
Fresh Techniques for Memory Profiling of Lazy
Functional Programs

Firas Faisal Moalla
MSc by Research
University of York
Computer Science

September 2015

Abstract

Lazy functional languages are known for their semantic elegance. They liberate
programmers from many difficult responsibilities, such as the operational details
of computations including memory management. However, the productivity and
elegant semantics provided by lazy functional languages do not come without a
cost. Lazy functional programs often suffer from unpredictable space leaks. For over
two decades, various lazy functional implementations have been equipped with
memory profiling tools. These tools furnish programmers with valuable informa-
tion about space demands, but there is still scope for their future development.
This dissertation presents two variants of memory profiling tools. The first tool is
a hotspot heap profiler which presents information in two forms: profile charts and
highlighted hotspots by source occurrence. The profile chart represents a hotspot-
construction profile, distributed by hotspot temperatures. Hotspots are also marked
in the textual display of source programs with the temperature they represent.
Further information about hotspots is given in individual profiles. The second tool
is a stack profiler which yields information about producers and construction of
stack frames.

2

Contents

Abstract 2

Contents 3

List of Figures 6

Acknowledgements 8

Declaration 9

1 Introduction 10
1.1 Motivation . 10
1.2 Goals and Contributions . 11
1.3 Outline of Chapters . 11

2 Review: Memory Profiling for Lazy Functional Programs 13
2.1 Memory Profiling . 13
2.2 Lazy Functional Languages . 14

2.2.1 Aspects of lazy functional languages 14
2.2.2 Current state-of-the-art space performance 16
2.2.3 Causes of space leaks . 17
2.2.4 Profiling complications . 17
2.2.5 Early memory profiling implementations 19

2.3 Heap Profiling for Lazy Functional Programs 20
2.3.1 Producer and construction profiles 21
2.3.2 Retainer and lifetime profiles 22
2.3.3 Biographical profile . 23
2.3.4 Combining heap profiles . 24
2.3.5 Cost-centre profiling . 27

2.4 GHC Profiling . 29
2.4.1 Current heap profiles examples in GHC 30
2.4.2 Relation to space leaks . 33

2.5 Discussion . 34

3 Pure: A Lazy Functional Language Implementation 35
3.1 Pure Implementation . 35
3.2 The Core Language . 36
3.3 The Core G-Machine . 37

4 A Hotspot Profiler 40

3

CONTENTS

4.1 Overview . 40
4.1.1 Occurrences . 40
4.1.2 Design outline . 41
4.1.3 Profiling technique . 42

4.2 Implementation . 46
4.2.1 Overview . 47
4.2.2 Compiler instrumentation 47
4.2.3 Runtime instrumentation . 50
4.2.4 The ME2G program

— Post-processing & graphical display 53
4.3 Results . 54

4.3.1 The maxc program . 54
4.3.2 The execute program . 64
4.3.3 Evaluation . 69

5 A Stack Profiler 71
5.1 Motivation . 71
5.2 Stack Profiling . 71
5.3 Tagging the Stack . 73
5.4 Implementation . 75
5.5 Results . 77

5.5.1 The sumChops program . 77
5.5.2 The queens program . 81
5.5.3 Evaluation . 89

6 Clausify Revisited 92
6.1 Motivation . 92
6.2 The clausify Program . 92
6.3 Comparing clausify Memory Profiles 94
6.4 Evaluation . 102

7 Conclusion 103
7.1 Results Summary . 103
7.2 Future Work . 104

Appendices 106

A The G-Machine 107
A.1 Compilation Rules . 107

A.1.1 Scheme F (Function Definition) 107
A.1.2 Scheme R (Return Value) 107
A.1.3 Scheme E (Evaluate) . 108
A.1.4 Scheme C (Construct Graph) 108
A.1.5 Miscellaneous schemes for case expressions 109

A.2 State Transition Rules . 109
A.2.1 Heap and stack operations 110
A.2.2 Evaluation instructions . 110
A.2.3 case and let(rec) instructions 111
A.2.4 Arithmetic and comparison instructions 112

4

CONTENTS

A.2.5 Printing instruction . 112
A.2.6 Initial and final G-machine state 113

B ME2G 114

C The clausify Program 115

Bibliography 118

5

List of Figures

2.1 Lines from a memory cell represent a different cell property. 25
2.2 An ideal heap profiler; lines between heap profiles depict restrictions. 25
2.3 The sumsList program. 30
2.4 A producer profile of sumsList. 31
2.5 A construction profile of sumsList. 32
2.6 A retainer profile of sumsList. 33
2.7 A biographical profile of sumsList. 33

3.1 Pure implementation phases. 35
3.2 Syntax of the Core language. 37
3.3 G-machine reduction of (square 5). 38

4.1 The definition maxcc where Cons occurrences are annotated. 40
4.2 The definition maxcc where every occurrence is annotated. 41
4.3 A hotspot profile example. 44
4.4 Lifetime profile of an individual hotspot. 45
4.5 Modified compiler for occurrence profiling. 47
4.6 Annotation construct in Core (similarly for Pure). 47
4.7 Occurrences annotation example in an abstract syntax tree. 48
4.8 The E scheme instrumented for occurrence tags. 49
4.9 The C scheme instrumented for occurrence tags. 49
4.10 Heap cells annotated with occurrence tags. 50
4.11 Tagged heap cell. 51
4.12 A structural prototype of the ME2G program. 53
4.13 The maxc program. 55
4.14 A producer profile for maxc. 56
4.15 A construction profile restricted by the producers maxcc and take. . 56
4.16 A hotspot profile for maxc. 57
4.17 An individual profile for the hotspot maxcc. 58
4.18 A hotspot profile for maxc after tail-call optimisation. 59
4.19 A hotspot profile for maxc after introducing listOf. 60
4.20 A hotspot profile for maxc after an occurrences counter oc has been

introduced. 61
4.21 An individual hotspot profile for + after introduction of an occur-

rences counter oc. 62
4.22 The final hotspot profile of maxc after introducing seq. 63
4.23 The execute program. 65
4.24 A hotspot profile of execute program. 66
4.25 An individual hotspot profile of the pop hotspot. 67
4.26 A hotspot profile of execute program after strictifying the stack. . . 68

6

LIST OF FIGURES

4.27 A hotspot profile of execute program after removing the code argu-
ment from value. 68

4.28 A hotspot-construction profile for the Taut program. 70
4.29 A construction profile for the Taut program. 70

5.1 A stack profile example. 73
5.2 The stack configuration of an executing function. Some components

of the stack frame are excluded to simplify discussion. 74
5.3 An example of a tagged stack frame. 75
5.4 The sumChops program. The function chop is based on the function

chop8 in [2, Section 7.6]. 77
5.5 A construction profile for sumChops. 78
5.6 A producer profile for sumChops. 79
5.7 A construction profile after introducing the function foldl. 80
5.8 A producer profile after introducing the function foldl. 80
5.9 A construction profile after strictifying the application of sum. . . . 81
5.10 The queens program. 82
5.11 A heap construction profile of queens. 83
5.12 A heap producer profile restricted to Cons. 83
5.13 A stack construction profile of queens. 84
5.14 A stack producer profile restricted to length. 84
5.15 A stack producer profile after introducing length’. 86
5.16 A heap producer profile after introducing length’. 86
5.17 A stack producer profile after modifying safe’. 88
5.18 A stack producer profile after removing append. 88
5.19 A heap producer profile after removing append. 89
5.20 A stack construction profile of compile. 90
5.21 A heap construction profile of compile. 91
5.22 A construction profile produced using the GHC (version 7.4) profil-

ing system with stack space included. This profile is of the queens
program with 10 queens as input. 91

6.1 A heap producer profile of clausify. 95
6.2 A heap construction profile of clausify. 95
6.3 A stack construction profile of clausify. 96
6.4 A stack producer profile of clausify. 96
6.5 A heap construction profile after introducing filterset. This pro-

file corresponds to Figure 11 of [1]. 98
6.6 A heap producer profile restricted to the producers of Dis. This

profile corresponds to Figure 12 of [1]. 98
6.7 A hotspot profile of clausify after introducing filterset. 100
6.8 A hotspot profile after improving disin. 101

7

Acknowledgements

First, I thank my parents for their continuous support and help. I would also
like to thank my supervisor, Prof. Colin Runciman, for his guidance, help and sup-
port in my research. My sincere thanks also goes to Jose Calderon who provided
help and answered my questions. Thanks to Defaf for her help in drawing figures.

8

Declaration

I declare that this dissertation is a presentation of original work and I am the
sole author. This work has not previously been presented for an award at this, or
any other, University. All sources are acknowledged as References.

9

Chapter 1

Introduction

1.1 Motivation

Lazy functional languages are known for their semantic elegance. They support an
expressive and modular style of programming. They liberate programmers from
many difficult responsibilities such as the operational details of computations and
— of particular relevance for this dissertation — memory management. Many
features of lazy functional languages such as high-level abstractions and expres-
siveness can increase the productivity of programmers.

However, the productivity and elegant semantics provided by lazy functional
languages do not come without a cost. Lazy functional programs often suffer from
unpredictable space leaks. The high-level abstraction, together with the demand-
driven execution to realise so-called lazy evaluation and the automatic storage
management, make it difficult to reason about the space performance of programs.

Fortunately, for over two decades, lazy functional implementations have been
equipped with heap profiling tools. Heap profiles furnish programmers with valu-
able information about space demands. Observations recorded in heap profiles
often help programmers to change just a few parts of a program in a way that
reduces the space consumption dramatically. However, even with such tools it
can be difficult to reason about the memory performance of programs. By de-
fault, profiling results report sources of demand for memory by referencing units
such as top-level functions. This provides concise summaries of memory since
expression-level details are abstracted away from profile results. However, there
is a consequent gap between expression-level reasoning and profiling results.

Although memory resources have been increasing in modern computers, 21st-
century programmers do still complain about the space consumption and difficulty
of reasoning about memory behaviour, of even small programs. For example:

“When programming in Haskell (and especially when solving Project Euler
problems, where suboptimal solutions tend to stress the CPU or memory
needs) I’m often puzzled why the program behaves the way it is. I look at
profiles, try to introduce some strictness, chose another data structure, ...
but mostly it’s groping in the dark, because I lack a good intuition.” [3]

Also, efficient use of memory is still a crucial concern in some real-world appli-
cations. For example, some protocols that are used in e-commerce restrict memory
resources to a limit (e.g. 8 kb) [4].

10

1.2. GOALS AND CONTRIBUTIONS

This dissertation develops variants of memory profiling tools. The motivation
is that profiling functional programs at the expression-level may help program-
mers reason about the space behaviour of programs better. However, functional
programs are composed of many expressions. If every expression is profiled, the
programmer could be overwhelmed by the amount of profiling information. The
goal of this dissertation is to show that this does not have to be the case. We
develop heap profiling techniques which approximate the relation between heap
profiling results and expressions. We suggest a profiling technique which locates
dominant sources of demand for memory in the form of specific constructions of
function applications within expressions.

What more might be done to improve memory profiling? Let us not forget the
stack. Stack overflows are common in lazy functional languages. Programmers
often complain about excessive stack demands. So there is good reason to develop
a stack profiler which yields information similar to heap profiles.

1.2 Goals and Contributions

Our overall goal is to advance profiling tools for analysing memory use in lazy
functional programs. More specifically, the purpose of these tools is to enable
programmers to understand better the space behaviour of programs.

The specific contributions of this dissertation are:

• Hotspot profiler We present a hotspot heap profiler which provides infor-
mation about the source components of a program that are associated with
high memory demands (termed hotspots). Information about hotspots is pre-
sented both in profile charts and in annotated source programs. The profile
chart shows memory information about a hotspot. Hotspots are also an-
notated in textual displays. Further information about hotspots is given in
individual profiles. In this way, a hotspot profile relates heap profiling results
to fine-grained symbolic constructions of programs.

• Stack profiler As an auxiliary contribution, we present a profiler which
shows similar charts for stack memory and the associated program compo-
nents.

1.3 Outline of Chapters

Chapter 2 introduces some general types of memory profiling tools. We then
discuss modern lazy functional languages and why reasoning about space per-
formance is difficult in such languages, along with causes of space leaks, current
space performance of an optimising compiler and why profiling lazy programs
is difficult. We then review heap profiles in lazy functional implementations,
finally explaining the current heap profiles provided in GHC, a state-of-the-art
implementation of Haskell. We conclude this chapter by summarising problems
of memory profiling in lazy functional implementations, setting out proposals in
this context.

11

1.3. OUTLINE OF CHAPTERS

Chapter 3 presents the functional language implementation for which we imple-
ment memory profiling tools. A high-level definition of an intermediate language
is given. We then describe an abstract machine for the functional language. (A
more formal specification of the abstract machine is provided in Appendix A for
this dissertation to be self contained).

Chapter 4 introduces a hotspot profiling tool which annotates hotspots of mem-
ory demand occurring in programs. We explain the nature of hotspot occurrences
and why we profile programs in this way. We set out goals and decisions which
led to a hotspot profile and give an outline of the hotspot profile design. We
describe the technique to collect profiling data for its graphical presentation with
the reasons behind them. We further describe our implementation of a hotspot
profiler along with details of modifications to our functional implementation to
support hotspot profiling. We give brief account of the implementation of hotspot
graphical presentation. Finally, we show how iteratively applying hotspot profil-
ing can guide program modifications to reduce memory demands, illustrating
both some advantages of hotspot profiling and an example of its drawbacks.

Chapter 5 starts by outlining the motivation behind stack profiling. We briefly
discuss how the stack is used in our implementation and introduce the profiling
technique and components of the stack profiler. We then describe a high-level
scheme to attach information to the stack for profiling and outline our imple-
mentation of the stack profiler. We briefly show illustrative results of applying
stack profiling and discuss the results.

Chapter 6 revisits the clausify program. It first sets out our motivation for
profiling clausify. We explain this program in summary. We then compare the
original heap profiles with our stack and hotspot profiles; in particular, we show
how stack and hotspot profiles yield further information.

Chapter 7 concludes and discusses the drawbacks and future work on hotspots
and stack profiling.

12

Chapter 2

Review: Memory Profiling for Lazy
Functional Programs

In this chapter we review memory profiling techniques for lazy functional pro-
grams. This chapter is organised as follows. Section 2.1 briefly describes general
types of memory profiling tools. Section 2.2 discusses aspects of lazy functional
languages including performance and profiling difficulties. Section 2.3 reviews
several heap profiling techniques of lazy functional languages. Section 2.4 demon-
strates the current state of heap profiles. Section 2.5 concludes with a discussion
on heap profiling. Throughout, we assume that the reader is familiar with func-
tional programming. For those without such a background, the book in [5] is an
excellent tutorial.

2.1 Memory Profiling

Programmers wishing to improve the space efficiency of software normally use
profiling tools to identify the program components that are responsible for space
faults. Cheap replacements of such components can increase the program’s per-
formance significantly. This cyclic refinement strategy is common in software de-
velopment [6].

The sort of memory profiler resorted to depends on the type of the space fault,
which in turn depends on the nature of the programming language. The following
is a general classification of the memory profiling tools which are commonly used
to identify sources of space faults [7][8]:

• Allocation profiles are the most primitive type of memory profiling. They
record the total amount of dynamically allocated memory during the execu-
tion of a program. Memory allocation counts are attributed to components
at the source level (e.g. functions/procedures). Usually, this information is
presented in a textual table. Sophisticated tools of this kind report further
information such as the distribution of memory allocation between func-
tions through a call graph. Using this information, one can reduce allocation
counts. However, this may not improve the space performance; a function
causing significant allocations is not necessarily inefficient, as allocated ob-
jects may be reclaimed thereafter. Likewise, seemingly insignificant alloca-
tion counts might be the source of long-lived memory objects. An allocation

13

2.2. LAZY FUNCTIONAL LANGUAGES

count can be a deceptive representation of memory demands.

• Memory leak profiles are more specific to programming languages with ex-
plicit dynamic storage management (e.g. C). These profilers are specialised
for detecting leaked memory in the dynamic store. Among other storage pa-
rameters, profiling information includes the amount of leaked memory along
with a call trace showing the components responsible for allocating objects
which are never freed.

• Heap profiles are common for programming languages with automatic mem-
ory management. Heap profiling tools report information about the content
of the live heap during program execution. Generally, the profiling infor-
mation is attributed to the source program and represented to the user in
a graphical summary. Heap profiling is a more general instrument, giving
several different views of live objects in memory. At one extreme, profil-
ing results include primitive information such as the program component
responsible for allocating live heap objects or their eventual lifetime. At the
other extreme, heap profiles can reveal space leaks through sophisticated
views of memory. An example is memory objects which are unnecessarily
retained in the heap. With such information, one can detect the source of
space leaks and reduce the live memory demands.

The context of this dissertation is memory profiling and space performance of
lazy functional programs.

2.2 Lazy Functional Languages

This section reviews several aspects of lazy functional languages with emphasis
on space consumption. Section 2.2.1 briefly describes some of the benefits and
drawbacks of functional languages. Section 2.2.2 reviews the current state of
space-performance. Section 2.2.3 discusses some of the causes of space leaks.
Section 2.2.4 outlines some of the difficulties of profiling lazy programs. Section
2.2.5 concludes with early implementations of heap profilers.

2.2.1 Aspects of lazy functional languages

Lazy functional languages provide a powerful method of computation, liberating
programmers from many tedious responsibilities. They lead to a style of program-
ming where concise, expressive and modular programs are often written with ease.

Here follow some of the features of modern lazy functional languages which
contribute to the modularity, expressiveness and correctness of programs.

• Declarative programming. Lazy functional languages belong to the declar-
ative programming paradigm. They liberate programmers from the underly-
ing computer architecture through high-level abstractions. Programmers can
concentrate on expressing solutions to problems in a declarative style, with-
out being concerned about low-level operational details. Some abstraction
helps programmers to write short and expressive programs. The elegance

14

2.2. LAZY FUNCTIONAL LANGUAGES

of declarative programming in relation to lazy functional programming is
demonstrated in Nilsson’s thesis [9].

• Higher-order functions. Functions which either take or return functions
are higher-order. This idea is typically implemented by promoting functions
as first-class citizens. Higher-order functions can be generalised over a struc-
tured type and specialised with many base functions. This concept provides
a powerful method of modularity, as illustrated by Hughes in [10].

• Lazy evaluation. A strategy which evaluates arguments to functions only
when their value is actually required, and then at most once, is called lazy
evaluation (often named call-by-need). Lazy evaluation adds a new power of
expressiveness to the language allowing, for example, the creation of infinite
data structures [11]. Furthermore, programmers can rely on the underlying
implementation to prevent the price of unneeded and repeated computa-
tions [12]. Lazy evaluation is the default evaluation scheme in non-strict
functional languages.

• Pure computations. Pure functional languages lack side-effects; they pro-
hibit destructive assignments (or updates). As a consequence, replacing ex-
pressions with their values does not change the semantics of the programs.
The notion of “equals can be substituted for equals” (termed referential trans-
parency) makes programs easier to reason about and maintain [12]. Further-
more, transparency encourages a less error-prone programming style [13].

• Sophisticated type system. Functional languages often have strong type
systems. Programmers may use types to specify the problems to be solved
before implementing solutions [14]. In addition, type checking detects many
mistakes early in the compilation process [9].

• Garbage collection. Manual storage reclamation increases work for pro-
grammers. It is estimated that 40% of the time spent in the development cy-
cle of programs is wasted in resolving storage management issues [15]. Au-
tomatic storage reclamation techniques imposed by garbage collectors free
programmers from such tiresome responsibilities. In general, garbage col-
lection is an essential component of high-level programming languages.

The many beneficial features of lazy languages can increase the productivity of
the software development cycle by several factors compared to their conventional
imperative counterparts [7]. Indeed, it is argued that most programmers who have
been involved in writing considerable numbers of programs in both imperative and
functional styles find the latter more attractive [12].

However, the enhanced productivity and semantic elegance provided by lazy
functional languages come with a cost. There are in principle two major draw-
backs:

• Unpredictable execution behaviour. Although in lazy functional languages it
is fairly straightforward to reason about the meaning of programs, it can
be difficult to reason about their execution behaviour. The demand-driven
execution imposed by lazy evaluation makes the execution order of pro-
grams unpredictable. The complex evaluation order, together with the high

15

2.2. LAZY FUNCTIONAL LANGUAGES

level language constructs, makes it extremely difficult (if not impossible) for
programmers to predict the execution order of large programs. A conse-
quence of this unpredictable evaluation order is difficulty reasoning about
space and time demands [6][11]. Implicit allocation and reclamation fur-
ther complicates the estimation of space demands [16][17] and it is there-
fore common for lazy programs to suffer from unexpectedly poor perfor-
mance [11]. Another consequence of the unpredictable execution behaviour
is the difficulty of detecting program errors. Being unaware of the execu-
tion behaviour can make the process of detecting bugs (e.g. logical errors)
troublesome. This problem has been recognised and studied extensively
over the past decades (though this topic is not covered in this dissertation
[9][18][19][20][21][22][23]).

• Execution overheads: The high level of abstraction provided by lazy func-
tional languages introduces extra execution overhead in terms of time and
space, particularly the latter. Functional programs often need a great amount
of storage to run, mainly due to lazy evaluation; suspending computations
to the point where they are actually needed together with sharing may save
time. However, this policy can readily produce space leaks: the accumu-
lation and retention of computations in memory in ways which are hidden
from the programmer [11][24].

As a consequence of the unpredictable execution behaviour and the execution
overheads, a major weakness of lazy functional programs is that they often suffer
from unexpected space leaks [11]. Writing space-efficient programs in lazy lan-
guages is difficult; there is a trade-off between productivity and performance.

2.2.2 Current state-of-the-art space performance

In recent years, much research has been devoted to efficient implementation and
optimisation techniques for lazy functional languages. This has led to significant
improvements in the performance of lazy functional programs. Notably, lazy func-
tional programs have seen dramatic improvements in terms of execution speed,
with impressive results. Programs written in Haskell, for instance, can compete
with the execution speed of programs written in the equivalent imperative coun-
terparts (e.g. C) [25]. Recent studies show that with clever optimisation tech-
niques such as generalised stream fusion, the execution speed of lazy functional
programs can beat programs written in low-level languages [26].

Most research efforts have been aimed towards improving speed. Compiling
techniques addressing space performance are few compared to those improving
speed. The result is space-hungry implementations favouring speed at the cost of
space [16]. Worse, speed improvement techniques (e.g. full laziness transforma-
tion [27]) can introduce space leaks [28]. On the other hand, a few techniques
addressing speed can dramatically reduce space consumption; some examples are
deforestation [29] and strictness analysis [30].

Speed may be the first performance concern for software developers. However,
for functional programming systems, space use is usually more critical: space leaks
in functional programs are notorious [2, Chapter 12][5, Chapter 6][11, Chap-
ter 23][31][32, Chapter 25][33][34, Chapter 7]. Functional programmers often

16

2.2. LAZY FUNCTIONAL LANGUAGES

complain about unexpected space leaks. This concern is increasing as lazy func-
tional languages are becoming more common in industry. Sampson in [35] re-
port their experience of writing a commercial application in Haskell using GHC, a
state-of-the-art optimising compiler for Haskell. In their concluding remarks they
mention that performance was never a problem, except for space leaks.

From a practical perspective, space-usage issues have mostly been addressed
by the provision of heap profiling facilities [36]. Heap profiling tools reveal space
leaks that are otherwise challenging (or even impossible) to locate. With the guid-
ance of such tools, one can improve the space performance of programs. However,
even with such a guidance, programmers often find it difficult to reason about
space performance, pressing for more sophisticated profiling tools [37][38].

2.2.3 Causes of space leaks

There are many causes of space leaks in lazy functional programs. Conceptually,
they can be generalised as follows [36][39]:

• Degree of evaluation. Lazy evaluation can save the amount of memory-usage
by taking into account only the demanded computations. However without
careful use, it can cause an unnecessary accumulation of suspended compu-
tations in memory. Sometimes accumulated computations can be avoided by
forcing applications at a certain point. However, writing function definitions
in an unnecessarily strict manner can cause space faults.

• Degree of sharing. Sharing can also increase or decrease memory consump-
tion. Sharing a large structure between expressions may save speed by com-
puting the structure once and saving the results for later re-use. However,
sharing a structure can retain computations in the heap due to the shared
references. Unsharing may cause the structure to be re-evaluated but this
can allow the structure to be computed in constant space.

• Algorithmic design. The question of efficiency is highly related to algorith-
mic choices; these in turn are related to the two previous points. From a
space-efficiency perspective, an efficient algorithm is one which avoids con-
structing long-lived structures in the heap or which reduces the amount of
memory for such structures.

Space leaks are not necessarily introduced by the programmer. On some oc-
casions they are the fault of the compiler, for example, by unnecessarily retaining
cells in heap memory [40]. Of course, the programmer in this case is not ex-
pected to solve the space leak since this requires accessing and understanding the
implementation.

2.2.4 Profiling complications

In practice, improving the space efficiency of programs often requires the aid of
profiling tools. Generally, there are two critical problems when profiling pro-
grams. First, the profiler should pinpoint “hotspots” in programs — by explicit
or implicit means. Second, to be meaningful for the programmer, the reported

17

2.2. LAZY FUNCTIONAL LANGUAGES

information must be mapped from the code-level back to the source-level. This is
fairly straightforward to achieve in conventional imperative languages (except for
optimised programs) [41]. In contrast, it is difficult to accomplish for functional
languages, especially in the presence of laziness.

From a profiling perspective, the many beneficial features advocated by lazy
functional languages are problematic. The following briefly outlines several prob-
lems which pose difficulties when profiling lazy functional languages [6][7][8]:

• In functional programming, the leading role of programmers is to construct
functions to solve problems. Thus, in principle, a program consists of func-
tion definitions [5]. This style of programming usually leads to the produc-
tion of many functions. Presenting information about a large number of pro-
filed functions may be hard to interpret. Rather, it is more useful to provide
summarised profiling information which requires aggregation techniques.

• Polymorphism invites the programmer to re-use functions in different con-
texts [42]. This makes it difficult to identify the cost of different application
instances. For example, the expression

filter predicate list

may be used in several places, causing a large proportion of heap consump-
tion. Attributing the costs to filter may not reveal the expensive instance(s)
of filter. Techniques which distinguish different instances of applications
may be essential. One possible solution to this problem is to attribute the
cost of filter calls to its application sites.

• Higher-order functions provide an abstract mechanism to encapsulate com-
mon patterns as functions [2][13]. From a profiling point of view, the higher-
order argument being applied may be difficult to determine at compile time.
This problem is tackled in [43] by introducing the notion of current function:
each function is associated with an auxiliary variable so when a function is
entered (i.e. starts its execution), an interrupt handler charges the execution
costs to the auxiliary variable of the current function being executed. Subse-
quently, costs are fairly distributed to every function, including higher-order
functions. Consider the following equation, for example.

f bop xs = filter (10 bop) xs

Here, the costs of executing the higher-order argument bop are attributed to
bop. However, the cost of an unprofiled function is charged to its caller. So if
bop is an unprofiled function then its execution costs are charged to filter.
The idea of current function was originally used for a strict functional lan-
guage (ML) though it is adopted for profiling lazy functional languages.

• Lazy evaluation ensures that expressions are only evaluated when their value
is required. The execution flow of programs is thus driven by the context
in which expressions are demanded. Accordingly, the evaluation order of
expressions may not correspond to the way in which programs are written.
This complicates the task of attributing costs to the relevant components of
programs. For further illustration, consider the following equations.

18

2.2. LAZY FUNCTIONAL LANGUAGES

d x = x * x;
f x y = d x + y;
g = f expr1 expr2;

Under a strict evaluation strategy, the costs of evaluating expr1 and expr2
might reasonably be attributed to the top-level function g since both expres-
sions are completely evaluated before the function f is applied. This poses
no profiling problems since the reported execution costs correspond to the
syntactic unit in which expr1 and expr2 are evaluated. In a lazy evaluation
strategy, however, expr1 is demanded in d (instead of g). Similarly, expr2 is
demanded in f. Should the costs of expr1 and expr2 be attributed to g or to
d and f, respectively? The former attribution scheme is termed lexical scop-
ing while the latter strategy is known as evaluation scoping. It is argued that
lexical scoping is more practical than evaluation scoping for lazy functional
languages [7][44].

The problem of profiling lazy languages is further complicated by the sharing
policy. Several expressions may require the value of a shared expression; the
first expression causing the evaluation is virtually in charge of the costs.
Subsequent expressions profit from the results for free. This policy raises
difficulties for distributing costs between functions that share an expression,
especially in the presence of constant applicative forms since they are usually
treated as “global” functions. Breaking down the costs between functions
that demand the results in a fair manner requires sophisticated analysis.

• Typically, compiling lazy functional programs includes successive transfor-
mations and optimisations [45]. At an early stage, the compiler performs
radical transformations on the original source code. The transformations are
necessary to support the provided high-level abstractions and to produce ef-
ficient code. The resulting object code bears no obvious relation to the orig-
inal source code. Relating the low-level code back to the original program
is a major task: the structure of the original program must be maintained
throughout the transformation phases, taking into account the implicit aux-
iliary functions brought by the program transformation phases.

As a result of research to address the above profiling difficulties, implemen-
tations of the lazy functional language Haskell, for instance, are equipped with
specialised profiling tools (see Section 2.3).

2.2.5 Early memory profiling implementations

Real memory profiling tools1 were originally developed by programming language
implementers to analyse the characteristics of dynamic memory management tech-
niques. Measurements gathered from memory profiles were studied in order to im-
prove implementation techniques of the storage manager or to gain insight about
the nature of programming language features. A few examples of storage profiling
systems which follow this sort of study are briefly discussed below.

1We disregard memory allocation count profilers since they fail to characterise live memory
demands.

19

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

Ripley, Griswold and Hanson developed a heap profiling system for SITBOL,
an interpreted implementation of SNOBOL4 [46]. Their heap profiling system
measures information about allocated memory blocks; each memory block is com-
posed of a memory object and a heading section. The header contains creation
histories which include the size, type (e.g. string) and the lifetime of the memory
block in addition to the source line number of the operation causing the allocation
of the memory block. Creation histories are recorded at every garbage collection
and post-processed to generate a summary profile in table form. The profile table is
divided using block types, followed by several storage parameters including space
consumption and the average block lifetime. Profiling results in their experiment
were used to improve application programs and storage management techniques
manually. In their conclusion, Ripley et al. advocate the value of profound memory
analyses. However, they claim that storage performance measurements are more
useful for improving memory implementation techniques than for optimising ap-
plication programs.

Hartel and Veen instrumented an interpreter for a lazy functional language
called SASL to analyse several properties of combinator graphs in the course of
reduction [47]. Their approach involves gathering statistics about graphs at regu-
lar intervals in order to observe the performance of graph reduction under certain
programming language features (e.g. sharing). The aim of their experiment is to
determine implementation techniques that are suitable for a special purpose par-
allel machine, relying on measurements gathered from different programs ranging
in size and complexity. Statistics involve the size of graphs, distribution of sharing
and the lifespan of nodes. Information is collected at program-level (excluding
sub-components of programs). From this information they observed that most
nodes are shortly lived, which assures the suitability of generational garbage col-
lectors for lazy functional languages. A very similar study on a lazy functional
compiler is that of Wild, Glaser and Hartel [48].

A much more recent study is by Hertz, Blackburn, Moss, McKinley and Ste-
fanović [49]. They present algorithmic methods for computing the lifetime of ob-
jects as an alternative to granulated traces to simulate the performance of garbage
collection in object-oriented languages. The ultimate goal of their experiment is to
produce accurate measurements of objects’ lifetime in order to optimise garbage
collection methods.

In principle, these studies share a similar trend: to investigate the character-
istics of programming language features and the performance of storage manage-
ment techniques with the goal of improving implementation methods. Further-
more, they stress the value of memory statistics for storage performance analysis.
However, their memory profiling tools are designed for implementers wishing to
study compiling architectural options and not for programmers hoping to exam-
ine the space efficiency of their programs [36].

2.3 Heap Profiling for Lazy Functional Programs

This section reviews heap profiling techniques of lazy functional languages. Sec-
tion 2.3.1 describes producer and construction profiles. Section 2.3.2 describes
retainer and lifetime profiles. Section 2.3.3 discusses biographical profiles. Sec-

20

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

tion 2.3.4 describes some combinations of heap profiles. Section 2.3.5 explains
cost-centre profiling techniques.

2.3.1 Producer and construction profiles

Runciman and Wakeling designed the first heap profiler for use by programmers
[1]. Their heap profiling system is hosted in an implementation based on LML, a
lazy functional language [50]. The aim of their heap profiling system is to provide
heap consumption summaries as a guide for both programmers and implementers
to observe and improve the space performance of programs. Two kinds of heap
profiles are implemented: a producer profile identifying the function responsible
for producing heap cells and a construction profile describing heap cells in terms
of the values they represent.

The implementation of this tool involves two components: a modified compiler
which produces profiling data at runtime and a post-processor that displays these
data as a graphical chart.

Profiling information about producers and constructions is determined at com-
pile-time [51]. Preserving this information during the compilation phases poses
profiling difficulties since the compiled program radically departs from its original
representation. For example, at the lambda lifting stage, some parts of the func-
tions body are turned into supercombinators with a compiler-generated function
name. Since these names can be meaningless to the programmer, the modified
compiler manages to include the original function name in the compiler-generated
name. Thereafter, the profiler restores the function names to their original form.

At the runtime level, every heap cell is enlarged with an extra field to accom-
modate static cell tags; each tag is a pointer to information determined at compile-
time. This information includes the producer and the construction of the heap
cell. Tags are initialised to heap cells on allocation.

When a heap profile is requested, the implementation suspends the execution
at specified regular intervals. At each interval, the live heap is traversed to derive
information from live cells. The gathered information is logged into a file before
resuming the execution. After a program completes its execution the information
contained in the log file is post-processed by a separate program into a graphical
chart (also termed a heap profile).

A heap profile represents the variation of the occupied heap space (in bytes)
over the time the program takes to execute (in seconds). Heap consumption is
depicted by shaded bands which are associated with keys. Each key corresponds
to a program component in the original source code. Careful attention is paid to
the representation of heap profiles. For example, keys occupying less than 1% of
the total space are omitted from the graph to focus on bands occupying the most
space.

To concentrate on a specific heap section, heap profiles can be restricted through
profiling options. An example is a construction restricted by a specific producer.

Runciman and Wakeling applied their heap profiling tool to a small program
(clausify) consisting of 130 lines of code. Repeatedly applying the producer
and construction profiles to the target program together with profiling restrictions
aided in discovering several space faults at both the source program and compiler
levels. The final result was a reduction on memory demands from a peak of 1.3 Mb

21

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

to 7 kb.
However, it was soon realised that heap profiling by individual producers and

constructions is likely to be impractical for large programs. In response, Runciman
and Wakeling [24] extended the heap profiling scheme in [1] to cope with complex
programs. In particular, producer profiles were upgraded to support producers by
a module or a group of modules. Similarly, construction profiles were upgraded to
support constructions by type.

The extended heap profiling scheme was successfully used to reduce the space
consumption of an LML compiler comprising 16,000 lines of code (and 200 mod-
ules) by a factor of two. Similar applications of heap profiling with satisfying
results are reported in [1].

The work by Runciman and Wakeling [1][24] started a fresh line of work in
the field of functional languages and memory profiling. Their practical tool brings
an insight into the space behaviour of lazy functional languages and guides pro-
grammers to improve space costs. Furthermore, the idea of heap profiling for
programmers opened a fresh field of research on practical profiling.

However, the profiling scheme in [1][24] suffers from two problems. As noted
by the authors, their profiling scheme cannot distinguish between different appli-
cation instances. For example, there could be many applications of (say) map in
different locations of the source program, but which instance of map corresponds
to an identifier in a heap profile? This problem has been criticised in the literature
[7][8][52]. Distinguishing producers by instance can be useful for large programs;
however, this requires a sophisticated cost attribution scheme (see Section 2.3.5).

2.3.2 Retainer and lifetime profiles

Runciman and Röjemo [17] extended the heap profiling system in [24] with two
heap profiles hosted in NHC, a space-efficient Haskell compiler [53].

The first profile is a retainer profile which classifies heap cells by the program
components which have direct access to them [17][36]. Such program compo-
nents are termed retainers and are represented in a retainer set.

Program components are counted as retainers if they are one of the following
candidates: (1) function closures — residing in the heap or the stack; (2) constant
applicative forms. When a retainer set for a cell is to be computed, retainers are
those that have a path to a cell without passing any retainer candidate encountered
in the path. Program components occurring as weak head normal form are not
treated as retainers. Forbidding constructors from being counted as retainers is
effective in practice. For example, knowing that a Cons cell is retained by another
Cons cell might not be helpful to the user. Instead, the retainer of the original Cons
cell is counted as the retainer of the entire successors of the original Cons cell. As
an example, consider the following expression.

map (++"\n") ["line1","line2"]

Here, map retains two components: the list ["line1","line2"] and the closure
++. The list "\n" is retained by the closure ++ even though map has a path to "\n":

map→ ++→ "\n"

The reason ++ is counted as the retainer of "\n" is that ++ is a retainer candidate
which is encountered along the way from map to "\n".

22

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

To profile retainers, every heap cell is extended with a word to accommodate
a retainer set. When a retainer profile is requested, the live heap is traversed at
regular intervals and each cell is tagged with its set of retainers.

A heap cell can be retained by more than one program component due to
sharing. As a consequence, gathering the set of retainers for many functions with
shared references requires multi-traversal of the heap. This can impose expensive
profiling overheads in terms of space and time. Efficient algorithmic methods for
computing the set of retainers in both space and time are addressed in [17].

To reduce profiling overheads, the number of heap traversals is limited by a
profiling option which restricts the elements of retainer sets to a specific number.

Profiling restrictions from a retainer profile to a producer or a construction
profile is provided to the user. However, restricting a retainer profile to a lifetime
profile (discussed below) is omitted since the retainer of a memory cell can change
through its lifetime. This poses problems from a profiling perspective. We discuss
this in Section 2.3.4.

The second profile is a lifetime profile that characterises heap cells by their
eventual lifetime in a program. On allocation, each memory cell is labelled with its
creation time. Creation times are measured by the number of heap censuses that
have occurred during profiling. After a program is executed for a lifetime profile,
the censuses in the log file contain heap cell counts associated with creation times.
The lifetime of heap cells are derived by post-processing creation times in the log
file [16][17].

In [1], Runciman and Wakeling have reduced the memory peak to 7 kb for the
clausify program. Possibilities for further space reduction were not apparent.
However, the information provided by retainer profiles allowed Runciman and
Röjemo to lower the peak memory from 7 kb to 1 kb [17].

Retainer profiles are useful to discover space faults brought by functions retain-
ing unnecessary data or those due to excessive sharing. This sort of information
is not provided by producer and construction profiles [1][24]. In the retainer
profiling scheme described here, retainers are not treated uniquely; there is no
mechanical way of identifying retainers that consume computations.

A lifetime profile can suggest space leaks. For example, a large band of long-
lived cells may suggest lazy accumulation of computations or potential dragging.
The suspected heap band can then be inspected by different kinds of heap profile.
This profile led to the development of a biographical profile (see Section 2.3.3).

2.3.3 Biographical profile

Runciman and Röjemo [39] extended their original heap profiling tool in [17]
with a biographical profile that provides a simple model to classify memory-cells
according to their usefulness in a program. This profile classifies memory cells
according to the biography of heap cells. A heap cell is classified as [39]:

• lag from the time it is created until its first use.

• use from the time of its first use until its last use.

• drag from the time it is last used until it is destroyed.

• void if it is created but never used during its lifetime.

23

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

A heap cell is used if it contributes to a computation which involves function ap-
plications, primitive operations or case analysis.

A biographical profile can suggest space leaks. For example, drag and void sug-
gest heap waste since heap cells are never used (again) in the program. Lag sug-
gests delayed computations causing memory leaks which can be reduced by either
creating them later or forcing computations. However, use is an over-estimate; the
frequencies between the first use and last use are ignored.

The implementation of the biographical profile extends heap cells to host three
time-stamps:

1. The creation time of the cell.

2. The first use time of the cell.

3. The most recent use time of the cell.

Identifying the biography of heap cells requires full knowledge of how these
cells are used in the future: the first and most recent use of a cell requires future
examinations of censuses and retrospective extensions to former censuses. There-
fore, heap cells are examined post-mortem: at every census, information about
dead cells is logged to a file. This information includes a sequence of cell counts for
every unique time-stamp of dead cells; that is, creation time, first use and last use.
Information about heap cells which are destroyed between censuses is recorded,
contributing to the next census summary. When a program terminates, the bio-
graphical data of heap cells are derived by a post-processor. The post-processed
information is presented in a graphical form.

Restrictions from biographical profiles to static properties of memory (e.g. the
producer or construction of a lag) are supported. However, no combination of
biographical and retainer profiles is allowed.

The biographical profile allowed the authors in [39] to detect space leaks in
programs which claimed to be space-efficient. For instance, most of the heap
usage of NHC was found to be lag, drag and void. Using the biographical profile
in combination with producer and construction profiles, the authors reduced the
space consumption of NHC by a factor of two.

Unlike other heap profiles (e.g. producer and retainer), biographical profiles
can point directly to a space fault. The classification of lag, drag, void and use
can reveal space faults that are otherwise difficult to detect. This classification
is adopted by other profiling systems for different programming languages (see
Section 2.5).

2.3.4 Combining heap profiles

Heap profiles classify heap content by means of memory attributes. Static mem-
ory attributes, for instance, show heap memory consumption by producers or
constructions. Through memory attributes, one can view different properties of
memory cells.

24

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

Figure 2.1: Lines from a memory cell represent a different cell property.

But this is not enough as each property is isolated from the others.
Programmers examining a heap profile will likely question a section of the heap

to pin-point the reason for memory-demand excesses. If a heap profile shows a
large drag band for instance, one may ask several questions: “Who is retaining
these dragged cells?”, “Who is producing them?”, “What value do they represent?”
By viewing a section of the heap through a combination of memory attributes,
one can often diagnose the cause of heap memory waste. Each memory attribute
combination corresponds to a profile restriction.

Figure 2.2: An ideal heap profiler; lines between heap profiles depict restrictions.

As Runciman and Röjemo stress [51], an ideal heap profile should therefore
allow all kinds of profiling restriction by combining memory attributes. How-
ever, this ideal is not straightforward to achieve for all combinations of heap cell
attributes. Below is a summary, classifying memory attributes by distinct heap
profile [51]:

• Producer and construction profiles. These are static attributes of memory;
they are identified at compile-time and stored permanently in heap cells —
invariant attributes.

25

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

• Retainer profile. Retainers are determined at runtime, which makes them
dynamic attributes of memory cells. However, these dynamic attributes are
not invariant: the retainers of a cell may change due to the mutating heap
structure. Furthermore, a cell retainer can be identified by inspecting the live
heap at one point; it is an instantaneous class of memory attribute.

• Biographical profile. Memory attributes identifying biographical information
are dynamic and post-mortem: information is gathered from the dead heap
through post-mortem censuses. Biographical attributes are neither invariant
nor instantaneous: determining the biographical class of cells requires future
and retrospective examinations of censuses.

Combining biographical or retainer attributes with producer or construction at-
tributes is straightforward since the latter are static-invariant attributes of memory.
So even with post-mortem techniques, these static restrictions pose no difficulties.
However, a combination of post-mortem attributes with instantaneous ones which
are based on live heap techniques is problematic.

Prohibiting a restriction between biographical profiles and retainer profiles can
be inconvenient for the user. Consider a group of producers X obtained by restrict-
ing a producer profile to the drag classification. If X produces cells other than those
being dragged, then a retainer profile restricted to the heap section produced by
X will not directly point to the retainer component preventing the dragged cells
from being reclaimed. The user is left to guess which retainer is the offending one.
The obvious solution is to combine biographical and retainer attributes to produce
the desired restricted-heap profile but this requires joining live-heap census and
post-mortem census profiling.

Retainers are identified by tagging live heap cells with retainer sets, while de-
riving biographical phases requires tagging dead heap cells with their creation
time, first use and last use. This information can be combined by executing a
program twice. The first time, a post-mortem examination of censuses is taken to
store the times of last use. With the same program input, the program is executed
again, but this time, a live-heap census is taken to record information about the
retainer set, creation time and the first use (using a use-marker bit). The data
recorded from post-mortem censuses compensate for the missing data gathered in
the second run.

Care must be taken when the information recorded from the post-mortem pass
is used in the second pass; cells which are recorded for the last use information
in the first execution must be identified as the same cells confronted in the second
run. A possible solution as described in [51] involves distinguishing identical cells
by numbering live-heap cells while timing censuses intervals by memory allocation
counts to ensure that cells are recorded at the exact same points during execution.

Similar techniques can be used to restrict problematic combinations of memory
attributes (e.g. retainer to lifetime profiles). Unrestricted combinations of heap
cell attributes are necessary for an ideal heap profiler, even at the cost of extra
profiling overheads. Indeed, the profiling system in NHC supports all kinds of
profiling restriction.

26

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

2.3.5 Cost-centre profiling

Sansom and Peyton Jones [7][55][56][57] developed a profiler capable of mea-
suring time, space and live heap usage for GHC, an optimised compiler for the
Haskell programming language. Although heap profiling is supported, the empha-
sis is on time processing.

In their profiling scheme, expressions are annotated either implicitly (by the
compiler) or explicitly (by the programmer) with cost centres. A cost centre is a
label to which the costs of executing an annotated expression is attributed. The
syntax of Haskell is extended with an scc (set cost centre) construct to make the
association of expressions with a cost centre explicit:

expr→ scc label expr

From a semantic perspective, the scc expression returns the value of expr.
From an operational view, however, an scc expression causes the cost of expr to
be attributed to the cost centre label. Take the following annotated expression as
an example.

fun y xs = scc "funMap" map (f y) xs

Here, the costs of evaluating the expression (map (f y) xs) are attributed to the
cost centre "funMap". The scope of an scc construct extends all the way to the
right; however, this scope can be restricted by surrounding the scc expression with
parentheses. Furthermore, costs attribution are governed by a set of rules. Below,
several aspects of the cost centre profiling scheme are summarised informally [7]:

• Since the evaluation demand of expressions depends on the surrounding
context, the profiler attributes the costs of evaluating expressions with re-
spect to their actual evaluation: the evaluation degree of an expression.

• The evaluation costs of all scc expression instances with an identical label
are attributed to one cost centre. The instances count is reported together
with the total cost of all the instances. For example, the costs of evaluat-
ing the instances of (scc "map" (f y) xs) are attributed to the cost centre
"map".

• The cost of evaluating an expression excludes the costs of evaluating its free
variables. For example, in

f xs = (scc "last" last xs) + (scc "sum" sum xs)

even though one of the annotated expressions may evaluate the spine of xs,
the cost of evaluating xs is excluded from "last" and "sum". Instead, the
cost of evaluating xs is attributed to the responsible scope for constructing
xs. This way, the reported costs of expressions are abstracted away from the
evaluation degree of their free variables.

• By default, constant applicative forms (CAFs) are automatically annotated by
the compiler with a special "CAF" cost centre. Since CAFs are evaluated only
once (if needed), several expressions may be responsible for different parts
of the evaluation. Instead of attributing the costs of evaluating CAFs to the
demanding expression(s), the cost of evaluating a CAF is attributed to its
corresponding "CAF" cost centre. Non-updatable CAFs are treated equally.

27

2.3. HEAP PROFILING FOR LAZY FUNCTIONAL PROGRAMS

• The evaluation costs of unprofiled expressions are subsumed by the cost cen-
tre which references the unprofiled expression. If f is an unprofiled function
in

scc "funMap" map (f y) xs

then the cost of evaluating f is attributed to the referencing cost centre
"funMap". This form of inheritance allows programmers to aggregate the
costs of heavily used functions (e.g. library functions) to their reference site:
the source location referring to the function.

To be precise about the rules of cost centre attribution, Sansom in [7] devel-
oped a formal notion of cost centre attribution using an operational abstract cost
semantics. Basically, a natural semantics for lazy evaluation [58] is extended with
the notion of cost centre attribution.

Two abstract cost semantics are described and compared: lexical scoping and
evaluation scoping. In lexical scoping, the cost of evaluating an expression is at-
tributed to the cost centre enclosing the declaration site; i.e. enclosing the expres-
sion currently being executed. In evaluation scoping, the cost of evaluating an
expression is attributed to the cost centre enclosing the expression’s application
site. Take for example2

let f = scc "fun" (\x y -> x*y+1)
in f 23 16

Under lexical scoping, the cost of evaluating (23*16+1) is attributed to the cost
centre "fun". However, using evaluation scoping the cost of evaluating (23*16+1)
is attributed to the cost centre in scope when f is applied.

The differences between lexical scoping and evaluation scoping are subtle.
Most notably, unlike evaluation scoping, lexical scoping corresponds to “intuitions”
since it reports the costs of expressions with respect to their reference site in the
source program. Furthermore, the total cost of an expression can be simply mea-
sured by annotating the expression. On the other hand, evaluation scoping offers
a finer distribution of costs, although measuring the total cost of an expression
requires annotating the corresponding application site, which can be tedious and
difficult to track. In practice, unlike evaluation scoping, lexical scoping is easier to
maintain during the transformation phases of the source program.

Experience gained from both lexical and evaluation scoping suggests that the
former is more practical for profiling. Eventually, the lexical attribution scheme
was distributed in the GHC profiling system [7][59].

The optimising compiler GHC performs many program transformations to gen-
erate efficient code [60]. The target code is based on the Spineless Tagless G-
Machine [61]. At compile-time, profiled expressions are maintained during trans-
formations to preserve the scope of cost centres, which is a major undertaking.
Moreover, the runtime system is modified to collect profiling information; for in-
stance, the machine state is equipped with a current cost centre register and the
cost centre corresponding to the expression currently being executed is stored in
this register. Furthermore, every heap closure is tagged with a cost centre so when
a closure is entered, its cost centre is loaded into the current cost centre. Incurred
costs are attributed to the cost centre held by the current cost centre register. The

2This example is taken from [57].

28

2.4. GHC PROFILING

heap profiler implementation is similar to [24]: at regular intervals, execution
is suspended and the entire heap is traversed for a census. Profiling results are
post-processed to generate charts using the same program (hp2ps) by [17][24].

Initially, the heap profiles provided by GHC are based on the heap profiles of
HBC/LML [24] and NHC [17]. This involves producer profile3 (including produc-
ers of a module or group of modules), description profile4 (including description
by type) along with the ordinarily heap profiling restrictions. However, retainer
profile and lifetime profile are not provided.

Compared to the heap profiles of HBC/LML [24] and NHC [17], GHC’s heap
profiles [7] (when profiling with automatic annotation for top-level functions)
are similar though there is a major difference in the producer profile: with the
cost centre profiling scheme in GHC, unprofiled functions are subsumed by their
reference site. In effect, this gives a finer summary of the overall heap consump-
tion. Furthermore, with the ability to annotate expressions by a user-defined label,
the costs of the many instances of (say) map can be distinguished since they are
attributed to their reference site. In HBC/LML and NHC, however, there is no aggre-
gation method of this sort. Distinguishing the costs of function instances requires
writing new functions with different names.

From a heap-profiling perspective, the subsuming technique together with the
freedom in selecting expressions is helpful for the reasons mentioned above. Lex-
ical profiling, while effective in practice, suffers from several problems. A major
drawback is the special treatment of CAFs: costs are attributed to CAFs instead of
to the cost centre of the expression which demands the value of the CAF; this can
result in confusion. Indeed, programmers have been complaining about this issue
[59]. The second concern regards unprofiled library functions. By default, prelude
functions are subsumed; profiling prelude functions requires manually annotating
every function, which can be tedious.

In subsequent developments, GHC adopted two additional heap profiles [62]:
retainer profile [17] and biographical profile [39]. Unlike NHC [51], profiling
restrictions between biographical and retainer profiles are prohibited [36][54],
which is a drawback since this restriction can be useful in pinpointing space leaks.

Further improvements to the GHC profiler involved the support of a cost centre
stack [62]. A cost centre stack extends the idea of a cost centre (under lexical
scoping) with statistical inheritance of cost centres for time processing [8][63].
This is similar to call graphs in a call-by-value environment. Cost centre stacks
are extended in GHC to support time and space allocation, excluding heap profiles
[54]. Instead, call graphs appear as a part of keys in producer profiles. However,
keys with many call chains do not fit in heap profiles and are therefore unreadable.

2.4 GHC Profiling

In this section we discuss current heap profiles using GHC, a current state-of-the-art
compiler for Haskell. Section 2.4.1 demonstrates types of heap profiles. Section
2.4.2 briefly discusses the relation of heap profiles to space leaks.

3Treated as cost centres.
4Description profile is termed construction profile in [1][17][24].

29

2.4. GHC PROFILING

2.4.1 Current heap profiles examples in GHC

We demonstrate four kinds of heap profiles: producer, construction, retainer and
biographical profiles. Heap profiles are demonstrated using GHC. This compiler
adopted many, though not all, methods developed for the original implementation
of heap profiles in [1][16]. There are several different implementation details
between the original heap profiles and GHC. However, they are broadly similar.

The program for which we provide heap profile examples is in Figure 2.3.
This program takes a natural number nat as its input, constructs a list of natural
numbers ranging from 1 to nat, sums the elements of a list and adds the first
member of a list to the final result.

mkList x y
| (x == y) = [x]
| (x < y) = x : (mkList (x+1) y)

sumWith v [] = v
sumWith v (x:xs) = sumWith (v+x) xs

sumsList ’ xs = sumWith 0 xs + head xs

sumsList nat = sumsList ’ (mkList 1 nat)

main = do
nat <- getLine
let nat ’ = read nat :: Integer
print (sumsList nat ’)

Figure 2.3: The sumsList program.

In GHC, heap profiles are generated in three stages. First, the program is com-
piled with a runtime system option to generate profiling information. The program
is then executed with a heap profiling option, each option corresponding to a dif-
ferent type of heap profile. During the execution of the program, heap profiling
information is regularly collected and logged to a “.hp” file. However, the profiling
data contained in a “.hp” file are not intended for human readers. The next step is
to transform the “.hp” file to a graphical chart through a separate program named
HP2PS [64] that creates a PostScript5 file [54].

We start with a simple kind of heap profile. The producer profile of the sumsList
program is shown in Figure 2.4. The shape of the graph describes how the volume
of live heap memory changes over the execution time of the program. Live heap
memory is represented by the vertical axis and execution time is represented by
the horizontal axis. Overall, the shape of this graph demonstrates two phases: the
live heap grows dramatically, reaching a peak of about 35 MB, and then begins to
decline.

The list of keys shown to the right of the graph are associated with shaded
bands in terms of the source program: each key corresponds to a different program

5PostScript is a registered trademark of Adobe Systems Incorporated.

30

2.4. GHC PROFILING

sumsList +RTS -hc 5,369,907 bytes x seconds Wed Feb 25 03:11 2015

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2

b
y
te

s

0M

5M

10M

15M

20M

25M

30M

(101)sumWith/sumsList’/sum...

(102)mkList/sumsList/main/...

Figure 2.4: A producer profile of sumsList.

component. Furthermore, function names separated by the forward slash / in keys
represent a call-graph of a function. For instance, the function mkList is called
by sumsList, which is in turn called by main. For the sumsList program, this
producer profile shows that a large amount of heap is produced by the function
mkList. By default, 20 is the maximum number of bands in a profile. Program
components occupying less than 1% of the overall heap space are omitted from
the profile. For large programs, the number of bands can be large. In such cases a
program can be profiled by producers of modules to accommodate heap bands in
a profile [24][54].

At the top of the heap profile is a title containing three elements: the name
of the program together with the heap profiling options, the total volume of the
graph and the date on which the program is executed.

The construction profile of the sumsList program is shown in Figure 2.5. Here,
the keys marked as : and S# are constructors. The former represents Cons cells,
while the latter represents numbers of type Integer6. In the context of sumsList,
the heap band associated with the keys : and S# represents a list of integers.

Besides constructors, function names in a key can refer to a closure, which is
an unevaluated expression [36]. For instance, in Figure 2.5, a large section of
the heap is associated with <main:Main.sat_sIL>. In terms of the source pro-
gram, this key identifier refers to the unevaluated expression (v+x) in the second
equation of sumWith7.

A concise form of construction profile can be obtained by using a type profile
[24][54]. This is useful for programs with large numbers of constructors. The
sumsList program is simple so a type profile is not necessary here.

Note the similar shape of graphs between the producer profile in Figure 2.4
and the construction profile in Figure 2.5. The slight variation in the shape of the

6The key S# represents a GHC library-defined constructor [65].
7The identifier sIL is a compiler-generated let-binding.

31

2.4. GHC PROFILING

sumsList +RTS -hd 5,328,294 bytes x seconds Wed Feb 25 03:19 2015

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2

b
y
te

s

0M

5M

10M

15M

20M

25M

30M

BLACKHOLE

<main:Main.sat_sIL>

S#

:

Figure 2.5: A construction profile of sumsList.

graphs is due to the time-sampling profiling scheme.
The next profile is the retainer profile. The retainer profile of sumsList is shown

in Figure 2.6, with the functions sumsList’ and sumWith shown as retaining the
majority of heap memory cells. Program components kept in the heap by many
retainers are represented by a retainer set. To reduce profiling overheads, the
number of retainers in a set is fixed to a limit (eight in GHC). Moreover, retainers
exceeding a specified set limit are collapsed into a MANY key [54].

There are different cases where retention can occur. An example is unevaluated
expressions holding onto heap cells until they are completely evaluated. Another
common instance is a constant applicative form representing a data structure [36].
Heap memory can also be retained by the compiler system stack. In GHC, the
system stack is identified by SYSTEM as shown in Figure 2.6 [54].

Finally, there is the biographical profile in Figure 2.7. The ultimate goal of
biographical profiling is to identify “live but useless” heap cells [39].

In Figure 2.7, heap bands are associated with use, lag and void keys. A large
fraction of heap space seems to be used. As a general rule, heap memory is used
if computations are evaluated. The space associated with void suggests a minor
heap waste. There is an apparent lag which suggests accumulation of suspended
computations from the start of the computations until about half the time of exe-
cution.

Unlike the other heap profiles, a biographical profile does not relate heap sec-
tions to the source program; keys are marked with the four biographical classes
of cells. However, with the support of profiling options one can restrict different
parts of the heap to other profiles (e.g. producers of lag or drag). What distin-
guishes the biographical profile from other profiles is the ability to suggest a space
leak directly. Examples for biographical profiling can be found in [36][39].

32

2.4. GHC PROFILING

sumsList +RTS -hr 5,168,660 bytes x seconds Wed Feb 25 03:23 2015

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2

b
y
te

s

0M

5M

10M

15M

20M

25M

30M

(7)SYSTEM,sumsList’

(2)SYSTEM

(10)sumsList’,sumWith

(6)sumWith

(9)sumsList’

Figure 2.6: A retainer profile of sumsList.

sumsList +RTS -hb 7,249,061 bytes x seconds Wed Feb 25 03:13 2015

seconds0.0 0.1 0.1 0.2 0.2 0.2 0.3

b
y
te

s

0M

5M

10M

15M

20M

25M

30M

VOID

LAG

USE

Figure 2.7: A biographical profile of sumsList.

2.4.2 Relation to space leaks

Heap profiling is one way of studying the space behaviour of programs. Resorting
to different kinds of heap profiles, one can diagnose a space leak. Which type of
heap profile directly helps in fixing a space leak?

A common technique is to start by examining a biographical profile since this
profile gives a good image of the overall heap usage. The biographical classifi-
cations can suggest some instances of space leaks at a high level. For instance,
a drag band indicates wasted heap space. The offending heap section can be

33

2.5. DISCUSSION

further examined at the source-level of the program by combined profile restric-
tions [36][39].

2.5 Discussion

There is a large body of work on heap profiling. The work by Runciman and Wake-
ling [24] and Runciman and Röjemo [17][39] has received some attention from
those working on other programming languages. For example, Novark, Berger
and Zorn introduced HOUND, a tool for detecting C and C++ memory leaks. They
use the idea of drag to detect memory leaks caused by objects with long dragging
time [66]. Shaham, Kolodner and Sagiv reduced the drag amount of objects in
Java programs [67]. Nilsson developed retainer profiles in HEAPY, a memory pro-
filer and debugger for Python [68]. Hallenberg designed a heap profiling system
for Standard ML with region-based memory management. This profiler shows
memory use for regions [69].

In the object-oriented languages community, the classifications provided by the
biographical profile [39] are seemingly used to increase the degree of automated
support for reducing space consumption using profiling information.

Memory profiles of functional implementations (e.g. producer, construction,
retainer and biographical) provide various kinds of valuable information. How-
ever, there are two drawbacks:

• Relating heap profiling information to the source program at the expression-
level can be difficult. The heap profiles by Runciman and Wakeling [24] and
Runciman and Röjemo [17][39] provide a reference to an entire body of a
function. The cost centre profiling scheme by Sansom [7] equipped in GHC

allows the user to annotate expressions of interest explicitly with distinct cost
centres. However, annotating programs can be a tedious task that sometimes
requires changing the structure of expressions. One possible way of relating
expressions to heap profiling results automatically is to profile constructions
by occurrence.

• Space leaks causing stack overflow are common in functional programs due
to their recursive nature. Stack profiling has not received enough attention
in lazy functional implementations. The GHC heap profiling system provides
a profiling option to include stack memory in several kinds of heap profiles.
However, stack memory is seemingly treated as heap memory: space oc-
cupied by the stack is aggregated to a single undifferentiated category in
memory8 [54]. In a similar manner to heap profiling, the stack memory
can be viewed in different ways (analogous to producer, construction and
biographical views of heap memory).

We therefore propose two kinds of new memory profiles. The first is a hotspot
profiler which automatically annotates expressions at the occurrence-level (Chapter
4). The second is a stack profiler supporting producer and construction profiles
(Chapter 5).

8This information is gathered based on the GHC profiling documentation in [54] and by experi-
menting with profiling options and results using recent versions of GHC-7.8.

34

Chapter 3

Pure: A Lazy Functional Language
Implementation

We have implemented a compiler for a pure lazy functional language we call Pure.
This chapter introduces the implementation of Pure for which we implement mem-
ory profilers in subsequent chapters. Section 3.1 gives an overview of the Pure
implementation. Section 3.2 describes Core, the intermediate language to which
Pure is compiled. Section 3.3 concludes with a brief demonstration of the under-
lying abstract machine of Core, the G-machine.

3.1 Pure Implementation

Pure program
Pure to Core Core to G-code

Interpreter
G-code

Figure 3.1: Pure implementation phases.

We have implemented a compiler for a pure first-order lazy functional language
we call Pure. The Pure language is a minimal subset of Haskell supporting various
syntactic constructs and features found in a typical lazy functional language in-
cluding let/letrec constructs, if and case expressions, pattern matching and guards.
Algebraic data type declarations are supported by the Pure language, with built-
in lists and booleans, where lists are constructed with Cons and Nil constructors.
The only literals are integers. Below is an example of a function that sums the
elements of a given list written in the Pure language.

sum Nil = 0;
sum (Cons x xs) = x + sum xs;

As with conventional compilers, compiling and executing a Pure source pro-
gram proceeds in a series of phases, the output of each phase becoming the input
of the following phase. Figure 3.1 illustrates the overall structure of the phases
for the implementation of Pure. The first two phases include the compiler proper
whilst the third phase represents the runtime system. The former is written in

35

3.2. THE CORE LANGUAGE

Haskell whereas the latter is written in C. Except for the runtime system, each
phase includes a number of passes mostly concerning syntax-tree transformations
and translations. Below, a brief description of these phases follows.

A parser reads a Pure program and constructs a Pure abstract syntax tree that is
subsequently transformed to a simpler Pure representation by removing syntactic
sugar. In particular, a desugaring pass transforms pattern matching, guards and
if expressions to (possibly nested) simple case expressions, translating Pure to a
program in a language called Core. The Core language is a version of Pure with
simpler constructs which serves as an intermediate language suitable for code
generation. After a number of Core-related administrative passes (e.g. annotating
Core with information requested in code generation such as labelling algebraic
data types), Core is translated to G-code ready for execution by a G-machine [50].

The Core language and the G-machine are of most interest since they are used
to explain the implementation of our memory profiling tools (in Chapters 4 and
5). Section 3.2 briefly describes the Core language and Section 3.3 describes the
Core G-machine.

3.2 The Core Language

The Core language is essentially a desugared (or simpler) version of the Pure lan-
guage with complex constructs (e.g. pattern matching) transformed to simpler
constructs. Core is intended to be simple so that it is possible to transform Pure
(and similarly rich functional languages) into Core without loss of expressiveness.
As with conventional functional implementations, Core provides an intermediate
interface between high-level constructs and a low-level representation of compiled
code. The syntax of Core is given in Figure 3.2.

A program in Core is a list of top-level function definitions delimited by semi-
colons. Every function is defined by a sole equation. Function arguments are
simple variables, so pattern matching is not permitted. Furthermore, zero-arity
definitions are called CAFs, though they are treated as functions.

Function definitions can contain local bindings in let constructs and recursive
local bindings within letrec constructs. The left-hand side of a binding in a let
or letrec expression is restricted to a simple variable.

As usual, constructors are included in the language where each constructor is
identified by a unique label and assumed to be saturated, that is, applied to the
exact number of its arguments. Although not explicitly shown in the Core syntax,
built-in algebraic data types are included; in particular, lists and booleans are
desugared from the Pure language (see Section 3.1).

The final construct is that of a case expression which performs pattern match-
ing. A case construct consists of expression e to be analysed and an alternative
list. Every alternative consists of a constructor (identified by a label) followed by a
number of simple variables which must be equal to the arity of the corresponding
constructor and an expression e to the right-side of the arrow.

Finally, there are binary arithmetic and comparison operators (e.g. +, < et
cetera), and integer literals.

36

3.3. THE CORE G-MACHINE

Program program → fun1 ; . . . ; funn n ≥ 1

Functions fun → f v1 . . . vn = e n ≥ 0

Expressions e → e e Function application
| e � e Primitive operation
| let binds in e Local bindings
| letrec binds in e Local recursive bindings
| case e of alts Case expression
| C e1 . . . en Constructor n ≥ 0

| atom Atomic expression

Atoms atom → v Variable
| i Integer

Bindings binds → bind1 ; . . . ; bindn n ≥ 1

bind → v = e

Alternatives alts → alt1 ; . . . ; altn n ≥ 1

alt → C v1 . . . vn → e n ≥ 0

Variables v, f

Figure 3.2: Syntax of the Core language.

In essence, this simple language is the Core language of [70, Chapter 1] re-
stricted to first-order programs. This adaptation facilitates the process of targeting
the G-machine (see Section 3.3).

3.3 The Core G-Machine

The G-machine is a stack-based abstract machine for executing lazy functional lan-
guages by way of lazy graph reduction, originally developed by Augustsson and
Johnsson [50][71]. The G-machine implementation of Core is thoroughly de-
scribed in [70, Chapter 3]. Here follows a brief overview of the G-machine.

In a typical G-machine, each top-level function1 definition is compiled into a
sequence of G-code. These instructions are used as graph rewrite rules to reduce
the graph of a right-hand side, corresponding to a function body, to a value.
Graph reduction is carried out by rewriting the left-hand side of a function def-
inition to an instance of a corresponding right-hand side with argument pointers
substituted for formal parameters, updating the root of the left-hand side graph
with the root of the right-hand side instance, thereby preserving laziness. This

1Resembling a supercombinator [11, Chapter 13].

37

3.3. THE CORE G-MACHINE

cycle is repeated until the graph is eventually reduced to a weak head normal form
(WHNF).

For a simple example of graph reduction by the G-machine, consider the func-
tion definition square x = x * x compiled to the following G-machine code2.

square:
PUSH 0
PUSH 1
PUSHFUN *
MKAP
MKAP
UPDATE 1
POP 1
UNWIND

1, @〉
PUSHFUN *

1, @〉

(a) ENTER (b) PUSH 0 (c) PUSH 1

(d) PUSHFUN * (e) MKAP (f) MKAP

(h) POP 1(g) UPDATE 1 (i) UNWIND

square 5

1, @〉

5

square 5

1, @〉
square 5

1, @〉

square 5

1, @〉

PUSHFUN *

square 5

1, @〉

1, @〉
PUSHFUN * 1, @〉

PUSHFUN *

square 5

1, @〉

1, @〉

1, @〉
PUSHFUN *

1, @〉
51, @〉

PUSHFUN *

1, @〉
5

Figure 3.3: G-machine reduction of (square 5).

Figure 3.3 demonstrates G-machine execution of rewriting (square 5) to the
right-hand side of square definition (5 * 5) (i.e. reduction steps from (a) to (h)).
The symbol @ denotes an application node and arrows are pointers from the stack
to heap nodes.

Figure 3.3(a) shows the stack configuration when the expression (square 5)
is ready for reduction after the spine of the graph (square 5) has been unwound

2Note that we have used a simplified code for demonstration purposes.

38

3.3. THE CORE G-MACHINE

and the stack is rearranged in order to access the argument (5) of square through
the topmost pointer of the stack (the stack grows downwards); the second topmost
pointer pointing to the root of the graph of (square 5) is retained to be updated
by the right-hand side instance of (square 5). The G-machine now ENTERs (i.e.
jumps to) the code of square and starts executing its code. The PUSH n instruction
(in (b)-(c) of Figure 3.3) pushes the nth element of the stack relative to the top of
the stack with the topmost stack pointer starting at offset zero. The instruction
PUSHFUN * pushes a pointer to a function node representing the multiplication
*. The MKAP instruction (in (e)-(f) of Figure 3.3) allocates an application node in
the heap with the two topmost pointers of the stack as branches of the application
node; note how the arguments to the function * are shared. Having the graph
corresponding to the right-hand side of the definition of square constructed, the
root node of the original application (square 5) is updated (i.e. overwritten) with
an indirection node (not shown in Figure 3.3(g)) pointing to the root node of the
new graph, and the unneeded arguments of square are popped off the stack by
the instructions UPDATE 1 and POP 1, respectively (Figure 3.3(g)-(h)), thereby
having the graph of (square 5) rewritten to (5 * 5). The last instruction of
square causes the G-machine to enter the UNWIND state to continue reduction by
unwinding the spine of the new graph on top of the stack to find the function node
* of the application (5 * 5), pushing pointers to the application nodes along the
way (Figure 3.3(i)). The stack is then rearranged and the code for the function *
is entered, reducing (5 * 5) to 25.

The complete semantics of the Core G-machine are provided in Appendix A.
Section A.1 contains the compilation of Core to G-code defined by a set of compi-
lation schemes. Furthermore, the operational semantics of the instructions used by
the compilation schemes are defined by the state transition rules of the G-machine,
which are provided in Section A.2. Note that the Core G-machine is a basic version
and does not incorporate many optimisations, so it may be prone to space leaks.

39

Chapter 4

A Hotspot Profiler

In this chapter we introduce a hotspot profiler: a new kind of heap profile which
highlights hotspots by occurrence in programs. Section 4.1 describes the idea of
hotspot profiling. Section 4.2 explains our implementation of a hotspot profiler.
Section 4.3 demonstrates the application of hotspot profiling to a series of pro-
grams.

4.1 Overview

In this section we describe the main idea behind profiling hotspots by occurrence.
In Section 4.1.1, we explain what we mean by occurrences and the motivation for
occurrence profiling. Section 4.1.2 discusses the design goals and the key ideas
that led to the construction of a hotspot profiler. Section 4.1.3 describes the details
of hotspot profiling including the information that it represents.

4.1.1 Occurrences

Current heap profilers for lazy functional languages (e.g. [7][16]) provide various
kinds of information about memory, which are generally effective in examining
the way programs use heap space. Memory populations are aggregated to provide
concise summaries. In particular, constructions of the same value are aggregated
and referenced by a corresponding top-level function. While this technique sup-
plies succinct information, the results can lack the (necessary) precision to locate
automatically a dominant source of space consumption in the program: occur-
rences of construction symbols are referenced to the entire body of a function
whereas distinct locations corresponding to individual symbolic occurrences can
be more informative. Take, for example, the definition in Figure 4.1.

maxcc mos m Nil = mos
maxcc mos m (Cons n ns)

| n > m = maxcc (Cons (Cons n Nil) Nil) n ns
| n == m = maxcc (Cons (Cons n Nil) mos) m ns
| n < m = maxcc mos m ns

Figure 4.1: The definition maxcc where Cons occurrences are annotated.

40

4.1. OVERVIEW

Here, every occurrence of the construction symbol Cons is boxed. Suppose that
some Cons above impose high sustained-heap pressure in a program. A producer
profile restricted by Cons would report the function maxcc as the producer. But
which occurrence(s) of Cons is to blame?

So there is a gap between profile results and expression-level reasoning. One
way of decreasing such a gap is to profile every occurrence. An occurrence is either
a 1) function; 2) constructor; or 3) literal. The maxcc definition annotated with
occurrences is shown in Figure 4.2.

maxcc mos m Nil = mos
maxcc mos m (Cons n ns)

| n > m = maxcc (Cons (Cons n Nil) Nil) n ns
| n == m = maxcc (Cons (Cons n Nil) mos) m ns
| n < m = maxcc mos m ns

Figure 4.2: The definition maxcc where every occurrence is annotated.

At a glance, we see a problem: if every occurrence is profiled, the result can
be distorted in the presence of so many occurrences, which is unwieldy. Program-
mers wishing to improve memory demands are normally interested in pinpointing
memory bottlenecks or hotspots and not in the detail of components consuming
minor fractions of space.

We propose a hotspot profile which presents concise memory statistics of hotspots
by source occurrence and relates them to the corresponding locations in a source
program.

4.1.2 Design outline

The design options for occurrence profiling are the outcome of a previous attempt
and experiences of using heap profiling tools similar to those described in [1][17].
An outline of the primary design decisions are as follows.

Scalability Profiling large programs with many modules is a common exercise.
It should be feasible to extend occurrence profiling to support such large pro-
grams. Moreover, the ability to combine different views of memory is of particu-
lar importance to the diagnosis of space leaks.

Profile Charts The effort devoted to the graphical presentation of profile charts
in [1] has proven effective in understanding heap profiles. Heap memory is in-
deed best explained through graphs. These charts are adapted to provide heap
charts of occurrences.

Granularity Reporting the cost of every occurrence is undesirable, leading to
unreadable profile charts. Presenting information about every function in a pro-
gram often produces cluttered profiles. Heap profilers overcome this by ignor-
ing functions that account for small space or by grouping functions to provide a
coarser form of profiles, which naturally brings the troublemakers to the surface
of a heap chart. A similar technique to classify (or group) occurrences associated
with high memory demands is essential for practical profile summaries.

41

4.1. OVERVIEW

Result Presentation Relating the space use of programs at the occurrence level
makes source annotation a convenient target since occurrences are easier to ex-
amine in source programs. Profiling information is presented in two forms: anno-
tated source occurrences and profile charts. A scheme to relate source annotation
with profile charts is easily accomplished through graphical display.

User-friendly Display Graphical design is a complicated field and it is easy to ob-
scure the display of information. The primary goal is to furnish the programmer
with clear and simple graphical presentation, with an easily managed graphical
interface.

These criteria lead to the design of a hotspot profile following the key ideas:

• Space occupied by occurrences is measured in heap contribution which we define
to be the overall cost of an occurrence over the execution time of a program; that
is, the percentage of the (space × time) area under the heap curve in a profile
chart [36].

• Each occurrence is associated with a temperature which is the heap contribution
percentage of an occurrence over the entire cost of the heap graph. Occurrences
associated with a high temperature are termed hotspots.

• Hotspots are classified by their heap temperature according to a set of tempera-
ture colours, where each colour represents a range of predefined temperatures.
This colour is used to band heap charts of hotspots and annotate the associated
hotspot in the corresponding source program, thereby relating heap charts to
occurrences at the source level according to their overall space use.

• We provide three temperature colours: yellow < orange < red. Red is asso-
ciated with the hotspots of highest memory demand. Occurrences with lower
temperatures than the yellow colour are collapsed into a union band which is
neglected in profile summaries. This provides a means to abstract away occur-
rences occupying small amounts of space from profiles. Temperature values are
supplied by the user, otherwise set to a default. A minimum of 10% is imposed
on the yellow temperature to avoid cluttering up profile charts.

In summary, a hotspot profile provides information in two forms: profile sum-
maries in charts and annotated source programs. The profile chart represents
heap content distributed by hotspot temperatures. Hotspots are annotated in tex-
tual displays of source programs according to their temperature colour in profile
charts. Further information about hotspots can be investigated in a separate dis-
play.

4.1.3 Profiling technique

The hotspot profiler consists of two components: an instrumented compiler and
a graphical program. The instrumented compiler gathers profiling information
about occurrences. The graphical program post-processes profiling information and
presents it in a graphical form.

The modified compiler collects occurrence information identifying:

42

4.1. OVERVIEW

• The producer that (immediately) allocated the occurrence in the heap.

• The construction that the occurrence represents.

• The creation time and allocation counts of occurrences.

Producers of occurrences are identified by the declaration name lexically enclosing
the occurrence site. A declaration name is a top-level function variable; an equa-
tion binding variable; a local declaration name within let or letrec constructs. This
ensures that occurrences appearing in multi-scoped declarations (e.g. in nested
let constructs) and equations are attributed to the producer with respect to the
lexical declaration scope. By way of example, below is a program fragment where
expr is an arbitrary expression containing occurrences. Each expression is anno-
tated with its producer, where the top-level declaration name in each equation is
distinguished with a source location.

f1 Nil = exprf1
f2 (Cons x Nil) = let a = expra in

let b = exprb in
exprf2

f3 (Cons x xs) = exprf3

In our implementation the construction of heap cells can take one of the fol-
lowing forms: as of yet unevaluated closure, a constructor (e.g. Cons) or a literal
(e.g. Int). For closures, we take the function name to serve as the construction
representation.

Constructions are used to mark hotspots in sources. However, such static at-
tributes are limited in practice. Information about the dynamic characteristics of
hotspots may be essential for comprehending the nature of space leaks. Heap
profiles can describe profound hotspot properties when extended with dynamic
attributes. For example, suppose that a hotspot profile shows a sustained plateau
from high demand of memory. Does this indicate a hotspot that is being retained
or is that hotspot memory being regenerated constantly? This is exactly what a
lifetime profile reveals, which can be derived from heap cells’ creation times [17].
In addition to occurrences’ creation times, allocation counts of occurrences are
collected to serve as supplementary information in a lifetime profile.

Auxiliary information about constructions and producers such as source loca-
tion is also gathered. This extra information is used by the implementation and
proves helpful when multiple hotspots are examined.

When a program is executed for profiling, the implementation suspends the
computation and traverses the heap for a census at fixed intervals, collecting pop-
ulation counts for each occurrence at every distinct creation time. After heap
traversal is complete, a census is logged into a file and the computation proceeds.
When execution terminates, a supplementary profile table is appended to this file.
Amongst other information, log files contain a three-dimensional profile of each
occurrence at each census: that is, construction, producer and creation time(s).

The second component of the hotspot profiler is a graphical program which
post-processes profiling data and generates a hotspot profile in a graphical form.
The hotspot profile consists of three parts: a hotspot-construction heap profile, a
temperature colour bar and a command-oriented textual display of the source pro-
gram which highlights hotspot occurrences. This heap profile and the correspond-

43

4.1. OVERVIEW

ing hotspot in the source program are coloured according to the temperature. A
hotspot profile example is shown in Figure 4.3.

Figure 4.3: A hotspot profile example.

The hotspot-construction graph in the top area of Figure 4.3 shows how the
live heap size varies over the execution time of the program, where time is cal-
culated by heap allocation counts. Live heap memory (vertical axis) and heap
allocation counts (horizontal axis) are both measured in bytes. In this example,
the live heap reaches a peak of about 2200 bytes whereas heap allocation counts
are slightly above 4500 bytes. The latter can be taken as an approximation of total
heap allocations. Interpolation is linearly employed between censuses, which could
deceive the programmer (e.g. by failing to capture heap spikes). More accuracy is
gained by increasing census frequency.

The title on the top area of the heap profile contains the name of the profiled
program, the executed command when running the graphical interface and the
overall cost of the program in (live heap bytes × heap allocation bytes).

This heap chart is distributed by the temperature of hotspot construction ac-
cording to the temperature colour bar shown below the graph. The temperature
of an occurrence is calculated by the contribution amount of the area under the
(bytes × bytes) heap curve to the total area of the heap graph. Temperature
colours are specified by a lower percentage. There are three temperature colours,
characterised by yellow, orange and red — this naturally resembles “heat” in in-
creasing order. Occurrences belonging to the yellow, orange or red temperature
are termed hotspots.

Every band in a hotspot-construction chart is associated with an identifier
shown in the key set to the right. A key of the form identifer.row:column rep-
resents a hotspot construction followed by its source location. As the reader will

44

4.1. OVERVIEW

have noticed, each band is coloured in accordance with the specified tempera-
ture. Heap bands associated with a temperature smaller than the yellow coloured
(those with heap contribution of less than 10% in this example) are collapsed into
a union band (U). As we shall see in Section 4.3, heap bands can have the same
colour if hotspots are of the same temperature.

In essence, this heap graph is the construction profile in [1], revised to show
hotspots.

Finally, there is the command-oriented textual display of a source program at
the bottom of the hotspot profile example. Hotspot constructions are annotated
with respect to their temperature colour. With the aid of heat-marked source code
and the heap graph, one can locate hotspots in the source program and study the
corresponding heap band. This combination can be regarded as a first hotspot
resort — to be examined in more detail.

In this example, there are two hotspots: sum belonging to the red tempera-
ture with a heap contribution above 40% and Cons associated with the orange
temperature with a heap temperature above 20%.

Figure 4.4: Lifetime profile of an individual hotspot.

Hotspots are investigated further through their individual profiles which are
obtained by moving the cursor to a hotspot of interest and pressing the return
key. As shown in Figure 4.2, an individual hotspot profile has two parts. The
first part is a lifetime profile showing two kinds of information: a consistent view
and the lifetime distribution of a hotspot-heap graph. For lifetime profiles, the
colour of the bands is arbitrary. Similar to the lifetime profile in [17], banding of
heap cells corresponds to their eventual lifetime. However, for readability, keys are
labelled with a percentage range instead of literal lifetimes. The percentage range
represents the lifetime of heap cells over the lifetime of the program. For example,

45

4.2. IMPLEMENTATION

the label 63-100% is attached to heap cells that lived for between 63% and 100%
of the total program execution time.
The second part is a hotspot table containing auxiliary information such as the
temperature percentage rounded to a whole number and allocation counts. Con-
struction, producer and their source locations are included mainly to assist the
process of relating individual profiles to the program component at the source
level.

The design of this hotspot profile is motivated by the goal of delivering concise
hotspot summaries in a clear graphical representation. Originally, hotspots of the
same temperature colour were aggregated in a single heap band so every band
in the heap graph was guaranteed to have a unique colour. However, this proved
to be unhelpful since we can hardly reason about the graph of a hotspot. The
alternative is to band the graph for each hotspot. In consequence, bands of the
same temperature class have the same colour. Under the current hotspot scheme,
hotspots are generally few in number so heap bands of the same colour are easily
related to key entries by looking at both in the same order.

The other issue concerns occurrences that cannot be directly annotated in the
source program, in particular occurrences produced by primitive functions such
as integers and boolean results. This is resolved by attributing the cost of results
to the primitive function that produced them. The task is then to represent this
attribution to the programmer in a meaningful way. One option is to introduce
three source annotation marks to primitive functions indicating whether it is 1) a
closure without results; 2) results only; 3) closure and results. The other option
is to include results in hotspot individual profiles. We take the latter approach to
avoid cluttering up the source program with additional annotations.

The notion of temperature colours naturally classifies occurrences according to
their space use. By default, the temperature colours are set to 10%+, 20%+ and 40%+
for the yellow, orange and red temperatures, respectively. The yellow temperature
with a minimum of 10% abstracts away (the many instances of) occurrences as-
sociated with only small amounts of space and ensures that heap bands can fit
a profile chart, and draws attention to occurrences occupying large amounts of
heap-space.

In our experience, and as illustrated in Section 4.3, the default temperatures
provide a good distribution of hotspots. The user is free to change the temperature
percentages otherwise. However, even with modified temperatures, some pro-
grams have an even distribution of heap space, in which case there are no hotspots.

4.2 Implementation

The purpose of this section is to describe our implementation of a hotspot pro-
filer. We start by a brief overview of the modified components and the additions
to our implementation for hotspot profiling support. Sections 4.2.2 and 4.2.3
describe the instrumented compiler and runtime system that generate profiling in-
formation, respectively. Throughout, we assume that the reader is familiar with G-
machine-based implementations and the idea of graph reduction. For those without
such a background, excellent tutorial references can be found in [11][70]. Section
4.2.4 briefly describes a graphical program which displays profiling information.

46

4.2. IMPLEMENTATION

4.2.1 Overview

We have implemented a hotspot profiler for the Pure language implementation
(see Chapter 3). The overall modification to the Pure compiler for profiling sup-
port is shown in Figure 4.5.

Pure program

Occurrences Profile

Pure to Core Core to G-code

ME2G

Interpreter
G-code

Figure 4.5: Modified compiler for occurrence profiling.

The compiler is instrumented to annotate every occurrence in the source pro-
gram with profile information. This annotation is preserved throughout the com-
piler phases: during the desugaring pass of Pure, Pure to Core translation and G-
code generation. The runtime system for the G-code interpreter is instrumented to
cope with profiling information and extended for a heap profiling scheme. Mean-
while, profile information about occurrences is accessed and maintained through
an occurrence profile structure. Occurrence-heap profiles produced by the run-
time system are post-processed by a graphical program (ME2G) which generates a
hotspot profile.

4.2.2 Compiler instrumentation

The compiler is modified to gather static information about source occurrences.
This information is preserved during compilation and carried to the runtime sys-
tem. Although straightforward, the modifications to the compiler are numerous
and so we describe the main compiler instrumentations only in outline.

Every occurrence appearing within expressions in a source program is associ-
ated with an occurrence tag using a pair. The pair is an annotation construct of the
form 〈τττ, e〉 which is introduced into the Pure and Core languages (see Figure 4.6),
where τττ is an occurrence tag and e is the associated occurrence. This tag is used
to identify occurrences and associate them with profiling information.

Expressions e → . . . (as before)
| 〈τττ, e〉 Annotated expression

Profile tag τττ → integer

Figure 4.6: Annotation construct in Core (similarly for Pure).

47

4.2. IMPLEMENTATION

At an early stage in the compilation, the modified compiler annotates every
occurrence node in a Pure source tree with a fresh tag τττ . In our implementa-
tion, occurrence nodes are of three types: a literal node, a construction node or
a function node. Application nodes are annotated with the tag of the function
they represent; that is, every node in the left-branch chain of a tree is annotated
with an identical tag. This allows the runtime system to attribute the space cost of
application nodes to the associated function node.

An occurrence tag τττ is actually an integer key which maps annotated occur-
rences to a record in a profile symbol table. This table contains static information
about occurrences which are determined and added to the symbol table during
the traversal of a source tree. The table is retained during compilation and used
by the runtime system. Occurrence information includes construction, producer
and their source locations.

By way of example, Figure 4.7 shows how the abstract syntax tree of the ex-
pression (sum (sum 50 60) 90) is annotated with arbitrarily chosen occurrence
tags. (As usual @ denotes application node).

〈0, @〉

〈0, @〉

〈1, @〉

〈1, @〉 〈3, 60〉

〈2, 50〉

〈0, sum〉

〈1, sum〉

〈4, 90〉

Figure 4.7: Occurrences annotation example in an abstract syntax tree.

Following the occurrences annotation pass, the compiler performs successive
transformations mainly involving a set of syntactic transformations on a Pure source
tree to remove syntax sugar (e.g. compiling pattern matching and guards). During
the transformation process, the implementation preserves the occurrence annota-
tions while complex expressions are replaced by simpler ones. This annotation is
then maintained after Pure is translated to the Core language. Since every occur-
rence is paired with a tag, preserving the pair poses no major difficulties although
it requires every transformation to be modified.

The final phase in the compiler translates Core to G-code instructions. In un-
profiled settings, code is generated according to the compilation schemes that are
described in Section A.1 of Appendix A. For profiled programs, we instrument
the compilation schemes to produce G-code instructions annotated with the oc-
currence tags encountered in Core; every instruction responsible for allocating a
heap cell (to be profiled at runtime) is annotated. Annotations for instructions
producing indirection nodes can be avoided since they are short-circuited during
garbage collection at runtime. Instructions causing heap allocation are contained
in the EJ K and CJ K rules. The instrumented rules for EJ K and CJ K are shown in
Figure 4.8 and Figure 4.9, respectively.

48

4.2. IMPLEMENTATION

EJ〈τττ, i〉K ρ = [PUSHINT i τττ]

EJlet x1 = e1; . . . ; xn = en in eK ρ
= CJe1K ρ+0 ++ . . .++

CJenK ρ+(n−1) ++

EJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

EJletrec x1 = e1; . . . ; xn = en in eK ρ
= [ALLOC n] ++

CJe1K ρ′ ++ [UPDATE n− 1] ++ . . .++

CJenK ρ′ ++ [UPDATE 0] ++

EJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

EJ〈τττ, e0 + e1〉K ρ = EJe1K ρ++ EJe0K ρ+1 ++ [ADD τττ]
{similarly for arithmetic and comparasion expressions}

EJcase e of altsK ρ = EJeK ρ ++ [CASEJUMP DJaltsK ρ]
EJ〈τττ, C l e1 . . . en〉K ρ = CJenK ρ+0 ++ . . .++ CJe1K ρ+(n−1) ++ [CONS l n τττ]

EJeK ρ = CJeK ρ ++ [EVAL]

Figure 4.8: The E scheme instrumented for occurrence tags.

CJ〈τττ, f〉K ρ = [PUSHFUN f τττ]

CJ〈τττ, x〉K ρ = [PUSH (ρ x)]

CJ〈τττ, i〉K ρ = [PUSHINT i τττ]

CJ〈τττ, e0 e1〉K ρ = CJe1K ρ++ CJe0K ρ+1 ++ [MKAP τττ]

CJlet x1 = e1; . . . ; xn = en in eK ρ
= CJe1K ρ+0 ++ . . .++

CJenK ρ+(n−1) ++

CJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

CJletrec x1 = e1; . . . ; xn = en in eK ρ
= [ALLOC n] ++

CJe1K ρ′ ++ [UPDATE n− 1] ++ . . .++

CJenK ρ′ ++ [UPDATE 0] ++

CJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

CJ〈τττ, C l e1 . . . en〉K ρ = CJenK ρ+0 ++ . . .++ CJe1K ρ+(n−1) ++ [CON l n τττ]

Figure 4.9: The C scheme instrumented for occurrence tags.

49

4.2. IMPLEMENTATION

The modified EJ K (Figure 4.8) and CJ K (Figure 4.9) extract an occurrence tag
τττ from the associated Core node in an annotation pair construct and annotate the
corresponding instruction with a tag parameter. For further illustration, consider
the linear abstract syntax tree representation of the annotated subexpression (sum
50 60) from Figure 4.7:

〈1, 〈1, 〈1, sum〉 〈2, 50〉〉 〈3, 60〉〉
The tagged G-code for this sub-expression is generated by applying the instru-
mented EJ K scheme followed by CJ K,1 thus,

EJ〈1, 〈1, 〈1, sum〉 〈2, 50〉〉 〈3, 60〉〉K
⇒ CJ〈1, 〈1, 〈1, sum〉 〈2, 50〉〉 〈3, 60〉〉K ++ [EVAL]
⇒ CJ〈3, 60〉K ++ CJ〈1, 〈1, sum〉 〈2, 50〉〉K ++ [MKAP 1] ++ [EVAL]
⇒ [PUSHINT 60 3] ++ CJ〈2, 50〉K ++ CJ〈1, sum〉K ++ [MKAP 1] ++ [MKAP 1, EVAL]
⇒ [PUSHINT 60 3] ++ [PUSHINT 50 2] ++ [PUSHFUN sum 1] ++ [MKAP 1, MKAP 1, EVAL]
⇒ [PUSHINT 60 3, PUSHINT 50 2, PUSHFUN sum 1, MKAP 1, MKAP 1, EVAL]

When executed, the occurrence tag in an instruction is used to tag the allocated
heap cell. For example, the effect of executing the instrumented instructions above
is shown in Figure 4.10 omitting the last instruction EVAL.

〈3, 60〉
〈2, 50〉

〈1, sum〉

〈1, @〉

〈2, 50〉〈1, sum〉

(a) PUSHINT 60 3

(e) MKAP 1(d) MKAP 1

(c) PUSHFUN sum 1(b) PUSHINT 50 2

〈3, 60〉
〈2, 50〉
〈3, 60〉

〈3, 60〉 〈1, @〉

〈1, @〉 〈3, 60〉

〈2, 50〉〈1, sum〉

Figure 4.10: Heap cells annotated with occurrence tags.

This way, every heap cell is associated with a corresponding occurrence in
the source program through an occurrence tag τττ which is mapped to a profile
symbol table allowing static attributes of heap cells to be identified when profiling
is performed at runtime.

4.2.3 Runtime instrumentation

The runtime system modification is in two parts. The first involves enlarging heap
cells to maintain profiling information. The second is a heap profiling sampler

1The environment ρ is excluded from the computation to avoid clutter.

50

4.2. IMPLEMENTATION

which records profiling information from heap cells. These are described respec-
tively.

Heap cells are extended with fields to accommodate both static and dynamic
cell tags. Static tags are used to carry static information about heap cells identi-
fied at compile-time whereas dynamic tags are used to carry dynamic information
about heap cells identified at runtime.

For static tags, a word is reserved for an occurrence tag which points to a record
containing profile information in a table. The occurrence tag and the profile infor-
mation are maintained by the compiler and extended as required by the runtime
system (e.g. primitive results information). When a heap cell is allocated, the oc-
currence tag contained in the instruction responsible for allocation is attached to
the reserved field for the static tags. For dynamic tags, a word is reserved for in-
formation supplied by the runtime system. By way of example, Figure 4.11 depicts
the way a Cons cell is tagged with static and dynamic information.

CON

(creation time)
3

"Cons" (construction)

"60:25" (construction source)

"append" (producer)

"60:1" (producer source)

head tail

τττττττττ

Figure 4.11: Tagged heap cell.

Here, the static tags pointed to by the occurrence tag τττ identify static attributes
of occurrences using two kinds of information: the occurrence construction that
the heap cell represents and its source location; and the producer of the heap
cell and its source location. The dynamic tag identifies the creation time of a heap
cell. In addition, the runtime system maintains occurrence allocation counts: every
occurrence is associated with a separate clock which ticks at heap allocation. A
heap profile can be obtained by sampling the live heap at regular intervals.

One approach is to sample the heap after invoking the garbage collector. While
simple in practice, this method requires traversing the heap twice. The cost of
heap traversal is reduced by combining the process of heap sampling and garbage
collection: while the heap is sampled, a garbage collection is performed [24].

However achieved, care must be taken that the interval-based sampling scheme
does not distort memory demands. A common technique is to use real system time
as clock-ticks to sample the heap at specific seconds. However, for space profiling,
a better idea is to sample the heap by fixed memory allocations. One consequence
of memory allocation-based sampling is that profile results are reproducible and
hence portable: i.e. there can be no variations in profiling results if the same pro-

51

4.2. IMPLEMENTATION

gram is run twice. Another advantage is the ability to capture previously hidden
heap spikes which is a crucial ingredient of a heap profiler, especially for computer
systems with increasing speed and for runtime implementations tuned towards
fast execution.

Furthermore, for the resulting samples to be consistent, the heap graph ought
to be in a proper form before it is traversed. For example, if a graph is sam-
pled when application nodes of a function are not fully constructed, the cost of a
function application may vary between different samples. This could hinder the
derivation of dynamic attributes of memory (e.g. lifetime profile). A solution is to
perform a heap sample (or census) when a function is entered; that is, just be-
fore the ENTER instruction is executed (see Section A.2.2 of Appendix A). This
ensures that all the application nodes forming the spine of a function are present
on the heap (and similarly for variable constructor-field cells). And so sampling is
implemented as follows.

A memory meter which ticks at heap allocation is added to the runtime system.
The meter advances work with the size of the heap cell in bytes. When code for a
function is entered, a routine fielded by memory meter tests whether a sampling
interval has elapsed. If so, execution is suspended for a census sample of the live
heap: the garbage collector is invoked and the entire heap is traversed to collect
heap population by counting the number of bytes associated with live cells for
each occurrence tag at distinct creation times. The space consumed by cell tags is
not counted during a census. When traversal is complete, a census is logged in a
file, the meter is reset and execution resumes. By the end of execution, the log file
contains a list of censuses along with auxiliary profile information.

The garbage collector has to be modified to accommodate the sampling algo-
rithm. In our implementation, we use the semispace copying garbage collection
devised by Cheney [72, Chapter 4]. So population counts are collected when heap
cells are evacuated from the old heap (from-space) to the new heap (to-space). The
modifications to other components of the runtime system are simple but tedious
to explain so we move on to some aspects of the profile information produced by
the runtime system.

The final profile log recorded by the runtime system consists of a list of cen-
suses in block structure, a profile table and some auxiliary information. Each
census is distinguished by a header followed by a series of census records. A census
header contains the allocation counts when the census was taken. A census record
consists of the occurrence tag, initially produced by the compiler or else introduced
by the runtime system, followed by the associated 1) heap cell population counts
in bytes; 2) list of pairs relating creation times with the corresponding memory
usage. Creation times are measured by the number of censuses that took place
before a heap cell was allocated: heap cells with identical creation time belong to
the same generation [17]. For example, below is a census block containing three
census records.

CENSUS 3600
30 990 1-320 2-340 3-330
43 792 1-256 2-264 3-272
44 192 2-192

52

4.2. IMPLEMENTATION

Here, the second census record reports 792 bytes occupied by the heap cells an-
notated with the occurrence tag 43. This total of 792 bytes is distributed across
three creation times: 256 bytes from the first generation, 264 from the second
generation and 272 from the third generation.

The profile log provides the necessary information to generate a hotspot profile
through post-processing. The occurrence tag is used to distinguish between occur-
rences of the same symbolic structure and to obtain information from the profile
table (e.g. occurrence construction/producer). Because each census record con-
tains generation information, it is possible to derive the eventual lifetime of each
hotspot by occurrence. By aggregating the population counts of occurrences by
construction or producer in every census record, it is also possible to obtain the
ordinary construction, producer or lifetime profiles in [1][17] including restricted
combinations without re-executing the program for profiling.

4.2.4 The ME2G program
— Post-processing & graphical display

Hotspot-construction

Temperature colors

Source program

H
otspot

profile

Static attributes

lifetime profile

temperature

allocation counts

construction

construction source

producer source

producer

chart

Figure 4.12: A structural prototype of the ME2G program.

53

4.3. RESULTS

The program ME2G post-processes the memory profiling information produced by
the runtime system and presents it in a graphical display.

Post-processing is in two stages. In the first stage, hotspots are derived from
censuses by calculating the size of occurrence heap graphs and associating each
hotspot with a temperature, producing a hotspot-construction chart. In the second
stage, a lifetime profile is produced for each hotspot derived from creation times.
Post-processing works in the same manner as for HP2PS in [54]. Indeed, this
program is used to generate profile charts. Post-processing creation times to derive
eventual lifetimes is thoroughly described in [17]; the details are omitted here.

After profiling data are post-processed, they are presented in a graphical dis-
play. The structure of this graphical display is composed of three frames as shown
in Figure 4.12. The first frame is used to display a hotspot-construction profile
loaded from memory. The second frame is preserved for temperature colours and
the last frame at the bottom is a textual display of the source program with an-
notated hotspots. Each hotspot is mapped to an individual hotspot profile stored
in memory. This profile contains four types of information: static attributes which
include the producer, construction and their source locations; a lifetime chart; the
temperature percentage and allocation counts.

Unlike most previous heap profiling tools, ME2G is interactive. Individual pro-
files of hotspots are viewed without re-executing the program for profiling.

Additionally, some of the ordinary profiles in [1][17] can be produced, in par-
ticular, producer and construction profiles in addition to their combinations. Ap-
pendix B contains the options and commands provided by ME2G.

4.3 Results

In this section we apply hotspot profiling to a series of programs written in the
Pure language. We conclude with an evaluation of hotspot profiling.

4.3.1 The maxc program

We start with the maxc program in Figure 4.13, which has some similarities with
the maxw program in [36]. Given a list of natural numbers, the maxc program
finds the maximum natural number occurrences and yields as output a list with
each maximum occurrence in a singleton list. For a simple example, the maximum
occurrences list of (Cons 6 (Cons 2 (Cons 6 Nil))) is thus,

Cons (Cons 6 Nil) (Cons (Cons 6 Nil) Nil)

Overall, list generation is controlled by the function stream and supplied to
the function maxc which returns a maximum occurrences list. A list is produced
as follows. The function mkList makes a list ranging from f to t elements, which
is then extended with a list of the same size by replicating an element t. The
function streams repeats this process infinitely so the list can be interleaved with
replicated elements fairly. The process of generating a list is driven by stream
forcing a bound n on the length of the generated list. The auxiliary functions
used by stream (hence streams and mkList) are the usual functions found in a
Haskell prelude library (i.e. replicate, append and take). The result of stream

54

4.3. RESULTS

is supplied to maxc which is undefined if a list is empty, otherwise a maximum
occurrences list is produced through maxcc. This function traverses and compares
elements of a list, keeping occurrences of maximum naturals in a separate list
which is eventually returned.

mkList f t
| f == t = Cons f (replicate t t)
| f < t = Cons f (mkList (f+1) t)

replicate n x = if (n<=0)
then Nil
else Cons x (replicate (n-1) x);

append Nil ys = ys;
append (Cons x xs) ys = Cons x (append xs ys);

take n Nil = Nil;
take n (Cons x xs)
| n <= 0 = Nil
| otherwise = Cons x (take (n-1) xs);

stream n f t = take n (streams f t);

streams f t = append (mkList f t) (streams f t);

maxc (Cons n ns) = maxcc Nil 0 (Cons n ns);
maxc Nil = undefined;

maxcc mos m Nil = mos;
maxcc mos m (Cons n ns)

| n > m = maxcc (Cons (Cons n Nil) Nil) n ns
| n == m = maxcc (Cons (Cons n Nil) mos) m ns
| n < m = maxcc mos m ns;

main = maxc (stream 220 1 150)

Figure 4.13: The maxc program.

For the purpose of comparison, we first start by obtaining ordinary profiles (e.g.
construction/producer in [1]) followed by a series of hotspot profiles. Figure 4.14
shows a producer profile of maxc. Heap space is steadily increasing, reaching a
peak of approximately 14 kb before execution terminates after about 40 kb of
heap allocation. The majority of heap memory is produced by maxcc and take. So
we obtain a restricted profile for the constructions produced by both functions. As
Figure 4.15 shows, most of the heap use is associated with the constructions Cons
and maxcc. There is one occurrence of Cons in the definition of take, four Cons
occurrences and three of maxcc on the right-hand side of the function maxcc. Are
any of these occurrences a hotspot associated with high heap demands?

55

4.3. RESULTS

maxc.pu -p 314,012,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k

b
y
te

s

0k

2k

4k

6k

8k

10k

12k

append

mkList

maxc

+

take

maxcc

Figure 4.14: A producer profile for maxc.

maxc.pu -c -p[maxcc, take] 300,108,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k

b
y
te

s

0k

2k

4k

6k

8k

10k

12k

Nil

maxcc

Cons

Figure 4.15: A construction profile restricted by the producers maxcc and take.

56

4.3. RESULTS

The hotspot profile for the maxc program in Figure 4.16 shows four hotspots,
three of which are most surprising. The first hotspot is Cons produced by take
with a yellow temperature. The other three are maxcc belonging to the orange
temperature with a heap consumption of 20%+, and two Cons occurrences of a
yellow temperature occupying 10%+ of heap space. A large amount of heap mem-
ory is associated with the last three hotspots constituting a tail-call in the first
guarded equation of the second equation of maxcc. These are of most interest and
are examined next. Before attempting to fix the problem concerning the last three
hotspots, we first need to study the space behaviour of the corresponding guarded
equation intuitively.

Figure 4.16: A hotspot profile for maxc.

In line 26, an element n of a list is compared with a current maximum number
m, an “old” list of maximum-occurrence is replaced with a “new” list containing
a list of n. So one would expect the two occurrences of Cons to occupy minor
constant space: two construction cells. However, this is clearly not the case; the
hotspot-construction graph (at the top of Figure 4.16) indicates that there are
many instances of these Cons. Moreover, one can find in the literature assurances
that even naive implementations based on graph reduction support tail-call optimi-

57

4.3. RESULTS

sation by nature [11]. The maxcc hotspot represents a tail-call thus it is expected
to occupy constant space at each recursive call, yet the hotspot profile suggests a
chain of maxcc applications.

Seeking further information, we obtain an individual profile for each of these
three hotspots. The individual hotspot profiles give a 13% heap temperature for
both Cons and 31% for maxcc (as illustrated in Figure 4.17). Furthermore, their
lifetime profiles indicate that for all three hotspots, heap cells remain in memory
for a long period during the execution of the maxc program. For example, in Figure
4.17 the majority of maxcc heap cells are created early in the computation with
a lifetime between 33-66% and 71-100% of the overall program lifetime. This
suggests that the heap cells of the hotspots under investigation are retained. The
function maxcc is an obvious retainer since the hotspots in question are only used
in the definition of maxcc.

Figure 4.17: An individual profile for the hotspot maxcc.

After a thorough examination, we concluded that our G-machine implementa-
tion suffers from a space leak which causes heap cells to be unnecessarily retained.
As mentioned by Johnsson in [73], the problem occurs when tail-calls in non-strict
contexts are compiled to G-code. In particular, code emitted by the default case of
the “optimiser” EJ K compilation scheme (see Section A.1.3). The resulting code
allocates a stack frame for the evaluation of every application to a user-defined
function by the EVAL instruction, causing a function to hold a pointer to its argu-
ments on the stack until they are evaluated to weak head normal form. The con-
sequence is disastrous space behaviour: every application to a user-defined function
causes the function to retain its arguments until the root of the function application
is overwritten with a result.

In the case of maxcc function, tail-recursive calls in every guarded equation
allocate a stack frame for evaluating maxcc which then retains the supplied list of

58

4.3. RESULTS

natural numbers and the maximum occurrence list at every recursive call.2 Hence
the long-lived hotspots maxcc and both Cons in the hotspot profile of Figure 4.16.
This also illustrates the hotspot Cons in the definition of take, which amongst
other functions is retained by maxcc.

A solution is support for tail-call optimisation; we added the SJ K compilation
scheme outlined by Johnsson [73] to our compiler using the SQUEEZE and JFUN
instructions defined in [11, Chapter 21]. As shown in Figure 4.18, the result is a
substantial space improvement: a heap peak decline from 14 kb to 1.8 kb with an
overall cost decrease of approximately 94%.

Figure 4.18: A hotspot profile for maxc after tail-call optimisation.

This new profile shows three hotspots: two Conses associated with a heap tem-
perature of 20%+ and Nil belonging to the yellow temperature. These hotspots
are associated with the maximum occurrences list as shown in the second guarded
equation of maxcc. The corresponding heap graph indicates that this list is accu-
mulated to a late stage in the computation, reaching a peak of about 1.7 kb. The
(first) Cons hotspot shown at the top of the heap profile (below the union band)
encourages revisiting the way it is used. A problem is apparent: this outer Cons is
introduced rather eagerly for every list of a maximum natural, then retained and
accumulated until the entire list of maximum occurrences is eventually computed.
A solution is to delay the creation of these outer Cons until the list of maximum
occurrences has been calculated, which allows the outer Cons to be garbage col-
lected soon after they are created. This desired performance can be accomplished
by introducing the auxiliary function below.

2Of course the first equation of maxcc also allocates a stack frame for the evaluation of the list
argument mos, though evaluating a single-variable before updating is a special case to preserve
laziness [11, Chapter 12].

59

4.3. RESULTS

listOf Nil = Nil;
listOf (Cons x xs) = Cons (Cons x Nil) (listOf xs);

That is, the function listOf takes a list of x and returns a list with every x in a
singleton list. The first equation of the function maxcc is therefore modified as
follows.

maxcc mos m Nil = listOf mos;
maxcc mos m (Cons n ns)

| n > m = maxcc (Cons n Nil) n ns
| n == m = maxcc (Cons n mos) m ns
| n < m = maxcc mos m ns;

The new profile applied to the same scale of that in Figure 4.18 is shown in Fig-
ure 4.19. The heap peak is significantly reduced (from 1.8 kb to about 0.8 kb)
with just one hotspot Cons of a red temperature consuming over 40% of the heap.
But is this program space-efficient? The accumulation problem for the inner Cons
of Figure 4.18 remains, so with a large number of maximum occurrences the in-
stances of this Cons would increase proportionally to the number of maximum
occurrences and the program would eventually run out of space. This prompts a
further reformulation of maxcc to improve space efficiency.

Figure 4.19: A hotspot profile for maxc after introducing listOf.

An obvious alternative to accumulating the maximum occurrences in a list is
to count the occurrences of maximum naturals before creating the list of maxi-
mum occurrence. One way of achieving this is to replace the list of maximum
occurrences mos in maxcc with a counter oc. The counter is set to 1 if a new max-
imum occurrence is encountered, otherwise incremented. Using this counter and

60

4.3. RESULTS

the maximum natural m, a maximum occurrence list can be created by replicat-
ing m for the number of occurrences counter oc by the already defined function
replicate. Accordingly, the function maxcc and the first equation of maxc are
modified as follows.

maxc (Cons n ns) = maxcc 0 0 (Cons n ns);

maxcc oc m Nil = listOf (replicate oc m);
maxcc oc m (Cons n ns)

| n > m = maxcc 1 n ns
| n == m = maxcc (oc+1) m ns
| n < m = maxcc oc m ns;

Unfortunately, the change in the definition of maxcc raises heap pressure! Fig-
ure 4.20 shows a sharp heap spike of approximately 1.4 kb associated with the
hotspot + in the second guarded equation of maxcc. Hotspot individual profiles ag-
gregate results (e.g. Int) to the primitive that produced them. This is not shown in
the key identifiers of the long-lived cell for the hotspot + in Figure 4.21. The prob-
lem is apparent: lazy evaluation causes an accumulation of suspended additions
to occurrence counts.

Figure 4.20: A hotspot profile for maxc after an occurrences counter oc has been
introduced.

61

4.3. RESULTS

Figure 4.21: An individual hotspot profile for + after introduction of an occur-
rences counter oc.

One way to proceed is to force the additions using the built-in function seq
[44]. This can be accomplished by changing the right-hand side of the second
guard in maxcc to the following.

let summed = oc + 1
in seq summed (maxcc summed m ns)

Here, seq evaluates its first argument (i.e. the occurrence addition oc + 1) and
returns its second argument. The use of a let-construct allows the evaluated sum-
mation (summed) to be shared by maxcc. The result is shown in the final hotspot
profile of Figure 4.22 applied to the same scale of the first profile of the maxc
program in Figure 4.16.

The space cost of the final maxc program is significantly improved, decreasing
the heap peak from 14 kb to about 0.2 kb and reducing the overall space cost by
approximately 98%. The maxc program finally enjoys a constant space execution.

62

4.3. RESULTS

Figure 4.22: The final hotspot profile of maxc after introducing seq.

63

4.3. RESULTS

4.3.2 The execute program

The next example is the execute program defined in Figure 4.23. The execute
program implements a stack-based abstract machine for evaluating arithmetic ex-
pressions built from integers3. The abstract machine operates on a set of instruc-
tions and produces an integer value. These instructions are given by the algebraic
data type Instruction:

data Instruction = PUSH Int
| ADD
| MUL
| SUB
| DIV;

The meaning of these instructions is explained shortly. Arithmetic expressions are
built from code which comprises a list of Instructions. For example, code for the
expression 5 + 10 is represented as follows.

Cons (PUSH 10) (Cons (PUSH 5) (Cons ADD Nil))

Such code is executed using an evaluation stack. A stack in this context is merely
a list of integers and code operates on the stack by a list of push and arithmetic
instructions. The meaning of the code is defined by the function exec below. When
supplied with an empty initial stack, code is executed and the result is found on
top of the stack (or actually, as the head of a list).

exec Nil s = s;
exec (Cons (PUSH n) c) s = exec c (Cons n s);
exec (Cons ADD c) s = exec c (Cons (add s) (pop 2 s));
. . .

Here, the PUSH instruction pushes an integer value n onto the top of the stack.
The ADD instruction pushes the sum of the top two elements onto the stack and
pops the summed elements off the stack using the auxiliary functions add and pop,
respectively; MUL (multiply), SUB (subtract) and DIV (divide) operate in a similar
way.

For this illustration, a function makeCode is used to generate code of additions
ranging from the arguments f to t. Finally, code produced by makeCode is supplied
to the function value which invokes the abstract machine executor (execute) and
extracts an integer result from the top of the evaluation stack.

A hotspot profile for the execute program is shown in Figure 4.24. Heap space
steadily increases, approaching a peak of about 35 kb by the end of computations
after approximately 55 kb of heap memory allocations. A large section of the
heap (associated with the union band U) seems to be evenly distributed. There
are just two hotspots residing in the third equation of the function exec: add
belonging to the yellow temperature and pop with a temperature of 20%+. The
individual profiles (e.g. in Figure 4.25) indicate that the majority of accumulated
heap cells are longed-lived (e.g. in the 55-100% band). With this information and
examining the relevant equation, a problem is apparent. Lazy evaluation causes
an accumulation of suspended add and pop computations in the evaluation stack:
the elements of the stack are added, then popped off the stack after the entire
accumulation while retaining the stack in the heap.

3This program is based on the abstract machine in [2, Chapter 31].

64

4.3. RESULTS

data Instruction = PUSH Int
| ADD
| MUL
| SUB
| DIV;

execute code = exec code Nil;

exec Nil s = s;
exec (Cons (PUSH n) c) s = exec c (Cons n s);
exec (Cons ADD c) s = exec c (Cons (add s) (pop 2 s));
exec (Cons SUB c) s = exec c (Cons (sub s) (pop 2 s));
exec (Cons MUL c) s = exec c (Cons (mul s) (pop 2 s));
exec (Cons DIV c) s = exec c (Cons (sub s) (pop 2 s));

add Nil = undefined;
add (Cons x Nil) = undefined;
add (Cons m (Cons n s)) = n + m;

mul Nil = undefined;
mul (Cons x Nil) = undefined;
mul (Cons m (Cons n s)) = n * m;

sub Nil = undefined;
sub (Cons x Nil) = undefined;
sub (Cons m (Cons n s)) = n - m;

div Nil = undefined;
div (Cons x Nil) = undefined;
div (Cons m (Cons n s)) = n / m;

pop n Nil = Nil;
pop n (Cons x xs)

| n == 0 = Cons x xs
| otherwise = pop (n-1) xs;

makeC f t = if (f > t)
then Nil
else Cons (PUSH f) (Cons ADD (makeC (f+1) t));

makeCode f t = Cons (PUSH f) (makeC (f+1) t);

value code = case (execute code) of {
Cons x xs -> x;
Nil -> undefined

};

main = value (makeCode 1 400)

Figure 4.23: The execute program.

65

4.3. RESULTS

Figure 4.24: A hotspot profile of execute program.

Instead of delaying the addition and removal of stack elements, it is far more
efficient to replace the top two elements of the stack by their sum through pat-
tern matching in the definition of the ADD instruction. This replacement can be
achieved by modifying the third equation of exec as follows:

exec (Cons ADD c) (Cons f (Cons s ss))
= exec c (Cons (s+f) ss);

However, we are still faced with accumulated suspensions of summation propor-
tional to the occurrences of ADD in the code. One remedy is to force addition
using seq as shown below (in a similar manner to the previous section).

exec (Cons ADD c) (Cons f (Cons s ss))
= let added = s + f

in seq added (exec c (Cons added ss));

The effect of these modifications is a reduction to about half of the memory de-
mands.

The new profile in Figure 4.26 reveals four hotspots comprising the list of in-
structions. From the hotspot-construction graph, it seems that the list of instruc-
tions is retained. This is surprising as code is generated by need and discarded in
the process of execution — by makeC and exec, respectively. This leaves us with
what triggers the execution machinery:

66

4.3. RESULTS

Figure 4.25: An individual hotspot profile of the pop hotspot.

value code = case (execute code) of {
Cons x xs -> x;
Nil -> undefined

};

Here, the intention is to execute code (a list of instructions) and extract a value
from the head of the resulting list. Unfortunately, this rather innocent looking
code leads to a space leak connected with the implementation of case expres-
sions: the argument code cannot be released until the application execute code
has been evaluated. As a consequence, the entire list of instructions is unnecessar-
ily retained until a result is returned, which is just before the program completes
its execution. This problem can be solved by stack stubbing (e.g. see Section A.6
in [61]) which in this instance would overwrite the stack pointer to the argu-
ment code with a STUB node, thereby preventing the list of instructions from being
retained. However, there is also a simpler fix at source level: we merge code
generation and extraction, as shown below.

value f t = case (execute (makeCode f t)) of {
Cons x xs -> x;
Nil -> undefined

};

The hotspot profile after the modifications above is shown in Figure 4.27. Com-
pared to the overall cost of the profile in Figure 4.24, the gain is a heap reduction
of about 99%. The final version of this abstract machine executes code in constant
space.

67

4.3. RESULTS

Figure 4.26: A hotspot profile of execute program after strictifying the stack.

Figure 4.27: A hotspot profile of execute program after removing the code argu-
ment from value.

68

4.3. RESULTS

4.3.3 Evaluation

So what have we achieved? Using the hotspot profile allowed us to locate hotspots
and therefore reduce the overall cost of the maxc program (in Section 4.3.1) and
the execute program (in Section 4.3.2) by 98% and 99%, respectively.

Over the original construction, producer and lifetime heap profiles (e.g. in [1]
[17][54]), hotspot profiling provides two notable advantages. Furnishing a heap
section with several attributes can be more productive than iteratively applying a
profile of a different kind to gather information about memory, particularly pro-
ducer and construction profiles since they are usually first resort. Most importantly,
the ability to pinpoint a hotspot by occurrence rather than a reference to an en-
tire body of a function can give an insight into the space behaviour of parts of
expressions with the aid of additional information about hotspots.

The individual hotspot profiles are helpful mostly to investigate memory char-
acteristics of hotspots. For most of the hotspots that we have encountered, their
lifetime profiles indicate that heap cells are long-lived. Our immediate question
was “who retains these hotspots?” To answer this question, we had to use our
knowledge of lazy evaluation and the underlying implementation. A retainer-by-
occurrences profile would have therefore enhanced the profiling experience by
several factors.

Classifying hotspots by predefined temperatures highlights those associated
with the highest amount of heap contribution. In general, it is easier to deal with
space leaks caused by a few hotspots with a focus on the most space-demanding
ones. For many programs, the default temperatures (i.e. 10%+, 20%+ and 40%+)
provide a good heap distribution for hotspots. However, this is not always the
case. Using the default temperatures for the execute program in Section 4.3.2,
we encountered six hotspots; raising the minimum (yellow) temperature by 2%
ruled out four hotspots which allowed us to focus on the two hotspots associated
with the highest percentage of heap memory. Ignoring occurrences occupying less
than 10% is remarkably effective. It rules out occurrences with even distribution
of a small heap contribution in a profile, which then focuses on hotspots.

The effectiveness of hotspot profiling greatly depends on the program at hand.
Not all programs have hotspots. However, many of the programs we have profiled
do have one or more hotspots. Often, space occupied by these hotspots can be
reduced by a simple reformulation of the source program. This was the case in
Section 4.3.1 and 4.3.2. The hotspot profiler is of no help for programs that have
no hotspots. These programs tend to have even distributions of heap memory. An
example of this is the tautology checker program in [2, Chapter 10]. As shown in
the hotspot-construction profile of Figure 4.28, there are no hotspots. Heap space
is evenly distributed. The corresponding ordinary construction profile shown in
Figure 4.29 is more informative. This program seems well-behaved.

In many ways, our heap profiling implementation resembles the heap profiling
system in [1][17] and it suffers from the same problem: there is no direct means
of differentiating between many instances of the same function application unless
otherwise renamed.

So far we have illustrated the use of the hotspot profiler on small and limited
programs. In Chapter 6, we demonstrate hotspot profiling for a larger and more
complex program with further evaluation.

69

4.3. RESULTS

Taut.pu -hs 1,225,180,000 bytes x bytes

bytes0 200k 400k 600k 800k

b
y
te

s

0

200

400

600

800

1,000

1,200

U

Figure 4.28: A hotspot-construction profile for the Taut program.

Taut.pu -c 1,216,680,000 bytes x bytes

bytes0 200k 400k 600k 800k

b
y
te

s

0

200

400

600

800

1,000

1,200

zipP

Nil

mapZip

mapProp

eval

True

False

Int

mapFalse

bools

And

append

-

Implies

mapTrue

Var

Cons

Figure 4.29: A construction profile for the Taut program.

70

Chapter 5

A Stack Profiler

ïż£In this chapter, we introduce a stack profiler which provides summary charts
for producers of stack frames and the constructions they represent. Section 5.1
explains the motivation for stack profiling. Section 5.2 presents the design of the
stack profiler for producers and constructions. Section 5.3 presents a scheme for
attaching profiling information to the stack. Section 5.4 describes the implemen-
tation of the stack profiler for a lazy functional language. Section 5.5 concludes
with illustrative applications of stack profiling to programs.

5.1 Motivation

For the last two decades, various lazy functional implementations have offered the
programmer heap profiles which yield valuable information about memory. How-
ever, space leaks causing stack overflows are common in functional programming,
partly as a result of the recursive nature of function definitions. Programmers
are pressing for tools to diagnose stack space memory [74]. So we investigate
the design and implementation of a stack profiler which yields information about
memory in a similar manner to heap profiles.

5.2 Stack Profiling

Recall from Section 3.3 that the abstract G-machine is a stack-based implementa-
tion executing lazy functional programs by way of normal-order graph reduction.
The stack is used to maintain the evaluation of function applications by storing
pointers to function arguments and to the sub-expressions of instantiated bodies
of functions in a dump of stacks.

In practice, graph reduction is implemented by way of stack frames1. Stack
content is a series of frames for dynamically nested function applications. Stack
frames are dynamically allocated (pushed) and deallocated (popped) from the
stack with function calls, in a last-in-first-out manner.

When a program is executed, the stack memory dynamically grows and shrinks
with the chain of nested function applications. As a function call is made, a new
frame is stored in stack memory, as the function returns, the frame memory is

1Also called activation records, call stack or runtime stack.

71

5.2. STACK PROFILING

restored for later re-use. When the supply of stack memory runs out, the imple-
mentation terminates execution, raising a stack overflow.

In current implementations of functional languages, stack overflows are notori-
ous. The programmer writes elegant recursive definitions but the implementation
may impose excessive stack space demands. When a stack overflow strikes, the
programmer might raise several questions analogous to that of heap memory [1],
for example, “Which functions occupy most of the stack frames?”, “Who intro-
duced those frames into the stack?” We provide a stack profiler which supplies the
programmer with answers to these questions.

The stack profiler is implemented in two components: an instrumented com-
piler which generates profiling information and a post-processor which transforms
profiling information to graphical form.

The instrumented compiler marks every stack frame with two tags. These tags
identify:

• The (immediate) function that produced the frame in the stack.

• The construction that the stack frame represents.

For producers, we take the names of top-level functions. The initial stack frame
is reserved for the SYSTEM and tagged accordingly. For constructions, we take
the name of the function component of a closure. Every stack frame is assumed to
represent a (yet to be evaluated) closure. We say more about marking frames with
constructions and producers in Section 5.3.

When a program is executed for profiling, the profiler suspends execution at
specified intervals for a stack census: the implementation traverses the runtime
stack, collecting population counts and information from each frame. After stack
traversal is complete, the gathered information is logged in a file and the execution
of the program is resumed. When execution terminates, the log file includes a
profile of stack frames at each interval.

A post-processor transforms a stack profile to a graphical chart. An example
stack chart is shown in Figure 5.1. The overall shape of the graph shows how
the amount of stack storage (vertical axis) varies over the stack allocation counts
(horizontal axis) that the program takes to execute. Stack storage and allocation
counts are measured in bytes. In this example, the stack reaches a peak of about
400 bytes over approximately 6 kb of stack allocations. The profiling overheads
are excluded from the chart.

The title in the top area of the stack profile is in three parts: the name of the
profiled program followed by profiling options, a measure of the overall stack cost
of the program in bytes (stack storage) × bytes (stack allocation counts).

Bands in the graph show the amount of storage occupied by stack frames
tagged with each of the identifiers in the keys to the right of the graph. The
graph in Figure 5.1 is a construction profile, so each key identifies the top-level
function whose applications the stack frames represent.

The graphical presentation of stack profiles is similar to the original heap pro-
files in [1]. Indeed, we use the heap profile post-processor (in Appendix B) to
generate stack charts.

72

5.3. TAGGING THE STACK

sumChops.pu -c 1,484,000 bytes x bytes

bytes0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

b
y
te

s

0

50

100

150

200

250

300

350

take

sumChop

-

chop

foldr

drop

foldrSum

Figure 5.1: A stack profile example.

5.3 Tagging the Stack

In this section we describe a scheme for tagging stack frames with constructions
and producers, focusing on construction of frames. We first start by describing
execution machinery in relation to the runtime stack.

In our implementation of the G-machine, the stack frame configuration of an
executing function is shown in Figure 5.2 [11]. The stack grows downwards and
the frame in discussion is on top of the runtime stack. The section at the bottom of
the frame includes bookkeeping information associated with each frame to main-
tain the runtime stack, in particular the return address which points to the code
sequence of the caller, to be executed when the current function returns, and the
old frame pointer which links stack frames together. The top frame is associated
with two registers: the frame pointer (fp) which points to the old frame pointer
and the stack pointer (sp) which points to the top of the stack. This implementa-
tion technique is reminiscent of stack frames of imperative languages. The section
on top of the bookkeeping information, starting from the pointer to the root of
the current redex (or current function), the arguments to the function and the
intermediate values of the function, we term the frame context.

Therefore, during the execution of a function, its arguments are on top of the
stack and beneath them remain a pointer to the root of the function application to
be updated with the result of the function application. The execution of a function
in relation to a stack frame is performed as follows.

When a call to a nested function is made a new stack frame is allocated on top
of the current stack, pushing bookkeeping information on top of the frame with
the return address as part of the call. The root of the function application is pushed
onto the top of the stack and the machine enters the UNWIND state; the spine of
the function application graph is unwound, pushing pointers to the (unevaluated)
arguments of the function along the way on the stack. Subsequently, the execution

73

5.3. TAGGING THE STACK

of the current function begins, pushing pointers to its required arguments, and to
the sub-expressions of the current function body as it is built on top of the stack.
Meanwhile, if a nested function within the body of the current function is called,
a new stack frame is allocated for the evaluation of the nested function. When
execution of the current function completes, the root of the function application
graph is updated with a result, a jump is made to the return address and the
current stack frame is popped off the stack, leaving a pointer to the updated result
on top of the restored frame. The caller continues its execution and this cycle is
repeated for function applications.

(rest of stack)

return address

old frame pointer

Root of redex

Arg n

Arg 1

Arguments

Intermediate
values

fp

sp

Figure 5.2: The stack configuration of an executing function. Some components
of the stack frame are excluded to simplify discussion.

The construction of a frame can be regarded as the name of the executing
function. The producer of a frame can be regarded as the name of the top-level
function which allocates a stack frame for a function application.

The construction of a frame can be identified by the function component name
of the function application closure, pointed to by the root below the argument
pointers in a frame context. This can be achieved by tagging the heap cells repre-
senting the application nodes with a function name. Our heap profiling tool does
precisely this (see Section 4.2). Thus, we obtain the construction of a stack frame
from the construction tags of heap cells. The producer of a frame is identified by
the top-level function which allocates a frame for a function application. And so
tagging frames is performed as follows.

We extend every stack frame with a marker which points to profiling informa-
tion identifying the producer and the construction. When a new stack frame is
allocated, the marker is pushed on top of the frame and permanently stored until
the frame is popped off the stack. As a result, the construction of every frame is
identified by the name of the executing function regardless of the frame context.
For example, a frame is tagged with the name of a corresponding function, even
when the function application has been computed and the root of the function
application is updated with a result.

A downside of this tagging scheme is that a frame may need to be re-tagged
in the presence of tail-call optimisation: a tail-call re-uses the old stack frame to

74

5.4. IMPLEMENTATION

represent another call.

5.4 Implementation

Our implementation of Pure has an instrumented compiler and runtime system for
a stack profiler. The modifications of the compiler for stack profiling are similar to
the instrumentation for heap profiling, as described in Section 4.2.2.

There are also additional modifications to the runtime system to profile the
stack. We extend every stack frame with a marker to accommodate static tags
which carry information about stack frames determined at compile-time. Space
is reserved for a marker which points to the profile information supplied by the
compiler. For example, Figure 5.3 demonstrates how a stack frame for the function
application (sum 100 50) is tagged. Static tags identify two kinds of information:
the function that produced the stack frame and what construction it represents.

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

(rest of stack)

return address

old frame pointer

"sum"

(construction)

"id"

(producer)

@

sum

50

100

fp

sp

1

First graph:

〈0, @〉

〈1, @〉

〈0, sum〉

〈1, sum〉

〈2, 50〉

〈3, 60〉

〈4, 90〉

1

First graph:

〈0, @〉

〈1, @〉

〈0, sum〉

〈1, sum〉

〈2, 50〉

〈3, 60〉

〈4, 90〉

1

(rest of stack)

return address

old frame pointer

Root of redex

Arg n

Arg 1

Arguments

Intermediate

values

fp

sp

1

(rest of stack)

return address

old frame pointer

Root of redex

Arg n

Arg 1

Arguments

Intermediate

values

fp

sp

1

Figure 5.3: An example of a tagged stack frame.

In our implementation, EVAL is the only instruction which allocates a stack
frame (see Section A.2.2 of Appendix A). So marking frames with static tags is
performed by instrumenting EVAL as follows. When a function call is made, the
EVAL instruction allocates a new stack frame, pushing a marker associated with
the construction of the function call and the producer of the allocated stack frame.

Attributing the cost of a stack frame to a producer or a construction is per-
formed naturally by traversing the stack for samples in a top-bottom fashion.
Garbage collection provides a natural opportunity to traverse the stack for a sam-
ple. The cost of sampling is reduced by combining garbage collection and stack
sampling. Additionally, this provides consistency between stack and heap profiles.
The runtime stack is sampled every b bytes of stack allocations, where b is defined
when a program is executed. This way, increasing the interval frequency allows
previously hidden stack spikes to be captured in a profile.

Of course, before the runtime stack is traversed, the graph on top of the stack
must be in a proper form for the sampling results to be consistent; the nodes form-
ing the graph of a function application are constructed in the heap and there must
be no stack frames for a weak-head-normal node on top of the stack. Sampling
the stack is performed when code for a function is entered, right before the ENTER
instruction is executed (see Section A.2.2 of Appendix A). This ensures there is no

75

5.4. IMPLEMENTATION

frame for a WHNF node on top of the stack and that all of the roots of the function
application are present on top of the runtime stack. And so sampling works as
follows.

We extend the runtime system of Pure with an allocation meter which ticks
at stack allocations; the meter value increases by the size of each new stack ele-
ment in bytes. Before a function is entered, a test is performed by a meter-handler
which detects if a sampling interval has elapsed. If so, a sampler is invoked which
suspends graph reduction for a census of the stack, garbage collection is performed
and the stack is traversed to collect population counts of stack frames by aggregat-
ing the bytes associated with each stack item of a stack frame. After stack traversal
is complete, a census is recorded in a log file. The implementation resets the meter
and execution is resumed for another sample.

Our implementation uses the semispace copying garbage collection algorithm of
Cheney [72, Chapter 4], extended to cope with frames markers. The stack traver-
sal for a census is performed during the evacuating phase of the garbage collector;
population counts of stack frames are collected when the heap cells pointed to by
the stack are evacuated from the old heap (from-space) to the new heap (to-space),
ignoring the space occupied by the markers in the stack. Consequently, the logged
censuses exclude profiling overheads.

The censuses themselves are stored in a text file with a similar structure to files
recording heap censuses. A census consists of a header identifying the stack allo-
cation count at which the census was taken in bytes, followed by census records.
Each census record comprises a marker and corresponding stack-frame population
count in bytes. The marker associates frame population counts with the static
attributes of stack frames (i.e. producer and construction) in a table record. For
example, the census records

CENSUS 8000
12 880
16 692
22 244

report 880 bytes occupied by the stack frame annotated with the marker 12, 692
bytes by the stack frame with a marker 16 and 244 bytes attributed to the stack
frame marked with 22.

A separate program (ME2G in Appendix B) post-processes the census file to
generate a stack profile (or chart) in a graphical form, particularly producer, con-
struction profiles and their restrictions. Note that, because we have preserved the
stack frame markers and the information that they point to (in a profile table),
these profiles can be generated without re-executing a program for profiling. We
also provide hotspot profiling for the stack.

Our implementation of stack profiling is rather reminiscent of a heap profiler.
Indeed, we have re-used profiling techniques from Chapter 4 for sampling the
runtime stack.

76

5.5. RESULTS

5.5 Results

In this section we apply stack profiling to a series of programs written in the Pure
language. We conclude with an evaluation of stack profiling.

5.5.1 The sumChops program

We begin with the sumChops program in Figure 5.4. The sumChops program is
defined in terms of the function sumChops which takes an integer n as its first
argument and a list of positive integers xs as its second argument. The list xs is
chopped into sections, each of n elements. The result is a list of section sums. For
example, consider the following expression:

sumChops 2 (Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))));

mkList f t
| f == t = Cons f Nil
| f < t = Cons f (mkList (f+1) t);

take n Nil = Nil;
take n (Cons x xs)

| n == 0 = Nil
| otherwise = Cons x (take (n-1) xs);

drop n Nil = Nil;
drop n (Cons x xs)

| n == 0 = Cons x xs
| otherwise = drop (n-1) xs;

chop n xs = case xs of {
Cons y ys -> Cons (take n xs)

(chop n (drop n xs));
Nil -> Nil };

foldr xs = foldrSum 0 xs;

foldrSum e Nil = e;
foldrSum e (Cons x xs) = sum x (foldrSum e xs);

sum x y = x + y;

sumChops n xs = sumChop (chop n xs);

sumChop Nil = Nil;
sumChop (Cons x xs) = Cons (foldr x) (sumChop xs);

main = sumChops 500 (mkList 1 1000)

Figure 5.4: The sumChops program. The function chop is based on the function
chop8 in [2, Section 7.6].

77

5.5. RESULTS

Here, the function sumChops chops the list into two sections, the first containing
the first two elements of the list and the second containing the last two elements
of the list. Each section is summed to give a list of the sums. The value of the
expression above is therefore: Cons 3 (Cons 7 Nil).

For this illustration, we use the function mkList to produce a list of one thou-
sand elements and the function sumChops to chop this list into two parts.

The first stack profile that we produce is the construction profile of Figure 5.5.
The stack grows, reaching a peak of about 12 kb twice, over approximately 60 kb
of stack allocations. Most of the accumulation of stack space is associated with
the application of the function foldrSum. Who produces the stack frames for the
applications of the function foldrSum? The producer profile in Figure 5.6 shows
it is the top-level function sum.

Investigating the definitions of the functions foldrSum and sum, the problem is
apparent.

foldrSum e Nil = e;
foldrSum e (Cons x xs) = sum x (foldrSum e xs);

sum x y = x + y;

The function sum is strict in its arguments. So when the function application
of sum in the second equation of foldrSum is applied, the function sum allocates a
stack frame (by the second argument of the + operator) for the evaluation of the
expression (foldrSum e xs). This cycle is repeated recursively, pushing a series
of frames on the stack for the evaluation of the function foldrSum to sum a list
proportional to the elements of the list argument. The summation of the list is
accumulated and not computed until the base element of the function foldSum is
applied to the last summation (from the right-hand side). Meanwhile, foldrSum
retains its arguments. The first spike in Figure 5.5 is associated with the folding
of the first section of the list and the second spike is associated with the folding of
the second section of the list.

sumChops.pu -c 279,924,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k

b
y
te

s

0k

2k

4k

6k

8k

10k

-

take

foldrSum

Figure 5.5: A construction profile for sumChops.

78

5.5. RESULTS

sumChops.pu -p 280,154,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k

b
y
te

s

0k

2k

4k

6k

8k

10k

SYSTEM

foldrSum

sum

Figure 5.6: A producer profile for sumChops.

Folding a list from right to left using a strict function is a pitfall; it requires
the elements of an entire list to be processed before returning a value. In such
situations, a better technique is to fold from left to right using an accumulator for
the summation of the list. The function foldl is the fold version which achieves
this:

foldl xs = foldlSum 0 xs;

foldlSum e Nil = e;
foldlSum e (Cons x xs) = foldlSum (sum e x) xs;

The construction and producer profiles after replacing the function foldr with
foldl are shown in Figure 5.7 and Figure 5.8, respectively.

The overall area representing both stack depth and duration is reduced but
the maximum stack depth is almost unchanged. Part of the previous problem
remains: the function foldlSum accumulates nested applications of suspended
summation. Not until the function foldlSum returns can the evaluation of the
nested applications of the function sum begin, causing a spike in the stack (see
Figure 5.7) for the summation of each section of a chopped list. One remedy is to
force summations as they are accumulated, using the built-in function seq:

foldlSum e Nil = e;
foldlSum e (Cons x xs)

= let summed = sum e x
in seq summed (foldlSum summed xs);

The function seq forces the evaluation of its first argument and returns its second
argument. As a result, the sum of a previous value and a list element are eval-
uated at each iteration of the function foldlSum. A stack profile after the above
modification applied to the scale of the previous profile is shown in Figure 5.9.
The stack peak is reduced from 12 kb to about 0.1 kb. The stack (and the heap)
consume constant memory.

79

5.5. RESULTS

sumChops.pu -c 56,306,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k

b
y
te

s

0k

2k

4k

6k

8k

10k

chop

drop

foldl

-

take

sum

Figure 5.7: A construction profile after introducing the function foldl.

sumChops.pu -p 56,436,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k

b
y
te

s

0k

2k

4k

6k

8k

10k

sumChop

chop

take

SYSTEM

foldlSum

sum

Figure 5.8: A producer profile after introducing the function foldl.

80

5.5. RESULTS

sumChops.pu -c 5,786,000 bytes x bytes

bytes0 20k 40k 60k

b
y
te

s

0k

2k

4k

6k

8k

10k

sumChop

chop

drop

foldl

-

take

Figure 5.9: A construction profile after strictifying the application of sum.

5.5.2 The queens program

The next example is the queens program in Figure 5.10. What follows is a brief
summary describing the queens program. It is closely based on the summary in
[5, Chapter 6].

The queens program implements the n-queens problem. Given a chessboard
and n queens, they are placed on the chessboard so that none of the queens hold
each other in check; that is, two queens may not lie in the same column, row or
diagonal. The queens program solves this problem as follows.

A queen is placed in the first column. Then a queen is placed in the second
column at a position not held in check by the first queen. Then a queen is placed
in the third column at a position not held in check by the second and first queens.
This process is continued until all n queens have been placed on the chessboard.
This algorithm is repeated with backtracking to find all of the possible solutions.

A chessboard is represented by a list of n columns, giving for each column the
row in which a queen appears. For example, the list:

Cons 4 (Cons 8 (Cons 3 (Cons 1 Nil)))

represents a chessboard with a queen in the fourth row of the first column, eighth
row of the second column, third row of the third column, and first row of the
fourth column.

At the heart of the program is the function nsoln, which takes a number of
queens as its argument (nine in this example) and returns the number of possible
solutions (yielding 352). The function gen generates a list of queens solutions
through the functions concatMapg1 and concatMapg2. Finally, the function safe
implements the check that a new queen is not in conflict with any queen already
on the board.

For the purpose of this illustration, heap and stack profiles are both used. The
aim is to reduce the space needed for both stack and heap, with a focus on stack
space.

81

5.5. RESULTS

and False a = False;
and True a = a;

append Nil ys = ys;
append (Cons x xs) ys = Cons x (append xs ys);

concatMapg2 b Nil = Nil;
concatMapg2 b (Cons x xs) = append (genq b x)

(concatMapg2 b xs);

concatMapg1 nq Nil = Nil;
concatMapg1 nq (Cons x xs) = append (concatMapg2 x (toOne nq))

(concatMapg1 nq xs);

length Nil = 0;
length (Cons x xs) = 1 + length xs;

nsoln nq = length (gen nq nq);

gen nq n = case (n == 0) of {
True -> Cons Nil Nil;
False -> concatMapg1 nq (gen nq (n - 1))
};

genq b q = case (safe q b) of {
True -> Cons (Cons q b) Nil;
False -> Nil

};

safe q b = safe ’ q 1 b;

safe ’ x d Nil = True;
safe ’ x d (Cons q l) =

and (x /= q) (
and (x /= (q + d)) (
and (x /= (q - d)) (
safe ’ x (d + 1) l)));

toOne n = case (n == 1) of {
True -> Cons 1 Nil;
False -> Cons n (toOne (n - 1))
};

main = nsoln 9

Figure 5.10: The queens program.

82

5.5. RESULTS

queens.pu -c 789,656,000,000 bytes x bytes

bytes0 5M 10M 15M 20M 25M 30M 35M 40M 45M

b
y
te

s

0k

5k

10k

15k

20k

25k

toOne

Nil

-

concatMapg2

concatMapg1

append

length

Int

Cons

Figure 5.11: A heap construction profile of queens.

queens.pu -p -c[Cons] 633,100,000,000 bytes x bytes

bytes0 5M 10M 15M 20M 25M 30M 35M 40M 45M

b
y
te

s

0k

2k

4k

6k

8k

10k

12k

14k

16k

18k

20k

22k

append

genq

Figure 5.12: A heap producer profile restricted to Cons.

83

5.5. RESULTS

queens.pu -c 80,092,000,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M 12M

b
y
te

s

0k

2k

4k

6k

8k

safe

main

safe’

append

concatMapg2

concatMapg1

and

length

Figure 5.13: A stack construction profile of queens.

queens.pu -p -c[length] 73,146,000,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M 12M

b
y
te

s

0k

2k

4k

6k

8k

length

Figure 5.14: A stack producer profile restricted to length.

84

5.5. RESULTS

The construction heap profile of queens is in Figure 5.11. Heap space steadily
increases, reaching a peak of about 30 kb in a computation involving about 50 Mb
of heap allocation in total. The majority of heap space is associated with Cons. As
shown in Figure 5.12, the bulk of these Conses are produced by the function genq.
This information suggests that the list of queens is accumulated and retained in
the heap.

Seeking further information, we apply the stack profiler. Figure 5.13 is a con-
struction profile. Stack depth increases with a peak of approximately 10 kb in
about 16 Mb of stack allocations. The majority of stack frames are for applications
of the function length. The producer of these stack frames is the function length
itself (see Figure 5.14). Investigating the definition of length below, a problem is
apparent:

length Nil = 0;
length (Cons x xs) = 1 + length xs;

the function length traverses the entire list to compute the number of solutions
for n-queens, and at every recursive call to length, a stack frame is allocated to
for the application of length, which retains its argument. From this information
it seems that the function length is accumulating the Conses (Figure 5.11) in the
heap. Avoiding stack allocation for length can be achieved by modifying length
as follows:

length xs = length ’ 0 xs;

length ’ acc Nil = acc;
length ’ acc (Cons x xs) = let summed = acc + 1

in seq summed (length ’ summed xs);

Here, length’ forces the summation using seq and passes the summation as an
argument. The results are shown in the stack profile of Figure 5.15 and the heap
profile of Figure 5.16. Stack space is reduced from a peak of about 10 kb to
approximately 0.9 kb, and heap space is reduced from about 30 kb to 1.4 kb.

Looking at the heap producer profile (Figure 5.16), it seems that the program’s
memory-consumption problems are solved. However, looking at the stack pro-
ducer profile (Figure 5.15) now draws attention to the functions append and and
as the main producers of stack frames.

Even though stack depth is less than 1 kb (Figure 5.15), let us reduce stack
space further.

The function and appears in the definition of the function safe’ (an auxiliary
of safe). Examining the definition of safe’, a problem is apparent:

safe ’ x d Nil = True;
safe ’ x d (Cons q l) =

and (x /= q) (
and (x /= (q + d)) (
and (x /= (q - d)) (
safe ’ x (d + 1) l)));

the function safe’ recursively calls itself if x and q do not conflict. At each recur-
sive call the function and allocates a stack frame, increasing stack depth. One way
to reduce stack depth is to write a tail-recursive version of safe’, replacing every
rule with an auxiliary function as follows.

85

5.5. RESULTS

queens.pu -p 7,256,000,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M 12M

b
y
te

s

0

200

400

600

800

genq

SYSTEM

and

append

Figure 5.15: A stack producer profile after introducing length’.

queens.pu -p 53,454,000,000 bytes x bytes

bytes0 5M 10M 15M 20M 25M 30M 35M 40M 45M

b
y
te

s

0

200

400

600

800

1,000

1,200

-

gen

/=

genq

concatMapg1

safe’

concatMapg2

toOne

append

Figure 5.16: A heap producer profile after introducing length’.

86

5.5. RESULTS

safe ’ x d Nil = True;
safe ’ x d (Cons q l) = diagonalL x d q l;

diagonalL x d q l = if x /= (q - d) then diagonalR x d q l
else False;

diagonalR x d q l = if x /= (q + d) then sameRow x d q l
else False;

sameRow x d q l = if x /= q then safe ’ x (d + 1) l
else False;

The new stack producer profile on the same scale as the previous one is in
Figure 5.17. Stack space is reduced from a peak of about 0.9 kb to a peak of
approximately 0.6 kb.

The problem is now clearly the remaining stack space produced by append
which appears in the definitions of concatMapg1 and concatMapg2. The function
append is used to implement the “list of successes” technique for the possible solu-
tions of n-queens [75]; for example, a failure of a queen insertion is represented by
Nil. However, this can be inefficient, as it requires concatenating every solution:
the construction Nil is used only to be discarded by append. It is more efficient to
construct the list of solutions as they are generated. One way of achieving this is to
merge concatMapg2 and genq, and to replace the calls to append by continuations
as follows.

concatMapg2 b Nil nq ys = concatMapg1 nq ys;
concatMapg2 b (Cons x xs) nq ys =
case (safe x b) of {
True -> Cons (Cons x b) (concatMapg2 b xs nq ys);
False -> concatMapg2 b xs nq ys
};

concatMapg1 nq Nil = Nil;
concatMapg1 nq (Cons x xs) = concatMapg2 x (toOne nq) nq xs;

The new stack profile is the producer profile in Figure 5.18 shown on the same
scale as the previous stack profile. The final result is a reduction of stack space
from approximately 10 kb to about 0.2 kb. The heap profile is shown in Figure
5.19. Reducing stack space also led to a reduction in heap space from approxi-
mately 30 kb to about 0.6 kb.

From these memory profiles it seems that there could even be scope for yet
further memory reduction, for example, by sharing the list that is produced by the
function toOne shown in the heap profile of Figure 5.19.

The final version of queens takes much less memory and it executes much
faster.

87

5.5. RESULTS

queens.pu -p 4,113,600,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M

b
y
te

s

0

200

400

600

800

genq

SYSTEM

append

Figure 5.17: A stack producer profile after modifying safe’.

queens.pu -p 1,242,800,000 bytes x bytes

bytes0 2M 4M 6M 8M

b
y
te

s

0

200

400

600

800

toOne

concatMapg2

concatMapg1

SYSTEM

Figure 5.18: A stack producer profile after removing append.

88

5.5. RESULTS

queens.pu -p 8,532,000,000 bytes x bytes

bytes0 5M 10M 15M

b
y
te

s

0

200

400

600

800

1,000

1,200

+

sameRow

-

gen

concatMapg2

toOne

Figure 5.19: A heap producer profile after removing append.

5.5.3 Evaluation

We have applied the stack profiler to observe the stack memory behaviour of two
programs: the sumChops program in Section 5.5.1 and the queens program in
Section 5.5.2. For the sumChops program, stack space is reduced from a peak of
approximately 12 kb to about 0.1 kb. For the queens program, stack space is
reduced from a peak of about 10 kb to approximately 0.2 kb.

The method of stack profiling is similar to heap profiling (e.g. in [1]): pro-
filing is iteratively applied to obtain stack frame producers, construction or their
combinations.

Stack profiles are simpler than heap profiles, since stack contents are closures
and heap contents are closures and constructors. Thus, a stack profile can helpfully
draw a programmer’s attention to components with high demands for memory in a
simpler way than a heap profile. However, the simplicity of stack profiles can also
mean that they lack information that may sometimes be necessary to understand
the cause of excessive stack demands.

Stack profiles can shed light on space leaks that are not fully apparent in heap
profiles. An example of this is the indirect influence on heap memory by the
function length, whose application frames occupied the stack (see Figures 5.11
and 5.14). Similarly, heap profiles can shed light on space leaks that are not fully
apparent in stack profiles. An example of this is the space leak caused by the
function toOne (see Figures 5.18 and 5.19).

A good technique is to obtain both heap and stack profiles. Each profile may
point to different sources of space leaks.

In Section 5.5.2, a dramatic reduction in stack memory also led to a dramatic
reduction in heap memory. However, this is not always the case. After reducing
the stack memory of the compile program (which is a version of the arithmetic
code evaluator in [2, Chapter 13]) to about a peak of 80 b (see Figure 5.20), a
space leak remained in heap memory (see Figure 5.21).

89

5.5. RESULTS

The GHC heap profiling system, a state-of-the-art compiler for Haskell, provides
an option to include stack space in heap profiles. However, stack memory is aggre-
gated to a single undifferentiated category in memory which bears no relation to
the source program. An example is the construction profile in Figure 5.22, stack
space is associated with the key STACK.

Our construction profiles for the stack cannot distinguish between different in-
stances of function applications. For example, a construction profile of the queens
program reported the function append. In the source of the queens program,
append is only used in the body of two functions (other than append itself). How-
ever, if append is used in many other functions we have no ready way of distin-
guishing which instance of append is causing excessive stack demands, other than
calling the append function under different names.

So far, stack profiling has been illustrated for small programs. However, in
Chapter 6 a larger program is used to evaluate stack profiling further.

compile.pu -c 3,328,000 bytes x bytes

bytes0

b
y
te

s

0k

2k

4k

6k

8k

expr

+

compile

main

Figure 5.20: A stack construction profile of compile.

90

5.5. RESULTS

compile.pu -c 374,373,000 bytes x bytes

bytes0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k

b
y
te

s

0k

2k

4k

6k

8k

Nil

compile

Int

ADD

Cons

Figure 5.21: A heap construction profile of compile.

queens +RTS -xt -hd 12,381 bytes x seconds

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2

b
y
te

s

0k

20k

40k

60k

TSO

Handle__

Cons

<main:Main.toOne_sMI>

<ghc-prim:GHC.CString.sat_s4l>

<main:Main.sat_sR7>

<main:Main.sat_sQY>

<main:Main.sat_sR9>

<main:Main.sat_sQT>

<main:Main.sat_sQV>

MUT_ARR_PTRS_CLEAN

:

BLACKHOLE

ARR_WORDS

STACK

Figure 5.22: A construction profile produced using the GHC (version 7.4) profiling
system with stack space included. This profile is of the queens program with 10
queens as input.

91

Chapter 6

Clausify Revisited

In this chapter we briefly revisit the clausify program to further demonstrate the
use of our hotspot (Chapter 4) and stack (Chapter 5) profiling systems. Section 6.1
sets out our motivation for profiling clausify. Section 6.2 describes the clausify
program in summary. Section 6.3 shows how stack and hotspot profiles highlight
the major space leaks of clausify. Section 6.4 evaluates our profiling results.

6.1 Motivation

The clausify program was originally used by Runciman and Wakeling to intro-
duce heap profiling by producer and construction profiles [1], Runciman and Rö-
jemo to present lifetime and retainer profiles [17], Sansom to demonstrate the
results of cost-centre profiling [7], and Jarvis to evaluate the results of cost-centre-
stack profiling [8]. Furthermore, clausify appears in the standard noFib bench-
mark suite [76]. And so the clausify program serves as an interesting example
of stack, and in particular, hotspot profiling.

Such extensive profiling of clausify led to a great reduction of memory de-
mands (and execution time). Runciman and Wakeling used producer and con-
struction profiles, leading to a heap memory reduction from 1.3 Mb to 7 kb [1].
Subsequently, Runciman and Röjemo used lifetime and retainer profiles, leading
to a further heap memory reduction from 7 kb to 1 kb [17]. However, we shall
see in Section 6.3 how the information supplied by the hotspot profiler brings an
insight that might have led to such a space reduction sooner.

6.2 The clausify Program

In order to make this dissertation self-contained, we give a brief summary of the
clausify program. It is closely based on the summary in [1].

The clausify program takes a series of propositional formulae and yields their
clausal form equivalents. The transformation of a proposition to a set of clauses
can be specified by the following rules:

• elim eliminates equivalence and implications:

p = q → (p⇒ q) ∧ (q ⇒ p)

p⇒ q → ¬p ∨ q

92

6.2. THE CLAUSIFY PROGRAM

• negin makes negations the innermost connectives:

¬¬p → p

¬(p ∨ q) → ¬p ∧ ¬q
¬(p ∧ q) → ¬p ∨ ¬q

• disin pushes disjunctions within conjunctions:

p ∨ (q ∧ r) → (p ∨ q) ∧ (p ∨ r)
(p ∧ q) ∨ r → (p ∨ r) ∧ (q ∨ r)

• split splits up conjuncts:

p ∧ q → p

q

• unicl forms a set of unique non-tautologous clauses:

q1 ∨ . . . ∨ qn ∨ ¬p1 ∨ . . . ∨ ¬pm → ({q1, . . . , qn}, {p1, . . . , pm})

A clause (qs, ps) is tautologous if (qs ∩ ps) 6= ∅.

The abstract syntax of propositional formulae is represented by the Formula
data type. Note that we have used Int for symbols to represent characters:

data Formula = Sym Int
| Not Formula
| Dis Formula Formula
| Con Formula Formula
| Imp Formula Formula
| Eqv Formula Formula;

The heart of the program is a “pipeline” which combines the transformation
rules using several functions. Each function corresponds to one of the rules listed
above:

clauses p = unicl
(split
(disin
(negin
(elim p))));

For the purpose of profiling (see Section 6.3), we use the following proposition
from Runciman and Wakeling [1] so that our profiles are comparable:

(a = a = a) = (a = a = a) = (a = a = a)

Although the transformation rules reduce this proposition to the single clause
({a}, ∅), the intermediate formulae involved in the transformations are extensive.

The source listing for clausify is contained in Appendix C. This version is
based on version 0 listed in [1]. Our version of clausify is modified to first-
order applications and simplified to exclude parsing propositional formulae and
formatting output results (clausal axioms). This simplification enables clausify
to be accepted by the Pure implementation.

93

6.3. COMPARING CLAUSIFY MEMORY PROFILES

6.3 Comparing clausify Memory Profiles

We now show how the stack profiler (Chapter 5) and the hotspot profiler (Chapter
4) are useful in comparison with the original producer and construction profiles
[1]. The clausify program has been extensively profiled using heap profiling
systems [1][7][17].

The first heap profiles in this illustration differ a little from those in [1] as a
result of different compiler implementation techniques.

The first heap profiles for clausify are the producer profile in Figure 6.1 and
the construction profile in Figure 6.2. Both of these profiles show live heap mem-
ory steadily increasing with a peak of approximately 700 kb in a computation
involving about 10 Mb of heap allocation in total. There is an apparent accumu-
lation of heap cells throughout the computation which are produced by functions
appearing in different sites of the program. Most notable is disin, which takes
part in the clausify pipeline. The first version of clausify suffers from space
leaks and, therefore, this accumulation of heap cells is not a surprise. However,
just by looking at these heap profiles alone, the problem is not fully apparent. And
so we resort to a different part of memory, the stack.

Our first stack profile for the clausify program is the construction profile in
Figure 6.3. What appeared insignificant in heap memory now appears signifi-
cant in stack memory: the majority of stack frames are occupied by the function
foldrUnicl. Stack depth increases, reaching a peak of about 160 kb for the nested
applications of foldrUnicl. Who produces the stack frames for foldrUnicl?

The producer profile in Figure 6.4 shows the function unicl’ (an auxiliary of
unicl). The functions unicl, unicl’ and foldrUnicl are defined as follows.

unicl a = foldrUnicl Nil a;

unicl ’ p x = let cp = clause p
in
if tautclause cp then x else insertPair cp x;

foldrUnicl z Nil = z;
foldrUnicl z (Cons x xs) = unicl ’ x (foldrUnicl z xs);

Here, foldrUnicl demands the list of conjuncts and recursively applies unicl’
to every element of this list from right to left, folding conjunctive propositions to
their clausal forms. That is, the formulation of foldrUnicl and unicl’ is tail-
strict, causing unicl to demand its input before any output is given. On every
iteration, a stack frame is allocated for the applications of foldrUnicl, leaving a
pointer to the first argument of unicl’ pending on the stack.

With this information, and looking at the clausify pipeline:

clauses p = unicl (split (disin (negin (elim p))));

it seems that the function unicl, the last transformation rule applied, accumu-
lates the structure shown in the heap construction profile of Figure 6.2 until the
computations are nearly over.

94

6.3. COMPARING CLAUSIFY MEMORY PROFILES

clausify.pu -p 3,648,527,700,000 bytes x bytes

bytes0 2M 4M 6M 8M

b
y
te

s

0k

50k

100k

150k

200k

250k

300k

350k

400k

450k

500k

550k

600k

foldrUnicl

clause’

split’

insert

disin

Figure 6.1: A heap producer profile of clausify.

clausify.pu -c 3,630,216,900,000 bytes x bytes

bytes0 2M 4M 6M 8M

b
y
te

s

0k

50k

100k

150k

200k

250k

300k

350k

400k

450k

500k

550k

600k

foldrUnicl

Pair

Nil

Cons

Dis

Figure 6.2: A heap construction profile of clausify.

95

6.3. COMPARING CLAUSIFY MEMORY PROFILES

clausify.pu -c 1,413,678,000,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M 12M 14M 16M

b
y
te

s

0k

20k

40k

60k

80k

100k

120k

foldrUnicl

Figure 6.3: A stack construction profile of clausify.

clausify.pu -p 1,413,648,600,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M 12M 14M 16M

b
y
te

s

0k

20k

40k

60k

80k

100k

120k

unicl’

Figure 6.4: A stack producer profile of clausify.

96

6.3. COMPARING CLAUSIFY MEMORY PROFILES

Runciman and Wakeling [1] have already made the observation of the space
leak caused by unicl, using their knowledge of the clausify pipeline and the
output it produces. They suggest a reformulation that is not tail-strict:

unicl ps = filterset (mapClause ps);

filterset s = filterset ’ Nil s;

filterset ’ res Nil = Nil;
filterset ’ res (Cons x xs) =

if and (not (isElem x res)) (not (tautclause x))
then Cons x (filterset ’ (Cons x res) xs)
else filterset ’ res xs;

Note that we have modified the improved version of unicl to a first-order equiva-
lent.

The result of the above reformulation is shown in the heap construction profile
of Figure 6.5. Heap space is dramatically reduced from a peak of about 700 kb to
approximately 30 kb. There is a large number of Dis constructions. Who produces
these Dis constructions?

A producer profile restricted to the construction Dis shows the function disin
(see Figure 6.6). Recall from Section 6.2 that the function disin distributes dis-
junctions over conjunctions after implications and equivalences have already been
removed from the Formula. Here is how disin is defined:

disin prop =
case prop of {
Dis p q -> case q of {

Con qq r -> Con (disin (Dis p qq)) (disin (Dis p r));
otherwise -> case p of {

Con pp rr ->
Con (disin (Dis pp q)) (disin (Dis rr q));
otherwise ->
let dp = disin p;

dq = disin q
in if or (conjunct dp) (conjunct dq)

then disin (Dis dp dq)
else Dis dp dq

}
};

Con pp qq -> Con (disin pp) (disin qq);
otherwise -> prop
};

There is a total of six occurrences of Dis constructions in the body of disin.
Which occurrences are associated with high memory demands? In their heap pro-
filing experiment looking for a remedy for the space demand of Dis constructions,
Runciman and Wakeling [1] make the following remark:

97

6.3. COMPARING CLAUSIFY MEMORY PROFILES

clausify.pu -c 124,341,300,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M

b
y
te

s

0k

5k

10k

15k

20k

25k

elim

negin

Nil

insert

Eqv

split’

Not

disin

Sym

Con

Dis

Figure 6.5: A heap construction profile after introducing filterset. This profile
corresponds to Figure 11 of [1].

clausify.pu -p -c[Dis] 96,565,500,000 bytes x bytes

bytes0 2M 4M 6M 8M 10M

b
y
te

s

0k

2k

4k

6k

8k

10k

12k

14k

16k

18k

20k

22k

disin

Figure 6.6: A heap producer profile restricted to the producers of Dis. This profile
corresponds to Figure 12 of [1].

98

6.3. COMPARING CLAUSIFY MEMORY PROFILES

“Looking at the right hand sides in the full sequence of defining clauses,
there are no less than six occurrences of Dis constructions in all. An
opportunity for improvement presents itself in a notable feature common
to all but the last of these: they appear as arguments to recursive disin
calls.”

We apply the hotspot profiler. The result is shown in Figure 6.7: the hotspot pro-
file displaying the body of disin specifically highlights the last Dis construction!
The profile suggests that there is a build-up of nested Dis constructions which are
consuming more than 40% of the heap. This leads to the intuition that disin
traverses the Formula tree from the branches dp and dq of the hotspot Dis, ap-
plying disin to all of these branches before the outermost Dis is returned. The
same problem is evident from the yellow Con hotspot. This information strongly
suggests that disin is path-strict.

The space improving reformulation suggested by Runciman and Wakeling [1]
for the function disin is listed below, where the explicit Dis constructions appear-
ing as arguments to disin have been removed using the auxiliary disin’.

disin a = case a of {
Con p q -> Con (disin p) (disin q);
Dis p q -> disin ’ (disin p) (disin q);
otherwise -> a
};

disin ’ p q =
case p of {
Con px r -> Con (disin ’ px q) (disin ’ r q);
otherwise -> case q of {

Con pp qy -> Con (disin ’ p pp) (disin ’ p qy);
otherwise -> Dis p q
}

};

The new hotspot profile is shown in Figure 6.8. The space occupied by Dis is
reduced by almost 90% from a peak of 26 kb to a peak of 2.6 kb. However, the
problem of the previous disin remains: the information provided by the hotspot
profile in Figure 6.8 points to the same conclusion as that of the hotspot profile in
Figure 6.7: disin is path-strict, causing an accumulation of Dis and Con construc-
tions in the heap.

The revised version listed above is the last space improving reformulation of
disin by Runciman and Wakeling [1]. Eventually, Runciman and Röjemo [17]
diagnosed the space leak caused by disin using advanced heap profiling tools
(e.g. retainer profile). They employed a program transformation technique termed
filter promotion to prune the Formula tree at an earlier stage in the clausify
pipeline by introducing the normalising constructor dis. The result is a reduction
in space from 7 kb to 1 kb.

However, the further information provided by the hotspot profile (in Figure
6.7) might have allowed the space consumption of clausify to be reduced further
at an earlier stage.

99

6.3. COMPARING CLAUSIFY MEMORY PROFILES

Figure 6.7: A hotspot profile of clausify after introducing filterset.

100

6.3. COMPARING CLAUSIFY MEMORY PROFILES

Figure 6.8: A hotspot profile after improving disin.

101

6.4. EVALUATION

6.4 Evaluation

There are two functions which contribute to the major space leaks of the clausify
program: unicl (for its tail-strict property [1]) and disin (for its path-strict prop-
erty [17]).

The stack producer profile reveals unicl’ (an auxiliary of unicl) as a major
producer of stack frames (Figure 6.4). None of the heap profiles for clausify in
[1][7][17] showed unicl’ as a key component.

The function foldrUnicl, whose application frames occupy most of the stack
space, does also appear in the producer (Figure 6.1) and construction (Figure 6.2)
profiles of the heap. However, its indirect influence on heap space demands is not
obvious from these heap profiles alone.

The hotspot profile (Figure 6.7) revealed the hotspot occurrence Dis, which
strongly suggested the path-strict behaviour of disin. The lack of any occurrence
information in the original producer and construction profiles [1] led to uncer-
tainty about the space consumption of Dis and Con constructions [17]. The sug-
gestion of Runciman and Röjemo in [51] that occurrence profiling could help to
diagnose space leaks is thus confirmed.

102

Chapter 7

Conclusion

This dissertation has described the design, implementation and use of two new
variants of memory profiling tools for a lazy functional language: a hotspot profiler
(in Chapter 4) and a stack profiler (in Chapter 5).

A hotspot profile presents information in two forms: profile charts and hotspots
highlighted by source occurrence. The profile chart represents a hotspot-construction
profile, distributed by hotspot temperatures. Hotspots are also marked in a textual
display of source programs with the temperature they represent. Further informa-
tion about hotspots is given in individual profiles.

A stack profile provides different views of stack memory including, a producer
profile, a construction profile, and their combinations. A producer is the func-
tion that introduces a frame in stack memory, and a construction is the function
application that a frame represents.

7.1 Results Summary

Applying the hotspot profiler to small programs (in Section 4.3) revealed hotspots
of different temperatures. Investigating the information provided for individual
hotspots (e.g. lifetime profile) allowed us to reason about space consumption at the
occurrence level and so dramatically reduce the space associated with hotspots.

Applying the stack profiler to small programs (in Section 5.5) revealed the
functions causing excessive stack demands. Examining these functions allowed us
to dramatically reduce stack space.

The usefulness of a hotspot profile greatly depends on the memory behaviour
of the programs. For programs with a very even distribution of space demands,
the hotspot profile provides no information as occurrences associated with low
temperature (e.g. less than 10% of memory) are collapsed to a union band.

Stack profiles draw the programmer’s attention to the functions causing stack
overflow in a simpler way than heap profiles, since stack contents are closures only.

Furthermore, stack profiles can shed light on space leaks that are not fully
apparent in heap profiles. Likewise, heap profiles can shed light on space leaks that
are not fully apparent in stack profiles. An example of this is the queens program
in Section 5.5.2; the function length, whose frames occupied the majority of the
stack, indirectly influenced heap demands, causing an accumulation of Cons cells.
On the other hand, the accumulation of memory cells produced by the function
toOne appeared as a minor section in the stack producer profile.

103

7.2. FUTURE WORK

A general technique is to obtain both stack and heap profiles, since each profile
may point to different sources of space leaks.

The hotspot and stack profilers were also applied to a larger program called
clausify (in Section 6.3). This program was extensively profiled in the literature,
leading to a heap memory reduction from a peak of 1.3 Mb to a peak of 1 kb
[1][17]. Two major space leaks of clausify are caused by the functions unicl
(for its tail-strict property) and disin (for its path-strict property).

The stack producer profile (Figure 6.4) revealed unicl’ (an auxiliary of unicl)
as a major producer of stack frames. None of the heap profiles in [1][7][17]
revealed unicl’ as a key element.

The hotspot profile (Figure 6.7) revealed the hotspot occurrences Dis and Con,
which strongly suggested the path-strict behaviour of the function disin. This
further information might have led to a further reduction of space consumption
for clausify at an earlier stage in [1].

7.2 Future Work

Concerning the hotspot profiler, the simple scheme of profiling by individual oc-
currence may produce results that are too fine-grained for some programs. This
can be improved by providing a coarser form of hotspot. One possibility is to
aggregate the cost of compound constructions, such as:

(Cons x (Cons y (Cons z Nil)))

In our current hotspot profiler, each Cons is an individual occurrence which may
fall below the threshold to be classified as a hotspot. However, the combined cost
of the occurrences of Cons could be significant.

Furthermore, the current method of profiling hotspots may not be suitable
for large programs with modules, since every occurrence is profiled individually.
For very large programs, it could even be appropriate to extend hotspots to a
module [24]. The module of interest could then itself be profiled using fine-grained
hotspots.

Bands in the hotspot-construction profile can have the same colour if there
are hotspots of the same temperature. A different representation of a hotspot
construction would be more helpful to distinguish hotspot bands of the same tem-
perature more easily.

The individual profiles of hotspots only provide a lifetime profile. Support for
different kinds of profile may be useful in diagnosing some problems. For example,
to identify the last problem of the execute program in Section 4.3.2, we had to
use our knowledge of the implementation. A retainer profile [17] would have been
helpful.

Concerning the stack profiler, the current construction profile cannot distin-
guish between the different instances of function applications. Furthermore, func-
tions which reuse a stack frame to represent another function are not reflected in
stack profiles. However, this was only a brief investigation and it could be taken
further.

In Section 5.5.3 we mentioned that after stack memory demands were dramat-
ically reduced for the compile program, heap pressure remained. Techniques for

104

7.2. FUTURE WORK

stack and heap trade-offs would have helped to move parts of the heap pressure to
stack memory.

To understand the nature of the space leaks caused by the functions length
(Section 5.5.2) and unicl’ (Section 6.3), we had to relate the information pro-
vided by stack and heap profiles. So there is a gap between stack and heap profiles.
A technique to link stack and heap profiles would have been helpful.

Extra information for stack frames might, perhaps, have improved experience
with stack profiling, e.g. lifetime and biographical profiles [39] for stack frames.

105

Appendices

106

Appendix A

The G-Machine

This appendix contains the semantics of the G-machine employed for the Core
language. We present the compilation schemes and state transition rules of the
G-machine, respectively.

A.1 Compilation Rules

The abstract compiler that generates G-machine code is divided into four main
compilation schemes given below. The objects appearing in the compilation rules
can be deduced from ranged metavariables, where
ρ denotes a mapping from variable names to their stack offset, relative to the top

of the stack with the topmost stack pointer starting at offset zero.
f denotes a function. x denotes a variable.
n denotes a current stack depth. e denotes an arbitrary expression.
i denotes an integer literal. C l denotes a constructor C labelled l.

A.1.1 Scheme F (Function Definition)

FJfunK generates G-machine code for a function definition fun.

FJf x1 . . . xn = eK = RJeK [x1 7→ 0, . . . , xn 7→ n− 1] n

where f is a function name with n arguments. F calls R to compile code for the
right-hand side of a function definition, passing an environment mapping from ar-
guments’ names to stack offsets and the number of arguments n. When a function
is entered, the xth argument is n− 1 elements relative to the top of the stack.

A.1.2 Scheme R (Return Value)

RJeK ρ n generates G-machine code that instantiates a right-hand side expression e
in environment ρ for a function with arity n, computes the value of e and updates
the root application node of an application with a result, then returns from a
function and proceeds to unwind the result.

RJeK ρ n = EJeK ρ++ [UPDATE n, POP n, UNWIND]

107

A.1. COMPILATION RULES

A.1.3 Scheme E (Evaluate)

EJeK ρ compiles code that evaluates expression e in environment ρ to weak head
normal form, leaving a pointer to it on top of the stack. This scheme short-circuits
graph construction for expressions occurring in strict context.

EJiK ρ = [PUSHINT i]
EJlet x1 = e1; . . . ; xn = en in eK ρ

= CJe1K ρ+0 ++ . . .++

CJenK ρ+(n−1) ++

EJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

EJletrec x1 = e1; . . . ; xn = en in eK ρ
= [ALLOC n] ++
CJe1K ρ′ ++ [UPDATE n− 1] ++ . . .++

CJenK ρ′ ++ [UPDATE 0] ++

EJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

EJe0 + e1K ρ = EJe1K ρ++ EJe0K ρ+1 ++ [ADD]
{similarly for arithmetic and comparasion expressions}

EJcase e of altsK ρ = EJeK ρ ++ [CASEJUMP DJaltsK ρ]
EJC l e1 . . . enK ρ = CJenK ρ+0 ++ . . .++ CJe1K ρ+(n−1) ++ [CON l n]
EJeK ρ = CJeK ρ ++ [EVAL]

A.1.4 Scheme C (Construct Graph)

CJeK ρ compiles code which constructs the graph of expression e in an environment
ρ and leaves a pointer to the graph of e on top of the stack.

CJfK ρ = [PUSHFUN f]
CJxK ρ = [PUSH (ρ x)]

CJiK ρ = [PUSHINT i]
CJe0 e1K ρ = CJe1K ρ++ CJe0K ρ+1 ++ [MKAP]
CJlet x1 = e1; . . . ; xn = en in eK ρ

= CJe1K ρ+0 ++ . . .++

CJenK ρ+(n−1) ++

CJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

CJletrec x1 = e1; . . . ; xn = en in eK ρ
= [ALLOC n] ++
CJe1K ρ′ ++ [UPDATE n− 1] ++ . . .++

CJenK ρ′ ++ [UPDATE 0] ++

CJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ n− 1, . . . , xn 7→ 0]}

CJC l e1 . . . enK ρ = CJenK ρ+0 ++ . . .++ CJe1K ρ+(n−1) ++ [CON l n]

108

A.2. STATE TRANSITION RULES

A.1.5 Miscellaneous schemes for case expressions

DJaltsK ρ compiles code for the alternative branches alts within a case expression
in environment ρ, using the auxiliary rule A.

DJalt1 . . . altnK ρ = [AJalt1K ρ , . . . , AJaltnK ρ]

AJaltK ρ compiles code for an alternative branch alt within a case expression.

AJC l x1 . . . xn -> eK ρ = l -> [SPLIT n] ++ EJeK ρ′ ++ [SLIDE n]
{where ρ′ = ρ+n[x1 7→ 0, . . . , xn 7→ (n− 1)]}

A.2 State Transition Rules

The G-machine is a stack-based finite-state machine. A state in the G-machine con-
sists of a 6-tuple 〈O , I , S ,D ,H ,E 〉, where

O is the output produced to the standard channel.
I is the G-code stream under execution denoted by c : i, where c is the instruc-

tion currently being executed and i is the rest of the G-code to be executed.
S is a stack of pointers to heap node addresses. The notation a : s stands for a

stack whose top element is a, where s is a stack S.
D is the dump which is a stack of 〈I, S〉 pairs, where I is a G-code sequence and

S is a stack. A dump D whose topmost pair is 〈I, S〉 is denoted by 〈I, S〉 : D.
The current stack S and the code sequence I are dumped in this component
when EVAL is recursively called.

H is the heap (or graph) mapping heap node addresses to heap nodes. The
notation H[a 7→ n] means the address a in the heap H points to node n. There
are six types of heap node:
FUN n c a function node, where n is the arity and c is the code se-

quence of a function;
APP a1 a2 an application node, where a1 and a2 are pointers to a func-

tion and its argument, respectively;
INT n an integer node, where n denotes an integer;
IND a an indirection node used to update the root of a redex or, in

constructing cyclic graphs within letrec constructs, where a is
pointer to a (shared) expression;

CONSTR l n a constructor node, where l is a label identifying a constructor
having n arguments.

HOLE a hole node to be filled with an expression later in a compu-
tation.

E is the global environment, mapping function names to pairs containing the
arity of a function and its code. The notation E [f 7→ n c] denotes a mapping
from a function f to a pair of arity n and code c.

The operational semantics of the G-machine are described by means of state
transition rules. Throughout, the notation [. . .] denotes a sequence whereas []
stands for an empty sequence.

109

A.2. STATE TRANSITION RULES

A.2.1 Heap and stack operations

The stack is addressed by an offset with the top element on the stack having offset
zero. Items below the top of the stack are indexed relative to the top of the stack.
The PUSH n instruction takes an item at offset n in the stack and pushes this item
onto the top of the stack. The PUSHFUN f instruction pushes onto the stack a
pointer to a function node (FUN) containing arity n and code c of a function f
from environment E. The instructions PUSHINT n and CON l n allocate an integer
node (INT) and a constructor node (CONSTR) into the heap, respectively. The
MKAP instruction allocates an application node APP a1 a2 into the heap for the two
topmost items on the stack as operands a1 and a2 for the APP node, respectively.

1. 〈 O, PUSH n : i, a0 : .. : an : s, D, H, E 〉
⇒ 〈 O, i, an : a0 : .. : an : s, D, H, E 〉
2. 〈 O, PUSHFUN f : i, s, D, H, E[f 7→ n c] 〉
⇒ 〈 O, i, a : s, D, H[a 7→ FUN n c], E 〉
3. 〈 O, PUSHINT n : i, s, D, H, E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ INT n], E 〉
4. 〈 O, CON l n : i, a1 : .. : an : s, D, H, E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR l [a1, ..., an]], E 〉
5. 〈 O, MKAP : i, a1 : a2 : s, D, H, E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ APP a1 a2], E 〉

A.2.2 Evaluation instructions

The EVAL instruction evaluates the expression on top of the stack to a WHNF. If the
expression pointed to by the top of the stack is already in WHNF then the instruc-
tion EVAL does nothing. Otherwise, EVAL allocates a stack frame for the evaluation
of this expression, saving the old stack and the current instruction stream in the
dump component D before entering the UNWIND state.

The purpose of the UNWIND instruction is to prepare the stack for the evaluation
of an expression. The UNWIND transition rule that is executed depends on the ele-
ment on top of the stack. If the top of the stack is an application node, execution
proceeds by unwinding the spine of a graph, pushing pointers to the application
nodes along the way. Having reached a function, the UNWIND(11) instruction re-
arranges the stack, leaving pointers to the arguments of the function for faster
access. The ENTER instruction then enters the code for the function on top of the
stack to execute it. There are two other cases to deal with. If the top of the stack is
an indirection node then the UNWIND instruction simply replaces the item on top of
the stack with the item pointed to by the indirection node. Otherwise, if the top of
the stack item is in WHNF then the old instruction stream and stack are restored
from the dump component D.

The effect of the UPDATE n instruction is to overwrite the root node of an ex-
pression (at n+1th stack offset) with an indirection node pointing to the new
expression at the top of the stack. The POP n instruction tidies up the stack by
removing n unneeded stack items.

110

A.2. STATE TRANSITION RULES

6. 〈 O, EVAL : i, a : s, D, H, E 〉
⇒ 〈 O, [UNWIND], [a] , 〈i, s〉 : D, H, E 〉
7. 〈 O, [UNWIND], a : s, D, H[a 7→ APP a1 a2], E 〉
⇒ 〈 O, [UNWIND], a1 : a : s, D, H, E 〉
8. 〈 O, [UNWIND], a0 : s, D, H[a0 7→ IND a], E 〉
⇒ 〈 O, [UNWIND], a : s, D, H, E 〉
9. 〈 O, [UNWIND], a : s, 〈i′, s′〉 : D, H[a 7→ INT n], E 〉
⇒ 〈 O, i′, a : s′ , D, H, E 〉
10. 〈 O, [UNWIND], a : s, 〈i′, s′〉 : D, H[a 7→ CONSTR n as], E 〉
⇒ 〈 O, i′, a : s′ , D, H, E 〉

11. 〈 O, [UNWIND], a0 : .. : an : s, D, H


a0 7→ FUN n c
a1 7→ APP a0 a

′
1

. . .
an 7→ APP an-1 a

′
n

, E 〉
⇒ 〈 O, [ENTER], a0 : a′1 : .. : a′n : an : s, D, H, E 〉
12. 〈 O, [ENTER], a0 : a1 : .. : an : s, D, H[a0 7→ FUN n c], E 〉
⇒ 〈 O, c, a1 : .. : an : s, D, H, E 〉
13. 〈 O, POP n : i, a1 : .. : an : s, D, H, E 〉
⇒ 〈 O, i, s, D, H, E 〉
14. 〈 O, UPDATE n : i, a : a0 : .. : an : s, D, H, E 〉
⇒ 〈 O, i, a0 : .. : an : s, D, H[an 7→ IND a], E 〉

A.2.3 case and let(rec) instructions

The CASEJUMP instruction expects a constructor node on top of the stack. The label
l of this constructor is used to select the code sequence of an alternative and then
the current code stream is prefixed by the code sequence of the selected alterna-
tive. The code sequence of an alternative starts with a SPLIT n instruction and
ends with a SLIDE n instruction where n is the number of constructor arguments.
The former instruction provides access to constructor components by “unpacking”
them onto the stack, whereas the latter instruction removes unneeded pointers
from the stack. Similarly, the instruction SPLIT n is used to remove local bindings
within let(rec) constructs.

15. 〈 O, CASEJUMP [.., l 7→ i′, ..] : i, a : s, D, H[a 7→ CONSTR l ss], E 〉
⇒ 〈 O, i′ : i, a : s, D, H, E 〉
16. 〈 O, SPLIT n : i, a : s, D, H[a 7→ CONSTR l [a1, .., an]], E 〉
⇒ 〈 O, i, a1 : .. : an : s, D, H, E 〉
17. 〈 O, SLIDE n : i, a0 : .. : an : s, D, H, E 〉
⇒ 〈 O, i, a0 : s, D, H, E 〉
18. 〈 O, ALLOC n : i, s, D, H, E 〉

⇒ 〈 O, i, a1 : .. : an : s, D, H

 a1 7→ IND HOLE
. . .

an 7→ IND HOLE

, E 〉

111

A.2. STATE TRANSITION RULES

The instruction ALLOC n allocates n indirection nodes into the heap, with each
pointing to a HOLE node to be overwritten with a recursive locally bound expres-
sion within a letrect construct, thereby constructing cyclic graphs.

A.2.4 Arithmetic and comparison instructions

Arithmetic and comparison instructions pop two topmost elements of the stack,
unbox them and perform a specified primitive operation, then push the result on
top of the stack boxed into a corresponding heap object. Comparison operations
produce a nullary constructor of type Bool as a result (i.e. True or False).

19. 〈 O, ADD : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ INT (n0 + n1)], E 〉
20. 〈 O, SUB : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ INT (n0 - n1)], E 〉
21. 〈 O, MUL : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ INT (n0 * n1)], E 〉
22. 〈 O, DIV : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ INT (n0 / n1)], E 〉
23. 〈 O, EQ : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR (n0 == n1) []], E 〉
24. 〈 O, NE : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR (n0 /= n1) []], E 〉
25. 〈 O, LT : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR (n0 < n1) []], E 〉
26. 〈 O, LE : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR (n0 <= n1) []], E 〉
27. 〈 O, GT : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR (n0 > n1) []], E 〉
28. 〈 O, GE : i, a0 : a1 : s, D, H[a0 7→ INT n0, a1 7→ INT n1], E 〉
⇒ 〈 O, i, a : s, D, H[a 7→ CONSTR (n0 >= n1) []], E 〉

A.2.5 Printing instruction

The instruction PRINT converts the representation of a result during the execution
of a program into a corresponding character string, concatenated to the output
components produced so far. Provided that the result is a constructor, a pretty-
printer (although not shown here) is used for this constructor and its components
are evaluated in order to be printed.

29. 〈 O, PRINT : i, a : s, D, H[a 7→ INT n], E 〉
⇒ 〈 O ++ [n], i, s, D, H, E 〉
30. 〈 O, PRINT : i, a : s, D, H[a 7→ CONSTR l [a1, .., an]], E 〉
⇒ 〈 O, i′ ++ i, a1 : .. : an : s, D, H, E 〉

{where i′ = [EVAL, PRINT, . . . , EVAL, PRINT︸ ︷︷ ︸
n

]}

112

A.2. STATE TRANSITION RULES

A.2.6 Initial and final G-machine state

The G-machine starts its execution by evaluating a special CAF main via the code:
main:

PUSHFUN main
EVAL
PRINT

Execution terminates when the current instruction stream is empty, leaving a
result on top of the stack.

113

Appendix B

ME2G

ME2G is a program that reads memory profiling data (i.e. heap or stack) and trans-
forms profiling information to a graphical form. This appendix contains a summary
of the profiling flags along with the graphical display commands for a hotspot pro-
file that are provided by the ME2G program.

ME2G flags

Usage: me2g options file.me

Profile Type:
-hs hotspot profile
-c construction profile
-p producer profile
-c -p list construction profile restricted by a list of producers
-p -c list producer profile restricted by a list of constructions
Profile Options:
-hu hide the Union band
-t t1,t2,t3 set hotspots temperatures where t1 < t2 < t3
-p use the previous scale of a profile
-h text add a text to the header of a heap chart
-ol omit lifetime profile in individual hotspots profiles
-help print hotspot profile usage information

ME2G commands (Hotspot profile)

Commands:
Enter open the selected hotspot individual profile
s save the profile of the selected window to a file
f move the cursor forward to the next hotspot
b move the cursor backward to the previous hotspot
e close an individual hotspot profile
q quit the hotspot profile by closing all the windows
c[0-9]+ jump to a specified column
l[0-9]+ jump to a specified line
h show hotspot profile usage information

114

Appendix C

The clausify Program

This appendix contains the source of clausify: the essence of clausify (version
0) by Runciman and Wakeling [1]. The Pure version of clausify excludes the
propositional formulae parser and formatting clausal axioms. A brief description
of this program is included in Section 6.2.

data Pair a b = Pair a b;

data Eq = EQ | LT | GT;

-- abstract syntax for propositional formulae
data Formula = Sym Int

| Not Formula
| Dis Formula Formula
| Con Formula Formula
| Imp Formula Formula
| Eqv Formula Formula;

-- convert a list of propositions to clausal forms
clausify p = mapClauses p;

mapClauses Nil = Nil;
mapClauses (Cons x xs) = Cons (clauses x) (mapClauses xs);

-- transform a propositional formula to clauses
clauses p = unicl (split (disin (negin (elim p))));

-- eliminate connectives other than
-- not , disjunction and conjunction
elim (Sym s) = Sym s;
elim (Not p) = Not (elim p);
elim (Dis p q) = Dis (elim p) (elim q);
elim (Con p q) = Con (elim p) (elim q);
elim (Imp p q) = Dis (Not (elim p)) (elim q);
elim (Eqv p q) = Con (elim (Imp p q)) (elim (Imp q p));

-- shift negation to innermost positions
negin (Not (Not p)) = negin p;

115

negin (Not (Con p q)) = Dis (negin (Not p)) (negin (Not q));
negin (Not (Dis p q)) = Con (negin (Not p)) (negin (Not q));
negin (Not (Sym s)) = Not (Sym s);
negin (Dis p q) = Dis (negin p) (negin q);
negin (Con p q) = Con (negin p) (negin q);
negin (Sym s) = Sym s;

-- shift disjunction within conjunction
disin prop =
case prop of {
Dis p q -> case q of {

Con qq r -> Con (disin (Dis p qq)) (disin (Dis p r));
otherwise -> case p of {

Con pp rr ->
Con (disin (Dis pp q)) (disin (Dis rr q));
otherwise ->
let dp = disin p;

dq = disin q
in if or (conjunct dp) (conjunct dq)

then disin (Dis dp dq)
else Dis dp dq

}
};

Con pp qq -> Con (disin pp) (disin qq);
otherwise -> prop
};

-- test for conjunctive proposition
conjunct (Con p q) = True;
conjunct (Dis p q) = False;
conjunct (Not p) = False;
conjunct (Sym s) = False;

-- split conjunctive proposition into a list of conjuncts
split p = split ’ p Nil;

split ’ (Con p q) a = split ’ p (split ’ q a);
split ’ (Dis p q) a = Cons (Dis p q) a;
split ’ (Not p) a = Cons (Not p) a;
split ’ (Sym s) a = Cons (Sym s) a;

-- form set of unique non -tautolous
-- clauses given list of conjuncts
unicl a = foldrUnicl Nil a;

unicl ’ p x = let cp = clause p
in
if tautclause cp then x else insertPair cp x;

foldrUnicl z Nil = z;
foldrUnicl z (Cons x xs) = unicl ’ x (foldrUnicl z xs);

116

-- separate positive and negative
-- literals , eliminating duplicates
clause p = clause ’ p (Pair Nil Nil);

clause ’ (Dis p q) (Pair c a) =
clause ’ p (clause ’ q (Pair c a));

clause ’ (Sym s) (Pair c a) = Pair (insert s c) a;
clause ’ (Not (Sym s)) (Pair c a) = Pair c (insert s a);

-- does any symbol appear in both
-- consequent and antecedent of clause
tautclause (Pair c a) = tautclause ’ c a;

tautclause ’ Nil y = False;
tautclause ’ (Cons x xs) y

| (isElem x y) = True
| otherwise = tautclause ’ xs y;

-- does the element occur in the list?
isElem y Nil = False;
isElem y (Cons x xs) = if (y == x)

then True
else isElem y xs;

-- insertion of an item into an ordered list
insert x Nil = Cons x Nil;
insert x (Cons y ys)

| (x < y) = Cons x (Cons y ys)
| (x > y) = Cons y (insert x ys)
| otherwise = Cons y ys;

-- insertion of a pair into an ordered list
insertPair x Nil = Cons x Nil;
insertPair x (Cons y ys) =

case (pairEq x y) of {
LT -> Cons x (Cons y ys);
GT -> Cons y (insertPair x ys);
EQ -> Cons y ys
};

-- pair equality
pairEq (Pair a b) (Pair x y) =

case (listEq a x) of {
GT -> GT;
LT -> LT;
EQ -> listEq b y
};

-- list equality
listEq Nil Nil = EQ;

117

listEq Nil (Cons x xs) = LT;
listEq (Cons x xs) Nil = GT;
listEq (Cons x xs) (Cons y ys)
| (x > y) = GT
| (x < y) = LT
| otherwise = listEq xs ys;

-- logical disjunction
or False x = x;
or True x = True;

-- denotation of a
a = 1;

-- propositional formulae representing:
-- (a = a = a) = (a = a = a) = (a = a = a)
prop = Cons (Eqv (Eqv (Sym a) (Eqv (Sym a) (Sym a)))

(Eqv (Eqv (Sym a) (Eqv (Sym a) (Sym a)))
(Eqv (Sym a) (Eqv (Sym a) (Sym a)))))

Nil;

main = clausify prop

118

Bibliography

[1] C. Runciman and D. Wakeling, “Heap profiling of lazy functional programs,”
Journal of Functional Programming, vol. 3, pp. 217–245, 4 1993.

[2] G. Hutton, Programming in Haskell. Cambridge University Press, 2007.

[3] sleepyMonad, “Good introductory text about ghc implementa-
tion?.” Available: http://stackoverflow.com/questions/6048194/
good-introductory-text-about-ghc-implementation, 2011. [Online;
accessed April. 26, 2016].

[4] E. Z. Yang and D. Mazières, “Dynamic space limits for Haskell,” ACM SIG-
PLAN Notices, vol. 49, no. 6, pp. 588–598, 2014.

[5] R. Bird and P. Wadler, Introduction to Functional Programming. Prentice Hall
International Ltd, 1988.

[6] C. Runciman and D. Wakeling, “Problems & proposals for time & space pro-
filing of functional programs,” in Functional Programming, Glasgow 1990
(S. Jones, G. Hutton, and C. Holst, eds.), Workshops in Computing, pp. 237–
245, Springer, 1991.

[7] P. Sansom, Execution profiling for non-strict functional languages. PhD thesis,
Department of Computing Science, University of Glasgow, 1994.

[8] S. A. Jarvis, Profiling large-scale lazy functional programs. PhD thesis,
Durham University, 1996.

[9] H. Nilsson, Declarative debugging for lazy functional languages. PhD thesis,
Linköping University, 1998.

[10] J. Hughes, “Why functional programming matters,” The Computer Journal,
vol. 32, no. 2, pp. 98–107, 1989.

[11] S. L. Peyton Jones, The Implementation of Functional Programming Lan-
guages. Prentice-Hall, Inc., 1987.

[12] M. L. Scott, Programming language pragmatics. Morgan Kaufmann, 2000.

[13] G. Sussman, H. Abelson, and J. Sussman, Structure and interpretation of com-
puter programs. MIT Press, Cambridge, Mass, 1983.

[14] P. Wadler, “A critique of Abelson and Sussman or why calculating is better
than scheming,” ACM SIGPLAN Notices, vol. 22, no. 3, pp. 83–94, 1987.

119

BIBLIOGRAPHY

[15] B. Zorn and P. Hilfinger, “A memory allocation profiler for C and Lisp pro-
grams,” in Proceedings of the Summer USENIX Conference, pp. 223–237, 1988.

[16] N. Röjemo, Garbage collection, and memory efficiency, in lazy functional lan-
guages. PhD thesis, Chalmers University of Technology, 1995.

[17] C. Runciman and N. Röjemo, “New dimensions in heap profiling,” Journal of
Functional Programming, vol. 6, pp. 587–620, 7 1996.

[18] J. Sparud, Tracing and debugging lazy functional computations. PhD thesis,
Chalmers University of Technology, 1999.

[19] R. Watson, Tracing Lazy Evaluation by Program Transformation. PhD thesis,
Southern Cross University, 1997.

[20] J. P. Taylor, Presenting the lazy evaluation of functions. PhD thesis, Queen
Mary and Westfield College, 1996.

[21] A. W. Penney, Augmenting Trace-based Functional Debugging. PhD thesis,
University of Bristol, 1999.

[22] B. J. Pope, A declarative debugger for Haskell. PhD thesis, The University of
Melbourne, 2006.

[23] S. Marlow, J. Iborra, B. Pope, and A. Gill, “A lightweight interactive debug-
ger for Haskell,” in Proceedings of the ACM SIGPLAN workshop on Haskell
workshop, pp. 13–24, ACM, 2007.

[24] C. Runciman and D. Wakeling, “Heap profiling of a lazy functional compiler,”
in Functional Programming, Glasgow 1992 (J. Launchbury and P. Sansom,
eds.), Workshops in Computing, pp. 203–214, Springer, 1993.

[25] N. Mitchell and C. Runciman, “Superflo: Making Haskell faster,” Implemen-
tation and Application of Functional Languages, p. 334, 2007.

[26] G. Mainland, R. Leshchinskiy, S. P. Jones, and S. Marlow, “Haskell beats C
using generalized stream fusion.” Available: http://research.microsoft.
com/en-us/um/people/-simonpj/papers/ndp/haskell-beats-C.pdf, Un-
published, 2013.

[27] S. Peyton Jones, W. Partain, and A. Santos, “Let-floating: moving bindings
to give faster programs,” in ACM SIGPLAN Notices, vol. 31, pp. 1–12, ACM,
1996.

[28] C. Reinke, “-O introduces space leak.” Available: https://ghc.haskell.
org/trac/ghc/ticket/917, 2006. [Online; accessed Feb. 20, 2015].

[29] A. Gill, J. Launchbury, and S. L. Peyton Jones, “A short cut to deforestation,”
in Proceedings of the conference on Functional programming languages and
computer architecture, pp. 223–232, ACM, 1993.

[30] P. N. Benton, Strictness analysis of lazy functional programs. PhD thesis, Uni-
versity of Cambridge, Computer Laboratory, 1993.

120

BIBLIOGRAPHY

[31] J. Gustavsson, Space-Safe Transformations and Usage Analysis for Call-by-Need
Languages. PhD thesis, Chalmers University of Technology, 2001.

[32] B. O’Sullivan et al., Real World Haskell. O’Reilly, 2008.

[33] N. Mitchell, “Leaking space,” Queue, vol. 11, pp. 10:10–10:23, Sept. 2013.

[34] R. Bird, Thinking Functionally with Haskell. Cambridge University Press,
2014.

[35] C. J. Sampson, “Experience report: Haskell in the “real world”: Writing a
commercial application in a lazy functional lanuage,” ACM Sigplan Notices,
vol. 44, no. 9, pp. 185–190, 2009.

[36] C. Runciman and N. Röjemo, “Heap profiling for space efficiency,” in Ad-
vanced Functional Programming (J. Launchbury, E. Meijer, and T. Sheard,
eds.), vol. 1129 of Lecture Notes in Computer Science, pp. 159–183, Springer,
1996.

[37] J. Tibell, “Results from the State of Haskell, 2011 Sur-
vey.” Available: http://blog.johantibell.com/2011/08/
results-from-state-of-haskell-2011.html, 2011. [Online; accessed
Feb. 25, 2015].

[38] N. C. Brown and A. T. Sampson, “A Trip Down Memory Lane in Haskell.”
Available: http://twistedsquare.com/Haskell-Experience.pdf, Univer-
sity of Kent. Unpublished, 2009.

[39] N. Röjemo and C. Runciman, “Lag, drag, void and use — heap profiling and
space-efficient compilation revisited,” in Proceedings of the First ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’96, pp. 34–
41, ACM, 1996.

[40] R. Jones, “Tail recursion without space leaks,” Journal of Functional Program-
ming, vol. 2, no. 01, pp. 73–79, 1992.

[41] O. Waddell and J. M. Ashley, “Visualizing the performance of higher-order
programs,” ACM SIGPLAN Notices, vol. 33, no. 7, pp. 75–82, 1998.

[42] S. Thompson, “Higher-order + Polymorphic = Reusable.” Computing Labo-
ratory, University of Kent, Tech. Rep., May 1997.

[43] A. W. Appel, B. F. Duba, D. B. MacQueen, and A. P. Tolmach, Profiling in the
presence of optimization and garbage collection. Technical Report CS-TR-197-
88, Princeton University, Dept. Comp. Sci., Princeton, NJ, 1987.

[44] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of Haskell:
being lazy with class,” in Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pp. 12–1, ACM, 2007.

[45] A. L. d. M. Santos, Compilation by transformation in non-strict functional lan-
guages. PhD thesis, The University of Glasgow, 1995.

121

BIBLIOGRAPHY

[46] G. D. Ripley, R. E. Griswold, and D. R. Hanson, “Performance of storage man-
agement in an implementation of SNOBOL4,” Software Engineering, IEEE
Transactions on, no. 2, pp. 130–137, 1978.

[47] P. H. Hartel and A. H. Veen, “Statistics on graph reduction of SASL pro-
grams,” Software: Practice and Experience, vol. 18, no. 3, pp. 239–253, 1988.

[48] J. Wild, H. Glaser, and P. Hartel, “Statistics on storage management in a lazy
functional language implementation,” in Parallel and distributed processing
’91, pp. 73–87, 1991.

[49] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, and D. Stefanović,
“Generating object lifetime traces with Merlin,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 28, no. 3, pp. 476–516,
2006.

[50] L. Augustsson and T. Johnsson, “The Chalmers Lazy-ML Compiler,” The com-
puter journal, vol. 32, no. 2, pp. 127–141, 1989.

[51] C. Runciman and N. Röjemo, “Two-pass heap profiling: A matter of life and
death,” in Implementation of Functional Languages (W. Kluge, ed.), vol. 1268
of Lecture Notes in Computer Science, pp. 222–232, Springer, 1997.

[52] C. Clack, S. Clayman, and D. Parrott, “Lexical profiling: theory and practice,”
Journal of Functional Programming, vol. 5, pp. 225–277, 4 1995.

[53] N. Röjemo, “Highlights from nhc—a space-efficient Haskell compiler,” in Pro-
ceedings of the seventh international conference on Functional programming
languages and computer architecture, pp. 282–292, ACM, 1995.

[54] “Profiling Memory Usage.” Available: https://downloads.haskell.org/
~ghc/7.6.3/docs/html/users_guide/prof-heap.html. [Online; accessed
Feb. 01, 2015].

[55] P. M. Sansom and S. L. Peyton Jones, “Profiling lazy functional programs,”
in Functional Programming, Glasgow 1992, pp. 227–239, Springer, 1993.

[56] P. M. Sansom, “Time profiling a lazy functional compiler,” in Functional Pro-
gramming, Glasgow 1993, pp. 252–264, Springer, 1994.

[57] P. M. Sansom and S. L. Peyton Jones, “Time and space profiling for non-
strict, higher-order functional languages,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’95, pp. 355–366, ACM, 1995.

[58] J. Launchbury, “A natural semantics for lazy evaluation,” in Proceedings of
the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pp. 144–154, ACM, 1993.

[59] P. M. Sansom and S. L. Peyton Jones, “Formally based profiling for higher-
order functional languages,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 19, no. 2, pp. 334–385, 1997.

122

BIBLIOGRAPHY

[60] S. L. Peyton Jones and A. M. Santos, “A transformation-based optimiser for
Haskell,” Science of computer programming, vol. 32, no. 1, pp. 3–47, 1998.

[61] S. L. Peyton Jones, “Implementing lazy functional languages on stock hard-
ware: the Spineless Tagless G-machine,” Journal of functional programming,
vol. 2, no. 02, pp. 127–202, 1992.

[62] S. Marlow and S. L. Peyton Jones, “The new GHC/Hugs runtime system,”
URL http://research. microsoft. com/apps/pubs/default. aspx, 1998.

[63] R. G. Morgan and S. A. Jarvis, “Profiling large-scale lazy functional pro-
grams,” Journal of Functional Programming, vol. 8, no. 03, pp. 201–237,
1998.

[64] “hp2ps–heap profile to postscript.” Available: https://downloads.haskell.
org/~ghc/7.6.3/docs/html/users_guide/hp2ps.html. [Online; accessed
Feb. 01, 2015].

[65] “ghc/Type.lhs.” Available: https://github.com/ghc/ghc/blob/master/
libraries/integer-gmp/GHC/Integer/Type.lhs#L108. [Online; accessed
Feb. 15, 2015].

[66] G. Novark, E. D. Berger, and B. G. Zorn, “Efficiently and precisely locat-
ing memory leaks and bloat,” in Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09,
pp. 397–407, ACM, 2009.

[67] R. Shaham, E. K. Kolodner, and M. Sagiv, “Heap profiling for space-efficient
java,” in Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01, pp. 104–113, ACM, 2001.

[68] S. Nilsson, “Heapy: A memory profiler and debugger for Python,” Master’s
thesis, Linköping University, Department of Computer and Information Sci-
ence, 2006.

[69] N. Hallenberg, “A Region Profiler for a Standard ML compiler based on Re-
gion Inference,” Student Project 96-5-7, Department of Computer Science,
University of Copenhagen, 1996.

[70] S. L. Peyton Jones and D. R. Lester, Implementing Functional Languages: a
tutorial. Café Press, 2004.

[71] T. Johnsson, Compiling lazy functional languages. PhD thesis, Chalmers Uni-
versity of Technology, 1987.

[72] R. Jones, A. Hosking, and E. Moss, The garbage collection handbook: the art
of automatic memory management. Chapman & Hall/CRC, 2011.

[73] T. Johnsson, Efficient compilation of lazy evaluation, vol. 19. ACM, 1984.

[74] M. Drautzburg, “How to diagnose Stack Overflow in haskell.”
Available: http://stackoverflow.com/questions/17734281/
how-to-diagnose-stack-overflow-in-haskell?rq=1. [Online; accessed
Mar. 13, 2015].

123

BIBLIOGRAPHY

[75] P. Wadler, “How to replace failure by a list of successes a method for ex-
ception handling, backtracking, and pattern matching in lazy functional lan-
guages,” in Functional Programming Languages and Computer Architecture,
pp. 113–128, Springer, 1985.

[76] W. Partain, Functional Programming, Glasgow 1992: Proceedings of the 1992
Glasgow Workshop on Functional Programming, Ayr, Scotland, 6–8 July 1992,
ch. The nofib Benchmark Suite of Haskell Programs, pp. 195–202. Springer,
1993.

124

