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Abstract

Topology is used in many applications that may benefit from the automation of
spatial reasoning, notably in geographic information systems and in graphics. Rea-
soning about topology is known to be intrinsically complex, and difficult to be dealt
with by a machine. Qualitative formalisms for spatial reasoning, region-based ap-
proaches based on mereotopology, encodings based on non-classical logics are some
of the possible answers that have emerged in connection with this problem.

The present analysis is based on the well-known topological semantics of intu-
itionistic logic. That semantics is considered here from the point of view of the
representation of spatial knowledge, and accordingly extended, in order to allow
more naturally the expression of simple topological descriptions. Special attention
is given to the formal modelling of digital representation, to the logical encoding of
connectivity relations, to the concepts of granularity and dimension.

The formalisations that are investigated are based on some extensions of intu-
itionistic propositional logic. These can be obtained by adding to the basic logic
propositional quantifiers, intuitionistic modalities and intermediate axioms. A proof-
checking tool for some of these logics has been developed, by formalising them in
Isabelle-HOL, an interactive theorem-prover based on classical higher-order logic.
A partial decidability result is given for an extension of intuitionistic second-order

propositional logics, together with an account of its mechanisation.
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Chapter 1
Introduction

The modelling of spatial information, and especially of the geographical one, typi-
cally involves relationships with the actual data, with an abstract geometry, as well
as with the digital representation of both on a computer. Within a certain system,
spatial information can be associated to a set of graphical or abstract data about
some spatial entities. The ”chunks” of space — or regions — corresponding, up
to some indeterminacy, to the locations of physical objects, are often among the
most significant of those entities. The regions may be either those described, with
possible vagueness, by common sense expressions such as “West Yorkshire”, “the
North of England”, “the safest region to build a bridge”. Or else, given appropriate
forms of measurement, they may be defined instrumentally, by associating them to
sensor inputs.

From an abstract, geometrical point of view, the continuous space — either in
two or in three dimensions — can be represented as a vector space, i.e. as a product
of real numbers with its associated metric topology [RHB02, Kel55]. Regions can be
associated to topological sets of some sort.

From the computational point of view, regions are objects that either can be
stored explicitly, or else can be inferred from the stored data. Models that take

regions into account, may generally be one of two main kinds [LT92]:

1. In a raster model, the domain is associated to a system of coordinates, and it
is divided into a set of discrete units (or atomic regions) individuated by their
position in the system. Graphically, those units may be pixels. Regions are
just clusters of such units, characterised by some common attribute. These

models are often associated to the representation of sensor input.

2. In a wvector model, regions can be stored explicitly, with their geometry and
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their properties as attributes. In order to obtain a graphical representation,
the model must be associated to a discretisation of the continuous space, i.e.
to a mesh, based on a decomposition into units that in two dimensions may

be triangles, squares, hexagons, etc..

All the computer representations are ultimately digital, either in an immediate
sense (as in the case of raster models) or indirectly (as in the other one). Rasters
as well as discretisations are essentially meshes (i.e. partitions of the space), and so
they can be usually associated to some notion of granularity (or level of detail), since

in fact, in every mesh, all the points that fall inside the same unit can be identified.

1.1 Spatial reasoning and topology

From the point of view of spatial reasoning, the common Al idea of drawing a
distinction between an abstract, qualitative level and a numerical one, fits in quite
well with the distinction between geometry and topology. It is sometimes possible to
deal with non-numerical information more efficiently, by storing it separately and by
processing it independently [Wor95]. In general, a topological account of the spatial
information which is available can capture many of the geometrical properties that
do not involve distance, including an abstract notion of dimension (i.e. topological
dimension). Moreover, in every digital representation, once the geometry of the
atomic elements is fixed, a complete knowledge of the topology gives a complete
knowledge of the geometry. For these reasons, topology appears to define a natural
level of description, at which it is comparatively feasible to check inferences and
detect inconsistencies, whenever we need to examine the information stored into a
data-base, or the high-level design of a certain spatial system.

At an abstract level, topology introduces us to the mathematical concept of
space. The definition of topological space is based on the notion of open set (or
dually, on that of closed set). This concept can be introduced in different, equivalent
ways, either relying on a set-theoretical, point-based definition, or on an algebraic,
point-free notion of interior (dually, on one of closure) (see Chapter 2).

Topology can be used in order to express qualitative information related to re-
gions in a map, and in particular, information about “connectivity” — this includes
properties of regions as well as relations between them — for example, the knowledge
whether two regions are interconnected (i.e. connected with each other), whether

they are overlapping, whether one of them is part of the other, how many connected
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parts a region is made of, etc.. A significant example for a topological taxonomy is
given by the so-called RCCS8 relations (introduced in [RCC92]; treated in Section
4.2).

Although topological information seems to be easier to handle, at least in prin-
ciple, than the geometrical, numerical one, topological reasoning can be still quite
hard. Point-set topology is inherently second-order, at the very least, as it involves
properties of subsets. This can make the task of mechanising inference quite diffi-
cult — for example, already the problem of second-order instantiation is NP-hard,
whereas first-order unification has polynomial complexity [GJ79]. Point-free alterna-
tives such as those in [Sam89, FG82] have been introduced in order to dispense with
the second-order character of point-set topology. More generally, efficient represen-
tations that may be appropriate for specific aspects and problems have been pursued,
using different logical approaches [CDF95, CBGG97,PH02,VDDB02]. Some of them
are based on non-classical logics — examples can be found in [Ben96,LP96, AvB02,
She99].

For sure, there are non-topological notions that are qualitatively significant —
a notable example is convexity — and there are qualitative languages, as well as
spatial logics, that include non-topological notions [BGM96, BCTH00b, CBGG97,
LP96,Aie02,BDCTV9I7,Ven99, KSS*03]. On the other hand, [PS98| shows that, for
any system that has a complete semantics, an axiomatisation of connection and one
of convexity together are enough to give affine geometry. This leads to a level of
expressiveness and of complexity that can be critical from the point of view of an
application. Hence in this thesis, I will restrict to qualitative notions that can be

expressed by topology.

1.2 Regions

Treating regions point-wise can be costly, especially in presence of incomplete in-
formation. A possible alternative is to take regions as primitives. This leads to an
interest in the development of region-based qualitative languages [CHO1].

From a topological point of view, the intuitive notion of region seems to be cap-
tured as that of a set with a non-empty interior (in contrast with “extensionless”
points) and with no lower-dimensional features. In an n-dimensional space, a region
can be an n-dimensional subspace, regardless of any lower-dimensional feature (such
as, in the two-dimensional case, are cracks and dangling lines). A simple way to en-

force this requirement is to take regions to be non-empty, regular open sets [RCC92]
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(see the discussion in Chapter 5).

From an abstract point of view, the fact that there can be undenumerably many
regular open sets in a space makes it possible to argue that regions may not be
generally definable in an effective way. However, it can be interesting to consider
regions in a computational perspective, as objects that arise out of some construc-
tions. In this sense, some form of effectiveness is required — regions should be
defined without stretching the bounds of what is computationally feasible.

From the linguistic point of view, effectiveness can be interpreted as definability.
In this sense, it should be required that each region can be defined by a finite
expression in a language made of denumerable symbols. So, keeping into account
logical equivalence, each region should be associated to an equivalence class over
a denumerable set of expressions. Since every partition over a denumerable set is
denumerable, regions turns out to be denumerable as well.

From a graphical point of view, expressiveness can be interpreted as the pos-
sibility to associate each configuration to a simple sketch. Given a space of finite
dimension, each of the configurations induced by a finite number of regions, should
be exemplifiable without shifting to an infinitesimally detailed picture.

Neither of these two forms of effectiveness are generally satisfied by the definition
of regions as regular open sets (see the discussion in Section 4.1.2 and in Section
5.3.2).

A significant point on which abstract, continuous representations of regions and
digital ones diverge with each other, is whether there should be atomic regions or
not, i.e. whether regions with no smaller non-empty parts should be admitted in
the spatial ontology, or, on the contrary, whether every region should be indefinitely
sub-dividable. Some of the systems presented in [MV99, RS02] are compatible with
atomic regions, whereas the systems in [RCC92,PS98| are not.

Here I would like to consider regions including the aspect of their digital reali-
sation. Hence, I will concentrate on models that are either compatible with atoms,

or indeed based on atoms — the latter ones may also be called atomic models.

1.3 Region-based formalisms based on predicate

calculus

A fragment of topology that is relevant from the qualitative point of view can be

presented as an ontology — i.e. as a domain of objects, equipped with operators
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and relations over them. The objects here can be identified with the spatial regions.
The operators can be either topological ones (such as interior, closure and regulari-
sation) or plainly set-theoretical ones (such as union, intersection and complement).
The relations and the properties must be topological ones (such as overlapping, in-
terconnection and connectedness). Such an ontology can be described logically as a
first-order theory. The general characteristics of such a theory may then be summed

up as follows:

e Regions are represented by individual variables and terms.

Topological operators (such as M, LI, —) are represented by functions.

Topological relations are represented by predicates.

Logical operators (such as A, V, ~) are those of classical first-order logic.

Mereology is a theory of the relation between an object — as a whole — and its
parts (i.e. of the part relation), as opposed to the set-theoretic notion of membership
[Les31,CV98]. Mereology fits quite naturally in the foundations of the region-based
approach, as it requires no shift in abstraction between a whole and its parts. The
spatial theories built on mereology are also called mereotopologies. They are usually
based on classical logic, and they can be intererpreted in terms of point-set topology,
where the part relation is associated to set-theoretical inclusion. Extensions of
mereotopology, usually higher-order ones, can lead to region-bassed geometry —
[Ger95] gives a survey. Also the theory presented in [BCTHOOb] and developed
in [BCTHOOa] moves in this direction.

A differently motivated, although potentially related branch of point-free rea-
soning, is that originating from the formal approaches to topology based on algebra
and logic [Joh82, FG82, Vic89, Sam89], where the notion of open set (or simply of
open) is taken as primitive. These are often based on constructive logics — usually
intuitionistic logic, although [Vic89] introduces also a more specific geometric logic.

In the classical mereotopological theory presented in [Cla81], regions can be in-
terpreted as non-empty regular open sets. Relations over the regions are introduced
axiomatically. The part relation is axiomatised by a binary predicate as a reflexive,
transitive relation. The connection relation (i.e. interconnection) is axiomatised by
a binary predicate as a reflexive, symmetric relation that also holds, for each region,
between it and its complement. The topological notion of closure can be defined.

The system in [PS98] presents a complete axiomatisation for mereotopogy, where

connectedness is taken as the primitive notion. The regions are still interpreted as
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regular open sets — but there are additional restrictions related to dimension and to
a form of graphical effectiveness (see the discussion in Section 5.3.2). This system,
resting on standard finitary rules as well as on an infinitary one, is proved to be
complete with respect to its topological semantics.

The system presented in [RCC92] (the region connection calculus RCC) is a sim-
plified version of standard mereotopology. No distinction between open and closed
sets is admitted in the models, in explicit contrast with [Cla81], hence forbidding a
duplication of the spatial entities that may lead to counter-intuitive consequences
and that may unnecessarily complicate the ontology. The connection relation is the
only primitive — the part relation can be defined, relying on quantification over
the regions. The axiomatisation of interconnection is quite similar to that given
in [Cla81] — however, in RCC it is also necessary to assume that, for each region,
there is another one which is not connected with it. This leads to the inadmissibility
of atomic regions. RCC has models based on connected normal spaces where indi-
vidual variables are interpreted as regular open sets (i.e. the regions). Since atoms
are not admissable, RCC does not allow digital models [Ren98].

A considerable amount of work has evolved around RCC'. In particular, [Ste00a]
has highlighted the relationship between mereotopological systems close to RCC and
point-free topology. [RS02] has introduced alternatives to RCC' that are compatible
with digital spaces. [Ben98, Ben96] have considered the relationship between the
quantifier-free fragment of RCC based on the RCCS8 relations and non-classical
logics. [WZ00, WZ02,RN99, RN98,Ben98| have investigated computational aspects.
[CBGGI97,CGI6| have investigated the application of RCC to GIS, extending the

system in order to handle spatial objects with indeterminate boundaries either.

1.4 Non-classical logics

Non-classical logics include logics that are weaker than the classical one, as well as
logics that can be obtained by extending the classical language with new operators.
In both cases, a gain in expressiveness is obtained, by allowing for larger collections
of non-equivalent propositions.

In classical logic, the structure of propositions can be associated to Boolean
algebras, and hence ultimately to two truth-values. This makes classical logic par-
ticularly simple and versatile, especially for first-order and higher order reasoning.
However, by resorting to logics that have a richer propositional structure, it is some-

times possible to encode domain-specific knowledge (temporal, spatial, epistemic,
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etc.) at the propositional level. There are cases in which this turns out to be useful
from the point of view of knowledge representation, by making it possible to model
specific notions, in comparatively simple ways [GKWZ03, BCWZ02].

Intuitionistic logic is weaker than the classical one, and in fact it distinguishes
between formulae that are classically equivalent. The propositional structure can be
associated to Heyting algebras — a generalisation of Boolean algebras that do not
generally admit any reduction to a finite number of values [RS63].

Intuitionistic logic has been widely investigated, at different levels (propositional,
first-order, higher-order) given its interest as a logic of provability for constructive
mathematics, as well as its relationship with type theory [Fit69, Bar92].

An intuitionistic second-order propositional logics (ISPL) is a logic that can be
obtained by extending intuitionistic propositional logic (IPL) with quantification
that ranges over formulae. In contrast with IPL, ISPLs are generally undecidable.
An ISPL can be associated to the basic system of polymorphic types (one in which
type variables are allowed [Bar92]).

Modal and multi-modal logics, mostly treated at the propositional level, are
usually based on classical logic, i.e. they are obtained by adding modal operators —
“boxes” (OJ) and “diamonds” () — to a classical language [Che80]. Intuitionistic
modal and multi-modal logics, on the other hand, can be obtained by extending
with modal operators an intuitionistic language [WZ99].

Non-classical logics can be associated to formal, model-theoretic semantics. These
semantics can be sometimes associated to the modelling of specific domains of knowl-
edge. Formal semantics can also be useful from the point of view of theorem proving,
insofar as they can give a better understanding of the reasoning techniques that can
be applied to a logic.

Kripke semantics is an intuitive and versatile formal approach to model theory for
non-classical logics. A Kripke model is given by a frame — a set of points with some
binary relations called accessibility relations — together with a notion of ¢ruth (or
forcing) of a formula at a point, and an interpretation for the logical symbols. Most
of the logics, and certainly all of those that are considered here, can be associated
to Kripke semantics. Classically, each accessibility relation corresponds to a box-
diamond pair of operators. The truth of o at a point p represents the truth of
the formula « at all the points that are accessible from p. Dually, the truth of { o
at a point p represents the truth of the formula o at some of the points that are
accessible from p. The modal logic §4 can be associated to the frames where the

accessibility relation is a partial order (or also, more generally, a preorder). The
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modal logic S5 can be associated to frames where accessibility is an equivalence
relation. The interpretation of S5 is said to be strong, whenever each model is
just a single equivalence class — it is said to be weak otherwise. The frames for
intuitionistic logic and its extensions are quite similar to those for S4 — the only
significant difference being in the fact that in the intuitionistic case it is possible,
and usually preferred, to restrict to the orders that have a minimum. Moreover,
unlike S4-models, intuitionistic ones satisfy the hereditary condition — i.e. for each
point, the truth of a formula at that point is preserved at every point above it.

The relationship between intuitionistic logic and S4 is a close one, and so is the
relationship that they both have with topology. IPL can be embedded in 54, and
so, S4 can be regarded as a conservative extension of IPL [Gab8l]. Both intu-
itionistic logic and §4 have a well-known topological semantics that was introduced
in [Tar56, MT48| and extended to the first-order case in [RS63]. A model is given
by a topological space together with an interpretation of the formulae as subspaces.
Each logical symbol becomes associated to a topological operator. In particular,
the S4 box operator can be associated to the topological interior, whereas the S4
diamond operator can be associated to the topological closure. In the case of intu-
itionistic logic, all the formulae are interpreted as open sets — this corresponds to
the hereditary condition, as well as to the fact that, when IPL is embedded into S4,
every intuitionistic formula « is mapped to a modal formula Cla.

Whenever a modal logic is complete with respect to a class of Kripke frames that
can be defined in terms of first-order expressions, this also gives a way of embedding
that logic into first-order predicate calculus.

Most of the existing spatial logics are modal logics in which the modal operators
are given a spatial interpretation — either in a geometrical sense or in a purely topo-
logical one [JAN02, GKWZ03,LP96, AvB02]. The spatial content of some of these
logics is based on a spatial characterisation of the accessibility relations in their
Kripke semantics. Different accessibility relations can then be used to represent dif-
ferent spatial relations — for example, nearness and connection in [LP96], incidence
in [BDCTV97]. The systems presented in [Ben96, AvB02], on the other hand, are
based on topological semantics. The basic logic in [AvB02] takes advantage of the
expressiveness allowed by S/, whereas [Ben96] rests closer to RCC in banning the

open-closed distinction.
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1.5 Spatial representation in non-classical logic

There are different senses in which it is possible to encode into a non-classical logic a
constraint that describes some spatial configuration. Let C' be the constraint stating
that the n-ary relation R holds between the open sets Aq,..., A,.

It is possible to represent C, in a weak sense, whenever there exist some formulae
Qi,...,04 B, .., B, such that the configurations characterised by C are represented
by the models in which a4, ..., a; are satisfied and 34, ..., ; are not. In this case,
it can be said that C' is encoded into the logic at the meta-level.

On the other hand, C' can be represented in a strong sense, whenever there exists
a formula o, such that the configurations characterised by C are represented by the
models that satisfy . In this case, it can be said that C is encoded into the logic
at the object-level, and a can be called a representation of C.

In the theories based on classical logic, no such difference between weak and
strong encoding arises, since classically, a model does not satisfy a formula if and
only if it satisfies the negation of that formula.

The question whether there exists a model in which a certain formula is satisfied
(or valid) is also said to be a satisfiability problem. The question whether, given
a generic model that satisfies some formulae, that model also satisfies some other
formulee, for the logics that are being treated here, can be regarded as an inference
problem.

Practically, a basic question that may be asked is whether there exists a con-
figuration in which a certain constraint holds. In case the constraint is encoded
weakly, answering positively this question resolves into showing that some formula
is satisfiable, and that some inference is not provable [Ben97]. Hence, a meta-level
encoding can be practically useful particularly insofar as it is based on a decidable
formalism. In the case of an object-level encoding, the same question reduces to a
satisfiability problem — but then, also in this case proving a theorem in the logic
will not be generally enough to give an answer, unless the answer is negative.

The question whether a certain constraint holds in every configuration that sati-
fies a certain set of constraints, turns out to be hard to express when the constraints
are just weakly encoded. When all of them are strongly encoded though, this ques-
tion reduces to an inference problem. In this case, if the answer is positive then it
can be obtained by means of theorem proving, even if the formalism is undecidable.

In contrast with the first-order theories considered in Section 1.3, the general

characteristics of propositional encodings (based on intuitionisitc, modal, multi-
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modal logics) may be summarised as follows:

e Regions are represented by propositional variables.
e Topological operators are represented by logical operators.

e Topological relations are represented by formulae with free variables.

The theories based on predicate logic have in general the advantage of offering
perspicuous axiomatisations, with a clear distinction between the logical machinery
and the spatial predicates. On the other hand, an encoding based on a non-classical
logic yields for free a theory of space embedded into the logic. Hence, proving the
correctness and the completeness for the logic is enough to guarantee also the con-
sistency and the completeness for the spatial theory. Anyway, the contrast between
non-classical logic and first-order theories should not be taken as something running
too deep: as already remarked, many modal logics can be embedded into first-order

predicate calculus.

1.6 Intuitionistic encodings

1.6.1 Previous work

The application of topological semantics to spatial reasoning that rests closer to this
thesis has been introduced in [Ben97, Ben96, Ben98|, where a tractable solution to a
significant problem is obtained by encoding the RCCS8 fragment of RCC' in IPL. In-
tuitionistic logic is one of the simplest formalisms in which a qualitatively significant
fragment of topology can be expressed. The notion of topological regularisation can
be represented intuitionistically — as double negation — and hence it is possible, in
the models, to represent regions as regular open sets. In contrast with S/, the fact
that the distinction between open and closed sets is not represented in intuitionistic
logic, matches quite naturally the RCC approach. Moreover, by assuming that the
regions in a model are those sets that can be represented by the language, one aspect
of effectiveness — i.e. denumerability — turns out to be enforced quite immediately.
In contrast with RC'C, atomic as well as finite models are admissable.

The IPL encoding turns out to be quite efficient, in terms of implementation,
but it is not very expressive. Topological definitions involving quantification cannot

be expressed in general — these include notions such as those of connected region
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and of atomic region, as well as other ones related to qualitative aspects of con-
nectivity, granularity and dimension (see Chapter 5). The RCC8 relations can be
only weakly encoded in IPL. This encoding can be lifted to an object-level one by
using, instead, a multi-modal logic based on S4 and strong S5 — i.e. the logic S4,
in [Ben96]. However, this shift appears to reintroduce into the logical representation
a considerable amount of semantical redundancy that RCC wanted to avoid — that

is, the open-closed duplication of spatial entities.

1.6.2 Present work

In this work, I will focus on spatial representation for theorem proving by means of
encodings into extensions of IPL (or super-intuitionistic logics, as mentioned in the
title) that are presented in Chapter 3. These encodings extend significantly Ben-
nett’s result from the point of view of expressiveness. An object level encoding of the
RCC8 relations that is based on a modal extension of intuitionistic logic, rather than
on a classical multi-modal logic, is presented in Section 5.3.4. Propositional quan-
tification, in the second-order extensions of IPL, is used to express quantification
over regions. A simple specification language for topological relations is introduced
(Section 4.1.2), and later used (Chapter 5) in order to express notions related to
the modelling of granularity (Section 4.3), connectivity, graphical effectiveness and
dimension. It is also suggested how a weaker modality could be used in order to
deal with an idea of multiple views over the same space.

Although expressively quite powerful, propositional quantification, in order to be
axiomatised, requires some adaptation for some of the topological notions that are
encoded. Moreover, propositional quantification in intuitionistic logic is critical from
the point of view of decidability [Gab81], and hence from that of the satisfiability
problem. On the other hand, it might be altogether difficult to have connectedness,
quantification over regions, and decidability all together, considering the proxim-
ity of this case to the undecidability result in [Dor98]. In contrast, the decidable
formalism for the RCCS relations and connectedness presented in [PH02] does not
have quantification and is based on finite models.

Anyway, a partial decidability result is established, and an effective decision
procedure is given for one of the logics (Chapter 6). Some additional remarks about

decidability and related computational aspects are contained in the Conclusion.
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1.7 An application

1.7.1 Plan and development of the present work

The initial plan for this thesis was to introduce a new formalism, comparable to
RCC from the point of view of the underlying ontology, more expressive than the
encoding of RCC8 presented in [Ben96], and capable of representing granular infor-
mation. With particular respect to granularity, it seemed very important to obtain
a formalism that would be compatible with digital models, something that RCC
is missing (as remarked in Section 1.3). After observing that IPL extended with
propositional quantification and modalities could be a candidate as a framework
for such a formalism, the investigation turned toward the topological expressiveness
allowed by some of those extensions, focusing on models that seemed particularly
fit to represent granular information. This investigation resulted in the introduction
of new logics and of new encodings that are quite satisfactory from the point of
view of expressiveness (see the references in Section 1.6.2). However, neither the
useful computational properties of the encoding in [Ben96] could be recovered, nor
a general decidability result for any of the logics could be reached. On the other
hand, the fact that the new formalisms could be useful in order to prove topological
properties of computer spatial models, has lead me to consider theorem-proving in

ISPLs as a significant application topic.

1.7.2 Mechanisation and theorem proving

Some of the ISPLs that are presented in Chapter 3 have been mechanised (Chap-
ter 7). Lacking a general decision procedure, automated theorem-proving seemed
unhelpful. I relied instead on Isabelle, a state-of-the-art interactive theorem prover,
widely used in formal methods [Pau96|, capable of supporting forward proofs as
well as backward, tactic-based ones. In particular, Isabelle-HOL is the Isabelle im-
plementation of classical higher-order logic (HOL, [Lei%4]), an expressive formalism
that has already been used as a logical framework (a significant example is [DG02]).
Isabelle-HOL allows considerable freedom in the representation of object logics, as
well as a significant degree of semi-automation.

The mechanisation presented in Chapter 7 makes it possible to prove interactively
theorems in the basic logics and in their spatial extensions, at the object-level as well
as at the meta-level. Via the semantical completeness results, this application may

also be regarded, albeit in a limited way, as a proof-tool for a fragment of topology.
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Although theorem proving in geometry and topology, as well as their relationship
with formal methods, are issues far too wide to be addressed here [Fle01,SVV96],
the ultimate rationale behind the present mechanisation is to provide a support
to check the validity of topological inferences that can be drawn within a spatial
system. Relevant examples of systems could be found in robotics applications that
rely on internal spatial representation, such as the one presented in [MRL™00].

The present formalisation of ISPL is based on sequent calculus rules, and takes
advantage of the expressiveness of HOL with respect to meta-level reasoning. Section
7.4 contains some case-studies in proof-checking. In particular, it has been possible
to verify the main step of the decision procedure that is presented in Chapter 6,
and, as an example of application to spatial problems, a semantical result discussed
in Section 5.2.2.



Chapter 2
Topology

Topology deals with geometric properties that are invariant under continuous trans-
formations, i.e. with notions that do not involve distance — for this reason, it has
also been dubbed “rubber-sheet geometry”. For example, the question, whether
in a region there is a continuous path between two points, is a topological one, in
contrast with the question whether the shortest path between two points lies within
a region — hence, connectedness is a topological property whereas convexity is not.

Most of the topological and algebraic notions that are introduced in the fol-
lowing are standard ones (see [RS63, Kel55, Smy92]). As far as the notation is
concerned, I refer to Appendix A. I will use a,b,... for points, A, B... for sets
and for algebraic elements, and A, B, ... for families of sets and for structures. I
will use M, U, A, V, C etc. for the topological notions, also when topological spaces
are treated from a set-theoretical point of view, keeping the standard set-theoretical

symbols (N, U,(,J, C etc.) for a more general use.

2.1 Basic notions

A topological space is a pair § = (S, O), where S is a set, and O C p(S) is a collec-
tion of subsets, called the open sets (or simply the opens), satisfying the following

conditions:

1. 9,5 € 0.
2. fA,BeOthen AN B O.

3. If Q C O then \/{X|X € Q} € O.

14
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The set-theoretical complements of the opens are also called the closed sets of
S, and their class will be normally denoted by C.

A subset in a space is said to be clopen whenever it is open and closed. It follows
from the definitions that, for any space, S and & are clopen. The space § is said to
be discrete whenever every open set is clopen. It is said to be connected whenever
the only clopen sets are S and &.

For any A € O, the pair S* = (4,0%), with O* = {X 1M A|X € O}) is called
the restriction to A of S. Tt is a routine matter to show that S is a topological
subspace of § [RS63].

The collection B C QO is said to be a basis for S iff every A € O can be represented
as a union of elements of B.

The collection B C O is said to be a sub-basis for S iff there is a basis B’ for S
such that each element of B’ can be represented as an intersection of elements of B.

The elements of a basis (or of a sub-basis) can be regarded, intuitively, as the
primitive elements of the topology. A space is said to be second-countable whenever
it has a denumerable basis,

It may be useful to observe that, even in a second-countable space, the collection
of the open sets can be undenumerable, as an effect of the closure w.r.t. arbitrary
union. In fact, if the space include infinitely many disjoint, non-empty opens, arbi-

trary unions of opens can be used to mimic infinite sequences of natural numbers.

2.2 Separation properties

The spaces that are relevant here can be classified in terms of the following separation

properties [Kel55]. Let S = (S, O) be a topological space. Then:

1. § is said to be regular iff, whenever x € S, A € C and x ¢ A, there exist
X, YeOsuchthatxe X, ACYand XY =g.

2. S is said to be a T} space iff for every two points x,y € S, x # y, there exists

X € O such that one and only one of the two points is a member of X.

3. S is said to be a T7 space iff for every two points x,y € S, x # y, there exist
X, YeOsuchthatxe X, yeVY, x¢Y andy ¢ X.

4. S is said to be a Ty (or Hausdorff) space iff it is 77 and regular.

5. § is said to be a T3 (or normal) space iff for every disjoint A, B C S, there
are disjoint C,D € Ost. ACC,BC D.
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6. S is said to be metric iff it is possible to define a function d : S x S — R (i.e.
from pairs of points to the reals), such that d(a,a) = 0, d(a,b) = d(b,a) and
d(a,b) < d(a,c) +d(c,b), for every a,b,c € S.

The Ty property is the most important from the point of view of the spatial
representations that are going to be considered in the next chapters. From the
point of view of standard geometry, where the space is always meant to be normal
— and hence metric — the 7} separation property is a very weak one. On the other
hand, 7}, spaces play a significant role in computer science, as they are compatible
with an idea of approximation in information [Vic89]. In the following chapters, a

similar idea will play a certain role with respect to the notion of granularity.

2.3 Covering and primeness
Let S = (S, O) be a topological space.

Definition 1 A family A of opens in S is said to cover T, where TC.S (or also,
to be an open cover of T) iff T C \/ A.

A subset T' C S is said to be compact in S iff for every open cover D of T', there
exists a finite subset of D that covers 7. Compactness is essentially a notion that
applies when infinite collections are not essential. The following gives a stronger

notion, that is going to play a significant role here:

Definition 2 A € O is said to be a prime subspace (or simply a prime) in S iff
for every open cover D of A, there exists an open B € D such that A C B.

The family P of the primes in S, elsewhere called strongly compact open sets
[RS63] and point-like sets [FST9], is a subclass of every basis of S — since essentially,
primes are opens that cannot be represented in terms of other elements. A prime

space can also be characterised as follows:

Proposition 1 The space § is prime iff for any indexed family X; of non-empty
opens, \,.;C(X;) # @.

pf: Since A, ;C(X;) # @ iff \/,.,(—C(X;)) # S.
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Given a generic space, a simple way to get a prime space is to add an extra point.
More precisely ( [RS63] chapter 4, par. 5):

Proposition 2 For each space S = (S, 0), S is an open subspace of a prime space
S'=(5,0U{S"}), where 8" = SU{p}, withp ¢ S.

The space 8’ may also be called the one-point compactification of S.

2.4 Alexandroff spaces

The relationship between orders and topologies can be a quite close one [Smy92,
FS79, Goe71, Gab81, Kop92, TSB02, Tor01]. Let S = (S, O) be a topological space.

Proposition 3 In S, the following always defines a pre-order on S:
p=<q iff, forany A € O, if p € A then q € A.
< is said to be the specialisation order of S [FS79].

The relations < is a partial order whenever § is a Ty-space, whereas it trivialises
to an identity whenever S is a 7i-space.

The specialisation order has a natural interpretation from the point of view of
computer science. If the open sets represent pieces of information, < is an order on
the information that is available at different points — hence an order on their level
of detail.

On the other hand, every order can be associated to a topology. Given a pre-
order (S, <), let U be the class of the upper-closed subsets of S w.rt. < — i.e.
X €U iff XCS and, for every p€ S, if p € X and p < q, then q € X).

Proposition 4 The structure 7 = (S,U.) is a topological space, called the order
topology determined by < on S [FST79].

It is straightforward to observe that the specialisation order of 7 is isomorphic

to the order relation <.

Definition 3 In (S, <), for any a € S, the smallest upper-closed set that contains
a is said to be the upper-closed generated by a, or the pointed set of a, and

can be denoted by a 1.
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Clearly, each point a can be obtained as the intersection of all the upper-closed
sets generated by a, and the specialisation order defined over 7 can be expressed in
terms of inclusion between pointed sets, since p<q iff q 1 Cp 1.

Hence, pointed sets can be used to represent the level of detail associated to the
corresponding points. Moreover, whenever < is a partial order, the correspondence
between the pointed sets and the points is one-to-one, and so the pointed sets turn

out to represent exactly the points.

Proposition 5 Let P be the class of the pointed sets in (S, <). Then:
(a) P is the class of the primes in U_.
(b) P is a basis for the order topology.
(¢) The order topology is closed w.r.t. A.

pf:  (a) A pointed set generated by p cannot be obtained as a join over its proper
subsets — otherwise p would be member of one of them. Vice-versa, only the
pointed sets are primes, since every other non-empty upper-closed set can be
obtained as the union of its pointed proper subsets, i.e. for every X € U,
X = Vaex(a ). This also suffices in order to prove b.

(¢) Follows from b.

Indeed, the above mentioned properties induce different characterisations for

order topologies.

Proposition 6 If S is an order topology, then it is isomorphic to the order topol-

ogy determined on S by < (i.e. by the specialisation order on §).

pf: Every open set X € O can be mapped into the union of the pointed sets of the

elements of X (relative to <). This mapping turns out to be an isomorphism.
A closely related notion is the following one:

Definition 4 The space S is said to be Alezandroff (also A-closed) iff O is closed
with regards to A, i.e. iff every arbitrary intersections of open sets is an open
set [Kop92].

Open sets in a A-closed space behave exactly like the closed ones. Alexandroff

spaces are just another way to look at order topologies, as shown by the following:

Proposition 7 The space S is Alexandroff iff it is an order topology.
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pf: If a space is isomorphic to an order topology, then it is /-closed (Proposition
5). On the other hand, if S is Alexandroff, for any point S, there always
exists the smallest open set containing that point (obtained as an arbitrary
intersection of opens). Hence it is possible to use the argument of Proposition

6, showing that S is isomorphic to the order topology determined by < on S.
Proposition 8 The space S is Alexandroff iff the class of its primes P is a basis.

pf:  An Alexandroff space is isomorphic to an order topology, so P is a basis. On
the other hand, if every open set is given as a union of primes, the topology is
/\-closed.

It is possible to conclude, then, by saying that order topologies, Alexandroff
spaces, topologies that have primes as a basis — are nothing but equivalent notions.
From the point of view of the spatial semantics that is going to be developed, the fact
that an Alexandroff space can be intuitively associated to a canonical basis, formed
by elements which cannot be reduced any further, offers a simple way to model
different levels of granularity, i.e. different levels of discretisation of an underlying

metric space [Kop92].

2.5 Atomicity

A directed, acyclic graph is said to be atomic (or terminable) whenever, for each
node, either that is a terminal node or there is a finite branch departing from it. The
graph can be said to have a finite depth whenever all of its branches have finite length.
Corresponding notions can be introduced for spaces [Gab81,SW97, TSB02, Tor01].
Let S = (S, O) be a topological space.

Definition 5 A € O is said to be an atom in § iff, for every non-empty X € O,
if X C A then X = A.

Definition 6

1. The space S is said to have finite depth iff, for every chain of opens X
s.t., for every ¢ € I, X; C X1, X/ is finite.

2. The space S is said to be atomic (or terminable [TSB02]) iff, for every
non-empty A € O, there exists an atom B € O such that B C A.
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3. The space S is said to be anti-atomic (or inexhaustible [SWIT]) iff it has

no atoms.

Clearly, all atoms are primes. They correspond to the maximal point with respect
to the specialisation order, i.e. to those points that can be intuitively associated to
the highest level of detail. Moreover, since atoms have no proper parts, although
they are not generally clopen, they essentially behave like discrete elements. This
suggests the possibility of relying on atomic spaces in order to give an explicit

account of the lowest level of a spatial representation (see Section 4.3).

2.6 Topological algebras

An open topology can be introduced algebraically, without relying on sets of points,
by adding to a Boolean algebra (A, 1,1, T, L) an interior operator characterised by
the following axioms [RS63, Vic89]:

1. I(A N B) = I(A) N I(B)

2. I(A)C A
3. 1(14) = I(A)
4T =T

The structure (A,M,L, T, L, 1) is then called a topological Boolean algebra. A
closure operator C can be defined as the dual of I.

For each topological Boolean algebra A, and for each countable collection E of
arbitrary meets and joins in A, there is a space S = (S, ) and an isomorphism
between A and S that preserves all the elements of F (see [RS63] chapter 4, 4.3).

On the other hand, whenever (S, Q) is a topological space (according to the point-
based definition), the complete topological Boolean algebra (O,M, L, A,V, S, 2,1)

can be obtained, relying on the following definitions:
1. I(4)=\{Xe€0O|XC A}
2. CA=N{-X|XeO, X A=g}

So, the topological operators |, C can be used to define new operators, regardless

of whether the space has been introduced using points or not. On the other hand,
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whenever it is not necessary to rely on points, the set-theoretical operations of union
and intersection can be regarded, without any loss, as joins and meets over algebraic
elements.

A presentation of topology that does not rely on points highlights the relationship
with algebra, as well as with modal logic — indeed, there is a close relationship

between interior and closure, and the modal operators of the logic 54 [RS63].

2.7 Topological operators

Let & = (5,0) be a topological space, and let A, B € O. The following are some
useful topological operators [RS63, Tar56]:

1. A= B =\{X € O|XNA C B}.
It also holds, in general: A= B = |(—AUB).
Set-theoretically, A = B gives the largest open subspace of S in which A is
included in B.

2. A =A=0.
A* gives the largest open included in the set-theoretic complement of A.
The equality A* = 1(—A) holds in general.

3. 1(C(A)), which is called the regularisation (or, more precisely, the open regu-

larisation) of A.
It holds, in general: 1(C(A4)) = A*".

4. A+ B = (A U B)**, which is called the regularised union (or the sum) of A
and B.

There is a very close relationship between =, x and the algebraic operators that
are introduced in the next section (i.e. relative pseudo-complement and pseudo-
complement — indeed, I will use the same symbols to denote them).

The following properties, related to regularisation, can be defined:

1. If A™ = A, we say that A is reqular open.

2. If A* = B, we say that A is dense in B.

As noted in the Introduction, regular opens play an important role in the repre-

sentation of regions.
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2.8 Heyting algebras

It is possible to use different algebraic structures in order to represent either topology,
or some of its fragments. Here a few classical results are reviewed, before introducing

a new one (Proposition 10).
Definition 7

1. The Heyting algebra (A, M, U, L, T,=)is the lattice (A, M, U ), equipped
with the minimum 1, the maximum T and with the relative pseudo-
complement = (also called relative Heyting complement). This is defined,
for every A, B € A, as
A= B=\/{X|ANXCB}

(to be read as the pseudo-complement of A relative to B).
2. The complete Heyting algebra (A,N,U, \,V,L, T,=) is a complete lat-

tice equipped with =, where the following distributive property holds for
all the elements A, B:

AN Ve Bi E Vi (AN By)

3. A (complete) Heyting algebra is said to be meet-distributive iff the fol-
lowing distributive property holds:
/\iez(AUBz’) C Al—l/\iEIBi

4. A (complete) Heyting algebra is said to satisfy the atomicity condition
iff the following property holds:

/\ieIA;*E(/\iein)**
where A* = A= 1 is called the pseudo-complement (or Heyting comple-
ment) of A.

The following results are well-known ones — they can be worded in different

ways, here I refer mainly to [RS63, Goe71]:
Proposition 9

1. For every space S = (S,0), the structure (0,1, LA\, @,5, =)
where \'F = I(AF), is a complete Heyting algebra (see [RS63] chapter
4, theorem 1.4).
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2. For every countable Heyting algebra A and for every countable collection
E of arbitrary joins and arbitrary meets in A, there is a space S = (5, O)
and an embedding (i.e. a monomorphism) of A into S that preserves all
the elements of F (see [RS63] chapter 4, theorem 9.2, extending a result
in [Tar56]).

3. For every Alexandroff space § = (5, 0), the structure (O,M, U, A,V, &,
S,=>) is a complete meet-distributive Heyting algebra (see [Goe71] 5.1).

4. For every countable Heyting algebra A and for every countable collection
E of arbitrary joins and arbitrary meets in A, there is an Alexandroff
space S = (S,0) and an embedding of A into S that preserves all the
elements of F (see [Goe71] 7.8).

The following introduces a characterisation for atomic Alexandroff spaces:

Proposition 10 An Alexandroff space § = (5, 0) is atomic iff, for any indexed

pf:

family A; € O, \ic ;A7 E (Aies4i)™ (atomicity condition).

Left to right. Take X = \;.;A;" and Y = A, ;A;. First note that X**C A,
for every 7 € I, and so X = X**. It follows that both X and Y are regular
opens. So, assuming X [Z Y** there exists a non-empty Z € O such that
ZCX and ZCY™*. But if S is atomic, Z can be taken to be an atom. Then,
whenever ZC A also ZC A; holds (otherwise ZMA; would be a proper part of
Z), and so ZCY follows from ZC X, giving a contradiction. Hence S cannot
be atomic.

Right to left. Assume that S is not atomic. Then, for some non-empty subset
T € O, it must hold that there are no atoms in 7. However, since the space
is Alexandroff, by the closure of O w.r.t. A, for each point p € T, there
exists a smallest B € O such that p € B. Since B C T, B cannot be an
atom — hence there must be a smaller non-empty open set. But for any
such C € O, p can only belong to the boundary of C' — otherwise B would
not be the smallest open containing p. Now let K = A, (X U X*). Since
every point in 7" turns out to be on the boundary of some open, we then
have K M T = &. Then, since T is a non-empty open, it should be K** #
S. However, A, (X L X*)** = S and hence, using the condition in the

hypothesis, K** = S — a contradiction. Therefore & must be atomic.
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It is now possible to see how atomic Alexandroff spaces can be represented topo-

logically.
Proposition 11

1. For every Alexandroff space S = (S, 0), the structure (O,N, U, A,V,
@,S,=) is a complete meet-distributive Heyting algebra that satisfies

the atomicity condition.

2. For each countable Heyting algebra A that satisfies the atomicity condi-
tion, and for every countable collection E' of arbitrary joins and arbitrary
meets in A, there is an atomic Alexandroff space & = (S5,0) and an

embedding of A into S that preserves all the elements of E.

pf: 1. Consequence of Proposition 10.

2. This can be proved, using Proposition 10, as [Goe71] 7.8.

The results in Propositions 9 (1-2, 3-4) and 11 (1-2) can be regarded as a basis
for the algebraic completeness of the logics 12, C2 and D2, respectively, that are
going to be introduced in the next chapter. Completeness could be proved relying
on the approach used in [RS63, Goe71] — with some adjustment due in order to
keep into account that here quantification ranges over the formulee. However, in the
next chapter, I will introduce Kripke models in order to make the semantics more

intuitive.
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An intuitionistic 2nd-order propositional logic (ISPL) can be obtained by adding
to intuitionistic propositional logic (IPL) quantification over the propositional vari-
ables. However, there are two different senses in which it is possible to understand
propositional quantification — either relying primarily on the semantics or on the
syntax.

In a model-theoretic sense, propositional quantification ranges over all the pos-
sible denotations of the propositional formulee — the “semantical propositions”.
Those, in the case of a topological semantics, are the open sets [Kre97, Skv97].

In a proof-theoretic sense, propositional quantification ranges over all the possible
syntactical substitutions of the propositional variables [Gab74, Gab81,Loe76]. Such
a notion of quantification can also be called substitutional.

Unless it is assumed that, for each possible semantical denotation, the language
includes a variable referencing it, the range of substitutional quantification may
be just a proper subset of the semantical propositions. The models that satisfy
this condition (also called second order completeness), are said to be the principal
ones. In general, semantical propositions are not recursively denumerable — just
as the opens in a topological space are not. Second order completeness turns out
to be a very strong requirement, that cannot be expressed in the language of the
logic [Skv97].

The gap between the semantical notion and the syntactical one is indeed quite
deep: IPL extended with semantical quantification is not recursively axiomatisable
[Kre97, Skv97]. On the other hand, logics with substitutional quantification can
be axiomatised in a way quite similar to intuitionistic first-order predicate calculus
(IPC) [Gab81]. Only substitutional quantification and axiomatisable logics will be

considered in the following.

25
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3.1 ISPL

An ISPL — in the axiomatisable sense that is considered here — is given by extend-
ing IPL with an axiomatisation of quantification over formula. Different formalisa-
tions are available. Examples of Hilbert axiomatisations are given in [Gab74,Gab81].
The system in [Loe76] is based on sequent calculus. In [Bar92] the logic associated
to polymorphic type systems is presented in terms of natural deduction.

The range of substitutional quantification depends on the way substitution is
defined. One possibility is to allow the substitution of an arbitrarily complex for-
mula for a variable — this notion can be called impredicative substitution (since it
explicitly forces the definition of formula to be impredicative). Another possibil-
ity is to allow only the substitution of a variable for another variable — this may
be called predicative substitution (since, by itself, it still allows for formulae to be
defined inductively).

With impredicative substitution, quantification must range over all the seman-
tical propositions that are syntactically definable — in the topological semantics,
these will be the definable opens (as it will be seen further on) — hence quantifi-
cation can be said to satisfy the comprehension principle (or full comprehension),
so called in analogy with the set-theoretical principle, stating that every definable
collection is a set [GabT74].

With predicative substitution however, quantification might also range on a
proper subset of the formule. In order to rule out this possibility, it must be
explicitly required that the comprehension principle is satisfied, by introducing an
additional axiom schema. For technical reasons, in Hilbert axiomatisations pred-
icative substitution with explicit comprehension is preferred, whereas impredicative
substitution is usually favoured in the rule systems.

The fact that it is not possible to define the class of the formulse without re-
ferring to the class itself (either through impredicative substitution, or through the
comprehension axiom) gives, in any case, the impredicative character of ISPL.

In the following, three different second-order logics based on IPL are going to be
introduced — 12, C2 and D2 — using Hilbert axiomatisations. 12 is the weakest,
and it may be regarded as an axiomatisation of standard ISPL. — corresponding
to the logic of the natural deduction system in [Bar92]. I2 is important for its
proof-theory, but it is semantically too general from the point of view of the present
analysis. C2, corresponding semantically to order topologies, is equivalent to the
system introduced as C2h in [Gab74] and as C2I in [Gab81]. D2 is the strongest of
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the three, and it has been introduced in [TSB02] (there called 2tA). It is particularly
significant from the point of view of digital representation, since it corresponds to

atomic Alexandroff spaces.

3.2 Modality

Intuitionistic modal logics (IMLs) are obtained by adding modalities to an intu-
itionistic logic. Since IPL can be embedded into S4, IMLs can also be regarded
as fragments of classical multi-modal logics, where one of the modalities is an 5/
operator [WZ99, ZWC02].

In the case of IMLs, Kripke semantics are generally based on frames with more
than one accessibility relation. The interpretation of the standard intuitionistic
connectives is associated to a partial order (denoted by < in the following), whereas
the interpretation of the modalities can be associated to additional relations [WZ99|.

Here the case is different. Modal operators are needed in order to express topo-
logical notions for which the intuitionistic operators will not suffice. The aim is
to gain expressiveness over the topology which is determined by <. Hence, the
interpretation of the new operators, in order to be useful, must refer to <, too.

In the following, two different kinds of modalities are going to be considered, as
possible ways to extend an ISPL. Both of them are based on a primitive box operator
(d). The diamond operator ({) can be defined in terms of box and negation. I
will refer to the first kind as to the N-modalities, giving the N-modal logics as
extensions of C2 and D2. The N-box bears some relationship to the strong S5
necessity operator. Models can be associated to the same frames as those of the
underlying non-modal logic. The meaning of the N-box formula O« is that « is
true everywhere in the model.

The second kind of modalities — here I will call them V-modalities, giving rise to
the V-modal logics — may be considered separately from the first ones. The V-box
is comparable to a weak S5 modality. Semantically, the models can be associated
to frames for the underlying non-modal logic extended with a family of selected
subframes. The meaning of the V-box formula Oa is that « is true everywhere in
the sub-model determined by the local subframe.

Differently from the case of classical S5, here the difference between strong (V)
and weak (V') interpretation of the box operator is reflected in the axiomatisation.
N-box formulae are two-valued — hence, the N-modal logics have some disjunctions

as theorems. In contrast, the V-modalities preserve the constructive character of
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intuitionistic logic (no disjunctions or existentials are forced as theorems).
The N-modal logics are going to be discussed in detail, from the point of view
of spatial representation, in the next chapters. In contrast, a spatial interpretation

for the V-modal logics will be only sketched in the last section of Chapter 5.

3.3 Language

The set of the formule of a language £; for ISPL is the smallest one that contains
an enumerable set of variables Var = z,y,..., an enumerable set of propositional
constants Const = a, b, ..., and is closed w.r.t. the constructs & — 3 (where — is in-
tuitionistic implication) and Vx.« (where V is the universal quantifier). Propositions
are formulae without free variables.

Lower-case Greek letters a, 3,... are going to be used, by default, as meta-
variables for formula. As usual, a(x) means that  may be free in «, whenever x
is a variable that is bound elsewhere in the formula. On the other hand, it may be
useful to remark that if 8(x) was taken to be syntactic sugar for Az.[3, propositions
could be defined as « = a | § — 7 | Vz.f(x) — although this fact will turn out to
be significant only when we consider the point of view of mechanisation.

The expression «a(y/x) (predicative substitution) means that the variable y is
uniformly substituted for the variable z, i.e. every occurrence (possibly none) of z
in the formula « is replaced by an occurrence of y. Any capture of free variables is
avoided by renaming.

The expression «[3/z] (impredicative substitution) means that the formula g is
uniformly substituted for the variable z, i.e. every occurrence (possibly none) of
z in the formula « is replaced by an occurrence of 3, avoiding any capture of free
variables in 8 by renaming.

The language £; is then extended by the following definitions [T'S00]:

Definition 8
aANf=Vr(la—p—1x)—>z
aVp=Vr.(la—z)—= (-2 >z
dzr.a(z) = Vz.(Vo.a(z) = 2) — 2 z not free in a.
1l =Vzux
~oa=a— L

T=1->1
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ae == ANB—a)

Nocicn® = Q1 Ao Aoy
Vocicn® = @1V ...V oy
The set of the formule in a modal language L£,, that extends L;, is defined by
requiring also the closure w.r.t. the construct Oa (where O is the box operator).
The modal language is then extended by the following definitions, in addition to
the previous ones:
Definition 9
Sa= ~O~«
aDdf=~0OaVvOP

The operators —, A,V are taken to be right-associative, and the precedences are

{~~,0,0, Nicicn» Vicient > AN VE > {=,D} >« > {3V}
The letters A, T, ... are used to denote sets of formulze.

3.4 The axiomatisation of ISPL

The Hilbert axiomatisations based on predicative substitution, in a language £;, for
three different forms of ISPL (12, C2 and D2) can be obtained from the following
list of axiom schemas and inference rules. Uniform substitution for the free variables

is assumed here.

e Basic propositional schemas:
Al. a—=> =«
A2. (a—=fB—=7y) =2 (a—=8)—>a—y
A3. ((a—=f) »a) >«
Ad TFaand ' a — 8 implies I'+ 3

e Minimal quantification schemas:

A5. (Vz.a(z)) = a(y/x)
A6. T'Fa — B(y/z) implies T+ o — Vz.5(x) x not free in I', &
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e Other quantification schemas:

A7. (Vz.aV B(z)) = aV (Vz.8(x)) x not free in a.
A8. (Vz.~a(x)) — ~Vz.ax)

A9. dx.x & « a any formula, x not free in a.

Intuitionistic implication can be axiomatised by A1, A2, A3 together with Rule A4
(Modus Ponens). Schema A5 and Rule A6 give the minimal notion of quantifica-
tion, and they are similar to those for intuitionistic predicate calculus. A9 is the Full
Comprehension Schema for second-order propositional logic. All these together give
an axiomatisation of I2, equivalent to the basic intuitionistic second-order proposi-
tional logic in [GabT74].

Adding to I2 the schema A7 (also called Constant Domain Schema) gives the
axiomatisation of C2, i.e. the ISPL with constant domain (w.r.t. the Kripke se-
mantics) that is equivalent to C2h in [Gab81] (or to C2I in [Gab74]).

The axiomatisations in [Gab81] differ from those presented here insofar as there
also the logics without Full Comprehension are considered. For those logics, it is
not possible to rely on the definitions of the operators given in Def. 8, and hence
independent axioms for A, V,d, L are needed.

The logic D2 (2tA in [TSB02]) is obtained by adding Schema A8 (also called
Atomicity Schema, or Terminability Schema) to C2. A schema similar to A8 has
been already considered in [Gab81] for an extension of intuitionistic predicate cal-
culus (there called MH).

Summarising, the following definitions can be given:

Definition 10

I2: Schemas A1, A2, A3, A5, A9, Rules A4, A6.
C2: I2 + Schema AT.
D2: C2 + Schema AS.

3.5 Modal extensions

The Hilbert axiomatisations for the modal extensions of the logics H € {C2, D2}
that are considered here, can be obtained from the following list of schemas in a

modal intuitionistic language L,,.

e 5/ -style modal schemas:
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A10. Do — «

All. Oa — OO0«

Al12. O(a — f) = O — 0OpB

Al13. T'F « implies T'F Oa all formule in I have form 5.

e Other modal schemas:

Al4. Oa Vv ~Oa
Al5. O(aV p) - OavOp

e Quantified modal schemas:

A16. (Vz.Oa(z)) — OVz.a(x)
A17. (O3z.a(z)) — Jz.0a(x)

The logics H extended with all the schemas and with the rule presented here,
will be referred to as the N-modal logics (respectively, NC2 and ND2). The logics
extended with the rule and with all the schemas except Al14, will be referred to as
the V-modal logics (respectively, VC2 and VD2).

The schemas A10-A12 and Rule A13 are those generally used to axiomatise
an S4-style necessity operator [WZ99, Pra65]. Schema A16 is the Barcan formula.
Schemas A14, A15 and A17 are more specific. From the point of view of the Kripke
models discussed further on, the schemas A15 and A17 force the interpretation of
Oa to depend on that of « at a single point. Adding Schema 14, this point is forced
to be the minimum w.r.t. the partial order <, so the interpretation of [1 is forced
to be the “strong” one.

Dropping both A15 and A17 one can abandon the restriction to frames that have
a minimum (w.r.t. Defs. 15, 18) — correspondingly, the restriction to prime spaces.
The resulting logics will not be treated here, although they are interesting (see the
comment in the Conclusion).

Summarising, the following definitions can be given here:

Definition 11

VC2: C2 + Schemas A10, A11, A12, A15, A16, A17, Rule A13.
VD2: D2 + Schemas A10, A11, A12, A15, A16, A17, Rule A13.
NC2: VC2 + Schema Al4.
ND2: VD2 + Schema Al4.
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3.6 Syntactical properties

For any logic of those that have been introduced, the notions of derivation of a
formula from a set of assumptions (also called a deduction) and the notion of proof
can be defined as follows [TS00]. Let L € {I2,C2,D2, NC2,ND2,6VC2, VD2}.

Definition 12
(a) A derivation (of length n) of a formula « from a set of assumptions A, in
L, is defined inductively, as a finite sequence of formulae a4, ..., a, such that
a = ay, and for each 1 <7 < n, one of the following holds:
1. o5 € A.
«; 1s an instance of an axiom schema of L.

There are j,k < ¢ such that o = o; — .

=W

a; = 3 —= Voy(z) and aj = f — 7, with j < ¢, and z is not free in S
and in A.

5. [for L modal logic|] o; = Oeyj, with j < 4, and there is a subsequence of
o1, - .., 05 which is a deduction of ; from I', where every 8 € I' has form

Oy (i-e. is a box formula).

(b) A derivation of « from the empty set is said to be a proof of a.

Definition 13

(a) In L, a formula « is said to be derivable from a set of assumptions A
(written A Fp, «) iff there is a derivation of a from A.

(b) In L, « is said to be provable (written 7, o) iff there is a proof of «.

In contrast with the notion of object-level derivation that has been just defined,
the following principles can be proved valid at the meta-level, using induction —
here either on the length of the derivations or on the length of the formula (defined
as usual, see [TS00]).

Proposition 12 [DE — Deduction Equivalence]
Aot Bit Al a— B.

pf:  Right to left. By A, a b, o and rule A4.
Left to right. By induction on the length of the derivation.
Base case. If § is an axiom, by Al and rule A4. If 3 € A, by 1 5 — £.
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Step case. (a) For an application of Rule A4: by induction hypothesis, A2 and
A4 itself.

(b) For an application of Rule A6, with 8 = v — Vz.0(z): from the induction
hypothesis, given that A -, a« — v — 0 is equivalent to A -, a A § — 7, and
x is not free in o A 3.

(¢) [For L modal logic] For an application of Rule A13, with § = [0vy: then
there is a sub-deduction of v from A’ C A U {«a}, where all the formula in A’
are box-formula.

(c1) If A" = T'U{«}, by induction hypothesis, ' -, o — 7. Then I' -7, O(aw —
~) follows by Rule A13. So, by A12, using Rule A4, we get I' -, Oa — 3.
Since « is a box-formula, using All, I' -, a — [ follows, and hence, by
definition of deduction, also A - a — £.

(c2) If a ¢ A', from T' 1, 8, A 1, 3 follows by definition of deduction, and
hence A 7 a — [ follows using A1l and Rule A4.

Proposition 13 [RE — Replacement of Equivalents]

pf:

AFp a < §implies A Fp y[a/z] < v[F/x].

[For L modal logic] Proviso (*): if 7 contains some occurrence of [I, then for
any ¢ € A, A+ Oo.

By induction on the length of the formulae.

Base case. If v = z, by assumption. If = is not free in v, by F, v — 7.

Step case. (a) vy =mn — §. As consequences of the induction hypothesis, we
have A 1 n[a/z] <> n[B/z] and A F, 6[a/z] <> §[5/x]. Since

n[B/x] = nle/x], 6la/x] — 6[8/x] ki (nla/x] — dla/z]) — (nlB/x] — 6[/z])
it follows Ak (n[a/z] — 0[a/z]) — (n[B/x] — §[B/x]).

Similarly for A F;, (n[8/x] — §[8/z]) = (nla/x] — 6[a/x]).

(b) v = Vy.0(y). Then, for any z not free in A, as consequences of the induction
hypothesis, A Fp, 6(z/y)[a/x] = 6(z/y)|B/x];

using A5 it follows A Fp (Vz.0(z/y)[a/z]) — 6(z/y)[5/x]. Then, by Rule A6,
At (Vz2.0(2/y)[a/z]) = (V2.6(2/y)[5/x]). Similarly for the other side of the
double implication.

(¢) [For L modal logic] v = 0§. From the induction hypothesis, given the
proviso (*), by Rule A13, A +;, O(6[a/x] — §[B/x]). Then, using A12, A
Od[a/x] — O6[B/x]. Similarly for A Fp 6[8/z] — d[a/x].

The following gives an example of a schematic formula which cannot be proved

in C2, whereas it is provable in D2. In [Gab81] a similar example is given with
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respect to the corresponding predicate calculi.

Proposition 14  Fpy &Vz.a(z) V ~a(r)

pf: Follows from ¢y Vz.m(a(x) V ~ a(z)) using A8 and Rule A4.
The following are theorems in the logics N € {NC2, ND2}.

Proposition 15

() Fy (Oa—0B) - ~0OavOp
) Fn ~0a — Do
)

pf: (a) From Fy ~OaVOa - (Oa — O8) - ~Oa v OB and Schema Al4,
using Modus Ponens.
(b) From a, since by ~ =y <> ~7.
(¢) From Fy OO« V ~Oa), follows that 1: Fy Oa VO~ Oa.
We have that Fy Oa — ~Oa — 1, and so 2: Fy Oa — ~Oa — O~ Oa.
Moreover, 3: Fy O~Oa — ~Oa — O~ Oa.
From 2 and 3 follows 4: Fy (Oa Vv O~0Oa) - ~Oa — O~Oa. Applying
Modus Ponens to 1 and 4 gives q.e.d..

(d) From c and b.
() Fromaand by ~aV B —a—f

The following equivalences show how closely the N-modalities can be related to
the S5 modalities.

Proposition 16

Fy Oa < O 0o
Fy Qo < ~0o

pf: Corollary of Proposition 15.

In fact, it turns out that an alternative axiomatisation for the N-modal logics

can be given by replacing A14 with the following two schemas:

F O Oa — Oa



Chapter 3 35 The logics

F~UOo — O~ o

However, here [1 and ¢ do not show the same kind of duality than can be found
either in classical modal logics. In fact, Qo A O 8 — O(a A B) is not a theorem, in
spite of Schema A15.

3.7 Kripke semantics

In this section the Kripke semantics for the logics C2, D2 and for their N-modal
and V-modal extensions are introduced. The models and the completeness proofs
are largely based on those given in [Gab74,Gab81] for a logic equivalent to C2. As
to D2, the main idea comes from the semantics of the system called MH in [Gab81].
In the case of the modal logics, some extra machinery is needed. I will consider
first the N-modal logics, interpreted into the same frames as those of the non-modal

ones. Then I will deal with the V-modal logics.

3.7.1 Models for the non-modal and N-modal logics

The following gives a definition of atomicity for pre-orders (similar to Def. 6).

Definition 14 A pre-order (S, <) is said to be atomic iff, for any x € S, there is
y € 5, such that x <y, and forallze€ S, if y <z then z < y.

y is then said to be a terminal element, or an atom.
It is now possible to introduce the following two notions of frame.
Definition 15

1. A Kripke C2-frame is a structure (S, <, 0), where (S, <) is a partial order
on the set of points S, and 0 € S (also called the root of the frame) is

the minimum w.r.t. <.

2. A Kripke D2-frame (S,<,0) is a C2-frame where (S, <) is atomic.

The restriction to partial orders is quite intuitive, but not essential. Reminding
that, w.r.t. (S, <), the class of the subsets of S that are upper-closed relative to <
is denoted by U<, it is possible to give the following definitions for the models:

Definition 16
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1. A Kripke D2-model (C2-model) in a language L; is a structure M =
(F,R,p), where F = (S,<,0) is a D2-frame (C2-frame), p is an inter-
pretation, assigning to each a € Var U Const an element [|af|, € U< (i.e.
an upper-closed set), and R is the image of p in U<.

The notion of truth at a point a € S relative to p (also said forcing

relation), can be defined inductively, for all the formulz in £;, as follows:

e For a € Var U Const, aF aiffa € ||,
e aF a— fiff for every b € S such that a <b, if b F a then b F £.
e aFVz.ax) iff for every y € Var, aF a(y/x).

The following condition must be satisfied:

e Full Comprehension (condition FC): for each o € L;, thereisz € Var
st. aFaiffaelz,

2. A Kripke ND2-model (NC2-model) M = (F, R, p) in a modal language
L, is a Kripke D2-model (C2-model) where the notion of truth is ex-

tended to all the formulae in £,,, as follows:

e aFUaiff 0F a.

The definiton of C2-model here is essentially the same as that of C2h-model
in [Gab81].

The given interpretation rule for V is different from the standard intuitionistic
one, and it is not appropriate for /2. In fact, the present form relies on the as-
sumption that the domain of quantification is constant throughout all the points in
the frame. This assumption is satisfied whenever Schema A7 is given [Goe71], and

hence in every extension of C2.

3.7.2 Models for VH

The V-modal logics require a slightly richer structure. Given a frame (S, <,0), a
subframe is a pointed subset of S w.r.t. <, i.e. an upper-closed subset generated by
a single point. Exactly like the main frame, each subframe is a partial order with a

minimum.

Definition 17 Given a partial order (S, <) and a subset A C S, A is said here to
be closed for bounded sets in S w.r.t. < iff, for every subset B C A, whenever
B has a superior bound x in S, then it has also a superior bound y in A such
that y < x.
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Definition 18 A Kripke VD2-frame (VC2-frame) is a structure F = (S,V, <,0),
where (5, <,0) is a D2-frame (C2-frame), V C S is a set of selected points,
0 € V and V is closed for bounded subsets in S w.r.t. <.

The definition of model differs from Def.16 only with respect to the language,

the frame and the condition for O:

Definition 19 A Kripke VD2-model (VC2-model) in a modal language L,, is
a structure M = (F,R,p), where F = (S,V,<,0) is a VD2-frame (VC2-
frame), p is an interpretation, assigning to each a € Var U Const an element
lall, € U<, and R is the image of p in U<.

The notion of truth at a point a € S relative to p, can be defined inductively,

for all the formulz in £,,, as follows:

e For a € VarU Const, aF aiff a € ||of .

e aFa— fiffforeverybe Ss. t. a<b,if bF « then b F .

aF Vz.a(z) iff for every y € Var, aF a(y/x).
e aF o iff there exists be V, b < a, s.t. bF a.

The following condition must be satisfied:

e Full Comprehension (condition FC): for each o € L,,, there is x € Var
such that a F v iff a € ||z]| .

The set V = {a 1: a € V} is the family of the subframes, which is never empty
since S € V.

Proposition 17 In a VD2-frame, let a quasi-subframe be any arbitrary union
of subframes. Then, the family of the quasi-subframes is closed w.r.t. to
arbitrary intersection too — hence, it defines an Alexandroff topology over

the frame.

pf: Closure w.r.t. arbitrary intersection follows from the assumption that the

collection of the selected points is closed for bounded subsets.
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3.7.3 Properties of models and validity

In the following, I will consider some standard semantical notions, and give some
properties of the models that have been defined.
Let M = (F,R, p) be a Kripke model where the frame F is defined over a partial

order (S, <) with minimum O.

Definition 20 In the model M, for any formula «, the set {a € S|a F a} denoted
by [|a]|, will be called the truth-set of c.

In any model M, the following hold as consequences of the definitions:

1. Every truth-set is an upper-closed set and is a member of R.

2. [Hereditary condition] Whenever a < b, if a F « then b F .
Definition 21

1. A formula « is said to be valid in a model M, or satisfied by that model
(this is denoted by Fps «) iff 0 F o in M.

2. A formula « is said to be semantically deducible from a set of formulae
A = Bier in a model M (this is denoted by A Fj; «) iff for every point
a € S, whenever it is the case in M that a F ;, for every ¢ € I, then

aF a.

The following is provable from the above definition by the interpretation of —,
showing the correspondence betweeen semantical deduction and syntactical deriv-
ability (Def. 12).

Proposition 18 In any model M, we have that A, BFy aiff AFy 8 — a.
The following gives the interpretation for the defined logical operators.
Proposition 19

1. For every model M, for every a € S:

e afF |.
e akFT.
aFaANpiffaF aand aF fS.
aFavpiffaFaorakg.
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pf:

e aF dr.a(x) iff aF a(y/z) for some y € Var.
e aF ~qiff forevery be Ss.t. a<b,bFa.
e aFa«+ fiffforeverybe Ss.t. a<b,bFaiff bF 5.
2. For every N-modal model M, for every a € S:
e aF~uaiff 0 ¥ a.
e akF O« iff there exists b € S s.t. bF a.
e aFaDfiff either 0F aor 0F .
3. For every V-modal model based on a frame (S, <,0,V), for every a € S:

e aF ~[a iff for every b € V s.t. a < b, there exists ¢ s.t. b < ¢ and

c ¥ a.

By the definitions of the logical operators (Def. 8) and by the interpretation
rules given in the definitions of the models (Defs. 16,19).

3.7.4 Completeness

In the following, I will consider the completeness proofs for the logics K € {C2, D2,
NC2,ND2,VC2,VD2}. L will be either a non-modal language £; or a modal lan-
guage L,,. I will also use [A, «] as short for AU{«a}. In order to prove completeness,

it is useful to introduce some notions of theory (similar to those in [Gab74]).

Definition 22

1. A k-theory in a language £, is a pair (A; Q) of sets of formule of L.

2. (A;Q) is said to be consistent w.r.t. a logic K iff for no finite subsets
A" C A Q' CQ, we have Fx AA' — /.

3. (A; Q) is said to be complete in a language L iff for all the formule « in
L, either o € A or o € Q.

4. (A;Q) is said to be saturated in a language £ w.r.t. a logic K iff
a: AFg aimplies a € A
b: aVp e Aimpliesa € A or § € A.
¢: dz.a(z) € A implies that for some variable y in £, a(y/z) € A.

5. (A; Q) is said to be of constant domains in a language £ w.r.t. a logic K
iff whenever (A; [, Vz.a(z)]) is consistent, then for some propositional

variable y in £, (A;[2, a(y/z)]) is consistent.
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6. (A;Q) is said to be a ck-theory in a language £ w.r.t. a logic K iff it is a
consistent, complete, saturated k-theory of constant domain w.r.t. K in

L.
7. (A"; Q) is said to extend (A;Q) iff A C A" and Q C (V.

The following notions are useful in order to deal with atomicity and modality.
Definition 23

1. (A;Q) is said to be terminal in a language £ iff for every formula « in
L, either « € A or ~a € A.

2. An r-theory is a k-theory (A; ) in a modal language £, such that Do €

A iff o € A, and no other formula containing modal operators are in A.

3. (A; Q) is said to be a root-theory in a modal language £,, w.r.t. a modal
logic M iff it is a ck-theory in £,,, w.r.t. M, such that o € A iff Oa € A.

4. Given in £, a root-theory t = (A; ), a ck-theory (A’;€Y') is said to be
a t-dependant theory iff A C A'.

In the canonical models that are going to be considered, points will be represented
in general as ck-theories. In the N-modal cases, the root can be defined as a root-
theory t, whereas all the other points will be associated to t-dependant theories.
In the V-modal cases, all the selected points will be associated to root-theories,
and the remaining points to theories depending on the root-theories below them.
In the cases of D2, ND2 and VD2, in order to satisfy the atomicity condition, it
is necessary to include in the model, for any k-theory a, a terminal k-theory that

extends a, representing an atom. It is useful to prove first some lemmas.

Proposition 20 Let (A; Q) be a consistent k-theory w.r.t. alogic K in a language
L. Then, for any formula « in £, either ([A, ;) or (A;[€2, «]) is consistent.

pf: Assume both ([A, ;) and (A;[€2, o) are inconsistent. Then, there must
exist a conjunction  of formulae in A, and a disjunction w of formula in 2,
such that (1): Fx 6 Aa — w and (2): Fxg § = w V a, whereas (3): Fx § - w.
From 1 follows Fx o — § — w, from this and 2 follows Fx 6 = w V (6§ — w),
sobFgd— (0 >w)V (6 > w). Hence b 6 — 0 — w, and so Fx § — w, in

contradiction with 3.
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Proposition 21  Given a a root-theory t = (A, I'y) in a modal language L,,,

pf:

w.r.t. a modal logic M, let (A;Q) be a t-dependant theory in £L,,, with o —
B =7 € Q. Then there exists a t-dependant theory (A’;Q') in the same
language, with a € A’, 8 € (', such that A C A.

From the hypothesis follows that ([A, a]; §) is a consistent k-theory of constant
domain in £, (by a simple adaptation of the proof in [Gab74|, Lemma 3).

Let aq, a9, ... be an enumeration of the formulse in £,,. I will define induc-
tively a sequence of k-theories (Ay; Q) such that for each n, A, C A, ;1 and
Qn g Qn—|—1-

Base case: (Ag; Q) = ([A, a]; B).

Step case: it can be assumed that p, = (A,;€,) is defined and consistent, in

order to define p, ., = (Apy1;Q2n41). There are two main cases.

A) (Ap; [Qn, ay)) is consistent.

Al) a, = 8 — v | OB; then A,1; = A, and Q41 = [Q,, o).

)
A2) a,, = Vz.5(z). Then, since p, has the constant domain property in
Ly, there must be in £, a variable y such that p, ., = (A;[Q, oy,
B(y/x)]) is consistent. p,.; turns out to be of constant domains in

L., (by adaptation of [Gab74|, Lemma 2).
B) (Ay; [, ay]) is inconsistent. Then ([A,, ay,]; €2,) is consistent, by Propo-

sition 20. So, one can take A, 1 = [A,, ] and Q1 = Q.

Let A" = U,en An and ' = [J,cn ©n- Then, by construction, q = (A’, Q')
is complete, saturated, of constant domain, and A C A’ in £,,. Besides, it
cannot prove an inconsistency, otherwise some p, would have to prove it. So,

q is a t-dependant theory in L,,.

Proposition 22 Let (A;Q) be a consistent r-theory in a modal language L,,

pf:

w.r.t. a modal logic M. Then it can be extended to a root-theory (A’;€Y'), in

a language L', with possibly X, more propositional variables.

Let a, g, . .. be an enumeration of the formulae in £',,,. It is possible to define
inductively a sequence of k-theories (Ay; Q) such that for each n, A, C A, 4
and Q, C Q1.

Base case: (Ag; Q) = (A;0Q).



Chapter 3

42 The logics

Step

case: suppose (Ay;€2,) is defined and consistent. We define (A, 1;Q,41).

There are two main cases.

A)

B)

(Ap; [, @) is consistent. Then also ([Ag]; [Qn, @, Day,]) is consistent.

In fact, ([An, Oayl; [Qn, o)) is inconsistent, using A10.

Al) a, = B8 — | OB. Then let A,y = Ay and Qpy1 = [Q, i, Oy

A2) a, = Vz.5(x).
Then let A,y = A, and Q= [Q, o, B(y/2), O, OB (y /)],
where y is the first new variable not used before. This gives a con-
sistent theory in £',, (by adaptation of [Gab74], Lemma 1).

P, = (An; [, ay]) is inconsistent.

Then let A, 41 = [Ay, ay, O] and Q01 = Q.

We can prove that (A,11;,+1) is consistent.

By construction, o € A, iff Oa € A, (in the base case, this holds by
definition of r-theory). Besides, since p,, is inconsistent, for appropriate
d,w, such that J is a conjunction of formuls in A and w is a disjunction
of formule in €2, we have Fy; 6 = w V ay,. Then by 00 = w V ay), by
Rule A13. Then ky 006 — O(w;y V @), using Schema A12. Then Fy,
06 — Ow; V Oay,, using A15. Then Fp; (00 — wy V Oay,. It follows that
(Ap; [, Oc,]) is inconsistent. So, by Proposition 20, ([A,, Oay); Q2y,)

must be consistent.

Then, let A" = |, ey An and ' = |,y ©n- By construction, g = (A’; )
is a consistent, complete, saturated k-theory of constant domain that extends
(A;Q) in L', wrt. M, and o € A, iff Oa € A,,. So, q is a root-theory.

It is also useful to prove the following (similar to [Gab81, Lemma 3.4.3]).

Proposition 23 Let t be a root-theory in a language £ w.r.t. a logic K, and let

(A;Q) be a t-dependant theory. Then there exists a terminal t-dependant
theory (A'; ') in the same language, such that A C A’

pf: Let v =Vz.zV ~x. Since Fx =y (by Proposition 14), it must be v — L € Q.

Hence, by Proposition 21, there exists a t-dependant theory p = (A’;{Y)

in £

, such that [A,v] C A’. For every formula @ in £, aV~a € A’ as

v Fum aV~a and p is saturated. But then, again by saturation of p, either
a€ANor~aeA.
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3.7.4.1 Completeness for the non-modal and the N-modal logics

Theorem 1 [Soundness and completeness for C2] For any formula « in a language
L;, Foo aiff, for every C2-model M, Ejs a.

pf: As in [Gab81] (completeness of C2h).

Here I am going to present a completeness proof for ND2, pointing out, besides,
how it is possible to simplify it into a completeness proof for D2. Another lemma

is needed, first.

Proposition 24  Given a root-theory t = (A;Q) in a language £, w.r.t. an N-
modal logic M, for any consistent k-theory (A’; Q') such that A C A'] it is the
case that Oa € A’ iff Oo € A, and that ~Oa € A’ iff ~Oa € A.

pf: Follows from the fact that a root-theory is saturated and the logic has Schema
Al4. So, for any a € L,,, either Oa € A or ~Ua € A.

It is now possible to move on to the proof of the main theorem, in all similar to
that presented in [TSBO02].

Theorem 2 [Soundness and completeness for ND2| For any formula « in a lan-

guage L,,, Fypo a iff, for every ND2-model M, Ej; a.

pf:  Left to right. 1t is routine to check that the axioms are valid, and that the infer-

ence rules are validity-preserving in every model defined according to Def.16.

Right to left. The idea is to show, given a non-theorem, how to build a counter-
model, where the minimum is a root-theory (referred to as t), and the other
elements of the frame are t-dependant theories. The interpretation is the

canonical one (each propositional letter is interpreted as itself).

Let us assume Fyps «, for a in L,,. Then, there must be a consistent r-
theory (A, Q) in £L,,, with a € Q, and consequently, by Proposition 22, also a
root-theory t = (A, ) which extends (A, ) in an extended language L',.
Then a counter-model K = (S, R, p) in L',,, with § = (S, <,0), can be built

as follows.

1. Let S be the set of all the t-dependant theories (A’, Q') such that A C A'.
2. Let (A, Q) < (A"; Q") iff A’ C A",
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4. For any variable x € L'}, let p(z) = {(A;Q)|z € A}.
5. Let R = {X|X = {(A;Q)|a € L', & a € A}}.

A) S is a D2-frame.
a) By construction, (S, <) is a partial order and has a minimum.

b) S satisfies the atomicity condition. In fact, as a consequence of Proposition
23, for each a € S there is a terminal b € S such that a < b.

c) S satisfies condition FC. In fact, since all the instances of Schema A9 are in
A, for any formula 3 in £';, there must be a variable z such that ||3]|, = [|z]|,

(by saturation of the theory).
B) K is a ND2-model.

In order to prove this, it is by now enough to show that the canonical inter-

pretation can be extended to all the formulae, as follows.
B’) Given (A;Q) € S, for any formula v in L'y, (A;9) € [lof|, iff v € A.

Both halves of this proof (LtR and RtL) are given by induction on the com-

plexity of formulze.

LtR) Assume (A;Q) € [|v]|,, to prove v € A.

al) y=a — . If v ¢ A, then v € , since any t-dependant theory is
complete. Then, by Proposition 21, there exists a t-dependant theory (A’; §Y')
in the same language, with a € A', g € ', A C A’. The induction hypothesis
can be applied. So (A;Q) < (A5Q), (A Q) Fy a and (AQ) By 5.
Given the interpretation rule for — in Def. 16, this is not compatible with
(4;9) € Iyl

a2) v = Vz.a(x). Since (A;Q) is of constant domain, if v € €, then, for
some variable y € L', a(y/z) € Q. Applying the induction hypothesis and

the interpretation rule for V, we get a contradiction.

a3) v = Oa. Since (A;€) is a t-dependant theory, if v € €, then « ¢ A,.
Applying the induction hypothesis, (Ag; Q) ¥ «, and then, applying the

interpretation rule for O, (A; Q) 3 Oe, in contradiction with the assumption.

RtL) Assume v € A, to prove (A;€) € [|v]],.-
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bl) v = a — B. If (A;Q) ¢ ||v]|, then, by Def. of interpretation, there exists
(A3 Q') € W such that (A;Q) < (A;€Y), and so A C A/, with (A; Q) F «
and (A'; Q') ¥ B. So, by LtR (first half of the proof), @ € A’ and, by induction
hypothesis, § ¢ A’. Since v € A’ by assumption, it follows by saturation of
the theory that 8 € A’ a contradiction.

b2) v = Vz.a. If (A;Q) ¢ [|v]|, then, applying the interpretation rule for
Vv, (4;9) € |la(y/z)||, for some y € L';,. Hence, by induction hypothesis,
a(y/z) ¢ A. A contradiction follows.

b3) v = Oa. If (A;Q) ¢ |||, then, by Def. of interpretation, (Ao;€20) ¢
|lall,- Then, by induction hypothesis, o ¢ Ay. Since (A;€2) is a t-dependant
theory, by Proposition 24, it follows Oa ¢ A.

This concludes the proof of the completeness theorem for ND2.
This proof can be modified in order to show the completeness of D2 and ND2.

Theorem 3 [Soundness and completeness for D2] For any formula « in a language

L;, Fpe a iff, for every D2-model M in that language, F,; a.

pf: The proof of Theorem 2 can be modified by omitting all the aspects related to

modality. So, the canonical model is just a set of ck-theories in £;.

Theorem 4 [Soundness and completeness for NC2] For any formula « in a lan-

guage L,,, Fycoe « iff, for every NC2-model M, Ej; a.

pf: The proof of Theorem 2 can be modified omitting all the aspects related to

terminability (so, Proposition 23 is not used).

The following shows that the correspondence between modal and N-modal mod-
els is one-to-one. Essentially, N-modalities do not add anything new — they just

reflect in the language something that is otherwise expressed at the meta-level.

Proposition 25 Every D2-model (C2-model) (F,R,p) can be extended in a
unique way into a ND2-model (NC2-model) (F,R', p'), so that for every for-

mula o that does not contain modal operators, [|a||, = ||a[| ,. Moreover, every
ND2-model (NC2-model) can be obtained this way.

pf: By the interpretation rule for [, every N-modal model can be uniquely deter-
mined by a frame together with an interpretation of the formula that do not

contain modal operators.
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3.7.4.2 Completeness for the VV-modal logics

The following lemmas will be used in the completeness proof.

Proposition 26 Let t = (Ay; ) be a root-theory in a language £,,, w.r.t. a V-

pf:

modal logic M, and let p = (A; Q) be a t-dependant theory. Then there exists
a t-dependant root-theory t' = (A'; Q) s.t. for every formula o, Ja € A iff
Oa € A

The construction of Proposition 22 can be used. Here, for the base case, one can
take a consistent r-theory s = (A”; Q") of constant domain that is extended
by p, and such that o € A" iff o € A. Taking s to be of constant domain

saves us from extending the language.

Proposition 27  Let t;c; = (A;;€;) be a family of root-theories in a language

pf:

Ly, for a V-logic M. Then, in case d = (U,c; Ai;[N;ie; $4) is consistent, it is

a root-theory.

By the definition of d = (A; Q) it follows that, if it is consistent, it is indeed
a consistent, complete, k-theory of constant domains, saturated w.r.t. M.
Moreover, it can be proved (by induction on the length of the derivation) that
a € A iff Oa € A. So, in that case, d is a root-theory.

It is now possible to prove the main theorem.

Theorem 5 [Soundness and completeness for VD2] For any formula « in a lan-

pf:

guage L, Fyps a iff, for every VD2-model M, Fy a.

Left to right. It is routine to check that the axioms are valid, and that the infer-

ence rules are validity-preserving in every model defined according to Def.19.

Right to left. Assume Fyps a, for ain L,,. Then, there must be a consistent
r-theory (A, Q) in L,,, with a € €2, and consequently by Proposition 22, also
a root-theory t = (Ag, Qo) such that A C Ay, in an extended language L',,.
Then a counter-model K = (S, R, p) in L', with S = (5,<,0,V), can be

built as follows:

1. Let S the set of all the ck-theories (A, Q') such that A C A'.
2. Let V be the set of all the root-theories (A’, Q') such that A C A’
3. Let (A, Q) < (A"; Q") iff A’ C A"
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5. For any variable € L'y, let p(z) = {(A;Q)|z € A}
6. Let R = {X|X = {(A;Q)|a € L), & a € A}}.

A) S is a VD2-frame.

Here it suffices to show that the set V' is closed for bounded subsets. In fact, by
Proposition 27, if w.r.t. < the least upper bound of a family of root-theories
is a consistent k-theory, then it is a root-theory.

For the rest, the proof of point A is in all similar to the corresponding proof
in Thm. 1.

B) K is a VD2-model.

It is enough to show that the canonical interpretation can be extended to all
the formulza, as follows.

B’) Given (A;Q) € S, for any formula v in L'y, (A;Q) € o], iff v € A.
LtR) Assume (A;Q) € ||v[|,, to prove v € A. The proof is by induction on

the complexity of formulze.
al) v = a — | Vz.a(z). Similar to the corresponding cases in Thm. 1.

a3) 7 = Oa. First observe that (A;(Q) extends some root theory. Let
(A’; Q) be any of them. So, if v € Q, then @ ¢ A’. Applying the induc-
tion hypothesis, (A’; Q') ¥y «, and then, applying the interpretation rule for
0O, (A; Q) ¥y Oa, in contradiction with the assumption.

RtL) Assume v € A, to prove (A;€2) € [|af, (proof by induction).
bl) v = a — B | Vz.a(z). Similar to the corresponding cases in Thm. 1.

b3) v =Da. If (A;9) ¢ [|v]|, then, by definition of interpretation, every
root-theory q = (A';€') which is extended by (A;(2) is such that q ¢ [|aff .
So, by induction hypothesis, o ¢ A’. Hence, by applying Proposition 26,
O ¢ A.

Theorem 6 [Soundness and completeness for VC2h| For any formula « in a lan-

guage L, Fyee a iff) for every VC2-model M, Fjy; a.

pf: The proof of Theorem 5 can be modified omitting all the aspects related to

terminal theories.
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The semantics of V-modal logics can be naturally associated to the idea of a
multiplicity of N-modal frames, all of them included in a most comprehensive one.

This idea will be briefly expanded in Section 5.4.



Chapter 4
Spatial structures

Order topologies (or Alexandroff spaces, see Section 2.4), although quite incom-
patible with the metrics of continuous geometry, can be useful in order to give a
topological foundation for digital representation [Kop92]. The logics that have been
presented in Chapter 3 can be used to express spatial notions, whenever the space
that is represented can be abstracted into an order topology. Before discussing the
actual encodings (in the next chapter), first I will present the topological seman-
tics associated to the Kripke models of those logics. I will then extend slightly the
notion of topological interpretation, in order to make the encoding of topological
constraints easier. I will introduce semantically the connectivity relations that mat-
ter the most in our context. I will finally introduce a notion of granular model for

those relations.

4.1 Topological semantics

Topological semantics for intuitionistic logic (both for IPL and for predicate cal-
culus) have been introduced in [Tar56, RS63] and widely investigated since then
[RS63, Gab81,FS79, Moe82]. Topological semantics for an axiomatisable ISPL can
be introduced in analogy with those for predicate calculus. As it has been already
observed, the results in Section 2.8 could already be used to define topological mod-
els for some of the logics. Here, however, I prefer to introduce topological models on
top of the Kripke semantics, restricting to Alexandroff spaces. The reason for doing
this is, essentially, the fact that here the main goal is to interleave logical notions
(truth, consequence) and topological ones.

The topological semantics that is given here rests on the identification of Kripke

frames with Alexandroff spaces, where the upper-closed sets are the opens. The only
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opens that are represented in the logical language, however, are those that corre-
spond to truth-sets for some formula. Those are the opens over which substitutional
quantification can range. It is useful to remind that it is not possible to consider a
complete semantics based exclusively on the principal models, i.e. on those models
in which quantification ranges over all the opens [Kre97,Skv97]. This fact might be
regarded as a reason for overlooking the relationship between topology and ISPL.
On the other hand, as it has been discussed in the Introduction (Section 1.2), the
restriction to models where the spatial objects are denumerable has a positive value
here, since then the regions may be regarded as computational objects. This sug-
gests a sense in which the second-order incompleteness of an axiomatisable ISPL
may come together with something useful, from the point of view of computational

topology.

4.1.1 Kripke models and topology

It is useful to state here the following consequences of the definitions given in Sections
2.4, 3.7.1;

Proposition 28

1. There is a one-to-one correspondence, up to isomorphism, between (par-
tial) orders and (7j) Alexandroff spaces, such that the order is isomorphic
to the specialisation order of the corresponding topology. That is, (7p)

Alexandroff spaces can be represented as (partial) orders and vice-versa.

2. Kripke C2-frames can be represented as Ty prime, Alexandroff spaces,

and vice-versa.

3. D2-frames can be represented as Tj, prime, atomic, Alexandroff spaces,

and vice-versa.

pf: 1. Consequence of the definitions and of the observations in Section 2.4.

2. By Def. 15, observing that prime spaces (Def. 2) correspond to those

partial orders that have a minimum.

3. The atomicity condition for pre-orders (Def. 14) corresponds to the topo-
logical atomicity condition (Def. 6).

As an immediate consequence, every Kripke model ((S,<,0),R,p) can be re-

garded as an interpretation into a topological space (S,U<). Moreover, given the
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hereditary condition (see Section 3.7.3), every formula is interpreted as an open set in
the Alexandroff space associated to the Kripke frame. Hence, R can be interpreted
as a subset of the opens.

In order to give a topological interpretation of the N-modality, the Boolean
values can be represented as opens (true as the whole space and false as the empty
set). Then, the relations =, #, C and [Z (called here extensional relations) can be
associated to functions R * R — {T, L}, as follows.

Definition 24 In a space (S, O), for A, B € O:
A=tB =8§ iff A= B,
= & otherwise.
A#4# B =S iff A+ B,
=@ otherwise.
AC'B =S iff ACB,
= & otherwise.
AZ'B =S iff AZB,

=@ otherwise.

It is now possible to introduce formally a notion of topological model, by defining
a notion of topological interpretation into a Kripke model. Given the one-to-one
correspondence between Kripke frames and prime Alexandroff spaces, interpreting

into a frame turns out to be equivalent to interpreting into a space.

Proposition 29  Given a Kripke model M = ((S,<,0),R, p) for a logic H €
{C2, D2, NC2,ND2}, in a language L, let the topological interpretation of
each formula be defined as its truth-set w.r.t. to p, ie [|af|, (see Def. 20).
Then:

(a) For any formula «, the topological interpretation satisfies the following:

L la—=Bll, = llall, = 18I,

Vz.a(@)l, = Ayevarllety/2)l,
I, = &
I, =5

lee A B, = lledl, T,
leev Bl = lledl, Wi,

1Bz-a@)ll, = Ve varllaly/2)l,

N A o
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8. |[~all, = llall; (pseudo-complement)
9. |l=all, = lle|l,” (regularisation).
10. flao = Bll, = (lall,=15l,)
where all, 81, = (o], = 181,718l = lla,) (cauivalence).

(b) Moreover, in the models for the N-modal logics:

L0, = flall, =* S

2. [[~Oall, = [lall, # S

NOall, = llall, # @ (non-emptiness).
M2 8l, = llel,E 181,

N8 = B, = llall ,E1181,-

N ~B(e = B, = llall,ZN15ll,-

o Ot xR W

(¢) For any point p € S, for any a € Wff, forcing and satisfiability can be
expressed topologically, as follows.

For any pointpe S, letptr = A{X € R:pe X}.

Let pl-a hold iff p 1=C||a|, (topological forcing).

Let IFara hold iff |||, = S (topological satisfaction).

1. pF «aiff for every A € R s.t. p € 4, it holds AC||o]| .
2. pF aiff plta.

3. Given A € O, the relation AC||«|| holds iff for every p € A, it is the case
that plFa.

pf: (a) and (b) follows from the definition of Kripke models (Def. 16) and from
those of the topological operators (Section 2.7 and Def. 24).
(c) follows from Def. 21 and the consequences of Def. 20.

Although essentially equivalent, the Kripke interpretation and the topological
one are conceptually different. The topological interpretation associates formulae
with topological “objects” — the opens. The logical operators may be interpreted
as topological operators — something that transform objects into other objects. On
the other hand, the Kripke interpretation is based on a notion of forcing, i.e. of truth

of a formula at a point. The logical operators may then be interpreted in terms of
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meta-logic concepts. Since each point can be associated to the opens in which it
is contained, forcing can also be represented as a relation between subspaces and
formulae (i.e. as topological forcing, as defined in Proposition 29 c).

This parallel is what essentially gives the possibility of using the language of
ISPL in order to express the objects, the functions and the relations of a simple,
region-based ontology, as suggested in Section 1.3.

In particular, it seems natural to assume that a simple object can be obtained as
the interpretation of a propositional constant. Objects that are more complex can
be built from the simple ones by using topological operators. A simple topological
relation can be expressed as an expression (either an equality or an inequality) be-
tween such objects. Logic then allows more complex relations to be defined from the
simpler ones. The topological interpretation of forcing makes it possible to express
if a relation holds on a subspace. On the other hand, the fact that a relation holds
on certain subspaces defines an object, and this aspect gives to the ontology an
intrinsically higher-order character. After all, the different “roles” (objects, opera-
tors and relations) are covered by the same “actors” — the primitives of an ISPL
language, possibly extended with the N-box operator. In order to make it possible
to distinguish between the spatial aspect and the logical aspect, it seems useful,
to introduce a “reflective” extension of the language of ISPL, by allowing certain

topological expressions into it (see the next section).

4.1.2 Definability and spatial models

Topology can be given a computational interpretation. In a general sense, such an
interpretation is one that associates open sets with computations [Smy92, Vic89].
In the spatial context, a computation can be taken to be a program that de-
fines a region — i.e. essentially, a program that is particularly significant from the
point of view of the spatial information that it can give. The obvious example
could be that of a program that reads a sensor input and produces, as an effect,
a spatial representation. When regions are considered as a way of specifying such
programs, it does not seem necessary to require that all of them are associated with
terminating computations. For example, “the smallest region such that etc.” may
ultimately rest on an infinitely detailed picture, but still may be associated to a
computational meaning, even if, in real life, that picture has to be replaced with
some approximation. Of course, admitting at the level of specification objects that

are not computationally finite does not mean expecting that they are actually com-
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puted — an analogy could be made with the lazy evaluation of functions allowed by
some programming languages [Hud00].

On the other hand, even when specifications do not generally lead to actual
computations, it seems important to assume that they can be compared in order
to decide whether they are identical or not. Hence, it can be useful to assume that
they are recursively defined. So, w.r.t. a topological space S and an enumerable
language L, once a topological interpretation of the formula of £ into & has been
fixed, the idea here is to take spatial objects to be the opens that are expressible
(or definable) as formula of £. It should be observed that what matters here is not
the recursive characterisation of the objects, rather that of the expressions that are
referring to them.

In the following, I am going to associate the Kripke models of ISPL to a spec-
ification language — indeed, a very simple one, defined by extending the logical
language (£; or £,,) with the topological expressions that are obtained by interpret-
ing topologically the formula of that language. This can be thought of as adding
new constants to the logical language. Depending only on the model, these con-
stants are always going to be interpreted as themselves. This extension, without
substantially increasing the expressive power of the language, makes it possible to
write down expressions in which a distinction can be made between specifying the
computational content of a region with a topological expression, and expressing log-
ically some topological information about it. The notion of model must be extended
correspondingly.

The topological expressions that are allowed here are those that can be built by
using the operators of a complete Heyting algebra (compare Proposition 29 with
Section 2.8), possibly extended with the extensional relations (as given in Def. 24).
It turns out unnecessary to introduce those operators as primitive ones, as they can

be obtained by topological interpretation of the logical ones, instead.

Definition 25 Let S = (S5, 0) be a Tp, prime Alexandroff space — by Propo-
sition 28, this means that there is an isomorphic Kripke frame (5, <,0) —
and let M = ((5,<,0),R,p) be a Kripke model based on it, for a logic
H e {C2,D2,NC2,ND2} in a language L.

Let 7 be the topological interpretation determined by p (defined as in Propo-
sition 29).

Let £, be the extension of L, where the set EvalEzp of the evaluable expres-
sions (meta-variables w, 1), ...) is defined as the smallest one that includes the

propositional variables and constants Var U Const of L, together with the
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expressions for the opens in R (meta-variables A, B,...), and such that it is
closed w.r.t. the constructs w — ¥, Vz.w(z), 7(w) and, for the modal logics,
Lw.

Then, let 7 be extended to an interpretation for all the evaluable expressions,

defined as follows (I recall here all the clauses and conditions, see Def. 16):

. T(A) = A, for every A € R.
. T(a) € R, for every propositional variable or constant o € L.
T(w = ¢) = 7(w) = 7(¢)

T(V2.w(2)) = AyenT(W[Y/2])

[for the modal logics]: 7(0w) = 7(w) =* S

> oA w oo

Full Comprehension (condition FC'): for every formula « in the language

L, there exists a variable z such that 7(«) = 7(x).

The extended 7 will also be said to be an evaluation for FvalEzp.

The structure Z = (5,0, R, 7) is said to be a spatial model based on S and
determined by R (the reference to 7 will be often omitted — see the comment
below).

R is said to be the collection of the definable opens (the DO-set for short) of
Z.

Let the topological forcing relation I (as defined in Proposition 29) be extended
to the evaluable expressions, w.r.t. the extended 7.

An evaluable expression w is said to be valid (or satisfied) in Z iff 7(w) = S,

where this is also written IFzw.

From the condition FC, since R is by definition the image of 7, it follows that
AyerT(W[Y/z]) is an equivalent way to write A . . 7(w(y/z)).

Although an evaluation is used to define a model, the important element here
is the collection of the definable opens. Clearly, for every two spatial models Z =
(S,O,R, 1), 2" = (S,0,R,7") that differ with each other only for the evaluation,
for any A € R, 7(A) = 7'(A) , and for any expression w, |Fzw iff IFzw. We can
say that Z and Z’ are equivalent as spatial models. I will sometimes refer to the
equivalence class (S, O, R) as to a generic spatial model, determined by a DO-set
on a topological space, omitting any explicit reference to the evaluation, whenever
this does not cause confusion.

A DO-set can also be regarded as an Heyting algebra that has all — and only

— the arbitrary meets and joins that can be represented using the quantifiers. In
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fact, T (or S), L (or @) and the operators M, L/, \/ can be defined — via the logical
definition of the corresponding logical operators (see Def. 8 and Proposition 29).
A DO-set does not give in general a topology, since arbitrary joins and arbitrary
meets of definable opens are not in general definable opens. However, some topo-
logical notions can be adapted. This is the case for the notions of prime set (Def.
2) and of atom (Def. 5). In the following, let Z = (S, O,R) be a generic spatial

model.

Definition 26 In Z, A € O is said to be an R-prime iff, for every open cover
D C R of A, there exists B € D such that A C B.

Definition 27 In Z, A € O is said to be an R-atom iff, for every non-empty
XeR,if X C Athen X = A.

Spatial models can be said to be have a basis w.r.t. their DO-sets, in the following

sense:

Proposition 30 In Z, for any p € S, let p T = A{X € R|p € X} be the R-
pointed subset determined by p. Let B = {p tz|p € S}. Then:
(a) B C O, and every X € R can be obtained as an arbitrary join on elements
of B — hence B is also said to be an R-basis in Z.

(b) B is the set of the R-primes in Z.

pf: (a) For every p € S, p 1 exists and is open — although not necessarily a
definable open — since the topology (S,0) is Alexandroff. Clearly, every
X € R is covered by the join of the R-pointed subsets determined by its
elements.

(b) Similar to Proposition 5 a.

A restriction of the specialisation order to the definable opens can be introduced

as follows:

Definition 28 [R-specialisation order] In Z, p<xq iff, for every A € R, p € A
implies q € A.

A notion of restriction can be defined, as follows.

Definition 29 In aspatial model Z = (S, O, R, 7), let A € O be an R-prime. The
restriction of Z to A can be defined as Z|A = (A4, {X M A|X € O},{Y M A]Y €
R}, '), where 7'(w) = 7(w) M A.
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It can be checked that Z|A gives a spatial model, by identifying all p € S such
that p T = A.
In general, I will say that a spatial model based on the space S has a topological

property whenever S has it, provided that property does not depend on R.

4.2 Spatial qualitative relations

Given a domain D of regions and a family F of n-ary relations on D, the relations in
F are said to be jointly exhaustive, pairwise disjoint (JEPD) whenever they deter-
mine a partition over D". JEPD relations can play a significant role in taxonomic
tasks, and hence in qualitative reasoning.

As an example, properties such as connectedness, primeness, atomicity, can be
quite naturally associated to notions of component, and hence they can lead to
classifications based on component counting — i.e. there can be classifications of
regions based on the number of their connected (prime, atomic) components.

On the other hand, families of JEPD binary relations such as those introduced,
in the context of the RCC system, as RCC5 and RCC8 [RCC92], as well as sim-
ilar [CDF95] and related ones [CG96,BS98, CDF97], can be used to represent the
information about connectivity.

Here I am going to focus on binary relations between opens sets, that can be de-
fined in a topological space S = (S, O) and that can be compared, from a semantical
point of view, with the RCC5 and RCC8 ones. In order to introduce those relations
semantically, it is useful first to consider the following way to classify points w.r.t.

on open set:

Proposition 31 Given the space S, for every A € O, A determines on S a
partition such that, for each p € S:
1. pis an internal point of A iff p € A.
2. pis an external point of A iff p € A*.
3. p is an internal boundary point of A iff p ¢ A and p € A**.
4. p is an external boundary point of A iff p ¢ A* and p ¢ A**.

The following are essentially set-theoretical relations, although here they will be

treated in a topological context. The simplest topological models for these relations
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can be found by interpreting regions as open sets in a discrete space. Characteris-
tically, in such spaces boundary points do not exists, since every subset is clopen

(open and closed) — and so, complement and pseudo-complement coincide.

Definition 30 For any discrete space (S, 0), with A, B € O:

1. AC B: Ais a part of (or includes) B.
2. AC B and A # B: Ais a proper part of B.
. A= B: A and B are equivalent.

3

4. ANB = @: A and B are disjoint.

5. ANB # @: A and B are overlapping.
6

. ANB # @ and ANB* # @: A and B are partially overlapping.

The JEPD relations that correspond to the RCC'5 ones are the following: proper
part and its inverse, equivalence, disjointness and partial overlap [RCC92].
The topological aspect becomes more significant when the boundary points do

exist. Then, it is useful to introduce the following distinction:

Definition 31 In S, for A, B € O:
1. A and B are tangential with one another in a loose sense, iff they share
some external boundary point — they are non-tangential otherwise.

2. A and B are tangential with one another in a strict sense, iff they share
a non-empty open subset of their boundaries (i.e., for some open set, its
non-empty intersection with the boundary) — they are non-tangential

otherwise.
In each of the two senses, the following relations can be defined:

Definition 32 In S, for A, B € O:
1. A is a tangential proper part of B iff A is a proper part of B, and they
are tangential.

2. A is a non-tangential part of B iff A is a part of B and they are non-

tangential.

3. A and B are externally connected (or adjacent) iff A and B are disjoint

and tangential.
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4. A and B are inter-disconnected (disconnected with each other) iff A and

B are disjoint and non-tangential.

5. A and B are interconnected (connected with each other) iff they are either

overlapping or adjacent.

Strict interconnection is closely related to the notion of firm connection in
[CBGGIT].

The JEPD relations that correspond to the RCC8 ones are the following ones:
tangential proper part and inverse, non-tangential part and inverse, equivalence,
partial overlap, disjointness, apartness [RCC92].

Intuitively, when two opens A and B are adjacent in the strict sense, there exists
a path from one to the other which lays in their regularised union (AUB)**. This
is not generally the case, when A and B are only adjacent in the loose sense. The

following can be proved:

Proposition 32 In the space S, the opens A and B are adjacent in the strict
sense iff (AUB)™ # A*LIB**.

pf:  Any point belonging to an open subset of the boundary that A and B have in
common is an internal boundary point of A**UB** (and vice-versa) — hence
it does not, belong to A**LIB**, but it belongs to (ALB)**.

In RCC, the RCC8 relations are all defined in terms of interconnection, which
is the only primitive one, and they can be interpreted in the loose sense [Ren98].
Some of the RCC definitions involve quantification over regions. It is useful to
observe here that all the RCCS relations can be encoded elementarily (without using
quantification) once inclusion, adjacency, disjointness and overlapping are given —
this is essentially the line followed by the encodings given in Section 5.3.4).

On the other hand, in the logics that are considered here, the relations that
have been defined can be expressed only in the strict sense. This is essentially due
to the fact that these logics are interpreted into prime spaces — by Proposition 1,
this is enough to make every two non-empty open sets loosely interconnected. It is
possible to have representations based on modal ISPL that allow for both the strict
and the loose senses, by weakening the modal axioms in order to drop the primeness
restriction, but they will not be covered in this thesis (see Chapter 8).

With respect to primeness, the following shows that any connected space can be

transformed into a prime one, in such a way that preserves emptiness, inclusion and
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P(B A) DJA,B)
Qsl
NTP BA) TPR( B A) (B) PO(A B)
EC(AB)
(A,B)
NTP AB) TPP(A,B) | | PC(AB) EQ(AB)

Figure 4.1: RCC8 (Non-Tangential Part, Tangential Proper Part, External Con-
nection, DisConnection, Partial Overlap, EQuality) and RCC5 (Part, DisJointness,
PO, EQ).

strict adjacency — hence, also disjointness and overlapping, and so all of the RCC'8

strict relations.

Proposition 33 Let S = (S,0) be a connected space. Let &’ be the one-point
compactification of S, as defined in Proposition 2. Then, for every A, B € O:
1. ACB holds in S iff it holds in S'.
2. A = @& holds in S iff it holds in &'.

3. When ANB = @, for A, B non-empty, (ALB)** = A*UB** holds in § iff
it holds in &'.

pf: 1 and 2 are immediate. For 3, it is enough to note that, since S is connected,
A=UB*™ = § iff either A*™ =S or B** = §, given the conditions.

This means that shifting to prime spaces is essentially not a problem from the

point of view of the strict relations.

4.3 Granularity

Spatial models for computers are generally digital ones . This is trivially true for
the raster models. It is true also for the vector models, insofar as these are as-
sociated with tessellations of an abstract geometrical representation. These op-

erations, normally associated to polyhedral decompositions (triangulations, in the
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two-dimensional case), or to partitions by regular grids (quadrangular, hexagonal,
etc.), produce meshes that can be viewed, from an abstract point of view, as digital
spaces [LT92, OBS92].

The basic elements in a mesh are the cells. From a high-level point of view, cells
may be treated like black boxes, quite independently from their internal details,
geometry and implementation. The level of detail in the representation may vary.
It generally depends on how fine is the decomposition, just as in a raster model it
can be associated to the resolution (i.e. the number of pixels used to represent a
unit region).

The granularity of a mesh may be regarded as an abstract measure of its level
of detail. Different meshes may share the same level of granularity. As an example,
two different translations of the same grid on an image will give two meshes that
have the same granularity, although they might show different details.

In general, notions of granular models are introduced in order to compare dig-
ital representations at different levels of detail, from an abstract point of view
[Ste00b, SW98 BDFM95]. A notable example is given by the multi-resolution mod-
els presented in [BDFM95] and proposed as a high-level framework for cartographic
operations. In [Ber98] they are used in order to define a categorial model for “safe”
map transformation.

The notion of abstract cell compler (ACC), arising from the discretisation of
geometrical space, has been proposed as a theoretical foundation for digital geom-
etry [Kop92,Kov92]. An ACC can be defined on R", as a partition of the points
in i-dimensional, connected, regular subspaces (the cells), with 0 < i < n. As an
example, a 2-dimensional space can be partitioned in disjoint open sets, open lines
and points. Regions can be associated to sets of cells. Multi-resolution models
are based on ACCs — hence, they are not strictly speaking region-based [Ber98].
Each level in the model is an ACC. At each level, topological information defines
a horizontal structure (inclusion and adjacency relations) that is preserved by the
mappings between different levels. These mappings are surjective, continuous func-
tions, that determine a vertical structure (i.e. different representations of the same
region). The mappings preserve the relations of inclusion and interconnection (by
continuity) and apartness (by an additional requirement).

The idea of granular model that is introduced here is essentially that of an ab-
stract, region-based representation that is given at different levels of detail, that can
be embedded into a spatial model (as defined in Section 4.1.2) and that can be ex-

pressed, at least up to a point, in the language of an N-modal ISPL. In contrast with
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the multi-resolution models in [Ber98], here each level of detail can be represented
as a discrete space — i.e. as a plain set of disjoint subsets, embedded in the spatial
model. Hence, the horizontal structure is defined by the relations corresponding
to the RCC5H family, whereas adjacency is represented globally. This yields some
aspects of the preservation property w.r.t. adjacency for free, but also means that
many points may have to be added to the original representation, in order to obtain
a faithful model, and in such a way that deserves some explanation.

A discrete space (see the definition in Section 2.1) may be regarded as a naive
topological description for a mesh — each atom, simply disjoint from all the other
atoms and possibly given as a singleton, represents a cell. The fact that adjacency
cannot be represented in a discrete space gives a well-known problem in graphics
[RS02]. One way to cope with it is by dealing with the adjacency relation explicitly
and independently from any topological definition. An alternative approach is based
on digital topology [Kop92]. The main idea there is to embed the discrete space S
into a Ty order topology &', in which the terminal points represent the points of S.
All the other points in &' represent connections — more precisely, they represent
boundaries between adjacent cells. This approach, as it appears in [Kop92], is based
on order topologies that are quite specific (they are products of the Khalimski line
— a space that is homeomorphic to the topology of the natural intervals on the real
line). In the models that I am presenting here, this kind of solution is adopted in a

quite more general way.

4.3.1 Granular models

Cell complexes can be used to represent abstractly geographic maps of different
granularity — in particular, the unit regions in each map can be associated to
a class of cells in an abstract model. Different levels of granularity correspond to
different classes of cells — where cells of coarser levels are meant to be comparatively
larger. Within a model, geographic entities may be represented at different levels of
granularity. Each representation can be regarded as a region, in an abstract sense,
and different representations can be compared — so, for example, given two such,
it could be asked, whether they both have the same granularity, or whether they
both represent the same entity at different levels. Granular models are meant to be
a framework for such applications.

Given the atomic spatial model Z = (5,0, R) in a generic sense (i.e. we do

not need to worry about 7), it is possible to build into it a notion of granular
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Figure 4.2: A cell complex, represented as a planar graph (above), can be associated
to a partial order (below), using the following convention: in the cell complex, upper-
case letters denote regions (open sets, without boundary), lower-case q, ... denote
boundary lines (without ending points), whereas p, . . . denote boundary end-points.
The partial order is represented as a directed, acyclic graph where the elements are
labelled nodes. 0 is an extra element added for strong compactification. Regions are
associated to the upper-closed sets in the partial order. The upper-case letters are
used in order to label nodes, as well as to denote the upper-closed sets determined
by the corresponding nodes (clearly, in this example, all these sets are singletons).

model according to the following guidelines. Each level of granularity (i.e. each
abstract mesh) can be regarded as a set of cells, where the cells of the same level are
represented as definable opens that are disjoint with each other. Moreover, cells are
always in some sense undecomposable units — the notion of R-primeness can be
helpful in order to model this aspect (Def. 26). It seems a reasonable simplification
here to assume that there exists a coarsest level at which the whole space is treated
as a single cell, as well as a finest, terminal level. At the terminal level the cells may
be said to be atomic and can be represented as the smallest regular opens in the
model. These are the opens that are obtained by regularisation of R-atoms (Def.
27).

The terminal points are the only ones that represent the actual locations, as

they may be defined by embedding the terminal level into the geometric space. All
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the other points in the spatial model represent clusters of atomic cells that may
correspond to the cells of some coarser level.

All the levels ultimately cover the same space — this can be understood by
saying that for each atomic cell A and for each level of granularity G, there is one
and only one cell B of that level, that contains all the terminal elements of A, i.e.
such that ACB**.

Given the assumption that Z is atomic (see Def. 6), the sum (or regularised
union) of all the cells of the same level always gives the whole space. The idea of a
vertical relation between cells of different levels may be generalised, so to introduce

a natural order of refinement between levels of granularity. More formally:

Definition 33 Given the atomic spatial model Z = (S, O, R):

1. A subset A C R can be said to be an abstract mesh (or level of granu-

larity) in Z iff the following conditions are satisfied:

e For each A € A, A is R-prime.
e Foreach A,B € A, either A=Bor AN B=1.
o (V{X|XeAh)*=5.
2. Given two abstract meshes A, B, it can be said that A is finer than B
(or that B is coarser than A, written A<B), iff for every A € A there is
a B € B such that ACB**. B is then said to generalise A.

3. Given A<B, a surjective function ¢ : A — B U {L} is said to be a

coarsening of A into B iff it maps the cells of A either into the cells of B
that generalise them or into L. It is said to be a mazimal coarsening iff
it never maps into L.
An injective function r : B — p(.A) is said to be the refinement of B into
A w.r.t. the coarsening c iff it maps each cell B € B into the inverse
image of B w.r.t. ¢, i.e. iff, for every A € A s.t. ¢(A) € B, there holds
A € r(c(A)).

Coarsenings and refinements can be used as a way to extend the class of the
definable opens. In fact, a region might have been originally given as a definable
union of cells at a certain level of granularity. This open set can then be mapped at

other levels.

Definition 34 A granular model can be defined as a structure G = (2, P, A, K, ),

where;

1. Z2=(S,0,R) is an atomic spatial model.
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2. P is the collection of the R-primes in Z, and P C R.
3. A is a collection of abstract meshes in Z, such that {T} € A and P € A.
4. < is the order of granular refinement.

5. © is a collection of coarsenings (with corresponding refinements) in A,
such that whenever AKB and ¢ : A — B is a maximal coarsening, then
c el

A point to be further investigated could be, what kind of constraints on the
mappings in {2 may correspond to the notion of abstract mesh. Seemingly, a Galois
connection [Bir40] could be defined from a granular model — however this issue will

not be pursued here.
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Figure 4.3: The cell complexes, represented as planar graphs on the right, can be
associated to the partial orders on the left, following the convention defined in Fig.
4.2. The regions (open sets) C, D, E, F are defined topologically as C = (ALB)*,
D = ANB*, E = ANB and F = BMA*. a and b are meant to be the open
boundaries between A and C and between B and C, respectively. ¢ is the open
boundary between A and B. p is a single boundary point. It can be noted that
in the model 1, the regions A and B are loosely adjacent. In 4 they are strictly
adjacent. In 2 they are apart. In 3 they partially overlap.




Chapter 5
Spatial representation

In the previous chapter, the basic semantical structures have been introduced. Here,
it will be shown how some of the notions related to granularity and connectivity can
be expressed in the language of ISPL and of modal ISPL, relying on the syntax
introduced with the spatial models (Def. 25). I will start by considering the ex-
pression of basic spatial notions related to granular models (Section 5.1), then I
will move on to the encoding of relations (Section 5.2) and to specific properties of
spaces (Section 5.3).

By saying that a notion can be expressed in a logic, I mean that there are
expressions of that logic that represent it — by default at the object-level, in the

sense that has been clarified in Section 1.5).

5.1 Spatial objects

The ontology of the granular models introduced in Section 4.3.1 is essentially based
on atomic cells, cells, regions and meshes. In the following section I will examine

how these notions can be expressed formally.

5.1.1 Atomic cells

Given a granular model and its embedding in a generic spatial model Z = (S, O, R),
it seems natural to associate the cells of the terminal level (i.e. the atomic cells)
with elements that are maximal w.r.t. the specialisation order, or better, to stay
closer to logical definability, w.r.t. the R-specialisation order (<z, Def. 28). The
points that are maximal w.r.t. <z (including the terminal points) are in fact exactly

those that are contained in some of the R-atoms (Def. 27). The R-atoms are not

67
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generally regular — they may well have internal boundary points, something that is
not really wanted. This can be fixed, by taking their regularisation instead. For this
reason, I refer to the regularisations of R-atoms as to the atomic cells. Since these
cells can be intuitively associated to the raster level of a spatial representation, I
will also refer to the union over all of them (i.e. the union over the terminal level)
as to the screen. In any atomic space, the screen turns out to be dense — i.e. its
regularisation covers the whole space — following immediately from the fact that it

contains all the terminal points.

Proposition 34 Given Z as above:
(a) A € O is an atom iff A is non-empty and for every X € O, either A C X
or AC X*.
(b) A € O is an atomic cell iff A is regular, non-empty and for every X € R,
either AC X*™ or A C X*.
(c) The screen is A g (X LIX™).

pf:  (a) Left to right. Since A is an atom, it cannot be divided into two proper
parts, hence either XA or X*MA must be empty.
Right to left. Assume that there exists X € O that is a non-empty proper
part of A. Then AZ X and A Z X*.
(b) Similar to (a).
(¢) From (b) follows that a point p € S is in the screen iff, for every X € R,
either p € X* or p € X* — hence p € X*™UX".

This shows that the screen is in general a definable open. On the other hand,
the fact that R-atoms and atomic cells can be specified, does not mean in general

that single ones are definable.

Proposition 35 Let Z = (5,0, R, 7) be a spatial model, and let «, 8 be formula

in a modal language that is interpreted by 7.

1. A formula « denotes a regular open in Z iff, for
regl(a) = ma < «
the following holds:
IFzregl(c)
2. A formula « denotes an atomic cell in Z iff, for
atmecell(a) = ¢(a) A Oregl(a) AVz.O(a — ~z) VO(a — ~x)

IFzatmcell (o)
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3. The screen in Z is denoted by screen = Vz.~x V ~ .

4. The screen can be constrained to be the union of the atomic cells that
are definable — which also gives that all the atomic cells are definable in
Z — once taken
A1 = Fz.(Oatmeell(z) A x)
by adding the following constraint:

IFzscreen <> Ay

pf: 1. For any A € R, by the properties of 7 (Def. 25 and Proposition 29),
regl(A) evaluates to the same as A**< A, and so IFzregl(a) iff -z A** =t A,

which specifies regularity.

2. By Proposition 34 (b), the fact that A is an atomic cell in Z can be
specified with the following expression:
(A # @) N(A = A™) AV (ASY(7(2))™) V (AT (1(2))*)
For 7(«) = A, this expression evaluates to the same as atmcell(«) in Z

— in particular, it is valid iff atmcell(«) is valid.
3. From Proposition 34 (c),
IFzscreen <> V. (7(z))**U(7(x))*
4. Iz Ay iff IFzscreen < \/ . 7(Oatmcell (X) A X)
The expression on the right of the equality gives the definition for the open

that is obtained as a join of all the atomic cells, since 7(Oatmcell (X) A X)
can be read as: X such that atmcell(X) is valid.

5.1.2 Cells

In the generic spatial model Z = (5,0, R), it seems natural to associate cells to
undecomposable units, and hence to regular R-primes (Def. 26). In fact, whenever
a cell A can be decomposed into the cells B;c; at a finer level, it seems useful to
distinguish between A represented as the sum over Biey, i.e. A = (\/,.,B;)**, and

the union over its decomposition, i.e. \/, ,B;. This distinction is essential in order

iel
to express an aspect related to connectivity: A can be regarded as a cluster of finer
cells that are relatively close to one another. Such a distinction could not be made
in a discrete spaces, where for every open set, we have X = X**; whereas in general,
X**CX but not vice-versa.

The fact that the cell A is an R-prime, also means that A contains some points

that are minimal w.r.t. the R-specialisation order and that are indistinguishable
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from each other w.r.t. R — hence, A behaves like a submodel. This requires that
the spatial model contains, in addition to the terminal points, at least one more
point for each cell which is not atomic. It seems reasonable to assume that, at the
coarsest level of granularity, the whole space is treated as a single cell — hence the

requirement for the spatial model to be prime itself.

Proposition 36 Let Z = (5,0, R, 7) be a spatial model.

1. A formula « denotes an R-prime in Z iff, for
prime(a) = ~O(a = Jz.x A ~0O(a — 7))
IFzprime (o)
2. A formula « denotes a cell in Z iff, for
cell(a) = regl(a) A prime(«)
IFzcell()
3. Every non-empty definable open in Z is a union of cells iff, for
Ay =Vz. Oz — Oz + Jy.y AOcell(y) AD(y — z))
IFZ A

pf: 1. From Def. 26 b, for any A € R, an R-prime A in Z can be characterised
by saying that it is not covered by the join of its definable proper parts,

using the following evaluable expression:

AZ'\ e T(X A (AZ'X))

For 7(a)) = A, this expression is valid in Z iff prime(«) is valid.
2. Since IFzcell(«) iff IFzregl(a) and IFzprime(«).

3. By correspondence with the expression
(A#' @) = (A="yer T (Y AOcell(Y) A (YT'A)))

A method to generate a spatial model from an actual representation, can be
devised by recursively applying the strong-compactification technique considered in

Propositions 2, 33.

5.1.3 Regions and meshes

Regions intuitively correspond to sets of cells. Since cells of the same level are as-
sumed to be disjoint, any subset of them can also be represented algebraically, in

the way of mereology, i.e. as the union over its elements. A union of regular opens
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is not generally a regular open. However, in an atomic spatial model, the corre-
spondence between unions of atomic cells and their sums (i.e. regularised unions)
is one-to-one. This fits well with the idea that, at the terminal level, every region
can be represented indifferently either as a union of cells or as a sum. At coarser
levels the correspondence between sums and unions is not generally one-to-one. In
fact, there may be many different opens that share the same regularisation. This
makes it possible to distinguish between the absolute representation of a region as a
sum of cells — a regular open — and its granular representation as a union of cells,
corresponding to a particular level of granularity. The granular representation of a
region at the terminal level may also be called its terminal representation.

For each region such that A is its absolute representation and B is its terminal
one, for any granular representation X of that region, it is straightforward to see
that BCX and XCA.

Not all the definable opens in the model need to represent well-behaved decom-
positions — indeed, some of them might not be acceptable as regions in the granular
sense either. It is possible however to write down an expression that forces every
non-empty definable open to be a join of cells (Proposition 36).

The notion of abstract mesh, as a set of disjoint cells such that their sum gives the
whole space, is probably hard to capture without resorting to third-order expressions
(not treated here). However, it is at least possible to specify the relation between a

mesh and its cells, as follows:

Proposition 37 Let Z = (S, 0, R, T) be a spatial model. In Z, the formulz «, 8

may denote respectively an abstract mesh and one of its cells, iff, for
cell_of mesh(8,a) = cell(B) A (B — a) A (a — BV ~ )

the following constraints are satisfied:

IFr~a

Iz cell_of_mesh (3, o)

IFzVxy.cell_of _mesh(z, a) A cell_of mesh(y,a) D (x <> y) V~(z Ay)

pf: cell_of_mesh(/3, &) can be read as saying that 5 is a cell of a. In fact « — SV~ f3
evaluates the same as 7(«)C'7(8)U(7(8))*, meaning intuitively that 7(a) does

not include any of the boundary points of 7(8).
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5.2 Connectivity

It is now possible to consider how high-level information about connectivity can be
expressed, in terms of properties and relations between regions. First connectedness
will be considered, then the relations that can be associated to RCCS.

5.2.1 Connectedness

By a definition of connectedness that is equivalent to that given in Section 2.1, prov-
ing that an open set A is connected in a topological space S = (5, 0), is equivalent
to showing that there exist two non-emtpy open subsets B,C that divide A, i.e.
such that AN B# &, ANC # &, and A = B LI C [Kel55]. This can be simplified
by observing that whenever B,C € O divide A € O, then also B, B* divide A (I
will then just say that B divides, or splits, A).

Definition 35 Let it be said that B € O does not split A € O in § iff, either
AZBUB*or AC B,or AC B*.

The following then gives another way to define connectedness: A € O is con-
nected in § iff, for every X € O, X does not split A.
It is convenient now to introduce a weaker definition that refers to definable

opens only. Let Z = (5,0, R, 7) be a spatial model in the following.

Definition 36 A € O is said to be R-connected in Z iff, for every X € R, X
does not split A.

It is also useful to introduce the following, stronger notions:

Definition 37

1. Let it be said that B € O splits nowhere A € O in Z iff
(A= B U B*)C(A= B)U (A C B*).
2. A € O is said to be strongly R-connected in Z (or strongly r-connected)

iff, for every R-prime X, it holds that A is R-connected in Z|X (i.e. in
the restriction of Z to X, see Def. 29).

It is now possible to formalise these notions as follows.
Proposition 38

1. The open denoted by the formula a does not split the open denoted by
the formula g iff, for
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pf:

ndiv(f,a) =0 - aV~a) >0 - o) VOB = ~a)
IFzndiv(5, )

. The open denoted by the formula « is R-connected in Z iff, for

con(a) = Vz.ndiv(a, z)

IFzcon(«)

. The open denoted by the formula «a splits nowhere the open denoted by

the formula g iff, for
ndivs(8,a) = (B —2aV~a) = (= a) V(= ~a)
IFzndivs(8, o)

. The open denoted by the formula « is strongly R-connected in Z iff, for

con,() = Va.ndivg(a, x)

IFzcon, ()

. From the properties of 7 in Proposition 29 and in Def. 25, and from Def.

35.

. From the general semantical properties as before, using Def. 36. In

particular, the expression
V. (AC!T (z)U(7(2))*) D (AC!T(z)) V (AC!r(2)*)
evaluates to the same as con(«) for 7(«) = A, and gives a straightforward

formalisation of the informal definition.

. As before, using Def. 38.

. Expanding the definitions,

cong(a) =Vr.(a w2z V~r) = (a—2)V(a— ~).

This evaluates the same as the expression

Ve.(A=7(x)U(r(x))*) = (A=7(2)) V(A= T1(2)%))

for 7(a) = A.

So, by the definition of evaluation (Def. 25), IFzcons(«) iff, for all B € R,
IFz(A= BUB*) - (A= B) V (A= B*).

Equivalently, by the definition of topological forcing in Proposition 29,
for all B € R, forallp € S, if pl-rA= BLIB* then pl-(A=B)V (A= B*).
Equivalently, for all B € R, for all p € S, if plFA = BUB* then either
plFA = B or plFA = B*.

Equivalently, using Proposition 30 (b) and the definition of = in Section
2.7, for all the R-primes X € O, if XTTAC BLIB* then either XMACRB
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or XMACB*. But this is equivalent to saying that for all the R-primes
X € O, A is R-connected in Z| X, using Def. 29 and Def. 38.

By imposing some constraints on the spatial model, it is possible to force strong
R-connectedness to coincide with R-connectedness, for the definable opens that are

also regular. It is useful to introduce some properties first.

Definition 38 In the spatial model Z, a subspace T" € O is said to be degenerate
iff for every regular A € R, it holds TC7(cons(A)) — i.e. iff for every R-prime
XLCT, it is the case that A is strongly R-connected in Z|X. Otherwise, T is

said to be non-degenerate.

Definition 39 The spatial model Z is said to be disjunctive iff for every A € R,
either A = S, or A is degenerate.

Now it is possible to prove the following.

Proposition 39 Whenever the generic spatial model Z = (S, O, R) is disjunctive,
for any regular A € R, A is R-connected iff it is strongly R-connected.

pf:  Left to right. Straightforward, since from the definitions, in any prime space,
strong R-connectedness implies R-connectedness.
Right to left. If A € R is regular and is not strongly R-connected in Z then,
for some B € R, there must be an open F' = A = B U B* such that A =
B U B*Z(A=-B) U (A= B*). Then F is not degenerate, since FIZ7(cons(A)).
Since Z is R-disjunctive, it follows that F' = S. So A cannot be R-connected
in Z.

5.2.2 Non-emptiness

Although in general the N-modal operator ¢ is needed to express non-emptiness, it
can be shown here that there is a close relationship between non-emptiness and a
non-modally definable ISPL operator.

The following proposition is a corollary of Definition 38:

Proposition 40  Let degnr = Vx.cons(~x). Then, Z is degenerate iff I zdegnr.
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In fact, a spatial model is degenerate whenever all the definable opens that are
regular are also strongly R-connected. As a corollary of Definition 39, the following

can be obtained.

Proposition 41 Let Z be a disjunctive, non-degenerate spatial model. Then:

1. For every A € R, it is the case that ACT(degnr) iff A # S.

2. Let nempty(o) = ~a — degnr. Then, IFznempty(«) iff 7(c) # @.

pf: 1. Follows immediately from Def. 39.

2. If 7(a) = @, then 7(~«) = S and so, since Z is non-degenerate,
7(~ ) L7 (degnr). Vice-versa, if 7(«) = &, then 7(~ «) # S and so, since

Z is disjunctive, 7(~ «)C7(degnr).

Of course, it seems hardly possible to express at the object level that the spa-
tial model is non-degenerate without using a modality. Anyway, particularly in
disjunctive spatial models, nempty turns out to share significant properties with
non-emptiness — so it may be labelled as a weak expression of non-emptiness. In

particular, the following can be proved, already in 72:
Proposition 42 5 nempty(a A 8) A cong(a) A cong(8) — cong(=(a V B))
pf: Mechanised proof carried out with Isabelle (see Section 7.4.3).

Semantically, this means that in any disjunctive spatial model, whenever the
intersection between two R-connected opens is weakly non-empty, then also their

sum is R-connected.

5.2.3 Interconnection and apartness

Some of the following definitions are already familiar and may be recalled, with
reference to Section 4.2. Here they are reintroduced (only in the strict sense),
for the ease of the reader and for immediate comparison with other notions. Let
Z =(S5,0,R,T) be a spatial model.

Definition 40 1In Z, for every A, B € O:

1. A and B are said to be overlapping with each other iff their intersection

is not empty. Otherwise, they are said to be disjoint with each other.
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]

e b Cc
e b Cc
h g
d f
a a
Figure 5.1: A generic spatial model can be defined for each of the frames above,
where elements are labelled nodes, by taking O = U< and R = O. The models 1,

2 and 3 are R-disjunctive, whereas this is not the case for 4 and 5. In fact, in both
4 and 5, the set ((b 1) U (¢ 1))* is R-connected in a 1, but fails to be so in d 1.

Q<"
v‘v”

/d
A

2. A and B are said to be interconnected iff either they are overlapping,
or if the intersection of their closures includes an open subset of their

boundaries. Otherwise, they are said to be apart from each other.

3. A and B are said to be strongly interconnected iff there exist not-empty
X, Y € Rst. XCA YCB and (X U Y)*™ is R-connected. Otherwise,

they are said to be weakly apart from each other.

The difference between the two notions of interconnection that are defined here
is exemplified in Figure 5.1. There, in Model 1, the regions a 1 and (b 1)U(c 1) are
interconnected but not strongly interconnected.

The following shows how the relations can be formalised.

Proposition 43 In Z, the opens A, B resp. denoted by the formulae «, 8 are:
1. disjoint iff
H_Z N(Ck N 5)

2. overlapping iff
-z O(a A B)
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pf:

. apart iff, for

ap(a, B) = ~(@AB)A(=(aVp) = (RaV=p))
IFzap(a, 5)

. interconnected iff, for

ic(a, B) = ~Uap(a, B)
IFzic(a, B)

. strongly interconnected iff, for

ics(a, B) = Fzy. Oz AQy A (x — a) A (y = B) Acon(=(z V y))
H_Zics(aa/B)

. weakly apart iff, for

ap,, (@, f) = ~ Dic(a, B)
”_Zapw(aa ﬁ)

. strongly interconnected, when Z is disjunctive, iff, for

ic;(cr, B) = Fzy.nempty(z) Anempty (y)A(x — a)A(y — B)Acons(=(xVy))
IFzici(a, B)

. overlapping, when Z is disjunctive and non-degenerate, iff

IFznempty(a A )

. Since AMB ="' & is valid iff ~(A A B) is.
. Since ANB #!' @ is valid iff (A A B) is.
. IFzap(4, B) iff Iz ~(AA B) and -5 (AUB)*C*(A*UB**). Then, Propo-

sition 32 and Def. 40 can be used.

. Straightforward from the previous.

. By Def. 40, since IFzics(A, B) iff there exist C, D € R s.t.

IFz(C # @) A (D # @) A (CCPA) A (DEFA) A con((CLD)*™).

. Straightforward.

. Assume that Z is non-degenerate. Then, using Propositions 39, 41, the

same argument as for ics(A, B) can be applied. On the other hand, if
Z is degenerate, by Proposition 40, for every regular open A which is
definable, I-zcon,(A), and so also I-zcon,((ALB)**).

. Consequence of Proposition 41.
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The following states a relationship between apartness and R-connectedness.

Proposition 44 For any A € O, the regular open A** is R-connected in Z iff

pf:

there do not exist non-empty B,C' € R which are apart, and which divide A
(i.e., such that ACBU C, A1 B# @,AN C # 9).

Left to right. If A is divided by some B,C € R that are apart from each other,
then A** is divided by B**, C**, and so A** cannot be R-connected, as follows
from Def. 36.

Right to left. Assume that A** is not R-connected. Then, there is some
X € R such that A¥CX U X*, A™ZX, A®ZX*. Now assume that the
disjoint opens (A M X) and (A M X*) are not apart. Hence, also (A* M X)
and (A* M X*) are not apart. Then, by Def. 40 and Proposition 32, there
must be a point b € S such that b € (A* M (X U X*))*, b ¢ (4™ N X)*
andb ¢ (A N X*)*. Sobe A™ and b ¢ X L X*. But then, A¥ZX L X*,
which gives a contradiction. So (A M X) and (A M X*) must be apart, after
all.

The relationship between the “strong” and “weak” notions is the expected one.

Proposition 45 For any A, B € R in Z:

pf:

1. If A and B are apart, then they are weakly apart.

2. If A and B are strongly interconnected, then they are interconnected.

1. Left to right. If one of A and B is empty, then, by the definitions,
they are both apart and weakly apart. Assume then that they are
both non-empty. If A and B were strongly interconnected (i.e., not
weakly apart), there should be some non-empty opens C, D such that
CCA and DCB, where (CLD)** is R-connected. But, since A and B
are apart, A** LU B* = (A U B)**. Hence A* LU B*LCA*™ Ll A*. But
(C U D)*CA* U B*, and so (C U D)*CA U A*. However, (C U D)**
IZA and (C U D)*IZA*, contradicting the R-connectedness of (C' LI D)**.

2. Consequence of 1 and of the definitions.

5.2.4 Tangential and non-tangential parts

Still with reference to the strict relations in Section 4.2, it is possible to give the
following definitions. Let Z = (S, O, R, 7) be a spatial model.
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Definition 41 In Z, for any A, B € O:

1. A can be said to be a non-tangential part (weakly non-tangential part) of

B iff A is included in B and is apart (weakly apart) from B*.

2. A can be said to be a tangential part (strongly tangential part) of B iff A

is included in B and is interconnected (strongly interconnected) with B.

In particular, A is a non-tangential part of B** iff A is apart from B* — similarly
for the corresponding weak relations.

The following can be proved immediately from the definitions.

Proposition 46 In Z, for any A, B € R such that AC B, the open A is a (weakly)
non-tangential part of B iff A is not a (strongly) tangential part of B.

These relations can be formalised as follows.

Proposition 47 In Z, the opens A, B respectively denoted by the formulae «, 3:

1. are in the relation of non-tangential part iff, for
ntp(a, B) = (v = B) Aap(a, ~ )
I-zntp(a, B)

2. are in the relation of tangential part iff, for
tp(a, B) = (a = B) Nic(a, ~ B)
Iztp(c, B)

3. are in the relation of weakly non-tangential part iff, for
ntp, (a, B) = (a — B) A ap,(a,~ B)
Izntp,, (v, B)

4. are in the relation of strongly tangential part iff, for
tpy(@, B) = (@ = B) Nies(a, ~ B)
IFztp(a, B)

5. are in the relation of strongly tangential part iff, for Z disjunctive, for
tpi(c, B) = (o = B) Nici(ar,~ B)
IF2tp; (v, B)

pf:  Quite straightforward, from Def. 41 and Proposition 43.
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5.3 Spatial extensions

In the following, I am going to consider some axiomatic extensions of the logics that
have been presented in Chapter 3. These extensions can yield some restrictions that
turn out to be quite significant, from the point of view of their spatial interpretation.

In Section 5.3.1 I will focus on some extentions that do not involve any modality.
In Section 5.3.2 T will deal with aspects that can be related to graphical effectiveness.

In Section 5.3.3 I will focus on dimension.

5.3.1 Non-modal restrictions

The disjunctiveness property (Def. 39) can be expressed logically as follows. Let
Z =(S5,0,R,T) be a spatial model.
Proposition 48 Z is disjunctive iff -3, for
Y, =Vz.z V (z — degnr)
pf: Straightforward from Defs. 39, 25 and Proposition 40.
In Section 5.2.3 two semantical notions of interconnection have been considered.

There is a condition that makes it possible to identify them, and that can be ex-

pressed without modalities.
Proposition 49 Let Z be a disjunctive spatial model such that |-z, for

Yo = ‘v’a:yap(x, y) \% iCi(-T, y)
Then, for any non-empty A, B € R:

1. Either A and B are apart or they are strongly interconnected.
2. A and B are apart, iff they are weakly apart.
3. A and B are interconnected, iff they are strongly interconnected.
4. Whenever ACB, A is non-tangential part of B iff A is not strongly tan-
gential part of B.
pf: 1. Straightforward from Proposition 43 and the properties of interpretation.

2. Left to right. By Proposition 45. Right to left. A and B are not strongly
interconnected, by Def. 40. Hence, by 1 and the primeness of Z, they
must be apart.

3. Consequence of 2 and the definitions.

4. Consequence of 2,3 and Def. 41.
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5.3.2 Connection and diagrams

A connected, regular open set A in a geometric two-dimensional space of coordinates
x and y can be represented graphically in an effective way when the boundary of A
can be described by a finite number of curve segments, where each curve is obtained
as a continuous function of one of the coordinates into the other one.

In Section 1.2 graphical effectiveness has been pointed out as a desirable require-
ment, from the point of view of a common-sense account of regions.

In general, in a normal space it is possible to have a regular open A = (| J,c; 4i)™*
such that it is interconnected with another regular open B, whereas for each 7 € I,
it turns out that A; and B are apart. These situation can be associated with
configurations that are pathological from the point of view of effectiveness. An
example is given in [PS98]. A similar one can be built using the function f(z) =
(1/x) * (Sin(1/z)), that has no limit as x tends to 0 (see Fig. 5.2). The regions
A={(z,y)lz >0,y > f(z)}, B={(z,y)|z > 0,y < f(z)} and C = {(z,y)|z < 0}
are indeed such that (AUB)*™ is interconnected with C, whereas neither A nor B

are.

: A

Figure 5.2: The function f and the partition which is determined by it.

A significant step in the direction of a common-sense account of regions, as well
as in the direction of graphical effectiveness, seems to be then the introduction of
a restriction, very close to that presented in [PS98], that makes it possible to avoid

the aforementioned possibility.

Proposition 50 Let Z be a spatial model such that I;33, for
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Y3 = Vryz.ap(z,y) Aap(z, 2) — ap(z,yLiz)
For any R-prime T in Z, for any A, B,C € R, if A and C are apart in S|T,
and if B and C' are apart in S|7T’, then A U B and C are also apart in S|T.

pf: By Def. 43, the definition of restriction (Section 2.1) and the properties of
interpretation (Proposition 29).

The following shows the corresponding property for interconnection.

Proposition 51 Whenever Z satisfies ¥;,%, and X3, for any A, B,C € R, if
(AUB)* and C are interconnected, then either A and C or B and C are

interconnected.

pf: By Propositions 49 and 50, observing that (AUB)** and C are interconnected
iff AU B and C are.

Fig. 5.3 shows an interesting counter-model for 5.

q
\ 2n+1

5

2n
3

4
1

2

0

p

Figure 5.3: The tree above represents a frame where p is the root, ¢ is a terminal
element, and the other elements are labelled by the positive integers — the odd
numbers label the terminal elements, the even numbers label the elements that are
below ¢. An atomic spatial model can be defined on this frame, by taking O = U<
and R = O, fails to satisfy ¥3. Taking A ={4dxn+1}, B={2x(2xn+1)+ 1},
and C = {q}, both A and B are apart from C, whereas A LI B is not.

5.3.3 Dimension

The discussion in this section arises from the observation that, in a quite specific
sense, it is possible to associate granularity with an abstract notion of dimension.

Lower dimensional representations can be intuitively associated to less detailed ones.
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For example, in a standard, two-dimensional geographic map, a road can be
represented as a one-dimensional feature (a curve). This representation is normally
less precise than a two-dimensional one that takes into account the width of the
road.

In the following I am going to consider how the definition of topological dimen-
sion can be adapted, in order to make it significant for atomic spatial models. A

preliminary definition is needed.

Definition 42 In a space (5, 0), a collection A C O is said to have order n iff n
is the largest integer s.t. A includes a family of n + 1 sets with a non-empty
intersection.

Given A, B C O, B is said to be a shrinking of A iff for every B € B there is
AeAst. BC A.

The following gives a standard definition of topological dimension for normal

spaces [Eng78|:

Definition 43 A normal space S = (S, Q) has covering dimension equal or less
than n if and only if, for every open cover A of S, there is an open cover B of
S that is a shrinking of A, such that B has order at most n. If there is no such
bound, the covering dimension is co. If & has covering dimension less than or
equal to n and does not have it less than or equal to n — 1, then it is said to

have covering dimension n.

With respect to non-metric spaces, this definition turns out to be quite prob-
lematic. In fact, rather unintuitively, the covering dimension of a non-metric space
may turn out to be smaller than that of some of its subspaces. In particular, the
definition has little significance w.r.t. prime spaces, since these always have covering
dimension 0. In the following, I introduce a weaker notion. This essentially arises
as the greatest covering dimension of all the subspaces. Let Z = (S, O, R, 7) be an

atomic spatial model.

Definition 44 The value A is defined in Z as the maximum that satisfies the

following:

A(Z) < n iff for every subspace TCS, for every cover A C R of T, there is a
cover B C R of T such that B is a shrinking of A, and has order at most n.

A(Z) = oo, otherwise.
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The next proposition gives a useful characterisation for A.

Proposition 52 In Z, A < n if and only if, for any 7" € O, whenever, given
Ajer € R for I = {1,...,n+ 2}, such that 7" = \/,.; A;, there exist Bic; € R
such that B;CA;, for all ¢ € I, and moreover T'=\/,_;B; and \,.;B; = @.

pf:  The proof can be adapted from that of [Eng78|, Theorem 1.6.10.

The general idea, here, is to have the atomic cells representing n-dimensional re-
gions, whenever A = n. Lower-dimensional features can be represented only insofar
as they are on the boundary between n-dimensional regions. Each representable fea-
ture can then be associated to the set of the atomic cells for which it is a boundary
element — or to the union of those cells (which is equivalent).

Fig. 5.5 gives an example of a model that validates Dim(2), corresponding to a
2-d cell complex.

It is now possible to show that, in an atomic spatial model, the weak notion of

dimension given by A has a quite intuitive property.

Proposition 53 When A = n in Z, for any atomic cell A € R, there can be at

most n disjoint, non-empty definable opens that are interconnected with A.

pf: Assume that, for I = {1,...,n + 1}, there are non-empty, disjoint B;c; such
that each of them is interconnected with A. Then, there must be an open
boundary subset shared for each pair A, Bje;. But then, {(A U Bicy)*} is a
subspace that contradicts A < n.

So, from the point of view of interconnection, whenever A = 2, the atomic cells
behave like triangles (possibly degenerate ones). This fits in well from the point of
view of a decomposition in terms of simplicial complexes [OBS92].

On the other hand, treating A as a measure of dimension can be problematic
from the point of view of a decomposition based on a square grid, as shown by the
following example.

In the finite spatial model pictured in Figure 5.4, where A, B, C, D, E are atomic
cells, A is greater than 2. In fact, the cover Hyyy of S, formed by H; = (\/{A4, B, C,
BY)*, Hy = (V{A,C, D, EY™, Hy = (V{A, B, D, E})", Hy = (V{A, B,C, D})",
violates the condition for A = 2, since AH; = A, but no refinement of Hyy can
contain the point p. This happens to be the case just because p is a boundary point
of four distinct definable opens.
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Figure 5.4: A planar graph. A, B,C, D, E are regions, p is a boundary point shared
by A,B,C, D.

The characterisation that has been given of A makes it possible to give the

following logical encoding.

Proposition 54 A spatial model Z has A < n — 2 iff IFzDim(n — 2), for

Dim(n —2) =Vy1 ... yn-321 .- 2n-(21 2 Y1) Ao A (2 = Yn) A
~a A ANZ) ANV VY) = (2 VLV 2y)

pf: Using Proposition 52, the condition for A < n — 2 can be formalised into the

following expression, which is equivalent to the condition for Dim(n — 2):

F2VY1 - ynT21 - Zn (1) A A (22En) A (11 - .M 2y) =t )
A((y1U- - Uyn) T (21U Uz))

5.3.4 JEPD relations

In Section 4.2 it has been highlighted the importance of jointly exhaustive, pairwise
disjoint (JEPD) sets of relations, and the RCC8 relations [RCC92] have been treated
as a significant example. In Section 5.2 it has been shown how similar relations can
be represented in the spatial models introduced with Def. 25. In this section, those
results are summed up in propositions that state how the RCC8-style relations
can be encoded in some extensions of ISPL. Let H € {C2, D2, NC2,ND2}. Let
Z = (5,0,R,7) be a spatial model for H.

Proposition 55 Given a logic H and a spatial model Z for H, such that IFz3; A
Y, if W5 degnr, then for every formule «, 3, one and only one of the following

binary relations holds between them (i.e. the following are jointly exhaustive,
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pairwise disjoint relations):

IFyra + = [equivalence]

IFznempty(a A B) A nempty(ae A~ ) [partial overlap]

IFznempty(8) A ntp(a, =3) [non-tangential part]
IFznempty(a) A ntp(8, ~«) [inverse non-tangential part]
IF4tp; (v, &B) A nempty(~a A ) [tangential proper part|

IF4tp; (B, ~a) A nempty(a A ~ f3) [inverse tangential proper part]

IFznempt () A nempt(5) A ap(e, 3)  [apartness]

IFztp; (a, ~ B) [tangential connection]

pf: The proof relies on Propositions 48, 49, 40 for the conditions on the model,
and on Propositions 35, 38, 41, 43, 47 for the encoding of the relations.
The semantics of the relations guarantee that they are JEDP. Only two cases
are non-trivial. Since we are considering only regular opens, Propositions 48,
49, 47 allow the representation of the tangential part relation by tp,. Propo-
sition 41 allows the representation of non-emptiness and of overlapping using

nempty.

The restriction to regular opens is not necessary, as it is required by Proposition
39 (for cony) but not by Proposition 43 (for ic;). It is not necessary to exclude the
empty set, either, although regions are usually meant to be non-empty. In fact the
empty set here does not raise any problem from the point of view of the classification:
either IFznempt(a) A ntp(L, ) or IFz L <> «, but not both.

In the non-modal case, the restriction to non-degenerate models takes the form
of a semantical condition — i.e. ¥, degnr, whereas in the modal case it can also be
expressed as |-z ~ [ldegnr.

However, in an N-modal logic, it is possible to give altogether simpler encodings
for RCC8-style relations, without introducing any additional schema. Moreover,
the restriction to regular opens can be lifted. One can actually have two distinct
encodings, one (Proposition 56, A) based on interconnection and apartness, the
other one (Proposition 56, B) based on strong interconnection and weak apartness,
as given in Def. 40. The two encodings are equivalent when one restricts to models
that satisfy 3.

Proposition 56  Given a logic NH and a spatial model Z, for every formulae

a, B, the following are JEDP binary relations:
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A)
IFyra < =0 [equivalence]
IFz O(aAB)AO(a A~ ) [partial overlap]
Iz O B A ntp(a, =f) [non-tangential part]
Iz O a A ntp(8, =a) [inverse non-tangential part]

IFztp(a, =B) A O(~a A B) [tangential proper part]
IFztp(8, ~a) A O(a A~ ) [inverse tangential proper part]
IFz 0 a N B Aap(a, 5) [apartness]

IFtp(av, ~ ) [tangential interconnection]
B)

IFyra = equivalence]

IFz O(aAB)ANO(a A~ B)  [partial overlap]

-z O 8 A ntp,, (o, =)

IFz O a A ntp,, (8, ~a)
IF2tp, (v, =B) A O(~a A B)
IFztp, (B, =a) A O(a A~ 3)
2O an OB Aap,(a,B)
IFztpy (o, ~ B)

weakly non-tangential part]

inverse weakly non-tangential part|
strongly tangential proper part|

inverse strongly tangential proper part]
weak apartness]

[
[
[
[
[
[
[
[

strong tangential interconnection]

pf: Similar to Proposition 55.

Considering non-regular opens makes it possible to introduce a richer set of
jointly exhaustive, pairwise disjoint relations, by refining the relation represented
by @ — = (which gives the underlying notion of part in all the above encodings)
into the disjoint relations represented by & — 8 and (¢« — ~f) A~O(a — (). This
makes it possible to get a more discriminating set of JEPD relations, that cannot

be treated here, by taking into account granular representations.

5.4 Views

Quite informally and briefly, I will sketch a few semantical ideas that justify the
inclusion of the V-modal logics in Chapter 3. These suggestions bear some relation-
ship with the logic of vision [VDDVLO00]. Here I consider the V-modalities quite
independently from the interpretation of the N-modalities, discussed up to now.

A non-modal Kripke frame, as given in Def. 15, can be regarded as a view of the
external space, taken from a view point represented by 0. Definable opens are the

representations of visible objects. This idea can be generalised when one considers
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a V-modal frame (Def. 18), by allowing for different views of the space, ordered
under conditions that match those of the formal definition.

The example given in Figs.5.6, 5.7, 5.8 suggests a possible association of views
with projections. The 3-dimensional scene in Fig. 5.6 is represented abstractly by
the two models in Fig. 5.7. The view from the point v1 shows B as covered by A
(indeed, v itself is contained in A), whereas the view from v2 shows A and B as
disjoint. The VD2-model M (see Def. 19) that can be defined on the frame in Fig.
5.8, by taking R = U<, 0 = v0 and V = {v0,v1,v2} joins together the two views
in a picture, that can be seen, as a whole, from v0. Some extra points are added (z
and y), in order to preserve the R-connectedness of A and B.

In the V-modal logics, the operator () does not generally correspond to non-
emptiness (see Lemma 19). Indeed, here ¢ @ means that « is non-empty in every
view. This meaning may apply to a region that can be associated in some sense to
a “real object”. In the example, both A and B are such regions. In fact Fy; O A
and Fj;s ¢ B. On the other hand, A M B can only be associated to a “shadow” — it

is non-empty only in one of the projections — and correspondingly, ¥, O(A A B).
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Figure 5.5: The frame above, taking O = U< and R = O, gives a finite, non-
degenerate spatial model that satisfies 31, X, X3 and Dim(2). It can be associated
in a natural way with the 2-d cell complex below, represented as a planar graph,
following the labelling convention described in Fig 4.2. In contrast, it can be noted
that in Fig. 5.1, 1 and 2 are models that fail to satisfy X3, whereas 3 gives a
degenerate model.
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Figure 5.6: A 3-d object and two of its 2-d projections.

1 2

p q r S
vl V2

Figure 5.7: Models for the projections. In 1, A=vl1tand B=¢q1. In2, A=r1
and B = s 1.

vl V2

vO

Figure 5.8: A model that joins together the two projections and preserves the topol-
ogy of the 3-d object, taking A = (v11) U (z 1) and B =y 1.



Chapter 6
A decision procedure

In this chapter, a partial decidability result is given for D2. I will first show that the
negative formula in this logic are decidable by embedding them into classical logic.
Further, I will show how a decision procedure for those formulz can be built within
D2. The mechanisation of this procedure will be discussed in the next chapter
(Section 7.4.2).

6.1 Classical propositional logic

Classical propositional logic (CPL) can be axiomatised in a language £’ with prim-
itives —, ~, where A,V can be classically defined, by adding to any axiomatisation
of IPL the following schema (Ezcluded Middle):

aV~a [EM]

From EM and the intuitionistic schemas it is possible to derive (~a — o) — «
and ~a — a.

In CPL propositional quantification does not increase the expressive power, since
the universal quantifier can be defined as follows.

Ve.o(z) = o T/z] Aa[L/z] [PQD]

Then, the existential quantifier can be defined with Jz.a(z) = ~Vz.~a(x).
However, replacing quantifiers with their definitions causes an increase in the size
of the formula which is exponential in the number of their occurrences.

Alternatively, and equivalently from the point of view of provability, it is possible
to extend the language with V as a primitive, and then to extend CPL with Schema
5, Rule 6 (Section 3.4), together with the following:

a(T/z) Na[L/z] = Vz.a(z) [PQA]

I will refer to the logic given by this "redundant” axiomatisation as to CPL’.

91
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6.2 An embedding into CPL

The semantical completeness of D2 can be used in order to establish the following:

Proposition 57 The schema
~(a[T/z] A a|L/z] = Ve.a(z)) [NQE]
is valid in D2.

pf: Let v = o[T/z] A a[L/z] = Vx.a(x). Assume Fop ~7. Then, by semantical
completeness (Theorem 2), Fop ~7y. So, for some Kripke frame S = (S, 0, <)
and some Kripke model M = (S, R, p), for some element a € S, a F ~ 7.
Then, for all x € S,a < x, it must be x ¥ v. But, for any terminal y € S,

y E 7, as the interpretation does not depend on any other point. So Fop ~7.

A class of formule A in the language £, for a logic L; can be embedded into
the language Lo for a logic Lo, w.r.t. provability, whenever there is a mapping
6 : A — Ly such that for every formula @ € A, « is provable in L; iff §(«) is
provable in Ls.

A negative formula is one that has form ~ «. A negative theorem is a provable
negative formula. The following can be proved, showing that the negative formulae
of D2 can be embedded into CPL’ w.r.t. provability, by mapping the intuitionistic
formulae into the corresponding classical ones. An similar result for /PL was proved
by Glivenko [Gli29].

Proposition 58 For every formula « in £;, Fop ~a iff Fopp a.

pf:  Left to right. Every axiom in D2 is a theorem in CPL’, and every rule in D2
is also a rule in CPL’. So, if op ~a then Fgopr ~a. It is then possible to
apply Fepr =a — a.
Right to left. By induction on the length of the proof. The base can be
established by noting that, for every « s.t. it is an axiom in CPL, ~a is a
theorem in IPL, and so also in D2. This holds for PQA, too, by Proposition
57. The induction step requires checking the rules. The case of Modus Ponens
(Rule A4) is straightforward. As to Rule A6, assume Fcprr a—f5(z) (z not
free in ). Then, by the induction hypothesis, Fop ~(o — 5(z)). Then Fyp
Vr.~(a — f(x)) and so Fop &Vr.(a — B(x)). Then, Fop ~(a — Vx.5(x)), as
we wanted, since, when z is not free in «, Fop (V.00 = B(2)) = (@ — B(x)),
by DE (Proposition 12).
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It is then possible to prove the following.

Proposition 59 For every intuitionistic formula «, the provability problem for
~qa w.r.t. D2 is decidable and PSPACE-complete.

pf: This follows from the fact that Fop ~ « iff Fop ~ =a, from Proposition 58 and
from the fact that the provability problem for CPL with quantified Boolean
formulae is PSPACE-complete [GJ79].

From the point of view of the spatial representation, the following result can be

obtained.

Proposition 60 For any finite set A of formula of £;, the problem whether there

is an atomic spatial model that satisfies all the formulae in A is decidable.

pf: One can show that such a model exists, by proving A ¥5p L. This turns out

to be decidable, by Proposition 59, using the deduction equivalence.

So, constraint satisfaction in D2 is at worst PSPACE-hard, even without any
restriction on the number of variables. However, it must be observed that this result
is significant only when we consider constraints that do not involve non-emptiness.
In fact, the interpretation of nempt(z) collapses into triviality whenever the model is
degenerate (Section 5.2.2). This fact makes it hard to check satisfaction for any con-
straint that involves overlapping. Hence, degenerate models are a problem from the
point of view of the RCC8-style relations — see Proposition 55. It turns out that it
is not useful, in this logic, to check the consistency of constraints involving apartness
and interconnection — indeed, as it can be proved quite easily, Fop Vay.~ap(z,y)
and Fop Vay.~ic;(z,y). On the other hand, satisfiability and derivability problems
for sets of constraints involving disjointness (~(a A 3) and inclusion into regular

opens (o — &f) turn out to be a feasible application.

6.3 A mechanisable procedure

In Proposition 59, the proof that the class of the negative formula of D2 is decidable
is based on a semantical step — the embedding into classical logic. When one wishes
to formalise the proof on a theorem prover, the translation between the two logics
may turn out to be an undesired complication. It seems then useful to develop a

decision procedure based on a syntactical derivation within D2.
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The two equivalent procedures that are presented in the next sections are quan-
tifier elimination procedures for the negative formule of D2. The quantifier-free

formula that are left can then be solved using standard decision methods for IPL.

6.3.1 Quantifier elimination for the negative formulae

Two ways in which the provability problem for a D2 negative formula can be turned
into the same problem for a quantifier-free formula are given in the following. In
both cases, the essential steps involve NQE (Proposition 57).

6.3.1.1 Meta-level proof

The most intuitive way to reason about quantifier elimination is explicitly based on

meta-level reasoning.

Proposition 61 The schema

~7[Vr.g(z)/y] <> ~7[o[T/z] A g[L/z]/y] [ANQE]
is valid in D2.

pf: By NQE (Proposition 57) and RE (Proposition 13). I refer to the mechanised

proof discussed in Section 7.4.2 for more details.
It is now possible to prove the following:

Proposition 62 In D2, any negative formula is logically equivalent to a quantifier-

free formula.

pf: Assume that o = ~ . Then, it is possible to obtain an equivalent quantifier-

free formula by the following steps:
Step 1. Eliminate each occurrence of 3, by rewriting with its definition.

Step 2. Eliminate each occurrence of V, by applying ANQE through RE.

6.3.1.2 Step-by-step proof

Quantifier elimination as described above is comparatively elegant, but from the
point of view of mechanisation, the use of ANQE (Proposition 61) as a rewrite rule

relies rather heavily on higher-order unification, and this may give some problem.
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Quantifier elimination can also be done in simpler steps, as shown by the follow-
ing. Here I will also include the elimination of all the logical symbols except —, L.

It is useful to introduce some auxiliary notions first.

Definition 45

1. A negative formula ~ « is said to be totally negative (a TN formula) iff
the only non-primitive logical symbols that are contained in it are ~, ~,
and moreover, for every occurrence 3 of a non-negative sub-formula, ~

is also a sub-formula of «.

2. A formula is said to be in [+ A ~]-form (an ICN formula) iff it contains
only —, A, ~, ~.

3. A formula is said to be in [ L]-form (an IF formula) iff it contains only
—, L.

4. A formula is said to be in conjunctive [— L]-form (a CIF formula) iff it

is a conjunction of IF formulse.

Proposition 63 The following are derivable in D2:

~ae YR [t1]
r(a— B) & ~(ra— =) [t2]
~(Vz.a(z)) < ~Vz.~a(r) [t3]
RRIQ ¢ R [t4]
(@Af—=7) e (@=F-=7) [£5]
(= BAY) & (a=B)A(a—=7) [t6]

pf: I refer to the mechanised proof mentioned in Section 7.4.2.

Proposition 64 In D2, any negative formula o = ~+ is logically equivalent to

a TN formula.

pf: By applying to « the sequence of transformations described below. The logical
equivalences in Proposition 63 are used here as rewrite rules, applied from left
to right through RE (Proposition 13).

Step 1. Eliminate 4, A,V, <> by rewriting with the definitions.
Step 2. Replace the new goal by [t1].

Step 3. Since the goal is now ~ ', replace each sub-formula of 7' by [t2] and
[t3]. This step already yields a TN formula.

Step 4. Rewrite exhaustively by [t4] — this just eliminates redundant nega-

tions, still leaving us with a TN formula.
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For example, ~(a A f — Vz.y(x)) becomes
~(r(Vy.(ra = =0 — Ry) = ~y) — &Ve.Ry()).

It is now possible to show how quantifiers can actually be eliminated.

Proposition 65 In D2, for each negative formula 7 there is an IF formula ~”

such that - is provable iff v" is.

pf: Step 1. 7 is converted into a TN formula ', by Proposition 64.

Step 2. All the occurrences of V are eliminated by rewriting exhaustively with
NQE (Proposition 57). This gives an ICN formula.

Step 3. Rewrite exhaustively with the definitions of &~ and ~.

Step 4. The occurrences of A are eliminated by [t5] or else pushed outside by
[t6]. This gives a CIF formula.

Step 5. Rewrite the outermost A with its definition.

Step 6. One is left with Vz.(ay A ... Aoy = oy — ) — 2.

This can be rewritten exhaustively with [t5].

Step 7. One is left with Vz.0(z), where 6(z) is an IF formula.
But then, F Vz.0(x) iff - 6(x).

Proposition 62, by stating that for each negative formula, there is a quantifier-free
one which is equivalent in D2, gives a guarantee over the completeness of quantifier
elimination. Inspection can show that also the procedure given in Proposition 65 is
complete.

6.3.2 Decidability

The following shows that when the quantifiers are eliminated from a negative formula
of D2, what is left is an IPL formula.

Proposition 66 D2 is a conservative extension of IPL.

pf: D2 extends IPL, since the axioms and rules for D2 include those for the im-
plicative fragment of IPL, whereas V, A, ~ are 2nd-order definable (see Sections
3.3, 3.4).
On the other hand, it can be verified that every Kripke model for IPL (as given
in [Gab81]) can be extended to a model for C2 by adding the interpretation

rule for V. Moreover, we know that the axiom schema A9 is satisfied by any
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C2 model that is atomic, and hence also by any finite one. IPL has the finite
model property (i.e. every non-theorem has a finite counter-model [Gab81]).

So every formula that has a counter-model for IPL has also one for D2.

It follows immediately that any proof procedure for IPL can be embedded in
D2. Examples of decision procedures for IPL can be found in [Dyc92, Min92].

Proposition 59 could then be restated and proved from Proposition 66, by using
either Proposition 62 or Proposition 65 for the quantifier elimination part, and by

relying on [Min92] for a similar complexity result.

6.4 Meta-level and object-level proofs

Before starting the discussion about the mechanisation of D2, let us consider the
aspect, of meta-level reasoning. In both Propositions 62, 65, it has been used RE

(Proposition 13) — as I recall it here:
A Fpy a < § implies A Fpe y[a/z] < v[B/z] [RE]

This principle is not usually treated as part of the logic, since it can be proved at
the meta-level, by induction. It turns out simpler to write it using the impredicative
substitution (formula-for-variable).

RE is a very useful principle, in general, since it allows us to import into a formal
proof pieces of equational reasoning that are often suggested by the semantics. RE
can also be used to derive other meta-level rules. For example, as it has been proved
with Isabelle:

AbFps&((a > B)V (a <> 7)) implies
A bpy &((dla/z] & ¢[8/z]) V (¢la/z] < ¢[y/z])) [DNDRE]

The following formula, closely related to RE, is also valid in D2 — it can be

proved by RE and Deduction Equivalence, for y, z not free in «, g:
(a < B) = Vyz.(y < @) A(z ¢ B) = (y/z) < v(2/z) [RE’]

Whereas RE superficially looks like the corresponding first-order principle, RE’

does not at all. However, here both RE and RE’ are second order expression: in RE,
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a formula is substituted for a variable; in RE’, a variable is taken to be equivalent
to a formula.

Every instance of RE’ can be derived in D2. However, this does not seem to
apply to the schema RE’ itself. In fact, in the axiomatisation of Section 3.4, no
postulate can link together two different uses of the same variable, one as a variable
in a substitution (in y(y/x)) and the other one as a propositional variable (in y <> «).
In a certain sense, one could even say that the notion of derivation based on the
given axiomatisation is incomplete w.r.t. the valid schemas.

On the other hand, it does not seem useful to add a schema such as RE’ to the
axiom list. This would not alter the stock of the theorems, whereas the meta-level
proof of RE’ suffices, just as it suffices that given for RE. This example shows that,
with propositional quantification, it is possible to have a schema that is valid (every
instance is provable) and that cannot be derived within the logic (i.e. it can be
proved only at the meta-level).

The schema NQE, which has been proved semantically (Proposition 57), and
which is also used in Propositions 62, 65, is another example of the same kind — i.e.
the schema cannot be derived within the logic, however it is a valid schema (every
instance is provable) since it can be derived at the meta-level, using RE.

In order to make this idea more concrete here, I will just sketch the proof of NQE
that has been given with Isabelle, by listing its main sub-goals (in reverse order, if

one thinks of a forward proof):

SG1 F =(o[T/x] A ¢[L/x] — Va.¢p(x))
SG2 F=((¢[T/z] = ¢ly/z]) V ($[L/2] = ¢[y/z])) (¢ does not contain y)
SG3 Fa((y+ T)V(y<+ 1))

Proving SG1 from SG2 involves using Schema A8. Proving SG2 from SG3 in-
volves using DNDRE. SG3 is closely related to ~(a V ~ a).



Chapter 7
Mechanisation

Making formal proofs manually can be tedious and error-prone. For this reason,
mechanised proof-checking can be useful, even when a complete automation is not
achievable. When the problem is tractable and an efficient solution is sought, a
direct implementation in a programming language may be the best option. In case
the problem is to mechanise proofs in an undecidable logic, it may turn out more
convenient to give a formalisation in a meta-language that is clear, reliable and
expressive enough to allow reasoning not only within, but also about the logic.
Interactive theorem provers, and particularly those based on classical higher-order
logic (HOL) are particularly useful to this purpose [Bun83].

Isabelle is an interactive theorem prover that has significant facilities for the
implementation of new object logics, and has a well-supported formalisation of HOL
[Pau96).

In the following, I will present a mechanisation of the logics 12, C2 and D2
in Isabelle. The mechanisation of D2 will be used in order to proof-check the
procedures for quantifier elimination discussed in Section 6.3. This will not give a
fully automated implementation of quantifier elimination, rather it will give a correct
and complete method to eliminate quantifiers from the negative formulae. Since
Propositions 62, 65 use meta-level reasoning, HOL turns out to be an appropriate

environment.

7.1 Formalising proofs

A derivation of a formula « from a set of formulae A, also said to be a deduction of o
from A, can be defined as a sequence of steps that moves from the assumptions in A

towards the conclusion « (Def. 12). However, in the search and in the presentation
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of a proof, it is often useful to go the other way round, starting from the thesis (the
goal) and applying the inference rules backwards. This process generates subgoals
that must be discharged either as axioms or as assumptions. Reasoning backwards
may give a better control on the proofs, since inference rules have always a single
conclusion but sometimes more than one premiss. Backward rules that correspond
to the inference rules are also called tactics [Pau96]. Interactive theorem provers that
are particularly designed for backward reasoning, are also said to be tactic-based.
Sequent calculus and natural deduction give two different ways to formalise
derivations, in alternative to Hilbert systems. In natural deduction, the primitive
rules represent elementary deduction steps corresponding to the meaning of the logi-
cal operators — each of them can be associated to a pair of introduction-elimination
rules. In sequent calculus for intuitionistic logic, the expression A - «, where « is
a formula (the consequence) and A is a list of formulee (the antecedents) is treated
formally as a sequent, instead than as a meta-theoretical expression. In general, a

sequent calculus rule has form:

S
Si ... S,

where the sequents Sy ... S, are the premisses and the sequent Sy is the conclusion.
A derivable sequent represents a deduction (i.e. a derivation of a formula from a set
of formulz).

Sequent calculus systems are usually defined by some axiom schemas, a set of
structural rules, and a set of operational rules. The axioms represent elementary
deductions. The structural rules are determined by the notion of derivation, and may
include a rule called Cut — closely related to Modus Ponens. The operational ones
are usually given as a pair of left-right rules for the introduction of each primitive
operator, respectively, in one of the antecedents and in the consequence. Usually, all
the rules except Rule Cut are such that the conclusions are formally more complex
than each of the premisses — for this reason they are sometimes called analytic
rules. In a proof that does not use Cut (also said to be cut-free), by reading the
rules backwards, every sub-formula which is contained in the subgoals turns out to
be already contained in the goal. This property, known as the sub-formula property,
makes sequent calculus systems particularly useful for backward reasoning [TS00,
Bung3].

Natural deduction proofs lend themselves to be read backwards as well. In con-

trast with sequent calculus though, natural deduction allows an easy interleaving
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between the backward application of the rules to the goal, and their forward appli-
cation to the assumptions. This makes the handling of assumptions more intuitive,
and hence it makes natural deduction particularly useful in dealing with complex
proofs [Pau89).

7.1.1 Interactive theorem proving

A previous result in the formalisation of mereotopology (documented in [GCMP99]
and related to the theory in [BCTHO00c|) has been obtained using the HOL theorem-
prover [GCMP99]. HOL is essentially a tactic-based implementation of the logic
HOL.

Like HOL, Isabelle is written in ML — a strongly typed functional language
based on typed lambda calculus with polymorphism [Pau91] — and has an ML
interface (the higher-level interface ISAR is not used here). In contrast with HOL,
Isabelle is implemented as a logical framework — i.e. as a computational logic
that can be used as a meta-language for the formalisation of different object logics.
The Isabelle meta-logic (also called M) is essentially a fragment of higher-order
intuitionistic logic, with a primitive sort for propositions, and with primitive rules in
the style of natural deduction for implication (denoted by ==> and right associative,
in the notation of the ML interface), universal quantification (denoted by !!, with
a standard binder syntax) and equality (==). Isabelle syntax allows the use of meta-
variables (also called schematic variables — in the following they will be denoted
by Roman capital letters). The terms are those of simply typed lambda-calculus
— constants, variables, abstractions (denoted by % x. A ) and applications (A B,
with an associated typing information A: :u=>v, B: :u) [Pau89, Pau02].

An object logic can be formalised as a theory that may be loaded on top of the

meta-logic. Each theory includes the following:

1. Information about the dependency on other theories.

2. A signature, with the types and the declarations of some constants, each of
them inclusive of an abstract syntax (given as a higher-order constant) and,

possibly, of a concrete one (a macro).
3. The definitions of the constants.

4. Possibly some axioms.
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The ML command use_thy "T" loads the theory T together with all its depen-
dencies.
The expressions of the object logic can be formalised into expressions of typed

lambda calculus, whereas the inference rules can be expressed as formulae in the

meta-logic. A rule in which A_1, ..., A.n are the premisses and C is the conclusion
can be formalised in M as [| A_1; ...; An |] ==> C — an abbreviation for
Al ==> .. .==> An ==> C .

Object-level variables and substitution can be handled in terms of function ar-
guments and application. The dependence of the conclusion on some variable that
cannot be free in a premiss (A_1) can be expressed using meta-level quantification:
1 x. Adl; ...; An |] ==> C .

The inference engine of Isabelle is based on a higher-order resolution rule, as
described in [Pau89]. Writing D? for the application of a substitution s = [t,/z1, ...,

t;/z;] to an expression D, the resolution rule turns out to be the following one:

[|A1;.. Al ==>D [|By;...;Bp|]==>C pra—

A3 A AS s AL B . Byl ==> D

In a forward proof, all the inference rules are applied by means of resolution.
Backward proofs are turned into forward ones by Isabelle. The tactic constructors
that are provided allow the forward application of inference rules in a way that
imitates their application as tactics in a backward proof [Pau89]. The constructor
res_tac (for resolve tactic) can be used in order to imitate a backward application
of any natural deduction rule to a goal. The constructor eres_tac (for elimination
tactic) can be used in order to imitate, with an elimination rule, a backward appli-
cation of a left rule to a goal. The constructor dres_tac (for destruction tactic) can
be used in order to imitate a forward application of an elimination rule to one of
the assumptions.

Although Isabelle is essentially an interactive theorem-prover, it has considerable
facilities from the point of view of automation. In particular, the classical reasoner
blast_tac can be used to deal semi-automatically with the application of analytic
rules, whereas simp_tac gives a powerful simplifier for equational reasoning. The

tactic auto_tac is a useful combination of methods.
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7.1.2 Higher-order syntax

Higher-order logics such as HOL and Isabelle M allow typed higher-order variables
and the possibility of writing functions, equivalently, either in curried or uncurried
form (i.e. Fzy is equivalent to F'(x,y)). Higher-order syntax can be used in order
to express substitution and quantification. Substitution is dealt with by lambda-
abstraction and function application. The meta-linguistic expression a(z/y), i.e.
the formula resulting from the substitution of x for y in «, can be formalised as
(Ax.F(z))y, which reduces to F(y) by beta-reduction.

In contrast with the meta-linguistic reading of «;, the corresponding formalisation
F' in the lambda-expression is a propositional function. Taking F' to be a formula
simply would not work: (Az.F)y beta-reduces to F', and the substitution of G(x) for
F is not allowed, since (Ay.A\z.y)(G(x)) violates a proviso against variable capture
in lambda calculus [Bar92].

With higher-order syntax, binders have generally type (term +— wff) — wff.
Provisos against variable capture can often be stated implicitly — this can be very
useful. For example, in V.G V (F(z)), the term F is a function, whereas the term
(G is a proposition — so x cannot occur free in G.

The higher-order notion of substitution for terms is of type (term — wff) —
term — wff. This can be in contrast with some applications of the meta-linguistic
notion of substitution. As an alternative, it is possible to formalise substitution by a
first-order expression of type (wff,term,term) — wff. This one is also called explicit
substitution [BMO02].

7.2 ISPL in the Isabelle meta-logic

I will now show how a rule system that is equivalent to the logic I2 (Section 3.4)
can be embedded in the meta-logic M. I will refer to this embedding as to 12,, —
the full theory is in Section B.3.

A type o of class logic (the built-in class of the logical types) is declared for the

formula of the object logic:

types o
arities o :: logic

The declaration of the constants follows. The function Trueprop is a coercion

that maps I2,,-formulee into meta-level ones (prop is their built-in type). The
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concrete syntax that is indicated on the right side, actually makes this coercion
“invisible”.

The other constants are for the logical symbols, resp. T, L, —,~ A,V, < ,V, 4.
The concrete syntax associated to the declarations makes it possible to have right-
associative binary operators. The binder declaration for the quantifiers, allows a
translation between the purely higher-order syntax A11 (% x. A) (where % is for
A) and the concrete syntax ALL x. A (similarly for Ex and EX).

consts
Trueprop :: "o => prop" M"()" 5)
True 110
False 110
-—> :: "[o, o] => o" (infixr 10)
Not :: "o => o" ("~ _" [40] 40)
& :: "[o, o] => o" (infixr 35)
| :: "[o, o] => o" (infixr 30)
<=> :: "[o, o] => o" (infixr 25)
All i "(o => 0) => o" (binder "ALL " 10)
Ex :: "(o => 0) => o" (binder "EX " 10)

The type of the propositional quantifiers given here is the obvious one, based on
higher-order syntax. Substitution is defined impredicatively — any formula can be
substituted for a variable.

The following natural deduction rules are those for the primitive operators, as
they can be expressed in M using the coercion function. The meta-logic quantifi-
cation of the premiss in the introduction rule for universal quantification (allI)

enforces the standard proviso against the capture of free variables.

rules
impI "(P ==> Q) ==> (P-—>Q)"
mp "[I P-=>Q; P [] ==> Q"
alll "(11x, P(x)) ==> (ALL x. P(x))"
spec "(ALL x. P(x)) ==> P(x)"
exI "P(x) ==> (EX x. P(x))"
exE "] EX x. P(x); !!x. P(x) ==> R |] ==> R"

When the theory is loaded, these rules are added to the meta-logic as new axioms.
The theory contains the definitions for the remaining operators (corresponding to
Def. 8).
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defs
False_def "False == ALL x. x"
True_def "True == False-->False"
not_def """ P == P-->False"
and_def "P&Q == ALL x. (P-—>(Q——>x))-——>x"
or_def "PIQ == ALL x. (P-—>x)-—>(Q-—>x)-—>x"
iff_def "P<->Q == (P-->Q) & (Q-—>P)"

Proving the equivalence of 12,, with the Hilbert axiomatisation given for 12
in Section 3.4 is a straightforward matter. Since substitution is impredicative, no
explicit comprehension principle (i.e. one corresponding to Schema A9) is needed.

Proofs in 12, can be given by applying the inference rules through the tactics
that is possible to build with constructors such as res_tac, eres_tac and dres_tac
(rtac, etac and dtac for short). Each of these functions takes the name of a rule
and the number of the subgoal to which the rule must be applied. The tactic atac
can be used in order to prove a subgoal directly from the assumptions. Other tactics
can be defined in order to apply definitions as rewrite rules (by rewrite _goals_tac,
which takes as argument a list of definitions and applies them to all the subgoals).
The following is an example of proof code. The ged command is used to store the

theorem with a name.

Goal "(ALL x. P(x))-—>"(EX x."(P(x)))";
by (rtac impI 1);

by (rewrite_goals_tac [not_def]);

by (rtac impI 1);

by (etac exE 1);

by (dtac spec 1);

by (dtac mp 1);

by (atac 1);

by (atac 1);

ged "al_im_nexn";

A general drawback of the formalisations based on M like this one, is that new
axioms need to be added. The object logic is actually an axiomatic extension of
the meta-logic. This put at risk the consistency of the whole framework. The fact
that meta-level reasoning is rather hard to handle in M, points out another serious

drawback of this approach, that we would like to overcome.
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7.3 ISPL in Isabelle-HOL

Isabelle-HOL is the implementation of the logic HOL in Isabelle [Pau90,Pau03]. The
meta-logic formalisation of HOL is based on natural deduction rules similar to those
of first-order classical predicate calculus. The primitive operators are implication
(-=>), universal quantification (ALL) and the Hilbert description operator (THE).

All terms are typed, according to simple type theory, and quantification ranges
over all the formulae. This is possible, because the formalisation relies on a reflection
principle, which establishes an isomorphism between the HOL formula and the terms
of type bool. Reflection is enforced by two operators: term, mapping formulae into
terms, and form, mapping terms into formulae [Pau90].

The set of the theorems of a logic such as the ISPLs under consideration can be
defined inductively, as the least fixed point generated by the axioms and the infer-
ence rules. In Isabelle-HOL, inductive definitions of this kind are well-supported.
Formalising an object logic using an inductive definition turns out to be more con-
venient, when this is possible, than doing it by introducing new axioms. The object
logic can then be treated as a conservative extension, i.e. it can be embedded into
HOL, without putting at risk the consistency of the general framework. Moreover,
the language of HOL is very expressive and particularly useful to reason at the meta-
level. An example of this approach may be found in [DG02], where a framework for
substructural logics is embedded into HOL in order to mechanise cut-elimination
proofs.

Isabelle-HOL has an implementation of monotone inductive definitions associ-
ated to recursive data-types, that can be used to handle semi-automatically induc-
tive proofs [Pau90]. The package tries to discharge automatically the monotonicity
assumptions that are associated to the definition. Whenever these proofs succeed,
the corresponding principle of structural induction is obtained for free.

Hence, it turns out that embedding a new logic in Isabelle-HOL can give signif-
icant advantages over formalising it in M, from the point of view of reliability as

well as from those of expressiveness and automation.

7.3.1 Two embeddings

In the following, I am going to present two different formalisations of 72 in Isabelle-
HOL. Each of them will then be extended into formalisations of C2 and D2. In
order to define the logic inductively, compatibly with the constraints imposed by the

Isabelle-HOL implementation of such definitions, it is important that substitution
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is predicative. The main difference between the two formalisations is in the way the
second-order character is accounted for, compatibly with that restriction. One of
the embeddings is based on an analogue of the reflection principle (hence, it will be
also called the reflection embedding — the full theory is in Section B.1). The other
one is based on an analogue of the Full Comprehension Schema (i.e. A9) and so it
will be also called the comprehension embedding (Section B.2).

The reflection embedding of 12 will be referred to as 12,, and its comprehension
embedding as 12, — accordingly, C2,., C2., D2,, D2. will be used in order to refer
to the extensions.

As in the case of 12,,, I am going to rely on a formalisation based on inference
rules. In contrast with that formalisation however, here it is possible to get closer
to the style of the proofs that can be given with Hilbert-style systems, by proving
the admissibility of the replacement principle. Another difference, lies in the fact
that here the primitive inference rules are those of sequent calculus rather than
those of natural deduction — this is also related to the implementation of inductive

definitions in Isabelle.

7.3.2 Formulae, comprehension and substitution

Isabelle requires inductive definitions to be positive, in the sense that there must be
no negative occurrences, in the argument of a constructor, of the type that is being
defined [Pau03].

In b — a, the occurrence of a is positive and that of b is negative. If b — a is
a positive occurrence in «, a is also positive, b is negative. If b — a is a negative
occurrence, then b is positive and a is negative.

In the positive inductive definition of a datatype wff, there cannot be any con-
structor of type (wff — wff) — wff, since the type of the argument, wff — wff,
contains a negative occurrence of wff. This is clearly a problem, when we want to
formalise propositional quantification. In fact, from the point of view of a represen-
tation in terms of higher-order syntax, a quantifier over formulae should be exactly
a function that maps wff — wff into wff (as it is the case in 12,,).

Hence, it becomes necessary to introduce a distinction between formulae and
terms. The closest to ISPL that can be embedded into HOL, compatibly with that
distinction, is intuitionistic first-order predicate logic (IPC). The strategy here
is then to embed IPC in HOL, and then to represent second-order propositional

quantification in terms of first-order quantification. In the case of the embedding
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based on reflection, the —,V fragment of IPC turns out to be enough. In the case
of the embedding based on comprehension, the whole of IPC' is needed.

Since object-level propositional variables cannot be admitted explicitly, it is nec-
essary to introduce a unary predicate VAR to obtain them from the individual vari-
ables. Given the individual variable x, one can say that VAR x represents the propo-
sitional variable associated to it.

In order to distinguish the logical symbols of the object logic from those of HOL,
I will use the following ones: ->,AL2,&&, | | ,false,true,No,EX2,<--> respectively
for —,V,A,V, L, T,~,d, <> . Since it is not necessary to make any specific assump-
tion about the type of the terms, they can also be typed by a variable.

In 2, (the embedding of I2 based on reflection), the recursive data-type of the
formula (’a wff), depending on the type variable for the terms (’a), can be defined

as follows — each constructor is given with its arguments, the concrete syntax is

mandatory:
datatype
’a wiff = "VAR" (’a)
| n=>u (’a wff) (’a wff) (infixr 25)
| "A12" "(’a) => (Pa wff)" (binder "AL2 " 10)

In 72, (the comprehension embedding of I2), where the whole of IPC' is needed,
the type of the formula is the following:

datatype
’a wff = "VAR" (’a)

| false
| "> (’a wff) (Pa wff) (infixr 25)
| "&&" (a wff) (Pa wff) (infixr 30)
| "l (Ca wff) (Ca wff) (infixr 30)
| "A12" "(’a) => (’a wff)" (binder "AL2 " 10)
| "Ex2" "(’a) => (’a wff)" (binder "EX2 " 10)

In order to formalise propositional quantification with Full Comprehension, as
required (Section 3.4), it is necessary to guarantee that for each formula there is
an individual variable representing it. This is obtained quite differently in the two

embeddings.
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The idea behind the reflection embedding is to recast terms into formulze and
vice-versa. The predicate VAR already works as a coercion of terms into formulae. For
the other way round, which is needed in order to instantiate variables adequately,
the idea here is to extend the language by an operator TERM, that converts formulae
into terms, and such that the equivalence VAR (TERM A) <--> A holds, for every
formula A. The result of substituting a formula A for x in B(x) can then be expressed
as B(TERM A)).

Introducing comprehension explicitly, on the other hand, seems to stand closer
to the Hilbert axiomatisation given in Section 3.4. Essentially, in the comprehension
embedding, a version of Full Comprehension (Schema A9) is added as part of the
inductive definition of provability. Then, for every formula there has to be a variable
that represents it, and so the substitution of A for x in B(x) can be expressed as
(VAR(y) <--> A) && B(y).

Another issue comes with the fact that the higher-order syntax for substitution
makes it difficult, in meta-level proofs, to apply structural induction on formulse.
It is useful then to consider a way to replace the higher-order syntax with a first-
order one, when this is convenient. For this reason, I have introduced in both the
embddings an explicit substitution operator SUBST:: ’a wff => ’a => ’a => ’a
wff such that SUBST(C(x),B,x) <--> C(TERM B). This extension does not change
the expressive power of the logic in any way, since SUBST can always be eliminated in
favour of the high-order notation, whenever one is making proofs within the object
logic. However, SUBST makes it considerably easier to prove properties of the object

logic at the meta-level.

7.3.3 Sequents and inference rules

There are different senses in which a logic can be defined inductively. In particular,
it is possible to define either the provable formula, or the provable sequents.

An Hilbert axiomatisation like one of those in Section 3.4 yields more naturally
an inductive definition of provable formula. However, proofs in Hilbert systems may
turn out to be rather cumbersome. On the other hand, natural deduction cannot
be used, since the rule for the introduction of implication has already a rule on the
left hand-side, i.e.:

[A==>B] ==>A->8B
hence it is not acceptable as part of a monotone inductive definitions. So, in the

end, sequent calculus turns out to be the best option.
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A sequent is defined as a pair formed by a multiset of formulae for the antecedents
(instead than a list) and a formula for the consequence, with syntax H |- A.

For the theory of multisets, I have relied on an existing Isabelle-HOL library
(where the notation {#A#} is used for singletons, and + is the multiset union). The

set that is going to be defined inductively is seqgs, i.e. the set of the provable

sequents.
n-n :: [(Pa wff) multiset, ’a wff] => bool (infix1 5)
translations "H [- A" == "(H, A) : seqgs"
"segs" :: "(((’a wff) multiset) * (’a wff)) set"

The rules that are used are essentially those of intuitionistic first-order predi-
cate calculus [TS00, Pau89]. The structural rules depend on the representation of
the sequents — since here I am using multisets, no explicit rule is needed for Per-
mutation. Although the form in which the rules are written allows for arbitrary
antecedents, Weakening is needed as a rule. Contraction is needed too — however,
an equivalent, contraction-free system could be obtained by modifying some of the
operational rules on the same line of [Dyc92]. The rule Cut is needed for some of

the extensions, i.e., in general, whenever axioms other than identity (GAx here) need

to be used.
GAx "H + {#A#} |- A"
Weak "H |- P ==>H+ K |- P"
Cont "H + {#A#} + {#A#} |- B ==> H + {#A#} |- B"
Cut "[l H|-A; H+ {#A#} |[-B |] ==>H |- B"

The primitives, and hence the operational rules, differ depending on the kind
of the embedding. In the case of I2,, the only standard operational rules that are

needed as primitive ones are those for -> and AL2:

impR "H + {#A#} |- B ==> H |- A->B"
impL "[l H+ {#B#} |- C; H |- A |]

==> H + {#A->B#} |- C"
allR [l t'x::’a. H |- A(x) |] ==>H |- (AL2 x. A(x))"

allL "H + {#A(x)#} |- B ==> H + {#AL2 x. A(x)#} |- B"
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In fact, in the reflexion embeddings the definability of logical operators other

than -> and AL2 is preserved.

"Ex2" i (Ca => ’a wff) => ’a wff (binder "EX2 " 10)
&g :: [Pa wff, ’a wff] => ’a wff (infixr 35)

e :: [’a wff, ’a wff] => ’a wff (infixr 30)

"No" i a wff => ’a wff ("No _" [40] 40)
"g—=>" .. [’a wff, ’a wff] => ’a wff (infixr 25)
"false" :: ’a wff

"true" :: ’a wff

The definitions are those by now familiar (Def. 8).

false_Def "false == AL2 x. VAR(x)"

true_Def "true == false -> false"
and_Def "A && B == AL2 x. (A -> (B -> VAR(x))) —-> VAR(x)"
or_Def "A || B==AL2 x. (A -> VAR(x)) -> (B -> VAR(x))
-> VAR(x)"
dimp_Def "A <-->B == (A -> B) & (B -> A"
not_Def "No A == A -> false"
ex_Def "Ex2 (A) == AL2 y. (AL2 x. A(x) -> VAR(y)) —-> VAR(y)"
The operator TERM :: ’a wff => ’aisthe coercion of formule into terms that

is needed in order to have reflexion, and so, indirectly, also comprehension. TERM
does not need to be defined explicitly. Its behaviour can be defined by the following

inference rules:

compR "H |- A ==>H |- VAR(TERM A)"
compL "H + {#A#} |- B ==> H + {#VAR(TERM A)#} |- B"

Another possibility would be to extend the logic with a description operator, such
as the one considered in [Sco79], and then to define TERM from it. However, this
seems rather as an unnecessary complication from the point of view of the present
purpose.

Besides, since the plan is to make meta-level proofs for this embedding, it is
useful to include the operator SUBST :: ’a wff => ’a wff => ’a => ’a wff for

explicit substitution. It is possible to give the following recursive definition:

primrec
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"SUBST (VAR y) A x = (if y = x then VAR (TERM A) else VAR y)"
"SUBST (B -> C) A x = (SUBST B A x -> SUBST C A x)"
"SUBST (A12 B) A x = Al12 (%y. SUBST (B y) A x)"

However, the following rules give all that is really essential:

indR "H |- B (TERM A) ==> H |- SUBST (B y) A y"
indlL. "H + {#B (TERM A)#} |- C ==> H + {#SUBST (B y) A y#} |- C"

The reason that makes the recursive definition helpful, although not essential,
is that it can be used by the Isabelle simplifier, making the replacement of SUBST
semi-automatic. On the other hand, it does not seem possible to derive the rules
from the recursive definition — so I choose to have both.

In the case of I2., Full Comprehension (corresponding to Schema A9 in Section

3.4) need to be introduced explicitly as an axiom in the sequent system:
FC "H |- EX2 x. A <-=> VAR(x)"

This extension makes the use of Rule Cut necessary. In fact, with the handling
of assumptions that is allowed by sequent calculus, the normal way in which FC can
be used in a proof, is by adding it as an assumption and then by discharging it with
an application of Cut.

Moreover, with FC, derivations come to depend on a property of the existential
quantifier, and so it turns out to be impossible to define all the connectives in
terms of implication and universal quantification. In contrast with the reflection
embedding, &&, | | EX2 and false are needed as primitives, with the corresponding

operational rules (also in this case, those are the standard ones for IPC):

exR "H |- A(x) ==> H |- EX2 x. A(x)"
exL [l MM (x::’a). H+ {#AX)#} |- B |] ==>
H + {#EX2 x. A(x)#} |- B"
andR "[l H|-A; H|-B |] ==>H |- A & B"
andL "H + {#A#} + {#B#} |- C ==> H + {#A && B#} |- C"
orR1 "H |-A==>H]|-4A]l B"
orR2 "H |-B==>H|-A || B"
orL "[] H+ {#A#} |- C; H + {#B#} [- C |] ==>

H + {#A || B#} |- C"
ex_falso "H |- false ==> H |- A"
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It is now possible to extend each of the two embeddings with the rules corre-
sponding to the Hilbert schemas A7 (for the Constant Domain condition) and A8
(Atomicity), used in Section 3.4 to axiomatise the logics C2 and D2:

cdR "H |- (AL2 x. A || B(x)) ==>H |- A || (AL2 x. B&))"
mhR "H |- AL2 x. No No A(x) ==> H |- No No (AL2 x. A(x))"

It is quite straightforward to show that the sequent systems I2, and I2, are
equivalent to 2 (the original Hilbert system). This can be done by translating the
first-order language of the Isabelle-HOL theories into the second-order propositional
language of the M formalisation (with => corresponding to -=>, AL2 to ALL etc.), by
replacing uniformly VAR x with x, and (in the case of 12,) TERM A with x (under the
assumption A <-> x). In the case of I2,, it can be observed that Full Comprehension
is derivable in 12,,.

Similarly, C2, and C2., obtained by extending I2, and I2. with cdR, can be
proved equivalent to C2. D2, and D2., obtained by extending C2, and C2. with
mhR, can be proved equivalent to D2.

Of course, the way of extending the basic logics that is proposed here makes it
rather hard to eliminate all the applications of Cut. It is possible to modify the
notion of sequent in order to give a Cut-free formalisation of C2 (using an approach
similar to [LE81]). It seems too, that by modifying adequately the notion of sequent,
a Cut-free formalisation for D2 is obtainable. However, one has to bear in mind
that even if Cut-free formalisations for the main logics — including some of their
modal extensions — seem feasible, it might well still not be possible to have similar

results for the spatial extensions considered in Section 5.3.

7.4 Examples of proofs

Although the comprehension embedding is comparatively closer to the original for-
mulation of the logic, the reflection embedding make proofs easier. For this reason
I have focused on 12, and on its extensions (see Section B.1). I will first give some
examples of simple proofs, then I will move on to the verification of the decision
procedure presented in Chapter 6, proving RE on the way. Finally, I will prove a
theorem about spatial notions.

In order to derive a sequent, the inference rules can be applied backwards by rtac

(short for res_tac). In the following example, false is rewritten with its definition,
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then alljL and compL are applied (backwards). The last subgoal is resolved against
the axiom GAx.

Goalw[false_Def] "H + {#false#} |- A";
by (rtac alljL 1);

by (rtac compL 1);

by (rtac GAx 1);

ged "notjAx";

The following gives an example of the automation provided by blast_tac, taking
as arguments a list of rules to be applied by rtac, regardless of the order, and the

subgoal number.

Goalw[false_Def] "H + {#false#} |- A";
by (blast_tac ((claset() addIs [alljL,compL,GAx])) 1);
ged "notjAx";

Elimination rules in the style of natural deduction can be derived, typically by

use of the Cut, as in the following:

Goal "H |- AL2 x. P(x) ==> H |- P(x)";
by (rtac Cut 1);

ba 1;

by (rtac alljL 1);

by (rtac GAx 1);

qed "alljD";

The application of rules to the antecedents is dealt by res_tac and left rules (such
as alljL in the example).

Tactics formed by dtac (short for dres_tac) turn out to be useful when rules
must be applied to sequents that are taken as assumptions. auto() combines to-

gether resolution with axioms, simplification and proof by assumption.

Goal "[| H |- AL2 x. A(x); H + {#A(x)#} |- B |] ==> H |- B";
br Cut 1;

by (dtac alljD 1);

auto();

ged "alljE";
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The above can also be proved in one step, using blast_tac, as follows.

Goal "[| H |- AL2 x. A(x); H + {#A(x)#} |- B |] ==> H |- B";
by (blast_tac (claset() addIs [Cut] addDs [alljD]) 1);
ged "alljE";

In I2,, all the sequent calculus rules for the defined logical operators can be

derived quite easily, without using Cut.

7.4.1 Replacement

A significant example of meta-level reasoning is the inductive proof that 12, satisfies
RE (Replacement of Equivalents — the proof for 12 is given in Proposition 13).

A formalisation of RE in Isabelle-HOL can be given as follows.
H|-A<—->B ==> H |- C(TERM A) <--> C(TERM B)

Indeed, this rule turns out to be equivalent to the following:

[Sequent RE]

H + {#A <--> B#} |- C(TERM A) <--> C(TERM B)

In fact, the higher-order syntax for substitution forbids the capture of the free
variables of A in C(TERM(A)) (similarly for B and C(TERM(B))), without the need of
adding any explicit proviso.

All the instances of Sequent RE are provable using the inference rules of 72,.. In
order to prove RE in its general form, as a schema, induction on the complexity of
formule is needed (see the discussion in Section 6.4).

Since the formula of 12, have been introduced as a recursive type (‘a wff), the
corresponding structural induction schema is produced automatically (wff.induct
denotes it). The following variant (wff_induct) can be proved automatically from
wff.induct:

1P, [| !''a. P (VAR a) &&
Nwffl wff2. P wffl && P wff2 |] --> P (wffl -> wff2) &&
1fun. (!!'x. P (fun x)) --> P (Al1l2 fun) |] ==> P wff
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This principle cannot be used directly in the proof of Sequent RE. The induction
term in Sequent RE is C, that has type ’a => ’a wff, whereas structural induction
is on type ’a  wiff.

So, it turns out convenient to recast the expression C(TERM(A)) into an equiv-
alent one where C(x), which is of type ’a wff, can be treated as the induction
term. This can be made by using the explicit substitution operator SUBST. In fact,
SUBST(A,B,x) expresses that TERM B is substituted for x in A. One can rely on
this, and write SUBST(C(x),B,x) instead of C(TERM(B)), since the following can be

proved:

H |- SUBST(C(x),B,x) <--> C(TERM(B))

Now the following formalisation of RE can then be given:

[Sequent RE’|

H + {#A <--> B#} |- AL2 x. (SUBST C(x) TERM(A) x) <-->
(SUBST C(x) TERM(B) x)

This can be fed into Isabelle-HOL as a goal. After eliminating <-->, && and AL2,

one is left with the following expression:

'x. H + {#A -> B#} + {#B —> A#} |-
(SUBST C A x —> SUBST C B x) && (SUBST C B x —> SUBST C A x)

The induction principle can be applied without problems this time. The instan-
tiation of the induction predicate P has to be made explicitly — for this reason,

res_inst_tac is used instead of res_tac:

by (res_inst_tac [("P","%c::’a wff.
H + {#A -> B#} + {#B -> A#} |-
(SUBST ¢ A x -> SUBST ¢ B x) &&
(SUBST ¢ B x -> SUBST ¢ A x)")] wff_induct 1);
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This step generates three subgoals that can be proved by using object-level infer-
ence rules. Finally, Sequent RE and Sequent RE’ can be be proved to be equivalent.
This proof can be turned quite immediately into proofs for the extensions C2, and

D2,, since for the way the schemas are given, arbitrary antecedents are allowed.

7.4.2 Verification of the decision procedure

The eliminability of quantifiers from the negative formula of D2, as proved in Propo-
sition 62, follows immediately from the proof of the schematic formula in Proposition
61 (ANQE). In D2, ANQE can be formalised as follows:

Goal "!!' H :: (’a wff) multiset. !! F :: ’a => ’a wff.
't C :: ’a => ’a wff.
H |- No (F (TERM (AL2 x. (C x)))) <-->
No (F (TERM (C (TERM true) && C (TERM false))))";

This can be proved by the following steps (br is short for by rest_tac):

br schema_bl 1;

br dimp_sym 1;

br schema_bl 1;

br dneg_dimp_imp2_rule 1;
br replacement_dneg_rule 1;
br all_elim_r 1;

ged "de_quantification_eq";

The lemmas used in the proof steps are the following ones:

schema_bl = H |- No No No A <-=> C ==> H |- No A <——> C
dimp_sym = H |- A <-=> B ==>H |- B <—-> A
dneg_dimp_imp2_rule = H |- No No (A <--> B) ==

H |- No No Al <--> No No B

replacement_dneg_rule = H |- No No (A <--> B) ==
H |- No No (C (TERM A) <--> C (TERM B))
all_elim_r = H |- No No (C (TERM true) &&
C (TERM false) <--> (AL2 x. C x))
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The proof of replacement_dneg._rule is of based on RE. The proof of all_elim.r
uses the rule mhR (the only one which is specific for D2,.). It is also possible to derive

ANQE in I2,, by including mhR as an assumption, in the following way:

""" H :: (Ca wff) multiset. !! F :: ’a => ’a wff.
' C :: ?a => ’a wff. EX A.
(H + {#(AL2 x. No (No A(x))) -> No (No (AL2 x. A(x)))#}
|- No (F (TERM (AL2 x. (C x)))) <——>
No (F (TERM (C (TERM true) && C (TERM false)))))

Indeed, this schema is provable in I2, without any essential use of Cut.

7.4.3 A spatial theorem

In the following, I give an example of mechanised proof that is relevant from the point
of view of the spatial representation discussed in the previous chapters. In Section
5.2.2 it has been argued that the expression nempty(«) can be used to represent
non-emptiness, in the models for certain extensions of D2.

Proposition 42 expresses a relationship between non-emptiness and connected-
ness, which is quite significant from an intuitive point of view: whenever the inter-
section of two R-connected regions is non-empty, their sum is R-connected.

Indeed, it turns out that in 12 it is already possible to prove the formal expression
given in Proposition 42, where R-connectedness (for regular opens) is represented
with the operator cons (by Proposition 38). Since the proof of this theorem is long
and involves lots of subcases, the mechanisation has turned out to be quite helpful.

It is useful first to prove the following lemma, which is basically suggested by

the topological interpretation and Proposition 38.

[Auxiliary Lemma)

H |- (AL2 x. (A -> (No (No VAR(x))) || No VAR(x)) ->
(A > (No (No VAR(x)))) |l (A -> No VAR(x))) <-->
(AL2 x. (A -> VAR(x) || No VAR(x)) ->
(A -> VAR(x)) |l (A -> No VAR(x)))

Considering the definition of ndivs in Proposition 38, this simply means that
(Vz.ndivs(a, z)) <> (Vz.ndivs(a, ~z))
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is provable in 2.
Bearing in mind that
nempty () = ~ a — Vay.ndivs(z, y)
(by Proposition 41) and that cong(a) = Vz.ndivs(c, z), by Proposition 38, it turns

out convenient to extend 2, with the following definition, corresponding to ndiv,(«, &/3):

NDIV A B == (A -> ((No (No B)) || (No B))) —>
((A -> (No (No B))) Il (A -> (No B)))

It has been possible then to prove the following:

[NEMPTY Lemma)|

H |- ((No (A & B)) —>
(AL2 v. AL2 x. (NDIV ((VAR v) (VAR x))))) &&
(AL2 u. (NDIV A (VAR u))) && (AL2 u. (NDIV B (VAR u)))
-> (AL2 u. (NDIV (No (No (A || B))) (VAR w))

Given the Auxiliary Lemma and RE, the NEMPTY Lemma turns out to be equiv-
alent to the schema in Proposition 42.

This gives an example of how the mechanisation of ISPL can be used in topo-
logical reasoning. It also reinforces the suggestion that, in the context of interactive
theorem-proving, meta-level reasoning can be quite helpful, insofar as certain intu-

itions coming from the semantics may be usefully adopted as guidelines for a proof.
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It has been shown that super-intuitionistic logics, obtained as extensions of IPL, can
be used to represent topological notions, in a way that could be significant from the
point of view of applications to spatial reasoning. This result can be regarded as a
widening of the scope of the result about IPL in [Ben96]. Distinctively, the semantics
of the logics that are introduced in the present work lend themselves quite naturally
to represent certain aspects of granularity. The practical value of these acquisitions
rests on the general interest that region-based techniques have from the point of
view of spatial information systems, as discussed in the Introduction.

The extensions of IPL that have been considered are some of those based on
propositional quantification and intuitionistic modalities (Chapter 3) as well as some
of the axiomatic ones (Section 5.3 and Section 5.1; see Appendix A for a summary).
The logical operators in these logics can be used in order to convey their standard
logical meaning, as well as to represent spatial notions. The syntax introduced in
Section 4.1.2 in relationship with the notion of spatial models (Def. 25) is used
in Chapter 5 in order to mark the difference between the logical and the spatial
meaning. This distinction can make the expressions more readable, although it is
not essential from the proof-theoretical point of view.

Finally, it has been shown how to formalise intuitionistic second-order proposi-
tional logic (ISPL) into a state-of-the-art interactive theorem prover, Isabelle-HOL,

relying on an approach that allows also proofs at the meta-level (Chapter 7).

8.1 Computational issues

The logics that have been discussed in Chapter 3 are largely undecidable. This is
the case for 12 and C2 [Gab81], and it is probably the case for D2 as well (although

120



Chapter 8 121 Conclusions and further issues

here I cannot produce an argument for this claim). The fact that these logics are
conservative extensions of /PL means however that their quantifier-free fragments
are decidable (Proposition 66). The algorithms that solve the decision problem for
IPL are at best PSPACE-complete [Dyc92] — in contrast with the NP-completeness
of the corresponding problem for classical propositional logic. However, [RN99]
defines a tractable fragment of RCC which is closely related to the IPL encoding of
the RCC8 relations in [Ben96, Ben98].

The result concerning D2 about the negative formula (Proposition 59) marks
a significant difference with more standard, weaker forms of ISPL. This difference
seems particularly interesting insofar as D2 has an interpretation that seems quite
natural, from the point of view of digital representation (Sections 4.3, 5.1).

The modal logic that is obtained by adding to IPL the quantifier-free schemas
used for the axiomatisation of the N-modality (Schemas A10 - A12, A14 and Rule
A13, in Section 3.5) turns out to be decidable. In fact, it can be regarded as an
axiomatic extension of the modal intuitionistic logic IntS4 [WZ99] that has the finite
model property.

Significantly enough, the encoding of the RC(C8-style relations in Proposition 56
(A) does not require quantification, and hence yields a decidable fragment. This
fact is not surprising, considering the result in [Ben96]. The encoding of apartness
that is given here (ap in Section 5.2.3) is different, though, from the encoding of the
corresponding relation in that paper (i.e. the relation there called disconnection).
In [Ben96], in fact, the models are based on connected spaces, and the formule «
and [ represent open sets that are apart from each other iff ~a V ~ 3 is satisfied
by the model. This idea does not fit well under the stronger assumption that the
space is prime. That assumption has been made here because it seems more natural
from the point of view of granularity (see Section 4.3.1). Moreover, primeness is
necessary in order to encode R-connectedness by con (as in Proposition 39).

On the other hand, it does not seem difficult to relax the primeness assumption
in the modal case. When the modal schemas A12 and A17 are dropped from the
axiomatisation of N-modality, the logics that are obtained could be proved complete
w.r.t. frames that correspond to Alexandroff connected spaces (the details cannot
be included here). This would make it possible to have a spatial language with
propositional quantification, allowing for two forms of apartness, that would be
quite precisely an extention of the language in [Ben96].

A topic for further enquiry is whether there are significant fragments of ISPL
that are decidable. A result in [Pit92] states the possibility of representing ISPL in
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IPL. However, that representation turns out to give a logic that is too strong for
the topological interpretation considered here, as it appears from [Pol98|.

On the other hand, the system 72, in Section 7.3 shows that ISPL can be repre-
sented by extending a fragment of monadic first-order intuitionistic predicate calcu-
lus (IPC) with a reflection principle (in fact, VAR is the only predicate). Although
the monadic formula of IPC are not generally decidable (in contrast with the clas-
sical case), a decision procedure for a subclass (the monadic formula that contain
only one variable within the scope of those quantifiers that appears in negative
positions) can be found in [Tam96]. This could be an interesting possibility, espe-
cially in relationship with the modality-free encoding of qualitative relations given

in Proposition 55.

8.2 Proof-theoretical issues

The proof systems in Section 7.3 are based on the standard formalisation of IPC as
a sequent calculus [T'S00]. This does not raise problems from the point of view of
interactive theorem-proving. However, there are significant improvements that could
be made, in view of a possible automation (at least partial) of the object-level proofs.
It is known that sequent systems including Rule Contraction do not lead naturally
to terminating algorithms, even when the system is decidable, unless a specific
check for loop-detection is added. In order to avoid the need of such extra-logical
features, contraction-free systems have been devised. In particular, the contraction-
free systems for IPL in [Dyc92] involves a minimum of change with respect to the
standard formalisation. By modifying accordingly the present formalisation of 12,
it should not be hard to obtain a contraction-free system for 72 and for its extensions.

The issue about the elimination of Rule Cut is also quite substantial from the
point of view of automation, as observed in Section 7.1. For this problem, I refer to

the comment at the end of Section 7.3.3.

8.3 Conclusions

Further investigation into the computational properties of super-intuitionistic logics
(inclusive of ISPLs and IMLs) can be useful for theorem-proving in topology as well
as for spatial reasoning applications. The Isabelle-HOL implementation suggests
that a mechanised, interactive support can be useful in order to check proofs, analyse

their content and validate semantical hypothesis, also in the context of non-classical



Chapter 8 123 Conclusions and further issues

logics, which are more often associated to automated theorem-proving and model-
checking techniques.

Non-classical logics can be regarded as a promising framework for several branches
of Al reasoning, allowing for a modular, reliable development of specific reasoners.
Within spatial reasoning, granularity seems to be one of the key issues in order
to manage information efficiently and safely. Super-intuitionistic logics look like a
promising field from the point of view of computational topology, insofar as these
logics make it possible to combine together a granular characterisation of the models
and an expression of connectivity, with a remarkable simplicity from the logical point
of view, allowing the introduction of a notion of parallel development between high-
level specifications and computations in spatial systems, that could have interesting

applications in remote sensing, pattern recognition and image processing.
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Appendix A

Notation

—_

S = (S, 0) is a topological space, where S is a set, O is the collection of

the open sets.
C is the collection of the closed sets in S.

< is the specialisation order.

(S, <) is a pre-order on S.

e U is the collection of the sets that are upper-closed w.r.t. <.

a 1 is the pointed set generated by a — i.e. the smallest upper-closed set

that contains a.
(S, <,0) is a Kripke frame (Def. 15), (S,V,<,0) is a V-modal Kripke
frame (Def. 18).

Where F is a Kripke frame, (F, R, p) is a Kripke model (Def. 16, Def.
19).

Fu is used for validity in a Kripke model M.

(S,0,R, ) is a spatial model (Def. 25; 7 may be dropped).
Iz is used for validity in a spatial model Z.

< 1s the R-specialisation order.

a Tx is the R-pointed set generated by a — i.e. the intersection of all the

definable opens that contain a.
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Symbol  Topological meaning Algebraic meaning

C inclusion partial order

M intersection (binary) meet

LI union (binary) join

A intersection arbitrary meet
(over arbitrary collections)

V union arbitrary join

(over arbitrary collections)

— set-theoretic complement  Boolean complement

A V{X € O|XCA} interior of A

CA NX € CJACX} closure of A

A* [(—A) pseudo-complement of A

A** regularisation of A double pseudo-complement of A
A+B (AUB)*™ mereological sum of A and B

A= B |(—-AUB) pseudo-complement of A relative to B
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Symbol Meaning Definition
regl regular open Prop.35
atmcell atomic cell -
screen screen —
prime R-prime Prop. 36
ndiv not split by Prop. 38
con R-connected -
ndiv, nowhere split by -
cong strongly R-connected -
degnr degenerate Prop. 40
nempty weakly non-empty Prop. 41
ap apart Prop. 43
ic interconnected -

ICq strongly interconnected -

ap,, weakly apart -

ic; strongly interconnected (without modality) —

ntp non-tangential part Prop. 47
tp tangential part -

ntp,, weakly non-tangential part -

tp, strongly tangential part -

tp; strongly tangential part (without modality) -

=t 4t C' Z' extensional relations Def. 24

y =
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Intermediate axioms:

1. ¥y =Vz.x V (x — degnr)
Prop. 48

2. ¥y =Vay.ap(z,y) Vic(z,y)
Prop. 49

3. X3 = Vayz.ap(x,y) A ap(x, z) — ap(x, yLiz)
Prop. 50

4. Dim(n —2) =Vy,...ypn321 .. . 2n.(z1 2 Y1) Ao A (20 = Yn) A~(21 AU A
Z) AN (V.. Vy) = (21 V..oV 2z)
Prop. 54.

Strong granularity axioms:

1. Ay = Jz.(Oatmecell(z) A z)
Prop. 35.

2. Ay =Vz. Oz — Oz + Jy.y AOcell(y) AO(y — x))
Prop. 36.



Appendix B

Isabelle theories

B.1 Reflection embeddings

The following is the Isabelle-HOL theory for the logic 12, and for its extensions C2,,
D2,

D2r = Multiset +

(* recursive type of the formulae *)
datatype
’a wff = "VAR" (’a)
| n—>u (’a wff) (’a wff) (infixr 25)
| "A12" "(’a) => (’a wff)" (binder "AL2 " 10)

(* declarations of constants *)

consts (* declarations of the logical operators - with concrete syntax *)

"Ex2" i (Ca => ’a wff) => ’a wff (binder "EX2 " 10)
&k i [Pa wff, ’a wff] => ’a wff (infixr 35)

SRR i [Pa wff, ’a wff] => ’a wff (infixr 30)

"No" :r ’a wff => ’a wiff ("No _" [40] 40)
ng——>n 1 [Pa wff, ’a wff] => ’a wff (infixr 25)
"false" :: ’a wff

"true" :r a wif
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"NDIV" i [’a wff , ’a wff] => ’a wff

(* other constants *)

- i1 [(’a wff) multiset, ’a wff] => bool (infixl 5)

"segs"  :: "(((’a wff) multiset) * (’a wff)) set"

"TERM" :r ’a wff => ’a

"SUBST" :: "’a wff => ’a wff => ’a => ’a wff"

n===t i [Ca), (Ca)] => ’a wff (infixl 40)

defs (% definitions *)

false_Def "false == AL2 x. VAR(x)"

true_Def "true == false -> false"
and_Def "A && B == AL2 x. (A -> (B -> VAR(x))) -> VAR(x)"
or_Def "A || B == AL2 x. (A -> VAR(x)) -> (B -> VAR(x))
-> VAR(x)"
dimp_Def "A <--> B == (A -> B) & (B -> A)"
not_Def "No A == A -> false"
ex_Def "Ex2 (A) == AL2 y. (AL2 x. A(x) -> VAR(y)) -> VAR(y)"
ndiv_Def "NDIV A B == (A -> ((No (No B)) || (No B))) —> ((A —>
(No (No B))) [l (A —> (No B)))"
eq_Def "(a === b) == VAR(a) <--> VAR(D)"

(* primitive recursive definition *)

primrec
"SUBST (VAR y) A x = (if y = x then VAR (TERM A) else VAR y)"
"SUBST (B -> C) A x = (SUBST B A x -> SUBST C A x)"
"SUBST (A12 B) A x = Al2 (%y. SUBST (B y) A x)"

translations  (* syntactic sugar *)

"H |_ A" == ”(H, A) : seqs"

(* inductive definition of derivable sequent *)
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inductive "seqs"

intrs

(* standard rules for the implication-forall fragment of

first-order intuitionistic logic *)

(* identity axiom *)
GAx "H + {#A#} |- A"

(* rule Weakening *)
Weak "H |-P ==>H+K |-P"

(* rule Contraction *)
Cont "H + {#A#} + {#A#} |- B ==> H + {#A#} |- B"

(* rule Cut *)
Cut “[| H|-A; H+ {#A#} |- B |] ==>H |- B"

(* implication right rule *)
impR "H + {#A#} |- B ==> H |- A->B"

(* implication left rule *)
impL “[l H + {#B#} |- C; H |- A |]

==> H + {#A->B#} |- C"

(x forall right rule *)
allR "[] !t1x::%a. H |- A(x) |] ==> H |- (AL2 x. A(x))"

(x forall left rule *)

allL "H + {#A(x)#} |- B ==> H + {#AL2 x. A(x)#} |- B"

(* rules for the extensions of 2Ir x*)

(* rules for constant domains - logics 2Cr and 2Dr *)
cdR "H |- (AL2 x. A || B(x)) ==>H |- A || (AL2 x. B(x))"
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(* rules for atomicity - logic 2Dr *)
mhR "H |- AL2 x. No No A(x) ==> H |- No No (AL2 x. A(x))"

(* rules for the reflexion operator *)

(* comprehension right rule *)

compR "H |- A ==>H |- VAR(TERM A)"
(* comprehension left rule *)

compL "H + {#A#} |- B ==> H + {#VAR(TERM A)#} |- B"

(* rules for explicit substitution *)
indR "H |- B (TERM A) ==> H |- SUBST (B y) A y"
indL. "H + {#B (TERM A)#} |- C ==> H + {#SUBST (B y) A y#} |- C"

end
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B.2 Comprehension embeddings

The following is the Isabelle-HOL theory for the logics 12., C2., D2.:

D2c = Multiset +

datatype
’a wff = "VAR" (’a)
| false
| n->n (’a wff) (’a wff) (infixr 25)
| "&&"  (Ca wff) (Ca wff) (infixr 30)
| "Il"  (a wff) (Ca wff) (infixr 30)
| "A12" "(’a) => (’a wff)" (binder "AL2 " 10)
| "Ex2" "(’a) => (’a wff)" (binder "EX2 " 10)
consts
n-n i [(Ca wff) multiset, ’a wff] => bool (infix1 5)
"segs" :: "(((’a wff) multiset) * (’a wff)) set"
"SUBST" :: "’a wff => ’a => ’a => ’a wff"

[[—] .- [()a)’ (’a)] => ’a wff (infix1 40)

(* logical operators *)

"No" :: ’a wff => ’a wff ("No _" [40] 40)
"g—=>" .. [’a wff, ’a wff] => ’a wff (infixr 25)
"true" :: ’a wff

defs  (x logical operators *)

true_Def "true == false -> false"

dimp_Def "A <-=> B == (A -> B) & (B -> A)"

not_Def "No A == A -> false"

eq_Def "(a === b) == VAR(a) <--> VAR(b)"
primrec

"SUBST (VAR y) z x = (if y = x then (VAR z) else (VAR y))"
"SUBST false y x = false"
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"SUBST (B -> C) y x = (SUBST B y x -> SUBST C y x)"
"SUBST (A &% B) y x = ((SUBST A y x) && (SUBST B y x))"
"SUBST (A || B) y x = ((SUBST A y x) || (SUBST B y x))"
"SUBST (A12 B) z x = Al2 (%y. SUBST (B y) z x)"
"SUBST (Ex2 B) z x = Ex2 (%y. SUBST (B y) z x)"
translations
"H |_ A" == "(H, A) . seqs"

inductive '"seqgs"

intrs

(* standard rules for first-order intuitionistic logic *)

GAx "H o+ {#A#} |- A"
Weak "H |- P ==>H+K |- P"
Cont "H + {#A#} + {#A#} |- B ==> H + {#A#} |- B"
Cut "[l H |- A; H+ {#A#} [-B |] ==>H |- B"
impR "H + {#A#} |- B ==> H |- A->B"
impL "[| H+ {#B#} |- C; H |- A []
==> H + {#A->B#} |- C"
allR "[] !t (x::’a). H |- A(x) |1 ==>H |- (AL2 x. A(x))"
alllL "H + {#A(x)#} |- B ==> H + {#AL2 x. A(x)#} |- B"

(* existential right rule *)

exR

"H |- A(x) ==> H |- EX2 x. A(x)"

(* existential left rule *)

exL

u[l

IM(x::%a). H+ {#A(x)#} |- B |] ==
H + {#EX2 x. A(x)#} |- B"
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(* and right rule %)
andR “[l H|-A; H|-B |] ==>H |- A && B"

(* and left rule %)
andL "H + {#A#} + {#B#} |- C ==> H + {#A && B#} |- C"

(* or right rule 1 %)
orR1 "H |-A==>H/|-AI|| B"

(* or right rule 2 %)
orR2 "H |-B==>HI|-A || B"

(*x or left rule %)
orL "[] H + {#A#} |- C; H + {#B#} |- C |] ==

H+ {#A || B#} |- C"

(x false elimination rule *)

ex_falso "H |- false ==> H |- A"

(* rules for the extensions of 2Ic - 2Cc and 2Dc *)

cdR "H |- (AL2 x. A || B(x)) ==>H |- A || (AL2 x. B(x))"
mhR "H |- AL2 x. No No A(x) ==> H |- No No (AL2 x. A(x))"

(* Full comprehension axiom for VAR *)
varA "H |- EX2 x. A <-=> VAR(x)"
(* rules for explicit substitution *)

indR "H |- (B x) ==> H |- SUBST (B y) x y"
indL "H + {#B x#} |- C ==> H + {#SUBST (B y) x y#} |- C"

end
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B.3 Meta-Logic formalisation

The following Isabelle theory contains the Meta-Logic formalisation of the logic 12,,:

I2m = CPure +

global
types o

arities o :: logic

consts
Trueprop i1 "o => prop" "()" 5)
True 10

False 10

(* Operators *)

n__>n :: "[o, o] => o" (infixr 10)
Not i "o => o" ("~ _" [40] 40)
ng" :: "[o, o] => o" (infixr 35)
nn :: "[o, o] => o" (infixr 30)
ng=>n :: "[o, o] => o" (infixr 25)

(* Quantifiers *)
A1l 2 "(o => 0) => o" (binder "ALL " 10)
Ex 2 "(o => 0) => o" (binder "EX " 10)

(* new axioms - natural deudction rules for I2m *)

rules
impI "(P ==> Q) ==> (P-—>Q)"
mp "[I P-->Q; P [] ==> Q"
alll "(M1x. P(x)) ==> (ALL x. P(x))"
spec "(ALL x. P(x)) ==> P(x)"
exI "P(x) ==> (EX x. P(x))"

exE "[] EX x. P(x); !!'x. P(x) ==> R |] ==> R"
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(* definitions %)

defs
False_def "False == ALL x. x"
True_def "True == False-—>False"
not_def "" P == P-->False"
and_def "P&Q == ALL x. (P-->(Q-->x))-->x"
or_def "P|Q == ALL x. (P-->x)-->(Q-->x)-->x"
iff_def "P<->Q == (P-->Q) & (Q——>P)"

end



