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Abstract

Recommender systems are software tools and techniques providing suggestions

and recommendations for items to be of use to a user [18, 44, 55, 56]. These sug-

gestions can help users make better decisions on choosing products or services,

such as which film to watch, what music to listen to or which travel insurance

to buy. When making suggestions, many recommender systems do not consider

contextual information, such as location or time [5]. Recommender systems

that make use of contextual information are called context-aware recommender

systems.

Many context-aware recommender systems can not generate reliable rec-

ommendations on sparse data. Besides, in most context-aware recommender

systems, the contexts are pre-defined and not personalised. These limitations

of existing methods usually lead to inaccurate recommendations.

In this thesis, new context-aware recommendation methods are presented.

In these methods, personalised contexts are defined based on users’ activity

patterns. The underlying associations between contexts are analysed, and

similar contexts are combined so that the system can make use of existing

data collected in similar contexts. Experimental results from two datasets show

that the proposed methods can achieve significantly higher recommendation

accuracy than existing context-aware recommendation methods.
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Chapter 1

Introduction

Recommender systems (RS) are software tools and techniques providing sug-

gestions and recommendations for items to be of use to a user [18, 44, 55, 56].

These suggestions can help users make better decisions on choosing products

or services, such as which film to watch, which restaurant to have dinner or

which travel insurance to buy. Recommender systems were first studied as

an independent research area in the 1990s [4]. Much work has been done in

industry and academia on developing various new approaches [56].

When making suggestions, many RS do not consider contextual informa-

tion, such as location, time and the company of other people [5]. However,

the context can be of great importance in many cases. For example, the mu-

sic a user prefers for a romantic dinner can be quite different from the music

the user would like to listen to in a party. Recommender systems that make

use of contextual information are called context-aware recommender systems

(CARS), and the recommendations they make are called context-aware recom-

mendations [35]. To clarify the terminology, in this thesis, the recommender

systems that do not take into consideration any contextual information are

called traditional recommender systems.

This thesis is focused on context-aware recommender systems. We study

two major issues in the field of CARS: non-personalised contexts and data spar-
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sity. Based on user activity data, we identify user’s periodic activity patterns.

Personalised contexts are defined based on these patterns to improve accuracy

of recommendations . We analyse the underlying association between contexts

based on item co-occurrence, so that contexts can be clustered and combined

into overlapped “topics”. Therefore, for a given context, the system can infer

the user’s preferences based on other different yet similar contexts. Conse-

quently, the system can provide accurate context-aware recommendations on

relatively sparse datasets.

In this Chapter, we first present an overview of recommender systems,

especially context-aware recommender systems in Section 1.1. Then we discuss

the motivations and contributions of the work in Section 1.2 and 1.3. Finally

the structure of the thesis is presented in Section 1.4.

1.1 Recommender Systems

1.1.1 Traditional Recommender Systems

Typically, recommender systems provide the user with a ranked list of items

(such as books, articles, films, etc.), which the user may be interested in [56].

To generate this list, RS need to predict user’s preferences on these items. In

order to complete this task, recommender systems must first collect user pref-

erences, either explicitly or implicitly [56]. For example, a film recommender

system may ask a user to rate the films the user has watched (explicit data); a

music recommender system may consider the user listening to a track repeat-

edly as the implicit sign of preference for the track (implicit data). In most

cases, the task of the RS is predicting the user’s preferences on the items that

the user has not purchased or used [4]. The items that are predicted to be the

most desired are then recommended to the user.

In the field of traditional recommender systems, collaborative filtering, or

collaborative methods, are considered to be the most popular and widely im-
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plemented techniques for predicting user’s preference [17]. For a given user,

collaborative methods recommend the items that users with similar preferences

like [41]. Most collaborative methods are based on ratings (explicit data) [39].

The similarity of two users is computed based on their rating histories. There-

fore, the collaborative methods are sometimes referred to as “people-to-people

correlation” [56]. Collaborative methods only require user-item ratings [41].

No domain knowledge is needed. Therefore, collaborative methods can be eas-

ily applied in areas where ratings are available. However, the user usually has

to rate a sufficient number of items before the RS with collaborative methods

can accurately predict the user’s preference [4].

Content-based methods recommend the items which are similar to the ones

that the user preferred in the past. The similarity of items is computed based

on the features (“content”) associated with the items. For example, if a user

has positively rated a film that belongs to the romance genre, the system may

recommend other films from this genre. The content-based approach has its

roots in information retrieval research [58]. Because of the early advancements

made by information retrieval, many content-based systems can only recom-

mend items containing textual information [4]. Content-based methods require

both “content” of items and user feedbacks (implicit or explicit). However, in

some cases, the “content” of is difficult to obtain.

1.1.2 Context-Aware Recommender Systems

What is context?

When we say “take this”, “this” can be a cup, a ruler, or anything. It is unclear

what “this” refers to, if we do not know anything abut the current context.

Context has been defined in many research areas from different angles. In

recommender systems, context includes extensive information. Schilit et al.

[62] define context as:

Where you are, who you are with, and what resources are nearby.
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Chen et al. [23] define context as:

Context is the set of environmental states and settings that either deter-

mines an application’s behaviour or in which an application event occurs and

is interesting to the user.

Abowd et al. [1] give a more specific definition:

Context is any information that can be used to characterise the situation

of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves.

In the area of CARS, companion location and time are most widely used

[71]. However, other factors such as weather and noise level may also become

important information in some cases [5].

How can context be incorporated?

Since there are many existing traditional recommender systems, it is there-

fore intuitive to simply add a contextual filter to an existing traditional rec-

ommender system [4]. That is, we can simply “contextualise” the existing

traditional RS, rather than building a new model. Based on which stage the

contextual information is used at, context-aware recommender systems can be

divided into contextual pre-filtering and contextual post-filtering [5].

The contextual pre-filtering system contains a pre-processing filter, which

can contextualise the input data of the traditional RS [50]. That is, the infor-

mation about the current context is used for selecting the relevant set of data

[5]. Then, the preference of the user in the current context can be predicted

by a traditional recommender system based on the selected data.

Similar to contextual pre-filtering, post-filtering also makes use of exist-

ing traditional RS. The contextual post-filtering methods ignore contextual

information in the input data at the beginning, when generating traditional

recommendations; then, the contextual post-filtering methods improve the ob-

tained recommendations using contextual information [5]. The improvements
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can be made by either filtering out irrelevant items for the given context, or

adjusting the ranking of items [5].

Sometime, it is not possible to obtain additional contextual information

directly. However, we do know what items the user has chosen in the current

context (these items are also called seed items). Therefore, if we assume the

context remains the same, we can still make context-aware recommendations

by [21]:

• recommending items that are similar to the seed items, or

• identifying the characteristics of the current context based on the seed

items and then recommending suitable items.

These methods are called session based methods.

1.2 Motivations

In this section, we discuss the limitations of existing context-aware recom-

mender systems, and the motivations for our work.

1.2.1 Data Sparsity and Context Generalisation

In traditional recommender systems, the prediction process usually begin with

the specification of the initial rating set. The ratings can be explicitly collected

from the users or inferred by the RS implicitly [5]. Then the RS computes the

rating function R

R : User × Item → Rating

for all the (user, item) pairs that have not been rated by the users [5].

If the recommender system is based on explicit data, each user has to rate a

sufficient number of items before the system can learn the user’s preference and

present the user with reliable recommendations [4]. However, in reality, most
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users are reluctant to provide ratings [49]. Typically, users rate only a small

proportion of the items that are available [10]. Therefore, the dataset is sparse.

In the field of traditional RS, this is usually solved by applying collaborative

methods with latent factors [4], such as matrix factorisation [40]. However, in

context-aware recommender systems, these methods are not always effective

[5]. In CARS, the dataset becomes extremely sparse since the rating function

R is extended into three dimensions [5]

R : User × Item × Context → Rating

For example, in traditional music recommender systems, the user only needs to

provide one general rating for the track that the user has played. However, to

make context-aware recommendations, ideally, we would like to ask the user to

rate the track for all the possible contexts, e.g. whether the track is suitable to

play when driving, before sleeping, or during a party. The RS should be able

to estimate the rating function for all the (user, item, context) combinations

that have not been rated by the users. Therefore, the corresponding rating set

can be much sparser compared to the dataset for traditional recommendation.

In these cases, even employing the recommendation techniques that are able

to deal with the data sparsity in traditional RS still leads to poor recommen-

dations [11]. In some applications, due to severe data sparsity, for many users,

the system is simply not able to provide context-aware recommendations at

all [5].

Context generalisation is proposed to solve the problem of data sparsity in

CARS [2]. In this method, a more general context is used instead of the exact

context. For example, the temporal context can be changed from Saturday to

weekend to obtain more data. Although some work has been carried out to

improve the performance of context generalisation [36], context generalisation

has some intrinsic limitations:

1. Generalisation can lead to inaccurate prediction.

Using a generalised context means bringing in data collected in different
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context, in which the user may have different preference. There is a

trade-off between accuracy and the level of generalisation.

2. There are too many possible generalisations of the given context [5].

With highly granular contexts, there can be a very large number of gen-

eralisations of the given context. It is impossible to empirically evaluate

the predictive performance on each generalised context due to high com-

putational cost.

These problems suggest that a different method is needed to deal with the

data sparsity of CARS specifically. Therefore, the first research question of

this thesis is: whether we can develop a CARS that is able to overcome data

sparsity, in order to provide more accurate recommendations for more users,

compared to existing CARS.

1.2.2 Non-Personalised Context

Another issue in CARS is that all the temporal contexts are usually predefined

based on common sense [5]. For example, in music recommender systems, it is

common to define a set of non-personalised temporal contexts, such as morning,

afternoon and evening in advance. The boundaries between these temporal

contexts are the same for all the users. In reality, this can be problematic:

1. Different preference in the same temporal context.

Some people may start the day much earlier or later than others. There-

fore, different users may have different preferences in the predefined con-

text, such as “evening”. More importantly, for some users, these prede-

fined temporal contexts can be too general. For example, a user listens

to rock & roll every morning to wake him up; when he is working in the

morning, he listens to classical music. The temporal context “morning”

becomes meaningless because it covers such a long period of the day. In

the same “morning” the user’s preference can still change significantly.

In this case, it might be better to divide the “morning” into two or more
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shorter contexts. However, it is impossible to know this if we use the

same set of temporal contexts for all the users, and do not analyse each

user’s listening habits.

2. Same preference in different temporal contexts

In the area of CARS, it is usually reasonable to assume that users have

different preferences in different contexts [5]. However, sometimes, in

different temporal contexts, a user’s preferences could be the same. For

example, during working days, a user’s listening preference in the context

“morning” may be the same as in the context “afternoon”. Therefore, it

is not necessary to define two different contexts “morning” and “after-

noon” for this given user in terms of music listening. Let’s also consider

the following example of grocery shopping: a housewife goes to the su-

permarket on Monday afternoon and Thursday morning every week for

groceries. The items she needs to purchase in these two temporal con-

texts are almost the same. If we can combine these two contexts, we

can obtain more data for each of them, generating accurate and reliable

recommendations in both contexts. Therefore, in this case, it is neither

necessary nor appropriate to view these two contexts as different ones.

However, in this example, it is almost impossible to discover the sim-

ilarity between these two contexts based on the temporal information.

We also need to analyse what items the user chooses to consume in each

context, and whether these chosen items have something in common.

These problems suggest that we should not define a set of non-personalised

contexts based on common sense. A new method is needed to discover and

define contexts for each user. Therefore, the second research question of this

thesis is: whether we can develop a CARS that is able to define personalised

contexts based on users’ activity patterns, and to discover the underlying associ-

ation between contexts, so that the system can achieve higher recommendation

accuracy than existing CARS.
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1.2.3 Inability to Separate User Modelling from Con-

text Modelling

Although the session based CARS can generate context-aware recommenda-

tions based on seed items, they usually have the following problems:

1. Inability to build a complete user profile.

In such systems, recommendations are based on the items the user just

chose in the current context (seed items). The given user’s general pref-

erence has little influence on the recommendations. That is, the recom-

mendations are not personalised. The same seed items would lead to the

same recommendations.

2. Inability to select different features for user modelling and context mod-

elling.

In these systems, models with latent factors are employed to reduce the

number of features in the data [37]. These new features are selected

for either context profiling or user profiling. However, once the features

are selected, they are used for both tasks. This can lead to inaccurate

recommendations.

Since there are various traditional RS that can be used for user modelling,

the key question here is how can we use these traditional methods along with

session based methods, achieving accurate user modelling and context mod-

elling at the same time. Therefore, the third research question of this thesis

is: whether we can develop a session based CARS that is able to employ two

separate models for user profiling and context profiling respectively, to achieve

higher recommendation accuracy than existing session based CARS.

Although the three research questions focus on different problems of CARS,

they are actually the same fundamental question of CARS from different an-

gles: how can we make better use of the contextual data we have, infer more

information about user’s preferences in different contexts, and make more accu-
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rate context-aware recommendations. In the following chapters, we review indi-

vidual research question, along with this fundamental question of CARS.

1.3 Contributions

The main contributions of this thesis can be summarised as follows:

1. The development of a novel contextualisation method that can define

personalised temporal contexts and make accurate context-aware recom-

mendation on sparse dataset.

By working on implicit usage data, users’ periodic action patterns can

be identified. For every user, personalised temporal contexts are defined

based on these periodic action patterns. For each user action, we com-

pute the probability that the action is performed in each context, and

use the probability as weight. Consequently, we can make use of data

collected in all contexts but with different weights. Therefore, compared

to existing contextual filtering methods, our approach can increase rec-

ommendation accuracy and provide recommendations for more users.

2. The development of a novel session based contextualisation method that

can uncover the underlying association between contexts across all the

users, cluster similar contexts into overlapped groups, and apply tradi-

tional recommendation methods to generate accurate recommendations.

We analyse the underlying association and similarity between contexts

based on item co-occurrence and item tag co-occurrence. By doing this,

we can cluster similar contexts into overlapped groups. For each group,

a contextualised dataset is constructed, so that traditional recommenda-

tion methods can then be employed. Therefore, in our method, context

modelling and user modelling are independent of one another. For a

given context, based on the items the user just chose, we can infer the

characteristics of the context and identify the corresponding groups of
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contexts to make accurate and reliable recommendations.

3. The development of a recommendation method that can combine our

personalised contextualisation with the context clustering approach.

The method is developed for implicit data. It combines the personalised

contextualisation with our session based clustering method. In this ap-

proach, we first employ personalised contextualisation to identify person-

alised contexts. Then we cluster the contexts into groups based on item

distributions. Therefore, the data collected in the same group of contexts

can be combined to overcome data sparsity, reduce time complexity, and

to generate accurate recommendations.

1.4 Thesis Structure

The thesis is organised as follows:

• Chapter 2 first introduces the field of traditional RS. The basic terms

and ideas are outlined, along with the commonly used recommendation

methods. Then we focus on the motivation of CARS, the importance of

contextual information.

• Chapter 3 reviews the field of context-aware recommender systems. We

introduce the fundamental issue and challenge in the field of CARS,

discuss existing solutions and their drawbacks, which motivate our work.

Besides, the appropriate evaluation methods for CARS are discussed in

the chapter.

• Chapter 4 presents a personalised contextualisation method based on

implicit data: the idea, the implementation, and the results.

• Chapter 5 presents a session based CARS that can identify and cluster

contexts into groups. The experimental results and analysis are also

presented.
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• Chapter 6 presents a context-aware recommendation approach that com-

bines the methods presented in Chapter 4 and Chapter 5. Results and

analysis on different datasets are presented.

• In Chapter 7, the thesis is summarised and the main contributions are

presented. A number of opportunities for future work in this area are

discussed.



Chapter 2

Recommender Systems

As we introduced in Chapter 1, recommender systems can help users make

better decisions on choosing products or services. A well designed RS is able

to recommend items that suit the user’s needs and wants, therefore improving

the user’s experience and increasing the number of items sold [56].

In this chapter, we first introduce the fields of traditional recommender

systems, the RS that do not take into consideration contextual information.

The basic terms and ideas are introduced, along with the commonly used

recommendation methods. Then we outline the motivation for context-aware

recommender systems.

2.1 Traditional Recommender Systems

The RS is primarily directed towards individuals who lack sufficient personal

experience or competence to evaluate the potentially overwhelming number of

alternative items that a Web site, for example, may offer [55]. A RS normally

focuses on recommending a specific type of item (e.g., CDs, or news) and

accordingly its design and the core recommendation technique used to generate

the recommendations are customised to provide useful and effective suggestions

for that specific type of item [56].
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To provide recommendations, RS try to predict what the most suitable

items are, based on the user’s preferences. In order to complete such a task,

RS need to collect users preferences, which are either explicitly expressed by the

users (explicit data), e.g., as ratings for products, or inferred by interpreting

user actions (implicit data) [61]. The explicit user ratings are usually more

accurate since they are directly expressed by the users. Compared to explicit

ratings, implicit data has the following characteristics [33]:

1. No negative ratings. By observing the user’s behaviour, we can infer

which item the user probably likes if the user has purchased or interacted

with the item. However, it is hard to reliably infer which items a user

does not like. For instance, a user did not purchase an item, simply

because he did not know about the item.

2. Implicit data is inherently noisy. While we passively track the users

behaviour, we can only guess their preferences and true motives. For

example, we may view purchase behaviour for an individual, but this

does not necessarily indicate a positive view of the product. The item

may have been purchased as a gift, or perhaps the user is disappointed

with the product.

3. Evaluation of systems based on implicit data requires appropriate mea-

sures. In the traditional setting where a user is specifying a numeric

ratings, the difference between the predicted ratings and the true ratings

can be computed to measure success in prediction. However, those met-

rics usually can not be applied to systems based on implicit data since

the true ratings are not available.

Therefore, most recommender systems are based on explicit user ratings [4].

In most cases, the task of RS is predicting user’s ratings on the items that the

user has not purchased or used [4]. The items with highest predicted ratings

are recommended to the user.

Formally, the problem of recommendation can be described as follows. Let

U be the user (customer) set, and W be the set containing all the items such
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as books, films or insurance packages. In reality, both sets can be very large,

from a few hundreds to millions. Ratings are used to indicate the usefulness

of an item to a certain user. Let rij represent the rating that user ui has given

on item wj. The rating matrix contains all the user-item ratings. In reality

the matrix can be quite sparse. This is because compared to the total number

of items in W , the number of items a user has interacted with is usually small,

and the user does not rate all the items that he or she has interacted with [49].

Let R be the function that maps the user-item pairs to ratings:

R : User × Item → Rating

The recommender systems estimate the rating function R for all the (user,

item) pairs that have not been rated yet by the users [5]. That is, the RS

need to compute r̂ij, the predicted value of rij for all the unknown rij . For

every user in U , the goal of the RS is to find the item or items in W that have

the highest r̂ij . Therefore the central task of recommender systems is to find a

function R that can accurately predict the rating for each user-item pair.

There are many ways to predict user-item ratings. Traditional recommenda-

tion methods are usually divided into the following three categories [10]:

1. Content-based methods

These methods apply to items containing textual features, i.e. “content”,

such as documents or news articles. The systems compare the contents

of the items that the user likes, i.e. the items with relatively higher rij ,

and analyse their commonalities. The rating on an item is predicted

based on how similar its content is to that of the items the user likes.

2. Collaborative methods

In these methods, users with similar tastes and preferences are identified

by comparing their ratings. A rating on a certain item by the given user

is predicted based on similar users’ ratings on this item.
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3. Hybrid methods

These approaches combine collaborative and content based methods in

various ways.

2.1.1 Content-Based Methods

Content-based methods make use of the features associated with items. For

example, to recommend news articles to a user, the content-based RS tries to

find what specific keywords are often used in the articles that the user finds

interesting. Then news articles containing these keywords would be recom-

mended [48].

The content-based approach has its roots in information retrieval research

[58]. Because of the significant and early advancements made by information

retrieval, many content-based systems focus on recommending items contain-

ing textual information, so that keywords can be used as item features. The

improvement over traditional information retrieval approaches comes from the

use of user profile and item profile [4].

Formally, let Content(wj) be the item profile of item wj. It is usually

built by extracting a set of features from item wj. Since most content-based

systems are designed to recommend items containing text, these extracted

features are usually keywords that can be used to describe the characteristics

of items. The importance or informativeness of keyword si in item profile

Content(wj) is represented by weight vij. It can be defined in several different

ways [48]. One of the most famous measures for specifying keyword weight is

the term frequency/inverse document frequency (TF-IDF) [58]. Assume fij is

the number of times keyword si appears in Content(wj). Then TF ij, the term

frequency of word si in the profile of wj , is defined as follows [58]:

TF ij =
fij

fmax

(2.1)
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where fmax is the max value of fij for all i. Usually, the word that appears

in many item profiles is not very useful in identifying relevant items. There-

fore, the term frequency is used together with the inverse document frequency

(IDF). IDFi, the inverse document frequency of the word si is defined as:

IDFi = log
N

ni

(2.2)

where N is the total number of items (profiles), and ni is the number of profiles

containing word si. Then, the TF-IDF weight vij for word si in item profile

Content(wj) is defined as:

vij = TFij × IDFi (2.3)

The profile of item wj can then be defined as a vector of keyword weights:

Content(wj) = (v1j , v2j, ..., vSj) (2.4)

where S is the number of unique keywords in the data.

Since the profile of item wj can be represented by a vector, the similarity

between two item profiles can be calculated by some scoring heuristic defined

in terms of vectors, such as the cosine similarity measure [48]. Therefore, the

content-based RS can recommend the items that are most similar to the user’s

favourite items. A user profile can be built by combining the profiles of items

that the user likes [53]. Therefore, the similarity between the user profile and

the item profile can be computed in a similar way. The candidate items with

highest similarities are recommended to the user.

Besides the traditional methods that are based on information retrieval

techniques, other model based content methods have also been developed.

These techniques differ from information retrieval based approaches in that

they predict utility based not on a heuristic formula, such as a cosine simi-
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larity measure, but rather on a model learned from the underlying data using

statistical and machine learning techniques [43]. For example, in [51], a naive

Bayesian classifier is used to determine whether the web page is relevant based

on the probability that a given page belongs to a certain class (relevant or

irrelevant), given the set of keywords on that page. This method is based

on the assumption that all the words are independent. While the keyword

independence assumption does not necessarily apply in many applications,

experimental results demonstrate that naive Bayesian classifiers still produce

high classification accuracy [51].

New Item

When a new item first appears, it has not been rated by any user, and some-

times will not be rated for a period of time [4]. In content-based recommender

systems, the similarity between an item profile and a user profile is computed

based on their contents. Therefore, a new item can be recommended, provided

its associated features are available. That is, the user’s rating on a certain item

can be predicted even if the item has not been rated by any users [4]. For ex-

ample, before the release date of the film, no user can rate the film. However,

some features of the film, such as genre, cast and even storyline, are usually

available before the release date. Therefore, the recommender systems can

build the profile of the film, and compare it with the given user’s profile to

determine whether this film should be recommended to the user.

New User

If a user has not rated a sufficient number of items, a content-based recom-

mender system cannot provide accurate and reliable recommendations (new

user problem) [66]. If a new user has only rated a few items, the profile of

the user may not contain enough information to represent the user’s actual

interests and preferences. Therefore, the RS can not generate accurate recom-

mendations.

Overspecialisation
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The content-based RS will only recommend items that are similar to those

the user rated positively in the past. The recommendations tend to become

increasingly overspecialised [10]. For example, if a user who likes Italian food

has never been to a Greek restaurant in the past, the content-based RS is

not likely to recommend a Greek restaurant to this user, even the best Greek

restaurant in the city. This is because compared to Italian restaurants, a

Greek restaurant can never be similar enough to be recommended. Moreover,

the user may not want a recommendation that is so similar. For example, a

user recently purchased a textbook and gave a high rating for the book. This

does not mean he wants to buy all other versions of this book. Therefore, in

some cases, content-based RS also need to filter out items that are too similar

to the items the user has purchased [13]. However, the lack of diversity remains

a serious issue of content-based recommender systems [20].

Limited Content Analysis

Content-based methods can be easily applied to items containing textual data.

But applying content-based methods to multimedia data, e.g, graphical im-

ages, audio streams, is much more difficult [4]. In many applications, it is not

practical to assign textual features by hand or obtain them from other sources.

Besides, if two items are represented by the same features, it is not possible

to discern the difference between the two items. For example, the commonly

used TF-IDF technique ignores the order of words. Therefore, it cannot tell

the difference between two documents if they have the same word frequencies

[66].

Lack of Semantic Intelligence

Content-based methods classify items as positive or negative based on textual

features (keywords) associated with the items. Large number of examples of

both positive and negative data is required, to ensure reliable “syntactic” evi-

dence of user interests, so that the RS can generate accurate recommendations.

A problem with these methods is the “lack of intelligence” [43]. For example,

if the user is interested in “French impressionism”, content-based methods will
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only find items that contain these exact words [43]. That is, an item related

to Claude Monet will not be recommended in this case, though it is relevant.

Semantic intelligence is needed. However, in reality, most recommender sys-

tems do not use semantic analysis techniques due to its high computational

cost [4].

2.1.2 Collaborative Methods

Collaborative methods (or collaborative filtering methods) significantly differ

from content-based methods. In collaborative methods, users with similar

tastes and preferences are identified by comparing their ratings. The user’s

rating on a certain item is predicted based on his similar peers’ ratings on that

item. Unlike content-based methods, in collaborative filtering systems, the

“contents” of items are not needed. This is convenient since it is not always

possible to obtain features of items.

Generally, collaborative methods can be divided into two classes [17]:

1. Memory based methods

Heuristics that make rating predictions based on the entire collection of

items previously rated by the users. That is, the value of the unknown

rating for the user-item pair is computed as an aggregate of ratings of

some other similar peers of the given user.

2. Model based methods

These methods try to learn a probabilistic model from the available rat-

ings, and then use the model to predict the ratings.

Memory Based Methods

In memory based collaborative systems, the value of the unknown rating for

the given item is usually computed as an aggregate of the ratings of other users

for that item. For example, it can be computed as weighted sum of the ratings

from the N most similar users on the same item.
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Various methods have been used to compute the similarity between users

in collaborative RS. Pearson correlation is one of the most popular approaches

(also known as user based Pearson) [54]. Let Sxy be the set of items rated by

both user x and user y. The similarity between the two users, simxy, is given

by

simxy =
∑

s∈Sxy
(rxs − rx)(rys − ry)

√

∑

s∈Sxy
(rxs − rx)2

√

∑

s∈Sxy
(rys − ry)2

(2.5)

where rxs is the rating of item s given by user x, rys is the rating of item s

given by user y, rx is the average value of ratings given by user x, ry is the

average value of ratings given by user y. The similarities between any two

users are calculated. Then, to predict the rating for the unknown user-item

pair, the weighted average of all the ratings on that item are calculated, and

the similarity between users is used as weight.

This user based Pearson is intuitive and easy to implement. However, when

the number of users is high, computing the similarities between users becomes

very time-consuming. In some cases, the number of items is much smaller than

that of the users. Therefore, the similarities between items are calculated in

a very similar way. [60]. This solves the problem of scalability of user based

method.

Cosine based approaches are also used to calculate the similarities between

users [17]. In these approaches, two users x and y are treated as two M-

dimensional vectors, where M is the number of items that both users have

rated, and the mth element of the vector is the user’s rating on the mth item.

The similarity between user x and y can be measured by the cosine of the

angle between them:

simxy = cos(−→x , −→y ) (2.6)

Different recommender systems may use different methods to compute the

similarities, either between users or between items. Sometimes, the number
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of users or items becomes very large. Therefore, computing the similarities

can take a long time. In many application, the similarities are computed in

advance [4], so when the user asks for recommendations, the RS can respond

immediately.

Model Based Methods

In contrast to the memory based method, model based methods try to learn

a probabilistic model from the ratings, and then use the model to predict the

unknown ratings. This allows the system to learn patterns from the data and

make more accurate predictions for the users [39]. Various machine learning

methods can be used to predict user-item ratings.

Sometimes, the rating scale can be continuous, e.g. ratings in the Jester

joke recommender system [29] can take any value between -10 and 10, such

as -1.5. A regression method is therefore more appropriate. This approach is

similar to the weighted sum method. But instead of directly using the ratings

of similar items, it uses an approximation of the ratings based on regression

model [29].

Instead of viewing the recommendation process as a prediction problem, it

can also be viewed as a sequential optimization problem and uses a Markov

decision process (MDP) model for recommender systems [64]. An MDP is

a model for sequential stochastic decision problems, which is often used in

applications where an agent is influencing its surrounding environment through

actions. Working on an Israeli online book store, Mitos, the deployed MDP

recommender system produced a considerably higher profit than the system

without using MDP [64].

The restricted Boltzmann machine (RBM) is a stochastic generative model

[67]. It is a neural network with one input layer and one hidden layer. For

collaborative filtering, the visible units correspond to items [57]. For each

user the visible units are activated by the items rated by the user. In [57],

the accuracy of RBM applied on collaborative filtering problems is superior

compared to memory based methods and linear models, because of its non-
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linearity. The computational cost is usually acceptable and the probabilities

of the hidden layer need to be pre-calculated [34].

Data Sparsity and Matrix Factorisation

An important issue with collaborative methods is data sparsity [10]. In most

applications, the number of ratings obtained is very small, compared to the

number of ratings that need to be predicted. Therefore, effective prediction of

ratings from a small number of examples is important. Various model based

methods have been proposed to solve the problem of data sparsity in rec-

ommender systems. In [52], a user profile containing age, gender, employment

information is built, in order to identify similar users. This is known as Person-

ality Diagnosis. However, this requires additional information from the user.

Moreover, similar personalities can not guarantee similar tastes [52]. A differ-

ent method for dealing with sparse rating matrix is proposed in [59], where

Singular Value Decomposition (SVD) is used to reduce the dimensionality of

a sparse ratings matrix. Following the idea of SVD, matrix factorisation

(MF) is employed to deal with the data sparsity of rating matrix [27]. Matrix

factorisation maps both users and items to a joint latent factor space of dimen-

sionality f , such that user-item interactions are modelled as inner products in

that space. As the Netflix1 competition has demonstrated, matrix factorisa-

tion models can be superior to classic memory based techniques in terms of

recommendation accuracy (top three teams all made use of MF). Especially

on sparse dataset, it can generate much more accurate recommendations than

most memory based and model based methods [40]. Therefore MF is widely

used in many applications [40].

New User Problem

Similar to content-based methods, collaborative methods also require ratings

from the user to make accurate recommendations. If a user has not rated

enough number of items, the collaborative RS can not make personalised rec-

ommendations.
1http://www.netflix.com/
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New Item Problem

Collaborative systems rely solely on users’ ratings to make recommendations.

Therefore, until a new item is rated by a substantial number of users, the RS

would not be able to recommend the item to any users [61].

2.1.3 Hybrid Methods

To avoid the limitations of pure content-based method and pure collaborative

method, many hybrid approaches combine the two. These methods can be

classified into the following [4]:

1. Implement separate collaborative and content-based systems, and com-

bine their results.

2. Incorporate some collaborative characteristics into a content-based ap-

proach.

3. Incorporate some content-based characteristics into a collaborative ap-

proach.

4. Construct a general unifying model that incorporates both content-based

and collaborative characteristics.

Combining Results

The most intuitive way to combine content and collaborative methods is to

implement two different systems separately, and then combine the results from

individual systems. Pazzani proposes a linear combination to combine the rat-

ings from different recommender systems [52]. Similarly, Claypool et al. use a

voting scheme to combine the results of the two systems [25]. Instead of com-

bining the results, we can also measure which recommender system is “better”

given certain situations. Billsus and Pazzani propose a method in which the

recommendation with higher level of confidence is selected [13]. Tran and Co-

hen employ a different method, in which the RS whose recommendations are

more consistent with past ratings of users is chosen [70].
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The combination (ensemble) of different types of recommendation algo-

rithms can lead to significant performance improvements over individual algo-

rithms [34]. However, training multiple recommender systems and combining

their results can be computationally expensive [63]. Therefore, the criteria

used to evaluate the RS, the trade-off between speed and accuracy become

very important.

Combining Recommender Systems

Several hybrid methods add collaborative characteristics to content-based mod-

els. Usually, a dimensionality reduction technique is applied to a group of

content-based profiles. Soboroff and Nicholas use a latent semantic indexing

method to create a collaborative view of user profiles, where user profiles are

represented by feature vectors [68]. Also, several hybrid methods incorpo-

rate some content-based characteristics into a collaborative approach. Pazzani

propose a “collaboration via content” method, in which content-based profiles

are maintained to compute the similarities together with traditional collabo-

rative filtering [52]. This method can help address the data sparsity problems.

Similarly, Melville et al. use a content-method is to obtain additional ratings

[47]. Collaborative filtering is then used on both true ratings and predicted

ratings.

In some hybrid method, a single unifying recommendation model is em-

ployed, rather than combining content-based and collaborative methods. Basu

et al. propose a single rule-based hybrid classifier[12]. Ansari et al. use

Bayesian mixed-effects regression models for predictions while Markov chain

Monte Carlo methods are used to estimate the parameters [8].

2.2 Motivation for Context-Aware Systems

Traditional recommender systems do not take contextual information into ac-

count. The recommendations are made solely based on user-item information

[5]. However, the context includes information regarding the current situation.
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It can be vital in many applications.

In Chapter 1, we presented the definition of context [1]:

Context is any information that can be used to characterise the situation

of an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

applications themselves.

This definition covers most aspects of context dealt with in this field. There-

fore, it is used in this thesis.

In many cases, a user’s preference depends on the given circumstances, such

as when, where, and with whom the product will be consumed. For example,

when recommending a film, the tradition RS only considers the following:

a. the characteristics of the film and

b. the user who wants to watch the film.

However, contextual information should also be considered. For example, the

following information might be used:

c. with whom the film will be seen (e.g. alone, with girlfriend / children);

d. when the film will be seen (e.g. weekday / weekend, morning / afternoon

/ evening);

e. where the film will be seen (e.g. at home / in the theatre, on the train /

plane );

The omission of any of the above information can lead to inappropriate

recommendations, e.g. recommending a film that contains intense sequences

of violence to a user who is going to watch the film with children. Hence,

Adomavicius and Tuzhilin argue that the contextual information does matter

in recommender systems and it is important to develop context-aware rec-

ommender systems that take contextual information into consideration [3].

Therefore, the rating function R is defined in three-dimension space (as op-
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posed to the traditional two-dimension user-item space):

R : User × Item × Context → Rating

In the example of film recommendation we talked about in this section, the

Context can contain information c, d and e. Each of these can affect Rating.

2.3 Summary

In this chapter, we first introduced the traditional recommender systems: how

they work, on what type of data. Then we focused on the motivation for

context-aware recommender systems. We described the importance of contex-

tual information, how they can affect user’s preferences significantly.

In the following chapter, we present a review of the field of CARS: the

challenge of CARS, existing methods and their drawbacks.



Chapter 3

Review of Context-Aware

Recommender Systems

In the previous chapter, we provide the necessary background of recommender

systems. In this chapter, we review the field of context-aware recommender

systems. We first introduce the fundamental issue and challenge in the field of

CARS. Then we discuss existing solutions and their drawbacks, which motivate

the work in this thesis.

3.1 Lack of Contextual Data

As we discussed in Chapter 1 and Chapter 2, the dataset of RS is usually

sparse. In CARS, the rating function R is extended into three dimensions

[5]

R : User × Item × Context → Rating

A general user-item rating used in traditional RS can not indicate the user’s

preference in different contexts. To make context-aware recommendations,

ideally, we would like to ask the user to rate the item in a context, e.g. whether

the track is suitable to play when driving, before sleeping, or for a party.

However, in reality it is almost impossible to obtain such rating by constantly
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asking the user to rate products in different contexts explicitly. This is very

different from traditional RS, which rely on user-item ratings.

In recent years, smart mobile phones become increasingly popular. A typ-

ical smart phone, such the iphone 51, contains a GPS chipset, which can ac-

curately locate the user. Theoretically, companies, such as Apple2, can easily

track the user’s location [72]. The location of user can be vital to the study

of many context-aware recommender systems. However, Apple has been very

protective of its data and relevant research. It has never given public access

to any CARS related data. Online music listening platform Spotify3 has more

than half a million users [69]. Spotify is making context-aware recommenda-

tion to its users based on time and location, but has never released any user

data or published any research work. For researchers, it is difficult to conduct

research on CARS without necessary data. The lack of real contextual data

was and still is the fundamental issue of CARS.

The same issue is also identified by other researchers. For example, Ado-

mavicius and Tuzhilin argue that most work on context-aware recommender

systems has been conceptual, where a certain method has been developed,

tested on some (often limited) data [5]. Verbert et al. also outline that a big

challenge of CARS is lack of publicly available data sets [71].

Therefore, the very challenge that all researchers of CARS must face is how

to obtain (enough) contextual data, and effectively learn user’s preference from

the data. The lack of contextual data must be considered before designing any

context-aware recommender systems.

Since we can not ask the user explicitly, we must collect contextual infor-

mation in a different way. In general, we can obtain or infer context via the

following two types of approaches:

1. Make use of implicit transaction data. For example, we can obtain tem-

1http://www.apple.com/shop/buy-iphone/iphone5s
2http://www.apple.com
3https://www.spotify.com/
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poral information from transaction timestamps, and infer user’s prefer-

ence from transactions.

2. Make use of active sessions. If we know what items the user has chosen

in an ongoing session (e.g. browsing session, music listening session) we

can analyse the characteristics of the session, and make context-aware

recommendations.

In the following sections, we introduce these two types of method, discuss

their pros and cons respectively.

3.2 Transaction Based Method

If we can obtain context from implicit transaction data, we can include the

contextual information into the recommendation process, and make use of ex-

isting traditional RS. Based on which stage the contextual information is used

at, context-aware systems can be divided into the following groups [5]:

1. Contextual pre-filtering (or contextualisation of recommendation input)

Contextual pre-filtering system contains a pre-processing filter, which

is used to contextualise the input data of the traditional recommender

systems [50]. That is, information about the current context is used

for selecting or constructing the relevant set of data. Then, preferences

can be predicted using a traditional recommender system on the selected

data.

2. Contextual post-filtering (or contextualisation of recommendation out-

put)

Contextual post-filtering also makes use of existing traditional recom-

mender systems. The contextual post-filtering approaches ignore con-

textual information in the input data when generating a list of tradi-

tional recommendations. Then, the contextual post-filtering approaches

adjust the obtained recommendations using contextual information [5].
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The adjustments can be made by either filtering out irrelevant items for

the given context, or adjusting the ranking of items on the list.

These methods are also call contextualisation methods, since they either

contextualise the input or the output to generate context-aware recommenda-

tions.

3.2.1 Contextual Pre-Filtering

There are various RS that can be used for a traditional recommendation task.

It is intuitive to simply add a contextual filter to the existing RS than to

develop an entirely new model [4]. A contextual pre-filtering system usually

contains a pre-processing filter, which can contextualise the input data for the

recommender system [50].

Following this idea, a reduction based method is proposed in [36], which

reduces the problem of contextual recommendations to the two dimensional

User×Item recommendation space. First, the data selection is carried out: the

data that is relevant to the given context is chosen for the next step. Then,

traditional recommendation methods are used to to predict users’ preferences

based on contextualised data. This method is the frequently used as bench-

mark for context-aware recommender systems [5].

3.2.2 Contextual Post-Filtering

Similarly to contextual pre-filtering, post-filtering also makes use of an existing

recommender system. The contextual post-filtering approach ignores context

information in the input data when generating recommendations. Then, the

contextual post-filtering approach adjusts the obtained recommendation list

for each user using contextual information [5]. The recommendation list ad-

justments can be made by:

• Filtering out recommendations that are irrelevant (to the given context).
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• Adjusting the ranking of recommendations on the list (based on the given

context).

Post-filtering methods can provide quick response to the user. The tradi-

tional recommendation tasks can be done in advance. When context-aware

recommendations are required, the system can quickly contextualise (filter or

adjust) the traditional recommendations results.

3.2.3 Drawbacks of Contextualisation: Non-Personalised

Contexts and Data Sparsity

In this section, we discuss the common issues of the contextualisation methods

we have introduced in previous section.

Sometimes, with contextual pre-filtering methods, the exact context can be

too narrow. After data selection in contextual pre-filtering, the data sparsity

increases. Therefore, the system may not have sufficient data to make accurate

recommendations [5]. Consider the film recommendation task: a person wants

to see a film with his girlfriend in a theatre, on Friday evening. If the exact

context is used, it is likely that results are not accurate and reliable. First, we

may not have enough data that can match the exact context. In this case, it

is possible we may not get any recommendations at all for this very specific

context. Second, it is not necessary to use the exact context. For example,

the suitable films for Friday evening may not be very different from the films

for Saturday evening. Incorporating a more general context, such as weekend

evening in this example, will not reduce the accuracy, but provide diverse and

reliable recommendations, since the system can learn from further training

data.

Context generalisation is proposed to address this problem [2]. Consider

we have context c = (company, place, time). Using the film recommendation

example, we have c = (girlfriend, theatre, Friday evening). For every com-

ponent in the context, a generalised set S, which has a hierarchical structure
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Fig. 3.1 The hierarchical structure of contextual information

of contextual information, can be defined (see Figure 3.1). We can define a

different S for each component of the context, and several hierarchies for more

general context, as the following example shows:

• Time: Friday evening → weekend evening → evening → any time

• Place: theatre → any place

• Company: girlfriend → friend → any company

Then we can have multiple generalised contexts for c = (girlfriend, theatre,

Friday evening). For example:

• c1 = (girlfriend, any place, Friday evening)

• c2 = (friend, theatre, Weekend evening)

• c3 = (friend, any place, any time)

Note that the set of possible contexts here must be pre-defined, or the sys-

tem is not able to make use of the context. In fact, in most context-aware

recommender systems, the contexts are pre-defined. This can be problematic,

especially when it comes to temporal contexts. Some people may start the

day much earlier or later than others. Therefore, different users may have

different preferences in the pre-defined context, such as “evening”. More im-

portantly, these pre-defined temporal contexts can be too general for some

users. In a relatively long and general context, the user’s preference can still

change significantly. However, if the context is not general enough, the RS
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can not obtain enough data to learn the user’s preference. Beside, there may

be many generalised contexts. Therefore, it is very important to determine

which context to use and how general the context should be. One option is to

use a manual, expert-driven approach [5]; e.g., always generalise specific days

of the week into a more general Weekday or Weekend. However, in different

applications, the type of context we are interested in may be different. The

generalisation rules may not be appropriate in all applications. It is also impos-

sible to manually specify all the generalisation rules in a system that involves

a very large number of possible contexts. Another option is to use a more au-

tomated approach that could empirically evaluate the predictive performance

of the recommender system on contextualised input datasets obtained from

each generalised pre-filter. Then the RS chooses the pre-filter with the best

performance. In cases of applications with highly granular contexts, there may

be a very large number of possible context generalisations. It is not possible

to empirically evaluate the predictive performance on each generalised context

due to high computational cost.

Contextual post-filtering is faced with the same problems. In fact, the prob-

lems of context generalisation are shared by all the contextualisation methods.

In these approaches, the contextualisation process requires us to define a set

of contexts first, which are not personalised. Exact and detailed context can

again lead to data sparsity; while generalised context leads to inaccurate rec-

ommendations.

These limitations of contextualisation methods suggest that a new context-

aware recommendation method is needed. Therefore, as we introduced in

Section 1.2, the following research questions are raised:

• whether we can develop a recommendation method that is able to over-

come the data sparsity in context-aware recommender systems.

• whether we can develop a recommendation method that is able to define

personalised contexts.
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3.3 Session Based Method

Sometimes, it is not possible to obtain additional contextual information. How-

ever, we do know what items the user has chosen in the current context (also

known as “seed items”). Therefore, if we assume the context remains the same,

we can make context-aware recommendations based on these seed items.

Following this idea, several methods are proposed to make context-aware

recommendations. In these methods, a context is usually defined as an active,

continuous session with the system, such as a music listening session, or a web

browsing session [7, 30].

3.3.1 Non-personalised session based methods

In these methods, recommendations are based on the items that the user just

chose in the current context (seed items). The given user’s general preference

has little influence on the recommendations. That is, the recommendations are

not personalised. The same seed items would lead to the same recommenda-

tions. For example, Hariri et al. propose a context-aware music recommender

system that can infer contextual information based on the most recent se-

quence of songs liked by the user [30]. Given a sequence of songs in a user’s

current interaction, the discovered patterns in sequence are used to predict

the next track in the playlist. This method can not generate personalised rec-

ommendations, because based on the same sequence of songs, the RS always

generate the same recommendations, without considering user’s general taste

reflected in other contexts (sessions).

3.3.2 Personalised session based methods

In these methods, each session is typically viewed as a mixture of various “top-

ics”, and each “topic” has unique item distributions. Therefore, the central

task of session based methods is to discover the underlying association be-
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tween contexts, and to identify similar contexts (sessions) based on the topic

mixture. Most session based methods are based on some latent factor model.

These latent factors determine the characteristics of “topics”, thereby the char-

acteristics of a context. In these methods, the user-item interaction data are

replaced with user-topic data. These new features (topics) are selected for

either context profiling or user profiling [37]. However, once the features are

selected, they are used for both tasks.

The Latent Dirichlet Allcation (LDA) is a widely used latent factor model.

It can be used to model the distributions of items in sessions. LDA was origi-

nally proposed for modelling text documents, extracting useful features from a

set documents[16]. LDA models each document (session) as a mixture of latent

topics where each topic is a distribution over the vocabulary (items).

Based on LDA model, Hariri et al. propose the Query-driven context-aware

recommendation (QD), a model that integrates user profiles, item represen-

tations, and contextual information [31]. In this method, tags or keywords

associated with the item are used. Therefore, each item can be represented

as a “bag of words”, which is equivalent to a document. LDA model is used

to generate the features (topics) of these documents; each topic (feature) is a

distribution over tags; user, item and context are all represented as mixture

of various features. However, as we discussed earlier in this chapter, matrix

factorisation has been proven to be superior in modelling user item interaction.

If we could separate the modelling of context, use separate sets of features for

contexts and items, we may be able to generate more accurate recommenda-

tions.

Similar to QD, Zheleva et al. propose a music-listening session based model

(SBM) [73]. This method is also based on LDA model. However, tags and

keywords are not used in this method. Therefore, each topic is simply a dis-

tribution over items instead of tags. Users and contexts are represented as

mixtures of features (topics). If we could separate the modelling of context

and user, use different features, we may be able to generate more accurate
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recommendations.

The above issues of existing session based methods suggest that a new

approach is needed. The new approach should be able to model user’s general

preference, and to model the underlying association between contexts. More

importantly, the modelling of users and contexts should be independent of each

other, as we discussed in our third research question in Chapter 1. Therefore,

accurate user modelling and accurate context modelling can be achieved at the

same time.

3.4 Evaluation of Context-Aware Recommender

Systems

Most popular recommender systems are based on explicit data. The criteria

for evaluating those systems may not be suitable for CARS. In this section, we

review commonly used testing and analysis criteria, and choose the appropriate

ones for our method.

3.4.1 Rating Prediction Accuracy

The recommender system generates predicted ratings r̂ij for a test set of user-

item pairs (user ui, item wj) for which the true ratings rij are known. Root

Mean Squared Error (RMSE) between the predicted ratings r̂ij and true ratings

rij is given by [38]:

RMSE =

√

1
N

∑

(r̂ij − rij)
2 (3.1)

where N is total number of ratings that need to be predicted.

RMSE is also used to evaluate the recommender systems based on implicit

data. For example, Baltrunas and Amatriain [11] convert all the music play
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counts, pij , to user-item (user-track) ratings rij (1 to 5 stars). Then a recom-

mendation method based on ratings is employed. The system is evaluated by

RMSE, comparing the difference between the predicted rating and the rating

mapped from play counts. In such cases, the ratings mapped from implicit

data are used as true ratings. However, the mapping can be inaccurate. An

extreme example is that all the user-track play counts are converted to 5-star

ratings, no matter how many times the track has been actually played by the

user. A zero RMSE can be easily achieved if the system simply predicts all

the ratings are 5 stars. Obviously such system would perform poorly in real-

ity. Therefore, RMSE becomes meaningless due to inaccurate mapping from

implicit to explicit data. Besides, in most cases, it is impossible to measure

whether the mapping is accurate or not, unless both the true rating and its

corresponding implicit data are available. Therefore, RMSE should not be

used to evaluate the systems built on implicit data.

3.4.2 Relevance Prediction Accuracy

In many applications, we do not care about how accurate the system can

predict all the user-item ratings. Instead, we would like to know whether

the recommended items are relevant, whether the user would actually use

(purchase, listen, or consume) them [22]. Compared to RMSE, this property

is far more practical and intuitive.

To employ relevance prediction, typically a data set consisting of the items

each user finds relevant and irrelevant is needed. We then select a test user,

hide some of his or her selections, and ask the recommender to predict whether

the user would find these selected items relevant [65]. Then the recommenda-

tions comes in a ranked list of items, ordered by decreasing relevance [22]. We

can determine whether a recommended item is in fact relevant or not based on

the user’s predicted rating on the given item: large value indicates the item is

relevant, small value indicates it is not relevant. We then have four possible

outcomes, as shown in Table 3.1.
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Recommended Not Recommended
Relevant True Positive (TP) False Negative (FN)
Not Relevant False Positive (FP) True Negative(TN)

Table 3.1 Possible results of a recommendation [65]

• True positive (TP): RS recommends an item that is relevant.

• False positive (FP): RS recommends an item that is irrelevant.

• True negative (TN): RS does not recommend an item that is irrelevant.

• False negative (FN): RS does not recommend an item that is relevant.

With implicit data, by observing the user’s behaviour, we can infer which

items the user finds relevant. For example, if the user repeatedly plays a track,

the user must like it. However, it is hard to reliably infer which items the user

does not like or finds irrelevant from the smaller values of implicit feedbacks

[33]. In some cases, this can be done by randomly selecting the items the given

user has never interacted with as irrelevant items. This method can only be

used when the dataset contains a significant number of items, and each user

is only interested in a relatively small amount of items.

By using this method, we can generate test sets containing both relevant

and irrelevant items. Precision measures the proportion of recommended items

that are in fact relevant. It is defined as:

Precision =
TP

TP + FP
(3.2)

Precision can tell us how many irrelevant items are recommended to the

user. Precision can also be evaluated at a given cut-off rank, considering

only the top-N recommendations. This measure is called precision at N. It is

suitable for evaluating CARS on implicit transaction data.
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3.4.3 User Space Coverage

User space coverage (or just “coverage”) is the proportion of users for whom

the system can make recommendations [22].

Although some collaborative methods can predict user’s preference on sparse

dataset (though prediction accuracy usually drops given less data), not every

recommendation method has the ability to work on sparse data. In many ap-

plications the system is not able to provide recommendations due to limited

amount of data or data sparsity. In such cases we may prefer recommender

systems that can provide recommendations for a wider range of users.

In context-aware recommendations, only the data collected in the given

context should be used for training. In contextual pre-filtering, data not col-

lected in the given context is filtered out. This filtering step tends to make

the dataset far sparser, leading to poor coverage of users. Therefore, it is

important to compare the coverage of CARS.

3.4.4 Significance

If a method is non-deterministic, calculating the performance of a single in-

stantiation of the method in order to compare it with other algorithms would

not be wise, as that instantiation might be a good or bad one, depending

on chance. In order to gain the representative results, we should repeat each

experiment involving non-deterministic methods multiple times and take the

median of the performance values.

If an experiment involves non-deterministic method, the results can be anal-

ysed by the combined use of the Hodges-Lehmann Estimate with associated

non-parametric confidence intervals at 95%. The Hodges-Lehmann Estimate

is a value representing the differential between two data sets. It is calculated

by finding the average difference between all the values in data set A and all

the values in data set B. If there are m values in data set A and n values in

data set B, then m∗n values are calculated. The Hodges-Lehmann Estimate is
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the median of these values [42]. For example, if the precision of system A was

compared with the precision of system B and the analysis is: Hodges-Lehmann

Estimate of 20%, with confidence intervals of 15% to 25% at 95% confidence

level. This result can be interpreted as: the average difference in precision is

a 20% greater result for system B, although that difference is likely to vary

between 15% and 25%. Note that all the statistics used to analyse the data are

non-parametric. That is, they make no assumptions of a normal distribution

in the data, although should a normal distribution be present, these tests will

still give correct results.

3.5 Summary

The concept of context-aware recommender system has been proposed and

studied for several years [4]. However, as Adomavicius and Tuzhilin stated:

Most of the work on context-aware recommender systems has been concep-

tual, where a certain method has been developed, tested on some (often limited)

data, and shown to perform well in comparison to certain benchmarks [5].

The key issue here is the lack of contextual data.

In this chapter, we focused on context-aware recommender systems. We

introduced existing methods for making context-aware recommendations: how

they obtain contextual information, how they tackle data sparsity or lack of

data. Then we identified the limitations of existing CARS:

• All the possible contexts used in CARS are non-personalised. This can

lead to inaccurate recommendations

• Existing CARS can not deal with data sparsity. They can not generate

accurate recommendations on sparse data.

• Existing session based CARS can not achieve accurate user modelling

and accurate context modelling at the same time.
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These limitations correspond to the three research questions that we have

described in Chapter 1.

The limitations of CARS motivates for better context-aware recommenda-

tion methods. In the following chapters, we propose new methods to improve

existing context-aware recommender systems.



Chapter 4

Probabilistic Contextual

Filtering

In Chapter 3, we reviewed the field of context-aware recommender systems.

Several limitations of existing CARS have been identified. In this chapter,

we deal with two of them: data sparsity and non-personalised contexts. We

propose a novel context-aware recommendation method in this chapter. Based

on implicit data, we analyse and model each user’s periodic action patterns,

and then define personalised temporal contexts based on these patterns. Our

method can avoid context generalisation by assigning “weight” to each user

action in each context, so that we do not need to filter out the data collected

in different contexts. Consequently, our method can significantly improve rec-

ommendation accuracy on sparse datasets.

4.1 Introduction

Recommender systems can rely on different types of input [4]: explicit data

and implicit data. Most accurate is the high quality explicit feedback, which

includes explicit input by users regarding their preference for items. For exam-
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ple, Amazon1 usually asks users to rate the product they recently purchased;

Netflix2 collects star ratings for films; TiVo 3 users indicate their preferences

for TV shows by hitting thumbs-up/down buttons. The user has to rate a suf-

ficient number of items before a recommender system can capture the user’s

preferences and present the user with reliable recommendations [4]. Once these

initial ratings are obtained, a traditional recommender system tries to estimate

the rating function R

R : User × Item → Rating

Since the users are usually reluctant to provide ratings, the rating dataset is

sparse [49]. In the field of traditional recommender systems, this is usually

solved by applying collaborative methods with latent factors [4]. In context-

aware recommender systems, the rating function is extended into three dimen-

sions

R : User × Item × Context → Rating

For example, in traditional music recommender systems, the user only needs to

provide one general rating for the track that the user has played. For instances,

let us assume the music RS is using binary rating system, like = 1 and dislike

= 0. If user x likes track a, then we have (x, a) = 1. However, to make

context-aware recommendations, ideally, we would like to ask the user to rate

the track for all the possible contexts, e.g. whether the track is suitable to

play before sleeping, or in a party. Let context1 = before sleeping, context2 =

in a party. We would like to know the rating for the following:

(x, a, context1),

(x, a, context2)

Since the users are usually reluctant to provide ratings, the rating dataset

becomes so sparse that collaborative methods can not make accurate recom-

1http://www.amazon.co.uk/
2https://www.netflix.com/
3https://www.tivo.com/
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mendations and for some users, can not make recommendations at all [5].

A we discussed in Section 3.2, to deal with data sparsity in CARS, context

generalisation [2] is commonly used: using a more general context instead of

the exact context. For example, the temporal context can be changed from

“Saturday 8pm” to “evening” to obtain more training data. However, us-

ing a generalised context means using data collected in different context, in

which the user may have different preference. In cases of applications with

highly granular contexts, there may exist a very large number of possible con-

text generalisations. It is not possible to empirically evaluate the predictive

performance on each generalised contexts due to high computational cost [5].

Identifying the suitable generalisation becomes very difficult. That is, there

is no consistent and optimal way to find the suitable generalisation. These

limitations indicates that context generalisation might not be the best way to

deal with data sparsity. Therefore, in Chapter 1, we presented our first re-

search question: whether we can develop a CARS that is able to overcome data

sparsity, in order to provide more accurate recommendations for more users,

compared to existing CARS.

In context-aware recommender systems, all the temporal contextualisation

method usually use pre-defined temporal contexts [11]. As we discussed in

Chapter 1, in music recommender systems, it is common to define a set of

temporal contexts based on common sense, such as morning, afternoon and

evening, and the boundaries between these temporal contexts are usually the

same for all the users. However, some users may start the day much earlier

or later than others. That is, different users may have totally different prefer-

ences in the same pre-defined context. More importantly, for some users, these

pre-defined temporal contexts can be too general. For example, a user listens

to rock & roll every morning to wake him up; when he is working in the morn-

ing, he listens to classical music. The temporal context “morning” becomes

meaningless, because it covers such a long period of the day. In the same

context “morning” the user’s preference still changes significantly. However,

in this case it is almost impossible to solve this problem if we use the same
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set of temporal contexts for all the users, and do not analyse individual user’s

listening habits. Therefore, it is necessary to discover each user’s listening

(or other action) patterns and frequencies, and define personalised temporal

contexts based on these patterns. Therefore, in Chapter 1 we presented the

second research question: whether we can develop a CARS that is able to define

personalised contexts based on users’ activity patterns, so that the system can

achieve higher recommendation accuracy than existing CARS.

In this chapter, we propose a novel contextual filtering recommendations

technique, Probabilistic Contextual Filtering. Based on implicit data, we anal-

yse and model each user’s periodic action patterns based on their listening

frequencies at different times of the day. That is, instead of explicit data such

as rating, we use log-like implicit data, which can indicate at what time the

user is active, which item the user chooses to consume, the frequency of ac-

tions (consumptions). We then define personalised temporal contexts based

on these identified patterns, classify user actions into these personalised con-

texts. We calculate the probability that the user action is performed in each

personalised user context, and use this probability as the weight of the action

in that specific context. Here, the given user’s action can be listening to a

certain track, or purchasing a certain product.

Our method follows the idea of pre-filtering [5]. That is, the contextual

(temporal in our case) information is used to build the contextualised dataset

for RS. Our method is different from those contextualisation methods intro-

duced Chapter 2, because we never filter out any data. We don’t define a

unified set of contexts. Instead, for each individual user, we define person-

alised temporal contexts as a Gaussian distribution. Therefore all the temporal

contexts overlap with each other in our method.

By using probability as weight, our method does not need to generalise

the given context, thereby avoiding the limitation of context generalisation.

Based on personalised temporal contexts, our method can significantly improve

recommendation accuracy on sparse dataset, and provide recommendations
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for more users, compared to contextual pre-filtering method and traditional

collaborative method.

The remainder of this chapter is structured as follows: In Section 4.2 the

algorithm of our probabilistic filtering is presented. Section 4.3 describes the

testing criteria for context-aware recommender systems. In Section 4.4, exper-

iments results using our probabilistic filtering are given. Final comments are

provided in Section 4.5.

4.2 Probabilistic Contextual Filtering

Our Probabilistic Contextual Filtering (PCF) method takes three steps:

1. Capture the user’s action patterns based on frequency of actions. The

user’s action here can be listening to a certain track, watching a certain

TV show, or purchasing a certain product. We would like to capture

user’s temporal patterns, e.g. at round what time of the day the user

often listens to music, or at which day of the week the user tends to go

to the supermarket. Based on these patterns, we can define personalised

temporal contexts.

2. For each user context, build a user-item utility dataset, based on the

action frequency patterns. obtained in the first step, for each of the user’s

contexts. Here, the user-item utility indicate the usefulness of an item

to a user. By building a new dataset for each context, we contextualised

the data [5].

3. Predict the utility of given user-item pairs. The predicted utility of an

item for the given user at a specific time is the weighted sum of its

predicted utilities in all contexts. Since we have generate a contextualise

dataset for each user context, the predicted utility in a specific context

can be computed by a traditional RS.

In the following sections, we describe all of the three steps in detail.
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4.2.1 Modelling Action Patterns

In this section, we describe the first step our method.

For explicit data, let rk
ij be the rating provided by user ui on item wj in

context ck, where high values mean stronger preference. For implicit data, we

use pk
ij to indicate user-item interaction count in context ck. For example, in

music recommender systems, pk
ij is how many times user ui has played track

wj in context ck. In this step we use implicit data to model user’s action

patterns.

Although user’s preference might be different in distinct temporal contexts,

it can have a periodic pattern [5]. For example, in music recommendation, a

user always listens to track wi while driving to and from work. Therefore, his

preference on playing track wi would have a daily repetition. If we divide the

day into 48 non-overlapped periods with the same length (30 minutes), and

let pt
ij be the action count of user ui on item wj during period t, the value

of pt
ij would show a daily pattern: two peaks everyday, one from 8:30am to

9:00am and the other from 5:00pm to 5:30pm, when he is driving to and from

work respectively. In this case, based on pt
ij values, we can infer that there

might be two meaningful contexts when pt
ij reaches its peaks. Therefore, we

would like to focus on predicting the user’s preference in such contexts first,

instead of predicting this user preferences in each possible temporal context

blindly.

Inspired by this, we consider that for each user ui, the pt
ij values of some

items can be used to infer the periodic pattern of the given user’ preference.

However, inference based on certain items may be problematic. First, it is

unreliable. We may obtain different periodic patterns based on different items.

Second, no items can be suitable for all contexts. Therefore, it is possible

that no item appears in all the contexts. For example, it is likely that a

track frequently played in the morning has never been played in the evening.

Therefore, we can not discover all the contexts based on a certain item. In

our system, instead of pt
ij , the inference is based on pt

i, the total action counts
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of user ui on all items in t. The sharp rises and falls of pt
i could indicate the

boundaries of between contexts.

In our method, we are making the assumption that the total action count

of a user would show some fluctuations throughout the day. For every user,

we assume that each major peak value of pt
i is the result of a distinct temporal

context. However, to reliably capture user’s periodic patterns, we can not rely

on the action counts in only one temporal cycle. We would like to study the

distribution of user actions in different temporal contexts, rather than counting

the user actions in individual short period of time. To make the our model

more accurate, we use a continuous variable t to represent the time, instead

of dividing each temporal cycle into small periods. Therefore, the number

of actions of user ui is now rewritten as pi(t), a distribution over time. By

using continuous time variable, we no longer need to set boundaries between

contexts. Given a specific time point, we can compute the probability that

this time point is in a given temporal contexts.

Note that the way we identify meaningful context is very different from

context generalisation. Context generalisation expands a pre-defined narrow

context to a more general one so that in this general context the RS has enough

data to learn the user’s preference; while in our case, we model user’s action

frequency as a distribution, so we can focus on the context in which the user

tends to be more active.

The periodic pattern of pi(t) of each user can be modelled by a mixture

of K periodic Gaussians, clustering all actions of user ui into K overlapped

contexts. We select Gaussian mixture model for its simplicity. The statistics

of a continuous and periodic variable can be captured either by distributions

which are directly defined on the unit circle, like the von Mises distribution,

or by “wrapping” the probability density function (pdf) of linear variable t

to the circumference of the unit circle [45]. The new distributions obtained

by “wrapping” linear Gaussian are called wrapped Gaussian distributions. In

fact, the von Mises and the wrapped Gaussian distribution are very similar
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[6]. In our method, we use wrapped Gaussian distribution for its simplicity

in approximation. The wrapped probability density function pW (θ) of the

wrapped variable θ = t×2π
T

mod 2π, defined in the interval (−π, π], can be

generally obtained by tiling different pdfs shifted by multiple of 2π [19, 46].

That is, we combine infinite linear Gaussian models as a new model. The

centre of each Gaussian is shifted by 2π. Here, T represents the period of the

periodic variable in specific applications. For example, if we are interested in

users’ daily action patterns, the period of the periodic distribution should be

a day. If we are interested in users’ weekly or monthly action patterns, the

period of the periodic distribution should be a week or a month.

In our model, the distribution of action count in each personalised tempo-

ral context is modelled by a wrapped Gaussian distribution (WG). It can be

written as follows [19]:

N W (θ|θ0, σ) =
∞

∑

w=−∞

N (θ − w2π|θ0, σ2)

=
∞

∑

w=−∞

1√
2πσ

e−
(θ−w2π−θ0)2

2σ2 . (4.1)

N W (θ|θ0, σ) is unimodal with a single local maximum (action count peak) and

symmetric about θ0, with variance σ2. It is constructed by infinite wrappings

of the linear Gaussian pdf inside the interval (−π, π] [19].

Since we assume there are K major peaks in T, so there are K overlapping

contexts. A mixture of WG (MoWG) on a periodic variable θ0 can be derived

as follows [19]4

4In [19], π and πk are used instead of µ and µk
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MoWG(θ|µ, θ0, σ) =
K

∑

k=1

µkN W (θ|θ0,k, σk)

=
K

∑

k=1

∞
∑

w=−∞

µk

1√
2πσk

e
−

(θ−w2π−θ0,k )2

2σ2
k (4.2)

where K is the number temporal contexts in a cycle, thus the number of

mixture’s components. µk is the weight of the kth component. Therefore, in

each temporal cycle, the total action count is modelled as the weighted sum

over action counts in K temporal contexts. Note that, in our model there is no

clear boundaries between components. That is, we assume the all the contexts

in a temporal cycle overlap with each other.

The approximation of MoWG include infinite summations [19]. However, in

practice, a summation over ±2 tilings provides a sufficient approximation even

for large variances (σ2 6 2π), because in that case, the pdf of the truncated

Gaussian closely approximates the pdf of the unconstrained Gaussian [19].

Bahlmann demonstrated, the approximation of WG by the most meaningful

cycle (wrap) can be used if the variance is small enough (σ2 < 1) [9]. Based on

Bahlmann’s approximation, we can define N AW , the approximated wrapped

Gaussian as follows [19]

N AW (θ|θ0, σ) =
1√
2πσ

e−
(θ−w2π−θ0)2

2σ2 . (4.3)

By applying Bahlmann’s approximation, MoWG can be replaced by the

mixture of approximated wrapped Gaussian (MoAWG). Therefore we obtain

the following [19]5

5In [19], π and πk are used instead of µ and µk
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MoAWG(θ|µ, θ0, σ) =
K

∑

k=1

µkN AW (θ|θ0,k, σ2

k)

=
K

∑

k=1

µk

1√
2πσk

e
−

((θ−θ0,k) mod 2π)2

2σ2
k . (4.4)

where the operation “mod” represents the remainder of the division. K is the

number temporal contexts in a cycle, thus the number of mixture’s compo-

nents as MoWG, and µk is the weight of the kth component. Parameters of

MoAWG can then be estimated by Expectation-Maximisation (EM) algorithm

[26].

EM is an iterative method for finding maximum likelihood of parameters in

statistical models, where the model depends on latent variables [14]. Given a

Gaussian mixture model, EM maximises the likelihood function with respect to

the parameters (comprising the means and covariances of the components and

the mixing coefficients). EM initialises the means, covariances of the compo-

nents and the mixing coefficients randomly. In expectation step, EM evaluates

the responsibilities using the current parameter values. In maximisation step,

EM re-estimates the parameters using the current responsibilities [14]. After

each iteration, EM checks for convergence of either the parameters or the log

likelihood. If not converged, EM return to expectation step. The two steps

are iterated until convergence [26].

In MoAWG, the basic steps of EM can be summarized as follows [19]:

Expectation Step: The responsibility γxk of component k for an action

x observed at time θx, can be estimated using the parameter values of the

previous iteration (randomly initialized for the first iteration) as follows:

γxk =
µkN AW (θx|θ0,k, σ2

k)
K
∑

y=1

µyN AW (θx|θ0,y, σ2
y)

(4.5)
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Maximization Step: The M step estimates the new values of the mix-

ture’s parameters. They can be estimated for each component k as

µk =
1
n

n
∑

x=1

γxk (4.6)

θ0,k = arctan

n
∑

x=1

γxk sin θx

n
∑

x=1

γxk cos θx

(4.7)

σ2

k =

n
∑

x=1

γxk((θx − θ0,k) mod 2π)2

n
∑

x=1

γxk

. (4.8)

The two steps are iterated until convergence or until a given number of

iterations is reached. Therefore, we obtain a mixture of K Gaussian model,

representing K periodic temporal contexts. Given a user action, the proba-

bility that the action is performed in a certain context (responsibility of the

context) can be computed according to Equation 4.5.

4.2.2 Constructing Datasets

This section describe the second step of our method.

So far, we have been able to model each user’s periodic action patterns.

Now for each user, we would like to generate a dataset for each of his contexts,

based on the MoAWG obtained in the previous step. That is, we would like

to build a contextualised dataset as in pre-filtering, for each of the user’s

contexts. Specifically, we would like to construct a user-item utility matrix for

each context of the given user. If a user has never interacted with a specific

item, the corresponding user-item utilities in all context are set to zero. If the

user has interacted with the item, the user-item utility in each dataset should

be able to reflect the corresponding user-item action count.
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Formally, we would like to compute user-item utility, Ak
ij for user ui and

the item wj, in kth context first. Note that in this step, we only compute this

value if the user has interacted with the given item, otherwise we set it to zero.

Let x be an action of user ui on item wj at time θx. We can calculate γxk, the

probability that x is an action in the kth context of user ui by Equation 4.5.

Let us view this action as K different micro-actions: each in a different context,

with a different action count. For each of these micro-actions, we assume the

user interacted with the item γxk time, where k is the corresponding context

index. That is, the action count of each micro-action is γxk. Note that γxk > 0

for each context, and
∑K

k=1
γxk = 1. That is, the sum of all the micro-action

counts of the same action is one. Here we assume each action is a mixture of

micro-action from a different context, with responsibility γxk.

For dataset dk, the dataset representing the kth context of user ui, summing

over all the corresponding micro-action counts γxk of item wj by user ui, we

obtain Ak
ij , the user-item utility of item wj for user ui:

Ak
ij =

∑

x

γxk (4.9)

To generate a user-item utility matrix for user ui, we also need to compute

the utilities of items for other users. This can also be done by Equation 4.5

and 4.9. The only difference is, for action x that is not of user ui, γxk is still

calculated based on the mixture model of user ui, since we are building this

dataset for user ui. That is, we are computing the probabilities that the action

happens in the contexts of user ui, even if it is not an action of user ui.

We compute the user-item utility for all the user-item pairs in all K datasets

of user ui, based on his Gaussian mixture model. Therefore, we obtain K

contextualised datasets for user ui, each based on one of his periodic contexts.

Similarly, we can do this for all the users in the system.
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4.2.3 Predicting Preferences

Although we have obtained K user-item utility datasets for each user, these

datasets can not be directly used by most traditional collaborative recommen-

dation methods, since most of these methods are designed to work on explicit

data, such as user-item ratings, while our user-item utilities are based on in-

teraction counts. Some mapping approaches need to be applied to the our

datasets, in order to obtain ratings from user-item utilities

Aij → rij

Since most of the users have only interacted with a relatively small number

of items, there are many zero-valued ratings in our user-item rating sets. In

most applications, we would like to predict the user’s preferences on items

they have never interacted with. Therefore, after the mapping procedure, a

traditional collaborative recommendation method is trained on each dataset

to predict each user’s ratings on items the user has not interacted with.

Formally, we would like to recommender user ui some items at time θx.

Specifically, we would like to know the rating user ui would give on item wj,

which the user has never interacted with. We apply a traditional collaborative

method, such as matrix factorisation, on all K datasets of user ui. Thus,

we obtain K unique predicted ratings, r0

ij to rK
ij , one from each context. At

time θx, we can calculate the responsibility of each context γxk, based on the

MoAWG of user ui by Equation 4.5. We compute the final predicted rating as

a weighted sum:

rij =
K

∑

k=1

γxkrk
ij (4.10)

In our method, we generate K datasets for each user. Storing these dataset

can take large disk space. Modelling users’ action patterns and predicting

their preferences in all K contexts can be computationally expensive. How-
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ever, the action modelling step can be done in parallel, and more importantly,

in advance. The recommender system can keep updating the parameters of

MoAWG, and the value of rk
ij , the predicted rating of user ui on item wj in the

kth context. When recommendations are requested for time θx, the predicted

user rating rij can be calculated as in Equation (4.10). Note in this equation,

we only need to calculate γxk. All the rk
ij has be calculated in advance.

4.3 Experimental Method

4.3.1 Data for Testing PCF

We have obtained two implicit usage datasets: music listening dataset from

last.fm6 and retail transaction dataset from Ta-Feng warehouse. Based on

these two datasets, we study the two commonest temporal patterns: daily and

weekly patterns respectively.

Music Data

The first dataset we are using was collected from the music website, last.fm.

This dataset is available to public7. It has been used in several published

work [21]. The dataset contains the listening histories of about 1,000 users.

Each time when a user listened to a track, a new entry was generated. Each

entry includes the user ID, track name, MusicBrainz8 track ID, artist name,

MusicBrainz artist ID and an appropriate timestamp. In this dataset, there

are 19,121,228 entries in total, from 992 users, on 176,948 artists.

For simplicity, we only use the tracks that have both MusicBrainz track ID

and artist ID. So we clean the data by removing the tracks and artists that

have no MusicBrainz ID. After remove tracks and artists without MusicBrainz

ID, the dataset still contains 16,984,430 entries (less than 12% of the entries

6http://www.last.fm/
7http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/lastfm-1K.html
8http://musicbrainz.org/
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Fig. 4.1 A typical user’s total play count at different times of the day

were removed). For each user, we have about 17,000 entries on average.

We need to infer which tracks the user likes based on this implicit dataset.

Therefore repeated playing is important. By observing the user’s behaviour,

calculating the play count of each track, we can infer which tracks the user

probably likes more and thus prefers to play. However, people tend to spend

most of their time listening to their favourite tracks. Therefore, most tracks

that a user has played have very low play counts (usually only once or twice).

For simplicity, we assume tracks from the same artist have similar style. In-

stead of recommending tracks, we recommend artists to the users. There-

fore, the dataset become less sparse, and each item (artist) has more action

counts.

In this dataset, we find that many users’ action counts show very evident

daily repetitions. For example, a user tends to listen to music from around

11am to 3pm and at around 8pm everyday (Figure 4.1). In our work, this

dataset is used to study users’ daily action patterns.
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Retail Data

The second dataset we are using is the publicly available Ta-Feng transaction

dataset. It is available from ACM Recsys wiki9. This dataset has also been

used in published work [28]. Ta-Feng is a membership retailer warehouse that

sells a wide range of merchandise, from food and grocery to office supplies.

This dataset contains transactions data between November 2000 and February

2001 (four months). It contains 119,578 transactions, totalling about 32,000

customers and 24,000 items. Each record in this dataset consists of the fol-

lowing attributes: 1. Transaction date and time; 2. Customer (user) ID;

3. Product (item) ID. On average, a customer purchases 6.8 items in each

transaction [32]. This dataset is very sparse.

In this dataset, we find that many customers have weekly shopping patterns.

For example, a user purchases many items in one transaction every weekend,

while during weekdays the user occasionally goes to the store, and usually

purchases only one or two items in one transaction (Figure 4.2 and Figure

4.3). In our work, users’ weekly action patterns are studied based on this

dataset.

4.3.2 Testing and Analysis Criteria

As we discussed in Chapter 2, most popular recommender systems are based on

explicit data. The criteria for evaluating those systems may not be suitable for

systems based on implicit data. We select the following methods to evaluate

our methods and the baseline approaches.

Relevance Prediction Accuracy

With implicit data, by observing the user’s behaviour, we can infer which items

the user finds relevant. For example, if the user repeatedly plays a track, the

user must like it. However, it is hard to reliably infer which items the user does

9http://recsyswiki.com/wiki/Grocery_shopping_datasets
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Fig. 4.2 The number of items a typical user purchased on different days of the
week
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not like or finds irrelevant from the smaller values of implicit feedbacks [33].

In some cases, this can be done by randomly selecting the items the given user

has never interacted with as irrelevant items. This method can only be used

when the dataset contains a significant number of items, and each user is only

interested in a relatively small amount of items. For example, in the last.fm

music dataset, there are more than 160,000 artists, and usually the number of

artist a user has interacted with is less than 400. The probability of an artist

the user has never interacted with being interesting to the user is very small.

By using this method, we can generate test sets containing both relevant and

irrelevant items.

Precision measures the proportion of recommended items that are in fact

relevant. Precision can tell us how many irrelevant items are recommended to

the user. In our experiments, we use precision at N to evaluate the prediction

accuracy of our RS.

User Space Coverage

In context-aware recommendations, only the data collected in the given con-

text should be used for training. In most contextualisation methods, data not

collected in the given context is filtered out. This filtering step tends to make

the dataset sparser, leading to poor coverage of users. Therefore, it is impor-

tant to compare the coverage of CARS.

Significance

The mixture of Gaussian models are non-deterministic. The final positions

of components in the mixture model depend in part on randomness for the

starting positions during training.

In order to gain the representative results, we repeat each experiment

involving non-deterministic methods 100 times and take the median of the

performance values. The results are analysed by the combined use of the

Hodges-Lehmann Estimate with associated non-parametric confidence inter-
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vals at 95%.

4.3.3 Testing Method of PCF

Test Sets

To evaluate our method on music data, we randomly select 200 users for testing

(20% for testing). The rest of the users’ playing histories are fully observed.

For each of the selected users, we generate two testing sets to simulate two

different contexts: one at 10am, one at 8pm. To generate relatively more

reliable testing sets, we use a one-hour window: in the first context, tracks

played between 9:30am to 10:30am will be used for testing, and 7:30pm to

8:30pm for the second context. In each context for each user, we randomly

select 10 artists whose tracks have been played at least pmin times in this

temporal context as relevant artists, and 10 artists whose tracks have never

been played in this temporal context as irrelevant artists. So that we have

a balanced test set. pmin is set to 5, so that each of the selected user has

more than 10 relevant artists. The rest of the data (including the data of the

users that are not selected for testing) is used for training. The recommender

systems will predict the user’s preference by ranking these 20 candidates from

the most preferred to the least preferred artist. If user ui played tracks of artist

wj in a testing context, the play count of artist wj by user ui is set to zero in

the corresponding training set. Therefore, the recommender systems need to

predict the user’s preference on “new” items, rather than the items the user

plays frequently in other different contexts.

A similar approach is used on retail data. 8000 customer are selected

randomly for testing. Two testing sets are generated for each testing user:

Wednesday shopping set and Saturday shopping set. So we have one testing

context for weekdays, one for weekends. In each context for each user, 5 items

that the user has purchased are randomly selected as relevant items, and 5

items that the user has never purchased in this context are selected as irrele-

vant items. The recommender systems will provide a ranked list of these 10



62

candidates, ordered by decreasing preference. If user ui purchased item wj in

a testing context, the purchase count of item wj by user ui is set to zero in

the corresponding training set. Therefore, the recommender systems need to

predict the user’s preference on “new” items, rather than the items the user

purchased frequently in other different contexts.

Baseline Approaches

When evaluating the precisions of our system, a matrix factorisation method

[27] with 100 factors is used as baseline approach due to its ability to generate

accurate predictions on sparse datasets. In our experiment, MF with more

than 100 factors no longer increase prediction accuracy. This is a traditional

recommendation method, which does not take into consideration any contex-

tual information. Besides matrix factorisation, we have also implemented the

pre-filtering method called micro-profiling (MP) [11], which splits the user

profile into morning and evening on music data, weekday and weekend on re-

tail data, a typical pre-filtering method. Matrix factorisation is also used in

micro-profiling and our probabilistic contextual filtering. That is, after the

contextual filtering step (either by our method or micro-profiling), the tradi-

tional recommendation method, matrix factorisation is employed to predict

the user’s preference. For both datasets, we will compare the precision when

recommending only one item (precision at 1), and the precision when recom-

mending the first half of items (precision at 10 on music data and precision at

5 on retail data). In our experiments, we use the implementation of MF from

Apache Spark10.

Matrix factorisation is able to predict user’s preference on sparse dataset

(though prediction accuracy usually drops given less data). However, not every

traditional recommendation method has the ability to work on sparse data.

When comparing the user space coverage of different systems, the item based

Pearson correlation method [54] is used as the traditional recommendation

method of the contextual filtering systems. Compared to matrix factorisation,

10http://spark.apache.org/
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K = 2 K = 3 K = 4 K = 5
Precision at 10 on Music Data 79.2% 85.0% 86.2% 86.9%
Precision at 5 on Retail Data 72.5% 73.1% 73.4% 73.6%

Table 4.1 Precision of Probabilistic Contextual Filtering as K increases

it is intuitive, easy to implement and its training takes considerably less time.

However, this method also requires more training data to predict the user’s

preference. In our experiment, we compare the user space coverage of our

probabilistic contextual filtering and micro-profiling, both using item based

Pearson correlation as the traditional recommendation method.

Machine Used

In our experiments, we use a laptop with Intel 2.6 GHz dual core processor

and 4GB of RAM.

4.4 Results and Analysis of PCF

In this section, we present the experimental results on probabilistic contextual

filtering, and the analysis based on these results.

4.4.1 Number of Gaussians

Before we compare the probabilistic contextual filtering to other methods, we

would like to find the optimal value of K, the number of Gaussians used in the

mixture model MoAWG. On both datasets, we are comparing the precision at

the first half (10 on music data and 5 on retail data) as K increases.

As we can see from Table 4.1, the precision increases as the mixture model

consists of more Gaussians. However, the precision increases very slowly after

K is greater than 3 on music data, because for most users, there are no more

than 3 different contexts in terms of music listening. On retail data, when

K = 2, the model can already cover most users’ shopping patterns. The greater
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Fig. 4.4 A user’s play count modelled by MoAWG.

K is, the longer it takes to train the model. In the following experiments, we

use the mixture of 3 Gaussians on music data (an example is presented in

Figure 4.4) and the mixture of 2 Gaussians on retail data since bigger K does

not lead to significantly higher precision but considerably increases training

time.

4.4.2 Comparison with Traditional Recommendation Method

In this section, we compare our PCF with traditional recommendation matrix

factorisation.

Hypothesis

H4.10: There will be no difference in precision between the traditional recom-

mendation method, matrix factorisation (MF) and the combination of proba-

bilistic contextual filtering (PCF) and matrix factorisation (PCF + MF).

Results
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

MF 71.3% 84.6% 65.7% 72.9%
PCF + MF 85.0% 93.9% 72.5% 76.0%

Table 4.2 Precisions of MF and PCF + MF

On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

Can the hypothesis
be rejected at
the 95% confidence
interval

Yes Yes Yes Yes

Hodges-Lehmann
Estimate

13.7% 9.3% 6.8% 3.1%

Confidence
Interval at 95%

(13.1%, 13.9%) (9.2%, 9.3%) (6.8%, 6.8%) (3.1%, 3.1%)

Table 4.3 Summary of analysis between MF and PCF + MF

Table 4.2 shows the precisions of the system using only MF and the sys-

tem using PCF + MF on both datasets. Table 4.3 shows the results of the

Mann–Whitney–Wilcoxon non-parametric test on the distributions of the re-

sults from both recommender systems.

The probabilistic contextual filtering substantially increases the precision

at 1 on music data by 9.3%, compared to the traditional method, matrix

factorisation. Similar results are found on retail data. The system using PCF

+ MF achieves considerably higher precision at 1 than only using MF on the

retail data. On both datasets, when more items are recommended to the

user (precision at 10 and at 5) the combination of PCF and MF can find much

more relevant items than MF alone. The statistical significance of the results is

shown in Table 4.3. On both datasets, using both criteria, the null hypothesis

can be rejected at the 95% confidence level, demonstrating that there is a

statistically significant difference when using PCF + MF instead of MF (or

vice versa).
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

MF 71.3% 84.6% 65.7% 72.9%
MP + MF 76.3% 90.4% 63.0% 72.7%
PCF + MF 85.0% 93.9% 72.5% 76.0%

Table 4.4 Precisions of MF, MP + MF and PCF + MF

On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

Can the hypothesis
be rejected at
the 95% confidence
interval

Yes Yes Yes Yes

Hodges-Lehmann
Estimate

8.6% 3.5% 9.5% 3.3%

Confidence
Interval at 95%

(8.0%, 9.1%) (3.3%, 3.6%) (9.5%, 9.5%) (3.3%, 3.3%)

Table 4.5 Summary of analysis between MP+ MF and PCF + MF

4.4.3 Comparison with Traditional Contextual Filter-

ing

In this section, we compare our PCF with traditional contextual filtering

method.

Hypothesis

H4.20: There will be no difference in precisions between the micro-profiling

(MP) and the probabilistic contextual filtering (PCF), both combined with

matrix factorisation (MF).

Results

The results form these experiments are presented in Table 4.4. The results

of the system using only the traditional recommendation method MF is also

presented in Table 4.4. The statistical analysis between the two contextual

filtering methods is given in Table 4.5.

On music data, the combination of micro-profiling and matrix factorisation
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can achieve higher precision compared to the system only employing matrix

factorisation, recommending either 1 or 10 items. However, the precision of

micro-profiling is still considerably lower compared to probabilistic contextual

filtering. Especially when measured by precision at 10, PCF + MF outperforms

MP + MF by 8.6%. These results demonstrate that PCF can predict the user’s

preference more accurately compared to MP.

On music data, we recommend artists instead of tracks. Therefore, there

is more data for each item (artist). Compared to music data, the retail data

is far more sparse. In micro-profiling, the retail dataset is further divided

into weekday set and weekend set, making the data even more sparse. And

data sparsity leads to poor recommendation. As we can see from Table 4.4,

applying MP + MF results in even lower precisions compared to the system

using only MF. The data sparsity cancels out the advantage of context-aware

recommender system.

The statistical significance of the results is shown in table 4.5. On both

datasets, using either criteria, the null hypothesis can be rejected at the 95%

confidence level, demonstrating that there is a statistically significant differ-

ence when using MP + MF instead of PCF + MF (or vice versa).

Besides precision, the recommender system’s ability to deal with sparse data

can also be measured by user space coverage.

Hypothesis

H4.30: There will be no difference in user space coverage between the micro-

profiling (MP) and the probabilistic contextual filtering (PCF), both using

item based Pearson correlation as the traditional recommendation method.

Results

The results of the experiment are presented in Table 4.6. In most applications,

there are always (new) users who have not interact with the system sufficiently,

or (new) items that have not been consumed by sufficient number of users.
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On Music Data On Retail Data
PCF 92.7% 66.0%
MP 83.6% 41.2%

Table 4.6 User space coverage of PCF and MP

Therefore, in most cases, the coverage can never reach 100%. On music data,

the coverage of PCF reaches 92.7%, outperforming MP by 9.1%. Since the

retail data is more sparse, both systems have relatively low coverage on this

dataset. However, PCF still outperforms MP by 24.8%, covering about two

thirds of the users.

The user space coverage is deterministic, despite the initialisation of PCF.

Therefore, the null hypothesis can be rejected. There is a statistically signifi-

cant difference in coverage, when using MP instead of PCF (or vice versa).

4.4.4 Discussion

In Section 4.4.1, we observed that the recommendation accuracy increases

as the mixture model consists of more Gaussians. However, the accuracy

increases very slowly after K, the number of Gaussian, is greater than a certain

value. On different datasets, the optimal value of K can be different. In

fact, even on the same dataset, the optimal value of K for different users

can be different, since K is the number of periodic contexts of individual

user. Therefore, in a specific application, and for specific users (if possible),

K should be determined based on the recommendation accuracy. Note that

the value of K also determines the number of datasets we need to generate

for each user, thereby the training time and the disk space required for saving

all these datasets. There is a trade-off between recommendation accuracy and

computational cost.

We compared our probabilistic contextual filtering with traditional recom-

mendation method and micro-profiling, a contextual pre-filtering approach.

Experimental results show that our method can outperform the baseline ap-
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proaches, in terms of recommendations accuracy and user space coverage.

An interesting observation in Section 4.4.3 is that, after applying the micro-

profiling method, the recommendation accuracy on retail data actually drops.

That is, on retail data, the context-aware recommender system, micro-profiling

performs even worse than a traditional RS, since the retail dataset is extremely

sparse. The micro-profiling is a contextual pre-filtering method. For a given

context, the micro-profiling filters out data collected in different contexts, mak-

ing the dataset even sparser. This is the intrinsic limitation of traditional pre-

filtering. The data sparsity leads to inaccurate recommendations and lower

user coverage. This issue was identified in Chapter 1. Based on it, we pre-

sented our first research question: whether we can develop a CARS that can

overcome data sparsity. In our probabilistic contextual filtering, we assign

weight to each data point. Consequently, the dataset is no sparser than that

in a traditional RS. Therefore, even on a relatively sparse dataset, after the

contextualisation step, we can still apply traditional recommendation methods,

such as matrix factorisation, to generate accurate context-aware recommenda-

tions. Experimental results show that our method can significantly outperform

the baseline approaches, in terms of recommendations accuracy and user space

coverage.

In Chapter 1, we also described another issue of existing CARS: non-

personalised contexts. In probabilistic contextual filtering, we analyse the peri-

odic patterns in user’s activity. We can then define personalised contexts based

on these patterns. Our probabilistic contextual filtering is non-deterministic.

The converged positions of components in the mixture model depend in part

on randomness for the starting positions during training. However, we did not

observe a huge variance in terms of recommendation accuracy. Especially on

retail data, the mixture model can always converge to the same position. This

is because in retail data, the boundaries between contexts are very clear. Most

users go to the store at fixed times of the day, e.g. during lunch break. Our

method can accurately capture these patterns, define personalised contexts,

generate accurate recommendations. In music data, a user may listen to the
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music all day. Therefore, the user’s action count in a day may not show sharp

rises and falls. In these cases, it might be slightly more difficult for our model

to converge to the same values in repeated experiments. Despite that, our

method performs considerably better than the baseline approaches on both

datasets, in terms of recommendations accuracy.

In probabilistic contextual filtering, we are looking for periodic action pat-

terns. However, before we applying a mixture model to the data, we already

assume a certain type of periodic pattern exists. In music dataset, we are

investigating daily patterns; in retail data, we are looking for weekly patterns.

However, given a new dataset, we may not know what type of periodic pat-

terns exist. More importantly, we may not know which periodic patterns can

affect user’s preference. In a dataset where multiple patterns exist, we need

to compare the recommendation results generated based on different periodic

contexts.

Probabilistic contextual filtering requires huge disk space since we are gen-

erating K rating matrices for each user. The training also takes relatively more

time since a RS is employed on each dataset. A possible solution to this is

combining the datasets that represent similar contexts. For example, in music

data, we may identify three temporal contexts for the given user: one in the

morning, one in the afternoon and one in the evening. However, the user’s

listening preference in the morning may not be very different from that in the

afternoon. Therefore, the corresponding datasets can be combined into one.

We may also combine datasets representing similar contexts but belonging to

different users, in order to further reduce the number of datasets. However, to

identify similar context, we may need to investigate what items user chooses

in each context.
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4.5 Summary

In this chapter, the probabilistic contextual filtering is presented. In this

method, personalised temporal contexts are identified and modelled by a mix-

ture of periodic Gaussians, based on the user’s action count at different time.

The probabilistic contextual filtering does not filter out training data like other

contextual filtering methods. Instead, the probabilities of an action performed

in different contexts are calculated. The user’s preference can then be com-

puted as a weighted combination of his preference in these identified contexts.

Consequently, we can avoid the problems of context generalisation, and over-

come data sparsity in CARS.

The testing criteria and experimental methods used are also presented in

this chapter. Experiment results from two datasets have demonstrated that the

proposed method can achieve higher prediction accuracy and user space cov-

erage on sparse data, compared to traditional RS and contextual pre-filtering.

However, compared to those methods, probabilistic contextual filtering also

requires more disk space and training time.

In this chapter, we improve CARS by analysing users’ periodic activity pat-

terns. However, these periodic patterns don’t always exist. In the next chapter,

we focus on improving session based CARS. By modelling item distribution

in different contexts, we are able to identify the contexts in which users have

similar preferences. We separate context modelling from user modelling, so

that accurate context-aware recommendations can be generated.



Chapter 5

Probabilistic Contextual

Clustering

5.1 Introduction

In the previous chapter, we identify personalised temporal contexts based on

periodic activity patterns. However, these periodic patterns don’t always exist.

Besides, temporal information is not always available. In this chapter, we are

solving this problem from a different angle: instead of incorporating contextual

information, we investigate the item distributions in different context.

In many applications, it is usually easy to identify users’ continuous activity

sessions, based on implicit data [24]. For instance, the music listening log can

usually indicate which tracks the user played in each continuous music listening

session; the supermarket transaction data can show us what items the user

purchased in each shopping session. Moreover, sessions are naturally separate

contexts. That is, in each of these activity sessions, the user’s context usually

stays the same [30]. This is very convenient for our purpose. We can view the

items consumed in one session as in the same context.

We believe that the items the user chooses in a session can indicate the

characteristics of the context, regardless of the time or the location of the ses-
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sion. Following the idea of contextual pre-filtering [2], to make context-aware

recommendations, we would like to identify the sessions that contains similar

items first. Specifically, we would like to find all the sessions that have similar

item distributions. Thus a contextualised dataset can be constructed based

on these similar sessions. A traditional recommendation method can then be

applied on the contextualised datasets to generate context-aware recommen-

dations.

There exist session based methods that can make use of item distribu-

tions and item co-occurrence. In these methods, a context is defined as an

active, continuous session with the system, such as a music listening sessions

[30]. Each session (context) is usually viewed as a mixture of various “topics”

[15]. Each “topic” has unique item distributions. However, as we discussed in

Chapter 2, these methods have either of the following problems:

1. Inability to build a complete user profile.

In such systems, recommendations are based on the items the user just

chose in the current context (seed items). The given user’s general pref-

erence has little influence on the recommendations. That is, the recom-

mendations are not personalised. Same seed items would lead to same

recommendations.

2. Inability to select different features for user modelling and context mod-

elling.

In these systems, topic models are employed to reduce the number of

features in the data. It replaces the user-item interaction data with

user-topic features. These new features are selected for either context

modelling or user modelling. However, once the features are selected,

they are used for both modelling tasks. This can lead to inaccurate

recommendations.

Therefore, in Chapter 1 we presented the following research question: whether

we can develop a session based CARS that is able to achieve accurate user
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modelling and accurate context modelling at the same time. In this chap-

ter, we propose a novel context-aware recommendation method: Probabilistic

Contextual Clustering (PCC). Based on activity sessions, we employ Latent

Dirichlet Allocation topic model to cluster sessions into overlapped groups.

Each of these groups is represented by a unique topic from LDA. Each ses-

sion can be represented as a mixture of topics. Although we don’t know

the actual context of each session, we can still identify the characteristics of

each session by modelling the distribution of items in each session with top-

ics. For each topic, a contextualised dataset is constructed. Therefore, most

traditional collaborative methods can then be applied on the new datasets

to generate context-aware recommendations. Experimental results show that

our method can significantly improve recommendation accuracy, compared to

other session based context-aware recommendation methods. In our method,

the topic model is only used for session modelling and building the corre-

sponding datasets. This also makes our method highly modular and flexible:

it can be easily modified and combined with other traditional recommendation

methods in different applications.

The remainder of this chapter is structured as follows: In Section 5.2, the

algorithm of our method is presented. In Section 5.3, we improve our proba-

bilistic contextual clustering method by incorporating tags (keywords) associ-

ated with items. Section 5.4 describes the testing approaches for the proposed

method. The experimental results and analysis are presented in Section 5.5.

Finally, a summary of the chapter is provided in Section 5.6.

5.2 Probabilistic Contextual Clustering

Our context-aware recommendation method takes three steps:

1. Apply a topic model (LDA) on the session data to discover and model

the topics of sessions. Each topic has a unique item distribution [16].

2. For each topic, construct a user-item utility dataset, based on the user-
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item interaction counts and the topic model obtained in the previous

step.

3. Predict the item utility by applying a traditional recommendation method

on each dataset. For a given session, the predicted utility of an item is

the weighted sum of its predicted utilities in all topics.

In this section, we describe the algorithm of our method in detail.

5.2.1 Session Modelling Based on Item Distribution

We choose Latent Dirichlet Allocation to model the item distribution in ses-

sions for its simple but powerful structure. LDA can capture statistical prop-

erties of sessions and items. As we discussed in Chapter 2, LDA can provide

a compact session representation in terms of underlying topics [16], therefore

widely used as a feature extraction model in the field of RS [31].

We first define the following terms [16]:

1. An item is the basic unit of discrete data. Let the total number of

different items be V . An item is indexed by {1,...,V }. We represent

items using unit-basis vectors that have a single component equal to one

and all other components equal to zero. Thus, using superscripts to

denote components, the xth item in the item space is represented by a

V -vector w such that wx = 1 and wy = 0 for y 6= x.

2. A session is a sequence of N items denoted by w = (w1, w2, ..., wN),

where wn is the nth item in the sequence. When modelling item dis-

tributions in sessions, we ignore the information about the user of the

session. Therefore, all the sessions are anonymous, containing only a

sequence of items.

3. A dataset is a collection of M sessions denoted by D = {w1, w2, ..., wM}.

LDA is a generative probabilistic model. By applying LDA, sessions are

represented as mixtures over latent topics (multinomial distribution), where
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each topic is characterized by a distribution over items.

To apply LDA to our session data, we assumes the following generative

process for each session w in the dataset D [16]:

1. Choose N , the number of items in the session.

2. Choose θ ∽ Dir(α), the topic mixture.

3. For each of the N items wn

(a) Choose a topic zn ∽ Multinomial(θ)

(b) Choose a item wn from p(wn|zn, β), a multinomial probability con-

ditioned on the topic zn.

We assume the dimensionality K of the topic variable z (and thus the dimen-

sionality of the Dirichlet distribution) is known and fixed. The item probabil-

ities are parameterised by a K × V matrix β where βij = p(wj = 1|zi = 1).

Note that the number of items in a session, N is independent of all the other

data generating variables (θ and z). The topic mixture, θ is a K-dimensional

Dirichlet random variable. θ can take values in the (K − 1)-simplex (a K-

vector θ lies in the (K − 1)-simplex if θi ≥ 0,
∑K

i=1
θi = 1). It has the following

probability density on this simplex [16]:

p(θ|α) =
Γ(

∑K
i=1

αi)
∏K

i=1
Γ(αi)

θα1−1

1
· · · θαK−1

K , (5.1)

where the parameter α is a K-vector with components αi > 0, and where Γ(x)

is the Gamma function.

Given the parameters α and β, the joint distribution of a topic mixture θ, a

set of N topics z, and a set of N items w generated by z, is given by [16]:

p(θ, z, w|α, β) = p(θ|α)
N
∏

n=1

p(zn|θ)p(wn|zn, β) (5.2)

where p(z|θ) is θi for the unique i such that zi
n = 1. Integrating over θ and
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summing over z, we obtain the marginal distribution of an activity session

[16]:

p(w|α, β) =
∫

p(θ|α)(
N
∏

n=1

∑

zn

p(zn|θ)p(wn|zn, β))dθ (5.3)

Finally, taking the product of the marginal probabilities of single sessions, we

obtain the probability of a dataset [16]:

p(D|α, β) =
M
∏

d=1

∫

p(θd|α)(
Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β))dθd (5.4)

As the exact inference is not possible for learning the parameters of our

model, variational message passing is used for approximate inference [16].

5.2.2 Constructing Datasets

So far we have obtained the topic model with K topics. In this step, we would

like to construct a contextualised dataset for each topic. Specifically, we would

like to construct a user-item utility matrix for each topic. If a given user has

never interacted with a specific item, the corresponding user-item utilities in

all topics should be zero. If the user has interacted with the item, the user-item

utility in each dataset should be able to reflect the corresponding user-item

interaction count.

Formally, a session w of user ui contains a sequence of N items, w =

(w1, w2, ..., wN). Let wn be the nth item in w, and the jth item in item space

{1,...,V } so that wj
n = 1 (superscripts denotes component in unit-basis vector).

We would like to compute user-item utility, Aij for user ui and the jth item

in item space {1,...,V }.

Given the topic model obtained in the previous step, we can compute the
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probability that session w is generated by topic z:

p(z|w) =
∫

θ
p(z|θ)p(θ|w)dθ (5.5)

If in session w the user interacted with item w once, this user-item interac-

tion is viewed as K different micro-interactions: each under a different topic,

with a different interaction count. For each of these micro-interactions, we

assume the user interacted with item w with micro-interaction count p(z|w),

where w ∈ w, and z is the corresponding topic of this micro-interaction. Note

that p(z|w) > 0 for each topic z, and
∑K

z=1
p(z|w) = 1. That is, the sum of all

the micro-interactions counts of the same interaction is still one.

Assume z is the kth topic. Let dk be the constructed dataset of topic z.

For this dataset, summing over all the corresponding micro-interaction counts

p(z = k|w) of item w by user ui, we obtain Ak
ij, the user-item utility of the

jth item in the item space, for user ui in topic k:

Ak
ij =

∑

w

p(z = k|w) (5.6)

where session w is started by user ui, and contains the item w that satisfies

wj = 1. We compute the user-item utility for all the user-item pairs in all K

datasets. Therefore, based on item distributions, we obtain a contextualised

dataset for each topic.

5.2.3 Predicting Preferences

So far, we have obtained K user-item utility matrices, one for each topic.

However, these datasets can not be directly used by most traditional collabo-

rative recommendation methods, since most of these methods can only work

on explicit data, such as user-item ratings. Our user-item utilities are based

on interaction counts. Depending on the data, the value of Aij can be smaller
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than one to several hundreds. We need to apply some mapping approaches to

the constructed datasets, in order to obtain user-item ratings:

Aij → rij

Usually, a user would only interact with a relatively small number of items

from the item space. For example, the online radio last.fm 1 has more than

12 million unique tracks, while most of the users of have only played less than

5,000 of them. Therefore, in the datasets we constructed, the values of many

rij are zeros. In most applications, we would like to know the user’s preferences

on most of the items before the recommendations are made. Therefore, after

the mapping procedure, a traditional recommendation method is applied on

each dataset to predict users’ ratings in each topic.

Formally, we observe a new session w of user ui containing a sequence of

N items, w = (w1, w2, ..., wN). We would like to recommend items to user ui

for the ongoing session w. Specifically, we would like to know the rating user

ui would give on the item w for the current session. Let us assume w is the

jth item in the item space, so that wj = 1. Also, let us assume in all the

datasets, rij = 0. Now we apply a traditional collaborative method, such as

matrix factorisation, on all K datasets. Thus, we obtain K unique predicted

ratings, r0

ij to rK
ij , one from each topic.

Given the topic model obtained in the previous step, we can compute the

probability that the current session w is generated by topic z, according to

Equation 5.5. As we discussed at the beginning of this chapter, we can assume

the user’s context remains unchanged in one session. Therefore the topic mix-

ture of the current session remains the same. The final rij is computed as a

weighted sum of rk
ij:

rij =
K

∑

z=1

(rk
ij

∫

θ
p(z|θ)p(θ|w)dθ) (5.7)

1http://www.last.fm/
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where p(θ|w) represents the inferred probability of θ given the observed N

items in the session w. We can compute the rij of any given item w in the

current session. Finally, rij is used for ranking items. We can recommend

items with greater rij to user ui for the current session. Note that as the user

continues interacting with more items in the given session, we may want to

keep updating the values of p(θ|w), since now we can observe more items in

session w.

Unlike many session based RS, in our method we separate the process of

user modelling and the process of context modelling. We can employ different

traditional collaborative methods, or an ensemble of traditional collaborative

approaches, instead of a specific one, to meet various criteria in different ap-

plications. We can also employ different mapping approaches to construct

different datasets, in order to improve individual recommendation method in

the ensemble.

5.3 Incorporating Item Tags

In Section 5.2, we described the algorithm of Probabilistic Contextual Clus-

tering. We model item distributions, so that sessions containing a sequence

of items can be clustered into different topics. In our method, the basic unit

is the item. Ideally, each session contains many items, and we don’t have to

make recommendations until we have observed a sufficient number of items

in the current session. However, in reality it is possible that a session only

contains a few items, depending on the specific applications. Besides, even if

every sessions is long enough, we would like to make context-aware recommen-

dations from the beginning of the session, rather than waiting until the session

is about to end. However, at the beginning of the session, with only a few

items available, we can not accurately infer the topics of the session based on

item distributions.

In many applications, besides the user-item interaction data, we can also
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obtain additional tags associated with the items. For example, many news

agencies label their articles with keywords; digital media service websites, such

as Zune2 and last.fm, ask users to choose tags that can describe the charac-

teristics or the genres of tracks. These item tags can usually provide valuable

information about the items, thereby providing more information about the

corresponding contexts. In this section, we improve our Probabilistic Contex-

tual Clustering by incorporating item tags. The basic unit of the improved

method is the item tag, instead of the item. We model tag distributions so

that sessions can still be clustered into topics. In most applications, each item

contains multiple tags. Therefore, even if a session contains only a small num-

ber of items, we can still obtain a sufficient number of item tags to infer the

characteristics of the session. More importantly, compared to Probabilistic

Contextual Clustering based on item distributions, we can identify the cor-

responding topics at the beginning of an ongoing session, with fewer items

observed.

Similar to Probabilistic Contextual Clustering without tags, the new method

also consists of three steps:

1. Apply a topic model (LDA) on the session data to discover the topics of

sessions. Unlike in Section 5.2, each topic here is distribution over tags,

instead of items.

2. For each topic, construct a user-item utility dataset, based on the user-

item interaction counts and the topic model obtained in the previous

step.

3. Predict item utility by applying a traditional recommendation method

on each dataset. For a given session, the predicted utility of an item is

the weighted sum of its predicted utilities in all topics.

2http://www.xbox.com/zune
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5.3.1 Session Modelling Based on Tag Distribution

We also use Latent Dirichlet Allocation (LDA) to model the tag distributions

in sessions. We define the following terms:

1. A tag is the basic unit of the discrete data. Let the total number of

different tags be S. A tag is indexed by {1,...,S}. We represent tags

using unit-basis vectors that have a single component equal to one and

all other components equal to zero. Thus, using superscripts to denote

components, the xth tag in the tag space is represented by a S-vector s

such that sx = 1 and sy = 0 for y 6= x.

2. An item is a sequence of tags denoted by w = s1, s2, ..., sQ). Let the

total number of different tags be V . An item is indexed by {1,...,V }.

Note that two different items may have the same sequence of tags. We

also represent items using unit-basis vectors that have a single compo-

nent equal to one and all other components equal to zero. Thus, using

superscripts to denote components, the xth item in the item space is

represented by a V -vector w such that wx = 1 and wy = 0 for y 6= x.

3. A session w is a sequence of items, w = (w1, w2, ..., wP ). However, since

we are modelling tag distributions, we would like to use the tags, rather

than the items, to represent a session. Therefore, we use all the tags

of all the items appeared in the session to represent the session, thus

w = (w1, w2, ..., wN). Note that, the same tag may appear in w for more

than once.

4. A dataset is a collection of M sessions denoted by D = {w1, w2, ..., wM}.

We model the tag distributions with LDA, so that sessions can be repre-

sented as mixtures over latent topics, where each topic is characterized by a

distribution over tags. We assumes the following generative process for each

session w in the dataset D [16]:

1. Choose N , the number of tags in the session.
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2. Choose θ ∽ Dir(α), the topic mixture.

3. For each of the N tags wn

(a) Choose a topic zn ∽ Multinomial(θ)

(b) Choose a tag wn from p(wn|zn, β), a multinomial probability condi-

tioned on the topic zn.

This is very similar to the generative process in Section 5.2.1. However, in

this generative process, we ignore the concept of item: a session is a mixture

of topics and a topic is a distribution over tags. We assume the dimension-

ality K of the topic variable z is known and fixed. The tag probabilities are

parameterised by a K × V matrix β where βij = p(wj = 1|zi = 1). The topic

mixture, θ is a K-dimensional Dirichlet random variable.

Given the parameters α and β, we obtain the probability of an activity

session [16]:

p(w|α, β) =
∫

p(θ|α)(
N
∏

n=1

∑

zn

p(zn|θ)p(wn|zn, β))dθ (5.8)

Taking the product of the probabilities of single sessions, we obtain the prob-

ability of a dataset [16]:

p(D|α, β) =
M
∏

d=1

∫

p(θd|α)(
Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β))dθd (5.9)

Again, variational message passing is used for approximate inference [16].

Thus, we can now represent the sessions as a mixture of topics again. In the

next step, for each topic, we construct a user-item utility matrix, which is built

in the exact same way as in Section 5.2.2. The constructed datasets can be

used to predict user’s preferences in different sessions as in Section 5.2.3, since

these datasets are also user-item utility matrices. The predicted ratings can

be computed by Equation 5.7.
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5.4 Experimental Method

5.4.1 Data for Testing PCC

The two implicit datasets used in Chapter 4 are also used in this chapter.

Music Data: the dataset from the music website, last.fm, containing 992

users’ listening history in two years’ time.

The music data is also used to evaluate our method with item tags. In our

system, the set of top tags for each track are retrieved from last.fm. These

tags describe various features of the songs including genre, artist name and the

era. They also describe users’ attitudes toward the songs, including feelings

such as sad, nostalgic, upbeat, and calm. Although people may have different

and even contradictory opinions about some songs (particularly with tags that

are related to “mood”), top tags with frequency above a minimum threshold

capture the social opinion about each song. In our system, for each track, the

tags we selected must have been used to describe the given track by at least

10 different users.

Retail Data: the dataset from Ta-Feng containing transaction history of

32,000 customers.

The Ta-Feng data is already in the form of transactions. Therefore, we can

directly observe which items are bought together in each transaction. How-

ever, we are not able to obtain item tags for this dataset. Therefore, this

dataset is only used to test the probabilistic contextual clustering on item

distributions.

5.4.2 Testing Method of PCC

Test Sets

To evaluate our method on music data, we randomly select 200 users for test-
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ing. For the rest of the users, all their sessions are fully observed. For each

of these 200 users, we select 10 listening sessions that contains more than 20

items for testing. For simplicity, we only use the first 20 items in each session.

The rest of the items in those session are discarded. Of these 20 items in the

session, the first 10 items are used as seed items. That is, we have observed

that the user chose these 10 items in the current session. The rest 10 items

in the selected session are hidden and used for testing. For each testing ses-

sion, we also randomly select 10 items that the user have played before but

not in the given session, for testing. Therefore, for each testing session, the

recommender systems need to predict user’s preference on the last 10 items

that actually appear in the given session, and the 10 items that do not. The

recommender systems rank these items from the most preferred to the least

preferred. We use precision at 10 and precision at 1 to measure the accuracy

of recommendations.

Note that, this is a relatively difficult task for the traditional RS, since

all the 20 tracks we selected have been played by the user. It is difficult

to determine which items the user prefers if we do not know the 10 items

observed in the current context. For context-aware recommender systems, the

recommendations are made based on user’s playing history and the 10 seed

items in the given context.

A similar approach is used on retail data. 8000 users are selected randomly

for testing. For the rest of the users, all their transactions are fully observed.

For each of these 8000 users, we select 2 transactions that contains more than

8 items. For the simplicity of comparison, we only use the first 8 items in

each transaction. The rest of the items in those sessions are discarded. Of

these 8 items, the first 4 items are used as seed items. That is, we assume we

have observed the user chose these 4 items in the given transaction. The last

4 items in the transaction are hidden and used for testing. For each session,

we also randomly add 4 items that the user has purchased, but not in the

given transaction, to the testing set. Therefore, in each testing transaction,

the recommender systems need to predict user’s preference on the last 4 items
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that the user actually purchased in the transaction, and the 4 items that the

user did not purchase in the given transaction. The recommender systems rank

the items from the most preferred to the least preferred. We use precision at

4 and precision at 1 to measure the accuracy of recommendations. Similarly,

this can be a difficult task for the traditional recommender system.

Baseline Approaches

The first baseline approach we are using is matrix factorisation (MF) [27]

with 100 factors. MF is used as baseline approach due to its ability to generate

accurate predictions on sparse datasets. This is a traditional recommendation

method, which does not take into consideration contextual information. We

also use the same matrix factorisation method in our probabilistic contextual

clustering (PCC). That is, we apply MF on the contextualised datasets con-

structed by our PCC. As in Chapter 4, we use the implementation of MF from

Apache Spark.

To evaluate PCC on item distribution, we also implemented the session

based model (SBM) in [73]. In this method, mood (equivalent to the topic in

LDA) is the latent variable of the session model. The model assumes that each

user is represented as a distribution over different moods, and for each session,

there is a latent mood which guides the choice of items. In this method, the

LDA model based on item distributions is used for both user modelling and

session modelling. The observed items in each session can be used to determine

the user’s moods. Then the recommendations are directly generated based on

the item distributions of corresponding moods.

To evaluate PCC on item tags, we implemented the Query-Driven (QD)

context-aware recommender system [31]. In this method, a LDA topic model is

employed to capture the latent factors that determine user’s choice. Similarly,

the features extracted by LDA based on item tag distributions are used for

both user modelling and session modelling. The tags of observed items in a

session can be used as a query to determine the topic of current session and
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search for relevant items. Therefore, recommendations are directly generated

based on the tag distributions of corresponding topics. In both QD and PCC,

we use the implementation of LDA from Apache Spark.

The probabilistic contextual clustering method is non-deterministic . If the

method is initialised several times, we may obtain different results. In order

to gain the representative results, we repeat each experiment involving the

non-deterministic method 100 times and take the average of the performance

values. The results are analysed by the combined use of the Hodges-Lehmann

Estimate with associated non-parametric confidence intervals at 95%.

Machine Used

In our experiments, we use a laptop with Intel 2.6 GHz dual core processor

and 4GB of RAM.

5.5 Results and Analysis of PCC

In this section, we present the experimental results on probabilistic contextual

clustering, and the analysis based on these results.

5.5.1 Comparing PCC on item distribution with tradi-

tional recommendation method

In this section, we compare our PCC with traditional recommendation method

matrix factorisation.

Hypothesis

H5.10: There will be no difference in precision between the traditional method,

matrix factorisation (MF) and the combination of probabilistic contextual clus-

tering (PCC) on item distributions and matrix factorisation (PCC + MF).

Results
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@4 Precision@1

MF 52.3% 66.6% 51.7% 58.9%
PCC + MF 74.1% 89.2% 67.1% 74.2%

Table 5.1 Precisions of MF and PCC + MF

On Music Data On Retail Data
Precision@10 Precision@1 Precision@4 Precision@1

Can the
hypothesis
be rejected
at the 95%
confidence
interval

Yes Yes Yes Yes

Hodges-
Lehmann
Estimate

21.8% 22.6% 15.4% 15.3%

Confidence
Interval
at 95%

(21.8%, 21.8%) (22.6%, 22.6%) (15.4%, 15.4%) (15.3%, 15.3%)

Table 5.2 Summary of analysis between MF and PCC + MF

Table 5.1 shows the precisions of the system using only MF and the sys-

tem using PCC + MF on both datasets. Table 5.2 shows the results of the

Mann–Whitney–Wilcoxon non-parametric test on the distributions of the re-

sults from both recommender systems.

The probabilistic contextual clustering substantially increases the precision

at 10 on music data by 21.8%, compared to the traditional method, matrix

factorisation. Similar results are found on retail data: the system using PCC

+ MF achieves considerably higher precision at 4 than only using MF. On

both datasets, when only one item is recommended to the user (precision at

1) the combination of PCF and MF is more likely to find relevant items than

MF alone. The statistical significance of the results is shown in Table 5.2.

On both datasets, using both criteria, the null hypothesis can be rejected at

the 95% confidence level, demonstrating that there is a statistically significant

difference when using PCC + MF instead of MF (or vice versa).
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Analysis

As we discussed earlier, the testing task is difficult for the traditional recom-

mender system since the user has interacted with all the items selected for

testing. On both dataset, when the system is evaluated by precision at 10

and 4, the traditional RS performs only slightly better than a random recom-

mender system, because based on users’ history data alone, the traditional RS

is not able to identify the items that the user prefers in a specific context. The

precision of traditional RS increases when only one item is recommended. On

music data, the reason is that some users tend to listen to their favourite tracks

regardless of the context. If such tracks exist for the given user, those tracks

are likely to be selected in the testing session. The traditional recommender

system is able to identify those frequently played tracks. However, the number

of such tracks is usually small. Therefore, when only one item is needed (pre-

cision at 1), such items are recommended to the user. In retail data, there are

items users tend to purchase in most transactions. For example, it is possible

that a user always buys a soft drink, either when he is doing grocery shopping

for the whole family, or just buying lunch for himself. Those items can be

identified easily by the traditional RS. However, the number of such items is

usually small for most users. Therefore, if the RS needs to recommend multiple

items, the recommendation accuracy decreases dramatically.

Compared to traditional RS, the combination of PCC and MF leads to

significant improvement on both datasets. The PCC can determine the char-

acteristics of the given session based on seed items. MF is then applied on

contextualised datasets, making personalised context-aware recommendations.

Therefore, the recommendation accuracy increases considerably.

5.5.2 Comparing PCC on item distribution with session

based model

In this section, we compare our PCC based on item distribution with SBM
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@4 Precision@1

MF 52.3% 66.6% 51.7% 58.9%
SBM 66.9% 69.0% 60.2% 63.8%

PCC + MF 74.1% 89.2% 67.1% 74.2%
Table 5.3 Precisions of MF, SBM and PCC + MF

On Music Data On Retail Data
Precision@10 Precision@1 Precision@4 Precision@1

Can the
hypothesis
be rejected
at the 95%
confidence
interval

Yes Yes Yes Yes

Hodges-
Lehmann
Estimate

7.2% 20.2% 6.9% 10.4%

Confidence
Interval
at 95%

(7.2%, 7.2%) (20.2%, 20.2%) (6.9%, 6.9%) (10.4%, 10.4%)

Table 5.4 Summary of analysis between SBM and PCC + MF

Hypothesis

H5.20: There will be no difference in precision between the session based model

(SBM) and the combination of probabilistic contextual clustering (PCC) on

item distributions and matrix factorisation (PCC + MF).

Results

The results form these experiments are presented in Table 5.3. The results

of the system using only the traditional recommendation method MF is also

presented in Table 5.3. The statistical analysis between the two contextual

filtering methods is given in Table 5.4.

On both datasets, the session based model can also achieve higher precision

compared to the system only employing matrix factorisation, recommending

either one item or the first half of items. However, the precision of SBM is still
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considerably lower compared to probabilistic contextual clustering. Especially

when measured by precision at 1 on music data, PCC + MF outperforms

SBM by 20.2%. These results demonstrate that PCC can predict the user’s

preference more accurately compared to SBM.

The statistical significance of the results is shown in table 5.4. On both

datasets, using either criteria, the null hypothesis can be rejected at the 95%

confidence level, demonstrating that there is a statistically significant difference

when using SBM instead of PCC + MF (or vice versa).

Analysis

In SBM, the topic model selects features for session modelling. This is similar

to our PCC model. Therefore, based on seed items, they can both identify the

topic mixture of the given context. However, SBM is a unified model. The

features selected by LDA are also used to model the user’s general preference.

RS based on item distributions alone tend to recommend the items preferred by

the majority of the users. That is, SBM is less competent in making traditional

recommendations, especially on sparse data. In contrast, our PCC model is

highly modular. The item distribution is only used to model the sessions.

To predict general user preference, we choose MF, one of the most accurate

traditional RS. Therefore, the combination of PCC and MF leads to significant

rise in recommendation accuracy, compared to SBM.

5.5.3 Comparing PCC on item tag distribution with

traditional recommendation method

In this section, we compare our PCC based on tag distribution with matrix

factorisation.

Hypothesis

H5.30: There will be no difference in precision between the traditional method,

matrix factorisation (MF) and the combination of probabilistic contextual clus-
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On Music Data
Precision at 10 Precision at 1

MF 52.3% 66.6%
PCC with tags + MF 78.5% 90.6%
Table 5.5 Precisions of MF and PCC with tags + MF

On Music Data
Precision at 10 Precision at 1

Can the hypothesis
be rejected at the 95%
confident interval

Yes Yes

Hodges-Lehmann Estimate 26.2% 24.0%
Confidence Interval at 95% (26.2%, 26.2%) (24.0%, 24.0%)

Table 5.6 Summary of analysis between MF and PCC with tags + MF

tering (PCC) on item tag distribution and matrix factorisation (PCC with tags

+ MF).

Results

Table 5.5 shows the precisions of the system using only MF and the system

using PCC with tags + MF on music data. Table 5.6 shows the results of

the Mann–Whitney–Wilcoxon non-parametric test on the distributions of the

results from both recommender systems.

The probabilistic contextual clustering based on tag distributions substan-

tially increases the precisions on music data, compared to the traditional

method, matrix factorisation. The statistical significance of the results is

shown in Table 5.6. Using both criteria, the null hypothesis can be rejected

at the 95% confidence level, demonstrating that there is a statistically sig-

nificant difference when using PCC with tags + MF instead of MF (or vice

versa).

Analysis

As we discussed in Section 5.4.2 and 5.5.1, it is very difficult for the traditional

RS to identify the preferred items in the testing contexts, since the user has

interacted with all the items in the testing set. Therefore, in this task, tradi-
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On Music Data
Precision at 10 Precision at 1

MF 52.3% 66.6%
QD 69.2% 75.5%

PCC with tags + MF 78.5% 90.6%
Table 5.7 Precisions of MF, QD and PCC with tags + MF

On Music Data
Precision at 10 Precision at 1

Can the hypothesis
be rejected at the 95%
confident interval

Yes Yes

Hodges-Lehmann Estimate 9.3% 15.1%
Confidence Interval at 95% (9.3%, 9.3%) (15.1%, 15.1%)

Table 5.8 Summary of analysis between QD and PCC with tags + MF

tional RS recommends the items that tend to appear in every sessions. Since

the number of such items is small, when multiple items are recommended, the

precision drops so sharply that the RS is only slightly better than a random

RS.

Compared to the traditional RS, our method makes use of common tags of

seed items. PCC with items can accurately identify the topic mixture of the

current session. Combining with MF, our method can generate personalised

recommendations. Consequently, the precision rises considerably.

5.5.4 Comparing PCC on item tag distribution with

query driven method

In this section, we compare our PCC based on tag distribution with QD.

Hypothesis

H5.40: There will be no difference in precision between the query driven

method (QD) and the combination of probabilistic contextual clustering (PCC)

on item tag distributions and matrix factorisation (PCC with tags + MF).
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Results

The results form the experiments are presented in Table 5.7. The results

of the system using only the traditional recommendation method MF is also

presented in Table 5.7. The statistical analysis between the two contextual

filtering methods is given in Table 5.8.

On music data, the query driven method can also achieve higher precision

compared to the traditional RS, matrix factorisation, recommending either 1 or

10 items. However, the precision of QD is still considerably lower compared to

probabilistic contextual clustering. Especially when measured by precision at 1

PCC with items + MF outperforms QD by 15.1%. These results demonstrate

that PCC can predict the user’s preference more accurately than QD.

The statistical significance of the results is shown in table 5.8. Using both

criteria, the null hypothesis can be rejected at the 95% confidence level, demon-

strating that there is a statistically significant difference when using QD instead

of PCC + MF (or vice versa).

Analysis

QD is similar to SBM, but based on tag distribution instead of item distri-

bution. In QD, the topic model selects features for session profiling. This is

similar to our PCC model. Therefore, based on the tags of seed items, they

can both identify the topic mixture of the given context. However, QD is

a unified model. The features selected by LDA are also used to model the

user’s general preference. RS based on tag distributions is similar to the tra-

ditional content-based methods. It recommends the items that contains the

keywords of frequently interacted items. In contrast, in PCC model the item

distribution is only used to model the sessions. To predict general user pref-

erence, we choose MF, which is superior to most traditional recommendation

techniques, especially on sparse data [40]. Therefore, the combination of PCC

with tags and MF leads to a significant rise in prediction accuracy, compared

to QD.
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On Music Data
Precision at 10 Precision at 1

PCC + MF 74.1% 89.2%
PCC with tags + MF 78.5% 90.6%%

Table 5.9 Precisions of PCC + MF and PCC with tags + MF

On Music Data
Precision at 10 Precision at 1

Can the hypothesis
be rejected at the 95%
confident interval

Yes Yes

Hodges-Lehmann Estimate 4.4% 1.4%
Confidence Interval at 95% (4.4%, 4.4%) (1.4%, 1.4%)

Table 5.10 Summary of analysis between PCC + MF and PCC with tags +
MF

5.5.5 Comparing PCC on item distribution with PCC

on item tag distribution

In this section, we compare our PCC based on item distribution with PCC on

item tag distribution.

Hypothesis

H5.50: There will be no difference in precision between the combination of

probabilistic contextual clustering on item distributions and matrix factorisa-

tion (PCC + MF) and the combination of probabilistic contextual clustering on

item tag distributions and matrix factorisation (PCC with tags + MF).

Results

Table 5.9 shows the precisions of the system using PCC with tags + MF and

the system using PCC + MF on music data. Table 5.10 shows the results of

the Mann–Whitney–Wilcoxon non-parametric test on the distributions of the

results from both recommender systems.

The probabilistic contextual clustering on tag distribution consistently in-

creases the precisions on music data, either evaluated by precision at 10 or



96

1. The statistical significance of the results is shown in Table 5.10. Using

both criteria, the null hypothesis can be rejected at the 95% confidence level,

demonstrating that there is a statistically significant difference when using

PCC with tags + MF instead of PCC + MF (or vice versa).

Analysis

In both methods, the topic mixture of the current context is inferred based

on the observed seed items. In PCC, the LDA is used to model the item

distributions. If a seed item has not been interacted with by sufficient number

of users, in sufficient number of contexts, the RS can not accurately infer the

characteristics of the context. In contrast, with item tags, the system can

model the tag distributions in different contexts. The item is not the basic

element of the system. It is replaced by the tag. This substantially reduces

the number of basic elements, since the number of tags in most application

is much smaller than the number of items. Therefore, we can still infer the

topic mixture even if the item has only appeared in a few contexts. More

importantly, with tags we can identify the topic mixture of the current context

with fewer items, since each item can contain multiple tags, thereby providing

more information regarding the ongoing session. This is especially useful at the

beginning of a session, when we try to make context-aware recommendations

based on only a few seed items. Consequently, this results in a consistent

improvement in term of prediction accuracy, as we can see from Table 5.9.

5.6 Summary

In Chapter 1, we introduced the limitation of existing session based CARS:

they can not accurately model contexts and general user preferences at the

same time, since they usually employ a unified model, select only one set of

features for both modelling tasks. Therefore, in Chapter 1, we presented the

following research question: whether we can develop a session based CARS that

is able to employ two separate models for user profiling and context profiling,
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to achieve higher recommendation accuracy.

In this chapter, we presented the probabilistic contextual clustering. The

testing criteria and experimental results of PCC are also presented in this

chapter. By modelling the sessions based on item distributions, we are able to

cluster the sessions into topics, and to generate a dataset for each topic. This

allows us to employ various traditional recommendation methods to model

users’ general preferences on the contextualised datasets independently, there-

fore more accurately predicting users’ preferences than unified models. Exper-

iment results have demonstrated that the proposed method can consistently

achieve higher prediction accuracy compared to existing session based meth-

ods.

In this Chapter, we also presented PCC based on tags. With the incor-

poration of tags, we can identify the commonality of items consumed in the

same session, therefore more accurate model the “topics” of sessions. As in

PCC based on items, PCC on tags can also be used together with most tra-

ditional recommendation methods. With a separate model dedicated for user

modelling, we can achieve higher accuracy, Experiment results of PCC on tags

have demonstrated that the proposed method can achieve higher prediction

accuracy compared to existing session based methods with tags. Also, the

results have demonstrated that PCC on tags can outperform PCC on items in

terms of prediction accuracy.

In probabilistic contextual clustering, context-aware recommendations can

only be made after we have observed the item(s) the user has chosen in the

given context. This can limit the application of our method. The probabilis-

tic contextual filtering method proposed in Chapter 4 only requires temporal

information. However, as we discussed at the end of Chapter 4, temporal in-

formation can be misleading, and the probabilistic contextual filtering is com-

putationally expensive. In the next chapter, we combine these two methods

to deal with their limitations.



Chapter 6

Clustering Based Probabilistic

Contextual Filtering

6.1 Introduction

In the previous chapter, we described our probabilistic contextual clustering

(PCC) method. In this method, we model the item (tag) distributions in

different contexts across all users, and infer the characteristics of the current

context based on several seed items. Unlike many existing session based meth-

ods, our PCC employs matrix factorisation, a completely separate traditional

RS to model the user’s general preference, rather than using item (tag) distri-

butions or recommending the items that are similar to the seed items. This

allows our system to make not only context-aware but also accurate and per-

sonalised recommendations. The collaborative method, matrix factorisation,

can also be easily replaced by various traditional recommendation methods in

different applications, making our RS highly flexible. However, the system can

not work if no seed items can be observed in the given context. For example,

in film recommendation, usually the user only watches one film in one sitting.

Therefore, there is no seed film that can provide information on the current

user context. Besides, even observing seed items is possible, accurate recom-
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mendations are still desirable at the very beginning of each context, when the

user has not chosen any items yet. In these cases, to make context-aware rec-

ommendations, we need to make use of other contextual information, such as

temporal information.

In Chapter 4, we presented the probabilistic contextual filtering (PCF). In

this method, we investigate the user’s periodic activity pattern based on im-

plicit data. Our PCF method defines personalised temporal contexts based on

these patterns. Instead of filtering out data collected in different contexts, PCF

assigns weight to each user action. Experimental results have demonstrated

that compared to traditional contextual pre-filtering, PCF can significantly im-

prove recommendation accuracy, especially on sparse dataset. However, this

method also has its limitations. PCF generates a complete user-item utility

matrix for each user, then applies a traditional recommendation method on

each of them. This is time-consuming and requires considerable disk space. It

can be very problematic when applying PCF to system containing large num-

ber of users and items. Besides, in some of the personalised contexts based on

temporal patterns, the given user’s preference can be the same. For example,

the user’s preferences on music before and after lunch may not be very dif-

ferent, but the user’s play count may have a sharp drop around midday since

the user does not listen to music at lunch time. Therefore, it is not neces-

sary to create two different datasets for these contexts. However, we can not

confirm the similarity if we do not explore the tracks that the user plays in

each context. These issues of PCF suggest that improvement can be made

by investigating the item distributions in different contexts and combining the

contexts with similar item distributions. By doing so, we can obtain more data

for each unique context, so that more reliable predictions can be made. More

importantly, the computational cost can be substantially reduced.

The limitations of PCF inspire us to add the features of PCC to PCF:

if we can identify personalised contexts, cluster and combine these contexts

based on item distributions, we are able to address the issues of PCF and

PCC at the same time. In this chapter, we present the combined approach,
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the clustering based probabilistic contextual filtering, the combination of PCC

and PCF.

The remainder of this chapter is structured as follows: In Section 6.2 the

algorithm of our clustering based probabilistic filtering is presented. The test-

ing criteria and the experiments results of the proposed method are given

in Section 6.3 and 6.4 respectively. Final comments are provided in Section

6.5.

6.2 Clustering Based Probabilistic Contextual

Filtering

In this section, we present the algorithm of clustering based probabilistic con-

textual filtering (CBPCF). The idea of our method is simple: modelling the

item distributions in the contexts identified by PCF across all the users, so that

we can cluster these contexts into topics. The method takes five steps:

1. Capture the user’s action patterns based on frequency of actions. Based

on these patterns, we define personalised temporal contexts.

2. For each personalised context, compute the interaction counts of the

items in the given context, based on the mixture model obtained in step

one. Therefore, the context can be represented by a list of items and the

corresponding interaction counts.

3. View each personalised context as a session. Apply a topic model on the

session data to discover the topics of sessions. Each topic has a unique

item distribution.

4. For each topic, construct a user-item utility dataset, based on the user-

item interaction counts and the topic model obtained in the previous

step.

5. Apply a traditional recommendation method on each dataset. In each
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session, the utility of an item is computed as the weighted sum of its

predicted utilities in all topics. Then the final utility of the item at a

specific time is computed as the weighted sum of its predicted utilities

in all sessions.

In this section, we describe the algorithm of our method in detail.

6.2.1 Modelling Action Patterns

In this step, based on the implicit data, we apply a periodic mixture model

(MoAWG) to capture the user’s action patterns. Then we can define person-

alised temporal contexts. This modelling step is identical to that in Section

4.2.1. At the end of this step, for each user, we obtain the parameters of

MoAWG: µk, θ0,k and σ2

k, the weight, mean and variance of each component.

The responsibility γxk of component k for an action x observed at time θx, can

be estimated using the parameter of MoAWG by Equation 4.5. The detailed

approximation can be found in Section 4.2.

6.2.2 Generating Sessions

In this step, we would like to calculate the user-item interaction counts in each

user context. This step is similar to the step described in Section 4.2.2.

Formally, we would like to compute pk
ij for user ui and the item wj, in

kth context of user ui. Let x be an action of user ui on item wj at time θx.

We can calculate γxk, the probability that x is an action in the kth context

of user ui by Equation (3.4). As in Section 4.2.2, let us view this action as

K different micro-actions: each in a different context, with a different action

count. For each of these micro-actions, we use γxk as its action count, where

k is the corresponding context index. Note that γxk > 0 for each context, and
∑K

k=1
γxk = 1.

In each context, summing over all the corresponding micro-action counts
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γxk of item wj by user ui, we obtain pk
ij, the user-item interaction count of item

wj for user ui:

pk
ij =

∑

x

γxk (6.1)

We compute pk
ij of all the items for user ui in the kth context. However,

note that in Section 4.2.2, for each user, we also compute the interaction count

for all other users in order to build a complete user-item utility matrix just for

user ui. In this Chapter, for the context of user ui, we only compute pk
ij for

user ui.

Based on pk
ij, we can view context ck of user ui as an interaction session with

the items that have non-zero pk
ij . However, the number of times an item can

appear in a session must be an integer, while pk
ij is a real number. Therefore,

we round pk
ij up to the nearest integer. We denote this number as p̂k

ij.

6.2.3 Modelling Item Distributions

Similarly, we choose Latent Dirichlet Allocation to model the items distribu-

tions in personalised contexts.

We define the following terms:

1. An item is the basic unit of discrete data. Let the total number of

different items be V . An item is indexed by {w1,...,wV }.

2. A session is a sequence of N items. We used wk to denote the kth session

of user ui, generated from the kth context. The personalised contexts we

have obtained can be denoted as a sequence of items, based on all the

p̂k
ij in the previous section. This is because, in LDA model, the order of

items in a session is ignored [16]. If p̂k
ij > 1, we can assume item wj is

interacted multiple times in a row in session wk.

3. A dataset is a collection of M sessions denoted by D = {w1, w2, ..., wM}.
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To apply LDA to our session data, we assumes the following generative

process for each session w in the dataset D:

1. Choose N , the number of items in the session.

2. Choose θ ∽ Dir(α), the topic mixture.

3. For each of the N items w

(a) Choose a topic z ∽ Multinomial(θ)

(b) Choose a item w from p(w|z, β), a multinomial probability condi-

tioned on the topic z.

We assume the dimensionality Φ of the topic variable z (and thus the dimen-

sionality of the Dirichlet distribution) is known and fixed. The item proba-

bilities are parameterised by a Φ × V matrix β where βij = p(wj|zi). The

topic mixture, θ is a Φ-dimensional Dirichlet random variable. The variational

message passing is used for learning the parameters. [16].

6.2.4 Constructing Datasets

So far we have obtained the topic model with Φ topics. Next we would like to

construct a contextualised dataset for each topic. Similar to Section 5.2.2 we

would like to construct a user-item utility matrix for each topic.

Given the topic model obtained in the previous step, we can compute the

probability that session w is generated by topic z:

p(z|w) =
∫

θ
p(z|θ)p(θ|w)dθ (6.2)

If in session w the user interacted with item w once, this user-item interac-

tion is viewed as Φ different micro-interactions: each under a different topic,

with a different interaction count. For each of these micro-interactions, we

assume the user interacted with item wj with interaction count p(z|w), where

wj ∈ w, and z is the corresponding topic of this micro-interaction. Note that



104

p(z|w) > 0 for each topic z, and
∑

Φ

z=1
p(z|w) = 1. That is, the sum of all the

micro-interactions’ action counts of the same interaction is one.

Assume z is the φth topic. Let dφ be the constructed dataset of topic z.

For this dataset, summing over all the corresponding micro-interaction counts

p(z = φ|w) of item wj by user ui, we obtain A
φ
ij , the user-item utility of item

wj for user ui in φth topic :

A
φ
ij =

∑

w

p(z = φ|w) (6.3)

where session w is a context of user ui, and contains the item wj. We com-

pute the user-item utility for all the user-item pairs in all Φ datasets. There-

fore, based on item distributions, we obtain a contextualised dataset for each

topic.

6.2.5 Predicting Preferences

So far, we have obtained Φ user-item utility matrices, one for each topic. We

apply mapping approach to the constructed datasets, in order to convert the

user-item utilities to ratings:

Aij → rij

A traditional recommendation method is applied on each dataset to predict

users’ ratings on items that they have not interacted with in each topic.

Assume we would like to predict rx
ij, user ui’s rating on item wj at time

θx. We apply a traditional collaborative method, such as matrix factorisation,

on all Φ datasets. Thus, we obtain Φ unique predicted ratings, r0

ij to rΦ

ij, one

from each topic.

Assume user ui has K contexts, thereby K sessions, w0 to wK . At time

θx, we can calculate γxk, the responsibility of each personalised context, based
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on the MoAWG of user ui by Equation 4.5. Therefore, we obtain γx0 to γxK ,

the context mixture at time θx. Then based on the topic model, for each

context ck, we can compute the probability that the corresponding session wk

is generated by topic z, according to Equation 6.2. Therefore, we obtain the

topic mixture, p(z = 1|wk) to p(z = Φ|wk). The predicted rating is computed

as the two-step weighted sum:

rij =
K

∑

k=1

γxk

Φ
∑

z=1

r
φ
ijp(z|wk) (6.4)

6.3 Experimental Method

6.3.1 Data for Testing CBPCF

We use the same data as in Chapter 4 and 5.

Music Data: the music listening data from last.fm

Retail Data: Ta-Feng transaction dataset.

Detail of the data can be found in Section 4.3.1.

6.3.2 Testing Method of CBPCF

Test Sets

To evaluate our method on music data, we use the same testing set as in

Chapter 4: on music data, we generate two testing sets to simulate two different

contexts: one at 10am, one at 8pm; two testing set on retail data, Wednesday

and Saturday. Detailed information can be found in Section 4.3.3.

Baseline Approaches

A matrix factorisation (MF) method [27] with 100 factors is used as baseline

approach due to its ability to generate accurate predictions on sparse datasets.
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This is a traditional recommendation method, which does not take into consid-

eration any contextual information. Besides matrix factorisation, we also com-

pare the method to probabilistic contextual filtering (PCF) from Chapter 4.

In both PCF and clustering based probabilistic contextual filtering (CBPCF),

MF is used. The MF we used is implemented by Apache Spark.

For both datasets, we will compare the precision when recommending only

one item (precision at 1), and the precision when recommending the first half

of items (precision at 10 and precision at 5 respectively).

Both PCF and CBPCF are non-deterministic. In order to gain the represen-

tative results, we repeat each experiment involving non-deterministic methods

100 times and take the average of the performance values. The results are anal-

ysed by the combined use of the Hodges-Lehmann Estimate with associated

non-parametric confidence intervals at 95%.

Machine Used

In our experiments, we use a laptop with Intel 2.6 GHz dual core processor

and 4GB of RAM.

6.4 Results and Analysis of CBPCF

In this section, we present the experimental results on clustering based prob-

abilistic contextual filtering, and the analysis based on these results.

6.4.1 Comparison with traditional recommendation method

In this section, we compare our CBPCF with traditional recommendation

method matrix factorisation.

Hypothesis

H6.10: There will be no difference in precision between the traditional method,

matrix factorisation (MF) and the combination of clustering based proba-
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

MF 71.3% 84.6% 65.7% 72.9%
CBPCF + MF 86.2% 94.0% 74.0% 78.7%

Table 6.1 Precisions of MF and CBPCF + MF

On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

Can the
hypothesis
be rejected
at the 95%
confidence
interval

Yes Yes Yes Yes

Hodges-
Lehmann
Estimate

14.9% 9.3% 8.3% 5.8%

Confidence
Interval
at 95%

(14.7%, 15.0%) (9.2%, 9.3%) (8.3%, 8.3%) (5.8%, 5.8%)

Table 6.2 Summary of analysis between MF and CBPCF + MF

bilistic contextual filtering (CBPCF) and matrix factorisation (CBPCF +

MF).

Results

Table 6.1 shows the precisions of the system using only MF and the system

using CBPCF + MF on both datasets. Table 6.2 shows the results of the

Mann–Whitney–Wilcoxon non-parametric test on the distributions of the re-

sults from both recommender systems.

The CBPCF substantially increases the precision at 1 on music data by

9.3%, compared to the traditional method, matrix factorisation. Similar re-

sults are found on retail data. The system using CBPCF + MF achieves

considerably higher precision at 1 than only using MF on the retail data. On

both datasets, when more items are recommended to the user (precision at 10

and 5) the combination of CBPCF and MF can find more relevant items than
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

MF 71.3% 84.6% 65.7% 72.9%
PCF + MF 85.0% 93.9% 72.5% 76.0%

CBPCF + MF 86.2% 94.0% 74.0% 78.7%
Table 6.3 Precisions of MF, PCF + MF and CBPCF + MF

MF alone. The statistical significance of the results is shown in Table 6.2.

On both datasets, using both criteria, the null hypothesis can be rejected at

the 95% confidence level, demonstrating that there is a statistically significant

difference when using CBPCF + MF instead of MF (or vice versa).

6.4.2 Comparison with probabilistic contextual filter-

ing

In this section, we compare our CBPCF with PCF.

Hypothesis

H6.20: There will be no difference in precision between the probabilistic con-

textual filtering (PCF) and the clustering based probabilistic contextual filter-

ing (CBPCF), both combined with matrix factorisation (MF).

Results

The results form these experiments are presented in Table 6.3. The results

of the system using only the traditional recommendation method MF are also

presented in Table 6.3. The statistical analysis between the two contextual

filtering methods is given in Table 6.4.

On muscis data, CBPCF can achieve higher precision compared to PCF

when 10 items are recommended. On retail data, CBPCF can considerably

increase the precision either at 1 or at 5. Except using precision at 1 on music

data, in all other cases, CBPCF can provide consistent improvement.
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On Music Data On Retail Data
Precision@10 Precision@1 Precision@5 Precision@1

Can the
hypothesis
be rejected
at the 95%
confidence
interval

Yes No Yes Yes

Hodges-
Lehmann
Estimate

1.2% 0.1% 1.5% 2.7%

Confidence
Interval
at 95%

(0.8%, 1.9%) (0.0%, 0.2%) (1.5%, 1.5%) (2.7%, 2.7%)

Table 6.4 Summary of analysis between PCF + MF and CBPCF + MF

6.4.3 Analysis of CBPCF

In CBPCF, similar contexts are clustered into topics, based on item distribu-

tions. In our experiment, compared to PCF, CBPCF does not lead to lower

accuracy. This demonstrates that the clustering of contexts based on item

distribution is accurate in general. Reducing the number of contexts does not

lead to inaccurate recommendations. That is, we can maintain the same level

of accuracy, and substantially reduce the time and space required for training

the RS. In music data, we have about 1,000 users. For each user, we have 3

personalised contexts. In PCF, this leads to 3,000 datasets and 3,000 recom-

mender systems. In CBPCF, this number is reduced to 20, which is the number

of unique topics. In reality, the RS may need to provide recommendations for

more users every day. With CBPCF, the RS does not need to generate new

datasets for each new user.

If a dataset is very sparse, by combining datasets, the RS can obtain more

data (action counts) in each topic. Therefore, we can more reliably infer user’s

preference in the given context. The retail data is much more sparse than

the music data, since on the music data we recommend artists rather than

tracks. The results on retail data have demonstrated that compared to PCF,
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CBPCF can provide considerable improvement in terms of recommendation

accuracy.

6.5 Summary and Future Work

In Chapter 1, based on the limitations of existing CARS, we presented our first

research questions: whether we can develop a CARS that is able to overcome

data sparsity. In Chapter 4, we presented PCF. Unlike most pre-filtering meth-

ods, PCF does not filter our any data that is collected in different datasets.

Instead, it assigns weight to each user-item interaction. Experimental results

shows that PCF can outperform traditional RS and contextual pre-filtering

system on sparse datasets, in terms of recommendations accuracy and user

space coverage. In this chapter, we presented the clustering based proba-

bilistic contextual filtering. This method improves PCF by incorporating the

features of PCC to PCF. In CBPCF, we first identify personalised contexts

based on user’s action patterns. Then based on item distribution, we cluster

similar contexts into groups. The data collected in the same group of contexts

is combined to reduce the computational cost, and to obtain a more reliable

training set. Experimental results have demonstrated that CBPCF can fur-

ther increase recommendation accuracy on sparse dataset. It can successfully

overcome the data sparsity in the field of CARS.



Chapter 7

Conclusions

In this chapter, we first review the research questions we presented at the

beginning of this thesis. The proposed solutions are then summarised, and

the main contributions are highlighted . Finally, directions for future work are

suggested.

7.1 Review of Research Questions

At the beginning of this thesis, we reviewed the area of context-aware recom-

mender systems. We have identified some limitations of existing context-aware

recommendation techniques. Based on these limitations, we presented our re-

search questions:

1. Whether we can develop a context-aware recommender system that is able

to overcome data sparsity.

In Chapter 4, the probabilistic contextual filtering is presented. PCF does

not filter out training data like other contextual pre-filtering methods. Instead,

the probabilities of an action performed in different contexts are calculated and

used as weights. Therefore, we can also avoid the problems of context gen-

eralisation. Experimental results have demonstrated that on sparse dataset,
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PCF can generate more accurate recommendations, for more users, compared

to contextual pre-filtering method. In Chapter 6, we incorporated the features

of probabilistic contextual clustering into PCF. The clustering based PCF can

cluster similar user contexts to build more reliable datasets. Therefore, we can

further improve the recommendation accuracy on sparse data.

Therefore, it can be stated that the goal described in the first research

question has been achieved in principle.

2. Whether we can develop a context-aware recommender system that is able

to define personalised contexts based on users’ action patterns, and to discover

the underlying association between contexts, so that the system can achieve

high accuracy.

In our PCF method presented in Chapter 4, personalised contexts are de-

fined based on individual users’ periodic action patterns. Therefore, we can

focus on making recommendations for meaningful and personalised contexts.

In Chapter 6, we presented CBPCF. In this method, we model the item distri-

bution in each personalised context identified by PCF, so that the underlying

association between contexts can be discovered, and similar contexts can be

combined. Therefore, we can make better use of these personalised contexts to

make more reliable recommendations. Experimental results have demonstrated

that CBPCF can significantly increase recommendation accuracy, compared to

traditional RS and contextual pre-filtering.

Therefore, we believe that the goals described in the second research ques-

tion have been achieved in principle.

3. whether we can develop a session based CARS that can accurately model

contexts and general user preferences at the same time.

In Chapter 5, we presented probabilistic contextual clustering. By mod-

elling the item (tag) distributions, we are able to cluster contexts into topics,

and to generate a dataset for each topic. This allows us to employ various tra-

ditional recommendation methods to independently, thereby accurately model
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users’ general preferences on the contextualised datasets. Therefore, accurate

context profiling and accurate user profiling can both be achieved.

Therefore, it can be stated that the goal described in the third research

question has been achieved in principle.

7.2 Summary and Contribution

In this section, proceeding chapters are summarised and the main contributions

of this thesis are identified.

Chapter 2 and 3 - RS and CARS

This two chapters review the fields of traditional recommender systems and

context-aware recommender systems. We focused on context-aware recom-

mender systems, identified the limitations of existing methods, which moti-

vate our work in Chapter 4, 5 and 6.

Contribution - A review of CARS. The review highlighted the limitations

of existing context-aware recommender systems, which motivate our work.

Chapter 4 - Probabilistic Contextual Filtering

In this chapter, the probabilistic contextual filtering is presented. In PCF,

personalised temporal contexts are identified and modelled by a mixture of

periodic Gaussians, based on the user’s action patterns. The probabilistic

contextual filtering does not filter out training data like other contextual

filtering methods. Instead, the probabilities of an action performed in differ-

ent contexts are calculated. The user’s preference can then be computed as

a weighted combination of his/her preferences in these identified contexts.

The testing criteria and experimental methods used are also presented in this

chapter. Experimental results from two datasets have demonstrated that the

proposed method can achieve higher prediction accuracy and user space cov-

erage on sparse data, compared to traditional recommendation method and

contextual pre-filtering.
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Contribution - The development of a new context-aware recommendation

method, PCF, which can significantly increase prediction accuracy. Mea-

sured by precision, experimental results indicate that PCF can outperform

contextual pre-filtering method by at least 8.6% on our testing sets. Mea-

sured by user space coverage, PCF can outperform contextual pre-filtering

method by at least 9.1%.

Chapter 5 - Probabilistic Contextual Clustering

In this chapter, we presented the probabilistic contextual clustering. By

modelling the item (tag) distributions, we are able to cluster the contexts

into topics. For a given session, we can compute its topic mixture based on

the items we have observed in the current context. The testing criteria and

experimental methods used were also presented in this chapter. Experiment

results have demonstrated that the proposed method can achieve higher

prediction accuracy compared to existing session based methods. Also, the

results have demonstrated that when item tags are available, the prediction

accuracy can be further improved.

Contribution - The development of a new session based context-aware rec-

ommendation method that can achieve higher prediction accuracy than ex-

isting methods. Measured by precision, experimental results show that PCC

can outperform existing session based methods in [73] and [31] by at least

6.9% on our testing sets.

Chapter 6 - Clustering Based Probabilistic Contextual Clustering

In this chapter, we presented the clustering based probabilistic contextual

filtering. This method incorporates the features of PCC to PCF. In our

CBPCF, we first identify personalised contexts based on user’s action pat-

terns. Then based on item distribution, we cluster similar contexts into

groups. The data collected in the same group of contexts is combined to re-

duce the computational cost, and to obtain more reliable training sets. The

predicted preference is computed as a two-step weighted sum. The testing

criteria and experimental methods used were also presented in this chap-
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ter. The experimental results have demonstrated that CBPCF can reduce

computational cost and increase recommendation accuracy on sparse data,

compared to PCF.

Contribution - The development of a novel context-aware recommenda-

tion method, CBPCF, which can combine PCF and PCC to achieve higher

prediction accuracy than existing methods. Compare to PCF, CBPCF can

maintain the same level of accuracy and substantially reduce computational

cost (from 3000 datasets to 20 datasets on music data).

Based upon these contributions, it is believed that the aims of this thesis

have been met.

7.3 Limitation of PCF, PCC and CBPCF

Like all methods, our approaches also have some limitations. In this section,

we summarise these limitations.

Our methods can only be applied to temporal context

Through out our thesis, we focused on temporal information. In Chapter 4,

we identify personalised contexts by analysing users’ temporal patterns. It

is difficult to extend PCF to analyse other contextual information, such as

location, company of other people. For session based PCC, without temporal

information, we can not even identify valid sessions, thereby unable to apply

our method. This is a common issue for context-aware recommender sys-

tems. For example, in context generalisation, different generalisation rules

are needed for different contextual information, and usually these rule can

only be generated manually, since domain knowledge is also required.

Our methods are designed for implicit transaction data

In our methods, we infer uses’ preference and temporal pattern through

transaction-like data. If we are given users’ rating, we can not make use of

it, even if these ratings are three dimensional (user, item, context). Although
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it may be possible to identify temporal patters through ratings, it requires

far more data than traditional RS, and it’s not intuitive how one can transfer

rating patterns to consumption patters. Besides, with implicit data, the type

of contextual information available can be very limited. Ideally, RS should

be able to make use of explicit data when it’s available.

Our methods are computationally expensive

All of our methods are computationally heavy. In PCF and CBPCF, we

need model each user’s action patters. That is to apply a MoAWG model

to each individual user. In PCC and CBPCF, we also apply LDA to each

user. LDA and MoAWG are iterative methods. Training of these methods

can take very long time.

Out methods can not handle data stream

In real world, RS must be updated regularly to keep up with users’ changing

preferences. That is, if the system can keep collecting new data, RS must

be able to make use of the new data, update it’s parameters rapidly, ideally

without retraining the entire model. Unfortunately, our CARS can not han-

dle a stream of new data. When new data is available, we can only rerun

the whole process to obtain updated parameters of the model.

7.4 Future Work

In this section, some potential areas of future work is provided.

7.4.1 Improvements and Extensions to PCF, PCC and

CBPCF

• In PCF and CBPCF, the user’s action pattern is modelled by Gaussian

mixture model. However, the distribution of action count may not always
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be Gaussian. For example, in some cases, maybe a Poisson distribution

is more appropriate.

• In PCF and CBPCF, we need to select the number of Gaussians, thus

the number of personalised contexts. In our methods, this number is

fixed and the same for all the users. To excel in context personalisation,

the number of components should be based on individual user’s action

patterns.

• In CBPCF, the inferred action count is rounded up to the nearest integer.

For user-item pair that has high interaction count, this approximation

would not affect the modelling of item distributions. However, for those

user-item pairs that have small action counts, this could cause inaccurate

predictions. The impact of this approximation should be studied. A topic

model that is capable of dealing with non-integer item counts may be

employed.

• In CBPCF, we can also study the clustering of contexts based on tag

distributions.

• In CBPCF, although we model item distributions, we can not make use

of the observed seed items. It might be reasonable to develop a system

that can start with a context-aware recommendation method based on

available contextual information. Then, after a sufficient number of seed

items have been observed, the system switches to session based method.

• In all our methods, we use implicit data. As we discussed in Chapter 2,

it is difficult to evaluate which items the user does not like. Therefore,

there is no way to explore the performance of our method in terms of

false positive/negative. Ideally, we would like to test our method in a

application where both implicit data and explicit data are available.

• In all our methods, we only deal with temporal information. However,

contextual information can contain much more than just time. We should

study how to extend our methods to location-aware or companion-aware
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RS.

• All of our methods are computationally expensive. The only way to

update our CARS is to retrain the entire model. We should study how

to incorporate new data without retraining the entire RS.

7.4.2 Context-Aware Recommender Systems

• It has been demonstrated in Netflix Competition that an ensemble of

traditional recommender systems can outperform any existing traditional

recommender systems. Therefore, it might be reasonable to consider

the same idea in context-aware recommender systems. Multiple CARS

can employ different recommendation techniques, and based on different

contextual information.

• In many applications, it is difficult to collect users’ feedbacks on items,

especially in context-aware recommender systems, where the system may

ask the user to rate the same item in different contexts. Therefore, it is

important to study and to develop CARS based on implicit data.

• Social networks have become a powerful media. Many people choose to

express their ideas and opinions via social networks. It is important to

study and make use of the powerful yet noisy and unstructured data

from social networks.

• More diverse testing criteria may be necessary for evaluating context-

aware recommender systems. For example, in some cases, it is more

important to determine when the recommendations are needed by the

user, than to predict what items are needed. This is especially important

for time-aware recommender systems.
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7.5 Discussion

In 2007, Netflix held its first million-dollar recommendation competition. It

drew talents from all over the world. Researchers from both academia and

industry took part in. The competition significantly boosted the advancement

of RS. However, Netflix was sued in 2008, because based on the anonymous

data it released for the competition, people can still track who the real users

are. Ever since that, no major company has ever released any dataset to the

public. How can we improve the collaboration between academia and big tech

companies like Google and Amazon, is also something worth studying.



Nomenclature

Symbols

Aij user-item utility for user ui with item wj

Ak
ij user-item utility for user ui with item wj in kth context

ck the kth context

D a dataset containing a collection of sessions

fij the number of times si appears in wj or profile of wj

Γ(x) Gamma function

γxk the responsibility of kth component for an action x

IDFi the inverse document frequency of si

K the number of components in a mixture model

k kth component of a mixture model

µ vector of µk

µk the weight of the kth component in a mixture model

N AW approximated wrapped Gaussian distribution

ni the number of items or item profiles containing si in TF-IDF
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N W wrapped Gaussian distribution

pk
ij user-item interaction count in context ck

pt
ij the action count of ui on wj in time period t

pk
i the total action count of ui on all items in time period t

pi(t) the distribution of action count of ui over time t

R rating function that maps the user-item pairs to ratings

rij the rating given by user ui on item wj

r̂ij the predicted value of rij

rk
ij the rating given by user ui on item wj in context ck

S the number of unique keywords in the dataset

si ith keyword/tag in an item or item profile

σ standard deviation of a distribution

α hyper parameter of LDA

β item probability matrix of LDA

TF ij the term frequency of si in wj or profile of wj in TF-IDF

θ0 mean of a distribution

U user/customer set

ui ith user in the user set

w a session containing a sequence of items

W item set
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wj jth item in the item set
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Abbreviations

AWG approximated wrapped Gaussian distribution

CARS Context-Aware Recommender Systems

CBPCF Clustering Based Probabilistic Contextual Filtering

EM Expectation-Maximisation

LDA Latent Dirichlet Allcation

MDP Markov Decision Process

MF Matrix Factorisation

MoAWG mixture of approximated wrapped Gaussian distribution

MoWG mixture of wrapped Gaussian distribution

PCC Probabilistic Contextual Clustering

PCF Probabilistic Contextual Filtering

pdf probability density function

QD Query-Driven Context-Aware Recommendation

RBM Restricted Boltzmann Machine

RS Recommender Systems

SBM Music-Listening Session Based Model

TF-IDF Term Frequency/Inverse Document Frequency

WG wrapped Gaussian distribution
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