromolecular damage inside host tissue by the dismutation of superoxide into 

oxygen and hydrogen peroxide. Proline, which acts as a stress protector, could 

potentially scavenge ROS in cells as well as its functions as a protein and 

membrane stabilizer (Takagi 2008).        

 

3.3.5 Alteration of Metabolites Involved in Cofactor and Vitamin Metabolism 

of P. brassicae-Infected Plants 

A comparison of the signal intensities of metabolites associated with cofactor and 

vitamin metabolism is shown as a heat map (Figure S4). Specific putative 

metabolites associated with cofactor and vitamin metabolism whose 

concentrations altered at 7, 16, and 25 DPI in response to P. brassicae infection 

are shown in Table S4 of the Appendix. The metabolites associated with changes 

in vitamin metabolism were those associated with vitamin B6 and folate 

metabolism. Specifically, metabolites related to vitamin metabolism including 

pyridoxal 5’-phosphate for vitamin B6 metabolism fluctuated in response to P. 

brassicae infection, whilst 4-aminobenzoate for folate biosynthesis increased 

during late gall formation (Figure 3.12).  
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Figure 3.12. Fold-change of the differential intensity of pyridoxal 5’-phosphate for vitamin B6 
metabolism and 4-aminobenzoate for folate biosynthesis during P. brassicae infection at 7 to 28 
DPI (p-value ≤ 0.05).  

 
Most of the vitamins that are synthesised in plants, including Vitamin B6 and 

folate, possess antioxidant activity and are important in the scavenging of 

Reactive Oxygen Species (ROS) that cause damage to plant macromolecules. 

In plants, vitamin B6 is present in various forms including pyridoxine, 

pyridoxamine, pyridoxal and their phosphorylated derivatives. In A. thaliana 

plants, vitamin B6 is synthesised from Ribulose 5-phosphate by the enzyme 

pyridoxal 5'-phosphate synthase (Tambasco-Studart et al., 2005). Following P. 

brassicae infection, D-Ribulose 5-phosphate, a precursor of pyridoxal 5’-

phosphate was found to have increased in infected tissue (Figure 3.13).  

 

As D-Ribulose 5-phosphate accumulated, the A. thaliana gene encoding 

pyridoxal 5'-phosphate synthase (4.3.3.6), synthesising pyridoxal 5’-phosphate 

by hydrolysing glutamine to release glutamate, was up-regulated in response to 

P. brassicae infection at 26 DPI (Figure 3.17). This indicates that de novo 

biosynthesis of vitamin B6 was increased in infected tissue. The concentration of 

pyridoxamine phosphate for vitamin B6 metabolism decreased in infected tissue 

at 7 DPI (Table S4 of Appendix), whilst pyridoxal 5’-phosphate increased at 11 

DPI, decreased at 18 and 25 DPI and slightly increased at 28 DPI (Figure 3.12). 

The accumulation of pyridoxine phosphate at 25 DPI (Figure 3.13) indicates that 

antioxidant compounds were present in infected tissue. Among vitamin B6 forms, 

pyridoxal shows the strongest antioxidant activity in respect to maintaining tissue 

integrity and viability (Denslow et al., 2005).  
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Figure 3.13. The expression of genes involved in vitamin B6 metabolism in P. brassicae-infected tissue at 26 DPI. Light blue boxes show down-regulated 
gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes show genes that do 
not show a significant change in expression between uninfected and infected tissue. White boxes show genes that have not been identified in A. thaliana. 
Blue circles shows potentially decreased metabolites and orange circles show potentially increased metabolites in P. brassicae-infected tissue (p-value 
≤ 0.05).  
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Pyridoxal is synthesised through the activities of two genes. First, it is synthesized 

from pyridoxine by the A. thaliana gene encoding pyridoxine 4-dehydrogenase 

(1.1.1.65) and this gene was up-regulated at 26 DPI in infected tissue (Figure 3.13). 

Secondly, the A. thaliana gene encoding pyridoxal phosphate phosphatase 

(3.1.3.74) dephosphorylates pyridoxal 5’-phosphate to pyridoxal and this gene was 

down-regulated in infected tissue at 16 DPI (data not shown) and 26 DPI (Figure 

3.13). Moreover, the gene encoding pyridoxal kinase (2.7.1.35), and associated with 

the salvage pathway of vitamin B6, was not found to be significantly different 

between uninfected and infected tissue (Figure 3.13).  

 

The P. brassicae genome lacks of genes associated with thiamine biosynthesis. It 

has been suggested that P. brassicae depends on its host for this vitamin (Schwelm 

el al., 2015). Other biotrophic pathogens such as oomycete white rust pathogens 

have lost most of the genes associated with cofactor and vitamin biosynthetic 

pathway including thiamine and molybdopterin (Kemen et al., 2011, Garnica et al., 

2013). Meanwhile, this pathogen genome contains cofactor transporter genes such 

as nicotinic acid transporter which indicates that pathogen obtains this essential 

cofactor from the host (Garnica et al., 2013). The loss of genes associated with the 

cofactor and vitamin biosynthetic pathway is a signature of the biotrophic lifestyle 

(Kemen et al., 2011, Schwelm et al., 2015). It has been suggested that biotrophic 

pathogens have evolved to synthesise from less energy-consuming source of 

metabolites such as nitrogen and sulfate rather than vitamins which is more energy-

consuming (Kemen et al., 2011).  

 

In addition, I assume that vitamin B6 is also required to protect the plant cell, 

including plasmodia, from molecular damage caused by ROS that were stimulated 

by the plant defence response. This contrasts with the activity of antioxidants in cells 

infected by Pseudomonas syringae and Botrytis cinerea (Denslow et al., 2005, 

Zhang et al., 2014).  In those cases, antioxidant activity decreases in infected cells 

subsequently causes cell death, indicating that the presence of ROS is required in 
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plant cells to ward off P. syringae (Denslow et al., 2005). At the same time, 

antioxidant activity is required in the region not affected by the pathogen in order to 

keep ROS at a low level and subsequently reduce the macromolecular damage 

(Denslow et al., 2005). In addition, the gene involved in vitamin B6 biosynthesis has 

been shown to be induced in tomato leaves infected with B. cinerea. Deleting this 

gene causes an increase in disease severity. This indicates that antioxidant activity 

is required in plant defence against B. cinerea (Zhang et al., 2014).   

 

Tetrahydrofolates (THF) for folate biosynthesis play a role as a cofactor in one-

carbon reactions. The structure of THF consists of a pterin branch, p-aminobenzoate 

branch and an amino acid glutamate (Basset et al., 2005). The pterin branch is 

derived from Guanosine 5'-triphosphate through five steps of GTP cyclohydrolase 

(3.5.4.16) activity to release 7,8-Dihydroneopterin 3'-triphosphate. Following P. 

brassicae infection, formamidopyrimidine nucleoside triphosphate, an intermediate 

compound in the synthesis of 7,8-Dihydroneopterin 3'-triphosphate, decreased at 16 

DPI. 7,8-Dihydroneopterin, however, a compound derived from 7,8-dihydroneopterin 

3'-triphosphate, was found to have increased in infected tissue at 16 DPI (Figure 

3.14). Although formamidopyrimidine nucleoside triphosphate increased, the other 

intermediate compounds needed to synthesise 7,8-Dihydroneopterin 3'-triphosphate 

decreased in infected tissue at 25 DPI (Figure 3.15). Expression of the A. thaliana 

gene encoding GTP cyclohydrolase (3.5.4.16) was down regulated at 26 DPI in 

infected hypocotyl tissue (Figure 3.15), indicating that the synthesis of the pterin 

branch for THF component was reduced. A second step in the synthesis of THF was 

the formation of a p-aminobenzoate branch, derived from chorismate. Following P. 

brassicae infection, 4-aminobenzoate increased at 21, 25, and 28 DPI in infected 

tissue (Figure 3.12, 3.15), indicating that the production of the second THF branch 

was increased.  

 

The last step in the synthesis of THF is to couple the pterin branch and p-

aminobenzoate branch by dihydrofolate synthase and folylpolyglutamate synthase  
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Figure 3.14. The expression of genes involved in folate biosynthesis in P. brassicae-infected tissue 
at 16 DPI. Light blue boxes show down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), 
red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes show genes that 
do not show a significant change in expression between uninfected and infected tissue. White boxes 
show genes that have not been identified in A. thaliana. Blue circles show potentially decreased 
metabolites and orange circles show potentially increased metabolites in P. brassicae-infected tissue 
(p-value ≤ 0.05).  
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Figure 3.15. The expression of genes involved in folate biosynthesis in P. brassicae-infected tissue 
at 26 DPI. Light blue boxes show down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), 
red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes show genes that 
do not show a significant change in expression between uninfected and infected tissue. White boxes 
show genes that have not been identified in A. thaliana. Blue circles show potentially decreased 
metabolites and orange circle show potentially increased metabolites in P. brassicae-infected tissue 
(p-value ≤ 0.05).  
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(Basset et al., 2005). Following P. brassicae infection, the expression of the A. 

thaliana gene encoding polypolyglutamate synthase (6.3.2.17) was up-regulated at 

16 (Figure 3.14) and 26 DPI, which is accompanied by an accumulation of 7, 8-

Dihydropteroate at 25 DPI in infected tissue (Figure 3.15). It has been reported that 

the folate precursor, 7,8-dihydropterate, increased in A. thaliana plants in response 

to the effector protein of P. syringae (Wittek et al., 2015). It has also been shown 

that the application of 7,8-dihyroneopterin to A. thaliana plants could increase plant 

resistance against P. syringae through activation of a gene associated with salicylic 

acid (SA). In contrast, 7,8-dihyroneopterin served to increase the susceptibility of A. 

thaliana against the necrotrophic fungus Alternaria brassicicola through suppression 

of Jasmonic acid-mediated response (Wittek et al., 2015).  

 

Following P. brassicae infection, SA, which is synthesised in infected plants, is 

suppressed by P. brassicae methyltransferase (PbBSMT) (Ludwig-Muller et al., 

2015). This gene methylates host SA to suppress plant defence response (Lovelock 

et al., 2013, Ludwig-Muller et al., 2015). Moreover, it was shown that, application of 

p-aminobenzoate on pepper plants could induce plant defence against Cucumber 

mosaic virus and Xanthomonas axonopodis through the synthesis of THF (Song et 

al., 2013). This indicates that, although accumulation of 7, 8-Dihydropteroate and 4-

aminobenzoate compounds at late stages of infection are related to activating the  

plant’s defence response, it is not sufficiently effective to stop P. brassicae 

colonization. 

 

3.3.6 Alteration of Terpenoids, Polyketides and other Secondary Metabolites 

in P. brassicae-Infected Plants 

A comparison of the signal intensities associated with terpenoids, polyketides and 

other secondary metabolites is shown as a heat map (Figure S5).  Specific putative 

metabolites associated with this category whose concentration altered at 7, 16, and 

25 DPI in response to P. brassicae infection are shown in Table S5 of the Appendix.  

The changes in terpenoids, polyketides and other secondary metabolites with a 
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combination of gene expression at 16 and 26 DPI in infected tissue occurs via 

biosynthesis of carotenoids, glucosinolates, phenylpropanoid and zeatin. Whilst, the 

changes in gene expression associated with brassinosteroid biosynthesis only occur 

at 26 DPI in infected tissue.  

 

The plant surface is equipped with pattern recognition receptors (PRRs) to perform 

the plant’s first layer of defence. PRRs probably detect pathogen-associated 

molecular patterns (PAMPs) and could potentially activate PAMP-triggered immunity 

(PTI). Plant PAMPs detect cell wall damage and trigger plant defence through 

activation of ROS and secretion of antimicrobial compounds such as glucosinolate 

and cinnamic acid. Specifically, cinnamic acid for biosynthesis of phenylpropanoids 

increased at the onset of gall formation and decreased during late gall formation 

(Figure 3.16). Cinnamic acid is derived from amino acid phenylalanine by the activity 

of phenylalanine ammonia-lyase (PAL), which removes the nitrogenous group of 

phenylalanine. As cinnamic acid accumulated at 16 DPI, A. thaliana PAL gene 

(4.3.1.24) expression was up-regulated (S6 of the Appendix). As cinnamic acid 

decreased in infected tissue at 25 DPI, meanwhile, the A. thaliana PAL gene was 

down-regulated at 26 DPI (Figure S7 of the Appendix).  

 

Cinnamic acid has antimicrobial activity, which suggests that A. thaliana plants 

activate its defence response at 16 DPI, when this compound accumulates in 

infected tissue. Accumulation of cinnamic acid has been reported in pea plants, 

acting against the soft rot pathogen Sclerotinia sclerotiorum, and Musa acuminate 

roots infected with Fusarium oxysporum, in each case positively correlated with the 

up-regulation of the PAL gene (Jain et al., 2012, 2015, De Ascensao and Dubery, 

2003). The high accumulation of the phenylpropanoid compounds and its 

derivatives, including cinnamic acid and p-coumaric acid, which have antimicrobial 

and antioxidant activities resulted in infected plants that exhibited fewer or no 

disease symptoms (Jain et al., 2015, Dixon and Paiva, 1995). These reports are 
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consistent with my finding that cinnamic acid decreased in infected tissue, which 

may correlate with the formation of galls in P. brassicae-infected plants.  

 

Moreover, phaseic acid for carotenoid biosynthesis, derived from the degradation of 

abscisic acid (ABA), increased at the onset of gall formation and decreased during 

late gall formation (Figure 3.16). As phaseic acid increased, the A. thaliana gene that 

encodes ABA-beta-D-glucosidase (3.2.1.175) to hydrolyse Abscisic acid glucose 

ester to form ABA, was up-regulated at 16 DPI (Figure S8 of the Appendix section).  

As phaseic acid decreased, however, this gene (3.2.1.175) was down-regulated in 

gall tissue (Figure S9, of the Appendix section). It has been reported that ABA plays 

a major role in the susceptibility of tomato against Botrytis cinerea through 

repression of PAL activity, which subsequently reduced SA-defence pathways 

(Audenaert et al., 2002). As previously mentioned, the expression of the PAL gene 

was up-regulated at 16 DPI, which is associated with the accumulation of cinnamic 

acid and phaseic acid. From this result, firstly I assume that the accumulation of 

phaseic acids at 16 DPI is correlated with the inactivation of ABA in P. brassicae-

infected plants to increase the expression of the PAL gene, which subsequently 

triggers SA-dependent pathways. Maybe this was achieved by ABA being actively 

converted to unstable 8’-hydroxy-ABA, which subsequently rearranges to phaseic 

acid. In the meantime, SA could be suppressed by P. brassicae effector PbBSMT to 

inactive to the role of SA in plant defence (Ludwig-Muller et al., 2015).  However, it 

has been reported that ABA content was four times higher in P. brassicae-infected 

root of Chinese cabbage plants than uninfected plants at 21 DPI (Devos et al., 2005). 

It was not correlated with the down-regulation of PAL gene at 26 DPI which found in 

the transcriptomic data of this study.  
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Figure 3.16. Fold-change of the differential intensity of cinnamic acid for phenylpropanoids 
biosynthesis, phaseic acid for carotenoid biosynthesis, castasterone and 6-deoxoteasterone for 
brassinosteroid biosynthesis during P. brassicae infection at 7 to 28 DPI (p-value ≤ 0.05).  
 

Furthermore, castasterone and 6-deoxoteasterone for brassinosteroid biosynthesis 

increased in infected tissue (Figure 3.16). The accumulation of these compounds at 

25 DPI was integrated with the expression of A. thaliana genes at 26 DPI in infected 

tissue (Figure 3.17). Generally, most of the genes associated with brassinosteroid 

biosynthesis lead to the synthesis of brassinolide, the most biologically active 

brassinosteroid, which were up-regulated in infected tissue at 26 DPI (Figure 3.17). 

The brassinolide was synthesised from steroid biosynthesis through campestanol to 

castasterone. The accumulation of castasterone and 6-deoxotesterone is in line with 

the up-regulation of the expression of A. thaliana genes associated with this 

pathway, indicating biologically active brassinosteroid is required in P. brassicae-

infected plants.  This result agrees with the previous finding of transcriptomic 

analysis in a cell type-specific manner that showed gene expression associated with 

brassinosteroid synthesis was up-regulated in hypertrophied cells containing large 

plasmodia (Schuller et al., 2014). This was supported by the observation that the 
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application of propicanozole, an inhibitor of brassinolide synthesis, resulted in a 

reduction of gall size, indicating that this compound is involved in cell division and 

cell expansion in gall developments (Schuller et al., 2014).  

 

 

Figure 3.17. The expression of genes involved in brassinosteroid biosynthesis in P. brassicae-
infected tissue at 26 DPI. Light blue boxes show down-regulated gene expression (log2 fold-change 
≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green boxes 
show genes that do not show a significant change in expression between uninfected and infected 
tissue. White boxes show genes that have not been identified in A. thaliana. Blue circles show 
potentially decreased metabolites and orange circles show potentially increased metabolites in P. 
brassicae-infected tissue (p-value ≤ 0.05). 
  
 
 

3.4 Conclusion 

Clearly, plant metabolism in respect to plant and pathogen gene expression in P. 

brassicae infected tissue is very complex. P. brassicae manipulates the synthesis of 

plant primary cell wall in order to colonize inside host. The accumulation of 

thiosulfate, amino acid glutamate, aspartate and alanine and compounds associated 

with vitamin B6 and folate are likely related to pathogen nutrition.  Metabolites such 
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as proline protect the plant from osmotic and oxidative stress. Meanwhile, 

compounds associate with plant defence such as cinnamic acid and phaseic acid 

accumulated at 16 DPI and decreased at 26 DPI indicating the suppression of plant 

defence when pathogen colonization was successful. The accumulation of vitamin 

B6 precursor and compounds associated with folate biosynthesis were accompanied 

with an increase in host gene expression associated with the synthesis of these 

metabolites. However, the accumulation of certain metabolites such as thiosulfate 

was accompanied with a decrease of genes expression associated with the 

degradation of this compound. This suggests that P. brassicae has potential to 

suppress the expression of host metabolism genes in order to obtain favourable 

nutrient from the hosts.   
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Chapter 4. Carbohydrate Metabolism in P. brassicae-infected Plants 

 

4.1  Introduction 

The main symptom of clubroot disease is the formation of galls on the roots and 

hypocotyls of infected plants (Mithen and Magrath, 1992). In P. brassicae-infected 

plants, both systemic and local effects occur at different points during the infection 

cycle. Although the precise timing within different species, generally, the pattern of 

infection is similar. Infection by P. brassicae of host plants consists of three phases; 

an early stage before symptoms are visible; the onset of gall formation (which in 

Arabidopsis normally starts at 14 days after inoculation (DPI)); and gall development 

at late stages of infection occurring at 26 or 28 DPI, when spores are formed (Mithen 

and Magrath, 1992).  

 

In Chinese cabbage plants, leaf growth and lateral root development increase during 

early infection up to 9 DPI, indicating growth stimulation in response to P. brassicae 

infection (Devos et al., 2005, Macfarlane and Last, 1959). By 14 DAI, galls are 

apparent as a swelling in the upper root system of Chinese cabbage plants (Devos 

et al., 2005). By 20 DPI, galls form in the infected root of Chinese cabbage plants 

(Devos et al., 2005). In A. thaliana, lateral root formation is decreased at onset and 

later stages (Siemens et al., 2011). Galls only form in the hypocotyl of A. thaliana 

plants. Elsewhere, galls are restricted to the upper part of the root system (Siemens 

et al., 2006). At the onset of gall formation, infected plants show an inhibition of 

xylogenesis and stimulation of cell division and cell expansion in the vascular 

cambium of infected tissues (Malinowski et al., 2012). At later stages, when spores 

are formed, a large gall develops through massive cell expansion in hypocotyl 

tissues. Gall development causes the disruption of water relations due to the 

repression of xylogenesis, which leads to wilting and stunting on the upper part of A. 

thaliana plants and eventually death (Malinowski et al., 2012). In addition, small extra 

leaves develop around the hypocotyl region (Devos et al., 2006, Evans and Scholes, 

1996).  A reduction in lateral root formation and delayed flowering (Siemens et al., 
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2011, Dixon, 2009, Mithen and Magrath, 1992) have a major impact on infected 

plants through altering sink-source relationships. Through the development of a 

strong sink, the gall influences the development of other sinks within the plant.  

 

Following P. brassicae infection, the gall becomes a strong sink for carbohydrate 

(Evans and Scholes, 1996, Williams et al., 1968, Keen and Williams, 1969). The sink 

strength of the gall is dependent on alterations in both host and pathogen 

metabolism. The pathogen, which acts as a sink, takes up carbohydrates and 

metabolizes these compounds. It may also modify the expression of host genes to 

increase sink strength, which subsequently reduces the plant growth above ground.  

 

4.1.1 Carbohydrate Metabolism in Plasmodia and Host 

Resting spores of P. brassicae contain trehalose (Schwelm et al., 2015). During 

germination the pathogen expresses trehalase to degrade trehalose providing 

glucose for growth (Schwelm et al., 2015). Plasmodia synthesise trehalose during 

gall formation (Brodmann et al., 2002). This provides the energy source for spores 

but the host generates a concentration gradient of carbohydrate into the plasmodia. 

However, there is a lack of knowledge about how carbohydrates enter the pathogen.  

 

Trehalose is synthesised through two enzyme reactions. First, UDP-glucose and 

glucose-6 phosphate is converted into trehalose-6-phosphate by trehalose 

phosphate synthase (TPS). Then, trehalose-6-phosphate is converted into trehalose 

by trehalose phosphate phosphatase (TPP) activity (Fernandez et al., 2010). 

Normally, the trehalose concentration in Arabidopsis is extremely low. Besides, the 

P. brassicae genome contains the trehalose biosynthesis genes TPS, TPP and 

trehalase, which indicates that in clubroot-infected plants, trehalose is synthesized 

by plasmodia (Brodmann et al., 2002, Schwelm et al., 2015). In the root and 

hypocotyl of clubroot-infected plants, the host trehalase activity is induced before the 

accumulation of trehalose (Brodmann et al., 2002, Keen and Williams, 1969). It is 

thought that the induction of host trehalase is regulated by auxin as part of plant 
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defence and it is not induced by its substrate (Brodmann et al., 2002). The 

accumulation of trehalose by the pathogen could interfere with the regulation of 

carbon metabolism inside the host by converting carbon sources from the host into 

trehalose and creating a carbon sink. Besides, trehalose biosynthesis could interfere 

with the sugar sensing system of the plant through the accumulation of trehalose-6-

phosphate (Schluepmann et al., 2003, Schluepmann et al., 2004). Trehalose-6-

phosphate acts as a signal molecule for plant growth and development. For instance, 

the accumulation of trehalose in plant tissues inhibits TPP activity, which leads to 

the accumulation of trehalose-6-phosphate that reduces the growth of A. thaliana 

seedlings (Schluepmann et al., 2003, Schluepmann et al., 2004). This suggests that 

pathogen derived trehalose inhibits host TPP leading to accumulation of host derived 

trehalose-6-phosphate and affects the growth. Maybe induction of host trehalose by 

over-expressing TPP would be less affected than in response to P. brassicae 

infection. This would have been interesting to test.  

 

In clubroot infected plants, soluble sugar and starch accumulate in the root and 

hypocotyl tissues (Williams et al., 1968, Keen and Williams, 1969, Evans and 

Scholes, 1996, Wagner et al., 2012). Accumulation of sugars in developing galls 

induces a hypoxia response and consequently triggers anaerobic respiration 

(Jubault et al., 2013). In addition, the bulk density of gall formation, which limits the 

oxygen uptake by root systems, also causes hypoxia and anaerobic respiration. In 

A. thaliana plants susceptible to P. brassicae infection, the expression of genes 

associated with anaerobic respiration, which leads to ethanol fermentation, 

increases with gall formation (Jubault et al., 2013). 

 

4.1.2. Sucrolytic Enzymes in Host Plants 

Carbohydrate metabolism is a complex process, which involves multiple enzymes in 

source and sink tissues. The utilisation of sucrose requires the presence of sucrolytic 

enzymes and transporters that facilitate the movement of sucrose or hexose sugars 

(Roitsch, 1999). In host plants, sucrolytic enzymes are located in different subcellular 
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compartments. Invertases are located in the cell wall (CWINV), vacuole (VINV) and 

cytoplasm (CINV) whilst sucrose synthase (SUS) is located in the cytoplasm. 

Previously, clubroot disease studies are focused on the role of CWINV as a 

requirement for the apoplastic unloading of sucrose into the developing galls. Whilst 

CWINV is known to be important in apoplastic loading of sucrose into some sink 

tissue (e.g. maize seed filling, (Li et al., 2013)), its role in gall formation remains 

unclear. Expression of a cell wall invertase inhibitor driven by a root-specific 

promoter reduces gall formation in the roots of P. brassicae infected plants (Siemens 

et al., 2011) although gall development in infected hypocotyls does not change, 

presumably due to the use of a root specific promoter. Quilliam (Thesis, 2006) 

reported that the majority of CWINV activity in Arabidopsis results from CWINV1 

expression. This gene is responsible for all stress-induced invertase activity. 

Nonetheless, inactivation of CWINV1 does not affect gall development and the 

expression of CWINV1 is reduced at the late stage of clubroot infection in this study, 

contrasting with the data reported by Siemens et al., (2011).  

 

The other sucrolytic enzyme is sucrose synthase. Sucrose synthase catalyses a 

reversible reaction depending on substrate concentration. In the presence of a high 

concentration of sucrose, SUS acts as a sucrolytic enzyme to hydrolyse sucrose into 

UDP-glucose and fructose. A. thaliana contains six SUS isoforms, which have similar 

kinetic properties, but different spatial and temporal expression patterns (Baud et al., 

2004, Barratt et al., 2009, Bieniawska et al., 2007). SUS1-4 proteins are found in 

soluble and membrane fractions of A. thaliana plants (Bieniawska et al., 2007), while 

SUS5 and SUS6 proteins are found mainly in cell wall (insoluble) material from the 

root, hypocotyl and stems, and are thought to be involved in callose synthesis 

(Barratt et al., 2009). A knockout of a single isoform of the SUS gene (SUS1, SUS2, 

SUS3, or SUS4) did not show obvious growth phenotypes in terms of starch, sugar, 

cellulose, seed weight and seed composition when compared with wild type 

(Bieniawska et al., 2007).  It is reported that, sus1,4 double mutants and sus1,2,3,4 

quadruple mutants show similar phenotypes to wild type plants when root tissues of 
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the plant undergo aerobic respiration, although the growth of these mutants is 

retarded when root tissues under hypoxia (Barratt et al., 2009, Bieniawska et al., 

2007). Sugar accumulates in the leaves of sus1, 4 double and sus1,2,3,4 quadruple 

mutants due to the increase of neutral invertase activity (Bieniawska et al., 2007). 

This indicates that plant root tissues growing under hypoxic conditions require 

specific SUS activity. CINV might replace SUS activity in sus1,2,3,4 quadruple 

mutants.  

 

4.1.3. Sucrose Transporters in Host Plants 

There are two types of sucrose transporter in plants: active and passive transporters. 

Active sucrose transporters (SUTs) transport sucrose against a concentration 

gradient, which requires energy. SUTs transport sucrose during phloem loading in 

leaves and phloem unloading in other parts of the plant including root tissue (Doidy 

et al., 2012). Passive transporters (SWEETs) transport sugar down a concentration 

gradient (Chen et al., 2010). Rates of photosynthesis in leaves of P. brassicae-

infected plants are not different to those in uninfected plants, but carbohydrate 

content is low due to the export of carbohydrate from the leaves to the developing 

gall (Evans and Scholes, 1996).  

 

During phloem loading, sucrose in mesophyll cells is transported through 

plasmodesmata into parenchyma cells and further to sieve element-companion cell 

(SE-CC) complexes (Doidy et al., 2012). Sucrose concentration in mesophyll cells 

is between 1 and 2 mM, while sucrose concentration in the SE-CC complex is 0.2 

M, which is 100 times higher than in source tissue. Presumably, sucrose in 

parenchyma cells is transported into the apoplastic space between parenchyma 

cells and companion cells by SWEET transporters. The SWEET transporters, which 

are located on the plasma membrane of parenchyma cells, transport out sucrose to 

apoplastic space along a concentration gradient (Chen et al., 2010, Doidy et al., 

2012). Active SUT transporters transport sucrose from the apoplastic space against 

the concentration gradient into the SE-CC complex.  
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In clubroot-infected plants, there is a large mass flow of sucrose in transport phloem 

towards sink tissues (Keen and Williams, 1969). In sink tissues, sucrose is 

transported out usually through plasmodesmata to the cytoplasm of sink cells along 

a concentration gradient. In some cases, for instance when sugar in sink tissue is in 

high demand, sucrose can also be transported out using SUT transporters against 

a concentration gradient to the apoplastic space between SE and CC (Juergensen 

et al., 2003). Sucrose in the apoplastic space is hydrolysed by CWINV or transported 

into the plant’s cytosol by SWEET transporters (sugar permease) and hydrolysed by 

either SUS or CINV. Then, hydrolysed sugars are eventually taken up by plasmodia 

inside host cells. Figure 4.1 shows the transporters that are involved in the mass 

flow of sucrose from source to sink tissues via phloem transport.  

 

 

Figure 4.1 Sugar is transported via the phloem from source to sink organs in plants. Sucrose is 
synthesized in mesophyll cells of leaves. It is transported to sink tissue by different transporters. 1) 
SWEET transporter, 2) plasmodesmata, 3) Suc/H+ symporter, 4) Load and reuptake of sucrose in 
stems, 5) plasmodesmata to symplastic space and 6) SUT/SUC to apoplastic space. A figure taken 
from Doidy et al., (2012). 

 

There are 16 members of the SWEET gene family in A. thaliana genome (Chen et 

al., 2010, Chen et al., 2012). Different SWEET genes transport different types of 

sugar between different types of compartment. For example, SWEET11, SWEET12 
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and SWEET15 are responsible for transporting sucrose into cells (Chen et al., 

2015b, Chen et al., 2010). On the other hand, SWEET1, SWEET2, SWEET4 and 

SWEET8 are glucose transporters (Chen et al., 2015b, Chen et al., 2010).   

 

SWEET2 is localised on the tonoplast that surrounds the vacuole, which is a major 

sugar storage compartment (Chen et al., 2015a). Some SWEET genes have 

redundant functions and inactivation of pairs is required to see a phenotype. For 

example, Chen et al., (2012) demonstrated that SWEET 11 contains 88% amino 

acid similarity with SWEET 12. Both of these sucrose transporter proteins are 

localised in the plasma membrane of phloem parenchyma cells of mature leaves 

and function in sucrose efflux to sieve element- companion cell (SE-CC) complexes 

(Chen et al., 2012).   

 

During plant-pathogen interactions, the pathogen often alters sugar efflux at the site 

of infection for its benefit by regulating different SWEET genes, depending on the 

type of pathogen (Chen et al., 2010). For example, in A. thaliana plants, SWEET 4, 

SWEET 5, SWEET 7, SWEET 8, SWEET 10, SWEET 12 and SWEET 15 are highly 

induced upon infection with the pathogen Pseudomonas syringae pv. tomato, strain 

DC3000 (Chen et al., 2010). In addition, the SWEET12 gene is also induced in A. 

thaliana plants infected with the fungal powdery mildew pathogen Golovinomyces 

cichoracearum, whilst SWEET 4, SWEET 15 and SWEET 17 are differentially 

regulated in A. thaliana inoculated with the necrotroph Botrytis cinerea (Chen et al., 

2010). In Vitis vinifera plants, VvSWEET4 is induced after inoculating with the 

necrotroph B. cinerea, but this gene is not expressed after inoculating with biotrophic 

pathogens Erysiphe necator or Plasmopara ulticola (Chong et al., 2014). It has been 

reported that the expression of SWEET genes is induced by pathogenic pathogen 

transcription activator-like (TAL) effectors, which bind to specific promoters of 

SWEET genes (Antony et al., 2010, Chen et al., 2010, Chong et al., 2014, Cohn et 

al., 2014, Hu et al., 2014, Yang et al., 2006). For instance, expression of the sucrose 

transporter MeSWEET10a in Manihot esculenta (the dicot cassava) is induced by 
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TAL20xam668 from the causal agent of bacterial blight of cassava, Xanthomonas 

axonopodis pv. manihotis (Cohn et al., 2014). In Oryza sativa plants infected with 

rice blight, OsSWEET 11 is induced by AvrXa7, PthXo2 and PthXo3, while the 

former and latter effectors are induced by OsSWEET14 gene expression in leaves 

upon infection (Antony et al., 2010, Chen et al., 2010, Yang et al., 2006). In addition, 

Xanthomonas citri pv citri strain Xcc306 releases the PthA4 effector to induce the 

expression of the glucose and sucrose transporter CsSWEET1 in citrus plants (Hu 

et al., 2014). Recently it has been predicted that P. brassicae expresses effectors 

which are different to the TAL effectors that are specifically expressed by bacteria.  

The plasmodia effectors show similarities to effector candidates of biotrophic smut 

fungi in the Ustilaginomycetes (Schwelm et al., 2015). However, the target host 

genes of this effector and its function in inducing or repressing the host metabolism, 

development or defence remains unknown.  

 

Furthermore, the sugar transporter genes are also differently regulated depending 

upon the source of carbon required by different types of pathogen. Wheat powdery 

mildew, Blumeria graminis sp tritici takes up glucose as a main carbon source from 

wheat (Triticum aestivum L.) leaves (Sutton et al., 2007, Sutton et al., 1999). In A. 

thaliana plants, a high concentration of glucose, which is linked to powdery mildew 

fungus infection, induces the expression of the glucose transporter STP4 and cell 

wall invertase activity in infected mature leaves (Fotopoulos et al., 2003, Sutton et 

al., 2007). In contrast, the corn smut fungus Ustilago maydis directly takes up 

sucrose from its host Zea mays through the plasma membrane-localized active 

sucrose transporter SRT1, an energy dependent H+-symporter (Wahl et al., 2010). 

However, there is a lack of knowledge on the source of carbon required by 

plasmodia.  

 

4.1.4 Aims and Objectives  

The work presented in this chapter was carried out to understand carbohydrate 

metabolism in P. brassicae-infected plants, using A. thaliana as a host. First, we 
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analysed the expression of host genes involved in sucrose hydrolysis and sucrose 

transporters, using transcriptomic data obtained from a previous study. The 

transcriptomic data were used to create specific hypotheses. The hypotheses were 

then tested using mutants and transgenic A. thaliana plants.  The response of mutant 

and transgenic plant development, specifically in hypocotyl cellular structure was 

then examined and compared with Col-0 plants and their respective uninfected 

plants. Further to this, it was investigated whether carbohydrate metabolism in 

leaves and galls was changed in selected mutants during P. brassicae infection.  

 

Aims:    

1. To examine the impact of alterations in host genes associated with sucrolytic 

activity on disease development and carbohydrate metabolism. 

2. To examine the role of selected host SWEET sugar transporters in disease 

development and carbohydrate metabolism.  

 

Objectives:   

1. To examine host transcriptome data to identify the sucrolytic and sucrose 

transporter genes that are expressed in infected tissues.  

2. To examine the impact of mutations in host cytosolic invertase (cinv1, 2) 

genes and sucrose synthase (sus1, 2, 3, 4) genes on disease development.  

3. To examine the spatial pattern of gene expression associated with sugar 

permeases (SWEETs) during disease development.  

4. To examine the impact of mutations in sugar permeases (sweet11, sweet12 

and sweet11,12) on disease development. 

5. To examine the impact on the carbohydrate metabolism of the leaves and 

galls in selected mutants.  
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4.2 Materials and Methods 

4.2.1 Plant Material and Growth Condition 

Seeds of sus1,2,3,4 and cinv1,2 mutants were acquired from Alison M. Smith (John 

Innes Centre, Norwich NR4 7UH, United Kingdom), and AtSWEET11:AtSWEET11-

GUS, AtSWEET12:AtSWEET12-GUS, atsweet11 (Salk_073269), atsweet12 

(Salk_031696) and atsweet11,12 seeds were acquired from Li-Qing Chen (Carnegie 

Institution for Science, CA94305, USA) (Bieniawska et al., 2007, Barratt et al., 2009, 

Chen et al., 2010). All plants were grown and infected as described previously in 

Section   2.2.3. 

 

Photographs were taken of the shoot and root/hypocotyl of wild type, sus1,2,3,4 and 

cinv1,2 plants with a Canon EOS 300D digital camera (Canon, Japan) at 16 and 26 

DPI.  

 

4.2.2 Technovit Sectioning of Hypocotyl Samples and Measurement of A. 

thaliana Hypocotyl Width 

Hypocotyl tissues of Col-0, sus1,2,3,4, cinv1,2, sweet11, sweet12 and sweet11,12 

were harvested from plants at 16 and 26 DPI. These tissues were sectioned as 

described in Section 2.2.4, except the microscope slides used in this section were 

stained with a drop of 0.1 % (w/v) methylene blue (3:10, 2g methylene blue in 100ml 

of 95% alcohol: deionized water), with 2 drops of 10% potassium hydroxide (KOH). 

Hypocotyl widths from three sections of each biological replicate were measured by 

using Image J (http://imagej.nih.gov/ij/).  

 

4.2.3 GUS Histochemical Analysis 

Mature leaf, developing leaf, a 3 mm section of hypocotyl and root tissue samples at 

16 and 26 DPI of three biological replicates (plants) per treatment were pre-treated 

with 90% (v/v) ice-cold acetone for 5 minutes. The solution was replaced with 1x 

GUS assay buffer (100mM Na-phosphate buffer pH7, 5 mM potassium ferricyanide, 

5 mM potassium ferrocyanide and 10 mM EDTA). Then, 1x GUS assay buffer was 
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replaced with 1x GUS assay buffer containing 1 mg/ml 5-Bromo-4-chloro-3-indolyl 

β-D-glucuronide), infiltrated for 20 minutes and incubated overnight at room 

temperature in the dark. The sample was rinsed in distilled water when the signal 

had fully developed. The water was then replaced with 70% ethanol. Then the 

samples were incubated for 1-2 hours in the dark. After 1-2 hours, 70% ethanol was 

replaced with 100% ethanol for microscopic observations and images taken using a 

Leica epifluorescence stereomicroscope.  

 

Hypocotyl tissues of A. thaliana SWEET11:SWEET11-GUS and 

SWEET12:SWEET12 - GUS were sectioned as described previously in Section 

2.2.4, except the microscope slides in this section were stained with a drop of 0.05% 

(w/v) Safranin O solution.  

 

4.2.4 Measurement of Carbohydrate 

Extraction of soluble carbohydrate 

Root/hypocotyl, developing leaf and mature leaf samples from four plants were 

excised and weighed for the measurement of soluble carbohydrate. Weighed 

samples were placed in 2 ml grinder tubes (Eppendorf), immediately frozen in liquid 

nitrogen, and stored at -80oC. Soluble carbohydrates were extracted by heating the 

plant tissue samples at 70oC in 500 µL 80% (v/v) ethanol. After 20 minutes, the 

ethanol was pipetted into a new tube and another extraction performed. The extracts 

were pooled and dried with a SpeedVac (Sc110) for four to six hours. Dried extracts 

were re-suspended in 200 µL dH2O and vortexed. Leaf samples were then treated 

with a saturated suspension of charcoal (MERCK) decolourizing powder and 

centrifuged at 12 000 g for ten minutes to remove any residual colour.  

 

Enzyme-linked assay of soluble carbohydrates 

The amounts of glucose, fructose and sucrose of four biological and two technical 

replicates were quantified using an enzyme-linked assay that detects the reduction 

of NAD+ or NADH+ to NADH or NADPH by glucose-6-phosphate dehydrogenase. 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC&N4=B3783|SIGMA&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-2
http://www.sigmaaldrich.com/catalog/ProductDetail.do?N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC&N4=B3783|SIGMA&cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-2
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The enzyme-linked assay was performed on the extracted samples and standards 

utilising four enzymes that in a stepwise manner covert the different carbohydrates 

into 6-phosphogluconate and NADH or NADPH. The reduction of NAD+ or NADP+ 

to NADH or NADPH by G6PDH was measured by monitoring the increase of the 

following reactions:  

 

(i) Glucose-6-Phosphate Dehydrogenase (G6PDH)  

Glucose-6-phosphate + NAD+ or NADP+            6-phosphogluconate + NADH or 

NADPH 

(ii) Hexokinase (HXK) 

Glucose + ATP            glucose-6-phosphate 

Fructose + ATP           fructose-6-phosphate 

(iii) Phosphoglucose-Isomerase (PGI) 

Fructose-6-phosphate          glucose-6-phosphate 

(iv) Invertase 

Sucrose + H2O          glucose + fructose 

 

Ten µL of the samples or ten µL of the mixture of glucose, fructose, and sucrose as 

a standard in the total volume of 125µL of G6PDH-buffer (100mM HEPES, 5mM 

MgCl2, 1 mM ATP and 0.4 mM NADP+) and 2 U G6PDH from yeast (Roche) in a 

black 96-well microtitre plate (Corning) were used in the enzyme-linked assay. 

Alternatively, the assay can be performed in a modified G6PDH-buffer (100mM 

HEPES, 5mM MgCl2, 1 mM ATP and 1 mM NAD+) and 2 U G6PDH from 

Leuconostoc mesenteroides (Roche). An initial reading was taken of fluorescence 

at 440 nm using an excitation wavelength of 340 nm in a Fluostar Optima plate 

reader fluorimeter (BMG LABTECH GmbH, Offenburg, Germany). This allowed any 

residual glucose-6-phosphate to be catalysed thus providing a ̀ blank reading’. When 

the excitation reading had stabilised, 3 U Hexokinase (Roche) was added to each 

reaction, mixed and incubated for 10 minutes, and the reading was recorded when 

no further change in absorbance and excitation occurred. This procedure was 
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followed by the addition of 2 U PGI (Roche) and 85 U Invertase (Sigma). The amount 

of glucose, fructose, or sucrose equivalents produced by each reaction was 

calculated relative to the standard curve (this was then subtracted from the following 

reaction).  

 

4.2.5 Statistical Analysis  

All statistical analysis was carried out using GraphPad Prism software version 6 

(GraphPad software, Inc.). Graphs were also produced using GraphPad.  
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4.3 Results 

4.3.1 Transcriptomic Analysis of Host Carbohydrate Metabolism 

Microarray data obtained from Malinowski et al., (2012) (unpublished data) was used 

to examine host gene expression during clubroot infection, specifically in 

carbohydrate metabolism. This microarray data is from two stages of clubroot gall 

formation, at the onset (16 DPI) and late (26 DPI), and two types of clubroot-infected 

plant tissues, hypocotyls and upper roots. The alteration of carbohydrate metabolism 

following P. brassicae infection occurred through changes in the expression of 

sucrolytic enzymes including sucrose synthase and invertase. In addition, the 

expression of passive sugar transporters including SWEET genes was also altered 

in response to P. brassicae infection.  

 

The expression of sucrose synthase genes involved in the hydrolysis of sucrose into 

UDP-glucose and fructose was examined (Table 4.1). There are six sucrose 

synthase genes in A. thaliana. Generally, most of the sucrose synthase genes 

expressed in hypocotyl and upper root tissues were up-regulated in response to P. 

brassicae infection, especially SUS3 at 16 and 26 DPI. In addition, the average 

expression levels of SUS1 and SUS4 were high when compared with other SUS 

genes. In contrast, the expression of SUS5 and SUS6 genes were either slightly 

repressed or not significantly different between uninfected and infected root and 

hypocotyl tissues at 16 and 26 DPI (Table 4.1).   

 

There are three types of invertase genes in A. thaliana, which are distinguished 

based on subcellular location and pH optimum. Both vacuolar and cell wall invertase 

are acidic invertases, whilst cytosolic invertase is a neutral to alkaline invertase.  In 

contrast to sucrose synthase genes, the expression of cytosolic invertase genes was 

repressed in hypocotyl and upper root tissues of P. brassicae-infected at 16 and 26 

DPI (Table 4.1). Among the invertase genes of A. thaliana plants, only CWINV1 was 

up-regulated in hypocotyl and root tissues in response to clubroot infection.  
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Table 4.1. Expression of sucrose synthase (SUS), Invertase (INV) and SWEET genes in clubroot –
infected plants at 16 and 26 dpi in hypocotyl and root tissues. Expression values are log2-fold-change 
in infected plants relative to uninfected plants (p value ≤0.05).  

 

n.s.=not significant. 
Average expression value= total average of log-intensities value of uninfected and infected samples. 
Expression of genes with average values ≤3 are not shown in this table.  
Biological replicates= three plants in each treatment.   
Expression value scale: 

 

 

As shown in Table 4.1, SWEET11 and 12 genes were strongly expressed at late gall 

formation (26 DPI) in the hypocotyl and roots of P. brassicae-infected A. thaliana 

plants. The expression of other SWEET genes was either repressed or not 

significantly different between uninfected and infected tissues.  

Average Expression

Sucrose synthase AGI 16 dpi 26 dpi 16 dpi 26 dpi

SUS1 AT5G20830 0.84 n.s 0.81 0.481 10.24

SUS2 AT5G49190 1.38 0.93 0.89 1.2 4.35

SUS3 AT4G02280 2.29 3.84 2.59 3.56 5.98

SUS4 AT3G43190 0.76 -0.63 1.45 0.601 10.5

SUS5 AT5G37180 -0.66 n.s -0.87 n.s 5.83

SUS6 AT1G73370 -0.7 -0.6 n.s n.s 7.41

Cytosolic invertase

CINV1 AT1G35580 -0.55 -0.68 n.s -0.91 9.25

CINV2 AT4G09510 -0.89 -1.12 -0.43 -0.79 5.27

Vacuole invertase

VAC-INV1 AT1G62660 -0.79 -0.69 n.s -1.62 7.41

VAC-INV2 AT1G12240 -1.09 -2.08 -1.17 -1.98 7.79

Cell wall invertase

CWINV1 AT3G13790 1.92 n.s 1.41 1.72 8.04

CWINV5 AT3G13784 -3.46 -2.22 -1.53 -1.31 3.75

SWEET transporters

SWEET gene

SWEET1 AT1G21460 -2.42 -2.23 -1.43 -2.033 5.02

SWEET2 AT3G14770 n.s 0.827 -0.971 -0.819 6.57

SWEET4 AT3G28007 -1.17 n.s n.s n.s 3.47

SWEET11 AT3G48740 n.s 3.81 n.s 3.95 4.55

SWEET12 AT5G23660 n.s 1.02 n.s 0.85 3.18

SWEET13 AT5G50800 -2.17 -1.34 -0.84 -0.71 4.27

SWEET16 AT3G16690 -3.33 -2.88 -1.88 -4.58 6.72

SWEET17 AT4G15920 -1.53 -1.6 -1.48 -1.58 7.68

Hypocotyl Root

Low High

-3 -2 -1 0 1 2 3
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4.3.2. Analysis of the Impact of P. brassicae Infection on the Morphology of A. 

thaliana Col-0, cinv1,2 and sus1,2,3,4  

It is hypothesised that SUS rather than CINV is important in infected tissue. To better 

understand the role of CINV and SUS following P. brassicae infection, cinv1,2 and 

sus1,2,3,4 mutants were used and compared to Col-0 plants. To achieve this, 14 

days old Col-0, cinv1,2 and sus1,2,3,4 plants were inoculated with P. brassicae 

spores or water. The impact of clubroot infection on the shoot and root/hypocotyl 

morphologies of wild type Col-0 and two sucrolytic mutants, cinv1,2 and sus1,2,3,4, 

at 16 and 26 DPI was recorded (Figures 4.2).  

 

Col-0 rosette size was not affected at 16 DPI, but by 26 DPI infected rosettes were 

smaller than uninfected rosettes (Figure 4.2 A,B). Similar results were seen in 

cinv1,2 plants (Figure 4.2 A, B). Uninfected sus1,2,3,4 plants had smaller rosettes 

than Col-0 at 16 DPI, but this difference disappeared when infected with P. brassicae 

(Figure 4.2 A). Infected sus1,2,3,4 plants were bigger than uninfected sus1,2,3,4 

plants and bigger than Col-0 at 26 DPI (Figure 4.2B). The root/hypocotyl morphology 

at 16 DPI did not differ between uninfected and infected plants with wild type, cinv 

1,2 or sus1,2,3,4 genotypes (data not shown). At 26 DPI a similar degree of gall 

formation was visible on hypocotyl tissues of infected Col-0, cinv1,2 and sus1,2,3,4 

plants (Figure 4.2 C).  

 

4.3.3. Microscopic Analysis of the Impact of P. brassicae Infection on A. 

thaliana Col-0, cinv1,2 and sus1,2,3,4  

To better visualize the impact of clubroot infection at the cellular level, cross sections 

of hypocotyls from uninfected Col-0, cinv1,2 and sus1,2,3,4 plants were taken at 16 

and 26 DPI (Figure 4.3).  Methylene blue was used to stain the cross sections, with 

xylem cells staining a light blue, in contrast with other cell types, which stained dark 

blue. The aim of this work was to understand the developmental changes that 

occurred following P. brassicae infection in Col-0 plants and to compare these 

changes with those observed in cinv1,2 and sus1,2,3,4 plants.    
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Figure 4.2 Plant morphology of (A) shoot of 20 day old plants, 16 DPI, (B) shoot of 30 day old plants, 26 DPI and (C) root/hypocotyl of 30 day 
old plants (26 DPI) grown at 100 µmol m-2 sec-1. Scalebar = 1 cm. 
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Figure 4.3. The effects of deletions in sucrose synthase (SUS1-4) genes and cytosolic invertase (CINV1-2) genes were visualized in sections 
of uninfected and P. brassicae-infected plants at (A)16 DPI and (B) 26 DPI. 



 

 

150 
 

Secondary hypocotyl thickening of Col-0 plants was not affected at 16 DPI, but 

by 26 DPI infected hypocotyls were enlarged compared to uninfected tissue 

(Figure 4.3 A, B).  Infected tissues showed the presence of swollen host cells that 

contained plasmodia (Figure 4.3 B). A similar result was seen in sus1,2,3,4 plants 

(Figure 4.3 B). Secondary hypocotyl thickening of cinv1,2 plants was slower in 

uninfected tissues than in Col-0 with the presence of epidermis and endodermis 

cell layers but this difference was not evident when infected (Figure 4.3 A, B). 

Infected tissues of cinv1,2 show the presence of swollen host cells containing 

plasmodia, similar to Col-0 and sus1,2,3,4.  

 

To better determine the differences in root/hypocotyl morphologies between Col-

0, cinv1,2 and sus1,2,3,4 plants, the width of the hypocotyl was measured at 16 

and 26 DPI (Figure 4.4).  

 

Figure 4.4. The width of  hypocotyl sections in uninfected and P. brassicae-infected Col-0, cinv1,2 
and sus1,2,3,4 plants at 16 and 26 DPI. Results are the average of four width measurements per 
replicate plant+ standard deviation (except uninfected, cinv1, 2 at 16 DPI only two plants were 
used in the width measurement). Means that do not share a letter differ significantly (Log10 and 
two-way ANOVA, p-value≤0.05). The significant test between uninfected and infected plants was 
based on Sidak`s multiple comparison test while between Col-0 and mutants plants was based 

on Turkey`s multiple comparison test.   
 

The Col-0 hypocotyl width was not affected at 16 DPI, but by 26 DPI infected 

hypocotyls were bigger than uninfected hypocotyls. Similar results were seen in 

cinv1,2 and sus1,2,3,4 plants at 16 DPI. Only two uninfected cinv1,2 plants at 16 
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DPI were used in the measurement. By 26 DPI, cinv1,2 and sus1,2,3,4 plants 

showed a smaller hypocotyl width than Col-0 plants when uninfected, but this 

difference was not evident in sus1,2,3,4 plants when infected. Infected cinv1,2 

plants were smaller than Col-0 plants at 26 DPI (Figure 4.4).  

 

4.3.4. Analysis of the Impact of P. brassicae Infection on the Carbohydrates 

in the Root/hypocotyl, Developing Leaf and Mature Leaf of A. thaliana Col-

0, cinv1,2 and sus1,2,3,4  

To determine local and systemic effects on carbohydrate metabolism following P. 

brassicae infection, root/hypocotyl, developing leaf and mature leaf samples from 

Col-0, cinv1,2 and sus1,2,3,4 plants were used. The root/hypocotyl and the 

developing leaf are sink tissues, while the mature leaf is a source which supplies 

carbohydrate to the whole plant. The root/hypocotyl and the developing leaf may 

compete with each other to gain carbohydrates from source tissues.  

 

The carbohydrate content of uninfected and infected root/hypocotyl tissue of Col-

0, cinv1,2 and sus1,2,3,4 plants were compared at 16 and 26 DPI (Figure 4.5). 

At 16 DPI the glucose and fructose content of infected Col-0 plants increased, 

but sucrose was not affected. At 26 DPI fructose and sucrose were higher than  

 
in uninfected tissue (Figure 4.5). A similar result was seen in sus1,2,3,4 plants at 

16 DPI, but at 26 DPI glucose and fructose were increased, while sucrose was 

not affected in infected sus1,2,3,4 plants. Infected cinv1,2 plants showed an 

increase in glucose, fructose and sucrose compared with uninfected plants at 16 

DPI. By 26 DPI, infected cinv1,2 plants showed an increase in fructose similar to 

Col-0, but the sucrose concentration was similar in uninfected and infected 

cinv1,2 plants (Figure 4.5).  

 

The carbohydrate content of uninfected and infected developing leaves of Col-0, 

cinv1,2 and sus1,2,3,4 plants was compared at 16 and 26 DPI (Figure 4.6). 

Glucose, fructose and sucrose in infected Col-0 were not affected at 16 DPI, but 

by 26 DPI those sugars were higher than in uninfected plants. Similar results 

were observed with cinv1,2 and sus1,2,3,4 plants. At 16 DPI there was little 
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difference between uninfected and infected plants but at 26 DPI all sugars were 

higher, although the hexose content tended to be lower than that of infected Col-

0 plants (Figure 4.6).  

 

 

Figure 4.5. Amount of sugar in root/hypocotyl of uninfected and infected Col-0, cinv1,2 and 
sus1,2,3,4 plants at 16 and 26 DPI. Results are the average amount of sugar per four replicate 
plant + standard deviation. Means that do not share a letter differ significantly (Log10 and two-way 
ANOVA, p-value≤0.05). The significant test between uninfected and infected plants was based 
on Sidak`s multiple comparison test while between Col-0 and mutants plants was based on 
Turkey`s multiple comparison test.   
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Figure 4.6. Amount of sugar in developing leaf of uninfected and infected Col-0, cinv1,2 and 
sus1,2,3,4 plants at 16 and 26 DPI. Results are the average amount of sugar per four replicate 
plant + standard deviation. Means that do not share a letter differ significantly (Log10 and two-way 
ANOVA, p-value≤0.05). The significant test between uninfected and infected plants was based 
on Sidak`s multiple comparison test while between Col-0 and mutants plants was based on 
Turkey`s multiple comparison test.    

 

The carbohydrate content in mature leaves of uninfected and infected Col-0, 

cinv1,2 and sus1,2,3,4 plants was compared at 16 and 26 DPI (Figure 4.7). 

Again, there was little difference between uninfected and infected Col-0 plants at 

16 DPI, but all sugars were higher at 26 DPI. Similar results were seen with 

cinv1,2 and sus1,2,3,4 plants. There was little difference at 16 DPI with elevated 

sugars at 26 DPI, but somewhat ≤ that seen in Col-0. 
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Figure 4.7. Amount of sugar in the mature leaf of uninfected and infected Col-0, cinv1,2 and 
sus1,2,3,4 plants at 16 and 26 DPI. Results are the average amount of sugar per four replicate 
plant + standard deviation. Means that do not share a letter differ significantly (Log10 and two-way 
ANOVA, p-value≤0.05).  The significant test between uninfected and infected plants was based 
on Sidak`s multiple comparison test while between Col-0 and mutants plants was based on 
Turkey`s multiple comparison test.  
 

4.3.5. Microscopic Analysis of Impact of P. brassicae Infection on 

SWEET11:SWEET11-GUS and SWEET12:SWEET12-GUS  

It is hypothesised that P. brassicae acts as an effective metabolic sink by altering 

host carbohydrate metabolism through a localised increase in sugar transporter 

expression and a modification of carbon partitioning. I also hypothesised that the 

expression of SWEET11 and SWEET12 are induced by P. brassicae effectors to 
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obtain sugar from the host. P. brassicae generates sink strength through gall 

formation in root/hypocotyl tissues. To better understand how sucrose 

transporters were altered in response to P. brassicae infection, 14-day-old plants 

that contained SWEET11:SWEET11-GUS and SWEET12:SWEET12-GUS 

constructs were inoculated with P. brassicae spores or water and stained for β-

glucuronidase activity at 16 and 26 DPI. SWEET11:SWEET11-GUS and 

SWEET12:SWEET12-GUS were actively expressed in root, hypocotyl and 

developing leaf tissues at 16 and 26 DPI in both uninfected and infected plants 

(Figure 4.8-4.11). However, no expression was observed in mature leaves.  

 

Cross sections of hypocotyls from uninfected and infected SWEET11:SWEET11-

GUS and SWEET12:SWEET12-GUS transgenic plants were taken at 16 and 26 

DPI.  Safranin-O was used to stain the cross sections, with cells expressing 

SWEET11:SWEET11-GUS and SWEET12:SWEET12-GUS appearing blue, in 

contrast with other cells types which stained red (Figure 4.12 - 4.14). 

 

In uninfected plants, at 16 DPI, SWEET11:SWEET11-GUS and 

SWEET12:SWEET12-GUS were predominantly expressed in continuous rings of 

vascular parenchyma, phloem bundles, and xylem parenchyma cells in 

transverse sections of uninfected and infected tissue (Figure 4.12, 4.13). A similar 

pattern was seen in uninfected plants at 26 DPI.  

 

In infected hypocotyls 26 DPI, the expression pattern of SWEET11:SWEET11-

GUS and SWEET12:SWEET12-GUS became unclear because the vascular 

parenchyma became distorted and discontinuous with the presence of swollen 

host cells that contained plasmodia (Figure 4.13).  
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Figure 4.8 Expression of SWEET11:SWEET11-GUS in hypocotyl, root, developing leaf and 
mature leaf tissues of uninfected and infected A. thaliana transgenic SWEET11:SWEET11-GUS 
plants at 16 DPI.   

 

 

Figure 4.9 Expression of SWEET12:SWEET12-GUS in hypocotyl, root, developing leaf and 
mature leaf tissues of uninfected and infected A. thaliana transgenic SWEET12:SWEET12-GUS 
plants at 16 DPI.   
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Figure 4.10.  Expression of SWEET11:SWEET11-GUS in hypocotyl, root and developing leaf 
tissues of uninfected and infected A. thaliana transgenic SWEET11:SWEET11-GUS plants at 26 
DPI.   

 

 

Figure 4.11. Expression of SWEET12:SWEET12-GUS in hypocotyl, root and developing leaf 
tissues of uninfected and infected A. thaliana transgenic SWEET12:SWEET12-GUS plants at 26 
DPI. 
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Figure 4.12. SWEET11::GUS and SWEET12::GUS activity were visualized in sections of uninfected and infected hypocotyls at 16 DPI. SWEET11::GUS 
and SWEET12::GUS were expressed in a continuous ring of vascular parenchyma, xylem parenchyma and phloem bundle.  
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Figure 4.13. SWEET11::GUS and SWEET12::GUS activity were visualized in sections of uninfected and infected hypocotyls at 26 DPI. SWEET11: GUS 
and SWEET12:GUS were expressed in a continuous ring of vascular parenchyma, xylem parenchyma and phloem bundle in uninfected plants. We also 
observed disruption of the continuous ring of vascular parenchyma cells in infected plants with the presence of swollen cells containing P. brassicae.  
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In higher magnification images, cells containing plasmodia were located near the 

sites of expression of SWEET11:SWEET11-GUS in a discontinuous ring of vascular 

parenchyma (Figure 4.14 A). A high magnification image of infected 

SWEET12:SWEET12-GUS transgenic plants showed that SWEET12:SWEET12-

GUS was expressed in phloem parenchyma (Figure 4.14 B). Staining was lost from 

the xylem parenchyma.  

 

 
Figure 4.14. A close-up of (A) SWEET11: GUS activity in a discontinuous ring of vascular 
parenchyma. (B) SWEET12: GUS activity in phloem parenchyma cells. Pb: Cell contains P. 
brassicae.   
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4.3.6. Microscopic Analysis of the Impact of P. brassicae Infection on A. 

thaliana Col-0, sweet11, sweet12 and sweet11,12  

As P. brassicae infection led to an accumulation of sucrose associated with phloem 

unloading, we investigated the impact of disrupting this process on gall formation.  

We used sweet11 and sweet12 single mutants and sweet11,12 double mutants to 

disturb sucrose transport via passive sucrose transporters. Secondary thickening of 

the infected hypocotyl of Col-0 plants was enlarged compared to uninfected tissues 

at 16 and 26 DPI (Figure 4.15, 4.16).  By 26 DPI, infected tissues showed the 

presence of swollen host cells that contained plasmodia (Figure 4.16). A similar 

result was seen in sweet11, sweet12 and sweet11,12 plants (Figure 4.15, 4.16). 

 

Secondary hypocotyl thickening of sweet11, sweet12 and sweet11,12 plants was 

slower in uninfected tissue than in Col-0 with the presence of epidermis and 

endodermis cell layers but this difference was not evident in infected tissue (Figure 

4.15). By 26 DPI, infected tissues of sweet11 and sweet12 plants showed the 

presence of swollen host cells that contained plasmodia, which were similar to those 

observed in Col-0 plants (Figure 4.16).Swollen host cells in infected sweet11,12 

plants were smaller than in infected Col-0 plants indicating the development of 

plasmodia was slowed, with a reduction of gall size (Figure 4.17).  

 

Figure 4.18 shows the hypocotyl widths of uninfected and infected Col-0, sweet11, 

sweet12 and sweet11,12 plants at 16 and 26 DPI. Infected Col-0 plants exhibited a 

significant increase in hypocotyl width, with infected plants having a hypocotyl width 

two times bigger than their uninfected control plants at 16 and 26 DPI (Figure 4.18). 

Similar responses were seen in sweet11, sweet12 and sweet11,12 plants.  However, 

uninfected sweet11, sweet12 and sweet11,12 plants had thinner hypocotyls than 

Col-0 plants at 16 DPI, but this difference was evident at 26 DPI. When infected, the 

hypocotyl widths of all three mutants were similar to that of Col-0 at 16DPI. However, 

at 26 DPI the sweet11,12 hypocotyl width was smaller than that of Col-0 (Figure 

4.18).  
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Figure 4.15. The effects of deletions in sweet11, sweet12 and sweet11,12 genes were visualized in 
sections of uninfected and P. brassicae-infected plants at 16 DPI. 
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Figure 4.16. The effects of deletions in sweet11, sweet12 and sweet11,12 genes were visualized in 
sections of uninfected and P. brassicae-infected plants at 26 DPI. 
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Figure 4.17. The effects of deletions in SWEET11 and SWEET12 genes when compared with Col-0 
were visualized in sections of infected plants at 26 DPI. 

 

 

Figure 4.18. The width of hypocotyl sections in uninfected and P. brassicae-infected Col-0, sweet11, 
sweet12 and sweet11,12 plants at (A) 16 and (B) 26 DPI. Results are the average of width 
measurements per four replicate plant + standard deviation. Means that do not share a letter differ 
significantly (Log10 and two-way ANOVA, p-value≤0.05). The significant test between uninfected and 
infected plants was based on Sidak`s multiple comparison test while between Col-0 and mutants 
plants was based on Turkey`s multiple comparison test.   
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4.3.7. Analysis of the Impact of P. brassicae Infection on the Carbohydrates in 

the Root/hypocotyl, Developing Leaf and Mature Leaf of A. thaliana Col-0, 

sweet11, sweet12 and sweet11,12 plants 

Col-0, sweet11, sweet12 and sweet11,12 plants displayed characteristic symptoms 

of clubroot disease, with gall formation occurring in the hypocotyl and upper root 

system. However, galls of infected sweet11,12 plants were smaller than those of Col-

0 plants.  Root/hypocotyl, developing leaves and mature leaves from Col-0, sweet11, 

sweet12 and sweet11, 12 plants were used to determine local and systemic effects 

of P. brassicae on carbohydrate metabolism.  

 

The carbohydrate content of uninfected and infected root/hypocotyl tissues of Col-0, 

sweet11, sweet12 and sweet11,12 plants were compared at 16 and 26 DPI (Figure 

4.19). Col-0 glucose and sucrose were not affected at 16 DPI, but by 26 DPI these 

sugars were higher than in uninfected Col-0 plants (Figure 4.19). Similar results were 

seen with sweet11, sweet12 and sweet11,12 at 16 DPI. By 26 DPI, glucose in 

uninfected sweet 11,12 was higher and sucrose was lower than uninfected Col-0. 

This pattern was also observed in infected sweet11,12 compared to infected Col-0 

(Figure 4.19).  

 

The carbohydrate content in developing leaves of uninfected and infected Col-0, 

sweet11, sweet12 and sweet11,12 were compared at 16 and 26 DPI (Figure 4.20). 

In Col-0 plants glucose, fructose and sucrose were not affected at 16 DPI, glucose 

was higher at 26 DPI (Figure 4.20). There was little difference at 16 DPI with elevated 

sucrose in infected sweet11 plant, but somewhat higher than that seen in Col-0. By 

26 DPI, glucose, fructose and sucrose in infected sweet12 and sweet 11,12 were 

higher than in uninfected plants of the same lines (Figure 4.20).  

 

The carbohydrate content of mature leaves of uninfected and infected Col-0, 

sweet11, sweet12 and sweet11,12 plants was compared at 16 and 26 DPI (Figure 

4.21). In Col-0 plants, glucose, fructose and sucrose were not affected by infection 
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at 16 and 26 DPI. There was little difference in infected sweet 11,12 with elevated 

sugars than that seen in Col-0 at 16 DPI. Similar results were seen at 26 DPI (Figure 

4.21).  

 

Figure 4.19. Amount of glucose and sucrose in root/hypocotyl of uninfected and infected Col-0, 
sweet11, sweet12 and sweet11,12 plants at (A) 16 and (B) 26 DPI. Results are the average amount 
of sugar per replicate plant + standard deviation. Means that do not share a letter differ significantly 
(Log10 and two-way ANOVA, p-value≤0.05). The significant test between uninfected and infected 
plants was based on Sidak`s multiple comparison test while between Col-0 and mutants plants was 
based on Turkey`s multiple comparison test.   
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Figure 4.20. Amount of glucose, fructose and sucrose in developing leaf of uninfected and infected 
Col-0, sweet11, sweet12 and sweet11,12 plants at  (A) 16 and (B) 26 DPI. Results are the average 
amount of sugar per replicate plant + standard deviation. Means that do not share a letter differ 
significantly (Log10 and two-way ANOVA, p-value≤0.05). The significant test between uninfected and 
infected plants was based on Sidak`s multiple comparison test while between Col-0 and mutants 
plants was based on Turkey`s multiple comparison test.   
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Figure 4.21. Amount of glucose, fructose and sucrose in mature leaf of uninfected and infected Col-
0, sweet11, sweet12 and sweet11,12 plants at (A) 16 and (B) 26 DPI. Results are the average of 
sugar amount per replicate plant + standard deviation. Means that do not share a letter differ 
significantly (Log10 and twoway ANOVA, p-value≤0.05).  The significant test between uninfected and 
infected plants was based on Sidak`s multiple comparison test while between Col-0 and mutants 
plants was based on Turkey`s multiple comparison test.   
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4.4 Discussion 

Galls formed in the hypocotyl and upper main root of P. brassicae-infected A. 

thaliana plants after inoculation with P. brassicae. Galls became a sink for 

metabolites, including carbohydrates. This chapter has shown host carbohydrate 

metabolism changed upon P. brassicae infection. The altered carbohydrate 

metabolism of tissues of infected plants occurred through sucrose hydrolysis and 

sucrose transporter activities, which resulted in increased sink strength. The source-

sink status of the plant was altered through the increase of metabolic activity in 

root/hypocotyl tissues in response to P. brassicae infection.  

 

4.4.1 The Local Effects of P. brassicae Infection on Carbohydrate Metabolism 

The first aim of this chapter was to examine the role of sucrolytic genes in P. 

brassicae development and host carbohydrate metabolism. It was hypothesised that 

P. brassicae acts as an effective metabolic sink by altering host carbohydrate 

metabolism through a localised increase in sucrolytic gene expression in the 

cytoplasm and a modification of carbon partitioning.  

 

Following P. brassicae infection, SUS 1-4 were up-regulated in infected tissue at 16 

and 26 DPI (Table 4.1). The expression of SUS genes is correlated to hypoxia in 

infected tissues, which subsequently induces anaerobic respiration (Bieniawska et 

al., 2007, Baud et al., 2004, Cabello et al., 2014, Martin et al., 1993). The hypoxia is 

also a common effect in tissues infected with other plant pathogens including cyst 

and root knot nematodes (Cabello et al., 2014). SUS1 and SUS4 are up-regulated 

in A. thaliana plants infected with the sugar beet cyst nematode Herarodera schachtii 

or the tropical root knot nematode Meloidogyne javanica (Cabello et al., 2014). A 

lack of SUS1-4 genes caused an accumulation of glucose and fructose in infected 

tissues at 26 DPI, but did not reduce gall formation (Figure 4.4, 4.5). This indicates 

that P. brassicae induces development of a sink in sus1,2,3,4. Besides, I suggest 

that the accumulation of glucose and fructose in sus 1,2,3,4 mutants were caused 

by the activity of CINV when the SUS activity was low.  
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A lack of CINV genes reduced the size of galls at 26 DPI. However, examination of 

infected tissues of cinv1,2 plants showed that plasmodia colonized host cells and 

the pathogen developed in a similar manner to Col-0 (Figure 4.3). This suggests that 

the lack of CINV1 and CINV2 activity reduced plant growth but that this did not affect 

P. brassicae development. Besides, Bieniawska et al., (2007) suggested that CINV 

activity alone is sufficient to support the growth of non-photosynthetic tissues under 

aerobic conditions.  Therefore, in gall formation where the oxygen supply was 

limited, SUS genes were predominantly expressed to hydrolyse sucrose into 

reducing sugars in the cytoplasm. This could explain the down-regulation of CINV 

genes in infected tissues at 16 and 26 DPI (Table 4.1). Similarly, CINV1 is down-

regulated in A. thaliana plants following H. schachtii and M. javanica infection 

(Cabello et al., 2014). 

 

I hypothesised that SUS rather than CINV is important in infected plants. However, 

results demonstrated in this chapter did not support the hypothesis. Gall formation 

and plasmodia development were unaffected in sus1,2,3,4 and cinv1,2 mutants. 

This indicates that P. brassicae was made the gall a sink. It might induced host 

activity. For instance, in cinv1,2, P. brassicae might induced SUS activity of the host 

or it might induced its own sucrolytic genes. 

 

The second aim of this chapter was to examine the role of SWEET sugar 

transporters in P. brassicae development and host carbohydrate metabolism. It was 

hypothesised that P. brassicae acts as an effective metabolic sink by altering host 

carbohydrate metabolism through a localised increase in sugar transporter 

expression and a modification of carbon partitioning. Following P. brassicae 

infection, SWEET11 and SWEET12 gene expression was not affected at 16 DPI, but 

by 26 DPI SWEET11 and SWEET12 genes were up regulated in infected tissues 

(Table 4.1). Besides, by 26 DPI, SWEET11:SWEET11-GUS and 

SWEET12:SWEET12-GUS were expressed in phloem parenchyma cells which 

were located close to swollen host cells that contained plasmodia. I recorded that 



 

 

171 
 

gall formation was reduced in sweet11,12 plants and that the swollen cells that 

contained plasmodia were smaller than in infected Col-0 plants (Figure 4.17). This 

suggests that secondary plasmodia were less developed in plants that lack 

SWEET11 and SWEET12 genes.  In addition, the lack of SWEET11 and SWEET12 

genes caused an increase in glucose concentration in infected tissues. It has been 

suggested that the accumulation of glucose in sink tissue is related to inefficient use 

of glucose or rapid hydrolysis of sucrose in storage sinks (Hajirezaei et al., 2000). 

This suggests that sucrose in the apoplastic space was hydrolysed by CWINV after 

sucrose transport was compromised.  

 

In Col-0 plants, CWINV1 was also up-regulated in infected tissue at 16 and 26 DPI 

(Table 4.1). CWINV has been reported to induce a sugar-mediated defence signal 

in infected leaves against the apoplastic pathogen Xanthomonas campestris (Xcv) 

(e.g. (Sonnewald et al., 2012). This indicates that CWINV activity is required for 

inducing plant defence in infected leaves. However, the role of CWINV in inducing 

plant defence in infected leaves is not evident in P. brassicae-infected roots. 

Siemens et al., (2011) reported that expression of a CWINV inhibitor reduces gall 

formation in root tissues. This indicates that CWINV activity is required for pathogen 

development. CWINV hydrolyses sucrose in the apoplastic space into hexose 

sugars. This suggests that hexose sugars in the apoplastic space need to be 

transported into the host cytoplasm before being taken up by plasmodia. Besides, 

following P. brassicae infection, transcriptomic analysis of A. thaliana plants showed 

that SUS5 and SUS6 were either slightly repressed or not significantly different at 

16 and 26 DPI in root and hypocotyl tissues. It has been reported that these genes 

are involved in callose synthesis (Barratt et al., 2009). Callose is involved in plant 

defence, providing an effective barrier against pathogens (Luna et al., 2011). It has 

been reported that callose deposition is suppressed by a high concentration of 

sucrose and induced in the presence of the polysaccharide chitosan and Reactive 

Oxygen Species (ROS) (Luna et al., 2011). This suggests that following P. brassicae 

infection the plant defence response was suppressed, with down regulation of genes 
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associated with callose synthesis. This could resulted in successful colonization by 

P. brassicae.   

 

Moreover, transcriptomic analysis of A. thaliana plants showed that other SWEET 

genes including SWEET1, 4, 13, 16 and 17 were down regulated at 16 and 26 DPI 

in root and hypocotyl tissues in response to P. brassicae infection (Table 4.1). 

SWEET2 expression was slightly increased at 26 DPI in hypocotyl tissue and 

decreased at both time points in root tissue in response to P. brassicae infection. 

SWEET1, SWEET2, and SWEET4 function as glucose transporters (Chen et al., 

2015a, Chen et al., 2010). Recently, SWEET2 has been reported to be expressed 

in epidermal cells of the root apex and is localized to the tonoplast, a major sugar 

storage compartment (Chen et al., 2015a). The expression of SWEET2 in the root 

apex is correlated with the supply of glucose to soil microbes (Chen et al., 2015a). 

However, following P. brassicae infection, this gene was down regulated in root 

tissues. This suggests that, during P. brassicae infection, glucose was not stored in 

the tonoplast, but it could be localized in the host cytoplasm before being taken up 

by plasmodia.    

 

SWEET16 and 17 function as fructose transporters (Chen et al., 2010, Guo et al., 

2014) and these genes were strongly repressed in root and hypocotyl tissues at 16 

and 26 DPI in response to P. brassicae infection. SWEET17 functions as a 

bidirectional fructose transporter across the tonoplast of roots to maintain cytosolic 

fructose (Chen et al., 2010, Guo et al., 2014). In the event of a high concentration of 

fructose in the cytosol, SWEET17 transports fructose into the vacuole, while during 

sugar starvation or in actively growing cells especially in the root elongation region, 

SWEET17 transports fructose from the vacuole for catabolism in the cytosol (Chen 

et al., 2010, Guo et al., 2014). Following P. brassicae infection, the amount of 

fructose increased in root/hypocotyl tissues of Col-0 plants and sucrolytic mutants 

(Figure 4.5). However, the SWEET17 gene was down regulated in root and 

hypocotyl tissues. This suggests that, during P. brassicae infection, the accumulation 
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of fructose in infected tissues could be localized in the host cytoplasm before it is 

taken up by plasmodia.    

 

4.4.2 The Systemic Effects of P. brassicae Infection on Host Carbohydrate 

Metabolism  

Photosynthesis takes place in the mature source leaves of plants. Mature leaves 

supply carbohydrate to developing leaves and the root/hypocotyl tissues. Following 

P. brassicae infection, the rates of photosynthesis in uninfected and infected leaves 

are similar, but the carbohydrate content decreases in infected leaves as a result of 

increases export of carbohydrate (Evans and Scholes, 1996). We recorded that the 

amount of glucose, fructose, and sucrose increased in mature leaves of P. 

brassicae-infected Col-0 plants, when galls formed. This indicates that the sink 

strength was altered in response to P. brassicae infection.  

 

Furthermore, the expression of SWEET:SWEET11-GUS and SWEET12:SWEET12-

GUS were observed in developing leaves, but not in mature leaves of A. thaliana 

transgenic plants (Figure 4.8-4.11). This contrasts with the results reported by Chen 

et al., (2012). SWEET11: SWEET11-GUS and SWEET12:SWEET12-GUS 

expression in mature source leaves might be lost during plant development. Besides, 

in developing leaves, SWEET:SWEET11-GUS and SWEET12:SWEET12-GUS 

were expressed in major and minor veins (Figure 4.8-4.11). It has been reported that 

SWEET11 and SWEET12 are highly expressed in leaves and the expression of 

these genes is accompanied by the genes involved in sucrose biosynthesis and 

phloem loading (Chen et al., 2012). This indicates that SWEET11 and SWEET12 

are involved in phloem loading in leaves tissues. A study using GFP and GUS protein 

fusion to SWEET11 and SWEET12 revealed that, both of these proteins localize in 

the plasma membrane of parenchyma cells (Chen et al., 2012). This indicates that 

both SWEET11 and SWEET12 are involved in exporting sucrose into the cell wall 

either in the mesophyll cell or cell closer to the site of loading (Chen et al., 2012).  

The role of SWEET 11 and SWEET12 is coupled with SUT, which transports sucrose 
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from the cell wall into the cytoplasm (Chen et al., 2012). SUT which is localized to 

the phloem of leaves minor veins, is suggested to be involved in phloem loading 

(Riesmeier et al., 1994). The amount of sucrose increased in mature leaves of plants 

lacking SWEET11 and SWEET12 genes (Figure 4.21, 26 DPI).  This is consistent 

with reported literacture where plants which phloem loading has been blocked, 

accumulate soluble sugar and starch in the leaf tissues (Chen et al., 2012, Riesmeier 

et al., 1994, Srivastava et al., 2008). From this evidence, I suggest that sucrose 

transport was reduced in mature leaves of sweet11,12 plants. 

 

4.5 Conclusion 

This chapter has shown that galls develop normally without CINV1-2 or SUS1-4 

genes. However, P. brassicae induces a sink in sus1,2,3,4 plants as evidenced by 

carbohydrate accumulation. Moreover, sweet11,12 mutants displayed slower P. 

brassicae development due to the change in carbohydrate partitioning. Besides, 

SWEET11:SWEET11-GUS and SWEET12:SWEET12-GUS expression showed 

that sucrose was transported to plasmodia through these sucrose transporters, 

especially at late stages. Furthermore, the plant defence in infected tissues might be 

compromised by the down regulation of genes associated with callose synthesis. On 

the other hand, the up regulation of CWINV in response to P. brassicae infection has 

been suggested to be required for pathogen development.  The expression of 

CWINV1 was not evident for activating plant defence when infected with P. 

brassicae. Lastly, accumulation of carbohydrates in mature source leaves was 

evidence of increasing sink strength in infected plants.  
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Chapter 5: General Discussion 

 

5.1. Aims of the Thesis 

The aim of this thesis was to investigate the metabolic interaction between P. 

brassicae and A. thaliana, by testing the following hypotheses: 

 

 P. brassicae hijacks plant development and causes alterations in metabolite 

concentrations involved in both metabolism and signaling;  

 The metabolome is an interface between the plant and pathogen which is 

influenced by their transcriptomes. Therefore, the metabolites of specific 

pathways that change in response to P. brassicae infection will correlate with 

changes in the plant transcriptome. 

 Clubroot galls act as an effective metabolic sink by altering host carbohydrate 

metabolism; if host genes involved in carbohydrate metabolism are important 

for gall formation, deletion of those genes will result in altered carbohydrate 

partitioning and will affect gall formation.  

 

5.2. How Do Changes in Plant Cellular Structure Correlate with Changes in the 

Metabolome during P. brassicae Infection? 

An alteration of metabolites in response to P. brassicae infection occurred at the very 

beginning of cortical infection, although plant primary growth did not show clear 

differences between uninfected and infected hypocotyl tissue at this stage. This 

suggests that this change in metabolites resulted from responses of the plant to P. 

brassicae infection, rather than from an alteration of plant development. 

 

Work presented in Chapter 2 includes hierarchical clustering heat maps, PCA and 

PLS-DA of metabolomics data, categorising the uninfected and infected samples 

into two groups between 7 and 28 DPI. An alteration in metabolite pattern between 

uninfected and infected plants was seen in response to infection. Most of the putative 

metabolites that increased in infected tissue at early infection stages are associated 



 

 

176 
 

with amino acid metabolism. This includes L-serine, homocarnosine, metabolites 

involved in purine metabolism such as 5-aminoimidazole, and adenosine 5’-

monophosphate which is involved in zeatin biosynthesis (Table 2.3). However, when 

a precursor of metabolite synthesis such as adenosine 5’-monophosphate is 

increased, it does not indicate that the product also increases – alternatively 

precursors in a biosynthetic pathway may accumulate if downstream steps are 

reduced.  

 

Some secondary metabolites increased in infected tissue during early infection, 

including glutathionyl spermidine which is part of glutathione metabolism, 6,7-

dimethoxycoumarin which is part of coumarin biosynthesis, and 3-benzoyloxypropyl-

glucosinolate. Coumarin, which originates from the phenylpropanoid pathway, is 

involved in plant defences against phytopathogens (Bourgaud et al. 2006). Indole 

glucosinolates are also involved in plant defence.  It has been suggested that 

cruciferous plants are suitable hosts to P. brassicae due to the presence of large 

quantities of indole glucosinolates in their vacuoles (Ludwig-Muller et al., 1999a). 

Chinese cabbage and A. thaliana plants that are susceptible to P. brassicae infection 

contain high concentrations of indole glucosinolates in infected tissue (Ludwig-Muller 

et al. 1993, 1999b). P. brassicae infection causes cell damage and subsequently 

triggers the release of indole glucosinolates from the vacuole into the cytoplasm 

(Ludwig-Muller et al. 1999a). Initially, it has been suggested that the degradation 

product of indole glucosinolate could contribute to an additional precursor for auxin 

biosynthesis which leads to an accumulation of auxin in infected tissue of Chinese 

cabbage plants (Ludwig-Muller et al., 1993). However, it has been reported that 

indole glucosinolate is not a source for an accumulation of auxin upon P. brassicae 

infection as it does not influence the development of clubroot disease in A. thaliana 

plants. Camalexin, a compound which shares a similar precursor with indole 

glucosinolate also does not contribute to development of gall formation, although it 

is accumulated following P. brassicae infection (Siemens et al., 2008).  
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At the onset of gall formation, metabolites that are involved in glucosinolate and 

phenylpropanoid biosynthesis decreased in infected tissue. This suggests that 

metabolites involved in plant defence could potentially be suppressed by plasmodia. 

Finally, at late gall formation, the cellular structure of infected tissue contained 

swollen and distorted cells. The cytoplasm of infected cells contained secondary 

plasmodia and a new generation of spores. At this stage, it has been suggested that 

large plasmodia that colonize infected cells have acquired a high metabolic activity 

compared with small plasmodia (Schuller et al., 2014), which are mostly present 

during onset gall formation. This suggests that most of the metabolites that change 

at late gall formation are potentially important to the pathogen. Results from Chapter 

2 showed that putative metabolites associated with pyrimidine metabolism, 

gibberellin inactivation, and the biosynthesis of alkaloids and piperidine increased at 

28 DPI, when a large gall was visible.  

 

5.3. How Does Host Gene Expression in Response to P. brassicae Infection 

Alter  Plant Metabolism? 

In chapter 3, the metabolites identified as changing during P. brassicae infection 

were grouped according to carbohydrate, energy, nucleotides, amino acid, vitamins, 

cofactor and secondary metabolism pathways. Figure 5.1 summarises the 

metabolites that are altered during gall development. The alterations in metabolite 

concentration found in Figure 5.1 were integrated with transcriptomic data at 16 and 

26 DPI obtained from a previous study (Malinowski et al., unpublished).  

 

Amino sugar and nucleotide sugar metabolism, which was categorised in 

carbohydrate metabolism, was altered during P. brassicae infection. The 

biosynthesis of pectin is part of amino sugar and nucleotide sugar metabolism. At 26 

DPI, genes associated with pectin synthesis were down regulated in infected tissues, 

which subsequently resulted in an abundance of free Beta-L-arabinose 1-phosphate 

(L-Ara-1P), glucuronate-1P (GlcA-1P) and galacturonate (GalA-1P).  The  
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Figure 5.1. Putative metabolite alterations in response to P. brassicae infection between 7 and 28 DPI.
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manipulation of host pectin synthesis by P. brassicae is an example of the 

contrasting infection mechanisms between biotrophic and necrotrophic pathogens.  

 

During infection, necrotrophic fungi such as Botrytis cinerea enter the host cell by 

secreting enzymes such as polygalacturonase to depolymerize pectin structure in 

order to decrease the strength of plant cell walls (Ferrari et al., 2003). As a result of 

this depolymerisation, oligogalacturonides are released from pectin and act as a 

carbon source for the pathogen (Ridley et al., 2001, D'Ovidio et al., 2004). P. 

brassicae on the other hand lacks the plant cell wall degrading carbohydrate-active 

enzymes (CAZymes) that are involved in pectin degradation (Schwelm et al., 2015). 

This indicates that P. brassicae does not enter host cells via degradation of pectin 

localized in the plant primary cell walls.  Besides, pectin polysaccharide which is a 

large polymer in the middle lamella, plays a role in cell adhesion. While the plant 

mother cell is divided into two daughter cells, adhesion between two daughter plant 

cells is maintained. As plant cells expand, adherent walls between two daughter cells 

remain fused along the line of the middle lamella. However, abnormal cell adhesion 

in reinforcing zones could cause cell separation (Jarvis et al., 2003) letting a single 

cell expand. This may leads to disorganisation of cell structure in P. brassicae-

infected tissues.  

 

In the sulfur metabolism pathway, thiosulfate accumulated in A. thaliana hypocotyl 

tissue during P. brassicae infection. The sulfur metabolism pathway involves 

thiosulfate as the electron donor and sulfate as the electron acceptor. The 

transcriptomic data at 16 and 26 DPI obtained from a previous study (Malinowski et 

al., unpublished) showed that the expression of the A. thaliana 3-mercaptopyruvate 

sulfurtransferase gene, which is involved in the synthesis of thiosulfate and pyruvate 

from 3-mercaptopyruvate, appeared not to be significantly different between infected 

and infected tissue. Electron transfer from thiosulfate to sulfate is regulated by a 

sulfur-oxidation reaction through the cytochrome C-1 (SOX) gene.  The down-

regulation of the host’s SOX gene in infected tissue at 16 and 26 DPI might caused 
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the accumulation of thiosulfate. It is possible that P. brassicae regulates the sulfur 

cycle to increase the production of thiosulfate as its sulfur source. The P. brassicae 

genome contains the SOX gene, which could oxidize thiosulfate and is also the gene 

encoding thiosulfate sulfur transferase (Schwelm et al., 2015), which converts 

thiosulfate to sulfite. Probably, P. brassicae regulates the sulfur cycle to increase the 

production of thiosulfate as its sulfur source and suppress the host’s sulfur 

metabolism genes. 

  

In the amino acid metabolism pathway, amino acids such as glutamate, aspartate, 

alanine and proline accumulated in P. brassicae infected tissue. Wagner et al. (2012) 

reported that glutamate and alanine accumulated in a genotype of B. napus that was 

susceptible to P. brassicae and exhibited extensive disease symptoms. This shows 

that glutamate and alanine maybe required for the development of P. brassicae 

inside a susceptible host. In fact, glutamate and aspartate can be catabolized for the 

production of energy. The expression of the host genes associated with the 

metabolism of those amino acids was altered at 16 and 26 DPI. However, the P. 

brassicae genome contains several genes associated with amino acid metabolism 

including glutamate synthase, aspartate kinase, homoserine O-succinyltransferase. 

These genes are associated with synthesis of glutamate and degradation of 

aspartate (Schwelm et al., 2015). It is possible that P. brassicae manipulates the 

expression of host genes involved in aspartate and alanine metabolism. P. brassicae 

might potentially take up and catabolize aspartate using its aspartate kinase and 

homoserine O-succinyltransferase genes to release energy. Besides, the P. 

brassicae genome lacks genes associated with tryptophan, cysteine, alanine and 

proline metabolism. Tryptophan and cysteine are decreased while alanine and 

proline are increased in infected tissue.  

 

Amino acids that are associated with plant defence such as cysteine decreased in 

infected tissue. Possibly, the synthesis of this amino acid was shifted in favour of 

plasmodia leading to the accumulation of thiosulfate. Proline accumulated in infected 
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tissue at 25 and 28 DPI and genes associated with the synthesis of this amino acid 

were up-regulated at 26 DPI. It has been reported that proline accumulates only at 

the later stages of infection in P. brassicae-infected B. napus plants, when the 

concentration of P. brassicae DNA is relatively high compared to the early stage of 

infection (Wagner et al., 2012). Proline is a compatible solute, associated with host 

stresses including drought stress (Takagi 2008). The reduction of xylem formation in 

infected plants could limit water transport to the whole plant, mimicking a drought 

stress condition. The accumulation of proline in tissue infected with P. brassicae may 

protect plants from osmotic stress. 

 

Pyridoxal 5’-phosphate which is required for vitamin B6 metabolism, was increased 

at 7 DPI and decreased at 18 and 25 DPI in response to P. brassicae infection. In 

addition, following P. brassicae infection, D-Ribulose 5-phosphate, a precursor of 

pyridoxal 5’-phosphate, was found to have increased in infected tissue at 25 DPI and 

the A. thaliana gene encoding pyridoxal 5'-phosphate synthase, synthesising 

pyridoxal 5’-phosphate, was up-regulated in response to P. brassicae infection at 26 

DPI. This indicates that de novo biosynthesis of vitamin B6 was increased in infected 

tissue. Meanwhile, 4-aminobenzoate and 7, 8-dihydropteroate, which are required 

for folate biosynthesis, also increased at 25 DPI. This indicated that the production 

of these metabolites associated with tetrahydrofolate (THF), a cofactor for several 

cellular processes, was increased. The expression of the A. thaliana gene encoding 

folylpolyglutamate synthase (6.3.2.17) to synthesis THF, was up-regulated at 16 and 

26 DPI. The P. brassicae genome lacks genes associated with thiamine 

biosynthesis. It has been suggested that P. brassicae depends on the host for this 

vitamin (Schwelm el al., 2015). The loss of genes associated with cofactor 

biosynthetic pathways in plant pathogens is a signature of biotrophy (Kemen et al., 

2011, Schwelm et al., 2015). It has been suggested that biotrophic pathogens have 

evolved to synthesise less energy consuming sources of metabolites, such as 

nitrogen and sulfate, rather than vitamins, which are more energy consuming 

(Kemen et al., 2011). This may suggest that P. brassicae obtains vitamin B6 and 
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folates as essential cofactors for cellular biological processes from the host by 

inducing host biosynthetic pathways.  

 

In secondary metabolism, secondary metabolites such as cinnamic acid, a 

compound involved in the  biosynthesis of phenylpropanoids, increased at 16 DPI 

and decreased at 25 DPI. Cinnamic acid is derived from the amino acid 

phenylalanine by the activity of phenylalanine ammonia-lyase (PAL), which was up-

regulated at 16 DPI and down-regulated at 26 DPI. Cinnamic acid has antimicrobial 

activity, which suggests that A. thaliana plants activate their defence response at 16 

DPI, when this compound accumulates in infected tissue. Phaseic acid for 

carotenoid biosynthesis, which was derived from the degradation of abscisic acid 

(ABA), increased at 16 DPI and decreased during late gall formation. As phaseic 

acid increased, the A. thaliana gene that encodes ABA-beta-D-glucosidase, which 

hydrolyses abscisic acid glucose ester to form ABA, was up-regulated at 16 DPI.  As 

phaseic acid decreased, however, this gene was down-regulated at 25 DPI. It has 

been reported that ABA plays a major role in the susceptibility of tomato against 

Botrytis cinerea through repression of PAL activity, which subsequently reduced SA-

defence pathways (Audenaert et al., 2002). From this result, firstly I assume that 

accumulation of phaseic acid at 16 DPI is correlated with the inactivation of ABA in 

P. brassicae-infected plants to increase the expression of the PAL gene, which 

subsequently triggers SA-dependent pathways. Maybe this was achieved by ABA 

being actively converted to unstable 8’-hydroxy-ABA, which subsequently 

rearranges to phaseic acid. In the meantime, SA could be suppressed by P. 

brassicae effector PbBSMT to inactive the role of SA in plant defence (Ludwig-Muller 

et al., 2015).  However, it has been reported that ABA content was four times higher 

in P. brassicae-infected root of Chinese cabbage plants than uninfected plants at 21 

DPI (Devos et al., 2005). The accumulation of ABA at late gall formation is maybe 

correlated to severe stress upon pathogen infection. It was not correlated with the 

down-regulation of the PAL gene at 26 DPI which was found in the transcriptomic 
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data of this study. Details on the role of ABA during P. brassicae infection requires 

further investigation.  

 

Furthermore, castasterone and 6-deoxoteasterone, which are precursors for 

brassinosteroid biosynthesis, increased in infected tissue at 25 DPI. Generally, most 

of the genes associated with brassinosteroid biosynthesis leading to the synthesis 

of brassinolide, the most biologically active brassinosteroid, were up-regulated in 

infected tissue at 26 DPI. This result agrees with the previous finding of a cell type-

specific transcriptomic analysis that gene expression associated with 

brassinosteroid synthesis was up-regulated in hypertrophied cells containing large 

plasmodia (Schuller et al., 2014). This was supported by the fact that the application 

of propiconazole, an inhibitor of brassinolide synthesis, resulted in a reduction of gall 

size, indicating that this compound is involved in cell division and cell expansion in 

gall development (Schuller et al., 2014).  

 

The precise identification of metabolites and their regulation are critical to the 

understanding of the role of important metabolites in P. brassicae-infected tissue. 

Although metabolomic data were integrated with host transcriptomic data to gain an 

understanding of the interaction between P. brassicae and its host, validation of this 

approach is required.  Besides, the sample extraction method used in this thesis only 

measured polar metabolites, the quantification of which strongly depends on the 

positive ionization conditions and only gives a snapshot of selected metabolites in 

hypocotyl tissue between 7 and 28 DPI. Unfortunately, this reveals nothing about 

non-polar metabolites such as lipids and metabolites that are only potentially ionized 

in negative condition. Future work would include validation of putative metabolites 

that were identified in Chapter 3, for example by using specific inhibitors to inhibit 

specific pathways. Furthermore, plant mutants in specific metabolitic pathways and 

targeted metabolomics such as liquid/gas chromatography MS or MS-MS also can 

be potential approaches to validate the metabolomic data obtained in this study. 

Meanwhile, establishing the exact location of metabolites would allow an 
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assessment of whether the pathogen itself is a competing sink or whether sink 

metabolism is induced in the host infected cells or uninfected cells of infected tissue. 

This could be achieved using the MALDI-imaging technique (Kaspar et al., 2011).  

 

5.4. Is Sugar Permease a Key Facilitator of Carbohydrate Metabolism in 

Infected Sink Tissues?  

Chapter 4 demonstrated that host carbohydrate metabolism changed upon P. 

brassicae infection. The altered carbohydrate metabolism of tissues of infected 

plants occurred through sucrose hydrolysis and sucrose transporter activities, which 

resulted in increased sink strength. The source-sink status of the plant was altered 

through the increase of metabolic activity in root/hypocotyl tissues in response to P. 

brassicae infection.  

 

Transcriptomic data showed that SUS 1-4 were up-regulated in infected tissue at 16 

and 26 DPI, but the expression of CINV1 and CINV2 were down-regulated. 

Expression of SUS1-4 during P. brassicae infection was likely related to hypoxia in 

gall tissue, as suggested by other studies about SUS genes which relate to 

anaerobic respiration (Bieniawska et al. 2007; Baud et al. 2004; Martin et al. 1993). 

In addition, the expression of the SUS1 and SUS4 genes in tissue infected with P. 

brassicae was similar to their expression in response to the sugar beet cyst 

nematode Heterodera schachtii or the tropical root knot nematode Meloidogyne 

javanica (Cabello et al. 2014). However, a lack of SUS1-4 did not reduce gall 

formation.  The lack of CINV1 and CINV2 on the other hand reduced the size of galls 

at 26 DPI, although plasmodia colonized host cells and pathogen development was 

similar to that in Col-0 plants. This suggests that the lack of CINV1 and CINV2 activity 

reduced plant growth but still resulted in normal gall development.  

 

Throughout the work presented in Chapter 4, the initial hypothesis was that SUS 

rather than CINV was important in infected plants. However, the results did not 

support the hypothesis. Gall formation and plasmodia development were unaffected 
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in sus1,2,3,4 and cinv1,2 mutants, although lack of SUS1-4 genes caused an 

accumulation of glucose and fructose in infected tissues at 26 DPI and a lack of 

CINV1,2 genes reduced plant growth. This indicates that P. brassicae itself makes 

the gall a sink. This might be due to induced host activity. For instance, in cinv1,2, 

P. brassicae might induce SUS activity of the host or it might express its own 

sucrolytic genes. However, there is no evidence of the presence of invertase genes 

in the P. brassicae genome (Rolfe et al., unpublished).    

 

Gall formation was reduced in sweet11,12 plants and the swollen cells contained 

plasmodia that were smaller than in infected Col-0 plants.  By 26 DPI, 

SWEET11:SWEET11-GUS and SWEET12:SWEET12-GUS were expressed in 

phloem parenchyma cells which were located close to swollen host cells that 

contained plasmodia. Figure 5.2 shows a model of how sucrose from the host might 

be supplied to plasmodia. As shown on this schematic, genes encoding SWEET 

sugar transporters are transcriptionally induced after infection with P. brassicae. 

SWEET11 and SWEET12 are suggested to unload sucrose from the companion 

cells into the apoplast, concurrent with symplastic unloading via plasmodesmata. 

Active sucrose transporters could also potentially unload sucrose from the 

companion cells to the apoplast. Infected cells containing multinucleate plasmodia 

take up sucrose via plasmodesmata, and sucrose in the apoplast is hydrolysed by 

extracellular invertase before being transported into the cytoplasm of infected cells 

through hexose transporters (Figure 5.2a). Sucrose in the cytoplasm is hydrolysed 

by sucrose synthase. A lack of SWEET11 and SWEET12 reduces the efficiency of 

this sucrose transport into infected cells, which subsequently reduces the 

development of plasmodia (Figure 5.2b).  

 

The induction of SWEET11 and SWEET12 expression and their location in response 

to P. brassicae infection has been demonstrated in this thesis. The work presented 

here suggests that SWEET11 and SWEET12 play an important role in supplying 

carbohydrate to P. brassicae development. Future work would include assessment  
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Figure 5.2. Model of sucrose transport in a) Col-0 wild type plant and b) sweet11/12 plant. Sucrose is unloaded from the companion cells into 

the apoplast via SWEET transporters or active sucrose transporters and symplastic unloading via plasmodesmata. Sucrose in the apoplast is 
hydrolysed into hexose sugars by invertase, and hydrolysed by sucrose synthase in cytoplasm. Hexose sugars in the apoplast could potentially 
be taken up by infected cells through hexose transporters. A lack of SWEET transporters reduces the size of galls in P. brassicae-infected 
plants. 
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of the plasmodesmata of cells in infected tissue to quantify the capacity for the 

sucrose to pass the cell wall interface of infected cells containing plasmodia. This 

could be achieved using electron microscopy which could assess the frequency of 

occurrence and diameter of plasmodesmata on fixed material. Alternatively, the 

function and capacity of plasmodesmata can be determined using three-dimensional 

photoactivation microscopy on live material (Liescha and Schulz, 2012). This 

approach uses fluorescent tracers with diffusion properties similar to cytosolic 

materials and provides an image of the complex shape of the cells. Furthermore, the 

movement of sucrose in infected tissue through the existence of functional 

plasmodesmata between large cells containing plasmodia and parenchyma cells 

close to the phloem could be assessed using carboxyfluorescein (CF). Previously, 

this approach was used to observe the unloading process of CF from the phloem to 

the syncytium, and take up by a nematode (Hofmann et al., 2007).   

 

5.5. Conclusion 

An undirected metabolomic approach in this study gives clues to metabolic changes 

during P. brassicae infection. A direct approach is required to have confidence in the 

identity of metabolites and their concentrations. Coupling metabolomic and 

transcriptomic methods provides greater insight into metabolic changes. However, 

translating these findings from the model system of A. thaliana plants to crops is 

more challenging as molecular tools are limited, but would be beneficial to address 

issues associated with increased food security.  

 

In the future, plant metabolic characteristics might be used for diagnostic purpose 

during clubroot infection facilitating the development of agrochemical and new 

resistant lines of plant (whether by conventional breeding or genetic engineering). In 

addition the mechanistic insight provided by metabolomics may lead to new 

strategies to limit disease development. For example, the analysis of carbohydrate 

metabolism in infected plants and the slowed disease development in SWEET 

mutants identifies sugar transport as a potential mechanism to limit disease 
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development, whether by inhibiting host or pathogen transporters or altering other 

aspects of sink development. Another avenue might explore the biotrophic nature of 

the disease. P. brassicae requires vitamins such as B6 from the host and impeding 

the synthesis, transport or uptake of this would likely limit disease development. 

Although this work has been done in the model A. thaliana, the elucidation of 

fundamental mechanisms underpinning disease development will be applicable in 

Brassica crop plants.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

189 
 

References 
 

Agarwal, A., Kaul, V., Faggian, R., Rookes, J. E., Ludwig-Mueller, J. & Cahill, D. M. 
(2011) Analysis of global host gene expression during the primary phase of 
the Arabidopsis thaliana-Plasmodiophora brassicae interaction. Functional 
Plant Biology, 38, 462-478. 

 
Ahmad, A., Shafique, S. & Shafique, S. (2014) Intracellular interactions involved in 

induced systemic resistance in tomato. Scientia Horticulturae, 176, 127-133. 
 
Akhtar, S. A. (2014) The molecular mechanisms underlying gall formation in 

Plasmodiophora brassicae infected Arabidopsis thaliana. Department of 
Animal and Plant Sciences. Sheffield, The University of Sheffield. 

 
Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F. & Yang, B. (2010) Rice xa13 

Recessive Resistance to Bacterial Blight Is Defeated by Induction of the 
Disease Susceptibility Gene Os-11N3. The Plant Cell, 22, 3864-3876. 

 
Audenaert, K., De Meyer, G. B. & HaFte, M. M. (2002) Abscisic acid determines 

basal susceptibility of tomato to Botrytis cinerea and suppresses Salicylic 
acid-dependent signaling mechanisms. Plant Physiology, 128, 491-501. 

 
Barau, J., Grandis, A., De Andrade Carvalho, V. M., Teixeira, G. S., Alcala Zaparoli, 

G. H., Scatolin Do Rio, M. C., Rincones, J., Buckeridge, M. S. & Guimaraes 
Pereira, G. A. (2015) Apoplastic and intracellular plant sugars regulate 
developmental transitions in witches' broom disease of cacao. Journal of 
Experimental Botany, 66, 1325-1337. 

 
Barratt, D. H. P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., 

Simpson, C., Maule, A. J. & Smith, A. M. (2009) Normal growth of Arabidopsis 
requires cytosolic invertase but not sucrose synthase. Proceedings of the 
National Academy of Sciences, 106, 13124-13129. 

 
Bartlem, D. G., Jones, M. G. K. & Hammes, U. Z. (2013) Vascularization and nutrient 

delivery at root-knot nematode feeding sites in host roots. Journal of 
Experimental Botany. 

 
Basset, G. J. C., Quinlivan, E. P., Gregory, J. F. & Hanson, A. D. (2005) Folate 

synthesis and metabolism in plants and prospects for biofortification. Crop 
Science, 45, 449-453. 

 
Baud, S., Vaultier, M. N. & Rochat, C. (2004) Structure and expression profile of the 

sucrose synthase multigene family in Arabidopsis. Journal of Experimental 
Botany, 55, 397-409. 



 

 

190 
 

Bieniawska, Z., Paul Barratt, D. H., Garlick, A. P., Thole, V., Kruger, N. J., Martin, 
C., Zrenner, R. & Smith, A. M. (2007) Analysis of the sucrose synthase gene 
family in Arabidopsis. The Plant Journal, 49, 810-828. 

 
Bloem, E., Haneklaus, S. & Schung, E. (2015) Milestones in plant sulfur research on 

sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science, 5. 
 
Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K. M. & 

Templeton, M. D. (2011) Venturia inaequalis: the causal agent of apple scab. 
Molecular Plant Pathology, 12, 105-122. 

 
Bourgaud, F., Hehn, A., Larbat, R., Doerper, S., Gontier, E., Kellner, S. & Matern, U. 

(2006) Biosynthesis of coumarins in plants: a major pathway still to be 
unravelled for cytochrome P450 enzymes. Phytochemistry Reviews, 5, 293-
308. 

 
Brodmann, D., Schuller, A., Ludwig-Muller, J., Aeschbacher, R. A., Wiemken, A., 

Boller, T. & Wingler, A. (2002) Induction of trehalase in Arabidopsis plants 
infected with the trehalose-producing pathogen Plasmodiophora brassicae. 
Molecular Plant-Microbe Interactions, 15, 693-700. 

 
Burki, F., Kudryavtsev, A., Matz, M., Aglyamova, G., Bulman, S., Fiers, M., Keeling, 

P. & Pawlowski, J. (2010) Evolution of Rhizaria: new insights from 
phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, 10, 
377. 

 
Cabello, S., Lorenz, C., Crespo, S., Cabrera, J., Ludwig, R., Escobar, C. & Hofmann, 

J. (2014) Altered sucrose synthase and invertase expression affects the local 
and systemic sugar metabolism of nematode-infected Arabidopsis thaliana 
plants. Journal of Experimental Botany, 65, 201-212. 

 
Cao, T., Srivastava, S., Rahman, M. H., Kav, N. N. V., Hotte, N., Deyholos, M. K. & 

Strelkov, S. E. (2008) Proteome-level changes in the roots of Brassica napus 
as a result of Plasmodiophora brassicae infection. Plant Science, 174, 97-
115. 

 
Carvalho, B. S. & Irizarry, R. A. (2010) A framework for oligonucleotide microarray 

preprocessing. Bioinformatics, 26, 2363-2367. 
 
Castanheira, S., Mielnichuk, N. & Perez-Martin, J. (2014) Programmed cell cycle 

arrest is required for infection of corn plants by the fungus Ustilago maydis. 
Development, 141, 4817-4826. 

 
Chang, Q., Liu, J., Wang, Q., Han, L., Liu, J., Li, M., Huang, L., Yang, J. & Kang, Z. 

(2013) The effect of Puccinia striiformis f. sp. tritici on the levels of water-



 

 

191 
 

soluble carbohydrates and the photosynthetic rate in wheat leaves. 
Physiological and Molecular Plant Pathology, 84, 131-137. 

 
Chen, H.-Y., Huh, J.-H., Yu, Y.-C., Ho, L.-H., Chen, L.-Q., Tholl, D., Frommer, W. B. 

& Guo, W.-J. (2015a) The Arabidopsis vacuolar sugar transporter SWEET2 
limits carbon sequestration from roots and restricts Pythium infection. Plant 
Journal, 83, 1046-1058. 

 
Chen, L.-Q., Cheung, L. S., Feng, L., Tanner, W. & Frommer, W. B. (2015b) 

Transport of Sugars. Annual Review of Biochemistry, Vol 84, 84, 865-894. 
 
Chen, L.-Q., Hou, B.-H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X.-Q., Guo, 

W.-J., Kim, J.-G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., 
White, F. F., Somerville, S. C., Mudgett, M. B. & Frommer, W. B. (2010) Sugar 
transporters for intercellular exchange and nutrition of pathogens. Nature, 
468, 527-U199. 

 
Chen, L.-Q., Qu, X.-Q., Hou, B.-H., Sosso, D., Osorio, S., Fernie, A. R. & Frommer, 

W. B. (2012) Sucrose Efflux Mediated by SWEET Proteins as a Key Step for 
Phloem Transport. Science, 335, 207-211. 

 
Chilton, M.-D., Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, 

M. P. & Nester, E. W. (1977) Stable incorporation of plasmid DNA into higher 
plant cells: the molecular basis of crown gall tumorigenesis. Cell, 11, 263-271. 

 
Choi, J., Choi, D., Lee, S., Ryu, C.-M. & Hwang, I. (2011) Cytokinins and plant 

immunity: old foes or new friends? Trends in Plant Science, 16, 388-394. 
 
Chong, J., Piron, M.-C., Meyer, S., Merdinoglu, D., Bertsch, C. & Mestre, P. (2014) 

The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved 
in the interaction with Botrytis cinerea. Journal of Experimental Botany, 65, 
6589-6601. 

 
Chou, H.-M., Bundock, N., Rolfe, S. A. & Scholes, J. D. (2000) Infection of 

Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a 
reprogramming of host metabolism. Molecular Plant Pathology, 1, 99-113. 

 
Cohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., Hou, B.-

H., Frommer, W. B., Lahaye, T. & Staskawicz, B. J. (2014) Xanthomonas 
axonopodis Virulence Is Promoted by a Transcription Activator-Like Effector 
Mediated Induction of a SWEET Sugar Transporter in Cassava. Molecular 
Plant-Microbe Interactions, 27, 1186-1198. 

 



 

 

192 
 

De Ascensao, A. R. F. D. C. & Dubery, I. A. (2003) Soluble and wall-bound phenolics 
and phenolic polymers in Musa acuminata roots exposed to elicitors from 
Fusarium oxysporum f.sp. cubense. Phytochemistry, 63, 679-686. 

 
Dekhuijzen, H. M. & Overeem, J. C. (1971) The role of cytokinins in clubroot 

formation. Physiological Plant Pathology, 1, 151-161. 
 
Dekhuijzen, H. M. (1981) The occurrence of free and bound cytokinins in plasmodia 

of Plasmodiophora brassicae isolated from tissue cultures of clubroots. Plant 
cell reports, 1, 18-20. 

 
Denslow, S. A., Walls, A. A. & Daub, M. E. (2005) Regulation of biosynthetic genes 

and antioxidant properties of vitamin B-6 vitamers during plant defense 
responses. Physiological and Molecular Plant Pathology, 66, 244-255. 

 
Dessaux, Y., Petit, A. & Tempe, J. (1993) Chemistry and biochemistry of opines, 

chemical mediators of parasitism. Phytochemistry, 34, 31-38. 
 
Devos, S., Laukens, K., Deckers, P., Van Der Straeten, D., Beeckman, T., Inze, D., 

Van Onckelen, H., Witters, E. & Prinsen, E. (2006) A hormone and proteome 
approach to picturing the initial metabolic events during Plasmodiophora 
brassicae infection on Arabidopsis. Molecular Plant-Microbe Interactions, 19, 
1431-1443. 

 
Devos, S., Vissenberg, K., Verbelen, J. P. & Prinsen, E. (2005) Infection of Chinese 

cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: 
impacts on cell wall metabolism and hormone balance. New Phytologist, 166, 
241-250. 

 
Divon, H. H. & Fluhr, R. (2007) Nutrition acquisition strategies during fungal infection 

of plants. FEMS Microbiology Letters, 266, 65-74. 
 
Dixon, G. R. (2009) The occurrence and economic impact of Plasmodiophora 

brassicae and clubroot Disease. Journal of Plant Growth Regulation, 28, 194-
202. 

 
Dixon, R. A. & Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. The 

Plant Cell, 7, 1085-1097. 
 
Djamei, A. & Kahmann, R. (2012) Ustilago maydis: Dissecting the molecular 

interface between pathogen and plant. Plos Pathogens, 8. 
 
Doidy, J., Grace, E., Kuehn, C., Simon-Plas, F., Casieri, L. & Wipf, D. (2012) Sugar 

transporters in plants and in their interactions with fungi. Trends in Plant 
Science, 17, 413-422. 



 

 

193 
 

 
Donald, E. C., Lawrence, J. M. & Porter, I. J. (2002) Evaluation of a fluorescent 

staining technique as an indicator of pathogenicity of resting spores of 
Plasmodiophora brassicae. Australasian Plant Pathology, 31, 373-379. 

 
D'ovidio, R., Mattei, B., Roberti, S. & Bellincampi, D. (2004) Polygalacturonases, 

polygalacturonase-inhibiting proteins and pectic oligomers in plant pathogen 
interactions. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 
1696, 237-244. 

 
Emery, R. J. N., Leport, L., Barton, J. E., Turner, N. C. & Atkins, C. A. (1998) cis -

Isomers of cytokinins predominate in chickpea seeds throughout their 
development. Plant Physiology, 117, 1515-1523. 

 
Etchells, J. P., Provost, C. M. & Turner, S. R. (2012) Plant vascular cell division Is 

maintained by an interaction between PXY and ethylene signalling. Plos 
Genetics, 8. 

 
Evans, J. L. & Scholes, J. D. (1996) The effect of clubroot upon the carbon 

metabolism of its host? Journal of Experimental Botany, 47, 72-72. 
 
Faggian, R. & Strelkov, S. E. (2009) Detection and measurement of Plasmodiophora 

brassicae. Journal of Plant Growth Regulation, 28, 282-288. 
 
Feng, J., Hwang, R., Hwang, S.-F., Strelkov, S. E., Gossen, B. D., Zhou, Q.-X. & 

Peng, G. (2010) Molecular characterization of a serine protease Pro1 from 
Plasmodiophora brassicae that stimulates resting spore germination. 
Molecular Plant Pathology, 11, 503-512. 

 
Fernandez, O., Bã©Thencourt, L., Quero, A., Sangwan, R. S. & Clã©Ment, C. (2010) 

Trehalose and plant stress responses: friend or foe? Trends in Plant Science, 
15, 409-417. 

 
Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F. & De Lorenzo, G. (2003) Tandemly 

duplicated Arabidopsis genes that encode polygalacturonase-inhibiting 
proteins are regulated coordinately by different signal transduction pathways 
in response to fungal infection. The Plant Cell, 15, 93-106. 

 
Fester, T., Berg, R. H. & Taylor, C. G. (2008) An easy method using glutaraldehyde-

introduced fluorescence for the microscopic analysis of plant biotrophic 
interactions. Journal of Microscopy, 231, 342-348. 

 
Flores-Mireles, A. L., Eberhard, A. & Winans, S. C. (2012) Agrobacterium 

tumefaciens can Obtain Sulfur from an Opine that is Synthesized by Octopine 



 

 

194 
 

Synthase Using S-methylmethionine as a Substrate. Molecular Microbiology, 
84, 845-856. 

 
Fotopoulos, V., Gilbert, M. J., Pittman, J. K., Marvier, A. C., Buchanan, A. J., Sauer, 

N., Hall, J. L. & Williams, L. E. (2003) The monosaccharide transporter gene, 
AtSTP4, and the cell-wall invertase, At beta fruct1, are induced in Arabidopsis 
during infection with the fungal biotroph Erysiphe cichoracearum. Plant 
Physiology, 132, 821-829. 

 
Gao, L., Kelliher, T., Nguyen, L. & Walbot, V. (2013) Ustilago maydis reprograms 

cell proliferation in maize anthers. Plant Journal, 75, 903-914. 
 
Garavito, M. F., Narvã¡Ez-Ortiz, H. Y. & Zimmermann, B. H. (2015) Pyrimidine 

metabolism: Dynamic and versatile pathways in pathogens and cellular 
development. Journal of Genetics and Genomics, 42, 195-205. 

 
Garnica, D. P., Upadhyaya, N. M., Dodds, P. N. & Rathjen, J. P. (2013) Strategies 

for wheat stripe rust pathogenicity identified by transcriptome sequencing. 
Plos One, 8, e67150. 

 
Gelvin, S. B. (2010) Plant proteins involved in Agrobacterium-mediated genetic 

transformation. Annual Review of Phytopathology, Vol 48. 
 
Gelvin, S. B. (2012) Traversing the cell: Agrobacterium T-DNA's journey to the host 

genome. Frontiers in plant science, 3, 52. 
 
Gendreau, E., Traas, J., Desnos, T., Grandjean, O., Caboche, M. & Hofte, H. (1997) 

Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiology, 
114, 295-305. 

 
Gibb, S. & Strimmer, K. (2012) MALDIquant: a versatile R package for the analysis 

of mass spectrometry data. Bioinformatics, 28, 2270-2271. 
 
Goethals, K., Vereecke, D., Jaziri, M., Van Montagu, M. & Holsters, M. (2001) Leafy 

gall formation by Rhodococcus fascians. Annual Review of Phytopathology, 
39, 27-52. 

 
Gohlke, J. & Deeken, R. (2014) Plant responses to Agrobacterium tumefaciens and 

crown gall development. Frontiers in plant science, 5. 
 
Graveland, R., Dale, P. & Mithen, R. (1992) Gall development in hairy root cultures 

infected with Plasmodiophora brassicae. Mycological Research, 96, 225-228. 
 
 



 

 

195 
 

Grsic-Rausch, S., Kobelt, P., Siemens, J. M., Bischoff, M. & Ludwig-Muller, J. (2000) 
Expression and localization of nitrilase during symptom development of the 
clubroot disease in Arabidopsis. Plant Physiology, 122, 369-378. 

 
Gruner, K., Griebel, T., Navarova, H., Attaran, E. & Zeier, J. (2013) Reprogramming 

of plants during systemic acquired resistance. Frontiers in plant science, 4. 
 
Guo, W.-J., Nagy, R., Chen, H.-Y., Pfrunder, S., Yu, Y.-C., Santelia, D., Frommer, 

W. B. & Martinoia, E. (2014) SWEET17, a Facilitative Transporter, Mediates 
Fructose Transport across the Tonoplast of Arabidopsis Roots and Leaves. 
Plant Physiology, 164, 777-789. 

 
Hackstadt, A. J. & Hess, A. M. (2009) Filtering for increased power for microarray 

data analysis. BMC Bioinformatics, 10, 11-11. 
 
Hajirezaei, M. R., Takahata, Y., Trethewey, R. N., Willmitzer, L. & Sonnewald, U. 

(2000) Impact of elevated cytosolic and apoplastic invertase activity on 
carbon metabolism during potato tuber development. Journal of Experimental 
Botany, 51, 439-445. 

 
Hamann, T., Bennett, M., Mansfield, J. & Somerville, C. (2009) Identification of cell-

wall stress as a hexose-dependent and osmosensitive regulator of plant 
responses. Plant Journal, 57, 1015-1026. 

 
Hammes, U. Z., Schachtman, D. P., Berg, R. H., Nielsen, E., Koch, W., Mcintyre, L. 

M. & Taylor, C. G. (2005) Nematode-Induced Changes of Transporter Gene 
Expression in Arabidopsis Roots. Molecular Plant-Microbe Interactions, 18, 
1247-1257. 

 
Harholt, J., Suttangkakul, A. & Vibe Scheller, H. (2010) Biosynthesis of pectin. Plant 

Physiology, 153, 384-395. 
 
Heller, A. & Thines, M. (2009) Evidence for the importance of enzymatic digestion of 

epidermal walls during subepidermal sporulation and pustule opening in white 
blister rusts (Albuginaceae). Mycological Research, 113, 657-667. 

 
Heuberger, A. L., Robison, F. M., Lyons, S. M. A., Broeckling, C. D. & Prenni, J. E. 

(2014) Evaluating plant immunity using mass spectrometry-based 
metabolomics workflows. Frontiers in Plant Science, 5. 

 
Heyl, A. & Schmulling, T. (2003) Cytokinin signal perception and transduction. 

Current Opinion in Plant Biology, 6, 480-488. 
 
Hietala, A. M., Kvaalen, H., Schmidt, A., Johnk, N., Solheim, H. & Fossdal, C. G. 

(2004) Temporal and spatial profiles of chitinase expression by Norway 



 

 

196 
 

spruce in response to bark colonization by Heterobasidion annosum. Applied 
and Environmental Microbiology, 70, 3948-3953. 

 
Hofmann, J. & Grundler, F. M. (2008) Starch as a sugar reservoir for nematode-

induced syncytia. Plant signaling & behavior, 3, 961-2. 
 
Hofmann, J., Szakasits, D., Bloechl, A., Sobczak, M., Daxboeck-Horvath, S., 

Golinowski, W., Bohlmann, H. & Grundler, F. M. W. (2008) Starch serves as 
carbohydrate storage in nematode-induced syncytia. Plant Physiology, 146, 
228-235. 

Hofmann, J., Wieczorek, K., Bloechl, A. & Grundler, F. M. W. (2007) Sucrose supply 
to nematode-induced syncytia depends on the apoplasmic and symplasmic 
pathways. Journal of Experimental Botany, 58, 1591-1601. 

 
Hong, J. K. & Hwang, B. K. (2002) Induction by pathogen, salt and drought of a basic 

class II chitinase mRNA and its in situ localization in pepper (Capsicum 
annuum). Physiologia Plantarum, 114, 549-558. 

 
Hoth, S., Schneidereit, A., Lauterbach, C., Scholz-Starke, J. & Sauer, N. (2005) 

Nematode infection triggers the de novo formation of unloading phloem that 
allows macromolecular trafficking of green fluorescent protein into syncytia. 
Plant Physiology, 138, 383-392. 

 
Howard, R. J., Strelkov, S. E. & Harding, M. W. (2010) Clubroot of cruciferous crops 

- new perspectives on an old disease. Canadian Journal of Plant Pathology-
Revue Canadienne De Phytopathologie, 32, 43-57. 

 
Hu, Y., Zhang, J., Jia, H., Sosso, D., Li, T., Frommer, W. B., Yang, B., White, F. F., 

Wang, N. & Jones, J. B. (2014) Lateral organ boundaries 1 is a disease 
susceptibility gene for citrus bacterial canker disease. Proceedings of the 
National Academy of Sciences, 111, E521-E529. 

 
Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, 

U. & Speed, T. P. (2003) Exploration, normalization, and summaries of high 
density oligonucleotide array probe level data. Biostatistics, 4, 249-264. 

 
Jain, A., Singh, A., Singh, S. & Singh, H. B. (2015) Phenols enhancement effect of 

microbial consortium in pea plants restrains Sclerotinia sclerotiorum. 
Biological Control, 89, 23-32. 

 
Jain, A., Singh, S., Kumar Sarma, B. & Bahadur Singh, H. (2012) Microbial 

consortium–mediated reprogramming of defence network in pea to enhance 
tolerance against Sclerotinia sclerotiorum. Journal of Applied Microbiology, 
112, 537-550. 

 



 

 

197 
 

Jarvis, M. C., Briggs, S. P. H. & Knox, J. P. (2003) Intercellular adhesion and cell 
separation in plants. Plant Cell and Environment, 26, 977-989. 

 
Jones, J. D. G. & Dangl, J. L. (2006) The plant immune system. Nature, 444, 323-

329. 
 
Jubault, M., Hamon, C., Gravot, A., Lariagon, C., Delourme, R., Bouchereau, A. & 

Manzanares-Dauleux, M. J. (2008) Differential regulation of root arginine 
catabolism and polyamine metabolism in clubroot-susceptible and partially 
resistant Arabidopsis genotypes. Plant Physiology, 146, 2008-2019. 

 
Jubault, M., Lariagon, C., Taconnat, L., Renou, J.-P., Gravot, A., Delourme, R. & 

Manzanares-Dauleux, M. J. (2013) Partial resistance to clubroot in 
Arabidopsis is based on changes in the host primary metabolism and targeted 
cell division and expansion capacity. Functional and Integrative Genomics, 
13, 191-205. 

 
Juergensen, K., Scholz-Starke, J., Sauer, N., Hess, P., Van Bel, A. J. E. & Grundler, 

F. M. W. (2003) The companion cell-specific Arabidopsis disaccharide carrier 
AtSUC2 is expressed in nematode-induced syncytia. Plant Physiology, 131, 
61-69. 

 
Kaever, A., Landesfeind, M., Possienke, M., Feussner, K., Feussner, I. & Meinicke, 

P. (2012) MarVis-Filter: Ranking, Filtering, Adduct and Isotope Correction of 
Mass Spectrometry Data. Journal of Biomedicine and Biotechnology, 2012, 
7. 

 
Kageyama, K. & Asano, T. (2009) Life Cycle of Plasmodiophora brassicae. Journal 

of Plant Growth Regulation, 28, 203-211. 
 
Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as 

dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant and Cell 
Physiology, 42, 677-685. 

 
Katahira, R. & Ashihara, H. (2006) Dual function of pyrimidine metabolism in potato 

(Solanum tuberosum) plants: pyrimidine salvage and supply of [beta]-alanine 
to pantothenic acid synthesis. Physiologia Plantarum, 127, 38-43. 

 
Kaspar, S., Peukert, M., Svatos, A., Matros, A. & Mock, H.-P. (2011) MALDI-imaging 

mass spectrometry - An emerging technique in plant biology. Proteomics, 11, 
1840-1850. 

 
Keen, N. T. & Williams, P. H. (1969) Synthesis and degradation of starch and lipids 

following infection of cabbage by Plasmodiophora brassicae Phytopathology, 
59, 778. 



 

 

198 
 

Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A. C., Balmuth, A. L., Robert-
Seilaniantz, A., Bailey, K., Holub, E., Studholme, D. J., Maclean, D. & Jones, 
J. D. G. (2011) Gene gain and loss during evolution of obligate parasitism in 
the white rust pathogen of Arabidopsis thaliana. PLoS Biology, 9, e1001094. 

 
Kim, Y. J. & Hwang, B. K. (1994) Differential accumulation of beta-1,3-glucanase 

and chitinase isoforms in pepper stems infected by compatible and 
incompatible isolates of Phytophthora capsici. Physiological and Molecular 
Plant Pathology, 45, 195-209. 

 
Kim,D. S., Kim, N. H. & Hwang, B. K. (2015) The Capsicum annuum class IV 

chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 
to accelerate PIK1-triggered cell death and defence responses. Journal of 
Experimental Botany, 66, 1987-1999. 

 
Knaus, A. & Ludwig-Mueller, J. (2013) The ethylene signalling pathway is needed to 

restrict root gall growth in Arabidopsis after infection with the obligate 
biotrophic protist Plasmodiophora brassicae. Journal of Plant Growth 
Regulation, 32, 9-21. 

 
Kobelt, P., Siemens, J. & Sacristan, M. D. (2000) Histological characterisation of the 

incompatible interaction between Arabidopsis thaliana and the obligate 
biotrophic pathogen Plasmodiophora brassicae. Mycological Research, 104, 
220-225. 

 
Koch,E., Cox, R. & Williams, P. H. (1991) Infection of Arabidopsis thaliana by 

Plasmodiophora brassicae. Journal of Phytopathology-Phytopathologische 
Zeitschrift, 132, 99-104. 

 
Lang, J., Vigouroux, A., Planamente, S., El Sahili, A., Blin, P., Aumont-Nicaise, M., 

Dessaux, Y., Morera, S. & Faure, D. (2014) Agrobacterium uses a unique 
ligand-binding mode for trapping opines and acquiring a competitive 
advantage in the niche construction on plant host. Plos Pathogens, 10. 

 
Lanver, D., Berndt, P., Tollot, M., Naik, V., Vranes, M., Warmann, T., Muench, K., 

Roessel, N. & Kahmann, R. (2014) Plant Surface Cues Prime Ustilago maydis 
for Biotrophic Development. Plos Pathogens, 10. 

 
Lee, Y. K., Hippe-Sanwald, S., Jung, H. W., Hong, J. K., Hause, B. & Hwang, B. K. 

(2000) In situ localization of chitinase mRNA and protein in compatible and 
incompatible interactions of pepper stems with Phytophthora capsici. 
Physiological and Molecular Plant Pathology, 57, 111-121. 

 
Lemarie, S., Robert-Seilaniantz, A., Lariagon, C., Lemoine, J., Marnet, N., Levrel, 

A., Jubault, M., Manzanares-Dauleux, M. J. & Gravot, A. (2015) Camalexin 



 

 

199 
 

contributes to the partial resistance of Arabidopsis thaliana to the biotrophic 
soilborne protist Plasmodiophora brassicae. Frontiers in plant science, 6. 

 
Li, B.,Liu, H., Zhang, Y., Kang, T., Zhang, L., Tong, J., Xiao, L. & Zhang, H. (2013) 

Constitutive expression of cell wall invertase genes increases grain yield and 
starch content in maize. Plant Biotechnology Journal, 11, 1080-1091. 

 
Liesce, J. & Schulz, A. (2012) Quantification of plant cell coupling with three-

dimensional photoactivation microscopy. Journal of Microscopy, 247, 2-9. 
 
Links,M. G., Holub, E., Jiang, R. H. Y., Sharpe, A. G., Hegedus, D., Beynon, E., 

Sillito, D., Clarke, W. E., Uzuhashi, S. & Borhan, M. H. (2011) De novo 
sequence assembly of Albugo candida reveals a small genome relative to 
other biotrophic oomycetes. Bmc Genomics, 12. 

 
Loewus, F. A. & Loewus, M. W. (1983) Myoinositol- its biosynthesis and metabolism. 

Annual Review of Plant Physiology and Plant Molecular Biology, 34, 137-161. 
 
Lovelock, D. A., Donald, C. E., Conlan, X. A. & Cahill, D. M. (2013) Salicylic acid 

suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by 
the obligate biotroph Plasmodiophora brassicae. Australasian Plant 
Pathology, 42, 141-153. 

 
Ludwg-Muller, J. & Schuller, A. (2008) What can we learn from clubroots: alterations 

in host roots and hormone homeostasis caused by Plasmodiophora 
brassicae. European Journal of Plant Pathology, 121, 291-302. 

 
Ludwi-Muller, J., Juelke, S., Geiss, K., Richter, F., Mithoefer, A., Sola, I., Rusak, G., 

Keenan, S. & Bulman, S. (2015) A novel methyltransferase from the 
intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. 
Molecular Plant Pathology, 16, 349-364. 

 
Ludwig-Muller, J., Prinsen, E., Rolfe, S. A. & Scholes, J. D. (2009) Metabolism and 

Plant Hormone Action During Clubroot Disease. Journal of Plant Growth 
Regulation, 28, 229-244. 

 
Ludwig-Muller, J., Bendel, U., Thermann, P., Ruppel, M., Epstein, E. & Hilgenberg, 

W. (1993) Concentration of indole-3-acetic acid in plants of tolerant and 
susceptible varieties of Chinese cabbage infected with Plasmodiophora 
brassicae woron New Phytologist, 125, 763-769. 

 
Ludwig-Muller, J., Bennett, R. N., Kiddle, G., Ihmig, S., Ruppel, M. & Hilgenberg, W. 

(1999b) The host range of Plasmodiophora brassicae and its relationship to 
endogenous glucosinolate content. New Phytologist, 141, 443-458. 

 



 

 

200 
 

Ludwig-Muller, J., Pieper, K., Ruppel, M., Cohen, J. D., Epstein, E., Kiddle, G. & 
Bennett, R. (1999a) Indole glucosinolate and auxin biosynthesis in 
Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development 
of clubroot disease. Planta, 208, 409-419. 

 
Luna, E., Pastor, V., Robert, J. R. M., Flors, V., Mauch-Mani, B. & Ton, J. (2011) 

Callose Deposition: A Multifaceted Plant Defense Response. Molecular Plant-
Microbe Interactions, 24, 183-193. 

 
Maag, D., Erb, M. & Glauser, G. (2015) Metabolomics in plant-herbivore interactions: 

challenges and applications. Entomologia Experimentalis Et Applicata, 157, 
18-29. 

 
Macfalane, I. & Last, F. T. (1959) Some effects of Plasmodiophora brassicae Woron. 

on the growth of the young cabbage plant. Annals of Botany, 23, 547-570. 
 
Malinowski, R., Smith, J. A., Fleming, A. J., Scholes, J. D. & Rolfe, S. A. (2012) Gall 

formation in clubroot-infected Arabidopsis results from an increase in existing 
meristematic activities of the host but is not essential for the completion of the 
pathogen life cycle. Plant Journal, 71, 226-238. 

 
Malinowski, R., Novák, O., Borhan, M. H., Spíchal, L., Strnad, M. & Rolfe, S. A. 

(2016) The role of cytokinins in clubroot disease. European Journal of Plant 
Pathology, 1-15. 

 
Martin, T., Frommer, W. B., Salanoubat, M. & Willmitzer, L. (1993) Expression of an 

Arabidopsis sucrose synthase gene indicates a role in metabolization of 
sucrose both during phloem loading and in sink organs. The Plant Journal, 4, 
367-377. 

 
Mcdonald, M. R., Sharma, K., Gossen, B. D., Deora, A., Feng, J. & Hwang, S.-F. 

(2014) The role of primary and secondary infection in host response to 
Plasmodiophora brassicae. Phytopathology, 104, 1078-1087. 

 
Micali, C. O., Neumann, U., Grunewald, D., Panstruga, R. & O'connell, R. (2011) 

Biogenesis of a specialized plant–fungal interface during host cell 
internalization of Golovinomyces orontii haustoria. Cellular Microbiology, 13, 
210-226. 

 
Mithen, R. & Magrath, R. (1992) A contribution to the life history of Plasmodiophora 

brassicae: secondary plasmodia development in root galls of Arabidopsis 
thaliana. Mycological Research, 96, 877-885. 

 



 

 

201 
 

Mithen, R. & Magrath, R. (1992) A contribution to the life history of Plasmodiophora 
brassicae: secondary plasmodia development in root galls of Arabidopsis 
thaliana. Mycological Research, 96, 877-885. 

 
Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, 

D., Tabata, S., Sandberg, G. & Kakimoto, T. (2006) Roles of Arabidopsis 
ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in 
cytokinin biosynthesis. Proceedings of the National Academy of Sciences of 
the United States of America, 103, 16598-16603. 

 
Mok, D. W. S. & Mok, M. C. (2001) Cytokinin metabolism and action. Annual Review 

of Plant Physiology and Plant Molecular Biology, 52, 89-118. 
 
Muenha, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N. & Deising, H. B. (2008) 

The hemibiotrophic lifestyle of Colletotrichum species. Journal of Plant 
Physiology, 165, 41-51. 

 
Muller P. & Hilgenberg, W. (1986) Isomers of zeatin and zeatin riboside in clubroot 

tissue-evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae 
Physiologia Plantarum, 66, 245-250. 

 
Naiki,T., Kawaguchi, C. & Ikegami, H. (1984) Root hair reinfection in Chinese 

cabbage seedlings by the secondary zoospores of Plasmodiophora brassicae 
Annals of the Phytopathological Society of Japan, 50, 216-220. 

 
Neueschwander, U., Suter, M. & Brunold, C. (1991) Regulation of sulfate 

assimilation by light and O-Acetyl-l-Serine in Lemna minor L. Plant 
Physiology, 97, 253-258. 

 
Neuhuser, S. & Kirchmair, M. (2011) Sorosphaerula nom. n. for the Plasmodiophorid 

Genus Sorosphaera J. Schroter 1886 (Rhizaria: Endomyxa: Phytomyxea: 
Plasmodiophorida). Journal of Eukaryotic Microbiology, 58, 469-470. 

 
Oliver R. P. & Ipcho, S. V. S. (2004) Arabidopsis pathology breathes new life into 

the necrotrophs-vs.-biotrophs classification of fungal pathogens. Molecular 
Plant Pathology, 5, 347-352. 

 
Ott, P. G., Varga, G. J., Szatmari, A., Bozso, Z., Klement, E., Medzihradszky, K. F., 

Besenyei, E., Czelleng, A. & Klement, Z. (2006) Novel extracellular chitinases 
rapidly and specifically induced by general bacterial elicitors and suppressed 
by virulent bacteria as a marker of early basal resistance in tobacco. 
Molecular Plant-Microbe Interactions, 19, 161-172. 

 
Paesold, S. & Ludwig-Mueller, J. (2013) Reduction of clubroot (Plasmodiophora 

brassicae) formation in Arabidopsis thaliana after treatment with 



 

 

202 
 

prohexadione-calcium, an inhibitor of oxoglutaric acid-dependent 
dioxygenases. Plant Pathology, 62, 1357-1365. 

 
Paesod, S., Siegel, I., Seidel, C. & Ludwig-Mueller, J. (2010) Flavonoid accumulation 

in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen 
Plasmodiophora brassicae. Molecular Plant Pathology, 11, 545-562. 

 
Parker, D., Beckmann, M., Zubair, H., Enot, D. P., Caracuel-Rios, Z., Overy, D. P., 

Snowdon, S., Talbot, N. J. & Draper, J. (2009) Metabolomic analysis reveals 
a common pattern of metabolic re-programming during invasion of three host 
plant species by Magnaporthe grisea. Plant Journal, 59, 723-737. 

 
Pedras, M. S. C., Zheng, Q.-A. & Strelkov, S. (2008) Metabolic changes in roots of 

the oilseed canola infected with the biotroph Plasmodiophora brassicae: 
phytoalexins and phytoanticipins. Journal of Agricultural and Food Chemistry, 
56, 9949-9961. 

 
Perez-Martin, J., Castillo-Lluva, S., Sgarlata, C., Flor-Parra, I., Mielnichuk, N., 

Torreblanca, J. & Carbo, N. (2006) Pathocycles: Ustilago maydis as a model 
to study the relationships between cell cycle and virulence in pathogenic fungi. 
Molecular Genetics and Genomics, 276, 211-229. 

 
Perez-Nadales, E., Nogueira, M. F. A., Baldin, C., Castanheira, S., El Ghalid, M., 

Grund, E., Lengeler, K., Marchegiani, E., Mehrotra, P. V., Moretti, M., Naik, 
V., Oses-Ruiz, M., Oskarsson, T., Schaefer, K., Wasserstrom, L., Brakhage, 
A. A., Gow, N. A. R., Kahmann, R., Lebrun, M.-H., Perez-Martin, J., Di Pietro, 
A., Talbot, N. J., Toquin, V., Walther, A. & Wendland, J. (2014) Fungal model 
systems and the elucidation of pathogenicity determinants. Fungal Genetics 
and Biology, 70, 42-67. 

 
Pertry I., Vaclavikova, K., Depuydt, S., Galuszka, P., Spichal, L., Temmerman, W., 

Stes, E., Schmuelling, T., Kakimoto, T., Van Montagu, M. C. E., Strnad, M., 
Holsters, M., Tarkowski, P. & Vereecke, D. (2009) Identification of 
Rhodococcus fascians cytokinins and their modus operandi to reshape the 
plant. Proceedings of the National Academy of Sciences of the United States 
of America, 106, 929-934. 

 
Quilliam, R. S. (2006) The role of cell wall invertase activity in source-sink relations 

in vegetative tissues of Arabidopsis thaliana and in response to wounding and 
pathogen infection. Department of Animal and Plant Sciences. Sheffield, The 
University of Sheffield. 

 
Raa,  A. N. (1971) Indole-3-acetic acid levels and the role of indole-3-acetic acid 

oxidase in the normal root and club-root of cabbage. Physiologia Plantarum, 
25, 130-134. 



 

 

203 
 

 
Redkar, A., Hoser, R., Schilling, L., Zechmann, B., Krzymowska, M., Walbot, V. & 

Doehlemann, G. (2015) A secreted effector protein of Ustilago maydis guides 
maize leaf cells to form tumors. Plant Cell, 27, 1332-1351. 

 
Ridley B. L., O'neill, M. A. & Mohnen, D. (2001) Pectins: structure, biosynthesis, and 

oligogalacturonide-related signaling. Phytochemistry, 57, 929-967. 
 
Riemenschneider, A., Nikiforova, V., Hoefgen, R., De Kok, L. J. & Papenbrock, J. 

(2005a) Impact of elevated H2S on metabolite levels, activity of enzymes and 
expression of genes involved in cysteine metabolism. Plant Physiology and 
Biochemistry, 43, 473-483. 

 
Riemenschneider, A., Riedel, K., Hoefgen, R., Papenbrock, J. & Hesse, H. (2005b) 

Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant 
metabolism. Plant Physiology, 137, 892-900. 

 
Rieseier, J. W., Willmitzer, L. & Frommer, W. B. (1994) Evidence for an essential 

role of the sucrose transporter in phloem loading and assimillate partitioning. 
Embo Journal, 13, 1-7. 

 
Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. (2012) Targeted 

Metabolomics. Current Protocols in Molecular Biology, CHAPTER, Unit30.2-
Unit30.2. 

 
Roitsch, T. & Ehness, R. (2000) Regulation of source/sink relations by cytokinins. 

Plant Growth Regulation, 32, 359-367. 
 
Roitsch, T. (1999) Source-sink regulation by sugar and stress. Current Opinion in 

Plant Biology, 2, 198-206. 
 
Ryder L. S. & Talbot, N. J. (2015) Regulation of appressorium development in 

pathogenic fungi. Current Opinion in Plant Biology, 26, 8-13. 
 
Sakakibara, H. (2006) Cytokinins: Activity, biosynthesis, and translocation. Annual 

Review of Plant Biology. 
 
Schluepmann, H., Pellny, T., Van Dijken, A., Smeekens, S. & Paul, M. (2003) 

Trehalose 6-phosphate is indispensable for carbohydrate utilization and 
growth in Arabidopsis thaliana. Proceedings of the National Academy of 
Sciences of the United States of America, 100, 6849-6854. 

 
Schluepmann, H., Van Dijken, A., Aghdasi, M., Wobbes, B., Paul, M. & Smeekens, 

S. (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is 
due to trehalose-6-phosphate accumulation. Plant Physiology, 135, 879-890. 



 

 

204 
 

 
Schuller, A., Kehr, J. & Ludwig-Mueller, J. (2014) Laser Microdissection Coupled to 

Transcriptional Profiling of Arabidopsis Roots Inoculated by Plasmodiophora 
brassicae Indicates a Role for Brassinosteroids in Clubroot Formation. Plant 
and Cell Physiology, 55, 392-411. 

 
Schwelm, A., Fogelqvist, J., Knaust, A., Juelke, S., Lilja, T., Bonilla-Rosso, G., 

Karlsson, M., Shevchenko, A., Dhandapani, V., Choi, S. R., Kim, H. G., Park, 
J. Y., Lim, Y. P., Ludwig-Mueller, J. & Dixelius, C. (2015) The Plasmodiophora 
brassicae genome reveals insights in its life cycle and ancestry of chitin 
synthases. Scientific Reports, 5. 

 
Shulaev, V. (2006) Metabolomics technology and bioinformatics. Briefings in 

Bioinformatics, 7, 128-139. 
 
Shulaev, V., Cortes, D., Miller, G. & Mittler, R. (2008) Metabolomics for plant stress 

response. Physiologia Plantarum, 132, 199-208. 
 
Siemens, J., Glawischnig, E. & Ludwig-Mueller, J. (2008) Indole glucosinolates and 

camalexin do not influence the development of the clubroot disease in 
Arabidopsis thaliana. Journal of Phytopathology, 156, 332-337. 

 
Siemens, J., Gonzalez, M.-C., Wolf, S., Hofmann, C., Greiner, S., Du, Y., Rausch, 

T., Roitsch, T. & Ludwig-Mueller, J. (2011) Extracellular invertase is involved 
in the regulation of clubroot disease in Arabidopsis thaliana. Molecular Plant 
Pathology, 12, 247-262. 

 
Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., Nagel, W., Schmulling, T., 

Parniske, M. & Ludwig-Muller, J. (2006) Transcriptome analysis of 
Arabidopsis clubroots indicate a key role for cytokinins in disease 
development. Molecular Plant-Microbe Interactions, 19, 480-494. 

 
Smith, F. W., Hawkesford, M. J., Ealing, P. M., Clarkson, D. T., Vandenberg, P. J., 

Belcher, A. R. & Warrilow, G. S. (1997) Regulation of expression of a cDNA 
from barley roots encoding a high affinity sulphate transporter. Plant Journal, 
12, 875-884. 

 
Song, G. C., Choi, H. K. & Ryu, C.-M. (2013) The folate precursor para-

aminobenzoic acid elicits induced resistance against Cucumber mosaic virus 
and Xanthomonas axonopodis. Annals of Botany, 111, 925-934. 

 
 
Sonnewald, S., Priller, J. P. R., Schuster, J., Glickmann, E., Hajirezaei, M.-R., Siebig, 

S., Mudgett, M. B. & Sonnewald, U. (2012) Regulation of Cell Wall-Bound 



 

 

205 
 

Invertase in Pepper Leaves by Xanthomonas campestris pv. vesicatoria Type 
Three Effectors. Plos One, 7. 

Spichal, L. (2012) Cytokinins - recent news and views of evolutionally old molecules. 
Functional Plant Biology, 39, 267-284. 

 
Srivastava, A. C., Ganesan, S., Ismail, I. O. & Ayre, B. G. (2008) Functional 

Characterization of the Arabidopsis AtSUC2 Sucrose/H+ Symporter by 
Tissue-Specific Complementation Reveals an Essential Role in Phloem 
Loading But Not in Long-Distance Transport. Plant Physiology, 148, 200-211. 

 
Stasolla, C., Katahira, R., Thorpe, T. A. & Ashihara, H. (2003) Purine and pyrimidine 

nucleotide metabolism in higher plants. Journal of Plant Physiology, 160, 
1271-1295. 

 
Stes, E., Francis, I., Pertry, I., Dolzblasz, A., Depuydt, S. & Vereecke, D. (2013) The 

leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiology 
Letters, 342, 187-195. 

 
Stes, E., Prinsen, E., Holsters, M. & Vereecke, D. (2012) Plant-derived auxin plays 

an accessory role in symptom development upon Rhodococcus fascians 
infection. Plant Journal, 70, 513-527. 

 
Sumner, L. W., Mendes, P. & Dixon, R. A. (2003) Plant metabolomics: large-scale 

phytochemistry in the functional genomics era. Phytochemistry, 62, 817-836. 
 
Sutton, P. N., Gilbert, M. J., Williams, L. E. & Hall, J. L. (2007) Powdery mildew 

infection of wheat leaves changes host solute transport and invertase activity. 
Physiologia Plantarum, 129, 787-795. 

 
Sutton, P. N., Henry, M. J. & Hall, J. L. (1999) Glucose, and not sucrose, is 

transported from wheat to wheat powdery mildew. Planta, 208, 426-430. 
 
Suzuki, K., Matsumiya, E., Ueno, Y. & Mizutani, J. (1992) Some properties of 

germination-stimulating factor from plants for resting spores of 
Plasmodiophora brassicae. Annals of the Phytopathological Society of Japan, 
58, 699-705. 

 
Takagi, H. (2008) Proline as a stress protectant in yeast: physiological functions, 

metabolic regulations, and biotechnological applications. Applied 
Microbiology and Biotechnology, 81, 211-223. 

 
Takahashi, K. & Yamaguchi, T. (1988) A method for assessing the pathogenic 

activity of resting spores of Plasmodiophora brassicae by fluorescence 
microscopy. Annals of the Phytopathological Society of Japan, 54, 466-475. 

 



 

 

206 
 

Takahashi, K. (1994) Influences of some environmental factors on the viability of 
resting spores of Plasmodiophora brassicae Wor. incubated in sterile soil. 
Annals of the Phytopathological Society of Japan, 60, 658-666. 

 
Tambasco-Studart, M., Titiz, O., Raschle, T., Forster, G., Amrhein, N. & Fitzpatrick, 

T. B. (2005) Vitamin B6 biosynthesis in higher plants. Proceedings of the 
National Academy of Sciences of the United States of America, 102, 13687-
13692. 

 
Thompson, D. V., Melchers, L. S., Idler, K. B., Schilperoort, R. A. & Hooykaas, P. J. 

J. (1988) Analysis of the complete nucleotide sequence of the Agrobacterium 
tumefaciens VirB operon Nucleic Acids Research, 16, 4621-4636. 

 
Thornton, C. R., Jarvis, B. C. & Cooke, R. C. (1991) A chitin assay for the 

enumeration of Plasmodiophora brassicae resting spores in clubroot tissue.    
Mycological Research, 95, 879-882. 

 
Tommerup, I. C. & Ingram, D. S. (1971) Life-cycle of Plasmodiohora brassicae woron 

in brassica clutures and in intact roots New Phytologist, 70, 327-332. 
 
Van Kan, J. A. L. (2006) Licensed to kill: the lifestyle of a necrotrophic plant 

pathogen. Trends in Plant Science, 11, 247-253. 
 
Verma, P. R. & Petrie, G. A. (1980) Effect of seed infestation and flower bud 

inoculation on systemic infection of turnip rape by Albugo candida. Canadian 
Journal of Plant Science, 60, 266-271. 

 
Vladimirov, I. A., Matveeva, T. V. & Lutova, L. A. (2015) Opine biosynthesis and 

catabolism genes of Agrobacterium tumefaciens and Agrobacterium 
rhizogenes. Russian Journal of Genetics, 51, 121-129. 

 
Voegele, R. T., Hahn, M., Lohaus, G., Link, T., Heiser, I. & Mendgen, K. (2005) 

Possible Roles for Mannitol and Mannitol Dehydrogenase in the Biotrophic 
Plant Pathogen Uromyces fabae. Plant Physiology, 137, 190-198. 

 
Voegele, R. T., Struck, C., Hahn, M. & Mendgen, K. (2001) The role of haustoria in 

sugar supply during infection of broad bean by the rust fungus Uromyces 
fabae. Proceedings of the National Academy of Sciences of the United States 
of America, 98, 8133-8138. 

 
Wagner, G., Charton, S., Lariagon, C., Laperche, A., Lugan, R., Hopkins, J., Frendo, 

P., Bouchereau, A., Delourme, R., Gravot, A. & Manzanares-Dauleux, M. J. 
(2012) Metabotyping: A New Approach to Investigate Rapeseed (Brassica 
napus L.) Genetic Diversity in the Metabolic Response to Clubroot Infection. 
Molecular Plant-Microbe Interactions, 25, 1478-1491. 



 

 

207 
 

Wahl, R., Wippel, K., Goos, S., Kaemper, J. & Sauer, N. (2010) A Novel High-Affinity 
Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago 
maydis. Plos Biology, 8. 

 
Walters, D. R. & Shuttleton, M. A. (1985) Polyamines in the roots of turnip infected 

with Plasmodiophora brassicae Wor New Phytologist, 100, 209-214. 
 
Ward, J. E., Akiyoshi, D. E., Regier, D., Datta, A., Gordon, M. P. & Nester, E. W. 

(1988) Characterization of the virB operon from an Agrobacterium 
tumefaciens Ti plasmid. Journal of Biological Chemistry, 263, 5804-5814. 

 
Webster, M. A. & Dixon, G. R. (1991) Calcium, pH and inoculum concentration 

influencing colonization by Plasmodiophora brassicae Mycological Research, 
95, 64-73. 

 
Williams, P. H., Keen, N. T., Strandbe.Jo & Mcnabola, S. S. (1968) Metabolite 

synthesis and degradation during clubroot development in cabbage 
hypocotyls Phytopathology, 58, 921-928. 

 
Wittek, F., Kanawati, B., Wenig, M., Hoffmann, T., Franz-Oberdorf, K., Schwab, W., 

Schmitt-Kopplin, P. & Vlot, A. C. (2015) Folic acid induces salicylic acid-
dependent immunity in Arabidopsis and enhances susceptibility to Alternaria 
brassicicola. Molecular Plant Pathology, 16, 616-622. 

 
Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D. & Wishart, D. S. (2012) 

MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. 
Nucleic Acids Research, 40, W127-W133. 

 
Xia, J., Sinelnikov, I. V., Han, B. & Wishart, D. S. (2015) MetaboAnalyst 3.0-making 

metabolomics more meaningful. Nucleic Acids Research, 43, W251-W257. 
 
Yang, B., Sugio, A. & White, F. F. (2006) Os8N3 is a host disease-susceptibility gene 

for bacterial blight of rice. Proceedings of the National Academy of Sciences, 
103, 10503-10508. 

 
Yogendra, K. N., Kushalappa, A. C., Sarmiento, F., Rodriguez, E. & Mosquera, T. 

(2015) Metabolomics deciphers quantitative resistance mechanisms in diploid 
potato clones against late blight. Functional Plant Biology, 42, 284-298. 

 
Yokotani, N., Tsuchida-Mayama, T., Ichikawa, H., Mitsuda, N., Ohme-Takagi, M., 

Kaku, H., Minami, E. & Nishizawa, Y. (2014) OsNAC111, a blast disease-
responsive transcription factor in rice, positively regulates the expression of 
defense-related genes. Molecular Plant-Microbe Interactions, 27, 1027-1034. 

 



 

 

208 
 

Yonekura-Sakakibara, K., Kojima, M., Yamaya, T. & Sakakibara, H. (2004) 
Molecular characterization of cytokinin-responsive histidine kinases in maize. 
Differential ligand preferences and response to cis-zeatin. Plant Physiology, 
134, 1654-1661. 

 
Zhang, Y., Liu, B., Li, X., Ouyang, Z., Huang, L., Hong, Y., Zhang, H., Li, D. & Song, 

F. (2014) The de novo biosynthesis of vitamin B6 Is required for disease 
resistance against Botrytis cinerea in tomato. Molecular Plant-Microbe 
Interactions, 27, 688-699. 

 
Zrenner, R., Riegler, H., Marquard, C. R., Lange, P. R., Geserick, C., Bartosz, C. E., 

Chen, C. T. & Slocum, R. D. (2009) A functional analysis of the pyrimidine 
catabolic pathway in Arabidopsis. The New Phytologist, 183, 117-132. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

209 
 

Appendix 

A)7 DPI                                                              B) 16 DPI                                                                 C) 25 DPI

 

  
 
Figure S1. Intensity signal of potential metabolites involved in carbohydrate metabolism in P. brassicae-infected and uninfected plants at A) 
7, B) 16 and C) 25 DPI.  M/z variables were colour coded by a gradient depending on their Log10 of the intensity value at a significance of p-
value ≤0.05. Results are clustered between uninfected (green) and infected (red) biological replicates. The m/z value of each metabolite is 
shown (See Table S1 for possible identification).  
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Table S1. Putative metabolites with corrected mass (Mz) and m+H adducts, detected mass per charge by mass analyser (FormerY), exact 

mass according to KEGG and pathways associated with carbohydrate metabolism. Blue line refer to low level metabolite and brown line refers 

to high level of metabolites in P. brassicae-infected tissues at 7, 16 and 25 DPI.  

Mz Former Y Exact mass Pathway Putative compound 

Carbohydrate metabolism at 7 DPI  

          

68.06 69.06 68.03 Butanoate metabolism 3-Butyn-1-al 

180.06 181.07 180.06 Ascorbate and aldarate metabolism myo-Inositol,L-Galactose,L-Gulose 

182.06 183.07 182.08 Galactose metabolism Sorbitol 

194.08 195.09 194.04 Pentose and glucoronate interconversions 

D-Glucuronate, D-Galacturonate, D-
Tagaturonate,3-Dehydro-L-gulonate, D-
Fructuronate 

    194.079 Inositol phosphate metabolism  
D-Glucuronate, 1-O-Methyl-myo-inositol, 
3-O-Methyl-myo-inositol 

196.08 197.08 196.06 Pentose and glucoronate interconversions D-Mannonate, L-Gulonate,D-Altronate 

   Ascorbate and aldarate metabolism L-Gulonate. L-Galactonate 

          

103.09 104.10 103.06 Butanoate metabolism  4-Aminobutanoate 

501.24 502.25 
501.48 Amino sugar and nucleotide sugar 

metabolism Chitosan, D-Glucosaminide 

534.02 535.02 534.03 
Amino sugar and nucleotide sugar 
metabolism UDP-4-keto-D-xylose 

580.08 581.09 580.03 
Amino sugar and nucleotide sugar 
metabolism UDP-D-galacturonate 

58.07 59.08 58.04 Propanoate metabolism Acetone 

113.97 114.97 114.00 Pyruvate metabolism Acetylenedicarboxylate 

Carbohydrate metabolism at 16 DPI  

          

68.06 69.06 68.03 Butanoate metabolism 3-Butyn-1-al 

72.05 73.06 72.06 Butanoate metabolism Butanal 
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178.08 179.09 178.05 Ascorbate and aldarate metabolism L-Gulono, L-Galactono-1,4-lactone 

180.06 181.07 180.06 Ascorbate and aldarate metabolism myo-Inositol,L-Galactose,L-Gulose 

344.15 345.16 344.13 Galactose metabolism 6-O-alpha-D-Galactosyl-D-glucitol 

607.07 608.07 607.08 
Amino sugar and nucleotide sugar 
metabolism 

UDP-GlcNac, UDP-ManNac, UDP-
GalNac 

148 149.01 148.04 Propanoate metabolism (S)-2-Methylmalate 

348.05 349.06 348.05 Fructose and mannose metabolism 
2-(alpha-D-Mannosyl)-3-
phosphoglycerate  

Carbohydrate metabolism at 25 DPI 
  

          

389.1 390.11 389.07 
Amino sugar and nucleotide sugar 
metabolism  N-Acetylneuraminate 9-phosphate  

164.06 165.08 164.07 
Amino sugar and nucleotide sugar 
metabolism  6-Deoxy-L-galactose 

563.04 564.04 563.06 
Amino sugar and nucleotide sugar 
metabolism 

UDP-4-deoxy-4-formamido-beta-L-
arabinopyranose 

166.07 167.09 166.05 Ascorbate and aldarate metabolism L-Arabinonate, L-Xylonate, L-Lyxonate  

      Pentose and glucuronate interconversions  D-Xylonate, L-Xylonate, L-Lyxonate  

196.08 197.08 196.06 Ascorbate and aldarate metabolism L-Gulonate, L-Galactonate 

535.02 536.03 535.06 
Amino sugar and nucleotide sugar 
metabolism  UDP-4-amino-4-deoxy-L-arabinose 

325.14 326.15 325.10 
Amino sugar and nucleotide sugar 
metabolism N-Glycoloyl-neuraminate 

587.01 588.02 587.07 
Amino sugar and nucleotide sugar 
metabolism  GDP-4-dehydro-6-deoxy-D-mannose 

255.96 256.98 256.00 Ascorbate and aldarate metabolism L-Ascorbate 6-phosphate  

546.12 547.13 546.10 Pentose and glucuronate interconversions  Pectate 

276.07 277.08 276.02 Pentose phosphate pathway  6-Phospho-D-gluconate  

125.92 126.93 125.97 Glyoxylate and dicarboxylate metabolism  Formyl phosphate  

821.1 822.11 821.13 Propanoate metabolism  Propenoyl-CoA 
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160.07 161.08 160.04 Inositol phosphate metabolism 
3D-3,5/4-Trihydroxycyclohexane-1,2-
dione 

419.95 420.96 419.96 Inositol phosphate metabolism D-myo-Inositol, 1D-myo-Inositol  

          

273.97 274.98 274.01 
Amino sugar and nucleotide sugar 
metabolism 

1-Phospho-alpha-D-galacturonate, D-
Glucuronate 1-phosphate 

229.97 230.98 230.02 
Amino sugar and nucleotide sugar 
metabolism  

alpha-D-Xylose 1-phosphate,beta-L-
Arabinose 1-phosphate 

84.02 85.02 84.02 Butanoate metabolism 3-Butynoate 

103.09 104.10 103.06 Butanoate metabolism 4-Aminobutanoate 

258.03 259.03 258.01 Pentose and glucoronate interconversions D-Glucono-1,5-lactone 6-phosphate 

339.96 340.97 340.00 Pentose phosphate pathways beta-D-Fructose 1;6-bisphosphate 

173.97 174.98 174.02 Glyoxylate and dicarboxylate metabolism  cis-Aconitate 

155.98 156.99 155.98 Glyoxylate and dicarboxylate metabolism  2-Phosphoglycolate 

342.08 343.09 342.12 Galactose metabolism 
 Sucrose, Lactose, alpha-D-Galactosyl-(1-
>3)-1D-myo-inositol 

101.99 103.00 102.03 Propanoate metabolism 
2-Oxobutanoate, Acetoacetate, (S)-
Methylmalonate semialdehyde  

118 119.01 118.03 Propanoate metabolism Succinate  

659.84 660.86 659.86 Inositol phosphate metabolism Phytic acid 

113.97 114.97 114.00 Pyruvate metabolism Acetylenedicarboxylate 

66.08 367.09 366.07 Glycolysis / Gluconeogenesis  Salicin 6-phosphate 
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A) 7 DPI                                                              B) 16 DPI                                                                 C) 25 DPI

 

  
Figure S2. Intensity signal of potential metabolites involved in energy and nucleotide in P. brassicae-infected and uninfected plants at A) 7, 
B) 16 and C) 25 DPI.  M/z variables were colour coded by a gradient depending on their Log10 of the intensity value at a significance of p-
value ≤0.05. Results are clustered between uninfected (green) and infected (red) biological replicates. The m/z value of each metabolite is 
shown (See Table S2 for possible identification).  
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Table S2. Putative metabolites with corrected mass (Mz) and m+H adducts, detected mass per charge by mass analyser (FormerY), exact 

mass according to KEGG and pathways associated with energy and nucleotide metabolism. Blue line refer to low level metabolite and brown 

line refers to high level of metabolites in P. brassicae-infected tissues at 7, 16 and 25 DPI.  

Mz Former Y Exact mass Pathway Putative compound 

Energy metabolism at 7 DPI  

          

210.09 211.10 210.07 Carbon fixation in photosynthetic organism Sedoheptulose 

206.1 207.11 206.13 Photosynthesis Plastoquinol-1  

62.98 63.99 63.00 Nitrogen metabolism Nitrate 

257.94 258.95 257.91 Oxidative phosphorylation Triphosphate 

          

113.97 114.97 112.94 Sulfur metabolism  Thiosulfate 

Energy metabolism at 16 DPI  

          

427.01 428.02 427.02 Photosynthesis Adenosine 5'-diphosphate 

          

97.96 98.98 97.98 Photosynthesis Phosphoric acid 

    97.97 Sulfur metabolism Sulfuric acid 

Energy metabolism at 25 DPI  

          

81.93 82.94 81.97 Sulfur metabolism Sulfite 

121.06 122.07 121.02 Sulfur metabolism L-Cysteine 

222.09 223.09 222.07 Sulfur metabolism Cystathionine 

257.94 258.95 257.91 Oxidative phosphorylation Triphosphate 

          

339.96 340.97 340.00 Carbon fixation in photosynthetic organisms  D-Fructose 1;6-bisphosphate  

113.97 114.97 112.94 Sulfur metabolism  Thiosulfate 
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147.04 148.05 147.05 Sulfur metabolism O-acetyl-L-Serine 

Mz Former Y Exact mass Pathway Putative compound 

Nucleotides metabolism at 7 DPI  

          

252.1 253.11 252.09 Purine metabolism  Deoxyinosine 

305.01 306.03 305.04 Pyrimidine metabolism 2',3'-Cyclic CMP 

111.07 112.08 111.04 Pyrimidine metabolism Cytosine 

          

443.05 444.06 443.02 Purine metabolism  Guanosine 5'-diphosphate 

83.03 84.04 83.05 Purine metabolism  5-Aminoimidazole 

347.02 348.02 347.06 Purine metabolism  
Adenosine 5'-monophosphate, 2'-Deoxyguanosine 
5'-monophosphate, 3'-Adenosine monophosphate  

103.09 104.10 103.06 Pyrimidine metabolism  3-Aminoisobutyric acid 

Nucleotides metabolism at 16 DPI  

          

491.03 492.04 491.00 Purine metabolism 2'-Deoxyadenosine 5'-triphosphate 

          

427.01 428.02 427.03 Purine metabolism 
Adenosine 5'-diphosphate, Adenosine 5'-
phosphosulfate 

348.05 349.06 348.05 Purine metabolism Inosine monophosphate 

Nucleotides metabolism at 25 DPI 

          

102.04 103.05 102.04 Purine metabolism  N-Formiminoglycine 

252.1 253.11 252.09 Purine metabolism  Deoxyinosine 

463.08 464.08 463.07 Purine metabolism  N6-(1;2-Dicarboxyethyl)-AMP 

284.11 285.11 284.08 Purine metabolism  Xanthosine 

329.03 330.03 329.05 Purine metabolism  Cyclic adenylic acid 
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347.05 348.06 347.06 Purine metabolism  
Adenosine 5'-monophosphate, 2'-Deoxyguanosine 
5'-monophosphate, 3'-Adenosine monophosphate 

331.04 332.05 331.07 Purine metabolism 2'-Deoxyadenosine 5'-phosphate 

389.1 390.11 389.07 Purine metabolism 5'-Acetylphosphoadenosine  

283.13 284.14 283.09 Purine metabolism Guanosine 

          

229.97 230.98 230.02 Purine metabolism  
D-Ribose 5-phosphate, alpha-D-Ribose 1-
phosphate 

83.03 84.04 83.05 Purine metabolism  5-Aminoimidazole 

133.02 134.02 133.05 Purine metabolism  Ureidoglycine 

411.01 412.02 411.03 Purine metabolism  2'-Deoxyadenosine 5'-diphosphate  

586.98 587.98 586.96 Purine metabolism  Adenosine tetraphosphate 

229.01 230.01 229.04  Purine metabolism   5-Phosphoribosylamine 

454.04 455.04 454.07  Purine metabolism  
1-(5'-Phosphoribosyl)-5-amino-4-(N-
succinocarboxam)(SICAR) 

523.93 524.94 523.97  Purine metabolism  Xanthosine 5'-triphosphate  

84.02 85.02 84.03  Purine metabolism  Imidazolone 

338.08 339.09 338.06  Purine metabolism  
1-(5'-Phosphoribosyl)-5-amino-4-
imidazolecarboxami (AICAR) 

103.09 104.10 103.06 Pyrimidine metabolism  3-Aminoisobutyric acid 

118 119.01 118.03 Pyrimidine metabolism  Methylmalonate 

305.01 306.03 305.04 Pyrimidine metabolism 2',3'-Cyclic CMP 

89.04 90.05 89.05 Pyrimidine metabolism 3-Aminopropionic acid 

155.98 156.99 156.02 Pyrimidine metabolism  Orotate 

324.06 325.07 324.04 Pyrimidine metabolism  
Uridine monophosphate, Uridine 3'-
monophosphate 

89.04 90.05 89.05 Pyrimidine metabolism beta-Alanine 

497.04 498.05 497.00 Pyrimidine metabolism  2'-Deoxy-5-hydroxymethylcytidine-5'-triphosphate  

403.97 404.98 404.00 Pyrimidine metabolism  Uridine 5'-diphosphate  
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308 309.00 308.04 Pyrimidine metabolism  Deoxyuridine monophosphate  

 

A) 7 DPI                                                                 B)   16 DPI                                                              C) 25 DPI 

 

  
Figure S3. Signal intensities of metabolites potentially involved in amino acid metabolism in P. brassicae-infected and uninfected plants at A) 
7, B) 16 and C) 25 DPI.  M/z variables were colour coded by a gradient depending on their Log10 of the intensity value at a significance of p-
value ≤0.05. Results are clustered between uninfected (green) and infected (red) biological replicates. The m/z value of each metabolite is 
shown (See Table S3 for possible identification).  
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Table S3. Putative metabolites with corrected mass (Mz) and m+H adducts, detected mass per charge by mass analyser (FormerY), exact 

mass according to KEGG and pathways associated with amino acid metabolism. Blue line refer to low level metabolite and brown line refers 

to high level of metabolites in P. brassicae-infected tissues at 7, 16 and 25 DPI.  

Mz Former Y Exact mass Pathway Putative compound 

Amino acid metabolism at 7DPI  

          

264.1 265.11 264.11 Tryptophan metabolism  Formyl-N-acetyl-5-methoxykynurenamine  

252.1 253.11 252.07 Tryptophan metabolism  5-Hydroxy-N-formylkynurenine 

208.1 209.11 208.08 Tryptophan metabolism  L-Kynurenine, Formyl-5-hydroxykynurenamine  

224.08 225.10 224.08 Tryptophan metabolism 3-Hydroxy-L-kynurenine, 5-Hydroxykynurenine 

248.08 249.09 248.12 Tryptophan metabolism 
6-Hydroxymelatonin, 5-
Hydroxyindoleacetylglycine   

145.04 146.05 145.09 Arginine and proline metabolism 4-Guanidinobutanoate, 4-Acetamidobutanoate 

111.07 112.08 111.03 Arginine and proline metabolism  Pyrrole-2-carboxylate  

162.11 163.11 162.10 Lysine degradation N6-Hydroxy-L-lysine  

196.08 197.08 196.04 Tyrosine metabolism 3-(3;4-Dihydroxyphenyl)pyruvate 

182.06 183.07 182.06 Tyrosine metabolism 

3-(4-Hydroxyphenyl)lactate, Homovanillate, 3-
Methoxy-4-hydroxyphenylglycolaldehyde, 3;4-
Dihydroxyphenylpropanoate; 

180.06 181.07 180.09 Tyrosine metabolism 3-Hydroxykynurenamine, 5-Hydroxykynurenamine  

209.08 210.09 209.07 Tyrosine metabolism p-Hydroxyphenylacetylglycine 

122.07 123.07 122.04 Phenylalanine metabolism Benzoate 

156.07 157.08 156.05 Histidine metabolism 4-Imidazolone-5-propanoate, Imidazole lactate 

          

159.05 160.06 159.07 Tryptophan metabolism Indole-3-acetaldehyde 

206.06 207.07 206.05 Tryptophan metabolism  Indolylmethylthiohydroximate 

205.05 206.06 205.07 Tryptophan metabolism 
Indolelactate,  Xanthurenic acid, 5-
Methoxyindoleacetate, 6-Hydroxykynurenate 
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129.03 130.04 129.04 Arginine and proline metabolism 

4-Oxoproline, L-1-Pyrroline-3-hydroxy-5-
carboxylate, 1-Pyrroline-4-hydroxy-2-carboxylate, 
N4-Acetylaminobutanal 

103.09 104.10 103.06 Arginine and proline metabolism  4-Aminobutanoate 

83.03 84.04 83.07 Lysine degradation  Piperideine 

434.18 435.19 434.23 Glutathione metabolism Glutathionylspermidine 

Amino acid metabolism at 16 DPI  

          

204.05 205.06 204.09 Tryptophan metabolism  L-Tryptophan 

205.05 206.06 205.07 Tryptophan metabolism 
Indolelactate,  Xanthurenic acid, 5-
Methoxyindoleacetate, 6-Hydroxykynurenate 

306.97 307.99 306.97 Tyrosine metabolism  3-Iodo-L-tyrosine 

577.04 578.05 577.08 Histidine metabolism Phosphoribosyl-formimino-AICAR-phosphate 

735.3 736.31 735.30 Glutathione metabolism  Homotrypanothione disulfide  

778.34 779.35 778.35 Glutathione metabolism  Bis(glutathionyl)spermine disulfide 

750.18 751.19 750.14 
 D-Glutamine and D-glutamate 
metabolism UDP-N-acetylmuramoyl-L-alanine  

          

208.1 209.11 208.08 Tryptophan metabolism  
3-Anthraniloyl-L-alanine, Formyl-5-
hydroxykynurenamine 

220.1 221.10 220.08 Tryptophan metabolism  5-Hydroxy-L-tryptophan 

255.06 256.07 255.04 Tryptophan metabolism  
5-(3'-Carboxy-3'-oxopropyl)-4,6-
dihydroxypicolinate 

218.15 219.16 218.11 Tryptophan metabolism  N-Acetylserotonin 

190.16 191.16 190.11 Tryptophan metabolism  5-Methoxytryptamine, N-Methylserotonin 

157.99 159.00 158.02 Tryptophan metabolism  gamma-Oxalocrotonate 

173.06 174.06 173.07 Arginine and proline metabolism N-Acetyl-L-glutamate 5-semialdehyde 

234.16 235.16 234.14 Arginine and proline metabolism p-Coumaroylputrescine  

290.11 291.12 290.12 

Arginine and proline metabolism, 
Alanine; aspartate and glutamate 
metabolism  N-(L-Arginino)succinate 
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    290.11 Lysine biosynthesis  N-Succinyl-LL-2,6-diaminoheptanedioate 

316.04 317.05 316.07 Tyrosine metabolism Cysteinyldopa 

180.06 181.07 180.09 Tryptophan metabolism 3-Hydroxykynurenamine, 5-Hydroxykynurenamine  

122.07 123.07 122.04 Phenylalanine metabolism Benzoate 

167.94 168.95 167.97 Cysteine and methionine metabolism  3-Sulfopyruvate 

148 149.01 148.02 Cysteine and methionine metabolism  4-Methylthio-2-oxobutanoic acid 

448.27 449.29 448.25 Glutathione metabolism Glutathionylaminopropylcadaverine 

Amino acid metabolism at 25 DPI  

          

264.1 265.11 264.11 Tryptophan metabolism  Formyl-N-acetyl-5-methoxykynurenamine  

252.1 253.11 252.07 Tryptophan metabolism  5-Hydroxy-N-formylkynurenine 

208.1 209.11 208.08 Tryptophan metabolism  L-Kynurenine, Formyl-5-hydroxykynurenamine  

220.1 221.10 220.08 Tryptophan metabolism  5-Hydroxy-L-tryptophan 

160.08 161.08 160.04 Tryptophan metabolism  2-Oxoadipate, Tryptamine,  

218.15 219.16 218.11 Tryptophan metabolism  N-Acetylserotonin 

355.11 356.12 355.16 Arginine and proline metabolism  S-Adenosylmethioninamine 

274.1 275.11 274.13 Arginine and proline metabolism N2-Succinyl-L-arginine 

304.12 305.13 304.14 Arginine and proline metabolism Nopaline 

275.12 276.13 275.11 Arginine and proline metabolism  N-Succinyl-L-citrulline 

196.08 197.08 196.04 Tyrosine metabolism  3,4-Dihydroxyphenylpyruvate 

166.08 167.09 166.06 Tyrosine metabolism  3-Methoxy-4-hydroxyphenylacetaldehyde 

102.04 103.05 102.03 Cysteine and methionine metabolism  2-Oxobutanoate 

153.06 154.06 153.08 Tyrosine metabolism  Dopamine 

164.07 165.08 164.05 Phenylalanine metabolism  

Phenylpyruvate, 4-Coumarate, trans-2-
Hydroxycinnamate, 2-Hydroxy-3-
phenylpropenoate, 3-Coumaric acid 

156.07 157.08 156.05 Histidine metabolism 4-Imidazolone-5-propanoate, Imidazole lactate 

426.06 427.06 426.09 Cysteine and methionine metabolism  S-Glutathionyl-L-cysteine  
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81.93 82.94 81.97 Cysteine and methionine metabolism Sulfite, Hydrogen sulfite 

222.09 223.09 222.07 Cysteine and methionine metabolism L-Cystathionine  

151.94 152.96 151.98 Cysteine and methionine metabolism  3-Sulfinylpyruvate 

289.05 290.06 289.08 Lysine biosynthesis  N-Succinyl-2-L-amino-6-oxoheptanedioate 

463.08 464.08 463.07 
Alanine; aspartate and glutamate 
metabolism  N6-(1;2-Dicarboxyethyl)-AMP 

121.06 122.07 121.02 
Glycine; serine and threonine 
metabolism  L-Cysteine, D-Cysteine 

778.34 779.35 778.35 Glutathione metabolism  Bis(glutathionyl)spermine disulfide 

          

206.06 207.07 206.05 Tryptophan metabolism  Indolylmethylthiohydroximate 

    206.04 Lysine biosynthesis  Homocitrate, Homoisocitrate 

137.04 138.04 137.05 Tryptophan metabolism  Anthranilate 

147.04 148.05 147.05 Arginine and proline metabolism 
L-Glutamate, L-4-Hydroxyglutamate 
semialdehyde, 2-Oxo-4-hydroxy-5-aminovalerate  

89.04 90.05 89.05 Cysteine and methionine metabolism  L-Alanine 

133.02 134.02 133.04 Arginine and proline metabolism  L-Aspartate 

129.03 130.04 129.04 Arginine and proline metabolism 

4-Oxoproline, L-1-Pyrroline-3-hydroxy-5-
carboxylate, 1-Pyrroline-4-hydroxy-2-carboxylate, 
N4-Acetylaminobutanal 

103.09 104.10 103.06 Arginine and proline metabolism  4-Aminobutanoate 

145.04 146.05 145.09 Arginine and proline metabolism 4-Guanidinobutanoate, 4-Acetamidobutanoate 

173.06 174.06 173.07 Arginine and proline metabolism N-Acetyl-L-glutamate 5-semialdehyde 

115.05 116.06 115.06 Arginine and proline metabolism L-Proline, D-Proline 

276.16 277.16 276.16 Arginine and proline metabolism p-Coumaroylagmatine 

264.13 265.14 264.15 Arginine and proline metabolism Feruloylputrescine 

188.13 189.14 188.15 Lysine degradation N6,N6,N6-Trimethyl-L-lysine, N6-Acetyl-L-lysine  

83.03 84.04 83.07 Lysine degradation  Piperideine 

242.03 243.04 242.00 Lysine degradation  5-Phosphonooxy-L-lysine 
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118 119.01 118.03 Tyrosine metabolism Succinate 

650.75 651.76 650.79 Tyrosine metabolism Triiodothyronine 

776.71 777.72 776.69 Tyrosine metabolism Thyroxine 

101.99 103.00 102.03 Tyrosine metabolism Acetoacetate 

338.08 339.09 338.05 Histidine metabolism  
1-(5-Phosphoribosyl)imidazole-4-acetate, 1-(5'-
Phosphoribosyl)-5-amino-4-imidazolecarboxami  

101.04 102.05 101.05 Cysteine and methionine metabolism  1-Aminocyclopropane-1-carboxylate 

200.94 201.95 200.98 Cysteine and methionine metabolism  S-Sulfo-L-cysteine 

229.01 230.01 229.04 
Alanine; aspartate and glutamate 
metabolism   5-Phosphoribosylamine 

324.06 325.07 324.02 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 5-O-(1-Carboxyvinyl)-3-phosphoshikimate 

287.04 288.05 287.06 
Phenylalanine, tyrosine and tryptophan 
biosynthesis Indoleglycerol phosphate 

434.18 435.19 434.23 Glutathione metabolism Glutathionylspermidine 

821.1 822.11 821.13 Beta-Alanine metabolism Propenoyl-CoA 

679.06 680.07 679.10 
 D-Glutamine and D-glutamate 
metabolism UDP-N-acetylmuramic acid 
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A) 7 DPI                                                           B) 16 DPI                                                                  C) 25 DPI

 

  
 
Figure S4. Signal intensities of potential metabolites involved in cofactor and vitamin metabolism in P. brassicae-infected and uninfected 
plants at A) 7, B) 16 and C) 25 DPI.  M/z variables were colour coded by a gradient depending on their Log10 of the intensity value at a 
significance of p-value ≤0.05. Results are clustered between uninfected (green) and infected (red) biological replicates. The m/z value of each 
metabolite is shown (See Table S4 for possible identification). 
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Table S4. Putative metabolites with corrected mass (Mz) and m+H adducts, detected mass per charge by mass analyser (FormerY), exact 

mass according to KEGG and pathways associated with cofactor and vitamin metabolism. Blue line refer to low level metabolite and brown 

line refers to high level of metabolites in P. brassicae-infected tissues at 7, 16 and 25 DPI.  

Mz Former Y Exact mass Pathway Putative compound 

Cofactors and vitamins metabolism at 7 DPI 

          

682.48 683.50 682.53 
Ubiquinone and other terpenoid-quinone 
biosynthesis  

3-Octaprenyl-4-hydroxybenzoate, 2-Octaprenyl-
6-methoxy-1,4-benzoquinone 

294.15 295.16 294.39 
Ubiquinone and other terpenoid-quinone 
biosynthesis  2-Demethylmenaquinone  

180.06 181.07 180.04 
Ubiquinone and other terpenoid-quinone 
biosynthesis  3-(4-Hydroxyphenyl)pyruvate 

    180.05 Nicotinate and nicotinamide metabolism  Nicotinurate 

182.06 181.07 182.06 
Ubiquinone and other terpenoid-quinone 
biosynthesis  3-(4-Hydroxyphenyl)lactate 

278.11 279.11 278.13 
Ubiquinone and other terpenoid-quinone 
biosynthesis  alpha-Ribazole 

    278.13 Riboflavin metabolism  alpha-Ribazole 

111.07 112.08 111.03 Nicotinate and nicotinamide metabolism  2;5-Dihydroxypyridine, 2;6-Dihydroxypyridine 

122.07 123.07 122.05 Nicotinate and nicotinamide metabolism  Nicotinamide 

210.09 211.10 210.10 Nicotinate and nicotinamide metabolism  2;6-Dihydroxypseudooxynicotine 

162.11 163.11 162.12 Nicotinate and nicotinamide metabolism  (R;S)-Nicotine 

194.08 195.09 194.11 Nicotinate and nicotinamide metabolism  6-Hydroxypseudooxynicotine 

248.08 249.09 248.06 Vitamin B6 metabolism  Pyridoxamine phosphate 

          

494.95 495.97 495.00 Folate biosynthesis 
2-Amino-4-hydroxy-6-(erythro-1;2;3-
trihydroxypropy  

541.05 542.06 541.00 Folate biosynthesis Formamidopyrimidine nucleoside triphosphate  

Cofactors and vitamins metabolism at 16 DPI 
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204.05 205.06 204.04 
Ubiquinone and other terpenoid-quinone 
biosynthesis Spirodilactone, 1,4-Dihydroxy-6-naphthoate 

590.47 591.48 590.43 
Ubiquinone and other terpenoid-quinone 
biosynthesis Ubiquinone-6 

541.05 542.06 541.00 Folate biosynthesis Formamidopyrimidine nucleoside triphosphate  

776.3 777.31 776.26 Folate biosynthesis 5;6;7;8-Tetrahydromethanopterin 

215.97 216.97 216.00 Vitamine B6 metabolism 4-Phosphoerythronate  

298.98 299.99 299.01 Thiamine metabolism 4-Amino-2-methyl-5-diphosphomethylpyrimidine 

          

294.15 295.16 294.39 
Ubiquinone and other terpenoid-quinone 
biosynthesis  2-Demethylmenaquinone  

180.06 181.07 180.04 
Ubiquinone and other terpenoid-quinone 
biosynthesis  3-(4-Hydroxyphenyl)pyruvate 

    180.05 Nicotinate and nicotinamide metabolism  Nicotinurate 

123.06 124.08 123.03 Nicotinate and nicotinamide metabolism Nicotinate 

122.07 123.07 122.05 Nicotinate and nicotinamide metabolism  Nicotinamide 

178.08 179.09 178.11 Nicotinate and nicotinamide metabolism (S)-6-Hydroxynicotine 

255.06 256.07 256.08 Nicotinate and nicotinamide metabolism Nicotinate D-ribonucleoside 

427.02 428.02 427.03 Pantothenate and CoA biosynthesis Adenosine 3',5'-bisphosphate 

Cofactors and vitamins metabolism at 25 DPI 

          

222.09 223.09 222.05 
Ubiquinone and other terpenoid-quinone 
biosynthesis 2-Succinylbenzoate 

164.07 165.08 164.05 
Ubiquinone and other terpenoid-quinone 
biosynthesis 4-Coumarate 

294.15 295.16 294.39 
Ubiquinone and other terpenoid-quinone 
biosynthesis  2-Demethylmenaquinone  

278.11 279.11 278.13 
Ubiquinone and other terpenoid-quinone 
biosynthesis  alpha-Ribazole 

712.5 713.51 712.54 
Ubiquinone and other terpenoid-quinone 
biosynthesis  

2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-
1,4-benzoquinone 
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726.56 727.57 726.56 
Ubiquinone and other terpenoid-quinone 
biosynthesis  Ubiquinone-8 

160.08 161.08 160.04 Nicotinate and nicotinamide metabolism  2-Formylglutarate  

443.12 444.13 443.16 Folate biosynthesis Dihydrofolate 

512.99 513.99 513.01 Folate biosynthesis 
2,5-Diamino-6-(5'-triphosphoryl-3',4'-trihydroxy-
2'-oxopentyl)-amino-4-oxopyrimidine 

102.04 103.05 102.03 Vitamin B6 metabolism  Succinate semialdehyde 

247.01 248.01 247.02 Vitamin B6 metabolism  Pyridoxal 5’-phosphate 

          

314.11 315.12 314.07 
Ubiquinone and other terpenoid-quinone 
biosynthesis Geranyl diphosphate 

532.47 533.48 532.43 
Ubiquinone and other terpenoid-quinone 
biosynthesis 2-Hexaprenyl-6-methoxyphenol 

334.04 335.06 334.06 Nicotinate and nicotinamide metabolism  Nicotinamide D-ribonucleotide 

664.09 665.10 665.10 Nicotinate and nicotinamide metabolism  Deamino-NAD+ 

89.04 90.05 89.05 Pantothenate and CoA biosynthesis 3-Aminopropionic acid 

205.14 206.15 205.13 Pantothenate and CoA biosynthesis Pantothenol 

541.05 542.06 541.00 Folate biosynthesis Formamidopyrimidine nucleoside triphosphate  

237.05 238.05 237.09 Folate biosynthesis 6-Pyruvoyltetrahydropterin 

396.98 397.99 395.01 Folate biosynthesis Molybdopterin 

774.29 775.30 774.25 Folate biosynthesis 7,8-Dihydromethanopterin 

137.04 138.04 137.05 Folate biosynthesis 4-Aminobenzoate 

249.07 250.07 249.04 Vitamin B6 metabolism Pyridoxine phosphate 

213.97 214.97 213.99 Vitamin B6 metabolism 2-Oxo-3-hydroxy-4-phosphobutanoate 

214.99 216.00 215.02 Vitamin B6 metabolism O-Phospho-4-hydroxy-L-threonine 

101.99 103.00 102.03 Vitamin B6 metabolism Succinate semialdehyde 

229.97 230.98 230.02 Vitamin B6 metabolism  D-Ribulose 5-phosphate  

242.03 243.04 242.08 Riboflavin metabolism  7;8-Dimethylalloxazine  

276.16 277.16 276.11 Riboflavin metabolism  5-Amino-6-(1-D-ribitylamino)uracil 
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A) 7 DPI     B) 16 DPI     C) 25 DPI 
 

 

     
 

Figure S5.  Signal intensities of potential terpenoids, polyketides, and other secondary metabolites in P. brassicae-infected and uninfected 
plants at A) 7, B) 16, and C) 25 DPI.  M/z variables were colour coded by a gradient depending on their Log10 of the intensity value at a 
significance of p-value ≤0.05. Results are clustered between uninfected (green) and infected (red) biological replicates. The m/z value of each 
metabolite is shown (See Table S5 for possible identification).  
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Table S5. Putative metabolites with corrected mass (Mz) and m+H adducts, detected mass per charge by mass analyser (FormerY), exact 

mass according to KEGG and pathways associate with terpenoids, polyketides, and other secondary metabolites. Blue line refer to low level 

metabolite and brown line refers to high level of metabolites in P. brassicae-infected tissues at 7, 16 and 25 DPI.  

Mz Former Y Exact mass Pathway Putative compound 

Terpenoids, polyketides and other secondary metabolites at 7 DPI  

          

568.44 569.45 568.43 Carotenoid biosynthesis  
Zeaxanthin, Lutein, 3;4-Dihydroanhydrorhodovibrin, 
Spheroidene, Rhodopinal 

264.1 265.11 264.14 Carotenoid biosynthesis Abscisic acid 

353.15 354.16 353.17 Zeatin biosynthesis  Dihydrozeatin riboside  

68.06 69.06 68.06 Brassinosteroids biosynthesis Isoprene 

224.09 225.10 224.07 Phenylpropanoid biosynthesis  Sinapate 

194.08 195.09 194.06 Phenylpropanoid biosynthesis  Ferulate, 5-Hydroxyconiferaldehyde  

196.08 197.08 196.07 Phenylpropanoid biosynthesis  5-Hydroxyconiferyl alcohol  

208.1 209.11 208.07 Phenylpropanoid biosynthesis  Sinapoyl aldehyde 

180.06 181.07 180.08 Phenylpropanoid biosynthesis  Coniferyl alcohol,Caffeic acid 

210.09 211.10 210.09 Phenylpropanoid biosynthesis  Sinapyl alcohol, 5-Hydroxyferulate, Sinapate 

278.1 279.11 278.12 Glucosinolate biosynthesis  2-(7'-Methylthio)heptylmalate 

252.11 253.11 252.06 Glucosinolate biosynthesis S-(4-Methylthiobutylthiohydroximoyl)-L-cysteine  

369.22 370.23 369.19 Isoquinoline alkaloid biosynthesis Corydaline 

352.15 353.16 352.15 Isoquinoline alkaloid biosynthesis Palmatine 

294.15 295.16 180.04 Isoquinoline alkaloid biosynthesis  3-(4-Hydroxyphenyl)pyruvate 

532.08 533.08 532.12 Isoflavonoid biosynthesis 
Biochanin A 7-O-(6-O-malonyl-beta-D-glucoside), 
Malonylglycitin, (-)-Maackiain-3-O-glucosyl-6''-O-malonate  

          

628.43 629.45 628.45 Carotenoid biosynthesis R.g.-Keto III 

347.02 348.02 347.06 Zeatin biosynthesis Adenosine 5'-monophosphate 

398.35 399.37 398.35 Brassinosteroid biosynthesis  Campest-4-en-3-one 
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361.05 362.05 361.05 Glucosinolate biosynthesis Glucoputranjivin 

206.06 207.07 206.05 Glucosinolate biosynthesis Indolylmethylthiohydroximate 

604.12 605.13 605.11 Anthocyanin biosynthesis  Pelargonidin 3-O-3'',6''-O-dimalonylglucoside 

302 303.01 303.05 Anthocyanin biosynthesis  Delphinidin 

610.22 611.24 610.19 Flavonoid biosynthesis  Neohesperidin 

532.15 533.16 532.12 Isoflavonoid biosynthesis 
Biochanin A 7-O-(6-O-malonyl-beta-D-glucoside), 
Malonylglycitin, (-)-Maackiain-3-O-glucosyl-6''-O-malonate 

Terpenoids, polyketides and other secondary metabolites at 16 DPI  

          

744.41 745.42 744.46 Carotenoid biosynthesis  (3S;2'S)-4-Ketomyxol 2'-alpha-L-fucoside  

435.07 436.08 435.07 Glucosinolate biosynthesis Glucoberteroin 

204.05 205.06 
204.0899, 
204.082 Glucosinolate biosynthesis   L-Tryptophan, 2-Oxo-8-methylthiooctanoic acid 

594.13 595.13 595.17 Anthocyanin biosynthesis 

Cyanidin 3-O-rutinoside, Pelargonin, Cyanidin 3-O-(6-O-
p-coumaroyl)glucoside, Pelargonidin 3-O-(6-caffeoyl-
beta-D-glucoside), Pelargonidin 3-O-sophoroside  

462.1 463.11 463.12 Anthocyanin biosynthesis Peonidin 3-O-glucoside 

712.15 713.15 713.16 Anthocyanin biosynthesis 
Delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-
glucoside 

357.16 358.17 357.16 Isoquinoline alkaloid biosynthesis Deacetylcolchicine 

491.14 492.15 491.18 Isoquinoline alkaloid biosynthesis  Demethylalangiside, Demethylisoalangiside 

512.24 513.25 512.22 Indole alkaloid biosynthesis Raucaffricine 

          

234.15 235.16 234.13 Carotenoid biosynthesis  Strigolactone ABC-rings 

346.13 347.14 346.14 Carotenoid biosynthesis  Strigol 

330.16 331.16 330.15 Carotenoid biosynthesis   5-Deoxystrigol 

280.13 281.14 280.13 Carotenoid biosynthesis  Phaseic acid, 8'-Hydroxyabscisate 

427.02 428.02 427.03 Zeatin biosynthesis  Adenosine 5'-diphosphate  

415.14 416.11 415.13 Zeatin biosynthesis  N6-(delta2-Isopentenyl)-adenosine 5'-monophosphate 



 

 

230 
 

68.06 69.06 68.06 Brassinosteroids biosynthesis Isoprene 

180.06 181.07 180.08 Phenylpropanoid biosynthesis  Coniferyl alcohol,Caffeic acid 

148 149.01 148.02 Phenylpropanoid biosynthesis Cinnamic acid 

148 149.01 148.02 Glucosinolate biosynthesis 4-Methylthio-2-oxobutanoic acid 

278.14 279.15 278.12 Glucosinolate biosynthesis 
2-(7'-Methylthio)heptylmalic acid, 3-(7'-
Methylthio)heptylmalic acid 

301.12 302.12 301.13 Isoquinoline alkaloid biosynthesis  (S)-6-O-Methylnorlaudanosoline 

294.15 295.16 294.17 Indole alkaloid biosynthesis 10-Deoxysarpagine 

292.14 293.15 292.16 Indole alkaloid biosynthesis 16-Epivellosimine, Vellosimine 

310.13 311.14 310.17 Indole alkaloid biosynthesis Sarpagine 

334.13 335.14 334.17 Indole alkaloid biosynthesis Vinorine 

290.11 291.12 290.08 Flavonoid biosynthesis 

cis-3,4-Leucopelargonidin, Luteoforol;3-
Deoxyleucocyanidin, D-Catechin, (-)-Epicatechin, 
Fisetinidol-4beta-ol 

316.04 317.05 316.06 Flavone and flavonol biosynthesis 3-O-Methylquercetin 

Terpenoids, polyketides and other secondary metabolites at 25 DPI   

          

280.13 281.14 280.13 Carotenoid biosynthesis  Phaseic acid, 8'-Hydroxyabscisate 

712.5 713.51 712.47 Carotenoid biosynthesis  Hydroxychlorobactene glucoside 

304.12 305.13 304.16 Zeatin biosynthesis  
3-(3-Amino-3-carboxypropyl)-N6-(delta2-isopentenyl)-
adenine 

495.1 496.11 495.09 Zeatin biosynthesis  Isopentenyladenosine-5'-diphosphate 

415.14 416.11 415.13 Zeatin biosynthesis  N6-(delta2-Isopentenyl)-adenosine 5'-monophosphate 

347.05 348.06 347.06 Zeatin biosynthesis  Adenosine 5'-monophosphate 

383.13 384.14 383.18 Zeatin biosynthesis  Dihydrozeatin-O-glucoside  

196.08 197.08 196.04 Phenylpropanoid biosynthesis  3,4-Dihydroxyphenylpyruvate 

166.08 167.09 166.06 Phenylpropanoid biosynthesis   Caffeyl alcohol 

164.07 165.08 164.05 Phenylpropanoid biosynthesis  
4-Coumarate, trans-2-Hydroxycinnamate, cis-2-
Hydroxycinnamate, Caffeic aldehyde 
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309.17 310.18 310.17 Phenylpropanoid biosynthesis  Sinapine 

386.16 387.17 386.12 Phenylpropanoid biosynthesis  1-O-Sinapoyl-beta-D-glucose 

208.1 209.11 208.07 Phenylpropanoid biosynthesis   Sinapoyl aldehyde 

    208.12 
Biosynthesis of alkaloids derived from 
histidine and purine  Pilocarpine 

463.08 464.08 463.10 Glucosinolate biosynthesis 7-Methylthioheptyl glucosinolate  

222.09 223.09 222.06 Glucosinolate biosynthesis 
2-(3'-Methylthio)propylmalic acid, 3-(3'-
Methylthio)propylmalic acid 

423.06 424.07 423.07 Glucosinolate biosynthesis Gluconasturtiin 

477.1 478.11 477.12 Glucosinolate biosynthesis 8-Methylthiooctyl glucosinolate 

756.2 757.21 757.20 Anthocyanin biosynthesis Cyanidin 3-O-(6-O-p-coumaroyl)glucoside-5-O-glucoside 

518.06 519.07 519.11 Anthocyanin biosynthesis Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside) 

710.15 711.16 711.14 Anthocyanin biosynthesis Cyanidin-3-O-(6''-O-malonyl-2''-O-glucuronyl)glucoside 

283.13 284.14 283.12 Isoquinoline alkaloid biosynthesis  Morphinone 

327.15 328.16 327.15 Isoquinoline alkaloid biosynthesis  (S)-Scoulerine 

339.13 340.14 339.15 Isoquinoline alkaloid biosynthesis  (S)-Canadine 

315.16 316.17 315.15 Isoquinoline alkaloid biosynthesis  3'-Hydroxy-N-methyl-(S)-coclaurine 

341.14 342.15 341.16 Isoquinoline alkaloid biosynthesis  Isocorypalmine 

273.14 274.15 273.14 Isoquinoline alkaloid biosynthesis  4'-O-Methylnorbelladine 

388.14 389.15 388.14 Isoquinoline alkaloid biosynthesis  Secologanin 

294.15 295.16 294.17 Indole alkaloid biosynthesis 10-Deoxysarpagine 

274.1 275.11 274.08 Flavonoid biosynthesis 
Afzelechin, Apiforol, epi-Afzelechin , 5-
Deoxyleucopelargonidin,  

284.11 285.11 284.07 Isoflavonoid biosynthesis  
Biochanin A, Calycosin, 2'-Hydroxyformononetin, (-)-
Maackiain, Prunetin, Glycitein, (+)-Maackiain  

394.18 395.18 394.14 Isoflavonoid biosynthesis Rotenone 

340.17 341.17 340.13 Isoflavonoid biosynthesis Glyceocarpin 

461.93 462.93 461.96 Flavone and flavonol biosynthesis Quercetin 3,3'-bissulfate 

638.13 639.13 638.11 Flavone and flavonol biosynthesis Luteolin 7-O-beta-D-diglucuronide 
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372.11 373.11 372.14 Phenylpropanoid biosynthesis Syringin 

264.13 265.14 264.15 Carotenoid biosynthesis  Feruloylputrescine 

    264.10 Glucosinolate biosynthesis  2-(6'-Methylthio)hexylmalic acid 

84.02 85.02 84.06 Zeatin biosynthesis  3-Methyl-2-butenal 

575.04 576.05 575.06 Zeatin biosynthesis  Isopentenyladenosine-5'-triphosphate 

431.11 432.12 431.12 Zeatin biosynthesis  trans-Zeatin riboside  monophosphate 

403.97 404.98 404.00 Zeatin biosynthesis  Uridine 5'-diphosphate  

464.35 465.35 464.35 Brassinosteroids biosynthesis Castasterone 

434.34 435.34 434.38 Brassinosteroids biosynthesis 6-Deoxoteasterone 

308 309.00 308.01 Terpenoid backbone biosynthesis  (R)-5-Diphosphomevalonate  

338.08 339.09 338.10 Phenylpropanoid biosynthesis  p-Coumaroyl quinic acid, Sinapoyl-CoA 

147.04 148.05 147.07 Glucosinolate biosynthesis  5-Methylthiopentanaldoxime  

133.02 134.02 133.06 Glucosinolate biosynthesis   4-Methylthiobutanaldoxime  

205.14 206.15 205.11 Glucosinolate biosynthesis Tetrahomomethionine 

620.08 621.09 621.11 Anthocyanin biosynthesis Cyanidin 3-O-3'',6''-O-dimalonylglucoside 

137.04 138.04 137.08 Isoquinoline alkaloid biosynthesis  Tyramine 

354.18 355.19 354.17 Isoquinoline alkaloid biosynthesis  (S)-cis-N-Methylcanadine 

523.19 524.20 523.21 Isoquinoline alkaloid biosynthesis  Deacetylisoipecoside, Deacetylipecoside 

382.03 383.04 382.00 Flavone and flavonol biosynthesis Quercetin 3-sulfate 

541.88 542.88 541.91 Flavone and flavonol biosynthesis Quercetin 3,3',7-trissulfate, Quercetin 3,4',7-trissulfate 
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Figure S6. The expression of genes involved in phenylpropanoids biosynthesis in P. brassicae-infected tissue at 16 DPI. Light blue boxes 
show down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), 
green boxes show genes that do not show a significant change in expression between uninfected and infected tissue. White boxes show 
genes that have not been identified in A. thaliana. Blue circles show potentially decreased metabolites and orange circles show potentially 
increased metabolites in P. brassicae-infected tissue (p-value ≤ 0.05).  
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Figure S7. The expression of genes involved in  phenylpropanoids biosynthesis in P. brassicae-infected tissue at 26 DPI. Light blue boxes 
show down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), 
green boxes show genes that do not show a significant change in expression between uninfected and infected tissue. White boxes show 
genes that have not been identified in A. thaliana. Blue circles show potentially decreased metabolites and orange circles show potentially 
increased metabolites in P. brassicae-infected tissue (p-value ≤ 0.05).  
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Figure S8. The expression of genes involved in carotenoid biosynthesis in P. brassicae-infected tissue at 16 DPI. Light blue boxes show 
down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green 
boxes show genes that do not show a significant change in expression between uninfected and infected tissue. White boxes show genes that 
have not been identified in A. thaliana. Blue circles show potentially decreased metabolites and orange circles show potentially increased 
metabolites in P. brassicae-infected tissue (p-value ≤ 0.05).  
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Figure S9. The expression of genes involved in carotenoid biosynthesis in P. brassicae-infected tissue at 26 DPI. Light blue boxes show 
down-regulated gene expression (log2 fold-change ≤ -1, p≤ 0.05), red boxes show up-regulated gene expression (log2 FC ≥1, p≤0.05), green 
boxes show genes that do not show a significant change in expression between uninfected and infected tissue. White boxes show genes that 
have not been identified in A. thaliana. Blue circles show potentially decreased metabolites and orange circles show potentially increased 
metabolites in P. brassicae-infected tissue (p-value ≤ 0.05).  


