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Abstract 
 

Many Organizations have realized that effective management of their knowledge assets is 

important to survival in today’s competitive business environment. Consequently an 

Organizational Memory (OM) is used to store what has been learned from the past in order that 

it can be reused by current and future employees. Information retrieval techniques have been 

widely used to facilitate the retrieval of the right information in an OM at the right time. 

However, access to information alone is not sufficient since not all knowledge can be 

transferred into explicit documentation. Expertise, as one of the most important knowledge 

assets, is normally stored in people’s heads and is difficult to codify. Expertise is shared when 

people communicate with each other. Therefore, finding the right person with the right expertise 

is recognized as being at least as important as retrieving documents. The typical approaches to 

find experts include knowledge brokers and expertise database. However, the former approach 

is impractical in large organizations and geographically disparate organizations whilst the latter 

approach relies heavily on individuals to specify their expertise and keep updated. This thesis 

focuses on two questions: (1) How to integrate multiple expertise indications existing in an 

organizational memory as complementary to the description by experts? (2) How to insure the 

relevant experts are not overlooked as well as irrelevant experts are minimized? To solve these 

problems, a conceptual model has been developed so that multiple expertise indications existing 

in the organizational memory can be semantically integrated. The heterogeneous data sources 

are integrated by using RDF(S) since RDF allows for a uniform representation of data and RDF 

Schema represents the conceptual model. In addition, the expertise profiles are extended to 

include both keyword form and concept form based on the domain ontology; this combined 

profile integrates the advantages of both keyword search and concept search. A prototype 

system, which aims to help PhD applicants locate their potential supervisors, has been designed 

and implemented to test the techniques and ideas. The results of the experiments using real data 

at the University of Leeds demonstrate the improved performance of expertise matching and 

also show the advantages of applying semantic web technologies (such as RDF, RDFS, 

ontologies) to the expertise matching problem. 
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Chapter 1 

Introduction 

More and more organizations have realized that effective management of their knowledge asset 

is very important in order to win business in today’s highly competitive environment [Abecker 

and Decker, 1999]. This has led to the idea of Organizational Memory (OM), which is used to 

store the knowledge and past experience of individuals or different groups. This knowledge and 

experience can then be reused by the current employees for effective decisions and actions.  

 

There are two kinds of retrieval in an OM. One is “information retrieval” which aims to provide 

the information required for the task at hand. However, access to information alone is not 

sufficient since people may have problems in understanding the documented information. 

Furthermore, not all knowledge can be directly expressed in words. For example, expertise, as 

one of the highest-valued forms of knowledge, is stored in people’s heads and cannot be easily 

codified. In order to find knowledge which is behind the explicit document, people need to 

communicate with each other. There is widespread agreement that employees learn more 

effectively by interacting with others and the real value of information systems is to connect 

people to people [Ackerman and Halverson, 1998; Bannon and Kuuti, 1996; Bennis and 

Biederman, 1997; Bishop, 2000; Choo, 2000; Cross and Baird, 2000; Gibson, 1996; Koskinen, 

2001; Stewart, 1997; Wellins et al., 1993; Yimam-Seid, 2003]. This brings a new problem – 

who should communicate with whom? The second kind of retrieval – “people retrieval” aims to 

solve this problem by facilitating people to locate others with similar interests in order that they 

can share their expertise and knowledge.  

 

This thesis focuses on knowledge management in academia taking advantage of the 

understanding gained from the Leeds University Virtual Science Park project [Drew et al., 

1996; Lau et al., 1999; Leigh et al., 1999]. More specifically, the emphasis of this research is on 
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“people retrieval”. Instead of finding all the people with similar interests (such as Yenta [Foner, 

1997]), this study concentrates on “Expertise Matching” - locating appropriate people with 

required expertise to help solve problems. The thesis analyses the problems with the current 

approaches to expertise matching in academia, and presents an empirical investigation aiming at 

improving the performance of expertise matching in terms of accuracy and efficiency.  

 

In order to establish a common understanding of the key terms, explanations on the terminology 

are given below. 

Data: raw numbers or facts. It has no meaning by itself. 

Information: interpreted data. It is meaningful data. 

Knowledge: useful information. It happens when people use information. 

Skills: more intelligent, denoting familiar knowledge united with readiness and dexterity in 

execution or performance. 

Expertise: possession of knowledge and skills, and the ability to deal with the unknown and the 

unexpected. In this thesis, it is defined as “a specialized, in-depth body of knowledge and skills 

in a particular academic area(s)/topic(s), and the ability to use them in creating new knowledge 

or apply it to new applications.”  

 

This chapter begins with a discussion of the motivation behind the investigation of expertise 

matching. Section 1.2 presents the typical approaches to expertise matching and examines their 

limitations. Section 1.3 describes the key research issues and objectives. Finally, Section 1.4 

outlines the organization of the rest of this thesis. 

1.1 Motivation 

Knowledge is the most critical asset for a company [Grant, 1996]. Expertise, a major component 

of tacit knowledge, is the most important basis for the generation of new knowledge, therefore it 

is the most valuable knowledge [Wilson and Fredericksen, 2000]. Expertise is generally 

recognized as skills and experience 1  and is developed through individual’s learning and 

                                                           
1 The definitions of expertise are fully discussed in Chapter 3. 
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practice. Expertise defines the organization’s unique capabilities and core competencies [Finley, 

2001; Holloway, 2000; Olson and Shaffer, 2002]; organizations that make use of existing 

expertise are likely to have a distinct competitive edge over other players in terms of faster 

knowledge creation and innovation, more efficient and effective use of existing organizational 

know-how, and reduced risk of loss of valuable knowledge when people leave the organization 

and stronger team creation [Davenport and Prusak, 1998].  

 

However, if the expertise of employees remains hidden in the individuals’ heads and cannot be 

accessed by others when they need it, then the potential of expertise will be lost [O’Dell et al., 

1998]. The great value of expertise can only be exploited when an individual’s expertise can be 

shared with others so that people can obtain the required knowledge and experience to 

accomplish their tasks at an optimum level in the shortest possible time to achieve maximum 

productivity [Finley, 2001].  

 

There are two ways to share expertise. The first is to transfer expertise into explicit form such as 

documents or databases so that it can be disseminated easily. The major drawback is that the 

expertise may be difficult to express and codify. The other method is to enhance people to 

communicate with each other. Communication leads to expertise sharing through the free 

exchange of ideas and experience. For example, meetings, informal talks, and seminars are 

commonly used opportunities to discover what others are doing and learn from their “stories” or 

experiences. The value of this communication has long been recognised as an important 

mechanism for expertise sharing [Fagrell and Ljungberg, 1999]. If the “expertise seeker” is a 

novice, then the expertise sharing is single directional only; if the “expertise seeker” is also 

experienced, then the sharing is bi-directional, which means the expertise provider can also 

benefit from this sharing. The following scenario provides a useful explanation of the value of 

sharing knowledge. 

 

“If I give you a dollar and you give me a dollar, then we each have a dollar. But if 

I give you an idea and you give me an idea, we each have two ideas… A dollar 

stays a dollar and doesn’t increase in value even if I pass it on, but if I pass on an 
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idea worth a dollar and discuss it with somebody else, I often receive a good tip. 

Then, all of a sudden, this idea is worth two dollars. The other person may also 

implement my idea and make a dollar fifty, or possible even three dollars, but we 

have both benefited!”     

Cited from [D’Oosterlinck et al., 2002 p.67] 

The above scenario illustrates the importance of sharing ideas; it also works for sharing 

expertise. Although the expertise of each person is created from their own practice, it can be 

reapplied in different contexts and for specific purposes, and its value increases. In order to 

facilitate this sharing, it is necessary to be aware of others who have specific expertise. In a 

small organization, knowing who is an expert in what specific area is not a big problem as 

everybody knows each other or at least an expert (if one exists) may be located through asking a 

colleague. However, for large organizations, especially those which are geographically 

distributed, it is extremely difficult for employees to know each other’s competencies and share 

their expertise. When these people have problems, they usually cannot quickly find experts in 

the organization with the required expertise. As a result, they have to spend time and effort on 

reinventing useful things, such as key business processes, systems, skills, relationships, and so 

on [Olson and Shaffer, 2002]. Expertise matching plays an important role in avoiding these 

duplicated efforts by identifying experts who have experience and knowledge. Furthermore, 

expertise matching is very useful when people seek a collaborator, team member, researcher, 

presenter and so on.  

 

Nowadays, expertise matching is receiving more and more attention in universities. A university 

is a good example of a knowledge-based organization 2 . The knowledge and expertise of 

university staff who teach and research in different areas is the major asset that a university 

holds. In order to make use of this asset, there is a need to share expertise between staff as well 

as transfer expertise to industry. Normally it is difficult for university researchers to identify 

companies which could significantly benefit most from the application of their research. Hence, 

providing a facility to help industry locate experts with the specific expertise whenever they 

                                                           
2 Knowledge-based organization: an organization whose functions revolve around knowledge of workers 
and knowledge embedded in artefacts and processes [cited from FAA knowledge sharing glossary 
http://km.faa.gov/ks.nsf/glossaryweb] 
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want is of growing importance for universities as their role expands to include knowledge 

transfer. Often the speed with which industry can find an expert or several experts from 

different disciplines can improve the chance of success for collaboration between university and 

industry. Further, there is an increasing requirement on multi-disciplinary research, which 

means that it is important for members within a university from different departments to be 

aware of each other when they are doing similar things. Thus expertise matching is also very 

important in this context.  

 

The following section gives a brief description of basic approaches to expertise matching and 

the limitations associated with each approach. 

1.2 Expertise Matching 

1.2.1 Knowledge Broker  

One of the classical approaches to expertise matching is to rely on specialized people with the 

capacity to span all areas of an organization and know what it is that everyone else knows. This 

kind of person can be thought of as a knowledge broker. Figure 1 shows that the knowledge 

broker is situated between knowledge seekers and the organization memory. Each component is 

further explained as follows. 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Knowledge broker searches OM to locate information or experts 

 

Knowledge Broker 

        Knowledge Seekers 

Files Documents Databases Web Files Documents Databases Web Files Documents Databases Web 

Organizational Memory 
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Knowledge Seekers – members of an organization who require knowledge for particular 

purposes such as solving problems, collaboration and team formation.  

Organizational Memory – an information repository used to store information created in the 

past intended for future use in a written record such as databases, documents and so on. 

Information which needs to be recorded includes corporate manuals, processes, procedures, 

project documents, expert directory, and so on.  

Knowledge Broker – someone who brings together knowledge seekers and knowledge sources. 

The source of knowledge could reside in an explicit document, be the combination of several 

data sources, or it could be in the mind of experts. A knowledge broker should rapidly find and 

filter the relevant information [Eisenhart, 2002], and quickly locate the experts [Hellström, et 

al., 2000]. Connecting individuals is considered as the dominant function of knowledge brokers 

because it facilitates learning from each other, converting tacit knowledge into real value for the 

company or the organization [Costello, 2000].  

 

In order to serve these two roles, a knowledge broker needs to be an expert, who has experience 

with the company or organization [Hellström et al., 2000]. The broker knows which data 

sources are relevant to the query of the knowledge seekers, what is the quality of each source, 

how to detect duplicated information if there is overlapping records, and how to sort the results 

back to the knowledge seekers. Furthermore, the broker should have a large contact network in 

order to identify specific people who are “extra knowledgeable” in some area. 

 

Locating experts is more difficult for the knowledge broker than finding and filtering the 

relevant information. This is because: (1) The organisation is large and so it is impossible for 

the broker to know every expert; (2) People’s expertise develop over time and it is difficult for 

the broker to capture this; (3) The members of the organisation are constantly changing; some 

may leave the organisation and other new members join. McDonald comments [2000, p.61],  

 

“a single person may be able to keep track of many things, but in large 

organizations the number of people and the number of activities become too many 

and too varied for a single person to completely know and understand.” 
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1.2.2 Expertise Database 

If users wish to search for information in web pages they can use search engines. However, if 

they want to locate somebody with the required expertise, there is no existing system which 

provides a satisfactory result3. Users have to manually check each “hit” to see if there is a link 

to the personal homepage of a suitable expert. In fact, not all experts have their own homepage 

and in these cases users have to search other data sources in order to find the information they 

need. Considering the huge amount of information that the organizational memory stores, it is 

no surprise that searching for people with specific expertise is a common problem in nearly 

every organization [Liao et al., 1999]. Rather than relying on one or several knowledge 

broker(s), the alternative solution is to create an expertise database where individuals specify 

their expertise using several keywords or short sentences and users can then search these 

databases to find an expert. This solution is increasingly used by large organizations such as 

universities. This is because their staff normally work in small research groups or work alone, 

so it is unlikely that one person will know the expertise of everybody else throughout the 

department or organization.  

 

A typical example of such an expertise database is Community of Science (COS)4. It is an 

Internet site for the global R&D community. COS brings together the world’s most prominent 

scientists and researchers at more than 1,600 universities, corporations and government agencies 

worldwide. It is a knowledge management service for individuals and institutions. Currently, 

there are more than 480,000 personal profiles of researchers from over 1600 institutions 

worldwide stored in the COS expertise database. The fields in the COS Expertise Database 

include last name, first name, institution, past position(s), expertise, memberships, keywords5, 

qualifications, patents and publication(s). Users can use keyword searching on one or several of 

these fields to locate experts.  

 

                                                           
3 For example, when searching for experts in the area of “speech recognition” in the Leeds University 
domain 637 results are returned, which include presentation slides, thesis abstract, module introduction, 
training resources and so on, but no personal homepages were returned for the first 20 results. 
4 COS Expertise http://expertise.cos.com 
5 Professional editors at COS select the terms from controlled vocabulary and assign these terms to each 
profile added to the Expertise database. 
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A survey of experts finding systems among 27 universities has been conducted; the result is 

summarised in Appendix A. From the survey it can be seen that Experts Finding systems within 

a university are similar to COS because (i) most systems ask academics to create a profile 

themselves, it is up to them how much or little detail they supply. Take COS as an example, 

although there are 12 fields provided in the Expertise Database, only contact information and 

expertise information are compulsory, all the other fields are optional; (ii) the experts’ 

information is stored in relational database or LDAP directory. Experts can be retrieved through 

browsing the simple subject tree or through keywords searching; most systems do not have the 

capability to rank experts which means that users have to check each expert’s detail in order not 

to miss the most relevant expert; (iii) the task of maintaining the up-to-date profile is dependent 

on each expert although supporting team members can remind experts to do so periodically (for 

example, every 3 month or every year).  

1.2.3 Expertise Matching at the University of Leeds  

From the survey it can be found that the ULPD (University of Leeds Publications Database)6 

Expertise Matcher is representative since it includes common features (as well as common 

limitations) of most experts finding systems in the survey. Furthermore, it is one of the earliest 

expertise matching systems and the data is more accessible than other systems. Therefore it is 

selected as subject for the study.  

Broker 
(ULPD Expertise Matcher)

Projects Human Resource
/Staff data

User

Publications

Leeds University databases

Query Result

 

Figure 1-2 The ULPD Expertise Matcher as a knowledge broker linking users and experts 

                                                           
6 http://ulpd.leeds.ac.uk/default2.asp; the previous version of the ULPD is REPIS (Research Expertise and 
Publication Information System). 
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The ULPD, a web-based information management system, is the attempt at the University of 

Leeds towards expertise management. ULPD stores information about the publications and 

research projects of academic staff from a variety of different sources including On-line System 

for the Computerised Administration of Research (OSCAR), Management Administration 

Information System (MAIS), Student Information Management System (SIMS) and the staff 

Phone/email directory. The principal objectives of the ULPD are to provide a central repository 

for information about all publications authored by University members of staff and research 

postgraduates, and to provide the opportunity for individual members of staff to create their own 

personal profile. Users can use the ULPD expertise matcher to locate experts with particular 

expertise in the University and obtain other associated information about each expert such as 

position, contact information, publications and completed research projects. The Expertise 

Matcher acts as a knowledge broker connecting expertise seekers and expertise providers, as 

shown in Figure 1-2. 

 

One unique feature for the ULPD Expertise Matcher in the University of Leeds is that the 

outputs of the academic (publications and projects) are used as the complementary source to 

derive their expertise. This is because although an expert can express their expertise in their own 

words, this description may not be completely accurate and it can be difficult for them to 

indicate what is the difference between themselves and their peers. In many cases, the important 

evidence to show that they are experts in a particular area depends on the tangible outputs they 

have produced from applying their expertise [Stenmark, 1999]. In the ULPD system 

publications and projects are considered as these tangible outputs and are used to derive experts’ 

expertise. Experts are retrieved if their publications or projects information match the keywords 

that users enter.  

 

However, the ULPD system still suffers from several problems (the limitations of the ULPD 

expertise matcher are more fully analysed in Chapter 4). The first problem is the keyword 

searching problem; a single keyword may have multiple meanings in different contexts whilst 

the same meaning can be expressed using different keywords. This means some retrieved 

experts may not be relevant and other relevant experts may be missed. The second problem is 



CHAPTER 1. INTRODUCTION                                                                                                          
  

 

10

 

that manually creating and maintaining a database to store all this information is very difficult 

and expensive. The third problem is that ULPD Expertise Matcher is unable to rank experts.  

1.2.4 Expertise Lifecycle 

“Knowledge Management takes the knowledge and expertise of people, plus the organizations’ 

work processes and information repositories, and blends them into a comprehensive, 

collaborative environment” [Olson and Shaffer, 2002]. The Advanced Knowledge 

Technologies (AKT) project7  is the state of the art knowledge management project which 

involves five universities throughout UK. To tackle the flow of knowledge around an 

organisation, the “knowledge lifecycle” has been studied [Shadbolt and O’Hara, 2003]. 

Expertise Management is the subset of knowledge management that focuses on the tacit 

knowledge stored in people’s heads. Similarly, an expertise lifecycle is suggested in this thesis. 

It includes six activities as shown in Figure 1-3. 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 Expertise Lifecycle 

A comparison of expertise lifecycle and knowledge lifecycle is shown in Table 1-1. 
 
 
 
 
 
 
 
 

                                                           
7 AKT project http://www.aktor.org 
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Table 1-1 Comparison between expertise lifecycle and knowledge lifecycle 
Expertise Lifecycle Knowledge Lifecycle 
Expertise Acquisition  
Capturing indications of expertise from diverse 
sources in the organizational memory 

Knowledge Acquisition 
Capturing knowledge from diverse sources (e.g. 
experts, Web, electronic stores of data). 

Expertise Modelling  
Expertise indicator extraction and expertise 
model representation 

Knowledge Modelling 
Organising captured knowledge and describing it 
in formalised representation 

Expertise Retrieval 
Identifying the experts with the required 
expertise 

Knowledge Retrieval 
Finding the knowledge relevant to a particular 
problem from a repository 

Expertise Publishing  
Presenting supported information for the 
retrieved experts so that users can select the 
appropriate experts easily 

Knowledge Publishing  
Presenting modelled knowledge in different 
ways according to the users’ requirements 

Expertise Reuse 
Making expertise available for broader 
application rather than reinvention. 

Knowledge Reuse 
Applying stored knowledge to new contexts 
instead of acquiring such knowledge afresh 

Expertise Maintenance 
keeping the expertise information up to date (1) 
Updating expertise of current members. (2) 
Adding expertise of new members. (3) 
Removing the expertise of leaving people. 

Knowledge Maintenance 
Keeping the knowledge up to date and 
discarding knowledge that is not useful any more 

 

This thesis focuses on the expertise matching problem, therefore, it does not include expertise 

reuse activity8. A unique process for expertise matching consists of three steps as shown in 

Figure 1-4, where some activities of expertise lifecycle are regrouped. 

 

 

 

 

 

 

Figure 1-4 Expertise matching process 

 

• In the Acquisition and Maintenance stage, the relevant data sources (expertise 

indications)9 are collected, which include the direct statement by each expert (such as 

their personal homepage) or indirect evidence in the form of their outputs (such as 

technical reports). The acquisition activity is automatically repeated, through which some 

level of maintenance can be realised (except removing expertise of leaving people).   

                                                           
8 The expertise reuse is realised through people interaction and communication. 
9 Expertise indication refers to evidence of expertise such as document authorship. 
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• In the Modelling stage, a conceptual model is built to integrate all these data sources and 

a domain ontology is used to store the main concepts in a domain of interest, the 

relationships between the concepts and the associated keywords to each concept. An 

expert’s expertise is profiled in either keyword form and/or concept form.  

 

• In the Retrieval and Publishing stage, the relevant experts with the required expertise are 

retrieved. Experts are ranked according to their expertise level and the detailed 

information of each expert integrated from the different data sources is presented to users 

in order to support them in selecting the appropriate experts. This retrieval process can be 

automatically repeated for those users who have comparable static requests so that the 

new experts will be identified more quickly. 

1.3 Research Problems and Objectives 

The specific problems addressed in this research have arisen from the analysis of the ULPD 

Expertise Matcher. Although it does not rely on each expert to specify their expertise, the aim of 

supporting users to locate experts quickly and accurately has not yet been realised. Furthermore, 

the burden for users in selecting the appropriate experts is still significant. In broad terms, the 

author’s principal objectives for this research are to:  

• Improve the performance of expertise matching in terms of precision and recall. 

• Integrate and improve the quality of information provided for each expert in order to 

assist users to assess the experts’ expertise.  

 

A brief description of the research issues is presented below with details deferred to later 

chapters. 

 

How to measure similarity between an expert’s expertise and a user’s request The 

significant drawback of the ULPD Expertise Matcher is that an exact match is required. This 

means that the experts will only be retrieved if their publications or projects information exactly 

match the keywords entered by a user. Therefore, there is no mechanism to rank the expertise of 

the retrieved experts. In order not to miss relevant experts, it is necessary to give users a flexible 
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method of expressing their needs. In this research, the associated projects and publications 

information relevant to each expert are retrieved and processed using vector space model and an 

expertise profile is then generated. The similarity between an expert’s expertise and a user’s 

request is obtained by calculating the two vectors (user profile and expertise profile). Through 

this way, the retrieved experts can be ranked. 

 

How to explore multiple expertise indications in order to build up a more accurate 

expertise profile The information stored in the ULPD database is very limited, hence experts 

may not be retrieved because the relevant information about them has not been recorded. Even 

for those retrieved experts, the associated information provided to users is restricted. In order to 

solve this problem, it is necessary to explore multiple expertise indications from data sources in 

the organizational memory. In this research, semantic web technologies have been used to 

integrate multiple expertise indications from diverse data sources to create a complete expertise 

profile. Therefore a more accurate match can be obtained, and high-quality information relevant 

to each expert can be provided to the users to facilitate them in selecting experts. 

 

How to ensure the relevant experts are not overlooked as well as irrelevant experts are 

minimized The problem of keyword-based expertise matching is that some relevant experts are 

missed and irrelevant experts are retrieved. This problem is caused by the syntactic-oriented 

nature of the keyword search approach. In order to solve this problem, a concept matching 

approach has to be explored. The domain ontology plays an important role in concept matching 

since it includes all the major concepts in a domain as well as the relations between concepts. In 

this research, a concept based expertise profile is created as a complementary to the keyword 

based expertise profile.   

 

How to extend single disciplinary expertise matching to multi disciplinary expertise 

matching Multi disciplinary expertise matching is a new area and no related work has been 

found so far. This research has conducted an initial investigation into this area. The domain of 



CHAPTER 1. INTRODUCTION                                                                                                          
  

 

14

 

“GeoComputing”10 is selected as the start point. Building a multi-disciplinary expertise model is 

similar to mapping between ontologies. A two dimensional expertise domain model has been 

built and ranking mechanisms has been proposed. Some obstacles which hinder the multi-

disciplinary expertise matching are discovered through the initial study and suggestions are 

given. 

 

In order to test if the performance of expertise matching has been improved against the current 

ULPD Expertise Matcher, a prototype system called the Expertise Locator has been built to 

undertake an evaluation using real data in the University of Leeds. Participants are volunteered 

students who compare the Expertise Locator with the ULPD Expertise Matcher by identifying 

relevant experts from both search results. Data is collected through observation, conversations 

with participants, and also via questionnaire. Which system outperforms the other is largely 

decided by the two widely used evaluation metrics - precision and recall. In addition, time spent 

on retrieval and users’ satisfaction on the detailed information of each expert provided by the 

system are also taken into account.  

 

The major contribution of this thesis is the empirical investigation of how to improve the 

performance of expertise matching within the Leeds University and more broadly to academia. 

Both syntactic and semantic-oriented techniques are studied. The specific contributions can be 

summarised as follows:  

• An academic expertise matching conceptual model which provides a uniform semantic 

view over the input sources. 

• The application of semantic web technologies (RDF, RDFS, ontology) to the expertise 

matching problem; that leads to the effective integration of pieces of information relevant 

to each expert from heterogeneous data sources.  

• A prototype system (Expertise Locator) has been implemented and evaluated; the 

superiority of the retrieval effectiveness of the prototype system over the traditional 

database approach has been demonstrated. 

                                                           
10 Geocomputing is a new, innovative application area where information technology has been applied to 
the Geoscience environment. 
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• The first attempt, known to the author, to solve the multi-disciplinary expertise matching 

problems. The expertise domain model is proposed and some suggestions for future 

research are given. 

1.4 Thesis Organization 

The organization of the rest of this thesis is described below. 

 

Chapter 2 describes the two kinds of knowledge (“tacit” and “explicit”) and analyses the 

importance of tacit knowledge such as expertise. The conversation between these two kinds of 

knowledge is then examined followed by the reasons why it is difficult to codify expertise and 

why interaction between people is important to share expertise. The concept of a knowledge 

sharing environment, which facilitates people’s awareness of each other and expertise sharing, 

is introduced using a number of examples.  

 

Chapter 3 analyses in detail the nature of expertise and the different expertise indications as well 

as the criteria for evaluate expertise matching. It also describes the domain model of expert 

finding systems. The previous work on expertise matching is also discussed and compared 

against the criteria.  

 

Chapter 4 examines the limitation of the ULPD Expertise Matcher. An extension of the current 

expertise matcher is proposed which employs the vector space model to build an expertise 

profile. An extended prototype expertise matcher is evaluated and the results are presented.  

 

Chapter 5 starts with the limitations that have not solved in the extended Expertise Matcher and 

analyses the possible solutions to the remaining problems, especially how to apply the semantic 

web technologies to solve these problems. An expertise matching conceptual model and an 

RDF-based architecture are presented. A prototype system - Expertise Locator based on the 

conceptual model and architecture is described. Finally it compares the result of expertise 

matching performance between the Expertise Locator and extended Expertise Matcher. 
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Chapter 6 discussed how to extend the single discipline expertise matching to multi-disciplines. 

The differences between single and multi-disciplinary expertise matching have been analysed. 

The requirements of the multi-disciplinary brokering system are informed through a preliminary 

study. A modified architecture is described together with the expertise domain model for multi-

disciplinary expertise. The initial studies are presented and suggestions are given.  

 

Chapter 7 concludes with a short summary of the work in this thesis and discusses the broader 

application of the research. This chapter also gives a list of possible directions for research in 

the future.  
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Chapter 2 

Context 

Chapter 1 described the increasing need for organizations to more effectively manage their 

expertise. This chapter first provides an overview of the role of expertise for organizations, it 

then describes the two approaches to sharing expertise and explains why it is difficult to codify 

people’s expertise. A number of knowledge sharing environments are discussed which facilitate 

sharing both explicit knowledge (such as documents) as well as tacit knowledge (such as 

expertise).   

2.1 Expertise Management and the Learning Organization 

2.1.1 Introduction 

A learning organization is an organization “skilled at creating, acquiring, and transferring 

knowledge, and at modifying its behaviour to reflect new knowledge and insights” [Garvin, 

1998]. Such organizations are adaptive to their external environment and continually enhance 

their capability to change [Skyrme and Farago, 1995]. To achieve this, learning organizations 

need to make use of “the amazing mental capacity of all its members” [Dixon, 1999] and 

facilitates collective learning. A crucial issue for organizational learning is how individuals’ 

expertise, as a result of their long time learning, can be transferred to the organization [Huang, 

1998]. This involves two activities - identify the expertise of employees and leverage the 

expertise to full potential by linking expertise provider and expertise seeker at the right time. 

Employees in the learning organizations should be able to quickly locate the “right experts” in 

order to reuse others’ experience. Through expertise sharing, people at all levels, individually 

and collectively, are continually increasing their capacity. 
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2.1.2 Role of Tacit Knowledge 

Knowledge is often considered as the most important strategic resource to enhance the 

organization’s fundamental ability to compete [Zack, 1999]. Knowledge can be divided into two 

categories: explicit knowledge and tacit knowledge [Mahapatra and Chakrabarti, 2002]. Explicit 

knowledge refers to knowledge that can be articulated in written language and normally 

conveyed through manuals, documentation, files and other accessible sources [Nonaka and 

Takeuchi, 1995]. Tacit knowledge is the “cognitive skills such as beliefs, images, intuition and 

mental models, as well as technical skills such as craft and know-how” [Nonaka, 1994]. It is 

personal, subjective and experiential knowledge [Dyer, 2000]. Tacit knowledge is stored in 

people’s heads and difficult to write down or collate in the form of documents. According to the 

Delphi Group’s study on more than 700 U.S. companies, a large portion of corporate knowledge 

(42%) is tacit knowledge, which remains locked inside of employees’ heads (as shown in Figure 

2-1).  

 

Figure 2-1 Distribution of corporate knowledge 

(Source: The Delphi Group, cited from Hickins, 1999, p.100) 

 

A key component of tacit knowledge is expertise, such as the skills and know-how. Expertise is 

acquired through a lifetime of experience. It provides the competitive advantage for an 

organization due to the following reasons. 

 

• Imitation If an organization’s advantage is based on explicit documents, it can be easily 

copied by its competitors [Teece, 1987; Reed and DeFilippi, 1990]. However, if the 

advantage of an organization is based on the expertise of its employees, it is difficult to 
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imitate by competitors because expertise is deeply embodied in the person’s personality, 

creativity, intelligence, perceptions, experiences, and so on [Fitzpatrick, 2003]. In order to 

create similar knowledge, competitors have to engage in similar learning experiences 

which takes time [Zack, 2002]. Hence, the competition of the organization will not be lost 

quickly.  

 

• Best Practice Expertise represents the unique value added by the people who generate it 

when solving real problems. Compared with explicit documents, expertise reflects more 

closely the reality of how work actually gets done (in other words, work “practices” 

rather than business “processes”), which in turn can transfer best practices more 

effectively [Horvath, 2000]. 

 

• Innovation Expertise is strongly implicated in organization innovation. Innovation has 

two meanings: (i) to make changes, and (ii) to introduce new ideas, methods, and 

processes. Innovation requires insight and understanding of the current situation and 

continuous learning. Research shows a strong reciprocal relationship between prior 

knowledge and learning ability [Cohen and Leventhal, 1990], the more one already 

knows, the more one comprehends; the more one comprehends, the more one learns new 

knowledge. Since learning is a source of future innovation, the innovation is also largely 

dependent on people’s expertise. Therefore, the more expertise employees have, the more 

capabilities they have to integrate new knowledge with their already knowing into new 

innovation.  

 

2.1.3 Context Dependent and Reuse in Action 

The content of information is important, however, it provides little value without associated 

contextual information. As Fitzpatrick [2003] states, putting content (‘what’) to work most 

effectively is critically dependent on knowing relevant contextual information (‘how, why, 

where, who’). It is through knowledge of the context that content can be interpreted and 

communicated. Different people may have different interpretations based on the same 
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information. Expertise is also context dependent. One person’s expertise can be only benefited 

by others if they interconnect it with their own embodied knowledge and embed it in their own 

application. Expertise is integrated with people’s existing knowledge to develop unique insights 

and create even more valuable knowledge. This is called “interconnectedness and 

complementarity” [Zack, 2002]. The value of expertise is only exploited when it is reused by 

different people at different times in different ways [Fitzpatrick, 2003].  

 

2.1.4 Enterprise Requirements on Expertise 

The roles of workers in the organizations have changed significantly from industrial age to 

information age [Nickols, 2000b]. The traditional knowledge management approach in the 

industrial age is that managers control the power while workers follow the procedures. As stated 

by Bekkedahl [1977], “Knowledge held by a few, plus iron discipline over the many.” 

Knowledge was narrowly concentrated by a few managers who made all the plans and decisions 

for their employees. It is believed that knowledge is embedded into procedures. The workers’ 

task was to convert instructions and procedures into actions. What is converted is the materials 

only, from one form to another. In the new economy, the knowledge management approach 

places a higher value on people’s intelligence and knowledge over rigid procedures. First, 

knowledge in organizations is widely distributed amongst the knowledge workers. Second, 

employees at every level have a significant amount of control over their work; the new task of 

workers is to convert knowledge into actions through which information is converted from one 

form to another. Workers continue learning new knowledge themselves in order to work 

effectively, their expertise and experience are augmented through daily work, which is very 

valuable for the organization.  

 

The company that is able to make use of existing experiences and competencies quickest has a 

distinct competitive edge over other players [Gibbert et al., 2002]. However, this knowledge 

and know-how cannot make great value for the organization if it is bound to an individual mind 

and cannot be accessed by others who need it. “No amount of knowledge or insight can keep a 

company ahead if it is not properly distributed where it's needed” [O’Dell et al., 1998]. In 
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today's knowledge economy, the pressures which most organizations are facing (such as 

distributed workforce, time to market, and fluid labour pool), require them to know what they 

know, to manage what they know, especially sharing expertise to accelerate innovation rates 

and retain core talent [CIO, 2002]. Bishop [2000] comments: 

 

“It appears that many organisations today feel the only way to survive and prosper 

in a world characterised by speed, complexity, global competition, down-sizing 

and constant change, is to work smarter, not harder.”     

 

Here “work smarter” means to encourage employees to collaborate with one another because: 

(1) employees depend on each other and it is very unlikely that individuals will undertake their 

tasks without the help of others; (2) the experience of one employee may be very useful for 

other employees. Only through collaboration and exchanging knowledge with each other 

regularly, can a group of people achieve greater than the sum of what can be achieved as 

individuals working alone [Bishop, 2000]. O’Dell et al., [1998] points out: 

 

“The major strategy for a company to achieve significantly higher levels of 

productivity is not by firing more people, not by buying more machines, not by 

forcing people to stay later and work harder, … but by allowing people to learn 

what works best in other areas and try it out in their own back yard. And by 

ensuring they have all the knowledge and experience they require to do their 

work at their best level.”  

 

The benefits of connecting people and encouraging them to share their expertise are summarised 

below. 

 

• Create organization-wide knowledge sharing. This helps employees to capture and share 

undocumented knowledge.  

• Improve productivity. Based on quick expertise location, employees can find otherwise 

unknown experts even when they are geographically separate and share their knowledge. 
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The time required for searching for knowledge from huge information repositories is 

saved which leads to productivity improvements and minimization of duplication. 

• Keep valuable expertise even when employees leave. Through sharing, the expertise of 

individuals has been transferred to others before they leave. The loss to an organization is 

minimized.  

• Support collaboration. If a team members have complementary expertise, then it 

normally leads more effective results.  

• Become more adaptive to changing conditions. Quickly identify individuals who have 

accumulated many years of experience, expertise and insight is the key to unleashing the 

high levels of energy that enable organizations to become more effective, adaptive and 

responsive to changing industrial conditions. 

 

2.1.5 Approaches to Sharing Expertise 

Organizations may wish to capture their internal expertise and convert it into explicit knowledge 

so that it can be easily shared by large numbers of people. According to Nonaka and Takeuchi 

[1995], knowledge is not static; it may dynamically shift between tacit and explicit over time. 

Figure 2-2 shows four ways in which tacit knowledge (such as expertise) and explicit 

knowledge (such as documents) can be converted to each other.  

 

 

 

 

 

 

 
Figure 2-2 The processes whereby conversions between tacit knowledge 

and explicit knowledge occur (Nonaka [1994]) 

 

• Tacit to Explicit (Externalisation) This is the process of converting part of tacit 

knowledge to explicit through written language, for example, writing a paper.  
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• Explicit to Explicit (Combination) This is the process of merging diverse pieces of 

explicit knowledge into new explicit knowledge.  

• Explicit to Tacit (Internalisation) This is the process of understanding and absorbing 

explicit knowledge into individual’s own knowledge, such as “learn by doing”.  

• Tacit to Tacit (Socialisation) This is the process of creation of new tacit knowledge 

through discussion, observation and practice. In this process people expose their 

knowledge to others and test its validity.  

 

From the above conversation process it can be seen that in addition to tacit-to-tacit process there 

is another way to share expertise, which includes two modes of interaction - externalisation (the 

process to codify expertise) and internalisation (the process to absorb knowledge from explicit 

form, adapt and adopt it in a new context). Expertise sharing is realized through tacit knowledge 

� explicit knowledge � tacit knowledge. This approach is criticized largely because of the 

difficulties in codifying expertise. The following section explains the reasons of the difficulties.  

2.1.6 Difficulties in Codifying Expertise 

The first process Tacit to Explicit transfer indicates expertise can be codified. However, there 

are three major barriers in this codification process [Stenmark, 2001]. These are described 

below. 

 

• People are not fully aware of their tacit knowledge – “tacit knowledge incorporates so 

much accrued and embedded learning that its rules may be impossible to separate from 

how an individual acts” [Davenport and Prusak, 1997]. This is also called the “unknown 

knowledge” and to share this kind of knowledge needs skills observation, on-the-job 

experiences, and apprenticeships [Heimburger, 2001]. 

• On a personal level people do not need to make tacit knowledge explicit in order to use it 

since people are able to use their tacit knowledge naturally. In addition, people cannot 

directly benefit from codifying their tacit knowledge, which is normally a difficult and 

laborious task. 
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• There is a potential risk of losing power and competitive advantage by making it explicit 

– if the tacit knowledge provides an important competitive advantage, there is little 

reason to share it with others. 

 

Even when people are aware of their tacit knowledge and are willing to share, only a small 

percentage of tacit knowledge can be codified due to its “embodied” characteristic [Horvath, 

2000]. One study shows that 80% of the knowledge that needs to be transferred is in the non-

codifiable area [Holloway, 2000]. Some attempts to codify tacit knowledge have yielded 

disappointing results such as the example below.  

 

Xerox once attempted to embed the know-how of its service and repair technicians 

into an expert system that was installed in the copiers. They hoped that technicians 

responding to a call could be guided by the system and complete repairs from a 

distance. But it turned out that technicians could not solve problems using the 

system by itself. When the copier designers looked into the matter more closely, 

they discovered that technicians learned from one another by sharing stories about 

how they had fixed the machines. The expert system could not replicate the nuance 

and detail that were exchanged in face-to-face conversations. 

cited from [Hansen, 1999 p.68] 

 

The codification process is both difficult and costly, and the fact that the tacit knowledge must 

be externalised before it can be exploited limits its usefulness [Stenmark, 2001]. The primary 

disadvantage of documented knowledge is its lack of contextual richness [Lyons, 2000]. The 

writer lacks the insight or imagination to understand where the readers are coming from and the 

context in which they interpret his words.  

 

The alternative expertise sharing approach, socialization, is recommended by many researchers, 

such as Horvath [2000] and Fitzpatrick [2003]. This process enables communication which 

allows people to capture the rich context and better adapt the content to their own situation 

[Davenport and Prusak, 1998; Lyons, 2000]. 
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One limitation of socialization process is that physical proximity is typically required in order 

for the sharing of expertise to occur. This requirement is difficult to satisfy with large 

organizations, distributed organizations or virtual organizations. Sometimes, in order to enhance 

organizational flexibility, people are organized into cross-functional teams, these people spend 

all their time and energy dedicated to the projects and get less chances to find out the expertise 

of their peers because they disconnect with others. In order to realize expertise sharing, people 

need to find the right people with the required expertise. In most organizations, employees rely 

on personal information social networks to locate experts. However, this approach suffers from 

problems such as “potential unreliable, frequently limited in their effectiveness, cannot scale 

particularly well” [Bussell and Holter, 2002]. A knowledge sharing environment is then 

designed to help people locate experts no matter where they are. 

 

2.2 Sharing Expertise through Knowledge Sharing 
Environments 

A knowledge sharing environment (KSE) is an environment that supports the processes of 

sharing and transferring knowledge within network communities or project teams with the help 

of modern communication technologies such as the Internet. A KSE is characterized by virtual 

working across spatial boundaries and its ability to provide users access, sharing and 

management of various types of knowledge at different levels (individual, group and 

organizational). 

2.2.1 Network Community 

One important reason for developing a KSE is to facilitate a new mode of community – the 

network community. A network community is a group of people whose communication and 

collaboration over networks strengthens and facilitates their shared identity and goals (share 

expertise and solve problems together) [Carroll and Rosson, 1998]. The core idea is to extend 

the current organisational boundary, so that people can find and interact with others who have 

experience and expertise in a specific area, which brings down the barriers of physical localities 
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that traditionally hindered knowledge sharing. People are organized together automatically if 

they have similar interests, and they can enhance the mutual understanding and trust through 

using public communication networks1. The network community is powerful and flexible with 

the following features [Ishida, 1998]. 

 

• People in distant places can join the same community. 

• Each person can participate in multiple communities at the same time. 

• There is no specific structure defined beforehand in the community, and its structure 

changes dynamically. 

• A community itself is spontaneously created and modified, and possibly diminishes over 

time. 

 

2.2.2 Examples of Knowledge Sharing Environments 

A KSE can provide three major functions:  

• Facilitate finding experts or other people who have similar interests Through locating 

experts, it provides the potential for users to locate experts with the required expertise and 

capture valuable tacit knowledge embodied in experts themselves. 

• Facilitate communication Once experts or people who have similar interests are located, 

the KSE can help people maintain connections through collaborative tools such as chat 

rooms and videoconferences, which foster interactions that lead to increased trust and 

expertise sharing. 

• Facilitate access to community memory It aims to share explicit knowledge. Network 

community members can quickly and easily access to community’s information 

repository.  

 

                                                           
1 A new type of scientific collaboration called e-science (http://www.lesc.ic.ac.uk/admin/escience.html) 
aims to provide support for large-scale scientific experiments by enabling distributed global 
collaborations through the formation of virtual co-laboratories. These will allow scientists to work 
together irrespective of location and permit universal access to scientific resources. 
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The following three examples of knowledge sharing environments have common features in 

terms of facilitating people to find others who have expertise or who have the similar interests in 

order to share tacit knowledge, and facilitating people to share explicitly documented 

knowledge. 

2.2.2.1 Virtual Knowledge Park 

The Virtual Knowledge Park (VKP) Project aims to support knowledge management and 

outreach activities within the University of Leeds. It facilitates knowledge transfer between the 

University and business by providing collaborative tools and access to the internal knowledge 

sources, such as university expertise; external knowledge sources from outside university can be 

extracted through collaborative and project based working.  

 

Finding people An expertise matcher is built within the VKP to help users to search for people 

with specific skills and abilities, and to identify suitable individuals to form a project team. The 

search fields include: name, expertise, profile, skills, languages, geographical location, business 

sector, and previous employers. Users can browse a standardised classification list or use 

keyword search (based on publication and projects database) to find experts.  

 

Support communication To encourage geographically separated team members to collaborate 

and to increase trust between people, the VKP uses a series of collaboration tools which support 

two kinds of communication -- synchronous (real-time communication, such as Netmeeting) 

and asynchronous (non-real-time communication, such as email). 

 

A browser can be used alone to access the core set of collaborative work tools including 

document management, discussion groups, information resources, email account management, 

email notification and contact books. The VKP Assistant software can be used, in conjunction 

with a browser, to deliver synchronous communication tools alongside asynchronous 

collaborative working tools. This includes video and audio conferencing, application sharing 

(joint real-time document editing), instant messaging, chat rooms, file transfer and whiteboards. 
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Workspace – Shared Resource The VKP supports the Broadbent Knowledge map (shown in 

Figure 2-3) by creating three types of workspace to facilitate resource sharing. They are 

personal workspace, team workspace and public workspace. Access to any information within a 

workspace is possible only if the current user has explicit permission to access that information, 

either as an individual, or as a member of a team. 
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Figure 2-3 Knowledge management map (adapted from Broadbent, 1998) 
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knowledge with each other, the expertise matcher is used to locate team members with the 

required skills as members of the team might be spread across space or belong to different 

organizations and may not know each other. The Discussions component allows users to 

participate in topic centred forums. The Discussions component is accessed from the Navigator 

and exists in each user's Personal Workspace and in each project workspace. 

 

Organization The organizational memory comprises information on the skills and expertise of 

Leeds University staff and explicit knowledge – documents produced or recommended by staff. 

Users can search the organizational memory to locate experts or documents based on the 

metadata such as title, abstract, author, filename, etc. structured, indexed document repository. 

Alerts enable users to be notified about events; that is, actions which take place to documents, 

folders, discussions, and users. 

 

Inter-organization Collaborative work tools are provided to support the development of 

partnerships between the University and business. Information sources may be accessed by 

external users to support collaboration on projects.  

 

2.2.2.2 BT-KSE 

BT has developed the Knowledge Sharing Environment (KSE) [Davies et al., 1998] to support 

virtual communities to interact in a virtual space, whose members may be geographically and 

temporally dispersed. It is a system of information agents which organizes users into small 

communities based on their common interests. Users coming from different organizations can 

join the same community and share knowledge from a number of sources. The possibility of the 

exchange of tacit knowledge is opened up by adding awareness of others with similar interests 

or concerns. 

 

Finding people A user can search for others who share the similar interests by comparing the 

user’s profile with others’ using the vector space model [Baeze-Yates and Ribeiro-Neto, 1999]. 

The retrieved people are ranked according to the similarity level. Each user has a personal 
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profile in a set of keywords initially provided by the user but can be adapted by the personal 

agent through observing user’s behaviour. For example, if the profile of a user does not match 

the information being stored by him/her, the agent will suggest phrases which the user may elect 

to add to their profile.  

 

Sharing explicit documented knowledge The information to be shared in the KSE comes from 

the Internet, from an organization’s intranet or from other users. Only metadata is stored in KSE 

agents such as reference to the remote WWW document, a summary of the document, an 

annotation, date of storage, and the user who stored the information. Users are informed of the 

relevant information. This is realized through matching users’ profiles with the content of the 

page using the vector space model. 

 

In addition to being informed with the relevant information, a user can also ask his KSE agent 

for the most recently stored information. The agent then searches the KSE store and presents the 

user with a list of links to the most recently stored information, along with annotations where 

provided, date of storage, the storer’s name, and an indication of how well the information 

matches the user’s profile. 

 

Communication However, the KSE does not support people communicating with each other. 

This drawback is overcome in another system called “Knowledge Garden” [Crossley, 1999]. 

Knowledge Garden provides an environment with a 3D information visualization tool which can 

help users to meet colleagues and share information. In this shared environment, users can see 

their fellow team members via their representational avatars within the people section of the 

garden. Avatars can meet and communicate via a number of media including text, audio, video, 

and electronic whiteboards.  

 

In addition, knowledge garden assists users to select useful documents on their own rather than 

relying on the retrieved documents matching users’ queries. This is because the similarities 

between documents are clearly presented in the knowledge garden, which can be seen as a 

complement of the retrieved documents. Information is seen as an organic resource that changes 
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over time, and is represented as plants in a shared three-dimensional knowledge garden. Internet 

resources are clustered and the related information resources are grouped together as “plants”. 

When a user takes a cutting from information plants into their own personal environment, a set 

of key phrases is extracted from the document(s) represented by the stalk and this set of key 

phrases is sent to a search engine in order to retrieved relevant documents. The ten most 

relevant documents are then represented as stalks on a plant which grow in the 3D space. 

 

2.2.2.3 GMD – Social Web 

“Social Web” is an Internet-based infrastructure that facilitates social activities such as meeting 

people with similar interests, forming groups, and working together [GMD-FIT, 1998]. It aims 

to build a social space using computers and networks as a social medium to link people as well 

as documents. It is expected to offer “places”, or social spheres, where social activities take 

place, with more awareness about other members rather than in anonymity as featured in the 

present-day Internet. 

 

Finding people GMD’s match-maker agent assists with finding experts or persons with similar 

interests in the community of users who might join a group or collaborate on a task according to 

their profiles. A user profile in the match-maker agent is expressed as a set of text vectors, 

which can be derived from a query, a task, or a set of bookmarks [Voss et. al., 1998]. The 

matching process is similar to BT-KSE agent, however, the individual’s profile is static rather 

than adaptive as in the BT-KSE system.  

 

Access to community knowledge Documents are seen as the main carrier of knowledge. When 

members of a community store documents to the information repository they also identify the 

significant concepts in each document. The cross-references between documents are then 

created by relations among concepts. This cross-referencing is called Concept Index. A Concept 

Index provides a shared vocabulary and enriches document relation rather than direct references 

and the physical location of documents [Nakata et al., 1998]. It also facilitates users to quickly 

navigate documents and locate the most useful parts. Besides simply highlighting the keywords 
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in the documents, users can add synonyms and related concepts in order to refine the index. 

Synonyms and related concepts can be selected from thesauri such as WordNet or discovered by 

text mining [Voss et al., 1998]. 

 

Communication/collaboration GMD has developed the BSCW (Basic Support for 

Cooperative Work) Shared Workspace system with the goal of transforming the Internet from a 

primarily passive information repository to an active cooperation medium [Appelt, 1999]. The 

BSCW system extends the browsing and information download features of the Web with more 

sophisticated features, which are similar to that in the VKP workspace. For example, discussion 

forums, search facilities, document upload, document version management, access right control, 

synchronous communication, member and group administration, and event awareness (such as 

uploading a new document, downloading an existing document, renaming a document, and so 

on). This enable effective communication and collaboration among multiple people. 

  

2.2.2.4 Summary 

The above examples illustrate that knowledge sharing environments can help people share 

explicit documents as well as sharing expertise through identifying the similar people and 

providing communication tools. Compared with document management, connecting people is a 

new area and different approaches being used. The BT-KSE and GMD-Social Web built user 

profiles in a set of keywords and use vector space model to match people with similar interests. 

They did not distinguish experts with others who just have interests in a particular area. 

Therefore, it is possible that a returned “expert” or expertise provider is actually an expertise 

seeker. Although finding people with similar interests is useful, locating the experts with the 

required expertise is more important since the real experts can provide explanation, solutions to 

the questions. The VKP make an improvement by deriving people’s expertise from their 

publication and project information (which are expertise indications). However, the VKP 

expertise matching cannot rank experts so all the retrieved experts seem equally important. All 

of three system use keyword search rather than concept search. It is found that in the GMD 

social web, a concept-index is created to link the concepts with documents, this can be further 
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extended to include experts in order to support concept search. There are still some open issues 

which require further investigation, for example, how to identify people’s expertise and how to 

improve the accuracy of the experts retrieval.  

 

2.3  Conclusions 

Expertise stored in employee’s heads is important in retaining key competences in knowledge-

based organizations. In order to make great value of individual’s expertise, it is necessary for 

employees to share their expertise with each other. There are two approaches to sharing 

expertise – codification and socialization (personalization). Codifying expertise is expensive 

and sometimes less effective than sharing expertise through interaction between people 

(socialization). A basic requirement for this socialization process is to find the right people with 

the required expertise. Some knowledge sharing environments have been built to facilitate 

people sharing expertise and support collaborative learning. However, the emphasis has been 

put on explicit documents and the process of matching expertise is crude. This study 

investigates how to improve the performance of expertise matching in a Knowledge Sharing 

Environment; the focus is put on academic environment such as VKP Expertise matcher. In 

order to achieve this, it is necessary to have a deeper understanding of the nature of expertise 

and relevant approaches to expertise matching. These issues will be discussed in detail in the 

next chapter.  
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Chapter 3 

Related Work on Expertise Matching 

Chapter 2 analysed why sharing expertise is important for organizations and described a number 

of knowledge sharing environments where expertise sharing is supported. This chapter provides 

a comprehensive analysis of the nature of expertise. It then describes the domain model of 

expertise matching systems followed by a number of specific criteria of expertise matching. The 

previous work on expertise matching is also discussed and compared against the criteria. This 

chapter ends with a number of areas for further research towards an effective expertise 

matching. 

 

3.1 Nature of Expertise 

Researchers in cognitive psychology, cognitive science and computer science have conducted a 

significant amount of research on the nature of expertise over the last thirty years. Dozens of 

definitions have been given which indicate different understandings of the nature of expertise. 

These understandings are classified into four groups; each of these groups is discussed briefly 

below. 

3.1.1 Expertise as “the possession of skills and knowledge” 

One definition is that expertise is the possession of knowledge and procedural skill(s) [Bedard, 

1991]. A similar definition can be found in Webster’s dictionary1 , “having, involving, or 

displaying special skill or knowledge derived from training or experience”; Knowledge is 

defined as “acquaintance with facts, truths, or principles, as from study or investigation”, whilst 

skill is defined as: “the ability, coming from one’s knowledge, practice, aptitude, etc., to do 

                                                           
1 http://www.m-w.com/home.htm 
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something well”. These definitions consider skill or knowledge as some substance that may be 

possessed by the individual (in this case, it implies that knowledge is the substance underlying 

skill), and once a person has this substance, he/she has “problem solving ability” [Green and 

Gilhooly, 1992], and can “perform qualitatively well in a particular domain” [Frensch and 

Sternberg, 1989].   

3.1.2 Expertise as “process” 

Definitions that rely on knowledge or skills are often criticized because they assume expertise to 

be consistent and invariable. Gaines [1995] argues that expertise is not something that simply 

exists which can be captured and transferred to a computer, and the fact that people demonstrate 

“action centred”2 skilled performance in a pre-defined task (such as typing) does not illustrate 

that they possess knowledge. Expertise is dynamically evolving. The real experts do not merely 

preserve their existing capabilities, but extend them continually in order to match dynamic 

situations, including unpredictable circumstances [Schön, 1983]. The definitions imply expertise 

as a property of individuals and focus on demonstratable skill, but ignore how a person becomes 

an expert, in other words, how they assimilate experience. Some researchers have noticed this 

problem and suggested a process component should be incorporated. For example, Marchant 

[1989] views expertise as “a process by which individuals develop the ability to achieve task-

specific superior performance”. In Dreyfus’s model of expert skill acquisition, five stages of 

expertise are presented (Novice, Advanced Beginner, Competence, Proficient, and Expert) 

[Dreyfus, 2001]. This definition focuses on the learning process - the internalisation of given 

rules to deal with different situations where intellectual skills are needed. 

 

This view of expertise is on the upper layer of skill understanding because know-how requires 

skills plus the ability to apply it to different contexts (such as judge which pattern is appropriate 

for the situation). These understandings are criticized because of their routinization. The 

assumption is through repetitions of routine tasks, people can perform better in terms of speed 

and accuracy [Bullard et. al., 1995]. However, this performance is based on highly practiced, 

                                                           
2 Zuboff distinguishes action centred skills and intellective skills in [Zuboff, 1988].  
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pre-programmed tasks. Although people can use pre-stored rules in a slightly changed situation, 

this situation is predictable. When facing an uncertain or unpredicted situation, “experts” do not 

always outperform “novices” [Engestrom and Engestrom 1986]. However, real experts can 

demonstrate knowledge-based performance in coping with very different or completely novel 

situations instead of skill-based or rule-based performance [Maurino et. al., 1995]. What 

constitutes their expertise? The following section focuses on this question. 

3.1.3 Expertise as “the creative capacity to deal with the unknown 
and unexpected” 

 

“Knowledge is a capacity to behave adaptively within an environment; it cannot be 

reduced to (replaced by) representations of behavior or the environment." 

         [Clancey, 1995 p.230] 

This adaptability is the key component for expertise. In order to obtain this adaptability, experts 

are keen to learn, not only what is there, but most importantly, to learn “what is not yet there” 

[Engestrom, 1992] through experience. Experts are involved in a progressive problem solving 

process, in which they continuously refine their knowledge and methods in order to solve bigger 

and bigger problems where no correct answer previously existed [Bereiter and Scardamalia, 

1993]. Gadamer [1972] states that experts draw knowledge from many experiences, but they 

never stop and never feel satisfied with what they have learnt.  

 

“The truth of experience always contains an orientation towards new experience. 

That is why a person who is called `expert' has become such not only through 

experiences, but is also open to new experiences. The perfection of his experience, 

the perfect form of what we call “expert”, does not consist in the fact that someone 

already knows everything and knows better than anyone else. Rather, the expert 

person proves to be, on the contrary, someone who is radically undogmatic; who, 

because of the many experiences he has had and the knowledge he draws from 

them is particularly equipped to have new experiences and learn from them”  

[Gadamer, 1972 p.412] 
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In complex and continuously changing situations where no rules can be followed experts have 

the ability to transfer prior knowledge and skills to new situations and create new solutions. 

They have the ability to “influence the rules” [Gray, 2000]. This is the core difference between 

experts and routine problem solvers. 

 

The afore mentioned definitions consider expertise as skills, process, or creative ability in 

dealing with the unexpected, which corresponds with three performance levels - skills-based, 

rule-based, and knowledge-based respectively [Maurino et al., 1995]. Capper [2000] points out 

that skills-based and rule-based performance can often be carried out by individuals, although 

the latter is more likely to produce optimal outcomes if it involves the discussion between two 

or more people. However,  

 

“… knowledge based performance will generally be sub optimal if engaged in by 

an isolated individual, regardless of the level of formal expertise or experience of 

the individual. Knowledge based performance can only be optimised by the use of 

critical inquiry and collaborative discourse in groups.” 

 [Capper, 2000 p.157] 

 

The fact that knowledge-based performance can only be optimised during a collaborative 

activity leads to the fourth kind of understanding of expertise – expertise as collaborative 

activity which will be discussed in the next section. 

3.1.4 Expertise as collaborative activity 

Instead of considering expertise in isolation, some researchers argue that expertise should be 

considered as a collaborative activity. Vygotsky [1978] and Leont’ev [1981] model skills 

development and expertise as occurring within an ‘activity system’ consisting of the individual, 

co-workers, and the workplace community. Their ideas are supported by Engestrom [1992], 

who argues that in the continually changing environment, the lonely, unaided and narrowly 

task-oriented expert appears helpless. Accordingly, expertise derives from the capacity of 
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individuals to work collaboratively to achieve continuous innovation, learning and improvement 

[Hill et. al., 1998]. 

 

“Communities of practice are the basis for collaborative activity. Learning takes place as 

groups have a need to learn and as individuals within groups increase their ability, over time, 

to respond to authentic problems facing the group” [Bull et al. 2000]. A community of practice 

is a group of people who are linked together by a common ability or a shared interest, and 

consequently possess common practical experience, specialist information and intuitive 

knowledge [Enkel et al., 2002]. They share information, experience and insights and are 

supported by various tools. Informal COPs are important for the development and sharing of 

expertise within organization [Jim Eales, 2003]. The best practice, insights and lessons learned 

are spread and reused among the members, which results in “a sharper individual learning curve 

and generally a higher level of knowledge” [Franz et al., 2002]. The combined and new 

knowledge is developed by means of various activities across hierarchical and group borders. 

The group expertise is accumulated through extensive communication. Collaborative activities 

increase the transformation of information into knowledge through questioning, discussing, and 

sharing of information.  

 

Based on this distributed form of expertise, the quality of a group or team can be improved 

because the collective activity is far more important than the contribution of any one individual 

[Raeithel, 1993]. In addition, knowledge creation is accelerated through the process of 

collaborative learning [Argyris and Schon, 1996], in which the tacit knowledge of all team 

members is utilized [Nonaka and Takeuchi, 1995]. Hence, importance is attached to the 

communicational ability which is necessary to preserve expertise [Salas et al., 1997].  

3.1.5 A Working Definition in the Academic Context 

In the academic environment, research is always associated with innovation [Langford, 2002]. 

Innovation includes the new use of knowledge (creating new solutions to challenging tasks or 

solving tasks in new ways) or invention of new knowledge (generating new theories). The value 

of research is limited if the work is repetition of what has been done before. Researchers in 



CHAPTER 3. RELATED WORK ON EXPERTISE MATCHING                    

 

39

 

academia are interested in the tasks when there is no definite or obvious answer. As stated by 

Michaelis [1997], “Uncertainty” is a constant companion in the life of most scientists or 

academicians who are fully immersed in the conduct of research. However, the most successful 

researchers transform these uncertainties into a significant investigation and experiments, 

through which they transfer information to knowledge and effectively exploit the knowledge. 

Thus, it enhances their expertise, which again motivates them to conduct more innovations.  

 

The focus of this thesis is to improve the accuracy of expertise matching so that users can 

quickly locate experts. Accordingly, the working definition of expertise in this thesis is “a 

specialized, in-depth body of knowledge and skills in a particular academic area(s)/topic(s), 

and the ability to use them in creating new knowledge or apply it to new applications”. The 

working definition combined the first and third understandings of expertise. In this thesis 

experts are ranked according to their expertise level, this corresponds to the second 

understanding. The fourth understanding of expertise is not reflected in the working definition 

because the initial goal of expertise matching is to locate individuals with the required expertise. 

However accurate expertise matching facilitates team formation and collaboration between 

individuals and further initiates the generation and development of the group expertise.  

3.2 Expertise Matching 

In this thesis, expertise matching can be defined as “the process of finding experts with the 

required expertise”. Experts can be retrieved in many ways (for example, name, location, 

position, and so on), the difference between expertise matching and other expert finding systems 

is that it focuses on the expertise of experts. This section first describes the domain model of 

expert finding systems, and then discusses the criteria for expertise matching systems. The 

related work on expert finding is also reviewed based on these criteria.  

3.2.1 Domain Model of Experts Finding Systems 

A domain model of expert finding systems is suggested by Yimam-Seid [2003], which includes 

seven domain factors. 
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• Basis for expertise recognition: this is the collection of various pieces of evidence which 

indicates the area(s) of expertise. These evidences can be grouped as explicit evidences 

such as self-declaration by experts and implicit evidences such as document authorship. 

• Expertise indicator3 extraction: the extraction techniques can be grouped as domain 

knowledge independent or domain knowledge driven.  

• Expertise models: these can be dynamically generated at query time from expertise 

indicator sources, or extracted and stored either by personal agents or as aggregated 

models to which experts are associated.  

• Query mechanisms: the system either requires users to explicitly specify their 

requirements or infers expertise need based on users’ communications, activities, and so 

on. 

• Matching operations: matching techniques include keywords matching (exact keyword 

matching or similarity matching such as vector space based methods) or concept 

matching. Inference mechanisms can be applied to concept matching. 

• Output presentations: Experts need to be ranked uni-dimensionally or multi-

dimensionally. A varying degree of personal detail may be presented as well as their 

social network. 

• Adaptation and learning operations: The system should employ user models to 

compare the experts’ competence level with that of the user’s, make user-tailored 

rankings, and attempt to describe expertise at a level of granularity that matches queries.  

 

3.2.2 Criteria of Expertise Matching 

Some of domain factors described above do not directly influence the performance of expertise 

matching. For example, query mechanism, asking users to explicitly specify their requirements 

does not guarantee the better performance than inferring expertise needs based on users 

activities because not all the users are good at specifying their needs. Another example is 

expertise indicator extraction, the selection of the extraction techniques depends on how 

                                                           
3 Expertise indicator means terms or phrases reflecting expertise; expertise indication means the evidence 
of expertise such as document authorship. 



CHAPTER 3. RELATED WORK ON EXPERTISE MATCHING                    

 

41

 

expertise is represented. In the other word, this factor heavily relies on expertise model. In order 

to achieve better performance five fields are summarized based on the five remaining factors, 

which act as the criteria to evaluate expertise matching systems (shown in Table 3-1). The 

criteria are described below. 

 

• Multiple expertise indications: there are many indications of expertise, such as 

publications, projects, homepages and so on. These expertise indications are physically 

distributed across the organization and stored in various formats (databases, document 

repositories, web sites and the like).  

 

• Concept searching: Users should be able to navigate the domain concepts (in 

hierarchical structure) to locate experts. In addition, for the users without domain 

knowledge (those prefer keywords input), the system can guide them to the appropriate 

concept(s) based on the keywords they specify. 

 

• Experts ranking: the experts should be ranked according to their level of expertise in the 

particular area that a user is interested in. So users can limit the number of experts they 

will accept. 

 

• Clear output presentation: Users should be supported in the selection of experts through 

the provision of integrated information of experts extracted from different data sources. 

This means that users do not have to manually search for relevant information on each 

expert on their own. 

 

• Adaptability: the system should be able to use the feedback of users to learn users’ 

expertise requirements in order to achieve the improved matching performance in the new 

retrieval. 
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3.2.3 Expertise Indications and Representations 

The expertise indications determine what kind of data sources are to be collected while the 

expertise representations determine the form that expertise is stored and also how to match 

expertise. 

3.2.3.1 Indications of Expertise 

Expertise, as one kind of tacit knowledge, has the inherent characteristic of tacit knowledge - it 

is difficult for people to write down their expertise, they know but unable to express. Although 

expertise is embodied and embedded, it can often be observed through tangible results 

[Stenmark, 2002]. The following are diverse indications of expertise: 

 

• Answers to others questions: people ask questions in discussion forums, newsgroups, 

bulletin boards. When a person always answers questions on a particular topic, he/she is 

very likely to be an expert in that field. The “quality” of the answers, rated by the 

questioners, can be seen as an indication of the expertise level. 

 

• Email: people use email to communicate with their associates to share information, 

discuss problems and get answers on a daily basis. It has become an integral part of many 

workers' social interaction. By tailoring email contents it is possible to get vocabulary-

based hints on the person’s subjects of interest and knowledge level. 

 

• Browsing behaviour: If one has expertise in a particular area, he/she may spend more 

time on searching/reading related documents on the web. So by tracking user behaviour, 

especially their preferences on the web it is possible to deduce their expertise.  

 

• Memberships/position/reputation: association memberships can determine the areas of 

interest although it is not the same as expertise. Reputation is important in social network 

recommendations. A high reputation/position is always supported by a high level of 

expertise.  
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• Publications: such as journal articles, technical reports, seminar presentations, these are 

all good indications of a person’s expertise. Through writing documents, part of the 

experts’ tacit knowledge (expertise) can be converted into explicit knowledge. 

 

• Projects: people usually acquire valuable knowledge and experience through undertaking 

projects. New knowledge is created via collaboration between team members. 

Individual’s expertise is increased through communication and sharing.  

 

• Recommendations: when a person recommends documents to a community, the quality 

of the documents can be evaluated by other users. If a person always recommends high 

quality documents on a topic, this person must be very familiar with this topic and should 

have expertise in the area. The assumption is that experts can find more quality 

information than ordinary people. 

3.2.3.2 Expertise Representation 

It is still an open issue how to best represent a person’s expertise. Basically, there are two kinds 

of well-used expertise representation. One is keyword-based and the other is concept-based. In 

the former case, expertise is represented by a set of keywords based on which an exact match 

(using Boolean model) or a similarity match (using vector space model or probabilistic model). 

In the latter case, expertise is mapped to the pre-constructed concepts (such as concepts in a 

domain ontology); normally, users browse the concepts to locate experts. These keywords or 

concepts can be manually collected by experts or can be automatically extracted through 

analysing the relevant expertise indications using Information Retrieval techniques, Natural 

Language Processing techniques, and so on.  

3.2.4 Existing Approaches to Expertise Matching 

3.2.4.1 Expertise Database 

The traditional approach is to create a database or directory of skills or expertise, also called 

“yellow pages”. Individuals specify their expertise and the levels of their expertise in their own 
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words or according to the pre-defined subjects; users are then able to search for experts based on 

this kind of database. This kind of skills databases is very popular in a wide range of 

organisations [Scarbrough, 1999]. However, it suffers from several limitations: (1) different 

people may describe similar expertise differently; (2) people have very different standards for 

judging the degree of their expertise; and (3) people’s expertise is continually changing, and 

thus the skills database may be out of date quickly and be difficult to maintain. Compared with 

the traditional skills database, some intelligent systems have been developed where different 

expertise indications are used to identify experts, which will be described in the next section. 

3.2.4.2 Information Repository 

The problem of the static skills database is partially solved in a dynamic information repository 

such as Answer Garden [Ackerman and McDonald, 1996] which continually collects the 

answers to frequently asked questions. Expertise is implied in the answers and users might find 

the information they need in the database. If they cannot find the answer, the question is then 

sent to the appropriate expert, and the new answer together with the question is inserted into the 

answer garden.  

 

An information repository approach does not focus on finding experts, but on reusing their 

codified expertise by storing and retrieving answers. The interaction between users and experts 

is not encouraged, so the expertise is not effectively reused and explored. In contrast, the 

ContactFinder system [Krulwich and Burkey, 1996] recommends the appropriate people by 

scanning and analysing messages in bulletin boards. It extracts topic areas from the messages 

based on heuristic keywords and associates the contact person to these topic areas. If a new 

message appears, the system can assist users by recommending an appropriate contact person 

who has answered questions in the same topic before. The limitation of this system is that the 

method of extracting a topic from each message (heuristic approach, such as finding words in 

upper case) is not accurate and needs to be improved.  
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Browsing Trail4: 

Some systems consider people’s web browsing patterns as indications of expertise. One 

example is the MEMOIR system [Pikrakis et al., 1998], which searches not only people’s 

homepages but also the URLs and associated keywords of webpages that people have visited in 

order to help users to find experts. Although the MEMOIR system can find people with similar 

interests, it cannot distinguish between those who have expertise and those who have interests 

only. 

 

Expertise Browser [Cohen et al., 1998] traces experts’ browsing and searching behaviour in 

order to provide hints to users who are searching in similar areas. The assumption is that experts 

have abilities to find high quality information, and their expertise in the information filtering 

area can be reused by others through storing their information-browsing paths and patterns of 

content. However, the same information may have a different value for different people, and 

some good quality documents read by experts might be too difficult to understand by others. So 

users may not find what they need even when they follow experts’ browsing paths. Another 

limitation of this system is that experts need to be pre-specified. This work has to be done 

manually and regularly in order to keep the experts database updated. Furthermore, if users do 

not know the experts themselves, then they have to scan through all the browse paths that match 

the query, which can be time consuming. 

3.2.4.3 Keyword based Profile Searching 

The above systems are based on keyword index, and do not have any expertise/interest profile 

about each expert. Expertise profile is necessary to conduct a more accurate match and to rank 

experts. The profile can be keyword-based (such as a set of keyword with different weights) or 

created through text analyses of different indications such as email, and work artefacts.  

Emails 

Yenta [Foner, 1997] is a multi-agent, referral-based matchmaking system. It functions in a 

decentralized fashion where every person has a personal agent which stores the interest profile 

                                                           
4 Trail: A user's trail is the set of actions on documents that they have visited (such as opening the 
document) in pursuing a certain task. 
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of the person, and agents communicate with each other to find people with similar interests and 

introduce them to each other. By scanning all the users’ emails, each user’s interests profile (a 

set of weighted keywords) is created using a vector space model. Similar messages are clustered 

together by comparing these keyword vectors. Each cluster represents one interest of a user. 

Two users are considered to have a similar interest if they have at least one cluster similar to 

each other (the similarity between these two clusters has to be above a certain threshold).  

 

Whilst Yenta only concentrates on grouping people based on their shared interests, a similar 

system called Expertise Locator [Kautz et al., 1996] can further locate experts based on their 

emails. A user profile is a list of keywords that appear in any email message. Experts are 

ordered simply according to how frequently the keywords are mentioned in the email 

correspondence. Know-who email agent [Kanfer et al., 1997] improved the Expertise Locator 

by adapting document retrieval methods in three ways: (i) people are represented in a vector 

space; (ii) relevance feedback is implemented to help user reformulate the queries; and (iii) the 

set of terms included in a query or person vectors are referred to an online dictionary in order to 

find the semantic relationships amongst the words. However, email is not a good indication to 

reflect people’ expertise and scanning people’s email involves the privacy problem. 

 

Documents 

Expert Finder (1) [Mattox et. al., 1999] exploits organization’s intranet documents to locate 

experts. The system ranks employees by the number of times a term or phrase is mentioned and 

its statistical association with the employee name either in corporate communications (such as 

newsletters or based on what they have published in their resume) or document folder. This 

system creates people’s expertise profiles during the query time. Although it can capture the 

updated information and avoid some maintenance work, the system suffers from a high latency 

problem in query processing. The shortcoming of the query-time generated expertise model is 

also found by Yimam-Seid [2003] in a similar expert finding system developed for a research 

department.  
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An agent based Expertise Finder [Crowder et al., 2002] is built for an academic research 

environment. It receives a user’s query in keywords and retrieves publication repository to find 

all the publications which use the search terms. The associated authors are then listed as the 

relevant experts. They are ranked according to the number of occurrences each author appears 

in the returned publications. It suffers the same problem as in Expert Finder (1), furthermore, it 

only explores one type of expertise indication (publications).  

 

Social network 

McDonald and Ackerman (1998) distinguish two steps in finding expertise within organizations 

through the field study of expertise location in a software company. These two steps are 

expertise identification and expertise selection. Social networks are an important factor in the 

expertise selection process. There are systems which take into account social networks when 

recommending experts. One of them is ReferralWeb [Kautz et al., 1997a; 1997b], which aids 

users in finding “trusted” experts based on a “referral chain”. The indicators of the social 

network between people include co-authorship on papers and team members in past projects. 

Furthermore, spiders were built to determine relatedness based on frequency of co-occurrence 

of names in the entire WWW. A social network is modelled by a graph, where nodes represent 

individuals, and the edges between nodes indicate that a direct relationship between the 

individuals has been detected. In addition to relationship, ReferralWeb also extracts evidence 

for expertise. The expertise database includes all the papers written by the individuals. The 

standard information retrieval vector space model is used to search for people with special 

expertise. Hence, users can find experts on a particular topic and those who have pre-existing 

social relationships with them. 

 

Another example of using social network is the Expertise Recommender system [McDonald and 

Ackerman, 2000], which uses various heuristics to select an expert in a software company. 

Expertise identification is based on software change history and technical support database. A 

change history profile includes module name, version and date. The list order of experts is from 

those who touch the software most recently to who touch the software least recently. For 

technical support, the request text is parsed and three query vectors are created: one for 
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symptoms; one for customers; and one for program modules. The profile database is then 

queried using the vector space index. Expertise selection is based on the organizational distance 

between the department of the person making the request and the department of each expert 

recommended, and how well the requester knows the expert (social network). Report on a 

system that uses various heuristics to select an expert, based on who has touched various files, 

who is organizationally closest to the requester, and how well the requester knows the expert 

(based on a previous analysis of the social network in the organization). The idea is to produce a 

very short list of recommended experts based on heuristics specified by the user. If no 

satisfactory expert is identified, the user can “escalate” the request, and the system will produce 

more potential experts, for example, by changing the threshold values in the heuristics. 

 

Limitations of all these keywords-based profile systems are that (1) the search is based on 

syntax (if the keywords appear) rather than concept; and (2) experts in the result list are only 

sorted with respect to the given search terms. These limitations can be overcome in concept-

based searching which will be described in the next section.  

3.2.4.4 Concept-based search 

Expert Recommendation [Yukawa and Kashara, 2001] is a system which locates engineers with 

a high level of expertise on a particular topic. The information source is a huge set of technical 

documents produced by experts. Again the vector space model technique is used to analyse 

these documents. Keywords and documents are mapped in the same multi-dimensional space 

through co-occurrence based thesaurus or dictionary-based concept base. Each personal profile 

is derived from associated documents and is represented as a weighted vector. In this system the 

keywords, the target documents, the authors of the documents and their organizations are all 

placed as vectors in the same multi-dimensional space, and the similarity between any two can 

be calculated as a cosine coefficient between vectors.  The advantage of this technique is its 

flexibility, that is, it can accept not only a keyword but also sentences or even documents as a 

query and allows analysis and clustering of the results. However, there are issues remaining 

such as quantity and quality of the documents and multiple expertise. 
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The Expert Finder (2) [Vivacqua and Lieberman, 2000] agent assists novices in finding experts 

in the domain of Java programming. A user profile is automatically generated by a personal 

agent through scanning his or her Java programs. These files are parsed and analysed to find 

how many times the methods and libraries used. A profile contains a list of the user’s areas of 

expertise and the associated levels (novice - beginner - intermediate - advanced - expert). 

Expertise level is determined by taking the number of times the user uses each class and divided 

by the overall class usage. Users can hide some areas of their expertise if they do not want 

others to know about them. The similarities between a user’s profile and other experts’ profiles 

are calculated using vector match by a matchmaking engine. The Java domain similarity model, 

which defines the features in the Java programming language and class libraries, is also 

exploited by a matchmaking engine to find a candidate expert whose knowledge lies in a more 

general or more specific category or related topic to the user’s requirements.  

 

Some recent commercial knowledge management systems such as Agentware Knowledge 

Server TM (from Autonomy http://www.autonomy.com) also provides features that support 

expertise matching in organizations. Agentware uses neural networks and advanced pattern-

matching techniques to find the concept(s) of the documents that employees have accessed and 

then deduce their expertise. One system built on Autonomy’s AgentWare platform to search 

expertise of others is the Volvo Information Portal (VIP) [Lindgren and Stenmark, 2002]. The 

Find Competence feature in the VIP was built to locate organizational members with a specific 

expertise through detecting their actions, such as searching for information related to a specified 

area. However, users’ actions indicate more of one’s interest rather than expertise, there can be a 

gap between users’ interest and their competence. 

 

Liao et al. [1999] propose a Competence Knowledge Base System (CKBS) which builds upon 

an ontology-based model of competence fields. In this approach the employees’ competences 

are associated with the concepts in a domain ontology. Ontology-based retrieval heuristics are 

used to find experts who are indirectly linked to the search concept. These experts include 

people who have worked on a project applying the technology required or who have 

competence in the super- or sub-concept of the topic in question.  
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3.2.5 Summary 

According to the criteria set in Section 3.2.2, the above expertise matching systems have been 

summarised in Table 3-1. Table 3-1 shows that challenges remain for dealing with expertise 

matching according to the criteria.  

 

Multiple Expertise Indications: From Table 3-1 it can be seen that different systems use 

different data sources which include different expertise indications. There is no clear priority for 

these indicators; they complementary one another. Hence, an expertise matching system should 

include as many expertise indications as possible. A normal situation is that expertise 

indications are physically distributed across the organization and stored in various formats 

(databases, document repositories, web sites, and the like). In most systems only one type of 

indication (such as email) and/or only one data format is used to create an expertise model. In 

order to achieve a more accurate expertise model, there is a need to exploit the heterogeneity 

and the distributed nature of the information space as a source of expertise indications. This is 

called “source heterogeneity gap” [Yimam-Seid, 2003]. 

 

Concept search: Keyword search is still widely used in these systems. Few systems implement 

concept search with different approaches (dictionary-based, pattern matching, ontology-based). 

Among these approaches, ontology-based approach is widely accepted as the preferred method 

to deal with the problems of keyword searching. However, manually linking people or projects 

with the concepts in the ontology is still time consuming. 

 

Experts Ranking: Nearly half of the systems return experts in a relevant order based on the 

vector model, although few of them use number of mentions of terms which a user specified 

(Expert Finder(1) [Mattox et al., 1999]) or from the most recent touch to the least recent touch 

of the software (Expertise Recommender [McDonald and Ackerman, 2000]). If expertise is only 

represented by concepts such as CKBS, then it is difficult to rank experts. There is a need to 

combine keywords representation and concepts representation in order to address the problem of 

keyword searching and the ranking of experts. 
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Table 3-1 The comparison of the relevant works based on the criteria 
of expertise matching (see Section 3.2.2) 

Criteria for Expertise Finding Systems 

Systems Expertise 
Indications 
used 

Expertise 
Representation 

Expertise 
Model 

Experts 
Ranked 

Experts 
information 
provided 

Answer Garden FAQ Keyword 
/Databases 

Query time 
generated 

No Name 

Contact Finder Messages in 
bulletin boards 

Topic Aggregate No Name, 
knowledge 
areas, contact 
information, 
previous emails 

MEMOIR Browsing trails Keyword Agent-based Yes Name, trails 
Expertise Browser Browsing trails Keyword Aggregate No Name, browse 

paths 
Yenta Email Keyword Agent-based No Name 
Expertise locator Email Keyword Agent-based Yes Name 

 
Know-who Email Keyword Agent-based Yes Name 
Expert Finder(1)  Documents Keyword Query time 

generated 
Yes Name, contact 

information, 
documents 

Referral Web Papers and 
social network 

Keyword Aggregate No Name, social 
network 

Expertise 
Recommender 

Social network 
and technical 
reports 

Keyword Aggregate Yes Name, email, 
phone 

Expertise Finder Publications Keyword Query time 
generated 

Yes Name, email, 
phone, position, 
publications 

VKP/ULPD Publications 
and projects 

Keyword, 
Research areas 

Query time 
generated 

No Name, phone, 
email, projects, 
publications, 
classification 
terms 

Expert 
Recommendation 

Technical 
documents 

Concept Aggregate Yes Name, 
characterizing 
words, 
sentences, 
bibliography 

Expert Finder(2) Java 
Programming 

Areas in domain 
ontology 

Agent-based Yes Name, area of 
expertise, level 
of expertise 

Find Competence Documents Concept Aggregate No Name, email, 
company, phone, 
dept 

CKBS Self-described 
skills, 
projects 

Concept  Aggregate No Name, phone, 
email, url,  
projects, 
competences 

Expert Locator Self-described 
skills 
 

Technical 
thesaurus 

Aggregate No Name 
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Output Presentation: Output presentation is very weak in these existing approaches. Normally, 

only personal contact information is provided. Ranking is not very useful for the users if there is 

no detailed information on each expert. It is difficult for users to agree or disagree on this order. 

The nature of expertise means that it is difficult for each person to accurately declare his 

expertise and level, and there is always a degree of “noise” in the ranked list of experts returned 

by the system based on the limited data sources available. After all it is users who select the 

appropriate experts. Thus there is a need to access detailed information about experts, which 

includes not only the personal contact information (such as organization, group, telephone 

number) but more importantly, their expertise indicator sources (such as homepages, 

publications, projects). Some systems provide the social network of each expert and the 

documents 5  they have produced, however, this is not sufficient. Yimam-Seid [2003] also 

noticed this problem and named it the “expertise analysis support gap”.  

 

Adaptability: This feature is not included in the Table 3-1 as very few systems (such as Know 

Who [Kanfer et al., 1997]) possess this feature. Expertise matching seems similar to document 

matching in which user feedback can be collected and used to adapt users’ profiles. However, 

expertise itself is more complex than single documents because of the intricacies of expertise, 

therefore the effectiveness of adaptability is less than with single documents.  

3.3  Conclusions 

The nature of expertise means that expertise itself cannot be simply expressed even by experts 

themselves and it cannot be quantified in the same way as data or documents. This makes 

expertise matching more difficult than searching documents. Through analysing existing 

approaches, it can be seen that the vector space model is a widely used technique for building 

keywords based expertise profile. Chapter 4 discusses how this technique could be adopted for 

the ULPD Expertise Matcher. Some serious shortcomings in the existing approaches are also 

discovered. Firstly, expertise indications are not well explored. Secondly, the output 

presentation is not sufficient. Thirdly, the combination of advantage of concept matching and 

                                                           
5 In most time, only titles of the documents are displayed. 
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keywords matching is yet to be realised. Chapter 5 discusses how to employ semantic web 

technologies to solve these limitations. 
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Chapter 4 

Extension to ULPD Expertise Matcher 

The previous chapter described the nature and value of expertise, and existing matching 

approaches in general. This chapter focus on expertise matching in academia. Through the 

survey of expertise matching in academia (Appendix A), it was found that the ULPD expertise 

matcher in the University of Leeds is a representative approach. This chapter describes the 

ULPD Expertise Matcher, which explores the two major expertise indications (publications and 

projects1). The limitations of current approach to expertise matching is analysed followed by a 

brief introduction of three information retrieval models. An extended Expertise Matcher is then 

presented which adopts one of the information retrieval models, namely, the vector space model 

to build keyword-based expertise profile. A prototype system is then built to compare the 

retrieval performance between the current Expertise Matcher and the extended system. An 

evaluation experiment has been carried out with real user participation and the results are 

presented. Finally, areas which still need to be improved are discussed.  

4.1 Current Approach of Expertise Matching in the ULPD 

The ULPD system has been developed at the University of Leeds to better manage the expertise 

of staff in the University (The ULPD data model is shown in Appendix C). One of the aims is to 

facilitate collaboration between the University and industry through locating University experts 

with the required expertise to solve a particular set of industrial problems. 

                                                           
1  Academic researchers acquire experience by working on projects, through which the researchers 
accumulate the abilities to solve problems using their knowledge. On the other hand, publications reflect 
researchers’ insight, understanding of knowledge, and their contribution in terms of theory or 
applications. Hence publications and projects are two major sources from which to derive a person’s 
expertise in the academic environment. 
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4.1.1 Data Collection in the ULPD 

The ULPD contains a set of data which allow it to operate efficiently as a publications database. 

These data sets include: 

 

Publication: an efficient procedure has been developed to facilitate the upload of any existing 

departmental publications databases into the ULPD given completion of the necessary data re-

formatting. Validation and maintenance of ULPD publications data are undertaken by a Library 

Administrator using dedicated resource. The duplicate publication records can be checked. This 

is based on the “Publication Title” and “Publication Type” (e.g. chapter in book, journal article, 

etc.); authors (or administrators) are then free to continue with inputting the new publication 

record or can quit the data entry at that point. 

 

Journals: the ULPD contains information such as journal title, ISSN, and publisher for 

approximately 65,000 academic journals. This data was originally downloaded from the 

ULRICH’S periodicals directory provided by Bowker and has been extended by the ULPD 

support team whenever users have requested another academic journal be added which did not 

already appear in the ULPD. This journals data is the responsibility of the ULPD Library 

Administrator. 

 

People: the lists of people come from a range of different sources. Information about academic 

staff, academic related staff, former staff members, and technical staff come from the 

University’s central SAP system. Information about current research students and former 

research students come from the University’s central Student Information Management System 

(SIMS) system. The data which is taken from the University’s SAP and SIMS systems is fed 

into the ULPD on a daily basis and this data cannot be edited by ULPD users. 

 

Project: this data comes from the University’s On-line System for the Computerised 

Administration of Research (OSCAR) and comprises details of research. Each research project 

in the ULPD includes details of project title, investigators, project start and end date, awarded 

value, and account number. This data which is taken from the University’s OSCAR system is 
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fed into the ULPD on a daily basis. Project details such as investigators and abstract can be 

edited by the departmental administrator whilst other fields such as project title cannot be 

edited. 

 

A standard (academic) user has the ability to view and edit their own publications data only, that 

is, any publication records for which they are an author or co-author. They can also use the 

Profiles facility to add information to their own profile in the ULPD and export this as a report 

(for example as a Curriculum Vitae) or view it on-line as a web page. A Departmental 

Administrator user has the ability to view and edit publications data for members of any 

department to which they have been assigned administrator access rights. 

 

4.1.2 ULPD Expertise Matcher 

In ULPD there is an Expertise Matcher to help users search for experts with the required 

expertise. Each expert’s expertise is derived from the associated publications and projects. All 

these publications and projects were classified according to the ULPD classification scheme. 

Experts can be found in two ways - by browsing fields of research classification terms (as 

shown in Figure 4-1) or by searching keyword. Firstly, users can navigate the ULPD 

classification scheme and select a particular classification term or topic, for example, 

information systems. The Expertise Matcher will then retrieve experts who have published 

papers or have worked on projects classified under the selected field of research. Secondly, 

users can also enter keywords, for example, “multimedia and networking” and the Expertise 

Matcher will retrieve people who have published papers or have worked on projects with titles 

and/or abstracts including these keywords. Boolean operations are supported, so that users can 

use Boolean operators (AND, OR, and NOT) to combine the search keywords. This search is 

implemented using Microsoft SQL Server 2000 through which the publication table, project 

table, and personal profile table are indexed.  
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Figure 4-1 Selection of research field(s) from classification 

The search results consists of a list of experts’ names. In order to select the relevant expert, 

users can click on an individual’s name to view a personal profile as shown in Figure 4-2, which 

includes the following information: 

 

• Personal details: title, initials, surname, e-mail, extension, qualifications, research 

interests, membership of research groups, membership of committees and associations, 

current position and previous position(s), homepage, language skills. 

• Areas of expertise: a collection of classification terms under which each expert’s 

publications and projects are classified.  

• Project details: project title, project abstract, start date, end date, other project 

investigators, sponsor(s), project value. 

• Publication details: publication title, publication abstract, year of publication, other 

authors, etc (publication status, published in, pagination, confidentiality, editor, 

keywords). 
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Figure 4-2 Example of a personal profile 

4.1.3 Limitations of the Current Expertise Matcher 

Both browsing and searching activity have their limitations. Browsing can help users find all the 

experts in a particular field of research without query formulation. However, it is only suitable 

for users who are familiar with the ULPD classification system. Furthermore, whether users can 

find the experts also depends on the administrators of each department, who associate the 

publications and projects with the classification terms. It is difficult to correctly classify every 

publication and project, and if there are some incorrect classifications, the relevant experts may 

not be retrieved and/or irrelevant experts may be returned. 

 

In contrast, the search function is very helpful for those users who are not familiar with the 

classification. It is always quicker to get the results by entering several keywords than browsing. 

However, it suffers from the following drawbacks: 

 

• Some irrelevant people are retrieved and some relevant experts are missed.  

• Too many experts are retrieved, or too few. There may be dozens if a user inputs general 

terms in the query, or there may be none at all if a user uses several specific terms 

together. In the former case, it is difficult for users to check each person on the list to find 

the real experts. In the latter case, users have to reformulate the query in some way in 

order to find an expert. However, users do not know which term should be removed or 
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changed, and they may formulate the query several times before obtaining a more useful 

list of experts.  

• Experts are listed according to alphabetical order rather than expertise level. There is no 

mechanism by which the results may be ranked in order of decreasing expertise level. 

Retrieved experts are equal to each other, and users have to check each of them in order 

to find the most appropriate expert. 

• It is difficult for users to express their request using Boolean query. Users may have a 

rough idea of the expertise they are looking for, but cannot formulate a precise query. 

 

The reasons for these problems can be summarised below. 

 

• Limitation of expertise data sources The information stored in ULPD for expertise 

retrieval is limited and incomplete. Although publications and projects are important 

expertise indicators, not all the publications are stored, for example, technical reports are 

not included in the ULPD database. For the stored publications and projects information, 

only less then 10% have abstract information; the others include titles only. In addition, 

due to the fact that the manual collection of personal information is a tedious and time-

consuming task, many of the fields in the person table are still left blank, such as 

qualifications, research interest, URL of homepage and so on. Some of them are 

important for expertise retrieval, such as research interest. The limited expertise data 

sources hinder the retrieval of relevant experts. 

 

• Lack of expertise profile There is no pre-stored expertise profile. Expertise is derived at 

the time of the query. Although publication and project tables are indexed which reduces 

the searching time to some extent, some experts are overlooked if keywords given by the 

user appear in different publication titles. For example, if a user inputs “A AND B” in the 

query, and an expert uses keyword A in one publication and keyword B in another 

respectively, then this expert is not retrieved.  
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• The Boolean search is conducted Therefore experts will be retrieved if and only if their 

publications or projects information include the keywords that a user specifies in the 

query. All the experts are considered to be equally relevant to the query and have to be 

listed according to alphabetical order of their surname. In addition, users cannot have 

control over the size of the output produced by a particular query. The Expertise Matcher 

is unable to predict a priori how many experts will be returned to the user.  

 

The following section will describe how information retrieval techniques are employed to 

reduce the problems. 

4.2 Adaptation of Information Retrieval Techniques 

Rather than querying data in a standard format, information retrieval can work with plain 

unformatted data. A fundamental idea within IR is that a document is relevant to a query if they 

are similar, which can be defined as string matching, similar vocabulary or same meaning of 

text [Monz and de Rijke, 2001]. There are many information retrieval models such as set 

theoretic models, algebraic models and probabilistic models [Baeza-Yates and Ribeiro-Neto, 

1999]. Each of these models has its own advantages and disadvantages. The classical 

information retrieval models include the Boolean model, the vector space model, and the 

probabilistic model. They are classical models, not only because they were introduced in the 

early 70’s, but also because they represent three classical problems of information retrieval 

respectively: structured queries; initial term weighting; and relevance feedback [Hiemstra, 

2000]. This section introduces these three classic models and explains why the vector space 

model is chosen in building an expertise profile. 

4.2.1 Information Retrieval Models 

4.2.1.1 Boolean Model  

The Boolean model is based on set theory and Boolean algebra. The Boolean model represents 

documents by a set of index terms, the value of an index term is “1” if this term appears in a 
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document, otherwise, the value is “0”. A query is also specified as Boolean expressions, which 

is composed of index terms linked by the standard logical operators: AND, OR, and NOT. The 

query expression is then represented as a disjunction of conjunctive vectors. A document is 

predicted as relevant if it satisfies the query expression, that is, if it includes any of the 

conjunctive components. 

 

The major drawback of the Boolean model is that a document is predicted to be either relevant 

or non-relevant without any notion of a partial match, which prevents good retrieval 

performance. The Boolean model is in reality much more a data retrieval model (the difference 

between data retrieval and information retrieval can be found in Appendix B). Thus, the data 

specified by the user is important. However, sometimes it is difficult to translate an information 

need into a Boolean expression. Another disadvantage of the Boolean model is that exact 

matching may lead to retrieval of too few or too many documents.  

4.2.1.2 Vector Space Model  

The vector space model [Salton et al., 1975] realizes a partial match through associating weights 

with each index term appearing in the query and in each document. In the vector space model, 

non-binary weights are assigned to index terms. As shown in Table 4-1, documents are 

represented as n-dimensional vectors (n is the total number of index terms). User queries can be 

similarly mapped into the vector space. The similarity between a document dj and a user q can 

be quantified by the cosine of the angle between these two vectors (see equation 4-1). The 

retrieved documents can be sorted in decreasing order of relevance which leads to more precise 

results than that of Boolean model. 

 
Table 4-1 Documents are represented as an n-dimensional vector 

with different weights on each dimension 
          Document    
s      term 

d1 
 

d2 … dj … dm 

t1 w11 w12 … … … w1m 
t2 w21 w22 … … … w2m 
… … … … … … … 
ti … … … wij … … 
… … … … … … … 
tn wn1 wn2 … … … wnm 
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where wij is the weight of the ith term in the document dj, and.  

wiq is the weight of the ith term in the query q. 

Various methods for weighting index terms have been developed [Salton and Buckley, 1988]. 

Here two methods are introduced. The first simplistic method is based on Term Frequency (TF), 

which is the number of times a given term occurs in a document. Words that repeat multiple 

times in a document are considered salient. The second method is based on Term Frequency and 

Inverse Document Frequency (TF × IDF) based on the premise if a word appears in many 

documents, it is a common word and not very indicative representation of document content. 

IDF, proposed by Sparck-Jones [1972], is an appropriate indicator of how well a term 

distinguishes a relevant document from a non-relevant one. It measures the proportion of 

documents over the entire collection that contain a given term. TF and IDF represent intra-

cluster similarity2 and inter-cluster dissimilarity respectively.  

 

In the BT KSE system [Davies et al., 1998], the vector space model is used to retrieve 

documents relevant to a user’s interest. First, each document is represented by an n-dimensional 

vector of terms. The weight of a term in a document matrix is calculated by its term frequency. 

A user profile is also a vector with term weight “1” if this user specifies this term to be his/her 

interest, otherwise the term weight is “0”. The similarity between a document and a user profile 

is then calculated as the cosine product of the two associated vectors. 
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where wi,p is the weight of the ith term in the profile p,  
     and wi,d is the weight of the ith term in a document d. 

The vector space model is a popular retrieval model nowadays. The main advantages of the 

vector space model are: (1) its term-weighting scheme improves retrieval performance; (2) its 

                                                           
2 Here, the relevant documents are considered as a cluster, the non-relevant documents are considered as 
another cluster. 
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partial matching strategy allows retrieval of documents that approximate the query conditions; 

and, (3) its cosine ranking formula sorts the documents according to their degree of similarity to 

the query.  

 

4.2.1.3 Probabilistic Model 

The probabilistic model [Robertson, 1977] assumes that there is an ideal answer set which 

contains exactly the relevant documents to a given query and no other. The querying process is 

considered as a process of specifying the properties of an ideal answer set. Index terms are used 

to characterize these properties. The probabilistic model attempts to predict the probability that 

a given document will be relevant to a given query according to the terms included in this 

document, and the probability that these terms are present in a document randomly selected 

from the ideal set.  

 

The probabilistic model improves on the Boolean model in that documents can be ranked in 

decreasing order of their probability of being relevant. However, it usually needs users 

assistance in the initial separation of documents into relevant and non-relevant sets. 

Furthermore, the term frequency in a document is not taken into account because all weights are 

binary.  

 

Both the vector space model and the probabilistic model support natural language queries 

because they treat documents and queries in the same way. The results can be ranked using both 

models and relevance feedback can be supported. The major difference is that the vector space 

model assumes relevance and the probabilistic model relies on relevance judgements or 

estimates.  

 

4.2.1.4 Selection of the Vector Space Model 

The current ULPD Expertise Matcher uses an exact match, which suffers the same problem as 

in the Boolean model. It is likely that it could be improved by the vector space model or the 
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probabilistic model. Salton and Buckley [1990] found that the vector space model is in general 

more effective than the probabilistic model. Despite its simplicity, the vector space model is a 

resilient ranking strategy with general collections. In general, the vector space model is either 

superior or almost as good as a large variety of alternative ranking methods [Baeze-Yates and 

Ribeiro-Neto, 1999]. The results are difficult to improve without query expansion or user 

relevance feedback. Furthermore, it is easy to compute and therefore fast. For these reasons, the 

vector space model is chosen to improve the current Expertise Matcher.  

 

Some of the limitations of the current Expertise Matcher (described in Section 4.1.3) could be 

solved if an expertise profile is created using the vector space model. 

 

• Pre-stored expertise profile can integrate publications or projects information so that there 

is more chance to find the experts even if the keywords that a user specifies appear in 

different titles of publications or projects.  

 

• Based on the vector space model, the similarity between the expertise profile and a user 

query can be calculated. Therefore, the experts can be ranked according to the similarity 

degree and users can have control on the number of the experts returned. 

 

• The measure of similarity between experts provides mechanisms to find otherwise missed 

experts. For example, two experts are doing similar research, and only one expert is 

retrieved because his publications include the keyword(s) specified by the user. Another 

one is missed. Using the vector space model, the experts with similar expertise can be 

found even when their publications or projects information do not include the specified 

keywords.  

 

• It is possible to use “query refining” or expanding so that the new search will return more 

relevant experts. Initially, the user profile is a set of keywords specified by the user. It 

could perhaps be improved by adding the extracted keywords from experts which the user 

finds relevant and adjusting the associated weights. The new profile can be used to 
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retrieve more experts and the user will then evaluate again. The process will be repeated 

until the user profile no longer changes drastically. For the long-term success, the 

construction of accurate user profiles is necessary. 

 

• One additional benefit is that users can give emphasis on some keywords by giving 

different weights to different keywords if the vector space model is employed. Currently 

all terms in a query are considered as equally important. 

 

4.2.2 Extending Expertise Matcher with the Vector Space Model 

To find experts, the vector space model is used to map not only keywords and documents but 

also people who have written documents and worked on projects into the identical multi-

dimensional space. The expertise profile of an expert e is represented as: 
 

n

D
p eojUePubj

j

e

�
∈= )(Pr)(     (4-3) 

where Dj refers to a vector for a document j, Pub(e) refers to a set of publications written by the 

expert e, Proj(e) refers to a set of projects that expert e has worked on, and n is the total number 

of publications and projects for an expert. Since the expertise profile, document and a query 

(combination of keywords) are treated in the same way, the system acquires an ability to discern 

the relevance between any combination of keywords, documents and people. The 

implementation consists of six processes as follows:  

 

• Lexical analysis Lexical analysis of the text with the objective of treating digits, 

punctuation marks, and the case of letters. 

• Stopwords removal Elimination of stopwords3 with the objective of filtering out words 

with very low discrimination values for retrieval purposes.  

• Stemming Stemming of the remaining words with the objective of removing affixes (i.e. 

prefixes and suffixes) and allowing the retrieval of documents containing syntactic 

                                                           
3 Stopwords are listed in http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words 
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variations of query terms (e.g. connect, connecting, connected, etc) according to Porter’s 

stemming algorithm [Porter, 1980].  

• Term indexing Indexing the remaining terms according to alphabet order. 

• Term weighting Each publication and project title is considered as a document. Each 

document is then represented as a vector consisting of a set of index terms. The weights 

of the terms are calculated using TF and TF-IDF respectively.  

• Expertise profile building All the publications and projects associated with each expert 

are collected. The represented vectors are used to calculate the expertise profile according 

to formula 4-3. 

 

When a query is submitted, it is also represented as an n-dimensional vector. The weights in the 

query vector are calculated using TF and TF-IDF respectively, and the similarity between an 

expert’s expertise profile and a query is determined by the cosine of the angle between these 

two vectors according to formula 4-1.   

4.3 Implementation 
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• Expertise Manager: queries the ULPD database to obtain the relevant information of each 

expert; creates and maintains the expertise profiles. 

• ULPD database: provides expertise information of each expert such as publications and 

projects. 

The extended Expertise Matcher is implemented in Java and communicated with the ULPD 

system using JDBC. Since the dimensionality of keyword vectors is very large but most 

expertise profiles and queries do not contain most words, the vectors are sparse. The keyword-

to-expert index is therefore implemented using a hash table (see below). 
 
Create an empty HashMap, H; 
For each expert, E, (i.e. retrieved relevant information from the ULPD database); 

   Create a HashMap Vector, V, for E; 
   For each (non-zero)token, T, in V; 
    If T is not already in H, create an empty  
     TokenInfo for T and insert it into H; 
    Create a TokenOccurrence for T in E and  
     add it to the occList in the TokenInfor for T; 

Compute TF*IDF for all tokens in H; 
Compute vector lengths for all experts in H. 

 

4.4  Evaluation 

4.4.1 System walk through 

In order to test the retrieval performance after extending the current Expertise Matcher with the 

vector space model (both TF and TF-IDF strategies), a prototype system has been built and used 

to locate experts with the required expertise. In this prototype system, the current Expertise 

Matcher is called Search 1, the extended Expertise Matcher with TF strategy is called Search 2, 

and the extended Expertise Matcher with TF-IDF strategy is called Search 3. The testing 

process is as follows.  

 

For testing the Search 1, the user inputs a few keywords (for example “spatial and reasoning or 

logic”) to express his/her required expertise and links these keywords in Boolean operators 

(AND, OR and NOT). A list of names of experts is then displayed as shown in Figure 4-4. This 

is the result of Search 1. The experts are listed in alphabetical order. 
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Figure 4-4 Search 1 shows the searching result obtained from the current Expertise Matcher 

 

 
Figure 4-5 Extended Expertise Matcher (Search 2 and Search 3)  

ranking experts according to their relevance   

For testing the Search 2 and 3, the same keywords (for example, “spatial reasoning logic”) are 

input by the user but without the Boolean expression. Two lists of experts’ names are then 

displayed (see Figure 4-5). In both Search 2 and 3, the experts are ranked. The value before the 

name of each person indicates how relevant that person is to the query. These two sets of results 

are very similar except that the score of each person is different which sometimes results in the 

different listing order. 
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Figure 4-6 An example of an expert’s detail information 

The publications and projects information associated to an expert can be displayed (as shown in 

Figure 4-6) if a user double clicks on the name of the expert. More specifically, each of these 

publication or project includes at least one of the keywords that the user has entered. A full list 

of publications and projects can be displayed by clicking “all the publications and projects” 

button. By clicking on “similar experts” button users can find other experts with the similar 

expertise (as shown in Figure 4-7). 

 

 
Figure 4-7 Displaying similar experts 



CHAPTER 4. EXTENSION TO ULPD EXPERTISE MATCHER                    

 

70

 

4.4.2 Experiment Results 

In the initial experiment, 10 PhD students, who are ranged from 1st year to 4th year, are 

randomly selected from the School of Computing and invited to compare the three searches. 

Initially, they input a few keywords to express their research interests and obtained results from 

each Search. Then the participants selected the relevant experts from the returned lists of people 

and identified the position of their supervisor’s name in each list. The participants added one 

more keyword in their queries and repeat the above process. For each search, the results before 

and after adding the new keyword were compared. In this experiment the test is based around 

four questions: (1) which search is more likely to locate the supervisors; (2) which search can 

help users find their supervisors in a shorter time; (3) which kind of query is easier to formulate; 

(4) which search is the most useful. 

 
Table 4-2 Results obtained from 3 searches before and after adding a keyword 

(Search 1 refers to the current ULPD Expertise Matcher; Search 2 refers to the extended Expertise 
Matcher with TF strategy; Search 3 refers to the extended Expertise Matcher with TF-IDF strategy) 

Participant 

No. 

Position of 
the actual 
supervisor 
in the 
Search 1 
list (before) 

Position of 
the actual 
supervisor 
in the 
Search 2 
list (before)

Position of 
the actual 
supervisor 
in the 
Search 3 
list (before)

Position of 
the actual 
supervisor 
in the 
Search 1 
list (after) 

Position of 
the actual 
supervisor 
in the 
Search 2 
list (after) 

Position of 
the actual 
supervisor 
in the 
Search 3 
list (after) 

1 - 8th  7th  - 2nd  1st  

2 - 3rd  2nd  - 1st  1st  

3 - 7th  4th  2nd  1st  1st  

4 2nd  1st  1st  2nd  1st  1st  

5 2nd  1st  1st  - 1st  1st  

64 (2nd) (2nd) (1st) (2nd) (2nd) (1st) 

7 9th  1st  1st  1st  1st  1st  

8 - 4th  2nd  - 2nd  2nd  

9 60th  4th  4th  152nd  3rd  3rd  

10 1st  5th  5th  - 3rd  3rd  

                                                           
4 No.6 participant did not find his supervisor in the three searches because his supervisor has retired and 
the information relating to his supervisor was removed from the ULPD database. A potential supervisor 
was identified in this case. 
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Table 4-2 shows how far down the actual supervisor of each participant appeared in the 3 sets of 

matching results (before and after adding a keyword). For example, No.1 participant did not 

find his supervisor’s name in the list of Search 1, but did find it in the list of Search 2 and 

Search 3 positioned 8th and 7th respectively. After No. 1 participant added a keyword to the 

query, he still did not find his supervisor’s name in the list of Search 1, but the positions of his 

supervisor’s name in the list of Search 2 and Search 3 were changed to 2nd and 1st respectively. 

 

From Table 4-2 it can be seen that 90% of actual supervisors were found using Search 2 and 

Search 3, whilst only 50% of them were found using Search 1. Among this 50%, 80% of actual 

supervisors were more easily found using Search 2 and Search 3 because they were listed in the 

top few. It was noticed that the supervisor of No. 10 participant was positioned 1st in the result 

list of Search 1. This is because in Search 1 the results are ordered alphabetically on surname 

and the first letter of the supervisor’s surname is “B” (Dr. R.D. Boyle), hence it was displayed 

as the first result. Finding the supervisor in Search 1 at the top of the list only occurred with one 

student (10% of all participants). Compared with Search 2 and Search 3, in 40% of cases the 

supervisors were ranked higher in Search 3 than in Search 2. After adding a keyword, 60% 

participants found it easier to find their supervisors in Search 2 and Search 3 because their 

supervisors’ names were ranked higher than before; 40% retained the same position because the 

supervisors were already listed 1st. In contrast, for Search 1, only 20% of participants found it 

easier to find their supervisors whilst 50% retained the same position; 30% found it more 

difficult as the positions of their supervisors were further down or it was not in the list at all. In 

summary, adding a keyword leads to more useful results in Search 2 and Search 3, but less 

useful in Search 1. 

 

The precision and recall are two main criteria used to evaluate the performance of 3 searches. 

Precision means the proportion of relevant retrieved experts out of those retrieved experts 

whereas recall means the proportion of relevant retrieved experts out of all relevant experts. 

Table 4-3 shows the number of relevant experts found in Search 1 and Search 2 & 3, according 

to which, the precision of Search 1 and Search 2 & 3 can be calculated. This is shown in Figure 

4-8. The average precision for Search 1 is 11.2%. The average precision for Search 2 is 18%. 



CHAPTER 4. EXTENSION TO ULPD EXPERTISE MATCHER                    

 

72

 

The total number of relevant experts are unknown so that it is difficult to calculate the accurate 

value of recall. However, the average number of accepted potential supervisor in Search 2 and 3 

is 1.8 whilst in Search 1, the average number is 0.7. This indicates that the recall in Search 2 and 

3 is higher than Search 1. 

 

Table 4-3 The number of retrieved relevant experts in Search 1 and Search 2 and 3 

Participant No. 
Number of 
relevant 
retrieved 
experts in 
Search 1 

Number of 
retrieved 
experts in 
Search 1 

Number of 
relevant 
retrieved 
experts in 
Search 2 and 35 

Number of 
retrieved 
experts in 
Search 2 and 36 

1 0 33 1 10 

2 0 0 1 10 

3 0 5 4 10 

4 1 4 1 10 

5 1 2 2 10 

6 1 9 1 10 

7 1 31 2 10 

8 0 0 3 10 

9 1 140 1 10 

10 2 9 2 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-8 Comparison of precision of Search 1 and Search 2&3 

                                                           
5 Number of relevant retrieved experts is the same for Search 2 and Search 3. 
6 Number of retrieved experts is the same for Search 2 and Search 3. 
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Despite the semantic indication associated with the Boolean model, the great majority of 

participants found it difficult to express their query requests in terms of a Boolean expression, 

especially for a long query (more than 3 keywords). The experiment showed that 80% of 

participants prefer to list a set of keywords without considering the logic behind them (as shown 

in Figure 4-9); only one student preferred to input a query with operators. He explained that 

“using an operator ‘AND’ could narrow the results”. While it worked in his case, sometimes, it 

might be too narrow and no results were retrieved. Participants also found it difficult to expand 

a query. Two students still input “A AND B AND C” in their second round search after no 

results were obtained when they used “A AND B” in the first search. When they were advised to 

change the operators, they just simply changed “AND” to “OR”, for example, “A OR B OR C”. 

In Search 2 and Search 3, query expansion is much easier as participants can simply add as 

many keywords as they want. 

 

80%

10%

10%

Without operators

With operators

Indeterminate

 
Figure 4-9 Participants’ preference on operators in queries 

The “Finding Similar Experts” function was also tested. The results are shown in Appendix D. 

A member was randomly selected from each research group in the School of Computing; the 

other experts who share similar interests were then retrieved. The results show that the most 

similar experts are always in the same research group with the selected expert. In the 

experiment, one participant found this function very useful. The initial search result did not 

return his supervisor’s name but a colleague of his supervisor was returned instead. Through 

searching similar experts, the participant located his supervisor. 
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In summary, Search 2 and Search 3 are more effective than Search 1 for the following reasons: 

• The precision and recall of the Search 2 & 3 are higher than Search 1. 

• It is easier to formulate the query and expand the query. 

• It gives more chances to find the experts (40% of participants found their supervisors in 

Search 2 and Search 3 when no result was obtained in Search 1). 

• It has size control on the output so users do not have to check the detailed information of 

each expert if too many experts are retrieved. 

 

Thus, it is no surprise that only 10% of participants (1 student) considered Search 1 to be the 

most useful search7 (see Figure 4-10). When Search 2 is compared with Search 3, as they used 

the same model (vector space model), the actual experts retrieved were the same, only the 

orders of the lists were slightly different. 60% of participants considered Search 3 as the most 

useful search as they found the ranking result in Search 3 more appropriate than in Search 2 (the 

relevant experts were ranked higher in Search 3 than in Search 2). The other 30% participants 

found it difficult to decide which Search is better than the other as the results of Search 2 and 

Search 3 were very similar. 

 

60%

30%

10%

Search 3
Search 2 & 3
Search 1

 

Figure 4-10 Comparisons of 3 searches on usefulness 

                                                           
7 In this case, the participant was so lucky in choosing the keywords and retrieved his supervisor’s name 
at the top of the Search1 results list and only another person was returned. This is a very rare case indeed. 
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4.4.3 Discussion 

The extended Expertise Matcher creates the expertise profile using the vector space model. 

Some of the improved features of this as compared with the ULPD Expertise Matcher (see 

Section 4.1) are discussed below. 

 

• It increases the possibility of finding experts. The expertise profile is obtained through 

combining all the publications and projects information of each expert. Even if the 

required keywords appeared in different publication/project titles then the system can still 

find the expert. This is impossible for the current ULPD Expertise Matcher. That is why 

sometimes there are no results when searching “A AND B” in Search 1, whilst Search 2 

and Search 3 will retrieve some experts. 

 

• The results can be ranked with a relevance rating. The expertise profile is expressed with 

a set of keywords with different weights, which is used to calculate the similarity between 

the expertise and the user query. Highly relevant experts can be displayed near the top of 

the list. The experiment results show that in 70% of cases the most relevant experts 

(supervisors of participants) were ranked in the top 3. 

 

• The size of the results can be controlled. Due to the ranking ability, the number of results 

can be specified by the user. In the experiment, only the top 10 results found by Search 2 

and Search 3 were displayed. Within the controlled number of results, Search 2 and 

Search 3 did not miss any experts that users found relevant in Search 1. Therefore, it 

normally saves users’ time in locating the relevant experts. 

 

• The keywords in the query are not treated equally. Search 3 automatically gives more 

weight to those keywords that appear less frequently in the collection of documents than 

the frequently used keywords. This avoids irrelevant people being ranked higher than 

more relevant ones due to more occurrences of frequently used keywords. 
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• It is easy to formulate a query. Users do not have to formulate precise queries with 

Boolean operators. They can simply list all the keywords or even give a document as their 

interest. This is because the system treats queries, documents, and experts in a uniform 

way.  

 

• It is able to find similar experts. This alleviates the syntax match problem to some extent. 

The experts do not necessarily have to share the same keyword as specified by the user; 

they might be discovered through “similar experts” searching. 

 

In theory, the vector space model supports adapting user profiles by gathering relevant 

information from user’s feedback 8  [Rocchio, 1971; Ide, 1971; Salton and McGill, 1983]. 

Formally this is represented as: 
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where mf
�

is the modified profile; f
�

 is the old profile; jp� refers to the expertise profile of the 

expert whom the user finds relevant; Pr refers to a set of relevant experts identified by the user 

among the retrieved experts; |Pr| refers to the number of experts in the set Pr; α and β are tuning 

constants. However, the relevance feedback feature has not been tested in the evaluation process 

for two reasons. First, it takes a long time since users need to evaluate results a reasonable 

number of times before the adaptive user profile stops changing. Second, this relevance 

feedback feature is more useful in a large collection of experts than a small collection, which 

means through identifying the relevant experts in the initial search, more experts can be 

retrieved in the next search. This is only suitable if there are many experts relevant to each 

query. However in the experiment there are only 2 or 3 relevant experts in most cases so there is 

a possibility that no relevant expert will be returned in the initial retrieval, and then no relevant 

information can be gathered. In addition, the focus of this study is on improving the 

performance of the initial retrieval. 

                                                           
8 Here only positive feedback is used since it is more important than negative feedback [Salton and 
McGill, 1983]. 
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Despite these advantages, the extended Expertise Matcher also revealed some deficiencies. 

Firstly, the extended Expertise Matcher is still an isolated keyword base search (syntax-based 

search), terms are considered to be independent of each other. This means that an expert will be 

retrieved if his/her expertise profile includes the same keyword(s) given in the query. However, 

a single word can have two or more meanings (this is called polysemy) and the retrieved experts 

may not be relevant. On the other hand, relevant experts may not be retrieved even if their 

expertise profiles include the keywords which are semantically similar to the given keyword 

(synonymy) or highly relevant (such as hyponymy - subset/superset relations between two 

words). For example, a user inputs “information and integration” as the query, and did not find 

his supervisor although his supervisor uses the words “semantic sharing, information broker, 

mediator” in his publication titles. Studies show that the chances of two people choosing the 

same term to describe the same concept is less than 20% due to the diversity of the human 

language [Deerwester et al., 1990]. 

 

One solution to this “term mismatch” problem is query expansion [Efthimiadis, 1996], which 

aims to retrieve a more relevant target by adding terms to the query. Collecting relevance 

feedback [Rocchio, 1971] is one kind of query expansion. Terms can also be selected from a 

thesaurus, such as finding the synonyms of the terms in the query. Manually building thesaurus 

is quite expensive and different techniques are used to automatically generate thesaurus, such as 

analysing word co-occurrence in the documents [Attar and Fraenkel, 1977]. However, this 

approach leads to rapid degradation of precision [Sparck-Jones, 1972]. Thesaurus-based query 

expansion causes a decline in retrieval performance generally [Hersh, et al., 2000]. This is 

because synonyms are not equal to the original word, and if a synonym with multiple meanings 

is chosen, the situation is worse. Furnas et al. [1983] proposed the Latent Semantic Indexing 

model to map each document and query vector into a lower dimensional space which is 

associated with concepts. Thus it allows a match between queries and documents if they do not 

share the same word. Unfortunately, the high computational requirements of LSI and its 

difficulty in determining the number of dimensions limit its applicability9 [O’Riordan, and 

                                                           
9 On the one hand, the system will reduce to the vector space model if the number of dimensions is too 
large; on the other hand, significant semantic content of a particular domain will remain uncaptured if the 
number of dimensions is too small. 
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Sorensen, 1999; Karypis and Han, 2000]. In summary, these approaches are recall-oriented 

since they focus on synonymy rather than polysemy, and achieve very limited success in 

improving search effectiveness due to the lack of query context [Singhal, 2001]. 

 

Secondly, coverage of expertise data sources needs to be improved. In the ULPD system, the 

expertise of each expert is derived from the publications and projects database. This is not 

sufficient; some information stated in personal homepages is very valuable to derive their 

expertise. For example, the “research interests” section in experts’ homepages clearly reflects 

their expertise. Hence, it should not only be included in the expertise information, but also be 

given higher weights than the publication and project titles. Another example of expertise data 

sources are technical reports. 

 

Thirdly, output presentation needs to be enhanced. In the initial experiment, what the system 

provides about each expert’s detailed information is only the titles of the experts’ publications 

and projects. This is not sufficient for users to evaluate their expertise. It is not a serious 

problem in the initial experiment because the selected participants are PhD students in the 

School of Computing and they are supposed to know their supervisors and other relevant 

experts in the department. It is much more difficult for other users to evaluate the expertise just 

using the titles of the publications and projects. They need not only personal contact 

information, but also the research interests of each expert, the information of research groups 

they are members of, their work experience, and any online documents they have produced, and 

so on. Different users may have different requirements; not all the users seek the expert with the 

most experience and expertise. The system should support their selection process by providing 

general relevant information about each expert. 

4.5 Conclusions 

This chapter has described the use of the vector space model to extend the current ULPD 

Expertise Matcher. This approach treats user query, publication, project and expert in the same 

way (weighted keyword vector), and relevance is measured by the cosine between two vectors. 
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Therefore, the extended system can rank experts according to their relevance to the query and 

implement a partial match. Furthermore, users can easily form a natural language query. The 

initial experiment results are promising in that most of the drawback of the current Expertise 

Matcher have been solved. This experiment illustrated that the traditional IR method (vector 

space model) remains effective when applied to finding experts.  

 

The extended system still leaves a number of issues unresolved which serve as the basis for 

continuing research. This includes syntactic search limitation, limited expertise information, and 

poor presentation. How to solve these issues whilst retaining the advantages of the vector space 

model is the focus of future work.  
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Chapter 5 

Use of RDF in Expertise Matching 

The previous chapter analysed the limitations of the Expertise Matcher in the ULPD system and 

presented an extended Expertise Matcher which uses the vector space model to build an 

expertise profile. The results of the experiment show that some of the limitations have been 

solved, however a number of issues still remain. This chapter analyses the possible solutions for 

the remaining problems and examines how the semantic web technologies such as RDF/RDFS, 

XSLT, and ontologies can be used to address these issues. To test the applicability of these 

technologies in expertise matching, a prototype system called Expertise Locator has been built 

which aims to help PhD applicants (expertise seekers) locate potential supervisors (expertise 

providers). The evaluation of the Expertise Locator has been conducted through an experiment 

with real users and the key results are presented. Finally, a comparison between the Expertise 

Locator and other related work is undertaken. 

5.1 The Remaining Issues and Possible Solutions 

The previous experiment described in Chapter 4 has identified the critical success factors and 

factors to be improved in the extended Expertise Matcher. They are highlighted in Table 5-1 

below. 
 

Table 5-1 Comparison between success factors and limitations in the extended Expertise Matcher 
Success Factors Limitations 
Ability to build expertise profile This profile is built based on the ULPD database only 
Ability to rank experts Ranking results depends heavily on the keywords that 

user specified 
Ability to retrieve similar experts Similarity is calculated based on keywords rather 

than concepts. If an expert has many research 
interests, then the retrieved similar experts may have 
expertise in different areas. 

Ability to display the publication and 
project information relevant to each expert 

The provided available about each expert is limited, 
some other information from different data sources 
useful to expertise assessment and expert selection is 
overlooked. 



CHAPTER 5. USE OF RDF IN EXPERTISE MATCHING                                                                                                          
  

 

81

 

The limitations presented in the table 5-1 are due to (i) lack of integration of expertise 

indications from heterogeneous data sources (ULPD database is the only data source), (ii) 

syntactic search (retrieval and ranking heavily depend on the keywords). In order to overcome 

these limitations, multiple expertise indications from heterogeneous data sources should be 

integrated and concept search should be designed, hence the integrated relevant information 

associated to each expert can be provided to users in helping them assess the expertise of an 

individual. The rest of this section analyses the approaches to alleviate these limitations. 

5.1.1 Heterogeneous Data Sources in Reflecting Expertise 

5.1.1.1 Heterogeneity Problem 

The expertise indicators extracted from different data sources are the foundation for the 

intelligent expertise matching systems. These indicators are physically distributed in different 

sources with different formats across the organization. For example, some departments such as 

School of Computing have its own database which stores publication information about its staff. 

Some experts have their own homepages from which personal updated information can be 

obtained. Manually creating a database such as ULPD to store all this information is very 

difficult and expensive. Furthermore, there is a critical problem of maintaining up-to-date 

information. A person’s expertise changes over time and it is not feasible to rely on the 

individual to report developments to their expertise profile and even so, the database 

maintenance task would be significant if hundreds or even thousands of individuals were 

involved. 

 

The above analysis leads to the question: “Is it possible to automatically extract the relevant 

information from disparate data sources and integrate them?” To answer this question, it is 

necessary to examine closely what type of information is available which includes expertise 

indicators. There are a number of different data sources varying from structured data (such as 

databases), semi-structured data (such as web pages), to unstructured data (such as text files). 

This heterogeneity brings many difficulties to the task of information integration. Busse et al. 
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[1999], Seligman and Rosenthal [2001], and Sheth [1998] present different classifications of 

heterogeneity which can be summarized below: 

 

• Heterogeneous systems This includes platform heterogeneity (such as operating system 

and hardware) as well as information system heterogeneity. For example, different types 

of DBMS support different data models (such as relational, hierarchical, object-oriented 

models) and different query languages (such as SQL and OQL).  

 

• Heterogeneous attribute representations This is also called syntax heterogeneity, which 

includes data type and format differences. For example, in one source date is measured by 

year only (1993), whilst in another source it is measured by day, month and year 

(10/12/93). 

 

• Heterogeneous schemas This means that the same information elements can be assembled 

into many different structures. For example, one system might store all publications 

information in one renormalized table, while others might split it among several tables. 

 

• Heterogeneous semantics This refers to the meaning of the terms. The relations and 

attributes in a schema have names only, the implicit semantic (concept they stand for) are 

interpreted by people. The understanding by different people may be different. Semantic 

conflicts can occur when different names stand for the same concept or the same names 

denote different concepts. For example, one system might use “author” while another 

system might use “creator” to express the same meaning. Differences in semantics are 

more challenging than representation heterogeneity. 

 

• Object identification When the relevant information for the same object is stored in 

separate sources then how does the system recognise that they are referring to the same 

thing but with different attributes? For example, the central administration office of a 

university may have a record of a person (“Smith Black, 1970”), and the individual 
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school or department may also have a record of this person (“Smith Black, 1970”) but the 

problem is how to identify that they are the same object.  

5.1.1.2 Approaches to Solving the Heterogeneity Problem 

The problem of heterogeneity has been studied in the database research community for well 

over two decades. The representatives of traditional approaches are multidatabases [Litwin et 

al., 1982; Dayal and Hwang, 1984; Rahimi et al., 1982] or federated database systems 

[Heimbigner and McLeod, 1985; Sheth and Larson, 1990]. The latter is a special type of 

multidatabase systems (tightly coupled) because an integrated schema is provided. These 

approaches put more emphasis on system heterogeneity (such as database heterogeneity) than 

syntax and structure heterogeneity. There are two classes: (i) multidatabases and federated 

database systems use the virtual approach1 (the actual data is still stored in the original data 

sources), (ii) the warehousing approach [Hammer et al., 1995] uses the materialized approach2 

where relevant information is extracted, filtered and integrated in a repository. When a query is 

posed, the query is evaluated directly at this repository, without assessing the original 

information sources. However, it suffers from problems of data becoming out of date and 

consistency maintaining [Widom, 1995].  

 

In order to deal with a variety of data sources (structured, semi-structured and unstructured data 

sources), mediator-based systems [Wiederhold, 1992] have been developed. These systems use 

the virtual approach to provide up-to-date information. Mediator-based systems are usually 

developed using a top-down approach, that is, starting with a global information need and 

sources that can contribute to this need can be plugged in later3. In mediator-based systems, a 

mediator provides a unified schema as an interface to a dynamically changing collection of 

heterogeneous information sources. A main component of a mediator-based system is the 

wrapper, which encapsulate data sources and translate the local data model and language into a 

common data model and common language. There are two techniques to map the source 

                                                           
1 Also called lazy approach or on-demand approach 
2 Also called eager approach or in advance approach 
3 If the data sources are known before the integration, a bottom-up strategy is used such as federated 
databases systems and data warehousing. 
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schemas to the mediator schema. One is Global-as-View (GaV) where the mediator schema is 

defined as views over the sources schemas for each class, as in Information Manifold [Levy et 

al., 1996], and SIMS [Arens et al., 1996]. Although the query decomposing is fast, when 

information needs or sources change, a new mediator schema should be generated. The other is 

Local-as-View (LaV) where the source schemas are described by giving equivalent views on the 

global schema, such as in Garlic [Carey et al., 1995], and TSIMMIS [Garcia-Molina et al., 

1995]. Rules are used to construct these views. Mediators contain mechanisms to rewrite 

queries according to the rules. The emphasis for mediator-based systems is on heterogeneous 

syntax (attribute) and structure (schema) rather than heterogeneous systems (such as 

heterogeneous DBMS).  

 

In order to support interoperability and integration of a variety of data sources, a broad variety 

of metadata is exploited. The role of metadata for semi-structured and unstructured data sources 

is like schema for a database. Kashyap et al, [1995] classified metadata into content-

independent metadata (such as modification data of a document) and content-dependent 

metadata (such as size of document). Content-dependent metadata can be further subdivided 

into direct content-based metadata (such as full-text indexes); content-descriptive metadata 

(such as textual annotations of a page); domain-independent metadata (such as structure 

metadata); and domain-specific metadata (such as terms chosen from domain-specific 

ontologies). Mediator-based information systems require the software developers to have a clear 

understanding of a variety of metadata, as well as a comprehensive understanding of schematic 

heterogeneity [Sheth, 1998]. In rule-based mediators, rules are mainly designed in order to 

reconcile structural heterogeneity [Garcia-Molina et al., 1995], whilst for the reconciliation of 

the semantic heterogeneity problems, the semantic level also has to be considered 

[Stuckenschmidt, 2000]. The literature on integration is concentrated on syntax and structure 

with few people focusing on semantic interoperability (see for example [Fensel et al., 1999], 

[Stuckenschmidt, 2000]). 
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5.1.1.3 The Roles of Semantic Web Technologies 

Extensible Markup Language (XML) [Bray et al., 2000] is accepted as the standard for data 

interchange on the web. XML is a neutral syntax that can transform diverse data structures into 

graph-structured data as nested tagged elements [Seligman and Rosenthal, 2001]. In this way, 

heterogeneous data structures can be represented in a uniform syntax – XML. XML also helps 

by providing a convenient mechanism for attaching descriptive metadata to attributes of both 

the source and target schemas. XSLT [Clark, 1999] can define the mapping between the 

heterogeneous schemas. Using XML, three problems listed in the section 5.1.1.1 can be 

alleviated, they are heterogeneous DBMSs, heterogeneous attribute representations, and 

heterogeneous schemas. However, XML cannot support integration at the semantic level. For 

example, suppose there are two expressions: <Surname> Black </Surname> and <Lastname> 

Black </Lastname>, which seem to carry some semantics. However, from a computational 

perspective, a tag such as <Surname> carries as much semantics as a tag such as <H1>. Hence 

the system does not understand that Surname and Lastname mean the same thing and that they 

are related to another concept - “Person”. An XML Schema provides support for explicit 

structural cardinality and data typing constraints, but does not provide much support for the 

semantic knowledge necessary to integrate information [Hunter and Lagoze, 2001]. Further, 

XML does not play a very significant role in object identification. 

 

RDF (Resource Description Framework) [Lassila and Swick, 1999] and RDFS (the Schema 

Language for RDF) [Brickley and Guha, 2000] are W3C standards for describing metadata on 

the web. They can be used to solve the semantic heterogeneity problem. It is useful for “semi-

structured” or schema-less data [Brickley, 2001]. RDF provides a standard representation 

language for web metadata based on directed labelled graphs [Karvounarakis et al., 2000]. It 

consists of three object types: resource, property and statement4. Every resource has a Uniform 

Resource Identifier (URI). The use of URIs to unambiguously denote objects, and the use of 

properties to describe relationships between objects, distinguish it fundamentally from XML’s 

tree-based data model [Decker et al., 1999]. The RDF data model is just a triple of {subject, 

predicate, object} and the order of information is not significant. The same RDF tree can be 

                                                           
4 The more detailed information of the RDF data model can be found in Appendix E. 
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expressed differently in many XML trees because the order of elements in an XML document is 

very meaningful. Therefore RDF successfully avoids the problem of querying XML trees which 

attempt to convert the set of all possible representations of a fact into one statement [Berners-

Lee, 1998].  

 

In addition, RDF vocabularies can be described using an RDF Schema which is also written in 

RDF. An RDF Schema further allows simple semantics to be associated with terms; classes may 

have multiple subclasses or super-classes, properties may have sub properties, domain and range 

[Heflin and Dale, 2002]. RDF adds value in comparison to traditional DTD or XML schema 

approaches in the XML world. A DTD focuses on the structure of an XML document. It gives 

the name of elements, the associated attributes each element has, and the order of elements in an 

XML file. An XML Schema provides a means of specifying element content in terms of data 

types, so that document type designers can provide criteria for validating the content of 

elements. Either XML schema or DTD provide poor support for semantics [Hunter and Lagoze, 

2001], in contrast, RDF schema (RDFS) defines the types of resources that a document might 

describe, the types of properties (attributes and relationships) that can be possessed by the 

resources and restricts the ranges of the properties.  

 

In order to solve the heterogeneous semantics problem, there is a need to agree on the meaning 

of the terms used in the different data sources. The description of a shared set of terms in an 

application domain is called an ontology or a conceptual model instance5, which includes not 

only the definition of the terms, but also the relationships between these terms. RDFS can be 

seen as the first language to describe ontology [Hunter and Lagoze, 2001]. Through using 

ontologies to make the implicit meaning of their different terminologies explicit, it is then 

possible to dynamically locate relevant data sources based on their content and to integrate them 

as the need arises [Cui et al., 1999]. Global specific ontologies act as “semantic conceptual 

views” over the heterogeneity of data sources. The problem of mapping structure and semantics 

                                                           
5 The difference between Ontology and Conceptual Model is that “Ontology is external to information 
systems and is a specification of possible worlds in some particular domain that covers multiple and often 
a priori unknown information systems while a conceptual model is internal to information systems and is 
a specification of one possible world of that domain” [Bishr and Kuhn, 2000]. 
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of data between data sources is then changed to mapping the metadata of individual data source 

against the global ontology. 

 

5.1.2 Output Presentation 

In order to help expertise seekers assess the expertise of each expert, the final description of 

each expert returned to users should provide an integrated view of each expert in the same way 

that users might manually select and integrate pieces of relevant information from diverse data 

sources. The duplicated information from diverse data sources should be removed.  

 

As analysed in Section 3.2.4, most experts finding systems did not provide sufficient 

information on each expert. Normally, the result of searching for experts is a set of experts and 

their contact information. Some systems display the publication titles and/or a few keywords to 

describe the expertise. This is usually not sufficient for users to assess the expertise of each 

expert. The extended Expertise Matcher did not solve this problem where the output 

presentation is just the information of the publications and projects. Although different users 

may be interested in different aspects of the experts, some common interesting facts can be pre-

specified in the conceptual model (application ontology), and the output presentation can be 

created based on the conceptual model. 

 

XML and XSLT are very useful for the presentation of the output of a search. XML separates 

the structure of a document from its presentation, and XSLT can be used to provide different 

presentations to different users based on the same content. The output presentation is similar to 

a personal homepage, but is dynamically and automatically created by the expertise matching 

system through integrating heterogeneous data sources. If any new information is found in any 

of these data sources then the output will reflect this change. 

5.1.3 Concept Search 

Even if the conceptual model (application ontology) is created as a global schema and relevant 

information about each expert is extracted from different data sources and integrated 
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semantically, there is still a key problem, that is, syntax search. Although users can conduct a 

restricted field search, for example, “show me all the people who have published papers on 

‘information search and retrieval’”, the searching process is still based on the syntax match, 

hence it might not find a paper with the title “document clustering” as there is no common 

keywords between the user query and the paper title. Even when there are common words the 

meaning may be different. For example, vision could mean “act or power of imagination”, but it 

could also mean “frames enable the division of a browser window into independent areas”. The 

integrated publications information of each expert from the different data sources increases the 

chance of finding experts. It is, however, for recall only. Precision suffers because information 

retrieval systems are unable to distinguish which meaning was used in queries or in documents 

[Egnor and Lord, 2000].  

 

Another kind of ontology – domain ontology - has been viewed as a promising means to tackle 

this problem. Ontologies help to de-couple description and query vocabulary and increase 

precision as well as recall [Guarino et al., 1999]. Domain ontology characterises the body of 

knowledge associated with the particular domain of a task, such as, the definition of the 

concepts, the attributes of the concepts (for example, synonyms, abbreviations), and the 

relations between concepts (for example, is-a and part-of). If both the users queries and the 

experts profiles can be linked to the concepts in the ontology, then the searching precision is 

probably higher than simply keyword searching. 

 

This linking is difficult to implement automatically due to the nature of the English language. It 

is very difficult for a machine to understand the meaning of a question posed by a user. 

Although Natural Language Processing researchers have conducted research on extracting 

meaning/concept from documents, the technology is not mature enough to be satisfied [Li et al., 

2001]. The same problem is found when processing the integrated information of each expert 

and extracting the concepts of their expertise. Due to the difficulties in automatically linking 

expertise profile and user queries with concepts, a semi-automatic approach is proposed. As 

shown in Figure 5-1, for each concept, a set of keywords is extracted as “relevant keywords”. 

Based on the expertise profile (a set of keyword with weights), the relevant concepts are 
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retrieved if the description of the concept contains some keywords in the expertise profile. The 

concept whose description contains the most keywords is listed on the top. Each expert can then 

confirm if these concept(s) reflect their expertise. Thus, the expertise profile of each expert is 

built up which includes a set of keywords (with weights) and a set of concepts. A similar 

process will be applied in confirming the context of user queries. Once the concepts are selected 

by the user, the user query is replaced by the short explanation of a concept (in a set of 

keywords), which will then be used to search for an expert. Only those experts whose expertise 

profiles include the specified concept are retrieved. The experts are ranked according to the 

similarity between the keyword profile of experts and the new user query. 
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there are also many more general enquiries from individuals considering making an application. 

The case study detailed below has been designed to deal with both the actual applications as 

well as the general enquiries. The first step for a potential student is to discern whether anybody 

in the School has the expertise in the research area they are interested in and whether they could 

possibly be their supervisor. Normally, the students can get access to most web-based 

information sources, but they may well have to spend a long time checking each web page and 

searching each database (such as publications) to find pieces of information and to integrate 

them manually. It is a significant burden on the user to select, search, filter, and integrate the 

information they want. As a result of this, many students simply ignore this process - what they 

do is simply write down their research interests and leave the School’s PhD Admissions Tutor 

to try and select a suitable supervisor for them based on their proposed research topic. The 

better the PhD Admissions Tutor understands the expertise of each academic in the School then 

the better the match between supervisor and student will be. Sometimes even when a PhD 

Admissions Tutor has worked for many years in the school, it is still very difficult for him/her 

to recall up-to-date details of all the expertise and research interests for each individual. This is 

because the number of researchers in the School of Computing who could be supervisors is 

large and their expertise and research interests may continually change and develop. 

Furthermore, the PhD Admissions Tutor may not fully understand the applicants’ intents 

because some applicants use quite specific and often inaccurate technical terminology. As a 

result, the supervisor that the PhD Admissions Tutor recommends may not be the most suitable 

person, and there exists a real possibility that some appropriate applicants are rejected because 

their needs cannot be appropriately matched in this way. 

5.2.1 Business Objectives of the Expertise Locator 

The above problems are addressed in the design of the Expertise Locator System, which aims to 

improve the process of matching supervisors and potential research students by enabling the 

potential applicant to make more informed choices about their supervisors before they formally 

apply to the University. Both applicants and the School could be benefited in the following 

areas:  
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• The applicant could search Expertise Locator for potential supervisors themselves and 

retrieve integrated information on each supervisor without having to browse many 

webpages, thus they can make a more accurate selection of their preferred supervisor(s). 

 

• The burden on the broker (PhD Admissions Tutor) for matching between applicants and 

supervisors could be reduced if the preferred supervisors were stated by the applicants in 

the application forms, or if the broker could use Expertise Locator to locate potential 

supervisors. 

 

• On some occasions there is no directly related expertise available and the broker may 

recommend the applicant to other research areas. It will take time for the applicants to 

make a decision to accept or reject the offer and for the broker to get feedback from them. 

This problem will be solved by the Expertise Locator System as the applicants could 

make the alternative selections themselves immediately. 

 

• The applicants may change their mind (for example, apply to another university) if there 

is no expert in their preferred research area. This also saves time for both the PhD 

Admissions Tutor and the applicants. 

5.2.2 User Study 

To identify the support tasks needed in the Expertise Locator System, consider the following 

scenario, which represents a typical case for the problem described above: 

 

Mary is a Masters student in the University of Manchester and is graduating soon. 

Since her plan is to continue studying as a PhD student, she is searching the web 

pages of several universities, including the University of Leeds, in order to decide 

which university is the best one for her. Her preferred research interest is 

“heterogeneous database systems”. Mary first navigates the School of Computing 

website at the University of Leeds and browses the homepage of each member of 

staff. She quickly finds that there are a large number of staff in the School and 
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many of them are not active researchers. Then she changes her mind and decides 

to browse the research groups in order to quickly locate a potential supervisor. She 

finds these websites are not well organized. Although she searches very carefully, 

she still does not find a researcher who exactly matches her requirements. She is 

thinking that maybe there are no academics conducting research in this area and 

she should give up applying to Leeds University. 

 

This is not the desired outcome as there are people who can supervise her in her preferred 

research area at Leeds University. The scenario draws attention to the following problems 

involved in identifying the potential supervisor(s): 

 

• Low recall This means that some relevant people are missed. This is mainly due to: (1) 

There is a large number of staff in the School and it is a very time consuming task for the 

user to access each person’s homepage; users may stop after they have browsed a dozen 

of the staff’s homepages. (2) The web page of each research group does not give detailed 

information on the individuals in the group. As a consequence, the user may not find the 

relevant person even when searching carefully. 

 

• Low precision This means that some of the people found are not experts in the preferred 

research areas. It is not always the case that researchers working in the same research 

group have very similar research interests or expertise. Users still need to conduct further 

assessment by looking carefully at the detail of each researcher in order to determine if 

that individual is a suitable supervisor. Therefore, the number of real experts is very small 

compared to the total number of people retrieved. 

 

The following is the ideal situation that Mary wants the system to provide: 

When Mary conducts a search by entering her research interests – “heterogeneous 

database systems”, several relevant research areas available are returned. Mary 

chooses “Information Integration and Databases” as her preferred research area, 

and two related researchers are displayed with the relevant score. Each researcher 



CHAPTER 5. USE OF RDF IN EXPERTISE MATCHING                                                                                                          
  

 

93

 

has his/her own detailed information page including research interests, the 

projects they are working on or have worked on in the past, the papers they have 

published, technical reports which can be downloaded, and so on. Mary compares 

these two researchers and reads abstracts of 2 papers, she then chooses one of the 

two to be her potential supervisor and starts completing the application form and 

indicating the name of the potential supervisor on the form. 

 

From the ideal situation in the above scenario, the most significant support tasks required of the 

Expertise Locator System can be identified. These are summarized as follows: 

• Identification of expertise requirements; 

• Conducting concept search by prelinking experts’ expertise with the domain concepts; 

• Ranking experts according to their expertise level so that the chance of missing most 

relevant experts is reduced; 

• Capturing the relevant information of each expert from diverse information sources in the 

organizational memory and providing an integrated view of each expert to the user. 

5.3 The Conceptual Model and Architecture of the 
Expertise Locator System 

5.3.1 Conceptual Model 

A common conceptual model is necessary in order to integrate different expertise indications. 

Figure 5-2 shows a simplified conceptual model for expertise matching within academia, and 

hierarchical relationships have not been included due to space constraints. An example of the 

underlying hierarchical structure associated to the concept “Person” is given in Figure 5-3. The 

major concept in Figure 5-2 is “Person”; the others are “Publication”, “Expertise”, “Project”, 

“Research_Group” and “Classification”. The relationships between the concepts and the 

attributes related to each concept are also specified in the conceptual model. For example, a 

resource of type “Person” may have a property “author_of” whose value is a resource of type 

“Publication”. In the meantime, it can have another property “email” with value “Literal”. 

“author_of” represents the relation between concepts “Person” and “Publication” while 
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“email” represents the attribute related to the concept “Person”. The full model is listed in 

Appendix F which is represented in RDF. This conceptual model is created by the application 

designer using ontology editor such as Protégé-20006. 
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Figure 5-2 Sample conceptual model used in the Brokering System 
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Figure 5-3 An example of the underlying hierarchical structure  

associated with the concept “Person” 

 

5.3.2 Architecture of the Expertise Locator System 

The architecture of the Expertise Locator System is shown in Figure 5-4 (Figure 5-4 also 

illustrates the different data sources used in the case study). The architecture can be divided into 

two layers, namely, i) semantic information integration; ii) expertise management. The first 

                                                           
6 http://protege.stanford.edu/ 
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layer was developed based on [Vdovjak and Houben, 2001]. Each component in the architecture 

is described in detail below: 
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Figure 5-4 Architecture of expertise matching based on 

integration of heterogeneous information sources 
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• Wrapper Different wrappers such as DB-XML wrappers or HTML-XML wrappers are 

used to extract relevant information from the original data source and present it to the 

serialized XML data. For these unstructured data, some manual processes are needed 

such as adding metadata in XML according to the vocabularies stored in the Conceptual 

Model. 

 

• XML-RDF Broker Identifies the relevant concepts in the XML sources and replaces 

them with the concepts in the Conceptual Model; the mapping rules are specified in 

XSLT. These mapping rules are defined by the application designer and can be modified 

if the concepts of the source change. However, the underlying Conceptual Model should 

be stable as it is the basis for the semantic integration; if it has to be changed, then the 

RDF model and the mapping rules should be modified accordingly. The XML-RDF 

broker also receives the queries from the mediator and response with a set of RDF 

statements by searching the XML source. 

 

• Mediator Maintains the Conceptual Model (shown in Figure 5-2). This layer identifies 

which data sources are relevant to the query, transfers the query to subqueries, and 

retrieves subresults from brokers. These subresults are input into RDFDB , and through 

searching RDFDB, the final results (the semantically integrated information of each 

expert) is delivered to the expertise manager. 

 

• Expertise Manager In addition to maintaining experts’ information (experts profiles), 

the expertise manager also creates, stores and retrieves expertise profiles which consist of 

two forms – keywords and concepts. It receives the extended query and specified concept 

from the concept identifier and retrieves the experts whose expertise includes the required 

concept. The Expertise Manager ranks experts according to the similarity between their 

keywords profiles and the user query. The ranked experts with their integrated 

information are then sent directly to the user interface. 
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• Concept Identifier Receives a user’s query and provides the relevant concepts according 

to the domain ontology. After a user confirms the relevant concept(s), the concept 

identifier extends a user query with the description of the relevant concept and sends the 

specified concept and the extended query to the expertise manager. 

 

• User Interface Receives the query from the user and sends the results of the ranked 

experts together with the detailed information of the experts to the user. 

 

5.4 Implementation and Quality Control 

The implementation of the architecture described in the previous section includes several crucial 

aspects which are briefly described below: 

 

• Indexing and retrieval of concepts The concepts and associated keywords are chosen 

from the ACM Computing Classification 7  and an online computing dictionary - 

FOLDOC8. The ACM Computing Classification System has roughly 100 third-level 

headings and provides a relatively stable scheme that covers all research in computing 

[Halpern, 1998]. FOLDOC is a searchable dictionary of computing contributed by 1500 

people. The dictionary has been growing since 1985 and now contains over 13500 

definitions totalling nearly five megabytes of text. Entries are cross-referenced to each 

other and to related resources elsewhere on the Internet. The concepts and their associated 

keywords and supervisors are stored in a relational database. This database is connected 

to the Java system code via JDBC. The possible relevant concepts are retrieved based 

upon the research interests that the user inputs.  

 

• Constructing the detailed information for supervisors Firstly, relevant information 

from the diverse data sources should be collected. The information is stored in the web 

pages and the ULPD database is transformed into XML form using wrappers. Some 

                                                           
7 ACM Computing Classification http://www.acm.org/class/1998 
8 The Free On-line Dictionary of Computing http://foldoc.doc.ic.ac.uk/foldoc/index.html 
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manual annotations are needed for interpreting the information stored in the unstructured 

data sources. Manual annotation is time consuming and it is noticed that some annotation 

tools such as, MnM9 and Ontomat 10  are becoming available to provide a degree of 

automatic annotation. Secondly, these XML files are then transformed into RDF using 

XSLT (an example is given in Figure 5-5). Thirdly, the separate RDF data is input into an 

RDF database -- RDFDB. Fourthly, a search is conducted on RDFDB to produce the 

complete detailed information for each supervisor. Duplicate information is removed at 

this step automatically. The third and fourth steps are implemented through a Java 

interface for RDFDB.  

 

 
<Researchers> 
… 
<Researcher> 
 <id>id01</id> 
 <position>Research Fellow</position> 
 <name>Jason Noble</name> 
 <homepage>http://www.comp.leeds.ac.uk/jasonn/</homepage> 
 <email>jasonn@comp.leeds.ac.uk</email> 
 <publication> 
  <id>id233</id> 
  <title>Conditions for the evolution of mimicry</title> 
  <year>2002</year> 
 </publication> 
        </Researcher> 
… 
         </Researchers> 
 

Figure 5-5A The original XML files 
 

                                                           
9 http://kmi.open.ac.uk/projects/akt/MnM 
10 http://annotation.semanticweb.org/tools/ontomat 
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 <?xml version="1.0"?>  
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">   
<xsl:output method="xml" indent="yes"/> 
<xsl:template match="Researchers"> 
<rdf:RDF xml:lang="en" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
    <xsl:apply-templates select="Researcher"/> 
</rdf:RDF> 
</xsl:template> 
<xsl:template match="Researcher"> 
   <xsl:variable name="Rid" select="Researcher/id"/> 
     <Person rdf:about="{$Rid}"> 
    <name> 
        <xsl:apply-templates select="name"/> 
   </name> 
    <position> 
        <xsl:apply-templates select="Position"/> 
   </position> 
    <xsl:if test="author_of"> 
     <author_of> 
         <xsl:apply-templates select="author_of"/> 
    </author_of> 
    </xsl:if> 
    <Email> 
        <xsl:apply-templates select="email"/> 
    </Email> 
  <xsl:if test="homepage"> 
     <homepage> 
        <xsl:apply-templates select="homepage"/> 
     </homepage> 
  </xsl:if> 
 </Person> 
  </xsl:template> 
  <xsl:template match="author_of"> 
      <xsl:for-each select="Publication"> 
       <xsl:variable name="Pid" select="id"/> 
       <Publication rdf:about="{$Pid}"> 
           <Pub_title><xsl:value-of select="title"/></ Pub_title> 
           <YearOfPub><xsl:value-of select="year"/></YearOfPub> 
       </Publication> 
      </xsl:for-each> 
  </xsl:template> 
</xsl:stylesheet> 

Figure 5-5B XSLT template file, which is used to transform data from XML to RDF 
<id01,  rdf:type,   ‘Person’> 
<id01,  position,   ‘Research Fellow’> 
<id01,  name   ‘Jason Noble’> 
<id01,  homepage  ‘http://www.comp.leeds.ac.uk/jasonn/’> 
<id01,  email   ‘jasonn@comp.leeds.ac.uk’> 
<id01,  author_of   id233> 
<id233,  Pub_title  ‘Conditions for the evolution of mimicry’> 
<id233,  YearOfPub  ‘2002’> 

Figure 5-5C A set of RDF triplets after translation: 

Figure 5-5 An example of using template rules to transfer XML files into RDF triples 
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One problem of integrating pieces information from diverse data sources is how to identify that 

the two descriptions refer to the same object. RDF is good in that URIs can be used to 

unambiguously denote objects so that multiple data sources can be joined through the same 

URIs. This is one important reason why RDF data model is chosen rather than XML model. A 

“semantically meaningful object identifier” [Papakonstantinou et al., 1996] is important in this 

context. For example, the email address of a person can be considered as an identifier because if 

two people have the same email address, then these two people normally be the same person. 

However, in many cases, not all resources can be easily given a URI and any given piece of 

RDF might mention a resource “in passing” without bothering to mention the URI name for that 

resource. This is called “anonymous node” or “anonymous resource” [Brickley, 2001]. In the 

above example, publication id233 is an example of temporary id for a resource. The same 

publication can be given a different id (for example, id785) in another resource. In order to 

avoid misleading the user (the same object was considered as two different objects), a “rename” 

operation is added, that is, id number is rewritten according to the identifiers for these resources. 

For each publication, the identifier is the combination of the title and the year of publication. 

Accordingly, id233 is changed to ‘Conditions for the evolution of mimicry2002’. 

 

• Creating expertise profiles and ranking the expertise of potential supervisors The 

integrated information of each expert is considered as one document stored in a 

repository. Through scanning all the documents in the repository the keyword profile of 

each expert (represented as vectors of keywords) is created by the expertise manager 

using the vector space model technique (TF-IDF) [Baeze-Yates and Ribeiro-Neto, 1999]. 

The relevance of each potential supervisor is calculated through the similarity between 

the profile of each potential supervisor and the extended user query (adding the 

description of a concept to the original query). The weight attributed to each potential 

supervisor is then converted into a percentage value by dividing the weight attributed to 

the individual by the sum of the weights of all the potential supervisors. In addition to 

keyword profiles, the expertise manager retrieves the relevant concepts according to the 

domain ontology, these concepts are then confirmed by experts. The confirmed 

concept(s) of each expert is stored by the expertise manager in a repository. 
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• Displaying the semantically integrated information of potential supervisors This is 

also implemented in Java. The search results from RDFDB are firstly constructed into a 

XML file, and then through XSLT into an HTML file which is presented to users. 

 

In order to provide high quality information about each expert, it is essential that accurate 

information is available. For example, personal homepages and technical reports should be 

updated annually. In particular, the ULPD database, as a core data source, is heavily relied 

upon. This is because the data stored in ULPD on individual academics has been validated by 

the administrator of each department. There are also a number of automated validation 

processes built into ULPD. For example, one data source held in ULPD is ULRICHs11, the 

authorative serials bibliographic database providing details of title and the International 

Standard Serial Number (ISSN) for journals published throughout the world. If an administrator 

attempts to input details for a publication type of ‘academic journal paper’ and indicates an 

incorrect journal title and/or ISSN then they will be automatically informed of this and provided 

with the correct details. The other data sources (such as personal homepage and technical 

reports) are complementary to ULPD in order to provide a richer description of each expert.  If 

there is conflict between the ULPD database and other departmental source, then the ULPD 

database takes precedence. The duplicate information (for example, the same information about 

a paper stored in different places) will be deleted according to the predefined rules. For 

example, if the two papers have been published in the same year with the same title, then it is 

assumed that these two papers are the same and only one paper will be displayed in the final 

presentation. 

5.5 System Walk Through  

A prototype brokering system is implemented on the architecture. It aims to help PhD applicants 

find potential supervisors. The search for potential supervisor(s) follows 3 steps which are 

summarised here and described in more detail below: 

                                                           
11 ULRICHs http://www.ulrichsweb.com/ 
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1. The user inputs a description of their preferred research interest(s) and selects those 

individual research areas which are the most relevant. 

2. The user views a list of the names of academics working in the relevant research area. 

3. The user views the detail of each academic and selects one as their preferred supervisor. 

These steps are described below. 

Step1 Initially the user inputs a brief description of their general research interests. This 

description is formulated in natural language. A list of relevant research areas will then be 

displayed (Figure 5-6). The relevant research areas are ranked according to the number of 

keywords contained in the research interest field that was entered by the user and which are 

relevant to each research area. Each result consists of three parts: (i) a value indicating the 

number of keywords that the user inputs which are relevant to the research area; (ii) the research 

area which is displayed in upper case; and (iii) a list of relevant keyword stems which are used 

to search all variants of the same keyword. The user can view the detailed information of each 

research area by clicking on “Show me the detail” or they can “Accept” the research area if 

they feel this is an area in which they would like to conduct research. They may accept as many 

research areas as they wish. 

 
Figure 5-6 Step 1: User interface for inputting research interests 
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Figure 5-7 Step 2: Display the potential supervisor(s) for each preferred research area selected 

 

 
Figure 5-8 Step 3: Display detailed information on the selected potential supervisor 
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Step2 The user can select any relevant research area in order to view a list of potential 

supervisors working in that research area (as shown in Figure 5-7). The potential supervisors are 

ranked according to how likely it is that this person will be selected as the potential supervisor. 

The example shown in Figure 5-7 indicates that Mr E. Atwell is the most relevant expert and 

very likely to be selected as the potential supervisor, Dr D.C. Souter has less expertise than Mr 

E. Atwell but more expertise than Dr L.W. Bod. 

 

Step 3 The detailed information of the potential supervisor (as shown in Figure 5-8) will be 

displayed if the user clicks on “View supervisor”. The full detail page of Dr D.C. Souter appears 

just like a standard personal homepage which might currently exist in the School of Computing, 

but in fact the information is taken from different data sources. As shown in Figure 5-8, the data 

is retrieved as follows: (1) The personal contact information and research interests are retrieved 

from the personal homepage; (2) The publication section is a combination of information from 

the personal homepage and from a series of technical reports which can be downloaded from the 

ULPD database. The duplicate information is deleted and the final results are reorganized into a 

consistent format so that the user is not aware that this data has come from disparate sources; (3) 

The project information is also retrieved from the ULPD database. 

5.6 Evaluation 

In the evaluation process, the extended Expertise Matcher (Search A, which is named Search 3 

in the Chapter 4) was used as the baseline against which to judge the Expertise Locator system 

(Search B). In Search A, the algorithm used to calculate the similarity between the expert’s 

profile and the user’s query is as follows: 

 

sim(p, q) = )*(
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where tip is the weight of the ith term in an expert’s profile p, and tiq is the weight of the ith term 

in the query q. tiq=1 if the ith term appears in the user’s query, otherwise tiq=0. In Search A, 

experts’ profiles are calculated through their publications and projects. 
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Search B uses the same algorithm except that tic (the weight of the ith term in a concept c) is 

used instead of tiq in order to calculate the similarity between the expert’s profile and the 

concept that the user specifies. tic=1 if the ith term appears in the concept description, otherwise 

tic=0. In Search B, experts’ profiles are calculated based on their integrated personal detailed 

information, this includes their research interests, their publications and projects, and technical 

reports. 

 

The success of the Expertise Locator system (Search B) is measured in terms of whether the 

Expertise Locator system achieves the following benefits when compared with Search A: (i) 

Saves time in locating experts; (ii) Improves the accuracy of the search results; (iii) Provides 

richer descriptions of individual experts for selection purposes. To measure this, the following 

questions need to be answered, including:  

• How long does it take to find potential supervisors in each search? 

• How many people in the returned list can be potential supervisors? 

• How useful is the content of each potential supervisor’s detail page in terms of expertise 

assessment? 

• How useful is the ranking in each search? 

• Which search is preferred by the participants (keyword or concept)?  

 

The experiment was conducted in the School of Computing, University of Leeds. Participants of 

the experiment were asked to volunteer from the current PhD students12 in the School. 50% of 

all the current PhD students attended the experiment. They ranged from 1st year to 3rd year and 

their research interests were very varied (in fact, their research areas covered all the possible 

research groups in the School). Participants were asked to compare between two searches and 

they were given full instructions as well as demonstration. Participants started with their 

                                                           
12 The accuracy of the expertise matching relies on: (1) Whether the retrieved people are relevant experts 
in the specific area; and (2) Whether the ranking order of the retrieved experts is appropriate, in other 
words, the expert with more expertise is ranked higher than those with less expertise. Users need to have 
a certain background knowledge in order to answer these two questions. Although PhD applicants are the 
real users of the brokering system, it is found that they are less suitable to test the system than the current 
PhD students. This is because the current PhD students have more knowledge in their specific area and 
they know the relevant experts in the School and have more ability in judging experts’ expertise. This is 
confirmed through interviews with individual PhD students. Therefore, in the evaluation process, 
participants are current PhD students rather than PhD applicants. 
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research interests that they input in their application forms and then conducted a search for 

potential supervisor(s) from two sets of results returned by Search A and Search B. After that 

the participants were encouraged to give their thoughts on the brokering system. After the 

feedback sessions each participant was asked to complete an evaluation form assessing the 

utility and perceived usability of the system, and the ways in which the brokering system 

performs better or worse than the extended ULPD expertise matcher.  

 

Table 5-2 Results obtained using Search A (keyword searching) 
Participant Number of 

potential 
supervisors 
found 

Number of final 
accepted 
potential 
supervisors 

Position of 
accepted 
potential 
supervisors in the 
list 

Position of the 
actual 
supervisor in 
the list 

1 22 2 1st, 3rd  3rd  
2 24 4 1st, 2nd, 8th, 9th   1st  

3 27 5 4th, 6th, 11th, 13th,16th  13th  

4 21 3 5th, 10th, 11th  11th  

5 16 None none none 
6 15 3 2nd, 5th, 7th  7th  
7 19 2 2nd, 13th  2nd  
8 25 4 1st, 3rd, 4th, 17th  1st, 17th  
9 26 3 1st, 5th, 19th  19th  

10 23 3 3rd, 13th, 16th  13th  

11 23 1 2nd   2nd   

12 25 4 3rd, 8th, 9th, 14th   8th (1/2)13 

13 23 2 1st,15th  1st   

14 25 3 1st, 2nd, 4th  2nd (1/2) 

15 27 5 1st, 6th, 7th, 10th, 12th  1st  

16 12 2 2nd, 10th  Not found 

17 28 2 2nd, 4th  2nd, 4th  

18 20 2 3rd, 4th  4th (1/2) 

19 25 5 1st, 2nd, 3rd, 5th, 16th  1st, 2nd  

20 7 3 1st, 4th, 6th  1st  

 

                                                           
13 (1/2) means only one supervisor is found, the joint supervisor is not retrieved. 



CHAPTER 5. USE OF RDF IN EXPERTISE MATCHING                                                                                                          
  

 

107

 

Table 5-2 shows the results of selecting relevant experts from results returned by Search A. For 

example, No. 1 participant found 22 potential supervisors in the list after he input his research 

interests. Among these 22 potential supervisors, 2 were selected as relevant potential 

supervisors, and they were positioned 1st and 3rd on the list. The actual supervisor of the student 

was found and was positioned 3rd on the list. 

 

From Table 5-2 it can be seen that there were a large number of potential supervisors returned 

by the system in most cases. The only way for the participants to evaluate the potential 

supervisors on the list was to check each person’s publication and project titles as extracted 

from the ULPD database. Participants started to lose patience after they had checked about 7 or 

8 potential supervisors. Under this situation, ranking was very important in order to list the most 

relevant potential supervisors on the top of the list. Unfortunately, the testing results showed 

that the ranking was not correct and not useful in helping participants locating the potential 

supervisors. From Table 5-2 it can be seen that 45% of actual supervisors were positioned below 

10th position on the list or not found at all. As a consequence, it is no surprise that 55% of 

participants believed that the ranking was incorrect and not useful; whilst 40% of participants 

thought that the ranking was partially useful (see Figure 5-9). The precision of Search A was 

calculated by dividing the number of accepted potential supervisors by the total number of 

potential supervisors (see Figure 5-10). The average precision of Search A was 14.6%. If the 

number of returned potential supervisors was limited to 10, then the precision was increased to 

22.1%. 

 

Table 5-3 shows the results of selecting relevant experts from the results returned by Search B14. 

For example, No. 1 participant found 2 research areas relevant to his research interests. There 

were  4  potential  supervisors  associated  with  the  first  research area and  another 2  potential  

                                                           
14 In the column “No. of potential supervisors accepted and their positions in each list”, the actual supervisor was 
highlighted in Bold and Italic, where the same supervisor appeared more than once in the list, they are marked by 
underlining in a particular style, e.g., “_” or “ ”. For example, No.5 participant chose 2 experts as potential 
supervisors in each research area. The first expert in the first research area is also listed in the second place for the 
second research area (marked with “_”); and the second expert in the first research area is also listed on the top of the 
second research area (marked with “ ”). Both of the experts are the actual joint supervisors for the participant 
(highlighted in Bold and Italic). 
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Table 5-3 Results obtained using Search B (concept searching) 
Participant 
No. 

No. of 
relevant 
research 
areas 

No. of potential 
supervisors for 
each research 
area  

No. of 
potential 
supervisors 
in total 

No. of potential 
supervisors accepted 
and their positions in 
each list 

No. of final 
accepted 
potential 
supervisors 

4 2---{1st, 2nd}  1 2 
2 

5 
1---{1st} 

2 

2 2---{1st, 2nd} 
1 1---{1st}  

2 3 

1 

4 

1---{1st}  

4 

3 1 2  2 1---{1st , 2nd} 2 
4 1 2 2 2---{1st, 2nd} 2 

2 2---{1st, 2nd} 5 2 
2 

2  
2---{1st, 2nd} 

2 

2 1---{1st} 
4 1---{2nd} 

6 3 

2 

8 

2---{1st, 2nd} 

4 

7 1 2 2 2---{1st, 2nd} 2 
2 2---{1st, 2nd} 
2 2---{1st, 2nd} 
4 1---{3rd}   

8 5 

2 

6 

1---{2nd}   

2 

1 1---{1st} 
2 0 

9 3 

4 

7 

2---{1st,2nd} 

3 

1 1---{1st} 10 2 
1 

2 
1---{1st} 

2 

11 1 3 3 3---{1st,2nd,3rd} 3 
1 1---{1st} 
1 1---{1st} 

12 3 

4 

5 

2---{1st, 4th} 

3 

13 2 3 3  2---{1st, 2nd}  2 
2 2---{1st, 2nd} 
4 2---{2nd, 3rd} 
2 1---{1st, 2nd } 
2 0 

14 5 

2 

8 

2---{1st, 2nd} 

4 

15 1 2 2 2---{1st, 2nd} 2 
2 1---{1st} 
2 2---{1st, 2nd} 

16 3 

4 

6 

2---{2nd, 3rd} 

4 

2 2---{1st, 2nd} 17 2 
2 

3 
1---{1st} 

2 

2 2---{1st, 2nd} 
2 2---{1st, 2nd} 

18 3 

2 

3 

1---{2nd} 

2 

4 2---{1st, 2nd} 
2 2---{1st, 2nd} 

19 3 

1 

6 

1---{1st} 

4 

3 1---{1st} 
1 1---{1st} 

20 3 

1 

5 

1---{1st} 

3 
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supervisors associated with the second research area (a total of 6 potential supervisors). After 

checking the detailed information of each potential supervisor, the user selected two potential 

supervisors who were positioned 1st and 2nd on the list for the first research area. One of the two 

selected potential supervisors turned out to be his actual supervisor. 

 

From Table 5-3 it can be seen that the number of possible supervisors returned for each 

participant by the system was reduced. This is because the system searched relevant research 

areas first which quickly narrowed down the possible relevant supervisors. The accepted 

potential supervisors (relevant experts) were positioned 1st or 2nd in the list for each accepted 

research area in most cases. It is noticed that all the actual supervisors of the PhD students were 

listed (in most cases, they were positioned at the top of the list). It should be noticed that the 

actual supervisor of each student was selected manually and methodically by the students 

themselves and the PhD Admissions Tutor together. This means that if the names of the actual 

supervisors are placed at the top of the results list most of the time then the system is considered 

to be successful.  The  precision of Search B was  improved  with an average  precision of 

68.7% (see Figure 5-10). The ranking was more appropriate than Search A as 100% of 

participants believed that the ranking was correct and useful. The differences between the 

results obtained from Search A and Search B are significant as shown in Figure 5-11, with 95% 

of participants indicating the results of Search B as more appropriate than those of Search A. 

 

0

20

40

60

80

100

Search A 5 40 55

Search B 100 0 0

useful partially not useful

 
Figure 5-9 Usefulness of the rankings in Search A and Search B 

 
 
 
 



CHAPTER 5. USE OF RDF IN EXPERTISE MATCHING                                                                                                          
  

 

110

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-10 Precisions in Search A and Search B 
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Figure 5-11 The difference between the results of Search A and Search B 

In conclusion, Search B provides better performance than Search A in six fields as listed in 

Table 5-4. A brief discussion of this then follows. 

Table 5-4 Comparison of Search A and Search B 

Fields Search A Search B 

Number of experts retrieved (average) 21.7 4.2 

Average time spent on searching (minutes) 8.9 4.6 

Precision (average) 14% (22%) 73% 

Content information Limited 
Detailed and 
participants 
satisfied 

Ranking 55% not useful; 40% 
partially useful 100% useful 

Recall Lower Higher 
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• Number of potential supervisors returned The number of experts retrieved by 

Search B is much less than Search A since Search B looked for the relevant 

research area first. Search B narrowed down the number of potential supervisors.  

 

• Average time spent on searching Users spent much less time in Search B than 

Search A not only because of the fewer experts retrieved, but also because of the 

more detailed personal information available. 

 

• Precision Search B provides higher precision than Search A which means that 

users have more chance of finding the relevant potential supervisor in Search B 

rather than in Search A.  

 

• Content of detailed personal page It is easier to evaluate the expertise of the 

potential supervisor in Search B than Search A. In Search A participants can only 

find the titles of publications and projects, which makes it difficult to assess the 

expertise of the potential supervisor. In contrast, richer information for each 

potential supervisor is provided in Search B. Besides the information of personal 

publications and projects provided in Search A, more detailed information such as 

personal position, research group membership, research interests, and online 

downloadable documents are given in Search B. All the participants were satisfied 

with the detailed personal information provided in Search B. 

 

• Ranking The ranking in Search B is more appropriate than in Search A. The 

reason for this is that the ranking in Search A is based on the keywords input by the 

user, so some irrelevant researchers may be ranked much higher than an 

appropriate supervisor only because they have published papers including the 

particular keyword. In contrast, ranking in Search B is based on the research area 

(concept), and the profile of each research area is a short document which includes 

more relevant keywords in this research area. This profile can better present the 
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meaning of the preferred research area than a short list of keywords, so the ranking 

results are improved. 

 

• Recall Search B provides higher recall than Search A. Recall means the ratio of the 

total number of relevant people retrieved by the total number of relevant people 

available. Although the number of relevant people retrieved is known, it is difficult 

to find all the relevant people. However, the total number of relevant people should 

be the same for both searches, so what is important is which search provides a 

larger number of relevant people. In Search A, the average number of the accepted 

potential supervisors is 2.9 (in average) whilst in Search B, the average number is 

4.2.  

5.7 Discussion 

The strengths and weaknesses of the work reported here are compared with related expert 

finding systems which were described in the Section 3.2.3. The major differences between the 

Expertise Locator system and other related systems are: (1) Expertise matching is based on the 

semantic integration of heterogeneous information stored in an organizational memory rather 

than a single data source such as publications or projects; (2) The hybrid approach combines the 

advantage of flexibility of keyword search and accuracy of ontology-based search. Although 

ontology-based search can quickly narrow down the relevant experts, it cannot distinguish one 

expert from another. In contrast, the vector space model is good at ranking the expertise of 

experts, but a syntax search may bring some irrelevant experts into the results; (3) The output 

presentation of experts in most experts finder systems is quite simple, only “expertise 

identification” [McDonald and Ackerman, 1998] is targeted. In the Expertise Locator system 

“expertise selection” is supported by providing high quality information relevant to each expert. 

5.8 Conclusions 

This chapter discusses how to apply semantic web technology - RDF/RDFS, XSLT, ontologies - 

to solving the three remaining problems of the extended Expertise Matcher described in Chapter 
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4. In summary, it provides semantically integrated information from heterogeneous data sources 

by using RDF/RFDS and an application ontology, a flexible output presentation by using XSLT, 

and a concept matching by using domain ontology. The evaluation of the prototype system 

indicates the benefits of using RDF/S in Expertise Matching against the extended Expertise 

Matcher in the following areas: (1) the accuracy of expertise matching has been improved in 

terms of precision and recall; (2) more detailed information of each expert can be obtained 

which facilitates uses in assessing expertise; (3) the burden of maintenance is alleviated since 

up-to-date information can be automatically extracted from heterogeneous data sources and 

presented in the final result. 

 

In more detail, the brokering system offers superior expertise matching as a result of the 

following features: 

 

• Keywords are associated with concepts. This not only increases the accuracy of 

searching, but also helps users to select the relevant concept(s) even when they are not 

familiar with the domain structure; 

 

• Experts are ranked based on the combination of concept description and keywords that 

the user specifies. This combined information includes more relevant keywords which 

increases the possibility of matching with an expertise profile. This alleviates the problem 

that arises from users and experts using different words to express similar meaning; 

 

• Clusters experts based on the concept rather than the similarity of experts’ keywords 

profiles. Thus users do not have to find “similar experts” since all the experts relevant to 

one concept are automatically retrieved; 

 

• Extracts the relevant information of each expert from different data sources and provides 

the combined results to the users. This helps users to compare the expertise of each expert 

and make an informed decision. 
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Due to the limited expressive character of RDFS, the Expertise Locator system did not 

implement the guiding function (i.e. find the adjacent research area and relevant experts if there 

are any) in case no expert in the area was specified by the user. This can be improved by using 

DAML+OIL15 [Horrocks, 2001] which extends RDF/RDFS with richer modelling primitives to 

support more reasoning function. 

 

The Expertise Locator system is only designed and tested in a single discipline. To widen the 

application area, multi-disciplinary expertise matching should be considered due to the 

increasing requirements of sharing knowledge across disciplines. The next chapter describes the 

initial attempt in solving this problem. 

 

 

 

 

                                                           
15 The query language of DAML+OIL was still in development and was not available when the system 
was developed. 
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Chapter 6 

Matching Experts with Multi-disciplinary Research 
Interests 

6.1 Introduction 

Expertise Matching presented in Chapter 5 is used to help people locate experts and share 

knowledge within a single discipline. However, there are an increasing number of teams whose 

members are from different disciplines. They are working together to create new knowledge and 

this leads to new multidisciplinary subjects such as bioinformatics. These experts whose 

expertise and research interests span across more than one discipline are called multidisciplinary 

experts. Expertise Matching should not only support locating single disciplinary experts as in 

the previous brokering system, but also multi-disciplinary experts. Collaboration between 

researchers from different disciplines will be facilitated by locating multi-disciplinary experts 

and this is the first step towards successful knowledge sharing. However, there is very little 

research on multi-disciplinary expertise matching. 

 

In order to help people find experts with multi-disciplinary research interests, a multi-

disciplinary brokering system will be proposed as the extension of the original single 

disciplinary brokering system which was presented in Chapter 5. This Chapter begins with a 

brief description of multi-disciplinary research, followed with an analysis of the need for multi-

disciplinary expertise matching. The issues that have to be solved for the matching to take place 

are presented. To better understand the problem, a comparison between single- and multi-

disciplinary expertise matching is given in Section 6.3. In Section 6.4, the multi-disciplinary 

brokering systems requirements are informed through a preliminary study. The expertise 

domain model is proposed in Section 6.5, together with the initial study. Finally, the suggestions 

which have emerged from the initial study are detailed. 
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6.2 Analysis of the Problem 

It is difficult to distinguish between multi- and inter- disciplinary research and therefore in this 

chapter the term “multi-disciplinary research” is used to refer to both multi-disciplinary research 

and interdisciplinary research. Multi-disciplinary is an adjective describing the interaction 

among two or more different disciplines. This interaction may range from simple 

communication of fields to the mutual integration of organising concepts, methodology, 

procedures, epistemology, terminology, data and the organisation of research and education in a 

fairly large field1. Multi-disciplinary research implies that the research involves knowledge from 

different disciplines in undertaking tasks of increasing scale, depth and complexity which 

cannot be solved within a single discipline. Multi-disciplinary experts work in teams to solve 

specific problems across traditional academic boundaries.  

 

6.2.1 What Prompts Multi-Disciplinary Expertise Matching 

The reasons for locating multi-disciplinary experts can be summarised as follows: 

 

• Research is undertaken at the intersection where a number of disciplines come together. 

An example of multidisciplinary research is geoinformatics2, which is a collaborative 

research undertaken by geography and computer scientists. It aims to establish a system 

of seamlessly operating geoscience data and information network. For this purpose, a 

robust set of software tools for access, analysis, visualization, and modelling has to be 

fully integrated. This geoinformatics research overcomes the growing and pressing need 

for utilizing multi-disciplinary geoscience data sets and tools to fully understand the 

complex dynamics of geographic systems. Researchers in the Geoinformatics research 

group at the University of Leeds use computer techniques to study natural systems where 

there is often a more complex mix of factors acting than in the pure sciences3. These 

                                                           
1 Guidelines for the Preparation and Review of Applications in Interdisciplinary Research 
http://www.nserc.ca/professors_e.asp?nav=profnav&lbi=intre 
2 Source: http://www.geoinformaticsnetwork.org/ 
3 Geoinformatics Research Group http://www.geog.leeds.ac.uk/research/geoinfo/ 
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computing techniques include neural network, spatial data analysis, GIS, simulation and 

modelling, visualization and so on. 

 

• Nowadays when government or industry propose policy, multidisciplinary projects, and 

so on, frequently multidisciplinary experts are needed for consulting. For example, the 

World Bank has received a trust fund for a regional project to promote landfill gas (LFG) 

recovery and utilization for energy in the Latin America and Caribbean (LAC) Region. 

The project includes the production of a handbook for the preparation of LFG-to-energy 

projects. The handbook will give equal emphasis to technical issues, business planning, 

and financing. The World Bank is therefore requesting multidisciplinary consultants in 

the following areas: engineering design, construction and operation, energy policy, 

legislation and regulation, environmental and waste management policy, economic and 

financial analysis, energy markets and carbon finance4.  

 

• Frequently major projects have a very broad topic that makes multi-disciplinary experts 

more appropriate than single disciplinary experts. For example, one project proposed 

under European Sixth Framework Programme5 titled “European Research Community 

Network” intends to build an information technology social network, this network brings 

together many researchers from different university research groups, research and 

technology organisations and enterprises (7 countries involved) in order to exploit the 

significant breadth of competencies, knowledge and resources. The research areas include 

Knowledge Representation and Engineering Design, Digital Content and Industrial 

Design, and Intelligent Interfaces and Human Factors. The integration of different 

research enables rapid and flexible design and introduction of new products that 

effectively meet the needs of individual citizens while creating wealth and maintaining 

market share for European businesses. The cooperation partner in this project normally is 

competitive in a specific research area, and have an ability to understand the fundament 

of the project. For example, as one of the project cooperation partners, the Keyworth 

                                                           
4 Source: http://www.worldbank.org/html/opr/busop/December%2030/LFG-to-energy.doc 
5 The Sixth Framework Programme (2002-2006) http://europa.eu.int/comm/research/fpb/index_en.html 
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Institute at the University of Leeds has experts whose expertise across several areas such 

as human-artefact integrated affective design, virtual and physical prototyping, and 

virtual reality environments. 

 

• Multi-disciplinary experts fulfil key roles which break down the boundaries and merge 

knowledge between subjects. They have the ability to link different disciplines. Through 

searching for multi-disciplinary experts, single disciplinary experts may discover the 

associated disciplines where their expertise can be applied. Firstly, researchers who are 

conducting theory research may find applications to test their hypotheses through locating 

multi-disciplinary experts. For example, neural network researchers are able to locate an 

application in flood prediction. Secondly, applied researchers are looking for new 

techniques from other areas to solve a sophisticated problem which cannot be solved by 

traditional methods or techniques. For example, geography researchers have made 

significant advances by employing modelling techniques from computing and applying 

them to population and migration problems. Furthermore, the single disciplinary experts 

and multi-disciplinary experts can work in a team so that they learn from each other and 

create new knowledge and emerge a new multidisciplinary subject.  

 

Unfortunately, there is no system providing such a multi-dimensional searching function. 

People rely on traditional informal social networks to find multi-disciplinary experts. This kind 

of social network is based on personal contact between individuals and can have some 

drawbacks. Firstly, the chance of finding multi-disciplinary experts is very low due to the 

limited links associated with each person. Secondly, it is inflexible because the tie will be 

broken if one person leaves.  

 

The Informatics Network at the University of Leeds is one example which was set up because of 

the limitations of traditional informal social networks. The Informatics Research Institute (IRI) 

is the hub of a growing Informatics Network which range across computational geography, 

complex systems, ecology and evolutionary biology, medical physics, health informatics, and 

bioinformatics. The Informatics Network offers a unique approach to the development of 
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sophisticated computational skills and their application to challenging real world problems from 

a wide range of domains. Through co-ordinating cross-disciplinary collaboration (e.g. bringing 

together ecologists and economists, bioinformaticians and artificial intelligence researchers, 

etc.), and thereby connecting the various informatics communities, the Informatics Network will 

allow ideas and techniques currently specific to individual domains to percolate through the 

various informatics research enterprises6. In this situation, how to attract experts from other 

domains to join the Informatics Network is a critical issue. Multi-disciplinary expertise 

matching will play an important role in locating scientists who are from other domains and can 

contribute relevant expertise to form new communities. 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 6-1 Informatics network 
 

6.2.2 Comparison of Single Disciplinary Expertise Matching and 
Multi-Disciplinary Expertise Matching 

As stated in Section 3.2.1, there are 7 domain factors in the Experts Finding Systems domain 

model, namely: (1) Basis for expertise recognition; (2) Expertise indicator extraction; (3) 

Expertise models; (4) Query mechanisms; (5) Matching operations; (6) Output presentations; 

and, (7) Adaptation and learning operations. Among these 7 factors, items (2), (3), (4), (5), (6) 

                                                           
6 Source: http://www.iri.leeds.ac.uk/overview/network.html 
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will be different when matching multi-disciplinary experts rather than single disciplinary 

experts. 

 

• Expertise Indicator Extraction Ideally, this should be domain-knowledge driven. For 

single disciplinary experts, only knowledge of one domain is required. However, multi-

disciplinary research areas are very new and continuously changing; there may be no 

mature domain knowledge available. It has to be a combination of the knowledge from 

two domains. 

 

• Expertise Models The major difference between a single-disciplinary expertise model 

and a multi-disciplinary expertise model is that the keywords and concepts have to be 

clustered into groups according to how many disciplines are involved. In addition, the 

mappings between the concepts in different disciplines have to be built first.  

 

• Query Mechanisms When seeking single disciplinary experts, users are required to input 

keywords from the same discipline. When seeking multi-disciplinary, ideally, users are 

able to input keywords associated with each discipline. The situation that users may be 

familiar with only one discipline should be taken into account. 

 

• Matching Operations Exact keyword matching or statistical/similar based matching can 

be used in seeking single disciplinary experts. When seeking multi-disciplinary experts, 

both experts’ profiles and users’ profiles should be grouped according to how many 

disciplines are involved. The matching should then be conducted separately and the 

separated matching results should be combined in an appropriate way. 

 

• Output Presentation In single disciplinary experts matching the experts will be ranked 

according to their expertise level on a particular concept whilst multi-disciplinary experts 

matching will have more than one criteria due to the variety of user requirements. 
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6.3 User Requirements 

To establish the multi-disciplinary brokering system requirements, the following preliminary 

study at the University of Leeds was performed. 

 

The School of Geography at the University of Leeds is one of the largest geography 

departments in the UK. It consists of 4 research groups in which wide-ranging research is being 

conducted. The collection, management, analysis, modelling and visualization of spatial data 

(geodata) with the help of database systems, GIS, image processing systems and so on, has 

become a very important field of study and practical activity during the last few years. One new 

research group that is emerging is known as geoinformatics. Although computing techniques 

play a very important role in these application problems, in practice, few researchers in the 

geoinformatics research group contact experts from the School of Computing to request their 

expertise. Some researchers learn the required computing techniques themselves and use what 

they have learned in the projects they are working on, but this can be very time-consuming and, 

as geoinformatics researchers are not experts in computing techniques, although they may partly 

solve the problem using one technique, their implementation may not be the optimum one. 

Furthermore, computing experts have the expertise but may miss opportunities to use it in real 

applications. 

 

This kind of separation also brings problems for potential PhD students when they want to apply 

to this multi-disciplinary research area. As there is no multi-disciplinary department and the 

potential PhD students are not permitted to indicate “geography and computing” in one 

application form, they have to choose either the School of Computing or the School of 

Geography as their target. However, it is not an easy decision for them. Some students may 

apply to both departments; the problem is that when both departments apply for funding for the 

same student, they will be told that only one department can proceed. Finally, the students still 

have to face the problem of choosing only one department. For those potential PhD students 

who only apply to the School of Geography or the School of Computing, they may miss the 

more appropriate potential supervisor who may reside in the other department. They may 
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succeed in applying but have to change their research interest slightly according to the research 

interests of their potential supervisor, but they may not know there are experts in another 

department with closer matching expertise. 

 

The following two scenarios illustrate the problems faced by computing researchers and PhD 

applicants. 

 

Scenario 1: 

Dr. Henderson became a new research fellow in the School of Computing after he 

finished his PhD one month ago. He did very well in his PhD studies and has 

proposed a new method in neural networking. He now requires some real data to 

allow him to evaluate his new method. He spent a long time seeking a suitable 

application before he met a professor in the School of Geography who is starting to 

explore neural networking techniques in a problem which has not been totally 

solved using only Geography techniques for many years. Since the professor is not 

an expert in neural networking, he is very happy to work with Dr. Henderson. 

 

Scenario 2: 

Mary is a Masters student at the University of Edinburgh and plans to study for a 

PhD. Although her background is in geography, she finds that she is increasingly 

interested in computing and hopes to conduct PhD research in a combined area 

such as the application of AI-based technologies to hydrological modelling. When 

she is completing the application form, she does not know which department she 

should apply to, School of Geography or School of Computing? She searches the 

webpages of the two schools, but unfortunately she does not find anybody who has 

the required expertise in both areas. Finally, she considers it may be better for her 

to apply to both schools and leave the PhD admission tutors to help her select a 

suitable supervisor. 
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Both these scenarios will be addressed in the design of the multi-disciplinary brokering system 

which aims to improve the process of matching multi-disciplinary experts with potential 

research students and computing researchers. Both PhD applicants and computing researchers 

could be benefited in the following ways: 

• The applicant could search for multi-disciplinary experts across departments rather than 

having to browse the web pages of each department individually; the problem of choosing 

which department to apply to is alleviated. 

• It is more likely that the applicants will find the appropriate supervisor themselves; the 

chances of missing relevant potential supervisors is reduced. 

• The conflict arising from two individual departments applying for funding for the same 

student will be eliminated. 

• Researchers who are conducting technique-based research may have more chance of 

being aware of others who have applied these techniques in solving problems. Based on 

this awareness, they may build teams and share expertise in future projects.  

 

From the above scenarios, the most significant system requirements of the Brokering System 

can be identified and summarized as follows: 

• Providing multi-disciplinary concept matching rather than simple keyword searching. 

• Providing an integrated view of each expert from the diverse information sources in order 

to help users assess experts’ expertise. 

• Capturing changes to the expertise profile of experts in order to provide updated 

information on each expert. 

• Ranking each expert’s expertise based on several disciplines rather than a single 

discipline. 

 

It can be seen that the second and third requirements are the same as in the previous experiment 

which focused on expertise matching within one discipline. However, requirements 1 and 4 are 

now more complex as several disciplines are involved. 
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6.4 Proposed Approach 

In this section, the architecture of a multi-disciplinary brokering system is proposed to satisfy 

the user requirements as described in Section 4. In addition, the expertise domain model is 

recommended which is the core part of the system. The initial studies are also described. 

6.4.1 Proposed Architecture 

The architecture for multi-disciplinary expertise matching is the same architecture for single-

disciplinary expertise matching (presented in the Section 5.3) except the domain ontologies 

consist of more than one discipline. Figure 6-2 shows a simplified architecture for matching 

expertise in both Computing and Geography areas. The components which are different from 

single disciplinary expertise matching are described below. 
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Geography on their respective websites, and personal homepage for each expert in both 

departments. 

 

• Expertise Manager Responsible for the overall management of the expertise domain 

model (see Section 6.5.2 for detailed information) based on the two ontologies supplied. 

The Expertise Model Manager clusters the experts’ expertise profiles (combined keyword 

profile and concept profile) in groups and executes requests from the user interface. 

 

6.4.2 Proposed Multi-Disciplinary Expertise Domain Model 

The Expertise Domain Model described below is the core of the multi-disciplinary expertise 

matching approach. While the single disciplinary expertise domain model is one dimensional, 

the multi-disciplinary expertise domain model is two or more dimensional depending on how 

many disciplines are involved. Table 6-1 shows the expertise domain model for Geoinformatics. 

This can be obtained through the co-occurrence analysis of linking concepts in Computing and 

Geographic concepts. In the last Chapter it has been demonstrated that concept matching results 

in better performance than keyword matching, the same conclusion is also obtained in other 

research (such as  [Brasethvik and Gulla, 2002]). Hence, concepts have been used rather than 

keywords in the expertise domain model proposed here. One dimension represents computing 

concepts such as C1, C2; the other dimension represents geographic concepts such as G1, G2. Ci-

Gj means that there is a link between the ith computing concept Ci and the jth geographic 

concept Gj, otherwise 0 is displayed. For example, suppose C2 represents “neural network”, G1 

represents “water policy and development”, G2 represents “historical geography”, C2-G1 means 

“neural network technique for water policy and development” and G1-C2 means “water 

policy and development by neural network” technique. The former focuses on a computing 

technique and latter focuses on geographic application. Not all computing concepts and 

geography concepts can be combined. For example, there is no connection between “neural 

network” and “historical geography”. This table can be seen as a central representation of 

Geoinformatics expertise. The expertise model of each expert can be expressed as a collection 
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of the selected items from the table, for example, {C2-G1, C2-G3, C3-G1}. The domain expertise 

model can be used to support users in searching and visualizing the expertise information. 

 

Table 6-1 Two dimensional expertise domain model for geoinformatics 

Geographic Concepts 
 
 

G1 G2 G3 G4 … 

C1 0 C1-G2 
G2-C1 

0 C1-G4 
G4-C1 

… 

C2 
C2-G1 
G1-C2 

0 C2-G3 
G3-C2 

0 … 

C3 
C3-G1 
G1-C3 

0 0 0 … 

C4 0 0 C4-G3 
G3-C4 

C4-G4 
G4-C4 

… 

Computing 
Concepts 

… … … … … … 

 

6.4.3 Initial Studies 

Initial studies include building the expertise domain model, building the expertise profile, 

locating experts, and ranking their expertise. 

6.4.3.1 Building the Expertise Domain Model 

In order to produce the 2-D Expertise Domain Model, the concepts in each discipline, and the 

relations between these concepts need to be extracted and calculated. In theory, an ontology 

should be used in order to discover the key concepts in the domain, the associated keywords 

linked to each concept, as well as the relationship between the concepts. Whilst there is no 

existing Computing ontology or Geography ontology which can be used, the classifications are 

used instead. On the one hand, the ACM Computing Classification  is used; on the other hand, 

as there is no common geography classification available, a simple classification (as shown in 

Figure 6-3) for the geographic-applied research areas (relevant to Leeds University) has been 

created which comprises two levels and seventeen items in total. 
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1 POPULATION AND MIGRATION 
2 SOCIAL GEOGRAPHY 

2.1 Urban or regional geography 
2.2 Historical geography 
2.3 Economic geography 

3 ENVIRONMENT MANAGEMENT 
3.1 Water policy and development 
3.2 Sustainable development and resource geography 
3.3 Global environmental history and change 
3.4 Geomorphology 
3.5 Hydrology 

4 PHYSICAL GEOGRAPHY 
4.1 Rivers and groundwater 
4.2 Glaciers and snow 
4.3 Soil and soil erosion 
4.4 Tropical Environment 
4.5 European/Mediterranean Quaternary Environments 

Figure 6-3 Classification of geographic research at University of Leeds  

 

In order to determine the relevant computing concepts from the ACM computing classification 

which are linked to the geography concepts, the topics appearing in recent geocomputation 

conferences were collected from Internet searches. From these the relevant computing 

techniques that have been used in solving geographic problems were extracted (These 

computing techniques are listed in Appendix I). Through analysing the information (such as 

title, abstract, summary) of previous Geoinformatics projects (22 in total) the co-occurrence 

between computing concepts and geography concepts has been calculated. In theory, 

information retrieval techniques can be applied to extract the keywords from the summary of 

each project, after that, these keywords will be processed using inference mechanisms to induce 

the key concepts. However, due to the lack of ontology and the limited information sources 

available, it is difficult to implement this automatically. Some human involvement is inevitable. 

For example, domain experts are needed to specify the computing techniques and the applied 

geographic areas associated with each multi-disciplinary project. Figure 6-4 shows one example 

of identifying the co-occurrence between computing concepts and geography concepts through 

the summary information for a single multi-disciplinary project. 
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   Project title: Modelling urban residential development using geographic information system 

Summary: The study attempts to allocate residential land use development using GIS. Cellular 
automata model will be integrated with GIS in simulating urban growth and predicting new 
residential development. The model will then determine the number of houses to be built on 
developable sites. The model will be tested in selected study areas to examine the impact of certain 
development to communities.  
 
Applied area(s): POPULATION AND MIGRATION/ Urban or regional geography (from Figure 3) 
Computing techniques: Pattern Recognition, Spatial Analysis, Simulating, Modelling, Distributed 
GIS Environment, Spatial Decision Making (from Appendix I) 

Figure 6-4 An example of analysing a multi-disciplinary project 

Of the 17 items in the geography classification (Figure 3), only 6 items (1, 2.1, 2.3, 3.1, 3.2, 3.3) 

are related to computing techniques due to the abstract nature of the classification. After 

mapping between classification items, the next step is to extract the associated keywords for 

these items. The keywords associated with the 6 items in the geography classification are 

collected manually (listed in Appendix J). These keywords will be used in creating the Expertise 

Model for each expert. For the computing techniques, it is difficult to find the associated 

keywords relevant to each computing technique, such as simulation and modelling. This is 

because these computing techniques are already in the lowest level of the computing 

classification. 

6.4.3.2 Building the Expertise Profile 

The expertise model should be expressed in two ways – concept representation and keyword 

representation. Basically, it is the same as for single disciplinary experts matching, however, 

concepts are selected from the Expertise Domain Model, for example, {C2-G1, C2-G3, C3-G1} 

and keywords are selected from both disciplines. The concept representation is very difficult to 

implement automatically. The common solution is to ask the multi-disciplinary experts 

themselves to indicate their relevant expertise from the expertise domain model. The second 

representation, a set of keywords with weights {K1(w1), K2(w2), …, Km(wm)}, will be used for 

ranking experts. The weight of each keyword can be calculated through traditional IR (Vector 

Space Model) techniques after source wrappers extract the expertise indicators from the 

heterogeneous information sources. One problem which arises when extracting multi-

disciplinary research interests is that sometimes the identified keywords are relevant to only one 
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discipline. For example, computing techniques cannot be easily extracted from the titles of 

geography publications such as “Release and dispersal of Pb and Zn contaminated mining 

sediments in an Arctic braided river system”.  

6.4.3.3 Locating Experts 

There are two ways of locating experts: navigate and search. To navigate, the expertise domain 

model is displayed to the users so that they are able to browse the system. Users can click on the 

link between two disciplines, for example, Ci-Gj, in order to obtain a set of experts with multi-

disciplinary research interests. To search, users can input keywords expressing their research 

interests. If the keywords entered by the user are associated with both disciplines, the system 

then identifies the relevant concepts which are linked to these keywords. These concepts should 

be confirmed by the user. After that, the system is able to retrieve the link Ci-Gj from the 

expertise domain model and search for experts with expertise in Ci-Gj. If the keywords entered 

by the user are only associated with one discipline, the system will highlight the possible 

concept(s) in this discipline which are relevant to these keywords. The user needs to select one 

concept which best reflects his/her interests, the system then searches the expertise domain 

model and returns all the concepts in the other discipline linked to the concept specified by the 

user.  

6.4.3.4 Ranking Expertise 

Regardless of whether the user navigates or searches the system, the list of experts returned to 

the user should be ranked according to their expertise level. However, ranking experts with 

expertise in more than one discipline is more problematic than within a single discipline. 

Ranking computing expertise for geography experts and ranking geography expertise for 

computing experts is a very difficult task since each multi-disciplinary expert each has their own 

emphasis. Ranking consists of two parts: ranking of the geography applied areas and ranking of 

the computing techniques. The first is based on concept ranking; the second is based on 

keyword ranking (as computing concepts are already in the lowest level of the classification and 

thus operate in the same way as keywords). As described in Section 6.5.3.2, the expertise of 

each multi-disciplinary expert is represented in two forms. One is a set of concepts; the other is 
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a set of keywords with weights. These keywords are divided into two groups: one set is from the 

geography domain, the other set is from the computing domain. These two sets of keywords can 

be seen as two sets of vectors. The ranking in each domain is based on the vector space model 

which is the same as in single disciplinary expert matching. The combined expertise can be 

calculated through the vector space model again as shown in Figure 6-5. For example, a user’s 

requirement is “neural network” (0.3) and “water policy and development” (0.7), then expert B 

is more relevant to the user query than expert A. 
 

 

 

 

 

 

 

 

Figure 6-5 Multi-disciplinary expertise matching using the vector space model 

6.4.3.5 Evaluation 

Evaluating the multi-disciplinary brokering system is more difficult than in the case of single 

disciplinary brokering system. Some major reasons are listed below. 

 

• Precision This is the critical factor for testing the usability of the system. Precision refers 

to the percentage of experts returned by the system who are real experts in the multi-

disciplinary areas. In order to assess each expert, users should be provided with a 

complete profile of the individual including their research interests, their publications, 

and the projects they are working on or have worked on in the past. However, normally, 

there is more than one expert involved in each project so it is very difficult to identify 

who plays which role in the project. For example, if four people are involved in a project 

in which AI techniques are used, can we say that all four people have the same expertise 

in AI techniques? The answer is most likely to be ‘no’. Hence it is difficult for the user to 

assess the experts returned by the system. 

Geography (e.g., water policy and development) 

Expert A 

Expert B 
User requirement 

Computing (e.g., neural network) 
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• Ranking order Correct ranking order is important especially when the number of multi-

disciplinary experts is large. If the single disciplinary brokering system ranks experts in 

one particular research area, then the multi-disciplinary brokering system can rank 

experts in each particular research area or in both areas. Suppose there are two multi-

disciplinary experts in economic geography and they also have expertise in visualization 

techniques (computing). It is not too difficult for users to assess who has more expertise 

in economic geography, but to compare their expertise level in visualization is very 

difficult as these two experts may put more emphasis on solving the problem in economic 

geography rather than exploring visualization techniques.   

 

• Adaptability This means that if there is nobody in the specified multi-disciplinary areas, 

the system should be able to provide users with alternative choices. This ability depends 

heavily on a well-defined ontology. If a classification is used instead of an ontology, the 

relationships between the classification terms are very limited (only super-class and sub-

class). It is not always the case that two classification terms are similar to each other 

when they share the same super-class. For example, both historical geography and 

economic geography occur under the classification social geography, however, they are 

not related directly to each other. On the other hand, computing techniques are more 

likely to be flat structures. The lack of rich relationships between the concepts results in 

difficulties in adaptability. 

6.4.4 Suggestions 

From the initial study it was found that due to the lack of ontology and limited multi-

disciplinary projects available, the prototype system was difficult to build and evaluate. 

However, some suggestions can be given for future research. 

 

Since it may be difficult for domain experts to analyse each multidisciplinary project and 

publication information, it is recommended that this annotation work can be done by the authors 

of the publications or the participants of the projects. That is, whenever a new multi-disciplinary 

project or publication emerges, the author of the publication or the leader of the project provides 
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information about the associated research areas. It seems that this is a tedious job, however, only 

the authors understand the link between the multi-disciplinary research areas and this annotation 

process can be supported by tools such as MnM 7  and Ontomat 8 . Mapping between the 

ontologies is normally considered as identifying the similar concepts in the different ontologies. 

In the context of this study, the mapping is the combined concepts between different domains. 

At the beginning, the work may be time consuming since there are very few links acknowledged 

by the system. So the authors can create links through highlighting the relevant texts as the two 

research areas. However each time the author identifies a link between the concepts, the system 

will record this link. Therefore with the increasing number of the multi-disciplinary 

projects/publications being annotated, the most commonly used concepts and associated links 

can be identified, the easier to annotate the new projects/publications. This process is similar to 

the concept-index creation process [Nakata et al., 1998] where members of a community 

highlight the key concept(s) used to describe a document, and the documents in the community 

memory can be navigated by means of the concept relations. 

 

In the process of building an expertise profile, it is recommended that a concept-based expertise 

profile is built rather than a keyword-based profile. The reason is that the concept-based profile 

can be easily built based on the annotation provided by the key authors or the key managers. 

The sequence of the research areas can be decided by the department that an expert belongs to. 

For example, if two experts collaborate in the same multi-disciplinary project and/or are the co-

authors of multi-disciplinary publications then expertise profile of the expert who is working in 

the Computing would be {Ci-Gj} whilst the expertise profile for the expert who is working in 

the Geography would be {Gj-Ci}. Building keyword based expertise profile is a long-term goal 

and cannot be realized in a short time. This is because of the difficulties in identifying the 

relevant keywords for each concept and also the combined concepts make the keywords ranking 

less accurate than in a single discipline.  

 

                                                           
7 http://kmi.open.ac.uk/projects/akt/MnM 
8 http://annotation.semanticweb.org/tools/ontomat 
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Users can browse the existing multi-disciplinary concept base in order to specify the relevant 

concept(s), and the experts are retrieved if their expertise profiles include the specified concepts. 

The ranking can be based on the number of multi-disciplinary projects each expert has worked 

on or the multi-disciplinary publications he/she has published. Through this way, the limitations 

due to the lack of ontology for the immature subject can be overcome.  

6.5 Conclusions 

This chapter analysed the need for multi-disciplinary expertise matching and discussed the 

issues that have to be solved for the matching to occur successfully. The modified architecture 

based on the single disciplinary brokering system was presented. Furthermore, the expertise 

domain model was detailed and the initial studies also described.  

 

Through investigating the multi-disciplinary brokering system, ontology is found as the most 

important factor since it influences other operations such as expertise indicator extraction, 

building of the expertise model, ranking experts, and providing adaptability. For example, if for 

each concept the sufficient or necessary keywords are defined in the ontology, then the concepts 

expertise model would be automatically obtained without involvement of each expert. The 

better the ontology, then the better the results which can be obtained. Consequently, in order to 

build an effective multi-disciplinary brokering system it is critical to build ontologies first. 

However, building a formal ontology is difficult, especially when building an ontology for an 

immature or emerging subject. Based on this fact, an alternative suggestion is given where every 

author of a multi-disciplinary publication or every member of a multi-disciplinary project 

contributes to the experts finding system by adding annotation on the associated research areas 

to each publication and project. It is expected that through this accumulated process, the 

correspondence mapping between disciplines can be built up.  
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Chapter 7 

Conclusions and Future Work 

This thesis started with the view that sharing expertise within and across organizations is very 

important and expertise matching is the foundation for expertise sharing. The research presented 

in this thesis focused on an investigation into how expertise matching can be improved within 

academia. More specifically, it has analysed the limitations of the current ULPD expertise 

matcher at the Leeds University (which is representative for expertise matching systems within 

academia) and investigated ways to improve the accuracy of expertise identification and provide 

support in finding appropriate experts. This final chapter presents the key findings from the 

investigation, suggests directions for future research, and also discusses the implications of this 

research.  

 

7.1 Results and Major Findings 

From the empirical study of expertise matching undertaken using the real data at the University 

of Leeds, the following conclusion can be drown.  

 

• Traditional Information Retrieval model (in particular, the vectors space model) is still 

useful in ranking expertise. Through the first experiment (comparison of the extended 

Expertise Matcher with the current ULPD Expertise Matcher, presented in Chapter 4) it 

was found that if the retrieved experts were not ranked according to their expertise level 

then the number of the returned experts could not be controlled and users had to check 

each returned expert. This places a significant burden on users. It was also found that 

most users are not usually able to express their query requirements in the form of a 

Boolean query. To solve these two problems, the vector space model was employed to 

build both a user’s profile and an expert’s profile and to calculate the similarity between 
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these two profiles (as presented in Chapter 4). In this way, a user can easily form a query 

(in a few keywords) and experts with more expertise are more likely to be displayed at 

the top of the list.  

 

• Semantic web technologies (RDF, RDFS, ontologies) are good candidates for the 

integration the multiple expertise indications. As analysed in Chapter 3, expertise is 

different to explicit information such as documents; whilst documents are static, 

independent1, and explicit; expertise is dynamic, hidden in the “heads” of experts, and 

reflected in many things. In order to obtain an updated and high quality expertise model, 

multiple expertise indications have to be explored. An expertise conceptual model 

(application ontology) was created to integrate the expertise indications (as presented in 

Chapter 5). RDFS is used to specify the classes and properties in the expertise model. 

RDF provides a uniform representation so that different data sources can be integrated. 

This integration has two roles: (1) It improves the quality of expertise profile, and (2) It 

helps users in assessing experts’ expertise. These two features are special when compared 

with most approaches where only one expertise indication is used to determine experts’ 

expertise and the output presentation of the expert’s detailed information is very simple. 

 

• The combination of keyword based expertise model and concept based expertise model is 

an important contribution towards expertise identification. Concept search (ontology-

based, thesaurus-based) is normally more accurate than keyword searching in both 

precision and recall [Khan, 2000]. However, experts who are associated with a concept 

are considered to be equal in their expertise level which makes the selection difficult, 

especially when the number of experts is large. In this study, expertise model has been 

extended to include both keyword-based representation and concept-based representation. 

A domain ontology is built to link the concepts with the relevant keywords and help 

experts and users in selecting the relevant concepts. The extended expertise model 

combines the ranking ability of keyword search and accuracy of concept search, and 

                                                           
1 Independent does not mean there is no link with other documents; here it means a document can exist on 
its own.  
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therefore leads to the improved performance of expertise matching (not only more 

relevant experts are retrieved but also they are listed in a relevance order). 

 

An architecture for supporting both the application ontology and the domain ontology has been 

proposed and a prototype system (Expertise Locator) has been developed based on this 

architecture (as presented in Chapter 5). An experimental study with the system has been 

conducted in the Computing domain in order to discover the advantages and problems of this 

approach (see Section 7.2). To a reasonable degree the objectives (i.e. to support expertise 

identification and expertise selection) have been achieved. The precision and recall of expertise 

matching have been improved significantly and users were satisfied about the output 

presentation of the details of retrieved experts.  

 

In the process of extending the single disciplinary expertise matching to multi-disciplinary 

expertise matching, it is found that not only matching itself is more complicated, personal desire 

and political reasons may even hinder the collaboration between multi-disciplines. Social 

navigation is still preferred. The results of the investigation also gave valuable insight to the 

problems of matching people with multi-disciplinary expertise; it is argued that some problems 

can only be solved as the need for multi-disciplinary research grows and the understanding of 

how to classify multi-disciplinary research grow. This thesis makes a good start. 

7.2 Future Directions 

There are several directions in which this research might be extended. These directions can be 

divided into six areas: improved expertise model, visualization support, reasoning support, 

improved user control, communication support, and information extraction support. Each of 

these areas will be discussed below. 

7.2.1 Improved Expertise Model 

The expertise model is created based on the collected implicit expertise evidence from diverse 

data sources. In this study, three different types of evidence were collected. research interests; 
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publications; and projects. Currently, they are considered to be of equal importance by the 

expertise manager. However, there are differences between these three. Research interests in 

personal homepages may be the most important form of expertise evidence since they are 

declared by the experts themselves; the publications of each expert are also important since they 

are externally validated by others; and the projects that the experts participated in may be of less 

importance than their publications. Therefore, different weights could be given to each expertise 

indication. For example, research interests (1.0), publications (0.8), and projects (0.6). Although 

the optimal values of the weights are difficult to determine, machine-learning techniques can be 

used to adjust these weights automatically based on a significant amount of user feedback. 

 

Another way to improve the expertise model is to divide publications into several categories 

according to their quality (this can be roughly derived from where they are published). There is 

a clear difference between one expert who has published two papers in a world-leading journal 

and another with two papers in national conferences. The expertise manager may assign 

different weights to the different types of publication before building the expertise model.  

 

Compared with the keywords profile, the creation of a concept profile still needs the 

involvement of experts. This process can be simplified by exploiting natural language 

processing techniques. Basically if the associated concepts of each document can be identified, 

then the author(s) will be automatically linked to these concepts. Duan [2002] used a lexical 

knowledge based method for meaning trend representation or theme representation. It is 

worthwhile to examine the effectiveness of the lexical knowledge based method in identifying 

the relevant concepts for a publication.  

 

7.2.2 Visualization Tool 

Instead of forming a query, users can browse a hierarchical classification or ontology to find the 

areas of interest. Although it seems a good way to begin searching for experts, it can be time 

consuming if users take the wrong paths through the ontology. A field study undertaken by 

Reimer [Reimer et al., 2003] indicates that users are not willing to browse the ontology 
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especially if it is large; a similar result is obtained from interviews with the participants of the 

experiment. Most participants felt that it was more convenient for them to input keywords first 

and then to select the query context – a concept from a list. However, some participants made 

comments that they would like to see a “small ontology space” returned relevant to each 

concept, in other words, display where the concept is positioned in the classification or indicate 

the related concept (for example, broader concept, narrow concept, similar concept) in the 

ontology. A visualization tool which provides access to a local map may help in this respect. 

 

7.2.3 Reasoning Support 

RDF provides a data model for describing machine-processable semantics of data. The basic 

semantics is specified by RDFS, which can be regarded as a very simple ontology language 

since it introduces basic ontological modelling primitives (class, subclass, subproperties, 

domain and range restrictions of properties). However, RDFS cannot provide enough semantic 

support due to limited expressivity (many types of knowledge cannot be expressed in this 

simple language, such as min, max, string, number, constraints). This results in limited 

reasoning opportunities. Knowledge representation languages such as DAML+OIL extend RDF 

and add more primitives to define precise semantics and support reasoning. Tools which support 

DAML+OIL are becoming available, such as Sesame 2 . Consequently one of the future 

directions of this research is to use DAML+OIL to support adaptive matching. For example, 

when there is no expert in the specified area, the related areas (such as broader or narrower 

areas) are automatically searched to find experts. In addition, more knowledge can be obtained 

using inference rules. For example, finding the collaborators of an expert is possible when a rule 

is added such as “if two different people work in the same project, then these two people are 

considered to be collaborators”.  

 

                                                           
2 http://sesame.aidministrator.nl/ 
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7.2.4 Improved User Control 

The current expertise matching focuses on locating experts in a single area. However, not all the 

users can easily find the single concept from the ontology which exactly matches their 

requirements. Sometimes, what they need is a joint concept, for example, the combination of 

concept a and concept b. In these cases, users have to conduct a search for experts in each 

concept respectively and perform analyses to obtain the answer. One future direction is to allow 

users to perform advanced searches using logical operators (AND, OR, NOT). For example, 

users can search for experts with expertise in “visualization” and “virtual environment”, and the 

experts with expertise in a single research area will not be displayed so that it is quicker for 

users to locate the experts they need. Furthermore, users can be supported in expressing their 

preferences by assigning different weights to each area using the vector space model again. 

 

The theme of this thesis is expertise matching, and the assumptive question is “who are the 

experts in area X”. The conceptual model which is used as the semantic backbone to integrate 

information is hidden to users. One future direction is to make this conceptual model visible to 

users (as semantic interface) so that they know what kind of information is stored and they can 

conduct a more complicated query based on this conceptual model. For example, “show me the 

experts in ‘natural language processing’ and their current projects.” 

 

7.2.5 Communication Support 

The major aim of expertise matching is to support expertise identification and expertise 

selection, in other words, support users in identifying the most appropriate expert to contact. It 

could be extended by adding facilities to support people connection such as email or Netmeeting 

so that users can send their questions to the selected experts or even talk to them directly via the 

Internet. However, experts are normally quite busy and it is not feasible for them to accept all 

communication requests. Therefore, access might be controlled by the experts themselves. An 

alternative solution is to integrate the expertise matcher with other knowledge management 

systems which provide collaborative tools such as Virtual Knowledge Park. 
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7.2.6 Information Extraction Support 

Many expertise indications are available from the web such as personal homepages, 

publications and projects descriptions, and so on. In order to integrate the multiple expertise 

indications, wrappers were used to extract relevant information from web documents. However, 

hand-coded wrappers are difficult to build and costly to maintain [Temelkuran, 2003]. Alani and 

his colleague have presented a new tool to automatically extract information from web 

documents [Alani et al., 2003a]. This extraction tool is guided by an ontology so that it 

understands which type of information needs to be extracted even if the web page is changed. It 

would be sensible to adopt this flexible approach to extract the relevant information. 

 

7.3 Implication 

In practice, this thesis contributes to the expertise matching problem within academia. From the 

survey it can be found that most expert finding systems in academia rely on experts to specify 

their expertise in keywords or link to a simple classification term. This kind of expertise 

database always suffers from the keyword search problems in identifying experts and 

difficulties in maintaining the data. To solve these problems, this thesis has demonstrated an 

original approach which utilises multiple expertise indications to build expertise profiles. In 

addition, this thesis provided a conceptual model and an architecture which can be reused by 

other universities in building experts finding systems.  

 

Recently there is an increasing requirement for expertise matching in industry, especially for 

identifying and forming communities of practice (as described in Chapter 2). Since most of the 

evidence discussed pertains to the academic environment, it would be inappropriate to 

generalize the findings or conclusions directly to the industrial environment. However, expertise 

matching within academia is expected to be similar to that within those knowledge-based 

organizations3. After examining a number of experts finding systems in industry (such as 

Expertise Recommender [McDonald, 2000], Referral Web [Kautz et al., 1997a], Expert Finder 
                                                           
3 Maurino [1995] presents three performance levels of expertise, skills-based, rule-based, and knowledge-
based. This thesis focuses on knowledge-based expertise matching only. 
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[Mattox et al., 1999], see Chapter 3), it can be found that there are some similarities. For 

example, most of these systems rely on the indications of expertise (such as publications and 

projects) to retrieve experts. The method of exploring semantic web technologies (RDF, RDFS, 

ontologies) to integrate multiple expertise indications can be used in knowledge-based 

organizations to improve the accuracy of expertise matching and output presentation. 

 

There are two types of knowledge management, externalising knowledge and sharing expertise 

[Ackerman et al., 2003]. Most current knowledge management programmes tend to focus on 

gathering, organising, and retrieving information. It is noticed that in the AKT project 

knowledge technologies are developed to interpret information into actionable knowledge, 

which aims to provide “the right content to the right place at right time and in the right form” 

[Shadbolt and O’Hara, 2003]. However “not all the knowledge needed in a problem situation 

can be made explicit or stored in a knowledge base” and “there are many occasions where the 

best answer comes from finding the right person rather than the right information” [Ehrlich, 

2003]. Therefore a true knowledge management solution must address the organization and 

transfer of both tangible and tacit knowledge [Oakes and Rengarajan, 2002]. This work 

contributes to the second kind of knowledge management – expertise sharing by retrieving 

experts with the required expertise. It can be viewed as complementary to many knowledge 

management projects (such as AKT). 

 

The work on Community Of Practice (COP) and ontology underpins the future development 

and application of expertise matching. A COP consists of people with common interests who 

interact with each other to share information and to solve problems in their areas of expertise. 

Informal COPs are important for the development and sharing of expertise within an 

organisation. In academia, members of COP can come from different disciplines. O’Hara et al. 

[2002] attempt to identify potential COPs through ontology network analysis. Connections or 

relations between entities in an ontology can be measured to provide metrics of connectedness. 

When a person instance has been selected, the close instances in the knowledge base can be 

identified as the potential COP. However, the connections between entities can be quite 

arbitrary and entities retrieved may not be in the same COP and the common interest of the 
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identified COP is not discovered. The approach presented in this thesis has the advantage of 

recommending people who are interested in the same topic and could be potential members of 

COPs. It facilitates the development of COPs by introducing those people who are not aware of 

each other before, it also opens a large potential for expertise sharing between the members of 

COPs. 

 

Ontology is a key technology that allows knowledge sharing and concept-based information 

retrieval. In this work, the performance of expertise matching is improved largely because of 

building an application ontology to integrate diverse data sources and a domain ontology to 

conduct the concept searching. This work contributes to the wider knowledge management 

agenda (knowledge acquisition, knowledge modelling, knowledge retrieval), in particularly, to 

the understanding of knowledge management technologies around ontology such as ontology-

based information extraction to support knowledge acquisition, construction of ontologies and 

ontology mapping to support knowledge modelling, ontology-based answering to support 

knowledge retrieval.  
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The survey covers 27 universities on their expertise matching systems. Most of them are UK 

universities, some of them are US universities. From the survey it can be seen that expertise 

matching systems are not mature enough due to the following limitations. 

 

• Data collection depends heavily on experts or administrative officers. The common way 

for collecting data of each expert is providing a registration form to experts who will fill 

in the forms themselves. Some systems rely on the support team members to collect data 

from different departments and manually input this data into a database. 

 

• Store and retrieval the experts’ information is stored in relational database, or LDAP 

directory. One system stores the experts’ information into Excel spreadsheet. Experts can 

be retrieved through browsing the simple subject tree or through keywords searching. The 

fields for searching experts are normally “surname”, “expertise description”, 

“department”. Very few systems can provide searching publication facility.  

 

• Difficulties in maintaining the up-to-date information Again, this is the experts’ duty 

to make sure that the new information is added to the expertise matching systems. This 

update process cannot be guaranteed although in a few systems the support team 

member(s) remind the experts to do so periodically (every 3 months, every year, etc). 

 

• Output of the retrieval Nearly all the systems can only list experts according to 

alphabetical order of their surname, except in Cass Experts Online, the experts are ranked 

according to their relevance. The quality of output presentation varies in these systems. 

More than 1/3 systems provide only contact information and a few keywords as expertise 

description. Some systems provide very detailed information of each expert (such as Cass 

Experts Online), however, since this information has to be manually input by experts, not 

all the experts fill in every section in the registration form. 
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Appendix B Difference between Data Retrieval and 
Information Retrieval 
    Data Retrieval (DR)   Information Retrieval (IR)  

Matching   Exact match    Partial match, best match  

Inference   Deduction   Induction  

Model    Deterministic    Probabilistic  

Classification  Monothetic    Polythetic  

Query language  Artificial    Natural   

Query specification  Complete    Incomplete  

Items wanted   Matching    Relevant  

Error response   Sensitive    Insensitive  

 

Match: checking whether an item is or is not present in the file. In information retrieval this 

may sometimes be of interest but more generally to find those items which partially match the 

request and then select from those a few of the best matching ones. 

 

Inference: The inference used in data retrieval is of the simple deductive kind, that is, aRb and 

bRc then aRc. In information retrieval it is far more common to use inductive inference; 

relations are only specified with a degree of certainty or uncertainty and hence the confidence in 

the inference is variable. This distinction leads one to describe data retrieval as deterministic but 

information retrieval as probabilistic.  

 

Classification: In DR we are most likely to be interested in a monothetic classification, that is, 

one with classes defined by objects possessing attributes both necessary and sufficient to belong 

to a class. In IR such a classification is one the whole not very useful, in fact more often a 

polythetic classification is what is wanted. In such a classification each individual in a class will 

possess only a proportion of all the attributes possessed by all the members of that class. Hence 

no attribute is necessary nor sufficient for membership to a class. 
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Query language: The query language for DR will generally be of the artificial kind, one with 

restricted syntax and vocabulary, in IR natural language is preferred although there are some 

notable exceptions.  

 

Query specification: In DR the query is generally a complete specification of what is wanted, 

in IR it is invariably incomplete.  

 

Items wanted: This last difference arises partly from the fact that in IR we are searching for 

relevant documents as opposed to exactly matching items. The extent of the match in IR is 

assumed to indicate the likelihood of the relevance of that item.  

 

Error Response: One simple consequence of this difference is that DR is more sensitive to 

error in the sense that, an error in matching will not retrieve the wanted item which implies a 

total failure of the system. In IR small errors in matching generally do not affect performance of 

the system significantly. 

 

Source: http://www.dcs.gla.ac.uk/~iain/keith/data/pages/2.htm 

 

http://www.dcs.gla.ac.uk/~iain/keith/data/pages/2.htm


 APPENDIX 174

Appendix C The ULPD Data Model 
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 data model is a person-centric data model to ensure that there is a relationship from 

ant entity to the person entity. Thus, each time users search for information they will 

ated person as well. In this model Person entity is the centre of the model; the other 

e all connected to the Person entity directly or indirectly. Organization describes the 

on that the person belongs to; Organization is in turn connected with the Department. 

n refers to the person’s publication; URL refers to the person’s homepage address; 

fers to all the projects the person is working on or has completed before; Projects and 

ns are linked to the particular field of research terms in the Classification. 
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Appendix D Testing Results of Finding Similar Experts Using 
Vector Space Model 
 
Experts are randomly selected from 10 research groups in the School of Computing, the 
similarity between each expert and others are calculated. It is found that in most cases, the 
experts with similar research interest (in italic) can be identified from a thousands people.  
 
Group 1: Vision group 
 
1.000  Dr  R.D.  Boyle  --- Computing 
0.530  Prof  D.C.  Hogg  --- Computing 
0.499  Dr  A.J.  Bulpitt  --- Computing 
0.461  Dr  K.C.  Ng  --- Music 
0.393  Prof  A.J.  Daly  --- Institute for Transport Studies 
0.359  Mr  E.S.  Atwell  --- Computing 
0.352  Prof  A.G.  Wilson  --- Geography 
0.352  Dr  D.P.  Watling  --- Institute for Transport Studies 
0.339  Miss  S.A.  Smith  --- Development Nursing Policy and Practice 
0.334 Prof  M.J.  Kirkby  --- Geography 
 
Group 2: Multimedia imaging 
 
1.000  Dr  K.C.  Ng  --- Music 
0.511  Dr  D.G.  Cooper  --- Music 
0.461  Dr  R.D.  Boyle  --- Computing 
0.275  Dr  V.A.F.  Gammon  --- Education 
0.274  Prof  D.C.  Hogg  --- Computing 
0.210  Dr  G.R.  Rastall  --- Music 
0.203  Mr  D.  Lindley  --- English 
0.203  Prof  J.G.  Rushton  --- Music 
0.186  Prof  P.M.  Dew  --- Computing 
0.172 Dr  A.J.  Bulpitt  --- Computing 
 
Medical Imaging  
 
1.000  Dr  A.J.  Bulpitt  --- Computing 
0.582  Prof  D.C.  Hogg  --- Computing 
0.499  Dr  R.D.  Boyle  --- Computing 
0.382  Dr  N.D.  Efford  --- Computing 
0.351  Miss  S.A.  Smith  --- Development Nursing Policy and Practice 
0.339  Prof  M.J.  Kirkby  --- Geography 
0.338  Prof  A.J.  Daly  --- Institute for Transport Studies 
0.308  Prof  A.G.  Wilson  --- Geography 
0.307  Prof  C.M.  Snowden  --- Electronic and Electrical Engineering 
0.293 Dr  J.E.J.  Staggs  --- Fuel and Energy 
 
Group 3: Natural language processing 
 
1.000  Mr  E.S.  Atwell  --- Computing 
0.359  Dr  R.D.  Boyle  --- Computing 
0.335  Dr  D.C.  Souter  --- Computing 
0.326  Prof  D.C.  Hogg  --- Computing 
0.283  Dr  M.D.  Brown  --- Mechanical Engineering 
0.273  Prof  A.J.  Daly  --- Institute for Transport Studies 
0.271  Dr  L.J.  Cameron  --- Education 
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0.258  Dr  D.P.  Watling  --- Institute for Transport Studies 
0.257  Dr  M.  Bygate  --- Education 
0.256  Prof  M.J.  Kirkby  --- Geography 
 
 
Group 4: Qualitative Spatial Reasoning 
 
1.000  Prof  A.G.  Cohn  --- Computing 
0.868  Dr  B.  Bennett  --- Computing 
0.300  Prof  M.C.  Clarke  --- Geography 
0.246  Dr  J.  Mason  --- Sociology and Social Policy 
0.239  Prof  D.C.  Hogg  --- Computing 
0.239  Dr  I.J.  Turton  --- Geography 
0.239  Mr  P.L.  Mott  --- Computing 
0.230  Dr  P.M.  Hill  --- Computing 
0.220  Dr  G.P.  Clarke  --- Geography 
0.194 Mr  S.A.  Roberts  --- Computing   
 
Logic Programming 
1.000  Dr  P.M.  Hill  --- Computing 
0.311  Mr  P.L.  Mott  --- Computing 
0.245  Dr  B.M.  Smith  --- Computing 
0.232  Dr  L.G.  Proll  --- Computing 
0.230  Prof  A.G.  Cohn  --- Computing 
0.164  Dr  P.  Brna  --- Computer Based Learning Unit 
0.157  Dr  B.  Bennett  --- Computing 
0.133  Prof  M.E.  Dyer  --- Computing 
0.132  Dr  I.J.  Turton  --- Geography 
0.121  Prof  P.M.  Dew  --- Computing 
 
Group 5: Database integration 
 
1.000  Mr  S.A.  Roberts  --- Computing 
0.507  Dr  J.E.  McCormack  --- Computing 
0.416  Dr  J.  Hogg  --- Geography 
0.384  Dr  N.D.  Efford  --- Computing 
0.366  Prof  M.C.  Clarke  --- Geography 
0.352  Dr  M.H.  Birkin  --- Geography 
0.344  Mr  P.L.  Mott  --- Computing 
0.333  Dr  G.P.  Clarke  --- Geography 
0.328  Dr  S.J.  Carver  --- Geography 
0.325 Prof  A.G.  Wilson  --- Geography 
 
1.000  Mr  P.L.  Mott  --- Computing 
0.344  Mr  S.A.  Roberts  --- Computing 
0.311  Dr  P.M.  Hill  --- Computing 
0.239  Prof  A.G.  Cohn  --- Computing 
0.201  Dr  B.  Bennett  --- Computing 
0.165  Dr  M.J.  Carter  --- Leeds University Business School 
0.143  Prof  G.  Birtwistle  --- Computing 
0.119  Dr  A.J.  Maule  --- Leeds University Business School 
0.119  Mr  E.S.  Atwell  --- Computing 
0.118 Prof  A.J.E.  Anning  --- Education 
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Group 6: Scientific Computing 
Unstructured Adaptive Mesh Algorithms 
1.000  Prof  M.  Berzins  --- Computing 
0.650  Dr  P.K.  Jimack  --- Computing 
0.368  Prof  P.M.  Dew  --- Computing 
0.282  Mr  R.  Fairlie  --- Computing 
0.282  Dr  A.S.  Tomlin  --- Fuel and Energy 
0.245  Mr  J.R.  Davy  --- Computing 
0.242  Prof  M.E.  Dyer  --- Computing 
0.230  Prof  D.C.  Hogg  --- Computing 
0.220  Prof  P.H.  Gaskell  --- Mechanical Engineering 
0.205 Prof  S.N.  Lane  --- Geography  
 
Parallel computing 
1.000  Dr  P.K.  Jimack  --- Computing 
0.650  Prof  M.  Berzins  --- Computing 
0.277  Prof  P.M.  Dew  --- Computing 
0.232  Mr  J.R.  Davy  --- Computing 
0.207  Dr  P.C.  Brooks  --- Mechanical Engineering 
0.180  Prof  M.E.  Dyer  --- Computing 
0.168  Dr  K.W.  Dalgarno  --- Mechanical Engineering 
0.168  Dr  I.J.  Turton  --- Geography 
0.163  Dr  G.D.  Halikias  --- Electronic and Electrical Engineering 
0.148 Dr  R.  Hardy  --- Geography 
 
 
Group 7: Visualization 
 
1.000  Dr  K.W.  Brodlie  --- Computer Science 
0.677  Dr J. Wood --- Computing 
0.255  Dr  P.  Brna  --- Computer Based Learning Unit 
0.251  Prof  P.M.  Dew  --- Computing 
0.198  Prof  J.A.  Self  --- Education 
0.162  Dr  J.B.C.  Whitaker  --- Chemistry 
0.159  Mr  R.  Fairlie  --- Computing 
0.159  Prof  D.C.  Hogg  --- Computing 
0.152  Dr  S.J.  Carver  --- Geography 
0.143  Dr  R.M.  Pilkington  --- Computer Based Learning Unit 
0.137 Dr  I.J.  Turton  --- Geography  
 
 
Group 8: Theoretical Computer Science 
 
Algorithms and Complexity 
1.000  Prof  M.E.  Dyer  --- Computing 
0.383  Prof  P.M.  Dew  --- Computing 
0.380  Mr  J.R.  Davy  --- Computing 
0.340  Dr  L.G.  Proll  --- Computing 
0.246  Dr  B.M.  Smith  --- Computing 
0.245  Dr  G.D.  Halikias  --- Electronic and Electrical Engineering 
0.242  Prof  M.  Berzins  --- Computing 
0.218  Dr  M.  Kara  --- Computing 
0.198  Prof  M.C.  Clarke  --- Geography 
0.193 Dr  I.J.  Turton  --- Geography 
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Formal methods 
1.000  Prof  G.  Birtwistle  --- Computing 
0.188  Mr  E.S.  Atwell  --- Computing 
0.148  Dr  M.  Bygate  --- Education 
0.143  Mr  P.L.  Mott  --- Computing 
0.130  Dr  A.S.  Fowkes  --- Institute for Transport Studies 
0.118  Dr  A.K.H.  Holzenburg  --- Biochemistry and Molecular Biology 
0.114  Prof  P.M.  Dew  --- Computing 
0.113  Dr  R.M.  Drummond-Brydson  --- Materials 
0.113  Prof  A.G.  Cohn  --- Computing 
0.109 Dr  T.F.  Burgess  --- Leeds University Business School 
 
Informatics 
Virtual Environment 
1.000  Prof  P.M.  Dew  --- Computing 
0.751  Mr  J.R.  Davy  --- Computing 
0.435  Prof  D.C.  Hogg  --- Computing 
0.431  Dr  K.  Djemame  --- Computing 
0.431  Dr  I.J.  Turton  --- Geography 
0.394  Dr  P.  Brna  --- Computer Based Learning Unit 
0.383  Prof  M.E.  Dyer  --- Computing 
0.379  Prof  J.A.  Self  --- Education 
0.373  Prof  A.J.  Daly  --- Institute for Transport Studies 
0.372 Dr  J.M.  Curson  --- Geography 
 
Group 9: Transport Scheduling 
1.000  Prof  A.  Wren  --- Computing 
0.925  Dr  R.S.  Kwan  --- Computing 
0.805  Dr  S.  Fores  --- Computing 
0.734  Mrs  M.E.  Parker  --- Computing 
0.710  Dr  A.S.K.  Kwan  --- Computing 
0.428  Dr  L.G.  Proll  --- Computing 
0.302  Dr  B.M.  Smith  --- Computing 
0.298  Prof  P.W.  Bonsall  --- Institute for Transport Studies 
0.265  Dr  N.J.  Ward  --- Psychology 
0.264 Mr  J.D.  Shires  --- Institute for Transport Studies 
 
 
Group 10: Computer Based Learning 
1.000  Dr  P.  Brna  --- Computer Based Learning Unit 
0.658  Prof  J.A.  Self  --- Education 
0.527  Dr  R.M.  Pilkington  --- Computer Based Learning Unit 
0.394  Prof  P.M.  Dew  --- Computing 
0.336  Dr  D.  Goodley  --- Sociology and Social Policy 
0.332  Prof  R.K.S.  Taylor  --- Continuing Education 
0.332  Dr  E.J.  Foster  --- Education 
0.332  Prof  D.C.  Hogg  --- Computing 
0.329  Dr  K.P.  Forrester  --- Continuing Education 
0.306 Dr  J.M.  Curson  --- Geography 
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Appendix E Background Knowledge of RDF/S 
 

RDF 

RDF stands for Resource Description Framework. It is a foundation for processing metadata 

that provides interoperability between applications that exchange machine-understandable 

information on the Web, it defines a mechanism for describing resources that makes no 

assumptions about a particular application domain, nor defines (a priori) the semantics of any 

application domain. The definition of the mechanism should be domain neutral, yet the 

mechanism should be suitable for describing information about any domain. 

 

Basic RDF Model 

The RDF data model is a model for representing named properties and property values. It is a 

syntax-neutral way of representing RDF expressions. I.e. two RDF expressions are equivalent if 

and only if their data model representations are the same. 

 

The basic data model consists of three object types – resources, properties and statements 

 

Resources 

All things being described by RDF expressions are called resources, for example 

• an entire Web page; such as the HTML document "http://www.w3.org/Overview.html"  

• a part of a Web page; e.g. a specific HTML or XML element within the document 

source.  

• a whole collection of pages; e.g. an entire Web site.  

• an object that is not directly accessible via the Web; e.g. a printed book.  

Resources are identified by a resource identifier. A resource identifier is a URI plus an optional 

anchor id. (see [URI]). Anything can have a URI; the extensibility of URIs allows the 

introduction of identifiers for any entity imaginable. 
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Properties 

A property is a specific aspect, characteristic, attribute, or relation used to describe a resource. 

Each property has 

• a specific meaning, defines its permitted values,  

• the types of resources it can describe, and  

• its relationship with other properties (see RDF Schema specification).  

RDF properties also represent relationships between resources and an RDF model can therefore 

resemble an entity-relationship diagram. In object-oriented design terminology, resources 

correspond to objects and properties correspond to instance variables. 

 

Statements 

An RDF statement is a specific resource together with a named property plus the value of that 

property for that resource. These three individual parts of a statement are called, respectively, 

• the subject,  

• the predicate, and  

• the object (i.e., the property value) can be another resource or it can be a literal; i.e., a 

resource (specified by a URI) or a simple string or other primitive datatype defined by 

XML.  

 

Consider as a simple example the sentence: 

“Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.” 

This sentence has the following parts: 

 
 Subject (Resource)   http://www.w3.org/Home/Lassila 
 Predicate (Property)   Creator 
 Object (literal)   "Ora Lassila" 

 

Using directed labeled graphs (also called "nodes and arcs diagrams") in which 

• the nodes (drawn as ovals) represent resources,  

• arcs represent named properties, and  

• nodes that represent string literals will be drawn as rectangles.  
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The sentence above would thus be diagrammed as: 

 

 

 

In the example above 

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.  

The RDF/XML representation becomes: 

<rdf:RDF> 

  <rdf:Description about="http://www.w3.org/Home/Lassila"> 

    <s:Creator>Ora Lassila</s:Creator> 

  </rdf:Description> 

</rdf:RDF> 

Note the use of XML namespaces in the RDF/XML representation. RDF uses the XML 

namespace facility to avoid confusion between independent -- and possibly conflicting -- 

definitions of the same term. Namespaces are simply a way to tie a specific use of a word in 

context to the dictionary (schema) where the intended definition is to be found. 

 

RDF Schema 

Schemas and Namespaces 

It is crucial that both the writer and the reader of an RDF statement understand the same 

meaning for the terms used, such as Creator, approvedBy, Copyright, etc. or confusion will 

result. 

 

Meaning in RDF is expressed through reference to a schema. A schema defines the terms that 

will be used in RDF statements and gives specific meanings to them. A schema is the place 

where definitions and restrictions of usage for properties are documented. 

 

http://www.w3.org/home/Lassila Ora Lassila 
Creator 
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In RDF, each predicate used in a statement must be identified with exactly one namespace, or 

schema. However, a Description element may contain statements with predicates from many 

schemas. 

 

Core Classes in RDFS 

• rdfs:Resource: All things described by RDF are called resources, and are members of 

the class rdfs:Resource. 

• rdfs:Class: This corresponds to the generic concept of a type or category of resource. 

RDF class membership is used to represent types or categories of resource. Two classes 

may happen to have the same members, while remaining distinct resources. 

• rdf:Property: rdf:Property represents those resources that are RDF properties. 

• rdf:Statement: The class of RDF statements. 

 

Core Properties in RDFS 

• rdfs:subClassOf: The rdfs:subClassOf property represents a specialization relationship 

between classes of resource. The rdfs:subClassOf property is transitive. 

• rdf:type: The rdf:type property indicates that a resource is a member of a class. When a 

resource has an rdf:type property whose value is some specific class, we say that the 

resource is an instance of the specified class. The value of an rdf:type property will 

always be a resource that is an instance of rdfs:Class. The resource known as rdfs:Class 

is itself a resource of rdf:type rdfs:Class. 

• rdfs:range: An instance of rdf:Property that is used to indicate the class(es) that the 

values of a property will be members of. The value of an rdfs:range property is always a 

Class. The rdfs:range property can itself be used to express this: the rdfs:range of 

rdfs:range is the class rdfs:Class. This indicates that any resource that is the value of a 

range property will be a class. The rdfs:range property is only applied to properties. 

This can also be represented in RDF using the rdfs:domain property. The rdfs:domain of 

rdfs:range is the class rdf:Property. This indicates that the range property applies to 

resources that are themselves properties.  
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• rdfs:domain: An instance of rdf:Property that is used to indicate the class(es) that will 

have as members any resource that has the indicated property. The rdfs:domain of 

rdfs:domain is the class rdf:Property. This indicates that the domain property is used on 

resources that are properties. The rdfs:range of rdfs:domain is the class rdfs:Class. This 

indicates that any resource that is the value of a domain property will be a class. 

 

Other Important Classes and Properties 

• rdfs:subPropertyOf: The property rdfs:subPropertyOf is an instance of rdf:Property that 

is used to specify that one property is a specialization of another. Sub-property 

hierarchies can be used to express hierarchies of range and domain constraints.  

• rdfs:label: The rdfs:label property is used to provide a human-readable version of a 

resource's name. 

• rdfs:comment: The rdfs:comment property is used to provide a human-readable 

description of a resource. A textual comment helps clarify the meaning of RDF classes 

and properties. Such inline documentation complements the use of both formal 

techniques (Ontology and rule languages) and informal (prose documentation, 

examples, test cases). A variety of documentation forms can be combined to indicate 

the intended meaning of the classes and properties described in an RDF Schema. 

 

Multilingual documentation of schemas is supported at the syntactic level through use of the 

xml:lang language tagging facility. Since RDF schemas are expressed as RDF graphs, 

vocabularies defined in other namespaces may be used to provide richer documentation. 

 

Source: http://bioserv.cis.nctu.edu.tw/bio/book/RDF.htm 
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Appendix F Expertise Model for Expertise Matching in 
Academia (Represented in RDFS) 
 
<?xml version= “1.0”?> 
 
<rdf : RDF xml:lang= “en” 
 xmlns:rdf= “http://www.w3.org/1999/02/22-rdf-syntax-ns#” 
 xmlns:rdfs= “http://www.w3.org/2000/01/rdf-schema#” 
 xmlns= “ ”> 
 
<rdfs:Class rdf:ID = “Organization”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Department”> 

<rdfs:subClassOf  rdf:resource = “#Organization”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Institute”> 

<rdfs:subClassOf  rdf:resource = “#Organization”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Research_Group”> 

<rdfs:subClassOf  rdf:resource = “#Organization”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Person”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Employee”> 

<rdfs:subClassOf  rdf:resource = “#Person”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Student”> 

<rdfs:subClassOf  rdf:resource = “#Person”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Researcher”> 

<rdfs:subClassOf  rdf:resource = “#Employee”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Lecturer”> 

<rdfs:subClassOf  rdf:resource = “#Employee”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Senior_Lecturer”> 

<rdfs:subClassOf  rdf:resource = “#Lecturer”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Assistant”> 

<rdfs:subClassOf  rdf:resource = “#Employee”/> 

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
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</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Teaching_Assistant”> 

<rdfs:subClassOf  rdf:resource = “#Assistant”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Research_Assistant”> 

<rdfs:subClassOf  rdf:resource = “#Assistant”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Research Fellow”> 

<rdfs:subClassOf  rdf:resource = “#Employee”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Professor”> 

<rdfs:subClassOf  rdf:resource = “#Employee”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “PhDStudent”> 

<rdfs:subClassOf  rdf:resource = “#Student”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Publication”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Book”> 

<rdfs:subClassOf  rdf:resource = “#Publication”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Journal”> 

<rdfs:subClassOf  rdf:resource = “#Publication”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “OnlinePublication”> 

<rdfs:subClassOf  rdf:resource = “#Publication”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Article”> 

<rdfs:subClassOf  rdf:resource = “#Publication”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “TechnicalReport”> 

<rdfs:subClassOf  rdf:resource = “#Article”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “JournalArticle”> 

<rdfs:subClassOf  rdf:resource = “#Article”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “ArticleInBook”> 

<rdfs:subClassOf  rdf:resource = “#Article”/> 
</rdfs:Class> 
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<rdfs:Class rdf:ID = “ConferencePaper”> 
<rdfs:subClassOf  rdf:resource = “#Article”/> 

</rdfs:Class> 
 
<rdfs:Class rdf:ID = “WorkshopPaper”> 

<rdfs:subClassOf  rdf:resource = “#Article”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Project”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Research_Topic”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Classification”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID = “Expertise”> 

<rdfs:subClassOf  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Resource”/> 
</rdfs:Class> 
 
<rdf:Property rdf:ID = “first_name”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “last_name”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “homepage”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “email”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “Pub_title”> 
 <rdfs:domain  rdf:resource = “#Publication”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “Proj_title”> 
 <rdfs:domain  rdf:resource = “#Project”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
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<rdf:Property rdf:ID = “Pub_abstract”> 
 <rdfs:domain  rdf:resource = “#Publication”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “Proj_abstract”> 
 <rdfs:domain  rdf:resource = “#Project”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “YearOfPub”> 
 <rdfs:domain  rdf:resource = “#Publication”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “Start_date”> 
 <rdfs:domain  rdf:resource = “#Project”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “End_date”> 
 <rdfs:domain  rdf:resource = “#Project”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “author_of”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “#Publication”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “works_on”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “#Project”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “supervises”> 
 <rdfs:domain  rdf:resource = “#Employee”/> 
 <rdfs:range  rdf:resource = “#PhDStudent”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “memberOf”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “#Organization”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “Org_name”> 
 <rdfs:domain  rdf:resource = “#Orgnization”/> 
 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “description”> 
 <rdfs:domain  rdf:resource = “#Expertise”/> 
 <rdfs:domain  rdf:resource = “#Research_Topic”/> 
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 <rdfs:range  rdf:resource = “http://www.w3.org/2000/01/rdf-schema#Literal”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “has_expertise”> 
 <rdfs:domain  rdf:resource = “#Person”/> 
 <rdfs:range  rdf:resource = “#Expertise”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “Relate_to”> 
 <rdfs:domain  rdf:resource = “#Expertise”/> 
 <rdfs:domain  rdf:resource = “#Research_Topic”/> 
 <rdfs:range  rdf:resource = “#Classification”/> 
</rdf:Property> 
 
<rdf:Property rdf:ID = “researchInterest”> 
 <rdfs:domain  rdf:resource = “#Student”/> 
 <rdfs:range  rdf:resource = “#Research_Topic”/> 
</rdf:Property> 
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Appendix G Questionnaire for the First Experiment – 
Compare Extended Expertise Matcher with Current One 
 

Pre-Experiment Questionnaire 

Please tell us about your background by answering these questions.  

1. What is your name and email address? 

…………………………………………………………………………………………… 

2. Which year are you in your PhD study? 

 …………………………………………………………………………………………… 

3. What is your age? (please tick relevant box) 

10-20      

20-30      

30-40         

above 40     

 

4 How often do you use search tools? (please tick relevant box) 

Daily       

A few times a week   

A few times a month   

Rare        

Never     

 

5 Do you know how to use operators (AND, OR, NOT) when you search something? 

 …………………………………………………………………………………………… 

 

6 How much do you know about searching a database? (please tick relevant box) 

Nothing   

a little      

quite a lot      
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Post-Experiment Questionnaire 

 

1 What keyword(s) did you search on (Please write down any operators you have used in 

Search 1 e.g. virtual or working)? 

…………………………………………………………………………………………… 

 

2 Did any of the 3 searches bring up your supervisor?  

• which search was it? (please tick relevant box) 

Search 1      Search 2      Search 3     

• How far down the list was your supervisor placed in each search?  

Search 1…………… 

Search 2……………. 

Search 3……………. 

• What do you think of the ranking of the results on Searches 2 and 3, are they helpful in 

finding your supervisor or potential supervisor(s)? (Please give a brief explanation of 

the reason for your response) 

…………………………………………………………………………………………… 

……………………………………………………………………………………………

…………………………………………………………………………………………… 

• Look at the details page of each expert retrieved by each search, how many people 

could be your potential supervisor for your research?  

Search 1…………………………………………………………………………………. 

Search 2…………………………………………………………………………………. 

Search 3…………………………………………………………………………………. 

 

3 Which form of query do you think is more convenient (with or without operators e.g. 

AND, OR, NOT)? (please tick relevant box) 

 With     Without    
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4 Look at the order of the results given by Search 2 and Search 3. Are they different? 

How different  (please tick relevant box) ? 

identical       similar           half            few                no    

 

5 If there are some differences in Search 2 and Search 3. Find the people in the top 10 

results who are ranked differently in Search 2 and Search 3, by looking at the details of 

each person which result would you say has the more appropriate rank? (Please give a 

brief explanation of the reason for your response) 

Search 2      Search 3     

……………………………………………………………………………………………

………….………………………………………………………………………………………… 
 

6 What keyword(s) did you add in (Please write down any operators you have used in 

Search 1 e.g. virtual or working or environment)? 

……………………………………………………………………………………………

…………………………………………………………………………………………… 

7 Did any of the 3 searches bring up your supervisor?  

• Which Search was it? (please tick relevant box) 

Search 1      Search 2      Search 3     

• How far down the list was your supervisor placed in each search?  

Search 1…………… 

Search 2……………. 

Search 3……………. 

 

• What do you think of the ranking of the results on Searches 2 and 3, are they helpful in 

finding your supervisor or potential supervisor(s)? (Please give a brief explanation of 

the reason for your response) 

……………………………………………………………………………………………

…………..………………………………………………………………………………

…………………………………………………………………………………………… 

 



 APPENDIX 192

• Look at the details page for top ten people in each search, how many people could be 

your potential supervisor for your research?  

Search 1…………………………………………………………………………………. 

Search 2…………………………………………………………………………………. 

Search 3…………………………………………………………………………………. 

 

8 Which form of query do you think is more convenient (with or without operators e.g. 

AND, OR, NOT)? (please tick relevant box) 

With     Without    

 

9 Look at the order of the results given by Search 2 and Search 3. Are they different? 

How different  (please tick relevant box) ? 

identical       similar           half            few                no    

 

10 If there are some differences in Search 2 and Search 3. Find the people in the top 10 

results who are ranked differently in Search 2 and Search 3, by looking at the details of 

each person which result would you say has the more appropriate rank? (Please give a 

brief explanation of the reason for your response) 

 Search 2   Search 3    

……………………………………………………………………………………………

………….…………………………………………………………………………………

….…………………..…………………………………………………………………… 

 

11 Which search do you think is the easiest one to help you find the most suitable 

supervisor? (Please give a brief explanation of the reason for your response) 

Search 1      Search 2      Search 3    

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

…………………………………………………………………………………………… 
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Appendix H Questionnaire for Evaluation the Expertise 
Locator against the Extended Expertise Matcher 
Pre-Experiment Questionnaire 

1.  Name:  ________________________  email: _________________________________ 

 

2.  Did you want to know who had the expertise in your preferred research area when you 

applied to be a PhD student at the School of Computing, University of Leeds? 

Yes                  No    

If no, why? 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

3.  Did you choose your supervisor(s) yourself when you applied to be a PhD student? 

 

Yes                  No    

If no, why? 

You were not asked to choose yourself    

You did not mind who would be your supervisor.  

Other reasons: 

_____________________________________________________________________________ 

 

4.  Where did you seek the information used to locate your potential supervisor(s)? 

a.  The homepage of each member of staff      

b.  The website of each research group       

c.  The technical reports from “Research Report Series” on the School website  

Please indicate below if you also searched other information resources  

_____________________________________________________________________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 



 APPENDIX 194

5.  Did you find sufficient information you required from a single data source (e.g., from a 

personal homepage)? 

Yes                  No     

If yes, which data source did you look at? 

____________________________________________________________________________ 

If no, why? 

_____________________________________________________________________________

_____________________________________________________________________________ 

 

6.  How long did it take you to locate the supervisor(s) in your preferred research area? 

Less than 30 minutes   

Less than 1 hour   

Less than 2 hours   

Less than 4 hours   

Longer than this    

 

7.  How easy was it to find the people who have expertise in your preferred research area? 

very easy    easy  O.K.  difficult  very difficult   

Please give a brief explanation of the reason for your response: 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

 

8.  How long have you been a PhD student? Have you done the literature review in your 

specific area? 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

9.   Indicate below how useful the following types of information were to you when 

choosing your supervisor(s)? 
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very useful  useful  not useful 

Research interests          

Research group           

Position           

Publications           

Projects            

PhD students           

Teaching activities          

Affiliations           

Biography           

 

Post-Experiment Questionnaire 
 

1.  For the first search, how many potential supervisors were displayed on the left-hand 

side of the page?  

_____________________________________________________________________________ 

 

2.  Look at the detail publication and project information page of each potential supervisor, 

do you think it provides enough information you need? (please give a brief explanation 

for your response) 

Yes    No  

_____________________________________________________________________________

_____________________________________________________________________________ 

 

3.  How many potential supervisors did you finally accept? How far down the list were the 

ones which you accepted (state position)?  

_____________________________________________________________________________ 

4.  Was the name of your real supervisor(s) in the final list of accepted potential 

supervisor? How far down the list was your supervisor placed in the left list? 

_____________________________________________________________________________ 
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5.  Did you agree with the ranking of the results when you viewed the detail pages of the 

potential supervisors? 

Agree   Partially agree   Disagree  

please give a brief explanation for your response 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

6.  For the second search, how many research areas you have accepted? (Please tick 

relevant box) 

1   2   3   4  

 

7.  For each research area you have accepted how many potential supervisors were listed? 

No.1_______  No.2_______  No.3_______   No.4_______ 

 

8.  Look at the details page for your potential supervisor, are you satisfied with the content 

in it? 

(1- very satisfied; 5 – not satisfied at all) 

1   2  3  4  5  

  

In more detail, which of following information is useful? 

Personal (contact) information   

Homepage    

Research Interest   

Research Group    

Publication    

Project     

What else information do you think should be included? 

_____________________________________________________________________________ 

_____________________________________________________________________________ 
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Do you agree with the ranking of the results after you viewed the detail pages of the 

potential supervisors? (please give a brief explanation for your response) 

 

Agree   Partially agree   Disagree  

 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

Comparing these pages to those personal detail pages in Search 1, which one do you 

prefer? 

Search 1   Search 2  

 

9.  How many potential supervisors were accepted? What was the position of the accepted 

potential supervisor(s)? 

 

research area 1: 1      2    3     4   

research area 2: 1      2    3     4   

research area 3: 1      2    3     4   

 

10.  Was the name of your real supervisor(s) in the final list of accepted potential 

supervisor(s)? 

 Yes        No    

 

11.  Looking at the two sets of results obtained from Search 1 and Search 2, how different 

were they (please tick relevant box)?   

 

identical       similar         half         quite different   totally different   

 

If the two sets of results were not identical, which one was more appropriate?  

Search 1      Search 2   
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12. Comparing the two searches, which Search do you find more useful? (Please give a 

brief explanation of the reason for your response) 

Search 1   Search 2   they are the same  

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

13. Do you think you have the ability to assess the potential supervisors’ expertise and 

why? 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

 

14. If you could change something about the system, what would you change? 

_____________________________________________________________________________

_____________________________________________________________________________ 

 

15. Overall what do you think of the two searches so far? 

_____________________________________________________________________________

_____________________________________________________________________________ 

 

16. If these two searches are available when you apply for PhD study in the University of 

Leeds, will you use one of them to search for your potential supervisor? 

_____________________________________________________________________________

_____________________________________________________________________________ 

17. Do you have any other comments? 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 
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Appendix I: Computing Techniques Used in Geoinformatics  
 

(1) DATA EXTRACTION AND STATISTICS 

a. Information retrieval 

b. Data mining 

c. Spatial data analysis 

d. Knowledge discovery tools 

e. Geostatistics 

f. Data quality 

(2) MODELLING, MAPPING AND PATTERN RECOGNITION 

a. Simulation 

b. Modelling of complex systems 

c. Process-based modelling 

d. Statistical modelling (predictive and descriptive) 

e. Diagnostics and pattern recognition 

f. Cellular automata 

g. Artificial intelligence 

i. Intelligent agents 

ii. Expert systems 

iii. Neural networks 

iv. Fuzzy computing 

v. Advanced numerical algorithms 

vi. Smart spatial analysis 

(3) COMPUTING ENVIRONMENTS 

a. Grid-based processing 

b. Computer architecture and design 

c. Distributed computing environments 

i. Distributed GIS environments 

ii. Collaborative spatial decision making 

d. Problem solving environments 
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(4) VISUALISATION 

a. Interactive visualisation 

b. Virtual reality 

c. Virtual environments 

d. Multimedia 

e. GIS 

(5) KNOWLEDGE MANAGEMENT 

a. Knowledge discovery 

b. Spatial decision support systems 
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Appendix J: Keywords Associated with the Six Items in the 
Geography Classification 
 

1. Population & Migration - residential developments, census, ethnic minority, 

populations migration dynamics, transnationalism, diaspora, family migration, estimation and 

projection demography, population policy, mortality 

 

2.1 Urban or regional geography – urban, rural, land use, landscape, location planning, 

local, national, growth predict, communities, houses consumer, society, urban consumption, 

retailing, countryside, policies, global, cities, transportation planning, community planning, 

economy, space 

 

2.3 Economic geography - retailing store, network, expansion, market saturation, 

competition, firms grocery, spatial, monopolies, duopolies, floorspace, financial transactions, 

deals, M&A, service, partner, organizations, health care, international business, globalisation, 

economic development, regional analysis 

 

3.1 Water policy and development – flood, water resources, water deficits, environment, 

water policy, resource management 

 

3.2 Sustainable development and resource geography – sustainability, sustainable, water 

management, agricultural systems, conservation, policy, pollution control, wilderness, 

conservation, environmental development, sustainability strategies and indicators, energy 

analysis, renewable energy 

 

3.3 Global environmental history and change – deforestation, desertification, wilderness, 

climate change, climate modelling, atmosphere, cloud, physics, marine, ice, soil, 

hydrochemistry of upland ecosystems, pollution ecology, ozone depletion 

 



 APPENDIX 202

Appendix K: Important Areas of Current Research in 
Geoinformatics  
 

• Acquisition of digital geodata in the field and in the laboratory  

• Global positioning systems and navigation systems  

• Analysis and evaluation of remotely sensed data  

• Databases, metadata databases, methods databases and models databases  

• Geographical information systems, environmental information systems  

• Development of open, interoperable systems  

• Improvement of the usability of geosoftware  

• Multimedia applications in the geosciences  

• Digital cartography systems  

• 3D-visualization, VR (virtual reality) - developments  

• Decision-support systems  

• Numerical simulation models and prognosis models for spatial data  

• Data processing which supports local, regional and national planning  

• Data processing which supports landscape planning and studies of climate suitability 

• Artificial neural networks and fuzzy set theory for natural resource studies 

• GIS and public health 

• Simulation population 

Source: http://castafiore.uni-muenster.de/vorlesungen/Geoinformatics/frames/fsteuer.htm 

 

 

 

 

 

http://castafiore.uni-muenster.de/vorlesungen/Geoinformatics/frames/fsteuer.htm
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