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Abstract 

This thesis is an exploration into the modelling of anaerobic digestion (AD) with a 

focus on its integration into a microgrid for rural electrification. The work  

investigated the improvement of Anaerobic Digestion Model No 1 (ADM1)  in order 

to better describe the kinetics of biogas production in an AD system with particular 

focus on substrate characterisation, codigestion and the mechanisms of inhibition. 

The resulting model was used to investigate the possible role of AD in microgrid 

systems. 

A novel biochemical and kinetic fractionation method was developed in order to fully 

characterise any substrate and produce the required input parameters into the a 

modified version of ADM1. The method uses a combination of analytical and 

digestion batch tests and was applied to food waste, green waste, pig manure and 

oat processing residues. The fractionation method was validated using 

measurements from semi-continuous laboratory scale digesters, operated with 

varying substrate combinations and loading rates.  The model was able to suitably 

predict the methane production rate and the typical off-line measurements in AD 

systems, except during periods of high organic loading rate where biochemical 

inhibition became an important phenomenon. Possible inhibiting mechanisms were 

investigated by model based analysis of the experimental data characterised by 

inhibition, and a possible inhibition mechanism was proposed and integrated in the 

ADM1 model. 

Microgrid modelling software HOMER was used alongside the updated version of 

ADM1 in order to perform a benchmark of various operational and control strategies 

for the demand-driven operation of an AD system integrated in a microgrid. 

Different biogas demand profiles were considered. In the case of a biogas demand 

profile with low variability it was found that  simple operational strategies could be 

used, with limited required biogas storage buffer and without causing process 

instabilities. With more variable demand profiles, an expert control system was 

needed in order to reduce the biogas storage requirements and guarantee process 

stability. 
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1 Introduction 

Anaerobic digestion (AD) is an energy technology which converts organic matter to 

a methane-rich biogas through the action of a microbial community (Batstone and 

Jensen, 2011). The AD process has received much attention due to its ability to 

convert a variety of organic feedstocks, which would pose challenges for thermal 

conversion technologies due to the moisture content, to a gaseous biofuel. One 

novel application of AD is in rural electrification in the developing world and this 

idea was developed by the research project BioCPV1 as part of the BURD (Bridging 

the Urban and Rural Divide) program: a joint UK/India initiative that aims to address 

the challenge of poverty reduction in rural regions of India.  

Decentralised hybrid power plants with different renewable technologies can 

provide efficient, cheap and sustainable options for rural electrification (Bajpai and 

Dash, 2012, Gao et al.) and the main concept of the BioCPV project was to develop 

such a system with the capability to meet the energy needs of an off-grid 

community in rural India. The proposed system included concentrating 

photovoltaics (CPV) and AD in order to use the main energy resources available 

locally, sunlight and biomass, and is shown in figure 1.1 (Astals et al., 2013). The 

work presented in this thesis forms part of the BioCPV project, and focuses on the 

role that AD can play in small scale microgrid systems and the associated 

challenges that this may present.  

1.1 Microgrid energy systems and AD integration 

Generally, a microgrid is a combination of the following elements: 

 a set of dispatchable generators (ie. generators that can be turned on or off 

or can adjust their power output in a relatively short amount of time, such as 

turbines, reciprocating engines, fuel cells) and non-dispatchable generators 

(ie. generators whose electrical output is not continuously available due to 

factors outside direct control, such as wind turbines, PV and wave energy 

converters). 

 electrical and thermal energy storage. 

 heat and electrical local distribution infrastructure. 

                                                

1 See biocpv.ex.ac.uk for more information. 
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 a connection with the macro-grid for import and export of electricity. 

 a control system for the operation of the microgrid. 

 

Figure 1.1 Schematic of the proposed BioCPV off-grid energy system, from 
Mallick et al. (2013). 

Microgrids allow power quality and reliability, sustainability and economic benefits 

and may run continuously in off-grid or on-grid mode, as well as in dual mode by 

changing the grid connection status. When operated in grid-connected mode, the 

micro-grid can import deficit and export excess electricity to the macro-grid. The 

operation in island mode (ie. in isolation from the national or local electricity 

distribution network) is more challenging, because electricity demand must be met 

exactly and any excess electricity production would be dumped with clear 

economical inefficiencies. Island operation mode is typical for electrification of rural 

villages and remote regions (Kanase-Patil et al., 2010), and therefore in this thesis 

it is considered as the principal mode of operation for a micro-grid. 

The integration of wind and solar generation into a microgrid poses some technical 

challenges, principally for their intermittency. Intermittency comprises two separate 

elements: non-controllable variability and partial unpredictability (Pérez-Arriaga and 

Batlle, 2012). There are various approaches to match energy demand and supply, 

when considering autonomous systems with a high penetration of intermittent 

renewable energy technologies (Delucchi and Jacobson, 2011, Rae and Bradley, 

2012): 
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 The use of demand side management (DSM) and control techniques whose aim 

is to alter the characteristics of the demand profile according to the generated 

energy profile. 

 The use of energy storage systems which store excess energy when supply 

exceeds demand, for later use. 

 The integration of variable energy sources (such as wind and PV) with non-

variable energy sources (hydroelectric, biomass, etc.). 

 The increase in the dispatchability of the system, i.e. the ability of the system to 

increase and/or decrease output quickly following demand variations. 

 The forecast of the weather and therefore of the future energy supplied by the 

variable energy sources, in order to better plan the operation of the system. 

In the context of the BioCPV project, DSM is not addressed and the focus is put on 

storage and energy sources integration. In this regard, the integration of an AD 

system into a renewable-based micro-grid presents specific advantages and 

challenges: 

 The renewable energy produced by AD (biogas) can be stored in a cost-

effective way, e.g. in a low pressure gasometer (see Figure 1.2). 

 The storage of biogas permits the system to be dispatchable, i.e. to respond 

quickly to demand variations (limited by the amount of biogas stored and the 

dynamics of the engine-generator set). 

 The AD system can be considered as a non-variable system, i.e. its production 

of biogas can be predicted within a small range of variation. 

 

Figure 1.2 Biogas storage gasometer with capacity 20 m3 installed as part of 
BioCPV project 
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The operation of the engine-generator set has to cope with more cycling to 

compensate for the fluctuations in the intermittent generation: on/off operation, low-

load cycling operations and load following (Pérez-Arriaga and Batlle, 2012). 

Depending on the technology adopted for the engine-generator set, higher 

maintenance expenditures and increased wear and tear, with respect to base-load 

operation, could be a consequence.  

AD systems can compensate energy fluctuations in two ways: 

 In the short term (hours), using the biogas that has been stored in the 

external storage. 

 In the long term (days), changing the loading rate of the digester in order to 

increase the biogas produced and restoring the biogas reserve in the 

external storage. Change in the loading rate can be realized by an increase 

in the mass loading rate or by a change in the composition of the feed, 

allowing a higher ratio of degradable and energy-rich substrates (Hahn et 

al., 2014).  

The relative importance of these two strategies (biogas storage and change in 

loading rate) depends on the characteristics (length and amplitude) of the 

fluctuations that the AD system needs to compensate: eventually it is possible to 

imagine a storage that is big enough to compensate the fluctuations while the AD 

reactor is run at steady state. 

When changing the organic load to the AD plant, challenges regarding the stability 

of the plant after changes in the loading rate or composition of the feedstock 

become important. The AD process is based on a multistep process, where the rate 

of formation of organic acids (hydrolysis and fermentation) must be in balance with 

the rate of consumption of acids by methanogenesis. When the production of acids 

exceeds the capacity of the methanogenic conversion, the pH drops and the reactor 

acidifies (Figure 1.3). This phenomenon requires a reduction in the loading rate of 

the digester, or in extreme cases even the emptying of the digester and a new start-

up with fresh inoculum and substrate: both processes represent a high cost for the 

AD plant owner and that is why digesters are usually operated with a low-risk 

strategy, far from the theoretical optimum.   

Control systems can be used to determine the state of the digester, therefore 

allowing the operator to optimize the loading rate with higher probabilities of 

improving the performance of the plant. However, control systems for optimization 
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of the plant operation require a certain degree of sophistication. As previously 

stated, AD process are affected by changes in loading rate and substrate 

composition, but the effect on the process (the gain, in control terminology) is 

dependent on the type, magnitude, duration and frequency of the change (Leitao et 

al., 2006). Anaerobic systems have large time constants when operated at a stable 

steady state point; however they react faster (shorter time constant) and are highly 

non-linear when operated in dynamic mode out of steady state points and close to 

overload conditions.  

 

Figure 1.3 Different operational states in AD plants. 

1.2 Anaerobic digestion modelling 

In order to address the issues of the integration of AD into a microgrid system, such 

as that proposed in the BioCPV project, including its flexible operation and biogas 

demand matching and codigestion of different available biomass feedstocks, 

modelling for process analysis and evaluation is used in this thesis. For a model to 

be useful in this scenario it must have the following characteristics: 

 To allow good characterisation of solid biomass feedstocks relating to their 

biochemical composition and degradation behaviour in an AD system, and allow 

the simulation of their codigestion.  
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 To reproduce accurately the important process kinetics, such as degradation of 

the biomass feedstock and biogas production such that demand matching on 

short timescales can be assessed. 

 To give reliable prediction of process stability, mainly focussing on instabilities 

and/or inhibition caused by fluctuations in organic load when attempting to 

match a particular biogas demand. 

Almost all current research into AD process modelling involves the use of the 

International Water Association (IWA) Anaerobic Digestion Model No. 1 (Batstone 

et al., 2002) with the subsequent improvements and modifications made by Rosen 

and Jeppsson (2006). There have since been hundreds of published journal articles 

that use, adapt or develop ADM1, including its application to a wide variety of 

substrates, as a tool for optimisation, and its modifications to specific situations or 

substrates (Lauwers et al., 2013). In fact particular focus has been on modelling the 

AD of solid substrates (Mairet et al., 2011, Galí et al., 2009, Ramirez et al., 2009) 

and distributed parameter versions have been developed for particular situations 

(Mu et al., 2008). 

Despite many developments, there are still topics that require more research work 

and that have specific relevance to the work in this thesis: 

 A recent review identified that feedstock characterisation for use as model 

inputs was still a bottleneck to a broader adoption of ADM1, with more work 

being required on this topic (Batstone et al., 2015). While some methods do 

exist for characterisation, they are still not well developed or generally adopted.  

 In another review paper, Mata-Alvarez et al. (2011) identified that there were 

relatively few research papers that explored the issue of anaerobic codigestion, 

where a mixture of substrates are digested together. 

 A third review paper, exploring the various inhibition causes and effects in AD 

processes (Chen et al., 2008), highlights the deficiency of this part of ADM1 in 

which only a handful of the inhibition mechanisms are included. 

Meanwhile there is a growing area of study surrounding the benchmarking of 

operational and control strategies for biological systems which is fairly mature for 

wastewater treatment (Mottet et al., 2013), but it is still relatively undeveloped for 

AD systems, with only a few studies so far (Alferes, 2012, Alferes et al., 2012, 

Batstone and Steyer, 2007).  
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1.3 Aims and objectives 

From the identified requirements and deficiencies of AD models, and considering 

the demand driven operation of an AD system integrated into a microgrid, the 

following aims of this research can be formed: 

AIM: To improve the capabilities of ADM1 in order to use it as a tool for the analysis 

and design of operational strategies of an AD system integrated into a microgrid 

energy system. 

In order to fulfil the aim a number of objectives have been defined as follows: 

1) To develop a methodology which allows characterisation of any substrate 

for its input into ADM1. 

2) To assess different ADM1 substrate degradation mechanisms, which allow 

accurate description of the biogas production kinetics from the characterised 

substrates from 1).  

3) To use the method from 1) and the updated model developed in 2) to 

assess the capability of ADM1 to predict the output of an AD system fed on 

a different substrates with temporal variations in codigestion mixtures.  

4) To use experimental data to assess the possible mechanisms for inhibition 

that are relevant to AD systems with fluctuating/intermittent loading rates 

and to incorporate them into the updated version of ADM1 from 2) 

5) To use the updated version of ADM1 from 4) to performed in silico 

assessment of the performance of an AD system in a hypothetical microgrid 

energy system with regards to operational strategies, potential control 

systems and reactor designs.  

1.4 Thesis structure 

The subsequent content of this thesis is split into the following chapters: 

 Chapter 2 Literature review – This section is a review of the important 

literature regarding the AD process and AD process modelling, including the 

biochemical and physiochemical aspects. It goes on to discuss the input 

data requirements of ADM1 and existing methods of how this data can be 

obtained.  

 Chapter 3 Methodology – In this section the methods used throughout 

chapters 4-6 are described. Both the modelling and experimental 
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approaches are described. The chapter goes on to describe the 

development of the methodology for substrate characterisation (both 

biochemical and kinetic) (Objective 1) and how the codigestion process is 

managed from a modelling perspective.  

 Chapter 4 Substrate fractionation – This chapter presents and discusses the 

results from the substrate biochemical and kinetic fractionation based on 

both batch and continuous experimental results (Objective 1). Different 

substrate degradation model structures, within ADM1, are compared and 

discussed (Objective 2).  

 Chapter 5 Codigestion and inhibition modelling – The first half of this 

chapter includes results and discussion of the codigestion experimental and 

modelling work, including the assessment of the modified ADM1 model to 

accurately describe codigestion (Objective 3). Inhibition mechanisms are 

explored in the second half of this chapter, including selection of the most 

important inhibition functions (Objective 4) for inclusion in the updated 

ADM1 model for use in Chapter 6. 

 Chapter 6 Modelling microgrid energy systems containing anaerobic 

digesters – This chapter includes the modelling of the microgrid energy 

system in HOMER and goes on to assess (in silico) a variety of operational 

strategies and control systems to allow an AD system to meet the biogas 

demands of the microgrid (Objective 5).  

 Chapter 7 – Conclusions and future work. 
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2 Literature review 

2.1 The AD process 

Anaerobic digestion (AD) is a complex process carried out by a consortium of 

different microorganisms. During the process, biodegradable organic substrate is 

converted to methane, carbon dioxide and biomass; organic nitrogen and sulphur 

are reduced to ammonia and sulphides respectively. It occurs naturally in 

environments such as such as landfills, rice fields, sediments, and intestinal tracts 

of animals where light and inorganic electron acceptors (oxygen, nitrate, sulphate, 

iron, etc.) are not present or limiting (Angelidaki et al., 2011). In contrast to aerobic 

processes, where the reactions are driven by the presence of oxygen as an 

external electron acceptor, anaerobic digestion processes are driven by the 

presence of internal electron acceptors: gaseous and dissolved products (mainly 

methane and carbon dioxide) have the same combined carbon-oxidation state as 

the primary substrates (Batstone and Jensen, 2011). 

The microbial ecology present in a digester is complex and consists of a sequence 

of interrelated reactions (Batstone and Jensen, 2011): 

1. Hydrolysis, during which biopolymers are solubilised by extracellular 

enzymes. 

2. Acidogenesis, during which soluble substrate such as sugars and amino 

acids are converted through fermentation largely to organic acids and 

alcohols.  

3. Acetogenesis, during which fermentation products are converted to acetate 

and hydrogen using hydrogen ions or bicarbonate as electron acceptors.  

4. Homoacetogenesis, during which hydrogen is used to reduce carbon 

dioxide to acetate, and its reverse reaction which oxidise acetate to carbon 

dioxide and hydrogen. 

5. Hydrogen-utilising methanogenesis (hydrogenotrophic), during which 

hydrogen and formate are converted with carbon dioxide to methane.  

6. Acetoclastic methanogenesis, during which acetate is cleaved to form 

methane from the methyl group and carbon dioxide from the carboxyl group 

in a fermentation reaction. 
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Acetogenic reactions occur due to a syntrophic relationship with hydrogen-utilising 

organisms (Figure 2.1): interspecies hydrogen transfer between these two groups 

maintains hydrogen concentration to a level that is thermodynamically favourable 

for the occurrence of acetogenic reactions (Schink, 1997). Homoacetogenic 

reactions have usually minimum impact in mesophilic reactors and therefore are 

neglected in most AD models (Batstone et al., 2002). However in certain conditions, 

such as with inhibition of hydrogenotrophic methanogenesis in biohydrogen 

production (Siriwongrungson et al., 2007) and in psychrophilic conditions (Conrad 

et al., 1989), or with ammonia inhibition of acetoclastic methanogenesis (Schnürer 

and Nordberg, 2008), the homoacetogenic rate increases and its impact should be 

considered.   

 

Figure 2.1. Syntrophic relationship between acetogenic and hydrogen-
utilising microorganism. Adapted from Angelidaki et al. (2011). 

Depending on the feedstock characteristics, and on the initial conditions in batch 

operation, a rate limiting mechanism, which kinetically limits the production of 

methane, can usually be identified (Donoso-Bravo and Mairet, 2012). The most 

common controlling mechanisms are hydrolysis and methanogenesis, and on this 

basis a simple classification of anaerobic systems is often proposed (Batstone and 

Jensen, 2011):  

 Methanogenesis controlled systems. This apply to systems that are fed mostly 

with soluble substrate or where the resulting buffering is poor: the rate of 

methane production is limited by the growth rate of methanogenic 

microorganisms. A decrease in the performance of the system is indicated by 

an increased concentration of volatile fatty acids (VFA) in liquid phase and of 

H2 in the liquid and the gas phase; severe reductions of pH and gas flow 

indicates process failure.  
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 Hydrolysis controlled systems. This applies to systems that are fed mostly with 

particulate substrate and where the release of ammonia from protein 

degradation ensures a robust buffering system. The rate of methane production 

is limited by the hydrolytic solubilisation of particulate matter; the rate of 

methane production is therefore governed by the retention time of solids in the 

system. The poor performance is indicated by an increase of solids 

concentration in the effluent.  

In some cases this classification is not straightforward, as in the case of particulate 

substrates which contain/produce inhibitory compounds of the methanogenic steps 

(e.g. manure which can often produce ammonia inhibition). In this case a more 

complex modelling of the process can assist in the analysis and design of the AD 

system. Further details about the AD processes and biochemistry is included in 

Section 2.3, where the AD modelling is described.    

2.2 Reactors for AD 

Several configurations exist for the engineering and designing of the reactors for 

anaerobic digestion (Figure 2.2): anaerobic digesters can differ depending on their 

loading regime, temperature of operation, solids content in the reaction phase, 

spatial separation of the digestion stages, flow characteristics and mixing, 

differential retention time for the biomass, etc. These configurations may be 

combined between them and therefore many different AD reactors can be devised 

and implemented (Table 2.1). 

The selection of the reactor type depends primarily on the characteristics of the 

influent, mostly its solids content and the relative abundance of soluble to 

particulate solids. A rough classification can be made between (1) reactors which 

treat mostly soluble wastewaters and must provide beneficial conditions for the 

methanogens, and (2) reactors that treat particulate substrate and must provide 

beneficial conditions for the efficient solubilisation of the substrate.  

In the context of the BioCPV project, the selection of the reactor configuration was 

taken after the assessment of the substrate availability and on the basis of other 

context specific characteristics. Given the high moisture content of some of the 

proposed substrates (aquatic weed and manure), and the local available expertise, 

a wet mixed tank was finally proposed.  
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Figure 2.2 Schematic of different reactors configuration. 

2.2.1 Design of AD reactors 

Empirical, recommended values for design of AD reactors are available for common 

substrates whose composition can be assumed fairly constant across different 

systems: for instance, recommended values for manure can be found in Wellinger 

(1999), while for sewage sludge recommended values can be found in wastewater 

reference texts (Tchobanoglous et al., 2003). These values ensure low-risk 

operation of the digester with an average methane yield of the substrate.  

In the simplest modelling approach, the process dynamics is approximated with the 

rate-limiting concept; then the respective kinetics is selected and calibrated (usually 

first-order for hydrolysis limited and Monod for methanogenic limited). A mass 

balance around the digester provides the equations for the temporal evolution of the 

substrate and biomass in the system; it is then possible to optimize the operational 

parameters (e.g. retention time, temperature, recycle ratio) with respect to the 

selected indicators of performance in steady state (e.g. volumetric productivity of 

the digester, substrate removal efficiency, etc.). The minimum retention time to 

avoid wash out can also be calculated, usually taking into account a safety factor. 

The described approach can be found in environmental engineering reference texts 

(Rittmann and McCarty, 2001).  
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Technology  Principle Advantages Disadvantages Max OLR     
 kg COD m-3 d-1 

High rate digester Biomass is retained in the 
reactor through granules 
formation or attachment to 
carriers   

High OLR  
Low footprint  
Low capital cost Resilient to 
shocks  
Low strength effluent  

Clogging or malfunctioning when 
particulate is present in the influent 
Long start up time 

10-15 

Anaerobic pond Large retention time in 
unmixed lagoons 

Low capital cost 
Technological simple and 
robust 

High footprint 
Low degassing effect 
Low OLR 
Needs periodic desludging 

0.1 

Mixed tank Dilution to 3-6% and 
continuous feed into an 
agitated tank 
 
 

Established technology 
Continuous gas production 
A good degree of control is 
possible 

Effluent is in liquid form and might 
need dewatering 
High consumption of energy  
Expensive tanks 

1-3 

Liquid plug flow Influent solids concentration 
around 15%  

High loading rates 
Continuous gas production 

Poor contact between substrate and 
biomass 
Liquid effluent  

5 

Batch solid state Solid concentration higher that 
15%.  
System is 
loaded, enclosed, and 
leachate 
circulated over the solid bed. 

Very high loading rates 
Pre-treatment requirement of 
biomass is lower 
Solid digestate 
 

Gas production is non- constant 
Loading and unloading of substrate 
can be cumbersome 
Difficulty in sealing properly the 
reactors 
Conversion of the substrate may be 
lower 

6-10 

Solid state plug flow Solid concentration higher that 
15%.  
Continuous feed, with leachate 
or effluent recirculation as 
inoculum 

Very high loading rate 
Continuous gas production 
Solid digestate 

Very high capital cost 
Complicated mechanical system 
 

10 

Table 2.1 Anaerobic digestion technologies, adapted from Batstone and Jensen (2011) and Nizami and Murphy (2010).
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The rate limiting approach fails when more complex substrates, which contain both 

easily and slowly degradable components, are fed to the digester; or when highly 

dynamics operations could be expected. In this case a more complex and dynamic 

process modelling is required.       

2.3 Modelling and simulation of AD   

A mathematical model is a set of one or more equations that describe the input/output 

transformation of a system, for the purpose of understanding, predicting or 

communicating the system behaviour. Generally, a mathematical model can be 

classified as empirical (black-box) or mechanistic (white-box) model. A black-box 

model is an empirical model based on an experimental data set and which is able to 

represent the apparent relationship between input and output of a system. For 

instance, in an AD process, a simple relationship between the substrate influent flow 

and the biogas production rate can be considered as a black-box model. The generality 

of a black box model depends on the amount of and type of experimental data; model 

applications are usually limited to small changes in the operational parameters and 

plant inputs. They can be used for formulating rule of thumbs for design and operation.  

A white-box mechanistic model is a mathematical description of a system in terms of its 

constituent parts and mechanisms. For example, in anaerobic digestion, the main 

constituents are the substrate, the microbial biomass and the reactor volume and 

headspace, substrate and gas flows, while the main mechanisms are microbial growth 

and heat and mass transfer. Mechanistic models are built on deterministic principles, 

which permit the prediction of future system states based on the given initial conditions.  

Mechanistic models usually offer better extrapolation capabilities than empirical 

models. Extrapolation capabilities are essential in process modelling, where it is 

important to investigate the process performance under different operating conditions. 

Different process scenarios can be simulated in silico, and at a later stage extra data 

can be collected to validate the most promising scenarios from the simulation (Gernaey 

et al., 2010). Mechanistic models can also be seen as methods for structurally and 

systematically collecting and storing process knowledge obtained at laboratory, pilot 

and full scale.   
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In this thesis, mechanistic models are prevalently used for the design of the AD 

process and the simulation of scenarios with different control and operational 

strategies.  Black box models could be used to map the input - (state of the system) - 

output relationship of the experimental full-scale plant and then using this map as an 

input for the control of the plant. For instance, Gaida et al. (2012) used advanced 

pattern recognition techniques to predict the state of the system from basic online 

measurements of the outputs (such as biogas production, CH4 and CO2 content in the 

biogas, pH value) and of the input (mass flow of different substrates). In this case, the 

black box was trained using synthetic data created with a mechanistic model simulating 

over a wide range of possible plant operating regions, thus showing an interesting 

combination between mechanistic and empirical models.  

2.3.1 Models for anaerobic digestion 

The modelling of AD processes is particularly challenging, given its intrinsic 

characteristics: 

 Multiple reactions, occurring in series and in parallel, mediated by different groups 

of microorganisms. 

 Feedback relations between the physicochemical and biological system 

 Highly non-linear behaviour, in particular of the pH regulation and microbial 

inhibitions.  

 Temporal adaptation of the biomass to the reaction conditions, with resulting 

changes in the observed activity rates (Palatsi et al., 2010). Living cells are in fact 

able to alter the rate and the nature of their biochemical reaction to maintain their 

homeostasis after changes in the environment.  

 Difficulty in collecting experimental data to describe the state of the process (e.g. 

biomass concentration).  

The structure and complexity of a mathematical model is principally dictated by its 

purpose definition, which represents the first step in the model building (Table 2.2).  

AD models can be classified based on their complexities, i.e. on the number of 

reactions and phenomena they take into account in their structure. A review on the 

history of AD modelling with detailed description of the different model structures can 

be found in Gavala et al. (2003). In general the models have differences related to:   
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 The number of biomass groups.  

 The number of steps and intermediates: from limiting step (usually hydrolysis or 

methanogenesis) to multistep. 

 The form of kinetic laws inhibition functions adopted. 

 The inclusion of physicochemical processes. 

 The characterisation of substrate: from dedicated models (e.g. for manure or 

sewage sludge) to generic models (with fractionation in biochemical compounds: 

protein, lipids, carbohydrates, VFAs and inerts).  

Purpose and context Application Model characteristics 

Process design Design of a new, full scale 

system. 

A validated parameter set for a 

similar process is needed. Hydraulic 

and particle behaviour is required.  

Analysis and 

improvement of existing 

system 

Optimization of the 

operational parameters of an 

existing system. 

The required parameter set has to 

be sourced directly from the 

process. The model needs to 

describe the mechanisms that are 

influenced by the investigated 

operational parameters. 

Technology 

development 

Development and 

assessment of new specific 

applications (mixing system, 

substrate pre-treatment, 

inoculum efficacy, etc.).  

The model needs to include detailed 

mechanistic relationships relative to 

the investigated applications (e.g. 

impact of the mixing system on 

mass transfer).  

Model based control Development of a control 

algorithm. 

The model tends to be minimal, with 

many approximations, including only 

relevant variables for control. 

Control and operation 

system benchmarking 

In silico testing and 

evaluation of new control 

hardware and operational 

strategies. 

Complex and realistic models are 

required, including intermediate 

species, inhibition, nonlinear 

kinetics. 

Table 2.2 Overview of different models characteristics and purposes. Adapted 
from Batstone et al. (2006). 
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As a response to the need of a standard model, the IWA Task Group for Mathematical 

Modelling of Anaerobic Digestion developed the generic Anaerobic Digestion Model 

No. 1 (Batstone et al., 2002), which would allow a common basis for further model 

development and comparison of different studies. In its original version, the model 

describes the dynamics of 7 biomass groups, 12 soluble compounds, 5 particulate 

compounds, interrelated by 19 biochemical kinetic processes, 7 physicochemical 

equilibrium processes, and 3 gas-liquid mass transfer processes. The high number of 

parameters, and therefore the related identifiability problem, is the major criticism for 

such a structured model. One of the interesting peculiarities of the ADM1 is that it 

allows the description of the relations between the biochemical, physicochemical and 

hydraulic processes that occur in an anaerobic digester, such as: 

 Biochemical reactions produce weak acids and bases that modify the pH of the 

liquid phase. 

 High and low pH values inhibit the biological activity. 

 The undissociated form (function of the pH) of certain products such as ammonia 

and hydrogen sulphide, has inhibitory effects on biological activity.   

 Gas-liquid interactions between the headspace and liquid phase of a reactor. 

 Biochemical reactions produce gases whose transfer to the gas phase is influenced 

by the hydrodynamics conditions. 

 Low mixing or high solids content can limit the mass transfer rate in the liquid 

phase, thus limiting the overall degradation rate.   

Figure 2.3 shows the classification of the main influential processes for AD and under 

this framework they are described in the next sections. Figure 2.4 gives a “map” of the 

principal reactions considered in ADM1. 

 

Figure 2.3. Principal processes considered for AD modelling 
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Figure 2.4. Biochemical and physicochemical processes considered in ADM1. 
AA: amino acids; MS: monosaccharides. Adapted from Batstone et al. 
(2002). 

Methodologies have been proposed that allow the selection of the structure of a mass 

balance based model, i.e. the maximum number of biomasses groups and steps 

necessary to reproduce an available data set (Rodríguez et al., 2008, Bernard et al., 

2006). For instance, in some cases high complex models such as ADM1 can be 

simplified to simpler models with fewer biomass groups, still maintaining an equivalent 

simulation accuracy (Rodríguez et al., 2008). Such simplification methodologies can be 

useful when more manageable models are necessary for implementing control 

algorithms in already existing AD plants. However, considering the objectives of this 

research, such as scenario simulations for comparing different control strategies, it 

appears how the framework offered by ADM1 does represent a better model structure 

with respect to simpler models. For this reason, in the following paragraphs, which 

describe the various AD processes, a focus is maintained on the ADM1 

implementation.   
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ADM1 has received wide attention since its introduction, and many researchers have 

used it for simulating different AD systems, also proposing ad-hoc updates and 

modifications to the original version (Batstone et al., 2006). Some of the reviewed 

applications are detailed in Table 2.3. 

2.4 Modelling the biochemical processes in anaerobic 

digestion 

Most AD models use a kinetic-based approach to describe the biological experimental 

behavior, incorporating inhibition terms to describe the dependence of the reaction rate 

on environmental factors. In ADM1, first-order kinetics is used to model extracellular 

reactions (degradation and hydrolysis) while Monod kinetics is used to model 

intracellular reactions (acidogenesis, acetogenesis and methanogenesis).  The Monod 

equation is the most frequently used expression for intracellular reactions. However it 

is only valid for balanced growth and should not be applied with rapidly changing 

growth conditions.  

Biochemical reactions are described as substrate uptake and not as biomass growth. 

Substrate uptake considers both biomass growth and maintenance and is related to 

biomass growth through a yield coefficient. Microbial diversity in a mechanistic model 

can be taken into account through the description of the kinetics parameters with 

probability distributions. It has been shown that this kind of approach can better 

simulate the dynamics of the process under inhibiting conditions, e.g. overloading, toxic 

influent, etc. (Ramirez and Steyer 2008). 

The biochemical processes considered in ADM1 are represented in Figure 2.5. It is 

observed that the uptake of substrate, growth and decay of biomass are interrelated: 

the microorganisms decay process results in new substrates that are available for 

growth, and this regeneration approach makes the model analysis more complex. 
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Table 2.3. A selection of ADM1 implementations from the literature. 

Purpose for the model Reactor and substrate Discussion Reference 

Evaluation of different 
feeding regimes 
(continuous or split) on 
methane yield. 
Simulation of net energy 
produced and self-heating 
potential of the digester.  

Pilot scale CSTR (3.5 
m3), co-digesting cow 
manure and energy 
crops.  
Flow-through lab 
reactor (36 L), co-
digesting cow manure 
and rape-oil. 

The model permitted the identification of the best feeding 
regimes, which were functions of the composition of the 
feeding. However the results depend on the hydrodynamics of 
the reactor and cannot be considered to be general. 
The heat released by every reaction was computed and then 
added to the standard ADM1 simulation: in this way a detailed 
energy balance of the system and the influence of different 
substrates on the digester self-heating could be gained.    

(Lübken et 
al., 2007) 

Evaluation of acid dosing 
in order to decrease 
CaCO3 precipitation in the 
reactor.  

UASB, treating paper 
mill wastewater. 

Simulations allowed the prediction of the effect of acid dosing 
on the biochemical reactions.  
Predictions were made on steady state: the process dynamics 
were ignored.  
Calcium carbonate precipitation was described with three new 
state variables added to the standard model.  
Simulations showed that acid dosing has little influence on the 
CaCO3 inventory and methane production.  

(Batstone 
and Keller, 
2003) 

Evaluation of change to 
thermophilic operation, in 
order to: reduce ammonia 
inhibition and related acid 
dosing costs; increase 
hydrolysis and uptake 
rates. 

CSTR, mesophilic, 
treating solids and 
concentrated liquid 
streams from gelatine 
processing.   

The Van’t Hoff equation was used to model the influence of 
temperature on physicochemical parameters. Simulations 
showed that a change to thermophilic operation has little 
impact on reactor stability or increased methane production 
(because of the change in the ammonia dissociation constant 
and in the half saturation constant for acetate uptake reaction). 

(Batstone 
and Keller, 
2003) 

 

 



21 

Table 2.3 (continued) A selection of ADM1 implementations from the literature. 

Evaluation of different 
feeding regimes, 
substrate strength, cycle 
lengths and temperatures 
in a wastewater treatment 
plant  
 

Two anaerobic 
sequential batch 
reactors. 
(ASBR) coupled with 
sludge enrichment 
reactors (SER). 

Simulations showed that thermophilic operation could handle a 
much higher OLR than mesophilic operation, considering both 
pH and ammonia inhibition.  
The optimum cycle length for ASBR was identified, but with 
negligible differences in relation to other simulated cycle 
lengths.  
Parallel and serial operations were compared regarding the 
maximum tolerable OLR and methane yield achievable.      

(Rönner-
Holm et al., 
2012) 

Prediction of biogas 
production and inhibition 
effects; optimization of co-
digestion ratio between 
different substrates.   

Batch and continuous 
lab scale, treating 
different agro-residues. 

The methane potential (and therefore inert fractions) and 
degradation kinetics were identified for various agro-wastes in 
batch reactors. Using these parameters, ADM1 was used to 
predict the co-digestion effects and performance in continuous 
reactors with good accuracy respect to experimental values.     

(Galí et al., 
2009) 

Determination of the SRT 
in the reactor: during 
calibration the value for 
tres is determined.   
Prediction of long time 
operation on selected 
outputs (VFA, TS and VS 
accumulations).  
Evaluation of the 
recirculation rate between 
reactors on VFA and TS 
accumulation in the 
reactors.  

2-stage CSTR (312 L 
each), mesophilic, 
digesting grass silage 

The model permitted the estimation of the difference between 
SRT and HRT, thus allowing a prediction of solids 
accumulation in the reactor.  
Validation of the model using TS values in the reactor was 
complex due to samplings non-homogeneity (stratification 
occurring in the reactor).  
The same set of parameter was used in the two reactors, even 
if different conditions were occurring.  
 

(Thamsiriroj 
and Murphy, 
2011) 
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Table 2.3 (continued) A selection of ADM1 implementations from the literature. 

Identification of the 
causes of reduced 
methane production and 
solid accumulation in long 
term operation (340 days) 
of the digester 

2-stage CSTR (312 L 
each), mesophilic, 
digesting grass silage 

ADM1 was extended including the lactate path from glucose 
fermentation and the acetogenic lactate degraders.  
Results from simulation, which showed lactate accumulation, 
suggested that inhibition of lactate acetogenesis was the origin 
of process failure. However, results from the simulations and 
the related interpretation were not validated rigorously as 
lactate measurements were not available.          

(Thamsiriroj 
et al., 2012) 

Process design Anaerobic septic tank, 
treating concentrated 
sewage sludge 

A simplified version of ADM1 was used to assess the effect of 
HRT and temperature on the COD removal efficiency and 
desludging interval of the system.  

(Elmitwalli et 
al., 2003) 

Process design 2-stage pilot scale high 
solid anaerobic digester 
(HSAD) and UASB 
treating food waste. 
HSAD is mechanically 
mixed in the upper 
zone with floating 
particulate solids and 
unmixed in the lower 
zone with prevalently 
soluble solids.    

HSAD is assumed to operate with a perfect separation of 
particulate solids between upper and lower zones: upper zone 
was modelled as CSTR and lower zone as advective-diffusive 
reactor (ADR). UASB was modelled as ADR as well.  
Model was validated with HSAD operated in batch mode. The 
validated model was used to predict the influence of the 
recycle rate, UASB geometry and retention of methanogens in 
UASB on various performance indicators. 
The difference between calibration in batch mode and 
prediction in continuous mode was not addressed.  

(Yu et al., 
2012) 
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Table 2.3 (continued) A selection of ADM1 implementations from the literature. 

Decision-making, 
Planning-Support tool  
Co-digestion 

Lab-scale continuous 
digester, treating 
different mixes of cow 
manure, corn silage, 
rapeseed oil and grass 
silage. 

The model is calibrated on a specific mixture (cow manure and 
corn silage). The calibrated model is then used as a virtual 
plant to predict the behaviour of the reactor with different 
feeding mixes (different substrate, different percentages, and 
different OLRs). 
The simulation with different substrate mixtures (with respect to 
calibration) is questionable, as some of the biological 
parameters might change. No experimental data were 
available to compare the validity of the simulated data, except 
comparison with literature data range.      

(Zhou et al., 
2011) 

Co-digestion optimisation   The modified version of the ADM1 model developed by Galí et 
al. (2009) predicted correctly the co-substrate degradation of 
pig manure and glycerine, specially, considering the final 
biogas production. 

(Astals et al., 
2011) 

http://www.sciencedirect.com/science/article/pii/S0301479710004172#bib16
http://www.sciencedirect.com/science/article/pii/S0301479710004172#bib16
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The Petersen matrix is often employed to represent biochemical reactions in 

mechanistic models (Gernaey et al., 2010), and ADM1 is also presented in this way 

(Batstone et al., 2002). COD, carbon and nitrogen lost from reactants must flow to 

the products. The matrix representation allows for straight verification of COD, 

carbon and nitrogen conservation: the stoichiometric coefficients for each row 

should add up to zero. Before implementing the model, stoichiometric parameters 

and carbon and nitrogen content of every compound should be checked in a 

spreadsheet and changed consequently to allow material conservation (Batstone et 

al., 2002). The substrate might contain a specific compound whose degradation 

dynamics is of interest: in these cases, the matrix can be updated with the new 

state variable and its related stoichiometric and kinetic parameters. For instance, 

Batstone et al. (2004) included ethanol oxidation to simulate the degradation of 

winery wastewater; Thamsiriroj et al. (2012) included lactate oxidation when 

treating grass silage; and Fedorovich et al. (2003) updated the model considering 

sulfate reduction. 

 

Figure 2.5. Biochemical processes as considered in ADM1 model. The 
biochemical processes include (1) acidogenesis from sugars, (2) 
acidogenesis from amino acids, (3) acetogenesis from LCFA, (4) 
acetogenesis from propionate, (5) acetogenesis from butyrate and 
valerate, (6) acetoclastic methanogenesis and (7) hydrogenotrophic 
methanogenesis. From Batstone et al. (2002)  
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2.4.1 Hydrolysis 

Most organic substrate fed to an agricultural digester is usually in particulate, non-

dissolved form, which cannot be assimilated directly by microorganisms. Hydrolysis 

is the generic term used to indicate the enzymatic extracellular solubilization of 

complex particulate material to monomers or small oligomers (Confer and Logan, 

1998). The process is catalyzed by enzymes, which are usually produced by the 

organisms feeding on the solubilized substrate (Vetter et al., 1998). When 

considering the biodegradable fraction as being composed by carbohydrates, 

proteins and lipids, the hydrolysis products are monosaccharides, amino acids and 

long chain fatty acids, respectively.   

According to Batstone et al. (2002), enzymatic hydrolysis occurs through two main 

pathways: 

 The microorganisms secrete enzymes to the bulk liquid, where they are 

adsorbed onto a particle. 

 The microorganisms attach to a particle and produce enzymes in the vicinity of 

the cell. The organism benefits from the soluble products that are released after 

the enzymatic reaction. This is typical of sessile microorganism organized in a 

biofilm structure. 

The proportion between cell-free and cell-associated hydrolytic enzymes depends 

on the physical and chemical characteristics of the substrate, reactor hydraulics and 

solids concentration (Morgenroth et al., 2002, Song et al., 2005). It is possible to 

quantify experimentally the different proportions and activities between cell-free and 

cell-associated enzymes (Parawira et al., 2005, Zhang et al., 2007): however it is 

difficult to generalize results obtained in particular experimental conditions, and 

even more to make predictions based on inoculum, substrate or operation 

characteristics.  

The complete enzymatic hydrolysis process is a complex multi-step process, which 

applies both to cell-free and cell-associated enzymes (Figure 2.6): 

 enzyme production, at a rate which depend on environmental conditions (such 

as the concentration of soluble substrates);  

 transport processes of enzymes from cell to bulk liquid or local cell environment, 

which might be limited at large particle sizes and high solids concentration; 

 adsorption processes which are limited by available surface area; 
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 reaction rates which are limited by the surface area and enzyme concentration; 

 transport of reaction products into bulk liquid or into biofilm;  

 deactivation of the enzyme, which in turn depends on pH and temperature. 

It is possible to model hydrolysis taking into account the influence of all these steps; 

however it would be very difficult to validate these models and simpler approaches 

are usually used.  

 

Figure 2.6. Main steps in enzymatic hydrolysis. From Batstone and Jensen 
(2011). 

A first-order function in relation to substrate concentration is mostly used to model 

hydrolysis: it has been shown to be able to represent the cumulative effect of the 

multistep process and to return the average at which heterogeneous substrate is 

degraded (Eastman and Ferguson, 1981). In the ADM1 STR (Batstone et al., 2002) 

the first-order kinetics is recommended as the default function. In ADM1, different 

hydrolysis constants are attributed to different compounds (carbohydrates, protein, 

lipids), but in some cases the model has been modified to consider general slow 

and fast hydrolysable fractions (Zhao et al., 2009, Yasui et al., 2008). Hydrolysis is 

characterized as a first order reaction only once particulate surface is fully colonized 

by hydrolytic bacteria (O'Sullivan et al., 2005, Song et al., 2005). Nevertheless, 

there exist particular situations where predictions by first-order functions are poor 

and different approaches are preferred. In particular, a more complex description is 

necessary in certain conditions (Vavilin et al., 2008):  

 The biomass to substrate ratio is low: for instance during start-up of continuous 

reactors, or in batch experiments (with a sigmoid curve in the experimental 

results indicating a colonization by the biomass). In these cases, a kinetics that 

shows dependency both to biomass and substrate concentration should be 

used. For example, Contois kinetics was used to update the standard ADM1 by 

Ramirez et al. (2009) when simulating the digestion of waste activated sludge in 
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batch reactors. The new kinetics considers new biomass groups responsible for 

hydrolysis, with the respective yield factors: this is just a modeling technique as 

no real biomass growth can happen during hydrolysis. Another more economic 

approach would be to consider the acidogenic biomass as the influential 

biomass in the Contois kinetics. This approach has been implemented by Mairet 

et al. (2011) when digesting microalgae.     

 The influences of particle sizes and shapes on hydrolysis rates need to be 

investigated. It can be an interesting approach to predict how the hydrolysis 

constant for a certain substrate change at different levels of mechanical pre-

treatment (such as in small batch in respect to full-scale continuous 

experiments) (South et al., 1995).     

 Inhibitions by pH, or accumulation of sugars and amino acids need to be 

considered (He et al., 2006); functions for expressing the pH inhibition can be 

obtained from Veeken et al. (2000), and Sanders (2001).  

Solids concentration has been shown to influence the hydrolysis rate (Pommier et 

al., 2007); in this regard, Koch et al. (2010a) updated the ADM1 implementation 

with an inhibition function in the first-order hydrolysis expression. The inhibition 

function introduces a new parameter (hydrolysis influence degree index) that needs 

to be calibrated in experiments with variable feeding solids concentration. Also 

Abbassi-Guendouz et al. (2012b), when calibrating the ADM1 model for batch 

digestion of OFMSW, found that the hydrolysis rate constants linearly decreased 

with increasing TS concentration for 15%<TS<30%. 

The ADM1 STR considers a disintegration step prior to hydrolysis. The 

disintegration step was originally included for sewage sludge degradation and 

intended as a combination of non-biological steps such as cellular lysis, non-

enzymatic decay, phase separation, and physical breakdown. However, in the case 

of solid wastes and agro-residues, it can be assumed that hydrolysis can occur 

without a disintegration step, with enzymes being able to diffuse into the substrate 

structure without cellular lysis:  the model can be simplified by neglecting the 

disintegration parameters (Zaher et al., 2009). Moreover, the parameters for 

disintegration and hydrolysis are strongly correlated in most experimental setups. 

Therefore many pairs of parameters can reproduce the same experimental results 

with similar accuracy, as was shown numerically by Biernacki et al. (2013): this is 

another reason for avoiding the complication of disintegration kinetics.  
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2.4.2 Acidogenesis 

Acidogenesis is generally defined as a microbial fermentation process in which 

organic compounds serve both as electron donor and as electron acceptors (Gujer 

and Zehnder, 1983). The substrates for fermentation are the soluble 

monosaccharides and amino acids produced during hydrolysis.  The LCFA 

produced during hydrolysis of lipids are degraded through an oxidation reaction with 

an external electron acceptor. 

Acidogenesis from monosaccharides 

Fermentation from monosaccharides (sugars) is one of the most widely applied 

biotechnologies in the world. It is used to produce food products, renewable fuels, 

pharmaceuticals, and industrial chemicals. Usually it is carried over using pure or 

specialized microbial cultures in sterile environments, while in anaerobic digestion 

fermentation is realized by different microorganisms groups: the characteristics of 

the participating microbial groups and the composition of the fermentation products 

greatly depend on the process environment (Costello et al., 1991).  

The ADM1 STR considers glucose as the model monomer for fermentation. 

Acetate, propionate and butyrate have been considered as the only fermentation 

products, given the possibility to analyse them simultaneously in GC analysis and 

their different downstream degradation paths. Other fermentation products, such as 

ethanol and lactate, have been omitted in the original formulation of ADM1, as their 

concentration as fermentation intermediates is usually low in most anaerobic 

digesters (Batstone et al., 2002).  

Fermentation is implemented in ADM1 by considering a single group of 

microorganisms with lumped parameters. The value of the yields of the different 

fermentation products are fixed at the beginning of the simulation. A more realistic 

approach would include a regulation function that changes the relative yield 

depending on influential environmental factors (principally pH and H2 

concentration), as described in detail by Mosey (1983). For instance, it is expected 

that a low hydrogen concentration would promote hydrogen-rich reactions, such as 

acetate production, and that low pH would enhance ethanol production. In this 

regard, Rodriguez et al. (2006) updated the ADM1 with variable stoichiometric 

coefficients for glucose fermentation, based on the Gibbs free energy variations of 

the different  fermentative pathways. This approach should be applied when 

simulating an acidogenic reactor for biohydrogen production (Penumathsa et al., 
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2008) or when a better prediction of the composition of the fermentation products 

(considered as fuels or chemicals) is required (Horiuchi et al., 2002); in the case of 

methanogenic reactors, where the rate limiting acetoclastic reaction compensates 

the differences in the fermentation pathways, no significant differences in the 

prediction of effluent quality and system robustness have been observed between 

the fixed and variable stoichiometry approaches (Rodriguez et al., 2006).  

 

Figure 2.7. Variable stoichiometric coefficients for the fermentation of 
glucose as a function of pH and dissolved hydrogen concentration. 
From Rodriguez et al. (2006). 

Acidogenesis from amino acids 

Hydrolysis of proteins results in a mix of amino acids, whose relative yield depends 

on the protein primary structure. There are two main pathways for amino acid 

degradation (Batstone et al., 2002): 

 Stickland oxidation-reduction paired fermentation. 

 Uncoupled oxidation of single amino acids with an external electron acceptor, 

such as hydrogen ion or carbon dioxide.  

In anaerobic digesters, with normal mixed-protein systems, it is assumed that most 

of the amino acid degradation occurs through Stickland fermentation, which is 

faster than uncoupled oxidation. Only a minor part of amino acids, typically about 

10%, is degraded by uncoupled oxidation because of a shortfall of external electron 

acceptors, with the production of hydrogen or formate. Oxidation reaction will 

therefore be favoured with low hydrogen and formate concentrations or under 
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thermophilic conditions when oxidative reactions become more thermodynamically 

favourable.  

The IWA task group decided to consider only Stickland reactions in the ADM1 

structure (Batstone et al., 2002), thus simplifying the determination of the 

stoichiometric yields of the products. An estimation of the stoichiometric yields can 

then be obtained when knowing the following data:  

 Amino acids content of a protein mix, directly from analysis or indirectly 

approximated from available databases (FAO/INFODOS, 2012). 

 The Stickland acceptor/donor/uncoupled status of each amino acid and 

consequently the products of each amino acid coupled reaction. A description of 

the method and a spreadsheet with the Stickland products for each amino acid 

is available in (Ramsay and Pullammanappallil, 2001). 

Most of the published applications of ADM1 have used default stoichiometric values 

suggested for sewage sludge in the initial STR; when the characteristic of the 

substrate are particular, such as high contents of proteins or specific amino acids, 

new stoichiometric values should be calculated. 

2.4.3 Syntrophic acetogenesis and hydrogen-utilising 

methanogenesis 

Degradation of organic acids to acetate (in the case of valerate also to propionate) 

is an oxidation step with hydrogen ions and carbon dioxide as external electron 

acceptors, which are converted to hydrogen gas and formate, respectively. The 

oxidation reaction becomes exergonic (thermodynamically favourable) when the 

concentrations of the electron carriers, hydrogen and formate, are maintained at 

low levels. Therefore, the acetogenesis occurs necessarily in association with 

hydrogenotrophic methanogenesis which is an electron consuming reaction. Close 

spatial relationships between oxidising Bacteria and methanogenic Archaea are 

usually observed in anaerobic digesters in the form of granules or biofilms: these 

forms of aggregation facilitate the electron transfer between species, thus 

increasing the global process rates. High shear stress, caused by the intense 

mixing, can hinder the formation of these syntrophic spatial aggregations (Stroot et 

al., 2001). 

Three acetogenic biomass groups are implemented in ADM1, each degrading 

specific substrates: one for propionate, one for butyrate and valerate, and one for 
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LCFA (acids containing more than five carbon atoms). A single group of organisms 

is used to model the methanogenic removal of hydrogen.   

Syntrophic reactions are thermodynamically limited in a narrow range of hydrogen 

concentrations. The value of these thermodynamic limitations has been used in the 

ADM1 to determine the kinetic parameters for (non-competitive) hydrogen 

inhibition, as well as the half saturation coefficients and yields. In fact, in ADM1 

thermodynamic limitations are implemented through kinetic control as inhibition 

functions.  

Methanogenesis is the major sink for electrons in an anaerobic system; other 

alternative, minor, sinks are nitrate reduction, sulphate reduction, iron reduction and 

homoacetogenic hydrogen consumption. None of them have been implemented in 

the ADM1 STR, as their contribution is negligible in most digesters. However, they 

should be considered in the modelling when the substrate contains elevated 

amounts of these alternative electron acceptors; or, for homoacetogenesis, in the 

case of digestion at low temperatures and inhibition of hydrogenotrophic 

methanogenesis. An update for sulphate reduction has been proposed by 

Fedorovich et al. (2003), while Antonopoulou et al. (2012b) have proposed an 

extension for homoacetogenic hydrogen consumption when modelling biohydrogen 

production.   

2.4.4 Acetoclastic methanogenesis 

In this step, acetate is cleaved to form methane and CO2. Two genera amongst 

methanogenic Archaea have been shown to be predominant: Methanosarcina and 

Methanosaeta. Methanosarcina dominates above 10-3 M acetate while 

Methanosaeta dominates below this acetate level. Methanosaeta may have lower 

yields, higher km values, lower KS values and be more pH-sensitive as compared to 

Methanosarcina (Palma-Behnke et al., 2011, De Vrieze et al., 2013) and therefore 

in flexible demand applications it is expected to have peaks in acetate 

concentration which would favour the growth of Methanosarcina.  Methanosaeta is 

usually found in high-rate/biofilm systems, while Methanosarcina is more frequent in 

mixed digesters. In the ADM1 STR, it was recommended to implement a single 

group of acetoclastic methanogens, with kinetic and inhibitory parameters selected 

depending on the application and experimental observations.  

Despite this, most ADM1 applications in the literature have made no careful 

selection of the parameters for acetoclastic methanogenesis; instead standard 
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values recommended in the STR have been used or in other cases calibrated from 

experiments (as can be seen in Table 2.4 in the section dedicated to model 

calibration).  

2.4.5 Inhibition and toxicity 

Inhibition can generally be understood as an adverse effect on the metabolism and 

function of the microorganisms. Inhibitory compounds induce a decrease in the 

energy available from catabolism, or an increase in the amount of energy required 

for biomass maintenance.  Two forms of inhibition can be identified, depending on 

their reversibility (Batstone et al., 2002): 

 Biocidal inhibition (also defined as toxicity): it is normally irreversible and it is 

caused by LCFA, detergents, aldehydes, nitro-compounds, antibiotics, etc. 

 Biostatic inhibitions: it is normally reversible and it consists of product 

inhibition, weak acid/base (VFA, H2S, NH3) inhibition, pH inhibition, cation 

inhibition and other effects that can disrupt homeostasis. 

While there are differences regarding the specific inhibitory mechanisms and 

compounds, methanogenic archaea are generally more vulnerable to inhibition and 

toxicity than bacteria. An order of sensitivity to inhibitions of the various biological 

steps, from least to most, is as follows (Batstone and Jensen, 2011): acidogenesis, 

hydrolysis, acetogenesis, hydrogenotrophic methanogenesis and acetoclastic 

methanogenesis. 

A complete review of toxic and inhibitory effects on AD is available in Chen et al. 

(2008), and can be consulted for the thresholds of various toxic and inhibitory 

compounds. Most models are focused on inhibitory effects, as these usually can be 

reduced with an appropriate, model-based, operational strategy. Dynamic behavior 

of an AD systems during start-up or load changes is greatly influenced by inhibitory 

effects, which then should be carefully included in a dynamic model. Toxic 

compounds in the influent should be tackled with an appropriate pre-treatment and 

not allowed to influence the normal operation of an AD system. 

pH inhibition is used in ADM1 to describe a combination of intracellular processes: 

weak acid and base inhibition, disruption of cell homeostasis and protein (enzyme) 

denaturation. These processes are all directly or indirectly influenced by changes in 

the pH environment. Various empirical forms are suggested, with different 

parameters for acetogenesis and acidogenesis, hydrogen-utilizing methanogens 
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and acetoclastic methanogens: the parameters depend on the optimal, lower and 

upper pH values for every microorganism group (Batstone et al., 2002). Another 

expression for pH inhibition implemented in ADM1 can be found in Lübken et al. 

(2007). Hydrolysis can be inhibited at either low or high pH values, probably by 

partial denaturation of enzymes: however this has not been implemented in the 

ADM1 STR.  

In addition to pH inhibition, the ADM1 STR includes hydrogen inhibition of 

acetogenesis (which is a case of product inhibition) and free ammonia inhibition of 

acetoclastic methanogens, both implemented using non-competitive inhibition 

forms. Free ammonia inhibition is typical when the digester is fed with manure or 

with high protein content. LCFA inhibition is not included in ADM1, but should be 

implemented when lipid-rich substrates are fed to the reactor.  

2.4.6 Influence of temperature 

Microorganisms present in anaerobic systems are usually divided in three different 

groups, depending on their temperature range of growth: psychrophilic (10-30° C), 

mesophilic (20-40° C) and thermophilic (45-70° C). Every group has an optimum 

temperature at which the rate of growth is maximum, above which the rate 

decreases. Different mechanisms are used to explain the influence on biological 

reactions (Batstone et al., 2002): 

 Increase in the reaction rate with increasing temperature. 

 Decrease in the reaction rate when temperature is above the optimum (>40° C 

for mesophilic and >65° for thermophilic). 

 At higher temperatures the microorganisms expend a higher amount of energy 

on maintenance, with a resulting decrease in yield and an increase in the half 

saturation constant (Ks). 

 Higher temperatures also lead to higher decay rates.   

Changes in temperature affects the available thermodynamic driving force of the 

reaction (von Stockar et al., 2006), with consequential changes in yield and 

eventually in reaction pathway. For instance, at high temperatures, acetate 

oxidation becomes thermodynamically favoured and its impact should be 

considered when modelling. 

Most models are calibrated at a single temperature, and this is because active 

heating systems are able to maintain the process around the selected temperature 
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and with only a small variation. In these cases, exact relationships that model the 

effect of temperature are not necessary in the model. When the process 

temperature is expected to fluctuate with higher variations, or when the influence of 

the temperature on the process performance needs to be investigated, the model 

could be extended with relationships between kinetic constants and temperature:   

 Calibrated Arrhenius equations can be used to describe the change in the 

kinetic constants (e.g. khyd, km,process) with temperature, before and above 

optimum (Pavlostathis and Giraldo‐Gomez, 1991). 

 It is more difficult to include the influence on yields and Ks, and usually the 

only distinction made is between mesophilic and thermophilic, for which 

different sets of parameters are proposed in the ADM1 STR. 

2.4.7 Modelling codigestion 

Anaerobic codigestion is defined as the addition of two or more sources of biomass 

to an AD system with complementary characteristics so that the biogas production 

process can be enhanced in some way such as nutrients and/or moisture 

balancing, thus avoiding inhibition or maximising biogas production (Mata-Alvarez 

et al., 2011). The nitrogen content of a feedstock is the usual reason for codigestion 

with optimal carbon to nitrogen (C/N) ratios quoted in the range of 12-70 being 

reported (Diagne et al., 2013, Hentz and Balchunas, 2000) although other reasons 

are still relevant, such as establishing the correct levels of micro/macro nutrients, 

alkalinity, potential inhibitory and/or toxic compounds, degradable matter and total 

solids may also be important (Flores-Alsina et al., 2016).  

Recently, most modelling studies dealing with codigestion use modified versions of 

ADM1 (Mata-Alvarez et al., 2011), with the main differences initially focussing on 

the redundancy of the particulate composite component of ADM1 and instead  

using the three biochemical compound categories (carbohydrates, proteins and 

lipids) in order to describe influent organic matter (Zaher et al., 2009, Galí et al., 

2009, Boubaker and Ridha, 2008, Lübken et al., 2007). On using this method, 

substrates of differing biochemical compositions could be fed to the system rather 

than using a single composite matter fraction with fixed degradation stoichiometry. 

Apart from this development these authors offered several enhancements or 

modifications to ADM1 relating to their particular modelling problem (e.g. Boubaker 

and Ridha (2008) modified the inhibition model for acetoclastic methanogens to 

better predict process failure) and were not specific to the codigestion issue. 
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However the work of Zaher et al. (2009) represented the largest structural 

modification to ADM1 in order to enhance the modelling of codigestion in that the 

individual biochemical components of each feedstock were allowed to degrade 

using different kinetics, with the flux of soluble products from each hydrolysis 

reaction (of each feedstock) being combined into a detailed input vector to the 

standard ADM1 model. 

2.5 Modelling of the physicochemical processes 

There are two broad types of physicochemical, non-biological mediated, processes 

that occur in a digester (Batstone et al., 2002): 

 Ion association/dissociation: these are rapid compared to biochemical 

processes rates. 

 Precipitation/solubilisation: these are medium/slow compared to biochemical 

processes rates. 

The modelling of physicochemical systems is very important when building inclusive 

AD models: 

 It allows the expression for biological inhibition factors (e.g. inhibition caused by 

pH, free acids and bases, etc.). 

 It allows the prediction of pH and relative control strategies to maintain a certain 

setpoint.  

2.5.1 Ion association/dissociation  

In an anaerobic system there are several compounds whose pKa values 

(dissociation constant) are close to the operating pH of the digester and therefore 

their association/dissociation processes need to be considered in the model. In 

particular, organic acids have a pKa of about 4.8 and the acid-base pairs 

CO2(aq)/HCO3
- and NH4

+/NH3 have a pKa of 6.35 and 9.25, respectively.   

The typical way of describing the ion behaviour is through a charge balance which 

considers the total cationic and anionic equivalents concentrations in the system: 

∑ 𝑆𝑐𝑎𝑡+ = ∑ 𝑆𝑎𝑛− (2.1) 
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When applied to a digester, the balance becomes: 

𝑆𝑐𝑎𝑡+ + 𝑆𝑁𝐻4
+ + 𝑆𝐻+ = 𝑆𝑎𝑛− + 𝑆𝑂𝐻− + 𝑆𝑉𝐹𝐴− + 𝑆𝐻𝐶𝑂3

− (2.2) 

 

with subscripts VFA- referred to dissociated volatile fatty acids and cat+ and an- to 

cations and anions. Because association/dissociation processes are very rapid 

compared to biochemical processes, they can be represented as equilibrium 

processes with an algebraic equation for every considered species, e.g.:  

𝑆𝑉𝐹𝐴− =
𝐾𝑎,𝑉𝐹𝐴𝑆𝑉𝐹𝐴

𝑆𝐻+
 

(2.3) 

 

where the concentration of the undissociated species are also used in the 

biochemical processes equations. Finally the equation (2.2) can be solved 

iteratively for the unknown variable 𝑆𝐻+to obtain the pH value of the system. 

With systems with medium/high levels of ions (e.g. when the effluent is recycled 

upstream), the modelling should take into account the non-ideal behaviour and 

update the equilibrium equations with ion activities (Musvoto et al., 2000). This 

recommendation should apply to most digesters that treat high-strength substrates; 

however it has not been applied so far in the literature consulted.  

2.5.2 Solids precipitation 

Solids precipitation is the complexing of cations and anions in neutral inorganic 

solid form. Potentially important solid precipitates in anaerobic digesters include 

calcium carbonate, calcium phosphate, magnesium carbonate, metal sulphide and 

magnesium-phosphate complexes such as struvite. Calcium carbonate precipitation 

is important when wastewaters from the pulp and paper industry are treated; metal 

sulphide precipitation is important when iron is added to precipitate the hydrogen 

sulphide produced during the reduction of sulphate and sulphur rich substrates; 

magnesium precipitates when the influent is rich in Mg2+ or when Mg(OH)2 is used 

to raise the pH (Batstone et al., 2002).  

Metal-ion precipitation is generally described by equilibrium-driven dynamic 

relationships (similarly to acid-base description), where the anion concentration is 

pH dependent (Musvoto et al., 2000). In addition to equilibrium thermodynamics, 

the actual mechanism of crystallization is more complex and also kinetically 
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controlled: its kinetics depends on the influence of other factors such as the 

presence of seeds, promoters and inhibitors, and solution activity. 

Most practical anaerobic systems do not contain a high concentrations of metal ions 

and therefore solid precipitations have very rarely been considered in ADM1 

application in the literature. Batstone and Keller (2003) have considered and 

implemented calcium carbonate precipitation in the case of the digestion of the 

wastewater from paper industry.  

In the BioCPV case, it appears that solid precipitation implementation is not 

necessary. When some of the selected substrates contain a high level of metal 

ions, the sensitivity of the model to solid precipitation could be tested. For instance, 

when not considering carbonates precipitations some of the following inaccuracies 

may arise: incorrect pH prediction; over-prediction of carbon dioxide in the gas 

phase; faster physicochemical dynamics in the model with respect to the system 

(when the precipitated carbonate have long retention times in the system). 

2.5.3 Modelling the transport dynamics 

Transport dynamics effects include: 

 Liquid-gas mass transfer: they are normally rapid/medium compared to 

biochemical processes rates. 

 Liquid-liquid mass transfer: they are normally rapid/medium compared to 

biochemical processes rates. 

 Major performance variables such as gas flow are dependent on correct 

estimation of transport dynamics. 

Liquid-gas mass transfer 

During anaerobic digestion three main compounds with low solubility are produced: 

hydrogen, methane and carbon dioxide. It is important to determine their mass 

transfer to the gas phase, as it influences the amount and composition of the biogas 

produced, the pH of the liquid phase (CO2) and also on the inhibition of the reaction 

in the liquid phase (H2). Ammonia is not considered as its solubility is very high and 

thus it remains mostly in the liquid phase, and hydrogen sulphide mass transfer can 

be considered when its biochemical reactions are implemented.  

When the gas and liquid phase reach equilibrium, the well-known Henry’s law can 

be used to predict the equilibrium relationship for each compound between 
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concentration in the liquid phase and partial pressure in the gas phase. However, in 

dynamic AD processes the thermodynamic equilibrium is not reached and liquid 

effluent is significantly supersaturated. Therefore a dynamic gas transfer equation is 

used to describe liquid-gas transfer. Using the two film theory and neglecting the 

resistance to mass transfer in the gas phase, the following equation is obtained 

(Stumm and Morgan, 1996): 

𝜌𝑇,𝑖 = 𝑘𝐿𝑎(𝑆𝑙𝑖𝑞,𝑖 − 𝐾𝐻𝑝𝑔𝑎𝑠,𝑖) (2.4) 

 

where 𝜌𝑇,𝑖 is the mass transfer rate of the gas i (mol d-1 l-1), 𝑘𝐿𝑎 is the mass transfer 

coefficient (d-1), 𝑆𝑙𝑖𝑞,𝑖 is the dissolved gas concentration (M), 𝐾𝐻 is the Henry’s law 

coefficient (M bar-1) and 𝑝𝑔𝑎𝑠,𝑖 is the partial pressure of gas i.  

The total gas flow can be calculated from the sum of the gas transfers, after 

subtracting the saturated vapour pressure from the headspace total pressure; 

alternatively, if the headspace pressure is variable, or there is a downstream gas 

process, the gas flow can be calculated by a control loop in pressure (Batstone et 

al., 2002). The implementation of these calculation methods in the ADM1 

framework presents certain computational challenges which are described in Rosen 

and Jeppsson (2006). An alternative calculation method for implementing the gas 

transfer and calculating the total gas flow in ADM1 has recently been suggested by 

Smith and Stöckle (2010).   

Values of 𝑘𝐿𝑎 depend on the mixing, temperature and liquid properties, and to a 

lesser extent also on the specific gas considered. A good overview on the 

mechanisms governing the value of 𝑘𝐿𝑎, the theoretical approaches to determine it 

and experimental dynamic data is provided in Merkel and Krauth (1999). 

Interestingly, the article shows how the measured 𝑘𝐿𝑎 values for the CO2-mass 

transfer differed by a factor of 2-3 from the steady-state to dynamic loading 

conditions. When implemented in ADM1, it has been found that the dynamics of the 

modelled systems are almost insensitive to changes in 𝑘𝐿𝑎 values: Feng et al. 

(2006) reported that only low values of 𝑘𝐿𝑎, smaller than 1.0 d-1, affected the 

prediction of the model; the same result was found by Bollon et al. (2011). The 

relative insensitivity of the model to medium to high values of 𝑘𝐿𝑎 might justify the 

adoption of default values, 200 d-1 (Rosen and Jeppsson, 2006), in almost all ADM1 

implementations, where well mixed systems were analysed; however, care should 

be taken when the modelled system has low or discontinuous mixing, or with high 
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solids content, where low values of 𝑘𝐿𝑎 could affect the system. For instance,  

Abbassi-Guendouz et al. (2012b) have shown that inhibited methane production in 

high solids batch reactions (higher than 30% TS) can be simulated in ADM1 using 

low values of 𝑘𝐿𝑎 (0.5 d-1). Accumulation of dissolved CO2 may cause local 

acidification and thus inhibition of methanogenesis with further VFA accumulation 

and acidification. In some highly dynamic systems, such as batch reactors, the 

produced H2 could be temporally removed from the liquid phase via liquid-gas 

transfer: in these cases a low 𝑘𝐿𝑎 could lead as well to VFA accumulation. However 

it would be important to distinguish between the effect of reduced liquid-gas transfer 

(𝑘𝐿𝑎) and liquid-liquid transfer (approximated by KS) when considering high-solid 

systems, while Abbassi-Guendouz et al. (2012b) only focus on the liquid-gas 

transfer.  

A more refined analysis would consider the presence of the gas hold-up phase, and 

as a consequence the overall liquid-gas mass transfer occurring across the liquid 

phase, the gas hold-up phase and the off-gas phase (headspace). However, when 

the amount of gas contained in the hold-up phase is small (as in anaerobic 

systems), the gas hold-up phase description can be neglected in the modelling 

(Lizarralde et al., 2015).   

Liquid-liquid mass transfer 

Mass transfer of solutes, from bulk liquid to microorganisms, has not been 

considered in AD modelling: their influence on the overall rate of reactions is 

negligible in most applications when compared to rate limiting biochemical 

reactions. However, in certain cases the mass transfer might become influential, as 

in high-solid digestion or with mass transfer across granules and biofilms. When 

calibrating the ADM1 model, this effect is likely to be expressed by a high value of 

the half saturation constant KS. Bollon et al. (2011) calibrated the model for different 

solid content of OFMSW and found higher KS values at higher solids: at 35% solids 

content the KS value was an order of magnitude higher than at 5%.   

Hydraulic studies 

ADM1 applications have been mostly focused on well mixed systems, and therefore 

modelled assuming CSTR or eventually CSTR in series. In this framework, the 

retention of solids in the reactor may be considered: the difference between HRT 

and SRT is described by introducing a further parameter, tres, which is the difference 

between the mentioned retention times. It can be calculated from experimental 
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measurements (Antonopoulou et al., 2012a), and basically applying a mass 

balance around the digester (Banks et al., 2011); when sufficient measurements 

are not available, its value can be determined through calibration (Thamsiriroj and 

Murphy, 2011). In most cases, tres is defined as a constant value; however, Zaher et 

al. (2003) introduced an update considering the solids retention time to be 

proportional to the hydraulic retention time, i.e. less efficient during overload 

conditions.  

A better insight into the hydrodynamics can be obtained via tracer studies to obtain 

the residential time distribution of the system (RTD), and then fitting the curve with 

the appropriate hydraulic flow model (Bello-Mendoza and Sharratt, 1999, Capela et 

al., 2009): the parameters of the hydraulic flow model would then be used for the 

ADM1 implementation. For instance, Batstone et al. (2005) implemented ADM1 in a 

UASB which was modelled, after tracer studies, as plug-flow (advective-diffusive) 

reactor, with an internal recycle and internal bypass. The calibration of the model, 

with acetate pulses, included the simultaneous calibration of the kinetic (km,ac and 

KS,ac) and hydraulic parameters (effective sectional area). A similar modelling 

approach was followed by Mu et al. (2008), who also added a sludge distribution 

function which defines a maximal attainable biomass concentration at each reactor 

axial position. Fuentes et al. (2009) proposed a comprehensive modelling of an 

anaerobic fluidized bed reactor (AFBR), which includes (one-dimensional) 

differential mass and momentum balance equations for the solid-liquid-gas phases, 

coupled with the ADM1 framework to compute the biochemical and 

physicochemical processes (Figure 2.8). The growth of the biofilm is coupled to the 

local hydrodynamic characteristic considering a biofilm detachment rate which is a 

function of the specific energy dissipation rate (Paul et al., 2012).  

A further step in the hydrodynamics description would be to apply a predictive CFD 

study of the (planned) system. Potential approaches include incorporating the 

biological and physico-chemical model equations in the CFD code, or selecting the 

outputs from the CFD analysis (mass transfer coefficients, residential time 

distributions, etc.) and introducing them into the biological model, keeping the two 

models as separate units (Glover et al., 2006).  

CFD analysis of mixed anaerobic digester is currently being carried out at the 

Energy Research Group, Sheffield, in the framework of the BioCPV project and 

therefore a detailed review of the CFD analysis is outside the scope of this thesis. 

However it is expected that the integration of biochemical modelling (such as 
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ADM1, reviewed in this thesis) and the hydrodynamics analysis will assist in 

improving the scale up of experimental digesters and the design of full scale 

reactors. 

 

Figure 2.8. Model structure for an anaerobic fluidized bed reactor as 
proposed by Fuentes et al. (2009). 

2.6 ADM1 – model inputs 

Once the structure of the model is developed, the following input data must be 

provided to perform a simulation: 

 Characterization of the substrate 

 Initial conditions 

 Value of the biochemical kinetic and stoichiometric parameters 

 Physicochemical and hydrodynamics parameters 

 The operation and dimensions of the reactor (feed rate, volume, pressure, 

etc.).  

Characterization of the substrate is paramount for a successful application of the 

mathematical model: it directly influences the gas flow quantity and composition 

and possible process inhibitions. Its value has to be determined experimentally from 

case to case, especially in the case of complex feedstocks, as wastes, which can 

be considered as composed of many simpler substrates.    
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Initial conditions refer to the composition inside the reactor at the beginning of the 

simulation, and are specifically important in batch reactions which are very sensitive 

to the composition of the inoculum. It is less important for continuous operations 

(apart from start up). Inoculum composition has been addressed in different ways. 

In some cases, the reactor from which the inoculum is drawn has been modelled 

with an adequate version of ADM1: the steady state composition of the effluent has 

then been used as the inoculum composition. In other cases, the biomass 

characterisation has been calibrated using experimental results (Thamsiriroj and 

Murphy, 2011), but this approach appears questionable.   

Stoichiometric parameters are fundamentally thermodynamically based and are 

usually fixed across simulations, unless a variable stoichiometric approach is taken 

(Rodriguez et al., 2006). The most sensitive kinetic parameters are selected and 

evaluated during model calibration against experimental data. Physicochemical 

parameters and hydrodynamics parameters show little variation and default 

parameters are usually used (however variations for temperature and for special 

process conditions, such as high solid/high strength – as was shown above - should 

be considered).  

In the following sections the focus is on the characterization of the substrate and 

the calibrations techniques. 

2.6.1 Characterisation of the feedstock for modelling 

A key point in order to successfully apply a mathematical model to describe a bio 

process is to have a good influent characterisation, especially where the influent 

has a complex nature. 

In ADM1, the substrate is characterized firstly in soluble and particulate fractions; 

the soluble fraction is in turn fractionated into sugars (monosaccharides), amino 

acids, long chain fatty acids, and VFAs (acetate, propionate, butyrate, valerate) and 

inerts; the particulate fraction is in turn fractionated into protein, carbohydrates, 

lipids and inerts. Different methods have been implemented for the experimental 

fractionation, simplifying: using data from the literature for similar substrate, from 

direct physicochemical fractionation, from elemental analysis and from the 

interpretation of methane production curves. Using literature data for similar 

substrates might be a good solution for early implementations of the model. A brief 

description of each technique is given below. 
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Using data from the existing literature  

In the first stages of a process design study, data from the literature can be used to 

predict the main characteristics of the system behaviour. There exist many sources 

that can be consulted for the initial biomass characterization, such as Liao et al. 

(2007), Gunaseelan (1997) and the database ECN/Phyllis (n.d.). 

Performing a physicochemical analysis of the substrate  

In these methods the fractions required by ADM1 are directly quantified through a 

physicochemical analysis of the substrate. The analysis should be applied to both 

the soluble and particulate fraction. However, when the soluble fraction is minimal, 

some simplifications can be used: e.g. assuming the same fractionation in soluble 

and particulate fraction (equalling the proportion of amino acids to protein, LCFA to 

lipids, etc.), or allocating the totality of the soluble fraction to only one compound 

(usually monosaccharides or VFA, depending on the substrate).  

Individual VFA are usually obtained from gas chromatography. The protein content 

is usually approximated by multiplying Norg by 6.25 (which is the average N-content 

of proteins), where Norg in turn is the difference between TKN and TAN determined 

in a standard Kjeldahl analysis (APHA, 1998). Lipids can be obtained from a 

Soxhlet extraction (APHA, 1998), and the total carbohydrates can be determined 

through the Anthrone method (Arthur Thomas, 2006). Otherwise, a fraction that 

includes the particulate carbohydrates and the inerts can be obtained from the VS 

balance (VS-protein-lipids). The inert fraction can be determined from 

biodegradability assays in BMP tests (Angelidaki et al., 2009).  Otherwise a fibre 

analysis ((Van Soest and Wine, 1967) of the non-water-soluble fraction is 

sometimes applied as well, which consists in sequential extraction under neutral 

and acid detergents: it permits the determination of the hemicellulose, cellulose and 

lignin fraction. Then the lignin fraction can be used as proxy of the biodegradability 

of (lignocellulosic) substrates, thus avoiding BMP tests, as was demonstrated with 

good accuracy by Triolo et al. (2011) and Buffiere et al. (2006). All measurements 

give a fractionation in unit of mass, which must be transformed in COD using the 

stoichiometric formula used in ADM1 to represent the compound. Applications of 

direct physicochemical characterisation in ADM1 implementation can be found in  

Wichern et al. (2009) and Koch et al. (2010b), both treating grass silage. Important 

considerations regarding the possible errors and limitations of this method have 

been reported by Buffiere et al. (2008), in particular how the direct determination of 
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proteins, lipids and carbohydrates were far from being representative of the total 

volatile solids of the substrate. 

From elemental analysis 

The lumped elemental composition of the organic substrate (CHyOzNv
u) can be 

calculated from analytical measurements (COD, TOC, Organic Nitrogen (Norg), 

Bicarbonate Alkalinity (AlkIC), Neutralized Fatty Acids Alkalinity (AlkVFA)) through 

mass and electron balances, see Figure 2.9.   

 

Figure 2.9. Derivation of the elemental composition of the substrate from a 
limited number of measurements, with an example calculation. From 
Kleerebezem and Van Loosdrecht (2006). 

Using the elemental composition of the lumped substrate and the elemental 

composition of the substrates defined in the model, the required ADM1 fractions 

can then be calculated by solving a system of linear equations which are principally 

based on the balances of the moles of C, H, O and N between the fractions and on 

the oxidation state of the substrate (details in Kleerebezem and Van Loosdrecht 

(2006)). The method could be applied separately to soluble and particulate 

fractions. Biodegradability of the substrate must be assessed with other methods.  

The estimated substrate fractionation is highly sensitive to measurements 

(especially COD, TOC), as shown by Kleerebezem and Van Loosdrecht (2006). 

When an elemental analysis of the substrate is available from direct measurement, 

only the second step of the method could be used.         

Interpretation of methane production curves 

This method combines physicochemical analysis with a fractionation based on 

degradation kinetics in batch assays (Girault et al., 2012). From the interpretation of 

the methane production curve of the substrate, the biodegradable COD is described 
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into a slowly degradable fraction (hydrolysis is rate limiting, particulate fraction) and 

readily degradable (hydrolysis is not rate limiting, soluble fraction). The 

physicochemical analysis includes VFAs and protein, lipids, carbohydrates and total 

COD of the substrate. Batch assays are realized with a high biomass/substrate 

ratio. The composition of the biomass used (total and specific concentrations) are 

approximated by simulating with ADM1 the continuous reactor from which the 

inoculum is drawn. Blank batch assays with inoculum only are realized, from which 

the degradation kinetics of the pure inoculum are calculated and then considered 

for the interpretation of the degradation kinetics of the substrate.  The methane 

produced in the batch assays is monitored and then a net methane production rate 

curve of the substrate is obtained. The particulate fraction of the substrate is 

assumed to be split into protein, lipids and carbohydrates according to the initial 

physicochemical analysis. The soluble fraction is assumed to be composed of the 

measured VFAs and a remaining split in amino acids, LCFA and sugars with same 

proportions used for the particulate. Finally, the methane production curve 

simulated in ADM1 is calibrated by fixing the values of the soluble and particulate 

fractions, and of the hydrolysis rate constant (assumed equal for proteins, lipids and 

carbohydrates) for the particulate fraction. Figure 2.10 shows a graphical 

description of the method as implemented by Girault et al. (2012).  

The method is sensitive to some of its assumptions. The substrate to inoculum ratio 

and the origin of the inoculum should be selected carefully in order to improve the 

confidence in the calibrated parameters and fractionation (Girault et al., 2012). The 

calibration of the MPR is also sensitive to the simulated composition of the 

inoculum. The method is applied using a first-order hydrolysis kinetics; however 

different kinetics might be considered as well to describe the degradation of X-

fraction. The method provides the hydrolysis rate constant for the substrate, 

however it has been shown that values from batch assays are usually conservative 

with respect to hydrolysis rates then found in scaled-up continuous reactors 

(Jensen et al., 2011). 

In addition to these constraints, this method appears interesting because it permits 

the description of the substrate both in composition and kinetically. Also, a kinetic-

based soluble/particulate fractionation can have advantages over a physical-based 

one, which is generally defined on fractionation at 0.45µm, even if this may not be 

the limit for physical accessibility of biomass to the substrate. 
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Figure 2.10. Framework for the fractionation of a substrate, using 
physicochemical and degradation kinetics. *The methane production of 
the inoculum is subtracted from the analysed MPR curve. Adapted from 
Girault et al. (2012).   

 

Figure 2.11. Influence of harvest time on the composition of grass (Holmes, 
1980). 
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A final comment, that may be applied to every technique, is the intrinsic uncertainty 

of the input fractionation. It is important to consider that the composition of the 

substrate is not constant and will change across the year, depending principally on 

the length and conditions of storage and in the case of crops/weed on its harvest 

time (see for instance,  

Figure 2.11). Uncertainty tools should be used as a good modelling practice (Sin et 

al., 2009b).  

2.6.2 Model calibration  

Model parameters have not universal value (otherwise they would be constant), but 

need an adjustment for every specific case. Calibration of complex biological 

models is not straightforward when considering the high number of parameters 

used and the difficulty in measuring state variables. Calibration of bioprocess 

models has been usually characterized by a wide number of approaches and 

procedures; a lack of common protocols for calibration hinders a comparison 

between different modelling experiences. In the field of activated sludge modelling, 

different calibration protocols have been recently proposed, so as to improve quality 

check and comparison (Sin et al., 2005), and the same cannot be said for the field 

of anaerobic digestion, particularly in ADM1 (Donoso-Bravo et al., 2011). 

A commonly used protocol for parameter estimation is the following: 

 Sensitivity analysis 

 Estimation process 

 Analysis of the results 

Sensitivity analysis  

Only a certain number of “meaningful” parameters should be selected for 

calibration: an “over calibrated” model would reproduce the experimental data but 

eventually would have poor predictive ability. In the original ADM1 report (Batstone 

et al., 2002) the following strategy for minimising the number of parameters to be 

optimised numerically was described: 

 Taking from the literature the parameters with low variability, such as 

inhibition (KI) and yield (Y) constants. 

 Taking more variable parameters from studies using similar reactor design, 

operation and feed matrix. 
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 Reducing the parameters by performing a numerical analysis on 

identifiability, correlation and sensitivity.   

Sensitivity analysis is often used to select the parameters most suitable for 

estimation, and reducing the size of the optimization problem. In fact, not all 

parameters substantially influence the output of the model, so that they do not need 

to be changed to fit the model to the experimental values. Generally sensitivity 

analyses evaluate the change in some selected outcomes of the model that result 

after a change in the model parameters. Most sensitivity analyses are of local 

nature, i.e. they explore the model around a selected state, usually steady state, 

and therefore only describe local model behaviour around this point. When the 

model is used to explore the behaviour of the process across a larger range of 

variation of the parameters, a global sensitivity analysis (GSA) would be a better 

approach (Donoso-Bravo et al., 2012).  

Parameter estimation 

The focus is put on the calibration of the biochemical parameters (but when the 

hydrodynamics of the reactor is unknown and influential, specific calibration 

experiments should also be realized as well for the mass transfer parameters, as it 

is done for example in the calibration of activated sludge models).   

In general, the parameters set provided in the ADM1 STR constitute a valid starting 

point for the simulations and calibrations; Batstone et al. (2006), reviewed the 

application of ADM1 up to 2005 with different substrates, and found modifications to 

the kinetic parameters of the order of 20–50%.  

Generally, parameter estimation should be conducted with the following 

recommendations (Batstone et al., 2004):  

 Minimise analytical work. 

 Minimise reactor operation time. 

 Minimise simulation time.  

Different experimental methods can be used to calibrate the kinetics parameter of 

the model. Table 2.4 reports the ADM1 applications, an the methods are described 

as follows: 

Measurement from a continuous reactor  
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The variations in the loading rate depend on the operation of the digester: it is 

usually applied when calibrating full-scale reactors, where it is risky to impose 

pulses in the feeding. The “quality” of the results depends on the variations that 

occur during normal operation; if the input excitation is low, model predictions may 

be poor outside of the (quasi) steady state conditions used for calibration, i.e. when 

stronger variations occurs. This methods has been applied in ADM1 calibration by 

Lübken et al. (2007), Wichern et al. (2009), Batstone et al. (2009)   

Measurement from a continuous reactor with imposed pulses 

The input excitation is imposed with specific substrate pulses, depending on the 

parameters to be calibrated (e.g. using acetate pulse for acetate uptake kinetics). 

The response of the reactor to each pulse is monitored and used to calibrate the 

selected parameter. Concentration pulses allow a lower correlation between the km 

and KS parameters in the Monod function: during a pulse, the substrate 

concentration increases from below to above the substrate-specific KS value; a 

hydraulic pulse might cause a biomass wash-out to reach this effect.  Kalfas et al. 

(2006b) used an interval of seven days between each pulse: the experimentation 

time may be longer if different parameters have to be calibrated. This method has 

been also used by Batstone et al. (2003). 

Measurement from a batch reactor   

In this case the parameters are calibrated against the measurement in batch 

reactors, as a predictive study for the performance of continuous reactors treating 

the same substrate. Galí et al. (2009) and Derbal et al. (2009) used the parameters 

calibrated in batch experiments to simulate continuous reactors with acceptable 

accuracy. In both cited cases, only disintegration and hydrolysis constants were 

experimentally calibrated, while default values were used for all the other 

parameters.  

Measurement from Anaerobic Sequential Batch Reactors (ASBR) 

ASBR reactors can be used for parameter estimation. This experimental mode has 

the following advantages (Batstone et al., 2004): 

 A shorter operation time of the system is required to achieve repeatable 

operations and convergence with the model, in comparison to continuous 

reactors. 
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 The system is excited naturally in its operation by repeated inputs, with 

resulting substrate concentrations that change from well above to well below 

saturation concentrations in the Monod function: a proper identification of 

the Monod parameters is allowed. 

 Repeated cycles allow an increase in the confidence of the estimated 

parameters.    

However, attention is required in the determination of the sludge retention 

parameter of the system, as parameter estimation depends strongly on these 

values (i.e. a higher biomass concentration leads to a faster susbtrate degradation). 

Also, the composition of biomass might change along cycle repetitions.   

Batch experiments with inoculum from a continuous reactor 

Batch experiments are carried out using inoculum from the continuous reactor to be 

calibrated. ADM1 is used to simulate the continuous reactor and at the same time 

to determine the composition of the inoculum used in batch tests. Batch 

configuration allows for specific substrate pulses without disturbing the continuous 

reactor. Specific substrate pulses are selected to calibrate a specific biochemical 

step (e.g. using acetate if acetogenic kinetics is to be calibrated). The parameters 

calibrated in batch are then used to simulate the continuous reactor. 

Implementations of this method can be found in the works of Girault et al. (2011) 

and Antonopoulou et al. (2012a).  A diagram explaining the process is depicted in 

Figure 2.12. This method was also used by Zamanzadeh et al. (2013) to calibrate 

kinetics of acetoclastic, propionate oxidize (with Monod), and hydrolysis (1st order) 

When the parameters calibrated at lab-scale are to be used at full scale, the 

transportability of parameters across different systems must be considered because 

of the different modes of operation and enviromental conditions (Batstone et al., 

2004). Differences could exist between the modes of operation, as lab-scale 

experiments are operated in batch or sequencing batch mode, while most full-scale 

systems are completely mixed continuos flow or partially plug-flow. Also, it is often 

not possible to replicate and maintain equal environmental factors such as nutrient, 

buffer, pH, and liquid-gas mass transfer conditions between the lab-scale and full-

scale reactors. Finally, biomass adaptation is an important phenomenon in 

continuos reactors, while in batch assays the inoculum is rarely optimized for the 

analyzed feedstock and significant adaptation does not occur during the test 

(Batstone and Jensen, 2011).  
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For instance, Batstone et al. (2009) found that the hydrolysis constant for waste 

activated sludge evaluated in batch assays were an order of magnitude lower than 

in continuous full scale reactors; therefore they recommend using BMP testing for 

project feasibility analysis when the degradability of the feedstock is considered, but 

not for calibrating dynamic modeling. 

The mathematical methods chosen in calibration (cost function and minimizations 

techniques) also have influence on the results (Donoso-Bravo et al., 2012), 

however this aspect is not covered in this thesis. 

 

Figure 2.12. Framework for the calibration of ADM1 with batch and 
continuous experiments. Adapted from Girault et al. (2011). 

ADM1 simulation of continuous reactor using calibrated 
parameters from batch experiments 

Sensitivity analysis to identify and select parameters to be 
calibrated 

Batch experiments using effluent from continuous reactor as 
inoculum.  

ADM1 simulations of batch assays; results from continuous 
reactor simulation are used to describe inoculum composition  

Simulation of continuous reactor with new parameters 

Does the simulation fit 
the batch experimental 

data? 

Calibration of selected parameters 
against evolution of methane 
production and/or substrate 
concentration in batch experiments 

Design of batch experiments: substrate pulses are selected 
on the basis of the selected parameter to be calibrated (e.g. 
acetate pulse for acetotrophic biomass kinetics, particulate 
fraction for hydrolysis constant, etc.) 

Does the simulation fit 
the continuous 

experimental data? 

 

Method not valid 

Validation of the 
method and of the 
parameters set 
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Table 2.4. Description of the calibration protocol in some ADM1 implementations. 

Method of calibration 
and (substrate)  

Sensitivity analysis  Measurement Parameter 
calibrated 

Note Reference  

Continuous reactor  
 
(Grass silage) 

Weighted sum of sensitivity indexes 
for certain objective functions 
(organic acids and total solid in the 
effluent, CH4, CO2 and H2 gas 
content, gas flow). Stepwise single-
parameter variation (SVM) between 
50%-200% of reference value.  
  

Organic acids 
Total solids   
pH 
%CH4  
%CO2 
%H2  
Gas flow 

kdis 
km,pro 

Ks,h2 

Ki,h2,c4 

Ki,h2,pro 

Ki,nh3,ac 
phUL,acid 

phLL,acid 

Results of sensitivity analysis were not used for 
selection of parameters. 

(Wichern et 
al., 2009) 

Batch experiments with 
inoculum from continuous 
reactor.  
 
(Pig manure) 

A sensitivity index was defined for 
certain objective functions (COD 
removal, methane yield, methane 
content, methane production after 
feeding). Perturbation in the 
parameter: ± 20% 
Parameters with index >30% were 
considered for calibration. 

Biogas 
production in 
batch after 
specific substrate 
pulse.  

km,su 

Ks,su 
km,pro 

Ks,pro 

km,ac 

The method is based on the assumption that both 
batch and continuous operations have to be 
simulated using the same set of parameters.  
khyd appeared non sensible because of partially 
hydrolysed substrate 

(Girault et 
al., 2011) 
 
 

Batch experiments with 
inoculum from continuous 
reactor  
(acidified effluent of 
thefermentative hydrogen 
production process from 
sweet sorghum extract) 

Only kinetic parameters of VFA and 
H2 uptake are selected, because of 
the composition of the feed (mainly 
VFAs).  
 

%CH4 
VFAs and 
hydrogen, in 
batch after 
specific substrate 
pulses. 

km,ac 

km,h2 

km,pro 
km,bu 

For each process, only the km,process is 
calibrated, while default values are used for Y, 
kS,process and kdec. 
Continuous reactor was simulated at different 
retention times: performance predictions were 
sufficiently good, and the model was used to 
simulate the HRT at which the process would fail.  

(Antonopou
lou et al., 
2012a) 
 

Continuous reactor with 
imposed pulses 
(olive pulp) 
 
  

n.d. %CH4 
sCOD 
VFAs 
pH 

km,ac 
kS,ac 

km,pr 
kS,pr 

km,bu 
kS,bu 
khyd,ch 

khyd,li 

khyd,pr 

fpro,su 
fac,su 

The magnitude of the pulses were not justified 
(they might be not  exciting enough) 

(Kalfas et 
al., 2006a) 
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Table 2.4 (continued) Description of the calibration protocol in some ADM1 implementations. 

Continuous reactor with 
imposed pulses 
(olive pulp) 
 
  

n.d. %CH4 
sCOD 
VFAs 
pH 

km,ac 
kS,ac 
km,pr 

kS,pr 
km,bu 

kS,bu 
khyd,ch 

khyd,li 

khyd,pr 

fpro,su 
fac,su 

The magnitude of the pulses were not 
justified (they might be not  exciting 
enough) 

(Kalfas et al., 2006a) 
 

Batch  
 
(agro-residues)  

n.d. Methane 
production in 
batch test. 

kdis (of the 
substrate, not of 
decaying biomass).  
 
 

Conditions in batch reactor might be 

different from continuous reactor. 

All other kinetic parameters from 

(Batstone et al., 2002) 

(Galí et al., 2009) 

Continuous reactor  
 
(Grass silage) 

n.d. Methane 
production 

kdis and extended 
retention time of 
the solids (tres) 

The calibrated model was unable to 

predict VFA accumulation in one of the 

reactors, probably due to the restricted 

set of parameter that were calibrated.  

(Thamsiriroj and 

Murphy, 2011) 

Continuous reactor 
 
(sewage sludge) 
 
Two-stage pilot scale 
digestion of 
(thermophilic/mesophilic) 

Most sensitive parameters as 
identified in the original 
implementation (Batstone et al., 
2002) 

COD 
sCOD 
acetate 
propionate 
TKN 
%CO2 
%CH4 
pH 

kdis 
km,ac 

km,pro 

kS,ac 

kS,h2 
kI,h2,pro 

kI,nh3 

 

Most sensitive parameters were 

selected from literature, as the same 

substrate (sewage sludge) was 

digested.  

(Blumensaat and 

Keller 2005) 
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Table 2.4 (continued) Description of the calibration protocol in some ADM1 implementations. 

Continuous reactor 
 
(Dog food and flour)  
 
Two stage digestion 
(thermophilic/mesophilic) 

A dynamic sensitivity index was 
defined for 7 material components: 
valerate, butyrate, propionate, 
acetate, methane, ammonia, sCOD. 
All 17 kinetic parameters in the 
implemented model were seleceted 
for the sensitivity analysis. 
Perturbation in the parameters: ± 
50% with respect to their suggested 
values in Batstone et al. (2002). 
The dynamic sensitivity index was 
calculated averaging the differences 
between original and perturbed 
parameter across the simulated time.   
From the values of the calculated 
sensitivity index, the most sensitive 
parameters are selected for 
calibration.        

COD 
sCOD 
Acetate 
Methane 
production 

Thermophilic: 
kdis 

kdec 

kS,su 

kS,aa 

km,pro 

kS,pro 
km,ac 
kS,ac 
 
Mesophilic: 
kdis 
km,pro 
kS,pro 

km,ac 

Model implementation was simplified 
neglecting pH inhibition and physico-
chemical processes. 
The perturbation range is arbitrary: 
some of the selected parameters have 
been described with smaller or larger 
ranges of variability (Batstone et al., 
2002). 
   
Sensitivity extended to 7 components 
might be misleading: from a design 
and control point of view not all 
components have the same 
importance. 
A similar approach was first used by 
Jeong et al. (2005)  

(Lee, Suh et al. 2009) 

ASBR 
 
(Winery wastewater in 5L 
pilot scale ASBR) 
 
 

n.d. Acetate 
(Gas flow, pH, 
VFAs to validate)  

km,ac 

kS,ac 

km,ethanol 

kS,ethanol 

ASBR are operated with the normal 
fill–react–settle–decant operation. 
Parameters are estimated using the 
data of four cycle of operation of the 
reactor, where wastewater is added. 
Parameters are validated with two 
additional cycles of operation, where 
only spikes of acetate and ethanol are 
added.    
 
Repetition of cycles increases the 
confidence in estimated parameters.  

(Batstone et al., 2004) 

Pig manure and beet 
energy crop in full scale 
mesophilic plant. 

Variance-based global sensitivity 
analysis on a set of 21 parameters of 
the model, selected with prior expert 
knowledge. The analysis is based on 
a Bayesian procedure developed by  
Oakley and O'Hagan (2004). 

n.d. kdis 
fch,xc 

fpr,xc 

fli,xc 

km,ac 

Xac(0) 

In this study SA is performed primarily 
to select the parameters for 
uncertainty analysis. 
The results of sensitivity analysis are 
dependent on the selected ratio of 
substrate in the feed. 

(Južnič-Zonta et al., in 
press) 
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2.7 Conclusions 

In this chapter the main features of anaerobic digestion modelling were reviewed. 

Different research and engineering problems where modelling is an essential tool 

were described. One main objective of this thesis is the simulation and 

benchmarking of operational strategies to integrate AD in a microgrid. To address 

this research objective, mechanistic and complex models are required, which offer 

extrapolation capabilities to investigate process performance under different 

scenarios. The ADM1 model was therefore selected as the modelling framework to 

use in this thesis.  

This review chapter then covered the main characteristics of ADM1, including the 

description and limitations of the modelling of biochemical and physico-chemical 

reactions. A particular focus was given to two main steps for the ADM1 

implementation, namely the description of the substrate characteristics as model 

inputs, and the calibration methods which can be employed to calibrate relevant 

parameters. Chapter 3 shows how the methods here reviewed are modified and 

improved to obtain model inputs and calibrated parameters.    



56 

3  Methodology 

3.1 Model building steps 

The good practice in the development and evaluation of a model should follow a 

number of steps, which are similar across engineering disciplines, and can be 

summarised as follows (Jakeman et al., 2006, Donoso-Bravo et al., 2011) (Figure 

3.1): 

 Definition of the modelling objectives. 

 Selection of the type and structure of the model, mainly on the basis of the 

modelling objectives and established prior knowledge. 

 Collection of experimental data.  

 Model implementation, including coding and simulation software.  

 Selection of the parameters to be estimated, depending on their uncertainty and 

sensitivity on the experimental data.  

 Estimation of the parameters. 

 Direct validation: goodness of fit, uncertainty, model adequacy.  

 Cross validation using a different data set. 

 Use of the model for process and scenario analysis.  

When the direct or cross validation are not satisfactory, the modeller can return to 

the previous steps of model selection and parameter selection/estimation. The 

following sections outline how the previous steps have been implemented during 

this research.  

3.2 Modelling objectives 

In general, mathematical models are used to describe the main aspects of a 

system, including biological systems such as anaerobic digestion. They improve the 

understanding of the system, the formulation and validation of some hypotheses, 

the prediction of the system behaviour under different conditions, reducing the 

burden of experimental trials to explore all relevant possible combinations and 

consequently the cost and time to develop a new process.  

 



57 

 

Figure 3.1 Main steps for the model building process  

This research was developed following a series of objectives, which differ in terms 

of the systems and processes investigated but are related to each other (Figure 

3.2). From wider to smaller systems: 

 Development of a model of an integrated system of renewable energy 

technologies, including non-dispatchable systems (such as PV and wind) and 

anaerobic digestion, to simulate and explore different operational strategies and 

conditions. In particular, this research is focused on the development and 

validation of a complex and realistic model of AD, able to simulate the highly 

dynamic operation of the digester in these kind of integrated systems and the 

use of different substrates.  

 Development and validation of a model structure that is able to describe the 

performance of an AD system under organic stress conditions. 

 Development and validation of a model structure that is able to predict the 

production of biogas when substrates with different characteristics (kinetic and 

biochemical) are mixed. 

 Development and validation of analytical and model-based tools to describe any 

given substrate in terms of inputs for the aforementioned models.  

Defining modelling objectives 
 

Model selection 

  

Experimental data collection 

  

Parameter selection and estimation  

  

Direct validation  

Cross validation 

  

Use of the model for prediction and analysis 

  

Design of experiment 

  

Substrate and system description  

  

Prior knowledge 
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Figure 3.2 Overview of the interconnected objectives of this research. 

3.3 Model selection  

Different model structures for AD are available from the literature (see section 

2.3.1). In theory, model structures should be chosen according to four principles 

(Donoso-Bravo et al., 2011): (i) simplicity, the model should be as simple as 

possible; (ii) causality, the model should represent the most relevant cause-effect 

relationships; (iii) identifiability, the values of the unknown parameters should be 

identifiable from the available measurements; and (iv) predictive capability, the 

model should remain valid under future or alternative reasonable conditions. 

In this research, an explicit model selection process was not performed and instead 

ADM1 was chosen a priori as the adequate initial model structure, to be calibrated 

and eventually modified depending on the research objectives and available 

experimental data. Given the high number of parameters employed in ADM1, the 

model can be considered overparameterized, i.e. it is not possible to determine 

unique values of the parameters given plausible available experimental data. The 

aforementioned simplicity and identifiability principles would dictate to reduce the 

complexity of the model, adapting it to the observed experimental dynamics. 

However, overparameterized models allow for the inclusion of a more extensive 

prior knowledge of the system behaviour, and this is particularly useful when 

processes become important during the prediction period that were insignificant 

during the identification period (Reichert and Omlin, 1997). In this regard, ADM1 

can be considered as the “state of the art” model in AD, which collects and 

Simulation of the 
integrated energy 

system 

Susbtrate description 
for model inputs 

Co-digestion 
modelling

Inhibition and organic 
stress modelling 

Development and 
validation of  the AD 

model and tools
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systematizes the current consensus of the scientific community. ADM1 in fact was 

developed as a common platform for anaerobic process modelling and simulations, 

and this thesis can be considered as an extension of this common platform to new 

processes and conditions.  

3.4 Experimental data collection  

Different experiments were performed during this research (Table 3.1), each 

connected to a specific research objective and also acting as an evaluation and 

validation of a previously defined methodology: 

1. Batch tests (together with physio-chemical analysis) as a methodology to 

characterise four different substrates as ADM1 model inputs: green waste 

(GW), food waste (FW), pig manure (PM), oat residues (OAT). Tests 1a and 

1b employed different inoculums. 

2. Semi-continuous mono-digestion of GW and FW to validate the batch 

characterisation methodology, by comparing the quality of fit and the values 

of the parameters calibrated on the different experimental tests. Model 

adequacy was also investigated by evaluating the quality of fit at different 

OLRs. 

3. Semi-continuous mono-digestion of GW and FW, at elevated OLR to select 

and calibrate the inhibition structure in ADM1. 

4. Semi-continuous co-digestion of FW and GW to update ADM1 structure for 

co-digestion and evaluate co-digestion interactions.  

5. Semi-continuous co-digestion of all four substrates to validate co-digestion 

and inhibition model structures. 

3.4.1 Materials 

Household segregated food waste and green waste were collected at a local 

recycle centre and stored at 5 C. Within 24 hours, the substrates were examined 

and large pieces of bone, plastic, metal, wood were removed to avoid damage to 

the homogenisation equipment and reduce sampling errors during later analysis. 

The substrates were then homogenised using a mincer to an average particle size 

of 1 mm, sampled for chemical analysis, and the remaining part was stored at -18 C 

and thawed before feeding to the digesters. Pig manure was collected at the 

University of Leeds Farm and stored at -18 C and thawed before feeding to the 

digesters. Cereal residues were collected from a muesli manufacturer and stored in 
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a dry environment at ambient temperature: due to the low moisture content, the 

substrate did not require any refrigeration. 

Experiment 
number 
(Data set) 

Objective Type Substrate Length 
[days] 

OLR  
[gCOD L-1 d-1] 
Min-max 

1a, 1b Substrate 
characterisation 

Batch - with 
different 
inoculum in 1a 
and 1b 

GW and 
FW (1a) 
PM and 
OAT (1b) 

60  2.5 (ISR) 

R-a (2) Validation of 
substrate 
characterisation and 
model adequacy 

Semi-continuous 
mono-digestion 

GW, FW 112 (GW) 
144 (FW) 

1-6 

R-a (3) Identify model 
inhibition structure 

Semi-continuous 
mono-digestion 

FW 132-204 6-10 

R-a R-b R-c  
(4) 

Co-digestion: 
update model 
structure and effect 
analysis 

Semi-continuous 
co-digestion 

GW, FW, 
PM, OAT 

310 1-11 

R-a R-b R-c 
(5) 

Validation of 
inhibition and co-
digestion model 
structure with 
different substrates 

Semi-continuous 
co-digestion 

GW, FW, 
PM, OAT 

310 1-11 

Table 3.1 Main operational details and objectives of the experiments 

3.4.2 Analytical methods for substrate characterisation 

Substrates, inoculum and effluent from the digesters were analysed for total solids 

(TS) and volatile solids (VS), volatile fatty acids (VFA), total ammonia nitrogen 

(TAN), intermediate and partial alkalinity (IA & PA) and pH. Elemental analysis was 

performed on substrates and inoculum only. VFA and TAN were measured on the 

supernatant obtained through centrifugation of the samples in 2.5 ml vials at 14000 

rpm; in the case of the substrates, a previous dilution with two parts of water was 

necessary. 

Total solids and volatile solids were measured according to standard methods 

(APHA, 2005), partial and total alkalinity were measured according to Ripley et al. 

(1986) through titration at pH 5.75 and 4.3 respectively, using an autotitrator. pH of 

digestate samples was measured  with a pH meter and probe (Hach); for limited 

periods in experiments 3 and 5, pH was measured continuously through pH probes 

inserted in the reactor (Atlas Scientific) with data acquisition performed by an in-

house programmed Arduino micro-controller. Volatile fatty acids were determined in 

a gas chromatography system (Agilent) equipped with a flame ionization detector 

(FID) and a DB-FFAP high polarity capillary column (30 m, 0.32 mm ID, 0.5 μm). 

Helium was the carrier gas and was adjusted to a flow rate of 10 mL/min. Each 

sample was injected automatically with a split ratio of 5:1, and the injection port 
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temperature was 150 °C. The detector temperature was 240 °C, while the oven 

temperature program was as follows: 60 °C (4 min), ramped at 10 °C min−1 to 140 

°C, then at 40 °C min−1 to 200 °C, remaining at 200 °C for 5 min. Carbon (C), 

Hydrogen (H), Nitrogen (N) and Sulphur (S) content on TS were determined 

through elemental analysis in an elemental analyser (Flash EA2000, CE 

Instruments) equipped with a flame photometric detector (Flash EA 1112 FPD, CE 

Instruments), according to manufacturer’s instructions. The oxygen content was 

then calculated by subtracting from TS the sum of C, H, N, S and ash contents, 

where the ash was determined by loss at ignition at 1050 C. Total ammonia 

nitrogen was measured using an ion chromatography (IC) system (Metrohm 940 

ProfIC Vario) as per the manufacturer’s instructions. The methane content was 

measured with an infrared sensor (Dynament Premier Series sensor), installed in 

the gas line, with data acquisition performed by an in-house programmed Arduino 

micro-controller.  

3.4.3 Batch tests 

Batch tests were performed in 600 ml laboratory digesters, in triplicate for both 

substrate and blank (inoculum only), with a working volume between  350 and 500 

ml, depending on the test. Positive controls using cellulose were also performed in 

triplicate.  The temperature of the digestion was maintained at 37 C through 

immersion in a water bath and agitation was supplied by a vertical stirrer operated 

at 60 RPM, with consecutive on/off cycles of 30 seconds each. Different inoculums 

were used in the tests and more details are given in Chapter 4.  

The mass of the substrate added was calculated on the basis of a defined inoculum 

to substrate ratio. There is no accepted standardized ratio between the inoculum 

and substrate in the research community for batch biodegradation assays; however 

Raposo et al. (2012), reviewing many BMP tests, identified 2.0 

gVSinoculum/gVSsubstrate as a safe minimum threshold. This high ratio reduces 

inhibition effects and accumulation of intermediary compounds during substrate 

degradation, thus allowing hydrolysis rate limiting conditions for methane production 

from the particulate fractions. In this research, a ratio of 2.5 gVSinoculum/gCODsubstrate 

was finally selected, which allows to be on the conservative side of the proposed 

threshold, and takes into account that different substrates have different energy 

content and therefore COD instead of VS is used in the denominator of the ratio.  
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After adding the substrate in the digesters, the headspace was purged with pure 

nitrogen. The produced gas was scrubbed into a 3M NaOH alkaline solution, in 

order to remove the carbon dioxide and the hydrogen sulphide; a chemical pH 

indicator based on thymolphthalein was added to the solution, and the color change 

indicated the exhaustion of the absorbing solution and the requirement for 

replacement. The volume of scrubbed gas was then measured through an AMPTSII 

system (Bioprocess Control) (Figure 3.3), with a resolution of 10 mL methane 

production is reported at STP (0 C and 1 bar) and calculated assuming a scrubber 

efficiency of 98%, subtracting the concentration of water vapour, and taking into 

account the overestimation caused from the initial nitrogen content in the 

headspace, as detailed in Strömberg et al. (2014); for the latter an approximation of 

the initial biogas flow composition is required, and was approximated through the 

Buswell formula (Buswell and Mueller, 1952), using the elemental composition of 

the substrates. The experiment ended 60 days after the initial feeding. 

 

Figure 3.3 Complete setup for the batch tests, from right to left: stirred batch 
reactors in water bath, alkaline gas scrubbing system, multi-channel 
volumetric gas meter, software user interface.  

3.4.4 Semi-continuous tests 

Semi-continuous tests were performed in 2400 mL laboratory digesters, and in 

duplicate for each substrate tested. The temperature control, reactor mixing, gas 

scrubbing and gas volume measurement were performed as in batch tests.  

Before each addition of substrate, digestate was removed and sampled for 

analysis. The amount of removed digestate controlled the working volume of the 

digester, which changed from 2100 mL to 1800 mL: smaller working volumes were 

maintained to reduce the risk of gas tubes becoming blocked by the foam during 

high organic loading rate periods. Substrates were fed through a hydraulically 

sealed inlet, therefore minimizing the input of air into the headspace. During 
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sampling and feeding, an external plastic bag with synthetic biogas (60% CH4 and 

40% CO2) was connected to the flush gas inlet of the reactor to equilibrate the 

pressure in the headspace and reduce the entry of external air. The entry of air in 

the headspace would reduce the CO2 concentration and therefore would then 

increase the first estimations of the methane flow rate after each feeding, as air 

would not be scrubbed by the alkaline trap and finally would “appear” as additional 

methane production. 

 

Figure 3.4 The reactors used in the semi-continuous experiments. 

Different semi-continuous tests were performed, each corresponding to a different 

objective as outlined in paragraph 3.4. The tests differed in terms of duration, the 

substrates fed and the OLR, as shown in Table 3.1. More details of each test are 

given in the respective chapters.  

3.5 Model implementation 

3.5.1 Aquasim implementation 

ADM1 was implemented in Aquasim 2.1d (Reichert, 1998), the input file/code is 

supplied in Appendix 1. In short, Aquasim is a solver of systems of differential and 

algebraic equations, which, for the spatially homogeneous systems here 

investigated, can be described as follows: 
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d𝑉𝑅

d𝑡
= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 (3.1) 

 
d𝐶𝑖

d𝑡
=  

𝐼𝑖𝑛,𝐶𝑖

𝑉𝑅
−

𝑄𝑖𝑛

𝑉𝑅
𝐶𝑖 + 𝜌𝐶𝑖

 (3.2) 

where VR is the compartment volume, Qin is the volumetric inflow and Qout is the 

volumetric outflow. The temporal change in the concentration of the substances is 

given in equation (3.2), where Ci is the substance concentration, Iin,Ci is the loading 

of the substance described by the concentration Ci into the reactor (mass per unit of 

time), and ρCi is the transformation rate of the substance described by the 

concentration Ci. The transformation rate describes the biological, chemical (eg. 

acid-base equilibria) and physical (eg. gas-liquid mass transport) reactions 

implemented in ADM1 (as reviewed in Chapter 2). 

Each experimental test was modelled as a mixed liquid reactor with a gas diffusion 

link to a mixed gas headspace and a further link to a virtual gasometer (to simulate 

the accumulated methane volume). The complete description of the Aquasim 

implementation is given in the Appendix 1. It is important to model the gas 

headspace together with the liquid reactor, in order to take into account the 

following aspects: 

 Although the biochemical transformation occurs only in the liquid phase, it is 

necessary to simulate both phases simultaneously, as the partial gas 

pressures of CO2 and H2 influence significant physicochemical and 

biological reactions in the liquid phase (CO2 influencing the charge balance 

and H2 inhibiting the acetogenic reaction steps). 

 When the digester is operated semi-continuously, the sudden production of 

CO2 (from the consumption of alkalinity) after a substrate loading will 

displace part of the methane content in the headspace, which will 

consequently be measured as a methane flow by the experimental 

flowmeter. The model needs to be able to reproduce this phenomenon, 

otherwise parameter calibration will be biased trying to reproduce the initial 

non-biological methane flow rate with increased hydrolysis and/or VFA 

uptake rates. 

The temperature of the compartments is another input of the model, with the 

headspace temperature considered to be equal to the temperature in the reactor.  

Volume changes in the compartments (reactor and headspace) are due to 

variations in the loading and removal rates of the liquid from the reactor. The biogas 
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production and water evaporation are considered not to affect the reactor volume; 

therefore Qout in equation (3.1) describes only the liquid effluent removal from the 

reactor. The volume of the reactor changed through the experiment (between 2100 

and 1800 mL), as relatively more effluent was removed during periods of foaming in 

order to diminish the risk of foam reaching the gas hoses. Qout was calculated in a 

spreadsheet so to maintain the observed volume of the reactor, and then used as 

input data in Aquasim. 

The disintegration step was implemented for the biomass decay products, while it 

was omitted as the first substrate degradation step. This was to avoid an unrealistic 

two-step solubilisation process as also recently suggested in Batstone et al. (2015). 

The state variable Xc, which is used in the default ADM1 to describe both the 

substrate and the decayed biomass, is therefore maintained in this implementation 

only to describe the decayed biomass. The pulse-fed substrates were directly 

described in terms of their biochemical fractions. Another modification was the 

introduction of dedicated state variables for the products of the disintegration of Xc 

(e.g. Xch,Bio for carbohydrates). In this way it is possible to have different rate 

constants for the hydrolysis of compounds from substrates or from the decayed 

biomass. A Petersen matrix, including all the stoichiometric parameters of all the 

implemented reaction, the carbon (Ci) and nitrogen (Ni) content of all the 

compounds, was implemented in a spreadsheet (Table 3.2). With the use of the 

matrix, COD balances were checked to be zero. The nitrogen and carbon balances 

were closed in the disintegration step by changing the Ci and Ni of Xc. In the other 

reactions a balance different than zero shows that the reaction is a source or sink of 

inorganic nitrogen and carbon - and consequently the source or sinks terms are 

implemented in Aquasim. 

Substrate loadings were implemented in Aquasim as isosceles trapezoidal pulses 

with a width of 90 seconds each. The duration of the experimental feeding was 

shorter, approximately 20 seconds to feed the whole of the substrate through the 

reactor inlet. However an estimated time required for the substrate to get thoroughly 

mixed in the reactor was also taken into account, thus justifying the slightly longer 

pulse duration. Also, the width of the pulses has an influence on the time required 

to complete the simulation, with smaller widths causing considerably higher 

computational time. The reasons are the following: the maximum integration step 

has to be maintained below the width of the pulse, otherwise some of the loadings 

could be missed by the solver; moreover, with shorter pulses the transients become 

more relevant and the number of error test failures then increases. An error test 
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indicates that the algorithm is trying to perform too large a time step and it has to 

repeat the step with a smaller step size in order to fulfil the accuracy criteria of all 

state and program variables. As an example, on a PC with an Intel Core2 Duo 

E8400 at 3.00GHz processor, the simulation of the experiment 5 (310 days with 

154 feedings) took 15 minutes. Loadings included all COD-fractions and also a 

further ash fraction (from the substrates VS determinations) to allow the prediction 

of inerts accumulation in the reactor.  

In some cases, simulated state variables need to be transformed into the 

corresponding measured outputs. In the case of VS, the state variable which are 

described in g COD L-1 need to be transformed into g L-1 through the known 

theoretical oxygen demand of the various compounds (ThODx in g COD g-1): 

 

𝑉𝑆 =
𝑋𝑎𝑐 + 𝑋𝑝𝑟𝑜 + 𝑋𝑐4 + 𝑋𝑎𝑎 + 𝑋𝑓𝑎 + 𝑋𝑠𝑢 + 𝑋ℎ2

𝑇ℎ𝑂𝐷𝑏𝑖𝑜𝑚𝑎𝑠𝑠
+

𝑋𝑐

𝑇ℎ𝑂𝐷𝑋𝑐
+

𝑋𝑐ℎ𝐵𝑖𝑜
+ 𝑋𝑐ℎ + 𝑆𝑠𝑢

𝑇ℎ𝑂𝐷𝑐ℎ

+
𝑋𝑙𝑖𝐵𝑖𝑜

+ 𝑋𝑙𝑖 + 𝑆𝑓𝑎

𝑇ℎ𝑂𝐷𝑙𝑖
+

𝑋𝑝𝑟𝐵𝑖𝑜
+ 𝑋𝑝𝑟 + 𝑆𝑎𝑎

𝑇ℎ𝑂𝐷𝑝𝑟
+

𝑆𝑣𝑎

2.04
+

𝑆𝑏𝑢

1.82
+

𝑆𝑝𝑟𝑜

1.51
+

𝑆𝑎𝑐

1.07

+
𝑋𝐼 + 𝑆𝐼

𝑇ℎ𝑂𝐷𝐼
 

(3.3) 

The ThODx values for carbohydrates, proteins and lipids are shown in Table 3.3; 

inerts are considered to have the same ThOD content as the substrate from which 

they originate; for Xc and biomass the values from Huete et al. (2006) were used. 

In the case of partial alkalinity: the measured output is transformed into bicarbonate 

alkalinity by a multiplication by a factor of 1.25, as empirically determined by 

Jenkins et al. (1983). This factor takes into account that not all the bicarbonate is 

being titrated at pH 5.75, and that the contribution of free ammonia and 

undissociated VFAs to partial alkalinity is negligible.   
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Table 3.2 Stoichiometric coefficients and balances for the biochemical processes implemented

Process Ssu Saa Sfa Sva Sbu Spro Sac Sh2 Sch4 SI Xc Xch_Bio Xch Xpr_Bio Xpr Xli_Bio Xli Xsu Xaa Xfa Xc4 Xpro Xac Xh2 XI COD SIC SIN

Disintegration Xc 0.1 -1 0.2 0.2 0.3 0.2 0 0 0

Decay biomass Xsu 1 -1 0 3.42E-03 3.47E-03

Decay biomass Xaa 1 -1 0 3.42E-03 3.47E-03

Decay biomass Xfa 1 -1 0 3.42E-03 3.47E-03

Decay biomass Xc4 1 -1 0 3.42E-03 3.47E-03

Decay biomass Xpro 1 -1 0 3.42E-03 3.47E-03

Decay biomass Xac 1 -1 0 3.42E-03 3.47E-03

Decay biomass Xh2 1 -1 0 3.42E-03 3.47E-03

Hydrolysis Carbohydrates_Biomass 1 -1 0 0 0

Hydrolysis Carbohydrates_Substrate 1 -1 0 0 0

Hydrolysis Proteins_Biomass 1 -1 0 -4.23E-04 -1.98E-04

Hydrolysis Proteins_Substrate 1 -1 0 0 0

Hydrolysis Lipids_Biomass 0.05 0.95 -1 0 -1.95E-04 0

Hydrolysis Lipids_Substrate 0.05 0.95 -1 0 -1.95E-04 0

Uptake Sugars -1 0.1195 0.2422 0.3668 0.1715 0.1 0 7.19E-03 -6.25E-04

Uptake Amino acids -1 0.2443 0.2420 0.0579 0.2989 0.0770 0.08 0 5.05E-03 7.18E-03

Uptake LCFA -1 0.6580 0.2820 0.06 0 -7.37E-04 -3.75E-04

Uptake Valerate -1 0.5076 0.2914 0.1410 0.06 0 -5.39E-04 -3.75E-04

Uptake Butyrate -1 0.7520 0.1880 0.06 0 -3.75E-04 -3.75E-04

Uptake Propionate -1 0.5472 0.4128 0.04 0 8.44E-03 -2.50E-04

Upatke Acetate -1 0.95 0.05 0 1.48E-02 -3.13E-04

Uptake Hydrogen -1 0.94 0.06 0 -1.66E-02 -3.75E-04

Carbon content [mol C / g COD] 0.0313 0.0304 0.0217 0.0240 0.0250 0.0268 0.0313 0.0000 0.0156 0.0300 0.0278 0.0313 0.0313 0.0299 0.0304 0.0220 0.0220 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0300

Nitrogen content [mol N / g COD] 0.0000 0.0077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.0028 0.0000 0.0000 0.0075 0.0077 0.0000 0.0000 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0043

BalancesSolubles Particulates
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3.5.2 Hydrolysis functions 

In addition to the first-order kinetics, the Contois kinetics was also implemented to 

determine which expression was more appropriate to describe the hydrolysis 

process. Contois kinetics is described by the following expression: 

 𝜌𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = 𝑘𝐶𝑁𝑇𝑋𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑋𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑋𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁄

𝐾𝑆,𝐶𝑁𝑇 + 𝑋𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑋𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁄
 (3.4) 

where ρ is the rate of the process for the hydrolysis of the substrate Xsubstrate which 

is being hydrolysed by the enzyme produced by the biomass group Xbiomass; KS,CNT is 

the half saturation coefficient for the ratio Xsubstrate/Xbiomass and kCNT is the maximum 

hydrolysis parameter. It was assumed that each substrate is hydrolysed by the 

respective biomass group, i.e. carbohydrates by Xsu, proteins by Xaa, lipids by Xfa - 

with kCNT and KS,CNT being the same for the three processes. A similar approach was 

adopted by Mairet et al. (2011).   

3.5.3 Charge balance 

The modelling of acid-base reactions requires the solution of a charge balance, 

which in anaerobic systems assumes the following form (Nopens et al., 2009): 

 
𝑆𝑐𝑎𝑡 − 𝑆𝑎𝑛 = 𝑆𝑎𝑐𝛼𝑎𝑐 + 𝑆𝑝𝑟𝑜𝛼𝑝𝑟𝑜+𝑆𝑏𝑢𝛼𝑏𝑢 + 𝑆𝑣𝑎𝛼𝑣𝑎 + 𝑆𝐼𝑁𝛼𝐼𝑁

+ 𝑆𝐼𝐶𝛼𝐼𝐶 + 𝑂𝐻− + 𝐻+ 
(3.5) 

where SIC (inorganic carbon fraction, which in solid substrates is almost entirely in 

the form of hydrogen carbonate) was calculated through partial alkalinity (PA) 

measurements, with titration to pH 5.75 and then multiplication of the measurement 

by a 1.25 factor, to take into account that not all the hydrogen carbonate is titrated 

at pH 5.75 (Jenkins et al., 1983); SIN (inorganic nitrogen) in anaerobic systems 

practically coincides with the measured total ammonia nitrogen; concentrations of 

VFAs were directly analytically determined; H+ = 10-pH, OH- = 10(-pKw+pH) and pKw = 

14. The specific charges αi
ch

 for each component depend on pH and were 

calculated as detailed in Nopens et al. (2009). The remaining unknown variables 

are SCAT and SAN (cations and anions): to remove one degree of freedom, SAN was 

set to zero when SCAT exceeded SAN, or vice versa. The charge balance is then 

applied for both the description of the initial conditions and substrate loadings.  

 



69 

3.5.4 Initial conditions 

Initial conditions have to be defined for both compartments, for each state variable 

of the model, prior to any simulation. For the initial conditions in the headspace, the 

same gas composition used for the calculation of gas flow (as described in Section 

3.4.3) was employed. 

For the initial conditions in the liquid phase, two qualitatively different sets of 

variables can be identified: physico-chemical and microbial biomass state variables. 

The physico-chemical variables can be, for most of the cases, analytically 

measured or otherwise approximated with negligible effect on model outputs. 

Microbial biomass initial conditions are more complicated to determine 

experimentally. Two cases can arise, depending on whether the inoculum is 

sourced from a digester which can be adequately modelled or is from an external 

digester whose operation cannot be described in enough detail. The first case is the 

preferred option: sourcing the inoculum from a digester for which operational 

conditions and substrate characteristics are known, and using the simulated state 

variables as initial conditions for the experiment. Examples of this approach may be 

found in Batstone et al. (2004) and Girault et al. (2012). 

In the second case, analytical measurements of the biomass need to be 

transformed into the relevant model state variables. A traditional method used for 

the determination of the quantity of microorganisms is the measurement of the 

volatile suspended solids (VSS). However the VSS values can’t be accurately 

transformed into the mass of the microorganisms, as other non-degraded organic 

particulates are usually present in the inoculum which are measured by VSS 

analysis, especially when the source digester is fed on solid wastes. Additionally, 

the overall microbial mass needs to be allocated into the various microbial groups 

simulated in ADM1, an allocation that would need further assumptions. Other 

techniques have been suggested and implemented, such as the in-situ 

hybridization and microscope counting (Lübken et al., 2007), coenzyme M 

quantitation (Page et al., 2008) and bicinchoninic acid (BCA) protein assays 

(Jensen et al., 2008). In general, novel molecular techniques have been 

increasingly developed in recent years (Pobeheim et al., 2010) which can give a 

more accurate description of the microbial community. However these techniques 

are rather complex and specialized, their connection with dynamic modelling is far 

from being standardized and therefore their use was not considered in this 

research. Biomass concentrations can also be treated as parameters to be 
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calibrated, however this method usually leads to high correlation and identifiability 

problems when also the uptake rate parameters need to be calibrated. The initial 

rate technique, which involve simultaneous batch experiments at different 

substrate/biomass ratio has been used to improve the parameters identifiability 

(Flotats et al., 2006) and to explicitly estimate biomass concentration for ADM1 

applications (Jabłoński and Łukaszewicz, 2014). These techniques are promising 

and design of experiment methods can be applied to optimize the parameter 

identification (Franceschini and Macchietto, 2008) - however a higher number of 

reactors is needed.  

The experimental mode, batch or (semi)continuous, finally influences the required 

accuracy of the initial conditions estimation. In batch experiments, the initial 

conditions are the sole inputs of the system (in addition to the substrate loading) 

and therefore they will exert a significant influence on the model outputs. On the 

other hand, in (semi)continuous systems the influence of the initial condition will 

decrease with each loading event, becoming negligible in the case of long term 

operations.  

In this research, both approaches of the model based and analytical determination 

have been used. In the batch test 1b the inoculum was sourced from the semi-

continuous test 2, and simulated state variables were evaluated as initial conditions 

for the batch test, taking into account the degassing period. 

In the case of external unknown inoculum the following method was designed and 

employed: 

1. Charge balance in the liquid phase, using the required physico-chemical 

measurements: pH, TAN, VFA, alkalinity. 

2. Dissolved methane and carbon dioxide in liquid phase are calculated by 

being in equilibrium with the headspace conditions. 

3. Total biomass concentration is calibrated from the gas production in the 

control batch test (only inoculum). This calibration is conditional on the 

decay rate parameter value. 

4. Allocation of the total biomass to different trophic groups based on literature 

values or known composition of feedstock in the source digester.  
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3.6 Parameter selection 

As was reviewed in Chapter 2, ADM1 includes a large number of parameters, which 

can be divided into different classes: 

 Physio-chemical parameters, which define acid-base equilibria and liquid-

gas mass transfer. Acid-base equilibria are described by accurate first-

principle formulae and therefore they must not be included in the calibration. 

The liquid-mass transfer rate depends on the value of the gas-liquid transfer 

coefficient kLa, which in turn depends on the rheology and mixing in the 

reactor. Although formulae exist to calculate kLa from wastewater 

engineering principles (Tchobanoglous and Burton, 1991), these are 

deemed to be not accurate in describing anaerobic laboratory scale 

systems. Therefore literature data was used in the initial model 

implementation 

 Biological parameters: 

o Stoichiometric yields, which describe the transformation of 

substrates into products and biomass, depends on the microbial 

metabolism (network of catabolic and anabolic reactions), and 

methods are available for deriving the value of the parameters from 

a thermodynamic analysis of the system (Kleerebezem and Van 

Loosdrecht, 2010).  

o Kinetic uptake and decay rates, which describe the empirically 

accepted reaction scheme implemented in the model. In ADM1, the 

uptake rates are described by the Monod kinetics expressions, which 

include a maximum uptake rate and half saturation coefficients. 

As it has been reviewed in section 0, the common practice in ADM1 

implementations has been to focus on the calibration of the biological kinetic 

parameters, leaving the other parameters at their default values indicated in the 

original ADM1 STR. In this thesis a similar approach was followed, and for each 

experiment a set of sensitive parameters was selected for calibration and practically 

identifiable subsets were calibrated:  

 Batch tests. Souza et al. (2013) performed a sensitivity analysis on the methane 

volume from batch tests, evaluating most of the ADM1 parameters, and showed 

how the hydrolysis constants had highest values of sensitivity indexes. Previous 

studies have satisfactorily used ADM1 default uptake kinetic parameters to 
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simulate batch tests (Souza et al., 2013, García-Gen et al., 2015). Therefore 

only the hydrolysis and degradability parameters were selected for calibration, 

based on the assumption that methane production (calibration target) occurred 

mostly under hydrolysis limited conditions: therefore only hydrolysis and 

degradability parameters were calibrated.  

 In the semi-continuous test 2, the same parameters calibrated in batch tests 

were evaluated. 

 In the semi-continuous test 3, parameters describing different inhibition 

functions were calibrated.  

All parameters estimated have to be considered as conditional on the other 

parameters left at fixed values. The other stoichiometric and kinetic parameters 

were taken from Rosen and Jeppsson (Rosen and Jeppsson, 2006), with the 

exception of the stoichiometric parameters for proteins which were modified to 

reflect the protein molecular formula adopted (see Section 3.8.3) and kLa from 

Siegrist et al. (2002) 

3.7 Parameter estimation method 

Parameters were estimated by a weighted least square method, minimizing the 

following function (Gujer, 2008): 

 𝜒2 = ∑ (
𝑦𝑚,𝑖 − 𝑦𝑖(𝑝)

𝜎𝑚,𝑖
)

2𝑛

𝑖=1

 (3.6) 

where ym,i is the ith measured value of the accumulated methane, assumed to be a 

normally distributed random variable; yi(p) is the model prediction at the ith time 

instance, which is function of the set of parameters p to be estimated; σm,i is the 

standard error of the measurement ym,i and weights each term of the sum. The 

same cost function is implemented in Aquasim as the parameter estimation routine. 

A residual analysis was performed to identify and remove outliers, and eventually 

parameter estimation was performed on the new processed data set.  

In the case of batch tests, the only target measurement is the accumulated volume 

(calculated as the sum of consecutive volume measurements). The standard error 

of each measurement was calculated by the uncertainty propagation as the 

quadratic sum of all previous errors (Taylor, 1996): 
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 𝜎𝑚,𝑘 = √∑ 𝜎𝑚,𝑖
2

𝑘−1

𝑖=1

 
(3.7) 

As a consequence, the initial volume measurement in batch tests are considered 

more accurate and have more weight than latter measurements. Using data from 

the equipment manufacturer and a conservative approach, each measurement was 

characterised by a standard error of 0.5 mL. 

Every batch replicate was treated as a separate data point set for the estimation 

algorithm, rather than fitting the average of the data points. The Secant Algorithm 

(Ralston and Jennrich, 1978) implemented in Aquasim was used as the 

minimization technique, with a tolerance for convergence of 4E-3 in the objective 

function. Different initial guesses of the target parameters were used in the 

estimation process to check the convergence of the algorithm towards the same 

optimum parameters values.  

In the case of semi-continuous tests, the methane flow rate was used as the target 

measurement. Flow rates were calculated from measured volume data points 

through backward differences. The standard error of each measurement was 

calculated by uncertainty propagation for the case of quotients (flow rate as the 

quotient of volume and time interval), which results in the weights in equation (3.6) 

being proportional to the experimental flow rate: 

 𝜎𝑚,𝑖 = 𝜎𝑟𝑒𝑙𝑦𝑚,𝑖 (3.8) 

For the estimated 0.5 mL uncertainty in volume measurement, a relative standard 

error σrel of 7% results for the flow rate. As a consequence, the cost function will 

“give” similar importance to the experimental periods with low flow rate and high 

flow rate.  

Different fit targets (gas volume in the batch tests, flow in the semi-continuous 

tests), can be explained as follows: although the volume is the measured quantity 

by the measuring device, and therefore more accurate than the derived quantity 

gas flow, the accumulated volume accumulates as well as the uncertainty of each 

measure; this would lead to a highly imprecise measurement in the semi-

continuous experiments, where thousands of data points are collected, with respect 

to hundreds in batch experiments. 
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3.7.1 Multivariate estimation 

In the case of semi-continuous experiments, the analysis of the effluent provided 

more experimental data for parameter calibration; the cost function was updated as 

follows: 

 𝜒2 = ∑ ∑ (
𝑦𝑚,𝑘,𝑖 − 𝑦𝑘,𝑖(𝑝)

𝑠𝑐𝑘,𝑖
)

2𝑛

𝑖=1

𝑘

𝑗=1

 (3.9) 

where ym,k,i is the ith measurement of the kth variable, yk,i(p) is the model prediction 

at the ith time instance, function of the set of parameters p to be estimated; and sck,i 

is a scaling factor to make the sum term non-dimensional and to standardize the 

different value ranges and number of measurements nk of the k variables: 

 𝑠𝑐𝑘,𝑖 = √𝑛𝑘𝜎𝑟𝑒𝑙,𝑘𝑦𝑚,𝑘,𝑖 (3.10) 

The relative standard error of the VFA measurement was fixed at 25%, so to 

maintain more weight on the gas flow measurements, which were deemed more 

accurate (and also because the gas flow was considered more important to predict 

than VFAs level). 

3.7.2 Quality of fit and parameter uncertainty 

Uncorrelated confidence intervals of the parameters are then obtained as follows 

(Dochain and Vanrolleghem, 2001):  

 𝑝𝑖 ± 𝑡𝛼;𝑛−𝑝𝜎(𝑝𝑖) 
(3.11) 

where σ(pi) is the standard error for the estimated parameter, as calculated by the 

secant algorithm in Aquasim, and the t-values are obtained from the Student-t 

distribution, for a confidence level specified at 100(1-α)% and n-p (data points - 

number of parameters) degree of freedom.  

3.8 Substrate characterization  

A combined biochemical and kinetic fractionation methodology is used to describe 

the substrate composition in terms rate of degradation and of the various ADM1 

state variables (Xch, Xpr, Xfa, XI, Ssu, Saa, Sfa, Sac, Spr, Sbu, Sva, SI). The methodology 

is described in the following paragraphs.  
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3.8.1 Theoretical oxygen demand 

In ADM1, organic matter transformations are described on a COD basis; therefore 

substrate loadings need to be analysed for their COD content. The COD of 

wastewaters can be determined with high accuracy and with standardized methods; 

however the application of standard methods to the analysis of solid or semisolid 

heterogeneous wastes usually produces results with low precision and large 

confidence intervals, this is because of the non-representative sampling and 

incomplete COD recovery (Raposo et al., 2008). Optimized methods for the 

characterization of solid wastes have been recently proposed, based on “solid 

dilution” (Noguerol-Arias et al., 2012), but their adoption by the research community 

has been very limited so far. 

In this study an alternative approach was employed and the COD of the substrates 

was approximated by their calculated Theoretical Oxygen Demand (ThOD), using 

the measured elemental composition of the substrate. The substrate is considered 

to be fully oxidised to carbon dioxide and water, with nitrogen reduced to ammonia 

(as it occurs in anaerobic systems) (Baker et al., 1999):  

 𝐶𝑛𝐻𝑎𝑂𝑏𝑁𝑐 + (𝑛 +
𝑎

4
−

𝑏

2
−

3

4
𝑐) 𝑂2 → 𝑛𝐶𝑂2 + (

𝑎

2
−

3

2
𝑐) 𝐻2𝑂 + 𝑐𝑁𝐻3 (3.12) 

and therefore: 

 𝑇ℎ𝑂𝐷 [𝑔𝐶𝑂𝐷 𝑔𝑉𝑆−1] = 32 × (𝑛 +
𝑎

4
−

𝑏

2
−

3

4
𝑐)     (3.13) 

Molecular formulae (CnHaObNc) of the tested substrates were calculated from the 

measured elemental composition (Rittmann and McCarty, 2001) neglecting the 

sulphur content as sulphur transformations were not implemented in the model.  

The method depends on the correct use of the results from the elemental analyser. 

In elemental analysis, a sample is burned in an excess of oxygen, with the 

combustion products then being further converted in a series of gas traps, 

separated in a chromatography column and quantified by a thermal conductivity 

detector. Combustion occurs in a dedicated reactor maintained at temperatures 

between 900-1050 °C, reaching temperatures up to 1800 °C during the reaction 

(Thermo Fisher Scientific Inc., 2008). The equipment used in this research could 

measure the C, H, N and S content, while the O content had to be determined by 

difference using the sample ash content. The ash content is known to be dependent 
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on the ignition temperature used in its determination: lower ash contents are 

obtained at higher temperature, mainly due to dehydration of structural hydroxyl 

groups of minerals and thermal decomposition (especially of carbonates) 

(Matthiessen et al., 2005). The usual ash determination is by ignition to a constant 

weight at 550 °C (APHA, 2005), which is considerably lower than the temperature 

reached in the elemental analysis. For this reason, the ash content was also 

determined by the loss on ignition in a furnace maintained at 1050 °C, and the 

influence of the temperature of ignition on ThOD and the biochemical fractionation 

was evaluated.  

3.8.2 Biochemical fractionation 

Biochemical fractionation allocates ThOD of the substrate to the three biochemical 

compound groups defined in ADM1: carbohydrates/sugars, proteins/amino acids 

and lipids/fatty acids. It is assumed that different kinetic fractions have the same 

biochemical fractionation, and only three parameters are defined: fch, fpr, and fli. 

These parameters are treated as unknown and calculated through the biochemical 

fractionation.  

The fractionation is based on the following assumptions: 

 All VFA is lost during sample preparation (drying) for elemental analysis, 

therefore all ThOD is allocated to the sum of the particulate and non-volatile 

soluble fractions (Xch, Xpr, Xli and Ssu, Saa, Sfa). 

 All ammonical nitrogen (SIN) is lost during sample preparation (drying) for 

elemental analysis, therefore all nitrogen measured in elemental analysis is 

of organic character and allocated to proteins (Xpr) and amino acids (Saa). 

The following system of 3 equations with 3 unknowns allows the calculation of the 

biochemical fractions, by maintaining a nitrogen, COD and mass balance between 

the measured substrate and the fractionation of the ThOD. 

Nitrogen 

balance 
𝑓𝑝𝑟 =  

𝑔 𝑁𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑔𝐶𝑂𝐷 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
∙

𝑔𝐶𝑂𝐷𝑝𝑟

𝑔𝑝𝑟
∙

𝑔𝑝𝑟

𝑔 𝑁𝑝𝑟
 (3.14) 

COD 

balance 
𝑓𝑐ℎ + 𝑓𝑝𝑟 + 𝑓𝑙𝑖 = 1 (3.15) 
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Mass 

balance  
(𝑓𝑐ℎ

𝑔𝑐ℎ

𝑔𝐶𝑂𝐷𝑐ℎ
+ 𝑓𝑝𝑟

𝑔𝑝𝑟

𝑔𝐶𝑂𝐷𝑝𝑟
+ 𝑓𝑙𝑖

𝑔𝑙𝑖

𝑔𝐶𝑂𝐷𝑙𝑖
)

𝑔𝐶𝑂𝐷𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑔𝑉𝑆𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
=  1  (3.16) 

The required values for the COD contents (g COD g-1 for carbohydrate/sugar, 

protein/amino acid and lipid/fatty acids) were calculated assigning to each 

biochemical fraction an ideal molecular formula and deriving the relative ThOD (in g 

COD g-1). Carbohydrates were described as polyhexoses with infinite linear chains 

and lipids as palmitic triglycerides, thus maintaining the original ADM1 STR 

description. In the case of proteins, a different molecular formula was used for each 

substrate, in order to account for possible differences in COD and nitrogen content - 

this approach is explained in Section 3.8.3. Table 3.3 reports the formula and 

significant ratios used for the biochemical fractionation. The resulting system of 

equations was then solved in Excel.  

Biochemical 

compound 

Molecular 

formula 

ThOD 

[gCOD g-1] 

Nitrogen 

content  

[gN gVS-1] 

Ci in ADM1 

[mol-C 

gCOD-1]   

Ni in ADM1 

[mol-N 

gCOD-1] 

Carbohydrates C6H10O5 1.184 0 0.031 0 

Lipids C51H98O6 2.874 0 0.022 0 

Proteins - GW C3.95H7.74NO2.06 1.285 0.137 0.030 0.0076 

Proteins - FW C3.85H7.64NO2.17 1.221 0.136 0.031 0.0079 

Proteins - PM C3.96H7.66NO1.98 1.313 0.139 0.029 0.0075 

Proteins - OAT C4.04H7.72NO2.25 1.234 0.132 0.031 0.0076 

Table 3.3 Formulae and significant ratios used for the biochemical 
fractionation of the substrate and model implementation. 

3.8.3 Determination of the protein formulae and degradation 

stoichiometry 

The ADM1 STR reports the stoichiometric coefficients for protein degradation in the 

case of sewage sludge, and recommends to derive new parameters for different 

substrates. This recommendation has usually not been followed in other ADM1 

implementations in the literature, with most of researchers using the default values. 
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Exceptions are the works of Flotats et al. (2006) and Yuan et al. (2014), which use 

a similar methodology to the one described below.  

The procedure outlined by Ramsay and Pullammanappallil (2001) was employed 

for the determination of proteins degradation stoichiometry, which mainly depends 

on the protein primary structure. The procedure consists of the following steps. 

Assumptions. It was assumed that the amino acid fermentation pathway remains 

constant during the experiment, regardless of the changing organic loading 

conditions. Therefore for each substrate, the stoichiometric coefficients are fixed 

and remain constant. 

Determination of the protein amino acid content and molecular formula of the 

protein fraction in the substrate. The amino acid composition of the substrate can 

be measured through an amino acid analysis (usually by the hydrolysis of the 

purified protein, and quantification of the amino acids by liquid chromatography). In 

this research, literature data were used, assuming that they would still give a 

valuable description of the amino acid profile of each feedstock and highlighting 

possible relative differences between them. The following sources were used 

(Table 3.5): food waste from Myer et al. (2000); green waste from Gerloff et al. 

(1965); pig manure from Low (1979); cereal residues from Pomeranz et al. (1973). 

From the relative amino acid composition and the exact molecular formula of each 

amino acid, the protein molecular formula is obtained for each substrate. From the 

molecular formula, the ThOD, C and N contents in proteins are calculated. Table 

3.3 reports all the calculated values.  

Selection of the dominant amino acid fermentation reactions. For each amino acid, 

the stoichiometric yields of products compiled by Ramsay and Pullammanappallil 

(2001) were used, which in turn were based on the assumption that the Stickland 

reactions are dominant reactions.  

Determination of the overall stoichiometry for protein degradation to acids. The 

amino acid composition of the substrate protein, and the stoichiometric yields for 

each amino acid are multiplied and then summed to obtain the overall 

stoichiometric yields of amino acid fermentation (Table 3.6). With respect to the 

default values in ADM1, the acetate production is reduced in favour of the other 

products (VFAs and H2). However, the difference in the stoichiometric values is 

relatively small.  
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3.9 Kinetic fractionation 

Every substrate was considered as composed of fractions which degrade at 

different rates. Particulate fractions (X) have, by definition, hydrolysis as the limiting 

rate and therefore their rate of degradation was described by a first-order hydrolysis 

kinetics (Vavilin et al., 2008). Soluble fractions (S) are directly assimilated by 

microorganism and therefore their rate of degradation depends on the biomass 

concentration and their respective uptake rates. In the case of particulate fractions 

a further distinction was made between readily (Xr ) and slowly (Xs ) degradable 

fractions, which can be physically explained by different particle sizes, 

bioavailability to microorganism colonization, association with recalcitrant polymers 

(e.g. lignin) or a combination thereof. The hydrolysis rate constants for the 

particulate fractions were assumed to be identical for proteins, carbohydrates and 

lipids, as the available experimental measurements would not have allowed 

distinguishing their rate of degradation. The fractionation between soluble, readily 

and slowly degradable particulates can be modelled by introducing appropriate 

parameters which map the initial degradable COD of the substrate into the 

respective fractions. The degradable COD is described by a degradable extent 

parameter fd which defines the fraction of the ThOD of the substrate that is 

degradable; the not degradable fraction (1-fd) is allocated entirely to the inert 

fraction XI. The degradable fraction is then considered to be made of a soluble 

fraction fs and a particulate fraction (1-fs). The particulate fraction in turn is allocated 

into fractions which degrades at different rates, which in the simplest case are two 

readily and slowly fractions according to another “split” constant (fXr). Figure 3.5 is 

an overview of the whole substrate fractionation method, from biochemical to 

kinetic. 

For each substrate different fractionation combinations were tested (Table 3.4) and 

the respective quality of fit to the experimental data and uncertainty in parameter 

estimation evaluated.  

Model name  Fractionation Parameters estimated 

X 1 particulate (X) fd, khyd 

XS 1 particulate (X) and 1 soluble (S) fd, fS, khyd 

XX 2 particulates (Xr and Xs) fd, fXr,  khyd,r, khyd,s 

XXS 2 particulates (Xr and Xs) and 1 soluble (S) fd, fS, fXr,  khyd,r, khyd,s 

Table 3.4 Model descriptions and parameters estimated. 
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Amino Acid [mol amino acid / mol protein] 

FW GW PM OAT 

Arginine  0.032 0.047 0.031 0.048 

Histidine  0.029 0.018 0.037 0.018 

Lysine  0.061 0.055 0.061 0.033 

Tyrosine  0.004 0.029 0.041 0.023 

Tryptophan  0.006 0.010 0.023 0.019 

Phenylalanine  0.034 0.046 0.043 0.039 

Cysteine  0.014 0.007 0.043 0.024 

Methionine  0.018 0.018 0.041 0.026 

Threonine  0.051 0.055 0.080 0.033 

Serine  0.066 0.058 0.067 0.062 

Leucine / Isoleucine 0.122 0.146 0.117 0.105 

Valine 0.058 0.068 0.071 0.058 

Glutamate  0.170 0.101 0.033 0.218 

Aspartate  0.091 0.094 0.077 0.077 

Glycine 0.096 0.096 0.085 0.083 

Alanine 0.079 0.094 0.108 0.064 

Proline  0.070 0.056 0.044 0.070 

Table 3.5 Amino acid composition for each analysed substrate. Data from 
literature: food waste (FW) from Myer et al. (2000); green waste (GW) 
from Gerloff et al. (1965); pig manure (PM) from Low (1979); cereal 
residues (OAT) from Pomeranz et al. (1973). 

 
Coefficient FW GW PM OAT ADM1 

fac,aa 0.330 0.308 0.330 0.332 0.4 

fpro,aa 0.056 0.057 0.068 0.071 0.05 

fbu,aa 0.282 0.245 0.255 0.270 0.26 

fva,aa 0.260 0.300 0.248 0.254 0.23 

fH2,aa 0.072 0.090 0.099 0.073 0.06 

Table 3.6 Stoichiometric coefficients for amino acids fermentation, for 
analysed substrates and using default values in ADM1. 
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Figure 3.5 Overview of the substrate fractionations method: biochemical and 
kinetic (not shown: charge balance). 

 
Table 3.7 shows a complete list of the state variables which are needed by ADM1 

to describe any given feedstock. For each variable the experimental method or the 

expression from the kinetic fractionation is shown. In practice, in Aquasim, the XXS 

model is implemented as the most general fractionation. It is then possible to 

change the fractionation model by changing the values of the soluble fraction or 

particulate readily fraction to zero.    

3.10  Co-digestion approach 

In the case of co-digestion, the charge balance and the biochemical and kinetic 

fractionations are applied to each substrate, so that each substrate is described by 

an appropriate vector as given in Table 3.7. With this information, it is then possible 

to implement the loadings of the COD fractions and of the charge bearer elements 

in Aquasim, for all substrates considered. New state variables are implemented in 

Aquasim for each particulate fraction of each substrate. In this way it is possible to 

simulate the degradation in parallel of different particulates, degrading at different 

rates and producing the same soluble compounds whose transformations are then 

modelled by the same ADM1 structure as in the case of mono-digestion.   
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Variable XXS model 

Ssu ThOD fd fch fs 

Saa ThOD fd fpr fs 
Sfa ThOD fd fli fs 
Sac measured (GC) 
Spro measured (GC) 
Sbu measured (GC) 
Sva measured (GC) 
Sh2 0 
Sch4 0 
SIC measured (titration) 
SIN measured (IC) 
SI 0 
Xc 0 
Xch 0 
Xpr 0 
Xli 0 
Xch,r ThOD fd fch (1-fs)fXr 

Xpr,r ThOD fd fpr (1-fs)fXr 
Xli,r ThOD fd fli (1-fs)fXr 
Xch,s ThOD fd fch (1-fs)(1-fXr) 
Xpr,s ThOD fd fpr (1-fs)(1-fXr) 
Xli,s ThOD fd fli (1-fs)(1-fXr) 
Xsu 0 
Xaa 0 
Xfa 0 
Xc4 0 
Xpro 0 
Xac 0 
Xh2 0 
XI ThOD (1-fd) 

SH+ measured (pH) 
SOH- measured (pH) 
Scat charge balance 
San charge balance 

 
X model:  fs = 0 , fXr = 0 
XS model:  fs = calibrated , fXr = 0 
XX model:  fs = 0 , fXr = calibrated 
XXS model:  fs = calibrated , fXr = calibrated 

Table 3.7 ADM1 state variables used to describe substrate and their definition 
in the fractionation model XXS.  
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Table 3.8 Overview of the approach to the modelling of the co-digestion 
experiments.  

3.11  Model validation 

Direct validation consists in evaluating the ability of the model in reproducing the 

experimental data that has been used for estimating the parameters. When the 

fitting is considered by the modeller not to be adequate, then previous model 

building steps should be checked and potentially modified, especially to model 

selection and parameter selection and estimation.    

Different methods can be employed in direct validation. The simplest is visual 

inspection: the model has to follow well the data evolution while smoothing out the 

noise (a model that tends to reproduce noise is over-parameterized and will fail 

later cross-validation tests) (Donoso-Bravo et al., 2012). 

A more rigorous approach was used in this thesis and this is based on residual 

analysis and derivation of mathematical indicators. Each calibration was evaluated 

on the basis of their weighted sum of square χ2, the coefficient of determination R2, 

the relative absolute error rAE, and the confidence interval of the estimated 

parameters. R2 was calculated as follows:   

 𝑅2 = 1 −
∑ (𝑦𝑚,𝑖 − 𝑦𝑖(𝑝))

2
𝑛
𝑖=1

∑ (𝑦𝑚,𝑖 − 𝑦𝑚)
2𝑛

𝑖=1

 (3.17) 
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where 𝑦𝑚 is the average of experimental data points. The rAE was calculated as 

follows: 

 
𝑟𝐴𝐸 =

∑ (
|𝑦𝑚,𝑖 − 𝑦𝑖(𝑝)|

𝑦𝑚,𝑖
)𝑛

𝑖=1

𝑛
 

(3.18) 

Direct validation is a necessary condition, but not a sufficient condition, to accept 

the model as able to reproduce the behaviour of the system under consideration. It 

is in fact possible that the model fits well the data that has been used for parameter 

estimation, while showing inadequate performance when new data is used. In this 

thesis, the fractionation models estimated with the batch tests 1a and 1b are cross-

validated with semi-continuous tests 2 and 5; and the inhibition model estimated in 

test 3 are cross-validated in test 5.    

The identification of the model parameters through the method of weighted sum of 

least squares is based on certain assumptions on the residuals (Gujer, 2008), 

namely:  

a) normally distributed with an average value of zero and a standard deviation 

equal to the standard error of the measurement processes. 

b) having constant variance.  

c) being independent, i.e. not autocorrelated. 

Assumption a) was visually verified by plotting a residual histogram;  assumption b) 

and c) were verified by the visual inspection of a scatter plot of the residuals against 

time or the experimental data. Autocorrelation of the residuals is an indication of the 

structural inadequacy of the model, which is unable to describe all the dynamics of 

the process. 

Models selection  

Different fractionation and inhibition models are compared in this thesis. These 

models contain a different number of calibrated parameters and therefore a 

procedure to compare and select an appropriate one is needed. This is a situation 

which is often encountered when modelling biotechnological processes.  

Mathematical models for biotechnological processes in fact include many 

parameters of uncertain value and relatively few measured outputs, which in turn 

makes them difficult to calibrate due to structural/practical identifiability issues 

(Dochain and Vanrolleghem, 2001). Attempts to fit all the parameters 
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simultaneously usually result in very low confidence in the estimated parameters. 

As a consequence, two conflicting objectives characterise the calibration of 

biotechnological models: the goodness of fit and the estimated parameter 

confidence. Increasing the number of parameters leads to a closer fit between 

model predictions and experimental data; at the same time, additional parameters 

will lead to increased uncertainty, because of the correlation between the 

parameters and experimental data being not sufficiently informative (both low 

quality and quantity of data).  

A parameter identification procedure has been employed in this thesis for the 

systematic comparison of parameter combinations (which in turn correspond also to 

different model structures of substrate fractionation and reaction inhibition).  The 

procedure starts with the simplest combination and then adding one parameter at a 

time, until some threshold on estimated parameter error is reached, or otherwise 

until the procedure is computationally and timewise tractable.  Finally the selection 

is based on two criteria: (1) Is maximum relative standard error of the estimated 

parameters above a certain user-specified threshold? (2) How good is the fit?  The 

former is used to detect and eliminate those parameter combinations which yield 

low confidence estimates and the latter is used to rank the parameter combination 

tested.  

3.12  Conclusion 

In this chapter, the methods employed in this thesis were described. The methods 

include the tools required to build a calibrated and validated model, which can be 

used to investigate the operation of an AD system in a microgrid (investigation 

which is described in Chapter 6). Therefore both experimental and modelling 

aspects were covered.  

Experimental tools included the laboratory scale digesters, needed to investigate 

the kinetics of degradation of different substrates, and the analytical methods used 

to characterise the substrate at a physico-chemical level. Modelling tools included a 

detailed description of the ADM1 implementation in the simulating software 

Aquasim, the derivation of initial conditions, and the parameter estimation methods 

employed in this thesis. Experimental data and parameter estimation techniques 

were combined in order to achieve a description of the biochemical and kinetic 

characteristics of any given substrate This allows the modelling of the mono-
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digestion and co-digestion of different substrates, which is the subject of Chapters 4 

and 5, respectively.   
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4 Substrate fractionation 

4.1 Introduction 

This chapter presents the experimental details and results of the biochemical and 

kinetic fractionation of four different substrates, with the objective of identifying and 

evaluating a methodology which can be used to characterize any given substrate 

and produce accurate inputs for the ADM1 model. Elemental analysis of the 

substrates was used to derive the biochemical fractionation of the substrates, and 

the influence of the ash determination on the results is discussed. The kinetic 

fractionation method, based on the calibration of the methane production curve 

from a batch test, was used to characterise the substrate in terms of fractions 

having different rates of degradation. The method updates the approach introduced 

by Girault et al. (2012) by using parameter estimation and model selection; relative 

differences and improvements between the methods are discussed. As single step 

models are usually used by other researchers for modelling batch tests, calibrated 

parameters using ADM1 and single step models are compared. 

Semi-continuous tests on two of the four substrates were performed to validate the 

fractionation method. The kinetic fractionation parameters were determined also on 

the semi-continuous data sets and compared with the batch calibration. The 

apparent temporal variation of the parameters across the experiment was also 

evaluated. The ability of the model in reproducing other measured outputs in 

addition to gas flow rate were evaluated. Contois kinetics was compared with first-

order kinetics as an alternative option for hydrolysis.  

4.2 Materials and methods 

Materials and analytical methods employed in this thesis are described in Chapter 

3. 

4.2.1 Batch test conditions 

Two different batch tests were performed, with different substrates and inoculum 

employed. Table 4.1 shows how the substrate, inoculum, volume and ratio between 

the inoculum and substrate (ISR) changed in the two tests.  
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Test Substrate Inoculum Volume 
ISR (COD 
basis) 

ISR (VS 
basis) 

1a GW External 
digester 

0.35 2.5 3.6 

 
FW 0.35 2.5 4 

1b PM Lab digester-
modelled 

0.5 2.5 3.3 

 
OAT 0.5 2.5 3.1 

Table 4.1 Experimental conditions for the batch tests 

Inoculum for test 1a was taken from an external digester, with limited information 

about its operation, and the respective method described in Chapter 3 Section 3.5.4 

was used. Inoculum for test 1b was a mixture of the effluents withdrawn from the 

digesters used in semi-continuous test 2, therefore simulations of the source 

digesters were used to estimate the initial conditions for microbial biomass. In both 

cases the inoculum was filtered through a 0.5 mm sieve and then incubated for 4 

days in the reactors, in order to allow the degradation of most of the residual easily 

degradable matter. 

4.3 Substrate characterisation and biochemical fractionation  

Measured composition of the four substrates is shown in Table 4.2. All substrates 

have high solids content above 25% based on weight basis, reaching 93% in the 

case of the oat residues. The addition of water would be therefore an important 

design parameter in the case of these substrates. Ash content is highest in GW, at 

31% on total solids, due to soil and grit contamination, while it is lowest in OAT at 

3%. Nitrogen content determines the protein content in the substrates: it is highest 

in OAT at 4.3% on TS, and then lower in FW (3.3%), PM (2.9%) and GW (2.0%). 

The relative content of C, H, O and N describes the state of oxidation of the 

substrate and determines the value of the calculated ThOD. The highest value for 

ThOD (on a VS basis) is for FW with 1.61 g COD g-1 VS and this is followed by GW 

with 1.42 g COD g-1 VS), PM with 1.31 g COD g-1 VS  and OAT with 1.23 g COD g-1 

VS. The ThOD of the whole substrate (on a wet basis) it is clearly highest for OAT, 

given its very low moisture content.   

The pH and alkalinity values are related to the type of substrate and its previous 

storage conditions. Food waste, green waste and pig manure were collected and 

analysed after being stored for a period of 3-4 days at the recycling site and farm. 

During this period the waste underwent a fermentation process, which increased 

the volatile fatty acids and alcohols content and decreased the pH. The low 

moisture content of the oat residues prevented any biological fermentation from 
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occurring. The results obtained confirm this aspect, with pig manure showing the 

highest amount of fermentation products. The pH is about 5 for food waste and 

green waste, while the high content of ammonia in pig manure maintains the pH at 

6.3. Therefore partial alkalinity is absent in the case of food waste and green waste, 

while is still present in PM and OAT. In the case of food waste, Aichinger et al. 

(2015) found lactic acid being the most abundant product from the fermentation of 

stored biowaste (up to 25 g/L after 3 days storage). In this research, gas 

chromatography analysis was not calibrated for lactic acid and therefore it is 

possible that the reported total VFAs underestimates the fermentation products 

from waste storage.  

Table 4.3 shows the biochemical fractionation for all substrates, on a VS  and COD 

basis. Carbohydrates are the main compounds in all the substrates (on a VS basis), 

about 65% in the case of GW, PM and OAT and 48% in the case of FW. The 

protein content is between 20 and 33% across the substrates, with the highest 

prevalence in OAT and FW. The lipid content shows the highest variation between 

the substrates, with minimum content in OAT (1.9%) and increasing in PM (5.7%), 

GW (12.8%) and highest in FW (23.6%) due to the occurrence of various fatty 

residues in this waste (cheese, meat parts, discarded oils etc.). Lipids content in 

GW appears to be higher than the reported amounts from other databases or 

publications; e.g. from consulted entries in a comprehensive biomass database 

(ECN/Phyllis), averages values about 5% are found. Two reasons for this result 

may be: 

 The potential contamination with cooking oil (household collections make 

part of the green waste).  

 The influence of lignin content, which has COD:mass ratio of 1.56; 

considering a ratio of 1.18 for carbohydrates and 2.87 for lipids, it is evident 

how the presence of lignin would shift the biochemical fractionation towards 

a higher content of lipid (while proteins are directly determined by the N 

content).  

Notwithstanding the possible influence of contamination, the aforementioned 

influence of lignin is theoretically valid and shows a limit of the proposed method: in 

the case of substrates which have a relatively high content of lignin, the results will 

have an artificially higher content of lipids. While the COD balance and C/N ratio 

are still correctly maintained, an artificially higher concentration of lipids will affect 

some metabolic interactions in ADM1, such as: higher content of slowly consumed 
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fatty acids, amount of H2 produced from fatty acid oxidation, biased parameter 

values when fatty acid inhibition is implemented and calibrated. An alternative is to 

directly measure the lignin content and allocate it fully to the inert fraction, as done 

by Koch et al. (2010a). However the procedure would become more time-

consuming.           

  Substrates 

Analysis Units FW GW PM OAT 

TS g/kg 296.5 401.7 272.2 930.5 

VS (at 550 C) g/kg 260.3 259.7 241.9 897.6 

Ash % TS 11.2 34.8 11.0 3.6 

C  % TS 48.8 34.7 44.1 44.8 

H  % TS 7.2 4.5 5.2 6.1 

N  % TS 3.3 2.0 2.9 4.3 

S  % TS 0.10 0.03 0.10 0.08 

O  % TS 33.1 27.2 36.7 41.3 

ThOD of VS g ThOD/g VS 1.61 1.42 1.31 1.23 

ThOD of substrate g ThOD/g substrate 0.44 0.39 0.31 1.11 

pH 
 

4.74 5.02 6.30 6.88 

Partial Alkalinity mg CaCO3/kg nd nd 5798 3946 

Intermediate Alkalinity mg CaCO3/kg 3443 3181 16168 7536 

Total Ammonia Nitrogen  mg N-NH4/kg 528 630 2178 nd 

VFA and alcohols       

methanol mg/kg 348 102 nd nd 

ethanol mg/kg 4185 218 48 nd 

acetic mg/kg 3029 4173 9195 nd 

propanoic mg/kg 27 223 2834 nd 

i-butyric mg/kg 19 12 503 nd 

n-butyric mg/kg 53 136 2831 nd 

i-valeric mg/kg 0 25 762 nd 

n-valeric mg/kg 2 8 668 nd 

Table 4.2 Physicochemical analysis of the substrates. 

Results of the application of charge balance to the four substrates are shown in 

Table 4.4, and indicated as state variables employed in ADM1 in the description of 

the substrate loadings: overall, each substrate loading is finally described through 

COD, ash and charge loadings. Charge loadings directly influence the changes in 

the pH of the system: all substrates present an acidic character which will tend to 

reduce the pH of the system after the feeding. At the same time the ammonia 

loadings (Sin in ADM1) and hydrogen carbonate (Sic) will increase the buffering 

capacity of the system. OAT is the only substrate which has an hydrogen carbonate 

content.       
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  Substrates 

 
Units FW GW PM OAT 

ThOD from elemental analysis gO2 g-1
substrate 0.440 0.391 0.311 1.107 

ThOD from VFA and alcohols gO2 g-1
substrate 0.013 0.006 0.027 0 

Total ThOD gO2 g-1
substrate 0.453 0.397 0.338 1.107 

fractionation on COD 
    

Carbohydrates % ThOD 35.3% 53.9% 58.0% 62.0% 

Proteins % ThOD 19.6% 18.8% 21.9% 33.5% 

Lipids % ThOD 42.3% 25.9% 12.3% 4.5% 

VFA and alcohols % ThOD 2.8% 1.4% 8.1% 0.0% 

fractionation on VS 
     

Carbohydrates % VS 47.8% 64.6% 65.6% 64.5% 

Proteins % VS 25.7% 20.7% 22.4% 33.5% 

Lipids % VS 23.6% 12.8% 5.7% 1.9% 

VFA and alcohols % VS 2.9% 1.9% 6.7% 0.0% 

Table 4.3 Biochemical fractionation of the substrates. 

  Substrates 

ADM1 variables Units FW GW PM OAT 

Sac g COD L-1 3.241 4.465 10.680 0 

Spro g COD L-1 0.040 0.337 4.782 0 

Sbu g COD L-1 9.369 0.878 8.423 0 

Sva g COD L-1 0.004 0.068 3.427 0 

Sin M 0.038 0.045 0.156 0 

Sic M 0 0 0 0.098 

OH- M 4.42E-10 5.69E-10 1.60E-08 6.10E-08 

H+ M 1.82E-05 1.41E-05 5.01E-07 1.32E-07 

Scat M 0.013 0 0.182 0.076 

San M 0 0.002 0 0 

Table 4.4 Substrate description based on charge balance. 

4.3.1 Influence of ash determination on substrate fractionation 

Table 4.5 shows the results obtained for solids and ash determinations at two 

different temperatures of the elemental analysis, and how different ash contents 

influences the calculated ThOD values. With lower ash content, the calculated 

oxygen content results higher, which in turn increases the oxidation state of the 

substrate, finally driving down the ThOD. Using ash values determined at 550 °C, 

the ThODs are relatively overestimated by 7% in FW, 8% in GW, 5% in PM, 4% in 

OAT, respect to the (hypothetically more correct) values obtained at 1050 °C. The 

biochemical fractionation is also affected by the temperature dependent ash 

determination (Table 4.6): overestimated ThOD will result in overestimated lipid and 

reduced carbohydrate fractions (while proteins remain approximately constant as 
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related to N content). Using ash values determined at 550 °C, the calculated lipid 

content is relatively overestimated by 18% in FW, 41% in GW, 50% in PM and 89% 

in OAT. It is evident how the lipid fraction is sensitive on the ash determination, 

especially for substrates which have a low ThOD/gVS. Ash loadings, which are 

required to predict the solids content in the reactor, are instead described by the 

ash content as determined at 550 °C. 

 
 Temperature of loss-on-ignition 

 
Units 550 °C  1050 °C  

Food waste  
  

volatile solids on wet weight % 26.0% 27.4% 

ash on volatile solids % 11.2% 7.5% 

ThOD of VS g COD g-1 VS 1.71 1.60 

ThOD of substrate g COD g-1
substrate 0.45 0.44 

Green Waste  
  

volatile solids on wet weight % 26.0% 27.5% 

ash on volatile solids % 34.8% 31.6% 

ThOD of VS g COD g-1 VS 1.54 1.43 

ThOD of substrate  g COD g-1
substrate 0.40 0.39 

Pig Manure  
  

volatile solids on wet weight % 23.6% 24.2% 

ash on volatile solids % 13.4% 11.0% 

ThOD of VS g COD g-1 VS 1.38 1.31 

ThOD of substrate  g COD g-1
substrate 0.33 0.31 

Oat Residues  
  

volatile solids on wet weight % 88.1% 89.8% 

ash on volatile solids % 4.8% 3.6% 

ThOD of VS g COD g-1 VS 1.27 1.23 

ThOD of substrate  g COD g-1
substrate 1.11 1.11 

Table 4.5 Influence of the temperature of ignition on the ash content and 
calculated ThOD. 

  
Temperature of loss-on-ignition 

  
1050 °C 550 °C 

Food waste 
   

Carbohydrates % ThOD 36.3% 28.7% 

Proteins % ThOD 20.2% 19.7% 

Lipids % ThOD 43.5% 51.6% 

    
Green waste 

   
Carbohydrates % ThOD 54.7% 44.5% 

Proteins % ThOD 19.0% 18.5% 

Lipids % ThOD 26.2% 37.0% 

    
Pig manure 

   
Carbohydrates % ThOD 63.1% 56.6% 

Proteins % ThOD 23.8% 23.4% 

Lipids % ThOD 13.4% 20.1% 

    

Oat residues    
Carbohydrates % ThOD 62.0% 58.4% 

Proteins % ThOD 33.5% 33.2% 

Lipids % ThOD 4.5% 8.5% 

Table 4.6 Influence of temperature of ignition on the biochemical fractionation 
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4.4 Kinetic fractionation from batch tests 

4.4.1 Estimation of initial conditions 

Table 4.7 shows the estimated parameters for the description of the two inoculum, 

and Figure 4.1 the experimental and calibrated methane volume production curves 

from the control reactors in the batch tests 1a and 1b. The parameter values are 

comparable, with inoculum 1a having a slightly higher concentration of biomass and 

a higher degradation rate; also from Figure 4.1, it is evident how the inoculum 1a 

degrades faster than inoculum 1b.   

Estimated parameters have very high standard errors, especially in the case of total 

particulate and decayed biomass Xc (>50% for Xc), due to their almost complete 

correlation (>0.99, results not shown), while errors in biomass concentrations are 

lower (<5% in both cases). In both cases the goodness of fit was very high (R2 = 

0.99). Alternative tests were performed by calibrating less parameters (e.g. with Xc 

at a fixed value), but achieving lower goodness of fit. In the simulation of substrate 

batch tests, the methane production is the result of the degradation of the substrate 

together with the inoculum: therefore an accurate kinetic characterisation of the 

substrate is dependent on an accurate description of the degradation of the 

inoculum. For this reason, although poorly identifiable, the estimated parameters 

were accepted as the initial conditions of the tests.  

In the case of inoculum 1b, the model based total biomass concentration was 

initially calculated from simulations of the semi-continuous reactors in test 2, from 

which the inoculum was sourced, together with four days of degassing period in the 

batch reactor. This value was compared with the value obtained from the calibration 

of the methane production curve of the control batch reactor, similar to test 1a. The 

total biomass concentration estimated from model simulations resulted in a value 

around twice as high, compared to the experimentally calibrated value. The 

difference can be explained by considering that the inoculum was previously filtered 

before starting the batch experiments. In fact, part of the biomass is in a sessile 

form, attached to particles as biofilms (Jensen et al., 2008), and therefore removed 

during filtration. Finally, it was decided to use the experimentally calibrated value, 

since it was considered a more accurate estimation of the total initial biomass. 

Model based characterisation of the inoculum still was used to split the total initial 

biomass into the respective trophic groups (which in turn are dependent on the 

composition of the substrates fed in the source digester).  
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Estimated parameters units value 

standard 
error 

Inoculum 
1a 

Initial total biomass gCOD/L 3.12 4% 

Initial decayed biomass (Xc) gCOD/L 0.89 57% 

Initial total degradable particulate gCOD/L 0.42 26% 

Hydrolysis rate of initial particulate (khyd,ino) d-1 0.39 15% 

Inoculum 
1b 

Initial total biomass gCOD/L 2.14 2% 

Initial decayed biomass (Xc) gCOD/L 0.31 58% 

Initial total degradable particulate gCOD/L 0.85 17% 

Hydrolysis rate of initial particulate (khyd,ino) d-1 0.20 9% 

Table 4.7 Estimated inoculum parameters for batch tests 1a and 1b. 

 

 

Figure 4.1 Experimental and simulated methane production for inoculum. (a) 
batch test, (b) batch test 2. 

4.4.2 Parameter estimation of the kinetic fractionation 

Table 4.8 shows the parameters estimated for the kinetic fractionation of the four 

substrates, while the experimental data and the simulated calibrated curve for the 

accumulated methane in batch tests are shown in Figure 4.2 for food waste, Figure 

4.3 for green waste, Figure 4.4 for pig manure, and Figure 4.5 for oat residues. In 

general, an increase in the complexity of the model, given by the numbers of 

parameters calibrated, corresponded to a better fit to the experimental data, as 

visually represented in the graphs and quantified by a higher R2 and lower rAE. This 

is to be expected in the case of nested models, where the model with more 
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parameters can better adapts to the experimental data. Especially in the case of 

food waste and pig manure, it is graphically evident that in order to achieve a good 

fit with the experimental data at least two fractions are needed. The case of oat 

residues is different, as the different fractionation models show almost identical 

goodness of fit, without improvement with more complex models. 

However, the increase of complexity also corresponded to an increase in the 

uncertainty of the estimation of the parameters, as given by their calculated 

confidence interval.  Especially the XX and XXS fractionations led to high standard 

errors in the estimated parameters (highest for GW, above 20%), and therefore 

wide confidence intervals. High values of standard errors are related to the 

experimental data not being rich enough and to a low sensitivity of the selected 

parameter to the modelled output. In the case of OAT, standard errors could not be 

computed as the calibrated parameter fXr were on the inferior bound of the a priori 

parameter range (0.05-0.95 for fXr), in which case the secant algorithm of Aquasim 

fails to give an estimation of the errors.  

In all fractionations, there is an increase in the value of fd with complexity. In fact, 

with more complex models the calibration is able to take into account also the less 

precise volume measurements towards the end of the experimental period, while 

with simpler models the calibrated parameters is mainly determined by the more 

precise initial data.    

Feed Model  Parameter values Standard errors (%) rAE R2 

    fd fS fXr khyd_r khyd_s fd fS fXr khyd_r khyd_s (%) (%) 

GW 

X 0.3       0.682 1.5       4.7 7.4 98 

XS 0.327 0.255     0.296 0.9 3.3     4.3 4.3 99.1 

XX 0.326   0.451 1.57 0.192 2.2   8.1 13.4 14.3 4.3 99.1 

XXS 0.344 0.212 0.44 0.68 0.136 1.8 5.3 26.4 25.9 25.9 3.9 99.2 

FW 

X 0.747       1.09 0.8       3.1 5.1 97.4 

XS 0.811 0.332     0.37 0.8 3.2     4.5 4.5 98.8 

XX 0.897   0.541 2.54 0.13 1.7   2.4 6.4 10.2 3.5 99.5 

XXS 0.905 0.156 0.499 1.48 0.12 1.6 7.6 3.3 8.5 11.8 3.0 99.4 

PM 

X 0.625       0.275 1       2 7.3 98.0 

XS 0.663 0.125     0.178 0.5 3.0     1.7 3.0 99.6 

XX 0.682   0.245 2.085 0.130 0   1 2 1 0.8 99.9 

XXS 0.683 0.010 0.241 1.894 0.129 0.1 15.7 0.9 2.4 0.7 0.8 99.9 

OAT 

X 1.006       0.731 0.3       0.9 3.6 99.4 

XS 1.006 0.008     0.714 0.3 50.6     1.7 3.6 99.4 

XX 1.006   0.050 0.900 0.724 not available       3.6 99.4 

XXS 1.006 0.008 0.050 0.900 0.707 not available       3.6 99.4 

Table 4.8 Results of the model parameter estimation from the batch test data, 
including the parameter values, standard errors and quality of fit. 
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Figure 4.2 Experimental batch data for GW and the simulated volume 
obtained with X, XS, XX and XXS calibrated fractionations (only the first 
30 days are shown). 

 

Figure 4.3 Experimental batch data for FW and the simulated volume obtained 
with X, XS, XX and XXS calibrated fractionations (only the first 30 days 
are shown). 
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Figure 4.4 Experimental batch data for OAT and the simulated volume 
obtained with X, XS, XX and XXS calibrated fractionations (only the first 
30 days are shown). 

 

Figure 4.5 Experimental batch data for PM and the simulated volume obtained 
with X, XS, XX and XXS calibrated fractionations (only the first 30 days 
are shown). 
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As discussed in Section 3.11, model selection is based on the goodness of fit and a 

maximum acceptable uncertainty in the parameters. In the case of GW, model XXS 

is discarded due to the excessive uncertainty; XS and XX fractionations resulted in 

similar goodness of fit and uncertainty: it cannot be concluded from a batch test 

which fractionation to select to adequately describe the substrate degradation. In 

the case of FW, the model XXS or model XX could be selected, as well as in the 

case of PM. In the case of OAT, the simplest model X would be selected.     

 

Figure 4.6 Residual plots for (a) GW, (b) FW, (c) PM, (d) OAT batch tests. 

The residual plots for the four batch tests are shown in Figure 4.6. Each plot shows 

the weighted residuals (used in eq. (3.5)) against the fitted experimental value 

(volume). Residual plots were used to check the presence of outliers from the 

experimental data and to evaluate the residual distribution characteristics. In fact, 

application of least square regression requires for the residuals to be independent 

and normally distributed with zero mean and constant variance (as discussed in 

Section 3.11). Two main aspects can be discussed: 

 There is no unique indication regarding the stabilization of variance of the 

residuals, with plot (d) being closer to constant variance (homoscedasticity), 
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plot (b) and (c) having slightly higher variance at low experimental volume 

values and plot (a) with increasing variance with increasing volumes. It 

cannot be concluded if the weights used in eq. (3.5) are effectively 

stabilising the residuals variance. 

 The residuals are evidently autocorrelated, and not randomly distributed: 

this can be interpreted as a structural deficiency in the model, which is not 

able to account for all dynamic characteristics of the process (Gujer, 2008).    

4.4.3 One-step model 

A one-step model was also implemented to compare the values of estimated 

parameters between simpler and more complex models. In the one-step model, a 

single lumped reaction is defined, which directly converts the substrate to methane. 

This is a common approach used to describe methane production in batch tests 

(Angelidaki and Sanders, 2004, Jensen et al., 2011). The following equation was 

implemented in Aquasim: 

 
d𝑃

d𝑡
= 𝑃0𝑉(𝑘ℎ𝑦𝑑,𝑟𝑋𝑖𝑛𝑖𝑓𝑑𝑓𝑋𝑟 + 𝑘ℎ𝑦𝑑,𝑠𝑋𝑖𝑛𝑖𝑓𝑑(1 − 𝑓𝑋𝑟)) (4.1) 

where P is the methane volume, P0 the conversion factor between degraded 

substrate and methane produced (0.354 L CH4/g COD), V the reactor volume, Xini 

the concentration of the substrate batch-fed, fd the extent of degradation constant, 

khyd,r and khyd,s are the hydrolysis rate constants for readily and slowly degradable 

fraction, and fXr the fraction of the substrate which is readily degradable. The 

equation therefore allows to kinetically fractionate the substrate in the same way as 

was done with the ADM1 implementation; however only the X and XX fractionations 

can be calibrated in a simple 1-step model, as the soluble fraction S would need a 

more complex model with also a lumped biomass state variable implemented.  

Table 4.9 reports the calibrated values and goodness of fit indicators. On 

comparing with the ADM1 calibrated values, two main aspects can be emphasized. 

The extent of degradation in the 1-step model is 5 to 10% lower than the ADM1 

values, as the simpler model can’t take into account the substrate that gets 

transformed into biomass (beside methane); the difference agrees well with the 

values of the biomass yields implemented in ADM1, which are as well in the range 

of 0.04-0.1 gCOD gCOD-1. While the split fraction fXr has similar values in both 

models, the hydrolysis rate constants for the 1-step model are lower than the 

ADM1-calibrated. This aspect can be seen for all substrates, but it is especially 
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noticeable for FW and OAT with ADM1 values being 2 to 3 times higher.  In fact, in 

the ADM1 model it is possible to take into account the accumulation of the 

intermediates, which introduces a lag between the hydrolysis and the methane 

production.  

As an example to illustrate this aspect, Figure 4.7 shows the simulated profiles for 

all soluble variables in ADM1: it is evident how after the feeding of the substrate 

there is an accumulation of intermediates, with both acidogenic and acetogenic 

steps introducing a delay between solubilization of particulates and methane 

production. In particular, the sum of all soluble intermediates reach a peak after 

approximately 12 hours, at 1.6 gCOD L-1, with LCFA, acetate and propionate being 

the species which reach higher concentrations.  

A higher goodness of fit is achieved with the ADM1 implementation, as more 

phenomena can be taken into account, especially the accumulation of 

intermediates and the interaction with the gas headspace. 

  calibrated values 
goodness of fit 

indicators 

fractionations fd fXr khyd,r khyd,s R2 rAE % 

FW X 0.732  
 

0.533 0.976 7% 

FW XX 0.859 0.607 0.765 0.095 0.991 5% 

       
GW X 0.308 

  
0.497 0.952 11% 

GW XX 0.364 0.504 1.019 0.107 0.981 6% 

       
PM X 0.569 

  
0.266 0.966 9% 

PM XX 0.649 0.363 0.666 0.088 0.998 2% 

       
OAT X 0.907 

  
0.356 0.968 8% 

OAT XX 0.907 0.897 0.370 0.257 0.968 8% 

Table 4.9 Calibrated values and goodness of fit indicators for the 1-step 
degradation model. 

 



101 

  

Figure 4.7 Simulation of selected ADM1 soluble state variables, for the FW 
batch test (XX model): the variables with negligible concentration are 
not shown. 

4.5 Semi-continuous experiments 

Two experiments with digestion of single substrates, GW and FW, were performed 

in order to validate the kinetic fractionation obtained with the batch test. The 

experiments also allowed the evaluation of the effect of increasing the loading rates 

on the process performance and on the values of the calibrated parameters. The 

experiments were performed in duplicate using the methods and performing the 

analysis described in Chapter 3.   

Substrate loadings were identical for both substrates GW and FW, and ranged from 

approximately 1 to 12 gCOD/L (Figure 4.8). The digesters were fed three times a 

week during the first 80 days, and then the frequency increased up to 5 times a 

week until the end of the experiment. Average organic loading rates (OLRs) were 

calculated taking into account the amount of substrate fed across six consecutive 

feedings, and the associated time interval: this average value therefore indicates 

how the feedings changed across the experiment, but taking into account that 

organic stress on the digester gradually builds up after repeated high loadings. 

Figure 4.8 shows the temporal variations of the organic loadings and of the 

averaged OLRs across the whole semi-continuous test, with OLRs starting at 0.5 

and reaching a maximum of 4 and 10 gCOD L-1 d-1 for GW and FW experiments, 

respectively.  

The durations of the experiments were different, with the GW experiment lasting 

112 days and the FW 166 days. The GW experiment was terminated earlier due to 

repeated foaming events occurring after each feeding, at an OLR between 3 and 4 
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gCOD L-1day-1, which greatly complicated the monitoring of the experiment. In 

particular, the gas volume measurements became unreliable, due to the sequence 

of: obstruction of the gas hose by foam, gas pressure build up in the headspace, 

displacement of foam in the gas hose and sudden release of the accumulated gas, 

very high gas flow through the measuring device (above its working ranges) with a 

partial loss of the recorded volume and inaccurate determination of the gas flow 

rate. 

The FW experiment lasted longer and allowed to reach higher OLRs, at which 

organic stress and inhibition mechanisms became evident in the methane flow 

profile. The experiment was then terminated when high VFAs concentrations 

(above 20 g COD L-1) were reached, with reduced methane specific yields and first 

phenomena of foaming. 

Figure 4.9 shows the measured methane flow rate for both substrates. FW has 

higher flow rates than GW, mainly due to higher degradability and rapidity of 

degradation (as already calculated in the batch experiment). Figure 4.10 shows the 

temporal variation of the specific yields for both experiments. Again the specific 

yields were calculated in a similar fashion as the OLRs, taking into account the 

amount of gas produced and the amount of substrate fed across 6 consecutive 

feedings, therefore giving an indicative representation of the changing performance 

of the digester. The length of the averaging period is arbitrary, however very short 

periods would depend disproportionally on the interval between feedings (with 

longer intervals giving higher specific yields as the substrate has more time to be 

fully degraded, and shorter intervals artificially low, not taking into account 

accumulated intermediates not yet degraded); on the other hand, long averaging 

periods would excessively smooth the variations originated by changes of the 

organic stress, which gradually builds up during overloading periods. 

In the case of GW, the specific yields remained fairly constant around its overall 

average of 0.19 LCH4 g-1VS. A slight decrease can be observed after about 90 days 

of the experiment, which corresponded to an increase (almost doubling) of OLR. 

However no significant moments of organic stress could be observed, also 

confirmed by the low level of accumulation of VFAs in the digester effluent. In the 

case of FW, the overall average specific yield was 0.42 LCH4 g-1VS. It can be 

noticed an increase during the first period of the experiment, up to 0.5 LCH4 g-1VS, 

which can be related to an adaptation of the microbial biomass to the substrate; 

also it is noticeable the same drop as in the case of GW after about 90 days. The 
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main variation occurred with the further increase in the OLR around 140 days, from 

about 5 to 10 gCOD L-1 day-1, where the specific yields dropped from 0.5 to less 

than 0.1 LCH4 g-1VS. This variation is interpreted as being caused by a strong 

inhibition in some of the metabolic steps conducing to methane production; VFAs 

accumulation confirms the organic stress on the process (Ahring et al., 1995), with 

acetoclastic and acetogenic steps being more affected. Chapter 5 will further 

investigate and quantify the whole inhibition process. 

 

Figure 4.8 Substrate loadings and OLR (averaged to 6 consecutive feedings) 
in semi-continuous experiments for FW and GW. 

 

Figure 4.9 Experimental methane flow rate from (a) GW and (b) FW semi-
continuous experiments (note different scale on ordinates). 
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Figure 4.10 Specific yields for GW and FW, calculated from the volume of gas 
and amount of fed substrate in 6 consecutive feedings. 

4.5.1 Kinetic fractionation 

The same approach as employed in the batch experiments has been employed in 

semi-continuous experiments to calibrate the kinetic fractionation parameters and 

identify the most appropriate fractionation model. The parameters were calibrated 

against the calculated methane flow rates, with the cost function, weights and 

minimization technique as explained in section 3.11 . The number of data points 

was 4073 and 23644 for GW and FW respectively; FW data points extended up to 

144 days, excluding the last three weeks characterised by dominant (and evident) 

inhibition conditions (which will be instead analysed in chapter 5). The alkalinity, 

ammonia, pH, TS, VS, VFAs measurements were also collected and used to 

evaluate the model predictions. 

Calibrated kinetic parameters are shown in Table 4.10, together with standard 

errors and goodness of fit indicators. Similarly to batch tests, more complex models 

resulted in a better fit. In the GW fractionation, the coefficient of determination R2 

increased from 79.8% for model X, to 93.3 % for model XXS; in the FW 

fractionation R2 increased from 74.0% for model X to 90.0% for model XXS.   

Standard errors of calibrated parameters were lower than in batch tests, and 

therefore the parameters have a better identifiability: average standard error in of all 

GW fractionations is approximately 2%, with maximum of 9.7% (respect to an 

average of 10% and maximum of 26.4% in batch tests); in FW fractionation, 
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average is approximately 1%, with maximum of 3.5% (respect to an average of 5% 

and maximum of 11.8% in batch tests). The difference is due to the much higher 

number of data points and feeding events in the semi-continuous experiments, 

which overall produced a more informative data set.   

Semi-continuous estimation also increases the differences in goodness of fit 

between alternative fractionations: in the case of GW, XX fractionation now also 

appears better suited than XS, while they appeared equivalent from batch 

estimation.  

Absolute values of goodness of fit are however higher in semi-continuous 

estimation than in batch: in GW fractionation, the average R2 is 88.2%, with respect 

to 98.8% in batch tests; in FW fractionation, the average R2 is 82.5%, with respect 

to 98.7% in batch. Differences in fit targets (volume in batch, flow rate in semi-

continuous) and experimental conditions (higher loadings in semi-continuous) 

explain the differences in goodness of fit. A further note can be made regarding the 

cost function: in semi-continuous tests the cost function gives less weight to higher 

flows, as they are less precise. However, the goodness of fit indicators consider 

equally all data points and therefore the lack of fit in the high flow sections of the 

experiments disproportionally increases the error values.  

Regarding the values of the calibrated parameters, different observations can be 

made. The extent of degradation fd remained similar in batch and semi-continuous 

tests, with a slight increase for the GW semi-continuous test, with an average 

increase of 11% across the various fractionations. Similarly, the parameter fXr 

showed small variations between the tests, and remained within the range 0.44-

0.54 for GW, and 0.49-0.54 for FW. The parameter fS showed larger variations, 

especially in the case of GW with higher values obtained in batch tests (ranges 

0.21-0.25 in batch and 0.05-0.16 in semi-continuous). The hydrolysis rate constants 

displayed noticeable variations: much higher values in the semi-continuous tests, 

with a marked increase in GW (2 to 5 times higher depending on the fractionation, 

respect to batch tests) and twice as high in FW (with only X fractionation 

maintaining similar values). The main reason for this difference appears to reside in 

the adaptation of the microbial biomass to the substrate, as will be further 

supported by analysing the variation of the parameters across the experiment (see 

section 4.5.2).  
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Feed Model  Parameter values Standard errors (%) rAE R2 

  fd fS fXr khyd_r khyd_s fd fS fXr khyd_r khyd_s (%) (%) 

GW 

X 0.330    1.42 0.6    1.3 24.5 79.8 

XS 0.350 0.167   0.97 0.6 3.1   1.6 21.8 86.7 

XX 0.380  0.514 4.75 0.19 0.4  0.7 1.6 2.8 13.1 93.1 

XXS 0.383 0.049 0.495 5.62 0.19 0.3 9.7 0.8 2.0 2.4 13.0 93.3 

FW 

X 0.766    1.16 0.2    0.6 50.8 74.0 

XS 0.783 0.197   0.77 0.2 1.2   0.8 44.7 81.0 

XX 0.846  0.492 5.98 0.24 0.2  0.4 1.0 1.3 35.1 85.0 

XXS 0.848 0.152 0.484 3.22 0.21 0.1 3.5 0.6 1.4 1.4 30.0 90.0 

Table 4.10 Calibrated parameters for different kinetic fractionation models, for 
the two semi-continuous experiments with GW and FW. 

The experimental and simulated flow rates for the GW tests are shown in Figure 

4.11 (for X and XX fractionations) and Figure 4.12 (for XS and XXS fractionation); 

for the FW tests are shown in Figure 4.13 (X fractionation), Figure 4.14 (XS 

fractionation), Figure 4.15 (XX fractionation), Figure 4.16 (XXS fractionation). 

Experimental loadings are also shown on the figures, as flow rate profiles (shape 

and height) also depends on the loading magnitude.    

In general, for both tests and in all fractionations, a better fit is achieved in the 

sections with low flow, and this is for the following reasons: 

 The calibration method favours fitting with the low flow rate data points, as 

considered more precise (experimental error described as proportional to flow).  

 System dynamics that occurs after each feeding are more complex to model, 

with accumulations of intermediates and inhibitions that influence the simulated 

flow rate. Instead, the low flow conditions are more clearly hydrolysis limited and 

therefore easier to simulate and calibrate.  

Regarding the GW fractionations, the following observations can be made. X 

fractionation tends to underestimate both the high flow and low flow data points. 

The introduction of a further particulate fraction in XX model substantially improves 

the fitting. The introduction of the soluble fraction in XS model improves the fitting of 

the high flow data points respect to X model, while the fitting at the end of the 

feeding period remains less accurate. XXS model is practically identical to XX 

model, as also indicated by the equal goodness of fit indicators.  

Some preliminary conclusions can be drawn: green waste is better described by 

two different particulate fractions which degrades at different rates (XX model); the 
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soluble fraction in green waste is negligible; semi-continuous tests distinguished 

between the XS and the XX models, which were practically identical in batch tests.  

Regarding the FW fractionations, the following observations can be made. Small 

spikes in the gas flow rate, coincident with each feeding, are reproduced by the 

model. These spikes are originated by the acidic character of the substrate which 

rapidly reacts with the alkalinity available in the reactor, thus producing a spike of 

carbon dioxide, which in turn displaces part of the methane contained in the 

headspace. This spike is especially evident in the X fractionation, while it merges 

with the faster biochemical methane production in the other fractionations models. 

In the case of GW, this spike was less evident as the concentration of VFAs in the 

substrate was smaller than in FW.  

The X fractionation, similarly to GW, tends to underestimate both the high flow and 

low flow rate data points. The introduction of a soluble fraction in the model XS 

allows to better reproduce the high flows after the feedings, although the fitting in 

the remaining part of the profile is less accurate. In the XX model, the profile is 

better simulated, but the high flows after the feedings are underestimated. XXS 

model is finally able to give the best fit both in the high and low flow rate sections. It 

can be concluded that food waste is better described through a fractionation that 

includes a soluble fraction (15% of the degradable COD) and two particulates 

having a similar share of degradable COD and different rates of degradation 

(differing by one order of magnitude).     
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Figure 4.11 Experimental and simulated gas flow rates for calibrated 
fractionation models X and XX, for GW substrate, on 4 different time 
intervals. 
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Figure 4.12 Experimental and simulated gas flow rates for calibrated 
fractionation models XS and XXS, for GW substrate, on 4 different time 
intervals. 
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Figure 4.13 Experimental and simulated gas flow rates for calibrated 
fractionation model X, for FW substrate, on 4 different time intervals. 
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Figure 4.14 Experimental and simulated gas flow rates for calibrated 
fractionation model XS, for FW substrate, on 4 different time intervals. 
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Figure 4.15 Experimental and simulated gas flow rates for calibrated 
fractionation model XX, for FW substrate, on 4 different time intervals. 
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Figure 4.16 Experimental and simulated gas flow rates for calibrated 
fractionation model XXS, for FW substrate, on 4 different time intervals. 
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4.5.2 Temporal variation of the parameters and adequacy of the 

model  

The previous section has made it clear how each substrate has an appropriate 

fractionation model which can be estimated from the methane flow rates.  In 

addition, a further qualitative analysis of the experimental and simulated methane 

flow rates (for appropriate fractionations as the XX models), reveals how the 

goodness of fit changes along the experiment. Some qualitative distinctions can be 

made:  

 The shape of the experimental flow curve, between each feeding event, is 

rather flattened during the initial part (approximately first 15 days): the model 

is hardly able to reproduce these shape characteristics. 

 The fitting of the model improves in the following part, with the experimental 

flow showing a peak more defined and a monotonic shape between the 

feeding events, especially in the range 25-80 days in both tests. 

 The fitting quality decreases again in the remaining period, with many 

curves showing a non-monotonic shape between the feeding events, which 

are not reproduced by the model.     

Therefore a further calibration study was completed in order to assess if a possible 

variation of the fractionation parameters along the experiment could explain the 

aforementioned qualitative observations. Previous research has also analysed and 

identified temporal variations of the parameters during long term experiments 

(Batstone et al., 2009). For GW and FW, the whole collected data was split into 

smaller intervals, each containing 5 feeding events. On each interval the same 

calibration method as used previously was applied. For both GW and FW the XX 

fractionation was analysed, with the split fraction fXr fixed at the previously 

calibrated value using the whole data set: in this way the focus is on the variation of 

the constant of hydrolysis rates, extent of degradation and goodness of fit.  

Figure 4.17 and Figure 4.18 shows the calibrated values for each data set interval, 

together with values previously estimated for the whole semi-continuous and batch 

data sets, for easier comparison. Figure 4.26 and Figure 4.27 show the calibrated 

curves, for GW and FW respectively, on different time intervals. Two trends appear 

for both substrates. The hydrolysis rate constant for the readily degradable fraction 

khyd,r increases during the experiment, to then peak after 15 feedings for FW and 20 

feedings for GW; the calibrated values then tend to decrease during the remaining 



115 

part of the experiment. A similar trend can also be identified for khyd,s and for the 

extent of degradation fd, with minimum values occurring at the beginning of the 

experiment, then reaching the highest values with increasing number of feedings. 

The goodness of fit R2 as well exhibits a similar trend, especially in the case of FW, 

with a noticeable drop in the last of the data set intervals. For all the parameters, 

the value estimated using the whole data set is effectively an average value with 

respect to the interval calibrated ones. Especially in the case of khyd,r and khyd,s the 

variation is noticeable, up to four times between minimum and maximum values, 

while the variation is more limited in the case of fd. The initial increase in the 

hydrolysis parameters can be explained by two phenomena:  

 A gradual adaptation in the microbial biomass responsible for the hydrolysis 

with the production of adapted enzymes for the substrates.  

 An increase in the microbial biomass concentration, with resulting change in 

the biomass/substrate ratio. It has been shown how the concentration of 

biomass influences the hydrolysis rate (Jensen et al., 2009) and the first-

order hydrolysis is an adequate description only when the substrate is fully 

colonized by the bacteria. 

On the other hand, the final decrease in the hydrolysis parameters is the result of 

slower methane production, which in turn can be explained by the development of 

inhibitive conditions in the last part of the experiment. Various phenomena can 

explain the increase in the inhibition (e.g. ammonia, weak acid inhibition) and this 

will be further explored in Chapter 5. The decreased value of the hydrolysis rate 

constant has therefore to be interpreted as an apparent decrease, as the slower 

methane production could be instead the result of a decrease in the uptake of 

soluble compounds. The lower R2 values at the end of the experiment shows the 

structural inadequacy of the model in describing the inhibition phenomena; while 

sections with higher R2 are an indication that the model is more adequate to 

describe the phenomena, and in turn the calibrated parameters are realistic. While 

the inhibition phenomena will be further explored in Chapter 5, the next section will 

examine the possible influence of the biomass/substrate ratio on the hydrolysis, 

with the use of Contois kinetics.  
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Figure 4.17 Temporal variation of the kinetic fractionation parameters (a) 
khyd,r, (b) khyd,s, (c) fd and (d) R2 goodness of fit for the FW semi-
continuous experiment. Parameters are estimated on 12 consecutive 
intervals with 5 feeding each; parameters estimated with the whole data 
set and in batch experiment are also reported for comparison.  

 

  

Figure 4.18 Temporal variation of kinetic fractionation parameters (a) khyd,r, 
(b) khyd,s, (c) fd and (d) R2 goodness of fit for the GW semi-continuous 
experiment. Parameters are estimated on 8 consecutive intervals with 5 
feeding each; parameters estimated with the whole data set and in batch 
experiment are also reported for comparison. 
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4.5.3 Prediction of the other measured outputs 

Figure 4.19 and Figure 4.20 shows how calibrated model simulations compare with 

the other experimental measurements, in addition to the methane flow rate, for FW 

and GW tests respectively. Table 4.11 shows the relative absolute errors (rAE) 

between the measured and simulated values. In the following paragraphs the 

trends in the experimental values and the goodness of fit from the simulations are 

discussed.  

The total and volatile solids are important variables to predict, as they have a direct 

influence on a series of aspects, namely: 

 They are proxies for unconverted degradable matter still available in the 

effluent.  

 They influence engineering aspects, such as reactor mixing and digestate 

pumping.  

 They influence the performance of downstream equipment, such as solid/liquid 

separators. 

 They influence mass transfer processes in the reactor (Abbassi-Guendouz et 

al., 2012b). 

In both experiments, total and volatile solids increased during the test, and this is as 

a consequence of no water being used for dilution and the accumulation of inerts 

and the slowly degradable particles. For total solids, measured concentrations of 65 

and 78 gTS/L were reached towards the end of the experiment for FW and GW 

tests respectively, starting from a concentration in the inoculum of 16 gTS/L. For 

volatile solids, the increasing trend is similar, reaching a concentration of 43 and 55 

gVS/L, starting from a concentration in the inoculum of 8 gVS/L. FW simulations 

achieve a significant goodness of fit (rAE 7%) for the TS, while the VS is 

underestimated in the first part of the experiment, resulting in a higher error (rAE 

18%). In the case of GW, it is noticeable that there is an increasing error in the 

prediction of TS, indicated by a relatively high rAE of 19%. The errors in the 

predictions can be caused by a series of reasons:  

 Sampling from the reactor and analytical errors: although the reactor are stirred 

almost on a continuous basis, sedimentation of heavier fractions are likely to 

have occurred and therefore excluded from sampling (which was from the mid 

height of the reactor). This can explain the trend in the underestimation of TS in 

GW test, as the high content of ash (grit) in GW is likely to have settled.  
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 Conversions factors: as was seen in eq. (3.3), the ADM1 state variables in 

gCOD/L are transformed into solids concentrations using some conversion 

factors which are necessarily an approximation.  

Total ammonia nitrogen has a direct influence on the inhibition of many microbial 

processes, and therefore it is important for the model to be able to reproduce the 

experimental data. The experimental trend is again of a constant increase in 

concentration: from an initial 1.4 g N-NH4/L to a final value of 3.5 and 1.7 g N-NH4/L 

in FW and GW tests, respectively - after 112 days (length of GW test), the TAN 

content in FW was 2.3 g N-NH4/L.  The higher increase of TAN in FW is due to a 

higher nitrogen content together with a higher degradability of the substrate. The 

goodness of fit was very good for FW (rAE 5%), which validates the value of the 

calibrated extent of degradation for the protein content in FW. In the case of GW 

the simulation slightly overestimates the experimental values (rAE 12%) at the end 

of the experiment. 

Bicarbonate alkalinity (BA) is the main buffer in anaerobic systems, reducing the 

change in pH following VFAs production: its measure indicates resistance to 

organic overload and together with VFA is the main indicator of process stability 

(Steyer et al., 2006). A BA accurate prediction is therefore important as it is related 

to the overall prediction accuracy of pH changes and process stability. Experimental 

values show an initial trend of increasing BA, especially for FW tests. The increase 

can be explained by analysing the charge balance of the anaerobic system (eq. 

(3.4)): the above-mentioned increase in TAN corresponds to an increase in positive 

charges (inorganic nitrogen mostly in the form of ion ammonium NH4
+, with pKa = 

9.25) which in turn allows a higher amount of the negatively charged bicarbonate 

ion HCO3
- to remain in solution (and not being transformed into gaseous CO2). In 

the case of FW test, it is noticeable how there is a decrease in BA towards the end 

of the experiment, which is due to the accumulation of VFA, in turn related to higher 

loading rates. In fact, VFA are almost completely in dissociated form (pKa 4.76-4.88) 

and therefore the increased amount of H+ ions drives the transformation of part of 

the BA into CO2. In the case of GW, there is a less defined increasing trend, and 

this can be related to the lower TAN content in the GW system. Similar to FW, also 

in GW higher loading rates correspond to a decrease, or at least a stabilization, in 

the BA content. BA simulations capture in both cases the experimental trends, with 

acceptable rAE of 10% and 5% for FW and GW, respectively. In the case of FW, 

the simulation predicts the initial increase and the final decrease. There is a 

noticeable underestimation in the final experimental values, and for which it is 
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difficult to identify a single cause. One possible explanation could be the inaccuracy 

in the experimental determination of BA. This was in fact approximated by titration 

to pH 5.75 and using an empirical factor to convert the measurement (partial 

alkalinity) to bicarbonate alkalinity (Jenkins et al., 1983). However, in systems with 

a high concentration of TAN and VFA, the empirical factor is less accurate and BA 

could be overestimated: the titration in fact also converts the free ammonia to ion 

ammonium and part of the available VFA into the undissociated form. Different 

empirical factors could be used depending on the state of the system, but this goes 

beyond the scope of this thesis. 

VFAs are the main products of the fermentative and acetogenic steps; 

accumulation of VFAs in the liquid phase are indicators that the reaction rates of 

consumption of VFAs (namely methanogenic reaction for acetic acid, and 

acetogenic reaction for propionate, butyrate and valerate) are slower than the 

production rates. If this imbalance is protracted in time, it will eventually lead to a 

failure of the whole anaerobic process, due to an excessive inhibitory acidity in the 

system. In fact, VFAs have been since long accepted as the main indicators of 

process stability (Ahring et al., 1995, Boe et al., 2010). Single VFAs species were 

measured and simulated, however the sum of all single species is here reported - 

as the focus is more on the process imbalance between acid production and 

consumption rates. Excluding the end period of the FW test, the VFA content in the 

effluents remained at very low levels, with an average concentration of 0.05 gCOD 

L-1 in GW test and 0.1 gCOD L-1  in the FW test, sign that the applied loading rates 

did not imbalance the system.  Highest peak in the GW test was 0.13 gCOD L-1 at 

100 days, while in the case of FW a peak of 3 gCOD L-1 was registered. Simulations 

show how the spikes in VFA concentration, after each feeding, are reduced to low 

levels before the following feeding. Also the final accumulation of VFAs in FW test 

is well predicted. However, the error is very high at 159% and 173% for FW and 

GW, respectively, as the simulations tend to overestimate the residual VFA. Most of 

the error is caused by an overestimation of the very low levels of VFA, which from 

an engineering and control point of view are less important to predict. A calibration 

of the half saturation constants in the VFA uptake rates would have reduced the 

error, but this was beyond the scope of the chapter.  

pH is the result of the interaction of all charge bearing species in the system. In 

both the FW and GW cases, the pH is quite stable between 7.5 and 7.75, with 

increasing values during the first 50 days of the experiment and then a decline and 

stabilization. The initial increase can be related with an increase of TAN in the 
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system, with higher VFA concentrations reducing the pH in the second part of the 

experiment. The simulations tends to underestimate the pH during the initial period 

of the experiment, while the fit improves after about 70 days in both experiments. It 

is difficult to identify a reason for the initial lack of fit, although it can be observed 

how the implemented ADM1 cannot take into account some important influencing 

pH phenomena, including: phosphate buffer, sulphate-sulphide system, 

precipitation of carbonates (e.g. calcite CaCO3), formation and precipitation of 

struvite. The simulations also show how the pH drops after each feeding, with the 

drops being proportional to the size of the feeding and related to the VFA and CO2 

production, which in turn increase the amount of H+ ions in the liquid.    

Methane content in the produced gas was only measured in the FW experiment, 

and for a limited period of time. Methane content is directly related to the 

biochemical composition of the substrate and in particular with the oxidation state of 

carbon, e.g. lipids degradation will produce a methane-richer gas than 

carbohydrates. At the same time, in highly dynamic systems, the gas composition 

also depends on the relative rates of the various processes. Simulated CH4 and 

CO2 flows and their ratio are shown in Figure 4.21b: it is evident how the ratio 

decreases abruptly after each feeding, as the degradation of the fresh substrate 

produces initially a relatively high amount of CO2 through fermentation and fatty 

acids oxidation. The ratio then increases again and peak, through the reduction of 

CO2 to methane in hydrogenotrophic methanogenesis and the gradual conversion 

of the accumulated acetate to methane. The experimental methane content (Figure 

4.21a) follows exactly the same pattern, as obviously is the result of the 

combination of the different gas flows. The simulated methane content follows 

remarkably well the experimental values (rAE 5%).  
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Figure 4.19 Simulated (calibrated XX model) and experimental measured 
outputs in the FW semi-continuous experiment: (a) total and volatile 
solids, (b) total ammonia nitrogen, (c) bicarbonate alkalinity, (d) total 
VFA (sum of all species) and (e) pH. 
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Figure 4.20 Simulated (calibrated XX model) and experimental measured 
outputs in the GW semi-continuous experiment: (a) total and volatile 
solids, (b) total ammonia nitrogen, (c) bicarbonate alkalinity, (d) total 
VFA (sum of all species) and (e) pH. 
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Figure 4.21 (a) Simulated and experimental CH4 content in the produced gas 
in the FW test; (b) simulated CH4 and CO2 gas flow rate in the FW semi-
continuous test. 

 
rAE % 

 
FW GW 

TS 7% 19% 

VS 18% 13% 

TAN 6% 12% 

Alkalinity 10% 5% 

VFA 159% 173% 

pH 1% 2% 

CH4 %vol. 5% n.d. 

Table 4.11 Goodness of fit indicated by relative absolute errors in the 
measured outputs in the GW and FW semi-continuous tests. 

4.5.4 Residual analysis 

A residual analysis was performed to check the assumptions on the least square 

method. Residual plots as a function of time show how the residuals are 

homoscedastic for FW (Figure 4.22(a)) and partially for GW (Figure 4.23(a)); 

autocorrelation is evident in both cases. Histograms plots (Figure 4.22(b) and 

Figure 4.23(b)) show how in both cases the residuals follow a normal distribution, 
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although skewed negatively (average of the residuals: -0.68 for FW and -0.49 for 

GW).  

 

 

Figure 4.22 (a) Residual plot and (b) histogram distribution for calibrated XX 
model for test 2 and FW substrate. 

 

 

Figure 4.23 (a) Residual plot and (b) histogram distribution for calibrated XX 
model for test 2 and GW substrate. 

 

4.5.5 Hydrolysis described by Contois kinetics  

Contois kinetics (eq. (3.4)) is a more comprehensive kinetic description of 

hydrolysis, and it describes the saturation effects for both the substrate and 

biomass (Vavilin et al., 2008), with two limiting cases:  

 When the substrate is abundant and biomass limiting, i.e. the ratio 
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degradation rate only depends on the biomass concentration (first-order 

hydrolysis in the biomass).  

 When the biomass is abundant and the substrate limiting, i.e. the ratio 

substrate/biomass << KS,CNT: the substrate can be considered always to be 

fully colonized by the biomass, and its rate of degradation only depends on 

the substrate concentration (first-order hydrolysis in the substrate).   

Semi-continuous digester operations are characterised by rapid changes in 

substrate concentration. Simulations with the previously calibrated models XX were 

realized to quantify these changes, and compare them with the variations in the 

acidogenic biomass, which is producing the exo-enzymes which hydrolyse the 

particulate. Figure 4.24 shows the concentrations of the lumped acidogenic 

biomass (i.e. in ADM1: Xsu + Xpr + Xfa) and of the readily (Xch,r+Xpr,r+Xli,r) and the 

slowly degradable particulates (Xch,s+Xpr,s+Xli,s), for both GW and FW tests. In both 

these tests there is an accumulation of the slowly degradable particulate, while fast 

particulate is completely degraded during each feeding period. Also the biomass 

concentration tends to increase during the experiment, especially in FW test due to 

the higher degradability of the substrate. Figure 4.25 shows the ratio of the 

substrate on the lumped biomass: in both tests there is a slightly increasing trend 

for the slowly degradable particulate ratio, while the trend is more constant for the 

fast particulates. A much higher variation in these ratios occurs between each 

feeding, and this could lead to situations of substrate saturation (biomass limiting) 

after each feeding. To explore the possible influence of this phenomena, the ADM1 

model was updated with the Contois kinetics, the parameters of the Contois 

calibrated and the goodness of fit evaluated. Similar to the model with first-order 

kinetics, various fractionation models have been also implemented and calibrated. 

In the fractionation model with two particulates (XX and XXS), the kinetics was 

implemented with two half saturation coefficients KS,CNT,r and KS,CNT,s for the 

respective particulates.   

In all the calibrations, the estimated values of KS,CNT coincided with the superior 

bound of the defined parameter range in Aquasim (fixed at 100). This value is much 

higher than the substrate/biomass ratio shown in Figure 4.25 (in all cases below 2): 

this indicates that the Contois kinetics described a situation of substrate limitation 

and practically coincides with first-order kinetics. Moreover, the half saturation 

coefficients were fully correlated with the hydrolysis rate constants, thus resulting in 

very elevated standard errors.    
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To further analyse the Contois kinetics, calibrations on feeding intervals were 

realized, similarly to first-order kinetics. To reduce the correlation and uncertainty, a 

single half saturation coefficient was implemented for all the particulates. To force 

the calibration algorithm to find “interesting” solutions (i.e. not coincident with first-

order hydrolysis), the possible values of Ks,hyd were bounded to a maximum value of 

0.5. In all calibration results (not shown) again Ks,hyd coincided with the maximum 

value and the goodness of fit was lower than with the models implementing first 

order hydrolysis. The only case where the Contois kinetics performed better than 

the first-order was when the first interval data set was considered. Figure 4.26(a) 

and Figure 4.27(a) show the simulated curves obtained in these cases: it can be 

observed how the Contois kinetics better represents the flat profile of the methane 

flow rate. An interpretation could be as follows: the inoculum was not adapted to the 

new substrates fed, and the Contois kinetics describes this situation as a biomass 

limiting condition, with a very low half saturation constant (Ks=0.01). The simulated 

curves obtained in the other intervals, although having a lower goodness of fit than 

the first-order hydrolysis models, show interesting characteristics. In particular, the 

Contois kinetics, with the XXS fractionation model, is able to partly reproduce the 

non-monotonic characteristic of the flow rate curves (Figure 4.26(b)(c) and Figure 

4.27(b)(c)). The peak in flow rate is given by the fast uptake of the soluble S 

fraction, while the hydrolysis of the particulates causes the flat section (or second 

peak) in the curve. An interpretation could be as follows: after each feeding there is 

an excess of substrate with respect to the biomass, further the substrate/biomass 

ratio is higher than the half saturation constant (Ks=0.5) and therefore the 

hydrolysis rate is in the saturation zone of the kinetic curve, i.e. the rate of 

hydrolysis is almost constant and not changing with the substrate concentration. In 

the case of the first-order hydrolysis model, the initial peak can be also simulated by 

a very fast hydrolysis of the particulate and then the rate of hydrolysis monotonically 

decreases with the decrease of the substrate.  
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Figure 4.24 Simulated lumped acidogenic biomass and degradable substrate 
fractions for the (a) GW and (b) FW experiments (calibrated XX 
fractionation). 
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Figure 4.25 Simulated ratios of the slowly and degradable substrate to the 
lumped acidogenic biomass, for the (a) GW and (b) FW experiments 
(calibrated XX fractionation). 
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Figure 4.26 Calibrated XX model and XXS Contois model on three different 
intervals, with 5 feedings each, for the FW test: (a) 9-21 days, (b) 56-70 
days, (c) 112-120 days. 
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Figure 4.27 Calibrated XX model and XXS Contois model on three different 
intervals, with 5 feedings each, for the GW test: (a) 9-21 days, (b) 56-70 
days, (c) 91-103 days.  
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4.5.6 Maximum rate analysis 

Figure 4.28 shows the ratio between the maximum methane flow rate and substrate 

loading for each feeding event, for the GW and FW tests. In both tests the ratio is 

not constant. Some correlations and trends can be identified from the figure as 

follows: 

 Abrupt increases in the loadings (e.g. at days 15.9, 36.9, 43.9, 65.0, 85.9, 92.9, 

113.7) correspond to a decrease in the ratio.   

 A trend of increasing ratio at the beginning of the experiment; a defined 

decrease after the 13 days period of no feeding; a further increase in the ratio, 

almost to levels preceding the interruption in the feeding; in FW test, a final 

decrease corresponding to the highest loadings.       

In the case of the hydrolysis being the limiting reaction, the ratio would be constant 

when the hydrolysis is described as first-order reaction (rate of degradation 

proportional to substrate concentration). The identified non-constancy of the ratio 

can be explained as follows: 

 After feedings, hydrolysis is not the limiting reaction, and instead accumulation 

of intermediates occurs (mainly acetate, propionate and fatty acids) as also 

shown in the case of batch tests (see Figure 4.7). The decrease in the ratio after 

the period of no feeding can be interpreted as a decline in the biomass 

responsible for the uptake of the intermediates. 

 The hydrolysis is not described by a first-order reaction, and there is a 

saturation effect in the substrate. 

 The final decline in the ratio may again be explained by the arising of inhibiting 

conditions.  
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Figure 4.28 Ratio between the experimental maximum methane flow rate and 
the loading for each feeding event, for the FW and GW tests. Trendline 
as moving average, calculated over a period of three feedings.   

4.6 Conclusions 

Several conclusions can be drawn from the analysis carried out in this chapter, 

regarding the methods and processes explored.  

4.6.1 Biochemical fractionation 

The proposed method has the main advantage of using a single, fast and accurate 

analytical technique (elemental analysis). This is an advantage compared to the 

alternative approach of direct analysis of the biochemical compounds, which 

requires longer and less accurate analytical method. Direct analysis in fact could 

lead to an underestimation of the total COD of the substrate. Buffiere et al. (2006) 

found how the direct determination of proteins, lipids and carbohydrates were far 

from being representative of the total volatile solids. They put forward some 

explanations regarding the accuracy of the methods used: some carbohydrates 

may not be measured by the anthrone reagent method; protein and sugar 

measurements are colorimetric methods calibrated on a single type of component 

(bovine serum albumin for proteins, and glucose for sugars). Therefore the use of 

the direct method could lead to an inaccuracy in the biochemical fractions used in 
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ADM1. On the other hand, it has been shown how a high quantity of lignin could 

lead to overestimation of lipids with the proposed method. More research is needed 

to evaluate the impact of this error and when a direct measure of lignin is required. 

It has been also shown how the method is sensitive on the ash determination 

temperature: it is recommended that a higher temperature than the usual 550 °C 

employed in the VS determination is used, although a further understanding of 

elemental analysis is needed to determine the optimal temperature. 

4.6.2 Kinetic fractionation 

It has been shown that substrates need to be described in terms of the fractions 

degrading at different rates, and that the common description of substrate as 

degrading at a single rate might lead to important inaccuracies in the prediction of 

the methane production rate. These inaccuracies may be negligible when digesters 

are operated in continuous mode with steady supply of substrate; however, in the 

case of demand-driven, dynamic operations, an accurate prediction of gas 

production is necessary in order to predict the energy demand satisfaction and 

possible overloading inhibitions.  

This research has also highlighted how the required fractionation complexity is a 

reflection of the substrate complexity. In the case of oat residues, the substrate is 

quite homogeneous in its composition and particle size, and therefore a single 

fraction is sufficient for the description of its degradation; on the other hand, food 

waste, green waste and pig manure are intrinsically a mixture of substances of 

different composition and size, and this is reflected in the degradation kinetics 

complexity requiring at least two kinetic fractions.    

The proposed method of estimating the kinetic parameters, using explicit numerical 

calibration and uncertainty estimation, constitutes an improvement on the 

fractionation methods employed by Girault et al. (2012) and García-Gen et al. 

(2015), which were based on ambiguous visual interpretations of the methane flow 

rate (as described in chapter 2). More research is required to better understand 

how to select the most appropriate fractionation based on the goodness of fit and 

uncertainty in the estimated parameters, e.g. through uncertainty analysis (Sin et 

al., 2009a). A further improvement could be gained by the implementation of 

intelligent algorithms that are able to identify, in real time, the influence of the batch 

test duration on the prediction of the kinetic parameters, with the objective of 
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shortening the length of the test (as was done by Strömberg et al. (2015), but only 

focusing on the determination of the extent of degradation).  

Comparison of batch and semi-continuous tests for fractionation. The use of two 

different testing platforms (batch and semi-continuous) allows a comparison of the 

values of the estimated fractionation parameters.  

 The extent of degradation is rather independent of the testing platform. 

Therefore estimation from batch tests can be safely used when planning and 

designing and AD system. 

 Hydrolysis parameters estimated from batch tests should be used as 

conservative values. Semi-continuous tests have shown the influence of 

biomass adaptation on the hydrolysis parameters, with maximum values 

obtained in semi-continuous tests being as 7 times higher than in batch tests. A 

similar conclusion was reached by Batstone et al. (2009): when comparing the 

digestion of hydrolyzed activated sludge in batch and full-scale digesters, they 

found parameters estimated in batch tests being an order of magnitude smaller 

than continuous digesters.   

 Additional care should be taken when parameters are estimated in batch tests 

through the use of simplified mechanistic models, e.g. with one step 

methanisation models. This is especially relevant when testing quickly 

degradable substrates (such as food waste), as in these cases the uptake of 

soluble products become the limiting condition. A similar conclusion was 

reached by Jensen et al. (2011) and he advised to maintain a very high 

inoculum/substrate ratio to reduce the biomass limiting condition in the soluble 

uptake. However, here it is recommended to also use more complex models, 

such as ADM1, to estimate the parameters.  

4.6.3 Model implementation 

A method for determining the initial conditions have been outlined. However more 

research is required to evaluate the impact of inaccurate initial conditions, 

especially the biomass concentration, on the simulation results. Biomass 

concentration estimated through control batch tests is conditional on the accuracy 

of the biomass decay rate parameter, which is in turn dependent on the kind of 

reactor and system condition: there is no consensus in literature about which value 

should be used (Batstone et al., 2006). Biomass concentration estimated from a 

modelled and calibrated reactor is in theory a more robust method, however the 
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method couldn’t be properly applied in this research as the inoculum was filtered 

before being used. It is therefore recommended to avoid filtration when model 

based estimation of biomass is applied. 

Model calibration 

Weights proportional to flow rate allow to maintain a constant variance in the 

residuals. However, as a result, the fit to the low flow experimental data is 

unnecessarily accurate, while the more interesting dynamics occurring after the 

feeding are given less importance during the estimation. Another approach would 

have been the use of weights composed of a part proportional to the flow rate and a 

part which is constant for all data points: this approach needs to be further 

investigated. 

Model predictions 

The calibrated model on the gas flow was able to reproduce, with good accuracy 

the evolution of other variables of engineering interest (Solids, TAN, alkalinity). A 

further validation of the model will be done in chapter 5, including an updated 

inhibition structural model.   

Semi-continuous operation 

This research was conducted with semi-continuous operation of the digesters. This 

kind of operation allows a richer kinetic data and therefore better identifiability of the 

governing parameters. However, from an engineering point of view, semi-

continuous operation leads to a lower maximum methane volumetric productivity 

with respect to the continuous operation, as was demonstrated by Bensmann et al. 

(2013), especially when the feeding period increases (e.g. > 1 day). The reason for 

this being that larger amounts of substrate need to be fed to the reactor to increase 

the productivity, thus inducing larger overloadings which are not recovered before 

the following feeding. Another drawback of a semi-continuous operation is the 

important variation in the gas composition that occurs after each feeding, with the 

experimental data showing a decreases from 65 down to 40% by volume. This 

variation can adversely influence the performance of downstream processes (e.g. 

combustion, gas scrubbing), and would require increased gas buffer storages or 

more complex control systems.    

On the other hand, semi-continuous feedings can be proposed as a way to cope 

with the changes in biogas demand, and quick degradable substrates (similar to the  
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food waste analysed in this thesis) could be fed semi-continuously to match the gas 

production with the demand.  

4.6.4 Control 

An analysis of the experimental data could be used to derive some simple 

indicators about the state of the system. In particular it has been shown how the 

analysis of the shape of the flow rate variation with time, i.e. its monotonicity, could 

allow the identification of biomass limiting situations. However, it has also been 

shown how alternative interpretations are possible: the interruption of the 

monotonicity,  in fact could be the result of a limit in the hydrolysing biomass (exo-

enzymes), as described by the Contois kinetics, or an inhibition in the 

methanisation of soluble compounds (as will be discussed in chapter 5). The two 

interpretations would bring about different control actions: while the former is not a 

risk of process imbalance (and growth in time of the biomass would reduce the 

limiting condition), the latter if prolonged would reinforce the inhibiting conditions up 

to a complete rupture of the methanogenic process. An analogue indicator is the 

ratio of the maximum flow rate to the loading, with the added characteristics that it 

can be easily quantified and trended. Further research could identify better ways of 

analysing and combining these indicators.   

4.6.5 Microbial biomass adaptation 

The initial improvement in the kinetic parameters, was interpreted as an adaptation 

of the inoculum to the different substrates. The adaptation process can be 

understood as the induction of metabolic pathways for biodegradation, an increase 

of microorganism affinity for the compound and also an increase in the number of 

specific degraders (Raposo et al., 2012). A similar conclusion was reached by 

Girault et al. (2012), who reported how the use of adapted and non-adapted 

inoculum produced significant differences in the estimated kinetic parameters. On a 

similar note, De Vrieze et al. (2013) reports an interesting experiment comparing 

two reactors fed with different feeding patterns, with the same amount of substrate 

being fed every one or two days. They demonstrated how the more dynamic reactor 

(fed every two days) developed through the experiment a higher degree of bacterial 

community dynamics. The reactor appeared also to be more tolerant to organic 

shocks up to 8 g COD L-1 and ammonium levels up to 8000 mg L-1.  They 

concluded that the regular application of a limited pulse of organic material and/or a 
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variation in the substrate composition may promote higher functional stability in 

anaerobic digestion.   



138 

5 Codigestion and inhibition modelling 

5.1 Introduction 

This chapter presents the whole result data sets obtained through the semi-

continuous tests R-a, R-b, R-c.  

The chapter is structured as follows: 

 Description of the experimental conditions for the tests R-a, R-b, R-c. 

 Analysis of the codigestion data over the whole period of operation in order 

to validate the ADM1 implementation for modelling co-digestion and the 

substrate fractionation described in Chapter 4. 

 Analysis of the data for the test R-b over the period 0-144 days in order to 

assess any synergistic effects of codigestion. 

 Data from the test R-a over the period 132-204 days is used to update and 

calibrate the inhibition structure of ADM1. 

 Whole period dataset for R-a, R-b and R-c is used to validate the identified 

inhibition structure.  

5.2 Methodology 

The three semi-continuous experiments were realized using the apparatus and 

analytical methods described in Chapter 3, in duplicate for each combination of 

substrate. The complete series of substrate loadings are shown in Figure 5.1, while 

Figure 5.2 shows the water loadings and the calculated HRT for each experiment: 

R-a, R-b, R-c. The HRT for a semi-continuous experiment is calculated considering 

the interval that occurs between each consecutive feeding, as follows: 

𝐻𝑅𝑇(𝑡𝑖) =
𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒(𝑡𝑖)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑎𝑑𝑑𝑒𝑑(𝑡𝑖)
(𝑡𝑖+1 − 𝑡𝑖)⁄

 

The values of substrate and water added at each feeding, together with the 

variations in the reactor volume, are detailed in Table 5.1, Table 5.2 and Table 5.3. 

The initial part of R-a (days 0-144) and R-c (days 0-112) have already been 

presented in Chapter 4 for the kinetic fractionation of GW and FW; the information 

is here maintained to give a better overlook of the whole semi-continuous 

experiment and for comparison with R-b. 
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Substrate loadings were designed in order to explore certain phenomena: 

 Different co-digestion combinations of substrates, as would occur in a real 

AD application treating a variety of urban or rural solid wastes. Starting from 

day 193 until the end of the experiment, all four substrates were co-digested 

in different proportions. 

 Different levels of substrate loadings (indicated as gCOD L-1), as would 

occur with demand driven applications of AD, with the biogas demand 

changing temporally. 

 The temporal variation of the loadings (Figure 5.1) was approximately 

similar for all reactors, with a gradual increase up to a peak of 15 gCOD L-1 

after 150 days, followed by a decline and another peak of 13.5 gCOD L-1 at 

the end of the experiments.  

In all the three tests, water was not added during the first part of the experiment. As 

a consequence, in the first part of the tests the HRT was very high (between 1000 

and 200 days, in the first 100 days of the experiments). Water was first added in the 

test R-a in the period 155-170 days, to facilitate the recover from organic stress by 

dilution of the inhibiting VFA accumulation; it was then added to all tests starting 

from day 193 in order to maintain a similar HRT in all three tests, and in turn reduce 

the increase of solid concentration in the reactor. With water addition, for all tests 

the HRT diminished and stabilised within a range of 150-30 days.  

5.3 Validation of the ADM1 co-digestion modelling and 

substrate fractionation method 

The substrate fractionations (kinetic, charge and biochemical) obtained in Chapter 4 

were used to model the complete experiment R-a, R-b and R-c. In the cases of FW 

and GW, the kinetic fractionation parameters estimated from the semi-continuous 

data set 2 were used (values in Table 4.10). In the case of PM and OAT, the kinetic 

fractionation parameters estimated from the batch test 1b were used (values in 

Table 4.8). The other stoichiometric and kinetic parameters, and model structure, 

were as in Rosen and Jeppsson (2006). For each experiment, model prediction and 

experimental values were compared. Figure 5.3, Figure 5.4 and Figure 5.5 show 

experimental and simulated methane volumetric productivity, methane specific 

yield, OLR, total VFA, acetate and propionate and pH for experiments R-a, R-b and 

R-c, respectively. Figure 5.6, Figure 5.7 and Figure 5.8 show experimental and 

simulated  results for bicarbonate alkalinity, TAN, TS and VS for experiments R-a, 
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R-b and R-c, respectively. The rAE for each measurement and simulated quantity is 

shown in Table 5.4. 

 

Figure 5.1 Substrate loadings for the complete semi-continuous experiments: 
(a) R-a, (b) R-b, (c) R-c. 
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Figure 5.2 Water loadings and calculated Hydraulic Retention Time (HRT) 
(averaged across five consecutive feedings) for the complete semi-
continuous experiments: (a) R-a, (b) R-b, (c) R-c. 
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Table 5.1 Amounts of substrate added and volume of the reactor at each feeding for the whole semi-continuous test R-a. 
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Table 5.2 Amounts of substrate added and volume of the reactor at each feeding for the whole semi-continuous test R-b. 
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Table 5.3 Amounts of substrate added and volume of the reactor at each feeding for the whole semi-continuous test R-c. 
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In general the model shows a good fit for all measured outputs, including the 

volumetric and specific methane yield, pH, alkalinity, TAN, TS and VS with rAE 

values in the range of 1.1-28%. The exception to this is the VFA predictions, which 

are less good with rAE values of 64-81%. The general trend is that the model does 

not predict well for periods of organic overload which generally coincide with the 

two large peaks in OLR occurring around days 140 and 280 of the experiments. 

Organic overload is indicated in all cases by the increase in VFA concentration 

which is generally not predicted by the model. This poor prediction of VFA also has 

the effect of increasing the divergence of the methane production values somewhat, 

which can be related to the VFA (represent potential methane) being removed in 

the effluent from the experimental system but since the model does not predict the 

VFA there is no such effect in the model output. This is especially notable in the 

later periods of the experiment when the HRT is shorter.  

The specific methane yield follows well the experimentally data (except during 

overload) and the value is a direct consequence of the feed mixture which validates 

the substrate fractionation method. Oats achieve the highest specific methane yield 

approaching 0.35 (the theoretical limit of COD conversion), owing to their high 

degradability.  

The model is able to predict the effect of water additions as shown in the alkalinity, 

TAN and TS/VS changes that occur around day 155 in experiment R-a (Figure 5.6).  

The accumulation of VFA predicted by the model is in most cases much lower than 

the experimental values, but also of note is that the experimental results show 

accumulations of acetate follow after a period by propionate, whereas 

accumulations in the simulations consisted of only acetate. It is thought that this is 

because the ADM1 model has fixed stoichiometry for acetogenesis but in a real 

system the products of acidogenesis/fermentation can change depending on the 

environmental conditions and accumulation of acetate would favour the formation of 

other longer chain VFAs (propionate, butyrate, etc.). 

The pH measurements came from two different sources: offline during the period 0-

140 days, and online during the period 130-300 days. From the online data we can 

compare: the trend which the simulations match well; the changes during overload 

conditions which the simulations match badly; the absolute values which show good 

agreement in R-b and R-c but not with R-a, again supporting that organic overload 

leads to bad model predictions; and the amplitude of pH variations after each 
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feeding which correlates well with the organic stress, i.e. much larger in R-a than R-

b or R-c.  

In general, the results from the validation of the codigestion modelling and substrate 

fractionation show that the model and substrate descriptions are correct and can be 

used to predict the behaviour of the real system well, except for VFA and during 

periods of organic stress. This indicates that the model components relating to 

organic stress are poorly calibrated, this is addressed in the section 5.5. 

 
rAE [%] 

 
R-a R-b R-c 

Specific Yield 27% 19% 11% 

Volumetric Productivity 28% 19% 12% 

VFA 78% 64% 81% 

pH 3.5% 1.1% 1.5% 

Alkalinity 9% 17% 13% 

TAN 11% 9% 10% 

TS 13% 9% 17% 

VS 22% 13% 15% 

Table 5.4 Goodness of fit indicated by relative absolute errors in the 
measured outputs in the R-a, R-b and R-c semi-continuous tests. ADM1 
simulation using the substrates fractionation parameters from Chapter 
4. 
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Figure 5.3 Experimental and simulated  results for experiment R-a: (a) 
volumetric productivity, specific yield (averaged across 6 feeding) and 
OLR (averaged across 6 feedings); (b) Total VFA, acetate and 
propionate; (c) pH.  
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Figure 5.4 Experimental and simulated  results for experiment R-b: (a) 
volumetric productivity, specific yield (averaged across 6 feeding) and 
OLR (averaged across 6 feedings); (b) Total VFA, acetate and 
propionate; (c) pH.  
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Figure 5.5 Experimental and simulated  results for experiment R-c: (a) 
volumetric productivity, specific yield (averaged across 6 feeding) and 
OLR (averaged across 6 feedings); (b) Total VFA, acetate and 
propionate; (c) pH.  
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Figure 5.6 Experimental and simulated  results for experiment R-a: (a) 
bicarbonate alkalinity; (b) Total Ammonia Nitrogen (TAN); (c) Total 
Solids and Volatile Solids concentration. 
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Figure 5.7 Experimental and simulated  results for experiment R-b: (a) 
bicarbonate alkalinity; (b) Total Ammonia Nitrogen (TAN); (c) Total 
Solids and Volatile Solids concentrations. 
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Figure 5.8 Experimental and simulated  results for experiment R-c: (a) 
bicarbonate alkalinity; (b) Total Ammonia Nitrogen (TAN); (c) Total 
Solids and Volatile Solids concentrations. 
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5.4 Synergistic effects of codigestion 

The substrate characterisation for FW and GW were performed using experimental 

data R-a and R-b, respectively, for periods 0-144 and 0-112 days respectively. 

Using these values the data comparison between experimental and simulated 

specific methane yield can be made for experiment R-b for the period 0-144 days in 

order to assess directly any synergistic effects of codigestion. This can be 

performed visually by observing this period in Figure 5.4 and there does appear to 

be a slight increase in the experimental methane production relative to the 

simulation, which would indicate some synergy occurring. However analysis of this 

data shows that the difference is about 5% and it is doubtful that this is statistically 

significant.  

To cross check this result, a calibration was performed using the experimental data 

from R-b for the period 0-144 days in order to assess the degradability of FW and 

GW. The fd values for FW and GW were 0.38 and 0.89, respectively (c.f. 0.38 and 

0.85 from the mono-digestion trials) which is an increase of only 3.3%. As may be 

expected the values for fd were highly correlated in the calibration algorithm, which 

means that although the result shows an improvement in food waste degradability, 

the same result could have been achieved by an equivalent change in the 

degradability of green waste.  

Several other calibrations were performed using increasing parameter sets (to 

include the other hydrolysis kinetic parameters) and in all cases complete 

correlation between the parameters was reported. As an example, an equivalent 

methane production increase could have been the result of an increase in the 

degradation rate of the slowly degrading fraction.  

The results of this study indicate that while there may be a small synergistic effects 

of the codigestion of FW and GW, it is probably too small to be found using the 

current method. 

5.5 Inhibition 

As was shown in Chapter 4, in the decreasing values of the apparent degradation 

kinetics and goodness of fit especially in FW with increasing loading rate, and in 

Section 5.3 in the VFA, pH and methane production divergence during overload 

conditions, both indicate a deficiency in the inhibition mechanism in ADM1. The 

analysis performed Chapter 4 with mono digestion of FW and GW (Figure 4.19 and 
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Figure 4.20) showed that the prediction of VFA by the model was overestimated 

compared with the experimental data, whereas in this chapter the model was an 

underestimation relative to the experimental data; therefore it is assumed that the 

reason for the accumulation of VFA shown is due to some transient variation in 

some inhibiting compounds, rather than incorrect values of the Monod kinetics for 

uptake of VFA.  

Therefore it was decided to investigate the most likely inhibition mechanisms 

caused by transient conditions of which undissociated VFA and LCFA were the 

most promising. Inhibition by VFA is deemed relevant since it shows a relationship 

with both pH and total VFA concentration (weak acid inhibition) and inhibition by 

LCFA due to high lipid content of FW. The effect of TS was not considered. 

5.5.1 Analysis of different inhibition mechanisms on the methane 

production rate 

A reduced data set from experiment 2 FW (days 120-127.8, comprising 5 feeding 

was used to explore the effect of different inhibition structures and parameter 

values on the methane flow rate.  

All inhibitions were described as non-competitive inhibitions, calculating an 

inhibition function I which multiplies the non-inhibited uptake rate:  

𝐼 =
1

1 +
𝑆𝐼
𝐾𝐼

 

where SI is the concentration of the inhibiting compound and KI is the inhibition 

constant (concentration of the inhibiting compound at which the uptake rate is 

reduced by 50%)   

The following combinations were tested one at a time: 

i. Default ADM1 parameters and inhibition structures. 

ii. Calibration of the uptake parameters of acetate (km_ac and Ks_ac). 

iii. Fatty acid inhibition on acetate uptake (fa_ac). 

iv. Undissociated VFA inhibition on methanogenic hydrogen uptake 

(HVFA_H2). 

v. Undissociated VFA inhibition on methanogenic acetate uptake (HVFA_ac). 
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vi. Undissociated volatile fatty acid inhibition on all bacterial processes 

(acidogenesis and acetogenesis) (HVFA_bac). 

vii. Undissociated volatile fatty acid inhibition on all hydrolysis processes 

(HVFA_hyd). 

For all combinations, hydrolysis was described as a first-order reaction: as shown in 

Chapter 4, overall this kinetics obtained a better goodness of fit in describing the 

dynamics of test 2 compared to Contois. Parameters from kinetic fractionation were 

left at a fixed value during the inhibition calibration, in order to avoid correlations 

with inhibition parameters. The parameters calibrated on interval 5 for the XX model 

(see paragraph 4.5.2) were used, as on this interval the non-modified ADM1 

achieved the highest goodness of fit. The parameters used are as follows: fd = 0.90, 

fXr = 0.48, khyd,r = 10.28, khyd,s = 0.29.  

Results from simulations are shown in Figure 5.9 and Figure 5.10, with ADM1 

default results compared with 4 different combinations in each figure. The goodness 

of fit of all combinations is shown in Table 5.5. Some qualitative considerations can 

be made, considering the combinations in order of increasing goodness of fit: 

 ADM1 with default parameters and inhibition structures, and first order 

hydrolysis, achieves the worst fitting. From Figure 5.9c it is visually evident how 

the simulation overestimates the methane flow rate after the feeding; acetate 

and hydrogen uptake rates are also the highest between all combinations 

(Figure 5.9a and Figure 5.9b).  

 The calibration of combination (ii) produced a lower maximum uptake rate 

km_ac and a higher half saturation coefficient Ks_ac than those using the 

ADM1 default values. As a consequence, the uptake rate of acetate is 

decreased and a higher accumulation of acetate (result not shown) occur, which 

result in a smaller uptake rate after the feeding (due to the reduced maximum 

uptake rate) together with a higher uptake rate at the end of the feeding (due to 

the accumulation of acetate and higher half saturation coefficient).  

 Inhibition of hydrolysis by HVFA results in an overall slower solubilization of the 

substrate, with a reduced peak and delayed methane production. Both acetate 

and hydrogen uptake rates are affected. 

 Inhibition of acetate uptake by HVFA results in a reduced acetate uptake rate, 

with a more flattened profile, due to the persistence of HVFA after the feeding - 

a similar profile is observed in the methane flow rate, qualitatively similar to the 

experimental data. The hydrogen uptake rate is not affected and coincide with 

ADM1 default. 
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 ADM1 with Contois hydrolysis (as calibrated in Chapter 4) is included for 

comparison. The methane flow and acetate uptake rate have a more flattened 

profile with respect to ADM1 with first-order hydrolysis. The initial peak is given 

by the uptake of the soluble fraction which was included in the Contois 

implementation; it is evident how the soluble fraction does not sufficiently 

reproduce the initial methane peak. 

 Inhibition of acidogenesis and acetogenesis by HVFA  (HVFA_bac) overall 

influence both the production of hydrogen and acetate. The initial peak in the 

simulated methane flow rate is stretched compared to ADM1 default and it is 

more similar to the experimental data. The effect of reduced CO2 from 

acidogenesis is also influential on the methane flow rate (as less methane in the 

headspace is displaced). 

 Inhibition of hydrogen uptake by HVFA influences directly the hydrogen uptake 

rate and indirectly the acetate uptake rate, by increasing the hydrogen inhibition 

on the acetogenic processes. As a result the simulated methane profile rate 

becomes closer to the experimental data.  

 Inhibition of acetate uptake by fatty acids results in the best fit of all the 

combinations. The acetate uptake rate curve displays an interesting profile: the 

acetate uptake becomes progressively more inhibited with more fatty acids 

being produced by hydrolysis, reaches a minimum and then progressively 

increases again along with the fatty acids degradation. 

 

 Parameter rAE (%) 

fa_ac  7.9% 

HVFA_h2 8.5% 

HVFA_bac 9.5% 

ADM1 Contois 12.1% 

HVFA_ac  12.6% 

HVFA_hyd 13.2% 

km_ac ks_ac 13.6% 

ADM1 First Order 15.4% 

Table 5.5 Goodness of fit of various inhibitions structures, calibrated on the 
interval 120-127.8 days for the FW test 2. 
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Figure 5.9 Comparison of (a) simulated acetate uptake rate, (b) hydrogen 
uptake rate, (c) experimental and simulated methane flow rate for default 
ADM1, ADM1 with Contois hydrolysis and  LCFA inhibition on acetate 
uptake, updated Monod parameters for acetate uptake. 
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Figure 5.10 Comparison of (a) simulated acetate uptake rate, (b) hydrogen 
uptake rate, (c) experimental and simulated methane flow rate for default 
ADM1, HVFA inhibition on hydrogen uptake, acetate uptake, 
fermentation/acetogenic and hydrolysis processes. 
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5.5.2 Comparison of inhibition combinations 

Based on the results shown in Table 5.5 3 inhibition combinations were developed 

using the best fitting individual mechanisms; HVFA-bac was split into the separate 

inhibitions of fermentation (HVFA_fer) and acetogenesis (HVFA_VFA): 

 (I-1) Fa_ac + HVFA_ac + HVFA_h2 

 (I-2) Fa_ac + HVFA_ac + HVFA_h2 + HVFA_VFA  

 (I-3) Fa_ac + HVFA_ac + HVFA_h2 + HVFA_VFA + HVFA_fer  

These results are shown in Figure 5.11-Figure 5.14. 

Experimental methane production in Figure 5.11 shows decreases larger than the 

decrease in loadings and further produces no peak during the feedings at days 

around 174, both indicating the presence of inhibition in the process. There is 

accumulation of VFA as shown in Figure 5.12 including propionate, butyrate and 

valerate. 

Comparison of the three inhibition combinations for reproduction of methane 

production shows a general trend of improvement from ADM1→ I1 → I2 →I3. As 

shown in Figure 5.11a, ADM1 default values overproduces methane production 

peaks after feeding and the characteristic shape of the kinetic is different from the 

experimental data. Sustained methane production and noticeable peaks at each 

feeding event can be observed throughout the period. On the other hand, I1-3 all 

reproduce the reduction in peak methane production rate over the calibration period 

shown in Figure 5.11b-d. I3 accurately reproduces the peaks and the complete lack 

of response to the feedings around day 174 in agreement with the experimental 

data.  

While the ADM1 simulation shows no VFA accumulation over the calibration period 

(results not shown) all three of the inhibition combinations reproduce to a varying 

degree the VFA peak shown in the experimental data (Figure 5.12)  but again I3 

shows the best fit since it includes the accumulation of the longer chain VFA rather 

than just acetate. Again, the pH data shown in Figure 5.13 show that I3 can best 

represent the experimental data.  

Figure 5.14 shows that accumulation of fermentable species are being used by 

inhibition combination I3 as the mechanism to allow VFA accumulation and 

reduction in methane production.  
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However I3 is still unable to reproduce the longer term effects of inhibition, such as 

the significant VFA concentration, at about 5 gCOD/L, seen in the period after 192 

days – with the model on the other hand predicting a complete recover of the 

system, with negligible VFA concentration. This suggests that further mechanisms 

of inhibition are still not included.  

In summary, the simpler inhibition models, including all single species mechanisms 

(section 5.5.1) and inhibition combinations I1 and I2 fail to reproduce: 

 VFAs speciation (rather than just accumulation of acetate)  

 Cessation of methane production under inhibition conditions 

 Peak methane production 

 Characteristic methane production kinetic 

The I3 inhibition combination can produce all of the phenomena seen in the 

experimental data and therefore is likely to be a better mechanistic representation 

of the actual inhibition taking place in the biological process. 

Inhibition 
combination 

Inhibition parameter 

 fa_ac HVFA_ac HVFA_fer HVFA_h2 HVFA_VFAs 

 [gCOD/L] [mM] [mM] [mM] [mM] 

I-1 1.905 0.126  0.026  

I-2 1.920 0.120  0.091 0.217 

I-3 0.906 0.133 0.008 0.118 0.018 

5.6 Calibrated parameter values for inhibition combinations I-1, I-2 and I-3. 
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Figure 5.11 Simulated and experimental results for methane flow rate for 
model inhibition structures: (a) default ADM1, (b) I-1, (c) I-2, (d) I-3. 
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Figure 5.12 Experimental and simulated values for the total and single VFAs, for 
the three different inhibition structures (a) I-1, (b) I-2 and (c) I-3. 
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Figure 5.13 Experimental and simulated pH for the three different model inhibition 
structure I-1, I-2, I-3.  

 

Figure 5.14 Simulated concentration for the total solubles fermentable, for the three 
different inhibition structures (a) I-1, (b) I-2 and (c) I-3. 

5.5.3 Validation of inhibition parameters 

In order to validate the inhibition structure calibrated in section 5.5.2, a different 

experimental data set was used, with respect to the data used for the calibration. 

The inhibition structure I-3 was used to simulate the whole experimental period of 

R-a, R-b and R-c. Results are shown in Figure 5.15. The issue is that in all cases, 

the methane production decreased and finally a process failure occurred, and this is  
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Figure 5.15 Experimental and simulated methane flow rate for the (a) 
experiment R-a. (b) experiment R-b, (c) experiment R-c for the inhibition 
structure I-3 calibrated on the data set 3; showing the occurrence of 
process collapse. 
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in contrast to the experimental data, which showed sustained methane production. 

This indicates that the chosen inhibition structure appears to be too sensitive to a 

high organic loading rate and therefore introduces too much inhibition into the 

process. This demonstrates how the calibration of the bioprocess model depends 

strongly on the calibration dataset and therefore cannot always be generalised to all 

process conditions.  

5.6 Conclusions 

Data from experiments R-a, R-b and R-c were used to successfully validate both 

the codigestion modelling methodology and the substrate fractionation method 

presented in Chapters 3 and 4. The model (with default inhibition parameters) was 

able to predict the behaviour of the experimental system, except in the periods of 

organic overload. The worst predicted measured output was in all cases VFA with 

rAE of 64-81% over the 310 day experimental period. 

Also, the tests explored different experimental conditions in terms of HRT and 

solids content, mainly driven by the addition of water. The digestion of pure 

substrates without water addition corresponded to higher levels of solids in the 

reactor, especially for test R-b fed mostly with GW. The addition of water is not a 

preferred option when operating a digester, since it uses a valuable resource, 

increases the volume of digestate to be treated/distributed, and diminishes the 

process HRT. However it can become necessary when feeding poorly degradable 

substrate, as in the case of GW, to avoid mass-transfer inhibiting conditions caused 

by an excessive solid concentration (Abbassi-Guendouz et al., 2012a). Also it was 

shown how the addition of water potentially helped the recovery from process 

imbalances in test R-a, with water diluting the inhibiting substances (ammonia and 

VFA). A properly calibrated model could be used to estimate the optimal level of 

water addition, taking into account the changes in the reactor process kinetics and 

potentially also the characteristics of the downstream digestate usages.  

Using data from the same three experiments allowed an assessment of the 

synergistic effects of codigestion of FW and GW. The results were inconclusive 

since although a small increase in the specific methane yield was shown in the 

codigestion experiment relative the mono-digestion cases (+3.3%) it was postulated 

that this is within the experimental error. 

The investigation into the important inhibition mechanisms found that the best 

model fit of the experimental data R-a, during the organic overload event, fed on 
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only FW, included inhibition by LCFA on acetoclastic methanogens, and of 

undissociated VFA on fermentation, acetogenesis and both types of methanogens. 

Using this combination of inhibition mechanisms, the important phenomena of the 

experiment could be replicated by the model.  

When validated against the whole R-a, R-b and R-c datasets, the model with the 

selected inhibition parameter set showed poor agreement and predicted an 

inaccurate process collapse: the system showed higher resistance to organic stress 

in the later co-digestion part of the experiment, compared to the mono-digestion of 

food waste which was used to calibrate the inhibition parameters. One possible 

influence on this different system behaviour, during those different organic overload 

periods, is the bioavailability of the trace elements. It has been shown how the 

concentration of trace elements, such as Co, Mo, Ni, Se, and W, have a significant 

influence on the performance of food waste digestion (Facchin et al., 2013). Of 

particular relevance to this thesis is the work by Banks et al. (2012) who have 

investigated the influence of trace elements in the semi-continuous digestion of 

food waste. They demonstrated how the addition of Se and Co allowed the stable 

semi-digestion of food waste, at organic loading rates as high as 5 gVS L-1 day-1, 

while the digester showed VFA accumulation at 2 gVS L-1 day-1 and collapsed at 3 

gVS L-1 day-1, the latter after just 100 days of operation. It is difficult to make 

quantitative comparisons between these works, especially since no trace element 

analyses were performed in this thesis on the inoculum and substrate. However, 

one possible explanation of the higher resilience to overload shown by the 

investigated system during the co-digestion period could be the increased nutrient 

availability brought about by the different co-digested substrate. Pig manure, green 

wastes and oat residues may have a trace nutrient profile that complement the 

deficiencies in food waste. ADM1 could be supplemented with additional state 

variable, describing the availability in the system of the required trace elements, 

and introducing inhibition functions which are dependent on threshold 

concentrations. However, the nutrients bioavailability is a function of the physico-

chemical conditions (such as pH, and other elements concentration, which 

influence nutrients precipitation, complexation etc.), thus making the modelling 

more difficult. 
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6 Modelling microgrid energy systems containing 

anaerobic digesters  

The integration of anaerobic digestion (AD) in a microgrid is a novel concept that 

has been poorly covered by previous research. In this configuration, the AD system 

(digester and gas storage) can be used to compensate energy supply fluctuations 

from intermittent renewable sources, or to compensate seasonal changes in energy 

demand. The AD system can compensate microgrid energy fluctuations in two 

ways. In the short term (hours), using the biogas that has been stored in the 

external storage. In the long term (days), a change in the loading rate of the 

digester is required in order to increase the biogas produced and restoring the 

biogas reserve in the external storage. Therefore in this concept the operation of 

the AD system is driven by the dynamics of the microgrid. Changes in the loading 

rate can be realized by an increase in the mass loading rate, or by a higher ratio of 

degradable and energy-rich substrates. AD processes are affected by changes in 

loading rate and substrate composition, with the effect dependent on the state of 

the process and on the type, duration and frequency of the change (Leitao et al., 

2006). An inappropriate operation can result in a collapse of the process. Given this 

inherent risk in dynamic operation, a decision support system is necessary for the 

operator to select on a daily basis the amount and composition of the feeding which 

can satisfy the required energy demand. This chapter aims to explore the role of AD 

in a microgrid system, and follows the following steps: 

 In Section 6.1 the work of Castellanos et al. (2014) is introduced and 

summarised. This section focuses on the use of the modelling software HOMER 

which is used to optimise microgrid designs based on economic analysis. Note 

that this chapter is based upon the published journal article above. 

 Section 6.26.3 focuses on some minor modifications to the microgrid system 

proposed by Castellanos et al. (2014) and develops some additional biogas 

demand profiles with varying levels . 

 Section 6.3 is dedicated to modelling the AD component of the microgrid system 

using ADM1, with a focus on how a digester can meet the biogas demands of 

the system. 

A schematic of the overall concept of the role that AD can play in a microgrid 

system is shown in Figure 6.1, resuming the concepts already introduced in 

Chapter 1 (Section 1.1) and which will be analysed in this Chapter.  
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Figure 6.1 Schematic of concept of use of AD in a micro-grid incorporating 
demand predictions and AD controller (from  Poggio et al. (2013)). 

6.1 Modelling an off-grid energy system for rural 

electrification in India using photovoltaics and anaerobic 

digestion – a HOMER optimisation study 

This work surrounds the design optimisation of an off-grid energy system for use in 

rural electrification in India. India has shown an accelerated economic growth, 

however like other developing countries most of its population (~70%) live in remote 

rural areas which are not connected to the national electrical grid and small scale 

power plants that can satisfy the electrical demands of a local area can prove an 

attractive alternative to extension of the national grid. 

Given the abundance of sunlight and biomass available in the research area (India), 

the chosen energy conversion technologies were PV and anaerobic digestion (AD), 

with a Combine Heat and Power (CHP) generator fuelled by biogas. CHP systems 

based on both reciprocating engines and microturbines (MT) were considered and 

scenarios were based on combinations of these along with two storage 

technologies: vanadium redox batteries (VRB), and the combination of a water 

electrolyser and hydrogen storage with fuel cell for electricity production. A third 

storage option, zinc bromide batteries, was also briefly assessed. In order to 

determine a final optimal IRES configuration, the various technologies mentioned 

above were combined with each other. Figure 6.2 portrays the general concept of 

the IRES proposal for a typical rural village. 
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Figure 6.2 Integrated renewable energy system general configuration used in 
the HOMER optimisation study (from Castellanos et al. (2014)). 

6.1.1 Load profile 

This research forms part of the Bridging the Urban-Rural Divide (BURD) joint 

India/UK project and as part of this work a load profile was created that represents 

the electrical demand of a village in West Bengal containing around 1000 residents 

who currently have no direct access to electricity. This is shown in Figure 6.3. The 

demand is split into various categories and includes economic activity i.e. grinding 

spices, water pumping, the operation of a medical centre, adult and child education 

facilities, lighting and entertainment. The demand increase around noon was 

justified based on the predicted commercial and productive activities, while the 

demand increase at night was justified based on the predicted lighting and 

entertainment activities. The overall electrical load is equivalent to 22 MWh/year.  

 

Figure 6.3 Total electrical demand for rural Indian village, used in the HOMER 
optimization study (from Castellanos et al. (2014)). 

6.1.2 Micro-grid system modelling - HOMER 

Micro-grid modelling was performed using HOMER. This software allows simulation 

of the performance of an energy system with uncertain operational conditions, 

allowing robust design with reduced project capital risk. A large number of 
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permutations of the overall system were created with varying capacity (storage, 

power output) of each component. Each of these permutations was tested to 

assess whether it could meet the load requirement. The HOMER package was then 

used to list the permutations of the systems that can meet the demand and reports 

various economic indicators upon which the optimal scenario could be chosen. 

Scenarios considered 

The scenarios that were explored are shown in Table 6.1. Scenarios A and B use 

PV as the primary energy generator with differing storage technologies. Scenarios 

C-F use AD and a biogas CHP as the primary energy generation, with differing 

generation technologies and capacities of the CHP used. For each CHP technology 

two scenarios were explored; one with a high and low capacity engine and one with 

two similarly sized engines. Note that this approach was chosen since initial results 

with only a single CHP showed large amounts of wasted energy since the CHP 

needed to be scaled according to the peak demand which is much higher than the 

base load. Finally, scenario G, the fully integrated energy system, was designed 

based on the better ranked technologies from the previous modelling. 

For detailed descriptions of the components (PV, vanadium redox batteries (VRB), 

CHP based on both reciprocating engines and microturbines (MT) and  AD)  and 

financial variables used in the HOMER modelling the reader should refer to 

Castellanos et al. (2014), however the input solar data used for the site (latitude 23 

160 north and longitude 87 150 east) which was used in all HOMER simulations is 

shown in Table 6.2.  

 

Table 6.1 Scenarios investigated in the HOMER optimization study (from 
Castellanos et al. (2014)). 



171 

  

Table 6.2 Monthly average solar radiation and temperatures for the micro-grid 
location, used in the HOMER optimization study (from Castellanos et al. 
(2014)). 

6.1.3 Summary of results and discussion of the HOMER 

optimisation study 

Since the study was based on a financial optimization the main results are 

summarised in Figure 6.4. It is clear that the fully integrated scenario (G) was the 

most promising relative to the other scenarios which were based on fewer 

elements. The capital, and O&M results follow a similar trend with the scenario B 

(with H2 tank, electrolyser and fuel cell) being by far the most expensive, with 

scenario G, incorporating PV, AD, MT and VRB being the cheapest, and therefore 

most attractive. A full description of the system components and their 

characteristics is shown in Table 6.3. 

 

Figure 6.4 Financial requirements of the different scenarios investigated in 
the HOMER optimization study (from Castellanos et al. (2014)). 
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Table 6.3 Scenario G optimal system configuration (from Castellanos et al. 
(2014)). 

HOMER ranks the different systems according to its NPC, taking into account that 

this research targeted, low income, rural location within developing countries, the 

cost of energy (COE) was determined as the most important economic feasibility 

indicator of the project, the results of which are shown in Figure 6.5. The capital 

cost of each of the scenarios has the largest impact on the effective COE but is also 

influenced by the total electrical supplied in each case. 

 

Figure 6.5 COE ($/kWhr) results of the different scenarios investigated in the 
HOMER optimization study (from Castellanos et al. (2014)). 

Further to the financial recommendation for scenario G, due to the fact that it does 

not simply depend on one technology but on two energy generation technologies 

such as PV and AD, the system could also have increased reliability. The reduction 

in capital cost is due to the synergy between the schedulable, non-schedulable and 

storage elements in this integrated system. It is worth stressing that the scaling of 

the components in each scenario can be sensitive to the selected loss of load 

probability (LOLP). The LOLP represents the probability that the energy demand 

will exceed capacity during a given period (one year in this case). The 1% LOLP 

which has been used here represents a relatively high quality of supply in rural 

India and before embarking on such a project it would be worth considering the 

required or acceptable quality of supply since economic savings could be made in 

the case of a higher LOLP. To attempt to quantify this, scenario G was simulated at 

additional LOLP values of 2, 5, 10 and 20%, with the results shown in Table 6.4 and 

whilst it is true that reducing the desired quality of supply to a LOLP of 20% results 
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in a reduction in the capital cost and the installed generation capacity by 15% and 

27%, respectively, this benefit is not carried forward to the cost of the electricity 

over the life of the project. The COE is only reduced by 2.1% for a LOLP of 20% 

due to less electricity being supplied by the system despite a huge decrease in the 

supply quality. It is worth mentioning that a benefit of increasing the allowed LOLP 

is that less excess electricity is generated and therefore wasted, mainly because 

the PV system is not over-dimensioned to meet unusual peaks in demand.  

 

Table 6.4 Scenario G sensitivity to LOLP (from Castellanos et al. (2014)). 

The electricity cost of the system proposed in this work of $ 0.289 kWh-1 is 

comparable with other works in rural India e.g. 0.258 for a PV and battery system 

(Suganthi and Samuel, 2012), 0.24-0.47 for different configurations of PV, wind and 

batteries (Mellit and Pavan, 2010) and 0.216 for a PV, diesel and battery system 

(Soman et al., 2010) (all in $ kWh-1 ). Furthermore a Greenpeace study (Martensen 

et al., 2012) found that the cost of electricity of microgrid systems based on 

biomass (thermal) and PV in India was 0.304-0.384 $ kWh-1 , and that this can be 

reduced to 0.176-0.208 $ kWh-1 if a local hydro power source is available. The 

report goes on to explore the comparison between the cost of electricity from these 

isolated systems to the extension of the electricity grid. While the cost of electricity 

for grid connected customers is reported to be as low as 0.08 $ kWh -1, clearly much 

cheaper than the cost from the IRES reported, once the costs of extending the grid 

are taken into account the total cost can become greater for a distance as little as 

5-13 km.  

A broader discussion of the benefits of the IRES would include the fact that AD 

offers liquid and fibrous by-products which act as soil fertilisers and can improve 

crop yields and soil conditions. This is a particular benefit to rural communities that 

otherwise may not have the financial resources to add nutrients to their cultivated 

fields. Therefore, they would improve the productivity within agriculture and 

livestock sectors, or could even commercialise the fertilisers to neighbouring 

villages, thus, increase their economic revenues. Nonetheless, any scenario 
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involving AD represents a commitment to a work load demand from the community 

and there may be local resistance to this aspect of the technology. AD not only 

provides biogas to the microturbine, but this purpose is achieved by treating waste, 

and hence AD is also a waste remediation alternative. Therefore, in addition to the 

scenario G system being low COE, this scenario may represent a better option due 

to the other benefits from AD. 

6.2 Development of biogas demand profiles from microgrid 

modelling 

The hybrid energy system modelling using HOMER mainly focused on modelling 

the whole hybrid energy system with only simple treatment of the AD component: in 

fact it was assumed that biogas would be available to the micro turbine under any 

condition of demand and across the whole simulation period. Digester operation 

was assumed to be at steady state conditions during all the year, at a conservative 

constant loading rate of 2 kg VS m-3 day-1 (corresponding to 3.25 kg COD m-3 day-1 

in the case of 50% FW and 50% GW on a weight basis). As a consequence, it was 

implicitly assumed that a biogas storage were available to buffer any difference 

between biogas production and demand. However the dimensioning of the storage 

was not addressed in that study, and as will be demonstrated in the following 

sections it is an important design variable which could influence the techno-

economic viability of the hybrid energy system.  

As reviewed in Chapter 1, the operation of a digester could be approached in a 

more complex way than constant loading, and it is interesting to investigate the 

possibility of adapting the loading rate to the demand of biogas and the state of the 

AD system. Therefore modelling will be employed in this chapter to systematically 

investigate the relations between:  

 Different biogas demand profiles, being characterised by different oscillation 

amplitudes.  

 Different forecasting ability of the biogas demand, i.e. knowledge of the amount 

of biogas required with different forecasting windows lengths.  

 Different knowledge of the AD system: pH, gas flow, storage level. 

 Effect of loading strategies on storage requirements. 

 Effect of loading strategies on stress indicators of the AD system (e.g. VFA 

content). 
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6.2.1 Development of biogas demand profiles using HOMER 

As a first step of this benchmark study, different biogas demand profiles were 

created in order to explore the aforementioned system interactions under different 

conditions. The starting point was the previously described HOMER study. The 

economically optimal Scenario G was selected as the baseline scenario, and five 

further scenarios were developed by changing the ability of the microturbine (MT) at 

lower loading, by allowing flexible scheduling of the MT and by imposing a greater 

daily and hourly variability to the overall design energy demand of the micro grid 

(previously depicted in Figure 6.1); the six cases are listed in Table 6.5. PV and MT 

sizes (kW) remained as per Scenario G, while size (kWh) and power (kW) of the 

batteries were allowed to change during HOMER optimization; reduction of 

minimum loading and flexible scheduling of the MT allowed the MT to be operated 

for longer periods during the day with respect to the baseline scenario.  

Case # Description 

1 Base case as per Castellanos et al. (2014) 

2 As case  1 with reduction in micro turbine minimum loading to 10% of capacity 

3 As case 2 with no scheduling of the micro turbine 

4 As case 3 with +/- 25%  deviation from design demand profile (daily and hourly) 

5 As case 3 with +/- 50% demand variation (daily and hourly) 

6 As case 3 with +/- 75% demand variation (daily and hourly) 

Table 6.5 Scenarios for hybrid energy system modelling in Homer Energy Pro 
with reference to the base case as per Castellanos et al. (2014). 

The results of the HOMER optimization are shown in Table 6.6. Modifications 

across the 6 cases did not show a large change in the NPC ($72,600-$74,600) or 

COE (0.289-0.315 $/kWh) for the system but there were significant changes in 

terms of the system overall performance in Cases 5-6 in the form of a reduction in 

LOLP (5 and 9%, respectively). This was caused by the large variation in the 

electrical demand profile (+/- 50% and 75% for Cases 5 and 6, respectively) which 

effectively increased the peak demand of the system leading to an inability to meet 

the electrical demand. This could have been solved by allowing HOMER to change 

the size of the MT and PV elements but the focus of this study was to investigate 

the behaviour of the system when faced with unexpected variations in the design 

demand profile and the ability of the AD system to provide the necessary supply of 

gas. Further case by case results can be commented as follows: 

1. Case 2 – changing the minimum operating load of the microturbine made 

only a small change to biogas demand characteristics. 
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2. Case 3 – removal of MT scheduling had the effect of replacing battery 

capacity and power with a greater biogas demand (24.6 cf. 22.2 m3 day-1) 

and daily variability (standard deviation 6.1 cf. 2.2 m3 day-1). As can be seen 

in Figure 6.6, there is more variability in the on/off cycle of the MT although 

there is still a daily pattern due to the low variability of the electrical demand 

(+/- 15%) relative to Cases 4-6.  

3. Cases 4-6 – increasing the variation in electrical demand had major effects 

on the required biogas demand and the daily variation. Figure 6.6 shows a 

larger variation in the on/off cycling of the MT. Shorter cycles of the MT 

could induce higher O&M requirements of the MT, and introduce efficiency 

losses due to repeated warm-ups of the MT: both effects were not 

considered in the analysis.  

From the optimized scenarios, the calculated overall biogas demand was exported 

to then be used as input into the ADM1 based simulations of the AD system: the 

demand comprises both the biogas used by the MT to supply the required electricity 

and the biogas required for an external boiler to heat the digester. Each case 

produced a biogas demand characterized by incrementally greater temporal 

variations and therefore it is more challenging for the AD system to satisfy. This can 

be seen in Table 6.6, where the magnitude and variability of each biogas demand 

are shown: the biogas demand increases in its average value across the six cases 

(from 22.2 m3 day-1 in Case 1 to 28.4 m3 day-1 in Case 5); it increases in the 

maximum daily demand (from 27.2 to 72.3 m3 day-1) and in its variability (standard 

deviation from 2.2 to 15.1 m3 day-1). Biogas demand profiles are shown in Figure 

6.6-Figure 6.8 on 3 different timescales: the hour to hour demand as shown in 

Figure 6.6, the day to day demand as shown in Figure 6.7 (160 days excerpt) and 

the month to month demand as shown in Figure 6.8 (monthly variation with respect 

to yearly average). From the hour to hour profile, it is evident how the biogas 

demand is composed of a smaller cyclic demand for the boiler and superimposed 

larger peaks coincident with the MT operation. The daily timescale makes it evident 

how the daily biogas demands are affected by the imposed random variations, 

which are superimposed on a more similar long term trend. The monthly timescale 

makes evident how the biogas demand changes also according to the 

environmental conditions, with peaks corresponding to months of lower solar 

irradiation and lower temperature: it is the case of August which falls in the 

monsoon period with lower solar irradiation, and December and January which 

have both low solar irradiation and temperature (Table 6.2). Random variations in 

the demand (Cases 4,5,6) also play a role in determining the monthly variations. 
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Case # 1 2 3 4 5 6 

Battery power kW 3 3 2 3 4 4 
Battery capacity kWh 45 45 20 30 25 30 
AC/DC  kW 3 3 3 3 4 4 
COE $ kWh-1 

0.289 0.289 0.282 0.289 0.303 0.315 
NPC k$ 72.6 72.6 71.1 72.6 74.5 74.6 
Biogas demand m3 yr-1 8103 7994 8979 8651 8842 9928 

m3 day-1 22.2 21.9 24.6 23.7 24.3 27.2 
Largest daily demand m3 day-1 27.2 27.2 46.6 48.3 57.9 67.1 
Std. dev. of daily 
biogas demand 

m3 day-1 
2.2 2.5 6.1 7.5 15.1 13.6 

LOLP requirement  % 1 1 1 1 5 9 

Table 6.6 Modified system design, performance indicators and biogas 
demand of hybrid energy systems with modifications from base case as 
per Castellanos et al. (2014). 

 

 

Figure 6.6 Example daily methane demand profiles for the hybrid energy 
systems in Cases 1-6 for January, April, July and October. 
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Figure 6.7 Variation in monthly biogas demand for the hybrid energy systems 
in Cases 1-6. 

 

 

Figure 6.8 150 day excerpt of the daily total biogas demand in cases 1, 3 and 
5 (Cases 2, 4 and 6 omitted for visual clarity).  
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6.3 Modelling of the AD process to meet the demand of an 

island mode hybrid energy system 

In this section the AD model developed in chapters 4 and 5 is used to investigate 

the ability of an AD system to satisfy the biogas demand profiles developed in the 

previous section 6.2. Three different operational strategies were developed and in 

silico assessed through a simulation of a year-long operation of the digester: 

 Simple operation strategies such as: constant loading rate based on yearly and 

monthly biogas demand average; and basic feedback control which changes 

the loading rate depending on the state of the biogas storage (gasometer). 

These strategies are described in Section 6.3.1. 

 Variation of the loading rate of the digester based on a prediction of the biogas 

demand of the hybrid system. The study is based on the assumption of having 

accurate 1, 2 and 7 day predictions and how these predictions can influence the 

AD dynamics and the biogas storage requirements. No detailed investigations 

are developed regarding the methods available to predict the demand. These 

strategies are described in Section 6.3.2.  

 Expert feedback control which complements the future prediction of the demand 

of the energy system together with information about of the state of the AD 

system. In this way the control strategy calculate a loading rate of the digester 

to satisfy the required loading, provided the conditions of the AD system are 

within established measured indicators of AD process stability.  

The operational strategies are benchmarked against a common set of key 

performance indicators; biogas storage requirement of the system, expressed as 

the volume of gas at STP conditions, and maximum and average the total VFAs 

concentration in the digester. The biogas storage was calculated as the difference 

between the maximum and minimum volume of the stored biogas over the whole 

year of simulation. As will be shown, the requirement for storage of biogas in a 

hybrid energy system with an unsteady biogas demand could become very large 

relative to the size of the digester and therefore could represent a large cost (and 

land use) relative to the other system components: hence its importance as an 

indicator of the suitability of the operational strategy. The VFA concentration, both 

maximum and average, are used as an indicator of the stress on the AD system. In 

fact, different operational strategies may be equally able to match the biogas 

demand, but causing different levels of organic stress and process inhibition. An 
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operational strategy which satisfies the biogas demand set point while reducing the 

stress on the system, is therefore preferred and deemed more robust. 

For this benchmark study, the ADM1 model was implemented in MATLAB/Simulink 

(Mathworks, USA). Green waste and food waste were selected as substrate and 

described with the biochemical and kinetic fractionation parameters estimated in 

Chapter 4. The model was also updated with inhibition structure and parameters 

identified in Chapter 5. Despite the lack of validation of this parameter set its use 

can be justified as a conservative approach since it is more sensitive to organic 

overload conditions. All other model parameters and structures are as per the 

default values listed in Rosen and Jeppsson (2006). Finally the model is structurally 

identical in the Aquasim and Simulink implementations. The Simulink 

implementation allows rapid testing of a variety of operation strategies, subject to 

differing demand profiles, due to the user friendly graphical interface and is more 

suitable than Aquasim for this kind of system based in silico testing. The ODE15s 

solver was used in MATLAB/Simulink, which uses a fourth-order Runga-Kutta 

method with a maximum step size of 0.002 days  

The feedstock for all simulations was a co-substrate of 50% FW and 50% GW by 

volume. Initial conditions for all studies were determined from a year-long 

simulation of a digester fed at a steady state loading rate of 3 gCOD L-1 day-1 .  

The biogas demand profiles for Cases 1, 3 and 5 have been chosen for further 

analysis throughout this section due to their variation temporal biogas demand as 

shown in Figure 6.8. An increase in the variability in the biogas demand profile is 

expected to put additional requirements on the AD component of the hybrid system 

using either increased storage of biogas or a variable loading rate. Biogas demand 

profiles from cases 2, 4 and 6 have been omitted from this section since they are 

quantitatively similar to those from Cases 1, 3 and 5 respectively. In order to 

compare the response of an AD system to the different demand profiles a linear 

scaling to the digester volume has been made to the average daily biogas demand 

in each of the three cases using an assumed volumetric biogas production of 2 m3 

biogas m-3 digester day-1 giving digester volumes of 11.0, 12.0 and 14.1 m3 for Cases 1, 

3 and 5 respectively. The assumed volumetric production of 2 m3 
biogas m-3 digester day-

1 is in line with the average values achieved during the experimental data in 

Chapter 5. 
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6.3.1 Demand matching using simple operational strategies and 

biogas storage  

Given that the focus of the work on hybrid energy systems is on rural electrification 

in India there is an argument for the operational strategy to be simple and low cost. 

In this section three simple strategies are proposed to allow the AD system to meet 

the biogas demand in the three selected cases. These are as follows: 

 ‘Constant’ – The digester is operated at constant loading rate to meet the 

annual demand, with variations in biogas demand being completely absorbed 

by the biogas storage.  

 ‘Monthly’ – The loading rate to the AD system is varied proportionately with the 

forecasted monthly demand of the system as predicted by the modelling in 

HOMER, with the loading rate step-changed at the beginning of each monthly 

period. This leads to the loading profiles as shown in Figure 6.9 for Cases 1, 3 

and 5.  

 ‘Feedback’ – A simple device for measuring the volume of gas stored in the 

gasometer is installed in the system and a proportional feedback is applied 

between the stored volume and the digester loading rate. The controller 

schematic is shown in Figure 6.10. Since this controller is based on a single 

sensor (e.g. a proximity infrared or ultrasonic sensor) it is expected to be cost 

effective. 

 

Figure 6.9 Loading rate variations for the ‘monthly’ strategy for Cases 1, 3, 
and 5.  
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Figure 6.10 Description of simple feedback controller based on stored biogas 
volume and a bias of average yearly biogas demand. 

Results from the benchmark simulations are shown in Table 6.7, which summarises 

the proposed three operational strategies performances in response to the demand 

profile of the three energy systems considered (Cases 1, 3 and 5). Figure 6.11-

Figure 6.13 show the biogas storage and VFA concentrations over the simulated 

period of 1 year for the Cases 1, 3 and 5, respectively. 

Some comments can be made regarding the performance of the operational 

strategies but in general all three operational strategies can meet the energy 

demand for Cases 1 and 2, but process failure occurs when using feedback control 

to meet the demand in Case 3. 

Case 1 demand profile 

Constant loading is the worst case scenario, where there is no adaptation of the 

loading during the year. This results in a large requirement of 150 m3 (670% of daily 

demand) for the biogas storage, which is used to cover the higher biogas 

requirements in monsoon and winter periods. The reactor is operated at a constant 

loading rate of 5.4 gCOD L-1 d-1 which results in a HRT of 77 days.   

Monthly adapted loading and feedback strategies result in similar important 

reductions in the required biogas storage, to 38 and 34 m3 or 170% and 151% of 

the average daily demand, respectively. These two strategies are able to change 

the loading rate of the digester, as indicated by the minimum and maximum range 

of the imposed loadings: between 5.1 and 5.8 gCOD L-1 d-1 in the case of monthly 

adaptive strategy and between 5.8 and 6.2 gCOD L-1 d-1 in the case of feedback 

strategy. Higher loading rates leads also to higher organic stress, as indicated by 

the maximum concentration of VFA reached in the digester: 0.56 gCOD L-1 for both 

the adaptive and feedback strategy, compared to a lower level of 0.38 gCOD L-1 
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which was achieved in the case of constant loading. The maximum VFA level is 

reached across December-January when is higher the biogas demand.   

Case 3 demand profile 

Constant loading is again characterised by a very large storage requirement of 236 

m3 (959% of daily demand). This is even greater than case 1 due to increased 

quantity and variability in demand. 

Monthly adapted loading and feedback strategies allow again a reduction in the 

required biogas storage to 84 and 76 m3, respectively, compared to constant 

loading. However they show differences in the process stability, with feedback 

strategies producing higher concentration of VFA at 1.39 gCOD L-1 compared to 

0.59 gCOD L-1 of the monthly adapted. In fact the feedback strategy impose a wider 

range of loading rates between 3.7 and 7.3 gCOD L-1 d-1 compared to 4.8 and 6.1 

gCOD L-1 d-1 of the monthly adapted. Figure 6.7 shows how the energy demand 

peak for case 3 occurs in December, while from Figure 6.12 it is evident how the 

VFA peak occurs for both strategies during the month of August. The difference can 

be explained by a more abrupt change in energy demand occurring in August 

relatively to previous months, while a more gradual increase leads to the peak in 

energy demand in December. It can be concluded how both the relative change 

and absolute values of loading rates are both influencing the process stability. 

Case 5 demand profile 

The constant and monthly operational strategies were both able to meet the 

demand whereas the simple feedback controller caused several process 

instabilities and eventually a failure of the process indicated by an increased VFA 

concentration (>20 gCOD L-1), decrease in pH and large decrease in methane 

content of the biogas.  

Despite being able to meet the demand, the constant and monthly operational 

strategies still require a very large storage of biogas, 372 and 254 m3 respectively 

(1368% and 933% of daily demand respectively). This could significantly affect the 

system cost, and it is not taken into account in the original HOMER economic 

optimisation.   

The monthly adapted strategy involves a large change in loading rate in August 

(Figure 6.9) which leads to an accumulation of VFA in the digester to 2.67 gCOD L-1 
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(Figure 6.13), part of which is converted to biogas in the following month when the 

biogas demand is lower.  

The failure of the system using the feedback strategy occurs during March when 

there is an increase in the biogas demand and therefore the controller attempts to 

compensate for this. However, the fast nature of the feedback controller imposes a 

too high loading rate to the digester (up to 8.1 gCOD L-1 d-1), which imbalance the 

process stability through VFA accumulation, inhibition on the methanogenic step 

and finally further VFA accumulation and consequent process collapse. 

Some conclusions can be drawn from the previous analysis, regarding the 

characteristics of the proposed operational strategies. 

 Constant feeding results unfeasible in all cases, as would lead to excessive 

storage requirements to satisfy the year-round energy demand. 

 Monthly adapted feeding performs well in Cases 1 and 3, while with the most 

demanding gas profile of Case 5 storage requirements become hardly 

sustainable. Variations in loading rates are more limited than in feedback 

strategy, and process stability is maintained in all cases.  

 Feedback strategy gives the lowest storage requirements, as it is able to follow 

more closely the biogas demand profile. However this rapidity of action, which 

neglects the knowledge of the state of AD system, introduces additional stress 

into the AD system, and can lead to process failure as it was shown in the Case 

5.  

 Feedback control does not require any knowledge of future energy demand, 

and is based on cost-effective measurements of the gas storage: this could be 

considered an advantage in terms of simplicity of the controller implementation. 

To reduce the risk of process imbalance, the digester could be slightly over-

dimensioned with respect to the yearly energy demand, i.e. a lower value of the 

volumetric productivity could be used in the design phase. The relations 

between storage and additional digester capacity on an economic bases could 

further be analysed in future studies. Feedback control which incorporates also 

the knowledge of the state of the AD process is considered in Section 6.3.3.  

 Process imbalances occur at loading rates above 8 gCOD L-1 d-1 which are 

similar to the values which caused imbalance in the experimental trials in 

chapter 5. An absolute threshold value however cannot be determined a priori, 

as process imbalances are also the result of the duration of the high-loading 

periods together with the previous history of the digester; abrupt changes in 
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loading rates are in fact more destabilising than gradual increases, as a larger 

microbial community for VFAs uptake can be developed in the latter case.    

Demand 
profile 

Loading 
strategy 

Biogas 
storage 

VFA 
(max) 

 VFA 
(average) 

Demand 
met 

HRT 
(max) 

HRT 
(min) 

Process 
failure 

#  m3 kg m-3 kg m-3 Yes/No days days # 

1 Constant 150 0.38 0.38 Yes 77 77 NA 

 Monthly 38 0.56 0.38 Yes 81 71 NA 

 Feedback 34 0.56 0.39 Yes 91 67 NA 

3 Constant 236 0.56 0.38 Yes 77 77 NA 

 Monthly 84 0.59 0.40 Yes 87 68 NA 

 Feedback 76 1.39 0.43 Yes 112 57 NA 

5 Constant 372 0.38 0.38 Yes 77 77 NA 

 Monthly 254 2.67 0.52 Yes 91 61 NA 

 Feedback NA 20.45 11.60 No 166 51 March 

Table 6.7 Summary of AD system performance characteristics using simple 
operational strategies for biogas demand matching in cases 1, 3 and 5. 

 

 

Figure 6.11 Biogas storage requirement and VFA concentration for biogas 
demand from Case 1 using simple operating strategies. 
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Figure 6.12 Biogas storage requirement and VFA concentration for biogas 
demand from Case 3 using simple operating strategies. 

 

Figure 6.13 Biogas storage requirement and VFA concentration for biogas 
demand from Case 5 using simple operating strategies. 
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6.3.2 Demand matching using prediction of biogas demand  

The previously explored monthly adaptive control strategy could be further refined 

by considering different lengths of the biogas demand forecasting. Recent research 

has been very active both in investigating methods for forecasting the demand side 

(as reviewed by Suganthi and Samuel (2012)) and methods for the forecast of 

intermittent energy supplies, such as PV (as reviewed by (Diagne et al. (2013)) and 

wind (as reviewed by Soman et al. (2010)). Based on the availability of this 

information, control strategies for the integrated energy system have been 

developed to optimally manage the controllable elements of the system (Palma-

Behnke et al., 2013, Chen et al., 2011). It goes beyond the scope of this work to 

analyse and implement an appropriate supervisory control of the integrated energy 

system, and only the effect of the forecasting window on the AD system operation is 

evaluated. 

Three different demand matching strategies based on differing timescales of 

prediction (1 day, 2 day and 7 day) were assessed against the same three biogas 

demand cases as in Section 6.2.1. The predictions in this case were the actual 

demand profiles as supplied from HOMER, with forward averages over the 

timescales of the prediction. In reality there would be some expected variation 

between the predicted demand and the actual demand which is not accounted for in 

this modelling. An example of the load profile calculated from the Case 3 biogas 

demand profile is shown in Figure 6.14. The contrast between the loading profiles 

based on 1 and 7 day predictions is shown: the 1 day prediction loading tracks the 

biogas demand closely, with a phase shift of 1 day; whereas the 7 day prediction 

loading profile has the effect of smoothing the day to day variation of the biogas 

demand.  

The results from a year round simulation of the AD system for the three demand 

profile Case 1, 3 and 5 and applying the three different prediction timescales are 

summarised in Table 6.8. Figure 6.15 focuses on the results of the demand profile 

case 3 using prediction timescales of 1 and 7 days: substrate loading profile, VFA 

concentration and required storage of biogas.   

Some comments can be made regarding the effect of the different prediction 

timescales. For the demand profiles Cases 1 and 3: 

 All prediction timescales were able to satisfy the biogas demand. 

 The length of prediction gave several benefits: 
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o A reduction of the stress indicators, especially in Case 3, where the VFA 

concentration is highest for the 1 day prediction timescale at 1.72 gCOD 

L-1 d-1 and decreases to 1.43 gCOD L-1 d-1 for the 7 day timescale. This 

can be attributed to the smoothing of the loading rate variations when 

applying a longer timescale, while rapid changes in loading rate cause 

short term accumulations of VFA in the AD system, as can be seen in 

Figure 6.15. 

o A slight reduction in biogas storage size: for the biogas demand Case 1 

the volume is 29 m3 for the 1 day prediction timescale, 27 m3 for the 2 

days prediction and 23 m3 for the 7 days prediction; for the biogas 

demand Case 3 the volume is 50 m3 for the 1 day prediction timescale, 

47 m3 for the 2 days prediction and 47 m3 for the 7 days prediction. 

Although the differences are narrow, these results are an indication that 

too short a timescale does not correspond to a better following of the 

biogas demand. This can be further explained by considering the time 

constant for the AD system which, for a simpler case of hydrolysis 

limited system, corresponds to the inverse of the hydrolysis rate 

constant. The time constant represents the time it takes a system's step 

response to reach 63.2% of its final (asymptotic) value (Ljung, 1998), 

which for the AD system would correspond to the complete substrate 

methanisation after its step loading. In the case of FW and GW, it results 

in a time constant of approximately 5 days for the slowly degradable 

fraction and 5 hours for the readily degradable fraction. It is therefore 

clear how a too short timescale prediction would neglect the dynamics of 

the slow degrading fraction, which eventually could be overloaded and 

produce unnecessary biogas beyond the forecasting window, therefore 

resulting in an increased biogas storage.  

 Compared with the monthly adapted strategy analysed in Section 6.3.1, it is 

evident how a better forecast of the biogas demand leads to significant 

reductions in the required biogas storage. While monthly adapted loading 

required 38 m3 (Case 1) and 84 m3 (Case 3) of storage, the 7 days predictive 

strategy is able to decrease the requirement down to 23 m3 (Case 1) and 47 m3 

(Case 3), equal to 104% and 191% of the daily biogas demand. Moreover this 

benefit does not correspond to a significant increase of the stress indicators, 

with a maximum VFA concentration in the case 3 of 1.43 gCOD L-1 d-1 for the 

predictive strategy, compared to 0.59 gCOD L-1 d-1 for the monthly adapted.  

The demand profile Case 5 shows some differences in the results: 
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 The predictive strategy was unsuccessful in meeting the biogas demand of 

Case 5 and in all three prediction timescales the temporal variability of the 

loading rate caused instability and eventual process failure.  

 The failure time occurs later for the 7 day prediction (July), compared with the 1 

and 2 day prediction, another indication the smoothing reduces excessive (and 

unnecessary) changes in loading. 

 A further investigation was realized to analyse the effect of the digester size on 

the benchmark indicators for the 7 day prediction and demand profile Case 5. 

Figure 6.16 shows that the for safe operation the digester, the volume should be 

increased from 14.1 m3 to above 15.9 m3 where the biogas storage requirement 

is reduced to 140 m3 with maximum and mean VFA concentration of 6.39 gCOD 

L-1 and 1.15 gCOD L-1, respectively. Increasing the digester volume further 

decreases the storage requirement and VFA concentration e.g. at 20 m3 

digester size the storage requirement is 120 m3 and maximum and mean VFA 

are 2.86 and 0.42 kg m-3, respectively. This analysis points out how the AD 

system dynamics are highly non-linear, and a small variation is one variable 

(e.g. volume) greatly influences the values of other variables (e.g. VFA 

concentration). It also highlights the usefulness of model-based design in 

showing complex relationships between the various design parameters of an 

AD system. 

From the analysis presented in this section, it can be concluded that a prediction 

based operational strategy achieves a better performance than the simpler 

operating strategies analysed in section 6.3.1, achieving smaller biogas storages 

with acceptable stress indicators. The prediction horizon should be chosen 

considering the time constants of the AD system, which in a first approximation can 

be obtained from the hydrolysis rate constants. However, this operational strategy 

does not perform satisfactorily with challenging demand profiles as in the case 5. 

The controller would impose excessive changes in the loading profile to follow the 

variations in the biogas demand, leading to process imbalances (as also happened 

in the case of the feedback controller examined in section 6.2.1). Again, a possible 

improvement in the performance of the controller could come from a knowledge of 

the state of the digester, and this will be explored in the next section. 

It was shown how the volume of the digester is a highly sensitive design parameter 

on the ability of the system to cope with the challenging dynamics. For this analysis, 

the size of the digester was calculated based on the possibility of satisfying the 

overall yearly demand, using a conservative volumetric productivity value. However 
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this approach cannot take into account the effect of varying loading rates. 

Therefore, model based design should be used to achieve a better initial design of 

the digester, which takes into account the possible dynamics of the biogas demand. 

 

 

Figure 6.14 Example of the loading rate profiles for the 1 and 7 day 
predictions calculated from the case 3 biogas demand of the period 0-60 
days. 

 

Demand 
profile 

Prediction 
(rolling 
average) 

Biogas 
storage 

VFA 
(max) 

 VFA 
(average) 

Demand 
met 

HRT 
(max) 

HRT 
(min) 

Process 
failure 
day 

# days m3 kg m-3 kg m-3 Yes/No days days # 

1 

1 29 0.59 0.39 Yes 94 63 NA 

2 27 0.59 0.39 Yes 91 65 NA 

7 23 0.61 0.39 Yes 89 65 NA 

3 

1 50 1.72 0.47 Yes 145 39 NA 

2 47 1.62 0.46 Yes 114 45 NA 

7 47 1.43 0.43 Yes 104 45 NA 

5 

1 NA 21.59 11.53 No 77 77 April 

2 NA 21.42 11.02 No 91 61 April 

7 NA 21.76 6.96 No 166 51 July 

Table 6.8 Summary of system performance characteristics using prediction 
based loading strategies for biogas demand matching in cases 1, 3 and 
5. 
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Figure 6.15 Biogas storage requirements, VFA concentration and loading rate 
profile for biogas demand from the Case 3 using 1 and 7 day prediction 
based loading profiling.  

 

 

Figure 6.16 Variations in biogas storage requirement and VFA concentration 
with digester working volume in meeting the Case 5 biogas demand 
using 7 day prediction based loading.  
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6.3.3 Expert control for AD demand matching 

As was seen in previous sections, when the operation of the digester is driven by a 

highly variable biogas demand, process imbalances easily occur and both the 

simple operational strategies from Section 6.3.1 and the prediction based load 

profiling from Section 6.3.2 could not avoid process collapse or otherwise required 

unsustainable gas storages.  

Therefore a further controller was developed which includes an evaluation of the 

state of the AD systems and which mimics the kind of ‘feedback control’ that an 

expert operator may perform based on 3 objectives: 

 Maintaining the storage of biogas in the central position (half full) to avoid 

possible waste of production, or inability to meet demand by changing the 

loading rate. 

 Matching the supply of biogas with the demands of the system by changing 

the loading rate. 

 Use pH measurements as a proxy of the stability of the process, due to its 

link with VFA concentration, and to reduce the loading rate when pH drops.  

The proposed controller architecture is shown in Figure 6.17 and the control 

algorithm therefore can be summarised as follows: 

1) Check the stored biogas volume and generate a gain equal to the difference 

between the stored biogas volume and the storage set point multiplied by a 

gain coefficient p1. 

2) Check the biogas production rate and generate a gain equal to the 

difference between the biogas production rate and the set-point for the 

biogas demand, multiplied by a gain coefficient p2. The biogas demand set-

point can be the current demand of the system (e.g. the MT biogas usage) 

or estimated from prediction over a certain horizon time. 

3) Sum the gains from 1 and 2. 

4) Check the pH of the digester and apply a “soft switch” as follows; 

a. If the pH is greater than a previously established pH upper safety 

point (pHs) then generate a gain of 1. 

b. If the pH is below a pHs – 0.1 then generate a gain of 0. 

c. If the pH is between a) and b) then interpolate to generate a gain 

between 0 and 1. 
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5) Multiply the results of 3) and 4) and add to the loading bias (lb), which 

represents the approximate loading rate to meet the average biogas 

demand of the system. 

6) Limit the result to an established maximum value to simulate the pumping 

capacity of the feed pump. 

7) Pass the resulting value to the digester feeding pump as the required flow 

rate in m3 day-1. 

The value pH safety point depends mainly on the substrate characteristics and its 

charge balance and buffer characteristics, as explored in previous Chapters 3 and 

4. The maximum limit of the flow rate as applied in point 6 depends as well on the 

substrate characteristics and on the size of the digester. After some preliminary 

testing and manual tuning of the controller, the values given in Table 6.9 were 

selected for the benchmark study. The biogas demand set-point can be ideally 

derived from a prior knowledge of the energy system or otherwise from a 

hypothetical supervisory controller. Three examples were chosen for this analysis: 

 ‘Monthly’ – the biogas demand input to the controller is equivalent to the known 

monthly average demand, which was used to calculate the feeding rate in 

Section 6.2.1, i.e. a step change in loading rate for each calendar month. 

 ‘7 day’ – the biogas demand input to the controller was equivalent to the weekly 

rolling average demand (i.e. prediction based as per Section 6.3.2) . 

 ‘Responsive’ – the controller was supplied with the current biogas demand (i.e. 

the MT usage). 

The results of the simulations are shown in Table 6.10, while Figure 6.18 shows 

storage volume, VFA concentration and loading rate profile for the 3 demand 

controller input signals. Some observations can be made as follows: 

 When using monthly predictions, compared with the results from Section 6.3.1, 

resulted in only a marginal reduction in storage requirement (254 to 252 m3). 

This can be expected since the controller is simply attempting to meet the 

monthly average demand. The process remained stable, similarly as it occurred 

previously in section 6.3.1. The peak VFA was slightly higher (3.65 cf. 2.67 

gCOD L-1 day-1, see Table 6.10 and the profile in Figure 6.18) due to the a 

higher fluctuations in loading rate caused by the response of the controller to 

the current stored biogas volume. 

 Supplying the controller with 7 day predictions resulted in the system 

successfully meeting the biogas demand, in contrast to the system failure using 
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the prediction based loading as described in Section 6.2.2. This is due to the 

expert element of the controller and as can be seen in Figure 6.18, the 

controller sacrifices biogas demand matching in order to avoid the organic 

overload condition. This is especially noticeable in August, where the increased 

demand produces an initial increase in VFA concentration. The increase in VFA 

concentration results in a drop in the pH which stabilises the loading rate. 

Although the storage gets depleting during August, this not results in an 

increase in the loading rate; instead the controller maintains a steady loading 

which eventually allows the system to recover from the VFA accumulation. The 

required biogas storage is the smallest amongst the three scenario analysed at 

174 m3. 

 The responsive mode scenario again shows the strength of the controller to 

balance the demand matching capability with the organic stress condition, with 

a similar behaviour during the month of August as explored above. The total 

storage requirement is at 256 m3, similar to the “monthly” scenario (c.f. 254 m3).  

The controller relies on accurate pH measurements – which may have cost and 

O&M implications. Biogas storage and flow rate are not so difficult.  This is why pH 

controllers are not favoured in practice and even in the literature. However the point 

of this section was to demonstrate the application of the model rather than propose 

a control architecture that was appropriate for rural systems.  

 

 

Figure 6.17 Proposed expert controller architecture. 
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Parameter Description Default value 

p1 Storage proportional gain 0.0025 

p2 Biogas production/demand proportional gain 0.01 

i1 Biogas production/demand integrated gain 0 

pHs pH safety value 7.75 

lb Load bias 0.18 

Table 6.9 Default parameters of the controller using manual tuning. 

 

Demand signal supplied 
to controller 

Biogas 
storage 

VFA 
(max) 

 VFA 
(average
) 

Demand 
met 

HRT 
(max) 

HRT 
(min) 

 
m3 kg m-3 kg m-3 Yes/No days days 

Monthly prediction 252 3.65 0.83 Yes 162 56 

7 day prediction 174 2.61 0.58 Yes 150 51 

Current demand 
(responsive) 256 3.87 1.24 Yes 364 42 

Table 6.10 Performance of controller in matching Case 5 system biogas 
demand with monthly predicative, 7 day predictive and current demand 
(responsive) biogas demand controller input. 

Controller optimisation 

As well as controller testing and benchmarking, it is also possible to use the 

developed ADM1 implementation in Simulink in order to tune, or optimise, the 

control parameters to meet a particular control objective in the chosen scenario. In 

order to demonstrate this, the Simulink Design Optimisation toolbox (Least square 

non-linear search algorithm) was used to minimise the required biogas storage 

requirement in the same three scenarios presented in this section; namely the 

controller input biogas demand was ‘Monthly’, ‘7 day’ or ‘responsive’. The control 

architecture was maintained as per Figure 6.17 but the 5 parameters were allowed 

to vary as per the optimisation algorithm.  

In each of the three scenarios, a different optimised parameter set was found, and 

these are given in Table 6.11 and in each case, significant benefits were 

demonstrated in the reduction of the storage requirements of 7-32% as shown in 

Table 6.12. Interestingly, in all cases this reduction in demand was paired with an 

increase in the stress indicators, which demonstrated that increasing the demand 

matching responsiveness of the controller in general led to more rapid changes in 

loading rate which in turn caused an increase in stress indicators.  
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Figure 6.18 Biogas storage requirements, VFA concentration and feed rate 
variation for the AD and controller with Case 5 system biogas demand 
using monthly predicative, 7 day predictive and current demand 
(responsive) biogas demand controller input. 

In each case, the parameters were tuned to a particular demand profile (supplied to 

the controller) and therefore there is again the question of the sensitivity of the 

optimised parameter set to the conditions of the optimisation, which has not been 

explored. It is worth mentioning that in all cases, the optimised parameter set were 

of the same order of magnitude as the original manually tuned parameters, and in 

the case of pHs and lb varied by less than 1 and 6%, respectively. This could 

indicate that either the original parameters were a good estimate of an optimal 

solution, due to expert knowledge of the modeller, or that the parameters were 

close to a local minima in the objective function and therefore may not represent a 

true optimal solution.   

0

2

4

6

0 60 120 180 240 300 360

Fe
e

d
 r

at
e

 (
kg

C
O

D
/m

3
/d

ay
)

Time (days)

Feed rate (monthly) Feed rate (7 day) Feed rate (responsive)



197 

Parameter Default value 
(manual tuning) 

Optimised controllers 

Monthly 7 day Responsive 

p1 0.0025 0.0052 0.0029 0.0020 

p2 0.0100 0.0101 0.0201 0.0045 

i1 0.0000 0.0053 0.0000 0.0000 

pHs 7.7500 7.7354 7.7408 7.7667 

lb 0.1800 0.1695 0.1885 0.1886 

Table 6.11 Optimised controller parameters using monthly and 7 day 
predictive, and current demand (responsive) biogas demand controller 
input of the case 5 biogas demand. 

 
Demand supplied 
to controller 

Biogas 
storage 

c.f. 
default  

VFA 
(max) 

c.f. 
default  

 VFA 
(average) 

c.f. 
default  

 m3 % kg m-3 % kg m-3 % 

Monthly demand 
prediction 

170 -32% 4.33 +19% 0.94 +13% 

7 day demand 
prediction 

162 -7% 3.18 +22% 0.63 +8% 

Current demand 
(responsive) 

207 -19% 2.26 -42% 0.62 -50% 

Table 6.12 Performance of optimised controller in matching case 5 system 
biogas demand with monthly predicative, 7 day predictive and current 
demand (responsive) biogas demand controller input and comparison 
with default controller parameters. 

6.4 Conclusion 

This chapter has explored the role that AD can play in off grid hybrid energy 

systems for rural electrification. The modelling software HOMER was used to 

design an optimal (economically) system containing several elements such as PV, 

MT CHP, AC/DC converter; because the modelling of AD and biogas storage is 

beyond the scope of HOMER, the ADM1 model developed in previous chapters 3-5 

was used to investigate the operation and design of this system component. In 

order to do this additional demand profiles were developed with varying levels of 

challenge in terms of temporal variations in biogas demanded by the hybrid energy 

system. 

For biogas demand profiles with small day to day variations it was found that simple 

operating procedures, such as monthly variations in loading rates based on 

expected overall demand, were sufficient although resulted in relatively large biogas 

storage requirements. Improvements were found by introducing biogas demand 

predictions over a timescales from 1 to 7 days, which resulted in a large reduction 
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in the requirements for stored biogas since the AD system was able to meet the 

biogas demand more closely. 

For more challenging biogas demand profiles, a different approach was required 

since simple operating and prediction based strategies either resulted in huge 

biogas storage requirements, or failure of the AD system due to organic overload. 

In this case the calibrated ADM1 model allows exploration of the feasibility of a 

variety of options in meeting the system demand, e.g. system scale (digester vs. 

storage requirement) and control/operational strategies. It was found that adding an 

expert control, as well as increasing the size of the digester, both allowed better 

demand matching and reduced organic stress on the AD system. 

The work performed in this chapter demonstrates that the developed ADM1 model 

could allow short-listing of best options which could go forward for techno-economic 

assessment and therefore be used as a decision making tool during the system 

design stage: 

 in particular increasing the size of the digester yielded a reduction in biogas 

storage and vice-versa. 

 Controller optimisation allowed a reduction in biogas storage which was 

even more marked when combined with demand forecasting. 

However there are several weaknesses to this approach including; 

 The modelling (neither HOMER or ADM1) does not take into account 

feedstock variability or any other variation that can occur in real AD systems 

(e.g. flow rate control may be difficult – this can be resolved by having a 

fixed flow rate and timed pulses for loading – this also could be investigated 

in the model). 

 The current demonstration does not take into account biogas composition 

changes which occur during the transient conditions of loading rate. Biogas 

demand from HOMER uses a constant composition of 62% methane in 

biogas to calculate the energy output from MT. This could be addressed 

with more time but the main point of this chapter is to demonstrate 

application rather than to produce definitive results.  

 Tuned controller, or design decisions, could be very sensitive to a variety of 

model parameters in both HOMER and ADM1 – this would need to be 

further understood using local or global sensitivity analysis 
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Using both the developed ADM1 model and HOMER micro-grid modelling it should 

be possible to perform more in depth analysis of a variety of design and operational 

decisions, and even to incorporate economic analysis into the model and decision 

making process. 
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7 Conclusions and future work 

7.1 Conclusions 

This thesis has explored new developments of ADM1 in order to better describe the 

kinetics of biogas production in an AD system with particular focus on substrate 

characterisation, codigestion and the mechanisms of inhibition. The resulting model 

was used to explore the possible role of AD in microgrid systems for rural 

electrification. 

Chapter 4 explored a novel biochemical and kinetic fractionation method which was 

used to characterise feedstock inputs for ADM1 using different hydrolysis model 

structures. It was shown that the required fractionation complexity (i.e. number of 

distinct kinetic fractions) is a reflection of the substrate complexity and a range of 4 

feedstocks were characterised including food waste (FW), green waste (GW), pig 

manure (PM) and oat residues (OAT) . The proposed method of estimating the 

kinetic parameters, using experimental data and explicit numerical calibration and 

uncertainty estimation, constitutes an improvement on the fractionation methods 

employed by Girault et al. (2012) and García-Gen et al. (2015), which were based 

on ambiguous visual interpretations of the methane flow rate.  

A key result was that the extent of degradation (and therefore methane production) 

is rather independent of the testing platform and batch tests (simpler to implement 

than semi-continuous tests) can be safely used when planning and designing AD 

systems. However the kinetic parameters showed significant differences between 

batch and semi-continuous testing and therefore the latter is required for an 

accurate kinetic description.  

Experimental data  were used to successfully validate both the codigestion 

modelling methodology and the substrate fractionation method. The model (with 

default inhibition parameters) was able to predict the behaviour of the experimental 

system including the effect of water dilution, but excluding the periods of high 

organic loadings. Another application of the model was to perform a model based 

assessment of the synergistic/antagonistic effects of codigestion. In the examined 

case of FW and GW, a slight synergistic effect was detected in terms of increased 

overall methane production; although it was not possible to ascertain whether the 

effect was due to a higher degradability of the substrate or a faster rate of 

degradation of the slowly degrading fraction. The investigation into the important 
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inhibition mechanisms found that the best model fit of the experimental data 

included inhibition by LCFA on acetoclastic methanogens, and of undissociated 

VFA on fermentation, acetogenesis and both types of methanogens. When 

validated against the whole experimental datasets the model with the selected 

inhibition parameter set showed poor agreement and predicted inaccurate process 

collapse. 

Chapter 6 demonstrated the use of the updated version of ADM1 (developed in 

Chapters 3-5) for in silico benchmarking of operation and control strategies for an 

AD system meeting the variable biogas demand of  microgrid system. Microgrid 

modelling software HOMER was used to develop realistic biogas demand profiles 

with varying levels of challenge to the AD system in terms of daily and seasonal 

variation in demand. In the simplest case of a biogas demand profile with low 

variability, simple rule-based operational strategies could be used without requiring 

huge quantities of storage of biogas or causing process instabilities. With more 

variable demand profiles the situation changed and in order to reduce biogas 

storage requirements and guarantee stability either an over-dimensioned digester 

or an expert control system is required.  

7.2 Future work 

7.2.1 Improvement in kinetic fractionation methods 

As was shown in this work, batch tests offer a simple way of describing substrate 

characteristics,  however this is highly sensitive to the accuracy of the initial 

conditions and adaptation of the inoculum to the substrate. Therefore repeated 

semi-continuous experiments may offer advantages. In this regard, repetition of 

feedings increases the amount of data and therefore improve the identifiability of 

the parameters. Optimal design of experiments can be performed prior to the 

experiment to evaluate the adequate amplitude and number of feedings that will 

achieve a satisfactory uncertainty in estimated parameters; the influence of 

uncertainty on the initial biomass condition could also be evaluated. Also, it will be 

possible to evaluate the effect of biomass concentration and its uncertainty and 

therefore select an appropriate inoculum/substrate ratio which will limit the 

accumulation of intermediates.  

Multivariate estimation, including further measurements (in addition to methane 

flow) could lead to the calibration of further parameters; promising would be the on-
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line measurement of gas composition, which could allow to differentiate between 

the hydrolysis of carbohydrates, proteins and lipids. In this work a cost-effective 

methane analyser was developed and implemented and could be an easy add-on 

to laboratory scale experiments.  

7.2.2 Comprehensive AD integration into microgrid 

As an extension to the work presented in Chapter 6 of this thesis it is suggested 

that many improvements could be made to make the results more comprehensive 

and realistic, specifically the follow items would improve the work: 

 Incorporation of all forms of uncertainty into the modelling, such as: 

o Substrate variations (composition, moisture content). 

o Substrate availability/shortage/alternatives. 

o Feeding rate variations. 

 Techno-economic assessment of the AD model, including the potential control 

systems and feedstock costs. 

 Effect of changing biogas quality due to feeding rate fluctuations, changes in the 

feedstocks, on the downstream applications. 

 Extending the control architecture to include the whole microgrid operation. In 

fact the control strategy of the mini-grid should, at one level (primary control), 

maintain grid stability and, at the other level (secondary, or supervisory, control), 

optimize the operation of the power sources, energy  storage units and 

controllable loads. 

7.2.3 Advanced control systems 

A natural progression from the work on microgrid modelling is to investigate the 

applicability of advanced controllers to the problem of demand matching for AD 

systems. There is support in the literature that model predictive control (MPC) can 

oversee the operation of an AD system and maintain productivity and stability in the 

face of disturbances and changes in methane production setpoint (Ordace et al., 

2012). Model based predictive controllers take into account not only the past 

information, but also predictions of the future behaviour of the system, and are 

indicated when dealing with time varying setpoints (Haugen et al., 2014). However 

this type of controller still needs further development and testing in the following 

ways: 
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 Using validated complex models (ADM1) calibrated on data collected from 

AD experiments, thereby ensuring that the reduced model used by the MPC 

represents the real AD process effectively, thus leading to a better control 

design and performance. 

 Implementation on systems fed on a solid waste, such as those in this 

thesis, with continuous monitoring of simple variables such as biogas flow, 

biogas composition and pH. 

 Implementation on full or pilot scale systems. 

 Under a demand matching regime i.e. with a variable methane production 

setpoint to compensate the energy fluctuations of the larger system. 

The work could be kick-started with an initial in silico testing of the MPC controller 

using the modified ADM1 model developed as part of this work. This would allow 

evaluation of the influence of the controller parameters (e.g. control and prediction 

horizon) on the controller performance. MPC development could make use of 

MATLAB MPC toolbox and the whole simulation could implemented in the Simulink 

environment. 
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Appendix 1 – ADM1 Aquasim Implementation 

************************************************************************ 
 
AQUASIM Version 2.1d (win/mfc) - Listing of System Definition 
 
************************************************************************ 
 
Date and time of listing:  10/30/2015  05:51:15 
 
 
 
 
 
************************************************************************ 
Variables 
************************************************************************ 
alkalinity:    S_hco3_ion*50000 
Ammonia_free:  S_nh3*17*1000 
Ammonia_TAN:   S_IN*18*1000 
blanace_COD_acc: 
               V_fedCOD-V_outVFA-V_gasCH4COD_exp-V_outCOD 
CODVS_biomass: 1.415 
CODVS_ch:      1.184 
CODVS_FW:      1.6048 
CODVS_GW:      1.3902 
CODVS_I:       1.4 
CODVS_INO:     1.3966 
CODVS_li:      2.874 
CODVS_pr_avg:  1.263 
CODVS_pr_FW:   1.221 
CODVS_pr_GW:   1.285 
CODVS_pr_INO:  1.415 
CODVS_Xc:      1.415 
COD_S:         S_aa+S_ac+S_bu+S_ch4+S_fa+S_h2+S_I+S_pro+S_su+S_va 
COD_unconverted: 
               X_ch_INO+X_ch_r_FW+X_ch_s_FW+X_ch_r_GW+X_ch_s_GW+X_ch_r_A 
               LA+X_ch_s_ALA+X_ch_r_PM+X_ch_s_PM+S_su+X_li_INO+X_li_r_FW 
               +X_li_s_FW+X_li_r_GW+X_li_s_GW+X_li_r_PM+X_li_s_PM+X_li_r 
               _ALA+X_li_s_ALA+S_fa+X_pr_INO+X_pr_s_FW+X_pr_r_FW+X_pr_s_ 
               GW+X_pr_r_GW+X_pr_s_ALA+X_pr_r_ALA+X_pr_s_PM+X_pr_r_PM+S_ 
               aa 
COD_unc_probe: COD_unconverted(reactor,Bulk Volume,0) 
C_aa_avg:      0.03036 
C_aa_FW:       0.0307 
C_aa_GW:       0.0301 
C_aa_INO:      0.02994 
C_ac:          2/64 
C_biom:        0.03125 
C_bu:          4/160 
C_ch4:         1/64 
C_fa:          0.0217 
C_li:          0.02198 
C_pro:         3/112 
C_SI:          0.03 
C_su:          6/192 
C_va:          5/208 
C_Xc:          0.0278329 
C_Xc_INO:      0.0278329 
C_XI:          0.03 
deltaH0_Ka_co2:7646 
deltaH0_Ka_h2o:55900 
deltaH0_Ka_nh4:51965 
deltaH0_KH_ch4: 
              -14240 
deltaH0_KH_co2: 
              -19410 
deltaH0_KH_h2:-4180 
exp_BMPflow_FW1: 
               Real List Variable (t) 
exp_BMPflow_FW2: 
               Real List Variable (t) 
exp_BMPflow_FW3: 
               Real List Variable (t) 
exp_BMPflow_FW4: 
               Real List Variable (t) 
exp_BMPflow_I1:Real List Variable (t) 
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exp_BMPflow_I2:Real List Variable (t) 
exp_BMPflow_I3:Real List Variable (t) 
exp_BMPpmal_ALA1: 
               Real List Variable (t) 
exp_BMPpmal_ALA2: 
               Real List Variable (t) 
exp_BMPpmal_I1:Real List Variable (t) 
exp_BMPpmal_I2:Real List Variable (t) 
exp_BMPpmal_I3:Real List Variable (t) 
exp_BMPpmal_PM1: 
               Real List Variable (t) 
exp_BMPpmal_PM2: 
               Real List Variable (t) 
exp_BMP_FW1:   Real List Variable (t) 
exp_BMP_FW2:   Real List Variable (t) 
exp_BMP_FW3:   Real List Variable (t) 
exp_BMP_FW4:   Real List Variable (t) 
exp_BMP_I1:    Real List Variable (t) 
exp_BMP_I2:    Real List Variable (t) 
exp_BMP_I3:    Real List Variable (t) 
exp_C_Ac_FW1:  Real List Variable (t) 
exp_C_Ac_FW1_I1: 
               Real List Variable (t) 
exp_C_Ac_FW1_I2: 
               Real List Variable (t) 
exp_C_Ac_FW1_I3: 
               Real List Variable (t) 
exp_C_Ac_FW2:  Real List Variable (t) 
exp_C_Ac_R1:   Real List Variable (t) 
exp_C_Ac_R1_138: 
               Real List Variable (t) 
exp_C_Ac_R1_inh1: 
               Real List Variable (t) 
exp_C_Ac_R2:   Real List Variable (t) 
exp_C_Ac_R3:   Real List Variable (t) 
exp_C_Ac_R4:   Real List Variable (t) 
exp_C_Ac_R5:   Real List Variable (t) 
exp_C_Ac_R6:   Real List Variable (t) 
exp_C_Alk_FW1: Real List Variable (t) 
exp_C_Alk_FW2: Real List Variable (t) 
exp_C_Alk_R1:  Real List Variable (t) 
exp_C_Alk_R2:  Real List Variable (t) 
exp_C_Alk_R3:  Real List Variable (t) 
exp_C_Alk_R4:  Real List Variable (t) 
exp_C_Alk_R5:  Real List Variable (t) 
exp_C_Alk_R6:  Real List Variable (t) 
exp_C_Bu_FW1:  Real List Variable (t) 
exp_C_Bu_FW1_I1: 
               Real List Variable (t) 
exp_C_Bu_FW1_I2: 
               Real List Variable (t) 
exp_C_Bu_FW1_I3: 
               Real List Variable (t) 
exp_C_Bu_FW2:  Real List Variable (t) 
exp_C_Bu_R1:   Real List Variable (t) 
exp_C_Bu_R1_138: 
               Real List Variable (t) 
exp_C_Bu_R1_inh1: 
               Real List Variable (t) 
exp_C_Bu_R2:   Real List Variable (t) 
exp_C_Bu_R3:   Real List Variable (t) 
exp_C_Bu_R4:   Real List Variable (t) 
exp_C_Bu_R5:   Real List Variable (t) 
exp_C_Bu_R6:   Real List Variable (t) 
exp_C_flow_R1_138: 
               Real List Variable (t) 
exp_C_flow_R1_2pts_all: 
               Real List Variable (t) 
exp_C_flow_R1_all: 
               Real List Variable (t) 
exp_C_flow_R1_inh1: 
               Real List Variable (t) 
exp_C_flow_R2_all: 
               Real List Variable (t) 
exp_C_flow_R3_all: 
               Real List Variable (t) 
exp_C_flow_R4_all: 
               Real List Variable (t) 
exp_C_flow_R5_all: 
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               Real List Variable (t) 
exp_C_flow_R6_all: 
               Real List Variable (t) 
exp_C_f_FW1_1: Real List Variable (t) 
exp_C_f_FW1_10:Real List Variable (t) 
exp_C_f_FW1_11:Real List Variable (t) 
exp_C_f_FW1_12:Real List Variable (t) 
exp_C_f_FW1_13:Real List Variable (t) 
exp_C_f_FW1_14:Real List Variable (t) 
exp_C_f_FW1_15:Real List Variable (t) 
exp_C_f_FW1_2: Real List Variable (t) 
exp_C_f_FW1_3: Real List Variable (t) 
exp_C_f_FW1_4: Real List Variable (t) 
exp_C_f_FW1_5: Real List Variable (t) 
exp_C_f_FW1_6: Real List Variable (t) 
exp_C_f_FW1_7: Real List Variable (t) 
exp_C_f_FW1_8: Real List Variable (t) 
exp_C_f_FW1_9: Real List Variable (t) 
exp_C_NH4_FW1: Real List Variable (t) 
exp_C_NH4_FW2: Real List Variable (t) 
exp_C_NH4_R1:  Real List Variable (t) 
exp_C_NH4_R2:  Real List Variable (t) 
exp_C_NH4_R3:  Real List Variable (t) 
exp_C_NH4_R4:  Real List Variable (t) 
exp_C_NH4_R5:  Real List Variable (t) 
exp_C_NH4_R6:  Real List Variable (t) 
exp_C_pHc_FW1: Real List Variable (t) 
exp_C_pHc_FW2: Real List Variable (t) 
exp_C_pH_FW1:  Real List Variable (t) 
exp_C_pH_R1:   Real List Variable (t) 
exp_C_pH_R2:   Real List Variable (t) 
exp_C_pH_R3:   Real List Variable (t) 
exp_C_pH_R4:   Real List Variable (t) 
exp_C_pH_R5:   Real List Variable (t) 
exp_C_pH_R6:   Real List Variable (t) 
exp_C_Pro_FW1: Real List Variable (t) 
exp_C_Pro_FW1_I1: 
               Real List Variable (t) 
exp_C_Pro_FW1_I2: 
               Real List Variable (t) 
exp_C_Pro_FW1_I3: 
               Real List Variable (t) 
exp_C_Pro_FW2: Real List Variable (t) 
exp_C_Pro_R1:  Real List Variable (t) 
exp_C_Pro_R1_138: 
               Real List Variable (t) 
exp_C_Pro_R1_inh1: 
               Real List Variable (t) 
exp_C_Pro_R2:  Real List Variable (t) 
exp_C_Pro_R3:  Real List Variable (t) 
exp_C_Pro_R4:  Real List Variable (t) 
exp_C_Pro_R5:  Real List Variable (t) 
exp_C_Pro_R6:  Real List Variable (t) 
exp_C_SVFA_R1: Real List Variable (t) 
exp_C_SVFA_R2: Real List Variable (t) 
exp_C_SVFA_R3: Real List Variable (t) 
exp_C_SVFA_R4: Real List Variable (t) 
exp_C_SVFA_R5: Real List Variable (t) 
exp_C_SVFA_R6: Real List Variable (t) 
exp_C_TS_FW1:  Real List Variable (t) 
exp_C_TS_R1:   Real List Variable (t) 
exp_C_TS_R2:   Real List Variable (t) 
exp_C_TS_R3:   Real List Variable (t) 
exp_C_TS_R4:   Real List Variable (t) 
exp_C_TS_R5:   Real List Variable (t) 
exp_C_TS_R6:   Real List Variable (t) 
exp_C_Va_FW1:  Real List Variable (t) 
exp_C_Va_FW1_I1: 
               Real List Variable (t) 
exp_C_Va_FW1_I2: 
               Real List Variable (t) 
exp_C_Va_FW1_I3: 
               Real List Variable (t) 
exp_C_Va_FW2:  Real List Variable (t) 
exp_C_Va_R1:   Real List Variable (t) 
exp_C_Va_R1_138: 
               Real List Variable (t) 
exp_C_Va_R1_inh1: 
               Real List Variable (t) 
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exp_C_Va_R2:   Real List Variable (t) 
exp_C_Va_R3:   Real List Variable (t) 
exp_C_Va_R4:   Real List Variable (t) 
exp_C_Va_R5:   Real List Variable (t) 
exp_C_Va_R6:   Real List Variable (t) 
exp_C_VFA_FW1_I2: 
               Real List Variable (t) 
exp_C_VFA_FW1_I3: 
               Real List Variable (t) 
exp_C_Volume_FW1: 
               Real List Variable (t) 
exp_C_Volume_R1: 
               Real List Variable (t) 
exp_C_Volume_R1_raw: 
               Real List Variable (t) 
exp_C_Volume_R2: 
               Real List Variable (t) 
exp_C_Volume_R3: 
               Real List Variable (t) 
exp_C_Volume_R4: 
               Real List Variable (t) 
exp_C_Volume_R5: 
               Real List Variable (t) 
exp_C_Volume_R6: 
               Real List Variable (t) 
exp_C_VS_FW1:  Real List Variable (t) 
exp_C_VS_R1:   Real List Variable (t) 
exp_C_VS_R2:   Real List Variable (t) 
exp_C_VS_R3:   Real List Variable (t) 
exp_C_VS_R4:   Real List Variable (t) 
exp_C_VS_R5:   Real List Variable (t) 
exp_C_VS_R6:   Real List Variable (t) 
exp_p_ch4:     Real List Variable (t) 
exp_p_co2:     Real List Variable (t) 
exp_VS_I2:     Real List Variable (t) 
exp_VS_I3:     Real List Variable (t) 
fbio_checksum: fbio_Xsu+fbio_Xaa+fbio_Xfa+fbio_Xc4+fbio_Xpro+fbio_Xac+fb 
               io_Xh2 
fbio_Xaa:      0.33795 
fbio_Xac:      0.217977 
fbio_Xc4:      0.123789 
fbio_Xfa:      0.0696539 
fbio_Xh2:      0.0908587 
fbio_Xpro:     0.0393518 
fbio_Xsu:      0.120419 
fCarbs_ALA:    0.6272 
fCarbs_FW:     0.3629 
fCarbs_GW:     0.5471 
fCarbs_PM:     0.6245 
fd_ALA:        1.0806657 
fd_FW:         0.9 
fd_GW:         0.38 
fd_PM:         0.682 
fLipid_ALA:    1-fProtein_ALA-fCarbs_ALA 
fLipid_FW:     1-fProtein_FW-fCarbs_FW 
fLipid_GW:     1-fProtein_GW-fCarbs_GW 
fLipid_PM:     1-fProtein_PM-fCarbs_PM 
fProtein_ALA:  0.335 
fProtein_FW:   0.202 
fProtein_GW:   0.19 
fProtein_PM:   0.238 
fS_ALA:        0 
fS_FW:         0 
fS_GW:         0 
fS_PM:         0 
fXr_ALA:       0.05 
fXr_FW:        0.34 
fXr_GW:        0.51 
fXr_PM:        0.245 
f_ac_aa:       0.32486 
f_ac_su:       0.67*nue_1_su+0.22*nue_2_su 
f_bu_aa:       0.26301 
f_bu_su:       0.83*nue_3_su 
f_ch_xc:       0.2 
f_ch_xc_INO:   0.2 
f_fa_li:       0.95 
f_h2_aa:       0.08368 
f_h2_su:       0.33*nue_1_su+0.17*nue_3_su 
f_li_xc:       1-f_ch_xc-f_pr_xc-f_SI_xc-f_XI_xc 
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f_li_xc_INO:   1-f_ch_xc_INO-f_pr_xc_INO-f_SI_xc-f_XI_xc 
f_pro_aa:      0.06291 
f_pro_su:      0.78*nue_2_su 
f_pr_xc:       0.2 
f_pr_xc_INO:   0.2 
f_SI_xc:       0.1 
f_va_aa:       0.26555 
f_XI_xc:       0.2 
gasCH4flow:     if P_headspace<P_atm then 0 else (p_ch4_percentage/100)* 
               V*(P_headspace-P_atm)/P_atm*(T_ref_gas/T)*(P_headspace/P_ 
               ref_gas)*gas_coef endif  
gasCH4flow_probe: 
               gasCH4flow(headspace,Bulk Volume,0) 
gasCO2flow:     if P_headspace<P_atm then 0 else (p_co2_percentage/100)* 
               V*(P_headspace-P_atm)/P_atm*(T_ref_gas/T)*(P_headspace/P_ 
               ref_gas)*gas_coef endif  
gasCO2flow_probe: 
               gasCO2flow(headspace,Bulk Volume,0) 
gasflow:        if P_headspace<P_atm then 0 else V*(P_headspace-P_atm)/P 
               _atm*gas_coef endif  
gasflow_probe: gasflow(headspace,Bulk Volume,0) 
gasH2flow:      if P_headspace<P_atm then 0 else (p_h2_percentage/100)*V 
               *(P_headspace-P_atm)/P_atm*(T_ref_gas/T)*(P_headspace/P_r 
               ef_gas)*gas_coef endif  
gasH2flow_probe: 
               gasH2flow(headspace,Bulk Volume,0) 
gasH2Oflow:     if P_headspace<P_atm then 0 else (p_h2o_percentage/100)* 
               V*(P_headspace-P_atm)/P_atm*(T_ref_gas/T)*(P_headspace/P_ 
               ref_gas)*gas_coef endif  
gas_coef:      3000 
HRT:           V_reactor/(V_inflow/t) 
hydCNT_ch_s_GW:10 
INI_COD_Tot:   INI_VS*CODVS_INO 
INI_San:       0 
INI_Scat:      0.056846502 
INI_S_aa:      INI_S_TOT*INI_S_aa_alpha 
INI_S_aa_alpha:0.0458598 
INI_S_ac:      0.065805 
INI_S_ac_ion:  0.01923522 
INI_S_bu:      1.82e-005 
INI_S_bu_ion:  1.81842e-005 
INI_S_fa:      INI_S_TOT*INI_S_fa_alpha 
INI_S_fa_alpha:0.850984 
INI_S_hco3_ion:0.12718351 
INI_S_h_ion:   1.25893e-008 
INI_S_I:       0.328698 
INI_S_IN:      0.077777778 
INI_S_nh3:     0.006365177 
INI_S_nh4_ion: 0.071412601 
INI_S_oh_ion:  1.67015e-006 
INI_S_pro:     1.51e-005 
INI_S_pro_ion: 1.50856e-005 
INI_S_su:      INI_S_TOT*INI_S_su_alpha 
INI_S_su_alpha:0.103156 
INI_S_TOT:     0.1 
INI_S_va:      0.0096237 
INI_S_va_ion:  0.009616062 
INI_TS:        16.2 
INI_VS:        0.51*INI_TS 
INI_X_ash:     INI_TS-INI_VS 
INI_X_biomass: 1 
INI_X_ch_alpha_INO: 
               0.174665 
INI_X_ch_INO:  INI_X_TOT_INO*INI_X_ch_alpha_INO 
INI_X_c_INO:   0.29639796 
INI_X_I:       INI_COD_Tot-INI_S_I-INI_X_biomass-INI_X_c_INO-INI_X_li_IN 
               O-INI_X_pr_INO-INI_X_ch_INO-INI_S_aa-INI_S_fa-INI_S_su-IN 
               I_S_ac-INI_S_ac_ion-INI_S_pro-INI_S_pro_ion-INI_S_bu-INI_ 
               S_bu_ion-INI_S_va-INI_S_va_ion 
INI_X_li_alpha_INO: 
               0.184264 
INI_X_li_INO:  INI_X_TOT_INO*INI_X_li_alpha_INO 
INI_X_pr_alpha_INO: 
               1-INI_X_li_alpha_INO-INI_X_ch_alpha_INO 
INI_X_pr_INO:  INI_X_TOT_INO*INI_X_pr_alpha_INO 
INI_X_TOT_INO: 0.1 
input_AN_ALA:  0 
input_AN_FW:   0 
input_AN_GW:   0.002098853 
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input_AN_PM:   0 
input_CAT_ALA: 0.075577189 
input_CAT_FW:  0.013 
input_CAT_GW:  0 
input_CAT_PM:  0.18198176 
input_CODin_ALA: 
               1107.2597 
input_CODin_FW:440.3 
input_CODin_GW:391.4 
input_CODin_PM:317.72663 
input_Qin_ALA: input_Qin_dyn_ALA_R1 
input_Qin_dyn_ALA_R1: 
               Real List Variable (t) 
input_Qin_dyn_ALA_R3: 
               Real List Variable (t) 
input_Qin_dyn_ALA_R5: 
               Real List Variable (t) 
input_Qin_dyn_FW_R1: 
               Real List Variable (t) 
input_Qin_dyn_FW_R3: 
               Real List Variable (t) 
input_Qin_dyn_FW_R5: 
               Real List Variable (t) 
input_Qin_dyn_GW_R1: 
               Real List Variable (t) 
input_Qin_dyn_GW_R3: 
               Real List Variable (t) 
input_Qin_dyn_GW_R5: 
               Real List Variable (t) 
input_Qin_dyn_PM_R1: 
               Real List Variable (t) 
input_Qin_dyn_PM_R3: 
               Real List Variable (t) 
input_Qin_dyn_PM_R5: 
               Real List Variable (t) 
input_Qin_dyn_WATER_R1: 
               Real List Variable (t) 
input_Qin_dyn_WATER_R3: 
               Real List Variable (t) 
input_Qin_dyn_WATER_R5: 
               Real List Variable (t) 
input_Qin_FW:  input_Qin_dyn_FW_R1 
input_Qin_GW:  input_Qin_dyn_GW_R1 
input_Qin_PM:  input_Qin_dyn_PM_R1 
input_Qin_WATER: 
               input_Qin_dyn_WATER_R1 
input_Qout:    input_Qout_dyn_R1 
input_Qout_dyn_R1: 
               Real List Variable (t) 
input_Qout_dyn_R3: 
               Real List Variable (t) 
input_Qout_dyn_R5: 
               Real List Variable (t) 
input_SIC_ALA: 0.0985564 
input_SIC_FW:  0 
input_SIC_GW:  0 
input_SIC_PM:  0.144937 
input_SIN_ALA: 0 
input_SIN_FW:  0.038 
input_SIN_GW:  0.045 
input_SIN_PM:  0.155575 
input_S_ac_ALA:0 
input_S_ac_FW: 3.241 
input_S_ac_GW: 4.465 
input_S_ac_PM: 10.680272 
input_S_bu_ALA:0 
input_S_bu_FW: 9.369 
input_S_bu_GW: 0.878 
input_S_bu_PM: 8.4234549 
input_S_h_ion_ALA: 
               1.3e-007 
input_S_h_ion_FW: 
               1.82e-005 
input_S_h_ion_GW: 
               1.41e-005 
input_S_h_ion_PM: 
               5.01187e-007 
input_S_OH_ion_ALA: 
               6.10074e-008 
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input_S_OH_ion_FW: 
               4.42e-010 
input_S_OH_ion_GW: 
               5.69e-010 
input_S_OH_ion_PM: 
               1.60466e-008 
input_S_pro_ALA: 
               0 
input_S_pro_FW:0.04 
input_S_pro_GW:0.337 
input_S_pro_PM:4.7819259 
input_S_va_ALA:0 
input_S_va_FW: 0.004 
input_S_va_GW: 0.068 
input_S_va_PM: 3.4274076 
input_S_Xd_ALA:input_Xd_ALA*fS_ALA 
input_S_Xd_FW: input_Xd_FW*fS_FW 
input_S_Xd_GW: input_Xd_GW*fS_GW 
input_S_Xd_PM: input_Xd_PM*fS_PM 
input_Xd_ALA:  input_CODin_ALA*fd_ALA 
input_Xd_FW:   input_CODin_FW*fd_FW 
input_Xd_GW:   input_CODin_GW*fd_GW 
input_Xd_PM:   input_CODin_PM*fd_PM 
input_XI_ALA:  input_CODin_ALA*(1-fd_ALA) 
input_XI_FW:   input_CODin_FW*(1-fd_FW) 
input_XI_GW:   input_CODin_GW*(1-fd_GW) 
input_XI_PM:   input_CODin_PM*(1-fd_PM) 
input_X_ash_ALA: 
               35.9313 
input_X_ash_FW:32.85 
input_X_ash_GW:137.97 
input_X_ash_PM:36.8 
input_X_Xd_ALA:input_Xd_ALA*(1-fS_ALA) 
input_X_Xd_FW: input_Xd_FW*(1-fS_FW) 
input_X_Xd_GW: input_Xd_GW*(1-fS_GW) 
input_X_Xd_PM: input_Xd_PM*(1-fS_PM) 
I_ac_ac:       1 
I_ac_h2:       1 
I_ac_pro:      1 
I_fa_ac:       1/(1+S_fa/KI_fa_ac) 
I_fa_fa:       1/(1+S_fa/KI_fa_fa) 
I_h2_acox:     1/(S_h2/KI_h2_acox+1) 
I_h2_c4:       1/(S_h2/KI_h2_c4+1) 
I_h2_fa:       1/(S_h2/KI_h2_fa+1) 
I_h2_pro:      1/(S_h2/KI_h2_pro+1) 
I_Hac_ac_mM:   1/(1+S_Hac_mM/KI_Hac_ac_mM) 
I_Hac_H2:      1/(1+S_Hac/KI_Hac_H2_mM) 
I_Hac_VFAs:    1/(1+S_Hac/KI_Hac_VFAs) 
I_HVFA_ac_h2:  1/(1+S_HVFA_mM/KI_HVFA_ac_h2) 
I_HVFA_ac_h2_mM: 
               1/(1+S_HVFA_mM/KI_HVFA_ac_h2_mM) 
I_HVFA_ac_mM:  1/(1+S_HVFA_mM/KI_HVFA_ac_mM) 
I_HVFA_bac_mM: 1/(1+S_HVFA_mM/KI_HVFA_bac_mM) 
I_HVFA_bu_mM:  1/(1+S_HVFA_mM/KI_HVFA_bu_mM) 
I_HVFA_fa_mM:  1/(1+S_HVFA_mM/KI_HVFA_fa_mM) 
I_HVFA_fer_mM: 1/(1+S_HVFA_mM/KI_HVFA_fer_mM) 
I_HVFA_h2_mM:  1/(1+S_HVFA_mM/KI_HVFA_h2_mM) 
I_HVFA_meth_mM:1/(1+S_HVFA_mM/KI_HVFA_meth_mM) 
I_HVFA_pro_mM: 1/(1+S_HVFA_mM/KI_HVFA_pro_mM) 
I_HVFA_va_mM:  1/(1+S_HVFA_mM/KI_HVFA_va_mM) 
I_HVFA_VFAs_mM:1/(1+S_HVFA_mM/KI_HVFA_VFAs_mM) 
I_nh3_ac:      1/(S_nh3/KI_nh3_ac+1) 
I_nh3_acox:    1/(S_nh3/KI_nh3_acox+1) 
I_nh3_acox_W:  1/(1+exp(-KI_nh3_acox_sl*(KI_nh3_acox-S_nh3))) 
I_nh3_ac_W:    1/(1+exp(-KI_nh3_ac_sl*(KI_nh3_ac-S_nh3))) 
I_NH_limit:     if S_IN<0 then 0 else 1/(Ks_IN/S_IN+1) endif  
I_ph_ac:        if pH<I_ph_ac_ul then exp(-3*((pH-I_ph_ac_ul)/(I_ph_ac_u 
               l-I_ph_ac_ll))^2) else 1 endif  
I_ph_ac_ll:    6 
I_ph_ac_ul:    7 
I_ph_bac:       if pH<I_ph_bac_ul then exp(-3*((pH-I_ph_bac_ul)/(I_ph_ba 
               c_ul-I_ph_bac_ll))^2) else 1 endif  
I_ph_bac_ll:   4 
I_ph_bac_ul:   5.5 
I_ph_h2:       1 
I_ph_h2_ll:    5 
I_ph_h2_ul:    6 
I_VFA_ac:      1/(1+S_VFA/KI_VFA_ac) 
I_VFA_bu:      1 
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I_VFA_fer:      if S_VFA>KI_VFA_fer then 0 else 1-(S_VFA/KI_VFA_fer) end 
               if  
I_VFA_H2:      1/(1+S_VFA/KI_VFA_H2) 
I_VFA_pro:     1 
I_VFA_va:      1 
kAB_co2:       1e+014 
Ka_ac:         10^(-pKa_ac) 
Ka_bu:         10^(-pKa_bu) 
Ka_co2:        10^(-pKa_co2)*exp(deltaH0_Ka_co2/(R*100)*(1/298-1/T)) 
Ka_fa:         10^(-pKa_fa) 
Ka_h2o:        10^(-pKa_h2o)*exp(deltaH0_Ka_h2o/(R*100)*(1/298-1/T)) 
Ka_nh4:        10^(-pKa_nh3)*exp(deltaH0_Ka_nh4/(R*100)*(1/298-1/T)) 
Ka_pro:        10^(-pKa_pro) 
Ka_va:         10^(-pKa_va) 
kdec_xaa:      0.02 
kdec_xac:      0.02 
kdec_xc4:      0.02 
kdec_xfa:      0.02 
kdec_xh2:      0.02 
kdec_xpro:     0.02 
kdec_xsu:      0.02 
kdis:          0.5 
khyd_INO:      0.20663267 
khyd_li_INO:   khyd_INO 
khyd_li_r_ALA: khyd_r_ALA 
khyd_li_r_FW:  khyd_r_FW 
khyd_li_r_GW:  khyd_r_GW 
khyd_li_r_PM:  khyd_r_PM 
khyd_li_s_ALA: khyd_s_ALA 
khyd_li_s_FW:  khyd_s_FW 
khyd_li_s_GW:  khyd_s_GW 
khyd_li_s_PM:  khyd_s_PM 
khyd_pr_INO:   khyd_INO 
khyd_pr_r_ALA: khyd_r_ALA 
khyd_pr_r_FW:  khyd_r_FW 
khyd_pr_r_GW:  khyd_r_GW 
khyd_pr_r_PM:  khyd_r_PM 
khyd_pr_s_ALA: khyd_s_ALA 
khyd_pr_s_FW:  khyd_s_FW 
khyd_pr_s_GW:  khyd_s_GW 
khyd_pr_s_PM:  khyd_s_PM 
khyd_r_ALA:    0.9 
khyd_r_FW:     18.91 
khyd_r_GW:     5.72 
khyd_r_PM:     2.085 
khyd_s_ALA:    0.724 
khyd_s_FW:     0.68 
khyd_s_GW:     0.21 
khyd_s_PM:     0.13 
KH_ch4:        0.0014*R*T*exp(deltaH0_KH_ch4/(R*100)*(1/298-1/T)) 
KH_co2:        0.035*R*T*exp(deltaH0_KH_co2/(R*100)*(1/298-1/T)) 
KH_h2:         0.00078*R*T*exp(deltaH0_KH_h2/(R*100)*(1/298-1/T)) 
KI_ac_ac:      1.6211151 
KI_ac_pro:     1.6211151 
KI_fa_ac:      0.90563403 
KI_fa_fa:      KI_fa_ac*7 
KI_h2_acox:    3e-006*KI_h2_alpha 
KI_h2_alpha:   1 
KI_h2_c4:      1e-005*KI_h2_alpha 
KI_h2_fa:      5e-006*KI_h2_alpha 
KI_h2_pro:     3.5e-006*KI_h2_alpha 
KI_Hac_ac_mM:  0.5 
KI_Hac_H2_mM:  0.46 
KI_Hac_VFAs:   0.01 
KI_HVFA_ac_h2: 0.017357102 
KI_HVFA_ac_h2_mM: 
               0.1 
KI_HVFA_ac_mM: 0.13284142 
KI_HVFA_bac_mM:0.4 
KI_HVFA_bu_mM: KI_HVFA_VFAs_mM 
KI_HVFA_fa_mM: 2.56 
KI_HVFA_fer_mM:0.008200509 
KI_HVFA_h2_mM: 0.11812046 
KI_HVFA_meth_mM: 
               0.12719036 
KI_HVFA_pro_mM:KI_HVFA_VFAs_mM 
KI_HVFA_va_mM: KI_HVFA_VFAs_mM 
KI_HVFA_VFAs_mM: 
               0.017813168 



226 

KI_nh3_ac:     0.0032 
KI_nh3_acox:   0.004877952 
KI_nh3_acox_sl:180 
KI_nh3_ac_sl:  360 
KI_VFA_ac:     5.2 
KI_VFA_bu:     KI_VFA_ac 
KI_VFA_fer:    15 
KI_VFA_H2:     KI_VFA_ac 
KI_VFA_pro:    KI_VFA_ac 
KI_VFA_va:     KI_VFA_ac 
KLa:           V_reactor*kLa 
kLa:           100 
km_aa:         50 
km_ac:         8 
km_acox:       6.9 
km_c4:         20 
km_fa:         6 
km_h2:         35 
km_pro:        13 
km_su:         30 
Ks_aa:         0.3 
Ks_ac:         0.15 
Ks_c4:         0.2 
Ks_fa:         0.4 
Ks_h2:         7e-006 
Ks_IN:         0.0001 
Ks_pro:        0.15 
Ks_su:         0.5 
mue_X_aa:      km_aa*X_aa*S_aa/(Ks_aa+S_aa)*I_ph_bac*I_NH_limit*Y_aa*I_V 
               FA_fer 
mue_X_ac:      km_ac*X_ac*S_ac/(Ks_ac+S_ac)*I_ph_ac*I_nh3_ac*I_NH_limit* 
               Y_ac*I_VFA_ac 
mue_X_c4:      km_c4*X_c4*S_bu/(Ks_c4+S_bu)*S_bu/(S_bu+S_va+0.1)*I_ph_ba 
               c*I_h2_c4*I_NH_limit*Y_c4+km_c4*X_c4*S_va/(Ks_c4+S_va)*S_ 
               va/(S_va+S_bu+0.1)*I_ph_bac*I_h2_c4*I_NH_limit*Y_c4 
mue_X_fa:      km_fa*X_fa*S_fa/(Ks_fa+S_fa)*I_ph_bac*I_h2_c4*Y_fa 
mue_X_h2:      km_h2*X_h2*S_h2/(Ks_h2+S_h2)*I_ph_h2*I_NH_limit*Y_h2*I_ac 
               _h2 
mue_X_pro:     km_pro*X_pro*S_pro/(Ks_pro+S_pro)*I_ph_bac*I_h2_pro*I_NH_ 
               limit*Y_h2*I_ac_pro 
mue_X_su:      km_su*X_su*S_su/(Ks_su+S_su)*I_ph_bac*I_NH_limit*Y_su*I_V 
               FA_fer 
nue_1_su:      0.495 
nue_2_su:      0.345 
nue_3_su:      1-nue_1_su-nue_2_su 
N_aa_avg:      0.00768 
N_aa_FW:       0.007965 
N_aa_GW:       0.007613 
N_aa_INO:      0.00748503 
N_biom:        0.00625 
N_SI:          0.00428571 
N_Xc:          0.00278272 
N_Xc_INO:      0.00278272 
N_XI:          0.00428571 
pH:            -log10(S_h_ion) 
pH_reactor:    pH(reactor,Bulk Volume,0) 
pKa_ac:        4.76 
pKa_bu:        4.84 
pKa_co2:       6.35 
pKa_fa:        4.78 
pKa_h2o:       14 
pKa_nh3:       9.25 
pKa_pro:       4.88 
pKa_va:        4.8 
P_atm:         1.013 
p_ch4:         S_ch4/64*R*T 
p_ch4_dry:     p_ch4/(p_ch4+p_co2)*100 
p_ch4_percentage: 
               p_ch4/P_headspace*100 
p_ch4_probe:   p_ch4_percentage(headspace,Bulk Volume,0) 
p_co2:         S_co2*R*T 
p_co2_dry:     p_co2/(p_ch4+p_co2)*100 
p_co2_percentage: 
               p_co2/P_headspace*100 
p_h2:          S_h2/16*R*T 
p_h2o:         0.0313*exp(5290*(1/298-1/T)) 
p_h2o_percentage: 
               p_h2o/P_headspace*100 
p_h2_percentage: 
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               p_h2/P_headspace*100 
P_headspace:   p_co2+p_h2+p_ch4+p_h2o 
P_ref_gas:     1 
Qout:          Discharge 
R:             0.08314 
SX_ratio:      VS_hydrolizableGW/VS_biomass 
S_aa:          Dyn. Volume State Var. 
S_ac:          Dyn. Volume State Var. 
S_ac_ion:      Eq. State Variable 
S_an:          Dyn. Volume State Var. 
S_bu:          Dyn. Volume State Var. 
S_bu_ion:      Eq. State Variable 
S_cat:         Dyn. Volume State Var. 
S_ch4:         Dyn. Volume State Var. 
S_co2:         Dyn. Volume State Var. 
S_fa:          Dyn. Volume State Var. 
S_fa_ion:      Eq. State Variable 
S_h2:          Dyn. Volume State Var. 
S_Hac:         S_ac-S_ac_ion 
S_Hac_mM:      S_Hac*1000/64 
S_Hbu:         S_bu-S_bu_ion 
S_hco3_ion:    Dyn. Volume State Var. 
S_Hpro:        S_pro-S_pro_ion 
S_Hva:         S_va-S_va_ion 
S_HVFA_mM:     S_Hac*1000/64+S_Hpro*1000/112+S_Hbu*1000/160+S_Hva*1000/2 
               08 
S_h_ion:       Eq. State Variable 
S_I:           Dyn. Volume State Var. 
S_IN:          Dyn. Volume State Var. 
S_nh3:         Eq. State Variable 
S_nh4_ion:     Eq. State Variable 
S_oh_ion:      Eq. State Variable 
S_pro:         Dyn. Volume State Var. 
S_pro_ion:     Eq. State Variable 
S_su:          Dyn. Volume State Var. 
S_va:          Dyn. Volume State Var. 
S_va_ion:      Eq. State Variable 
S_VFA:         S_ac+S_pro+S_bu+S_va 
T:             308.15 
t:             Time 
TS:            VS_R1+X_ash 
T_headspace_gas: 
               298.15 
T_ref_gas:     273.15 
uM_aa:          if X_aa>0 then u_aa/X_aa else 0 endif  
uM_ac:          if X_ac>0 then u_ac/X_ac else 0 endif  
uM_bu:          if X_c4>0 then u_bu/X_c4 else 0 endif  
uM_fa:          if X_fa>0 then u_fa/X_fa else 0 endif  
uM_h2:          if X_h2>0 then u_h2/X_h2 else 0 endif  
uM_pro:         if X_pro>0 then u_pro/X_pro else 0 endif  
uM_su:          if X_su>0 then u_su/X_su else 0 endif  
uM_va:          if X_c4>0 then u_va/X_c4 else 0 endif  
u_aa:          km_aa*X_aa*S_aa/(Ks_aa+S_aa)*I_NH_limit*I_HVFA_fer_mM 
u_ac:          km_ac*X_ac*S_ac/(Ks_ac+S_ac)*I_nh3_ac*I_NH_limit*I_HVFA_a 
               c_mM*I_fa_ac 
u_acox:        km_acox*X_acox*S_ac/(Ks_ac+S_ac)*I_nh3_acox_W*I_NH_limit* 
               I_HVFA_ac_h2 
u_bu:          km_c4*X_c4*S_bu/(Ks_c4+S_bu)*1/(1+S_va/S_bu)*I_h2_c4*I_NH 
               _limit*I_HVFA_VFAs_mM 
u_fa:          km_fa*X_fa*S_fa/(Ks_fa+S_fa)*I_h2_fa*I_NH_limit*I_ph_bac 
u_h2:          km_h2*X_h2*S_h2/(Ks_h2+S_h2)*I_NH_limit*I_HVFA_h2_mM 
u_pro:         km_pro*X_pro*S_pro/(Ks_pro+S_pro)*I_h2_pro*I_NH_limit*I_p 
               h_bac*I_HVFA_VFAs_mM 
u_su:          km_su*X_su*S_su/(Ks_su+S_su)*I_NH_limit*I_HVFA_fer_mM 
u_va:          km_c4*X_c4*S_va/(Ks_c4+S_va)*1/(1+S_bu/S_va)*I_h2_c4*I_NH 
               _limit*I_HVFA_VFAs_mM 
V:             Reactor Volume 
VS_biomass:    (X_aa+X_ac+X_c4+X_fa+X_h2+X_pro+X_su)/CODVS_biomass 
VS_hydrolizableGW: 
               (X_c+X_c_INO)/CODVS_Xc+(X_ch_INO+X_ch_r_GW+X_ch_s_GW)/COD 
               VS_ch+(X_li_INO+X_li_r_GW+X_li_s_GW)/CODVS_li+(X_pr_INO+X 
               _pr_s_GW+X_pr_r_GW)/CODVS_pr_GW 
VS_inconv_GWFW:(X_ch_INO+X_ch_r_FW+X_ch_s_FW+X_ch_r_GW+X_ch_s_GW+S_su)/C 
               ODVS_ch+(X_li_INO+X_li_r_FW+X_li_s_FW+X_li_r_GW+X_li_s_GW 
               +S_fa)/CODVS_li+(X_pr_INO+X_pr_s_FW+X_pr_r_FW+X_pr_s_GW+X 
               _pr_r_GW+S_aa)/CODVS_pr_GW+S_va/2.04+S_bu/1.82+S_pro/1.51 
               +S_ac/1.07 
VS_inconv_R1:  (X_ch_INO+X_ch_r_FW+X_ch_s_FW+X_ch_r_GW+X_ch_s_GW+X_ch_r_ 
               ALA+X_ch_s_ALA+X_ch_r_PM+X_ch_s_PM+S_su)/CODVS_ch+(X_li_I 
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               NO+X_li_r_FW+X_li_s_FW+X_li_r_GW+X_li_s_GW+X_li_r_PM+X_li 
               _s_PM+X_li_r_ALA+X_li_s_ALA+S_fa)/CODVS_li+(X_pr_INO+X_pr 
               _s_FW+X_pr_r_FW+X_pr_s_GW+X_pr_r_GW+X_pr_s_ALA+X_pr_r_ALA 
               +X_pr_s_PM+X_pr_r_PM+S_aa)/CODVS_pr_GW 
VS_inerts:     (X_I+S_I)/CODVS_I 
VS_R1:         (X_ch_INO+X_ch_r_FW+X_ch_s_FW+X_ch_r_GW+X_ch_s_GW+X_ch_r_ 
               ALA+X_ch_s_ALA+X_ch_r_PM+X_ch_s_PM+S_su)/CODVS_ch+(X_li_I 
               NO+X_li_r_FW+X_li_s_FW+X_li_r_GW+X_li_s_GW+X_li_r_PM+X_li 
               _s_PM+X_li_r_ALA+X_li_s_ALA+S_fa)/CODVS_li+(X_pr_INO+X_pr 
               _s_FW+X_pr_r_FW+X_pr_s_GW+X_pr_r_GW+X_pr_s_ALA+X_pr_r_ALA 
               +X_pr_s_PM+X_pr_r_PM+S_aa)/CODVS_pr_avg+S_va/2.04+S_bu/1. 
               82+S_pro/1.51+S_ac/1.07+(X_I+S_I)/CODVS_I+(X_aa+X_ac+X_c4 
               +X_fa+X_h2+X_pro+X_su)/CODVS_biomass 
VS_XC:         (X_c+X_c_INO)/CODVS_Xc 
V_fedCOD:      V(inCOD_degradable,Bulk Volume,0) 
V_gasCH4COD_exp: 
               exp_C_Volume_R1*2.82 
V_gasCH4COD_sim: 
               V_gasCH4_sim*2.82 
V_gasCH4_sim:  V(gasCH4,Bulk Volume,0) 
V_inflow:      V(inflow,Bulk Volume,0) 
V_outCOD:      V(outCOD_sim,Bulk Volume,0) 
V_outflow:     V(outflow,Bulk Volume,0) 
V_outVFA:      V(outVFA_exp,Bulk Volume,0) 
V_reactor:     V(reactor,Bulk Volume,0) 
X_aa:          Dyn. Volume State Var. 
X_aa_ini:      fbio_Xaa*INI_X_biomass 
X_ac:          Dyn. Volume State Var. 
X_acox:        Dyn. Volume State Var. 
X_acox_ini:    0 
X_ac_ini:      fbio_Xac*INI_X_biomass 
X_ash:         Dyn. Volume State Var. 
X_biomass:     X_aa+X_ac+X_c4+X_fa+X_h2+X_pro+X_su 
X_c:           Dyn. Volume State Var. 
X_c4:          Dyn. Volume State Var. 
X_c4_ini:      fbio_Xc4*INI_X_biomass 
X_ch_INO:      Dyn. Volume State Var. 
X_ch_r_ALA:    Dyn. Volume State Var. 
X_ch_r_FW:     Dyn. Volume State Var. 
X_ch_r_GW:     Dyn. Volume State Var. 
X_ch_r_PM:     Dyn. Volume State Var. 
X_ch_s_ALA:    Dyn. Volume State Var. 
X_ch_s_FW:     Dyn. Volume State Var. 
X_ch_s_GW:     Dyn. Volume State Var. 
X_ch_s_PM:     Dyn. Volume State Var. 
X_c_INO:       Dyn. Volume State Var. 
X_fa:          Dyn. Volume State Var. 
X_fa_ini:      fbio_Xfa*INI_X_biomass 
X_h2:          Dyn. Volume State Var. 
X_h2_ini:      fbio_Xh2*INI_X_biomass 
X_I:           Dyn. Volume State Var. 
X_li_INO:      Dyn. Volume State Var. 
X_li_r_ALA:    Dyn. Volume State Var. 
X_li_r_FW:     Dyn. Volume State Var. 
X_li_r_GW:     Dyn. Volume State Var. 
X_li_r_PM:     Dyn. Volume State Var. 
X_li_s_ALA:    Dyn. Volume State Var. 
X_li_s_FW:     Dyn. Volume State Var. 
X_li_s_GW:     Dyn. Volume State Var. 
X_li_s_PM:     Dyn. Volume State Var. 
X_pro:         Dyn. Volume State Var. 
X_pro_ini:     fbio_Xpro*INI_X_biomass 
X_pr_INO:      Dyn. Volume State Var. 
X_pr_r_ALA:    Dyn. Volume State Var. 
X_pr_r_FW:     Dyn. Volume State Var. 
X_pr_r_GW:     Dyn. Volume State Var. 
X_pr_r_PM:     Dyn. Volume State Var. 
X_pr_s_ALA:    Dyn. Volume State Var. 
X_pr_s_FW:     Dyn. Volume State Var. 
X_pr_s_GW:     Dyn. Volume State Var. 
X_pr_s_PM:     Dyn. Volume State Var. 
X_su:          Dyn. Volume State Var. 
X_su_ini:      fbio_Xsu*INI_X_biomass 
Y_aa:          0.08 
Y_ac:          0.05 
Y_acox:        0.04 
Y_c4:          0.06 
Y_fa:          0.06 
Y_h2:          0.06 
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Y_pro:         0.04 
Y_su:          0.1 
ZZ_V_gasometer:V(gasTOT,Bulk Volume,0) 
ZZ_V_gasometer_oldCH4: 
               ZZ_V_gasometer*p_ch4_percentage/100*(T_ref_gas/T)*(P_atm/ 
               P_ref_gas) 
 
 
 
 
************************************************************************ 
Processes 
************************************************************************ 
decay_aa:      kdec_xaa*X_aa 
                  X_c : 1 
                  X_aa : -1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_ac:      X_ac*kdec_xac 
                  X_ac : -1 
                  X_c : 1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_acox:    X_acox*kdec_xac 
                  X_acox : -1 
                  X_c : 1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_c4:      X_c4*kdec_xc4 
                  X_c4 : -1 
                  X_c : 1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_fa:      X_fa*kdec_xfa 
                  X_fa : -1 
                  X_c : 1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_h2:      X_h2*kdec_xh2 
                  X_c : 1 
                  X_h2 : -1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_pro:     X_pro*kdec_xpro 
                  X_pro : -1 
                  X_c : 1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
decay_su:      X_su*kdec_xsu 
                  X_su : -1 
                  X_c : 1 
                  S_co2 : C_biom-C_Xc 
                  S_IN : N_biom-N_Xc 
disintegration:kdis*X_c 
                  X_c : -1 
                  X_ch_INO : f_ch_xc 
                  S_I : f_SI_xc 
                  X_pr_INO : f_pr_xc 
                  X_I : f_XI_xc 
                  X_li_INO : f_li_xc 
                  S_IN : N_Xc-f_XI_xc*N_XI-f_SI_xc*N_SI-f_pr_xc*N_aa_INO 
                  S_co2 : C_Xc-f_XI_xc*C_XI-f_SI_xc*C_SI-f_pr_xc*C_aa_IN 
                  O-f_ch_xc*C_su-f_li_xc*C_li 
disintegration_INO: 
               kdis*X_c_INO 
                  X_c_INO : -1 
                  X_ch_INO : f_ch_xc_INO 
                  S_I : f_SI_xc 
                  X_pr_INO : f_pr_xc_INO 
                  X_I : f_XI_xc 
                  X_li_INO : f_li_xc_INO 
                  S_IN : N_Xc_INO-f_XI_xc*N_XI-f_SI_xc*N_SI-f_pr_xc_INO* 
                  N_aa_INO 
                  S_co2 : C_Xc_INO-f_XI_xc*C_XI-f_SI_xc*C_SI-f_pr_xc*C_a 
                  a_INO-f_ch_xc_INO*C_su-f_li_xc_INO*C_li 
dyn_acid_base_co2: 
               kAB_co2*(S_hco3_ion*S_h_ion-Ka_co2*S_co2) 
                  S_co2 : 1 
                  S_hco3_ion : -1 
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equilib_ac:    S_ac_ion : 0 = Ka_ac*S_ac-(Ka_ac+S_h_ion)*S_ac_ion 
equilib_bu:    S_bu_ion : 0 = Ka_bu*S_bu-(Ka_bu+S_h_ion)*S_bu_ion 
equilib_charge:S_h_ion : 0 = S_h_ion+S_cat-S_an-S_oh_ion-S_hco3_ion+S_nh 
               4_ion-S_ac_ion/64-S_pro_ion/112-S_bu_ion/160-S_va_ion/208 
               -S_fa_ion/736 
equilib_fa:    S_fa_ion : 0 = Ka_fa*S_fa-(Ka_fa+S_h_ion)*S_fa_ion 
equilib_h2o:   S_oh_ion : 0 = S_oh_ion-Ka_h2o/S_h_ion 
equilib_IN:    S_nh4_ion : 0 = S_IN*S_h_ion-(Ka_nh4+S_h_ion)*S_nh4_ion 
equilib_IN_bal:S_nh3 : 0 = S_nh3+S_nh4_ion-S_IN 
equilib_prop:  S_pro_ion : 0 = Ka_pro*S_pro-(Ka_pro+S_h_ion)*S_pro_ion 
equilib_va:    S_va_ion : 0 = Ka_va*S_va-(Ka_va+S_h_ion)*S_va_ion 
hyd_ch_INO:    khyd_INO*X_ch_INO 
                  S_su : 1 
                  X_ch_INO : -1 
hyd_ch_r_ALA:  khyd_r_ALA*X_ch_r_ALA 
                  S_su : 1 
                  X_ch_r_ALA : -1 
hyd_ch_r_FW:   khyd_r_FW*X_ch_r_FW 
                  S_su : 1 
                  X_ch_r_FW : -1 
hyd_ch_r_GW:   khyd_r_GW*X_ch_r_GW 
                  S_su : 1 
                  X_ch_r_GW : -1 
hyd_ch_r_PM:   khyd_r_PM*X_ch_r_PM 
                  S_su : 1 
                  X_ch_r_PM : -1 
hyd_ch_s_ALA:  khyd_s_ALA*X_ch_s_ALA 
                  S_su : 1 
                  X_ch_s_ALA : -1 
hyd_ch_s_FW:   khyd_s_FW*X_ch_s_FW 
                  S_su : 1 
                  X_ch_s_FW : -1 
hyd_ch_s_GW:   khyd_s_GW*X_ch_s_GW 
                  S_su : 1 
                  X_ch_s_GW : -1 
hyd_ch_s_PM:   khyd_s_PM*X_ch_s_PM 
                  S_su : 1 
                  X_ch_s_PM : -1 
hyd_li_INO:    khyd_li_INO*X_li_INO 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_INO : -1 
hyd_li_r_ALA:  khyd_li_r_ALA*X_li_r_ALA 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_r_ALA : -1 
hyd_li_r_FW:   khyd_li_r_FW*X_li_r_FW 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_r_FW : -1 
hyd_li_r_GW:   khyd_li_r_GW*X_li_r_GW 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_r_GW : -1 
hyd_li_r_PM:   khyd_li_r_PM*X_li_r_PM 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_r_PM : -1 
hyd_li_s_ALA:  khyd_li_s_ALA*X_li_s_ALA 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_s_ALA : -1 
hyd_li_s_FW:   khyd_li_s_FW*X_li_s_FW 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_s_FW : -1 
hyd_li_s_GW:   khyd_li_s_GW*X_li_s_GW 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_s_GW : -1 
hyd_li_s_PM:   khyd_li_s_PM*X_li_s_PM 
                  S_su : (1-f_fa_li) 
                  S_fa : f_fa_li 
                  X_li_s_PM : -1 
hyd_pr_INO:    khyd_pr_INO*X_pr_INO 
                  S_aa : 1 
                  X_pr_INO : -1 
hyd_pr_r_ALA:  khyd_pr_r_ALA*X_pr_r_ALA 
                  S_aa : 1 
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                  X_pr_r_ALA : -1 
hyd_pr_r_FW:   khyd_pr_r_FW*X_pr_r_FW 
                  S_aa : 1 
                  X_pr_r_FW : -1 
hyd_pr_r_GW:   khyd_pr_r_GW*X_pr_r_GW 
                  S_aa : 1 
                  X_pr_r_GW : -1 
hyd_pr_r_PM:   khyd_pr_r_PM*X_pr_r_PM 
                  S_aa : 1 
                  X_pr_r_PM : -1 
hyd_pr_s_ALA:  khyd_pr_s_ALA*X_pr_s_ALA 
                  S_aa : 1 
                  X_pr_s_ALA : -1 
hyd_pr_s_FW:   khyd_pr_s_FW*X_pr_s_FW 
                  S_aa : 1 
                  X_pr_s_FW : -1 
hyd_pr_s_GW:   khyd_pr_s_GW*X_pr_s_GW 
                  S_aa : 1 
                  X_pr_s_GW : -1 
hyd_pr_s_PM:   khyd_pr_s_PM*X_pr_s_PM 
                  S_aa : 1 
                  X_pr_s_PM : -1 
uptake_aa:     u_aa 
                  S_h2 : (1-Y_aa)*f_h2_aa 
                  S_co2 : C_aa_avg-(1-Y_aa)*f_ac_aa*C_ac-(1-Y_aa)*f_bu_a 
                  a*C_bu-(1-Y_aa)*f_pro_aa*C_pro-(1-Y_aa)*f_va_aa*C_va-Y 
                  _aa*C_biom 
                  S_ac : (1-Y_aa)*f_ac_aa 
                  S_bu : (1-Y_aa)*f_bu_aa 
                  S_aa : -1 
                  S_pro : (1-Y_aa)*f_pro_aa 
                  S_va : (1-Y_aa)*f_va_aa 
                  S_IN : N_aa_avg-Y_aa*N_biom 
                  X_aa : Y_aa 
uptake_ac:     u_ac 
                  S_ac : -1 
                  X_ac : Y_ac 
                  S_IN : -(N_biom)*Y_ac 
                  S_ch4 : (1-Y_ac) 
                  S_co2 : C_ac-Y_ac*C_biom-(1-Y_ac)*C_ch4 
uptake_ac_acox:km_acox*X_acox*S_ac/(Ks_ac+S_ac)*I_nh3_acox_W*I_NH_limit* 
               I_HVFA_ac_h2*I_h2_acox 
                  S_ac : -1 
                  X_acox : Y_acox 
                  S_IN : -(N_biom)*Y_ac 
                  S_h2 : (1-Y_acox) 
                  S_co2 : C_ac-Y_acox*C_biom 
uptake_bu:     u_bu 
                  S_h2 : (1-Y_c4)*0.2 
                  S_ac : (1-Y_c4)*0.8 
                  X_c4 : Y_c4 
                  S_IN : -(N_biom)*Y_c4 
                  S_bu : -1 
uptake_fa:     u_fa 
                  S_h2 : (1-Y_fa)*0.3 
                  S_ac : (1-Y_fa)*0.7 
                  X_fa : Y_fa 
                  S_IN : -(N_biom)*Y_fa 
                  S_fa : -1 
uptake_h2:     u_h2 
                  S_h2 : -1 
                  X_h2 : Y_h2 
                  S_IN : -(N_biom)*Y_h2 
                  S_ch4 : (1-Y_h2) 
                  S_co2 : -Y_h2*C_biom-(1-Y_h2)*C_ch4 
uptake_pro:    u_pro 
                  S_h2 : (1-Y_pro)*0.43 
                  S_ac : (1-Y_pro)*0.57 
                  X_pro : Y_pro 
                  S_IN : -(N_biom)*Y_pro 
                  S_pro : -1 
                  S_co2 : C_pro-(1-Y_pro)*0.57*C_ac-Y_pro*C_biom 
uptake_su:     u_su 
                  S_h2 : (1-Y_su)*(f_h2_su) 
                  S_co2 : C_su-(1-Y_su)*(f_ac_su)*C_ac-(1-Y_su)*f_pro_su 
                  *C_pro-(1-Y_su)*f_bu_su*C_bu-Y_su*C_biom 
                  S_ac : (1-Y_su)*(f_ac_su) 
                  X_su : Y_su 
                  S_IN : -(N_biom)*Y_su 
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                  S_su : -1 
                  S_bu : (1-Y_su)*f_bu_su 
                  S_pro : (1-Y_su)*f_pro_su 
uptake_va:     u_va 
                  S_h2 : (1-Y_c4)*0.15 
                  S_ac : (1-Y_c4)*0.31 
                  X_c4 : Y_c4 
                  S_IN : -(N_biom)*Y_c4 
                  S_va : -1 
                  S_pro : (1-Y_c4)*0.54 
 
 
 
 
************************************************************************ 
Compartments 
************************************************************************ 
gasCH4:        Mixed Reactor Compartment 
               Active Variables: 
               Active Processes: 
gasTOT:        Mixed Reactor Compartment 
               Active Variables:     S_ch4, S_co2, S_h2 
               Active Processes: 
headspace:     Mixed Reactor Compartment 
               Active Variables:     S_ch4, S_co2, S_h2 
               Active Processes: 
inCOD_degradable: 
               Mixed Reactor Compartment 
               Active Variables: 
               Active Processes: 
inflow:        Mixed Reactor Compartment 
               Active Variables: 
               Active Processes: 
outCOD_sim:    Mixed Reactor Compartment 
               Active Variables: 
               Active Processes: 
outflow:       Mixed Reactor Compartment 
               Active Variables: 
               Active Processes: 
outVFA_exp:    Mixed Reactor Compartment 
               Active Variables: 
               Active Processes: 
reactor:       Mixed Reactor Compartment 
               Active Variables:     S_ac_ion, S_bu_ion, S_cat, S_h_ion, 
                                      S_nh3, S_nh4_ion, S_oh_ion, S_pro_ 
                                     ion, S_va_ion, S_aa, S_ac, S_bu, S_ 
                                     ch4, S_co2, S_fa, S_h2, S_hco3_ion, 
                                      S_I, S_IN, S_pro, S_su, S_va, X_aa 
                                     , X_ac, X_c, X_c4, X_ch_s_FW, X_fa, 
                                      X_h2, X_I, X_pr_s_FW, X_pro, X_su, 
                                      S_an, X_ash, X_li_r_FW, X_li_s_FW, 
                                      X_pr_r_FW, X_ch_r_FW, X_biomass, a 
                                     lkalinity, gasCH4flow, gasflow, gas 
                                     flow_probe, pH, pH_reactor, T, t, V 
                                     , V_reactor, X_ch_INO, X_c_INO, X_l 
                                     i_INO, X_pr_INO, S_fa_ion, X_ch_r_A 
                                     LA, X_ch_r_PM, X_ch_s_ALA, X_ch_s_P 
                                     M, X_fa_ini, X_h2_ini, X_li_r_ALA,  
                                     X_li_r_PM, X_li_s_ALA, X_li_s_PM, X 
                                     _pro_ini, X_pr_r_ALA, X_pr_r_PM, X_ 
                                     pr_s_ALA, X_pr_s_PM, X_ch_r_GW, X_c 
                                     h_s_GW, X_li_r_GW, X_li_s_GW, X_pr_ 
                                     r_GW, X_pr_s_GW 
               Active Processes:     dyn_acid_base_co2, decay_aa, decay_ 
                                     ac, decay_c4, decay_h2, decay_fa, d 
                                     ecay_pro, decay_su, equilib_ac, equ 
                                     ilib_bu, equilib_charge, equilib_h2 
                                     o, equilib_IN, equilib_IN_bal, equi 
                                     lib_prop, equilib_va, hyd_ch_s_FW,  
                                     hyd_li_s_FW, hyd_pr_s_FW, uptake_aa 
                                     , uptake_ac, uptake_bu, uptake_h2,  
                                     uptake_fa, uptake_pro, uptake_su, u 
                                     ptake_va, disintegration, hyd_ch_r_ 
                                     FW, hyd_li_r_FW, hyd_pr_r_FW, disin 
                                     tegration_INO, hyd_ch_INO, hyd_li_I 
                                     NO, hyd_pr_INO, equilib_fa, hyd_ch_ 
                                     r_ALA, hyd_ch_r_PM, hyd_ch_s_ALA, h 
                                     yd_ch_s_PM, hyd_li_r_ALA, hyd_li_r_ 
                                     PM, hyd_li_s_ALA, hyd_li_s_PM, hyd_ 
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                                     pr_r_ALA, hyd_pr_r_PM, hyd_pr_s_ALA 
                                     , hyd_pr_s_PM, hyd_ch_r_GW, hyd_ch_ 
                                     s_GW, hyd_li_r_GW, hyd_li_s_GW, hyd 
                                     _pr_r_GW, hyd_pr_s_GW 
 
 
 
 
************************************************************************ 
Links 
************************************************************************ 
gas_trans:     headspace <-> reactor 


