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Abstract 

Toxoplasma gondii (T. gondii) is a ubiquitous parasite that infects warm-blooded 

animals and humans. In humans, T. gondii causes encephalitis in AIDS patients, 

and there is no drug that can eliminate T. gondii infection. T. gondii specifically 

manipulates the intermediate host’s behaviour favouring its transmission to the 

definitive feline host. Human T. gondii seropositivity has also been associated 

with mental disorders. T. gondii has two aromatic amino acid hydroxylases, 

TgAaaH (1 and 2), that convert phenylalanine to tyrosine, and tyrosine to L-

DOPA, the latter being the rate-limiting step of dopamine biosynthesis. Based on 

this and elevated dopamine levels in brain tissue cysts and infected dopaminergic 

cells, it has been hypothesised that TgAaaH has a role in altering brain 

neuromodulation and potentially subsequently in the behavioural changes 

observed. As TgAaaH genes encode a signal peptide, the location of the enzyme 

was examined. TgAaaH was localised to outside the parasite both membrane-

bound to parasites within the parasitophorous vacuole based on 

immunofluorescence, fractionation, and trypsin susceptibility of released 

parasites. Another possible role of TgAaaH in cyst wall generation was 

examined by testing for dopa-oxidase activity to convert L-DOPA to dopa-

quinone. Dopa-oxidase activity was not detectable in infected fibroblasts, yet it 

remains possible that parasite produced L-DOPA is metabolised to dopaquinone 

by host cell enzymes such as within feline gut endothelial cells where oocysts are 

formed. This, and our finding that host cell dopa-decarboxylase is required for 

dopamine biosynthesis, suggest that the product of parasite-produced L-DOPA 

may be dependent upon the type of cell infected (ie. dopamine in 

catecholaminergic cells and dopaquinone in endothelial cells). The limitation of 

studying the bradyzoite stages of infection due to proliferation of tachyzoite 

stages was resolved by development of a new culture system with depleted 

tryptophan. This method was then applied to develop a novel throughput assay to 

identify bradyzoite inhibitors. The validity of this assay was evaluated using 

tachyzoite and bradyzoite specific inhibitors. This assay will help in finding an 

anti-toxoplasma drug for curing of infection.    
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Chapter 1 Introduction 

The Apicomplexa are a parasitic phylum, comprised of obligate intracellular 

eukaryotes, which can only reproduce inside the cells of their hosts. They are 

distinguished by a unique organelle known as an apical complex. Examples of 

apicomplexan parasites are Plasmodium spp., which cause malaria, Toxoplasma gondii 

(T. gondii), and Cryptosporidium. T. gondii an opportunistic pathogen of humans, with 

three common T. gondii strains associated with human infections: types I, II, and III 

(Howe et al., 1997; Aspinall et al., 2002; Ajzenberg et al., 2009). This thesis will focus 

on T. gondii, including its life cycle, latent infection and treatment.  

T. gondii is a ubiquitous parasite that can infect all tested warm-blooded animals, 

including humans. Its human seropositivity is low for the majority of the planet, but in 

certain areas the seropositivity is as high as 95% (Dubey and Jones, 2008; Kamerkar 

and Davis, 2012; Centers for Disease Control and Prevention, 2015). T. gondii 

seroprevalence varies depending upon dietary habits and contact with felines, its 

definitive host (Kamerkar and Davis, 2012). The Centers for Disease Control (Atlanta, 

GA) (2015) stated that, in the U.S., more than 60 million people are T. gondii 

seropositive. In the United Kingdom, T. gondii seroprevalence is 20-40% in adults (The 

Advisory Committee on Microbiological Safety of Food, 2012; Ho-Yen, 2009). 

Epidemiological studies in Saudi Arabia from 1992 to 2013 showed that T. gondii 

seropositivity ranged between 21% and 53% (Ahmed, 1992; Yaneza and Kumari, 1994; 

Al-Qurashi et al., 2001; Al-Qurashi, 2004; Alqahtani and Hassan, 2012; Eisa et al. 

2013). 

In the Netherlands and the U.S., T. gondii is one of the top seven food-borne pathogens 

(The Centers for Disease Control, 2014 (Centers for Disease Control and Prevention, 

2015; Kamerkar and Davis, 2012). The prevalence is highest in hot, humid climates 

and at lower altitudes. These environmental conditions may favour survival of T. gondii 

oocysts. Meerburg and Kijlstra (2009) predicted that climate change would increase the 

prevalence of T. gondii owing to the higher temperatures, drier summers, and shorter, 

wetter winters.  
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1.1 Toxoplasma gondii life cycle 

The definitive hosts of T. gondii are felines, such as domestic cats. Felines become 

infected upon the ingestion of T. gondii tachyzoites, bradyzoites, or oocysts in the raw 

meat of intermediate hosts, such as mice or birds, (Dubey, 2002; Garcia, 2006) (Figure 

1.1). T. gondii infections in farm animals can cause abortion, creating a major 

economic impact. For example, toxoplasmosis is the major cause of abortion in sheep 

(Louis and Kim, 2013). In the feline gut, the parasite reproduces sexually and the 

unsporulated oocysts shed in the faeces (Figure 1.1). Outside the definitive host, 

unsporulated oocysts transform into sporulated oocysts within 1–5 days (Dubey et al., 

1970). Sporulated oocysts can survive in cool, moist soil for a year or longer (Frenkel, 

1970). Furthermore, the definitive host get infected by ingesting the tachyzoites stage, 

sporulated and unsporulated oocysts.  

 

Figure 1.1. Life cycle and transmission of T. gondii (Adapted from Centers for 

Disease Control and Prevention, 2015). 

The secondary hosts of the parasite are all warm-blooded animals including humans 

(Louis and Kim, 2013) (Figure 1.1). Ingesting the sporulated oocysts from 

contaminated vegetables and water can infect the secondary host, as can eating raw 

meat that contains the cysts. In the secondary host, the parasite replicates asexually, and 
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then passes through the gut wall to other organs, such as the muscles and brain. The 

infection can also be transmitted congenitally from the mother to the foetus. Humans 

can also become infected by transfusion of contaminated blood that contains 

tachyzoites, or transplantation of organ tissue that contains a cyst (Louis and Kim, 

2013). 

1.2 T. gondii morphology and host invasion 

This section will focus on the morphology and organelles of the T. gondii stages found 

in secondary hosts, and the known function of these organelles during infection. 

In the secondary host both tachyzoites and bradyzoites are produced asexually (Figure 

1.1). T. gondii can enter the host cell either by active penetration or by being 

phagocytised (Pulvertaft et al., 1954; Jones and Hirsch, 1972). As a member of the 

apicomplexan family, T. gondii has an apical complex in the anterior end of the parasite 

(Figure 1.2). The apical complex consists of a conoid structure, two polar rings, an 

internal microtubule, and the subpellicular microtubules that are associated with the 

inner membrane complex (Morrissette and Sibley, 2002). The conoid structure consists 

of two apical rings and a spiral of microtubules (Nichols and Chiappino, 1987) (Figure 

1.2). 

 There is a difference in the morphology between tachyzoites and bradyzoites but they 

have the same ultrastructure (Dubey et al., 1998). Tachyzoites have a crescent shape, 

while bradyzoites are more slender. The tachyzoite nucleus was found in the centre of 

the cell, and the amylopectin is either in discrete particles or absent. In bradyzoites, the 

nucleus was found toward the posterior end and contains several amylopectin granules. 

Bradyzoites rhoptries sometimes found looped back on themselves (Dubey et al., 

1998). 

When searching for the host cell and prior to penetration, the conoid of T. gondii 

extends, retracts, and rotates (Chiappino et al., 1984). As the parasite penetrates the 

host cell membrane, it forms a new subcellular compartment in the host cell, termed the 

parasitophorous vacuole (PV). The PV membrane mostly consists of host cell 

membrane (Jones and Hirsch, 1972). During invasion, the rhoptries and micronemes 

(MICs) are released into the nascent PV (Saffer et al., 1992; Dubremetz and 

Schwartzman, 1993; Sibley et al., 1995; Carruthers and Sibley, 1997). The MICs 
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contain microneme proteins and apical membrane antigens (AMAs) (Figure 1.2). MICs 

and AMAs assist the parasite in motility and in building the ring-like complex known 

as the moving junction, which it uses to attach to the host cell (Hehl et al., 2000; Huynh 

et al., 2003; Mital et al., 2005; Huynh and Carruthers, 2006; Kessler et al., 2008).  

The T. gondii rhoptry (Figure 1.2) contains more than 30 proteins, which are divided 

into two groups: rhoptry proteins (ROP) and the rhoptry neck proteins (RON). As 

suggested by their name, RON are found at the neck of the apical tip and ROP are 

located in the body (Leriche and Dubremetz, 1991; Bradley et al., 2005). The RON and 

ROP that have been characterized so far are all kinases, phosphatases or proteases, and 

are generally specific to the Apicomplexa (El Hajj et al., 2006; Gilbert et al., 2007). 

However, many of the ROP physiological roles remain unknown (Bradley et al., 2005). 

As the parasite invades the host cell, the RON4 and AMA1 proteins form the moving 

junction interface between the parasite and host cell (Alexander et al., 2005; Lebrun et 

al., 2005). 

Shortly after invasion, the dense granules (Figure 1.2) secrete their contents into the PV 

(Carruthers and Sibley, 1997). The dense granules contain nine proteins (GRA). After 

invasion, some of the GRAs form a stable complex with the PV membranes (Braun et 

al., 2008). During cell division, a single T. gondii apicoplast (Figure 1.2) is segregated 

into the nucleus, then replicates, maintaining one copy of itself per daughter cell 

(Striepen et al., 2000). Fichera and Roos (1997), showed that T. gondii plastid genome 

was reduced >10 folds during ciprofloxacin treatment compared to untreated parasite, 

and the parasite replication was inhibited. Studies showed that the division of 

ciprofloxacin treated parasite is inhibited immediately upon entry into the second host 

cell (Fichera and Roos, 1997; He et al., 2001). These studies demonstrate that the 

apicoplast is essential for the parasite to be infective. 

Tachyzoites are the fast-replicating stage in the secondary host, during which the 

organism is between 2-6 μm long, and 1-5 μm wide (Dubey et al., 1998; Louis and 

Kim, 2013). This stage causes both acute and reactivated infection (Louis and Kim, 

2013). After that, under pressure from the innate and adaptive immune responses of the 

host, the parasite forms slow-growing bradyzoites, which are 7 μm long and 1.5 μm 

wide, in soft tissues (Dubey et al., 1998; Louis and Kim, 2013). The bradyzoite cyst 

stage is associated with long lasting chronic toxoplasmosis. 
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Figure 1.2. Schematic representation of the basic morphology of T. gondii 

tachyzoites and bradyzoites. The structure of T. gondii is composed of the following: 

nucleus, Golgi complex, mitochondria, apicoplast, rough endoplasmic reticulum, 

amylopectin, dense granules, micronemes, posterior pore, plasmalemma, inner 

membrane complex, and polar rings 1 and 2. This diagram was adapted from the 

schematic drawings of electron micrograph composites of T. gondii by Dubey et al. 

(1998). 

1.3 T. gondii clinical disease  

T. gondii causes acute and chronic toxoplasmosis in humans. Both of these stages are 

mostly asymptomatic in immunocompetent patients (Remington, 1974; Louis and Kim, 

2013). In some patients, acute toxoplasmosis causes cold symptoms or, in rare cases, 

prolonged fever, fatigue, retinochoroiditis, painless cervical lymphadenopathy and 

seizures (Masur et al., 1978; Teutsch et al., 1979; Luft and Remington, 1984; Bowie et 

al., 1997; Benenson et al., 1982; Carme et al., 2009). In chronic toxoplasmosis, 

bradyzoite cysts are found in soft tissues such as the lungs and brain (Louis and Kim, 

2013). Immunocompromised humans with latent toxoplasmosis can suffer from 

meningoencephalitis and mental complications (Flegr et al., 2003).  
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Immunocompromised patients, such as those with Hodgkin’s and non-Hodgkin’s 

lymphoma, leukaemia, solid tumours, Acquired Immune Deficiency Syndrome (AIDS), 

or collagen vascular disease, and post-organ transplant patients can experience acute or 

reactivated toxoplasmosis that is often associated with diffuse encephalopathy, 

retinochoroiditis, meningoencephalitis, and cerebral mass lesions (Louis and Kim, 

2013). Immunocompromised patients infected with T. gondii may also suffer from 

altered mental state, motor impairment, seizures, abnormal reflexes, and other 

neurological symptoms such as disorientation, anxiety, depression and psychosis 

(Arendt et al., 1999; Louis and Kim, 2013).  

Pregnant females infected with T. gondii can suffer from abortion or stillbirth (Louis 

and Kim, 2013). Congenital toxoplasmosis is severe when the mother acquires the 

infection in the first trimester, and the risk of transmission increases during the last 

trimester (Dunn et al., 1999). Infected new-borns may suffer from retinochoroiditis, 

cerebral calcification, and less commonly, hydrocephalus and microcephalus (Louis 

and Kim, 2013). 

1.4 T. gondii host behavioural change 

The manipulation hypothesis phenomenon, is phenomenon where certain parasites can 

alter the host behaviour for their own selective benefit to survive (Poulin, 1995; 

Thomas et al., 2005; Biron et al., 2005). The benefit of this manipulation is that the 

parasite can reach the definitive host, where it replicates sexually and ensures 

continuation of the parasite genes. An example of manipulation hypothesis 

phenomenon have seen in trematode Dicrocoelium dendriticum, that induces infected 

ants to ‘freeze’ at the top of a blade of grass at dusk, enhancing their consumption by 

livestock where it reproduce. Another example is Euhaplorchis californiensis that alters 

the behaviour of the California killifish to increase the likelihood of its consumption by 

birds, which is definitive host (Lafferty and Shaw, 2013). Several studies, summarized 

in the following section, have demonstrated that T. gondii can alter the intermediate 

host behaviour to increase the chances of transmission to cats, the definitive host, in 

order to complete the parasite life cycle (Figure 1.1).   
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1.4.1 Behavioural changes in animals 

Several studies in mice and rats investigated T. gondii’s behavioural effects. Studies of 

mice infected with T. gondii demonstrated that learning capacity and memory were 

decreased compared to uninfected mice, which could be due to the loss of the 

recognition of new or recent stimuli (Piekarski et al., 1978; Witting, 1979). Chronically 

infected mice demonstrated deficient motor coordination and sensory response 

(Gulinello et al., 2010). Studies showed that naturally infected wild rats either became 

more active (Webster, 1994) or remained longer (p= 0.0001) in new and unprotected 

areas compared with uninfected rats (Webster et al., 2006). Hrdá et al. (2000) 

demonstrated an increased peak reaction time in T. gondii infected mice. Vyas et al. 

(2007a) observed that mice infected by T. gondii showed a greater reduction of learning 

ability than infected rats. In a review by Webster (2007), it was suggested that the 

higher invasion of T. gondii in the brains of mice than in rats during the latent infection 

stage could be associated with the decreased learning capacity.  

Wild rats are neophobic, which means that they are innately sensitive to new stimuli, a 

trait that helps them avoid capture or being poisoned. It is well documented that both 

wild and laboratory rats have an innate aversion to cats (Blanchard et al., 2001; 

Dielenberg et al., 2001). Conversely, T. gondii infected wild rats showed indifference 

to new stimuli, which subsequently made them less responsive to cat sounds, scent, and 

sight (Webster, 1994). Further, Berdoy et al. (2000) showed T. gondii infected rodents 

were attracted to an area treated with cat scent more than an area treated with non-

predator rabbit urine; the opposite of the reaction observed in uninfected rodents. Vyas 

et al. (2007a) also showed that T. gondii infected rats and mice were attracted to cat 

urine. All of these behavioural changes make it easier for cats to capture infected mice 

and rats, thus completing the parasite’s life cycle by infection of the definitive host, 

cats, and allow subsequent reproduction of the parasite (Figure 1.1). 

Meanwhile, some researchers have speculated whether these behavioural changes in 

rodents were specifically due to T. gondii infection or if they were a general reaction to 

illness. Webster et al. (1994) demonstrated that the loss of neophobia in infected rats 

had no relation to sex, weight, age, hunger or general body condition. Another study 

compared infections by T. gondii and other pathogens, including Leptospira spp., 

Cryptosporidium parvum, Coxiella burnetti, Hymenolepis nana, and Syphacia muris in 
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infected and uninfected rats, and the results showed that only the rats infected with T. 

gondii demonstrated higher activity levels than uninfected animals (Webster, 1994). 

In (1995), Berdoy et al., showed that social status and mating success did not change in 

rodents that were congenitally infected with T. gondii. This result led to the conclusion 

that T. gondii affects the host in specific ways that benefit the parasite life cycle 

(Berdoy et al., 1995). Vyas et al. (2007a) observed changes in innate aversion, anxiety, 

and learned fear during T. gondii infection in rats, since the neuronal circuits involved 

in these three traits overlap in the brain. The same study also showed that T. gondii 

infected rats learning fear, anxiety-like behaviour, olfaction or non-aversive learning 

had no or very little change. Furthermore, the infected laboratory rats had higher loss of 

aversion to a moderate amount of cat urine (1 mL) than smaller or larger amounts (0.5 

through 2.5 mL) (Vyas et al., 2007a). All these studies demonstrated that the parasite’s 

ability to affect behavioural change is specific and not due to generalised illness 

(Berdoy et al., 1995; Vyas et al., 2007a; Vyas et al., 2007b). 

1.4.2 Behavioural changes in humans  

As previously mentioned, latent or acquired toxoplasmosis in immunocompromised 

patients can cause mental and neurological disorders. Human T. gondii seropositivity 

have been linked with mental disorders including schizophrenia, Parkinson’s disease, 

obsessive compulsive disorder (OCD), and Tourette’s syndrome. Celik et al. (2010) 

found no significant difference in T. gondii seropositivity between Parkinson’s patients 

and healthy individuals. However, in the same year, Miman et al. (2010) found that T. 

gondii seropositivity was 19% higher in patients with Parkinson’s compared to healthy 

individuals (p = 0.006). Meanwhile, both Carrazana et al. (1989) and Murakami et al. 

(2000) study showed that the symptoms of Parkinson’s disease were reduced in two T. 

gondii positive AIDS patients when treated with anti-parasitic drugs. Further 

supporting this link, anti-parasitic treatment reduced the symptoms of T. gondii 

seropositive OCD patients (Brynska et al., 2001).  

In 2010, links between T. gondii infection and personality disorders were evaluated in 

896 psychiatric patients the primary diagnoses of schizophrenia, major depression, 

schizoaffective, or bipolar disorder. These patients were compared to 214 

psychiatrically unaffected controls (Hinze-Selch et al., 2010) and it was found that 

personality disorder was significantly associated with T. gondii infection in people aged 
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more than 45 (P= <0.001) and individuals who consumed raw or undercooked meat 

(P= 0.05) (Hinze-Selch et al., 2010). Meanwhile, a study of 36 Tourette’s syndrome 

patients found that they had higher levels of T. gondii antibodies compared to 30 

healthy individuals (P<0.07) (Krause et al., 2010). Furthermore, T. gondii 

immunoglobulin G seropositivity was found to be higher in Alzheimer’s patients (p= 

0.005) (Kusbeci et al., 2011). A large study by Pearce et al. (2012) linked bipolar 

disorder and T. gondii infection (n=41; adjusted OR: 2.4; 1.2– 4.8; p < 0.05), but 

established no link between the parasite infection and history of major depression 

(n=574- OR 0.8), severe major depression (n = 515- OR: 0.8), dysthymia (n= 548- OR: 

1.1), or dysthymia with comorbid major depression (n =242- OR: 1.2), these results had 

a p values were > 0 .05. In (2014), Dickerson et al. found a link between T. gondii IgM 

antibodies and low cognitive functioning in bipolar disorder patients (n= 347) and 

individuals without a psychiatric disorder (n= 352). On the other hand, Fond et al. 

(2015) demonstrated that giving toxoplasmosi treatment to T. gondii positive bipolar 

patients helped reduce their depression compared to similar patients who did not 

receive anti-toxoplasmosis treatment. 

Studies have shown that latent toxoplasmosis in immunocompetent patients causes 

behavioural alterations similar to those in rodents, namely, altered personality (Flegr et 

al., 1996; Flegr, 2007) and increased reaction times in simple computer reaction tests 

(Havlicek et al., 2001). In addition, patients with latent toxoplasmosis were found to 

have 2.65 times more at risk of being involved in a car accident compared to non-

infected individuals (Flegr et al., 2002; Flegr et al., 2009). Increased reaction time in T. 

gondii patients could explain the higher risk of being involved in car accidents, 

although this hypothesis was not formally tested. 

Several studies have established a link between suicide and T. gondii seropositivity. 

Arling et al. (2009) found that T. gondii seropositive patients with recurrent mood 

disorder who attempted suicide (n=99) had higher T. gondii antibody titres than those 

who did not attempt suicide (n=119) (p < 0.004). A study in Turkey also linked history 

of suicide attempts with T. gondii seropositivity (p = 0.004) (Yagmur et al., 2010). A 

strong association between suicide in postmenopausal women and T. gondii infection 

was also found (P < 0.05) (Ling et al., 2011). Other studies also linked T. gondii 

seropositivity with schizophrenia (Yolken et al., 2001; Torrey and Yolken, 2003; 
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Niebuhr et al., 2008). Yolken et al. (2001) found that first-episode schizophrenia 

patients (n=38) had increased levels of immunoglobulin (Ig) G, M, and A to 

Toxoplasma proteins compared to healthy control subject (n=27) (p < 0.02). 

A meta-analysis of 42 papers from 15 countries demonstrated a link between T. gondii 

antibody measurement and schizophrenia, and indicated that T. gondii infection has a 

stronger association with schizophrenia than genetic or environmental factors (Torrey 

et al., 2007). Another study found that schizophrenia patients undergoing antipsychotic 

treatment had lower IgG antibody levels to T. gondii compared to non-treated patients 

and non-schizophrenic controls (Leweke et al., 2004).  

T. gondii brain infection and schizophrenia affect similar populations of glial cells, 

particularly astrocytes that are lost (Cotter et al., 2001). In addition, hydrocephalus and 

increased ventricular size have been seen in foetal T. gondii infections and 

schizophrenia patients (Torrey and Yolken, 2003). Meanwhile, children whose mothers 

had elevated IgM for T. gondii shortly before birth later developed schizophrenia 

(Torrey and Yolken, 2003). All these studies support the suggestion that T. gondii 

infection is linked with human mental disorders. The question is how? 

1.5  Proposed mechanisms for the behavioural changes 

The studies summarised in section 1.4.1 provided evidence that T. gondii manipulates 

the intermediate host for its own benefit. But, the mystery is how T. gondii infection 

causes changes in the intermediate host behaviour. A review by McConkey et al. 

(2013), proposed that the parasite could be expected to have a gene or genes to aid it in 

conducting this behavioural change and increase the chances of predation of the 

intermediate host by a cat. On the other hand, Webster (2007) proposed that T. gondii 

might affect the behaviour either through the host immune response (1.5.1), the 

histopathological location (section 1.5.2) of the parasite in the brain, and/or 

neuromodulatory changes (section 1.5.3) during infection.  

1.5.1 Immune response  

This section will start with a brief summary of the immune response against T. gondii 

infection, and then will discuss the studies that support the suggestion that the immune 

response to T. gondii could alter the host behaviour.  
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T. gondii commonly causes human infection through the ingestion of contaminated 

food. In the intestine, the parasite crosses the intestinal epithelium to infect enterocytes. 

The infected enterocytes go through physiological and morphological disturbances, and 

can secrete cytotoxic molecules such as nitric oxide (Yap and Sher, 1999). After 

replication of the parasite, the host enterocyte ruptures and parasites are released. Then 

the parasite disseminates to other tissues by infecting the circulating host macrophages 

or CD11c+ dendritic cells (Da Gama et al., 2004; Courret et al., 2006). The initial 

immune response to the infection involves the release of interleukin 2 (IL-2) from 

macrophages, neutrophils and dendritic cells. IL 2 will result in the activation T cells, 

and release of interferon γ (IFNγ), and activation of CD8+ killer cells (Gazzinelli et al., 

1993; Pfefferkorn and Guyre, 1984; Munoz et al., 2011). Maes et al. (1994) showed 

that patients with major depression have high INFγ compared to normal control 

subjects. However, there was no significant relationship between T. gondii infection 

and major depression (Pearce et al., 2012) (see section 1.3.2).  

One of the host immune responses to suppress T. gondii and to keep it dormant is 

through an increase in cytokine levels such as interferon (Figure 1.3). During brain 

infection, IFNγ is produced to activate macrophages and lymphocytes (Denkers and 

Gazzinelli, 1998). IFNγ production lowers tryptophan levels by the activation of 

indoleamine 2, 3-deoxygenize (IDO), causing tryptophan starvation (Pfefferkorn et al., 

1986) (Figure 1.3). Low tryptophan level might affect serotonin level, since tryptophan 

hydroxylation is the rate-limiting step for serotonin biosynthesis (Walther et al., 2003), 

Meanwhile, study by Söderpalm et al. (1989) showed that serotonin receptor 

antagonists (buspirone , gepirone, ipsapirone, 8-OH-DPAT,  and L-5-HTP) lowered 

anxiety in rats during exploring a new environment in open spaces. Their result might 

give a clue on how IFNγ production and tryptophan starvation are linked to the loss of 

anxiety in rats (through serotonin depletion) during T. gondii infection. On other hand, 

Xiao et al. (2014) found an increased serotonin level in the brain during acute 

toxoplasmosis in mice. The increase in serotonin could be due to the cytokines IL6 and 

IL1 being produced in the brain by the host immune response and increasing 

tryptophan (Figure 1.3) (Dunn, 1988; Wang and Dunn, 1998).   
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Figure 1.3. Brain T. gondii infection and immune response. IL2, which is secreted 

as a response to T. gondii infection, has been found to increase brain DA levels. INF-γ 

will then be produced, which will activate IDO, which breaks down tryptophan to 

kynurenine, then kynurenine can be degraded to kynurenic acid, quinolinic acid, and 

hydroxykynurenine. Kynurenic acid blocks both NMDA and α-7nACh. Quinolinic acid 

is known to cause brain lesions.  

IDO catabolises tryptophan to kynurenine (Pfefferkorn et al., 1986); then, kynurenine is 

degraded into hydroxykynurenine and either quinolinic acid or kynurenic acid (Figure 

1.3) (Schwarcz, 2004). Schwarcz et al. (1983) found that intracerebral injections of 

quinolinic acid in rats caused excitotoxic lesions (Figure 1.3). Meanwhile, kynurenic 

acid is an antagonist for excitotoxic N-methyl-d-aspartate (NMDA) receptor and α-7 

nicotinic acetylcholine (α-7nACh) (Figure 1.3) (Schwarcz and Pellicciari, 2002). 

NMDA and α-7nACh receptors are underlie learning, memory, and other 

manifestations of synaptic plasticity (MacDonald et al., 2006; Albuquerque et al., 

2009). Sathyasaikumar et al. (2011) demonstrated that kynurenine 3-monooxygenase, 

which converts L-kynurenine to hydroxykynurenine in microglial cells, has lower 

expression levels and enzymatic activity in schizophrenic patients.  



 
 

13 

 

Waguespack et al. (1994) found that IL-2 can cross the blood-brain barrier. 

Furthermore, insertion of IL-2 into either the frontal or the central region of mouse 

brains causes novelty-induced locomotion, and increased activity during maze training 

(Petitto et al., 1997; Zalcman, 2001), which is similar to the behaviour observed in T. 

gondii-infected rats. It has been established that IL-2 level was elevated in the 

cerebrospinal fluid of schizophrenia patients, and it was suggested that IL-2 might 

increases increased dopaminergic neurotransmission (Figure 1.3) (Licinio et al., 1993). 

It has been found that IL-2 increases climbing behaviour in mice, and it is linked to DA 

D1 and/or D2 receptor (Zalcman, 2002). Furthermore, schizophrenia patients treated 

with haloperidol have reduced levels of IL-2, and IL-2 levels increased when 

haloperidol treatment was stopped (McAllister et al., 1995).  

Nevertheless, the exact mechanisms connecting toxoplasma brain infection, IL-2, and 

increased DA are not clear. This also applies to T. gondii infection, IL-2, increased DA 

in the brain, and behavioural changes. Do all pathogens with some link to 

schizophrenia affect IL-2? This would contradict the finding that the altered behaviour 

prompted by T. gondii is specific to completing its life cycle (in section 1.3.1). The 

studies in this section show the indirect immune response during T. gondii infection, 

but didn’t fully explain how the infection causes specific behavioural alteration.  

1.5.2  Histopathological location of T. gondii  brain cyst 

T. gondii cysts in the brain induce a granulomatous inflammatory response, progressive 

depositions of necrotic material, and subsequent vesicular occlusion, which may 

influence neuronal function or cause neurodegeneration (Werner et al., 1981). This 

section includes localisation studies that support the hypothesis that T. gondii can alter 

the intermediate host behaviour as a result of the its location within the host brain.  

Hematoxylin and eosin staining of T. gondii cysts in chronically infected rat brains 

showed that the amygdala had a high density of cysts (Figure 1.4) (Vyas et al., 2007a). 

Hermes et al. (2008), using immunostaining of chronically infected T. gondii mouse 

brains, found increased cyst numbers in the cortex and the diencephalon, the region 

which contains the thalamus (p= 0.0012). Other studies have found that T. gondii 

infects most of the brain sections, and there are other brain areas with high cyst 

numbers. Gonzalez et al. (2007) found that T. gondii cysts predominantly (p < 0.05) 
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invaded the limbic areas. Also, this study found the largest parasites cyst and clusters in 

the nucleus accumbens and ventromedial hypothalamic nucleus (p < 0.05) (Figure 

1.3)(Gonzalez et al., 2007). 

Using bioluminescence imaging technology, Di Cristina et al. (2008) localised T. 

gondii that express luciferase under the control of a bradyzoite-specific promoter in 

mouse brains. They found that there were luminescent clusters in the cerebral cortex, 

colliculi, cerebellum and olfactory bulbs (Figure 1.4) (Di Cristina et al., 2008). Another 

study found a higher accumulation of cysts in olfactory bulb, the entorhinal, 

somatosensory, motor and orbital, frontal association and visual cortices, and, 

importantly, the hippocampus  (P < 0.001) (Figure 1.4) (Berenreiterova et al., 2011).  

The broad distribution of locations where T. gondii cysts may form within the host 

brain raises the question of whether cyst formation functions to directly affect 

behaviour by interfering with functions of specific areas, or if there are more general 

mechanisms at play. For instance, effects on fear-based behaviours and anxiety may be 

mediated by cysts in regions such as the amygdala and the limbic system of the 

hypothalamus, which plays a role in natural anxiolytic mechanisms. Blanchard and 

Blanchard (1972) showed that rats with lesions in the amygdala lack fear of cats (p < 

0.001), which is similar to the behaviour observed in T. gondii-infected rats, as 

mentioned in section 1.4.1. Meanwhile, the retro hippocampus subiculum and 

entorhinal cortex regions of the nucleus accumbens play a role in psychomotor 

behaviour, and it is known that altered brain psychomotor are involved in the aetiology 

of schizophrenia (Chiarenza et al., 1985; Gray et al., 1991). The hippocampus is 

involved in anxiety, learning, and memory (Prandovszky et al., 2011). In contrast, 

Gulinello et al. (2010) observed behavioural change (p < 0.005) in chronically infected 

mice without major brain damage or cognitive dysfunction (see section 1.4.1). This 

contradicts the finding that T. gondii-associated behavioural changes are caused solely 

by general types of brain damage resulting from encystation, and supports the 

suggestion of the manipulation hypothesis, which says that the behavioural changes in 

the intermediate host are moderated by a parasite-specific effect. 
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Figure 1.4. T. gondii cyst localization in murine brain. Schematic representation of a 

midsagittal section of a murine brain, showing T. gondii cyst location throughout the 

brain during chronic toxoplasmosis. The highest number of T. gondii cysts was in the 

olfactory bulb, cerebral cortex, hippocampus, thalamus, cerebellum and amygdala 

(highlighted in dark red). (Studies that provided data for this figure are Gonzalez et al., 

2007; Vyas et al., 2007a; Di Cristina et al., 2008; Berenreiterova et al., 2011).  

Electron microscopy (EM) of the brains of chronically infected mice, aged three, six, 

and twelve months, found that T. gondii cysts were mostly present in the neurons 

(~90%) (Ferguson and Hutchison, 1987a). Meanwhile, Sims et al. (1989) demonstrated 

that the cysts were not found in neuroglial cells in the brains of chronically infected 

mice using EM. Gonzalez et al. (2007) stained the cyst with hematoxylin and eosin and 

found it in neurons and astrocytes adjacent to neuronal nuclei. Melzer et al. (2010) 

studied the location of Toxoplasma cysts in neuron and astrocytes using 

immunostaining. The cyst wall was stained with fluorescein isothiocyanate (FITC) with 

Dolichos biflorans, the neurons was detected using  antibody to microtubule associated 

protein, and the astrocytes was detected using antibody to the astrocyte specific 

intermediate type cytoskeletal protein. They found that T. gondii cyst found mostly in 

neurons (57 cysts; 33 positively identified as neurons) and astrocytes in T. gondii-

infected mice brains. The same study also found astrocyte interactions with neuronal 

cysts. Finding T. gondii in neuronal cells of infected brains raises the possibility that 

direct neuromodulation can result in host behaviour changes.  
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1.5.3 Neuromodulation mechanism 

One of the mechanisms proposed to explain T. gondii’s behavioural effect is altered 

DA regulation (Stibbs, 1985; Torrey and Yolken, 2003; Webster et al., 2006; Gaskell et 

al., 2009; Prandovszky et al., 2011). As mentioned before in section 1.4.2 several 

studies linked T. gondii infection with human neurological diseases such as 

schizophrenia (Torrey et al., 2007). Both schizophrenia and T. gondii infections are 

characterised by high DA levels (Stibbs, 1985; Torrey and Yolken, 2003). 

Both, T. gondii replication and invasion were inhibited by the antipsychotic medication 

haloperidol and the mood stabilizer valproic acid, according to Jones-Brando et al. 

(2003), who suggested that this inhibition was due to prevention of calcium entry into 

the cells, which is needed by the tachyzoites for invasion (Jones-Brando et al., 2003). 

This inhibition could also be due to direct antipsychotic action on the D2 DA receptor 

(Seeman et al., 1997). Another study showed a reduction in altered behaviour among 

four groups of T. gondii infected rats that were treated with either haloperidol or 

valproic acid combined with pyrimethamine and dapsone, standard anti-T. gondii 

agents used in rodents and humans (Webster et al., 2006). All experiment rat were 

euthanased, and fluorescence staining of their brain showed that the number of 

immunohistochemically T. gondii positive neurons and ganglia were decreased, 

especially with haloperidol treatment (Webster et al., 2006). 

Another study demonstrated that treating chronically T. gondii-infected mice with 

vanoxerine, a DA uptake inhibitor (GBR-12909, 1-[2-[bis (4-fluorophenyl) methoxy] 

ethyl]-4-(3-phenylpropyl) piperazine), prevented the behaviour alteration of reduced 

board hole exploration in infected males, compared to control infected mice (Skallova 

et al., 2006). These studies demonstrate that T. gondii affects the intermediate host by 

affecting DA levels in the brain. 

In (1985), Stibbs used high-performance liquid chromatography (HPLC) to study the 

concentrations of DA, homovanillic acid, and norepinephrine in the brains of mice 

acutely and chronically infected with a virulent type I strain of T. gondii. In the acute 

stage, homovanillic acid levels increased by up to 40%, while norepinephrine was 

reduced by as much as 28%. No change was found in DA levels during the acute stage. 

Meanwhile, in chronic toxoplasmosis, the total brain DA level was elevated by 14% 
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relative to that in uninfected mice, although there was no change in serotonin levels 

(Stibbs, 1985). It is worth mentioning that an altered brain dopamine (DA) level during 

latent T. gondii infection was found by only one group (Stibbs, 1985) and this finding 

has not yet been reproduced. The change in DA levels during the chronic stage were 

not found in mice that were congenitally infected with the less virulent type III strain of 

T. gondii (Goodwin et al., 2012).  

Tyrosine hydroxylase is the rate-limiting step in production of DA and catecholamines. 

TH transforms tyrosine into L-dihydroxyphenylalanine (DOPA) (Figure 1.5) (Flatmark 

and Stevens, 1999). Then, DOPA-decarboxylase (DDC) in dopaminergic neurons 

transforms L-DOPA into DA (Figure 1.5). Gaskell et al. (2009) found that T. gondii 

have two nearly identical genes that encode two aromatic amino acid hydroxylase 

enzymes, TgAaaH 1 and 2. These enzymes catalyse the hydroxylation of both 

phenylalanine and tyrosine (Figure 1.5). TgAaaH 1 and TgAaaH 2 has to two- to three-

fold affinity for tyrosine (Gaskell et al., 2009). On the other hand, the parasite enzyme 

was unable to convert tryptophan to serotonin, so it does not have tryptophan 

hydroxylase activity. 

 Gaskell et al. (2009) also found that TgAaaH 1 is expressed constitutively, whereas 

TgAaaH 2 expression increases during bradyzoite conversion. The differences in gene 

expression raise the question of whether the product(s) of TgAaaH 1 and TgAaaH 2 are 

each needed specifically in the tachyzoite or bradyzoite stage. Knockout of TgAaaH 2 

genes in T. gondii did not affect the parasite growth, but TgAaaH 1 and double-

knockout mutants could not be isolated (Wang et al., 2015). Hence, TgAaaH may have 

multiple functions during infection. Wang et al. (2015) found the levels of DA was not 

change during PC12 infection. These cells were stressed with high pH disabling the 

host machinery and direct measures of enzyme activity were not performed. 

The TgAaaH enzyme genes are predicted to encode a signal peptide, which could be 

involved with transporting or secreting the enzyme (Gaskell et al., 2009). Prandovszky 

et al. (2011), demonstrated through immunostaining using DA antibodies and tyrosine 

hydroxylase antibodies that the cysts in the brains of mice chronically infected with T. 

gondii had high levels of DA and TgAaaH. The staining was not disrupted by 
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competition from exogenous serotonin. Also, it was found that infected dopaminergic 

neuronal cells produced a hundredfold more DA than non-infected cells.  

A study by Martin et al. (2015), showed that the levels of DDC (also known as 

aromatic-L-amino-acid decarboxylase) did not change in T. gondii infected neuronal 

cells. Also, staining infected mouse brain tissue and neuronal cells with anti-DDC 

antibodies demonstrated that DDC was found within the intracellular parasite cysts. All 

these studies demonstrate that T. gondii has the ability to increase DA, which might 

alter dopaminergic neurotransmission and subsequently result in altered host behaviour. 

However, the level of DA that will significantly affect the host neural processes 

remains unknown. 

Xiao et al. (2014) studied the regulation of microRNAs in T. gondii infected human 

neuroepithelioma, and in mouse brains with acute infection. MicroRNAs (miRNAs) are 

noncoding RNA sequences that are involved in organizing the activity of multiple 

genes within biological networks, including neurodevelopment and adult neuronal 

processes. An upregulation in miRNA-132 was found in both human neuroepithelioma 

and mouse brains (Figure 1.5). MiRNA-132 is regulated by cyclic adenosine 

monophosphate-responsive element binding (CREB). Using target prediction and 

pathway enrichment analysis of the T. gondii infected mice transcriptome, miRNA-132 

was found to be involved with downregulation (> 2 folds) of 20 genes, and some of 

these genes related to DA receptor signalling (Xiao et al., 2014).  

Also in the Xiao et al. (2014) study, found that the brains of acutely infected mice had a 

decrease in the expression of D1-like dopamine receptors (DRD1 and DRD5) (Figure 

1.5). Also, there was a decrease in monoamine oxidase A, which catalyses oxidative 

deamination of amines, and intracellular proteins, which are involved with the 

transduction of DA-mediated signalling (phosphorylation at threonine 34 and serine 97 

by the gene DARPP-32). This study also showed that the metabolism of DA was 

decreased while 5-hydroxytryptamine metabolism was unchanged. High performance 

liquid chromatography demonstrated an increase in the concentrations of DA and its 

metabolites, serotonin and 5-hydroxyindoleacetic acid (Xiao et al., 2014).  
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Figure 1.5. Altered neuromodulation pathway during brain infection by T. gondii. 

Increased DA was found within  the brain T. gondii cysts. DA synthesis begins when 

phenylalanine is hydroxylased to tyrosine. Then, tyrosine is hydroxylased to L-DOPA. 

In T. gondii, these two steps catalysed  with the same enzyme TgAaaH. T. gondii 

utilises the host dopa-decarboxylase to convert L-DOPA to DA. In T. gondii-infected 

brains, the distribution of GAD67 becomes diffuse in the neuropil instead of clustered 

at pre-synaptic termini. GAD67 involved in GABA biosynthesis. Infected brains have 

increased expression of microRNA-132, which subsequently cause a down regulation 

of gene involved  in DA receptor signaling. 

T. gondii brain infection found to indirectly effect γ-aminobutyric acidic (GABA), 

which is an inhibitory neurotransmitter. The effect on GABA might be part of the 

mechanism in which the parasite alters the brain neuromodulation process to induce the 

intermediate host behavioral change. Brooks et al. (2015) studied glutamic acid 

decarboxylase 67 (GAD67) in the brains of mice infected with type II T. gondii. The 

study showed that T. gondii infected brains had a more diffuse localization of GAD67 

throughout the neuropil instead of GAD67 clustering at the pre-synaptic termini 

(Brooks et al., 2015) (Figure 1.5). GAD67 is involved in GABA biosynthesis (Figure 

1.5). A study on mice with GAD67 -/- and GAD67 +/- found that they had 20 % less 

GAD activity and 7% GABA content (P < 0.01) compared to wild mice. Further,  mice 

with GAD67 -/- died the morning of their birth, while GAD67 -/+ mice survived and 



 
 

20 

 

had no neurological disorders (Asada et al., 1997). Crestani et al. (1999) found that 

mice with genetically modified (heterozygous mutant) GABAA receptor γ
2
 subunits, 

which had reduced GABAA mainly in the hippocampus and cerebral cortex, were less 

inhibited by natural aversive stimuli. This altered behaviour is similar to that observed 

in T. gondii infected mice. In mice, the hippocampus and cerebral cortex were also 

found to have high numbers of cysts during latent infection (see section 1.5.2) 

(Berenreiterova et al., 2011).These studies coincide nicely with observations of seizures 

in patients with toxoplasmosis (Arendt et al., 1999).  

1.6 Toxoplasmosis treatment  

The treatment for toxoplasmosis varies depending on the patient age, immune 

competence, and severity of the symptoms. For pregnant patients, it also depends on 

whether the infection is recently acquired or latent. In some cases, no treatment is 

advised for patients as they will recover with time. These cases are immunocompetent 

patients with acute toxoplasmosis (with symptoms of adenopathy, with or without mild 

fever or malaise) or for asymptomatic latent infection (Klinker et al., 1996; Louis and 

Kim, 2013). Similarly, ocular toxoplasmosis usually does not require treatment since it 

is a self-limiting disease (Holland and Lewis, 2002; de-la-Torre et al., 2011a).  

If treatment for toxoplasmosis is advised, the drugs most commonly are antifolates such 

as sulfadiazine, sulfathiazole, and pyrimethamine (Figure 1.6) (Weiss et al., 1992; 

Wong and Remington, 1994; Klinker et al., 1996). Pyrimethamine and sulfadiazine are 

given to severely infected immunocompetent patients, for example, in case of 

myocarditis, encephalitis, sepsis syndrome with shock, and hepatitis (Klinker et al., 

1996; Louis and Kim, 2013). This drugs combination also given in cases of active 

toxoplasmosis or encephalitis in immunocompromised patients with AIDS and 

Hodgkin’s disease (Klinker et al., 1996; Louis and Kim, 2013). While ocular 

toxoplasmosis may not need to be treated, for active chorioretinitis and active choroidal 

neovascular membrane, pyrimethamine and sulfadiazine with or without corticosteroids 

are used to minimize the potential for damage to the retina and optic disc (Holland and 

Lewis, 2002; de-la-Torre et al., 2011a; Louis and Kim, 2013). 
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Figure 1.6. Mode of action of current treatment for toxoplasmosis. The most 

common treatment is pyrimethamine and sulfadiazine. Both act on folate biosynthesis 

and subsequently affect DNA synthesis. In cases of intolerance or resistance to 

pyrimethamine and sulfadiazine, atovaquone is given. Atovaquone targets the 

cytochrome bc1 complex in the mitochondria. Sipramycin is the choice of treatment for 

pregnant women and it targets the apicoplast in T. gondii.  

For infection during pregnancy, pyrimethamine and sulfadiazine are used to treat 

toxoplasmosis infection acquired after the 24 weeks of gestation or for confirmed foetal 

infection (Wong and Remington, 1994; Louis and Kim, 2013). If the mother acquired 

the infection during the first 18 weeks of gestation and no infection was found in the 

amniotic fluid, spiromycin is the drug of choice (Desmonts and Couvreur, 1974; Wong 

and Remington, 1994). Sipramycin targets the apicoplast (Figure 1.6)(Wiesner et al., 

2008), and is non-toxic to the foetus because it cannot cross the placenta (Louis and 

Kim, 2013). If the patient acquired the infection before pregnancy, the parasite is not 

transmitted to the foetus and no treatment is required (Louis and Kim, 2013).  
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In patients with sulfonamide intolerance, the alternatives are clindamycin, 

clarithromycin, or trimethoprim with pyrimethamine (Derouin et al., 1992; Meneceur et 

al., 2008; Louis and Kim, 2013). For patients who are intolerant or resistant to 

pyrimethamine and sulfonamide, atovaquone is given instead (Kovacs, 1992; Romand 

et al., 1993; Jacobson et al., 1996; Chirgwin et al., 2002). Atovaquone treats 

toxoplasmosis by acting on the cytochrome bc1 complex (Figure 1.6). Unfortunately, 

atovaquone resistance has also been reported (Baatz et al., 2006). Meanwhile, none of 

these treatments can clear toxoplasma infection in patients since they are not active 

against the bradyzoites (cyst in tissues) stage. Therefore, a new drug that targets both 

the tachyzoites and bradyzoites stages would be of a great benefit to patients. 

1.7 Conclusion to introduction and statement of research questions  

T. gondii is a unique parasite, because it can infect all warm-blooded animals and 

humans. As a result of this unique trait, infection by the parasite is found almost all 

around the world. However, the parasite’s only definitive hosts are members of the 

feline family. Laboratory studies described in section 1.4.1 showed that T. gondii alters 

behaviour in mice and rats, which might increase their predation by cats and, 

consequently, further the completion of the T. gondii life cycle (Piekarski et al., 1978; 

Witting, 1979; Webster, 1994; Webster et al., 2006; Hrdá et al., 2000;  Berdoy et al., 

2000; Vyas et al., 2007a; Gulinello et al., 2010). Meanwhile, it would be interesting to 

confirm, in nature, whether the parasite increases predation of the intermediate host by 

felines.  

In humans, T. gondii seropositivity has been linked with mental disorders such as 

schizophrenia, OCD, Parkinson’s disease, bipolar disorder and Tourette’s syndrome 

(Brynska et al., 2001; Torrey et al., 2007; Krause et al., 2010; Miman et al., 2010; 

Hinze-Selch et al., 2010; Kusbeci et al., 2011). Most of these studies compared the 

seropositivity for the parasite between healthy individuals and patients with mental 

disorders. However, the design of the studies was biased, because mentally ill patients 

may have had a higher chance of acquiring the infection when compared to healthy 

individuals who were better able to care for themselves. 

Toxoplasma infection in humans has no cure, and awareness of T. gondii infection is 

low (Li et al., 2014; Chandrasena et al., 2016). The low awareness could be because 
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both acute and chronic infections are asymptomatic in immunocompetent individuals. 

However, in immunocompromised patients, infants, and, sometimes, patients with 

ocular infections, the parasite infection is severe (Louis and Kim, 2013). Therefore, 

finding a cure to T. gondii infection is vital. Furthermore, curing the parasite infection 

in patients with mental disorders would help to establish whether the parasite is the 

cause of the mental symptoms.  

It is still unclear how the parasite affects the host behaviour. The parasite causes rats to 

become unafraid of cats, and both mice and rats are attracted to cats (Berdoy et al., 

2000; Vyas et al., 2007a). The question is why the parasite alters human behaviour. 

Does the parasite effect the human brains differently (manifesting as a mental disorder) 

because human brains are larger and more sophisticated, or because humans are not 

naturally afraid of cats. 

Webster (2007) suggested that the parasite might change behaviour indirectly through 

the immune response, directly through its location in the brain during the latent 

infection, or by altering the brain neuromodulation pathways, but research (1.5.1 and 

1.5.2) on the chronic infection has not provided a clear link between the immune 

response or the parasite location with the altered behaviour. 

Several studies have linked chronic T. gondii infection and altered neuromodulation 

pathways. In chronic brain infection, the cysts are mostly found in neurons (Ferguson 

and Hutchison, 1987a; Melzer et al., 2010), and there was an increase in DA within the 

cyst (Prandovszky et al., 2011). The parasite’s ability to increase DA was due to the 

activity of two TgAaaH enzymes (1 and 2) (Gaskell et al., 2009). TgAaaH can 

hydroxylate tyrosine to L-DOPA, which is the rate-limiting step of DA biosynthesis 

(Gaskell et al., 2009). 

Still, whether the parasite synthesizes DA from L-DOPA through DDC enzyme activity 

is unclear. TgAaaH 2 was expressed more in the bradyzoite stage (Gaskell et al., 2009), 

and a TgAaaH knockout strain did not survive (Wang et al., 2015). These results 

suggest that TgAaaH could be involved in vital functions other than providing DA. 

Studies (1.5.3) into the latent parasite infection and its effect on the brain 

neuromodulation pathway have not provided a clear answer on how the parasite alters 

behaviour. Further, no studies have linked increased brain DA levels during latent T. 

gondii infection and altered behaviour.  
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This thesis focused on the following questions regarding T. gondii latent infection 

(bradyzoite cysts in the brain): 

1. During T. gondii infection, does the parasite show DDC activity that is involved 

in DA synthesis?  

2. Where can the TgAaaH enzyme be found during infection, and how does it 

correlate with the parasite increasing DA during latent infection? 

3. Can the products of TgAaaH (L-DOPA and DA) be involved in synthesis of the 

cyst wall through formation of dopa-quinone by the dopa-oxidase enzyme?  

4. Is it possible to develop a bradyzoite-specific drug-screening assay to detect 

drugs that are active against this stage of the parasite?  

The following chapters attempt to answer these questions. 
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1.8 Aims 

This thesis has two aims. The primary aim is to understand more about TgAaaH 

function and DA synthesis during T. gondii infection, and how they may take part in 

the mechanisms by which T. gondii affect the behaviour of the intermediate host. A 

secondary aim is to develop a novel culture media that induces T. gondii differentiation 

into the cyst stage, and development of a novel screening assay intended to identify 

potential drugs that can prevent that stage.  

1.9 Objectives  

The primary aim was achieved in Chapter 2 by investigating the following:  

1. Evaluated DDC activity presence in T. gondii by in-vitro testing of DA 

production in T. gondii. 

2. Investigated the role of TgAaaH in tachyzoite cyst wall formation by in-vitro 

testing of dopaquinone activity in T. gondii.  

3. Documented cellular localisation of TgAaaH and DDC during T. gondii 

infection. 

The second aim was addressed in Chapter 3 and 4 by the following: 

1. Preparation of tryptophan depleted Dulbecco’s modified Eagle medium 

(TD-DMEM), which is the culture media was intended to induces T. gondii 

differentiation. 

2. Documented T. gondii ΔKU80-GFP growth and differentiation in the new 

culture media with depleted tryptophan  using bright field and fluorescence 

imaging.   

3. Evaluated the expression of stage specific marker of T. gondii growing in 

cultures supplemented with TD-DMEM, pH8, and DMEM. 

4. Evaluated the inhibition of T. gondii ΔKU80-GFP cyst by ELQ271 and 

pyrimethamine using bradyzoites specific screening assay in TD-DMEM. 

5. Evaluated the activity of ELQ271 on T. gondii ΔKU80-GFP cyst using 

bradyzoites specific screening assay supplemented with either TD-DMEM, 

normal DMEM, or alkaline DMEM. 
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Chapter 2 Toxoplasma gondii aromatic amino acid hydroxylase and 

dopamine biosynthesis 

2.1 Introduction  

Studies have found that T. gondii produces two enzymes (TgAaaH 1 and 2) that 

catalyse tyrosine hydroxylation (TH), which is the rate-limiting step of DA and 

catecholamine biosynthesis. This could alter DA and catecholamines function in 

neuronal pathways during brain stage of infection. Alternatively, parasite-produced L-

DOPA could be used for dopaquinone. To assess the role of TgAaaH in DA 

biosynthesis it is important to understand the cellular location and function of these 

enzymes. 

Gaskell et al. (2009) found that T. gondii possesses two nearly identical TgAaaH genes. 

The two genes are located on chromosome V and are separated by approximately 450 

kbp. The translation of TgAaaH genes produces TgAaaH 1 and 2 enzymes, each with 

565 amino acid residues. TgAaaH 1 and 2 consist of C and N terminals. The C terminal 

domain is responsible for the catalytic activity, while the N terminal plays a role in 

substrate specificity. Most described amino acid hydroxylases are soluble, cytosolic, 

and lack a signal peptide. On the other hand, TgAaaH genes produce insoluble 

enzymes. Also, the enzyme coding genes encode a signal peptide in the N-terminus. It 

was suggested the signal peptide could be involved in transporting TgAaaH 1 and 2 to 

the parasite’s outer membrane and/or secretion of the enzymes outside the parasite 

(Gaskell et al., 2009).  

To better understand TgAaaH function, Gaskell et al. (2009) studied the activity of 

recombinant TgAaaH 1 and 2 expressed as N-terminal His-tagged fusion proteins under 

control of the T7 promoter. It was found that TgAaaH was involved in the production 

of L-DOPA, which is a DA precursor. L-DOPA is produced by hydroxylation of 

phenylalanine to tyrosine and tyrosine to L-DOPA. Also, recombinant TgAaaH 

enzymes have a two to three-fold preference for tyrosine, compared to recombinant rat 
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tyrosine and phenylalanine hydroxylase. Furthermore, TgAaaH was unable to utilise 

tryptophan (Gaskell et al., 2009).    

To determine the in vivo expression of TgAaaH 1 and 2 during tachyzoite and 

bradyzoite stages, Gaskell et al. (2009) used RNA Reverse Transcriptase-PCR (RT-

PCR) with stage specific stage primers surface antigen 1 (SAG1: tachyzoite marker), 

bradyzoites surface antigen 1 (BAG1), and surface antigen 4 (SAG4) (BAG1 and 

SAG4 are bradyzoite marker). It was demonstrated that TgAaaH 1 expression level 

didn’t change between the tachyzoite and the bradyzoite stage, while TgAaaH 2 was 

expressed more in the bradyzoite stage. It was also found that TgAaaH requires 

tetrahydrobiopterin as a cofactor. Webster and McConkey (2010) suggested that the 

first enzyme provides tyrosine as a nutrient for the parasite’s protein synthesis in the 

proliferative tachyzoite stage and the second enzymes provides L-DOPA for use during 

chronic stage. Preliminary work to localise T. gondii TgAaaH by Gaskell et al. (2009), 

using immunostaining of infected fibroblasts with both tachyzoites and bradyzoites 

showed that TgAaaH enzymes were localised in the parasite membrane and PV, but 

these results needed further confirmation. 

Prandovszky et al. (2011) determined DA levels for infected (T. gondii bradyzoites 

stage) and non-infected PC12 cells using HPLC electrochemical detection (ECD). It 

was found that T. gondii infected PC12 cells had higher levels of DA, compared to non-

infected cells. Furthermore, Prandovszky et al. (2011) localised TgAaaH and DA in the 

paraformaldehyde fixed brain section of 6-8 week infected mice by 

immunofluorescence with DA and customised TgAaaH antibodies. TgAaaH antibody 

was customised (Genscript, Piscataway) to assess the parasite enzyme in animals. This 

antibody is designed to bind to a unique sequence (CIRSSPDPLDLRKMT) in the 

TgAaaH terminal domain, a sequence that is not found in mammalian tyrosine 

hydroxylase and has no significant similarity to any protein in the predicted 

mammalian proteome or other proteins of the T. gondii proteome. TgAaaH antibody 

specificity to T. gondii was confirmed with uninfected controls. Immune-stain brain 

section of chronically infected mice with TgAaaH antibody showed that TgAaaH was 

found within the tissue cyst of infected neuronal cells (Prandovszky et al., 2011). DA 

was localised within T. gondii tissue cysts and cyst periphery in the infected mouse 

brains. Meanwhile, TgAaaH location within the cyst was unclear as staining could not 
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resolve between protein localisation on the surface of parasites and protein found in the 

PV not attached to parasite membranes (Prandovszky et al., 2011).  

Wang et al. (2015) examined TgAaaH 1 and 2 roles by constructing two strains, one 

without the TgAaaH 1 gene and one without the TgAaaH 2 gene. The TgAaaH 1 

knocked out strain could not survive which indicated that TgAaaH 1 might have an 

essential role. Strain growth, differentiation, host infection and horizontal transmission 

to wild type strains of TgAaaH2 knock outs showed that TgAaaH 2 is not essential for 

any of these functions. Meanwhile, Wang et al. (2015) failed to directly detect TgAaaH 

protein using WB and immunofluorescent staining. To detect TgAaaH with WB and 

immune-fluorescent staining, Wang et al. (2015) constructed a Ty-tagged TgaaH 2 

protein overexpressor strain using a BAG1 promoter. A Ty epitope band was detectable 

in the Ty-tagged TgAaaH2 protein overexpressor strain with WB techniques. Also, the 

immunofluorescent stain of these strains showed that TgAaaH 2 is detectable in the 

cyst matrix.   

The mentioned earlier in this chapter introduction that Prandovszky et al. (2011) found 

that T. gondii brain cyst was associated with DA, and DA level was increased in 

infected dopaminergic cells. The increase of DA could be due to the tyrosine 

hydroxylase activity that converts tyrosine to L-DOPA, but the parasite needs DDC to 

convert L-DOPA to DA. The question is whether T. gondii has DDC enzyme activity. 

Bio-informatics search (metaTiger data base: Whitaker et al., 2009) indicates that the T. 

gondii genome doesn’t contain the DDC gene sequence. The ability of T. gondii to 

produce DA will be assessed by adding tyrosine to the parasite cell extract and running 

the samples into the HPLC-ECD to detect DA. This experiment is used to explore the 

possibility of T. gondii having DDC activity. The difference in TgAaaH 1 and 2 gene 

expression (Gaskell et al., 2009) and non-survival on TgAaaH 1 knockout strain (Wang 

et al., 2015) raised a question: can it be that L-DOPA and DA have another role during 

the tachyzoite stages, such as wall biosynthesis?  
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Figure 2.1. Cross-linked polymers from dopaquinone. L-DOPA and DA can be 

oxidised to dopa-quinone by enzymes such as tyrosinase or peroxidase. A: dopa 

methide is formed by DOPA quinone tautomerisation, then α, β-dehydro dopa, is 

formed after the release of α proton. Finally, cross-linking will occur by a pathway 

alike to that happening in insect cuticle sclerotisation. B: Generation of aryloxy free 

radical generation, phenol coupling and oxidation will form cross-linked polymer. C: 

Leukochrome is formed by internal cyclisation, and then rearrangement of cyclized 

DOPA will form dopachrome and carboxylated dihydroxyindole. The end of pathways 

A, B, and C will result in the generation of a crosslinked polymer (Adapted from Lee et 

al., 2002). 

It is known that L-DOPA is involved in forming intermolecular covalent bonds and 

hardening of DOPA containing proteins. L-DOPA and DA can be oxidised to the 

reactive chemical form dopaquinone (Figure 2.1). Dopaquinone is known to be 

involved in several chemical reaction pathways that result in cross-linking (Figure 2.1). 

L-DOPA can be transformed to dopaquinone by several enzymes such as tyrosinase, 

catechol oxidase, laccases, peroxidase and chemical oxidants, such as hydrogen 

peroxidase and periodate (Waite, 1990; Rzepecki et al., 1991; Lee et al., 2002). 

Aryloxy radical generation and diphenol coupling of dopaquinone will result in the 
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formation of catechol polymer (Lee et al., 2002). The release of α proton from 

tautomerized dopaquinone (quinone methide) is capable of a cross-linking similar to 

that occurring in insect cuticle (Lee et al., 2002). Meanwhile, intramolecular cyclization 

between the catechol side chain and the amine group in DA will form leukochrome 

which can be polymerised in the same pathway to polymerise melanin formation (Lee 

et al., 2002). All these informations show how L-DOPA and DA and the formation of 

dopaquinone involved in the formation of crossed linked polymer. The question is does 

this process occur in T. gondii, and does L-DOPA and DA takes part in that process.  

In this chapter, several questions have been addressed regarding TgAaaH location and 

function. First, the probability that L-DOPA, which is the end product of TgAaaH 

activity, and DA are converted to dopaquinone was investigated. This will give an 

insight if L-DOPA and DA production have a role in the polymer cross-linking in the 

process of membrane formation. To address the this question, dopa-oxidase activity 

was assessed in free T. gondii tachyzoites and bradyzoites. Secondly, this chapter 

assessed DA synthesis in liberated T. gondii using HPLC-ECD. Thirdly, the probable 

intracellular, extracellular or membrane-bound location of T. gondii TgAaaH was 

investigated. Knowing TgAaaH location during infection will help in understanding its 

role in DA formation. To address these possibilities, samples of non-dopaminergic cells 

were infected with T. gondii. The location of TgAaaH in vitro was determined by the 

separation and analysis of cell components (particularly membrane), accompanied by 

WB, enzymatic assay analysis and immune-fluorescence staining. Fourth and finally, 

DDC location was assessed during T. gondii dopaminergic cell infection using WB 

protein analysis probed with anti-DDC primary antibody in WB. Overall, these 

experiments allowed elucidation of mechanisms of DA formation during T. gondii 

infection and provided information about the function of TgAaaH. 
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2.2 Materials and Methods  

2.2.1 Cultivation of cells and T. gondii strains 

Human foreskin fibroblast cells (HFF, Sigma Aldridge) and Henrietta Lacks cells 

(HeLa, a kind gift from Mark Stead, Leeds University) were cultured and maintained 

by serial passaging in T25-cm2 vented flasks (T25) as a confluent adherent monolayer. 

HFF and HeLa cells were passaged every 3-4 days. For the passaging of 75–95% 

confluent HFF cells, the cells were washed in 100% phosphate buffered saline (PBS: 

Invitrogen), detached by adding 5% trypsin-ethylenediaminetetraacetic acid (trypsin-

EDTA, Sigma) for 90 seconds. The free cells were suspended in fresh Dulbecco’s 

modified Eagle’s medium (DMEM, Gibco), supplemented with 10% heat-inactivated 

iron-supplemented fetal bovine serum (FBS, Invitrogen) and 1% penicillin-

streptomycin (PS, Sigma) antibiotic solution at pH 7.2. The passaged cells in the fresh 

media were transferred to three or four new T25 flasks. The newly passaged cells were 

incubated at 37°C in 5% CO2. Passages 1–42 of HFF cells were used according to the 

manufacturer’s recommendation. 

Rat pheochromocytoma cells (PC12, from the European Collection of Cell Cultures, 

ECACC) were cultured and maintained by serial passaging in T25 flasks as free 

rounded cell clusters, and passaged every three to four days, as recommended by the 

manufacturer. Cell passaging was started by freeing the cells from the cluster by 

pipetting. Then, cells were collected by centrifugation at 800xg for 10 minutes. The 

supernatant was discarded and the cell pellet was suspended in fresh Roswell Park 

Memorial Institute medium (RPMI, Gibco), supplemented with 10% horse serum (HS, 

Invitrogen), 5% FBS and 1% PS antibiotic solution at pH 7.2. The cell suspension was 

then transferred to three new flasks and incubated at 37°C in 5% CO2. Cell cultures 

with passage numbers between 1 and 20 according to the manufacturer’s 

recommendation. 

T. gondii Prugniard (kind gift from David Roos) and RH ΔKU80-GFP strain (kind gift 

of David Bzik, Dartmouth) were used in this chapter’s studies. RH ΔKU80-GFP is a 

strain that lack hypoxanthine-xanthine-guanine phosphoribosyl transferase (HXGPRT) 

and has green fluorescent protein (GFP) fused to the BAG1 promoter. This strain stably 

expresses bradyzoite specific-GFP (Fox et al., 2011).  

https://en.wikipedia.org/wiki/Henrietta_Lacks
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The parasites were cultured and maintained by serial passaging in confluent monolayer 

HFF cells. The parasite was passaged by freeing the HFF cells with 5% trypsin and 

then the cells were centrifuged at 2500xg for 10 minutes. The supernatant was 

discarded and the cells were suspended in 100% PBS. Then, the intracellular parasite 

was released by passing the cells through a 27-gauge needle several times, and the 

suspension was centrifuged again. Finally, the parasite pellet was suspended in 5 mL of 

fresh DMEM medium and used to infect 75–95% confluent HFF. 

2.2.2  In vitro T. gondii bradyzoites inductions 

The T. gondii tachzoite stage was alkaline shocked to induce bradyzoite conversion in 

two experiments: dopa-oxidase and TgAaaH immune-staining. Bradyzoites induction 

was done as previously described by Prandovszky et al. (2011), where they shocked the 

parasite in alkaline (pH 8) RPMI without serum. Briefly, tachyzoites were liberated by 

passing through a 27 gauge needle several times and cells collected by centrifugation at 

2500xg for 10 minutes. Then, the pellets were suspended in RPMI supplemented with 

1% PS antibiotic solution at pH 8, and incubated for 16–18 hours at 37 °C. After the 

incubation is done, the cell pellet was collected by centrifugation at 2500xg for 10 

minutes, then suspended in RPMI (pH 7.4) containing 10% HS, 5% FBS and 1% PS. 

2.2.3 De Novo Synthesis of Dopamine in T. gondii 

It is known that T. gondii is able to transform L-DOPA to DA in cells that have the 

DDC enzyme. To better understand the role of TgAaaH and DA formation during T. 

gondii infection, T. gondii’s ability to form L-DOPA or DA in HFF cells, which don’t 

have the DDC enzyme, was determined. This was determined using TH activity as 

previously described by Naoi et al. (1988) with modifications. Briefly, 1 µL of 20 mM 

tyrosine was added to the collected parasites (50 µL), then both L-DOPA and DA was 

detected using HPLC-ECD.  

Cell Harvesting: Confluent HFF cells and PC12 cells infected with 2-3 x10
5
 T. gondii 

Prugniard were incubated for three to four days at 37°C in 5% CO2. Infected HFF cells 

were collected by scraping and centrifugation at 2500xg for 10 minutes. PC12 pellets 

were collected by centrifugation at 1000xg for 10 minutes. Each cell pellet was 

suspended in 50 µL 10 mM potassium phosphate buffer and sonicated using an MSE 

sonicator at 2/3 of full power for 10 seconds. The following chemicals were made 
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freshly and used on the date of the experiment: 10 mg/mL catalase (Calbiochem) in 

potassium phosphate buffer pH 7, 200 mM L-tyrosine (Sigma, Aldrich) in sodium 

acetate – acetic acid buffer, and 100 % glacial acetic acid diluted 1:100 in dH2O. 

Dopamine assay: The assay was started by adding 26 µL of sodium acetate-acetic acid 

(200 mM) to 50 µL of the sonicated free parasites (pH 6.0). Thereafter, 1 µL glacial 

acetic acid-catalase solution (Sigma; 1 mg/mL) was added. Then, 1 µL of 20 mM L-

tyrosine solution and 20 µL of 10 mM tetrahydrobiopterin (Schicks Laboratories, Jona, 

Switzerland) in 1 M beta-mercaptoethanol (Sigma Aldrich) were added and incubated 

for 10 minutes at 37°C. The reaction was stopped by adding 100 µL of 0.1 M 

perchloric acid (PCA, Sigma Aldrich). Finally, the samples were run through HPLC-

ECD with a flow rate of 0.8 mL/minutes to detect the DA peak.  

HPLC analysis was performed as described previously by Prandovszky et al. (2011) 

with C18 Acclaim 120 column (5 mm x 4.66150 mm). The mobile phase buffer 

consisted of degassed 57 mM anhydrous citric acid (Fisher Scientific, Loughborough), 

43 mM sodium acetate buffer (Dionex, Sunnyvale), containing 0.1 mM EDTA (Sigma 

Aldrich), 1 mM sodium octane sulphonate monohydrate, and 10% methanol. The pH 

was adjusted to 4. Each samples run included controls and standards. The standards 

were DA (Sigma) and L-DOPA (Sigma) with the following concentrations 0.015, 

0.007, 0.0039 or 0.0019 µM. 

2.2.4 Dopa-oxidase activity (MBTH assay) in T. gondii 

The probability that T. gondii have dopa-oxidase activity was tested using dopa-oxidase 

activity assay (Winder and Harris, 1991). Dopa-oxidase enzyme activity will enable the 

transformation L-DOPA and DA to dopaquinone, which have been shown to be 

involved in the formation of crossed linked polymer and might be involved in the 

parasite cyst wall synthesis(Figure 2.1).  

Cell harvesting: HFF and PC12 cells infected with 2-3 x10
5
 T. gondii Prugniard. Also, 

HFF cells were infected with 2-3 x105 shocked T. gondii Prugniard. HeLa and PC12 

cells were cultured to be used as negative control. The cells were harvested after three 

to four days of infection. Harvesting attached cells, such as HeLa cells, differs from 

free PC12 cells. HFF and HeLa cells were harvested by washing with PBS, and then 
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scraping. The cells were then collected by centrifugation at 1000xg for 10 minutes. The 

supernatant was discarded and the pellet was suspended in NaCl/Pi (137 mM NaCl, 3 

mM KCI, 8.1 mM Na2HPO4, and 1.5 mM KH2PO4+ 0.2% trypsin-EDTA, pH 7.3). 

Meanwhile, free PC12 cells were harvested by centrifugation at 1000xg for 10 minutes 

and the supernatant was discarded. After supernatant was discarded, the pellet was 

suspended in NaCl/Pi. After collection and resuspension, all cell types (HeLa, and 

PC12/ infected and non-infected) were washed twice with ice cold NaCl/Pi. After 

washing, the cell pellet was frozen at -70°C. After freezing, the pellets were rapidly 

thawed, and then 5X the pellet cell volumes of cold dopa-oxidase buffer (50 mM 

sodium dihydrogen phosphate, pH 6.9) was added. The cells were sonicated on ice for 

30 seconds (3x10 second bursts at 2/3 full strength, followed by resting on ice for 30 

seconds). Then, the cell pellet was collected by centrifugation at 9000xg for 30 minutes 

at 4°C.  

Bovine serum albumin (BSA) and Bradford reagent (Sigma) in 96-well plate (Costar 

3603 by Corning Incorporated, New York) was used in the Bradford assay to estimate 

the protein concentration (Bradford, 1976). Briefly, the absorbance of BSA standard (1-

5 μg/ml) and the samples was determined using SPECTRA MAX, Molecular devices 

(at 595 nm). The regression line curve of the BSA standards concentrations and 

absorbance at 595 nm was drawn. The samples concentration was estimated using BSA 

standards curve regression line and equation. 

 Dopa-oxidase assay: The assay was done in a 96-well plate (Costar) and each well 

contained a reaction mix of the following: 50 mM sodium phosphate pH 6.9, 2% (by 

vol.) N,N’–dimethylformamide (Sigma), 1 mM L-DOPA and 6 mM 3-methyl-2-

benzothiazolinone hydrazone (MBTH, Sigma), 10 μl water, and 20 μl sample. Then the 

plate was incubated at 37°C for 10 minutes. The absorbance at 505 nm was measured 

using SPECTRA MAX, Molecular devices. Dopa oxidase activity was measured for at 

least three biological replicates for each sample type and then run as two technical 

replicas. PC12 and HeLa cells were used as negative control. With each experiment, a 

reaction mix with no substrate (control negative) and one with mushroom tyrosinase 

(Sigma) (control positive) was performed. The absorbance of the samples was 

standardized against their protein concentrations. 
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2.2.5 Localising TgAaaH using Western blotting 

For better understanding of TgAaaH function, the intracellular, extracellular, and 

membrane location of TgAaaH was assessed. An experiment was set up to detect 

TgAaaH protein in trypsin treated and untreated cells using Western blots (WB) probed 

with general anti-Aromatic Amino Acid Hydroxylase (Anti-AAAH) primary antibody. 

Also, TgAaaH was detected in T. gondii cellular fractions (soluble and non-soluble). 

Cell harvesting: For the cellular localisation of T. gondii TgAaaH using WB, four T25 

HFF flasks were infected with 2-3 x10
5 

T. gondii Prugniard and incubated for 3-4 days. 

The parasites were collected by scraping and and pelleted by centrifugation at 2500xg 

for 10 minutes. The cells were washed with 10 ml PBS and the parasites released by 

passing the pellet through a 27-gauge needle. Then the cells were collected by 

centrifugation at 2500xg for 10 minutes. The collected pellet was used to localise 

TgAaaH in T. gondii using trypsin treatment or cell fraction localisation.  

Trypsin treatment: The four different T. gondii pellets were treated with 0.5 ml 

trypsin-EDTA for 5, 10, or 15 minutes at 37°C. Then DMEM medium containing FBS 

was added to neutralise trypsin, and cell pellets were collected by centrifugation for 10 

minutes at 2500xg. The cells were washed with PBS and pellets collected by 

centrifugation at 14000xg for 5 minutes. The cell pellets were suspended in 

radioimmunoprecipitation assay buffer (RIPA; Caymen Chemicals, Ann Arbor, MI) 

with protease inhibitors (Complete Mini EDTA-free cocktail; Roche Life Sciences, 

Burgess Hill, UK).  

TgAaaH in cell fractions: The parasite cell pellets were suspended in a RIPA buffer. 

Then the samples were separated to soluble and non-soluble fractions by centrifugation 

at 14000xg for 5 minutes after sonication. Finally, the protein concentration of all 

samples was estimated with the Bradford assay as explained in 2.2.4.  

WB localisation of TgAaaH: Five to twenty-five micrograms of protein was separated 

in 12% sodium dodecylsulphate- polyacrylamide gel electrophoresis (SDS-PAGE) 

following standard protocols. The proteins were transferred to the nitrocellulose 

membrane and blocked with 5% non-fat powdered milk containing 0.05% Tween-20 

(PBS-Tˑ vol/vol) for one hour. Then the blot was incubated with either 1:250 mouse 

anti- AAH (Millipore, UK) or 1:5000 mouse anti-actin antibodies (Milliopore, UK) as 
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primary antibody at 4°C overnight. The blot was washed with PBS-T, then incubated 

with 1ː5000 anti-mouse (Biorad, UK) conjugated horseradish peroxidase antibody at 

room temperature for one hour. Blots were then washed as above and developed using 

Supersignal West Pico Chemiluminescent detection kit (Fisher Scientific). Bands were 

visualised with an X-Omat film system. The WB analysis was done for at least 3 

biological replicates. The band pixel intensity was obtained using ImageJ and then 

plotted on GraphPad Prism (column graph-one way ANOVAtest). 

2.2.6 Localisation of TgAaaH using HPLC-ECD  

The localisation of TgAaaH produced by T. gondii Prugniard was determined by 

comparing TH activity between intracellular and extracellular parasites, and soluble 

and non-soluble parasite components.   

Cell harvesting: For localising TgAaaH using TH activity assay and HPLC, 2-3 x10
5 

T. gondii Prugniard strains were left to grow in a monolayer of HFF for three to four 

days. HFF cells were harvested by scraping, and both HFF and PC12 (control positive) 

cells were centrifuged at 2500xg for 10 minutes. Cells were washed with 100% PBS. 

Intracellular parasites were released for some samples using 27-gauge needles. Next, 

the samples were centrifuged at 2500xg for 10 minutes, and the supernatant was 

discarded. Then 50 µL of 10 mM potassium phosphate buffer (pH 7.4) was added to 

the cell pellets and each sample was sonicated for 30 seconds. After sonication, several 

samples were separated to soluble and non-soluble fractions by centrifugation at 

14000xg for 5 minutes. The protein level was measured by the Bradford assay, as 

explained in 2.2.4. 

TH activity assay and HPLC-ECDː TH activity was determined for each sample as 

previously described in Section 2.2.3. Twenty-six µL of 200 mM sodium acetate-acetic 

acid buffer (pH 6.0) was added to each sample. Each sample was analysed in the 

HPLC-ED with a flow rate of 0.8 mL/minutes as explained in 2.2.3. All samples were 

run with standards and controls. L-DOPA standard was run with samples at 0.25, 

0.125, 0.0062, 0.031, 0.015, 0.007, 0.0039, and 0.0019 µg /ml. The retention times of 

each L-DOPA standard were determined. Then the total area under the HPLC trace for 

8 different L-DOPA concentrations was measured to create the reference curve for 

subsequent quantitative analysis of L-DOPA amounts. 
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2.2.7 Immuno-fluorescence localisation of TgAaaH  

In vitro localisation of TgAaaH using immuno-staining was done for HFF cells infected 

with T. gondii Prugniard and ΔKU80-GFP  growing on coverslips, using TgAaaH 

specific customised antibodies (Genscript, Piscataway). This antibody specifically 

designed to bind T. gondii TgAaaH enzyme as described in this Chapter introduction. 

Cell infection: Confluent HFF cells growing on sterile 12 mm glass coverslips (SLS 

coverslip) were infected with 1 x10
5
 shocked T. gondii Prugniard or ΔKU80-GFP  and 

left to grow in pH8 DMEM for three to four days. Then the infected cells were fixed 

with 4% paraformaldehyde.  

Immunostaining: Immunofluorescence staining was performed as previously 

described (Prandovszky et al., 2011) with some modifications. Briefly, the slides were 

washed with 1X PBS + 0.05% Triton solution (PBSTR), and then blocked with 10% 

cold fish gelatin in PBSTR. The slides were incubated with anti-TgAaaH primary 

antibody (1:1000 in 5% PBSTR) at 4°C overnight. The slides were washed with PBST 

and the secondary antibody Alexa Fluor®555/red fluorescence protein (RFP) goat anti-

rabbit (2:1000 in 10% cold fish gelatine PBST: Life technologies) was added to slides 

for 1 hour at room temperature. The slides were washed, then 12 µg/ml Hoechst 33258 

(Invitrogen) was added to each slide, followed by incubation for 20 minutes at room 

temperature. Then the slides were washed and mounted (Vector shield mounting) at 

4°C for 4 hours. For each staining, a slide was negatively stained by not adding the 

primary antibody. All slides were kept at 4°C for 4 hours in the dark before imaging 

using a Zeiss LSM 880 laser scanning inverted confocal microscope with 40X and 63X 

oil immersion objective . The three dimension (3D) reconstructions of several Z-stack 

images were generated with the same equipment using the LSM imaging software. The 

settings for brightness and contrast were unified for all images. 

2.2.8 Western blot localisation of DDC in T. gondii  

Western blot localisation of DDC was performed to verify if PC12 produced DDC was 

transferred into T. gondii cyst by the parasite. 

Cell harvesting: To localise DDC, PC12 cells were infected with 1ː1 T. gondii 

Prugniard. Dopaminergic PC12 whole cells (WC) were used as positive control and 

HFF WC were used as a negative control. Intracellular parasites were then collected by 
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centrifugation at 2500xg for 10 minutes. The parasite was released using 27-gauge 

needles and parasite pellets collected by centrifugation at 2500xg for 10 minutes. The 

cell pellet was suspended in RIPA buffer and sonicated for 10 seconds. Protein 

concentration was estimated using Bradford reagent, as explained in 2.2.4. 

WB localisation of DDCː WB was done as detailed in section 2.2.4; briefly, ten to 

twenty µg protein was separated by SDS-PAGE and transferred to nitrocellulose. 

Rabbit anti-dopa-decarboxylase 1:5000 (Abcam, UK) was used as a primary antibody. 

Goat anti-rabbit HRP conjugate (Sigma) 1:5000 was the secondary antibody. The film 

was developed from the blot using Supersignal West Pico Chemiluminescent detection 

kit. Bands were visualised with an X-Omat film system.   
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2.3 Results 

2.3.1 Dopa-oxidase activity in T. gondii 

Dopa-oxidase activity assay was measured in T. gondii cell extract to test the 

possibility that L-DOPA (end products of TgAaaH enzyme activity) and DA have a 

role in T. gondii cyst wall cross linking by forming dopaquinone as a result of dopa-

oxidase enzyme activity. Dopa-oxidase activity in the parasites was determined by 

measuring the formation of dopaquinone. When dopaquinone is formed, 3-methyl-2-

benzothiazolinonehydrazone hydrochloride (MTBH) will react with it and form a dark 

pink pigment that can be measured at 505 nm. The final absorbance measurement is an 

average of three biological replicates (Table 2.1). No dopa-oxidase activity was 

detected in both infected PC12 and HFF cells with T. gondii tachyzoites. HFF cells 

infected with the T. gondii induced to bradyzoites also showed no enzymatic activity. 

The reaction mix with mushroom tyrosinase (control positive) showed dopa-oxidase 

activity (absorbance at 505 nm >0.2). Dopa-oxidase activity was not detected when the 

substrate was absent from the reaction mixture or in PC12 and HeLa cells (control –ve) 

which is consistent with the absorbance data reading obtained from the original 

reference paper (Winder and Harris, 1991). 

2.3.2 De-novo synthesis of dopamine in T. gondii 

To determine whether T. gondii can produce DA in non-dopaminergic cells. DA 

synthesis in T. gondii was assessed by HPLC (Figure 2.2) after adding tyrosine and 

tetrahydrobiopterin to the free sonicated cell extract. HPLC chromatogram of T. gondii 

pellet had L-DOPA but no DA peak. On the other hand, the positive control cells 

(PC12) had both L-DOPA and DA peaks. HFF negative control cells had no DA or L-

DOPA peak.   
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  Cells/ controls Absorbance at 505nm 

Mushroom tyrosinase 

 

1.3 ± 0.40 

  RM (no DOPA) 0.11 ± 0.017 

  RM (no mushroom tyrosinase) 0.095± 0.013 

  HeLa 0.098 ± 0.0015 

  PC12 0.098 ± 0.0067 

  PC12 TGT 0.096 ± 0.0042 

  HFF TGT 0.096 ± 0.0082 

  HFF TGCL 0.095 ± 0.0037 

Table 2.1. T. gondii dopa-oxidase assay. The table shows mean spectrophotometric 

absorbance of at least three biological replicates (fixed sample volume). Mushroom 

tyrosinase is positive control , PC12 and HeLa cells are negative controls. TGT: T. 

gondii Tachyzoites, TGCL: T. gondii cyst-like stages. RM stands for reaction mixture. 

From the absorbance reading, none of the infected cells exhibited dopa-oxidase 

activity. 
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Figure 2.2. Overlay of HPLC-ED chromatograms derived from HFF cells 

infected with T. gondii Prugniard. The base line values from PC12 cells, PCA 

and L-DOPA were shifted ~150 nA apart for better comparisons, although all 

baselines were around zero. HPLC-ED chromatogram shows the following: blank 

(PCA) (peak time 2-3.5 minutes), L-DOPA (peak time 4-4.5 minutes), DA 

standard (peak time 8.5-9.5 minutes), and HFF cells (negative control). PC12 

used as a positive control since it is a dopaminergic cell line, and contains all the 

machinery for DA synthesis, packaging, and release. HPLC ED chromatogram 

shows that DA is found in PC12 samples while it is not found in T. gondii 

samples. X-axis in the retention time in minutes and Y-axis is peak height µA. 
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2.3.3 Western blot localisation of TgAaaH  

Knowing the location of TgAaaH during T. gondii infection will help in understanding 

its function in DA synthesis during the parasite infection. To localise TgAaaH, the 

levels of TgAaaH produced by T. gondii were observed before and after trypsin 

treatment by WB probed with anti-AAA antibody to localise TgAaaH (Figure 2.3 and 

Figure 2.4). Additionally, the levels of these enzymes were observed at different times 

(5, 10, and 15 minutes) following the exposure to trypsin. Trypsin will break down 

extracellular TgAaaH, which then lower its detection by WB. Accordingly, the results 

of this experiment will indicate whether TgAaaH is secreted out side the parasite. The 

WB results showed that the TgAaaH band was thinner or altogether absent after adding 

trypsin. There was also a proportional relationship between the low levels of 

extracellular TgAaaH detected by WB and an increased cells exposure time to trypsin. 

Band pixel intensity was analysed using ImageJ, then data analysed in GraphPad Prism 

using one-way ANOVA and Mann-Whitney non-parametric tests of at least three 

biological replicates (Figure 2.4).  

Also, TgAaaH was detected in the T. gondii cellular component, both soluble and non-

soluble fractions, on WB probed with AAAH antibody (Figure 2.5). The WB showed 

that TgAaaH can be detected in both fractions. Meanwhile, analysing WB band pixel 

intensity of four biological replicates suggested that there is no change in TgAaaH 

levels between soluble and non-soluble fraction (T. gondii parasites, pellets or 

supernatant). There was a slight change in L-DOPA concentration between intracellular 

and free parasites but it wasn’t significant (p= 0.15). 

2.3.4 HPLC-ECD Localisation of TgAaaH: 

Further confirmation of TgAaaH location, The activity of TH produced by intracellular 

and extracellular T. gondii (parasites, pellets or supernatant) was monitored by 

observing the levels of tyrosine transformed to L-DOPA by HPLC for at least three 

biological replicates. L-DOPA was detected in T. gondii and its cellular component, but 

no major change was detected in the estimated L-DOPA concentration between WC, 

soluble and non-soluble fraction (Table 2.2). There was a slight significant change in L-

DOPA concentration between intracellular and free parasites. 
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Figure 2.3. Detection of T. gondii TgAaaH after trypsin treatment. Blot of 

extracts was probed with anti-AAAH antibody to detect TgAaaH (~64.1 kDa) 

produced by free T. gondii before and after trypsin treatment. The top is a 

representative blot that shows that the TgAaaH band is absent when the liberated 

T. gondii is treated with trypsin. Null sample is untreated free T. gondii (no 

trypsin: positive control). Microscopic examination of the sample treated with 

trypsin for 15 minutes showed that the parasites were still intact. To further 

confirm that the parasites were still intact, WB detection of actin (housekeeping 

control) using anti-actin antibody (~36 kDa) showed that actin was not affected 

by trypsin treatment.  
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Figure 2.4. Extracellular localisation of TgAaaH. WB localisation of the 

protein was performed with liberated parasites that were trypsin-treated for 5, 10, 

or 15 minutes (biological replicates= 4) (Figure 2.3). The pixel intensity of the 

WB bands was measured using ImageJ software. The column graph shows the 

measurement obtained from ImageJ and plotted with GraphPad Prism column 

graphs (one-way ANOVAand Mann-Whitney non-parametric test). The graph 

shows that, with increases in trypsin treatment, the level of TgAaaH decreased 

(*P= 0.09, **P= 0.78, **P= 0.007).  
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Figure 2.5. WB analysis of T. gondii TgAaaH in soluble and non-soluble 

fraction. Blots of T. gondii Prugniard whole cell, soluble and non-soluble 

fractions probed with anti-AAAH antibody to detect TgAaaH. The anti-AAAH 

antibody detects TgAaaH protein (~64.1 kDa) in both soluble and non-soluble 

fractions.  
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Figure 2.6. Cellular localisation of TgAaaH. WB localisation of the TgAaaH 

was performed on liberated parasites and different cell components of infected 

cells (soluble and non-soluble fractions; (biological replicates=3) (Figure 2.5). 

The WB band pixel intensity was measured using ImageJ software. The column 

graph shows the measurement obtained from ImageJ and plotted using 

GraphPad Prism column graphs (one way Anova). The plot analysis shows that 

TgAaH is detected in all cell components, and no difference was found between 

soluble and non-soluble fraction (P= 0.15). 
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Cells Estimated L-DOPA 

concentration in µg/ml 

PC12 Cells 2.25±0.84 

HFF cells 0 

Intracellular T. gondii WC 0.12±0.043 

Intracellular T. gondii soluble fraction 0.12±0.040 

Intracellular T. gondii insoluble fraction 0.11±0.039 

Free T. gondii WC 0.31±0.086 

Free T. gondii soluble fraction 

0.26±0.096 

Free T. gondii insoluble fraction 
0.21±0.090 

Table 2.2. Localisation of TgAaaH activity in parasite fractions. The table 

shows the mean ± standard deviation L-DOPA concentration (µg/ml) of at least 

three biological replicates. L-DOPA is produced as a result of tyrosine 

hydroxylation by T. gondii TgAaaH. L-DOPA was found in free and intracellular 

T. gondii WC extract, pellets, and supernatant. PC12 cells were used as a positive 

control and HFF cells were used as a negative control. Each result (sample) was 

obtained from one flask. WC stands for whole cell. 
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2.3.5 Localising TgAaaH using immunostaining 

TgAaaH specific antibody was used to detect TgAaaH in HFF cells infected with 

shocked T. gondii Prugniard and ΔKU80-GFP to induce cyst formation. T. gondii 

ΔKU80-GFP expresses bradyzoite specific GFP. The two dimension (2D) images of 

TgAaaH stain and GFP have the same patterns (Figure 2.7). Meanwhile, 3D images 

showed the different pattern of TgAaaH stain and GFP (Figure 2.10). Staining was not 

apparent in control slides that were treated with only Alexa Flour 555/RFP (Figure 2.8). 

From Figure 2.7, Figure 2.9, and Figure 2.10 it is apparent that TgAaaH (stained in red) 

was found within the PV and inside the parasites. Figure 2.10 shows 2- and 3-D images 

of TgAaaH staining in ΔKU80-GFP strain which expresses bradyzoites specific GFP. 

The 3-D images clearly show that TgAaaH is clearly found within the PV. 
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Figure 2.7. Immuno-staining Localisation of TgAaaH in T. gondii ΔKU80-GFP . Paraformaldehyde fixed and immunostained HFF 

cells infected with cyst-like T. gondii ΔKU80-GFP cultured in DMEM (pH 8). A: bright field image. B: T. gondii TgAaaH was detected 

using rabbit anti-TgAaaH as a primary antibody (1:1000), then Alexa Fluor®555/RFP goat anti-rabbit (2:1000) (Red: wavelength range 

555-565) . C: T. gondii ΔKU80-GFP strain that expresses GFP under control of BAG1 promoter (Green: wave length range 433-541). 

D: DNA staining with Hoechst (blue: wavelength 346-441). Arrows show the location of the cyst-like T. gondii.   
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Figure 2.8. TgAaaH immunostaining negative control. Paraformaldehyde-fixed and immunostained T. gondii ΔKU80-GFP in HFF 

cells cultured in DMEM (pH 8). No primary antibody control with secondary antibody Alexa Fluor®555/RFP goat anti-rabbit (2:1000). 

A: images of bright field. B: red filter (wavelength 555-565). C: GFP bradyzoite marker with green filter (wavelength range 433-541). 

D: Blue filter showing DNA staining with Hoechst (wavelength 346-441). Arrows show the location of the cyst-like T. gondii. 
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                                        A                                                                               B                                                                   C             

 

Figure 2.9. Localisation of TgAaaH in T. gondii Prugniard. Paraformaldehyde fixed and immunostained HFF cells infected with T. 

gondii Prugniard cultured in DMEM (pH 8). A: bright field image. B: Blue filter showing Hoechst staining of the DNA (wavelength 

346-441) C: Red filter (wavelength 555-565) showing T. gondii TgAaaH that was detected using anti TgAaaH as a primary antibody 

(1:1000), then Alexa Fluor®555/RFP goat anti-rabbit (2:1000).  Arrows show the location of the cyst-like T. gondii. 
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Figure 2.10. 2-D and 3-D images of TgAaaH Immuno-stain. Immuno-stained HFF cells infected with cyst-like T. gondii ΔKU80-GFP  

cultured in pH8 DMEM. The figure shows the 2 and 3-D images of TgAaaH immune-staining taken by Zeiss LSM 8800 A: bright field 

image. B: Detected T. gondii TgAaaH using anti TgAaaH used as a primary antibody (1:1000), then Alexa Fluor®555/RFP goat anti-rabbit 

(2:1000) (Red filter: wavelength 555-565). C: T. gondii ΔKU80 cyst-like GFP (Green filter; wavelength range 433-541). D: DNA staining 

with Hoechst (Blue filter: wavelength 346-441). Arrows show the location of the cyst-like T. gondii. 3-D images were reconstructed using 

LSM software from Z-stack serial images taken by Zeiss LSM 8800. The Y and X-axis in 3-D images have 5 μm scales. The Z axis in the 3-

D images has a 2 μm scale. Arrows show the location of the cyst-like T. gondii.   
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2.3.6 Dopa-decarboxylase detection in T. gondii 

DDC was detected from liberated T. gondii, which was growing in parasites from PC12 

cells, by WB probed with anti-DDC antibody. The WB showed that DDC can be 

detected in the free parasite and, as expected, DDC can be detected in PC12 and HFF 

cells passed through a 27 gauge needle. DDC was detected in the dopaminergic PC12 

WC that had DDC as a control positive, while it was not detected in HFF cells WC 

extract (Figure 2.11). 

 

Figure 2.11. WB localisation of DDC during T. gondii infection. Blot of T. gondii 

Prugniard probed with rabbit anti-DDC antibody. From the blot DDC (~53 kDa) is 

detected in T. gondii and the positive control PC12 cells. DDC was not detected in the 

negative control HFF cells, mock infected PC12 and HFF (have been lysed by passing 

through a 27 gauge needle). 
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2.4 Discussion  

 

In this chapter, the involvement of L-DOPA or DA in dopaquinone synthesis was 

evaluated in T. gondii by testing the dopa-oxidase activity in the parasite. Meanwhile, 

Dopa-oxidase assay measures the formation of the end product of L-DOPA or DA 

oxidation (dopaquinone). The results have shown that both liberated tachyzoites and 

bradyzoites from dopaminergic and non-dopaminergic cells do not have any dopa-

oxidase activity (Table 2.1). These results agree with the bioinformatics information 

(metaTiger data base:Whitaker et al., 2009) that T. gondii does not have a gene that is 

homologous to dopa-oxidase. These data refute the probability that TgAaaH enzyme 

could be involved in providing L-DOPA to be converted to dopa-quinone during 

tachyzoites or the bradyzoites stage, and hence dopaquinone will not be utilised in cell 

wall synthesis. Previously, di-tyrosine and L-DOPA was found in oocyst stage wall in 

Eimeria maxima parasite (Belli et al., 2003a; Belli et al., 2003b). So, in the oocyst stage 

of T. gondii, TgAaaH might still have a function in providing di-tyrosine and L-DOPA 

as a part of the parasite wall biosynthesis.  

T. gondii ability to form DA in non-dopaminergic cells was tested. Bioinformatics 

information (metaTIGER data base) indicates that the T. gondii genome does not 

encode a gene homologous to DDC. T. gondii infected human fibroblast cells (non-

dopaminergic cells) were found to synthesise L-DOPA but not DA, whereas neither L-

DOPA nor DA were detected in uninfected controls (Figure 2.2). Hence, the parasites 

can only increase DA in cells containing endogenous DDC, such as brain dopaminergic 

neurones. Similar outcomes were seen for both tachyzoites and bradyzoites, supporting 

the bioinformatics database information. 

Bioinformatic searches have predicted that the T. gondii TgAaaH gene encodes signal 

peptides (Gaskell et al., 2009). Understanding the subcellular distribution of TgAaaH 

during T. gondii infection may contribute to our understanding of its function, such as 

the increase in DA production. Localisation of TgAaaH was done by growing the wild-

type parasite (Prugniard) in HFF cells, then collecting the free parasites. Analysis of 

trypsin treatments of the free parasites allowed evaluation of extracellular vs. 

intracellular presence of the enzyme. Trypsin will destroy any enzyme outside the 
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parasite, and hence initial presence of extracellular enzyme and subsequent loss due to 

trypsin digestion can be examined using WB probed with anti–AAAH. As expected, 

extracellular TgAaaH produced by T. gondii was reduced or eliminated by trypsin 

treatment (Figure 2.3). Semi-quantitative analysis of the WB results by measuring the 

pixel intensity of the bands and plotting the intensities in column graphs (Figure 2.4: 

one way ANOVA test) showed that there is a significant decrease in TgAaaH after 15 

minutes of trypsin treatment (P= 0.0079). Subcellular localisation of TgAaaH was done 

by fractionating the free parasites into their cellular components using WB probed with 

anti–AAAH. Detecting the presence of TgAaaH in these fractions will allow 

determining whether the enzyme is membrane bound or extracellular. WB showed the 

TgAaaH was found in both the free parasites soluble and non-soluble fractions (Figure 

2.4 and Figure 2.5). These result indicate that TgAaaH was found to be membrane 

bound and was execrated outside the parasite. 

Moreover, TH activity for the lysed and fractionised free and intracellular parasites 

allowed further evaluation of subcellular localization of TgAaaH enzyme. The results 

in Table 2.2 showed that the TH activity can be detected in the intracellular and free 

parasites and their cellular components. There was a slight difference in the estimated 

L-DOPA concentration between intracellular and free T. gondii parasites and their 

cellular components. This suggests that there is an increase in TH activity in free 

parasites more than the intracellular parasites (T- test: P=0.008). These finding 

confirms the initial localisation of TgAaaH to be membrane bound and outside the 

parasite. 

TgAaaH was localised in T. gondii Prugniard and ΔKU80-GFP  strains using immuno-

fluorescence staining. To facilitate TgAaaH localisation during the bradyzoite stage, T. 

gondii ΔKU80-GFP strain was used in the immunostaining because it expresses 

bradyzoite specific GFP (Fox et al., 2011). The TgAaaH specific immuno-fluorescence 

staining (Figure 2.7 and Figure 2.9) further supported the finding that TgAaaH was 

found within the PV and the parasite. Meanwhile, better localisation was obtained 

when 3D imaging was used to verify that the individual signals seen through the GFP 

filter or red filters did  not overlap. 
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The WB, tyrosine hydroxylase activity, and immunofluorescence results demonstrated 

that TgAaaH produced by T. gondii was likely to be found inside the parasite, 

membrane-bound and within the PV. The latter findings confirm initial observations by 

Gaskell et al. (2009) and Prandovszky et al. (2011) that the enzyme was found within 

the PV. Meanwhile, Wang et al. (2015) could not directly detect TgAaaH using WB, 

tyrosine hydroxylase activity evaluation, or immunofluorescence staining. They have 

suggested that this could be due to the low expression level of the enzyme. However, in 

this chapter, the localisation of TgAaaH using these techniques was achieved 

successfully. 

Recently, DCC immune-fluorescence localisation showed DCC within the cyst in T. 

gondii infected PC12 cells (Martin et al., 2015). The current chapter showed DDC 

detection in the liberated T. gondii parasites from dopaminergic PC12 cells by WB 

probed with anti-DDC primary antibody. The WB results demonstrated that DCC is 

found within the tissue cyst. DDC can be detected in PC12 (positive control), but not in 

HFF whole cells (as a negative control). Coppens et al. (2006) demonstrated that T. 

gondii actively import the host endosomal system to the PV for nutrients. Similarly, an 

Apicomplexan family member, Plasmodium falciparum, was found to import D-

aminolevulinate dehydratase from the cytoplasm of erythrocytes into parasites (Bonday 

et al., 1997). 

2.5 Conclusions 

This chapter has shown that the increase of DA due to T. gondii TgAaaH will be 

restricted to monoaminergic cells with DDC. Meanwhile, the conversion of L-DOPA 

and DA to dopaquinone was unlikely. The chapter research has also shown the cellular 

location of TgAaaH to be within the PV, parasite, and membrane bound. Furthermore, 

DDC was found within the parasite during dopaminergic cell infection with T. gondii.   

Further research is needed to understand the molecular mechanism by which the 

parasite TgAaaH and the host DDC interact together during infection to make DA. 

Furthermore, to understand how DA is involved in the mechanism that induces the 

behavioural changes in the intermediate host. Answering these questions will help in 

understanding the connection between T. gondii infection and human mental disorders, 



 
 

60 

 

especially considering that there is no current cure that clears the parasite infection 

totally. The next chapter will explore the use of a new bradyzoite differentiation 

methods using TD-DMEM (chapter 3) that will be used in the developing of a novel 

bradyzoite specific drug screening assay (chapter 4).   
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Chapter 3 Effect of tryptophan-depleted DMEM on the differentiation 

of Toxoplasma gondii 

3.1 Introduction 

T. gondii human infection has two stages – acute tachyzoite stage and latent brayzoite 

cyst stage. Several methods, such as alkaline media and heat shock, have been used in 

studies to induce the parasite to form the bradyzoite stage in vitro (Soete et al., 1994; 

Guimarães et al., 2008; Guimarães et al., 2009). However, outcomes from these 

methods include both tachyzoite and bradyzoite growth, which has  been shown to 

affect the data produced (Singh et al., 2002; Fouts and Boothroyd, 2007). Studies have 

demonstrated that tryptophan starvation will inhibit parasite growth- detail how this 

was performed is shortcoming (Pfefferkorn et al., 1986). This chapter focuses on the 

effect of tryptophan depletion on T. gondii conversion to bradyzoite, and use of 

tryptophan depletion as an bradyzoite induction method. This was done using 

tryptophan depleted- Dulbecco’s modified Eagle’s medium (TD-DMEM). Following a 

brief introduction about tryptophan starvation and the techniques used for 

differentiating T. gondii, results of T. gondii differentiation in TD-DMEM using bright 

field imaging, fluorescence imaging, and qPCR analysis will be presented. 

Tryptophan is an amino acid found to be involved with the attachment process of 

TgMIC2  (Kappe et al., 1999). According to bioinformatics website metaTiger 

(Whitaker et al., 2009), T. gondii does not have the enzymes required for the synthesise 

of tryptophan. Pfefferkorn et al. (1986) studied the effect of IFN-γ treatment on HFF 

cells infected with T. gondii tachyzoites, and found that T. gondii tachyzoite growth 

was inhibited due tryptophan starvation. Tryptophan starvation occur when IFN-γ 

activates host IDO, which breaks down tryptophan N-formylkynurenine and 

kynurenine. This effect was reversed when tryptophan was supplemented in the media 

(Pfefferkorn and Guyre, 1984; Pfefferkorn et al., 1986). These results show that 

Toxoplasma is tryptophan auxotrophic, where acquisition of tryptophan from the host 

cytosol or media is essential for the growth of the parasite (Pfefferkorn and Guyre, 
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1984; Pfefferkorn et al., 1986). Pfefferkorn and colleagues (1984, 1986) demonstrated 

how IFN-γ treatment for two days reduces the host cell levels of tryptophan, and 

subsequently tachyzoite growth was inhibited. Here we interested to see the direct 

effect tryptophan depletion has on the  bradyzoites differentiation.  

Fox et al. (2004), studied the effect of depletion of the non-essential amino acid 

arginine on the growth of mutant T. gondii strain that cannot synthesise arginine in 

vitro. Tachyzoite growth rate in arginine free media was assessed by counting the 

parasite number per PVs after 36 hours post infection. Surprisingly, arginine starvation 

slowed parasite growth rate. Furthermore, both SAG1 and biotinylated Dolichos 

biflorus lectin (DBA) staining of the parasites that have been growing in arginine free 

media for two and seven days showed that 99% of the vacuole where SAG1 negative 

and DBA positive (Fox et al., 2004). These results demonstrated that arginine 

starvation induce tachyzoite to bradyzoite switching, and give rise to a new question: 

Will in vitro tryptophan starvation force T. gondii to differentiate?  

Current methods reported to induce parasite differentiation in vitro are heat (43°C), pH 

stress (pH 6.6–6.8 or 8.0–8.2), chemical treatment (sodium arsenite), and differentiated 

myotube cultures (skeletal muscle cells) (Soete et al., 1994; Guimarães et al., 2008; 

Guimarães et al., 2009). Singh et al. (2002); studied gene expression in tachyzoite to 

bradyzoite differentiation of mutants strains compared to wild type strain. In their study 

only 10% of the mutant strains were able to differentiate and 85 to 90% of wild type 

strain were able to convert to bradyzoites using alkaline induction methods. In the 

meantime, Fouts and Boothroyd (2007) evaluated host gene expression of T. gondii 

infected and uninfected host cells in alkaline media, and they found that it was not easy 

to analyse the gene transcription levels of cells infected with bradyzoites and 

tachyzoites. The data analysis was not easy since the differentiation of bradyzoites in 

HFF cells decreases with increasing the parasite infection multiplicity in high pH media 

(pH 8.2). To avoid heterogonous stage growth only 20% of cells were allowed to be 

infected with bradyzoites, which resulted in low bradyzoite stage gene expression. 

Additionally, the high pH was found to affect host gene transcription (Fouts and 

Boothroyd, 2007). Complications during data analysis are a limitation of current 

methods used to induce T. gondii differentiation (such as alkaline pH, high temperature, 

and arsenic), as they result in heterogonous growth of both bradyzoites and tachyzoites 
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in vitro (such as in Fouts and Boothroyd, 2007). Therefore, in this study, the 

development and use of TD-DMEM as an alternative to induce T. gondii differentiation 

was investigated. 

Successful induction of bradyzoite formation using TD-DMEM without tachyzoite 

growth will improve our ability to study the bradyzoite stage and develop bradyzoite 

screening assays. In this chapter, we explored the in vitro effect of tryptophan 

starvation on T. gondii. The viability of T. gondii in TD-DMEM was observed using 

light microscopy. Then, conversion of the parasite from tachyzoite to bradyzoite in TD-

DMEM was investigated by fluorescent imaging of T. gondii ΔKU80-GFP strain with 

bradyzoite-specific GFP. Furthermore, the expression of stage-specific markers SAG1, 

SAG4, BAG1, and MAG1 mRNA was assessed and compared between parasites 

growing in TD-DMEM, normal DMEM, and DMEM with an alkaline pH.  
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3.2 Materials and Methods 

3.2.1 Cultivation of cells and T. gondii strains 

The HFF cells used in this study were maintained and passaged as previously explained 

in the Methods section of Chapter 2. T. gondii ΔKU80-GFP strain was a kind gift from 

David Bzik, Dartmouth. The parasites were cultured and maintained as explained in 

Chapter 2 Method section. Tachyzoites were induced to convert to the cyst stage using 

high pH (pH 8), as explained previously in the Chapter 2 Methods section. 

3.2.2 Preparing TD-DMEM 

To make TD-DMEM, 50 mL FBS was dialysed in 10× Hanks’ balanced salt solution 

(HBSS; Life Technologies) for one, three hours, and then left overnight. All the 

materials used in the dialysing step were autoclaved. For the dialysis, Bio Design 

Dialysis Tubing (BioDesign Inc) was used. Before dialysis, the Bio Design Dialysis 

Tubing was soaked in distilled water for four hours, with a change of water after one 

hour, to remove traces of glycerol. Then the tube was soaked in 1 mM EDTA for a total 

of four hours with a change of solution at one hour to remove heavy metals. Finally, the 

tube was placed in a beaker with distilled water and autoclaved before use. 

TD-DMEM (500 mL) consists of 50 mL of 10× HBSS, 5 mL of 100× MEM vitamin 

(Life Technologies), 5 mL 100× MEM non-essential amino acid solution (10 mM, Life 

Technologies), 10 mL 50× amino acid mix (Life Technologies), 282 mg solid L-

glutamine, and 1.75 g glucose (pH 7.2), and 400 ml dH2O. The solution was adjusted 

to pH 7.2 using 10% NaHCO3, brought to 500 mL with dH2O. This mixture was 

filtered, and then added to it the dialysed FBS (50 mL) and 1% SP. The prepared TD-

DMEM was stored at 4ºC. The final concentration of tryptophan is TD-DMEM is 

0.1mg/500ml.  

3.2.3 T. gondii differentiation in TD-DMEM with bright field microscopy 

To see whether the parasite can grow and form bradyzoite cysts in the TD-DMEM, 

parasite growth in HFF was observed using bright field confocal microscopy. Four HFF 

cells flasks were infected with 2.5 × 10
5
 shocked T. gondii ΔKU80-GFP. Two of the 

infected HFF flasks were supplemented with alkaline DMEM, and the other two HFF 

flasks were supplemented with TD-DMEM (pH 7.2). The four flasks were incubated at 
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37°C in 5% CO2 for nine days. On day nine, light microscopic images were obtained 

from each flask. 

3.2.4 T. gondii differentiation in TD-DMEM with fluorescent imaging 

Parasite growth in TD-DMEM and the formation of cysts in HFF cells was further 

assessed by observing the induction of T. gondii ΔKU80-GFP cysts, which express 

bradyzoites specific GFP, using confocal fluorescent microscopy. Confluent HFF cells 

growing on sterile 12-mm glass coverslips were infected with 1 × 10
3
 shocked T. 

gondii ΔKU80-GFP and allowed to grow in TD-DMEM or alkaline DMEM (pH 8) for 

nine days. Then, the infected cells were fixed with 4% paraformaldehyde for 10 

minutes at room temperature and then incubated with Hoechst for 20 minutes at room 

temperature. Finally, the slides were washed and mounted (Vector shield mounting) at 

4°C for 4 hours. Images of the slides were taken using a Zeiss LSM 880 laser scanning 

inverted confocal microscope with 40× and 60× oil immersion objectives. 

3.2.5 Analysis of bradyzoite-specific genes for T. gondii growing in TD-

DMEM 

Finally, to evaluate the induction and formation of bradyzoites cyst in TD-DMEM was 

done using semi-quantitative RT- PCR. The bradyzoite- and tachyzoite-specific gene 

expression for T. gondii Prugniard growing in TD-DMEM was detected and compared 

with the gene expression of parasite growing in normal and alkaline DMEM. 

Cell culture and harvesting: Confluent HFF cells flasks were infected with 1–2 × 10
5 

shocked parasites, then the infected cells were grown in TD-DMEM, DMEM, or 

alkaline DMEM for nine days. The parasite pellet was collected on days three, six, and 

nine. The RNA was extracted from the parasite samples and converted to cDNA. 

Finally, bradyzoite and tachyzoites-specific genes in these samples were detected by 

quantitative polymerase chain reaction (qPCR). This experiment was repeated at least 

twice for each culture medium. 

RNA extraction: Infected cells were scraped, and the cell pellets were collected by 

centrifugation at 25000 × g for 10 minutes. Most of the medium was discarded, and the 

cells were suspended in the media left. The RNA was extracted from each sample using 

Direct-zol™ RNA MiniPrep kit (Zymo Research).The RNA was extracted according to 

the manufacturer’s instruction. Briefly, the cells were lysed using 1:1 TRI reagent and 
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homogenised by pipetting and vortexing. The sample was centrifuged at 10000 × g for 

1 minute and the supernatant transferred to a new tube. Then, 1:1 volume ethanol (95-

100%) was added to the mixture and mixed thoroughly. The mixture was transferred to 

a spin column, which was placed into a 2-mL collection tubes and centrifuged at 10000 

× g for 30 seconds. The flow-through was discarded and the column was washed with 

400 μL Direct-zol
TM

 RNA PreWash and centrifuged at 10000 × g for 30 seconds. The 

flow-through was discarded and the column washed twice with 700 µL of wash buffer. 

After each wash, the column was centrifuged at 10000 × g for 2 minutes. Finally, the 

column was carefully transferred into an RNase-free tube and the RNA was eluted by 

adding 50 μL of DNase/RNase-free water directly to the column matrix and 

centrifuging the sample at 10000 × g for 30 seconds. The RNA concentration was 

estimated using NanoDrop 2000 (Thermo Scientific). 

Synthesis of cDNA: To construct a single strand of cDNA from mRNA, a Maxima 

First-Strand cDNA synthesis kit (Thermo Scientific) was used and RT-qPCR was 

performed according to the manufacturer instructions. Briefly, cDNA was synthesised 

by mixing 100 ng of mRNA, 4 µL of 5× reaction mixture, 2 µL of maxima enzyme 

mix, and RNAse-free water to make a total reaction volume of 20 µL. The sample was 

run in a 2720 thermal cycler PCR machine (Applied Biosystems) for 10 min at 25°C 

followed by 15 min at 50°C. The reaction was terminated by heating at 80°C for 5 

minutes, and then cDNA concentration was estimated using NanoDrop 2000. 

Detection of stage-specific genes by quantitative PCR: To compare the stage-

specific gene expression in parasites growing in TD-DMEM, DMEM, and alkaline 

DMEM (pH 8), qPCR was used with primers designed specifically to amplify these 

genes. In a white 96-well qPCR plate (Bio-rad), a qPCR reaction mixture was made as 

follows: 12.5 µL SYBR® Green PCR Master Mix (Thermo Fisher Scientific), 0.5 µL 

forward primer, 0.5 µL reverse primer, and 10.5 µL DNase/RNase-Free Water. The 

initial concentration of all the primers was 100 nM except for BAG1, which was made 

at 50 nM. The following primers were used: T. gondii glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH; forward: 5′- CAAGGGTGGCAAAGATTGGC -3′ and 

reverse: 5′-GCC TGAATCTTTGCCACCCTTG-3′), SAG1(P30; forward: 5′-CGACAG 

CCGCGGTCATTCTC-3′ and reverse: 5′-GCAACCAGTCAGCGTCGTCC-3′) (Xiong 

et al., 1993), SAG4 (P18; forward: 5′-GCTGGACCTACGATTTCAAG AAGGC-3′ 



 
 

67 

 

and reverse: 5′-GCTGCGAGCTCGACGGGCTCATC-3′) (Ödberg-Ferragut et al., 

1996), BAG1 ( forward: 5′-GAGAAACGGGCGAGTAGCACCTGAGGAGA-3′ and 

reverse 5′-TGG GTCTACGTCGATGGCATGACAAC-3′), and Matrix antigen 1 

(MAG1; forward 5′-CCC GAT TAC AGC CGC AAA TG-3′ and reverse 5′-ATG ACG 

TCG CCA AGT CTG TT-3′). The qPCR plate was incubated in a G1000 Thermal 

cycler (Bio-Rad) at 50°C for 2 minutes; 95°C for 10 minutes; followed by 40 cycles of 

95°C for 15 seconds, 55–70°C for 30 seconds (depends on the primer); and 72°C for 30 

seconds. It was finally followed by a melting curve. The annealing temperature for each 

primer was as follows: 66°C for GAPDH, 67.5°C for MAG1, and 69°C for both SAG1 

and SAG4. All qPCR runs were done in parallel with the housekeeping gene GAPDH. 
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3.3 Results 

3.3.1 T. gondii differentiation in TD-DMEM with bright field microscopy 

Initial assessment of T. gondii growth and differentiation in TD-DMEM in HFF cells 

was done by bright field microscopy (Figure 3.1). HFF cells infected for nine days with 

shocked T. gondii, growing in TD-DMEM or alkaline DMEM, were observed by 

confocal bright field light microscope. The images show that the shocked parasites 

growing in TD-DMEM form intracellular tissue cysts. There were none of the classic 

tachyzoite rosette forms observed in the TD-DMEM cultures, while this form was 

observed in alkaline media. On the other hand, shocked T. gondii cultured in alkaline 

DMEM developed into both tachyzoite and bradyzoite stages (Figure 3.1) with lysis of 

the HFF cell monolayer due to tachyzoite replication (data not shown). Parasite growth 

and differentiation in HFF cells was monitored for at least two biological replicates in 

each media. 

3.3.2 T. gondii differentiation in TD-DMEM with bradyzoite-specific GFP 

fluorescent imaging 

Further assessment of T. gondii growth and differentiation in TD-DMEM was carried 

out using fluorescence microscopy of a T. gondii strain expressing GFP under the 

control of a bradyzoite-specific (BAG1) gene promoter (Fox et al., 2011) (Figure 3.2 

and Figure 3.3). HFF monolayers cultured on coverslips were infected with T. gondii in 

TD-DMEM and incubated for nine days, after which the slides were fixed and 

visualised. A key observation in the ability of the TF-DMEM medium is the 

maintenance after this incubation period of a complete HFF cell monolayer and the lack 

of visible free tachyzoites from lysed cells. Hoechst staining of nuclei exhibited blue 

fluorescence of HFF cell nuclei and pinpoint staining of parasite nuclei. All of the 

parasite nuclei visible are associated with GFP-fluorescing bradyzoites (Figure 1.2 and 

Figure 3.3). Hence, T. gondii growing in TD-DMEM exclusively formed bradyzoites in 

intracellular cysts expressing GFP and no tachyzoites were detected. After the nine 

days of infection, parallel cultures in alkaline DMEM had the complete monolayer of 

HFF cells lysed and free tachyzoites floating in the media. 
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A                                                                            B 

 

Figure 3.1. T. gondii growth and differentiation in TD-DMEM under a bright 

field microscope. A: Shocked T. gondii cultured in TD-DMEM for nine days, grey 

arrows show cysts. B: Shocked T. gondii growing in alkaline DMEM for nine days, 

red arrows show classic tachyzoite rosette and free tachyzoites. The images show 

that parasites cultured in alkaline DMEM started to convert to the tachyzoite form 

and free tachyzoites were detected. Meanwhile, the parasite forms intracellular cysts 

in TD-DMEM. 
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                                          A                                                       B                     

 

Figure 3.2. T. gondii differentiation in TD-DMEM under a fluorescent confocal 

microscope (40X). The images show HFF cell monolayers infected with shocked T. 

gondii expressing GFP under a BAG1 promoter cultured in TD-DMEM for nine 

days. Images of the differentiated parasite were obtained using an LSM 880 laser 

scanning inverted confocal microscope 40X oil objective. A: shows the bradyzoites 

cysts fluorescing in green (Green filter: wave length range 433-541). B: DNA stain 

with Hoechst identifies HFF and parasite nuclei (blue filter: wavelength 346-441). 

Note that no tachyzoites (small blue dots that do not fluoresce green) are visible. 

Arrows indicate differentiated T. gondii. 
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A                                                       B 

 

Figure 3.3. T. gondii differentiation in TD-DMEM under a fluorescent confocal 

microscope (60X). Images taken with LSM 880 laser scanning inverted confocal 

microscope (60X oil objective) of HFF cell monolayers infected with shocked T. 

gondii and cultured in TD-DMEM for nine days, Parasites are expressing 

bradyzoites specific GFP. A: shows the bradyzoites GFP (Green filter: wave length 

range 433-541). B: HFF and parasite nuclei DNA stained with Hoechst (blue filter: 

wavelength 346-441). Arrows show the differentiated T. gondii.   
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3.3.3 Bradyzoite-specific gene analysis of T. gondii growing in TD-

DMEM 

To evaluate whether the parasites in TD-DMEM differentiated into bradyzoites, the 

expression of bradyzoite (BAG1) and tachyzoite (SAG1) specific genes were 

assessed using qPCR. Expression of SAG1 in T. gondii decreased from day three to 

nine of cultivation in TD-DMEM. Whereas there was an increase in BAG1 

expression from days three to nine (Figure 3.4, Figure 3.5, and Table 3.1). Other 

bradyzoite and tissue cyst markers, SAG4 and MAG1 respectively, were inconsistent 

in control parasite cultures in DMEM or alkaline DMEM, and hence were not 

included in the analysis. T. gondii growing in TD-DMEM formed intracellular cysts 

visible microscopically on day nine (Figure 3.1). Parasite cultures in pH8 media 

induce bradyzoite conversion in a proportion of parasites but other parasites remain 

vegetative tachyzoites and replicate and lyse cells. This was observed by loss of the 

HFF cell monolayer after three and four days of cultivation (data not shown). This is 

reflected by a trend in the increase in expression of SAG1 from days three to nine for 

T. gondii growing in alkaline DMEM although this trend was not statistically 

significant (t- test: p=0.37) (Figure 3.4 and Table 3.1). BAG1 was induced at day 

three of cultivation in pH8 medium as found in published data (Jerome et al., 1998) 

but day six and nine time points have inconsistent results between repeats most 

likely due to the large degree of host cell lysis in these cultures with active 

tachyzoite replication.  
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Figure 3.4. T. gondii tachyzoitee-specific gene expression in TD-DMEM (SAG1) 

by RT-qPCR. The graphs present expression of the tachyzoite marker SAG1 (n=3) 

in T. gondii growing in normal DMEM (blue columns), alkaline DMEM (green 

columns), or TD-DMEM (red columns) at days three, six, and nine. The expression 

of SAG1 was monitored using qRT-PCR. The graphs show low SAG1 expression in 

both biological replicates at day nine. In alkaline media, SAG1 expression increased 

between day three and day nine.   
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Figure 3.5. T. gondii bradyzoite-specific gene expression in TD-DMEM by RT-

qPCR. The graphs show BAG1 gene expression from the differentiated T. gondii 

growing in normal DMEM (blue columns), alkaline DMEM (green columns), or TD-

DMEM (red columns) at days three, six, and nine.  The expression of BAG1 was 

determined using RT qPCR (n=3). The graphs show that BAG1 expression increases 

in both biological replicates at day nine at TD-DMEM, while BAG1 expression 

decreased in alkaline.   
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Figure 3.6. SAG1 fold change. The graphs show the average fold change of SAG1 

(n=3) mRNA in the shocked parasite growing in normal DMEM (blue columns), 

alkaline DMEM (green columns), and TD-DMEM (red columns). The columns 

represent fold change value in alkaline DMEM and TD-DMEM relative to that of 

DMEM, which was converted to 1. The graph shows that SAG1 decreased in the 

parasite growing in TD-DMEM media compared normal media at day three and 

alkaline media at day nine. Meanwhile, SAG1 at day nine in alkaline media levels 

was decreased in biological replicate 1 and slightly decreased in biological replicate 

2 and compared to normal media at day three.   
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Figure 3.7. BAG1 fold change. The graphs show the average fold change of BAG1 

(n=3) mRNA in the shocked parasite growing in normal DMEM (blue columns), 

alkaline DMEM (green columns), and TD-DMEM (red columns).  The fold change 

value of DMEM and TD-DMEM represent the fold change relative to that of 

DMEM, which was converted to 1. The graph shows that BAG1 increased in the 

parasite growing in TD-DMEM media compared to normal media at day three. 

Meanwhile, BAG1 was decreased in alkaline media at day nine compared to normal 

media at day three.    
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 Normal DMEM DMEM with pH8  TD-DMEM 

 day 3 day 3 day 6 day 9 day 3 day 6 day 9 

SAG1 

BR1 

9.2±1.0 2.7±0.40 3.04±0.59 4.0±1.2 4.6±1.2 2.8±0.81 0.99±0.30 

SAG1 

BR2 

5.4±0.37 1.8±0.58 6.9±0.19 5.2±0.39 5.2±0.40 2.9±0.40 0.90±0.31 

BAG1 

BR1 

2.02±0.18 7.3±0.25 -1.8±0.38 1.01±0.35 2.3±0.78 2.7±0.057 3.73±0.80 

BAG1 

BR2  

1.09±0.37 3.3±0.30 1.4±0.20 -1.9±0.31 1.0±0.35 2.5±0.69 2.6±0.51 

 

Table 3.1. Tachyzoite and bradyzoite specific T. gondii gene expression in 

different media. The table shows the expression of tachyzoite (SAG1) and 

bradyzoite (BAG1) specific genes of T. gondii cultured in HFF cells supplemented 

with normal DMEM, alkaline DMEM, and TD-DMEM at days three, six, and nine 

of infection. These data represent the mean ΔCq of three technical repeats of each 

gene for two biological samples. ΔCq was calculated by subtracting the Cq of the 

target gene from the Cq of the house keeping gene. BR1 means biological replicate 

1, BR2 means biological replicate 2. 
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3.4 Discussion 

T. gondii lacks enzymes needed for the synthesise tryptophan (according to 

metaTiger data base:Whitaker et al., 2009), and supplementation with tryptophan is 

essential for the growth of this parasite (Pfefferkorn and Guyre, 1984; Pfefferkorn et 

al., 1986). Tryptophan breakdown by IDO has been shown to slow the tachyzoite 

growth (Pfefferkorn and Guyre, 1984; Pfefferkorn et al., 1986). Meanwhile, arginine 

starvation induced bradyzoite conversation (Fox et al., 2004). In this chapter, a TD-

DMEM induction method was developed to avoid the heterogeneous growth of 

bradyzoites and tachyzoites, which has been observed when using current methods 

such as treatment with alkaline media, heat, or arsenite (Soete et al., 1994) and 

differentiated myotube culture (Guimarães et al., 2008; Guimarães et al., 2009).  

To investigate the effect of tryptophan depletion on T. gondii differentiation, HFF 

flasks were infected with liberated, alkaline-shocked T. gondii and assessed by light 

microscopy after nine days of cultivation (Figure 3.1). Light microscopy 

observations showed that the parasites formed intracellular cysts, with no detectable 

free tachyzoites in TD-DMEM (with 0.1 mg tryptophan in 500ml DMEM). In 

contrast, in high pH media containing tryptophan (16 mg tryptophan in 500 ml 

DMEM), the parasite formed tachyzoite rosettes and caused lysis of the host cells 

(data not shown), releasing free tachyzoites (Figure 3.1). When HFF cells were 

infected with a T. gondii strain expressing bradyzoite promoter-specific GFP, 

bradyzoite cysts fluoresced (Figure 3.2 and Figure 3.3) and only the bradyzoite form 

of the parasite was seen when cultured in TD-DMEM. In parallel cultures containing 

tryptophan under standard alkaline conditions, severe host cell lysis was observed 

and many extracellular tachyzoite forms were observable by microscopy. Sizes of 

the cysts seen by confocal fluorescent microscopy in TD-DMEM ranged from 10-25 

M, which is similar to brain cyst size at day 21 post infection in mice (Ferguson 

and Hutchison, 1987b). The effect of tryptophan depletion on the parasite and 

bradyzoite cyst formation is similar to the effect of arginine starvation studied before 

by Fox et al. (2004), where arginine starvation converts SAG1 positive tachyzoites 

to SAG1 negative bradyzoites.    
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To further assess the effect of tryptophan depletion on parasite differentiation, 

quantitative RT-PCR was performed with the stage-specific primers SAG1 

(tachyzoite marker)(Kasper et al., 1984) SAG4, and BAG1 (bradyzoite 

marker)(Tomavo et al., 1991; Bohne et al., 1995), and MAG1 (bradyzoite and 

tachyzoite marker)(Parmley, 2002). The results for SAG4 and MAG1 were 

inconsistent in control parasite cultures in DMEM and alkaline DMEM and hence 

were not included in the analysis. The inconsistence in MAG1 expression in the 

control cultures could be due the fact that it is a bradyzoite and tachezoite marker 

(Parmley, 2002). Meanwhile, inconsistent SAG4 results could be as a results of the 

heterogonous growth in those cultures. In TD-DMEM, the parasite showed 20 to 70 

% increase in expression of bradyzoite-specific gene BAG1 as infection progressed, 

and 96 to 100 % decline in the tachyzoite-specific gene SAG1, strongly indicating a 

shift in the predominant form of the parasite to the bradyzoite form. Meanwhile, the 

shocked parasite growing in alkaline or normal DMEM continued to express both 

bradyzoite (60 to 90 % decrease) and tachyzoite (10 to 92 % decrease) specific 

genes, but both decreased with time. This decrease might be an indirect result of the 

active multiplication of tachyzoites, as Soete et al. (1994) observed HFF cells were 

totally destroyed by day nine, due to tachyzoite multiplication, and our microscopic 

observations also showed low numbers of intact cells at day nine. Meanwhile, 

studies have found that bradyzoite is converting to tachyzoites when the parasites 

were induced in alkaline media (Singh et al., 2002; Fouts and Boothroyd, 2007). Our 

data show that BAG1 was induced by day three of cultivation in TD-DMEM 

medium, in keeping with published data (Jerome et al., 1998). From day six to day 

nine there a slight increase in BAG1 expression level, this could be due to the early 

up-regulation of BAG1 mRNA during the differentiation (Bohne et al., 1995). Even 

though confocal fluorescent microscopic imaging of ΔKU80-GFP strain infected 

cells demonstrated that only bradyzoite cysts are formed in TD-DMEM media, RT-

qPCR detected SAG1 expression in parasites growing in TD-DMEM at day nine. 

This may be derived from the initial infection of shocked tachyzoites that is used to 

induce bradyzoite formation.   

This chapter RT-qPCR results shows that SAG1 can be detected in alkaline media 

from day three, and HFF cells started lysing by day nine. Soete et al. (1994) found 
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that bradyzoite cysts induced in the same way didn’t express SAG1 or the bradyzoite 

specific marker p21 after four days. Furthermore, they also found that the host HFF 

cells had been completely lysed by day nine due to active tachyzoites replication. 

Interestingly, noted that bradyzoites induced by alkaline media had  lower amount of 

micronemes and amylopectins compared to brain cysts in mice observed in Ferguson 

and Hutchison study in (1987b). It will be interesting to study the effect of TD-

DMEM induction method on the parasite ultrastructure.   

Current methods known to induce bradyzoite cyst formation, such as treatment with 

alkaline PH, sodium arsenite, or heat, and differentiated myotube culture result in 

heterogeneous growth (Soete et al., 1994). Myotube induction methods are further 

limited by the use of one specific cell line. The TD-DMEM induction method 

introduced here induces only bradyzoite growth according to bright field microscopy 

and confocal fluorescent imaging. Furthermore, RT-qPCR demonstrated that SAG1 

expression was decreased in parasites grown in TD-DMEM.  

3.5 Conclusions  

These findings demonstrate that this TD-DMEM induction method consistently 

stimulates T. gondii differentiation. Therefore, this induction method is suitable for 

production of bradyzoites to be used in studies aiming to understand the mechanism 

of differentiation of this parasite and for comparing the tachyzoite and bradyzoite 

transcriptomes over long periods. Furthermore, it is an easy and cheap method that 

could be used for in vitro studies of T. gondii chronic infection. Parasite 

differentiation using TD-DMEM may be a helpful method for the development of a 

drug screening assay for bradyzoite stages, which is explored in Chapter 4 of this 

thesis. 
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Chapter 4 Novel tryptophan-depleted DMEM bradyzoite screening 

assay  

4.1 Introduction  

Seropositivity for Toxoplasma gondii ranges from 25% to 90% globally (Montoya 

and Liesenfeld, 2004; Dubey and Jones, 2008; Alqahtani and Hassan, 2012; Centers 

for Disease Control and Prevention, 2015) and seroprevalence in HIV/AIDS patients 

ranges from 20% to 70 % (Blaser and Cohn, 1986; Grant et al., 1990; Aydin et al., 

2011; Daryani et al., 2011; Domingos et al., 2013) yet no treatments exist to 

eradicate the chronic stages of infection. Indeed, the majority of AIDS associated 

toxoplasmosis cases are due to cyst reactivation (Porter and Sande, 1992; Renold et 

al., 1992). The tissue cysts associated with chronic infection can last the lifetime of 

the host. There are several current treatments for toxoplasmosis including 

sulfathiazole, pyrimethamine, atovaquone, and spiramycin yet these cannot eliminate 

the tissue cyst stage (ie. encysted bradyzoites) (Fernandez-Martin et al., 1991; 

Katlama et al., 1996; Jacobson et al., 2001; Chirgwin et al., 2002). Furthermore, 

cases of drug resistance and intolerance have been reported to these drugs 

(Haverkos, 1987; Leport et al., 1988; Aspinall et al., 2002; Baatz et al., 2006). A new 

drug that can radically cure toxoplasmosis is required. A bradyzoite-specific drug 

screening assay will aid in the discovery of new drug that can clear latent bradyzoite 

tissue cysts. In the next paragraphs, a brief review of the current treatments for 

toxoplasmosis and drug screening assays will be given. Then, possibilities of using 

the TD-DMEM cultures described in Chapter 3, which induces T. gondii 

differentiation, in the development and evaluation of an in vitro bradyzoites specific 

screening assay-using will be explored. 

The standard treatment for toxoplasmosis as mentioned briefly in the introduction 

(section 1.6) is a combination of sulfonamide and pyrimethamine with folic acid 

(Wong and Remington, 1994; Louis and Kim, 2013). This combination is used in the 

case of severe acute infection in competent patients, active infection in 

immunocompromised patients, severe ocular toxoplasmosis, congenital infection, 
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and acute infection of pregnant women in or after the 24th week of gestation with 

confirmed foetal infection (Desmonts and Couvreur, 1974; Weiss et al., 1992; Wong 

and Remington, 1994; Klinker et al., 1996; Holland and Lewis, 2002; de-la-Torre et 

al., 2011b). Acutely infected pregnant women during 1–18 weeks of gestation (with 

no infection in the amniotic fluid) are treated with spiramycin, since the drug cannot 

cross the placenta and has no adverse effects on the (Desmonts and Couvreur, 1974; 

Wong and Remington, 1994). Also, an in vivo mouse study and in vitro study found 

that a combination of pyrimethamine and dapsone has anti-toxoplasma activity 

(Derouin et al., 1991) against tachyzoite stages. Meanwhile, a combination of 

dapsone, pentamidine or trimethoprim-sulfamethoxazole was found to prevent 

toxoplasma encephalitis in AIDS patients due to suppression of tachyzoite 

proliferation (Torres et al., 1993; Bozzette et al., 1995). Pyrimethamine alone was 

found to be effective as a prophylaxis for T. gondii seropositive patients undergoing 

heart organ transplantation to prevent propagation of replicating tachyzoite stages 

(Wreghitt et al., 1992). 

Toxoplasma encephalitis in AIDS patients can be treated with sulfonamide and 

pyrimethamine (Louis and Kim, 2013). However, some patients have developed 

adverse reactions, and infection relapse was reported in cases of toxoplasma 

encephalitis in AIDS patients treated with this drug combination (Haverkos, 1987; 

Leport et al., 1988; Fernandez-Martin et al., 1991; Katlama et al., 1996; Jacobson et 

al., 1996; Chirgwin et al., 2002). In such cases, they were given other drug 

combinations, such as pyrimethamine with either clindamycin (Katlama et al., 1996), 

clarithromycin (Fernandez-Martin et al., 1991), atovaquone (Chirgwin et al., 2002), 

or azithromycin (Jacobson et al., 1996). Pyrimethamine with either clindamycin or 

azithromycin for toxoplasma encephalitis in AIDS patients was found to be less 

effective than sulfonamide and pyrimethamine (Katlama et al., 1996; Jacobson et al., 

2001). Meanwhile, atovaquone is used as a treatment for toxoplasma encephalitis in 

AIDS patients in cases of pyrimethamine or sulfonamide intolerance (Kovacs, 1992; 

Romand et al., 1993; Jacobson et al., 1996; Chirgwin et al., 2002). Meanwhile, death 

cases in immunocompeten patients with organ transplant (such as hearth and steam) 

taking anti-toxoplasma treatment have been reported (Wreghitt et al., 1992; Martino 

et al., 2000). Furthermore, atovaquone resistance has been reported in cases of long-
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term treatment of ocular toxoplasmosis in immunocompetent patients (Baatz et al., 

2006).  

Laboratory studies have shown some T. gondii strains were resistant to most 

available drugs such as sulfonamide (Pfefferkorn et al., 1992a; Pfefferkorn et al., 

1992b), spiramycin (Pfefferkorn and Borotz, 1994), clindamycin (Camps et al., 

2002), and atovaquone (Pfefferkorn et al., 1993). Moreover, Aspinall et al. (2002), 

isolated a sulphonamide resistant T. gondii strain from clinically infected patients. It 

is important to note that all drugs currently used for the treatment of toxoplasmosis 

target the tachyzoite stage and are used only to clear the symptoms of the disease. 

There is no cure for toxoplasmosis, a since all the current treatments are unsuccessful 

at clearing the bradyzoite containing tissue cysts. All these studies shows that current 

drugs used to treat toxoplasmosis associated with adverse reaction, relapse, 

resistance and or death.  

Recently, a new chemical (ELQ271: Doggett et al., 2012) that has activity against 

the cyst stages in vivo has been developed, but has never been tested against the cyst 

stage in vitro. In (1951), Gingrich et al., found that endochin drugs have anti-

toxoplasmic activity and treatment with these drugs delayed death in acutely infected 

birds and mice. In (2008), Winter et al. found that endochin-like quinolones (ELQ) 

are active against Plasmodium falciparum (IC50= 1.2 nM) and targets cytochrome 

bc1 complex. Further testing on these drugs showed that they had poor performance 

in mammalian systems because they were unstable in the presence of murine, rat, 

and human microsomes (Winter et al., 2011).  

Doggett et al. (2012) studied the activity of two ELQ analogues (ELQ316 and 

ELQ271, Figure 4.1) against in vivo toxoplasma infection in mice (chronic and 

acute) and in vitro HFF cells infection with the acute stage. Acutely infected mice 

orally treated with ELQ316 and ELQ271 had ED50 values of 0.14 mg/kg and 0.08 

mg/kg, respectively. The in vitro activity of ELQ316 and ELQ271 against T. gondii 

infection had an IC50 value of 0.007 nM and 0.1 nM, respectively. No sign of overt 

toxicity was shown when the acutely infected mice that were given a high dose of 

either ELQ cehmicals (50 mg/kg). Meanwhile, treating 5-week-infected mice with 

ELQ chemicals for 2 weeks showed a 76% decrease in cyst number in the brain for 

ELQ316 and 88-84 % for ELQ271 (P < 0.0001). Furthermore, ELQ271 was found to 
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target T. gondii cytochrome bc1 complex; this was established by in vitro testing of 

ELQ271, atovaquone, and endochin activity in the presence of purified T. gondii 

mitochondria (Doggett et al., 2012). These results demonstrate that ELQ271 and 

ELQ316 is active against both tachyzoites and bradyzoites stages. Targeting 

cytochrome bc1 complex in T. gondii, which is found in the inner membrane of the 

mitochondria, will affect pyrimidine biosynthesis and oxidative phosphorylation 

(Vercesi et al., 1998).  

 

 

Figure 4.1. Endochin, ELQ271, and ELQ316 chemical structures (adapted from 

Dogget et al., 2012). 

The process of discovering drugs active against T. gondii consists of two main parts. 

The first one is the chemicals screening assay to recognise chemicals that are active 

against the tachyzoite stage in vitro. The second part is testing the chemicals 

compounds activity against either the tachyzoite and braydyzoite stages using animal 

models (Araujo et al., 1988; Derouin et al., 1991; Derouin et al., 1992). Current 

screening assays are designed in microtiter plate with different tachyzoite viability 

measuring techniques. Some of these techniques that have been used are as follows: 

T. gondii labeling with radioactive uracil (Pfefferkorn and Pfefferkorn, 1977), the 

use of T. gondii-specific antibodies in an enzyme linked immunosorbent assay 

(Merli et al., 1985; Derouin and Chastang, 1988), and transgenic expression of the 

bacterial β-galactosidase reporter gene (McFadden et al., 1997). These assays have 

disadvantages such as the use of a radioactive compound with the uracil T. gondii 

labeling assay, or the use of or the need for external factors to visualize the signal. 
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Also, most of these assays allow only a single time point measurement. Meanwhile, 

another screening assay was developed based on parasite fluorescent labeling and 

fluorescence activated cell sorting (FACS) to monitor parasite growth but requires 

extensive time and equipment running costs (Gay-Andrieu et al., 1999). In (2003), 

Gubbles et al., developed a microtiter plate-based growth assays where a highly 

fluorescent transgenic T. gondii strain (YFP) is used to monitor the parasite growth. 

The advantage of this method is the continuous monitoring of parasite growth in the 

presence of the tested chemicals, no need for external factors to observe the parasite 

growth, and can rapidly examine multiple chemicals (Gubbels et al., 2003). Still, all 

of these screening assays are targeted at discovering chemicals that inhibit the 

growth of the tachyzoite stage. There is no assay to screen chemicals activity against 

the bradyzoite stage in vitro. The only way to test the chemical activity against the 

bradyzoite stage is animal models. 

There is a need for a novel chemical that can cure for toxoplasmosis, since all the 

current treatments are unsuccessful at clearing the bradyzoite containing tissue cysts. 

Current in vitro toxoplasma chemical screening assay are tachyzoite based, and only 

detect the chemical activity against that stage. Animal models are the only means to 

assess the chemical activity against the bradyzoite stages which are time consuming, 

expensive and laborious. So in this chapter, a new in vitro bradyzoite screening assay 

using TD-DMEM induction of T. gondii differentiation was developed and assessed. 

This purpose of this assay is to find a drug that is able to clear the bradyzoite stage.  
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4.2 Materials and Methods  

4.2.1 Cultivation of cells and T. gondii strains 

The HFF cells and parasites were maintained and passaged as previously explained 

(Chapter 2). The T. gondii ΔKU80-GFP (kind gift of David Bzik, Dartmouth) strains 

were maintained, passaged, and shocked, which will induce bradyzoite formation, as 

explained previously (Chapter 3). TD-DMEM used in the screening assay was 

prepared as described previously (Chapter 3).  

4.2.2  Cell cultures, chemicals dilutions, and screening assay design   

 Cell cultures: HFF cells were cultured in black bottom 96-well plates (Costar) in 

DMEM supplemented with 10% FBS and 1% PS at 37°C in 5% CO2 until they 

became 100% confluent for three to four days.  

Chemicals Dilutions: To test the activity of ELQ271 and Pyrimethamine drug 

against T. gondii, both were dissolved in DMSO to make a stoke of 50 mM and 

stored in -20 °C freezer. Prepared a two-fold serial dilutions of each chemical form 

0.97 to 250 µM in TD-DMEM.  

Screening assay design: This screening assay was designed to be in 96-well clear 

bottom with black sides plates with confluent HFF cells infected with T. gondii 

ΔKU80-GFP strains, which expressed bradyzoite specific GFP. 

4.2.3 Differentiated T. gondii inhibition assays 

Confluent HFF cells in black side 96-well plates were infected with 5X10
3
 shocked 

T. gondii KU80-GFP that were liberated from cells by 27-guage needle and 

quantitated by hemocytometer slides and shocked as in chapter 2. These cultures 

were incubated for three days at 37°C in 5% CO2. Then the nine two-fold dilutions 

of the chemicals were added. Plates were incubated at 37°C in 5% CO2 and read 

daily in a Molecular Devices fluorescence plate reader, for a total of six days of 

evaluations. To preserve sterility, the plates were read with lids in place, excitation is 

done from the bottom (492 nm) and fluorescence is read from the top (520 nm). The 

fluorescence intensity measurement was plotted using GraphPad Prism software 

(Sigmoidal dose-response variable slope) to calculate the IC50 value and the 

percentage of growth inhibition. The ELQ271 T. gondii inhibition screening assay 



 
 

87 

 

was performed for at least three biological replicates, and for each replicate the 

fluorescence reading was measured three times at each time point. 

4.2.4 ELQ271 activity in different media 

To further evaluation the newly developed TD-DMEM- bradyzoite screening assay, 

ELQ271 activity against T. gondii ΔKU80-GFP growth in infected HFF cells in TD-

DMEM, alkaline DMEM, or normal DMEM was determined. This was done using 

the same methods in section 4.2.3 with some modification. Brieflyː added eight two-

fold chemical dilutions were added to the cultures. Then, each well was infected with 

5X10
3
 shocked T. gondii ΔKU80-GFP. Plates were incubated at 37°C in 5% CO2 

and read daily in a Molecular Devices fluorescence plate reader. Calculation of the 

IC50 was determined using GraphPad Prism. The screening assay was done in 

triplicate. Furthermore, each replicate was done at least twice.  
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4.3 Results  

4.3.1 T. gondii differentiation inhibition by ELQ271  

To see whether the TD-DMEM bradyzoite screening assay can detect chemical 

active against bradyzoite stages, ELQ271 (active against tissue cysts) and 

pyrimethamine (tachyzoite specific toxoplasmosis drug) activity was tested using a 

TD-DMEM bradyzoites screening assay (Figure ‎4.2). The novel TD-DMEM 

bradyzoites screening assay detected ELQ271 activity against the bradyzoites stage. 

The IC50 values were ranged from 59 to 60 µM  (Table 4.1), which shows that there 

were no significant changes in the IC50 in the different incubation periods. The 

optimal concentration-response curves were obtained at day five and six. As 

expected, there was insignificant inhibition of bradyzoites differentiation by 

pyrimethamine, and its IC50 values could not be determined.  
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Figure 4.2. T. gondii bradyzoite growth inhibition assay with ELQ271. Parasite cultures 

were treated with ELQ271 (2- 250 µm). the number of bradyzoites based on a bradyzoite-

specific GFP marker was measured at days three, four, five, and six with at least three 

biological replicates. The graphs show non-linear regression for fluorescence at the drug 

concentrations tested (with standard error bars). Graphs were plotted using GraphPad prism. 

blue denotes ELQ271; whereas red denotes pyrimethamine (tachyzoite-specific).  
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 Chemicals IC50 (µM) 

Day ELQ271 Pyrimethamine* 

3 59 ±6 >250 

4 61±4 >250 

5 59±0.2 >250 

6 59±0.03 >250 

Table 4.1: IC50 of ELQ271 and pyrimethamine inhibition of differentiated T. 

gondii. The table shows ELQ271’s calculated IC50 by non-linear regression analysis 

using GraphPad Prism. *The highest concentration tested was 250 µM. 
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4.3.2 ELQ271 activity in different media 

To further assess the use of TD-DMEM media in the screening assay, ELQ271 

activity in TD-DMEM was compared to alkaline DMEM and normal DMEM. 

DMEM at pH 8.2 has been used in innumerable studies to induce bradyzoite 

differentiation although it is only promotes conversion of part of the culture. Data in 

Table 4.2 shows the results of this assay performed in triplicate, with each triplicate 

repeated twice. In assays with added ELQ271 activity in TD-DMEM, the inhibitor 

IC50 was between 43 and 49 µM from days three to six (Table 4.2). There was a 

slight difference between the IC50 of ELQ271 obtained. The IC50 value for ELQ271 

in DMEM varied from 83 to 109 µM, and the IC50 in DMEM pH8 was 58–98 µM 

(Table 4.2), hence it was inconsistent with the other media. this is likely due to the 

high number of tachyzoites that will be present in these cultures and the high amount 

of cell lysis. These data show that assays with added ELQ271 in TD-DMEM had 

lower IC50 values compared to the IC50 values with experiments in DMEM and 

DMEM-pH8. Furthermore, a sigmoidal concentration response curve of EL271 was 

obtained in TD-DMEM, whereas with alkaline or normal DMEM data has a weak fit 

to the four-parameter logistic equation to calculate a sigmoidal curve. Indeed, based 

on the poor curves, the data obtained with DMEM and DMEM-pH8 is unreliable.  
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Figure 4.3. ELQ271 activity in different media. Cultures of the parasite and the 

chemical (2- 250 µM) in TD-DMEM (blue), DMEM (red), or DMEM pH8 (green) 

were tested in parallel. measurement of fluorescence indicating bradyzoite number 

was measured at days three, four, five, and six with at least three biological 

replicates. The fluorescence at different chemical concentrations was plotted using 

GraphPad.  
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 ELQ271 IC50 (µM) 

Day TD-DMEM  DMEM DMEM-pH8 

3 44±0.1  109±0.3 99±0.2 

4 44±0.1 109±0.4 89±0.5 

5 44±0.2 83±0.5 66±0.5 

6 50±0.2 103±0.3 58±0.3 

Table 4.2. ELQ271 T. gondii killing IC50 values in different media: The table 

shows the calculated IC50 from the plotted graph of the chemical concentrations and 

the fluorescence parasites intensity in GraphPad Prism.       
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4.3.3 ELQ271 T. gondii percentage inhibition   

The timing of addition of the inhibitor during the parasite differentiation was 

assessed. The percentage of growth inhibition of the differentiated T. gondii treated 

with ELQ271 was measured when the inhibitor was added at Day 1 and when the 

inhibitor was added at Day 3 (Figure 4.4). The second experiment permitted the 

parasite to differentiate in TD-DMEM for 72 hours in bradyzoite development 

before the inhibitor was added. The IC50 values calculated when the parasite was 

added three days post infection was 67±0.08 µM at day five and 68±0.06 µM at 

day six (Table 4.3). Meanwhile, the IC50 obtained from T. gondii percentage growth 

by ELQ271 when the chemical was added at the time of T. gondii infection was 

65±0.07 µM for day five and 57±0.06 µM for day six. Hence there is insignificant 

difference based on the standard deviations from whether the parasites differentiate 

for three days prior to treatment and been treated at the same day. This is 

encouraging news for treatment of tissue cysts as described in the discussion.  
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A                                                                  B 

  

       C                                                                      D 

 

Figure 4.4. The efficacy of ELQ271 against differentiated T. gondii after 

growth. The graphs show the percentage of growth of T. gondii in the presence of 

ELQ271. The percent of untreated growth was determined and plotted at days five 

and six. The graphs on the top (A and B) examine the effect of ELQ271 on 

differentiation from time point zero, whereas graphs C and D examine the chemical 

effect on bradyzoite number with treatment following three days of differentiation.   
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 IC50 from T. gondii % growth (µM) 

Day Chemical added at time 

zero 

Chemical added after 72 

hours 

5 67± 0.08 64±0.07 

6 68±0.06 
 

57±0.06 

Table 4.3. IC50 values from the T. gondii comparing times of addition of 

chemical ELQ271. 
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4.4 Discussion 

T. gondii infection cannot be radically cured by the currently available drugs, as 

these drugs can only clear the tachyzoite stage or cannot permeate the blood brain 

barrier. Because of this limitation, immunocompromised patients are susceptible to 

infection relapse or death (Wreghitt et al., 1992; Fernandez-Martin et al., 1991; 

Katlama et al., 1996; Martino et al., 2000; Jacobson et al., 2001; Chirgwin et al., 

2002). A drug is needed that targets both the tachyzoite and bradyzoite stages. To 

screen drugs against the bradyzoite stage, a straightforward drug screening assay was 

developed and evaluated by employing parasites stably expressing GFP in the 

bradyzoite stage. The screening assay was designed to be in 96-well black sides clear 

bottom plates with a growing monolayer of HFF cells infected with a T. gondii strain 

that expresses GFP as a bradyzoite. The chemical dilutions were added to infected 

cultures and the GFP intensity was measured daily until day six.  

To evaluate the screening assay, two chemicals were tested against the bradyzoite 

stage using the assay. ELQ271 is as an active chemical against the brain cyst stage 

that is still in development (Doggett et al., 2012), and pyrimethamine is the standard 

treatment that has no activity against the chronic stage. The screening assay 

demonstrated that ELQ271 has activity against the bradyzoite stages from day three 

to day six, while pyrimethamine had no effect on the parasite. Meanwhile, the 

calculated IC50 values for ELQ271 ranged from 59 to 61 µM (standard error range 

±  0.2 to 6). These data show that ELQ271 IC50 was not significantly changed with 

increase of infection period. Doggett et al. (2012), found that ELQ271 had an IC50 

of 0.1 nM against tachyzoites stages, and that it lower cyst number in the brain by 

84-88 % but doesn’t clear the infection. The IC50 of ELQ271against bradyzoite 

stages observed in our TD-DMEM screening assay correlate with the 84-88% 

removal of brain tissue cyst observed by Doggett et al. (2012).  

To further assess the TD-DMEM screening assay, ELQ271 activity against the 

parasite was determined in TD-DMEM, DMEM at pH8, and normal DMEM. The 

fluorescence readings from this experiment found higher activity of inhibitor in TD-

DMEM (IC50 was < 50 µM), but importantly an uninterpretable concentration 

response curve in normal or alkaline DMEM due to lack of a sigmoidal curve. 
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Importantly, in alkaline and normal DMEM, parasites will convert to tachyzoites 

(Soete et al., 1994; Singh et al., 2002; Fouts and Boothroyd, 2007) leading to cell 

lysis, which could explain the observed fluorescence loss in those media. 

Furthermore, the high pH in alkaline DMEM could affect ELQ271 activity against T. 

gondii, consistent with previous observations where different pH can affect 

Mycobacterium tuberculosis drug activity. Meanwhile, TD-DMEM media in the 

screening assay maintains the parasite in the bradyzoite stage and thus only detects 

ELQ271 activity against the bradyzoite stage. 

To see whether the chemical would effect the parasite early entry and invasion or/ 

and latent stages, ELQ271 IC50 was determined when adding the chemical at the 

same time of infection and three-day post infection. The IC50 of ELQ271 in TD-

DMEM was similar when adding the chemical at the same time of infection and 

three-day post infection (Table 4.3). Drug time based screening assay on HIV virus 

have also shown that IC50 varied when the drug was added at different times 

(Daelemans et al., 2011). This suggests that inhibitor may work well against tissue 

cyst stages. These stages are slowly replicating (Watts et al., 2015). 

TD-DMEM bradyzoite screening assay is a medium to high throughput drug 

screening assay. This method allows multiple drugs screening at multiple 

concentrations. There is no need for additional chemicals in TD-DMEM bradyzoite 

screening such as with radioactive uracil screening assay (Pfefferkorn and 

Pfefferkorn, 1977). Meanwhile, the equipment used to measure the parasite 

bradyzoite specific GFP is cheap and easy to use. This is can not be said about the 

use of FACS in screening assay that detect parasite labelled with fluorescent (Gay-

Andrieu et al., 1999). Currently, a animal models are used to screening drugs against 

the bradyzoite stage which take time and laborious. TD-DMEM bradyzoite screening 

assay will lower the necessity for animal testing for all the drugs that might work 

against that stage. Only drugs active against bradyzoite stage in vitro will be tested 

with animal. Furthermore, the newly developed screening assay has detected 

ELQ271 activity against the parasites developing into braydyzoite and parasites that 

have been differentiated to bradyzoite for three days. 

 

 



 
 

99 

 

4.5 Conclusions 

 The TD-DMEM and GFP-based T. gondii screening assay combines the advantages 

of using a stage specific reporter and TD-DMEM to induce the parasite to 

differentiate. The drug activity in the screening assay will be specific against the 

bradyzoite stage, since TD-DMEM will keep the parasite in the bradyzoite stage 

without affecting the drug activity, and only the bradyzoite-specific GFP is 

measured. Meanwhile, the advantage of this method is that the parasite growth can 

be monitored at multiple time points without interfering with parasite development. 

This advantage might aid understanding the drug function by detecting any delayed 

death effect such as was seen by Gubbels et al in (2003) where a continuous 

fluoresce tachyzoite screening assay were used detect clindamycin delayed death 

effect. On the other hand, TD-DMEM based screening assay is fast, easy, and less 

time consuming, and therefore it is recommended for screening drugs that might be 

active against the cyst stage.  
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Chapter 5 General Discussion and Future Work  

This thesis approached several important aspects of the parasite bradyzoite stages, 

particularly those involving the production of L-DOPA by the parasite. Further, as 

there are no drugs for elimination of the chronic stages of infection, a new culture 

method was developed for identifying inhibitors of bradyzoite stages. These advances 

in our understanding and new technologies will permit development of treatment to 

cure toxoplasmosis.  

5.1 Toxoplasma gondii aromatic amino acid hydroxylase and 

dopamine biosynthesis 

As L-DOPA and DA can be transformed to dopaquinone by oxidation, and 

dopaquinone has been shown to play a role in the formation of polymer cross-linking in 

other biological systems (Rzepecki et al., 1991; Waite, 1990; Lee et al., 2002). It is 

possible that similar cross-linking occurs in tissue cysts or potentially in oocyst 

formation. L-DOPA is involved in forming intermolecular covalent bonds and 

hardening of dopa-containing proteins in other organisms. The ability of T. gondii to 

oxidise L-DOPA and DA in order to utilise dopaquinone in cyst wall cross-linking was 

addressed in this thesis. Colorimetric dopa-oxidase activity assays of T. gondii 

tachyzoites and bradyzoites demonstrated that T. gondii does not have dopa-oxidase 

activity (Table 2.1). This finding concurs with data obtained from metaTiger 

bioinformatics search engine (Chapter 2) that the T. gondii genome does not contain a 

gene that is homologous to dopa oxidase (according to metaTiger search; Whitaker et 

al., 2009). These facts indicate that it is unlikely that T. gondii converts L-DOPA to 

dopaquinone. Recent RNA sequencing analysis found a high concentration of TgAaaH 

expressed in oocysts (See ToxoDB Fritz et al., 2012 data). A possible function of 

TgAaaH in T. gondii is to provide L-DOPA that might be used in oocyst wall cross-

linking. Eimeria maxima oocyst wall, which was collected from chicken faeces, 

contains di-tyrosine and DOPA based on HPLC and fluorescence (Belli et al., 2003a; 

Belli et al., 2003b). Furthermore, peroxidase enzyme activity was found in the wall 
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forming bodies of the macrogamete, and it was suggested that it involved in the process 

of oocyst wall formation by catalysing dityrosin cross linking (Belli et al., 2003a; Belli 

et al., 2003b). The epithelial cells of the gastrointestinal tracts contains dopa-oxidase 

activity (tyrosinase) as a component of the melanin pathway (Morris et al., 2002). 

Accordingly, it will be interesting to see whether T. gondii oocysts growing in cat gut 

might contain L-DOPA in the oocyst wall by using HPLC with UV and fluorescence 

detection.  

To better understand the function of TgAaaH, its location during T. gondii infection 

was investigated (see Chapter 2). TgAaaH genes encode a protein with a predicted 

signal peptide at the N-terminus, which was originally proposed to be involved in 

transporting TgAaaH 1 and 2 either to the parasite’s outer membrane or for secretion 

from the parasite into the PV (Gaskell et al., 2009). Localisation of TgAaaH was done 

using immunofluorescence with a specific anti-TgAaaH antibody (Figure 2.7, Figure 

2.9 and Figure 2.10), WB with a general AAAH antibody (Figure 2.3, Figure 2.4, 

Figure 2.5, and Figure 2.4), and TH activity assays (Table 2.2). Immunofluorescent 

localisation of TgAaaH found the enzyme within the PV, supporting what has been 

observed in brain tissue cysts by immunostaining Prandovszky et al. (2011). Detection 

of TgAaaH after extracellular trypsin treatment and cell component fractionation 

showed that TgAaaH is membrane-bound and/or transported outside the parasite. The 

finding is supported by detection of TH activity in the parasite fractioned cellular 

components (Table 2.2). Further study is needed to investigate whether TgAaaH is 

transmembrane or is secreted within the cyst but outside the parasite. This can be done 

by WB detection of TgAaaH and the known T. gondii transmembrane proteins, such as 

MIC transmembrane protein, after trypsin treatment. 

Meanwhile, the present study did not show the direct involvement of a signal peptide in 

the translocation process. N-terminal signal peptides are known to be involved in 

directing proteins to the endoplasmic reticulum, where they are cleaved to permit the 

mature protein polypeptide to fold and be exported. Experiments that can be performed 

to find the direct link between TgAaaH localisation and signal peptides, including 

signal peptide deletion construct, fluorescent tagging, and pulse chase labelling. 

TgAaaH could be localised using WB and fluorescence techniques after knocking out 

the signal peptide gene. To test the influence of the signal peptide presence or absence, 
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pulse chase analysis of wild type TgAaaH could reveal evidence for signal peptide 

cleavage during pulse. The combination of the two experiment should yield a clear 

answer.  

Wang et al. (2015) suggested that the expression of TgAaaH was very low in 

tachyzoites and bradyzoite since the TgAaaH protein they could not detect the protein 

by WB or immunofluorescence.  However, in our hands TgAaaH can be detected using 

these techniques (Figure 2.3, Figure 2.5, Figure 2.7, and Figure 2.9). These finding 

indicate that TgAaaH is synthesised within the parasite and transported outside the 

parasite but within the PV. TgAaaH may have multiple roles: those involved in 

dopamine synthesis that is proposed to be involved in latent stage behavioural changes 

in rodents (Webster et al., 2006), or DOPA for oocyst wall biosynthesis (Belli et al., 

2003a; Belli et al., 2003b). Future work is needed to specify parasite-produced L-

DOPA and DA during latent stage infection and its location, which might be free and 

going through auto-oxidation and the formation of quinones and semi-quinones (Hald 

and Lotharius, 2005).  

Although parasite-encoded TgAaaH activity was present for synthesis of the elevated 

DA levels observed in earlier studies (Skallova et al., 2006; Prandovszky et al., 2011), 

DDC is needed to convert L-DOPA to DA. During the period of this thesis research, 

DDC was found within cysts during dopaminergic cell infection using immune staining 

(Martin et al., 2015). This DDC appeared to be the host DDC. Still the question arises 

whether T. gondii encodes an enzyme with L-DDC activity or simply uses the host’s L-

DDC. Sensitive bioinformatics searches (metaTiger: Whitaker et al., 2009 :Chapter 2) 

did not identify an orthologue but there is the possibility of an enzyme with L-DDC 

activity that does not have significant homology. The potential of a T. gondii enzyme 

with L-DDC enzyme activity was tested in vitro by testing for the endproduct DA using 

HPLC of liberated parasites that had been grown in non-dopaminergic cells. HPLC 

results showed that L-DOPA is synthesised by liberated parasites but DA was not 

detectable (Figure 2.2) concurs with the bioinformatics data and demonstrates that 

parasites do not encode L-DDC activity. Meanwhile, WB localisation of DDC in free 

T. gondii collected from dopaminergic cells with anti-DDC antibody showed that DDC 

was found within the PV (Figure 2.11). The absence of DA in liberated parasites that 

have been grown in non-dopaminergic cells suggests that the parasite is only able to 

synthesise DA in dopaminergic cells. Meanwhile, DDC presence in the PV in 
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dopaminergic cells supports Martin et al. (2015) findings that the parasite can recruit 

host DDC into the parasitic vacuole where the parasite encoded TH is found. The two 

findings suggest that the parasite’s ability to increase DA does not occur randomly in 

any cells, it only occurs in dopaminergic cells containing the DDC enzyme, such as 

dopaminergic brain neurones. Martin et al. (2015) suggested that DDC recruited within 

the PV to prevent L-DOPA breakdown in the cytosol and aid in forming DA. It would 

be interesting see whether T. gondii TgAaaH and the host DDC form a multi protein 

complex to form DA similar to PC12 DA and DDC (Cartier et al., 2010). Moreover, 

studies are required to see whether DA biosynthesis is the mediator of the behaviour 

changes, and if immune and/or endocrine response to the infection was involved in that 

change. Though a recent study showed that mice infected with attenuated T. gondii, 

which lack the protein (ROP5) that activate the immune response, are still attracted to 

cat urine (Ingram et al., 2013).  

5.2 Effect of tryptophan-depleted DMEM on the differentiation of 

Toxoplasma gondii  

In this thesis’s Chapter 3, a newly-developed TD-DMEM media was used to induce T. 

gondii differentiation to aid in studying the bradyzoite stages. TD-DMEM induction 

methods were developed to overcome the limitations of the current methods used to 

induce T. gondii differentiation (such as alkaline pH), which result in heterogeneous 

growth of both bradyzoites and tachyzoites and eventually lyse all the host cells (such 

as obsereved in Soete et al., 1994; Fouts and Boothroyd, 2007). The new induction 

method was evaluated using light microscopy (Figure 3.1) and fluorescence imaging of 

a T. gondii strain that expresses GFP only in bradyzoites (Figure 3.2 and Figure 3.3). 

The light microscopic and fluorescent images show that only bradyzoite cysts grow in 

TD-DMEM (Figure 3.1, Figure 3.2, and Figure 3.3). These results were reinforced by 

examining markers of bradyzoites (BAG1) and tachyzoites (SAG1) for T. gondii 

growing in TD-DMEM (Figure 3.4, Figure 3.5, Figure 3.6, and Figure 3.7). These 

results showed that TD-DMEM induced the switch from fast growing T. gondii to slow 

growing bradyzoites. This effect of TD-DMEM on the parasite is similar to the effect 

seen in arginine starvation where 99% of the parasites switch to the bradyzoite form 

after seven days from infection (Fox et al., 2011). Limitation of depleting arginine is 
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that this amino acid is needed for nitric oxide host response, which involved in 

controlling the parasite growth (Khan et al., 1997; Scharton-Kersten et al., 1997). TD-

DMEM is an easy and inexpensive method that could be used for in vitro studies of the 

T. gondii chronic stage where the parasite can be incubated for a long period without 

the concern of growth heterogeneity seen in on other induction techniques such as 

alkaline media, chemical, and heat shock (Soete et al., 1994; Guimarães et al., 2008; 

Guimarães et al., 2009). Also, this method can be used with any cell line, unlike the 

differentiated myotube induction method (Guimarães et al., 2008; Guimarães et al., 

2009). The TD-DMEM differentiation method can be used in stage comparison studies 

that include both tachyzoites and bradyzoites. Also, the TD-DMEM media closely 

mimics the environment created by immune response in the brain and maintains the 

parasite in a differentiated state. Meanwhile, it would be interesting to determine if the 

depletion of other amino acids such as tyrosine and phenylalanine would affect the 

parasite invasion, replication, cyst wall formation, or egression. Discovering the answer 

to this question would also help in understanding the essential role of TgAaaH, since 

TgAaaH utilises both phenylalanine and tyrosine and a recent study by Wang et al. 

(2015) found that the parasites with TgAaaH 1 knockouts were unable to survive. 

5.3 Novel tryptophan-depleted DMEM bradyzoite screening assay  

In this thesis TD-DMEM-based parasite differentiation was used for developing a 

bradyzoite specific screening assay (Chapter 4). The current toxoplasmosis treatments 

cannot clear latent infection, and or have side effects (Haverkos, 1987; Leport et al., 

1988). Cases of relapse have been observed in AIDS patients treated with all of the 

current anti-toxoplasma drug combinations (Kovacs, 1992; Romand et al., 1993; 

Jacobson et al., 1996; Chirgwin et al., 2002). A new drug that targets the cyst stage is 

needed to cure toxoplasma infection. A novel screening assay to detect drugs that are 

active against the bradyzoite stages has been developed. Current methods for 

identifying bradyzoite stage lead compounds is by testing in mice. The assay was based 

on the use of a T. gondii strain that expresses GFP in the bradyzoite stage, and TD-

DMEM media to induce parasite differentiation. ELQ271, which caused an 84-88 % 

reduction in brain cyst number (Doggett et al., 2012) was active in the assay with an 

IC50 of circa 59 µM (Figure ‎4.2 and Table 4.1). While pyrimethamine, which is not 
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active against the cyst stages, had no activity (Figure ‎4.2 and Table 4.1). The TD-

DMEM differentiation method (developed in Chapter 3) used in the assay will allow 

the parasite to differentiate without the change in pH that has previously shown to 

affect the MIC of drugs that target malaria and Leishmania (Yayon et al., 1985; Jiang et 

al., 2002). The newly-developed screening assay allows continued monitoring of the 

parasite growth without interfering with parasite growth and the use of external 

cytotoxic chemicals. In the future, this method can be used as a high throughput assay 

to screen chemicals that might be active against the bradyzoite stage, because it only 

measures the bradyzoite-specific GFP. TD-DMEM based bradyzoites drug screening 

assay is fast, easy, and take less time and effort compared to currently used animal 

model testing, which are time consuming and laborious (Sabin and Warren, 1942; 

Araujo et al., 1988; Araujo et al., 1992). Hence this method can be used as an initial 

throughput assay to select compounds to test in vivo; also as a great advantage in 

keeping with the 3R’s of animal experimentation. Finding a drug that is active against 

latent T. gondii infection is the first step toward finding a cure against toxoplasmosis. 

After finding a chemical that is active against the latent stage, the drug toxicity and 

ability to pass the blood-brain barrier would need to be tested in vitro and in an in vivo 

animal model. After establishing the drug safety, efficacy in animals, and receiving 

ethical approval, the drug safety in humans can be tested (Phase I). Finally, if the drug 

were found to be safe and effective, an application would be made to the drug 

authorities (IND), such as the Food and Drug Administration to license the drug and be 

allowed to be given to patients. For this large investment, pharma partners are needed. 

5.4 Conclusions 

 The aim of this thesis was to characterise DA synthesis in T. gondii and develop a 

bradyzoite specific drug screening assay. Characterisation of DA synthesis in T. gondii 

during infection established that the parasite can synthesis L-DOPA from 

phenylalanine. Nonetheless, T. gondii was not able to synthesis DA in non-

dopaminergic cells, and for synthesising DA T. gondii require host DDC. The fact that 

T. gondii only forms DA in dopaminergic cells show a level of specific regulation of 

DA synthesis in host cells without the detrimental effects of unpackaged cytosolic DA. 
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Furthermore, T. gondii is unlikely to convert DOPA to dopaquinone unless the host cell 

provides a dopa-oxidase enzyme activity.  

Learning more about DA synthesis, the parasite-encoded tyrosine hydroxylase enzyme 

(rate limiting enzyme for DA synthesis) was found to be membrane bound and was 

transported outside the parasite within the PV. Future studies are needed to define how 

DA affects the molecular mechanisms involved in the behavioural responses of rodents 

during T. gondii infection, and how these may be relevant to the associations with 

human neurological disorders. More studies are required to understand the link between 

T. gondii infection and mental disorders, including a long-term clinical investigation to 

establish whether the infection is acquired before or after the appearance of mental 

symptoms, and to compare T. gondii seropositivity between groups of mental disorder 

patients. The research would establish whether mental disorder patients have a higher 

risk of infection, or if the infection might be the cause of the disorder. 

After characterising DA synthesis, bradyzoite specific drug screening assay was 

designed based on TD-DMEM differentiation methods and the detection of bradyzoite 

specific GFP of T. gondii ΔKU80-GFP strain. TD-DMEM differentiation method were 

successful in inducing tachyzoites to bradyzoite conversion, and keeping the parasite at 

that stage. The good news that this assay can be used as a high throughput screening 

assay to identify drugs active against the bradyzoite stage.  
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