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Abstract 

 

The extracellular surface of the pathogen Salmonella contains the lipopolysaccharide (LPS) 

molecule, which provides structural support and defence against predators. A polysaccharide 

component of the LPS, the O-antigen has a highly variable composition and is a primary target 

for the antibody mediated immune response. The O-antigen displays vast structural diversity 

across the Salmonella genus, and this variation is further enhanced through the action of genes 

such as glycosyltransferase (gtr) operons, which add carbohydrates to the O-antigen and affect 

phage resistance and antibody recognition. Importantly, certain gtr operons are also capable of 

phase variation, meaning their expression can be switched ON or OFF in a heritable, but 

reversible manner. A switched ON, gtr expressing cell, can produce daughter cells with 

switched OFF gtr expression and vice versa. gtr phase variation produces modified and 

unmodified O-antigen molecules, thereby creating population heterogeneity. 

 

Previous work identified the mechanism of gtr phase variation: methylation of GATC 

sequences by Dam and binding of the oxidative stress response regulator OxyR. GATC 

sequences overlap with OxyR half sites in the gtr regulatory region. Depending on which 

GATC sequences are methylated and which half-sites OxyR occupies, gtr expression switches 

between the ON and OFF phase.  

 

This research aimed to identify influences on gtr phase variation and expression. Naturally 

occurring sequence variations of Salmonella serovars were found to alter the phase variation 

switch frequency, or even abrogate the process. Stationary phase growth caused reduced gtr 

expression. The role of OxyR in gtr regulation was also further defined. The OxyR regulator 

can switch between an oxidised and a reduced state. Although the reduced state was previously 

found to be sufficient for phase variation to occur, the role of oxidised OxyR in this process was 

not understood. In this work, a possible role for oxidised OxyR was found in regulating 

expression of a short RNA (STnc1870), which was divergently transcribed from the gtr 

regulatory region.  

 

Finally, a potential target for STnc1870 was found: the ssaO mRNA which encodes a 

component of the Salmonella Pathogenicity Island 2 secretion needle. Artificial overexpression 

of STnc1870 reduced expression of ssaO. This connection indicates a possible further role for 

the gtr regulatory region beyond controlling O-antigen modification.  
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1.1 SALMONELLA BIOLOGY 

 

1.1.1 General biology and burden of disease 

 

The Gram negative bacteria Salmonella causes intestinal or systemic illness in humans and 

other animals. It is classed among the family of Enterobacteriaceae, along with other clinically 

relevant organisms such as Escherichia coli, Yersinia, Klebsiella and Shigella (Williams et al., 

2010). Salmonella is thought to have diverged from a common ancestor with E. coli between 

120 and 160 million years ago (Ochman and Wilson, 1987).  

 

The Salmonella genus consists of two species, S. enterica and S. bongori. S. enterica is 

subdivided into the following six subspecies: enterica, salamae, arizonae, diarizonae, houtenae 

and indica (Tindall, 2005). 98 % of clinically relevant infections are caused by Salmonella 

enterica subsp. enterica, which is further classified by the Kauffmann-White scheme for 

serotyping. Salmonella serotypes or serovars are distinguished by agglutination with antisera 

that bind components of the outer surface of the bacteria (= O-antigens, see 1.2.1). Over 2,500 

different serovars have been identified (Lerouge and Vanderleyden, 2006).  

 

Human Salmonella infections can be broadly distinguished between non-typhoidal 

salmonellosis which is restricted to the intestine of the host, and systemic, invasive typhoidal 

infections (reviewed in Crump et al., 2015). Non-typhoidal Salmonella infections were 

estimated to have caused up to 93.8 million infections and 155,000 deaths worldwide in 2006. 

The disease often goes unreported, especially in developing nations (Majowicz et al., 2010). 

Transmission of the gastro-intestinally restricted form of the disease (salmonellosis) usually 

occurs via the faecal-oral route (Madigan et al., 2005). Food contaminated either during 

production (e.g. infected animals) or preparation by an infected food handler is the most 

common source of infection. A survey of 7,120 flocks of broiler chickens conducted by the 

European Food Safety Agency (EFSA) found that 23.7 % of flocks were infected with 

Salmonella (EFSA, 2007).  

 

While typhoidal infections are less common, they caused an estimated 190,200 deaths 

worldwide in 2010 (Lozano et al., 2013). Typhoidal infections in humans are caused by the S. 

enterica subsp. enterica serovars Typhi and Paratyphi (referred to as S. Typhi and S. Paratyphi 
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in this work), whereas other serovars such as S. Typhimurium mostly cause non-typhoidal 

infections (reviewed in Crump et al., 2015). 

 

Although non-typhoidal Salmonella infections are rarely lethal, the economic cost can be a 

serious burden to a nation. For example, in the United States the annual deaths caused by non-

typhoidal Salmonella infections were estimated to be ~380, out of an estimated number of 1 

million infections (Scallan et al., 2011). Based on this estimate, the economic cost through lost 

productivity for 2013 was calculated to be 3.6 billion dollars (Economic Research Service 

(ERS) and U.S. Department of Agriculture (USDA), 2014). Fortunately, treatments in the form 

of antibiotics and vaccines are available to prevent or cure certain Salmonella infections. 

 

Two vaccines are available for the prevention of S. Typhi infections in humans. The first 

consists of a live attenuated strain of Salmonella Typhi known as Ty21a. The second consists of 

the purified capsular polysaccharide Vi antigen of S. Typhi (see section 1.1.3). Efficacy of the 

vaccines has been estimated to be 48% and 55%, respectively (Fraser et al., 2007). In contrast, 

development of vaccines against non-typhoidal Salmonella serovars is difficult due to the broad 

diversity of these strains. Preventing infection of one serovar may simply create a niche that a 

different serovar can exploit. 

 

Typhoidal and non-typhoidal Salmonella infections can be treated with antibiotics, although 

resistant strains are emerging. The S. Typhimurium DT104 strain has acquired resistance to 

different classes of antibiotics including ampicillin, chloramphenicol, streptomycin, 

sulfonamides and tetracycline (reviewed in Poppe et al., 1998). Resistance to these compounds 

corresponds more with antimicrobial agents used in agriculture, as opposed to those used in 

treatment of human infections. Facilities that raise food-producing animals can act as reservoirs 

for multi-drug resistant S. Typhimurium DT104, which may then be transmitted to humans via 

the food chain (Angulo et al., 2000). Similarly, DT104 can spread from infected animals to 

employees of veterinary clinics (Wright et al., 2005). 

 

1.1.2 Gastrointestinal Salmonella infections 

 

Non-typhoidal Salmonella serovars may establish infections that remain confined to the host 

intestinal environment. Ultimately, these infections result in replication of the bacteria and 

cause diarrhoea, which allow the infection to be disseminated to new hosts via the faecal-oral 
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route. The onset of symptoms such as abdominal cramps, fever and diarrhoea occurs 12 to 72 

hours post infection (Santos et al., 2001). 

 

Salmonella is faced with several hurdles that could prevent establishment of infection, such as 

competition for nutrients by the resident gut microbiota, iron limitation and anaerobic 

conditions in the gut lumen as well as the host immune system. The Salmonella genome 

encodes factors that allow these challenges to be overcome. In general, Salmonella hijacks and 

exploits host cell functions to create an environment that is conducive to its replication. 

 

Following ingestion by a host, Salmonella bacteria that survived the acidic stomach 

environment enter the gastrointestinal tract. When the contents of the stomach enter the 

intestine, the stomach acid is neutralised by bile salts such as deoxycholate secreted by the gall 

bladder. This action has the added effect of causing osmotic shock to bacteria. Salmonella 

responds to this shock through the environmental sensor EnvZ and by preferentially expressing 

the outer membrane porin OmpC instead of OmpF  (Chatfield et al., 1991; Methner et al., 

2004). Porins allow the passage of small molecules between the periplasmic space and the 

exterior (Puente et al., 1995).  

 

A further host defence concerns iron limitation in the intestinal lumen: the secreted peptide 

lipocalin-2 sequesters iron, depriving bacteria of this essential metal and suppressing growth. 

Salmonella secretes salmochelin, a high affinity iron (Fe3+) chelator to avoid growth 

suppression (Bellet et al., 2013).  

 

In order to manipulate the intestinal environment to allow Salmonella replication, some of the 

bacteria invade enterocyte cells of the intestinal lining as well as M cells covering the Peyer’s 

patches lymphoid tissue in the distal ileum (Carter and Collins, 1974). Flagellar expression 

allows the bacteria to traverse the mucus lining of the gut to access the enterocytes. Once the 

host cells are encountered, virulence genes encoded by a genomic island called the Salmonella 

Pathogenicity Island 1 (= SPI1) are transcribed to produce a type III secretion system needle. 

The Salmonella Pathogenicity Islands were likely acquired by horizontal gene transfer 

(reviewed in Agbor and McCormick, 2011).  

 

The SPI1 needle secretes effectors into host cells such as SipA, SopB and SopE, which promote 

polymerisation of actin fibres causing membrane rearrangement and internalisation of the 
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bacteria by endocytosis (reviewed in Galán and Zhou, 2000). In human cells under normal 

conditions, membrane rearrangements are controlled by the Rho subfamily of actin-organising 

small GTP-binding proteins (GTPases). GTPases switch between an inactive, GDP bound form 

and an active GTP-bound form. The SPI1 effectors SopB and SopE activate two Rho GTPases, 

Cdc42 and Rac1 by promoting the switch to the GTP-bound form. Once activated, Cdc42 and 

Rac1 cause remodelling of the actin cytoskeleton and membrane ruffling that leads to 

internalisation of Salmonella bacteria. Injection of purified SopE into human cells also induces 

membrane ruffling (Hardt et al., 1998). The SipA effector is required to induce localised 

bundling of actin fibres. Without SipA, actin bundling is diffuse and Salmonella entry into the 

cell is restricted (Zhou et al., 1999). Therefore, SPI1 mediated cell invasion exemplifies how 

Salmonella manipulates the host environment for its own benefit. 

 

Salmonella infections that remain confined to the intestine are self-limiting, as they actively 

induce the inflammation that eventually clears them from the host organ. The process of  

Salmonella internalisation into host cells causes production of the transcription factor NFB and 

the release of pro-inflammatory IL-8 cytokines (Hobbie et al., 1997). In addition to its role in 

membrane rearrangement, the SipA protein also promotes recruitment of neutrophil cells of the 

host immune system. Neutrophils trigger inflammation of the gut lining and profuse diarrhoea 

which causes the bacteria to be shed to the environment (reviewed in Agbor and McCormick, 

2011).  

 

Inflammation of the gut lining leads to secretion of reactive oxygen species into the intestinal 

lumen by the immune system. The reactive oxygen species (such as hydrogen peroxide, H2O2) 

or the superoxide radical (O2
-) can damage DNA and are part of a wider attempt to kill the 

invading bacteria. To counter this oxidative burst, Salmonella produces catalases and 

superoxide dismutases which detoxify the compounds (Aussel et al., 2011; Hebrard et al., 

2009). 

 

Interestingly, Salmonella can exploit the secretion of reactive oxidative species to gain a growth 

advantage. The reactive oxygen species oxidise thiosulphate, which is abundant in the gut 

lumen, causing it to form tetrathionate. Salmonella is able to use tetrathionate as a terminal 

electron acceptor in anaerobic respiration, unlike the resident gut microflora which grows by 

fermentation. As respiration generates more energy than fermentation, Salmonella can outgrow 

competing organisms of the resident microbiota (Winter et al., 2010). Resistance to reactive 

oxygen species and the ability to grow by anaerobic respiration further highlight how 
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Salmonella not only survives host immune responses but also exploits them for its own 

advantage. 

 

As previously explained, the following tasks must be completed by Salmonella to establish 

gastro-intestinal infection: host inflammation must be triggered and the bacteria need to 

multiply to maximise chances of spreading to a new host. A clonal Salmonella population 

achieves these tasks by establishing distinct subpopulations with different specialisations, which 

appear to allow a form of labour division (Stewart and Cookson, 2012).  

 

For example, expression of flagella (a bacterial motility apparatus) is bi-stable, i.e. a population 

grown from the same ancestor cell can contain cells with or without flagella. This is achieved 

through the mutually repressing repressors FliZ and FdiV. FliZ activates flagellar transcription, 

but represses ydiV, and in turn YdiV represses fliZ. An equilibrium is established between the 

two repressors – depending on which repressor gains the upper hand, flagella are either 

expressed or repressed (Stewart et al., 2011).  

 

Furthermore, bi-stability of flagellar expression extends to the SPI1 virulence genes, as FliZ 

appears to be involved in activating SPI1 expression (Lucas et al., 2000). As a result, 

Salmonella can produce subpopulations with different motility and virulence capabilities. A 

subpopulation expressing both flagella and SPI1 could cross the mucus lining and invade 

enterocytes, promoting inflammation. The inflammation benefits the cells that do not express 

flagella or SPI1, which remain in the intestinal lumen and are able to outcompete the resident 

microbiota (reviewed in Stewart and Cookson, 2012).  

 

A non-motile, avirulent subpopulation has the added advantage of maintaining genomic 

homogeneity among the population. Without this population, cells with mutations disabling the 

motility and virulence genes could benefit from the improved conditions provided by the 

virulent cells, but without contributing to the establishment of infection. The avirulent, but 

genetically identical subpopulation ensures that any non-contributing mutants face growth 

competition and cannot become dominant (Diard et al., 2013). 

 

A further advantage of specialised subpopulations concerns resistance to antibiotics. Using a 

fluorescent reporter system, it was found that non-growing or slow growing S. Typhimurium 
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were more resistant to antibiotic treatment than fast-growing cells in susceptible BALB/c mice 

after oral infection (Claudi et al., 2014). 

 

In summary, Salmonella produces effectors to survive host defences (e.g. bile salts, iron 

limitation and reactive oxygen species) and cause inflammation to promote its replication (by 

anaerobic respiration using tetrathionate). The creation of subpopulations with different 

specialisations, such as high virulence or rapid growth could help Salmonella accomplish these 

tasks. 

 

1.1.3 Typhoidal Salmonella infections 

 

In Salmonella gastrointestinal infections, the bacteria invade cells of the intestinal lining, but do 

not disseminate to other sites of the body and do not breach the intestinal lamina propria. In 

typhoidal, invasive infections of humans, serovars S. Typhi and S. Paratyphi can spread to 

organs such as the liver, spleen and gall bladder. In these cases, the bacteria migrate via 

dendritic cells from the gut lumen to mesenteric lymph nodes via lymph drainage. The bacteria 

may also be transported from the gut to the liver or spleen via CD18+ phagocytic cells such as 

macrophage or dendritic cells.  Bile produced in the liver can also be used to spread the bacteria 

to the gall bladder (reviewed in Watson and Holden, 2010). From the gall bladder, the bacteria 

can be shed into the intestine through bile secretion, allowing the bacteria to spread to new hosts 

via the faecal-oral route. A carrier state can be established in 1 – 4 % of typhoidal infections, 

which is characterised by asymptomatic long-term (more than a year) secretion of the bacteria 

(reviewed in Crump et al., 2015). In a human infection model, doses of 103 or 104 colony 

forming units of S. Typhi were found to be sufficient to induce typhoid fever in 55 or 65 % of 

patients, respectively (Waddington et al., 2014). Typhoidal infections result in sustained fever 

(>12 hours) and bacteremia which can become fatal without antimicrobial treatment in 10 – 30 

% of cases. With antibiotic treatment, the fatality rate drops to less than 1 % (van den Bergh et 

al., 1999). 

 

If the intestinal lining is crossed, Salmonella bacteria encounter macrophage cells of the 

immune system, in which they can persist inside a specialised compartment termed the 

Salmonella Containing Vacuole (SCV). Both broad-host range (e.g. S. Typhimurium) and host 

restricted (e.g. S. Typhi) serovars can produce SCV compartments in susceptible macrophage. 

However, S. Typhi cannot survive in murine macrophage under normal conditions (Spanò and 
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Galán, 2012). The SCV has characteristics of an endosome, although it does not fuse with actual 

lysosomes, which could kill the bacteria. To survive in the SCV, Salmonella uses a further 

pathogenicity island, SPI2.  

 

SPI2 genes encode a second type III secretion system needle and effectors that manipulate the 

host cell cytoskeleton (reviewed in Abrahams and Hensel, 2006). For example, the SPI2 

effector SpiC prevents fusion of the SCV with lysosomes and is required for virulence (Uchiya 

et al., 1999). Two other SPI2 effectors, SseG and SifA position the SCV next to the host cell 

nucleus and in proximity of the Golgi  apparatus (Salcedo and Holden, 2003). Bacterial 

replication only occurs in SCV compartments associated with the Golgi, which may provide a 

source of nutrients. In addition, the host cell attempts to recruit NADPH oxidase to the SCV 

membrane, in order to secrete O2
- into the SCV. SPI2 mediated interference with this process 

prevents bactericidal concentrations of O2
- being produced (Vazquez-Torres et al., 2000). The 

SCV environment induces a subpopulation of S. Typhimurium to stop growing which may 

allow them to survive and persist in BALB/c  murine macrophage better than faster growing 

cells (Helaine et al., 2014). 

 

The ability to cross the intestinal barrier and persist inside host macrophage appears to be a 

required characteristic to allow systemic persistent infection. The serovar S. Typhi has the 

innate ability to systemically infect humans, but no other species. The cause of this host 

restriction of S. Typhi is difficult to determine, due to the lack of an animal model for the 

disease (reviewed in Spanò, 2014). Studies of systemic salmonellosis have relied on S. 

Typhimurium infections of susceptible mice (e.g. BALB/c or C57BL lines) which lead to 

systemic and persistent illness in these animals. Genetic susceptibility of these mice to 

Salmonella infection is due to the lack of a functional Nramp1 protein  (Roy and Malo, 2002). 

Nramp1 is a metal transporter which localises to the SCV membrane and removes divalent 

cations such as Mn2+, which are required for bacterial replication (Jabado et al., 2000). An 

alternative animal model uses calves to study S. Typhimurium  induced gastro-enteritis (Tsolis 

et al., 1999). 

 

S. Typhi evolved from S. Typhimurium through gene deletion, as well as acquisition. The 

genome of S. Typhi contains 204 pseudogenes (Parkhill et al., 2001). An important distinction 

to S. Typhimurium is the production of the capsular polysaccharide Vi antigen by S. Typhi 

(Looney and Steigbigel, 1986). The Vi antigen reduces binding of complement proteins of the 

immune system to S. Typhi, as well as increasing resistance to phagocytosis by 
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polymorphonuclear leukocytes (Hart et al., 2016; Looney and Steigbigel, 1986). Interestingly, 

while a vaccine based on purified Vi antigen confers protective immunity to S. Typhi, a further 

vaccine based on the live attenuated Ty21a strain, which does not express the Vi antigen, also 

provides immunity (see section 1.1.1). Studies of typhoid infection in a human model (using a 

Vi expressing S. Typhi strain) found that the antibody response to infection targeted the LPS 

(see section 1.2.1) and flagella components, but not the Vi antigen (Tacket et al., 1991; 

Waddington et al., 2014). Naturally acquired immunity to S. Typhi is therefore unlikely to be 

mediated by anti-Vi antibodies. 

 

A further difference between the two strains is that S. Typhimurium encodes a phage-derived, 

SPI2 secreted effector called GtgE which is absent from S. Typhi (Ho et al., 2002). Expression 

of GtgE in S. Typhi allowed this strain to survive in C57BL/6 mouse macrophage when infected 

in vitro, which it is normally incapable of. Furthermore, GtgE was shown to degrade the host 

cell GTPase Rab32, which is involved in membrane trafficking. Knock-down of Rab32 

expression by siRNA allowed S. Typhi to survive in C57BL/6 mouse macrophage. Rab32 may 

be involved in an antimicrobial process that leads to killing of bacteria (such as S. Typhi) if they 

do not express GtgE as a countermeasure (Spanò and Galán, 2012). 

 

Another unique feature of S. Typhi is the production of typhoid toxin, an AB toxin which causes 

host cell cycle arrest, and is only produced after establishment of  the SCV (Song et al., 2013). 

Once produced, typhoid toxin is transferred outside the host cell through a process requiring 

another GTPase, Rab29. Rab 29 is also cleaved by the GtgE effector of S. Typhimurium. 

Therefore, expression of GtgE could be disadvantageous for S. Typhi, as this would interfere 

with the secretion of typhoid toxin (Spano et al., 2011). This disadvantage could have 

incentivised the loss of the gtgE gene from the S. Typhi genome. 

 

The loss of GtgE explains how S. Typhi could be restricted from infecting mouse macrophage, 

but it remains to be determined what the differences are between human and mouse macrophage 

that allow S. Typhi to survive in one but not the other. If S. Typhi requires GtgE to survive in 

mouse macrophage, why is it not required for survival in human macrophage? 

 

Interestingly, the S. Typhimurium D23580 strain prevalent in sub-Saharan Africa has been 

found to be evolving into an invasive strain more similar to S. Typhi. The strain is classed as 

invasive non-typhoidal Salmonella (iNTS). It is thought that compromised immune systems 
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(through HIV infection and malnutrition) of the local population contribute to this process 

(Kingsley et al., 2009; Yang et al., 2015). 

 

1.1.4 Prokaryotic gene regulation 

 

A major focus of this work concerns the regulation of bacterial genes. The following section 

introduces relevant mechanisms of genetic regulation along with examples. Generally speaking, 

bacterial genes can be regulated at the level of transcription or translation, as well as post-

translationally or post-transcriptionally (Madigan et al., 2005). 

 

A well-studied example of transcriptional regulation is the lac operon of E. coli, which is 

required for the catabolism of lactose. If lactose is absent, the LacI repressor protein binds the 

lacO genetic region upstream of the lacZYA operon (which encodes the genes required for 

lactose catabolism) and prevents transcription. If lactose becomes available to the cell, the LacI 

repressor binds lactose, undergoes a conformational change and can no longer repress lacZYA 

transcription (Madigan et al., 2005).  

 

In addition, the availability of glucose influences transcription of the lac operon via a process 

termed catabolite repression. A complex formed of CAP (catabolite activator protein) and 

cAMP (cyclic adenosine monophosphate) is required to initiate high levels of lacZYA 

transcription. The cAMP-CAP complex binds upstream of the promoter region of lacZYA and 

increases recruitment of RNA polymerase. Levels of the cAMP-CAP complex are low when 

glucose levels are high and vice versa. Therefore, reduced glucose levels lead to more cAMP-

CAP complexes and increased lacZYA transcription (but only if lactose is also available) 

(Madigan et al., 2005). 

 

A further important transcriptional regulator in E. coli and Salmonella is the OxyR protein 

which acts as an oxidative stress response regulator (Storz et al., 1990). OxyR regulates genes 

encoding enzymes such as catalase (katG) or alkyl hydroperoxide reductase (ahpC) that 

scavenge hydrogen peroxide (H2O2) and detoxify it to H2O and O2 (Aussel et al., 2011). In the 

absence of this defence mechanism, H2O2 can react with cellular iron in a Fenton reaction to 

produce the hydroxyl radical OH- which in turn reacts with most biomolecules including DNA, 

leading to mutations (Imlay et al., 1988). 
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The OxyR protein senses the presence of reactive oxygen species through cysteine residues 

(C199 and C208) in its structure that may form disulphide bridges under oxidising conditions. 

Formation of such disulphide bridges results in a conformational change of the entire protein 

(termed ‘oxidised OxyR’) (Choi et al., 2001). Oxidised OxyR can bind promoters (such as 

ahpC) that the reduced form may not be able to and stimulate transcription by RNA polymerase 

(Zheng et al., 2001). This promoter selectivity is based on the spacing of half sites that OxyR 

contacts on the DNA. Two half sites must be contacted for binding. One half site consists of 

two adjacent major grooves of the DNA helix (with the appropriate OxyR binding sequence). If 

two half sites are not separated (thereby consisting of four adjacent major grooves), oxidised 

OxyR is more likely to bind. Alternatively, if the two half sites are separated by one helical turn 

of the DNA (roughly 10 bp), reduced OxyR is predicted to bind (Toledano et al., 1994). 

 

In the above examples, transcription is controlled by regulatory proteins that repress or activate 

gene expression in response to specific signals such as lactose or oxidative stress levels. This 

process allows bacteria to adapt to changing environmental conditions. However in certain 

instances, gene expression can be activated or silenced as a result of a random switch. This 

random switch is termed phase variation and can be used to increase the phenotypic variety of a 

bacterial population without altering genetic homogeneity. Mechanistically, phase variation can 

be caused by site specific recombination, slipped strand mispairing or DNA methylation (van 

der Woude and Baumler, 2004). Examples of these mechanisms are given in section 1.3.2. 

 

A final regulatory mechanism relevant to this work concerns short RNAs (sRNAs). sRNA 

molecules, typically 50 – 300 bp in size, commonly act to regulate expression of an mRNA 

target at the post-transcriptional level. sRNAs bind target mRNAs, often with the help of the 

RNA chaperone Hfq. Typically, sRNAs bind at or close to the ribosome binding site of an 

mRNA, thereby occluding it and blocking translation.  

 

An example of sRNA regulation concerns the previously mentioned process by which 

Salmonella acquires iron in the host intestine, using the chelator salmochelin (see also section 

1.1.2). Iron acquisition by salmochelin is regulated by two short RNA molecules: RhyB1 and 

RhyB2 bind and stimulate translation of the iroN mRNA, which encodes the outer membrane 

receptor for iron-bound salmochelin (Balbontín et al., 2015).  
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Furthermore, the short RNA GcvB regulates roughly 1 % of all Salmonella genes, including 

amino-acid metabolism (Sharma et al., 2011). In enterohemorrhagic E. coli (EHEC) a further 

sRNA, AgvB antagonizes the function of GcvB. An EHEC strain with a deletion of AgvB was 

less competitive compared to the wildtype ancestor during growth in bovine terminal rectal 

mucosa (Tree et al., 2014). 

 

Alternatively, sRNAs may be required to allow expression of a particular mRNA, as in the case 

of the DsrA sRNA which is induced by low temperature in E. coli and binds the rpoS mRNA. 

The rpoS mRNA is normally folded in a way that occludes the ribosome binding site. Binding 

of DsrA and Hfq makes the ribosome binding site of rpoS available for translation (Battesti et 

al., 2011). sRNAs can also promote mRNA degradation via RNase III or RNase E (Nicholson, 

2014). Finally, sRNAs can interact directly with proteins to regulate their activity (Storz et al., 

2011). 

 

1.2 THE LPS MOLECULE 

 

1.2.1 Structure of LPS 

 

As a Gram negative bacteria, Salmonella has a double lipid bilayer composed of phospholipids, 

separated by a layer of peptidoglycan (Madigan et al., 2005). The outer membrane contains the 

lipopolysaccharide (LPS) molecule which provides structural protection and covers up to 75 % 

of the outer surface area (reviewed in Lerouge and Vanderleyden, 2006). LPS is composed of 

the lipid A tail, the core oligosaccharide and the O-antigen (reviewed in Erridge et al., 2002). 

The lipid A is recognised by the human innate immune system through the Toll-like receptor 4 

(TLR4). The other LPS components are not recognised by the innate immune system (Poltorak 

et al., 1998). 

 

The lipid A molecule and the core oligosaccharide are synthesised in the bacterial cytoplasm 

and then translocated across the inner membrane. The O-antigen chain is then attached to the 

core oligosaccharide. The O-antigen is produced as separate subunits in the cytoplasm before 

being moved to the periplasm (at which point individual subunits may be linked together to 

form a repeating chain). The S. Typhimurium O-antigen consists of a galactose-rhamnose-

mannose repeat, with the mannose sugar having an abequose side chain (Miller et al., 2005). 
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The same structure is found in S. Typhi, although instead of abequose, tyvelose is attached to 

the mannose sugar (Crawford et al., 2013). S. Typhimurium produces O-antigen chains with 

lengths of 16-35 subunit repeats as well as very long chains with more than 100 repeats. Chain 

length is under control of the Wzz proteins (Murray et al., 2003). 

 

The periplasmic assembled LPS molecule is transported to the outer membrane via 

lipopolysaccharide transport proteins (LptA-G) (reviewed in Whitfield and Trent, 2014). The 

LptD-E complex inserts the LPS molecule into the outer membrane (Dong et al., 2014; Qiao et 

al., 2014). Approximately 200 LptD-E complexes are dispersed across the outer membrane of a 

bacteria and each one of these complexes can transport five LPS molecules per second 

(reviewed in Bishop, 2014). 

 

The O-antigen is the most diverse LPS component among the Salmonella genus, as opposed to 

the highly conserved core oligosaccharide and lipid A moieties. Over 20 different 

carbohydrates, arranged in repeating subunits of three to five sugars are known to be 

incorporated in the O-antigen. The different combination of these sugars allows for the vast 

diversity of strain-specific O-antigen molecules, over 2,500 of which have been identified 

(Lerouge and Vanderleyden, 2006). The different O-antigens are part of the basis of Salmonella 

classification according to serovars in the Kauffmann-White scheme (Guibourdenche et al., 

2010; Tindall, 2005). 

 

1.2.2 Modifications of the LPS molecule 

 

A multitude of microorganisms modify their outer surface structures as part of their survival 

strategy. By altering surface structures that are exposed to attack by predators or host immune 

systems, organisms can escape killing. For example, the parasite Trypanosoma brucei switches 

coat proteins through gene recombination to evade the antibody mediated immune response 

(Mehlert et al., 2002). The bacterium Pseudomonas aeruginosa is capable of modifying the 

lipid A subunit of the LPS to either induce or prevent activation of inflammation, depending on 

the type of modification performed (reviewed in Bryant et al., 2010). Similarly, Neisseria 

gonorrhoeae modifies the lipid A component of the lipooligosaccharide (LOS) by addition of 

phosphoethanolamine to increase resistance to antimicrobial peptides and complement mediated 

killing (Handing and Criss, 2014). Bacteroides thetaiotaomicron can remove a single phosphate 
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group from the lipid A, allowing the bacteria to persist in the gut lumen during inflammation, as 

this modification reduces susceptibility to antimicrobial peptides (Cullen et al., 2015).  

Another pathogen in the Enterobacteriaceae, Shigella flexneri adds glucose to the O-antigen 

molecule, causing it to shorten and expose a type III secretion system needle. The glycosylation 

may shift the LPS structure from a linear to a helical conformation, leading to shortening. The 

type III secretion system needle can then inject virulence effectors into host cells. The shorter 

O-antigen is less effective at resisting killing by antimicrobial peptides expressed in the gut, 

which explains why the glycosylation is not performed constitutively (West et al., 2005; 

Cunliffe, 2003).  

 

In Salmonella, the PhoP/Q and PmrA/B systems control modifications of the lipid A component 

of the LPS in response to conditions such as low magnesium, low pH and presence of 

antimicrobial peptides by adding phosphoethanolamine to the lipid A molecule (Kato et al., 

2012; Navarre et al., 2005). Salmonella encounters these conditions in the SCV in macrophage 

and requires the PhoP/Q system to survive in this environment (Aranda et al., 1992). 

Furthermore, the oafA gene performs acetylation of the O-antigen subunits. Although oafA 

modification does not affect virulence or survival, it can inhibit binding of monoclonal 

antibodies that target unacetylated O-antigen (Slauch et al., 1995). 

 

1.3 THE gtr OPERON 

 

1.3.1 Function of the gtr operon 

 

Further LPS modifications in Salmonella are performed by glycosyltransferase genes (gtr) 

which add carbohydrates to the O-antigen subunit. In this way, the already vast diversity of 

Salmonella O-antigens is further enhanced. The gtr operon consists of three genes: gtrA, gtrB 

and gtrC. All three genes are thought to produce membrane proteins which modify the O-

antigen subunits in the periplasm (reviewed in Allison and Verma, 2000). The gtrC protein 

performs the actual modification of the O-antigen, with both the site and type of modification 

differing between individual gtrC genes (Bogomolnaya et al., 2008; Davies et al., 2013). 

 

Ten different families of gtr operon have been identified in Salmonella, in phage-derived or 

phage-associated sequences. gtr operons show evidence of recombination and not all 
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modifications performed by them are detected by standard serotyping assays. A Salmonella 

strain may carry between 1 and 4 different gtr operons (Davies et al., 2013).  

 

What is the purpose of O-antigen modification by gtr operons? One function certainly seems to 

involve resistance to phage that use the O-antigen as a receptor for infection. The phage P22 gtr 

operon performs an  1-6 glycosylation of the galactose sugar of the S. Typhimurium O-

antigen, which confers resistance against superinfection by P22 (Kim and Ryu, 2012; Pedulla et 

al., 2003).  

 

Similarly, the S. Typhimurium LT2_I gtr operon confers resistance to phage SPC35, by 

performing an  1-4 glycosylation of the same galactose sugar (Bogomolnaya et al., 2008; Kim 

and Ryu, 2012). The LT2_I gtr operon is part of the novel Salmonella Pathogenicity Island 16 

(Vernikos and Parkhill, 2006). Data published by Bogomolnaya et al., 2008 indicated that the 

LT2_I gtr operon could be required for long term intestinal persistence of S. Typhimurium in 

mice. Strains with deletions of LT2_I gtrC were less persistent compared to wildtype strains 

during competitive infections, produced by oral gavage. The use of a mouse strain resistant to 

Salmonella infection (CBA/J) raises questions about this data however (Plant and Glynn, 1976; 

Roy and Malo, 2002). In contrast, intravenous infections of Salmonella susceptible BALB/c 

mice with a library of transposon mutated S. Typhimurium showed no attenuation for strains 

with transposon insertions in the LT2_I gtrABC genes (Chaudhuri et al., 2013; Roy and Malo, 

2002). 

 

A further connection between gtr and phage resistance was found in research by Kintz et al., 

2015. A role for the prophage BTP1 GtrC protein was identified, which modifies the O-antigen 

of S. Typhimurium D23580, the iNTS strain mentioned previously (section 1.2). The tailspike 

protein of the BTP1 prophage has endorhamnosidase activity and can therefore cleave and 

shorten the O-antigen. Modification of the O-antigen by BTP1 GtrC prevents cleavage.  

 

Due to its exposed nature, the O-antigen is a convenient target for the antibody mediated 

response of the immune system and therefore gtr modifications could have important 

implications for the study of Salmonella infections. A final possible role for gtr modification 

concerns resistance to predatory amoebae. Certain amoebae present in vertebrate intestines 

display feeding preferences based on Salmonella O-antigen structures (Wildschutte and 

Lawrence, 2007). For example, amoebae of the genus Encephalitozoon are opportunistic 
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pathogens of humans (Wasson and Peper, 2000). gtr modification of the O-antigen could allow 

Salmonella to escape such predation. 

 

1.3.2 Phase variation and gtr operons 

 

As mentioned previously, Salmonella produces subpopulations with different specialisations to 

mount infections. Interestingly, gtr operons appear to follow a similar trend by enhancing 

phenotypic heterogeneity among a genetically identical population. 8 out of the 10 identified gtr 

families are likely to phase vary, which means their expression can be switched ON or OFF in a 

heritable but reversible manner (Broadbent et al., 2010; Davies et al., 2013). A single 

Salmonella bacteria with a switched OFF gtr operon can divide to produce a descendant cell 

with a switched ON gtr operon. The switched ON cell can in turn produce switched OFF 

descendants. As a result, a clonal Salmonella population can contain a mixture of cells with 

switched ON or OFF gtr operons. Cells with switched ON gtr operons produce the 

corresponding O-antigen modification, whereas cells with switched OFF gtr operons do not. 

The population therefore displays a heterogeneous mixture of different O-antigen molecules. 

 

Previous work has identified two factors that regulate phase variation of the gtr operon by 

interacting with the upstream region: methylation of palindromic GATC sites by the enzyme 

Dam (Deoxyadenosine methylase), and binding of the oxidative stress response regulator OxyR 

to corresponding target sequences (Broadbent et al., 2010). 

 

The gtr regulatory region contains three half sites for the OxyR regulator: OxyR A, OxyR B and 

OxyR C. OxyR must access two of these sites to bind. The OxyR C half site also overlaps with 

the -35 region of gtr. The GATC methylation target sites for Dam overlap with the OxyR A and 

OxyR C half sites. Methylation by Dam at these sites renders the sequence inaccessible to OxyR 

and thereby prevents it from binding. Should the GATC sites furthest from the -35 region of gtr 

(in the OxyR A half site) become methylated, OxyR binds the B and C half sites and gtr 

transcription is halted, possibly because the RNA polymerase can no longer bind. This state 

results in repression of the gtr operon. If the GATC sites in the OxyR C half site are methylated, 

OxyR binds the A and B half sites and gtr transcription occurs (Broadbent et al., 2010). A 

model of this system is shown in Fig.1.1. 
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The methylation state of the regulatory region remains unchanged until DNA replication is 

commenced, after which it is presumed that OxyR and Dam would be in competition to bind the 

newly synthesised, unmethylated strand of DNA. The methylation state of the template strand 

seems to exert influence on this action, as the previous methylation pattern is often inherited by 

the new strand. However, with a certain probability, alternate binding sites may become 

occupied by OxyR on the new strand, resulting in a change in expression state. In this way, 

phase variation occurs, as the expression shifts are heritable, but reversible. Bacterial 

populations derived from a single cell show heterogeneous expression for phase varying genes 

such as the gtr operon (Broadbent et al., 2010). 

 

An additional phase-varying O-antigen modification system is used by Salmonella. The S. 

Typhimurium opvAB locus reduces the chain length of O-antigens, which usually contain 16-35, 

or more than 100 subunit repeats (Murray et al., 2003). opvAB expression reduces the number of 

O-antigen subunit repeats to 3-8 (Cota et al., 2012). opvAB expression phase varies from ON to 

OFF through Dam methylation of GATC sites and OxyR binding. Unlike gtr however, OxyR is 

required for opvAB expression (Cota et al., 2015a). Strains with constitutive expression of 

opvAB are resistant to infection by P22 phage. However, they have reduced survival in murine 

macrophage or in the presence of serum and are less virulent in oral and intraperitoneal 

infections of BALB/c mice compared to wildtype strains (Cota et al., 2015b, 2012). opvAB 

alteration of O-antigen chain length can therefore be beneficial or detrimental to the cell, 

depending on the situation. 

 

The process of phase variation is not unique to Salmonella O-antigen modification. A variety of 

other bacterial surface structures such as pili, outer membrane proteins or flagella can also phase 

vary. Mechanistically, phase variation can be caused by site specific recombination, slipped 

strand mispairing or DNA methylation and examples of each are given below (van der Woude 

and Baumler, 2004).  

 

The pyelonephritis associated pilus (pap) used by E. coli for attachment to host cells undergoes 

phase variation similar to gtr  (Braaten et al., 1994; Van Der Woude et al., 1998). A region 

upstream of the pap promoter contains two GATC sites (GATC1 and GATC2) which overlap 

with binding sites for the leucine-responsive regulatory protein Lrp. The Lrp sites surrounding 

GATC2 also overlap with the pap promoter region. Methylation of either GATC1 or GATC2 by 

Dam prevents Lrp binding at the overlapping site. If GATC1 is methylated, Lrp binds 

downstream at the sites surrounding GATC2, which stops transcription of pap (OFF state). If 
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GATC2 is methylated, Lrp binds upstream at the sites surrounding GATC1 and pap transcription 

occurs. A further regulator, PapB is required for the OFF to ON switch of pap. Sequence 

variation in the PapB binding site affects the sensitivity of pap operon activation (Totsika et al., 

2008). Type 1 fimbriae of E. coli also phase vary by site specific recombination, causing 

inversion of the promoter of fimA, the main structural gene (Abraham et al., 1985). The 

frequency of switching is influenced by growth conditions such as temperature and media 

(Gally et al., 1993).  

 

A further phase varying factor in E. coli is the outer membrane protein Ag43 which promotes 

biofilm formation. The upstream region of the agn43 gene contains three GATC sites which 

overlap with OxyR binding sites. Methylation of all three GATC sites prevents OxyR binding 

and enables agn43 transcription (ON state). If the GATC sites are unmethylated, OxyR can bind 

and agn43 transcription is stopped (OFF state)  (Wallecha et al., 2003, 2002). 

 

The O-antigen molecule of Helicobacter pylori is modified by fucosyltransferases, which act to 

produce structures similar to the Lewis antigen expressed on the surface of human epithelial 

cells. This molecular mimicry could aid immune evasion of the bacteria and promote host 

colonisation (reviewed in Moran, 2008). The expression of fucosyltransferases is transient: 

repeat sequences in the corresponding genes are susceptible to slipped strand mispairing, 

whereby erroneous DNA replication either adds or deletes a base, causing frame-shifts which 

either prevent or enable correct translation (Wang et al., 2000). 

 

Another example of slipped strand mispairing mediated phase variation concerns fimbriae of 

Bordetella pertussis, the causative agent of whooping cough. A ~15 bp stretch of repeating C 

bases in the promoter region of fimbrial subunit genes can be altered by replication errors 

inserting or removing bases. These changes can either allow or stop transcription, thereby 

switching fimbrial expression ON or OFF  (Chen et al., 2010; Willems et al., 1990). 

 

Other than simply switching expression ON or OFF, different variants of a surface structure can 

also be expressed. In S. Typhimurium, flagella show antigenic variation caused by switching 

between two flagellar subunit proteins: FliC and FljB, which produce the H1 and H2 antigens 

respectively. The flagellar antigen is usually determined along with the O-antigen as part of 

serotyping assays. Site specific recombination by the Hin recombinase at 26 bp inverted repeat 

sequences causes inversion of a 995 bp element containing the promoter for fljBA. If the 
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promoter is orientated toward the fljBA operon, transcription occurs (Eom et al., 2012; Simon et 

al., 1980). The FljB protein forms the H2 flagellar antigen and FljA represses fliC transcription 

and translation (Bonifield and Hughes, 2003). If the Hin recombinase inverts the promoter 

region in the opposite direction of the operon, FljBA are not expressed and fliC translation is 

uninhibited, producing the H1 flagellar antigen.  

 

In summary, phase variation is not only wide-spread among bacteria, but also occurs through a 

variety of vastly different mechanisms. The random nature of the process indicates that the 

advantage of phase variation is the creation of phenotypic heterogeneity among a population, 

while maintaining genetic homology.  

 

1.3.3 Relevance of gtr operons 

 

If there are specific benefits to O-antigen modification such as phage resistance, why are 8 out 

of 10 gtr families predicted to phase vary? If the action of gtr was critical to the survival or 

virulence of all cells of a population at a certain stage in the Salmonella life cycle, it is unlikely 

that such a mechanism would be subject to a random switch, but rather employed as a response 

to a given signal (similar to the Shigella flexneri O-antigen glycosylation, or Salmonella PhoP/Q 

mediated lipid A modification mentioned previously). 

 

However, the phase variation aspect of the gtr system does enable a genetically identical 

population of cells to display a large phenotypic diversity, as several different gtr operons can 

be present in a single genome. This diversity in itself could be the desired effect. A particular 

Salmonella strain will only have a single set of O-antigen biosynthesis genes, which, although 

possibly quite distinct from many other Salmonella strains would still be susceptible to 

predatory phage or amoeba (Kim and Ryu, 2012, Wildschutte and Lawrence, 2007). In addition, 

antibodies of the immune system could arise that would target this specific O-antigen molecule 

and quickly neutralise the bacteria. The gtr system could offer a means to avoid such dangers by 

altering the O-antigen chain’s immunogenicity.  

 

Because the Salmonella bacteria cannot anticipate which antibodies a host may express or 

which phage it might encounter, it is possible that it is vital for the gtr system to be subject to 

random switching. This system allows for a diverse population to be maintained which can 

survive a wide variety of threats. Should a particular predator or antibody arise that targets the  



31 

 

 

 

Fig.1.1 gtr phase variation is controlled by GATC methylation and OxyR binding 

 

GATC sequences are annotated and numbered 1, 2, 3 or 4. OxyR half-sites are coloured in red 

and annotated A, B or C in red letters. The gtrABC promoter region is in blue and the -35 and -

10 sites are annotated. The OxyR regulator is in grey and annotated. Methylated GATC sites are 

in red and the A base is underlined. A, OxyR occupation of the OxyR A and B sites results in 

gtrABC transcription (ON state). B, OxyR occupation of the B and C sites halts gtrABC 

transcription (OFF state). Graph based on Broadbent et al., 2010. Not to scale. 
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O-antigen of only a subgroup of this population, the remaining members could escape. 

However, these remaining members may encounter a different threat subsequently, in which 

case the O-antigen of the previously targeted group may allow escape. In such a model, the 

ability to express a great variety of O-antigens is beneficial if not vital, but no particular O-

antigen can ever become dominant, as there is no specific advantage associated with any O- 

antigen variant. To be brief, the advantage lies in variety, but no specific variety ever gains 

more than a temporary advantage. 

 

Regarding the possible function of gtr in allowing Salmonella to escape an adversary, a further 

question concerns whether there may be advantages that a certain phenotype could benefit from 

during the infection of a human or animal. Given that members of the Salmonella genus can 

infect as either a persistent and systemic disease (typhoidal) or as self-limiting gastro-enteritis, 

the importance of gtr in this context should be considered. Specifically, could gtr enable 

seroconversion and immune evasion, thereby allowing for the persistence of a typhoidal 

infection? Or could a host that had previously experienced gastro-enteritis and established an 

antibody response to a certain O-antigen form of the causative strain become re-infected by the 

same strain expressing a different, gtr-modified O-antigen? If gtr modification allowed a strain 

to escape the antibody mediated immune response, this would have implications for vaccine 

development. 

 

1.4 QUESTIONS 

 

If gtr expression is influenced by factors other than Dam and OxyR, this could either enhance or 

limit the effects of phase variation. Specifically, if gtr is in the ON state, but gtr transcription is 

too low due to other influences, the cell may be in a phenotypic OFF state. Furthermore, if 

environmental signals impact gtr expression, the exact nature of such signals could help explain 

in which stage of the Salmonella life cycle gtr modifications are either important (or not). One 

example of environmental signals affecting gtr regulation was discovered in RNA sequencing 

data published by Kröger et al., 2013. Under conditions intended to mimic the Salmonella 

containing vacuole of the macrophage, a short RNA molecule was produced from the gtr 

regulatory region. The regulation and function of this short RNA molecule, as well as the 

relationship with the gtr operon are addressed in this work. 
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The role of gtr in protection against phage predation was previously established (Kim and Ryu, 

2012; Kintz et al., 2015). However, the question whether gtr has an influence on Salmonella 

host infection remains to be answered. By examining the genetic regulation of gtr, new insights 

into the role of gtr during infection could be gained. 

 

Finally, how is phase variation itself influenced? A number of naturally occurring Salmonella 

isolates are predicted not to phase vary. How is this absence of phase variation achieved and 

could there be an advantage to losing gtr phase variation in certain environments? By extension, 

what is the advantage of retaining gtr phase variation? The differences in lifestyle between 

phase varying and non-phase varying Salmonella strains could offer a further insight into the 

importance of gtr. The work presented here focuses on the following questions:  

 

 What influences gtr expression? 

 What influences gtr phase variation?  
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2.1.1 Bacterial strains, plasmids, primers and genome sequences 

 

Salmonella strains used in this work are listed in Table 2.1. E. coli strains are listed in Table 2.2. 

Plasmids are listed in Table 2.3 and all primers and oligos used in this work are listed in Table 

2.4. The NCBI accession numbers of Salmonella genome sequences analysed in this work are 

listed in Table 2.5. 

 

Table 2.1. Salmonella Typhimurium and Salmonella Typhi strains 

Salmonella strains 

Name Relevant genotype Plasmid Source Strain 

Primers used 

for 

lambdaRED 

Chapter 3 strains 

Path 77 LT2 wildtype 

 

ATCC 

number 

19585 

LT2 

 

Path 79 Path 77 pINT-ts 

 

LT2 

 

Path 150 

r(LT)- m(LT)+ r(SA)- 

m(SA)+ r(SB)- m(SB)+ 

galE  

Tsai et al., 

1989 

LT2 

JR501 
 

Path 83 
Path 79, pMV 251 

integrated at lambda att site 
pMV 251 

Broadbent 

et al., 2010 
LT2 

 

Path 84 
Path 79, pMV 252 

integrated at lambda att site 
pMV 252 

Broadbent 

et al., 2010 
LT2 

 

Path 175 
Path 79, pMV 296 

integrated at lambda att site 
pMV 296 

Broadbent 

et al., 2010 
LT2 

 

Path 460 
Path 79, pMV 341 

integrated at lambda att site 
pMV 341 

Broadbent 

et al., 2010 
LT2 
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Path 805 

Path 79, pMV 425 

integrated at  lambda att 

site 

pMV 425 This study LT2 

 

Path 943 
Path 79, pMV 427 

integrated at lambda att site 
pMV 427 This study LT2 

 

Path 725 Path 83 CmS pMV 251 This study LT2 

 

Path 726 Path 84 CmS pMV 252 This study LT2 

 

Path 727 Path 175 CmS pMV 296 This study LT2 

 

Path 728 Path 725 
pMV 251, 

pFH255 
This study LT2 

 

Path 730 Path 726 
pMV 252, 

pFH255 
This study LT2 

 

Path 732 Path 727 
pMV 296, 

pFH255 
This study LT2 

 

Path 760 Path 77 
pLA40, 

pFH255 
This study LT2 

 

Path 292 

LT2_I  gtr regulatory 

region replaced with Ptac 

promoter  

Sarah 

Broadbent 
LT2 

 

Path 293 
 oafA,  gtr LT2_I,  gtr 

LT2_II 
 

Sarah 

Broadbent 
LT2 

 

Path 86 Path 77 pKD46 
Mark 

Davies 
LT2 

 

Path 346 LT2 wildtype 

 

This study 

  

Path 823 Path 346 pKD46 This study LT2 

 

Path 827 Path 823, LT2_I gtrC:tetRA pKD46 This study LT2 
oMV 1057 + 

oMV 1058 
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Path 859 Path 827, LT2_I gtrC:lacZ 

 

This study LT2 
oMV 1070 + 

oMV 1071 

Path 869 Path 859, LT2_I gtrC:lacZ pKD46 This study LT2 

 

Path 885 
Path 859, LT2_I gtrC:lacZ, 

 rpoS::tetRA 
 

This study LT2 
oMV 1033 + 

oMV 1034 

Chapter 4 strains 

Path 380 ST4/74 wildtype 

 

Rob 

Kingsley 
ST4/74 

 

Path 382 Path 380 pKD46 This study ST4/74 

 

Path 887 
Path 382, ST4/74_I 

gtrC:tetRA 
pKD46 This study ST4/74 

oMV 1057 + 

oMV 1058 

Path 891 
Path 887, ST4/74_I 

gtrC:lacZ 
 

This study ST4/74 
oMV 1068 + 

oMV 460 

Path 902 Path 891 pKD46 This study ST4/74 

 

Path 926 
Path 902, ST4/74_I 

gtr:tetRA 
pKD46 This study ST4/74 

oMV 1203 + 

oMV 1204 

Path 931 
Path 926, ST4/74_I gtr 

OFF mutant 
 

This study ST4/74 oMV 1208 

Path 923 Path 891 pMV 449 This study ST4/74 

 

Path 953 Path 891 pLAC22 This study ST4/74 

 

Path 961 Path 891 pMV 458 This study ST4/74 

 

Path 941 
Path 902, ST4/74_I 

gtrA:tetRA (short deletion) 
pKD46 This study ST4/74 

oMV 1234 + 

oMV 1235 
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Path 942 
Path 902, ST4/74_I 

gtrA:tetRA (long deletion) 
pKD46 This study ST4/74 

oMV 1236 + 

oMV 1235 

Path 946 
Path 941, ST4/74_I gtr 

short deletion 
 

This study ST4/74 oMV 1237 

Path 947 
Path 942,  ST4/74_I  gtrA 

long deletion 
 

This study ST4/74 oMV 1238 

Path 960 
Path 941, ST4/74_I gtr 

point mutations 
 

This study ST4/74 oMV 1256 

Path 945 
Path 79, pMV 455 

integrated at lambda att site 
pMV 455 This study ST4/74 

 

Path 948 
Path 79, pMV 456 

integrated at lambda att site 
pMV 456 This study ST4/74 

 

Path 954 Path 931 pKD46 This study ST4/74 

 

Path 955 Path 954,  oxyR::tetRA pKD46 This study ST4/74 
oMV 808 + 

oMV 809 

Path 959 Path 955, oxyR:C199S 

 

This study ST4/74 oMV 810 

Chapter 5 strains 

Path 636 

  

Edwin 

Kaptein 
LT2 

 

Path 637 

  

Edwin 

Kaptein 
LT2 

 

Path 667 

S. Typhi 2_I gtr:lacZ fusion 

CRIM vector integrated at 

lambda att site 

 
Edwin 

Kaptein 

S. Typhi 

BRD948 
 

Path 806 
Path 79, pMV 426 

integrated at lambda att site 
pMV 426 This study LT2 

 

Path 833 Path 79, pMV 430  pMV 430 This study LT2 
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 integrated at lambda att site     

Path 893 
Path 79, pMV 343 

integrated at lambda att site 
pMV 343 

Steven 

Watson 
LT2 

 

Path 924 
Path 79, pMV 451 

integrated at lambda att site 
pMV 451 

Steven 

Watson 
LT2 

 

 

Table 2.2. E. coli strains 

 

E. coli strains 

Name Genotype Plasmid Source 

MV 1494 XL-1 Blue pFH255 Edwin Kaptein 

MV 475 BT340CGSC # 7629 pCP20 Barry Wanner 

DL 433 DH5  

 

Bethesda Research 

Labs 

MV 1581 DL433 pLA40 This study 

MV 1085 Pir2 

 

Goulian, MvdW 

MV 1540 MV1085 pMV 389 Edwin Kaptein 

MV 382 katF13:Tn10 (tetRA) 

 

Bonnie Manaski 

MV 1103 
DH5 , pirsupE44  

lacU169 
pMV 243 Ruth Verstraten 

MV 1140 MV1085 pMV 252 
Broadbent et al., 

2010 

MV 1596 MV1085 pMV 426 This study 

MV 1597 MV1085 pMV 425 This study 
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MV 1378 MV1085 pMV 341 
Broadbent et al., 

2010 

MV 1602 MV1085 pMV 427 This study 

MV 1615 MV1085 pMV 430 This study 

MV 1628 DL433 pLAC22 This study 

MV 1657 DL433 pMV 449 This study 

MV 1662 MV1085 pMV 455 This study 

MV 1664 MV1085 pMV 456 This study 

MV 1665 DL433 pMV 458 This study 

 

Table 2.3. Plasmids 

 

Plasmids 

Name Description 
Antibiotic 

resistance 
Source 

Primers used to 

generate 

inserts/point 

mutations 

Chapter 3 plasmids 

pMV 243 Empty CRIM vector CmR 
Haldimann and 

Wanner, 2001 
 

pMV 252 

LT2_I gtr full length 

regulatory region CRIM 

vector 

CmR 
Broadbent et al., 

2010 
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pMV 341 
LT2_I gtr -10/-35 sites only 

CRIM vector 
CmR 

Broadbent et al., 

2010 
 

pMV 251 
P22 gtr full length regulatory 

region CRIM vector 
CmR 

Broadbent et al., 

2010 
 

pMV 296 
P22 gtr -10/-35 sites only 

CRIM vector 
CmR 

Broadbent et al., 

2010 
 

pMV 425 
pMV 252 point mutated at 

LT2_I gtr -10 site 
CmR This study 

oMV 1043 + 

oMV 1044 

pMV 427 
pMV 341 point mutated at 

LT2_I gtr -10 site 
CmR This study 

oMV 804 + 

oMV 716 

pKD46 lambdaRed helper plasmid AmpR 
Datsenko and 

Wanner, 2000 
 

pINT-ts 
CRIM vector integration 

helper plasmid 
AmpR 

Haldimann and 

Wanner, 2001 
 

pFH255 
Erv1p + DsbC expression 

vector 
CmR 

Van Dat Nguyen 

et al., 2011 
 

pLA40 ahpC:gfp fusion AmpR 
Aussel et al., 

2011 
 

pCP20 

CmR cassette excision from 

strains with CRIM vector 

insertion 

AmpR 

Cherepanov and 

Wackernagel, 

1995  

Chapter 4 plasmids 

pLAC22 
IPTG-inducible expression 

vector 

AmpR, 

TetR 

Warren et al., 

2000 
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pMV 449 
pLAC22 with STnc1870 

insertion 
AmpR This study 

oMV 1198 + 

oMV 1200 

pMV 455 

Path 931 gtr OFF mutant -

10/-35 sites only CRIM 

vector 

CmR This study 
oMV 412 + 

oMV 1233 

pMV 456 

Path 931 gtr OFF mutant full 

length regulatory region 

CRIM vector 

CmR This study 
oMV 412 + 

oMV 414 

pMV 458 
pMV 449 with point 

mutations in STnc1870 insert 
AmpR This study 

oMV 1257 + 

oMV 1258 

Chapter 5 plasmids 

pMV 389 

S. Typhi 2_II gtr full length 

regulatory region CRIM 

vector 

CmR Edwin Kaptein 

 

pMV 426 
pMV 389 point mutated at S. 

Typhi 2_II gtr GATC4 
CmR This study 

oMV 1025 + 

oMV 1026 

pMV 430 
pMV 389 point mutated at S. 

Typhi 2_II gtr GATA4 
CmR This study 

oMV 1061 + 

oMV 1062 

pMV 343 

S. Infantis_I gtr full length 

regulatory region CRIM 

vector 

CmR This study 

 

pMV 450 
pMV 343 point mutated at S. 

Infantis_I gtr TAAC1 
CmR Steven Watson 

oMV 1162 + 

oMV 1163 

pMV 451 
pMV 343 point mutated at S. 

Infantis_I gtr GATC1 
CmR Steven Watson 

oMV 1164 + 

oMV 1165 

  



43 

 

Table 2.4. Primers and Oligos 

 

Primers 

Name Sequence 5’ → 3’ Orientation Purpose 

Chapter 3 primers 

oMV 1043 CAATTTGTAGTGTTACACTCCAG F 
LT2_I gtr -10 site 

point mutation 

oMV 1044 CTGGAGTGTAACACTACAAATTG R 
LT2_I gtr -10 site 

point mutation 

oMV 804 
GGTAGCTCTGCAGATCGTTTATAT

CGATCAAAGCAATT 
F 

Cloning LT2_I gtr -

10/-35 sites into 

CRIM vector 

oMV 1033 

GAAATCCGTAAACCCGCTGCGTTA

TTTACCGCAGCGATAATTAAGACC

CACTTTCACATT 

F rpoS deletion 

oMV 1034 

TTACTCGCGGAACAGCGCTTCGAT

ATTCAGCCCCTGCGTCCTAAGCAC

TTGTCTCCTG 

R rpoS deletion 

oMV 1035 CCGGCACCAGCTCTACACGC F 
rpoS deletion 

screening 

oMV 1036 GCTGCTGGCAGAAGACAAAC R 
rpoS deletion 

screening 

oMV 1063 
CTGTTATCGCAAGGGGCCACACA

GCG 
F 

rpoS deletion 

screening 

oMV 1064 
CTGACGAACACGTTCACGCGTAA

GACCG 
R 

rpoS deletion 

screening 

oMV 1057 GGCGAGGACAAATGAGAATATTA F LT2_I gtrC:tetRA  
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CGGAAATAATTAAATAATTAAGA

CCCACTTTCACATT 
 insertion 

oMV 1058 

CCGCCGCCCGTTACCCATTGGTGG

CGGGGAACATTAATTACTAAGCA

CTTGTCTCCTG 

R 
LT2_I gtrC:tetRA 

insertion 

oMV 1070 

GGCGAGGACAAATGAGAATATTA

CGGAAATAATTAAATAATTATCAC

ACAGGAAACAGCTATG 

F 
LT2_I gtrC:lacZ 

insertion 

oMV 1071 

CCGCCGCCCGTTACCCATTGGTGG

CGGGGAACATTAATTATTATTTTT

GACACCAGACCAAC 

R 
LT2_I gtrC:lacZ 

insertion 

oMV 1080 
CCGTTGCTGATTCGAGGCGTTAAC

C 
F 

LT2_I gtrC:lacZ 

insertion screening 

oMV 1081 
CGGGGATACTGACGAAACGCCTG

CC 
R 

LT2_I gtrC:lacZ 

insertion screening 

oMV 1183 CTCAACGACCTGTCTTACCGC R 
LT2_I gtrC:lacZ 

insertion screening 

oMV 430 ACTTAACGGCTGACATGG F 
CRIM vector 

integration screening 

oMV 431 ACGAGTATCGAGATGGCA R 
CRIM vector 

integration screening 

oMV 472 CCCTGATAGTCGCCCGGCATAA F 
CRIM vector 

integration screening 

oMV 473 AGCTGCGTCTCTGGCACGAT R 
CRIM vector 

integration screening 

oMV 715 GCATCAAATTAAGCAGAAGGCC F 
CRIM vector insert 

amplification 

oMV 717 GTCACGACGTTGTAAAACGACGG R CRIM vector insert  
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   amplification 

oMV 1086 ATGCGCGCTTCACCTTTAAC F gtrA qPCR 

oMV 1087 GGCAGGGAACATTTGTCAGC R gtrA qPCR 

oMV 1084 TGATCCGCTCGTTATTCCGC F gtrB qPCR 

oMV 1085 ATAGGAATGACCGCATCCCC R gtrB qPCR 

oMV 1082 GGAAACCTATCCCGTGCGTC F gtrC qPCR 

oMV 1083 CCAATATGCCCCCATTGCTG R gtrC qPCR 

oMV 1099 AAGGATGGGCGTATTTCCAA F lrp qPCR 

oMV 1100 AGATAATGCGGGTTCAACAG R lrp qPCR 

Chapter 4 primers 

oMV 1068 
CTATTCACGAGCCTTTAATTTCAA

GCC 
F 

lacZ gene 

amplification from 

Path 859 

oMV 460 TGCGTGTATTGGTCAGTTGCC R 

lacZ gene 

amplification from 

Path 859 

oMV 1194 TGTTACCGATCAATTGGGGC F STnc1870 qPCR 

oMV 1195 CTTGCAAGCCGATGCAAAG R STnc1870 qPCR 

oMV 1196 CGGTGGCGTCTACTACTTCC F yceB qPCR 

oMV 1197 TTGGCAGTCAAAAAGCGACG R yceB qPCR 

oMV 1244 CGCGCTTTAGCAGTGTCTAC F ssaO qPCR 

oMV 1245 ACCCGGCCATTTGTTGTTTC R ssaO qPCR 

oMV 1198 
ATCTGAAGATCTATCTTATTAATT

GATCGTTG 
F 

Cloning STnc1870 

into pLAC22 
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oMV 1200 
CTGTATCGGCCGCTGAAATGGAC

GACTATGAA 
R 

Cloning STnc1870 

into pLAC22 

oMV 1257 
ATTGCGCCTGCTGGGTTTACAAAA

ACGGGACACACAAAG 
F 

Point mutations of 

STnc1870 in pMV 

449 

oMV 1258 
TTTGTAAACCCAGCAGGCGCAATC

AGTAGCCCCAATTG 
R 

Point mutations of 

STnc1870 in pMV 

449 

oMV 789 GTGAAAAGAAAAACCACCCTGGC F 

Point mutations of 

STnc1870 in pMV 

449 

oMV 1203 

ATAACAATAACTTTAAACTATTGA

ATACCACATTATTGATTTAAGACC

CACTTTCACATT 

F 
ST4/74_I gtr:tetRA 

insertion 

oMV 1204 

TCGGAAAGGTCTGGAGTGTAGCA

CTACAAATTGCTTTGATCTAAGCA

CTTGTCTCCTG 

R 
ST4/74_I gtr:tetRA 

insertion 

oMV 1208 

AATAACTTTAAACTATTGAATACC

ACATTATTGATAGTTTATATCGAT

TAAAGCAATTTGTAGTGCTACACT

CCAGACCTTTCC 

F 
ST4/74_I gtr locked 

OFF mutation 

oMV 1233 
GGTAGCTCTGCAGATAGTTTATAT

CGATTAAAGCAATT 
F 

Locked OFF 

ST4/74_I gtr -10/-35 

sites CRIM vector 

cloning 

oMV 412 
CATGATGGTACCCTTCAACATTAT

GAAAATCAGCGG 
R 

Locked OFF 

ST4/74_I gtr CRIM 

vector cloning 

oMV 414 
TTGATTCCTGCAGCCCACGGCTTA

GATGTTCCTGG 
F 

Locked OFF 

ST4/74_I gtr CRIM  
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   vector cloning 

oMV 1234 

TAGCGAATAACTTCAACATTATGA

AAATCAGCGGATTCGGTTAAGAC

CCACTTTCACATT 

F 
STnc1870 upstream 

deletion (short) 

oMV 1235 

CTTTAAACTATTGAATACCACATT

ATTGATCGTTTATATCCTAAGCAC

TTGTCTCCTG 

R 
STnc1870 upstream 

deletion 

oMV 1236 

GTGGCTTCTTCATTGAAGACCGGA

ACGACTAACGAGATTTTTAAGACC

CACTTTCACATT 

F 
STnc1870 upstream 

deletion (long) 

oMV 1237 

CATTATGAAAATCAGCGGATTCG

GTTAAGACCCACGGCGGCGGCGG

CGGACAAGTGCTTAGGATATAAA

CGATCAATAATGTGG 

F 

Short deletion of 

STnc1870 upstream 

region 

oMV 1238 

TTCTTCATTGAAGACCGGAACGAC

TAACGAGATTTGATATAAACGATC

AATAATGTGGTATTCAATAGTT 

F 

Long deletion of gtrA 

and STnc1870 

upstream region 

oMV 1256 

AATAACTTCAACATTATGAAAATC

AGCGGATTCGGCACTGGCTGGAG

GGGAGCACTACAACGTTCGTTGCT

AGATATAAACGATCAATAATGTG

GTATTCAATAGTT 

F 

Single bp changes 

upstream of 

STnc1870 

oMV 808 

GAGAAATTGCTGATGCTGGAAGA

TGGCCACTTTAAGACCCACTTTCA

CATT 

F 
OxyR C199S 

mutation 

oMV 809 

TCCCGCTTCAAAACAGAACCCCAT

CGCCTGATCGCGCAGACTAAGCA

CTTGTCTCCTG 

R 
OxyR C199S 

mutation 

oMV 810 
GAGAAATTGCTGATGCTGGAAGA

TGGCCACTCTCTGCGCGATCAGGC 
F 

OxyR C199S 

mutation 
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 GATGGGGTTCTGTTTTGAA   

Chapter 5 primers 

oMV 1025 
TTGATCGTTTATATCGATCAAAGC

AATTTGTAGTAC 
F 

S. Typhi 2_II gtr 

GATC4 point 

mutation 

oMV 1026 
TAGTACTACAAATTGCTTTGATCG

ATATAAACGATC 
R 

S. Typhi 2_II gtr 

GATC4 point 

mutation 

oMV 1061 
TTGATCGTTTATATCGATAAAAGC

AATTTGTAGTAC 
F 

S. Typhi 2_II gtr 

GATA4 point 

mutation 

oMV 1062 
TAGTACTACAAATTGCTTTTATCG

ATATAAACGATC 
R 

S. Typhi 2_II gtr 

GATA4 point 

mutation 

oMV 1162 
TCCAATATCAACCTAACGATTGCA

ACGATCG 
F 

S. Infantis_I gtr 

TAAC1 point 

mutation 

oMV 1163 
CGATCGTTGCAATCGTTAGGTTGA

TATTGGA 
R 

S. Infantis_I gtr 

TAAC1 point 

mutation 

oMV 1164 
TTTCCAATATCAACCGATCGATTG

CAACGAT 
F 

S. Infantis_I gtr 

GATC1 point 

mutation 

oMV 1165 
ATCGTTGCAATCGATCGGTTGATA

TTGGAAA 
R 

S. Infantis_I gtr 

GATC1 point 

mutation 
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Table 2.5. Accession numbers for relevant strains 

Strain NCBI Accession number 

S. Typhimurium strain LT2 NC_003197.1 

S. Typhimurium strain ST4/74 NC_016857.1 

S. Typhimurium strain SL1344 FQ312003.1 

S. Typhimurium strain DT104 HF937208.1 

S. Typhimurium strain D23580 FN424405.1 

S. Infantis NZ_LN649235.1 

S. Gallinarum NZ_CM001153.1 

S. Typhi strain CT18 NC_003198.1 and AL513382.1 

S. Typhi strain B/SF/13/03/195 CP012151.1 

S. Typhi strain PM016/13 CP012091.1 

S. Typhi strain Ty21a CP002099.1 

S. Typhi strain P-stx-12 CP003278.1 

S. Typhi strain Ty2 AE014613.1 

S. Abaetetuba CP007532.1 

S. Heidelberg CP001120.1 

S. Javiana CP004027.1 

S. Pullorum CP012347.1 

S. Enteritidis CP013097.1 

S. Bredeney CP007533.1 

S. Montevideo CP007530.1 
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2.2 MEDIA 

 

2.2.1 LB media 

 

LB broth was prepared by mixing 20 g of LB (Lennox) powder with one litre of RO water and 

autoclaving the solution. To make LB plates, 17.5 g of agar were added to the mixture. To grow 

S. Typhi (Path 667) supplements were added at the following final concentrations: 40 M L-

phenylalanine, 40 M L-tryptophan, 40 M L-tyrosine, 1 M para-aminobenzoic acid and 1 

M 2,3-dihydroxybenzoic acid. 

 

2.2.2 SOC medium 

 

SOC media was prepared by mixing 2 % w/v tryptone, 0.5 % w/v yeast extract, 10 mM NaCl 

and 2.5 mM KCl into 1 litre of RO water. The solution was autoclaved and allowed to cool 

before adding 10 mM MgCl2, 10 mM MgSO4 and 20 mM D-Glucose. The media was then filter 

sterilised. 

 

2.2.3 tetS medium 

 

To make 500 ml of tetS media used in lambda Red counterselection experiments, two flasks (A 

and B) were prepared according to the method of Bochner et al., 1980. Flask A contained 7.5 g 

of agar, 2.5 g of tryptone, 2.5 g of yeast extract and 25 mg of chlortetracycline in 450 ml of RO 

water.  Flask B contained 5 g of NaCl (1.71 M) and 5 g of NaH2PO4·H2O (0.72 M) in 50 ml of 

RO water. Both flasks were autoclaved and cooled to 55°C. 110 l of a 55 mg/ml stock of 

fusaric acid (dissolved in dimethylformamide) and 2.5 ml of a 20 mM ZnCl2 stock were added 

to flask B. Flask A and B were mixed together before pouring into sterile Petri plates. 

Throughout the process, care was taken to minimise exposure of the plates to light. Plates were 

always prepared fresh on the day of a counterselection experiment. 
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2.2.4 M9 medium 

 

For 1 litre of liquid media, 11.3 g of M9 salts (Sigma) were mixed with 1 litre of RO water and 

autoclaved. The solution was cooled to 55°C, before adding 200 l of Iron-citrate (0.3 % w/v, 

12.20 mM), 1 ml CaCl2 (0.1 M), 1 ml MgSO4 (1.0 M), 1 ml Vitamin B1 (1 % w/v) and 10 ml 

D-Glucose (20 % w/v, 1.11 M). To make 1 litre of solid M9 media, 500 ml of RO water were 

mixed with 11.3 g of M9 salts and autoclaved. In a separate flask, 17.5 g of agar were mixed 

with 500 ml of RO water and autoclaved simultaneously. Both flasks were cooled to 55°C, 

before adding the supplements listed above to the M9 salts flask. If required, 2 ml of X-Gal (5-

bromo-4-chloro-3-indyl  D-galactoside, 2 % w/v in dimethylformamide) and appropriate 

antibiotics were also added. The agar and M9 flasks were then combined, mixed and poured 

into plates. 

 

2.2.5 InSPI2 medium 

 

InsPI2 media was prepared according to the recipe of Löber et al., 2006. For 1 litre of liquid 

media, the following ingredients were combined in 500 ml of MilliQ water: 80 mM MES 

(morpholino-ethane-sulphonic acid), 4 mM Tricine, 100 µM FeCl3, 376 µM K2SO4, 50 mM 

NaCl, 22.2 mM D-Glucose, 15 mM NH4Cl, 1 mM MgSO4, 0.01 mM CaCl2, 10 nM Na2MoO4, 

10 nM Na2SeO3, 4 nM H3BO3, 300 nM CoCl2, 100 nM CuSO4, 800 nM MnCl2, 1 nM ZnSO4. 

8.5 ml of K2HPO4 (0.4 mM) and 91.5 ml of KH2PO4 (0.4 mM) were mixed to create a stock 

solution with a pH of 5.8, of which 10 ml were added to the InSPI2 media. The InSPI2 media 

was titrated (using NaOH) to pH = 5.8 and the volume made up to 1 litre before filter sterilising. 

The media was stored at 4°C. 

 

2.2.6 NonSPI2 medium 

 

This media was prepared in the same manner as InSPI2 media, with the following exceptions 

(Löber et al., 2006): 80 mM MOPS (morpholino-propane-sulphonic acid) was used instead of 

MES. Additionally, 80.2 ml of K2HPO4 (25 mM) and 19.8 ml of KH2PO4 (25 mM) were mixed 

to create a stock solution with a pH of 7.4, of which 10 ml were added to the NonSPI2 media. 

The solution was titrated to a pH of 7.4. The media was stored at 4°C. 
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2.2.7 Antibiotics 

 

To select for multicopy plasmids, antibiotics were added to growth media at the following final 

concentrations: ampicillin (100 g/ml), tetracycline (15 g/ml) or chloramphenicol at 30 g/ml. 

To select for single copy resistance markers inserted in the bacterial chromosome, 12.5 g/ml 

tetracycline or 8 g/ml chloramphenicol were added. 

 

2.2.8 Catalase solution 

 

A stock of catalase solution was prepared by mixing 50 ml of MilliQ water with 0.5 g of 

catalase (2000 – 5000 Units/mg, Sigma). Following filter sterilisation, aliquots were stored at -

20°C. 100 l of thawed catalase solution were spread on plates used for growing strains with 

mutations in the oxyR gene. 

 

2.3 PCR TECHNIQUES 

 

2.3.1 Colony PCR 

 

Individual colonies were picked from plates and transferred to 25 l of sterile MilliQ water in 

Eppendorf tubes. The tubes were then heated at 95°C for 7 minutes. The resulting solution was 

used directly as template in either Q5 or GoTaq PCR reactions. 

 

2.3.2 Q5 PCR 

 

For PCRs of long products (>1000 bp) or amplifications requiring high fidelity, the proof 

reading Q5 Hotstart polymerase (NEB) was used. A single reaction with a total volume of 25 l 

was set up as follows: a mix of 5 l 5x Q5 buffer, 0.5 l dNTPs (10 mM each), 1.25 l primer 1 

(10 M, Sigma), 1.25 l primer 2 (10 M), 5 l 5x High G/C enhancer and 11.5 l MilliQ 

water was prepared. 0.25 l of template DNA (10-100 ng/l concentration) was added, 

followed by 0.25 l Q5 Hotstart polymerase. The following PCR cycles were used: an initial 

denaturation was carried out at 98°C for 3 minutes, then 34 cycles of denaturation (98°C, 10 
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seconds), annealing (55 – 72°C dependent on primers used, 30 seconds), extension (72°C, 30 

seconds per kilobase of product). The final extension step was 72°C for 2 minutes followed by 

an unlimited hold at 4°C. Appropriate annealing temperatures were determined either by 

gradient PCR, or by using the New England Biolabs Tm calculator (found online at 

http://tmcalculator.neb.com/#!/). 

 

2.3.3 GoTaq PCR 

 

For PCRs of short products (<1000 bp) that did not require high fidelity, GoTaq G2 flexi 

polymerase (Promega Corporation) was used. A single 25 l reaction contained: 5 l 5x GoTaq 

buffer, 2 l MgCl2, 0.5 l dNTPs (10mM each), 0.75 l primer 1 (10 M), 0.75 l primer 2 

(10M) and 13.375 l MilliQ water. 2.5 l DNA template (10 – 100 ng/l concentration) were 

added followed by 0.125 l of GoTaq G2 flexi polymerase. PCR cycles were as follows: initial 

denaturation at 95°C for 3 mins, preceding 34 cycles of denaturation (95°C, 30 seconds), 

annealing (55°C, 30 seconds) and extension (72°C, 1 minute per kilobase of product). The final 

extension was 95°C for 5 minutes before a 4°C unlimited hold. 

 

2.3.4 qRT-PCR 

 

qPCR experiments made use of the Applied Biosystems Fast qPCR machine and mastermix. A 

single reaction contained 10 l of mastermix, 7 l nuclease free water, 0.5 l of each primer 

(0.25 M final concentration) and 2 l of cDNA template or water for negative controls. The 

following amplification cycles were used: initial denaturation (95°C, 20 seconds) followed by 

40 cycles of 95°C for 3 seconds and a combined annealing and extension step of 60°C for 30 

seconds. A melt curve was also produced, consisting of a 15 second 95°C denaturation, a 60°C 

step for 1 minute and a gradual increase by 0.3°C until reaching 95°C and holding for 15 

seconds. To perform absolute quantitations of transcripts, a standard curve was generated using 

previously amplified PCR products of target genes with known copy number. Copy number of 

PCR products was calculated using the following formula: ((amount of PCR product in ng) x 

6.022 x 1023) / ((length of PCR product in bp) x (1 x 109) x 660). An appropriate dilution range 

of PCR product was then produced for use as a standard curve (typically in the range of 102 – 

106 copies/sample). 
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2.4 NUCLEIC ACID TECHNIQUES 

 

2.4.1 Genomic DNA extraction 

 

Genomic DNA was isolated following the protocol of Aljanabi and Martinez (1997), from 

bacterial cultures grown to stationary phase. 1.5 ml of culture was centrifuged for 2 minutes at 

13000 rpm in a benchtop microcentrifuge. The supernatant was discarded and the pellet 

resuspended in 400 l of sterile salt homogenising buffer (0.4 M NaCl, 10 mM Tris-HCl, 2 mM 

EDTA, pH = 8.0). 40 l of a 20 % w/v SDS (sodium dodecyl sulphate) solution was added 

along with 4 l of Proteinase K (Roche, 200 g/ml final concentration). The solution was mixed 

and incubated overnight at 60°C.  300 l of 5 M NaCl was added before vortexing at maximum 

speed for 30 seconds. The sample was centrifuged for 30 minutes at 10,000 g and the 

supernatant transferred to a fresh tube. An equal volume of isopropanol was added. The mixture 

was vortexed and incubated at -20°C for 1 hour. Centrifugation was performed at 10,000 g and 

4°C. The supernatant was discarded, and the pellet was washed in 100 l 70 % v/v ethanol. 

Ethanol was then removed by pipetting and the pellet was left to air dry. Final resuspension of 

the pellet was performed using 100 l of sterile MilliQ water. The tube was incubated at 65°C 

for 1 hour to achieve complete resuspension and then stored at -20°C. 

 

2.4.2 DNA gel separation 

 

Agarose gels used to visualise DNA fragments were prepared containing 1 % w/v agarose 

mixed with TAE buffer (40 mM Tris, 20 mM Acetic acid, 1 mM EDTA). The solution was 

boiled in a microwave oven. After cooling, ethidium bromide was added at a final concentration 

of 0.5 g/ml. DNA samples were mixed with loading dye before applying them to the gel. 

Electrophoresis was performed at 100 V for 40 minutes. 

 

2.4.3 DNA/RNA quantification 

 

The concentrations of nucleic acid samples were determined using a Nanodrop machine. After 

blanking the machine with the same media used in the extraction of the nucleic acid, samples 

were loaded and measured. Concentrations given in ng/l as well as ratios of 260/280 nm and 

260/230 nm wavelength were recorded to check for presence of contaminants in the sample. For 
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DNA, a 260/280 ratio of 1.8 was considered an indication of sufficient purity, whereas for RNA 

a ratio of 2.0 was desired. For the 260/230 ratio, a value of 2.0 – 2.2 was aimed for. 

 

2.4.4 DNA gel extraction 

 

To purify DNA fragments, samples were loaded on to a 50 ml TAE 0.8 % w/v agarose gel 

containing 10 l of Nancy-520 dye (Sigma). Electrophoresis was performed at 44 V for 2 hours, 

or until sufficient separation was achieved. DNA bands were visualised using a source of blue 

light and excised with a clean scalpel. The excised DNA bands were purified using the 

QIAquick gel extraction kit (Qiagen) according to the manufacturer’s instructions. DNA was 

eluted in 30 l of sterile MilliQ water. 

 

2.4.5 DNA restriction digests 

 

All enzymes and reagents used in restriction digests were supplied by New England Biolabs. 

Reactions were set up containing up to 1 g DNA, 5 l reaction buffer, 1 l enzyme and 

nuclease free water made up to a 50 l total volume. Reactions were incubated at 37°C for one 

hour, then analysed on agarose gels. 

 

2.4.6 DNA precipitation 

 

To concentrate DNA samples, precipitation by sodium acetate and ethanol was used. 3 M 

sodium acetate was added at 1/10 of the volume of the DNA sample, along with 2 volumes of 

100 v/v % ethanol. The sample was placed at -20°C for 20 minutes, and then centrifuged at 

13000 rpm in a cooled (4°C) benchtop microfuge. The supernatant was removed and 1 ml of 70 

% v/v ethanol was added. The tube was centrifuged once more and the supernatant removed. 

The pellet was air-dried on the bench, and then resuspended in the required volume of MilliQ 

water. 
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2.4.7 RNA extraction 

 

RNA was extracted from bacterial cultures using the Qiagen RNeasy minikit according to the 

manufacturer’s instructions (available at www.qiagen.com). Briefly, the protocol was as 

follows: cultures were grown in sterile, RNAzap treated baffle flasks at 200 rpm in a shaking 

incubator at 37°C. All cultures were started by diluting an overnight culture 100-fold into 50 ml 

of fresh media. At OD600 = 0.3, 2.5 ml of culture were removed and added to 5 ml of 

Bacteriaprotect Reagent (Qiagen). After 5 minutes of incubation at room temperature, samples 

were centrifuged for 10 mins at 5000 g. Supernatants were removed and pellets were 

resuspended in 200 l TE buffer containing 15 mg/ml lysozyme (Sigma) and 3 l proteinase K 

(Roche, 330 g/ml final concentration). The solution was transferred to a nuclease-free 

Eppendorf and vortexed heavily every 2 minutes for a total time of 10 minutes. 700 l of buffer 

RLT from the Rneasy kit was added, followed by vortexing. 500 l of 100 % ethanol were 

added next. Half the total volume (700 l) were added to a spin column and centrifuged for 15 

seconds at 8000 g. All following centrifugation steps were carried out under the same 

conditions, unless otherwise indicated. The flow through was discarded and the process was 

repeated with the remaining 700 l. Next, 350 l of buffer RW1 were added, followed by a 

further centrifugation step and discarding of the flow through. DNase treatment was performed 

on column using the RNase free DNase kit supplied by Qiagen. 10 l of DNase I was added to 

70 l of buffer RDD and gently mixed by pipetting before application to the column. DNase 

treated columns were incubated at room temperature for 15 minutes. 350 l of buffer RW1 were 

added next and the columns were left to stand for a further 5 minutes before centrifugation. The 

spin column was placed in a clean collection tube and 500 l of RPE buffer (consisting of 100 

l RPE stock mixed with 400 l 100 % ethanol) were added. After centrifugation and 

discarding of the flow through, the process was repeated using a 2 minute centrifugation step. 

Finally, the spin column was placed in a clean Eppendorf tube and 40 l of RNase-free water 

were added to the column. After a 1 minute centrifugation step, the eluted RNA was stored at -

80°C. 

 

2.4.8 RNA testing for genomic DNA presence 

 

RNA samples were tested for the presence of contaminating genomic DNA using the following 

method: a small aliquot of RNA was resuspended in 125 l of sterile buffer solution (60mM 

Tris-HCl, 1mM EDTA, pH = 6.8) and 2 l of DNase-free RNase (Roche) were added. This 
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procedure was repeated for a positive control consisting of 2 l of a genomic DNA extract. 

Samples were incubated at 37°C for 4-5 hours and then used as templates in a GoTaq PCR 

reaction using the same primers to be used in subsequent qPCR experiments. Amplification in 

the genomic DNA positive control, but not the RNA samples, was considered evidence that the 

RNA samples were free of genomic DNA. 

 

2.4.9 cDNA synthesis 

 

All ingredients were supplied by Thermo Fisher Scientific (2016), and the manufacturer’s 

protocol was followed. 

(available at: https://tools.thermofisher.com/content/sfs/manuals/superscriptIII_man.pdf).  

To synthesise cDNA from RNA samples, a mixture of 9 l RNase free water, 1 l dNTPs 

(10mM of each nucleotide) and 1 l of random primers (250 ng/l concentration) was added to 

2 l of RNA in a PCR tube (0.2 ml volume). The mixture was heated to 65°C for 5 minutes in a 

PCR thermocycler and then cooled to 4°C for 1 minute. A second mix of 4 l 5x First Strand 

synthesis buffer, 1 l 0.1 M dithiothreitol and 1 l RNaseOUT Inhibitor was added. In the final 

step, 1 l Superscript III Reverse Transcriptase was added before incubation at 25°C for 5 

minutes, then 50°C for 60 minutes, followed by inactivation at 70°C for 15 minutes. cDNA 

samples were stored at -20°C. 

 

2.4.10 Lambda RED recombination 

 

For lambda Red mediated genetic recombination, the method of Datsenko and Wanner (2000) 

was used. Cells were grown as described under the protocol for generating electrocompetent 

cells (section 2.7.2). The only exception was the addition of 0.2 % w/v L-arabinose (13.32 mM, 

final concentration) to the culture at an OD600 of 0.4 - 0.6, followed by one hour further growth. 

The lambda Red helper plasmid pKD46 used in this procedure is temperature sensitive and 

therefore requires growth at 30°C in media supplemented with ampicillin (100 g/ml final 

concentration).  All genetic recombination work involved the insertion of the tetRA resistance 

marker as a primary step. Furthermore, it was necessary to retain the pKD46 plasmid in these 

steps for future recombination work. Cells were therefore plated on LB media with tetracycline 

(12.5 g/ml final concentration) as well as ampicillin (100 g/ml final concentration) and 

grown at 30°C to select for pKD46. 
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2.4.11 Lambda RED counterselection 

 

In order to replace a chromosomally inserted tetRA cassette with alternate DNA sequences, 

lambda Red mediated counterselection was used according to the method of Datsenko and 

Wanner (2000). In this process either DNA-oligos or PCR products were used. For both 

methods, the DNA had 35-40 bp overhangs that matched the chromosomal sequences flanking 

the tetRA cassette. Strains carrying both the tetRA cassette in the chromosomal region to be 

altered and the lambda Red helper plasmid were grown under the following conditions: An 

overnight culture of the required strain containing 4 ml LB media supplemented with ampicillin 

(100 mg/ml final concentration) and tetracycline (12.5 mg/ml final concentration) was used to 

inoculate 50 ml LB in a sterile baffle flask, also with ampicillin (concentration as above), but 

without tetracycline. Lambda RED genes were induced by L-arabinose addition as described in 

section 2.4.10. Growth conditions and preparation of electrocompetent cells were as described 

in section 2.7.2. Cells were transformed by electroporation with 2 l (~200 ng) DNA or water 

as a control. Following resuspension in 1 ml prewarmed SOC (37°C) cells were incubated for 1 

hour at 37°C and 220 rpm in a shaking incubator. 100 l aliquots of both the undiluted 

outgrowth and a 10-2 dilution were plated on 9 tetS plates each. The water transformed control 

was diluted 10-5 fold and 100 l plated in duplicate on both tetS and LB media with tetracycline 

(12.5 g/ml final concentration). All plates were incubated at 42°C for 18-20 hours. Any 

colonies appearing on plates of the DNA transformed sample were transferred to a single LB 

reference plate without antibiotics and numbered. After overnight growth at 37°C, the numbered 

colonies were streaked for single colonies on to one LB plate each and incubated at 37°C 

overnight. Single colonies derived from these plates were then picked to a second LB reference 

plate, numbered and simultaneously tested for tetracycline resistance by streaking onto LB 

plates supplemented with 12.5 g/ml tetracycline and growth overnight at 37°C. In this manner 

up to 40 colonies were screened. Absence of growth on tetracycline plates indicated a possible 

loss of the tetRA cassette. Any colonies shown to be tetracycline sensitive were tested further by 

PCR and sequencing. Colonies with successful recombination were picked from the second 

reference plate, streaked to a fresh plate and frozen as described in section 2.7.4. 

 

2.4.12 CRIM vector integration 

 

Integration of CRIM vector into the Salmonella chromosome followed the method of 

Haldimann and Wanner (2001). S. Typhimurium strains carrying the temperature sensitive 

pINT-ts integration helper plasmid were grown at 30°C in 50 ml LB media supplemented with 
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ampicillin (100 mg/ml final concentration). Other growth conditions and the procedure for 

generating electrocompetent cells were as described in section 2.7.2. 2l (~200 ng) of the CRIM 

vector were transformed into electrocompetent cells, followed by resuspension in 1 ml pre-

warmed SOC media (37°C) and transfer to a Universal tube. Outgrowth at 37°C for one hour, 

and then 42°C for 30 minutes was performed in a shaking incubator at 220 rpm. Selection of 

cells with successful CRIM vector integration was performed by plating on LB media with 

chloramphenicol (8 g/ml final concentration). Integration of CRIM vectors was confirmed by 

GoTaq PCR using the following primer pairs: oMV472/473, oMV472/430, oMV431/473 and 

oMV430/431. 

 

2.4.13 Plasmid DNA extraction 

 

4 ml overnight cultures in LB media with appropriate antibiotics were set up and grown at the 

required temperature in a shaking incubator set to 220 rpm. The entire volume was collected by 

centrifugation at 13000 rpm for 3 minutes in a benchtop microcentrifuge. All further steps were 

performed using the QIAprep spin miniprep kit (QIAGEN) according to the manufacturer’s 

instructions (available at https://www.qiagen.com/gb/shop/sample-technologies/dna/dna-

preparation/qiaprep-spin-miniprep-kit/). The purified plasmid DNA was eluted in 30 l of 

sterile MilliQ water. 

 

2.4.14 PCR purification 

 

PCR products used for sequencing or restriction digests were purified using the QIAquick PCR 

purification kit (QIAGEN) according to the manufacturer’s instructions (available at 

https://www.qiagen.com/gb/shop/sample-technologies/dna/dna-clean-up/qiaquick-pcr-

purification-kit/). The purified DNA was eluted in 30 l of sterile MilliQ water. 

 

2.4.15 DNA Ligation 

 

T4 Ligase and buffer were acquired from NEB. Ligations of insert and vector DNA were 

performed according to the manufacturer’s instructions (available at 

https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202) using a 3:1 

molar ratio. 
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2.4.16 Sequencing 

 

All newly constructed plasmids and mutated chromosomal regions were checked by DNA 

sequencing. Sequencing was performed by Eurofins. Reactions were submitted using the 

SmartSeq kit (Eurofins) as instructed by the manufacturer. Purified PCR products were used as 

templates and diluted in nuclease free water. 

 

2.4.17 PCR site directed mutagenesis (SOE-PCR) 

 

The introduction of point mutations in gtr regulatory regions contained in CRIM vectors, 

followed the method of Ho et al., 1989. Complementary primers were designed containing the 

desired point mutation with overhangs of 15-18 bp on either side. Two separate Q5 PCR 

reactions were performed  using one of the mutagenesis primers as well as ‘end’ primers  which 

bound the CRIM vector DNA at a location several hundred bp either up- or downstream of the 

point mutation site. The resulting PCR products were purified by gel excision and extraction as 

described in section 2.4.4. The two products were then mixed, diluted and added as template in 

a further Q5 PCR, using only the ‘end’ primers. The template PCR products contained a region 

of overlap introduced by the mutagenesis primers, which allowed annealing of the strands and 

subsequent amplification of a single product by the end primers. The single, point mutated 

product was digested by restriction enzymes and ligated into a CRIM vector. 

 

2.5 REPORTER ASSAY TECHNIQUES 

 

2.5.1 -galactosidase assays 

 

-galactosidase assays were performed as described by Miller, 1972. Cultures derived from two 

independent colonies were grown in M9 minimal media supplemented with glucose. 50 ml of 

fresh M9 media supplemented 8 g/ml chloramphenicol were inoculated with 500 l of 

overnight S. Typhimurium culture and incubated under shaking conditions (200 rpm) in baffle 

flasks at 37˚C. 50 l samples were collected in quadruplicate between OD600 = 0.3-1.9 and 

mixed with 950 l Z-buffer (0.06 M Na2HPO4, 0.04 M NaH2PO4, 0.01 M KCl, 0.001 M 

MgSO4, 0.05 M -mercaptoethanol, pH = 7.0) in clean glass tubes. Samples were chilled to 4°C 

before addition of 50 l 0.1 % w/v SDS and 100 l chloroform and vortexing for 20 seconds at 
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maximum speed. A 5 minute incubation step at 28°C was followed by addition of 200 l ONPG 

solution (0.061 M Na2HPO4, 0.039 M NaH2PO4, 0.0133 M o-nitrophenyl--galactoside, pH = 

7.0) and brief vortexing. Samples were then incubated at 28°C until a pale yellow colour 

developed. At this point, 500 l 1 M Na2CO3 was added and mixed by vortexing. Samples were 

transferred to 1.5 ml Eppendorf tubes and centrifuged for 15 minutes at 13 000 rpm in a tabletop 

microcentrifuge to remove cell pellets. Supernatants were transferred to cuvettes and their 

optical absorbance at 420 nm wavelength was measured in a spectrophotometer. The -

galactosidase activity (given in Miller Units) was calculated using the formula (1000 x OD420) / 

(T x V x OD600). OD420 is the absorbance of the culture supernatant after the -galactosidase 

assay, T is the time in minutes between ONPG solution addition and Na2CO3 addition, V is the 

volume of culture used in the assay (given in ml) and OD600 is the optical absorbance at 600 nm 

of the culture when the sample was taken. To account for phase variation, 10-6 and 10-7 dilutions 

of the measured culture were plated in triplicate on M9 agar supplemented with 8 g/ml 

chloramphenicol (if required) and X-Gal (5-bromo-4-chloro-3-indolyl--D-galactopyranoside). 

Blue and white colonies were counted after 48 hours of incubation at 37˚C to determine the 

percentage of gtr phase ON cells in the population. 

 

2.5.2 Fluorescence measurement 

 

Strains expressing GFP were grown in M9 media with appropriate antibiotics to OD600 = 0.3 

before collecting 50 l samples. The samples were pipetted into a 96-well plate and chilled to 

4°C before commencing measurements. OD600 values of the culture were recorded after each 

sample extraction. Fluorescence measurement was performed using a FluoSTAR OPTIMA 

(BMG Labtechnologies) plate reader set with an excitation filter at 485 nm and an emission 

filter at 520 nm wavelength.  

 

2.6  LPS ANALYSIS TECHNIQUES 

 

2.6.1 LPS sample preparation 

 

LPS samples were prepared in the following manner: 1 colony of the relevant strain was picked 

to 4 ml of M9 minimal media (supplemented with appropriate antibiotics) and incubated on a 

shaker (200 rpm) at 37°C overnight. 1ml of the overnight culture was pelleted by centrifugation 
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for 5 minutes at 13,000 rpm. The supernatant was discarded and the pellet was resuspended in 

1ml of a sterile 0.9 % w/v NaCl solution. This wash step was repeated 2 more times. After the 

final wash, the pellet was resuspended in 125 l of a sterile 60mM Tris-HCl, 1mM EDTA, 2 % 

w/v SDS (pH=6.8) solution, vortexed and boiled at 95°C for 5 minutes. 875 l of a sterile 

60mM Tris-HCl, 1mM EDTA (pH=6.8) solution were added followed by 2 l each of RNase 

and DNase. The sample was then incubated at 37°C for 4-5 hours. 5 l of Proteinase K (110 g 

/ml final concentration, Roche) were added and the sample was incubated overnight at 50°C. 

Prior to loading on TSDS-PAGE gels, 60 l of a sample prepared in the above way was mixed 

with 40 l of  loading buffer (6 % w/v SDS, 6 % v/v -mercaptoethanol, 10 mM dithiothreitol, 

46  % v/v glycerol, 60 mM Tris (pH=8.0) and 0.1 % w/v bromophenol blue). 

 

2.6.2 TSDS-PAGE 

 

Gels for separation of LPS samples were prepared in the following manner (modified from 

Lesse et al., 1990). Two glass plates were cleaned successively with detergent, acetone and 70 

% v/v ethanol. The plates were bound into a cassette using binder clips and separated by spacers 

of ~2 mm thickness. The edges of the cassette were sealed using 2 % w/v agarose. A 10.5 % 

separating gel was prepared containing 8.3 ml of gel buffer (3.0 M Tris, pH = 8.45, 0.3 % w/v 

SDS), 6.25 ml 40 % acrylamide (BioRad, 29:1 ratio), 2.6 ml glycerol and 7.85 ml MilliQ water 

in a total volume of 25 ml. 150 l of an aqueous 10 % w/v ammonium persulphate solution 

(0.44 M) and 15 l of TEMED (tetramethylethylenediamine) were added to start 

polymerisation. The separating gel was poured into the gel cassette. An aqueous solution of 50 

% v/v butanol was poured on top to exclude air during polymerisation. A 4 % stacking gel was 

prepared containing 3.1 ml of gel buffer, 1.25 ml of acrylamide and 8.15 ml of MilliQ water. 

100 l of 10 % w/v ammonium persulphate and 10 l of TEMED were added to start 

polymerisation. The stacking gel was poured onto the separating gel (after removing the butanol 

by decanting) and a comb was placed on top to form wells. The top of the gel cassette was 

wrapped in plastic foil to exclude air during polymerisation. To run the gel, the lower end was 

placed in a tank (after removing the spacer at this end) containing the anode buffer (0.2 M Tris, 

pH = 8.9) and the upper end was placed in a tank containing cathode buffer (0.1 M Tris, 0.1 M 

Tricine, 0.1 % w/v SDS, pH = 8.25). The comb was removed and the wells were washed by 

injecting cathode buffer. After sample loading (40 l per well), the gel was electrophoresed at 

50 V until the sample had passed through the stacking gel (~4 hours). Following this, the 

voltage was increased to 100 V until the samples reached the end of the separating gel (~18 

hours). 



63 

 

2.6.3 Silver staining 

 

TSDS-PAGE gels of separated LPS samples were silver stained similar to the method described 

in Kittelberger and Hilbink, 1993. Gels were placed in thoroughly cleaned trays with fixative 

solution (30 % v/v ethanol, 10 % v/v glacial acetic acid, 60 % v/v ultrapure MilliQ water, 200 

ml total) and left for a minimum of two days with gentle agitation on an orbital shaker. The 

fixative solution was discarded and replaced by fresh fixative after one day. All the following 

steps were carried out using the same tray. Ultrapure MilliQ water was used to make all the 

solutions. For each step, the previous solution was removed from the tray and the gel 

resuspended in the appropriate new solution. Gels were oxidised in oxidiser solution [30 % v/v 

ethanol, 10 % v/v acetic acid, 60 % v/v water, 1.4 g periodic acid (H5IO6 30.71 mM), 200 ml 

total] for 10 minutes. Three 15 minute washes were performed using 400 ml of water before 

silver staining for 30 minutes. The silver stain solution consisted of 200 ml water with 0.2 g 

silver nitrate (AgNO3, 5.89 mM). During silver staining, the tray was wrapped in aluminium 

foil. After the silver stain and a brief rinse of the gel in water, the developer solution was added 

(200 ml MilliQ water, 6 g Na2CO3, 0.02 % v/v formaldehyde). The gel was kept in the 

developer solution until the LPS bands were sufficiently stained (normally for ~40 minutes). 

The staining reaction was stopped by washing the gel several times in MilliQ water. Gels were 

then sealed in plastic sheets and scanned. 

 

2.7 MISCELLANEOUS TECHNIQUES 

 

2.7.1 Switch frequency determination 

 

Switch frequency analysis was performed according to the method of Blyn et al., 1989. Single 

blue or white colonies were picked from M9 plates with added X-Gal and resuspended with 

thorough vortexing in 1 ml sterile liquid M9 media. From this, 10-4 and 10-5 serial dilutions were 

produced and plated on M9 plates with X-Gal and antibiotics if required. For both the 10-4 and 

10-5 dilutions, 5 replicate plates were prepared by spreading 150 l onto each plate. After 

incubation at 37°C for 24 hours, blue and white colonies were counted. The switch frequency 

was calculated using the formula (M/N)/g. M is the number of colonies that switched colour 

compared to the ancestor colony, N is the total number of colonies counted and g is the number 

of generations. g is calculated as the log of the total number of cells in a dilution sample divided 

by log2. 
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2.7.2 Preparing electrocompetent cells 

 

Electrocompetent cells of E. coli and S. Typhimurium were prepared by inoculating overnight 

cultures at 100-fold dilution into 50 ml of appropriate growth media with antibiotics as required 

in a baffle flask (250 ml volume). Growth at the required temperature (37°C for most 

applications, 30°C for strains containing temperature sensitive plasmids pKD46 or PINT-ts) at 

200 rpm in a shaking incubator continued until the OD600 of the culture reached 0.4 – 0.6. At 

this point, cultures were placed on ice for 20 minutes with occasional swirling, and then 

transferred to chilled Falcon tubes. Centrifugation at 4000 rpm in a tabletop centrifuge was 

performed for 15 minutes at 4°C. Supernatants were discarded and cell pellets gently 

resuspended in equal volumes of ice-cold sterile MilliQ water before centrifugation at 4000 rpm 

for 8 minutes at 4°C. This washing process was repeated 3 – 5 times. After the final wash step, 

pellets were resuspended in 75 – 100 l sterile ice-cold MilliQ water.  

 

2.7.3 Electroporation 

 

50 l of electrocompetent cells were mixed by pipetting with 2 l of DNA or MilliQ water (as a 

control) in chilled Eppendorf tubes, left to stand for 1 minute and then transferred to chilled 

Biorad cuvettes. Transformation was performed by a Biorad Electroporator. The machine was 

set to the Ec1 setting for transformation of E. coli and Ec2 for Salmonella. Following 

electroporation, cells were quickly resuspended in 1 ml of pre-warmed SOC media (37°C or 

30°C depending on the application). Resuspended cultures were transferred to Universal tubes 

and incubated for 1 hour at the appropriate temperature at 220 rpm in a shaking incubator. 

Cultures were plated on appropriate media with antibiotics as required. 

 

2.7.4 Freezer stock preparation 

 

Any new strains generated in this work were stored for future use by freezing. A single colony 

was streaked across the entire surface of an LB plate with antibiotics as required and incubated 

at the appropriate temperature overnight. A sterile cotton swab was used to collect the bacterial 

growth and transfer it to a 2 ml screw cap Corning tube containing 1.5 ml filter sterilised LB 

media with 15 % v/v glycerol. All tubes were labelled and stored at -80°C. 
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2.8 BIOINFORMATIC TECHNIQUES 

 

2.8.1 Primer design 

 

Primers used in qPCR experiments were designed using the NCBI primer design tool found 

online at http://www.ncbi.nlm.nih.gov/tools/primer-blast/. The chosen parameters were an 

annealing temperature of 58 - 60°C and a length of 20 +/- 3 bp, with a product size between 80 

and 150 bp. 

 

2.8.2 Sequence alignments 

 

Alignments of two sequences were generated using the BLAST tool, found online at 

http://blast.ncbi.nlm.nih.gov/Blast.cgi. Alignments of more than two sequences were generated 

using the ClustalW2 Multiple Sequence Alignment tool found online at 

http://www.ebi.ac.uk/Tools/msa/clustalw2/.  

 

2.8.3 Phylogenetic trees 

 

Phylogenetic trees were generated using the MUSCLE tool found online at 

http://www.ebi.ac.uk/Tools/msa/muscle/.  

 

2.8.4 sRNA target prediction 

 

To predict potential interaction targets of sRNA molecules, the TargetRNA2 program was used 

(found online at http://tempest.wellesley.edu/~btjaden/TargetRNA2/index.html) (Kery et al., 

2014). A further program, RNAfold was used to predict RNA structures (Gruber et al., 2008; 

Lorenz et al., 2011). 
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3  

CHAPTER 3 

INFLUENCE OF GROWTH 

CONDITIONS ON gtr REGULATION   
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3.1 INFLUENCE OF OXIDATIVE STRESS ON gtr 

EXPRESSION 

 

3.1.1 The OxyR regulator 

 

Phase variation of gtr operons requires binding of the OxyR protein to the gtr regulatory region 

(Broadbent et al., 2010). As mentioned, the OxyR protein performs an important role in the cell 

as an oxidative stress response regulator (Storz et al., 1990). OxyR shifts conformation via 

formation of a disulphide bridge between cysteine residues in response to H2O2 exposure (Choi 

et al., 2001). 

 

Salmonella is typically exposed to H2O2 in two environments it occupies during its life cycle. 

Firstly, when entering the host intestine, Salmonella virulence genes trigger an inflammatory 

response by the immune system which involves secretion of reactive oxygen species (ROS) into 

the lumen. ROS include the superoxide radical O2
- and H2O2, which are produced by the 

enzyme NADPH oxidase of neutrophil cells (Babior, 2004). As mentioned previously, the 

presence of ROS benefits Salmonella as it utilises tetrathionate formed in the lumen under these 

conditions to grow by anaerobic respiration and outcompete the resident microbiota (see chapter 

1, section 1.1.2) (Winter et al., 2010). 

 

The second environment with H2O2 exposure is the Salmonella containing vacuole (SCV) that 

the bacteria establish when infecting macrophage cells. Macrophage produce around 10 M of 

H2O2 as one of several mechanisms intended to kill bacteria (Aussel et al., 2011). The oxidative 

stress response of OxyR helps Salmonella survive in both the intestine and the SCV. 

 

Unless reactive oxygen species are applied to Salmonella from external sources, the bacterial 

cytoplasm is thought to be a reducing environment. OxyR would therefore predominately be 

present in the reduced form. Cellular disulphide bond reducing pathways (gor and trxB) are 

likely to contribute to maintaining the reduced form of OxyR (Van Dat Nguyen et al., 2011). 

Reduced OxyR is known to be sufficient for phase variation (Broadbent et al., 2010). However, 

an area worth further study concerns the interaction of oxidised OxyR with the gtr regulatory 

region. 
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The spacing of the OxyR binding half sites in the gtr regulatory region is consistent with the 

binding pattern of reduced OxyR (two half sites separated by one turn of the DNA helix, 

Broadbent et al., 2010; Toledano et al., 1994). This raised the following questions: can oxidised 

OxyR (which binds four adjacent half sites) bind the gtr regulatory region? Or is this prevented 

by the spacing of the OxyR half sites? If oxidised OxyR can bind, or is prevented from doing 

so, this could affect gtr phase variation or transcription. 

 

To address these questions a method was required to induce the oxidised form of OxyR while 

measuring transcriptional activity as well as phase variation of the gtr regulatory region. 

Although a variety of oxidising chemicals are readily available (such as H2O2) these may be 

rapidly detoxified by the cell, making their effects short-lived. The ON or OFF state of gtr is 

thought to be maintained until genome replication commences (Broadbent et al., 2010). Several 

bacterial divisions would need to occur before any difference in switch frequency becomes 

noticeable. The ideal method would therefore induce persistently oxidised OxyR over a long 

time period but without being detrimental to cell growth. 

 

3.1.2 Inducing persistently oxidised OxyR 

 

As previously mentioned, oxidised OxyR is characterised by the formation of disulphide bonds 

between cysteine residues. Disulphide bonds within proteins can also be formed by disulphide 

bond isomerases and sulfhydryl oxidases. These enzymes were used by Van Dat Nguyen et al. 

(2011) to induce disulphide bond formation in a variety of eukaryotic proteins expressed within 

E. coli. It was hypothesised, that disulphide bond isomerase and sulfhydryl oxidase be used to 

induce the oxidised form of OxyR. 

 

In order to test this idea, the plasmid pFH255 (provided by L. Ruddock), expressing the Erv1p 

sulfhydryl oxidase and the DsbC disulphide bond isomerase under transcriptional control of an 

L-arabinose inducible promoter was transformed into S. Typhimurium LT2. To determine 

whether Erv1p and DsbC could induce the oxidised form of OxyR, a further plasmid, pLA40 

(provided by F. Barras) was transformed into the same strain (designated as Path 760). Plasmid 

pLA40 contains the regulatory region of the Salmonella ahpC gene in a transcriptional fusion to 

the gfp reporter gene. Oxidised OxyR stimulates RNA polymerase transcription of the ahpC 

gene. Therefore, in strains carrying the pLA40 plasmid, oxidative stress causes oxidised OxyR 

to increase transcription of the gfp gene, which can be measured as elevated fluorescence 
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(Aussel et al., 2011). It was hypothesised that Erv1p and DsbC expression could have a similar 

effect. 

 

Four separate Path 760 cultures were grown in M9 minimal media. After reaching an optical 

density of OD600 = 0.3, fluorescence and optical density were measured at intervals of 20-40 

minutes (Fig.3.1). Following the second measurement, two of the cultures were treated with L-

arabinose (leaving the other two cultures as untreated controls) to induce production of Erv1p 

and DsbC, and measurements continued.  

 

The results showed increased fluorescence (measured as fluorescence/optical density) in the 

induced cultures 100 minutes after L-arabinose addition, compared to the untreated controls. 

This trend continued for subsequent measurements, with fluorescence increasing up to an 

average of 51,944 units for the L-arabinose induced cultures, compared to 28,090 units for the 

uninduced control cultures. L-arabinose addition therefore clearly resulted in increased 

fluorescence produced by Path 760. This data supported the hypothesis that Erv1p and DsbC 

could oxidise OxyR, which in turn stimulated transcription of ahpC, as evidenced by elevated 

GFP fluorescence. 

 

GFP contains two cysteine residues (C49 and C71) that Erv1p and DsbC could potentially act 

upon. However, in correctly folded GFP, these residues are too far displaced (2.4 nm) to form a 

disulphide bond (Ormo et al., 1996). Should a disulphide bond still form, it would compromise 

the tight -barrel structure required for GFP fluorescence. It is therefore unlikely that the 

observed increase in fluorescence was caused by Erv1p and DsbC assisting GFP folding. As 

mentioned, Erv1p and DsbC were previously used to assist in the folding of eukaryotic proteins 

with disulphide bridges expressed in the E. coli cytoplasm (Van Dat Nguyen et al., 2011). 

 

Importantly, the increased fluorescence of the induced cultures was maintained over a period of 

~100 minutes, which indicated that OxyR was kept in a persistently oxidised state during this 

time. The cultures all continued growth during the experiment as well. The two main criteria of 

this method to induce oxidised OxyR (long term oxidation while allowing cell growth) were 

therefore satisfied. This method was applied to study gtr expression in the presence of oxidised 

OxyR. 
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Fig.3.1. Fluorescence levels of Path 760 containing pFH255 (Erv1p + DsbC) and 

pLA40 (ahpC:gfp) with and without arabinose addition 

 

Four biological duplicate cultures were grown to OD600 = 0.3 in M9 minimal media, before 

extracting samples for fluorescence measurement. After the second timepoint 0.5 % w/v L-

arabinose was added to two of the cultures (indicated by red arrow). Growth was continued with 

periodic sample extraction for fluorescence measurement until stationary phase was reached. 
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3.1.3 Influence of oxidised OxyR on gtr phase variation 

 

To study gtr phase variation and expression in the presence of oxidised OxyR, the pFH255 

plasmid was transformed into S. Typhimurium LT2 strains with fusions of a gtr regulatory 

region and the lacZ reporter gene. The gtr:lacZ fusions were contained in plasmids that 

integrated as single copies into the chromosome (Haldimann and Wanner, 2001). The gtr 

regulatory regions used consisted of either the 275 bp ‘full length’ P22 gtr regulatory region 

(Path 728), or a truncated version (Path 732) (Broadbent et al., 2010). The full length version 

contained the entire sequence required for phase variation, i.e. OxyR and GATC sites, along 

with the -10 and -35 sequences necessary for RNA polymerase recruitment. The truncated 

version contained only the OxyR C site and the -35 and -10 sites (Fig.3.3).  

 

Initially, the potential effect of persistently oxidised OxyR on gtr phase variation was explored. 

A Path 728 colony, containing the full length P22 gtr:lacZ fusion construct and  the pFH255 

plasmid was resuspended, diluted and spread plated on M9 minimal media agar plates 

supplemented with X-Gal with or without L-arabinose. If expressed, the lacZ gene produces -

galactosidase which cleaves X-Gal and releases a blue dye, causing colonies to grow blue. A 

blue colony phenotype indicates that the gtr regulatory region controlling expression of lacZ is 

in the ON state. Should the gtr region be OFF, lacZ is not expressed in high enough levels and 

the colony grows white.  

 

Following incubation, the blue and white Path 728 colonies were counted. If induction of Erv1p 

and DsbC from pFH255 by L-arabinose caused a difference in switch frequency, it would result 

in a difference in the ratio of ON/OFF colonies, compared to colonies on plates without L-

arabinose. On plates with arabinose, 89% of colonies had a switched ON phenotype (total 

counted = 646). On plates without arabinose, 93% of colonies were switched ON (total counted 

= 511). A similar result was obtained for Path 730, containing the full length LT2_I gtr:lacZ 

fusion and pFH255. A single colony that was resuspended and plated on M9 X-Gal plates with 

or without L-arabinose gave the following counts: 55% ON (total counted = 244) on L-

arabinose supplemented plates and 50% ON for non-arabinose plates (total counted = 437). 

These differences were not considered substantial enough to warrant further investigation. It 

was concluded that expression of Erv1p and DsbC did not affect gtr switch frequency. 
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3.1.4 Influence of oxidised OxyR on gtr transcription 

 

The strains used in the previous experiments (Path 728, 730, 732) were next used to determine 

the effect of Erv1p and DsbC expression on the level of gtr transcription. Blue colonies of each 

strain (indicating switched ON gtr regulatory regions upstream of lacZ) were picked to set up 

separate cultures, which were grown in M9 minimal media to an optical density of OD600 = 0.3 

(Fig.3.2a/b/c). Samples were taken at 30-60 minute intervals to determine the amount of -

galactosidase enzyme produced from the lacZ gene, which provided a measure of the 

transcriptional activity of the upstream gtr region. After two measurements, each culture was 

split equally to separate flasks. To induce expression of pFH255 oxidising factors, L-arabinose 

was added to one half each, keeping the other half as an untreated control. This procedure was 

necessary due to phase variation of the gtr:lacZ fusions; comparison of -galactosidase 

expression levels between induced and uninduced cultures would only be meaningful if both 

cultures had the same percentage of ON cells. Splitting a single population ensured this was the 

case. 

 

The -galactosidase levels (given in Miller Units) of the induced and uninduced cultures of Path 

728 showed significant differences at 150 minutes after arabinose addition (P < 0.05, t-Test). 

The preceding and subsequent timepoints did not show significant differences (P > 0.05, t-Test) 

(Fig.3.2a). For Path 730, significant differences between induced and uninduced cultures were 

measured at 180 and 255 minutes after arabinose addition (P < 0.05, t-Test). The preceding 

timepoints did not show significant differences (P > 0.05, t-Test) (Fig.3.2b).  

 

Although some significant differences were measured, the data did not appear to show a clear 

trend, especially when compared to the experiments with the ahpC:gfp reporter system (see 

section 3.2.1). Furthermore, the truncated P22 gtr:lacZ fusion strain (Path 732) which did not 

contain OxyR binding sites upstream of lacZ showed no significant differences between 

induced and uninduced cultures (t-Test, P > 0.05) (Fig.3.2c). On a final note, the optical 

densities (OD600) of arabinose induced and uninduced cultures of Path 728, 730 and 732 did not 

show substantial differences. It was concluded that expression of Erv1p and DsbC probably did 

not affect gtr:lacZ expression levels under these conditions. 
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 Fig.3.2a. -galactosidase assay of ‘full length’ P22 gtr:lacZ fusion (Path 728) with 

expression of Erv1p and DsbC. 

 

After growth in M9 minimal media to OD600 = 0.3 samples were extracted periodically for -

galactosidase measurement (given in Miller Units). The culture was split equally after the 30 

minute timepoint and 0.5 % w/v L-arabinose was added to one half to induce expression of 

Erv1p and DsbC. Sample collection (from both cultures) for the -galactosidase assay was 

continued. Statistical analysis was by t-Test. * P < 0.05. Error bars show +/- 2 standard 

deviation for 3 technical repeats. 

  

* 
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Fig.3.2b. -galactosidase assay of ‘full length’ LT2_I gtr:lacZ fusion (Path 730) 

with expression of Erv1p and DsbC. 

 

After growth in M9 minimal media to OD600 = 0.3 samples were extracted periodically for -

galactosidase measurement (given in Miller Units). The culture was split equally after the 30 

minute timepoint and 0.5 % w/v L-arabinose was added to one half to induce expression of 

Erv1p and DsbC. Sample collection (from both cultures) for the -galactosidase assay was 

continued. Statistical analysis was by t-Test. * P < 0.05. Error bars show +/- 2 standard 

deviation for 3 technical repeats. 

  

* * 
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Fig.3.2c. -galactosidase assay of ‘truncated’ P22 gtr:lacZ fusion (Path 732) with 

expression of Erv1p and DsbC. 

 

After growth in M9 minimal media to OD600 = 0.3 samples were extracted periodically for -

galactosidase measurement (given in Miller Units). The culture was split equally after the 30 

minute timepoint and 0.5 % w/v L-arabinose was added to one half to induce expression of 

Erv1p and DsbC. Sample collection (from both cultures) for the -galactosidase assay was 

continued. Error bars show +/- 2 standard deviation for 3 technical repeats. 
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3.2 INFLUENCE OF STATIONARY PHASE GROWTH ON 

gtr EXPRESSION 

 

3.2.1 Expression of LT2_I gtr:lacZ increases between exponential and stationary 

phase 

 

In the preceding experiments it was noticed that -galactosidase expression of all strains 

increased during growth from exponential to stationary phase, regardless of arabinose treatment. 

This information was considered worth investigating further. 

 

S. Typhimurium LT2 carrying the full length LT2_I gtr:lacZ reporter was utilised (Path 84, 

Broadbent et al., 2010) (Fig.3.3). Duplicate cultures of Path 84 were grown in M9 minimal 

media to an optical density of OD600 = 0.3. This point was termed early exponential phase 

(‘EEP’), and a sample was taken for -galactosidase measurement. Further growth continued to 

late exponential phase (‘LEP’, OD600 = 1.0) and up to early stationary phase (‘ESP’, OD600 = 

1.8). Additional -galactosidase measurements were taken at LEP and ESP. The results are 

shown in Fig.3.4a. Relative to early exponential phase, expression of -galactosidase increased 

by 105 % in early stationary phase (Table 3.1). This result indicated that transcription from the 

LT2_I gtr regulatory region increased between exponential and stationary phase.  

 

3.2.2 The promoter region is sufficient for LT2_I gtr:lacZ expression increases 

 

A further experiment sought to determine whether the observed relative increase in LT2_I 

gtr:lacZ expression between exponential and stationary growth phase was dependant on  the 

presence of the  phase variation sequences (OxyR and GATC sites),  or required only the 

promoter region, i.e. the -10 and -35 sequences. The Path 460 S. Typhimurium LT2 strain 

contains a single copy inserted fusion of the LT2_I gtr promoter region (only the -10/-35 

sequences) to the lacZ gene and does not phase vary (Broadbent et al., 2010) (Fig.3.3). 

Duplicate cultures of Path 460 were grown under identical conditions as described previously in 

section 3.3.1. A -galactosidase assay was performed on samples collected during early and late 

exponential phase as well as early stationary phase. The results are shown in Fig.3.4b. In this 

case, a 118 % increase in -galactosidase expression was measured between early exponential 

and early stationary phase (Table 3.1). The absence of the LT2_I gtr phase variation sequence 

probably did not affect the relative expression increases of the gtr:lacZ reporter fusion. It was  
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Fig.3.3. Graph of gtr regulatory regions used in this chapter as part of reporter 

fusions with the lacZ gene contained in the CRIM vector 

 

The red box delineates gtr regulatory sequences inserted into the CRIM vector for 

transcriptional studies. OxyR half sites are in red. GATC sites, gtr -35, -10 and +1 sites are 

annotated. The lacZ gene is represented by a white arrow. A, full length gtr regulatory region 

containing all three OxyR half sites and the -10/-35/+1 sites present in Path 84, Path 805, Path 

728 and Path 730. B, truncated gtr regulatory region containing only the -35/-10/+1 sites present 

in Path 460, Path 943 and Path 732. Graph not to scale. 
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 Fig.3.4. -galactosidase levels of gtr:lacZ fusion strains grown from exponential to 

stationary phase  

 

All strains were grown in M9 minimal media. EEP, Early Exponential Phase (OD600 = 0.3), 

LEP, Late Exponential Phase (OD600=1.0), ESP, Early Stationary Phase (OD600 = 1.9). Miller 

Units are calculated for 100% ON cultures where applicable. Results are representative of 2 

biological repeats. Error bars show +/- 2 standard deviation for 4 technical repeats. 

A, Path 84 (full length LT2_I gtr regulatory region lacZ fusion). B, Path 460 (only -10/-35 sites 

LT2_I gtr regulatory region lacZ fusion). C, Path 805 (full length, point mutated -10 site LT2_I 

gtr regulatory region lacZ fusion). D, Path 943 (only -10/-35 sites, point mutated -10 site LT2_I 

gtr regulatory region lacZ fusion) 
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Table 3.1. Comparison of -galactosidase expression levels between exponential 

and stationary phase of LT2_I gtr:lacZ reporter fusion strains 

 

a. Miller Units are given as averages of 4 technical repeats, with the standard deviation in 

brackets. Path 84 and Path 805 results were calculated for 100% ON cultures (originally 75% 

and 72% ON, respectively). Statistical analysis was by t-Test.  

Strain 

Miller Units – 
Early 

Exponential 
Phasea 

Miller Units – 
Early Stationary 

Phasea 

P value 
Relative 
increase 

(%) 

Path 84 (full 
length LT2_I 

gtr:lacZ) 
890 (80) 1827 (117) < 0.01 105 % 

Path 460 (only -
10/-35 sites 

LT2_I gtr:lacZ ) 
224 (6) 488 (20) < 0.001 118 % 

Path 805 (full 
length LT2_I 

gtr:lacZ, -13 C→T 
point mutation) 

1245 (95) 1565 (103) < 0.05 26 % 

Path 943 ( only -
10/-35 sites 

LT2_I gtr:lacZ, -
13 C→T point 

mutation) 

421 (13) 666 (32) < 0.01 58 % 



80 

 

concluded that the LT2_I gtr promoter region was sufficient to yield growth phase dependent 

expression increases. 

 

3.2.3 gtr operons have a conserved -10 site that is characteristic of 38 dependent 

promoters 

 

The LT2_I gtr promoter region was found to have a -10 site with a C base immediately 

upstream at the -13 position. This configuration is a common feature of promoters that are 

bound by an alternate sigma factor known as 38. Sigma factors bind the -10 and -35 sites of 

genes before recruiting RNA polymerase, allowing transcription to occur (Madigan et al., 

2005). A C base at the -13 position is conserved among >70 % of all experimentally confirmed 

38 promoters (Weber et al., 2005). 

 

38 (or RpoS) is commonly referred to as the ‘stress response sigma factor’. It enables cells to 

respond to adverse conditions such as starvation, temperature shock, pH shock or DNA damage 

by increasing transcription of genes that help survival of the stress situation (reviewed in 

Battesti et al., 2011). The sigma factor used by the cell predominately under non-stress 

conditions is the ‘housekeeping’ sigma factor 70. 38 and 70 can often bind the same promoter 

regions, but certain features (such as a C base at position -13 or a T at -14) can make a promoter 

more specific for 38. In the absence of stress, 38 is present in low amounts. Stress conditions 

results in 38 amounts increasing through both increased transcription and translation as well as 

reduced degradation. 38 then binds promoters of the genes required for the stress response and 

competes with 70 for recruitment of RNA polymerase to initiate transcription (reviewed in 

Typas et al., 2007). Should gtr be a 38 dependant promoter, it would mean that gtr expression 

is highest under stress conditions. 

 

The conservation of the C base at the -13 position was explored among a dataset of 60 predicted 

gtr operons (derived from Davies et al., 2013). The C base was present in 45 gtr operons 

(Fig.3.5). One interesting exception was the S. Infantis_II gtr, which had a T base at the -13 

position, but otherwise showed high similarity to the other gtr sequences, as shown in an 

alignment of the regulatory regions. The T base could alter expression of S. Infantis_II gtr, 

specifically by reducing the ability of the promoter to recruit 38 under stress conditions. By 

extension, replacing the C base at -13 with a T base in LT2_I gtr could reduce the potential 

increases of the -galactosidase levels measured between exponential and stationary phase. 
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Fig.3.5. Alignment of the regulatory regions of 46 gtr operons (dataset derived 

from Davies et al., 2013) 

 

The predicted -35 and -10 sites are bold and underlined. The conserved C base preceding the -

10 site is highlighted green. The S. Infantis_II gtr operon contains a T base at this position 

(highlighted in red).  

 
        -35    -10 

S. bongori IP02_reg         TATTGCATTATTGATCGTTAATATCGATCAAGACAATTTGTAATGCTACACTTC 

S. bongori IP05_reg         TATTGCATTATTGATCGTTAATATCGATCAAGACAATTTGTAATGCTACACTTC 

S. bongori IP07_reg         TATCACATTATTGATCGTTAATATCGATCAAGCCAATTTGTAATGCTACACTTC 

S. Typhimurium 14028_I      TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Typhimurium DT104_II     TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Typhimurium DT2_I        TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Typhimurium SL1344_I     TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Enteritidis_I            TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Heidelberg_II            TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Typhimurium LT2_I_reg    TACCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Typhimurium D23580_II    TACCACATTATTGATCGTTTATATCGATCAAAGAAATTTGTAGTGCTACACTCC 

S. Gallinarum_I             TACCACATTATTGATCGTTTATATCGATAAAAGCAATTTGTAGTGCTACACTCC 

S. Schwarzengrund           TATCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Paratyphi SPB7           TATCACATTATTGATCGTTTATATCGATCAAATCAATTTGTAGTGCTACACTCC 

S. Newport_I                TATCACATTATTGATCGTTTATATCGATCAAATCAATTTGTAGTGCTACACTCC 

S. Agona_I                  TATCACATTATTGATCGTTTATATCGATCAAATCAATTTGTAGTGCTACACTCC 

S. Choleraesuis_III         TATCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Paratyphi C_II           TATCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Typhi CT18_I             TATAACATTATTGATCGTTTATATCGAAAAAAGCAATTTGTAGTACTATACTCC 

S. Typhi TY2_II             TATAACATTATTGATCGTTTATATCGAAAAAAGCAATTTGTAGTACTATACTCC 

S. Infantis_II              TATCACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGTTACACTCC 

S. Hadar_I                  TATCACATTATTGATCGTTTATATCGATCAAATCAATTTGTAGTGCTACACTCC 

Phi_ST104                   GTTTACATTATTGATCGTTTATATCGATCAAAGTAATTTGTAGTGCTACACTCC 

S. Typhimurium DT104_I      GTTTACATTATTGATCGTTTATATCGATCAAAGTAATTTGTAGTGCTACACTCC 

Phi_ST64T                   GTTTACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Paratyphi A_II ATCC9150  GATTACATTATTGATCGTTTATATCGATCAAGGCAATTTGTAGTGCTACACTCC 

S. Paratyphi A_III ATCC9150 GATTACATTATTGATCGTTTATATCGATCAAGGCAATTTGTAGTGCTACACTCC 

S. Paratyphi A_II AKU12601  GATTACATTATTGATCGTTTATATCGATCAAGGCAATTTGTAGTGCTACACTCC 

S. Paratyphi A_III AKU12601 GATTACATTATTGATCGTTTATATCGATCAAGGCAATTTGTAGTGCTACACTCC 

S. Dublin_I                 GTTTACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Dublin_II                GTTTACATTATTGATCGTTTATATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Paratyphi A_I ATCC9150   AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

S. Paratyphi A_I AKU12601   AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

S. Typhi CT18_II            AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

S. Typhi TY2_I              AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

S. Enteritidis_II           AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

S. Gallinarum_II            AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

S. Dublin_III               AATACAATTATTGATCGCTTATATCGATCAAACCAATTTGTAGTGCTACACTCC 

P22                         TTATACATTATTGATCGCTTGTATCGATCAAAACAATTTGTAGTGCTACACTTC 

S. Heidelberg_I             TTATACATTATTGATCGCTTGTATCGATCAAAACAATTTGTAGTGCTACACTTC 

Phi_P22                     TTATACATTATTGATCGCTTGTATCGATCAAAACAATTTGTAGTGCTACACTTC 

S. Choleraesuis_II          CAAATGATTATTGATCGTCTTTATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Paratyphi C_I            CAAATGATTATTGATCGTCTTTATCGATCAAAGCAATTTGTAGTGCTACACTCC 

S. Infantis_I               CACTAGATTATTGATCGTCTTTATCGATCAAATCAATTTGTAGTGCTACACTCC 

S. Typhimurium D23580_BTP1  TACAGTATTTACGATCGGCGGTGTCGATCAATAGCATTTGTGGTGCTACACTTT 

S. Choleraesuis_I           CTCACCAGTCAACATCACAG--GTCGATCTAGCGCTGTTCAAATGCTAAACTCC 
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3.2.4 Altering the -13 position of LT2_I gtr reduces proportional expression 

increases 

 

A point mutation was introduced in the full length LT2_I gtr regulatory region upstream of the 

lacZ gene by changing the C base at the -13 site to a T. This substitution produced a -10 site that 

matched the -10 site present in S. Infantis_II gtr. The point mutated vector was integrated as a 

single copy into the S. Typhimurium LT2 chromosome (= Path 805). A -galactosidase assay 

performed using this strain showed a relative increase of 26 % between early exponential and 

early stationary phase (Fig.3.4c, Table 3.1). By comparison, the same construct with C at the -

13 position showed a 105 % increase (Path 84). This was considered an indication that altering 

the promoter in this way may have reduced affinity of the 38 factor to the gtr regulatory region.  

 

In a further experiment, the -10/-35 sequence only LT2_I gtr:lacZ fusion was altered by 

introducing a point mutation in the same manner as above (-13 C → T) and integrated as a 

single copy into the S. Typhimurium LT2 chromosome (= Path 943). A -galactosidase assay of 

this strain showed a 58 % increase between early exponential and early stationary phase 

(Fig.3.4d, Table 3.1) which was lower than the same LT2_I gtrC:lacZ fusion with C at the -13 

position (= Path 460, 118 % increase). These experiments indicated that the C base at -13 was 

important to achieve higher relative -galactosidase expression in stationary phase compared to 

exponential phase. This pointed to the possibility that 38 was involved in LT2_I gtr 

transcription. 

 

3.2.5 Analysis of LT2_I gtr expression using qRT-PCR 

 

It was decided that an ideal method to confirm the -galactosidase findings on gtr expression 

would make use of quantitative RT-PCR to determine the actual transcript levels of the 

chromosomal gtrABC operon. qRT-PCR was likely to produce more accurate data than -

galactosidase assays, which measured the amount of reporter enzyme produced by an artificial 

fusion of the gtr regulatory region to the lacZ gene. A fusion of lacZ to the gtrABC operon 

could also be used to select colonies containing either modified or unmodified O-antigen 

molecules. This would provide a useful tool to study e.g. whether gtr modification can provide a 

survival benefit in certain environments. 
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To study transcription of the gtr operon using qRT-PCR, the phase varying LT2_I gtr operon 

was chosen as a model system. This presented the following challenge: measuring gtr 

expression would require a population of cells that were actually expressing the gtr operon at 

the time of measurement. Phase variation of gtr could complicate this, as e.g. absence of 

expression under a particular condition could be caused either by low transcription, or simply 

switched OFF gtr regulatory regions. A method was therefore needed to identify and select for 

gtr ON cells.  

 

The lacZ gene was inserted as a transcriptional fusion downstream of the LT2_I gtrABC operon 

in S. Typhimurium LT2 using lambdaRed recombination (= Path 859, Datsenko and Wanner, 

2000). The gtrC stop codon was separated from the lacZ start codon by 20 bp, which contained 

an additional ribosome binding site. This way, if gtr switched ON, both the gtr operon as well 

as the lacZ gene would be transcribed. The strain could therefore be grown on X-Gal containing 

media, with ON colonies growing blue and OFF colonies growing white (Fig.3.6).  

 

To confirm that the blue or white phenotype indicated the ON/OFF state of gtr operons of cells 

in a colony, culture samples derived from blue and white colonies were lysed and the LPS 

molecules were extracted. The LPS samples were separated on TSDS-PAGE gels and visualised 

by silver staining (Fig.3.7). Blue colonies were predicted to contain more cells expressing 

gtrABC::lacZ than white colonies. Addition of glucose to the O-antigen subunits by gtrABC 

produces an LPS molecule with higher overall molecular weight. As a result, blue colonies were 

likely to produce more of the modified, larger LPS molecules than white colonies. The larger 

LPS molecules are retained more by the TSDS-PAGE gel, which causes shifts when compared 

to unmodified LPS molecules.  

 

LPS molecules on TSDS-PAGE gels form a ladder, as they separate according to size. The 

lowest ‘rungs’ of the ladder contain LPS molecules with the lowest amount of O-antigen 

subunits attached. The rung above will contain LPS molecules with one extra O-antigen 

subunit, and so on. The ladder patterns formed by LPS molecules of blue colonies matched with 

the pattern formed by a positive control strain (constitutive LT2_I gtr expression, compare lanes 

4 and 5), but not with the pattern formed by a negative control strain (knockout of all gtr 

operons, compare lanes 3 and 4). The patterns formed by white colonies did not match with 

either the positive or negative control strains, but appeared to be an intermediate of the two 

(compare lanes 1, 2 and 3). This could be explained by the fact that phase variation still 

occurred in this strain, therefore a small fraction of the white (OFF) population would likely still  
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Fig.3.6. Colony phenotype of Path 859 (gtrC:lacZ fusion)  

 

Diluted culture samples were spread plated on M9 media supplemented with X-Gal to count the 

percentage of blue (gtr ON) and white (gtr OFF) colonies. 
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Fig.3.7. TSDS-PAGE gel separation of Path 859 (gtrC:lacZ fusion) LPS samples 

visualised by silver stain 

 

Lanes 1 and 5, Path 292 (positive control, constitutive LT2_I gtr modification). Lane 2, Path 

859 white colony. Lane 3, Path 293 (negative control, knockout of all known gtr operons). Lane 

4, Path 859 blue colony. Regions in which gel shifts are apparent are highlighted by red boxes. 

Results are representative of 3 biological repeats. 

  

1      2      3      4      5 
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Fig.3.8. qRT-PCR results of gtrC:lacZ fusion strains grown in M9 minimal media 

from exponential to stationary phase  

A, Path 859 (LT2_I gtrC:lacZ fusion). B, Path 885 (LT2_I gtrC:lacZ fusion,  rpoS). EEP, 

Early Exponential Phase (OD600 = 0.3), ESP, Early Stationary Phase (OD600 = 1.9). Expression 

levels of gtrABC were normalised to the lrp gene. Results are representative of two biological 

repeats.  

A 

B 
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be expressing the LT2_I gtr modification. This result supported the interpretation that the gtr 

operon was transcribed more in blue colonies than in white colonies. 

 

ON colonies of Path 859 were selected and grown in minimal media from exponential to 

stationary phase. RNA samples were extracted for qRT-PCR during early exponential (OD600 = 

0.3) and early stationary phase (OD600 = 1.8). Primers used in qPCR amplified from within the 

open reading frames of gtrA (see Table 2.4, oMV1086/1087) gtrB (oMV1084/1085) and gtrC 

(oMV1082/1083). Surprisingly, the qRT-PCR results showed that expression of gtrA, gtrB and 

gtrC was actually reduced in stationary phase, relative to exponential phase (0.4, 0.4 and 0.1 

relative quantity, respectively; P < 0.01, t-Test) (Fig.3.8a). 

 

This result by itself did not rule out the possibility of gtr transcription in stationary phase 

involving 38. If the gtr promoter was transcribed by both 70 and 38, it may show lower 

amounts of expression in the stationary phase. Furthermore, -galactosidase results showed that 

gtr was expressed during exponential phase. Therefore, gtr was not considered likely to be 

exclusively dependent on 38 for transcription.  

 

To fully determine whether or not 38 was required for gtr transcription in stationary phase, the 

rpoS gene coding for 38 was deleted by lambdaRed recombination (= Path 885) (Datsenko and 

Wanner, 2000). The resulting strain was grown from exponential to early stationary phase as 

described above and RNA was extracted. A growth defect of Path 885 was not observed, which 

could mean that 38 may not be required for survival under these conditions. The qRT-PCR 

results showed very little difference to the wildtype strain, with relative quantities of gtrA, gtrB 

and gtrC of 0.4, 0.3 and 0.2 respectively, in stationary phase compared to exponential phase (P 

< 0.01, t-Test) (Fig.3.8b). Should 38 be required for gtr expression in stationary phase, there 

would likely have been a larger reduction in relative expression compared to the wildtype strain. 

This led to the conclusion that gtr expression is probably 38 independent. 

 

3.3 INFLUENCE OF LOW pH ON LT2_I gtr 

 

A particularly interesting aspect of Salmonella’s life cycle concerns the infection of 

macrophage. Following entry into the macrophage, a specialised compartment is formed (the 

Salmonella containing vacuole, SCV) that the bacteria survive in. Conditions in the SCV are 
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quite adversarial, involving nutrient limitation and injection of factors intended to kill the 

bacteria. Among these killing mechanisms are reactive oxygen species as previously mentioned 

(see section 3.2), as well as antimicrobial peptides and acidification.  

 

Acidification (pH ~ 5.8) of the SCV, micromolar concentrations of divalent cations (Mg2+, Ca2+, 

Mn2+) and antimicrobial peptides induce the regulatory system PhoPQ. Once activated, PhoPQ 

acts to induce surface remodelling of the bacteria, including LPS modification, which provides 

resistance against antimicrobial peptides (Navarre et al., 2005). PhoPQ mediated forms of LPS 

modifications include palmitoylation or addition of acyl groups to the lipid A molecule 

(reviewed in Ernst et al., 2001).  

 

PhoQ is a histidine kinase located in the inner membrane, with a sensor domain extending into 

the periplasm as well as a cytoplasmic region performing kinase and phosphatase functions. 

PhoQ autophosphorylates when given the correct signals and subsequently, phosphate is 

transferred to PhoP. Phosphorylated PhoP in turn binds DNA to either repress or induce 

transcription (Monsieurs et al., 2005).  

 

PhoP also influences a further transcriptional regulator, SlyA. Many of the genes required for 

antimicrobial peptide resistance that are regulated by PhoPQ, are co-regulated by SlyA. The 

consensus SlyA binding site has been denoted as TTAGCAAGCTAA, which forms an 

imperfect inverted repeat (Stapleton et al., 2002). The LT2_I gtr regulatory region was found to 

contain a sequence between the 2nd GATC site and the OxyR B site, with 9 of the 12 bp 

matching the SlyA consensus (TTAatAAGaTAA, mismatching bases are in lower case). Should 

SlyA be able to bind LT2_I gtr, it would potentially interfere with transcription or phase 

variation.  

 

An experiment was designed that made use of Path 84 (containing the full length LT2_I 

gtr:lacZ fusion) and Path 460 ( -10/-35 sites only LT2_I gtr:lacZ). The gtr:lacZ fusion in Path 

84 contains the predicted SlyA site, while the gtr:lacZ fusion in Path 460 does not. Should SlyA 

have a noticeable effect on LT2_I gtr:lacZ expression, it would only be visible in Path 84. 

 

To induce the PhoPQ and SlyA systems, a specialised defined media named InSPI2 was used 

(Löber et al., 2006). InSPI2 media has a pH of 5.8 and contains 1 mM MgSO4, 10 M CaCl2 

and 0.8 M MnCl2. A further media, NonSPI2 with a pH of 7.4 and different buffer, but 
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otherwise identical composition was used to grow non-induced control cultures (Kröger et al., 

2013). Transcription of phoP, phoQ and slyA is increased in InSPI2 media compared to 

NonSPI2 media (1.57, 1.55 and 2.09 –fold upregulation, respectively; Kröger et al., 2013). 

 

Path 84 and 460 were grown in NonSPI2 media to an optical density of OD600 = 0.3. At this 

point, samples were taken to measure -galactosidase activity. The cultures were then split 

equally and one half was centrifuged to collect the cells, while the other half was allowed to 

continue growth. The centrifuged cells were resuspended in InSPI2 media, to induce higher 

expression of PhoPQ and SlyA. -galactosidase measurements were continued at 30 and 60 

minutes after culture splitting. The results of this assay showed no significant difference in -

galactosidase levels between samples from InSPI2 and NonSPI2 cultures (P > 0.05, t-Test) 

(Fig.3.9). This result was obtained for both Path 84 and Path 460. Furthermore, plate counts of 

Path 84 showed very little difference in the percentage of ON cells in cultures grown in 

NonSPI2 media (64 % ON, total counted 166) and InSPI2 media ( 69 % ON, total counted 220). 

These results led to the conclusion that low pH does not noticeably affect LT2_I gtr expression 

or phase variation. 

 

3.4 DISCUSSION 

 

The expression of Erv1p and DsbC did not alter gtr:lacZ expression or phase variation. 

However it did appear that Erv1p and DsbC were capable of inducing the oxidised form of 

OxyR, as evidenced by data obtained using the ahpC:gfp reporter construct. Three possible 

conclusions can be drawn from this. Perhaps oxidised OxyR does not affect gtr expression in 

any way that is noticeably different from the reduced form. On the other hand, reduced OxyR 

may have remained bound to the gtr regulatory region and not become oxidised by Erv1p and 

DsbC. Alternatively, the method used to induce oxidised OxyR affects ahpC differently than 

gtr. 

 

The spacing of OxyR half sites in the ahpC regulatory region is consistent with binding of 

oxidised OxyR (Zheng et al., 2001a). In the absence of oxidative stress (or Erv1p/DsbC 

expression) OxyR is likely to be in the reduced form, in which it may not be able to bind the 

ahpC regulatory region. However, once oxidised, OxyR could bind ahpC without competition 

and stimulate transcription.  
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Fig.3.9. -galactosidase assay of gtr:lacZ fusion strains grown in NonSPI2 (pH = 

7.4) and InSPI2 media (pH = 5.8) 

 

Path 84 (full length LT2_I gtr:lacZ fusion) and Path 460 (only -10/-35 sites LT2_I gtr:lacZ 

fusion) were grown in NonSPI2 media (pH = 7.4) before splitting cultures at OD600 = 0.3 and 

resuspending half in InSPI2 media (pH = 5.8). -galactosidase measurements were taken 

immediately before and 30 and 60 minutes after the cultures were split. Results are 

representative of two biological repeats. Error bars show +/- 2 standard deviation for 4 technical 

repeats.  
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On the other and, OxyR half sites in the gtr regulatory region are spaced in a way that is more 

consistent with binding of reduced OxyR. It is also known that persistently reduced OxyR is 

sufficient to allow gtr phase variation and expression (Broadbent et al., 2010). OxyR binding at 

the gtr regulatory region is maintained until genome replication commences. This is 

exemplified by the OFF state of gtr. The absence of gtr expression in the OFF phase indicates 

that OxyR persistently binds gtr under non-oxidising conditions. 

 

Expression of Erv1p and DsbC may cause cytoplasmic (non DNA bound) OxyR to become 

oxidised. However, it is not known whether Erv1p and DsbC can oxidise OxyR already bound 

to DNA. Should this not be possible, the gtr bound OxyR would remain in the reduced state. 

OxyR bound to gtr is only predicted to leave during genome replication. At this point, oxidised 

OxyR may have the opportunity to bind gtr. However, the spacing of the half sites suggests that 

this may not be possible.  

 

If every OxyR molecule in the cell were oxidised, it could impact on gtr expression or phase 

variation, but neither showed differences in the experiments presented here. It is possible that 

Erv1p and DsbC oxidise a fraction of the cell’s OxyR molecules, but the reducing environment 

of the cytoplasm ensures that a number of reduced OxyR molecules are still available for gtr 

binding. This could explain why no differences were observed under these conditions. 

 

The experiments using NonSPI2 and InSPI2 media showed that there was little difference in gtr 

expression between these two conditions. As other experiments showed that growth in InSPI2 

media coupled with a H2O2 shock caused gtr expression to decrease (see chapter 4), it was 

important to note that InSPI2 media did not inherently cause reduced gtr expression. Ideally this 

should be confirmed by qRT-PCR.  

 

qRT-PCR revealed that LT2_I gtr expression is reduced under stationary phase growth. This 

result contradicted those obtained using the gtr:lacZ fusion system. However the qRT-PCR 

experiment is likely to have produced the more reliable data, as it measured transcription of the 

gtr operon, as opposed to expression levels of the -galactosidase protein. The lack of 

difference between the qRT-PCR data of the wildtype and  rpoS deletion mutant showed that 

38 is probably not required for gtr transcription during stationary phase. The increases seen in 

the lacZ experiments may be explained by accumulation of the -galactosidase enzyme in the 

growth media and the cells. Regarding the point mutations, these may have affected how the 70 
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housekeeping sigma factor transcribes gtr and therefore given misleading results as to the 

importance of the C base at position -13. In a similar example, G at the -14 position was found 

to enhance overall promoter activity (Barne et al., 1997). 

 

Overall, the chromosomal gtrC:lacZ fusion strain proved to be a useful tool for any future 

studies on gtr expression, as it allowed more accurate qRT-PCR experiments to be performed as 

well as determining the switch frequency of the chromosomal gtr operon. Finally, no indication 

was found of low pH influencing gtr transcription or phase variation. This would indicate that 

PhoPQ and SlyA are not involved in gtr regulation. Furthermore, as the InSPI2 media used is 

intended to mimic the SCV compartment of the macrophage, this would indicate that gtr 

modification of the O-antigen is possible in this environment. 
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4 CHAPTER 4 

INVESTIGATION OF A SHORT RNA 

MOLECULE PRODUCED BY THE gtr 

REGULATORY REGION 

  



94 

 

4.1 INTRODUCTION 

 

The original incentive for the work in this chapter came from the publication of RNA 

sequencing data by Kröger et al., (2013). The data showed that a short (110 bp) RNA 

designated ‘STnc1870’ was transcribed from the S. Typhimurium ST4/74 gtr regulatory region 

under conditions that mimic the Salmonella Containing Vacuole (SCV) of macrophage. The 

conditions used involved growth in InSPI2 media, which induces expression of the Salmonella 

Pathogenicity Island 2 (SPI2) genes, as well as addition of 1 mM hydrogen peroxide (H2O2).  

 

The RNA sequencing data also showed that high expression of STnc1870 (7,830 transcripts per 

million) coincided with very low expression of gtrABC (~3 transcripts per million). This 

information could be interpreted in two ways: either high expression of STnc1870 coincided 

with downregulation of gtrABC, or the sample that was used for RNA sequencing only 

contained cells in the gtr OFF phase. It was not possible to exclude either option with only the 

RNA sequencing data or protocol details available.  

 

This chapter focuses on the regulation of STnc1870 as well as gtr during growth in InSPI2 

media with H2O2 treatment. Furthermore, the possible function of STnc1870 in the cell is 

explored. 
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4.2 THE gtr REGULATORY REGION PRODUCES A SHORT 

RNA MOLECULE UNDER MACROPHAGE-LIKE 

CONDITIONS 

 

A BLAST search found that the STnc1870 sequence was conserved (98-100% identical) in the 

following Salmonella serovars: Typhimurium (including strains LT2, ST4/74, SL1344, DT104, 

D23580), Abaetetuba, Heidelberg, Javiana, Gallinarum, Pullorum, Enteritidis, Bredeney and 

Montevideo. The predicted 5’ → 3’ translation of the STnc1870 sRNA sequence did not contain 

start codons or open reading frames. The transcriptional start site of STnc1870 was located 

between the OxyR A and B half sites (Fig.4.1 and Fig.4.2). The predicted -10 and -35 sites were 

placed within the OxyR B and C sites, respectively. Previous work showed OxyR binding to the 

gtr regulatory region was persistent. It was inferred that OxyR binding was released during 

genome replication (Broadbent et al., 2010). OxyR binding in the OFF position involves 

occupation of the gtr -35 site and as a result gtr transcription is halted. It was thought that 

STnc1870 transcription could also be repressed by OxyR binding in either the ON or OFF 

position, as either state requires occupation of the OxyR B half site and therefore the STnc1870 

-10 site.  

 

Initially, the conditions of the RNA sequencing experiment were replicated to confirm that 

upregulation of STnc1870 transcription occurred following growth in InSPI2 media with H2O2 

treatment. A further aim was to precisely quantify any potential effects of these conditions on 

gtr phase variation and expression, as this data could not be acquired from the RNA sequencing 

data. S. Typhimurium ST4/74 was chosen as model organism as this was the same strain used in 

the RNA sequencing experiments. ST4/74_I gtrABC is identical to LT2_I gtrABC. 

 

To measure potential effects on gtr phase variation, the lacZ gene was inserted downstream of 

the chromosomal gtrC gene using lambdaRed recombination, generating the Path 891 strain 

(Datsenko and Wanner, 2000). This approach created a transcriptional fusion of ST4/74_I 

gtrABC::lacZ, similar to the LT2_I gtrABC::lacZ fusion strain produced in section 3.3.5 (the 

only difference between the two was the strain background). A 20 bp gap between the gtrC stop 

and lacZ start codon contained an additional ribosome binding site to improve -galactosidase 

production. Phase variation of the gtrABC::lacZ fusion produced either blue or white colonies 

on X-Gal media (Fig.4.3a). This enabled selection of colonies containing cells with 

predominately ON (blue phenotype) or OFF (white phenotype) gtr operons.  
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Fig.4.1. Overview of the gtr regulatory region 

 

Graph shows annotated GATC sites, OxyR half sites (in red) and -10/-35 sites of gtrABC and 

STnc1870. Arrowheads indicate position of transcriptional start sites. Graph not to scale. 

 

 

Fig.4.2. Detailed sequences of the gtr regulatory region. 

 

The -10, -35 and +1 sites of gtr and STnc1870 are marked in red and annotated. GATC sites are 

marked by grey boxes. OxyR sites are underlined and annotated A, B or C. The STnc1870 and 

gtrABC mRNA sequences are marked by red and white arrows, respectively. The Path 931 

mutation performed in this chapter is marked by a black box around red letters.   
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To confirm that the blue or white phenotype indicated the ON/OFF state of gtr operons of cells 

in a colony, culture samples derived from blue and white colonies were lysed to extract LPS 

molecules. The LPS samples were separated on TSDS-PAGE gels and visualised by silver 

staining.  

 

Blue colonies were predicted to contain more cells expressing gtrABC::lacZ than white 

colonies. As a result, blue colonies were likely to produce more of the gtr modified, larger LPS 

molecules than white colonies. The larger LPS molecules are retained more by the TSDS-PAGE 

gel, which causes shifts when compared to unmodified LPS molecules. The ladder patterns 

formed by LPS molecules of blue colonies matched with the pattern formed by a positive 

control strain (constitutive LT2_I gtr expression, compare lanes 2 and 3), but not with the 

pattern formed by a negative control strain (knockout of all gtr operons, lane 1) (Fig.4.4a). The 

patterns formed by white colonies did not match with either the positive or negative control 

strains, but appeared to be an intermediate of the two (compare lanes 3, 4 and 5). This could be 

explained by the fact that phase variation still occurred in this strain, therefore a small fraction 

of the white (OFF) population would likely still be expressing the ST4/74_I gtr modification. 

This result supported the interpretation that the gtr operon was transcribed more in blue colonies 

than in white colonies. 

 

Two blue and two white colonies of Path 891 were grown in InSPI2 media before splitting each 

culture equally. 1 mM H2O2 was added to one half of each culture. This method accounted for 

phase variation of gtr, by ensuring that both H2O2 treated cultures and untreated controls 

contained (at least initially) the same proportion of ON cells (Fig.4.5). Growth was continued 

for 10 minutes followed by RNA extraction. The cultures were allowed to continue growth for 

~2 hours and were diluted and spread plated on X-Gal media to determine the percentage of ON 

cells by counting (ON cells produce blue colonies). The optical density of H2O2 treated cultures 

did not increase during this period and plate counts showed that approximately 80 % of cells 

were killed by the treatment. Subsequent experiments with lower amounts (0.1 and 0.01 mM) of 

H2O2 showed that this absence of growth after treatment was dose-dependant – for example, 

addition of 0.01 mM H2O2 did not noticeably affect growth (Fig.4.5). Plate counts showed only 

marginal differences in the percentage of ON cells between 1 mM H2O2 treated and untreated 

cultures. 

 

qRT-PCR was performed on the extracted RNA samples using absolute quantitation (via a 

standard curve of PCR products with known copy number) and relative quantitation (with the 
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Fig.4.3. Colony phenotypes of S. Typhimurium ST4/74_I gtrC:lacZ strains 

 

Strains were spread plated on M9 media with X-Gal to test for phase variation. A, Path 891 

(gtrC:lacZ). B, Path 931 (gtrC:lacZ, gtr OFF mutant). C, Path 955 (gtrC:lacZ, gtr OFF mutant, 

 oxyR::tetRA). D, Path 959 (gtrC:lacZ, gtr OFF mutant, OxyR:C199S). Representative of two 

repeats.  

A B 

C D 
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Fig.4.4. TSDS-PAGE gel separation of gtrABC::lacZ fusion strains Path 891 and 

Path 931 LPS samples visualised by silver stain. 

 

Regions in which gel shifts are apparent are highlighted by red boxes. Representative of three 

biological repeats.  

A, Lanes 1 and 5, Path 293 (negative control, knockout of all known gtr operons). Lane 2, Path 

891 blue colony. Lane 3, Path 292 (positive control, constitutive LT2_I gtr modification). Lane 

4, Path 891 white colony.  

B, Lanes 1 and 5, Path 293 (negative control, knockout of all known gtr operons). Lanes 2 and 

4, Path 931 white colonies (biological replicates). Lane 3, Path 292 (positive control, 

constitutive LT2_I gtr modification).   
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Fig.4.5. Growth curve of Path 891 in InSPI2 media +/- H2O2 treatment  

 

Red arrow indicates splitting of culture and addition of 1 mM, 0.1 mM or 0.01 mM hydrogen 

peroxide to separate samples. An untreated control was also used. 
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yceB gene as reference – expression of this gene was not affected under the tested conditions, 

Kröger et al., 2013). The results showed that STnc1870 transcription increased significantly (P 

< 0.05, t-Test) (12.82 – 25.33 relative quantity) after peroxide addition, regardless of the 

percentage of ON cells in the tested culture. Concurrently, gtrA expression was reduced after 

peroxide addition (0.05 – 0.18 relative quantity, P < 0.05, t-Test) in all H2O2 treated samples 

(Fig.4.6 and Table 4.1). 

 

The above experiment confirmed the RNA sequencing data and also established that STnc1870 

transcription could be induced from cultures with predominately ON or OFF cells. In addition, 

STnc1870 induction by H2O2 treatment did not heritably alter the percentage of ON cells in a 

culture. 

 

4.3 USING A LOCKED OFF MUTANT gtr TO TEST 

STnc1870 TRANSCRIPTION 

 

The next question concerned transcriptional control of STnc1870. It appeared that the 

mechanism allowing STnc1870 transcription was not influenced by gtr phase variation. 

Furthermore, the optical density of H2O2 treated cultures did not increase during this period 

(Fig.4.5). This suggested that ongoing genome replication was not required for STnc1870 

transcription.  

 

The promoter region of STnc1870 overlaps with the OxyR B and C half sites in the gtr 

regulatory region (Fig.4.2). OxyR binding in either the ON or OFF state would require 

occupation of the B site which is likely to cause repression of STnc1870. This argument is 

supported by the gtr OFF state – OxyR binding of the B and C half sites coincides with gtr 

repression (Broadbent et al., 2010).  

 

If OxyR binding of the gtr regulatory region caused STnc1870 repression, it would probably do 

so persistently: a gtr OFF state could not be established without persistent OxyR mediated 

repression.  Genome replication was thought to be the only condition under which OxyR ceases 

gtr binding, although this was not required for STnc1870 transcription. So, if genome 

replication was the only way for OxyR to cease gtr binding, STnc1870 should have stayed 

repressed under the tested conditions. This was clearly not the case for H2O2 treated cultures.  
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Fig.4.6. Absolute gtrA and STnc1870 expression of Path 891 (gtrABC::lacZ) +/- 1 

mM H2O2 treatment 

 

qRT-PCR results showing absolute quantities of transcript copy numbers. ON or OFF indicates 

the phenotype of the colony the culture was derived from, i.e. blue or white, respectively. 

Samples taken from hydrogen peroxide treated cultures are annotated ‘+ H2O2’. Results are 

representative of two biological repeats. Error bars show +/- 2 standard deviation for 4 technical 

repeats.  
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Table 4.1. Relative gtrA and STnc1870 expression of Path 891 +/- 1 mM H2O2 

 

a. For each culture, the non - H2O2 treated sample was used with the yceB gene as a reference to 

calculate relative quantities of gtrA and STnc1870 in H2O2 treated samples. Results are 

representative of two biological repeats. 

b. ON or OFF indicates the phenotype of the colony the culture was derived from, i.e. blue or 

white, respectively, with plate counts used to give % ON. 

  

Sample % ON +/- H2O2 Target 
Relative 

Quantitya (RQ) 

RQ 

Minimum 

RQ 

Maximum 

ON 

cultureb 

85 % 

- gtrA 1 0.63 1.59 

- STnc1870 1 0.72 1.39 

86 % 

+ gtrA 0.05 0.04 0.07 

+ STnc1870 12.82 9.92 16.58 

OFF 

cultureb 

10 % 

- gtrA 1 0.60 1.67 

- STnc1870 1 0.63 1.59 

13 % 

+ gtrA 0.18 0.12 0.29 

+ STnc1870 25.33 20.49 31.32 
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Could an alternative mechanism remove OxyR from gtr in H2O2 treated cultures, thereby 

allowing STnc1870 transcription? 

 

The next experiments aimed to test the hypothesis that H2O2 treatment caused OxyR removal 

from the gtr regulatory region. Specifically, a method was needed to indicate that OxyR was 

actually bound to the gtr regulatory region before attempting to remove it by H2O2 treatment. It 

was decided to lock OxyR in the gtr repressing OFF state, as the resulting lack of gtr 

transcription would produce a distinctive phenotype. This in turn could be used to infer 

persistent OxyR binding of the gtr regulatory region. If H2O2 treatment could still induce 

STnc1870 transcription, this would confirm that OxyR removal from gtr was possible. 

 

The locked OFF mutation was chosen in favour of a locked ON mutant, because gtr 

transcription is possible without OxyR (as evidenced by fusions of just the -10/-35 gtr sites to 

the lacZ gene (Broadbent et al., 2010)). gtr repression however is thought to be completely 

dependent on OxyR binding.  

 

The Path 891 gtrC:lacZ fusion strain was mutated using lambdaRed recombination to alter the 

3rd and 4th GATC sites, which overlap with the OxyR C site (Datsenko and Wanner, 2000). 

Previous results had shown that point mutations in both GATC sites in a single OxyR half site 

(without altering the OxyR binding site consensus sequence) abrogated phase variation 

(Broadbent et al., 2010). The 3rd and 4th GATC sites were changed to GATA and GATT, 

respectively, which generated the Path 931 strain (Fig.4.2). The altered sites were predicted to 

be unavailable for Dam methylation, while still allowing OxyR binding. Theoretically, OxyR 

would be able to access all three OxyR binding sites in this mutated gtr regulatory region, 

allowing phase variation to occur. In fact, phase variation was not detectable when plating this 

strain on X-Gal media, as all colonies (over 4000 screened) had a white (Lac-) phenotype 

(Fig.4.3b). In addition, TSDS-PAGE gel separation of LPS samples revealed that locked OFF 

mutant colonies did not produce modified LPS molecules (Fig.4.4b). This supported the 

interpretation that OxyR persistently bound the mutated gtr regulatory region in the OFF state. 

 

The point mutations used to create the locked OFF gtr mutant also altered a single base in the 

gtr -35 site (Fig.4.2). If this mutation, although unlikely, prevented RNA polymerase 

recruitment to gtr, it could result in an OFF phenotype without OxyR repression. To exclude  
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this scenario, the ‘full length’ gtr OFF mutant regulatory region (containing al OxyR sites) was 

fused to the lacZ gene and inserted into a CRIM vector. This vector was integrated as a single 

copy into the chromosome of S. Typhimurium LT2, generating Path 948 (Haldimann and 

Wanner, 2001). The same procedure was performed for a lacZ fusion of the ‘promoter only’ gtr 

OFF mutant regulatory region, which contained only the -10 and -35 sequences (= Path 945). 

 

The promoter only fusion, which did not contain a complete OxyR binding site, was predicted 

to show constitutive lacZ expression, unless the altered -35 site interfered with transcription. 

The full length fusion however, should remain repressed by OxyR binding. A -galactosidase 

assay showed that the promoter only region was expressed at an average level of 343 Miller 

Units (which was very similar to the Path 460 wildtype LT2_I gtr (identical to ST4/74_I gtr) 

promoter only fusion), whereas the full length version showed an average of only 3 Miller Units 

(Fig.4.7). This demonstrated that the promoter region was functional and allowed RNA 

polymerase recruitment and transcription. The full length version was therefore more likely to 

be repressed due to OxyR binding rather than a non-functional promoter. These conclusions 

were expanded to the chromosomal gtr OFF mutant – the absence of gtrABC expression in the 

locked OFF gtr Path 931 strain was more likely to be caused by OxyR repression of gtrABC 

(and STnc1870) rather than a non-functional -35 site. 

 

To test whether STnc1870 could still be induced in the locked OFF gtr mutant Path 931, the 

previous qRT-PCR experiment was replicated (i.e. growth in InSPI2 media to OD600 = 0.3, 

followed culture splitting, 1 mM H2O2 treatment of half and RNA extraction after 10 minutes). 

Cultures did not increase in optical density after H2O2 treatment. qRT-PCR performed on the 

extracted RNA samples showed that STnc1870 was still highly induced  after H2O2 treatment, 

compared to untreated samples (53.39 and 93.80 relative quantity, P < 0.001, t-Test). 

Interestingly, gtrA expression was not reduced and in one sample increased slightly after H2O2 

treatment, compared to untreated samples (1.45 and 2.39 relative quantity – P < 0.05 and not 

significant, respectively, t-Test.) (Fig.4.8 and Table 4.2).  

 

The locked OFF phenotype of Path 931 gave a good indication of persistent OxyR binding to 

the B and C half sites, which was predicted to repress STnc1870. The finding that STnc1870 

was still inducible by H2O2 treatment supported the hypothesis that an unknown mechanism 

removed OxyR from the gtr regulatory region to allow STnc1870 transcription. 
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Fig.4.7. -galactosidase results of gtr:lacZ fusion strains to test functionality of 

Path 931 gtr promoter region  

 

Path 460 (-10/-35 sites only wildtype LT2_I gtr:lacZ), Path 945 (-10/-35 sites only gtr OFF 

mutant lacZ fusion) and Path 948 (full length gtr OFF mutant lacZ fusion) were grown in 

minimal M9 media from exponential to stationary phase. EEP, Early Exponential Phase (OD600 

= 0.3), LEP, Late Exponential Phase (OD600 = 1.0), ESP, Early Stationary Phase (OD600 = 1.9). 

Results are representative of 2 biological repeats. Error bars show +/- 2 standard deviation for 4 

technical repeats.  
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Fig.4.8. Absolute gtrA and STnc1870 expression of Path 931 +/- 1 mM H2O2 

treatment 

 

qRT-PCR results showing absolute quantities of transcript copy numbers. Error bars show +/- 2 

standard deviation for 4 technical repeats.  
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Table 4.2. Relative gtrA and STnc1870 expression of Path 931 +/- H2O2 treatment 

  

a. For each culture, the untreated sample was used with the yceB gene as a reference to calculate 

relative quantities of gtrA and STnc1870 in H2O2 treated samples.   

Sample +/- H2O2 Target 
Relative Quantitya 

(RQ) 
RQ 

Minimum 
RQ 

Maximum 

Culture 1 

- gtrA 1 0.91 1.10 

- STnc1870 1 0.63 1.60 

+ gtrA 1.45 1.27 1.65 

+ STnc1870 53.39 49.94 57.07 

Culture 2 

- gtrA 1 0.82 1.22 

- STnc1870 1 0.70 1.43 

+ gtrA 2.39 2.04 2.81 

+ STnc1870 93.80 88.83 99.05 
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4.4 THE OXYR C199S MUTANT REPRESSES STnc1870 

TRANSCRIPTION AFTER H2O2 TREATMENT 

 

A possible mechanism by which OxyR could be removed from the gtr regulatory region 

involves cysteine residues (at positions 199 and 208) in the protein structure which form 

disulphide bridges in response to oxidative stress (see also chapter 3). The formation of 

disulphide bridges causes a conformational change of the protein, which results in different 

DNA binding patterns (Choi et al., 2001). 

 

Could H2O2 treatment cause an OxyR protein bound to the gtr regulatory region to change 

conformation?  As the spacing of the OxyR half sites in the gtr regulatory region is consistent 

with the reduced form binding, would oxidised OxyR be forced to leave? If so, this could 

explain the regulation of STnc1870: in the absence of oxidative stress, reduced OxyR could 

bind the gtr regulatory region, enabling phase variation while blocking STnc1870 transcription. 

Oxidative stress (e.g. H2O2 treatment) could induce disulphide bridge formation, causing OxyR 

to change conformation to the oxidised form, which may not be able to bind gtr. If this caused 

OxyR to leave gtr, the STnc1870 promoter could become accessible for transcription. 

 

Should the above hypothesis be correct, preventing the formation of disulphide bridges in the 

OxyR protein would result in a permanently reduced OxyR protein, unable to leave the gtr 

regulatory region in response to oxidative stress. In this case, STnc1870 transcription would not 

increase in response to H2O2 treatment. 

 

A common method to produce permanently reduced OxyR consists of making a point mutation 

in the corresponding gene to replace the cysteine residue with the structurally similar, but 

sulphur-deficient serine (‘C199S mutation’, Sun and Hattman, 1996). This mutant form is no 

longer capable of shifting to the oxidised state, as disulphide bridges are impossible. Could the 

C199S mutation cause OxyR to maintain repression of STnc1870 after H2O2 treatment? 

 

C199S OxyR is capable of binding the gtr regulatory region, resulting in phase variation 

(Broadbent et al., 2010). For the following experiments, it was more advantageous to perform 

the OxyR C199S mutation on the non-phase varying, locked OFF gtr Path 931 strain, as this 

could provide a phenotype indicating OxyR binding to the gtr regulatory region. The C199S 
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mutation was therefore performed on Path 931 by lambdaRed recombination (Datsenko and 

Wanner, 2000). 

 

Generating a strain with a chromosomally encoded oxyR(C199S) mutation required the insertion 

of the tetracycline resistance cassette (tetRA) into the oxyR gene during a preliminary step (= 

Path 955). Effectively, this produced an insertional knockout of OxyR, as it would be unlikely 

that this strain could produce a functional OxyR protein. This was supported by the fact that the 

strain required catalase (which detoxifies H2O2) addition to the growth media. Path 955 plated 

on X-Gal media showed uniform blue colonies, in stark contrast to the ancestor strain (Path 

931) which grew entirely white (Fig.4.3c). The likely cause was that unlike Path 931, Path 955 

did not have functional OxyR and could not repress gtrABC::lacZ transcription (although Path 

955 had the same gtr OFF mutation as Path 931).  

 

In a subsequent step, the tetracycline resistance cassette inserted in oxyR in Path 955 was 

replaced with a point mutation that changed the coding sequence of the gene to produce OxyR 

C199S, generating Path 959. This mutation restored the OFF phenotype (white colonies) on X-

Gal media, but was still dependant on catalase addition for growth on plates (Fig.4.3d). The 

likely reason was that restoring (persistently reduced) OxyR to the strain re-enabled repression 

of gtrABC::lacZ. 

 

Path 931 (wildtype OxyR) and Path 959 (C199S OxyR) were grown in InSPI2 media to OD600 = 

0.3, followed by splitting of the cultures and H2O2 treatment of one half each. RNA was 

extracted after 10 minutes. qRT-PCR results showed high increases for STnc1870 in the Path 

931 wildtype OxyR ancestor, compared to an untreated control sample (254.66 relative 

quantity, P < 0.001, t-Test). On the other hand, the C199S mutant OxyR strain showed a much 

smaller increase in STnc1870 expression after H2O2 treatment, compared to an untreated control 

sample (3.02 relative quantity, P < 0.05, t-Test) (Fig.4.9). Compared to untreated controls, H2O2 

treated samples of both strains showed either minor or non-significant changes in gtrA 

expression: 1.54 relative quantity for Path 959 (P < 0.05, t-Test) and 1.25 relative quantity for 

Path 931 (not significant, t-Test).  

 

Given that the relative increase in STnc1870 transcription after H2O2 treatment was 84 times 

higher in the wildtype OxyR strain compared to the C199S OxyR strain, it is likely that cysteine 

199 in OxyR is required for high levels of transcription of STnc1870 after H2O2 treatment. 
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Fig.4.9. Relative gtrA and STnc1870 expression of Path 931 and Path 959 +/- 1 mM 

H2O2 treatment  

 

qRT-PCR results showing relative quantities of gtrA and STnc1870 transcripts in samples of 

Path 931 (wt OxyR) and Path 959 (C199S OxyR) grown with or without H2O2 treatment. For 

each culture, the non - H2O2 treated sample was used with the yceB gene as a reference to 

calculate relative quantities of gtrA and STnc1870 in H2O2 treated samples. Results are 

representative of two biological repeats. Statistical analysis was by t-Test. * P < 0.05. Error bars 

show +/- 2 standard deviation for 4 technical repeats. Note log scale on y-axis.  

* 
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It appeared, that without the C199 cysteine residue OxyR could not change conformation and 

may have remained bound to the gtr regulatory region, continuing repression of STnc1870. 

 

4.5 A POTENTIAL ALTERNATIVE OXYR SITE COULD BE 

REQUIRED TO ACTIVATE STnc1870 TRANSCRIPTION 

 

H2O2 treatment appeared to abrogate wildtype OxyR repression of the STnc1870 promoter. 

Could an additional mechanism stimulate STnc1870 transcription after H2O2 treatment? The 

typical role of OxyR in the cell is to regulate transcription of oxidative stress response genes. 

The high transcription of STnc1870 in response to H2O2 treatment raised the question whether 

OxyR could activate STnc1870 transcription. 

 

Closer analysis of the gtr regulatory region showed that a possible alternative site for OxyR was 

present surrounding the gtrA -10 site (Fig.4.10).  If OxyR became oxidised after H2O2 treatment 

and moved to this alternative position it could potentially activate STnc1870 transcription. If 

true, deleting or mutating this alternative OxyR site would cause less STnc1870 to be 

transcribed in response to H2O2 treatment.  

 

Three different mutant strains were produced by lambdaRed recombination using Path 891 

(wildtype gtr regulatory region, gtrC:lacZ) as an ancestor (Datsenko and Wanner, 2000). For 

the first strain (Path 947) the entire alternate OxyR site and the gtrA gene were deleted. For the 

second strain (Path 946) the alternate OxyR site was replaced with 37 bp of random DNA 

sequence while maintaining the spacing of the region. In the final strain (Path 960), 12 bp 

predicted to be part of the alternate OxyR binding site consensus sequence were altered by 

replacing each purine with a non-complementary pyrimidine base and vice versa (A → C, T → 

G, etc.) (Fig.4.10 and Fig.4.11). These strains showed an OFF phenotype on X-Gal media, 

despite having the gtrC:lacZ fusion (Fig.4.12). This may have been caused by mutations 

affecting the gtr -10 and -35 sites, which could have left the promoter region non-functional. 

 

Path 946, 947, 960 and the wildtype strain Path 891 (as a positive control) were grown in 

InSPI2 media to OD600 = 0.3 followed by culture splitting and H2O2 addition to one half each. 

RNA was extracted after 10 minutes. qRT-PCR measurements of STnc1870 transcription 

showed an increase of 20.20 relative quantity for the H2O2 treated Path 891 sample, compared  
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Fig.4.10. Sequence of the predicted alternate OxyR site in the gtr regulatory region  

 

The STnc1870 -35 and gtr -10, -35 and +1 sites are marked in red and annotated. GATC sites 

are marked by grey boxes. The OxyR C half site is underlined and annotated. The key bases that 

form the potential alternate OxyR site are marked by grey boxes. The 12 key bp mutated to 

produce Path 960 are marked by a black box around red letters. For Path 946, the entire 37 bp 

sequence of the predicted alternate site was replaced by random DNA. See also Fig.4.2. 
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Fig.4.11. Overview of strains used to investigate alternate OxyR site hypothesis 

 

The confirmed and predicted alternate OxyR sites are in red. The gtr and STnc1870 -10 and -35 

sites are annotated as well as the gtrA, gtrB and gtrC genes. Based on Broadbent et al., 2010. 

Graph not to scale. See also Fig.4.1 and Fig.4.10. A, Path 891, wildtype strain with OxyR A, B 

and C half sites as well as the predicted alternate OxyR site and the full gtrABC operon. B, Path 

947, containing a deletion of gtrA and the predicted alternate OxyR site. C, Path 946 containing 

a deletion of the predicted alternate OxyR site, but with the full gtrABC operon. D, Path 960 

containing 12 bp point mutations in the predicted alternate OxyR site, but with the full gtrABC 

operon. 
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Fig.4.12. Colony phenotypes of strains with mutations of the predicted alternate 

OxyR site  

 

Strains were spread plated on M9 media with X-Gal to test for phase variation. A, Path 946 

(gtrC:lacZ, 37 bp short replacement). B, Path 947 (gtrC:lacZ,  gtrA). C, Path 960 (gtrC:lacZ, 

12 bp point mutations).  

A 

C 

B 
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to an untreated control (P < 0.01, t-Test). In samples of the H2O2 treated mutant strains Path 

946, 947 and 960, STnc1870 transcription increased by 6.70, 7.95 and 4.03 relative quantity 

respectively, compared to untreated control samples (all P < 0.01, t-Test) (Fig.4.13). This result 

showed that the mutated sequences were important to achieve high levels of STnc1870 

transcription following H2O2 treatment. The data from Path 960 (the 12 bp mutant) was 

particularly intriguing, as it suggested that OxyR could indeed bind this region to initiate higher 

levels of STnc1870 transcription. 

 

4.6 THE EFFECT OF STnc1870 OVEREXPRESSION ON gtrA 

 

Further work focused on what the function of STnc1870 could be. It was observed that gtrA 

expression was reduced simultaneously with STnc1870 upregulation after H2O2 treatment. It 

was hypothesised that the STnc1870 sRNA could reduce gtrA expression, possibly by binding 

the mRNA and targeting it for degradation by RNase III (Nicholson, 2014). An example of such 

an interaction is the OxyS sRNA, which is transcribed divergently from the OxyR regulatory 

region and acts to repress rpoS expression (Altuvia et al., 1997). 

 

To analyse the potential function of STnc1870 and its possible influence on gtrA, it was decided 

to overexpress STnc1870 from an inducible promoter on a plasmid. Although H2O2 treatment 

was obviously effective at inducing high amounts of STnc1870 transcription, this method also 

killed a large number of cells (~80 %) and was therefore likely to induce a variety of other 

transcriptional responses that would not be exclusive to STnc1870.  

 

The STnc1870 gene was therefore inserted into the pLAC22 vector under control of the IPTG - 

inducible pLAC promoter (generating plasmid pMV449, Fig.4.14a). IPTG addition would result 

in overexpression of STnc1870. Possible effects this may have on gtrA could then be measured 

by qRT-PCR. Furthermore, by taking LPS samples before and after IPTG addition, potential 

effects on the LPS structure could be determined.  

 

Plasmid pMV449 was transformed into Path 891 (gtrC:lacZ), generating Path 923. This strain 

was grown on X-Gal media and blue colonies were selected and grown in InSPI2 media to 

OD600 = 0.3 before splitting cultures equally and adding 1 mM IPTG to one half each. Growth 

continued and RNA was extracted (from both cultures) at 5, 10, 15 and 106 minutes after IPTG  
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 Fig.4.13. Relative STnc1870 expression of Path 891, Path 946 and Path 947 +/- 1 

mM H2O2 treatment 

 

qRT-PCR results showing relative quantities of STnc1870 transcripts in samples of Path 891, 

Path 946, Path 947 and Path 960 with or without H2O2 treatment. For each culture, the non- 

H2O2 treated sample was used with the yceB gene as a reference to calculate relative quantities 

of STnc1870 in H2O2 treated samples. Results are representative of two biological repeats. 

Statistical analysis was by t-Test. ** P < 0.01. Error bars show +/- 2 standard deviation for 4 

technical repeats.  
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Fig.4.14. Diagram of plasmid pMV449 and description of the predicted ssaO 

binding site in STnc1870 

 

A, pMV449 (STnc1870 overexpression plasmid). Annotations include STnc1870 coding region 

in black, pLAC promoter (‘lacI’) in green and ampicillin resistance marker in yellow (‘amp 

marker’), origin of replication (‘pBR322 origin’, black) and BglII/EagI restriction sites used to 

insert STnc1870. Graph to scale. Image created using Plasmapper (Dong et al., 2004). B, 

STnc1870 sequence predicted to interact with ssaO mRNA (Kery et al., 2014). Numbers 

indicate coordinates relevant to either start codon of the ssaO mRNA or +1 site of STnc1870. C, 

Point mutations in STnc1870 sequence of pMV458 compared to ssaO mRNA.  

B 

C 

sRNA (STnc1870)   62  AGGGUUUGAUGAAUC  48 

        |||:|:||||||| 

mRNA (ssaO)   -48  ACCCGAGCUACUUAU  -34 

sRNA (STnc1870 mutant)  62  ATTTGGGTCGTCCGC  48 

 

mRNA (ssaO)   -48  ACCCGAGCUACUUAU  -34 

A 
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addition. LPS samples were also taken directly before (0’) and 106 minutes after IPTG addition 

(3.5 generation times). Culture samples from IPTG-induced and non-induced cultures were 

spread plated on X-Gal media (without IPTG) at the same timepoints as the LPS sample 

collection to estimate the percentage of gtr ON cells and determine whether heritable changes 

had occurred to gtr phase variation. 

 

qRT-PCR performed on the RNA samples showed that STnc1870 transcription increased in 

IPTG treated samples across all timepoints (11.17-15.27 relative quantity) compared to non-

IPTG treated samples. However, gtrA expression showed only minor differences in expression 

in IPTG treated samples compared to untreated samples: at the 5 minute timepoint a small 

increase was measured (1.15 relative quantity, P < 0.01, t-Test) and the 10 minute sample 

showed no significant differences, compared to non-IPTG treated samples. The 15 and 106 

minute samples showed minor, but significant reductions: 0.68 (P < 0.001, t-Test) and 0.63 (P < 

0.05, t-Test) relative quantity compared to non-IPTG treated samples, respectively (Fig.4.15). 

IPTG-induced overexpression of STnc1870 therefore appeared unlikely to have affected gtrA 

expression. 

 

Furthermore, separation of LPS molecules extracted from IPTG-induced and uninduced cultures 

of Path 923 by TSDS-PAGE gels did not show differences in band patterns (Fig.4.16). All Path 

923 samples (lanes 2, 4 and 6) showed band patterns similar to a control strain which 

constitutively produced the gtr O-antigen glycosylation modification (lanes 1 and 5). This data 

indicated that IPTG-induced overexpression of STnc1870 did not affect O-antigen modification 

by gtrABC in Path 923 in the tested interval. Ideally, a period of more than 3.5 generation times 

should be assessed for changes in LPS modification. 

 

Finally, Path 923 samples spread plated on X-Gal media before (0 minutes) and after (106 

minutes) IPTG addition did not show differences in the percentage of ON colonies. The 0 

minute sample contained 84 % ON colonies (total counted 362), identical to the IPTG-induced 

106 minute sample, which also contained 84 % ON colonies (total counted 417). The non-IPTG 

treated 106 minute sample contained 83 % ON colonies (total counted 156). In summary, IPTG-

induced overexpression of STnc1870 had only a minor effect on gtrA expression and did not 

affect O-antigen modification or gtr phase variation. 
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Fig.4.15. Relative gtrA and STnc1870 expression of Path 923 +/- 1 mM IPTG 

treatment  

 

qRT-PCR results showing relative quantities of gtrA and STnc1870 transcripts in samples of 

Path 923 over a timecourse with and without IPTG treatment. For each timepoint, the non-IPTG 

treated sample was used with the yceB gene as a reference to calculate relative quantities of gtrA 

and STnc1870 in IPTG treated samples. Results are representative of two biological repeats. 

Statistical analysis was by t-Test. *** P < 0.001; ** P < 0.01; * P < 0.5; n.s., not significant. 

Error bars show +/- 2 standard deviation for 4 technical repeats.  
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Fig.4.16. TSDS-PAGE gel separation of Path 923 (gtrC:lacZ, pMV449) LPS 

samples visualised by silver stain 

 

Regions in which gel shifts are apparent are highlighted by red box. Representative of 2 

biological repeats. Lanes 1 and 5, Path 292 (positive control, constitutive LT2_I gtr 

modification). Lane 2, Path 923, 0 minute sample (non-IPTG treated). Lanes 3 and 7, Path 293 

(negative control, knockout of all known gtr operons). Lane 4, Path 923 106 minute sample, 

IPTG treated. Lane 6, Path 923 106 minute sample, non-IPTG treated.   

 1       2     3      4      5      6     7 
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4.7 THE EFFECT OF STnc1870 OVEREXPRESSION ON 

ssaO 

 

In search of other potential targets of STnc1870, the web-based programme TargetRNA which 

predicts possible interaction targets of short RNAs was used (Kery et al., 2014). RNA sequence, 

structure and conservation among related species are used by TargetRNA to generate a list of 

mRNAs that could be bound by a short RNA. One of the predicted target mRNAs was ssaO, 

which encodes a structural component of the SPI2 type III secretion system needle, used by 

Salmonella to inject virulence factors into the macrophage (reviewed in Figueira and Holden, 

2012) (Table 4.3).  

 

The potential target ssaO was considered to be worth further investigation as the RNA 

sequencing data showed that ssaO expression decreased to 0.03 relative quantity (33 – fold 

reduction) after H2O2 treatment, compared to an untreated sample (Kröger et al., 2013). 

Expression of the other mRNA targets predicted by TargetRNA did not decrease as much as 

ssaO under these conditions (Table 4.3). This was interesting, although H2O2 treatment can have 

very wide-ranging effects on the cell, so a variety of factors could have caused the ssaO 

reduction. However, if the TargetRNA prediction was correct, STnc1870 could bind ssaO and 

cause it to be degraded, for example via RNaseIII (reviewed in Nicholson, 2014).  

 

TargetRNA predicted that a 13 bp sequence of STnc1870 could bind the ssaO mRNA at the 

coordinates of -35 to -47 bp upstream of the ssaO start codon (Fig.4.14b). This actually placed 

the binding site of STnc1870 within ssaN, the gene preceding ssaO. Both ssaO and ssaN are 

transcribed as part of an operon of SPI2 genes (Kröger et al., 2013). 

 

To test whether high expression of STnc1870 affected ssaO expression, strain Path 923 

(containing the STnc1870 overexpression vector pMV449) was used again. In addition, a new 

negative control strain was needed for the following reason: the pLAC promoter is considered 

‘leaky’ and allows a certain amount of expression in the absence of the inducer. Therefore 

STnc1870 was likely to be constitutively expressed at a low level in Path 923. During previous 

experiments on gtrA, the constitutive low-level expression of STnc1870 in Path 923 had to be 

accepted – the phase variation of gtr meant that the control and experiment samples had to be 

grown from the same colony. 
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Table 4.3. mRNA targets of STnc1870 predicted by TargetRNA (Kery et al., 2014) 

 

a. Interaction coordinates indicate distance (in bp) to the +1 site of STnc1870 or the start codon 

of the predicted mRNA target.  

b. Relative expression levels for the predicted target mRNAs are compared between cultures 

grown in InSPI2 media and cultures grown in InSPI2 media with a 1 mM H2O2 shock. The ssaO 

predicted target is in red. Data derived from Kröger et al., 2013. 

Predicted mRNA 

target 

P 

value 

Predicted interaction 

coordinatesa 

Relative expression 

levelsb 

InSPI2 

media 

InSPI2 + 

1mM 

H2O2 

htpG chaperone 

Hsp90, heat shock 

protein 

 

0.001 
STnc1870 72 52 

1 0.2 
htpG -46 -27 

entB 2,3-dihydro-2,3-

dihydroxybenzoate 

synthetase 

0.001 
STnc1870 63 51 

1 1 
entB 7 20 

yieH 6-

phosphogluconate 

phosphatase 

 

0.003 
STnc1870 65 54 

1 0.33 
yieH 1 12 

STM474_2889 

putative hexulose 6 

phosphate synthase 

0.006 
STnc1870 64 54 

1 1 
STM474_2889 -18 -8 

ssaO secretion system 

apparatus protein 
0.006 

STnc1870 62 48 
1 0.03 

ssaO -48 -34 

ybhC putative 

pectinesterase 
0.007 

STnc1870 74 59 
1 0.21 

ybhC -78 -64 

stjB putative fimbrial 

usher protein 
0.007 

STnc1870 71 58 
1 1 

stjB -80 -67 

rhaA L-rhamnose 

isomerase 
0.011 

STnc1870 62 51 
1 1 

rhaA -30 -19 

pgtC phosphoglycerate 

transporter 
0.013 

STnc1870 68 56 
1 1 

pgtC -3 10 

creC sensor protein 0.014 

STnc1870 61 45 

1 1 
creC -80 -64 

copA 

copper exporting 

ATPase 

0.018 
STnc1870 65 51 

1 0.8 
copA 1 15 
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However, for the experiment on ssaO it was considered better to use a separate control strain 

with the same genetic background as Path 923 but containing ‘empty’ pLAC22 (without the 

STnc1870 insert) instead of pMV449. pLAC22 was therefore transformed into Path 891, 

generating Path 953. The strain was grown in InSPI2 media to OD600 = 0.3 and treated with 1 

mM IPTG. RNA was extracted at 5, 10, 15 and 106 minutes after IPTG treatment. The samples 

were compared using qRT-PCR to the previously collected samples of Path 923 at the same 

timepoints after IPTG treatment (see section 4.6). 

 

The results showed a 2 – fold reduction (0.5 relative quantity) of ssaO at 5, 10 and 15 minutes 

after IPTG treatment in Path 923 compared to Path 953 (Fig.4.17). This was a very modest 

reduction compared to the 33 – fold reduction of ssaO expression after H2O2 treatment 

measured in the RNA sequencing data (Kröger et al., 2013). However, as mentioned, H2O2 

treatment is likely to have wide-ranging effects on the cell that could cause this reduction. 

Overexpressing STnc1870 in isolation appeared to reduce ssaO expression in two different 

cultures. This could mean that STnc1870 contributed to ssaO downregulation during H2O2 

shock. 

 

4.8 A 13 bp SEQUENCE IN STnc1870 IS REQUIRED FOR 

ssaO DEGRADATION 

 

13 bp of the STnc1870 sRNA were predicted by TargetRNA to bind the ssaO mRNA. If the 

predicted interaction was responsible for ssaO downregulation after STnc1870 overexpression, 

changing the 13 bp should remove the effect. The 13 bp of STnc1870 in the pMV449 vector 

were therefore altered by changing each purine to a non-complementary pyrimidine and vice 

versa (A → C, T → G, etc.) (Fig.4.14c). This altered vector (pMV458) was transformed into 

Path 891, generating Path 961. Duplicate cultures of Path 923 (gtrC:lacZ, pMV449), Path 953 

(gtrC:lacZ, pLAC22) and Path 961 (gtrC:lacZ, pMV458) were grown in InSPI2 media. At 

OD600 = 0.3, RNA samples were taken (0’ sample), before adding 1 mM IPTG to each culture. 

Growth was continued and further RNA samples were taken at 10 and 15 minutes after IPTG 

addition. qRT-PCR was then performed using the 0 minute samples as references. The results 

showed that in Path 923, ssaO had 0.09 relative quantity compared to the 0 minute sample at 15 

minutes. Path 953 and Path 961 on the other hand had 1.27 and 0.75 relative quantity, 

respectively (Fig.4.18). This result indicated that the 13 bp of STnc1870 identified by 

TargetRNA may be required to reduce ssaO expression after STnc1870 overexpression and 

supported the conclusion that ssaO is a target of STnc1870. 
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Fig.4.17. Relative ssaO and STnc1870 expression of Path 923 and Path 953 + 1 mM 

IPTG treatment 

 

qRT-PCR results showing relative quantities of ssaO and STnc1870 transcripts in samples of 

Path 923 (+ pMV449, STnc1870 overexpression plasmid) and Path 953 (+ pLAC22) over a 

timecourse with IPTG treatment. For each timepoint, the Path 953 sample was used with the 

yceB gene as a reference to calculate relative quantities of ssaO and STnc1870 in IPTG treated 

samples. The dotted horizontal line indicates 0.5 relative quantity. Results are representative of 

two biological repeats. Statistical analysis was by t-Test. *** P < 0.001; ** P < 0.01; * P < 0.5. 

Error bars show +/- 2 standard deviation for 4 technical repeats. Note log scale on y-axis.  
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4.9 DISCUSSION 

 

The results presented in this chapter demonstrate the transcriptional versatility of the gtr operon. 

The RNA sequencing data gave the first indication of the short RNA STnc1870 being produced 

from the gtr regulatory region in response to H2O2 shock (Kröger et al., 2013). qRT-PCR using 

the gtrC:lacZ fusion strain confirmed this result while also showing that STnc1870 transcription 

occurred regardless of the percentage of ON cells in the tested culture.  

 

The predicted -10 and -35 sites of STnc1870 overlapped with the OxyR B and C sites. As OxyR 

was predicted to bind the B site persistently, how was STnc1870 transcription possible? This 

discrepancy was addressed by the hypothesis that H2O2 treatment forced OxyR to cease binding 

of the gtr regulatory region. The gtr OFF mutant (Path 931) was produced as a tool to test this 

hypothesis. The Lac-, unmodified phenotype of Path 931 indicated persistent OxyR binding in 

the OFF position, in all cells of the population. H2O2 induction of STnc1870 transcription was 

clearly still possible in this strain, which supported the idea that OxyR ceased gtr binding in 

response to H2O2 treatment. 

 

 A possible alternative explanation was that OxyR for some unknown reason did not bind to a 

subset of gtr regulatory regions in a population. This subset could then be responsible for the 

increases of STnc1870 observed after H2O2 treatment. The results of the OFF mutant 

experiments did not exclude this scenario, although they did allow for a simpler explanation, 

which was more in line with previous data about gtr regulation. 

 

Another interesting aspect of the OFF mutant experiments was that, after H2O2 treatment, 

relative increases of STnc1870 were much higher compared to the wildtype. This may have 

simply been caused by variation between qRT-PCR experiments. However, the point mutations 

used to create this strain allowed OxyR to bind the C half site without competition from Dam. 

Furthermore the match between the C half site and the OxyR binding site consensus was 

increased by one bp. It is possible this caused OxyR to bind this position with higher affinity, 

resulting in stronger repression of STnc1870 in the absence of H2O2 treatment. STnc1870 

transcription after H2O2 treatment could be as high in absolute amounts as in the wildtype, but 

the relative increase compared to the untreated control could be higher in the OFF mutant. 

Finally, it is possible that absolute amounts of STnc1870 transcription after the H2O2 shock are 
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actually higher in the OFF mutant than in the wildtype, although there is no obvious explanation 

for this. 

 

Further evidence showed that the C199 cysteine residue in the OxyR protein was required to 

allow STnc1870 transcription to increase in response to H2O2 treatment. It is well established 

that this residue is required for the OxyR protein to switch conformation between the reduced 

and oxidised form (Sun and Hattman, 1996). Therefore, it appeared that OxyR must alter 

conformation for STnc1870 transcription to occur. 

 

As mentioned, the spacing of the OxyR half sites in the gtr regulatory region (= 17 bp) is 

consistent with binding of the reduced form of OxyR. The reduced form of OxyR is also 

sufficient to allow phase variation of gtr (Broadbent et al., 2010). Experiments with the C199S 

mutant indicated that OxyR must switch to the oxidised form for STnc1870 repression to be 

lifted. Is it possible that after changing conformation, oxidised OxyR cannot bind the gtr 

regulatory region because the spacing of the half sites does not permit this? This would 

represent the first evidence of oxidised OxyR influencing gtr expression differently than the 

reduced form. 

 

Oxidised OxyR eventually returns to the reduced state if the oxidative stress is removed (Choi 

et al., 2001). At this point, OxyR could resume binding of the gtr regulatory region in the ON or 

OFF state. Culture samples plated after H2O2 shock showed phase variation. If the cell was able 

to replicate during the oxidative stress, could this influence phase variation, as OxyR may be 

bound outside the usual position? Unfortunately, it may be difficult to design an experiment in 

which H2O2 addition is high enough to oxidise OxyR and induce STnc1870 transcription 

measurably, but also low enough to allow cell replication. 

 

It was also found that a region upstream of the predicted STnc1870 -35 site was important for 

achieving a high relative increase of STnc1870 transcription after H2O2 treatment. Intriguingly, 

changing just 12 bp, which were predicted to form an alternative OxyR site, was sufficient to 

reduce the relative increases in STnc1870 transcription. The OxyR half sites of this predicted 

alternative site were separated by 10 bp, unlike the established OxyR sites in the gtr regulatory 

region which were separated by 17 bp. Although this suggested that oxidised OxyR could 

stimulate RNA polymerase transcription of STnc1870, better evidence would be needed. The 

challenge in finding such evidence is that OxyR could act as both repressor and activator of 
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STnc1870 transcription. For example, a good experiment would be to show whether C199S 

OxyR is capable of activating STnc1870 transcription in response to H2O2 treatment. However, 

based on previous results C199S OxyR is likely to remain bound to the gtr region and repress 

STnc1870. It would be ideal to analyse OxyR repression or activation of STnc1870 in isolation 

of each other, to determine their individual contributions. A possible approach would be to 

generate a strain with a gtr regulatory region that cannot be bound by OxyR. This could be 

achieved through point mutations that alter key bp of the OxyR B site. The predicted alternate 

OxyR site should not be mutated (except for control purposes). If OxyR cannot bind the A, B, 

or C half sites, STnc1870 may not be repressed.  

 

STnc1870 transcription from this mutated gtr operon could be measured in strains with 

wildtype OxyR, C199S OxyR or a  oxyR deletion without H2O2 treatment. A strain with both 

wildtype gtr and OxyR should be used as control. If strains with the mutated gtr regulatory 

region (and either wt OxyR, C199S OxyR or  oxyR) show higher STnc1870 expression 

without H2O2 treatment than the wildtype control strain, this would indicate that OxyR binding 

of gtr is required for STnc1870 repression. Similarly, a  oxyR strain with a wildtype gtr 

regulatory region should also show higher STnc1870 transcription in the absence of H2O2 

treatment. 

 

The mutated gtr strains could then be tested for STnc1870 transcription in response to H2O2 

treatment. If OxyR does indeed become oxidised and activates STnc1870 transcription from the 

alternate binding site, STnc1870 expression should increase in the strain with wt OxyR. 

Furthermore, in the C199S OxyR strain, STnc1870 transcription should not increase in response 

to H2O2 treatment (this may also be the case with a  oxyR strain – however this strain may not 

survive the H2O2 treatment). In short, this method could be used to test whether OxyR activates 

STnc1870 transcription from the predicted alternate site, while excluding the effects of 

STnc1870 repression. If OxyR did indeed bind this alternate site, it could explain why gtrA 

expression decreased after H2O2 addition – the OxyR protein may block gtrA expression in this 

case. 

 

The predicted alternate OxyR site overlaps with the 4th GATC site of the gtr regulatory region. 

Should OxyR indeed be capable of binding here, would methylation of the GATC site interfere 

with binding? The potentially methylated base is marked bold and underlined in the consensus: 

ATAGxTxxxAxCTAT. OxyR may be able to tolerate methylation or mismatched bases of the 

lone T/A bases better than in the ATAG/CTAT elements (Zheng et al., 2001a). For example, the 
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phase varying S. Infantis_I gtr operon has mismatches at the following (underlined) positions in 

the OxyR C half site: ATAGxTxxxAxCTAT.  

 

One final comment concerning the possible alternative OxyR site was that transcription of 

STnc1870 in the absence of H2O2 treatment in the mutant strains (Path 946, 947, 960) was the 

same as in the wildtype strain (Path 891). This was an important finding – if the mutations had 

reduced the ability of OxyR to bind the gtr regulatory region and repress STnc1870, it would 

have increased the amount of STnc1870 transcribed in the absence of H2O2. In this case the 

relative increase of STnc1870 transcription could have been lower after H2O2 addition, making 

it difficult to make statements about the impact of the alternative OxyR site deletions.  

 

It was noteworthy that after adding 1 mM H2O2 (as used in Kröger et al., 2013) to InSPI2 

cultures of any of the strains used in this chapter, growth stopped and did not resume for at least 

two hours afterwards. Furthermore, ~80 % of cells in these cultures died. This effect was 

dependent on the amount of H2O2 added (for example, adding 10 M H2O2 did not have a 

noticeable effect on the growth curve). In this regard, it could also be interesting to determine 

what dose of H2O2 is sufficient for STnc1870 induction.  

 

The InSPI2 media was likely an important factor in the response to the 1 mM H2O2 shock. The 

same amount of H2O2 used on wildtype S. Typhimurium grown in LB media to an OD600 of 0.3 

did not affect growth (Hebrard et al., 2009). Peptides and other organic molecules present in LB 

may absorb the H2O2. InSPI2 media is minimal and defined, therefore the toxic effects of H2O2 

could be much more pronounced. It may also be interesting to know whether the lower pH 

(5.8), or addition of certain metals (Mo, Se, Co, Cu, Fe, Mn) to InSPI2 media exacerbated the 

H2O2 shock or influenced STnc1870 transcription. 

 

Could a generalised stress response cause STnc1870 induction? The high number of cells killed 

during experiments with H2O2 treatment indicates that the population would be under 

substantial stress and this could perhaps be a precondition for OxyR to induce STnc1870 

transcription. If so, other conditions that cause high amounts of cell death and stress could 

induce STnc1870 transcription. However, other stress conditions tested by Kröger et al., 2013 

such as nitrosative stress, osmotic shock, low pH shock or anaerobic shock did not induce 

STnc1870. Another possibility that cannot be excluded is that the population that survived the 

H2O2 treatment and transcribed STnc1870 had some exceptional characteristic that allowed it to 
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survive. The survival of this population was probably not dependent on transcription of 

STnc1870 – the alternate OxyR site deletion mutants (Path 946, 947, 960, see section 4.5) 

produced lower relative amounts of STnc1870 compared to the wildtype strain, but this 

subpopulation was equally able to survive the H2O2 shock. 

 

The conditions of InSPI2 media and 1 mM H2O2 shock were intended to mimic the environment 

Salmonella encounters in the macrophage SCV. The amount of H2O2 present in the SCV of 

C57BL/6 murine macrophage is estimated to be ~10 M (Aussel et al., 2011). Although this 

represents a 100-fold difference in amounts, it should be noted that H2O2 in the macrophage is 

supplied continuously, whereas the experiments in this chapter used a single dose. Also, the 

C57BL/6 mouse strain is highly susceptible to Salmonella infection due to lack of a functional 

Nramp1 protein (Roy and Malo, 2002). Nramp1 removes metal ions (Fe2+, Mn2+) from the SCV 

which the bacteria requires to detoxify H2O2 (Jabado et al., 2000; Loomis et al., 2014). 

Alternatively, Nramp1 could transport metal ions into the SCV which enhance production of 

reactive oxygen species through Fenton chemistry (Wessling-Resnick, 2015) . A dose of 10 M 

H2O2 is sufficient to induce oxidised OxyR (Aussel et al., 2011). Therefore the SCV 

environment could cause a persistent low level of STnc1870 transcription.  

 

During the course of this work, RNA sequencing data obtained from S. Typhimurium infecting 

murine RAW264.7 macrophage was published (Srikumar et al., 2015). This same group had 

previously published the RNA sequencing data that showed STnc1870 production after growth 

in InSPI2 media with H2O2 shock. The newly published data showed that only background 

levels of STnc1870 were expressed in the macrophage. This is somewhat contradictory, as the 

experiments with InSPI2 and H2O2 were intended to mimic the macrophage environment. 

However, the RAW264.7 cell line does not express the Nramp1 protein (Govoni et al., 1999). 

Therefore, Salmonella infecting Nramp1 deficient RAW264.7 cells can grow easier and are 

likely to experience less oxidative stress than in cells with functional Nramp1. This reduced 

oxidative stress may be insufficient to induce STnc1870 transcription. It could be interesting to 

measure STnc1870 production in macrophage with functional Nramp1. Similarly, survival of 

STnc1870 deletion and overexpression mutants could be assessed in this environment. 

 

Oxidative stress within macrophage with functional Nramp1 may be at a lower level than the 1 

mM H2O2, but it is supplied persistently (Aussel et al., 2011). If STnc1870 is induced in 

macrophage with functional Nramp1, expression may not be as high as observed after the 1 mM 

H2O2 shock. Salmonella also experiences oxidative stress during the initial stages of infection 
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when crossing the gut barrier and causing inflammation (Winter et al., 2010). Therefore, the 

macrophage environment may not necessarily be the only environment in which STnc1870 

transcription could be induced.  

 

Finally, it appeared that STnc1870 could be binding and reducing the expression of the SPI2 

component ssaO. This effect appeared to be dependent on the 13 bp predicted by TargetRNA to 

be involved in the interaction between the two RNAs. To further confirm this result, it would be 

helpful to determine whether assembly of the SPI2 needle is inhibited by IPTG-induced 

STnc1870 overexpression. STnc1870 could cause reduced translation of SPI2 proteins by 

blocking ribosomes from accessing the mRNA, in addition to its potential role in causing ssaO 

mRNA degradation. If expression of the SPI2 needle is inhibited by STnc1870 overexpression, 

this would likely affect virulence as well (Westermann et al., 2016). For example, a strain 

constitutively expressing STnc1870 may be less capable of surviving in a macrophage infection 

model. This potential link between STnc1870 and ssaO will be discussed further in chapter 6. 

 

However, the importance of the link to ssaO should not be overemphasised; the reduction 

observed after STnc1870 overexpression was consistent, but only 2-fold. It is quite possible that 

STnc1870 has a different primary target. A potential method to find such a target could make 

use of RNA sequencing following STnc1870 overexpression. 

 

To summarise, the evidence presented in this chapter supports the following statements: Firstly, 

binding of OxyR in either the ON or OFF state represses STnc1870 transcription, as the 

STnc1870 -10 site overlaps with the OxyR B half site, which is occupied in both the ON and 

OFF state. Furthermore, addition of H2O2 causes OxyR to become oxidised and alter 

conformation, regardless of whether it is bound to the gtr regulatory region in the ON or OFF 

state.  

 

As the 17 bp spacing of OxyR half sites in the gtr regulatory region is consistent with the 

reduced form of OxyR binding, oxidised OxyR could move to the alternative site upstream of 

STnc1870 (which has a 10 bp half site spacing more consistent with binding of oxidised OxyR, 

see Fig.4.10). In this alternative position, OxyR could stimulate transcription of STnc1870. 

Given that the alternative OxyR site overlaps with the gtrABC -10 site, expression of gtr could 

be blocked simultaneously, which would explain the reduced gtr expression measured after 

H2O2 treatment. Following transcription, the STnc1870 sRNA could bind the ssaO mRNA and 
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target it for degradation. As a result, the gtr regulatory region could have a wider role in 

regulating expression of the SPI2 needle. 
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5 CHAPTER 5 

INFLUENCE OF DNA SEQUENCE ON 

gtr PHASE VARIATION 
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5.1 INTRODUCTION 

 

The work in this chapter focusses on sequence variations that were found in a number of gtr 

regulatory regions of naturally occurring Salmonella serovars. A minority of examined 

regulatory regions contained less than four GATC sites. It was thought that these sequence 

variations would affect phase variation, as previous work had shown the importance of GATC 

sites in this process. Methylation of GATC sites by Dam blocks OxyR binding. If the two 

GATC sequences furthest from the gtr promoter are methylated, OxyR binds the OxyR B and C 

half sites and gtr expression does not occur (OFF phase). If the other two GATC sequences 

closest to the gtr promoter are methylated, OxyR binds the OxyR A and B half sites and gtr 

expression is ON (see section 1.3.2 and Fig.1.1) (Broadbent et al., 2010). The absence of GATC 

sites in gtr operons derived from clinically important strains such as S. Typhi added a further 

incentive to determine their effect.  

 

On a related topic, the differences between two methods used in this work to measure gtr phase 

variation are examined. Previous work on gtr phase variation relied on fusions of gtr regulatory 

regions to the lacZ reporter gene, which were inserted into a vector and subsequently integrated 

as a single copy into the Salmonella chromosome at the lambda phage insertion site (Haldimann 

and Wanner, 2001). As part of this work, the lacZ reporter gene was inserted downstream of the 

chromosomal gtrABC genes, and therefore co-transcribed with the ‘native’ gtr operon. The two 

methods gave different results for gtr phase variation experiments.  
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5.2 THE S. TYPHI 2_II gtr  

 

5.2.1 Diversity of gtr regulatory regions 

 

The regulatory regions of 60 previously identified gtr operons were aligned to identify 

similarities (Davies et al., 2013) (Fig.5.1). Within this dataset, 40 gtr regulatory regions 

contained four GATC sites mimicking the LT2_I and P22 gtr operons. These 40 gtr operons 

were therefore considered likely to phase vary. The remaining 20 gtr regulatory regions 

contained between one and three GATC sites. Closer analysis revealed that those with three 

GATC sites (S. Typhi 2_II, S. Infantis_I and S. Gallinarum_I) shared high similarity with the 

LT2_I gtr regulatory region already known to phase vary (Broadbent et al., 2010) (Fig.5.2).  

 

It was interesting that gtr regulatory regions with less than four GATC sites appeared to group 

in three separate clusters (as well as S. Gallinarum_I and S. Typhimurium LT2_II) (Fig.5.1). If 

the 60 analysed gtr regulatory regions evolved from a single ancestor with four GATC sites, this 

would suggest that loss of GATC sites by point mutations occurred independently on multiple 

occasions. However, the corresponding gtrC genes cluster in ten different families which cannot 

be assumed to have common ancestry due to low amino acid similarity between them (< 46 %) 

(Davies et al., 2013). Therefore it is difficult to make statements about the evolutionary 

relationship of gtr regulatory regions. 

 

How did the ‘absent’ GATC sites affect gtr phase variation? If the sequence variations in these 

strains disabled gtr phase variation or altered the switch frequency, this would raise the question 

whether the lifestyles of these particular serovars selected for a different approach to O-antigen 

modification. 

 

Of particular interest was the S. Typhi 2_II gtr regulatory region. Instead of a 4th GATC site 

(closest to the +1 site), this gtr regulatory region contained the sequence GAAA (= GAAA4) 

(Fig. 5.2). During previous work this regulatory region was inserted upstream of the lacZ 

reporter gene in a CRIM vector and integrated as a single copy into the S. Typhimurium 

chromosome (Haldimann and Wanner, 2001). After plating of the resulting strain on X-Gal 

media, only blue colonies grew, indicating constitutive expression (Edwin Kaptein) (Fig.5.4b). 
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Fig.5.1. Cladogram of gtr regulatory regions  

 

A dataset of gtr regulatory regions (derived from Davies et al., 2013) was aligned by MUSCLE 

(http://www.ebi.ac.uk/Tools/msa/muscle/) and an unrooted tree generated showing predicted 

relationships based on sequence similarity. The tree does not incorporate distance calculations. 

gtr regulatory regions without four GATC sites are highlighted in red.  
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The absence of phase variation was intriguing, given the high similarities (98% sequence 

identity for gtrABC) between the S. Typhi 2_II gtr and the LT2_I gtr of S. Typhimurium – both 

operons were predicted to perform the same O-antigen modification ( 1-4 glycosylation of 

galactose) (Davies et al., 2013). Could there be an evolutionary reason explaining why this 

modification phase varied in S. Typhimurium, but not in S. Typhi?  

 

S. Typhi is thought to have evolved from S. Typhimurium through mutations that disable certain 

genes, leaving it with 204 pseudogenes (Parkhill et al., 2001). However, the S. Typhi 2_II gtr 

operon does not contain any mutations that would indicate non-functionality (true for all S. 

Typhi sequences in GenBank as of 27/01/16).  

 

A second gtr operon is present in the genome of S. Typhi, named Typhi 2_I gtr, which performs 

acetylation of the O-antigen at the rhamnose molecule (Erica Kintz). This gtr regulatory region 

was inserted into the CRIM vector and found to be capable of phase variation (Edwin Kaptein) 

(Fig.5.4a). If the constitutive expression of Typhi 2_II gtr was selected for by some unknown 

mechanism, the same did not apply to Typhi 2_I gtr. 

 

An initial experiment aimed to determine whether the GAAA4 sequence variation was the 

solitary cause for the absence of phase variation of Typhi 2_II gtr. If this was the case, replacing 

GAAA4 with GATC would restore phase variation. If phase variation was not restored by this 

experiment, it would indicate that some other sequence variation was preventing this. 

 

The Typhi 2_II gtr region had been previously inserted upstream of the lacZ reporter gene in a 

CRIM vector (Edwin Kaptein, Haldimann and Wanner, 2001) (Fig.5.3). This vector was point 

mutated by overlap extension PCR to replace the GAAA4 sequence with a 4th GATC site (= 

GATC4). The resulting vector was integrated as a single copy into the S. Typhimurium LT2 

chromosome. This strain was chosen as a model organism, as all previous work on gtr made use 

of the LT2 strain, allowing comparisons to be made. The resulting strain was found to be 

capable of phase variation as indicated by the presence of blue and white colonies on X-Gal 

media (Fig.5.4c). This result indicated that the GAAA4 sequence variation of Typhi 2_II gtr was 

responsible for the absence of phase variation. 
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Fig. 5.3. Diagram of the CRIM vector. 

 

Annotations include gtr regulatory region in green, lacZ reporter gene (purple), 

chloramphenicol resistance marker (‘CAT marker’, orange), attP site (pink), origin of 

replication (‘R6Kg origin’, black) and Acc65I/PstI restriction sites used to insert the gtr 

regulatory region (blue). Graph to scale. Image created using Plasmapper (Dong et al., 2004). 
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Fig.5.4. Colony phenotypes of S. Typhi gtr:lacZ CRIM vector strains  

 

A, Path 667, S. Typhi with Typhi 2_I gtr:lacZ CRIM vector insertion. B, Path 636, S. 

Typhimurium LT2 with Typhi 2_II gtr:lacZ fusion CRIM vector. C, Path 806, S. Typhimurium 

LT2 with Typhi 2_II GATC4 mutant gtr:lacZ CRIM vector. D, Path 833, S. Typhimurium LT2 

with Typhi 2_II GATA4 mutant gtr:lacZ CRIM vector. Colonies were diluted and spread plated 

on M9 X-Gal media except for Path 667 which was plated on LB X-Gal media with aromatic 

amino acid supplements. Representative of two repeats.  

A 

C 

B 

D 
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5.2.2 Phase variation does not require four GATC sites 

 

Why did adding an extra GATC4 site to Typhi 2_II gtr regulatory region restore phase 

variation? The extra GATC4 site would be a further target for Dam methylation. However, the T 

base inserted by the point mutation also improved the match with the predicted OxyR C half site 

(Fig. 5.2). This raised the question whether both of these point mutations were necessary to 

restore phase variation. Alternatively, a single bp change could be sufficient to restore phase 

variation.  

 

To address this, it was decided to replace the GAAA4 sequence of Typhi 2_II gtr with GATA4. 

This single base pair change would improve the OxyR C half site (similar to LT2_I gtr, see 

Fig.5.2), but without adding an extra GATC methylation target. If phase variation was possible 

in this strain, it would indicate that the wildtype Typhi 2_II gtr did not phase vary because the 

GAAA4 mutation prevented OxyR binding, not because a GATC methylation target was 

missing. 

 

A further motivation for this experiment came from analysis of a further gtr regulatory region 

with only three GATC sites: S. Gallinarum_I contained a GATA4 sequence variation instead of 

a 4th GATC site (Fig.5.2). If the S. Typhi 2_II gtr GATA4 mutant was capable of phase 

variation, it could also indicate whether or not phase variation was possible in S. Gallinarum_I 

gtr. 

 

The S. Typhi 2_II gtr regulatory region lacZ fusion contained in a CRIM vector was altered by 

replacing the GAAA4 sequence with GATA4. The resulting vector was integrated as a single 

copy into the S. Typhimurium LT2 chromosome. Plating the resulting strain on X-Gal media 

produced blue and white colonies, showing that the Typhi 2_II gtr GATA4 mutant was capable 

of phase variation (Fig.5.4d). Therefore, the absence of phase variation in Typhi 2_II gtr was 

caused by the sequence variation GAAA4 preventing OxyR binding, as opposed to preventing 

methylation at this site. 
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5.2.3 Switch frequency differences between three and four GATC gtr regulatory 

regions 

 

The insight that three GATC sites were sufficient for phase variation if OxyR binding was still 

possible in all three half sites, raised the question why the majority of studied gtr operons 

contain 4 GATC sites. Is there a difference between having three or four GATC sites? To 

answer this, the frequency at which OFF colonies switch to the ON phenotype and vice versa 

was measured for both the Typhi 2_II gtr GATC4 and GATA4 mutants. Single ON or OFF 

colonies were resuspended, diluted and spread plated on X-Gal media to determine the 

proportion that switched colony phenotype. The results showed that the GATA4 mutant (i.e. 

GATA instead of a 4th GATC site closest to the gtr promoter) had an ON to OFF switch 

frequency that was on average 2.7 – fold higher than the GATC4 mutant (i.e. 2.7 times more 

colonies switching from ON to OFF). The OFF to ON switch frequency displayed an even 

greater difference: this was 8.5 times higher on average in the GATA4 mutant than in the 

GATC4 mutant (Table 5.1). The GATA4 mutant therefore had a higher switch rate. 

 

5.3 THE S. INFANTIS_I gtr 

 

5.3.1 The S. Infantis_I gtr also contains three GATC sites 

 

A further gtr operon investigated was the S. Infantis_I gtr: in this case the regulatory region 

contained the sequence variation TATC1 instead of the first GATC site (furthest from the +1 

site) (Fig.5.2). This regulatory region had been previously inserted into a CRIM vector upstream 

of the lacZ gene. A S. Typhimurium LT2 strain with a single copy insertion of this CRIM vector 

grew as blue and white colonies indicating that the S. Infantis_I gtr regulatory region was 

capable of phase variation (Davies et al., 2013) (Fig.5.5a). 

 

Why was phase variation possible in S. Infantis_I gtr despite only three GATC sequences being 

present? The Typhi 2_II gtr also contained only three GATC sites, but did not phase vary. 

However, unlike the S. Typhi 2_II gtr, the TATC1 sequence variation did not alter the sequence 

of the OxyR A half site it overlapped with, any more than a GATC site would. Considering the 

information gained from the Typhi 2_II gtr GATA4 mutant, it seemed likely that the reason 

phase variation occurred in this strain was because OxyR was capable of binding the OxyR A 
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Table 5.1. Switch frequencies and lacZ expression levels of S. Typhi gtr:lacZ CRIM 

vector strains  

 

a. Miller Units are given as averages of 4 technical repeats, with the standard deviation (SD) in 

brackets. Path 637, Path 806 and Path 833 results were calculated for 100% ON cultures 

(originally 86%, 64% and 65% ON, respectively).  

Strain 

gtr region 

(relevant 

sequence) 

Lac 

phenotype 

Miller 

Unitsa (SD) 

ON → OFF 

switch 

frequency 

OFF → ON 

switch 

frequency 

Path 637 S. Typhi 2_I Lac+/Lac- 1116 (42) 

2.5 x 10-3 2.3 x 10-3 

3.4 x 10-3 2.5 x 10-3 

Path 636 

S. Typhi 

2_II wt 

(GAAA4) 

Lac+ 738 (46) n/a n/a 

Path 806 

S. Typhi 

2_II 

(GATC4) 

Lac+/Lac- 619 (12) 

6.3 x 10-3 1.9 x 10-3 

6.0 x 10-3 2.1 x 10-3 

Path 833 

S. Typhi 

2_II 

(GATA4) 

Lac+/Lac- 250 (11) 

1.8 x 10-2 1.9 x 10-2 

1.6 x 10-2 1.5 x 10-2 
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Fig.5.5. Colony phenotypes of S. Infantis_I gtr:lacZ fusion CRIM vector strains  

 

A, Path 438, S. Typhimurium LT2 with S. Infantis_I gtr:lacZ (TATC1) CRIM vector insertion. 

B, Path 893, S. Typhimurium LT2 with S. Infantis_I TAAC1 mutant gtr:lacZ fusion CRIM 

vector. C, Path 924, S. Typhimurium LT2 with S. Infantis_I GATC1 mutant gtr:lacZ CRIM 

vector. Colonies were diluted and spread plated on M9 X-Gal media. Representative of two 

repeats.  

B 

C 

A 
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 half site. If this was true, altering the TATC1 sequence by removing bases that formed part of 

the OxyR A half site should abrogate phase variation. 

 

The TATC1 sequence variation of the S. Infantis_I gtr regulatory region (fused to lacZ) 

contained in a CRIM vector was changed to TAAC1 (Steven Watson). Doing so removed a T 

base that formed part of the OxyR A half site. Single copy insertion of the point mutated CRIM 

vector into S. Typhimurium LT2 and plating on X-Gal media showed that all colonies grew 

white (Fig.5.5b). A -galactosidase assay showed that this strain had very low lacZ expression 

of 3 Miller Units, whereas the wildtype ancestor had 932 Miller Units (Table 5.2). This result 

indicated not only that phase variation had ceased, but also that OxyR could be repressing 

expression of the lacZ reporter by persistently binding gtr in the OFF position (at the B and C 

half sites). It was concluded that the TATC1 sequence variation did not prevent phase variation 

because it still allowed OxyR binding at the A half site. 

 

5.3.2 The TATC1 sequence variation affects phase variation 

 

Did the TATC1 sequence variation of S. Infantis_I gtr alter the switch frequency compared to a 

gtr regulatory region containing four GATC sequences? The GATA4 mutation in S. Typhi 2_II 

gtr certainly altered the switch rate compared to the same gtr with four GATC sites. If the same 

situation applied to S. Infantis_I, changing the TATC1 sequence to GATC1 should produce a 

different switch rate. 

 

The S. Infantis_I gtr regulatory region contained in a CRIM vector was point mutated by 

changing the TATC1 sequence to GATC1 (Steven Watson). Integrating the resulting vector as a 

single copy into the S. Typhimurium LT2 chromosome produced blue and white colonies on X-

Gal media (Fig. 5.5c). Phase variation was clearly still possible with a fourth GATC site.  

 

The ON to OFF switch frequency of the GATC1 mutant strain showed a minor difference 

compared to the wildtype strain (averages of 5.8 x 10-3 and 6.4 x 10-3, respectively). However, 

the OFF to ON frequency of the GATC1 mutant was 12.2 – fold lower compared to the wildtype 

strain (averages of 5.30 x 10-4 and 6.45 x 10-3, respectively) (Table 5.2). The TATC1 sequence 

variation therefore did alter the switch frequency of S. Infantis_I gtr. 
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Table 5.2. Switch frequencies and lacZ expression levels of S. Infantis_I gtr:lacZ 

CRIM vector strains  

a. Data from Davies et al., 2013. 

b. Miller Units are given as averages of 4 technical repeats, with the standard deviation in 

brackets. Path 924 results were calculated for 100 % ON cultures (originally 88 % ON). 

  

Strain 

gtr region 

(relevant 

sequence) 

Lac 

phenotype 

Miller 

Unitsb (SD) 

ON → OFF 

switch 

frequency 

OFF → ON 

switch 

frequency 

Path 444a 
S. Infantis_I 

wt (TATC1) 
Lac+/Lac- 932 (27) 

6.0 x 10-3 5.3 x 10-3 

6.8 x 10-3 7.6 x 10-3 

Path 893 
S. Infantis_I 

(TAAC1) 
Lac- 3 (0.04) n/a n/a 

Path 924 
S. Infantis_I 

(GATC1) 
Lac+/Lac- 1290 (10) 

4.1 x 10-3 3.7 x 10-4 

7.1 x 10-3 6.9 x 10-4 
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5.4 DIFFERENCES BETWEEN gtr:lacZ AND gtrABC::lacZ 

REPORTER FUSIONS 

 

As part of experiments to measure expression of gtr genes, the lacZ gene was inserted 

downstream of the LT2_I gtrABC operon on the S. Typhimurium LT2 chromosome by 

lambdaRed recombination (Datsenko and Wanner, 2000). The lacZ gene was separated from the 

gtrC stop codon by 20 bp which contained an additional ribosome binding site. Transcription of 

the gtr operon resulted in co-transcription of the lacZ gene. The LT2_I gtr regulatory region 

contains four GATC sites and phase varies (Fig.5.2). The resulting strain (Path 859) grew as 

blue and white colonies on X-Gal media. The same procedure was performed on the ST4/74_I 

gtr operon (which is identical to LT2_I gtr) of the S. Typhimurium ST4/74 strain (= Path 891).  

 

It was decided to compare lacZ expression levels and switch frequencies of the gtrABC::lacZ 

fusion strains with a previously produced CRIM vector containing the LT2_I gtr regulatory 

region fused to lacZ (Broadbent et al., 2010). This CRIM vector had been inserted as a single 

copy into the chromosome of S. Typhimurium LT2. The primary aim of the experiments was to 

confirm that the LT2_I gtrABC::lacZ fusion strain behaved similarly to the LT2_I gtr CRIM 

vector strain. This could not be taken for granted, as the gtr operon and insertion site for the 

CRIM vector are located in different areas of the chromosome and orientated in different 

directions relative to the origin of replication. Transcription of the gtrABC::lacZ operon occurs 

towards the origin of replication, and in the opposite direction for the gtr:lacZ fusion in the 

CRIM vector. The att B site used for insertion of CRIM vectors in the S. Typhimurium LT2 

chromosome is at position 851647 – 851669, whereas the LT2_I gtr operon is encoded from 

614807 – 617722. The sites are therefore displaced by ~233 kb. 

 

-galactosidase assays found that lacZ expression levels of the gtrABC::lacZ fusion strains 

(Path 859, Path 891) were lower than in the CRIM vector strain (Path 84) (Table 5.3). A 

possible explanation was that the lacZ gene in the gtrABC::lacZ fusions was separated from the 

promoter region by the 2.918 kilobase sequence of the gtr operon, which may have reduced the 

amount of transcription occurring. In the CRIM vector, the gtr promoter region was fused 

directly to the lacZ gene. It was important to note this difference in lacZ expression, as it could 

affect the switch frequency calculation: lower lacZ expression could cause the number of OFF 

colonies to be overestimated, which would give a higher ON to OFF switch frequency. 
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Table 5.3. Switch frequencies and lacZ expression levels of S. Typhimurium 

gtr:lacZ CRIM vector strains and gtrABC::lacZ fusion strains 

 

a. Data from Broadbent et al., 2010. 

b. gtr:lacZ fusion CRIM vector insertion 

c. gtrABC::lacZ chromosomal operon fusion 

d. Miller Units are given as averages of 4 technical repeats, with the standard deviation in 

brackets. Path 84, Path 859 and Path 891 results were calculated for 100% ON cultures 

(originally 72%, 77% and 86% ON, respectively).  

Strain 
gtr reporter 

fusion 

Lac 

phenotype 

Miller 

Unitsd (SD) 

ON → OFF 

switch 

frequency 

OFF → ON 

switch 

frequency 

Path 84a,b 

LT2_I 

gtr:lacZ 

CRIM 

Lac+/Lac- 1236 (140) 

2.1 x 10-2 2.0 x 10-3 

2.2 x 10-2 1.7 x 10-3 

Path 859c 
LT2_I 

gtrABC::lacZ 
Lac+/Lac- 130 (6) 

4.7 x 10-3 1.5 x 10-3 

4.3 x 10-3 2.0 x 10-3 

Path 891c 
ST4/74_I 

gtrABC::lacZ 
Lac+/Lac- 128 (2) 

6.8 x 10-3 8.9 x 10-4 

7.0 x 10-3 6.1 x 10-4 
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Switch frequency analysis was performed on the gtrABC::lacZ fusion strains (Path 859, Path 

891). It was found that the ON to OFF frequency was lower (fewer colonies switching OFF) in 

the gtrABC::lacZ fusions (averages of 4.8 x 10-3 for LT2  and 3.1 x 10-3 for ST4/74) than in the 

CRIM vector strain (average of 2.2 x 10-2, Broadbent et al., 2010) (Table 5.3). This difference 

could not be explained by the lower -galactosidase expression of the gtrABC::lacZ fusion 

strains as it meant that more colonies were retaining an ON phenotype compared to the CRIM 

vector strain. Instead, it pointed to a different regulatory effect being involved. 

 

Finally it should be mentioned that the ST4/74 gtrABC::lacZ fusion strain also showed a lower 

OFF to ON switch rate compared to the CRIM vector strain (averages of 7.5 x 10-4 and 1.9 x  

10-3, respectively). As mentioned, this discrepancy could be explained by lower expression of 

the lacZ gene. However, this difference did not seem to be as pronounced in the LT2 

gtrABC::lacZ fusion strain which showed an OFF to ON frequency of 1.8 x 10-3 on average 

(Table 5.3). Given that the LT2 and ST4/74 strains showed equal amounts of -galactosidase 

expression, it seems possible that a further effect could be involved in the ST4/74 strain. 

 

5.5 DISCUSSION 

 

5.5.1 gtr sequence variation in naturally occurring serovars 

 

The results in this chapter demonstrate how phase variation can be influenced by naturally 

occurring sequence variation (and possibly by the position and orientation of the gtr operon in 

the chromosome). A benefit of gtr phase variation is the increased population heterogeneity, 

which creates a variety of O-antigen phenotypes, even among a population derived from a 

single cell. This raises the question why S. Typhi 2_II gtr is incapable of phase variation. Is 

there an advantage to losing phase variation? 

 

Given that S. Typhi is thought to have evolved from S. Typhimurium, it is reasonable to assume 

that the S. Typhi 2_II gtr is derived from LT2_I gtr, as opposed to evolving independently (both 

operons perform the same modification and display DNA sequence homology of 98 %) 

(Parkhill et al., 2001). Therefore, it seems plausible that the GAAA4 sequence variation that 

prevents S. Typhi 2_II gtr phase variation was acquired during this evolution. Was this variation 

positively selected for, or simply not selected against? As the variation removes the potential 
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benefit of population heterogeneity it could point to another incentive for retaining it. Should 

that be the case, it seems to only apply to this particular gtr operon in S. Typhi – the other gtr 

operon present in the genome, S. Typhi 2_I is fully capable of phase variation. Could the S. 

Typhi 2_II gtr O-antigen glycosylation be of such benefit to S. Typhi, that phase variation is 

abandoned in favour of constitutive expression? During the course of this work, results obtained 

in the van der Woude laboratory showed that constitutive gtr glycosylation of the S. Typhi O-

antigen led to a survival advantage in human serum (personal communication by Erica Kintz 

2015, in preparation). This result could explain why the S. Typhi 2_II gtr operon evolved to be 

expressed constitutively. 

 

With regard to such a potential advantage, the different lifestyles of S. Typhi and S. 

Typhimurium should be considered. While S. Typhimurium may cause self-limiting gastro-

enteritis in a broad host range, S. Typhi causes systemic, persistent infections only in humans. 

The reasons for this host restriction are not fully understood, although they may be connected to 

differences in recruitment of neutrophil cells to the intestinal lining following infection 

(reviewed in Spanò, 2014). 

 

It was interesting that the GATA4 mutation in S. Typhi 2_II gtr still allowed phase variation, 

although at a different switch frequency. This particular mutation was also found in S. 

Gallinarum_I gtr, which has the same sequence instead of a 4th GATC site. Therefore the S. 

Gallinarum_I gtr may have a higher switch rate as well, although this would need to be 

confirmed separately, as there are some other sequence differences. For example, the OxyR B 

half sites differ by 3 bp (Fig.5.2). The mismatching bp are not part of the established OxyR 

binding site consensus and are therefore unlikely to affect the switch frequency.  

 

The S. Gallinarum serovar is host-restricted to chickens, although it evolved from the broad-

host range S. Enteritidis serovar (Thomson et al., 2008). S. Enteritidis hosts two gtr operons, 

both of which contain four GATC sites and are therefore likely to phase vary. Parallels could be 

drawn between these two serovars and S. Typhi and S. Typhimurium – the host-restricted 

serovars contain gtr operons with sequence variations that remove GATC sites, whereas the 

broad host-range serovars they evolved from contain gtr operons with four GATC sites and are 

predicted to phase vary. The gtr sequence variations could have been acquired during the 

evolution to host-restriction. Perhaps a higher gtr switch rate could be advantageous in certain 

environments. 
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However, host-restricted serovars are not the only strains with sequence variations that impact 

gtr phase variation: S. Infantis_I for example, infects both chickens and humans (Dunowska et 

al., 2007, Murakami et al., 1999). The exact function of the S. Infantis_I gtr is unknown 

although it appears to produce visible shifts in TSDS-PAGE separations of LPS molecules, 

indicating that it could be adding a molecule such as glucose (Davies et al., 2013). 

 

5.5.2 Effect of sequence variation on gtr phase variation 

 

Based on the results in this chapter (and chapter 4) the following statements can be made about 

the effect of sequence variation on gtr phase variation: firstly, alteration of a single GATC site 

in a way that removes the Dam target sequence but without changing the overlapping OxyR half 

site increases the phase variation switch frequency. The absence of a GATC site may increase 

the chances of OxyR binding the overlapping OxyR half site. This observation was made with 

both the S. Typhi 2_II GATA4 mutant and S. Infantis_I TATC1 (wildtype) gtr compared to the 

same gtr regulatory regions with 4 GATC sites. 

 

Second, alteration of a single GATC site in a manner that reduces the match of the overlapping 

OxyR half site with the OxyR consensus binding site abrogates gtr phase variation. This is 

evidenced by the S. Typhi 2_II gtr wildtype (GAAA4), in which a T base missing from the 

OxyR consensus was responsible for the locked ON phenotype. Similarly, the S. Infantis_I gtr 

TAAC1 mutant displayed a locked OFF phenotype. In both cases, the absence of a single T base 

reduced the match between the overlapping OxyR half site with the established OxyR binding 

consensus by one bp (to seven out of ten bp match). OxyR binding involves four sites which are 

bound with intermediate affinity (Toledano et al., 1994). The absent T bases in this work were 

sufficient to cause loss of phase variation in S. Typhi 2_II or S. Infantis_I gtr, which could be 

explained by a reduced overall affinity of OxyR to the mutated half sites. 

 

Third, altering both GATC sites in a single OxyR half site without reducing the match with the 

OxyR half site binding consensus leads to loss of phase variation. This was evidenced by Path 

931, in which alteration of GATC3 and GATC4 of the OxyR C half site (to GATA3 and TATC4, 

respectively) in  ST4/74_I gtr resulted in a locked OFF phenotype. In this case OxyR likely 

bound the B and C half sites persistently, due to absence of Dam methylation (see chapter 4). 

Furthermore, changing GATC1 and GATC2 of LT2_I gtr to CATC1 and GATG2 caused a locked 

ON phenotype (Broadbent et al., 2010). Based on this and the first statement (see above), it 
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seems that OxyR affinity to a particular half site increases successively with the removal of 

GATC sites, provided that the match with the consensus binding site is not reduced. These 

statements apply to the gtr operons examined in this work. It should not be assumed that they 

apply equally to other gtr operons, as sequence variation outside the GATC sites could also 

have an impact.  

 

The S. Typhi 2_II gtr GATA4 mutation removed a GATC site in the OxyR C half site, but 

without altering the OxyR binding consensus. This may have increased the affinity of OxyR to 

the C half site (which is occupied by OxyR during the OFF phase), and therefore caused a 2.7-

fold higher ON to OFF switch rate (compared to the S. Typhi 2_II gtr GATC4 mutant). 

However, the 8.5-fold increase in OFF to ON switch frequency was unexpected. The OxyR A 

site had not been altered, but OxyR seemed to have an increased affinity towards it, as indicated 

by the elevated OFF to ON switch frequency. In short, the GATA4 mutation increased both the 

OFF to ON and the ON to OFF switch frequency. 

 

Furthermore, in the case of S. Infantis_I gtr, the TATC1 sequence variation appeared to increase 

only the OFF to ON switch frequency (compared to the S. Infantis_I GATC1 gtr mutant). In this 

case, TATC1 replaced a GATC site in the OxyR A half site, and also did not alter the OxyR 

binding consensus. This may have caused OxyR to have increased affinity for the OxyR A site, 

causing an increase in the OFF to ON switch. However, unlike the S. Typhi 2_II gtr GATA4 

mutant, the TATC1 sequence variation only affected the OFF to ON switch frequency. 

 

Comparing S. Infantis_I gtr and S. Typhi 2_II gtr was therefore difficult, as the absence of 

single GATC sites appeared to have different effects on them. In particular, removal of single 

GATC sites, whithout altering the overlapping OxyR half binding sites did not have identical 

effects on the switch frequency. A number of other sequence variations in both gtr regulatory 

regions could provide an explanation. For example, the S. Typhi 2_II gtr OxyR A and C half 

sites contain 8 out of 10 bp of the OxyR binding consensus sequence, while the B half site 

contains 9 out of 10 bp. On the other hand, in S. Infantis_I gtr, the OxyR A half site contains an 

8 out of 10 bp match, the B half site 10 out of 10 bp and the C half site 7 out of 10 bp (Fig. 5.2). 

 

The S. Infantis_I gtr GATC1 mutant is biased towards the OFF phase (10.6-fold lower OFF to 

ON switch frequency than ON to OFF), indicating that OxyR preferentially binds the B and C 

half sites. This seems paradoxical, given that the B and C half sites collectively have a worse 
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match with the OxyR binding consensus sequence (17 out of 20 bp), compared to the A and C 

half sites (18 out of 20 bp). 

 

Sequence variations away from GATC sites, but within the OxyR half binding sites are known 

to affect phase variation: the LT2_I gtr regulatory region is biased towards the OFF phase and 

contains an OxyR B half site with a 9 out of 10 bp match to the OxyR binding consensus. The 

P22 gtr OxyR B half site matches the consensus perfectly (10 out of 10 bp) and is biased 

towards the ON phase. Changing the P22 OxyR B half site to imitate the LT2_I gtr B half site 

with 9 out of 10 bp caused an OFF bias. Alternatively, changing the LT2_I B half site by 

improving the OxyR binding site consensus match to 10 out of 10 bp reduced the bias towards 

the OFF phase (Sarah Broadbent). 

 

Other potentially important sequence variations concern bp that are included in OxyR half sites 

but are not part of the established consensus OxyR binding sequence. For instance, in the 

sequence ATCGgT, the lower case g makes a positive contribution towards the average 

sequence conservation of an OxyR binding site (Zheng et al., 2001a). This motif is present in 

the S. Typhi 2_II gtr OxyR A half site, but not in the S. Infantis_I gtr OxyR A half site. In 

contrast, in the motif AgCTAT, the lower case g makes a negative contribution towards the 

average sequence conservation of an OxyR binding site. This sequence is present in the OxyR B 

half sites of both S. Infantis_I and S. Typhi 2_II gtr. The individual impact of these sequence 

variations (if any) would need to be determined separately and initially in the same model 

system such as LT2_I gtr, as this is probably the best understood.  

 

Using X-ray crystallography, Horton et al., (2015) showed that E. coli Dam (92 % amino acid 

identity compared to S. Typhimurium LT2 Dam) can also bind to non-GATC sequences such as 

GTTTA, or incomplete GATC sites like ATC. By binding these sequences, Dam could repress 

transcription, or affect methylation of GATC sites in the proximity. These sequences are present 

in the phase varying agn43 regulatory region. The sequences are also present in the OxyR C 

half site between GATC3 and GATC4 (gatcGTTTAtATCgatc, upper case letters) of the LT2_I, 

S. Typhi 2_II and S. Gallinarum_I gtr regulatory regions, among others. The P22 or S. Infantis_I 

gtr regulatory regions do not contain these sequences. 

 

The GATA4 mutation introduced in S. Typhi 2_II gtr also improved the match of the -35 site 

(TCGATA) with the consensus sequence (TTGACA) compared to the wildtype (Madigan et al., 
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2005). This did not appear to increase transcription: maximum -galactosidase expression of the 

S. Typhi 2_II gtr GATA4 strain was 250 Miller Units, compared to 738 in the wildtype gtr:lacZ 

fusion. The higher switch frequency of the S. Typhi 2_II gtr GATA4 strain could have caused an 

overestimation of the number of switched ON colonies, resulting in a lower number of Miller 

Units being calculated. 

 

5.5.3 Effect of chromosomal location and orientation on gtr phase variation 

 

The chromosomal fusions of LT2_I gtrABC::lacZ (Path 859, Path 891) seemed to indicate a 

possible effect of location or orientation on the chromosome on gtr switch frequency. DNA 

replication is presumably the only situation under which gtr can switch phases, as DNA 

methylation can be altered at this point (Broadbent et al., 2010). The competition between 

OxyR and Dam for binding newly synthesised DNA, and factors that influence this process are 

discussed below. 

 

DNA-bound proteins such as OxyR are removed by helicases during replication, although head-

on collisions with RNA polymerase slow the progress of the DNA replication fork (Merrikh et 

al., 2012). Ribosomal RNA genes are mostly (~ 70 % in E. coli) transcribed co-directionally 

with the replication fork. However, inversion of a ribosomal RNA gene delays the replication 

fork (Boubakri et al., 2010). 

 

As mentioned, the gtrABC::lacZ fusions were orientated towards the origin of replication. The 

LT2_I gtr:lacZ fusion contained in CRIM vector (Path 84) was inserted in the opposite 

direction on the chromosome and ~233 kb downstream of the gtrABC operon. Therefore 

transcription of gtrABC::lacZ would encounter the replication fork head-on, whereas gtr:lacZ 

transcription would be co-directional with the replication fork. Transcription from the 

gtrABC::lacZ operon fusion is therefore more likely to delay the replication fork than the CRIM 

vector based gtr:lacZ fusion. Dam is processive and methylates GATC sequences shortly, but 

not immediately after DNA replication (Pollak et al., 2014; Urig et al., 2002; Wion and 

Casadesús, 2006). Delaying the replication fork could therefore also lead to a delay in Dam 

methylation of gtr regulatory regions, which could in turn impact OxyR binding, although this 

have only a minor effect on gtr switch frequency. 
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A more pronounced effect could be caused by the order in which particular GATC sites are 

methylated in a gtr regulatory region. During DNA replication, the OxyR A half site of the 

CRIM vector based LT2_I gtr:lacZ fusion strain would encounter the replication fork before the 

B and C half sites. In this case, the switch frequency is biased towards the OFF phase (ON to 

OFF switch frequency was 11.9-fold higher than OFF to ON). Therefore the GATC sequences 

in the A half site have a higher chance of being methylated, which would lead to OxyR 

preferentially binding the B and C half sites causing the gtr OFF phase. This could suggest that 

Dam has a higher chance of accessing GATC sites in a newly synthesised OxyR half site than 

OxyR has of binding the new site.  

 

In contrast, in the LT2_I gtrABC::lacZ operon fusion strain, the OxyR C half site would be 

replicated first. In this case, if Dam does indeed have a higher chance of accessing GATC sites 

in a newly synthesised OxyR half site before OxyR can bind, GATC sequences in the C half site 

would more likely be methylated. OxyR would then preferentially bind the A and B half sites 

leading to gtr having a higher likelihood of being switched ON. An ON bias was not measured 

in this strain, although the OFF bias was less pronounced (OFF to ON switch frequency was 

2.6-fold higher than OFF to ON) than the CRIM vector based LT2_I gtr:lacZ fusion strain. 

Other factors, such as the potential alternative Dam sites (which are only present in the C site) 

or collision between transcription and the replication fork could affect the switch frequency bias 

as well. Furthermore, transcription of lacZ is likely to be lower in this strain due to being placed 

at the end of the gtrABC operon – so if there is an ON bias, it may not be easily detected due to 

lower expression of the -galactosidase reporter.  

 

The potential influence of chromosomal orientation provides a new perspective on the results 

obtained with the S. Infantis_I and S. Typhi 2_II gtr:lacZ fusions. Specifically, In S. Infantis_I 

gtr, the replication fork would hit the A half site first, containing the TATC1 sequence variation. 

As Dam cannot methylate this sequence, OxyR could be able to bind the A and B half sites 

preferentially. This may cause the increased OFF to ON switch frequency compared to the S. 

Infantis_I gtr GATC1 mutant.  

 

The S. Typhi 2_II gtr GATA4 mutant is harder to explain given that switch frequency increased 

for both OFF to ON and ON to OFF compared to the S. Typhi 2_II GATC4 mutant. The 

replication fork encounters the OxyR C half site containing the GATA4 mutation last, after 

passing though the A and B half sites. OxyR would have to compete with Dam to bind the A 

and B half sites. For unknown reasons, OxyR appears to bind the A and B half sites with equal 
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chance as the B and C half sites in S. Typhi 2_II GATA4 gtr. The presence of the potential 

alternative Dam target sequence in the OxyR C half site may contribute to this. 

 

A further example of chromosomal orientation causing changes in switch frequency concerns 

the E. coli agn43 gene which also phase varies through Dam methylation of GATC sites and 

OxR binding. Three GATC sites overlap with a single OxyR binding site and the agn43 

transcriptional start site. OxyR binding halts transcription of agn43 and GATC methylation 

blocks OxyR binding (Haagmans and Van Der Woude, 2000; Wallecha et al., 2002).  

 

Insertion of three extra OxyR sites 466 bp upstream of a transcriptional fusion of the agn43 

regulatory region to the lacZ gene caused a locked OFF phenotype (Kaminska and van der 

Woude, 2010). In this case, the replication fork passed through the auxiliary OxyR sites before 

encountering the agn43 regulatory region. DNA replication would have caused removal of 

OxyR from the auxiliary sites and increased its localised concentration. The increased amounts 

of OxyR may have been able to outcompete Dam for binding the agn43 regulatory region after 

replication. In a further experiment, the entire agn43:lacZ fusion and the auxiliary OxyR sites 

were inverted on the chromosome. This way, replication fork encountered the agn43 regulatory 

region before the auxiliary OxyR sites. As a result, phase variation was restored, with a bias 

towards the OFF phase. This example illustrates how shifts in the competition between OxyR 

and Dam can cause phase variation bias. The potential alternative Dam binding sites in the 

LT2_I gtr OxyR C site could have a similar effect on phase variation. 

 

A further question concerns the effect of chromosomal location on gtr transcription. It is not 

unprecedented for gene regulation to be affected by position in the chromosome, as some areas 

may contain a lower G/C content that is preferentially bound by regulators such as H-NS 

(Brambilla and Sclavi, 2015). The horizontally acquired LT2_I gtrABC operon is part of the 

SPI16 pathogenicity island, with a G/C content of 39.8% (Vernikos and Parkhill, 2006). The 

G/C content of the Salmonella Typhimurium genome is 52.2 %. H-NS reduces transcription by 

roughly one third from genes with an average of 46.8 % G/C content (Navarre et al., 2006). The 

LT2_I gtrABC operon is therefore within the range that could be targeted by H-NS for 

repression. In contrast, the G/C content of the CRIM vector containing the LT2_I gtr:lacZ 

fusion is 50.1%, and is therefore unlikely to be a target for H-NS repression. 
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A possible method to test how chromosome location and orientation affects gtr regulation 

would be to produce gtr:lacZ fusions and insert them in varying orientations at different 

positions throughout the Salmonella chromosome. Alternatively, the gtr:lacZ fusion in the 

CRIM vector could be inverted to test how orientation affects the switch frequency. 

 

5.5.4 Potential future experiments 

 

A further observation concerned the use of reporter fusions of gtr regulatory regions to the lacZ 

gene. These provided a convenient tool for studying phase variation and the effects of sequence 

variation. The limitations of the method became clear during measurement of strains with 

higher switch frequencies (e.g. S. Typhi 2_II gtr GATA mutant), due to the reliance on 

assessment of colony morphology: switch frequency calculations assumed that a blue colony on 

X-Gal media was derived from a switched ON cell, and a white colony from an OFF cell. If the 

switch frequency of a strain is above ~1 x 10-2, it may be difficult to distinguish separate colony 

phenotypes, as an ON cell will produce a colony with a large amount of OFF cells and vice 

versa. A strain with a high switch frequency could produce a uniform ON colony phenotype and 

thus mistakenly be labelled as non-phase varying.  

 

As an example, in a dam- knockout strain, the LT2_I gtr:lacZ fusion did not show phase 

variation, but rather constitutive low level expression (Broadbent et al., 2010). In this strain, 

OxyR should be able to access all three half sites in the gtr regulatory region because none of 

the GATC sites can be methylated by Dam. Removal of a single GATC methylation target, 

while allowing OxyR binding, increased the switch frequency of the S. Typhi 2_II gtr GATA 

mutant. In the dam- mutant, none of the GATC sites can be methylated, but OxyR can still bind 

the overlapping OxyR half sites. Perhaps phase variation does occur in the dam- mutant, but the 

switch frequency is too high for detection by the gtr:lacZ fusion reporter. A further possibility 

to study this without performing a dam- mutation (which could have wide-ranging side effects 

on the cell), would be to point mutate all GATC sites in a gtr regulatory region, but without 

altering the OxyR half sites. 

 

Observing phase variation in such a rapidly switching system may have to make use of single 

cell assays, rather than measuring the aggregate effect on colonies. For example, a gtr 

regulatory region fused to a fluorescent reporter might allow detection of ON and OFF cells. 

Potentially interesting gtr regions to examine could contain point mutations that remove one, 
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two (in the same or separate half sites), three, or all GATC sites, as well as a dam- knockout 

strain. If the objective was simply to demonstrate that phase variation occurs without measuring 

the switch frequency, the LPS molecules could be examined – a rapidly switching population 

would contain both modified and unmodified O-antigen molecules, which may produce a 

distinctive pattern on TSDS-PAGE gels. 

 

In summary, the work in this chapter demonstrated how naturally occurring sequence variation 

can have substantial effects on gtr phase variation. Removing single GATC sites without 

altering the overlapping OxyR half site increased switch frequency. On the other hand, 

removing single GATC sites as well as altering the overlapping OxyR site abrogated phase 

variation. Chromosomal location of gtr could also impact phase variation. Establishing a wider 

model that ties these effects together and applies equally to different gtr operons is difficult with 

the currently available data. It could be more prudent to focus further research on a single gtr 

operon such as LT2_I. If the role of sequence variation (other than GATC sites) and 

chromosomal location can be defined in this system, perhaps those insights can be extended to 

other gtr operons.  
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6 CHAPTER 6 

DISCUSSION 
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6.1 INTRODUCTION 

 

Previous work determined the mechanism of gtr phase variation (Broadbent et al., 2010). Phage 

resistance was identified as a biological role for gtr (Kim and Ryu, 2012; Kintz et al., 2015). gtr 

operons showed evidence of horizontal gene transfer (Davies et al., 2013). A further possible 

role for gtr concerned long term intestinal persistence in mice (Bogomolnaya et al., 2008). 

 

The work presented here aimed to identify factors that influence gtr phase variation and 

expression, in order to further define the biological role of the gtr operon. It was found that 

naturally occurring sequence variation can have extensive effects on the switch frequency of gtr 

operons. These results provided new insights into how the process of phase variation can be 

fine-tuned, often by single bp changes.  

 

Furthermore, conditions designed to mimic the macrophage SCV reduced gtr expression and 

induced expression of the short RNA STnc1870. This work identified a new role for OxyR, as 

both the repressor and possible activator of STnc1870 transcription. Finally, the SPI2 encoded 

ssaO mRNA was identified as a potential target of STnc1870, thereby linking gtr regulation to 

Salmonella’s intracellular lifestyle. The following chapter focusses on the wider implications of 

these results and potential future experiments. 

 

6.2 INFLUENCES ON gtr EXPRESSION 

 

Expression of gtr was analysed after growth in different conditions. S. Typhimurium entering 

stationary phase growth showed reduced expression of LT2_I gtr operon genes in qRT-PCR 

experiments, compared to exponential phase. Transcription of the gtr operon was also found to 

be independent of the stress response sigma factor . The exact cause of stationary phase 

downregulation of gtr expression remains to be determined, although it could simply be part of 

a general slowing of metabolism as the cells enter stationary phase and encounter nutrient 

limitation.  

 

The S. Typhimurium LPS synthesis genes of the rfb cluster show reduced expression during 

stationary phase compared to exponential phase (Kröger et al., 2013; Schnaitman and Klena, 

1993). In E. coli, LPS biosynthesis is highest during exponential growth and discontinues 
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during stationary phase. Transcription of LpxC, which catalyses the first step in LPS 

biosynthesis is rpoS independent (Schakermann et al., 2013). Could gtr expression be linked to 

LPS synthesis, i.e. does gtr expression increase when LPS production increases? If so, there 

could be some form of coordination between the two in that transcription of the gtr operon 

might increase to match increased LPS synthesis. The sigma factors of RNA polymerase could 

be sufficient to achieve this coordination.  

 

S. Typhimurium LPS biosynthesis increases during growth from exponential to stationary phase 

(Bravo et al., 2008). Based on this, and because gtr transcription is rpoS independent, it is 

reasonable to assume that both the LPS biosynthesis genes and the gtr operon are transcribed by 

the ‘housekeeping’ RNA polymerase sigma factor 70 (RpoD). Therefore, transcription of gtr 

and the LPS biosynthesis genes would be dependent on cellular levels of 70. As mentioned, the 

proportional amount of 70 is reduced as the cell enters stationary phase and rpoD transcription 

decreases (Battesti et al., 2011; Kröger et al., 2013, see chapter 3). Other conditions that reduce 

transcription  of rpoD include ‘shocks’ such as sudden transfer to anaerobic conditions or pH = 

3 media (Kröger et al., 2013). Reduced expression of RpoD could in turn cause reduced 

expression of gtr. gtr expression could be examined under these conditions using the gtrC:lacZ 

fusion strain and qRT-PCR, to determine the influence of other stress factors. 

 

Experiments with plasmids expressing the Erv1p sulfhydryl oxidase and DsbC isomerase did 

not indicate that oxidised OxyR influenced gtr expression or phase variation. This data 

contradicted later qRT-PCR results obtained using InSPI2 media that showed gtr 

downregulation and STnc1870 upregulation in response to H2O2 treatment. Upregulation of 

STnc1870 in response to H2O2 treatment was only achieved in strains with wildtype OxyR – a 

mutant strain with persistently reduced C199S OxyR could not upregulate STnc1870 in 

response to H2O2 treatment (see section 6.5).  

 

However, a number of other differences between the experiments make comparisons difficult. 

For instance, the Erv1p experiments used M9 minimal growth media (pH = 7), as opposed to 

InSPI2 (pH = 5.8). The reporter systems also differed: for the Erv1p experiments, a single copy, 

chromosomally inserted plasmid carrying a fusion of the gtr regulatory region to the lacZ gene 

was used. The qRT-PCR experiments measured transcription of the chromosomal gtr operon. 

Given that the lacZ reporter system is less exact (due to reliance on protein production for 

detection and because reduced transcription may not be detected if the protein is not degraded) 
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and part of an artificial construct, the qRT-PCR results are likely to be more reliable and better 

suited for interpretations. 

 

It may be worthwhile to repeat the Erv1p experiments using InSPI2 media. A strain carrying the 

Erv1p/DsbC plasmid and gtrC:lacZ fusion could be grown in culture before splitting it and 

adding arabinose to one half to induce expression of Erv1p and DsbC. RNA extracted from both 

cultures could be used in qRT-PCR to compare relative amounts of gtr expression. Unchanged 

gtr expression would indicate that OxyR bound to the gtr regulatory region cannot be oxidised 

by Erv1p and DsbC. Other experiments could be performed in vitro using the gtr regulatory 

region DNA and testing whether GATC sites can be methylated by Dam in the presence of 

OxyR and the Erv1p and DsbC. Based on the work in chapter 4, if OxyR is oxidised by Erv1p 

and DsbC, it may not be able to bind the gtr regulatory region at the A, B or C half sites. In this 

case, the overlapping GATC sites should be available for methylation by Dam. Methylated 

GATC sites can then be detected by restriction digestion (Broadbent et al., 2010).  The 

endonuclease DpnI for example cuts exclusively at methylated GATC sites. 

 

6.3 THE gtr REGULATORY REGION PRODUCES A SHORT 

RNA MOLECULE 

 

qRT-PCR experiments confirmed results of Kröger et al., 2013, which showed a short RNA 

(STnc1870) being produced from the gtr regulatory region after growth in InSPI2 media 

combined with a 1 mM H2O2 shock. STnc1870 expression could be induced in cultures 

containing majorities of either gtr ON or gtr OFF cells. However, gtrA expression was reduced 

in all cultures following H2O2 treatment, compared to untreated cultures. 

 

Further work showed that STnc1870 transcription did not increase after H2O2 treatment in a 

strain expressing the mutant C199S OxyR protein, which cannot be oxidised or alter 

conformation in response to oxidative stress (Toledano et al., 1994). Finally, a strain with point 

mutations of 12 bp predicted to form an alternative OxyR binding site in the upstream region of 

the STnc1870 gene showed lower proportional increases in STnc1870 transcription after H2O2 

treatment. Overexpression of STnc1870 from the pLAC22 plasmid reduced expression of the 

ssaO mRNA, which encodes a component of the SPI2 secretion needle.  
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These results were used to establish an expanded model of gtr regulation: in the absence of 

oxidative stress, gtr phase variation occurs through OxyR binding and GATC methylation in the 

upstream region of the gtr operon as established in Broadbent et al., 2010 (Fig.6.1). Growth in 

InSPI2 media and addition of a H2O2 shock may cause OxyR to change to the oxidised 

conformation and relieve repression of STnc1870 by moving to an alternative binding site. This 

process appears to be independent of the ON or OFF state of gtr. Oxidised OxyR bound to the 

alternative site could stimulate transcription of the STnc1870 sRNA.  STnc1870 could then bind 

and downregulate expression of ssaO, a component of the SPI2 secretion needle. 

 

The finding that STnc1870 overexpression caused reduced ssaO expression (and by extension 

could inhibit formation of the SPI2 needle) raised the following question: how could this benefit 

Salmonella? There appeared to be a contradiction, given that expression of the SPI2 needle is 

required for survival in the macrophage (Figueira and Holden, 2012). STnc1870 expression is 

also predicted to be highest in the macrophage. Therefore, STnc1870 inhibition of SPI2 needle 

formation would occur most while in the macrophage.  

 

Why would a sRNA induced by the macrophage environment inhibit formation of the SPI2 

needle that ensures Salmonella survival in the same environment? If SPI2 expression was 

inhibited too much, Salmonella may be killed. It should be noted that STnc1870 expression in 

the macrophage is unlikely to be as high as measured after the 1 mM H2O2 shock in qRT-PCR 

experiments. The concentration of H2O2 in the macrophage has been estimated to be 

approximately 10 M (Aussel et al., 2011). Addition of 10 M H2O2 to cultures grown in 

InSPI2 media did not inhibit growth. Presumably, this amount of H2O2 was rapidly detoxified 

by the cells. In this case, OxyR would have only become oxidised for a brief period, and only a 

low level of STnc1870 could be expressed before repression by OxyR was reinstated (however, 

STnc1870 expression was not measured under this condition). Expression of STnc1870 in the 

macrophage would therefore most likely be at a persistent low level.  

 

Even after IPTG-induced overexpression of STnc1870, the maximum reduction of ssaO 

expression was 2 – fold. This could have a significant impact on formation of the SPI2 needle, 

particularly if translation is also inhibited by STnc1870. An example of such a mechanism is the 

OxyS sRNA, which inhibits translation of the RpoS stress response sigma factor (Battesti et al., 

2011). However, as mentioned, expression of STnc1870 in the macrophage is likely to be much 

lower, and could therefore have a much smaller effect on SPI2 needle expression. 
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Other sRNAs are known to act as regulators of SPI virulence genes. One example in S. 

Typhimurium is PinT, an 80 bp sRNA induced by the low pH-sensing PhoP regulatory system 

(see chapter 3.4) (Westermann et al., 2016). PinT inhibits SPI2 genes (by binding the ssrB 

mRNA, which is in turn a global regulator of SPI2 genes (Worley et al., 2000)) as well as 

expression of the SPI1 effectors SopE and SopE2. SopE and SopE2 activate the host cell 

transcription factor STAT3 in order to form the specialised intracellular compartment that 

Salmonella occupies (Hannemann et al., 2013). 

 

Interestingly, SPI2 effectors inhibit STAT3 activation. PinT appears to fine-tune expression of 

SPI1 and SPI2 and thereby promotes the transition to Salmonella’s intracellular lifestyle. 

Human epithelial HeLa cells infected with a  pinT deletion strain also produced higher levels 

of pro-inflammatory IL-8 compared to cells infected with wildtype Salmonella (Westermann et 

al., 2016). STnc1870 could perform a function similar to PinT by adjusting SPI2 expression. If 

formation of the SPI2 needle is inhibited by STnc1870, this could lead to increased activation of 

STAT3 which would promote formation of Salmonella’s intracellular compartment. However, 

inhibition of SPI2 cannot be excessive as this would lead to bacterial killing. A precise balance 

would be needed. 

 

Data published by Bogomolnaya et al., 2008 showed that a S. Typhimurium   gtrA deletion 

strain had reduced replication during infection of J774 murine macrophage (derived from 

Salmonella susceptible BALB/c mice) and Caco-2 epithelial cells (compared to a wildtype 

strain). However, a  gtrC deletion strain was not defective for intracellular replication. This 

data indicated that the ability to produce the gtr O-antigen modification was not required for 

intracellular replication. The growth defect of the  gtrA deletion strain could perhaps be related 

to STnc1870. The predicted alternative OxyR site of STnc1870 overlaps with the gtrA -35, -10 

and +1 sites. The gtrA deletion was performed by inserting a kanamycin resistance cassette 

(kanR). Depending on where the kanR cassette was inserted and in what orientation, it may have 

interfered with STnc1870 regulation (the insertion site was not identified by the authors). The 

interference could explain the lack of intracellular replication if STnc1870 is indeed required for 

regulation of SPI2. 

 

Other data that points towards the role of STnc1870 was published by Chaudhuri et al., 2013 

used transposon mutation libraries to infect chickens, pigs and cows and then analysed which 
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Fig.6.1. Model for regulation of the gtr operon  

 

OxyR half sites are marked in red and GATC sites are annotated. Methylated GATC sites are in 

red and the A base is underlined. The gtr promoter region is marked in blue and annotated, 

along with the STnc1870 promoter, in red. RNA polymerase and OxyR are in grey and 

annotated. Graph not to scale.  

 

In the absence of oxidative stress, gtr phase variation occurs with reduced OxyR as described in 

Broadbent et al., 2010. Growth in InSPI2 media and addition of a H2O2 shock may cause OxyR 

to change to the oxidised conformation and relieve repression of STnc1870 by moving to an 

alternative binding site. This process appears to be independent of the ON or OFF state of gtr. 

Oxidised OxyR bound to the alternative site could stimulate transcription of the STnc1870 

sRNA.  STnc1870 could then bind and downregulate expression of ssaO, a component of the 

SPI2 secretion needle.  
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mutants could be recovered from the hosts by sequencing the populations before and after 

infection. It was found that mutants with insertions in the gtr regulatory region were 

significantly attenuated for infection of chickens and pigs (fitness scores of -3.4 and -5.7, p < 

0.01 and p < 0.001, respectively). This particular insertion was located 38 bp upstream of the 

gtrA start codon thereby disrupting the gtr regulatory region and would likely inhibit both 

STnc1870 and gtr transcription. The attenuation of the mutant could therefore be due to loss of 

STnc1870 or gtr expression, or even both. However, other transposon insertions in the gtr 

operon did not cause significant attenuation, with one exception: an insertion in the gtrB gene 

caused significant attenuation in calves and pigs (fitness scores of -2.4 and -2.3 respectively, p < 

0.001). On the other hand, transposon insertions in gtrA and gtrC did not cause significant 

attenuation. Before drawing conclusions, the virulence of S. Typhimurium strains with deletions 

of STnc1870, or alternatively strains that overexpress STnc1870 would need to be tested in 

animal models. Specifically, S. Typhimurium susceptible mice could be used to establish a 

systemic infection model. Given that STnc1870 was highly induced in InsPI2 media with H2O2 

treatment, it seems likely that this sRNA is involved in the intracellular lifecycle of Salmonella. 

For the same reason, the survival of STnc1870 deletion or overexpression mutants in human or 

murine macrophage should be assessed. Additionally, RNA sequencing of strains artificially 

overexpressing STnc1870 should be used to identify other potential targets of STNc1870. 

 

Further work should also aim to confirm whether oxidised OxyR can bind the potential 

alternative site in the gtr regulatory region and stimulate STnc1870 transcription. Either a 

DNase footprinting assay or an electro-mobility shift assay with purified OxyR and the relevant 

DNA sequence could be used to determine this. 

 

6.4 THE S. TYPHI 2_II gtr CONTAINS A SEQUENCE 

SIMILAR TO STnc1870 

 

The finding that ssaO could be a potential target for STnc1870 binding was surprising as it 

indicated a wider role for the gtr operon. Another interesting aspect was that the S. Typhi 2_II 

gtr (which performs the same O-antigen modification as the LT2_I gtr) operon had a sequence 

similar to STnc1870 in its regulatory region. An alignment of 300 bp of the regulatory regions 

showed a sequence identity of 87 %. A notable difference was a 20 bp sequence present in 

LT2_I gtr, but absent from S. Typhi 2_II gtr (Fig.6.2). The significance of this finding, if any, 

remains to be determined. However, if STnc1870 does in fact regulate the expression of the 

SPI2 needle, the sequence present in S. Typhi may not be capable of doing so (see below). 
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The S. Typhi 2_II gtr sequence that aligned with STnc1870 was entered into the TargetRNA 

prediction program (Kery et al., 2014). The ssaO mRNA was not among the predicted targets. 

A further program, RNAfold was used to predict the secondary structures of both STnc1870 and 

the aligned S. Typhi sequence (Gruber et al., 2008; Lorenz et al., 2011). The sequence 

differences produced clearly different secondary structures (Fig.6.3). STnc1870 contained two 

repeats of the following sequence: GCTTTGCAT, which formed a stem loop in the RNAfold 

structure prediction. In S. Typhi 2_II gtr only one repeat is present and a stem loop is not 

predicted to form in this region.  

 

This contrast drew parallels to the sequence variation that abolished phase variation of S. Typhi 

2_II gtr. As mentioned previously (chapter 5), if S. Typhi evolved from S. Typhimurium, 

perhaps this process include a change in the function of the gtr operon. Was the absence of 

STnc1870 selected for along with the absence of phase variation? Given that there appears to be 

a link between gtr and ssaO, a component of the SPI2 needle required for intracellular survival 

of Salmonella, this could be an exciting example of Salmonella host adaptation by gene 

repurposing or silencing. This case is similar to the SPI2 effector SseJ, which is a critical 

virulence factor required by S. Typhimurium to generate the SCV environment. In S. Typhi, 

SseJ is a pseudogene. S. Typhi complemented with a plasmid expressing the S. Typhimurium 

sseJ gene had reduced cytotoxicity and proliferated to a higher level in human epithelial cells, 

compared to the wildtype strain (Trombert et al., 2010).  

 

6.5 OxyR REGULATION OF gtr AND STnc1870 

 

The gtr regulatory region was found to be a divergent promoter; the STnc1870 and gtrA genes 

are orientated in opposite directions, but their regulation is linked. H2O2 treatment reduced gtrA 

and increased STnc1870 expression in a switch regulated by OxyR. Another example of a 

divergent promoter is the E. coli OxyR regulatory region itself. The same regulatory region 

controls expression of both the oxyR mRNA and the oxyS sRNA. The -35 sites of the two genes 

are adjacent but orientated in opposite directions (Altuvia et al., 1997). OxyS is a regulator of 

the oxidative stress response and  downregulates genes such as rpoS (Battesti et al., 2011). As in 

the case of gtrA/STnc1870, the regulation of oxyRS is influenced by oxidative stress. Both the 

reduced and oxidised form of OxyR can bind the oxyRS promoter and repress transcription of 

oxyR (Toledano et al., 1994). Oxidised OxyR causes upregulation of OxyS and downregulation 

of OxyR (Altuvia et al., 1997; Choi et al., 2001). The regulation of gtrA and STnc1870 appears 
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to be based on a similar mechanism whereby the switch from reduced to oxidised OxyR leads to 

transcription of a different gene from the same regulatory region. 

 

A characteristic that distinguishes gtr from oxyRS is phase variation. Previously, it was assumed 

that the ON or OFF state established by OxyR in the gtr regulatory region was maintained until 

genome replication commenced. The reduced form of OxyR was also found to be sufficient for 

gtr phase variation (Broadbent et al., 2010). However the contribution of oxidised OxyR, if any 

was not understood. In this work, it was found that oxidation of OxyR was required to relieve 

repression of STnc1870 after H2O2 treatment. In contrast, in a C199S OxyR mutant strain 

STnc1870 transcription showed a very minor increase after H2O2 treatment, indicating that 

repression was maintained in this strain. These results and the observation that the spacing of 

the OxyR half sites in the gtr regulatory region is consistent with binding of the reduced form of 

OxyR (Broadbent et al., 2010) led to the following conclusion: the reduced form of OxyR binds 

the gtr regulatory region leading to phase variation and repression of STnc1870. However, 

oxidised OxyR cannot bind and therefore repression of STnc1870 is relieved. The H2O2 shock 

that induced STnc1870 expression killed ~80 % of the cells. The treated culture did not increase 

in optical density for ~ 2 hours after H2O2 addition. Plate counts showed the same percentage of 

ON colonies compared to an untreated control culture (Table 4.1). Based on these results, it 

seems unlikely that the H2O2 shock affected gtr phase variation in a heritable manner. However, 

gtrA downregulation coincided with high expression of STnc1870. 

 

The regulation of gtr and STnc1870 could be the first example of OxyR binding causing 

repression (of STnc1870) and phase variation (of gtr) in the reduced form, but following 

oxidation relieving repression (of STnc1870) by vacating the A, B or C half sites. The E. coli 

agn43 gene phase varies by GATC methylation and OxyR binding similar to gtr (Wallecha et 

al., 2002). However, both the reduced and oxidised forms of OxyR are capable of repressing 

agn43 transcription from unmethylated DNA in vitro. Furthermore, addition of 0.2 mM H2O2 to 

cultures grown in M9 minimal media did not affect expression or phase variation of a reporter 

fusion of the agn43 regulatory region to lacZ. Both a single dose of H2O2 and 15 repeated doses 

in 6 minute intervals were tested (Wallecha et al., 2003).  

 

Another system that uses GATC methylation and OxyR binding for phase variation is the 

opvAB operon which regulates O-antigen chain length of S. Typhimurium. Mutant strains with 

constitutive opvAB expression have very short O-antigens (3-8 subunit repeats) and reduced 

survival in murine macrophage (Cota et al., 2012). It would therefore be detrimental to 
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Salmonella for opvAB expression to be in the ON phase during macrophage infection. Binding 

of OxyR is required for opvAB expression (Cota et al., 2015a). As in gtr and agn43 regulation, 

the reduced form of OxyR is sufficient for phase variation to occur. The spacing of the OxyR 

half sites is consistent with binding of reduced OxyR. If oxidised OxyR was unable to bind the 

opvAB regulatory region, transcription would not occur. Perhaps this mechanism prevents 

opvAB transcription during macrophage infection. Again, this could be tested using InSPI2 

media with H2O2 treatment. 

 

6.6 INFLUENCE OF DNA SEQUENCE ON gtr PHASE 

VARIATION 

 

The regulatory regions of S. Typhi 2_II, S. Infantis_I and S. Gallinarum_I gtr all contained three 

GATC sites. The absence of a 4th GATC site was predicted to alter phase variation, compared to 

the ‘model’ S. Typhimurium LT2_I gtr, which had four GATC sites. This prediction was 

correct; the Typhi 2_II gtr regulatory region showed no phase variation at all, whereas the 

wildtype S. Infantis_I gtr regulatory region displayed a higher switch rate compared to a point 

mutated S. Infantis_I gtr with a 4th GATC site introduced. A further question is whether 

sequence variation that affects gtr phase variation by altering OxyR binding sites also 

influences STnc1870 regulation. In particular, if OxyR binding of the A, B and C half sites is 

either improved or inhibited, this could reduce or increase repression of STnc1870. 

 

The S. Gallinarum_I gtr regulatory region was not tested independently. However, a S. Typhi 

2_II gtr regulatory region was produced with a GATA point mutation instead of a 4th GATC 

site, which mimicked the sequence variation found in S. Gallinarum_I gtr. This point mutated 

Typhi 2_II gtr also displayed a higher switch frequency, again compared to another Typhi 2_II 

gtr mutant with 4 GATC sites.  

 

Although the S. Typhi 2_II and S. Gallinarum_I gtr regulatory regions are quite similar, there 

are some key differences between the OxyR B half sites. For this reason, it should not be 

assumed that the results achieved with the S. Tyhi 2_II GATA point mutant apply equally to S. 

Gallinarum_I gtr. An important insight gained in this research was that single base-pair changes 

in the gtr regulatory regions can have extensive effects on phase variation. Changing a base-pair 

that forms a part of a GATC site and the OxyR binding site consensus was sufficient to abolish 

phase variation of S. Infantis_I gtr. For this reason, it would be ideal to measure the switch 
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frequency of S. Gallinarum_I gtr separately, and determine whether it could be affected by 

introduction of a 4th GATC site.  

 

In general, it was confirmed that naturally occurring sequence variation of gtr operons can have 

extensive effects on phase variation. This was particularly interesting in the case of S. Typhi 

2_II gtr – the lack of a 4th GATC site is likely to cause constitutive expression of the gtr operon 

and by extension, constitutive glycosylation of the O-antigen. Constitutive O-antigen 

glycosylation could provide a currently unknown selective advantage to S. Typhi. This 

advantage could be connected to the ability of S. Typhi to systemically infect and persist in 

humans. This environment may be sufficiently distinct from the lifestyle of non-host adapted 

serovars such as S. Typhimurium. As a result, the S. Typhi 2_II gtr operon could have evolved 

to perform a function other than phage resistance and population heterogeneity. This would 

mean that the absence of a 4th GATC site in the S. Typhi 2_II gtr regulatory region was acquired 

by positive selection. 

 

What selective advantage could a gtr O-antigen modification provide to a host adapted 

Salmonella serovar? As mentioned, research into S. Typhi is hindered by the lack of an animal 

model (due to the human host restriction). However, the S. Gallinarum serovar, which is host-

restricted to chickens and causes a typhoidal infection, could provide a model system to explore 

this question (Thomson et al., 2008). If the GATA sequence variation of S. Gallinarum_I gtr 

does cause a higher switch frequency as predicted, how does this help the strain during 

infection? Perhaps this serovar is currently evolving towards constitutive O-antigen 

modification. Alternatively, a higher switch frequency by itself could provide a selective 

advantage. 

 

An experiment could compare survival of chickens following challenge with S. Gallinarum 

strains carrying either the phase varying wildtype gtr operon, or a point mutated constitutively 

expressing gtr operon. A deletion strain should be used as a control. If all three strains produce 

equal results, this would indicate that the S. Gallinarum_I gtr is not a required virulence factor. 

In this case, the benefit of gtr modification would likely be tied to the environment outside the 

host. On the other hand, if a selective advantage is provided by S. Gallinarum_I gtr, the 

constitutively expressing mutant strain could be more virulent than both the wildtype and 

deletion mutant.  
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A chicken infection model is probably not ideal to study human typhoid disease. However, if a 

role for S. Gallinarum_I gtr is discovered in this system, it might indicate which aspects of S. 

Typhi 2_II gtr to study further. It should be mentioned that the gtrC proteins of S. Gallinarum_I 

and S. Typhi 2_II cluster in the same family and are therefore likely to perform the same O-

antigen modification (Davies et al., 2013). The O-antigen subunits of S. Gallinarum and S. 

Typhi are identical, consisting of galactose-rhamnose-mannose repeats with tyvelose added to 

the mannose sugar. Glycosylation of the galactose sugar by S. Gallinarum_I gtr prevented 

binding of antibodies that targeted the unmodified O-antigen (Brooks et al., 2008). 

 

Could constitutive gtr modification be a disadvantage in certain circumstances? The majority of 

gtr operons are predicted to phase vary (see chapter 5). A possible disadvantage of abolished 

phase variation relates to phage resistance. Phase variation allows a population to escape a 

phage targeting a particular O-antigen structure (Kim and Ryu, 2012; Kintz et al., 2015). 

Absence of gtr phase variation could therefore leave a population more vulnerable to such an 

attack.  

 

A simple experiment to demonstrate the disadvantage in losing phase variation could make use 

of S. Typhimurium and the SPC35 phage, which targets the unmodified O-antigen as a co-

receptor. The S. Typhimurium LT2_I gtr could be point mutated to match the S. Typhi 2_II gtr 

and produce constitutive gtr expression. Initially this strain should show resistance to infection 

by SPC35 phage. The wildtype phase varying LT2_I gtr operon is known to provide transient 

defence against SPC35 phage infection (Kim and Ryu, 2012). However, a phage could 

eventually evolve that would target the modified O-antigen, which the population would not be 

able to escape from. Alternatively, if a population did survive, it may contain mutations that 

either disable the gtr operon or restore phase variation.  

 

The above experiment would not identify the advantage of losing phase variation, but it would 

demonstrate the potential disadvantage involved. Phage typically drive evolution of a 

population towards higher diversity (Jessup and Forde, 2008). Therefore, S. Typhi is either not 

confronted with as large a variety of phage as S. Typhimurium (possibly due to the host-

restricted nature of S. Typhi), or there is some other benefit provided by constitutive expression 

of S. Typhi 2_II gtr that outweighs the loss of phage resistance. 
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A wider question that remains is how gtr phase variation relates to Salmonella virulence. A 

number of other bacterial LPS modifications are required for virulence. For example, Shigella 

flexneri glycosylates the O-antigen to expose a type III secretion needle and infect cells 

(Cunliffe, 2003; West et al., 2005). The PhoP/Q and PmrA/B systems of S. Typhimurium add 

phosphoethanolamine to the lipid A component of the LPS molecule to resist antimicrobial 

peptides (Kato et al., 2012; Navarre et al., 2005). Neither of these systems phase vary. 

Helicobacter pylori performs fucosylation of the O-antigen to mimic Lewis antigens on the 

surface of human cells, which aid immune evasion by suppression of the TH1-cell response 

(Bergman et al., 2016). This system phase varies by slipped strand mispairing (Moran, 2008; 

Wang et al., 2000).   

 

Which of the systems mentioned above is most comparable to gtr? LT2_I gtr does not appear to 

be an essential virulence factor, unlike Shigella flexneri O-antigen glycosylation for instance 

(see section 6.3, Chaudhuri et al., 2013). Due to phase variation, gtr might have more in 

common with Helicobacter pylori O-antigen fucosylation. However, the constitutive expression 

of S. Typhi 2_II gtr indicates that gtr modifications could evolve to become a virulence factor, 

in which case phase variation might be detrimental.  

 

gtr may therefore be a system that primarily provides population heterogeneity through phase 

variation, which could affect the development of glycoconjugate vaccines for Salmonella 

(Micoli et al., 2014). O-antigen modification by gtr is therefore not necessarily a virulence 

factor. For instance, clinical S. Typhimurium isolates from Kenya showed no clear correlation 

between the degree of O-antigen glycosylation and either clinical presentation or resistance to 

killing by pooled serum from healthy adults (Onsare et al., 2015). However, gtr could transition 

into a role as an essential virulence factor, depending on whether a particular modification 

provides a specific benefit. 

 

6.7 CONCLUSIONS 

 

The work presented here achieved the intended aim of identifying factors that influence gtr 

phase variation and expression. The findings indicated a biological role for LT2_I gtr beyond 

O-antigen modification and phage resistance. Firstly, the STnc1870 sRNA links the LT2_I gtr 

operon to regulation of the SPI2 needle during macrophage infection. Future research should 

focus on either confirming this connection or finding other potential targets of STnc1870. The 
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absence of STnc1870 from S. Typhi should also be examined in this context. In addition, the 

regulation of STnc1870 demonstrated a novel mechanism for OxyR regulation: if reduced 

OxyR binds the regulatory region, gtr expression can phase vary and STnc1870 is repressed. If 

OxyR becomes oxidised STnc1870 repression is relieved. This combination of OxyR mediated 

phase variation coupled to oxidative stress responsive transcription could be a unique example 

thus far. 

 

Secondly, work on sequence variation showed that single bp changes can abrogate phase 

variation or alter the switch frequency. This raised new questions about the possible advantages 

of losing phase variation, and whether this is related to the lifestyle of the serovar and the 

evolution of host restriction. In particular, what is the benefit of constitutive expression of S. 

Typhi 2_II gtr? This question is related to the sequence in S. Typhi 2_II gtr with 87 % identity 

to STnc1870 in S. Typhimurium LT2_I gtr. These differences may have been acquired as part 

of the adaptation to the human host restricted lifestyle. 
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ABBREVIATIONS 

 

+1   Transcription start site 

-10/-35   RNA polymerase binding sites (for  factor) 

AmpR   Ampicillin Resistance 

att   Attachment or integration site for bacteriophage 

bp   Base pairs 

BLAST   Basic Local Alignment Search Tool 

cAMP   cyclic Adenosine Monophosphate 

CAP   Catabolite Activator Protein 

CmR   Chloramphenicol resistance 

CmS   Chloramphenicol sensitivity 

CRIM   Conditional Replication, Integration and Modular plasmid system 

Dam   DNA adenine methyltransferase 

EDTA   Ethylenediaminetetraacetic acid 

g   gravitational force 

GATC   Dam methylation target site on DNA (G, A, T, C) 

GDP   Guanosine diphosphate 

GFP   Green Fluorescent Protein 

GTP   Guanosine triphosphate 

gtr   glycosyltransferase 

gtrABC   glycosyltransferase operon (gtrA, gtrB, gtrC) 

iNTS   invasive Non-Typhoidal Salmonella 

IPTG   Isopropyl--D-thiogalactoside 

kb   Kilo base pairs 

KanR   Kanamycin Resistance 

lacZ   -D-galactosidase gene 

LB   Lysogeny Broth 
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LOS   Lipooligosaccharide 

LPS   Lipopolysaccharide 

MilliQ water  Ultrapure water, 18 MΩ 

NADPH oxidase Nicotine Amide Dinucleotide Phosphate oxidase 

Nramp1  Natural resistance-associated macrophage protein 1 

OD600, OD420  Optical density at 600, 420 nm 

ONPG   o-nitrophenyl--galactoside 

OxyR   Oxidative stress response regulator 

OxyR C199S  OxyR variant (cysteine 199 replaced with serine) 

PCR   Polymerase Chain Reaction 

qRT-PCR  quantitative Real time PCR 

ROS   Reactive Oxygen Species 

RO water  Reverse Osmosis water 

rpm   revolutions per minute 

SCV   Salmonella Containing Vacuole 

SOC   Super Optimal growth with Catabolite repression  

SOE-PCR  Site directed mutagenesis by Overlap Extension PCR 

SPI1/2/16  Salmonella Pathogenicity Island 1/2/16 

sRNA   bacterial small RNA 

siRNA   small interfering RNA 

TAE   Tris Acetate EDTA 

TetR   Tetracycline Resistance 

TetS   Tetracycline Sensitivity 

tetRA   Tetracycline resistance cassette 

Tris   Trisaminomethane 

TSDS-PAGE  Tricine Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

v/v   volume per volume 

w/v   weight per volume 
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X-Gal   5-bromo-4-chloro-3-indolyl--D-galactopyranoside 
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