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Abstract

The focus of the present investigation is uncertainty relations for quantum particles,

which quantify the fundamental limitations on some of their properties due to their

incompatibility. In the first, longer part, we are concerned with preparational uncer-

tainty relations, while in the second we touch upon measurement inequalities through

a generalisation of a model of joint measurement of position and momentum.

Specifically, starting from a triple of canonical operators, we prove product and

sum inequalities for their variances with bounds larger than those following from

combining the pairwise ones. We extend these results to N observables for a quantum

particle and prove uncertainty relations for the sums and products of their variances

in terms of the commutators.

Furthermore, we present a general theory of preparational uncertainty relations

for a quantum particle in one dimension and derive conditions for a smooth function

of the second moments to assume a lower bound. The Robertson-Schrödinger inequality

is found to be of special significance and we geometrically study the space of second

moments. We prove new uncertainty relations for various functions of the variances

and covariance of position and momentum of a quantum particle. Some of our find-

ings are shown to extend to more than one spatial degree of freedom and we derive

various types of inequalities.

Finally, we propose a generalisation of the Arthurs-Kelly model of joint measure-

ment of position and momentum to incorporate the case of more than two observables

and derive joint-measurement inequalities for the statistics of the probes. For the case of

three canonical observables and suitable definitions of error and disturbance we ob-

tain a number of error-error-error and error-error-disturbance inequalities and show that

the lower bound is identical to the preparational one.
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Chapter 1

Introduction

Quantum theory is one of the most fundamental and successful models of physical

reality known to man. It has far reaching applications in technology and everyday ex-

perience; the laser and magnetic resonance imaging (nMRI) are only some examples

of its influence on modern life. At a time when it was widely accepted that all major

phenomena observed in nature were already described by the contemporary phys-

ical theories, Planck’s solution to the black body radiation problem, one of the few

remaining obstacles to the perceived complete description of nature, and Einstein’s

explanation of the photoelectric effect planted the seeds for the development of a new

theory of microscopic phenomena. Its first coherent formulations were developed in

the first half of the twentieth century and in the subsequent decades it was put on more

solid mathematical grounds. Bohr, Dirac, Heisenberg, Schrödinger, Einstein, Wigner

and von Neumann are some of the physicists and mathematicians who substantially

contributed to the understanding of the new theory.

However, regardless of its exceptional success as a mathematical framework to

make testable predictions concerning our experience of interaction with the world, it

was obvious, from an early stage on, that there were a number of obstacles challeng-

ing some of the standard underlying assumptions of classical physical theories; few

would question the implicitly assumed interpretation of what is happening when an

apple falls on a physicist’s head, when such a process is described by Newton’s law of

gravitation. However, quantum theory brought to the limelight a type of philosophi-

cal questions that could no longer be easily suppressed. Even today, a little less than
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Chapter 1. Introduction

a century from the theory’s first formulations, significant foundational problems ex-

ist within quantum mechanics. This claim can be demonstrated, for example, by the

disagreement of experts in the field, on the meaning of different aspects of the theory

[61, 51] and the wide variety of different interpretations [24]. The famous measurement

problem, for example, persistent in the Copenhagen interpretation of quantum mechan-

ics is not a difficulty for a QBist, who accepts that the quantum state only relates to the

agent’s beliefs about the system [33, 72]. We will not dwell on interpretational ques-

tions of quantum mechanics however in this thesis since the scientific value in such

an exercise is debatable [32], and we will leave such questions open to the discretion

of the reader.

One of the most peculiar features of quantum mechanics is the celebrated uncer-

tainty principle, which is one example of the groundbreaking implications of the the-

ory that substantially separates it from the viewpoint of a classical world described by

Newton’s theory. Since its first appearance, it has been the focus of research, discus-

sion and debates; even today, almost ninety years after it was first introduced, there

are strong disagreements regarding its meaning and physical content.

Heisenberg in 1927 [35] was the first to introduce the idea of quantum indetermi-

nacy, using qualitative arguments about the impossibility to measure simultaneously

position and momentum with arbitrary accuracy. In Heisenberg’s description of the

uncertainty principle through a thought experiment, the observation of the position

of a particle with a microscope would disturb the particle’s momentum due to the

Compton effect by an amount of the order of Planck’s constant.

Soon after, Kennard [41] in 1927 and Weyl [81] in 1928, provided mathematical

proofs of what is commonly referred to as Heisenberg’s uncertainty relation, which as

it is now understood, is different in spirit from the notion of uncertainty introduced

by Heisenberg. Nevertheless, the two have been taken to be the same statement for

years. In 1929, Robertson [56] provided an inequality for the variances of two self-

adjoint operators, resulting from their non-commutativity, generalising the result of

Kennard. Finally, Schrödinger in 1930 [62] further strengthened the uncertainty rela-

tion by including a “covariance” term. In the case of position and momentum, the

resulting Robertson-Schrödinger inequality plays a special role for a quantum particle in
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one dimension.

It is worth mentioning that the inequality proved by Kennard and Weyl is con-

ceptually different from the bound described by Heisenberg. His original microscope

argument presented a theoretical lower bound concerning the accuracy of measuring

the position of a particle and the disturbance that such a measurement would cause

to its momentum; however, it is important to note that no definitions of error or dis-

turbance were explicitly given. Moreover, no inequality appears in his paper and the

only relevant relation presented was ”p1q1 ∼ h”, where q1 is ”the precision with which

the value q is known (q1 is, say, the mean error of q)” whereas p1 is ”the precision with which

the value p is determinable” [35] ([82], p.64) . For many years following Heisenberg’s

seminal paper, there was confusion on the subject and the inequality proved by Ken-

nard and Weyl was thought of as an adequate description of the limitations associated

with the error and disturbance of a measurement of conjugate variables. Only relatively

recently was it understood that different types of inequalities need to be formulated

in order to capture the various aspects of quantum uncertainty.

The standard textbook inequality proved by Kennard, usually referred to as Heisen-

berg’s uncertainty relation, is an expression of the impossibility to prepare a quantum

system in a state where both its position and momentum are arbitrarily well localized:

there is a universal lower bound equal to half of the reduced Planck constant, h̄/2, for

the product of the spreads of the position and momentum distributions, obeyed by all

possible quantum states, where the measure of spread used is the standard deviation.

Thus, the textbook uncertainty relation is a statement about preparations of a quan-

tum system rather than measurements. Alternatively, it can be thought of as a bound

concerning the spreads in outcomes of ideal separate measurements of position and

momentum on an ensemble of identically prepared particles. In this thesis, we will be

mostly dealing with preparational inequalities for one or more quantum particles, and

only in the penultimate chapter we will discuss measurement uncertainty, through a

proposed generalisation of a model of joint measurement of position and momentum,

introduced by Arthurs and Kelly [6] in 1965.

Recently, there has been considerable interest in revisiting Heisenberg’s original

ideas and putting the uncertainty principle on solid mathematical grounds; these new

11



Chapter 1. Introduction

inequalities, usually referred to as error-disturbance uncertainty relations, deal with the

effect that a measurement of a particle’s position has on momentum and vice-versa.

Ozawa [52, 53] in 2003 refuted and reformulated an inequality which he attributed

to Heisenberg, while experiments [58, 31] that were performed recently provided ev-

idence of his theoretical findings. At the same time, however, a proof of Heisenberg’s

error-disturbance relation was given by Busch. et. al. [19], in a form resembling the in-

equality disproved by Ozawa, although different in mathematical content. The appar-

ent contradiction between these works is due to the use of different measures quan-

tifying the error and disturbance relating to the measurement. There is an ongoing

debate on the merits and drawbacks of the various measures and of the different re-

sulting formulations of Heisenberg’s error-disturbance uncertainty relation. Although

the ones employed by Ozawa have been claimed to be advantageous due to the fact

that they are state-dependent, it seems that they suffer from a number of shortcomings

and have been, for this reason, strongly criticised [29, 43, 16, 18]. On the other hand,

state-independent measures have been argued to capture the intuitive ideas presented

in Heisenberg’s paper with more success [16]. Finally, Appleby [4] has formulated

inequalities of both types.

Joint-measurement inequalities are statements concerning the statistics of a simulta-

neous measurement of the position and momentum of a particle. A now famous model

describing this process was introduced by Arthurs and Kelly [6] and subsequently

studied by Busch [15], Appleby [3, 5] and others [70, 22, 23, 55, 36]. In the original

model, position and momentum of a quantum particle are coupled to the momenta

of two quantum systems, the probes, constituting the measuring apparatus, through an

impulsive interaction Hamiltonian. It is a consequence of the process that the standard

deviations of the pointer observables conjugate to the momenta of the probes, obey a

Heisenberg-type inequality with a bound twice as large as the usual value of h̄/2. The

common interpretation of this result is that the attempt for a joint measurement of

the non-commuting observables of position and momentum introduces extra noise,

attributed to the fact that the measuring device is also a quantum mechanical system.

Finally, within this model and its generalisations, it is possible to derive various types

of error-disturbance inequalities [3, 4].
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This thesis is conceptually split into two parts: the first longer part is concerned

with preparational uncertainty for continuous variables, while the second focuses on

joint-measurement and error-disturbance inequalities through a proposed generali-

sation of the Arthurs-Kelly model. The first part arises as an answer to a number

of questions: why are mathematical expressions of the intrinsic indeterminacy of a

quantum system limited to the product and sum of the variances, and not extended

to other functions of them? Moreover, potentially stemming from Bohr’s complemen-

tarity principle, usually stated as the impossibility to access both properties of an in-

compatible pair of a quantum system, almost all uncertainty statements are concerned

only with conjugate pairs as the one of position and momentum. It is a fundamental

question to ask what are the implications, if any, in considering more than two incom-

patible observables and whether any resulting statements are only a consequence of

the incompatibility of the pairs. The second part of this thesis, building on the ques-

tion of preparational uncertainty beyond a pair of observables, examines what are the

fundamental implications in attempting to jointly measure more than two observables

and the equivalent of error and disturbance inequalities in that setting.

In Chapter 3, we derive lower bounds for the product, sum and other functions

symmetric under the exchange of any two variables, of the variances of a triple of

canonical operators. Such a triple, unique up to unitary transformations, arises from

considerations of existence of mutually unbiased bases for continuous variables and

appears in connection with the work of Weigert et. al. [75]. Already in 1934, Robertson

[57] derived an inequality for more than two observables, which however becomes

trivial for an odd number of them. In [65] an inequality is mentioned for the variances

of three operators but cannot be used to infer the minimum bound for a canonical

triple. The inequality we derive demonstrates that the incompatibility of three oper-

ators, as expressed by uncertainty relations, is not a straightforward consequence of

the incompatibility of each pair alone.

In Chapter 4 we prove inequalities for the sums and products of the variances of N

observables for a particle with one degree of freedom forming regular polygons. We

show that the obtained bounds can be expressed in geometric terms, using the area

and circumradius associated with the regular polygons. The results are extended to
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observables which are arbitrary linear combinations of position and momentum, and

we express the lower bounds in terms of the commutators. Then, N observables for a

system of M degrees of freedom are studied; under the assumption of non-existence

of correlations between the different degrees of freedom, we find a lower bound that

depends on commutators of suitably defined local operators. Finally, we discuss how

some of these inequalities can be used as entanglement detection criteria.

In Chapter 5 we respond to the question of whether a smooth function of the three

second moments, the two variances and the covariance, is bounded from below. After

Kennard’s proof of Heisenberg’s uncertainty relation, Robertson’s extension to arbi-

trary operators and Schrödinger’s addition of the covariance term, few new inequali-

ties appeared for other functions of the second moments of position and momentum,

as for example the sum inequality for the variances of position and momentum, pro-

viding a lower bound of h̄. We will show that given specific conditions, a lower bound

exists and the minimum is contained in the solutions of a set of coupled equations for

the second moments. Through the theory we will develop, we are able to specify the

set of extremal states for the function under consideration, if any exist. Moreover, we

find that among all possible uncertainty functionals [78], the one associated with the

inequality of Robertson-Schrödinger is singled out as one of special importance. We

show that its set of extremal states is universal in that all potential extrema of an arbi-

trary functional have to be a subset of it; the states in this universal set are found to

be the squeezed number states of a harmonic oscillator of unit mass and frequency. We

subsequently define a space of second moments and show that the universal set is de-

scribed by the surfaces of a countably infinite number of nested hyperboloids. Finally,

we derive a number of new preparational inequalities for a particle with one degree

of freedom.

Chapter 6 extends the framework developed in Chapter 5 to the case of more than

one spatial degree of freedom. We show that the extremisation of a function of the

second moments leads to an equation quadratic in position and momentum operators,

which can be diagonalised whenever the matrix of the first partial derivatives of the

function is positive definite. We also derive a set of consistency conditions for such

a function to be bounded which lead to the following characterisation for extrema: a
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state is an extremum of a function of the second moments if there exists a symplectic

matrix that diagonalises the resulting covariance matrix, while the transpose of its

inverse diagonalises the matrix of the partial derivatives of the function.

Chapter 7 is devoted to generalisations of the Arthurs-Kelly process to accommo-

date the joint measurement of more than two observables. A number of inequalities

describing the statistics of the pointer observables after the interaction are obtained.

For the generalised version of the model, we find that correlations between the probes

allow for bounds lower than those of uncorrelated ones, a feature that is not present

in the joint measurement of two conjugate observables. For specific measures of error

and disturbance [3, 4] based on noise operators, we prove a number of error-error-error

and error-error-disturbance uncertainty relations concerning the joint measurement of a

canonical triple of operators.

The thesis concludes in Chapter 8, with a summary and discussion of the main

results.
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Chapter 2

Mathematical Preliminaries

For the investigations presented in this thesis, the following framework of quantum

mechanics is sufficient. With a quantum system we associate a complex Hilbert space

H . The physical states of the system correspond to unit vectors in H ; such (pure)

states differing by a phase factor describe the same physical state. Strictly speaking,

physical states are thus identified with equivalence classes of vectors, called rays. Ob-

servables are represented by self-adjoint operators acting on H , a subset of the class of

linear transformations of the Hilbert space. Unitary transformations are also impor-

tant, the set of isometries of the Hilbert space. An example of a unitary transformation

is given by Û = eiĤt, representing the time evolution operator of a quantum system,

where Ĥ is the Hamiltonian operator. In this thesis, we work exclusively with infi-

nite dimensional Hilbert spaces. There are a number of intricacies arising in the case

of an infinite dimensional Hilbert space as opposed to a finite dimensional one, but

it is beyond the scope of this chapter and in extension of this thesis, to develop the

underlying theory in full rigour.

We will often use Dirac’s bra-ket notation, where the kets, denoted by |.〉, represent

the vectors in the Hilbert space, H , while the bras, denoted by 〈.|, are living in the

dual space H ∗, the space of linear functions from H to the complex numbers, C; by

the Riesz representation theorem the space of linear functionals is identical to the one of

the maps 〈ϕ| : |ψ〉 7→ 〈ϕ|ψ〉, where 〈.|.〉 : H ×H → C denotes the inner product of

H .

In this work, the main tool we will be working with is called an uncertainty func-
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tional. Generally speaking, such a functional is a map of unit vectors to the real num-

bers. More specifically, it assigns a real number to combinations of the second mo-

ments of position and momentum. Uncertainty functionals can be divided into un-

bounded, trivially bounded (by zero) and bounded ones. To systematically study the

lower bounds of the latter, we employ a calculus of variations briefly presented later

in this chapter.

2.1 Fractional Fourier transform

The fractional Fourier transform of the function f : R→ C is defined through [50]

Fα[ f ](x) =
e

i(π−2α)
4

√
2π sin α

∫
R

dy f (y) exp
(

i
2
(
−(x2 + y2) cot α + 2xy csc α

))
, (2.1)

for some real number α called the angle of the transform. Whenever α = π/2, we

recover the standard Fourier transform of a function f ,

F [ f ](x) ≡ Fπ/2[ f ](x) =
1√
2π

∫
R

dy f (y)eixy , (2.2)

while for α = −π/2, we obtain its inverse

F−1[ f ](x) ≡ F−π/2[ f ](x) =
1√
2π

∫
R

dy f (y)e−ixy . (2.3)

The cases of an angle that is an integer multiple of π, i.e. α = kπ, with k ∈ Z in Eq.

(2.1) can be understood as a limit. For example, for α = 0, substituting α and 1/α for

sin α and cot α respectively and using the fact that

lim
ε→0

1√
πiε

e−x2/iε = δ(x) , (2.4)

then we find

F0[ f ](x) =
∫

R
dy f (y)δ(y− x) = f (x) , (2.5)

and thus the fractional Fourier transform for α = 0 reduces to the identity operator,

as expected. In a similar manner, one can show that for α = π it becomes a parity

17
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transformation, i.e.

Fπ[ f ](x) =
∫

R
dy f (y)δ(y + x) = f (−x) . (2.6)

We call the order, m, of the fractional Fourier transform, as the ratio of its angle α

to the angle of the usual Fourier transform, that is

m =
2α

π
. (2.7)

Thus, the standard Fourier transform is of order 1, the identity is of order 0, while the

parity is of order 2; negative orders correspond to inverse transforms. If the order m is

a rational number, we can define the period, p, of the fractional Fourier as the smallest

number of times the transformation needs to be applied before we obtain the original

function, or equivalently (Fα)
p = I, where I denotes the identity operator. Whenever

the angle is of the form α = 2π/n , n ∈ Z\{0}, the period is given by

p =
2π

α
. (2.8)

Note that the usual Fourier transform corresponds to α = π/2 and is of period 4, while

α = π corresponds to the parity operator, which is of period 2.

2.2 Wigner function

For a pure state |ψ〉 and with ψ(q) = 〈q|ψ〉 denoting the wavefunction, one can define

the Wigner function, or Wigner quasi-probability distribution as [85]

W(p, q) =
1

πh̄

∫
R

ψ∗(q + y)ψ(q− y)e2ipy/h̄dy , (2.9)

where ψ∗(q) denotes the complex conjugate of the wave function. The Wigner func-

tion is a real quantity and its marginals give the position and momentum distributions,

|ψ(q)|2 =
∫

R
W(p, q)dp , |ψ̃(p)|2 =

∫
R

W(p, q)dq (2.10)
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where ψ̃(p) denotes the Fourier transform of the function ψ(q). It cannot be inter-

preted as a probability distribution since it can assume negative values.

2.3 Measures of uncertainty

We define the variance of a self-adjoint operator Â in a pure state ψ to be

∆2A ≡ 〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2 = 〈Â2〉 − 〈Â〉2 . (2.11)

Often, the standard deviation ∆A will be used, which is obtained by taking the square

root of the variance. In the same way, the covariance of two non-commuting operators

Â, B̂, when the system is in the state ψ, is defined as

CAB ≡
1
2
〈ψ|(ÂB̂ + B̂Â)|ψ〉 − 〈ψ|Â|ψ〉〈ψ|B̂|ψ〉 . (2.12)

For a quantum particle in one spatial dimension, we thus have three second mo-

ments: the variances of position and momentum and their covariance. It is often con-

venient to arrange them into the real and symmetric covariance matrix C,

C =

 ∆2 p Cpq

Cpq ∆2q

 , (2.13)

which is positive definite. A covariance matrix is physically realisable, according to

quantum mechanics, if it obeys the condition [67]

C + i
Ω

2
≥ 0 , (2.14)

where Ω is a skew-symmetric matrix, often called the n-symplectic form, explicitly

defined in the next section.

In the case of position and momentum, one can simplify the definitions of the

variances and the covariance, by employing the invariance of the second moments

under phase space translations.

Let T̂α = exp
( i

h̄ (p0q̂− qo p̂)
)

denote the unitary operator that effects translations
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in phase space, where α ≡ (q0 + ip0)/
√

2h̄ and p0, q0 ∈ R; its action on the position

and momentum operators is

T̂†
α q̂ T̂α = q̂− q0 , T̂†

α p̂ T̂α = p̂− p0 . (2.15)

It is easy to show that the variances of position and momentum in the states |ψ〉

and |ϕ〉 = T̂α|ψ〉 are the same, that is

(∆q)2
ψ = (∆q)2

ϕ , (∆p)2
ψ = (∆p)2

ϕ . (2.16)

From the last observation it follows that if one chooses p0 = 〈 p̂〉ψ , q0 = 〈q̂〉ψ, then

the variances in the state |ϕ〉 reduce to

(∆q)2
ϕ = 〈ϕ|q̂2|ϕ〉 , (∆p)2

ϕ = 〈ϕ| p̂2|ϕ〉 , (2.17)

which we will often assume in the following chapters.

Apart from the second moments, one can define the Shannon entropy for a proba-

bility density ρ,

Sq = −
∫

R
dqρ(q) log ρ(q). (2.18)

If the probability density is given by ρ = |ψ(q)|2, where ψ(q) is the wave function

in position space, then the Shannon entropy is a measure of the localisation of the

probability distribution associated with the particle’s position; the lower the value of

the entropy, the more localised it is.

In a similar way, starting from the probability density in momentum space, ρ̃ =

|ψ̃(p)|2, we define the quantity

Sp = −
∫

R
dp|ψ̃(p)|2 log|ψ̃(p)|2, (2.19)

with an analogous physical interpretation.

It should be noted that both of these entropies are not bounded and the more con-

centrated the distribution, the more the Shannon entropy approaches negative infinity.
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To see this, take the probability density to be of the form

ρε(q) =
1

2
√

πε
e−

q2
4ε , (2.20)

which in the limit where ε approaches zero from positive values, the probability den-

sity approaches a delta function. The Shannon entropy of this probability density is

found to be

Sq,ε = −
∫

R
dqρε(q) log ρε(q) =

1
2
(1 + log(4πε)) , (2.21)

and in the limit of ε → 0+ it approaches negative infinity, demonstrating the fact that

the entropies are not bounded. However, as it will be shown in Chapter 4, the sum

of the entropies of the position and momentum distributions is bounded by a positive

real number.

2.4 The symplectic group and symplectic transformations

Assume we have a quantum system with n spatial degrees of freedom, each one char-

acterised by a pair of conjugate variables. More specifically, we have a set of 2n self-

adjoint operators acting on a Hilbert space H , which if arranged in a column vector ẑ

as

ẑ = ( p̂1, q̂1, . . . , p̂n, q̂n) , (2.22)

they obey the commutation relations

[ẑa, ẑb] = ih̄ωab ; (2.23)

ωab are the entries of the 2n× 2n block diagonal matrix

Ω = (ωab) =


Ω2

. . .

Ω2

 , (2.24)
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where

Ω2 =

 0 −1

1 0

 . (2.25)

A linear transformation of the operators ẑa is called canonical if it preserves the

commutation relations (2.23), that is, the transformed operators ẑ′a obey

[
ẑ′a, ẑ′b

]
= ih̄ωab . (2.26)

If the two sets of operators are related through

ẑ′a = ∑
b

Sab ẑb, (2.27)

where the Sab are real numbers, then the requirement for the transformation to be

canonical is equivalent to the matrix S = (Sab) being a symplectic matrix. A matrix is

called symplectic, S ∈ Sp(2n, R), if it satisfies the condition

S.Ω.S> = Ω . (2.28)

For any symplectic matrix S, there is a unitary operator U (S) implementing the trans-

formation

ẑ′a = ∑
b

Sab ẑb = U (S)−1ẑaU (S) . (2.29)

The unitary U (S) is unique up to an arbitrary constant phase factor. One can choose

this arbitrary phase factor in such a way to achieve the maximum simplification for

the composition rule of unitaries, which turns out to be

U (S1)U (S2) = ±U (S1S2) , (2.30)

with S1, S2 ∈ Sp(2n, R). This shows that we have a two-valued representation of the

symplectic group. Moreover, these operators give a faithful unitary representation of

the metaplectic group, Mp(2n, R), which is the double covering of Sp(2n, R) [8].

There are various ways one can decompose a symplectic matrix in terms of two

or three factors drawn from subsets or subgroups of the symplectic group, Sp(2n, R).
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Here, we only mention the Iwasawa or K A N decomposition for n = 1, which is

unique and each factor is taken from a subgroup of Sp(2, R). According to this de-

composition, a symplectic matrix S,

S =

a b

c d

 , (2.31)

can be factorised as

S =

1 ξ

0 1

e−η/2 0

0 eη/2

 cos ϕ/2 sin ϕ/2

− sin ϕ/2 cos ϕ/2

 , (2.32)

where the parameters ξ, η, ϕ are given by

ξ =
ac + bd
c2 + d2 ∈ (−∞, ∞) , (2.33)

η = ln(c2 + d2) ∈ (−∞, ∞) ,

ϕ = 2 arg(d− ic) ∈ (−2π, 2π] .

When it describes a canonical transformation, the first factor in the decomposition

takes p̂ to p̂ + ξ q̂, while leaving q̂ unchanged. The second factor corresponds to

rescalings or squeezing transformations that take p̂ to p̂/b and q̂ to bq̂, for some pos-

itive real number b. Finally, the last factor implements SO(2) rotations that take p̂ to

p̂ cos ϕ/2 + q̂ sin ϕ/2 and q̂ to − p̂ sin ϕ/2 + q̂ cos ϕ/2.

A theorem by Williamson [8, 84] states that if F is a 2n × 2n positive or negative

definite matrix, then there exists a symplectic matrix S ∈ Sp(2n, R) such that

F = S>DS, (2.34)

where D = diag(λ1, λ1, . . . , λn, λn) is known as the symplectic spectrum of F [1, 2], while

the n positive real numbers λi are its symplectic eigenvalues.

Although one could use Williamson’s theorem to find the symplectic spectrum of
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a covariance matrix C, it is often much more convenient to use

D = Eig+(iCΩ) , (2.35)

where Eig+(A), denotes the diagonal matrix of positive eigenvalues of A.

We conclude this section by mentioning that the condition for a covariance matrix

to be physically realisable, as given by Eq. (2.14), can be equivalently restated in terms

of the symplectic eigenvalues, as the condition

λi ≥
1
2

, ∀i = 1, . . . , n . (2.36)

2.5 Gâteaux differential and variational calculus

In this subsection we define the concept of the Gâteaux differential, which generalises

the notion of a directional derivative for functions between normed linear spaces. In

addition, we briefly review a calculus of variations based on the Gâteaux derivative

[60].

Let F : X → Y be a function between two Banach spaces X, Y. For x ∈ X, the

Gâteaux differential along the direction v ∈ X is defined as

dFv(x) = lim
ε→0

F(x + εv)− F(x)
ε

=
d
dε

F(x + εv)
∣∣∣
ε=0

. (2.37)

There is a stronger notion of differentiation that one can define, called the Fréchet

derivative. A function F : X → Y is Fréchet differentiable at x ∈ X if there exists a

bounded linear operator K : X → Y such that

lim
h→0

‖F(x + h)− F(x)− Kh‖Y

‖h‖X
= 0 . (2.38)

Then, the Fréchet derivative is dF(x) = K. Whenever they both exist, they are related

through dFv(x) = dF(x)v. For our analysis, the notion of the Gâteaux derivative is

sufficient.

We define a functional J[x] as a mapping of elements of a Banach space to the real

numbers, J : X → R. The Gâteaux variation of the functional J[x] at x0, which we
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denote by δJ[x] is given by

δJ[v] =
d
dε

J[x0 + εv]ε=0 , (2.39)

if it exists for all v ∈ X, where ε ∈ R. Moreover, it can be shown that it is unique,

provided it exists.

In the following chapters, we apply a variational calculus on what we term uncer-

tainty functionals, which are essentially smooth real functions of the second moments

of position and momentum, as defined in Sec. (2.3).

As a simple example, consider the functional J[ψ] = 〈ψ|Aψ〉, where ψ ∈ H is

a vector in a Hilbert space, 〈.|.〉 denotes the inner product defined in H , and A a

self-adjoint operator. With ε ∈ R one finds

J[ψ + εϕ] = 〈ψ + εϕ|A(ψ + εϕ)〉 = 〈ψ|Aψ〉+ ε (〈Aψ|ϕ〉+ 〈ϕ|Aψ〉) + ε2〈ϕ|Aϕ〉,

(2.40)

and thus its first variation in terms of the Gâteaux differential is given by

δJ[ϕ] =
d
dε

J[ψ + εϕ]ε=0 = 〈Aψ|ϕ〉+ 〈ϕ|Aψ〉 , (2.41)

One can symbolically restate this by defining

Dϕ = 〈ϕ| δ

δ〈ψ| +
δ

δ|ψ〉 |ϕ〉 , (2.42)

in terms of which the first variation becomes

δJ[ϕ] = Dϕ J[ψ] . (2.43)

Note that the Fréchet differential in the last example exists only if the operator A

is bounded, which follows from the following equivalent definition of the Fréchet

derivative. If F : X → Y is a function between Banach spaces, then the linear trans-

formation K : X → Y is a Fréchet derivative if for every ε > 0, there is a δ > 0 such

that

‖F(x + h)− F(x)− Kh‖Y ≤ ε‖h‖X , (2.44)

25



Chapter 2. Mathematical Preliminaries

for all h with ‖h‖X ≤ δ.

Applying the last definition to J[ψ] = 〈ψ|Aψ〉, we find

|J(x + h)− J(x)− Kh| = |〈x|Ax〉| ≤ ‖A‖op‖h‖2
H , (2.45)

where in the last step we used the Cauchy-Schwarz inequality,

|〈x|y〉| ≤ ‖x‖‖y‖ , (2.46)

and where the operator norm of A is defined as

‖A‖op = inf{c ≥ 0 : ‖Ax‖ ≤ c‖x‖ , ∀x ∈ V} (2.47)

and V denotes the normed vector space on which A operates.

From the above considerations, it immediately follows that if A is an unbounded

operator, the functional J[ψ] is not Fréchet differentiable. It is however Gâteaux differ-

entiable.

We conclude this section by mentioning the chain rule for Gâteaux differentiation.

Let F : X → Y and G : Y → Z be Gâteaux differentiable functions between Banach

spaces, then their composition obeys the chain rule,

dϕ(FG)[h] = (dF(ϕ)G)[dϕF[h]]. (2.48)

For example, consider the functional J[ψ] = f (〈ψ|Aψ〉), where f : R → R is a differ-

entiable function, then its Gâteaux derivative is given by

dϕ J[ψ] = dϕ f (〈ψ|Aψ〉) = f ′(〈ψ|Aψ〉)dϕ(〈ψ|Aψ〉) (2.49)

= f ′(〈ψ|Aψ〉) (〈Aψ|ϕ〉+ 〈ϕ|Aψ〉) .
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Uncertainty relations for a canonical

triple

3.1 Introduction

In quantum theory, two observables p̂ and q̂ are canonical if they satisfy the commu-

tation relation

[ p̂, q̂] =
h̄
i

, (3.1)

with the momentum and position of a particle being a well-known and important ex-

ample. The non-vanishing commutator expresses the incompatibility of the Schrödinger

pair ( p̂, q̂) of observables since it imposes a lower limit on the product of their standard

deviations, namely

∆q ∆p ≥ h̄
2

. (3.2)

In 1927, Heisenberg [35] analysed the hypothetical observation of an individual

electron with photons and concluded that the product of the measurement errors

should be governed by a relation of the form (3.2). His proposal inspired Kennard

[41] and Weyl [81] to mathematically derive Heisenberg’s uncertainty relation, thereby

turning it into a constraint on measurement outcomes for an ensemble of identically

prepared systems. Schrödinger’s [62] generalization of (3.2) included a correlation

term, and Robertson [56, 57] derived a similar relation for any two non-commuting

Hermitean operators. Recently claimed violations of an uncertainty relation similar in
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form to (3.2) do not refer to Kennard and Weyl’s preparation uncertainty relation but

to Heisenberg’s error-disturbance relation (cf. [52, 31, 58]). However, these claims have

been criticized strongly [19, 29].

Uncertainty relations are now understood to provide fundamental limits on what

can be said about the properties of quantum systems. Imagine measuring the standard

deviations ∆p and ∆q separately on two ensembles prepared in the same quantum

state. Then, the bound (3.2) does not allow one to simultaneously attribute definite

values to the observables p̂ and q̂.

In this chapter, we will consider a Schrödinger triple ( p̂, q̂, r̂) consisting of three pair-

wise canonical observables [75], i.e.

[ p̂, q̂] = [q̂, r̂] = [r̂, p̂] =
h̄
i

, (3.3)

and derive a triple uncertainty relation. In a system of units where both p̂ and q̂ carry

physical dimensions of
√

h̄, the observable r̂ is given by

r̂ = −q̂− p̂ (3.4)

which corresponds to a suitably rotated and rescaled position operator q̂. It is important

to point out that any Schrödinger triple for a quantum system with one degree of

freedom is unitarily equivalent to ( p̂, q̂, r̂); furthermore, any such triple is maximal in

the sense that there are no four observables that equi-commute to h̄/i [77]. Therefore,

the algebraic structure defined by a Schrödinger triple ( p̂, q̂, r̂) is unique up to unitary

transformations.

Given that (3.1) implies Heisenberg’s uncertainty relation (3.2), we wish to deter-

mine the consequences of the commutation relations (3.3) on the product of the three

uncertainties associated with a Schrödinger triple ( p̂, q̂, r̂).
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3.2 Results

We will establish the triple uncertainty relation

∆p ∆q ∆r ≥
(

τ
h̄
2

)3/2

, (3.5)

where the number τ is the triple constant with value

τ = csc
(

2π

3

)
≡
√

4
3
' 1.16 . (3.6)

The bound (3.5) is found to be tight; the state of minimal triple uncertainty is found to

be a generalized squeezed state,

|Ξ0〉 = Ŝ i
4 ln 3 |0〉 , (3.7)

being unique except for rigid translations in phase space. The operator Ŝ i
4 ln 3, defined in

Eq. (3.22) is a generalized squeezing operator: it generates the state |Ξ0〉 by contracting

the standard coherent state |0〉 (i.e., the ground state of a harmonic oscillator with

unit mass and unit frequency) along the main diagonal in phase space by an amount

characterized by ln 4
√

3 < 1, at the expense of a dilation along the minor diagonal.

To visualize this result, let us determine the Wigner function of the state |Ξ0〉 with

position representation (cf. [48])

〈q|Ξ0〉 =
1

4
√

τπh̄
exp

(
− 1

2h̄
e−i π

6 q2
)

. (3.8)

Thus, its Wigner function associated with the state |Ξ0〉 minimizing the triple uncer-

tainty relation is found to be

WΞ0(q, p) =
1

πh̄
exp

(
−τ

h̄
(
q2 + p2 + pq

))
, (3.9)

which is positive. Its phase-space contour line enclosing an area of size h̄, shown in

Fig. 3.1, confirms that we deal with a squeezed state aligned with the minor diagonal.

To appreciate the bound (3.5), let us evaluate the triple uncertainty ∆p∆q∆r in two
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p

q

r

ϕ = 3π
4

Figure 3.1: Phase-space contour lines of the Wigner functions associated with the
states |Ξ0〉 (full line) and a standard coherent state |0〉 (dashed), respectively; both
lines enclose the same area.

instructive cases. (i) Since the pairs ( p̂, q̂), (q̂, r̂), and (r̂, p̂) are canonical, the inequality

(3.2)—as well as its generalization due to Robertson and Schrödinger—applies to each

of them implying the lower bound

∆p ∆q ∆r ≥
(

h̄
2

)3/2

. (3.10)

However, it remains open whether there is a state in which the triple uncertainty sat-

urates this bound. Our main result (3.5) reveals that no such state exists. (ii) In the

vacuum |0〉, a coherent state with minimal pair uncertainty, the triple uncertainty takes

the value

∆p ∆q ∆r =
√

2
(

h̄
2

)3/2

. (3.11)

The factor of
√

2 in comparison with (3.10) has an intuitive explanation: while the

vacuum state |0〉 successfully minimizes the product ∆p ∆q, it does not simultane-

ously minimize the uncertainty associated with the pairs (q̂, r̂) and (r̂, p̂). Thus, the

minimum of the inequality (3.5) cannot be achieved by coherent states.

The observations (i) and (ii) suggest that the bound (3.5) on the triple uncertainty is

not an immediate consequence of Heisenberg’s inequality for canonical pairs, Eq. (3.2).

Furthermore, the invariance groups of the triple uncertainty relation, of Heisenberg’s
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ΔpΔqΔr
ℏ 3/2

ΔpΔq
ℏ

0 π/4 π/2 3π/4 π φ
0.3

0.4

0.5

0.6

0.7

Figure 3.2: Dimensionless pair and triple uncertainties for squeezed states with γ =
ln 4
√

3, rotated away from the position axis by an angle ϕ ∈ [0, π] . The pair uncertainty
∆p∆q starts out at its minimum value of 1/2 which is achieved again for ϕ = π/2 and
ϕ = π (dashed line). The triple uncertainty has period π, reaching its minimum for
ϕ = 3π/4 for the state |Ξ0〉 (full line). The dotted lines (top to bottom) represent the
bounds (3.2), (3.5), and (3.10), with values 1/2, (τ/2)

3/2, and (1/2)
3/2.

uncertainty relation, and of the inequality by Schrödinger and Robertson are differ-

ent, because they depend on two, three and four (cf. [73]) continuous parameters,

respectively.

3.3 Symmetry of the triple

The commutation relations (3.3) are invariant under the cyclic shift p̂ → q̂ → r̂ → p̂,

implemented by a unitary operator Ẑ,

Ẑ p̂Ẑ† = q̂ , Ẑq̂Ẑ† = r̂ , Ẑr̂Ẑ† = p̂ . (3.12)

Note that the third equation follows from the other two equations. The third power of

Ẑ obviously commutes with both p̂ and q̂ so it must be a scalar multiple of the identity,

Ẑ3 ∝ I.

To determine the operator Ẑ we first note that its action displayed in (3.12) is

achieved by a clockwise rotation by π/2 in phase space followed by a gauge trans-
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formation in the position basis:

Ẑ = exp
(
− i

2h̄
q̂2
)

exp
(
− iπ

4h̄
(

p̂2 + q̂2)) . (3.13)

A Baker-Campbell-Hausdorff calculation re-expresses this product in terms of a single

exponential:

Ẑ = exp
(
−i

π

3h̄
√

3

(
p̂2 + q̂2 + r̂2)) . (3.14)

The operator Ẑ cycles the elements of the Schrödinger triple ( p̂, q̂, r̂) just as a Fourier

transform operator swaps position and momentum of the Schrödinger pair ( p̂, q̂) (apart

from a sign). If one introduces a unitarily equivalent symmetric form of the Schrödinger

triple with operators (P̂, Q̂, R̂) associated with an equilateral triangle in phase space,

the metaplectic operator Ẑ simply acts as a rotation by 2π/3, i.e., as a fractional Fourier

transform.

Furthermore, denoting the factors of Ẑ in (3.13) by Â and B̂ (with suitably chosen

phase factors), respectively, we find that B̂2 = I and (ÂB̂)3 ≡ Ẑ3 = I. These rela-

tions establish a direct link between the threefold symmetry of the Schrödinger triple

( p̂, q̂, r̂) and the modular group SL2(Z)/{±1} which Â and B̂ generate [64].

3.4 Experiments

To experimentally confirm the triple uncertainty relation (3.5), we propose an ap-

proach based on optical homodyne detection. We exploit the fact that the state |Ξ0〉 is

a squeezed state, also known as a correlated coherent state [27]: such a state is obtained

by squeezing the vacuum state |0〉 along the momentum axis followed by a suitable

rotation in phase space.

The basic scheme for homodyne detection consists of a beam splitter, photodetec-

tors and a reference beam, called the local oscillator, with which the signal is mixed; by

adjusting the phase of the local oscillator one can probe different directions in phase

space. If θ is the phase of the local oscillator, a homodyne detector measures the prob-
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ability distribution of the observable

x̂(θ) =
1√
2

(
a†eiθ + ae−iθ

)
= q̂ cos θ + p̂ sin θ (3.15)

along a line in phase space defined by the angle θ; here q̂ and p̂ denote the quadratures

of the photon field while the operators a† and a create and annihilate single photons

[80]; note that r̂ ≡
√

2 x̂(5π/4).

The probability distributions of the observables q̂, p̂ and r̂, corresponding to the

angles θ = 0, π/2, and 5π/4, can be measured upon preparing a large ensemble of

the state |Ξ0〉. The resulting product of their variances may then be compared with

the value of the tight bound given in Eq. (3.5). Under rigid phase-space rotations of

the triple (q̂, p̂, r̂) by an angle ϕ the triple uncertainty will vary as predicted in Fig. 3.2

(solid line). A related experiment has been carried out successfully in order to directly

verify other Heisenberg- and Schrödinger-Robertson-type uncertainty relations [47,

13].

3.5 Minimal triple uncertainty

To determine the states which minimize the left-hand-side of Eq. (3.5), we need to

evaluate it for all normalized states |ψ〉 ∈ H of a quantum particle. To this end we

introduce the uncertainty functional (cf. [38]),

Jλ[ψ] = ∆p[ψ]∆q[ψ]∆r[ψ]− λ(〈ψ|ψ〉 − 1) , (3.16)

using the standard deviations ∆x[ψ] ≡ ∆x ≡
(
〈ψ|x̂2|ψ〉 −〈ψ|x̂|ψ〉2

)1/2 , x = p, q, r,

while the term with Lagrange multiplier λ takes care of normalization. In a first step,

we determine the extremals of the functional Jλ[ψ]. Changing its argument from |ψ〉

to the state |ψ〉 + |ε〉, where |ε〉 = ε|e〉, with a normalized state |e〉 ∈ H and a real

parameter ε� 1, leads to

Jλ[ψ + ε] = Jλ[ψ] + εJ(1)λ [ψ] +O(ε2) . (3.17)
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The first-order variation J(1)λ [ψ] only vanishes if |ψ〉 is an extremum of the functional

Jλ[ψ] or, equivalently, if

1
3

(
( p̂− 〈 p̂〉)2

∆2
p

+
(q̂− 〈q̂〉)2

∆2
q

+
(r̂− 〈r̂〉)2

∆2
r

)
|ψ〉 = |ψ〉 (3.18)

holds, which follows from generalizing a direct computation which had been carried

out in [78] to determine the extremals of the product ∆p ∆q.

Eq. (3.18) is non-linear in the unknown state |ψ〉 due to the expectation values

〈 p̂〉, ∆2
p, etc. Its solutions can be found by initially treating these expectation values as

constants to be determined only later in a self-consistent way. The unitary operator

Ûα,b,γ=T̂αĜbŜγ transforms the left-hand side of (3.18), which is quadratic in p̂ and q̂,

into a standard harmonic-oscillator Hamiltonian,

1
2
(

p̂2 + q̂2) |ψα,b,γ〉 =
3
2c
|ψα,b,γ〉 , (3.19)

where |ψα,b,γ〉 ≡ Û†
α,b,γ|ψ〉, and c is a real constant. The unitary Ûα,b,γ consists of a rigid

phase-space translation by α ≡ (q0 + ip0)/
√

2h̄ ∈ C,

T̂α = exp [i (p0q̂− q0 p̂) /h̄] , (3.20)

followed by a gauge transformation in the momentum basis

Ĝb = exp
(
ibp̂2/2h̄

)
, b ∈ R , (3.21)

and a squeezing transformation,

Ŝγ ≡ exp[iγ(q̂ p̂ + p̂q̂)/2h̄] , γ ∈ R . (3.22)

According to (3.19), the states |ψα,b,γ〉 coincide with the eigenstates |n〉, n ∈ N0, of

a harmonic oscillator with unit mass and frequency,

|n; α, b, γ〉 ≡ T̂αĜbŜγ|n〉 , n ∈N0 , (3.23)
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where we have suppressed irrelevant constant phase factors; for consistency, the quan-

tity 3/2c in (3.19) may only take the values h̄(n + 1/2) for n ∈ N0, as a direct but

lengthy calculation confirms. The parameters b and γ must take specific values for

(3.19) to hold, namely

b =
1
2

and γ =
1
2

ln τ ; (3.24)

we will denote the restricted set of states obtained from Eq. (3.23) by |n; α〉. There are

no constraints on the parameter α, which means that we are free to displace the states

|n〉 in phase space without affecting the values of the variances. The variances of the

observables p̂, q̂, and r̂ are found to be equal, taking the value

∆2
x[n; α] = τh̄

(
n +

1
2

)
, x = p, q, r , (3.25)

with the triple constant τ introduced in (3.6). Inserting these results into Eq. (3.18) we

find that
1
3
(

p̂2 + q̂2 + r̂2) |n; α〉 = τh̄
(

n +
1
2

)
|n; α〉 , (3.26)

where

|n; α〉 = T̂αĜ 1
2
Ŝ 1

2 ln τ|n〉 , n ∈N0 , α ∈ C . (3.27)

For each value of α, the extremal states of the uncertainty functional (3.16) form a com-

plete set of orthonormal states,

∞

∑
n=0
|n; α〉〈n; α| = I , (3.28)

since the set of states {|n〉} has this property.

At its extremals the uncertainty functional (3.16) takes the values

Jλ[n; α] =

[
τ h̄
(

n +
1
2

)]3/2

, n ∈N0 , (3.29)

according to Eq. (3.25), with the minimum occurring for n = 0. Thus, the two-

parameter family of states |0; α〉, α ∈ C, which we will denote by

|Ξα〉 = T̂α

(
Ĝ 1

2
Ŝ 1

2 ln τ|0〉
)

, (3.30)
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minimize the triple uncertainty relation (3.5).

The states |Ξα〉 are displaced generalized squeezed states, with a squeezing direction

along a line different from the position or momentum axes. To show this, it is sufficient

to consider the state |Ξ0〉, which satisfies (3.26) with n ≡ 0 and α ≡ 0. The product

of unitaries in (3.30) acting on the vacuum |0〉 is easily understood if one rewrites it

using the identity

ĜbŜγ = Ŝξ R̂ϕ , (3.31)

where the unitary R̂ϕ = exp(iϕa†a) is a counterclockwise rotation by ϕ in phase space

while the operator

Ŝξ = exp
[(

ξa2 − ξa†2
)

/2
]

, ξ = γeiθ , γ > 0 , (3.32)

generalizes Ŝγ in (3.22) by allowing for squeezing along a line with inclination θ/2;

the annihilation operator and its adjoint a† are defined by a = (q̂ + i p̂) /
√

2h̄. Another

standard Baker-Campbell-Hausdorff calculation (using result from Sec. 6 of [83]) re-

veals that the values ξ = (i/4) ln 3 and ϕ = −π/12 turn Eq. (3.31) into an identity

for the values of b and γ given in (3.24). This confirms that the state of minimal triple

uncertainty is the generalized squeezed state given in (3.7).

3.6 Discussion

We have established a tight inequality (3.5) for the triple uncertainty associated with

a Schrödinger triple ( p̂, q̂, r̂) of pairwise canonical observables. Ignoring rigid trans-

lations in phase space, there is only one state |Ξ0〉 which minimizes the triple uncer-

tainty, shown in Eq. (3.30). The state |Ξ0〉 is an eigenstate of the operator Ẑ in (3.14)

which describes the fundamental threefold cyclic symmetry of the Schrödinger triple

( p̂, q̂, r̂). Conceptually, the triple uncertainty and the one derived by Schrödinger and

Robertson are linked because both incorporate the operator ( p̂q̂ + q̂ p̂)/2, be it explic-

itly or indirectly via the expression r̂2.

The smallest possible value of the product ∆p∆q∆r is noticeably larger than the

unachievable value (h̄/2)
3/2, which follows from inequality (3.2) applied to each of

the Schrödinger pairs ( p̂, q̂), (q̂, r̂), and (r̂, p̂). At the same time, the true minimum
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undercuts the value of the triple uncertainty in the vacuum state |0〉 by more than 10%

[cf. Eq. (3.11)].

The results obtained in this chapter add another dimension to the problem of ear-

lier attempts to obtain uncertainty relations for more than two observables. In 1934,

Robertson studied constraints which follow from the positive semi-definiteness of the

covariance matrix for N observables [57] but the resulting inequality trivializes for an

odd number of observables. Shirokov obtained another inequality [65] which contains

little information about the canonical triple considered here.

The result for a Schrödinger triple obtained here suggests conceptually important

generalizations. A tight bound for an additive uncertainty relation associated with the

operators ( p̂, q̂, r̂) is easily established by a similar approach: the inequality

(∆p)2 + (∆q)2 + (∆r)2 ≥ τ
3h̄
2

(3.33)

is saturated only by the state |Ξ0〉 in (3.30), ignoring irrelevant rigid phase-space trans-

lations. This observation contrasts the relation between the additive and the multiplica-

tive uncertainty relations for Schrödinger pairs ( p̂, q̂). According to [73] the states sat-

urating the inequality (∆p)2 + (∆q)2 ≥ h̄ are a proper subset of those minimizing

Heisenberg’s product inequality (3.2).

An uncertainty relation for pairs of canonical observables also exists for the Shan-

non entropies Sp and Sq of their probability distributions [37, 14]. We conjecture that

the relation Sp + Sq + Sr ≥ (3/2) ln(τeπ) holds for the Schrödinger triple ( p̂, q̂, r̂), the

minimum being achieved by the state |Ξ0〉. This bound is tighter than (3/2) ln(eπ),

the value which follows from applying the bound ln(eπ) for pairwise entropies to the

triple.

It is a known fact that the maximum Shannon entropy of a distribution with a

given variance is that of a Gaussian [14]. For the position distribution, for example,

maximising

J = −〈ln ρ〉 − λ(〈1〉 − 1)− µ(∆2q− r2
0) , (3.34)

where

−〈ln ρ〉 ≡ Sq = −
∫

ρ(q) ln ρ(q)dq , (3.35)
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denotes the Shannon entropy, leads to the inequality

∆2q ≥ 1
2eπ

e2Sq , (3.36)

with equality only for Gaussians, and similarly for the distributions of the other two.

Combining the three inequalities, we obtain

∆2 p · ∆2q · ∆2r ≥ 1
(2eπ)3 e2(Sp+Sq+Sr) . (3.37)

For the state |Ξ〉, that minimises the variances, the sum of the entropies is equal to

ln (τeπ)
3/2 and thus for all Gaussian states it holds that

Sp + Sq + Sr ≥ ln (τeπ)
3/2 , (3.38)

which we conjecture for all quantum states.
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Chapter 4

Uncertainty relations for canonical

structures and beyond

4.1 Introduction

In Chapter 3 we derived bounds for the product and sum of the variances of three

canonical operators, for a particle in one spatial dimension. The triple consisted of

the position operator of the particle, its momentum and an operator defined by r̂ =

− p̂ − q̂, for which we showed that the product of the variances can never be less

than the constant (τh̄/2)
3/2, Eq. (3.5). Representing the three operators in the triple as

vectors in R2 and connecting their tips, they form an isosceles triangle. However, in

accordance to what was mentioned in the previous chapter, one can go to a symmetric

triple of operators corresponding to an equilateral triangle. In that case, each operator

is obtained from the previous by a rotation by 2π/3; this symmetric triple associated

with the regular triangle can be obtained from the non-symmetric one by means of a

unitary transformation.

Naturally, one may ask whether we can go beyond a canonical triple, or geomet-

rically speaking, why restrict to a regular triangle and not consider other regular poly-

gons in phase space? In this chapter we respond to this question and we build on the

ideas presented for the triple. It should be noted that there is one difference when con-

sidering higher regular polygons in comparison to the triangle: there are only three

operators that pairwise commute to ±ih̄ [77]. However, relaxing the assumptions that
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all operators are pairwise canonical and only demanding that neighbouring ones are,

we can extend the results of the last chapter to the case of more than three observables.

This type of generalisation will be the focus of next section, where uncertainty re-

lations for the variances of operators corresponding to other regular canonical struc-

tures, e.g. squares, pentagons and so on, will be derived. As we will show, the lower

bounds of those inequalities allow for a geometric interpretation in terms of the asso-

ciated polygon.

The assumption that the considered operators form regular polygons will be sub-

sequently lifted, and we will derive inequalities for N observables that are arbitrary

linear combinations of position and momentum; we will show that the lower bound

can be expressed in terms of all commutators. Moreover, it can be seen as the area of

the parallelogram spanned by two vectors in RN , formed by the coefficients of posi-

tion and momentum in each observable.

Moving away from inequalities concerning discrete sums of the variances of op-

erators, we next prove an uncertainty relation for the integral of variances of rotated

observables through an angle ϕ. For the values ϕ = π , 2π , we find that the lower

bound agrees with the area of the half and full unit circle, respectively, but for all

other values, this ceases to be the case. We show that there is only one squeezed state

reaching the lower bound, for each value of the angle.

In the last two sections, we state inequalities for the case of observables in one or

more spatial degrees of freedom and provide examples of how they could be used for

entanglement detection.

4.2 Regular canonical polygons

Let us represent the operators of position and momentum by orthogonal unit vectors

in R2 and any other combination of them, r̂ = ap̂+ bq̂ with a, b ∈ R, by the vector with

coordinates (a, b). Using this definition, the triple ( p̂, q̂, r̂) defined in (3.3), for example,

corresponds to three vectors whose tips are the vertices of an isosceles triangle. Let

us call the “length” of the observable r̂, the magnitude of the associated vector. Any

observable of the form of r̂ can be obtained from position or momentum by a suitable

symplectic transformation effected by a unitary (metaplectic) operator. The Iwasawa
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r̂0

`

A

r̂1

r̂2 r̂3

r̂4

p

q

Figure 4.1: A regular pentagon of circumradius ` and area A, associated with five
canonical operators in phase space.

decomposition of Sp(2, R) (see Chapter 2) suggests that the three primary symplectic

transformations are squeezing, gauge and rotations, since any general transformation

can uniquely be expressed as a product of the three. In the case of observables of equal

length, however, which will be the focus of this section, rotations suffice to transform

one to the other.

Let us now consider N observables forming a regular polygon in the two dimen-

sional space of their coefficients, such that neighbouring ones make canonical pairs;

this last constraint completely determines their length. We choose the first to be of

the form r̂0 = ` p̂ and the remaining N − 1 operators are obtained by rotating anti-

clockwise by angles 2πk/N, k = 1, . . . , N − 1, with N ≥ 3. For example, for N = 5

we have a canonical pentagon shown in Fig. (4.1). The arbitrary choice of selecting a

multiple of momentum as the first is of no importance, since we can always rotate the

whole configuration by an arbitrary angle. The requirement that neighbouring ones

are canonical pairs, i.e.

[r̂j, r̂j+1] = ih̄ , (4.1)

gives their length, which turns out to be ` =
(
sin
( 2π

N

))−1/2. Thus the N observables
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take the explicit form

r̂j = `

(
p̂ cos

(
2π j
N

)
− q̂ sin

(
2π j
N

))
, j = 0, . . . , N − 1 , (4.2)

with variances equal to

∆2r̂j = `2
(

∆2 p̂ cos2
(

2π j
N

)
+ ∆2q̂ sin2

(
2π j
N

)
− Cpq sin

(
4π j
N

))
. (4.3)

We first focus on the sum of the variances, a case which is quite trivial. Using the

trigonometric identities

N−1

∑
j=0

cos2
(

2π j
N

)
=

N−1

∑
j=0

sin2
(

2π j
N

)
=

N
2

,
N−1

∑
j=0

sin
(

4π j
N

)
= 0 , (4.4)

one finds that

N−1

∑
j=0

∆2rj =
N`2

2
(
∆2 p + ∆2q

)
≥ N`2

2
h̄ =

Nh̄
2 sin

( 2π
N

) , (4.5)

by using the sum inequality for the variances of position and momentum, ∆2q+∆2 p ≥

h̄. Observing that the circumradius of the regular polygon is equal to ` and its area is

given by A = N`2

2 sin 2π
N , the sum inequalities can be rewritten in the geometrical form

N−1

∑
j=0

∆2rj ≥
N`2h̄

2
=

Ah̄
sin
( 2π

N

) . (4.6)

We see that the lower bound is equivalent to the area of N/2 squares of side `, or

equivalently to the sum of the areas of N triangles associated with a conjugate pair

like position and momentum. Alternatively, we see that the lower bound is equal

to the area of the regular polygon divided by the sine of the angle 2π/N; this is to

be expected since the area of the regular polygon corresponds only to neighbouring

commutators and ignores the rest.

The corresponding inequality for the product of N pairwise canonical observables

is found to be
N−1

∏
j=0

∆2rj ≥
h̄N

2N sin
( 2π

N

)N , (4.7)
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which, in accordance with Eq. (4.6) can be expressed in geometric terms as

N−1

∏
j=0

∆2rj ≥
(

h̄`2

2

)N

. (4.8)

They both can be obtained from the sum inequality, Eq. (4.5), by an optimisation

method. More specifically, one has to look for the minimum of the product of the

N variances under the constraint that they obey the sum inequality, Eq. (4.5). This

is then an optimisation problem with an inequality constraint and can be dealt with

the aid of the Karush-Kuhn-Tucker (KKT) conditions [59]. In more detail, looking for

the local minima of a functional J(~x), subject to the inequality constraints g(~x) ≤ 0 is

equivalent to the conditions:

∂J
∂~x

+ µ>
∂g
∂~x

= 0 ,

µ>g = 0 . (4.9)

Let us first set xi = ∆2ri for notational simplicity and rewrite Eq. (4.5) as ∑ xi ≥ N
2a ,

where a = sin
( 2π

N

)
/h̄. We define the functional

J = ∏
j

xj + µ

(
N
2a
−∑

j
xj

)
, (4.10)

and we look for its minimum through the KKT equations, (4.9), whose solution is

xj = xk =
1
2a

, µ =

(
1
2a

)N−1

, ∀k, j . (4.11)

Thus, the minimum is found to be
( 1

2a

)N
, which leads to Eq. (4.7).

The states that saturate such inequalities are the usual coherent states |α〉 = T̂α|0〉

(with the exception of the case N = 4), which is to be expected since by fixing all the N

directions of equal length, we break scale invariance. The case N = 4 is special since

the four observables are q̂, p̂,−q̂,− p̂ and the sum inequality reads ∆2q + ∆2 p ≥ h̄ .

Using the KKT conditions to find the minimum for the product, we do not get the

full class of states that attain the minimum but only the restricted class of coherent

states where the variances are equal. This is due to the fact that we considered as a
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constraint only a special case of the general sum inequality ∆2q/λ + λ∆2 p ≥ h̄ , λ > 0 .

Had we used the latter, we would have found the full class of squeezed states with

real squeezing parameter that are known to saturate Heisenberg’s inequality. This

distinction only holds for the case N = 4, and for all other N ≥ 3, the sum and product

inequalities have the same class of minimising states. However, all even cases are in

a certain sense trivial, since the considered set of operators can be split into two, one

obtained from the other by a change of signs. The variances of the corresponding

probability distributions for each pair differing only by a sign are the same and are

counted twice.

4.3 Symmetry of N canonical operators and entropic inequal-

ities

In analogy to the canonical triple of Chapter 3, there is a discrete symmetry associated

with the N canonical operators. In the symmetric arrangement we considered in the

last section, which is unique up to unitary transformations, the N operators are asso-

ciated with a regular polygon. In this symmetric case, the commutation relations are

preserved under rotations by angles 2πk/N, with k = 1, . . . , N, which only cyclically

permute the operators. The unitary effecting (anticlockwise) rotations by an angle ϕ

is given by the exponential of the harmonic oscillator Hamiltonian of unit mass and

frequency:

R̂(ϕ) = exp
(
− iϕ

2h̄
(

p̂2 + q̂2)). (4.12)

Thus, in relation to the N canonical operators case, the operator that effects cyclic

permutations, ẐN , is given by

ẐN = R̂
(

2π

N

)
, (4.13)

which is effectively just a fractional Fourier transform. To see this, let |xq〉 denote the

position basis, i.e. ψq(x) = 〈x|ψ〉, where ψq(x) denotes the wavefunction and let

ψqα(x) = 〈xqα |ψ〉 = 〈xq|R̂†(α)|ψ〉 =
∫

dy〈xq|R̂†(α)|yq〉〈yq|ψ〉

=
∫

dy〈xq|R̂†(α)|yq〉ψq(x) , (4.14)
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where we have introduced an identity. Using the results in [8], one can explicitly

determine the “Huygens kernel” , 〈xq|R̂†(α)|yq〉, which is found to be

〈xq|R̂†(α)|yq〉 =
e−

iπ
4√

2πh̄|sin α|
exp

(
i

2h̄
(
−(x2 + y2) cot α + 2xy csc α

))
. (4.15)

This is of the same form as the definition of the fractional Fourier transform in Chapter

2, up to a constant phase factor and a redefinition of α, and thus ψqa(x) = Fα[ψ(x)].

As mentioned in Chapter 2, the fractional Fourier transform is of order m = 2α/π,

which means that its period is equal to p = 2π/α, i.e. applying the fractional Fourier

transform p times we obtain the original function or equivalently (Fα)
p = 1. In addi-

tion, the usual Fourier transform, which corresponds to α = π/2 is of period 4, while

α = π corresponds to the parity operator. The operator that cyclically shifts through

the elements of the triple of Chapter 3 is of period 3, while in the case of N canonical

observables it is N. Listing the corresponding fractional Fourier transforms for all N

with increasing periods, we see that the triple is unique in that it is the only possible

N-tuple with (integral) period less than that of the position-momentum case, which

are related through the usual Fourier transform.

Furthermore, observe that for N = 3 or in general the cases where N is a prime

number are different from the rest, since the only symmetry present is that of period

N. On the other hand, whenever N is not a prime number, every divisor of N leads to

a discrete symmetry implemented with some fractional Fourier transform, for subsets

of operators. For example, for N = 9 both F2π/9 and F2π/3 are present; the first leaves

invariant the whole set of operators, while the second sets of three of them.

We conclude this section with a conjecture related to the fractional Fourier trans-

forms and the connection with entropic uncertainty relations. First, recall that the

relation

Sp + Sq ≥ ln(eπ) , (4.16)

can be proven from the (p, q)-norm of the Fourier transform [14], i.e. the best estimate

k(p, q) such that

‖ψ̃‖q ≤ k(p, q) ‖ψ‖p , (4.17)
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where the p-norm is given by

‖ψ‖p =

(∫
dx|ψ|p

)1/p

. (4.18)

The following condition must hold

1
p
+

1
q
= 1 , (4.19)

with q ≥ 2 and k(p, q) is explicitly given by [9, 11]

k(p, q) =
(

2π

q

)1/2q (2π

p

)−1/2p

. (4.20)

Defining W(q) = k(p, q) ‖ψ‖p − ‖ψ̃‖q ≥ 0 and noting that W(2) = 0 due to the

Parseval-Plancherel theorem, it follows that the derivative of W(q) at q = 2 must

be non-negative, from which one obtains the desired inequality on entropies. Thus,

we see that the entropic uncertainty relation, Eq. (4.16), is a consequence of the fact

that the distributions of position and momentum are related by a Fourier transform.

We expect that the case of N observables which are related by a fractional Fourier

transform will lead to an equivalent statement, which we show for Gaussians and

conjecture to hold for all states.

Using the inequality

∆2 pθ ≥
1

2eπ
e2Spθ , (4.21)

from Chapter 3, which holds as an equality if the given state is Gaussian, and combin-

ing it with (4.7) of last section, we find that

N−1

∑
k=0

Spk ≥ ln (τNeπ)
N/2 , (4.22)

where τN = csc
( 2π

N

)
and Spk denotes the Shannon entropies of the distribution asso-

ciated with the operator p̂k. Inequality (4.22) holds for all Gaussian states, with one of

them achieving the minimum value, and we conjecture that this holds for all quantum

states.
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4.4 N observables of arbitrary “length”

The inequalities derived in the previous section can be further generalised by relaxing

the requirement that they form a regular polygon. We consider N arbitrary observ-

ables, defined by

r̂i = αi p̂ + βi q̂ , i = 0, . . . , N − 1 , (4.23)

with αi, βi ∈ R. Their variances are given by

∆2ri = α2
i ∆2 p + β2

i ∆2q + 2αiβiCpq , (4.24)

and by taking their sum, we obtain

∑
i

∆2ri =

(
∑

i
α2

i

)
∆2 p +

(
∑

i
β2

i

)
∆2q + 2

(
∑

i
αiβi

)
Cpq

= Ax + By + 2Γz . (4.25)

Employing an inequality that is proved in the next chapter, Eq. (5.74), we find

∑
i

∆2ri ≥ h̄
√

AB− Γ2 = h̄

√√√√(∑
i

α2
i

)(
∑

i
β2

i

)
−
(

∑
i

αiβi

)2

. (4.26)

Interestingly, one can equivalently rewrite this in terms of their commutators as

∑
i

∆2ri ≥
√

∑
i>j

∣∣〈[r̂i, r̂j
]
〉
∣∣2 . (4.27)

Thus, the sum of the variances of N operators for one degree freedom is bounded

from below by the square root of the sum of the squares of all possible commutators

between the observables.
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To see this, first note that

∑
i>j

∣∣〈[r̂i, r̂j
]
〉
∣∣2 = h̄2 ∑

i>j
|
(
αiβ j − αjβi

)
|2 = h̄2 ∑

i>j

(
αiβ j − αjβi

)2

= h̄2 ∑
i>j

(
α2

i β2
j + α2

j β2
i − 2αiαjβiβ j

)
= h̄2 1

2

N

∑
i

N

∑
j

(
2α2

i β2
j − 2αiαjβiβ j

)

= h̄2

(∑
i

α2
i

)(
∑

i
β2

i

)
−
(

∑
i

αiβi

)2
 , (4.28)

which is the square of h̄
√

AB− Γ2 of (4.26).

Finally, the product can be obtained from the sum inequality through the KKT

conditions as in the last section, and is found to be

∏
i

∆2ri ≥
(

∑
i>j

∣∣〈[r̂i, r̂j
]
〉
∣∣2)N/2

. (4.29)

It is worth noting that the bound on the right hand side of Eq. (4.27) is equivalent

to the area (multiplied by h̄) of the parallelogram spanned by the two N-dimensional

vectors a, b ∈ RN , given by

a = (α1, . . . , αN) , b = (β1, . . . , βN) , (4.30)

i.e. a being a vector in RN formed from the coefficients of momentum of each ob-

servable, while b being the one formed by the coefficients of position. This becomes

apparent by first noting that the right hand side of Eq. (4.27) for the case of three ob-

servables reduces to the magnitude of the vector c = a× b ,

∆2r0 + ∆2r1 + ∆2r2 ≥ h̄ |a× b| . (4.31)

In general, we can express inequality (4.27) in terms of the vectors of the coeffi-
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cients of position and momentum according to

∑
i

∆2ri ≥ h̄
√
‖a‖2‖b‖2 − (a · b)2 = h̄

√
‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2 θ , (4.32)

or finally

∑
i

∆2ri ≥ h̄‖a‖‖b‖ sin θ , (4.33)

where θ is the angle between the vectors a, b .; note that this can also be expressed in

terms of the wedge product, a ∧ b, which generalises the vector product for arbitrary

dimensional vectors. We observe that the formulation for three observables (or in

general N) resembles in structure the inequality for the sum of standard deviations of

two ±1-valued observables [20]: ∆A + ∆B ≥ |a× b|, where A = a · σ and B = b · σ,

with a, b unit vectors and σ =
(
σx, σy, σz

)> is the Pauli matrix vector.

It follows from the last equation that the bound is trivial only if a, b are parallel,

which equivalently means that all the original r̂i commute. Conversely, the bound is

maximal whenever the two vectors are orthogonal, or equivalently, the r̂i are maximally

incompatible. As we will demonstrate, when they are of equal length, this means that

they have to lay along the maximally incompatible directions, of which one specific

constellation forms a regular polygon, and all others can be obtained from it by sign

flips.

Let us examine the case of three observables. The assumption that their associated

vectors are of equal length is mathematically expressed through

a2
i + b2

i = `2 , i = 0, 1, 2 . (4.34)

Due to this constraint, it is convenient to switch to polar coordinates

ai = ` cos θi , bi = −` sin θi , (4.35)
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and the square of the right hand side of (4.5) becomes

I = ∑
i>j

(aibj − ajbi)
2 = `2 ∑

i>j
(sin θi cos θj − sin θj cos θi)

2 = `2 ∑
i>j

sin2 (θi − θj
)

=
3`2

2
− `2 ∑

i>j
cos

(
2
(
θi − θj

))
= `2

(
3
2
− cos x− cos y− cos (x + y)

)
= `2 f (x, y) ,

(4.36)

where x = 2(θ1 − θ2), y = 2(θ2 − θ3) and we have also used the trigonometric iden-

tity sin2 θ = (1− cos 2θ)/2. Looking for the maxima of f (x, y), one finds that they

occur for x = ±2π/3 + 2πk1 and y = ±2π/3 + 2πk2, where k1, k2 are integers. This

equivalently leads to the condition

(θi − θi+1) = ±
π

3
− πki+1 , i = 0, 1 , (4.37)

for maximal incompatibility. Due to the invariance in rotating the whole configura-

tion, we select the first observable to be momentum and since we measure angles

from its vector, this implies θ0 = 0. All solutions of the last equation are visualised

in Fig. 4.2 up to relabellings of r̂1 and r̂2. For each maximal triple, the resulting a, b

vectors are perpendicular.

The centre graphic of Fig. 4.2 depicts the directions of maximal incompatibility:

selecting the first observables, all maximal triples are constructed by selecting the re-

maining two so that there does not exist a pair on the same line. If we select momen-

tum as the first, then the other two can be selected in four ways in total, according to

Fig. 4.2. However, note that (A,B,D) are related just by a rotation (and relabelling),

while the regular structure associated with a (symmetric) triple depicted in (C) is dif-

ferent. The corresponding vectors a, b defined in Eq. (4.30) are shown in Fig. 4.3.

The physical significance of this result can be expressed intuitively in the follow-

ing way. Assume we have an experiment in which we can only probe three arbitrary

directions in phase space with the aim of approximately reconstructing the state of

the given quantum system. After gathering the approximate probability distributions

associated with the three chosen directions, one could apply some standard state re-

construction algorithm, e.g. “maximum likelihood” [26], to obtain an approximation
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p

q

r̂0

r̂1

r̂2

(A) p

q

r̂0

r̂2

r̂1

(B)

p

q

r̂0

r̂1 r̂2

(C) p

q

r̂0

r̂1 r̂2

(D)

p

q

Figure 4.2: The four graphics on the corners depict the four triples in phase space (up
to relabelling r̂1, r̂2 and arbitrary rotations of the whole configuration) that maximize
the right hand side of the sum inequality (4.5), given that we arbitrarily select the first
observable to be momentum. Circles are of radius ` to demonstrate that all observables
are of equal length (the one in the centre is slightly scaled). The dashed lines of the
graph in the centre are the directions where potential observables that are maximally
incompatible reside.

of the state of the system. The question is how to decide which directions to measure

in order to guarantee a maximal minimum bound on the information gained.

In the worst case scenario, we would perform measurements along the same direc-

tion in all three ensembles and would not obtain any new information from the latter

two. At the other end, we would ideally measure the most incompatible directions

so that the information gain is maximal. This incompatibility is directly connected to

and expressed through the uncertainty relations and thus one would have to make

measurements on the directions dictated by one of the triples of Fig. 4.2. Effectively,

this way one would obtain the distributions associated with the dashed lines of the

central graphic of Fig. 4.2.
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x

y

z

Figure 4.3: The structure of the a, b vectors, embedded in R3, of the coefficients of
position and momentum of all possible maximal triples; vectors of the same colour
are orthogonal. Vectors on the x − y plane correspond to b and the remaining to a.
The red pair corresponds to (A), while red to (B), green to (C) and yellow to (D) of
Fig. 4.2. Reflection with respect to the x − y plane gives all triples, had we selected
r̂0 = − p̂.

4.5 An inequality for the integral of variances of rotated ob-

servables

So far, we have derived inequalities for the sums and products of N discrete observ-

ables but one can use a result from the next chapter, to derive a more “exotic”-looking

inequality.

In this section, we present a lower bound for the integral of the variances of rotated

observables through an angle ϕ. More specifically, we will prove the inequality:

∫ ϕ

0
∆2rθ dθ ≥ h̄

√
2ϕ2 − 1 + cos(2ϕ)

2
√

2
. (4.38)

The proof of this statement follows in a straightforward way from the inequal-

ity for the linear combination of second moments, Eq. (5.74), that will be derived in

Chapter 5.

Let us start by considering a rotated momentum operator p̂ by an angle θ ∈ [0, 2π),

that is measured from the vector associated with momentum. Explicitly, it is given by
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r̂θ = p̂ cos θ− q̂ sin θ, and by squaring and taking the average in an arbitrary quantum

state, we obtain its variance

∆2rθ = cos2 θ ∆2 p + sin2 θ ∆2q− sin 2θ Cpq . (4.39)

Integrating from zero to an angle ϕ, we find

∫ ϕ

0
∆2rθ dθ = µ∆2 p + ν∆2q + 2λCpq , (4.40)

where the constants µ, ν and λ are defined through

µ =
∫ ϕ

0
cos2 θ dθ =

1
2
(ϕ + cos ϕ sin ϕ) ,

ν =
∫ ϕ

0
sin2 θ dθ =

1
2
(ϕ− cos ϕ sin ϕ) ,

λ =
∫ ϕ

0
sin(2θ) dθ = −1

2
sin2 ϕ . (4.41)

Substituting the values of µ, ν, λ into the linear uncertainty relation, Eq. (5.74), and

simplifying we readily obtain inequality (4.38).

Although straightforward to prove, there are a few interesting observations associ-

ated with inequality (4.38) that we now list. For an angle ϕ = 2π the bound reduces to

πh̄, agreeing with the area of the unit circle , which is also double the bound for ϕ = π.

The case ϕ = π could have been obtained by taking a pair of canonical observables

and adding the contributions while rotating from zero to π/2, thus spanning half of

the circle. However, for an angle ϕ = π/2, the intuitive expectation is not met and the

lower bound turns out to be equal to h̄
√

π2 − 4/4, which is less than a quarter of the

area of the unit circle, multiplied by h̄. In general, for any angle ϕ ∈ (0, π) the bound

is less than the area of the corresponding arc. These results are shown in Fig. 4.4.

Only one state (up to phase space translations) achieves the lower bound of in-

equality (4.38), explicitly given in Eq. (5.78) of Chapter 5. They correspond to (possibly

rotated) squeezed states, which are visualised in Fig. 4.5. There is a simple intuitive

explanation of the minimising states, which we will now give. First of all, note that if

we change the lower limit of integration from zero to ϕ0, then the bound on the right

hand side of (4.38) changes according to the substitution ϕ → ϕ − ϕ0. Moreover, if
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ϕπ/2 π 3π/2 2π

1

2

3

Figure 4.4: The solid line corresponds to the bound on the right hand side of inequality
(4.38), divided by h̄, while the dashed line gives the area of an arc of a unit circle
subtending an angle ϕ. The two lines intersect only at the values 0 , π , and 2π .

we symmetrically integrate through an angle bisected by the direction of momentum,

that is, ϕ0 = −ϕ = χ/2, the inequality is changed to

∫ χ
2

− χ
2

∆2rθ dθ ≥ h̄
2

√
χ2 − sin2 χ , (4.42)

where now χ ∈ [0, π]. Due to symmetry, this inequality is saturated by a Gaussian of

zero covariance and thus this state must be a squeezed state in which the variances

of the position and momentum are equal to h̄/2σ and h̄σ/2, say, with σ > 0. The

variance of a rotated observable in such a squeezed state is equal to

∆2rθ =
h̄σ

2
cos2 θ +

h̄
2σ

sin2 θ , (4.43)

which when integrated from −χ/2 to χ/2 gives

v(σ) =
h̄σ

2
aχ +

h̄
2σ

bχ , (4.44)

with obvious definitions for aχ and bχ. The minimum is obtained for

σχ =

√
bχ

aχ
. (4.45)
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χ = π/10 χ = π/4

χ = π/2 χ = π

Figure 4.5: The ellipses corresponding to the unique squeezed states that saturate the
integral inequality for various values of χ .

For an angle χ very close to zero, the Gaussian is “stretched” along the position

axis in order to minimise the contribution from momentum around which we are in-

tegrating; at the limit this tends to a zero variance in momentum at the expense of an

infinite variance in position. On the opposite end, as we integrate through angles ap-

proaching χ = π, the Gaussian approaches a circle so that it balances the contributions

from position and momentum (and everything in-between). In all cases, contour lines

of the Wigner function corresponding to the considered squeezed state, define ellipses

in phase space with semi-axes proportional to
√

σχ and 1/
√

σχ . The deformations of

the state when the angle in the integral is changed, are performed in a way that pre-

serve the area of the ellipses, as is required by the symplectic nature of the squeezing

transformations. These results are shown in Fig. 4.5.

4.6 Three operators in more than one degree of freedom

In this section we consider observables in more than one degree of freedom and derive

an inequality for a triple of operators. We first derive a general inequality for the

variances of any three operators Â, B̂, Ĉ. Denoting D̂ = Â − 〈Â〉, Ê = B̂ − 〈B̂〉 and

F̂ = Ĉ− 〈Ĉ〉 and starting from an inequality similar to ones used in [46, 69], i.e.

∥∥∥(D̂ + eiϕ1 Ê + eiϕ2 F̂
)
|ψ〉
∥∥∥2
≥ 0 , (4.46)

55



Chapter 4. Uncertainty relations for N observables

we find that it is equivalent to

∆2A + ∆2B + ∆2C ≥− 2CAB cos ϕ1 − 2CCA cos ϕ2 − 2CBC cos (ϕ2 − ϕ1)

− i sin ϕ1〈
[
Â, B̂

]
〉+ i sin ϕ2〈

[
Ĉ, Â

]
〉 − i sin (ϕ2 − ϕ1) 〈

[
B̂, Ĉ

]
〉 ,

(4.47)

where CAB denotes the covariance between operators Â and B̂ and similarly for the

rest. Setting cos ϕ2 = cos ϕ2 = cos (ϕ2 − ϕ1), we find that the only solutions for

ϕ1, ϕ2 ∈ [0, 2π] are given by ϕ1 = 2π/3 and ϕ2 = 4π/3 (up to relabelling them), with

cos(2π/3) = −1/2. This last inequality becomes

∆2A + ∆2B + ∆2C ≥ CAB + CCA + CBC − i
√

3
2
(
〈
[
Â, B̂

]
〉+ 〈

[
B̂, Ĉ

]
〉+ 〈

[
Ĉ, Â

]
〉
)

,

(4.48)

Observing, in addition, that the variance of the sum of the three operators is equal to

∆2(A + B + C) = ∆2A + ∆2B + ∆2C + 2 (CAB + CBC + CCA) , (4.49)

solving for the sum of the covariances and substituting in (4.48), we obtain the in-

equality

∆2A + ∆2B + ∆2C ≥ 1
3

∆2(A + B + C)− i√
3

(
〈
[
Â, B̂

]
〉+ 〈

[
B̂, Ĉ

]
〉+ 〈

[
Ĉ, Â

]
〉
)

. (4.50)

Now, note the following: by relabelling A ↔ C while keeping B the same, the sec-

ond term flips an overall sign; moreover, substituting two of the operators by their

negative, only one of the commutators in the second term flips a sign. Since all these

inequalities hold, among all possibilities there is one where all three terms are posi-

tive. As a result, by dropping the first positive term of the variance of their sum (up to

signs), we can express the inequality with the largest second term as

∆2A + ∆2B + ∆2C ≥ 1√
3

(∣∣〈[Â, B̂
]
〉
∣∣+ ∣∣〈[B̂, Ĉ

]
〉
∣∣+ ∣∣〈[Ĉ, Â

]
〉
∣∣) . (4.51)
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Consider now three observables in M degrees of freedom of the form

ûi =
M−1

∑
j=0

(
aijP̂j + bijQ̂j

)
, i = 0, 1, 2 , (4.52)

where the operators Q̂j, P̂j obey the commutation relations [Q̂j, P̂k] = ih̄δjk. In this case

the last inequality becomes

∆2u0 + ∆2u1 + ∆2u2 ≥
1√
3

(∣∣∣∣∣〈∑j,k
[
a0jP̂j + b0jQ̂j, a1kP̂k + b1kQ̂k

]
〉
∣∣∣∣∣+ . . .

)

=
1√
3

(∣∣∣∣∣∑j

(
a0jb1j − a1jb0j

)∣∣∣∣∣+ . . .

)
. (4.53)

If û0, û1, û2 form a triple with all pairwise commutators equal to±ih̄, one can easily

check that last inequality reduces to

∆2u0 + ∆2u1 + ∆2u2 ≥
√

3 h̄ , (4.54)

which coincides with the one degree of freedom result. It follows from the fact that

the commutators impose the conditions (e.g. for û1, û2 )

[û1, û2] = ih̄ ⇒ ∑
j

(
a2jb1j − a1jb2j

)
= 1 (4.55)

4.7 N observables with M degrees of freedom in a product

state

In this section we will derive inequalities for the variances of N operators in M de-

grees of freedom where absence of correlations between different degrees of freedom

is assumed.

Let the N operators, ûi, be arbitrary linear combinations of all the possible posi-

tions and momenta of the M canonical pairs, P̂i and Q̂i, one pair for each degree of

freedom, or explicitly

ûi =
M−1

∑
j=0

(
aijP̂j + bijQ̂j

)
. (4.56)
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In the absence of correlations between the degrees of freedom, their variances are

given by

∆2ui =
M−1

∑
j=0

(
a2

ij∆
2Pj + b2

ij∆
2Qj + 2aijbijCPjQj

)
. (4.57)

The sum of their variances is then equal to

N−1

∑
i=0

∆2ui =
N−1

∑
i=0

M−1

∑
j=0

(
a2

ij∆
2Pj + b2

ij∆
2Qj + 2aijbijCPjQj

)
=

M−1

∑
j=0

(
Aj∆2Pj + Bj∆2Qj + 2ΓjCPjQj

)
, (4.58)

where we defined

Aj =
N−1

∑
i=0

a2
ij , Bj =

N−1

∑
i=0

b2
ij and Γj =

N−1

∑
i=0

aijbij . (4.59)

Introducing the local operators r̂ij = aijP̂i + bijQ̂i for each j, and using once again the

linear inequality of Chapter 2, Eq. (5.74), the bound for N observables in M degrees of

freedom can be expressed in terms of the commutators of the r̂ij as

N−1

∑
i=0

∆2ui ≥
M−1

∑
k=0

√√√√N−1

∑
i>j

∣∣〈[r̂ik, r̂jk
]
〉
∣∣2 . (4.60)

Let us now, compare this bound for the case of the triple of last section with [ûi, ûi+1] =

±ih̄ , with the indices being cyclic modulo 3 and i = 0, 1, 2 . With N = 3, inequality

(4.60) becomes

2

∑
i=0

∆2ui ≥
M−1

∑
k=0

√√√√ 2

∑
i>j

∣∣〈[r̂ik, r̂jk
]
〉
∣∣2 ≥ 1√

3

M−1

∑
k=0

2

∑
i>j

∣∣〈[r̂ik, r̂jk
]
〉
∣∣

≥
M−1

∑
k=0

∣∣∣∣∣ 2

∑
i>j
〈
[
r̂ik, r̂jk

]
〉
∣∣∣∣∣ = √3 h̄ , (4.61)

where we have used the inequality

√
x2

1 + . . . + x2
n ≥ (|x1|+ . . . + |xn|) /

√
n , (4.62)
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and the triangle inequality; equality in the former holds only if all |xi| are equal while

in the latter if all terms are non negative. Inequality (4.62) follows from the Cauchy-

Schwarz inequality written in the form,

n

∑
i=1

y2
i

n

∑
i=1

z2
i ≥

(
n

∑
i=1

yizi

)2

, (4.63)

by letting yi = 1/
√

n and zi = |xi|/
√

n.

Although the lowest possible bound is no less than the one of last section, it is in

general higher because of the use of the triangle inequality. As a result, this difference

in the lower bounds can in certain cases be exploited for entanglement detection, as in

e.g. [30].

A simple example is given by the following triple

û0 = P̂1 + Q̂2 , û1 = P̂2 + Q̂3 , û2 = P̂3 + Q̂1 , (4.64)

for which inequality (4.60) reduces to

∆2u0 + ∆2u1 + ∆2u2 ≥ 3 h̄ , (4.65)

while from last section the lowest possible bound is
√

3 h̄, which can be achieved only

by entangled states. Thus violation of inequality (4.60) in a given state is an indication

of entanglement. The difference between the bounds can be further widened by select-

ing, for example, a canonical triple for each degree of freedom and then considering

the triple

û0 = P̂1 − Q̂2 + R̂3 , û1 = P̂2 − Q̂3 + R̂1 , û2 = P̂3 − Q̂1 + R̂2 , (4.66)

for which, inequality (4.60) now gives

∆2u0 + ∆2u1 + ∆2u2 ≥ 3
√

3 h̄ , (4.67)

while the general inequality (4.54) gives again the bound
√

3 h̄.

Although in these examples the inequalities for product states can be violated by
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e.g. states of the form |Ψ〉 = |ψ12〉 ⊗ |ψ3〉, it would be interesting to ask whether one

can produce inequalities that detect genuine tripartite entanglement. It turns out that

this question can be answered in the affirmative.

Consider, for example, a system with three degrees of freedom and the three oper-

ators

û0 = Q̂1 + P̂2 + R̂3 , û1 = Q̂2 − P̂3 + R̂3 , û2 = −Q̂3 − P̂1 + R̂2 , (4.68)

Three possibilities arise: (i) the state is completely separable, |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉, (ii)

it is bi-separable, i.e. of the form |ψ1〉 ⊗ |ψ23〉 (and permutation of the indices), or (iii)

none of the above. Then, using the inequality (4.51) repeatedly, it can be shown that

the lower bounds for the sum of the variances of the ûi in each of the above cases are

different. The results are shown in Table 4.1.

Table 4.1: The different lower bounds

Type of state |Ψ〉 Lower bound of ∑i ∆2ui

|ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 9h̄√
3

|ψ1〉 ⊗ |ψ23〉
|ψ2〉 ⊗ |ψ31〉 5h̄√

3
|ψ3〉 ⊗ |ψ12〉

|ψ123〉 3h̄√
3

Whenever the sum of the variances of the global operators ûi attains a value less

than 5h̄√
3
, this signals the existence of genuine tripartite entanglement, while if it is in

the range [ 5h̄√
3
, 9h̄√

3
], it signals the presence of either bipartite or tripartite entanglement.

However, the criterion becomes inconclusive if the sum of the three variances is larger

than 9h̄√
3
.

The criterion for detecting tripartite entanglement presented in this section was

based on a particular choice of operators but a systematic study of other choices that
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lead to similar criteria is possible, following from the requirement that the three dif-

ferent types of states lead to different lower bounds. Finally, a similar analysis can

be applied to the case of m degrees of freedom in order to detect genuine m-partite

entanglement.

4.8 Summary

In this chapter we derived a number of inequalities for observables that are linear

combinations of position and momentum. Whenever their coefficients form a regular

polygon in R2, the lower bounds of such inequalities can be re-expressed geomet-

rically, in terms of the associated polygons. In every case, the lower bound can be

alternatively seen as the area of the parallelogram spanned by the two vectors in RN ,

formed by the coefficients of the positions and momenta of all observables. An in-

equality for the integral of the variances of rotated observables was given, and the

lower bound was found to agree with the area of the half or full circle for ϕ = π and

ϕ = 2π, respectively; for all other values the bound is lower than the one predicted by

the area of the arc spanned, multiplied by h̄.

In the penultimate section, we derived an inequality for the sum of variances of

three arbitrary operators. Whenever each pairwise commutator is equal to ±ih̄, the

inequality is tight but this is not the case in general. It is, however, in many cases

tighter than the one obtained by combining the pairwise inequalities for the sum:

∆2 A + ∆2B ≥ |〈[A, B]〉|.

In the last section we obtained inequalities for the variances of observables in more

than one spatial degree of freedom but valid for non-entangled states only. By restrict-

ing to a triple and using the inequality of the penultimate section, we described how

this could be used to produce entanglement detection criteria.
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Chapter 5

Uncertainty relations for a single

particle in one dimension

5.1 Introduction and main result

Inspired by Heisenberg’s analysis [35] of Compton scattering, Kennard [41] proved

the preparational uncertainty relation

∆p ∆q ≥ h̄
2

, (5.1)

for the standard deviations ∆p and ∆q of momentum and position of a quantum par-

ticle with a single spatial degree of freedom. Experimentally, they are determined by

measurements performed on an ensemble of systems prepared in a specific state |ψ〉.

The states saturating the bound (5.1) are squeezed states with a real squeezing param-

eter [54, 49, 71] (we follow the review [28] regarding the naming of squeezed states).

Squeezed states are conceptually important since they achieve the best possible lo-

calization of a quantum particle in a phase-space, and they are easily visualized by

“uncertainty ellipses”. Each squeezed state may be displaced rigidly in phase space

without affecting the value of the variances, resulting in a three-parameter family of

states saturating the lower bound (5.1).

Other uncertainty relations are known. The sum of the position and momentum

variances (throughout this paper, we use a system of units where the physical dimen-
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sions of both position and momentum equal
√

h̄) is bounded [73, 19] according to the

relation

∆2 p + ∆2q ≥ h̄ ; (5.2)

only the ground state of a suitable harmonic oscillator saturates the inequality if rigid

displacements in phase-space are ignored. The Robertson-Schrödinger (RS) inequality

[56, 62],

∆2 p ∆2q− C2
pq ≥

h̄2

4
, (5.3)

sharpens Heisenberg’s inequality (5.1) by including the covariance Cpq defined in

Eq. (5.8). Eq. (5.3) is saturated by the two-parameter family of squeezed states, with a

complex squeezing parameter [28], again ignoring phase-space displacements. The sec-

ond parameter describes the phase-space orientation of the uncertainty ellipse which,

in the previous case, was aligned with the position and momentum axes.

By introducing the observable r̂ = − p̂− q̂, which satisfies the commutation rela-

tions [q̂, r̂] = [r̂, p̂] = h̄/i, one obtains a bound on the product of the variances of three

pairwise canonical observables,

∆2 p ∆2q ∆2r ≥
(

τ
h̄
2

)3

, τ = csc
(

2π

3

)
≡
√

4
3

. (5.4)

This triple product uncertainty relation found only recently [39] was the focus of Chapter

3. Since the variance of r̂ is given by

∆2r = ∆2 p + ∆2q + 2Cpq , (5.5)

the left-hand-side of (5.4) can also be considered as a function of the three second

moments. Ignoring phase-space translations, only one state exists which achieves the

minimum.

Inequalities (5.1) to (5.4) and the search for their minima arise from one single

mathematical problem:

Does a given smooth function of the second moments have a lower bound?

If so, which states will saturate the inequality if a minimum exists?
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In this chapter, we answer these questions for a quantum particle with a single spa-

tial degree of freedom by presenting a systematic approach to studying uncertainty

relations derived from smooth functions f (∆2 p, ∆2q, Cpq). Proceeding in three steps

we

1. identify a universal set of states E which can possibly minimize a given functional

f (∆2 p, ∆2q, Cpq);

2. spell out conditions which determine the extrema of the functional f as a subset

of the universal set, E ( f ) ⊆ E ; if no admissible extrema exist, the functional has

no lower bound;

3. determine the set of states M ( f ) ⊆ E ( f ) which minimize the functional f , lead-

ing to an uncertainty relation in terms of the second moments.

If the considered functions f satisfy a number of additional properties, then they

can be considered as a measure of the overall uncertainty associated with a number of

observables and a pure state.

Noting that the covariance can be re-expressed as a linear combination of the vari-

ances of position and momentum and a third operator (e.g. r̂ = − p̂− q̂ of Chapter 3),

then a function of the variances of a given number of observables is a good measure

of the overall uncertainty if it has the following properties:

1. f (x, y, . . .) ≥ 0 for all x, y, . . . ≥ 0.

2. f increases (decreases) when one of its argument increases (decreases), while the

rest are kept the same.

3. f (x, y . . .) = 0, if and only if x=y=. . . =0.

These three properties are physically justified for a measure of an overall uncertainty:

it is a non-negative function that is zero only if all observables can attain arbitrarily

precise values, and it increases or decreases if the uncertainty of one observable in-

creases or decreases. Inequalities for such functions can be viewed as approximate

descriptions of the uncertainty region of n observables (in the case considered here 3),

i.e. the collection of all n-tuples of variances that arise from physical states. As we will
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show, for the case of position and momentum that we consider here, the Robertson-

Schrödinger inequality, along with the positivity of the variances completely deter-

mines the uncertainty region for a quantum particle. All other inequalities give, in

general, only approximations in the sense that the region they define may contain

points that do not arise from physical states.

The inequalities will be preparational in spirit, i.e. they apply to scenarios in which

the quantum state of the particle |ψ〉 is fixed during the three separate runs of the mea-

surements required to determine the numerical values of the second moments. These

inequalities do not describe the limitations of measuring non-commuting observables

simultaneously.

The chapter is divided into two major sections. In Sec. 5.2 we introduce uncertainty

functionals and explain how to determine their extrema and minima; to illustrate our

method we re-derive a number of known inequalities. In Sec. 5.3 we derive new (fami-

lies of) uncertainty relations and the states minimizing them. We conclude the chapter

with a summary and discuss further applications.

5.2 Minimising uncertainty

Key to our approach is the uncertainty functional

J[ψ] = f
(
∆2 p, ∆2q, Cpq

)
− λ (〈ψ|ψ〉 − 1) , (5.6)

which sends each normalizable element |ψ〉 of the one-particle Hilbert space H to a

real number determined by the real function f (x1, x2, x3) of three variables. A lower

bound on a functional J[ψ] of the form (5.6) will result in an uncertainty relation asso-

ciated with the function f (x1, x2, x3).

The variances of position and momentum are defined by

∆2 p = 〈ψ| p̂2|ψ〉 − 〈ψ| p̂|ψ〉2 , (5.7)
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etc., and the correlation between position and momentum reads

Cpq =
1
2
〈ψ| ( p̂q̂ + q̂ p̂) |ψ〉 − 〈ψ| p̂|ψ〉〈ψ|q̂|ψ〉 , (5.8)

which we will often arrange in to the real, symmetric covariance matrix, defined in

Chapter 2. For notational simplicity we will denote the second moments as

x = ∆2 p , y = ∆2q , w = Cpq , (5.9)

but dependence of the matrix elements on the state |ψ〉 i.e. x ≡ x(ψ) etc., should be

kept in mind. The variances of position and momentum are strictly positive, x, y >

0, since a quantum particle has no normalizable position or momentum eigenstates

while the correlation may take any finite real value, w ∈ R.

To determine the extrema of the functional J[ψ] with our method, its first-order

Gâteaux derivative must exist which requires the function f (x1, x2, x3) to be differ-

entiable (e.g. see example of Sec. 2.5 ). The Lagrange multiplier λ in (5.6) ensures

that only normalized states are taken into account. It will be convenient to work

with states in which the expectation values of both momentum and position vanish,

〈ψ|q̂|ψ〉 = 〈ψ| p̂|ψ〉 = 0. This can be achieved by rigidly displacing the observables

using the unitary operator

T̂α = exp [i (p0q̂− q0 p̂) /h̄] , α =
1√
2h̄

(q0 + ip0) , (5.10)

where p0 = 〈ψ| p̂|ψ〉, etc. This transformation leaves invariant the values of the second

moments (5.7) and (5.8) and has thus no impact on the minimization of the functional

J[ψ].

To establish an uncertainty relation stemming from a given function f (x, y, w) we

follow the three-step procedure mention earlier, inspired by methods presented in

[38, 78, 39] (see also [21]). We first apply a variational technique to derive an eigen-

value equation the solutions of which are extrema of the functional J[ψ], and we de-

rive a set of consistency conditions in Sec. 5.2.3; we then introduce a “space of mo-

ments” to visualize these results (Sec. 5.2.4). Finally, we determine the minimizing
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states whenever the functional is guaranteed to be bounded from below (see Sec. 5.2.6

and Sec. 5.3).

5.2.1 Extrema of uncertainty functionals

When comparing the values of the functional J at the points |ψ〉 and |ψ + ε〉 ≡ |ψ〉+

ε|e〉, for any unit vector |e〉 and a small parameter ε, we find to first order that

J[ψ + ε]− J[ψ] = εDε J[ψ] + O
(
ε2) , (5.11)

where the expression

Dε = 〈e|
δ

δ〈ψ| +
δ

δ|ψ〉 |e〉, (5.12)

denotes a Gâteaux derivative defined in Chapter 2. If the functional J[ψ] does not

change under this variation,

Dε J[ψ] = 〈e|
(

δ

δ〈ψ| f (x, y, w)− λ|ψ〉
)
+ c.c. = 0, (5.13)

it has an extremum at the state |ψ〉. More explicitly, this condition reads

〈e|
(

∂ f
∂x

δx
δ〈ψ| +

∂ f
∂y

δy
δ〈ψ| +

∂ f
∂w

δw
δ〈ψ| − λ|ψ〉

)
+ c.c. = 0 , (5.14)

which should hold for arbitrary variations. Since the vector |e〉 and its dual, 〈e|, are

linearly independent (just consider their position representations e∗(x) and e(x)), the

expression in round brackets must vanish identically which implies that the complex

conjugate term will also vanish. Using

δx
δ〈ψ| ≡

δ∆2 p
δ〈ψ| =

δ〈ψ| p̂2|ψ〉
δ〈ψ| = p̂2|ψ〉 , (5.15)

a similar relation for δy/δ〈ψ|, and the identity

δw
δ〈ψ| ≡

1
2
(q̂ p̂ + p̂q̂) |ψ〉 , (5.16)
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we arrive at an Euler-Lagrange-type equation,

(
∂ f
∂x

p̂2 +
∂ f
∂y

q̂2 +
1
2

∂ f
∂w

(q̂ p̂ + p̂q̂)− λ

)
|ψ〉 = 0. (5.17)

The parameter λ can be eliminated by multiplying this equation with the bra 〈ψ| from

the left and solving for λ; substituting the value obtained back into Eq. (5.17), one

finds a nonlinear eigenvector-eigenvalue equation,

(
fx p̂2 + fyq̂2 +

fw

2
(q̂ p̂ + p̂q̂)

)
|ψ〉 =

(
fxx + fyy + fww

)
|ψ〉 , (5.18)

using the standard shorthand for partial derivatives.

Eq. (5.18) is our first result: the extrema of a smooth function of the second mo-

ments are encoded in an eigenvalue equation for a Hermitean operator quadratic in

position and momentum. However, the equation is not linear in the state |ψ〉 because

the quantities x, y, . . . , fw are functions of expectation values taken in the yet unknown

state.

Let us briefly illustrate the crucial features of Eq. (5.18) in a simple case before

systematically investigating its solutions. For a function linear in x, y, and w, the

derivatives fx, fy, and fw will be constant numbers. In this case, the operator on the

left-hand-side of (5.18) turns into an explicitly given quadratic form in the position

and momentum operators, falling into one of three possible categories [79]: up to a

multiplicative constant, the operator will be unitarily equivalent to the Hamiltonian

of (i) a harmonic oscillator with unit mass and frequency, p̂2 + q̂2, (ii) a free particle,

p̂2, or (iii) an inverted harmonic oscillator, p̂2 − q̂2. In the first case, the spectrum of

the operator will be discrete and bounded from below (or above); the spectra of the

operators in the other two cases are continuous which is tantamount to the absence

of normalizable eigenstates. Thus, a linear function f (x, y, w) possesses a non-trivial

bound only if it gives rise to an operator in (5.18) which is unitarily equivalent to the

Hamiltonian of a harmonic oscillator. Our method will signal the absence of lower

bounds corresponding to the cases (ii) and (iii).
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5.2.2 Universality

To find a lower bound of the functional J[ψ], we will determine all its extrema and

then pick those where J[ψ] assumes its smallest value. However, Eq. (5.18) is not

a standard eigenvalue equation: even for a linear function f , the right-hand-side of

(5.18) depends non-linearly on the as yet unknown state |ψ〉, and if the function f is

non-linear, the operators on the left-hand-side of the equation acquire state-dependent

coefficients given by its partial derivatives.

Nevertheless, the eigenvalue problem can be solved systematically, in a self-consistent

way. Initially, we treat the expectations x, y, w, and fx, fy, fw in (5.18) as parameters

with given values, i.e. independent of |ψ〉. The solutions |ψ(x, y, w)〉 will depend

on these parameters which means that the solutions must be checked for consistency

since the relations (5.7) now require that x = 〈ψ(x, y, w)| p̂2|ψ(x, y, w)〉, for example.

Typically, additional restrictions will arise from these constraints; entirely inconsistent

cases exist, too.

Let us begin by writing the operator on the left-hand side of (5.18) in matrix form,

( p̂ , q̂)

 fx fw/2

fw/2 fy

 p̂

q̂

 ≡ ẑ> · F · ẑ . (5.19)

Williamson’s theorem [84] ensures that any positive or negative definite matrix can be

mapped to a diagonal matrix by conjugation with a symplectic matrix Σ. For simplic-

ity, we will assume from now on that F is positive definite. The negative definite case is

easily dealt with by “flipping over” the functional, i.e. by considering − f (x, y, w) in-

stead of f (x, y, w). Applied to the 2× 2 matrix F, Williamson’s result takes the simple

form

Σ> · F · Σ = c I , Σ ∈ Sp(2, R) , c > 0 , (5.20)

where I is the identity matrix, whenever F > 0 holds. This requires both

det F ≡ fx fy − f 2
w/4 > 0 and fx > 0 , (5.21)

implying that fy > 0 will hold, too. These requirements clearly agree with the obser-

vations made for linear uncertainty functionals f (x, y, w): since the operators p̂2 and
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p̂2 − q̂2 result in matrices F with zero or negative determinant, the left-hand-side of

(5.18) cannot be mapped to an oscillator Hamiltonian by means of a symplectic trans-

formation.

A direct calculation shows that the matrix F is diagonalized by the symplectic ma-

trix Σ = (SγGb)
−1, where

Gb =

 1 0

b 1

 , and Sγ =

 e−γ 0

0 eγ

 , (5.22)

with real parameters

b =
fw

2 fy
∈ R and γ =

1
2

ln
(

fy√
det F

)
∈ R, (5.23)

leading to c =
√

det F in Eq. (5.20). The symplectic matrices Sγ and Gb give rise to

the Iwasawa (or K A N ) decomposition of the matrix Σ−1 ∈ Sp(2, R) (cf. [8], for

example) if they are written in opposite order and the parameter b is replaced by beγ;

the third factor happens to be the identity.

Next, we observe that the linear action of the matrices G and S on the canonical

pair of operators ( p̂, q̂)> can be implemented by conjugation with suitable unitary

operators, known as metaplectic operators [8]. We have, for example,

 1 0

b 1

  p̂

q̂

 = eibp̂2/2h̄

 p̂

q̂

 e−ibp̂2/2h̄ , (5.24)

or, in matrix notation,

Gb · ẑ = Ĝb ẑ Ĝ†
b (5.25)

where the unitary operator

Ĝb = eibp̂2/2h̄ (5.26)

describes a momentum gauge transformation. Similarly, the squeeze operator

Ŝγ = eiγ(q̂ p̂+ p̂q̂)/2h̄ , (5.27)
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symplectically scales position and momentum according to

Sγ · ẑ = Ŝγ ẑ Ŝ†
γ . (5.28)

With Σ−1 = SγGb in (5.20), we rewrite (5.19) as

ẑ> · F · ẑ =
√

det F (Sγ ·Gb · ẑ)> · (Sγ ·Gb · ẑ) . (5.29)

Finally, using the identities (5.25) and (5.28) and multiplying Eq. (5.18) with the unitary

Ŝ†
γĜ†

b from the left, the condition for the existence of extrema of the functional J[ψ]

takes a simple form,

1
2
(

p̂2 + q̂2) |ψ(b, γ)〉 =
(

x fx + y fy + w fw

2
√

det F

)
|ψ(b, γ)〉 ; (5.30)

thus, the solutions

|ψ(b, γ)〉 ≡ Ŝ†
γĜ†

b |ψ〉 (5.31)

are proportional to the eigenstates |n〉, n ∈ N0, of a unit oscillator, i.e. a quantum

mechanical oscillator with unit mass and unit frequency. Equivalently, the candidates

for states extremising the functional J[ψ] are given by the family of states,

|n(b, γ)〉 = ĜbŜγ|n〉 , b, γ ∈ R , n ∈N0 . (5.32)

Upon rewriting the operator on the right-hand-side these states are seen to coincide

with the squeezed number states [28]. As shown in in Appendix A.1, the product of a

squeeze transformation Ŝγ (with real parameter γ) and a momentum gauge transfor-

mation Ĝb equals

ĜbŜγ = Ŝ(ξ)R̂(χ) , (5.33)

i.e. the product of a rotation in phase space,

R̂(χ) = eiχâ† â χ ∈ [0, 2π) , (5.34)

and a squeeze transformation (with complex ξ) along a line with inclination θ,
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Ŝ(ξ) = e
1
2 (ξ â†2−ξ â2) , ξ = reiθ ∈ C . (5.35)

Summarizing our findings, we draw two conclusions:

1. The complete set of solutions of Eq. (5.30) coincides with the squeezed number

states,

E =
∞⋃

n=0

En ≡
∞⋃

n=0

{
|n(α, ξ)〉 = T̂αŜ(ξ)|n〉 , α, ξ ∈ C

}
, (5.36)

where non-zero expectation values of position and momentum have been rein-

troduced via the translation operator T̂α (see Eq. (5.10)) and an irrelevant con-

stant phase has been suppressed.

2. The value of the right-hand-side of Eq. (5.30) can take only specific values,

x fx + y fy + w fw

2
√

det F
=

(
n +

1
2

)
h̄ , n ∈N0 , (5.37)

given by the eigenvalues of the unit oscillator. This relation constrains the state-

dependent quantities of the left-hand-side which needs to be checked for consis-

tency, just as Eq. (5.21) does.

We have thus obtained our second main result. The extrema E of an arbitrary func-

tional J[ψ] characterized by a function f (x, y, w) are necessarily squeezed number states,

a set which is independent of the function at hand. In other words, the set E containing

all the states which may arise as minima of an uncertainty functional J[ψ] is universal.

The minima of any functional must be a subset E ( f ) ⊆ E which will depend explic-

itly on the function f (x, y, w), determined by the consistency conditions to be studied

next.

5.2.3 Consistency conditions

We now spell out the conditions which must be satisfied by the states |n(b, γ)〉 in (5.32)

– or, equivalently, the states |n(α, ξ)〉 in (5.36) – to qualify as extrema for a specific

functional J[ψ]:
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1. Recalling that x ≡ ∆2 p, etc., the relations

x = 〈n(b, γ)| p̂2|n(b, γ)〉 , y = 〈n(b, γ)|q̂2|n(b, γ)〉 , (5.38)

and

w =
1
2
〈n(b, γ)| ( p̂q̂ + q̂ p̂) |n(b, γ)〉 , (5.39)

represent three, generally nonlinear consistency equations between the second

moments since the parameters b and γ are functions of x, y and w (cf. Eq. (5.23)).

2. The values of the moments x, y and w must satisfy Eq. (5.37).

3. The matrix F of the first derivatives must be positive definite.

Using (5.32), (5.25) and (5.28), the first consistency condition in (5.38) leads to

x = 〈n(b, γ)| p̂2|n(b, γ)〉 = e2γ〈n| p̂2|n〉 = e2γ

(
n +

1
2

)
h̄ , n ∈N0 , (5.40)

or, recalling the definition of γ in (5.23),

x
√

det F =

(
n +

1
2

)
h̄ fy , n ∈N0 . (5.41)

Similar calculations result in

y
√

det F =

(
n +

1
2

)
h̄ fx , n ∈N0 , (5.42)

and

−2w
√

det F =

(
n +

1
2

)
h̄ fw , n ∈N0 , (5.43)

respectively. These conditions may be expressed in matrix form,

F ·C√
det F

=

(
n +

1
2

)
h̄ I, n ∈N0 , (5.44)

involving both the covariance matrix C and F.

Taking the trace of the last relation shows that Eq. (5.37) is satisfied automatically.

Without specifying a function f (x, y, w), no conclusions can be drawn about the valid-

ity of Eqs. (5.41-5.43) or the positive definiteness of the matrix F.
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5.2.4 Geometry of extremal states

In order to visualize the interplay of the consistency conditions we express them as

x fx = y fy , x fw = −2w fy , (5.45)

and

xy− w2 =

(
n +

1
2

)2

h̄2 , n ∈N0 , (5.46)

following easily from either (5.41-5.43) or (5.44). The third constraint is universal since

it does not depend on the function f (x, y, w). Using the variables

u =
1
2
(x + y) > 0 , v =

1
2
(x− y) ∈ R ,

we define the three-dimensional space of (second) moments, with coordinates (u, v, w).

The third condition

u2 − v2 − w2 = e2
n , en =

(
n +

1
2

)
h̄ , n ∈N0 , (5.47)

determines, for each non-negative integer, one sheet of a two-sheeted hyperboloid,

located in the “upper” half of the space of moments, i.e. u > 0 and v, w ∈ R (cf.

Fig. 5.1). The points on the n-th sheet, which intersects the u-axis at u = +en, are

in one-to-one correspondence with the squeezed states originating from the number

state |n〉, forming the set En in (5.36).

The consistency conditions (5.45) introduces constraints which depend on the func-

tion f (x, y, w) at hand. These equations will only be satisfied for specific subsets En( f )

of points on the hyperboloids En, resulting in a set of f -dependent states

E ( f ) =
∞⋃

n=0

En( f )

which contains candidates to possibly minimize the functional J[ψ]. The candidate

sets E ( f ) may depend on one or two parameters, or contain isolated points only. If

the consistency conditions cannot be satisfied, then the functional J[ψ] has no lower

bound. Furthermore, if the matrix F is not positive definite for any of these states,

74



Chapter 5. Uncertainty relations for a single particle in one dimension

En

E0

u

wv

Figure 5.1: Space of (second) moments, with points (u, v, w): the extremal states of
smooth functionals J[ψ] are located on a discrete set of nested hyperboloids E =⋃∞

n=0 En the first three of which are shown, using light (n = 0), medium (n = 1) and
dark shading (n = 2), respectively. The accessible uncertainty region for a quantum par-
ticle is given by the points on and inside of the convex surface E0 : u2− v2−w2 = h̄2/4
which coincides with the minima M ( f RS) of the RS inequality, i.e. squeezed states
with minimal uncertainty.

the method makes no predictions about the minima of the functional J[ψ]. We have,

however, not found any non-trivial cases of this behaviour.

The final step in determining the minima of the functional J[ψ] will be to evaluate

it for the candidate states E ( f ) and pick the lowest possible value. The states achiev-

ing this minimum value constitute the solutions M ( f ) ⊆ E ( f ) of the minimization

problem. In their entirety, the minima M ( f ) may consist of isolated states or of sets

depending on one or two parameters. Usually, states on the sheet E0 are found to sat-

urate the bound but is possible to manufacture cases where the minima are located

inside the uncertainty region (see the discussion in Sec. 5.4).

Before turning to the discussion of known and new uncertainty relations, we briefly

turn our attention to the space of moments. For n = 0, Eq. (5.47) is equivalent to (5.3)

which implies that not all points (u, v, w) ∈ R3 can arise as moment triples. The acces-

sible part of the space is called the uncertainty region shown in Fig. 5.1; it is bounded

by E0, the hyperboloid defined in Eq. (5.47) for n = 0. Since the points on this surface

coincide with the squeezed states of minimum uncertainty, the hyperboloid can also
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u

v

~ξ

~ψ1

~ψ2

~ϕ1

~ϕ2

Figure 5.2: Cross-section (w = 0) of the uncertainty region (shaded) illustrating the
convexity of its boundary u2 − v2 − w2 = h̄2/4; convex combinations of moment
triples located on the hyperboloid (associated with pure Gaussian states with mini-
mal uncertainty) reproduce any given moment vector ~ξ inside the uncertainty region
(the points must be outside of the “backward light-cone” of the point ~ξ, indicated by
the dashed segment of the hyperbola).

be described by the known condition for pure states to be Gaussian [67],

det
(

C + i
h̄
2

Ω

)
= 0 , (5.48)

where Ω and C are the standard symplectic and the covariance matrix, respectively.

The analogously defined uncertainty region of a quantum spin s [25] does not have

a convex boundary from the outset. It is instructive to briefly discuss some conse-

quences which follow from the fact that the uncertainty region of a quantum particle

is bounded by a convex surface in the space of moments.

Consider a state |ξ〉 giving rise to moment vector ~ξ = (uξ , vξ , wξ) inside the un-

certainty region. It is possible to identify infinitely many pairs of Gaussian states on the

boundary such that their mixture reproduces the given triple ~ξ. On the level of moments,

it is geometrically obvious that any moment triple ~ξ can be reached as a convex com-

bination of two points located on the boundary (cf. Fig. 5.2). It is sufficient to con-

sider states with vanishing covariance, w = 0. Picking any point ~ϕ “space-like” rel-

ative to ~ξ and located on the hyperboloid, the pair determines a line intersecting the

boundary in a unique point ~ψ. Then, the desired point ~ξ must lie on the line segment
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~ξ(t) = ~ϕ + t(~ψ− ~ϕ), t ∈ [0, 1], connecting the points ~ϕ and ~ψ; it will pass through the

point ~ξ if

t0 =
uξ − uϕ

uψ − uϕ
≡

vξ − vϕ

vψ − vϕ
∈ [0, 1] . (5.49)

When writing the line segment in the form ~ξ(t) = t~ψ + (1− t)~ϕ, it becomes obvi-

ous that the reasoning valid in the space of moments extends to quantum states, i.e.

the mixture

ρ̂t0 = t0P̂ψ + (1− t0)P̂ϕ (5.50)

of the rank-1 projectors P̂ψ = |ψ〉〈ψ| and P̂ϕ onto the associated Gaussian states defines

a mixed quantum state with the desired moment triple ~ξ. Clearly, any such convex

combination can be used to create other mixtures with the same moment triple by

rotating it rigidly about the u-axis.

Next, the moment vector (ut, vt, wt) calculated from the mixed states ρ̂t in (5.50)

can only lie inside the uncertainty region, not on its boundary, as is shown in Appendix

A.2, without reference to the geometric picture developed here. This observation ret-

rospectively justifies our initial limitation to pure states when searching for minima of

the functionals J[ψ].

The relation between quantum states and points inside of the uncertainty region is,

of course, many-to-one. For example, the first excited state of a unit oscillator |1〉with

moment vector ~ξ1 = (9h̄2/4, 0, 0), being a pure state, cannot be written as a mixture

of two Gaussians. Nevertheless, suitable mixtures of Gaussian states will produce

the moment vector ~ξ1. The only moment vectors ~ξ which cannot be obtained from

mixtures are those on the boundary. Here, the relation between states and moment

vectors is one-to-one, in agreement with the fact that Gaussian states are determined

uniquely by the covariance matrix C.

Let us restrict our attention to Gaussian states of minimal uncertainty and their

convex combinations only. Then, the uncertainty region of a quantum particle has a

surprising number of features in common with the Bloch ball used to visualize the

states of a qubit. Each state is characterized uniquely by a triple of numbers, the states

on the convex boundary are the only pure states, and the decomposition of mixed

states into pairs of pure states is clearly not unique. The group SO(2, 1) of trans-
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formations which leave the uncertainty region invariant plays the role of the SU(2)

transformations mapping the Bloch ball onto itself.

5.2.5 Mixed states

So far, we only considered pure states of a quantum particle when searching for the

extrema of functions of its second moments. We now show that our findings do not

change if we also allow for convex combinations of pure states. Each mixed state

ρ̂ generates a moment triple ~µ with components x = Tr
(
ρ̂x̂2), etc., satisfying the

Robertson-Schrödinger inequality [27]. Thus, the uncertainty region necessarily con-

tains all potential mixed-state minima ~µ of a given functional. Two cases occur.

If the triple ~µ is located on one of the hyperboloids E , then there exists a squeezed

number state—i.e. a pure state— which gives rise to the same three expectations.

Hence, the point ~µ has already been included in the search for extrema.

Alternatively, the point ~µ is located between two hyperboloids, En and En+1, say,

with n ∈N0. Again, there is a pure state with moments given by~µ. To see this, we first

consider the points on the line segment connecting the points (un, 0, 0) and (un+1, 0, 0)

associated with the number states |n〉 and |n + 1〉, respectively. The moments of the

superposition

|n〉t =
√

t|n〉+
√

1− t|n + 1〉, t ∈ [0, 1] , (5.51)

indeed lead to the moment triple

~nt = (un+1 + t (un − un+1) , 0, 0) , t ∈ [0, 1] , (5.52)

since all matrix elements of the the second moments between states of different parity

vanish. Finally, any moment triple ~µ off the u-axis will lie on a hyperboloid with a

specific value of t = t0, say. This moment triple can be obtained, however, from the

state Ŝ(ξ)|n〉t0 , with a suitable value ξ. Using relativistic terminology, the operator

Ŝ(ξ) must induce a Lorentz transformation which maps the given point on the u-axis

to the desired point ~µ on the same hyperboloid. In conclusion, each triple ~µ of the

uncertainty region can be achieved by the moments of a suitable pure state. Thus,

mixed states do not give rise to candidates for minima different from those associated
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with pure states.

5.2.6 Known uncertainty relations

To illustrate our approach we re-derive three of the four bounds mentioned in the in-

troduction: the uncertainty relations by Robertson-Schrödinger, by Heisenberg-Kennard,

and the triple-product inequality.

Robertson-Schrödinger uncertainty relation. Defining

f RS(x, y, w) = xy− w2 , (5.53)

the matrix of first-order derivatives associated with the quadratic form (5.19) is given

by

F =

 y −w

−w x

 , (5.54)

and, interestingly, its determinant

det F = xy− w2 ≡ f RS(x, y, w) (5.55)

coincides with the original functional. At this point of the derivation, it is not yet

known whether the matrix F is strictly positive.

The relations Eq. (5.45) do not produce any constraints on the parameters x, y, and

w, since they are satisfied automatically leaving Eq. (5.46) as the only restriction. Since

the left-hand-side of (5.46) coincides with the function f RS(x, y, w), all squeezed states

are candidates to minimize the RS functional,

E ( f RS) = E .

Therefore, the function f RS comes with the largest possible set of candidates to min-

imize it, given by the union of the sets En in Fig. 5.1. The lower bound on f RS now
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follows directly from combining (5.46) with (5.53),

f RS(x, y, w) =

(
n +

1
2

)2

h̄2 ≥ h̄2

4
, (5.56)

reproducing the RS inequality. The identity (5.55) implies that the determinant of F is

positive everywhere in the uncertainty region.

The hyperboloid closest to the origin of the (u, v, w)-space provides the states min-

imizing the function f RS,

M ( f RS) = E0 ,

i.e. the set of squeezed states based on the ground state |0〉 of a unit oscillator. This is,

of course, a two-parameter set: the relations (5.23) take the form

b = − z
x

, and γ =
1
2

ln (2x) , (5.57)

which means that, with x > 0 and z ∈ R, both b and γ take indeed arbitrary real val-

ues. Thus, each squeezed state can be reached and, when adding phase-space transla-

tions, we obtain the four-parameter family of all squeezed states as minima of f RS:

Mα( f RS) = T̂αM ( f RS) .

This property singles out the RS functional among all uncertainty functionals.

If an uncertainty functional, given by some function f , is different from the RS

functional, the first two consistency relations will, in general, not be satisfied auto-

matically but impose non-trivial constraints on the second moments. Therefore, the

extrema of the functional must be a proper subset of those of the RS functional, i.e.

E ( f ) ⊂ E , as the following example shows.

Heisenberg’s uncertainty relation. Let us determine the minimum of the product of

the standard deviations ∆p and ∆q by considering the function

f H(x, y, w) =
√

xy . (5.58)
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Its partial derivatives satisfy

2 f H
x =

√
y
x

, 2 f H
y =

√
x
y

, f H
w = 0 , (5.59)

resulting in a diagonal matrix F which is positive definite,

F =
1
2

√y/x 0

0
√

x/y

 , det F =
1
4
> 0 . (5.60)

Eqs. (5.41) and (5.42) collapse into a single set of conditions, namely

√
xy =

(
n +

1
2

)
h̄ ≡ en , n ∈N0 , (5.61)

which determines the value of the product of the standard deviations at the extrema of

f H(x, y, w), labelled by the positive integers. In the (u, v, w)-space, the intersections of

the surfaces defined by (5.61) and the hyperboloids (5.47) consist of hyperbolas in the

(u, v)-plane containing the points (en, 0), n ∈ N0. The union of these hyperbolas de-

fine the set E ( f H), which correspond to the potential minima of the function f H(x, y),

illustrated in Fig. 5.3. The third condition, Eq. (5.43), implies that w = 0. Combining

(5.61) with (5.58), we obtain the bound,

f H(x, y, w) =

(
n +

1
2

)
h̄ ≥ h̄

2
, (5.62)

reproducing Heisenberg’s uncertainty relation (5.1).

The family of states minimizing Heisenberg’s uncertainty relation is found by us-

ing the identity (5.61) for n = 0 in the definition of the parameter γ in (5.23), leading

to fy = x/h̄. Since the consistency conditions do not impose any other condition on

the variance x, it may take any positive value implying that γ ∈ R. Since fw = 0 leads

to b = 0, the set of states minimizing the Heisenberg’s uncertainty relation is given by

squeezed states with real squeezing parameter,

Mα( f H) = T̂αE ( f H) ≡
{

T̂αŜγ|0〉 , α ∈ C, γ ∈ R
}

, (5.63)

where we have re-introduced arbitrary phase-space displacements.
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v

u

E1
(

f H)

E3
(

f H)
E2
(

f H)

M
(

f H) = E0
(

f H)

Figure 5.3: Hyperbolas in the (u, v)-plane through the points (en, 0), n ∈ N0, stem-
ming from intersections of the hyperboloids (5.47) and the surfaces defined by (5.61).
The union of the hyperbolas defines the set E ( f H) which represents the location of
all possible minima of the function f H(x, y); the points on the “lowest” (darkest) hy-
perbola E0( f H) correspond to the set of states M ( f H) which saturate Heisenberg’s
uncertainty relation.

Triple product inequality. Using Eq. (5.5), we see that we need to find the minimum

of the expression

f T(x, y, w) = xy (x + y + 2w) (5.64)

in order to reproduce the triple product uncertainty relation (5.4). The first consistency

condition in Eq. (5.45) implies that x = y; using this identity in the second condition,

one finds

x(w + x)(w +
x
2
) = 0 . (5.65)

Recalling that variances must be positive, x > 0, the correlation w must equal either

−x or −x/2. According to (5.5), the first case would imply ∆2r ≡ 0, which is impos-

sible since the operator r̂ has no normalizable eigenstates. Therefore, using the only

solution w = −x/2 of (5.65) and x = y in the third consistency condition, one finds

that

x2 =
4
3

(
n +

1
2

)2

h̄2 , n ∈N0 , (5.66)
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must hold. It is now straightforward to evaluate f T(x, y, w) at its extrema to find its

global minimum,

f T(x, y, w) = x3 =

(√
4
3

(
n +

1
2

)
h̄

)3

≥
(

τ
h̄
2

)3

,

which reproduces (5.4). It is easy to confirm that the matrix F is positive definite with

determinant det F = h̄4/3. Since the minimum occurs for n = 0, the values of the

second moments are given by

x = y = −2w =
h̄√
3
≡ τ

h̄
2

. (5.67)

These relations fix the values of the parameters in (5.23),

b =
1
2

and γ =
1
4

ln τ . (5.68)

Using (5.32) or (5.36) we obtain one single state which saturates the triple uncertainty,

namely

|Ξ0〉 ≡ Ĝ 1
2
Ŝ 1

2 ln τ|0〉 = Ŝ i
4 ln 3|0〉 , (5.69)

in agreement with the findings of Chapter 3. If one includes rigid phase-space trans-

lations, the set of states minimizing the triple uncertainty is finally given by the two-

parameter family

Mα( f T) =
{

T̂α|Ξ0〉 , α ∈ C
}

, (5.70)

in agreement with [39].

Geometrically, the state |Ξ0〉 arises from the intersection of the sequence of hyper-

boloids with the surfaces defined by

u = τen , v = 0 , w = −1
2

τen , n ∈N0 . (5.71)

The planes defined by constant values of u have concentric circles in common with

the hyperboloids, and the vertical uw-plane (given by v = 0) intersects with each of

the circles in two points only. Finally, the condition on the variable w selects a single

one of the points with the same value of u. According to (5.71), the candidate states in
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E T
3

E T
2

E T
1

M T = E T
0

u

w

Figure 5.4: Candidate states E ( f T) ≡ E T possibly minimizing the product of three
variances f T(u, v, w), represented by dots located on the intersections of the hyper-
boloids (5.47) and the planes defined by the consistency conditions (5.71); the point
closest to the origin, M ( f T) ≡M T, represents the state |Ξ0〉 achieving the minimum
of the triple product uncertainty relation (5.4) (and of any other S3-invariant inequality
associated with a functional f (3)N in (5.91)).

(u, v, w)-space are located on a straight line,

E ( f T) =

τen


1

0

−1/2

 , n ∈N0

 , (5.72)

and the state |Ξ0〉 corresponds to the point closest to the origin.

5.3 New uncertainty relations

5.3.1 Generalizing known relations

The linear combination of second moments

f L(x, y, w) = µx + νy + 2λw , µ, ν, λ,∈ R , (5.73)
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is now shown to imply the uncertainty relation

µ∆2 p + ν∆2q + 2λCpq ≥ h̄
√

µν− λ2, µ, ν > 0 , µν > λ2 . (5.74)

The constraints on the parameters follow from the matrix F in (5.19) being strictly

positive definite. The consistency conditions (5.45) associated with f L relate both y

and w to x according to

y =
µ

ν
x , w = −λ

ν
x . (5.75)

Then, Eq. (5.46) simplifies to

(
µν− λ2)

ν2 x2 =

(
n +

1
2

)2

h̄2 = e2
nh̄2 , (5.76)

which is consistent due to det F = µν− λ2 > 0. Expressing the functional f L(x, y, w)

in terms of x only, we obtain the bound given in (5.74),

f L(x, y, w) =
2
(
µν− λ2)

ν
x = 2enh̄

√
µν− λ2 ≥ h̄

√
µν− λ2 . (5.77)

Up to phase-space translations T̂α, a single squeezed state saturates the bound, namely

M ( f L) =

{
|µ, ν, λ〉 = Ĝ λ

ν
Ŝ

1
2 ln
(

ν√
µν−λ2

)|0〉
}

. (5.78)

When expressing the correlation term Cpq in terms of the variance ∆2r according

to Eq. (5.5), we obtain, for µ = ν = 2λ = 1 in (5.74), the triple sum uncertainty relation

∆2 p + ∆2q + ∆2r ≥
√

3h̄ , (5.79)

derived in [39], and the minimum is achieved for the state |1, 1, 1/2〉 ≡ |Ξ0〉 which

also minimizes the triple product uncertainty (cf. Eq. (5.69) and Fig. 5.4).

Sums of powers of position and momentum variances are bounded from below ac-
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cording to the inequality

µ
(
∆2 p

)m
+ ν

(
∆2q

)m′ ≥
(

h̄
2

) 2mm′
m+m′

(
µ

(
ν

µ

m′

m

) m
m+m′

+ ν
(µ

ν

m
m′
) m′

m+m′

)
, µ, ν > 0 , m, m′ ∈N ,

(5.80)

reducing to the pair sum uncertainty relation (5.2) in the simplest case (µ = ν = m =

m′ = 1).

Next, we study a generalized RS-uncertainty functional (5.53),

f gRS
m,m′(x, y, w) = (xy)m − µwm′ , µ > 0 , m, m′ ∈N , (5.81)

which provides an example for which the consistency conditions cannot be solved in

closed form for arbitrary integers m and n. Setting m′ = 2m and assuming that both

m > 1 and µ > 1 hold, we obtain the explicit bound

(
∆2 p · ∆2q

)m − µ
(
Cpq
)2m ≥

(
h̄
2

)2m µ(
µ

1
m−1 − 1

)m . (5.82)

An interesting special case of f gRS occurs for m = 1/2 and 0 < µ < 1,

∆p∆q− µ
∣∣Cpq

∣∣ ≥ h̄
2

√
1− µ2 , (5.83)

which can be treated in spite of the presence of a non-differentiable term. The extremal

states depend on one free parameter,

Eα( f gRS
1,1/2

) =

{
|α, n〉 = T̂αĜ± µen h̄

2x
√

1−µ2
Ŝ 1

2 ln( x
en h̄ )
|n〉
}

, x > 0 , (5.84)

reducing for µ = 0, i.e. in the absence of the covariance term, to the squeezed number

states with a real parameter extremising Heisenberg’s inequality.

Next, we present an example of an uncertainty relation which seems to be entirely

out of reach of traditional derivations. Defining the functional

f e(x, y) = x + µey/ν , µ, ν > 0 , (5.85)
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we obtain the inequality

∆2 p + µe∆2q/ν ≥ (1 + 2W(h̄/4
√

µν)) e2W(h̄/4
√

µν)) , (5.86)

using the fact that Lambert’s W-function W(s), defined as the inverse of s(W) =

W exp W, is a strictly increasing function. In the limit of µ → ∞ and after setting

µ = ν, the left-hand-side of (5.86) turns into (µ + ∆2 p + ∆2q + O(1/µ)) while the ex-

pansion of its right-hand-side produces the correct bound (µ + h̄ + O(1/µ)), since

W(s) = s +O(s2).

The position and momentum variances at the extremum with label n ∈ N0 are

given by

x = 2µW
(

enh̄
2
√

µν

)
eW
(

en h̄
2
√

µν

)
(5.87)

and

y = 2νW
(

enh̄
2
√

µν

)
, (5.88)

respectively. Using Eqs. (5.23) with det F = (µ/ν)ey/ν, one finds

b = 0 , γ =
1
4

ln
(µ

ν

)
+

1
2

W
(

enh̄
2
√

µν

)
, (5.89)

which means that only a single state (and its rigid displacements) will saturate the

inequality (5.86). If µ = ν, we recover x = y = h̄2/4 as well as b = γ = 0, i.e. the

ground state of a unit oscillator since W(0) = 0.

Finally, we point out that some general statements can be made for functionals of

the form f = f (xy, w) and f = f (µxm + νym′ , w), i.e. generalizations of the expres-

sions in (5.80) and (5.81), respectively. By examining the consistency conditions one

can show any existing extrema of the first expression come as a one-parameter set,

while they are isolated or a one-parameter family in the second case. However, with-

out knowing the explicit form of the functions no further conclusions can be drawn

(see Appendix A.3).
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5.3.2 Uncertainty functionals with permutation symmetries

The triple product uncertainty relation and the one derived by Kennard possess dis-

crete symmetries. Here we investigate more general uncertainty functionals which are

invariant under the exchange of two and three variances.

S3-invariant functionals

Consider a function of three variables which is invariant under the exchange of any

pair,

f (3)(x, y, z) = f (3)(y, x, z) = f (3)(x, z, y) . (5.90)

We now derive the lower bound of a large class of S3-invariant uncertainty function-

als J[ψ] and show that their minima coincide with the state |Ξ0〉minimizing the triple

product inequality. The variables x, y and z will be taken as the variances of the oper-

ators p̂, q̂ and r̂, respectively.

More specifically, we study the minima of sums of completely homogeneous poly-

nomials of degree n, with arbitrary non-negative coefficients,

f (3)N (x, y, z) =
N

∑
n=1

∑
j+k+`=n

ajk`xjykz` , ajk` ≥ 0 , (5.91)

dropping the unimportant constant term a000. The associated F-matrix

det F ≡ fx fy + fy fz + fz fx (5.92)

is positive definite since x, y, z > 0 and the partial derivatives are just positive polyno-

mials.

The symmetry under S3-permutations (5.90) implies that the coefficients must sat-

isfy the conditions

ajk` = akj` = aj`k , 0 ≤ j, k, ` ≤ n . (5.93)
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The first terms of the polynomials we consider are given by

f (3)N (x, y, z) = a100(x + y + z)

+a200
(

x2 + y2 + z2)+ a110 (xy + yz + zx)

+a300
(
x3 + y3 + z3)+ a210

(
x2(y + z) + y2(z + x) + z2(x + y)

)
+a111xyz + . . . (5.94)

If the only nonzero coefficients are a100 = 1 or a111 = 1, we recover the functionals

associated with the triple sum (5.79) or the triple product inequality (3.5), respectively.

In general, a completely homogeneous S3-symmetric polynomial in three variables of

degree n ≥ 1 consists of κn =
⌊
(n+3)2+6

12

⌋
terms where the floor function bsc denotes

the integer part of the number s: each term arises from one way to partition j+ k+ ` =

n objects into three sets with j, k and ` elements, respectively [68]. Thus, a symmetric

polynomial of degree up to N depends on
(

∑N
n=1 κn

)
independent coefficients if one

ignores the constant term.

The main result of this section follows from rewriting the consistency conditions

of Chapter 5, (5.45) and (5.46) in terms of the variables x, y and z,

x fx − y fy + (x− y) fz = 0 , (5.95)

z fz − x fx + (z− x) fy = 0 , (5.96)

2 (xy + yz + zx)− x2 − y2 − z2 = (2n + 1)2 h̄2 , (5.97)

where we have used the identity z = x + y + 2w given in (5.5). The first two con-

sistency conditions imply that the extrema of any symmetric polynomial f (3)N (x, y, z)

occur whenever the three variances take the same value,

x = y = z . (5.98)

To show that x = y holds we pick any nonzero term ajk`xjykz` in the expan-

sion (5.91) and assume that the powers of x and y are different, i.e. j 6= k; the case

j = k will be considered later. Due to the symmetry under the exchange x ↔ y,

the sum also must contain the term akj`xkyjz`, with akj` ≡ ajk`. Defining t(x, y, z) =
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ajk`
(

xjyk + xkyj) z`, the first two terms of (5.95) take the form

xtx − yty = (j− k)ajkl

(
xjyk − xkyj

)
z` . (5.99)

Assuming that j = k + δ, with δ > 0, we find

xtx − yty = ak+δ klδ
(

xδ − yδ
)

xkykz` (5.100)

= (x− y)δak+δ k`

(
xδ−1 + xδ−2y + . . . + xyδ−2 + yδ−1

)
xkykz` (5.101)

≡ (x− y)g+(x, y, z) , (5.102)

where g+(x, y, z) > 0. Using this expression in (5.95), the consistency condition takes

the form

(x− y) (g+(x, y, z) + tz) = 0 , (5.103)

with another positive function tz(x, y, z). If δ < 0 we write k = j − δ ≡ j + |δ| and

eliminate k instead of j from (5.99), only to find that its left-hand-side again turns

into (x − y) multiplied with a positive function. If the powers of x and y of the term

akj`xkyjz` are equal, j = k, one immediately finds that (x∂x − y∂y)ajklxjyjz` = 0, also

reducing Eq. (5.95) to (x− y)∂zajklxjyjz` = 0.

The argument just given covers all terms in the sum (5.91), and the positivity of

the coefficients ajk` implies that the first consistency condition can only be satisfied for

x = y. Using the symmetry of f (3)N (x, y, z) under the exchange y ↔ z, an identical

argument leads to the identity y = z.

Using (5.98) to evaluate the left-hand-side of the third consistency condition (5.97)

results in

x = y = z = τenh̄ , n ∈N0 , (5.104)

where τ =
√

4/3, so that we obtain an uncertainty relation for any S3-invariant func-

tion

f (3)N (x, y, z) ≥ f (3)N (x, y, z)
∣∣∣

x=y=z=h̄/
√

3
. (5.105)

This result correctly reproduces the special cases of Eqs. (3.5) and (5.79), and there is

only one state which saturates the inequality, namely |Ξ0〉 given in Eq. (5.69). Letting
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N → ∞ in Eq. (5.91), we conclude that the main result of this section, Eq. (5.105), also

applies to any S3-symmetric function f (3)∞ (x, y, z) with a Taylor expansion with posi-

tive coefficients and infinite radius of convergence, as long as its first partial deriva-

tives exist.

S2-invariant functionals

Assume now that, in analogy to Eq. (5.90), we have a functional depending on just

two variances in a symmetric way,

f (2)(x, y) = f (2)(y, x) . (5.106)

An argument similar to the one given for the function f (3)(x, y, z) results in the uncer-

tainty relation

f (2)N (x, y) ≥ f (2)N (x, y)
∣∣∣

x=y=h̄/2
, (5.107)

which covers the cases of Heisenberg’s relation (5.1) and the pair sum inequality (5.2).

Thus, the actual form of the function at hand determines whether the set of minima

M ( f (2)N ) will depend on a continuous parameter or not. If the functional is invari-

ant under scaling transformation x → λx, y → y/λ, in addition to the permuta-

tion symmetry, there is a one-parameter family of solutions and the right-hand-side of

Eq. (5.107) achieves its minimum on the set of points with xy = (h̄/2)2, not just those

with x = y = h̄/2.

To derive (5.107), we suppose that the function f (2)N (x, y) has an expansion in anal-

ogy to f (3)N (x, y, z) in Eq. (5.91) but without the variable z. Adapting the reasoning

valid for f (3)N (x, y, z), the consistency equations (5.45) are found to imply x = y and

w = 0. Using this result in (5.46), the bound x ≥ h̄2/4 follows immediately, so that the

inequality (5.107) must hold for S2-invariant functionals.

5.4 Summary and discussion

In this chapter we studied the extrema of smooth functions of the second moments,

f (∆2 p, ∆2q, Cpq), and the resulting framework explains the universal role of squeezed
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states for preparational uncertainty relations of the second moments, while it com-

pletely charts the landscape of inequalities of this type.

The chain of inclusions

E ⊇ E ( f ) ⊇ M( f ) (5.108)

concisely summarizes the general structure of our findings. First, we have shown that

squeezed number states of a unit oscillator, i.e. a quantum mechanical harmonic os-

cillator with unit frequency and mass, occur naturally as extrema of an uncertainty

functional J[ψ] depending on second moments. We denote this universal set of states

by E . Second, the extrema of a specific functional J f [ψ], associated with a specific func-

tion f (∆2 p, ∆2q, Cpq), form the subset E ( f ) of the universal set E . Third, the functional

will assume its minimum for one or more of the extrema E ( f ), a subset which we de-

note by M ( f ). The set of minima may be empty, M ( f ) = Ø. If it is not empty, a

lower bound on the functional J f [ψ] has been found, and it represents a preparational

uncertainty relation in terms of the second moments.

Strictly speaking, we obtained the relations Eα ⊇ Eα( f ) ⊇Mα( f ) instead of Eq. (5.108)

as it is possible to move quantum states in phase space without affecting the values

of the second moments. The four-parameter set Eα ≡ T̂αE , for example, consists of

the squeezed states E plus those obtained from them by means of the translation op-

erator T̂α which rigidly displaces the origin of phase space to the point α. Thus, each

state saturating a specific inequality with vanishing expectation values gives rise to a

two-parameter family of minima.

Our results have a useful geometric representation in the real three-dimensional

space of moments. In this space, the uncertainty region consists of all triples of mo-

ments which can arise from (pure or mixed) states of a quantum particle. The region

turns out to be a convex set bounded by a one-sheeted hyperboloid. Each point on

this hyperboloid is associated with a unique Gaussian state saturating the Robertson-

Schrödinger inequality. The RS-functional is invariant under the group Sp(2, R) ap-

plied to the canonical pair ( p̂, q̂), i.e. rotations, scalings and linear gauge transforma-

tions. They induce SO(1, 2) transformations in the space of moments, leaving invari-

ant non-overlapping hyperboloids which foliate the uncertainty region. The bound-

ary of the uncertainty region is, in particular, invariant under the elliptic rotations,
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γ

b

µ = 1/2

µ = 1/10
Heisenberg

Robertson-

S3S2

Schrödinger

Figure 5.5: States on the boundary of the uncertainty region minimizing known and
new uncertainty relations parametrized by the real numbers (b, γ), with h̄ = 1; each
point of the plane corresponds to a squeezed state saturating the RS-inequality (5.3);
points on the vertical dashed line represent minima of Heisenberg’s uncertainty re-
lation (5.1); the two curved dashed lines indicate the minima of the modified RS-
inequality (5.83) with m = 1/2 and values µ = 1/2 (bottom) and µ = 1/10 (top);
the full dots correspond to minima of S2-invariant functionals (5.107) such as the pair
sum (5.2) and S3-invariant functionals (5.105) such as the triple product (5.4).

hyperbolic boosts and parabolic transformations which generate the group SO(1, 2).

This observation agrees with the importance of the group SO(1, 2) in quantum optics,

where coherent and squeezed states are ubiquitous.

We also derived new and explicit uncertainty relations; Fig. 5.5 illustrates the sets

of states which minimize (some of) the uncertainty relations discussed in this chapter.

The figure shows the (b, γ)-plane, which provides a visualisation of the boundary

of the uncertainty region. The sets of minima M may depend on two parameters

(all squeezed states minimizing the RS-inequality), on one parameter (such as the real

squeezed states saturating Heisenberg’s uncertainty relation) or consist of a single point

only (associated with S3-invariant inequalities such as the triple product inequality, for

example). We have not been able to backward-engineer functionals which would be

minimized by prescribed subsets of the plane such as a circle or a disk.

The minimizing states found so far were all pure, located on the boundary of the

uncertainty region. However, functionals may, of course, also take their minima in-

side this region which would allow for extremal mixed states. The trivially bounded

functional

f0(x, y, w) = (x− x0)
2 + (y− y0)

2 + (w− w0)
2 , (5.109)
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where the triple (x0,y0, w0) denotes any point inside the uncertainty region, is a simple

example. By construction, the minimum f0 = 0 is achieved by any pure or mixed state

with moment triple (x0,y0, w0). In spite of its simplicity, this result does not follow

from our approach since the sign of the determinant of F0,

det F0 = 4(x− x0)(y− y0)− (w− w0)
2 , (5.110)

is not definite: if w = w0, for example, the remaining term divides the xy-plane into

four quadrants where det F0 takes alternating signs. However, such trivial examples

are excluded by the extra conditions imposed from the requirement that the function

f is a measure of the overall uncertainty, as defined in the introduction of this chapter.

Three conceptually interesting generalizations of our approach are worth investi-

gating. First, there is no fundamental reason to restrict oneself to uncertainty function-

als depending only on the second moments in position and momentum [17]. On the

contrary, higher order expectation values would enable us to move away from Gaus-

sian quantum mechanics which is largely reproducible in terms of a classical model

“with an epistemic restriction” of the allowed probability distributions [10]. Including

fourth-order terms 〈ψ|q̂4|ψ〉, for example, will result in a eigenvalue equation (5.18)

which is not related to a unit oscillator in a simple way. It is known that fourth-order

moments for single-particle expectations can give rise to inequalities which cannot be

reproduced by models based on classical probabilities [12, 42]. Thus, it might become

possible to study truly non-classical behaviour in a systemic manner using suitable

uncertainty functionals.

Secondly, our approach can be generalized to the case of two or more continuous

variables. We expect that a systematic study of uncertainty functionals becomes pos-

sible, leading to criteria which would detect pure entangled states. More specifically,

considering monotonically increasing functions of the variances of commuting oper-

ators and deriving the lower bounds in separable and entangled states would allows

us to construct entanglement detection criteria. Known results appear to mainly rely

on intuitive choices of suitable bi-linear observables [30, 63].

Finally, the comprehensive study [25] of uncertainty relations for a single spin s

has been limited to observables transforming covariantly under the group SU(2). The
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method proposed here is easily adapted to investigate functionals depending on arbi-

trary functions of moments.
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Chapter 6

Uncertainty relations for multiple

degrees of freedom and states

6.1 Introduction

The aim of this chapter is to extend the framework developed in Chapter 5 to the case

of more than one spatial degree of freedom. Our starting point is again an uncertainty

functional, which in this case, depends on the N(2N + 1) second moments in an ar-

bitrary quantum state. In analogy to the one dimensional case, under the assumption

that it is suitably well behaved, looking for its extrema leads to an eigenvalue equa-

tion, quadratic in the 2N, in total, position and momentum operators. Whenever the

coefficients of the quadratic operator form a matrix that is positive (or negative) defi-

nite, the theorem of Williamson ensures that it can be diagonalised using a symplectic

transformation. Although the eigenvalue equation is highly non-linear in the state,

since every coefficient is in general a function of it, we can still produce a solution by

initially assuming that they are constants, and only later re-introducing their depen-

dence on the state through the consistency conditions. Similarly to the one dimensional

case, we find a set of states that are universal in that every uncertainty functional at-

tains its minimum, when there is one, for some states belonging to that set.
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6.2 Extremal Uncertainty

6.2.1 Solving the eigenvalue equation

Any potential quantity of the second moments in N spatial degrees of freedom can

be expressed as a function f of N(2N + 1) variables, and thus the functional can be

explicitly written as

J[ψ] = f
(
∆2 p1, ∆2q1, Cp1q1 , . . . Cp1 p2 , Cp1q2 , . . . ; ψ

)
− λ(〈ψ|ψ〉 − 1) , (6.1)

where the Lagrange multiplier ensures that the potential solutions are normalised, and

in this notation, we write first the “local ” second moments for each degree of freedom

and then the ones mixing them. Varying the functional as in Sec. 5.2.1, we obtain an

eigenvalue equation, quadratic in all position and momentum operators.

For example, the eigenvalue equation for two degrees of freedom is given by

(
2

∑
i=1

(
fxi p̂

2
i + fyi q̂

2
i +

fwi

2
(q̂i p̂i + p̂i q̂i)

)
+ fw3 p̂1 p̂2 + fw4 p̂1q̂2 + fw5 q̂1 p̂2 + fw6 q̂1q̂2

)
|ψ〉 =

=

(
2

∑
i=1

(
xi fxi + yi fyi + wi fzi

)
+

6

∑
j=3

wj fzj

)
|ψ〉 ,

(6.2)

where we have exploited the invariance of the second moments under phase space

translations. In matrix notation the last equation becomes

(
ẑ> · F · ẑ

)
|ψ〉 = L|ψ〉 , (6.3)

where ẑ> = ( p̂1, q̂1, p̂2, q̂2), and w3, . . . , w6 the moments mixing the degrees of free-

dom. The form of (6.3) is the same for N degrees of freedom with the obvious exten-

sions of the definitions, which we will assume from now on.

As in the one dimensional case, in order to provide the general solution of Eq.

(6.3), we initially make the assumption that the matrix of partial derivatives of f , F,

does not depend on the state and is constant. In addition, if we assume that F is

positive (or negative) definite, it follows from Williamson’s theorem that there is a
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matrix S such that F = S>DS, where D = diag(λ1, λ1, . . . , λN , λN) and the positive

real numbers λi are the symplectic eigenvalues of F. Multiplying both sides of Eq.

(6.3) by the metaplectic unitary operator from the left Ŝ†, defined through

S · ẑ = Ŝ ẑ Ŝ† , (6.4)

we find that the left hand side is equivalent to

Ŝ†
(

ẑ> · F · ẑ
)

Ŝ
(

Ŝ†|ψ〉
)
=
(

Ŝ†ẑ>Ŝ
)

F
(

Ŝ†ẑŜ
) (

Ŝ†|ψ〉
)

=
(

S−1ẑ
)> (

S>DS
) (

S−1ẑ
) (

Ŝ†|ψ〉
)

, (6.5)

and Eq. (6.3) becomes

(
ẑ> ·D · ẑ

) (
Ŝ†|ψ〉

)
= L

(
Ŝ†|ψ〉

)
, (6.6)

which can also be written as

N

∑
i=1

λi

(
p̂2

i + q̂2
i

2

)(
Ŝ†|ψ〉

)
=

L
2

(
Ŝ†|ψ〉

)
. (6.7)

The solutions of the last equation are given by tensor products of number states, one

for each degree of freedom,

|ψ〉 = Ŝ (|n1〉 ⊗ . . .⊗ |nN〉) ≡ Ŝ

(
N⊗

m=1

|nm〉
)

. (6.8)

The condition
L
2
=

N

∑
i=1

λi

(
ni +

1
2

)
h̄ (6.9)

is a condition that must be satisfied by all potential extremal states.
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6.2.2 Consistency conditions

From the definition of the covariance matrix in the state |ψ〉, we obtain

C = 〈ψ|Ĉ|ψ〉 ≡ 〈ψ|
(

ẑ⊗ ẑ + ẑ> ⊗ ẑ>

2

)
|ψ〉

= (⊗m〈nm|) Ŝ†
(

ẑ⊗ ẑ + ẑ> ⊗ ẑ>

2

)
Ŝ (⊗m|nm〉) , (6.10)

the Cij element of which is given by

Cij = (⊗m〈nm|) Ŝ†
(

ẑi ẑj + ẑj ẑi

2

)
Ŝ (⊗m|nm〉)

=
1
2
(⊗m〈nm|)

(
Ŝ† ẑiŜŜ† ẑjŜ + Ŝ† ẑjŜŜ† ẑiŜ

)
(⊗m|nm〉)

=
1
2
(⊗m〈nm|)∑

k,l
S−1

ik S−1
jl

(
ẑi ẑj + ẑj ẑi

)
(⊗m|nm〉)

= ∑
k,l

S−1
ik S−1

jl (⊗m〈nm|)
(

ẑi ẑj + ẑj ẑi

2

)
(⊗m|nm〉)

= ∑
k,l

S−1
ik S−1

jl Nkl , (6.11)

where N = diag (cn1 , cn1 , . . . , cnN , cnN ) and cnm = (nm + 1/2) h̄. Since the matrix N is

diagonal, we find

Cij = ∑
k,l

S−1
ik S−1

jl Nkl = ∑
k

S−1
ik S−1

jk Nkk , (6.12)

or finally,

C = S−1N(S−1)> , (6.13)

which are the consistency conditions for N degrees of freedom in matrix form. In anal-

ogy with the one dimensional case, from the set of all potential extrema, they select the

ones that are consistent with the specific function of the second moments considered.

The take-away message from the conditions (6.13) can be summarised in the fol-

lowing statement: a function f of the second moments of N positions and momenta,

has an extremum in a pure state |ψ〉, if there exists a symplectic matrix S that diago-

nalises the corresponding covariance matrix, and at the same time, the transpose of its

inverse,
(
S−1)>, diagonalises the matrix of the partial derivatives of the function f .

Observe that the consistency conditions imply (6.9), since it holds that L = Tr(CF)
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and ∑i λicni =
1
2 Tr(DN). Thus

L
2
=

N

∑
i=1

λi

(
ni +

1
2

)
h̄ ⇒ Tr(CF) = Tr(DN) , (6.14)

which is trivially satisfied if the consistency conditions, Eq. (6.13), are satisfied.

According to Eq. (6.13) the determinant of the covariance matrix deriving from

states which extremise the uncertainty functional takes the value

det C =
N

∏
i=1

(
ni +

1
2

)2

h̄2 . (6.15)

Clearly, the minimum is achieved when each oscillator resides in its ground state,

det C ≥
(

h̄
2

)2N

, (6.16)

corresponding to n1 = . . . = nN = 0 in Eq. (6.15). No pure N-particle state can

give rise to a covariance matrix C violating the inequality (6.16). This universally

valid constraint generalizes the single-particle inequality derived by Robertson and

Schrödinger to N particles, expressing it elegantly as a condition on the determinant of

the covariance matrix of a state. Supplying (6.15) with the one dimensional Robertson-

Schrödinger inequalities that need to be obeyed in addition by each subsystem, we get

the general uncertainty statement for more than one degree of freedom. This is usually

expressed in the form [67],

C +
i
2

Ω ≥ 0 , (6.17)

where Ω is a fixed non-singular, skew-symmetric matrix that any symplectic matrix

must preserve. Its explicit form depends on the choice of ordering of the elements in

the vector z, defined through [ẑk, ẑl ] = ih̄ωkl . The explicit form was given in Eq. (2.24)

of Chapter 2.
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6.2.3 Convexity

Let us now show that the region defined by (6.16) is a convex set in the N(2N + 1)-

dimensional space of second moments. We first show that any convex combination

C(t) = tC1 + (1− t)C2 , t ∈ [0, 1] , (6.18)

of two covariance matrices C1 and C2 located on the boundary,

det C1 = det C2 =

(
h̄
2

)2N

, (6.19)

satisfies the inequality (6.16). This is consequence of the fact that

g(C) = − ln det C (6.20)

is a convex function, i.e.

g(tC1 + (1− t)C2) ≤ tg(C1) + (1− t)g(C2) (6.21)

holds for arbitrary for strictly positive definite matrices, C1, C2 > 0. Rewriting (6.19)

in the form

− ln det (C1/h̄) = − ln det (C2/h̄) = 2N ln 2 , (6.22)

one finds that

− ln det [(tC1 + (1− t)C2) /h̄] ≤ −t ln det (C1/h̄)− (1− t) ln det (C2/h̄) = 2N ln 2 .

(6.23)

In other words, we have shown that

det (tC1 + (1− t)C2) ≥
(

h̄
2

)2N

; (6.24)

all convex combinations of covariance matrices lie inside the uncertainty region. Equal-

ity in (6.24) is only achieved if t = 0 or t = 1. Therefore, states of minimal uncer-
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tainty must be pure and necessary lie on the surface bounding the uncertainty region.

Clearly, the argument extends to convex combinations of covariance matrices inside

the uncertainty region.

6.2.4 Mixed states

In analogy with the one-dimensional case, as discussed in Sec. 5.2.5, it can be shown

that the extremal states of any functional, Eq. (6.8), cover all points in the uncertainty

region.

To see this, note that any admissible covariance matrix can be diagonalised, which

is guaranteed by Williamson’s theorem [84, 8]. Let s1, . . . , sN denote its symplectic

eigenvalues defined in Chapter 2, assumed to be ordered from smallest to largest and

sN ≤ m + 1/2, for some m ≥ 2.

Consider the state

|ψk〉 =
√

tk|nk = 0〉+
√

1− tk|nk = m〉 , k = 1, . . . , N , (6.25)

and observe that for suitable values of tk, the variances of position and momentum of

the k-th degree of freedom can be made equal to sk, and their covariance is zero. In

addition, note that all matrix elements of operators of the form p̂k q̂k′ with k 6= k′ are

zero in the product state

|Ψ〉 = |ψ1〉 ⊗ . . .⊗ |ψN〉 , (6.26)

and thus all possible symplectic eigenvalues can be covered.

This suffices to demonstrate that mixed states do not contribute additional points

in the uncertainty region, similarly to the one-dimensional case, which justifies our

restriction to pure states only.

6.3 Applications and examples

6.3.1 One spatial degree of freedom

As a consistency check, we re-derive the result of Chapter 5 that was obtained for one

spatial degree of freedom. In that case, N = cnI, and with S = SγGb, one finds that
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the consistency conditions take the simple form

C = S−1N(S−1)> = S−1(S−1)>cn = cnG−1
b S−1

γ (S−1
γ )>(G−1

b )> = |F|1/2F−1cn , (6.27)

or
F ·C√
det F

= cn I , n ∈N0 , (6.28)

where

Gb =

 1 0

b 1

 , and Sγ =

 e−γ 0

0 eγ

 , (6.29)

with real parameters

b =
fw

2 fy
∈ R and γ =

1
2

ln
(

fy√
det F

)
∈ R . (6.30)

Thus, the general formalism correctly reproduces the findings of Chapter 5, as consis-

tency would require.

6.3.2 N spatial degrees of freedom, product states

Let us now examine the case of more degrees of freedom but when there are no cor-

relations between them; then, the functional depends only on the second moments

for each degree of freedom, f ≡ f (x1, y1, w1, . . . , xN , yN , wN), i.e. the 2N(N − 1) sec-

ond moments that mix the degrees of freedom are zero: wN+1 = . . . = w2N2−N = 0.

Specialising for simplicity to N = 2, one can show that

Ŝ = (Ŝ1 ⊗ 1)(1⊗ Ŝ2), (6.31)

of which the corresponding symplectic matrices are given in block form by:

S1 =

 Sγ1Gb1 0

0 I

 and S2 =

 I 0

0 Sγ2Gb2

 (6.32)
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and the consistency conditions become

C = S−1N(S−1)> = S−1(S−1)>N = S−1(S−1)>N = F−1
p N , (6.33)

or

FpC = N , (6.34)

where we defined the matrix

Fp =

 |F1|−1/2F1 0

0 |F2|−1/2F2

 , (6.35)

which shows that this case is equivalent to two one-dimensional ones separately, as it

was expected. To see this, note that (6.34) is equivalent to the six equations obtained by

taking the set of Eqs. (5.41-5.43) of Chapter 5 twice, once for each degree of freedom.

6.3.2.1 Inequalities for a two dimensional quantum system

Apart from inequalities that can be obtained form the product and sum of one degree

of freedom inequalities, one can consider others than are not derived from the one di-

mensional ones in a trivial way. An example of the former is the Robertson inequality

for more than two observables [57], which we can derive by considering

f (x1, y1, z1, x2, y2, z2) = (x1y1 − z2
1)(x2y2 − z2

2) , (6.36)

that leads to (
∆2 p1 ∆2q1 − C2

p1q2

) (
∆2 p2 ∆2q2 − C2

p2q2

)
≥
(

h̄
2

)4

, (6.37)

the boundary described by Eq. (6.16) in the absence of correlations. Note that this

inequality is only invariant under Sp(2, R)⊗ Sp(2, R) transformations, instead of the

full Sp(4, R) that the Robertson-Schrödinger equivalent inequality for more degrees

of freedom must be invariant under. However, the matrix inequality

C +
i
2

Ω ≥ 0 , (6.38)
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is invariant under any symplectic transformation and serves as the required general-

isation. It can also be stated as inequality conditions that need to be imposed on the

“symplectic eigenvalues” of the covariance matrix [1, 2].

On the other hand, an example that is not trivially obtained from one dimensional

inequalities is found by considering the functional

f (x1, y1, w1, x2, y2, w2) = x1 y1x2 y2 − w2
1 w2

2 , (6.39)

and solving Eqs. (6.34) leads to the inequality

(
∆2 p1 ∆2q1

) (
∆2 p2 ∆2q2

)
≥
(

h̄
2

)4

+ C2
p1q1

C2
p2q2

. (6.40)

As expected, it is stronger than the “Heisenberg”-type inequality for more than two

observables mentioned in the paper by Robertson [57]:

∆p1 ∆q1 ∆p2 ∆q2 ≥
(

h̄
2

)2

, (6.41)

but weaker than Eq. (6.37).

Other inequalities that one can derive by considering appropriate functionals are:

α
(
∆2 p1

)n
(∆2q2)

n + β
(
∆2 p2

)n
(∆2q1)

n ≥ 2
√

αβ

(
h̄
2

)2n

,

α
(
∆2 p1

)n
(∆2 p2)

n + β
(
∆2q1

)n
(∆2q2)

n ≥ 2
√

αβ

(
h̄
2

)2n

, (6.42)

with α, β > 0. For α = β = 1 and n = 1, one obtains

∆p1∆q2 + ∆p2∆q1 ≥ h̄ ,

∆p1∆p2 + ∆q1∆q2 ≥ h̄ , (6.43)

which can be compared with the inequality for the sum of Heisenberg inequalities for

each degree of freedom:

∆p1∆q1 + ∆p2∆q2 ≥ h̄ . (6.44)

We conclude this section by mentioning two more inequalities which will be of
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some importance in the context of Sec. 6.4.1:

1
2
(
∆2 p1∆2q2 + ∆2 p2∆2q1

)
− Cp1q1 Cp2q2 ≥

(
h̄
2

)2

, (6.45)

and
1
2
(
∆2 p1∆2 p2 + ∆2q1∆2q2

)
− Cp1q1 Cp2q2 ≥

(
h̄
2

)2

. (6.46)

6.3.3 An inequality including correlations in two spatial degrees of free-

dom

Let us now study a less trivial function that involves terms mixing the degrees of

freedom. We start from the functional

f
(
∆2 p1, . . . , Cq1q2

)
= a∆2 p1 + a∆2q1 + b∆2 p2 + b∆2q2 + cCp1 p2 − cCq1q2 ,

for which the matrix F takes the form

F =


a 0 c/2 0

0 a 0 −c/2

c/2 0 b 0

0 −c/2 0 b

 . (6.47)

It is positive definite if the coefficients a, b, c obey the conditions a, b > 0 and 4ab > c2,

which we assume. The symplectic matrix S that puts F in diagonal form is given by

[76]:

S =


w+ 0 w− 0

0 w+ 0 −w−

w− 0 w+ 0

0 −w− 0 w+

 , (6.48)

where

w± =

√
a + b±√y

2
√

y
, with y = (a + b)2 − c2 . (6.49)
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With these definitions, the consistency conditions, Eq. (6.13), can be solved and lead

to the covariance matrix at the extrema

C = S−1N(S−1)>

=


∆2 p(e)1 0 C(e)

p1 p2 0

0 ∆2q(e)1 0 C(e)
q1q2

C(e)
p1 p2 0 ∆2 p(e)2 0

0 C(e)
q1q2 0 ∆2q(e)2

 , (6.50)

where the second moments at the extrema are given by

∆2 p(e)1 = ∆2q(e)1 =
n1 − n2

2
+

(a + b)(n1 + n2 + 1)
2
√
(a + b)2 − c2

∆2 p(e)2 = ∆2q(e)2 =
n2 − n1

2
+

(a + b)(n1 + n2 + 1)
2
√
(a + b)2 − c2

, (6.51)

while the correlations between the two degrees of freedom are

C(e)
p1 p2 = −C(e)

q1q2 = −
c(n1 + n2 + 1)

2
√
(a + b)2 − c2

. (6.52)

One can check that ∆2 p(e)1 , ∆2q(e)1 , ∆2 p(e)2 , ∆2q(e)2 > 0 , while
(

C(e)
p1 p2

)2
≤ ∆2 p(e)1 ∆2 p(e)2

and
(

C(e)
q1q2

)2
≤ ∆2q(e)1 ∆2q(e)2 , as required. In fact, the last two inequalities are never

saturated by the extremal states but they get arbitrarily close as one of n1, n2 is zero,

while the other tends to infinity.

Substituting the values of the moments from the solutions of the consistency con-

ditions in the functional, we find its extremal values

f (e)a,b,c(n1, n2) = (a− b)(n1 − n2) +
√
(a + b)2 − c2(n1 + n2 + 1) ≥ fa,b,c(0, 0) . (6.53)

As a result, we can deduce the inequality in an arbitrary state:

a∆2 p1 + a∆2q1 + b∆2 p2 + b∆2q2 + cCp1 p2 − cCq1q2 ≥
√
(a + b)2 − c2 , (6.54)

107



Chapter 6. Uncertainty relations for multiple degrees of freedom and states

which can be contrasted with one for product states

a∆2 p1 + a∆2q1 + b∆2 p2 + b∆2q2 ≥ a + b . (6.55)

Note that in the limit a = b = c/2, which however breaks the positive definiteness of F,

the right hand side of (6.54) tends to zero and the terms on the left are just the sum of

the variances of the EPR-type pair of operators û1 = p̂1 + p̂2 and û2 = q̂1 − q̂2, [66, 8].

6.4 Uncertainty in multiple states and degrees of freedom

6.4.1 Uncertainty functionals in more than one states

Every uncertainty functional we defined so far, in this chapter and previous ones, was

assumed to depend only on one state. However, it is a straightforward generalisation

to allow for more than one states in a functional and look for its extrema. In this

section, we briefly study the case of more states for one or more degrees of freedom in

the absence of correlations. For the one dimensional case, we re-derive an inequality

by Trifonov [74], named state-extended uncertainty relation, along with generalisations.

The extremisation of such a functional leads to an eigenvalue equation similar to

Eq. (6.2), for each state, the solution of which leads to a number of consistency condi-

tions of the type of Eq. (6.13).

Let us first examine the one spatial degree of freedom case. The functional depends

on the m states ϕi with i = 1, .., m and its explicit form is:

J[ϕ1, . . . , ϕm] = f
(
∆2 p1, ∆2q1, Cp1q1 , . . . , ∆2 pm, ∆2qm, Cpmqm ; ϕ1, . . . , ϕm

)
−∑

i
λi(〈ϕi|ϕi〉 − 1) , (6.56)

where ∆2 pi, ∆2qi, Cpiqi denote the variances and the covariance in the i-th state ϕi,

and λi impose the condition of normalised states. Generalising the variational tech-

nique developed in the beginning of this chapter for a multidimensional functional
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and keeping up to first order terms, we find

J[ϕ1 + ε1, . . . , ϕm + εm] ≈ J[ϕ1, . . . , ϕm] + ∑
i

ε iDεi J[ϕ1, . . . , ϕm] , (6.57)

where

Dεi = 〈ε i|
δ

δ〈ϕi|
+

δ

δ|ϕi〉
|ε i〉 , (6.58)

denote Gâteaux derivatives. Extrema are obtained by requiring the first order terms

to vanish and by doing so one obtains m eigenvalue equations of the form

(
∂ f

∂∆2 pi
p̂2 +

∂ f
∂∆2qi

q̂2 +
1
2

∂ f
∂Cpiqi

(q̂ p̂ + p̂q̂)
)
|ξi〉

=

(
∂ f

∂∆2 pi
∆2 pi +

∂ f
∂∆2qi

∆2qi +
∂ f

∂Cpiqi

Cpiqi

)
|ξi〉 , (6.59)

where |ξi〉 = T̂†
αi
|ϕi〉 and i = 1, . . . , m. Again, notation becomes more concise if we set

xi = ∆2 pi , yi = ∆2qi , wi = Cpiqi , (6.60)

and the previous eigenvalue equations become

(
fxi p̂

2 + fyi q̂
2 +

fwi

2
(q̂ p̂ + p̂q̂)

)
|ξi〉 =

(
xi fxi + yi fyi + wi fwi

)
|ξi〉 , (6.61)

the solutions of which are given by

|ϕi〉 = T̂(i)
αi Ĝ(i)

bi
Ŝ(i)

γi |ni〉 . (6.62)

For each state there will be three equations of the form of Eqs. (5.41)-(5.43), for a total

of 3m conditions:

xi fxi = yi fyi ,

2wi fyi = −xi fwi ,

xiyi − w2
i = c2

ni
h̄2 . (6.63)

Note that the cni refer to the eigenvalues of a harmonic oscillator of the same degree of
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freedom, but there is no reason to demand that every solution |ϕ〉 of the eigenvalue

equation occupy the same number state (suitably symplectically transformed), |n〉.

Observe that the consistency conditions in this case are effectively the same as

the ones of a functional of one state but with multiple degrees of freedom and no

correlation, as in Sec. 6.3.2. In matrix notation, they are given by

FmsC = N , (6.64)

where

Fms =


|F1|−1/2F1 · · · 0

...
. . .

...

0 · · · |Fm|−1/2Fm

 , (6.65)

C is the block matrix formed by the covariance matrices in each state on the diagonal,

i.e. symbolically C = diag(C1, . . . , Cm) and N = diag (cn1 , cn1 , . . . , cnm , cnm).

As a result, we see that there is a mathematical equivalence between the case of

functionals of one degree of freedom and many states and the one of functionals in

more degrees of freedom but no correlations. The potential extremal values of the sec-

ond moments are the same for functionals that are structurally identical in both cases,

but with a different interpretation of the symbols. That is not true for the extremal

states, where in the first case we have m vectors in the same Hilbert space, while in

the second they live in the tensor product of m Hilbert spaces.

6.4.1.1 Inequalities for two states

Following the considerations at the end of last section and the equivalence between

functionals with non-correlated degrees of freedom and functionals in one dimension

but many states, it is obvious that inequalities in the two cases have the same form

but the symbols have different meanings: e.g. in the former case, ∆2q1 would denote

the variance of position of one conjugate pair, while in the latter it would denote the

variance of position in the first state. Thus, all inequalities of Sec. 6.3.2 hold with a
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different interpretation of the symbols. Owing to that fact, the inequality

1
2
(
∆2 p1 ∆2q2 + ∆2 p2 ∆2q1

)
− Cp1q1 Cp2q2 ≥

(
h̄
2

)2

, (6.66)

is Trifonov’s state extended uncertainty relation [74], in the context of this section. Vari-

ations and generalisations of it can be easily obtained, in a similar manner as in Sec.

6.3.2. E.g., one possible three state generalisation would be

1
3
(
∆2 p1 ∆2 p2 ∆2 p3 + ∆2q1 ∆2q2 ∆2q3

)
− Cp1q1 Cp2q2 Cp3q3 ≥

(
h̄
2

)3

. (6.67)

6.4.2 Functionals for a quantum system in multiple dimensions in more

than one states

For completeness, we conclude this chapter by considering the most general case pos-

sible: functionals in one or more degrees of freedom, depending on one or more states.

Let us assume that the functional depends on a total of m states, in k degrees of

freedom and denote the two variances and the covariance of a canonical pair of op-

erators of the j-th degree of freedom in the i-th state with the symbols xij, yij, wij. For

example, xij is explicitly given by:

xij = ∆2
i pj = 〈ϕi| p̂2

j |ϕi〉 − 〈ϕi| p̂j|ϕi〉2 , (6.68)

with i = 1, . . . , m and j = 1, . . . , k and similarly for the rest. Then, in the absence of cor-

relations between different degrees of freedom, the uncertainty functional is explicitly

given by

J[ϕ1, . . . , ϕm] = f (x11, y11, w11, . . . , xmk, ymk, wmk; ϕ1, . . . , ϕm)−∑
i

λi(〈ϕi|ϕi〉 − 1) .

(6.69)

The extremal values of the uncertainty functional are obtained for the extremal states,
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which are the solutions to the m equations:

∑
j

(
fxij p̂j

2 + fyij q̂j
2 +

fwij

2
(
q̂j p̂j + p̂jq̂j

))
|ϕi〉 = ∑

j

(
xij fxij + yij fyij + wij fwij

)
|ϕi〉 ,

(6.70)

which are explicitly given by the states

|ϕi〉 = ∏
j

(
T̂(ij)

αij Ĝ(ij)
bij

Ŝ(ij)
γij

)
∏

j
|nj〉 . (6.71)

For each degree of freedom and for each state there is a triple of consistency conditions,

for a total of 3×m× k conditions:

xij fxij = yij fyij ,

2wij fyij = −xij fwij ,

xijyij − w2
ij =

(
nij +

1
2

)2

h̄2 . (6.72)

If we allow for correlations, then for each one of the m states, we find a set of

consistency conditions as in Eq. (6.13), i.e.

Ci = S−1
i Ni(S−1

i )> , i = 1, . . . , m . (6.73)

These are the consistency conditions for the most general functional one can consider

and the main result of this section.

6.4.2.1 Inequalities for a two dimensional system involving two states

We conclude this chapter by mentioning a few simple examples of inequalities in more

that one states and more degrees of freedom.

One of the simplest functionals of this type is

f = αx12y21 + βx21y12 , (6.74)
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with α, β > 0 , that leads to the inequality

α ∆2
1 p2 ∆2

2q1 + β ∆2
2 p1 ∆2

1q2 ≥
h̄2

2

√
αβ , (6.75)

which however, along with the minimising states, cannot be obtained from known

inequalities in a trivial way. Another similar example is given by

α ∆2
1 p1 ∆2

2q1 + β ∆2
1 p2 ∆2

2q2 + γ ∆2
2 p1 ∆2

1q1 + δ ∆2
2 p2 ∆2

1q2 ≥
(√

αγ +
√

βδ
)

2
h̄2 . (6.76)

6.5 Discussion

In this chapter we extended the results of chapter 5 and considered functionals of one

or more spatial degrees of freedom and states.

The extremisation of such a functional led to an eigenvalue equation quadratic in

the positions and the momenta, and under certain assumptions we identified the set

of solutions. The consistency conditions select the extrema for a given function f of the

second moments, if they exist, from the set of all possible solutions. Applying these

results, we derived a number of inequalities for the case of two spatial degrees of

freedom.

We also found that there is a certain equivalence between the extremisation prob-

lem of functionals with one degree of freedom and multiple states, and the one of

functionals in more than one degrees of freedom but without correlations. The re-

sulting inequalities are the same with a different interpretation of the symbols. We

extended the results to the most general case of functionals in multiple degrees of

freedom and multiple states.
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Chapter 7

The Arthurs-Kelly process for more

than two observables

7.1 Introduction

In the previous chapters of this thesis we have been exclusively dealing with prepa-

rational inequalities, statements concerning limitations in preparing a quantum sys-

tem in a state where certain incompatible observables attain arbitrarily precise values.

These inequalities are in the same spirit as the one proven by Kennard [41] and gener-

alise it along different directions: bounds for more observables, for other smooth func-

tions apart from the product and sum as well as uncertainty relations for more degrees

of freedom. All these inequalities do not require any reference to a measurement on

the system since they only describe the intrinsic uncertainty in a quantum state. As it

was mentioned in the introduction, preparational inequalities are inadequate to cap-

ture the full physical content of the uncertainty principle and Heisenberg’s original

ideas, one aspect of which concern limitations of the act of measurement on a quan-

tum system. Recently error-disturbance inequalities have been derived [19, 20, 17, 52],

independent of the specific model of the measuring process. In this chapter, however,

we will mostly discuss measurement inequalities within the context of a proposed

generalisation of the Arthurs-Kelly model of joint position and momentum measure-

ment, in a similar fashion as Appleby [3, 4].

The Arthurs-Kelly model [6] is the first model describing a joint measurement of
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incompatible observables, or specifically position and momentum. It appeared in 1965

and since then, along with variations, it has been studied by various authors. It gen-

eralises von Neumann’s model of measurement of position and describes, with a spe-

cific interaction Hamiltonian, the effect of the coupling of the measured system to a

measuring apparatus. In its original form, a quantum system with one spatial degree

of freedom is coupled with an apparatus consisting of two parts, the probes. Both

probes are taken to be quantum mechanical systems characterised by a pair of canon-

ical observables, i.e. operators obeying the standard commutation relations. In the

form discussed by Arthurs and Kelly, the position and momentum of the system un-

der investigation are coupled with the momenta of the probes and the interaction is

assumed to be impulsive with the coupling constant large enough so that the free evo-

lution of the individual systems can be ignored for as long as the measurement lasts.

The main result of Arthurs and Kelly was an inequality for the product of the standard

deviations of the probe pointer observables, the lower bound of which was shown to

be twice as large as the one of the preparational Heisenberg inequality. This increase

in noise or reduction in accuracy is attributed to the fact that the probes are quantum

mechanical systems.

Although the original Arthurs-Kelly model and some of its subsequent generali-

sations refer to a quantum particle to be measured, the conclusions drawn find ap-

plication in the field of quantum optics. In that context, the conjugate pair of position

and momentum refer to the quadrature components of the field which are to be jointly

measured, and the statistics obtained match those of heterodyne or homodyne detec-

tion [45, 88, 87, 44, 86].

In this chapter we will propose and study generalisations of the Arthurs-Kelly pro-

cess so that it is not restricted to the joint measurement of position and momentum.

These generalisations will allows us to investigate the impact of a joint measurement

of more than two observables. We will derive joint-measurement inequalities and com-

pare them with their preparational counterparts obtained in Chapter 4.

Furthermore, following the analysis of Appleby, we will use certain definitions of

error and disturbance and derive a number of inequalities that generalise the notion

of error and disturbance from two to three observables. These state dependent noise
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measures are of the Ozawa type and suffer from a number of known shortcomings.

Regardless of this observation, they are still mathematically well defined and one can

derive statements as a first step in generalising error-disturbance inequalities to the

case of a joint measurement of three observables.

Finally, we will review the analysis of Arthurs and Goodman [7] in the case of

three incompatible observables and with the aid of the definition of suitable noise

operators, we will derive a general inequality that needs to be obeyed in a triple joint

measurement. This model independent analysis provides a bound which agrees with

our findings for the Arthurs-Kelly measurement of three canonical observables but is

extended to arbitrary operators.

7.1.1 Preliminaries

There have been various closely related variants of the model in the literature but in

this work we will consider generalisations of the following versions:

• the original Arthurs-Kelly model, characterised by an interaction Hamiltonian of

the form (in suitable units),

Ĥ = k(q̂⊗ P̂1 ⊗ I2 + p̂⊗ I1 ⊗ P̂2) , k ∈ R . (7.1)

• The generalisation due to Busch [15], with interaction Hamiltonian:

Ĥ = λq̂⊗ P̂1 ⊗ I2 − µ p̂⊗ I1 ⊗ Q̂2 +
λµ

2
κIs ⊗ P̂1 ⊗ Q̂2 , κ , λ , µ ∈ R . (7.2)

In both cases the interaction between the system being measured and the apparatus

is thought to be impulsive in nature, which can be mathematically modelled by mul-

tiplying with a delta function, and that the Hamiltonians describing the evolution of

each subsystem can be ignored for the duration of the measurement. The operators

without an index correspond to the position and momentum of the system under in-

vestigation, while operators with indices correspond to the two probe systems of the

measuring device. They act on the corresponding Hilbert spaces Hs, H1, H2 associ-

ated with the system and the two probes respectively; with I we denote the identity
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and the appropriate subscripts indicate the corresponding Hilbert space. From now

on, the tensor product symbols will be dropped for notational simplicity.

The first of the two models has been studied in some detail in the literature [6, 3, 4]

and is the one that is more straightforward to generalise to more observables: one will

couple the momentum of additional probes with each extra system operator. The sec-

ond is more general in that it allows for the description of different couplings and that

it incorporates the case of sequential measurements for special values of them; how-

ever, it is not entirely obvious how to generalise it to more than two observables and

slightly more complicated to work with. A quite obvious difference is that in the first

case, one is always coupling the momenta of the probes with the system’s observables

while in the second, one couples the position of the second probe with the momen-

tum of the system under investigation and the momentum of the first probe with the

position of the system. This, however, has not any impact on our considerations.

7.2 Joint measurement inequalities for the statistics of the probes

7.2.1 Uncorrelated probes

Our initial analysis assumes that no correlation exist between the probes and under

this hypothesis, we will review the original analysis of Arthurs and Kelly and discuss

extensions of it to N observables. A discussion of the effect of correlated probes is

postponed until Sec. 7.2.2.

7.2.1.1 The original Arthurs-Kelly process

Let us briefly review the original model by Arthurs and Kelly before we study in

more detail the generalisation for a canonical triple. We first assume that the system

and probes are prepared in uncorrelated pure states and following the analysis of

Appleby [3, 4], we work in the Heisenberg picture for the evolution of the system, in

contrast with Arthurs and Kelly who derive the evolved wavefunction of the system

in the Schrödinger picture. We will add a subscript “ f ” to denote the operators after

the interaction and leave with no subscript the ones before.

We assume there is a Hilbert space Hs associated with the system to be measured
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and a Hilbert space Hi with i = 1, 2, for each probe of the measuring apparatus. The

state space of the total system is represented by the tensor product H = Hs ⊗H1 ⊗

H2.

Assume we have the system operators p̂, q̂ and the probe operators P̂1, P̂2, . . .. In

the Hilbert space of the total system, some of these are given by p̂ ⊗ I1 ⊗ I2, . . . and

Is ⊗ P̂1 ⊗ I2, . . . and so on, where Is, Ii are the identity operators in the Hilbert spaces

of the system and the probes, respectively. From now on the identities and tensor

product symbols will be suppressed.

The unitary evolution associated with the impulsive interaction Hamiltonian, Eq.

(7.1) , is given by Û2 = exp
(
− iĤ2

h̄

)
or explicitly

Û2 = exp
(
− i

h̄
( p̂P̂1 + q̂P̂2)

)
. (7.3)

According to the model, the readings that capture the measured values of p̂, q̂, are

those of the evolved probe observables conjugate to the momenta, P̂1 , P̂2, or specifi-

cally Q̂1 f , Q̂2 f , obtained by a projective measurement on the pointer observables after

the interaction. In the Heisenberg picture, observables evolve according to Q̂j f =

Û†
2 Q̂jÛ2 and after a short Baker-Campbell-Hausdorff calculation we find

Q̂1 f = p̂ + Q̂1 +
1
2

P̂2 = p̂ + ŵ1 ,

Q̂2 f = q̂ + Q̂2 −
1
2

P̂1 = q̂ + ŵ2 , (7.4)

where [ŵ1, ŵ2] = h̄/i and we have used the identity

eXYe−X = Y + [X, Y] +
1
2!

[X, [X, Y]]
1
3!

[X, [X, [X, Y]]] + . . . . (7.5)

With no correlations, the variances are given by

∆2Q1 f = ∆2Q1 + ∆2 p +
∆2P2

4
,

∆2Q2 f = ∆2Q2 + ∆2q +
∆2P1

4
. (7.6)
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Let us first examine what happens to the sum inequality for the system,

∆2 p + ∆2q ≥ h̄ . (7.7)

The sum of the variances of the positions of the two probes after the interaction are

given by

∆2Q1 f + ∆2Q2 f = ∆2Q1 + ∆2Q2 + ∆2 p + ∆2q +
∆2P1

4
+

∆2P2

4
. (7.8)

To obtain the minimum, we use the framework developed in Chapter 6, specifically

the case of product states, and we define the following uncertainty functional

f = y1 + y2 + x + y +
x1

4
+

x2

4
, (7.9)

where we switched to the notation of Chapter 6; x, y denote the variances of momen-

tum and position, respectively, and the indices differentiate between system and probe

variances. For example, x = ∆2 p, or x1 = ∆2P1 and so on. In the absence of correla-

tions between the probes, the extrema of this uncertainty functional correspond to the

consistency conditions, (6.34), which we repeat:

x fx = y fy , xy =

(
n +

1
2

)2

h̄2 , n ∈N ,

x1 fx1 = y1 fy1 , x1y1 =

(
n1 +

1
2

)2

h̄2 , n1 ∈N ,

x2 fx2 = y2 fy2 , x2y2 =

(
n2 +

1
2

)2

h̄2 , n2 ∈N . (7.10)

The extrema are easily found to be

x = y =

(
n +

1
2

)
h̄ , x1 = 4y1 = (2n1 + 1) h̄ , x2 = 4y2 = (2n2 + 1) h̄ . (7.11)

The extremal values of the functional are given by

fextr = (2n + n1 + n2 + 2) h̄ , (7.12)
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and the minimum is obviously attained for n = n1 = n2 = 0.

As a result, we obtain the sum Arthurs-Kelly equivalent inequality for a joint mea-

surement of a canonical pair:

∆2Q1 f + ∆2Q2 f ≥ 2h̄ . (7.13)

We find that the usual bound has doubled. A similar analysis for the product, which

differs only in the definition of the functional, verifies the main result by Arthurs and

Kelly [6],

∆2Q1 f ∆2Q2 f ≥ h̄2 , (7.14)

which shows that the usual Heisenberg bound for the product is higher.

Both inequalities demonstrate the claim of the introduction that the joint measure-

ment of position and momentum introduces extra noise, which should be attributed

to the fact that the measuring apparatus is itself a quantum system with intrinsic un-

certainty.

In the following section, we generalise these two inequalities for a canonical triple.

7.2.1.2 A generalisation for a joint measurement of three observables

We first generalise the original Hamiltonian for a canonical triple by adding another

probe system to our measuring device; then, the total interaction Hamiltonian is given

by

Ĥ3 = p̂P̂1 + q̂P̂2 + r̂P̂3 , (7.15)

while the unitary operator effecting the coupling of the system with the apparatus is

given by

Û3 = exp
(
− i

h̄
( p̂P̂1 + q̂P̂2 + r̂P̂3)

)
. (7.16)

In accordance with the original model, the readings representing the values of p̂, q̂, r̂

are those of the evolved probe observables Q̂1, Q̂2, Q̂3 after the interaction, obtained

by a projective measurement on the pointer observables. After the interaction of the
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system with the measuring apparatus, we find

Q̂1 f = p̂ + Q̂1 +
1
2
(

P̂3 − P̂2
)
= p̂ + v̂1 , (7.17)

and cyclic permutation of the indices (1, 2, 3). Note that operators v̂1, v̂2, v̂3 form a

triple with the pairwise commutators equal to the value ih̄. However, due to the fact

that each operator is “composite” and that the third is not equal to minus the sum of

the other two, we cannot apply the triple sum inequality, Eq. (5.79).

However, under the assumption that no correlations exist between the different

probes, the variances of the pointer observables are Q̂1 f , Q̂2 f , Q̂3 f , are

∆2Q1 f = ∆2Q1 + ∆2 p +
1
4
(
∆2P2 + ∆2P3

)
∆2Q2 f = ∆2Q2 + ∆2q +

1
4
(
∆2P3 + ∆2P1

)
∆2Q3 f = ∆2Q3 + ∆2r +

1
4
(
∆2P1 + ∆2P2

)
, (7.18)

which follow from (7.17) by taking the square and then the average with respect to an

arbitrary product state, |Ψ〉 = |ψ〉 ⊗ |ϕ1〉 ⊗ |ϕ2〉 ⊗ |ϕ3〉; |ψ〉 refers to the initial state of

the measured system, while |ϕi〉 to the states of the probes.

We first examine the sum inequality. As in the last section, we are looking for the

minima of the uncertainty functional

f =
√

3 + y1 + y2 + y3 +
1
2
(x1 + x2 + x3) , (7.19)

where, once again, we switched to the notation of Chapter 6. For simplicity we have

assumed that the measured system resides in a state of minimal triple uncertainty

where the variances of the three operators associated with the system in question,

p̂, q̂, r̂ take their lowest values, according to [39] and Chapter 3; we would have re-

derived the minimal triple state if we had not made that assumption. The minimum

of the functional is contained in the solutions of the consistency conditions, which give
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the extrema

xi = 2yi =
√

2
(

ni +
1
2

)
h̄ ,

i = 1, 2, 3 , ni ∈N0 , (7.20)

from which one can derive the inequality

∆2Q1 f + ∆2Q2 f + ∆2Q3 f ≥
(√

3 +
3√
2

)
h̄ . (7.21)

We find that the bound for the sum of the three variances has increased and it is more

than twice larger. We also see that to reach this bound the probes have to be prepared

in the same squeezed state each, in which the variance in position is twice that of the

variance in momentum.

We finally turn to the product of the variances. Having established the sum in-

equality, Eq. (7.21), one can obtain the triple product inequality

∆2Q1 f ∆2Q2 f ∆2Q3 f ≥
(

1√
3
+

1√
2

)3

h̄3. (7.22)

Again, preparing the probes in the same squeezed states as for the sum, we can achieve

the lower bound. For the product inequality, the increase is of an order of magnitude.

However, it should be noted that in both cases, the increase per observable is the same.

7.2.1.3 The case of N observables in phase space

In Chapter 4 we derived the sum and product preparational inequalities for N ob-

servables for one spatial degree of freedom, in terms of their commutators. The sum

inequality was found to be (4.27), while the bound for the product was given by (4.29).

The bound after the interaction The model of joint measurement is a straightfor-

ward generalisation of the triple case: we couple each observable with the momentum

of a probe, and as a result our measuring apparatus consists of N probe subsystems.
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The unitary operator that models the measurement is explicitly given by

ÛN = exp

(
− i

h̄

N−1

∑
k=o

r̂kP̂k

)
, (7.23)

where lower-case letters denote the operators of the measured system, while capitals

correspond to the N probes.

As in the treatment of the last section, in the Heisenberg picture, the position op-

erators of the probe after the interaction are found to be

Û†
NQ̂jÛN = Q̂j + r̂j +

i
2h̄ ∑

k
P̂k
[
r̂k, r̂j

]
, (7.24)

and since r̂j = αj p̂+ β jq̂, one finds that the commutators between the system operators

are equal to [
r̂k, r̂j

]
= . . . = −

(
αkβ j − αjβk

)
ih̄ . (7.25)

The variances of pointer positions in the absence of correlations are found to be

∆2Qj f = ∆2Qj + ∆2rj +
1

4h̄2 ∑
k

∆2Pk
∣∣〈[r̂k, r̂j

]
〉
∣∣2 , (7.26)

and the bound for their sum is obtained by looking for the minimum of the expression

∑
j

∆Q2
j f = ∑

j
∆Q2

j + ∑
j

∆r2
j + ∑

j,k
∆2Pk

∣∣〈[r̂k, r̂j
]
〉
∣∣2 , (7.27)

or equivalently, of the uncertainty functional

f = B + ∑
k

yk + ∑
k,j

γkjxk , (7.28)

where B denotes the preparational bound

B =

√
∑
k>j

∣∣〈[r̂k, r̂j
]
〉
∣∣2 , (7.29)
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and γkj are given by

γkj =

∣∣〈[r̂k, r̂j
]
〉
∣∣2

4h̄2 . (7.30)

After the solutions of consistency conditions, the extremal values of the functional are

given by

f (e) = B + 2h̄ ∑
k

(
nk +

1
2

)(
∑

j
γkj

)1/2

, (7.31)

and it is obvious that the minimal value is obtained when all nk attain their lowest

values nk = 0. Thus, we can finally deduce the inequality

∑
j

∆2Qj f ≥
√

∑
k>j

∣∣〈[r̂k, r̂j
]
〉
∣∣2 + 1

2 ∑
k

√
∑

j

∣∣〈[r̂k, r̂j
]
〉
∣∣2 . (7.32)

which is the main result of this section. In terms of the coefficients of the r̂k it can be

rewritten as

∑
j

∆2Qj f ≥ h̄

((
∑

i
α2

i

)(
∑

i
β2

i

)
−
(

∑
i

αiβi

))1/2

+
h̄
2 ∑

i

(
∑

j

(
αiβ j − αjβi

)2

)1/2

. (7.33)

The product version of the above inequality can be obtained by looking for the

minimum of the product of variances under the constraint of the sum inequality.

N canonical operators We now study the inequality we derived for the case of N

canonical observables. As we described in Chapter 4, the coefficients of such N observ-

ables define a regular polygon and the symmetry of the structure simplifies our results.

We considered such structures in Chapter 4 and derived preparational inequalities for

the sum and product of their variances, which we will contrast with the results of this

section.

Substituting the particular expressions for the coefficients of the N canonical oper-
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ators in (7.32), we obtain the inequality

∑
j

∆2Qj f ≥
Nh̄

2 sin
( 2π

N

) (1 +

√
N
2

)
. (7.34)

Comparing with the preparational bound, Eq.(4.5), we find that the sum of the vari-

ances is increased by a factor of
(

1 +
√

N
2

)
.

Solving the KKT conditions for the product given the sum, we find the lower

bound on the product of N canonical operators in a joint measurement :

∏
j

∆2Qj f ≥
h̄N

2N sin
( 2π

N

)N

(
1 +

√
N
2

)N

, (7.35)

again to be contrasted with its preparational counterpart, Eq. (4.7).

Note that if we were not dealing with canonical structures but just rotated observ-

ables of unit “length” forming a regular polygon, then the difference in the expressions

for the sum and product would be the absence of the factors sin
( 2π

N

)
and sin

( 2π
N

)N

from the denominators, respectively.

7.2.2 The effect of correlations between the probes

So far we have been assuming that no correlations exist between the probes; in this

section we relax this assumption and study the effect of initial correlations for a joint

measurement of two and three observables. Although correlations can now exist be-

tween the subsystems of the probes, this is not the case between the system and the

measuring device, i.e. the state of the total system is of the form |Ψ〉 = |ψs〉 ⊗ |ϕm〉.

Recall that the pointer observables after the interaction are given by Eq. (7.4), with

[ p̂, q̂] = [ŵ1, ŵ2] =
h̄
i

, (7.36)

and the general sum inequality

∆2A + ∆2B ≥
∣∣〈[Â, B̂]〉

∣∣ , (7.37)
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that follows from the inequality of Robertson for the product [56],

∆2A ∆2B ≥
∣∣〈[Â, B̂]〉

∣∣2
4

, (7.38)

if one looks for the minimum of the sum given the product. Using the former, we find

that the evolved pointer observables Q̂1 f , Q̂2 f obey

∆2Q1 f + ∆2Q2 f ≥ 2h̄ , (7.39)

while using the latter we obtain the bound for the product

∆2Q1 f ∆2Q2 f ≥ h̄2 , (7.40)

which are identical to the inequalities in the absence of correlations. Thus for the

original Arthurs-Kelly process, allowing for correlations between the probes does not

improve the statistics of the measurement.

Let us now compare these findings to the case of joint measurement of a canonical

triple. We will use the general sum inequality for three operators that we derived in

Chapter 4, Eq. (4.51), which we restate here:

∆2A + ∆2B + ∆2C ≥ 1√
3
(|〈[A, B]〉|+ |〈[B, C]〉|+ |〈[C, A]〉|) . (7.41)

We will now apply this inequality to the probes after the interaction. The state

of the total system is once again taken to be of the form |Ψ〉 = |ψs〉 ⊗ |ϕm〉. Using

Eq. (7.17) along with its cyclic permutations, the commutation relations of the canon-

ical triple ( p̂, q̂, r̂) and the triple (v̂1, v̂2, v̂3), and substituting in the general triple sum

inequality, Eq. (4.51), we obtain the bound

∆2Q1 f + ∆2Q2 f + ∆2Q3 f ≥ 2
√

3 h̄ . (7.42)

In contrast with the joint measurement inequality for position and momentum, we

find that allowing correlations between the probes does have an impact on the lower

bound for the sum inequality. Comparing the values of the right hand sides of (7.21)
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and (7.42), which are approximately equal to 3.85h̄ and 3.46h̄, we find that the bound

in the presence of correlations can be lower by approximately 10%.

We can also deduce a product inequality from (4.51), by looking for the minimum

product of the variances of three operators under the constraint of the sum. This turns

out to be

∆2A ∆2B ∆2C ≥
(
|〈[A, B]〉|+ |〈[B, C]〉|+ |〈[C, A]〉|

3
√

3

)3

, (7.43)

and using the expressions for Q̂1 f , Q̂2 f , Q̂3 f from Eqs. (7.17), we find the triple product

inequality

∆2Q1 f ∆2Q2 f ∆2Q3 f ≥
(

2√
3

h̄
)3

. (7.44)

Not unexpectedly, the lower bound for the product of the variances similarly to

the sum, can be lower in the presence of correlations. The numerical values give a

decrease of about 27%. However, this is just an artifact of the different function used,

sum versus product, and in both cases the decrease per observable is the same and equal

to approximately 10%.

This finding suggests an important difference between the two cases considered,

which we expect to hold for the joint measurement of N observables as well. To give an

intuitive explanation why this must hold in general, we mention that the consistency

conditions in the uncorrelated case only force minimisation of the sum of variances

for each canonical pair of the same degree of freedom, ignoring all the other terms in

the total sum. In the presence of correlations one minimises all the contributions at the

expense of increasing the uncertainty of each pair; it is only a numerical coincidence

that in the case of two observables the two bounds coincide.

Following this argument, measuring N canonical operators while allowing correla-

tions between the probes, we conjecture the lower bound for the sum of the variances

to be equal twice the preparational one, i.e. Nh̄/sin( 2π
N ) which should be contrasted with

the bound (1+
√

N/2)Nh̄/2 sin( 2π
N ), Eq. (7.34), that we obtained in last section. However, to

our knowledge there do not exist generalisations of (4.51) to the case of N operators

and as a result we can not prove this statement, which we leave as a conjecture.

To conclude this section, we found that correlations do have an impact when going
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from a joint measurement of two to the joint measurement of three. More specifically,

the statistics of the pointer observables of our measuring apparatus allow for a lower

triple sum and product bound, compared to the ones in the uncorrelated case. We ex-

pect this behaviour to extend to a joint measurement of N observables and conjecture

that the preparational bound, Eq. (4.5), is doubled, in contrast with our findings for

the absence of correlations, where the bound is given by Eq. (7.34). If the above obser-

vation is correct, the increase per observable (or the increase for the sum) is given by

a factor

κ =

√
N −
√

2√
N +
√

2
. (7.45)

Since the lengths ` cancel, the increase is the same with the case of just rotated position

or momentum (` = 1). The limit N → ∞ that corresponds to probing all directions

in phase space, is equal to one, which suggests that the reduction of the noise due to

correlations becomes maximal.

7.2.3 The analysis of Arthurs and Goodman

In this section we generalise the analysis of Arthurs and Goodman [7] for a measure-

ment of two operators to the case of three. This analysis does not assume a specific

interaction and is thus model independent but it does rely on defining certain noise

operators.

As in the Arthurs-Kelly process, the system to be measured is associated with a

Hilbert space Hs and the measuring apparatus, with a Hilbert space Hm. The total

system is represented by the tensor product H = Hs ⊗Hm.

Assume we have the system operators Â, B̂, . . . and the probe operators X̂, Ŷ, . . ..

In the Hilbert space of the total system these are represented by Â⊗ Im, . . . and Is ⊗

X̂, . . ., where Im, Is are the identity operators in the Hilbert spaces of the measuring

apparatus and the system respectively; from now on the identities will be suppressed.

Also, assume that the system plus apparatus are prepared into a state ρ̂ = ρ̂s ⊗ ρ̂m,

with Tr ρ̂ = 1.

For each observable to be measured, we assume there is some process correlating

it with an observable of the apparatus. A noise operator is then defined for each one,
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e.g.

N̂X = X̂− gX Â, (7.46)

for the case where X̂ is tracking Â and gX is some positive coupling constant, which can

be identified as the amplification gain [7]. In addition, it is assumed that the measuring

observables match on average the observables they measure, i.e. Tr(ρ̂N̂X) = 0, from

which it follows that the noise operator is uncorrelated with all system observables,

i.e. Tr(ρ̂N̂XÔ) = 0, for all Ô acting on Hs.

Assume we make a joint measurement of three observables of a system Â, B̂, Ĉ,

tracked by X̂, Ŷ, Ẑ, such that

Tr(ρ̂N̂X) = Tr(ρ̂N̂Y) = Tr(ρ̂N̂Z) = 0. (7.47)

From the definitions of the noise operators one can show that the variances of the

observables of the probes are given by,

∆2X = g2
X∆2A + ∆2NX

∆2Y = g2
Y∆2B + ∆2NY

∆2Z = g2
Z∆2C + ∆2NZ (7.48)

and similarly for the average commutators

Tr(ρ̂
[
N̂X, N̂Y

]
) = Tr(ρ̂

[
X̂, Ŷ

]
)− gXgY Tr(ρ̂

[
Â, B̂

]
)

Tr(ρ̂
[
N̂Y, N̂Z

]
) = Tr(ρ̂

[
Ŷ, Ẑ

]
)− gYgZ Tr(ρ̂

[
B̂, Ĉ

]
)

Tr(ρ̂
[
N̂Z, N̂X

]
) = Tr(ρ̂

[
Ẑ, X̂

]
)− gZgX Tr(ρ̂

[
Ĉ, Â

]
). (7.49)

Moreover, observe that Tr
(
ρ̂N̂XŶ

)
= 0 and Tr

(
ρ̂N̂YX̂

)
= 0 imply that

Tr ρ̂
[
X̂, Ŷ

]
= 0. (7.50)
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As a result, we obtain the three conditions

∣∣〈[N̂X, N̂Y
]
〉
∣∣ = ∣∣gXgY〈

[
Â, B̂

]
〉
∣∣∣∣〈[N̂Y, N̂Z

]
〉
∣∣ = ∣∣gYgZ〈

[
B̂, Ĉ

]
〉
∣∣∣∣〈[N̂Z, N̂X

]
〉
∣∣ = ∣∣gZgX〈

[
Ĉ, Â

]
〉
∣∣ . (7.51)

Applying this to the observables of the three probes, Eqs. (7.48), we find

∆2X + ∆2Y + ∆2Z = ∆2NX + ∆2NY + ∆2NZ + g2
X∆2A + g2

Y∆2B + g2
Z∆2C

≥ 1√
3
(|〈[NX, NY]〉|+ . . .) +

1√
3
(|gXgY〈[A, B]〉|+ . . .) (7.52)

or by using (7.51), we finally obtain

∆2X + ∆2Y + ∆2Z ≥ 2√
3
(gXgY |〈[A, B]〉|+ gYgZ |〈[B, C]〉|+ gZgX |〈[C, A]〉|) . (7.53)

The case of gX = gY = gZ = 1, confirms the results of Sec. 7.2.2. We do not men-

tion the product inequality but it is easily obtained from the last result by the usual

optimisation method.

We conclude this section by summarising our results: similar to the analysis of

Arthurs and Goodman, by defining appropriate noise operators we find a general,

model-independent bound for a measurement of three observables. Whenever they

form a canonical triple the minimum value is found to be double the preparational

one, which agrees with our findings for the model-dependent analysis based on the

generalised Arthurs-Kelly model.

7.3 Inequalities for the error and disturbance

7.3.1 Error and disturbance inequalities according to Appleby

7.3.1.1 Review of the position-momentum case

So far we had been interested in the statistics of the meter readings of the probes after

the interaction and we saw that they obey a Heisenberg-type inequality with a bound
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higher than the preparational one; this we attributed to the fact that for each measured

observable there is a probe coupled to it, which is also a quantum system with intrinsic

uncertainty. We first follow a similar analysis to Appleby in [3], where he uses the root

mean square of suitably defined noise operators.

With the evolution defined by (7.3), one can evaluate the effect of the interaction to

all system and measuring apparatus operators through Ô f = Û†
2 ÔÛ2:

P̂1f = P̂1 , Q̂1f = Q̂1 + p̂− P̂2

2
,

P̂2f = P̂2 , Q̂2f = Q̂2 + q̂ +
P̂1

2
,

p̂f = p̂− P̂2 , q̂f = q̂ + P̂1. (7.54)

One can subsequently define the error operators of retrodiction [3]

ε̂pi = Q̂1f − p̂ , ε̂qi = Q̂2f − q̂ , (7.55)

the error operators of prediction

ε̂pf = Q̂1f − p̂f , ε̂qf = Q̂2f − q̂f , (7.56)

and the disturbance operators

δ̂p = p̂f − p̂ , δ̂q = q̂f − q̂ . (7.57)

If one thinks in classical terms, then these definitions are intuitively justified; the errors

of retrodiction are an estimate of how well the measurements capture the initial state

of the system, the ones of prediction compare the measurement to the new state of

the system after the measurement, while the disturbance operators give the difference

between the system operators before and after the measurement has been performed.

Of course these definitions can not be interpreted as easily in the quantum context but

regardless of their “quantum” meaning, they can still be defined mathematically. As

to whether they are good measures of error and disturbance, this has been debated

and in many cases it appears that this is not the case. Regardless, we consider them as
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a first step towards inequalities of error and disturbance for a triple and we provide

a number of inequalities based on them. A more detailed discussion on the topic can

be found in [3, 4]. An analysis based on other measures such as the Wasserstein-2

distance [19], for example, has not been given in this thesis and will be the focus of

future investigations.

One can now define the mean-squared errors of retrodiction (or the root-mean-squared

by taking the square root):

∆2
ei p = 〈Ψ|ε̂2

pi|Ψ〉 , ∆2
eiq = 〈Ψ|ε̂2

qi|Ψ〉, (7.58)

the mean-squared errors of prediction,

∆2
ef p = 〈Ψ|ε̂2

pi|Ψ〉 , ∆2
efq = 〈Ψ|ε̂2

qi|Ψ〉, (7.59)

and the mean-squared disturbances

∆2
d p = 〈Ψ|δ̂2

p|Ψ〉 , ∆2
dq = 〈Ψ|δ̂2

q|Ψ〉, (7.60)

where here we assume that the initial state of the system is of the form |Ψ〉 = |ψ〉 ⊗

|ϕap〉. Under the Arthurs-Kelly evolution, one finds that the error and disturbance

operators are explicitly given by,

ε̂pi = Q̂1 −
1
2

P̂2 , ε̂qi = Q̂2 +
1
2

P̂1,

ε̂pf = Q̂1 +
1
2

P̂2 , ε̂qf = Q̂2 −
1
2

P̂1,

δ̂p = −P̂2 , δ̂q = P̂1. (7.61)

One can verify that the following commutation relations hold

[
ε̂pi, ε̂qi

]
=
[
ε̂qf, ε̂pf

]
=
[
δ̂p, ε̂qi

]
=
[
δ̂p, ε̂qf

]
=
[
ε̂pi, δ̂q

]
=
[
ε̂pf, δ̂q

]
= ih̄ (7.62)
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which immediately imply the retrodictive and predictive error relations

∆2
ei p ∆2

eiq ≥
h̄2

4
, ∆2

ef p ∆2
efq ≥

h̄2

4
, (7.63)

and the four error disturbance relations

∆2
ei p ∆2

dq ≥ h̄2

4
, ∆2

eiq ∆2
d p ≥ h̄2

4
,

∆2
ef p ∆2

dq ≥ h̄2

4
, ∆2

efq ∆2
ef p ≥

h̄2

4
. (7.64)

7.3.1.2 Error and disturbance for a triple joint measurement

The definitions of last subsection extend to the triple in a straightforward manner.

Once again, after the unitary evolution modelling the measurement, the system and

probe operators are given by,

Q̂1f = Q̂1 + p̂ +

(
P̂3 − P̂2

)
2

, Q̂2f = Q̂2 + q̂ +
(

P̂1 − P̂3
)

2
,

Q̂3f = Q̂3 + r̂ +
(

P̂1 − P̂2
)

2
, P̂1f = P̂1 , P̂2f = P̂2 , P̂3f = P̂3

p̂f = p̂ + P̂3 − P̂2 , q̂f = q̂ + P̂1 − P̂3 , r̂f = q̂ + P̂2 − P̂1. (7.65)

One can then, in accordance with last subsection, define the errors of retrodiction from

the three operators:

ε̂pi = Q̂1f − p̂ = Q̂1+

(
P̂3 − P̂2

)
2

, ε̂qi = Q̂2f − q̂ = Q̂2 +

(
P̂1 − P̂3

)
2

,

ε̂ri = Q̂3f − r̂ = Q̂3 +

(
P̂1 − P̂2

)
2

, (7.66)

the errors of prediction using the operators

ε̂pf = Q̂1f − p̂f = Q̂1+

(
P̂2 − P̂3

)
2

, ε̂qf = Q̂2f − q̂f = Q̂2 +

(
P̂3 − P̂1

)
2

,

ε̂rf = Q̂3f − q̂f = Q̂3 +

(
P̂2 − P̂1

)
2

, (7.67)
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and the three disturbance operators

δ̂p = p̂f − p̂ = P̂3 − P̂2 , δ̂q = q̂f − q̂ = P̂1 − P̂3 , δ̂r = r̂f − r̂ = P̂2 − P̂1. (7.68)

By observing that any two disturbance operators commute, we see that for the triple

we can only have error-error-error (EEE) and error-error-disturbance (EED) relations. Re-

garding the former, we have the two EEE inequalities,

∆2
ei p ∆2

eiq ∆2
eir ≥

(
τh̄
2

)3

, ∆2
ef p ∆2

efq ∆2
efr ≥

(
τh̄
2

)3

(7.69)

of retrodiction and prediction, respectively. These follow from the fact that the error

operators constitute canonical triples. In order to obtain the bound we have to be

cautious in that we cannot immediately apply the result in [39] since this inequality

was derived under the constraint that the third operator in the triple is equal to minus

the sum of the other two; we can, however, use the inequality (7.43).

Moreover, note that we also have the following triples: (ε̂pi, ε̂qi, δ̂r), (ε̂pi, δ̂q, ε̂ri),

(δ̂p, ε̂qi, ε̂ri), (ε̂pf, ε̂qf, δ̂r), (ε̂pf, δ̂q, ε̂rf), (δ̂p, ε̂qf, ε̂rf), from which one can derive six EED

inequalities of the form

∆2
ei p ∆2

eiq ∆2
dr ≥

(
τh̄
2

)3

(7.70)

for each triple. Notice that not all triples can be ordered into a canonical form so that

they obtain cyclic symmetry; nevertheless this has no impact on the derived inequali-

ties.

Inequality (7.70), relates the error of the position and momentum measurement

with the disturbance caused on the third operator r̂; identical conclusions follow for

the other five cases. All these relations should be considered as a generalisation of the

error-disturbance relations for a canonical pair. Finally, note that all the error-error

and error-disturbance relations that were derived for a pair, hold in the triple case as

well.
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7.4 Extending the model of Busch

In this section we review some of the previous results of this chapter to allow for

different coupling strengths and to incorporate the case of sequential measurements,

which can be thought of as a type of joint measurement. The generalised version that

we will study is due to Busch [15] and it is described by the unitary operator,

Û2 = e−
i
h̄

(
α p̂P̂1+βq̂P̂2+κ

αβ
2 P̂1 P̂2

)
= e−

i
h̄ α p̂P̂1 e−

i
h̄ βq̂P̂2 e−

i
h̄

αβ
2 (κ+1)P̂1 P̂2

= e−
i
h̄ βq̂P̂2 e−

i
h̄ α p̂P̂1 e−i αβ

2 (κ−1)P̂1 P̂2 , (7.71)

with α, β ≥ 0 and κ ∈ R. In the original [15], the unitary considered had the mo-

mentum of the system coupled to the position of the probe but in our considerations

we will always couple observables of the system with the momenta of the probes.

Working in units where [p] = [q] = [
√

h̄], this does not make any difference for the

results.

Whenever |κ| = 1 we are dealing with a strictly sequential measurement, other-

wise we have a joint measurement of position and momentum with different coupling

strengths. Note that whenever the order of the exponentials of position and momen-

tum is changed, there follows a change of sign in the exponential of P̂1P̂2, that is, κ + 1

goes to κ − 1; this observation will be useful for the generalisations to more than two

observables.

This model has been studied in detail, in the context of error-disturbance uncer-

tainty relations and it has been shown that Heisenberg’s error disturbance uncertainty

relation is obeyed for definitions of error and disturbance related to the Wasserstein

distance.

To incorporate the measurement of a canonical triple this can be generalised to

Û3 = e−
i
h̄

(
α p̂P̂1+βq̂P̂2+γr̂P̂3+κ

αβ
2 P̂1 P̂2+λ

βγ
2 P̂2 P̂3+µ γα

2 P̂3 P̂1

)

= e−
i
h̄ α p̂P̂1 e−

i
h̄ βq̂P̂2 e−

i
h̄ γr̂P̂3 e

i
h̄

(
αβ
2 (κ+1)P̂1 P̂2+

βγ
2 (λ+1)P̂2 P̂3+

γα
2 (µ−1)P̂3 P̂1

)
, (7.72)

with the positive coupling strengths α, β, γ ≥ 0 and the real numbers κ, λ, µ ∈ R

that distinguish the different types of measurements. We call the canonical order, the
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decomposition where the exponentials of p̂, q̂, r̂ appear in this order, as shown in the

second line of Eq. (7.72). Different decompositions can be obtained from the canonical

order by flipping signs according to the following simple rule: for each exchange of

two terms in the canonical order, there is a flip of the ±1, in the corresponding term of

the last exponential. For example, the decomposition where the order of the first three

exponentials is in equivalence with r̂, q̂, p̂, is equal to

Û3 = e
i
h̄ γr̂P̂3 e

i
h̄ βq̂P̂2 e

i
h̄ α p̂P̂1 e−

i
h̄

(
αβ
2 (κ−1)P̂1 P̂2+

βγ
2 (λ+1)P̂2 P̂3+

γα
2 (µ−1)P̂3 P̂1

)
, (7.73)

since the sign in the P̂3P̂1 term flips twice, while the one of P̂1P̂2 once.

Again, we are dealing with a strictly sequential measurement whenever |κ| =

|λ| = |µ| = 1. For the triple, in contrast with the two observables case, there are

more interesting possibilities that appear: if only one of the κ, λ, µ is not equal to plus

or minus one, λ say, then this constitutes a sequential measurement of the system’s po-

sition followed or preceded by a joint measurement of the momentum and the third

observable in the canonical triple, r̂; the case when only one of the couplings is plus or

minus one, can be interpreted as an in between case, something like a joint measure-

ment of the position and momentum of the quantum system, followed or preceded by

a joint measurement of momentum and r̂.

7.4.1 Joint measurement inequalities

Joint measurement of a canonical pair Let us first write down joint measurement

inequalities in this more general setting in the case of a joint measurement of posi-

tion and momentum and then generalise to a triple. Observe that we can rewrite the

unitary evolution operator as

Û2 = e−
i
h̄

(
α p̂P̂1+βq̂P̂2+κ

αβ
2 P̂1 P̂2

)
= e−

i
h̄ (r̂1 P̂1+r̂2 P̂2)e−iκ αβ

2h̄ P̂1 P̂2 (7.74)
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and thus the commutators become

Q̂1 f = α p̂ + Q̂1 +
αβ

2
(κ − 1) P̂2 ,

Q̂2 f = βq̂ + Q̂2 +
αβ

2
(κ + 1) P̂1 , (7.75)

whose variances in the absence of correlations are equal to

∆2Q1 f = α2∆2 p + ∆2Q1 +
α2β2

4
(κ − 1)2 ∆2P2 ,

∆2Q2 f = β2∆2q + ∆2Q2 +
α2β2

4
(κ + 1)2 ∆2P1 . (7.76)

A bound for their sum can be obtained by defining the functional

f = y1 + α2x +
α2β2

4
(κ − 1)2 x2 + y2 + β2y +

α2β2

4
(κ + 1)2 x1. (7.77)

At the extrema, we find

f (e) = αβ|κ + 1|
(

n1 +
1
2

)
h̄ + αβ|κ − 1|

(
n2 +

1
2

)
h̄ + 2αβ

(
n +

1
2

)
h̄

≥ αβ

2
(|κ + 1|+ |κ − 1|+ 2) ≥ 2αβh̄ , (7.78)

which is obeyed for probes prepared in non-entangled states. A straightforward cal-

culation, however, using Eq. (7.37), gives the same result for arbitrary states of the

probes. Observe that the last bound, 2αβh̄, is achieved for any κ ∈ [−1, 1], while it

grows rapidly with κ for values outside that range. Supported by that observation, it

seems a reasonable physical restriction to only allow κ to take values between minus

and plus one, which covers all possibilities: the two cases of sequential measurement,

with the order determined by the sign of ±1, a joint measurement for κ = 0 and in

between cases for the remaining values in (−1, 1). Regardless, we will allow κ to be

an arbitrary real number.

Joint measurement of a canonical triple Let us know re-examine these results for

the case of a triple joint-measurement, as the one effected by the unitary given in

137



Chapter 7. Arthurs-Kelly process for more than two observables

(7.72). The time evolved observables after the interaction, are found to be

Q̂1 f = α p̂ + Q̂1 +
αβ

2
(κ − 1) P̂2 +

γα

2
(µ + 1) P̂3 ,

Q̂2 f = βq̂ + Q̂2 +
βγ

2
(λ− 1) P̂3 +

αβ

2
(κ + 1) P̂1 ,

Q̂3 f = γr̂ + Q̂3 +
αγ

2
(µ− 1) P̂1 +

βγ

2
(λ + 1) P̂2 , (7.79)

with variances equal to

∆2Q1 f = α2∆2 p + ∆2Q1 +
α2β2

4
(κ − 1)2 ∆2P2 +

γ2α2

4
(µ + 1)2 ∆2P3 ,

∆2Q2 f = β2∆2q + ∆2Q2 +
β2γ2

4
(λ− 1)2 ∆2P3 +

α2β2

4
(κ + 1)2 ∆2P1 ,

∆2Q3 f = γ2∆2r + ∆2Q3 +
α2γ2

4
(µ− 1)2 ∆2P1 +

β2γ2

4
(λ + 1)2 ∆2P2 , (7.80)

which hold for uncorrelated states of the probes. A bound for their sum is easily found

to be

∆2Q1 f + ∆2Q2 f + ∆2Q3 f ≥ h̄
√

α2β2 + β2γ2 + γ2α2 + h̄
a
2

√
β2(κ + 1)2 + γ2(µ− 1)2

+ h̄
β

2

√
α2(κ − 1)2 + γ2(λ + 1)2 + h̄

γ

2

√
α2(µ + 1)2 + β2(λ− 1)2

≥ h̄
αβ

2
√

2

(
|κ + 1|+ |κ − 1|+ 2

√
2√
3

)

+ h̄
βγ

2
√

2

(
|λ + 1|+ |λ− 1|+ 2

√
2√

3

)

+ h̄
γα

2
√

2

(
|µ + 1|+ |µ− 1|+ 2

√
2√
3

)
,

(7.81)

where we have used the inequality
√

x2
1 + . . . + x2

n ≥ (|x1|+ . . . |xn|)/
√

n proved in

Chapter 4. In the case |κ| , |λ| , |µ| < 1, the last bound reduces to

∆2Q1 f + ∆2Q2 f + ∆2Q3 f ≥
h̄√
3
(αβ + βγ + γα)

(
1 +

√
3
2

)
. (7.82)
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For α = β = γ = 1 , this correctly reproduces inequality (7.21). Using inequality (4.51),

we can compare the last result to the case of correlated probes, which turns out to be

∆2Q1 f + ∆2Q2 f + ∆2Q3 f ≥
2h̄√

3
(αβ + βγ + γα) . (7.83)

Whenever α = β = γ = 1 this reduces to twice the preparational bound of the

canonical triple ( p̂, q̂, r̂).

7.5 Discussion

We derived a number of joint-measurement uncertainty relations and inequalities for

the error and disturbance within generalisations of the Arthurs-Kelly model.

Our results suggest that in a joint-measurement of N observables, correlated probes

can lead to a lower bound for the sum and product of the variances of the pointer ob-

servables, in contrast to the case of position and momentum. We proved that in the

case of three, the lower bound is twice the preparational one and we argued that this

result should hold for N as well. A model-independent analysis similar to Arthurs

and Goodman [7] for the joint measurement of three observables, was found to be in

agreement with those within the generalised Arthurs-Kelly process.

Following Appleby [3, 5], we derived a number of inequalities that attempt to char-

acterise the error and disturbance due to the measurement. In the case of a canonical

triple, apart for the error-disturbance relations that one can formulate for each canon-

ical pair, we find that possible relations come in two varieties: these can be expressed

as error-error-error and error-error-disturbance inequalities.
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Conclusions

The investigations reported in this thesis can be separated into two main categories:

the first, longer part, was on preparational uncertainty, while the second was about the

indeterminacy of measurement. Both express the different type of limitations imposed

by incompatible properties of one or more particles, according to quantum theory.

They are different aspects of the uncertainty principle, the former dealing with intrin-

sic uncertainty of a system and the latter with the uncertainty present in the act of

measurement.

In Chapter 3 we considered a triple of canonical observables for a quantum par-

ticle, Eq. (3.3), unique up to unitary transformations and we proved a lower bound

for the product of their standard deviations. Stemming from the question of why are

most statements regarding limitations and incompatibility usually only expressed for

pairs of incompatible properties of a system, we showed through the triple uncer-

tainty relation that the incompatibility of three observables is not a direct consequence

of the incompatibility of each pair alone. We identified the unique state up to phase

space translations that minimises the triple product, the triple sum and other symmet-

ric functions of the three variances. We discussed the threefold symmetry associated

with the triple, for which in the symmetric case the operator that cycles through its

elements is a fractional Fourier transform. We finally conjectured an entropic version

of the triple inequality, only proved for Gaussian states.

The focus of Chapter 4 was to take this idea one step further, as no indications

suggested that this idea can not extend to more than three observables. Although a
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canonical triple can not be extended to a canonical quadruple or more, due to the im-

possibility to make all pair commutators equal to h̄/i, we can however define closely

related algebraic structures, if we relax the assumption that all commutators are the

same and demand that only neighbouring ones are pairwise canonical. The coeffi-

cients of these rotated observables form regular polygons in R2, and the uncertainty

relations that we derive for their variances, can be expressed in terms of geometric

quantities of the associated polygon. We also prove inequalities for N observables

which are arbitrary linear combinations of position and momentum and show that

the lower bound can be expressed in terms of all the pairwise commutators. In both

cases the lower bound can alternatively be geometrically associated with the area of

the parallelogram spanned by two vectors in RN , constructed from the momentum

and position “coefficients” of each observable. We also proved an inequality for the

integral of rotated observables through an angle ϕ, for which a number of observa-

tions were made: for angles π and 2π the lower bounds agree with the areas of the

associated disks but in all other cases the area of the disk is larger than the bound

of the integral inequality. In addition, we derived a bound for the variances of three

operators in more than one degree of freedom and subsequently extended the result

to inequalities for N operators, which however are valid for product states only. Fi-

nally, we demonstrated how comparison of the different bounds in the case of three

observables could be used for entanglement detection.

In Chapter 5, we considered a quantum particle in one spatial dimension and pro-

vided a set of equations that any function of its second moments must obey to attain

a lower bound. These consistency conditions allowed us to derive a number of new

inequalities along with already existing ones, unified under a common perspective.

We discovered that the Robertson-Schrödinger inequality plays a special role for a

quantum particle and that its extremal states are universal: any other expression of

the second moments can be extremised only by a subset of them. The results can be

represented geometrically in the space of second moments, and extrema correspond

to points on the surfaces of nested one-sheeted hyperboloids, while the minima define

the boundary of the uncertainty region. Its privileged position among other relations

is due to the role of symplectic transformations for this problem and its solutions: it is
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the only inequality (and functions of it) that is invariant under any symplectic trans-

formations, Sp(2, R).

In Chapter 6 we studied the extrema of arbitrary functions of the second moments

in N degrees of freedom, extending the framework of Chapter 5. We demonstrated

that the extrema of any uncertainty functional are solutions to an eigenvalue equation

quadratic in the operators of position and momentum in the N degrees of freedom,

which we are able to solve by employing symplectic transformations. We found that

there is a universal boundary for the uncertainty region, in agreement with the one-

dimensional case. We showed that the solutions lead to a set of consistency conditions

in analogy to the one-dimensional problem and we provided specific examples that

utilise the method. We finally examined functionals of second moments in more than

one states and derived the conditions for extrema, along with a number of examples.

The last chapter was concerned with measurement inequalities. First, we proposed

a generalisation of the original Arthurs-Kelly model to allow for the description of

a joint measurement of three and, subsequently, N observables. In this context, we

proved a number of joint-measurement uncertainty relations for N operators and, by

comparing with the preparational results of Chapter 4, we showed that there is al-

ways an increase in the product and sum of their variances. We found that allowing

correlations between the probes improves significantly the lower bound with increas-

ing number N of jointly measured observables, which is in contrast with the case of

two, where no improvement is achieved. Based on this observation, we conjectured

that in the presence of correlations the limit imposed by the preparational inequality is

doubled, a bound significantly lower than the one for uncorrelated probes. By defin-

ing suitable noise operators, we also derived a number of inequalities for the errors

and disturbances to the system due to the measurement. A straightforward general-

isation of the considerations for a canonical pair to a triple allowed us to formulate

the fundamental restrictions of measurement as statements in the form of error-error-

error and error-error-disturbance uncertainty relations. In all cases, the lower bound was

found to match the preparational one, in agreement with existing inequalities for the

pair of position and momentum.

Thus, we provided answers to the question of whether a smooth function of the
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second moments of a quantum particle with one or more spatial degrees of freedom

has a lower bound. Our analysis led to a simple characterisation in terms of the con-

sistency conditions, whose solutions contain any potential minima. Structurally, the

results for the one- and N-dimensional case are similar and the main differences stem

from the structural differences of the symplectic groups between n = 1 and n 6= 1.

The admissible region in the space of second moments for N = 1 is described by

the Robertson-Schrödinger inequality, while for N ≥ 1 it is described by the matrix

inequality C + i Ω
2 ≥ 0, with C being the covariance matrix.

For a particle in one dimension, using the general linear inequality for the second

moments, (5.74), we derived a number of inequalities involving more than one observ-

able, as an attempt to break the tradition of formulating uncertainty relations only for

pairs. In the context of optics, these inequalities acquire a natural meaning, as they

bound products and sums of the variances of the rotated quadratures [45, 44, 87].

There are a number of open questions or potential extensions of this work. It

would be interesting to know whether the method developed in this thesis can be

applied to systems associated with a finite-dimensional Hilbert space. In the contin-

uous variables case, looking for the extrema of the functional leads to an eigenvalue

equation involving a quadratic operator of the position and momentum. By employ-

ing a series of symplectic transformations, we showed that it is unitarily equivalent

to the harmonic oscillator Hamiltonian, whenever a non-trivial bound exists. In the

finite-dimensional case, the quadratic eigenvalue equation that we get is not solvable

with simple transformations, in general, and as a result it appears to be impossible

to diagonalise and obtain the analogous consistency conditions. However, for linear

functionals with real constant coefficients, it is still possible to numerically obtain the

eigenvalues and eigenstates of the resulting equation, and look for a global minimum

among its solutions. We have not pursued this prospect yet and we are not certain to

what extent this can lead to useful results.

Another interesting potential generalisation is the case of higher moments where

it appears that our method can be used but only to some extent. After the variation of

the functional, the resulting eigenvalue equations is no longer quadratic but of higher

degree, dependent on the moments being considered. For example, for the product of
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the α-spread in position times the β-spread in momentum, we get an operator of the

form |q̂|α + | p̂|β, which one needs to diagonalise. In some cases the lower bound can

be found exactly, but for the majority one can only look for the minimum numerically

[16]. It seems plausible but has not been pursued further that expressions other than

products and sums can be treated in this case, even if only with the aid of numerical

calculations.

In Chapter 6 we considered measurement uncertainty in the context of an extended

Arthurs-Kelly model and derived a number of joint measurement inequalities. We

only briefly considered inequalities for the error and disturbance using specific noise

operators, following a similar analysis as Appleby. Regarding the latter, more work is

needed to clarify some of our findings. More specifically, it would be of importance to

investigate error-disturbance uncertainty relations in terms of state independent error

measures, such as the Wasserstein-2 distance.

We also stated a number of conjectures that need to be dealt with. In Chapter 4 we

proposed an inequality for the entropies based on the observation that the inequality

for pairs is based on an inequality for the (p, q)-norm of the Fourier transform. We

showed that this holds for Gaussian states, owing to the equivalence of the Shannon

entropies and the variances in that case, but a general proof eludes us at the moment.

Finally, in Chapter 6 we conjectured a number of inequalities for more than three ob-

servables.
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Appendices of Chapter 2

A.1 A Baker-Campbell-Hausdorff identity

The relation ĜbŜγ = Ŝ(ξ)R̂(χ) in Eq. (5.33) can be shown by requiring that both prod-

ucts map the annihilation operator â = (q̂ + i p̂) /
√

2h̄ to the same operator. We obtain

ĜbŜγ âŜ†
γĜ†

b = â
(

cosh γ− i
b
2

eγ

)
+ â†

(
sinh γ + i

b
2

eγ

)
(A.1)

and

Ŝ(ξ)R̂(χ)âR̂†(χ)Ŝ†(ξ) = âe−iχ cosh r− â†e−iχeiθ sinh r , (A.2)

respectively. Equating the coefficients of the operators â and â† leads to two equations

cosh γ− i
b
2

eγ = e−iχ cosh r , (A.3)

sinh γ + i
b
2

eγ = −ei(θ−χ) sinh r , (A.4)

which we need to solve for the variables ξ ≡ reiθ and χ. Separating the real and

imaginary parts of the first equation, one finds that

χ = arctan
(

b
1 + e−2γ

)
∈ (−π

2
,

π

2
) . (A.5)

In a similar way, the second equation allows one to solve for the function tan(θ − χ)

which, upon using (A.5), leads to
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θ = arctan
(

b
1− e−2γ

)
+ arctan

(
b

1 + e−2γ

)
∈ (−π , π) . (A.6)

The case of γ = 0 needs to be treated separately leading to the relation

θ = ±π

2
+ arctan

(
b
2

)
∈ (−π, π). (A.7)

Finally, the condition cosh r cos χ = cosh γ results in the expression

r = arcosh
(

cosh2 γ +
b2

4
e2γ

)1/2

∈ [0, ∞) , (A.8)

which establishes the desired identity (5.33).

The number states |n〉, n ∈N, are eigenstates of phase-space rotations R̂(χ). There-

fore, the product ĜbŜγ acts on those states according to

ĜbŜγ|n〉 ∼= Ŝ(ξ)|n〉 , (A.9)

where an irrelevant phase has been suppressed and the symbol “∼=” indicates equality

up to overall constant phases. Thus, the operator Ŝ(ξ) generates all squeezed states

from |0〉 when the parameter ξ runs through the points of the complex plane.

A.2 Convexity of the uncertainty region

Given two mixed quantum states described by density matrices ρ̂1 and ρ̂2, their con-

vex combinations ρ̂t = tρ̂1 + (1− t)ρ̂2, t ∈ [0, 1], are also quantum states. We will now

show that the uncertainty region inherits convexity from the body of density matri-

ces: mixing two states ρ̂1 and ρ̂2 with moment triples (xk, yk, wk), k = 1, 2, inside the

uncertainty region results in another state ρ̂t with a moment triple also in that region.

The moments xk = Tr(x̂2ρ̂k), k = 1, 2, etc., satisfy the RS inequality,

xkyk − w2
k ≥

h̄2

4
≡ e2

0 , k = 1, 2 , (A.10)
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and the moments of the mixture are given by

σt = tσ1 + (1− t)σ2 , σ = x, y, w . (A.11)

Writing t = 1− t, the variances of the convex combination satisfy

xtyt − w2
t ≥

(
t2 + t2

)
e2

0 + tt (x1y2 + x2y1 − 2w1w2) (A.12)

using A.10. Since

x1y2 + x2y1 − 2w1w2 ≥ e2
0

(
y2

y1
+

y1

y2

)
+

(
w1

√
y2

y1
− w2

√
y1

y2

)2

≥ 2e2
0 ,

which implies that the moment triple of the convex combination ρ̂t must also be con-

tained in the uncertainty region, i.e.

xtyt − w2
t ≥

h̄2

4
. (A.13)

The minimum is obtained only if either t = 0 or t = 1, so that the resulting density

matrix must describe a state on the boundary of the uncertainty region, i.e. a Gaussian

state.

A.3 Extrema of functionals of various general forms

A.3.1 Functions of the form f = f (xy, w)

Some general statements can be made for functionals corresponding to a function f =

f (xy, w); it is here argued that whenever solutions exist, they have to be at least a one

parameter family.

The first partial derivatives of the function f are

fx = y
∂ f

∂(xy)
≡ y fxy ≡ yg1(xy, w) , fy = x fxy , fw = g2(xy, w). (A.14)

Then the first of the consistency conditions, Eq. (5.45), is trivially satisfied, which is
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essentially what guarantees that if there are solutions they have to lead to at least a

one-parameter family. The second consistency condition gives:

2w fy = −x fw ⇒ 2wx fxy = −xg2(xy, w) ⇒

2w fxy + g2(xy, w) = 0 ⇒ 2wg1(xy, w) + g2(xy, w) = 0 . (A.15)

The last equation either has no solutions, is trivially satisfied, or has a solution of the

form w = h1(xy).

If it is trivially satisfied then it leads to the RS extrema. If it has a solution of the

form w = h1(xy), then the third equation gives

xy− w2 =

(
n +

1
2

)2

h̄2 ⇒ xy− h2
1(xy) =

(
n +

1
2

)2

h̄2

(A.16)

The last equation will either have no solution or lead to an inconsistency, or assume a

solution of the form

xy = h2

(
(n + 1/2)2 h̄2

)
≡ K(n). (A.17)

Thus, if there are no inconsistencies for the solutions obtained, i.e. F > 0 for all the

extrema, then we have found that the potential solution is of the form

ye = K(n)/x , we = h1(xy) = h1 (K(n)) ≡ H(n), (A.18)

which obviously leads to a one parameter family of states.

To sum up, we examined functionals of the form f = f (xy, w) and showed that

there are no solutions that lead to isolated points in the b, γ plane: there will either be

no solutions at all, we will get the full RS extremal set, or we will get a one parameter

family.

A.3.2 Functions of the form f = f (axm + byk, w)

As in the case of last section, some general statements about functionals of the form

f = f (axm + byk, w) can be made and whenever solutions exist, they now have to be
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a one parameter family or isolated points.

Let r = axm + byk. Then, the first partial derivatives are

fx = amxm−1 fr ≡ amxm−1g1(r, w) , fy = bkyk−1g1(r, w) , fw = g2(r, w) . (A.19)

Then the first of the consistency conditions gives

x fx = y fy ⇒ amxm = bkyk ⇒

y =
( am

bk

)1/k

xm/k . (A.20)

Thus, one can use the last relation to reduce from three to two variables; since there

is a relation between them then the extremal set can already be of at most one free

parameter. Then,

r(x, y) ≡ r(x) = a
(

1 +
m
k

)
xn. (A.21)

The second consistency condition gives:

2w fy = −x fw ⇒ 2wbk
( am

bk

)k−1/k

xm(k−1)/k fr(r, w) = −xg2(r, w)

2wg3(x, w) = −xg4(x, w) . (A.22)

The last equation will either have no solutions, will be trivially satisfied, or have a

solution of the form w = h1(x). If it is trivially satisfied then it will lead to a one

parameter set, while if it has a solution of the form w = h1(x), then the third equation

gives

xy− w2 =

(
n +

1
2

)2

h̄2 ⇒
( am

bk

)
xm+k/k − h2

1(x) =
(

n +
1
2

)2

. (A.23)

The last equation will either have no solution or lead to an inconsistency, or assume a

solution of the form

x = h2

(
(n + 1/2)2 h̄2

)
≡ K(n). (A.24)

Thus, if there are no inconsistencies for the obtained solutions, i.e. F > 0 for all the
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extrema, then we have found that the potential solution is of the form

xe = K(n) =
( am

bk

)1/m

yk/m
e , we = h1(x) = h1 (K(n)) ≡ H(n), (A.25)

and obviously corresponds to a point in the (b, γ) space.
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Table of Notation

H Hilbert space

Â , B̂ Self-adjoint operators

I Identity operator

Û , U Unitary operators

T̂α Unitary operator effecting phase space translations

Ŝγ , Ŝ(ξ) Unitary operator effecting real/complex squeezing

|ψ〉 , |ϕ〉 Unit vectors in H

∆2A Variance of self-adjoint operator Â

CAB Covariance of self-adjoint operators Â, B̂

Sr Shannon entropy of the probability distribution of r̂

J[ψ] Uncertainty functional for a pure state |ψ〉
dFφ(x) , Dφ Gâteaux differential

Sp(2n, R) The n-dimensional symplectic group

Ω n-symplectic form

C Covariance matrix

W(p, q) Wigner quasi-probability distribution

f : V →W A function from V to W

Fα[ f ] Fractional Fourier transform of function f of angle α

N0 , R+ Natural numbers including zero, positive real numbers

∈ “belongs to”

∀ “for all”

\ “excluding”
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