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Abstract 
 

Since the 1960s, the construction of high-rise apartment buildings has been prolific across 

Asia. These buildings, nowadays, are required to reduce excessive energy consumption in 

order to mitigate carbon emissions. Various measures of refurbishment strategies have 

focused on measuring energy saving. A building energy model, one of the more dominant 

measurement methods, needs to be advanced for more reliable and achievable results. 

However, the current approaches for existing apartments in the context of South Korea is 

unsatisfactory due to influential factors, being disregarded in the process.   

This study aims to develop a building energy model of existing apartment buildings for 

energy-efficient refurbishment in South Korea by integrating the influencing factors that 

cause variation in actual energy consumption. The developed building energy model 

implemented to evaluate refurbishment strategies of reducing energy consumption with 

respect to future climate change. 

The overall results can be summarised as follows: firstly, the prioritisation of the physical 

characteristics affecting energy consumption provides one determinant building feature, 

construction years, and two subsidiary features, heating methods and unit sizes, to classify 

existing buildings. Secondly, the 90% probability of occupants’ behaviours, inferred from 

actual consumption, is set with 17 – 20°C set temperatures and 3 – 8 hours of operation for 

heating. Electricity consumption is derived from 3 – 6 hours of operation with several 

influential appliances. Thirdly, variation among the middle floors requires the building 

energy model specified with individual units. Moreover, a numerical model of individual 

heating controls showed 18 – 22°C set-point temperatures in apartment units with different 

locations with 7 – 8 hours of heating. Lastly, the refurbishment strategies based on the 

thermal regulations in 2011 efficiently reduce energy consumption. However, further 

improvement of increasing insulation is not efficient. Climate projection for a heating 

dominant climate would have a limited impact on the total energy consumption, with only 

600 kWh/year in 2050. 
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2 

 

 Background of the research  1.1

 Green House Gas emissions and energy use in existing buildings 1.1.1

Global warming has been an international challenge as a result of the increase of Greenhouse 

Gas (GHG) emissions. Global mean temperature increased up to 0.8°C between 1880 and 

2010 (Hansen et al., 2010), and extreme weather events have taken place in many countries 

(e.g. United States Environmental Protection Agency, 2016; Korea Meteorological 

Administration, 2012). Human activities giving rise to GHG emissions commonly come 

from fossil fuel combustion that is one of the significant contributors increasing GHG 

emissions (Pachauri et al., 2014). Since the first climate change assessment report from 

Intergovernmental Panel on Climate Change (IPCC) in 1990, the international treaty, named 

the United Nations Framework Convention on Climate Change (UNFCCC), was negotiated 

to stabilise GHG emissions in 1992. Further agreement was also made in the Kyoto 

Protocol, establishing national GHG inventories of the emissions from industrialised 

countries in 1997. Developing countries were also encouraged to produce the inventories, 

whereas developed countries had to submit the inventories to UNFCCC.  

Many countries have paid significant attention to the diverse driving sectors. Policies and 

regulations have been enhanced to suppress GHG emissions in the driving sectors including 

buildings. For example, the European Union (EU) has cooperated to achieve 21% lower 

GHG emissions than the 2005 level of the emissions by 2020, and 43% lower by 2030 under 

the EU emissions trading system, limiting an allowance of the emissions but with the 

availablility to purchase an allowance (Woerdman, 2015). South Korea, ranked 8
th
 in the 

largest carbon emission country (Oliver et al., 2012), has established a law, ‘Framework act 

on Law Carbon Green Growth’, enhancing levels of regulation in the sectors consuming 

fossil fuels, such as agriculture, transportation, industry and buildings (Jones and Yoo, 

2012). However, the national GHG emissions of South Korea has been growing in all 
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sectors since 2000 (Oliver et al., 2012), despite the mitigation policies enacted. Additional 

efforts have been addressed to achieve an actual reduction in the GHG emissions.  

About 50% of the indirect GHG emissions, due to economic sectors, is comprised of energy 

use in buildings, according to the IPCC assessment (Pachauri et al., 2014). Buildings are 

required to consume less and less energy while preserving a comfortable indoor 

environment. Thermal conditions of buildings have been intensified through policies and 

regulations to restrict excessive energy consumption. As a result, new buildings have been 

designed to be energy-efficient. Moreover, existing buildings that have already been built 

before this energy reduction scheme have been highly regarded to be refurbished. Both 

academic and industrial fields have explored the actual potent of reducing energy 

consumption inherent in buildings. Both fields have shown their focus on developing 

construction technologies in reducing building energy consumption and provided the 

quantification of ‘pre-’ and ‘post-’ levels of energy use in buildings.  

 Assessment methods of energy performance in buildings 1.1.2

As mentioned in the previous section, improving thermal conditions in existing buildings has 

been considered as one of the potential strategies in reducing GHG emissions. In order to 

succeed in the reduction, the energy performance of existing buildings has to be accurately 

assessed. Thus, refurbishment strategies are able to determine inefficient parts of buildings 

that need to be improved. Moreover, the accurate diagnosis helps to select appropriate 

refurbishment technologies.  

According to Ma et al. (2012), energy-efficient refurbishments require six key elements: (1) 

policies and regulations, (2) client recourses and expectations; (3) retrofit technologies; (4) 

building-specific information; (5) human factors; (6) uncertainties. Policies and regulations 

provide the minimum requirements of building conditions for a comfortable indoor 

environment. The purpose and direction of refurbishments are determined by clients. The 

applicable retrofit technologies need to be accurately evaluated in comparison with the 
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original conditions. In order to identify the original energy performance of buildings, the 

specific building information needs to be surveyed. Moreover, how the buildings are 

operated and maintained also have to be identified. Finally, the possible errors causing 

uncertainties should be taken into consideration. Consequently, understanding the original 

conditions of buildings is crucial to implement energy-efficient refurbishments. Based on the 

accurate understanding of the ‘pre’ refurbishment conditions, the most efficient 

refurbishment strategies can be made. In order to achieve this, appropriate assessment 

methods for measuring energy performance in buildings are essentially needed.  

The current assessment methods for building energy performance are differentiated by the 

purpose of analysis: energy classification and performance diagnosis (Wang et al., 2012). 

Energy classification has been applied to provide levels of energy performance or GHG 

emissions in buildings, whilst performance diagnosis evaluates insufficient building 

performance for actual improvement. These assessments have been applied through four 

types: (1) building environment assessment schemes; (2) energy certifications; (3) whole-

building benchmarking models; (4) hierarchical assessment and diagnosis tools (Wang et al., 

2012). 

As reviewed in Chapter 2, each application takes different methods for quantifying building 

energy performance. The energy quantification methods can be categorised by three types: 

calculation-based, measurement-based and hybrid methods (Wang et al., 2012). The 

calculation-based methods estimate energy performance by creating calculation models with 

input data of building conditions. The methods are specified by the dynamic simulation and 

steady-state method depending on how to consider dynamic effects of buildings. The 

measurement-based methods are expected to reduce discrepancies in the calculation-based 

methods by using actual energy use data from energy bills and monitored records. The 

hybrid methods are the integrated approaches of combining the calculation-based and the 

measurement-based methods. The calculation-based methods take the leading position in 
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analysing building performance, while the measured data is used to calibrate the calculation 

models (Wang et al., 2012).  

In short, building energy performance needs to be accurately measured in order to create 

efficient refurbishment strategies. The diverse applications of assessing energy performance 

buildings have been used to implement the assessments. This also determines how to 

quantify building energy performance (specifically reviewed in Chapter 2, Literature review).  

 Main challenges of quantifying energy performance in buildings 1.1.3

To determine the success or failure of refurbishment projects, two foundations have to be 

ensured. The first foundation is whether the original conditions of building energy 

performance are accurately diagnosed. The second one is whether the anticipated energy 

saving through refurbishment strategies can be achieved in real situations.  

Six challenges for energy-efficient refurbishment have been reported by Stafford et al. 

(2011). Firstly, inflexible frameworks of refurbishment struggle to encapsulate complexity 

and diversity in individual buildings. Thus, refurbishment strategies may not be tailored for 

an individual or a specific group of buildings. Secondly, actual energy consumption can be 

different from the estimated energy consumption, which is called ‘The performance gap’. It 

is problematic because overestimation brings about over-sized HVAC systems and vice 

versa. Thirdly, the factors encompassing building envelopes are interacting a complex way, 

which requires to be considered holistically. The fourth challenge is how to integrate 

renewable technologies with the improvement of the building envelopes. The fifth challenge 

is how to deal with the uncertain occupant’s related issues, including occupancy, day-to-day 

behaviour, building services and maintenance. Lastly, continuous monitoring and feedback 

are important for further improvement. It has been revealed that the six challenges are 

derived from the complex and diverse building conditions, and the limitations of the current 

framework in assessing refurbishment. 
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In particular, existing literature has mentioned the performance gap that the predicted energy 

performance has easily over- or under-estimated compared to actual achievement in real 

situations. The performance gap causes high levels of uncertainties in the prediction of 

energy performance. This can result in unreliable refurbishment strategies. There have been 

continuous attempts to improve the energy quantification methods in order to reduce the 

discrepancy derived from the performance gap. Many previous studies suggest a 

probabilistic approach for the possible distribution of building factors in quantifying 

building energy performance, rather than a deterministic approach. Moreover, assessment 

methodologies have been more systematic and sophisticated with regard to actual energy use. 

Despite these efforts, there is no perfect and solid process quantifying energy performance in 

buildings. It is still an ongoing process.       

 High-rise apartment buildings and refurbishment measures in South 1.1.4

Korea 

Refurbishing existing buildings has also been an important issue in many Asian countries, 

including China, Japan, Hong Kong, Singapore and South Korea (Yuen, 2011). Particularly, 

high-rise apartment buildings in South Korea have made up the dominant proportion not 

only in dwellings but also in buildings. 63% of high-rise apartment buildings were built 

before buildings were energy-efficient (Statistics Korea, 2000; Statistics Korea, 2010b), 

which implies that these old apartment buildings can be easily vulnerable in sustaining a 

comfortable indoor environment than new buildings.   

The physical characteristics of apartment buildings can be described by three different scales: 

clusters, buildings and units. An apartment unit is an individual space for each household 

living in the same building. An apartment building is a group of the apartment units, while 

an apartment cluster is a group of the apartment buildings. Throughout reviewing the 

development of high-rise apartment buildings (Chapter 2), the physical characteristics of old 

apartment buildings have been transformed. Chronologically, apartment buildings in the 

1960s were in the process of development, so that there were various attempts to increase 
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the number of floors from five to higher. In the 1970s and 1980s, a great number of 

apartment buildings had been constructed in a short period under the governmental-led 

projects. To this reason, the shape of apartments has been much unified without considering 

diversities. Despite this, the shape of buildings has been transfigured for social and 

economic profits. The general number of floors has been increased up to 15 from five. The 

width of buildings has been shortened. In the 1990s, the massive constructions were 

continued by similar trends of building characteristics from the previous decade. Since the 

2000s, a new type of apartment buildings, ‘Tower type’ has appeared. This type increases 

the limit of apartment floors from 25 to more than 40 – 50.  

Fundamentally, the transformation of high-rise apartment buildings was intended to bring 

about higher economic profit and reflect social requirements. Recently, not only new but 

also existing buildings have to be more energy-efficient. Thus, energy use in old high-rise 

apartment buildings has to be assessed in order to choose the most appropriate design 

strategies or refurbishment strategies. There are five types of building performance 

assessment methods in South Korea: Green Building Certificate Criteria (GBCC), Building 

Energy Efficient Rating System (BEERS), Housing Performance Rating Disclosure System 

(HPRDS), Energy Saving Design Standards (ESDS) and The Environmental-Friendly 

Housing Certification (EFHC). As compared in Section 2.2.4, four of the five assessment 

methods, apart from BERS, take the Energy Performance Indicator (EPI), which evaluates 

building energy performance by designated criteria with different credits. For example, 

GBCC requires credits higher than 60 to certify buildings as energy-efficient (MLIT, 2013). 

This system with EPI is easy for assessing building performance without complicated 

calculations. However, it is difficult to diagnose detailed energy performance in order to 

improve specific parts of buildings. Unlike the four assessments, BEERS takes the 

calculation-based methods, specifically, the steady-state method. The quantification is 

followed by the international standards, ISO 13790 (ISO, 2008) and DIN V 18599-2 (DIN, 
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2007). This method can easily calculate energy use in buildings, but the result, neglect the 

possible impacts of unexplained factors and data error.  

As reviwed in Section 2.2.1and 2.2.2, the current five assessment methods have limited 

interpretations in quantifying energy performance. To this reason, the performance gap is 

problematic with the current approach. Although hybrid methods integrating different 

measurement methods have been implemented to cover drawbacks and limitations of each 

quantification method, this kind of attempt is difficult to find in the case of South Korea.  

 Research questions arising from the gap 1.2

Decision-making in refurbishment fundamentally requires appropriate assessment methods 

for building energy performance. Thus, the original building conditions can be scrutinised 

and compared to determine efficient refurbishment strategies for specific buildings. 

However, the current assessment methods show their limitations in coping with the 

complexity and diversity of buildings. This could result in significant discrepancies between 

the estimated energy saving and actual achievement in real situations. To this reason, 

existing literature, related to refurbishment measures, has focused on reducing the 

performance gap by improving the energy quantification methods. The methodologies have 

been more systematic and sophisticated to integrate uncertainties arising from various 

building factors affecting energy consumption.   

In the scope of the assessment methods in South Korea, the limitations are in the line with 

the global point of view, which can be specified by three aspects. Firstly, the current 

assessment methods using EPI and the steady-state methods (simplified calculation methods) 

are not specific enough to be tailored for the group of old existing high-rise apartment 

buildings. Moreover, the methods are not flexible enough to take the diversities of buildings, 

derived from the transformation of building characteristics. As reviewed, old existing high-

rise apartment buildings in South Korea have been transformed with the changes in public 

preference and economic profit. Moreover, the main targets of occupants have been replaced 
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from the working class to the new middle class. Unless dealing with these diversities, the 

calculated energy saving can contain a high level of uncertainty, which is hardly reliable.    

Secondly, the current energy quantification methods are dominated by the calculated-based 

methods (dynamic simulations with idealised conditions and steady-state calculations). A 

single apartment building, as a group of apartment units having diverse households, is 

complicated in terms of these factors that would contain significant uncertainties. The 

dynamic simulation with the idealised building conditions has widely been chosen to 

evaluate energy saving in refurbishment technologies. However, it is highly limited to reflect 

realistic building conditions actually occupied. Despite this, no attempt to integrate more 

than two quantification methods has been made in assessing building energy performance. In 

order to reduce discrepancy between the predicted and actual energy consumption, the 

importance of dealing with uncertainties, arising from physical characteristics and occupant-

related factors, has been addressed. Moreover, the methodologies of quantification, in the 

global view, have been more systematic and sophisticated. In this regard, the various 

attempts need to be explored in the context of South Korea.   

Thirdly, the current assessment methods (whole-building calculations) have not taken into 

account variation arising from apartment units. Individual apartment units are placed in 

different locations in buildings that can be exposed to the different outdoor environment. 

However, the conventional quantification methods have regarded an apartment building with 

many individual units as one single building containing a large number of residents. 

Therefore, the interaction through the interconnected floors as well as occupants’ operations 

living in different apartment units have been disregarded, even though their impacts on 

energy consumption are obvious.  

By reviewing the current literature, it has been revealed that the current energy 

quantification methods need to be improved in order to deal with the complexities and 
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diversities in existing apartment buildings by integrating them, based on actual energy use. 

Three research questions can be identified, as below:  

 How can the energy quantification methods take into account the diversities of 

building characteristics in old high-rise apartment buildings? 

 How do the energy quantification methods integrate the uncertainties derived 

from a group of occupants’ behaviours living in high-rise apartment buildings? 

 How can the energy quantification methods take variation arising from 

individual apartment units in different locations?  

 Aims and objectives 1.3

This study aims to create a new methodology developing a building energy quantification 

model of existing high-rise apartment buildings in South Korea to be used for refurbishment 

measure. The study, specifically, develops a framework of building energy modelling for the 

existing apartment buildings by integrating variations in the actual energy consumption, 

derived from the physical characteristics, occupants’ behaviours and individual units with 

different locations. The main objectives can be stated as follows:  

1) Classify the physical characteristics of existing high-rise apartment buildings, dealing 

with variation in building features affecting energy consumption (Chapter 4) 

2) Integrate variation arising from occupants’ behaviours consuming heating and 

electricity into a building energy model of existing high-rise apartment buildings 

(Chapter 5) 

3) Develop a building energy model with corresponding variation in the unit-specific 

heating energy consumption arising from the locations of apartment units and 

individual heating controls in each unit (Chapter 6) 

4) Implement the building energy model developed to evaluate refurbishment strategies 

under climate change (Chapter 7) 
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 Structure of the thesis  1.4

The structure of the thesis consists of eight chapters including this introduction chapter, as 

described in Figure  1.1.  

Chapter 2, ‘Literature review’, interprets the energy-efficient refurbishment, the current 

assessment methods for quantifying building energy performance and the challenges of the 

assessment methods. The chapter is divided into two parts. The first part reviews existing 

literature about the energy-efficient refurbishment and the assessment methods with a global 

point of view, while the second part scopes down the focus to the context of existing 

buildings in South Korea.  

Chapter 3, ‘Methodology’, states the specific problem that this study is tackling through the 

whole process.  It also provides a thorough description of overall strategy, and the necessary 

data and tools used for calculation. At the same time, the essential methods of analysing data 

are also demonstrated with the specific applications of each method in this study.  

Chapter 4, ‘Classifying existing apartment buildings with respect to efficient building 

features affecting energy consumption’, determines a definition of existing high-rise 

apartment buildings that need to be refurbished. By prioritising the efficient building 

features transformed from the 1970s to 1990s in terms of the impacts on energy 

consumption, the existing apartment buildings are classified not only for building energy 

models used for simulations but also for energy-efficient refurbishment.  

Chapter 5, ‘Integrating variation arising from occupants’ behaviours consuming heating 

and electricity into a building energy model of existing high-rise apartment buildings’, 

questions the conventional building energy model, which is mainly applicable for reducing 

the energy demand of buildings under the standardised conditions, rather than reflecting 

actual energy consumption. This chapter accounts for variation in actual energy 

consumption caused by occupants’ behaviours. By integrating a stochastic data of 



Chapter 1. Introduction 

 

 

12 

 

occupants’ behaviours consuming heating and electricity, interred from actual energy 

consumption, a probabilistic model of the new generalised occupants’ behaviours consuming 

heating and electricity has been established to be used for a building energy model of these 

apartment buildings.  

Chapter 6, ‘Developing a building energy model of existing high-rise apartment buildings 

corresponding to variation in individual apartment units’, scopes down the main scale of the 

study from existing apartment buildings to individual apartment units, and identifies 

variation in energy consumption arising from individual units according to two aspects. The 

first aspect is the different physical characteristics of apartment units in different locations, 

whilst the second aspect is independent heating controls by occupants in each unit. These 

two aspects have been integrated into a building energy model of existing apartment 

buildings to correspond to actual data. Furthermore, the dataset of the individual heating 

controls for each unit is provided. 

Chapter 7, ‘Implementing the building energy model developed for refurbishment measure 

under climate change impacts’, conducts the building energy models to examine building 

thermal regulations revised from 1987 to the present as refurbishment strategies for the 

existing apartment buildings under future climate change. The thermal regulations have been 

intensified by increasing the thickness of insulation and U-values of windows. By using the 

building energy model developed through the previous chapters, the effectiveness of these 

regulations is evaluated for refurbishing existing apartment buildings. Climate change 

impacts are also included with a long-term perspective.  

Chapter 8, ‘Conclusions and Future work’, summarises the main findings in this thesis. 

Limitations and future works are also indicated.  
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Figure  1.1. Diagram showing overall structure of this study 
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Literature review (Chapter 2) 
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This chapter aims to review existing literature in order to explain energy-efficient 

refurbishment and the current assessment methods for quantifying energy performance in 

buildings. This literature review is comprised of two parts. The first part, Section 2.1, 

discusses about a global overview of energy-efficient refurbishment, while the second part, 

Section 2.2, scopes down the topic to the context of South Korea. In the first part, the 

general concept of energy-efficient refurbishment is interpreted in Section 2.1.1. Section 

2.1.2 and 2.1.3 take a look at the current assessment methods of energy performance 

quantification methods, which have been applied to refurbishment projects. Section 2.1.4 

scrutinises challenges and limitations of the current methods of quantifying energy 

performance in existing buildings. Section 2.1.5 discusses advanced methods dealing with 

the challenges, especially ‘Performance gap’, in refurbishment measures. In the second part, 

Section 2.1.1 – 2.1.3 provide an overview of built environment in South Korea including 

climate conditions, a profile of buildings and high-rise apartment buildings. Section 2.2.4 

and 2.2.5 examine the building energy performance assessment methods and their 

applications to refurbishment measures in South Korea. Section 2.2.6 identifies the 

limitations of the current approaches and their relation to the global point of view. Lastly, 

Section 2.3 summarises the chapter and restates the research gap that needs to be 

investigated.  

 Energy-efficient refurbishment of existing buildings 2.1

 Overview of energy-efficient refurbishment  2.1.1

Many countries have included not only designing new buildings with energy-efficient 

technologies, but also improving the thermal conditions of existing buildings. 70% of UK 

buildings in 2010 will remain in 2050 (Stafford et al., 2011). This significant proportion of 

existing buildings have insufficient thermal conditions (Dowson et al., 2012), which have 

resulted in increasing energy use for heating. As shown in Figure  2.1, some European 

countries, such as Netherlands, Sweden, Germany, France and Denmark, also have more 
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than 50% of housing stock constructed before the 1970s (Baek and Park, 2012), which are 

considered for refurbishment in order to reduce energy consumption as well as 

fundamentally reduce GHG emissions.   

As existing buildings were built before buildings became energy-efficient, existing buildings 

can be more vulnerable to sustainablility. Compared to European countries, residential 

buildings in South Korea are relatively new (Figure  2.1). This is because the development of 

housing followed the great economic growth in the 1960s. Other Asian countries such as 

Singapore, Hong Kong and China also have shown a similar history of residential buildings 

(Yuen, 2011). Although the newer construction years of existing buildings in South Korea 

identified, it does not guarantee the quality of energy-efficiency in the buildings. In fact, 

under the current Building Act in South Korea (Enforcement Degree of the Housing Act, 

2009), apartment buildings constructed over fifteen years ago can be refurbished, and those 

buildings over forty years ago can be even demolished if needed. A significant number of 

existing apartment buildings constructed during the great economic growth have already 

been in a stage of refurbishment (Kim, 2010).  

 

Figure  2.1 Proportions of housing by construction years (Back and Park, 2012) 
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A concept of refurbishment is generally accepted as an improvement in building conditions 

by replacing deteriorated and inefficient parts of buildings. The success and failure of 

refurbishment can be determined by the quality of their achievement in terms of cost-

effectiveness technologies, satisfactory services and acceptable indoor comfort (Ma et al., 

2012). Moreover, energy-efficient refurbishment is expected to provide improved thermal 

conditions of buildings with less financial investment, compared to a new build. Ma et al. 

(2012) divided the procedure of refurbishment into five steps: (1) project set-up and pre-

retrofit survey; (2) energy auditing and performance assessment; (3) identification of retrofit 

options; (4) site implementation and commissioning; (5) validation and verification 

(Figure  2.2). Firstly, refurbishment needs to be well-planned with achievable targets of 

energy saving, and building conditions have to be surveyed to identify actual operations and 

occupant impacts on energy use. Secondly, energy audit data and building factors affecting 

energy consumption have to be recognised by assessing building performance. The 

information through assessments can provide potential retrofit opportunities and energy 

saving (Ma et al., 2012). Thirdly, possible alternatives in reducing energy consumption need 

to be compared by using appropriate energy performance quantification methods. Fourthly, 

the selected refurbishment options are required to be implemented on-site. Finally, energy 

saving can be confirmed through a validation and verification.  

Six key elements affecting building refurbishment have been defined (Ma et al., 2012): (1) 

policies and regulations, which are minimum requirements for energy efficiency in existing 

buildings; (2) client resources and expectations, which determine a purpose and direction for 

refurbishment; (3) retrofit technologies that use Energy Conservation Measures (ECMs) as 

indicators representing energy efficiency and sustainability; (4) building-specific 

information that includes geographic locations, building types, ages, occupant schedules, 

utility rates, building fabric and service systems; (5) human factors, which include not only 

occupant behaviours but also building management and maintenance; (6) uncertainties, 
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arising from variation in building characteristics, and a selection of measuring models 

(building performance simulations).   

 

 

 

 

 

 

 

 

 

 

 

 

 Assessment schemes of energy performance for existing buildings 2.1.2

The previous section addressed the potential contribution of existing buildings to mitigate 

GHG emissions by refurbishing their inefficient building conditions, no matter how old 

existing buildings are in different countries. Besides, the procedure and key elements of 

refurbishment imply that adequate assessments of building energy performance are required 

to provide the correct understanding of building conditions. Then, the result could help to 

choose the most appropriate and efficient refurbishment strategies.   

Project set-up and pre-retrofit survey 

Energy auditing and performance 

assessment  

 Energy auditing 

 Select key performance indicators 

 Building performance assessment 

 

Identification of retrofit options  
 Energy saving estimation 

 Economic analysis 

 Risk assessment 

 Prioritise retrofit options 

 

Site implementation and 

commissioning 

 Site implementation 

 Test and commissioning 

 

Validation and verification  Post measurement and verification 

 Post occupancy survey 

 

 Define a scope of work 

 Set project targets 

 Determine available resources 

 Pre-retrofit survey 

Figure  2.2 Procedure of refurbishment (Ma et al., 2012) 
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“How to measure energy performance in buildings?” has been a crucial question in 

determining the quality of energy performance in existing buildings. This is because 

capricious building conditions effect on energy use that could result in an unreliable 

understanding of building energy performance. The unreliable understanding could end up 

with inefficient refurbishment strategies. Therefore, there is a need for accurate methods of 

quantifying both the energy performance of buildings as well as the amount of energy saving 

through refurbishment technologies. For policy-makers and the public, the results can help 

to determine policies and regulations in refurbishing the existing conditions of buildings 

(Summerfield et al., 2010).  

Building energy performance assessment has been used to quantify levels of energy use in 

building, and support decisions for additional improvement. The main objectives of 

assessment are found by two purposes: energy classification and performance diagnosis 

(Wang et al., 2012). The energy classification provides levels of energy efficiency or carbon 

emissions for buildings (energy benchmarking, rating systems, labelling and certificates), 

whereas energy performance diagnosis detects faults and causes of poor performance in 

buildings. The former is mainly used for encouraging public participations, but the latter is 

intended to improve insufficient energy performance in buildings (Wang et al., 2012).  

Wang et al. (2012) defined four applications of the energy performance assessments: (1) 

building environment assessment schemes; (2) energy certification; (3) whole-building 

benchmarking models; (4) hierarchical assessment and diagnosis tools. Firstly, building 

environment assessment schemes evaluate the effectiveness of energy use in diverse factors 

including water, waste, material and site. They evaluate the general environment impacts of 

building conditions and encourage public awareness about that issue. There are several 

assessment schemes in different countries such as LEED (Leadership in Energy and 

Environmental Design) in USA (US Green Building Council, 2004), BREEAM (Building 

Research Establishment Environmental Assessment Method) in the UK (Baldwin et al., 
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1990) and Green Star in Australia (Australia Green Building Coucil, 2012). Secondly, 

energy certification methods have been developed by EPBD (Energy Performance of 

buildings Directive) in Europe and ASHRAE’s programs in USA (Wang et al., 2012). The 

EPBD assessment methods provide general calculation methods for building energy 

performance (minimum performance requirement for new and existing buildings, 

certifications for rating and displaying the energy performance in buildings). Thirdly, whole-

building benchmarking models represent overall energy efficiency in buildings in 

comparison to energy use in other buildings having similar floor areas (Chung 2011). Lastly, 

hierarchical assessments and diagnosis tools specifically detect energy performance in 

buildings with a detailed energy audit in existing buildings.  

In short, the energy performance assessments have been implemented to classify building 

energy performance, and to diagnose poor energy performance in existing buildings. Both 

purposes have been applied to assess building energy performance by quantifying the quality 

of energy performance. Depending on each assessment, there are the different designated 

methods and criteria, measuring energy efficiency and energy saving. Therefore, selecting an 

appropriate assessment with a clear target can be an important issue.  

 Energy quantification methods measuring energy efficiency and 2.1.3

energy saving in buildings 

As reviewed in Section 2.1.2, energy performance assessments are intended to measure the 

efficiency of building energy performance by using the specific criteria and quantification 

methods. There are three types of quantification methods that have been applied to assess 

building energy performance (Figure  2.3): calculation-based, measurement-based and hybrid 

methods (Wang et al., 2012). Firstly, calculation-based methods create calculation models 

to measure output (energy consumption) by using input data of building conditions. The 

methods are classified by dynamic simulations and steady-state methods depending on how 

to consider dynamic effects of buildings.   
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 Dynamic simulation 

Most dynamic simulation uses a forward modelling approach that typical inputs 

(weather conditions, building description, system description and component 

description) are used to be analysed by a simulation engine performing for 

mathematical simulation algorithms.  

As an example of application, a whole-building benchmarking method creates one 

customised building by simulation, which is an identical to a studied building, as a 

self-reference building (Wang et al., 2012). The simulation models are used to 

compare the minimised conditions of energy use with the actual energy 

consumption so that the decision of possibility of energy saving use could be 

compared. This method has been widely adapted in various countries for a 

judgement, and has used to assess building performance of both new and existing 

buildings (Wang et al., 2012). This method benefits for cases that do not have 

many reference buildings and sufficient energy use data (Chung, 2011).  

 

 Steady-state method (simplified building energy calculation) 

Forward modelling approach: heating and cooling demands are calculated by 

correlation factors which determine to what extent heat gains and losses are useful 

(Wang et al., 2012). Heating energy use is calculated by the amount of heating 

demand divided by System Coefficient of Performance (SCop), whereas cooling 

energy use is by the amount of cooling demand divided by System Energy 

Efficiency Ratio (SEER) of HVAC systems (Wang et al., 2012). The application 

of them is shown in an international standard (ISO 13790:2008), Energy 

performance of buildings – calculation of energy use for space heating and cooling.  

𝐸𝐻𝑒𝑎𝑡𝑖𝑛𝑔 =  
𝑄𝑁𝐻

𝑆𝐶𝑜𝑝
 

𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 =  
𝑄𝑁𝐶

𝑆𝐸𝐸𝑅
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where 𝑄𝑁𝐻  and 𝑄𝑁𝐶  are the monthly energy demand for heating and cooling, 

respectively.  

Inverse modelling approach: this approach for whole-building energy 

consumption is regressed against several important influencing parameters. Linear, 

change-point linear and multiple regressions are commonly accepted to correlate 

energy use in buildings. A number of different regression models can be created 

for a particular building, and then choose the best-fitted model can be finally 

selected by R
2
 and CV (RMSE). The commonly used model is as below: 

𝐸 = 𝐶 +  𝛽1𝑉1 +  𝛽2𝑉2 +  … + 𝛽𝑛𝑉𝑛 

where 𝐸 is the estimated energy consumption. 𝐶 is a constant in energy units. 𝛽𝑛 is 

the regression coefficient of independent variables, 𝑉𝑛.  

This method is built based on the robustness of associations between independent 

variables (building factors) and dependent variables (energy use). Regression 

models attempt to find the most-fitted regression line that represents the average 

levels of dependent variables, energy use in this case. Building energy benchmark 

models with the regression modelling method often used Energy Use Intensity 

(EUI) representing a typical rate of energy use in a certain type of buildings 

(Sharp, 1996). The EUI is expressed by energy use with floor area (Btu/ft
2
/year or 

kWh/m
2
/year). Therefore, the floor area has been considered as a main determinant 

to identify similarities in buildings in comparing energy consumption. 

Summerfield et al. (2010) created two different regression models of calculating 

the benchmark performance of residential buildings, based on the UK national data 

of domestic energy consumption and building characteristics such as physical 

conditions, occupant characters, heating systems and economic factors. 

Additionally, the models were used to estimate the possible reduction of these 
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building by energy refurbishment, the amount of energy saving were provided as 

evidence to be used for policies’ decision making.   

The limitations of measuring energy saving through the calculation-based methods are clear. 

Summerfield et al. (2010) stated that their regression models of residential benchmarks 

using national data are highly limited due to many uncertain social and technological factors. 

Moreover, the method does not take into account unexplained factors and data errors, which 

could result in inaccurate estimation. In terms of the dynamic simulation, as mentioned by 

Chung (2011), energy use calculated by building simulations with idealised conditions could 

not provide a realistic amount of energy saving that can be achieved in real situations.  

Secondly, measurement-based methods are collecting actual building energy consumption 

records from energy bills to detailed monitoring data, which are able to cover discrepancies 

in calculation-based methods (Wang et al., 2012).  

 Energy bill-based method 

Energy bill is a good quality of data representing an amount of energy use and 

easily accessible (Swan and Ugursal, 2009). The original bill data provides an 

acceptable level of accuracy, but limited for diagnosis; thus, it needs to be 

disaggregated into end-use forms to be used for more in-depth investigation (Wang 

et al., 2012). The disaggregation is adopted by two types of algorithms, according 

to Yan et al. (2012). The first type, ‘estimation algorithm’, sums an individual 

calculation of each facilities at bottom level, while the second type, 

‘disaggregation algorithm‘, decomposes the total energy consumption into related 

factors such as seasonal and non-seasonal consumption factors (Yan et al., 2012).  

 

 Monitoring-based method 

Although the energy bill data is transformed to end-use forms, the data does not 

represent sufficient details of building energy performance. Instead, monitored 
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data, such as end-use sub-metering data and BMS (Building Management System) 

data, can provide more accurate and precise energy use information (Wang et al., 

2012). 

Thirdly, hybrid methods combine both calculation-based and measurement-based methods. 

The calculation-based methods have taken a leading position, while the measurement-based 

methods have been used to reduce discrepancies between estimation derived from 

calculations and actually used consumption (Wang et al., 2012). Two types of methods are 

allocated in this category: calibrated simulation and dynamic inverse models.  

 Calibrated simulation 

Calibration is a process of revising initial inputs assumed for predicted energy use 

to be matched to actual consumption (Wang et al., 2012). The procedure of 

calibration are comprised of three parts (Pedrini et al., 2002): (1) the initial model 

estimation, based on building design and documentation, compares with actually 

measured consumption; (2) the second model estimation, based on wall-though 

and audit, is compared to the actual consumption; (3) the final model can be 

developed by comparing end-use energy measurements (monitoring).  

 Dynamic inverse model 

Dynamic inverse models can capture more detailed effects of building energy 

factors with differential equations. However, it requires the site measurement to 

acquire detailed training data in order to be used in models so that the process is 

greatly complex (Wang et al., 2012).  

It has been found that the methods of quantifying energy use in buildings are diverse. 

Therefore, the purpose of measuring energy use in buildings needs to be clearly stated in 

order to select the most appropriate methods for buildings concerned. However, it has also 

been revealed that each method requires either precise data or complex processes to bring 

about adequate results of estimating energy use. In this reason, limitations and problematic 
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aspects of each method that could result in inaccuracy in assessing building conditions. 

Therefore, precise implementation can be required in the quantifying process.  

 

 

 

 

 

 

 

 

 

 

 

 Challenges of energy-efficient refurbishment for existing buildings  2.1.4

It has been found that there are two important aspects of assessing energy use in existing 

buildings. One is that building energy performance in original conditions needs to be 

adequately assessed. Another aspect is that the possible amount of energy that could be 

saved, compared to original conditions, needs to be accurately measured for successful 

refurbishment. The previous section implied that energy quantification methods contain 

limitations and problematic aspects, related to data collection and complex process, which 

could bring about inaccurate estimations. These have been challenged in the real application 

of refurbishing existing buildings.      

Energy quantification methods 

Calculation-

based methods 

Measurement-

based methods 

Hybrid methods 

Dynamic 

simulation 

Steady-state 

method 

Forward 

modelling 

approach 

Inverse 

modelling 

approach 

Energy bill-

based method 

Monitoring –

based method 

Calibration 

simulation 

Dynamic 

inverse model 

Figure  2.3 Classification of energy quantification methods (Wang et al., 2012) 



Chapter 2. Literature review 

 

27 

 

Stafford et al. (2011)  claimed six challenges in refurbishment measures (Figure  2.4). Firstly, 

fixed frameworks for refurbishment could be inflexible to encapsulate the complexity and 

diversity of existing buildings. Thus, refurbishment strategies may not be tailored for 

specific cases or groups of buildings. Multiple disciplines including technological, social and 

financial aspects need to be carefully considered in determining refurbishment. Secondly, 

actual energy performance can easily be different from the expected performance in real 

cases. The performance gap, derived from in design and construction stages, is often found, 

but the design process rarely regards allowances for possible errors in real situations. 

Thirdly, interactions of factors encompassing building envelopes are complex. The factors 

including the thermal transmission of elements on building envelopes, such as walls, floors, 

roofs and windows, air-tightness, thermal bridge and bypass mechanisms, complicatedly 

interact and affect thermal conditions of buildings. If the factors are considered individually 

or separately, the result can easily go wrong in terms of total building energy performance. 

In this respect, holistic consideration is essentially required. Fourthly, appropriate renewable 

technologies need to be integrated with the process of improving thermal conditions of 

building envelopes. However, the report (Stafford et al., 2011) claimed that the relationships 

between building envelopes and renewable technologies are often complex. Moreover, 

economics of installing renewable technologies have to be carefully taken into account. 

Fifthly, it is complex to encompass uncertain occupants’ related issues such as occupancy, 

day-to-day behaviour and interaction of building services and technologies. As these issues 

are highly uncertain, they remain as one of difficult challenges to achieve. Finally, 

continuous monitoring and feedback needs to be implemented for further improvement.   

In short, the report (Stafford et al., 2011) pointed out that there are many obstacles, derived 

from the complexities and diversities in buildings. The obstacles can result in a significant 

level of performance gap in real situations. There have been intensive efforts in developing 

methods of assessing energy saving in refurbishment. The details are followed in the next 

chapter.  
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Difficult to encapsulation 

complexity and diversity of 

building factors in existing 

buildings 

 One fixed framework of 

refurbishment measure is 

not flexible to be tailored 

for specific buildings or 

groups of buildings due to 

the diversity in building 

stock 

 Balancing among 

importance disciplines 

including cost-

effectiveness 

 Considering future needs, 

such as climate change 

impacts 

Complexity of building 

energy performance 

 Actual performance in 

reality may not as high as 

expected due to either 

intrinsic performance or 

installation issues 

 Achievement of energy 

performance can be 

different case-by-case 

 Performance gap 

between design and 

construction processes 

Monitoring in post-

refurbishment 

 Continuous monitoring 

and feedback for further 

improvement 

Combining integrated 

solutions with renewable 

technologies 

 Appropriate integration 

of renewable 

technologies by 

regarding complex 

relation between building 

envelope and renewable 

technologies 

 Cost-effectiveness has to 

be carefully evaluated 

Uncertain occupant 

behaviour of consuming 

energy 

 Highly uncertain to 

encompass in designing 

refurbishment although 

significant impact of the 

factors related to 

occupants 

 Post occupancy evaluation 

necessarily has to be 

undertaken 

Challenges of energy-efficient 

refurbishment measures 

Complex interaction 

through building envelope 

 Building envelope 

(fabric) is a crucial factor 

reducing energy 

consumption, while 

maintaining acceptable 

thermal comfort 

 Complex interactions 

including thermal 

transmission of elements 

on building envelope, air-

tightness, thermal bridge 

and bypass mechanisms 

Figure  2.4 Six challenges for energy-efficient refurbishment measures (Stafford et al., 2011) 
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 Performance gap and advanced modelling methods 2.1.1

The previous three sections, Section 2.1.2, 2.1.3 and 2.1.4, identified building energy 

performance assessments, energy-saving quantification methods and the current challenges 

in refurbishment. By reviewing existing literature, the adequate prediction in designing 

refurbishment strategies have been problematic due to the intrinsic complexities and 

diversities. This section reviews the performance gap, caused by variation in uncertain 

occupant behaviour (Section 2.1.5.1) and physical characteristics (Section 2.1.5.2), and 

advanced methods of refurbishment measures (Section 2.1.5.3).  

The performance gap has been defined whent the designed energy performance is not the 

same as realised one when buildings are actually in use (Bell et al., 2010). The causes of the 

performance gap are derived from many aspects (building components, materials, occupant 

behaviour patterns or poor workmanship) (Bell et al., 2010). There have been efforts to 

reduce the performance gap and improve the prediction of building energy models to be 

similar to real situations.  

In assessing building energy performance, uncertainty and sensitivity analyses have been 

essentially undertaken (e.g. Hyun et al., 2008; Silva and Ghisi, 2014). Uncertainty analysis 

takes a probabilistic approach that regards values of independent variables (input factors) 

with distributions of possible values, whereas sensitivity analysis evaluates the effectiveness 

of parameters that generate variation in energy consumption (Silva and Ghisi, 2014). Silva 

and Ghisi (2014) conducted both analyses with various building factors, categorised by 

physical conditions of building and parameters related to occupant behaviour. With the 

different types of units, the building factors were differently defined by probability density 

functions. The results have shown that levels of uncertainty are higher with occupant related 

parameters than physical conditions.  
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 Uncertainty in occupant behaviour 2.1.1.1

Occupants’ behaviours, as the main agents of controlling energy consumption (Steemers and 

Yun, 2009), are difficult to be defined due to significant uncertainty (Gunay et al., 2013). As 

the uncertainties can also be adaptive by social factors, it is far more complicated to be 

formulated for building simulations. For example, Sunikka-Blank and Galvin (2012) 

identified ‘rebound effect’ that economic status constrains actual energy consumption not as 

much as it is expected. Conversely, energy consumption in a refurbished house can often be 

increased after a short period of reduction, as described in (Galvin, 2014b). 

The impact of uncertain occupants’ behaviour on energy consumption have been assessed, 

and attempted to be integrated into building energy models. At the early stage, possible 

ranges of various occupants’ behaviours consuming energy were measured by minimum, 

mean and maximum values (e.g. Hyun et al., 2008), or distributions of variables (e.g. Silva 

and Ghisi, 2014). The ranges were input to measure their probable fluctuation in energy 

consumption. Significant impact of uncertainties arising from occupants’ behaviour has been 

identified through uncertainty analysis.  

The recent methods of integrating occupants’ behaviours into building energy models can be 

categorised as three approaches. Firstly, occupants’ behaviours in buildings were 

specifically measured by higher resolution data. Richardson et al. (2008) used surveyed data 

with ten-minute intervals to measure precise occupancy. Stoppel and Leite (2014) improved 

occupancy in modelling, based on interview data in a specific occupant group. Secondly, 

occupants’ characteristics were classified by several representative groups. For example, 

Bourgeois et al. (2006) created occupant characteristics as passive and active behaviour 

groups, converting indoor environments. Tanimoto et al. (2008) specified occupants living 

in apartments with eight types: working male and female, housewife, elementary school 

child, junior high school student, college student, senior male and female. These groups 

were differently modelled by their characteristic of living styles. Thirdly, specific activities 
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resulting energy consumption were formulated for building simulations. Daily profiles of 

occupants’ activities were mostly investigated in relation to consuming energy. Various 

activities such as washing, cooking, and cleaning were used to produce electricity-demand 

schedules for housing in the UK (Richardson et al., 2010). Tanimoto et al. (2008) combined 

these activities with types of occupants, and created about 10,000 samples in calculating 

peak energy demand.  

In summary, significant uncertainties have been identified by occupants’ behaviours. These 

uncertainties have been approached with higher quality of data and more elaborate 

techniques to integrate into building simulations. Therefore, the building energy model of 

high-rise apartment buildings, despite targeting unspecified occupants, cannot easily 

disregard this aspect due to the great number of occupants living in the same buildings. The 

process may be complicated. However, it should be considered for the accuracy of the 

building energy model. 

 Uncertainty in physical conditions in buildings 2.1.1.2

Physical characteristics of buildings determine energy requirements in buildings Pacheco et 

al., 2012). However, measuring building energy performance can easily contain uncertainty 

to tailor individual cases in the fixed frameworks with limited interpretation of physical 

characteristics, which could enlarge the performance gap. BektasErici and Aksoy (2011) 

defined six parameters of physical characteristics in buildings affecting energy consumption 

by shape, transparent surfaces, orientation, thermal properties of materials and distance 

between buildings. Another criteria of parameters included orientation, shape, envelope 

system, passive heating and cooling mechanisms, and shading and glazing (Pacheco et al., 

2012).  

 Shape of buildings 

Building shape determines the total amount of building surfaces exposed to the 

outside, which receive solar radiation and transfer heat energy (Pacheco et al., 
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2012). Therefore, a ratio between outer surface and total volume was required to be 

reduced (Ourghi et al., 2007). Florides et al. (2002) quantified the percentage 

between building length and depth causing the most energy efficient ratio between 

both parameters; elongated shape resulted in more energy demand than square 

shape.  

 Orientation and shading 

Building orientation also effects on the level of direct solar radiation reaching to 

building façade (Pacheco et al., 2012). The solar radiation influences on indoor 

thermal conditions as well as energy demands in buildings. South-facing including 

20 – 30° from south (in northern hemisphere) angles has been commonly regarded 

as the best orientation to maximise solar gain (Littlefair, 2001). Aksoy and Inalli 

(2006) combined building orientations with shapes to find the most efficient 

combinations of them to reduce heating energy demands in buildings. The authors 

concluded that buildings should avoid 60° from the west to the east with square-

shape, and 80° or 40° with rectangular-shape.  

 Envelope conditions 

The building envelope contains the outer parts of buildings including foundation, 

roof, walls, doors and windows, which creates indoor environments in buildings 

(Pacheco et al., 2012). By suppressing heat transfer through the building envelope, 

energy-efficient building requires less energy for heating. For this reason, existing 

literature has focused on improving the thermal resistance of the building envelope.  

Insulating building envelope is one of common approaches in reducing U-values, 

which indicate coefficients of heat transfer. Diverse parameters related to insulations 

have been investigated: thickness (Çomaklı and Yüksel, 2003), locations (Ozel, 

2014) and materials (Soubdhan et al., 2005). Çomaklı and Yüksel (2003) found that 

increasing the thickness of thermal insulation reduced fuel costs for heating. 
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However, the reduction of fuel costs became a nearly zero after increasing the 

thickness of insulation over 300 mm. Thus, the optimum thickness can be about 100 

mm with respect to total costs. Ozel (2014) found that the locations of insulation 

affect time reaching peak temperatures in indoor environment, and reduce 

temperature fluctuation. However, it did not reduce heat loss through building 

envelope. Sadineni et al. (2011) mentioned a holistic approach can be more efficient 

to reduce energy demands in buildings than partially insulating.  

Glazing types of windows need to be carefully chosen by regarding energy saving 

and daylighting aspects concurrently (Hee et al., 2015). Tahmasebi et al. (2011) 

found that double-glazed window was beneficial to gain more solar radiation in 

comparison to triple-glazed window, but triple-glazed window showed lower U-

values, which meant more energy-efficient. However, triple-glazed window could 

also reduce cooling energy demand in tropical climates (Sadrzadehrafiei S, 2012). 

Types of filling in multiple-glazing could also positively reduce total energy 

consumption (Gao et al., 2016). 

 Decision making under uncertainties  2.1.1.3

The previous two sections pointed out that uncertainties arise from the variations in occupant 

behaviour and building physical characteristics. The building energy performance 

assessment methods, as their limitations of reflecting realities, cannot be perfect in 

evaluating energy efficiency in buildings that aggravate the enlarged performance gap. 

Furthermore, it gives rise to difficulty in comparing energy efficiency among different 

strategies and in choosing the most efficient option. In order to alleviate the discrepancies 

and difficulties, there have been continuous attempts to take the uncertainties into account 

with a framework of assessing building energy use for refurbishment measure.  

Heo et al. (2011) attempted to infer probabilistic values of physical characteristics in 

buildings, in order to improve building energy models evaluating retrofit projects. The 
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authors applied Bayesian Inference to calibrate the initial physical conditions of building 

energy models, based on the measured data of energy consumption. As a result, the 

calibrated model estimation became more similar to the measured data.  

Booth et al. (2012) developed a framework of handling uncertainty in housing stock models 

by using Bayesian calibration. The authors precisely defined the uncertainty in housing stock 

as “first-order” (aleatory) and “second-order” (epistemic) uncertainties; the aleatory 

uncertainty is arising from variabilities of a single individual or a group of the similar 

buildings, while the epistemic uncertainty is derived from variation in input parameters of 

models (Booth et al., 2012). The framework was structured by three stages: clustering, 

Bayesian calibration and Monte Carlo analysis. Clustering sub-divided housing stock into 

smaller groups in accordance with similarities such as ages, types and heating systems. The 

authors insisted that clustering housing stock is not a part of the calibration process, but 

informative for decision makers applying refurbishment to a set of similar housings with 

specific types and conditions. Bayesian calibration adjusts average values of uncertain 

factors in each cluster to be similar to the measured values. This stage copes with the 

second-order uncertainty arising from the lack of knowledge about the true values of input 

parameters. Monte Carlo analysis lastly conducts a probabilistic sensitive analysis for the 

first-order uncertainties from the probabilistic distribution, derived from Bayesian 

calibration.  

Booth and Choudhary (2013) improved the decision making framework from the previous 

work coping with uncertainty in housing stock models (Booth et al., 2012). The structure of 

framework became more sophisticated from three to five stages: (1) cluster housing stock 

into building classes; (2) Bayesian regression analysis estimating annual energy demand of 

each building class; (3) Bayesian calibration of uncertain parameters in building energy 

models; (4) probabilistic sensitivity analysis using Monte Carlo simulation; (5) calculate 

energy saving by using the calibrated building energy models.  
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 Existing high-rise apartment buildings in South Korea 2.2

 Climate conditions in South Korea 2.2.1

Although climate conditions are not exact building factors, they are underlying factors 

determining the forms of buildings (Bougdah and Sharples, 2009). Geographical locations, 

categorised by the characteristics of climate conditions, are an important consideration in 

designing the built environment. This is because building technologies differently respond to 

thermal environments in buildings located in different climate zones, as shown in (Waide et 

al., 2006). Furthermore, climate factors can be differently dealt with reducing energy 

consumption depending on geographical locations. For example, how to maximise solar gain 

can be a major goal of building design in cold climates, while how to prevent solar gain can 

be a design concept in tropical climates (Mingotti et al., 2013).  

South Korea is a protruded peninsula located in the Eurasian Continent. The climate 

conditions can be simply described as temperate conditions with the mean temperatures 

between 6.6 – 16.6 °C (Korea Meteorological Administration (KMA), 2009). According to 

the Köppen climate classification (Kottek et al., 2006), the climate condition in South Korea 

is classified as humid continental and humid subtropical climate zones that have hot and 

humid summers, and cold and dry winters (Figure  2.5 (left)). Based on this, building 

regulations divide the country into three regions: central, southern regions and Jeju Island 

(Figure  2.5 (right)). 

Figure  2.6 describes the historical climate conditions of the three regions (central, southern 

and Jeju Island) in South Korea from 1981 to 2010 (KMA, 2010). Although the mean 

temperatures imply temperate climate conditions, the monthly change in the mean dry-bulb 

temperature is considerably large (Figure  2.6-(a)). The temperature change in the southern 

region and Jeju Island is around -7.6
 o

C and -1.4
 o

C in winter, respectively, while the 

temperature in summer becomes 33 – 34
 o

C for both regions. More significant change is 

found in the central region, the temperature change in the central region radically rises to 
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35
o
C in summer, but decreases down to -14

 o
C in winter. Because of the huge range of  

temperature changes, buildings in South Korea need to have both heating and cooling 

facilities.  

 

 

Figure  2.5 Climate classifications and regions of South Korea divided by building thermal 

regulations (Source: https://commons.wikimedia.org/wiki/File:Asia_Koppen_Map.png, 

http://geology.com/world/south-korea-satellite-image.shtml)  

 

Relative humidity, overall, changed between 50 and 80% depending on seasons (Figure  2.6-

(b)). In general, the highest level of relative humidity is found in summer (July and August) 

that is caused by a short monsoon. The most significant change in relative humidity is in the 

southern region. The level of relative humidity in the southern region drops down to 50% in 

winter while the highest level of relative humidity, 80%, is found in summer.  However, the 

relative humidity in Jeju Island is relatively stable, with above 60%, as it is an island 

enclosed by the sea. 

The seasonal change in precipitation is dramatically different, as shown in (Figure  2.6-(c)). 

The annual precipitation mostly occurred in summer (July and August). The amount of 

rainfall in this period is often 200 times higher than the amount in winter. Besides, the wide 

variation is identified for the thirty-years of records (1981 – 2010). For example, the average 

https://commons.wikimedia.org/wiki/File:Asia_Koppen_Map.png
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precipitation in July in the central region is about 400mm, but it can be increased up to 

nearly 590mm depending on years. 

The change in mean wind velocity is different by three regions (Figure  2.6-(d)). The central 

region indicates the least mean wind speed with about 2m/s, than the other two regions with 

about 4m/s. The reason of difference could be because of wind from the sea.   

The sun is one of the most important sustainable energy resources (Bougdah and Sharples, 

2009). Buildings can obtain heat from the sun, which can reduce supplementary heating by 

fossil fuels. However, an excessive amount of heat gain results in an uncomfortable indoor 

environment that require supplementary cooling from air-conditioners. Sunshine hours, 

which is the duration of sunshine in months, varies among the three regions in South Korea 

from 70 hours to 220 hours (Figure  2.6-(e)). The central and southern regions show 

consistent sunshine hours between 170 and 220 hours. However, the sunshine hours in Jeju 

Island has the least duration starting from 70 hours.  

Global solar radiation is the total amount of solar energy including direct, diffuse and 

reflected solar radiation on the surface of the earth (Bougdah and Sharples, 2009).  The trend 

of global solar radiation is generally increased from spring (approximately, 300 MJ/m
2
) to 

summer (about 600 MJ/m
2
). Then, the level of radiation is decreased from autumn (about 

500 MJ/m
2
) to winter (approximately, 200 MJ/m

2
). The difference among the three regions 

is that the change of global solar radiation in the southern region and Jeju Island is greater 

than the change in the central region.  
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Figure  2.6 Climate data of South Korea (1981 - 2010): (a) mean dry-bulb temperature, (b) 

relative humidity, (c) precipitation, (d) mean velocity, (e) sunshine hours and (f) global solar 

radiation 
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 Profile of buildings in South Korea 2.2.2

 

The great number of building construction had been undertaken in accordance with the great 

economic growth (Chung, 2007). Figure  2.7 depicts the profile of buildings in South Korea. 

66% of buildings in South Korea have been used for the residential purpose (Statistics Korea, 

2013). The second largest proportion is commercial buildings with 17%, followed by 

industrial and educational buildings with 4% and 3%, respectively. In the residential 

buildings (Figure  2.8), the most dominant housing type in the 1970s (above 90%), which 

was detached housing, had been dramatically replaced by apartment buildings. The 

proportion of apartment buildings in housing was less than 10% in 1975, but it had been 

rapidly increased during the 1980 – 1990s. Finally, the type has become the most dominant 

housing type in South Korea with 58% (Statistics Korea, 2010b). 63% of apartment 

buildings were constructed before 2001 (Statistics Korea, 2000; Statistics Korea, 2010b) 

when the higher levels of energy-efficient scheme were applied to buildings, as depicted in 

Figure  2.10.  

Three main purposes of energy consumption in residential buildings have been identified 

(Korea Energy Economics Institute (KEEI) (2011)). Heating is the most significant purpose 

of consuming energy in buildings. Although the proportion of heating in energy use has been 

gradually decreased from 1990 to 2008 (Figure  2.9), it has still dominated the energy 

consumption in buildings with about 50%. The second and third dominant purposes of 

energy use are for Domestic Hot Water (DHW) and electricity with approximately 25% and 

20%, respectively.  
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Figure  2.7 Profile of buildings in South Korea (Statistics Korea, 2013) 
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Figure  2.8 Proportion of residential buildings in South Korea (Statistics Korea, 2010b) 

1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 0 8

0

2 0

4 0

6 0

8 0

1 0 0

Y e a r s

P
r

o
p

o
r

t
io

n
 o

f 
e

n
e

r
g

y
 u

s
e

 (
%

)

H e a t i n g

D W H

E le c t r i c i ty

C o o l in g

C o o k in g

L ig h t in g

 

Figure  2.9 Proportion of energy use in residential buildings (KEEI, 2011) 

 



Chapter 2. Literature review 

 

41 

 

 High-rise apartment buildings in South Korea 2.2.3

 Development of high-rise apartment buildings 2.2.3.1

Apartment buildings were chosen to accommodate the rapidly increasing urban population 

during great economic growth since the 1980s (Jeon, 2010). As shown in Figure  2.10, the 

number of apartment constructions greatly increased in the last forty years. Figure  2.11 

depicts one of the representative apartment districts in South Korea. In terms of this, 

Gelézeau (2007) described the shapes of apartment buildings in Seoul as featureless and 

significantly unified appearance. She pointed out that the massive apartment constructions 

brought about the radical changes in the urban form of the city, Seoul. Jeon (2010) 

interpreted that these physical characteristics of apartment buildings are for economic profit 

and social preference being similar to majorities of the South Korean society. Like their 

descriptions, apartments have not only been influencing the urban features, but also 

influenced by the social and economic aspects. This section briefly summarises the 

development of high-rise apartment buildings.  

The stages of apartment construction can be chronologically divided into four: introduction 

(1960s), proliferation (1970s – 1980s), maturation (1990s) and multiplication (2000s). As 

construction techniques were not well developed, there was trial and error in the 1960s. For 

example, the first apartment cluster, ‘Mapo apartment’, was initially planned to have ten-

story buildings, but was finally erected with six-story buildings, due to safety reasons and 

the lack of public awareness in terms of high-rise buildings (Jeon, 2010). However, the 

attempts in increasing the height of apartment buildings was continued so that the overall 

number of floors increased from 5 – 6 to 12 – 15 in the late-1970s.  

The apartment construction in the 1970s – 1980s can be described as mass production. 

Based on the trial and error in the 1960s, South Korean Governments politically encouraged 

a massive number of apartment constructions. Urban planning was implemented based on 

the mass production (Jeon, 2010). Besides, a building regulation, which only permitted 
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apartment buildings in residential areas, was established in 1976, and was empowered until 

1993 (Zchang, 1994). Enormous scales of apartment constructions were begun as 

government-led projects in the 1980s, called the ‘Five millions housing project’ in 1980 and 

the ‘Two millions housing project’ in 1989 (Jeon, 2010).  These projects brought about the 

great conversion of land topography, and rapidly transformed the areas.  

In the 1990s, the enormous number of apartment constructions continued (shown in 

Figure  2.10). The type of building structure changed from the non-bearing wall structure to 

the bearing wall structures in order to shorten the construction period. Thus, the number of 

floors was increased up to 25, which was the limitation of the bearing wall structures (Son, 

2004). Since the 2000s, a new type of apartment buildings, a tower type (Figure  2.14-(right)), 

has been introduced. As this type increases the height of buildings from 25 floors to 40 – 50 

floors, it has been replacing the main design of apartment buildings.  

 

Figure  2.10. Timeline of apartment constructions in South Korea (Source: Statistics Korea, 

2010a) 

 

The main target of residents living in apartment buildings in the initial stage of apartment 

constructions was for the working classes. However, the target of the massive constructions 

has been shifted to “new middle class” grown by the great economic growth in South Korea 

(Zchang, 1994; Chung, 2007). Living in apartments for them became the rise of social status 
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(Gelézeau, 2007). Therefore, apartment buildings have been required to be more luxurious, 

convenient with advanced technologies and even more private. Zchang (1994) classified 

distinctive characteristics of apartment buildings built from the 1960s to the 1970s that unit 

designs have also been prevalently investigated with time-specific, as also shown in (Bae et 

al., 2001; Lee, 2006; Kim and Yoon, 2010). These previous studies confirm that the physical 

characteristic of apartment buildings in South Korea have been also interconnected with the 

economic and social aspects. 

 

 

Figure  2.11 Apartment buildings in apartment districsts in South Korea (Source: 

http://economyplus.chosun.com/special/special_view.php?boardName=C01&t_num=6793 ) 

 

Recently, energy efficient schemes have been an important issue for apartment buildings in 

accordance with the intensifying of building thermal regulations since 2001. Apartment 

buildings constructed after 2001 have been forced to be energy-efficient under the 

intensified thermal regulations. However, apartment buildings constructed before 2001, 

despite the significant proportion of housing in South Korea, have not responded to the 

http://economyplus.chosun.com/special/special_view.php?boardName=C01&t_num=6793
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requirement of the intensified thermal regulations. Excessive energy consumption in these 

old apartment buildings has been pointed out (Kim, 2010). However, the main focus of 

existing literature investigating energy-efficiency in buildings has been given to buildings 

which are forced to be energy-efficient by the regulations rather than buildings which need 

to reduce energy consumption in real situations.  

 Transformation of building characteristics of high-rise apartment 2.2.3.2

buildings 

Apartment clusters, buildings and units 

The characteristics of apartment buildings in South Korea can be interpreted by three 

different scales: apartment clusters, buildings and units. Figure 2.11 describes the three 

different scales of high-rise apartment buildings in South Korea. An apartment unit is a 

living space allocated to each household. The apartment building is a group of apartment 

units in the same buildings. The group of apartment buildings, under the same management 

with a near diatnce, is called clusters.   

  

 

 

 

 

 

Apartment cluster 

Apartment building 

Apartment unit 

Vertical access (Core) 

unit 

Side wall 

Roof 

Apartment building 

Side 

wall 

 
Figure  2.12 Three different scales of apartments in South Korea 
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The cluster can be categorised by three types of building layout: linear, square and grid types 

(Figure  2.13). The initial cluater type was the linear type that buildings are located alongside 

horizontal lines on site. Square and grid types are the cluster types that buildings are used to 

enclose one large and several small square-shape open spaces, respectively, to increase the 

floor area ratio (Jeon, 2010).   

How to layout apartment buildings in sites has been important for buildings in the clusters to 

acquire enough solar radiation. Traditionally, residential buildings including apartment 

buildings were preferred to face south (Jeon, 2010). Empirical studies, such as (Lee and 

Lim, 2000; Park et al., 2011), also identified the least amount of energy consumption in 

apartment buildings with the linear-type cluster for south-facing. Existing literature often 

compared the types of building layouts in apartment clusters, and the impact of building 

layouts on shading and solar gain. Yoon et al. (2006) measured the shaded areas on a 

building facade by surrounding apartment buildings in the same block. Buildings with the 

square-type cluster showed the greatest amount of shaded area. Park et al. (2007) analysed 

solar radiations on building façade with the three cluster types. The authors found out that 

building with a linear layout resulted in the most equalised distribution of solar radiation, 

whilst the square-type cluster was the lowest levels.  

 

 

 

 

Linear type Square type Grid type 

Figure  2.13 Three types of apartment clusters 



Chapter 2. Literature review 

 

46 

 

Apartment buildings consist of multiple apartment units, occupied by individual households. 

The shape of apartment buildings has been determined by unit designs and layouts of units 

on floors. Previous studies, such as (Park et al., 2011; Kim et al., 2013e), categorised the 

shape of buildings by a flat-type and tower-type (Figure  2.14), which used the totally 

different methods of unit layouts and the systems of building envelopes. The flat-type is 

considered as a traditional style, while the tower-type has been constructed since the 2000s. 

Existing literature tends to compare these two types. According to Park et al. (2011), 

apartment buildings with the flat-type consumed less energy for electricity than the tower-

type although the tower-type is relatively newer conditions. The result can be interpreted by 

the disparities of solar radiation on building façade (Kim et al., 2013e). The tower-type is 

subdivided into several shapes such as L-shape, cross-shape and two-wing shape (e.g. Kim 

et al., 2013e; Roh, 2014).  

 

 

The flat type of apartment buildings is divided by the type of vertical accesses: corridors and 

stairs (Figure  2.14 and 2.15). As depicted in Figure  2.15, the corridor type is for residents to 

enter their apartment units through the corridor from a lift all, while the stair type let 

residents directly access to individual units from a lift hall. The buildings with the corridor 

Figure  2.14 Two types of apartment buildings: flat type (left) and tower type (right) 

(Source:http://blog.naver.com/PostView.nhn?blogId=sugar77777&logNo=90086687153 

http://news.joins.com/article/6409693) 

 

http://blog.naver.com/PostView.nhn?blogId=sugar77777&logNo=90086687153
http://news.joins.com/article/6409693
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Figure  2.16 Image of apartment buildings with two types: corridor type (left) and stari type 

(right) (Source: 
http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=101&oid=015&aid=0002204036  ,  

http://www.hdapt.com/g4/bbs/board.php?bo_table=tb_apt_5&wr_id=66&top_menu=6&top_sub=3) 

type can often have a longer width than the stair type, while multiple vertical assesses can 

increase the width of building with the stair type (Figure  2.16).  

 

 

 

 

 

Another important aspect of apartment buildings is the thermal conditions of building 

envelopes. Since the first building thermal regulations have been established, apartment 

buildings should be more insulated to prevent heat loss through building envelopes. The first 

regulations, established in 1980, simply suggested the thickness of insulations for nine 

Figure  2.15 Two types of apartment units: corridor type (left) and stair type (right)  

(Source: http://land.naver.com/ ) 

 

http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=101&oid=015&aid=0002204036
http://www.hdapt.com/g4/bbs/board.php?bo_table=tb_apt_5&wr_id=66&top_menu=6&top_sub=3
http://land.naver.com/
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materials and the additional conduction resistance level (Table  2.1). The first revision 

(Table  2.2), which was implemented in 1984, specified the parts of apartment buildings that 

need to be insulated (External walls, ground floors, roofs and side walls). Depending on the 

parts, the thickness of insulation became different from 30mm to 70mm for three insulating 

materials (glass, polystyrene form and rock wool). The second revision (Table  2.3), enacted 

in 1987, divided the regions in South Korea into three groups (central region, southern 

region and Jeju Island). Moreover, the building parts were more precisely divided. The roof 

and side walls required thicker insulation than other parts. The thermal regulations became 

much more specified and intensified in 2001 (Table  2.4). The most significant conversion of 

the regulation is the one in 2001. The parts of buildings, which were not directly exposed to 

the outside, also needed to be insulated. Moreover, the thicker insulation was required if the 

parts of buildings enclosed the heated areas. The recently revised regulations have also been 

implemented based on the conversion in 2001.  

Improving the thermal conditions of the building envelopes in high-rise apartment buildings 

has also been intensively continued in many previous studies dealing with buildings in South 

Korea. The external insulation was recommended to prevent heat loss through the ends of 

internal insulation (Song, 2014). Heating demands were significantly reduced by increasing 

the thickness of insulation, while time-lag impeding heat loss through external walls was not 

efficient with this (Choi and Cho, 2012). The increase of window-to-wall ratio from 37% to 

64% brought about higher energy consumption in apartment buildings (Kim et al., 2013c). 

Other aspects of windows were investigated: glazing types (Lee et al., 2012), glazing 

systems (Cheong et al., 2009) and window frames (Yoon et al., 2008b). Moreover, types of 

balcony area, enclosing living spaces heated from the outside, also brought about up to 19% 

difference in energy consumption (Yoon et al., 2007).  
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Table  2.1 Legislation of insulation for building in the 1980 (Kim et al, 2009b) 

Materials Thickness (mm) 

Glass 50 

Polystyrene foam 50 

Polyurethane foam 50 

Rock wool 60 

Asbestos 60 

Calcium silicate 60 

Magnesium carbonate 70 

Cork 70 

Perlite 100 

Others Resistance of heat conduction more than 1.6
o
C/kcal 

 

 

Table  2.2 Legislation of insulation for building in the 1984 (Kim et al, 2009b) 

Parts and locations of materials Glass, polystyrene 

form, rock wool (mm)  

Others with resistance 

of heat conduction  

(
o
C/kcal) 

External walls, 

ground floors and 

roof (top floor) 

Central and southern 

regions 

Thicker than 50 mm Higher than1.6 

Jeju Island Thicker than 30 mm Higher than1.0 

Side walls Central and southern 

regions 

Thicker than 70 mm Higher than 2.2 

Jeju Island Thicker than 40 mm Higher than1.2 

 

 

Table  2.3 Legislation of insulation for building in the 1987 (Kim et al, 2009b) 

Parts and locations of materials Glass, polystyrene 

form, rock wool (mm)  

Others with resistance 

of heat conduction  

(
o
C/kcal) 

External walls and 

ground  floors  

Central regions Thicker than 50 mm Higher than1.6 

Southern regions Thicker than 40 mm Higher than1.25 

Jeju Island Thicker than 30 mm Higher than1.0 

Roofs  Central regions Thicker than 80 mm Higher than 2.5 

Southern regions Thicker than 60 mm Higher than 1.9 

Jeju Island Thicker than 40 mm Higher than1.25 

Side walls Central regions Thicker than 70 mm Higher than 2.2 

Southern regions Thicker than 50 mm Higher than 1.6 

Jeju Island Thicker than 40 mm Higher than1.25 
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Table  2.4 Legislation of the insulation for central region in the 2001 (Kim et al, 2009) 

Thickness of insulation depending on types of matierials Thickness of insulation (mm) 

A B C D 

Thermal resistance level (W/m
2
K) ~ 

0.34 

0.35~ 

0.4 

0.41~ 

0.46 

0.47~ 

0.51 

Extneral walls of living 

room 

Directily exposed to the outside 65 75 85 100 

Indirectly explosed 45 50 55 65 

Ground floors Directily 

exposed to 

the outside 

Heated 90 105 120 135 

Non-heated 75 90 100 115 

Indirectly 

explosed 

Heated 55 65 75 80 

Non-heated 50 55 65 70 

Roof s  Directily exposed to the outside 110 125 145 165 

Indirectly explosed 75 85 100 110 

Side walls 90 105 120 135 

Shared floors Heated 30 35 45 50 

Non-heated 20 25 25 30 

 

Apartment units can be considered as independent housing occupied by different 

households. The diversity among apartment units in the same buildings can be identified by 

four characteristics. Firstly, the thermal conditions of surfaces in apartment units are 

different by the locations of apartment units (Kang et al., 1995; Yoon et al., 2009). As 

apartment units on the ground, top floors and the side of buildings have more surfaces 

directly exposed to the outside, these units can be less energy-efficient than other units in the 

middle of buildings (Yoo et al., 2007). Thus, energy consumption could be varied by the 

unit locations. Second, external environment is different in individual units with different 

locations. Solar radiation and sunshine duration can be increased in accordance with higher 

floors (Kim et al., 2013e). Moreover, the different levels of natural ventilation rates and their 

uncertainties were found by the unit locations (Hyun et al., 2008). Thirdly, there is thermal 

interaction through sharing slabs between apartment units on the different vertical locations. 

The slabs are equipped with an under-floor heating system; heated water is circulated 

through pipe lines buried in the slabs. Two apartment units share one slab as a floor for the 

unit on an upper floor and a ceiling for the unit on a lower floor although the heating system 

is controlled by the unit on an upper floor. Hence, heat can be transferred to both floors 



Chapter 2. Literature review 

 

51 

 

through the shared slabs, which affect to change indoor temperatures in other apartment 

units (Choi et al., 2007a). Lastly, individual units have been independently controlled by 

occupants. Depending on how each household control the heating system, energy 

consumption in each unit can be significantly varied. However, independent energy controls 

of apartment units have not been paid much attention in existing literature. This can be 

easily found that all energy models were set by the standardised conditions, even though the 

detailed values could be slightly different depending on which guidelines were chosen. 

However, empirical data, reported in (Kang et al., 1995; Kim and Lee, 2005; Kim et al., 

2011), showed that energy consumption in individual apartment units was varied by not only 

physical conditions but also individual controls in each unit. Unfortunately, these empirical 

studies analysing building energy consumption only focused on verifying theoretical 

findings related to the physical building conditions. Therefore, variation in energy 

consumption arising from individual units has been dismissed in the analysis of these 

studies.  

For example, Kang et al.(1995) provided the proportional rates of heating energy 

consumption depending on the unit locations for fifteen-story apartment buildings, as shown 

in Table  2.5. As can be expected, apartment units on the ground and top floors consumed 

higher heating energy than the other floors. Slight higher consumption also can occur in the 

units on the side of apartment buildings than the units on the middle of buildings. However, 

these two statements did not always correspond to this data. Many of the middle floors 

showed higher energy consumption than the west side of apartment buildings as well as 

lower floors. This showed the clear impact of the unit locations as well as the variation in 

individual controls in each apartment unit.   
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Table  2.5. Proportional rates of heating energy consumption in apartment units (Source: Kang 

et al., 1995) 

Locations Horizontal locations 

West Middle East 

 

 

 

 

 

 

 

Vertical 

locations 

Top floor 1.564 1.608 1.744 

13th floor 1.000 1.000 1.000 

12th floor 1.098 1.113 1.149 

11th floor 1.116 1.173 1.196 

10th floor 1.033 1.170 1.200 

9th floor 1.133 1.244 1.211 

8th floor 1.441 1.353 1.429 

7th floor 1.159 1.352 1.139 

6th floor 1.091 1.390 1.332 

5th floor 1.581 1.363 1.404 

4th floor 1.318 1.425 1.478 

3rd floor 1.392 1.466 1.479 

2nd floor 1.391 1.584 1.560 

1st floor 1.498 1.605 1.504 

Ground floor 1.667 1.995 1.839 

 

 Energy systems in high-rise apartment buildings 2.2.3.3

 

Because of the climate conditions (Section 2.2.1), buildings in South Korea require both 

heating and cooling to preserve a comfortable indoor environment. An underfloor heating 

system is installed in apartment buildings in South Korea. The floors are warmed by the 

heated water circulating through pipelines in the concrete slabs (floors), as described in 

Figure  2.17.  

 

 

 

 

Figure  2.17 Sections of underfloor heating applied in apartment buildings (Song, 1994) 

Water pipelines Water pipelines 
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Heating systems used in apartment buildings can be categorised as three types depending on 

heat resources and distribution methods: central and individual gas heating and district 

heating (Lee et al., 2004). The central and individual gas heating methods use natural gas as 

the main energy resource. The difference between them is that the central gas heating is 

operated by a main engineering room, while the individual gas heating warms up water 

through an individual boiler equipped in individual apartment units. The district heating 

takes district heat from thermal power stations. The flow chart of supplying heated water in 

the heating systems (individual gas heating) is provided in Figure  2.19.  

Although the climate conditions require cooling in buildings, cooling systems were not 

initially installed in apartment buildings. Traditionally, electric fans have been used as a 

cooling device. However, the demand of air-conditioning has increased throughout South 

Korea, and residents purchase air-conditioners individually. Nowadays, new apartment 

buildings are equipped with air-conditioners like heating systems. To this reason, the 

penetration rate of air-conditioners has been rapidly increased and reached more than 70% 

households in South Korea (KEPC, 2013). Depending on models of air-conditioners, the 

specification can be diverse. 

 

Figure  2.18 Underfloor hot-water heating, applied to apartment buildings in South Korea 

(Source: 
http://www.oknusu.co.kr/technote7/board.php?board=freeborad&page=4&sort=hit&command=body&no=85, 

http://blog.daum.net/_blog/photoList.do?blogid=0IjyL , 

http://www.bomicorp.co.kr/xe/view.php?id=sigong_3&page=2&sn1=&divpage=1&sn=off&ss=on&sc=on&selec

t_arrange=headnum&desc=asc&no=29   ) 

http://www.oknusu.co.kr/technote7/board.php?board=freeborad&page=4&sort=hit&command=body&no=85
http://blog.daum.net/_blog/photoList.do?blogid=0IjyL
http://www.bomicorp.co.kr/xe/view.php?id=sigong_3&page=2&sn1=&divpage=1&sn=off&ss=on&sc=on&select_arrange=headnum&desc=asc&no=29
http://www.bomicorp.co.kr/xe/view.php?id=sigong_3&page=2&sn1=&divpage=1&sn=off&ss=on&sc=on&select_arrange=headnum&desc=asc&no=29
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 Building performance assessment schemes in South Korea 2.2.4

 

As reviewed in Section 2.1.2, building energy performance in buildings has been evaluated 

through various assessment methods depending on the specific purposes of the assessments. 

Five types of building performance assessment methods have been used for buildings in 

South Korea: Green Building Certification Criteria (GBCC), Building Energy Efficient 

Rating System (BEERS), Housing Performance Rating Disclosure System (HPRDS), 

Figure  2.19 Diagram of heating, applied to apartment buildings in South Korea (Individual 

gas heating) (Lee, 2009) 
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Energy Saving Design Standards (ESDS) and The Environmental-Friendly Housing 

Certification (EFHC) (Shin, 2008; Park, 2012), as summarised in Table  2.6.     

For all types of buildings, two assessment methods, GBCC and BEERS, have been applied 

to evaluate building energy performance. The other three methods are specified only for 

apartment buildings. GBCC was established to reduce GHG emissions by certifying 

environmental impacts of buildings, while BEERS has been enacted to certify energy-saving 

technologies that have been adopted by the relevant regulations (Park, 2012). GBCC has a 

wider range of consideration impacting on GHG emissions so that it is more like the 

building environment assessment schemes such as LEED and BREEAM. On the contrary, 

BEERS is focused on evaluating energy efficiency in buildings by quantifying energy 

performance with international standards, ISO 13790 (ISO, 2008) and DIN V 18599-2 (DIN, 

2007).  

Three types of the assessment methods, HPRDS, ESDS and EFHC, have been authorised for 

evaluating apartment buildings. HPRDS is used to classify the performance of housing in 

terms of noise, structure, environment, living environment, fire (Shin, 2008). Apartment 

clusters with more than 1000 households compulsorily need to indicate the levels of HPGS 

(Park, 2012). ESDS guides how apartments have to be designed in order to be energy-

efficient (MLIT, 2015b). EFHC was enacted to reduce GHG emissions as well as energy 

consumption from housing (Shin, 2008).  They measures the expected rates of total energy 

saving.  

Apart from BERS, the quantification methods of the four assessment methods are using 

Energy Performance Indicator (EPI). EPI sets the best performance of energy use in 

buildings is 100, and evaluates the energy performance of buildings concerned through the 

specified criteria having credits (Kang, 2010). Each criterion has different credits. For 

example, GBCC requires higher than 60 from 100 credits. HPRDS certifies housing with 

higher than 90 credits for the first grade. The planned technologies acquiring credits in each 
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criterion are expected to be performed in actual performance. Instead, BEERS takes the 

quantifying methods from ISO 13790 and DIN V 18599-2 (Park, 2012). If the expected 

energy saving is outweighed than 40%, the first grade can be given.   

In the cases of South Korea, the limitations of the assessment methods, which were 

identified with the global point of view (Section 2.1.4 and 2.1.5), are also found. The four 

assessment methods using EPI, except for BEERS, classify energy performance in 

accordance with the designated criteria rather than scrutinise the quality of building 

performance. Thus, it does not provide a precise diasnosis of insufficient energy 

performance. BEERS actually quantifies building energy performance, based on the 

calculation-based methods. However, this simplified calculations have neglected the 

possible impacts of unexplained factors and data error (Summerfield et al., 2010), as 

identified in Section 2.1.3.  
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Table  2.6 Summary of building energy assessment methods in South Korea  

 Green Building Certification 

Criterion (GBCC) 

Building Energy Efficient 

Rating System (BEERS) 

Housing Performance Rating 

Disclosure System (HPRDS) 

Energy Saving Design 

Standards (ESDS) 

The Environmental-Friendly 

Housing Certification (EFHC) 

Outline 

(Shin, 2008; 

Park, 2012) 

A certification system for 

GHG emissions from a 

buildings 

A certification system for new 

apartments that apply energy-

efficient building 

technologies, which are 

adopted by the relevant 

regulations  

A indicator classifying 

performance of housing, 

intended to provide accurate 

information of housing and to 

improve the general 

performance of housing  

A standard of energy efficient 

design limiting an amount of 

energy consumption in 

buildings  

A housing standard providing 

construction and performance 

limitations to reduce energy 

consumption as well as GHG 

emissions 

Regulations 

related 

(Park, 2012) 

Building Act, Article 65 Building Act, Article 66 Housing Act, Article 21 Building Act, Article 66 Housing Construction Standards, 

Article 64 

Methods of 

evaluation 

(Park, 2012) 

EPI ISO 13790 and DIN V 18599-

2 

EPI EPI EPI 

Supervising 

department 

(Park, 2012) 

Ministry of Land, Transport 

and Maritime Affairs, and 

Ministry of Environment 

Ministry of Land, Transport 

and Maritime Affairs, and 

Ministry of Knowledge 

Economy 

Ministry of Land, Transport and 

Maritime Affairs 

Ministry of Land, Transport 

and Maritime Affairs 

Ministry of Land, Transport and 

Maritime Affairs 

Assessment 

criteria 

(Shin, 2008) 

 

Land use, transportation, 

energy, material and resource, 

water use, environmental 

impact, maintenance, 

ecological impact and indoor 

environment 

Total energy saving, total 

energy demand and carbon 

emissions 

Noise, structure, 

environnement, living 

environnement, fire 

EPI in architectural design, 

engineering, electricity 

Rates of total energy saving, 

qualities of insulation, energy-

saving facilities 

Targets 

(Park, 2012) 

Apartment, office, multi-flex, 

school, accommodation, 

commercial  

All buildings  Apartment with more than 1000 

households 

Apartment, other buildings 

with larger than 500m2 floor 

area 

Apartment  

Application 

(Park, 2012) 

Compulsory for governmental 

facilities, but recommended 

for others 

Recommended Compulsory Compulsory Compulsory 
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 Refurbishment measure quantifying energy performance in existing 2.2.5

buildings in South Korea   

The initial focus of refurbishment with existing apartment buildings in South Korea was to 

answer whether the economic profit of refurbishing existing apartments outweigh the profit 

of building new apartments. Therefore, previous studies mostly compared the economic 

profit of both approaches, such as (Lee et al., 2007; Kang et al., 2010; Kim et al., 2013a).   

With the growing attention to energy-efficiency, three methods have been used in existing 

literature treating refurbishment in the context of South Korea. The most dominant 

quantification method is using simplified energy calculation models (steady-state methods). 

This can be comprehended that economic aspect is still one of significant factors in 

determining refurbishment. Therefore, the quantified energy saving with energy-efficient 

technologies is expected to be converted to the possible economic profit. As the types of 

energy calculation models used in existing literature, the packages of calculating energy 

consumption, based on ISO 13790 (ISO, 2008) and DIN V 18599-2 (DIN, 2007), were often 

used.  Alternatively, Passive House Planning Package (PHPP) is used in (Seo et al., 2011). 

The second method is using engineering methods with archetypes. This is because this 

method has been commonly used to assess energy saving technologies. The last method is 

creating create mathematical models to calculate energy consumption with regard to 

influential parameters.   

The dynamic simulation, another method of the calculation-based methods, has also been 

widely used to evaluate an amount of energy saving in applying energy-efficient building 

technologies. While the calibrated simulation, mentioned in Section 2.1.3, revises initial 

inputs based on actual energy use, the dynamic simulation creates a self-reference building 

with idealised conditions of building factors. The difference between them is that the 

dynamic simulation is expected to be achieved in a real building, whereas the calibrated 

simulation modifies the inputs to adjust the prediction to be similar to the actual 

consumption. Therefore, the input factors, except for building forms, have been inferred 
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from  the national and  international guidance of creating building simulation models, such 

as BEERS, ESDS and ASHRAE fundamental handbook (Table  2.7). This approach can be 

comprehended by a trend of constructing apartment buildings in South Korea, which targets 

unspecified occupants with supplying in large number. However, this focus has been 

criticised due to the high disparities of their estimation, compared to real consumption.  

 Limitations of measuring building energy performance  2.2.6

In the decision-making process of refurbishment, two aspects have to be ensured by 

reviewing existing literature, described in Section 2.14 and 2.1.5. The first aspect is 

accurately measuring the amount of energy saving from the original conditions. The second 

aspect is reducing the performance gap between the predicted energy consumption with the 

assessment methods and the actual achievement in real situations. The clear limitations, 

derived from the complexities and diversities of buildings, have been recognised in 

quantifying energy performance in buildings, especially in building simulation models. The 

review of energy performance assessment methods in South Korea also implied the similar 

limitations, as shown in Section 2.2.4 and 2.2.5. This section interprets the specific 

limitations of the measurement methods used for buildings in South Korea.  

By reviewing existing literature, the limitations can be interpreted by three aspects. Firstly, 

the deterministic approach has only been considered to quantify energy performance in 

buildings. Thus, the complexities and diversities in buildings have been neglected in the 

quantification process. As identified in Section 2.1.4, one of main challenges of energy-

efficient refurbishment is the inflexible frameworks encapsulating diverse building 

conditions in the fixed one. This could limit to give rise to the true building conditions of 

existing buildings into the calculation process. The building characteristics of existing 

apartment buildings in South Korea have been transformed. Moreover, uncertainties in 

occupant-related factors have been disregarded in the quantification methods. As shown in 

Table  2.7, the input values of occupant-related factors have been fixed by the national and 
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international guidance. Global attention has been given to the attempts dealing with 

uncertainty arising from the complex and diverse buildings conditions, including physical 

characteristics and occupant behaviour. This attempt also needs to be implemented for 

existing apartment buildings in South Korea.  

Secondly, the dominant quantification methods were only chosen from the calculated-based 

methods, dynamic simulation and steady-state method (simplified building energy 

calculation). No hybrid method integrating more than two quantification methods have been 

applied to supplement limitations of applying one method. A failure of the idealised 

conditions in the dynamic simulation, especially identifying occupant behaviour, has been 

argued by disparities between estimated consumption and actual use, called the performance 

gap (Galvin, 2014a). Sunikka-Blank and Galvin (2012) also pointed out that actual energy 

consumption can be easily different from the estimated consumption because of occupants’ 

adapting behaviours. For this reason, building energy models can often overestimate energy 

consumption than actual energy use (Ingle et al., 2014). Many previous studies have 

attempted to clarify uncertain factors causing the disparities of the model estimations, and 

explore solutions to control the uncertainties.  

Thirdly, the building energy models of apartment buildings are fragmented by either a single 

building or a group of representative units. Apartment units are independent thermal zones 

in buildings as they have been individually controlled by diverse households. However, 

previous building energy models radically simplified these aspects. Most of simplification of 

the modelling focused on a single building with disregard variation in individuals. Empirical 

studies showed how this simplification can misread the energy modelling into high levels of 

discrepancy, as shown in (Yao and Steemers, 2005; Richardson et al., 2008; Widén et al., 

2009; Richardson et al., 2010). This aspect needs to be improved in the conventional 

modelling for high-rise apartment buildings. 
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In summary, the limitations of assessing building energy performance have been identified 

in the context of South Korea. The first aspect is the inflexibility of reflecting variation in 

the transformed building features. Secondly, less attention has been paid to reflect realities 

with uncertain factors in apartment buildings, especially occupants’ behaviours. The 

variation in self-contained individual apartment units is the last aspect.  

 Summary  2.3

How to make a decision in refurbishment can be re-defined as how to measure energy-

saving in refurbishment strategies and how to estimate the measured energy-saving 

accurately to be achieved in real situations.  The six challenges, defined in Section 2.1.4, 

represent the crucial difficulty in successful refurbishment due to the intrinsic complexities 

and diversities of building factors encompassing buildings concerned. The assessment 

methods of quantifying energy performance in buildings and energy-saving in refurbishment 

strategies have been improved and sophisticated. However, the performance gap, caused by 

the disparity between the predicted and measured energy consumption, has still been 

problematic in this field. Uncertainty and sensitivity analyses under the current assessment 

methods, especially with building simulation models, have shown how much the predicted 

energy consumption can be different from the achieved value in realities. This has been the 

serious obstacle of making a decision for refurbishment strategies. Some studies have been 

focused on integrating the uncertainties into the process of predicting energy consumption. 

A probabilistic approach with the distribution of building factors helps making a decision 

finding the most probable values to be used for evaluating refurbishment strategies, while 

alleviating the performance gap arising from the uncertainties.  

In the context of South Korea, the assessment methods have shown the clear limitations in 

the line with the global point of view. The deterministic approach has only been used to 

quantify building energy performance. Therefore, the complexities and diversities derived 

from the transformation of building characteristics and occupant-related factors have not 
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been regarded in the quantification. Moreover, the applied methods have been dominated by 

the calculation-based methods, which have limitations to take unexplained factors and data 

errors into consideration. Hybrid methods by combining the calculation-based methods with 

actual consumption data need to be attempted. Lastly, the variation arising from the 

individual apartment units has also need to be contained.  

Energy-efficient refurbishment has shown its potentiality contributing to reduce GHG 

emissions. However, the actual achievement can be followed, once the reliable process of 

the refurbishment is consolidated. Existing literature pointed out the challenges of the 

current assessement methods treating the performance gap in refurbishment measures. This 

issue is still an ongoing process.   
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Table  2.7 Input data of building conditions in existing literature 

Authors Set-point 

temperature 

Schedules Internal gain Ventilation Cooling 

system 

Guideline 

Heating 

 

Cooling Heating Cooling Equipment 

 

Lighting 

 

Occupant  No. occupant Conditioned 

area 

Unconditioned 

area 

Kim et al. (2013) 20 °C - - - 2.98 W/m2 - 1.27 W/m2 0.03 person/m2 0.7 ACH 2.0 ACH - BERS 

Roh (2012) 20 °C 26 °C - - 7.53 W/m2 - 73.3 W/m2 - - - EER 2.5 BERS, 

ESDS 

Roh et al. (2011) 20 °C 26 °C - - 3.76 W/m2 - 1.72 W/m2 0.04person/m2 0.7 ACH 2.0 ACH - BERS, 
ESDS 

Yoon et al. (2009) 20 °C 27 °C 30/09 – 

18/05 

30/06 – 

31/08 

463 W - - - 0.7 ACH 2.0 ACH - BERS 

Yoo et al. (2002) 20 °C 28 °C Oct -Mar Jul-Aug - - - 4 people 1.5 ACH 0.5 ACH - - 

Park (2009) 20 °C 26 °C - - 14 W/m2 4 W/m2 65 W/m2 0.04person/m2 0.1 ACH 0.1 ACH COP 3.14 ISO 7730 

Son et al. (2010) 24 °C 26 °C - - 314 W 68 W 70W 4 people 0.4 ACH 2.0 ACH - - 

Park and Park (2012) 20 °C 26 °C - - - - -  0.7 ACH - - BERS 

Song (2008) 30 °C 

(floor) 

26 °C - - - - - 4 people 0.5 ACH - - BERS, 

ESDS 

Choi and Cho 

(2012) 

18 °C 26 °C - - - 3.4 W/m2 

 

- 0.03person/m2 - - - - 

Suh and Kim (2011) - - - - 7.01 W/m2 5.4 W/m2 131W/person 4 people - - - ASHRAE 

90.1 

Yoon et al. (2007) 24 °C 26 °C - - 65 W - - 3 people - - -  

Kim et al. (2006) 20 °C 26 °C - - 12 W/m2 4 W/m2 22.4W/person - - - - - 

Lee (2009) 24 °C 26 °C - - 314 W  68 W 70 W 4 people 0.5 ACH 1 ACH COP4.11 ASHRAE 
fundamental 

handbook 

Park et al. (2013) 20 °C - - - 7.53 W/m2 

8.07 W/m2 

- 65 W - 0.7 ACH 2.0 ACH - ASHRAE 
90.1 

Lim et al. (2014) 20 °C 26 °C - - - - - - 0.7 ACH 5 ACH COP2.5 ASHRAE 

90.1 

Jo et al. (2009) 24 °C 26 °C 01/11 – 

31/03  

11/06 – 

10/09 

267 W 80 W 70 W 4 people 0.82 ACH - - ASHRAE 
90.1 



Chapter 2. Literature review 

 

64 

 

 

 

 

 



 

65 

 

Chapter 3 

3 Methodology 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Methodology 

 

 

66 

 

This research intends to develop a building energy model of existing high-rise apartment 

buildings by integrating influential factors causing variation in actual energy consumption, 

which have been disregarded and anticipated to raise the significant levels of uncertainties in 

the conventional building energy models for high-rise apartment buildings in South Korea. 

The methodology of this research was guided by a quantitative analysis, which is used when 

theories or hypotheses are tested, based on valid measures from empirical evidence 

(Campbell et al., 1966; Newman and Benz, 1998). This chapter presents the methodology of 

this research. Section 3.1 describes how the methodology is designed to improve the 

identified limitations of the conventional building energy models. Section 3.2 interprets how 

the collected and calculated data are analysed. Section 3.3 summarises the strategy of this 

research.  

  Research design 3.1

 Overall strategy 3.1.1

This study focuses on the limitations of the conventional building energy models, which 

were identified from the literature review, as depicted in Figure  3.4. The methodology of this 

study is designed in four strategies. Firstly, this study attempts to identify the physical 

characteristics of existing apartment buildings in relation to actual energy consumption 

(Chapter 4). By quantifying the significance of the physical characteristics in changing 

energy consumption, existing apartment buildings can be classified. Figure  3.1 depicts the 

concept of classifying existing apartment buildings with regard to the effective building 

features affecting on energy consumption. Through this stage, existing apartment buildings 

can be set by similar conditions, which similar refurbishment strategies can be applied. As 

measurement methods, two types of statistical analysis are chosen: multiple linear regression 

analysis and exploratory factor analysis. Multiple linear regression analysis has been applied 

to account for the relationship between energy consumption and the building features of 

existing apartment buildings. Exploratory factor analysis is intended to identify an 
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underlying structure among the building features. By prioritising the effective building 

features in the classification, the building energy model is able to control the variation 

arising from the physical characteristics of existing apartment buildings.  

 

Figure  3.1 Diagram of classifying existing apartment buildings with effetive building features 

 

Secondly, this study plans to create a new standardised condition of occupants’ behaviours 

consuming heating and electricity, which is adapted for existing high-rise apartment 

buildings (Chapter 5). Figure  3.2 interprets how occupants’ behaviours can be adapted for 

existing apartment buildings. With a probabilistic approach, how occupants generally 

consume heating and electricity has been inferred from actual energy consumption. Gaussian 

Process Classification is used to deal with the sets of possible random behaviours of 

controlling heating and electricity to functions. The prior distribution, which is identified by 

a national survey of occupants’ consumption behaviours, has been modified by actual energy 

consumption in existing apartment buildings, according to Bayesian inference. The outcome 
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is expected to control the variation caused by occupants’ behaviours in the building energy 

model for existing apartment buildings.  

 

 

Figure  3.2 Diagram of creating a new standardised condition of occupants' behaviours adjusted 

for existing apartment buildings 

 

Thirdly, this study combines the fragmented modelling approaches to cope with the variation 

in individual apartment units (Chapter 6). Figure  3.3 describes the process of dealing with 

uncertainties derived from the variation in individual units. The building energy model has 

been firstly specified with individual units regarding the locations of apartment units. Then, 

a numerical model of the individual heating controls and the interaction between floors is 

integrated to improve the previous building energy model estimation. A polynomial 

regression model has been applied to create the numerical model, and has sought the dataset 

of heating controls in each apartment units determining actual unit-specific heating 

consumption. As a result, the energy model is expected to be more accurate in calculating 
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energy use not only for a whole building, but also individual units. Moreover, the dataset of 

heating controls in each apartment unit can be provided.  

 

 

Figure  3.3 Diagram of dealing with uncertainties derived from individual apartment units 

 

Lastly, the building energy model developed through the previous three strategies is used to 

implement refurbishment measures for existing apartment buildings (Chapter 7). Climate 

uncertainty is added to consider refurbishment with a long term perspective. The four 

revisions of the building thermal regulations from 1987 to the present have been assessed as 

refurbishment strategies. Building simulation with the present and future climate conditions 

has been used to calculate changes in energy consumption. The outcome is expected to 

provide an assessment of the intensified thermal regulations and a comprehensive selection 

of the efficient refurbishment strategy for existing apartment buildings.  
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 Limitation 1 

Inflexibility of defining 

existing apartment buildings 

with regard to variation in 

the physical characteristics  

 Limitation 2 

Low attention to variation in 

occupants’ behaviours 

consuming heating and 

electricity  

 Limitation 3 

Fragmented approaches of 

treating variation arising 

from individual apartment 

units  

 Strategy 1 (Chapter 4) 

Classifying existing apartment 

buildings by quantifying the 

robustness of building features in 

changing energy consumption 

 Limitation 4 

Narrow-sighted perspective 

of refurbishment measure 

for existing apartment 

buildings  in South Korea 

Limitations of the conventional 

building energy model in the 

context of South Korea 

 Strategy 2 (Chapter 5) 

Creating a new standardised 

condition of occupants’ behaviours 

consuming heating and electricity, 

adapted for existing apartment 

buildings, by using a probabilistic 

approach  

 Strategy 3 (Chapter 6) 

Developing a building energy 

model of existing apartment 

buildings by combining the 

fragmented approaches to specify 

individual units containing 

variation arising from the locations 

and independent heating controls  

 Strategy 4 (Chapter 7) 

Implementing the building energy 

model developed to evaluate 

refurbishment strategies in order to 

reduce energy consumption with 

respect to future climate change 

Overall strategies of the research to 

develop a building energy model of 

existing apartment buildings 

Figure  3.4. Diagram of the overall strategy of the research 
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 Sampling  3.1.2

In this study, the definition of old existing apartment buildings was chosen by apartment 

buildings that are allowed to be refurbished under the current law and their urgent 

requirement to reduce energy consumption. Under the Enforcement Decree of the Housing 

Act 2009, apartment buildings built for over fifteen years ago can be freely refurbished to 

improve their conditions. This condition limits existing high-rise apartment buildings built 

before 2005. According to Kim (2010), apartment buildings which were constructed after 

2001 relatively consumed less energy for heating compared to buildings built before. This is 

because thermal regulations were significantly reinforced with energy-efficient scheme since 

2001. By regarding both conditions, apartment buildings constructed before 2001 were 

initially defined as old existing apartment buildings in this study.  

Although the initial definition of old existing apartment buildings was identified, specific 

sampling was carried out to have a realistic scope of the research. Sampling can be a useful 

technique to conduct a research with a large population because of the three reasons: cost, 

utility and accessibility (Barnett and Barnett, 1991). Samples should not be distorted by 

other sources, which is called ‘fair representation’ of the population (Barnett and Barnett, 

1991). Four or five sampling units were designed in Chapter 4 and 5. Concurrently, the first 

sampling unit was the construction year of apartment buildings. In Chapter 4, this unit limits 

apartment buildings constructed before 2001, as initially designated. However, this sampling 

unit also represents the thermal conditions of existing apartment buildings, because of the 

thermal regulations revised three times until 2001. Therefore, the construction years, divided 

by the revisions of the thermal regulations, could categorise existing apartment buildings 

with the specific conditions of building envelopes.  

The second sampling unit was the locations of apartment buildings. This unit is intended to 

minimise the possible distortion, caused by geographical locations including climate 
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impacts. 16 apartment districts were selected, which were only allowed apartment 

constructions in Seoul (Zchang, 1994), as depicted in Figure  3.5.  

The third unit was the number of floors of apartment buildings. Utility was the reason why 

the number of floors was limited to more than ten floors (Chapter 4). Existing apartment 

buildings with more than ten floors are highly expected to be refurbished due to a low 

possibility to get permission for demolition. Besides, the range (ten to fifteen floors) is the 

most typical height for existing apartment buildings (Statistics Korea, 2010a). However, this 

sampling unit was also used to eliminate the possible distortion by external environment in 

building simulation (Chapter 5). The last unit was the availability of data. Monthly energy 

bill records were collected from Apartment Management Information System (AMIS). Some 

missing data was found in the process of collecting data. These were not counted in the 

sampling. Specific sampling process is provided in each chapter (Chapter 4 and 5). 

 

 

Figure  3.5. Apartment districts in Seoul (Source: Zchang, 1994) 
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 Data collection  3.1.3

Three types of data were collected in this research: energy bills, the national survey of 

behaviours using domestic appliances in households and architectural drawings. Energy bills 

were converted to energy consumption, and used for various purposes in this study such as a 

dependent variable in statistical modelling and a source of calibrating an energy model. The 

survey data provides the specific consumption behaviours of electric appliances in 

households, accounting for stochastic occupants’ behaviours. Architectural drawings were 

additionally acquired to assure the physical conditions of apartment buildings to be used for 

modelling. 

 Energy bills  

Actual energy consumption in high-rise apartment buildings is an important material to 

conduct this research. The consumption data was extracted from a monthly expenditure of 

apartment buildings, provided from AMIS. The AMIS, organised by the MLIT, was 

managed by (Korea Housing Management Association (KHMA), 2013), but the 

management has been shifted to (Korea Appraisal Board (KAB), 2014) since 2014. All 

apartment buildings in South Korea are required to open the monthly expenditures on the 

website, as shown in Figure  3.6. The expenditures are specified by its purpose including 

heating, electricity and domestic hot water. Therefore, the monthly bills consumed for 

energy consumption factors (heating, electricity and domestic hot water) were collected for 

this study. The collected energy bills in the currency of South Korea (Won/m
2
) was 

converted to energy unit (kWh/m
2
) by the rates tables, provided from the suppliers (Seoul 

City Gas, 2014; Korea Electric Power Corporation (KEPC), 2014; Korea District Heating 

Corporation (KDHC), 2015). 

In Chapter 4 – 7, the applied energy consumption is slightly different. In Chapter 4, the 

energy consumption data used for analyses is the energy bills that were consumed in 

apartment buildings from 2011 to 2012. Therefore, the consumption data includes the energy 
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bills consumed for public and private purposes. The data from the 16 apartment districts 

were used. However, Chapter 5 and 6 specifies the interest to occupants’ behaviours 

controlling heating and electricity and unit-specific heating controls, respectively. Chapter 7 

also uses the building energy model calculating unit-specific energy consumption. Thus, the 

energy consumption is measured from the energy bills spent for a private purpose in only 

four apartment districts from 16 in 2014, not 2011 – 2012. Therefore, the consumption 

values can be different because of these reasons: the purposes of consumption, years 

(climate conditions) and apartment districts. Specific data collection is illustrated in each 

chapter (Chapter 4 – 5). 

 Survey on the behaviours of using electric appliances in households 

Occupants’ behaviours of using domestic appliances were surveyed by (KEPC, 2013). This 

survey indicated the detailed profiles of domestic appliances and the distribution of usage. 

500 households from 4,000 samples designated to represent the proportion of housing in 

South Korea were investigated for one week. Thus, the data helped to draw a whole picture 

of the distribution of occupants’ behaviours controlling electric devices with the quantified 

data (Appendix B), which is applicable for energy simulation. This data were the key 

material to identify the prior distribution of occupants’ behaviours in Chapter 5.   

 Site survey (Architectural drawings) 

Although building regulations and literature review provide sufficient evidence to generalise 

the typical designs of existing high-rise apartment buildings, a short site survey was 

undertaken to collect architectural drawings.  The main purpose of this was to cover the 

construction details of those apartment buildings. The apartment blocks were chosen by their 

representativeness among existing apartment buildings, used in this study. However, there 

was a significant limitation of collecting architectural drawings. Only three apartment blocks 

were available. Their architectural drawings were copied by taking pictures, due to them 

only preserved as a printed version (Figure  3.7).  

 



Chapter 3. Methodology 

 

 

75 

 

 

 

Figure  3.6. Screenshot of monthly expenditure of one of apartments in AMIS (Source: KAB, 

2014) 
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 Building simulation 3.1.4

Building simulation is one of the most powerful analytic tools, based on numerical methods 

of calculating building performance (Hensen and Lamberts, 2012). The method has been 

commonly used in analysing buildings as the wide ranges of building conditions can be 

simulated. The aim of this study, developing a building energy model of high-rise apartment 

building, necessarily requires this tool to calculate energy use in these buildings.    

For a main tool of building simulation, several simulation programs such as EnergyPlus, 

IES<VE> and eQUEST were compared. As shown in (Crawley et al., 2008), EnergyPlus 

and IES<VE> provide the wider range of tasks analysing building performance. Between 

them, EnergyPlus was chosen for this research. The first reason is the popularity of the 

software analysing buildings in South Korea. While reviewing existing literature, most of 

previous studies with buildings in South Korea took this software as the analytic tool. 

Besides, the software was already evaluated with a building in South Korea, which is 

Figure  3.7.  Example of architectural drawings of existing apartment buildings 

(Source: Apartment managers at site survey) 
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conducted by (Seo, 2001). According to the author, EnergyPlus sensitively responded to 

windows in relation to cooling loads, compared to other programs such as BLAST, DOE-2 

and TRANSYS. However, analysing energy consumption showed about 2 – 3% errors in 

comparison to a real value although it requires a calibration process. The second reason is 

the compatibility of the software. EnergyPlus is a core engine analysing building 

performance. Thus, it does not provide a function visualising building models. However, its 

high level of compatibility allows visualising models with other modelling tools. For 

example, Openstudio (Guglielmetti et al., 2011) with Sketch-up and DesignBuilder (Tindale, 

2005) integrate modelling and analysing into the one format by using EnergyPlus. 

Moreover, BEopt (Christensen et al., 2006) provides cost-effective analysis with building 

simulation using EnergyPlus.  

 Data analysis  3.2

Energy consumption data either collected or calculated were analysed by statistical methods. 

The statistical approaches verify hypotheses and infer relationships of interests from 

observed samples. The procedure of statistical methods can be, therefore, similar from 

inductive inference (Romeijn, 2014). Bandyopadhya and Forster (2011) defined four 

paradigms of statistical inference: Classical statistics (also called frequency inference), 

Bayesian, Likelihood and Akaikean paradigms.  

Classical statistics (frequentist statistics) stands on inductive inference to confirm questions 

and hypotheses (Mayo and Spanos, 2011). According to the author, the observed data 

generates functions verifying parameters, but the functions inevitably include errors due to 

the limitation of the observed data. In Bayesian statistical methods, the observed data 

incorporates to modulate prior probability assignment, called a posterior probability 

distribution (Romeijn, 2014). The difference between the two paradigms is that classical 

procedure focuses on improving a probability of inferences by selecting or deselecting 
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parameters, while Bayesian methods optimise the prior probability with respect to the 

observed data.  

 Frequency inference  3.2.1

As mentioned above, the importance of frequency inference is to secure the reliability of 

inference, which is measured by significant tests and confidence-interval estimation (Mayo 

and Spanos, 2011). The author described the three components of significant tests: a null 

hypothesis; the test statistic; the significance level (𝜌-value). A null hypothesis is a premise 

that no valid relationship between variables. If the null hypothesis is rejected, a valid 

relationship can be measured. The test statistics reflect the goodness of data in accordance 

with the null hypothesis. The significance level indicates the probability of results when the 

null hypothesis is true. This inference approach has been leadingly used in this research. 

Therefore, the significance of inference was necessarily undertaken to improve the reliability 

of analysis.  

 Significant tests 

Analysis of Variance (ANOVA) tests can be used to evaluate the fit of a regression model 

(Field, 2009). The tests describe how well-fit regression model is with the five types of 

information: sum of squares, degree of freedom, mean square, F-ratio and 𝜌-value. Sum of 

squares means total variation explained. Mean squares are the sum of squares divided by 

degree of freedom. F-ratio is calculated by the model mean squares (explained in the model) 

divided by the residual mean squares (unexplained in the model). Therefore, F-ratio needs to 

be no less than 1 (Field, 2009).  𝜌-values represent how significant variables are to interpret 

the regression model if the null hypothesis is true. Thus, lower 𝜌-value means that the 

variables give significant impacts on a regression model.   
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 Regression analysis  

Regression analysis is a tool quantifying relationships between dependent and independent 

variables (Kleinbaum et al.,2013). However, it does not represent causalities of them. In this 

study, dependent variables are mostly actual energy consumption, while independent 

variables can be varied depending on the specific focus of each chapter. The identified 

relationships in a regression model provide the robustness of independent variables in 

changing energy consumption. The results can also be used to filter ineffective variables.  

In Chapter 4, various building features, as independent variables, have been evaluated by 

multiple linear regression analysis to assess the strength of building features in changing 

actual energy consumption. In Chapter 5, this analysis also has been applied to measure the 

significance of associations between occupants’ behaviours and energy consumption in a 

building energy model. Based on the result, only influential variables have been taken into 

account to further stages.  

Polynomial regression model, which is a type of multiple regression analysis, has been 

applied to Chapter 6 and 7. This regression model considers only one or two independent 

variables. Although multiple linear regression model measures linear relationships between 

dependent and independent variables, polynomial regression allows various orders and 

degrees of models, which can be more flexible to fit observed data to statistical models. 

Chapter 6, considering the heating controls of individual apartment units, has created binary 

linear and quadratic models with different degrees to account for heating energy 

consumption in the apartment units. In Chapter 7, associations between climate factors and 

energy consumption have been analysed with polynomial regression to avoid high levels of 

multicollinearity, which indicates associations among independent variables (Field, 2009). 

 Exploratory factor analysis  
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Exploratory factor analysis seeks an underlying specific factor structure (Johnson and 

Wichern, 1992). The analysis is often confused with Principle Component Analysis (PCA). 

Field (2009) clarified the difference between them is that factor analysis is only capable of 

estimating the underlying structure with various assumptions, while PCA establishes linear 

components within the data. The output values of this analysis are affected by the types of 

rotating method, which needs to be carefully chosen. If independent variables are not 

correlated, orthogonal rotation can be more appropriate. Otherwise, oblique rotation, which 

allows correlations among variables, can be applicable (Field, 2009). Kaiser-Meyer-Olkin 

measure of sampling adequacy (KMO) and Bartlett’s test of sphericity evaluates the 

accuracy of results (Kaiser and rice, 1974).  KMO measures the sum of partial correlations, 

which is recommended to be higher than 0.5, Bartlett’s test requires significantly high vales 

which means correlations between variables are significantly different from zero (Field, 

2009). This analysis has been applied in Chapter 4 to identify intrinsic structures from all 

independent variables, building features, in relation to actual energy consumption.  

 Bayesian inference 3.2.2

Frequency inference deals with parameters either choosing or eliminating in an inferring 

process, whereas Bayesian inference concludes a posterior probability of distribution, which 

is updated by a prior probability of distribution and observed data (Gelman et al., 2014). As 

shown in Equation (3-1) below, Bayes’ theorem yields the posterior density, 𝒑( 𝜽 ∣∣ 𝒚 ), from 

the joint probability density function, 𝒑(𝜽, 𝒚), and the probability of observed values, 𝒑(𝒚). 

Prior distribution, 𝒑(𝜽), and the distribution of sampling, 𝒑( 𝒚 ∣∣ 𝜽 ), consists of the joint 

probability density function (Gelman et al., 2014). The sampling distribution, 𝒑( 𝒚 ∣∣ 𝜽 ), 

needs to be processed in a stochastic process. For example, Gaussian processes, which are 

one of the stochastic processes, compute likelihoods of observations given model 

parameters, 𝒑( 𝒚 ∣∣ 𝜽 )  (Heo et al., 2012). This has been applied to update occupants’ 
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behaviours consuming heating and electricity for existing apartment buildings, based on the 

observed actual energy consumption and sampling cases with building simulation. 

 

𝒑( 𝜽 ∣∣ 𝒚 ) =  
𝒑(𝜽,𝒚)

𝒑(𝒚)
=  

𝒑(𝜽)𝒑(𝒚∣𝜽)

𝒑(𝒚)
                   (3-1) 

 Stochastic process  

Doob (1953) described the definition of stochastic processes as a collection of random 

variables, {𝑿(𝒕), 𝒕 ∈ 𝑻}. In other words, the processes can be interpreted as mathematical 

models of random phenomena arising through a process in a manner of the probability law 

(Parzen, 1999). Particularly, the wider application of Gaussian processes was addressed by 

(Parzen, 1999).  

Gaussian processes specify the properties of functions that take the prior distributions and 

observed data; thus, uncertainties can be reduced by the combination of the prior 

distributions and the observed data (Rasmussen and Williams, 2006). As the process is not a 

parametric model, specifying the prior distributions of functions including covariance 

functions is important (Rasmussen and Williams, 2006). The process deals with two forms 

of problems, regression and classification. Simply, regression problems target real values 

while classes in problems are assigned to the classification. According to Rasmussen and 

Williams (2006), Gaussian likelihood in regression models, results in a posterior 

distributions over functions, which is analytical. For classification models with discrete class 

labels, Gaussian likelihood is inappropriate. Different methods of approximate inference, 

such as probit likelihood, can be treated (Rasmussen and Williams, 2006).  

In Chapter 5, occupants’ behaviours of consuming heating and electricity have been 

identified by the surveyed data. However, their distribution is not specified for types of 

housing, particularly old existing high-rise apartment buildings, which have shown 

excessive energy consumption. Therefore, Chapter 5 takes the occupants’ behaviours of 
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controlling heating and electric devices as a collection of random variables. Their 

distribution of usage is used as a prior distribution. As outcome, the occupants’ behaviours 

are optimised for old existing apartment buildings. 

 Normality tests 

The distributions of samples can be bell-shape, normally distributed, when the number of 

samples is large enough, according to the central limit theorem (Sheldon, 2002). The 

collected energy consumption, used in Chapter 5, is required to be normally distributed. 

Three types of normality tests have been applied in this research. Firstly, Kolmogorov-

Smirnov and Shapiro-Wilk tests compare the distribution of collected samples with the 

normal distribution with the same mean and standard deviation (Field, 2009). If the result is 

not significant, samples can be considered as normally distributed. Secondly, quantile – 

quantile plot (Q – Q plot) visualises how similar the distribution of samples is from the 

normal distribution by plotting the observed quantile with the estimated quantile (Field, 

2009). Finally, skewness and kurtosis indicate the pile-up data from zero (normal 

distribution). If both values are nearly zero, it means that samples are normally distributed. 

±1.96 limits were applied to determine the acceptable range as a normal distribution.   

 Summary 3.3
 

The overall strategies, as illustrated in Figure  3.4, are integrating the quantified variation 

arising from the influential factors, specified for existing apartment buildings by statistical 

inference, in order to enhance a building energy model for these buildings. To achieve the 

four objectives of this study, the specific methods can be summarised as follows:  

 Quantifying the robustness of building features in changing energy consumption 

through multiple linear regression and exploratory factor analysis in order to classify 

existing apartment buildings 
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 Modifying the stochastic data of occupants’ behaviours with regard to actual energy 

consumption in order to be adjusted for existing apartment buildings, according to 

Bayesian inference.  

 Combining the fragmented modelling approaches in order to develop the building 

energy model for integrating variation arising from individual apartment units.  

 Evaluating refurbishment strategies for existing apartment buildings with the 

building energy model developed.  
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4 Classification of existing apartment buildings with 

respect to effective building features affecting 

energy consumption 
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This chapter sets out with the aim of classifying existing apartment buildings by quantifying 

the robustness of building features in changing energy consumption. The classification is 

undertaken by quantifying impacts of the transformation of buildings features on actual 

energy consumption, collected from existing apartment buildings constructed in the 1970s – 

1990s. The outline of this chapter consists of five sections. Section 4.1 provides a 

background of existing apartment buildings in relation to energy-efficient refurbishment, and 

the research gap that the current literature cannot cover variation related to the physical 

characteristics of existing apartment buildings. Section 4.2 explains a methodology of 

quantifying the robustness of building features in changing energy consumption. Section 4.3 

illustrates the effective building features and the significance of the building features in 

energy consumption. Section 4.4 compares the results with other cases in different countries. 

Lastly, the overall contribution of this work is summarised in Section 4.5.  

 Background 4.1

In Asian countries that experienced dramatic economic growth, such as Japan, Hong Kong, 

Singapore and South Korea (Chang, 2006), high-rise apartment building became one of the 

most dominant types of housing (Yuen, 2011; Yuen et al., 2006). The refurbishment of those 

buildings is a common issue after more than 40 years of extensive construction of apartment 

buildings. This issue can be also extended to some countries such as China and Malaysia 

that have experienced the economic growth in recent years. 

In South Korea, ranked 8
th
 for GHG emissions (Olivier et al., 2012), the Government has 

attempted to reduce carbon emissions of the country by enhancing building regulations and 

policies. Apartment buildings were required to be energy-efficient since 2001 (Kim, 2010). 

In 2009, a new law, ‘Framework Act on Law Carbon Green Growth’, required higher levels 

of energy efficiency in buildings (Jones and Yoo, 2012). Despite these attempts, energy 

consumption in residential buildings has not declined (Huh, 2013), and carbon emissions in 

South Korea have also not reduced (Olivier et al., 2012). Several studies such as (Jo et al., 

2010; Kim 2010) have criticised this unwanted outcome. Particularly, Kim (2010) claims 
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ineffective energy reduction in residential buildings was due to energy consumption in 

existing apartment buildings, which were excluded in the energy-efficient scheme. In the 

building stock of South Korea, the largest proportion of all building types is residential 

buildings, which amounts for 67.1% (Statistics Korea, 2013). 58% of the residential building 

stock is apartment buildings (Statistics Korea, 2010b), which is the most dominant 

proportion. 63% of apartment buildings were constructed before 2001 (Statistics Korea, 

2000; Statistics Korea, 2010b) when the higher levels of energy-efficient scheme were 

applied to buildings. In this aspect, the old apartment buildings constructed over 20 years 

ago, which occupies the largest proportion in the building stock of South Korea, were not 

counted to be energy-efficient. 

There has been a controversial debate amongst policy makers, building developers and 

residents in South Korea during the last decade as to whether old existing apartment 

buildings should be demolished or refurbished. However, policy makers have proposed to 

refurbish old apartment buildings to contribute reducing carbon emissions rather than 

demolish those buildings. As a result, building regulations have been altered in recent years 

to encourage refurbishment and reduce demolition of old existing apartment buildings. The 

South Korean Government, for example, has permitted developers to increase the number of 

floors on top of apartment buildings in case of refurbishment (MLIT, 2010). This policy can 

represent the governmental intention to vitalise refurbishment.  

Despite the governmental efforts, there are limits in current and recent literature in terms of 

creating effective strategies of refurbishment for old high-rise apartment buildings to reduce 

energy consumption. Firstly, great attention has been paid to economic profit rather than 

reducing energy consumption or carbon emissions. The concept of refurbishment in existing 

literature such as (Son et al., 2005; Lee et al., 2007) was identified by maximising economic 

profit, and the strategies of refurbishment were focused on cost-effectiveness. Therefore, the 

strategies would not necessarily be beneficial to reduce energy consumption. Secondly, 

existing literature, engaging with energy efficient technologies, does not cover old existing 
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apartment buildings that need to be refurbished (e.g. Kim et al., 2006a; Kim et al., 2009a; 

Jang et al., 2010; Ki et al., 2013). It relies on the ‘Standard housing’ model which draws the 

thermal condition of buildings from simplified indices (MLIT, 2013), assuming that building 

features affecting energy consumption in all apartment buildings are the same. However, the 

building features in old apartment buildings were changed by different design preferences in 

different periods and contexts. The existing literature does not take into account the 

transformation of building features in old apartment buildings that have been constructed in 

different periods and contexts (Zchang 1994; Choi, 1997; Bae et al., 2001; Hong, 2003; 

Jeon, 2010; Kim and Yoon, 2010; Park, 2012). This chapter argues that the transformation 

of building features affects energy consumption and needs to be taken into account when 

classifying the physical characteristics of existing apartment buildings as well as creating 

refurbishment strategies. 

This chapter, therefore, focuses on identifying existing high-rise apartment buildings in 

South Korea which need to be refurbished to reduce energy consumption. Furthermore, the 

efficient building features and their effect on energy consumption for both building energy 

modelling and refurbishment will be identified to classify these existing buildings. Five 

questions will be answered:   

 What are the levels of energy consumption in old existing apartment buildings? Do 

these levels of consumption need to be reduced?  

 Which features in existing apartment buildings have affected the energy consumption?  

 Which building features should be prioritised in refurbishment strategies in order to 

reduce energy consumption? How can these existing buildings be classified for the 

building energy models to deal with the variation in the physical conditions of these 

buildings?  
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 Methodology 4.2

The methodology is designed to analyse the impact of building features in old existing 

apartment buildings on actual energy consumption. The results will help to prioritise which 

building features can most effectively reduce energy consumption and thus guide not only to 

classify existing apartment buildings for building energy models but also to create 

refurbishment strategies. The method is threefold: evaluating energy consumption in old 

apartment buildings; identifying effective building features on energy consumption; ranking 

the effects of building features to energy consumption. 

 Evaluation of energy consumption in existing apartment buildings  4.2.1

Energy consumption in existing apartment buildings was evaluated to determine the 

necessity of refurbishment to reduce energy consumption. The consumption in old existing 

apartment buildings was, therefore, compared to the consumption in apartment buildings 

which were certified as energy-efficient. To conduct this, old apartment buildings are 

defined by those which were constructed before 2001, a year when building regulations for 

the thermal conditions of apartment buildings was much intensified and building energy 

rating system was just established. Permission has already been given for some of these 

buildings to be refurbished, others will be available to be refurbished in 2015 by a building 

regulation in South Korea (Enforcement Decree of the Housing Act 2009). In contrast, the 

comparison group of apartment buildings were certified as energy-efficient in an energy 

rating system set by (Korea Land and Housing Corporation (KLHC), 2013). The three 

values of energy consumption in the both groups were compared: total end-use energy 

consumption; space heating and electricity consumption by construction years; monthly 

energy consumption for space heating and electricity. The result is shown in Section 4.3.1.  

 Identification of building features affecting energy consumption 4.2.2

Building features in old apartment buildings were identified by reviewing previous literature 

and surveying existing apartment buildings. To prioritise building features in refurbishment, 



Chapter 4. Classification of building features 

 

90 

 

this chapter was, particularly, focused on the transformation of building features rather than 

characteristics which are commonly found in all buildings. It is difficult to precisely divide 

time periods of each feature. Instead, this chapter used the dominant designs since the 1980s, 

as described in Figure  4.1. Three distinctive trends are identified in the transformation of 

building features in old apartment buildings constructed before 2001.  

 

 

Figure  4.1. Changes of building features in apartment construction of South Korea since the 

1970s 

 

First of all, the main purpose in the early stage of apartment construction was to 

accommodate a rapidly increased urban population and building features were chosen 

accordingly whilst building features in the late stage were transformed to acquire higher 

levels of privacy in each apartment building (Jeon, 2010). For example, between the mid-

1970s and 1980s, large volume apartment clusters of more than twenty buildings were 

constructed as governmental-led projects (Gelézeau, 2007).  During the 1990s, the size of 

apartment clusters was reduced when the government handed over apartment construction to 

private developers (Gelézeau, 2007). Total cluster areas were also changed with the 

transformations of the size of apartment clusters, but it was differently evolved as the higher 

requirements for public space with service facilities (Lim, 2008). Moreover, apartment 
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buildings constructed in the early stage were designed with longer lengths and smaller sized 

units. A maximum of eight to ten apartment units were placed on each floor; thus small unit 

sizes of less than 60m
2
 (70m

2
 including communal space) were constructed in the 1980s 

(Kim and Yoon, 2010). Since privacy has become a sensitive issue, buildings with a stair 

type whereby only two units share one vertical access points (called a ‘core’) are preferred 

(Jeon, 2010). 

Second, economic profit has also been a significant factor to transform the building features 

in existing apartment buildings. For instance, three types of building layout can be identified 

(Choi, 1997; Lee et al., 2005; Park et al., 2007): the linear type where buildings are long and 

thin in plan and located parallel to one another; the square type where buildings are square in 

plan; and the grid type where buildings are located on a grid. According to Jeon (2010), the 

linear type was the typical design type in the early stage of apartment construction in South 

Korea, but the design was changed to square and grid type to accommodate more buildings. 

The sizes of building units were also enlarged; thus the most dominant unit size became 

about 85 - 100m
2 
(about 100 - 120m

2
 including communal space) (Kim and Yoon, 2010).  

Third, some building features were transformed by stringent policies and the development of 

technologies. The thermal conditions of envelopes in existing apartment buildings have been 

determined by a building regulation (Kim et al., 2009b). The regulation determining the 

thermal conductivity of materials and the thickness of insulations required was firstly 

established in 1980. Since 1980, there have been two significant revisions to the regulations 

in 1984 and 1987, and in 2001, a significant improvement was made. Therefore, buildings 

constructed before 1980 have no thermal insulation in their envelopes which created a poor 

thermal environment for residents. The second revision, implemented in 1987, required all 

apartment buildings to be equipped with double glazing. Despite the dramatic increase in 

apartment construction in the 1990s (Statistics Korea, 2010a), there was no revision of the 

regulation to improve the thermal conditions of buildings until 2001. Also, three different 

heating methods were found in old apartment buildings: central gas heating, district heating 
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and individual gas heating (Noh, 1998; Ha, 2007). Central gas heating was mostly used in 

buildings constructed in the early stage. Since the district heating was introduced in 1985 

(Kang et al., 1995), apartment buildings constructed in Seoul have been connected to the 

district heating system. Since the national construction of gas supply lines into the cities, 

individual gas boilers have become the dominant type of heating.   

Table  4.1 indicates how designs of building features were transformed until 2000. As 

mentoned above, the three main reasons of the transformation of building features were 

categorised specific variables of building features. With the changes in public preference, 

four building features have been transformed: sizes of clusters, total cluster area, types of 

buildings access, lengths of buildings. The sizes of clusters were measured by the number of 

buildings in clusters. The large cluster meant more than 20 apartment buildings in clusters. 

The medium and small contains 6 – 15 apartment buildings and less than 5 buildings in 

cluster, respectively. The lenghs of buildings were indicated by the number of vertical assess 

points (core) from one to maximum six, as described in Figure 2.6. The second reason was 

to increase economic profit, which included two variables: types of building layouts and 

sizes of apartment units. The three types of clusters were input. The changes of averaged 

sizes of apartment units from 41.05 to 181.82 m
2
 were analysed. The last reason is due to the 

improvement of building policies and technologies. The thermal conditions of building 

envelopes were measured by the construction years, which were divided by the revisions of 

building thermal regulations: before 1980, 1981 – 1984, 1985 – 1987 and after 1988. 

Moreover, the three types of heating system methods were input. Depending on the types of 

data measured, the input data was either categorical (CA) or continuous (CO). This 

transformation of those building features was examined as to whether they affect actual 

energy consumption or not; thus effective building features on energy consumption were 

identified. The result is described in Section 4.3.2. 
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Table  4.1. Change in designs of building features in apartment construction in South Korea in 

pre-2001 

Category Variables  

(CA: categorical, CO: continuous) 

Data range 

 

Changes in 

public preference 

Sizes of clusters - CA 

(No. of apartment buildings in clusters) 

Large (≥20), Medium (6-15), 

Small (≤5) 

Total cluster area– CO 12,562 – 515,906m2 

Types of building access - CA Corridor type, Stair type 

Widths of buildings – CA 

(No. of vertical access points) 

1- 6 

Economic profit Types of building layouts - CA Linear, square and grid types 

Sizes of building units - CO 41.05 – 181.82m2 

Developed 

policies and 

technologies 

Thermal conditions of building 

envelopes (insulation and fenestration) – 

CA 

Buildings constructed before 

1980, 1981-1984, 1985-1987, 

after 1988 

Heating system methods – CA Central gas, District, Individual 

gas heating 

 

 Quantification of effects by building features 4.2.3

This section is intended to quantify these relations to energy consumption separated into 

space heating and electricity. Two types of statistical analyses were conducted, which are 

multiple regression and factor analyses. Multiple regression analysis is one of popular 

techniques to measure the capability of statistical models to interpret a dependent variable 

through correlated independent variables, and determine influential independent variables in 

statistical models (Everitt and Dunn, 2001). The multiple regression analysis was applied to 

interpret a dependent variable (energy consumption for space heating and electricity) by 

using independent variables (building features in existing apartment buildings). The values 

of R-squared demonstrate how efficient this statistical model accounts for energy 

consumption in old apartment buildings. The standardised regression coefficient (SRC) was 

used to measure the influences of independent variables (cluster sizes, building lengths, 

construction types, total cluster area, building layouts, building unit sizes, the conditions of 

building envelopes and heating methods). The multiple regression models were assessed by 
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power analysis to examine the power of the samples used in this chapter; f-test was 

conducted by SPSS version 21.0. 

Exploratory factor analysis was, therefore, intended to identify an underlying structure 

between observed variables consisted of the building features in this chapter; thus the results 

can be used to specify efficient targets for refurbishment. The principle axis factoring 

method was performed by Oblimin rotation (delta 0.4) with Kaiser Normalisation (Everitt 

and Dunn, 2001). The criterion used to indicate an adequacy of factor analysis in the sample 

was followed by a Bartlett’s test of Sphericity of significance, and a Kaiser-Meyer-Olkin 

measure of sampling adequacy (Kaiser and Rice, 1974). In order to identify robust variables, 

the variables with the low loadings (< 0.3) and cross-loadings were eliminated. SPSS 

version 21.0 was used in all statistical analyses and the results of analyses are shown in 

Section 4.3.3.  

 Sampling  4.2.3.1

 Old existing apartment buildings constructed in pre-2001 

A total of 189 apartment clusters (171,054 households) were selected as samples. The 

samples occupy 3.5% of the population size, 4,988,441 households (Statistics Korea, 2000; 

Statistic Korea, 2010a) in apartment buildings constructed between 1976 and 2000 in South 

Korea. The sampling frame was designed with four sampling units: 1) construction years; 2) 

regions; 3) the number of floors; 4) the availability of data on energy consumption. Firstly, 

apartment buildings which were built between 1976 and 2000 were only considered, because 

apartment buildings constructed after 2001 are regarded less urgent to be refurbished with an 

intensified building regulation, and constructed before 1976 are highly regarded to be 

demolished as low-rise buildings to rebuild high-rise buildings. Second, sixteen apartment 

districts in Seoul were selected. The districts were established as part of an enormous 

housing construction projects between the 1980s and 1990s, leading to the dramatic increase 

of apartment building construction. 60% of apartment buildings constructed before 2000 in 
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Seoul were built in these districts (Statistics Korea, 2010a). Therefore, buildings in these 

districts have been used to identify dominant characteristics built in that period. Moreover, 

these districts in Seoul are in the same climate zone, and the same thermal building 

regulations are applied to the buildings in Seoul and the central regions of South Korea; thus 

there would not be significantly different climate impacts in these districts. However, these 

possible impacts were taken into account in this chapter as building features related to 

building clusters. Third, only apartment buildings with more than ten floors were considered. 

This is becauserefurbishment would be inevitable for the buildings which have more than 

ten floors. As they were densely constructed, it is difficult to acquire permissions to 

demolish them in order to build super high-rise buildings under the current building 

regulations (Kim 2002; MLIT, 2010). Lastly, the availability of data on energy consumption 

limited the samples. 15.2% of apartment buildings which did not fill their energy bill records 

between 2011 and 2012 in AMIS were not counted in this chapter. 

Energy consumption bills between 2011 and 2012 were collected from AMIS. This system 

is organised by MLIT and managed by KHMA. A policy has been implemented under which 

all apartment buildings in South Korea should input their expenses into this system. The 

system displays the expenditure of apartment buildings. However, there were some missing 

data on the energy bills of some apartment buildings in the system. These apartment 

buildings were excluded in the samples. The collected data from energy bills were converted 

from Won/m
2
 to kWh/m

2
. The conversion rates refer to those of the KEPC (2014) for 

electricity and Seoul City Gas (2014) for gas. 

 A comparison group of apartment buildings  

A total of 34 apartment clusters (13,551 households) were built between 2008 and 2010 in 

one district. The samples occupy 1.8% of the population size, 740,214 households (Statistics 

Korea 2010b) in apartment buildings constructed between 2008 and 2010 in South Korea. 

Five sampling units were used: 1) construction years; 2) regions; 3) the number of floors; 4) 

energy-efficient certificates; 5) the availability of data on energy consumption. Firstly, 
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buildings built after 2001 were selected to compare energy consumption in old apartment 

buildings because those buildings are relatively regarded as energy-efficient. Secondly, as 

climate conditions can have a significant impact on energy use in buildings, a district in 

close proximity to the districts in Seoul were selected for the analysis of old apartment 

buildings was selected to minimise variation between the old and new samples. Thirdly, the 

same number of floors, more than ten floors, was also applied. Fourth, the certified 

apartment buildings as energy-efficient in this district were only used in this chapter as 

mentioned in Section 4.3.1. Lastly, the availability of data limited to choose the samples like 

old apartment buildings. The certified buildings which did not fill their energy bill records 

between 2011 and 2012 in AMIS were not counted. Energy bill data was collected by the 

same method used for old apartment buildings.  

 Results 4.3

The results are illustrated by three parts to answer the  five questions to identify the energy 

consumption in old existing apartment buildings and the effective building features, as 

mentioned in Section 4.1.. The first part (Section 4.3.1) describes energy consumption in old 

existing apartment buildings built in before 2001 by comparing the consumption in the 

group of apartment buildings built between 2008 and 2010. The second part (Section 4.3.2) 

indicates building features affecting energy consumption in old apartment buildings. The last 

part (Section 4.3.3) quantifies the effects of building features to energy consumption.  

 Energy consumption in old apartment buildings 4.3.1

Figure  4.2 shows a comparison of the total energy consumption divided by total floor area of 

two groups of apartment buildings, which are 234.2 kWh/m
2
/year and 190.0 kWh/m

2
/year, 

respectively. Both numbers are much higher than the 1
st
 grade in energy rating systems set 

by Korea Green Building Certificate Criteria (GBCC) in South Korea (60.0 kWh/m
2
/year) 

(MLIT, 2013) and Passivhaus (120.0 kWh/m
2
/year) (Passivhaus Trust, 2015). As a long term 

plan, South Korean Governments have planned to reduce energy consumption in all 
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buildings in order to be energy-efficient as equivalent to the Passivehaus (Yoo, 2015). This 

result shows that the energy consumption of both groups of apartment buildings needs to be 

reduced to satisfy these energy rating systems. Despite excessive energy consumption, 

detailed consumption (separated by use) indicates different tendencies. Old apartment 

buildings consumed 109.6 kWh/m
2
/year for space heating whilst apartment buildings built 

between 2008 and 2010 only consumed 66.0 kWh/m
2
/year.  Conversely, energy 

consumption of electricity and water heating did not have significant reductions in this 

period.  

These tendencies are also shown in Figure  4.3. The average energy consumed for space 

heating in old buildings has reduced by their construction years. 100% of old apartment 

buildings constructed before 1980 consumed more energy for space heating than the average 

of 108.8 kWh/m
2
/year, compared to 53% of old apartment buildings constructed in the 

1980s. Only 20% of buildings in the 1990s and none of buildings constructed between 2008 

and 2010 consumed above average energy for heating, these results suggest that apartment 

buildings built before 2001 have been able to decrease energy consumption efficiently 

regarding space heating. 

 

Figure  4.2. Total average energy consumptions of the sampled apartment buildings (1767 

buildings for apartment buildings in pre-2001 and 319 buildings for the buildings between 2008 

and 2010)  in 2011 and 2012 
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Energy consumption for electricity was not reduced in this period; 92.2 kWh/m
2
/year of 

electricity was continuously consumed by apartment buildings in both groups. This can be 

explained by the everyday use of domestic appliances such as refrigerators, televisions and 

computers. However, Figure  4.4 demonstrates that the summer use of electricity for space 

cooling in the old apartment building was especially high in August. In each month, there 

was only 0.05 kWh/m
2
/year difference between apartment buildings in the both groups, 

except for August when the gap was enlarged to 1.5 kWh/m
2
/year in 2011 and 5.7 

kWh/m
2
/year in 2012.  

Like electricity consumption, there was no significant reduction in water heating 

consumption; 32.6 kWh/m
2
/year of water heating was continuously consumed in both 

groups. However, the old building group demonstrated a higher relative standard deviation 

with 32.3% while 19.6% was for the new building group. Furthermore, these values are also 

higher, compared to space heating with 25.2% in old building group and 11.5% in new 

building group, and electricity with 15.3% and 11.9% in old and new building groups, 

respectively.  

Overall, apartment buildings have been able to decrease energy consumption efficiently 

regarding space heating and cooling although there were not significant reduction in energy 

consumption for electricity and water heating. As identified in Section 4.2.2, physical 

conditions in apartment buildings constructed between 1976 and 2000 have been 

transformed. This would probably result in the changes of energy consumption in these 

buildings.  
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Figure  4.3. Energy consumption of apartment buildings by construction years: (left) space 

heating, (right) electricity 
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However, the effects of occupants could also be important factors to understand energy 

consumption in these buildings. Interestingly, residents living in apartment buildings in 

South Korea showed the extremely unified composition of households. 90% of apartment 

buildings’ inhabitants are parents with their offspring, and families with three or four 

members occupy 80% of households in apartment buildings (Statistics Korea, 2010c). 

Therefore, the general profiles of occupants such as the number of occupants and types of 

family may not give meaningful results explaining energy consumption. However, 

geographical segregations in residential areas caused by socio-economic factors such as the 

levels of income and education have been identified in South Korea (Choi, 2004). Their 

effects would also be useful to identify the continuous energy consumption in electricity and 

water heating, and the large variations in water heating (Korea Energy Economics Institute 

(KEEI), 2011). However, this chapter focused on the physical features of apartment 

buildings, which were described in Section 4.2.2, to create the efficient strategies for 

refurbishment.  

 Building features affecting to energy consumption 4.3.2

It can be seen that six of the eight features (Table  4.2) had an effect on energy consumption 

for space heating while little difference was found in electricity consumption. This can be 

explained by two opposing tendencies. As expected, one of these tendencies is that old 

apartment buildings constructed in the early stage consumed more energy than those 

constructed in the late stage. Three features, the conditions of building envelopes, the lengths 

of buildings and heating methods, accounted for this increasing tendency in energy 

consumption. This means that the transformations of the three features reduced energy 

consumption as seen in Figure  4.5.  
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Figure  4.4. Monthly Energy consumption between for (a) electricity and (b) water heating 2011 

and 2012 

 

First, the most effective reduction was found by improving the condition of building 

envelopes, which was a maximum 48.7 kWh/m
2
/year (Figure  4.5-(a)). In particular, the 

largest reduction occurred between buildings constructed before 1980 and those constructed 

between 1981 and 1984. This is because buildings built before 1980 did not have insulation 
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on their envelopes while 50 mm internal insulations were applied for those constructed 

between 1981 and 1984. The second largest reduction was between buildings built between 

1981 and 1984 and 1985 and 1987. This was achieved by replacing the type of glazing in 

windows from 3mm single glazing to double glazing. The result indicates the thermal 

condition of building reduced energy consumption.  

Second, the shorter lengths (that is with fewer vertical access points) the buildings had, the 

less energy consumed for space heating. Specifically, gradual energy reduction up to 30.2 

kWh/m
2
/year was found by decreasing the lengths of buildings. As the heights of buildings 

were mostly fixed either 12 or 15 stories, the total amount of surface area, which is exposed 

to heat transfer, was reduced. Consequently, this was beneficial in reducing energy 

consumption. Third, the changes in heating methods also reduced up to a maximum of 26.2 

kWh/m
2
/year of energy consumed for space heating. A large gap was found between 

buildings with central gas heating, and buildings with district and individual gas heating. 

24.3 kWh/m
2
/year was found between central gas heating and district heating, but only 2.0 

kWh/m
2
/year was found between district and individual gas heating. 

The opposite tendency is that greater energy consumption occurred in buildings constructed 

in the late stage. This is due to three features, namely the sizes of building units, the sizes of 

clusters and the types of building layouts (Figure  4.5-(d-f)). Firstly, the sizes of buildings 

units were increased in response to higher preference for the large sizes of units. This 

increase in unit sizes caused higher energy consumption in old apartment buildings, which is 

nearly 30 kWh/m
2
/year more energy consumption for space heating and 20 kWh/m

2
/year for 

electricity, to maintain a certain level of thermal comfort within the indoor environment. 

Secondly, old apartment buildings in large apartment clusters consumed less energy than 

those in small apartment clusters. The amount of energy reduced according to the sizes of 

clusters, a maximum 12 kWh/m
2
/year for space heating and 9 kWh/m

2
/year for electricity 

which were not as significant as the reductions for other features. Third, the types of 

building layout showed increases with 5 kWh/m
2
/year in electricity from linear to grid.   
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In short, the six building features are identified as being effective in energy consumption. 

However, the different amount of energy affected by each building feature needs to be 

evaluated in order to prioritise refurbishment strategies. The results of these evaluations are 

illustrated in Section 4.3.3.  

Table  4.2. The result of multiple regression analysis 

 Independent variables 

 

SRC (Standardised 

Regression Coefficient) 

Significance 

Space heating 

consumption 

(R2=0.580) 

The thermal conditions of building envelopes 

Heating methods  

The lengths of buildings 

The sizes of apartment clusters 

-0.626 

-0.301 

0.196 

-0.129 

0.000 

0.000 

0.000 

0.008 

Electricity 

consumption 

(R2=0.256) 

The sizes of apartment units 

The sizes of apartment clusters 

The types of building layouts 

The thermal conditions of building envelopes 

0.300 

-0.202 

0.203 

-0.203 

0.000 

0.002 

0.004 

0.008 

 

 Quantification of effects of building features on energy consumption 4.3.3

 Results of multiple regression analysis 4.3.3.1

In order to reject the null hypothesis, the results of f-test in multiple regression models 

require not being less than 2.42 with 95% critical confidence interval. The f-test results 

showed 63.88 with the model for space heating and 15.94 with the model for electricity, 

which means that the sample sizes were large enough to bring about reliable results.  

Table  4.2 demonstrates the results of multiple regression analysis. The values of R-squared 

in these two models are 0.580 for space heating and 0.256 for electricity. The both R-

squared are not very good to account for energy consumption; the R-square for electricity is 

relatively low. This could be the primary data on energy consumption were limited to extract  

gas consumption for cooking and electricity consumption for the everyday use of domestic 

appliances, which are highly determined by user behaviour rather than building features. 

Despite it, both models are statistically significant at 5% level. 
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The standardised regression coefficients (SRC) of building features specify the effects of 

building features on energy consumption. The opposite trends of building features, as seen in 

the previous section, are found by negative and positive values of the standardised 

coefficients (Figure  4.6 (a-d)). The negative values of coefficients, decreasing energy 

consumption, are attributed to the transformations of these three features: improving the 

conditions of building envelopes; changing heating methods from central gas to individual 

gas heating; reducing the sizes of clusters. On the contrary, the positive values of 

coefficients, increasing energy consumption, are found by the other three features: 

shortening the lengths of buildings; reducing the sizes of building units; changing the types 

of building layouts from linear to grid.  
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Figure  4.5. Energy consumptions of old apartment buildings by (a) conditions of building envelopes, (b) lengths of buildings, and (c) heating methods , (d) 

sizes of units, (e) sizes of clusters, and (f) types of building layouts 
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In space heating, four features were chosen as influential variables: the thermal condition of 

building envelopes, heating system methods, the lengths of buildings and the sizes of 

clusters (Table  4.2). Only the feature, the lengths of buildings, is with positive SRC while 

the other three features are with the negative SRCs. The means that space heating 

consumption was decreased by these four conditions: reducing the lengths of buildings; 

improving the conditions of building envelope; changing heating methods from central gas 

to district or individual gas heating; increasing the sizes of clusters. The former three 

conditions are typically found in apartment buildings constructed in late stage whilst the 

large sizes of clusters are identified in the early stage of apartment construction. The effects 

of the opposite tendencies on space heating are quantified by the values of SRC in Table  4.2. 

The former three features are relatively the higher values of SRC than the sizes of clusters 

with SRC 0.129. This interprets the reason why space heating in old apartment buildings 

could effectively reduce space heating consumption by transforming building features. 

Specially, improving the thermal conditions of building envelope played a significant role in 

this tendency with the most robust SRC 0.626 as seen in Table  4.2. This can be a strong 

criterion to determine a priority for refurbishment.   

In electricity, the opposite tendencies are also identified. The sizes of units and the types of 

layouts show the positive SRC whereas the sizes of clusters and the thermal conditions of 

building envelopes indicate the negative SRC. In other words, electricity consumption was 

decreased by reducing the sizes of clusters and improving the thermal conditions of building 

envelope. However, the consumption was increased by the larger sizes of units and the 

changes of layout types from linear to grid. These four conditions are found in buildings 

built in late stage. The most significant feature is the sizes of units with SRC 0.300, but the 

significance is not as robust as the features affecting space heating. The other three features 

are approximately the very similar value of SRC with 0.202 or 0.203. These values of SRC 

reflect that both opposite tendencies have not significant differences each other. This 

interprets the reason why there was no significant change in electricity consumption in old 

apartment buildings. 
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Figure  4.6. Regression curves of building features with energy consumption: space heating with 

(a) construction year and (b) sizes of clusters, and electricity with (c) sizes of building units and 

(d) sizes of clusters 

 

 Results of factor analysis 4.3.3.2

In the factor analysis, Bartlett’s test of Sphericity was significant (186.557, ρ=0.000) and 

Kaiser-Meyer-Olkin was satisfactory (0.616); thus this factor analysis model is acceptable, 

but not marvellous due to the same reason of the multiple regression analysis. Despite it, 

70.8% of the total variance is explained by the eight measured variables, which is 

statistically effective to account for the variance. Four factors are identified in this factor 

analysis as seen Table  4.3.  
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The first factor explains the most significant proportions of the total variance with 25.9%. 

The measured variables in this factor are associated with building form and fabric such as 

the sizes of building units, the types of building accesses, the conditions of building 

envelopes and the lengths of buildings. Apartment buildings in early stage need to be 

suitable to accommodate population increased in urban area; therefore, the building form 

was longer length, smaller unit sizes and corridor type, as identified in Figure  4.1. The 

conditions of building envelopes were similarly improved with these factors. In this reason, 

the four variables are in the same factor, and they are statistically correlated with overall 

correlation coefficients (R=0.4). The second and third factors account for 18.0% and 15.5% 

of total variance, respectively. The second factor is comprised by as the types of layouts, the 

sizes of clusters while the third has total cluster area. Although the three variables are 

associated with apartment clusters, the difference between them is that the two variables in 

the second factor is associated with specifically the characteristic of buildings in clusters 

whilst total cluster area is more likely the sizes of site. However, the variables are 

statistically correlated with overall correlation coefficients (R= 0.3). The last factor contains 

heating system method accounting for 11.4% of total variance. 

Table  4.3. Pattern matrix in factor analysis 

 Category Factors 

Factor 1 Factor 2 Factor 3 Factor 4 

Structure  Matrix Sizes of building units 0.663 

   

Types of building access 0.584    

Conditions of building envelopes -0.584    

Lengths of buildings 0.370    

Types of building layouts  0.675   

Sizes of clusters   -0.591   

Total cluster area   -0.608  

Heating methods    -0.342 

Total Variance 

Explained 

(70.866 %) 

% of Variance 25.900 18.082 15.445 11.440 
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 Discussion 4.4

The results based on empirical data in this chapter demonstrated four distinctive aspects, 

compared to findings in other countries. Firstly, energy consumption for space heating in old 

apartment building is not extremely high by regarding the climate zone of Seoul in South 

Korea (Heating Degree Days (HDDs) 2800-3200) (Cho et al., 2010). Compared to European 

countries, Denmark (HDDs 3000-3400) (Eurostat, 2014) showed 144.1 kWh/m
2
 of heating 

consumption in apartment buildings (Balaras et al., 2005). United Kingdom (HDDs 2800-

3100) and Germany (HDDs 2700-3200) (Eurostat, 2014), which have similar HDDs from 

South Korea, showed higher energy consumption in dwelling constructed in the 1980s and 

1990s: 268.2 kWh/m
2
 in detached houses in the UK and 159 kWh/m

2
 in Germany; 102.8 

kWh/m
2
 in post 2002 mid-terrace housing in the UK, and 94 kWh/m

2
 in Germany in 1995 

(Economidou et al., 2011). In this chapter, apartment buildings indicated 116.7kWh/m
2
/year 

in the 1980s and 94.4 kWh/m
2
/year in the 1990s although the maximum consumption in the 

samples was 173.9 kWh/m
2
/year in the 1980s and 158.8 kWh/m

2
/year in the 1990s. The 

space heating consumption in old apartment buildings in South Korea is not significantly 

high in the climate zone. However, the consumption needs to be reduced like how European 

countries have been trying to achieve.  

Secondly, the eight building features of apartment buildings in South Korea indicated the 

significantly higher percentage of the variation explained in energy use which is 70.9% 

(R
2
=0.580 for space heating, R

2
=0. 256 for electricity). 42% (R

2
=0.379 for space heating) of 

the variation explained was reported in analysing building characteristics with 15,000 houses 

in Netherlands (Guerra Santin et al., 2009). Sonderegger (1978) reported 54% of total 

variation was explained by physical building features with 205 houses in USA. Schuler et 

al., (2000) found relatively low R
2
value, 0.144, with building characteristics in West-

German households. Pachauri (2004) found 61.4 % of total explained variance by including 

socio-economic characteristics in dwelling in India. Consequently, the effects of physical 
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conditions in old apartment buildings in South Korea are much more significant than 

buildings in other countries. In other words, the energy consumption of these old apartment 

buildings in South Korea can be effectively reduced by improving their physical conditions.  

Thirdly, the building features affecting energy consumption in old apartment buildings in 

South Korea are more prominent with higher SRC values although the lists of efficient 

building features are similar from buildings in other countries. Three building features have 

been identified in common as efficient factors reducing energy consumption: thermal 

conditions of building envelope (insulations and the glazing of windows); the volume of 

areas (heated areas, housing sizes and the number of rooms); construction years (vintages). 

In West-Germany, construction years and the sizes of housing were found as the relatively 

effective factors with SRC 0.225 and -0.221 (Schuler et al., 2000). In Netherlands, the sizes 

of heated area (useful living area), construction years and the insulations of building facades 

showed relatively higher SRC values, 0.321, -0.082 and 0-0.087 (Guerra Santin et al., 2009). 

According to Balaras et al. (2005), the thermal insulation of the building envelopes and 

building system in European apartment buildings, such as Denmark, France, Poland and 

Switzerland, were the main factors influencing space heating. In this chapter, there is a 

dominant determinant affecting space heating consumption, the thermal conditions of 

building envelope with SRC -0.626 in space heating. This result clearly showed how the  

energy-efficient refurbishment should approach.  

Fourthly, the effects of building features related to building clusters are important factors. 

Unlike European countries, apartment buildings in South Korea were built as clusters 

including  more than two buildings that can be up to thirties. Therefore, the relationships 

among individual buildings are also important factors that must be considered in energy 

consumption. In this chapter, the features related to building clusters explained 33.4% of 

total variations in energy use. Moreover, the undeniable contribution of these features was 

identified in the results of the multiple regression analysis for space heating and electricity 

although the SRC values were not decisively high. 
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 Summary 4.5

This chapter aims to identify old existing apartment buildings in South Korea that need to be 

refurbished in terms of energy efficiency by regarding the efficient building features on 

energy consumption.  It reveals that old apartment buildings constructed between the 1980s 

and 1990s are those which need to be urgently refurbished. This is because they showed 

excessive energy consumption for space heating and cooling, compared with the 

consumption of apartment buildings built in the 2000s. However, maximum 43.65 

kWh/m
2
/year in space heating and 5.70 kWh/m

2
/year in cooling were reduced in those old 

apartment buildings in terms of construction years. This reduction was attributed to the 

transformations of building features in the twenty-year period. The eight features in old 

apartment buildings successfully account for 70.9% of total variance in the factor analysis. 

The largest proportion, 25.9%, was explained by the factor related to building form and 

fabric. Multiple regression analysis indicated the three most influential parameters, the 

thermal conditions of building envelopes with SRC 0.626, heating methods with SRC 0.301 

and the sizes of building units with SRC 0.300. 

Hence, this chapter suggests how the refurbishment should be done to reduce their energy 

consumption and how the building energy models should classify those buildings to reduce 

variation in the physical characteristic. The priority of refurbishment should be given to 

these three features. Amongst them, the most significant determinant should be the thermal 

conditions of building envelopes with SRC 0.626. The other two features will be subsidiary 

conditions in refurbishment strategies. In this respect, the most urgent target for 

refurbishment should be the buildings constructed before 1980 (with central gas heating and 

large sizes of building units), and the latest target can be those constructed after 1988 (with 

individual gas heating and small sizes of building units).  

Furthermore, the prioritisation of building features allows classifying the existing apartment 

buildings. This classification benefits for the building energy models to cope with variation 
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in energy consumption, caused by the physical characteristics of existing apartment 

buildings. At least, these existing apartment buildings need to be grouped by their 

construction years, according to the revisions of thermal regulations. The other two features, 

heating methods and unit sizes can also be applied for more precise modelling. 

Applications of this approach to cases in the other countries may bring about different 

building features in prioritising old high-rise apartment buildings for energy-efficient 

refurbishment. Thus, the refurbishment strategies for each country should take specific 

features and conditions of the apartment buildings into account in order to suggest efficient 

policies and regulations for refurbishment in each country. In the same way, the building 

energy models could provide more adaptive and accurate estimation with the specific 

features and conditions in each context.  
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Chapter 5 

 

5 Integration of variation arising from occupants’ 

behaviours consuming heating and electricity into 

a building energy model of existing apartment 

buildings 
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In Chapter 4, one of the influential factors that this research is focusing, the physical 

characteristics, was classified by their effectiveness on energy consumption. Thus, the 

building energy model for existing apartment buildings can take this classification to 

constrain the impacts of variation in the physical characteristics on energy consumption. 

This chapter applies two building features from the classification, construction years and 

heating systems. The initial objective of this chapter is devoted to the second factor, 

occupants’ behaviours, causing variation in actual energy consumption, and aims to create a 

new probabilistic standardised condition of occupants’ behaviours for existing apartment 

buildings. The national survey of occupants’ consumption characteristics is inferred from 

actual energy consumption to be adjusted for existing apartment buildings. The set of 

random behaviours of consuming heating and electricity is dealt with by Gaussian Process 

Classification. This chapter is structured by four sections. Section 5.1 provides a brief 

background of the conventional building energy model for high-rise apartment buildings, 

and the importance of human interactions in energy consumption. Section 5.2 describes a 

methodology of integrating occupants’ behaviours and conducting Gaussian Process 

Classification. Section 5.3 interprets a distribution of actual energy consumption and a 

probability of the new standardised conditions of occupants’ behaviours. The key findings of 

this chapter are summarised in Section 5.4. 

 

 Background 5.1

Apartment building is one of the common types of housing in Asia (Yuen, 2011). Their high 

capability of accommodating a large number of residents has attracted the fast grown and 

growing countries, such as China, South Korea, Hong Kong and Singapore (Yuen, 2011). 

One of the representative countries, South Korea, experienced great economic growth in the 

1960s, and the country became rapidly urbanised (Chung, 2007). This urbanisation also 

resulted in dramatically increased urban population (Chung, 2007). Apartment buildings 

were introduced to accommodate this increased size of the urban population, particularly for 
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the working class (Lim, 2011). However, the main target of apartment buildings was 

gradually transferred from the working class to the new middle class that was rapidly 

growing during the economic growth in the 1970s and 1980s (Hong and Lett, 1999). This 

transfer meant that living in apartment buildings became a representative of rising social 

status (Gelézeau, 2007). For this reason, the proportion of apartment building in housing 

were extremely raised (Statistics Korea, 2000). Seoul was one of the main centres in this 

significant transformation. In the 1970s and 1980s, 48% and 26% of national apartment 

constructions were concentrated in Seoul, respectively (Statistics Korea, 2000). They still 

comprised about 50% of housing in the city (Kim, 2010).  

Improving thermal performance in existing buildings has been discussed in many countries 

(Ouyang et al., 2011) as carbon emissions have been internationally issued. Especially, 

refurbishing old existing apartment buildings has been importantly investigated in Asian 

countries, such as (Yuen et al., 2006; Ouyang et al., 2011). In South Korea, apartment 

buildings built in the 1970s and 1980s have been pointed out due to their large population, as 

well as high energy consumption (Kim, 2010), in accordance with the intensified building 

thermal regulations (Kim et al., 2013b). Existing literature (Kim et al., 2006b; Lee, 2009; 

Song, 2009; Kim et al., 2010; Son et al., 2010; Roh, 2012) has focused on reducing the 

energy demand of apartment buildings in standardised conditions defined by Energy 

performance Index (MLIT, 2013) and Building Energy Efficiency Rating System (MLIT, 

2015a). These standards have provided deterministic conditions to identify changes in 

energy demands of buildings. Thus, they have been used to verify energy efficiency in 

buildings, and guide buildings to improve their energy performance. However, this approach 

has been questioned about its achievement in real situations. Many studies pointed out 

limitations and uncertainties contained in the standard conditions of buildings used in 

existing literature (Ryan and Sanquist, 2012). One of difficulties in refurbishing existing 

buildings is the lack of interaction with occupants (Gholami et al., 2013). 
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Apartment buildings have been evolved to be self-sufficient by occupants despite the unified 

features of buildings (Gelézeau, 2007). The usage of heating and electricity is individually 

controlled in each apartment unit, which can be considered as independent thermal zones in 

these buildings. Therefore, energy consumption in apartment buildings can be significantly 

different. Besides, some empirical data in existing studies (Kang et al., 1995; Lee et al., 

2012), showed various actual energy consumption in apartment buildings despite the similar 

thermal conditions. However, building energy models with standardised conditions in the 

existing literature are not flexible to take into account the possible variations in energy 

consumption. Furthermore, the results would contain a high amount of uncertainty due to 

random behaviours of energy consumption.   

This chapter, therefore, aims to develop a probabilistic model of occupant random behaviour 

consuming heating and electricity, regarding the variation in actual energy consumption for 

existing high-rise apartment buildings. Three objectives are designed: to identify the 

variation in actual energy consumption in old high-rise apartment buildings built between 

the 1970s and 1980s; to integrate the variation in actual consumption into building energy 

models; and to identify the possible occupant random behaviours controlling heating and 

electricity corresponding to the probability of energy consumption.  

 Methodology 5.2

In order to identify probabilistic occupant random behaviours controlling heating and 

electricity the procedure was designed in four steps. At first, actual energy consumption in 

apartment buildings was surveyed, and grouped by two efficient building features, 

construction years and heating methods. Afterwards, variation in each group was measured. 

Second, building energy models of random control of heating and electricity were analysed 

with their uncertainty. Estimated energy consumption of the building energy models was 

optimised to reflect the distribution of the actual usage. Third, the probability of energy 

consumption was predicted by Gaussian Process Classification. At the same time, the 
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possible ranges of occupant random controls were updated. Last, the probabilistic random 

behaviour was evaluated. 

 Evaluating variation in actual energy consumption in apartment 5.2.1

buildings  

 Sampling   5.2.1.1

There are many factors interrelating with energy consumption. Thus, it was important to 

compare effects from unrelated factors in this chapter. Four sample frames were chosen: 1) 

locations; 2) physical conditions; 3) heating methods; 4) data availability. Firstly, the 

locations of apartment buildings were used to eliminate external effects. 16 apartment 

districts in Seoul were chosen. These districts were mainly developed for apartment 

constructions under an enforcement decree of the Urban Planning Act since 1976 (Son, 

2004).  Thus, apartment buildings in these districts were constructed in a similar time frame 

and near distance, which can minimise the difference in climate effects. Afterwards, these 13 

districts were separated by socio-economic factors to avoid the impact of urban segregation 

in Seoul (Jee, 1988; Rhee, 2005; Yoon 2011). Some districts are in high demand despite the 

relatively deteriorated conditions of apartment buildings. This is because their locations have 

been centres of business and commerce (Gelézeau, 2007). For this reason, factors 

representing the financial status of households, such as tax revenues (Yoon, 2011), the 

proportion of education levels (Jee, 1988) and housing prices (Rhee, 2005), were regarded. 

Finally, four districts were chosen from the 16. 

Secondly, the physical conditions of apartment buildings need to be constrained to avoid 

giving impact on energy consumption, according to the findings in the previous chapter. 

Two of the most influential factors affecting energy consumption, thermal conditions of 

building envelopes and heating methods were chosen from Chapter 4. Therefore, apartment 

buildings constructed in the 1970s and 1980s were divided into two groups depending on the 

thermal conditions of building envelopes, which were filtered by construction years. The 
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first group, period A, was comprised of apartment buildings constructed before 1980 when a 

legislation of building thermal regulations was enacted. The revisions in 1984 and 1987 

were combined. The second group, period B, contained buildings built between 1981 and 

1987 before the building regulation had a professional form. Therefore, the buildings in both 

periods need to be refurbished to reduce high energy consumption (Kim, 2010) although 

buildings in period B can be expected to have relatively advanced thermal conditions than 

buildings in period A.  

Thirdly, heating methods were also controlled due to the valid association with heating 

energy consumption, as found in Chapter 4. In this study, district heating method was only 

considered, which was mainly applied for many apartment buildings constructed in the four 

districts.  

Lastly, energy bills were collected by apartment management information system (KAB, 

2014). The monthly consumption in 2014 was transformed from Won/m
2
/year to 

kWh/m
2
/year, according to calculation methods by (KDHC, 2015) and (KEPC, 2014).  The 

bills were separated by heating and electricity. This chapter only considered energy bills 

consumed for individual units. Energy bills used for communal purposes were, therefore, 

excluded even though they were consumed in buildings. In total 96 apartment clusters (44 

blocks in period A and 51 blocks in period B) were chosen in this sample study. They 

occupy 37.1% and 16.3% of apartment buildings built in both periods A and B in Seoul, 

respectively.  

 Normality tests 5.2.1.2

Central limit theorem states that frequencies in empirical populations show bell-shape curves 

if the number of independent random samples is large enough (Sheldon, 2002). The 

collected samples were evaluated for this normality. Firstly, Kolmogorov-Smirnov and 

Shapiro-Wilk tests were conducted to measure the deviations of the samples from the normal 

distribution with the same mean and standard deviation. If ρ-values in both tests are not 
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significant (ρ > 0.05), the normality of the samples can be accepted (Rose et al., 2014). 

Secondly, Q – Q plots were drawn to supplement the limitation of the previous normality 

tests through visual inspection (Field, 2009).  Lastly, skewness and kurtosis were measured 

to identify how far the sample data is different from the normal distribution;  ±1.96 limits 

were considered as normally distributed (Field, 2009). SPSS version 22.0 (Field, 2009)  was 

used to conduct these tests. The results of normality tests are illustrated in Section 5.3.1.  

 Integrating occupant behaviour reflecting actual energy consumption 5.2.2

into building energy models 

A probabilistic approach was applied to reflect variation in the actual energy consumption in 

the building energy models. The building energy models were created by the possible 

behaviours of controlling heating and electricity. The possible energy consumption in the 

energy models was compared to the variation in the actual energy consumption. The model 

estimation was optimised to be as similar as the real consumption.    

 Buildling energy modles of occupant behaviours controlling heating and 5.2.2.1

electricity 

The building energy models consisted of three parts: building form, thermal properties and 

energy controls. First, building form was fixed by choosing the most typical unit design 

(Kim and Kim, 1993; Park, 2003; Kim and Yoon, 2010) and building design (fifteen-story 

and south-facing (Son, 2004; Lim, 2011), as shown in Figure  5.1. This unit design 

comprised about 80%of apartment buildings built until the 1980s (Kim and Yoon, 2010). 

The apartment buildings with 15 floors consist of the largest proportion, 31.7% (Statistics 

Korea, 2010a). The building energy models were created with six units: two units on three 

floors (ground, middle and top floors). The energy consumption in the two units on the 

middle floor was multiplied to estimate the total amount of energy consumption from 2
nd

 to 

14
th
 floors by using multiplier in EnergyPlus8.0. Multipliers in EnergyPlus are used for 

convenience in modelling; Zone multipliers are designed to multiply floor area, zone loads 

and energy consumed by internal gains (EnergyPlus Documentation, 2010). The multiplied 
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loads are used to specify the HVAC system size. In this study, the total energy loads of the 

thirteen floors (from the first to 14th floors) were calculated by using the multipliers in 

EnergyPlus. Each room was separately modelled as individual thermal zones to be 

controlled by different schedules as it occurs in real situations. 

Second, thermal properties (U-values) for the two periods (before 1980, and between 1981 

and 1988) were identified by reviewing the building thermal regulations and existing 

literature (Seo, 2012; Kim et al., 2013b), and site survey mentioned in Methodology. The 

specific applications were also verified by the site survey collecting actual architectural 

drawings in three apartment blocks. The thermal condition in apartment units is divided into 

two different areas: unconditioned and conditioned areas (Figure  5.1). Unconditioned areas 

mean the bathroom and two balconies which are directly exposed to the outside without 

heating facilities, whereas conditioned areas are the main living spaces, which are enclosed 

by the unconditioned areas to be protected from the outside, apart from the bedroom C. 

Therefore, thermal protection was focused on the conditioned areas. The profiles of building 

envelopes are described in Table  5.1. 

 

Figure  5.1. Description of the apartment units (Source of the unit plan: Kim and Yoon, 2010) 
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Table  5.1. Profile of thermal properties in the building energy models 

Location Exposure 

to the 

outside 

Materials (mm) 

(In  out, up  down) 

Thickness 

(mm) 

(Period A/ 

B) 

Thermal 

conductivity 

(W/m.K) 

Density 

(kg/m3) 

(Period 

A/ B) 

Specific 

heat 

(J/kg.K) 

(Period A/ 

B) 

U-value 

(W/m2K) 

Period A  

(Before 

1980) 

Period B 

(1981 – 1988) 

Period 

A  

 

Period 

B 

 

External 

wall 

Direct  

 

Mortar Mortar 18 1.081 1950 921  

 

2.08 

 

 

2.08 
Cement 

brick  

Cement brick  90 0.605 1700 1550 

Cavity  Cavity  50 0.15 
(m2.K/W) 

- - 

Cement 

brick  

Cement brick  90 0.605 1700 1550 

Mortar Mortar 18 1.081 1950 921 

Indirect  Mortar Mortar 18 1.081 1950 921  

 

2.08 

 

 

0.50 
Cement 

brick  

Cement brick  90 0.605 1700 1550 

Cavity  Insulation  50 0.033 -  / 50 - / 838 

Cement 

brick  

Cement brick  90 0.605 1700 1550 

Mortar Mortar 18 1.081 1950 921 

Side wall Direct  Mortar  Mortar  18 1.081 1950 921  

3.24 

 

0.59 Cement 

brick  

Insulation 90 / 50 0.605 1700 / 
50 

1550 / 838 

Concrete  Concrete 200  1.400 2240  879  

 Mortar  18 1.081 - / 1950 - / 921 

Roof  Direct  Mortar  Mortar  24 1.081 1950 921  
0.52 

 
0.52 Concrete  Concrete  200 1.400 2240 879 

Cavity  Cavity  220 0.18 

(m2.K/W) 

- - 

Insulation  Insulation  50 0.033 50 838 

Plaster 

board  

Plaster board   10 0.209 940 1130 

Floor 

between 

ground 

and 

undergro

und 

floors 

 

Indirect  Mortar + Mortar + 100 1.081 1950 921  
4.36 

 
0.55 Gravels  

(heating 

tubes)  

Gravels 

(heating 

tubes)  

 1.260 1522 908 

Concrete  Concrete  200 1.400 2240 879 

 Insulation  50 0.033 - / 50 - / 838 

 Plaster board 10 0.209 - / 940 - / 1130 

Window Direct Single 

glazing  

Single 

glazing  

3 0.900 - - 5.89 5.89 

 

Some appliances such as TV, refrigerator, and Kimchi refrigerator, also indicated high 

electricity consumption, but their operations were much unified: always on for refrigerators 

and 5 hours for TV, according to the national survey (KEPC, 2013). Therefore, they were set 

in the building energy models, but with consistent values. Two air-conditioners were 

equipped in the living room and the largest bedroom A. Electric blankets for supplementary 

heating were applied in the living room and two bedrooms. A computer and rice cooker were 

placed in the living room including kitchen. Four occupants were in each apartment unit, 
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which is the most representative type of household living in apartment buildings (Statistics 

Korea, 2010c). Electric power of appliances was taken from the average values in the 

national survey (KEPC, 1990; KEPC, 2013): TV (130.6W), refrigerator (40.0W), Kimchi 

refrigerator (22.6W), computer (263.3W), fluorescent light (55.0W in bed rooms, and 165W 

in the living room), rice-cooker (1022.9W in cooking, and 143.4 in warming). Ventilation 

rates were set 0.82ACH for conditioned area and 2.00ACH for unconditioned area (MLIT, 

2015b). 

Table  5.2. Prior distributions of uncertain parameters in building energy models 

Categories Input 

parameters 

Prior 

distributions 

Optimised 

distribution 

Locations Units No. 
Parameters 

Period A Period B 

Heating Set-point 

temperatures 

16 – 22 16– 20  15 – 21  Living room °C(winter) 1 

16 – 20 16–21 Bed room A – C 2,3,4 

Operating hours 

 

3 – 9 3–6 3 – 9  Living room Hour/day 

(winter) 

5 

- - Bed room A – C 6,7,8 

Electricity Air-conditioner 

(set-point 

temperatures) 

 

23 – 29 

- Living room °C(summer) 9 

Bed room A 10 

Air-conditioner 

(operating hours) 

 

0 – 7 

 

0 –7 
 

Living room Hour/day 

(summer) 

11 

Bed room A 12 

Rice-cooker 

(operating hours) 

10 – 16 7 – 16 Living room  

(kitchen) 
Hour/day 

 

13 

Computer 

(operating hours) 

1 – 4 0.5 – 3.5 Living room   Hour/day 

 

14 

Lighting 

(operating hours) 

1 – 7 0 – 7 Living room Hour/day 

 

15,16 

Bed rooms 

Electric Blanket 

 

60 – 120 - Living room Day/year 

(winter) 

17,18,19 

Bed room A and 

C 

 

 

 Optimisation of model estimation reflecting variation in the actual energy 5.2.2.2

consumption 

The building energy models defined in the previous section were used to estimate the 

possible ranges of energy consumption. A great number of possible cases were created due 

to the uncertain controls of heating and electricity. 200 random samples were chosen by 

Latin Hyper-cube Sampling (LHS) to conduct the Monte Carlo Method. LHS method is 

more robust than other sampling methods (Macdonald, 2009), and has been widely applied 

to the uncertainty analysis in building simulations such as (Hyun et al., 2008; Silva and 
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Ghisi, 2014). EnergyPlus 8.0 (Crawley et al., 2001) was used to conduct building 

simulations. Historical weather data of Seoul in 2014, which is provided by White Box 

Technologies weather data for energy calculations (White Box Technologies, 2014), was 

applied.  Both LHS samplings and simulations were managed by jEPlus (Zhang, 2012). 

Heating and electricity consumption were separately accumulated. The Probability Density 

Function (PDF) of the estimated energy consumption was compared to the PDF of the actual 

energy consumption. The Coefficient of Variation of Root-Mean-Square Deviation (CV 

RMSE) was used to measure the discrepancy between the model estimation and the actual 

energy consumption.  

The previous occupant random behaviour in building energy models could not be specified 

for the residents living in the old apartment buildings. This can bring about high amounts of 

discrepancy, comparing to the actual energy consumption. This discrepancy was optimised 

in order to reflect the actual energy consumption. The procedure was divided into two parts. 

Firstly, multivariate regression analysis was conducted to create linear models of energy 

consumption only with influential parameters of occupants’ random controls. Above all, the 

linearity was examined by the coefficients of determination (R-squared) and F-ratio values 

(Field, 2009). SRC values were used to determine the influential parameters in the linear 

models. A stepwise method was applied to create possible linear models automatically. 

Secondly, the ranges and values of the uncertain parameters were revised for their 

regenerated random samples to have similar mean and standard deviation of the actual 

energy consumption. Random sampling was conducted by uniformly distributed 

pseudorandom integers in MATLAB 2014a (Hunt et al., 2014). The linear models identified 

above were used to estimate energy consumption of the regenerated samples. The 

distribution of the re-estimated energy consumption was compared to the actual energy 

consumption. CV RMSE was used to evaluate the difference between them. The results are 

shown in Section 5.3.2.1. 
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 Generalisation of probability of occupant behaviours consuming 5.2.3

heating and electricity 

Based on the optimised model estimation, this section conducted stochastic processes to 

identify the probability of energy consumption. Stochastic processes deal with the sets of all 

possible random parameters (Ross, 2014), and form the generalised probability distributions 

to functions (Rasmussen and Williams, 2006). In particular, Gaussian Processes easily deal 

with many  random variables that are approximately considered normally distributed, 

according to the probability theory (Parzen, 1999). The processes follow Bayes theorem 

(Rasmussen and Williams, 2006) that modifies prior distributions through observed data to 

achieve target distributions (Kalbfleisch, 2012). This inference has been used to calibrate 

parameters of building energy models in building simulations, as shown in (Heo et al., 

2012). Depending on the types of outputs, either regression or classification is determined in 

conducting Gaussian processes; regression deals with continuous outputs that deal with real 

values while classification considers discrete outputs classified by labels (Bernardo et al., 

1998).  

This chapter focused on classification to predict the probability of heating and electricity in 

the group of old apartment buildings rather than exact calibration for case-by-case. The 

process was divided into three steps. Firstly, the optimised random samples were prepared as 

training data. The energy consumption was subdivided by 25% deviation, which was called 

‘Medium class’. Heating consumption with 25% deviation was defined between 107 and 138 

kWh/m
2
/year in period A and between 87 and 112 kWh/m

2
/year in period B. The electricity 

consumption between 30.1 and 33.3 kWh/m
2
/year decided the medium class for the both 

periods.  

Secondly, Gaussian Process priors such as covariance functions were formed. Many 

covariance functions can be applicable. The details of covariance functions were studied by 

(Neal, 1997). More than that, the suitable values of hyper-parameters defining covariance 
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functions is more problematic (Neal, 1997; Rasmussen and Williams, 2006). Prior 

distributions of hyper-parameters are required to be predefined, although the values are 

optimised during the process. In this chapter, the Squared Exponential (SE) covariance 

function, which has been the most widely used (Rasmussen and Williams, 2006), was 

chosen. This covariance function necessarily requires two hyper-parameters: length-scale 

and magnitude. The inverse of length-scales demonstrates the relevance of inputs in the 

process, while magnitude indicates the variances of unknown function values (Neal, 2012). 

Gaussian distribution was applied for the hyper-parameters in this chapter.  

Thirdly, Gaussian Process models were structured by multinomial probit models with nested 

Expectation Propagation (nested EP) algorithm (Riihimäki et al., 2013) to take into account 

the classes of energy consumption with four to six parameters for heating and electricity 

consumption. Comparing to Markov Chain Monte Carlo (MCMC), nested EP algorithm also 

showed consistent results with small inaccuracy (Riihimäki et al., 2013), but much less 

operating time was required. The calculations were conducted by GP-Stuff (Vanhatalo et al., 

2013), run by MATLAB 2014a (Hunt et al., 2014). Contour plots were used to draw the 

predictive probability. The results are illustrated in Section 5.3.2.2. 

 Evaluating estimated energy consumption of probabilistic models 5.2.4

The previous section identified the probability of energy consumption, and the previous 

identification of behaviours controlling heating and electricity were modified. The updated 

random behaviours were evaluated to whether or not the predicted energy consumption 

reflects the variation in the actual energy consumption with reduced uncertainty.  100 

random samples were chosen with different probability: high probability (50 – 90%) and 

total probability (0 – 90%). Their estimated energy consumption was compared in Section 

5.3.3. 
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 Results 5.3

The results section is designed in three parts. The first part describes the analysis of variation 

in actual energy consumption in Section 5.3.1. The second part illustrates the probability of 

standardised conditions in Section 5.3.2. Specifically, the optimisation of estimated energy 

consumption regarding the actual energy consumption is interpreted in Section 5.3.2.1, and 

the results obtained from Gaussian Process Classification are shown in Section 5.3.2.2. 

Finally, the estimated energy consumption with the probability of standardised conditions is 

evaluated in Section 5.3.3. 

 Variation in actual energy consumption in apartment buildings  5.3.1

The results of normality tests demonstrate the collected samples are normally distributed 

(Figure  5.2). The ρ-values in the Kolmogorov-Smirnov tests are unified with 0.200 in the 

heating and electricity consumption for both periods. Shapiro-Wilk tests also show the ρ-

values 0.362 – 0.792, which are not significant. This means that the normality of the samples 

can be accepted. The Q – Q plots of the samples how slight deviations from the normal 

distribution at the tails. The deviations are interpreted by kurtosis and skewness. The largest 

kurtosis is 1.30 in the electricity consumption in period A while the greatest skewness is 

found in the heating consumption in period A. However, these deviations are within ±1.96 

limits of kurtosis and skewness. Therefore, the samples can be regarded as normally 

distributed, which means that the number of samples is large enough to represent their 

population. 

Figure  5.3 gives the overview of energy consumption in old high-rise apartment buildings 

constructed between the 1970s and 1980s. The average heating energy consumption in 

apartment buildings constructed before 1980 (Period A) is 123.2 kWh/m
2
/year while the 

consumption is reduced to 99.66 kWh/m
2
/year in apartment buildings built between 1981 

and 1988 (Period B). The comparison of the two average values reveals the significant 

impacts of thermal conditions of building envelopes on heating consumption. However, the 
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electricity consumption is similar in both periods, A and B, with 31.77 kWh/m
2
/year and 

31.67 kWh/m
2
/year. 

The more interesting aspect is the variation in energy consumption in each period 

(Figure  5.3). Heating consumption is deviated 20.6 kWh/ m
2
/year among buildings in period 

A while the greater deviation about 30.1 kWh/ m
2
/year is identified in period B. 

Furthermore, the difference between minimum and maximum values in heating consumption 

is 98.0 kWh/m
2
/year in period A, and is enlarged to 128.5 kWh/m

2
/year in period B. The 

relatively lower variation in period A could reveal their desperate necessity of heating due to 

the low energy-efficient building conditions. The higher variation in period B would result 

from the diverse preference of controlling heating by occupants. In electricity consumption, 

the standard deviation for both periods is about 3.5 kWh/m
2
/year, and the minimum and 

maximum ranges are about 15 – 20 kWh/m
2
/year.  In general, the actual energy consumption 

in apartment buildings is 10 –30% deviation from average values. The difference between 

minimum and maximum consumption is extended up to 50 – 128%.  

 Probability of standardised conditions regarding variation in actual 5.3.2

energy consumption 

The probabilistic approach integrating the variation into  building energy models is 

illustrated in this section. Firstly, building energy models with the prior distributions are 

optimised to reflect the variation in the actual energy consumption in Section 5.3.2.1. 

Secondly, the probability of energy consumption is calculated by Gaussian Process 

Classification. At the same time, the possible ranges of influential parameters are modified. 

The results are illustrated in Section 5.3.2.2.  

 Optimisation of the estimated energy consumption in building energy 5.3.2.1

models 

The model estimation with the prior distribution of input parameters (thick dashed lines in 

Figure  5.3) is dissimilar from the distribution of the actual energy consumption (solid lines 



Chapter 5. Integration of occupants’ behaviours 

 

 

128 

 

with dots).  At first, the average values of the model estimation are greater than the actual 

values, apart from the heating estimation for period A. The average values of heating 

consumption in period B is overestimated by about 23 kWh/m
2
/year with the prior 

distribution, while a nearly 3 kWh/m
2
/year reduction is required in the average value of 

electricity consumption. Second, the distribution of the estimated heating consumption is far 

greater than the one of actual consumption: 62% discrepancy in period A (Figure  5.3 (a)) 

and 51% in period B (Figure  5.3 (b)). This wider distribution of the estimated heating 

consumption indicates that the ranges of occupants’ random controls would be wider than 

the actual usage, which needs to be narrowed down. On the contrary, the ranges of the 

parameters for electricity consumption are required to be wider to reduce about 35% 

discrepancy from the variation in the actual use (Figure  5.3 (c and d)). This opposite trend of 

estimation, compared to the actual use, implies that different parameters respectively effect 

on heating and electricity, and their modification needs to be different.  
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Figure  5.2. Results of normality tests of actual energy consumption 
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Multivariate regression analysis was used to choose the most rigid linear models with less 

residual. In the results of R-squared values (Figure  5.4 (a and b)), the highest R-squared 

values more than 0.7 are generally achieved by increasing the number of parameters. 

However, the increasing of R-squared values in heating models becomes significantly steady 

after the fourth model (0.84 and 0.70 for period A and B) while the sixth model (0.94 and 

0.78 for period A and B) in electricity models. These models also show higher F-ratios with 

less numbers of input parameters: 256.2 in period A and 114.6 in period B for heating  

(degree of freedom: 4), and 554.4 in period A and 112.2 in period B for electricity (degree of 

freedom: 6) (Figure  5.4 (c and d)). Hence, they are chosen as the most fitted models. 

These linear models for heating and electricity consumption are respectively comprised of 

four and six parameters, as shown in Table  5.3. In the heating models, set-point temperature 

is the most significant factor, followed by their operating hours. Specifically, the volume of 

space determines their impacts on heating consumption. Thus, set-point temperature in the 

living room presents the highest SRC 0.587 and 0.526 in periods A and B. Their operating 

hours has the second highest SRC, which are 0.504 and 0.469 for period A and B, 

respectively. The third parameter is set-point temperatures in the bedroom A with SRC of 

0.320 and 0.271 for both periods A and B. This is because the bedroom A is the largest 

bedroom. The fourth parameter is set-point temperatures in the bedroom C with SRC of 

0.285 and 0.260 for both periods A and B, which is the bedroom directly exposed to the 

outside. 

Electricity models are structured by operating hours of six parameters that can be 

categorised by three groups: lighting, appliance used in daily routines and cooling. The most 

influential factors are the operating hours of lighting in the bedrooms (SRC 0.527 and 0.475 

in periods A and B) and living room (SRC 0.475 and 0.433). The operating hours of rice-

cookers and computers show the fourth and fifth highest SRC of 0.343 and 0.339 in period 

A, and 0.336 and 0.329 in period B. In terms of the seasonal devices, cooling hours is the 
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most influential compared to the other factors, including cooling set-point temperatures. 

Their impact on electricity consumption is determined by the size of volume. Thus, cooling 

hours in the living room have SRC 0.459 and   0.383 in periods A and B while cooling 

operation in the bed room show SRC 0.239 and 0.220 in the two periods, respectively. 
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Figure  5.3. Optimisation of model estimations in comparison to the variation in actual energy consumption 
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Figure  5.4. Changes in R-squared values and F-ratios of the building energy models 
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Diverse ranges of the input parameters in the linear models are examined for their estimation 

to be as close as the distribution of the actual energy consumption. As a result, the 

discrepancy is significantly declined with the new sets of random samples, as depicted by 

‘optimised’ in Figure  5.3. The lowest discrepancy is achieved: 1.2% of the heating energy 

model for period A and 3.7% for period B. The modified electricity consumption in period A 

shows 3.8% of discrepancy. The discrepancy became higher to 9.8% for period B by 

applying the same set of the modified samples used for period A. In comparison to the 

previous distribution (Table  5.2), the large discrepancy in annual energy consumption is 

reduced by little change in daily routines. In the heating models, the range of set-point 

temperatures is reduced from 16 – 22 ºC to 16 – 20 ºC, and the operating hours are also 

reduced from 3 – 9 hours to 3 – 6 hours in the heating models for period A. For period B, the 

range of set-point temperatures is moved to 15 – 21 ºC in the living room, and reduced to 16 

– 21 ºC in the bedroom A and C. In the electricity model, the possible ranges of operating 

hours of lighting and rice-cooker are extended by about 1 – 3 hours. The range of computer 

is moved to 0.5 – 3.5 hours. Overall, the changes in set temperatures are within 2 ºC, while 

operating hours are revised within 3 hours from the previous distributions. 

Table  5.3. Result of multivariate regression analysis 

 Period A (Before 1980) 

 

Period B (1981 – 1988) 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

 (p-value) 

Unstandardised 

Coefficients 

Standardised 

Coefficients 

 (p-value) B Std. 

Error 

B Std. 

Error 

 

 

 

Heating 

 

Set temperatures in living room -303.777 16.520 - (0.000) -346.219 26.161 - (0.000) 

Heating hours in living room 10.070 0.500 0.587 (0.000) 10.444 0.792 0.526 (0.000) 

Set temperatures in bedroomA 8.669 0.497 0.504 (0.000) 9.347 0.787 0.469 (0.000) 

Set temperatures in bedroomC 5.470 0.495 0.320 (0.000) 5.651 0.784 0.285 (0.000) 

Set temperatures in living room 4.649 0.492 0.271 (0.000) 5.157 0.779 0.260 (0.000) 

 

 

 

 

Electricity 

 

(Constant) 15.134    8.036 - (0.000) 16.546 15.921 -(0.000) 

Lighting in bedrooms 0.835 0.027 0.527(0.000) 0.740 0.053 0.475 (0.000) 

Lighting in living room 0.755 0.027 0.475(0.000) 0.676 0.053 0.433 (0.000) 

Cooling hours in living room 0.729 0.027 0.459(0.000) 0.597 0.054 0.383(0.000) 

Operating hours of rice-cooker 0.544 0.027 0.343(0.000) 0.523 0.054 0.336(0.000) 

Operating hours of computer  1.079 0.055 0.339(0.000) 1.028 0.109 0.329(0.000) 

Cooling hours in bedroom A 0.378 0.027 0.239(0.000) 0.343 0.054 0.220(0.000) 
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 Probability of energy consumption with Gaussian Process Classification  5.3.2.2

  

Figure  5.5 and 5-6 show that the probability of energy consumption with 25% deviation 

(medium class) is formed by various combinations of the influential parameters. In other 

words, the definition of standardised conditions can also be varied by the probability of 

energy consumption. All parameters linearly effect energy consumption, but they are paired 

depending on the relevance and the order of coefficient values for the presentation. Pairs of 

the parameters can be organised in different ways. However, each parameter interacts in 

inverse proportion in determining the probability of energy consumption. For instance, the 

operating hours of the living room is reduced, while the set-point temperature is increased. 

Hence, the distribution taken from the actual consumption can be maintained. At the same 

time, this interaction allows the standardised conditions flexible in determining the 

probability of energy consumption. In addition, impacts of the parameters shift the 

probability of energy consumption. This is shown by the dispersion of contour lines. Thus, 

wider dispersion reveals that the parameters are not significantly relevant to determine the 

probability of energy consumption as found in heating set-point temperatures in the bedroom 

A and C (  

Figure  5.5 ( b)) and cooling hours (Figure  5.6 ( c)). 

The 90% probability of the medium class (25% deviation) is overall formed by the range of 

heating set-point temperature from about 17 to 20 ºC (  

Figure  5.5). Heating operating hours are about 3 – 6 hours for period A, and 5 – 8 hours for 

period B. This range is lower than the conventional standardised conditions that include 20 

or 24 ºC set temperatures and its operation controlled by the set temperatures. Furthermore, 

the possible deterministic value of heating set temperature can be closer to 18 ºC by 

regarding the actual energy consumption rather than 20 ºC mostly used in existing literature. 

The conventional conditions in calculating energy demands are not perfectly out of range, 

but heating energy consumption can be overestimated. 

Interestingly, the probability in heating consumption for period A (  

Figure  5.5 (a and b)) is formed by the slightly lower values of set temperatures and operating 

hours, than the values for period B (  

Figure  5.5 (c and d)), despite higher heating consumption of period A. This can be 

interpreted by realistic compromise, possibly due to the cost of energy. The medium class 

for period A consumes about 107 – 138 kWh/m
2
/year by the possible setting identified 
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above. However, the medium class for period B spends less heating energy between 87 and 

112 kWh/m
2
/year with the setting above because of their relatively advanced thermal 

conditions, compared to period A. This reveals that occupants in period A would tactically 

suppress their heating controls despite the significant heat loss through building envelopes. 

Electricity consumption with 90% probability is generally derived from 3 – 6 hours of 

ranges in operation (Figure  5.6). Specifically, lighting is possibly used from 1 to 5 hours. 

The rice-cooker can be operated about 9 – 14 hours in warming rice, and the computer is 

operated for 0.5 – 3.5 hours per day. The air-conditioner can be used for up to 6 hours during 

summer. The results provide more realistic operations for the appliances with intermittent 

operations by linking between the actual energy consumption and the national survey about 

using electrical appliances.  
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Figure  5.5. Results of Gaussian Process Classification for heating consumption 
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Figure  5.6. Results of Gaussian Process Classification for electricity consumption 
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 Evaluation of estimating energy consumption with the probability of 5.3.3

the standardised conditions   

Energy consumption is estimated by 100 random samples with different probability: high (50 – 

90%), and total probability (0 – 90%). Figure  5.7 demonstrates the comparison between the two 

different probabilities. The random samples with high probability (on the long-dashed lines in   

Figure  5.5 and 5-6) result in a much lower distribution compared to the samples with total 

probability (on the dotted lines). The estimated heating consumption of the samples with 

high probability is distributed from 104 kWh/m
2
/year to 136 kWh/m

2
/year for period A 

(Period A_a in Figure  5.7), while the estimation for period B is from 76 kWh/m
2
/year to 119 

kWh/m
2
/year (Period B_a). In contrast, the samples chosen with total possibility create much 

extended distribution, 46 – 195 kWh/m
2
/year heating consumption for period A (Period 

A_b) and 23 – 179 kWh/m
2
/year for period B (Period B_b). In terms of electricity 

consumption, the samples with high probability estimate electricity consumption between 30 

and 32 kWh/m
2
/year for both periods (Period A_a and Period B_a). The distribution of 

estimation is enlarged with total probability from about 24 to 44 kWh/m
2
/year. Depending 

on the form of the probability, combinations of random samples can be diverse, and their 

estimation can be different each other. However, the estimation with high probability closely 

represents the standard deviation identified in the actual energy consumption in each period, 

while the estimated consumption with total probability reflects the minimum and maximum 

range of the actual energy consumption. 
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Figure  5.7. Estimated energy consumption with the probability of the standardised conditions 
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 Summary 5.4

This chapter questioned the inflexible conventional modelling which disregards the various 

occupant random behaviour of controlling energy consumption in apartment buildings. 

Despite minimising variation caused by building features in the existing apartment 

buildings, the actual energy consumption still shows 10 – 30% deviation from average 

values in apartments built in the 1970s – 1980s. Moreover, the range between minimum and 

maximum values is much greater up to 128%. This variation reveals that deterministic 

values defining typical conditions in apartment buildings could provide a limited 

interpretation about energy consumption in these buildings. This chapter attempted to 

identify the probability of energy consumption in apartment buildings regarding the 

variation in actual energy consumption.  

The probability of energy consumption with 25% deviation was drawn through Gaussian 

Process Classification. The updated values of input parameters represent the probability of 

the standardised condition in apartment buildings, according to Bayesian inference. The 90% 

probability of heating consumption is formed by 17 – 20°C set temperatures and 3 – 8 

operating hours. 25% deviation in electricity is derived from 3 – 6 hours of ranges in 

operation. Compared to the values in conventional modelling, these results imply that 

conventional modelling may overestimate energy consumption. Overall, sets of parameter in 

50 – 90% probability could achieve nearly the standard deviation, 10 – 30%, in real energy 

use whereas sets of parameters in total probability showed the far greater distribution of 

estimating energy consumption, nearly about the minimum and maximum ranges. Hence, 

the standardised conditions in apartment buildings can be varied depending on the 

probability of energy consumption.  

This chapter applies the actual energy consumption and develops the probabilistic models of 

occupant random behaviour controlling heating and electricity in apartment buildings. It can 

benefit building energy models for these apartment buildings in South Korea to reduce 
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uncertainties caused by the variation in actual energy consumption. Furthermore, this 

approach will be applicable for defining realistic standard conditions in different types of 

buildings, based on their actual energy consumption.  
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Chapter 6 

 

6 Developing a building energy model 

corresponding to variation in individual 

apartment units in existing apartment buildings 
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In Chapter 4 and 5, the variation arising from the physical characteristics and occupants’ 

behaviours in existing apartment buildings were investigated. The scale of the main topic in 

this chapter scopes down from the group of apartment buildings to the group of apartment 

units. As identified in the literature review, variation in unit-specified energy consumption, 

due to the locations of apartment units, has been already well-known. However, variation 

caused by internal factors, especially individual heating controls in each apartment unit and 

their interaction through the sharing slabs, has not been regarded in the conventional 

building energy model. Therefore, this chapter combines the fragmented modelling 

approaches to integrate the variation arising from the unit locations and the internal factors 

for a building energy model of existing apartment buildings. The chapter consists of four 

sections. Section 6.1 discusses about a brief background of the conventional building energy 

model used for high-rise apartment buildings, and the limitation to reflect variation in 

individual units. Section 6.2 provides a methodology of creating two types of models; one is 

representing variation in the physical conditions with regard to the unit locations, and 

another is a numerical model of internal factors, calculating the unit-specific heating energy 

consumption. Section 6.3 interprets the unit-specific energy consumption and the result of 

the numerical model of the individual heating controls in units and interaction between 

floors. The final summary is indicated in Section 6.5. 

 

 Background 6.1

Building energy models have been widely used in measuring thermal performance in 

buildings (Ingle et al., 2014). It also allows the analysis of energy-efficient technologies to 

determine the most effective solutions in order to improve thermal performance for various 

types of buildings (Hong et al., 2000). Due to its convenience in analysing building 

conditions, the approach has been commonly applied for high-rise apartment buildings.  
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The conventional building energy model, used for high-rise apartment buildings in the 

context of South Korea, has been approached as either a whole building with simplified 

thermal envelope or several single units in different locations such as the ground, middle and 

top floors (Yoo et al., 2007). The whole building approach considers apartment buildings as 

one single building with the unified controls of building systems. The building energy model 

with this approach mostly focuses on improving the physical conditions of building 

envelope. Therefore, the model became radically simplified by only considering the physical 

conditions of the building envelope exposed to the outside with disregard to internal details, 

as shown in (Yoo et al., 2007). Another approach deals with several representative units in 

the same building. These selected units with this approach are separately modelled and 

considered like a detached house. This approach provides specific energy consumption with 

a unit scale, but only for the selected units, based on the variation in the physical 

characteristics. It has been found that the primary consideration of both approaches is the 

physical conditions. Therefore, it is difficult to provide the comprehensive understanding of 

variation arising from individual apartment units. The limitations of both approaches can be 

described by three aspects as below.  

Firstly, individual apartment units contain variation in both physical characteristics and 

independent controls of energy systems. The variation in the physical characteristics is 

mainly arisen from the vertical locations of apartment units, comprised of ten to fifteen 

stories in existing apartment buildings, and the horizontal locations depending on the 

number of units on the same floor. These variations determine the amount of surfaces 

exposed to the outside and the amount of solar radiation received. However, the whole 

building approach does not take into account these variations individually. The 

representative unit approach only considers these variations, but only limits to selected units.   

Secondly, apartment units are interlinked by sharing slabs equipped with an under-floor 

heating system. The heating system, supplying heated water through the pipe lines buried in 
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the sharing slabs, is mainly controlled by the unit on an upper floor having the sharing slab 

as a floor, while the slab also effect on the unit on a lower floor having the slab as a ceiling. 

The interaction to indoor mean temperatures through these slabs among apartment units is 

identified (Choi et al., 2007a). However, both modelling approaches have a limitation to 

take this interaction into account the energy calculation.   

Lastly, human interaction controlling energy systems is one of important factors in building 

energy models although it is difficult to clarify (Hoes et al., 2009). Heating controls in each 

apartment units are independently managed by unspecified occupants. However, both 

approaches took the standardised condition, and disregarded the possible variation by this 

aspect.  

Building energy models, without considering actual energy consumption, tend to 

overestimate their outcomes in comparison to real data (Ingle et al., 2014). This disparity 

can be an obstacle to use model estimations for practical application. In order to reduce the 

disparity, various building controls in households (Ingle et al., 2014) and actual consumption 

data (Galvin, 2014b) are essentially required. The empirical study, measuring the 

proportional rates of heating energy consumption in apartment units, shows significant 

variation, which represents the necessity to be integrated into a building energy model of 

high-rise apartment buildings. Moreover, the variation is not thoroughly corresponded with 

theoretical expectation, which indicates human interaction that needs to be considered.  

This chapter, therefore, aims to develop a building energy model of existing high-rise 

apartment buildings reflecting the variation in heating energy consumption caused by the 

location of units and individual heating controls, and identify the specific dataset of heating 

controls of apartment units in different locations. Four questions will be answered:  

 What are the levels of heating energy consumption depending on the location of 

units and individual heating controls? Do building energy models well-reflect the 

targeted consumption? 
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 What variables in heating controls of individual apartment units influence heating 

energy consumption in the building energy model? 

 How can those influential variables in individual apartment units be integrated in the 

energy model for calculating heating energy consumption? 

 What are the values of those influential variables in individual apartment units for 

determining real energy consumption in the building energy model? 

 

 Methodology 6.2

The procedure is formed by three steps: (1) measuring heating energy consumption in 

individual apartment units with different locations; (2) comparing the targeted consumption 

to the estimated energy consumption of a building energy model, based on the physical 

characteristics of apartment units in different locations; (3) creating a new model of unit-

specific energy consumption integrating relationships with independent heating controls in 

units and their interactions between floors.  

 Measuring heating energy consumption in apartment units with 6.2.1

different locations 

This section intends to identify variation in heating energy consumption in individual 

apartment units. The unit-specific consumption data of apartment buildings has been strictly 

managed as private information, which was not accessible. Moreover, empirical 

consumption based on one or two buildings can be limited to deliver the generalised 

information of energy consumption in individual units. Therefore, the average heating 

energy consumption of existing apartment buildings with similar construction specifications, 

which was measured in the previous chapter (Chapter 5)  was applied to the proportional 

rates of unit-specific heating energy consumption with different locations, surveyed by 

(Kang et al., 1995), as presented in Table  2.5. The proportional rates could be applicable in 

this analysis, because of the similarity of the sampling units: construction periods, 
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geographical locations and the number of floors. The surveyed proportional rates were 

measured by apartment buildings constructed in the 1970s – 1990s in Seoul, which satisfy 

two sampling units used in this chapter. Besides, the proportional rates were also calculated 

for fifteen-story apartment buildings. Although no information on the number of floors of 

apartment building was indicated in (Kang et al., 1995), this range (twelve to fifteen floors) 

can be reasonably assumed as a typical number of apartment floors in the period (Statistics 

Korea, 2010a).  This sampling unit is also applied in this work.  

The unit-specific energy consumption was generated by the proportional rates and the 

average energy consumption value in existing apartment buildings constructed before 1980, 

123.2 kWh/m
2
/year (Appendix C). As identified in Section 2.3.3, vertical unit locations need 

to be carefully regarded in the building energy model. However, horizontal locations in the 

modelling resulted in much less impact on energy consumption. More significant impact 

could be assumed by occupants, as shown in the empirical study (Kang et al., 1995). 

Therefore, the energy consumption in individual units in this study is generated for the 

vertical locations of apartment units, but the heating consumption among the three units on 

the same floor was used as variation in calculating mean and standard variation of energy 

consumption on each floor. These two values, mean and standard variation, generated the 

possible range of energy consumption in apartment units with different locations by using 

random number generator in MATLAB R2015a (The MathWorks Inc, 2015). The unit-

specific heating energy consumption generated, called ‘Targeted heating energy 

consumption’, is shown in Section 6.3.1. 

 Estimating heating energy consumption with a building energy model 6.2.2

of high-rise apartment buildings 

High-rise apartment buildings were simplified for more efficient energy simulation. The 

simplified building energy model was intended to reflect not only the different locations of 

units but also the internal thermal interactions through the sharing slabs. Therefore, two 
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aspects were carefully modelled despite the simplification: vertical locations and the sharing 

slabs with an under-floor heating system. Firstly, the building energy model was built by 15 

units on different floors as the same reasons of generating the unit-specific energy 

consumption in Section 6.2.1. Thus, one unit was placed on each floor of the simplified 

model for the fifteen-story apartment building; the east side walls are connected to the lift 

halls, not exposed to the outside, as described in Figure  6.1. Secondly, the sharing slabs, 

equipped with the under-floor hot water heating, between two apartment units were built to 

indicate the thermal interaction between floors.  Heated water could be circulated through 

pipe lines buried in the sharing slab. A low temperature radiant system (Zone HVAC: Low 

Temperature Radiant Variable Flow) in EnergyPlus 8.0 was applied in the building 

simulation model.  

The profiles of the simplified models are identified by four aspects: (1) unit designs; (2) 

thermal properties; (3) internal gains; (4) heating controls. Firstly, the same unit design (the 

most common type) in Chapter 5 was used (Figure  6.1). This unit consisted of heated and 

non-heated zones. Heated zones meant the main living area equipped with the heating 

system, while non-heated zones included balcony areas where no heating was provided. 

Thus, the non-heated zones enclosed the heated zones as a transition between indoor and 

outdoor environments. However, the internal walls dividing rooms were removed in this 

modelling to reduce the operating time for simulations. The possible difference can be less 

than 5%, according to (Choi et al., 2007b).  

Secondly, thermal properties of the building envelope were input to reflect the typical 

thermal conditions of apartment buildings constructed before 1980, as modelled in Chapter 

5. The profile of thermal properties for apartment buildings was identified (Table  5.1). U-

values of building envelopes were input as shown: external walls (2.08W/m
2
K); side walls 

(3.24 W/m
2
K); roof (0.52 W/m

2
K); floors (4.36 W/m

2
K); windows (5.89W/m

2
K).  
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Thirdly, the details of occupants, lighting and electric appliances, were taken from the 

generalised conditions, identified from the actual energy consumption in Chapter 5. The 

number of occupants was input as four, which is the most common type of residents living in 

apartments. Lighting levels were identified for one apartment unit with 330.0W (Bedrooms 

+ Livingroom) (KEPC, 1990). For electric equipment, five major appliances were input: TV 

(130.6W), refrigerator (40.0W), rice-cooker (143.4W – warming and 1022.9W – cooking), 

computer (263.3W) and Kimchi refrigerator (22.6W) (KEPC, 2013). Their daily schedules 

for lighting, computer and rice-cooker are taken from the results in Chapter 5. The schedules 

of refrigerator and Kimchi refrigerator were set 24 hours, whilst 5 hours for TV (KEPC, 

2013). 

 

Figure  6.1. Description of the building energy model (Source of the unit plan: Kim and Yoon, 

2010) 

Fourthly, heating controls in apartment units were kept as uncertain factors, although the 

average controls were generalised in Chapter 5. Two factors, independently controlled in 

apartment units, were mainly used: heating set-point temperatures and heating hours. 18 – 

20°C for heating set-point temperatures was recommended in building regulations (MLIT, 

2015b), whereas heating hours have not yet been officially provided. The heating hours in 
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the conventional building energy models were assumed to be 24 hours, and controlled by 

zone mean temperatures without considering occupancy. In this chapter, uncertainty analysis 

was undertaken with the possible range of heating set-point temperatures from 16°C to 

22°C, and heating hours from 3 hours per day to 9 hours. In total 30 independent variables (2 

variables of heating controls × 15 apartment units), and 15 dependent variables, heating 

energy consumption in each unit, were created. 150 random samples of heating controls for 

individual units were generated by LHS to conduct the Monte Carlo Method, which has been 

widely used in many studies for uncertainty analysis (Macdonald, 2009). The sampling was 

managed by jEplus (Zhang, 2012), and actual simulations were conducted by EnergyPlus 8.0 

(Crawley et al., 2001). Historical weather file for 2014 generated for building simulations 

was acquired from (White Box Technologies, 2014).  

 Creating a new model of unit-specific heating energy consumption  6.2.3

Polynomial regression was conducted to create the new model of heating energy 

consumption specified by independent heating controls in individual units and their 

interaction between floors. This regression model is a type of multiple linear regression, but 

focuses one variable with curve fitting or two variables with surface fitting to improve 

predictions of mathematical models (Kleinbaum et al., 2013). Therefore, heating energy 

consumption in each apartment unit can be modelled by considering two input influential 

variables, which are heating set-point temperatures and heating hours. Before the polynomial 

regression modelling, a correlation coefficient analysis was conducted to determine 

influential variables of heating controls for the unit-specific heating energy consumption in 

each apartment unit. The correlation coefficient values of independent variables were 

compared as they interpreted the strength of heating controls with heating energy 

consumption, and the directions with positive or negative values (Chen and Popovich, 2002). 

Heating set-point temperatures and heating hours for the 15 apartment units from the 150 

samples were input as 30 independent variables. The heating energy consumption in the 15 

apartment units were as 15 dependent variables. Pearson’s correlation coefficient (Chen and 
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Popovich, 2002) was applied to measure the linear correlations of heating controls with 

heating energy consumption in the apartment units on the 15 floors. SPSS version 22.0 

(Field, 2009) was used for calculation. The correlation analysis is interpreted in Section 

6.3.2. 

Based on the correlation coefficient analysis, polynomial models were created by 

polynomial surface fitting in the Curve Fitting Toolbox in MATLAB R2015a (The 

MathWorks Inc, 2015). The procedure of polynomial regression minimises the sum of 

squares of deviation from corresponding points (Kleinbaum et al., 2013). Therefore, the 

goodness of fit in the polynomial models were measured by the coefficient of determination 

(R-squared values), representing how much data can be explained by polynomial models, 

and the sum of squared errors, indicating how much data cannot be fitted into the models.  

The polynomial models in this chapter were defined by two conditions: heating controls in 

apartment units and heating set-point temperatures between floors. Two different orders of 

polynomial models were applied: binary linear model (Model 1 and Ⅰ) and binary quadratic 

polynomial models (Model 2, 3, Ⅱ and Ⅲ). For heating controls in apartment units, heating 

set-point temperatures and heating hours in apartment units where heating was controlled 

were considered with Model 1 – 3. Due to the model for each apartment unit disconnected 

with other floors, the possible interaction with other floors was disregarded in these 

polynomial regression models.  

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒚𝒊             (Model 1)       (6-1) 

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒚𝒊 +  𝑫 × 𝒙𝒊
𝟐 +  𝑬 × 𝒙𝒊 × 𝒚𝒊          (Model 2)       (6-2) 

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒚𝒊 +  𝑫 × 𝒙𝒊 × 𝒚𝒊 +  𝑬 × 𝒚𝒊
𝟐          (Model 3)       (6-3) 

𝒇𝒊: Heating energy consumption (kWh/m
2
/year) 

𝒙𝒊: Heating set-point temperatures in a unit (°C) 

𝒚𝒊: Heating hours in a unit (hour/day) 

𝑨, 𝑩, 𝑪, 𝑫 𝒂𝒏𝒅 𝑬 : Unknown parameters in polynomial models  
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The interaction of heating controls between floors, arising from heat transfer on the shared 

slabs, was considered with ModelⅠ- Ⅲ. Heating set-point temperatures on two floors were 

comprised of the polynomial model of each floor. Therefore, the models of apartment units 

are interlinked with each other. For example, heating set-point temperatures on the second 

floor can be a variable for both models on the ground and second floors. The goodness of fits 

is evaluated in Section 6.3.3, and the model estimation is examined in Section 6.3.4.  

 

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒙𝒊+𝟏              (Model Ⅰ)    (6-4) 

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒙𝒊+𝟏 +  𝑫 × 𝒙𝒊
𝟐 +  𝑬 × 𝒙𝒊 × 𝒙𝒊+𝟏           (Model Ⅱ)    (6-5) 

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒙𝒊+𝟏 +  𝑫 × 𝒙𝒊 × 𝒙𝒊+𝟏 +  𝑬 × 𝒙𝒊+𝟏
𝟐            (Model Ⅲ)    (6-6) 

𝒇𝒊: Heating energy consumption (kWh/m
2
/year) 

𝒙𝒊: Heating set-point temperatures in a unit (°C) 

𝑨, 𝑩, 𝑪, 𝑫 𝒂𝒏𝒅 𝑬 : Unknown parameters in polynomial models 

 

 

 Results 6.3

The results are described in four sections to address the four research questions. Section 

6.3.1 interprets the measured unit-specific heating energy consumption, and compares this to 

the estimated consumption with the building energy model, focused on the physical 

conditions arising from the individual unit locations. Section 6.3.2 analyses the most 

influential variables of the simplified building energy model, correlated with heating energy 

consumption in each apartment unit. Section 6.3.3 scrutinises polynomial regression models 

for the unit-specific heating energy consumption by regarding individual heating controls in 

each unit. In addition, the sensitivity analysis of the heating controls in each unit in the 

polynomial models is illustrated. Section 6.3.4 identifies the new dataset of heating controls 
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in the 15 apartment units for the simplified model, and evaluates the dataset of heating 

controls in building simulation.  

 Heating energy consumption in individual apartment units  6.3.1

The quantified heating energy consumption with different unit locations demonstrates the 

prominent variation, compared to the average value, 123.2 kWh/m
2
/year, as shown in 

Figure  6.2 (a). Above all, higher heating energy consumption on the ground and top floors 

caused by the physical conditions is clearly quantified. Heating energy consumption on the 

ground and top floors is enlarged to 179.3 kWh/m
2
/year and 160.2 kWh/m

2
/year, 

respectively. The disparities of these are 45% and 37% (56.1 and 37.6 kWh/m
2
/year), 

compared to the average value. However, heating energy consumption is decreased in 

accordance with higher floors from the 1
st
 to the 13

th
 floors. The total amount of heating 

energy decreased from the 1
st
 to the 13

th
 floors is about 50 kWh/m

2
/year, which is as great as 

the disparity of the ground floor, compared to the average value. Another variation in 

heating energy consumption on the same floor, generated by variation in the three units on 

the same floor, is also significant. The average standard deviation of heating consumption in 

apartment units on the same floors is 9.13 kWh/m
2
/year. The greatest standard deviation is 

identified on the 12
th
 floor with 21.7 kWh/m

2
/year, which is more significant than the ground 

floor with 16.0 kWh/m
2
/year. The smallest standard deviation is found on the upper (13

th
 

floor with a nearly zero value) and lower floors (the 11
th
 floor with 4.0 kWh/m

2
/year) of the 

12
th
 floor.  

However, the simplified building energy model, focusing on the physical conditions arising 

from the individual units, shows its limited interpretation of reflecting the identified 

variation from the measured heating energy consumption, as illustrated in Figure  6.2 (b). 

Higher energy consumption on the ground and top floors is roughly found although the 

specific values are different with significant uncertainties. Therefore, a new model 
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integrating individual heating controls in each apartment units needs to improve the model 

estimation as well as reduce uncertainties in the building energy model. 

 

Figure  6.2. Comparison between the targeted heating energy consumption and the estimation of 

the simplified energy model for the 15 apartment units on different floors: (a) Targeted heating 

energy consumption, (b) Estimated heating energy consumption 

 Influence of variables in heating controls on the unit-specific heating 6.3.2

energy consumption in the building energy model 

How significant the heating controls in apartment units are related to the unit-specific 

heating energy consumption in the building energy model is identified by correlation 
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coefficients. As shown in Figure  6.4 (a), both variables, heating set-point temperatures and 

heating hours in units where the heating is on, are significantly correlated, but the impact of 

the variables from upper and lower floors also shows their considerable correlation. 

As can be expected, heating set-point temperatures and heating hours in apartment units 

increase heating energy consumption with positive correlation coefficient values. The most 

significant correlation coefficient value is heating set-point temperatures with the overall 

correlation coefficients between 0.70 and 0.90, indicating the high dependence of heating 

energy consumption. The operating hours of heating is followed with moderate correlation 

coefficients values between 0.25 and 0.50. These results show that heating consumption is 

mostly determined by heating set-point temperatures, but it also somewhat affected by the 

number of operating hours in the building energy model.  

However, heating energy consumption on the 3
rd

 and 5
th
 floors shows valid correlation not 

with heating hours, but with heating set-point temperatures on an upper floor (4
th
 and 6

th
 

floors). The heating controls on upper and lower floors impacts on reducing heating energy 

consumption in a unit in-between with negative correlation coefficient values. The overall 

correlation coefficient values of this variable for the 15 apartment units are between -0.20 

and -0.30. Apartment units which do not have a valid correlation with heating hours 

demonstrate greater correlation coefficients with this variable. The interlinked relationships 

of heating controls between floors through the shared slabs are shown through this 

correlation.  

In summary, heating energy consumption in this building energy model is highly associated 

with heating set-point temperatures in apartment units. However, operating hours of heating 

in units and heating temperature controls on an upper floor are also important variables for 

heating energy consumption, as summarised in Figure  6.4 (b).  
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 Polynomial models integrating heating controls and interaction 6.3.3

between floors 

The correlation coefficient analysis indicates two correlated conditions for the unit-specific 

heating energy consumption. One is heating controls in apartment units where heating is 

operating, another is heating set-point temperatures between floors. These two conditions are 

integrated into the polynomial regression models to be used for further predictions 

(Figure  6.3): heating controls in each apartment unit (dotted line with empty dots) and 

heating set-point temperatures between floors (solid line with solid dots). The polynomial 

models of both conditions show high levels of R-squared values between 0.6 and 0.9. The R-

squared values of polynomial models with heating controls in apartment units are slightly 

higher than the models with heating set-point temperatures between floors. However, the 

difference is not significant enough to disregard one of the conditions. The detailed analyses 

of both conditions are separately interpreted in Section 6.3.3.1 and 6.3.3.2.  

 

Figure  6.3 R-squared values of polynomial models: heating controls in apartment units (solid 

line with solid dots) and heating set temperatures between two floors (dotted line with empty 

dots) 
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Figure  6.4. Results of correlation coefficients analysis: (a) correlation coefficient values of 

variables on different floors and (b) correlation coefficient values of variables HT (Heating set-

point temperature in apartment units), UHT (Heating set-point temperature in apartment units 

on an upper floor), LHT (Heating set-point temperature in apartment units on a lower floor), 

and HH (Heating hours in apartment units) 
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 Polynomial models of heating controls 6.3.3.1

This section, firstly, evaluates the goodness of fit in the polynomial models of heating 

controls in apartment units (Model 1, 2 and 3). Secondly, the sensitivity analysis of the 

independent variables in the models is interpreted. Different values are determined for the 

unknown parameters of the models depending on the locations of apartment units 

(Table  6.1and 6.2).  

The R-squared of polynomial models for the 15 floors are, overall, between 0.6 and 0.9, 

indicating the robust interpretations of the unit-specific heating energy consumption. The 

sum of squared errors, which is the reverse trend of R-squared values, is 33,200 in the 

polynomial models on average. However, the goodness of fit is not significantly different in 

the different order of polynomial models (Model 1, 2 and 3), as shown in Figure  6.5. The 

ground, 2
rd

, 8
th
 and 11

th
 floors show slightly higher R-squared values with Model 3, but the 

difference is not significant with less than 0.05 R-squared values. Besides, the difference in 

the sum of squared errors is also small with about 5% on average errors.  

The sensitivity analysis is measured on the apportioned uncertainties of two variables, 

heating set-point temperatures and heating hours in apartment units, when the outcome 𝑓𝑖 is 

fixed with the targeted heating energy consumption in the polynomial models (Model 1, 2 

and 3) (Figure  6.6). Above all, inverse proportion is prominently identified between heating 

hours and heating set-point temperatures. Average heating set-point temperature is gradually 

reduced from 22°C to 15°C by increasing heating hours from one to 12 hours. The standard 

deviation of heating set-point temperatures is also reduced, whilst heating hours are 

increased from one hour to seven hours of heating. However, the standard deviation is 

increased again, while heating hours are increased from eight hours to twelve hours. Hence, 

the least standard deviation is found by seven and eight hours of heating with 0.9°C. The 

distribution of heating set-point temperatures with these two heating hours is located 
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between 18°C and 20°C, which are commonly used as standard heating set-point 

temperatures (MLIT, 2015b).  

 

 

Figure  6.5. Goodness of fit for heating controls of 15 apartment units: (a) R-squared values of 

15 units on different floors, (b) Sum of squared errors of 15 models for units on different floors 
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Figure  6.6. Estimation of heating set-point temperatures by heating hours in heating 

consumption 

 

Table  6.1. Binary linear model of 15 apartment units 

  

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒚𝒊 

A B C 

Unit 1 -193.9 15.51 7.090 

Unit 2 -204.5 14.75 6.662 

Unit 3 -245.3 16.86 6.202 

Unit 4 -257.5 17.25 7.359 

Unit 5 -229.9 15.82 6.988 

Unit 6 -251.0 17.38 5.711 

Unit 7 -229.9 16.14 6.088 

Unit 8 -246.0 16.84 6.731 

Unit 9 -243.2 16.13 8.941 

Unit 10 -227.7 16.36 4.996 

Unit 11 -251.9 17.38 6.102 

Unit 12 -236.4 16.46 6.526 

Unit 13 -208.0 14.70 7.164 

Unit 14 -227.6 15.89 7.447 

Unit 15 -154.5 13.42 8.318 
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Table  6.2. Binary quadratic models of 15 apartment units 

  𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒚𝒊 +  𝑫 × 𝒙𝒊
𝟐 +  𝑬 × 𝒙𝒊 × 𝒚𝒊 

 

𝒇𝒊 = 𝑨 + 𝑩 × 𝒙𝒊 +  𝑪 × 𝒚𝒊 +  𝑫 × 𝒙𝒊 × 𝒚𝒊 +  𝑬 ×  𝒚𝟐 

A B C D E A B C D E 

Unit 1 -7.184 6.396 -34.3 -0.05368 2.24 58.86 4.614 -55.79 2.205 2.213 

Unit 2 -7.803 2.239 -35.8 0.09952 1.757 -55.29 5.729 -19.08 1.793 -0.7388 

Unit 3 377 -42.12 -25.42 1.361 1.714 -93.35 9.104 -26 1.544 0.3867 

Unit 4 -179 12.2 -4.933 0.04598 0.655 -180.8 13.74 -9.867 0.6729 0.459 

Unit 5 209.9 -27.46 .10.24 1.046 0.9399 -130.7 11.44 -17.05 0.8914 0.7514 

Unit 6 -102.4 4.209 -5.523 0.2745 0.6095 -171.6 14.1 -14.77 0.6675 0.816 

Unit 7 252 -26.06 -31.95 0.861 2.08 -17.92 6.919 -47.24 1.902 1.849 

Unit 8 37.09 -11.69 -1.937 0.7086 0.4736 -205.9 14.69 -1.508 0.4394 0.008316 

Unit 9 -78.3 6.78 -22.7 0.02074 1.719 -56.6 8.034 -37.4 1.642 1.608 

Unit 10 -198.5 17.04 -9.503 -0.1226 0.7883 -105.8 12.42 -31.76 0.846 2.123 

Unit 11 -118.9 7.501 -10.51 0.1458 0.8929 -122 12.52 -28.38 0.9475 1.682 

Unit 12 245.8 -23.76 -40.07 0.7542 2.537 52.12 3.179 -63.02 2.751 1.884 

Unit 13 14.16 -4.816 -9.602 0.4047 0.901 -79.5 9.807 -26.58 0.953 1.602 

Unit 14 -46.61 0.5806 -8.269 0.2951 0.8525 -145.5 11.13 -7.579 0.9198 -0.2162 

Unit 15 -274.9 31.44 -9.575 -0.6167 0.9599 -86.88 8.912 -1.886 0.9188 -0.695 

 

 

 Polynomial models of interaction between floors 6.3.3.2

The unknown parameters of the polynomial models are determined, whilst heating hours are 

limited to seven and eight hours (Table  6.3, 6.4 and 6.5). The model with seven heating 

hours shows higher R-squared values of polynomial models with lower values of errors than 

the models with eight hours of heating (Figure  6.7). Five floors with seven hours of heating 

have an R-squared value higher than 0.9, but none of floors with 8 hours of heating has R-

squared value over 0.9 (Figure  6.7(a)). The difference in the sum of squared error between 

two models is more outstanding (Figure  6.7(b)). All floors with eight heating hours show the 

greater sum of squared errors, between 33,000 and 110,000, than the values with seven 

heating hours only between 11,000 and 53,000.  

The three types of polynomial models (Model Ⅰ- Ⅲ) with heating set-point temperatures 

between floors do not indicate significant differences in terms of goodness of fit 

(Figure  6.7). However, the sensitivities between independent variables can be differently 
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determined by the types of polynomial models. Figure  6.8 and 6.9 illustrate the sensitivity 

analysis of heating set-point temperatures between floors with seven and eight hours of 

heating, respectively. The sensitivities of heating set-point temperatures are linearly 

overlapped from 18°C to 22°C of heating set-point temperatures in units with the three 

polynomial models. Specifically, the linearly overlapping parts are identified between 18°C 

to 20°C with seven hours of heating (Figure  6.8) while the part is shifted to 19°C to 22°C 

with eight heating hours (Figure  6.9). In this range, about 5°C of heating set-point 

temperatures on an upper floor is increased in 2°C increases of heating set-point 

temperatures in apartment units on a lower floor. However, the sensitivities analysis between 

the 13
th
 and top floors shows the greater increase of heating set-point temperatures, with 

about 10°C.  

 

 

Figure  6.7. R-squared values and sum of squared errors of polynomial models 
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Table  6.3. Binary linear models of 15 apartment units with 7 and 8 heating hours 

  7 hours 8 hours 

A B C A B C 

Unit 1 -97.1 20.05 -7.175 -38.9 18.27 -8.139 

Unit 2 -131.1 17.63 -4.817 -113.7 20.24 -8.220 

Unit 3 -112.8 18.55 -6.900 -150.7 20.51 -6.726 

Unit 4 -124.0 18.69 -6.435 -136.0 18.80 -5.780 

Unit 5 -145.5 19.46 -6.057 -91.0 17.54 -6.860 

Unit 6 -124.7 18.39 -6.058 -99.6 19.66 -8.513 

Unit 7 -100.4 18.59 -7.516 -133.0 2.22 -7.289 

Unit 8 -146.1 20.09 -6.594 -96.4 19.79 -8.764 

Unit 9 -119.5 18.62 -6.525 -167.7 21.14 -6.357 

Unit 10 -134.8 18.77 -5.847 -92.4 19.86 -9.032 

Unit 11 -120.9 19.35 -7.145 -132.0 19.79 -6.866 

Unit 12 -165.9 19.96 -5.373 -116.7 20.84 -8.703 

Unit 13 -26.4 15.47 -8.229 -111.8 19.38 -7.480 

Unit 14 -168.7 20.37 -5.634 -123.4 19.39 -6.988 

Unit 15 -94.8 16.54 -3.322 -69.4 16.24 -3.996 

 

 

Table  6.4. Binary quadratic models (degree 2x1) of 15 apartment units with 7 and 8 heating 

hours 

  

7 hours 8 hours 

A B C D E A B C D E 

Unit 1 -72.4 18.44 -8.163 0.016 0.052 131.6 -0.35 -7.760 0.498 -0.015 

Unit 2 237.7 -19.77 -6.724 0.929 0.109 129.8 -4.16 -9.556 0.610 0.064 

Unit 3 529.3 -37.01 -19.540 1.129 0.671 -130.1 0.70 10.640 0.978 -0.916 

Unit 4 67.2 -1.25 -6.772 0.517 0.016 -84.7 17.25 -9.653 -0.061 0.205 

Unit 5 -31.8 2.30 -1.054 0.584 -0.265 397.1 -8.88 -31.910 0.043 1.314 

Unit 6 -120.8 11.96 -0.213 0.325 -0.308 -144.5 19.62 -3.803 0.122 -0.245 

Unit 7 409.1 -8.17 -33.590 0.018 1.351 -175.9 21.58 -4.128 0.047 -0.168 

Unit 8 -136.1 13.36 -0.987 0.329 -0.301 152.0 -12.04 -3.319 0.985 -0.295 

Unit 9 97.2 -0.12 -10.660 0.385 0.215 275.0 -17.84 -14.560 0.806 0.443 

Unit 10 -338.5 44.72 -10.020 -0.789 0.215 116.1 -9.81 -1.720 0.969 -0.379 

Unit 11 52.2 -3.52 -2.636 0.726 -0.246 -353.9 31.43 4.941 0.002 -0.621 

Unit 12 -145.2 19.73 -7.241 -0.043 0.097 -47.5 9.42 -4.714 0.403 -0.208 

Unit 13 27.1 16.02 -14.420 -0.173 0.324 98.5 -5.52 -5.036 0.718 -0.126 

Unit 14 -18.6 -1.74 0.353 0.738 -0.312 440.0 -27.22 -20.380 0.873 0.717 

Unit 15 226.7 -15.25 -5.440 0.785 0.101 75.6 -2.73 -0.527 0.591 -0.183 

 



Chapter 6. Developing a building energy model for variation in individual apartment units 

 

 

165 

 

Table  6.5. Binary quadratic models (degree 1x2) of 15 apartment units with 7 and 8 heating 

hours 

  

7 hours 8 hours 

A B C D E A B C D E 

Unit 1 -26.7 19.35 -13.930 0.036 0.160 -4.2 18.18 -11.730 0.004 0.093 

Unit 2 -418.7 18.24 25.420 -0.048 -0.077 191.2 20.41 -40.850 -0.006 0.862 

Unit 3 -164.4 6.65 10.600 0.634 -0.779 -373.6 36.81 0.468 -0.860 0.238 

Unit 4 -184.2 17.57 1.113 0.057 -0.227 46.5 14.54 -20.900 0.227 0.285 

Unit 5 -345.4 24.78 9.778 -0.280 -0.277 339.7 -6.93 -27.760 1.299 -0.102 

Unit 6 284.9 22.61 -53.710 -0.231 1.369 -242.8 23.86 2.414 -0.222 -0.176 

Unit 7 526.0 -7.32 -46.770 1.338 0.353 -422.7 24.37 19.410 -0.225 -0.591 

Unit 8 -155.0 25.57 -11.300 0.284 0.265 -547.0 29.58 29.150 -0.515 -0.741 

Unit 9 168.2 13.92 -32.270 0.246 0.554 -325.8 13.14 18.600 0.418 -0.863 

Unit 10 -170.6 14.17 2.615 0.243 -0.344 -186.0 24.51 -3.844 -0.246 -0.013 

Unit 11 -401.4 24.27 17.660 -0.258 -0.524 -360.9 31.44 5.672 -0.618 -0.021 

Unit 12 63.4 17.81 -27.260 0.100 0.525 -44.4 23.23 -18.820 -0.125 0.328 

Unit 13 303.5 8.63 -36.540 0.370 0.561 -524.4 23.49 32.090 -0.214 -0.934 

Unit 14 -332.9 26.48 5.480 -0.319 -0.131 -223.7 9.96 13.240 0.499 -0.781 

Unit 15 -64.0 13.51 -3.478 0.157 -0.075 -476.0 22.91 32.690 -0.361 -0.788 
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Figure  6.8. Sensitivity analysis of polynomial models with 7 hours heating 
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Figure  6.9. Sensitivity analysis of polynomial models with 8 hours heating 
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 New model estimations of heating controls determining real energy 6.3.4

consumption 

Figure  6.10 describes the newly estimated heating set-point temperatures for the 15 

apartment units with the polynomial models when the initial heating set-point temperatures 

on the top floors are changed from 18°C to 20°C. Overall, the heating set-point temperatures 

for all units are distributed between 18°C to 22°C, and gradually reduced in accordance with 

higher floors. Variation in the set-point temperatures for heating on each floor is identified 

by the types of models (Model Ⅰ- Ⅲ), heating hours (seven and eight hours) and the initial 

temperatures of the top floors (18°C to 22°C). However, the variation caused by all factors is 

not less than 0.4°C on each floor.  

 

Figure  6.10. Estimation of heating set-point temperatures in apartment units 

In comparison to the targeted average heating consumption (Figure  6.11), about 0.5°C 

change in heating set-point temperatures brings approximately 10 kWh/m
2
/year change in 

heating energy consumption for the 15 apartment units. Interestingly, heating set-point 

temperatures on the ground floor are similar to the temperatures on the floors from the 1
st
 

and 5
th
 floors. However, the actual heating energy consumption on the ground floor is about 

30 – 50 kWh/m
2
/year higher than the consumption on the 1

st
 and 5

th
 floors. This suggests 
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that a greater heat loss has occurred in the unit on the ground floor than on the five upper 

floors. 

The new dataset of heating set-point temperatures is applied to the building energy model in 

order to re-calculate heating energy consumption for the 15 apartment units, and their 

outputs are compared to the targeted heating energy consumption. Correlation coefficient 

analysis is conducted to evaluate the correspondence between the targeted values and the re-

estimated energy consumption. In addition, Root-Mean-Square Deviation (RMSD) is also 

identified to compare the difference between the targeted and the recalculated estimation of 

heating energy consumption, as shown in Equation 7. All of polynomial models show higher 

than 0.90 correlation coefficient values, regardless of the initial heating set-point 

temperatures on the top floor. These re-calculated values interpret high associations with the 

targeted heating energy consumption. The sets of heating set-point temperatures with 19°C 

on the top floor show the greatest correlation coefficient values. Binary linear models 

(Model 1 and Ⅰ) indicate a slightly more robust correlation than other models.  

 

𝑹𝑴𝑺𝑫 =  √
∑ (𝒙𝟏,𝒕−𝒙𝟐,𝒕)𝟐𝒏

𝒕=𝟏

𝒏
  (6-7) 

The recalculated estimation of heating energy consumption is compared with the targeted 

heating energy consumption with 10% standard deviation (Figure  6.11) and the measured 

standard deviation (Figure  6.12). The estimated heating energy consumption with the 

previously simplified model, focused on the physical conditions in units with different 

locations, is also compared to visualise the improved estimation of heating energy 

consumption with the new model. The recalculated estimation shows much reduced RMSD 

values of 5.42 (seven heating hours) and 7.37 (eight heating hours) from RMSD 33.5 (the 

previous simplified building energy model). Moreover, all of the newly estimated heating 

energy consumption for the 15 units is within 10% of the standard deviation (Figure  6.11). 
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With the measured standard deviation (Figure  6.12), the estimated heating energy 

consumption shows very close values, although some floors, 3
th
, 4

th
 and 13

th
 floors with 

seven hours of heating, and 3
th
, 13

th
 and top floors with eight hours of heating, are slightly 

out of range of the measured standard deviations. However, the difference in each floor is 

less than 5kWh/m
2
/year, which could be acceptable. 

 

Figure  6.11. Comparison of calculated heating energy consumption with targeted heating 

energy consumption: (a) 7 hours of heating; (b) 8 hours of heating 
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Figure  6.12. Comparison of calculated heating energy consumption with targeted heating 

energy consumption with the measured standard deviation: (a) 7 hours of heating; (b) 8 hours 

of heating 

 

Table  6.6. Correlation coefficients of targeted and estimated energy consumption with input 

heating set-point temperature on the top floor 

 

7hours 8hours 

degree 1x1 degree 2x1 degree 1x2 degree 1x1 degree 2x1 degree 1x2 

18°C 0.972 0.963 0.968 0.974 0.972 0.976 

19°C 0.990 0.979 0.988 0.983 0.978 0.982 

20°C 0.975 0.963 0.976 0.965 0.959 0.963 
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 Summary 6.4

In this chapter, a model was established by the individual heating controls of apartment units 

in different locations. This has been carried out integrating actual data into the existing 

building energy model, focusing on the physical conditions of individual units, in building 

simulation, and then developing the new polynomial models with regard to the individual 

heating controls for further prediction.  

The targeted energy consumption, applied to the proportional rates of heating energy 

consumption depending on the unit locations, quantified 45% and 37% higher heating 

consumption in units on the ground and top floors. The great variation in energy 

consumption among the middle floors is also found with about 50 kWh/m
2
/year. However, 

the building energy model, focused on the physical conditions in the individual units, could 

not fully explain the variation in the unit-specific energy consumption specified in individual 

apartment units. The new model was applied to integrate individual heating controls in each 

unit. 

Two conditions which indicated the high correlation with heating energy consumption need 

to be considered to take into account this unit-specified heating energy consumption for 

more accurate energy modelling: heating controls in apartment units and heating set-point 

temperatures between floors. The two types of polynomial models with these two conditions 

showed higher levels of goodness of fit, with above 0.6 – 0.9 of R-squared values.  

Sensitivity analysis determined that the polynomial models of heating controls in apartment 

units indicated the least standard deviations with seven and eight hours of heating, 

corresponding to 18 – 20 °C of heating set-point temperatures in apartment units where 

heating is operating. For the interaction of this controls between floors, the polynomial 

model of heating set-point temperatures between floors showed heating set-point 

temperatures distributed between 18°C and 22°C for the 15 apartment units.  
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The first building energy model in building simulation, regarding the physical conditions of 

the units in different locations, showed RMSD 33.5. This disparity was significantly reduced 

to RMSD 5.42 with the dataset identified by the new model integrating the individual 

heating controls of apartment units, based on the measured data.  
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Chapter 7 

 

7 Implementation of the building energy model 

developed for refurbishment measures under 

future climate change 
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The previous three chapters focused on developing a building energy model of existing 

apartment buildings to integrate the variations arising from the three influential factors, 

physical characteristics, occupants’ behaviours and individual units. With the building 

energy model developed, this chapter evaluates the building thermal regulations from 1987 

to the present as energy-efficient refurbishment strategies for existing apartment buildings 

with respect to future climate change. The four revisions of the thermal regulations have 

been applied to calculate an amount of energy saving, compared to the baseline conditions in 

the building energy model. The reduction in heating energy consumption is also evaluated 

with the increased cooling energy consumption to determine the efficiency of the 

refurbishment strategies. The chapter consists of four sections. Section 7.1 provides a brief 

background of the main topic, refurbishment strategies of reducing energy consumption and 

future climate change in South Korea. Section 7.2 describes methods of evaluating partial 

and holistic refurbishment strategies in the current and future climate conditions. Section 7.3 

presents results of efficiency of refurbishment strategies in the present and future climate 

conditions. Lastly, Section 7.4 summarises overall findings of this work.  

 Background 7.1

A new agreement of reducing global carbon emissions has been accepted in 2015. All 

participating countries, regardless of developed and developing countries, agreed to more 

actions to mitigate global warming (Harvey, 2015). Some countries, heavily relying on 

energy resources overseas, have been making great efforts to reduce their dependence upon 

fossil fuels. Specifically, South Korea, ranked 8
th 

in the largest carbon emissions (Olivier et 

al., 2012), imports 95.5% of energy resources from abroad (KEEI, 2015), and renewable 

energy is only able to cover less than 1.9% of electricity production (World Bank, 2013). For 

this reason, South Korean Governments have led the decrease energy consumption in 

various sectors.  
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As one of the central strategies, building thermal regulations have been strictly intensified to 

achieve 25% reduction in carbon emissions in buildings by 2020 (Yoo, 2015). As a long 

term plan, all buildings in South Korea are expected to be energy-efficient as equivalent to  

Passivhaus (Passivhaus Trust, 2015). The intensified regulations were focused on reducing 

U-values of building envelopes since 2001. Moreover, the thickness of thermal insulation 

and U-values of windows have been annually improved by 25% from 2011 to the present. 

Furthermore, this improving trend seems to be continued. However, this continuously 

intensifying trend of thermal conditions is questionable in achieving an unconditional 

reduction in energy consumption, as identified in the literature review.   

Another issue is that climate projections generally estimate warmer winters, which could 

reduce heating energy consumption, whereas higher cooling consumption can be expected 

during the summer (Sharples and Lee, 2013). Specifically, mean temperatures in South 

Korea increased by 1.5°C in the last century, whilst global mean temperature only increased 

0.6°C (National Institute of Meteorological Sciences, 2015). 1 – 2°C additional increase of 

mean temperature is predicted in South Korea up to 2050, according to the climate change 

reports published by International Panel on Climate Change (IPCC) (citied by Climate 

Change Information Center, 2015). This change would affect the proportion of heating and 

cooling in energy consumption. Therefore, increasing thermal insulation, meant to reduce 

heating energy consumption, could also bring about an overheating risk, as mentioned in 

(Gupta and Gregg, 2013). For this reason, existing national building regulations focusing on 

heating, based on historical climate conditions for 20 – 30 years, would be required to take 

into account future climate projections (Xu et al., 2012).  

Despite this, the current building regulations continuously focus on intensifying the increase 

in the thermal insulation and the decrease in the U-values of windows. In hot summer 

continental climates, heating is the dominative factor of consuming energy in residential 

buildings, although cooling consumption has rapidly increased. However, a previous study 
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(Li et al., 2012) anticipated the significant increase of cooling energy loads compared to the 

decrease of heating energy loads in buildings in South Korea under climate change 

scenarios. On the other hand, other studies, such as (Collins et al., 2010; Wang et al., 2010), 

concluded that reducing heating consumption is still a more efficient strategy in heating 

dominant climates.  

Old high-rise apartment buildings, which consist of the largest proportion of buildings in 

South Korea (Statistics Korea, 2010b), have been expected to be refurbished in order to 

reduce their problematic excessive energy consumption (Kim, 2010). The current thermal 

regulations, reducing heating energy consumption, can be highly considered as a guideline 

for refurbishment strategies. However, no previous study critically evaluated this application 

for old high-rise apartment buildings, and the validity under climate projections.  

This chapter, therefore, attempts to assess the building thermal regulations, improving 

thermal conditions in building envelopes, as refurbishment strategies for existing apartment 

buildings constructed before 1980, and the efficiency of these strategies on reducing energy 

consumption with regard to future climate change scenarios. Three questions will be 

answered as below:  

 How sensitive are climate factors in effecting actual heating energy consumption in 

old high-rise apartment buildings? Is future climate change an important issue for 

refurbishing these buildings?  

 How does improving the thermal conditions of the building envelope effect heating 

energy consumption under the current climate conditions? Do the improved thermal 

conditions change cooling energy consumption during the summer? 

 Will the change in energy consumption with refurbishment strategies be valid under 

future climate change scenarios?  
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 Methods 7.2

The methods are designed in three steps. The first step is identifying relationships between 

climate factors and actual heating energy consumption, to determine the most sensitive 

climate factors affecting heating energy consumption and the significance of considering 

climate projections in refurbishing old existing apartment buildings. The second step is 

analysing the causality of improving variables in the building envelope with energy 

consumption, based on the four revisions of the building thermal regulations from 1987 to 

the present. The last step is measuring change in energy consumption with the holistic 

refurbishment strategies with the present and future climate conditions.    

  Identifying relationships between climate factors and heating energy 7.2.1

consumption 

This section intends to determine the sensitive climate factors affecting actual heating energy 

consumption in old existing apartment buildings. This sensitivity helps to answer whether 

climate projections are important considerations for creating refurbishment strategies. 

Monthly climate conditions were collected from annual climate reports (2011 – 2014), 

published by Korea Meteorological Administration (KMA, 2014). Six climate factors, 

importantly considered in buildings (Bougdah and Sharples, 2009), were chosen: air 

temperature, relative humidity, precipitation, total horizontal solar radiation, sunshine hours 

and wind speed.  

According to Köppen–Geiger climate classification (Kottek et al., 2006), the central region 

of South Korea is classified by the hot summer continental climates, with dry and cold 

winters and hot and humid summers. Seoul, one of the representative cities of the central 

region, shows 12.5°C as mean temperature (averaged maximum 18.1°C and averaged 

minimum 7.7°C) (KMA, 2015). However, specific weather conditions in heating and 

cooling seasons are more severe, as shown in   
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Figure  7.1. The range of mean temperatures in winter is from -5.9°C to 1.5°C, while the 

range is shifted to 22.4°C – 29.6°C in summer. Relative humidity becomes higher, up to 

about 80% in summer because of the precipitation concentrated in a short monsoon season 

from late July to early August. Horizontal solar radiation gradually increases from winter to 

late spring, but reduces from summer to autumn, which is also the same for sunshine hours. 

However, the short monsoon season brings about a significant drop in both solar radiation 

and sunshine hours in July (  

Figure  7.1 (d – e)).  

The averaged conditions of the five climate factors, excluding mean wind speed, for the last 

thirty years (1981 – 2010) are in between the weather conditions from 2011 to 2014, as 

described in (  

Figure  7.1). Thus, the range of climate conditions from 2011 to 2014 can cover the possible 

variation in current climate conditions in Seoul. The energy consumption in the four years 

(2011 – 2014) was applied to identify the relationship between climate factors and heating 

energy consumption.  

Table  7.1. Collinearity statistics of climate factors 

 

Climate factors 

Collinearity Statistics 

Tolerance Variance Inflation 

Factor (VIF) 

Air temperature 0.168 5.966 

Relative Humidity 0.217 4.611 

Precipitation 0.396 2.526 

Total horizontal solar radiation 0.249 4.018 

Sunshine hours 0.348 2.878 

Mean wind speed 0.691 1.447 

 

However, high levels of multicollinearity are found among the six climate factors 

(Table  7.1). Although the Variance Inflation Factor (VIF) levels are not extremely 

significant, but high enough to be concerned about their mutual influence (Field, 2009). 
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Hence, the multiple regression method did not accurately analyse the relationships between 

climate factors and heating energy consumption. Instead, polynomial regression was used, 

which analyse the relationship of the dependent variable with only one or two independent 

variable by minimising the sum of squared errors (Kleinbaum et al., 2013). Monthly average 

heating energy consumption from 2011 to 2014 in old high-rise apartment buildings, 

constructed before 1980, was used in the previous chapters (Chapter 4 and 5).  The result is 

interpreted in Section 7.3.1.  
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Figure  7.1. Monthly climate conditions in Seoul (2011 – 2014, average from 1981 to 2010): (a) Air temperature, (b) Relative Humidity, (c) Precipitation, (d) Total 

horizontal solar radiation, (e) Sunshine hours and (f) Mean wind speed (Source: annual reports 2011 – 2014 (KMA, 2014) and average climate data (1981 – 2010) 

(KMA, 2015)) 
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 Analysing impacts of refurbishment strategies on heating energy 7.2.2

consumption and overheating hours 

This section is intended to analyse whether or not the continuous improvement of thermal 

conditions in the building envelope, according to the building thermal regulations, brings 

about an efficient reduction in heating energy consumption. The assessment was divided into 

two parts. Firstly, the causality of individual variables in the building envelope on heating 

energy consumption was evaluated under the current climate conditions. The building 

envelope of existing apartment buildings was decomposed into the six parts: external walls, 

internal walls, roof (ceiling on the top floor), floor (floor on the ground floor), side walls, 

and windows. By improving the thermal conditions of these six parts, change in heating 

energy consumption was measured. The improvement of thermal conditions was designed 

by the four revisions of thermal regulations from 1987 and 2015, as illustrated in Table  7.2. 

Secondly, the causality of holistic refurbishment strategies with energy consumption was 

evaluated. The full strategies were comprised of the six variables in the building envelope of 

the thermal regulations. Heating energy consumption was measured by Zone HVAC: Low 

Temperature Radiant Variable Flow in EnergyPlus 8.0, while cooling energy consumption 

was assumed by the number of hours with zone mean temperatures higher than 26°C. 

The improvement of thermal conditions in the building regulations (1987 – 2015) has been 

focused on increasing thermal insulation and decreasing the U-values of windows in 

buildings. Table 7.2 interpreted the change in the building regulation that restricts the 

thickness of insultion in apartment building envelopes since 1980, which has been applied in 

this chapter. As the regulation was established in 1980, apartment buildings constructed 

before were hardly insulated. After the first and second revisions in 1984 and 1987, the 

envelope of apartment buildings could have 50mm insulation. Since this regulation has been 

enhanced under the government intent , the parts of apartment buildings that need to be 

insulated became more precise by separating the building parts in terms of the exposure of 

the outside.  The parts directly exposed to the outside have required thicker insulation than 
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the parts indirectly exposed to the outside. The thermal conditions of window were measured 

by U-values that represents the level of effectiveness in protecting heat transfer. The lower 

U-values indicate the more efficient heat protection as a material for insulation. It has been 

achieved by developing the glazing type from single and double to triple (Lee et al., 2012). 

Moreover, the thickness of insulation has annually been increased up to 25% since 2011. 

Further improvement can be upcoming.   

The existing apartment buildings in this chapter were limited to the buildings constructed 

before 1980. As a baseline model, the building energy model developed in the previous 

chapter (Chapter 6) was used. Thus, the outcome with the energy model can be specified not 

only for the whole building but also for individual units.  For the improvement of thermal 

insulation, the thermal conductivity of insulation was fixed at 0.034 W/m·K (MLIT, 2015b). 

Zone mean temperatures were measured to ensure comfortable indoor conditions, while 

assessing heating energy consumption. Historical weather data in 2014 (White Box 

Technologies, 2014), which was used to validate the building energy model, was applied, 

and EnergyPlus 8.0 (Crawley et al., 2001) was used for calculations. The impact of the 

decomposed variables in the building envelope on heating consumption is illustrated in 

Section 7.3.2. The holistic strategies are analysed in Section 7.3.3.  

Table  7.2. Thermal conditions of the building envelopes with the building regulation 

 Parts of 

apartment 

buildings 

Exposure of the 

outside 

Holistic strategies and the revised years Possibly 

upcoming 

(+25%) Before 

1980 

1987 2011 2014 2015 

1 External walls 

(mm) 

Direct exposure - 50 85 120 155 195 

2 Internal walls 

(mm) 

Indirect exposure - 50 60 80 105 130 

3 Roof/ ceiling of 

top floor (mm) 

Direct exposure 50 80 160 180 220 275 

4 Floor on ground 

floor (mm) 

Direct exposure - 50 105 140 175 220 

5 Side wall (mm) Direct exposure - 70 120 120 120 150 

6 Windows 

 (U-value) 

Direct exposure 5.9 5.9 2.1 1.5 1.2 1.08 

Indirect exposure 5.9 5.9 2.8 2.2 1.6 1.13 
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 Evaluating change in impact of refurbishment strategies under 7.2.3

future climate change 

This section was conducted to understand the efficiency of the current thermal regulations in 

2015 as a refurbishment strategy to reduce heating energy consumption despite climate 

change impact that possibly increases cooling energy consumption. A 25% increase and 

decrease in thermal conditions were added, according to the 25% increasing trend of the 

thermal regulations since 2011. The 25% decreased conditions are the same as the 

regulations in 2014. The 25% increased conditions from the regulations in 2015 are 

illustrated in Table  7.2.  

Climate projections for this chapter were chosen by identifying the recent trends of national 

carbon emissions (Olivier et al., 2012) and energy consumption in households in South 

Korea (Huh, 2013). For the last twenty years, both national carbon emissions and energy 

consumption in households have shown increasing trends, except for the noticeable drop in 

1998 due to an economic crisis (Figure  7.2). Various attempts such as the improvement of 

building regulations, have been implemented to reduce carbon emissions and energy 

consumption in housing since 2001. However, the outcome is still not visible in these 

indices, as shown in Figure  7.2.  

Two types of climate scenarios have been published by IPCC. The Special Report on 

Emissions Scenarios (SRES) focused on the assumption of driving forces in the future 

(Nakicenovic and Swart, 2000), while the Representative Concentration Pathways (RCPs) 

scenarios are based on the possible GHG emissions (van Vuuren et al., 2011). This chapter 

took one of the SRESs scenarios, A2 scenarios, in analysing energy consumption. This is 

because the A2 scenarios are set with fragmented and slower technological changes, which 

predict continuous increasing trends of carbon emissions. As shown in Figure  7.3, the 

projections of the A2 scenarios are between the RCP 4.5 and 8.5 scenarios; the RCP 4.5 

scenarios assume the rise in carbon emissions can be effectively suppressed at the current 
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levels of carbon emissions, whilst the RCP 8.5 scenarios are based on the continuous rise in 

carbon emissions.  

Typical Reference Year (TRY), acquired from ASHRAE International Weather for Energy 

Calculations 2.0 (IWEC2) (White Box Technologies, 2015), was used to calculate heating 

energy consumption under the typical climate conditions in Seoul. This TRY file was 

converted for future climate files in 2020 and 2050 to be applicable for building simulation, 

based on the A2 scenarios in SRES scenarios. Climate Change World Weather File 

Generator (CCWorldWeatherGen) (Jentsch et al., 2013) was used to generate the future 

climate files. This tool has been applied in other studies to produce future climate data for 

building simulation such as (Peng and Elwan, 2014). The result is interpreted in Section 

7.3.4.  
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Figure  7.2. Current trends of national carbon emissions and energy consumption in households 

in South Korea (Source: Olivier et al., 2012; Huh,  2013)) 
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Figure  7.3. Change in mean temperature in Seoul under different climate projections (historical, 

RCP4.5, SRES_A2 and RCP8.5 scenarios) (Source: Climate data (1981-2010) published by (KMA, 

2012)) 

 

 Results 7.3
 

The results are interpreted by four sections. Section 7.3.1 analyses the relationships between 

climate factors and heating energy consumption in 2011 – 2014. Section 7.3.2 describes the 

causality in improving thermal condition of variables in the building envelope and heating 

energy consumption. Section 7.3.3 illustrates change in heating consumption and 

overheating hours with the holistic refurbishment strategies under the current climate 

conditions. The strategies are also evaluated with climate change scenarios, which are 

described in Section 7.3.4.  

 Relationships between climate factors and heating energy 7.3.1

consumption 

  

 

Figure  7.4 illustrates the polynomial regression analysis between climate factors and heating 

energy consumption. As expected, the change in temperatures is the most determinant factor 
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corresponding to heating energy consumption in existing high-rise apartment buildings. 

Heating consumption is rising when the dry-bulb temperature is below 20°C. The actual 

increasing trend of heating energy consumption is shown by the dry-bulb temperature below 

18°C, and the consumption is increased up to 32 kWh/m
2
/year when the dry-bulb 

temperature reaches below -7°C. The consumption is increased about 0.9 – 1.2 kWh/m
2
/year 

per 1°C decrease of dry-bulb temperatures when dry-bulb temperature is between -10°C and 

10°C. 

Relative humidity and total horizontal solar radiation have a moderate relationship with 

heating energy consumption, shown by R-squared values of 0.39 and 0.46 respectively, as 

they showed the noticeable change in months. However, precipitation and sunshine hours do 

not indicate as significant relationships as relative humidity and solar radiation. This is 

because precipitation is only concentrated in July and August, whilst no significant 

difference is identified among other months (  

 

Figure  7.4 (c)). Beside, monthly change in sunshine hours is not robust enough, due to the 

shorter hours in July because of the monsoon (  

 

Figure  7.4 (e)).  Monthly change in wind speed indicates the limited interpretation for 

heating energy consumption. However, this does not mean the two factors are not related to 

change in heating energy consumption. More elaborate data would be required for more in-

depth understanding.   

In short, the change in the dry-bulb temperatures demonstrates the sensitive association with 

heating consumption. In other words, monthly change in heating energy consumption is 

heavily dependent on outdoor temperatures, which brings about 0.9 – 1.2 kWh/m
2
/year of 

heating consumption per 1°C change in dry-bulb temperatures between -10°C and 10°C. 
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Therefore, climate projections, indicating the increase of mean temperature in South Korea, 

could impact on energy consumption in buildings. Furthermore, the other factors also need 

to be carefully regarded in building energy consumption, as the change in temperature has 

the significant levels of multicollinearity with the other five climate factors (Table  7.1).  
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Figure  7.4. Relationships between climate factors and heating energy consumption: (a) Air temperature, (b) Relative humidity, (c) Precipitation, (d) Solar 

horizontal radiation, (e) Sunshine hours and (f) Mean wind speed 
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 Causality of variables in building envelope with heating energy 7.3.2

consumption 

Improving the thermal conditions of the six variables in the building envelope contributes to 

reduce heating energy consumption under the current climate conditions, as shown in 

Figure  7.5. The most significant reduction is found with side walls. The heating 

consumption is significantly decreased from 126 kWh/m
2
/year to 83 kWh/m

2
/year by 

inserting 70mm insulation, whilst zone mean temperature is increased from 18.5°C to 

19.3°C. However, only 3 kWh/m
2
/year of heating energy consumption is dropped by 

increasing the thickness of insulation from 70 mm to 120 mm.  

The second significant variable is improving the U-values of windows. This brings about an 

average heating energy consumption is reduced from 126 kWh/m
2
/year to 115 kWh/m

2
/year, 

whilst zone mean temperature is stable at 18.5 – 18.6°C. Specifically, about 7 kWh/m
2
/year 

of reduction is caused by improving the U-values of windows with 2.1W/m
2
·K (directly 

exposed to the outside) and 2.8 W/m
2
·K (indirectly exposed to the outside). 3.4 

kWh/m
2
/year of further reduction in heating energy consumption is also achieved by 

strengthening the U-values of windows with 1.2 W/m
2
·K (directly exposed to the outside) 

and 1.6W/m
2
·K (indirectly exposed to the outside).  

The third noticeable reduction is arising from increasing the thickness of insulation on 

external walls. The average heating energy consumption is reduced from 126 kWh/m
2
/year 

to 119 kWh/m
2
/year with stable zone mean temperature with 18.6°C.  The largest reduction 

(5.5 kWh/m
2
/year) is found by inserting 50 mm of insulation on external walls. However, 

the reduced heating consumption is limited to about 2 kWh/m
2
/year when the thermal 

insulation increased from 85 mm to 155 mm.  

Unlike the external walls, no significant effect on the average heating energy consumption is 

shown by increasing thermal insulation on internal walls. The increase in the thickness of 
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insulation to 105 mm results in only about 1 kWh/m
2
/year reduction in the average heating 

energy consumption. The first reason for this ineffective reduction could be the small 

amount of area of the internal walls, which are mainly comprised of glass doors. The second 

reason would be that the walls are not directly exposed to the outside.  

Improving the insulation on the roof and ground floors does not noticeably reduce the 

average heating energy consumption. However, it effectively reduced heating energy 

consumption on the top and ground floors. A significant reduction from 182 kWh/m
2
/year to 

106 kWh/m
2
/year is found by inserting 50 mm of insulation on the ground floor. Moreover, 

about 10 kWh/m
2
/year of heating energy consumption is additionally reduced by increasing 

the thickness of insulation from 105 mm to 175 mm. Although less significant reduction is 

shown on the top floor, the heating consumption is also reduced, from 141 kWh/m
2
/year to 

134 kWh/m
2
/year. 

In summary, the average heating energy consumption is significantly reduced by inserting 

thermal insulation in the six parts of the building. However, increasing thermal insulation 

does not always bring about an unconditional reduction in heating energy consumption. The 

efficiency especially becomes much lower with the regulations revised in 2011 (Table  7.2), 

apart from the U-values of windows, and the thickness of insulation on the ground floor. 

Hence, improving thermal conditions in buildings has to be critically designed.  
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Figure  7.5. Impact of variables in building envelope on heating energy consumption: (a) Side walls, (b) Windows, (c) External walls, (d) Internal walls, (e) Floor on 

the ground floor and (f) Roof on the top floor 
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 Change in heating energy consumption and overheating hours with 7.3.3

the holistic refurbishment strategies 

The holistic refurbishment strategies bring about changes in both heating energy 

consumption and the number of hours with zone mean temperatures exceeding 26°C 

(Figure  7.6). However, far little change is shown after the revisions in 2011, as also 

previously identified in Section 7.3.2.  

The most significant reduction in heating energy consumption is shown by inserting the sets 

of thermal insulation, following by the regulation in 1987. The average heating energy 

consumption is reduced from 126.6 kWh/m
2
/year to 73.5 kWh/m

2
/year. On the other hand, 

the improved thermal performance in the building energy model brings about the increase of 

overheating hours. 232 hours with zone mean temperatures exceeding 26°C are added by this 

improvement, where cooling is required. With the air-conditioner consuming 1.3 kWh/hour 

(KEPC, 2013), a total 302 kWh/year of increased electricity consumption can occur, 

whereas the average heating energy consumption is reduced by 53.1 kWh/m
2
/year (4386 

kWh/year). This comparison shows that the reduced heating energy consumption 

significantly outweighs the increased cooling energy consumption. 

The improved building conditions based on the regulations in 2011 result in an average 

heating energy consumption of 60.2 kWh/m
2
/year. 13.5 kWh/m

2
/year (1098 kWh/year) of 

the average heating consumption is reduced more from the regulations in 1987, whereas 34 

hours of required cooling (44.2 kWh/year) is added. By the improvement in thermal 

regulations from 2014 to 2015, only 2 kWh/m
2
/year (165.2 kWh/year) of the average heating 

energy consumption is reduced. Interestingly, this leads to a reduction in overheating hours 

from 3365 to 3292, resulting in a 96.2 kWh of extra reductions in electricity consumption. In 

total 261.4 kWh/year energy consumption can be reduced. 
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Change in heating energy consumption and overheating hours differ in the different 

locations of apartment units, as shown in Figure  7.7. The most significant reduction in total 

energy consumption is found in the unit on the ground floor, compared to the other fourteen 

floors. The heating energy consumption on the ground floor is reduced from 182.0 

kWh/m
2
/year to 54.0 kWh/m

2
/year. However, the increased overheating hours are also the 

most significant on the ground floor, from 2882 hours to 3178 hours per year, which causes 

only 384.8 kWh/year increased cooling loads.  

In heating dominated climates the methods of increasing thermal insulation and the U-values 

of windows are efficient approaches in reducing heating energy consumption, despite the 

increase of cooling loads during summer. However, the reduction in total energy 

consumption is limited, as shown in Figure  7.8. Specifically, there were nearly no change 

between the regulation in 2014 and 2015.  
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Figure  7.6. Impact of holistic refurbishment strategies, revised in 1987, 2011, 2014 and2015: (a) 

change in averaged heating energy consumption and (b) overheating hours 
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Figure  7.7. Impact of refurbishment strategies: (a) change in the unit-specific heating energy 

consumption and (b) overheating hours depending on the locations of units 
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Figure  7.8. Change in total energy consumption in individual apartment units depending on the 

holistic refurbishment strategies based on the thermal regulations in 1987, 2011, 2014 and 2015 
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 Impact of refurbishment strategies under future climate change 7.3.4

scenarios 

Figure  7.9 and 7.10 depict the average heating energy consumption and overheating hours 

with the three holistic refurbishment strategies under the three different climate conditions: 

TRY, 2020 and 2050. Figure  7.11 and 7.12 demonstrate how these two factors, heating 

consumption and overheating hours, are changed in the different locations of apartment 

units.  

 The current regulations in 2015  

The average heating energy consumption, with the current regulations revised in 2015, is 

61.8 kWh/m
2
/year with the TRY, whereas the number of overheating hours is 2747. 

According to the A2 scenarios, this consumption is reduced to 57.1 kWh/m
2
/year in 2020 

and 48.2 kWh/m
2
/year in 2050. The climate scenarios also increase the overheating hours to 

3150 in 2020 and 3513 in 2050. In 2020, the increased overheating hours increases cooling 

energy consumption up to 524 kWh/year. This value slightly outweighs the reduction in 

heating energy consumption, 4.7 kWh/m
2
/year (389 kWh/year). However, the reduction in 

heating energy consumption (1123 kWh/year) is slightly higher than the increased cooling 

consumption (996 kWh/year) in 2050. The total change can be about a 127 kWh/year 

reduction in total energy consumption. 

The heating consumption and overheating hours in individual units are significantly different 

under the locations of units (Figure  7.11 and 7.12). Specifically, the most significant 

reduction occurs in the unit on the top floor, with 18 kWh/m
2
/year in 2050, whilst the 

smallest reduction with 10 kWh/m
2
/year is found on the ground floor. Both floors show the 

less number of overheating hours, compared to the average value. The top floor has 102 less 

overheating hours than the average in 2050, whilst the ground floor requires 133 less 

overheating hours. This change can bring about a 168 kWh/year increase in total energy 
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consumption on the ground floor, but a 522 kWh/year decrease in consumption on the top 

floor (Figure  7.13).  

Despite the reduction in total energy consumption, the amount of reduced total energy 

consumption, a maximum of 552 kWh/year on the top floor, may be insignificant with 

respect to the general energy consumption in these buildings.  

 25% decreased thermal conditions (the regulation in 2014) 

The average heating energy consumption is 62.8 kWh/m
2
/year, whilst the overheating hours 

is 2757 with the TRY. The average heating energy consumption is reduced to 58.1 

kWh/m
2
/year in 2020 and 48.9 kWh/m

2
/year in 2050, whilst the overheating hours can be 

3164 and 3529, respectively. As a result, only 144.6 kWh/year reduction in total energy 

consumption can be expected in 2050 (1148.4 kWh/year decrease in heating energy 

consumption and 1003.6 kWh/year increase in cooling energy consumption). 

The result also show that the 25% decrease in thermal conditions indicate similar results in 

heating energy consumption and overheating hours, compared to the current regulations 

revised in 2015. Heating energy consumption with the 25% decrease in thermal conditions is 

only 1 kWh/m
2
/year higher than the consumption with the thermal conditions in 2015, whilst 

10 more overheating hours are found. 1 kWh/m
2
/year higher heating energy consumption 

can be still continued in 2020, and 14 extra overheating hours are shown. In 2050, 17 more 

overheating hours are found with the 25% decrease in thermal condition, and 0.7 

kWh/m
2
/year higher heating consumption is identified.  

The change in unit-specific energy consumption with the 25% decrease in thermal 

conditions is also nearly similar to the result from the current conditions in 2015. The most 

significant reduction occurs in the unit on the top floor, with 18 kWh/m
2
/year, whilst the 

smallest reduction of 10 kWh/m
2
/year is found on the ground floor. This can bring about a 

136 kWh/year increase in total energy consumption on the ground floor, but a 557 kWh/year 

decrease in the consumption on the top floor.   

In this respect, the improvement of thermal conditions in 2015 is not efficient in reducing 

both heating energy consumption and overheating hours with TRY, compared to the result 
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with the thermal regulation in 2014. Moreover, the inefficient reduction could be continued 

in 2020 and 2050.  
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Figure  7.9. Change in heating energy consumption under future climate change: (a) Typical 

Reference Year, (b) 2020 and (c) 2050 
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Figure  7.10. Change in overheating hours under future climate change: (a) Typical Reference 

Year, (b) 2020 and (c) 2050 



Chapter 7. Implementation of refurbishment measures 

 

 

201 

 

  25% increased thermal conditions  

The average heating energy consumption with the 25% increase in thermal conditions is 56.1 

kWh/m
2
/year with TRY, whilst the number of overheating hours is 2878. The heating energy 

consumption is reduced to 51.7 kWh/m
2
/year in 2020 and 43.5 kWh/m

2
/year in 2050, whilst 

the overheating hours becomes 3279 in 2020 and 3633 in 2050. The increased cooling 

energy consumption is 157.8 kWh/year higher than the reduced heating energy consumption 

in 2020. However, the reduced heating energy consumption is, reversely, 59.3 kWh/year 

higher than the increased cooling energy consumption in 2050.  

In comparison to the results of the current thermal conditions in 2015, the 25% increase in 

thermal insulation results in about 5 – 6 kWh/m
2
/year lower heating energy consumption, 

whereas the number of overheating hours is increased by about 131. However, the difference 

in heating energy consumption is continued in 2020 and 2050.  The difference in 

overheating hours is reduced to 129 in 2020 and 120 in 2050. Unlike the result of the 25% 

decrease in thermal conditions, the more prominent change in reducing heating energy 

consumption and overheating hours is shown.  

The reduction in heating consumption on the top floor is 17 kWh/m
2
/year, whilst the 

reduction on the ground floor is 9 kWh/m
2
/year. The number of overheating hours is 

gradually reduced from the second floor to the ground floor and from 12
th
 floor to the top 

floor. The top and ground floors indicate 168 and 124 less overheating hours respectively, 

exceeding 26°C of zone mean temperature higher than the average value. The change can 

reduce total energy consumption on the top floor up to 401 kWh/year. However, the total 

energy consumption on the ground floor is increased up to about 193 kWh/year due to the 

smaller amount of heating energy consumption reduction.   

In summary, the total energy consumption with the 25% increase in thermal conditions can 

still be reduced by climate change impact, but limited.  The increased overheating hours 

brings about more cooling consumption. However, the amount of energy for heating is 

reduced more than the increased cooling energy.  
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Figure  7.11. Impact of future climate change on the unit-specific heating energy consumption: 

(a) Typical Reference Year, (b) 2020, (c) 2050 
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Figure  7.12. Impact of future climate change on overheating hours in individual units: (a) 

Typical Reference Year, (b) 2020, (c) 2050 
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Figure  7.13. Change in total energy consumption with three refurbishment strategies under the 

future climate change 

 

 Summary 7.4
 

In this chapter, refurbishment strategies, defined by the building thermal regulations in 1987, 

2011, 2014, 2015 and the upcoming conditions, were evaluated for existing high-rise 

apartment buildings with regard to future climate change scenarios. This has been carried out 

by the building energy model developed for existing apartment buildings to measure the 

efficiency of reducing heating energy consumption.  

The actual heating energy consumption in high-rise apartment buildings sensitively 

corresponds to the dry-bulb temperature. 0.9 – 1.2 kWh/m
2
/year of heating consumption was 

changed by 1°C change in dry-bulb temperature between -10°C and 10°C. Thus, climate 

projections, indicating the increase of mean temperature in South Korea, could impact on 

energy consumption in buildings.  

By upgrading the thermal conditions of the six parts of the building envelope, heating energy 

consumption was significantly reduced, but the reduction was limited. Inserting thermal 

insulation always brought about the most significant reduction up to 76 kWh/m
2
/year. Only 

1 – 2 kWh/m
2
/year reduction was found by further improvement of the thermal conditions 
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with the regulations after 2011. Moreover, the holistic approaches also showed the limited 

reduction in heating energy consumption. Despite the increase of overheating hours, the 

reduced heating energy consumption outweighed the increased cooling consumption. 4100 

kWh/year of the total energy consumption in the baseline model was reduced by inserting 

thermal insulation, following the regulation in 1987. However, inefficient change in total 

energy consumption with only 264.1 kWh/year was found between the thermal regulations 

in 2014 and 2015.  

With the climate change scenarios, heating energy consumption can be reduced, whilst 

cooling energy consumption is expected to be increased.  However, the change in total 

energy consumption is between 50 – 600 kWh/year, which would be insignificant in the 

average energy consumption in residential buildings in South Korea.  

The thermal conditions with the current building regulations in 2015 did not result in an 

efficient reduction in heating energy consumption, compared to the previous regulations in 

2014. Almost, similar results in the heating energy consumption and overheating hours were 

identified in the TRY, 2020 and 2050. Although 25% increased conditions reduced heating 

energy consumption, as well as overheating hours with regard to climate change, the 

difference is limited to the 5 – 6kWh/m
2
/year reduction in heating energy and 131 hours of 

overheating period with both current and future climate conditions.   

Consequently, the climate change effect in South Korea with heating dominant climate 

conditions is not significant for annual energy consumption in old high-rise apartment 

buildings. Therefore, refurbishment strategies should focus on reducing heating energy 

consumption. However, the current approach, improving the thickness of insulation and the 

window conditions in the building envelope, showed limited effects on reducing heating 

consumption. Thus, other methods need to be considered.  

 



 

206 

 

 

Chapter 8 

8 Conclusions and future works 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8. Conclusions and future works 

 

 

207 

 

This thesis set out to explore the building energy models of high-rise apartment buildings, 

and has integrated the influential factors causing variation in actual energy consumption in 

existing high-rise apartment buildings in South Korea. The previous literature on this 

subject, and specifically in the context of South Korea, is unsatisfactory, due to the 

influential factors disregarded in the conventional building energy models. To provide 

rigorous estimation of refurbishment strategies, which can be achieved in real situations, 

conventional building energy models needed to be improved. The conditions of the 

influential factors were sought and optimised for the building energy model of existing 

apartment buildings, based on the actual energy consumption, through the process of this 

thesis. As a result, the efficient building features on energy consumption are used as a guide 

to classify the existing apartment buildings to treat the variations arising from the physical 

characteristics. Moreover, the new standardised conditions of occupants’ behaviours 

consuming heating and electricity could provide the adapted data for a building energy 

model for these buildings. Furthermore, the specified approach of modelling in regard to 

variation in individual units let the building energy model be more comprehensive. Key 

findings of each factor are addressed in the following section.  

 Contributions of the thesis 8.1

Chapter 4 questioned how to define the physical characteristics of existing apartment 

buildings to control the variation arising from the building features affecting energy 

consumption. The question was approached by analysing the transformation of the building 

features in existing apartment buildings and its relation to actual energy consumption. The 

effectiveness of building features in changing energy consumption were quantified, and 

applied to classify existing apartment buildings for building energy models as well as 

refurbishment. 

The main contribution of this chapter is the classification of building features affecting 

energy consumption in old existing high-rise apartment buildings with empirical 
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verification. It has been revealed in this research that the first priority of the classification 

should be given to building envelopes. Therefore, construction years, representing the 

thermal conditions of the building envelopes, have to be the first consideration for the 

building energy model as well as refurbishment. Heating methods and unit sizes can be 

followed as subsidiary categories. By using this classification, the building energy model of 

the existing apartment buildings could control the variation arising from the physical 

characteristics.  

Chapter 5 focused on the variation in actual energy consumption caused by occupants’ 

behaviours in controlling heating and electricity. Energy use in existing apartment buildings 

built in the 1970s – 1980s was 10 – 30% deviated from, the average, despite the effective 

building features that  were constrained not to impact on energy consumption. Gaussian 

Process Classification dealt with the sets of occupants’ behaviours to functions. Bayesian 

inference allowed inferring the distribution of occupants’ behaviours consuming heating and 

electricity in South Korean households from actual energy consumption. The inferred results 

provide the quantified conditions of controlling heating systems and electric devices with 

their probabilities.  

A key contribution of this chapter is a new approach in using the stochastic data of 

occupants’ behaviours consuming energy in building simulation. For apartment buildings 

which target unspecified ordinary people, the unpredictable occupants’ behaviours with high 

levels of variation need to be treated by probabilistic values, rather than deterministic values. 

The 90% of probability of heating consumption was drawn by the set-point temperature 

between 17°C and 20°C, when three to eight hours of the operation in 25% deviation. 

Electricity consumption with 25% deviation was defined by three to six hours for the several 

effective appliances. These findings benefit the building energy model in selecting the 

profile of occupants’ behaviours consuming energy only with valid parameters, and reduce 

the uncertainties in the model estimation.  
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Chapter 6 looked at the existing apartment buildings at a more precise scale, the individual 

apartment units. The conventional modelling was fragmented to reflect the real situation of 

apartment buildings, not only as one large building, but also as single units individually 

controlled by independent occupants. This study attempted to combine both of these in the 

building energy model with actual consumption data to reduce the variation arising from 

individual units. The energy model was, firstly, established with regard to the variation in 

the physical conditions of apartment units in different locations. Then, the new numerical 

model was created to integrate individual heating controls in apartment units and the 

interaction between floors into the first building energy model, and applied to seek the 

dataset of unit-specific heating controls determining actual heating consumption in each unit.  

The contribution of this chapter is encompassing the fragmented approaches of treating 

individual apartment units in the conventional building energy models. This comprehensive 

understanding of apartment buildings upgraded the building energy model of apartment 

buildings to take variation arising from individual units into account. It has been found that 

two conditions which had a high correlation with heating energy consumption need to be 

considered to take into account this unit-specified heating energy consumption: heating 

controls in individual apartment units, consisting of heating set-point temperatures and 

heating hours, and heating set-point temperatures between floors, concerning the interlinked 

heat transfer between floors through the sharing slabs in the whole apartment building. It has 

been revealed that the set-point temperatures were distributed between 18°C and 22°C 

depending on the unit locations, with seven and eight hours of heating in operation. This 

dataset of heating controls, which is specified by individual units with the different 

locations, provided the individual setting of heating in each apartment unit.  

Chapter 7 implemented the developed building energy model to evaluate the building 

thermal regulations from 1987 to the present, as refurbishment strategies for existing 

apartment buildings. The initial question of this work was whether the refurbishment 
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strategies, created by the building thermal regulations from 1987 to the present, result in a 

continuous reduction in energy consumption in the existing apartment buildings under future 

climate change.  

It has been found that the significant reduction in total energy consumption can be achieved 

with the refurbishment strategies conditioned with the regulations of 1987 and 2011. 

Efficient energy reduction can be expected with the thermal conditions of these regulations. 

Under climate change, it has been revealed that South Korea in heating dominant climates 

would not have a great difference in total energy consumption with only about 50 – 600 

kWh/year in 2050. The findings of this chapter suggest that policy on thermal regulations in 

buildings in South Korea should focus on reducing heating energy consumption rather than 

considering the possible increase of cooling loads due to climate projection. Despite this, it 

has been found that the current thermal regulation of 2015, with a 25% improvement from 

the conditions in 2014, is inefficient.   

 Future works 8.2

Through the whole process of the research, this study attempted to improve the building 

energy model for existing high-rise apartment buildings, by treating the uncertain and 

disregarded factors inferred from the actual energy consumption to reflect real situations. 

However, there are some still limitations, which could be worthwhile for future work.  

Firstly, this study only used buildings in Seoul, South Korea. The influential factors 

investigated in this study are essential for buildings in different locations. Therefore, the 

factors can be differently defined in different locations, regarding construction details, 

climates and occupants, not only with other cities in South Korea, but also other Asian 

countries that have a large number of these buildings, such as China, Hong Kong and 

Singapore. For instance, Hong Kong is classified as the sub-tropical climate conditions; thus 

cooling energy consumption is more important issue than heating. In a previous study 

(Cheung et al., 2005), the thickness of insulation was experimented with its relation to 



Chapter 8. Conclusions and future works 

 

 

211 

 

cooling energy consumption in high-rise apartment buildings in Hong Kong. In China, due 

to the wide range of climate conditions, the thermal conditions of buildings are differently 

determined by regions, as shown in (Ling et al., 2015). These diversities could be compared 

to provide the broader understanding of high-rise apartment buildings in Asia. 

Secondly, the scope of buildings is limited to existing apartment buildings constructed 

before 2001. However, this scope could be expanded or shifted to other periods. During 

analysis in Chapter 4, an interesting finding was that high energy consumption is also found 

in apartment buildings constructed between 2008 and 2010, despite the view that the 

building conditions are expected to be more energy-efficient. This unexpected higher 

consumption needs to be interpreted. Moreover, this would provide the different 

quantifications of the influential factors used for building energy models.  

Thirdly, this study only focused on the three influential factors, physical characteristics, 

occupants’ behaviours controlling heating and electricity and individual units. Despite the 

significance of these three factors in buildings, the focus can be extended to other factors or 

even more specified with these three. For example, occupants’ window opening behaviours 

controlling ventilation could be another factor that can be extended, as reviewed in (Fabi et 

al., 2012). This could be determined by buildings in the specific context and comparable 

with others. These comparative studies could provide a broader range of the understanding 

of treating these uncertain and disregarded factors in the building energy model of high-rise 

apartment buildings.  
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Appendix A 
 

Data of building features and energy consumption  

 

Ref Layout Block size Total floor area Length of 

Buildings 

Envelope Average unit sizes Heating 

Method 

Constructio

n type 

Space 

heating 

Electricit

y 

1 Linear less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 District Mixed 100.8245 59.5034 

2 Square more than 15 buildings 10,001-13,000m2 Core 4 1976-1980 71-100m2 Central Mixed 146.4440 100.1017 

3 Linear 6-15 buildings 10,001-13,000m2 Core 2 1985-1987 101-120m2 Central Mixed 134.5834 82.9543 

4 Linear 6-15 buildings 10,001-13,000m2 Core 4 1985-1987 more than 120m2 Central Stair 140.7532 83.5659 

5 grid less than 5 buildings More than 13,001m2 Core 2 1988-2000 101-120m2 Central Mixed 103.0646 86.8373 

6 grid less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 District Stair 158.8055 96.7405 

7 grid 6-15 buildings Less than 10,000m2 Core 4 1981-1984 101-120m2 Individual Mixed 151.1495 97.7749 

8 Square 6-15 buildings More than 13,001m2 Core 3 1976-1980 more than 120m2 Individual Mixed 155.6599 110.6973 

9 grid 6-15 buildings 10,001-13,000m2 Core 4 1976-1980 more than 120m2 Individual Mixed 163.9712 107.3454 

10 Linear 6-15 buildings More than 13,001m2 Core 3 1981-1984 more than 120m2 Central Mixed 124.3461 98.1676 

11 Linear less than 5 buildings More than 13,001m2 Core 4 1981-1984 more than 120m2 Individual Mixed 136.0940 110.2094 

12 Square 6-15 buildings More than 13,001m2 Core 3 1985-1987 more than 120m2 Individual Mixed 128.6402 101.3513 

13 Linear more than 15 buildings 10,001-13,000m2 Core 4 1981-1984 more than 120m2 Individual Mixed 151.0455 103.3513 

14 grid more than 15 buildings More than 13,001m2 Core 3 1976-1980 more than 120m2 Individual Mixed 156.5666 107.3967 

15 Linear 6-15 buildings 10,001-13,000m2 Core 3 1981-1984 more than 120m2 Central Stair 145.5362 107.2381 

16 Square less than 5 buildings Less than 10,000m2 Core 4 1981-1984 more than 120m2 Individual Stair 153.9995 100.8795 

17 Linear more than 15 buildings More than 13,001m2 Core 2 1976-1980 101-120m2 Individual Corridor 173.8685 95.8795 

18 Linear 6-15 buildings More than 13,001m2 Core 4 1981-1984 more than 120m2 Individual Stair 145.0110 101.6313 

19 Square less than 5 buildings 10,001-13,000m2 Core 4 1981-1984 more than 120m2 Individual Stair 138.6358 101.2057 
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20 Square 6-15 buildings Less than 10,000m2 Core 3 1981-1984 101-120m2 Individual Stair 142.8603 99.3223 

21 Linear more than 15 buildings More than 13,001m2 Core 4 1985-1987 more than 120m2 Individual Mixed 104.7771 98.6639 

22 Square 6-15 buildings Less than 10,000m2 Core 4 1988-2000 101-120m2 Individual Mixed 118.0085 93.8542 

23 Square less than 5 buildings Less than 10,000m2 Core 3 1985-1987 71-100m2 Individual Stair 79.5575 101.6911 

24 Square less than 5 buildings More than 13,001m2 Core 3 1985-1987 101-120m2 Individual Mixed 150.9976 85.3086 

25 Square less than 5 buildings More than 13,001m2 Core 2 1988-2000 more than 120m2 Individual Stair 81.4686 114.8413 

26 grid 6-15 buildings Less than 10,000m2 Core 2 1988-2000 101-120m2 Individual Mixed 78.8850 105.2758 

27 Square 6-15 buildings More than 13,001m2 Core 2 1988-2000 more than 120m2 District Mixed 69.8231 104.0296 

28 Square less than 5 buildings Less than 10,000m2 core 1 1988-2000 101-120m2 Individual Corridor 76.1782 93.2339 

29 Linear less than 5 buildings More than 13,001m2 core 1 1988-2000 71-100m2 District Corridor 63.9580 87.1210 

30 grid less than 5 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Central Mixed 107.1202 94.0579 

31 Square 6-15 buildings Less than 10,000m2 Core 3 1976-1980 more than 120m2 Individual Mixed 150.5591 100.1592 

32 Linear less than 5 buildings 10,001-13,000m2 Core 4 1988-2000 101-120m2 Individual Stair 136.3240 101.6168 

33 Square 6-15 buildings More than 13,001m2 Core 2 1981-1984 more than 120m2 Individual Mixed 104.9421 108.0573 

34 grid 6-15 buildings Less than 10,000m2 Core 2 1988-2000 101-120m2 Individual Mixed 102.7253 104.6586 

35 Square less than 5 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Mixed 97.9403 109.7018 

36 grid less than 5 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Individual Mixed 86.7140 109.3539 

37 Linear more than 15 buildings More than 13,001m2 core 1 1976-1980 101-120m2 Individual Mixed 106.2227 103.7738 

38 Square more than 15 buildings Less than 10,000m2 Core 4 1981-1984 101-120m2 Individual Mixed 127.2736 100.2994 

39 Square more than 15 buildings More than 13,001m2 Core 4 1985-1987 more than 120m2 Individual Mixed 92.0635 105.8801 

40 Square 6-15 buildings Less than 10,000m2 Core 3 1981-1984 101-120m2 Individual Stair 101.2023 97.6314 

41 Square 6-15 buildings 10,001-13,000m2 Core 3 1981-1984 more than 120m2 Central Mixed 144.0756 93.2744 

42 Square 6-15 buildings Less than 10,000m2 Core 3 1985-1987 more than 120m2 Individual Stair 86.5900 87.5292 

43 Square 6-15 buildings Less than 10,000m2 Core 3 1981-1984 more than 120m2 Individual Mixed 95.5796 83.1628 

44 grid 6-15 buildings 10,001-13,000m2 Core 2 1985-1987 71-100m2 Individual Mixed 91.8246 80.1457 

45 Square 6-15 buildings 10,001-13,000m2 Core 4 1981-1984 more than 120m2 Individual Mixed 82.5782 88.8914 

46 Linear 6-15 buildings Less than 10,000m2 Core 3 1981-1984 more than 120m2 Individual Stair 88.5449 96.0908 
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47 Square 6-15 buildings 10,001-13,000m2 Core 3 1981-1984 more than 120m2 Individual Corridor 83.5186 92.7631 

48 Linear 6-15 buildings Less than 10,000m2 Core 3 1981-1984 more than 120m2 Individual Corridor 79.6220 99.3635 

49 grid less than 5 buildings Less than 10,000m2 Core 3 1988-2000 71-100m2 Individual Stair 122.9608 117.6341 

50 Linear less than 5 buildings More than 13,001m2 core 1 1976-1980 more than 120m2 Individual Corridor 121.0600 101.8403 

51 Square less than 5 buildings 10,001-13,000m2 Core 2 1976-1980 more than 120m2 District Mixed 125.3474 94.9942 

52 grid less than 5 buildings More than 13,001m2 Core 4 1981-1984 more than 120m2 Individual Mixed 136.0019 106.9173 

53 Square less than 5 buildings 10,001-13,000m2 core 1 1981-1984 101-120m2 Individual Mixed 143.1924 89.2784 

54 Linear 6-15 buildings 10,001-13,000m2 core 1 1976-1980 101-120m2 Individual Corridor 119.4338 100.9302 

55 Square less than 5 buildings More than 13,001m2 Core 4 1976-1980 more than 120m2 Individual Mixed 146.0584 99.5515 

56 Square less than 5 buildings More than 13,001m2 Core 2 1981-1984 101-120m2 Individual Corridor 111.7794 82.3829 

57 Linear less than 5 buildings More than 13,001m2 Core 2 1981-1984 Less than 70m2 Individual Corridor 122.8221 73.4575 

58 Linear less than 5 buildings More than 13,001m2 Core 2 1981-1984 101-120m2 Individual Corridor 112.4233 85.8793 

59 Linear 6-15 buildings 10,001-13,000m2 Core 2 1976-1980 101-120m2 Individual Mixed 117.5721 103.2465 

60 Square 6-15 buildings 10,001-13,000m2 Core 2 1981-1984 101-120m2 District Mixed 123.7432 99.2802 

61 grid less than 5 buildings More than 13,001m2 Core 2 1976-1980 101-120m2 Individual Corridor 125.2864 106.3686 

62 grid less than 5 buildings Less than 10,000m2 Core 2 1985-1987 71-100m2 Individual Mixed 127.2685 99.2424 

63 Square 6-15 buildings More than 13,001m2 core 1 1976-1980 more than 120m2 Individual Mixed 110.5539 102.1668 

64 Square more than 15 buildings More than 13,001m2 Core 2 1981-1984 71-100m2 Individual Mixed 135.3571 100.1654 

65 Linear 6-15 buildings Less than 10,000m2 Core 2 1981-1984 more than 120m2 District Mixed 101.8713 96.3444 

66 Linear less than 5 buildings Less than 10,000m2 core 1 1985-1987 more than 120m2 Individual Mixed 93.0931 100.5004 

67 Linear 6-15 buildings 10,001-13,000m2 Core 2 1976-1980 101-120m2 Individual Mixed 136.5092 86.0036 

68 Linear more than 15 buildings 10,001-13,000m2 Core 3 1976-1980 more than 120m2 Individual Mixed 127.8237 100.1812 

69 Linear less than 5 buildings 10,001-13,000m2 Core 3 1981-1984 Less than 70m2 Individual Corridor 127.0199 68.5705 

70 grid 6-15 buildings More than 13,001m2 Core 2 1985-1987 101-120m2 Individual Corridor 129.1026 83.6651 

71 grid less than 5 buildings 10,001-13,000m2 Core 3 1985-1987 more than 120m2 Individual Mixed 122.6351 86.9338 

72 grid 6-15 buildings Less than 10,000m2 core 1 1981-1984 101-120m2 Individual Mixed 142.9152 105.8778 

73 Square 6-15 buildings More than 13,001m2 Core 3 1981-1984 more than 120m2 Individual Mixed 119.7452 102.2290 
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74 grid less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 Central Mixed 139.2235 103.1263 

75 grid less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 District Stair 92.0987 101.6571 

76 grid 6-15 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Stair 100.2769 106.3153 

77 Square less than 5 buildings 10,001-13,000m2 Core 3 1988-2000 101-120m2 Individual Stair 117.5108 96.6932 

78 grid 6-15 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Stair 101.9208 109.6932 

79 grid less than 5 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Individual Stair 92.0604 100.3002 

80 grid less than 5 buildings 10,001-13,000m2 Core 4 1988-2000 101-120m2 Individual Stair 110.8721 103.3998 

81 grid less than 5 buildings More than 13,001m2 core 1 1988-2000 71-100m2 Individual Corridor 117.8688 88.0997 

82 grid 6-15 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Central Stair 108.4340 88.8053 

83 grid 6-15 buildings 10,001-13,000m2 core 1 1988-2000 101-120m2 Central Mixed 93.5665 87.1964 

84 grid less than 5 buildings 10,001-13,000m2 core 1 1988-2000 101-120m2 Individual Mixed 86.0457 90.6834 

85 grid less than 5 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 District Stair 125.7756 98.8670 

86 grid less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 Central Stair 142.3977 99.8580 

87 Linear more than 15 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Individual Mixed 82.7460 89.1805 

88 Linear more than 15 buildings Less than 10,000m2 Core 2 1985-1987 more than 120m2 Individual Mixed 79.6300 91.1408 

89 Linear more than 15 buildings Less than 10,000m2 Core 4 1985-1987 101-120m2 Individual Mixed 98.0074 93.5329 

90 Square more than 15 buildings Less than 10,000m2 Core 4 1985-1987 more than 120m2 Individual Mixed 97.7982 83.8794 

91 Square more than 15 buildings Less than 10,000m2 Core 2 1985-1987 101-120m2 Individual Mixed 92.0491 89.1457 

92 Square more than 15 buildings Less than 10,000m2 core 1 1985-1987 101-120m2 Individual Mixed 83.2686 92.1487 

93 Linear more than 15 buildings Less than 10,000m2 Core 3 1985-1987 more than 120m2 Individual Mixed 86.8576 91.8184 

94 Linear more than 15 buildings Less than 10,000m2 Core 2 1985-1987 more than 120m2 Individual Mixed 91.4115 79.4292 

95 Square more than 15 buildings Less than 10,000m2 Core 2 1985-1987 101-120m2 Individual Mixed 83.4094 83.0564 

96 Linear 6-15 buildings 10,001-13,000m2 Core 2 1985-1987 71-100m2 Individual Mixed 88.1137 83.3815 

97 grid less than 5 buildings 10,001-13,000m2 core 1 1988-2000 101-120m2 Individual Mixed 83.7299 105.8431 

98 grid less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 Individual Stair 71.6713 103.4638 

99 grid less than 5 buildings 10,001-13,000m2 Core 2 1988-2000 101-120m2 Individual Mixed 80.0845 101.8450 

100 grid less than 5 buildings Less than 10,000m2 core 1 1988-2000 101-120m2 Individual Mixed 76.8910 107.5737 
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101 grid less than 5 buildings More than 13,001m2 core 1 1988-2000 101-120m2 Individual Mixed 86.1523 101.8592 

102 Linear less than 5 buildings More than 13,001m2 Core 2 1988-2000 101-120m2 Individual Stair 80.4509 101.1550 

103 grid less than 5 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Stair 67.7048 89.9932 

104 grid less than 5 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Stair 89.7977 101.2703 

105 grid 6-15 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 Individual Stair 80.9275 103.5389 

106 grid less than 5 buildings 10,001-13,000m2 Core 3 1988-2000 101-120m2 Individual Stair 109.1350 103.0738 

107 Square less than 5 buildings 10,001-13,000m2 Core 3 1988-2000 Less than 70m2 Individual Corridor 88.5791 103.4214 

108 grid less than 5 buildings 10,001-13,000m2 Core 3 1988-2000 71-100m2 Individual Stair 113.5712 108.7048 

109 grid 6-15 buildings Less than 10,000m2 Core 4 1988-2000 101-120m2 Individual Stair 84.7012 100.6639 

110 grid 6-15 buildings Less than 10,000m2 Core 3 1988-2000 more than 120m2 Individual Mixed 84.3052 101.0321 

111 grid 6-15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 73.4644 70.6342 

112 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Mixed 97.1225 74.1899 

113 Square more than 15 buildings Less than 10,000m2 Core 4 1988-2000 71-100m2 Individual Stair 96.8844 89.6055 

114 Square 6-15 buildings Less than 10,000m2 Core 3 1976-1980 more than 120m2 Central Mixed 149.5477 86.2643 

115 Linear less than 5 buildings 10,001-13,000m2 Core 3 1981-1984 more than 120m2 Central Mixed 132.3601 85.6732 

116 Square 6-15 buildings 10,001-13,000m2 Core 2 1981-1984 more than 120m2 Central Mixed 124.9839 98.4459 

117 Linear 6-15 buildings 10,001-13,000m2 Core 3 1985-1987 more than 120m2 Central Mixed 134.7491 87.4459 

118 Linear 6-15 buildings More than 13,001m2 Core 3 1981-1984 more than 120m2 Individual Mixed 119.1233 100.2183 

119 Linear 6-15 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Central Mixed 123.6496 68.9029 

120 grid 6-15 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Central Mixed 95.8047 78.8654 

121 grid 6-15 buildings 10,001-13,000m2 Core 4 1988-2000 101-120m2 Individual Mixed 97.5768 59.1518 

122 Square 6-15 buildings 10,001-13,000m2 Core 3 1988-2000 101-120m2 Central Stair 110.8857 84.3787 

123 grid less than 5 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Individual Mixed 106.0177 94.7613 

124 Linear 6-15 buildings Less than 10,000m2 Core 2 1988-2000 101-120m2 Central Mixed 152.4505 84.0332 

125 Linear less than 5 buildings Less than 10,000m2 core 1 1988-2000 101-120m2 Central Stair 123.2122 88.8186 

126 Linear less than 5 buildings More than 13,001m2 Core 4 1988-2000 101-120m2 Individual Stair 79.5508 94.2017 

127 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 94.9888 77.0782 
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128 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 78.2379 71.0000 

129 grid 6-15 buildings 10,001-13,000m2 core 1 1988-2000 71-100m2 Individual Mixed 87.6256 79.3559 

130 Linear 6-15 buildings 10,001-13,000m2 core 1 1988-2000 71-100m2 Individual Mixed 82.8890 77.0879 

131 Linear 6-15 buildings Less than 10,000m2 core 1 1988-2000 Less than 70m2 Individual Mixed 76.7221 70.5565 

132 Square 6-15 buildings Less than 10,000m2 Core 4 1988-2000 101-120m2 Individual Stair 90.1844 100.4750 

133 grid less than 5 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Central Mixed 137.1510 101.7536 

134 grid 6-15 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Central Mixed 131.2898 93.7315 

135 grid 6-15 buildings More than 13,001m2 Core 2 1988-2000 71-100m2 Central Mixed 128.1046 89.6744 

136 grid less than 5 buildings Less than 10,000m2 core 1 1985-1987 71-100m2 Individual Mixed 83.8714 98.7981 

137 grid less than 5 buildings 10,001-13,000m2 Core 4 1988-2000 71-100m2 Individual Mixed 85.4430 97.4595 

138 grid less than 5 buildings More than 13,001m2 Core 2 1988-2000 more than 120m2 Individual Corridor 71.9621 82.4085 

139 Linear more than 15 buildings Less than 10,000m2 Core 2 1985-1987 71-100m2 District Mixed 77.4517 78.1032 

140 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 87.4500 77.8306 

141 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 88.7285 76.5229 

142 Linear more than 15 buildings Less than 10,000m2 Core 3 1988-2000 71-100m2 Individual Mixed 87.5181 82.9549 

143 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 92.1277 85.2475 

144 Linear 6-15 buildings 10,001-13,000m2 Core 2 1988-2000 Less than 70m2 Individual Corridor 79.3868 59.1813 

145 Linear more than 15 buildings 10,001-13,000m2 core 1 1988-2000 71-100m2 Individual Corridor 80.8158 80.0262 

146 Linear more than 15 buildings More than 13,001m2 core 1 1988-2000 71-100m2 Individual Corridor 73.3545 80.4135 

147 Linear more than 15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 84.1944 81.3869 

148 Linear 6-15 buildings Less than 10,000m2 core 1 1988-2000 Less than 70m2 Individual Corridor 89.8445 81.4222 

149 Square more than 15 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Individual Mixed 95.9475 84.9381 

150 Linear less than 5 buildings 10,001-13,000m2 Core 4 1976-1980 101-120m2 Individual Mixed 157.4231 101.3463 

151 Linear 6-15 buildings 10,001-13,000m2 Core 4 1976-1980 more than 120m2 Individual Stair 135.6901 90.8789 

152 Linear less than 5 buildings More than 13,001m2 Core 4 1976-1980 101-120m2 Individual Corridor 142.3645 93.7434 

153 Linear less than 5 buildings 10,001-13,000m2 Core 2 1976-1980 71-100m2 Individual Corridor 165.1784 88.7676 

154 Square 6-15 buildings More than 13,001m2 Core 4 1976-1980 more than 120m2 Individual Mixed 156.0452 91.4188 
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155 Square 6-15 buildings 10,001-13,000m2 Core 2 1976-1980 more than 120m2 Individual Mixed 158.9505 95.1734 

156 Square less than 5 buildings 10,001-13,000m2 Core 4 1976-1980 more than 120m2 Central Stair 157.7143 100.3576 

157 Linear less than 5 buildings More than 13,001m2 Core 4 1976-1980 more than 120m2 Individual Stair 156.3474 110.0230 

158 Square less than 5 buildings More than 13,001m2 Core 4 1976-1980 more than 120m2 Individual Mixed 167.0549 98.2054 

159 Linear more than 15 buildings Less than 10,000m2 core 1 1976-1980 71-100m2 Individual Corridor 156.3682 99.5716 

160 Square less than 5 buildings 10,001-13,000m2 Core 4 1976-1980 more than 120m2 Individual Stair 163.5000 93.4361 

161 Square less than 5 buildings More than 13,001m2 Core 2 1976-1980 more than 120m2 Individual Mixed 146.5108 102.8396 

162 Linear less than 5 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 119.1732 85.1189 

163 Linear less than 5 buildings Less than 10,000m2 Core 3 1976-1980 more than 120m2 Individual Stair 128.3441 106.4052 

164 Linear 6-15 buildings 10,001-13,000m2 Core 3 1976-1980 more than 120m2 Individual Mixed 145.2396 108.3420 

165 Linear less than 5 buildings 10,001-13,000m2 Core 2 1988-2000 101-120m2 Individual Mixed 66.4319 103.5456 

166 grid more than 15 buildings 10,001-13,000m2 Core 2 1988-2000 101-120m2 Individual Mixed 87.6778 91.9506 

167 Linear less than 5 buildings More than 13,001m2 Core 3 1988-2000 101-120m2 Individual Stair 83.5127 85.0411 

168 Linear less than 5 buildings 10,001-13,000m2 Core 3 1988-2000 71-100m2 Individual Stair 73.4506 103.0283 

169 Linear 6-15 buildings 10,001-13,000m2 Core 2 1988-2000 101-120m2 Individual Mixed 90.7153 101.6275 

170 grid 6-15 buildings 10,001-13,000m2 Core 4 1985-1987 more than 120m2 Central Stair 153.6998 102.7178 

171 Square 6-15 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Central Stair 143.3137 96.6535 

172 grid more than 15 buildings More than 13,001m2 Core 3 1988-2000 more than 120m2 Central Corridor 133.4959 83.5196 

173 Linear more than 15 buildings More than 13,001m2 Core 4 1981-1984 more than 120m2 Individual Stair 112.7135 109.3505 

174 grid 6-15 buildings Less than 10,000m2 Core 4 1988-2000 71-100m2 Individual Mixed 74.5615 70.5983 

175 grid 6-15 buildings Less than 10,000m2 core 1 1988-2000 Less than 70m2 Individual Corridor 84.0571 80.5859 

176 grid 6-15 buildings 10,001-13,000m2 Core 2 1988-2000 more than 120m2 Individual Stair 84.1309 97.6957 

177 Linear 6-15 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Stair 93.2061 100.0822 

178 grid 6-15 buildings Less than 10,000m2 core 1 1988-2000 Less than 70m2 Individual Corridor 92.3197 90.3108 

179 Linear 6-15 buildings More than 13,001m2 Core 3 1988-2000 more than 120m2 Individual Stair 89.5274 94.7778 

180 grid 6-15 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Individual Stair 89.6285 101.8818 

181 grid less than 5 buildings 10,001-13,000m2 Core 2 1988-2000 71-100m2 Individual Mixed 76.3110 93.5467 
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182 Square 6-15 buildings Less than 10,000m2 Core 2 1988-2000 71-100m2 Individual Stair 80.3614 101.3024 

183 grid 6-15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 81.1147 78.2776 

184 grid 6-15 buildings 10,001-13,000m2 Core 2 1988-2000 more than 120m2 Individual Stair 75.4309 97.4701 

185 grid 6-15 buildings 10,001-13,000m2 Core 2 1988-2000 more than 120m2 Individual Stair 77.3555 91.9409 

186 Square 6-15 buildings Less than 10,000m2 Core 3 1988-2000 101-120m2 Individual Stair 85.4689 100.1438 

187 grid 6-15 buildings Less than 10,000m2 core 1 1988-2000 71-100m2 Individual Corridor 74.1524 77.3113 

188 Linear 6-15 buildings 10,001-13,000m2 core 1 1988-2000 101-120m2 Individual Corridor 67.9960 85.9527 

189 grid more than 15 buildings 10,001-13,000m2 Core 3 1985-1987 more than 120m2 Central Mixed 109.3708 83.4943 
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Appendix B 
 

 Stochastic data of usage of electric appliances (KEPC, 1990; KEPC, 2013), used in Chapter 5 (        input items) 

Items Electric power 

consumption (W) 

Penetration 

rates (%) 

Daily usage 

(min/day) 

Annual usage 

(hour/year) 

Annual electric 

consumption (Wh) 

Standard deviation of 

annual usage 

TV 130.6 123 331 1918 255,520 63.5 

Washing machine 242.8 98 72 205 51,555 30.1 

Electric iron 1265.5 79 22 36 43,871 25.2 

Computer 255.9 62 130 599 155,589 109.1 

Rice-cooker (cooking) 1036.2 93 66 341 342,407 25.8 

Rice-cooker (warming) 158.2 93 719 3719 604,011 631.7 

Microwave 1040.3 71 12 34 35,753 4.8 

Vacuum cleaner 1016.2 82 28 107 109,186 12.3 

Video/DVD 18.2 8 65 60 1,064 34.6 

Electric blanket 170.00 87 339 576 97,340 98.18 

Air-conditioner 1340.3 78 173 156 238,245 18.85 

Refrigerator 40 104 - - 350,634 - 

Kimchi-refrigerator 22.6 86 - - 155,275 - 
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 Stochastic data of occupants’ behaviours of consuming electric appliances (KEPC, 2013), used in Chapter 5 (      input range of schedules) 

 T i m e 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

TV 5.4 0.9 0.2 0.2 0.3 8.5 35.2 46.0 35.9 19.4 7.3 5.1 6.2 6.5 6.9 7.7 12.6 29.5 62.8 84.1 92.6 87.6 58.9 29.2 

Washing 

machine 

0.0 0.0 0.0 0.0 0.0 0.7 4.9 15.3 19.6 18.6 6.4 3.5 2.5 2.3 1.9 1.3 3.0 5.3 7.0 6.7 3.8 1.5 0.4 0.1 

Air-conditioner 5.2 1.1 0.0 0.0 0.0 0.0 3.5 2.0 0.7 0.7 0.4 4.3 7.2 7.0 5.9 6.7 7.0 12.6 20.0 32.6 32.2 22.8 16.1 10.7 

Electric Iron 0.0 0.0 0.1 0.0 0.1 1.5 13.9 14.2 7.0 5.4 4.2 2.0 2.9 1.8 2.2 1.9 2.9 2.9 3.9 9.2 5.3 3.6 1.2 0.0 

Computer 3.9 1.5 1.0 0.6 0.0 0.0 0.7 1.0 2.2 2.8 3.7 3.1 3.3 5.6 5.8 7.4 9.5 13.2 18.6 26.8 31.2 32.5 21.5 12.3 

Rice-cooker 

(warming) 

37.0 37.1 36.9 36.9 37.9 39.5 49.0 63.9 69.4 69.1 68.8 67.8 62.1 57.7 55.5 54.6 54.2 54.2 53.5 52.1 48.0 43.1 41.0 40.0 

Rice-cooker 

(cooking) 

1.8 1.8 1.8 1.8 2.5 12.4 42.8 20.5 7.2 3.4 3.1 3.5 3.2 3.0 3.0 3.4 5.2 21.1 21.8 6.6 2.5 2.5 1.9 1.9 

Microwave 0.3 0.0 0.1 0.0 0.1 1.0 14.3 18.5 4.9 2.9 1.0 3.4 3.0 0.8 1.9 1.0 2.5 11.5 15.0 9.0 2.8 2.5 0.4 0.4 

Vacuum cleaner 0.0 0.1 0.0 0.0 0.3 0.1 3.5 14.2 21.6 18.9 3.5 1.9 1.7 1.5 1.9 2.1 2.6 6.0 7.0 4.0 1.5 0.6 0.0 0.0 

Fluorescent 

lights 

0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.8 0.7 0.6 0.6 0.6 

Hair dryer 0.0 0.0 0.0 0.0 0.1 2.0 37.2 37.8 12.3 7.0 2.1 1.2 0.5 0.2 0.7 0.5 0.9 1.3 1.1 2.5 2.4 0.6 0.1 0.0 

Audio 0.0 0.0 0.0 0.0 0.0 2.2 0.0 6.7 6.7 8.9 8.9 15.6 15.6 11.1 8.9 6.7 6.7 8.9 6.7 6.7 8.9 4.4 0.0 0.0 

Refrigerator 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Kimchi-Refrigerator 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
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Appendix C  

Heating energy consumption in apartment units applied in Chapter 6 

Locations Horizontal locations 

West Middle East 

 

 

 

 

 

 

 

Vertical 

locations 

Top floor 152.930 157.233 170.532 

13th floor 97.781 97.781 97.781 

12th floor 107.364 108.831 145.695 

11th floor 109.124 114.698 116.947 

10th floor 101.008 114.404 117.339 

9th floor 110.786 121.640 118.414 

8th floor 140.903 132.298 139.731 

7th floor 113.329 132.201 111.374 

6th floor 106.680 135.916 130.246 

5th floor 154.593 133.276 137.286 

4th floor 128.876 139.339 144.521 

3rd floor 136.112 143.382 144.619 

2nd floor 136.014 154.886 152.541 

1st floor 146.477 156.940 147.064 

Ground floor 163.002 195.074 179.821 

 

 

 

Ground level 
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Appendix D  

Publications 

A stochastic model of integrating occupant behaviour into energy 

simulation with respect to actual energy consumption in high-rise 

apartment buildings 

Hyunju JANG & Jian KANG* 

School of Architecture, University of Sheffield, Sheffield S10 2TN, United Kingdom 

* Corresponding author 

Abstract 

Apartment buildings have evolved to be self-sufficient for occupants. Thus, energy use is 

individually controlled in apartment units, which can be considered as independent thermal 

zones within buildings. However, this has been disregarded in conventional energy 

modelling which is mainly applicable for reducing energy demands of buildings with 

standardised conditions, rather than reflecting actual consumption. This approach has been 

questioned due to the high levels of uncertainty formed with real buildings. In this study, a 

model considering occupant random behaviour consuming heating and electricity is 

developed to reflect variations in actual energy consumption in apartments. Moreover, the 

effects of various parameters of occupant behaviour in relation to the model were examined. 

In total 96 apartment blocks in Seoul were used as samples. Gaussian Process Classification 

was applied to modify occupant random behaviours corresponding to the probability of 

energy consumption.  As a result, it has been found that occupants’ general heating controls 

(25% deviation) are between three and eight hours, with 17 – 20 °C set temperatures. 

Moreover, the operating hours of electric appliances and lighting are also approximated with 

the probabilities. This methodology could reduce uncertainties in building simulations, and 

provide a broader application in buildings with similar development stages. 

 

Keywords 

Bayesian inference, Uncertainty, Gaussian Process, Occupant behaviour, Apartment building 
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1. Introduction 

Apartment buildings are one of the most common types of housing in Asia (Yuen, 2011). 

Their high capacity of accommodating a large number of residents has attracted the fast 

grown and growing countries, such as China, South Korea, Hong Kong and Singapore 

(Yuen, 2011). One of the representative countries for a great number of apartment 

construction, South Korea, experienced great economic growth in the 1960s, and the country 

became rapidly urbanised (Chung, 2007). This urbanisation also resulted in a dramatically 

increased urban population (Chung, 2007). Apartment buildings were introduced to 

accommodate this increased size of the urban population, particularly for the working class 

(Lim, 2011). However, the main target for apartment buildings was gradually transferred 

from the working class, to the “new” middle class that rapidly grew during the economic 

growth in the 1970s and 1980s (Lett, 2001). This transfer meant that living in apartment 

buildings became a representative of rising social status (Gelézeau, 2007). For this reason, 

the proportion of housing that were apartment buildings was much greater (Statistics Korea, 

2010a). Seoul was one of the main centres in this significant transformation. In the 1970s 

and 1980s, 48% and 26% of national apartment construction was concentrated in Seoul, 

respectively (Statistics Korea, 2010a). They still comprised about 50% of housing in the city 

(Kim, 2010).  

Improving thermal performance in existing buildings has been discussed in many countries 

(Ouyang et al., 2011) as carbon emissions is an international issue. Refurbishing old existing 

apartment buildings has been importantly investigated in Asian countries, such as (Yuen et 

al., 2006; Ouyang et al., 2011). In South Korea, apartment buildings built in the 1970s and 

1980s have been highlighted due to their large population, as well as high energy 

consumption (Kim, 2010), in accordance with the intensified building thermal regulations 

(Kim et al., 2013). Existing literature (Kim et al., 2006; Lee, 2009; Song, 2009; Son et al., 

2010; Kim et al., 2010; Roh, 2012) has focused on reducing the energy demand of apartment 

buildings in standardised conditions defined by the Energy Performance Index (Ministry of 

Land, Infrastructure and Transport, 2015a) and Building Energy Efficiency Rating System 

(Ministry of Land, Infrastructure and Transport, 2015b). These standards have provided 

deterministic conditions to identify changes in the energy demands of buildings. Thus, they 

have been used to verify energy efficiency in buildings, and guide buildings to improve their 

energy performance. However, this approach has been questioned in its relation of real 
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situations. Many studies pointed out the limitations and uncertainties contained in the 

standard conditions of buildings used in existing literature (Ryan & Sanquist, 2012). One of 

difficulties in refurbishing existing buildings is the lack of interaction with the occupants 

(Gholami et al., 2015). 

Apartment buildings have evolved to be self-sufficient for occupants despite the unified 

features of buildings (Gelézeau, 2007). The usage of heating and electricity is individually 

controlled in each apartment unit, which can be considered as an independent thermal zone 

in these buildings. Therefore, energy consumption in apartment buildings can significantly 

vary. Besides, some empirical data in existing studies (Kang et al., 1995; Lee et al., 2012), 

showed variation in actual energy consumption in apartment buildings despite the similar 

thermal conditions. However, energy models with standardised conditions in the existing 

literature are not flexible enough to take into account the possible variations in energy 

consumption. Furthermore, the results would contain a high amount of uncertainty due to 

random behaviours of energy consumption.   

Existing field studies have indicated how much energy consumption can vary by occupant 

energy behaviour. One of the existing studies (Galvin, 2013) divided consumers living in the 

same apartment buildings by the heating consumption levels, due to the normality of the 

three distributions in the frequency density: lower than 500 kWh, 501 – 3000 kWh and 

higher than 3000 kWh. Except for the consumption of space heating, electricity consumption 

could also vary from 50 to 750 kWh among 100 households, and the consumption for 

standby was between 0 and 1300 kWh per year (Gram-Hanssen, 2013). The monitored usage 

of electric appliances, apart from the consumption for space heating and hot water, was 

differed between 35% and 40% depending on the characteristics of the consumers’ 

behaviours (Sidler et al., 2002).  

In order to take these variations caused by occupants’ controls into building simulations, 

energy modelling in existing literature has attempted to integrate the variations with a 

probabilistic approach, rather than deterministic values. One of the probabilistic approaches 

is to use stochastic models. The concept of stochastic occupants’ behaviours considers 

human behaviour as not deterministic, but complex and unpredictable actions which are 

represented by a composition of observable states (Virote & Neves-Silva, 2012). Therefore, 

the stochastic model of occupants’ behaviours takes the probability of actions which brings 

about energy consumption or a change in indoor environment. Virote & Neves-Silva (2012) 

used the hidden Markov Chain model to integrate observable motivations of occupant 

behaviour taking the actions consuming energy. Nicol (2001) considered occupants’ 

behaviours as binary – heating on or off – and applied the probit regression analysis for 
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modelling the proportion of occupants’ actions in relation to outdoor temperatures. The 

stochastic models refine the ranges of possible consumption behaviours with the quantified 

probability. Therefore, the models draw uncertain factors with the more distinctive 

boundaries in building simulations. However, the limitations of stochastic models can be 

that they do not provide consistent results that can be directly input in building simulations 

(Virote & Neves-Silva, 2012), even the results are within the probable ranges.   

This study, therefore, aims to develop a probabilistic model of occupant random behaviour 

consuming heating and electricity, regarding the variation in actual energy consumption for 

old high-rise apartment buildings. Three objectives are designed: to identify the variation in 

actual energy consumption in old high-rise apartment buildings built between the 1970s and 

1980s; to integrate the variation in actual consumption into energy models; and to identify 

the possible occupant random behaviours controlling heating and electricity corresponding 

to the probability of energy consumption. 

2. Methods 

In order to identify probabilistic occupant random behaviours controlling heating and 

electricity the procedure was designed in four steps. At first, actual energy consumption in 

apartment buildings was surveyed, and then its variation was measured. Second, energy 

models of the random control of heating and electricity were analysed with their uncertainty. 

Estimated energy consumption of the energy models was optimised to reflect the distribution 

of the actual usage. Third, the probability of energy consumption was predicted by Gaussian 

Process Classification. At the same time, the possible ranges of occupant random controls 

were updated. Last, the probabilistic random behaviour was evaluated. 

2.1 Evaluating variation in actual energy consumption in apartment buildings 

constructed in the 1970s – 1980s 

2.1.1 Sampling   

There are many factors interrelating with energy consumption. Thus, it was important to 

control effects from unrelated factors in this study. Three sampling units were chosen: 1) 

locations; 2) physical conditions; 3) data availability. Firstly, the locations of apartment 

buildings were used to eliminate external effects. Sixteen apartment districts in Seoul were 

chosen. These districts were mainly developed for apartment constructions under an 

enforcement decree of the Urban Planning Act since 1976 (Son, 2004). Thus, apartment 

buildings in these districts were constructed in a similar time frame and near distance, which 

can minimise the difference in climate effects. Afterwards, these 16 districts were separated 
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by socio-economic factors to avoid the impact of urban segregation in Seoul. Existing 

literature has identified that the disparities of education levels and occupations are highly 

correlated to the income levels of residents in Seoul (Yoon, 1998; Lee, 2008; Chung, 2015). 

Yoon (2011) compared the geographical disparities of various indices related to the socio-

economic factors: population, fiscal self-reliance ratio, health and welfare, education, prices 

of housing and land, industrial structure and transportation. Five boroughs representing 

relatively better living conditions were chosen from a total of 25 boroughs in Seoul by 

comparing a standard score of the indices. Residents with high level education were densely 

populated in these five boroughs. The robust correlation between the high-education 

residents in these five boroughs and their housing types (apartment buildings) has been 

found (Zchang, 1994). Sixteen apartment districts are affiliated to these five boroughs. Four 

of the five boroughs (13 apartment districts), all with apartment buildings constructed in the 

mid – 1970s and 1980s, were chosen for this study. The residents in the four boroughs, 

especially those who live in high-rise apartment buildings, were called “new” urban middle 

class (Lett, 2001; Zchang, 1994). Zchang (1994) described the “old” middle class as small 

business owners and a higher income than the average. In contrast to the “old” middle class, 

Lett (2001) discovered the seven categories of occupations in the “new” urban middle class 

in the four boroughs: scholars, government bureaucrats, corporate salary men, business 

owners, professionals, religious leaders, nouveaux riches. The life styles of the “new” urban 

middle class are varied (Lett, 2001; Gelézeau, 2007), but people in this class can afford not 

to be concerned about energy consumption.         

Secondly, the physical conditions of apartment buildings need to be constrained to avoid 

giving impact on energy consumption. Two of the most influential factors affecting energy 

consumption, thermal conditions of building envelopes (Kim, 2013) and heating methods 

(Lee et al., 2004; Moon et al., 2001) were chosen. Therefore, apartment buildings 

constructed in the 1970s and 1980s were divided into two groups depending on the thermal 

conditions of building envelopes, which were filtered by construction years. The first group, 

period A, was comprised of apartment buildings constructed before 1980 when a legislation 

of building thermal regulations was enacted. The second group, period B, contained 

buildings built between 1981 and 1988 before the building regulation has a professional 

form. Therefore, the buildings in both periods need to be refurbished to reduce high energy 

consumption (Kim, 2010), although buildings in period B can be expected to have relatively 

advanced thermal conditions compared to buildings in period A. The district heating method 

was considered only, which was mainly applied to many apartment buildings constructed in 

the four boroughs.  
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Lastly, energy bills were collected through the Apartment management information system 

(Korea Appraisal Board, 2015). The monthly consumption in 2014 was transformed from 

Won/m
2
/year to kWh/m

2
/year, according to calculation methods by the Korea District 

Heating Corporation (2015) and Korea Electric Power Corporation (2014). The bills were 

separated by heating and electricity. This study only considered energy bills consumed for 

individual units. Energy bills used for communal purposes were, therefore, excluded even 

though they were consumed in buildings. In total 96 apartment blocks (44 blocks in period A 

and 51 blocks in period B) were chosen in this sample study. They occupy 37.1% and 16.3% 

of apartment buildings built in both periods A and B in Seoul, respectively. 

2.1.2 Normality tests 

Central limit theorem states that frequencies in empirical populations show bell-shape curves 

if the number of independent random samples is large enough (Ross, 2002). The collected 

samples were evaluated for this normality. Firstly, Kolmogorov-Smirnov and Shapiro-Wilk 

tests were conducted to measure the deviations of the samples from the normal distribution 

with the same mean and standard deviation. If ρ-values in both tests are not significant (ρ> 

0.05), then the normality of the samples can be accepted (Ross et al., 2014). Secondly, Q – Q 

plots were drawn to supplement the limitation of the previous normality tests through visual 

inspection (Field, 2009). Lastly, skewness and kurtosis were measured to identify how far 

the sample data is different from the normal distribution; ±1.96 limits were considered as 

normally distributed (Field, 2009). SPSS (Field, 2009) was used to conduct these tests. The 

results of normality tests are illustrated in Section 3.1. 

2.2 Integrating occupant random behaviour reflecting actual energy consumption into 

energy modelling 

A probabilistic approach was applied to reflect variation in the actual energy consumption in 

energy models. Energy models were created by the possible behaviours in controlling 

heating and electricity. The possible energy consumption in the energy models was 

compared to the variation in the actual energy consumption. The model estimation was 

optimised to be as similar as possible to the real consumption, which indicates the possible 

ranges of occupant behaviours determining the variation in the actual consumption. 

2.2.1 Energy models of occupant random behaviours controlling heating and electricity 

Energy modelling consisted of three parts: building form, thermal properties and energy 

controls. First, building form was fixed by choosing the most typical unit design (Kim & 

Kim, 1993; Park, 2003) and building design (fifteen-story and south-facing (Son, 2004; Lim, 
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2011), as shown in Figure 1. This unit design made up about 80% of apartment buildings 

built until the 1980s (Kim & Yoon, 2010). The apartment buildings with 15 floors make up 

the largest proportion, 31.7% (Ministry of Land, Infrastructure and Transport, 2004). Energy 

models were created with six units: two units on three floors (ground, middle and top floors). 

The energy consumption in the two units on the middle floor was multiplied to estimate the 

total amount of energy consumption from the 2nd to 14th floors by using multiplier in 

EnergyPlus8.0 (EnergyPlus Documentation, 2010). Each room was separately modelled as 

individual thermal zones to be controlled by different schedules as it occurs in real 

situations. 

Second, thermal properties (U-values) for the two periods (before 1980, and between 1981 

and 1988) were identified by reviewing the building thermal regulations and existing 

literature (Seo, 2012; Kim et al., 2013). The specific applications were also verified by the 

site survey collecting actual architectural drawings in three apartment blocks. The thermal 

condition in apartment units is divided into two different areas: unconditioned and 

conditioned areas (Figure 1). Unconditioned areas mean the bathroom and two balconies, 

which are directly exposed to the outside without heating facilities, whereas conditioned 

areas are the main living spaces, which are enclosed by the unconditioned areas to be 

protected from the outside, apart from the bedroom C. Therefore, thermal protection was 

focused on the conditioned areas. The profiles of the building envelopes are described in 

Table 1. 

 

Figure 1 Description of the apartment units 
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Table 1 Profile of thermal properties in energy models 

Locatio

n 

Exposure 

to the 

outside 

Materials (mm) 

(In  out, up  down) 

Thickness 

(mm) 

(Period A/ 
B) 

Thermal 

conductivity 

(W/m.K) 

Density 

(kg/m3) 

(Period 

A/ B) 

Specific 

heat 

(J/kg.K) 

(Period A/ 

B) 

U-value 

(W/m2K) 

Period A  

(Before 1980) 

Period B 

(1981 – 1988) 

Period 

A  

 

Period 

B 

 

External 

wall 

Direct  

 

Mortar Mortar 18 1.081 1950 921  

 

2.08 

 

 

2.08 
Cement brick  Cement brick  90 0.605 1700 1550 

Cavity  Cavity  50 0.15(m2.K/W) - - 

Cement brick  Cement brick  90 0.605 1700 1550 

Mortar Mortar 18 1.081 1950 921 

Indirect  Mortar Mortar 18 1.081 1950 921  

 
2.08 

 

 
0.50 

Cement brick  Cement brick  90 0.605 1700 1550 

Cavity  Insulation  50 0.033 -  / 50 - / 838 

Cement brick  Cement brick  90 0.605 1700 1550 

Mortar Mortar 18 1.081 1950 921 

Side 

wall 

Direct  Mortar  Mortar  18 1.081 1950 921  
3.24 

 
0.59 Cement brick  Insulation 90 / 50 0.605 1700 / 50 1550 / 838 

Concrete  Concrete 200  1.400 2240  879  

 Mortar  18 1.081 - / 1950 - / 921 

Roof  Direct  Mortar  Mortar  24 1.081 1950 921  

0.52 

 

0.52 Concrete  Concrete  200 1.400 2240 879 

Cavity  Cavity  220 0.18(m2.K/W) - - 

Insulation  Insulation  50 0.033 50 838 

Plaster board  Plaster board   10 0.209 940 1130 

Floor 

between 

ground 

and 

undergr

ound 

floors 

 

Indirect  Mortar + Mortar + 100 1.081 1950 921  
4.36 

 
0.55 Gravels  

(heating tubes)  

Gravels 

(heating 

tubes)  

 1.260 1522 908 

Concrete  Concrete  200 1.400 2240 879 

 Insulation  50 0.033 - / 50 - / 838 

 Plaster board 10 0.209 - / 940 - / 1130 

Window Direct Single glazing  Single 

glazing  

3 0.900 - - 5.89 5.89 

 

 

Third, heating and electricity controls were set differently depending on uncertainty. Heating 

supply in each room is controlled by supplying valves, and the controller manipulates set-

point temperatures and operations. Heating controls in this study concentrated on the set-

point temperatures and operating hours in each room. The possible range of heating set-point 

temperatures was set between 16 ºC and 22 ºC. The operating hours were gradually 

increased from three to nine hours per day. In terms of electricity controls, the national 

surveys investigating behaviours of electricity consumption (Korea Electric Power 

Corporation, 1990; Korea Electric Power Corporation, 2013) were used to identify the 

possible range of operations in households. Daily routines of using electric appliances in 500 

households were collected in this survey. Lighting and four electric appliances showing 
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variations in their operating hours with higher penetration rates (60%) were chosen: air-

conditioner, electric blanket, computer and rice-cooker. Lighting operation was separated by 

the living room and the bedrooms. The operating hours were increased from 1 to 7 hours per 

day with maximum 70% fluorescent lights in operation among the 500 households (Korea 

Electric Power Corporation, 1990).  The control of air-conditioners was separated by set-

point temperatures and hours. The temperatures were increased from 23ºC to 29ºC. Overall, 

operating hours of cooling did not exceed more than 32%, which is relatively lower 

compared to other appliances. The maximum hours of using an air-conditioner was 7 hours 

in a day with 10% probability. Rice-cookers showed the highest operating hours, with an 

average of 3800 per year in consuming electricity for warming rice (Korea Electric Power 

Corporation, 2013). The maximum operating hours was identified to be 16, with about 40% 

in operation, and the minimum hours was 10, with about 60% in operation. The computer 

was mainly used at night. The maximum usage is distributed between 7pm and 11pm with 

about 30% in operation. The electric blanket was generally used between five to six hours 

per day, but the number of days used in a year indicated more prominent variations from 60 

to 120 days. This variation was taken into account in models. In total 19 input parameters 

were set with the possible range of values (Table 2). 

Some appliances, such as the TV, refrigerator, and Kimchi refrigerator, also indicated high 

electricity consumption, but their operations were much unified: always on for refrigerators 

and five hours on for the TV, according to the national survey (Korea Electric Power 

Corporation, 2013). Therefore, they were set in the energy models, but with consistent 

values. Two air-conditioners were equipped in the living room and the largest bedroom A. 

Electric blankets for supplementary heating were applied in the living room and two 

bedrooms. A computer and rice cooker were placed in the living room, including the 

kitchen. Four occupants were set in each apartment unit, which is the most representative 

type of household living in apartment buildings (Statistics Korea, 2010b). Electric power for 

appliances was taken from the average values in the national survey (Korea Electric Power 

Corporation, 2013): TV (130.6W), refrigerator (40.0W), kimchi refrigerator (22.6W), 

computer (263.3W), fluorescent light (55.0W in bed rooms, and 165W in the living room), 

rice-cooker (1022.9W in cooking, and 143.4 in warming). Ventilation rates were set at 

0.82ACH for conditioned area and 2.00ACH for unconditioned area (Ministry of Land, 

Infrastructure and Transport (2015b). 
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Table 2 Prior distributions of uncertain parameters in building energy models 

Categories Input parameters Prior 

distributions 

Optimised 

distribution 

Locations Units No. 

Period A Period B 

Heating Set-point 

temperatures 

16 – 22 16– 20  15 – 21  Living room °C(winter) 1 

16 – 20 16–21 Bed room A – C 2,3,4 

Operating hours 

 

3 – 9 3–6 3 – 9  Living room Hour/day 

(winter) 

5 

- - Bed room A – C 6,7,8 

Electricity Air-conditioner 

(set-point 

temperatures) 

 

23 – 29 

- Living room °C(summer) 9 

Bed room A 10 

Air-conditioner 

(operating hours) 

 

0 – 7 

 

0 –7 

 

Living room Hour/day 

(summer) 

11 

Bed room A 12 

Rice-cooker 

(operating hours) 

10 – 16 7 – 16 Living room 

(kitchen) 

Hour/day 

 

13 

Computer 

(operating hours) 

1 – 4 0.5 – 3.5 Living room   Hour/day 

 

14 

Lighting 

(operating hours) 

1 – 7 0 – 7 Living room Hour/day 

 

15,16 

Bed rooms 

Electric Blanket 

 

60 – 120 - Living room Day/year 

(winter) 

17,18,19 

 

2.2.2 Optimisation of model estimation reflecting variation in the actual energy 

consumption 

The energy models defined in the previous section were used to estimate the possible ranges 

of energy consumption. A great number of possible cases were created due to the uncertain 

controls of heating and electricity. 200 random samples were chosen by Latin Hyper-Cube 

Sampling (LHS) to conduct the Monte Carlo Method. The LHS method is more robust than 

other sampling methods (Macdonald, 2009), and has been widely applied to the uncertainty 

analysis in building simulations such as (Hyun et al., 2008; Silva & Ghisi, 2014). 

EnergyPlus 8.0 (Crawley et al, 2001) was used to conduct building simulations. Historical 

weather data for Seoul in 2014, which is provided by White Box Technologies weather data 

for energy calculations (White Box Technologies, 2014), was applied.  Both LHS samplings 

and simulations were managed by jEPlus (Zchang, 2012). Heating and electricity 

consumption were separately accumulated. The Probability Density Function (PDF) of the 

estimated energy consumption was compared to the PDF of the actual energy consumption. 

The Coefficient of Variation of Root-Mean-Square Deviation (CV RMSE) was used to 

measure the discrepancy between the model estimation and the actual energy consumption.  
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The previous occupant random behaviour in energy models could not be specified for the 

residents living in the old apartment buildings. This can bring about high amounts of 

discrepancy, compared to the actual energy consumption. This discrepancy was optimised in 

order to reflect the actual energy consumption. The procedure was divided into two parts. 

Firstly, multivariate regression analysis was conducted to create linear models of energy 

consumption only with influential parameters of occupants’ random controls. Above all, the 

linearity was examined by the coefficients of determination (R-squared) and F-ratio values 

(Field, 2009). Standardised Regression Coefficient (SRC) values were used to determine the 

influential parameters in the linear models. A stepwise method was applied to create possible 

linear models automatically. Secondly, the ranges and values of the uncertain parameters 

were revised for their regenerated random samples to have a similar mean and standard 

deviation of the actual energy consumption. Random sampling was conducted by uniformly 

distributed pseudorandom integers in MATLAB 2014a (Hunt et al., 2014). The linear 

models identified above were used to estimate energy consumption of the regenerated 

samples. The distribution of the re-estimated energy consumption was compared to the 

actual energy consumption. CV RMSE was used to evaluate the difference between them. 

The results are shown in Section 3.2.1. 

2.3 Generalisation of probability of occupant random behaviours consuming heating 

and electricity 

Based on the optimised model estimation, this section conducted stochastic processes to 

identify the probability of energy consumption. Stochastic processes deal with the sets of all 

possible random parameters (Ross, 2014), and form the generalised probability distributions 

to functions (Rasmussen and Williams, 2006). In particular, Gaussian Processes easily deal 

with the many random variables that are approximately considered normally distributed, 

according to the probability theory (Parzen, 1999). The processes follow Bayes theorem 

(Rasmussen and Williams, 2006) that modifies prior distributions through observed data to 

achieve target distributions (Kalbfleisch, 2012). This inference has been used to calibrate 

parameters of energy models in building simulations, as shown in (Heo et al., 2012). 

Depending on the types of outputs, either regression or classification is determined in 

conducting Gaussian processes; regression deals with continuous outputs that deal with real 

values while classification considers discrete outputs classified by labels (Neal, 1998).  

This study focused on classification to predict the probability of heating and electricity in the 

old apartment buildings, rather than exact calibration case-by-case. The process was divided 

into three steps. Firstly, the optimised random samples were prepared as training data. The 

energy consumption was subdivided by 25% deviation. Heating consumption with 25% 
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deviation was defined between 107 and 138 kWh/m
2
/year in period A, and between 87 and 

112 kWh/m
2
/year in period B. The electricity consumption between 30.1 and 33.3 

kWh/m
2
/year decided the medium class for the both periods.  

Secondly, Gaussian Process priors such as covariance functions were formed. Many 

covariance functions can be applicable. The details of covariance functions were studied by 

Neal (1997). More than that, the suitable values of hyper-parameters defining covariance 

functions is more problematic (Rasmussen and Williams, 2006; Neal, 1997). Prior 

distributions of hyper-parameters are required to be predefined, although the values are 

optimised during the process. In this study, the Squared Exponential (SE) covariance 

function, which has been the most widely used (Rasmussen and Williams, 2006), was 

chosen. This covariance function necessarily requires two hyper-parameters: length-scale 

and magnitude. The inverse of length-scales demonstrates the relevance of inputs in the 

process, while magnitude indicates the variances of unknown function values (Neal, 2012). 

Gaussian distribution was applied for the hyper-parameters in this study.  

Thirdly, Gaussian Process models were structured by multinomial probit models with nested 

Expectation Propagation (nested EP) algorithm (Riihimaki, 2013) to take into account the 

classes of energy consumption with four to six parameters for heating and electricity 

consumption. Comparing to MCMC, nested EP algorithm also showed consistent results 

with small inaccuracy (Riihimaki, 2013), but much less operating time was required. The 

calculations were conducted by GP-Stuff (Vanhatalo et al., 2013), run by MATLAB 2014a 

(Hunt et al, 2014). Contour plots were used to draw the predictive probability. The results 

are illustrated in Section 3.2.2. 

2.4 Evaluating estimated energy consumption of probabilistic models 

The previous section identified the probability of energy consumption, and the previous 

identification of behaviours controlling heating and electricity were modified. The updated 

random behaviours were evaluated to whether or not the predicted energy consumption 

reflects the variation in the actual energy consumption with reduced uncertainty.  100 

random samples were chosen with different probabilities: high probability (50 – 90%) and 

total probability (0 – 90%). Their estimated energy consumption is compared in Section 3.3. 

3. Results 

The conventional energy modelling used for high-rise apartment buildings has estimated 

energy consumption based on the standardised conditions, which are provided from the 

international or national guidelines. Therefore, the estimation could contain high levels of 
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uncertainties when it is applied to specific types of buildings and groups of occupants. The 

methodology in this study was designed to reduce the uncertainties, caused by applying the 

standardised conditions, by identifying the probability of occupant energy behaviour from 

the national survey and the variation in actual energy consumption. Thus, the result of the 

probabilistic model can be adjusted for the specific resident group and the conditions of 

apartment buildings. This section presents the probabilistic model for the “new” urban 

middle class living in old apartment buildings constructed in the 1970s and 1980s in Seoul. 

The section is designed in three parts. The first part describes the analysis of variation in 

actual energy consumption in Section 3.1. The second part illustrates the probability of 

standardised conditions in Section 3.2. Specifically, the optimisation of estimated energy 

consumption regarding the actual energy consumption is interpreted in Section 3.2.1, and the 

results obtained from Gaussian Process Classification are shown in Section 3.2.2. Finally, 

the estimated energy consumption with the probability of standardised conditions is 

evaluated in Section 3.3. 

3.1 Variation in actual energy consumption in apartment buildings built between the 

1970s and 1980s 

The results of normality tests demonstrate that the collected samples are normally distributed 

(Figure 2). The ρ-values in the Kolmogorov-Smirnov tests are unified with 0.200 in the 

heating and electricity consumption for both periods. Shapiro-Wilk tests also show the ρ-

values 0.362 – 0.792, which are not significant. This means that the normality of the samples 

can be accepted. The Q – Q plots of the samples show slight deviations from the normal 

distribution at the tails. The deviations are interpreted by Kurtosis and Skewness. The largest 

Kurtosis is 1.30 in the electricity consumption in period A, while the greatest skewness is 

found in the heating consumption in period A. However, these deviations are within ±1.96 

limits of Kurtosis and Skewness. Therefore, the samples can be regarded as normally 

distributed, which means that the number of samples is large enough to represent their 

population. 

Figure 3 gives the overview of energy consumption in old high-rise apartment buildings 

constructed between the 1970s and 1980s. The average heating energy consumption in 

apartment buildings constructed before 1980 (Period A) is 123.2 kWh/m
2
/year, while the 

consumption is reduced to 99.66 kWh/m
2
/year in apartment buildings built between 1981 

and 1988 (Period B). The comparison of the two average values reveals the significant 

impacts of thermal conditions of building envelopes on heating consumption. However, the 

electricity consumption is similar in both periods, A and B, with 31.77 kWh/m
2
/year and 

31.67 kWh/m
2
/year, respectively. 
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The more interesting aspect is the variation in energy consumption in each period (Figure 3). 

Heating consumption is deviated 20.6 kWh/m
2
/year among buildings in period A, while a 

greater deviation about 30.1 kWh/m
2
/year is identified in period B. Furthermore, the 

difference between minimum and maximum values in heating consumption is 98.0 

kWh/m
2
/year in period A, and is enlarged to 128.5 kWh/m

2
/year in period B. The relatively 

lower variation in period A could reveal their desperate need of heating due to the low 

energy-efficient building conditions. The higher variation in period B would result from the 

diverse preference in controlling heating by occupants. In electricity consumption, the 

standard deviation for both periods is about 3.5 kWh/m
2
/year, and the minimum and 

maximum ranges are about 15 – 20 kWh/m
2
/year.  In general, the actual energy consumption 

in apartment buildings is 10 –30% deviated from average values. The difference between 

minimum and maximum consumption is extended up to 50 – 128%. 

 

 

 

Figure 2 Results of normality tests of actual energy consumption 
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Figure 3 Optimisation of model estimations in comparison to the variation in actual 

energy consumption 

 

3.2 Probability of standardised conditions regarding variation in actual energy 

consumption 

The probabilistic approach integrating the variation into energy modelling is illustrated in 

this section. Firstly, energy models with the prior distributions are optimised to reflect the 

variation in the actual energy consumption in Section 3.2.1. Secondly, the probability of 

energy consumption is calculated by Gaussian Process Classification. At the same time, the 

possible ranges of influential parameters are modified. The results are illustrated in Section 

3.2.2.  

3.2.1 Optimisation of the estimated energy consumption in energy modelling 

The model estimation with the prior distribution of input parameters (thick dashed lines in 

Figure 3) is dissimilar from the distribution of the actual energy consumption (solid lines 

with dots).  At first, the average values of the model estimation are greater than the actual 

values, apart from the heating estimation for period A. The average values of heating 
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consumption in period B is overestimated by about 23 kWh/m
2
/year with the prior 

distribution, while a nearly 3 kWh/m
2
/year reduction is required in the average value of 

electricity consumption. Second, the distribution of the estimated heating consumption is far 

greater than the one of actual consumption: 62% discrepancy in period A (Figure 3 – a) and 

51% in period B (Figure 3 – b). This wider distribution of the estimated heating 

consumption indicates that the ranges of occupants’ random controls would be wider than 

the actual usage, which needs to be narrowed down. On the contrary, the ranges of the 

parameters for electricity consumption are required to be wider to reduce the about 35% 

discrepancy from the variation in the actual use (Figure 3 – c and d). This opposite trend of 

estimation, compared to the actual use, implies that different parameters respectively affect 

heating and electricity, and their modification needs to be different.  

Multivariate regression analysis is used to choose the most rigid linear models with less 

residual. In the results of the R-squared values (Figure 4 – a and b), the highest R-squared 

values of more than 0.7 are generally achieved by increasing the number of parameters. 

However, the increasing of R-squared values in heating models becomes significantly steady 

after the fourth model (0.84 and 0.70 for period A and B), while the sixth model (0.94 and 

0.78 for period A and B) in electricity models. These models also show higher F-ratios with 

less numbers of input parameters: 256.2 in period A and 114.6 in period B for heating 

(degree of freedom: 4), and 554.4 in period A and 112.2 in period B for electricity (degree of 

freedom: 6) (Figure 4 – c and d). Hence, they are chosen as the most fitted models. 

These linear models for heating and electricity consumption are respectively comprised of 

four and six parameters, as shown in Table 3. In the heating models, set-point temperature is 

the most significant factor, followed by operating hours. Specifically, the volume of space 

determines their impacts on heating consumption. Thus, set-point temperature in the living 

room presents the highest SRC of 0.587 and 0.526 in periods A and B. Their operating hours 

has the second highest SRC, which are 0.504 and 0.469 for period A and B, respectively. 

The third parameter is set-point temperatures in the bedroom A with SRC of 0.320 and 0.271 

for both periods A and B. This is because the bedroom A is the largest bedroom. The fourth 

parameter is set-point temperatures in the bedroom C with SRC of 0.285 and 0.260 for both 

periods A and B, which is the bedroom directly exposed to the outside. 
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Figure 4 Changes in the coefficient of determination (R-squared) and F-ratios of 

energy models 

 

Electricity models are structured by operating hours of six parameters that can be 

categorised by three groups: lighting, appliances used in daily routines and cooling. The 

most influential factors are the operating hours of lighting in the bedrooms (SRC 0.527 and 

0.475 in periods A and B) and living room (SRC 0.475 and 0.433). The operating hours of 

rice-cookers and computers show the fourth and fifth highest SRC of 0.343 and 0.339 in 

period A, and 0.336 and 0.329 in period B. In terms of the seasonal devices, cooling hours is 

the most influential compared to the other factors, including cooling set-point temperatures. 

Their impact on electricity consumption is determined by the size of volume. Thus, cooling 

hours in the living room have SRC of 0.459 and 0.383 in periods A and B, while cooling 

operation in the bed room show SRC 0.239 and 0.220 in the two periods, respectively. 

Diverse ranges of the input parameters in the linear models are examined for their estimation 

to be as close as the distribution of the actual energy consumption. As a result, the 

discrepancy is significantly declined with the new sets of random samples, as depicted by 

‘optimised’ in Figure 3. The lowest discrepancy is achieved: 1.2% of the heating energy 

model for period A and 3.7% for period B. The modified electricity consumption in period A 

shows 3.8% discrepancy. The discrepancy became higher to 9.8% for period B by applying 
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the same set of the modified samples used for period A. In comparison to the previous 

distribution (Table 2), the large discrepancy in annual energy consumption is reduced by 

little change in daily routines. In the heating models, the range of set-point temperatures is 

reduced from 16 – 22 ºC to 16 – 20 ºC, and the operating hours are also reduced from 3 – 9 

hours to 3 – 6 hours in the heating models for period A. For period B, the range of set-point 

temperatures is moved to 15 – 21 ºC in the living room, and reduced to 16 – 21 ºC in the 

bedroom A and C. In the electricity model, the possible ranges of operating hours of lighting 

and rice-cooker are extended by about 1 – 3 hours. The range of the computer is moved to 

0.5 – 3.5 hours. Overall, the changes in set temperatures are within 2 ºC, while operating 

hours are revised within 3 hours from the previous distributions. 

 

Table 3 Result of multivariate regression analysis 

 Period A (Before 1980) 

 

Period B (1981 – 1988) 

Unstandardised Coefficients Standardised 

Coefficients 

 (p-value) 

Unstandardised Coefficients Standardised 

Coefficients 

 (p-value) B Std. Error B Std. Error 

 

 

 

Heating 

 

Set temperatures in living room -303.777 16.520  (0.000) -346.219 26.161 -(0.000) 

Heating hours in living room 10.070 0.500 0.587 (0.000) 10.444 0.792 0.526 (0.000) 

Set temperatures in bedroomA 8.669 0.497 0.504 (0.000) 9.347 0.787 0.469 (0.000) 

Set temperatures in bedroomC 5.470 0.495 0.320 (0.000) 5.651 0.784 0.285 (0.000) 

Set temperatures in living room 4.649 0.492 0.271 (0.000) 5.157 0.779 0.260 (0.000) 

 

 

 

 

Electricity 

 

(Constant) 15.134    8.036  (0.000) 16.546 15.921 (0.000) 

Lighting in bedrooms 0.835 0.027 0.527 (0.000) 0.740 0.053 0.475 (0.000) 

Lighting in living room 0.755 0.027 0.475 (0.000) 0.676 0.053 0.433 (0.000) 

Cooling hours in living room 0.729 0.027 0.459 (0.000) 0.597 0.054 0.383 (0.000) 

Operating hours of rice-cooker 0.544 0.027 0.343 (0.000) 0.523 0.054 0.336 (0.000) 

Operating hours of computer  1.079 0.055 0.339 (0.000) 1.028 0.109 0.329 (0.000) 

Cooling hours in bedroom A 0.378 0.027 0.239 (0.000) 0.343 0.054 0.220 (0.000) 

 

3.2.2 Probability of energy consumption with Gaussian Process Classification  

Figures 5 and 6 show that the probability of energy consumption with 25% deviation 

(medium class) is formed by various combinations of the influential parameters. In other 

words, the definition of standardised conditions can also be varied by the probability of 

energy consumption. All parameters linearly effect energy consumption, but they are paired 

depending on the relevance and the order of coefficient values for the presentation. Pairs of 

the parameters can be organised in different ways. However, each parameter interacts in an 

inverse proportion in determining the probability of energy consumption. For instance, the 

operating hours of the living room is reduced, while the set-point temperature is increased. 

Hence, the distribution taken from the actual consumption can be maintained. At the same 

time, this interaction allows the standardised conditions flexible in determining the 
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probability of energy consumption. In addition, impacts of the parameters shift the 

probability of energy consumption. This is shown by the dispersion of contour lines. Thus, 

wider dispersion reveals that the parameters are not significantly relevant to determine the 

probability of energy consumption as found in heating set-point temperatures in the bedroom 

A and C (Figure 5 – b) and cooling hours (Figure 6 – c). 

The 90% probability of the medium class (25% deviation) is overall formed by the range of 

heating set-point temperature from about 17 to 20 ºC (Figure 5). Heating operating hours are 

about 3 – 6 hours for period A, and 5 – 8 hours for period B: three hours (19:00 – 22:00), 

four hours (19:00 – 23:00), five hours (19:00 – 24:00), six hours (18:00 – 24:00), seven 

hours (18:00 – 01:00) and eight hours (18:00 – 02:00). This range is lower than the 

conventional standardised conditions that include 20 or 24 ºC set temperatures and its 

operation controlled by the set temperatures. Furthermore, the possible deterministic value 

of heating set temperature can be closer to 18 ºC by regarding the actual energy consumption 

rather than the 20 ºC mostly used in existing literature. The conventional conditions in 

calculating energy demands are not perfectly out of range, but heating energy consumption 

can be overestimated. 

Interestingly, the probability in heating consumption for period A (Figure 5 – a and b) is 

formed by the slightly lower values of set temperatures and operating hours, than the values 

for period B (Figure 5 – c and d), despite higher heating consumption in period A. This can 

be interpreted by realistic compromise, possibly due to the cost of energy. The medium class 

for period A consumes about 107 – 138 kWh/m
2
/year by the possible setting identified 

above. However, the medium class for period B spends less heating energy, between 87 and 

112 kWh/m
2
/year with the setting above because of their relatively advanced thermal 

conditions, compared to period A. This reveals that occupants in period A would tactically 

suppress their heating controls despite the significant heat loss through building envelopes. 

Electricity consumption with 90% probability is generally derived from diverse ranges in 

operation (Figure 6). Specifically, lighting is possibly used from 1 to 5 hours. The rice-

cooker can be operated about 9 – 14 hours in warming rice, and the computer is operated for 

0.5 – 3.5 hours per day. The air-conditioner can be used for up to 6 hours during summer. 

The results provide more realistic operations for the appliances with intermittent operations 

by linking between the actual energy consumption and the national survey about using 

electrical appliances. 
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Figure 5 Results of Gaussian Process Classification for heating consumption 

 

 

 

Figure 6 Results of Gaussian Process Classification for electricity consumption 
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3.3 Evaluation of estimating energy consumption with the probability of the 

standardised conditions   

Energy consumption is estimated by 100 random samples with different probability: high 

(50 – 90%), and total probability (0 – 90%). Figure 7 demonstrates the comparison between 

the two different probabilities. The random samples with high probability (on the long-

dashed lines in Figure 5 and 6) result in a much lower distribution compared to the samples 

with total probability (on the dotted lines). The estimated heating consumption of the 

samples with high probability is distributed from 104 kWh/m
2
/year to 136 kWh/m

2
/year for 

period A (Period A_a in Figure 7), while the estimation for period B is from 76 

kWh/m
2
/year to 119 kWh/m

2
/year (Period B_a). In contrast, the samples chosen with total 

possibility create a much extended distribution, 46 – 195 kWh/m
2
/year heating consumption 

for period A (Period A_b) and 23 – 179 kWh/m
2
/year for period B (Period B_b). In terms of 

electricity consumption, the samples with a high probability estimate electricity consumption 

between 30 and 32 kWh/m
2
/year for both periods (Period A_a and Period B_a). The 

distribution of estimation is enlarged with total probability from about 24 to 44 

kWh/m
2
/year. Depending on the form of the probability, combinations of random samples 

can be diverse, and their estimation can be different each other. However, the estimation 

with high probability closely represents the standard deviation identified in the actual energy 

consumption in each period, while the estimated consumption with total probability reflects 

the minimum and maximum range of the actual energy consumption. 

 

 

Figure 7 Estimated energy consumption with the probability of the standardised 

conditions 
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4. Conclusions 

This study questioned the inflexible conventional modelling which disregards the various 

occupant random behaviour of controlling energy consumption in apartment buildings. The 

actual energy consumption shows 10 – 30% deviation from average values in apartments 

built in the 1970s – 1980s. Moreover, the range between minimum and maximum values is 

much greater, up to 128%. This variation reveals that deterministic values of defining typical 

conditions in apartment buildings could provide a limited interpretation of energy 

consumption in these buildings. This study attempted to identify the probability in energy 

consumption in apartment buildings, regarding the variation in actual energy consumption.  

The probability of energy consumption with a 25% deviation was drawn through Gaussian 

Process Classification. The updated values of input parameters represent the probability of 

the standardised condition in apartment buildings, according to Bayesian inference. The 90% 

probability of heating consumption is formed by 17 – 20°C set temperatures and 3 – 8 

operating hours.25% deviation in electricity is derived from 3 – 6 hours of ranges in 

operation. Compared to the values in conventional modelling, these results imply that 

conventional modelling may overestimate energy consumption. Overall, sets of parameter in 

50 – 90% probability could achieve nearly the standard deviation, 10 – 30%, in real energy 

use, whereas sets of parameters in total probability showed a far greater distribution of 

estimating energy consumption, nearly about the minimum and maximum ranges. Hence, 

the standardised conditions in apartment buildings can be varied depending on the 

probability of energy consumption.  

This paper applies the actual energy consumption and develops the probabilistic models of 

occupant random behaviour controlling heating and electricity in apartment buildings. How 

people consume energy is difficult to be determined by a certain value, which is often 

preferred for building simulations. However, stochastic data provide the probability of 

occupant energy behaviour for more specified occupants’ groups, which reduces 

uncertainties and discrepancies in the estimation in building simulations. In the case of 

South Korea, the general characteristic of residents living in apartment buildings is 

comprised of parents with one or two offspring. By taking socio-economic factors the group 

of residents became more specific. The deviations in energy consumption of the resident 

group led to refine most of the possible range of energy behaviours. Moreover, the 

generalisation process drew the specific operating hours of heating and electric appliances. 

The result provides the adapted energy controls of the resident group, called “new middle 

class”, living in old apartment buildings constructed before 1980 and 1981 – 1988, 

respectively. It is noted that the behaviour model developed in this study is specified for 
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residents living in apartment buildings in particular districts in Seoul, so that residents in a 

different context could be difficult, due to the different life styles, such as types of domestic 

appliances and their usage, although the application for South Korean residents would be 

applicable, because the original surveyed data are based on South Korean residents. 

Moreover, the behaviour model only included several influencing factors into the stochastic 

model. Although these factors were selected by their generalities of usage in households and 

the high levels of correlation with energy consumption, the impacts of the disregarded 

appliances and operating hours could contain uncertainties in the model in certain situations. 
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Abstract 

Since the 1970s the construction of high-rise apartments has been prolific across Asia. More 

recently, due to changes in legislation, there has been a growing trend towards refurbishment 

for those old apartments, however this has primarily focused on the economic benefits and 

rarely taken energy saving and the reduction of carbon emissions into account. Therefore, 

this study aims to evaluate what features in old apartment buildings need to be taken into 

account in refurbishment strategies. The method is threefold: evaluating energy consumption 

in old apartment buildings; identifying effective building features on energy consumption; 

ranking the effects of building features on energy consumption. The results show that old 

apartment buildings have consumed excessive energy for space heating and cooling. 

Maximum 43.65 kWh/m
2
/year in space heating and 5.70 kWh/m

2
/year in cooling were 

reduced as a result of the transformation of eight building features, accounting for 70.9% of 

total variance in factor analysis. Three most influential features, which should be used to 

priorities for refurbishment schemes, have been identified by multiple regression analysis: 

the conditions of building envelopes, heating methods and the sizes of building units. 

Therefore, the priority should be given to these three features.  
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1. Introduction 

In Asian countries that experienced dramatic economic growth such as Japan, Hong Kong, 

Singapore and South Korea [1], high-rise apartment building became one of the most 

dominant types of housing [2, 3]. The refurbishment of those buildings is a common issue 

after more than 40 years of extensive construction of apartment buildings.This issue can be 

also extended to some countries such as China and Malaysia that have experienced the 

economic growth in recent years. 

In South Korea,ranked 8
th
 for Green House Gases (GHGs) emissions [4], for instance, the 

Government has attempted to reduce carbon emissions of the country by enhancing building 

regulations and policies. Apartment buildings wererequired to be energy-efficient since 2001 

[5]. In 2009, a new law, ‘Framework Act on Law Carbon Green Growth’, required higher 

levels of energy efficiency in buildings [6]. Despite these attempts, energy consumption in 

residential buildings has not declined [7], and carbon emissions in South Korea have also not 

reduced [4]. Several studies such as [8, 9] have criticised this unwanted outcome. 

Particularly, Kim [9] claims ineffective energy reduction in residential buildings was due to 

energy consumption in old apartment buildings, which were excluded in the energy-efficient 

scheme. In the building stock of South Korea, the largest proportion of all building types is 

residential buildings, which amounts to 67.1% [10]. 58% of the residential building stock is 

apartment buildings [11], which is the most dominant proportion. 63% of apartment 

buildings were constructed before 2001 [11, 12] when the higher levels of energy-efficient 

scheme were applied to buildings. In this aspect, the old apartment buildings constructed 

over 20 years ago, which occupies the largest proportion in the building stock of South 

Korea, were not counted to be energy-efficient. 

There has been a controversial debate amongst policy makers, building developers and 

residents in South Korea during the last decadeas to whether old apartment buildings should 

be demolished or refurbished. However, policy makers have proposed to refurbish old 

apartment buildings to contribute reducing carbon emissions rather than demolish those 

buildings. As a result, building regulations have been altered in recent years to encourage 

refurbishment and reduce demolition of old apartment buildings. The South Korean 

Government, for example, has permitted developers to increase the number of floors on top 

of apartment buildings in case of refurbishment [13]. This policy can represent the 

governmental intention to vitalise refurbishment.  

Despite the governmental efforts, there are limits in current and recent literature in terms of 

creating effective strategies of refurbishment for old high-rise apartment buildingsto reduce 
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energy consumption. Firstly, great attention has been paid to economic profit rather than 

reducing energy consumption or carbon emissions. The concept of refurbishment in existing 

literature such as [14, 15] was identified by maximising economic profit, and the strategies 

of refurbishment were focused on cost-effectiveness. Therefore, the strategies would not 

necessarily be beneficial to reduce energy consumption. Secondly, existing literature, 

engaging with energy efficient technologies, does not cover old apartment buildings that 

need to be refurbished [16-20]. It relies on the ‘Standard housing’ model which draws the 

thermal condition of buildings from simplified indices [21], assuming that building features 

affecting energy consumption in all apartment buildings are the same. However, the building 

features in old apartment buildings were changed by different design preferences in different 

periods and contexts. The existing literature does not take into account the transformation of 

building features in old apartment buildings that have been constructed in different periods 

and contexts [22-28]. This study argues that the transformation of building features affects 

energy consumption and needs to be taken into account when creating refurbishment 

strategies. 

This study, therefore, focuses on identifying old high-rise apartment buildings in South 

Korea which need to be refurbished to reduce energy consumption. Furthermore, the most 

efficient strategy of refurbishment will be identified by investigating building features and 

their effect on energy consumption in those apartment buildings. Three questions will be 

answered:  

 What are the levels of energy consumption in old apartment buildings? Do these levels 

of consumption need to be reduced?  

 Which features in old apartment buildings have affected the energy consumption?  

 Which building features should be prioritised in refurbishment strategies in order to red

uce energy consumption?  

2. Methodology 

The methodology is designed to analyse the impact of building features in old apartment 

buildings on actual energy consumption. The results will help to prioritise which building 

features can most effectively reduce energy consumption and thus guide the creation of 

refurbishment strategies. The method is threefold: evaluating energy consumption in old 

apartment buildings; identifying effective building features on energy consumption; ranking 

the effects of building features to energy consumption. 

2.1 Evaluation of energy consumption in old apartment buildings  
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Energy consumption in old apartment buildings was evaluated to determine the necessity of 

refurbishment to reduce energy consumption. The consumption in old apartment buildings 

was, therefore, compared to the consumption in apartment buildings which were certified as 

energy-efficient. To conduct this, old apartment buildings are defined by those which were 

constructed before 2001, a year when building regulations for the thermal conditions of 

apartment buildings was much intensified and building energy rating system was just 

established. Permission has already given for some of these buildings to be refurbished, 

others will be available to be refurbished in 2015 by a building regulation in South Korea 

[29]. In contrast, the comparison group of apartment buildings were certified as energy-

efficient in an energy rating system set by Korea Land and Housing Corporation in South 

Korea [30]. The three values of energy consumption in the both groups were compared: total 

end-use energy consumption; space heating and electricity consumption by construction 

years; monthly energy consumption for space heating and electricity. The result is shown in 

Section 3.1.  

2.2 Identification of building features affecting energy consumption 

Building features in old apartment buildings were identified by reviewing previous literature 

and surveying existing old apartment buildings.To prioritise building features in 

refurbishment, this study was, particularly, focused on the transformation of building 

features rather than characteristics which are commonly found in all buildings. It is difficult 

to precisely divide time periods of each feature. Instead, this study used the dominant 

designs since the 1980s, as described in Figure 1. Three distinctive trends are identified in 

the transformation of building features in old apartment buildings constructed before 2001.  

First of all, the main purpose in the early stage of apartment construction was to 

accommodatea rapidly increased urban population and building features were chosen 

accordingly whilst building features in the late stage were transformed to acquire higher 

levels of privacy in each apartment building [25]. For example, between the mid-1970s and 

1980s, large volume apartment clustersof more than twenty buildings were constructed as 

governmental-led projects [31]. During the 1990s, the size of apartment clusters was reduced 

when the government handed over apartment construction to private developers [31]. Total 

cluster areas were also changed with the transformations of the size of apartment clusters, 

but it was differently evolved as the higher requirements for public space with service 

facilities [32]. Moreover, apartment buildings constructed in the early stage were designed 

with longer lengths and smaller sized units. A maximum of eight to ten apartment units were 

placed on each floor; thus small unit sizes of less than 60m
2
 (70m

2
 including communal 

space) were constructed in the 1980s [26]. Since privacy has become a sensitive issue, 
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buildings with a stair type whereby only two units share one vertical access points (called a 

‘core’) are preferred [25].  

 

 

Figure 1) Changes of building features in apartment construction of South Korea since 

the 1970s 

Second, economic profit has also been a significant factor to transform the building features 

in old apartment buildings. For instance, three types of building layout can be identified [23, 

33-35]: the linear type where buildings are long and thin in plan and located parallel to one 

another; the square type where buildings are square in plan; and the grid type where 

buildings are located on a grid. According to Jeon [25] , the linear type was the typical 

design type in the early stage of apartment construction in South Korea, but the design was 

changed to square and grid type to accommodate more buildings. The sizes of building units 

were also enlarged; thus the most dominant unit size became about 85 – 100m
2 
(about 100 - 

120m
2
 including communal space) [26].  

Third, some building features were transformed by stringent policies and the development of 

technologies. The thermal conditions of envelopes in old apartment buildings have been 

determined by a building regulation [36]. The regulation determining the thermal 

conductivity of materials and the thickness of insulations required was firstly established in 

1980. Since 1980, there have been two significant revisions to the regulations in 1984 and 

1987, and in 2001, a significant improvement was made. Therefore, buildings constructed 

before 1980 have no thermal insulation in their envelope which created a poor thermal 

environment for residents. The second revision, implemented in 1987, required all apartment 

buildings to be equipped with double glazing. Despite the dramatic increase in apartment 

construction in the 1990s [11], there was no revision of the regulation to improvethe thermal 
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conditions of buildings until 2001. Also, three different heating methods were found in old 

apartment buildings: central gas heating, district heating and individual gas heating [37, 38]. 

Central gas heating was mostly used in buildings constructed in the early stage. Since the 

district heating was introduced in 1985 [39], apartment buildings constructed in Seoul have 

been connected to the district heating system. Since the national construction of gas supply 

lines into the cities, individual gas boilers have become the dominant type of heating.   

Table 1 indicates how designs of building features were transformed until 2000. This 

transformation of those building features was examined as to whether they affect actual 

energy consumption or not; thus effective building features on energy consumption were 

identified. The result is described in Section 3.2. 

2.3 Quantification of effects by building features 

This section is intended to quantify these relations to energy consumption separated by space 

heating and electricity. Two types of statistical analyses were conducted, which are multiple 

regression and factor analyses. Multiple regression analysis is one of popular techniques to 

measure the capability of statistical models to interpret a dependent variable through 

correlated independent variables, and determine influential independent variables in 

statistical models [40]. The multiple regression analysis was applied to interpret a dependent 

variable (energy consumption for space heating and electricity) by using independent 

variables (building features in old apartment buildings). The values of R-squared 

demonstrate how efficient this statistical model accounts for energy consumption in old 

apartment buildings. The standardised regression coefficient (SRC) was used to measure the 

influences of independent variables (cluster sizes, building lengths, construction types, total 

cluster area, building layouts, building unit sizes, the conditions of building envelopes and 

heating methods). The multiple regression models were assessed by power analysis to 

examine the power of the samples used in this study; f-test was conducted by SPSS. 

Exploratory factor analysis was, therefore, intended to identify an underlying structure 

between observed variables consisted of the building features in this study; thus the results 

can be used to specify efficient targets for refurbishment. The principle axis factoring 

method was performed by Oblimin rotation (delta 0.4) with Kaiser Normalisation [40]. The 

criterion used to indicate an adequacy of factor analysis in the sample was followed by a 

Bartlett’s test of Sphericity of significance, and a Kaiser-Meyer-Olkin measure of sampling 

adequacy [42]. In order to identify robust variables, the variables with the low loadings 

(< 0.3) and cross-loadings were eliminated. SPSS version 21.0 was used in all statistical 

analyses and the results of analyses are shown in Section 3.3.  
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Table 3 Change in designs of building features in apartment construction in South 

Korea in pre-2001 

Category Variables  

(CA: categorical, CO: continuous) 

Data range 

 

Demands of 

time periods 

Sizes of clusters - CA 

(No. of apartment buildings in clusters) 

Large (≥20), Medium (6-15), Small 

(≤5) 

Total cluster area – CO 12,562 – 515,906m
2
 

Types of building access - CA Corridor type, Stair type 

Lengths of buildings – CA 

(No. of vertical access points) 

1- 6 

Economic 

profit 

Types of building layouts - CA Linear, square and grid types 

Sizes of building units - CO 41.05 – 181.82m
2
 

Developed 

policies and 

technologies 

Thermal conditions of building 

envelopes (insulation and 

fenestration) – CA 

Buildings constructed before 1980, 

1981-1984, 1985-1987, after 1988 

Heating system methods – CA Central gas, District, Individual gas 

heating 

2.4 Sampling  

Old apartment buildings constructed in pre-2001 

Total 189 apartment clusters with 1767 buildings (171,054 households) were selected as 

samples. The samples occupy 3.5% of the population size, 4,988,441 households [11, 12] in 

apartment buildings constructed between 1976 and 2000 in South Korea. The sampling 

frame was designed with four sampling units: 1) construction years; 2) regions; 3) the 

number of floors; 4) the availability of data on energy consumption. Firstly, apartment 

buildings which were built between 1976 and 2000 were only considered, because apartment 

buildings constructed after 2001 are regarded less urgent to be refurbished with an 

intensified building regulation, and constructed before 1976 are highly regarded to be 

demolished as low-rise buildings to rebuild high-rise buildings. Second,sixteen apartment 

districts in Seoul were selected. The districts were established as parts of enormous housing 

construction projects between the 1980s and 1990s, leading the dramatic increase of 

apartment building construction. 60% of apartment buildings constructed before 2000 in 

Seoul were built in these districts [43]. Therefore, buildings in these districts have used to 

identify dominant characteristics built in that period. Moreover, these districts in Seoul are in 

the same climate zone, and the same thermal building regulations are applied to the 
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buildings in Seoul and the central regions of South Korea; thus there would not be 

significantly different climate impacts in these districts. The impacts of microclimate such as 

heat island effects may give influence in energy consumption [44]. However, these possible 

impacts were taken into account in this study as building features related to building clusters. 

Third, apartment buildings with more than ten floors were considered. This is because that 

refurbishment would be inevitable for the buildings which have more than ten floors. As 

they were densely constructed, it is difficult to acquire permissions to demolish them in 

order to build super high-rise buildings under the current building regulations [13, 45]. 

Lastly, the availability of data on energy consumption limited the samples in this study. 

15.2% of apartment buildings which did not filltheir energy bill records between 2011 and 

2012 in AMIS were not counted in this study. 

Energy consumption bills between 2011 and 2012 were collected from ‘Apartment 

Management Information System (AMIS). This system is organized by the Ministry of 

Land, Infrastructure and Transport (MLIT) and managed by the Korean Housing 

Management Association (KHMA). A policy has been implemented under which all 

apartment buildings in South Korea should input their expenses into this system. The system 

displays the expenditure of each apartment building. However, there were some missing data 

on the energy bills of some apartment buildings in the system. These apartment buildings 

were excluded in the samples. The collected data from energy bills were converted from 

Won/m
2
 to kWh/m

2
. The conversion rates refer to those of the Korean Electric Power 

Corporation [46] for electricity and Seoul City Gas [47] for gas. 

A comparison group of apartment buildings  

Total 34 apartment clusters with 319 buildings (13,551 households) built between 2008 and 

2010 in one district. The samples occupy 1.8% of the population size, 740,214 households 

[11] in apartment buildings constructed between 2008 and 2010 in South Korea. Four 

sampling units were used: 1) construction years; 2) regions; 3) the number of floors; 4) 

energy-efficient certificates; 5) the availability of data on energy consumption. Firstly, 

buildings built after 2001 were selected to compare energy consumption in old apartment 

buildings becausethose buildings arerelatively regarded as energy-efficient. Secondly, as 

climate conditions can have a significant impact on energy use in buildings, a district in 

close proximity to the districts in Seoul selected for the analysis of old apartment buildings 

was selected to minimise variation between the old and new samples. Thirdly, the same 

number of floors, more than ten floors,was also applied. Fourth, the certified apartment 

buildings as energy-efficient in this district were only used in this study as mentioned in 

Section 2.1. Lastly, the availability of datalimited to choose the samples like old apartment 
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buildings.The certified buildings which did not filltheir energy bill records between 2011 

and 2012 in AMIS were not counted.Energy bill data was collected by the same method used 

for old apartment buildings.  

3. Results 

The results are illustrated by three parts to answer the three research questions in this study. 

The first part (Section 3.1) describes energy consumption in old apartment buildings built in 

before 2001 by comparing the consumption in the group of apartment buildings built 

between 2008 and 2010. The second part (Section 3.2) indicates building features affecting 

energy consumption in old apartment buildings. The last part (Section 3.3) quantifies the 

effects of building features to energy consumption.  

 

3.1 Energy consumption in old apartment buildings 

Figure 2 shows a comparison of the total energy consumption of two groups of apartment 

buildings which are 234.2 kWh/m
2
/year and 190.0 kWh/m

2
/year respectively. Both numbers 

are much higher than the 1
st
 grade in energy rating systems set by Korea Green Building 

Certificate Criteria (GBCC) in South Korea (60.0 kWh/m
2
/year) [21] and Passive house 

standard (25.0 kWh/m
2
/year) [48]. This result shows that the energy consumption of both 

groups of apartment buildings needs to be reduced to satisfy these energy rating systems. 

Despite excessive energy consumption, detailed consumption (separated by use) indicates 

different tendencies. Old apartment buildings consumed 109.6 kWh/m
2
/year for space 

heating whilst apartment buildings built between 2008 and 2010 only consumed 66.0 

kWh/m
2
/year. On contrary, energy consumption of electricity and water heating did not have 

significant reductions in this period.  

 

Figure 2) Total energy consumptions of apartment buildings in 2011 and 2012 
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These tendencies are also shown in Figure 3. The average energy consumed for space 

heating in old buildings has reduced by their construction years. 100% of old apartment 

buildings constructed before 1980 consumed more energy for space heating than the average 

of 108.8 kWh/m
2
/year, compared to 53% of old apartment buildings constructed in the 

1980s. Only 20% of buildings in the 1990s and none of buildings constructed between 2008 

and 2010 consumed above average energy for heating, these results suggest that apartment 

buildings built before 2001 have been able to decrease energy consumption efficiently 

regarding space heating. 

Energy consumption for electricity was not reduced in this period 92.2 kWh/m
2
/year of 

electricity was continuously consumed by apartment buildings inboth groups. This can be 

explained by the everyday use of domestic appliances such as refrigerators, televisions and 

computers. However, Figure 4 demonstrates that the summer use of electricity for space 

cooling in the old apartment building was especially high in August. In each month, there 

was only 0.05 kWh/m
2
/year difference between apartment buildings in the both groups, 

except for August when the gap was enlarged to 1.5 kWh/m
2
/year in 2011 and 5.7 

kWh/m
2
/year in 2012.  

Like electricity consumption, there was no significant reduction in water heating 

consumption; 32.6 kWh/m
2
/year of water heating was continuously consumed in both 

groups. However, the old building group demonstrated a higher relative standard deviation 

with 32.3% while 19.6% was for the new building group. Furthermore, these values are also 

higher, compared to space heating with 25.2% in old building group and 11.5% in new 

building group, and electricity with 15.3% and 11.9% in old and new building groups, 

respectively.  

Overall, apartment buildings have been able to decrease energy consumption efficiently 

regarding space heating and cooling although there were not significant reduction in energy 

consumption for electricity and water heating. As identified in Section 2.2, physical 

conditions in apartment buildings constructed between 1976 and 2000 have been 

transformed. This would probably result in the changes of energy consumption in these 

buildings.  

However, the effects of occupants could also be important factors to understand energy 

consumption in these buildings. Interestingly, residents living in apartment buildings in 

South Korea showed the extremely unified composition of households. 90% of apartment 

buildings’ inhabitants are parents with their offspring, and families with three or four 
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members occupy 80% of households in apartment buildings [49]. Therefore, the general 

profiles of occupants such as the number of occupants and types of family may not give 

meaningful results explaining energy consumption. However, geographical segregations in 

residential areas caused by socio-economic factors such as the levels of income and 

education have been identified in South Korea [50]. Their effects would also be useful to 

identify the continuous energy consumption in electricity and water heating, and the large 

variations in water heating.[51]. However, this study focused on the physical features of 

apartment buildings, which were described in Section 2.2, to create the efficient strategies 

for refurbishment.  

3.2 Building features affecting to energy consumption 

It can be seen that six of the eight features (Table 2) had an effect on energy consumption for 

space heating while little difference was found in electricity consumption. This can be 

explained by two opposing tendencies. As expected, one of these tendencies is that old 

apartment buildings constructed in the early stage consumed more energy than those 

constructed in the late stage. Three features, the conditions of building envelopes, the lengths 

of buildings and heating methods, accounted for this increasing tendency in energy 

consumption. This means that the transformations of the three features reduced energy 

consumption as seen in Figure 5.  

First, the most effective reduction was found by improving the condition of building 

envelopes, which was a maximum 48.7 kWh/m
2
/year (Figure 5(a)). In particular, the largest 

reduction occurred between buildings constructed before 1980 and those constructed 

between 1981 and 1984. This is because buildings built before 1980 did not have insulation 

on their envelopes while 50mm internal insulations were applied for those constructed 

between 1981 and 1984. The second largest reduction was between buildings built between 

1981 and 1984 and 1985 and 1987. This was achieved by replacing the type of glazing in 

windows from 3mm single glazing to double glazing. The result indicates the thermal 

condition of building reduced energy consumption.  

Second, the shorter lengths (that is with fewer vertical access points) the buildings had, the 

less energy consumed for space heating. Specifically, gradual energy reduction up to 30.2 

kWh/m
2
/year was found by decreasing the lengths of buildings. As the heights of buildings 

were mostly fixed either 12 or 15 stories, the total amount of surface area, which is exposed 

to heat transfer, was reduced. Consequently, this was beneficial in reducing energy 

consumption. Third, the changes in heating methods also reduced up to a maximum of 26.2 

kWh/m
2
/year of energy consumed for space heating. Alarge gap was found between 
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buildings with central gas heating, andbuildings with district and individual gas heating. 24.3 

kWh/m
2
/year was found between central gas heating and district heating, but only 2.0 

kWh/m
2
/year was found between district and individual gas heating. 

 

Figure 3) Energy consumption of apartment buildings by construction years: (left) 

space heating, (right) electricity 
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Figure 4) Monthly Energy consumption between for (a) electricity and (b) water 

heating 2011 and 2012 

 

Second, the shorter lengths (that is with fewer vertical access points) the buildings had, the 

less energy consumed for space heating. Specifically, gradual energy reduction up to 30.2 

kWh/m
2
/year was found by decreasing the lengths of buildings. As the heights of buildings 

were mostly fixed either 12 or 15 stories, the total amount of surface area, which is exposed 

to heat transfer, was reduced. Consequently, this was beneficial in reducing energy 

consumption. Third, the changes in heating methods also reduced up to a maximum of 26.2 

kWh/m
2
/year of energy consumed for space heating. Alarge gap was found between 

buildings with central gas heating, andbuildings with district and individual gas heating. 24.3 
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kWh/m
2
/year was found between central gas heating and district heating, but only 2.0 

kWh/m
2
/year was found between district and individual gas heating. 

The opposite tendency is that greater energy consumption occurred in buildings constructed 

in the late stage.This is due to three features, namely the sizes of building units, the sizes of 

clusters and the types of building layouts (Figure 5 (d-f)). Firstly, the sizes of buildings units 

were increased in response to higher preference for the large sizes of units. This increase in 

unit sizes caused higher energy consumption in old apartment buildings, which is nearly 30 

kWh/m
2
/year more energy consumption for space heating and 20kWh/m

2
/year for electricity, 

to maintain a certain level of thermal comfort within the indoor environment. Secondly, old 

apartment buildings in large apartment clusters consumed less energy than those in small 

apartment clusters. The amount of energy reduced according to the sizes of clusters, a 

maximum 12 kWh/m
2
/year for space heating and 9 kWh/m

2
/year for electricity which were 

not as significant as the reductions for other features. Third, the types of building layout 

showed increases with 5 kWh/m
2
/year in electricity from linear to grid.   

In short, the six building features are identified as being effective in energy consumption. 

However, the different amount of energy affected by each building feature needs to be 

evaluated in order to prioritise refurbishment strategies. The results of these evaluations are 

illustrated in Section3.3.  
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Figure 5) Energy consumptions of old apartment buildings by (a) conditions of 

building envelopes, (b) lengths of buildings, and (c) heating methods , (d) sizes of units, 

(e) sizes of clusters, and (f) types of building layouts 

 

3.3 Quantification of effects of building features on energy consumption 
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3.3.1 Results of multiple regression analysis 

In order to reject the null hypothesis, the results of f-test in multiple regression models 

require not being less than 2.42 with 95% critical confidence interval. The f-test results in 

this study showed 63.88 with the model for space heating and 15.94 with the model for 

electricity, which means that the sample sizes were large enough to bring about reliable 

results.  

Table 2 demonstrates the results of multiple regression analysis. The values of R-squared in 

these two models are 0.580 for space heating and 0.256 for electricity. The both R-squared 

are not very good to account for energy consumption; the R-square for electricityis relatively 

low. This could be the primary data on energy consumption were limited to extract  gas 

consumption for cooking and electricity consumption for the everyday use of domestic 

appliances, which are highly determined by user behaviour rather than building features. 

Despite it, both models are statistically significant at 5% level. 

Table 4 The result of multiple regression analysis 

 

Independent variables SRC Significance 

Space 

heating 

consumption 

(R
2
=0.580) 

The thermal conditions of building envelopes 

Heating methods  

The lengths of buildings 

The sizes of apartment clusters 

-0.626 

-0.301 

0.196 

-0.129 

0.000 

0.000 

0.000 

0.008 

Electricity 

consumption 

(R
2
=0.256) 

The sizes of apartment units 

The sizes of apartment clusters 

The types of building layouts 

The thermal conditions of building envelopes 

0.300 

-0.202 

0.203 

-0.203 

0.000 

0.002 

0.004 

0.008 

 

The standardised regression coefficients (SRC) of building features specify the effects of 

building features on energy consumption. The opposite trends of building features, as seen in 

the previous section, arefound by negative and positive values of the standardised 

coefficients (Figure 6 (a-d)). The negative values of coefficients, decreasing energy 

consumption, are attributed to the transformations of these three features: improving the 

conditions of building envelopes; changing heating methods from central gas to individual 

gas heating; reducing the sizes of clusters. On the contrary, the positive values of 

coefficients, increasing energy consumption, are found by the other three features: 

shortening the lengths of buildings; reducing the sizes of building units; changing the types 

of building layouts from linear to grid.  
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In space heating, four features were chosen as influential variables: the thermal condition of 

building envelopes, heating system methods, the lengths of buildings and the sizes of 

clusters (Table 2). Only the feature, the lengths of buildings, is with positive SRC while the 

other three features are with the negative SRCs. The means that space heating consumption 

was decreased by these four conditions: reducing the lengths of buildings; improving the 

conditions of building envelope; changing heating methods from central gas to district or 

individual gas heating; increasing the sizes of clusters. The former three conditions are 

typically found in apartment buildings constructed in late stage whilst the large sizes of 

clusters are identified in the early stage of apartment construction. The effects of the 

opposite tendencies on space heating are quantified by the values of SRC in Table 2. The 

former three features are relatively the higher values of SRC than the sizes of clusters with 

SRC 0.129. This interprets the reason why space heating in old apartment buildings could 

effectively reduce space heating consumption by transforming building features. Specially, 

improving the thermal conditions of building envelope played a significant role in this 

tendency with the most robust SRC 0.626 as seen in Table 2. This can be a strong criterion 

to determine a priority for refurbishment.   

In electricity, the opposite tendencies are also identified. The sizes of units and the types of 

layouts show the positive SRC whereas the sizes of clusters and the thermal conditions of 

building envelopes indicate the negative SRC. In other words, electricity consumption was 

decreased by reducing the sizes of clusters and improving the thermal conditions of building 

envelope. However, the consumption was increased by the larger sizes of units and the 

changes of layout types from linear to grid. These four conditions are found in buildings 

built in late stage. The most significant feature is the sizes of units with SRC 0.300, but the 

significance is not as robust as the features affecting space heating. The other three features 

are approximately the very similar value of SRC with 0.202 or 0.203. These values of SRC 

reflect that both opposite tendencies have not significant differences each other. This 

interprets the reason why there was no significant change in electricity consumption in old 

apartment buildings. 
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Figure 6) Regression curves of building features with energy consumption: space 

heating with (a) construction year and (b) sizes of clusters, and electricity with (c) sizes 

of building units and (d) sizes of clusters  

 

3.3.2 Results of factor analysis 

In the factor analysis, Bartlett’s test of Sphericity was significant (186.557, ρ=0.000) and 

Kaiser-Meyer-Olkin was satisfactory (0.616); thus this factor analysis model is acceptable, 

but not marvellous due to the same reason of the multiple regression analysis. Despite it, 

70.8% of the total variance is explained by the eight measured variables, which is 

statistically effective to account for the variance. Four factors are identified in this factor 

analysis as seen Table 3.  

The first factor explains the most significant proportions of the total variance with 25.9%. 

The measured variables in this factor are associated with building form and fabric such as 

the sizes of building units, the types of building accesses, the conditions of building 

envelopes and the lengths of buildings. Apartment buildings in early stage need to be 

suitable to accommodate population increased in urban area; therefore, the building form 

was longer length, smaller unit sizes and corridor type, as identified in Figure 1. The 

conditions of building envelopes were similarly improved with these factors.In this reason, 

the four variables are in the same factor, and they are statistically correlated with overall 

correlation coefficients (R=0.4). The second and third factorsaccount for 18.0% and 15.5% 

of total variance, respectively. The second factor is comprised by as the types of layouts, the 

sizes of clusters while the third has total cluster area. Although the three variables are 

associated with apartment clusters, the difference between them is that the two variables in 
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the second factor is associated with specifically the characteristic of buildings in clusters 

whilst total cluster area is more likely the sizes of site. However, the variables are 

statistically correlated withoverall correlation coefficients (R= 0.3). The last factor contains 

heating system method accounting for 11.4% of total variance. 

Table 5 Pattern matrix in factor analysis 

Category Factors 

Factor 1 Factor 

2 

Factor 

3 

Factor 

4 

Structure  

Matrix 

Sizes of building units 0.663 
   

Types of building access 0.584    

Conditions of building 

envelopes 

-0.584    

Lengths of buildings 0.370    

Types of building layouts  0.675   

Sizes of clusters   -0.591   

Total cluster area   -0.608  

Heating methods    -0.342 

Total Variance 

Explained 

(70.866 %) 

% of Variance 25.900 18.082 15.445 11.440 

 

4. Discussion 

The results based on empirical data in this study demonstrated four distinctive aspects, 

compared to findings in other countries. Firstly, energy consumption for space heating in old 

apartment building is not extremely high by regarding the climate zone of Seoul in South 

Korea (Heating Degree Days (HDDs) 2800-3200) [52]. Compared to European countries, 

Denmark (HDDs 3000-3400) [53] showed 144.1 kWh/m
2
 of heating consumption in 

apartment buildings [54]. United Kingdom (HDDs 2800-3100) and Germany (HDDs 2700-

3200) [53],which have similar HDDs from South Korea, showed higher energy consumption 

in dwelling constructed in the 1980sand 1990s: 268.2 kWh/m
2
 in detached houses in the UK 

and 159 kWh/m
2
 in Germany; 102.8 kWh/m

2
 in post 2002 mid-terrace housing in the UK, 

and 94kWh/m
2
 in Germany in 1995 [55]. In our study, apartment buildings indicated 116.7 

kWh/m
2
/year in the 1980s and 94.4 kWh/m

2
/year in the 1990s although the maximum 

consumption in the samples was 173.9 kWh/m
2
/year in the 1980s and 158.8 kWh/m

2
/year in 
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the 1990s. The space heating consumption in old apartment buildings in South Korea is 

found the generally consumed in the climate zone. However, the consumption needs to be 

reduced like how European countries have been trying to achieve.  

Secondly, the eight building features of apartment buildings in South Korea indicated the 

significantly higher percentage of the variation explained in energy use which is 70.9% 

(R
2
=0.580 for space heating, R

2
=0. 256 for electricity). 42% (R

2
=0.379 for space heating) of 

the variation explained was reported in analyzing building characteristics with 15,000 houses 

in Netherlands [56]. Sonderegger [57] reported 54% of total variation were explained by 

physical building features with 205 houses in USA. Schuler et al [58] found relatively low 

R
2
value, 0.144, with building characteristics in West-German households. Pachauri [59] 

found 61.4 % of total explained variance by including socio-economic characteristics in 

dwelling in India. Consequently, the effects of physical conditions in old apartment 

buildings in South Korea are much more significant than buildings in other countries. In 

other words, the energy consumption of these old apartment buildings in South Korea can be 

effectively reduced by improving their physical conditions.  

Thirdly, the building features affecting energy consumption in old apartment buildings in 

South Korea are more prominent with higher SRC values although the lists of efficient 

building features are similar from buildings in other countries. Three building features have 

been identified in common as efficient factors reducing energy consumption: thermal 

conditions of building envelope (insulations and the glazing of windows); the volume of 

areas (heated areas, housing sizes and the number of rooms); construction years (vintages). 

In West-Germany, construction years and the sizes of housing were found as the relatively 

effective factors with SRC 0.225 and -0.221 [58]. In Netherlands, the sizes of heated area 

(useful living area), construction years and the insulations of building facades showed 

relatively higher SRC values, 0.321, -0.082 and 0-0.087 [56]. According to Balaras et al 

[54], the thermal insulation of the building envelopes and building system in European 

apartment buildings, such as Denmark, France, Poland and Switzerland, were the main 

factors influencing space heating. In our study, there is a dominant determinant affecting 

space heating consumption, the thermal conditions of building envelope with SRC -0.626 in 

space heating. This result clearly showed how the building refurbishment for old apartment 

buildings in South Korea to approach in order to reduce energy consumption efficiently.  

Fourthly, the effects of building features related to building clusters are important factors. 

Unlike European countries, apartment buildings in South Korea were built as clusters 

including several buildings up to thirties. Therefore, the relations among individual buildings 

are also important factors that must be considered in energy consumption. In our study, the 
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features related to building clusters explained 33.4% of total variations in energy use. 

Moreover, the undeniable contribution of these features was identified in the results of the 

multiple regression analysis for space heating and electricity although the SRC values were 

not decisively high. 

5. Conclusions 

This study aims to identify old apartment buildings in South Korea that need to be 

refurbished in terms of energy efficiency and suggests how the refurbishment should be 

done to reduce their energy consumption. It reveals that old apartment buildings constructed 

between the 1980s and 1990s are those which need to be urgently refurbished. This is 

because they showed excessive energy consumption for space heating and cooling, 

compared with the consumption of apartment buildings built in the 2000s. However, 

maximum 43.65 kWh/m
2
/year in space heating and 5.70 kWh/m

2
/year in cooling were 

reduced in those old apartment buildings in terms of construction years. This reduction was 

attributed to the transformations of building features in the twenty-year period. The eight 

features in old apartment buildings successfully account for 70.9% of total variance in the 

factor analysis. The largest proportion, 25.9%, was explained by the factor related to 

building form and fabric. Multiple regression analysis indicatedthe three most influential 

parameters, the thermal conditions of building envelopes with SRC 0.626, heating methods 

with SRC 0.301 and the sizes of building units with SRC 0.300. 

Hence, this study found that the priority of refurbishment should be given to these three 

features. Amongst them, the most significant determinant should be the thermal conditions 

of building envelopes with SRC0.626.The other two features will be subsidiary conditions in 

refurbishment strategies. In this respect, the most urgent target for refurbishment should be 

the buildings constructed before 1980 (with central gas heating and large sizes of building 

units), and the latest target can be those constructed after 1988 (with individual gas heating 

and small sizes of building units).  

Applications of this approach to cases in the other countries may bring about different 

building features in prioritising old high-rise apartment buildings for energy-efficient 

refurbishment. Thus, the refurbishment strategies for each country should take specific 

features and conditions of the apartment buildings into account in order to suggest efficient 

policies and regulations for refurbishment in each country.  
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