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Abstract

This thesis describes the formulation and application of an adaptive multigrid method

for the efficient solution of nonlinear elliptic and parabolic partial differential equations

and systems. A continuous Galerkin finite-element method is combined with locally adap-

tive mesh refinement and an optimal multigrid solver to achieve this efficiency. The novel

contribution of this work lies in the manner in which these two techniques are combined.

In particular the multigrid solver provides a natural and simple method of handling grid

points that are not fully connected, so called hanging nodes. This allows for a straightfor-

ward adaptive gridding scheme that does not need to take any special measures to repair

these hanging nodes for a standard element-by-element implementation of the finite ele-

ment assembly process. Specifically, on each element, only the usual finite element basis

functions are required, even in the vicinity of hanging nodes. Furthermore the standard

multigrid full approximation scheme (FAS) may be applied with only minor modifica-

tions to account for the presence of the hanging nodes. A wide cross-section of nonlinear

elliptic and parabolic problems are used to demonstrate the performance of the proposed

algorithm, which is shown to provide optimal accuracy at an optimal computational cost.

i



Acknowledgements

I would like to thank: Peter Jimack for all of his teaching, feedback, support, encour-

agement and incredible unwavering belief in me; Mark Walkley for giving up his time

and expertise to help; Chris Goodyer for his patience in the face of many daft questions;

Andrew Mullis for sharing his knowledge of phase-field models and Daniel Hart for ‘it’s

nearly Christmas after all’.

Thanks are also due to: Peter Jones and Kate Livingston for being brave enough to read

my paper; Margaret Jones and Lorna Foott for listening without a chance of understand-

ing; Joseph Casey for holding the pieces together; Timothy Peffers, Christina Dunning

and Benjamin Howe for putting up with my grumpiness and putting a smirk back on my

face and Clare MacIver for patiently waiting a year for me to stop working and visit her.

ii



Declarations

Some parts of the work presented in this thesis have been published in the following

articles:

A. C. Jones and P.K. Jimack, “An adaptive multigrid tool for elliptic and parabolic systems”,

International Journal for Numerical Method in Fluids, 47 (10-11) pp1123-1128, 2005.

M.J. Baines, M.E. Hubbard, P.K. Jimack and A. C. Jones, “Scale-invariant moving finite el-

ements for nonlinear partial differential equations in two dimensions”, Applied Numerical

Mathematics, to appear.

iii



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Numerical Methods Background 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Temporal Discretisation . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Solution of Algebraic Systems . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 The Defect Correction Method . . . . . . . . . . . . . . . . . . . 23

2.4.2 The Full Approximation Scheme . . . . . . . . . . . . . . . . . . 27

2.5 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Adaptive Techniques . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Data Structures for Adaptive Gridding . . . . . . . . . . . . . . . 32

2.5.3 Hanging Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Multigrid Methods for Adaptively Refined Grids . . . . . . . . . . . . . 34

iv



3 Applications Background 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Elliptic Partial Differential Equations . . . . . . . . . . . . . . . . . . . . 39

3.3 Parabolic Partial Differential Equations . . . . . . . . . . . . . . . . . . 39

3.3.1 The Porous Medium Equation . . . . . . . . . . . . . . . . . . . 39

3.3.2 A Nonlinear Convection-Diffusion Equation . . . . . . . . . . . 40

3.4 Systems of Parabolic Differential Equations . . . . . . . . . . . . . . . . 42

3.4.1 Systems of Convection-Diffusion Equations . . . . . . . . . . . . 42

3.4.2 Phase Field Model of Rapid Solidification . . . . . . . . . . . . . 43

4 Grid Adaptivity 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 The Quadtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 The Complete Grid Data Structure . . . . . . . . . . . . . . . . . 49

4.2.3 Traversing the Grid . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Adapting the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Re-adaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.4 Hanging Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.5 Error Estimation and Indication . . . . . . . . . . . . . . . . . . 65

4.4 Application of the Adaptive Mesh Algorithm . . . . . . . . . . . . . . . 67

4.4.1 Finite Element Discretisation in Space . . . . . . . . . . . . . . . 68

4.4.2 Semi-Implicit Discretisation in Time . . . . . . . . . . . . . . . . 73

4.4.3 Projected Preconditioned Conjugate Gradient . . . . . . . . . . . 75

4.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



5 Projected Multigrid Method 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Nonlinear Gauss-Seidel Smoother . . . . . . . . . . . . . . . . . . . . . 90

5.3 Nonlinear Projected Jacobi Smoother . . . . . . . . . . . . . . . . . . . 92

5.4 Composite Grids for the Full Approximation Scheme . . . . . . . . . . . 95

5.4.1 Traversing a Composite Grid Level . . . . . . . . . . . . . . . . 95

5.5 The Projected FAS Multigrid . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.1 Two-Grid PFAS Scheme . . . . . . . . . . . . . . . . . . . . . . 98

5.5.2 The Full PFAS Scheme . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Nonlinear Elliptic Model Problem . . . . . . . . . . . . . . . . . . . . . 102

5.6.1 Data Structures for the Solution Process . . . . . . . . . . . . . . 104

5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Projected FAS Multigrid for Parabolic Problems 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Porous Medium Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Similarity Solution . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Initial Conditions and Boundary Conditions . . . . . . . . . . . . 111

6.2.3 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 Solution of Algebraic System . . . . . . . . . . . . . . . . . . . 112

6.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 A System of Burgers’ Equations . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



7 Projected Multigrid for the Implicit Phase Field Model 132

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 The Phase Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.1 Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.2 Temporal Discretisation using Backward Euler . . . . . . . . . . 134

7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.1 Coupling and Solution . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.2 Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Discussion 149

8.1 Adaptive Gridding Methods . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2 Projected FAS Solution Method . . . . . . . . . . . . . . . . . . . . . . 151

8.3 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.3.1 Grid Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.3.2 Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3.4 Multigrid Coarsening . . . . . . . . . . . . . . . . . . . . . . . . 160

vii



List of Figures

2.1 A hierarchy of uniform grids . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Multigrid restriction by injection . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Multigrid restriction using full weighting . . . . . . . . . . . . . . . . . . 25

2.4 Multigrid prolongation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Bisection for triangular grids . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Dividing triangular elements into four . . . . . . . . . . . . . . . . . . . 30

2.7 Hanging nodes in quadrilateral grids . . . . . . . . . . . . . . . . . . . . 33

2.8 Multigrid levels in a non-uniform grid . . . . . . . . . . . . . . . . . . . 34

4.1 Relation of the quadtree data structure to the computational grid . . . . . 50

4.2 Relation of quadtree to point list . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Ordering of elements in the grid . . . . . . . . . . . . . . . . . . . . . . 52

4.4 The primary neighbours of a quadrilateral element . . . . . . . . . . . . . 56

4.5 Creating points during refinement . . . . . . . . . . . . . . . . . . . . . 61

4.6 Various coarsening scenarios . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 A discontinuity due to a hanging node . . . . . . . . . . . . . . . . . . . 76

4.8 Three of the possible refinement configurations around a non-uniform

grid point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Semi-implicit PF model: Adaptivity error with time . . . . . . . . . . . . 83

4.10 Semi-implicit PF model: Execution time against the size of the system . . 85

viii



4.11 Semi-implicit PF model: Convergence of the PPCG . . . . . . . . . . . . 85

4.12 Semi-implicit PF model: One-dimensional slice through the solution . . . 87

4.13 Semi-implicit PF model: Two-dimensional solutions and grids . . . . . . 88

5.1 Multigrid composite grid levels . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Multigrid composite level linked lists . . . . . . . . . . . . . . . . . . . 96

5.3 Schematic of a multigrid V-cycle . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Elliptic model problem: Convergence of the PFAS . . . . . . . . . . . . . 105

5.5 Elliptic model problem: Execution time against system size . . . . . . . . 106

5.6 Typical patch and line refinement cases. . . . . . . . . . . . . . . . . . . 108

6.1 PME: One-dimensional slice through the solution (m=1) . . . . . . . . . 114

6.2 PME: One-dimensional slice through the solution (m=3) . . . . . . . . . 115

6.3 PME: Two-dimensional illustration of solution and grid . . . . . . . . . . 116

6.4 PME: Convergence of the PFAS . . . . . . . . . . . . . . . . . . . . . . 117

6.5 PME: Spatial error convergence . . . . . . . . . . . . . . . . . . . . . . 118

6.6 PME: Execution time against system size . . . . . . . . . . . . . . . . . 118

6.7 PME: Error behaviour over time . . . . . . . . . . . . . . . . . . . . . . 119

6.8 System of Burgers’ equations: Two-dimensional grid . . . . . . . . . . . 126

6.9 System of Burgers’ equations: Solution and grid points . . . . . . . . . . 127

6.10 System of Burgers’ equations: Convergence of the PFAS . . . . . . . . . 128

6.11 System of Burgers’ equations: Execution time and system size . . . . . . 129

6.12 Coarse grid to fine grid solution interpolation . . . . . . . . . . . . . . . 130

6.13 System of Burgers’ equations: Illustration of spatial error convergence . . 131

7.1 Implicit PF model: Convergence of the PFAS . . . . . . . . . . . . . . . 143

7.2 Implicit PF model: Execution time against system size . . . . . . . . . . 144

7.3 Implicit PF model: Illustration of spatial error convergence . . . . . . . . 145

ix



8.1 Triangular grid refinement . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 Cube element hanging node type A . . . . . . . . . . . . . . . . . . . . . 154

8.3 Cube element hanging node type B . . . . . . . . . . . . . . . . . . . . . 154

8.4 Two examples of tetrahedral refinement . . . . . . . . . . . . . . . . . . 156

8.5 Interpolation points for quadratic finite elements . . . . . . . . . . . . . . 157

8.6 Interpolation points for bi-quadratic finite elements . . . . . . . . . . . . 157

8.7 Hanging nodes in a non-uniform, bi-quadratic FE grid . . . . . . . . . . . 158

8.8 An alternative coarsening method for creating multigrid levels . . . . . . 161

x



List of Tables

4.1 Number of safety layers and corresponding re-adaption points . . . . . . 80

4.2 Semi-implicit PF model: Maximum stable time step . . . . . . . . . . . . 81

4.3 Semi-implicit PF model: Global and local refinement solution comparison 82

4.4 Semi-implicit PF model: System size and execution time . . . . . . . . . 84

4.5 Semi-implicit PF model: Spatial error convergence . . . . . . . . . . . . 86

4.6 Semi-implicit PF model: Time profiling . . . . . . . . . . . . . . . . . . 87

5.1 Elliptic model problem: Solution accuracy . . . . . . . . . . . . . . . . . 107

6.1 PME: Time step sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 PME: Results for the m = 1 case . . . . . . . . . . . . . . . . . . . . . . 116

6.3 PME: Results for the m = 3 case . . . . . . . . . . . . . . . . . . . . . . 117

6.4 System of Burgers’ equations: Time step sizes . . . . . . . . . . . . . . . 127

6.5 System of Burgers’ equations: Spatial error convergence . . . . . . . . . 131

7.1 Implicit PF model: Spatial error convergence . . . . . . . . . . . . . . . 146

7.2 PPCG and PFAS maximum time step comparison . . . . . . . . . . . . . 147

7.3 Implicit PF model: PFAS time profile . . . . . . . . . . . . . . . . . . . 148

7.4 PPCG and PFAS execution time comparison . . . . . . . . . . . . . . . . 148

xi



List of Algorithms

1 Two-Grid Defect Correction Method . . . . . . . . . . . . . . . . . . . . 23

2 Two-Grid Full Approximation Scheme . . . . . . . . . . . . . . . . . . . 28

3 Function: Goto Next Leaf Element . . . . . . . . . . . . . . . . . . . . . 53

4 Find Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Function: Find ID of X-Plus Neighbour of Element . . . . . . . . . . . . 57

6 Function: Valid Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Grid Re-adaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 The Projected Preconditioned Conjugate Gradient algorithm. (Meyer [67]) 78

9 Assembly of a standard mass matrix over a grid of finite elements . . . . 79

10 Function: Goto Next Leaf Element . . . . . . . . . . . . . . . . . . . . . 97

11 Projected FAS Two Grid Scheme . . . . . . . . . . . . . . . . . . . . . . 99

12 Function: Projected FAS Multigrid - V-Cycle . . . . . . . . . . . . . . . 101

13 Function: PFAS V-Cycle for Two Coupled Equations . . . . . . . . . . . 125

xii



Chapter 1

Introduction

This thesis is concerned with the efficient numerical solution of a wide range of partial

differential equations (PDEs) and systems, of elliptic and parabolic type. In order to ob-

tain such efficiency it is necessary to combine adaptivity in the spatial discretisation with

the use of an optimal multigrid solver and, for time-dependent problems, fully implicit,

unconditionally stable, time-stepping schemes. The main new contribution of this work is

the proposal of a novel method for combining mesh adaptivity with a multigrid solver in

a manner that retains the optimal behaviour of the existing schemes but does so via a very

natural and simple algorithm. The performance of this proposed technique is assessed

across a wide cross-section of computational problems including nonlinear elliptic and

parabolic problems.

A multigrid solver, for use with problems defined over locally refined grids, and a comple-

mentary gridding scheme are both developed within this work. The h-adaptive gridding

scheme allows for aggressive local refinement, as well as dynamic refinement and de-
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Chapter 1 Introduction

refinement. This is of particular use in solving problems containing moving fronts, or

shocks, which require high grid resolution. The adaptivity can be driven by any error es-

timator (or indicator) which produces a value for each element in the grid. A hierarchical

data structure is used to store the grid elements giving a natural framework for the local

h-adaptation. We chose to allow disconnected (or ‘hanging’) nodes in the resulting non-

uniform grids to avoid extra refinement. In order to perform a continuous Galerkin finite

element solve over a mesh containing hanging nodes something must be done to resolve

the potential discontinuities created by the hanging nodes along the edges where they lie.

A Projected FAS (PFAS) multigrid solver is presented, which naturally resolves the solu-

tion values at these points. The smoothing steps of this PFAS scheme are performed using

a nonlinear Jacobi iterative smoother. This smoother makes use of a projection technique

first introduced by Meyer [67] to resolve the hanging node values. The FAS scheme itself,

although largely unchanged by the use of the new smoother, must make use of specific

restriction and prolongation schemes.

The performance of the PFAS scheme is assessed for a nonlinear elliptic model prob-

lem and three nonlinear parabolic problems. The three parabolic problems are the porous

medium equation, a system of Burgers’ equations and a phase field (PF) model of rapid

solidification. The specific PF model [97] used represents the solidification of a pure

metal, from an undercooled melt, in a manner which avoids the need to track the interface

between the solid and liquid areas. This is an example of a class of problems with much

current interest in materials science and potential industrial significance [69].

1.1 Overview

The first two chapters of this thesis present some background to the work. Chapter 2 in-

troduces the numerical methods that are used throughout this work and Chapter 3 gives

2



Chapter 1 Introduction

a summary of the problems used to illustrate the performance of our proposed method.

The h-adaptive gridding scheme is presented in Chapter 4. The chosen data structures and

search algorithms are described along with the algorithms for refinement and coarsening

of a quadrilateral mesh. A semi-implicit discretisation of a PF model is solved (using a

variant of the Conjugate Gradient method, due to Meyer [67]) in order to demonstrate the

robustness of the gridding techniques. Details of the new PFAS multigrid solver are given

in Chapter 5. The performance of the new method is shown initially for a nonlinear ellip-

tic model problem, for which an exact solution is known. In Chapter 6 the PFAS method

is tested further on two nonlinear parabolic problems, including one system of parabolic

equations. Firstly a porous medium equation [29] is solved, with nonlinearity in the dif-

fusion term. Then a system of PDEs based on Burgers’ equation [23] is considered. The

nonlinearity is within the convection terms in this instance. The PF model from Chapter 4

is revisited in Chapter 7. Here a fully implicit time discretisation is used which, although

it allows for larger stable time steps, produces a highly nonlinear algebraic system at each

step. Again the performance of the PFAS scheme is shown for this problem. Finally, in

Chapter 8 this work is reviewed and conclusions are drawn from the results that have been

shown. Several natural extensions to this work are also briefly discussed.

3



Chapter 2

Numerical Methods Background

2.1 Introduction

This work focuses on the numerical solution of partial differential equations, including

elliptic problems such as Poisson’s equation, and parabolic problems such as Burgers’

equation. Other nonlinear problems are also considered, such as the porous medium

equation, and parabolic systems such as those arising in phase field models of rapid crys-

tal growth. More details of these applications are given in Chapter 3. In this chapter we

discuss the solution process for these two classes of problem (i.e. elliptic and parabolic)

from discretisation techniques through to solution methods. Section 2.2 presents some

popular options for spatial and temporal (in the parabolic case) discretisation of the con-

tinuous problem. Section 2.3 outlines the possibilities for the solution of the algebraic

equations resulting from such discretisations. Since the focus of this research is the de-

velopment of an adaptive multigrid algorithm a detailed description of multigrid methods

is then given in Section 2.4. In Sections 2.5 and 2.6 we discuss adaptive methods and

4



Chapter 2 Numerical Methods Background

their combination with multigrid solution techniques respectively.

2.2 Discretisation

In this section we will discuss possible spatial and temporal discretisation methods for

elliptic and parabolic problems. In Section 2.2.1 we give the main options for spatial

discretisation and detail the finite element method which is used extensively in this work.

Temporal discretisation is discussed in Section 2.2.2 where various explicit and implicit

schemes that are employed throughout this work are introduced.

2.2.1 Spatial Discretisation

Spatial discretisation is the method employed to convert the original continuous partial

differential equation to a system of equations which are discrete with respect to the spatial

variables. For an elliptic problem this results in a system of algebraic equations whereas,

for a parabolic problem it results in a system of ordinary differential equations in time.

There are several, well established, methods for spatial discretisation. The finite differ-

ence (FD) method is a point-wise technique which uses interpolation formulae to approx-

imate derivatives at each grid point. Stencils for these interpolations are defined over

a few neighbouring points. This method was presented in a mature form as long ago

as 1967 by Richtmyer and Morton [78]. More recently, [86], for example, provides an

alternative guide to the solution of PDEs using finite differences. The, more recent, fi-

nite element (FE) approach is based around the regions (or elements) formed between

the edges that join points of the grid. This is a global integration method using integrals

over the individual elements to build up a full approximation across the grid. Reddy’s

book [76] provides a good introductory guide to the FE method as does Zienkiewicz and

Taylor’s text [99] which sets the method in its original discipline of engineering. For a

detailed history of the FD and FE methods see [91]. A third possible approach to spatial
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discretisation is the Finite Volume (FV) method. This uses averaged values and volume

integrals over the individual elements to approximate the solution. In text [93] the FV

method is used as the standard technique for CFD problems. Furthermore, this technique

has been used widely in CFD software such as Fluent [37] and CFX [3] for example.

The application to non-uniform grids is tackled in [46]: this is more straightforward than

applying FD methods but, as we shall see below, not quite as natural as using FE methods.

For this work, the FD method was rejected due to the complexities of implementing adap-

tively. The derivative approximations become complex where the distances between the

points vary and the interpolation stencils are non-uniform. Conversely, the FE method

is effective on non-uniform grids as the contribution from each element is scaled by its

size. This makes it an attractive method for this work as we are dealing with highly non-

uniform grids. For the class of problems solved here the FV method is unnecessarily

complicated (although for hyperbolic problems it would be worth considering). In light

of this, the method of choice for this work is the Continuous Galerkin FE method. This

method is explained in more detail below. Before doing so however we briefly note other

possible spatial discretisation techniques not considered here. These include collocation

methods [56], spectral methods [41] and discontinuous Galerkin methods [31].

Continuous Galerkin Finite Element Method

This finite element method may be introduced as a special case of the Galerkin method

for generating algebraic equations. For clarity we consider the discretisation of an elliptic

problem at this stage. The original PDE is multiplied by a test function and then integrated

to produce a ‘weak’ approximation to the continuous solution. The process of discretising

the continuous equation then requires finite dimensional spaces to be defined for both the

approximate solution (the trial space) and for the test functions (the test space). For the

Galerkin method the set of ‘test’ (or ‘basis’) functions are defined to be equal to the set

6
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of trial functions. For the finite element method these functions must have local support:

in the simplest case one basis function is defined for each point in the grid. The specific

choice of test and trial spaces for the Galerkin FE method are described below using the

example of Poisson’s equation,

−
−→
∇ 2u = f ,

on the domain Ω = (0,1)× (0,1), with the boundary condition u|∂Ω = 0. Here u(−→x ) is

the unknown function and f (−→x ) is known.

The Weak Form

The first step of a FE discretisation is to develop a weighted-integral statement of the

governing equation(s). Firstly, the equation is multiplied by some test function, w, say

and then integrated:

−
∫

Ω
(
−→
∇ 2u)wdΩ =

∫

Ω
f wdΩ. (2.1)

We now wish to eliminate the second derivative in the above expression and can make use

of the standard identity

−→
∇ · (w

−→
∇ u) =

−→
∇ w ·

−→
∇ u+w

−→
∇ 2u.

We can replace the second order term as follows

∫

Ω
w
−→
∇ 2udΩ =

∫

Ω

−→
∇ · (w

−→
∇ u)dΩ−

∫

Ω

−→
∇ w ·

−→
∇ udΩ.

Using the divergence theorem we can replace the first term on the right-hand side with a

boundary integral giving

∫

Ω
w
−→
∇ 2udΩ =

∫

∂Ω

−→
n̂ .(w

−→
∇ u)ds−

∫

Ω

−→
∇ w ·

−→
∇ udΩ,

7
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where
−→
n̂ is the outward unit normal. Since we have Dirichlet boundary conditions

throughout ∂Ω it turns out to be necessary to restrict the test functions, w, to be zero

on the boundary, making the boundary integral zero. Substituting in the new expression

for the left-hand side of Equation (2.1) gives:

∫

Ω

−→
∇ w ·

−→
∇ udΩ =

∫

Ω
f wdΩ, (2.2)

for any w in the test space. This weighted-integral statement along with the specified

boundary conditions of the problem constitute the weak form of the governing equa-

tions [76]. The weak form is so called because, the weak solution, u, can be less differen-

tiable than the original.

Spatial Discretisation

In order to discretise the weak form we approximate the unknown solution u with a func-

tion, u, from a finite dimensional trial space. For this particular version of the method the

finite dimensional space must be continuous (although the first derivative may be discon-

tinuous). Given such a trial space and a basis for it (N1, ...,Nn say) then we may write:

u =
n

∑
i=1

uiNi,

where ui is to be determined for i = 1, ...,n and n is the size of the system. Now, the

Galerkin method is defined by choosing the test functions in Equation (2.2) to be the

same basis functions used to define the trial space. Hence the discretised equation is:

∫

Ω

−→
∇ u ·

−→
∇ N jdΩ =

∫

Ω
f N jdΩ,

8
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for j = 1, ...,n. Using the definition of the u we can take the values ui out of the integral

giving:
n

∑
i=1

ui

∫

Ω

−→
∇ Ni ·

−→
∇ N jdΩ =

∫

Ω
f N jdΩ. (2.3)

Finite Element Basis Functions

Various types of basis functions can be employed in the Galerkin method depending on

the dimension of the problem. The key feature of a finite element method is that the

basis functions should only have a very restricted support so that the vast majority of

integrals
∫

Ω
−→
∇ Ni ·

−→
∇ N jdΩ are zero where i 6= j. This is achieved through breaking down

the problem domain into a set of subdomains called elements. A given basis function Ni

is associated with a point i in the computational grid where it takes a value of 1. This

basis function will take a value of 0 at all other points in the grid. The definition of the

basis function is:

N j(xi) =

{

1 i f (i = j)

0 i f (i 6= j)
(2.4)

where xi is the position vector of point i of a finite element grid. Therefore the function

is only non-zero over the elements that have the grid point j as a vertex. The span of the

set of n basis functions forms the FE trial space. The simplest example of a finite element

trial space comes from the use of linear basis functions, which produce a piecewise linear

approximation to the solution. It is also possible to produce basis functions of higher

order for a more sophisticated approximation. For example they could be constructed in

such a way so as to make the approximating function quadratic or cubic on each element.

We can also apply the basis function definition (2.4) in any number of spatial dimensions.

in particular these piecewise linear basis functions can be used with triangular elements

in two-dimensions and with tetrahedral elements in three dimensions. In this thesis we

restrict attention to problems on two-dimensional domains broken down into quadrilateral

elements. For simplicity we will use bilinear basis functions. These are defined to be the

9
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Cartesian product of a one-dimensional linear basis function in x and a one-dimensional

linear basis function in y.

Algebraic System Assembly

Having selected a set of basis functions it is straightforward to convert Equation (2.3),

into a matrix form that clearly expresses the system of linear equations. The system may

be expressed as:

Au
¯
= b

¯
(2.5)

where Ai j =
∫

Ω
−→
∇ N j ·

−→
∇ NidΩ is known as the FE stiffness matrix, b j =

∫

Ω f N jdΩ, and

u
¯

is the vector of nodal solution values. In a standard finite element assembly algorithm

a loop would be taken over the elements to compile the contributions to b for each j, and

to A for each combination of i and j. After this loop over the elements, each internal grid

point j has received a contribution to its b j value for each of the surrounding elements and

also a contribution to each of the matrix entries Ai j, where i only corresponds to points at

the vertices of the surrounding elements.

Finite Element Discretisation of Nonlinear Elliptic PDEs

For a nonlinear elliptic PDE, such as

−→
∇ · (u2−→∇ u) = f

for example, we follow the same approach as for the linear elliptic problem above. This

will produce the discrete equations

∫

Ω
u2(

−→
∇ N j ·

−→
∇ u)dΩ =

∫

Ω
f N jdΩ,

10
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for j = 1, ...,n. In this case the vector of discrete solution values cannot be extracted

from the left-hand side integral in such a straightforward manner. Systems of nonlinear

equations, such as this, will be represented throughout this thesis as:

K(u) = b, (2.6)

where K(u) = [k1(u), ...,kn(u)]T , and k j(u) =
∫

Ω u2(
−→
∇ N j ·

−→
∇ u)dΩ.

Finite Element Discretisation of Time-Dependent PDEs

An example of a simple time-dependent problem is:

∂u
∂ t

=
−→
∇ 2u,

for (x,y, t)∈ (0,1)×(0,1)×(0,T ] = Ω×(0,1], and subject to boundary conditions u|∂Ω =

0 and an initial condition u(x,y,0) = u0(x,y). In this case the finite element discretisation

of the problem will produce the system of ODEs:

∫

Ω

∂u
∂ t

N jdΩ =
∫

Ω

−→
∇ N j ·

−→
∇ udΩ

for j = 1, ...,n. In this case we can construct the following matrix form:

Mu̇ = Lu

where Mi j =
∫

Ω NiN jdΩ, Li j =
∫

Ω
−→
∇ N j ·

−→
∇ NidΩ, u is vector of the nodal solution values

and u̇ is the vector of temporal derivatives of u at the n grid points. The discretisation of

the temporal derivatives is discussed in Section 2.2.2.
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2.2.2 Temporal Discretisation

A large part of this work is focused on two-dimensional parabolic problems which, once

the spatial discretisation is complete, produce initial value problems with a continuous

temporal variable (i.e. systems of ordinary differential equations (ODEs)). We therefore

need to investigate appropriate methods for discretising in time. The two main classes

of temporal discretisation techniques are explicit methods and implicit methods. Explicit

methods (for example explicit Runge-Kutta, explicit multistep, etc, [22]) are conceptu-

ally straight forward and relatively simple to implement. Unfortunately where explicit

methods are used the stability of the solution is dependent on the size of the step taken

in time (i.e they are only conditionally stable). In particular, the finer the mesh size (∆x)

in the spatial discretisation the smaller the time step (∆t) must be (typically for parabolic

problems ∆t ∝ (∆x)2). This clearly creates a significant amount of computational work

in cases where fine grid spacing is required since extremely small time steps are needed.

Implicit methods do not have this restriction since those used in practice are uncondition-

ally stable. However, they are typically more complicated to implement. In the following

two sections a small selection of some of the most popular explicit and implicit methods

will be illustrated using the general initial value ODE system,

u̇ = f (t,u), (2.7)

where u̇ denotes the derivative in time.

Explicit Methods

The most straightforward example of an explicit technique is the forward Euler method

where, given Equation (2.7), we define:

uk+1 = uk +∆t f (tk,uk), (2.8)

12
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where uk is the solution at the old (or initial) time step, uk+1 is the unknown new solution

and ∆t is the size of the time step. The forward Euler scheme can be derived simply from

the Taylor series expansion:

u(tk +∆t) = u(tk)+∆tu̇(tk)+O(∆t2).

If we then use Equation (2.7) to substitute f (tk,uk) for u̇(tk) and recognise that u(tk +

∆t) = u(tk+1) = uk+1 then we reach Equation (2.8). The local truncation error for the

forward Euler method is O(∆t2) making it a first order scheme globally. This method is

described in more detail in Burden and Faires’ book [22]. Since most of the values in the

system produced by this method are taken from the old time step this is a straightforward

and fast method for taking steps through time.

The Runge-Kutta (R-K) methods [22] provide explicit time stepping methods of higher

orders. The midpoint rule, of the form:

uk+1 = uk + f ∆t(tk +
∆t
2

,uk +
∆t
2

f (tk,uk)),

is an example of a second order explicit R-K method. A fourth order explicit R-K approx-

imation is given by:

q
1
= ∆t f (tk,uk),

q
2
= ∆t f (tk +

∆t
2

,uk +
1
2

q
1
),

q
3
= ∆t f (tk +

∆t
2

,uk +
1
2

q
2
),

q
4
= ∆t f (tk +∆t,uk +q

3
),

uk+1 = uk +
1
6
(q

1
+2q

2
+2q

3
+q

4
).
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Clearly the additional accuracy of this method must be paid for through added computa-

tional cost, however when the solution is sufficiently smooth (and stability is not an issue)

this scheme is generally superior to its lower order counterparts.

Implicit Methods

The backward Euler method is a first order implicit scheme and as such is the simplest

available. Using equation (2.7), the Backward Euler method can be represented as:

uk+1 = uk +∆t f (tk+1,uk+1). (2.9)

In contrast to the explicit methods most of the values in this system are taken from the

new, unknown, time step. This makes the solution of the system much more complicated.

If f is a nonlinear function of its second variable the resulting algebraic system will also

be nonlinear. In the explicit case this nonlinearity would be suppressed but for the im-

plicit methods to be effective we must find efficient ways to solve the resulting nonlinear

algebraic systems.

There are also many higher order implicit methods. The Trapezoidal and Gauss rules

are both examples of second order implicit Runge-Kutta schemes. The Trapezoidal rule,

with respect to Equation (2.7), is

uk+1 = uk +
∆t
2

f (tk,uk)+
∆t
2

f (tk+1,uk+1). (2.10)

There is a small price to be paid for the higher accuracy of approximation, since we must

calculate f for the old time values as well as solving for the new time values implicitly.

One more level of complication can be found in the Gauss rule,

uk+1 = uk +
∆t
2

f (
1
2
(tk + tk+1),

1
2
(uk +uk+1)),
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where the values put into f are linear interpolants of the values at old and new time steps.

This adds computational complexity as both sets of values must be maintained throughout

the solution process. In many cases however, the second order methods pay for themselves

in increased accuracy and a reduction in numerical diffusion.

In order to make a compromise between explicit and implicit methods we can employ

the theta method. Applying the theta method to Equation (2.7) gives the form

uk+1 = uk +θ∆t f (tk+1,uk+1)+(1−θ)∆t f (tk,uk)

where 0 ≤ θ ≤ 1. When θ = 0 this expression simplifies to the forward Euler method

(given in Equation (2.8)), when θ = 1 it is the backward Euler method (given in Equa-

tion (2.9)) and when θ = 1
2 it is the trapezoidal rule (given in Equation (2.10)). When

θ < 1
2 but θ 6= 0 the stability of the scheme is dependent on the size of the time step

and there is an extra expense incurred by calculating the f (tk+1,xk+1) term at each step.

This range of θ values therefore have limited use. However, in the range 1
2 ≤ θ < 1 the

scheme is unconditionally stable and uses both f (tk,xk) and f (tk+1,xk+1), although it is

only second order when θ = 1
2 . It is possible to vary the value of theta from one time step

to the next [17].

Despite the relative complexity of implicit methods they are often used. The absence

of a time-step size restriction allows faster simulations in cases where the grid refinement

must be very small to achieve the necessary accuracy in space.

Time Discretisation in This Work

In the parabolic examples encountered in this work we always use the approach described

above whereby the spatial operators are discretised with the FE method and the resulting
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initial value problem is solved using one of the schemes described (or variations thereof).

A different approach would be to extend the finite element method used for the spatial

variables into another dimension (time) [24, 30]. This is a pleasant, unified method but

one which typically requires a larger amount of computational effort. Hence it is not

pursued further here.

2.3 Solution of Algebraic Systems

The spatial discretisation techniques presented in Section 2.2.1, when applied to elliptic

problems, produce a system of algebraic equations which must then be solved. In the

case of parabolic equations there is an ODE system to be solved and, as mentioned in

Section 2.2.2, time discretisation produces algebraic systems at each time step. This

section will look at some of the available tools for the solution of both linear and nonlinear

systems of algebraic equations. The straightforward direct methods for linear systems are

illustrated in Section 2.3.1 followed by the more flexible iterative methods for both linear

and nonlinear systems in Section 2.3.2. In the following Section, 2.4, multigrid methods

are introduced and described in some detail.

2.3.1 Direct Methods

The simplest methods for solving linear algebraic systems are direct methods. These

are algorithms with a fixed number of operations (dependent upon the system size, n)

which essentially invert the operator matrix to produce a solution. A classic example of

a direct method is LU factorisation. Here the matrix, A of a linear system, such as that

appearing in Equation (2.5), is broken down into lower and upper triangular component

matrices: A = LU , by Gaussian elimination [40, pp 92-104]. Two systems are then solved,

16



Chapter 2 Numerical Methods Background

comprising of the upper and lower matrices, i.e.

Lz
¯
= b

¯
(2.11)

Uu
¯
= z

¯
(2.12)

Firstly Equation (2.11) is solved by forward substitution for the vector z. This vector is

then used in the solution of Equation (2.12), by backwards substitution, for the final solu-

tion vector u. Since L and U are both triangular matrices the cost of each of these solves

is only O(n). Again, more details can be found in [22].

The drawback of Direct methods is the amount of computational work and computer

memory required. If n is the number of unknowns in the system, a direct method theo-

retically requires O(n3) operations to find a solution (for example when LU factorisation

is used the elimination step requires O(n3) operations). However for the numerical solu-

tion of PDE’s, using finite difference or finite element discretisation, the sparse matrices

produced will only require O(n2) operations. Therefore, as n increases, direct methods

eventually become intractable.

Due to the local nature of the FE basis functions (described in Section 2.2.1) the matrices

arising from these methods are sparse. The iterative methods, which are presented in the

next section, are a more attractive option than direct methods, for these sparse systems:

although some direct methods may be modified to be suitable for sparse matrices [58].

2.3.2 Iterative Methods

Iterative methods are a desirable alternative to direct methods for the solution of sparse

systems of equations. The iterative approach taken to the solution of algebraic systems

can be summarised as follows. An initial guess of the solution is taken and then some
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form of correction is calculated and used to improve this guess. This is done repeatedly

until the accuracy of approximation (typically measured in terms of the residual which is

a quantity that may always be calculated) meets some criteria. Iterative solution methods

can be divided into those designed for linear algebraic systems and those which will be

effective on nonlinear systems. Examples of both types of solver are given below.

Iterative Methods for Linear Systems

A few examples of iterative solvers for linear systems will be illustrated here, using the

linear system in Equation (2.5). Two of the most established iterative methods are the

Jacobi and Gauss-Seidel (G-S) methods. The Jacobi iteration [22] can be given in the

following matrix form. Taking the linear system in Equation (2.5) we can split up the

matrix A as follows:

A = D−L−U,

where D is the diagonal of A and L and U are the negated, strictly lower and upper trian-

gular sections of A respectively. This gives the linear system:

(D−L−U)u = b,

which can be rearranged to:

u = D−1(L+U)u+D−1b,

(provided that all diagonal entries of A are non-zero). If u(r) is the approximate solution at

iteration r and u(r+1) is the improved approximation at iteration r+1, we can characterise

one iteration of the Jacobi method as:

u(r+1) = D−1(L+U)u(r) +D−1b. (2.13)
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The G-S iterative technique is a modified version of the Jacobi method which takes advan-

tage of the elements of u(r+1) as they are calculated. The component form of this iteration

is:

u(r+1)
j =

1
A j j

[

−
j−1

∑
i=1

(Ai ju
(r+1)
i )−

n

∑
i= j+1

(Ai ju
(r)
i )+b j

]

. (2.14)

Since the improved approximations are used at an earlier stage, the G-S iteration gener-

ally converges faster than the Jacobi version.

The Successive Overrelaxation (SOR) method came from an acceleration of the G-S

method [22]. The new approximation, in this case, is a weighted average between the

previous approximation and the G-S correction. The iteration can be characterised by the

expression,

u
¯
(r+1) = ωu

¯
(r) +(1−ω)u

¯
(r),

where u
¯

is the G-S correction.

The set of Krylov subspace methods were a later development, including the Conjugate

Gradient (CG) method [6,40] for symmetric positive definite systems and the Generalized

Minimal Residual (GMRES) method for non-symmetric systems [83]. The CG method

minimises a functional f (u) = 1
2(r,A−1r), where r is the residual vector: r = b−Au and

(·, ·) is an inner product. Minimising this functional is equivalent to solving the system.

The solution is improved iteratively. At each iteration a search direction, d(r) is chosen,

along with a scalar τ (r) designed to optimise the movement of the solution along that

search direction. The solution is then improved by x(r+1) = x(r) + τ(r)d(r). Each itera-

tion of the solver requires a new search direction. The first direction is chosen to be the

residual vector and each of the following directions is chosen to be orthogonal to all of

the previous ones through an efficient two-term recurrence relation. The iterations of this

solver are therefore equivalent to the steps of building up the Krylov space associated with
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A and r0. CG is now the method of choice for symmetric, positive definite systems.

For a comprehensive survey of the development of iterative methods for linear systems,

see [84].

Iterative Methods for Nonlinear Systems

Newton’s method is the best known technique for solving systems of nonlinear equations.

This method is illustrated using a nonlinear system with all terms on the left-hand side:

K(u) = 0, where K(u) = [k1(u), ...,kn(u)]T and n is the size of the system. Taking s = u−v

where v is the approximate solution and u is the exact solution, makes s a correction to

the approximation. We can derive Newton’s method using a Taylor series expansion of

the nonlinear system K(v+ s) = 0 giving:

K(v+ s) ≈ K(v)+ J(v)s,

where the terms higher than first order have been ignored and J(v) is the Jacobian matrix

defined as:

J(v) =



















∂k1
∂v1

∂k1
∂v2

.. ∂k1
∂vn

∂k2
∂v1

∂k2
∂v2

.. ∂k2
∂vn

: : :

∂kn
∂v1

∂kn
∂v2

.. ∂kn
∂vn



















.

Solving the system,

J(v)s = −K(v), (2.15)

allows us to form a first order correction to the approximate solution. A comprehensive

description of Newton’s method can be found in [72] along with a variation on this known

as the Secant method.
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Newton’s method and the Krylov methods can be combined in the hybrid Newton-Krylov

methods [54] for nonlinear systems. Newton’s method is used to linearise the system

as described above and the Krylov iteration is used as an inner iteration to solve Equa-

tion (2.15).

2.4 Multigrid

Multigrid methods use various ‘levels’ of the computational grid to speed up the con-

vergence of an iterative solver for systems of equations derived from a finite difference,

element or volume discretisation of a PDE. The error in any system is composed of var-

ious frequencies. For a particular class of iterative solvers, with the so-called ‘smooth-

ing’ property the high frequency components are eliminated first and relatively quickly.

The majority of iterations are then taken in eliminating the remaining low frequency error

components. Multigrid methods use a hierarchy of increasingly coarse grids, as illustrated

in Figure 2.1, to reduce the work done in eliminating the lower frequency components of

the error. Once the high frequency components have been removed, on a given grid, the

problem is defined on a coarser grid in the hierarchy. The highest frequencies on this

coarser grid correspond to the non-damped error components on the finer grid and these

are eliminated in the first few coarse grid iterations. The problem is then passed to a

coarser grid still. After the contribution to the solution is found on the coarsest grid it

is passed back to the finer grids in turn. Using the coarser grids in this way produces an

accurate solution in less fine-grid iterations. Since much of the work is being performed

on coarser grids, it is also relatively inexpensive. The cost of a well posed multigrid

method is proportional to the number of unknowns in the finest grid. Furthermore, the

convergence rate of a multigrid solver is independent of the size of the system over the

finest grid. Hence the method has a total cost that grows only linearly with the number of

unknowns in the system.
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Level 1

Level l − 1

Level 1 − 2

Level l − 3

Figure 2.1: A hierarchy of non-uniform grids ranging from the finest at level l to the
coarsest at level l −3.

Before describing some particular multigrid methods we must clarify the nature of the

hierarchy of grids. For the purposes of this section it is assumed that every grid in the

hierarchy is uniform. (The use of non-uniform grids is discussed in Section 2.6.) In the

uniform case, a grid level, `, is taken to be the grid with spacing ∆x = dom
2` , where dom

is the size of the computational domain. All of the grid hierarchies used throughout this

work are composed of ‘nested’ grids, i.e. the set of points in any one grid is a subset of

those in any of the finer grids.

The tutorial [19] by Briggs et al gives a comprehensive introduction to multigrid methods.

Trottenburg [92] also includes material on multigrid applied to more complex problems.

There are two main types of multigrid method, the Defect Correction method and the

Full Approximation Scheme (FAS). These are intended for linear and nonlinear problems

respectively. The Defect Correction method can be used to solve nonlinear problems by

using it as an ‘inner iteration’ of a linearising method [63] such as Newton’s method (de-

scribed in Section 2.3.2). However, FAS multigrid has the advantage of being applied

directly to the nonlinear problem in a ‘matrix free’ manner. It has been successfully ap-

plied to droplet spreading problems in [38], aerodynamic design [48] and plasticity prob-

lems [33], among many others. Details of both of these methods are presented below.
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2.4.1 The Defect Correction Method

As the defect correction method is designed for linear systems we will use the generic

system of Equation (2.5) to illustrate the method. This system of equations is assumed to

be derived from the discretisation of an elliptic PDE on the finest of a series of uniform

nested grids as in Figure 2.1. An easy way to assess the solution error is to look at the

residual (or defect) of the system. The form of the residual is r = b−Av and, when v is an

approximation to u, the residual r will be non-zero. We can say that u− v = e where e is

the error in the approximation. We can therefore form an equation in terms of the residual

and the error, called the residual equation:

Ae = r. (2.16)

This equation can be solved to produce an error with which to correct the approximated

solution of the original system. Once an initial approximate solution has been found on

the fine grid the defect correction method uses this to form the residual equation (2.16), on

the coarse grid. The residual equation is then solved for the error e
¯
. The interpolant of this

error onto the fine grid is used to correct the solution of the original system. Algorithm 1

illustrates one iteration of a two-grid defect correction scheme. The following sections

describe some of the key aspects of the algorithm.

Algorithm 1 Two-Grid Defect Correction Method
1: ` = level number of current grid
2: L = `−1 (level number of grid one coarser than `)
3: Choose initial fine grid approximation v`

4: Calculate b`

5: Update v` by smoothing ρ1 times with the system A`u` = b`

6: Find residual r` := f `−A`v`

7: Restrict residual to create coarse right-hand side bL := Ĩ
L
` (r

`)
8: Solve the system ALeL = bL with the initial guess of e = 0
9: Prolongate the error calculated e` := I`

L(e
L)

10: Correct the fine grid approximation v` = v` + e`

11: Update v` by smoothing ρ2 times with the system A`u` = b`
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Pre- and Post-Smoothing

The pre- and post-smooths are sweeps of the iterative solver taken before and after the

coarse grid correction, at lines 5 and 11 respectively of Algorithm 1. The pre-smoothing

produces an initial, fine-grid, approximation to the solution. The intention is that the high

frequency error has been eliminated from this approximation using fine grid smooths.

The post-smoothing is simply to re-adjust the solution after the coarse grid correction

(removing any high frequency components that the correction may have introduced). The

number of pre- and post-smooths, ρ1 and ρ2 respectively, depends on the application but

will typically range from zero to three.

Inter-grid Transfer Functions

Inter-grid transfer functions are the methods by which data is passed from one grid level

to another. We need to define two types of inter-grid transfer: a ‘restriction’ function IL
`

which will transfer the residual from the fine grid to the coarse grid and a ‘prolongation’

function I`
L which will transfer the correction from the coarse grid to the fine grid. The

simplest approach to restriction is injection, illustrated in Figure 2.2, where values are

transferred directly. A standard alternative is Full Weighting, where a weighted average of

surrounding nodes is taken. This can be seen in Figure 2.3. Our method of prolongation,

which employs linear interpolation to find the values of points that do not exist on the

coarse mesh, is shown in Figure 2.4. There is an extra complication when using FE

methods as the residual is an element-wise quantity dependent on the element support

area. Consequently, as well as being restricted the residual must also be scaled to match

the relative size of the element support area on the coarse grid. (The tilde above the

operator used to restrict the residual, ĨL
` , indicates that this scaling is also performed.)
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One Dimensional Two Dimensional

1 1 1

1

Figure 2.2: Multigrid restriction by injection: in this case the values of points on the
coarse grid take the value of the corresponding points on the fine grid. Any values held at
fine grid points that do not correspond to coarse grid points are ignored.

One Dimensional Two Dimensional

1/4 1/2 1/4 1/4 1/2 1/4 1/4 1/2 1/4

1/4

1/16

1/16

1/16

1/16

1/8

1/8

1/8

1/8

Figure 2.3: Multigrid restriction using full weighting: Where a fine grid point corresponds
to a coarse grid point, its value, along with those of its fine grid neighbours, are used
(with various weightings) to produce a value for the corresponding coarse grid point. The
weightings, shown here for the one-dimensional and two-dimensional cases, always sum
to 1.
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1 1 1
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Figure 2.4: Multigrid prolongation: Fine grid points with corresponding coarse grid
points take their value directly from this corresponding point. Fine grid point with no
coarse grid counterpart are found by linear interpolation.

Extension to Full V-Cycle

We can extend the two-level algorithm in Algorithm 1 so that a hierarchy of grids is used

recursively. In this case each grid is pre-smoothed and the residual is restricted to the

next, coarser, grid until the coarsest grid is reached. On the coarsest grid the problem is

solved exactly. Then each grid receives a correction, performs post-smooths and passes

the improved correction to the next, finer, grid. The multigrid algorithm is normally

implemented so that there can be many iterations of this recursive ‘V-Cycle’. However,

only a small number are generally required. The V-Cycle is one of several possible cycle

types which can be employed within the multigrid method. Another example is the W-

Cycle which uses the same inter-grid transfer operation for the solution and residual but

orders the transfers differently.
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2.4.2 The Full Approximation Scheme

The Full Approximation Scheme (FAS) is so called as the complete original problem is

solved on every level of the grid throughout the multigrid cycle (rather than just a defect

equation). This comes from the need to solve nonlinear problems. A generic nonlinear

system will be represented as K(u) = b. The operator K is nonlinear, the right-hand side

vector b is known and u is the unknown solution. Since the operator is not linear we cannot

assume that it will be distributive over the vectors. Although we know that u− v = e, we

cannot therefore conclude that K(u)−K(v) = K(e). Taking the usual form of the residual

r = b−K(v) and substituting using the original system gives a new residual equation,

K(u) = r +K(v), (2.17)

where r is the residual and K(v) is the operator applied to the current approximation, v.

Using these components we can solve for u. The solution vector u
¯

can be thought of as

(v+ e), a corrected version of the approximation.

The multigrid FAS solves equation (2.17), which is effectively an amended version of

the original system, on the coarse grid. This produces an improved approximation to the

solution. A correction can then be calculated on the coarse grid and passed to the fine

grid. Algorithm 2 is a two-grid version of the FAS scheme. The components of this al-

gorithm are much the same as the defect correction algorithm in Section 2.4.1. In fact,

when applied to a linear system corresponding to the discretisation of a linear PDE the

FAS scheme is equivalent to defect correction.

In order to form the right-hand side of Equation (2.17) on the coarse grid we must restrict

both the residual (r`) and the approximate solution (v`). As mentioned in the previous

section r` is restricted with the operator ĨL
` which scales values to resolve the difference
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in element support sizes between the grids. As for the defect correction method this two-

grid algorithm can be extended to make use of a hierarchy of grids in an order such as the

V-Cycle.

Algorithm 2 Two-Grid Full Approximation Scheme
1: ` = level number of current grid
2: L = `−1 (level number of grid one coarser than `)
3: Choose initial fine grid solution v`

4: Calculate the right-hand side b`

5: Update v` by smoothing ρ1 times with the system K`(u`) = b`

6: Find residual r` := b`−Kl(v`)
7: Restrict residual rL := ĨL

` (r`)
8: Restrict solution vL := IL

` (v`)
9: Calculate coarse grid right-hand side bL := rL +KL(vL)

10: Save the initial coarse grid solution vL
init = vL

11: Solve the system KL(vL) = bL

12: Calculate the coarse grid correction eL = vL− vL
init

13: Prolongate the correction e` := I`
L(e

L)
14: Correct the fine grid solution v` = v` + e`

15: Update v` by smoothing ρ2 times with the system K`(u`) = b`

2.5 Adaptivity

The aim of adaptivity is to provide an increased accuracy of approximation in certain areas

of the spatial domain or at certain time steps. This work will focus on spatial adaptivity

in the solution of elliptic and parabolic equations and systems. Increased accuracy of ap-

proximation is required in areas of the spatial domain where there is a shock, singularity

or any other sudden change in the solution or its derivatives. The error in these areas is

generally much higher than that elsewhere in the domain if a uniform FE or FD approx-

imation is made. The extra complexity involved in adding spatial adaptivity is therefore

justified in these cases since it allows a much more accurate solution to be found for a

given computational cost.
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2.5.1 Adaptive Techniques

There are several types of spatial adaptivity which can be employed during a numeri-

cal solution. We can increase the order of the discretisation. This is referred to as a

p-refinement method [70, 94]. In a finite element sense p-refinement involves increasing

the order of the basis functions used in the approximation [70]. Increasing the order of

the basis functions also increases the size of the system (and reduces the sparsity) and

likewise the cost of the solution process. Local p-refinement has therefore been devel-

oped, for example [25], where only certain elements have a higher order approximation.

Several orders of approximation can be used within one solution method to speed up the

convergence, such as the ‘p-multigrid’ method presented in [36].

Alternatively, the positions of existing mesh points can be improved using movement

or relocation as in [8, 45, 68]. This method is referred to as r-refinement. In this case a

fixed number of computational points are used and the position of each point is optimised

with the aim of minimising the global error.

Probably the simplest and the most widely used of the adaptive methods is that of h-

refinement [14, 26, 27, 59, 80]. In this case, mesh generation algorithms are developed

which create extra grid points in areas of high solution activity (or where the error is es-

timated to be large [71]). This creates non-uniform grids with small elements over areas

of high error and larger ones elsewhere. The method of h-refinement has been combined

with r-refinement as in [60] and also with p-refinement as in [70].

An h-refinement scheme for a triangular grid is given by Rivara in [80]. In that work

the basic mechanism for refining a triangle is bisection, where a new point is placed at the

centre of the triangle’s longest edge and a new edge is created, joining this to the opposite

existing point. A general triangle is shown in Figure 2.5, divided into two smaller triangles
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Figure 2.5: Bisection for triangular grids: Creating a new edge joining the mid-point of
the longest edge to the opposite vertex.

Figure 2.6: Dividing triangular elements into four: Creating a new point at the midpoint
of each edge and joining these to divide the element into four smaller elements.

using this bisection technique. This method is applied twice per element in a refinement

sweep in order to divide each triangle into four smaller triangles at each refinement. Tri-

angular elements can also be divided into four by joining the midpoints of each of the

edges, as illustrated in Figure 2.6. This method is employed by Lohner [59]. Refinement

methods which use this hierarchical subdivision of elements produce non-uniform grids

where newly created elements are nested inside existing elements. This is not the case for

all gridding methods, for example Delaunay Triangulation methods described in [62]. In

this case points are placed in the domain according to some error minimising scheme. The

mesh is then reformed to connect the new point in a way which maximises the minimum

angle of all of the triangles. The Advancing-Front technique, also described in [62], is

initiated by meshing the domain boundary (a set of edges in two dimensions or a set of

faces in three dimensions). Triangulation is then performed in successive layers into the

domain until the whole domain is covered and all points are fully connected.

Adaptively refined meshes are not only created prior to the solution process but often
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re-adapted during the solve, especially in the case of time-dependent problems. In this

case the solution values (and values at any interpolation points) must be transferred from

the old grid to the newly adapted one. Re-meshing techniques such as Delaunay Trian-

gulation would produce a completely different triangulation from the previous grid. This

means that transferring the solution values involves searching for the element in the old

grid which contains each point in the new grid. Hierarchical meshing schemes (such

as [80]) subdivide existing elements meaning that the transfer of solution values is a local

operation. A comparison of methods fitting into these two categories is given in [32].

One established family of h-refinement techniques for quadrilateral grids is Adaptive

Mesh Refinement (AMR) led by Marsha Berger, amongst numerous others [13, 15, 16].

This technique is presented in [16], using FD methods, for hyperbolic problems. A uni-

form rectangular initial grid is set up then overlayed with uniform subgrids in areas where

the error estimate exceeds a tolerance. These subgrids can, themselves, contain subgrids

and can overlap with others of the same level. (Grids of the same level have the same

grid spacing.) This grid refinement is achieved by marking points in the initial grid which

exceed a desired tolerance in the error estimate and then running a clustering algorithm

to put them into groups which will make efficient subgrids. The clustering stage of the

process is complex and expensive.

Most of the methods described above can be extended for use in three dimensions. The

triangular techniques could be extended for tetrahedral grids [11] and the quadrilateral

techniques extended for cubic ones [47]. A three-dimensional version of the AMR tech-

nique is used in [13]. and the method of bisection is applied to tetrahedral meshes in [5].
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2.5.2 Data Structures for Adaptive Gridding

In the case of r- and h-refinement the resulting grids are non-uniform and often change

during the course of the solution. The data structures for these grids must facilitate a

search through the points, edges or elements, store the connectivity of these three sets and

allow for some analysis of the local area around a point, edge or element. This information

can be stored in a set of arrays. For example the edge connectivity in [59] is stored as

an array of ‘edges’ each of which contains the two points which that edge connects. It is

possible however to design data structures which hold more grid information inherently in

their structure. For example, in [80] Rivara implements a ‘molecular list’ where each item

represents a point and stores an ordered set of neighbouring points as well as whether it is

a boundary point. In this case the elements are stored implicitly. (For an FE discretisation,

where an assembly over the elements is usually required, it is more appropriate to store

the elements explicitly.) Tree data structures are a useful device for storing non-uniform

grid information. If levels of the tree are associated with levels of the computational grid

then areas of high refinement in the grid can be represented as highly developed branches

of the tree. For example, quadtree data structures are used for an implementation of the

level set method in [88] and applied to a phase field model in [75]. Each element in the

grid is represented as a node in the quadtree and the refinement of an element involves the

creation of four child nodes in the tree, each representing a subset of the parent element.

More details of these data structures are given in Section 4.2.1.

2.5.3 Hanging Nodes

In a non-uniform grid with a fixed element shape we encounter the problem of discon-

nected (or ‘hanging’) nodes, which occur when an element is refined but its neighbour is

not. In Figure 2.7 the hanging node is indicated by a filled circle in the grid on the left.

Since the hanging node in this example is only connected to two elements and lies on

the edge of the neighbouring, larger element, it could cause a discontinuity in a FE solu-

32



Chapter 2 Numerical Methods Background

Red Refinement Green Refinement

Figure 2.7: Hanging nodes in quadrilateral grids: Two options for hanging nodes are
shown. ‘Red’ refinement, on the left, leaves these nodes disconnected while ‘green’ re-
finement, on the right, connects them using non-standard refinement.

tion along this edge. It is possible to eliminate hanging nodes by adding extra triangular

refinement. This is sometimes called ‘green’ refinement. The right-hand side grid in Fig-

ure 2.7 is one example of resolving a hanging node with green refinement. This technique

is natural when implementing an unstructured triangular (or tetrahedral) grid. However,

resolving hanging nodes in this way within a quadrilateral (or cubic) grid produces grids

with more than one element shape (known as ‘hybrid’ grids). A tree-based quadrilateral

gridding system with a triangular, green refinement scheme is presented in [75]. An-

other example of green refinement can be found in [42]. Green refinement eliminates

the problem of hanging nodes but adds complexity to the refinement process. The extra

refinement is added once the standard refinement is complete and is generally removed

before re-adaption of the grid. As well as complicating the grid generation, this method

adds extra work to the solution process. In the cases where hybrid grids are produced the

solution process must be able to resolve the various element types in these grids.

An alternative to green refinement is to simply allow certain hanging nodes to exist in

the grid (this is sometimes referred to as ‘red’ refinement). Clearly this method is sim-

pler from a grid generation perspective as no further refinement is required. However, the

hanging nodes and the discontinuities that they cause must be dealt with elsewhere in the

numerical approximation process. This can be done by modifying the FE basis function
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Level l Level l − 1 Level l − 2

Figure 2.8: Multigrid levels in a non-uniform grid: The shaded areas show the elements
which would make up a grid level in the MLAT or FAC definition.

as in [43, 89, 95]. Another possibility is to constrain the values at these hanging nodes,

effectively removing their degree of freedom. This technique is used by Rheinboldt and

Mesztenyi in [77] (part of the development of the FEARS package). In that work the

assembly of the finite element stiffness matrices is enriched with interpolation operators.

This method effectively constrains the hanging node values but adds complexity to the

assembly of the element matrices. More examples of the restriction of the hanging node

values can be found in [47, 67].

2.6 Multigrid Methods for Adaptively Refined Grids

This section presents some of the existing work on the application of multigrid methods to

problems defined on adaptively refined grids. Clearly there must be amendments made to

the multigrid method in order for it to be effective on the non-uniform grids which result

from adaptive refinement. The problems presented by non-uniform grids are reduced to

three main points below.

• In a uniform mesh a ‘level’ is defined as containing elements of a particular size.

Since elements of several different sizes exist in a single non-uniform mesh, the

idea of a ‘level’ is no longer so clearly defined.

• The smoothing technique used must be able to accommodate the inconsistency of
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element size and possibly the presence hanging nodes in the grid.

• The inter-grid transfer functions must be specially formulated at points on the

boundary between two elements of different sizes.

There have been a variety of approaches to adaptive multigrid. The most established of

these is the Multilevel Adaptive Technique (MLAT) of Brandt [18]. In the MLAT scheme

a level in the mesh is composed of all of the elements of a particular size and no others.

For example, the shaded areas of Figure 2.8. As a result the finer grids may be composed

of several ‘patches’ covering subsets of the domain. When smoothing over level l, tem-

porary Dirichlet boundary conditions are set along the interface between level l elements

and level l − 1 elements. The smoothing is then performed on the uniform subdomains

only. Using this method it is unnecessary to modify the smoother in any way. The re-

striction and prolongation operators are chosen to keep the inter-level boundary points

constant during the fine grid smoothing. The complete solution over the whole domain

is held implicitly over all of the grid levels. When the MLAT method is formulated as a

defect correction scheme the fine grid smooths are thought of as an improvement to the

accuracy of the coarse grid solve.

More recently, the Fast Adaptive Composite grid scheme (FAC) has been developed,

mainly by McCormick e.g. [66]. Convergence theory for this method is given in [64] and

it has been developed and applied along with other collaborators, e.g. [44, 65]. A level in

the grid hierarchy is defined in a similar way to the MLAT method but the discretisation

operations are also defined on a ‘composite’ grid which encompasses the whole domain.

The ‘composite’ grid is composed of the finest existing elements in each subdomain and

is therefore non-uniform. All smoothing is performed on uniform grids and subgrids.

However the results are collected explicitly on the composite grid and the residuals are

transferred from the composite grid to the level subgrids in order to calculate corrections.

The composite grid stencils for the points on the inter-level boundaries are used to resolve
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the residuals for these points which would otherwise be inconsistent. The inter-grid trans-

fer functions are chosen not to interfere with the residual and solution transfer.

A ‘multilevel adaptive iterative method’ was introduced by Rude [82]. This technique

employs a method of ‘virtual global refinement’ where, although all uniform grid points

are ‘virtually’ present, only the set of ‘active’ points are involved in the smoothing pro-

cess. A point is removed from the active set if the correction calculated for that point is

below a particular tolerance. Therefore, as the smoothing iteration proceeds the active set

gets smaller. When a point is corrected its neighbours are added to the active set as their

residuals will have been changed. When applied as the smoother of a multigrid method

this process is algebraically equivalent to the FAC method. (However it differs from the

FAC method in that the grid nodes are ‘activated’ and ‘de-activated’ on an individual basis

rather than being grouped into ‘patches.’) The method was extended in [81] to include

adaptive cycling, providing more flexibility than a fixed V- or W-cycle.

All of the three methods described above avoid dealing with hanging nodes in the smooth-

ing process either through the choice of gridding technique or through the isolation of

subdomains where the smoothing is applied. The PLTMG package [9] for the solution of

elliptic PDEs also avoids the issue of hanging nodes by using triangular grids with green

refinement. However the FEARS package, due to Rheinboldt et al [98], allows the pres-

ence of hanging nodes in the grid and constrains their value using the method described

in the previous section.

Multigrid applications commonly employ tree data structures as they contain an inher-

ent definition of the level of an element in the grid. For example a ‘triangle tree’ is used in

the PLTMG package, where the level of a triangular element corresponds to its level in the

tree data structure. In [79] Rivara presents an alternative data structure for adaptive multi-
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grid over conforming triangular grids based on the ‘molecular list’ structure described in

Section 2.5.2. A molecular list is created for each of a sequence of nested triangulations.
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Applications Background

3.1 Introduction

The purpose of this chapter is to introduce the partial differential equations which are used

as test problems throughout this work. For each example we give the governing equations

and describe the nature and applications of the model.

The chapter is divided into three further sections. In Section 3.2 we present an example of

a nonlinear elliptic equation. Section 3.3 presents two nonlinear parabolic equations and

the final Section, 3.4, introduces two systems of nonlinear parabolic equations including

our most demanding application based upon a phase field model for solidification.
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3.2 Elliptic Partial Differential Equations

A nonlinear elliptic test problem taken from Briggs [19], is characterised by,

−
−→
∇ 2u+ γueu = f ,

solved over a (−1,1)× (−1,1) domain with Dirichlet conditions on the entire boundary.

This is an artificial problem for which the equation has no obvious physical meaning

however it may be used to test the ability of our numerical methods to deal with various

levels of nonlinearity. In this work we formulate this equation to have an exact solution.

This enables us to use it as an initial test case for our proposed adaptive multigrid method.

The right-hand side, f , is chosen to permit u = 1− tanh(k(x2 + y2 −α2)). This creates a

solution with an area of high curvature in the region of x2 + y2 = α2.

3.3 Parabolic Partial Differential Equations

Nonlinear parabolic equations are the main interest of this thesis. In this section we

present the three examples of this type of equation (although the first is linear) which have

all been used in the development and testing of the proposed adaptive multigrid method.

Firstly, in Section 3.3.1 there is a nonlinear diffusion problem: the porous medium equa-

tion (PME). And secondly, there is a different nonlinear parabolic problem in the form of

a convection-diffusion equation in Section 3.3.2.

3.3.1 The Porous Medium Equation

The porous medium equation (PME) is a nonlinear equation that has been used to describe

various time-dependent nonlinear diffusion processes [29]. For example the dispersion of

39



Chapter 3 Applications Background

gas through a porous medium [28]. The form of the PME is

∂u
∂ t

=
−→
∇ · (um−→∇ u), (3.1)

where u = 0 everywhere on the Dirichlet boundary of the (−2,2)× (−2,2) domain. This

is accompanied by initial conditions dictating a high concentration (u) in a small area

in the centre of the domain with a concentration (u) of zero in the rest of the domain.

As we take steps through time the support of u will increase in size and the value of

u at the centre will decrease. The concentration level can drop sharply to zero in the

contact region making this area difficult to resolve numerically. Clearly if we choose

m = 0 the PME reduces to the heat equation. However, the higher the value chosen

for m the more nonlinear the problem becomes. Again this solution has the advantage

of possessing known analytical solutions in certain cases. These are radially symmetric

problems whereby a solution, in two dimensions is given by:

s(r, t) =

{

1
(λ (t))d

(

1−
(

r
r0λ (t)

)2
)

1
m

r ≤ r0λ (t)

0 r > r0λ (t)

,

where d is the dimension of the problem and r0 is the radius of the initial region of non-

zero concentration. (A precise definition of λ (t) is given in Chapter 6.) We chose initial

conditions to be consistent with this similarity solution for the purposes of testing.

3.3.2 A Nonlinear Convection-Diffusion Equation

We will also consider the more general parabolic form:

∂u
∂ t

+
−→
f ·

−→
∇ u = δ

−→
∇ 2u,
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where
−→
f 6= 0, δ > 0 and u = 0 everywhere on the Dirichlet boundary. The problem is

solved over a (−1,1)× (−1,1) domain. In the case where
−→
f =

−→
f (−→x ) we have a linear

parabolic equation and in the case where
−→
f =

−→
f (−→x ,u) the equation will be nonlinear.

(Note that now the nonlinearity is in the convection term as opposed to the diffusion

term for the PME.) Taking f = u in the one-dimensional case gives us the standard one-

dimensional Burgers’ equation [23],

∂u
∂ t

+u
∂u
∂x

= δ
∂ 2u
∂x2 .

Some possibilities for the solution of this equation are analysed in [23] by Burgers. The

solutions of this equation typically form shocks, the sharpness of which are controlled

by the viscosity parameter, δ . This equation is often used to simulate waves. One such

solution takes the form:

u(x, t) =
1

1+ e(x−0.3−0.5t)/δ ,

with appropriate boundary conditions. This particular solution corresponds to a wave

propagating away from x = 0 (starting at x = 0.3 and moving with velocity 0.5). We

would like to extend this to a two-dimensional solution which propagates radially away

from the origin. Generalising the one-dimensional equation to two dimensions gives:

∂u
∂ t

+
u
r
−→x ·

−→
∇ u = δ

−→
∇ 2u, (3.2)

where r =
√

x2 + y2. In this case we no longer have a similarity solution (since
−→
∇ 2u 6=

∂ 2u
∂ r2 ) but an approximation which is close to the true solution for small values of δ :

u(−→x , t) =
1

1+ e(r−0.3−0.5t)/δ . (3.3)

We can create a set of initial conditions by simply setting t = 0 in Equation (3.3). The

solution is then equal to one at the origin and anywhere behind the wave and equal to zero
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in front of the waves and on the boundaries of the domain.

As before the parameter δ determines the steepness of the transition between the u = 0

region and the u = 1 region.

3.4 Systems of Parabolic Differential Equations

Many physically interesting problems, such as the Navier-Stokes equations [90] for ex-

ample are described by a system of elliptic or parabolic equations. In this section we

introduce two such parabolic systems. Firstly, we construct a somewhat artificial sys-

tem based upon the Burgers’ equation presented above. This provides us with a system

of nonlinear parabolic PDEs for which we can test our methods before applying them

to a more complex application. The application used here is an anisotropic phase field

(PF) model for the rapid solidification of a pure melt. This is described in some detail in

Section 3.4.2.

3.4.1 Systems of Convection-Diffusion Equations

An artificial system of parabolic PDEs is developed to assess the performance of the

numerical solution methods. Both equations come from the nonlinear Burgers’ equations

as used in Section 3.3.2:
∂u
∂ t

=
−v
r

(−→x ·
−→
∇ u)+δ

−→
∇ 2u,

∂v
∂ t

=
u
r
(−→x ·

−→
∇ v)+δ

−→
∇ 2v. (3.4)

For small δ an approximate solution is therefore given by:

u(−→x , t) = −v(−→x , t) =
1

1+ e(r−0.3+0.5t)/δ .
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The initial and boundary conditions are set up in a similar way to those of the single

Burgers’ equation in Section 3.3.2. The two solutions of this model are mirror images of

each other with the x-y plane as the plane of symmetry.

3.4.2 Phase Field Model of Rapid Solidification

Phase field (PF) models are used, amongst other applications, to model the formation of

solid structures from molten metals under cooling [49]. In such an application the final

structure of the crystal depends on aspects such as speed of solidification and movement in

the melt. The resulting structure of the metal affects properties such as strength, durability

and electrical conductivity, making the cooling process of significant industrial interest.

The PF model was introduced for boundary evolution problems as a less complicated

alternative to the front tracking method [21] which requires a parameterisation of the

boundary at each time step. The simplest PF models have two dependent variables: a

physical variable (e.g. temperature [50, 97]) and the phase field variable. The phase field

variable describes the phase (liquid / solid) of each point in the domain, typically taking a

value of 0 in the solid region and 1 in the liquid region. The PF model includes a diffuse

boundary (or ‘interface’) between the solid and liquid regions (e.g. [12]) which simulates

the change from one material phase to the next more realistically than a sharp interface.

In this region the phase variable adopts an intermediate value. A simulation is typically

started with a seed crystal in the melt represented by a small region where the phase vari-

able is zero with a smaller interface region surrounding it. As the simulation progresses

the solid region grows and the interface lengthens.

There are several incarnations of the PF model developed by different research groups.

One model, central to the field of research, was developed by Karma and Rappel and is

presented in [52]. However the formulation used here is taken from [97] by Wheeler et al.
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Although it is possible to create computational models for metal alloys, for example [4],

the formulation used here is for a pure metal. Wheeler’s model is formulated for the rapid

solidification of an undercooled pure melt. (Parameters corresponding to nickel are used

in this work.) This fast solidification can produce highly anisotropic crystal formations

(called dendrites) which are qualitatively reproduced by the PF model. In order to produce

these realistic growth effects the model used incorporates anisotropy into surface tension.

The effect of the level of anisotropy on the crystal formation is analysed by Kobayashi

in [55].

The coupled pair of nonlinear parabolic PDEs which govern the phase field behaviour

in Wheeler’s model are:

ε2

m
∂φ
∂ t

= r(φ ,u)+ ε2−→∇ · (s(φ)
−→
∇φ)− ε2 ∂

∂x

(

v(φ)
∂φ
∂y

)

+ ε2 ∂
∂y

(

v(φ)
∂φ
∂x

)

, (3.5)

∂u
∂ t

+
1
4

P(φ)
∂φ
∂ t

=
−→
∇ 2u, (3.6)

where, P(φ) = φ 3(10− 15φ + 6φ 2). Here φ is the phase field variable and u is the tem-

perature variable. Details of the precise forms of r, s and v, as well as the boundary and

initial conditions, are given in Section 4.4.1

High memory use and long execution time are typical computational problems for the

PF model. There is a large difference in the scale in which the PF variable is changing

and the scale in which the temperature variable is changing. In order to resolve the phase

variable accurately extremely fine meshes must be used. (The temperature variable re-

quires a significantly less refined mesh.) The interface region, which is defined by the

rapid change of the phase variable, is generally O(ε). In order to resolve the interface
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sufficiently O(10) points would be required across its width. The grid spacing in the

interface region must therefore be O( ε
10). This refinement restriction makes the simu-

lations computationally intensive, especially when combined with a conditionally stable

time-stepping strategy which requires ∆t
∆x2 to remain bounded as ∆x → 0. Furthermore, PF

models are becoming more sophisticated and increasingly are performed with non-pure-

melts [4], or in three dimensions [47, 49, 51, 85]. Simulations in three dimensions are

necessary for comprehensive and accurate comparison with experimental data. In three

dimensions the computational work and storage required is intractable for sufficiently

fine, uniform grids. Spatial adaptivity has therefore been introduced to reduce both of

these limiting factors, e.g. Provatas et al in [75]. In this thesis we restrict our attention to

improving computational methods in two dimensions however the issues associated with

porting these improvements to three dimensions are discussed in Chapter 8.
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Grid Adaptivity

4.1 Introduction

This chapter details the h-refinement scheme developed in this work. The data structures

and main algorithms for the scheme are given, along with the supporting techniques for

grid traversal and re-adaption. Section 4.2 describes the hierarchical data structure used.

In Section 4.3 we go on to show the rules and algorithms for controlling refinement and

coarsening in the context of this data structure. The resulting grids have quadrilateral

elements and contain ‘disconnected’ (or ‘hanging’) nodes. Finally, in Section 4.4 the

gridding scheme is applied to a semi-implicit discretisation of the PF model which was

introduced in Chapter 3. A modified conjugate gradient method due to Meyer [67] is used

as the iterative solver in order to resolve the hanging nodes in the mesh.
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4.2 Data Structures

When creating data structures to facilitate an adaptive gridding scheme we must consider

how they will be used in relation to the discretisation scheme. In a typical FE discreti-

sation implementation there is a sweep over the elements in order to build the algebraic

system. There must, therefore, be a clear method for traversing the elements in the grid.

An integral will be performed over each element so it must also be possible to access all

the information about that element including the values at its vertices.

When dealing with uniform grids it is straight forward to set up an indexing system and

a set of arrays to store the grid point values (e.g. location, solution values, etc). Finding

a point within the domain, and those in its near vicinity, is then simply a case of manipu-

lating the indices. However, this system is much less practical if the grid is non-uniform

and/or regularly changing. The data structures developed in this work are intended to be

practical for highly non-uniform meshes which are re-adapted continuously throughout

the execution of a time-dependent simulation. In this case a flexible, dynamic data struc-

ture is needed, which accurately reflects the form of the grid and facilitates re-adaption.

A review of existing adaptive methods and the data structures used in their implemen-

tation is given in Section 2.5. We have chosen to implement a hierarchical, tree data

structure where the mesh is built element-wise. Some basics of tree data structures in the

C programming language can be found in [34]. It is usual to refer to items stored in a tree

as ‘nodes’. However, in this work, these will be referred to as ‘elements’ as that is what

they represent in the FE sense. We start with one element, covering the whole domain,

which corresponds to the root element of the tree. (If the domain is more complex than

a single rectangle then we would need the root of the tree to contain more than a single

element.) When completed the leaf elements of the tree correspond to the active elements

in the computational grid. The computational grid, in this work, is composed of square
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elements, which when refined, are subdivided into four squares each with a quarter of the

area of the original square. In light of this, the tree structure used is a quadtree, where

each tree element has four (potential) child elements. The use of square elements im-

poses limits on the shape of the domain used. However the structures that we present in

this chapter can be modified for use with other element shapes, such as triangles, to offer

much more flexibility. This is discussed briefly in Chapter 8. The exact nature of the

quadtree in this work is described below.

4.2.1 The Quadtree

The quadtree data structure is a standard tree structure, evolving from a root node. The

quadtree developed here is similar to that used by Strain in [88]. In order to discuss the

data structure we must establish a set of terms and their definitions. We impose the idea

of ‘levels’ on the quadtree where: the root element is at level 0 (in this work there are

never any other elements at level 0); the elements connected to the root through only one

link are at level 1; those that are connected, through only one link, to level 1 elements

(and have not already been assigned a level) are level 2; etc. (What is referred to here as a

‘link’ would typically be referred to as an ‘edge’ in the language of graph theory. However

‘link’ is used to avoid ambiguity with the meaning that ‘edge’ takes in FE theory.) The

idea of levels gives us a framework with which to talk about the location of an element

in the tree. For an element on level ` > 0 we define its ‘parent’ element to be the unique

element at `− 1 to which it is connected. (The root element has no parent.) An element

can also have ‘child’ elements which are those directly connected to it and are on level

` + 1. Those elements which have no child elements are called ‘leaf’ elements. The

‘siblings’ of an element are defined as the set of three elements at level ` which share a

parent with the element. For this application we require a ‘strict’ tree, where each element

has either no child elements or all four. This is in order to keep the element shapes

in our grid consistent. Each node of the tree represents an element in the grid, some
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active and some inactive (i.e. they have been refined). An active element is one which is

involved in the solution process which, in general, corresponds to the leaf elements of the

tree. As the implementation of these structures was done in the C programming language

we have access to explicit pointer types and dynamic memory allocation. The structure

representing an element contains the following items:

• A pointer to the parent element,

• Four pointers to the child elements,

• Four pointers to the grid points at each of the element vertices,

• The area of the element,

• An identification number,

• Manipulation flags.

The ‘manipulation flags’ are binary flags used during creation and re-adaption of the grid.

One example of their use happens during refinement of the grid when an element can be

marked for refinement (following a test based on an error estimator). Figure 4.1 illustrates

the correspondence between the quadtree nodes and the elements in the grid, at various

stages of development. The identification number of each element is shown in the mesh

and in the tree. The structure and purpose of these identification numbers are described

in Section 4.2.3.

4.2.2 The Complete Grid Data Structure

Although an element orientated structure makes sense when using FE methods, we still

need to store point-wise values at the nodes of the grid. It would not make sense to do

this within the quadtree as each grid point is shared between four elements so the storage

and, to a lesser extent, computational time would be wasted in storing each value four
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Figure 4.1: Relation of the quadtree data structure to the computational grid: Three level
of the grid are shown with the corresponding quadtree. The identification numbers of
each element are given.

times. Therefore, a separate list of grid points (with no repetitions) is created, which can

be accessed via the elements in the tree. The point list is a dynamic, linked list to facilitate

flexibility when the grid is changed. The items included in a grid point structure are:

• Solution value(s),

• Grid point co-ordinates,

• A pointer to the next node in list,

• Manipulation flags.

Again, the ‘manipulation flags’ are binary flags used during creation and re-adaption of

the grid so each point can be, for example, marked as a newly created point. The full data

structure setup is illustrated in Figure 4.2 where the grid now shows the number system

of the grid points corresponding to the nodes of the linked list.
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0             1             2             3            4             5             6             7             8

 0                  4                 1

5 6 7

2 8 3

Computational Grid

Data Structures

Figure 4.2: Relation of quadtree to point list: The quadtree is represented, as in previous
figures, with squares as elements. The links are shown between these elements and the
points (at their vertices) stored in the point list. The data structure applies to the simple
grid above.

4.2.3 Traversing the Grid

In order to effectively use the grid structure that we have created, we need techniques for

traversing the element tree in an efficient manner and accessing the particular elements

efficiently. There are two main challenges to overcome: to traverse all the leaf elements

in the tree efficiently; and to find the neighbouring elements of any element in the grid.

These tasks are tackled in the following sections.

Efficient Traversal

In order to solve the FE problem on our computational grid it must be possible to tra-

verse the leaf elements of the quadtree as typical FE codes have an outer loop over the

elements. One method of facilitating the traversal of the active elements in the grid is to

set up a linked list of all of these active elements as in [75]. Once this is done the traversal

of the active elements is trivial. However there are overheads associated with this method

in terms of storage and computational work. An alternative is to create algorithms which
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2 3

0 1

Figure 4.3: Ordering of elements in the grid: This is the ordering chosen for the child
elements of any parent element in the quadtree.

will perform the traversal without the need for more pointers in the structure. As we

would like to use this data structure for time-dependent problems where the mesh refine-

ment, and so the arrangement of active elements, will change throughout the execution,

the second approach was chosen.

A depth-first traversal was adopted, which uses the element pointers and an ordering

imposed on the tree, to move from one leaf element to the ‘next’ one. Numbering each set

of sibling elements from 0 to 3 imposes a natural ordering on the tree. The order was cho-

sen arbitrarily and can be seen in Figure 4.3. The tree itself is navigated using a structure

containing two pointers, one to the root element and one to the ‘current’ element. The

latter is essential for the traversal algorithms. Moving from one element to another during

a traversal involves changing the assignment of the current pointer. Similarly, moving to

an arbitrary element means giving the current pointer the address of this structure. The

traversal of the active (or leaf) elements involves two main methods, one to set the current

element to be the first leaf element in the tree and a second, recursive, method to move the

current element to be the next leaf element, according to the ordering. Locating the first

leaf element is straight forward. Starting at the root we choose child 0 of each element

until we reach an element with no children. The algorithm for moving from one leaf ele-

ment to the next proves to be a little more complex. This is given in Algorithm 3. Below

are three examples of how the algorithm works:
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Algorithm 3 Function: Goto Next Leaf Element
1: Input parameter: C - pointer to current element
2: if C != Root Element of Tree then
3: Set V = C
4: Set C = C.parent
5: if V == C.child[0] then
6: C = C.child[1]
7: while C is not a leaf element do
8: C = C.child[0]
9: end while

10: else if V == C.child[1] then
11: C = C.child[2]
12: while C is not a leaf element do
13: C = C.child[0]
14: end while
15: else if V == C.child[2] then
16: C = C.child[3]
17: while C is not a leaf element do
18: C = C.child[0]
19: end while
20: else
21: Call ‘Goto Next Leaf Element’ with C
22: end if
23: else
24: Indicate that the last leaf element has been reached.
25: end if
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• If element [1,1] in Figure 4.1 was given as element C in Algorithm 3 the second

conditional statement would be true (i.e. V == C.child[1]). Element [1, 2] would

be assigned to C (this is not labelled in the figure), then the while loop would exe-

cute once to assign element [2, 2, 0] to C.

• If element [2, 2, 3] from Figure 4.1 is given as the initial C. Recursion would be

used to recall the function with the parent of element [2, 2, 3] (i.e. element [1, 2]).

In this new instance of the method the third condition is used and element [1, 3] is

assigned to C. As the current element C is passed by reference the changes made

during recursion are maintained after both instances of the method have finished.

• If element [1, 3] is initially assigned to C. Recursion would be used to recall the

function with the root element. This second instance would recognise that the final

leaf element had been reached.

Finding the Neighbour of an Element

In order to check the validity of the grid during the refinement and de-refinement proce-

dures (described in detail in Section 4.3) we need to be able to identify the neighbours

of any given element. We approach this task by first creating a method with which to set

up a pointer to any given element in the grid. Each element is given a unique identifica-

tion number (ID) which allows us to locate the element to which we wish to establish a

pointer. These IDs are arrays of integers which reflect the position of the element in the

tree. The first entry corresponds to the level of the tree where the element resides and

the rest reflect the positioning of the element. In Figure 4.1 we can see that the element

with identification number [2, 2, 0] is on level 2, within the area covered by the 2nd child

of the root node and is child 0 of its parent. The ID, therefore, traces the ancestry of an

element starting at the root element. It is straightforward to set a pointer to any element in

the tree provided that we have its ID. The simple algorithm for finding an element using
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its ID is given in Algorithm 4.

Algorithm 4 Find Element
1: C = Root Element
2: for i = 1 to ID[0] do
3: C = C.child[ID[i]]
4: end for

In building and re-adapting the grid, as well as in some solution processes, it is nec-

essary to know which elements border the current one. The elements which border an

element are termed its ‘neighbours’. We divide these into two types: those which share

an edge with the element, called ‘primary neighbours’; and those which only share a point

with the element, called ‘secondary neighbours’. There is no direct method of finding the

neighbours of an element inherent in the quadtree structure. In fact, it can prove to be

difficult as two elements, next to each other in the grid, can be on separate branches of

the tree reaching back to the root. An efficient algorithm to identify the neighbours of

an element can make use of the ID numbers defined above. Rather than attempting to

move a pointer through the tree, from one element to its neighbour, we use the element’s

ID and the relative position of the neighbour to calculate the ID of the neighbour. The

neighbour’s ID can then be used to set a pointer to the neighbour using the Algorithm 4.

We can establish from the last digit of the element’s ID which neighbours are the siblings

of the element and which belong to other branches of the tree.

An example of this is given in Figure 4.4. The element E has the ID [3, 0, 3, 3] and

hence the X- and Y- neighbours are simple to find, as they are siblings of E. The IDs of

the other two primary neighbours, X+ and Y+ are found by using the same principle used

recursively up the tree. The algorithms for finding the ID of the X+ neighbour is given in

Algorithm 5. The algorithm finds the ID of the theoretical, X+ neighbour which would be

on the same grid level as the element. At this stage it does not matter whether this element
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Figure 4.4: The primary neighbours of a quadrilateral element: The four primary neigh-
bours of the element marked E are marked X+, Y+, X- and Y- according to their relative
orientation.

actually exists in the tree. We can then use this ID to set a pointer to the neighbouring

element, even if this turns out to be an ancestor of the element characterised by the ID. In

the case of element E in Figure 4.4 for the X+ neighbour (or the element directly to the

right of E) we can trace the steps of Algorithm 5 as follows.

• When the method is initially called: XP.ID = [3,0,3,3] and ` = 3. The method will

then be called recursively.

• In the second instance of the method: XP.ID = [3,0,3] and ` = 2. Again the method

is called recursively.

• In the third instance of the method: XP.ID = [3,0] and ` = 1. In this case XP.ID is

changed to [3, 1] and the method instance terminates.

• On returning to the second instance of the method XP.ID is changed to [3, 1, 2] and

this instance of the method terminates.

• On returning to the initial instance of the method XP.ID is changed to [3, 1, 2, 2]
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Algorithm 5 Function: Find ID of X-Plus Neighbour of Element
1: Input parameter: E.ID - identification number of current element
2: Input parameter: XP.ID - identification number of neighbour directly to the right of

the current element. (Initially empty.)
3: ` - level of current element
4: Set XP.ID = E.ID
5: if XP.ID[0] == 0 then
6: We are at the root so there are no neighbours
7: Set XP.ID[0] = -1
8: else
9: if XP.ID[`] == 0 then

10: XP.ID[`] = 1
11: else if XP.ID[`] == 1 then
12: Call ‘Find ID of X-Plus Neighbour of Element’ with E.ID, XP.ID and `−1
13: XP.ID[`] = 0
14: else if XP.ID[`] == 2 then
15: XP.ID[`] = 3
16: else if XP.ID[`] == 3 then
17: Call ‘Find ID of X-Plus Neighbour of Element’ with E.ID, XP.ID and `−1
18: XP.ID[`] = 2
19: end if
20: end if

and this remaining instance terminates.

In the case where the element borders on the boundary of the domain and a neighbour

does not exist the method will be called recursively until the current element is the root

element. At this point the final instance will recognise that there are no neighbours and

pass this information back through a −1 value in XP.ID[0]. The algorithms for finding

the X-, Y+ and Y- neighbours are similar to Algorithm 5 for the X+ neighbour.

The secondary neighbours are found by using a combination of the methods for find-

ing the primary neighbours. For example, the secondary neighbour to the top right of

element E would be located in two stages. Firstly the X+ neighbour of E would be found

and a pointer would be established to this element. The algorithm for finding the Y+

neighbour of an element would then be used with the newly found X+ neighbour element

as an input.
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4.3 Adapting the Grid

In this section the method for refining and coarsening the grid is described in detail. The

conditions under which refinement and coarsening occur are discussed and the algorithms

for implementing these are given. The mechanisms for creating and removing elements

in the grid are also described.

Firstly, it is necessary to understand a little more about the computational grid. There

are (user defined) maximum and minimum grid levels. The level of an element in the

grid is equivalent to its level in the quadtree structure, so a ‘grid level’, `, defines all of the

elements of level `. The grid is developed in a globally refined manner up to the minimum

grid level. (The re-adaption methods then prevent any element from being coarsened be-

yond this level.) The maximum grid level serves as a restriction on the refinement. No

elements can be created that are smaller than those at the maximum level. In order to

ensure a robust solution we must preserve some smoothness in the mesh. It is therefore

required that each neighbouring pair of elements only differs in area by a factor of four (or

by one refinement level). This is referred to here as the validity of the mesh. It is assumed

that some form of error estimator is used to drive the adaptivity of the mesh. Here we

simply require that this estimator provides a numeric value for each element in the grid

which in some way represents the error over that area.

In order to guarantee that the solution is sufficiently resolved, extra layers of finest level

elements are added to those created by the error estimator driven refinement. The num-

ber of safety layers of refinement can be controlled by the user. Adding a safety layer to

the refinement means the refinement of all of the elements in the grid which border finest

level elements but are not finest level elements themselves. For time-dependent problems,

where the area of high activity will move throughout the solution process, these extra lay-

ers of refinement help to ensure that the solution remains sufficiently resolved. In Section
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4.4.4 we look at the balance to be found between the guarantee of a good solution and the

extra expense required to solve for these extra elements.

4.3.1 Refinement

The refinement process is split into two halves, a marking stage and a refinement stage,

similar to the methods in [59]. The marking stage uses a given error estimate to flag

those elements which are in areas requiring further refinement. This involves one sweep

over the active elements where, on each element, the error estimate is compared to a

user-selected tolerance, appropriate for the problem being solved. One of the binary flags

of that element is then changed to indicate whether it requires further refinement. A

second sweep of the elements is made and elements bordering on those already marked

for refinement are marked also. This forms the first layer of safety refinement. Any

number of safety layers of refinement can be added by further sweeps if desired.

The process of refining the elements, based on the way they have been marked, is more

complex than the marking as it also bears the responsibility of preserving the validity of

the mesh. The validity of the mesh is ensured by following a set of rules for refinement

and a set for coarsening. The two refinement rules are:

• An element cannot be further refined once it is at the maximum level.

• Two neighbouring elements should differ by at most one refinement level.

In a situation where the refinement of an element would invalidate the mesh the algorithm

outlined in Algorithm 6 recursively performs any necessary refinement of neighbouring

elements before refining the given element. The use of this recursive algorithm will cause

the refinement of elements that have not been marked for refinement. However the extra

computational work caused by these elements is justified in order to maintain a valid

grid. The recursive checking of neighbouring elements could be done in the marking

stage rather than the refinement stage (as in the coarsening algorithms below). However
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Algorithm 6 Function: Valid Refinement
1: Input parameter: E - element to be refined
2: if E.level != max level then
3: for All neighbouring elements, N do
4: if N is coarser than E then
5: Call ‘Valid Refinement’ with N
6: end if
7: end for
8: end if
9: Refine E

it would require the same amount of computational work so the choice is arbitrary.

We have, so far, referred to the element refinement but have not discussed the details of

how it is implemented with respect to the data structures. This is straightforward for the

elements and slightly more complex for the associated grid points. In order to refine an

element, E, we take the following steps:

• Create four child elements, each with a quarter of the area of E.

• For each of the new elements:

– Set the child pointers to NULL

– Create the ID (using the E.ID and the tree ordering)

– Set the parent pointer to E

– Set the relevant child pointer of E

• Link the new elements to any of their grid points which already exist in the point list.

The points that are shared with E always exist in the list. The primary neighbours

of E are checked. If these neighbours have children, then points will exist along the

border of E. Figure 4.5 shows two possible configurations.

• Create the remaining grid points and give them values interpolated from surround-

ing points. The point shared between all four new elements must always be created.
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Existing Nodes Nodes to be created in refinement

Figure 4.5: Creating points during refinement: In the left-hand case five points must be
created as none of the parents neighbours are refined. In the right-hand case all of these
neighbours are refined and so only one point need be created.

• Add the new points into the linked list of grid points and resolve the pointers from

the new elements.

4.3.2 Coarsening

In order to maintain simplicity in the grid adaption the only coarsening that is allowed

is the reverse of the refinement technique. A set of four sibling elements are removed

and their parent element is made active in the computational grid. We will not allow the

merging of elements which do not share the same parent.

The coarsening methods are divided into marking operations and coarsening operation, in

a similar way to the refinement scheme. The validity of the mesh is taken care of in the

marking scheme rather than with a recursive coarsening function. It follows that the com-

plexity lies in the element marking scheme rather than the coarsening itself. All elements

in the grid are marked to be coarsened unless:

1. They are already at the minimum level,
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2. They (or any of their siblings) exceed the error tolerance,

3. They (or any of their siblings) have child elements,

4. Any of the neighbours of their parent element have grandchildren.

Clearly we wish to prevent the coarsening from undoing the work of the refinement. Item

2 (above) ensures that an element marked for refinement is not coarsened. The same error

estimate is used here as in the refinement scheme however a different tolerance is used.

This is discussed further in Section 4.3.3. The coarsening scheme is designed to be as cau-

tious as possible while still being effective. For example, Item 3 is a safety measure which

ensures that only one level of refinement can be removed in one sweep of the coarsening

algorithm. The validity of the mesh is preserved by Item 4. When removing a set of ele-

ments and exposing their parent, all the neighbouring elements must be of the same level

as those to be removed, or coarser. If any neighbouring element were finer than those to

be removed the coarsening would invalidate the mesh. Using rule 4, in some cases, delays

valid coarsening until the next pass of the coarsening algorithm. The algorithm could be

constructed to be more aggressive but caution was favoured in order to ensure an properly

resolved solution. Some examples of when coarsening is and is not permitted are given

in Figure 4.6. In this figure, example 5 shows an instance where the coarsening would be

valid but is prevented by rule 4.

The operation of coarsening is simpler than that of refining. A group of four sibling

elements are removed from the tree making the parent a leaf element, now active in the

tree. The grid point(s) which belonged solely to these elements are then removed from

the linked list. The grid point shared between all four sibling elements is removed. The

four grid points shared with the parent element are kept. The remaining four points on the

edges of the parents are kept if the relevant neighbour is refined and removed otherwise.
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1 2 3 4 5

Figure 4.6: Various coarsening scenarios: The elements which are shown with dotted
lines are proposed for coarsening and the tick or cross underneath each example indicates
whether the coarsening rules the algorithm would allow the coarsening to take place.

4.3.3 Re-adaption

The refinement and coarsening processes described above are wrapped within an algo-

rithm for re-adapting the grid. The refinement is performed first, followed by the coars-

ening. This ordering is arbitrary as the refinement and coarsening could be performed in

either order, provided that they remain separate operations. The order of these operations

is illustrated in Algorithm 7. In order to prevent these processes interfering with each

Algorithm 7 Grid Re-adaption
1: Mark elements for refinement
2: Perform refinement (using recursive grid correction)
3: Mark elements for coarsening
4: Perform coarsening (with no recursion)

other the error tolerance used for refinement is different from that used for coarsening.

Each is based on the same error indicator but the activation tolerance is different. The re-

finement tolerance, rtol, dictates the value of the indicator above which local refinement is

required, whereas the coarsening tolerance, ctol < rtol, is used to choose which elements

may be coarsened (since the error, which is less than ctol, is unnecessarily small). This

two-tier tolerance scheme defines a set of elements (with an error indicator value between

the two tolerances) which are ‘okay as they are.’ These elements form a buffer region

between those being refined and those being coarsened. In general, experience suggests

that it is best to keep an order of magnitude difference between the two tolerance values.
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4.3.4 Hanging Nodes

In Section 2.5.3 we discussed the options for the resolution of the hanging nodes in a

non-uniform quadrilateral mesh including the ‘red’ and ‘green’ refinement possibilities.

In the case of red refinement the discontinuous FE method could be used, where the dis-

continuities would be allowed to remain in the solution. Examples of the discontinuous

FE method being used with grid containing hanging nodes can be found in [35, 57]. Dis-

continuous Galerkin methods were not attempted in this work as the focus is on simplicity

of understanding and implementation and these methods are more complicated to formu-

late than the continuous Galerkin. In addition to this the number of degrees of freedom

required for the discontinuous version of the method is substantially higher.

For the grids in this work the mesh validity criterion dictates that there is never more

than one hanging node per element edge. This restriction simplifies the work of resolving

the hanging nodes. (However it is possible to assemble for grids with multiple points

along an edge, for example [35].) An alternative approach was used to produce results

on grids containing hanging nodes based upon constraining the solution values at such

nodes. This is implemented using a projection technique which is a generalisation of that

proposed in [67] and full details are given in Section 4.4.3.

We maintain a record of the hanging nodes in order to identify them during the solution

process. A dynamic linked list is used which is re-formed each time the mesh is changed.

We define the parent points of a hanging node to be the two adjacent points belonging to

the largest adjacent element. The structure stored for each hanging node includes:

• A pointer to the hanging node in the point list,

• Two pointers to the parent points in the point list,

• A pointer to the next structure in the hanging node list.
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4.3.5 Error Estimation and Indication

In order to drive the adaptivity for the gridding methods presented in this thesis an error

estimation or indication method is needed. The implementation requires that this error

estimator can produce a value for each element in the grid which in some way represents

(as the name suggests) an estimate of the error over the element area. Alternatively an

error indication technique can be used, which uses some attribute of the problem or local

features of the approximate solution to indicate areas where the error is likely to be high.

Clearly the more sophisticated approach is to use an error estimation technique, where an

approximation to the error itself is calculated, giving a more precise measure of where

increased refinement is required.

Error Estimators

Error estimators fall into the two categories: a priori and a posteriori. A priori methods

use knowledge of the problem to be solved and the nature of the solution to predict the

error trends in the approximations without making explicit reference to, or use of, a com-

puted solution. In [61] Shishkin meshes are developed using an a priori error estimation

method. These methods are, however, not much use for spatially adaptive methods since

the estimates tend to be asymptotic and do not yield information on precisely where to

refine or coarsen. In contrast, a posteriori methods use problem data, along with the cal-

culated approximate solution, to calculate an estimate of the error in a numerical solution

once it has been found. This type of method is much more useful for adaptive applications

and so will be described in a little more detail here. A much more complete review of a

posteriori error estimation, for elliptic problems, can be found in the book by Ainsworth

and Oden [2].

A popular and simple type of a posteriori error estimation technique is based on the

recovery of solution gradients. Here a post processing step is used to recover the solution
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gradient from the approximate solution. The difference between this recovered gradient

and the gradient of the approximate solution is used to form an estimate of the error. The

most widely used approach of this type was developed by Zienkiewicz and Zhu [100].

Although this method could be regarded as crude it can be very effective and is popular

with engineers. A gradient recovery method for piecewise linear finite element methods

is developed in [7] and the equivalent for piecewise bilinear finite elements can be found

in [53]. The Zienkiewicz and Zhu method was later developed into a local patch recovery

technique in [101, 102].

A more sophisticated error estimation technique involves calculating a solution to the

residual equation for the error. Consequently this method requires an approximation

scheme for the error estimation procedure itself. Bank and Weiser describe several er-

ror estimators of this type in [10]. Their methods produce local error estimates by solving

Neumann boundary problems over each element.

Error estimators for elliptic problems were often applied to parabolic problems on the

assumption that the temporal error is maintained at a significantly lower level than the

spatial error. However, in recent years a posteriori methods have been extended for use

with parabolic problems. One example of these extended methods is described in [74].

Error Indicators

As stated above error indication techniques use features of the approximate solution to

identify areas where the error is likely to be high. One of the possible indicator quantities

is the gradient of the approximate solution. For certain problems areas of high gradi-

ent coincide with areas which require high grid resolution. In other cases the curvature

of the approximate solution may be a more appropriate quantity for indicating areas of

high error. Although these two are the simplest and therefore the most commonly used
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indicators, others can be used. For example the curl of the solution, which will give an

indication of the level of vorticity in a vector field solution. Where systems of differential

equations are solved a decision must be made as to which dependent variable provides the

most suitable choice to be used for the error indicator. Alternatively, the indication value

can be calculated for each independent variable in the system and some linear combina-

tion of the resulting values can be used. The weightings within this linear combination

will be dictated by the importance of the respective variables. An example of the use of

this method can be seen in [73].

The grid adaptivity methods developed in this work are designed in such a way as to

allow the use of any error indicator or estimation technique provided that it will produce

a value for each element in the grid. As the subject of error estimation is not the focus

of this work, a simple error indication method is used. The gradient of the approximate

solution is calculated on each element in the grid and it is assumed that the areas of high

gradient are those that require a higher level of refinement. This method has proved to

be sufficient for the purposes of testing the grid adaptivity and solution methods in this

work. However, the implementation is flexible enough to function equally well if a more

sophisticated approach is used.

4.4 Application of the Adaptive Mesh Algorithm

In this section we demonstrate the correctness of our implementation of the mesh adap-

tivity by applying it to the solution of the nonlinear PF model, which was introduced in

Section 3.4.2. Phase field models such as this have been solved previously using adap-

tively refined meshes: see for example the work of Provatas et al presented in [75]. In

that paper they describe a green refinement scheme combining quadrilaterals with tem-

porary triangular elements in the semi-implicit solution of a typical PF model. Here we

67



Chapter 4 Grid Adaptivity

demonstrate that an equivalent scheme can be constructed where the hanging nodes are

left unresolved by the refinement scheme but handled by a projected conjugate gradient

solution algorithm developed by Meyer in [67]. In later chapters we go on to construct

a fully implicit discretisation of the specific PF model introduced in Chapter 3 and solve

this using the new multigrid solution scheme developed during this work.

4.4.1 Finite Element Discretisation in Space

Recall from Section 3.4 that the following system of partial differential equations provide

an anisotropic model of rapid solidification behaviour for a pure melt:

ε2

m
∂φ
∂ t

= r(φ ,u)+ ε2−→∇ · (s(φ)
−→
∇φ)− ε2 ∂

∂x

(

v(φ)
∂φ
∂y

)

+ ε2 ∂
∂y

(

v(φ)
∂φ
∂x

)

, (4.1)

∂u
∂ t

+
1
4

P(φ)
∂φ
∂ t

=
−→
∇ 2u. (4.2)

For the purposes of this work we use the following definitions of the terms in (4.1) and

(4.2), based upon [97] where

r(φ ,u) = φ(1−φ)[φ −
1
2

+30εα∆uφ(1−φ)] (4.3)

s(φ) = η2(θ(φ)), (4.4)

v(φ) = η(θ(φ))η ′(θ(φ)), (4.5)

η(θ) = 1+ γcos(kθ), (4.6)

η ′(θ) = −γksin(kθ), (4.7)

and

P(φ) = 30φ 2(1−2φ +φ 2). (4.8)
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The PF system used here is taken directly from [97] and represents a simple model for

rapid solidification in an undercooled melt. The parameter ∆ = 0.5 represents the under-

cooling of the melt. The qualitatively realistic finger-like shapes that may be obtained

using this model are caused by anisotropy in the curvature of the solid-liquid interface.

The level of this anisotropy is controlled by γ = 0.03. The phase field model parameters

corresponding to nickel, [97], were used for all of the results appearing in this work. Fur-

ther parameters include ε = 0.005, which corresponds to the thickness of the interface

between the solid and liquid regions, and α = 400.0 and m = 0.05. The parameter θ rep-

resents the angle between the solid-liquid interface normal and the x-axis of the domain.

Dirichlet conditions are used on the entirety of the boundary. The solidification simu-

lation is initialised with a small ‘seed’ in the centre of the domain where the phase field

variable, φ , takes the value of 0 representing the solid state. A continuous Galerkin finite

element method with piecewise bilinear elements is used for the spatial discretisation. As

in Section 2.2.1, we create a weak form of Equations (4.1) and (4.2). Then the FE trial

and test functions are substituted in place of the continuous variables. Finally the spatially

discretised equation systems are manipulated into an initial value ODE problem in matrix

form.

The Weak Form

For the phase Equation (4.1) a suitable weak form may be derived as:

ε2

m

∫

Ω

∂φ
∂ t

wdΩ =

∫

Ω
r(φ ,u)wdΩ+ ε2

∫

Ω

−→
∇ · (s(φ)

−→
∇φ)wdΩ

−ε2
∫

Ω

∂
∂x

(

v(φ)
∂φ
∂y

)

wdΩ+ ε2
∫

Ω

∂
∂y

(

v(φ)
∂φ
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)

wdΩ. (4.9)
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From the product rule we know that

−→
∇ · (s(φ)

−→
∇ φ)w =

−→
∇ · (ws(φ)

−→
∇ φ)−

−→
∇ w · s(φ)

−→
∇ (φ).

We can therefore replace the first of the second order terms in Equation (4.9) as follows:

ε2
∫

Ω
w
−→
∇ · (s(φ)

−→
∇φ)dΩ = ε2

∫

Ω

−→
∇ · (ws(φ)

−→
∇ φ)dΩ− ε2
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Ω
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−→
∇ w ·
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Using the divergence theorem this becomes:

ε2
∫
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w
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Ω
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−→
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where
−→
n̂ is the outward unit normal. Since we are assuming Dirichlet boundary condi-

tions we restrict the test functions, w, to be zero on the boundary and so the boundary

integral is zero, hence

ε2
∫

Ω
w
−→
∇ · (s(φ)

−→
∇ φ)dΩ = −ε2

∫

Ω
s(φ)(

−→
∇ φ ·

−→
∇ w)dΩ.

The other second order terms in the phase equation and the first term in the temperature

equation right-hand side are replaced in a similar manner. For the final weak form of the

system it is necessary to find φ ,u ∈ H1
E(Ω) such that:

ε2

m
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∫
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∇ u ·

−→
∇ wdΩ−

1
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∫

Ω
P(φ)

∂φ
∂ t

wdΩ, (4.11)

holds for all w∈H1
0 (Ω), where H1

E(Ω)= {v∈H1 : v satisfies the given Dirichlet boundary

conditions} and H1
0 (Ω) = {v ∈ H1 : v = 0 on ∂Ω}. Note that if we chose to use Neumann
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boundary conditions, where the boundary condition is ∂φ
∂ n̂= 0, the boundary integrals still

disappear since they are of the form
∫

∂Ω ws(φ)∂φ
∂ n̂ds.

Spatial Discretisation

We now replace the dependent variables φ and u with discretised versions, constructed

using a linear combination of the standard piecewise bilinear basis functions:

φ =
n+nb

∑
i=1

φi(t)Ni(x,y), u =
n+nb

∑
i=1

ui(t)Ni(x,y), (4.12)

where n is the number of unknowns, nb is the number of points on the Dirichlet (or

essential) boundary and Ni is the ith basis function. We are now treating φ and u as

ordered sets of time-dependent values, not dependent on space (with the unknown values

ordered first and the known, Dirichlet values ordered last). The weight functions, in the

weak form, (4.10) and (4.11), are replaced by N j for j = 1, ...n to give:
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We now have a system of 2n ordinary differential equations for 2n unknowns.

A Matrix Form

In the case of Dirichlet boundary conditions (which we will assume from now on) we can

use the expansions (4.12) to express Equations (4.13) and (4.14) as:
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for j = 1, ...,n. The equations may be rearranged so that the unknown time derivatives are

on the left-hand side and all other terms are on the right-hand side:
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Ω

−→
∇ Ni ·

−→
∇ N jdΩ−

n+nb

∑
i=n+1

u̇i

∫

Ω
NiN jdΩ−

1
4

∫

Ω
P(φ)φ̇N jdΩ, (4.17)

for j = 1, ...,n.

We can now express this equation system in the matrix form:

ε2

m
Mφ̇ = g(φ ,u), (4.18)

Mu̇ = −Ku+ f (φ , φ̇). (4.19)
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Here M is the usual n× n mass matrix with entries Mi j =
∫

Ω NiN jdΩ and K is the n× n

stiffness matrix with entries Ki j =
∫

Ω
−→
∇ Ni ·

−→
∇ N jdΩ. The vector g = g(φ ,u) represents

the right-hand sides of Equation (4.16) and f = f (φ̇ ,φ) consists of the final three terms

of Equation (4.17).

4.4.2 Semi-Implicit Discretisation in Time

The theta method, introduced in Section 2.3.2, may be used to achieve a semi-implicit

time-stepping scheme (as in [97] for example). The simpler temperature equation system,

(4.19), is discretised in an implicit manner while the more complex phase system, (4.18),

is discretised in an explicit manner. The implicit discretisation will improve the overall

efficiency of the time stepping scheme while the explicit part suppresses the highly non-

linear terms in equation system (4.18). (A fully implicit scheme will be introduced in

Chapter 7.)

In order to make it clear how the theta method is applied the matrix form of the phase-field

equation is rearranged to be:

φ̇ =
m
ε2 M−1[g].

Applying the theta method gives:

φ k+1 −φ k

∆t
= (1−θ)

m
ε2 M−1[gk]+θ

m
ε2 M−1[gk+1],

where φ k is the approximate solution resulting from time step k. It follows that φ k+1 is

the approximate solution after the following time step. As we wish to solve the phase

equation explicitly, we select θ = 0 and the equation system reduces to:

φ k+1 −φ k

∆t
=

m
ε2 M−1[gk].
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Separating the φ k terms and the φ k+1 terms gives:

ε2

m
Mφ k+1 =

ε
m

Mφ k +∆tgk. (4.20)

Since the φ k values are known, the nonlinearity of g is suppressed and this method results

in a system of linear equations. The temperature system can be treated in a similar manner.

The matrix form (4.19) is rearranged to:

u̇ = M−1[−Ku+ f ].

Applying the theta method gives:

uk+1 −uk

∆t
= (1−θ)M−1[−Kuk + f k]+θM−1[−Kuk+1 + f k+1]

Since we wish to solve the temperature equation implicitly, we select the simplest such

scheme for which θ = 1, reducing the system to:

uk+1 −uk

∆t
= M−1[−Kuk+1 + f k+1].

The resulting system is now rearranged to collect together the uk+1 terms. The vector

f k+1 is not considered as a variable term as it has a known value and does not depend on

uk+1. The φ k+1 values on which f k+1 does depend have been calculated in the solution

of system (4.20). The final version of the fully discretised temperature equation system is

therefore:

[M +∆tK]uk+1 = Muk +∆t f k+1. (4.21)

The solution of the linear algebraic systems (4.20)and (4.21) on a uniform grid is relatively

straightforward: a standard iterative solver, such as the CG method, may be used. In the

case of a non-uniform grid (containing hanging nodes) this is no longer the case.
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4.4.3 Projected Preconditioned Conjugate Gradient

The grid adaptivity methods, developed in this Section 4.3 of this chapter, may be used in

the solution of the semi-implicit PF model. As mentioned in Section 3.4.2 the inter-phase

region of these models requires a level of refinement not necessary for the rest of the do-

main. The use of h-adaptive FE methods allows this region to be resolved at a reduced

cost in comparison to global refinement methods. Since we have chosen to leave the

hanging nodes in the grids unresolved, the solver used must resolve these values in order

to prevent discontinuities in the solution. To achieve this we make use of the Projected

Preconditioned Conjugate Gradient Method (PPCG) introduced by Meyer in [67]. The

PPCG is an adaptation of the standard CG method (described in Section 2.3.2). It allows

assembly of a non-conforming FE matrix by combining the element matrices without re-

gard to whether any of the element vertices are hanging nodes. A projection step is then

added to the CG algorithm to ensure that the solution values of the hanging nodes are con-

strained to force continuity of the solution. The principles of this modified CG method

are discussed here.

We represent our non-conforming linear system of equations as:

Âu = b̂, (4.22)

where the matrix Â and the vector b̂ both include the FE assembly of all elements re-

gardless of whether any vertices are hanging nodes. A direct solution of this system

would therefore be discontinuous and a poor representation of the true PDE solution. An

example of a discontinuity along an edge containing a hanging node can be seen in Fig-

ure 4.7. The form of the solution vector is u = [u0, ...,up, ...,uq, ...,ur, ...un]
T . We assume

that there is at least one value corresponding to a hanging node, uq, with another two

values corresponding to each of its parent nodes, up and ur. A projection matrix, P, is

75



Chapter 4 Grid Adaptivity

p

r

q

r

q

p

Figure 4.7: A discontinuity due to a hanging node: An example of a surface over a non-
uniform, two-dimensional grid with a discontinuity along an edge containing a hanging
node. The hanging node is marked with a filled circle.

introduced which has the effect of replacing the values at the hanging nodes by a lin-

ear interpolant of the values at their parent points. So, if q were the only hanging node,

Pu = [u0, ...,up, ...,
1
2(up +ur), ...,ur, ...un]

T . The transpose of this matrix, PT , is also used.

The effect of this operation is: PT u = [u0, ...,up + 1
2 uq, ...,0, ...,ur +

1
2 uq, ...un]

T . We then

consider a modification of Equation (4.22) so that we actually solve the system

PT ÂPu = PT b̂. (4.23)

Using a simple illustrative system, containing only a hanging node and its two parent

nodes, we can see that the projection matrices are singular, e.g.
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where this system corresponds to System (4.23). However, the two equations resulting

from this system,

(a11 +
1
2

a21)u1 +(a12 +
1
2

a22)
1
2
(u1 +u3)+(a13 +

1
2

a23)u3 = b1 +
1
2

b2

(a31 +
1
2

a21)u1 +(a32 +
1
2

a22)
1
2
(u1 +u3)+(a33 +

1
2

a23)u3 = b3 +
1
2

b2

contain only two variables. In general, we effectively solve a (n− hn)× (n− hn) sys-

tem, where n is the total number of points and hn is the number of hanging nodes. The

hanging node values are maintained through the restriction formulae, e.g. u2 = 1
2(u1 +u3).

We do not wish to explicitly form (4.23) however: instead we seek to use our assem-

bled system (4.22). The use of the projection matrices allows us to define two vector

spaces: a conforming space, U (for which the hanging node values are always the average

of their parents and so the corresponding FE functions are always continuous) and the

nonconforming space V (for which all the nodes are free and functions may be discon-

tinuous along edges containing hanging nodes). For a given vector, v ∈ Rn: Pv ∈ U and

PT v ∈ V . The conjugate gradient search is performed in the nonconforming space while

the solution is maintained in the conforming one. The algorithm for the PPCG method

is given in Algorithm 8. Here, u represents the approximation to the solution, r and w

are both forms of the residual and q is the search direction. In addition a preconditioner

is introduced: C−1 : V → U . In the simplest case C−1 = PPT . In this implementation a

diagonal preconditioner, D−1, was used, so C−1 = PD−1PT .

4.4.4 Implementation

A selection of the issues associated with the implementation of this solution process are

discussed in this section.
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Algorithm 8 The Projected Preconditioned Conjugate Gradient algorithm. (Meyer [67])
1: u ∈U
2: r = Âu− b̂
3: q = w = C−1PT r
4: γ = (w,r)
5: while Stopping criterion is not met do
6: δ = (q, Âq)

7: α = −γ
δ

8: ũ = u+αq

9: r̃ = r +αÂq
10: w̃ = C−1PT r̃
11: γ̃ = (w̃, r̃)
12: β = γ̃

γ
13: q̃ = w̃ +βq
14: end while

Matrix assembly

The matrices that are calculated for the solution of the PF problem are n×n as we assem-

ble for all of the internal points in the grid, and in order to produce an accurate solution we

will use numbers of internal nodes of the order of O(106) (in the uniform case). To avoid

storing a 2D array of this size a sparse matrix structure is required. This data structure

exploits the local nature of the FE method to restrict the number of values stored. The

definition of the FE basis functions dictates that an entry i, j in the matrix is only non-

zero if point i is joined to point j in the mesh through at most one edge. If we were using

globally refined grids there would therefore be nine entries on each row of the matrix.

However, with our locally refined grid there can be up to thirteen entries on a matrix row,

which corresponds to one internal node. Three of the possible refinement arrangements,

around a point, are shown in Figure 4.8. The matrices are formed as in a conventional

assembly procedure, with a loop over the elements. For example, to build the mass ma-

trix, M, we follow the steps in Algorithm 9. Note that for simplicity of exposition this

Algorithm uses a two-dimensional array M[i][ j] rather than the sparse data structures used

in practice. A sparse matrix data structure is presented in [39] where a set of linked lists
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9 Entries 11 Entries 13 Entries

Figure 4.8: Three of the possible refinement configurations around a non-uniform grid
point: resulting in a number of entries in the sparse matrix row corresponding to that
point. The number of entries is stated below each grid fraction.

Algorithm 9 Assembly of a standard mass matrix over a grid of finite elements
1: j = i = 0
2: e = 0
3: while j ≤ n do
4: while i ≤ n do
5: M[j][i] = 0.0
6: i++
7: end while
8: j++
9: end while

10: while e ≤ number of elements do
11: j = i = 0
12: while j ≤ 3 do
13: J = global index of node j of element e
14: if J is an internal point then
15: while i ≤ 3 do
16: I = global index of node i of element e
17: if I is an internal point then
18: M[j][i] +=

∫

Ωe
NJNIdΩ

19: end if
20: i++
21: end while
22: end if
23: j++
24: end while
25: e++
26: end while
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Number of safety layers 0 1 2 3
Number of steps before re-adaption 5 10 20 40

Table 4.1: Number of safety layers and corresponding re-adaption points: The number
of time steps that can be taken before grid re-adaption is required for various numbers of
safety layers of refinement, are given.

are used, each representing a column of the matrix. The entries are stored in order and

zero entries are omitted from the lists. Since it is possible to establish from the nature of

our gridding scheme the maximum number of entries on a row of the matrix, we store a

13× n array of ‘matrix entry’ structures. This array represents the n rows of the matrix

each with a potential of 13 entries. Each structure contains its solution value as well as its

column number. The diagonal entries of the matrix, which for this FE scheme are always

non-zero, are stored in the first entry of each ‘row’ to facilitate diagonal preconditioning.

A set of simple complementary functions were written for the insertion of matrix entries

and the access to matrix values.

Frequency of Grid Re-Adaption

Increasing the number of ‘safety layers’ of refinement that we place around the refine-

ment created as a result of the error estimator helps to guarantee correct resolution for

longer and allows us to re-adapt them less frequently. However, adding layers of refine-

ment increases the size of the algebraic system and the expense of the solution process.

We therefore need to find a balance between these two things. The choice of compromise

between the two is clearly dependent on the application and on the size of the time step

taken. For the results in this chapter the refinement tolerance (rtol) was set to 10−3 and

the coarsening tolerance was set in line with this. Qualitative tests were carried out to

discover how many steps could be taken before re-refinement was required for various

numbers of safety layers. Table 4.1 gives the number of time steps that can be taken be-

fore grid re-adaption for various numbers of safety layers. The results in Table 4.1 apply

for grid level 7 to level 11 and the time step sizes which were used for each level are
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Maximum Grid Level 7 8 9 10 11
Max ∆t 2.0e-04 8.0e-05 2.0e-05 5.0e-06 1.0e-06

Table 4.2: Semi-implicit PF model: Maximum stable time step: The maximum stable
time step size is shown for various maximum grid refinement levels on a domain Ω =
(−1,1)× (−1,1).

detailed in Section 4.4.5.

Time profiling on this implementation (more details of which are given in Section 4.4.5)

shows that the solution process is by far the most expensive operation. We are therefore

inclined towards adapting the grid frequently and minimising the system size. The results

in this chapter (including the time profiling results) were therefore found with the cautious

choice of 2 safety layers of refinement and re-adaption every other step.

Time Stepping with a Semi-Implicit Discretisation Scheme

As the phase equation has been discretised in an explicit manner we would expect there

to be a restriction on the maximum stable time step size, ∆t. The maximum time step

size is linked to the size of the finest grid spacing in the mesh. Trial and error tests were

run to establish the maximum time step for a range of maximum refinement levels. These

are given to one significant figure in Table 4.2. Stability analysis for linear parabolic

problems (e.g. [86]) implies that we would expect that halving the minimum grid spacing

would mean a reduction of a factor of four in the maximum stable time step size. The

results shown in Table 4.2 correlate well with this assessment.

4.4.5 Results

Evidence of the performance of our adaptive meshing scheme applied to a PPCG solution

of a PF problem is given in this section. Results are given for the grids with at least level 7

refinement. Grids of coarser refinement than this display significant overshoot around the

solid-liquid interface and the interface is not captured sufficiently well for any interesting
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Grid Level No. Time Steps |φglo −φloc|L2 |uglo −uloc|L2

7 5 0.0000056132 0.0000620440
8 13 0.0000008498 0.0000935515
9 50 0.0000081953 0.0000802204

Table 4.3: Semi-implicit PF model: Global and local refinement solution comparison:
The L2-norm of the difference between solutions found on globally and locally refined
grids, taken at t = 0.001.

solutions to be observed.

Comparison of Locally and Globally Refined Meshes

In order to verify the accuracy of the adaptive meshing technique we compare the so-

lutions produced with a locally refined grid (φloc and uloc) with those produced with a

globally refined grid (φglo and uglo). It is necessary to use a relatively coarse mesh for

this test in order to have a practical execution time for the global refinement case. The

maximum refinement level in the locally refined grid corresponds to the refinement level

everywhere in the globally refined grid. The locally refined grids are created using the

methods described in this chapter and the refinement and coarsening are driven by an

error indicator based on the gradient of the φ variable. As is shown later in this section

the temperature variable, u, changes much more gradually than the phase variable which

has a very small area of rapid change in the interface region. Elsewhere in the domain

the phase field variable has an insignificant gradient. Therefore when a refinement pass is

made over the grid, any element whose gradient exceeds 10−2 is further refined. The dif-

ference between solutions in the two refinement cases (after a fixed time period t = 0.001)

are given in Table 4.3, for three choices of maximum refinement level. (Details of how

these differences are found are given in Section 6.3.3.) There is little difference between

the discrepancies from one grid level to the next at this stage of the simulation. The way

that the difference between the globally and locally refined solutions changes as solutions

are produced for further time steps is shown in Figure 4.9. The error is small in compar-

ison to the scale of changes in the solution (which are of order 1) however it seems to
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Figure 4.9: Semi-implicit PF model: Adaptivity error with time: The growth of adaptivity
error as more time steps are taken is shown. These results are for a maximum refinement
level of 8.

increase almost linearly as more time steps are taken: this suggests a very small (approx-

imately constant) error at each time step, as one would expect.

Table 4.4 compares the number of nodes and total execution time for the globally re-

fined and locally refined cases. In the case of the globally refined grid the execution time

per step will remain roughly the same throughout the execution. However, in the locally

refined case the number of nodes may change from one time step to the next and therefore

so will the execution time per step. For this particular application the number of nodes in

the locally refined grid will steadily increase throughout the solution process as the inter-

face region of the phase variable lengthens. There is a difference of at least an order of

magnitude in the execution time between the globally and locally refined cases for every

choice of maximum grid level shown. As the maximum grid level increases the difference

in execution time between the two cases naturally increases.

Figure 4.10 shows the number of grid points plotted against the execution time per step
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Global Refinement Local Refinement
Grid level No. Nodes Exec Time (secs) No. Nodes Exec Time (secs)
7 16129 50 717 5
8 65025 625 1433 15
9 261121 10000 3537 127
10 1046529 158000 9285 1266

Table 4.4: Semi-implicit PF model: System size and execution time: The number of nodes
and total execution time for various grid levels are given. All solutions where calculated
up to t = 0.001. (The finer the grid refinement then the more time steps are required to
reach this time due to the restriction on the maximum step size.)

throughout the adaptive solution process. As this relationship is roughly proportional

we conclude that there are no significant, hidden computational expenses in the adaptive

gridding scheme and that the cost per step is proportional to the number of unknowns

for a given maximum refinement level. The linearity of solution time against system size

comes about because the mass matrix, M, is very well conditioned meaning that the num-

ber of PPCG iterations is more or less independent of the system size for (4.20) and also

for (4.21) (provided that ∆t is small).

Performance of Solution Method

The convergence rate of the PPCG in this context is shown in Figure 4.11. There is a

relatively small difference between the convergence of solutions produced on grids of dif-

ferent maximum refinement levels. On average the residual inner product is reduced by a

factor of approximately three at each iteration. As mentioned above both of the systems

solved for this problem are dominated by a Galerkin mass matrix (provided that ∆t is

small). The fast convergence that is shown in Figure 4.11 results from the conditioning

properties of this mass matrix, documented in [96].

We now look at the reduction in the error as the maximum grid level is increased. As

the FE method is second order we would expect this error to reduce by roughly a factor of

four each time the maximum grid level is increase by one level. Since we have no exact
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Grid level |φ `−φ `+1|L2 |u`−u`+1|L2

` = 6 0.0283277936 0.0150150278
` = 7 0.0029681114 0.0011015478
` = 8 0.0006905591 0.0005329332
` = 9 0.0001951886 0.0001620033
` = 10 0.0000593247 0.0000442036

Table 4.5: Semi-Implicit PF model: Spatial error convergence: L2-norm of difference
between solutions from various grids. For example, the line ` = 7 shows the L2-norm of
the difference between the solutions produced with a maximum grid refinement of level 7
and those produced with a maximum grid refinement of level 8.

solution for this problem we look at the difference between the solutions at various maxi-

mum grid levels. In order to compare the solutions from two grids of different maximum

level both solutions are projected onto a uniform grid using linear interpolation where

necessary. Calculating the difference between the two is then trivial, with the L2-norm of

this difference vector. The norm is calculated using a simple quadrature rule:

ne

∑
e=1

h2

4
(u2

1 +u2
2 +u2

3 +u2
4),

where ne is the number of elements in the grid, h is the size of the element and u1 to u4

are the four solution values associated with that element. In Table 4.5 we can see that the

L2 norm of the difference between the solutions reduces by a factor of approximately four

each time the grids become finer.

Time Profiling of Implementation

A profile of the percentage of execution time that was spent in each of the three main

tasks: FE assembly, adaptive meshing and system solution is given in Table 4.6 for three

grid levels. Each level was monitored for 500 time steps. It is clear the solution process

takes the vast majority of the execution time in all of these cases. The meshing algorithms

however take the least time of these three main tasks. The adaptive meshing therefore
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Level PPCG Solver FE Assembly Adaptive Meshing
7 67.8 28.2 2.6
8 78.6 18.4 2.1
9 86.9 11.1 1.4

Table 4.6: Semi-implicit PF model: Time profiling for a semi-implicit implementation
of a phase-field model using adaptive meshing and a modified Conjugate Gradient solver.
The figures show the percentage of the total execution time, taken for each type of process.
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Figure 4.12: Semi-implicit PF model: The phase field and temperature approximations
after 700 time steps on a grid with a maximum refinement level of 8. Solutions are only
shown for points along the x-axis. These points are naturally unevenly spread as the grid
becomes more refined closer to the interface.

allows for many fewer unknowns in the algebraic system without adding any significant

overhead to the execution time.

Visualisation of Results and Meshes

Figure 4.12 presents an outline of both solution variables along the line y = 0. We can

see here the difference in scale over which the phase variable changes in comparison

to the temperature variable. The phase variable solutions for a longer run is shown in

Figure 4.13. The three pictures are from time steps 500, 1300 and 2200 respectively.

With this semi-implicit scheme many time steps are required to produce the solution of

interest.
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Figure 4.13: Semi-implicit PF model: Two-dimensional solutions and grids: The adap-
tively refined grid for the PF simulation at t = 0.4, t = 1.04 and t = 1.76. The blue parts of
the grid represent areas where φ < 0.5 which in a physical sense represents the solid part
of the material. The red parts of the grid represent φ > 0.5 and the liquid part of the ma-
terial. (Coarser areas of the grid, surrounding those that are shown, have been cropped.)
These results were produced with a maximum refinement level of 8.
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Projected Multigrid Method

5.1 Introduction

In this chapter we present the main original contribution of this thesis which is based upon

combining the projection algorithm of Meyer [67] that was introduced in Section 4.4.3

with the FAS multigrid scheme described in Section 2.4.2. We have chosen to develop

a method for the solution of nonlinear elliptic and parabolic problems over non-uniform

grids containing hanging nodes. This allows the use of bilinear quadrilateral finite ele-

ments for adaptive meshing without the overhead associated with extra triangular refine-

ment for the resolution of the hanging nodes. Our method is derived from an existing

nonlinear, iterative solution method and enriched with the capability to resolve the values

at the hanging nodes during the solution process. We are interested in solving time-

dependent, parabolic problems which produce a nonlinear algebraic system at each time

step. The efficiency of the algebraic solver is therefore important, especially as it has been

shown (in Section 4.4.5) to be the most time consuming procedure of the implementation.

A multigrid method is used as the outer iteration of our solution method as these have
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been shown to provide significantly accelerated convergence, as described in Section 2.4.

Our method uses the standard FAS multigrid scheme, along with a modified Jacobi smoother

to appropriately deal with the hanging nodes in locally refined grids. The smoother is

based on a nonlinear Jacobi iteration, presented in Section 5.2. The projection method

introduced by Meyer [67] for the CG method, is applied to the nonlinear Jacobi smoother

to form a new Projected Jacobi iteration. Details of the Projected Jacobi method are given

in Section 5.3. This allows multigrid corrections to the solution to be calculated in a

sequence of non-conforming spaces, where contributions from the hanging nodes are as-

sembled in the normal manner in the FE method. These corrections are projected into the

conforming space (for which the hanging nodes’ values are linear interpolants of adjacent

node values) before being added to the solution. In Section 5.5, various details of the FAS

multigrid method are therefore modified to ensure that it preserves the necessary vector

spaces for the Projected Jacobi smoother. This version of the FAS method is referred to

as Projected FAS (PFAS) multigrid. The definition of a grid level used for the traditional

version of the FAS, in Algorithm 2 (in Section 2.4.2), does not apply to the locally re-

fined grids that the Projected FAS is designed for. A method for defining grid levels in

a locally refined grid is given in Section 5.4. For the simplicity of this introduction the

new method is described for the solution of a nonlinear elliptic model problem and the

performance for this problem is given in Section 5.6. However the generalisation to the

solution of parabolic equations and systems, using implicit time stepping, is presented in

the following chapter.

5.2 Nonlinear Gauss-Seidel Smoother

The Jacobi and Gauss-Seidel (G-S) iterative solvers were introduced in Section 2.3.2 for

the solution of linear systems of equations. Here we look at the derivation of a nonlinear
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G-S and, in Section 5.3, show how this method is modified to create a Jacobi smoother

for the solution of systems defined over locally refined grids with hanging nodes. The

following formulation of the nonlinear G-S method is similar to that in [19, pp 95-98].

We represent a general nonlinear system of equations derived from the discretisation of a

nonlinear elliptic PDE as

K(u) = b, (5.1)

where K is a nonlinear function, b is a known vector and u is the unknown solution vector.

In one step of a G-S sweep, one value in the solution vector is updated using the current

approximation. This is mathematically equivalent to setting the corresponding value in

the residual vector to zero. Therefore, the operation is calculating a correction to the

existing solution, which can be represented as

K(u+δ jε j) = b, (5.2)

where ε j is the jth unit vector and δ j is the correction for solution value j. Since we are

setting the jth residual entry to zero we can write, [K(u+δ jε j)] j−b j = 0. Expanding the

function, K, using Taylor series gives:

K(u+δ jε j) ≈ K(u)+δ j
∂K(u)

∂u
ε j +O(δ 2

j ).

Discarding the O(δ 2
j ) terms and using Equation (5.2) we can rearrange this equation to

be:

[K(u)+δ j
∂K(u)

∂u
ε j] j −b j ≈ 0.

Now we can rearrange this equation to get the expression for δ j:

δ j ≈
(b j − [K(u)] j)

[
∂K(u)

∂u ε j] j

. (5.3)
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This is a scalar equation resulting in a value for the correction δ j which is then added to the

appropriate entry of the solution ( u[ j] = u[ j]+δ j ) before moving to the next j. There are

three terms that must be calculated for this approximation. The source term, b j, is simply

the jth entry of the source term vector, b. This vector need only be calculated once per G-S

solve. The function, K(u) results in a vector and [K(u)] j is the jth entry of that vector. For

a true G-S method this vector should be re-calculated after each correction. The Jacobian

term is a little more complicated. The differential component, ∂K
∂u (u), defines the Jacobian

matrix:


















∂K1
∂u1

(u) ∂K1
∂u2

(u) ... ∂K1
∂un

(u)

∂K2
∂u1

(u) ∂K2
∂u2

(u) ... ∂K2
∂un

(u)

... ... ... ...

∂Kn
∂u1

(u) ∂Kn
∂u2

(u) ... ∂Kn
∂un

(u)



















.

Since the only non-zero entry of ε j is entry j (which is 1) we may write [ ∂K
∂u ε j] j, the

denominator of (5.3), as:
∂K j(u)

∂u j
.

Given these three components, a correction can be calculated in turn for each entry in the

solution vector. This represents a single G-S iteration. A Jacobi version of the smoother

would perform the same operations but simply postpone the update of the solution until

all of the corrections j = 1, ...,n had been calculated.

5.3 Nonlinear Projected Jacobi Smoother

In this section the smoother defined in the Section 5.2, is modified to form a Jacobi iter-

ation that is effective on a system of nonlinear equations obtained from a finite element

discretisation on a locally refined grid with hanging nodes. We are attempting to solve a

nonlinear system

K̂(u) = b̂, (5.4)
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where K̂(u) is the vector obtained from the assembly of the element stiffness matrices

without regard for the hanging nodes. That is the hanging nodes receive contributions

from the surrounding elements, in the FE method, but their element support area is in-

complete and therefore so is their FE assembly. Taking from the theory of Meyer’s PPCG

method [67] (described in detail in Section 4.4.3) we actually solve the system:

PT K̂(Pu) = PT b̂, (5.5)

where P is the matrix which projects a vector in Rn (where n is the number of non-Dirichlet

nodes) into the conforming space. The effect of P is to overwrite the value of each non-

Dirichlet hanging node value with a linear interpolation of its parent point values. The op-

erator PT is the transpose of P. These two operators relate to the two spaces which contain

the vectors which are significant for this method. The first is a conforming space which

we denote as Image(P). The second vector space is Image(PT ), the non-conforming

space. It is important to note that, given u ∈ Rn, PT Pu 6= PPT u 6= u. The action of the

projection operators on the vectors involved in the iteration solution process, significantly

complicates the nonlinear Gauss-Seidel update of the solution. The smoothing method

is therefore adjusted so that a Jacobi update is employed. This update, δ j, is calculated

for j = 1, ...,n. A vector, δ = [δ1, ...,δn]
T can then be constructed and the correction is

performed at the end of the sweep:

u(r+1) = u(r) +δ ,

(where u(r+1) is the new approximation of the solution). Applying a standard nonlinear

Jacobi iteration, to this new projected system yields a correction vector, δ , that is defined

point-wise as:

δ j = µ
[

[PT b̂−PT K̂(Pu)] j

[ ∂
∂u j

PT K̂(Pu)] j

]

, (5.6)
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for j = 1, ...,n (where µ is an under-relaxation parameter). The resulting vector δ is not

generally in the conforming space and so must be projected into the conforming space

before being used to augment the solution. For clarity the correction vector (5.6) for this

method can be simplified to

δ j = µ
[

d j

e j

]

, (5.7)

where j = 1, ...,n, and d j and e j are components of the following vectors d and e respec-

tively:

d = PT b̂−PT K̂(Pu)

and

e =
∂

∂u j
PT K̂(Pu).

Currently, both d and e are contained in the non-conforming vector space. However, if

we project these vectors to

d′ = P[PT b̂−PT K̂(Pu)]

and

e′ = P[
∂

∂u j
PT K̂(Pu)],

they are both contained in the conforming space. A valid component-wise Jacobi correc-

tion would then be:

u(r+1)
j = u(r)

j + µ
[

d′
j

e′j

]

. (5.8)

Note that, although this correction is defined in a point-wise manner, all components of the

correction vector are calculated before the solution is augmented (i.e. a Jacobi iteration is

used).

94



Chapter 5 Projected Multigrid Method

Level N Level N − 1 Level N − 2

Figure 5.1: Multigrid composite grid levels: Three non-uniform composite grid levels are
shown including hanging nodes marked by filled circles.

5.4 Composite Grids for the Full Approximation Scheme

The h-adaptive gridding scheme presented in Chapter 4 is used again here. In order to

use the FAS multigrid method on such grids, what is meant by a level in the grid must

be defined with respect to the new FAS algorithm. To achieve this a new set of levels are

imposed on the grid which we refer to as “composite grid levels”. The composite grid

level ` includes all of the elements on grid level ` and, in the areas of the domain where

elements of level ` don’t exist, the current leaf elements are included in their place. Using

this definition we create a set of composite grid levels for use with the multigrid scheme.

A set of composite grid levels can be seen in Figure 5.1. Defining the composite grid

levels like this means that each of the composite levels covers the whole domain and is,

potentially, a locally refined grid itself. Other possibilities for the selection of grid levels

from locally refined meshes are discussed in Chapter 8.

5.4.1 Traversing a Composite Grid Level

Traversal techniques must be established in order to access each composite grid level.

The option of establishing linked lists for each level would prove problematic in this

case. Large sections of the composite grids are shared between composite grid levels

and therefore the linked lists would overlap for the affected elements. More storage
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Figure 5.2: Multigrid composite level linked lists: The linked lists for three composite
grid levels are shown within the quadtree data structure. While traversing a level of this
tree structure using a linked list there are certain elements which have more than one
option for the next element in the list as they are included on more than one grid level.
Extra storage would be required to distinguish between the levels at these elements.

would be needed in order to distinguish between the composite levels for the critical

links. Figure 5.2 shows a simple example of this. To avoid these linking problems a

traversal algorithm was used, similar to the system for traversing the leaf elements of the

quadtree. The composite grid level traversal moves through the leaf elements of the tree

unless those nodes are beyond a specified level. In this case it accesses the element of the

specified level. This can be implemented with a simple modification to Algorithm 3 (in

Section 4.2.3). The modified version is given in Algorithm 10.

5.5 The Projected FAS Multigrid

In order to introduce the Projected FAS (PFAS) scheme we will describe a two-grid

scheme. The algorithm will later be extended to a multilevel version. A locally refined

grid is used and stored in a hierarchical quadtree data structure. The two grids that will

be used in this PFAS scheme are:

• Composite grid N, corresponding to the leaf elements of the quadtree, which is a

locally refined grid.

• Composite grid N −1, which may also be a locally refined grid.
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Algorithm 10 Function: Goto Next Leaf Element
1: Input Parameter: C - a pointer to the current element
2: Input Parameter: cl - level of the composite grid being traversed
3: if C != Root Element of Tree then
4: Set V = C
5: Set C = C.parent
6: if V == C.child[0] then
7: C = C.child[1]
8: while (C is not a leaf element) AND (C.ID[0] ≤ cl ) do
9: C = C.child[0]

10: end while
11: else if V == C.child[1] then
12: C = C.child[2]
13: while (C is not a leaf element) AND (C.ID[0] ≤ cl ) do
14: C = C.child[0]
15: end while
16: else if V == C.child[2] then
17: C = C.child[3]
18: while (C is not a leaf element) AND (C.ID[0] ≤ cl ) do
19: C = C.child[0]
20: end while
21: else
22: Call ‘Goto Next Leaf Element’ with C and cl
23: end if
24: else
25: Indicate that the last leaf element has been reached.
26: end if
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The nonlinear Projected Jacobi smoother from Section 5.3 can be incorporated into the

two-grid FAS algorithm in order to deal with the hanging nodes in the two composite grids

in a natural and efficient manner. However, we must modify the FAS algorithm slightly

to ensure that the vectors of the Jacobi solver remain within the necessary subspaces. The

two-grid PFAS scheme is shown in Algorithm 11. The two-grid scheme is then extended

to a multigrid scheme in Algorithm 12.

5.5.1 Two-Grid PFAS Scheme

In the two-grid scheme that we are describing, the level `, in Algorithm 11, corresponds to

grid N in the example above. Clearly the projection matrices, P and PT will be of different

sizes and forms for each of the grid levels. In Algorithm 11 this difference is denoted by a

subscript ` or L. The initial solution guess, mentioned on line 3, is chosen to be within the

conforming space. This is done by either choosing an initial solution that is clearly within

the conforming space, for example v = 0, or by calculating a guess and then projecting it

into the conforming space using P. The vector b̂ is calculated and projected into the non-

conforming space using Image(PT ). The smoothing operations are performed over the

system PT K̂(u) = b which is equivalent to System (5.5). The Projected nonlinear Jacobi

smoother employs the correction in Equation (5.8). The resulting solution approximation

therefore remains within the conforming space. Since both b` and PT
` K̂

`
(v`) are in the

non-conforming space (Image(PT )), the residual vector r` is therefore also contained in

the non-conforming space.

It is important that the restriction operators create coarse grid vectors that are in the equiv-

alent vector space to their fine grid counterparts. The restriction operators, IL
` and ĨL

` , de-

note simple injection (whilst full weighting is used for the prolongation operator, I`
L). The

restriction, IL
` , is a point-wise operator for the solution while ĨL

` resolves the difference

in the element support area for the residual between the two grid levels. These opera-
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Algorithm 11 Projected FAS Two Grid Scheme
1: ` = level number of current composite grid
2: L = `−1 (level number of composite grid one level coarser than `)
3: Choose initial fine grid solution v` so that v` ∈ Image(P)

4: Calculate the right-hand side b̂
`

and set b` = PT
` b̂

`

5: Update v` by smoothing ρ1 times with the system PT
` K̂

`
(u`) = b` using Projected

Jacobi
6: Find residual r` := b`−PT

` K̂`(v`)
7: Restrict residual rL := ĨL

` (r`)
8: Restrict solution vL := IL

` (v`)

9: Calculate coarse grid right-hand side bL := rL +PT
L K̂

L
(vL)

10: Save the initial coarse grid solution vL
init = vL

11: Solve the system PT
L K̂

L
(uL) = bL exactly, with the initial guess vL

init
12: Calculate the coarse grid correction eL = vL− vL

init
13: Prolongate the correction e` := I`

L(e
L)

14: Correct the fine grid solution v` = v` + e`

15: Update v` by smoothing ρ2 times with the system PT
` K̂

`
(u`) = b` using Projected

Jacobi

tors do not interfere with the projection method. The fine grid residual r` is contained in

Image(PT
` ) before it is restricted, therefore all values corresponding to hanging nodes are

zero. Therefore no information is lost at the boundaries between levels by using injection

for the residual restriction. Injection is also appropriate for the solution restriction, on

line 8, since it cannot create a non-continuous coarse grid solution from a continuous fine

grid solution, i.e. if v` ∈ Image(P̀ ) then vL ∈ Image(PL). Likewise the full weighting

prolongation operator, used on line 13, will create a fine grid error whose fine level node

values are linear interpolants of their parent node values. Hence, providing that eL is con-

tained in Image(PL) then the result of the prolongation, e`, will be contained in Image(P̀ ).

The coarse grid right-hand side vector must be in the Image(PT
L ), similar to the fine

grid right-hand side vector. This is assured as components, rL and PT
L K̂L(vL), can both

be shown to be in Image(PT
L ). The solution of the system defined on the coarse grid,

PT
L K̂L(vL) = bL, is performed using iterations of the Projected nonlinear Jacobi scheme

and is therefore in Image(PL).
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Level N

Level N−1

Level N−2

Level N−3

Level N−4

Figure 5.3: Schematic of a multigrid V-cycle: The V-cycle starts at the top left with a
circle representing the initial operations on the finest grid. The information is passed
down recursively to the coarsest grid (represented by the filled circle) and then passed
back up to the finest grid (through each empty circle).

Finally we note that the measure used as a stopping criterion must be an accurate rep-

resentation of the system being solved. For example, a residual norm calculated using a

residual vector within the Image(P̀ ):

r = P̀ [PT
` b̂− K̂u].

5.5.2 The Full PFAS Scheme

The two-grid PFAS algorithm can be simply extended to give a recursive algorithm ca-

pable of using an arbitrary number of composite grid levels. The multigrid algorithm is

given in Algorithm 12. In this case the grid levels of the projection operators are not

given explicitly in the notation. The recursive multigrid version of the PFAS scheme has

the same components as its two-grid counterpart. There are now two levels of iteration:

the Projected Jacobi iterations employed for smoothing the solution error and the PFAS

multigrid V-cycle iteration. Algorithm 12 (and indeed Algorithm 11) gives one step of

a multigrid iterative solution process. In this case, one step is defined to be one cycle

through all of the grid levels employed, starting at the most refined level. The structure
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Algorithm 12 Function: Projected FAS Multigrid - V-Cycle
1: Input Parameter: l - level number of composite grid
2: Input Parameter: base - the coarsest level where smoothing is attempted
3: Input Parameter: v` - initial solution guess such that v` ∈ Image(P̀ )
4: Input Parameter: b` - right-hand side vector such that b` ∈ Image(PT

` )
5: if ` > base then
6: L = `−1
7: Update v` by smoothing ρ1 times with the system PT

` K̂
`
(u`) = b` using Projected

Jacobi
8: Find residual r` := b`−PT

` K̂`(v`)
9: Restrict residual rL := ĨL

` (r`)
10: Restrict solution vL := IL

` (v`)

11: Calculate coarse grid right-hand side bL := rL +PT
L K̂

L
(vL)

12: Save the initial coarse grid solution vL
init = vL

13: Re-call this function for level L, the system PT
L K̂

L
(vL) = bL and the initial guess

vL
init

14: Calculate the coarse grid correction eL = vL − vL
init

15: Prolongate the correction e` := I`
L(e

L)
16: Correct the fine grid solution v` = v` + e`

17: Update v` by smoothing ρ2 times with the system PT
` K̂

`
(u`) = b` using Projected

Jacobi
18: else
19: Smooth the system PT

` K̂
`
(v`) = b` to a suitable tolerance

20: end if
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of a V-cycle can be illustrated using Figure 5.3. Here, there are five composite grid levels

used, ranging from the most refined level (N) to the coarsest level (N-4). The circle on

the far left represents the operations on lines 1-12 of Algorithm 12 applied to composite

grid N. The line leaving this first circle represent line 13 where the solution process is

passed down to the next coarser grid (N-1). The illustration shows that the first half of the

function is executed on all of the grids until the coarsest grid is reached (represented by

the filled circle at the bottom of the V in Figure 5.3) where an exact solution is found. As

the illustration implies, the correction is then passed up through all of the composite grid

levels. For each grid, the operations on lines 14-17 are executed.

We have shown that none of the operations in the two-grid PFAS remove the intermediate

vectors from their respective vector spaces. This also applies to the multigrid version as

the component operations are the same. Clearly, each composite grid level has a different

number, and distribution, of points. Therefore System (5.5) needs to be defined for each

composite grid level used.

5.6 Nonlinear Elliptic Model Problem

In order to test the performance of our new PFAS algorithm we first consider a scalar

elliptic model problem of the form

−
−→
∇ 2u+ γueu = f (5.9)

on the domain Ω = (−1,1)× (−1,1) and subject to u = 0 on the entire boundary. For

the purposes of testing the source term, f , is chosen to permit the exact solution: u =

1− tanh(k(x2 + y2 −α2)). This solution has a relatively small area of high curvature in

the region of x2 + y2 = α2, making it an appropriate problem to evaluate the multigrid

solver on highly refined grids. For the results shown here γ = 1, k = 25 and α = 1
2 . Using

102



Chapter 5 Projected Multigrid Method

the continuous Galerkin FE method (introduced in Section 2.2.1) we produce a system of

nonlinear equations equivalent to Equation (5.4). The component-wise definition of the

operator vector is

[K̂(u)] j =
ne

∑
e=1

{

∫

Ωe

−→
∇ u ·

−→
∇ N jdΩe + γ

∫

Ωe

ueuN jdΩe

}

, (5.10)

(where ne is the number of elements) and the same of the right-hand side vector is

b̂ j =
ne

∑
e=1

{

∫

Ωe

f N jdΩe

}

. (5.11)

In order to calculate the corrections defined above we must also calculate the Jacobi vec-

tor. This is defined (component-wise) as:

∂ K̂ j(u)

∂u j
=

ne

∑
e=1

{

∫

Ωe

∂
∂u j

(
−→
∇ u ·

−→
∇ N j)dΩe + γ

∫

Ωe

∂
∂u j

(ueu)N jdΩe

}

.

The first differential term on the right-hand side can be written as:

∂
∂u j

(
−→
∇ u ·

−→
∇ N j) =

∂N j

∂x
∂
∂x

(

∂u
∂u j

)

+
∂N j

∂y
∂
∂y

(

∂u
∂u j

)

.

Since u = ∑n
i=1 uiNi, the differential, ∂u

∂u j
, is only non-zero when i = j. In this case ∂u jN j

∂u j
=

N j. Therefore:
∂

∂u j
(
−→
∇ u ·

−→
∇ N j) =

(

∂N j

∂x

)2

+

(

∂N j

∂y

)2

.

In order to differentiate the second differential term we employ the product rule giving

∂
∂u j

(ueu) =
∂

∂u j
(u)eu +u

∂
∂u j

(eu).
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Using the definition of u as above we get:

∂
∂u j

(ueu) = N je
u +uN je

u jN j .

The resulting Jacobian vector entry is:

∂K j(u)

∂u j
=

ne

∑
e=1

{

∫

Ωe

(

∂N j

∂x

)2

+

(

∂N j

∂y

)2

dΩe +γ
∫

Ωe

(N je
u +uN je

u jN j)N jdΩe

}

. (5.12)

The three vectors (5.10), (5.11) and (5.12) are assembled by a loop over all of the ele-

ments. A contribution is calculated for each vertex of each element. Each of these vectors

is then contained in a non-conforming space as the hanging nodes will receive contribu-

tions from only two elements rather than four.

5.6.1 Data Structures for the Solution Process

The data structures for the PFAS solution process are complicated by the need for many

systems of various sizes. For both the solution and right-hand side we store a set of

arrays. Each array in a set corresponds to one of the composite grids and is of the ap-

propriate length for the number of points in that grid. No matrices are assembled during

the PFAS solution process. If we were to use an assembled matrix K̂ it would have to be

re-formed every time a correction was made to the solution which would be a significant

overhead.

The locally adaptive meshing data structures and algorithms introduced in Chapter 4 are

used here with one modification. The vectors that are constructed for the Jacobi smoother

have an entry for each internal point in the grid at each level on which that point exists.

The assembly of these vectors for each of these points involves contributions from each

of the four elements surrounding that point. If a point exists on more than one level of the

grid then this set of surrounding elements may be different at each level. In order to speed
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Figure 5.4: Elliptic model problem: Convergence of the PFAS: Multigrid convergence for
uniform and adaptive grids at various levels.

up this assembly process an extra data structure was added which stores pointers to each

of the four surrounding elements for each point on each level on which that point exists.

5.6.2 Results

In this section we show that the PFAS method performs as a standard FAS multigrid

method would in terms of convergence, efficiency and accuracy, whilst also being able to

solve problems defined on locally refined grids with hanging nodes.

Solver Convergence

The convergence of the multigrid solver for the nonlinear test problem can be seen in

Figure 5.4. The norm of the residual is reduced by almost a constant factor at each v-cycle,

for all choices of maximum grid refinement. There is also little difference in performance

between globally refined (‘uniform’) and locally refined (‘adaptive’) grids.
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Work Required

Figure 5.5 shows that the execution time is linearly dependent on the system size. There

is a slight overhead in the h-adaptive case for refinement and hanging node operations.

However, this is far outweighed by the advantage of using less grid points.

Accuracy

Table 5.1 illustrates that for both uniformly and locally refined grids the error achieves the

expected O(h2) behaviour. This table also shows the difference in system size between

the uniform and adaptive cases. It seems that, using the new projected nonlinear Jacobi

smoother, standard FAS multigrid performance can be replicated over non-uniform grids

with hanging nodes.
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Level Uniform Adaptive
No. Nodes L2-norm of Error No. Nodes L2-norm of Error

4 289 2.0456×10−1 289 2.0456×10−1

5 1089 6.7681×10−2 1089 6.7681×10−2

6 4225 1.6865×10−2 4093 1.6865×10−2

7 16641 4.2772×10−3 8873 4.2772×10−3

8 66049 1.0739×10−3 23425 1.0739×10−3

9 263169 2.6878×10−4 70485 2.6891×10−4

10 1050625 6.7230×10−5 227681 6.7730×10−5

Table 5.1: Elliptic model problem: Solution accuracy: The error in the solution and the
system size are given for various grid levels, in the uniform and adaptive cases.

5.7 Discussion

In this chapter we have integrated the adaptive meshing method introduced in Chapter 4

into an adaptive, finite element, multigrid solution method capable of solving nonlinear

problems over grids containing hanging nodes. The basic mechanism of the standard

Galerkin finite element assembly remains intact as a non-conforming system is built from

individual element integrals. Projection methods are used within the Jacobi smoother

to ensure that the resulting solution is continuous. The methods are straightforward to

implement and effective. It has been shown that the PFAS scheme provides good conver-

gence for a nonlinear elliptic model problem on a globally refined grid as well as showing

that the use of locally refined grids does not degrade this convergence significantly. The

method has also shown an error convergence (as ∆x is reduced) on a locally refined grid

that is equivalent to that on a globally refined grid.

The existing adaptive multigrid methods, some of which are described in Section 2.6,

provide various alternative methods for dealing with the interfaces between sections of

elements at different refinement levels. One of the most closely related methods to that

presented here is the method of restricting the value of hanging nodes used in the FEARS

package (described in Section 2.6). However, in that implementation the interpolation is

integrated into the assembly of the element stiffness matrices, making this process more
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Figure 5.6: Typical patch and line refinement cases.

complex. The PFAS scheme avoids this complication by assembling the element matrices

in the non-conforming space and keeping the restriction operations separate.

It is possible to criticise the PFAS scheme, in comparison to other adaptive multigrid

algorithms (such as the MLAT and the FAC) as smooths are conducted over the whole

domain at each level, meaning that our scheme may be less efficient. However, in any

case of two-dimensional local refinement onto a line or block within the domain (e.g.

Figure 5.6), the additional number of points added as an extra level of refinement is cre-

ated is O(2n), (where n is the number of points on the previous level). In these common

cases, therefore, our scheme is still optimal, and the overhead of smoothing over the entire

domain becomes smaller (relatively) as the mesh is refined further.
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Chapter 6

Projected FAS Multigrid for Parabolic

Problems

6.1 Introduction

The purpose of this chapter is to demonstrate the successful application of the adaptive

multigrid method, developed in Chapter 5, to the implicit solution of two representative

nonlinear parabolic problems. Results are given for the Porous Medium Equation (PME)

in Section 6.2. This equation, introduced in Section 3.3.1, has the form of a heat equa-

tion with a nonlinearity introduced into the diffusion term. The solutions considered here

form a smooth dome shape which becomes flatter and wider with time. The locally re-

fined mesh is therefore further refined around the edge of the dome as it advances into

the domain. In Section 6.3 results are presented for the system of nonlinear parabolic

equations adapted from the Burgers’ equation, and introduced in Section 3.4. In this case

the nonlinearity lies in the convection term. As with the PME the main solution features
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propagate outwards from a central seed. In this case the advancing front has a small area

of steep gradient which requires a fine locally refined grid to ensure that it is accurately

resolved. Dynamic refinement is employed ahead of the front and coarsening behind it.

6.2 Porous Medium Equation

The porous medium equation (PME) is a parabolic equation with nonlinearity in the dif-

fusion term. The governing equation is

∂u
∂ t

=
−→
∇ · (um−→∇ u). (6.1)

Using this model we will test the ability of the PFAS method to solve nonlinear parabolic

problems, using implicit time-stepping, in an efficient and accurate manner. The method

is applied to two variations of this problem. As mentioned in Chapter 3 the behaviour of

the solution is affected by the choice of the parameter m. Solutions are found for the two

cases, m = 1 and m = 3. The latter produces a steeper gradient in a particular, moving,

region of the domain, thus making it a more troublesome problem to solve.

6.2.1 Similarity Solution

The results produced using our numerical scheme will be compared to a particular self-

similar solution:

s(r, t) =

{

1
(λ (t))d

(

1−
(

r
r0λ (t)

)2
)

1
m

|r| ≤ r0λ (t)

0 |r| > r0λ (t)

, (6.2)

where

λ (t) =

(

t
t0

)
1

2+dm

(6.3)
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and

t0 =
r2

0m

2(2+dm)
. (6.4)

The constants t0 and r0 represent the initial time and initial radius respectively. We choose

r0 = 1 from which, along with the dimension of our simulation (d=2), we can calculate,

from (6.3), the initial time in terms of m:

t0 =
m

4(1+m)
.

This also produces an alternative expression for λ (t) in terms of m:

λ (t) =

(

4t(1+m)

m

)
1

2(1+m)

.

6.2.2 Initial Conditions and Boundary Conditions

The initial conditions are chosen to be the similarity solution at t0. From Equation (6.3)

λ (t0) = 1.0 and so it follows that the initial conditions are:

u(r, t0) =

{

(1− r2)
1
m |r| ≤ 1.0

0 |r| > 1.0
.

The two cases considered here are m = 1, giving t0 = 1
8 , and m = 3, giving t0 = 3

16 . Zero

Dirichlet boundary conditions were employed around the entire boundary of the domain,

which is taken to be (−2,2)× (−2,2). Note that this finite domain size means that the

solution (6.2) is only valid until λ (t) = 2.
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6.2.3 Discretisation

Using the FE discretisation techniques, introduced in Section 2.2.1, we discretise the

spatial variables of equation (6.1) giving the weak form:

∫

Ω
u̇N jdΩ = −

∫

Ω
um−→∇ u ·

−→
∇ N jdΩ

where u = ∑n
i=1 uiNi (where n is the number of interior nodes) and Ni and N j are bilinear

FE basis functions corresponding to nodes i and j respectively. This system of ordinary

differential equations can then be presented in the n×n matrix form:

Mu̇ = −K(u).

Here M is the standard n×n mass matrix, Mi j =
∫

Ω NiN jdΩ and K the weighted stiffness

vector, K j =
∫

Ω um−→∇ u ·
−→
∇ N jdΩ. To complete the discretisation we now apply the second

order trapezoidal rule (from Section 2.2.2). This is an implicit scheme which produces

the following algebraic system at each time step

Muk+1 +
∆t
2

K(uk+1) = Muk −
∆t
2

K(uk). (6.5)

Equation (6.5) is a system of n nonlinear equations in the n unknowns uk+1 .

6.2.4 Solution of Algebraic System

As with the implementations described for the elliptic problems in the previous chapter

we need to clarify the form of the three vectors required for the Projected Jacobi iteration.

Since the system of nonlinear equations is discretised over a locally refined grid, including

hanging nodes, we can match this system to that in Equation (5.1). The three vectors that

need to be calculated are therefore b̂, K̂(uk+1) and ∂ K̂
∂u j

(uk+1). For this problem these

vectors are defined as follows:
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Level 5 6 7 8 9 10
Time Step 2.0×10−2 1.0×10−2 5.0×10−3 2.5×10−3 1.25×10−3 6.25×10−4

Table 6.1: PME: Time step sizes: The choice of time step size is given for various choices
of finest grid level, using the second order, trapezoidal, time stepping scheme.

b̂ j =
ne

∑
e=1

[

∫

Ωe

{

ukN j −
∆t
2

(uk)m
[

∂N j

∂x
∂uk

∂x
+

∂N j

∂y
∂uk

∂y

]}

dΩe

]

,

[K̂(uk+1)] j =
ne

∑
e=1

[

∫

Ωe

{

uk+1N j +
∆t
2

(uk+1)m
[

∂N j

∂x
∂uk+1

∂x
+

∂N j

∂y
∂uk+1

∂y

]}

dΩe

]

and

∂ K̂ j

∂u j
(uk+1) =

ne

∑
e=1

[

∫

Ωe

{

N2
j +m

∆t
2

N j(u
k+1)m−1

[

∂N j

∂x
∂uk+1

∂x
+

∂N j

∂y
∂uk+1

∂y

]

+
∆t
2

(uk+1)m
[(

∂N j

∂x

)2

+

(

∂N j

∂x

)2]}

dΩe

]

,

where ne is the number of elements in the grid.

6.2.5 Results

This section shows typical computational results for the PFAS method applied to the PME

using bilinear finite elements and second order implicit time-stepping. Since the method

is unconditionally stable there is no restriction on the step size from this perspective. For

reasons of accuracy however we halve the step size each time the maximum refinement

level is increased. The time step sizes used in the calculations that follow are given in

Table 6.1.

A slice through of the solution in the m = 1 case can be seen in Figure 6.1 and with

m = 3 in Figure 6.2. It is clearly evident that the latter case leads to a solution of higher

113



Chapter 6 Projected FAS Multigrid for Parabolic Problems

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

S
ol

ut
io

n 
at

 v
ar

io
us

 ti
m

es

x-direction, cut through at y=0.0

PME governed spreading problem at a set of points in time

t=0.05
t=0.10
t=0.15
t=0.20
t=0.25
t=0.30
t=0.35
t=0.40
t=0.45
t=0.50

Figure 6.1: PME: Solution when m=1. This is a slice through the domain along the y = 0
line.

gradient in the contact region (note that the similarity solution has an infinite slope at

r = r0λ (t) when m = 3). This in turn leads to a much greater numerical overshoot in

the graph of the m = 3 solution in Figure 6.2, despite the use of intense local refinement.

Two-dimensional views of a typical solution and grids are provided (for m = 1) in Fig-

ure 6.3.

The convergence of the residual with each PFAS V-Cycle is shown in Figure 6.4 for both

the m = 1 and the m = 3 case. The convergence of the residual remains consistently good

as the size of the smallest grid spacing is reduced. Although the m = 3 case is slightly

less consistent both cases display the same rate of convergence, independent of the mesh

size.

The convergence of the spatial error with grid refinement for both values of m is given in

Figure 6.5. The error is reduced by an almost constant factor with each increase in maxi-

mum grid level. The m = 3 case is less accurate than the m = 1 case due to the increased

overshoot apparent in Figure 6.2. This information is re-iterated in the second column of
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Figure 6.2: PME: Solution when m=3. This is a slice through the domain along the y = 0
line.

Tables 6.2 and 6.3. (The results given in these tables are for an absolute stopping toler-

ance which is less strict than the relative tolerance used for Figures 6.4 and 6.5.) Although

the error is converging the behaviour is not O(h2) since second order convergence is only

achieved for sufficiently smooth solutions. We know that for m = 1 the second deriva-

tive of s(−→x ) is unbounded when r = r0λ . When m = 3 the first derivative of s(−→x ) is

unbounded when r = r0λ : which possibly explains the slower convergence. In the third

column of Tables 6.2 and 6.3 the number of nodes are given for the first and the last time

steps in the simulation demonstrating the increase in the size of the system caused by the

increased refinement as the solution spreads. The total execution time is also given in

each case. Figure 6.6 plots an average value of the number of nodes for each level against

the execution time. This relationship can be seen to be roughly linearly dependent giving

our algorithm a cost (in terms of CPU time) of O(n). Computational effort is saved, in

comparison to a uniformly refined grid, by having a coarser grid outside the areas of high

activity but the multigrid behaviour is retained. Of course the results in Tables 6.2 and 6.3

and Figures 6.1 and 6.2 are for discrete points in time.
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Figure 6.3: PME: Two-dimensional illustration of solution and grid (for m = 1) at steps,
10, 50 and 1000. i.e. t=0.005, t=0.250 and t=0.500. The maximum grid refinement level
for these results is 8.

Level |u− s|L2 No. Nodes V-cycles Time
5 3.2590×10−2 609-981 7/8 6
6 1.6702×10−2 1213-1685 6/7 23
7 5.8133×10−3 2613-2933 4/5 66
8 2.0991×10−3 6517-6837 3 211
9 8.1741×10−4 19065-19865 2 783
10 3.2870×10−4 63289-66947 1 2767

Table 6.2: PME: Results for the m = 1 case. The stopping tolerance is 10−8 and all values
were taken at t = 0.04.
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Figure 6.4: PME: Convergence of the PFAS method for the m=1 and m=3 case of the
PME. PFAS v-cycles were performed until the residual was below a relative tolerance of
10−8. (This tolerance is chosen to be strict for the purposes of testing.)

Level |u− s|L2 No. Nodes V-cycles Time
5 1.5915×10−1 609-1041 10 9
6 1.0016×10−1 1213-1845 7 28
7 6.6500×10−2 2613-2957 5 111
8 2.8364×10−2 6517-6999 5 425
9 1.7624×10−2 19065-19673 4 1908
10 1.0017×10−2 63653-64737 2 7892

Table 6.3: PME: Results for the m = 3 case. The stopping tolerance is 10−8 and all values
were taken at t = 0.04.

117



Chapter 6 Projected FAS Multigrid for Parabolic Problems

 1e-04

 0.001

 0.01

 0.1

 1

 5  6  7  8  9  10

L2
-N

or
m

 o
f E

rr
or

 in
 A

pp
ro

xi
m

at
io

n

Maximum Grid Refinement Level for Locally Refined Grid

Spatial Error Convergence for PFAS solution of PME

m=1 case
m=3 case

Figure 6.5: PME: Spatial error convergence for the m=1 and m=3 cases of the PME.
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maximum grid refinement level. The number of nodes is an average across the whole
solution.
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Figure 6.7: PME: Behaviour of error in the approximation of the PME solution (with
m = 1 above and m = 3 below) over time.

The error in the approximation to the PME solution will also depend on time however.

When testing against a similarity solution we might expect to see an increase in error over

time. The L1 and L2 norms of the error, over time, are shown in Figure 6.7 (for m = 1 and

m = 3, on a level 8 grid). The m = 1 graphs do indeed display an initial increase in error

through time, however this lessens as the simulation continues and appears to eventually

become constant as the similarity solution spreads more and more slowly. The m = 3

graphs are predictably more variable but equally do not show any consistent increase in

error over time.
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Finally we note that in the previous chapter it was demonstrated that, for elliptic prob-

lems, the computational work required for the PFAS method is proportional to the size of

the system. This can be re-confirmed for this parabolic problem by comparing the num-

ber of nodes with the execution time in Table 6.2 (with m = 1). The equivalent results for

the m = 3 case are given in Table 6.3 although here the execution times are longer as the

convergence is slower.

6.3 A System of Burgers’ Equations

In this section we extend the application of the PFAS method to systems of nonlinear

parabolic equations. The example used here is the system of Burgers’ equations intro-

duced in Section 3.4.1. The nonlinearity of these two equations is in the convection term

as opposed to the previous example where the nonlinearity lay in the diffusion term. The

system of PDEs is given by:

∂u
∂ t

=
−v
r

(−→x ·
−→
∇ u)+δ

−→
∇ 2u (6.6)

∂v
∂ t

=
u
r
(−→x ·

−→
∇ v)+δ

−→
∇ 2v, (6.7)

where δ > 0. The equations (6.6) and (6.7) are again discretised using bilinear finite

elements combined with the backwards Euler method, and also with the trapezoidal rule,

in time. The purpose of this implementation is to test the performance of PFAS on a

coupled system of parabolic PDEs, as well as to evaluate whether a small highly refined

region of the grid, which is redefined over time, is detrimental to the accuracy of the

solution under this scheme. The problem is defined over a (−1,1)× (−1,1) domain with

zero Dirichlet conditions on the entire boundary.
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6.3.1 Discretisation

A FE discretisation in space gives the weak form:

∫

Ω
u̇N jdΩ+

∫

Ω

−v
r

(−→x ·
−→
∇ u)N jdΩ = −δ

∫

Ω
∇u ·

−→
∇ N jdΩ,

∫

Ω
v̇N jdΩ+

∫

Ω

u
r
(−→x ·

−→
∇ v)N jdΩ = −δ

∫

Ω
∇v ·

−→
∇ N jdΩ

for j = 1, ...,n. Again u = ∑n
i=1 uiNi and v = ∑n

i=1 viNi and n is the number of interior

points. The discretised system can be represented in the matrix form:

Mu̇+G(u,−v) = −δKu,

Mv̇+G(v,u) = −δKv,

where M and K are the standard mass and stiffness matrices respectively and G is a vector

built using the nonlinear term which, in general form, is given by:

G j(a,b) =

∫

Ω

b
r
(−→x ·

−→
∇ a)N jdΩ,

for j = 1, ...,n. Application of the backward Euler time stepping scheme gives:

Muk+1 +∆tG(uk+1,−vk+1)+∆tδKuk+1 = Muk,

Mvk+1 +∆tG(vk+1,uk+1)+∆tδKvk+1 = Mvk. (6.8)

Application of the trapezoidal rule would give the slightly more complex pair of equa-

tions:

Muk+1 +
∆t
2

G(uk+1,−vk+1)+
∆t
2

δKuk+1 = Muk −
∆t
2

G(uk,−vk)−
∆t
2

δKuk,
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Mvn+1 +
∆t
2

G(vk+1,uk+1)+
∆t
2

δKvk+1 = Mvk −
∆t
2

G(vk,uk)−
∆t
2

δKvk, (6.9)

but these would still be solved in essentially the same manner as described below.

6.3.2 Implementation

Coupling the System

System (6.8) is coupled by iteratively improving the approximation to each system al-

ternately. In this way the equations can remain separate and may be smoothed indepen-

dently. However, taking a sweep of the Projected Jacobi smoother over the approximation

to Equation (6.6), then a sweep over the approximation to Equation (6.7) immediately af-

terwards, effectively couples the system. This approach is referred to in this thesis as a

‘semi-coupled’ iterative smoothing scheme.

Vectors for the Jacobi Smoother

The pair of coupled nonlinear systems of Equations (6.8) (similarly (6.9)) represent a

discretisation over a locally refined grid containing hanging nodes. The pair of systems

can be represented as

K̂(uk+1,vk+1) = b̂, (6.10)

R̂(uk+1,vk+1) = d̂. (6.11)

Since we will perform the Jacobi smooths over the two systems of equations separately,

we must also define the three vectors, necessary for the iteration, separately. We recall

from Section 5.6 that, in the case of a single PDE, these three vectors are b̂, K̂(uk+1) and

∂ K̂
∂u j

(uk+1). In this case, where each depends on two independent variables, these vectors

take a slightly different form. The vectors are defined here in a component-wise manner.

For simplicity, only the vectors corresponding to the backward Euler scheme are given.
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The right-hand side vectors are:

b̂ j =
ne

∑
e=1

[

∫

Ωe

ukN jdΩe

]

,

d̂ j =
ne

∑
e=1

[

∫

Ωe

vkN jdΩe

]

.

The vectors resulting from the left-hand side integrals are:

[K̂(uk+1,vk+1)] j =
ne

∑
e=1

[

∫

Ωe

{

uk+1N j −
∆tvk+1N j

r

[

x
∂uk+1

∂x
+ y

∂uk+1

∂y

]

+∆tδ
[

∂uk+1

∂x

∂N j

∂x
+

∂uk+1

∂y

∂N j

∂y

]}

dΩe

]

,

[R̂(uk+1,vk+1)] j =
ne

∑
e=1

[

∫

Ωe

{

vk+1N j +
∆tuk+1N j

r

[

x
∂vk+1

∂x
+ y

∂vk+1

∂y

]

+∆tδ
[

∂vk+1

∂x

∂N j

∂x
+

∂vk+1

∂y

∂N j

∂y

]}

dΩe

]

.

The Jacobian vectors are therefore:

∂ K̂ j

∂u j
(vk+1) =

ne

∑
e=1

[

∫

Ωe

{

N2
j −

∆tvk+1N j

r

[

x
∂N j

∂x
+y

∂N j

∂y

]

+∆tδ
[(

∂N j

∂x

)2

+

(

∂N j

∂y

)2]}

dΩe

]

,

∂ R̂ j

∂v j
(uk+1) =

ne

∑
e=1

[

∫

Ωe

{

N2
j +

∆tuk+1N j

r

[

x
∂N j

∂x
+y

∂N j

∂y

]

+∆tδ
[(

∂N j

∂x

)2

+

(

∂N j

∂y

)2]}

dΩe

]

.

Multigrid V-Cycle for Two Coupled Equations

The adaptation of the PFAS method to allow for the coupling of two algebraic systems

is given in Algorithm 13. All of the vectors (of length n) required for the original PFAS

V-cycle algorithm given in Algorithm 12 (in Section 5.5) are duplicated for the second

independent variable in this case. Lines 10-14, 25-29 and 31-36 are examples of the

semi-coupled iterative smoothing method described briefly above. For any one level the

123



Chapter 6 Projected FAS Multigrid for Parabolic Problems

systems to be smoothed are:

PT K̂(u(r+1),v(r)) = b, (6.12)

PT R̂(u(r+1),v(r+1)) = d. (6.13)

where v(r) is the approximation of resulting from the rth smooth and v(r+1) and u(r+1)

are the approximations of resulting from the (r +1)th smooth. The vectors b and v(r) are

constant during the smooth over (6.12). Similarly, d and u(r+1) are constant during the

smooth over (6.13). The latest version of the approximate solution is used wherever possi-

ble. The smooth over system (6.12) uses v(r) from the previous smooth where the smooth

over system (6.12) uses u(r+1) from the current smooth. (This approach is explained in a

little more depth in Chapter 7.)

6.3.3 Results

This section demonstrates that the PFAS method can effectively solve coupled systems of

nonlinear parabolic equations over locally highly refined grids. Since the solution con-

tains small transient regions of high gradient, not only is the grid heavily refined over a

small area but the grid also changes with time as the solution progresses. We have shown

in Chapter 4 that this form of adaptivity is able to maintain accuracy to a reasonable level

while significantly reducing the computational costs. A typical grid produced for this

application is shown in Figure 6.8 where rtol = 10−3, ctol = 10−4. Figure 6.9 shows

the a cut-through section of the solution at various points in time. We can see that the

refinement and de-refinement has changed the mesh significantly between the time steps

shown.

The size of time steps taken for various finest grid levels are given in Table 6.4. These

are different for the two time discretisation schemes. Since the trapezoidal rule is second

order we need only halve the time step size when the next grid level is used. For the first
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Algorithm 13 Function: PFAS V-Cycle for Two Coupled Equations
1: Input Parameter: l - level number of composite grid
2: Input Parameter: base - the coarsest level on which smoothing is attempted
3: Input Parameter: u` - initial solution guess such that u` ∈ Image(P̀ )
4: Input Parameter: v` - initial solution guess such that v` ∈ Image(P̀ )
5: Input Parameter: b` - right-hand side vector (in terms of u`) such that b` ∈ Image(PT

` )

6: Input Parameter: d` - right-hand side vector (in terms of v`) such that d` ∈ Image(PT
` )

7: if ` > base then
8: L = `−1
9: count = 0

10: while count < ρ1 do
11: Update u` by smoothing with the system: PT

` K̂`(u`,v`) = b` using PJ
12: Update v` by smoothing with the system: PT

` R̂`(u`,v`) = d` using PJ
13: count ++
14: end while
15: Find residuals r`

u := b`−PT
` K̂`(u`,v`) and r`

v := d`−PT
` R̂`(u`,v`)

16: Restrict residuals rL
u := ĨL

` (r`
u) and rL

v := ĨL
` (r`

v)
17: Restrict solutions uL := IL

` (u`) and vL := IL
` (v`)

18: Calculate coarse grid right-hand sides bL := rL
u +PT

L K̂L(uL,vL)
and dL := rL

v +PT
L R̂L(uL,vL)

19: Save the initial coarse grid solutions uL
init = uL and vL

init = vL

20: Re-call this function for level L with the systems PT
L K̂L(uL,vL) = bL and

PT
L R̂L(uL,vL) = dL with the initial guesses uL

init and vL
init

21: Calculate the coarse grid corrections eL
u = uL −uL

init and eL
v = vL − vL

init
22: Prolongate the corrections e`

u := I`
L(e

L
u) and e`

v := I`
L(eL

v )
23: Correct the fine grid solution u` = u` + e`

u and v` = v` + e`
v

24: count = 0
25: while count < ρ2 do
26: Update u` by smoothing with the system: PT

` K̂`(u`,v`) = b` using PJ
27: Update v` by smoothing with the system: PT

` R̂`(u`,v`) = d` using PJ
28: count ++
29: end while
30: else
31: Find residuals r`

u := b`−PT
` K̂`(u`,v`) and r`

v := d`−PT
` R̂`(u`,v`)

32: while |r`
u|L2 > ntol and |r`

v|L2 > ntol do
33: Smooth the system: PT

` K̂`(u`,v`) = b`

34: Smooth the system: PT
` R̂`(u`,v`) = d`

35: Find residuals r`
u := b`−PT

` K̂`(u`,v`) and r`
v := d`−PT

` R̂`(u`,v`)
36: end while
37: end if
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Figure 6.8: System of Burgers’ equations: A typical grid for the solution of the system of
coupled Burgers’ equations. The change in colour denotes the change in the u value.
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Figure 6.9: System of Burgers’ equations: Solutions for u and v at various time steps. The
grid points are shown for all solutions.

Level 7 8 9 10
Backward Euler 2.0×10−3 5.0×10−4 1.25×10−4 3.125×10−5

Trapezoidal 2.0×10−3 1.0×10−3 5.0×10−4 2.5×10−4

Table 6.4: System of Burgers’ equations: The time step sizes which were used for four
choices of finest grid level in the case of the backward Euler method and of the trapezoidal
rule.

order time stepping ∆t must be quartered in order to maintain accuracy. Stability is never

an issue for any of the results presented due to the implicit nature of the two schemes.

Figure 6.10 contains convergence results for the PFAS multigrid method. The stopping

criterion used for these results was a relative tolerance of 10−8 for the L2-norm of the

residual of the system. This is unnecessarily cautious for most applications but was used

to fully demonstrate the convergence. There is no deterioration in the multigrid perfor-

mance as the grid is further refined.

As described above, the solution of a pair of coupled PDEs requires the solution of a

system of 2n nonlinear algebraic equations in 2n unknowns at each implicit time step.

Furthermore, for this particular problem, as the solve progresses the area of high gradi-

127



Chapter 6 Projected FAS Multigrid for Parabolic Problems

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0  2  4  6  8  10

Lo
g 

of
 L

2-
N

or
m

 o
f R

es
id

ua
l

Number of V-Cycles

Multigrid Convergence (using the Backward Euler Method)

Level 7
Level 8
Level 9

Level 10

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0  2  4  6  8  10  12  14

Lo
g 

of
 th

e 
L2

-N
or

m
 o

f t
he

 R
es

id
ua

l

Number of V-Cycles

Multigrid Convergence (using the Trapezoidal Rule)

Level 7
Level 8
Level 9

Level 10

Figure 6.10: System of Burgers’ equations: The PFAS multigrid convergence for four
choices of finest grid level.
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Figure 6.11: System of Burgers’ equations: The size of the system and the execution time
per step are plotted against the time, t, showing the correspondence between their growth
patterns.

ent becomes larger. The number of finest level elements therefore increases (in a similar

manner to the PF model simulation in Chapter 4) and consequently so does the system

size. The increase in system size, along with the corresponding increase in execution time

per step is illustrated in Figure 6.11. The correspondence between the two is still strong

in this case: demonstrating that the PFAS algorithm is still optimal (i.e. the cost is pro-

portional to n) for this problem.

Since we do not know an exact analytical solution for this problem we cannot compute

exact errors, as with the PME in the previous section. For this problem we therefore

compare the solutions produced with different levels of refinement. If ω l is the approxi-

mate solution produced on a grid with a maximum refinement level of l and ω l−1 is the

approximation produced on the grid with a maximum refinement level of l − 1 then the

difference is el,l−1 = ω l−1 −ω l . These differences may be used as an approximation to

the spatial discretisation error. We expect to see the difference between ω l and ω l−1 re-

duce by a uniform factor as l increases. The difficulty of this approach however is that

we must compare solutions that are defined on grids with differing sets of points. In order
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Figure 6.12: Weightings of solution interpolation from coarse to fine grids, for compar-
isons of solutions produced on different grids.

to do this the two solutions to be compared may be mapped onto a shared uniform grid,

using linear interpolation for the points which do not already exist. Figure 6.12 shows

the interpolation scheme for the transfer of the solution from a coarse element to its once

refined counterpart.

Solutions were found for t = 0.01 with locally refined grids of maximum levels 7, 8,

9 and 10, for the backward Euler and trapezoidal discretisations. Differences were calcu-

lated between each consecutive pair using the method described above. The L2-norms of

these differences are given in Table 6.5. The difference norm shows clear convergence,

reducing by a factor of a little under four as the levels used become finer. Since previous

convergence tests, against exact solutions, have shown good results, we can have confi-

dence that this convergence is towards a sufficiently accurate solution. Figure 6.13 shows

plots of these differences for the section of the domain containing the highest gradient

and hence the most significant errors.
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Solution Difference Norm Backward Euler Trapezoidal Rule
|ω7 −ω8|L2 0.0079664576 0.0078238516
|ω8 −ω9|L2 0.0022599768 0.0021833057
|ω9 −ω10|L2 0.0006518049 0.0006314386

Table 6.5: System of Burgers’ equations: L2-Norm of the difference between solutions
found on grids of consecutive maximum grid level.
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Chapter 7

Projected Multigrid for the Implicit

Phase Field Model

7.1 Introduction

Having introduced the PFAS algorithm in Chapter 5 and demonstrated its performance

on two nonlinear parabolic problems in Chapter 6, in this chapter we apply it to an even

more demanding system. A typical example of a phase field (PF) model was introduced in

Section 3.4.2 and this was solved adaptively using a semi-implicit time-stepping strategy

in Chapter 4. We now show how the PFAS algorithm allows this system to be solved effi-

ciently using both spatial adaptivity and a fully implicit (unconditionally stable) time-step

algorithm. The FE discretisation of the anisotropic PF model is shown in the following

section. The implicit time discretisation is also undertaken, using the backward Euler

method for simplicity. This produces a nonlinear system of equations at each time step.

Some details of the implementation of the PFAS solution of this system are given in Sec-
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tion 7.3. Finally, we show convergence, accuracy and efficiency results for this complex

problem in Section 7.4.

7.2 The Phase Field Model

The governing equations for the PF model, given previously in Chapter 4, that we have

used in this work are:

ε2

m
∂φ
∂ t

= r(φ ,u)+ ε2−→∇ · (s(φ)
−→
∇φ)− ε2 ∂

∂x

(

v(φ)
∂φ
∂y

)

+ ε2 ∂
∂y

(

v(φ)
∂φ
∂x

)

, (7.1)

∂u
∂ t

+
1
4

P(φ)
∂φ
∂ t

=
−→
∇ 2u, (7.2)

The parameter values were chosen to be the same as those in Section 4.4.1. The solidifica-

tion is instigated with a circular ‘seed’ in the centre of the domain where φ takes value of

0 (φ has a value of 1 in over most of the domain). This seed, along with a corresponding

temperature field, are initialised to the forms φ = 1−a and u = − 1
2 +a, where

a =
1

1+ e(r−r0)/p

and r =
√

x2 + y2. We then set r0 to define the radius of the seed and p to define the

steepness of the inter-phase region. For the results given here these are set as: r0 = 0.01

and p = ε for φ and r0 = 0.025 and p = 8ε for u (to simulate the relative positioning and

gentler gradient of the temperature variable). The parameter ε is used as it roughly repre-

sents the width of the interface in a typical solution of this problem. Dirichlet conditions

were used on the whole of the (−2,2)× (−2,2) domain.
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7.2.1 Spatial Discretisation

In Section 4.4.1 we presented the weak form and FE spatial discretisation of this PF

model. The discretised equations (4.13) and (4.14) may be expressed in the following

matrix form:

ε2

m
Mφ̇ = G(φ ,u)− ε2Kw(φ)+ ε2Hxy(φ)− ε2Hyx(φ), (7.3)

Mu̇ = −Ku−
1
4

Q(φ)φ̇ . (7.4)

Here M and K are the standard mass and stiffness matrices, introduced in Section 4.4.1.

The nonlinear terms are represented as:

G(φ ,u) =
∫

Ω
r(φ ,u)N jdΩ,

Kw = ε2
∫

Ω
s(φ)(

−→
∇ φ ·

−→
∇ N j)dΩ,

Hxy = ε2
∫

Ω

∂N j

∂x
v(φ)

∂φ
∂y

dΩ,

Hyx = ε2
∫

Ω

∂N j

∂y
v(φ)

∂φ
∂x

dΩ,

and

Q(φ) =
∫

Ω
P(φ)N jdΩ.

As before u and φ are the discretised functions approximating u and φ respectively. There-

fore u = ∑n
i=1 uiNi and φ = ∑n

i=1 φiNi.

7.2.2 Temporal Discretisation using Backward Euler

The backward Euler method is chosen as the implicit time stepping scheme here since is it

a simple method and was shown, in Section 6.3.3, to produce reasonable performance in
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conjunction with the PFAS solution scheme in comparison to the higher order trapezoidal

rule. (Application of the trapezoidal rule would present no additional difficulties.) In

preparation for temporal discretisation, Equations (7.3) and (7.4) can be written as one

system in order to isolate the time derivatives:







ε2

m M 0

1
4Q(φ) M













φ̇

u̇






=







G(φ ,u)− ε2Kw(φ)+ ε2Hxy(φ)− ε2Hyx(φ)

−Ku






.

Since M is non-singular we know that the block triangular matrix is also non-singular and

is therefore invertible. This 2n×2n system can be therefore be rearranged into the form:







φ̇

u̇






=







ε2

m M 0

1
4Q(φ) M







−1 





G(φ ,u)− ε2Kw(φ)+ ε2Hxy(φ)− ε2Hyx(φ)

−Ku






.

The backward Euler scheme converts a system of the form ẋ = f (t,x) to xk+1 = xk +

∆t f (tk+1,xk+1). In this case the discretised form is:







φ k+1

uk+1






=







φ k

uk







+∆t







ε2

m M 0

1
4Q(φ k+1) M







−1 





G(φ k+1,uk+1)− ε2Kw(φ k+1)+ ε2Hxy(φ k+1)− ε2Hyx(φ k+1)

−Kuk+1






.

To avoid calculating the expensive matrix inversion we rearrange the system again to give:







ε2

m M 0

1
4Q(φ k+1) M













φ k+1

uk+1






=







ε2

m M 0

1
4Q(φ k+1) M













φ k

uk






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+∆t







G(φ k+1,uk+1)− ε2Kw(φ k+1)+ ε2Hxy(φ k+1)− ε2Hyx(φ k+1)

−Kuk+1






. (7.5)

This algebraic system (7.5) is therefore a the fully discretised representation of this anisotropic

PF model.

7.3 Implementation

This section gives some details of the implementation of the PFAS for the algebraic sys-

tem at each time step. Firstly, we look at the coupling of the two equations. The semi-

coupled iterative smoothing method introduced in Section 6.3.2 is also applied here. As in

previous implementations described in this thesis the form of the three vectors necessary

for calculation of the Projected Jacobi correction are given.

7.3.1 Coupling and Solution

If System (7.5) were to be solved in a fully coupled manner then we could define a vector,

ω (r) =







φ (r)

u(r)






,

where ω is a vector of length 2n and the superscript (r) indicates how many smooths have

been performed to reach this approximation. The initial conditions are therefore ω (0), the

approximation resulting from the first smooth is ω (1), etc. In this case the smoother uses

ω(r) to create the new approximation ω (r+1). Both φ and u are updated at the same time

according to the Jacobi update (described in Section 5.3). We could express this update

as:

ω (r) → ω(r+1)
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or






φ (r)

u(r)






→







φ (r+1)

u(r+1)






.

A slightly different approach is taken here however. Each of the approximate solutions

to φ and u are smoothed independently of each other. We alternate the smooths over

the two variables as in a fully coupled method but the approximation of a solution (φ or

u) is updated at the end of its own smooth. The effect of this is a slightly speeded up

approximation over the same number of smooths as the fully coupled method. A smooth

over φ followed by a smooth over u, equivalent to one fully coupled smooth, may be

expressed as:






φ (r)

u(r)






→







φ (r+1)

u(r)






→







φ (r+1)

u(r+1)






.

The new approximation of the temperature variable, u(r+1) has been calculated using the

updated approximation of the φ (r+1). The two-stage nature of the semi-coupled smooth-

ing technique gives a slight advantage over a pure Jacobi iteration from this perspective.

Therefore algebraic system resulting from each of the original PDEs is smoothed inde-

pendently of the other. Consequently the form of System (7.5) is not precisely what is

solved in this case but an equivalent alternative is used. We extract the components cor-

responding to each original equation from System (7.5) to form two separate algebraic

systems. Extracting the components corresponding to Equation (7.1) out of the system

gives:

ε2

m
Mφ k+1 =

ε2

m
Mφ k +∆t[G(φ n+1,uk+1)− ε2Kw(φ k+1)+ ε2Hxy(φ k+1)− ε2Hyx(φ k+1)],
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which is rearranged to put all of the terms that contain values at the new time step on the

left-hand side:

ε2

m
Mφ k+1−∆tG(φ k+1,uk+1)+∆tε2Kw(φ k+1)−∆tε2Hxy(φ k+1)+∆tε2Hyx(φ k+1) =

ε2

m
Mφ k.

(7.6)

Similarly, the extracted components of Equation (7.2) may be expressed as:

Muk+1 +∆tKuk+1 +
1
4

Q(φ k+1)[φ k+1 −φ k] = Muk. (7.7)

7.3.2 Jacobi Iteration

In order to discuss the Systems (7.6) and (7.7) we will borrow from the notation of Chap-

ter 6. The following algebraic systems:

K̂(φ k+1,uk+1) = b̂,

R̂(φ k+1,uk+1) = d̂,

represent Systems (7.6) and (7.7) respectively, when discretised over a locally refined

grid containing hanging nodes. The three vectors that must be constructed in order to

form a Projected Jacobi correction to the solution of these equations are b, K̂(φ k+1,uk+1)

and ∂ K̂ j
∂φ j

(φ k+1,uk+1) for System (7.6) and d, R̂(φ k+1,uk+1) and ∂ R̂ j
∂φ j

(φ k+1,uk+1) for Sys-

tem( 7.7). The vectors for the temperature equation system (7.7) will be given first as they

are the more straightforward of the two.

Temperature Equation Components

The right-hand side vector, in a point-wise form:

d̂ j =
ne

∑
e=1

[

∫

Ωe

ukN jdΩe

]

,
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is a simple mass matrix term assembled over each element in the grid. The left-hand side,

R̂ j(φ k+1,uk+1) =
ne

∑
e=1

[

∫

Ωe

{

uk+1N j +∆t(
−→
∇ uk+1 ·

−→
∇ N j)+

1
4

P(φ k+1
)[φ k+1

−φ k
]N j

}

dΩe

]

,

contains only one nonlinear term. We can therefore define the Jacobi vector component-

wise as:
∂ R̂ j

∂u j
(φ k+1,uk+1) =

ne

∑
e=1

[

∂
∂u j

{

∫

Ωe

uk+1N jdΩe

}

+
∂

∂u j

{

∆t
∫

Ωe

(
−→
∇ uk+1 ·

−→
∇ N j)dΩe

}

+
∂

∂u j

{

1
4

∫

Ωe

P(φ k+1
)[φ k+1

−φ k
]N jdΩe

}]

.

The nonlinear term is not dependent on u j or u so this term will be zero in the Jacobian.

From the definition of u we conclude that ∂u
∂u j

= N j Therefore the Jacobian vector is

simply:
∂ R̂ j

∂u j
(φ k+1,uk+1) =

ne

∑
e=1

[

∫

Ωe

{

N2
j dΩ+∆t(

−→
∇ N j)

2
}

dΩe

]

.

The Phase Equation Components

The right-hand side vector is similar to that of the temperature equation:

b̂ j =
ne

∑
e=1

[

ε2

m

∫

Ωe

φ k
N jdΩe

]

.

The left-hand side vector is:

K̂ j(φ k+1,uk+1) =
ne

∑
e=1

[

∫

Ωe

{

ε2

m
φ k+1

N j−∆tr(φ k+1
,uk+1)N j +ε2∆ts(φ k+1

)(
−→
∇ φ k+1

·
−→
∇ N j)

+ε2∆tv(φk+1
)

(

∂N j

∂y
∂φ k+1

∂x
−

∂N j

∂x
∂φ k+1

∂y

)}

dΩe

]

.
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The Jacobian vector is more complicated in this case:

∂ K̂ j

∂φ j
(φ k+1,uk+1) =

ne

∑
e=1

[

∫

Ωe

{

ε2

m
N2

j −∆tr̂ j(φ
k+1

,uk+1)N j

+ε2∆tŝ j(φ
k+1

)(
−→
∇ φ k+1

·
−→
∇ N j)+ ε2∆ts(φ k+1

)(
−→
∇ N j)

2

+ε2∆tv̂ j(φ
k+1

)

(

∂N j

∂y
∂φ k+1

∂x
−

∂N j

∂x
∂φ k+1

∂y

)}

dΩe

]

.

The functions r, s and v are defined in Equations (4.3), (4.4) and (4.5) respectively. The

versions with a hat and a subscript j denote the derivatives of these functions with respect

to φ j. For completeness we will give the definition of r̂ j, ŝ j and v̂ j. From (4.3) we can say

that:

r̂ j =
∂ r

∂φ j
=

∂
∂φ j

(

φ(1−φ)(φ −0.5+aφ(1−φ))

)

,

where a = 30εα∆u. (The superscripts due to the time discretisation have been removed

for simplicity.) This evaluates to:

r̂ j = −0.5N j +N j(3+2a)φ +N j(−3−6a)φ 2
+4aN jφ

3
.

For the sake for efficiency we will compute this as

r̂ j(φ ,u) = N j[φ [φ [φ(4a)− (3+6a)]+(3+2a)]−0.5]

In order to calculate ŝ j and v̂ j we require the derivatives of their component parts: η

defined in Equation (4.6) and η ′ defined in Equation (4.7). Both of these functions are

dependent on θ . The value of θ is dependent on φ and represents the angle between the

normal to the solid-liquid interface at a point and the x-axis, it can therefore be calculated

as follows:

θ = tan−1
(

φy

φx

)

.
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Since we know that ∂
∂x tan−1x = 1

1+x2 we can write:

θ̂ j =
∂

∂φ j

[

φy

φx

](

1
1+(φy/φx)2

)

=

[

∂φy
∂φ j

φx −φy
∂φx
∂φ j

φ 2
x

](

1
1+(φy/φx)2

)

,

which can be rearranged to:

θ̂ j =

[

[N j]yφx −φy[N j]x
φ 2

x +φ 2
y

]

.

(Note that for large sections of the solution these derivatives will be zero. Therefore a

safety mechanism must be in place to ensure that the code never divides by zero.) The

function η̂ j introduces anisotropy into the problem with the formula η(θ) = 1+γcos(kθ).

The derivative, dependent on θ̂ j, is

η̂ j =
∂η
∂φ j

= −γksin(kθ)θ̂ j.

The second function, dependent on θ is η̂ ′
j which is the derivative of η with respect to

θ . Therefore:

η̂ ′
j =

∂η ′

∂φ j
= −γk2cos(kθ)θ̂ j.

Now that we have the definition of the components we can give the definition of ŝ j as:

ŝ j =
∂ s

∂φ j
= 2ηη̂ j,

and the definition of v̂ j as:

v̂ j =
∂v
∂φ j

= η̂ jη ′ +ηη̂ ′
j.
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7.4 Results

In Section 7.4.1 we show the convergence of the PFAS method for the highly nonlinear

algebraic system produced by the implicit discretisation above. The cost of the algorithm

is re-asserted in Section 7.4.2 where we look at the relationship between the system size

and the execution time. Lastly the accuracy of solution is assessed in Section 7.4.3 using

the method introduced in Section 6.3.3.

7.4.1 Convergence

A relative tolerance was used to reduce the residual by 106 from the initial residual. This

was repeated for several levels of finest grid. The initial guess of the solution is zero in

order to make the effects of the solver clearer. The results in Figure 7.1 show graphs of the

residual against the number of V-cycles. This relationship is shown for the phase and the

temperature variables. It is clear that the scheme settles to a uniform rate of convergence

on each mesh which does not deteriorate as the mesh level increases.

7.4.2 Efficiency

In Figure 7.2 the graph shows the relationship between system size (the number of nodes

in the grid) and overall solution time for a single implicit time step (measured in seconds

by a standard C timer). We can see that the time per step is linearly dependent on the

system size. The results are taken at regular intervals over a run of 2500 time steps (and

the system size is growing because the region of heavy local refinement grows with time).

These results reconfirm that our algorithm has a cost of O(n) at each time step.

7.4.3 Accuracy

In the absence of an exact solution, results obtained using various values of finest grid

spacing were compared to show that the difference between these solutions converges as

142



Chapter 7 Projected Multigrid for the Implicit Phase Field Model

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 0  2  4  6  8  10  12  14  16

L2
-N

or
m

 o
f P

ha
se

 F
ie

ld
 V

ar
ia

bl
e 

R
es

id
ua

l

Number of PFAS V-Cycles

Phase Field Residual Convergence for Various Refinement Levels

max level 7
max level 8
max level 9

max level 10
max level 11
max level 12

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0  5  10  15  20

L2
-N

or
m

 o
f T

em
pe

ra
tu

re
 V

ar
ia

bl
e 

R
es

id
ua

l

Number of PFAS V-Cycles

Temperature Residual Convergence for Various Refinement Levels

max level 7
max level 8
max level 9

max level 10
max level 11
max level 12

Figure 7.1: Implicit PF model: Convergence of the PFAS: Residual convergence for the
φ and u variables over a typical implicit time step. The V-cycles were continued until the
residual of both approximations met a relative tolerance of 10−6.
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Figure 7.2: Implicit PF model: The execution time for one time step of the PFAS al-
gorithm plotted against the size of the system. These values were found over one solve
where the lengthening inter-phase boundary means a steady increase in local refinement.

the finest grid spacing becomes smaller. This method is explained in more detail in Sec-

tion 6.3.3. Assuming that ω ` is an approximation of one variable over a grid of maximum

refinement level `, the following approximation differences were calculated: ω 8 −ω9,

ω9−ω10 and ω10−ω11, for φ and u. The L2-norm of all of these differences can be seen

in Table 7.1. The error average reduced by more than a factor of two with each increase

in grid level in the case of φ and reduces by a factor of approximately four in the case

of u. Figure 7.3 shows graphs of these differences for φ and u taken along an x-axis cut

through the domain. As the difference between the approximations is significantly higher

near the phase change this region has been magnified. The solution convergence with

increased local refinement is clearly evident for both of the variables. The differences are

more widespread for the temperature variable as the change in this variable happens over

a larger section of the domain than that of the phase field variable.

144



Chapter 7 Projected Multigrid for the Implicit Phase Field Model

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
iff

er
en

ce
 b

et
w

ee
n 

so
lu

tio
ns

 o
n 

th
e 

tw
o 

le
ve

ls
 s

ta
te

d

A section of an x-axis cut through the domain

Difference between solutions over various grids (Phase Field variable)

level 8 and level 9
level 9 and level 10

level 10 and level 11

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
iff

er
en

ce
 b

et
w

ee
n 

so
lu

tio
ns

 o
n 

th
e 

tw
o 

le
ve

ls
 s

ta
te

d

A section of an x-axis cut through the domain

Difference between solutions over various grids (Temperature variable)

level 8 and level 9
level 9 and level 10

level 10 and level 11

Figure 7.3: Implicit PF model: The first graph shows the differences between approxi-
mations to φ on various grids and the second shows the same for u. The grids compared
have the consecutive finest grid levels stated in the key. These solutions are for t = 0.04
with a relative solver tolerance of 10−6.
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|ω l −ω l+1|L2 φ u
l = 8 1.0954×10−2 4.4769×10−3

l = 9 4.5224×10−3 1.5772×10−3

l = 10 1.2674×10−3 3.7724×10−4

Table 7.1: Implicit PF model: Spatial error convergence: The difference in φ and the
difference in u are shown as an L2-norm over all of the internal grid points, between
various locally refined grids.

7.5 Discussion

In Section 4.4 results are given for the solution of this PF model with a semi-implicit time

discretisation. This is an example of an application where aggressive local refinement

in a section of the computational domain provides the necessary grid spacing to resolve

the solution while keeping the computational time short in comparison to global refine-

ment. In Section 2.5.3 we discussed how allowing hanging nodes in a locally refined

mesh reduces the complexity of the meshing algorithms and so this was chosen for use in

this work. The PPCG algorithm was used to solve the linear systems resulting from the

semi-implicit time discretisation of the PF model in Chapter 4 as it successfully resolves

the solution values at the hanging nodes using a projection method. However, in order to

use PPCG the algebraic system must be linear. In the case of the PF model a linear alge-

braic system can only be achieved by using an explicit (or semi-implicit) time stepping

scheme. Explicit schemes (discussed in Section 2.2.2) have a stability restriction depen-

dent on the size of the time step. Specifically, the maximum stable time step is linked to

the smallest spacing in the grid. As the smallest grid spacing must be small enough to

resolve the phase field interface the time step is also restricted to this order (as described

in Section 3.4.2). Small time step sizes result in long execution times to produce results

of any interest. The PFAS method, developed in this work, overcomes this problem. The

PFAS method uses the projection method to resolve the hanging nodes in the locally re-

fined mesh while successfully solving the nonlinear algebraic systems resulting from an

implicit discretisation of the PF model. In order to solve nonlinear systems an FAS multi-
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PPCG PFAS
Maximum refinement level ∆x Max|∆t| Max|∆t|
9 0.0156 2.0×10−5 2.0×10−4

10 0.0078 5.0×10−6 5.0×10−5

11 0.0039 1.0×10−6 1.25×10−5

12 0.0019 2.0×10−7 3.125×10−6

Table 7.2: Maximum time step sizes for various maximum grid levels for the PF model
solved using the PPCG and the PFAS schemes.

grid method is employed and the smoother (containing the projection steps) is based on a

nonlinear Jacobi method. A fully implicit discretisation of the PF model is now a viable

option, allowing an increase in the time step sizes and a reduction in the execution time

for a solve.

Using the simple first order implicit time stepping scheme we reduce the time step size

by a factor of 4 each time the grid spacing is halved to ensure accuracy. Typical time

step sizes for the PFAS with this problem are given in the final column of Table 7.2. The

corresponding maximum stable time steps for the semi-implicit scheme solved using the

PPCG technique are given in the third column. Using the PFAS along with an implicit

backward Euler discretisation allows roughly an order of magnitude increase in time step

size in comparison to the semi-implicit discretisation and PPCG solution. When using

a second order implicit scheme (like the trapezoidal rule) the time step size need only

be halved with each increase in the grid refinement level. Therefore, if a second order

implicit rule were employed the difference between the explicit and implicit time step

sizes would be even greater. Table 7.3 gives time profiling for this implicit phase field

implementation using the PFAS solution method. These figures are found from 500 time

steps with maximum grid levels of 7, 8 and 9. The settings are chosen to be equivalent

to the time profile setting for the semi-implicit implementation in Section 4.4.5. As the

FE assembly is repeated within the PFAS iteration it takes a large percentage of the CPU

time compared to the PPCG implementation where a linear system is built independent
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Maximum refinement level PFAS Solver FE Assembly Adaptive Gridding
7 0.49 98.17 0.13
8 0.63 97.59 0.28
9 0.76 95.51 0.91

Table 7.3: A time profile for the PFAS implementation. Percentages of total execution
time are given for the solution process, the finite element assembly and the adaptive grid-
ding.

PPCG PFAS
Maximum refinement level Execution time (secs) Execution time (secs)
9 22 38
10 232 164
11 3535 1564

Table 7.4: A comparison of the execution time in seconds for the PPCG solution of the
semi-implicit phase field model against the PFAS solution of the same phase field model
with a fully implicit discretisation.

of the solution process. As would be expected the PFAS solution process (including the

FE assembly) is more expensive than the PPCG solution process for a single time step.

However, Table 7.4 shows that for fine grids the advantage of taking larger time steps

outweighs the expense of the solver, with respect to the CPU time.

148



Chapter 8

Discussion

In this thesis we have developed a multigrid algorithm for use with adaptively refined

grids. A projection technique, for dealing with hanging nodes, originally developed for

the Conjugate Gradient method, is applied to a Jacobi iteration. This modified Jacobi

is then used as the smoother for a modified FAS multigrid scheme. We have shown

that this method is efficient and accurate for nonlinear elliptic problems and nonlinear

parabolic problems. This chapter will draw together and review the development and

results throughout this thesis. Evaluation of the adaptive gridding techniques and the

PFAS solution method is presented in Sections 8.1 and 8.2 respectively. This is followed,

in Section 8.3, by a discussion of some possible extensions to the methods proposed.

8.1 Adaptive Gridding Methods

In Chapter 4 we introduced a hierarchical gridding scheme with mechanisms for local re-

finement and coarsening. The data structures for this scheme are built around a quadtree
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structure for the elements in the grid. The re-adaption of the grid uses dynamic memory

allocation and de-allocation allowing the grid to change during the execution of the so-

lution process. Due to the structured nature of the grid storage and the imposition of the

validity rules (described in Section 4.3.1) our h-adaptive scheme guarantees good quality

meshes with at most one hanging node per edge. Examples of such meshes have been

illustrated for applications throughout this work, in Figures 4.13, 6.3 and 6.8. The time

profiling of implementations in Sections 4.4.5 and 7.5 show that the adaptive gridding

procedures do not significantly contribute to CPU time, despite the fact that the grids are

re-adapted at regular time steps.

The quadtree data structure successfully facilitates local refinement and coarsening pro-

cedures while also naturally accommodating multilevel solution methods. The adaptive

gridding implementation in this work strikes a balance between saving memory use and

reducing execution time. Clearly, the implementation could be reformed to have a bias to-

wards one or the other. For example, traversing a given set of elements within the quadtree

is non-trivial. In this work we choose to implement a set of recursive functions for tree

traversal. This task could be accelerated, in some cases, by forming linked lists of the set

of elements at each level. This approach is used in [75] for a PF model application.

The data structures and the functionality of the gridding scheme can be extended, in order

to facilitate a different application, and indeed they can be cut back, in order to produce an

efficient and compact scheme where not all of the functionality is needed. Two possible

examples are given below.

1. For some applications it will be unnecessary to store pointers from each node (on

each level) to its surrounding elements. The structures holding these pointers (de-

scribed in Section 5.6.1) are necessary for the multilevel FE build used in conjunc-

tion with the PFAS method. However, the PPCG implementation used in Chapter 4,
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for example, does not use this functionality.

2. A simple extension of the grid data structures and methods allows its application to

finite difference discretisations. Each node (on each level) can be given pointers to

its neighbouring nodes allowing for fast access to this information when using the

point stencils for discretisation. Indeed this has been successfully undertaken by

J. Rosam in order to apply this adaptive meshing software to the finite difference

solution of elliptic problems using local refinement.

As the grid structures and methods have been shown to be robust through application to

several problems in this work, they can be extended for application to other problems.

8.2 Projected FAS Solution Method

The main novel contribution of this thesis is an adaptive multigrid scheme for the solution

of problems defined over locally refined grids containing hanging nodes. This solver has

been shown to be effective on nonlinear, elliptic and parabolic problems. In Section 2.5.3

we discussed how allowing hanging nodes to exist within a grid greatly simplifies the

refinement and coarsening of certain grid types. The PFAS method allows us to apply

multigrid solution method to problems defined on these grids in a relatively simple man-

ner. In Section 8.3.1 the extension to grids other than those with quadrilateral elements

is discussed. The way in which the projection steps of the PFAS scheme are formulated

allows us to assemble the element matrices in the normal way, without regard for the

hanging nodes. The PFAS scheme therefore allows us both to avoid the complication of

green refinement and to simplify the resolution of the resulting hanging nodes. Optimal

convergence was shown for a nonlinear elliptic problem in Section 5.6.2, for a nonlinear

parabolic equation in Section 6.2.5 and for two systems of parabolic equations in Sec-

tions 6.3.3 and 7.4. The accuracy of the PFAS method is checked in Sections 5.6.2 and

6.2.5 where exact solutions to the test problems are known. In both cases the discretisation

151



Chapter 8 Discussion

error is no worse than that obtained using global refinement and it reduces as expected

with increased levels of local refinement. The error convergence was verified in the other

two problems, where exact solutions were not available, by comparing the solution at

various grid levels (Sections 6.3.3 and 7.4). These tests also revealed promising conver-

gence. It has also been shown that the PFAS scheme has a cost which is proportional to

the number of points in the grid.

8.3 Possible Extensions

A few of the most logical extensions to the adaptive gridding and solution methods pre-

sented in this thesis are discussed in this section. These include the application to dif-

ferent grid types in two and three dimensions (Section 8.3.1), increasing the order of

discretisation (Section 8.3.2), applying the method to an even more diverse set of prob-

lems (Section 8.3.3) and reviewing the method used to produce the hierarchy of grids for

the multigrid solver (Section 8.3.4).

8.3.1 Grid Type

In this work all of the computational grids used contain only square elements. Below

is a brief discussion of how the FE grids, and solution methods of this work, could be

modified to use triangular grids in two-dimensions and cubic or tetrahedral grids in three-

dimensions.

Triangular (2D)

The use of triangular grids has the advantage of increased geometric flexibility in compar-

ison with quadrilaterals. For example, the shape of the domain that we are able to discre-

tise could be an arbitrary polygon. Linear FE basis functions can be used with triangular

elements. These are a simpler but less accurate form than the bilinear elements used for
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Hanging Nodes

Fully Connected Nodes

Figure 8.1: Triangular grid refinement: The subdivision of each triangular element into
four by creating midpoints at each edge.

our quadrilateral grids. The hierarchical quadtree data structure can still be applied in this

case as triangles will naturally divide into four children using the edge midpoints. This is

illustrated in Figure 8.1 and is mentioned in Section 2.5.1. Clearly the number of points

associated with an element would be three in the case of triangular elements. This reduces

the size of the quadtree as each element need only store three pointers for this purpose.

However the data structure holding the pointer to all of the elements surrounding each

point (on each composite grid level) is more complicated in the triangular case. If all

of the triangular elements are equilateral (as in Figure 8.1) then there are six elements

surrounding each point. In a less structured grid however this number can not be prede-

termined. Likewise the system of identifying neighbouring elements of a given element

in the grid (described in Section 4.2.3) would have to be revised for the triangular case as

the number and orientation of these neighbours is different. From Figure 8.1 we can see

that hanging nodes still exist in this grid. Due to the restriction applied to our grids there

will still be no more than one hanging node per edge. Therefore the projection methods

of the PFAS scheme should be equally effective in this case.
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Hanging Node

Corner points of parent element

Figure 8.2: Cube element hanging node type A: those which lie in the centre of a parent
element’s face.

Hanging Node

Corner points of parent element

Figure 8.3: Cube element hanging node type B: those which lie in the centre of a parent
element’s edge.

Cubic (3D)

The extension of the methods presented in this thesis to three dimensions is a natural step.

The trilinear FE basis functions can be used for the cubic elements, which are the clear

generalisation in a three-dimensional version of this work. The quadtree data structure

for the quadrilateral mesh can be extended to an octree structure with eight child elements

for each parent element. In this case there are two types of hanging node in a locally

refined mesh (referred to here as type A and type B). Those of type A lie on the face of

the parent cube. An example of this is given in Figure 8.2. There is only one possible

connectivity pattern for this type of hanging node. Hanging nodes of type B lie at the

midpoint of an edge of the parent cube and have four possible arrangements of surround-

ing elements. These possibilities are shown in Figure 8.3 and depend upon the refinement

of the neighbouring parent-level cubes. The existence of these two types of hanging node

implies the need for two different projection steps within the PFAS scheme. The restric-
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tion of hanging nodes of type B should be performed with a projection analogous to the

two-dimensional projections, where the values of the two neighbouring points, denoted

by circles in Figure 8.3, are used. The restrictions of type A hanging nodes should use

an average of four point values. These should be taken from the four points which lie at

the four corners of the parent’s face containing the hanging node (also denoted by circles

in Figure 8.2). In order to correctly align the solution the restriction of type B should be

performed before that of type A.

Tetrahedral (3D)

As a tetrahedral element is a simplex for three-dimensional space linear basis functions

may be used for the FE assembly. However, the refinement of tetrahedral is not a trivial

extension from that of triangles. Grob and Reusken [42] present one method of produc-

ing regular tetrahedral refinement. New points are created at the midpoints of each of

the tetrahedral edges in a similar manner to regular triangular refinement (shown in Fig-

ure 8.1). When these points are joined by edges the tetrahedron is divided into five subsec-

tions. Four smaller tetrahedra (of the same shape) are formed in the four corners and an

octahedron is formed in the centre. (This is illustrated on the left side of Figure 8.4.) The

octahedron can then be divided into three regular tetrahedra. In [87] the hanging nodes are

resolved using green refinement as illustrated in the right-hand side of Figure 8.4. This

is far more complicated than for triangles in two dimensions since many different green

refinement stencils are required for the different cases that may arise. The regular part of

the grids (containing hanging nodes) could be used effectively with the PFAS projection

method. As there are no face-centred hanging nodes this case is in fact simpler than the

cubic case, discussed in the previous section. As the refinement in this method is regular

and nested, a tree data structure could again be used to store the elements.
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Figure 8.4: Two examples of tetrahedral refinement: The picture on the left shows regular
refinement and the one on the right shows the resolution of hanging nodes by means of
‘green’ refinement.

8.3.2 Discretisation

The FE discretisation in this work used only bilinear basis functions and the time discreti-

sation took simple uniform steps. These methods are sufficient to show the performance

of the PFAS solver. However, this section briefly discusses the possibility of enriching

these two areas to create a more sophisticated approximation scheme.

Higher Order Spatial Discretisation

Within the Galerkin FE method we can increase the order of the discretisation by in-

creasing the order of the basis functions over each element. Until now we have only

considered linear and bilinear basis functions, here we take a brief look at the quadratic

version. Quadratic bases can be used for triangular elements in two dimensions and tetra-

hedral elements in three dimensions. In order to establish a quadratic function over a

single element, extra interpolation points are required. (These points increase the size of

the system making the solution more expensive.) For quadratics the extra interpolation

points are generally chosen as the midpoints of each of the elements edges. This is shown

for the triangular and tetrahedral cases, in Figure 8.5.
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Two Dimensions.
Tetrahedral element,
Three Dimensions.

Triangular element, 

Figure 8.5: Interpolation points for quadratic finite elements for triangular and tetrahedral
elements in two and three dimensions respectively.

For the quadrilateral grids, used throughout this work, bi-quadratic functions can be used.

In this case an interpolation point is needed at the centre of the element as well as at the

midpoint of each edge. This is illustrated in Figure 8.6 for a segment of non-uniform

mesh. In order to apply bi-quadratic finite elements within the Projected FAS scheme

we have to analyse what happens along edges such as edge E in Figure 8.6 where there

exist hanging nodes. Another representation of the edge, E, is given in Figure 8.7. In this

E

Figure 8.6: Interpolation points for bi-quadratic finite element: Shown here for a section
of a non-uniform, two-dimensional grid.
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E

Disconnected Grid Point

Fully Connected Grid Point

 Quadratic Interpolation Point

Basis function of large element along E

Basis functions of small elements along E

Figure 8.7: Hanging nodes in a non-uniform, bi-quadratic FE grid: A representation of
the discontinuity in the solution created along edges containing hanging nodes for bi-
quadratic finite elements.

figure there are arbitrary values given for each point and a representation of the quadratic

interpolation functions are given for the large element and for the smaller elements. This

shows clearly that, as in the linear case, a discontinuity in the solution would generally

be caused along this edge. A projection method would therefore have to be formulated in

order to force the quadratic functions of the smaller elements to match that of the larger

element along this edge. In this bi-quadratic case the value at the two hanging nodes

(denoted ©) should be the same as the value at these points on the large element. These

values should therefore be prescribed by the projection step whenever it is required as part

of the PFAS procedure.

Bi-quadratic basis functions can be extended to be used on three-dimensional cubic grids

(termed tri-quadratics). Although working in three dimensions adds a level of complex-

ity to the PFAS projection methods (as discussed in Section 8.3.1) the principles are the

same.
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Adaptive Time Discretisation

Adaptivity can be employed in time as well as in space. The time step size ∆t can be

decided for each individual time step. Allowing variable time step sizes can often produce

the final solution of an initial value problem in fewer steps. However, even when implicit

time stepping schemes are used, we must restrict the time step size in order to maintain

the desired accuracy. The time step sizes are therefore chosen based on some local error

estimation, le. At each step ∆t is chosen to be as large as possible without exceeding some

tolerance, ttol. One example of a method for estimating the local error is to compare the

solution of one time step found using a method of order p with the solution of the same

step found using a method of order p+1. The difference between these solutions is used

as an estimate to the local error and, from this, an estimate can be made to the optimal

time step. An example of this type of method is the Runge-Kutta-Fehlberg method [22]

where two Runge-Kutta schemes of consecutive order are used to form the local error

estimate. If le < tol the higher order solution for this time step is used and the next step

is taken using the optimal ∆t. However, if tol < le then this time step is re-calculated

using the optimal ∆t. These variable time stepping methods would be an addition to the

flexibility of the solution methods which would not interfere with the existing adaptive

gridding and PFAS methods for the boundary-value problems at each step.

8.3.3 Applications

The most natural extension, in terms of applications, would seem to be to the class of hy-

perbolic PDEs. Hyperbolic equations are often used to simulate flows and other transport

problems when diffusive effects may be neglected (for example the Euler equations [71]).

Galerkin FE methods are typically unstable in the approximate solution for this class of

problems, usually leading to highly oscillatory numerical solutions. In order to resolve

this, ‘upwinding’ discretisation methods have been developed. One example of this is the

Streamline Upwind Petrov Galerkin (SUPG) scheme, developed by Brooks et al [20]. The
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finite element test functions are enriched to form an upwinded version of the Galerkin FE

scheme. Extending our PFAS method to accommodate such stabilisation depends mainly

on being able to develop a multigrid solver that works efficiently on a uniform sequence

of grids. In this case the simplicity of the PFAS method for locally refined grids should

still hold. An alternative, such as the discontinuous Galerkin method should also be con-

sidered. It should also be noted that there are existing adaptive multigrid schemes which

have been successfully applied to hyperbolic problems, such as that of Berger [1].

8.3.4 Multigrid Coarsening

There is room for improvement in the method by which the non-uniform grids, in the

PFAS scheme, are coarsened to create the multigrid hierarchy of grids. Currently the

grids are coarsened by simply removing all elements at the finest level in the grid. This is,

of course, a fast and cheap coarsening method since it reflects the order in which the grids

were created by the local refinement process. A, more sophisticated, alternative is given

by Aftosmis et al in [1]. Here the grid is coarsened by one refinement level wherever

possible over the whole grid. Figure 8.8 gives three of the grids from a hierarchy created

with the method given in Chapter 4 and three equivalent grids from a hierarchy created

using the ideas in [1]. (The exact form of the grids in the proposed scheme take into

consideration the rules of de-refinement defined in Chapter 4.) The proposed scheme is

straightforward and a viable alternative to our current methods. It can be noted that the

PFAS scheme is optimal with both of these multigrid coarsening schemes so we would

expect a relatively small advantage from using the approach of [1].
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Existing
method.

Proposed
method.

Level l Level l−1 Level l−2

Figure 8.8: An alternative coarsening method for creating multigrid levels.
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