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 Abstract 
 

Over the past two decades the growth rate of methane has shown large variability on multi-year 

timescales, the reasons for which are not well understood. The JULES land surface model, 

TOMCAT 3-D chemical transport model and observations have been used to investigate causes 

for these variations, with a specific focus on wetland emissions and atmospheric loss.    

The role of atmospheric variability in the recent methane trends was investigated using 

TOMCAT, driven by variations in global mean hydroxyl concentrations derived from methyl 

chloroform observations. Results show that between 1999 and 2006, a stall in the atmospheric 

methane growth rate was, in part, caused by changes in the atmospheric loss. This was due largely 

to relatively small changes in global mean hydroxyl concentrations over time, with minor 

contributions from variations in atmospheric transport and temperature.   

Methane emissions from various wetland inventories were evaluated using TOMCAT and 

observations, and recent trends in emissions were investigated. Emissions calculated by JULES 

were spatially and temporally similar to a top-down emission inventory and produced good 

agreement with satellite observations when used in TOMCAT (R = 0.84). Emissions derived for 

the period 1993 – 2012 show a statistically significant (95%-level) positive trend of 0.43 Tg/yr. 

This suggests a long-term positive trend in wetland emissions that may continue. During the stall 

in methane growth (1999-2006) modelled wetland emissions were 0.4 Tg/yr lower than average. 

This suggests that a decrease in wetland emissions contributed to the observed stall in methane 

growth.   

The wetland methane processes within JULES were developed to include transport, oxidation, 

sulphate suppression, unsaturated production and methane storage pools. The parameters required 

for the additional processes were derived using a perturbed parameter ensemble to optimise the 

fit with observed fluxes. This slightly increased model performance at flux sites from R = 0.32 in 

the standard model to R = 0.34 in the updated model. The new version of JULES was tested using 

TOMCAT and satellite observations, and model agreement improved from R = 0.84 to R = 0.87, 

additionally the root-mean-squared-error reduced from 17.17 ppb to 15.09 ppb. This suggests the 

optimised additional model processes slightly improved model performance.  
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1 Introduction 

1.1 Motivation 

Global surface temperatures over the last three decades have been successively warmer than any 

decade since 1850. A linear trend applied to observations shows a warming of 0.85 °C from 1880 

to 2012, which is expected to continue in the future (Hartmann et al., 2013). Long-lived 

greenhouse gases, such as carbon dioxide (CO2) and methane (CH4), have contributed to the 

increase in temperature by producing a warming effect on the Earth’s climate system (e.g. 

Hartmann et al., 2013). This occurs because greenhouse gases absorb and re-emit long-wave 

infra-red radiation, which ultimately leads to a positive total radiative forcing. Human activities, 

such as the burning of fossil fuels, changes in agricultural practices and waste management have 

contributed to the observed increase in atmospheric greenhouse gases through an increase in 

emissions. The Earth’s climate system is likely to undergo further changes in the coming decades 

in response to changes in atmospheric composition, which could lead to a greater increase in 

temperatures. This will have an impact on natural and human systems globally. 

To be able to comprehend past trends and to predict future changes in the Earth’s climate a clear 

understanding of the system is required. Computer models are needed which describe the 

physical, chemical and biological processes controlling part or all of the system. For example, 

land surface models can provide estimates of biogenic emissions of greenhouse gases, which can 

then be used by atmospheric models to investigate changes in composition. However, the 

accuracy of all models is limited by the process description within the model and by the 

information used to drive the model. Hindcasting can be used to test models against observations; 

this identifies potential weaknesses in the models and leads to improved understanding of past 

events. Overall the development and use of these models, alongside observations, is essential for 

understanding the Earth’s climate system both past and future. 

For greenhouse gases, and CH4 in particular, emission estimates have large uncertainties. 

Wetlands are the largest single source of CH4 globally and both their distribution and the 
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processes controlling their emissions remain poorly understood (e.g. Melton et al. 2013). 

Additionally, there remains uncertainty in the variability of the major atmospheric sink, reaction 

with atmospheric OH (Holmes et al., 2013). These uncertainties lead not only to gaps in 

knowledge about recent trends in atmospheric CH4 but also limit predictions of future climate 

change.       

1.2 The Role of Methane in Climate Change  

CH4, like CO2, is a greenhouse gas because it absorbs and emits radiation in the infra-red range 

of the spectrum, thus producing a warming effect on the Earth’s surface. It is the second most 

important anthropogenic greenhouse gas after CO2, directly contributing 0.48±0.05 Wm-2 of the 

2.63 Wm-2 of total radiative forcing by long-lived greenhouse gases (Myhre et al., 2013). Figure 

1.1 compares CH4 to other radiative forcing agents. Radiative forcing is a measure of an agent’s 

influence on the Earth’s radiation balance (Myhre et al., 2013). The effective radiative forcing 

displayed represents the change in radiative flux after considering changes in temperatures, water 

vapour and clouds. The relative abundance of CH4 (~1.775 parts per million by volume (ppm)) 

compared to CO2 (~400 ppm) is small; however on a per molecule basis its global warming 

potential (GWP) is approximately 26 times larger. This is because it absorbs atmospheric 

radiation more efficiently than CO2; meaning that small changes in atmospheric CH4 could play 

a large role in changes to the total radiative forcing. Once emitted into the atmosphere CH4 has a 

relatively short atmospheric lifetime of 9.1±0.9 years (e.g. Prather et al., 2012) in contrast to CO2, 

which does not have an atmospheric sink. The lifetime of atmospheric CO2 is determined by 

surface removal with different rates of uptake by multiple removal processes and is somewhere 

between 50 and 200 years (Archer et al., 2009). 

In addition to the direct effects already mentioned, CH4 can lead to indirect radiative forcing 

effects of approximately 0.2 Wm-2 following its oxidation in the atmosphere (Hansen and Sato, 

2001). Approximately half of this indirect radiative forcing is a result of CH4 oxidation causing 

an increase in tropospheric ozone. The other half is through the production of H2O in the 

stratosphere (Hansen et al., 2000). 

Recent variations in the concentration of atmospheric CH4 have highlighted uncertainties in its 

emissions and/or sinks, which must be reduced so that more accurate future predictions can be 

made regarding changes in concentration (Dlugokencky et al., 2011). The assessment of changes 

in emissions and/or sinks can be made using two different approaches, top-down and bottom-up. 

The top-down approach uses atmospheric measurements of CH4 in an inversion of atmospheric 
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transport to calculate emissions. This method provides an estimate for the global CH4 emissions, 

assuming the atmospheric loss is well understood (Kirschke et al., 2013). The bottom-up approach 

generates emissions based on modelled process descriptions, which often leads to a large range 

in estimates because of a lack of understanding regarding emission processes (Lamarque et al., 

2013). This thesis uses top-down emission estimates to scale bottom-up inventories and compares 

those with observations using a chemical transport model (CTM). This is to investigate the time 

period between 1999 and 2006 when the atmospheric growth of CH4 paused, described in more 

detail in Chapter 2.     

 

Figure 1.1 The radiative forcing (hatched) and effective radiative forcing (solid) for various 

processes for the period 1750-2011. Note effective radiative forcing represents the forcing change 

after accounting for changes in atmospheric temperature, water vapour and clouds. From Myhre 

et al. (2013).  

Wetlands are the largest single source of CH4 to the atmosphere and are the main drivers of the 

global interannual variability in CH4 emissions (e.g. Ciais et al., 2014). Processes governing 

wetland emissions are poorly understood and CH4 fluxes are not well constrained. A possible 

feedback between climate change and wetland CH4 emissions has been hypothesised but the sign 

and amplitude of this feedback remain unknown (Ringeval et al., 2011). This suggests that a 

detailed understanding of processes controlling wetland emissions is required for a better 

understanding of likely future changes in atmospheric CH4. 
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1.3 Thesis Aims 

An overall aim of this thesis is to improve our understanding of atmospheric CH4, including the 

sinks, transport and sources. More specifically, the study uses models and observations to analyse 

recent trends in atmospheric CH4 growth rates and develop a more detailed description of the 

wetland emission processes in the JULES (Joint UK Land Environment Simulator) model. The 

specific thesis aims are:   

• Assess the role of atmospheric processes in the pause in CH4 growth between 1999 

and 2006. 

1. What is the role of meteorology on the global atmospheric CH4 growth pause? 

2. How much of a role did variations in OH play CH4 growth pause? 

The pause in the CH4 growth rate between 1999 and 2006 has been well documented in 

observations (Dlugokencky et al., 2003); however there exists no clear consensus regarding the 

cause. Previous studies have investigated possible changes in emissions but not changes in the 

atmospheric sink (Bousquet et al., 2006; Kai et al., 2011). This study aims to use CH3CCl3-

derived OH to investigate the atmospheric contribution to the pause in growth. If the impact of 

OH variability is observable in the CH4 trend then it highlights the need for possible variations in 

OH to be considered when investigating the global CH4 growth rate.   

• Use a global atmospheric chemistry transport model, TOMCAT, and observations 

to investigate limitations of current wetland CH4 emissions models. 

1. How much of the wetland CH4 model uncertainty originates from parameter 

uncertainty and how much is from process uncertainty? 

2. When various bottom-up emission inventories are compared with each other, which 

regions show the largest range in CH4 emissions and do the inventories provide accurate 

regional emission estimates as deduced from atmospheric observations? 

3. Can a long-term trend in wetland emissions be detected in bottom-up and top-down 

emissions inventories? 

Wetland CH4 emissions from land surface models have uncertainties in both the structural 

processes described by the model and the parameter values used (Melton et al., 2013). This study 

uses an existing wetland emission inventory and generates a further two, all of which follow a 

similar process description but have different driving parameters. By using these inventories in 



Introduction  5 

 

 

TOMCAT and comparing the output with observations, the inventories can be evaluated. This 

analysis is performed on a spatial and temporal scale.  

• Improve understanding of processes which drive wetland CH4 emissions and use 

this in the development of the JULES land surface model. 

1. Can the representation of modelled wetland emissions be improved by adding in more 

complex processes? 

2. Does model tuning using local flux measurements improve the global representation 

of modelled emissions? 

3. Can the new wetland model and time-varying OH fields capture the observed CH4 

growth rate variability? 

It is hypothesised that differences in TOMCAT simulations and observations will be largely 

because of uncertainties in the process description of the modelled wetland emissions. The 

development of a more complex process description in the wetland model aims to improve the 

representation of wetland emissions. Flux measurements are first used to tune the model 

processes, which are then up-scaled to the global domain for use in TOMCAT. By incorporating 

multiple versions of the wetland model in TOMCAT, and comparing them with observations, key 

structural components, such as CH4 transport and oxidation, can be analysed.    

1.4 Thesis Layout 

This thesis has seven chapters, in total. Chapter 2 reviews key literature relevant to this work, 

providing background information about the sources, sinks and recent trends in atmospheric CH4. 

Chapter 2 also provides information on the observation techniques used in this work and how 

they have been used in previous studies. Chapter 3 provides a description of the land surface and 

atmospheric modelling tools used in this thesis. The two main models, TOMCAT and JULES, 

are discussed, including their history and formulation. Chapter 4 uses TOMCAT to investigate 

the role of OH variability on the pause in the CH4 growth rate between 1999 and 2006 using 

CH3CCl3-derived OH. Chapter 5 investigates the limitations of existing wetland CH4 models by 

using multiple emissions inventories to drive TOMCAT, with a particular focus on parameter 

uncertainties. Chapter 6 develops the wetland CH4 component of JULES through the use of flux 

measurements. These developments are then evaluated using TOMCAT and observations. 

Chapter 7 summarises the results of the thesis within the context of the original aims. 



Introduction  6 

 

 

  



Atmospheric Methane  7 

 

 

 

2 Atmospheric Methane  

2.1 Introduction 

This chapter reviews key literature relevant to the research questions outlined in Chapter 1. A 

clear understanding of wetland CH4 processes and atmospheric chemistry is required to develop 

further knowledge of the recent and future trends in atmospheric CH4.  

Section 2.2 summarises the physical and chemical structure of the atmosphere, both in the 

troposphere and stratosphere, and gives an overview of the CH4 distribution. Section 2.3 describes 

the sinks of atmospheric CH4, including the chemical loss pathways. Section 2.4 summarises the 

major sources of atmospheric CH4. The section also describes the significance of wetlands in the 

global CH4 budget, outlining the key driving processes. Section 2.5 provides an overview of 

observation techniques from multiple instruments, exploring the recent history and development 

of CH4 measurements. Section 2.6 outlines our current understanding of the recent variation in 

CH4 growth, exploring the possible explanations. This section also discusses the significance of 

these recent trends in relation to predictions of future CH4 levels.  

2.2 Structure of the Atmosphere 

2.2.1 Physical Structure of the Atmosphere 

This section provides a brief overview of atmospheric physics; more details can be found in 

various textbooks (e.g. Wallace and Hobbs, 2006; Seinfeld and Pandis, 2012). The atmosphere is 

defined as the layer of gases which surround the Earth. An understanding of the physical and 

chemical structure of the atmosphere is required to help understand the role of greenhouse gases 

within the Earth system.  
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The vertical structure of the atmosphere is controlled by the balance of the gravitational force of 

the Earth and the pressure gradient force. The balance between these two opposing forces, known 

as hydrostatic equilibrium, is shown in equation 2.1, where p is pressure, z is height, ρ is density 

and g is the acceleration due to gravity. Atmospheric pressure decreases almost exponentially 

with height, though variations in atmospheric temperature prevent this from being a truly 

exponential relationship, because of the influence of temperature on pressure.  

𝑑𝑝

𝑑𝑧
= −𝜌𝑔 (2.1) 

 

Figure 2.1 Typical vertical profiles of temperature (left) and CH4 (right) from a TOMCAT 

simulation at the equator. 

The vertical structure of the lower and middle atmosphere is shown in Figure 2.1. This domain 

can be broken down in to three regions, defined by a change in temperature gradient. A planetary 

boundary layer (PBL) exists at the base of the lowest region, the troposphere. The PBL can extend 

up to a few kilometres and is defined as a region of turbulent mixing governed by interactions 

with the surface. The troposphere extends from the relatively warm surface up to ~17 km at the 

equator and ~9 km at the poles. It is typically considered to be a well-mixed region and contains 

around three quarters of the mass of the atmosphere. The tropopause is at the top of the 

troposphere, where there is a temperature minimum. Above this altitude is the stratosphere, which 

is defined by an increasing vertical temperature due to the presence of the ozone layer. The 

stratosphere extends up to around 50 km and is vertically stable because warm air is found above 

cold air, which slows vertical mixing of chemical species. The troposphere and stratosphere 

collectively contain 99.9% of the mass of the atmosphere and a majority of the key processes 

which determine climate. The stratopause is the boundary at the top of the stratosphere where 
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there is a temperature maximum, after which the temperatures once again decrease through the 

mesosphere. Further atmospheric layers, including the thermosphere and exosphere, continue 

above the mesosphere. 

2.2.2 Composition and Chemistry of the Atmosphere 

Summaries of the composition of the atmosphere can be found in textbooks such as Wayne (1993) 

and Seinfeld and Pandis (2012). Briefly, the atmosphere is mainly composed of nitrogen (78% by 

volume) and oxygen (21% by volume). Excluding water vapour, trace gases make up the 

remaining 1% of the atmospheric composition. Although these trace gases are low in 

concentration, they can have large impacts on air quality, climate change and ozone-depletion. 

CH4 is the fifth most abundant trace gas in the atmosphere, making up less than 0.0002% (~1800 

ppb). In the lower atmosphere CH4 is ubiquitous with relatively small variations in the horizontal 

plane. An exception to this is in source regions, where CH4 levels can be elevated to over 2000 

ppb. Long-lived trace gases in the troposphere are typically well mixed vertically; this is also the 

case for CH4. In the stratosphere CH4 concentrations decrease with height due to slow vertical 

mixing and stratospheric chemical loss, as shown in Figure 2.1.         

2.3 Methane Sinks 

After being emitted, CH4 is transported throughout the lower atmosphere by advection, boundary 

layer mixing and convection. CH4 can be removed from the atmosphere either through chemical 

loss pathways or oxidation by methanotrophic bacteria in soils. The largest of these sinks is the 

oxidation of CH4 by the hydroxyl radical (OH) in the atmosphere, which is governed by a 

temperature-dependent reaction with loss rate, kOH, shown in reaction 2.1 (e.g. Prather et al., 

2012). 

𝐶𝐻4 + 𝑂𝐻
𝑘𝑂𝐻
→   𝐶𝐻3 + 𝐻2𝑂 (R2.1)  

OH is highly reactive in the atmosphere and as a result has a relatively small atmospheric 

concentration of approximately 1x106 molecules cm-3 and a lifetime of about 1 s. The main loss 

pathways for OH are through reactions with carbon monoxide (CO) and CH4. The primary 

formation of OH is controlled by ozone (O3) and involves photolysis by UV radiation to form a 

single oxygen, which can react with a water molecule to produce OH. OH can also be recycled 

through reactions with nitrogen oxides (NOx) to form O3, which subsequently produces OH. 

Figure 2.2 shows the primary and recycled pathways for the formation of OH in the atmosphere 
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highlighting two regimes which alter the recycling process, NOx enriched/depleted. The OH 

concentration ([OH]) is controlled by production, through changes in O3 and UV radiation, and 

loss, through reactions with atmospheric species including CH4, CO, sulphur dioxide (SO2) and 

nitrogen dioxide (NO2). 

 

Figure 2.2 Reaction cycles of OH as determined by reactions with CO and NOx. RH represents 

hydrocarbons, mainly CH4. M represents an air molecule which collides with the species and 

dissipates excess energy. From Lelieveld et al. (2002). 

Around 90% of all surface-emitted CH4 is lost through reactions with OH, despite OH only having 

an atmospheric lifetime of a few seconds. This equates to an annual loss through OH of 9% of the 

total burden (4700 to 4900 Tg) (Voulgarakis et al., 2013). The atmospheric [OH] is influenced 

by several factors discussed previously; one factor is the atmospheric concentration of CH4 itself. 

An increase in atmospheric CH4 causes a decrease in the [OH], which in turn affects the CH4 

lifetime. This is an indirect effect of CH4 changes. Additionally, the reaction of CH4 with OH can 

eventually lead to the formation of CO via the formation of formaldehyde (CH2O). Following 

reaction 2.1 the formation of CH2O is summarised by reactions 2.2, 2.3 and 2.4 (Seinfeld and 

Pandis, 2006).  

𝐶𝐻3 + 𝑂2 +𝑀 → 𝐶𝐻3𝑂2 +𝑀  (R2.2) 

𝐶𝐻3𝑂2 + 𝑁𝑂 → 𝐶𝐻3𝑂 + 𝑁𝑂2  (R2.3) 

𝐶𝐻3𝑂 + 𝑂2 → 𝐶𝐻2𝑂 + 𝐻𝑂2  (R2.4) 
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CH2O then undergoes photolysis reactions to form CO (reaction 2.5) or HCO (reaction 2.6), which 

further reacts with O2 to form CO (reaction 2.7) (Seinfeld and Pandis, 2006). 

𝐶𝐻2𝑂 + ℎ𝑣 → 𝐻2 + 𝐶𝑂  (R2.5) 

𝐶𝐻2𝑂 + ℎ𝑣 → 𝐻𝐶𝑂 + 𝐻 (R2.6) 

𝐻𝐶𝑂 + 𝑂2 → 𝐻𝑂2 + 𝐶𝑂 (R2.7) 

On a several-month timescale CO further depletes atmospheric OH and reacts to form CO2, given 

by reaction 2.8 (Seinfeld and Pandis, 2006).   

𝐶𝑂 + 𝑂𝐻
𝑂2
→ 𝐶𝑂2 +𝐻𝑂2 (R2.8) 

In high-NOx conditions the oxidation of CH4 has a theoretical maximum yield of 5 O3 molecules, 

given by reaction 2.9; however, due to competing reactions this is almost never achieved (Seinfeld 

and Pandis, 2006).   

𝐶𝐻4 + 10𝑂2 → 𝐶𝑂2 +𝐻2𝑂 + 2𝑂𝐻 + 5𝑂3 (R2.9) 

In low-NOx conditions, as a contrast to the production of ozone via the oxidation pathways shown 

above, ozone can be consumed to produce CO2, H2O and H2 (Cicerone and Oremland, 1988). 

Two example net reactions (2.10 and 2.11) show how ozone can be consumed in these conditions 

(McElroy, 2002).  

𝐶𝐻4 + 3𝑂3 → 𝐶𝑂2 +𝐻2𝑂 + 2𝐻𝑂2 + 𝑂2 (R2.10) 

𝐶𝐻4 + 𝑂3 +  2𝑂2 → 𝐶𝑂2 +𝐻2𝑂 + 2𝐻𝑂2 (R2.11) 

Several smaller sinks of CH4 contribute to the remaining 10% of CH4 loss. Approximately 5% of 

atmospheric loss occurs through reactions with tropospheric and stratospheric chlorine (Cl) and 

oxygen radicals (O1D) (Prather et al., 2012).  

𝐶𝐻4 + 𝑂(
1D)

𝑘𝑂1𝐷
→   𝐶𝐻3 + 𝑂𝐻 (R2.12) 

𝐶𝐻4 +  𝐶𝑙
𝑘𝑐𝑙
→ 𝐶𝐻3 +𝐻𝐶𝑙 (R2.13) 

CH4-oxidising bacteria, known as methanotrophs make up the remaining sink for atmospheric 

CH4 (~5%). The chemical processes by which this occurs are discussed in detail in Section 2.4.2.  

Any net positive difference between emissions and sinks results in an increase in the atmospheric 

burden, and therefore positive growth rates. Conversely, if the loss processes are larger than the 

sources, the atmospheric burden will fall. The combined sinks, discussed in this section, lead to 
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CH4 having a relatively short atmospheric lifetime, 9.1±0.9 years (Prather et al., 2012), compared 

to CO2. CO2 removal includes extremely long time-scale processes, of 5-200 years, which means 

a single, characteristic atmospheric lifetime value is not applicable (Ciais et al., 2014). Climate 

change effects caused by a reduction in emissions of CH4 would be observed on a decadal 

timescale, due to a large decrease in the atmospheric burden. This would lead to a decrease in 

radiative forcing and an improvement in global air quality through the role of CH4 in tropospheric 

ozone production.     

2.4 Methane Emissions 

Emissions of CH4 originate from a combination of natural (~218 TgCH4/yr) and anthropogenic 

(~335 Tg/yr) sources (Ciais et al., 2014). The most recent estimates of current CH4 emission 

sources are given in Table 2.1. The processes that lead to the emission of CH4 can be placed into 

three categories, biogenic, pyrogenic and thermogenic (e.g. Neef et al., 2010). CH4 emissions 

from animals, rice agriculture, waste and wetlands are all driven by biogenic processes, which 

occur in anaerobic conditions and involve the conversion of organic matter into CH4. Emissions 

from biofuel and biomass burning occur as a result of incomplete combustion, and are known as 

pyrogenic processes. Emissions from coal, natural gas and oil are typically associated with 

thermogenic processes, which occur under high temperature and/or pressure over geological 

timescales. 

Since the beginning of the industrial era the total sources and sinks of CH4 have been imbalanced, 

with the source term being larger, resulting in the observed atmospheric growth. This imbalance 

has been estimated to be as much as 30 Tg/yr between 1980 and 1989 (Ciais et al., 2014), with 

the sum of the sources at 541 Tg/yr and the sinks 511 Tg/yr. It is estimated that the imbalance 

was reduced to 3 Tg/yr between 2000 and 2009 (Kirschke et al., 2013; Ciais et al., 2014). The 

ranges of uncertainties for source and sink terms vary greatly, as shown in Table 2.1. For this 

reason, certain individual sources and sinks should be targeted to reduce the overall emission 

uncertainties.  

By examining the data provided in Table 2.1 it is clear that source and sink estimates vary 

considerably between top-down and bottom-up estimates, both of which have their individual 

merits. Bottom-up estimates tend to follow a more process-based approach, which provides 

details of individual sources. A poor understanding of the processes governing emissions and 

challenges associated with upscaling, leads to the range of emissions being much larger in bottom-

up estimates. Ciais et al. (2014) compared bottom-up global source inventories (678 Tg/yr) with 
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sink inventories (632 Tg/yr) (Lamarque et al., 2013) to show an imbalance of 45 Tg/yr from 2000 

to 2009. This is greater than the observed growth of 3 Tg/yr even allowing for atmospheric loss. 

Top-down estimates based on observations and inverse models are constrained by OH fields. For 

this reason top-down estimates are used in this study when assessing the global CH4 budget. The 

emission inventories used in this study are described in more detail in Chapters 4, 5 and 6, and 

are scaled to the top-down emission estimates provided in Table 2.1. The remainder of this section 

focuses on individual sources of CH4, detailing their size, processes, interannual variability, 

uncertainty and, spatial and temporal distribution.  

 Top-Down Estimate Bottom-Up Estimate 

Source Annual CH4 Source from 2000-2009 (Tg/yr) 

Natural 218 (179-273) 347 (238-484) 

    Wetlands 175 (142-208) 217 (177-284) 

    Other 43 (37-65) 130 (61-200) 

        Freshwater  40 (8-73) 

        Wild Animals  15 

        Wildfires  3 (1-5) 

        Termites  11 (2-22) 

        Geological (including oceans)  54 (33-75) 

        Hydrates  6 (2-9) 

        Permafrost  1 (0-1) 

Anthropogenic 335 (273-409) 331 (304-368) 

    Biomass Burning 30 (24-45) 35 (32-39) 

    Fossil Fuels 96 (77-123) 96 (85-105) 

    Agriculture and Waste 209 (180-241) 200 (187-224) 

        Rice  36 (33-40) 

        Ruminants  89 (87-94) 

        Landfills and Waste  75 (67-90) 

Sink Annual CH4 Sink from 2000-2009 (Tg/yr) 

    Soil 32 (26-42) 28 (9-47) 

    Atmospheric Chemical Loss 518 (510-538) 604 (483-738) 

        Tropospheric OH  528 (454-617) 

        Stratospheric Loss  51 (16-84) 

        Tropospheric Cl  25 (13-37) 

Total   

Sum of Sources 553 (526-569) 678 (542-852) 

Sum of Sinks 550 (514-560) 632 (592-785) 

Imbalance 3 (-4-19) 45 

Table 2.1 Estimated sources and sinks for global CH4 for 2000-2009, based on top-down and 

bottom-up inventories. Adapted from Ciais et al. (2014), using estimates from various 

contributors (Sanderson, 1996; Sugimoto et al., 1998; Andreae and Merlet, 2001; Dickens, 2003; 

Bastviken et al., 2004; Hoelzemann et al., 2004; Ito and Penner 2004; van der Werf, 2004; 

Dentener et al., 2005; Allan et al., 2007; Curry, 2007; Denman et al., 2007; Walter et al., 2007; 

Etiope et al., 2008; Bergamaschi et al., 2009; EDGAR4-database, 2009; Pison et al., 2009; Rhee 

et al., 2009; Anderson et al., 2010; Mieville et al., 2010; Neef et al., 2010; Shakhova et al., 2010; 

van der Werf et al., 2010; Bastviken et al., 2011; Bousquet et al., 2011; EPA, 2012; Hodson et 

al., 2011; Ringeval et al., 2011; Spahni et al., 2011; Wiedinmyer et al., 2011; Spahni et al., 2011; 

Ito and Inatomi, 2012; Williams et al., 2012; Voulgarakis et al., 2013). Note that emission ranges 

are shown in brackets. 
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2.4.1 Anthropogenic Emissions 

Fossil Fuels 

Anthropogenic consumption of fossil fuels, predominantly natural gas, leads to CH4 being emitted 

into the atmosphere. Fugitive emissions make up the bulk of this source via leaks in either the 

extraction method or in the transport of the fuel. Incomplete combustion of fossil fuels leads to 

an additional source of emissions. Fossil fuel operations, including extraction, are generally well 

documented and therefore the estimates of CH4 from this sector are well constrained at around 96 

Tg/yr (77-123 Tg/yr) (Ciais et al., 2014). Fossil fuel emissions have only a small interannual 

variation, as shown in Figure 2.3 based on the Emission Database for Global Atmospheric 

Research (EDGAR) version 4.0 inventory (2009). Emissions from fossil fuels have remained 

relatively constant from 1975 to 2000, with a small positive trend. The EDGAR 4.0 inventory 

shows that between 2000 and 2005 global fossil fuel-related CH4 emissions increased by 20 Tg/yr 

relative to pre-2000 values. 

 

Figure 2.3 Annual global anthropogenic CH4 emissions (Tg/yr) for 1970-2005 (EDGAR 4.0, 

2009). 

Ruminants 

The term ruminant is given to mammals that ferment food in their rumen, a large section of their 

stomach. Large livestock, such as sheep, goats and cows are ruminants and generate CH4 as a 

waste product within their fermentation system. Methanogens within the fermentation system 

produce the CH4 through anaerobic respiration; this process is discussed in more detail in Section 
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2.4.2. Several factors control the CH4 emissions from ruminants, including the quantity (Shibata 

et al., 1993) and the type of feed (Blaxter and Clapperton, 1965). Emission prediction models can 

be created by using feeding characteristics (Johnson and Johnson, 1995). Emission estimates from 

ruminants are well constrained in the 5th IPCC report because livestock data is well documented 

(Ciais et al., 2014). These range from 87-94 Tg/yr, making them comparable with emissions from 

fossil fuels. 

Rice Agriculture 

Emissions of CH4 from rice cultivation occur from the same biogenic processes that are 

responsible for CH4 emissions from wetlands, discussed in more detail in Section 2.4.2. The 

majority of global rice emissions originate from East and South-East Asia, as highlighted in 

Figure 2.4. Regional and global emissions are well constrained with estimates ranging from 33-

40 Tg/yr. The small range in values likely originates from the variety of models used to derive 

the estimates and the techniques used to upscale the emissions to a global value (Huang et al., 

2006). Previously rice cultivation emissions have been modelled as wetland emissions (Bloom et 

al., 2012); although agricultural treatments could cause a change in the CH4 producing biogenic 

processes. Kai et al. (2010) suggested a possible declining trend in CH4 emissions from rice 

agriculture between 1982 and 2007. This is thought to be due to changes in agricultural practices, 

increased inorganic fertiliser use, improved crop yields and decreases in the rice production area. 

Global CH4 emissions from rice agriculture exhibit a strong seasonal cycle due to the growing 

seasons in rice production.      

 

Figure 2.4 Estimated annual CH4 emissions in kg km-2 from rice agriculture (Yan et al. 2009). 
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Biomass Burning 

Pyrogenic CH4 emission from biomass burning can be a result of both anthropogenic and naturally 

occurring events, and are the result of incomplete combustion. The temperature, composition of 

matter and rate of temperature change all contribute to the amount of CH4 emitted from a biomass 

burning event (Koppmann et al., 2005). The range of emission estimates are well constrained at 

24-35 Tg/yr for biomass burning events, based on top-down studies, and 1-5 Tg/yr for wildfires, 

based on bottom-up studies. The interannual variability of both the frequency and magnitude of 

biomass burning events can be large during intensive fire periods (Simpson et al., 2006). This is 

particularly evident during strong El Niño events when tropical emissions are observed to increase 

(van der Werf et al., 2004). There is a strong spatial pattern to biomass burning CH4 emissions, 

with around 85% originating from tropical regions (Hao and Ward, 1993). Of these regions 

tropical Asia and Africa are the most dominant, as shown in Figure 2.4. Bottom-up process-based 

models for predicting CH4 emissions from biomass burning are not yet at a stage where they can 

accurately reproduce the timing of emissions (Thonicke et al., 2010). More accurate estimates of 

past emissions are available using a combination of a biogeochemical model and satellite 

observations of burned area, plant productivity and active fire detection (van der Werf et al., 

2010). This approach relies on emission factors being applied to convert dry matter to CH4 

emissions, for example peat fires are estimated to emit approximately 20.8 gCH4 for every Kg of 

dry matter, whereas Savanna fires only emit around 1.94 gCH4 per Kg (Akagi et al., 2011). CO 

is also emitted from biomass burning events and influences the atmospheric lifetime of CH4 

through reactions with OH. Based on Akagi et al. (2011) the relative emission factors for CO are 

around 10 to 30 times larger than those for CH4, depending on the fire type.      

 

Figure 2.4 Relative contribution of CH4 biomass burning emissions from different regions for the 

period 1997 to 2009. Adapted from van der Werf et al. (2010). 
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Landfills and Waste 

Emissions of CH4 from landfills and waste follow a similar biogenic pathway to rice emissions 

discussed above and wetland emissions discussed in Section 2.4.2. Buried degradable carbon at 

landfill sites undergoes a series of microbial transformations, which first lead to the production 

of species such as acetic acid, CO2 and hydrogen (H2). Then, through acetate consumption or 

reduction of CO2 with H2, microorganisms, known as methanogens, produce CH4. This is then 

either emitted to the atmosphere or oxidised, as discussed in more detail in Section 2.4.2. Landfill 

and waste emissions are estimated to be between 67 and 90 Tg/yr. These emission estimates are 

typically based on measured or estimated waste generation, fraction of waste that is anaerobically 

biodegradable, the organic carbon content of the waste and an estimate of the amount of oxidation 

of CH4 that occurs (Bogner and Matthews, 2003). The range in emission estimates provided in 

the IPCC report (67 to 90 Tg/yr) is in part due to the lack of waste data available from many 

countries (Ciais et al., 2014). Landfill and waste emissions have increased since 1970 (see Figure 

2.3). 

2.4.2 Natural Emissions 

Wetlands 

Wetlands are the largest single source of CH4 to the atmosphere, with top-down estimates of 175 

Tg/yr (~30% of global total). Wetlands, such as bogs, fens, marshes and swamps, are defined as 

areas where the soil is saturated, either permanently or seasonally. Nearly half of all wetlands can 

be found in high northern latitudes (OECD, 1996), most of which are seasonal due to winter time 

freezing. The remaining wetlands in tropical and sub-tropical regions are more often permanent. 

The largest wetland regions can be found in the Amazon River Basin, The Congo, The Pantanal 

and the West Siberian Plain. The distribution of wetlands is dependent on several factors, 

including the topography, soil properties and precipitation. Wetland distribution alone does not 

dictate the global biogenic emission of CH4 from wetlands, and several other parameters play a 

key role in CH4 production and transport to the atmosphere. There is a large uncertainty in global 

CH4 emissions, ranging from 142 to 208 Tg/yr based on top-down estimates and 177 to 284 Tg/yr 

based on bottom-up estimates. The range in existing estimates comes from uncertainty in the 

processes that lead to emissions from wetlands. There is also a large interannual variability in 

wetland emissions. This is discussed in more detail in Chapters 5 and 6. 
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CH4 emission from wetlands can be broken down into three parts; production, transport and 

oxidation. The CH4 is first produced in the soils, then either transported out into the atmosphere 

or oxidised within the soil or water column. CH4 is produced via a process known as 

methanogenesis by methanogens in the anaerobic wetland environments. Methanogens are 

microorganisms that use two different metabolic pathways to produce CH4 as a by-product. Prior 

to the production of CH4, biological polymers are broken down into simpler chemicals, such as 

H2, CO2, acetate and formate (Le Mer et al., 2001). Hydrolysis of biological polymers into 

monomers (fatty acids, amino acids) is followed by acidogenesis to form organic acids, alcohols, 

H2 and CO2. At this point the H2 and the CO2 can be consumed by methanogens to form CH4 or 

can undergo acetogenesis to form acetate, which is then consumed by methanogens (Le Mer et 

al., 2001). The two most common final steps in the formation of wetland CH4 are from acetic acid 

and CO2 reduction by H2, summarised by reactions 2.14 and 2.15.  

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻4 + 𝐶𝑂2 (R2.14) 

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂 (R2.15) 

The formation of CH4 by methanogens is dependent on several biological, chemical and physical 

factors. The biological dependence originates from the microbial community structure of the 

wetland. Methanogens require other members of the microbial community to first break down 

more complex carbon substrates, which are known as complementary interactions in the microbial 

food web (Cicerone and Oremland, 1988). A separate chemical and biological dependence comes 

from the nitrate and sulphate composition of the wetland. Nitrate and sulphate reducing bacteria 

typically outcompete methanogens for acetate and H2, which reduces the total CH4 production. A 

separate chemical dependence comes from the soil carbon. Wetland CH4 emissions are not only 

affected by the quantity of soil carbon but also by its quality. Easily degradable carbon can quickly 

be converted and emitted as CO2 and CH4. Methanogens are sensitive to soil pH, with an optimum 

range between 5.5 and 7.0 (Dunfield et al., 1993). Temperature is the major physical factor in the 

control of CH4 production by methanogens. Below 0 °C the ground is frozen and there is very 

low production. As the temperature increases above 0 °C the rate of methanogenesis also 

increases. The optimum temperature for methanogenesis varies depending on the production 

process; acetate-consuming methanogens were found to have an optimum temperature at 20 °C, 

whilst hydrogen oxidisers had an optimum at 28 °C (Svensson et al., 1984). The optimum values 

will vary between wetlands but are almost never reached. Methanogens, and even more so the 

microorganisms involved in the complementary reactions, are responsible for the observed 

decrease in CH4 emissions with a decreasing temperature (Conrad et al., 1987). The strong links 

to temperature suggest that a positive climate change feedback loop might be present with wetland 

CH4 emissions (Gedney et al., 2004). The change in precipitation under a changing climate might 
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have a positive or negative feedback on wetland emissions (Trenberth et al., 2011). Methanogens 

similar to the ones described here can also be found in ruminants and landfill sites.    

CH4 present in the soil and water column can be oxidised by methantrophic microorganisms. 

These bacteria require O2 to consume CH4 in the oxidised soil layer. As CH4 escapes the anaerobic 

soil layer up to 90 % can be oxidised in these aerobic zones (Oremland et al., 1992). Atmospheric 

CH4 can also be oxidised and as a sink term this accounts for around 32 Tg/yr. As with 

methanogens, methanotrophs are dependent on a range of biological, chemical and physical 

factors.     

Methanogenesis in wetlands typically occurs in the soils below the water column. For CH4 to be 

emitted into the atmosphere it must first be transported through both the soil and water column. 

The three most common transport pathways are ebullition, diffusion and plant-mediated transport 

(see Figure 2.6). The ebullition pathway involves the release of CH4 through gas bubbles. An 

increase in methanogen activity within a wetland leads to a build-up of CH4 in the water column, 

when the concentration is large enough bubbles form, which ascend in the water column, releasing 

the CH4 into the atmosphere. A recent study suggests that sudden ebullition events triggered by 

changes in atmospheric pressure can contribute as much as 64% of total CH4 emissions from 

peatlands (Tokida et al., 2007). Ebullition fluxes typically occur as pulses in response to changes 

in atmospheric pressure, temperature or water table depth (Tokida et al., 2007).  

The diffusion of CH4 from wetland soils and water occurs as a result of a concentration gradient 

between the surface and atmosphere. The proportion of CH4 lost via the diffusion pathway 

depends on the wetland type because the diffusion process is quicker through porous soils than 

through compact soils. Diffusion of O2 from the atmosphere into the soil column enhances the 

oxidation rate of CH4, suppressing the amount emitted into the atmosphere. Diffusion through the 

water column is slower than through soil, therefore a high water table can limit the diffusion of 

CH4 into the atmosphere.  

Plant-mediated emission of CH4 relies on transport through air-filled cavities in plants, known as 

aerenchyma, which allow for the transport of gases around the plant. CH4 in the soils can enter in 

through the roots of the plants and be transported up into the stem via diffusion (Colmer, 2003). 

The CH4 can then be released into the atmosphere from the plant. As with the previous two 

transport pathways, the proportion of total emissions that occur as a result of plant-mediated 

transport varies depending on the wetland. Studies show plant-mediated transport can contribute 

up to 90% of the total emissions (Cicerone and Shetter, 1981; Nouchi et al., 1990). As with the 
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diffusion pathway, O2 in the plant can cause oxidation of the CH4 before it is emitted into the 

atmosphere.  

 

Figure 2.6 Simple schematic showing the production, transport and oxidation pathways of 

wetland CH4. 

Termites 

Termites account for a relatively small fraction of biogenic CH4 emissions (2 to 22 Tg/yr). As 

with ruminants, the emissions originate in the gut of the termite and vary dependent on several 

factors. There are three main dietary types of termite, soil-feeding, wood-feeding and fungus-

growing (Sanderson et al., 1996). Each type emits CH4 at different rates and there are uncertainties 

in the spatial distribution of each (Sugimoto et al., 1998). Termite CH4 emissions have been found 

to have a strong seasonal cycle, with emissions 3.5 times higher in the wet season compared to 

the dry season (Jamali et al., 2011). This is mostly due to a large increase in biomass during the 

wet season.    

Hydrates and Oceans 

Both hydrate and ocean emissions are emitted from the surface of the ocean. Hydrate CH4 is 

trapped in crystalline water molecules found in the deep ocean formed under conditions of low 

temperature and high pressure. Changes in pressure and temperature can trigger the release of the 

CH4 from the gas hydrate. Hydrates are most commonly found in coastal regions, with high 

concentrations in the northern high-latitudes. There is a large uncertainty of the total CH4 trapped 
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in hydrate and several factors play a role in emissions firstly, the formation, and secondly, the 

release of CH4 from hydrates. When considering the formation of CH4 hydrates a clear 

understanding of the accumulation of organic carbon on the seafloor, the seafloor microbial 

community, the thickness of the hydrate stability zone, the CH4 solubility, sediment compaction 

and transport is required (Wallmann et al., 2012). The process complexity, which includes carbon 

accumulation and microbial kinetics, and the lack of measurement data restrict the accuracy of 

CH4 hydrate emissions (Wallmann et al., 2012). Future changes in sea temperatures and 

circulation might lead to changes in hydrate emissions and possibly lead to a positive climate 

change feedback (Archer et al., 2007). Currently hydrate emissions are estimated to be between 

2 and 9 Tg/yr.  

Newly formed CH4 from the ocean can be emitted from the ocean surface. In this study these 

ocean emissions are considered separately from hydrate emissions. As in wetland ecosystems, 

some aquatic environments consist of methanogens and methanotrophs. CH4 is typically produced 

in anoxic zones of the ocean, such as the deep ocean or in the sediment layers. Most of this CH4 

is then consumed in the oxygenated regions of the ocean (Conrad, 2009). If surface waters become 

supersaturated then CH4 can outgas into the atmosphere. Without analysis of isotopic signatures 

it is difficult to distinguish between emissions that originate from hydrates and more newly 

formed CH4 emissions. However, total marine emissions are estimated to be around 20 Tg/yr 

(Ciais et al., 2014).      

Geological 

Geological sources of CH4, which includes geothermal activity and mud volcanoes, have been 

estimated at 53 Tg/yr using a combination of top-down estimates based on radiocarbon (14C)  and 

bottom-up estimates of CH4 in the lithosphere (Etiope et al., 2008). This value includes the marine 

emissions previously mentioned (20 Tg/yr). The CH4 trapped in the Earth’s crust is formed 

through thermogenic and biogenic processes. The CH4 is then transported up into the atmosphere 

by mud volcanoes, faults, fractures and volcanic activity (Kvenvolden and Rogers, 2005). The 

spatial distribution of geological emission sites is poorly constrained and the total emission 

estimates vary from 13 to 80 Tg/yr (Etiope et al., 2008). 

2.5 Atmospheric CH4 Observations 

Atmospheric measurements of CH4 are being increasingly used to gain insights into the change 

in emissions, sinks and growth of CH4. The three main methods for the measurement of 
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atmospheric CH4 concentrations are in-situ flasks, ground-based Fourier Transform 

Spectrometers and satellites. All three are used in this study, with the basic retrieval methods 

discussed in this section and further model comparison details provided in Chapters 3 and 5.  

2.5.1 Surface Observations 

Ground based in-situ measurements provide the longest record of recent atmospheric CH4 

concentrations. The National Oceanic and Atmospheric Administration (NOAA) has provided 

surface CH4 measurements since 1983 (Mauna Loa, Hawaii) through the cooperative air sampling 

network. The network has continuously expanded from just a few stations and now provides 

monthly mean flask CH4 data from 92 sites. The monthly mean data are averaged from 

approximately weekly measurements (Dlugokencky et al., 2015). The data have a relatively good 

global coverage, although there are only a few tropical sites. As a result the horizontal distribution 

of surface CH4 in the tropics is poorly captured in the observation network. It is important to note 

that although the relative length, accuracy (0.2%), spatial coverage and temporal coverage of the 

flask based measurements are good, they are restricted by only being able to provide surface 

measurements. The samples taken are sent to Boulder, Colorado, where the measurements are 

made. This is done by first injecting standard air samples into a gas chromatograph. Packed 

columns are used to separate the CH4 out from the sample before flame ionisation is used for 

detection (Dlugokencky et al., 2015).  

The Advanced Global Atmospheric Gases Experiment (AGAGE) network also measures surface 

CH4 but in-situ using real-time flame ionisation detectors. The data provided by AGAGE offers 

a coarser spatial resolution because there are only 5 sampling sites used. In addition to the CH4 

measurements made by both NOAA and AGAGE, the two sampling networks also provide 

measurements of CH3CCl3. These data can be used to derive atmospheric OH concentrations and 

this is further discussed in more detail in Chapter 4.   

2.5.2 Ground-based Column Observations 

The Total Carbon Column Observing Network (TCCON) measures atmospheric CH4 using 

ground-based Fourier Transform Spectrometers (Wunch et al., 2011). First established in 2004, 

the TCCON network contains 26 sites, of which 24 are operational. The spatial coverage is biased 

to the northern hemisphere with noticeable gaps in Africa, Asia and South America, as shown in 

Figure 2.7. The TCCON dataset therefore lacks the spatial coverage and, with the time series only 
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commencing in 2004, the duration of the surface in-situ measurements. The advantage of TCCON 

is that it measures predominantly tropospheric column profiles, providing a vertical column of 

CH4, with an accuracy of <0.25%. TCCON instruments use the shortwave infrared spectral 

region, with central wavenumbers at 5938, 6002, 6076 cm-1, to record direct solar spectra (Wunch 

et al., 2011). The shortwave infrared frequency range is selected because it includes temperature-

independent absorption bands of CH4, with high sensitivity in the lower troposphere. Further 

details of TCCON vertical sensitivities are provided in Chapter 5.  

The accuracy of measurements is expected to improve in the future with the increasing use of 

proxy species, such as hydrogen fluoride, to remove the contribution of stratospheric variability 

of CH4 (Saad et al., 2014). To compare TCCON measurements with other datasets requires the 

application of an averaging kernel; these are discussed in more detail in Chapter 5.  

In addition to TCCON, the Network for the Detection of Atmospheric Composition Change 

(NDACC) also provides atmospheric CH4 measurements from ground-based Fourier Transform 

Spectrometers (Sepúlveda et al., 2014). NDACC has a similar global coverage to TCCON, with 

15 stations located at a large range of latitudes. The time series length of NDACC stations is 

typically longer than the TCCON stations, with some extending back to 1989. The majority of 

data from NDACC sites are not continuous and contain gaps in their record. In addition to these 

gaps, several sites are no longer operational, resulting in missing data for the past few years. For 

these reasons NDACC data are not used in this study.  

 

Figure 2.7 Map showing spatial distribution of TCCON measurement sites. Circles show 

currently operational sites and squares show planned sites (tccon.ornl.gov, 2016). 
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2.5.3 Satellite Observation 

Satellite remote sensing of lower tropospheric CH4 was pioneered with the launch of the 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) in 

2002 (Bovensmann et al., 1999). Previous upper atmosphere observations are available from The 

HALogen Occultation Experiment (HALOE) (Russell et al., 1993), which retrieved limb viewing 

profiles; however, observations only extended down to the tropopause, making the data unsuitable 

for use with surface flux estimates.  

Early missions capable of global coverage CH4 retrievals, such as IMG/ADEOS operated in the 

thermal infrared (3 - 8μm) (Kobayashi et al., 1999). Thermal infrared observations have a 

maximum sensitivity in the mid-troposphere, with low sensitivity in the lower troposphere 

(Buchwitz et al., 2005). This makes thermal infrared retrievals less suited to the detection of 

surface methane fluxes.  

Tropospheric CH4 retrievals from nadir viewing short-wave infrared (1.4-3 μm) instruments 

began with SCIAMACHY. The short-wave infrared measurements taken from SCIAMACHY are 

sensitive to low altitude levels, including the lower troposphere and boundary layer, making them 

better suited for estimating surface fluxes (Buchwitz et al., 2005). These retrievals required 

validation from ground stations but provided global coverage at a high spatial and temporal 

resolution for the first time. The passive spectrometer on-board SCIAMACHY measured 

backscattered, reflected, transmitted or emitted radiation from the surface and atmosphere. Until 

April 2012 SCIAMACHY provided global measurements of trace gases, including CH4 from the 

1.66 μm band (Schneising et al., 2009).  

Following on from the success of SCIAMACHY, the Infrared Atmospheric Sounding 

Interferometer (IASI) and the Greenhouse gases Observing SATellite (GOSAT) were launched. 

The main difference between IASI and the other two satellites (GOSAT and SCIAMACHY) is 

the wavelength of operation. IASI operates in the mid-infrared, which allows for day and night 

coverage, land and ocean coverage and sensitivity to CH4 in the mid to upper troposphere. Both 

GOSAT and SCIAMACHY operate in the shortwave infrared, allowing for lower troposphere 

retrievals. IASI operates using a Michelson interferometer in the mid-infrared to provide total 

column-integrated CH4 content with a horizontal resolution of 100 km and an accuracy of 10%.   
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Figure 2.8 (Left) Schematic illustrating GOSAT observational method. (Right) The three-day 

GOSAT footprint (gosat.nies.go.jp, 2015) 

GOSAT is the first satellite dedicated purely to greenhouse gas retrievals; this is done using the 

Thermal And Near-infrared Sensor for carbon Observation (TANSO). The Fourier Transform 

Spectrometer is part of TANSO and operates in a similar way to the interferometer on IASI. 

Incoming radiation is split into two optical paths, which creates an optical path difference. A 

Fourier transform is applied to the measured interference, which provides a spectrum. The 

absorption of radiation by surface waters makes atmospheric CH4 difficult to measure over lakes 

and oceans. Two of the four TANSO bands are used to target the retrieval of CH4, band 2 and 

band 4, with spectral coverages at 1.56-1.72 and 5.56-14.3 μm, respectively. This study uses 

GOSAT data because of the near surface sensitivity, which is explored in more detail in Chapter 

5. 

2.6 Trends in Atmospheric CH4 

2.6.1 Long-term Trends 

From 1000 to 1750 globally-averaged atmospheric CH4 had no clear trend with concentrations 

varying by about 40 ppb from a mean of 695 ppb (Etheridge et al., 1998). Since the pre-industrial 

era global mean CH4 concentrations have increased by a factor of 2.5, from approximately 722 

ppb in 1750 to 1803 ppb in 2011 (Etheridge et al., 1998; Dlugokencky et al., 2005). Figure 2.9 

shows this notable increase in CH4 concentration over this time period. This long-term increase 

has been attributed to a rise in anthropogenic emissions from fossil fuel exploitation, agriculture, 

waste management and biomass burning. Emissions more than doubled from a pre-industrial 

value of approximately 250 Tg/yr to a 2000 to 2010 value of 553 Tg/yr (Etheridge et al., 1998; 

Dlugokencky et al., 2011; Ciais et al., 2014). 
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Figure 2.9 Atmospheric CH4 concentrations over the last 1000 years, based on various ice core 

samples (Etheridge et al., 1998). 

2.6.2 Recent trends 

The relatively short atmospheric life-time of CH4, compared to CO2, means that interannual 

changes in sources and sinks are easily detectable in observations. The relatively smooth increase 

in globally-averaged atmospheric CH4 on an inter-decadal timescale since the pre-industrial era 

is less apparent on a more recent interannual (0 – 10 year) timescale. Since continuous flask 

measurements became available in the mid-1980s, the rate of increase of atmospheric CH4 has 

been observed to slow down (Dlugokencky et al., 2011). Figure 2.10 shows deviations from a 

steady growth, using observations from University of California, Irvine (UCI), AGAGE and 

NOAA surface sampling sites.  
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Figure 2.10 (a) Averaged global surface CH4 from the University of California, Irvine (green), 

AGAGE (red) and NOAA (blue) networks. (b) 12-month smoothing of growth rate in ppb/yr for 

averaged global CH4 using same colours as (a) (Hartmann et al. 2013). 

The atmospheric CH4 growth rate, shown in Figure 2.10, can be split into several phases. Firstly; 

from the mid-1980s until 1991 the rate of growth steadily decreased from 12 ppb/yr to 

approximately 8 ppb/yr. This steady decline has been attributed to a long-term gradual decrease 

in anthropogenic emissions, with large interannual variability in wetland emissions during this 

period (Bousquet et al., 2006). During this period the AGAGE observation network observed a 

large growth anomaly, which has been attributed to a sharp decrease in destruction by OH in the 

tropics (Bousquet et al., 2006). This anomaly is likely less apparent in other networks due to the 

spatial distribution of the measurement sites. 

The second noticeable deviation occurred between 1991 and 1993 when there was a sharp 

increase followed by a drop in the atmospheric growth rate, reaching a rate of 0 ppb/yr, observed 

by all networks. These were likely caused by two major events, the eruption of Mount Pinatubo 

in June 1991 and the collapse of the Soviet Union (Dlugokencky et al., 1994). Following the 

Pinatubo eruption volcanic aerosols caused a reduction in ultraviolet radiation reaching the 

troposphere. This lowered the concentration of species, like OH, which lead to a decrease in the 

photochemical loss of CH4 (Dlugokencky et al., 1996), explaining the initial growth in CH4 after 
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mid-1991. In the months after the eruption a reduction in direct solar radiation also caused a drop 

in global temperatures; for example just over a year after the eruption northern hemisphere 

temperatures had decreased by 0.7°C (Dutton and Christy, 1992). As wetland CH4 emissions are 

temperature dependent this caused a decrease in emissions which is partly responsible for the 

decrease in the growth rate in 1992. Prior to the collapse of the Soviet Union there existed large-

scale inefficiency in the extraction and transport of natural gas, resulting in emissions of 29 to 50 

Tg/yr (Reshetnikov et al., 2000). A majority (>80%) of extracted gas originated in the West-

Siberian gas fields and had to be transported long distance through ageing pipelines, which led to 

a large loss of CH4. Following the collapse, new investment allowed for the construction of 

pipelines, which were maintained with more generous funding (Reshetnikov et al., 2000). This 

resulted in a decrease in emissions of 10 Tg/yr, helping to explain some of the observed decrease 

in growth in 1992 and 1993 (Dlugokencky et al., 2003). 

From 1993 CH4 growth resumed at a steady rate until 1997 when a strong El Niño event caused 

a large increase in the growth rate. An El Niño event is characterised as the Pacific warm phase 

of the El Niño Southern Oscillation (ENSO), the cause of which is poorly understood (Trenberth, 

1997; Guilyardi et al., 2012). ENSO events lead to a shift in the atmospheric Walker circulation 

due to changes in ocean circulation. This causes changes in temperatures and rainfall patterns 

globally, which influences both wetland and biomass burning CH4 emissions (van der Werf et al., 

2006; Hodson et al., 2011). The overall global shift in wetland CH4 emissions during an ENSO 

event is poorly understood, with a recent study suggesting an overall decrease during the warm 

phase and an increase during the cool phase (La Niña) (Hodson et al., 2011). During the warm 

phase, like the El Niño event in 1997 and 1998, drought in equatorial Asia and Central and South 

America caused an increase in fire activity (van der Werf et al., 2006). It has been suggested that 

the large increase in atmospheric CH4 growth in 1997/1998 is due to the increased biomass 

burning emissions (Bousquet et al., 2006). In addition to CH4 emissions, changes in other 

chemical species, such as CO, during ENSO events are likely to influence OH concentration and 

therefore the loss rate of CH4. 

After the sharp increase in the CH4 growth rate in 1997/1998 there followed a stagnation period 

of nearly zero growth from 1999 to 2006. The cause of this stagnation period is not well 

understood and it is investigated in this thesis (Chapter 4). Several hypotheses have been proposed 

to explain the stagnation including a drop in anthropogenic emissions, a drop in wetland emissions 

and a change in atmospheric conditions (Warwick et al., 2002; Bousquet et al., 2006; Chen and 

Prinn, 2006). There remains a lack of consistency between studies with some suggesting that 

anthropogenic emissions continued to increase (Olivier et al., 2005) and others showing much 

more uncertainty in the role of wetland emissions (Pison et al., 2013). Kai et al. (2011) used trends 
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isotopic measurements from Niwot Ridge to provide an alternative hypothesis that a change in 

agricultural practices caused a reduction in emissions from rice paddies. Levin et al. (2012) used 

a more comprehensive dataset and found a much smaller trend in the isotopic signature; results 

that were not consistent with Kai et al. (2011). The role of changes in atmospheric conditions 

over this period has not been studied in detail and serves as motivation for Chapter 4. 

It had been previously suggested that the observed stagnation between 1999 and 2006 might be a 

trend towards a steady state, especially considering the slowdown in growth in the preceding years 

(Dlugokencky et al., 2003). Since 2007 there has been renewed growth observed globally, 

suggesting either an increase in emissions or a reduction in the sinks that had been responsible 

for the observed temporary steady state. The renewed growth was particularly evident in tropical 

regions, with studies suggesting an increase in wetland emissions in 2007/2008 (Dlugokencky et 

al., 2009; Bousquet et al., 2011). In a similar way to the stagnation period most studies have 

focused on the potential changes in emissions, with less investigation into the potential changes 

in sinks. By investigating the causes of recent trends in CH4 growth a better understanding and 

prediction can be made for future changes in CH4.  

2.7 Summary 

The overall global atmospheric CH4 budget is well constrained by top-down emission inventories 

(Kirschke et al., 2013). There is, however, considerable uncertainty in the spatial and temporal 

distribution of emissions from individual sources, most notably wetlands. To improve predictions 

of future changes in emissions these uncertainties need to be addressed. Wetlands account for the 

largest single source of CH4 to the atmosphere, the largest interannual variability and the largest 

uncertainty in emissions. This highlights the importance of developing a better understanding of 

the distribution of wetlands and the processes controlling emissions from them.  

There is consistency in the observed highly variable growth rate between observation networks 

over the past three decades, which is poorly understood (Hatermann et al., 2013). Previous studies 

suggest that the interannual variability in wetland and biomass burning emissions play a large part 

in the observed variability in CH4 growth (Dlugokencky et al., 2009; Bousquet et al., 2011). Part 

of this hypothesis can be tested using detailed bottom-up wetland CH4 inventories, atmospheric 

models and observations. Variations in atmospheric conditions are also a possible reason for the 

observed variability in CH4 growth.  
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3 Modelling Tools 

3.1 Introduction 

This chapter details the modelling approaches used in Chapters 4, 5 and 6. Mathematical computer 

models, which describe both chemical and physical processes, are a numerical representation of 

our understanding of a system. They are essential tools used in conjunction with observations to 

improve and test our understanding of the Earth system. They are also used to provide predictions 

of the future based on predicted scenarios, for example to estimate future changes in temperature 

in response to variations in atmospheric gas concentrations.   

Section 3.2 summarises the development of wetland CH4 emissions models, with a focus on 

JULES (Clark et al., 2011), which is used to simulate land surface processes. Section 3.3 describes 

the TOMCAT CTM, which is used to simulate chemical and physical interactions within the 

atmosphere. This includes a brief overview of the history of TOMCAT and examples of studies 

where it has been used. Section 3.4 discusses the findings of previous studies, which have 

compared modelled CH4 with observations.  This includes flux measurements which are typically 

compared directly with wetland CH4 models and atmospheric observations which are compared 

with CTMs. Section 3.5 provides an overall conclusion to the present state of land surface and 

atmospheric modelling.   

3.2 Land Surface Models 

Land surface models (LSMs) are used to describe the complex interactions between the Earth 

surface and atmosphere. The land surface is typically split into grid cells, which can then be 

further divided into subgrid scale surface types, plant functional types (PFTs) and soil layers, as 

shown in Figure 3.1. LSMs typically include equations describing the energy balance, hydrology, 

carbon cycle and vegetation. Each of these processes interacts with each other to provide a 
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detailed framework of the whole ecosystem. For instance, changes in the hydrology might 

influence vegetation growth, which in turn would affect the surface energy budget.  

The complexity of LSMs can be varied to suit the problem being studied and our understanding 

of any particular process. Disabling certain processes can also influence both the computing time 

and model uncertainties. For example if the model fails to estimate vegetation accurately the 

model can be forced by prescribed vegetation. Often additional model modules, like wetland CH4 

processes, can be coupled to a LSM to simulate processes that are not usually required in standard 

simulations (e.g. Wania et al., 2010; Riley et al., 2011). Section 2.3.1 describes wetland CH4 

models, some of which are in-built to LSMs some that are used as attachments and some that are 

stand alone.  

LSMs are often coupled with atmosphere and ocean models to produce Earth system models 

(ESMs), which can then be used to provide climate change projections. They can also be used in 

“stand-alone” mode, which requires the use of meteorological forcing data to drive the model. 

The LSM output can then be input into an atmospheric model in a subsequent experiment. This 

thesis adopts this approach and uses LSMs and CTMs in “stand-alone” mode. 

 

Figure 3.1 Subgrid hierarchy within the Community Land Surface model, showing the surface 

types, soil layers and plant functional types (PFTs) (Oleson et al., 2010). 
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3.2.1 Wetland CH4 Emission Models 

Global-scale modelling of wetland CH4 emissions began with Matthews and Fung (1987). That 

model relied on prescribed vegetation, soil properties and fractional inundated area datasets to 

generate global CH4 emission datasets, with an estimate of ~110 Tg/yr (Matthews and Fung, 

1987). These emission estimates were based on upscaling from local flux measurements to the 

global scale. Without the use of land surface models or time-varying wetland fractions, these early 

attempts to quantify wetland emissions did not capture the temporal variation in emissions.  

Process-based modelling of wetland CH4 introduced time-varying emissions (Fung et al., 1991). 

These were initially dependent on the time-invariant inundation product from Matthews and Fung 

(1987) but introduced a basic representation of surface CH4 oxidation and soil layers (Christensen 

and Cox, 1995). Studies also began to include vegetation models to estimate CH4 emissions, 

which allowed for a soil carbon representation (Christensen and Cox, 1995). Following on from 

earlier studies, substrate availability, wetland fraction and soil temperature emerged as the 

dominant controls of wetland CH4 emission and were used as prescribed parameters to generate 

emissions (Cao et al., 1996).  

All methods mentioned above relied on a prescribed inundation area and were not coupled to 

LSMs. As a result the hydrology in the models was fixed and they could not be tested for climate 

sensitivity. After these initial models, wetland CH4 modelling development began to split into 

two directions. The first is discussed in more detail in Chapter 6 and involved a detailed process 

description at a local scale (Walter et al., 1996; Zhuang et al., 2004). The second involved simpler 

process descriptions with time-varying hydrology at a global scale (Gedney et al., 2004; Wania 

et al., 2010; Riley et al., 2011). By using topographic indices and soil property information land 

surface models began to develop more advanced hydrology schemes which aimed to better 

capture the seasonal and interannual variability in wetland fraction. Global LSMs typically use a 

semi-empirical fit of parameters, such as soil temperature, to simulate wetland CH4 emissions 

which are then scaled to a global value based on inversion estimates (Gedney et al., 2004). An 

alternative method involves scaling up from site flux measurements (Wania et al., 2010; Riley et 

al., 2011). As a result the total emissions over a defined period are fixed by the scaling factor, but 

this can be used to perform a transient climate simulation to predict future changes in wetland 

emissions (Gedney et al., 2004). There are large uncertainties in the future emissions of wetland 

CH4, but studies suggest that emissions are likely to increase (Gedney et al., 2004; O’Connor et 

al., 2010). These uncertainties are a result of unknown temperature feedbacks, changes in wetland 
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distribution and permafrost carbon storage. Figure 3.2 shows a model-simulated future wetland 

CH4 emission scenario, which suggests an almost doubling of wetland CH4 emissions by 2100. 

The major challenges facing current wetland CH4 modelling have been outlined in a recent multi-

model intercomparison study (Melton et al., 2013). That study highlighted the differences 

between current LSM estimates, stating that they were a result of a combination of parameter and 

structural uncertainty. This suggests that the problem can be split into two subsections, the 

difference in the parameters that control wetland emissions (e.g soil temperature) and the 

complexity of the wetland process within the models. Chapter 5 investigates how multiple models 

with similar processes perform using different parameter sets, with wetland fraction being the 

largest control on emission differences. Melton et al., (2013) showed large differences in the 

wetland fraction of different land surface models (see Figure 3.3). Chapter 6 focuses on how 

adding in more complex processes affects the accuracy of wetland models. Current assessments 

of LSMs typically involve comparisons with surface flux measurements; one aim of this thesis is 

to upscale the comparisons to a global scale by incorporating the fluxes in a CTM.     

 

Figure 3.2 Simulated future wetland CH4 emissions in Tg/yr based on a suite of different 

temperature sensitivities as given by JULES (Gedney et al., 2004). 

 

Figure 3.3 Zonal sum of mean annual maximal wetland area from 1993 to 2004 from different 

land surface models. K07 and GIEMS lines are based on observations (Melton et al., 2013). 
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3.2.2 JULES Model Description 

JULES, the primary LSM used in this study, was developed as a community land surface model 

from the Met Office Surface Exchange Scheme (MOSES), which was originally designed as the 

land surface component for Earth system and weather forecasting models (Cox et al., 1999). 

JULES contains multiple land surface modules that interact with each other, including surface 

radiation, vegetation, hydrology and soil processes. Each process can be simulated with various 

different complexities, dependent on the user requirements. For this study JULES is run globally 

at 0.5° by 0.5° with daily output. To simulate CH4 emissions the current version of JULES uses 

modelled soil carbon, soil temperature and wetland fraction (Gedney et al., 2004).  

For soil carbon, vegetation information is first required. All simulations in this thesis use the 

dynamic vegetation model Top-down Representation of Interactive Foliage and Flora Including 

Dynamics (TRIFFID), which includes simulated plant growth for 5 plant functional types (PFTs): 

broadleaf trees, needle leaf trees, C3 grasses, C4 grasses and shrubs. The vegetation dynamics 

allow for litterfall which enters the soil carbon model, RothC (Coleman and Jenkinson, 1999). 

Soil carbon in the RothC model is split into four pools: decomposable plant material (DPM), 

resistant plant material (RPM), biomass (BIO) and humus (HUM). Total soil carbon is increased 

by litterfall and decreased by soil respiration. The respiration rate varies for each pool and the 

pool allocation is dependent on the type of litterfall and interactions between the pools.  

JULES uses soil temperature in the calculation of soil respiration and the production of CH4 by 

methanogenesis. Soil thermodynamics in JULES simulates both surface and subsurface soil 

temperature. Surface soil temperatures, used in the simulation of CH4, are calculated in the surface 

exchange module. This module requires various data including incoming longwave and 

shortwave radiation, surface grid cell type and soil thermal conductivity properties. Thermal 

diffusion, which is dependent on soil moisture and various soil properties in JULES, is used to 

produce subsurface soil temperatures.   

Within the surface hydrology module of JULES The TOPography-based hydrological MODEL 

(TOPMODEL) (Bevan et al., 1984) is used to represent soil hydrology, which determines wetland 

fraction. TOPMODEL is required to simulate surface fluxes and runoff in each grid cell and is 

dependent on a topographic index, which is an amalgamation of various elements which can 

define the hydrological surface dynamics. By providing a representation for drainage and runoff 

the topographic index controls the tendency for a grid cell to become saturated. This study uses a 

recently developed topographic index to drive TOPMODEL within JULES (Marthews et al., 

2015). Previous versions of JULES failed to capture the spatial distribution of wetland fraction 
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when compared to observations (Hayman et al., 2014). The new topographic index is used in 

Chapters 4, 5 and 6.       

3.3 Atmospheric Models 

Atmospheric observations provide essential information about CH4 concentrations in the present 

day and recent past. However to develop a better understanding of the distribution of sources and 

sinks numerical models are required. A 3-D model simulates the physical and chemical processes 

controlling one or more chemical species in the atmosphere. This is done by solving the continuity 

equations for mass conservation of the species. These are shown in equation 3.1 which describes 

the transport of a species in 3-dimensional space, where F is the flux vector, n is the number 

density of the species, t is time, x, y and z are the directions, and ∇ ∙ 𝐹 is the flux divergence 

measuring net flow.  

𝜕𝑛

𝜕𝑡
= −

𝜕𝐹𝑥

𝜕𝑥
−
𝜕𝐹𝑦

𝜕𝑦
−
𝜕𝐹𝑧

𝜕𝑧
= −∇ ∙ 𝐹 (3.1) 

Grid cell concentrations (Ct) of chemical species within a model are provided by balancing the 

concentration at the previous time step (Ct-1), a grid cell flux (F) and chemical loss or production, 

which is often dependent on other species (Y) and temperature (T), shown in equation 3.2. 

[𝐶𝑡] = [𝐶𝑡−1] + 𝐹 + 𝑓([𝑌], 𝑇, [𝐶𝑡−1])   (3.2)    

By comparing the results of CTM simulations with observations, underlying processes can be 

better understood. CTMs require meteorological inputs because they do not simulate atmospheric 

dynamics unlike general circulation models (GCM). The advantages of using CTMs over GCMs 

are that they are less computationally expensive, easier to run and can be easily compared with 

observations. An off-line CTM does not include chemical feedbacks into the driving meteorology. 

In the past few decades CTMs have been increasingly used to create global CH4 budgets (Fung et 

al., 1991; Dlugokencky et al., 2011; Kirschke et al., 2013). Two methods are commonly used in 

most atmospheric modelling studies, forward and inverse.  

3.3.1 Forward Chemical Transport Models  

Forward CTMs, like that used in this thesis, require emission estimates and loss fields of chemical 

species. Emissions come from a wide range of sources described in Chapter 2, including national 



Modelling Tools  37 

 

 

inventories, land surface models and satellite proxy methods. CTMs can be split into two 

categories; Lagrangian models use a local air-parcel-following frame of reference, whereas 

Eulerian models contain gridboxes with fluxes in and out. This makes Eulerian models more 

suitable for understanding global budgets. Eulerian models typically comprise of multiple 

horizontal and vertical levels, the emissions are input at the surface level and are transported 

around the model gridboxes via advection, convection and boundary layer mixing. Once in the 

atmosphere, loss fields are applied to the species, these can either be calculated or specified. 

Calculated loss fields are defined by fully interactive chemistry where equations are solved for 

each species. Specified loss fields use prescribed data from elsewhere, the advantages and 

disadvantages of both methods are discussed further in Chapter 4. For the soil sink, the loss can 

be applied as a negative emission field. The spatial variation in emissions, loss fields and transport 

plays a key role in the removal of CH4. If, for example, large quantities of CH4 were emitted and 

remained in poorly sunlit regions due to no mixing or transport being simulated, then the lifetime 

of CH4 would increase due to the limited availability of OH. Results in Patra et al. (2011) show 

how forward models can be used to investigate emissions, transport and loss fields by comparing 

models not only with each other but also with observations. Their results show that differences 

exist within forward model predictions but they generally agree well with observations.  

3.3.2 Inverse Chemical Transport Models 

Inverse modelling techniques use observations of atmospheric concentrations of CH4 to estimate 

a surface emission flux, e.g. Wilson et al. (2014). This top-down approach provides a good spatial 

coverage for emission estimates, but like forward modelling requires accurate modelling of 

transport. Previous studies suggest the lack of spatial coverage of observations and inaccuracy in 

model transport hinder the accuracy of inferred emission estimates from inversions (Dentener et 

al., 2003; Mikaloff Fletcher et al., 2004; Chen and Prinn, 2005). Additionally, inverse modelling 

requires a prior estimate of emissions and an estimate of the error. 

3.3.3 TOMCAT Model Description 

TOMCAT is an off-line Eulerian CTM, which was originally created to study the polar 

stratosphere in the early 1990s at the Centre National de Recherches Météorologiques (CNRM) 

in Toulouse (Chipperfield et al., 1993). A related model, SLIMCAT, was later created from 

TOMCAT to improve simulations of the stratosphere using a different vertical level system 

(Chipperfield et al., 1996). The two models were later combined to create a newer version of 
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TOMCAT, described by Chipperfield (2006), that has been used in many tropospheric studies 

(e.g. Dhomse et al. 2011; Hossaini et al., 2015). The version of TOMCAT used in this study has 

a horizontal resolution of 2.8° by 2.8° with 60 vertical levels from surface to ~60km. The model 

levels use a hybrid vertical coordinate (σ-p), with terrain-following levels near the surface (σ) and 

pressure levels in the upper atmosphere (p). The pressure of a model half-level (pk+1/2), or 

interface, is given by equation 3.3, where p0 is a reference pressure of 100,000 Pa and ps is the 

surface pressure (see Chipperfield et al., 2006).  

𝑝𝑘+1/2 = 𝐴𝑝0 + 𝐵𝑝𝑠 (3.3) 

Transport in the TOMCAT model used in this study is controlled by separate advection, 

convection and planetary boundary layer schemes. Advection in the model is represented by 

equation 3.1. Convection within the model is based on a scheme developed by Tiedtke (1989) and 

described by Stockwell and Chipperfield (1999). Planetary boundary layer mixing is based on a 

scheme developed by Holtslag and Boville (1993) and described by Wang et al., (1999). 

TOMCAT can be used in full chemistry mode, which includes multiple chemical species; 

however for the purpose of this study a simplified chemistry is used which is explained in more 

detail in Chapter 4. The TOMCAT simulations used in this thesis are forced by winds and 

temperatures from the 6-hourly European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA-Interim reanalyses (Dee et al., 2011). These are transformed onto the model grid 

prior to use in the model simulations and the model is updated on 30-minute time steps. 

TOMCAT has been previously used to investigate the impact of meteorology on the interannual 

growth rate of CH4 in the atmosphere using an offline OH field (Warwick et al., 2002). A similar 

simplified chemistry scheme used in this thesis has also been previously used in TOMCAT to 

show good model agreement with observed atmospheric CH4 concentrations (Patra et al., 2011).    

3.4 Comparisons with Observations 

Previous studies have compared land surface and atmospheric model output of CH4 with 

observations to aid in model development and improve process understanding. Fung et al., (1991) 

combined a wetland CH4 model, a CTM and observations to generate geographical and seasonal 

emission distributions. This study highlighted uncertainties because of the unknown magnitude 

of individual sources and the limited measurement data. The study concluded that, based on the 

data available, a global methane budget could not be estimated. On a site-specific scale wetland 

models were developed to have good agreement with observations (Walter et al., 1996). At the 
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same time global wetland models were developed but not tested against observations (Cao et al., 

1996). Walter et al. (2000) introduced additional surface processes to an earlier study by Walter 

et al.  (1996) and generated a model that could be, but had not yet been, used on the global scale. 

Wania et al. (2010) and Riley et al. (2011) carried out model comparisons, which showed good 

agreement with surface flux measurements; however they did not compare their results with 

atmospheric measurements using a forward CTM. Wania et al. (2010) showed that the model can 

be tuned at individual sites to capture the seasonality observed in flux observations. The model is 

then tuned to one single parameter set that is used across all sites. Some sites show a large 

reduction in model performance whilst others appear almost unchanged (see Figure 3.4). 

 

Figure 3.4 Modelled CH4 emissions compared with flux observations for seven northern 

hemisphere sites. Results are plotted with the RMSE value relative to the observation for the 

model tuned for the individual site (red line) and model tuned for all sites (black line) (Wania et 

al., 2010). 
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Atmospheric observations can be compared with CTM results to assess the model, the estimated 

sources and sinks, and the meteorological fields. Chen and Prinn (2005) compared modelled and 

flask measurements of atmospheric CH4 between 1996 and 2001 to show that the model captures 

some, but not all, of the seasonality in the observations. The interannual variability was not tested 

because repeating yearly emission and loss fields were used. Patra et al. (2011) used multiple 

emission inventories in multiple CTMs and compared the output with data at 8 surface sites. They 

found that the seasonal cycle was well captured at most sites, but not at high latitudes. These 

initial comparisons suggest that surface CH4 is well captured by the models in most regions; 

however the spatial distribution of the surface observations used is poor.   

Initial comparison studies with satellite-retrieved data showed a model agreement within 5-10% 

of SCIAMACHY CH4 columns (Buchwitz et al., 2005). The errors in the SCIAMACHY retrieval, 

although relatively small, are on a similar scale to predicted spatial variation in CH4 fluxes. It can 

therefore be reasoned that in order to accurately detect spatial variations in CH4 concentration 

these errors must be reduced. This thesis aims to show that by using more recent satellite data 

from GOSAT and IASI, both of which have more accurate instruments, these errors will be 

reduced to a suitable level. Investigations into the spatial variation in emission inventories using 

SCIAMACHY show tropical emissions are generally underestimated in the inventories, 

highlighting wetlands as a key area of concern (Bergamaschi et al., 2007). Hayman et al., (2014) 

used an ESM with three different bottom-up wetland emission inventories and compared the 

results with SCIAMACHY and surface observations between 1999 and 2007. One wetland 

dataset used annually repeating emissions from Fung et al., (1991). The second used the JULES 

process description with prescribed soil carbon. The third used the JULES process description 

with prescribed soil carbon and wetland fraction. They found a total offset of 50 ppb between the 

model and SCIAMACHY and found large spatial differences between the model simulations.     

Parker et al. (2011) found good agreement between CTM predictions and GOSAT measurements. 

That study not only shows high hemispheric gradient correlation values (R = 0.93 - 0.99) between 

model and satellite data but also good regional correlations (R = 0.71 – 0.97). Results shown 

elsewhere suggest that the regional correlation between GOSAT and the GEOS-Chem CTM is 

lower (R = 0.11 – 0.90) (Fraser et al., 2013). Both these studies use top-down emission estimates 

of wetland CH4 and do not test the accuracy of bottom-up wetland inventories (Bloom et al., 

2012). From the two studies shown in Figure 3.5, Parker et al. (2011) and Fraser et al. (2013), it 

can be concluded that although variation in comparison methods remain, satellite data can provide 

an accurate assessment of model results.  
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Figure 3.5 Top - Time‐series of the GOSAT and GEOS‐Chem column-average CH4 dry-air mixing 

ratios (XCH4) between August 2009 and July 2010 globally and for the 7 regions outlined on the 

map. (Parker et al., 2011). Bottom – Time-series of the GOSAT and GEOS-Chem XCH4 between 

June 2009 and December 2010. The inset numbers are the correlation coefficients between the 

two GOSAT proxies (green), the Carbon Tracker proxy and GEOS-Chem XCH4 (blue), and the 

Geos-Chem proxy and GEOS-Chem XCH4 (red) (Fraser et al., 2013).  
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3.5 Summary 

Recent developments of LSMs have provided simulated global wetland fraction, soil temperature 

and carbon substrate for the first time. These are the three key parameters that drive wetland CH4 

emissions and, as a result, bottom-up emission inventories can now be compared against top-

down estimates and observations. Studies have shown that, on a site-specific scale, tuned bottom-

up model predictions agree well with flux measurements (Walter et al., 1996; Wania et al., 2010; 

Riley et al., 2011). CTMs and SCIAMACHY have been used to test bottom-up models of CH4 

on a global scale (Buchwitz et al., 2005; Hayman et al., 2014). More recent observations (GOSAT 

and IASI) provide more accurate measurements that can be compared with the latest version of 

the bottom-up wetland models. Analysis of multiple wetland CH4 inventories can be made using 

CTMs to aid in the development of both the process and parameter description within the bottom-

up models. These comparisons can be made seasonally, interannually, regionally and globally 

using a suite of observation techniques.  
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4 Atmospheric Contribution to 

Recent Trends in CH4 

4.1 Introduction 

This chapter evaluates the role of atmospheric variability in the recent trends in CH4 growth. 

Nisbet et al. (2014) used NOAA flask data to show that between 1984 and 1992 atmospheric CH4 

increased at ~12 ppb/yr, after which the growth rate slowed to ~3 ppb/yr. In 1999 a period of 

near-zero growth began which continued until 2007. In 2007 this stagnation period ended and 

since then average growth has increased again to ~6 ppb/yr (Rigby et al., 2008). These trend 

variations are discussed in more detail in Chapter 2. 

Most previous attempts to explain the pause in CH4 growth between 1999 and 2006 have focused 

on changes in emissions (e.g. Bousquet et al., 2006; Chen and Prinn, 2006; Kai et al., 2011). Here, 

it is hypothesised that variations in atmospheric chemistry also played a role in the recent 

variability in growth. Variations in OH, the major atmospheric sink of atmospheric CH4, might 

have contributed to the decreased growth rate. Additionally, it is hypothesised that reaction rate 

changes due to changes in atmospheric temperature or changes in atmospheric transport produce 

a noticeable effect. For example Warwick et al. (2002) investigated the impact of meteorology 

on atmospheric CH4 growth rates from 1980 to 1998, i.e. well before the observed recent pause. 

They concluded that atmospheric conditions, e.g. transport and temperature, could be an 

important driver in the interannual variability of atmospheric CH4. 

Some previous studies have suggested that an increase in atmospheric [OH] may have been at 

least partly responsible for a decrease in the CH4 growth rate at certain times (Lelieveld et al., 

2004; Fiore et al., 2006). Atmospheric OH production rates are determined by the intensity of UV 

radiation and the abundance of O3, which is controlled by O3-producing species, such as NOx. 

The destruction of atmospheric OH is dependent on the abundance of species, such as CH4, CO 

and SO2. Several suggestions have been made as to why atmospheric [OH] was elevated during 
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the CH4 stagnation period. Fiore et al. (2006) attributed a possible change to an increase in 

lightning NOx. Prinn et al. (2005) suggested major global wildfires and ENSO events could 

influence [OH] variability through changes to CO. This would imply a reduction in these events 

during the CH4 stagnation. A third theory, not yet tested, is the role of volcanic activity on 

downward UV radiation limiting OH production. A period of low volcanic activity would lead to 

a decrease in stratospheric aerosol, which would increase the amount of UV radiation reaching 

the troposphere. This would increase the photolysis rate, which would increase [OH]. This 

hypothesis is dependent on a reduction in volcanic activity in the period prior to and during the 

stagnation. Figure 4.1 shows that reduced volcanic activity caused an increase in incoming 

shortwave radiation during the CH4 stagnation in agreement with previous work (Carn et al., 

2015; Mills et al., under review).    

 

Figure 4.1 The top panel shows the model-simulated global mean net radiative effect (black line) 

and short-wave radiative effect (blue line) due to volcanic eruptions (red triangles) between 1990 

and 2014. The simulations are described in Mills et al. (2016) and the bottom panel shows the 

latitude and amount of sulphur dioxide (SO2) emitted for each eruption. VEI = Volcanic 

Explosivity Index, which is an estimate of the magnitude of an eruption (Newhall & Self, 1982). 

Figure courtesy of Anja Schmidt. 
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Section 4.2 describes the CH3CCl3 and CH4 observations used here. Section 4.3 provides 

information about a simple one-box model used to derive atmospheric [OH] and investigate 

variations in CH4 emissions. Section 4.4 gives a background to the TOMCAT model set-up. This 

includes a description of the emission inventories, the various tracers and the loss fields used. 

Section 4.5 shows comparisons of one-box model and TOMCAT simulations with previous 

studies and observations. Section 4.6 summarises the results, highlighting the role of atmospheric 

variability in the recent trends in CH4 growth, particularly between 1999 and 2006.     

4.2 CH3CCl3 and CH4 Observations 

NOAA and AGAGE surface observations of both CH3CCl3 and CH4 have been used to constrain 

and evaluate 15 TOMCAT simulations between 1993 and 2009. The data are taken from 22 sites 

shown in Table 4.1 and Figure 4.2, a majority of which (19) are part of the NOAA Earth System 

Research Laboratory (ESRL) Global Monitoring Division (Dlugokencky et al., 2015). The 

AGAGE CH4 data are measured in-situ at 4 sites, which have limited global coverage (Prinn et 

al., 2000; Cunnold et al., 2002; Prinn et al., 2005). Vardag et al. (2014) showed good agreement 

between the X2004 scale (NOAA) and the Tohoku University scale (AGAGE) used for CH4 

measurements, and the GLOBALVIEW-CH4 multiplier factor between networks is less than 

0.05% (Masarie et al., 2001). Global CH4 concentration estimates for both networks are derived 

by interpolating the measurements across 180 latitude bins, which are then weighted by surface 

area.  

CH3CCl3 emission sources include refrigeration and air conditioning. It is an ozone-depleting 

substance that is regulated under the Montreal Protocol. This has resulted in a large decrease in 

emissions of CH3CCl3 from 1997 onwards. Montzka et al. (2000) showed that since the reduction 

in emissions the distribution of atmospheric CH3CCl3 is primarily controlled by atmospheric 

removal, which is mainly through reaction with OH. Therefore, [OH] variability can be derived 

by analysing anomalies in CH3CCl3 decay. For example, assuming zero emissions, constant 

transport and temperature, a smooth decay curve of CH3CCl3 concentrations would suggest that 

OH concentrations are constant. Measurements of CH3CCl3 taken between 1997 and 2009 are 

used to derive [OH] anomalies, which are then applied to the [OH] field used in TOMCAT and 

also to evaluate CH3CCl3 in TOMCAT. Further details of the methods used to create a time-

varying [OH] field for use in TOMCAT are discussed in Sections 4.3 and 4.4.2. Measurements 

are taken from 7 NOAA and 5 AGAGE sites between 1997 and 2009, where available, and used 

to create two global CH3CCl3 records by averaging across all sites (Montzka et al., 2011; Rigby 

et al., 2013). 
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Site 

Code Site Name Latitude Longitude 

Altitude 

(km) 

 

CH4 

 

CH3CCl3 Start Date 

ABP Arembepe, Brazil -12.77 -38.17 0 NOAA  27/10/2006 

ALT Alert, Canada 82.45 -62.51 0.2 NOAA  10/06/1985  

ASC 

Ascension Island, 

UK 7.97 -14.4 0.09 

NOAA  

11/05/1983 

BRW Barrow, USA 71.32 -156.61 0.01 NOAA NOAA 06/04/1983 

CGO 

Cape Grim, 

Australia -40.68 144.69 0.09 

NOAA/ 

AGAGE 

AGAGE 

19/04/1984 

HBA Halley Station, UK -75.61 -26.21 0.03 NOAA  17/01/1983 

ICE Storhofdi, Iceland 63.4 -20.29 0.12 NOAA  02/10/1992 

KUM 

Cape Kumukahi, 

USA 19.5 -154.8 0.02 

- NOAA 

- 

LEF Park Falls, USA 45.9 -90.3 0.47 - NOAA - 

MHD 

Mace Head, 

Ireland 53.33 -9.9 0.01 

NOAA/ 

AGAGE 

AGAGE 

03/06/1991 

MLO Mauna Loa, USA 19.54 -155.58 3.4 NOAA NOAA 06/05/1983 

NWR Niwot Ridge, USA 40.05 -105.59 3.52 NOAA NOAA 21/06/1983 

PAL 

Pallas-

Sammaltunturi, 

Finland 67.97 24.12 0.56 

NOAA  

21/12/2001 

PSA 

Palmer Station, 

USA -64.92 -64 0.01 

NOAA  

01/01/1983 

RPB 

Ragged Point, 

Barbados 13.17 -59.43 0.02 

NOAA/ 

AGAGE 

AGAGE 

14/11/1987 

SEY 

Mahe Island, 

Seychelles -4.68 55.53 0 

NOAA  

12/05/1983 

SMO 

Tutuila, American 

Samoa -14.25 -170.56 0.04 

NOAA NOAA/ 

AGAGE 23/04/1983 

SPO South Pole, USA -89.98 -24.8 2.81 NOAA NOAA 20/02/1983 

STM 

Ocean Station M, 

Norway 66 2 0 

NOAA  

29/04/1983 

SUM 

Summit, 

Greenland 72.6 -38.42 3.21 

NOAA  

23/06/1997 

THD 

Trinidad Head, 

USA 41.1 -124.1 0.1 

AGAGE AGAGE 

09/1995 

ZEP 
Ny-Alesund, 

Norway & Sweden 78.91 11.89 0.47 

NOAA  

11/02/1994 

Table 4.1 List of NOAA and AGAGE stations which provide CH4 and CH3CCl3 observations with 

their site code, latitude, longitude, altitude and start date. Note the CH4 and CH3CCl3 columns 

show which network provides the data. 
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Figure 4.2 Map showing distribution of the 22 surface stations which provide data used in this 

study. These are marked in red (NOAA CH4), yellow (NOAA CH4 and CH3CCl3), purple (NOAA 

and AGAGE CH4), purple (AGAGE CH3CCl3), black (NOAA CH3CCl3), blue (AGAGE CH4 and 

CH3CCl3) and green (NOAA CH4 and, NOAA and AGAGE). 

4.3 One-box model 

A simple one-box model has been developed to investigate emissions of CH4 and derive 

anomalies in global atmospheric [OH] using CH3CCl3 observations. This model permits a first-

order understanding of the factors which govern the variation in global growth rate and the relative 

contribution of emissions and loss to that growth. Additionally, this model is much less 

computationally expensive to run than a full 3-D simulation. The model integrates the global 

mean burden of either CH4 or CH3CCl3 (X) based on annual emissions (E, g/yr) and chemical loss 

(L, g/yr) through the reaction of X with OH. The modelled atmospheric burden of X (Xt, g) can 

be integrated over a 1-month period (Δt) (equation 4.3), where k (cm3 molecule-1 month-1) is the 

rate constant for the reaction of X with OH (e.g. Sander et al., 2011). The reaction rate constants 

for CH4 and CH3CCl3 loss are given by equations 4.1 and 4.2, where T (K) is temperature (Sander 

et al., 2011).  

𝐶𝐻4 ∶  𝑘 = 2. 45x10
−12𝑒

−1775

𝑇   (4.1) 
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𝐶𝐻3𝐶𝐶𝑙3 ∶  𝑘 = 1. 64x10
−12𝑒

−1520

𝑇  (4.2) 

1

∆𝑡
(𝑋𝑡+𝛥𝑡 − 𝑋𝑡) = 𝐸 − 𝐿 = 𝐸 −  𝑘[𝑂𝐻][𝑋] (4.3) 

Global [OH] is calculated from CH3CCl3 measurements by rearranging equation 4.3. This requires 

global atmospheric temperatures, global CH3CCl3 concentrations and emission estimates.  

To estimate the temperature value appropriate for CH4 and CH3CCl3 loss, two methods were used 

based on fields from ECMWF ERA-interim (Dee et al., 2011). The first used a time varying 

annual temperature mean for each grid box in TOMCAT, described in Chapter 3. These 

temperatures were averaged into a global temperature that is weighted by the [OH] in the grid 

box. The OH concentrations were taken from a prescribed OH field, described in more detail in 

Section 4.4. The second used the same method, except the temperature was also averaged over 

time, giving a global mean value of 272.9 K.  

NOAA and AGAGE observations of CH3CCl3 were used to create a time series of global [OH] 

concentrations. NOAA observations (Table 4.1) were aggregated into three boxes, one in the 

southern hemisphere and two in the northern (Montzka et al., 2011). These were used to produce 

a global average concentration for use in equation 4.3. The AGAGE network contains fewer 

CH3CCl3 sites, so these were directly averaged to give an estimated global concentration (Rigby 

et al., 2013). Global observations were smoothed across a 12-month period.   

Two sets of CH3CCl3 emissions were used in equation 4.3. The first, taken from Montzka et 

al. (2011), provides annual emissions up until 2000 after which 20% decay/yr is assumed. These 

emission estimates were originally taken from global and regional industry data and 

measurements of polluted air in industrial regions (Prinn et al., 2005). The second, taken from 

Rigby et al. (2013), provides annual emissions from 1997 to 2009 and is an updated version of 

those used by Prinn et al. (2005) based on United Nations Environment Programme (UNEP) 

consumption estimates. Both emission datasets were assumed to have no seasonal variability and 

were equally divided into monthly time steps. A comparison of [OH] anomalies derived from the 

one-box model with previous studies is made in section 4.5.2   

For CH4 emission estimates, equation 4.3 is used with both annually repeating and derived [OH] 

anomalies, the same two temperature fields as described above and surface NOAA observations. 

To calculate the global average CH4 concentrations, data from the 19 surface sites were 

interpolated across 180 latitude bins, which were then weighted by surface area. As with 

CH3CCl3, OH is the major sink of CH4 in the atmosphere. By estimating or assuming constant 

emissions of CH4 (553 Tg/yr) and using concentration measurements, a required [OH] anomaly 

can be calculated using equation 4.3.   
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4.4 TOMCAT Model Set-up 

Simulations of CH4 and CH3CCl3 were performed using TOMCAT between 1993 and 2009.  The 

model was spun-up from 1980 using initialisation fields taken from Patra et al. (2011). The global 

concentrations on January 1st 1993 were scaled so that the global average concentration equalled 

that of the CH4 and CH3CCl3 concentrations derived from NOAA surface observations.   

TOMCAT simulations were performed using 3 different meteorological fields, 1 with varying 

winds and temperature (simulations labelled *VTVW), 1 with varying winds and fixed 

temperature (*FTVW) and 1 with fixed winds and temperature (*FTFW) (Table 4.2). Fixed wind 

runs used repeating 1996 winds. Fixed temperature runs used a 2-D (latitude-height) zonal mean 

temperature from 1993 to 2009. Each TOMCAT run included 5 tracers for both CH4 and CH3CCl3, 

which used a different [OH] field (labelled RE*, AP*, AL*, NP* and NL*). These [OH] fields 

are described further in Section 4.4.2. The model resolution and forcing data are described in 

Chapter 3. 12-hourly output has been used for surface CH4 and CH3CCl3 comparisons. 

Run [OH] Time Variation Meteorologyb 

  Winds Temperature 

RE_FTFW Repeatinga Fixed Fixed 

RE_FTVW Repeatinga Varying Fixed 

RE_VTVW Repeatinga Varying Varying 

AP_FTFW AGAGE (Rigby et al., 2013) Fixed Fixed 

AP_FTVW AGAGE (Rigby et al., 2013) Varying Fixed 

AP_VTVW AGAGE (Rigby et al., 2013) Varying Varying 

AL_FTFW AGAGE (one-box model) Fixed Fixed 

AL_FTVW AGAGE (one-box model) Varying Fixed 

AL_VTVW AGAGE (one-box model) Varying Varying 

NP_FTFW NOAA (Montzka et al., 2011) Fixed Fixed 

NP_FTVW NOAA (Monztka et al., 2011) Varying Fixed 

NP_VTVW NOAA (Montzka et al., 2011) Varying Varying 

NL_FTFW NOAA (one-box model) Fixed Fixed 

NL_FTVW NOAA (one-box model) Varying Fixed 

NL_VTVW NOAA (one-box model) Varying Varying 

Table 4.2 Summary of the CH4 and CH3CCl3 tracers in the TOMCAT 3-D CTM simulations. (a) 

Annually repeating OH taken from Patra et al. (2011). (b) Varying winds and temperatures are 

from ERA-Interim. Fixed winds using repeating ERA-Interim winds from 1996. Fixed 

temperatures use zonal mean ERA-Interim temperatures averaged over 1993-2009.  



Atmospheric Contribution to Recent Trends in CH4

  50 

 

 

4.4.1 CH4 Emission Inventories 

The TOMCAT simulations in this chapter are intended to investigate the atmospheric loss 

contribution to recent CH4 trends and not the influence of variation in emissions. Repeated yearly 

CH4 emissions are therefore used, which are scaled to IPCC estimates outlined in Chapter 2 (553 

Tg/yr). Annually-repeating anthropogenic emissions, excluding biomass burning, were calculated 

from averaging the EDGAR v3.2 (2001) inventory from 1993 to 2009. Biomass burning 

emissions were averaged from the Global Fire Emissions Database (GFED) v3.1 inventory, which 

extends from 1997 to 2009 (van der Werf et al., 2010). JULES was used to calculate interannual 

variations in wetland emissions between 1993 and 2009 (see Chapter 5), which was then used to 

produce a scaled mean annual cycle. Annually-repeating rice (Yan et al., 2009), hydrate, mud 

volcano, termite, wild animal and ocean (Matthews and Fung, 1987) emissions were taken from 

the TransCom CH4 study (Patra et al., 2011). All emissions are input into TOMCAT at a 1° by 1° 

resolution and are then averaged onto the larger model grid (2.8° by 2.8°). 

To evaluate the performance of annual [OH] anomalies, described in section 4.4.2, equivalent 

CH3CCl3 tracers were included which used the same configuration as the CH4 tracers (Table 4.2). 

These can then be compared to the observations described in section 4.2. Although this method 

appears somewhat cyclic, the overall aim is to assess whether a global annual OH anomaly that 

is derived from CH3CCl3 observations can be applied to a CTM to replicate the spatial and 

temporal distribution of CH3CCl3 observations. The CH3CCl3 emissions used in TOMCAT 

between 1988 and 1998 are taken from EDGAR v3.2 and linearly adjusted using methods 

described by McCulloch and Midgley (2001). From 1999 onwards emissions are taken from Patra 

et al. (2011), which assumes a 20% exponential decay after 2002. 

4.4.2 Hydroxyl and Other Loss Fields 

A simplified description of atmospheric chemistry is used in the TOMCAT simulations discussed 

here, and is based on specified loss fields. Losses of CH4 and CH3CCl3, through reactions with 

OH, are calculated using prescribed [OH] values and the rate constant derived from equations 4.1 

and 4.2. This loss is then directly applied to the concentration of both species within the grid cell 

as given by equation 4.4, where L is loss in molecules s-1. Five different prescribed global latitude-

height [OH] fields are used (RE*, AP*, AL*, NP* and NL*), all originally based on the annually 

repeating OH used in Patra et al. (2011). This was a development of a previous field derived from 

a combination of semi-empirically calculated tropospheric distributions (Spivakosvky et al., 

2000; Huijnen et al., 2010).       
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𝐿 = 𝑘[𝑂𝐻][𝑋] (4.4) 

The first [OH] field, RE, is for a control tracer that uses the annually repeating OH field from 

Patra et al. (2011). Any interannual anomalies in the CH4 or CH3CCl3 concentrations in these 

simulations cannot be due to changes in [OH]. The second field, AP, uses published AGAGE 

annual global OH anomalies from Rigby et al. (2013), which are applied to RE between 1997 and 

2009. These anomalies were derived from UNEP emission estimates and observations of 

CH3CCl3 from the 5 AGAGE sites using a 12-box model. The third field, AL, uses the same 

CH3CCl3 observations and emission estimates, but with the one-box model described in section 

4.3 to produce monthly global anomalies. These were then averaged into global anomalies, which 

were applied to RE between 1997 and 2009. The fourth field, NP, uses published NOAA annual 

global [OH] anomalies from Montzka et al. (2011), which are applied to RE between 1997 and 

2007. These were derived using slightly older emission estimates, which estimate a 20% 

exponential decay after 2000, observations of CH3CCl3 from 7 NOAA sites and a simple one-box 

model, similar to the one used here (Rigby et al., 2008; Montzka et al., 2011). The fifth field, NL, 

repeats the method used for AL except using NOAA observations between 1997 and 2007. Both 

AL- and NL- derived [OH] anomalies using varying temperatures in the one-box model. For 

consistency between the model experiments, all yearly anomalies were scaled so that the mean 

[OH] between 1997 and 2007 (the overlap period where NOAA and AGAGE anomalies are both 

available) equalled the RE [OH] value. 

Two other CH4 loss fields are annually repeating with seasonal cycles and the same for all 15 

model simulations. CH4 loss through reactions with Cl and O(1D) radicals in the stratosphere are 

based on the Cambridge 2-D model (Velders, 1995), previously used by Patra et al. (2011). The 

surface soil sink, previously described in Chapter 2, is applied as a negative surface flux in 

TOMCAT. The soil sink field provided by Patra et al. (2011), was originally derived using an 

atmospheric CH4 inversion model (Bousquet et al., 2006). Interannual variability in the Cl, O(1D) 

and soil sinks are not accounted for in this study.   

4.5 TOMCAT-Observation Comparisons 

4.5.1 Correlation of Observed CH4 with OH and temperature  

The loss rate of CH4 by reaction with OH is temperature dependent (equation 4.1) and so changes 

in atmospheric temperature can affect CH4 concentrations. Figure 4.3 shows the zonally averaged 
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ERA-Interim temperature between 30°N and 30°S at 700 hPa for 1993-2011. This pressure level 

and latitude range was selected to represent mean conditions of the atmospheric region where 

most CH4 removal occurs, based on analysis of TOMCAT runs. The temperature fluctuations in 

1997/1998 and 2010 can be explained by El Niño Southern Oscillation (ENSO) events. For CH4 

it is important to consider that ENSO events affect not only atmospheric removal, but also sources 

via variations in wetland and biomass burning emissions through changes in temperature and 

precipitation (Hodson et al., 2011). These variations will not be captured in the TOMCAT 

simulations which use annually repeating emissions. In relation to the CH4 stagnation period, 

between 2001 and 2006 the temperature is an average of 0.3 K warmer than the temperature 

between 1993 and 1997, and 0.1 K warmer than the average temperature between 2007 and 2011.  

 

Figure 4.3 (Top) Latitude-time plot of zonal mean temperature (K) between 30°N and 30°S at 

700 hPa from ERA-Interim reanalyses between 1993 and 2011. This altitude and latitude 

region is the location of the largest CH4 loss in the 3-D model. (Bottom) Temperature 

anomalies (K) for the same time and region as top panel. The dashed box indicates the 

anomalously warm period of 2001-2006. 

Figure 4.4 shows a comparisons of the global CH4 growth rate and the average temperature in the 

main loss region (loss-weighted mean over all TOMCAT grid boxes). Over the entire time series 

temperature shows only a slight negative correlation with CH4 growth rate, with Pearson’s 

correlation coefficient (R) values of -0.24 for NOAA -0.07 for AGAGE. This is likely, in part, 

due to changes in wetland and biomass burning emissions in ENSO years balancing out the 

change in atmospheric loss. The sensitivity of the CH4 loss rate due to the temperature variation 
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of the CH4 + OH reaction can be estimated from equation 4.5, which assumes [OH] is independent 

of temperature. This relationship, shown in Figure 4.4, shows a variation in k of about 2%/K feeds 

through into similar relative changes in the CH4 loss rate. The 0.3 K observed temperature 

increase during the stagnation period has an equivalent of a 3.9 Tg/yr emissions decrease, 

equating to a 0.72 ppb/yr decrease in growth. The effect of temperature is already accounted for 

in the derivation of the OH anomaly based on atmospheric data, therefore the main analysis of 

these results focuses on simulations with fixed temperatures (*_FTVW). 

𝑑𝐿

𝑑𝑇
=

𝑑

𝑑𝑇
𝑘[𝑂𝐻]𝐶𝐻4 = [𝑂𝐻]𝐶𝐻4

1775

𝑇2
7.73 × 10−5𝑒−1775/𝑇 (4.5) 

 

Figure 4.4 (a) Annual global CH4 growth rate (ppb/yr) derived from NOAA (filled black circles) 

and AGAGE (open black circles) data (left hand y-axis), and annual mean temperature (K) 

weighted by CH4 loss rate in TOMCAT (red circles) (right hand y-axis). (b) Relative growth rate 

change with respect to temperature for representative OH (0.99×106 molecules cm-3) and CH4 

(1770 ppb) values. 

Figure 4.5 shows the published NOAA-derived and AGAGE-derived global [OH] anomalies 

along with the annual CH4 growth rate estimated from the NOAA and AGAGE measurements. 

The two [OH] series show the similar behaviour of negative anomalies around 1997 and 2006/7, 

and an extended period of more positive anomalies in between. For the time periods covered by 

the NOAA (1997-2007) and AGAGE (1997-2009) CH3CCl3 observations, the two derived [OH] 

time series show negative correlations with the CH4 growth from NOAA (R = -0.32) and AGAGE 

(R = -0.64). Only the AGAGE [OH] correlation, from the longer time series, is statistically 

significant at the 90% level. 
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Figure 4.5 Annual global CH4 growth rate (ppb/yr) derived from NOAA (filled black circles) and 

AGAGE (open black circles) data (left hand y-axis), and published annual global [OH] anomalies 

derived from NOAA (filled blue circles, 1997-2007) and AGAGE (open blue circles, 1997-2009) 

CH3CCl3 measurements (right hand y-axis). 

4.5.2 CH3CCl3 and Hydroxyl Comparisons 

The global one-box model was used to estimate the [OH] variations required to fit the observed 

global CH4 growth rate variations, assuming constant emissions and temperature. This allows a 

simple assessment of the potential for variations in [OH] to affect the CH4 growth rate. Figure 4.6 

shows the model output compared to the published derived OH concentrations from NOAA and 

AGAGE CH3CCl3 observations. The derived concentration percentage anomalies have been 

converted to global mean concentrations using the one-box model average concentration. The 

results are consistent with a previous study which performed a similar analysis of the NOAA CH4 

data (Montzka et al., 2011). The required OH change rarely exceeds the CH3CCl3-derived 

interannual variability range (±2.3%) presented by Montzka et al. (2011). Moreover, the relative 

interannual variations in [OH] required to fit the CH4 observations match the CH3CCl3-derived 

[OH] variations in many years, for example from 1998-2002 (see Montzka et al., 2011). Some of 

the derived variations in [OH] exceed that required to match the CH4 growth, with larger negative 

anomalies in the early and later years and some slightly larger positive anomalies in between. 

 

Figure 4.6 Annual mean [OH] (molecules cm-3) required for global box model to fit variations in 

NOAA CH4 observations assuming constant emissions and temperature, based on Montzka et al. 

(2011) (solid black line). Shaded region denotes [OH] deviation of ±2.3% from the mean. Also 

shown are the NOAA- (filled) and AGAGE- (open) derived [OH] anomalies applied to an 

assumed mean OH taken from the box model (blue circles). 
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The one-box model was used to derive [OH] based on CH3CCl3 observations from NOAA (NL) 

and AGAGE (AL). These are based on two emission scenarios and varying or repeating 

temperature. UNEP emission estimates and estimates derived from an assumed 20% exponential 

decay in emissions since 2002 are both used. These are then compared with the published NOAA 

and AGAGE anomalies (Montzka et al., 2011; Rigby et al., 2013). The results (see Figure 4.7) 

demonstrate the small impact of using different observations and emission assumptions. In later 

years the choice of observations has a bigger impact than the choice of emissions on the derived 

[OH]. For AGAGE-derived values, the one-box model estimates agree well with the published 

values of Rigby et al. (2013) despite the simplicity of the one-box model compared to their more 

sophisticated 12-box model. In contrast, the one-box model shows poor agreement with the 

NOAA-derived [OH] variability published by Montzka et al. (2011), despite both studies using 

box models. In particular, around 2002-2003 the one-box model used here overestimates the 

positive anomaly in [OH]. The one-box model estimates a much more negative OH anomaly in 

1997 compared to Montzka et al. (2011). This suggests a large uncertainty in the inferred low 

1997 OH value, when emissions of CH3CCl3 were decreasing rapidly, although reasons why 

atmospheric [OH] might have been low were discussed by Prinn et al. (2005). The treatment of 

emissions and the method by which the observations and emissions are smoothed results in the 

observed difference in anomalies. Figure 4.7 also demonstrates the influence of temperature 

changes on the loss anomaly is negligible.  

 

Figure 4.7 Estimates of OH derived from (a) NOAA and (b) AGAGE CH3CCl3 

observations calculated using an one-box model using repeating (blue) and varying (red) 

annual mean temperature. CH3CCl3 emission scenarios are taken from UNEP (2015) 

(filled circles) and Montzka et al. (2011) (open circles) based on (Prinn et al. 2005). Also 

shown are (a) published NOAA-derived values (Montzka et al., 2011) and (b) AGAGE-

derived values (Rigby et al., 2013) (black). 

The TOMCAT simulations have been compared to global CH3CCl3 observations from both 

NOAA and AGAGE networks. If the model reproduces the observed magnitude and variability 

of CH3CCl3 decay accurately then this gives confidence in the approach of using a global [OH] 

field, scaled by derived anomalies. Figure 4.8 shows that the model, with the imposed [OH] field, 



Atmospheric Contribution to Recent Trends in CH4

  56 

 

 

simulates the global decay of CH3CCl3 better than the model using a repeating [OH] field. This 

supports the use of an ‘offline’ [OH] field in favour of a coupled ‘online’ [OH] field. ‘Online’ 

fields calculated with an interactive tropospheric chemistry scheme can, in principle, capture 

interannual variability. However, they show a large uncertainty in the absolute global [OH], which 

then influences the lifetimes of gases such as CH3CCl3. For example, Voulgarakis et al., (2013) 

analysed the global mean [OH] predicted by various models and found a range of 0.55 × 106 to 

1.34 × 106 molecules cm-3. 

 

Figure 4.8 (a) Global mean surface CH3CCl3 (ppt) from NOAA (black dashed) and AGAGE 

(black solid) observations from 1993 to 2012. Also shown are results from seven TOMCAT 

simulations (see Table 4.2). (b) Global surface CH3CCl3 decay rate anomalies from NOAA and 

AGAGE along with model runs RE_FTFW, RE_VTVW, RE_FTVW, AL_FTVW and AP_FTVW 

(solid lines). Results from runs RE_FTFW and RE_VTVW are shown as equivalent dotted lines 

and dashed lines, respectively. Observation and model anomalies are smoothed with a 12-month 

running average. Values given represent correlation coefficient when compared to AGAGE 

observations and variance. (c) As panel (b) but for model runs RE_FTFW, RE_VTVW, 

RE_FTVW, NL_FTVW and NP_FTVW with correlation coefficients for comparison with NOAA 

observations. 
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Figure 4.8a shows that the global mean CH3CCl3 from the NOAA and AGAGE networks differ 

by ~2.5 ppt around 1993-1996, since then the difference has become smaller both in absolute and 

relative terms. The observed and modelled CH3CCl3 decay rates show a faster decay (more 

positive anomaly) in the middle period, with slower decay at the start and end (see Figures 4.8b 

and 4.8c). The comparisons show a phase difference of 3 months between the two observation 

networks, previously noted by Holmes et al. (2013). The reason for this is unknown, although 

when the model is sampled at the site locations the lag is not observed, which suggests it is not 

an issue with the spatial distribution of NOAA and AGAGE sites. The model runs with varying 

winds generally capture these periodic variations with correlation coefficients ranging from 0.60 

– 0.86. The correlation coefficients for the runs using varying [OH] are all higher than the runs 

using repeating OH (RE_FTVW = 0.62 – 0.67, AL_FTVW = 0.86, AP_FTVW = 0.90, 

NL_FTVW = 0.82, NP_FTVW = 0.71). As previously noted by Montzka et al. (2011), there are 

only small differences between the simulations which use varying temperature (*FTVW) and the 

corresponding runs which use fixed temperature (*VTVW). This shows that the largest 

contribution from the CH3CCl3 decay rate anomaly comes from variations in atmospheric [OH], 

rather than atmospheric temperature. The simulations with repeating winds show less variability 

in the CH3CCl3 decay rate, particularly in the period 1999-2004.  

The CH3CCl3-derived [OH] fields used a global annual decay anomaly. This means that anomalies 

derived might no longer represent the observed monthly anomalies at individual sites, suggesting 

the approach might be too simple. To test this the simulations are compared with CH3CCl3 

observations at individual sites in Figure 4.9. The results show comparisons from four selected 

stations, two from the NOAA network and two from the AGAGE network. The agreement at 

individual sites is improved by the inclusion of interannually varying [OH] fields. Although 

varying [OH] fields derived from CH3CCl3 decay anomalies provide a better agreement than the 

repeat OH fields, they still fail to capture some of the anomaly events observed at certain sites. 

For example, the AGAGE site at Cape Grim observed a large negative anomaly in 2008, this is 

not replicated in any of the TOMCAT simulations.  

In summary, results from CH3CCl3 comparisons show that the global [OH] fields that are derived 

from CH3CCl3 decay anomalies perform well applied to TOMCAT, both globally and at 

individual sites. Although, the interannual variability in global mean [OH] has been derived from 

these CH3CCl3 observations, the results show that the reconstructed model [OH] fields perform 

well in simulating CH3CCl3 within TOMCAT. These results suggest that the [OH] fields used 

here are suitable for testing the impact of [OH] variability on the CH4 growth rate, as discussed 

in the following section. 
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Figure 4.9 (Left) Observed mean surface CH3CCl3 (ppt) (black line) from (a) Mace Head 

(AGAGE), (c) Cape Grim (AGAGE), (e) Mauna Loa (NOAA) and (g) South Pole. Also shown are 

results from TOMCAT simulations, using the same colour scheme as Figure 4.8. (Right) Surface 

CH3CCl3 decay rate anomalies at the same sites as the corresponding left column plot for 

observations (black), TOMCAT simulations with varying winds and fixed temperatures (solid 

coloured lines), varying winds and temperatures (dashed coloured lines) and fixed winds and 

temperatures (dotted coloured lines), using the same colour scheme as Figure 4.8. Note that 

observations at NOAA (AGAGE) sites show only comparisons with runs using NOAA (AGAGE)-

derived OH, along with repeating OH.  

4.5.3 CH4 Comparisons 

The one-box model described in Section 4.3 has been used to estimate global CH4 emissions using 

various temperature and OH conditions. The simple one-box model shows reasonable comparison 

with CH4 observations on an inter-decadal timescale, when assuming constant emissions, 

temperature and loss (see Figure 4.10a). The model was initialised with the de-seasonalised 

January 1993 global mean CH4 value from the NOAA sampling sites (1730 ppb; for comparison 

the AGAGE mean was 1728 ppb). The integrations used a temperature (272.9 K) based on the 

mean ERA-Interim data and a constant mean [OH] of 0.99×106 molecules cm-3. The model results 

show a good fit with NOAA and AGAGE observations (R = 0.96 for both and root mean square 
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error (RMSE) = 6.8 and 5.6 ppb, respectively). This shows that in the absence of any changes in 

sources or sinks, CH4 is tending towards a steady-state with zero growth rate at a value of 1806 

ppb. Indeed, Dlugokencky et al., (2003) suggested that CH4 was approaching a steady state 

through 2002. The additional years of data in Figure 4.10a show significant perturbations to the 

balance of sources and sinks since that time. Either, there was an abrupt change to the CH4 steady 

state at the end of the stagnation period around 2006, or CH4 continued to approach a steady-state 

through 2012 with periods of deviation from that curve around 1999 and 2006. The shaded region 

in Figure 4.10a shows the effect of a constant ±2.3% change in [OH], indicative of the mean 1998-

2007 interannual variability (Montzka et al., 2011). This illustrates the large leverage that 

relatively small variations in global mean [OH], which are difficult to diagnose with CH3CCl3, 

have on CH4 growth rates. 

 The one-box model has been used to estimate the annual CH4 emissions required to match the 

observed concentrations based on several atmospheric conditions shown in Figures 4.10b and 

4.10c. For the calculation that uses a mean temperature (272.9 K) and a mean [OH] (0.99×106 

molecules cm-3) the required emissions during the stagnation period are 546.2 Tg/yr, 5.5 Tg/yr 

less than the 1993-1997 mean of 551.7 Tg/yr. The simulation with varying temperature and mean 

[OH] requires average emissions of 548.4 Tg/yr during the stagnation period, this is 2.2 Tg/yr 

larger than the simulation with mean temperature and [OH]. The stagnation period shows a 4.1 

Tg/yr decrease from 552.5 Tg/yr before the stagnation. For the same stagnation period, using the 

mean the temperature and varying [OH] requires average annual emissions of 549.7 – 553.8 Tg/yr. 

This corresponds to a change in emissions of -22.0 - +5.0 Tg/yr when compared to the 1997-1998 

averages. After 2006 emissions do not always need to increase to capture the observed increase 

in growth rate (see Table 4.3). The simple one-box model therefore suggests that [OH] variations 

alone can account for some of the observed decrease in CH4 growth.   

[OH] Temperature Mean Required Annual Emissions (Tg/yr) 

  1993-1998* 1999-2006 2007-2011* 

RE Varying 552.5 548.4 567.7 

RE Fixed 551.7 546.2 565.6 

AP Fixed 531.5 553.5 541.6 

AL Fixed 540.9 551.6 540.2 

NP Fixed 554.7 549.7 544.2 

NL Fixed 541.2 553.8 538.7 

Table 4.3 Required CH4 emissions to fit observations derived using a simple one-box model 

between 1993 and 1998, 1999 and 2006, and 2007 and 2012 based on various atmospheric 

conditions detailed in Table 4.2. *Where [OH] data are available.   
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Figure 4.10 (a) CH4 mixing ratio calculated by a global box model (mean emissions E=553 

Tg/yr, temperature T=272.9 K and [OH] = 0.99×106 molecules cm-3) initialised in 1993 

with global average CH4 observations between 1993 and 2011 (black line). The shaded 

region illustrates the range of calculated CH4 for mean [OH] variations of ±2.3%. 

Monthly global average CH4 observations for the NOAA (blue circles) and AGAGE (red 

circles) networks, with lines showing 12-month smoothing. (b) Derived annual CH4 

emissions (Tg/yr) required for global box model to fit yearly variations in NOAA CH4 

observations for annually varying temperature and repeating [OH] (black), annually 

repeating temperature for repeating [OH] (pink), varying [OH] based on NOAA 

CH3CCl3 observations and the one-box model (green), and varying [OH] based on 

AGAGE CH3CCl3 observations and the one-box model (blue) between 1993 and 2012 

where data are available. (c) Same as (b) except using published [OH] anomaly data 

from Montzka et al. (2011) (orange) and Rigby et al. (2013) (red) between 1993 and 2012 

where data are available. Note the dashed lines on (b) and (c) indicate the average 

emissions required before (1993-1998), during (1999-2006) and after (2007-2011) the 

CH4 stagnation period, where data are available.    

For a more detailed and realistic evaluation of the role of [OH] and transport on the growth rate 

of CH4 the results of the TOMCAT model simulations have been compared with in-situ 
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observations. Figure 4.11 shows deseasonalised modelled surface CH4 from TOMCAT 

simulations compared with observations from a high-latitude station (Alert), two tropical stations 

(Mauna Loa and Tutuila), a southern high-latitude station (South Pole) and the global average of 

NOAA and AGAGE stations. In 1993, at the end of the model spin-up, the simulations capture 

the global mean CH4 level well, along with the observed values at a range of latitudes. The 

exception is at high northern latitudes. However, these differences are not important when 

investigating the change in the global growth rate. The global change in atmospheric CH4 in the 

simulations with varying winds for 1993 to the end of 2009 is between 75 and 104 ppb, compared 

to 56 and 66 ppb in the observations. 

Model run RE_FTFW does not include interannual variations in atmospheric transport or CH4 

loss. Therefore, the modelled CH4 gradually approaches a steady state value of ~1830 ppb (see 

Figure 4.11f). The rate of CH4 growth decreases from 7.9 ppb/yr (1993-1998) to 1.4 ppb/yr (2007-

2009). Compared to run RE_FTFW, the other simulations introduce variability on this CH4 

evolution. 

Run RE_FTVW includes interannual variability in wind fields which alter the transport of CH4 

from the source to the sink regions. The largest difference between RE_FTFW and RE_FTVW 

occurs after 2000 (see Figure 4.11f). During the stagnation period run RE_FTVW has a smaller 

growth rate of 3.5 ppb/yr compared to 4.1 ppb/yr in run RE_FTFW, showing that variations in 

atmospheric transport made a small contribution to the slowdown in global mean CH4 growth. 

Compared to run RE_FTVW, runs AP_FTVW, AL_FTVW, NP_FTVW and NL_FTVW include 

CH3CCl3-derived interannual variations in [OH] which introduce large changes in modelled CH4, 

which are more in line with the observations (see Figure 4.11e). These runs produce turnarounds 

in the CH4 growth in 2001/2 (becomes negative) and 2005/6 (returns to being positive). For 

AGAGE-derived [OH] (runs AP_FTVW, AL_FTVW) the large negative anomaly in OH in 1997 

produces a significant increase in CH4 prior to the turnaround in 2001.  

Table 4.4 summarises the change in global mean CH4 over different time periods defined by the 

key dates in the observed record, before during and after the growth stagnation. Comparison of 

Figure 4.11 and Table 4.4 shows, however, that the timing of the largest modelled change in 

growth rate do not necessarily coincide with those dates. That is understandable if other factors 

not considered here, e.g. emission changes, are contributing to the change in global CH4 

concentration. It does mean that the summary values in Table 4.4 do not capture the full impact 

of the changes in [OH] and winds within the stagnation period.  
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Figure 4.11 Deseasonalised surface CH4 (ppb) from 4 NOAA sites (black solid line) between 

1993 and 2009. Also shown are results from five TOMCAT 3-D CTM simulations with fixed 

temperatures and varying winds (See Table 4.2) (a-d). Deseasonalised global mean surface CH4 

from NOAA (black solid) and AGAGE (black dashed) observations along with the five TOMCAT 

3-D CTM simulations used in the previous panels (e). (f) Same as (e) but for TOMCAT simulations 

using repeating OH (RE) and different treatments of wind and temperature. All panels use 

observation and model values which are smoothed with a 12-month running average. The shaded 

region marks the stagnation period in the observed CH4 growth rate.    

Model or  

observation 

Global mean ΔCH4 in ppb 

(ppb/yr) 

 1993-2009* 1993-1998* 1999-2006 2007-2009* 

RE_FTFW 85.0 (5.0) 47.2 (7.9) 32.9 (4.1) 4.3 (1.4) 

RE_FTVW 82.2 (4.8) 48.2 (8.0) 27.8 (3.5) 5.4 (1.8) 

RE_VTVW 74.6 (4.4) 45.6 (7.6) 23.1 (2.9) 5.3 (1.8) 

AP_FTVW 97.7 (5.7) 62.3 (10.4) 8.2 (1.0) 26.4 (8.8) 

AL_FTVW 104.2 (6.1) 58.4 (9.7) 17.3 (2.2) 27.5 (9.2) 

NP_FTVW 86.2 (5.1) 49.7 (8.3) 24.8 (3.1) 10.6 (3.8) 

NL_FTVW 91.4 (5.4) 58.8 (9.8) 20.1 (2.5) 11.3 (3.8) 

NOAA 56.1 (3.3) 36.0 (6.0) 4.8 (0.6) 14.7 (4.9) 

AGAGE 66.3 (3.9) 42.6 (7.1) 5.6 (0.7) 17.4 (5.8) 

Table 4.4 Calculated CH4 changes over different time periods from selected TOMCAT 

experiments and, NOAA and AGAGE networks. *Where [OH] data are available.   
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Table 4.4 shows that runs NP_FTVW and NL_FTVW (NOAA-derived [OH]) produce a small 

modelled CH4 growth of 2.5-3.1 ppb/yr during the stagnation period 1999-2006, compared to 1.0 

ppb/yr for run AP_FTVW (AGAGE-derived [OH]). The AGAGE results are slightly larger than 

the observed growth rate of 0.6-0.7 ppb/yr. Runs AL_FTVW, AP_FTVW, NL_FTVW and 

NP_FTVW capture the observed strong decrease in the CH4 growth rate. Clearly, these runs 

demonstrate the significant potential for relatively small variations in mean [OH] to affect CH4 

growth. Excluding the stagnation period the mean modelled CH4 lifetime in run NP_FTVW is 9.4 

years, but this decreases slightly by 0.01 years during the stagnation period. For run AP_FTVW 

there is a decrease of 0.18 years from 9.6 years between the same intervals. The results from all 

the CTM simulations during 1999-2006 indicate that the accuracy of modelled CH4 growth is 

improved by accounting for interannual variability in [OH] as derived from CH3CCl3 

observations, and interannual variability in meteorology. 

The variation of [OH] after 2007 cannot be determined from the available NOAA data so runs 

NP_FTVW and NL_FTVW used the mean [OH] field for all subsequent years. The modelled CH4 

increase of 3.8 ppb/yr underestimates the NOAA observations (4.9 ppb/yr). Should the lower 

[OH] of 2007 have persisted then the model would have produced a larger increase in CH4, in 

better agreement with the observations. The AGAGE-derived [OH] for 2007-2009 (runs 

AP_FTVW and AL_FTVW) produces a larger CH4 growth relative to the previous years (8.8 

ppb/yr and 9.2 ppb/yr). Runs RE_FTFW (1.4 ppb/yr) and RE_FTVW (1.8 ppb/yr) both show a 

decreased rate of growth during the final 5 years, consistent with a system approaching steady 

state. 

Figure 4.12 shows the global CH4 growth rate derived from the AGAGE and NOAA networks 

together with selected model simulations. Figures 4.12b and 4.12c show the differences between 

the model simulations and the NOAA and AGAGE observations, respectively. The runs which 

include variations in [OH] agree better with the observed changes, i.e. larger R values in panel (a) 

and the model lines are closer to the y=0 line in panels (b) and (c), especially in the first 5 years 

of the stagnation period. It is interesting to note that the relative impacts of wind and temperature 

variations are larger for CH4 than for CH3CCl3 (compare simulations RE_FTFW, RE_FTVW and 

RE_VTVW in Figures 4.8 and 4.12). The temperature dependences of the OH loss reactions are 

similar for the two species (see equations 4.1 and 4.2) but the impact of transport from emission 

regions to chemical loss regions is more variable for CH4. This needs to be considered when 

applying results derived from CH3CCl3 to CH4. 
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Figure 4.12 (a) The smoothed variation in the global annual CH4 growth rate (ppb/yr) 

derived from NOAA (black solid) and AGAGE (black dashed) observations. Also shown 

are the smoothed growth rates from five TOMCAT 3-D CTM simulations with fixed 

temperatures and varying winds (See Table 4.2). Values in legend give correlation 

coefficient between model run and NOAA observations. Also shown are results from runs 

RE_FTFW and RE_VTVW as a purple dotted line and dashed line, respectively (b) the 

difference in smoothed growth rate between TOMCAT simulations and NOAA 

observations shown in panel (a). (c) Same as (b) except using differences compared to 

AGAGE observations. The vertical dashed lines mark the start and end of the stagnation 

period in the observed CH4 growth rate (1999 – 2006). 

4.6 Summary 

This chapter has investigated the atmospheric contribution to recent trends in the global CH4 

growth rate with the following key results: 

 A simple-one-box model has been used to create global annual anomalies of CH3CCl3-

derived [OH], which is found to be negatively correlated with observed CH4 growth (R = 

-0.32 (NOAA) and -0.64 (AGAGE)). 
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 When used in a 3-D CTM the box-model derived [OH] anomalies provide improved 

correlation of CH3CCl3 with observations (R = 0.71 – 0.90) compared with using annually 

repeating [OH] (R = 0.62 – 0.67). 

 

 Box-model derived global [OH] anomalies used in a 3-D CTM accurately predict the 

CH3CCl3 decay rate anomaly at individual stations. 

 

 One-box model simulations show that when considering variations in atmospheric [OH], 

the CH4 emissions required during the stagnation period (1999-2006) are higher (549.7 – 

553.8 Tg/yr) than when [OH] anomalies are not considered (546.2 – 548.4 Tg/yr).   

 

 The CH4 growth anomaly agreement between the 3-D CTM model simulations and 

observations increases when the annually repeating [OH] (R = 0.32) is replaced by the 

box-model derived global [OH] anomaly (R = 0.58 – 0.65). 

 

 An anomalously high [OH] during the CH4 stagnation period may explain a large fraction 

of the observed decrease in CH4 growth. 

TOMCAT model results suggest that variability in atmospheric [OH] and transport may well have 

played key roles in the observed recent variations in CH4 growth, particularly during the CH4 

stagnation period between 1999 and 2006. The 3-D CTM calculations show that during the 

stagnation period, variations in [OH], temperature and transport in the tropical lower to mid-

troposphere could potentially account for an important component of the observed decrease in 

global CH4 growth. Within this, small increases in [OH] were the largest contributing factor, while 

variations in transport made a smaller contribution. Note, however, that the ultimate loss of CH4 

is still due to chemistry. The role of atmospheric temperature variations is factored into the 

observationally derived OH, but model experiments show that changes in the OH concentration 

itself is most important. The remainder of the CH4 variation can be ascribed to other processes 

not considered in the model runs such as emission changes. There are also measurement 

uncertainties to consider and the possible underrepresentation of the global mean CH3CCl3 which 

will affect the derived OH concentration. These results are consistent with an earlier budget study 

which analysed 1991 to 2004 and found that variations in [OH] were the main control of variations 

in atmospheric CH4 lifetime (65%), with temperature accounting for a smaller fraction (35%) 

(Fiore et al., 2006). As noted here the CH4 lifetime can also be affected by emissions distributions 

which affects transport to the main loss regions. 
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Prior to the stagnation period the TOMCAT simulation using AGAGE-derived [OH] 

overestimates CH4 growth compared to observations which degrades the agreement with the 

observed CH4 variations. There are inaccuracies in box-model derived [OH] in 1997 when 

emissions played a large role in the observed CH3CCl3 and the e-fold decay had not stabilised 

(Montzka et al., 2011). 

Variations in CH4 emissions are not accounted for in simulations used in this chapter, but are 

investigated in Chapter 5. The results from this Chapter suggest that although global CH4 

emissions do vary year-to-year, the observed trend in CH4 growth between 1999 and 2006 was 

impacted by changing atmospheric processes that affected CH4 loss. When variations in 

atmospheric conditions are considered, the required decrease in emissions to match observations 

is reduced. Changes in emissions are still important and likely to dominate CH4 variations over 

other time periods. The observed changes in growth rates during ENSO events in e.g. 1998 are 

poorly captured by the meteorological changes considered here and can be attributed to changes 

in emissions through changing precipitation and enhanced biomass burning (Hodson et al., 2011). 

The renewed growth of CH4 in 2007 is also poorly captured by all model simulations without 

varying [OH]. The observed decrease in AGAGE and NOAA-derived [OH] coincides with the 

increase in CH4 growth in 2007, although the currently available data do not allow for a more 

detailed investigation of the possible contribution of [OH] changes in this recent increase. 

Improved quantification of the role of OH variability will require efforts to reduce uncertainties 

associated with estimating [OH]. Estimates of global mean [OH] in recent years from CH3CCl3 

observations is becoming increasingly difficult because CH3CCl3 levels are currently <5 ppt; 

hence this may limit the accuracy of derived [OH] and its variability in future years (Lelieveld et 

al., 2006). Wennberg et al. (2004) also noted that there can be time variations in the small uptake 

of CH3CCl3 by the oceans, which can also affect the derived [OH] concentrations and are not 

considered here. Future atmospheric trends in CH4 are likely to be strongly influenced by not only 

emissions but also changes in processes that affect atmospheric loss. The accuracy of predictions 

would therefore be improved by including variations in [OH] and meteorology. 

 

 

 

 



Evaluation of Wetland CH4 Models  67 

 

 

 

5 Evaluation of Wetland CH4 

Models 

5.1 Introduction 

This chapter compares and evaluates CH4 emission predictions from three wetland models. 

Wetlands are the largest single source of CH4 to the atmosphere (~30%) and have the largest 

uncertainty surrounding their emissions (Ciais et al., 2014). Model development can improve 

current and future wetland emission estimates, as well as predictions of possible climate 

feedbacks associated with these emissions. A second key area of model development concerns 

the improvement of the spatial and seasonal distribution of CH4 emissions, which can be tested 

against atmospheric observations. Identification of weaknesses of existing wetland models 

highlights areas that require development. 

This chapter aims to separate the uncertainty in the model forcing parameters (wetland fraction, 

temperature and carbon) from the structural uncertainty of wetland CH4 emission models, using 

similar process descriptions for three different models. The recently completed WETland and 

Wetland CH4 Inter-comparison of Models Project (WETCHIMP) highlighted challenges facing 

the wetland CH4 modelling community (Melton et al., 2013). That study involved ten wetland 

CH4 emission models which used a variety of processes and observed driving parameters (e.g. 

temperature), and showed both structural and parameter uncertainty in the models. Structural 

uncertainty includes missing processes (e.g transport) and uncertainty in the representation of 

some processes. The models analysed here were not part of the WETCHIMP study and, in 

addition to comparing them with each other, this chapter tests their accuracy by performing 

comparisons using a CTM and observations. The spatial and temporal differences between the 

models used here highlight parameter uncertainties and the relevant observation comparisons 

permit some assessment of the process description accuracy. It is assumed that the uncertainty in 

wetland CH4 emissions outweighs the uncertainties in other emissions and sinks in wetland 

regions and that any inaccuracies in all three models are a result of missing wetland processes. 
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Section 5.2 gives a background on the analysis framework. This includes a description of the 

wetland emission datasets, a comparison of the driving parameters, a brief overview of other CH4 

emission sources and the specifications of the TOMCAT simulations. Section 5.3 compares all 

three wetland emission datasets, generated by the wetland CH4 emission models, prior to them 

being used to force TOMCAT. Section 5.4 shows comparisons of TOMCAT CH4 simulations 

with flask, TCCON and GOSAT observations. Section 5.5 summarises the agreement between 

the wetland emission dataset and the TOMCAT simulations compared with observations.   

5.2 TOMCAT model simulation specifications 

The period 1993-2012 has been simulated using 3 TOMCAT CH4 tracers, all of which were 

identical except for the wetland emissions. To evaluate the wetland datasets modelled atmospheric 

CH4 predictions were compared with observations. The non-wetland emissions and loss fields 

were the same as those used in Chapter 4, except that some were allowed to vary interannually. 

Model resolution and forcing data was the same as described in Chapter 3. 12-hourly surface CH4 

output has been used for flask comparisons and 10-daily profile output is used for GOSAT and 

TCCON comparisons. A 12-year spin-up was performed using time varying emissions where 

available from 1980-1991. The global CH4 value was reset in 1992 using the global CH4 

observations from the NOAA flask network and spun-up for a further year using climatologies 

for each inventory.  

Anthropogenic emissions were taken from the EDGAR version 3.2 database (2001) between 1993 

and 2008, with 2009-2012 emissions set as a repeat of 2008. These are based on linear 

interpolation and extrapolation of estimates for 1990, 1995 and 2000 (Patra et al., 2009). Biomass 

burning emissions were taken from the GFED v3.1 inventory (van der Werf et al., 2010) between 

1997 and 2010. A climatology was used for emissions between 1993 and 1996, and years 2011-

2012 used a repeat of 2010 emissions. Emissions from rice, hydrates, volcanoes, termites, wild 

animals and ocean were annually repeating and identical to those described in Chapter 4. All 

emissions were scaled to IPCC estimates described in Chapter 2 and gridded at 1° by 1° resolution.     

5.2.1 Wetland CH4 

Three wetland emission models were used, each with similar process descriptions and all were 

scaled to average yield annual emissions of 177 Tg/yr. Two models, formulated and parameterised 

as part of this thesis, are based on the JULES process description shown in equation 5.1 (Gedney 
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et al., 2004), where FCH4 is the CH4 flux in kg m-2 s-1, k0CH4 is a global scaling constant in s-1, fw is 

wetland fraction in m2/m2, Cs is carbon substrate in kg m-2, Q10 describes the temperature 

dependence of the methanogenesis reaction, Tsoil is the soil temperature and T0 = 273.15 K is a 

reference temperature. The third model, taken from Bloom et al. (2012), uses equation 5.2, where 

FbCH4 is the CH4 flux in mg m-2day-1, ∅ is a decay constant in day-1, 𝜏𝑤 is the equivalent water 

height, 𝐷𝑠 is the equivalent depth of wetland soil and Cb is the carbon substrate in mg m-2. All 

three models are solely dependent on temperature, wetland and carbon substrate.  

𝐹𝐶𝐻4 = 𝑘0𝐶𝐻4𝑓𝑤𝐶𝑠𝑄10(𝑇𝑠𝑜𝑖𝑙)
(𝑇𝑠𝑜𝑖𝑙−𝑇0)/10  (5.1) 

𝐹𝑏𝐶𝐻4 = ∅(𝜏𝑤 + 𝐷𝑠)𝐶𝑏𝑄10(𝑇𝑠𝑜𝑖𝑙)
(𝑇𝑠𝑜𝑖𝑙−𝑇0)/10  (5.2) 

The following sections outline the three wetland emission datasets generated by the models, 

hereafter referred to as JU, JP and BL. Both JULES emission datasets were created as part of this 

work, the third, the top-down dataset, was taken from Bloom et al. (2012). 

JULES Driven by JULES Parameters (JU) 

The first wetland emission dataset, JU, was driven by JULES version 3.4.1 wetland fraction, soil 

temperature and soil carbon. This section describes the JULES configuration used, a more general 

model overview is discussed in Chapter 3. The three driving parameters for wetland CH4 

emissions in JULES are soil carbon, temperature and wetland fraction (see equation 5.1). 

WATCH-forcing-data-ERA-interim (WFDEI) was used to force JULES from 1993 to 2012 

(Weedon et al., 2014), this meteorological input is provided at 3-hourly time steps and at a 

horizontal resolution of 0.5° by 0.5°. The forcing data includes 67,209 land points outside 

Antarctica and provides JULES with long-wave and short-wave downward surface radiation, 2 m 

air temperature, 10 m wind speed, surface pressure, 2 m specific humidity, rainfall rate and 

snowfall rate. Monthly JULES output is used.  

TRIFFID was enabled in the model, which simulates vegetation and soil carbon dynamics to 

provide carbon substrate for methanogenesis (Cox et al., 2001). The soil carbon model uses the 

RothC soil carbon scheme (Coleman and Jenkinson, 1996), where leaf litter from vegetation is 

first split into two carbon pools, DPM and RPM (Decomposable/Resistant Plant Material), the 

ratio of which is dependent on the PFT (Plant Functional Type). Then the carbon can be released 

through respiration or further broken down into the BIO (Biomass) and HUM (Humus) pools.   
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Figure 5.1 Spin-up of JULES soil carbon at 4 locations using the accelerated method for humus 

(purple), microbial biomass (blue), and resistant (green) and decomposable plant material (red). 

 

Figure 5.2 Spin-up of JULES soil carbon at the same 4 locations as Figure 5.1 but using the 

standard method for humus (purple), microbial biomass (blue), and resistant (green) and 

decomposable plant material (red). 
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The use of the four soil carbon pools requires a long spin-up period (typically >1000 years) 

because of the slow turnover rate of the humus pool. This can be avoided by applying an 

accelerated decomposition method described by Koven et al. (2013). Once the soil carbon input, 

from vegetation, is in equilibrium, the size of the soil carbon pool is determined by the 

decomposition rates. The linear relationship between the size of the pool and the decomposition 

rate is exploited by accelerating the decomposition rates by a factor, α, and rescaling the pools by 

α. To assess the accuracy of this approach two spin-up methods were compared. The first, shown 

in Figure 5.1, used accelerated decomposition by spinning-up the vegetation for 30 years, 

followed by rescaling and accelerating the decomposition rates for 70 years. The second, shown 

in Figure 5.2, used a standard TRIFFID setup which is spun-up for 900 years. The standard 

version of the model had not reached equilibrium after 900 years, in particular the HUM pool. It 

is assumed that with a longer spin-up the standard version would eventually tend toward the 

values calculated using the accelerated decomposition method (see Figures 5.1 and 5.2). 

 

Figure 5.3 Comparison at all land points of the four JULES soil carbon pools, after a 70-year 

spin-up using accelerated decomposition and a 900-year spin-up using standard JULES. The four 

points in Figures 5.1 and 5.2 are represented by the purple (Boreal Canada), green (Siberia), red 

(Sahara) and blue (Amazon) diamonds. 
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Figure 5.3 shows that both spin-up approaches yield similar size pools for each substrate type at 

all model land points; as a result the accelerated method is used for the rest of this thesis to reduce 

computational demand. To ensure the model is spun-up for the correct time period, 1993 to 2013, 

the JULES simulation starts in 1979. This results in the soil carbon not just being in near- 

equilibrium but also provides the model representation of the global soil carbon state from 1993.    

The respiration rate is different for each pool in the RothC scheme, (see Table 5.1) and further 

details of this are discussed in Chapter 3. For methane production in JU the same methanogenesis 

rates are applied to each pool, using an overall methane production rate given in equation 5.3, 

where Cdpm,rpm,bio,hum represents the substrate availability of each of the four pools in kg m-2, 

Rdpm,rpm,bio,hum represents the methanogensis rate of each pool in s-1 and Λ is the methane production 

rate. A modified flux equation shown by equation 5.4 is then used, where Λ and a new time-

independent scaling factor, kCH4, replace Cs and k0CH4 of equation 5.1.  

Λ = 𝐶𝑑𝑝𝑚𝑅 𝑑𝑝𝑚 + 𝐶𝑟𝑝𝑚𝑅 𝑟𝑝𝑚 + 𝐶𝑏𝑖𝑜𝑅 𝑏𝑖𝑜 + 𝐶ℎ𝑢𝑚𝑅 ℎ𝑢𝑚  (5.3) 

𝐹𝐶𝐻4 = 𝑘𝐶𝐻4𝑓𝑤Λ𝑄10(𝑇𝑠𝑜𝑖𝑙)
(𝑇𝑠𝑜𝑖𝑙−𝑇0)/10   (5.4) 

Carbon Pool DPM RPM BIO HUM 

Respiration Rate (s-1) 3.22 x 10-7 9.65 x 10-9 2.12 x 10-8 6.43 x 10-10 

Table 5.1 JULES default respiration rates for each soil carbon pool based on values from Clark 

et al. (2011). The methanogenesis rates are assumed to equal the respiration rates. 

 
The soil temperature is calculated for four different layers in JULES. For this experiment all 

methane production is assumed to occur in the top 10 cm, which is the top soil layer in JULES. 

The baseline temperature dependence, Q10(T0), was set at 1.65. This value changes depending on 

the soil temperature as in equation 5.5 (taken from Gedney et al. 2004). This is required because 

the Arrhenius equation, which describes the temperature dependence of methanogenesis, is only 

valid over a limited temperature range (Gedney et al., 2004). Where the soil temperature is lower 

than 273.15 K, emissions are set to zero because the ground is considered frozen with no microbial 

activity.   

𝑄10(𝑇) =  𝑄10(𝑇0)
𝑇0/𝑇  (5.5) 

Wetland fraction for each model grid cell is given as the fraction of the grid cell that is fully 

inundated, estimated from the topographic index, which takes into account slope gradient and 

catchment area. Production and instantaneous emission of CH4 is restricted to saturated regions 

within the model, where saturated soils are surfaces which can no longer absorb water. In reality 
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some emissions are also observed at unsaturated sites (Wickland et al., 1999), but these are not 

accounted for in the model. The CH4 produced is immediately emitted into the atmosphere in the 

model, neglecting transport pathways and oxidation. JULES only simulates natural wetlands and 

does not account for agricultural practices, such as fertilisation, altering the biogeochemical 

processes. Some rice paddies are found in areas of natural wetlands, thus a rice field mask is 

placed over the JULES wetland and the rice emissions are taken from Yan et al. (2009). The mask 

used is an annually repeating monthly mean rice fraction map taken from MICRA2000, which is 

a global monthly irrigated and rainfed crop area database (Portmann et al., 2010).  

JULES Driven by Prescribed Parameters (JP) 

The second wetland emission dataset, JP, used equation 5.1 and a prescribed wetland fraction, 

soil temperature and soil carbon. This is an identical process description to JU but with different 

driving parameters. Unlike JU, the soil carbon does not vary with time. The prescribed parameters 

used to generate JP are based on observations. 

JP used a single carbon pool that has been spatially regridded from the Harmonised World Soil 

Database (HWSD) (Fischer et al., 2008). HWSD combines regional and national soil information 

maps to generate a global data set of multiple parameters which do not vary in time and which 

have a ~1km resolution. The database includes topsoil organic carbon fraction and density. 

Carbon is given as a percentage of the total mass in the top 30 cm of the soil column and is 

multiplied with soil density to obtain an estimate of substrate kg C/m2
 available for 

methanogenesis. Figure 5.4 shows how the HWSD database, with a single carbon pool, compares 

to the four carbon pools generated estimated with JULES, taken from JU. High values over 

Greenland can be ignored because there is no respiration or methanogenesis in that region. Total 

carbon is lower in JULES predictions compared to HWSD, especially in boreal regions. Carbon 

substrate is also more uniformly distributed in JULES simulations. Based on soil carbon alone, 

JU would produce more evenly distributed wetland CH4 emissions, than JP. JU also exhibits a 

more pronounced seasonality because it varies in time. 
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Figure 5.4 Global substrate carbon used in the wetland emission datasets JU and JP. (a) Global 

fixed topsoil organic carbon taken from HWSD. (b-e) Global substrate from the four JULES 

carbon pools, after accelerated decomposition, for September 2005. Note that the scale varies 

between plots. Large carbon pools over Greenland are a result of no respiration from the initial 

state.   

The soil temperature for JP is taken from the NCEP Climate Forecast System Reanalysis (Saha 

et al., 2010). The 0-10 cm soil temperature is provided at 6-hourly time steps and at a 0.5° by 0.5° 

resolution. This has been averaged into monthly means to provide data from 1993 to 2009. Soil 

temperature values from 2009 were used for 2010 to 2012. Figure 5.5 shows how the NCEP soil 

temperature compares with the top-layer JULES soil temperature taken from JU. There is good 

overall agreement between the two temperature datasets both spatially and temporally. This 

suggests that, based on temperature alone, there should be good agreement between the two 

datasets or equivalently any differences are unlikely to be caused by differences in soil 

temperature. The exclusion of Antarctica from JULES will not affect the wetland methane 

production because of a lack of soil carbon and wetland fraction in that region. 
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Figure 5.5 Global 0-10 cm soil temperature (K) used in the wetland emission datasets (a) JP, 

taken from NCEP Climate Forecast Reanalysis and (b) JU, taken from JULES for September 

2005. 

The wetland fraction used in equation 5.1 for JP is taken from the Global Inundation Extent from 

Multi-Satellites (GIEMS) dataset (Prigent et al., 2012). The data combines passive microwave 

land surface emissivities from The Special Sensor Microwave Imager (SSM/I) and the 

International Satellite Cloud Climatology Project (ISCCP) observations, European Remote 

Sensing (ERS) scatterometer responses, and Advanced Very High Resolution Radiometer 

(AVHRR) visible and near-infrared reflectances to provide 0.25° by 0.25° global inundated 

fractions. The data, which are from 1993-2007, are binned into 0.5° by 0.5° gridboxes, with a 

climatology used for 2008-2012. The same rice paddy distribution mask as for JU is applied to 
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JP. Figure 5.6 shows a comparison between the JULES wetland fraction used in JU and the 

GIEMS wetland fraction used in JP for March and September 2005. Spatially, JULES shows a 

more uniform distribution than GIEMS, with higher fraction in the tropics and lower in boreal 

regions.     

 

Figure 5.6 Global wetland fraction from GIEMS (a and c) and JULES (b and d) for March (a and 

b) and September (c and d) 2005. Note that the wetland fraction shown is before a rice mask is 

applied. 

Annually the total wetland area is much larger in JULES compared to the GIEMS estimate; 

however, because the emissions are scaled to a global value the fractional distribution regionally 

compared to the global value is more important than the total wetland area for CH4 emissions. 

Figure 5.7b shows that up to approximately 40% of global wetlands can be found in Boreal 

regions during summer according to the GIEMS database, which is larger than in JULES (~30%). 

JULES exhibits a higher seasonal peak in wetland fraction in the tropics of up to ~75% compared 

to GIEMS (~60%) (see Figure 5.7d). GIEMS shows a larger seasonal variability in both the Boreal 

and Tropical regions as a fraction of the total global amount; however in absolute terms the 

variability is larger in JULES in the boreal regions. Overall the main differences in CH4 emissions 



Evaluation of Wetland CH4 Models  77 

 

 

between JU and JP are likely to occur as a result of differences between the two wetland fractions, 

both spatially and temporally. Based on wetland fraction, JP is likely to have a more pronounced 

seasonal cycle than JU with comparably more emissions from the Boreal regions. Both wetland 

datasets exhibit interannual variability in wetland fraction, which is further investigated in the 

analysis of the wetland emission datasets in Section 5.3.   

 

Figure 5.7  Time series of (a) wetland area and (b) wetland area as a fraction of total global 

wetland area, for JULES (black) and GIEMS (blue) between 1993 and 2012 in the northern 

Boreal region (>45°N). (c, d) The same as (a, b), for the Tropical region between 23.5°S and 

23.5°N. (e) The same as (a, b), globally. (f) Global wetland area as a fraction of the maximum 

global value. Note the wetland fraction is after rice mask has been applied.   

Top-Down Wetland CH4 Dataset (BL) 

The third set of wetland CH4 emissions, BL, were estimated using equation 5.2 together with top-

down observations. The dataset, described in this section, was not created as part of this thesis, 

but was taken directly from Bloom et al. (2012). The method isolates wetland and rice 

contributions to SCIAMACHY CH4 observations based on water-table depth and surface 

temperature (Bloom et al., 2010). The dataset correlates the variability in atmospheric CH4 over 

wetland regions with changes in water-table depth and soil temperature to produce the flux 

equation 5.2 between 2003 and 2011. For 1993-2002 and 2012 a climatology is used.   
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A dynamic methanogen-available carbon pool is used to limit the methane production and the 

decay constant provides an estimated methanogenesis turnover rate for the available carbon. The 

carbon pool is updated daily and is fitted to the SCIAMACHY CH4 observations. The carbon flux 

into the pool is assumed to be constant in time and balances the net CH4 flux on an annual 

timescale.  

Skin temperature is taken from the NCEP/National Centre for Atmospheric Research (NCAR) 

reanalysis project (Kalnay et al., 1996) and used as a proxy for soil temperature. This is 

aggregated from a global 1.9° by 1.88° resolution onto a daily 3° by 3° resolution.  

The equivalent water table used in equation 5.2 is derived from two satellites flown as part of The 

Gravity Recovery and Climate Experiment (GRACE). Changes in the Earth’s gravity are 

measured by GRACE, which provides data at a 1° x 1° resolution (Lemoine et al., 2007). An 

advantage of using GRACE is that it provides water table height both above and below the 

surface, which could be advantageous when developing transport processes within the process 

model.  

5.3 Wetland CH4 Flux Comparisons 

This section compares spatial and temporal differences in the CH4 fluxes of the three datasets (JU, 

JP and BL). Figure 5.8 shows the total annual emissions of the three datasets for the period 1993 

to 2012. It highlights the relative contribution of each emission source and shows that the largest 

deviation from the mean annual emission of 553 Tg/yr is in 1998, for all datasets (JU: 565.4, JP: 

570.3, BL: 561.8 Tg/yr). This was mainly caused by an increase in biomass burning emissions 

during the 1997/1998 El Niño event (van der Werf et al., 2004). JU has a positive trend in 

emissions over the 20-year period of 0.49 Tg/yr, BL shows a smaller increase of 0.11 Tg/yr, which 

is influenced by earlier years having repeat wetland emissions, and JP shows a decreasing trend 

of -0.16 Tg/yr.  
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Figure 5.8 (a-c) Annual emissions of CH4, in Tg/yr, from three different datasets between 1993 

and 2012 divided into individual source types. Datasetss have identical non-wetland emissions 

and different wetlands from (a) JU, (b) JP and (c) BL (Bloom et al., 2012). (d-f) Total annual 

emissions, same as a-c, with a different scale.  

 

Figure 5.9 Monthly emissions of CH4, in Tg/yr, from three different datasets between 1993 and 

2012 divided into individual source types. Datasets have identical non-wetland emissions and 

different wetlands from (a) JU, (b) JP and (c) BL (Bloom et al., 2012). Note rice, wild animal, 

ocean, hydrate, volcanic and termite emissions are all annually-repeating. 
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Mirroring the strong seasonality in wetland area, Figure 5.9 shows that the relative variations in 

emissions are much larger on a seasonal timescale than on an interannual timescale, with peak 

emissions in August (JU: 55.7, JP: 62.4, BL: 55.7 Tg/month) and low emissions in February (JU: 

37.4, JP: 34.9, BL: 37.3 Tg/month). Most of the variability is caused by seasonal changes in 

emissions from rice paddies and both, seasonal and interannual, changes in biomass burning and 

wetland emissions. Global rice emissions range from 6.7 Tg/month in August to 1.0 Tg/month in 

January. Biomass burning ranges from average values of 3.5 Tg/month in August to 0.74 

Tg/month in November. Wetland variability is discussed in more detail later. 

DeFries and Townshend (1994) defined regions to reflect geographical and mechanistic elements, 

these have been adapted to the regions used here (see Figure 5.10) and are used for both Chapters 

5 and 6. The annual variance in biomass burning emissions is 13.9 Tg, this is smaller than for JU 

(1993 – 2012), 23.3 Tg, and JP (1993 – 2007), 46.6 Tg, but larger than BL (2003 – 2011), 2.2 Tg. 

Globally, wetland emissions range from 169.5 Tg/yr (1993) to 183.6 Tg/yr (2011) in JU, 164.1 

Tg/yr (2000) to 187.7 Tg/yr (1993) in JP and 173.8 Tg/yr (2004) to 180.3 Tg/yr (2007) in BL. 

The variation in interannual emissions in JP is caused by changes in wetland fraction, which is 

less prominent in JU and BL. JP shows the largest interannual variability in Boreal North America 

and Tropical Asia, with variances of 3.7 Tg/yr and 6.4 Tg/yr, respectively (see Figure 5.11). For 

BL and JU the interannual variability in regions is typically smaller, the largest being North Africa 

for BL, 0.57 Tg/yr and Tropical Asia for JU, 2.4 Tg/yr. Figure 5.11 shows datasets agree on the 

annual emissions in some regions, Temperate North America and Europe, but disagree elsewhere, 

Boreal North America and Tropical Asia. 

 

Figure 5.10 Map showing the regions used in the thesis with Boreal North America (1), Europe 

(2), Boreal North Asia (3), Temperate North America (4), North Africa (5), Temperate Asia (6), 

Tropical South America (7), Africa South (8), Tropical Asia (9), Temperate South America (10) 

and Australia (11).  
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Figure 5.11 Annual CH4 wetland emissions, in Tg/yr, from JU (green), JP (blue) and BL (Bloom 

et al., 2012) (red) between 1993 and 2012. Individual panels show regions defined in Figure 5.10 

and the bottom right panel shows the global emissions.      
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Wetland 

CH4 

Dataset 

Annual Average Emissions (Tg/yr) Region 

 1993-1998* 1999-2006 2007-2012*  

JU 173.5 176.6 181.1 Global 

JP 181.0 173.6 178.1 Global 

BL - 175.0 178.6 Global 

JU 9.2 9.4 10.2 Boreal North America 

JP 31.3 31.2 30.8 Boreal North America 

BL - 8.2 8.3 Boreal North America 

JU 16.4 18.1 18.3 Europe 

JP 12.0 12.2 12.6 Europe 

BL - 14.1 14.5 Europe 

JU 6.5 7.1 7.7 Boreal Asia 

JP 7.8 7.2 7.8 Boreal Asia 

BL - 11.2 11.9 Boreal Asia 

JU 13.9 12.7 12.8 Temperate North America 

JP 11.9 10.7 10.7 Temperate North America 

BL - 10.5 10.7 Temperate North America 

JU 19.8 19.6 19.6 North Africa 

JP 9.0 9.1 9.5 North Africa 

BL - 21.2 22.1 North Africa 

JU 16.6 16.2 16.3 Temperate Asia 

JP 29.4 27.6 28.0 Temperate Asia 

BL - 19.8 19.8 Temperate Asia 

JU 31.5 31.4 31.8 Tropical South America 

JP 21.5 19.8 20.3 Tropical South America 

BL - 21.8 21.7 Tropical South America 

JU 16.7 17.4 18.4 Africa South 

JP 6.2 6.7 7.0 Africa South 

BL - 24.3 25.2 Africa South 

JU 20.4 21.9 23.1 Tropical Asia 

JP 40.4 39.1 40.3 Tropical Asia 

BL - 11.8 12.1 Tropical Asia 

JU 18.9 18.7 18.2 Temperate South America 

JP 8.8 7.9 8.6 Temperate South America 

BL - 23.6 23.6 Temperate South America 

JU 4.7 5.5 6.2 Australia 

JP 2.7 2.1 2.4 Australia 

BL - 9.5 9.7              Australia  

Table 5.2 Global and regional wetland emissions between 1993 and 1998, 1999 and 2006, and 

2007 and 2012, from JULES, JULES driven by prescribed parameters and a top-down estimate 

(Bloom et al., 2012). 

* Where data are available from JU (1993-2012), JP (1993-2009) and BL (2003-2011). 



Evaluation of Wetland CH4 Models  83 

 

 

 

Figure 5.12 Regional wetland emissions between 1993 and 1998, 1999 and 2006, and 2007 and 

2012 where data are available, from (a) JU, (b) JP and (c) BL (Bloom et al., 2012).  
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Table 5.2 and Figure 5.12 show how average wetland emissions change over time, bracketing 

intervals before, during and after the pause in CH4 growth discussed in Chapter 4. JU (1993-2012) 

and BL (2003-2011) show an overall positive trend in global wetland emissions of 0.43 Tg/yr and 

0.56 Tg/yr, respectively, both of which are statistically significant at the 95% level (p<0.05). JP 

(1993-2009) shows a negative trend of -0.35 Tg/yr, which is not statistically significant. This 

highlights the uncertainty in trend prediction using wetland CH4 modelling. JU emissions 

decreased by 0.4 Tg/yr during the stagnation period (1999-2006), with the largest decrease in 

Temperate North America (0.4 Tg/yr). JP emissions decreased by 3.4 Tg/yr during the same 

period, with the largest decreases in Temperate Asia (0.7 Tg/yr), Tropical South America (0.7 

Tg/yr) and Tropical Asia (0.7 Tg/yr). BL emissions decreased by 2 Tg/yr during the same period, 

with noticeable decreases in Boreal Asia (0.4 Tg/yr), North Africa (0.5 Tg/yr) and Africa South 

(0.5 Tg/yr). This shows that all datasets predict a decrease in emissions but do not agree on the 

magnitude or the spatial distribution of the decrease. Since 2007 all three datasets estimate that 

global wetland emissions are above the 1993-2012 average of 177 Tg/yr by 1.1 Tg/yr (JP) to 4.1 

Tg/yr (JU). JU predicts increases in Africa South, Australia and all boreal and tropical regions. 

JP predicts increases in Europe, Boreal and Tropical Asia, North and Africa South, and Temperate 

South America. BL predicts increases in Temperate North America, North Africa, Africa South, 

Tropical Asia, Australia and all boreal regions. All datasets agree that African and boreal 

emissions have increased since 2007. 

Changes in modelled wetland CH4 emissions are dependent on three parameters; wetland fraction, 

soil temperature and soil carbon content. Figure 5.13 shows how each of these parameters vary 

with time and the relative coefficient anomaly these changes have on global wetland emissions. 

Wetland fraction is the largest driver of the reduced emissions during the stagnation period with 

a mean coefficient anomaly in JU of -0.4% and in JP of -3.3% between 1999 and 2006. Rainfall 

over the mean wetland area is comparably high in 1999 and 2000 but reduces below the average 

for the remainder of the stagnation period. Temperature causes less than a 0.1% reduction in 

emissions in both JU and JP, and soil carbon produces an above average coefficient during the 

stagnation of 0.1%. Regression analysis reveals a statistically significant (95% level) positive 

trend in the wetland coefficient anomaly of 0.5%/yr for JU and a negative trend of -0.6%/yr for 

JP. Both, JU and JP, show a statically significant trend in the temperature coefficient anomaly of 

0.5% and 0.4% respectively. JU does not predict a statistically significant trend in emissions due 

to changes in soil carbon content. 

The global seasonal ranges in wetland emissions differ between each dataset (see Figure 5.14). 

Globally, JU has an average seasonal maximum in August (18.6 Tg/month) and minimum in 

February (11.3 Tg/month). BL has an almost identical maximum in August (18.6 Tg/month) and 
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minimum in February (11.3 Tg/month). JP has a much larger seasonal range with an average 

maximum in August (26.5 Tg/month) and minimum in December (8.8 Tg/month). The large peak 

in JP emissions in the Northern Hemisphere summer mostly originates from increased emissions 

over Boreal North America. The datasets show similar seasonal cycles over Europe, Boreal North 

Asia and Temperate North America.  

 

Figure 5.13 The parameters required to generate the different CH4 wetland flux datasets. (a) 

Total global mean wetland area in m2, (c) soil temperature in K and (e) temperature independent 

unscaled soil carbon flux in kg m-2 s-1 from JU (green) and JP (blue). The relative global 

anomalies in the coefficients for (b) wetland area, (d) soil temperature and (f) soil carbon. (g) 

The global average rainfall over the climatological wetland area in kg m-2 s-1 and (h) the relative 

anomalies in rainfall. All data is for 1993 to 2011 for JU and 1993 to 2007 for JP.  

Temporal and spatial differences in all three wetland datasets shown here mainly arise because of 

differences in the wetland fraction. Firstly, the overall long-term trend in emissions is positive in 

JU and BL but negative in JP. Secondly, JP interannual variations in emissions are larger than for 

JU and BL. Thirdly, JP predicts a more pronounced seasonal cycle than the other two datasets, 

which is most evident in Boreal North America. Finally, there are clear differences in the spatial 

distribution of emissions predicted by JP compared to JU and BL, which have similar distributions 

to each other. Based on these comparisons there are noticeable differences between datasets even 

when the same methanogenesis model is applied, highlighting the parameter uncertainty in 
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wetland models. The parameter information is assessed in Section 5.4 by comparing CTM 

simulations driven by the wetland datasets with atmospheric CH4 observations. 

 

Figure 5.14 Seasonal cycle of CH4 wetland emissions, in Tg/month, from JU (green), JP (blue) 

and BL (Bloom et al., 2012) (red). Monthly averages are taken from years where data are 

available, JU (1993-2012), JP (1993-2009) and BL (2003-2011). Individual panels show regions 

defined in Figure 5.10 and the bottom right panel shows the global emissions. 
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5.4 Comparisons of TOMCAT CH4 with Observations 

The three emission inventories were used as the CH4 flux boundary conditions in TOMCAT each 

with three different OH loss fields, RE, AO and NO, as described in Chapter 4. These were then 

compared with surface, TCCON and GOSAT observations. The length of the flask record used 

(1993-2012) allows for the assessment of long-term trends in the TOMCAT simulations, whilst 

the TCCON and GOSAT observations allow for the assessment of column CH4.  

5.4.1 Flask Comparisons 

The results of the TOMCAT simulations have been compared to the NOAA surface sites listed 

in Chapter 4 (see Figure 5.15). The model predicted CH4 fields have been linearly interpolated to 

the latitude, longitude and altitude of the surface sites. Monthly mean observations and model 

output are used when available between 1993 and 2012. At high-latitude southern hemisphere 

sites the difference between simulations using JU, JP and BL is small. These sites observe well-

mixed background CH4 concentrations, because there are little or no local emission sources. The 

difference between the model runs becomes more apparent at low-latitude and high-latitude 

northern hemisphere sites, where JP exhibits high seasonality. 

The initial global CH4 concentration in the model is scaled to match the observation network 

global mean, although the concentrations do not match at individual sites (see Chapter 4). The 

initial model average CH4 concentration at the 7 high-latitude northern sites (>60° N) is 1867 ppb, 

which is 29 ppb higher than observed (1838 ppb). This is balanced out in the southern hemisphere 

where the model average at the 3 high-latitude southern sites (>60° S) is 1659 ppb, which is 24 

ppb lower than observed (1683 ppb). Assuming the source and sink distributions are broadly 

accurate during the spin-up phase, this would suggest that the interhemispheric transport in the 

model is too slow from the northern hemisphere, where a majority of emissions occur, to the 

southern hemisphere. This was previously noted in the TransCom study (Patra et al., 2011), in 

which the TOMCAT model predicted larger inter-hemispheric gradients of CH4, CH3CCl3 and 

SF6 concentrations compared to both observed values and other models involved in the 

intercomparison. 

The RMSE and correlation coefficient are calculated for each model simulation and observation 

(see Table 5.3). Simulations with NOAA OH are selected for subsequent analysis because they 

result in the lowest RMSE and highest correlation coefficients, hereafter referred to as TOM_JU, 

TOM_JP and TOM_BL. RMSE is taken by calculating the residual error between the model and 
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observation, which is squared, averaged, and then square-rooted as given by equation 5.6, where 

n is the number of months, and CH4m and CH4o are the modelled and observed CH4, respectively.  

𝑅𝑀𝑆𝐸 = √
∑(𝐶𝐻4𝑚−𝐶𝐻4𝑜)

2

𝑛
   (5.6) 

 

Figure 5.15 Monthly mean surface CH4 (ppb) from 19 NOAA observation sites (black) from 1993 

to 2012, where data are available. Also shown are results from three TOMCAT 3-D CTM 

simulations, TOM_JU (green), TOM_JP (blue) and TOM_BL (Bloom et al., 2012) (red). Different 

line styles represent simulations with different OH fields, Rigby et al. (2013) AGAGE OH 

anomalies (dotted), Montzka et al. (2011) NOAA OH anomalies (solid) and repeat OH field 

(dashed).  
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Table 5.3 shows that TOM_JU predictions correlate the best with observations at all but two sites 

and that both TOM_JU (22.8 ppb) and TOM_BL (22.6 ppb) produce lower average RMSE values 

than TOM_JP (37.6 ppb). This suggests that when the interannual and the seasonal variability are 

both taken into account, TOM_JU and TOM_BL agree comparably well with observations. The 

large RMSE values in the northern high latitudes are, in part, due to the initial state having high 

concentrations at those sites.  

Station TOMCAT simulation 

 TOM_JU TOM_JP TOM_BL 

 Correlation 

Coefficient 

RMSE 

(ppb) 

Correlation 

Coefficient 

RMSE 

(ppb) 

Correlation 

Coefficient 

RMSE 

(ppb) 

ALT 0.89 31.9 0.58 65.7 0.87 32.2 

ZEP 0.80 30.6 0.53 61.0 0.76 30.3 

SUM 0.82 29.6 0.48 59.2 0.77 27.5 

BRW 0.62 26.9 0.31 61.5 0.52 30.3 

PAL 0.47 31.0 0.18 61.6 0.56 23.9 

STM 0.81 29.6 0.47 61.9 0.80 28.5 

ICE 0.87 29.0 0.53 61.0 0.85 26.1 

MHD 0.63 41.5 0.54 63.3 0.64 36.4 

NWR 0.91 21.6 0.85 39.4 0.89 24.0 

MLO 0.93 18.8 0.87 33.1 0.92 18.7 

RPB 0.86 20.3 0.82 32.4 0.85 19.8 

ASC 0.94 11.9 0.92 11.8 0.92 12.3 

SEY 0.95 12.1 0.94 15.1 0.95 12.5 

ABP 0.69 30.9 0.64 23.7 0.60 34.1 

SMO 0.95 10.3 0.92 10.6 0.94 10.6 

CGO 0.93 14.0 0.92 10.8 0.93 15.2 

PSA 0.95 11.5 0.93 10.5 0.94 12.5 

HBA 0.70 21.9 0.68 21.4 0.68 22.1 

SPO 0.96 10.7 0.95 9.5 0.96 11.6 

Average 0.83 22.8 0.69 37.6 0.81 22.6 

Table 5.3 Correlation coefficient and RMSE values for CH4 flask observations compared with 

TOMCAT model output using NOAA-derived OH field between 1993 and 2012, where TOM_JU 

uses JULES wetland emissions, TOM_JP uses JULES wetland emissions driven by prescribed 

parameters and TOM_BL uses a top-down wetland dataset (Bloom et al., 2012).  

 

The mean absolute percentage error (MAPE) (Equation 5.7) is used in Figure 5.16 to assess model 

performance. This highlights the large error in the northern high latitude in TOM_JP and the 

similarity between TOM_JU and TOM_BL. At most sites the choice of wetland inventories 

produces a larger difference in error than the OH field; however there is some overlap with 

TOM_JU and TOM_BL at some sites.  
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𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝐶𝐻4𝑜−𝐶𝐻4𝑚

𝐶𝐻4𝑜
| (5.7) 

 

Figure 5.16 The mean absolute percentage error (%) between observations and TOMCAT 

simulations, TOM_JU (green), TOM_JP (blue) and TOM_BL (Bloom et al., 2012) 

The ability of the TOMCAT model simulations to capture the interannual and seasonal variability 

separately is displayed in Figure 5.17 and Figure 5.18. All three model simulations capture the 

interannual variability of CH4 well. Notably, the pause from 1999 to 2006 is captured by all three 

model simulations due, not only to an increase in OH loss (see Chapter 4), but also decreased 

wetland emissions. The observed continued growth between 2010 and 2012 is not captured by 

the model simulations, however over this period TOM_JP (2009-2012) and TOM_BL (2012) use 

climatological wetland emissions that would not capture a potential increase in emissions. 

TOM_JU predicts above average wetland emissions in 2010 (182.9 Tg), 2011 (183.6 Tg) and 

2012 (179.9 Tg) but this is not sufficient to reproduce the observed growth. A possible increase 

in anthropogenic (2009-2012) and biomass burning (2011-2012) emissions (see Chapter 2) is not 

accounted for in the model simulations and could contribute to this increase. 

The relatively large seasonal cycle at high-latitude southern hemisphere stations is a result of a 

reduction in loss during southern hemisphere winter because of a decrease in sunlight and slower 
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photochemistry (see Figure 5.18). The same is observed, to a lesser extent, at northern hemisphere 

high-latitude sites, where the reduction in oxidative loss coincides with a decrease in wetland 

emissions as a result of a reduction in surface temperatures. TOM_JP fails to capture the seasonal 

cycle at most northern sites, with the timing and magnitude of the cycle not comparable to the 

observations. TOM_JU and TOM_BL both capture the seasonal cycle at most sites, even when 

the seasonal cycle is small (ABP). The background seasonal cycle over the Antarctic stations 

(PSA, HBA and SPO) is well captured in all model simulations.  

 

Figure 5.17 Deseasonalised monthly mean surface CH4 (ppb) from 19 NOAA observations (black) 

and TOMCAT from 1993 to 2012, where data are available. Labelling is the same as Figure 5.15. 
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Figure 5.18 Seasonal cycle of monthly mean surface CH4 (ppb) from 19 NOAA observation sites 

(black) from 1993 to 2012, where data are available. Also shown are results from three TOMCAT 

3-D CTM simulations TOM_JU (green), TOM_JP (blue) and TOM_BL (red), all using the 

Montzka et al. (2011) NOAA OH anomalies. Correlation coefficients of model and observations 

are displayed for TOM_JU (green), TOM_JP (blue) and TOM_BL (red). 
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The comparisons show that all model simulations capture the interannual variability for most of 

the time series except the observed growth in the final three years. The average annual emissions 

of 177 Tg/yr seem reasonable because the overall growth over the 20 year period is comparable 

to observed growth. TOM_JP emissions in the boreal northern hemisphere are likely too high, 

resulting in a bias between the model and observations. The seasonal cycle is well captured at all 

sites by TOM_JU and TOM_BL but not by TOM_JP. Tropical wetland regions remain untested 

because of a lack of NOAA observations. 

5.4.2 Satellite Comparisons 

GOSAT measures weighted air column mixing ratios of CH4, XCH4, which are sensitive in the 

mid to lower troposphere, at a high spatial resolution. The XCH4 estimates used here are from a 

proxy retrieval method described by Parker et al. (2011), which have a weighted averaging kernel 

applied to account for differing sensitivities throughout the atmosphere. The remaining retrieval 

information is provided by an a priori profile, taken from model simulations. To account for this 

weighting the averaging kernel is applied to the TOMCAT model. The sensitivity of the averaging 

kernel is not only dependent on height but also on the solar zenith angle (SZA) (see Figure 5.19). 

The retrievals typically have most sensitivity between 200 hPa and 900 hPa.  

 

Figure 5.19 Typical GOSAT averaging kernel across 20 pressure levels and 90, 1° solar zenith 

angle bins. Colour range represents solar zenith angles from 0° to 90°. 



Evaluation of Wetland CH4 Models  94 

 

 

The averaging kernel and satellite column CH4 a priori vertical profile are used with the model 

output to produce an XCH4 for each retrieval, shown in equation 5.8 adapted from Wunch et al. 

(2010), where pwfn is the pressure weighting function at level n, n_max is the number of levels, 

CH4ap is the a priori, An is the averaging kernel at level n and CH4m is the model CH4. Model 

output is interpolated horizontally, temporally and from 60 levels to 20 levels so the averaging 

kernel can be applied using the method described by Connor et al. (2008). The model profile 

would not be maintained if direct interpolation methods were used because the model column 

profile does not vary linearly. To ensure the model profile is accurately interpolated, to conserve 

the column, several steps are required. First, the profile volume mixing ratio (VMR) is converted 

into partial columns. These are then vertically integrated to provide a cumulative column, which 

is the total column below the pressure level. The cumulative column is then interpolated onto the 

satellite retrieval levels, where it can be converted back into a VMR. 

𝑋𝐶𝐻4 = ∑ 𝑝𝑤𝑓𝑛(𝐶𝐻4𝑎𝑝 + 𝐴𝑛(𝐶𝐻4𝑚 − 𝐶𝐻4𝑎𝑝))
𝑛_𝑚𝑎𝑥
𝑛=1  (5.8) 

GOSAT data are used from April 2009 to December 2012, providing a full seasonal cycle for 

almost 3 years. These are used to analyse trends in XCH4 concentration and seasonal cycles, both 

globally and locally. Figure 5.20 highlights the spatial coverage of satellite retrievals, showing 

poor coverage over boreal regions in northern hemisphere winter.  

 

Figure 5.20 Global monthly mean XCH4 concentrations (ppb) from GOSAT in 2.8° by 2.8° bins 

for (a) March, (b) June, (c) September and (d) December, 2010. 
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The comparisons of TOMCAT simulations with GOSAT XCH4 are performed using annually 

repeating OH fields (see Chapter 4) because there are little or no OH anomaly data available over 

the GOSAT period (2009-). Figures 5.21, 5.22 and 5.23 show the differences between the model 

simulations, with the averaging kernel applied, and GOSAT for the same months as shown in 

Figure 5.20. These show overall good agreement with GOSAT observations. All three simulations 

show a slightly high higher in the boreal northern hemisphere and lower in the tropics. This is 

most evident in simulation TOM_JP, which frequently differs by more than 50 ppb, particularly 

in September. Over the entire GOSAT period there is reasonable model agreement, GOSAT 

estimates a global average CH4 concentration of 1790.3 ppb, whilst TOM_JU, TOM_JP and 

TOM_BL estimate averages, after the averaging kernel is applied, of 1789.9 ppb, 1795.3 ppb and 

1787.8 ppb, respectively. This suggests that the model emissions are well balanced with the sinks. 

The mean bias values between TOM_JU, TOM_JP and TOM_BL, and GOSAT are 11.8 ppb, 

19.2 ppb and 11.8 ppb, respectively, showing that overall TOM_JU and TOM_BL agree better 

with GOSAT observations than TOM_JP. Similarly, the RMSE values are lower for TOM_JU 

(6.7 ppb) and TOM_BL (6.6 ppb), than for TOM_JP (10.4 ppb).    

 

Figure 5.21 Difference in global monthly mean XCH4 concentrations (ppb) between TOM_JU 

and GOSAT observations (TOM_JU – GOSAT) for (a) March, (b) June, (c) September and (d) 

December, 2010. A GOSAT averaging kernel has been applied to the model data. Note that all 

non-wetland emissions are the same for each model simulation. 
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Figure 5.22 As Figure 5.21 but comparison between GOSAT observations and TOM_JP. 

 

Figure 5.23 As Figure 5.21 but comparisons between GOSAT observations and TOM_BL. 
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To assess the regional and temporal differences between the three TOMCAT simulations and 

GOSAT observations, data are split into the regions defined by Figure 5.10 and shown in Figure 

5.24 with the correlation coefficients labelled. Overall all three simulations capture the variability 

in XCH4 concentrations in each region well (R>0.6); however the correlation coefficients between 

simulations and observations reveal that differences in wetland emissions are the main cause of 

the model data differences. 

The seasonal ranges in TOM_JP in Boreal North America (31.6 ppb), Europe (24.4 ppb), Boreal 

North Asia (31.8 ppb), Temperate North America (32.2 ppb) and Temperate Asia (41.8 ppb) are 

25-58% larger than the observed range (22.1 ppb, 17.0 ppb, 25.0 ppb, 20.4 ppb and 33.5 ppb). 

TOM_JU provides the highest correlation with observations in all five of these northern 

hemisphere regions, suggesting that boreal wetland emissions are well represented in TOM_JU. 

The high correlation coefficients for all simulations for the Temperate Asia region is influenced 

by the annually repeating rice emissions, which reproduce the observed seasonal cycle well.  

The lowest correlation coefficients for both TOM_JU (R = 0.69) and TOM_JP (R = 0.63) are 

observed over both the Amazon and Orinoco Basin in Tropical South America, TOM_BL 

correlates similarly in this region (R = 0.61). Assuming biomass burning emissions are accurate 

and at least one of the parameter sets used to drive the CH4 flux estimates are reasonable, this 

suggests that the process description used to described wetland emissions is not sufficient to 

capture the seasonal cycle accurately. A possible alternative explanation is that all three 

inventories are driven by inaccurate wetland fractions for the Amazon and/or the Orinoco basin. 

All three model simulations fail to capture the trend in global growth observed by GOSAT 

observations between 2009 and 2012. From the start of the GOSAT time series till the end the 

global CH4 increased at a rate of 6.8 ppb/yr, this compares to 2.8 ppb/yr in TOM_JU and only 1.6 

ppb/yr and 1.5 ppb/yr in TOM_JP and TOM_BL, respectively. This could be a result of an 

increase in emissions and/or a decrease in sinks. Increased non-wetland emissions are most likely 

due to increased anthropogenic or biomass burning sources, which are not accounted for in any 

of the model simulations. Only JU extends for long enough to fully account for a potential increase 

in emissions from wetlands. A rise in wetland emissions in later years could have been caused by 

the increased ground water storage that occurred over Australia, northern South America and 

Southeast Asia during the 2011 La Niña event (Boening et al., 2012). Based on the results 

presented here an increase in wetland emissions since 2009 can explain only a comparably small 

fraction (~20%) of the observed increase in growth between 2009 and 2012. The highest observed 

growth trend in GOSAT is in Tropical Asia (8.2 ppb/yr), this is also the case for TOM_JU (4.6 

ppb/yr), TOM_JP (3.2 ppb/yr) and TOM_BL (3.2 ppb/yr). 
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Figure 5.24 Regional monthly mean XCH4 concentrations (ppb) from GOSAT between April 2009 

and December 2012 (black). Also shown are regional monthly mean XCH4 concentrations from 

three TOMCAT simulations with GOSAT averaging kernels applied, TOM_JU (green), TOM_JP 

(blue) and TOM_BL (red). Correlation coefficients of model and observations are displayed for 

TOM_JU (green), TOM_JP (blue) and TOM_BL (red). 
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Comparisons of all GOSAT retrievals with each of the TOMCAT simulations after the averaging 

kernel has been applied shows that TOM_JU and TOM_BL correlate equally well when compared 

to GOSAT (R = 0.84) while TOM_JP correlated less well (R = 0.76) (see Figure 5.25). The RMSE 

and mean difference are also similar for both JU and BL and both are lower than values for JP.   

 

Figure 5.25 Number density correlation of GOSAT with TOMCAT model output driven by three 

different wetland emission inventories between April 2009 and December 2012. Points are 

gridded into 1 ppb by 1 ppb bins. Also shown are the mean bias, RMSE and correlation coefficient 

of each comparison. 

Overall GOSAT comparisons suggest that TOM_JU and TOM_BL produce the most accurate 

seasonal cycle in most regions and provide the lowest bias. The overall results are in agreement 

with those found previously in the surface site comparisons. The results suggest that an improved 

process description is required to capture the observed seasonality in the Amazon, Orinoco and 

Pantanal, this might include the addition of CH4 transport or oxidation within the soil. The 

observed increase in CH4 growth is not captured by any of the TOMCAT simulations suggesting 

missing sources or sinks within the model simulations.  
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5.4.3 TCCON Comparisons 

As a final analysis the three TOMCAT simulations were compared with atmospheric CH4 

measurements from 15 TCCON stations listed in Table 5.3. Further details of the TCCON sites 

and retrieval method are discussed in Chapter 2. The sites surface elevation varies from sea-level, 

DB and WG (0.03 km), to over 2 km, IZ (2.37 km), and over a range of land types. Three TCCON 

sites were not included in this analysis because their time series length were considered too short 

(<6 months). The data provide weighted column mean CH4 concentrations at high northern 

latitudes, EU and SO, mid northern latitudes, BI, GM, JC, JF, KA, OC, OR and PA, and mid 

southern latitudes, LH, LL, WG, but not at latitudes below 45.04°S. The lack of coverage at high 

southern latitudes should not effect this study as there are no wetlands in that region. The network 

only provides data at one low-latitude northern hemisphere site, IZ, and one low-latitude southern 

hemisphere site, DB. A map of the sites used is shown in Figure 5.26, which reveals the lack of 

coverage over major wetland regions, such as the Amazon River basin, the Congo and the West 

Siberian Plain. This hinders the ability to differentiate between errors in the wetland and non-

wetland emissions.  

Site 

Code Site Name Latitude Longitude 

Altitude 

(km) Start Date End Date 

BI Bialystok, Poland 53.23 23.03 0.18 01/03/2009 Ongoing 

DB Darwin, Australia -12.42 130.89 0.03 28/08/2005 Ongoing 

EU Eureka, Canada 80.05 -86.42 0.61 24/07/2010 Ongoing 

GM Garmisch, Germany 47.48 11.06 0.74 16/07/2007 Ongoing 

IZ Izana, Spain 28.3 -16.5 2.37 18/05/2007 Ongoing 

JC Pasadena, USA 34.2 -118.18 0.39 08/01/2007 23/06/2008 

JF Pasadena, USA 34.2 -118.18 0.39 20/05/2011 31/01/2012 

KA Karlsruhe, Germany 49.1 8.44 0.12 19/04/2010 Ongoing 

LH Lauder, New Zealand -45.04 169.68 0.37 20/06/2004 28/02/2011 

LL Lauder, New Zealand -45.04 169.68 0.37 02/02/2010 Ongoing 

OC Lamont, USA 36.6 -97.49 0.32 06/072008 Ongoing 

OR Orleans, France 47.97 2.11 0.13 29/08/2009 Ongoing 

PA Park Falls, USA 45.95 -90.27 0.44 26/05/2004 Ongoing 

SO Sodankyla, Finland 67.37 26.63 0.19 06/02/2009 Ongoing 

WG Wollongong, Australia -34.41 150.88 0.03 26/06/2008 Ongoing 

Table 5.4 Information about the 15 TCCON XCH4 observation sites used in this study. Data are 

used up until the end of 2012 where available. Note that Pasadena and Lauder have used two 

different instruments at each site for retrievals, which are treated as separate time series.   
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The vertical sensitivity of TCCON instruments to atmospheric CH4 varies at each station and site 

specific averaging kernels are applied to model data before any comparisons are made. The final 

model comparisons are a combination of an a priori and the original model data. The averaging 

kernel is applied in the same way for TCCON as for GOSAT but the sensitivity of the sites differ 

with altitude and SZA, as shown in Figure 5.27. This also includes the same interpolation method 

and averaging kernel equation (5.6). The TCCON averaging kernels are provided on 71 vertical 

levels and across 16, 5° SZA bins from 10° to 90°. The retrieval sensitivity for TCCON is 

typically much more dependent on the SZA than GOSAT. 

 

Figure 5.26 Map showing spatial distribution of the 15 TCCON measurement sites used. 

 

Figure 5.27 Typical TCCON averaging kernel across 71 pressure levels and 16, 5° solar zenith 

angle bins from 10° to 90°. Colour range represents solar zenith angles from 10° to 90°. 
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The length of the TCCON time series varies at different sites, PA provides almost continuous 

data from 2004, whilst JC and JF provide less than a year of continuous data. EU and SO operate 

seasonally and so the data is fragmented and only available in certain months. For an accurate 

representation of the seasonal cycle at a site continuous data are required over multiple years.  

Figure 5.28 shows comparisons of all three TOMCAT simulations with repeating OH fields, with 

TCCON observations. The TCCON times are matched with the nearest available 10-day average 

TOMCAT CH4 predictions before the averaging kernel is applied. The data are then binned into 

monthly bins. TOM_JU predictions correlate the best with TCCON averaged over all sites (R = 

0.63), followed by TOM_JP (R = 0.59) and TOM_BL (R = 0.56). When compared with TCCON 

models provide correlation coefficients within 0.1 of each other at 7 of the 15 stations and only 

differ by more than 0.2 at one station (KA), suggesting that the inventories are performing 

comparably to each other.  

All models over-predict CH4 concentrations at the two seasonal high-latitude stations, EU and 

SO, but all models do capture the seasonal variability (R > 0.7) at those sites with TOM_JP over 

predicting the seasonal amplitude. The correlation coefficients for the three sites most closely 

associated with northern boreal and temperate wetland emissions, PA, EU and SO, reveal that 

TOM_JU predicts seasonal wetland emissions in this region the best. At the four European sites, 

BI, KA, OR and GM, all models fail to capture the seasonal variability, with relatively low 

average correlation coefficients of R = 0.44 (TOM_JU), R = 0.52 (TOM_JP) and R = 0.35 

(TOM_BL). There are no major wetlands close to these sites, suggesting that other sources or 

sinks might be missing, for example, anthropogenic emissions. At southern hemisphere sites the 

monthly mean model concentrations fall within the distribution of individual observations for 

most months, suggesting the total model concentrations are reasonable in all three simulations.          

The lack of continuous data means that it is difficult to compare global CH4 changes in 

observations and model simulations; however at individual sites, discrepancies in growth rates 

are observed when compared to model simulations. The growth rate observed at most sites is 

larger than that observed by all model simulations, particularly in later years. PA, which provides 

the longest, almost continuous, record shows that the average growth rate for the entire period 

between 2004 and 2012 is 4.8 ppb/yr, this is larger than in all model simulations which use the 

NOAA OH field at the same location (TOM_ JU: 4.4 ppb/yr, TOM_JP: 3.6 ppb/yr and TOM_BL: 

3.8 ppb/yr). The NOAA OH field is chosen because it produces the highest correlation coefficient 

for all three inventories. This suggests that either a potential trend in wetland emissions is missing 

or that a trend in non-wetland emissions or sinks is not accounted for.      
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Figure 5.28 Monthly mean XCH4 concentrations (ppb) from 15 TCCON sites when data are 

available (black). Also shown are concentrations from three TOMCAT simulations with TCCON 

averaging kernels applied. TOMCAT simulations are driven by JULES wetland CH4 (green), 

JULES wetland CH4 driven by prescribed parameters (blue) and a top-down wetland CH4 dataset 

(Bloom et al., 2012) (red). Correlation coefficients of model and observations are displayed for 

TOM_JU (green), TOM_JP (blue) and TOM_BL (red). Individual observations are also shown 

(grey). 
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5.5 Summary 

This chapter has evaluated three wetland CH4 models with similar process descriptions and 

investigated the role of wetlands in causing recent variations of the CH4 growth rate. The key 

results are: 

 Although parameters (wetland area, temperature and soil carbon) are a limitation in 

wetland CH4 model accuracy, two methods which use different parameter sets produce 

similar wetland CH4 flux estimates, both in their spatial pattern and seasonality (JULES 

and Bloom et al., 2012). 

 

 TOMCAT driven by the JULES wetland dataset performs well when compared with 

NOAA surface flask CH4 observations (R = 0.47 – 0.96), TCCON column CH4 

observations (R = 0.21 – 0.87) and GOSAT column CH4 observations (R = 0.84). 

 

 Between 1993 and 2012 CH4 wetland emissions estimated by the JULES model increase 

by 0.43 Tg/yr. 

 

 JULES predictions of wetland emissions decreased by 0.4 Tg/yr during the CH4 

stagnation period (1999-2006), mainly due to a decrease in wetland fraction. 

 

 The increased global atmosphere CH4 growth rate between 2010 and 2012 is not captured 

in any model simulation. 

 

 TOMCAT simulations show the poorest correlation with GOSAT in the Amazon and 

Orinoco region (R = 0.61 – 0.69), suggesting missing processes within the wetland model 

or other inaccurate sources (e.g. biomass burning). 

Three TOMCAT simulations have been used to evaluate the recent trends in atmospheric CH4, 

all of which were dependent on wetland fraction, temperature and soil carbon. The first, JU, used 

parameters from JULES, the second, JP, used observations and the third, BL, used a top-down 

approach. Observations from GOSAT, TCCON and flask sites have been used to investigate the 

limitation of these wetland CH4 models, both bottom-up and top-down. It was found that 

inaccuracy in wetland CH4 models originate from a combination of both parameter and process 

uncertainty. 
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Over the boreal wetlands there is large uncertainty in the parameters used by the wetland models, 

this is particularly evident in JP which uses satellite-derived wetlands to produce an emission 

dataset that does not agree with BL and JU. Flask, GOSAT and TCCON comparisons show that 

JULES parameters (TOM_JU) produce reasonable CH4 emissions over boreal wetlands and that 

a simple process approach is sufficient for simulating wetland dynamics, assuming the parameters 

are accurate. This is the case on a seasonal and interannual scale for a majority of the time series, 

with two exceptions. Firstly, for the final period of the model simulation, 2010-2012, there is an 

observed growth in atmospheric CH4, which is not captured by the model. These years use repeat 

anthropogenic emissions from 2008 and 2012 and use biomass burning emissions from 2011. 

Therefore, any increase in these emission sources are not accounted for in the model. An increase 

in wetland emissions that are not accounted for is an alternative possibility, as is a change in the 

atmospheric sink in these later years. Secondly, when compared with GOSAT, the seasonal cycle 

is poorly captured by all three datasets over the Amazon and Orinoco. Assuming at least one of 

the datasets used a reasonably accurate parameter set in the region, this suggests that there are 

missing wetland processes not accounted for or other emissions and sinks are poorly represented.  

The overall long-term trend in wetland emissions differs between the three datasets used, with 

one bottom-up (JU) and the top-down (BL) dataset showing a positive trend in emissions and the 

other bottom-up (JP) dataset showing a negative one. The dataset which uses emissions driven by 

JULES parameters (TOM_JU) produces the strongest agreement with observations and shows a 

statistically significant (p < 0.05) positive trend in wetland emissions between 1993 and 2012 of 

0.43 Tg/yr. Analysis of the meteorological driving data suggests that increased precipitation 

caused increases in wetland fraction, which caused a positive trend in emissions. Datasets with 

lower interannual and seasonal variability in emissions, JU and BL, perform better than the dataset 

with a higher interannual and seasonal variability, JP. More details of wetland processes are 

explored in Chapter 6.   
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6 Improvement of the JULES 

Wetland CH4 Model 

6.1 Introduction 

This chapter introduces additional wetland processes to the JULES wetland CH4 model and tests 

the new model using in-situ CH4 flux observations. The current process description in JULES 

ignores potentially important processes including CH4 production in soils which are not saturated, 

oxidation of CH4, sulphate suppression and transport mechanisms. The aim is to improve the 

JULES representation of the spatial and temporal wetland CH4 emissions by including these 

processes into the model. If model accuracy is increased by including additional processes then 

improved future flux estimates can be made, and previous trends in atmospheric CH4 

concentrations can be more accurately attributed to wetland emissions. If model-observation 

agreement does not improve this suggests a negligible contribution to emission variations from 

the additional processes, assuming that they are incorporated accurately. 

The current version of the JULES wetland CH4 scheme predicts emissions based on only soil 

temperature, wetland fraction and soil carbon (Gedney et al., 2004). Additional processes have 

been included in other LSMs, including oxidation of soil CH4 and transport (Wania et al., 2010; 

Riley et al., 2011), which were found to show good agreement with flux observations. These 

LSMs were not tested against simpler models nor have they been compared to atmospheric 

observations using an atmospheric model. Here, a perturbed parameter ensemble is used to 

optimise the JULES model using flux observations. The updated JULES model is tested against 

the original version using TOMCAT simulations and atmospheric observations. The evaluation 

of model performance follows the same methodology used in Chapter 5. 

Section 6.2 explains the biogeochemical aspects of wetland CH4, detailing methanogen microbial 

activity, productivity and transport pathways of CH4 to the atmosphere. Section 6.3 describes the 

inclusion of additional processes into the JULES wetland model, which are typically adapted from 
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previous studies. Section 6.4 optimises model parameters using a perturbed parameter ensemble 

for CH4 production, temperature sensitivity of CH4 production, oxidation of CH4 and CH4 

transport from the soil and water column to the atmosphere. Section 6.5 compares the updated 

flux estimates with the fluxes generated from the original version of the model and flux 

observations. Section 6.6 details the TOMCAT setup, outlining emission and loss fields. Section 

6.7 shows comparisons of TOMCAT simulations with flask, TCCON and GOSAT observations. 

Finally, Section 6.8 summarises the overall performance of the additional process descriptions 

and resulting trends in wetland CH4 emissions between 1993 and 2012 given by the original and 

updated versions of the model. 

6.2 Wetland CH4 Processes 

The emission of CH4 from wetlands is dependent on the production of CH4, methanogenesis, the 

oxidation of CH4, methanotrophy, and the transport through the soil and water column to the 

atmosphere (see Figure 2.6). This is discussed only briefly here as more detail has been given in 

Chapter 2. Methanogens, which produce CH4, use organic carbon as an electron donor to drive 

their metabolism (Bridgham et al., 2013). Past studies have suggested that the quality of organic 

carbon correlates with the decomposition rates (Updegraff et al., 1995; Chanton et al., 2008). 

Previous versions of JULES consider only the quantity and not the quality (ease with which it is 

broken down) of organic carbon when generating an emission estimate (Gedney et al., 2004; 

Hayman et al., 2014). The version of JULES used in Chapter 5 accounts for the quality of soil 

carbon by partitioning the total carbon pool into 4 individual pools for the first time. The CH4 

production within wetlands is also dependent on the anaerobic fraction of the soil column and soil 

temperature. Temperature dependence is accounted for in JULES by a Q10 temperature 

coefficient, set to 1.65. Currently, the anaerobic fraction is assumed to be either 1 or 0 in JULES. 

Competition between bacteria for the fermentation end products, H2/CO2 and acetate, should also 

be considered when calculating wetland CH4 production (Bridgham et al., 2013). Sulphate 

reduction typically outcompetes methanogenesis, and as a result sulphate (SO4
2-) deposition 

should be, but is not currently, considered in JULES (Gauci et al., 2004). Other factors, not 

considered here, include both the pH dependence and plant productivity correlations to CH4 

production (see Chapter 2). 

The oxidation of CH4 in soils and surface water is estimated to be between 40 and 70% of the 

total CH4 production (Megonigal et al., 2005), but this is not accounted for in the current version 

of JULES. Methanotrophs can oxidise CH4 in the soil/water column, depending on oxygen and 
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CH4 availability. Water table height, soil porosity and oxygen drawn down by plant root activity 

are all controls on the availability of oxygen and as a result, the oxidation of CH4. 

Transport of CH4 from the site of methanogenesis into the atmosphere can occur via diffusion, 

ebullition and/or plant-mediated transport. The current version of JULES assumes that emissions 

of CH4 from the surface immediately follow on from production without accounting for transport 

mechanisms. The diffusion rate of CH4 is dependent on the temperature and is different for water 

and air (Broecker and Peng, 1974). When considering the diffusion through the soil column, the 

porosity of the soil must be taken into account. The rate of CH4 ebullition is controlled by the 

temperature-dependent solubility of the water column (Yamamoto et al., 1976) and the volume 

of water. When maximum solubility is exceeded the CH4 is released into the atmosphere. The 

final mechanism, plant-mediated transport, occurs as either a passive diffusion process or as an 

active pump process. This process is dependent on the temperature and, the abundance, biomass, 

phenology and rooting depth of aerenchymatous plants, which are described in Chapter 2 (Wania 

et al., 2010). 

6.3 Process Developments 

This section describes additions to the existing JULES model, JU (see Chapter 5), in an attempt 

to make the model more realistic. The new version of the model, hereafter referred to as JN, 

includes process descriptions of sulphate suppression and transport mechanisms. Additionally, 

JN has a representation of CH4 pools, production and oxidation in both saturated and unsaturated 

regions. The developments introduced to JULES in this chapter are adapted from several other 

studies (Gauci et al., 2004; Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011).  

6.3.1 Methanogenesis in Unsaturated Soils 

The production of CH4 in soils is assumed to be limited to anaerobic environments, which not 

only includes fully saturated soils, but also a fraction of partially saturated soils. Currently JULES 

only considers production in fully water saturated soils. In these soils the ratio of CO2:CH4 

production is assumed to be constant because organic carbon is available to both processes, CO2 

respiration and methanogenesis, at all depths. The CO2:CH4 production ratio in unsaturated soils 

is larger than in saturated soils because less carbon is allocated to the anaerobic fraction where 

the production of CH4 occurs. As a result the production rate of CH4 in unsaturated soils is 

dependent on both the production ratio and the moisture content. The moisture content is used as 
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a proxy for anaerobic fraction, see equations 6.1 and 6.2, where fmoi is the non-wetland anaerobic 

fraction of the grid cell, smoi is the grid cell soil moisture fraction, Puns_CH4 is the unsaturated CH4 

production rate in kg m-2 s-1 and 𝜑𝑢𝑛𝑠 is the unsaturated CO2:CH4 production ratio. For production 

under saturated conditions, equation 5.4 is updated using a production ratio, 𝜑𝑠𝑎𝑡. 

𝑓𝑚𝑜𝑖 =
(𝑠𝑚𝑜𝑖−𝑓𝑤)

(1−𝑓𝑤)
 (6.1) 

𝑃𝑢𝑛𝑠_𝐶𝐻4 = (1 − 𝑓𝑤)𝑓𝑚𝑜𝑖𝜑𝑢𝑛𝑠Λ𝑄10(𝑇𝑠𝑜𝑖𝑙)
(𝑇𝑠𝑜𝑖𝑙−𝑇0)/10 (6.2) 

6.3.2 CH4 Pools 

Current emissions of CH4 in JULES instantaneously follow production. Bloom et al. (2010) 

showed that there is a lag between water table height and CH4 emissions, suggesting that an 

instantaneous relationship between water height and emissions might not be accurate. For JN a 

CH4 2-pool system has been introduced whereby CH4 can accumulate in saturated and unsaturated 

soils before being transported and/or oxidised. One aim of these changes is to simulate ebullition 

pulse events that have been previously observed (Tokida et al., 2007). For each grid cell the 

unsaturated, CH4uns, and saturated, CH4sat, pools, which represent CH4
 contained within the soil 

and/or water column, are updated with each time step; by first accounting for changes in wetland 

area (see equations 6.3, 6.4, 6.5 and 6.6). 

For𝑓𝑤𝑒𝑡,𝑡 − 𝑓𝑤𝑒𝑡,𝑡−1 > 0: 

𝐶𝐻4𝑠𝑎𝑡,𝑡 = 𝐶𝐻4𝑠𝑎𝑡,𝑡−1 + 𝐶𝐻4𝑢𝑛𝑠,𝑡−1(𝑓𝑤𝑒𝑡,𝑡 − 𝑓𝑤𝑒𝑡,𝑡−1) (6.3) 

𝐶𝐻4𝑢𝑛𝑠,𝑡 = 𝐶𝐻4𝑢𝑛𝑠,𝑡−1(1 + 𝑓𝑤𝑒𝑡,𝑡−1 − 𝑓𝑤𝑒𝑡,𝑡)  (6.4) 

For𝑓𝑤𝑒𝑡,𝑡 − 𝑓𝑤𝑒𝑡,𝑡−1 < 0: 

𝐶𝐻4𝑠𝑎𝑡,𝑡 = 𝐶𝐻4𝑠𝑎𝑡,𝑡−1(1 − 𝑓𝑤𝑒𝑡,𝑡−1 + 𝑓𝑤𝑒𝑡,𝑡) (6.5) 

𝐶𝐻4𝑢𝑛𝑠,𝑡 = 𝐶𝐻4𝑢𝑛𝑠,𝑡−1 + 𝐶𝐻4𝑠𝑎𝑡,𝑡−1(𝑓𝑤𝑒𝑡,𝑡−1 − 𝑓𝑤𝑒𝑡,𝑡)  (6.6) 

After the CH4 production, transport and oxidation terms are calculated the pools are then updated 

again by considering fluxes in and out of the pool, shown in equations 6.7 and 6.8, where 
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CH4prod/aer/ebu/dif/oxi are CH4 production, plant-mediated transport, ebullition, diffusion and 

oxidation, respectively, in kg m-2 d-1. 

𝐶𝐻4𝑢𝑛𝑠,𝑡+1 = 𝐶𝐻4𝑢𝑛𝑠,𝑡 + 𝐶𝐻4𝑢𝑛𝑠,𝑝𝑟𝑜𝑑,𝑡 − 𝐶𝐻4𝑢𝑛𝑠,𝑎𝑒𝑟,𝑡 − 𝐶𝐻4𝑢𝑛𝑠,𝑑𝑖𝑓,𝑡 − 𝐶𝐻4𝑢𝑛𝑠,𝑜𝑥𝑖,𝑡 (6.7) 

𝐶𝐻4𝑠𝑎𝑡,𝑡+1 = 𝐶𝐻4𝑠𝑎𝑡,𝑡 + 𝐶𝐻4𝑠𝑎𝑡,𝑝𝑟𝑜𝑑,𝑡 − 𝐶𝐻4𝑠𝑎𝑡,𝑎𝑒𝑟,𝑡 − 𝐶𝐻4𝑠𝑎𝑡,𝑒𝑏𝑢,𝑡 − 𝐶𝐻4𝑠𝑎𝑡,𝑑𝑖𝑓,𝑡 (6.8) 

6.3.3 Sulphate Suppression and Oxidation of CH4 

In JULES there is currently no competition with methanogens for available organic carbon. 

However, Gauci et al. (2004) described the importance of sulphur deposition in the suppression 

of methanogenesis from surface soils. To take this process into account for JN, a sulphur 

deposition rate estimate is taken from the coupled chemistry-climate model HadGEM3-UKCA 

(Turnock et al., 2015), which includes sulphur chemistry from Mann et al. (2010). Deposited 

sulphur is then used to suppress the production of CH4 in JN using equation 6.9, which is adapted 

from Gauci et al. (2004). Here SS is suppression in percent, Vmax is the maximum suppression in 

percent, which is set to 38.6 %, Sdep is the sulphate deposition in kg ha-1 yr-1. For CH4 production, 

equation 5.4 is updated to include SS. 

𝑆𝑆 =
(𝑉𝑚𝑎𝑥 ×𝑆𝑑𝑒𝑝)

(𝑆𝑑𝑒𝑝+8.71)
 (6.9) 

The removal of CH4 from the unsaturated pool via oxidation by methanotrophs is included in JN 

but not in JU. Oxidation is only considered in unsaturated soils because methanotroph activity 

peaks at a soil moisture content of around 33% after which it declines (Czepiel et al., 1995). The 

oxidation rate is dependent on temperature, soil moisture content, O2 concentration and CH4 

concentration. For the temperature dependence, f(T), the same Q10 factor  as for CH4 production 

is used. The soil moisture dependence, f(fmoi), is calculated using equation 6.10 taken from Zhuang 

et al. (2004), where Mmin, Mmax and Mopt are the minimum, maximum and optimum volumetric 

soil moistures for oxidation set at 0, 1 and 0.33, respectively. The CH4 concentration is taken from 

CH4uns and the O2 concentration is calculated based on an assumed surface O2concentration and 

soil porosity from the HWSD. These individual elements are combined to calculate the oxidation 

at each time step using equation 6.11, which is adapted from Zhuang et al. (2004). Here, fox is the 

fraction of CH4 available for oxidation, Omax is the maximum oxidation coefficient in mol m-3 s-1 

and, kCH4 and kO2 are the half-saturation coefficients of CH4 and O2, respectively, in mol m-3. 
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𝑓(𝑓𝑚𝑜𝑖) =
(𝑓𝑚𝑜𝑖−𝑀𝑚𝑖𝑛)(𝑓𝑚𝑜𝑖−𝑀𝑚𝑎𝑥)

[(𝑓𝑚𝑜𝑖−𝑀𝑚𝑖𝑛)(𝑓𝑚𝑜𝑖−𝑀𝑚𝑎𝑥)]−(𝑓𝑚𝑜𝑖− 𝑀𝑜𝑝𝑡)
2   (6.10) 

𝐶𝐻4𝑢𝑛𝑠,𝑜𝑥𝑖 = 𝑂𝑚𝑎𝑥 [
[𝐶𝐻4]

𝐾𝐶𝐻4+[𝐶𝐻4]
] [

[𝑂2]

𝐾𝑂2+[𝑂2]
] 𝑓(𝑇)𝑓(𝑓𝑚𝑜𝑖) 𝑓𝑜𝑥  (6.11) 

6.3.4 Transport Mechanisms 

Following the accumulation of CH4 in pools, transport mechanisms to the atmosphere have been 

introduced, which provides a model flux. The total flux at each time step is a sum of the diffusion, 

plant-mediated transport and ebullition.  

Diffusion in JN occurs in both saturated and unsaturated soils, through both soil and water.  The 

diffusivity of CH4 in water and air is given by equations 6.12 and 6.13, taken from Wania et al. 

(2010), which was adapted from earlier studies (Broecker and Peng, 1974; Lerman, 1979). Here, 

DCH4,water/air are the diffusivities of CH4 in water and air in units of 10-9 m2 s-1 and 10-4 m-2 s-1, 

respectively.  

𝐷𝐶𝐻4,𝑤𝑎𝑡𝑒𝑟 = 0.9798 + 0.02986𝑇 + 0.0004381𝑇
2 (6.12) 

𝐷𝐶𝐻4,𝑎𝑖𝑟 = 0.1875 + 0.0013𝑇 (6.13) 

For the diffusion of CH4 through soils, the porosity of the soil is accounted for by considering the 

soil composition taken from the HWSD (Harmonised World Soil Database). The CH4 diffusion 

rate from soils is calculated using equation 6.14 taken from Zhuang et al. (2004), where CH4_diff  

is the diffusion rate in kg m-2 s-1, γ is the tortuosity coefficient, set at 0.66, and, fclay/sand/silt and 

PVclay/sand/silt are the fractions and porosities of clay, sand and silt, respectively. 

𝐶𝐻4_𝑑𝑖𝑓𝑓 = γ𝐷𝐶𝐻4,𝑎𝑖𝑟(𝑓𝑠𝑎𝑛𝑑𝑃𝑉𝑠𝑎𝑛𝑑 + 𝑓𝑠𝑖𝑙𝑡𝑃𝑉𝑠𝑖𝑙𝑡 + 𝑓𝑐𝑙𝑎𝑦𝑃𝑉𝑐𝑙𝑎𝑦)𝐶𝐻4𝑢𝑛𝑠 (6.14) 

Equation 6.15 considers only CH4 diffusion from saturated soils, DCH4,water. Diffusion from 

unsaturated soils is dependent on soil moisture content and uses a combination of both DCH4,water 

and DCH4,air (see equation 6.16).  

𝐶𝐻4𝑠𝑎𝑡,𝑑𝑖𝑓 = 𝐶𝐻4𝑠𝑎𝑡𝐷𝐶𝐻4,𝑤𝑎𝑡𝑒𝑟 (6.15) 

𝐶𝐻4𝑢𝑛𝑠,𝑑𝑖𝑓 = 𝑓𝑚𝑜𝑖𝐶𝐻4𝑢𝑛𝑠𝐷𝐶𝐻4,𝑤𝑎𝑡𝑒𝑟 + (1 − 𝑓𝑚𝑜𝑖)𝐶𝐻4_𝑑𝑖𝑓𝑓 (6.16) 
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Emissions of CH4 via aerenchyma (see Chapter 2 for details) in plants is assumed to be via 

diffusion and occurs in both C3 and C4 grasses in JN. The total aerenchyma diameter is based on 

both the number of tillers (segmented stems) within the grid cell and an assumed average cross-

sectional area per tiller. To calculate the total number of tillers, Ntill, an average tiller biomass of 

0.22 g C is assumed (Wania et al., 2010) and the total C3 and C4 leaf biomass for the grid cell is 

calculated using equation 6.17, taken from Clark et al. (2011), where R is leaf biomass in kg C 

m-2, Lb is the leaf area index (LAI) and σ is the specific leaf density, which is set to 0.025 kg C m-

2 and 0.05 kg C m-2 for C3 and C4 grasses, respectively. Leaf biomass is assumed to equal tiller 

biomass (Clark et al., 2011). 

𝑅 = 𝜎𝐿𝑏 (6.17) 

The aerenchyma percentage of the tiller surface area is assumed to be 19.7% for saturated and 

2.5% for unsaturated conditions (Insausti et al., 2001), which can be scaled based on an assumed 

PFT porosity, Cpor. The average cross-sectional area, Atill, is assumed to be 2.6 × 10−5 m2, based 

on Wania et al. (2010). Using these values the aerenchyma flux from the saturated (𝐶𝐻4𝑠𝑎𝑡,𝑎𝑒𝑟) 

and unsaturated (𝐶𝐻4𝑢𝑛𝑠,𝑎𝑒𝑟) pool is calculated using equations 6.18 and 6.19. 

𝐶𝐻4𝑠𝑎𝑡,𝑎𝑒𝑟 = 0.197𝐶𝑝𝑜𝑟𝐴𝑡𝑖𝑙𝑙𝑁𝑡𝑖𝑙𝑙𝐶𝐻4𝑠𝑎𝑡𝐷𝐶𝐻4,𝑎𝑖𝑟 (6.18) 

𝐶𝐻4𝑢𝑛𝑠,𝑎𝑒𝑟 = 0.025𝐶𝑝𝑜𝑟𝐴𝑡𝑖𝑙𝑙𝑁𝑡𝑖𝑙𝑙𝐶𝐻4𝑢𝑛𝑠𝐷𝐶𝐻4,𝑎𝑖𝑟 (6.19) 

The transport of CH4 via soil/water/aerenchyma diffusion is considered as a flux in JN, whereas 

ebullition is represented as an instantaneous pulse once the CH4 pool in saturated soils exceeds 

the maximum solubility. This threshold is temperature-dependent following Yamamoto et al. 

(1976) and using a best-fit curve from Wania et al. (2010) shown in equation 6.20, where SB is 

the Bunsen solubility coefficient, defined as volume of CH4 per volume of water at atmospheric 

pressure.  

𝑆𝐵 = 0.05708 − 0.001545𝑇 + 0. 00002069𝑇
2  (6.20) 

The water volume, VH2O, for CH4 storage is assumed to be proportional to the wetland area within 

the grid cell, with an assumed maximum depth, Maxd, (see equation 6.21). 

𝑉𝐻2𝑂 = 𝑀𝑎𝑥𝑑𝑓𝑤𝑒𝑡 (6.21) 
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Following Wania et al. (2010), the ideal gas law is used to calculate the maximum CH4 storage 

capacity of saturated soils, SC, shown in equation 6.22, where ps is the surface pressure. If CH4,sat 

exceeds this capacity then the difference between CH4,sat and SC is emitted via ebullition. 

𝑆𝐶 =
16.04𝑉𝐻2𝑂𝑝𝑠𝑆𝐵

8.3145𝑇
 (6.22) 

6.3.5 Overview of Updated JULES 

The updated version of the model is used to produce a daily CH4 emission inventory at a 0.5° by 

0.5° resolution. An overview of the model is provided in Figure 6.1, which shows the inclusion 

of saturated/unsaturated CH4 pools, oxidation, sulphate suppression and transport. The model is 

driven by JULES output parameters where available, e.g. surface pressure, but also requires some 

ancillary information taken from HWSD, e.g. soil composition. 

 

Figure 6.1 Schematic representation of the updated JULES wetland CH4 model. Carbon is taken 

from four pools (DPM, RPM, BIO and HUM) for methanogenesis. Carbon availability is limited 

by sulphur deposition. CH4 is stored and transferred between two pools, saturated and 

unsaturated. A fraction of the unsaturated pool is oxidised by methanotrophs. Diffusion through 

the soil and water creates a surface CH4 flux. CH4 is also diffused through aerenchyma within 

plants. When the saturated CH4 pool exceeds the maximum solubility of CH4 then the surplus CH4 

is immediately released through ebullition. 

Ebullition 
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6.4 Sensitivity Testing of Updated JULES CH4 

To tune the new version of JULES, a Latin Hypercube design was used to create a perturbed 

parameter ensemble to explore parameter space (Lee et al., 2013). In this method, X number of 

parameters are each given N number of values within a suitable range and each parameter 

combination is modelled, requiring NX simulations. This is done in two stages to reduce 

computational demand; the first set of perturbed parameters control the production and 

temperature dependence of CH4 and the second set control the transport. The perturbed 

parameters are evaluated against flux observations taken from Riley et al. (2011) and are used to 

produce an optimised parameter set across all observation sites. 

6.4.1 Methanogenesis Parameter Estimation 

The first perturbed parameter ensemble varies parameters relating to the CH4 production rate and 

production temperature dependence. These are listed in Table 6.1, using a range of estimated 

values, some of which are based on previous studies (Zhuang et al., 2004; Wania et al., 2010; 

Riley et al., 2011; Yvon-Durocher et al., 2014).  

 Sensitivity Values 

Parameter Units Value 1 Value 2 Value 3 Value 4 Value 5 

Rdpm s-1 7.5×10-7 1.5×10-6 3×10-6 6×10-6 1.2×10-5 

Rrpm s-1 2.510-8 5×10-8 1×10-7 2×10-7 4×10-7 

Rbio s-1 5×10-8 1×10-7 2 ×10-7 4 ×10-7 8 ×10-7 

Rhum s-1 1.5×10-9 3×10-9 6×10-9 1.2×10-8 2.4×10-8 

𝑄10(𝑇0) - 1 1.65 2 3 4.4 

𝜑𝑢𝑛𝑠 - 2×10-4 2×10-3 2×10-2 0.2 0.4 

𝜑𝑠𝑎𝑡 - 5×10-2 0.1 0.2 0.5 1 

Table 6.1 Parameter sensitivity analysis ranges for CH4 production and temperature dependence 

applied to updated JULES model, JN, and tested against observations. 

 

The ensembles are compared to 13 observations previously collated by Riley et al. (2011) to 

assess model performance. Measurements typically exist over a 12-month period at varying time 

intervals using static chamber measurements. A basic overview of each measurement site is 

provided in Table 6.2, with further information provided in Riley et al. (2011). No other site 

information is used in this thesis and all parameter information is taken from model output and 

other ancillary data (e.g. soil moisture content). The model simulates a flux over the entire grid 
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cell whereas the flux observation typically represents a localised area, as a result this increases 

parameter uncertainty at the site in the model. Measurement sites are typically placed in wetland 

regions of the grid cell; as a result scaled fluxes are expected to be lower in the model than 

observed (see Section 6.5).  

Site 

Location Latitude Longitude 

Observation 

Year(s) Site Description 

Abisko, 

Sweden 68.3 18.7 2002 

Sub-Arctic mire; grass and a moss 

layer 

Alaska, 

USA 65.0 -148.0 1989 Tundra underlain by permafrost 

Degero, 

Sweden  64.0 20.0 1996 Oligotrophic lawn in a boreal mire 

Salmisuo, 

Finland 62.5 30.6 1993 Minerogenic oligotrophic fen 

Boreas, 

Canada 55.9 -98.4 1996 Fen with peat and brown mosses 

Sanjiang, 

China 47.4 133.3 2002 Peatland 

Minnesota, 

USA 47.3 -93.3 1989 

Transitional between poorly 

minerotrophic fen and oligotrophic 

bog 

Michigan, 

USA 42.3 -84.0 1991 Peatland bog 

Ruoergai, 

China 32.5 102.3 2001 Freshwater marsh 

Panama 9.0 -80.0 1987 Tropical swamp 

Orinoco, 

Venezuela 8.3 -63.2 1991 Flooded forest and floodplain 

Central 

Amazonia, 

Brazil -3.2 -59.9 1988-1989 Flooded forest 

Pantanal, 

Brazil -19.5 -57.0 1998 Tropical wetland 

Table 6.2 Description of the CH4 flux sites and measurements used to assess model performance. 

Adapted from Riley et al. (2011). 

 

The results from all 78,125 (57) simulations, none of which are scaled to a global value, are shown 

at each site and compared to observations in Figure 6.2. The results show that low-latitude 

simulations and observations produce little or no seasonal cycle in CH4 emissions. At Ruoergai 

in China no model simulation reproduces the maximum fluxes observed. At the high-latitude sites 

the onset of the seasonal flux due to the spring time melt is typically well represented, although 
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the duration of the seasonal emission is typically too long at some sites (Degero, Salmisuo and 

Sanjiang). At a majority of sites, most model simulations underestimate the observed flux, with a 

high number density (red colour) producing fluxes that rarely exceed 200 mgCH4 m-2 d-1. The 

influence of perturbing model parameters is noticeably more evident at some sites, e.g. Central 

Amazonia, than at others, e.g. Ruoergai. 

 

Figure 6.2 CH4 flux (mgCH4 m
-2 day-1) from 13 measurement sites when data are available, some 

of which are binned monthly (black circles). Also shown are daily number density results from 

the JN production perturbed parameter ensemble at each site, with simulation results binned into 

5 mgCH4 m
-2 day-1 bins. Note that years differ at each site and colour scale is logarithmic.   
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To evaluate model performance Taylor diagrams are used (see Figures 6.3 and 6.4), which 

quantify the observations and simulations in terms of their correlation, centred RMSE and the 

ratio of standard deviations (Taylor et al., 2001). From this information a model skill score can 

be determined between 0 (least skilful) and 1 (most skilful) using equation 6.23, taken from Taylor 

et al. (2001), where S is skill, R0 is the maximum correlation attainable, which is assumed to be 

1, R is the correlation coefficient, and σf is the ratio of model to observed standard deviation. 

𝑆 =  
4(1+𝑅)

(𝜎𝑓+1/𝜎𝑓)
2(1+𝑅0)

 (6.23) 

 

Figure 6.3 Taylor diagrams comparing the perturbed parameter ensemble and observed CH4 flux 

at the 6 most northern sites from Table 6.2 (red circles). Standard deviation provided as a ratio 

of simulated to observed flux deviation. Simulations with the highest site-specific skill (black) and 

lowest site-specific RMSE (blue) are indicated (squares).   
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Figure 6.4 As Figure 6.3 but for the 7 southern most sites from Table 6.2. 
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Both RMSE and skill can be used as metrics to assess model performance although the suitability 

of either is somewhat subjective and dependent on the model requirements. For most sites the 

choice of metric makes only a small difference when considering the most suitable parameter set. 

The flux difference is typically more noticeable between the parameter set with the lowest site 

specific RMSE and the set with the lowest all-site mean RMSE (see Figure 6.5). The parameter 

set that simulates the lowest all-site mean RMSE is adopted for use for global model simulations 

of JN.  

 

Figure 6.5 CH4 flux (mgCH4 m
-2 day-1) from 13 measurement sites when data are available (black 

circles). Also shown are daily results from JN, for the parameter configuration that provides the 

lowest mean RMSE over all sites (blue solid line), lowest site-specific RMSE (blue dashed line) 

and the highest site-specific skill (red dashed line). Note that years differ at each site. 
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Each perturbed parameter affects not just the magnitude of the flux but also the timing (see Figure 

6.6). Salmisuo is selected as an example site because it has the highest number of flux 

measurements (128) and here the influence of varying the HUM and BIO methanogenesis rate is 

small. This is the same at other stations because a majority of CH4 production originates from the 

DPM and RPM pools. Increasing 𝜑𝑢𝑛𝑠 results in higher fluxes towards the end of the year, 

whereas increasing 𝜑𝑠𝑎𝑡 shows increased fluxes earlier. The observed fluxes are within the limits 

of the selected parameter ranges, suggesting that the values chosen are reasonable. For the 

remainder of this chapter all results shown use the parameter set with the lowest all-site mean 

RMSE (see Table 6.3).   

 

Figure 6.6 CH4 flux (mgCH4 m-2 day-1) from the Salmisuo measurement site when data are 

available (black circles). Also shown are JN CH4 flux sensitivities for 7 parameters using the 

optimised configuration based on the lowest site-specific RMSE. 

Parameter Rdpm (s
-1) Rrpm (s

-1) Rbio (s
-1) Rhum (s

-1) Q10(T0) 𝜑𝑠𝑎𝑡 𝜑𝑢𝑛𝑑 

Lowest all-site 

mean RMSE 
1.2×10-5 2.5×10-8 5.0×10-8 1.5×10-9 3 2×10-2 5×10-1 

Lowest site-

specific RMSE 
7.5×10-7 2.0×10-7 8.0×10-7 2.4×10-8 3 2×10-1 5×10-1 

Table 6.3 Parameter fitting summary at Salmisuo showing the parameter configurations which 

produce the lowest all-site RMSE and lowest site-specific RMSE for first ensemble. 
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6.4.2 Transport and Oxidation Parameter Estimation 

The second perturbed parameter ensemble used the parameter configuration with the lowest all-

site mean RMSE from the first ensemble and perturbed 6 further parameters which influence 

oxidation and transport. Some of the parameter value ranges, shown in Table 6.4, originate from 

previous studies (Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011). 

 Sensitivity Values 

Parameter Units Value 1 Value 2 Value 3 Value 4 Value 5 

fox - 0.25 0.5 0.75 0.9 1.0 

Omax mol m-3 s-1 1.25×10-7 7.5×10-7 1.25×10-6 7.5×10-6 1.25×10-5 

KCH4 mol m-3 5×10-4 1×10-3 5×10-3 1×10-2 5×10-2 

KO2 mol m-3 7×10-3 2×10-2 7 ×10-2 0.2 0.7 

Maxd m 5×10-3 1×10-2 5×10-2 0.1 0.5 

Cpor - 0.1 0.2 0.3 0.4 0.5 

Table 6.4 Parameter sensitivity analysis ranges for CH4 transport and oxidation applied to JN 

and tested against observations. 

 

A repeat of the analysis used in section 4.2.1 is used for the second ensemble, with the unscaled 

fluxes from 15,625 (56) simulations and observations shown as a density plot (see Figure 6.7). 

The results show that the transport and oxidation parameters affect the pathway for the flux but 

have only a minor influence on the total flux with time. This could either be a result of an 

inaccurate model description, the parameter ranges being too limited or the transport mechanisms 

not playing a key role in the total emission of CH4. The influence of varying transport and 

oxidation parameters is more evident at some sites, e.g. Panama, than at others, e.g. Pantanal.  

The same approach for model evaluation is performed for the second ensemble, where the 

configuration which produced the lowest all-site mean RMSE is selected for further analysis. 

Perturbing individual parameters using this configuration shows that at the example site, 

Salmisuo, only Omax and Maxd have a noticeable impact on the flux (see Figure 6.8). Both Fox and 

Omax are temporally and spatially constant coefficients of oxidation, but the influence of Omax is 

more noticeable in the sensitivity analysis because the parameter range is larger. At some other 

sites the influence of Maxd is even larger, for example, Panama (see Figure 6.9). The higher Maxd 

values at Panama suggest less frequent but larger ebullition pulse events than the simulations with 

lower Maxd. The low temporal frequency of observations limits the ability to observe these 

ebullition pulse events and improved parameterisations are dependent on improved observations.   
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This section has outlined the developments made to produce JN. In subsequent sections JN refers 

to the model parameter configuration that produced the lowest all-site mean RMSE from the first 

(see Table 6.3) and second (see Table 6.5) ensemble.       

 

Figure 6.7 CH4 flux (mgCH4 m
-2 day-1) from 13 measurement sites when data are available (black 

circles). Also shown are daily results from the JN transport and oxidation perturbed parameter 

ensemble at each site, with simulation results binned into 5 mgCH4 m
-2 day-1 bins. Note that years 

differ at each site and colour scale is logarithmic.   
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Figure 6.8 CH4 flux (mgCH4 m-2 day-1) from the Salmisuo measurement site when data are 

available (black circles). Also shown are JN CH4 sensitivities for 6 parameters using the lowest 

all-site RMSE from the first ensemble and the site-specific RMSE from the second ensembles (see 

Tables 6.3 and 6.5). 

 

Figure 6.9 As Figure 6.8 but only showing parameter sensitivities of Maxd at Panama. 
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Parameter fox Omax (mol m-3 s-1) KCH4 (mol m-3) KO2 (mol m-3 ) Maxd Cpor 

Lowest all-site 

mean RMSE 

0.25 1.25×10-6 5×10-2 0.7 5×10-3 0.1 

Lowest site-

specific RMSE 

0.25 1.25×10-7 5×10-2 0.7 5×10-3 0.1 

Table 6.5 Parameter fitting summary at Salmisuo showing the parameter configurations which 

produce the lowest all-site RMSE and lowest site-specific RMSE for second ensemble. 

6.5 Comparisons of Updated JULES with Flux Observations 

This section compares the spatial and temporal differences in the wetland CH4 emissions from JN 

and JU, prior to their use in TOMCAT. Both inventories were derived using the same JULES 

parameters, with JN using some additional ones from JULES and HWSD. As a result any 

differences between them are the result of the additional process descriptions included in JN. 

The horizontal resolution of both models is 0.5° by 0.5°, which is far larger than the flux chamber 

observation area. As a result, scaled model emissions are likely to be far smaller than observations 

because they will include non-wetland regions with negligible emissions. Considering this, model 

performance is analysed based on the timing and not the magnitude of emissions. Therefore, 

scaled comparisons with flux observations are no longer evaluated using RMSE, but instead using 

the correlation coefficient. Figure 6.10 shows a comparison of JN and JU with observations, 

where the modelled emissions are increased by a factor of 20 so that the seasonal cycle 

comparison can be clearly observed on the same scale. Results show that JN produces an 

improved correlation at 9 of the 13 sites when compared with JU. Both models fail to capture the 

seasonality at the Alaska and Central Amazonia sites, showing negative correlations. The model 

developments show a slight deterioration in model performance at the Sanjiang site from R = 0.52 

to R = 0.51; however the correlations are limited by the lack of observational data. The other two 

sites where JU produces a higher correlation, Orinoco and Panama, only have a small seasonal 

signal and as a result do not produce a statistically significant correlation coefficient at the 90%-

level. When averaged over all observation sites JN (R = 0.34) produces a slightly higher 

correlation coefficient than JU (R = 0.32). This the difference becomes slightly larger when only 

the statistically significant, at the 90%-level, sites are used (JN: R = 0.43, JU: R = 0.37). These 

results suggest that at a site level the JULES process additions improve the temporal distributions 

of emissions only slightly, and that further analysis using a CTM and atmospheric observations 

is required to assess the spatial and temporal emission distribution on a larger scale.   
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Figure 6.10 CH4 flux (mgCH4 m
-2 day-1) from 13 measurement sites when data are available 

(black circles). Also shown are daily results from JN, for the parameter configuration that 

provides the lowest mean RMSE over all sites (blue solid line) and emissions from JU (red solid 

line), both of which have been scaled to produce global emissions of 177 Tg/yr and are increased 

by a factor of 20. Note that years differ at each site. Correlation coefficients for JN (blue) and JU 

(red) compared with observations are displayed for each site and as an all-site mean. 



Improvement of the JULES Wetland CH4 Model

  127 

 

 

Global comparisons of emission inventories show that the interannual variability is larger in JN 

(variance = 31.8 Tg/yr) than JU (variance = 23.3 Tg/yr). This is a result of years with unusually 

high, 2001(189 Tg), and low, 1993 (170 Tg), emissions in the JN inventory. The regions 

responsible for these unusually high/low emission periods can be determined, for example in 2001 

JN emissions in Africa South and Australia increase from the annual means of 20.4 Tg/yr and 6.2 

Tg/yr to 25.1 Tg and 9.3 Tg, respectively (see Figure 6.11). Typically JU produces higher boreal 

emissions, which is offset by higher tropical emissions in JN. As a percentage change in mean 

emissions this is most evident in Boreal North America where on average JU emissions (9.6 

Tg/yr) are 2.4 times larger than JN emissions (3.9 Tg/yr). The inventories show good agreement 

on the global interannual variability of emissions, with both showing below average emissions 

for the final 5 years of the atmospheric growth stagnation period (2002-2006) of 173.2 Tg/yr (JU) 

and 173.7 Tg/yr (JN).  Neither inventory suggests wetland emissions were the cause of the initial 

decline in atmospheric CH4 growth (1999-2001). Since 2007, JN emissions were above average 

in all years, in agreement with previous findings shown in Chapter 5, which suggests an increase 

in wetland emissions played a role in the observed increase in atmospheric CH4. This is in part 

the result of a noticeable change in Africa South in both inventories between 2006 and 2007 with 

emissions increasing by 4.5 Tg/yr and 3.8 Tg.yr in JN and JU, respectively. There is an overall 

statistically significant (p<0.05) positive trend in wetland emissions in JN of 0.40 Tg/yr, which is 

in agreement with the trend in JU (0.43 Tg/yr) discussed in Chapter 5. In agreement with JU, JN 

shows the largest overall trend in emissions over Tropical Asia (0.17 Tg/yr), followed by 

Australia (0.1 Tg/yr). 

Globally, the seasonal ranges in JN and JU are very similar (R = 0.99), with maxima in August 

of 18.0 Tg/month and 18.6 Tg/month (see Figure 6.12). The seasonal low occurs in December in 

JN (12.3 Tg/yr) and February in JU (11.3 Tg/yr), resulting in JN having a slightly smaller seasonal 

range. This is mainly caused by the seasonal range of JU emissions in Boreal North America (1.8 

Tg/month) being approximately double that of JN (0.9 Tg/month).  

On a global scale, the additional process description affected wetland CH4 emissions more on an 

interannual basis, than seasonally. However, on a regional scale the influence of additional 

processes is observable both interannually and seasonally. The differences between JN and JU 

may not necessarily indicate model improvement, but it does highlight the influence of model 

complexity on emission inventories. 
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Figure 6.11 Annual CH4 wetland emissions, in Tg/yr, from JULES simulations, JU (green) and 

JN (blue) between 1993 and 2012. Individual panels show regions previously defined (Figure 

5.10) and the bottom right panel shows the global emissions. Note the difference in y-axis values 

and that the x-axis values correspond to years.      
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Figure 6.12 Seasonal cycle of CH4 wetland emissions, in Tg/month, from JULES simulations, JU 

(green) and JN (blue) averaged between 1993 and 2012. Individual panels show regions 

previously defined (Figure 5.10) and the bottom right panel shows the global emissions. 
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6.6 Model Set-up 

TOMCAT was used to simulate 2 CH4 tracers from 1993-2012, both of which were identical 

except for the wetland emissions. The first tracer, which used JU wetland emissions, hereafter 

referred to as TOM_JU, was identical to the JULES tracer previously used (see Chapter 5). The 

second tracer used JN wetland emissions, hereafter referred to as TOM_JN. All other CH4 

emissions and loss fields were the same as those used in Chapter 5, although, only the NOAA-

derived OH field (1997-2007) was used. As a result TOM_JU comparisons with GOSAT and 

TCCON will differ slightly from those in Chapter 5, which used a repeating OH field. The initial 

atmospheric state, model resolution, meteorological driving data and output frequency was 

otherwise identical to the setup from Chapter 5. 

6.7 Comparisons of TOMCAT CH4 with Observations 

6.7.1 Flask Comparisons 

The results from the two TOMCAT simulations have been compared to surface NOAA sites (see 

Figure 5.15) between 1993 and 2012, using previously defined spatial and temporal interpolation 

methods (see Chapters 4 and 5). Model performance is not only dependent on the wetland 

inventories, but also the accuracy of other emission inventories and loss fields which are not 

always time-varying, and model transport. A potential issue in model evaluation may occur if for 

example, incorrect hemispheric emission estimates are offset by incorrect model transport 

resulting in the model agreeing with the observations but for the wrong reason. 

The increased southern hemisphere emissions used in TOM_JN, which are offset by the decreased 

northern hemisphere emissions, are observable in the comparisons with TOM_JU (see Figure 

6.13). TOM_JN captures the observed pause in atmospheric CH4 growth rate, which was 

previously shown to be well captured by TOM_JU, and is the result of a change in OH and a 

slight reduction in wetland emissions. Of the two simulations TOM_JU shows stronger agreement 

with the observed growth rate at northern high-latitude stations (see Table 6.6); however, the 

model CH4 is biased high in this region, which would result in an overestimation of atmospheric 

CH4 loss. This might explain why TOM_JN underestimates the high-latitude CH4 growth rate. 

Averaged over all sites, TOM_JN (20.5 ppb) produces a lower RMSE than TOM_JU (22.8 ppb) 

when compared to observations, which might also be as a result of the initial model bias in the 

northern hemisphere. From these long-term smoothed comparisons it is difficult to isolate the 
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influence of wetland emissions on the observed growth rate. However, the site averaged growth 

rate falls between the two model simulations, suggesting reasonable model performance on a 

long-term global scale.  

 

Figure 6.13 Deasonalised monthly mean surface CH4 (ppb) from 19 NOAA observation sites 

(black) from 1993 to 2012, where data are available. Also shown are results from two TOMCAT 

3-D CTM simulations, TOM_JU (green) and TOM_JN (blue).  
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Station TOMCAT simulation  

 TOM_JU TOM_JN NOAA 

 Correlation 

Coefficient 

RMSE 

(ppb) 

Growth 

(ppb/yr) 

Correlation 

Coefficient 

RMSE 

(ppb) 

Growth 

(ppb/yr) 

Growth 

(ppb/yr) 

ALT 0.89 31.9 3.2 0.90 23.8 2.2 3.5 

ZEP 0.80 30.6 3.1 0.80 22.8 2.0 3.5 

SUM 0.82 29.6 3.1 0.83 20.9 2.1 3.4 

BRW 0.62 26.9 3.0 0.59 24.4 1.9 2.7 

PAL 0.47 31.0 4.5 0.56 19.9 3.1 3.6 

STM 0.81 29.6 4.1 0.82 21.3 2.8 3.7 

ICE 0.87 29.0 3.7 0.87 20.1 2.6 3.2 

MHD 0.63 41.5 4.6 0.64 30.9 2.3 3.9 

NWR 0.91 21.6 4.0 0.90 19.7 3.1 4.4 

MLO 0.93 18.8 3.8 0.92 20.1 3.2 4.6 

RPB 0.86 20.3 3.6 0.85 20.3 2.7 3.9 

ASC 0.94 11.9 5.0 0.93 13.2 5.4 3.8 

SEY 0.95 12.1 3.9 0.95 13.9 3.5 4.0 

ABP 0.69 30.9 4.2 0.60 39.4 4.4 2.9 

SMO 0.95 10.3 4.7 0.95 13.1 4.8 3.9 

CGO 0.93 14.0 4.7 0.93 16.6 5.0 3.8 

PSA 0.95 11.5 4.5 0.95 13.7 4.9 3.7 

HBA 0.70 21.9 4.4 0.69 22.6 4.8 3.8 

SPO 0.96 10.7 4.5 0.96 12.9 4.9 3.9 

Average 0.83 22.8 4.0 0.82 20.5 3.5 3.7 

Table 6.6 Correlation coefficient and RMSE values for CH4 flask observations compared with 

TOM_JU and TOM_JN between 1993 and 2012. Also shown are modelled and observed annual 

CH4 growth rates in ppb/yr, where observation data are available.  

 

The seasonality of wetland emissions is not always captured by a simple process description (see 

Chapter 5), which provided a justification for introducing new model processes in an attempt to 

better represent the observed seasonal cycle. The seasonal cycles of both TOM_JU and TOM_JN 

have been evaluated against NOAA observations and shown to perform almost identically at most 

sites (see Figure 6.14). There are two exceptions to this, BRW and PAL, neither of which exhibits 

a noticeable seasonal cycle in the observations. At BRW the correlation coefficient decreases 

when the additional wetland processes are introduced from R = 0.52 to R = 0.44 and at PAL it 

increases from R = -0.16 to R = 0.17. The results from the remaining stations suggest that the 

additional wetland processes, which result in a change in CH4 emissions, only have a minor 

influence on the observed CH4concentration where the sites are located. It is possible that the 

influence is more noticeable over tropical wetlands which are not included in the NOAA network. 
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Figure 6.14 Seasonal cycle of monthly mean surface CH4 (ppb) from 19 NOAA observation sites 

(black) from 1993 to 2012, where data are available. Also shown are results from two TOMCAT 

3-D CTM simulations TOM_JU (green) and TOM_JN (blue). Correlation coefficients of model 

and observations are displayed for TOM_JU (green) and TOM_JN (blue). 
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6.7.2 Satellite Comparisons 

GOSAT observations, discussed in more detail in Chapters 2 and 5, have been used to evaluate 

the two TOMCAT simulations. The GOSAT averaging kernel was applied to both simulations, 

and comparisons were made using the same methodology outlined in Chapter 5. TOMCAT and 

GOSAT comparisons in Chapter 5 used a repeating OH field, whereas in these simulations both 

TOM_JU and TOM_JN used the NOAA-derived OH field from 1997-2007.  

The positive northern hemisphere bias in June 2010 in TOM_JU, when compared to GOSAT, is 

reduced, but still present, in TOM_JN (see Figures 6.15 and 6.16). The negative southern 

hemisphere bias in September and December in TOM_JU is also reduced in TOM_JN. Across all 

locations and times studied, the mean bias with GOSAT is higher for TOM_JU (13.2 ppb) than 

for TOM_JN (11.3 ppb). The RMSE from GOSAT comparisons is also higher for TOM_JU (7.4 

ppb) than for TOM_JN (6.5 ppb).  

 

Figure 6.15 Difference in global monthly mean XCH4 concentrations (ppb) between TOM_JU 

and GOSAT observations for (a) March, (b) June, (c) September and (d) December, 2010. A 

GOSAT averaging kernel has been applied to the model data. Note that TOM_JU here is different 

than in Figure 5.21, which does not use the NOAA-derived OH field. 
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Figure 6.16 As Figure 6.15 but comparison between GOSAT observations and TOM_JN. 

Previously defined regions (see Figure 5.10) are used to assess spatial and temporal differences 

between TOM_JU, TOM_JN and GOSAT and the correlation coefficients between TOMCAT 

and GOSAT are used as a metric for model performance (see Figure 6.17). TOM_JN and 

TOM_JU produce the same correlation coefficients with GOSAT in 4 out of the 11 regions. In 5 

regions TOM_JN correlation coefficients are slightly higher (difference of <0.05) and in the 

remaining 2 regions TOM_JU correlation coefficients are 0.01 higher. The similarities between 

the correlation coefficients are in agreement with the NOAA site comparisons, which suggests 

that the additional wetland process present in JN have only a small influence on the modelled 

atmospheric CH4 in most regions. The slight model correlation improvement in TOM_JN in 

Tropical (+0.01) and Temperate (+0.04) South America suggests that aspects of the Amazon, 

Orinoco and Pantanal wetland emissions are improved by the inclusion of the more complex 

processes present in JN. The GOSAT observed global growth rate (6.6 ppb/yr) for the entire time 

series is larger than both TOM_JN (2.5 ppb/yr) and TOM_JU (2.5 ppb/yr), suggesting an incorrect 

balance between sources and sinks in the model. Both wetland inventories have above average 

wetland emissions over the TOMCAT time series; however they could still be underestimating 

total emissions. Other explanations include increased biomass burning or anthropogenic 

emissions, or a decrease in the atmospheric sink through a reduction in [OH].    
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Figure 6.17 Regional monthly mean XCH4 concentrations (ppb) from GOSAT between April 2009 

and December 2012 (black). Also shown are regional monthly mean XCH4 concentrations from 

two TOMCAT simulations with GOSAT averaging kernels applied, TOM_JU (green) and 

TOM_JN (blue). Correlation coefficients of model and observations are displayed for TOM_JU 

(green) and TOM_JN (blue). 
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All GOSAT retrievals have been correlated with both TOM_JN and TOM_JU XCH4 after the 

averaging kernel has been applied (see Figure 6.18). Results show that TOM_JN produces a lower 

mean bias, RMSE and a higher correlation than TOM_JU. This suggests that when all GOSAT 

retrieval points are considered TOMCAT produces a more accurate XCH4 when driven by JN.  

 

Figure 6.18 Number density correlation of GOSAT with TOMCAT model output driven by two 

different wetland emission inventories between April 2009 and December 2012. Points are 

gridded into 1 ppb by 1 ppb bins. Also shown are the mean bias, RMSE and correlation coefficient 

of each comparison.  

6.7.3 TCCON Comparisons 

The final observation comparisons are made with 15 TCCON stations, which are described in 

Chapters 2 and 5. The averaging kernel is applied to both TOMCAT simulations using the method 

from Chapter 5 and all comparisons are made using monthly TCCON and TOMCAT data. The 

TOM_JU comparisons use the NOAA-derived OH field, which differs from those shown using a 

repeating OH field in Chapter 5. Typically the correlation coefficients calculated are similar for 

both TOM_JU and TOM_JN when compared with the TCCON observations (see Figure 6.19). 

This is unsurprising because, as noted earlier, the majority of TCCON stations are not near 

wetland emission regions. TOM_JU produces a higher correlation coefficient at 11 of the 15 

stations, while TOM_JN only produces a higher correlation at Eureka, a station limited by 

infrequent observations. This suggests that TOM_JU more accurately captures the seasonality of 

XCH4 at TCCON stations. The comparisons would profit from increased TCCON coverage of 

wetland regions. TOM_JN produces a lower mean bias (20.0 ppb) and RMSE (9.1 ppb) than 

TOM_JU (22.4 ppb and 9.9 ppb).  
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Figure 6.19 Monthly mean XCH4 concentrations (ppb) from 15 TCCON sites when data are 

available (black). Also shown are concentrations from TOM_JU (green) and TOM_JN (blue), 

both with TCCON averaging kernels applied. Correlation coefficients of model and observations 

are displayed for TOM_JU (green) and TOM_JN (blue). Individual observations are also shown 

(grey). 
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6.8 Summary 

This chapter has introduced additional processes to the JULES wetland CH4 emissions model and 

compared both the updated and original version with flux measurements. Emissions from the 

updated model have also been used to force TOMCAT for comparisons with atmospheric 

measurements. The key results are: 

 The methanogenesis rate of the fast turnover pools (Decomposable/Resistant Plant 

Material), the temperature dependence, and the fraction of carbon available for 

methanogenesis were all identified as parameters potentially controlling the timing and 

magnitude of CH4 emissions.   

 

 In the updated JULES model, transport and oxidation parameters had a small impact on 

the timing of CH4 emissions with the exception of the ebullition parameters at some flux 

sites. 

 

 When CH4 was globally scaled to 177 Tg/yr, both versions of JULES (standard and 

updated) underestimated observed fluxes by approximately a factor of 20 because of the 

coarse model resolution.  

 

 Average model correlation with CH4 flux observations increased from R = 0.32 in the 

standard version to R = 0.34 in the updated version of JULES, i.e. there was only a 

marginal improvement. 

 

 Comparisons with flask measurements showed almost no change in the updated version 

of JULES compared to the standard version. 

 

 Comparisons of GOSAT column CH4 estimates with TOMCAT showed a slight 

improvement with respect to time-correlation (R = 0.87), mean bias (11.30 ppb) and 

RMSE (15.09 ppb) compared with the standard version of JULES (R = 0.84, mean bias 

= 13.17 ppb and RMSE = 17.17 ppb). 

 

 Comparisons with TCCON column CH4 estimates showed that the mean bias and RMSE 

were reduced when using the updated version of JULES compared to the standard 

version, from 22.4 ppb to 20.0 ppb and 9.9 ppb to 9.1 ppb. However, the correlation also 

decreased slightly from R = 0.62 to R = 0.60. 
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The first part of this chapter explored increasing the complexity of the JULES wetland CH4 model 

by adding processes. This included the production of CH4 in non-saturated soils, sulphate 

suppression of CH4 production, storage and transfer of CH4 between a saturated and non-saturated 

pool, transport of CH4 via diffusion, ebullition and aerenchyma, and oxidation within the soils. 

These processes, implemented largely based on previous studies, were optimised using a 

perturbed parameter ensemble and flux observations. From this the methanogenesis rate of the 

fast turnover carbon pools (DPM and RPM), the temperature dependence (Q10) and the fraction 

of carbon available for methanogenesis (𝜑𝑠𝑎𝑡/𝑢𝑛𝑠) were all identified as parameters which 

noticeably influenced CH4 flux. The updated model showed a slightly improved agreement (R = 

0.34) with CH4 flux observations than the standard version (R = 0.32); however, when scaled to 

top-down global estimates both versions underestimated the observed flux. This is most likely 

because the modelled emissions represented a much larger area than the observed fluxes, which 

were typically chosen in specific areas with known wetlands. To improve model evaluation it is 

recommended that comparisons are made with flux measurements taken over a larger area (e.g. 

tower observations).    

The emission inventories produced from the standard version of JULES (JU) and the updated 

version (JN) were then used alongside other emissions in TOMCAT (TOM_JU and TOM_JN). 

Both, JU and JN, showed a decrease in emissions to 173.2 Tg/yr and 173.7 Tg/yr during the final 

5 years of the observed stagnation in atmospheric CH4 growth (2002-2006); however, neither 

inventory showed a decrease in emissions in the initial 3 years of the stagnation (1999-2001) 

These simulations were evaluated using observations from GOSAT, TCCON and flask sites and 

a model assessment was made by analysing the temporal and spatial distribution of atmospheric 

CH4 using the correlation, mean bias and RMSE values. The previously observed northern 

hemisphere positive bias in TOM_JU is reduced in TOM_JN, this suggests that either latitudinal 

wetland emissions are better represented in JN or that a slow latitudinal transport in TOMCAT is 

offset by under predicted northern hemisphere CH4 emissions. TOM_JN produced a lower 

average mean bias and RMSE than TOM_JU in comparisons with all three observation types, 

although correlation coefficient changes were less noticeable. Previous comparisons suggest that 

South American emissions are poorly represented in wetland CH4 models (see Chapter 5). 

TOM_JN showed a slight correlation improvement over TOM_JU in the Amazon and Orinoco 

wetland region (Tropical South America) and the Pantanal wetland region (Temperate South 

America), when compared with GOSAT of +0.01 and +0.04, respectively. The model evaluation 

showed that the additional processes introduced to JULES slightly improve model performance. 

It is recommended that an improved understanding of wetland biogeochemistry and more surface 

CH4 flux observations are required to further develop the model. 



Summary  141 

 

 

  

7 Summary 

7.1 Completion of Aims 

The overall objective of this thesis was to improve understanding of recent trends in atmospheric 

CH4 using a combination of the JULES land surface model (LSM), the TOMCAT atmospheric 

chemical transport model (CTM), flux measurements and atmospheric concentration 

observations. These atmospheric CH4 trends depend on the spatial and temporal distribution of 

the sources, sinks and atmospheric transport. As a result, a detailed understanding of these 

individual components is required to accurately constrain the past and to predict future changes 

in CH4. The atmospheric loss of CH4 through the reaction with OH and variations in wetland CH4 

emissions were specifically targeted for investigation by utilising recent advancements in remote 

sensing capabilities and other observations. Uncertainties in wetland CH4 models were also 

investigated and process developments made to the wetland component of the existing JULES 

LSM. The remainder of this section focuses on the completion of individual aims that were 

outlined in Chapter 1. 

Assess the role of atmospheric processes in the pause in CH4 growth between 1999 and 2006. 

As a first step, the atmospheric contribution to trends in the CH4 growth rate was investigated, 

with a particular focus on the period between 1999 and 2006, where there was a pause in the 

growth. This was achieved using a combination of both TOMCAT and a simple one-box model 

to simulate multiple configurations of atmospheric conditions with differing meteorology and OH 

loss fields, and then by comparing those simulations with observations. These experiments did 

not account for any year-to-year changes in emissions. With the exception of an annually 

repeating OH field, the suite of OH fields used were derived from CH3CCl3 measurements using 

either a simple one-box model or taken from previous studies (Montzka et al., 2011; Rigby et al., 

2013). In addition, model simulations included every combination of varying/repeating 

temperature and transport to assess the individual contributions of these to CH4 growth. 
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When used to perturb an existing mean [OH] field, derived global [OH] anomalies were shown 

to capture the observed CH3CCl3 decay rate anomaly, which demonstrated the suitability of using 

CH3CCl3-derived global annual [OH] anomalies in TOMCAT to study CH4 loss. Model CH4 

growth agreement with observations improved from R = 0.32, with an annually repeating [OH], 

to R = 0.58-0.65, with an annually varying [OH]; indicating the importance of [OH] variability 

on the growth rate. When accounting for [OH] variability, results from the one-box model showed 

that annual emissions needed only to drop between 0 Tg/yr and 3 Tg/yr during the stagnation 

period. In contrast, when [OH] variability was not accounted for the results from the one-box 

model showed emissions were required to decrease by between 5 Tg/yr and 7 Tg/yr. This suggests 

that the emission changes required during the stagnation period, to explain the decrease in CH4 

growth, were smaller than previously considered, and that anomalously high [OH] may explain a 

large fraction of the observed growth decrease. The influence of both temperature and transport 

changes are also shown to have reduced the growth rate of CH4, albeit to a lesser extent than 

[OH]. Given the very low current abundance of current CH3CCl3, measurements are not accurate 

enough to investigate the period of resumed growth since 2007; however, there are indications of 

a decrease in [OH] between 2007 and 2012. 

Use a global atmospheric chemistry transport model, TOMCAT, and observations to 

investigate limitations of current wetland CH4 emissions models. 

The next step introduced varying emissions to the TOMCAT simulations, with the aim of 

quantifying the role of wetland emissions on the observed trends in CH4 growth. This was 

achieved using three different wetland inventories, all of which used the same process description 

but different driving parameters. As a result, these simulations separated parameter uncertainty 

from process uncertainty, with wetland fraction emerging as the most influential parameter. 

Spatial and temporal distributions were analysed and comparisons were made with observations 

to evaluate model performance. Finally, long-term trends were identified in each of the wetland 

emission inventories. 

Two wetland CH4 emission inventories, one based on top-down estimates (BL) and the other 

derived from JULES (JU), produced similar temporal and spatial distributions. The third 

inventory, based on observed variables (JP), showed noticeable differences. When used in 

TOMCAT, BL and JU both showed reasonable agreement with observations, whereas the 

simulation using JP showed a weaker correlation with observations, suggesting inaccuracy in the 

observed driving variables. When compared with satellite observations all model versions 

produced the lowest correlation in South America, suggesting either missing processes within the 

wetland models, misrepresentation of non-wetland emissions or model transport issues. All three 
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inventories showed a slight decrease in average wetland emissions during the stagnation period 

(1999-2006), which implied that wetland emissions contributed to the slowdown of atmospheric 

CH4 growth. The models did not agree on the regions which were responsible for the decrease in 

emissions. During this time period emission decreases were largest in Temperate North America 

(0.4 Tg/yr) in JU, Temperate Asia (0.7 Tg/yr), Tropical South America (0.7 Tg/yr)  and Tropical 

Asia (0.7 Tg/yr) in JP and Boreal Asia (0.4 Tg/yr), North Africa (0.5 Tg/yr) and Africa South (0.5 

Tg/yr) in BL. Meteorological driving data in JULES suggests that the reduced emissions were, in 

part, a result of reduced precipitation over wetland regions during the latter stages of this time 

period (2001-2006). Over the entire time series both JU (1993-2012: +0.43 Tg/yr) and BL (2003-

2011: +0.56 Tg/yr) showed a statistically significant (95%-level) trend in wetland CH4 emissions, 

extrapolating this trend into the future would imply a continued increase in wetland CH4 

emissions. Both JU and BL indicated that a fraction of the observed increase in atmospheric CH4 

growth post-2007 was caused by an increase in wetland emissions.       

Improve understanding of processes which drive wetland CH4 emissions and use this in the 

development of the JULES land surface model. 

Additional processes were introduced to the JULES wetland CH4 model as a final step to improve 

emission estimates, which was achieved with the aid of surface flux observations. Further, 

descriptions introduced included production in non-saturated soils, pool storage, sulphate 

suppression, oxidation and transport. In addition to this, pre-existing parameters were tuned using 

a perturbed parameter ensemble to fit observed fluxes. Both the standard version (JU) and the 

updated version (JN) of JULES were then used to drive TOMCAT with a CH3CCl3-derived OH 

field.  The same comparisons as used in previous experiments were performed on both versions 

of the model to evaluate whether the inclusion of additional processes to JULES improved 

agreement with observations. 

From the perturbed parameter ensemble the methanogenesis rate of two of the carbon pools (DPM 

and RPM), the temperature dependence and the fraction of carbon available for methanogenesis 

emerged as the dominant parameters when considering the magnitude and timing of CH4 

emissions. The transport and oxidation parameters were observed to only have a small impact, 

although at some sites when the water depth parameter was varied, ebullition pulse events 

noticeably altered emissions. In total 13 parameters were tuned to optimise the model fit with 

observations. The flux correlation between JULES and observations improved slightly on 

addition of these processes from R = 0.32 to R = 0.34. When used in TOMCAT the updated 

JULES (JN) dataset produced a lower RMSE and mean bias when compared with three separate 

observation types (NOAA flask, TCCON and GOSAT). For GOSAT comparisons the correlation 
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was also improved, suggesting that the additional processes introduced improved the spatial and 

temporal representation of wetland emissions slightly. The small bias in all model simulations 

suggested that the top-down average emission estimate of 177 Tg/yr for wetland CH4 is 

reasonable.    

Synthesis 

Recent trends in observed atmospheric CH4 show a slowdown in growth between 1999 and 2006 

followed by a post-2007 increase in growth. Results using CH3CCl3 measurements, JULES, 

TOMCAT and observations, showed that both an increase in OH and a decrease in wetland 

emissions contributed to this initial pause in growth. Additionally, the observed increase in 

atmospheric CH4 between 2007 and 2012 can be partly, but not entirely, attributed to an increase 

in wetland emissions. Model results suggested a positive trend in recent years of wetland CH4 

emissions, which may have implications for predicted atmospheric CH4. An evaluation of existing 

wetland CH4 inventories show that a combination of process and parameter uncertainty lead to 

uncertainties in the spatial and temporal distribution of emissions. The JULES model was shown 

to reproduce similar emissions to an earlier top-down study (Bloom et al., 2012) and these 

emissions produced a reasonable model agreement with observations when used in TOMCAT. 

Comparisons between TOMCAT and observations suggested that developments made to JULES, 

including both CH4 oxidation and transport improved the modelled representation of CH4 

emissions. 

7.2 Future Work 

The CH3CCl3-derived OH anomaly used as part of this work currently only exists for a limited 

timeframe (1997-2009) and relies on a sparse network of surface observations. Accurate CH3CCl3 

measurements made from an increased number of sites could provide an extended OH anomaly 

time series, although the phase out of CH3CCl3 due to the Montreal Protocol will limit its use. 

The community will need to search for alternative gases from which to derive global mean OH, 

possible candidates include anthropogenic hydrofluorocarbons (HFCs). Either way, these 

observations can then be used to produce an extended derived OH anomaly suitable for use in 

future studies. This would help explain whether a decreased [OH] had a role in the observed CH4 

growth post-2009. An alternative direction would involve incorporating online OH fields into the 

model evaluation; however, currently too much uncertainty surrounds the use of an online OH 

field (Voulgarakis et al., 2013). 
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Current model evaluation performed using TOMCAT relies on anthropogenic and biomass 

burning emissions which are only available up until 2008 and 2011, respectively. An update to 

these emission inventories would improve the models ability to accurately represent recent 

interannual variations in atmospheric CH4. The same is also true for many other emission fields 

currently used within the model, which typically do not vary interannually, e.g. rice, termites. In 

the future, further TOMCAT evaluations could be performed for more recent years which overlap 

more with the GOSAT time series (2009- ), by extending the JULES simulations beyond 2012. 

The additional process descriptions developed for use in JULES could be included in the standard 

version of the JULES model and be used in climate prediction scenarios. These emission estimates 

could be forecast using modelled meteorological fields (e.g. Unified Model). To build upon this 

work, further development using additional processes (e.g. pH) and more observations over a 

larger area (e.g. tower measurements) would be required.    

Several areas not specifically investigated in this thesis could be introduced to further this work, 

including the use of inverse modelling and isotope observations to identify emission source types 

from atmospheric CH4 measurements. CH4 sources have distinct isotopic signatures, for example, 

biogenic sources have a mean isotopic signature of 𝛿13C = -60±5‰, whereas pyrogenic sources 

have a heavier mean isotopic signature of 𝛿13C = -22±3‰ (Sapart et al., 2012). By using 

inversion techniques on observed CH4 isotope concentrations the source location and type can be 

identified. This would help constrain individual sources and attribute changes in observed 

atmospheric CH4 to those individual sources. 
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