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Abstract

Climate change has motivated the need to produce energy from non-

fossil sources such as solar photovoltaics (PV) and concentrating solar

power (CSP). As solar power output depends on both the incident irra-

diance and the ambient temperature, climate change could affect solar

energy production. In the last few years, a handful of studies have inves-

tigated the interactions between global climate and solar energy output.

The aims of this thesis are to build on this previous work by both in-

troducing a tilted solar collector alignment, such as would be seen in

the real world, and also to include the spectral response of different PV

semiconductor materials. A method to mitigate the effects of global

temperature increase on solar PV is also explored. These simulations

are performed with a number of radiative transfer, heat transfer and en-

ergy balance models. It is shown that the solar resource at the end of

the 21st Century is expected to differ by more than ±5% compared to

today in many regions of the world, and in some places up to ±20%.

PV semiconductors with bandgaps in the range of 1.4–1.7 eV perform

relatively better in a future climate scenario compared to the commonly-

used crystalline silicon (1.1 eV), due to changes in atmospheric absorp-

tion characteristics. A further extension to a geoengineering scenario, in

which humans deliberately inject aerosols into the atmosphere to lower

global temperatures, shows that tracking PV and CSP energy outputs

could decline by up to 15% compared to present-day values. Solar PV

output can be increased by up to 6% by passive cooling of solar modules

with phase change materials. As solar energy investment decisions are

often made on the long-term annual mean energy output being known

to within a few percent, changes in solar resource estimates of this mag-

nitude are of importance.
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Chapter 1

Introduction

1.1 The sun as an energy source

Solar energy is arguably mankind’s earliest and most versatile fuel resource. It is the

precursor for the vast majority of energy technologies that are currently being exploited.

Clearly the sun is the source of energy for solar photovoltaics (PV), the main focus of

this thesis, and concentrating solar power (CSP). Solar heating over land creates convec-

tion which is the source of wind. Evaporative heating from the sun is the driver of the

hydrological cycle, enabling hydroelectricity. The sun is an important component of pho-

tosynthesis needed for plants to grow, and this energy is released when biomass is burned.

Fossil fuels, which make up the large majority of primary energy supply, were formed

from the subsurface compression of prehistoric organisms, whose energy was originally

derived from photosynthesis directly (coal) or indirectly (oil and gas) from the sun.

Solar energy is renewable, and on the timescales of human civilisations inexhaustible.

This is in contrast to fossil fuel reserves which are finite. Precise estimates of the global

stock of fossil fuels are continually being revised with changes in extraction methods, dis-

covery of new and unconventional reserves, and economics of extraction. Nevertheless,

the current proven reserves are projected to last far beyond the next 50 years for oil and

gas and 100 years for coal (BP, 2015).

In one year, about 3× 1024 J of energy from the sun reaches the earth’s surface1. The

global total primary energy demand in 2013 was around2 6×1020 J, or 0.02% of the solar

resource. The challenge is the conversion of this vast energy resource into a usable form,

in an efficient and cost-effective manner.

1calculated from the 2013 ECMWF solar resource map in fig. 1.1, summing up the irradiation contri-
bution from each grid cell multiplied by the area of the cell.

2calculated as 13555 million tonnes oil equivalent (mtoe) (IEA, 2015b) multiplied by the conversion
factor of 1 mtoe = 41868 TJ (IEA, 2014a).
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Figure 1.1: The annual horizontal solar resource. Data source: ECMWF reanalysis for 2013.

1.2 Energy and climate change

As is now well-known, the burning of fossil fuels to generate energy emits carbon dioxide

(CO2) into the atmosphere. CO2 is a greenhouse gas (GHG), meaning that it is effective

in absorbing and re-radiating thermal radiation that is emitted by the surface of the Earth

in the lower atmosphere. Greenhouse gases are important, as the average Earth surface

temperature would be−18◦C in their absence (Thomas & Stamnes, 2002, page 441), con-

ditions which would not be suitable for the evolution of complex life. However, increases

in the atmospheric concentration of GHGs allow for more heat to be retained in the atmo-

sphere, causing global average temperatures to increase. This effect has been observed

since the beginning of the Industrial Revolution, where the best estimate of global mean

temperature rise is 0.85◦C (IPCC, 2013). Over the period 1880–2014, the concentration

of CO2 in the atmosphere has increased from 280 to 399 parts per million (ppm) (IPCC,

2013; Dlugokencky & Tans, 2015). Including the radiative effects of non-CO2 GHGs

(primarily CH4 and N2O), the best estimate of CO2-equivalent GHG concentration was

430 ppm in 2011 (IPCC, 2013). While there is evidence to suggest that throughout the

history of the earth the climate has been several degrees warmer than today, the speed at

which global temperatures are rising is putting pressure on the ability of ecosystems to

adapt. Increases in global average temperatures are likely to affect the climate in extreme

and unpredictable ways, including heatwaves, droughts, extreme precipitation events and

changes to monsoon patterns. The dual effect of thermal expansion of warmer oceans

and melting of polar ice caps is expected to cause global sea levels to rise, putting coastal
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areas and island nations at risk. Uptake of CO2 by the oceans causes them to become

more acidic, which can be detrimental to marine life.

At the 2009 UN Conference of the Parties in Copenhagen, it was agreed that the max-

imum global temperature rise should be limited to 2◦C from pre-industrial times (UN-

FCCC, 2009). Incidentally, there is no scientific reason why 2◦C is an appropriate limit,

but has been interpreted to be the threshold at which the worst effects of “dangerous” cli-

mate change occur can be avoided (Jaeger & Jaeger, 2010). In order to stay under the 2◦C

threshold, significant cuts to GHG emissions will be required over the coming decades: a

long term atmospheric CO2-equivalent level of 500 ppm will give around a 50% chance of

global temperature rise remaining within 2◦C (IPCC, 2014). However, there is currently

no globally-agreed pathway to facilitate a reduction in GHG emissions. The Kyoto Proto-

col, which set advisory targets for some of the world’s most developed countries, expired

in 2012; the Doha Amendment is an extension to the period 2013–2020, but the only

non-European nations to take on emissions targets to date are Kazakhstan and Australia

(UNFCCC, 2012). With no legally-binding framework and the non-committal of some

of the world’s largest GHG-emitting countries, notably the US, China, India, Japan and

Russia, there is little disincentive for missing these advisory targets. The objective of the

2015 Conference in Paris is to set out a legally-binding global agreement for emissions

reduction in the context of limiting total global temperature rise to 2◦C.

Owing to the long atmospheric lifetime of CO2, there is a roughly one-to-one relationship

between the atmospheric concentration of CO2 and total anthropogenic emissions since

the Industrial Revolution. In order to have a 50% chance of meeting the 2◦C limit, the

cumulative emissions of CO2 since the Industrial Revolution would need to stay below

approximately 1100 gigatonnes (Meinshausen et al., 2009). This would involve leaving

two-thirds of current proven fossil fuel reserves in the ground. Split out by technology

this equates to one-third of oil, half of gas, and 80% of coal (McGlade & Ekins, 2015).

Indeed, scarcity of fossil fuel reserves and “peak oil” worries of the late 20th and early

21st centuries have become a secondary concern to the climate impact of releasing the

embodied carbon within those fuels.

The energy sector is responsible for about two-thirds of global GHG emissions (IEA,

2015a). Solar energy can help mitigate climate change by displacing energy genera-

tion by fossil fuels. Solar energy is not zero-emission, as energy is required to extract

raw materials and manufacture solar energy devices as well as in the transportation, in-

stallation and decommissioning stages of a solar collector’s life. However, it produces

far fewer greenhouse gases than fossil fuel generation per unit of electricity generated.

Estimates of lifecycle emissions are 35–58 g CO2 kWh−1 for silicon PV modules (Liu

et al., 2015) and 14 g CO2 kWh−1 for solar thermal collectors (Pehnt, 2006), compared to

3



1. INTRODUCTION

443 g CO2 kWh−1 for gas and 960–1050 g CO2 kWh−1 for coal (Gagnon et al., 2002)3.

If global energy supply becomes less carbon-intensive by substitution with renewables,

the lifecycle CO2 figure for solar energy will become lower.

Domestically, the UK Climate Change Act 2008 legislated for an 80% reduction in total

greenhouse gas emissions by 2050 compared to 1990 levels, which includes a 34% reduc-

tion by 2020 (HM Government, 2008). Providing the pathway to an 80% cut is steady,

this is consistent with a global 2◦C target.

1.3 Economic and policy background
Solar energy has traditionally been perceived as expensive when compared to fossil fuel

generation. However, solar PV has become increasingly attractive in recent years due to a

fall in raw material costs, increases in module efficiencies, and cost efficiencies generated

from learning and economies of scale (Labouret & Villoz, 2010; Wand & Leuthold, 2011;

Cherrington et al., 2013). In many countries solar energy has now achieved grid parity

(IRENA, 2014), meaning the levelised cost of electricity (LCOE) or lifecycle costs from

PV are equal to or cheaper than the grid electricity price (Branker et al., 2011).

In most countries it has required a measure of financial support in order to make solar

energy competitive with other energy generation technology. The UK is one of them,

due to a fairly low annual solar resource. The UK, along with many other countries, has

a feed-in tariff (FiT) which pays generators of solar energy for the power they produce.

FiTs in the UK are available to owners of small (< 250 kW) and medium (250 kW–5

MW) sized installations, generally rooftop systems and small solar farms. FiT payments

are guaranteed at a constant rate per kWh of electricity produced depending on the size

of the installation, with an additional export rate of 4.85p/kWh which pays producers for

the amount of electricity exported back to the grid (deemed to be 50% of the electricity

generated, unless this is specifically metered). The FiT rate was always planned to re-

duce gradually, approximately once every three months, as the price of solar energy and

grid electricity converged. However, since its inception in April 2010, the FiT rate has

gone through a number of abrupt changes due to policy shifts. In March 2012, a dras-

tic drop in FiT rate for the smallest (< 4 kW) installations from 43.3p/kWh to 21p/kWh

was implemented, which was delayed from the intended December 2011 start date due

to a successful High Court appeal from several groups (Muhammad-Sukki et al., 2013).

The Government announced in August 2015 that a further large reduction in FiTs from
3It is appreciated that the latter references are rather old, but since for fossil fuels the majority of

lifecycle emissions arise from the energy generation phase, the uncertainties for fossil-fuel generation are
lower in relative terms than for solar energy. In particular, as gas and coal are carbon-rich fuels, there is
an unbreachable lower limit for CO2 emissions per kWh for fossil fuels even if power plants were 100%
thermodynamically efficient.
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12.47p/kWh to 1.63p/kWh was planned (DECC, 2015b). Following a consultation period

the new FiT rate was set at 4.39p/kWh for the period from 15 January to 31 March 2016,

with small quarterly reductions from then on (Ofgem, 2016). It is argued that such un-

certainty harms investor and consumer confidence with negative effects for the UK solar

industry (Cherrington et al., 2013).

For large scale (> 5 MW) generators, the Renewables Obligation (RO) exists to create

a market adjustment that enables renewables to achieve grid parity. Owners of medium-

scale installations between 250 kW and 5 MW capacity can choose whether they would

prefer to be assessed under the RO or FiT schemes. When the scheme was introduced,

one Renewables Obligation Certificate (ROC) would be awarded to a generator for each

MWh of renewable electricity generated. At the end of the year the generator had to

present a sufficient number of ROCs to cover their total (renewable plus non-renewable)

generation. This has the effect of fixing a certain percentage, which increased annually,

of electricity which had to come from renewables. This changed in 2009 when ROCs

were banded by technology and a different number of ROCs for each technology were

awarded (Woodman & Mitchell, 2011). From then on, each generator has to present

a specific number of ROCs for each MWh generated. For 2015/16 this is 0.29 ROCs

per MWh (Ofgem, 2015). The banding structure is to encourage marginal technologies

to develop more. The level of support is slightly different for building-mounted (1.5

ROC/MWh) or ground-mounted (1.3 ROC/MWh) solar PV (DECC, 2013). Therefore, a

large utility company that generates 22.3% of its electricity (0.29 ROC/MWh divided by

1.3 ROC/MWh) from ground-mounted PV and the rest from fossil fuels would meet its

obligation for 2015/16. When a generator does not meet the required level of renewable

energy generation, the utility company must purchase ROCs or contribute to a buyout

fund to make up the shortfall. Conversely, utilities that exceed the renewable percentage

limit generate ROCs for their excess capacity which can be sold to companies that do not

meet the target. The RO was implemented in April 2002 and will run until March 2037 but

closed to new entrants from April 2017 (DECC, 2015a). This was always the intention.

However, for solar PV from April 2015 there is no RO support for new installations above

5 MW, and the Government have recently run a consultation period for closing the scheme

from April 2016 for systems between 250 kW–5 MW.

The RO is in the process of being replaced by a FiT with a contract for difference (CfD).

The CfD guarantees a set price (the “strike price”) per MWh of renewable generation.

When market electricity prices are lower than the strike price, the generator receives a

payment of the difference between the strike price and the market price. On the other

hand, if market prices rise above the strike price, the generator has to pay back the excess

of market price minus strike price to the Government (DECC, 2011). The CfD is running
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concurrently with the RO during the latter years of the RO availability. The first CfDs

have been agreed as of February 2015 (DECC, 2015c).

The EU has set the UK a target of achieving 15% of energy from renewables by 2020,

as part of an EU-wide target of 20%, which means that to balance the fossil-fuel heavy

contributions from transport and heat, 30% of electricity should be from renewables by

2020.

Even despite a challenging policy environment domestically, solar energy has a role to

play in the future. Solar PV exceeded 1% of global electricity supply for the first time in

2014 (IEA-PVPS, 2014). By 2050, PV and CSP have the potential to provide respectively

11% and 16% of global electricity supply (IEA, 2014b,c) under the International Energy

Agency (IEA)’s high renewable deployment scenario. Even under the most pessimistic

outlook, global solar PV capacity will be several times larger than it is today. The majority

of this capacity is likely to be in the tropics and lower mid-latitudes which are currently

most favourable (fig. 1.1), but several northern European countries including the UK have

seen a huge increase in capacity in recent years. Therefore, estimates of PV yield for

various regions of the world is likely to become increasingly important.

1.4 Layout of the thesis

The content of this thesis is comprised of a series of studies which are linked by the theme

of solar energy output estimation and forecasting in current and future climates. Accurate

resource assessment is essential for prediction of solar energy yields, which in turn feed

into economic forecasts that underlie the above ideas. The following chapters are set out

as follows.

Chapter 2 provides a more technical introduction to solar energy, including calculation

of irradiance and the solar spectrum. Radiative transfer theory and how it relates to solar

energy, a concept which underpins much of the work in this thesis, is introduced. Data

sources which are used in future chapters are described as are future climate scenarios

that are used by the Intergovernmental Panel on Climate Change (IPCC), which drives

the atmospheric state for solar energy simulations in chapters 6 and 7. Finally, an intro-

duction to solar photovoltaic efficiency and temperature relationships, which are referred

to consistently throughout this thesis, is presented.

Chapter 3 builds on the temperature-efficiency relationship of solar cells, and consid-

ers a method to passively cool solar cells using phase change materials in order to im-

prove efficiency, using a global model. European Centre for Medium-range Weather

Forecasts (ECMWF) ERA-Interim meteorological reanalysis data is used to provide 3-
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hourly values of radiation, temperature and wind speed that feeds the heat transfer model

of solar modules with and without an attached phase change material reservoir. The tech-

nical potential and cost-effectiveness of using phase change materials to improve solar

PV output power in current climate conditions globally is explored.

Chapter 4 analyses the statistics of hourly solar energy transmission for the UK based

on cloud fraction. These statistics are used to generate a stochastic 1-minutely irradiance

time series that can be used in demand-side modelling. This chapter is the first in the

thesis to include a radiative transfer method to simulate solar radiation, where it is used to

generate estimates for the theoretical clear-sky irradiation given inputs of the atmospheric

state from the ECMWF data. The ratio of observed solar irradiation values, taken from the

Met Office Integrated Data Archive System (MIDAS), to the theoretical clear-sky values

calculated from the radiative transfer model is known as the clear-sky index. The distribu-

tions of clear-sky index for each discrete cloud fraction bin (measured in oktas, or eighths

of the sky obscured) are analysed in detail. The aim of this chapter is to demonstrate that

the transmission of solar radiation due to clouds can take on a wide distribution of values,

and is more accurately described by a distribution than a single value for each cloud frac-

tion than has been performed in previous studies (e.g. Kasten & Czeplak (1980); Nielsen

et al. (1981); Matszuko (2012)).

The radiative transfer modelling procedure is extended to include clouds in chapter 5.

Inputs for the radiative transfer model, namely the state of the atmosphere, surface, and

clouds, are taken from MODIS satellite observations. This method of obtaining estimates

for solar radiation data is validated against high-quality observations for horizontal ra-

diation. Following this, a method to derive tilted radiation estimates from the radiative

transfer method is described. As most climate and meteorological datasets only provide

horizontal radiation values, a method to estimate tilted radiation is useful for solar energy

engineering purposes where solar panel angle is usually optimised to maximise incident

irradiance.

In section 1.2 above, it is described how solar energy can offset some of the negative

effects of climate change. An idea that has gained traction in recent years (e.g. Crook

et al. (2011); Burnett et al. (2014); Wild et al. (2015)), but that is still relatively little-

researched, is how changes in the climate itself can influence the solar resource available.

In chapter 6, the radiative transfer method to model solar PV output is applied to future

climate scenarios. Input states of the present and future atmosphere under a high radiative

forcing scenario (RCP8.5) are used with a radiative transfer model to produce the spec-

trally resolved radiation. A simple model is used to optimise PV module tilt. Using an

optimally-aligned tilt angle for solar modules is an improvement over many studies that

consider climate changes on PV assuming a horizontal module alignment. As different
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atmospheric constituents absorb and scatter different wavelengths of solar radiation with

varying strengths, the solar spectral quality of surface radiation is affected by the atmo-

sphere as well as the total (broadband) radiation. The spectral radiation is convoluted

with the spectral responses of six different solar PV semiconductor materials for past and

future climates. The extension to spectrally-resolved radiation is a further development

on previous work.

Chapter 7 extends the future climate scenario modelling by considering the impacts to

solar PV energy if the climate is deliberately geoengineered with sulphate aerosol parti-

cles that are designed to offset some of the global temperature increase expected under

climate change. The impacts on another solar energy technology, concentrating solar

power (CSP), which uses direct sunlight to operate, are also considered.

Finally, chapter 8 provides a summary and conclusion, and describes ideas for further

work.

1.5 Notes on terminology and nomenclature
The following terms for solar radiation are used. Intensity or radiance is the radiation flow

in a specific direction and has units of [W m−2 sr−1] Irradiance represents the instanta-

neous flux of radiation incident on a surface [W m−2], and is the integral of radiances over

the hemisphere of interest. Spectral irradiance is the irradiance per unit wavelength and

is measured in [W m−3] in SI units, or more commonly in [W m−2 nm−1]. Spectral radi-

ance, which is not called upon specifically in this thesis, is the analogous directional value

[W m−2 nm−1 sr−1]. Irradiation is a measure of energy, and is the irradiance summed or

integrated over a period of time (units of [J m−2] or [kW h m−2], for instance). Insolation

is the time-averaged solar irradiance, useful for comparing long-term data from different

sites. The units of insolation are also [W m−2]. Finally, radiation is a general term used

to encompass all of these definitions.

In terms of nomenclature, consistency between chapters has been imposed and where

possible conventions that prevail in literature have been used. To prevent a barrage of

subscripts and to keep equations as readable as possible there will be occasional clashes in

terms: for example s is used in chapter 2 to describe the path length of a beam of radiation

and in chapter 3 to describe the width of a phase-change region for a non-isothermal

phase change material. The meaning should be clear by context and care has been taken

to ensure that these cases do not overlap and terms are fully defined when first used. A

nomenclature list is provided in the thesis preamble.
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Chapter 2

Fundamentals, methods and concepts

This chapter provides a technical introduction to the concepts that are referred to repeat-

edly later in the thesis. Firstly the fundamentals of solar resource are introduced. Then, a

summary of radiative transfer theory is provided, including useful parameterisations that

are encountered in later chapters. Data sources that comprise the inputs to simulations are

introduced next, followed by a description of climate change scenarios used by the IPCC.

Finally, the concepts that apply specifically to solar photovoltaics are described. The last

section rounds up computational methods utilised in the study chapters.

2.1 The solar resource

The solar radiation incident on a plane normal to the sun’s solar beam at the top of

the earth’s atmosphere, or solar constant GS, at the mean earth-sun distance is about

1367 W m−2. The earth’s orbit is slightly eccentric which brings it closer to or further

from the sun at different times of year. Taking this into account the top of atmosphere

normal irradiance G0 is approximately (Šúri & Hofierka, 2004)

G0 = GS

(
1+0.03344cos

(
360 j
NYL

−0.048869
))

(2.1)

with j being the day number since the start of the year and NYL being the number of

days in the year. The argument of the cosine function is in degrees. NYL = 360 in some

climate models, for example the HadGEM2 family (Jones et al., 2010) used in chapters 6

and 7 in this thesis. The small angular differences between 360 and 365–366 day years

are not considered critical except where a very accurate representation of solar position is

required.

2.1.1 Solar position

The position of the sun in the sky as viewed from a point on the Earth’s surface is the

starting point for solar resource calculations. It can be expressed by two coordinates, the
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Figure 2.1: Diagram of the sky dome showing the zenith angle θz made between the local vertical and
the solar beam, and azimuth angle φa made between the south-facing meridian and the solar beam (in this
example, φa is negative).

zenith angle θz and azimuth φa (fig. 2.1).

Zenith angle

θz describes the angular distance of the sun from the vertical and is dependent on latitude

l, time of day, and solar declination δ (Hottel & Woertz, 1942):

cosθz = sinδ sin l + cosδ cos l cosh. (2.2)

δ is the solar declination, or angular position of the sun at noon relative to latitude. It is

given by (Lorenzo, 2003)

δ =−23.45cos
(

360( j+10.25)
NYL

)
(2.3)

where j is day number and both the cosine argument and δ are in degrees. The other

variable in eq. (2.2) is h, the hour angle. h ranges from −180◦ at solar midnight, through

0◦ at solar noon and approaches 180◦ towards the next solar midnight. h (in degrees) can

be calculated using

h = (15(t− tz)+L−180) (2.4)

where t is the local time on a 24 hour clock converted to a decimal (e.g. 15.5 representing

3:30pm), tz is the local time zone adjustment in hours relative to Coordinated Universal

Time (UTC) (positive for timezones ahead of UTC and negative for those behind), and L

is the location’s longitude. In many climatological datasets, time is always given in UTC
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2.1. The solar resource

and tz = 0. The hour angle of sunset follows from eq. (2.2) with cosθz = 0 so that

hs = arccos(− tanδ tan l). (2.5)

Equation (2.5) has real solutions when −1 ≤ tanδ tan l ≤ 1. Values outside of this range

relate to polar summer and winter where the sun does not set or rise on a daily basis.

An alternative positional measure is the elevation angle θe which describes the angle

above a level horizon made by the sun:

θe = 90−θz. (2.6)

In some contexts, using the elevation angle creates a clearer mental picture than zenith

angle, because a high elevation angle corresponds to the sun being positionally “high” in

the sky.

Azimuth angle

The solar azimuth angle φa gives the horizontal position of the sun compared to the south-

facing meridian:

cosφa =
sinδ cos l− coshcosδ sin l

cosθz
. (2.7)

The convention used in this thesis is to define sun in the south as φa = 0◦ increasing

clockwise so that west is 90◦, north is 180◦ and east is 270◦. This definition means that

the solar azimuth has an analogy with the hour angle, although the two are not the same

in general.

The relationships given above are first-order approximations based on periodic sun-earth

geometry that are sufficient for a wide range of applications. Occasionally, as in chapter 4,

a very precise representation of solar zenith and azimuth that takes into account other

extraterrestrial factors is required, such as the algorithm of Blanco-Muriel et al. (2001).

2.1.2 Direct and diffuse radiation

To a very good approximation, the radiation that reaches the top of the earth’s atmosphere

from the sun has travelled unobstructed through about 1.5×108 km of space to reach the

earth. The relatively short journey from the top of the atmosphere to the earth’s surface is

the most difficult and interesting part to resolve. As the sun’s radiation travels through the

atmosphere, some of this energy is absorbed or scattered by gas molecules, clouds, and

aerosols. Any radiation that reaches the surface unobstructed is termed direct radiation

(Labouret & Villoz, 2010).
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Sun's 
rays

Direct normal
irradiance GB

Direct horizontal irradiance GB cos θz

θz

Figure 2.2: Direct normal irradiance and direct horizontal irradiance

The intensity of the direct radiation depends on the plane it is measured in. The quan-

tity of most interest in solar energy applications is the direct normal irradiance (DNI) GB

(B for beam), which is the direct radiation intensity normal to the solar beam (fig. 2.2).

If the solar zenith angle is greater than zero, the direct radiation intensity on a horizon-

tal plane on the earth’s surface is spread across to the projected area of the sun beam

(fig. 2.2) (Labouret & Villoz, 2010). The projected area relationship for the direct beam

is GB cosθz. This is known as the direct horizontal irradiance.

When solar photons do collide with particles in the atmosphere, they could be absorbed or

scattered. If they are absorbed they are lost from the solar beam completely. If scattered,

the photon trajectory usually changes and the new direction could be anywhere in the

4π steradian field (defined much more formally in section 2.2). This scattering is the

source of diffuse radiation. Unlike in the direct case, there is no simple geometrical

relationship to determine the diffuse radiation except where it is assumed to emanate from

all directions equally, which is approximately true in overcast situations but not otherwise

(Gueymard, 2009). Therefore, diffuse radiation, GD, is usually reported on the horizontal

plane irrespective of the direction of solar incidence.

The sum of direct horizontal irradiance and diffuse horizontal irradiance is termed the

global horizontal irradiance (GHI), G:

G = GB cosθz +GD. (2.8)

2.1.3 Air mass

The energy emitted by the sun closely approximates that of a blackbody at 5778 K

(Thomas & Stamnes, 2002), emitting across the spectral range of approximately 250–

4000 nm. Alongside being a key parameter in solar geometry, the solar zenith angle

determines the path length through the atmosphere that the solar beam takes before reach-

ing the earth’s surface. The longer the atmospheric path length, the more opportunities
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for the direct beam to be absorbed or scattered.

When the sun is directly overhead at θz = 0◦, the sun’s beam travels through one atmo-

sphere to reach the surface, at sea level pressure. This is represented by an air mass (AM)

number of 1. The AM number describes how many atmospheres the solar beam travels

before reaching the earth’s surface. Up to about θz = 70◦ the atmosphere can be consid-

ered plane-parallel and the air mass ma is close to secθz = 1/cosθz. At higher zenith

angles the curvature of the atmosphere becomes important and instead of diverging to in-

finity with the secant function, ma ≈ 38 at θz = 90◦ (Kasten & Young, 1989). The Kasten

& Young (1989) formula between air mass and zenith angle is

ma =
exp(−z/h0)

cosθz +0.50572(90−θz +6.07995)−1.6364 (2.9)

with θz in degrees, z altitude in metres, and h0 atmospheric scale height (≈ 8.5 km), which

describes the height at which air pressure falls to 1/e of its sea-level value.

Air mass affects both the global irradiance G and the spectral irradiance Gλ . Clearly the

possibility of greater absorption across all wavelengths affects G. The absorption and scat-

tering of the atmosphere has different efficiencies at different wavelengths. The spectral

absorption depends on the loadings (and types) of aerosols, water vapour and ozone. Fur-

thermore, the direct and diffuse components of radiation are affected differently. At high

air masses, the direct beam is extinguished efficiently in the short wavelengths whereas

the ratio of the direct beam that is transmitted is greater in the long wavelengths (fig. 2.3a).

This is due to Rayleigh scattering effects being more effective at shorter wavelengths. Ef-

fectively this changes the colour spectrum of the direct beam. In fig. 2.3b the peak of the

diffuse radiation spectrum is nearer the blue end of the spectrum for all air masses than

for direct radiation. For global horizontal radiation in fig. 2.3c, increasing air mass tends

to result in a flatter spectrum owing to the greater contributions from shorter wavelengths

in the diffuse and longer wavelengths in the direct. These spectral effects are investigated

in more detail in chapter 6.

2.1.4 Atmospheric transmission

Linke turbidity factor

If atmospheric constituents do not vary, the air mass dictates the solar transmission. A

quantity called the Linke turbidity factor TL is a popular measure for clear-sky mea-

surements and has been provided here for background as it demonstrates the effect of

increasing air mass on solar radiation. TL specifies how many atmospheres containing

just Rayleigh scattering and absorption by O2, CO2 and O3 (“clean, dry” atmospheres)
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Figure 2.3: The (a) DNI, (b) DHI and (c) GHI at a variety of air masses. Spectrum produced from the
REPTRAN coarse (15 cm−1) solar spectrum, with default rural aerosol and US standard atmosphere in
libRadtran.
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Type of air Linke turbidity factor

Arctic air 2.0–3.5
Sub-Arctic air 3.0–4.0
Sub-tropical air 3.5–4.5
Tropical air 4.0–5.0
Polluted air > 6.0

Table 2.1: Typical values of Linke turbidity factor (Scharmer & Greif, 2000; Becker, 2001)

provides the same attenuation of radiation as the observed cloudless-sky atmosphere that

contains water vapour and aerosols in addition (Louche et al., 1986). The Linke turbidity

factor is given by

TL = τ/τR, (2.10)

for which τ is the total clear-sky (vertical) optical depth, including water vapour, ozone

and mixed gas absorption, aerosol absorption and scattering and Rayleigh scattering, and

τR is optical depth due to Rayleigh scattering plus absorption from ozone and mixed gases

(the “clean, dry”) atmosphere. Optical depth is defined formally in section 2.2; as its name

suggests it is related to the amount of an optically active substance in the atmosphere. τ

and τR are air mass dependent, so they are usually normalised to AM 2 (Ineichen & Perez,

2002).

Conditions for which TL = 1 are almost never encountered in reality. TL is greater in

the tropics than at the poles, higher in summer than in winter, and higher in urban areas

compared to rural (table 2.1). For a specific site of interest, values of the monthly Linke

turbidity factor have been interpolated from global observations at a resolution of 1
12
◦×

1
12
◦

by Remund et al. (2003) and are available from http://www.soda-is.com.

Scharmer & Greif (2000) give the clear sky direct irradiance normal to the solar beam as

a function of Linke turbidity, air mass and Rayleigh optical depth:

GB,cs = G0 exp(−0.8662maTLδR) . (2.11)

where δR is an empirical relationship for Rayleigh optical depth as a function of air mass:

δR =

1/
(
6.6296+1.7513ma−0.1202m2

a +0.0065m3
a−0.00013m4

a
)

ma ≤ 20,

1/(10.4+0.718ma) ma > 20.
(2.12)

The formulation for the clear-sky diffuse irradiance GD,cs is complex and not repeated

here but can be found in Rigollier et al. (2000).

In fig. 2.4, the clear-sky irradiance for Linke turbidity values from 1 to 6 is shown along
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(b) Diffuse Horizontal Irradiance
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Figure 2.4: (a) Direct horizontal irradiance; (b) diffuse horizontal irradiance; (c) global horizontal irradiance
and (d) atmospheric transmittance (clearness index) for Linke turbidity factors 1–6.

with the atmospheric transmittance (clearness index). As expected from eq. (2.11), the

direct beam is attenuated according to an increase in air mass (function of θz) and Linke

turbidity (fig. 2.4a). Some of the direct radiation is scattered, which is seen by the in-

crease in diffuse radiation with increasing Linke turbidity factor (fig. 2.4b). However this

is not enough to compensate for the absorption, as is seen by the decrease of global hor-

izontal radiation with increasing TL (fig. 2.4c). The final figure (fig. 2.4d) is of interest,

as it suggests that with the clear-sky atmospheric conditions being equal, the atmospheric

transmissivity decreases for increasing airmass or zenith angle. This is the subject of the

rest of this section.

Clearness index

Clearness index kt is defined as the ratio of GHI to horizontal irradiance at the top of the

atmosphere:

kt =
G

G0 cosθz
. (2.13)

Clearness index is often used to parameterise the transmission of the atmosphere as a re-

16



2.1. The solar resource

sult of all constituents and is not just limited to clear-sky observations. In the literature, a

notation tendency is to use kt for fairly short-term (minutely to hourly) observations and

Kt for longer-term observations (daily or monthly), and averages of these observations by

kt or Kt (Vignola et al., 2012, Appendix A). In this thesis, kt will be used regardless of

the time period in question for consistency, and kt will represent the average of these ob-

servations. Similarly, no temporal distinction is made for G and G0, which can represent

instantaneous, averaged or summed quantities (i.e. irradiance, insolation or irradiation)

depending on the context.

It is shown in fig. 2.4d that kt is dependent on airmass in clear skies. There are several

ways to attempt to reduce or eliminate airmass dependence.

Normalised clearness index

As kt increases with increasing solar elevation angle, it is not possible to tell from a moder-

ate value of clearness index alone whether an observation is from a cloudless atmosphere

at low solar elevation angle, or a cloudy or turbid atmosphere at high solar elevation angle.

One solution is to use an airmass-scaled kt , denoted k′t . This can be done by normalising

kt to a range based on the likely maximum value for a particular solar elevation based on

observations (Olseth & Skartveit, 1987), or to eliminate air mass dependency by normal-

ising to AM1 conditions as proposed by Perez et al. (1990a) such that

k′t =
kt

1.031exp(−1.4/[0.9+9.4ma])+0.1
. (2.14)

Unless otherwise stated explicitly, in this thesis k′t will refer to the Perez et al. (1990a)

normalisation of eq. (2.14).

Clear-sky index

Another normalisation that is used extensively in chapter 4 is the “clear-sky” index kc,

which relates the surface-received radiation to the theoretical amount expected under a

cloudless sky:

kc =
G

Gcs
. (2.15)

The clear-sky index is designed to be airmass independent, and measures the transmis-

sivity of the atmosphere due to clouds alone. It requires a theoretical way of calculating

the clear-sky radiation, which can be done using the Linke Turbidity formulation from

the global maps provided by Remund et al. (2003) or from radiative transfer simulations.

The main differences between kt , k′t and kc are described in table 2.2.
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Relationship Describes Air-mass
dependent

Clearness index kt All atmospheric extinction Yes

Normalised clearness
index k′t

All atmospheric extinction normalised
to AM1 or range of possible values

Somewhat

Clear-sky index kc Extinction due to clouds only No for cloudless
sky; somewhat
for clouds

Table 2.2: Summary of the differences between atmospheric transmission indices. In theory k′t and kc
should be airmass independent, but due to errors at low elevation angles this is not quite the case for k′t . kc
is airmass independent for clear skies, but since the transmission path lengths through clouds increase at
lower solar elevations there is still an airmass dependency. The implications for kc are discussed later in
this chapter.

2.2 The radiative transfer equation

This thesis uses radiative transfer simulations in chapters 4 to 6 and so a review of the

theory is provided in this section. Radiative transfer simulations provide a method to

calculate solar radiation given a particular atmospheric state. For example, the spectra in

fig. 2.3 were produced from radiative transfer models.

Much of the theory of radiative transfer was developed by Chandrasekhar (1960). The

most important and relevant parts of the theory to this thesis are covered in this section as

the full background and derivations are fairly involved. A complete and comprehensive

modern reference is provided by Thomas & Stamnes (2002).

The equation of radiative transfer in the shortwave, including scattering but neglecting

thermal emission, is

1
k

dI
ds

=−I +
ω

4π

∫ 2π

0

∫
π

0
p(θ ,φ ,θ ′,φ ′)I(θ ′,φ ′)sinθ

′ dθ
′ dφ
′. (2.16)

The various terms and notation in eq. (2.16) require definition and justification. The

physical description of eq. (2.16) is that as a beam of radiation with intensity I [W m−2

sr−1, a radiance quantity], travels through an optically active medium, it may be scattered

or absorbed by species in the medium at a rate proportional to the original intensity, plus,

it may gain or lose any scattered radiation scattered into or out of the direction of interest.

The extinction coefficient k, which has units [m−1], determines the rate of attenuation of

the radiation.

The extinction coefficient is related to the dimensionless path optical depth τs for a ray
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2.2. The radiative transfer equation

travelling a distance s by ∫ s

0
k(s′)ds′ = τs. (2.17)

The components of the scattering term are the single-scattering albedo ω and phase func-

tion p(θ ,φ ,θ ′,φ ′). The phase function describes the probability density of scattered light

on collision with a particle for a ray coming from the direction (θ ,φ) into the direction

(θ ′,φ ′). As the double integral is over the surface area of a sphere representing all possible

angles (θ ′,φ ′), the sinθ ′ term is necessary to perform the integration in a spherical coor-

dinate system and 1/4π , the reciprocal of the surface area of a sphere, is a normalising

constant. The single-scattering albedo ω represents the probability that a photon is scat-

tered rather than absorbed. If absorbed, it is lost from the beam, and does not participate

in the scattered radiance quantity. For clouds, typically ω > 0.99 in solar wavelengths

(Hu & Stamnes, 1993) whereas for aerosols ω ranges from approximately 0.5–0.9 (Lacis

& Mishchenko, 1995).

2.2.1 Direct radiation from a radiative transfer perspective

For solar energy radiative transfer modelling, it makes sense to split out the direct and dif-

fuse contributions to the radiation such that I = IB + ID. For the direct case, the scattering

term is zero. Therefore solving eq. (2.16) for the direct beam gives

IB = I0 exp(−τs) (2.18)

for some incident beam intensity I0. This is the Beer-Lambert law. In plane-parallel

geometry, the optical depth is typically referred to with respect to the vertical direction,

such that τ = τs cosθz. If τ describes the vertical extinction of the whole atmosphere and

the intensity I0 is equal to the solar intensity G0, then the beam irradiance is

GB = G0 exp(−maτ). (2.19)

By determining empirical relationships for τ as a function of Linke turbidity and Rayleigh

scattering efficiency, this formulation is used to calculate clear-sky beam irradiance in

eq. (2.11). The diffuse component, which is more difficult to solve, is recovered from

subtracting out the contribution from the direct beam in eq. (2.16).

2.2.2 Phase function and its relationship to diffuse radiation

It is typically assumed that the scattering phase function is azimuthally symmetric. Then,

the phase function can be reduced from a function of two angles to a function of one angle
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Figure 2.5: Schematic of particle scattering, where the particle is at the origin.

by the cosine law of spherical geometry:

cosΘ = cosθ cosθ
′+ sinθ sinθ

′ cos(φ −φ
′) (2.20)

A schematic diagram is shown in fig. 2.5.

Radiation is forward-scattered if cosΘ > 0 and back-scattered if cosΘ < 0. The phase

function satisfies the normalisation property of a probability distribution, such that

1
4π

∫ 2π

0

∫
π

0
p(cosΘ)sinθ dθ dφ = 1. (2.21)

The moments of the phase function are introduced as follows. The jth moment of the

scattering phase function χ j is derived as a consequence of the jth Legendre polynomial

Pj such that

χ j =
1
2

∫ 1

−1
Pj(µ)p(µ)dµ. (2.22)

The substitution µ = cosΘ has been made in eq. (2.22) (this highlights a common con-

vention in radiative transfer literature). The first two Legendre polynomials are P0(x) = 1

and P1(x) = x with higher polynomials defined by the recurrence relation

( j+1)Pj+1(x) = (2 j+1)xPj(x)− jPj1(x). (2.23)

The first moment of the phase function p is the mean direction of scattering, more com-

monly known as the asymmetry parameter g, which is

g = χ1 =
1
2

∫ 1

−1
µ p(µ)dµ. (2.24)
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g is an important value as it determines the proportion of radiation scattered into the

forward hemisphere; g= 1 if all radiation is forward-scattered, g= 0 if forward-scattering

equals backscattering, and g =−1 where all radiation is scattered backwards. Therefore,

the value of g can have a large influence on the amount of scattered light that reaches the

earth from the sun. For clouds, g is often very close to 1; for aerosols, values ranging

from 0.6–0.9 are common depending on the size and composition of the aerosol.

Higher moments of the phase function are useful in the numerical approximations of the

radiative transfer equation, as described further on in this chapter. Phase functions that

are used at various points in this thesis are introduced below.

Rayleigh scattering

For molecules that are much smaller than the incident wavelength, the Rayleigh scattering

phase function describes the distribution of scattered radiation such that

pR(cosΘ) =
3
4
(1+ cos2

Θ). (2.25)

The Rayleigh scattering phase function is appropriate for gas molecules in the shortwave

part of the spectrum. It can be shown that g = 0 by application of eq. (2.24), hence the

Rayleigh phase function scatters photons forwards or backwards with equal probability.

Mie scattering

For larger particles such as cloud droplets and aerosols, the wavelength of light is compa-

rable or smaller to the size of the particle and the Rayleigh scattering model is no longer

appropriate. Scattering for these larger particles is described by Mie theory and relies

on the complex refractive indices of the particles. For spherical particles, the method is

well-defined but not straightforward.

Because a simple representation like eq. (2.25) does not usually present itself, the phase

function must be expanded by its moments. If g is close to 1, as is often the case in clouds,

the phase function converges very slowly in its moment expansion and hundreds of terms

can be required to calculate an accurate phase function. This can make Mie scattering

computationally too intense for multiple calculations. Additionally, for ice clouds which

are made of particles that are not spherical, Mie theory is in general not appropriate.

Therefore, some simpler asymmetric (g 6= 0) phase functions for modelling aerosols and

clouds can be used, for example the Henyey-Greenstein and double Henyey-Greenstein

described below.
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Henyey-Greenstein (HG) phase function

The Henyey-Greenstein (HG) phase function was originally devised for astrophysical use,

but has found popularity in atmospheric radiative transfer. The HG phase function is

pHG(cosΘ) =
1−g2

(1+g2−2gcosΘ)3/2 . (2.26)

It is a mathematical convenience that is not based in physical reality. However, it pos-

sesses a number of desirable properties. Firstly, it can model the strong forward-scattering

peak apparent in many real scattering processes such as in aerosol and liquid water cloud

phase functions. Secondly, the entire phase function is parameterised by powers of g

such that χ j = g j, which is a very convenient computational advantage. Thirdly, the

forward/isotropic/backward scattering when g = 1, g = 0 and g = −1 is recovered as

expected.

Double Henyey-Greenstein (DHG) phase function

The last property above can be exploited to better model the backscattering peak present

in some ice cloud phase functions. A linear combination of two HG phase functions

can be combined into a double Henyey-Greenstein (DHG) phase function such that (Key

et al., 2002)

pDHG(cosΘ) = f pHG(g1,cosΘ)+(1− f )pHG(g2,cosΘ) (2.27)

where f lies between 0 and 1. Usually, g1 is positive and g2 is negative.

2.2.3 Cloud parameterisations

Liquid clouds

Liquid water clouds are observed to contain a distribution of water droplet sizes. Common

distributions used to describe these include the gamma, generalised gamma and lognormal

distributions (Hu & Stamnes, 1993; Rossow et al., 1996). Calculating the optical proper-

ties for each droplet size in a distribution is a laborious task. Fortunately, the shape of the

distribution can be described adequately with a single parameter, the effective radius reff,

which describes the ratio of the distribution of droplet volumes to surface areas:

reff =

∫
∞

0
n(r)r3dr∫

∞

0
n(r)r2dr

. (2.28)
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where r represents actual radii and n(r) is the number of cloud droplets of radius r present.

Then, at visible wavelengths, the liquid cloud optical depth τl is approximately

τl =
3pl

2ρlreff,l
(2.29)

where pl is the column-integrated cloud water path [kg m−2], ρl is the density of water

of 1000 kg m−3 and reff,l is in µm. An alternative definition is to specify the liquid cloud

water content Cl , which describes the amount of cloud water in a given volume [kg m−3],

in which case pl =Clhc where hc is cloud geometric height.

By assuming an effective radius of 10 µm (10−5 m), an effective rule-of-thumb for deter-

mining the optical depth from cloud water path is (Stephens, 1976)

τl = 150pl = 0.15Clhc. (2.30)

The International Satellite Cloud Climatology Project (ISCCP) use a slightly different

definition owing to a more precise calculation of the Mie extinction efficiency (the factor

of 3 in the numerator of eq. (2.29) is replaced by 3.1785) at 600 nm incident wavelength

(Rossow et al., 1996), which is

τl = 158.925pl. (2.31)

Hu & Stamnes (1993) provided a convenient approximation to the full Mie solution for

water clouds by fitting curves of the form

τl/pl = a1rb1
eff + c1 (2.32)

1−ω = a2rb2
eff + c2 (2.33)

g = a3rb3
eff + c3 (2.34)

where a, b and c are functions of wavelength.

Ice clouds

Ice clouds pose a particular complexity as ice crystals form in a variety of habits (shapes),

on which the scattering phase function is strongly dependent. Additional morphological

features such as surface roughness and trapped air bubbles also affect the phase function

(Xie et al., 2006, 2012). In order to correctly model ice cloud scattering a full phase

matrix scattering code should be used (e.g. Baum et al. (2014)), however the number

of Legendre coefficients that need to be calculated for each scattering phase function

make its use computationally prohibitive for multiple calculations. The situation is further

complicated by the fact there is no unique choice of effective radius for ice particles as
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they are not generally symmetric. Following Key et al. (2002), the effective radius for ice

clouds can be defined as

reff,i =
3
∫

n(Dmax)V (Dmax)dDmax

4
∫

n(Dmax)A(Dmax)dDmax

(2.35)

where Dmax is the length of the maximum diameter of an ice particle and V and A are

projected volumes and areas of the ice particle assuming that the equivalent volume and

area of a sphere is used. This is the convention used in Key’s parameterisation for ice

clouds which has been used in chapter 5. The Key et al. (2002) formula provides τi, g and

ω as a function of reff and wavelength. Assuming an effective radius of 30 µm, at 600 nm

wavelength, the ice cloud optical depth can be represented in the same way as eq. (2.29)

with the density of ice as 525 kg m−3, so that (Rossow et al., 1996)

τi = 95.238pi. (2.36)

2.2.4 Plane parallel and pseudo-spherical geometry

For atmospheric radiative transfer modelling, the simplest assumption is that there is a

plane-parallel, vertically stratified atmosphere that does not vary in the horizontal direc-

tion. Then, the left-hand side of eq. (2.16) becomes

1
k

dI
ds

=
cosθ

k
dI
dz

(2.37)

where θ is polar angle, meaning that cosθ is the zenith angle of the incident ray. This

geometry is appropriate when the solar elevation angle is not too low. At low elevations,

the curvature of the atmosphere becomes important, as seen in the air mass calculation. In

this case, spherical geometry must be used. The left-hand side of eq. (2.16) in spherical

geometry is complex and involves angular derivatives (Thomas & Stamnes, 2002). It

can be simplified if the direct beam is treated separately from the diffuse radiation. The

problem is then reduced to the “spherical shell”, assuming no variation in the azimuth

direction, and then
dI
ds

= cosθ
∂ I
∂ r
− sinθ

r
∂ I
∂θ

. (2.38)

However, it has been shown by Dahlback & Stamnes (1991) that for zenith angles less

than 90◦ the second term in eq. (2.38) can be considered small and

dI
ds
≈ dI

dr
(2.39)
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where r is the radial coordinate that has been used in place of the height coordinate z.

This is the pseudo-spherical approximation (Mayer et al., 2012). The air mass correction

has to be applied to the direct beam in this case. For the whole atmosphere this can be

approximated by eq. (2.9). For an atmosphere that has varying optical properties in each

layer, the path length through each layer needs to be determined. This is given by the

Chapman function (Dahlback & Stamnes, 1991).

2.2.5 Relationship between irradiance and intensity

Radiative transfer computations provide a convenient way to calculate the solar radiation.

The direct beam is satisfied by eq. (2.19). If the direct beam is included in the total

radiation field, the intensity can be split into a downwelling and upwelling component by

choice of the integration limits:

G =
∫ 2π

0

∫
π

π/2
I(θ ,φ)sinθ cosθ dθ dφ (2.40)

and

GR =
∫ 2π

0

∫
π/2

0
I(θ ,φ)sinθ cosθ dθ dφ . (2.41)

G is the GHI and GR is the upwelling irradiance (in the shortwave, there is no source

from the earth itself, and all upwelling radiation is reflected from the ground). In radiative

transfer literature these irradiances are usually termed half-range fluxes, and are given the

notation F− and F+ respectively.

In chapter 5, the extension of this concept to non-horizontal planes is introduced.

2.2.6 Numerically solving the radiative transfer equation

As can be seen, the single scattering albedo ω , phase function p (or asymmetry parameter

g, if a simple phase function is assumed), and extinction coefficient k (or optical depth τ)

are all that is required to completely parameterise the optical characteristics of the atmo-

sphere. With the correct choice of geometry the equations can be formulated. However,

only in certain simple situations can eq. (2.16) be solved analytically and so for most real

problems a numerical method is required.

In this thesis, software containing a library of radiative transfer solvers, libRadtran (Mayer

& Kylling, 2005), is used to numerically solve eq. (2.16). The choice of solver used

depends on the accuracy, speed, and output requirements of the problem. The solvers

used are introduced in this section.

25



2. FUNDAMENTALS, METHODS AND CONCEPTS

Discrete ordinates method: DISORT

Again, the theory of solving the radiative transfer equation by this method is originally due

to Chandrasekhar (1960). The Discrete Ordinates Radiative Transfer solver (DISORT)

radiative transfer solver was originally a FORTRAN program written by Stamnes et al.

(1988) and updated by Stamnes et al. (2000). It is implemented in libRadtran in C.

Equation (2.16) is approximated by a system of ordinary differential equations. This is

performed by replacing the scattering term with a series based on the Legendre polyno-

mial expansion of the phase function (the detail of which is omitted in this overview).

Azimuthal co-dependence can be eliminated and what is left is a system of simultaneous

differential equations at various choices of zenith angle, of the form

cosθ j
dIm

dτ
=−Im(cosθ j)+Sm(cosθ j), j =±1,±2, . . .±N. (2.42)

2×N in eq. (2.42) is known as the number of streams, or discrete polar angles, at which

the intensity is evaluated. The subscript m relates to azimuthal dependency. S is a “source

function” that characterises scattering. Depending on the boundary conditions the coeffi-

cients Im and Sm may be azimuthally dependent, but they are not coupled. The solution

for each stream is calculated by linear algebra methods in DISORT.

If radiances I(θ ,φ) are required, the results can be interpolated from eq. (2.42) for any

arbitrary (θ ,φ) pair (Stamnes et al., 2000). If irradiance is required, then only one az-

imuthal component in eq. (2.42) needs to be calculated which represents the azimuthal

average. The integrals in eqs. (2.40) and (2.41) are then calculated numerically using

Gaussian quadrature.

DISORT can be implemented with or without a pseudo-spherical correction. The con-

vention in work presented in this thesis is that the pseudo-spherical correction is imple-

mented when the solar zenith angle θz > 75◦. Owing to slightly faster computations in

plane-parallel geometry, the Cartesian system has been used for solar zenith angles less

than this.

Two-stream DISORT: TWOSTR

A dedicated two-stream version of DISORT was created by Kylling et al. (1995) and has

been implemented in libRadtran. The two-stream approximation suggests that only one

angle is calculated in the upwards hemisphere and one angle in the downwards hemi-

sphere which relate to hemispherically averaged radiances. It is possible to calculate irra-

diances, but not radiances at arbitrary angles. By default TWOSTR has a pseudo-spherical

correction included. The obvious advantage of using fewer streams is the quicker com-
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putational time at the expense of accuracy. However, as radiative transfer calculations are

themselves simulations, the concept of “accuracy” is loosely defined and the two-stream

approximation can be sufficient for modelling horizontal irradiances.

Eddington approximation

The Eddington approximation is another type of two-stream solution to the radiative trans-

fer equation in plane-parallel geometry. The intensity is defined as a linear function of

polar angle such that I = I0 + I1 cosθ . For strongly forward-scattering phase functions,

the forward peak is modelled by a Dirac delta function. This is known as the δ -Eddington

approximation (Joseph et al., 1976). The Eddington approximation is suggested to be suit-

able for optically thick atmospheres where single scattering is near to 1 (King & Harsh-

varhan, 1986). Testing by the author has found that computational run time is almost

identical to TWOSTR.

The program RODENTS (Buras, 2011) is a δ -Eddington solver in libRadtran and has

been used in chapter 6.

2.2.7 The correlated-k method

To perform a complete calculation line-by-line over the whole solar spectrum for multiple

calculations, as is done to generate the spectra in fig. 2.3, is often infeasible in terms of

computational time. Therefore, the correlated-k method (Kato et al., 1999) is used to

divide the solar spectrum into 32 wavelength bands with similar atmospheric absorption

properties. The broadband irradiance is then obtained as the sum of the 32 wavelength

bands. The comparison between the Kato et al. (1999) correlated-k spectrum and that

produced by an approximate line-by-line solver for AM1 is shown in fig. 2.6. As can be

seen there is some smoothing out of the spectrum by implementing this approximation.

2.3 Data sources

In later chapters a variety of data sources are used for model inputs and also for validation

(table 2.3). These are introduced in more detail in this section.

2.3.1 Meteorological observations

BSRN

The Baseline Surface Radiation Network (BSRN) provides minutely measurements of

horizontal irradiance from a number of sites globally. Data is provided by individual
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Figure 2.6: Correlated-k spectrum for GHI at AM1 plotted with approximate line-by-line spectrum

Dataset Description Chapters

BSRN High-quality GHI measurements 3, 5
MIDAS High-quality GHI measurements (UK) 4, 5

Cloud fraction 4
ECMWF Solar radiation 3

Atmospheric state 4
MODIS Atmospheric state, clouds, albedo 5
GLOMAP Aerosol properties 4, 5
IGBP Albedo 4–6
HadGEM2-ES Atmospheric state, clouds, aerosol 6
HadGEM2-CCS Atmospheric state, clouds, aerosol 7

Table 2.3: Datasets used in this thesis

national meteorological offices and is collected by the BSRN, available from http://

bsrn.awi.de. Solar irradiance at BSRN sites is measured with a Kipp & Zonen CMP21

or CMP22 pyranometer with the exception of Tamanrasset which uses the Eppley PSP, all

of which are World Meteorological Organisation (WMO) High Quality certified.

The BSRN data contains instances of missing or suspicious records. Data gaps range

from one minute to several days. In this thesis, a quality control (QC) procedure was

applied to the BSRN data to fill in missing or suspect data following the M7 method

recommended by Roesch et al. (2011). The M7 method calculates monthly 15-minute

means from data where at least 3 minutes per 15-minute period exist and are within the

“physically possible” limit for GHI of 1.5G0 cos1.2 θz + 100 W m−2 where G0 is as in

eq. (2.1). The monthly mean is only valid if all 96 15-minute bins contain valid values.
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Code Station name Country Lat. Lon. Alt. (m)
LAU Lauder New Zealand 45.045◦S 169.689◦E 350
SMS São Martinho Brazil 29.443◦S 53.823◦W 489
GOB Gobabeb Namibia 23.561◦S 15.042◦E 407
BRB Brasilia Brazil 15.601◦S 47.713◦W 1023
DAR Darwin Australia 12.420◦S 130.891◦E 350
PTR Petrolina Brazil 9.068◦S 40.319◦W 387
TAM Tamanrasset Algeria 22.780◦N 5.510◦E 1366
MNM Minamitorishima Japan 24.288◦N 153.983◦E 7
ISH Ishigakijima Japan 24.337◦N 124.163◦E 6
IZA Izaña Tenerife 28.309◦N 16.499◦W 2373
FUA Fukuoka Japan 33.582◦N 130.375◦E 3
TAT Tateno Japan 36.050◦N 140.133◦E 25
CLH Chesapeake Light USA 36.905◦N 75.713◦W 37
BOU Boulder USA 40.050◦N 105.007◦W 1577
SAP Sapporo Japan 43.060◦N 141.329◦E 17
CAR Carpentras France 44.083◦N 5.059◦E 100
SON Sonnblick Austria 47.054◦N 12.958◦E 3109
PAL Palaiseau France 48.713◦N 2.208◦E 156
CAB Cabauw Netherlands 51.971◦N 4.927◦E 0
TOR Toravere Estonia 58.254◦N 26.462◦E 70
NYA Ny-Ålesund Svalbard 78.925◦N 11.930◦E 11
ALE Alert Canada 82.490◦N 62.420◦W 127

Table 2.4: List of BSRN stations used in this thesis

Since inception in 1992, there have been 59 BSRN sites globally. Of these, 22 provide

data for every month of 2013, and these stations have been used. Stations on the Antarctic

continent have not been included. These stations are given in table 2.4 and are used to

check the validity of the insolation data in chapter 3 and to validate the tilt model in

chapter 5.

MIDAS

MIDAS provides pyranometer measurements of hourly GHI for approximately 90 sites

in the UK. The MIDAS data has passed a QC procedure run by the UK Met Office. 64

of these sites also report cloud fraction. The sites that report both irradiation and cloud

fraction are used to create the clear-sky statistics in chapter 4. In chapter 5, five MIDAS

sites with good data coverage for 2013 are used to validate the tilted irradiance model.

The convention in this thesis is to use the three-letter BSRN station codes in upper case

for BSRN stations and an upper- and lower-case abbreviation or the source ID number for

MIDAS stations.
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2.3.2 Meteorological reanalyses

High-quality irradiance data from outside the UK is generally only available from BSRN

or from research institutes. Even if observations from overseas meteorological offices

were generally available, large areas of the world would be very sparsely covered by

weather stations. For example, there were no BSRN stations with valid irradiance data in

Asia outside of Japan for the year of 2013.

The ECMWF meteorological reanalysis data provides even global spatial coverage from a

combination of observations, numerical weather models and forecasts (Dee et al., 2011b).

This modelled data is available every 3 hours from 1979 onwards from the ERA-Interim

dataset on a horizontal grid of about 0.7◦×0.7◦. For the studies introduced in later chap-

ters a resolution of 1.5◦×1.5◦ is used. In addition to solar radiation estimates, ECMWF

provides several datasets relating to the atmospheric state on 60 vertical levels. Such

examples of the multi-level data are cloud fraction, cloud liquid water content, temper-

ature, water vapour, and ozone. The ECMWF radiation estimates are derived from a

dedicated ECMWF radiative transfer model (Morcrette et al., 2008). Data is available

from http://www.ecmwf.int.

As ERA-Interim data is reanalysed from observations, uncertainty can be present in both

the observations that feed the model (in terms of data availability, measurement tech-

niques and instrumental uncertainty) and the model physics and parameterisations that

produce the reanalysed climate state from the inputs (Thorne & Vose, 2010). It is sug-

gested that the errors in clear-sky radiation as predicted in the ECMWF (and other) ra-

diative transfer models are small, on the order of 1 W m−2 for errors in the absorption

properties of atmospheric species (Pincus, 2011) and another 1 W m−2 for the parameter-

isation of line-by-line absorption and scattering by a faster process for use in reanalysis

and climate models, such as the correlated-k method (section 2.2.7, Pincus et al. (2015)).

Notwithstanding the fact that these errors may be of opposite sign and partially cancel,

the maximum expected error from clear-sky radiation is a little over 1% based on the

global average downwelling insolation of 184 W m−2 (Trenberth et al., 2009). Likewise,

surface temperatures from the ERA-interim dataset are found to closely match those of

observation (Dee et al., 2011a). Near-surface wind speed may be subject to larger errors

due to the imposition of a single value for a large area, and the changes in orography and

surface roughness over the area of a grid cell in addition to sub-timestep variations and

nonlinearities in wind speed, however the impact of these errors in the present work is

small as they only affect the convective heat transfer away from a solar PV system.

The largest and most important uncertainties for the purposes of this thesis in the ECMWF

data are due to the radiative effects of clouds, and how they attenuate the incoming so-
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Figure 2.7: Monthly mean irradiances for 21 BSRN sites and the ECMWF reanalysis data. BSRN data is
in blue and ECMWF is in red. The year of comparison for this figure is 2013. Table 2.4 contains station
names and locations.

lar radiation. Cloud fraction predicted by the ERA-Interim reanalysis has been shown to

be overestimated compared to observation for Arctic BSRN sites, however the ECMWF

ERA-interim reanalysis is one of the better performing models for global radiation, esti-

mating the long-term annual average within 2.5% of the observed value at these sites (Zib

et al., 2012).

To extend the Zib et al. (2012) analysis to all BSRN stations used in this thesis, the

monthly mean irradiance from ECMWF is compared to the monthly mean ground mea-

surements from BSRN with the Roesch et al. (2011) QC procedure applied. For the 21

sites that contain data for 2013, good agreement is seen between the reanalysis data and

the ground measurements (fig. 2.7). The only serious disagreements are seen annually at

Izaña (IZA) and for certain months at Sonnblick (SON) and São Martinho (SMS). IZA

and SON are both high-latitude locations that other models also replicate poorly and the

implications of this are discussed further in chapter 5. In general the ECMWF radiation

data is a satisfactory dataset to use for modelling simulations.
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2.3.3 Satellite observations

For the work in chapter 5, observations of the atmosphere, clouds and surface albedo were

provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on

board the Terra and Aqua satellites. The Terra satellite overpasses the equator at approx-

imately 10:30 local solar time daily and the Aqua satellite overpasses at approximately

13:30 daily. Therefore, synoptic diurnal differences between the morning and afternoon

can be partially captured. Each satellite has 36 spectral bands and a nadir resolution of

250 m, 500 m or 1000 m depending on the band.

There are different stages of MODIS data processing (Hubanks et al., 2008). Level 1

is the raw radiances that are returned from the satellites which are calibrated and then

geolocated. From the Level 1 data, algorithms are used to infer the aerosol, water vapour,

ozone and cloud properties on grids of 1 km, 5 km or 10 km at nadir. This is Level 2

data. Level 1 and 2 data relate to the satellite overpasses (“swaths”). A further level of

processing aggregates Level 2 observations into a regular grid, which is Level 3. These

Level 3 inputs are available as daily, 8-day, 16-day and monthly averages on grid sizes of

1◦×1◦ for atmosphere products and 0.05◦×0.05◦ for albedo products. It is this 1◦×1◦

that has been used in chapter 5. All data is freely available from the MODIS portal at

http://modis-atmos.gsfc.nasa.gov/

Pre-launch experiments showed that MODIS water vapour column depth retrievals are

expected to be accurate within 13%, which can be improved to 7% with the usage of ad-

ditional spectral bands used to infer clouds, haze and surface temperature (Kaufman &

Gao, 1992). In operation, validations against ground-based and radiosonde datasets tend

to show better performance than this with typical agreement within 2–3% when bias-

corrected (Diedrich et al., 2015). Profiles of ozone column depth are similar to those

produced from the NASA/GSFC Total Ozone Mapping Spectrometer (TOMS) on board

the Earth Probe satellite, although individual retrievals can vary by up to 80% in polar

regions between the two satellites (Seemann et al., 2003). For TOMS, the net maximum

uncertainty in measurements is not expected to exceed 5% at moderate solar zenith an-

gles, increasing up to 8% at low sun (McPeters et al., 1998). The long-term mean bias

measured against ground stations for the TOMS instrument is 0.5%. Surface albedo from

the MODIS satellite products is found to be within 0.05 (absolute units) of the measured

surface radiation values (Liu et al., 2009).

For clouds there are several MODIS products to consider, including the cloud fraction,

cloud phase (whether liquid or ice), cloud height and cloud water path (the amount of

cloud water in a vertical atmospheric column, in kg m−2 if all condensed). Instantaneous

retrievals of cloud water path and cloud droplet effective radius can differ from ground-
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based observations by radar and lidar, with mean biases of 17.2% and 7.8% respectively

for the Aqua satellite and 0.3% and −3.6% for Terra (Dong et al., 2008). The standard

deviation of observed differences between MODIS and ground-based observations can

be large, between 23% and 33% for these variables (Dong et al., 2008). Uncertainties in

the retrieved ground measurements to the real variables, estimated at 10% for both cloud

water path and cloud particle effective radius (Dong et al., 2008), can mean that good

satellite agreement with ground instruments may still not be representative. The total

uncertainty is estimated to be 15% for instantaneous measurements for particle effective

radius from MODIS (Platnick & Valero, 1995; Minnis et al., 1998) and 17% for cloud

water path (Dong et al., 2008). Cloud top height retrievals from MODIS are expected to

be accurate to within 140 m (Minnis et al., 2003).

2.3.4 Global aerosol model

Aerosols are often the largest source of uncertainty for estimating clear sky radiation as

they are highly variable in time and space, difficult to measure, and sparsely recorded

(Nou et al., 2015).

Aerosol data is an important input into radiative transfer simulations, especially in cloud-

less skies. The Aerosol Robotic Network (AERONET), operated by NASA, provides

measurements of clear-sky aerosol optical depth and radiative properties at eight different

wavelength bands for around 900 stations globally. For global modelling, there are two

drawbacks of using the AERONET data. Firstly, the measurements can only be made in

cloudless skies, and for some parts of the world there are several months without suit-

able measurement conditions. Secondly, even 900 point sites globally provides a fairly

sparse coverage of aerosol data for some regions. And thirdly, because aerosols are so

spatially dependent, conditions that are a few kilometres from a measurement site can be

very different.

Therefore, when an aerosol input is required for a global model in this thesis, a run of the

Global Model of Aerosol Processes (GLOMAP) model is provided to obtain a monthly

aerosol climatology (Spracklen et al., 2005; Scott et al., 2014). GLOMAP is produced at

a resolution of 2.8◦× 2.8◦, which specifies ω , the asymmetry parameter g, and aerosol

optical depth τa for 6 wavelength bands in the shortwave spectrum on 31 pressure levels.

The species included are sulphate, sea-salt, black carbon and particulate organic matter

aerosols in four size modes. Aerosol scattering is reasonably well-described by a Henyey-

Greenstein phase function, and since g is the only moment available from the GLOMAP

runs, the HG phase function has been assumed.

The performance of GLOMAP has been validated against observations from AERONET
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Figure 2.8: Map of IGBP surface types

sites globally. GLOMAP aerosol optical depth at 440 nm wavelength shows high cor-

relation with the seasonal cycle and low root-mean-square difference (RMSD) across

the year compared to AERONET for Europe and North America (Bellouin et al., 2013).

The performance of GLOMAP in replicating observations is weaker in Asia, Africa and

Latin America, however, improvements over the aerosol modelling scheme used in the

HadGEM2 climate model family, the Coupled Large-scale Aerosol Simulator for Studies

in Climate (CLASSIC), are seen (Bellouin et al., 2013). Global aerosol optical depths are

around 30% lower in GLOMAP than in the ECMWF MACC aerosol reanalysis scheme

(Bellouin et al., 2013); however, it is seen in chapter 4 that using the GLOMAP dataset

for the UK alongside the ECMWF data for the atmospheric state results in very good

estimates of solar radiation in truly clear (cloud-free) skies.

2.3.5 IGBP land surface dataset

Where surface albedo data from satellites is not available or not applicable, the

International Geosphere-Biosphere Programme (IGBP) library (Belward & Loveland,

1996) classifies land surface as one of 18 types at a resolution of 1
6
◦× 1

6
◦

(fig. 2.8). The

IGBP dataset was originally produced from satellite observations and provides spectral

albedo for each type. An additional 2 surface types for temporary snow and ice covered

surfaces are available but not provided in the global map. The IGBP surface type map is

included in libRadtran.

2.3.6 Climate model data

Output data from the Met Office Hadley Centre family of climate models is used in

chapters 6 and 7. Two models are used in this thesis: HadGEM2-ES and HadGEM2-
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CCS. Both models are towards the higher end of model sophistication, including at-

mospheric/ocean interaction, aerosols, sea-ice, the carbon cycle, and in the case of

HadGEM2-ES, tropospheric chemistry (Jones et al., 2011). Different future climate sce-

narios are used in each study. A brief review of these follows in the next section.

2.4 Future climate scenarios
In order to make predictions about the climate of the future, an idea of possible pathways

society could develop in is required. The Representative Concentration Pathways (RCPs)

are a set of four climate change scenarios to the year 2100 which were used for the first

time in the 2013 IPCC Fifth Assessment Report (AR5) (table 2.5). They make up one

of the key experiments in the Coupled Model Intercomparison Project (CMIP) phase 5

which assesses the responses to each scenario between different climate models. In re-

ports previous to AR5, the Special Report on Emissions Scenarios (SRES) were used

(table 2.6). The RCPs are named by their radiative forcing quantities in the year 2100,

where radiative forcing describes the energy imbalance of the earth climate system. For-

mally, radiative forcing is defined as (Ramaswamy et al., 2001)

“the change in net (down minus up) irradiance (solar plus longwave; in W

m−2) at the tropopause after allowing for stratospheric temperatures to read-

just to radiative equilibrium, but with surface and tropospheric temperatures

and state held fixed at the unperturbed values.”

The RCPs were chosen to reflect the full range of plausible future development scenarios

available in the literature (Moss et al., 2010). An even number was preferred to avoid the

central scenario being seen as the “best estimate”, and the word “representative” indicates

that the final scenario selected for CMIP5 is actually only one member of a set of similar

scenarios available in the published literature (van Vuuren et al., 2011). The RCPs also

include supplementary extended concentration pathways (ECPs) which continue these

scenarios to the year 2300. RCPs specify the magnitude and trajectory of radiative forcing

between the present day and 2100, by specifying a time-series of concentrations of the

long-lived greenhouse gases (CO2, CH4, N2O, PFCs, CFCs and SF6), aerosols, and ozone

precursors (van Vuuren et al., 2011).

The two pathways of most importance in this thesis are RCP8.5 and RCP4.5. RCP8.5, de-

veloped by Riahi et al. (2011) is baseline scenario that does not implement any mitigation

policies, and is at around the 90th percentile of non-mitigation scenarios in the literature,

although higher exist. Although no control is placed on future greenhouse gas emissions,

air pollution reductions due to the strengthening of legislation do occur, particularly in
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Name Radiative forcing CO2 concentration
(CO2-eq)

Median temperature
rise (1750–2100) ◦C

RCP8.5 > 8.5 W m−2 in 2100 > 1370ppm in 2100 4.9
RCP6.0 ∼ 6.0 W m−2 in 2100 ∼ 850ppm in 2100 3.0
RCP4.5 ∼ 4.5 W m−2 in 2100 ∼ 650ppm in 2100 2.4
RCP2.6 ∼ 3.0 W m−2 before

2100, declining to
2.6 W m−2 in 2100

Peak at ∼ 490ppm
before 2100 then
decline

1.5

Table 2.5: The RCPs used for CMIP5 experiments (Moss et al., 2010; Rogelj et al., 2012).

urban areas in the developing world. Population growth is steady, reaching 12 billion in

2100. Economic growth, energy intensity and technology improvements are slow, leading

to a largely coal-based energy system in 2100. RCP8.5 is based on the A2 SRES scenario,

but is more similar in terms of overall 2100 temperature rise to A1FI (Rogelj et al., 2012)

table 2.6. It is used to assess maximum likely potential changes in solar energy output

towards the end of the 21st Century, in chapter 6.

RCP4.5 stabilises around 2150 without overshooting, and implies a significant climate

change mitigation strategy (Thomson et al., 2011). Annual CO2 emissions peak in 2050

and decline until 2080 where they remain constant until 2100. Global population peaks

at 9 billion near 2070 before declining slightly towards 2100. RCP4.5 was selected as the

main RCP for analysis in the Geoengineering Model Intercomparison Project (GeoMIP)

(Kravitz et al., 2011) and has therefore been used for analysis of geoengineering effects

in chapter 7.

The SRES scenarios explored a detailed storyline behind the economic, social and tech-

nical development that underpinned emissions levels in the 21st Century, although even

under the lowest emissions pathway, no efforts to mitigate climate change are assumed

(van Vuuren et al., 2011). The SRES scenarios are summarised briefly in table 2.6.

The RCPs are not generally compatible with the SRES pathways: RCPs 8.5, 6.0 and

4.5 have similar median and confidence interval temperature increases to SRES pathways

A1FI, B2 and B1 respectively in 2100, but differing trajectories (Rogelj et al., 2012).

There is no equivalent SRES pathway to RCP2.6, which requires net CO2 emissions of

zero shortly after 2070 and negative emissions (i.e. capture and sequestration of atmo-

spheric carbon) thereafter.

2.5 Photovoltaics

In this section, concepts and formulae relating to solar energy are defined.
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Pathway Description Median temperature
rise (1750–2100) ◦C

A1FI A world in which global emissions continue to
rise due to a development path based on fossil
fuels. CO2 emissions are 3 times the 2000 level
in 2100. The global economy grows rapidly,
with decreased global inequality, and global
population reaches a maximum in the middle
of the century with a slow decline thereafter.

5.0

A1B Population and economic outlook the same as
for A1FI. A balance of fossil and renewable
technologies are used to facilitate growth.
Hence, global emissions are lower than A1FI,
about 1.5 times the 2000 level in 2100.

3.5

A1T Population and economic outlook as for A1FI
and A1B. Development is driven by renewable
technologies. Global emissions peak around
2040, come back to the 2000 level by 2080 and
continue to decline out to 2100.

3.0

A2 Population continues to rise throughout the
century and economic growth is slow.
Technological development is slower than for
A1 scenarios. CO2 emissions in 2100 are at a
similar level to the A1FI scenario.

4.2

B1 The population scenario is the same as in the
A1 scenarios with a convergent economy that
is less material-intensive than A1, with global
initiatives in equality and sustainability but
without additional climate mitigation
strategies. CO2 emissions follow a similar
trajectory to A1T.

2.5

B2 Environmental and social sustainability is
focused on a regional rather than global level.
Population continues to grow but at a slower
rate than A2. Economic growth continues at an
intermediate rate whilst technology develops
slowly. CO2 emissions are projected to be
about 1.5 times those of 2000 in this scenario.

3.0

Table 2.6: SRES scenarios that were used in the IPCC Fourth Assessment Report (Nakićenović et al., 2000).
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2.5.1 Standard Testing Conditions

Solar cells are usually characterised by their efficiency at standard testing condi-

tions (STC), which are conditions of 25◦C cell temperature and incident irradiance of

1000 W m−2 under a spectrum of AM 1.5. This is a quantity reported by manufactur-

ers for commercial modules and laboratories for research modules and cells. The solar

collector is assumed to be tilted towards the sun at an angle of 37◦ from the horizontal,

with the sun at a zenith angle of 48.2◦, which corresponds to AM 1.5. In the STC spec-

trum, the 37◦ tilt reduces the incidence angle between the solar beam and the module, and

ensures that the total irradiance integrates to 1000 W m−2. The atmospheric concentra-

tions of ozone, water vapour and mixed gases are provided by the United States Air Force

Geophysics Laboratory (AFGL) US standard atmosphere (Anderson et al., 1986). The

spectrum itself is calculated by the SMARTS2 model (Gueymard, 1995) which is in fact

a radiative transfer computation. It forms a standard recognised by the American Society

for Testing and Materials (ASTM) and is commonly known as the ASTM-G173 spectrum

(ASTM, 2003).

2.5.2 Electrical efficiency

The electrical efficiency of a solar cell with an area A is the ratio of electrical power output

P to incident plane-of-array irradiance GT (the T subscript stands for “tilted”):

η =
P/A
GT

. (2.43)

For multi-cell modules, the module efficiency takes into account gaps between cells in

the calculation of A that do not contribute to the overall power generation. Additionally,

the performance of a string of cells in series is limited by the poorest cell in the string.

Therefore module efficiencies tend to be lower than single cell efficiencies.

STC provides a very idealised set of conditions that are rarely experienced in reality

(Betts, 2004). The efficiency of the PV cell is a function of ambient temperature Ta and

irradiance (Evans, 1981) such that

η = ηref [1− c1 (Tc−25)+ c2 log10(GT )] . (2.44)

In Eq. (2.44), ηref is the STC efficiency, c1 is the decline in cell efficiency with respect

to an increase in in cell temperature and c2 is an adjustment in efficiency to account for

performance decline in low light conditions.
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2.5.3 Nominal operating cell temperature (NOCT)

If Tc in eq. (2.44) is unknown, it can be estimated from the Nominal Operating Cell

Temperature (NOCT) relationship (Lorenzo, 2003):

Tc = Ta +
TNOCT−20

800
GT . (2.45)

The NOCT conditions are an ambient temperature of 20◦C, irradiance of 800 W m−2, and

wind speed of 1 m s−1. Some module manufacturers provide values of TNOCT. If this is

unknown, conventionally TNOCT = 45◦C is used.

2.6 Computational methods
The majority of programming that appears in the thesis was conducted in Python. Python

is used as a scripting language to call runs in libRadtran, a computational language (to

perform some of the calculations including for tilted and spectral irradiance), and as an

analysis language (to plot figures and report results). Python was chosen because of its

wide scope, flexibility, and the fact that it is free and open-source. The key exception is

chapter 3 where the work was performed in Matlab and world maps plotted in IDL.
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Chapter 3

Passive cooling with phase change
materials

The first two chapters provided an introduction and context to the thesis. In section 2.5, it

was discussed how a rise in PV module operating temperature is correlated with a reduc-

tion in electrical efficiency. As only approximately 15–20% of the incident irradiance is

converted to electrical power by a crystalline silicon (c-Si) PV cell, much of the excess is

either reflected or is converted to heat. The decline in efficiency is typically 0.45% (rela-

tive) for every 1◦C rise in cell temperature for c-Si (Skoplaki & Palyvos, 2009). Therefore,

any mechanism which reduces the cell temperature, particularly at times of high irradi-

ance, will increase cell efficiency and PV energy output. This chapter describes a global

simulation to determine the increase in annual energy output attained by a PV system

with an integrated phase change material (PCM) layer, which is used as a mechanism to

passively cool solar modules.

A review of previous methods and models to describe passive cooling with PCMs is fol-

lowed by the particular solar cell scheme used in this chapter. The application to a global

setting using ECMWF climate reanalysis data shows that PCM cooling could enhance PV

power output by up to 6% in some regions. The economics of using PCMs for solar PV

energy improvement is discussed, and the last section summarises the chapter.

3.1 Background and literature review

PCMs in the context of this study are defined as a material that undergoes a phase transi-

tion from solid to liquid and vice versa. Starting from the solid state, when heat is applied

to a PCM, it acts as a sensible heat store until the temperature of the PCM reaches its

melting point Tmelt. At this temperature, further inputs of heat are used to melt the PCM

which becomes a latent heat store, and the temperature of the PCM changes very little.

When fully melted, the PCM reverts to being a sensible heat store in the liquid phase and

the temperature of the PCM starts to rise again on the application of additional heat. The
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exploitation of PCMs for solar cell cooling uses the high latent heat capacity of PCMs

in the melting process as a heat sink, absorbing heat that is transferred from a PV cell

while mitigating the rise of the cell temperature. In the solidifying process, this sequence

happens in reverse. While the PCM layer is changing from liquid to solid, the heat is

released and the solar cell is often warmer than the ambient conditions. Providing this

process occurs late enough in the day or at night where solar irradiance is low, a gain in

output power can be achieved by keeping the cell cooler than it would have otherwise

been without PCM during peak solar hours. In an ideal system the PCM should solidify

and return to a fully solid state by the next morning.

Alongside PCMs, cooling methods for PV cells include water cooling and air cooling.

Water-cooled systems require a pump to circulate cold water into the PV system which

adds additional capital and maintenance costs and burdens. This can be offset if the

heated water is then used domestically in a PV/thermal (PV/T) system (Teo et al., 2011).

For domestic roof installations, water cooling may be unsuitable due to the weight of

water required to deliver appropriate cooling (Krauter, 2004). In hot, dry climates where

solar energy has great potential but cell temperatures are highest, water is scarce. Water

cooling is unlikely to be used in utility-scale solar plants as there is little use for the warm

water produced.

For open-mount PV modules, there is no need to implement additional air cooling as

ambient air can flow on both the front and back of the modules. Utility-scale PV systems

are likely to be open-mounted. For building-mounted PV, the reverse side of the system

is close to the building surface and wind does not cool the reverse side readily, leading

to higher module temperatures (Skoplaki et al., 2008). For these systems, air cooling

may be built into the system design and can be either active (Dubey et al., 2009) or

passive (Brinkworth & Sandberg, 2006), the latter relying on the buoyancy of the heated

air behind the solar module to drive convection. This requires optimal choice of the duct

width to maximise convective cooling. Fins may be added to the back of a PV module

to increase the surface area available for air cooling. Passive air cooling may not be

especially effective due to low rates of heat removal and for the potential for dust to build

up inside the cooling duct (Huang et al., 2006), but is a low-cost and maintenance-free

solution. Active air cooling requires the use of DC fans (Dubey et al., 2009) and may

consume more power than is saved by the gain in photovoltaic efficiency.

PCM cooling is passive and has the potential to be more effective than air cooling. The pi-

oneering research group for the inclusion of PCM cooling of PV was that of M.J. Huang

and colleagues in Ireland. Huang et al. (2004) produced a 2D numerical model of the

heat transfer of a PCM enclosed within two aluminium sheets which was experimentally

validated. As desired, the temperature rise on the sun-facing side of the system was de-
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layed while the PCM was melting. A later study by the same group (Huang et al., 2006)

compared the temperature rise of two aluminium-PCM systems to a reference aluminium

plate with no PCM attached. Over the course of the 150-minute experiment at 750 W m−2

irradiance, the front aluminium temperature remained below the reference in both PCM

systems. It was estimated that efficiency from a PV with integrated PCM (PV/PCM) sys-

tem would be improved by 7.5% (relative) at peak solar hours due to the 17◦C difference

in aluminium plate temperatures. Two PCM regions containing different PCMs can be

combined inside a container to enhance thermal conductivity through the PCMs and reg-

ulate the PV cell temperature for longer (Huang, 2011). A PV/PCM panel tested outdoors

in Pakistan resulted in a PV module temperature that was 21.5◦C lower than a reference

at the peak time of the day (Hassan et al., 2015). Two different PCMs were used: a

capric-palmitic acid eutectic and a CaCl2.6H2O salt hydrate. Over the course of the day it

was calculated that PV energy output would be improved by 7.7% for the salt hydrate and

4.4% for the eutectic compared to the reference cell, estimated from the PV cell manufac-

turers’ data of a 0.5% K−1 decline in efficiency and the temperature difference between

the PV/PCM and reference cell. In the cooler climate of Ireland in mid-September, the

power output increase was estimated to be 1.8% with the salt hydrate and 1.0% with the

eutectic. No PV power data was reported for this experiment, but the open circuit volt-

age was higher for the PV/PCM panels during the peak solar hours which is indicative of

lower cell temperatures and higher maximum power.

Other research groups have also investigated PV/PCM systems. A 1D finite-difference

model of a PV/PCM module was produced and experimentally validated for an outdoor

location in Italy in summer (Ciulla et al., 2012). Malvi et al. (2011) simulated a PV/T

system with PCM and showed that the combination of water cooling with PCM increased

PV efficiency by 9%. Concentrating PV (CPV) cells are one area where PCM cooling

may be very beneficial due to the high cell temperatures experienced with CPV. During

an experiment in western India it was demonstrated that a PV/PCM system was kept at

22–25◦C below a reference PV system for 3 hours at a 1.75× concentration ratio (Maiti

et al., 2011). A simulation conducted 12 cities also showed encouraging results for a 2×
solar concentrator (Lillo Bravo et al., 2011).

This chapter evaluates the global potential for PCM-assisted cooling of PV cells by mod-

elling the increases in electrical output from a silicon solar cell using a numerical simula-

tion. The model parameters are introduced and discussed in section 3.2 and the numerical

model explained in section 3.3. The simulation is performed globally using climatologi-

cal reanalysis data, which is representative of typical meteorological conditions, for each

region. Global results are presented in section 3.5 along with more detailed analysis of

five sites of current and future interest for solar PV. The locations where PCM-assisted
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Figure 3.1: Energy balance diagram showing the energy fluxes into and out of the PV/PCM system. The
thick black lines represent conductive heat exchange. Subscripts are defined as follows: sw = shortwave, lw
= longwave, conv = convective, f = front, b = back. Pout is the electrical energy generated by the cell. The
dashed grey box encompasses the components of the PV/PCM system that are omitted from the reference
PV system. Numbers in brackets refer to the subscripts given to each layer in table 3.1 and eqs. (3.1)
to (3.6).

cooling is likely to lead to significant energy output increases are therefore identified. A

brief economic assessment is provided in section 3.6. Section 3.7 discusses the key results

from the chapter and provides a conclusion.

3.2 Simulated PV/PCM module
The model PV/PCM module consists of a string of solar cells layered on top of an alu-

minium box containing PCM (fig. 3.1). The heat transfer through a PV/PCM cell is mod-

elled using a one dimensional finite difference energy balance method with a one hour

timestep.

The energy balance scheme consists of the incoming solar energy less the heat lost to the

surroundings in the form of convection and radiation and energy extracted in the form of

electricity (fig. 3.1). Conductive heat exchange occurs between each component of the

PV/PCM cell.

3.2.1 PV cells

The PV module is based on that of Armstrong & Hurley (2010a) and has 6 separate layers

numbered 1–6 in fig. 3.1 and table 3.1. Given the small heat capacity of some of the
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layers, the glass and anti-reflective coating are treated as one combined thermal mass,

referred to hereafter as the glass layer, and the PV cell, ethylene vinyl acetate (EVA)

layer, aluminium rear contact and Tedlar backing are combined into another separate

thermal mass, referred to hereafter as the cell layer. The combining of small thermal

masses improves the numerical stability of the model by avoiding division by very small

numbers in the finite difference steps.

Subscript Layer ρ cp z k

1 Glass covering 3000 500 0.003 1.8
2 Anti-reflective coating 2400 691 1.0×10−7 32
3 PV cells 2330 677 2.25×10−4 148
4 EVA 960 2090 5.0×10−4 0.35
5 Aluminium (cell) 2700 900 1.0×10−5 237
6 Tedlar 1200 1250 0.0001 0.2

Table 3.1: Heat transfer parameters of the PV panel, from references within Armstrong & Hurley (2010a).
ρ: material density (kg m−3), cp: specific heat capacity [J kg−1 K−1], z: material thickness [m], k: thermal
conductivity [W m−1 K−1].

The total heat capacity [J K−1] of the glass layer is given by

Cglass = A
(
ρ1cp1z1 +ρ2cp2z2

)
(3.1)

and thermal conductance of the glass layer [W K−1] is given by

κglass =
A

z1/k1 + z2/k2
(3.2)

where A is the area of the cell. The heat capacity and thermal conductance of the PV cell

layer is similarly given by

Cc = A
(
ρ3cp3z3 +ρ4cp4z4 +ρ5cp5z5 +ρ6cp6z6

)
(3.3)

and

κc =
A

z3/k3 + z4/k4 + z5/k5 + z6/k6
. (3.4)

3.2.2 Aluminium casing

The PV cell described is attached to an aluminium box which sandwiches the PCM fol-

lowing the experimental methods of Huang et al. (2004, 2006). It was shown that a highly

conductive material for the PCM housing such as aluminium is more effective than an in-

sulating housing such as Perspex (Hassan et al., 2010). Heat losses through the sides of

the PCM box are assumed to be negligible compared to the front and back of the box
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based on a module size of A = 1 m2. 1 m2 is chosen as the module size as it is a unit area.

Typical commercial modules tend to be in the range of 1.5 m2 (Green et al., 2014), and

since the calculations are normalised to area, this is not too great an approximation.

Both top and bottom aluminium sheets have heat capacity Calu and thermal conductance

Galu given by

Calu = Aρalucp,aluzalu (3.5)

and

κalu =
Akalu

zalu
, (3.6)

with zalu = 5 mm and values of ρ , cp and k the same as for the back contact aluminium

given in Table table 3.1.

3.2.3 Phase change material

PCMs can either be isothermal or undergo a small phase change temperature range. Var-

ious materials have been exploited as PCMs, including salt hydrates, fatty acids, sugar

alcohols and paraffin waxes (Zalba et al., 2003; Kenisarin & Makhamov, 2007). Paraf-

fin waxes attain their highly tunable melting points due to the varying chain lengths of

their constituent hydrocarbons, and as such experience a phase change range (Heinz &

Streicher, 2006).

Ideally, a PCM should have a small thermal expansion coefficient, high thermal conduc-

tivity, high latent heat of fusion and a high specific heat capacity (Malvi et al., 2011).

The thermal expansion of the PCM is assumed to be small in this model (Lamberg et al.,

2004). PCMs available commercially tend to have low coefficients of thermal conduc-

tivity, which limits the rate of heat transfer (Fan & Khodadadi, 2011). However, thermal

conductivity can be improved in several ways. Examples of this include metal fins at-

tached to the PCM aluminium layer which increase the contact surface area between the

plate and PCM, inserting a metal mesh into the PCM, inserting high thermal conductiv-

ity particles into the PCM, micro-encapsulation of the PCM, or metal conductive strips

interspersed within the PCM (Maiti et al., 2011; Velraj et al., 1999). Enhancements in

thermal conductance by a factor of 10 to 20 over a plain PCM layer have been reported

using a graphite powder (Öttinger, 2004; Heinz & Streicher, 2006). In this simulation, a

heat transfer enhancement factor of 2 is used, following Malvi et al. (2011).

The PCM component is geometrically thick and has a low thermal conductance compared

to the PV and aluminium components. Therefore the PCM has been divided into 40 layers

to model the temperature gradient through the PCM. In liquid regions of the PCM, flow

is assumed to be laminar and heat transfer primarily occurs by conduction rather than
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Parameter Symbol Value

Specific heat capacity of PCM, solid cpcms 2900 J kg−1 K−1

Specific heat capacity of PCM, liquid cpcml 2100 J kg−1 K−1

Latent heat of PCM L 2.1×105 J kg−1

Density of PCM, solid ρpcms 860 kg m−3

Density of PCM, liquid ρpcml 780 kg m−3

Thickness of PCM zpcm 0.05 m
Thermal conductivity of PCM, solid kpcms 0.24 W m−1 K−1

Thermal conductivity of PCM, liquid kpcml 0.15 W m−1 K−1

PCM layers l 40
PCM melting temperature Tmelt 0–50◦C in 1◦C intervals
Heat transfer enhancement factor p 2

Table 3.2: Properties of the phase change material used in this study. All phase change material properties
are taken from Malvi et al. (2011).

convection, an assumption validated by other models (Hassan, 2010). Ideally convection

should be included and the simulation performed in at least two dimensions (Huang et al.,

2004), however a 1D model has been shown to be adequate in reality (Ciulla et al., 2012).

For the study goal of determining changes on a global basis, a 2D model would be too

computationally intense. The properties of the PCM are shown in table 3.2.

The heat content of a non-isothermal PCM can be modelled using the enthalpy method

or the effective heat capacity method (Lamberg et al., 2004). The enthalpy method de-

scribes the total heat content of the PCM as a monotonically increasing, continuous and

invertible function of temperature. Based on paraffin wax PCM melting profiles in the

literature (Lamberg et al., 2004; Zukowski, 2007) the enthalpy function of the PCM can

be described to a good approximation by a hyperbolic tangent model:

H =
1
2

[
CpcmsTpcm(1− tanh(s(Tpcm−Tmelt)))

+(Qliq +Cpcml(Tpcm−Tmelt))(1+ tanh(s(Tpcm−Tmelt)))
] (3.7)

where s is a scale factor that describes the steepness of the phase change region of the

enthalpy function as shown in section 3.2.3. s→ ∞ for an isothermal PCM. In eq. (3.7),

the cumulative heat required to melt the PCM is given by

Qliq =
Azpcm

l

(
ρpcmscpcmsTmelt +ρpcmlL

)
(3.8)

and the solid and liquid heat capacities Cpcms and Cpcml respectively of each layer are

Cpcm = Acpcmρpcm
zpcm

l
(3.9)
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Figure 3.2: (a) The enthalpy function of the paraffin wax PCM used in this simulation. s = 1 is used in this
model. The effect of varying s is shown on the enthalpy curve. The PCM melting temperature is 23◦C. (b)
Effective heat capacity function for the PCM for values of s used in section 3.2.3.

where the parameters for solid or liquid PCM from table 3.2 are used in eq. (3.9) as

appropriate.

The effective heat capacity of the PCM layer is given by the derivative of enthalpy with
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3.3. Energy balance scheme

respect to temperature (Bridgman, 1914) and after rearrangement becomes

dH
dT

=
1
2

[
Cpcms(1− tanh(s(Tpcm−Tmelt)))

+s(Qliq−CpcmsTmelt +Cpcml(Tpcm−Tmelt))sech2(s(Tpcm−Tmelt))

+Cpcml(1+ tanh(s(Tpcm−Tmelt)))
]
.

(3.10)

The appearance of s defines the “sharpness” of the peak of the function (section 3.2.3) of

effective heat capacity by temperature in the phase change region influenced by the sech2

term (sech represents the hyperbolic secant such that sechx = 1/coshx). As s gets larger,

the phase change temperature range gets smaller so that the total area under the curve is

preserved. Physically, the area under the “hump” of the curve represents the latent heat L.

As s→ ∞, the effective heat capacity function tends towards a Dirac delta function.

The thermal conductance of each PCM layer j = 1, . . . ,40 is given by the proportion of

solid and liquid PCM in each layer which follows from the enthalpy function:

κpcm j =
κpcml−κpcms

2
(1+ tanh(s(Tpcm j−Tmelt)))+κpcms (3.11)

where the thermal conductance of solid (κpcms) and liquid (κpcml) PCM is

κpcm =
Apkpcm

zpcm/l
. (3.12)

3.3 Energy balance scheme

3.3.1 Meteorological data

Synoptic monthly means of the 2 m air temperature Ta, 10 m eastward and northward

wind components (U , V ) and surface solar radiation downwards G were taken from the

ECMWF ERA-Interim reanalysis data. The full resolution model of 0.7◦×0.7◦ contains

too many datapoints for efficient computation so a lower resolution of 1.5◦ longitude ×
1.5◦ latitude was used. The 12-month period spanning July 2012 to June 2013 was used

as the meteorological year under consideration. Synoptic monthly means (averages over

the same time of day for each month) were used rather than daily mean observations. This

speeds up the computation by a factor of approximately 30.

Monthly mean synoptic data is available 8 times per day from 0000 UTC in 3-hour steps.

The surface solar radiation downwards field gives the GHI totals in 3-hour steps for the

half-days ending at 0000 UTC and 1200 UTC. To recover the mean irradiance for each
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3. PASSIVE COOLING WITH PHASE CHANGE MATERIALS

3-hour period, the difference between the irradiation values at the start and the end of

each 3-hour time period was taken and this total divided by 10800 seconds. The mean

irradiance values derived were deemed to be the irradiance values at the midpoint of each

3-hour period (i.e. at times 0130 UTC, 0430 UTC, and so on). The magnitude of the 10 m

wind speed is W =
√

U2 +V 2. From the 3-hour irradiance, temperature and wind speed

data, hourly values of each variable were extracted using cubic spline interpolation.

3.3.2 Numerical model

The energy balance through the PV/PCM system is modelled as a system of 44 simulta-

neous differential equations. The change in temperature in each layer is governed by

dTglass

dt
=

1
Cglass

[
qsw,f +qlw,f +qconv,f +κglass(Tc−Tglass)

]
(3.13)

dTc

dt
=

1
Cc

[
κc(Talu1 +Tglass−2Tc) +Aαcτc(1−αglass)G−Pout

]
(3.14)

dTalu1

dt
=

1
Calu

[
κalu(Tpcm1 +Tc−2Talu1)

]
(3.15)

dTpcm1

dt
=

1
dH/dTpcm1

[κpcm1(Tpcm2 +Talu1−2Tpcm1)] (3.16)

dTpcm j

dt
=

1
dH/dTpcm j

[
κpcm j(Tpcm( j+1)+Tpcm( j−1)−2Tpcm j)

]
, j = 2, . . . ,39 (3.17)

dTpcm40

dt
=

1
dH/dTpcm40

[
κpcm40(Talu2 +Tpcm39−2Tpcm40)

]
(3.18)

dTalu2

dt
=

1
Calu

[
κalu(Tpcm40−Talu2)+qlw,b +qconv,b

]
(3.19)

where Ti is the temperature of each layer, alu1 and alu2 refer to the front and back alu-

minium sheets, and t is time.

The reference system differs from the PV/PCM system in that Talu1 in eq. (3.14) becomes

Talu, eqs. (3.15) to (3.18) are omitted and eq. (3.19) is modified to become

dTalu

dt
=

1
Calu

[κalu(Tc−Talu)+qlw,b +qconv,b] . (3.20)

The change in nomenclature from alu2 to alu highlights the fact there is only one alu-

minium sheet in the reference system. The heat flows between the PV systems and the

50



3.3. Energy balance scheme

ambient are given by

qsw,f = AαglassG (3.21)

qlw,f = Aσ(εskyT 4
sky− εglassT 4

glass) (3.22)

qconv,f = Aha(Ta−Tglass) (3.23)

qlw,b = Aσ(εgroundT 4
ground− εaluT 4

alu(2)) (3.24)

qconv,b = Aha(Ta−Talu(2)) (3.25)

Pout = AηI (3.26)

with G the GHI [W m−2] and Ta the ambient temperature. In this study, the PV/PCM

systems are assumed to be horizontally aligned. This would not usually be the case in

reality as PV modules will often be aligned at an optimal tilt for the location as explored

in chapter 5, or constrained by for example roof geometry. However, this does enable use

of the 1D heat transfer simulation and reported results are likely to be on the conservative

side. It is assumed that Tground = Ta (Notton et al., 2005). The sky temperature is described

by the relationship of Swinbank (1963):

Tsky = 0.0552T 1.5
a . (3.27)

For the windward (top) face of the PV panel, forced convection due to the wind will

dominate free convection. The empirical heat transfer coefficient of Loveday & Taki

(1996) is used:

ha = 8.91+2.00W (3.28)

which is valid for wind speeds W up to 15 m s−1. The cell is assumed to be configured

on an open mount and as such the coefficient of convective transfer is assumed to be the

same on the reverse side of the panel. If a building-mounted PV system is considered, the

module temperatures will be higher.

Efficiency is calculated from eq. (2.44). The temperature coefficient c1 = 0.0045 K−1,

and the low-light coefficient c2 = 0.1. The STC efficiency ηref is taken to be 15.6%,

typical for a commercial c-Si module (Fraunhofer ISE, 2015). Other parameters relevant

to the PV cell energy balance scheme used in eqs. (3.13)–(2.44) are given in table 3.3.

The initial conditions for the temperature of each layer of the PV cell were taken from the

NOCT relationship (eq. (2.45)) with TNOCT = 45◦C. The model was run from local solar

midnight in each location in order to give the model time to stabilise with no solar irradi-

ance input, therefore except in polar summer the initial condition for cell temperature is

that it is equal to air temperature.
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3. PASSIVE COOLING WITH PHASE CHANGE MATERIALS

Parameter Symbol Value

Area of PV panel A 1 m2

Absorptance of glass αglass 0.05
Absorptance of cell αc 0.9 (Notton et al., 2005)
Transmissivity of glass τglass 0.95 (Notton et al., 2005)
Stefan-Boltzmann constant σ 5.67×10−8 W m−2 K−4

Emissivity of the sky εsky 0.95 (Jones & Underwood, 2001)
Emissivity of glass εglass 0.95
Emissivity of the ground εground 0.95 (Jones & Underwood, 2001)
Emissivity of back layer εalu 0.02

Table 3.3: Parameters used within this study to simulate the energy balance through the PV cell.

3.3.3 Cell temperature under PV/PCM model

The temperatures of a solar cell from both a PV/PCM system and a reference system are

shown for the grid cell containing Leeds for the month of June (fig. 3.3a). The addition

of the PCM layer causes a delay in temperature rise compared to the reference cell before

the PCM has commenced melting because of the additional thermal mass in the system

which absorbs heat from the PV cell layer. When the PCM begins to reach the melting

temperature, thermal energy is absorbed by the PCM as it starts to melt, which further

slows down the rate of temperature increase in the PV cell. Peak temperature in the

PV/PCM cell is reached later than peak temperature in the reference cell. The larger

thermal mass of the PV/PCM cell results in it cooling more slowly than the reference cell

after reaching peak temperature, and as it approaches the PCM melting temperature from

the liquid phase thermal energy is returned from the PCM to the solar cell causing the

cell to remain warmer than the reference cell. By the time of day that the PV/PCM cell

is warmer than the reference, irradiance levels are low and the PV panel generates only a

small fraction of its total daily electricity output. This is expected, in line with previous

outdoor experiments (Huang et al., 2006). The effect is displayed in fig. 3.3b, where it

is shown that the gain in power from the PV/PCM cell compared to the reference cell

during the middle of the day more than offsets the marginal negative contribution in the

early morning and late afternoon when irradiance levels are much lower than at midday.

Through the evening, the PV/PCM cell is significantly warmer than the reference cell as

the PCM layer continues to dispose of its heat.

3.4 Modelling flowchart

The modelling flow diagram is shown in fig. 3.4.
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3.4. Modelling flowchart
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Figure 3.3: (a) Temperatures of PV/PCM and reference cells. PV cell temperature with a PCM (blue)
and without a PCM (green) for the ECMWF grid cell containing Leeds (54◦N, 1.5◦W) in June. Also
shown is air temperature (red) and horizontal solar irradiance (black dashes, right scale). The PCM melting
temperature is 18◦C. (b) Power output from PV/PCM cell and reference cell. Also shown is the power
output improvement of PV/PCM cell multiplied by a factor of 10 (black curve).
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3. PASSIVE COOLING WITH PHASE CHANGE MATERIALS

Figure 3.4: Flow diagram of modelling process

3.5 Results of global simulation

Energy output was calculated for all land points on the 1.5◦× 1.5◦ ERA-Interim reanalysis

grid for all land points excluding the Antarctic continent. The total annual energy output

at each grid point, in kWh, is given by

E =
365

12000

12

∑
m=1

23

∑
h=0

Ihmηhm. (3.29)

Irradiance and solar cell efficiency are sampled hourly, and the sum runs over the hours

of each typical day h and months of the year m. The factor of 365/12 is to scale the one

day per month result to a full year and the additional factor of 1/1000 converts from Wh

to kWh.

3.5.1 Annual increase in energy output

Figures 3.5a and 3.5b show the annual average irradiance and temperature from the ERA

reanalysis data. The power output for each grid point was calculated both under the refer-
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3.5. Results of global simulation

ence PV panel and the PV/PCM system for PCM melting temperatures varying between

0–50◦C in 1◦C intervals, and the PCM melting temperature that produced the largest gain

in energy output at each grid point was found (fig. 3.5c). The general trend is for regions

that experience the highest ambient temperatures to benefit from the higher PCM melting

temperatures, with the optimal melting temperature in excess of 30◦C for much of Africa,

the Middle East, South Asia, Australia, and Latin America. There are several notable

areas of high annual irradiation where low PCM melting temperatures are favoured such

as the region northeast of the Himalayas and in the mountain ranges on the west coast

of Latin America. Regions which are typically cool and do not receive high irradiation

levels show a preference for lower PCM melting temperatures.

The largest relative improvements from PV/PCM systems are located in Africa, the Mid-

dle East, Central and Latin America, and the Indonesian archipelago (fig. 3.5d). An

improvement in energy output of over 6% is seen on the western coast of Mexico and

improvements of over 5% are seen in many regions. These highly suitable locations for

PCM are all characterised by high ambient temperatures, except for on the west coast of

Latin America. In all other parts of the world, although the relative improvement tends

to be lower, there is still a positive increase in electrical energy output to be gained from

using a PCM with the optimal melting temperature for the location.

The greatest absolute energy increase using a PCM is again to be found in tropical regions

and is mostly coincident with the locations of relative improvement as shown in fig. 3.5e,

with parts of the Sahara, Central America, Chile and the Arabian peninsula showing an

annual electrical output increase of over 20 kWh m−2.

3.5.2 Sensitivity of energy output increase to PCM melting

temperature

Locations that are geographically varied and where large solar farms either currently ex-

ist or are planned to be built were investigated further to determine sensitivity to PCM

melting temperature. These locations are displayed in table 3.4 and fig. 3.5f.

The relative and absolute improvements in energy output for the PV/PCM module com-

pared to the reference is shown for the full range of PCM melting temperatures in fig. 3.6.

At all locations, the improvement in solar PV performance is peaked around the optimal

value, however, a PCM melting temperature that is slightly above or below the optimal

temperature will still deliver most of the increase in performance available at the optimal

value. It can be seen in fig. 3.6 that when a PCM melting temperature that is significantly

different from the optimal is used, performance improvement does not decline further

with any additional excursion from optimal melting temperature and is still positive.
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Figure 3.5: (a) Daily-averaged horizontal insolation for the 12 month period July 2012–June 2013 from the
ERA-Interim dataset. (b) Average near-surface air temperature for the July 2012–June 2013 period from
ERA-Interim dataset. (c) PCM melting temperature that leads to the greatest increase in solar PV energy
output in the PV/PCM system. (d) Increase in electrical output from using the PV/PCM system over the
PV reference system with the PCM melting temperature equal to the ideal value from fig. (c). (e) Total
improvement in annual electrical output for a PV/PCM system over the PV reference with the PCM melting
temperature equal to the ideal value in fig. (c). (f) Locations used in the sensitivity analysis (section 3.5.2).

3.5.3 Discussion of simulation results

Overall, areas experiencing high levels of solar irradiance appear to benefit most from

PCM cooling. This follows from eq. (3.13) and eq. (3.14) in which a large solar irra-

diance input G drives an increase in PV front glass and cell temperatures so efforts to

mitigate these temperature rises should lead to increased PV efficiency. The most bene-

ficial PCM melting temperature depends more on the ambient temperature; a hot climate

will require a high PCM melting temperature and a cool climate favours a low PCM melt-

ing temperature. For areas with comparable yearly irradiation, a cooler climate is still
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Figure 3.6: The improvement in (a) relative and (b) absolute PV output as a function of PCM melting
temperature Tmelt.
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Name Location Size Reference

Agua Caliente, USA 33.0◦N, 113.5◦W 250 MW First Solar (2012)
Mesquite, USA 33.3◦N, 112.9◦W 150 MW Energy Matters (2013)
Charanka, India 23.9◦N, 71.2◦E 214 MW McMahon (2012)
Golmud, China 36.4◦N, 95.3◦E 200 MW Cohen (2012)
Neuhardenberg, Germany 52.6◦N, 14.2◦E 145 MW Lenardic (2011)
Nzema, Ghana 5–11◦N, 0–3◦W 155 MW Rhead (2012)

Table 3.4: Characteristics of large solar farms investigated. The precise location of Nzema is not known
so the latitude/longitude grid that covers the whole of Ghana has been investigated. The two arrays in the
USA are close enough together to be grouped in the same grid cell to the resolution of the model. See also
fig. 3.5f.

preferable with PCM as the PCM helps to keep cell temperature nearer to the ambient,

and if the ambient temperature is lower the baseline efficiency will be higher.

The greatest improvements in PV/PCM cell performance are realised by choosing a PCM

that fully melts over the course of the day and fully re-solidifies over the evening and

before sunrise the next day, making use of the latent heat capacity of the phase change

material. Following this, PCM melting temperatures that are too high or too low do

not produce the required effect, however, the addition of the PCM as a thermal mass

to the solar cell does slow down heating and cooling of the solar cell to the effect that

the PV/PCM cell does not get as warm as the reference cell during peak solar hours. It is

shown in the variation of Tmelt in fig. 3.6 that using a PCM melting temperature that differs

from the ideal temperature by a few degrees also results in a significant improvement in

PV energy output performance where at least part of the latent heat capacity of the PCM

is used.

It is difficult to validate these results with those in the literature as it does not appear that

published results for a successfully operating PV/PCM system for a full year exist. In

their simulations Malvi et al. (2011) find the ideal Tmelt to be 28◦C for a diurnal tem-

perature range of 10–20◦C, and 32◦C for a diurnal temperature range of 20–30◦C, both

with a 12-hour day with irradiance varying sinusoidally and plane irradiance peaking at

1000 W m−2. This is approximately the range of optimal Tmelt seen in tropical and sub-

tropical areas year-round from the results in fig. 3.5c, where this temperature range, length

of day and irradiance level are broadly seen for much of the year.

The longest outdoor experiments for a comparable PV/PCM system to the one considered

in this chapter were over the course of two weeks by Hassan et al. (2015) in Pakistan

and Ireland. The PCM melting temperatures for the PCMs selected for this experiment

were 22.5◦C and 29.8◦C. This is a little lower than optimal for Pakistan (30–40◦C) and

higher than optimal for Ireland (15–20◦C, fig. 3.5c). However PCMs were selected for
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this experiment based on considerations other than melting temperature, in particular their

performance in laboratory experiments compared to other PCMs at an ambient tempera-

ture of 20◦C where they outperformed a paraffin wax PCM (Hassan et al., 2010). When

considering likely peak cell (65◦C) and ambient (45◦C) temperatures, Maiti et al. (2011)

chose a PCM with melting temperature in the range of 56–58◦C for a 1.75× concentrat-

ing PV system in India. While this is higher than the highest temperature shown to be of

benefit for a flat-plate collector in this study, and above the optimal temperature for India

shown to be around 35◦C in this simulation (fig. 3.5c), the additional solar energy input

from the concentrating system will increase cell temperatures beyond those expected at

one sun.

In this global study one PCM is used for a full year of meteorological conditions and

it is likely that there are many times throughout the year that the PCM is non-optimal.

The variability of climate appears to have an influence on the effectiveness of PCM. In

fig. 3.7, the monthly average irradiance and temperature is shown for each of the case

study locations. Of these regions, Ghana experiences the smallest inter-seasonal variation

in temperature and irradiance levels (fig. 3.7e) and shows the largest benefit in PCM-

enhanced cooling (fig. 3.6a). The uniformity of year-round climate means that the annual

optimal PCM melting temperature is closer to the monthly optimal for many months the

year which may be why the relative increase in electricity output at optimal PCM melting

temperature is slightly higher for Ghana than for Arizona. In Germany, where wintertime

irradiance is very low but even summertime irradiance is lower than the other locations,

the lowest relative PCM improvement is seen. PCMs may therefore be of limited benefit

in areas of low solar irradiance but a PCM that is optimised for summer conditions should

perform better than one optimised for the annual mean conditions in higher-latitude loca-

tions.

3.6 Economic assessment of PV/PCM
Hendricks & van Sark (2011) performed a cost assessment of PV/PCM systems for four

different PCMs in two locations (Malaga, Spain and Utrecht, Netherlands). They con-

sidered only PCM material cost and did not include manufacturing costs or the costs of

the PCM container. The costs were compared against the savings in electricity not pur-

chased using consumer electricity prices. Hendricks & van Sark found that in the best

case scenario of using a paraffin wax PCM with melting temperature of 42◦C in Malaga,

the payback period was 165 years. This far exceeds the expected lifespan of a PV mod-

ule of 25 years. Hassan et al. (2014) argues that PV/PCM can become cost-effective for

certain regions if materials can be purchased in bulk, in conjunction with learning rates

that would lead to manufacturing costs reducing by a factor of 10. Their assessment was
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Figure 3.7: Climate data for the locations analysed in section 3.5.2: (a) Arizona; (b) India; (c) China; (d)
Germany; (e) Ghana. Bars indicate temperature (left scale), lines indicate irradiance (right scale).
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3.6. Economic assessment of PV/PCM

based on the cost of solar PV in e/kWp.

An illustrative cost assessment is performed to determine whether PV/PCM systems

would currently be commercially viable based on the outputs from the global simula-

tion. To implement 1 m2 of PV/PCM at a depth of 0.05 m (total volume 0.05 m3) would

require 39 kg of PCM at its liquid density of 780 kg m−3. To fabricate an aluminium

container that is 1 m × 1 m × 0.05 m, a total surface area of 2.2 m2 of aluminium is

required (two faces of 1 m2 and four sides of 0.05 m2). The total mass of 5 mm thick

aluminium required is therefore 2.2 m2 × 0.005 m × 2700 kg m−3 = 29.7 kg. A greater

volume may be required to provide overlap and ensure that the box is fully watertight.

Aluminium costs are estimated based on the recent lower range of bulk sheet purchase

prices from China of e0.60 kg−1.

The majority of the costs arise from the PCMs rather than the aluminium. López-Navarro

et al. (2014) used 165 kg of paraffin wax at a cost of e4.93 kg−1 from Rubitherm GmbH

in Germany for a solar cooker, which would be enough for four solar modules in this

present study. On the order of tons, it is probable that bulk prices are lower than this.

Kenisarin & Makhamov (2007) report a unit price of e2.90–e3.50 kg−1 for Rubitherm

products. This price has been used by Hendricks & van Sark (2011) in their evaluation. To

compare to electricity prices, the 2007 figures from Kenisarin & Makhamov (2007) have

been converted to 2013 prices by using compound German consumer price index (CPI)

inflation figures for 2008–2013 of 9.0% (Triami Media BV, 2015) to give a cost range

of e3.16–e3.82 kg−1. The lower limit of e3.16 kg−1 has been used here to provide the

best case scenario. System costs may be able to be lowered by using a smaller thickness

of aluminium or a different PCM material. According to Hassan et al. (2014), bulk costs

of salt hydrate PCMs could be as low as e1.90 kg−1, around 60% of the price of paraffin

waxes.

Adding the costs of the aluminium and the PCM, the attachment of the PCM box would

cost e141.06 (table 3.5). These prices have not considered the costs of manufacturing

the PCM boxes, which will include plant and machinery capital costs as well as workers

wage costs, so this is considered a lower bound for PCM attachment. Assuming a 25

year lifespan, the price of electricity required to make a PV/PCM system cost-effective

is shown in table 3.6. Retail electricity prices, which are also shown, would have to be

at least this level or higher to make PV/PCM economically viable. This is not currently

satisfied in any of the case-study locations.

An alternative measure of cost-effectiveness is the levelised cost of electricity (LCOE),

which reflects the total lifetime costs divided by the total expected energy output over

the lifetime of the power plant. The lifetime costs include the total of the initial setup
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3. PASSIVE COOLING WITH PHASE CHANGE MATERIALS

Commodity Unit cost Mass required Total cost

PCM e3.16 kg−1 39 kg m−2 e123.24 m−2

Aluminium e0.60 kg−1 29.7 kg m−2 e17.82 m−2

Total e141.06 m−2

Table 3.5: Example costs of materials required to include a 0.05 m layer of PCM with aluminium casing.

Location kWh/yr
additional PV
output using
optimal PCM
(fig. 3.6b)

Cost of
electricity to
make PV/PCM
worthwhile
(2013)
e¢ kWh−1

Retail cost of
electricity (2013)
e¢ kWh−1

US (Arizona) 14.85 38.0 8.3
India (Gujurat) 14.13 39.9 7.6
China (Qinghai) 14.45 39.0 2.9
Ghana 14.23 39.7 26.2
Germany 4.69 120.3 22.1

Table 3.6: Summary of electricity prices required to make PV/PCM cost-effective in each case-study re-
gion compared to indicative current costs. Data from years prior to 2013 have been adjusted to 2013 using
country-specific CPI inflation figures from Triami Media BV (2015). References: US: U.S. Energy Infor-
mation Administration (2014), India: Indian Express (The) (2012), China: Ma (2011), Germany: European
Commission (2012a), Ghana: Electricity Company of Ghana Limited (2013).

costs, lifetime fuel and maintenance costs, and decommissioning costs, discounted over

the lifetime of the installation (Branker et al., 2011). Owing to variations and uncertainties

in input variables, and choice of an appropriate discount rate (reflecting the time value

of money or risk-free rate of return, an inherently uncertain parameter over the 25-year

lifetime of a solar project), the LCOE can show a wide range of values. An analysis for

solar PV shows a LCOE in the range of e0.08 kWh−1 to e0.12 kWh−1 for Germany

(Kost et al., 2013). For regions of high solar irradiance the estimate is in the range of

e0.06 kWh−1 to e0.10 kWh−1. Therefore the central estimates of e0.10 kWh−1 for

Germany and e0.08 kWh−1 for the other four case-study areas are used. As increases in

output using PCM are less than 6% in all locations, an assumption that changes in energy

output are approximately linear for LCOE estimates is assumed; as fixed costs of PCM

materials have already been accounted for the benefits may be underestimated slightly.

Table 3.7 shows the additional levelised cost benefits of using PCM for the five case study

regions. The lifetime cost benefits are less than e30 in each location, compared to the

e141.06 that would be required to make PV/PCM worthwhile compared to using PV

without a PCM.
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3.7. Summary

Location kWh/yr
additional PV
output using
optimal PCM

× 25 year
lifetime,
kWh

LCOE,
e kWh−1

PCM cost
benefit, e

US (Arizona) 14.85 371.25 0.08 29.70
India (Gujurat) 14.13 353.25 0.08 28.26
China (Qinghai) 14.45 361.25 0.08 28.90
Ghana 14.23 355.75 0.08 28.46
Germany 4.69 117.25 0.10 11.73

Table 3.7: Summary of levelised cost of electricity analysis in each case-study location. Costs are in 2013e.

3.7 Summary

In this chapter, a global simulation of a PV system with and without an attached phase

change material (PCM) was presented. The PV energy output was determined using a nu-

merical heat transfer model. This work extends previous studies by applying a PV/PCM

model to a global scale, highlighting regions in which PV/PCM could provide a substan-

tial increase in solar PV energy (up to 23 kWh per m2 of installed capacity per year, or

6% increase in energy output in relative terms).

PV/PCM systems can curb the rapid rise in PV cell temperatures during the daytime and

keep PV cell temperatures lower during the peak solar hours of the day, improving solar

cell efficiency and electrical energy output. Heat is transferred from the PV cell to the

PCM, which acts as a heat sink as it melts, both delaying temperature rise in the PV cell

and keeping overall temperature rise lower than in a non-PCM cell. Heat is released back

from the PCM layer to the solar cell through the evening and overnight.

The best results are seen where an ideal PCM melting temperature for the location in

question is used and the PCM melts fully over the course of the day and re-solidifies in the

evening before dawn of the next day. In this case the full latent heat content of the PCM is

used and the PCM layer acts as thermal mass with a high effective heat capacity. PV/PCM

systems provide the greatest improvements in absolute and relative terms in Africa, South

Asia, Australia and Latin and Central America. These areas receive high solar irradiance

and often experience high ambient temperatures year-round. Many of these are areas

where solar energy could greatly aid development by providing an abundant, clean and

reliable electricity source.

It has been demonstrated that single junction silicon PV/PCM systems are not currently

cost-effective, but this may be possible for technologies such as concentrating PV, or by

using lower cost or lower quantities of materials. Furthermore, tracking systems were

not considered, which would increase irradiance incident on a PV panel and thus increase
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3. PASSIVE COOLING WITH PHASE CHANGE MATERIALS

cell temperature. Based on this global overview, more detailed regional models could be

explored to further isolate the conditions necessary for enhanced solar PV energy output

using PCMs and the potential for cost-effective implementation. CPV may be one area

where PCM cooling may be more cost-effective due to the greater need for cooling and

smaller area of the cells.

In later chapters, the effect of climate change on PV efficiency is investigated. The rise

in ambient temperatures under climate change will reduce PV efficiency. PCM cooling

is one method that could be used under a future climate scenario in order to mitigate this

effect.
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Chapter 4

Solar energy transmission and cloud
coverage

Chapter 3 showed that output power increases of up to 6% were possible globally using

passive cooling of solar modules. The solar radiation data used to drive the model was

available in three-hour timesteps on a 1.5◦× 1.5◦ global grid from the ECMWF dataset.

In the UK, it is possible to improve the temporal and spatial resolution of solar energy

prediction methods owing to a network of ground radiation stations that all report solar

irradiation hourly.

This chapter describes the statistical distribution of irradiance received at the earth’s sur-

face as a function of cloud fraction, for the UK. The ultimate aim of this work is the

generation of realistic cloud transmission data for usage in a stochastic weather genera-

tor, the details of which are in Bright et al. (2015). Contemporaneous measurements of

solar irradiance and cloud fraction observations for 63 sites across the UK for four years

are compared to a theoretical clear-sky algorithm to determine the transmission factor

due to clouds. Such a weather generator, if coupled with observations of wind speed and

temperature, could be used to generate a probabilistic model for the study in chapter 3.

Firstly, a review of previous studies on cloud transmission effects and probabilistic models

is presented. The bulk of the chapter focuses on the clear-sky irradiance generation and

statistical methods used, and the simplifications and application to a stochastic weather

generator are described later in the chapter. It is shown that the distributions of cloud

transmission do depend heavily on cloud fraction but are not independent of solar zenith

angle.

4.1 Background and literature review

The most reliable way to determine the solar resource for a particular location is to set

up long-term pyranometer observations. For many sites of interest, pyranometer records

are not frequently obtained for a sufficiently long period prior to installation of a solar
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4. SOLAR ENERGY TRANSMISSION AND CLOUD COVERAGE

Study Derived quantity Variables

Ångström (1924) Daily clear-sky index SD
Prescott (1940) Monthly clearness index SD
Wörner (1967) Hourly clearness index CF
Kasten & Czeplak (1980) Hourly clear-sky index CF, CT
Nielsen et al. (1981) Hourly net and global radiation CF
Brinsfield et al. (1984) Daily global radiation CF, OCF
Bristow & Campbell (1984) Daily clearness index DTR
Hargreaves et al. (1985) Daily global radiation DTR
de Jong & Stewart (1993) Daily clearness index DTR, PR
Supit & van Kappel (1998) Daily clearness index DTR, CF
Muneer et al. (1998) Hourly beam and diffuse radiation SD
Matszuko (2012) 10-minutely global radiation CF, CT

Table 4.1: Relationships between meteorological variables and radiation. Key: SD = sunshine duration, CF
= cloud fraction, CT = cloud type, OCF = opaque cloud fraction, DTR = diurnal temperature range, PR =
precipitation. Clearness index, kt , and clear-sky index, kc, are defined in section 2.1.4. In this table, only
correlations that predict transmission in all-sky (clouds inclusive) conditions are included; several clear-sky
radiation models that are based on temperature, relative humidity and pressure exist (e.g. Muneer et al.
(1998)).

energy system. A shorter-term period of pyranometer records may be sufficient to esti-

mate the long-term climate if the inter-annual variability is not too great (Gueymard &

Wilcox, 2011; Gil et al., 2015). If this is not the case or no pyranometer records are avail-

able, other meteorological variables can be used as a proxy to estimate solar radiation.

Meteorological records of temperature, pressure, cloud fraction, cloud type, rainfall and

sunshine hours have been kept at many stations in many countries for decades, as they

are often of greater interest to the meteorological community than solar radiation. In the

past, relationships to solar radiation intensity to one or more of these variables have been

discovered by several investigators (table 4.1).

Since clouds are one of the largest attenuating factors of solar radiation, cloud coverage

can be a useful predictor of solar radiation. Typically cloud fraction is recorded at mete-

orological stations as an integer number of oktas, here denoted c8, which is the number

of eighths of the sky obscured by clouds (UK Met Office, 2010). An additional okta code

9 is used for situations where the sky is obscured by fog, haze or other meteorological

phenomena, preventing the sky being observed. A further convention is to reserve okta 0

for completely cloudless sky and okta 8 for completely overcast sky, so the limits of okta

1 and okta 7 observations are extended to almost clear and almost overcast respectively

(Jones, 1992) (table 4.2).

In table 4.1 there are five studies of interest, namely Wörner (1967), Kasten & Czeplak

(1980), Nielsen et al. (1981), Brinsfield et al. (1984) and Matszuko (2012) which corre-

late cloud fraction to a radiation quantity. Supit & van Kappel (1998) extends the Wörner
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4.1. Background and literature review

okta c8 cloud fraction fc

0 precisely 0
1 just over 0 to 3/16
2 3/16 to 5/16
3 5/16 to 7/16
4 7/16 to 9/16
5 9/16 to 11/16
6 11/16 to 13/16
7 13/16 to just less than 1
8 precisely 1
9 sky obscured due to fog/haze/other meteorological phenomena

Table 4.2: Okta conventions for reporting cloud fraction

(1967) relationship to include diurnal temperature range and so is not a unique relation-

ship for radiation as a function of cloud cover. These methods are briefly reviewed below.

4.1.1 Cloud fraction relationships

The relationship attributed to Wörner (1967)1, as used by Supit & van Kappel (1998) and

several other works, was derived from observations in Potsdam in Germany from 1957–59

and provides observations of clearness index by okta:

kt = a1
√

1− c8/8+a2. (4.1)

The fitting constants a1 and a2 are the form of the equation used by Supit & van Kappel

(1998).

Kasten & Czeplak (1980) found an empirical relationship between atmospheric transmis-

sion and cloud fraction using 10 years of data for Hamburg, Germany, for solar elevation

angles above 5◦:

kc = 1−a1(c8/8)a2 (4.2)

where the cloudless-sky radiation [W m−2] is modelled as

Gcs = b1 sinθe−b2. (4.3)

For Hamburg, a1 = 0.75, a2 = 3.4, b1 = 910, b2 = 30. This relationship was later found

to be valid for 5 UK sites by Muneer & Gul (2000) where slightly better performance can

be obtained by tuning coefficients for each site.

1The original article appeared in a journal from the German Democratic Republic and does not appear
to be available.
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4. SOLAR ENERGY TRANSMISSION AND CLOUD COVERAGE

Nielsen et al. (1981) developed a relationship for net (incoming minus outgoing) radiation

from cloud fraction based on 5 years of observations in Denmark. A secondary correlation

between global radiation and net radiation in the same paper can be used to derive global

radiation from G cloud fraction:

G =
a0 +a1 cosθz +a3 cos3 θz−L

a
(4.4)

with a j ( j = 0,1,3), a and L being okta-dependent constants.

The Brinsfield et al. (1984) method predicts solar radiation based on opaque cloud fraction

in tenths, i.e. the fraction of the sky covered by clouds where the sky or higher cloud

layers cannot be observed. Opaque cloud fraction is not often recorded and has to be

estimated from observations of total cloud fraction. Matszuko (2012) tabulated observed

10-minutely insolation averages by cloud okta and solar elevation angle band for Krakow,

Poland. From these observations, the clear-sky index can be calculated for each okta upon

dividing by the okta 0 case.

In all of the reviewed papers on cloud fraction, there is a one-to-one relationship presented

between cloud fraction and the radiation quantity of interest (kt , kc or G). Cloud fraction

gives an idea of how likely it is that the sun is obscured by clouds, but does not provide any

information as to how opaque the cloud is to solar radiation. The actual cloud transmission

factor can take a wide variety of values. For example a sky could be overcast with thin

cirrus clouds or thick nimbostratus clouds. In both cases, cloud fraction is 100% but the

fraction of radiation reaching the ground can vary from 98–100% for cirrus to as low

as 7% for nimbostratus (Matszuko, 2012). Although Brinsfield et al. (1984) considers

opaque clouds, the various optical depths of both translucent and opaque clouds that are

observed may still produce a distribution of results. For these reasons, the distributional

spread of irradiance for a particular cloud coverage fraction can be more useful than its

mean or median value.

4.1.2 Evolution of cloud fractions

The stochastic element of the model, detailed in Bright et al. (2015), is derived by creating

a Markov chain of long-term cloud observations for a site of interest in the UK. A Markov

chain is a discrete-time statistical process that defines the probability of the next state

given the current state. In this work the state is cloud fraction in oktas and the discrete

timestep is one hour. A Markov chain exhibits a memoryless property, in the sense that

the following state does not depend on any of the previous states, only the current state.

The transition matrix summarises the probability of changing from one state to the next.
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4.1. Background and literature review

Future okta
0 1 2 3 4 5 6 7 8 9

Pr
es

en
to

kt
a

0 .7157 .0926 .0407 .0341 .0274 .0275 .0254 .0356 .0005 .0004
1 .2744 .3330 .0954 .0631 .0480 .0504 .0597 .0747 .0006 .0008
2 .1776 .1716 .1723 .1092 .0767 .0706 .0819 .1367 .0012 .0023
3 .1367 .1202 .1317 .1376 .0926 .0991 .0980 .1678 .0143 .0020
4 .1037 .0976 .0886 .1002 .1041 .1105 .1219 .2303 .0433 .0000
5 .0658 .0780 .0755 .0785 .0889 .1260 .1498 .2680 .0683 .0012
6 .0413 .0535 .0534 .0664 .0651 .0927 .1646 .3378 .1247 .0005
7 .0140 .0236 .0233 .0256 .0272 .0405 .0684 .5026 .2741 .0007
8 .0025 .0085 .0096 .0098 .0116 .0161 .0237 .1990 .7179 .0015
9 .0247 .0152 .0114 .0000 .0017 .0000 .0105 .0799 .2232 .6334

Table 4.3: Transition matrix for cloud okta for the Church Fenton weather station, based on 12 years of
consecutive hourly observations. From figure 2 in Bright et al. (2015); data produced by J. Bright.

The transition matrix for 12 years of observations from the Church Fenton MIDAS station,

near Leeds, is shown in table 4.3. As expected from reality, hours of clear sky (okta 0)

transition to hours of clear sky with high probability. The same is seen for overcast to

overcast (okta 8) transitions. Meanwhile, transitions of clear to overcast and vice-versa

are rare. Typically the highest probability for each state lies on or near the diagonal of

the matrix, showing the tendency for persistence. The large amount of data collected

allows for different Markov chains for each season, time of day (morning, afternoon and

overnight), and by weather type (high pressure versus low pressure).

Ehnberg & Bollen (2005) used a Markov chain of cloud oktas based on observations

from Gothenburg, Sweden, and coupled this with the Nielsen et al. (1981) relationship

for global radiation as a function of okta and zenith angle (eq. (4.4)). Ngoko et al. (2014)

uses a Markov chain model to select minutely values of the clearness index given the daily

mean clearness index.

The idea is to extend the Ehnberg & Bollen (2005) Markov process to the distribution of

cloud transmissions which will be described later in this chapter rather than the one-to-one

relationship provided by Kasten & Czeplak (1980) or Nielsen et al. (1981).

4.1.3 Distributions of atmospheric transmission

It does not appear that the distributions of clear-sky index by cloud okta class have been

investigated previously, and this will be the focus later in this chapter. However, statistical

distributions of kt , k′t or kc as a function of their longer-term mean values, kt , k′t or kc, have

received extensive attention in the literature, with the key studies summarised in table 4.4.

One reason to use kt (or the normalised/clear-sky equivalent) as a distribution parameter is

that it varies from month to month and day to day. Overcast months/days will have a low
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Study Random variable Governing parameters Location

Liu & Jordan
(1960)

Daily clearness
index

Monthly mean of daily
clearness indices

4 sites in US

Bendt et al.
(1981)

Daily clearness
index

Monthly mean of daily
clearness indices

90 sites in
US

Olseth &
Skartveit (1984)

Daily normalised
clearness index

Monthly mean of daily
normalised clearness
indices

10 sites in
northern
Europe and
Canada

Olseth &
Skartveit (1987)

Hourly normalised
clearness index

Monthly mean of hourly
normalised clearness
indices

3 sites in
Norway and
Canada

Graham et al.
(1988)

Daily clearness
index

Monthly mean of daily
clearness indices

3 sites in
Canada

Suehrcke &
McCormick
(1988)

Instantaneous,
1-min, 5-min,
20-min and hourly
clearness index

One-year mean of
instantaneous, 1-min,
5-min, 20-min and hourly
clearness indices for
different air mass bands

1 site in
Australia

Graham &
Hollands (1990)

Hourly clearness
index

Monthly mean of daily
clearness indices

3 sites in
Canada

Jurado et al.
(1995)

5-min, 10-min,
30-min and hourly
clearness index

8-year mean of 5-min
clearness indices for
different air mass and time
of day bands

1 site in
Spain

Tovar et al.
(1998)

1-min clearness
index

Air mass 1 site in
Spain

Hollands &
Suehrcke (2013)

Instantaneous
clear-sky index

Long-term mean of
instantaneous clear-sky
index

1 site in
Australia

Table 4.4: Studies of distributions of solar transmission in the literature
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kt and clear months/days will have a high kt , but both are expected to show little variation

in hourly or daily individual observations around these mean values. On the other hand,

days or months with an intermediate kt are more likely to show more variation in their

individual kt measurements, as there will be a combination of clear and cloudy hours or

days.

A further advantage of using the clear-sky or clearness index rather than actual irradiance

values is that it more readily correlates to other meteorological variables such as in the

well-known Ångström-Prescott relationship between solar radiation and sunshine fraction

s f (cf. table 4.1):

kt = a0 +a1s f (4.5)

where a0 and a1 are locally and seasonally dependent constants (Almorox et al., 2005).

The original Ångström version of eq. (4.5) uses kc in place of kt and accordingly different

values of a0 and a1.

The benefits of using the clear-sky index compared to the clearness index, namely the

independence of air mass and solar zenith angle, have been outlined in section 2.1.4 for

cloudless hours. Although kt takes the projection of the sun’s rays onto a horizontal

surface at the top of the atmosphere into account, it does not account for the increased

atmospheric path length that sunlight must travel through the atmosphere at low elevation

angles (cf. eq. (2.19)). The study by Hollands & Suehrcke (2013) is particularly interest-

ing, as it the only one that uses kc (although both Olseth & Skartveit (1984, 1987) use k′t
where the normalisation is based on the lowest and highest observed clearness indices at

each elevation angle). Hollands & Suehrcke (2013) uses a three-state model with trun-

cated normal distribution curves to describe overcast sky, clear sky, and partially cloudy

sky states and the contribution that each makes to the overall distribution of kc. Figure 4.1,

which is adapted from Hollands & Suehrcke (2013), shows the contribution of the three

sky states to the instantaneous clear-sky index.

Unlike the papers in table 4.4, this chapter by contrast takes cloud okta c8 as the governing

parameter and generates distributions of kc based on c8. Since none of the studies use data

from the UK, this is an additional extension to UK climates that has not been performed

previously. By using kc, and given good estimates of the atmospheric concentrations

of aerosols, water vapour and ozone, the atmospheric transmission factor due to clouds

alone can be investigated. In theory, the observed kc value should be independent of

airmass and atmospheric turbidity. Therefore, if cloud transmission distributions exhibit

similar characteristics for regions in which the clear-sky transmission varies, then the

clear-sky index approach can be used generally and is not limited to the region in which

the observations were made.
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Figure 4.1: Instantaneous clear-sky index as a superposition of the distributions for (1) clear skies, (2)
partially cloudy skies and (3) overcast skies. Figure adapted from Hollands & Suehrcke (2013).

4.2 Generating a clear-sky index database for the

UK

The aim is to produce a distribution for clear-sky index for each cloud fraction class, so

the starting point is to obtain all UK Met Office monitoring stations that record both cloud

fraction and hourly GHI G concurrently.

4.2.1 Cloud observations

Cloud fraction observations can either be made by a human observer or a cloud-base

recording laser (WMO, 2014). These methods can produce quite different results, with

exact agreements only 39% of the time and agreements within 2 okta occurring 88% of the

time for a case study in the Netherlands (Wauben et al., 2006). For hourly weather data,

a human observer would typically make a subjective judgement of the cloud-obscured

proportion of the entire visible sky dome once per hour, while a cloud base recording

laser consists of a zenith-pointing device that records the average time in the preceding

hour that the laser beam was intercepted by clouds. The irradiation data collected by the

Met Office is a sum over each hour, so there can be a difference between the dominant
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4.2. Generating a clear-sky index database for the UK

conditions of the previous hour and the cloud amount recorded at the end of the hour

(Muneer & Gul, 2000). The cloud-base recording laser method assumes that the clouds

overpassing the zenith during the hour are representative of the entire sky conditions,

which are not always the case. Thin cirrus is sometimes not detected by the laser and fog

can be mistaken for low-level overcast conditions. Additionally, because the solar zenith

angle in the UK is always at least 27◦ but usually the sun is much lower, the clouds (or

lack of) overpassing in the zenith direction may not be representative of those obscuring

the sun or dominating the rest of the sky.

At stations that measure multi-level cloud coverage, the cloud-base laser recorder records

the fractional coverage and cloud height of each layer. However, it is implied from Met

Office guidance that observations of total cloud amount are only made when there is

a human observer present at the weather station (UK Met Office, 2010). This occurs

whether or not there is a cloud-base laser instrument at the weather station. It is therefore

reasonable to assume that Met Office records of cloud fraction are assessed by a human

observer taking into account the full sky dome.

A total of 64 stations with a wide geographical spread throughout the UK provided hourly

observations of total cloud amount in oktas (c8) and G for the years 2010–2013 inclusive.

One station only produced two valid hours over the four years of observation, and has

therefore been discounted. The 63 remaining stations are shown in fig. 4.2. QC checks

for data are included in a MIDAS collection and data that was flagged as suspect by the

MIDAS QC system was rejected; duplicates were also removed. To the remaining data,

records were only kept if the measured irradiation total for the hour was greater than 0 kJ

m−2 and the solar elevation angle for at least part of the hour was above 0◦. A total of

1,121,334 hourly observations were retained.

4.2.2 Clear-sky irradiation

The problem of calculating atmospheric transmission in cloudless skies lends itself well

to a radiative transfer approach. The clear-sky horizontal irradiation Gcs for each hour was

simulated with the two-stream version of DISORT in libRadtran with a pseudo-spherical

correction as described in section 2.2.6. A radiative transfer simulation is run for each

daylight hour at the latitude, longitude and altitude of each MIDAS station in fig. 4.2 for

the 2010–2013 period, for hours where both okta and irradiation measurements exist in

the record and passed the Met Office applied QC checks.
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Figure 4.2: MIDAS stations that provide quality-controlled hourly irradiation and cloud fraction obser-
vations for 2010–2013. Station numbers refer to MIDAS station IDs; colour-coding is for investigation
of geographic trends. The lines of longitude and latitude mark the boundaries of each GLOMAP aerosol
climatology grid cell.

Atmosphere

libRadtran contains the set of six standard AFGL atmospheres (Anderson et al., 1986)

which are tropical, mid-latitude summer and winter, sub-Arctic summer and winter,

and US standard. In the radiative transfer simulations, the background atmosphere for

mixed gases concentration is provided by the mid-latitude summer atmosphere for April–

September and mid-latitude winter for October–March. Absorption by CO2 is not signif-

icant in the shortwave and previous studies have shown that changing the concentration

has negligible effects for solar radiation (Oumbe et al., 2008; Mueller et al., 2009), so this

concentration has not been changed from the original 1986 value. Rayleigh scattering de-

pends slightly on atmospheric pressure, so the baseline profiles are modified by including

monthly mean pressure and temperature profiles from each month from 2010–13 from

the ECMWF reanalysis (section 2.3.2) on a spatial grid of 1.5× 1.5◦. Ozone is a strong

absorber in the ultraviolet range and water vapour has absorption bands located through-

74



4.2. Generating a clear-sky index database for the UK

out the near infrared, so the monthly average specific humidity (for water vapour content)

and ozone mass mixing ratio from ECMWF are also provided.

Aerosol

The GLOMAP climatology is used for aerosols (section 2.3.4). This divides the MIDAS

stations into 11 regions based on GLOMAP grid cell (fig. 4.2). As only the first moment

of the aerosol phase function χ1 = g is provided by GLOMAP, and χ0 ≡ 1 by definition,

using more than two streams in the radiative transfer calculation is unnecessary. Tests

performed between the 2-stream and 6-stream versions of DISORT (assuming a Henyey-

Greenstein phase function for the higher phase function scattering moments in the 6-

stream version such that g j = χ j) for a number of locations in the UK using the GLOMAP

data show differences of less than 1% for θz < 70◦ and less than 4% for θz < 89.9◦,

typically within the ranges of cosine response error of high-quality pyranometers (Vignola

et al., 2012, Chapter 5).

Surface

Due to the lack of surface albedo measurements in the MIDAS data, the surface albedo has

been taken from the IGBP library (section 2.3.5). This may underestimate the albedo from

snow-covered surfaces in winter. Simulations with the two-stream solver in libRadtran

show that a perfectly reflecting surface (albedo 1) predicts about 13% higher downwards

radiation than a perfectly absorbing surface (albedo 0) for all solar zenith angles under

cloudless sky. Real surfaces are not purely absorbing and snow-covered surfaces are not

purely reflective so the actual differences are likely to be smaller than this for clear skies.

Solar position

To match the clear-sky simulation to observation as accurately as possible, a high-

resolution algorithm for solar zenith angle is required. Met Office data recording conven-

tions state that the observation recorded for each UTC hour (SYNOP climate message) is

actually taken 10 minutes before the hour (UK Met Office, 2015a). For solar irradiation

(HCM climate message), the time period of data collection runs from 70 minutes to 10

minutes before the observation time stamp. libRadtran provides the Blanco-Muriel et al.

(2001) algorithm for calculating solar zenith angle, which provides long-term accuracy

for solar zenith within 0.1◦. The hourly average cosine of the zenith angle is calculated

centred at 40 minutes prior to each hour of each day at each MIDAS station. This is

calculated internally in libRadtran as an average of minutely samples using the Blanco-

Muriel et al. (2001) algorithm. If the sun rises or sets during the hour, the zenith angle
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Figure 4.3: Histogram of all hourly kc values from 63 UK weather stations, 2010–2013

is calculated over the daytime (θz < 90◦) portion of the hour, the calculation of which is

also handled by libRadtran.

4.3 Distributions of clear sky index

4.3.1 All clear sky indices

Before isolating the values of clear-sky index for each okta, insight can be gained from

the overall distribution of clear-sky index kc, which is shown in fig. 4.3. The clear-sky

index is calculated by dividing the observed value of the solar irradiation data from the

MIDAS dataset by the theoretical clear-sky value as calculated by the radiative transfer

procedure described in section 4.2.2 (cf. eq. (2.15)).

Clear-sky index

The overall distribution is clearly bimodal with contributions from clear hours near kc = 1

and overcast hours near kc = 0.25, but a lower number of values for intermediate clear-sky

indices. Bimodal behaviour for hourly k′t values has been observed in Norway and Canada

(Olseth & Skartveit, 1987) with the monthly mean of hourly k′t defining the shape of the

76



4.3. Distributions of clear sky index

distribution. The clear sky mode at kc = 1 shows that the radiative transfer simulation

provides a good estimate of irradiation in cloudless skies.

The three-state model as described by Hollands & Suehrcke (2013) for instantaneous

clear-sky index (fig. 4.1) is partly observed in the hourly clear-sky indices for the UK.

Unfortunately Hollands & Suehrcke (2013) do not provide hourly aggregated distributions

of kc in their paper, as it is likely that averaging out of an hour of instantaneous kc values

will cause more values to fall into the intermediate case between the cloudy and clear

modes. In Hollands & Suehrcke (2013), whose study location was Australia, much of the

weight of the overall distribution of instantaneous kc lies in the clear-sky spike, whereas

for the UK hourly values the overcast mode is more prevalent (fig. 4.3). This is more

likely to be due to the differences between the climates rather than the aggregation time

of solar radiation observations.

There are a significant number of values from hours where kc > 1 indicating more solar

radiation than would be expected under cloudless conditions for a number of hours. For

instantaneous values of kc this is expected from the cloud enhancement effect, whereby

diffuse reflections from cloud sides and strong forward scattering from thin cloud layers

can make the surface irradiance exceed the clear-sky value for short periods, and is indeed

noted in Hollands & Suehrcke (2013). For hourly data, it is expected that the averaging

time would make these fluctuations cancel out. Sources of these high kc hours merit

further investigation.

Clearness and normalised clearness index

In fig. 4.4, the same hourly solar radiation observations are binned by kt and k′t (using

the Perez et al. (1990a) rescaling for clearness index, eq. (2.14)). The effect of this is

to change the denominator from the theoretical clear-sky radiation in eq. (2.15) to the

extraterrestrial radiation (eq. (2.13)) or a rescaling of this (eq. (2.14)). Neither the rela-

tionships for kt or k′t depend on a radiative transfer simulation so if there are errors in the

clear-sky radiation values this should become apparent with a lower number of extreme

observations for kt and k′t . When observations are grouped by clearness index (fig. 4.4a),

the binomial character of the distribution is hard to discern as the clear-sky spike has

been smoothed out by the airmass dependence of kt . The distribution of k′t (fig. 4.4b)

preserves the shape of the clear-sky index distribution with the entire distribution shifted

to the left such that the clear-sky spike is centred around 0.8. It can be observed that k′t
and kc exhibit approximately the same level of airmass independence due to their similar

distribution shapes. There are also fewer occurrences of very low transmittance under k′t ,

indicating that most instances of low clearness index in fig. 4.4a are airmass related.
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Figure 4.4: Histograms of (a) all hourly kt observations and (b) all hourly k′t observations from 63 UK
weather stations. In (a), the “rare but possible” and “erroneous” observations have been highlighted yellow
and red respectively.

There are very few observations where kt > 1 and none where kt > 1.15. It is not possible

to determine whether these points are outliers due to instrumental uncertainty from the

MIDAS irradiation values, inaccuracies in the calculated zenith angle, or if they actually

occurred. Vignola et al. (2012, Appendix A) suggests that while minutely clearness in-

dices can exceed 1 due to cloud enhancement effects, hourly-averaged kt exceeding 0.85

is never observed. In fig. 4.4a a very rapid drop in kt values above 0.8 is seen. Only 2%

of hourly observations recorded by Erbs et al. (1982) for five sites in the US exceeded

0.8. For elevation angles above 10◦, there were no hourly observations of kt exceeding

0.85 for seven sites in the contiguous US (NREL, 1993). While elevation angles lower

than 10◦ were not included, the larger air mass at these elevations make non-erroneous

occurrences of high kt values more unlikely, an observation noted by Perez et al. (1990a)

when plotting kt against elevation angle θe. Calculations in NREL (1993) using the Bird

& Hulstrom (1981) clear-sky model, which is based on a radiative transfer code, places an

upper limit of about kt = 0.9 for air mass 1 in an atmosphere containing Rayleigh scatter-

ing alone, conditions which are never observed at sea-level. The Linke turbidity method

gives a maximum kt at AM 1 and TL = 1 of 0.915 (fig. 2.4d), reducing to about 0.9 at the

UK maximum zenith of 27◦.

Based on these previous studies and the results obtained, it is possible to introduce an

additional QC check to the MIDAS data by requiring that clearness index be below a
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certain value. While this may reject good data at low elevation angles because small

errors in hourly elevation angle blow up when dividing by the extraterrestrial irradiation,

on the whole setting a maximum kt value should prevent erroneously high observations

of kc. It is decided to class observations of kt > 0.85 as erroneous. Observations of

kt > 0.8 are deemed to be physically possible, but rare. From the next section onwards,

when conducting analyses all datapoints where kt > 0.85 have been excluded. Applying

this criterion only rejects 0.34% of observations and is not expected to skew the results

significantly by excluding a large number of good datapoints.

4.3.2 Distribution by solar elevation angle

If the high extremes of kc are occurring at low solar elevation angles, it can be concluded

that the clear-sky index is not entirely airmass independent. In fig. 4.5, the clear-sky index

histograms are grouped into bins of elevation angle from 0–10◦, 10–20◦ and so on up to

the top group of 50–63◦. These histograms reveal different characteristics of the clear-sky

index distribution in each elevation angle bin. The θe ≤ 10◦ bin is unimodal showing the

greatest accumulation of kc values around 0.2–0.4. The spread of values is the largest

for any solar elevation class, and this group is also responsible for a large majority of the

extremely high, kc > 1.2, observations. For the 10 < θe ≤ 20◦ bin, the bimodal shape

of the distribution starts to become apparent. Low kc values are still more common, and

there is a lower frequency of extremely high observations. As elevation angle increases,

the kc ≈ 1 “spike” of the distribution becomes sharper and higher than the low kc “hump”,

which starts to flatten out and become more uniform, and instances of kc > 1.2 virtually

disappear. The height of the spike could be an indication of generally fairer weather

conditions at higher solar elevation angles, or could be a result in the reduction of the

variance in kc values in genuinely clear hours that cause the spike in the histograms to

contract towards kc = 1.

The histograms of k′t by elevation angle group (not shown) are very similar to those of

kc up to a scaling factor, so it is unlikely that the calculated clear-sky values from the

radiative transfer simulations contain serious errors.

There are several reasons why a large spread, including some very large, kc values can oc-

cur for θe ≤ 10◦. At low sun under a scattered cloud deck, reflections from the undersides

of clouds can enhance diffuse irradiance, or clouds near the horizon in the solar direction

can forward-scatter sunlight. The effect of snow in winter and how this enhances GHI has

been described above. None of these effects are sources of error and represent real-world

phenomena; they must therefore be included in the distributions.

Extreme high values of kc that have not been filtered out by the kt > 0.85 criterion could
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Figure 4.5: Histograms of observation of clear-sky index by solar elevation angle

be due to errors either in measurement or calculation. Irradiance reported by pyranome-

ters becomes less reliable at low solar elevations due to cosine response errors (Vignola

et al., 2012, chapter 5). When generating kc or k′t values, the hourly average zenith cal-

culations may not correspond with the exact solar position of the times the solar radiation

observations were made, or the hourly cosine-weighted mean zenith angle still may not

be an adequate representative of all conditions during the hours of sunrise and sunset.

Furthermore, UK MIDAS practice of recording measurements at 10 minutes before the

hour may not have been observed at all stations, or errors in the clock time at the MIDAS

site may be present2. Large differences between cosθz at the start and end of the hour

can account for this. Although the pseudo-spherical correction for the curvature of the

earth’s atmosphere is made in the radiative transfer code, all instances where θz > 90◦ are

set to zero in the hourly averaging of zenith angle. In reality a small amount of diffuse

irradiance at dusk and dawn is present and would contribute to the total received by a

pyranometer. On the other hand, the absence of a kc ≈ 1 peak at low solar elevations can

be due to instances of otherwise clear sky receiving a low kc value if the sun is obscured

by the horizon or trees in addition to the higher extreme values explained above.

2The datasets were originally analysed without the 10-minute offset where it was observed that the
distribution spread was even greater.
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Figure 4.6: Joint histogram of okta frequency count for each elevation angle bin. Percentages and shading
colour relates to the fraction of each elevation angle class (column) assigned to each cloud okta class.
Columns may not sum to 100% due to rounding.

4.3.3 Distribution of cloud fraction by solar elevation angle

The other possibility is that the different distribution shapes in fig. 4.5 are not in fact

erroneous at all and are caused by different cloudiness habits for each elevation angle

group. For example, near sunrise and sunset, cloudy conditions could be dominant ex-

plaining the shape of this distribution when θe ≤ 10◦, whereas midday conditions in sum-

mer (θe > 50◦) could be more associated with clear skies. To investigate this, a joint

histogram of elevation by okta is shown in fig. 4.6. For all elevation angle groups, oktas

0, 7 and 8 are much more commonly observed than intermediate values. This helps to

explain the bimodal distributions seen at each elevation angle bin except the lowest; the

spike is generated by okta 0 hours, and the hump is generated by okta 7 and 8 hours.

These “U-shaped” distributions of cloud okta, with most common observations near the

high and low extremes, have been commented on by several authors (Henderson-Sellers

et al., 1981; Olseth & Skartveit, 1984; Jones, 1992). The distribution of cloud okta oc-

currence is often modelled using a beta probability density function (PDF) which can

accommodate this bimodal shape (Falls, 1974).
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Figure 4.7: Distribution of clear-sky index by season

The frequency of okta 8 observations for θe ≤ 10◦ is greater than for higher solar eleva-

tions, but so too is the frequency of okta 0 observations, which is surprising given the lack

of kc = 1 spike. The higher number of okta 8 observations for θe ≤ 10◦ is offset by the

lower number of okta 6 and 7 observations. For all six solar elevation classes, the sum of

okta 6–8 counts is 62% or 63%. It cannot be assumed that the low solar elevation hours

are typically more cloudy than the high solar elevation hours. The differences in the kc

histograms must be due to other factors.

4.3.4 Distribution by season

As low elevation angles have a wider spread of kc, the next step is to determine whether

there is any difference in clear-sky index by season. The seasons are defined in their

usual sense: winter=December–February, spring=March–May, summer=June–August

and autumn=September–November. The results are shown in fig. 4.7.

It is interesting to note that the clear-sky spike is more prominent in spring and summer.

Spring and summer are clearer than autumn, which in turn is clearer than winter. The

higher clear-sky spikes for spring and summer may be due to the highest elevation angles

in these seasons. Therefore each season is sub-divided by elevation angle class in fig. 4.8.

The seasonal differences here are fairly clear to see. For θe ≤ 10◦, while there is no
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Figure 4.8: Distributions of clear-sky index for each elevation angle class and season. The x-axis runs from
0 to 1.5 with tick intervals of 0.2.

clear-sky spike for the spring distribution, the density difference between low and high kc

values is lower than for winter. For the 10–20◦ and 20–30◦ classes, the relative densities

of the spike and hump are weighted towards more clear observations in spring, followed

by summer, autumn and finally winter. Since only 4 years of data is used, it cannot be

assumed that this represents a climatology for the UK. There are an insufficient number

of observations to determine whether winter is less clear at θe > 30◦, but the spring →
summer→ autumn hierarchy continues.

It is likely therefore that the seasonal differences are caused by differences in cloudiness

levels and not just elevation angle. The proportion of okta observations split out by season

is shown in fig. 4.9. The two most interesting differences are that the proportion of okta

8 hours in winter is greater than at all other times of year, and the proportion of okta 0

hours in spring is clearly larger than the other seasons. Distributions in figs. 4.7 and 4.8

reflect this.

4.3.5 Distribution by MIDAS weather station

Owing to the influence of weather systems from the Atlantic and the rain-shielding effect

of hills and mountains such as the Pennines, the western side of the British Isles typically
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Figure 4.9: Cloud fraction occurrence each season

experiences more rainfall than the eastern side (UK Met Office, 2015b). To investigate

whether this pattern is prevalent in cloud transmission, the kc distribution from each of

the 63 “valid” weather stations in fig. 4.2 is investigated individually.

The 63 stations are grouped into 7 regions by sorting the station latitudes in order from

south to north. In fig. 4.10, the distribution of kc for each weather station is shown. The

subplot location in fig. 4.10 approximates the station’s geographic location relative to the

others, with each latitude band progressing from west to east. The colour scheme is the

same as in fig. 4.2 and the station ID codes have been added for ease of cross-reference.

Most individual stations exhibit the bimodal characteristic of clear-sky index that is a fea-

ture of the aggregated distribution in fig. 4.3. Some individual stations, typically located

in Scotland and Northern Ireland, have a low or non-existent clear-sky spike showing a

tendency for cloudiness. From south to north, there is perhaps a slight trend for a decrease

in overall cloud transmission by comparing the frequency densities of the low kc humps,

but this varies from station to station. There does not appear to be an overall trend in the

west to east direction. It should be borne in mind that deficiencies in pyranometer quality

and other localised affects may affect the kc values produced from individual stations.
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Figure 4.10: Histograms of kc for each individual MIDAS station. Station ID numbers are in the top-right
of each histogram. For station locations, refer to fig. 4.2.

4.3.6 Distribution by okta

The observations of kc were grouped by okta class as shown in fig. 4.11.

Each okta class shows a unimodal distribution which changes from left-skewed at the

lower oktas, through to approximately symmetric at oktas 5–6, to right-skewed at oktas

7–8 and obscured sky. As could be expected the kc ≈ 1 mode from the overall distribution

in fig. 4.3 is supplied from okta 0 and okta 1 classes with contributions from oktas 2 and

3. The low mode of the overall kc distribution results from oktas 7 and 8. Oktas 4–6

have intermediate modal values, but do not contribute as much to the overall distributions

as they are observed less often (fig. 4.6), thus giving the overall distribution its bimodal

shape.

What may be less expected is the large weight of the left tail for oktas 0 and 1, where

derived clear-sky indices are much less than 1 for no or very few recorded clouds. For

oktas 6 and 7, there are a significant number of observations where the irradiation received

exceeds the theoretical clear-sky amount. This phenomenon is reduced but not entirely

absent for okta 8.

The large spread of values for each distribution shows the inadequacy of using a one-
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Figure 4.11: Histograms of the kc value at each cloud okta class

to-one correspondence between cloud fraction and kc. To illustrate this further, the

Kasten-Czeplak relationship (eq. (4.2)) for two individual sites both in the Scottish Islands

(Stornoway, station ID 54 and Lerwick, station ID 9) with similar annual kc distributions

is shown in fig. 4.12. The spread of kc values derived for each okta is also shown as a

boxplot. Instead of using eq. (4.3) for the clear-sky irradiance the theoretical value from

radiative transfer computations are used and following Kasten & Czeplak (1980) hours

where the calculated hourly mean elevation angle is less than 5◦ have not been included.

A small modification is made to eq. (4.2) by multiplying it by a numerical prefactor as

the mean clear-sky index for okta 0 is less than 1. Unlike in Kasten & Czeplak (1980)

datapoints are not limited to hours in which okta is constant between the start and end of

the hour, but analysis has shown that this makes little difference to the results.

For Lerwick, the site-specific Kasten-Czeplak coefficients do not differ much from those

at Hamburg (exponent 3.4, attenuation factor 0.75), but for Stornoway the fit is drastically

different and is almost inverse linear with cloud okta. The Stornoway case is interesting

as Muneer & Gul (2000) found that the Kasten-Czeplak coefficients were a good fit for

data from 1992. Nonetheless, using the value suggested by the Kasten-Czeplak curve fit

neglects much of the plausible range of kc that is seen at each okta. The curves were fitted

using least-squares regression in Python. For lower oktas at Lerwick it can be seen that
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Figure 4.12: Kasten-Czeplak relationships, thick red curve, for (a) Lerwick (station ID 9) and (b) Stornoway
(station ID 54). The boxplots show the median (black line), 25–75 percentile range (green box) and 5–95
percentile range (whiskers) for each okta class.

the mean fit lies a long way below the median value of kc, showing the influence of the

heavy left tail of the lower oktas on the mean. At Stornoway, less than 25% of okta 0

observations exceed kc = 1, so there is a possibility at this site that the assumptions used

in the clear-sky model are incorrect. However, the cloud transmissions of other oktas

relative to okta 0 will remain the same and the exponent of 1.10 should not change under

a different clear-sky model.

4.3.7 Joint distribution by okta and elevation angle class

To investigate the spread of the distributions further, particularly in relation to the heavy

left tail for okta 0, the distributions at each okta class were subdivided by elevation angle

group (fig. 4.13). It can be seen that except for okta 8, the distribution of derived kc

is qualitatively different for the θe ≤ 10◦ group than for other elevation angles. For the

cloudless/almost cloudless situations of oktas 0–1, the distributions for θe ≤ 10◦ show a

higher proportion of low kc values than for higher elevation angle classes. For oktas 2–

7, the distributions move from right-skewed at θe ≤ 10◦ to left-skewed or approximately

symmetric at higher elevation angle classes. Only the overcast okta 8 distributions show

much similarity between elevation angle classes, and even in this case the shape of the tail
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Figure 4.13: Matrix of histograms of kc values for each okta class and solar elevation angle band. The
x-axis range runs from 0 to 1.5 with ticks in intervals of 0.2. y-axis scales have not been standardised to
more easily discern distribution shapes.

on the right-hand side admits higher values in the lower elevation angle groups.

One explanation for the differences in distribution shape by elevation angle class for oktas

1–7 are the relative probabilities of the solar beam being obscured by cloud. At low

solar elevations, the chances of the solar beam being obstructed are greater, as there is

both a greater path length through the cloud for each sunbeam to travel and a greater

projected area for each cloud to obscure (fig. 4.14). A related effect was noticed by

Muneer & Gul (2000) who found that the relationship between sunshine fraction and okta

was dependent on solar elevation and was not linear. The effect of cloud projection with

all else being equal would lead to lower kc values for lower elevations which reflects what

is seen at oktas 1–7. Low kc values at okta 0 for θe ≤ 10◦ could be effects from horizon

obstruction, ground reflection, small errors in zenith angle for sunrise/sunset hours, or

other differences as described in section 4.3.2.

Another reason is that as cloud okta is measured at the end of the hour and irradiation is

reported as an hourly sum, there will likely be a number of hours in which clouds could

affect a preceding hour’s irradiation total but have dispersed by the end of the hour. This

hour will still be recorded as okta 0, but will not have been cloudless for the entire pre-

ceding hour. For okta greater than 0, a similar effect of cloud dispersion, or the opposite
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θz = 30°

θz = 75°

(a)

(b)

Figure 4.14: Schematic of cloud shading for the same (fictional) cloud for solar zenith angle of (a) 30◦ and
(b) 75◦. Both the shaded area (light grey) and the maximum path length of the solar beam (yellow arrow)
increases at high solar zenith angles.

effect of cloud accumulation where predominantly clear hours increase in cloudiness to-

wards the end of the hour and receive a high okta class, can be the cause of low and

high instances of kc relative to that okta class mean, respectively. Previous studies on

clear-sky transmission have limited irradiation observations to hours in which okta does

not change from the start of the hour to the end of the hour (Kasten & Czeplak, 1980) or

used a weighted average of the current, preceding and next hour’s cloud fraction (Muneer

& Gul, 2000). This condition has not been imposed in this work as the goal is to relate

irradiation measurements and cloud fraction from the same hourly observation and such

low and high measurements should be expected occasionally.

4.4 Fitting statistical models

It is seen in fig. 4.13 that the distribution characteristics are different between low and

high solar elevation angles for each okta. In the first instance it can be seen there is a

clear divide between solar elevation angles of greater than and less than 20◦. Initially

therefore, distribution fits have been considered for θe > 20◦ only. A summary of the

first four moments of the distributions by okta are given in table 4.5. As reflected by the

distribution shapes, the mean clear-sky index decreases as okta increases. The standard

deviation has its lowest value for clear skies, increases steadily to its largest value at

okta 7, and decreases again for okta 8 and obscured skies. Overcast skies have a higher

standard deviation than clear skies because of the variety of cloud optical thicknesses that

can occur. Intermediate oktas have higher standard deviations still, as both cloud optical

thickness and the “on–off” process of clouds and cloud breaks passing the solar beam

path, combined with cloud enhancement and cloud reflection, can produce a wide range
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Mean St. dev. Skewness Kurtosis

okta 0 0.9423 0.1212 −2.391 7.308
okta 1 0.9038 0.1532 −1.641 2.797
okta 2 0.8566 0.1724 −1.092 0.9020
okta 3 0.8226 0.1788 −0.8215 0.2811
okta 4 0.7809 0.1887 −0.6206 −0.04745
okta 5 0.7441 0.1921 −0.4675 −0.2066
okta 6 0.6833 0.1974 −0.2328 −0.3998
okta 7 0.5111 0.2160 0.2045 −0.5071
okta 8 0.3362 0.1745 0.8230 0.5962
obscured 0.2442 0.1543 1.2700 1.602

Table 4.5: Statistics of the distributions of clear-sky index by okta class

of hourly-averaged transmission values.

The skewness describes how non-symmetric a distribution is, and the values of skew-

ness represent the observed shapes of the distributions moving from left-skew through

symmetric to right-skew. Finally, the (excess) kurtosis is a measure of how much of a

probability distribution weight is in the distribution tails, with a high kurtosis indicating

heavy tails. The normal distribution is defined to have a kurtosis of 0 such that negative

kurtosis is sub-normal. The low oktas 0 and 1 contain large amounts of their distributions

in the heavy left tails, whereas the intermediate oktas are closer to normal, and oktas 8

and 9 revert to positive kurtosis, a consequence of the right tails of these distributions.

4.4.1 General fit per okta

The highly negatively-skewed oktas 0–4 provide a particular challenge as positively-

skewed distributions tend to appear more commonly in natural processes (McLaughlin,

2014). There are no simple probability distributions that fit all oktas well. The beta

distribution could be a candidate, but would require defining a maximum and minimum

allowable kc to map on to the domain of [0,1]. Therefore, the two cases were consid-

ered separately: oktas of 4 or less, and oktas of 5 or more plus obscured sky. At the

crudest level these boundaries could be considered “mostly clear” and “mostly cloudy”

respectively.

Oktas 0–4: the skew-t distribution

After investigating over 80 distributions in Scientific Python (SciPy, Jones et al., 2015),

there were no candidate distributions that provided a good fit to the okta 0 and 1 his-

tograms owing to the large negative skew and large kurtosis. A complicated, 4-parameter

distribution, the skew-t (Azzalini & Capitanio, 2003), provides a reasonably good fit to
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Parameter µ σ α ν

okta 0 1.038 0.07559 −3.361 2.042
okta 1 1.052 0.1357 −5.548 2.762
okta 2 1.061 0.2424 −7.357 10.68
okta 3 1.051 0.29 −6.364 1.059×106

okta 4 1.022 0.3063 −4.601 4.683×106

Table 4.6: Skew-t coefficients for clear-sky index distributions, for oktas 0–4 and solar elevation angle
above 20◦.

the mostly clear cases. The skew-t distribution is not provided in Scientific Python and

was coded separately by the author.

The skew-t distribution has been used to model stock market returns (Bauwens & Laurent,

2005), biomedical records from athletes (Azzalini & Capitanio, 2003), fibre-glass strength

(Jones & Faddy, 2003) and crab claw length (Choudhary et al., 2014) amongst other

datasets. There are several related skew-t distributions that are defined slightly differently

(Aas & Haff, 2006). The definition used in this chapter is that of Azzalini & Capitanio

(2003). The PDF of this skew-t distribution is given by

f (x) =
1
σ

tν

(
x−µ

σ

)
2Tν+1

(
α

x−µ

σ

√
ν +1
x2 +ν

)
(4.6)

where tν(·) represents the PDF of the standard Student-t distribution with ν degrees of

freedom and Tν(·) is the cumulative distribution function (CDF) of the Student-t distribu-

tion (see for example Zelen & Severo (1964)).

The skew-t distribution takes the four parameters µ,σ ,α,ν . µ and σ define the location

and scale of the distribution. Unlike the normal distribution µ and σ do not correspond

to the mean and standard deviation of the skew-t distribution in the general case. α is a

skewness parameter, where a positive (negative) value of α indicates right (left) skew of

the distribution. ν > 0 is the degrees of freedom, which has some analogy to the standard

t distribution. Low values of ν indicate fat tails. The skew-t distribution is related to

the skew-normal distribution, which is the limiting case as ν → ∞ as in the non-skewed

versions of these distributions. The skew-normal distribution was also investigated on the

okta histograms, but was unable to account for the fat tails present in oktas 0 and 1. The

parameter fits for the skew-t distribution in fig. 4.15 are given in table 4.6.

One unsatisfactory aspect of the skew-t distribution is that it does not easily relate to

some physical representation of cloud thickness or cloud fraction. Additionally with four

parameters, it is more likely to fit real data than statistical models with fewer parameters

and it should not be surprising that it performs fairly well.
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Parameter a d p

okta 5 0.9629 3.425 8.61
okta 6 0.866 3.264 5.688
okta 7 0.6633 2.263 3.157
okta 8 0.1301 3.288 1.118
obscured 0.0009736 5.636 0.4616

Table 4.7: Generalised gamma coefficients for clear-sky index distributions, for oktas 5–9 and solar eleva-
tion angle above 20◦.

Oktas 5–9: the generalised gamma distribution

The generalised gamma is a superset of several common distributions used in mathematics

and engineering, and includes the gamma, exponential, Weibull, chi-squared, normal and

lognormal distributions as special or limiting cases. The PDF is given by (Stacy, 1962)

f (x) =
p/adxd−1 exp(−(x/a)p)

Γ(d/p)
(4.7)

where a, d and p are parameters and Γ(·) is the gamma function that generalises factorials

to all real numbers. The generalised gamma distribution fits to oktas 5–9 are shown in

table 4.7.

The method of maximum likelihood estimation in Python was used to fit the skew-t and

generalised gamma PDFs to each okta distribution. The plots are shown in fig. 4.15 for

θe > 20◦; the fits are less good when lower solar elevations are included.

Visually, the fits are fair to good for most oktas. The physical interpretation of these

distributions can be considered as follows. For low oktas, the skew-t distribution sets the

peak around a value close to 1, representing predominantly clear skies, with a heavy left

tail to account for varying levels of cloudiness. For the high oktas, the starting point is an

assumption of a varying level of cloud obscurity (given by kc near zero and much of the

distribution contained in the low-kc hump) which tails off exponentially to high kc values

to take into account the small number of hours where there is extensive cloud breaks or

the cloud is very light.

It would be beneficial to analyse the goodness of fit in the tails of the distribution with

a probability plot. However as the CDF of the skew-t distribution cannot be represented

analytically, it has to be approximated numerically. To generate the probability plot the

CDF would need to be evaluated numerically each time, and with over 300,000 datapoints

contained in the okta 0–4 classes, this appears to be beyond the computational resources

available.
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Figure 4.15: Skew-t (okta 0–4) and generalised gamma (okta 5–8 & obscured) fits to histograms of kc for
θe ≥ 20◦.

4.4.2 Application to weather generator

As described earlier, the purpose of generating a dataset of cloud transmissivities for

the UK is for a stochastic weather generator. The weather generator model produces a

minutely irradiance time series. Fluctuations in demand, as well as changes in resource

availability due to cloud shading, occur on the order of minutes (Cao & Sirén, 2014).

While some dedicated solar radiation stations such as BSRN and National Renewable

Energy Laboratory (NREL) do report irradiance minutely, the network of high-quality

radiation stations doing so is sparse. Therefore, a method to downscale hourly statistics

to minutely data is required.

The weather generator uses a minutely sun-obscured model, meaning that for every model

minute the sun is deemed to either be obscured by cloud, or not obscured. There are

therefore two distributions: one for clear-sky minutes, and one for cloudy minutes. A

Markov chain generates the base cloudiness for the hour in oktas. This determines the

number of minutes that are obscured by cloud. Then, the clear-sky index for each minute

is modelled depending on whether the sun is obscured for the minute and cloud fraction

for the hour.

The weather generator is coded in Matlab, and as such has a smaller range of available
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probability distributions than Python. The skew-t is unsuitable for generation of the large

arrays of random variables needed for the weather generator because its CDF does not

admit a closed form. The CDF of the generalised gamma distribution can be represented

analytically but is not native to Matlab, so simpler distributions for cloudy skies were

sought. In fig. 4.16 a normal curve has been fit to the okta 0 distribution and a number

of distributions related to the generalised gamma have been fit to oktas 6, 7 and 8. The

reasoning behind this is explained below.

4.4.3 Clear sky minutes

As shown in fig. 4.11, the distribution for okta 0 shows more left-skew than would be

expected. The left tail gradually narrows as elevation angle increases (fig. 4.13). As pre-

viously described the left tail may be due to clouds that are present and obscure the sun

partially during the hour of irradiation measurement but disperse by the end of the hour, or

due to local turbidity effects such as mist, haze or pollution. Where pyranometers are not

ventilated, it is possible that on clear mornings ice and dew can settle on the pyranometer

dome, preventing all of the sunlight reaching the thermopile. It may also be due to horizon

obstruction or ground reflection at low elevation angles, or error in pyranometer response.

There is also a possibility that high-level cirrus clouds that were present have been un-

seen by the observer at the MIDAS station. Notwithstanding all of these provisions, it

should be expected that for “genuinely” clear, cloudless hours under normal turbidity

conditions, the clear-sky index will be centred around unity. This is indeed observed from

the spike in each kc distribution above 10◦ elevation. The spike centred around kc = 1 in-

dicates that the GLOMAP aerosol climatology coupled with ECMWF water vapour and

ozone assumptions implemented in the clear-sky simulation are sound for the long-term

mean, except at possibly a few stations where local climatology effects dominate such as

Stornoway. It can therefore be assumed that the actual clear-sky irradiance can be drawn

from a probability distribution centred on kc = 1, where the fluctuation describes the ac-

tual water vapour, aerosol and ozone conditions away from the climatological average for

that month.

Because clear-sky irradiance should only depend on the extraterrestrial irradiance, zenith

angle, and atmospheric turbidity, where the latter can be assumed approximately constant

over the hour, there should be no reason not to use the hourly values to model minutely

clear-sky irradiance. To remove some of the influence of variations caused by low kc

values at low elevations, only hours where θe > 40◦ have been kept. A visual fit to the

spike of the distribution gives a normal probability curve with mean 1.0 and standard

deviation 0.033. The normal curve in fig. 4.16 has been scaled by 85%. In the Hollands

& Suehrcke (2013) model of instantaneous kc, the clear-sky component is modelled with
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a normal distribution curve centred on kc = 1.

In Bright et al. (2015), a normal distribution with mean of 0.99 and standard deviation

0.08 is used. This distribution was derived by considering hours where the solar elevation

angle is greater than 10◦ and only included data from the 2012 calendar year. With a large

standard deviation, large fluctuations away from kc = 1 occur often, so a smaller standard

deviation is more realistic.

4.4.4 Sun-obscured minutes

Overcast hours

Genuinely overcast hours will have an obscured sun for the whole hour and minute-by-

minute clear sky index generally does not exhibit much variation (Skartveit & Olseth,

1992). It is therefore appropriate to select a baseline kc value from the okta 8 distribution.

The reasonable fit of the generalised gamma distribution also suggests that one of its sub-

distributions or limiting cases may be appropriate. Rozwadowska (2004) found that cloud

liquid water content and cloud optical depth for marine stratocumulus clouds follows a

lognormal distribution for optical depth for okta 8. This suggests a good starting point

for investigation of cloud transmission. It is well known that not all clouds over the UK

are stratocumulus, and the presence of scattering means that a distribution that holds for

optical depth may not hold for transmission.

It is found in reality that the lognormal distribution is not the best fit to the data. The

gamma distribution provides a fair fit and is difficult to discern from the generalised

gamma, therefore it has been selected for the okta 8 distribution.

Partially cloudy hours

Partially cloudy hours present a more challenging situation as both cloud transmissivity

and cloud fraction affect hourly irradiation. It could be expected that the cloud types and

cloud transmissivity associated with partially cloudy situations are different to overcast

clouds. Fair weather cumulus will differ to poor weather nimbostratus.

An additional distinction is made to separate okta 7 from oktas less than 7. This is because

okta 7 makes up over 20% of observations alone and accounts for situations where the sky

is almost, but not completely, overcast. Cloudy periods from lower oktas are assumed to

follow the okta 6 hourly kc distribution. Okta 6 was chosen as it represents a mostly

cloudy state, so much of the hourly kc distribution will relate to moments when the sun is

obscured and it will not be affected by too many clear sky gaps. It is expected that cloud

transmission that will be qualitatively different from oktas 7 and 8.
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Hourly okta kc distribution for cloudy minutes PDF

0 N/A
1–6 Normal(µ = 0.6784,σ = 0.2046) exp(−(x−µ)2/2σ2)/σ

√
2π

7 Weibull(d = 2.4061,a = 0.5577) As eq. (4.7) with p = d
8 or 9 Gamma(d = 3.5624,a = 0.0867) As eq. (4.7) with p = 1

Table 4.8: Baseline clear-sky indices used for cloudy minutes

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Clear-sky index

0

2

4

6

8

10

12

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Okta 0, θe >40.0◦

Normal(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Clear-sky index

0.0

0.5

1.0

1.5

2.0

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Okta 6, θe >10.0◦

Gen. Gamma
Gamma
Lognormal
Weibull
Normal

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Clear-sky index

0.0

0.5

1.0

1.5

2.0

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Okta 7, θe >10.0◦

Gen. Gamma
Gamma
Lognormal
Weibull
Normal

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Clear-sky index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Okta 8, θe >10.0◦

Gen. Gamma
Gamma
Lognormal
Weibull
Normal

(d)

Figure 4.16: Simpler distribution fits to (a) okta 0 (clear-sky), (b) okta 6 (partially cloudy), (c) okta 7 (near
overcast) and (d) okta 8 (overcast) situations

The okta 7 distribution follows a Weibull curve very well and is assumed to be appro-

priate for this state. The okta 6 distribution can be modelled adequately with a normal

or a Weibull distribution. The normal distribution was chosen on the basis of a simpler

mathematical representation.

The distribution parameters derived from the histograms and shown in table 4.8 are similar

to, but different from, those in Bright et al. (2015). In this chapter, four years of data were

used, whereas to generate the distribution fits in Bright et al. (2015) only 2012 was used.

Additionally in the Bright et al. (2015) distributions, the upper kt limit of 0.85 was not

imposed, and the 10-minute to the hour convention for observations was not applied.
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4.4.5 Minutely variation

Left in this form, the clear and cloudy minutes from each hour will exist in a binary

fluctuation between the cloudy and clear kc values. Such a two-state clear-cloudy model

can be a useful simplification but does not represent observed conditions. There will also

be discrete jumps in baseline kc values between hours for both clear and cloudy minutes.

To solve this issue, the baseline kc value for cloudiness varies linearly from one hour to

the next, and for clear-sky minutes, only one value is selected that applies to all clear-sky

minutes on the same day. Then, statistical Gaussian noise is added to the baseline clear

or cloudy kc minute by selecting multipliers from a normal distribution with mean 1 and

standard deviation equal to

σ = 0.01+0.003c8 (4.8)

for cloudy minutes and

σ = 0.001+0.0015c8 (4.9)

for clear minutes, where c8 is the baseline hourly okta.

Two more adjustments are made: if the minutely kc selected from the distribution as

amended by the stochastic variation is less than 0.01, it is set to 0.01. Radiative transfer

simulations over the full range of zenith angles have shown this corresponds to a plane-

parallel cloud with optical depth of over 500. The second adjustment prevents very high

values of kc from occurring in the open-ended distributions by setting the maximum clear-

sky index to be

kc,max = 27.21exp(−114cosθz)+1.665exp(−4.494cosθz)+1.08 (4.10)

This formula was derived by fitting a least-squares curve to the highest values of kc ob-

served for each 1◦ elevation angle bin.

4.4.6 Direct/diffuse splitting and tilted irradiance

The clear-sky index is useful in that it provides a relationship to the transmission of the

direct beam (Behrendt et al., 2013). If kc lies between 19/69≈ 0.275 and 1, an empirical

relationship is

GB = GB,cs(kc−0.38(1− kc))
2.5 (4.11)

where GB,cs is the theoretical beam clear-sky value that can be calculated easily using li-

bRadtran. In the weather generator the HELIOSAT method (Hammer et al., 2003), which

is based on monthly average Linke turbidity from global maps produced by Remund et al.

(2003), is used to calculate GB,cs as it does not require an external call to libRadtran from
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the weather generator in Matlab and the HELIOSAT method is fast and flexible. For lower

kc values, it can be assumed that the sun is fully obscured and GB = 0, whereas for kc > 1

the beam is enhanced proportionally such that GB = GB,cskc. The diffuse irradiance is

calculated as expected such that GD = G−GB cosθz.

If the irradiance on a tilted plane is required, then this can be calculated with a direct-

diffuse transposition model such as the Klucher method; this is discussed extensively in

chapter 5.

4.5 Summary

A distributional approach for transmission of solar energy through clouds is undertaken

in this chapter, where the distributions are conditioned on solar elevation angle and cloud

fraction class (okta). This is an advancement on previous studies on the effect of cloud

transmission of solar radiation, which use a one-to-one relationship between cloud trans-

mission and cloud fraction.

. The hourly cloud transmission for the UK is shown to be bimodal, which supports ob-

servations from a number of other countries. It is shown that even when efforts are made

to normalise the air mass effect of atmospheric transmission by using a clear-sky index

instead of the more usual clearness index, there is still an elevation angle dependence

which may be due to increased path length transmission through clouds. This affects the

shape of the distributions for solar elevation angles less than 20◦.

It is difficult to fit common statistical distributions to the histograms of clear-sky index

by okta, because cloud transmission is dependent on solar elevation angle. The skew-

t distribution for oktas 0–4 and generalised gamma distribution for oktas 5–8 and the

obscured sky provide a reasonably good fit for elevation angles above 20◦. This is at least

in part due to these distributions being multi-parameter models. Reasonable simple fits

for okta 6 (normal), okta 7 (Weibull) and okta 8 (gamma) have been determined to use

as the baseline cloud transmissions in a stochastic weather generator. The distribution of

okta 0 was modelled as a normal distribution around kc = 1 following physical arguments

and the work of Hollands & Suehrcke (2013). A Gaussian multiplier is used to downscale

the generated hourly values of kc to minutely values. The model is shown to validate well

against real one-minute data from the Camborne BSRN station. Full details are provided

in Bright et al. (2015).

One weakness of the weather generator method is that it is unable to model the very sig-

nificant cloud enhancement effects that occur on the order of seconds to minutes. Cloud

enhancement typically occurs in broken cloud fields where the sun reflects from the sides
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of clouds alongside the solar beam being transmitted, and causes GHI to exceed the clear-

sky value (i.e. kc significantly greater than 1); in some cases cloud enhancement can

exceed the extraterrestrial irradiance (kt > 1). These effects are sufficiently prolonged to

be noticed in one-minute data. A natural extension to the weather generator is to include

the effects of cloud enhancement, and to downscale the model to shorter timescales, for

example one second. Work in this area is currently ongoing.
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Chapter 5

Plane irradiance using an integrated
radiance method

In chapter 4, a radiative transfer procedure for estimating transmission in clear skies was

found to be reasonably accurate for solar zenith angles less than 80◦, as shown by the

height of the clear-sky spikes in the cloud distributions. It was shown that the UK experi-

ences frequent cloud cover year-round as indicated by the bimodal shape of the seasonal

histograms. It would be useful to include clouds in computational estimates of surface

solar radiation rather than including them as a probabilistic adjustment at a later stage as

was performed in the previous chapter. While the UK benefits from a dense and historical

network of high-quality meteorological measurement stations, this is not true for several

other parts of the world.

In this chapter, cloud properties are included within the radiative transfer simulation to

simulate the all-sky1 radiation. The cloud (and other atmospheric) properties are derived

from satellite observations. The method is demonstrated for assessment of horizontal

irradiance. By using a high number of streams in the radiative transfer code, the ground-

level radiance distribution can be obtained, which can then be numerically integrated to

obtain the tilted irradiance at an arbitrary panel orientation. The tilted irradiance is of

importance because solar PV panel alignments are rarely flat.

A physically-derived procedure for calculating tilted irradiance is described, which is re-

ferred to as the Integrated Radiance (IntRad) method. The ground-level radiance field is

calculated from radiative transfer and this is integrated over the 2π steradian hemisphere

of view where the base of the hemisphere is in the plane of tilt. By using satellite data

as the inputs, good agreement with horizontal irradiation observations with the BSRN

dataset is observed. Five MIDAS sites are also included to show this method’s suitability

to UK conditions. The tilted irradiation cannot be validated against BSRN data, however,

one site of high-quality tilted irradiation data from NREL at Boulder, Colorado, USA, is

used for validation. For BSRN sites, comparisons against popular tilted radiation mod-

1any sky condition, not limited to clear or overcast conditions
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els in the literature are shown. For European and African BSRN sites included in the

validation a further comparison is made against the popular Photovoltaic Geographical

Information System (PVGIS) online tool.

As all of the input data are standard variables in climate models or reanalysis datasets,

this method can be used to predict tilted irradiance in future climate experiments.

5.1 Background and literature review

The orientation of a plane solar collector such as a PV panel can be varied in the tilt

and azimuth directions in order to maximise the incident irradiance. As placing pyra-

nometers in several different plane orientations at one site is not typically performed and

not a desirable allocation of resources for most solar energy installers, good models to

predict the tilted irradiance are necessary. There are two concepts fundamental to the

method described. Firstly, the radiative transfer concept is extended to include cloud opti-

cal properties as described in the introduction. Secondly, tilted irradiance is derived from

a numerical integration of the surface diffuse radiance field that is generated by the ra-

diative transfer calculation. The section below provides background on including clouds

in solar energy radiative transfer modelling and existing tilted irradiance models in the

literature are introduced.

5.1.1 Treatment of clouds in solar energy radiative transfer

modelling

Radiative transfer principles are frequently used to model clear-sky solar irradiance, for

example in the SPCTRAL2 (Bird & Riordan, 1986), SMARTS (Gueymard, 1995) and

SOLIS (Mueller et al., 2004) models. The SMARTS code is especially pertinent as it

provides the solar spectrum used for the ASTM-G173 AM1.5 standard (section 2.5).

Clouds can be introduced as an adjustment to the clear-sky values. For example in chap-

ter 4, clear-sky radiative transfer values were adjusted by applying a cloud transmission

factor that was taken from a distribution of long-term observations and depended on the

cloud fraction. Cloud albedo values reported from satellites can be correlated to cloud

transmission (Cano et al., 1986) or the ground-level spectrum tuned based diffuse and

global irradiance (Nann & Emery, 1992). In other studies cloud effects are included di-

rectly within the radiative transfer code. Lohmann et al. (2006) used cloud data from

the ISCCP with the two-stream DISORT radiative transfer code within libRadtran to esti-

mate surface DNI and GHI. Deneke et al. (2008) used cloud retrievals from the Meteosat

satellite family in combination with 16-stream DISORT to estimate solar irradiance in
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the Netherlands. They showed a mean bias difference (MBD) and RMSD of −3.0% and

4.2% for monthly insolation. Mueller et al. (2009) used a lookup table approach for

clouds with transmissions pre-calculated with radiative transfer and values interpolated

from the lookup table. They used a cloud effective radius of 10 µm for water droplets

using the Hu & Stamnes (1993) parameterisation of the phase function and did not con-

sider ice clouds. While this may be sufficient for GHI, this approach is less accurate when

calculating the radiances required for the tilted irradiance as in the current study.

One of the most difficult aspects of using radiative transfer concepts to include clouds is

that the direct and diffuse transmission depends strongly on cloud microphysical proper-

ties, which is why neglecting ice clouds and setting a fixed effective radius size for water

clouds may be an oversimplification for calculating radiances and hence tilted irradiance.

Current satellite products often include the required cloud microphysical and optical prop-

erties, namely cloud phase (water or ice), cloud optical depth, and cloud droplet effective

radius, to allow radiative transfer simulations including clouds to be performed.

There are several motivations for inclusion of clouds inside the radiative transfer calcula-

tion for generating radiance fields. The first is for the development of solar energy models

that can be applied to a wide variety of historical, current and future datasets, for example

the ECMWF reanalysis or CMIP5 climate models considered in this thesis, as well as

satellite observations. Another is the spectral effects of cloud attenuation are better cap-

tured with radiative transfer simulation, which is important for PV as shown in chapter 6.

In this chapter, the optimal tilt angle of a fixed-angle solar collector is considered. In

the absence of horizon obstruction, shading, or radically different morning and afternoon

weather conditions, the equatorial direction (i.e. facing south in the northern hemisphere)

provides the best azimuthal alignment. A south-facing panel is primarily considered to

reduce the size of the search space for optimisation, although non-south alignments can

be considered as shown in section 5.5.4. The solar panel tilt angle is varied in steps of

1◦ to find the irradiance at each angle and the irradiance calculated at these tilts summed

over a year of operation to determine the optimal orientation.

5.1.2 Review of tilt models

The tilted irradiance GT can be considered physically as the sum of direct, diffuse and

reflected components of sunlight such that (Gueymard, 2009)

GT = GB cosθi +GDRD +ρ(GB cosθz +GD)RR (5.1)
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where GB is the DNI arriving on the tilted plane at incidence angle θi, GD is the diffuse

irradiance on a horizontal plane, RD is the diffuse transposition factor, ρ is the surface

albedo and RR is the reflected transposition factor. The transposition factors indicate the

proportion of diffuse and reflected irradiance received by a tilted plane.

The following paragraphs introduce some commonly-used tilt models, and methods that

have been used to optimise tilt angle.

Latitude-based

A “rule of thumb” for annual optimal tilt is that is should be equal to latitude on the

basis that this minimises the incidence angle between the solar beam and the normal to

the panel surface at solar noon. Effectively, this sets cosθi as close as possible to 1, and

assumes that the diffuse and reflected components in eq. (5.1) are either small or that the

diffuse irradiance mostly arises from the same direction as the solar beam.

Several authors have proposed a modification to this simple form of the general formula

such that the optimal tilt βopt is

βopt = Al +B (5.2)

where l is latitude, A is in the range of 0.9–1.0 and B is between−15 and +30, in degrees.

These formulae were derived for solar water and space heating (Armstrong & Hurley,

2010b; Yadav & Chandel, 2013, and references therein). Given the range of latitude-tilt

relationships spans at least 45◦, it is clear that even this rule of thumb is location dependent

and these relationships are not suitable for general usage.

Additionally, for areas of the world with significant cloud cover, the equal-to-latitude as-

sumption does not hold true due to the frequent obscuring of the sun by clouds. Armstrong

& Hurley (2010b) showed that for Dublin, Ireland, at a latitude of 53◦, the yearly optimal

tilt was 33◦ using a clearness-index based correlation for the diffuse radiation amount and

the Perez et al. (1990b) diffuse irradiance model which is introduced later in this section.

This is outside of the range of the latitude-tilt relationships in eq. (5.2). It also suggests

that the diffuse radiation under cloud cover is significant, and not distributed in the same

manner as the direct beam.

Isotropic models

One simple way to handle the diffuse radiation is to consider it to be isotropic, meaning

that it is the same intensity from every direction. Owing to geometrical considerations, the

diffuse transposition factor in eq. (5.1) is RD = (1+cosβ )/2 where β is the tilt measured

from horizontal. This is the Liu & Jordan (1962) model. The Badescu (2002) isotropic

model was proposed to properly account for the azimuthal (from the perspective of the
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solar collector) contribution to the isotropic sky diffuse radiation. Badescu (2002) there-

fore suggests RD = (3+cos2β )/4. Despite its higher geometrical precision, the Badescu

model is seldom preferred to the Liu-Jordan model in the solar energy literature even

today, possibly due to the simplicity and long history of use for the former.

If the reflected irradiance is also assumed to be isotropic, the reflected transposition factor

is RR = (1−cosβ )/2 for the Liu-Jordan model and RR = (1−cos2β )/4 for the Badescu

model. RD and RR are simply the fractions of the sky and ground that are in view of the

tilted plane in 2 dimensions and 3 dimensions for the Liu-Jordan and Badescu models

respectively.

Further modifications have been made to the geometric argument to take account the

observed reality that in the northern hemisphere, southern skies appear brighter. Thus

Koronakis (1986) suggests RD = (2+ cosβ )/3. As this is applicable only for a south-

facing plane based on sky brightness in this direction it is not strictly an isotropic model

but has been classified as such (e.g. in Gracia-Amillo & Huld (2013); Yadav & Chandel

(2013)). A better term would be “one-parameter”.

Anisotropic models

The benefit of both latitude-tilt relationships and isotropic/one-parameter models are their

simplicity. However, both are incapable of reproducing the wide range of diffuse radia-

tion situations found other than those where very clear skies prevail year-round (where

latitude-tilt is appropriate) or in heavily overcast situations (where isotropic diffuse irra-

diance is a good approximation).

Therefore more sophisticated models were developed for RD, to account for the direc-

tional dependence of sky radiance. Temps & Coulson (1977) placed 49 pyranometers at

tilts in steps of 15◦ in zenith and 30◦ in azimuth (only one direction was considered as-

suming symmetry) to create an irradiance map for clear sky conditions. It is found there

are three components of sky diffuse radiation: the circumsolar, which emanates from

near the direction of the sun and is a consequence of forward scattering due to aerosols;

the horizonal, describing an apparent increase in brightness towards the horizon; and the

isotropic. Klucher (1979) extended the Temps & Coulson model by including a modulat-

ing factor F = 1− (GD/(GB cosθz +GD))
2 to account for cloudy skies:

RD =

(
1+ cosβ

2

)(
1+F sin3 β

2

)(
1+F cos2

θi sin3
θz
)
. (5.3)

The first term in eq. (5.3) is the Liu-Jordan isotropic model, the second term is the addi-

tional horizonal component, and the third term is the circumsolar contribution. If cloudi-
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ness is high, F ≈ 0 and the sky radiation is approximately isotropic being dominated by

the first term of eq. (5.3). For clear skies F approaches 1 and the anisotropic Temps-

Coulson model is recovered. A slightly different anisotropic model that differentiates

between clear and cloudy cases and arises from the same arguments was introduced by

Reindl et al. (1990).

The main advantages of the Klucher model are that RD is relatively easily calculated, is

analytic, relates to physical reality, and is easy to grasp. Other anisotropic tilted irradiance

models (Skartveit & Olseth, 1986; Gueymard, 1987; Perez et al., 1990b; Muneer, 1990)

use increasingly complex, empirically-derived equations with numerical coefficients but

have high popularity due to their generally good representation of tilted irradiance (Guey-

mard, 2009; Gracia-Amillo & Huld, 2013). The Muneer (1990) model is of particular

interest, as it is the tilt model used in PVGIS that is compared later in this chapter. The

complexity in Muneer’s model arises in using different relationships for shaded/overcast

and sunlit surfaces with a correction for low solar elevation angles. The expressions for

each case are more complex than that shown in eq. (5.3).

Performance of tilted irradiance models

A comparison between ten tilt models at the NREL site at Golden, Colorado, USA, found

that most anisotropic models did not predict irradiance with a satisfactorily low error for

tilted planes compared to the bounds of instrumental error from pyranometers (Gueymard,

2009). In fact, the relatively simple Klucher (1979) model performed at least as well as

several of the more complex models. An intercomparison of 15 models in Denmark,

France and Spain showed that isotropic models were deficient and that no one anisotropic

model generally performed better than the others consistently when considering different

cloud conditions, tilt angles and azimuth angles (Gracia-Amillo & Huld, 2013). There-

fore, the continued development of tilt models that can adequately model all atmosphere,

cloud, zenith and panel orientation conditions is desirable.

Optimising tilt

To find the optimal tilt, models can be run for a range of likely candidate tilt angles to

determine the βopt which maximises GT . This is the approach taken with the IntRad

method to find optimal tilt (the so-called iteration method). Another approach is to not

be concerned with the tilted irradiance available at an arbitrary angle if the goal is only to

seek the optimal tilt angle for a given location or conditions.

Barker & Christensen (2001) introduced a dependence on local average clearness index

to determine how close to latitude the optimal tilt angle βopt would be with the following
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Study Optimisation
method

Diffuse
irradiance

Location &
latitude

βopt

Chang (2009) Artificial neural
network

Not included Taiwan, 25◦ 23.25◦

Chang (2010) Particle swarm
optimisation

Isotropic Taiwan, 25◦ 18.16◦

Armstrong &
Hurley (2010b)

Iteration Perez Ireland, 53◦ 33◦

Talebizadeh et al.
(2011)

Genetic
algorithm

Isotropic Iran, 32.5◦ 29.05◦

Table 5.1: A selection of optimisation methods for optimal tilt angle of a solar collector

relationship:

βopt =±[(0.379+ kt,year)l−20.6(1− kt,summer/kt,winter)] (5.4)

with l representing latitude and kt, j representing clearness index where for j winter =

{November, December, January} and summer = {May, June, July} (vice versa in the

southern hemisphere). The ± symbol denotes positivity in the northern hemisphere and

negativity in the southern hemisphere if southern hemisphere latitudes are defined as neg-

ative. Clearness index is derived from the irradiation totals over the time period of interest

and is described in section 2.1.4. The formula was derived using the Perez et al. (1990b)

diffuse irradiance model.

Several novel optimisation techniques, inspired by biological and physical processes, have

been developed in recent years. These methods, including artificial neural networks, ge-

netic algorithm and particle swarm optimisation, have been applied to optimising tilt angle

in various parts of the world (table 5.1).

As the differences between the studies by Chang (2009, 2010) (table 5.1) show, the result

obtained from optimisation methods depends on the diffuse radiation assumption used

(or whether it is included at all). Therefore, describing the diffuse radiation distribution

accurately is essential.

5.2 Determining tilted irradiance from radiances

If the diffuse radiance distribution is known, it is not necessary to use a tilt model based

on an empirical relationship for RD in eq. (5.1). The irradiance on a tilted plane angled

at tilt β and azimuth γ is a combination of the downwards and upwards radiance fields

such that the bounds of the integration is over the hemisphere with base in the plane of
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the solar collector (Gueymard, 1987):

GDRD =
∫ 2π

0

∫
θm

0
I(θ ,φ)cosθd sinθ dθ dφ (5.5)

where the angle between the normal of the tilted plane and the radiance direction of inter-

est is given by

cosθd = cosβ cosθ + sinβ sinθ cos(φ − γ) (5.6)

and the bound of the integration θm is in the plane of the solar collector such that

θm =
π

2
− tan−1(cos(φ − γ) tanβ ). (5.7)

θ is the polar angle and φ is the azimuthal angle.

McArthur & Hay (1981) used radiance distributions obtained from fish-eye photographs.

This consisted of dividing the photographic image into 2629 discrete regions, measuring

the brightness for each region, and assigning a radiance value I [W m−2 sr−1] to each re-

gion as a function of the image brightness. The pixel values of the images were calibrated

to an in-situ actinometer which provided the radiance values. Equation (5.5) is approxi-

mated numerically by summing each radiance element over small solid angles ∆θ∆φ such

that

GDRD ≈∑
j
∑
k

I(θ j,φk)W∆θ j∆φk (5.8)

where

W = max(0,cosθd j sinθ j) (5.9)

to ensure only the radiances in the field of view of the solar collector are counted. cosθdi

is as given in eq. (5.6) with (θ ,φ) replaced with (θ j,φk). The McArthur & Hay (1981)

method obtained agreement to ±10% for horizontal diffuse irradiance and ±5% for tilted

irradiance on a south-facing plane (30◦ , 60◦ and 90◦ tilt), in a variety of sky conditions.

Gueymard (1987) started from the basis of calculating the weighted average of the clear

and overcast radiance fields before performing the integration and applying coefficient

fits to the result to generate the anisotropic tilt model referenced in the previous section.

Cloud opacity was used as the weighting factor between clear and overcast radiance dis-

tributions. According to Gueymard, cloud opacity is an observation recorded at some

airports. If it is not available it can be estimated from total cloud amount, hours of sun-

shine or diffuse-to-global irradiance ratio, GD/G. The Gueymard coefficient series is

fairly complex, being a third-order polynomial in cosθi added to a sine series in panel tilt

angle, the coefficients of which are themselves third-order polynomials in solar elevation

angle.
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Brunger & Hooper (1993) derived an empirical model for the sky radiance distribution

taken from radiometer measurements of the sky. The relationship was a function cal-

culated from tabulated observations of clearness index and diffuse-to-global ratio. As

with the Perez equation for diffuse irradiance, the Brunger coefficients are from a discrete

lookup table. The complexity of the Gueymard formula and the discrete lookup table ap-

proach of the Brunger formula show that it is difficult to ascribe an algebraic relationship

between sky radiance and diffuse tilted irradiance, especially one from a physical basis.

Using digital photographs available today, it is possible that the McArthur & Hay (1981)

method could be used to provide more accurate estimates of tilted irradiance by assign-

ing pixel brightness values from a fish-eye camera directly to radiances. This could be

performed instantly, without the need to digitise photographic negatives. In practice, sky

radiance can be measured with instruments such as the EKO MS-321LR Sky Scanner2.

In the IntRad method described in this chapter, the diffuse radiance field is calculated us-

ing the DISORT radiative transfer code as part of the libRadtran package (section 2.2.6).

The radiative transfer equation is solved numerically with 16 streams, the minimum rec-

ommended for calculating radiances (Mayer et al., 2012). The diffuse radiance field I is

calculated at a resolution of 3◦ in the polar direction and 10◦ in the azimuthal direction.

In DISORT, a pseudo-spherical correction has been implemented to improve accuracy at

low solar elevations (Dahlback & Stamnes, 1991).

The downwelling radiances account for the anisotropy of the sky whereas the upwelling

radiances from the ground are assumed to be isotropic and are equal to

I(θ j,φk) =
1
π

ρ(GB cosθz +GD), θ j > 90◦. (5.10)

At non-zero tilts, the field of view will include some upwelling radiances from the ground

and exclude any sky radiances emanating from directions behind the solar collector. The

relative weight of each radiance bin to the tilted irradiance total is governed by W in

eq. (5.9).

The numerical approximation in eq. (5.8) is performed for the diffuse irradiance only. The

DNI is simpler to calculate. From the Beer-Lambert law (eq. (2.19)) the DNI is

GB = G0 exp(−maτ) (5.11)

τ is the overall sum of the optical depths of all extinction phenomena in the atmosphere,

e.g. mixed gases, ozone, water vapour, aerosols and cloud droplets. For a tilted plane, the

2http://eko-eu.com/products/solar-radiation-and-photonic-sensors/sky-

scanner/ms-321lr-sky-scanner
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direct incidence irradiance is

GBT = GB cosθi (5.12)

where the incidence angle θi follows a similar form to eq. (5.6):

cosθi = cosβ cosθz + sinβ sinθz cos(φa− γ). (5.13)

Here, θz is the solar zenith angle and φa is the solar azimuth angle. In order to greatly

speed up computations, the correlated-k method (section 2.2.7) is used to calculate broad-

band radiance for the 61×36 radiance directions at the 3◦ zenith × 10◦ azimuth resolu-

tion.

The radiative transfer method bears an advantage over anisotropic tilt models in that no

assumption of the size and shape of the circumsolar region is made. When making ground

irradiance measurements, DNI is not usually discernible from diffuse irradiance that has

been scattered into the region of the solar disc or diffuse radiation emanating from the

solar region that has been caused by strongly forward scattering aerosol or thin cloud.

This can cause issues in calculating the direct and diffuse contributions as a decision has

to be made on the angular size of the circumsolar region (Blanc et al., 2014). Often a

half-angle of 2.5◦ is used with all irradiance inside this region treated as direct, which is

the World Meteorological Organization (WMO) definition of DNI for pyranometer mea-

surements. However, the actual size of the circumsolar region depends on the present sky

conditions and can be greatly enhanced in conditions of high aerosol and thin cloud. In

the IntRad model, all radiation that has been scattered at least once is correctly treated as

diffuse regardless of the scattering direction with the directional distribution handled by

the radiance method.

5.3 Inputs into the model

To generate the radiance field, inputs of the atmospheric state, location altitude, clouds,

aerosols and surface albedo are required. Although any climate, satellite or reanalysis

dataset that provides all of the necessary inputs can be used, the MODIS instrument data

on the Aqua and Terra satellites are used for all parameters except aerosols for which a

climatological run from a dedicated aerosol model (GLOMAP) is used.

MODIS Level 3, 8-day mean data for ozone, water vapour, and cloud parameters

(MOD08E3 and MYD08E3 data series, both Collection 5.1) were used. Surface albedo

was obtained from the combined Terra and Aqua 16-day running mean albedo product

MCD43C3, which is updated every 8 days. The resolution of the atmosphere and cloud

data is 1◦ × 1◦ and the albedo data is 0.05◦ × 0.05◦. 8-day time resolution is used as
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a trade-off between capturing fluctuations in weather conditions and computational effi-

ciency. Daily and monthly timesteps are also available for the Level 3 MODIS data.

5.3.1 Atmosphere

Well-mixed gases in the atmosphere are a source of Rayleigh scattering which is de-

pendent on wavelength. Shorter wavelengths are scattered more strongly, approximately

proportional to the fourth power of wavelength.

The location and time of year dictates which of the particular AFGL atmospheres were

selected in the calculation, however as discussed in chapter 4 the impact of well-mixed

GHGs on the final result is negligible. Ozone and water vapour are included, so the total

atmospheric column depths of ozone and water vapour are taken from the MODIS data.

5.3.2 Clouds

Clouds are both the largest attenuating factor in the transmission of solar radiation and

the source of the largest uncertainty for many regions of the world, the principal excep-

tions being in areas of high aerosol optical depth and infrequent clouds such as deserts.

Both liquid and ice water clouds exhibit complex scattering properties. As discussed in

section 2.2.3 the optical properties of clouds are determined by cloud droplet effective ra-

dius reff, cloud water content and cloud geometric height. From these factors the radiative

properties (single scattering albedo ω , phase function P(cosΘ) where Θ is the scattering

angle, and optical depth τc) can be determined. How the cloud microphysical properties

are converted to radiative properties depends on the parameterisation used.

Owing to the large uncertainties in modelling clouds in time and space, it was decided to

use a simplified approach with two atmospheric columns, one clear and the other overcast.

The resulting radiance distribution is weighted between the two situations based on cloud

fraction fc. To define the cloudy column, the cloud liquid water content Cl , cloud ice water

content Ci (both g m−3), cloud fraction, cloud height hc, reff,l and reff,i (effective radius

for liquid and ice) are used. reff,l and reff,i may be, and usually are, different. Occasionally

no MODIS cloud droplet effective radius can be determined. Where this occurs, a size

of 10 µm is used for liquid droplets and 30 µm for ice crystals, following the convention

used in ISCCP.

Where both liquid and ice clouds are present, they are aggregated into the same column

to create one mixed-phase cloud. The MODIS data provides cloud water paths pl and

pi whereas libRadtran requires inputs of Cl and Ci. The satellite retrieval of liquid and

ice water path is an average of clear and cloudy observations, so to get the water path
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for cloudy pixels only, pl and pi are divided by cloud fraction fc. To convert cloud

water paths to cloud water content, it needs to be divided by cloud geometric height hc

(eq. (2.29)). For single scattering albedos ω → 1, which is the case for the majority of

solar wavelengths (Hu & Stamnes, 1993), the fraction of transmitted to incident irradiance

is approximately independent of the cloud geometric height. This has previously been

demonstrated in radiative transfer calculations (Rozwadowska, 2004; Oumbe et al., 2008).

For mathematical convenience and consistency with other investigations (e.g. Lohmann

et al. (2006)) the somewhat arbitrary hc of 1 km has been chosen. The exception is where

the cloud top height ht derived from the satellite data is determined to be less than 1 km

in which case it extends down to the surface. Currently ht is only reported for Aqua, so

cloud top pressure pt , which is available from both satellites, was converted to height for

both Terra and Aqua data using the pressure-altitude relation:

pt/p0 = exp(−ht/h0) (5.14)

with p0 = 1013 hPa and h0 ≈ 8.5 km being the atmospheric scale height. Where no cloud

top pressure is available in the retrievals, a level of 700 hPa, corresponding to a height of

about 3 km, has been assumed. The most important reason to include cloud top height

is to determine whether the clouds retrieved for a 1◦× 1◦ grid cell are determined to be

below the site of interest in mountainous areas.

MODIS provides a third cloud state, “undetermined”, which is returned when the cloud

retrieval algorithm detects clouds in a pixel but fails to identify their phase. For the un-

determined cloud water path in a 1◦×1◦, half is assumed to be liquid and half to be ice.

The specific assumptions used for modelling liquid and ice clouds are detailed below.

Liquid clouds

As cloud droplets can be modelled very well as spheres and are typically several times

larger than the wavelength of light in the solar spectrum, for calculating radiances it is

recommended to use the full Mie scattering parameterisation for liquid cloud droplets

(Mayer et al., 2012). The Mie parameterisation provides ω and the moments of P(cosΘ)

as a function of wavelength. This is available as an extension to the core libRadtran pack-

age in the form of pre-calculated lookup tables generated using the Wiscombe (1980)

Mie scattering code. Effective radius reff,l is provided by the MODIS data, and this cor-

responds to a gamma distribution of droplet radii for the Mie calculations.
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Ice clouds

The cloud retrieval algorithm for Collection 5.1 in MODIS uses a mixture of particle

habits depending on the maximum diameter Dmax of the ice crystals: 50% solid columns,

15% 3D bullet rosettes and 35% hexagonal plates for particles where 60 < Dmax <

1000 µm, and 45% solid columns, 45% hollow columns and 10% aggregates for par-

ticles where 1000 < Dmax < 2000 µm (Baum et al., 2005; Menzel et al., 2010; Minnis

et al., 2011). A definition of 100% solid columns has been used in IntRad due to the dif-

ficulties of mixing habit types and the fact that solid columns make up the largest part of

the mixture in the range of 60 < Dmax < 2000 µm corresponding to reff,i of approximately

20–120 µm. This encompasses the majority of ice cloud effective radius retrievals. Out

of the single-habit assumptions, solid columns provide the best estimates of ice water

content and reff,i (Baum et al., 2005). The ice scattering has been represented by a double

Henyey-Greenstein (DHG) phase function using the Key et al. (2002) model. The DHG

is a convenient simplification of the real phase function that is suitable for modelling

radiances due to its ability to somewhat account for the forward and backward scatter-

ing peaks better than the simpler single Henyey-Greenstein (HG) phase function (Mayer

et al., 2012). The DHG phase function is smooth and does not include effects such as the

22◦ and 46◦ halo scattering peaks present in pristine hexagonal columns and plates. The

roughened hexagonal column phase function has a less strong forward scattering com-

ponent than pristine hexagonal columns and does not exhibit a halo effect, therefore is

represented better by the DHG phase function. The assumption of roughened hexagonal

columns provides the lowest RMSD in optical depth for MODIS retrievals (Xie et al.,

2012) adding justification for the smooth DHG phase function approximation.

5.3.3 Aerosols

A monthly aerosol climatology is provided by the GLOMAP model (section 2.3.4).

MODIS data for aerosol has not been used as aerosol properties are not always avail-

able over land, particularly in desert regions which are important for solar energy and

aerosols are prevalent.

5.3.4 Albedo

The surface albedo is the proportion of downwards irradiance that is reflected by the

earth’s surface. In reality, surface albedo is a function of wavelength and solar zenith

angle as direct and diffuse irradiance components have different reflectance properties.

Albedo is important in the tilted irradiance calculation as it defines the amount of reflected

irradiance available from the ground that is available to a solar collector. Even at zero tilts,
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a higher surface albedo can increase downwards irradiance due to multiple reflections

between surface and atmosphere, particularly if clouds are present (Gueymard, 2009).

The black-sky and white-sky albedos are calculated from the bi-directional reflectance

distribution function which describes the reflected radiance as a function of incident and

reflected directions. Black-sky albedo is the albedo assuming all direct irradiance and

no diffuse irradiance and is a function of solar zenith angle, whereas white sky albedo

assumes a purely diffuse isotropic source and is independent of solar geometry. White

sky albedo has been used in the IntRad simulation as its solar zenith independence makes

it easier to use. Deneke et al. (2008) has shown that this does not introduce significant

error in a variety of conditions. Surface albedo is spatially and temporally variable, even

throughout the course of the same day (Gueymard, 2009), with the surface properties

within a few metres of the solar collector of greatest importance.

Sometimes it is possible that there are no albedo values retrieved during a 16-day period

for some parts of the world. This could happen where consistent cloudy conditions pre-

vent observations of the surface being made. In these cases where no albedo measurement

exists for a 0.05◦×0.05◦ cell, the mean value from the 21×21 cells surrounding the grid

square (1.05◦×1.05◦) is used. In very rare cases where no 1.05◦ mean exists, the spectral

albedo is taken from the global 1
6
◦× 1

6
◦

map of different surface types in the IGBP land

cover dataset (section 2.3.5).

5.4 Modelling flowchart

The modelling flow diagram is shown in fig. 5.1.

5.5 Application of the model

5.5.1 Evaluating performance

The two measures used to evaluate models are the mean bias difference MBD and root-

mean-square difference RMSD. The MBD is a measure of bias that describes how far,

on average, the models agree, whereas the RMSD measures the spread between model

estimates. Both are normalised by the mean of the data and expressed as a percentage.

Therefore

MBD =
1

No

N

∑
j=1

(e j−o j) (5.15)
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Figure 5.1: Flow diagram of modelling process

and

RMSD =
1
o

√√√√√√
N

∑
j=1

(e j−o j)
2

N
(5.16)

where e j are the estimates provided by the model, o j are the observed values or otherwise

estimates provided by a reference model, and o is the mean of the observations.

One year of atmosphere, cloud and albedo data from 2013 was input into the radiative

transfer calculation, and the solar zenith and azimuth were calculated at the centre of each

hour for the middle day in each 8 day period. The diffuse radiance field L and direct hori-

zontal insolation GB cosθz for each hour are the outputs from libRadtran. Plane irradiance

for a particular tilt and azimuth is obtained by applications of eqs. (5.8) and (5.12) and

summing the results.
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5.5.2 Radiance distributions

Figure 5.2 shows the diffuse radiance distributions for clear sky, overcast sky and all sky,

for the hour of 12:30pm for the 8-day period centred on 6 June 2013 for the Church Fen-

ton weather station near Leeds (MIDAS station ID 533 in chapter 4). The clear-sky case

includes mixed gas, water vapour, ozone and aerosol attenuation. The anisotropy of clear-

sky diffuse radiation due to the circumsolar region, and to a lesser extent the bright section

near the horizon, can be seen from fig. 5.2a. If an overcast sky is assumed (fig. 5.2b),

it can be seen that the radiance distribution is much different, with a maximum intensity

between the solar position and zenith which becomes apparently uniformly less intense

away from this maximum towards the horizon. Figure 5.2c shows the all-sky weighted ra-

diance distribution taking into account the cloud fraction, which for this hour was 56.4%.

The circumsolar peak is still apparent, but the horizon brightening contribution is hard

to discern and the remaining sky radiance is more isotropically distributed than in the

clear-sky case.

5.5.3 Tilted irradiance map

The radiance distributions for the same location were integrated over all polar and az-

imuthal alignments using eq. (5.8), and the direct beam included, to provide a tilted irra-

diance map (fig. 5.3). Figure 5.3a shows that when there are no clouds, the ideal panel

alignment is more or less normal to the solar beam. There is a fairly wide tolerance around

the optimal position as a result of the cosine of incidence angle being approximately 1 for

small incidence angles. As shown in fig. 5.2a, the majority of the diffuse radiation is from

the circumsolar region, with both contributes to the beam alignment being optimal and

the wide tolerance in optimal tilt. Figure 5.3b shows that in an overcast sky, the ideal

panel alignment is horizontal and independent of the solar direction even though the cor-

responding radiance distribution is slightly off-zenith. In this example the optical depth

of the cloud layer is 8.8, which is thick enough to obscure the solar beam (Oumbe et al.,

2008) with the resulting diffuse irradiance approximately isotropically distributed. Fig-

ure 5.3c shows the all-sky tilted irradiance map with the cloud fraction of 56.4%. The

optimal tilt of the solar collector is centred around the solar position as in the clear-sky

case, but with corresponding lower irradiance values.

5.5.4 Yearly tilted irradiation

Radiance distributions were obtained for each hour of the middle day (day 5) for each 8

day period, and integrated using eq. (5.8) to produce tilted irradiance. The direct beam

contribution was included. Hourly irradiance outputs were then multiplied by the number
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Figure 5.2: Radiance distributions (looking upwards) for the Church Fenton weather station for 12:30pm
on 6 June. Distance from the centre represents polar angle and angular coordinate represents azimuth angle.
(a) clear sky radiance distribution, (b) overcast radiance distribution (water cloud optical depth of 8.8), (c)
all-sky distribution based on clear sky and cloudy sky distributions with cloud fraction equal to 56.4%.
Solar position is represented by the circle at zenith 32.9◦, azimuth 8.2◦ .
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Figure 5.3: Tilted irradiance maps for the Church Fenton weather station for 12:30pm on 6 June. Distance
from the centre represents tilt angle with centre representing a horizontal alignment and the edge of the
circle represents a vertical alignment. Angular coordinate represents azimuthal alignment. (a) clear sky,
(b) overcast sky (water cloud optical depth of 8.8), (c) all-sky, weighted combination of clear and overcast
cases, with cloud fraction equal to 56.4%. Solar position is represented by the circle at zenith 32.9◦, azimuth
8.2◦.
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Figure 5.4: Plane irradiation map for Church Fenton (latitude 53.8◦N, longitude 1.2◦W, altitude 8 m) for
the year of 2013

of days in each period (8, except for the last period of the year which is 5 or 6) and

summed to generate the yearly irradiation. For Church Fenton weather station, the yearly

irradiation map is shown in fig. 5.4.

The optimal tilt for this location calculated using the IntRad method is 40◦ from the hor-

izontal and azimuth 6◦ west of south. The slight west-facing optimal azimuth highlights

that the afternoon conditions may be clearer than the morning based on the difference in

cloud retrievals between the Aqua and Terra satellites, although the difference in yearly

output between 6◦ and 0◦ is very small and at 0◦ azimuth the optimal tilt is still 40◦.

At this location l = 53.8◦, and for 2013 the annual, summer, and winter clearness indices

are kt,year = 0.424, kt,MJJ = 0.458 and kt,NDJ = 0.332. These low mean clearness indices

are indicative of frequently cloudy conditions. The Barker-Christensen optimal tilt esti-

mated in eq. (5.4) predicts βopt = 38◦ for Church Fenton, close to the 40◦ calculated with

the IntRad method. Both models suggest the optimal tilt is more horizontal than latitude

in this location, similar to the result observed by Armstrong & Hurley (2010b) for Ireland.

5.5.5 Treatment of broken cloud fields

As described in section 5.3.2, the model uses a linear combination of clear and overcast

radiance distributions weighted by the cloud fraction. In reality, clouds exhibit both ver-

tical and horizontal heterogeneity, and the 1D approximation is a simplification of the

3D picture (Marshak & Davis, 2005). The diffuse reflections from the sides of clouds,

along with cloud shadowing, will impact the ground-level radiance field. It is important

to determine whether the lack of including 3D effects is a serious shortcoming of the

model.

Therefore the radiance distributions are compared to those generated by the UniSky sim-
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ulator software available from http://www.unisky.sav.sk (Kocifaj, 2012; Kocifaj &

Fečko, 2014; Kocifaj, 2015). The UniSky simulator can model 3D clouds either as a reg-

ular grid, or as randomly orientated. Random clouds can be grouped into a preferred sky

sector, simulating the effects of a morning or evening weather front. For random cloud

fields, a random seed is specified on input, allowing reproducibility of random simula-

tions.

To keep the simulations consistent, as the two models take different parameters, a simple

case is considered. The solar zenith angle is set to 30◦ and azimuth to 0◦, cloud fractions

of 20% and 80% with base at 3 km, geometric height 1 km and optical depth 10, and a

single monochromatic calculation at 550 nm wavelength is performed. A generic aerosol

with a Henyey-Greenstein phase function (g = 0.7), optical depth τa = 0.2 and single

scattering albedo ω = 0.9 is prescribed and surface albedo is set to zero. Both models

use the nadir-view cloud fraction, which is the proportion of horizontal area covered by

clouds to the total area, as viewed from a nadir-viewing instrument such as a satellite.

An additional parameter used in UniSky is the cloud reflectance. This is not supplied

explicitly IntRad but can be calculated. As cloud reflectance is dependent on optical

depth, a plane-parallel cloud with reff = 10 µm, optical depth 10, base 3 km and vertical

extent 1 km, with full Mie phase function, was modelled in libRadtran. Reflectance was

found to be 40.7% at 550 nm, based on the ratio of upwelling to downwelling irradiance

at the top of atmosphere with molecular scattering and absorption suppressed. Clouds are

modelled as spheres in UniSky; the default value of 0.5 km radius is used.

100 runs of the random cloud field in UniSky were generated with the parameters de-

scribed above, with the random seed ranging sequentially from 1 to 100. Two examples

of these diffuse radiance fields for sun unobscured and sun obscured are shown in fig 5.5.

The 100 random runs could simulate a short period of time in which solar zenith angle and

weather conditions remain relatively constant overlaid with a wind-driven broken cloud

field. As UniSky does not include the DNI as an output (M. Kocifaj, personal communi-

cation), this was determined from eq. (5.11) with the total optical depth the sum of each

component:

τ = τc + τa + τR (5.17)

where τa = 0.2, τR = 0.00879(λ/1000)−4.09 is the Rayleigh scattering optical depth at

550 nm of 0.1014 calculated as in Kocifaj (2012) and τc is equal to 10 if the pixel is

obscured by cloud and 0 otherwise.

Each of the 100 radiance fields produced by UniSky for both the 20% and 80% cloud

fraction, along with the calculated beam component, was numerically integrated using a

south-facing plane with tilt angle running from 0 to 90◦. For the libRadtran run, radiance
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Figure 5.5: UniSky radiance distributions for two broken cloud regimes (c f = 0.2) where (a) the sun is not
obscured and (b) the sun is obscured. Units are radiance normalised to the extraterrestrial DNI [sr−1].

fields with cloud optical depth of 10 and cloud fractions of 20% and 80% were calculated

and the numerical integration applied. The mean value from the 100 UniSky runs is

compared to the libRadtran output and the results for tilt angle ranging from 0 to 90◦

facing south are shown in fig. 5.6.

For the 0.2 cloud fraction, in both the libRadtran and the mean of the UniSky runs, the

irradiance for this situation is maximised when the tilt angle is 29◦. The effect of cloud

obscurity can clearly be seen in the bimodal character of the UniSky runs characterised

by the clustering of the thin grey lines in fig. 5.6a. When a cloud lies in front of the sun,

the irradiance at optimal tilt is around 0.2 of its extraterrestrial values whereas it is close

to 0.9 in the unobscured case. The majority of this effect is due to the difference in direct

beam transmission between the two modes. The libRadtran method predicts a slightly

higher irradiance at all tilt angles under this method compared to UniSky.

As cloud fraction increases, the plane-parallel approximation becomes more appropriate.

As the UniSky simulator does not include multiple scattering within cloud layers (M.

Kocifaj, personal communication), only the gaps between clouds contribute substantially

to downwelling radiances. At a cloud fraction of 0.8, in fig. 5.6b, it can be seen that these

gaps do not occur often, and the long-term averaged irradiance is estimated to be very

low - about 0.1 of the extraterrestrial at optimal tilt. Furthermore, despite the high cloud

attenuation, optimal tilt is shown to be 29◦ with the average of the UniSky simulations and

16◦ with the IntRad method. It is recommended (Kocifaj, 2015) to approximate a high

cloud fraction with an aerosol layer that represents forward scattering by cloud water

droplets in UniSky. For broken clouds under low cloud fraction, the good correspondence

between the two models for long-term insolation shows that the 3D reality can adequately

simplified into the 1D weighted clear/overcast simulation. For high cloud fractions, the
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Figure 5.6: Plane irradiance as a function of panel tilt for 100 runs of the UniSky simulator with random
cloud geometry, the UniSky average, and the 1D weighted average radiances from libRadtran, for θz = 30◦

and (a) fc = 0.2; (b) fc = 0.8.
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Source ID Code Station name Lat. Lon. Alt. (m)
1395 Cam Camborne 50.218◦N 5.327◦W 87
719 Wis Wisley 51.310◦N 0.475◦W 38
533 ChF Church Fenton 53.836◦N 1.197◦W 8
918 Dun Dunstaffnage 56.451◦N 5.439◦W 3
9 Ler Lerwick 60.140◦N 1.183◦W 82

Table 5.2: List of MIDAS stations used in the validation and comparison.

sky is approximately homogeneous and the 1D approximation is valid.

5.6 Model performance

5.6.1 Validation against horizontal irradiation measurements

Yearly irradiation predicted from IntRad using MODIS data is validated against horizontal

irradiation measurements from high-quality MIDAS and BSRN pyranometer data, and is

shown in fig. 5.7. MIDAS is used for UK locations and BSRN used for non-UK locations.

Camborne (Cam) and Lerwick (Ler) are MIDAS stations that also supply data to BSRN.

At the time of writing the BSRN data were not available so the MIDAS data have been

used.

Five MIDAS sites were selected on the basis of wide geographical coverage within the

UK and a minimal amount of missing or bad data for 2013. Where missing hours do

occur in the MIDAS data, the data has been filled by using the mean irradiation from the

corresponding hour in the same month. The selected MIDAS sites are shown in table 5.2.

The MBD between the annual irradiation derived from IntRad and the pyranometer data is

+0.56% and the RMSD is +6.69%. Of the sites where the IntRad method deviates from

the measured values by more than 10%, two (Izaña and Sonnblick) are at mountaintop

sites at altitudes 2373 m and 3109 m respectively. In these areas, the 1◦ resolution of the

MODIS atmosphere data may not be large enough to capture all of the micro-climatic

effects in mountainous regions. As discussed by Gueymard & Wilcox (2011), the spatial

variation in irradiance measurements is highest in coastal and mountainous areas. Clouds

are particularly difficult to attribute as sometimes the site location may be above the mean

cloud height for the 8 day period whereas in reality the station is not cloud-free for the

entire 8 days. Furthermore if the cloud deck is below the station altitude, the albedo from

the point of view of the pyranometer changes, and backscattering effects between the

cloud layer and the atmosphere above the station can enhance the downwards radiation. It

is unlikely that the MODIS albedo product includes these effects as it is calculated from

clear sky scenes, and this could be a source of error.
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(b) MODIS with integrated radiances

BSRN/MIDAS

Figure 5.7: Validation of integrated radiance method using MODIS data against pyranometer measure-
ments. (a) Differences between IntRad method and BSRN/MIDAS irradiation, and (b) the absolute values
of IntRad and BSRN/MIDAS irradiation. For station names and locations, refer to tables 2.4 and 5.2.

The other location with a greater than 10% relative error, Ny-Ålesund, is at very high

latitude (78.9◦N), where satellite retrievals from MODIS become less reliable. In addi-

tion, in such a high-latitude site, solar declination can vary widely over the course of an

8-day period in spring and autumn and as such the solar geometry used in IntRad may

not be representative. Interestingly, the other high latitude location, Alert in the far north

of Canada (82.5◦N), shows a better good agreement with the model. This could be due

to a higher annual irradiation than Ny-Ålesund indicative of clearer conditions, as the an-

nual horizontal irradiation at Alert is similar to that at Dunstaffnage at 56.4◦N. Brasilia,

the fourth poorest site for agreement with a 9.9% underestimation, suffers from a large

amount of incomplete data in the 2013 BSRN dataset which may result in a large error in

the “observation” value for this site. Brasilia passes the QC test because all 96 15-minute

bins are present for each month as required by the Roesch et al. (2011) QC procedure

(section 2.3.1), but for some months there are as little as 7 days of data present.

5.6.2 Validation and comparison of tilted irradiation

It is difficult to validate the tilted irradiation model on a global basis because there are few

comparable high-quality long term measurements of tilted irradiance available worldwide.
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Tilt Integrated radiance
model
(kWh m−2 yr−1)

Eppley PSP measurements
(kWh m−2 yr−1)

Difference

Horizontal 1760.0 1684.2 +4.5%
40◦S 2120.4 2010.0 +5.5%
90◦S 1479.3 1402.9 +5.4%
90◦E 1085.4 1138.6 −4.7%
90◦W 976.7 922.2 +5.9%
90◦N 420.5 479.3 −12.3%

Table 5.3: Validation of tilted irradiation from the integrated radiance model against ground measurements
from NREL.

One site provides data that can be used for validation.

Validation against tilted irradiation measurements form NREL

The NREL Solar Radiation Research Laboratory (SRRL) (Andreas & Stoffel, 1981) pro-

duces horizontal and tilted irradiation datasets which are available from their website at

http://www.nrel.gov/midc/srrl_bms/. Tilted irradiation is measured at 40◦S and at

90◦S, W, E and N, using Eppley PSP pyranometers. Horizontal radiation is measured with

a number of different pyranometer models. For consistency, the ventilated, corrected Ep-

pley PSP horizontal irradiation measurement is used. The NREL site is located in Golden,

Colorado, at 39.74◦N, 105.18◦W at an altitude of 1829 m.

The validation against the NREL station measurements is shown in table 5.3. The hor-

izontal irradiation estimate from the integrated radiance model is 4.5% higher than the

NREL measurement using the Eppley PSP. For the 40◦ and 90◦ south-facing tilts, the rel-

ative error is slightly higher but does not grow appreciably. The model captures some of

the diurnal variation in weather conditions at this site, as seen by the differences between

east- and west-facing tilt estimates, however underestimates the magnitude of the diurnal

variation with an overestimate for the west-facing pyranometer and an underestimate for

the east-facing pyranometer. This may be due to the timing of the satellite overpasses,

approximately 90 minutes before and after local solar noon on average, whereas east-

and west-facing wall irradiances will be at their maximum earlier and later in the day,

respectively. The north-facing estimate is considerably less good than for the other orien-

tations, however, it is not likely that serious consideration would be given to tilting panels

poleward given the low overall yield estimate.

Comparison with tilted irradiation estimates from PVGIS

The optimal tilt angle predicted by the integrated radiance model, and the irradiance pre-

dicted at this optimal tilt, are compared with results from the online PVGIS solar resource
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Figure 5.8: Comparison of integrated radiance method using MODIS data against results from PVGIS for
optimal tilt angle and yearly irradiation at optimal tilt. (a) optimal tilt angles between the two models, (b)
irradiation at optimal tilt (solid bars) and GHI (pale hatched bars), and (c) the differences between the two
models for irradiation at optimal tilt (solid bars) and for GHI (pale hatched bars). For station names and
locations refer to tables 2.4 and 5.2. In (b), the estimate of long-term mean yearly irradiation is depicted
with error bars, and the number of years of irradiation data used in the estimate of long-term mean is shown
as a white number near the bottom of the bars.

estimation tool in fig. 5.8 (European Commission, 2012b). PVGIS is a validated model

that derives solar irradiance from the Meteosat satellite cloud product and calculates tilted

irradiance using the Muneer model (Muneer, 1990). Additionally the PVGIS model re-

ports GHI with a MBD of within ±5% for all but 4 BSRN and other surface irradiance

measurement sites out of 23 (Huld et al., 2012) whereas the Muneer (1990) tilt model

gives a MBD of +5.3% and RMSD of 9.6% for vertical, south-facing planes, with consid-

erably lower errors for 45◦ and 60◦ south-facing planes for the EU Joint Research Centre

(JRC) test site at Ispra, Italy. 13 of the 27 validation sites used in section 5.6.1 fall within

the spatial boundaries of PVGIS.

The comparisons do not correspond to the same time period as the PVGIS database
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uses data from the CM-SAF satellite products, namely Meteosat First Generation (MFG,

1998–2005) and Meteosat Second Generation (MSG, 2006–2011), and it is not stated

which particular BSRN station years are used to validate these datasets (Huld et al., 2012).

The validation against BSRN and MIDAS ground stations uses 2013 data. The compari-

son with PVGIS is not a validation of the IntRad model for this reason, but a sense-check

against a widely-used tilted irradiance database. Where possible, an estimate of the long-

term mean irradiation at each site has been provided.

Figure 5.8a shows that in the majority of locations the predicted annual optimal tilt an-

gle is steeper than in PVGIS, ranging from −1◦ at Carpentras and Camborne to +8◦ at

Toravere. Part of the differences may be due to, on average, higher horizontal irradiation

values predicted from IntRad compared to PVGIS (fig. 5.8b), suggesting that IntRad pre-

dicts a lower cloud fraction or greater cloud transmission than PVGIS does in general.

The effect of this is large at the three low latitude sites of Gobabeb, Tamanrasset and

Izaña where in each case IntRad predicts an optimal tilt slightly steeper than the latitude

location, showing the influence of the direct beam and circumsolar diffuse components of

solar radiation.

Figure 5.8b compares both the irradiation at optimal tilt and the horizontal irradiation

between IntRad and PVGIS. To introduce some sense of how the annual horizontal irradi-

ation varies at each of the BSRN and MIDAS sites, the confidence interval for long-term

mean annual irradiation has been estimated at each site. This was performed by using all

available full years of data from BSRN, whereas for MIDAS sites years as far back as

2010 were considered. The range of estimates for long term means are shown as error

bars.

The 95% confidence range is x±T−1
n−1(0.975)

√
s2

x
n where x is the mean yearly irradiation

of n years of measurement, s2
x is the sample variance of these n years and T−1

n−1(·) is the

inverse CDF of the Student-t distribution with n−1 degrees of freedom. It is evaluated at

0.975 to return the positive value of the number of standard errors (
√

s2
x
n ) from the mean

for a two-tailed test. The number of years used to estimate the long-term mean is shown

as a number for each station in fig. 5.8b.

For Izaña it is interesting to note that IntRad under-predicts horizontal irradiation for the

2013 calendar year quite substantially compared to the BSRN pyranometer data as shown

in fig. 5.7, however the PVGIS estimate is even lower. Although the two methods are not

validated against the same time period as previously mentioned, the range of likely long-

term means for Izaña estimated from 6 years of observations at this site (2009–2014)

is substantially higher than both the PVGIS and IntRad estimates. Therefore it can be

inferred that both models find evaluating the irradiation at this site, which is both on a
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mountain and an island, difficult. At Toravere, it is possible that the large differences in

optimal tilt between the models result from the horizontal irradiation differences. IntRad

shows only a slight overestimation compared to BSRN (fig. 5.7), but the 2013 irradiation

estimate from IntRad is above the long-term mean estimated range. The PVGIS estimate

is within this range, towards the lower end. The combination of 2013 being a sunnier than

average year alongside IntRad slightly overpredicting and PVGIS being towards the lower

end of long-term estimation is likely to account for much of the differences in optimal tilt

and annual irradiation at optimal tilt.

Figure 5.8c shows that in every location there is a more positive difference in the irradi-

ation at optimal tilt than the GHI between IntRad and PVGIS. This effect is seen even

at Carpentras and Camborne where optimal tilt estimated by IntRad is more horizontal

that in PVGIS, indicating a difference between the Muneer tilt model used in PVGIS and

the integrated radiance method. This is supported by the Dunstaffnage site where PVGIS

predicts a higher annual GHI total but lower irradiation at optimal tilt.

5.6.3 Comparison with isotropic and Klucher tilt models

One of the drawbacks at present to the IntRad model is the computational time needed

to produce a year of data for each site. In fig. 5.9, the IntRad model is compared to the

Klucher model introduced in eq. (5.3) and the Liu-Jordan isotropic diffuse model. In

Gueymard (2009), the Klucher model was validated against minutely pyranometer data

from the NREL site at 40◦S and 90◦S tilts, where for all-sky conditions the MBD was

−1.4% and 0.3% respectively. These differences are much smaller than the 5.5% and

5.4% shown by the IntRad model for the same site (table 5.3), however this should be

expected owing to the fact that minutely pyranometer data was used in Gueymard (2009)

and the input data from IntRad are from 8-day averages of twice-daily measurements.

The Klucher and isotropic irradiation values are taken from the direct and diffuse hori-

zontal irradiance outputs provided by libRadtran, so they will be slightly different to the

values measured by a pyranometer that would typically include the 2.5◦ region around

the sun as DNI. For most locations, the Klucher and IntRad models do not differ greatly

in either total irradiation or calculated optimal tilt angle. The principle exceptions to this

are at the high-latitude Ny-Ålesund station and the mountaintop Sonnblick station. At

Ny-Ålesund, the isotropic model is a good approximation which is likely due to the high

frequency of overcast conditions at this site (compare to Alert, at higher latitude, but much

greater yearly irradiation, as previously discussed). At Sonnblick, it is not known why the

IntRad tilted irradiation profile is close to the isotropic and not the Klucher, but as the

weather station is located at a mountaintop, this could have an effect.
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Figure 5.9: Comparison of the IntRad (blue), Klucher (green) and isotropic (red) tilt models for the 27
BSRN and MIDAS sites used in the validation ordered from south to north.

5.7 Applications, improvements and limitations

The integrated radiance method is possible to evaluate globally as the satellite retrieval

data from MODIS has global coverage. The method is applicable to any dataset in

which aerosol parameters, ozone, water vapour, cloud liquid water path, cloud ice wa-

ter path and cloud fraction are available. The necessary inputs to the model also ex-

ist in meteorological reanalysis and climate models. The aerosol parameters are avail-

able in MODIS but often suffer from large gaps in data, so in the IntRad model they

are obtained from the GLOMAP global aerosol model. Aerosol reanalysis datasets such

as MACC (http://apps.ecmwf.int/datasets/data/macc-reanalysis), which as-

similates observations and forecasts into a consistent gridded dataset in a similar way to

ECMWF, can be used. Thus, the integrated radiance model can be used for determin-

ing a realistic optimal tilt for an arbitrary climatic condition, and solar energy resource
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calculated on this basis.

It should be mentioned that MODIS satellite retrievals are not always available or are of

low quality. The limit of MODIS orbital tracks are at 82◦ N/S, and for latitudes greater

than 77◦ N/S the satellite tracks overlap. Successive retrievals may not be independent

and observational nadir angles may be higher towards the poles as the satellites do not

overpass above/below 82◦ N/S (Hubanks et al., 2008). On the other hand, these regions

are currently unimportant for solar energy generation.

In many regions, clouds are the largest input uncertainty because the radiative properties

of aerosols, water vapour and ozone are less significant when the entire solar spectrum

is considered. The direct and diffuse radiation fields are spectrally dependent (Forster &

Shine, 1995) and although a spectral calculation is performed and then integrated over all

solar wavelengths to obtain broadband irradiance, the spectrally-dependent irradiance was

not considered. When applied to assessing the energy output of PV technologies, spectral

considerations will be shown to be important in the next chapter. This could affect the

optimal PV tilt angle.

It is possible to improve the spatial and temporal resolution of the results obtained.

MODIS Level 3 8-day mean data has been used in this model for atmosphere and albedo.

Level 3 data is available daily, the use of which may improve accuracy at the expense of

an 8-fold increase in computational time. Greater accuracy may be obtained by using the

Level 2 satellite swath data, which has a nadir resolution of 1 km and will usually over-

pass a location at least once per day, although there are small gaps in the satellite overpass

tracks near the equator that are not covered every day by the Level 2 or Level 3 daily

data. Geostationary satellites such as Meteosat, which are used in the PVGIS procedure,

can provide a higher spatiotemporal resolution than MODIS and may help to improve the

diurnal performance of the model.

It is shown however that for locations at low and moderate altitude and latitude, sufficient

agreement for horizontal and equator-facing tilts for yearly irradiation is obtained with

the 8-day data. To use higher resolution data will require many more radiative transfer

simulations per location per year, and will need the use of pre-calculated lookup tables

or a multi-variable regression fit to allow swifter calculation of the radiance fields. It

is currently infeasible in terms of computational time to run a yearly simulation using

the IntRad method for each grid cell of a global grid which would prevent it being used

in its current form for optimising tilt angle in climate studies, as would be intended for

use in chapters 6 and 7 of this thesis. By systematically varying input variables, for

example cloud fraction, cloud water path, surface albedo, water vapour, ozone content

and solar zenith angle over a range of feasible values, the radiance values at each 10◦×
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3◦ bin can be interpolated from lookup table values given a suitable interpolation system.

As the input parameter space is multi-dimensional, this may still require a prohibitive

number of radiative transfer calculations to build a lookup table. An alternative idea may

be to derive a multi-variable regression of tilted irradiance from the direct, diffuse and

reflected horizontal irradiance and solar zenith and relative solar azimuth angles from

the calculations already performed in this chapter, and then to compare these horizontal

irradiance results from the 16-stream radiative transfer computation from DISORT to a

much faster solver such as TWOSTR or RODENTS (section 2.2.6). Then, tilted radiation

and optimal tilt could be derived for any situation using the horizontal irradiance outputs

from the faster solver and the derived regression relationships. Both of these are areas for

future investigation.

The Klucher model, in most locations, agrees well with the IntRad model presented in this

chapter. It may be questioned why a complex method for calculating tilted irradiance is

required when a simple geometric formula that only relies on DNI and diffuse horizontal

irradiance (DHI) performs sufficiently well in a variety of cases. One application is when

horizon shading becomes an issue, and the radiance distribution can be modified to take

into account shading. The IntRad model has been applied in this context for urban areas

by Gooding et al. (2015), whereas it is less easy to apply a shading correction to the

Klucher model (or any other tilt model which assumes an unobstructed horizon).

5.8 Summary
In this chapter, IntRad, a computational method to calculate the all-sky irradiance on a

plane of arbitrary alignment, which is globally applicable, is presented. There are two

steps to the method described: the first step takes in satellite observations of the atmo-

spheric state, including cloud fraction and cloud water content, and runs the DISORT

radiative transfer code to produce both the direct radiation and the angular distribution of

the diffuse radiation. The second step integrates the diffuse radiance distribution over a

hemisphere with base in the plane of the angled solar collector to provide the tilted radi-

ation estimate. The inclusion of clouds inside the first step is an advancement on other

radiative transfer methods for solar energy modelling, which tend to use radiative transfer

models for the clear-sky, horizontal radiation, and add in clouds as an adjustment to the

clear-sky values. The integration of radiance values in the second step is, in the limit of

angular bin size tending to zero, a physically exact method of determining diffuse radi-

ation on a plane of arbitrary tilt and orientation, and an improvement on empirical tilt

models that are currently used in the literature. Errors are introduced by (1) differences

in the satellite values of the atmospheric state compared to the real conditions, including

the 1D representation of clouds in the model compared to 3D clouds in reality; (2) pa-
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rameterisations and discrete layering of the atmosphere used in the radiative transfer code

compared to the real atmosphere and real transfer of radiation; (3) the discrete sum of the

10◦×3◦ angular bins used compared to the real-world situation of a continuous variation

in radiance with sky position.

The horizontal irradiation predicted by the IntRad model is compared to contemporane-

ous pyranometer data from MIDAS and BSRN and agrees to within ±10% for all but

3 sites out of 27. The MBD between the IntRad method and BSRN/MIDAS across all

sites is +0.56% and RMSD is 6.69% for horizontal irradiance. When validated against

the NREL tilted irradiance dataset the IntRad model predicts the annual irradiation within

±6% for all orientations except 90◦N. The magnitude of error for tilted irradiance on

40◦ and 90◦ south-facing planes is similar to that for horizontal irradiance. The Klucher

model provides a better estimate of the annual irradiation at the NREL site than IntRad in

Gueymard (2009), however minutely direct and diffuse radiation data from pyranometers

located at the NREL site was used to derive the tilted radiation from the Klucher model

compared to one morning and one afternoon observation averaged over an 8-day period

for a 1◦× 1◦ grid square, so the results are likely to be improved owing to the higher

time resolution of input data. The diurnal variation in prevailing weather conditions is

partially captured by analysis of the difference between east- and west-facing estimates

of annual irradiation compared to pyranometer measurements at the NREL site, although

underestimated. Due to a lack of high-quality tilted irradiance measurement stations, it is

not possible to validate against tilted irradiance measurements globally, but the validated

PVGIS model is used as a comparison. The main differences between the model and

the Muneer (1990) tilt model used in PVGIS are the steeper optimal tilt angles and more

positive relative differences between tilted irradiation and horizontal irradiation. In mid-

latitude and low-to-moderate altitude sites, where PVGIS has been validated, the models

produce similar results. In order to draw more robust conclusions about the optimal tilt an-

gle from the model, a larger network of tilted irradiance measurements would be required.

However, the limited model comparisons and validations show that the model produces

sensible results and could be applied where ground measurements of tilted irradiance are

not available.

The optimal tilt angle at a particular location is dependent on the meteorological condi-

tions and cannot be related to a single parameter. A radiative transfer simulation is run to

produce a ground-level radiance field, which is numerically integrated over the tilt angle

of interest. The required inputs of cloud liquid water path, cloud ice water path, cloud

fraction, temperature, ozone, water vapour and surface albedo are standard variables from

satellite observations, meteorological reanalysis or climate model data. Any scheme that

provides the aerosol phase function, optical depth and single scattering albedo can be used
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for aerosols.
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Chapter 6

Future climate effects on spectral
transmission of irradiance

In chapter 5, a method to calculate horizontal and tilted irradiance from radiative transfer

methods was described. The radiative transfer procedure includes clouds and is not just

limited to clear sky. It was shown that the method compares well to horizontal irradiation

measurements from the MIDAS and BSRN networks.

This chapter extends the work described so far in two ways. First, it considers the spectral

irradiance instead of the broadband irradiance. This is more applicable to PV with the

differing spectral responses of semiconductors to light of different wavelengths. Secondly,

it introduces a future climate scenario, whereas all of the work performed up until this

point consider the present or recent past. It is shown in this chapter that changes in c-Si

solar PV output could be more than ±20% different to present, in some locations. Some

materials fare better or worse than c-Si due to spectral and temperature coefficient effects,

and in general the higher the bandgap energy of a PV cell, the better it performs in a future

climate compared to present.

Following a review of previous studies on the effect of climate change on solar energy

and ways of assessing spectral impacts, the climate variables and solar cell model used to

calculate solar energy output is introduced. The effect of each climate variable (clouds,

water vapour, aerosols and temperature) on different PV semiconductor materials is inves-

tigated. The global changes expected under one run of the HadGEM2-ES climate model

under RCP8.5 compared to the recent past, for a variety of semiconductor materials, is

presented. Finally the appropriateness of using the HadGEM2-ES climate model as a

representative of the population of climate models for this study is discussed.

6.1 Background and literature review

It is well-established that substitution of fossil-fuel energy generation with renewable

technologies such as PV is one of a number of strategies to mitigate the effects of cli-
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mate change. Somewhat less investigated is how changes to the climate itself affects

the availability of renewable resources. Wind, solar, hydroelectric and wave power are

all dependent to a greater or lesser extent on weather and climate (Harrison & Wallace,

2005; Seljom et al., 2011). If a transient time period is considered it could be argued

that biomass resources are also dependent on how the climate evolves over the next few

decades and the suitability of feedstocks to adapt and thrive in conditions that may be

very different to present.

6.1.1 How climate change affects solar energy

There is a small but growing body of literature that investigates how climate change could

affect solar energy (table 6.1). The previous studies can be divided into two groups:

those that analyse the changes in global output using global climate models (GCMs)1,

and those that analyse domains ranging from country to continent scale in regional climate

models (RCMs), at higher spatial resolutions than GCMs.

Global climate models

Crook et al. (2011) assessed the global potential for PV and CSP from changes in solar

insolation, cloud cover and temperature predicted from the UK Met Office HadGEM1

and HadCM3 climate models under the SRES A1B narrative. They showed that solar PV

resource is expected to increase in Europe, the Eastern US and northwestern parts of Latin

America and decrease almost everywhere else. The observed changes in PV output range

from around−18% in the Himalayas to +8% in Eastern Europe. Wild et al. (2015) under-

took a similar exercise using all 39 available models from CMIP5 over the time period of

2006–2049 using the reference period of 2006–2015. They analysed the annual percent-

age difference in solar PV energy output across the world, finding an expected median

increase of up to 1% per decade in southeast China, Japan, and Europe under the RCP8.5

scenario. Decreases of between 1–2% per decade are expected in the boreal regions of

North America and Russia with smaller decreases in the western US, northwestern China,

and India. The sign of the changes by region predicted by Wild et al. (2015) are mostly

coincident with the Crook et al. (2011) study. The use of 39 models allows determination

of statistical significance, and some regions of low-to-moderate future changes in PV seen

in Crook et al. (2011) for HadGEM1 were not found to be significant in the ensemble of

39 models in Wild et al. (2015). If the rates of change in solar power output from the Wild

1Originally the acronym GCM stood for General Circulation Model which represented the dynamics of
the atmosphere and ocean. As models have become more sophisticated over the years, further components
such as atmospheric chemistry, the carbon cycle and sea-ice have been included. Strictly speaking this
superset of climate models are called Earth System models, but Global Climate Models can be used as a
catch-all term to represent both types of model.
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Study Region Output Climate model Scenario Future Baseline

Crook et al.
(2011)

Global PV, CSP HadGEM1,
HadCM3

SRES A1B 2080–2100 1985–2005

Wild et al. (2015) Global PV All 39 models
used in CMIP5

RCP8.5 2006–2049 1985–2005

Pan et al. (2004) US Solar radiation RegCM2 forced
from HadCM2

1% per year CO2 2040–2049 1990–1999

Pašičko et al.
(2012)

Croatia PV RegCM forced
from ECHAM5

SRES A2 2011–
2040,
2041–2070

1961–1990

Burnett et al.
(2014)

UK Solar radiation UKCP09 SRES B1, A1B,
A1FI

2040–
2069,
2070–2079

1961–1990

Gaetani et al.
(2014)

Europe, Middle
East, Africa

PV ECHAM5-HAM SRES B2 with
IIASA aerosol
scenarios

2030 2000

Panagea et al.
(2014)

Greece PV ENSEMBLES SRES A1B 2011–
2050,
2061–2100

1950–
2000,
1985–2005

Table 6.1: Summary of previous studies of climate change effects on solar energy
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et al. (2015) study for statistically significant regions are maintained and extrapolated to

the timescale of the Crook et al. (2011) study (about 95 years), the overall results between

the two studies are of comparable magnitude.

Regional climate models

Pan et al. (2004) assessed changes under the 1% per year CO2 increase experiment for

solar radiation in the US. 1% per year CO2 is often used as a climate model diagnostic

rather than a representation of a likely climate outcome, although it can nevertheless pro-

vide some useful information about a model’s response. For example, no aerosols are

included, which are an important attenuator for clear-sky radiation. The 1% CO2 is a

relative, compound year-on-year increase such that a doubling of CO2 occurs in 70 years

(1.0170 ≈ 2). The RegCM2 RCM, which has a spatial resolution of 52 km, was used

with boundary conditions provided by an earlier, coarser-resolution Met Office GCM,

HadCM2. Over a 50-year time period, the change in solar radiation over the contiguous

US was estimated to decrease in most places, by up to 20% in the west, with small in-

creases in the southeast. For the south and east US this trend is confirmed by Wild et al.

(2015) for CMIP5 models due to a reduction in cloud fraction in these areas although the

negative result predicted for the rest of the US is less significant. A reduction in radia-

tion expected in the western US could be due to the HadCM2 model used to force the

RCM: Crook et al. (2011) shows a large reduction in insolation for the western US for

HadGEM1 (another Met Office GCM), with similar results reported for HadCM3.

Pašičko et al. (2012) details a variety of climate-related factors that can affect the

change in PV power output, namely temperature, precipitation, GHI, snow cover, extreme

weather and wind. Using the SRES A2 scenario coupled to a regional climate model, and

outputs of temperature and total cloud fraction, they use a temperature-efficiency rela-

tionship (e.g. eq. (2.44)) and assume that GHI increases in proportion to the amount that

cloud fraction reduces. When combined with other factors, Pašičko et al. concludes that

solar energy in Croatia will remain broadly the same as present, but do not quantify any

of the factors except for the separate effects of changes in GHI (+2%) and temperature

(−4%).

Gaetani et al. (2014) assessed three aerosol emission scenarios from the ECHAM5-HAM

climate model under the SRES B2 climate change simulation, showing that the changes in

PV energy output for 2030 compared to 2000 depend strongly on the aerosol assumption

used. The lowest aerosol scenario of maximum feasible reduction leads to decreases in

PV output of over 5% in the central belt of Africa, Saudi Arabia and western Russia

but an increase of more than 5% in western Europe. Under the higher aerosol level of

constant year 2000 levels, the magnitude of the changes is lower except for central and
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eastern Europe which experience PV output declines of 5% or more. Although running a

GCM, output was only provided for spatial regions covered by the PVGIS online software

tool (Huld et al., 2012) (Europe, the Middle East and Africa) as PV panel tilt angle was

optimised according to the PVGIS method. The Muneer tilt model, which is used in the

PVGIS method, requires inputs of diffuse irradiance. Diffuse irradiance was considered

by the authors, but as ECHAM5-HAM does not provide the diffuse-to-global ratio, the

diffuse irradiance has to be estimated from monthly climatologies.

Burnett et al. (2014) used the UK Met Office UKCP09 5 km × 5 km probabilistic model

to assess future broadband solar irradiance for the United Kingdom. UKCP09 is driven by

one of three emissions scenarios termed “high”, “medium” and “low”, which correspond

respectively to SRES A1FI, A1B and B1. The probabilistic model gives the 10%, 50%

and 90% values from the distribution of future solar irradiance changes. The baseline

data was taken from radiation observations from 18 MIDAS stations. Burnett et al. show

that future solar resource is expected to increase over the majority of the UK for both the

2050s and 2080s future time horizon. The changes range from a 6.8% increase in the

south-east of England to a 0.3% decrease in the north of Scotland for the 2080s, medium

emission scenario at the 50% point of the distribution.

Panagea et al. (2014) used five European RCMs from the ENSEMBLES project at a

spatial resolution of 0.25◦× 0.25◦ to predict changes in PV output in Greece. Over the

period 2061–2100 the mean predicted changes vary from−2% in the east of the country to

+3% in the west compared to baseline PV output calculated from 1950–2000 temperature

and 1985–2005 irradiance observations. However, the uncertainty spread between the five

models is large, up to 12%, and the models do not always agree on the sign of the change

for each region.

6.1.2 An extension to spectral irradiance

The most important factors for solar PV energy are solar irradiance and solar cell tem-

perature. It was shown in chapter 5 that irradiance is dependent on the transmission of

the atmosphere and is influenced by clouds, aerosols, water vapour, ozone and mixed

gases. Cell temperature is affected by irradiance and ambient temperature as shown in

eq. (2.45). All of the previous studies into climate change effects on PV energy output

consider broadband irradiance. Alongside the global (total) irradiance and its direct and

diffuse components, there is the possibility that climate change will affect the spectral

distribution of irradiance, through changes in water vapour, clouds and aerosols. As PV

cells are made from semiconductor materials which exhibit differing responses at differ-

ent wavelengths, the future solar resource will be spectrally dependent.
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Zdanowicz et al. (2005) considered optimising the semiconductor bandgap for different

values of air mass. These considerations can be extended by also optimising for climate.

There are several ways to assess the quality of the solar spectrum and its suitability for

different semiconductor materials, which are reviewed briefly in the remainder of this

section.

Average photon energy

One measure of the spectral distribution of irradiance is the average photon energy (APE)

(Betts, 2004) which is defined as:

EAPE =

∫ b
a Gλ (λ )dλ

q
∫ b

a N(λ )dλ
(6.1)

where a and b are the upper and lower limits of the wavelength integration, Gλ is the

spectral irradiance, q is the elementary charge (1 eV by definition) and N is the number

of photons of a particular wavelength arriving.

The higher the value of APE, measured in eV, the more “blue-shifted” and energetic the

spectrum is. Behrendt et al. (2013) used a radiative transfer simulation to investigate the

changes in APE to varying atmospheric components. Increases in cloud optical depth

and precipitable water vapour increase APE, increasing aerosol optical depth (for a rural

aerosol) decreases APE, and an increase in air mass and solar zenith angle due to greater

Rayleigh scattering path length decrease APE slightly.

The APE measure benefits from the simplicity of characterising the spectral properties

with a single number in units of eV. On the downside, APE does not provide a method

to reproduce the actual shape of the solar spectrum (an extreme example is provided in

Minemoto et al. (2009)) and secondly, the APE value depends on the upper and lower

wavelength limits a and b over which the solar spectral irradiance is integrated. For ex-

ample, the full solar spectrum as received on the earth’s surface contains photons ranging

from about 290–4000 nm, and most measurement devices do not measure the whole spec-

trum. If APE is reported on a much narrower range such as the 350–1050 nm range used

by Minemoto et al. (2009), important spectral information at higher wavelengths, which

is useful for lower bandgap semiconductors, is absent.
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Useful fraction

The useful fraction (UF) (Gottschalg et al., 2003) considers the portion of the solar spec-

trum that can be converted by a semiconductor to the total broadband spectrum:

fUF =

∫
λmax
λmin

Gλ (λ )dλ∫ 4000
290 Gλ (λ )dλ

(6.2)

The limits of the integral in the denominator are in nm. For each semiconductor mate-

rial, the lowest and highest photon wavelengths that can be converted into current by the

semiconductor are represented by λmin and λ max. Betts (2004) showed that there is a very

good correlation between UF and APE, and that the correlation is material-dependent.

The higher the bandgap of the material in energy terms, the lower the useful fraction.

Spectral mismatch factor

The APE and UF can be useful metrics to characterise the spectrum. However, they do not

convey any information about how well a semiconductor converts photons of a particular

wavelength.

An alternative measure is the spectral mismatch factor (SMM) (Nofuentes et al., 2014)

which compares the ratio of short-circuit current delivered by a particular semiconduc-

tor material under the incident spectrum Gλ to the short-circuit current that would be

delivered under the ASTM-G173 AM1.5 spectrum Gλ ,STC. Formally,

fSMM =

∫ b
a Gλ ,STC(λ )dλ

∫ b
a Gλ (λ )S(λ )dλ∫ b

a Gλ (λ )dλ
∫ b

a Gλ ,STC(λ )S(λ )dλ
. (6.3)

S(λ ) is the wavelength-dependent spectral response of the solar cell, which is defined in

section 6.3. In summary, if fSMM > 1, there is an effective gain in power output under the

incident spectrum compared to the AM1.5 STC and an effective loss if fSMM < 1. SMM

takes into account both the spectrum and the semiconductor material dependence.

Dirnberger et al. (2015) showed the SMM increased with increasing semiconductor

bandgap when taking 31
2 years of spectral irradiance and PV module output measure-

ments in Germany. They showed that the gain in output energy for a particular spectrum

compared to the ASTM-G173 AM1.5 spectrum does not always correspond in a one-to-

one fashion to APE which can return the same value for different spectrum shapes.

For the study presented in this chapter, the definition of the SMM is altered to compare the

differences in solar PV output between two climate scenarios instead of the differences

between a measured spectrum and the AM1.5 STC spectrum. The solar spectrum can
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vary depending on the constituent atmospheric state, which is different between past and

future climate runs. The SMM defined to compare past and future climate is referred to

as the spectral climate change factor (SCC) and is defined such that

fSCC =

∫ b
a Gλ ,past(λ )dλ

∫ b
a Gλ ,future(λ )Sfuture(λ )dλ∫ b

a Gλ ,future(λ )dλ
∫ b

a Gλ ,past(λ )Spast(λ )dλ
. (6.4)

Furthermore, the spectral response of semiconductors is dependent on the temperature

of the semiconductor, which is in turn a function of irradiance and ambient temperature.

These changes are built-in to SCC by allowing S(λ ) to vary with semiconductor tem-

perature. The role that climate plays in past and future spectral irradiances and spectral

responses is described in section 6.3.

The detailed balance limit (Shockley & Queisser, 1961) suggests that the ideal bandgap is

in the range of about 1.0–1.7 eV for single junction solar cells, and is a tradeoff between

utilising the greatest possible part of the solar spectrum (lowest energy bandgap) versus

the increased output power per absorbed photon (highest energy bandgap). The focus is

on five popular PV semiconductor materials with bandgaps in this region (c-Si, GaAs,

CuInSe2, CuGaSe2 and CdTe), plus InGaP and Ge which are outside this range but often

used in high efficiency triple-junction concentrating PV cells (Yamaguchi et al., 2008).

The global PV output for the solar spectrum over the 2080–2100 timeframe is evaluated

compared to PV output for the 1985–2005 solar spectrum using c-Si as a baseline and

comparing other materials relative to c-Si.

6.2 Climate variables

In this chapter the solar PV resource in both the RCP historical (for 1985–2005) and

RCP8.5 (for 2080–2100) simulations of the UK Met Office HadGEM2-ES climate model

is investigated.

The variables of interest (table 6.2, top) are extracted from run 5 of the historical and run

4 of the RCP8.5 experiments of the HadGEM2-ES model. Each run (ensemble member)

of a climate model is initialised from a different point in the past of a model control

run (Jones et al., 2011) which provide the initial conditions for each realisation. Internal

variability inside the model control run, and sensitivity to even small perturbations in the

initial conditions, ensure that each realisation is sufficiently independent.

The bottom section of table 6.2 details the variables that have been extracted from runs

1–4 of the historical and RCP8.5 experiments, which are used for optimising tilt angle

and evaluation of climate model spread.
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Variable CMIP5 name Name

Aerosol optical depth at 550 nm od550aer τa550
Aerosol optical depth at 870 nm od870aer τa870
Total cloud fraction clt fc
Cloud condensed (liquid plus ice) water path clwvi p
Cloud ice water path clivi pi
Cloud-top effective droplet radius reffclwtop reff,l
Precipitable water vapour prw w
Daily Maximum Near-Surface Air Temperature tasmax Tmax
Daily Minimum Near-Surface Air Temperature tasmin Tmin

Surface downwelling shortwave radiation rsds Gcosθz
Top-of-atmosphere downwelling shortwave radiation rsdt G0 cosθz

Table 6.2: Variables from HadGEM2-ES used in spectral irradiance simulations.

The Delta-Eddington two-stream radiative transfer model RODENTS (section 2.2.6) is

run using the variables provided by the climate model. RODENTS is used instead of the

TWOSTR solver because of the occasional errors found in the latter when using optically

thick clouds at high zenith angle. The tradeoff is that RODENTS does not include a

pseudospherical correction so contributions from hours with low solar elevations may be

underestimated, however, since relative changes are of interest and the 360-day nature

of the HadGEM2-ES model means that the solar geometry is the same in the past and

future runs, this should not affect the results. A two-stream solver must be used to keep

the computational times reasonable (on the order of one day for the whole world for each

climate run). In chapter 4, TWOSTR was a better choice as the pseudospherical correction

was important and clouds were not included in the radiative transfer calculations.

The AFGL US standard atmosphere is specified to determine the molecular scattering and

absorption for mixed gases and ozone. While ozone absorption is important in the UV

part of the spectrum, the spectral response function S(λ ) of solar cells is low in the UV

region. Additionally, CMIP5 does not provide ozone concentration as a model output for

HadGEM2-ES. Therefore no change in the baseline ozone level has been assumed.

Adjustments to the baseline clear-sky atmosphere are made by varying the precipitable

water vapour column w [mm] and aerosol optical depths (AOD) at 550 nm and 870 nm,

τa550 and τa870. The rural aerosol model of Shettle (1989) is used which accounts for the

single-scattering albedo and phase function parameters by wavelength. While an aerosol

model that prescribes single-scattering albedo and phase function would be desirable in

order to fully characterise aerosol properties, it is not provided by the list of output vari-

ables from CMIP5. Clearly it would not be possible to investigate changes in aerosols if

a climatology such as GLOMAP is used in this study.
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When two optical depths at different wavelengths are known, the aerosol optical depth

τaλ at wavelength λ can be modelled according to the Ångström relationship (Ångström,

1929):
τaλ

τa550
=

(
λ

550

)−α

(6.5)

α =− log(τa870/τa550)

log(870/550)
. (6.6)

This allows the aerosol optical depth to be determined across all wavelengths of the solar

spectrum which is necessary for spectral irradiance calculations.

Clouds are introduced by considering the total cloud liquid water path and cloud ice path

[kg m−2] from HadGEM2-ES. The ice and liquid water paths are converted to 1 km thick

plane-parallel clouds with bases of 1 km above the ground. The total cloud liquid water

path pl is the difference of the total water path and ice water path, i.e. pl = p− pi. Cloud

water paths are reported over the entire grid cell. So to determine the cloud water path

of the cloudy column these numbers are divided by the cloud fraction fc. By assuming

a 1000 m cloud geometric height, the cloud water paths in kg m−2 correspond to cloud

water content in g m−3 for input into libRadtran.

As in chapter 5, a two-column approximation is then used to weight the contributions

from the clear and cloudy portions of the grid square in the radiative transfer calculation.

For liquid clouds, the top-of-cloud effective droplet radius is a CMIP5 output and has

been included to compare between the future and past scenarios; there is no indication

of ice cloud crystal size provided, so the ice effective radius of 30 µm is used (Rossow

et al., 1996). The optical depth, phase function and single scattering albedo as a function

of wavelength is determined by the parameterisations of Hu & Stamnes (1993) for liquid

clouds and Fu (1996) for ice clouds. Optical properties at wavelengths other than 600 nm

are determined by the Hu & Stamnes and Fu relationships.

The radiative transfer calculation is run for each daytime hour of the afternoon, starting

at 12:30pm local solar time, at each grid square. The results are extended to the morn-

ing assuming symmetry as only monthly average climate variables are available. The

solar declination on the 16th day of each month is used. From these assumptions the

solar zenith angle is easily calculated from eqs. (2.2) to (2.4). Daytime is defined as any

moment where the solar zenith angle is less than 90◦.

For global simulations, the correlated-k method is used to calculate spectral transmission

(section 2.2.7). For investigating the sensitivity to PV output with spectrum changes, the

REPTRAN parameterisation at a resolution of 5 points cm−1 is used (Gasteiger et al.,

2014). The REPTRAN method approximates a line-by-line calculation. In the global
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simulation, the spectral direct and diffuse spectral irradiance fluxes GB(λ ) and GD(λ )

[W m−2 nm−1] are calculated from the radiative transfer model for each land grid point

and month in the time periods considered.

The PV cell temperature is a function of ambient temperature and influences the PV cell

efficiency (eq. (2.44)). To calculate the monthly average daytime temperature Ta the ap-

proach of Crook et al. (2011) is used where temperature is assumed to vary sinusoidally

over the course of the day with a maximum at midday and a minimum at midnight. With-

out any further information as to how diurnal temperatures evolve at different times of the

day, at different parts of the world and in past and future climates, it is not clear that a more

complicated assumption is warranted. The evolution of temperature can be described by

Ta =
Tmax +Tmin

2
+

Tmax−Tmin

2
cos(h) (6.7)

where h is the hour angle (0◦ at midday and 180◦ at midnight). In the global simulations,

the first calculation performed at 12:30pm corresponds to h = 7.5◦ with successive hours

increasing by 15◦.

In fig. 6.1, the difference between the historical 1985–2005 and RCP8.5 2080–2100 runs

of HadGEM2-ES are shown for fc, τc, reff,l , w, τa550, τa870, Gcosθz and average day-

time temperature Tday = (3Tmax + Tmin)/4. Cloud fraction (fig. 6.1a) shows a tendency

to increase at both poles but decreases at most mid-latitude and tropical regions. Cloud

optical depth (fig. 6.1b) increases by the most extreme amount in the far northern latitudes

and coastal Antarctica and is positive over most of Asia and northern Europe. Decreases

in cloud optical depth are seen in the Mediterranean area, southern Africa, Australia,

the eastern US and the northeastern region of South America among other places. Posi-

tive changes in cloud liquid droplet effective radius are seen in Europe, northeastern US

and the Far East (fig. 6.1c). Water vapour shows the greatest increases in tropical re-

gions (fig. 6.1d) but is positive everywhere. Aerosol optical depth increases strongly over

western central Africa, eastern Africa, the Himalayan region and Australia whereas it de-

creases strongly in eastern China (fig. 6.1e and f). One consequence of a reduced aerosol

loading is larger cloud droplets, and there is a rough correspondence between reduction

in aerosols and increase in reff,l . The changes in τa550 are larger than changes in τa870,

so that absorption by aerosols is stronger in the visible range than in the infrared. Global

broadband insolation is shown for comparison in fig. 6.1g, where as it may be expected

the increases in solar radiation correspond with the regions in which cloud fraction and

aerosol optical depth is reduced and vice versa. Daytime land temperatures are shown to

increase globally by at least 4◦C, with the greatest rises occurring in the northern polar

regions (fig. 6.1h).
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Figure 6.1: Changes in (a) cloud fraction, (b) cloud optical depth, (c) cloud droplet effective radius, (d)
precipitable water vapour, aerosol optical depth at (e) 550 nm and (f) 870 nm, (g) solar insolation and (h)
daytime temperature under RCP8.5, 1985–2005 to 2080–2100.
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The effects of these changes are investigated on the solar cells of interest later on. Firstly

it is necessary to determine how these climate variables cause spectrum changes, and prior

to this, the effect of spectral irradiance on solar cell power output.

6.3 Solar cell model
When photons interact with a PV cell, electrons are excited from the valence band of

the semiconductor into the conduction band. If an electric field is present within the

device, electrons flow towards one side of the cell with the positive charge (the absence

of an electron, or “hole”) moving the other way, generating a current. The ease of which

electron-hole pairs are generated depends on the semiconductor bandgap.

6.3.1 Cell current and semiconductor bandgap

The climate variables described in section 6.2 form the inputs to the PV cell scheme

(fig. 6.2). In this simulation a cell that can be modelled as an ideal diode, without losses

for series and shunt resistances, and the minimum possible dark saturation current, has

been assumed. The result is that the theoretical cells are close to the detailed balance

limit efficiency for a single-junction cell under one sun. While this limit can never be

reached in practice, it is likely that technology will continue to improve and the solar cells

of 2080 will be more efficient than those available today.

The current density J and voltage V in the solar cell is modelled using the one-diode

characteristic equation (Markvart & Castañer, 2005),

J = Jph− J0

(
exp
(

qV
nkTc

)
−1
)

(6.8)

where k is the Boltzmann constant equal to 8.61× 10−5 eV K−1, q is the elementary

charge, n is the diode ideality factor, Tc is the cell temperature, J0 is the reverse saturation

current density, and Jph is the photocurrent density. In the ideal diode model, n = 1. For

modelling more realistic solar cells a non-ideal diode with n > 1 or the two-diode model

may be used. In the ideal case Jph ≈ Jsc where Jsc is the short circuit current density

(Markvart & Castañer, 2005) and they are taken to be interchangeable in this chapter.

J0 is a material-dependent quantity, the choice of which has a large impact on the rates of

change of open circuit voltage and fill factor with temperature (Singh & Ravindra, 2012).

A number of relationships exist in the literature based on experimental fits of open circuit

voltage values (Nell & Barnett, 1987) although they have only been calculated for c-Si and

GaAs cells. Loferski (1956) calculated values of J0 for c-Si, InP, GaAs and CdTe based

on diffusion lengths. The parameters used to derive Loferski’s values are not applicable
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Jph J0

Rsh

Rs

V

Figure 6.2: One diode schematic of solar cell. In the ideal case assumed in this chapter, the parasitic
resistances are ignored so that the series resistance Rs = 0 and the shunt resistance Rsh = ∞.

to present day solar cells due to improvements in technical expertise. To overcome these

difficulties, generalise to other materials, and to avoid choosing one particular empirical

relationship over another, an ideal case is assumed where J0 is minimised according to

the detailed balance limit and the only degrees of freedom in the equation are the bandgap

Eg, which accounts for the choice of semiconductor material, and cell temperature. The

relevant expression is (Baruch et al., 1995)

J0 =
q
k

15σ

π4 T 3
c

∫
∞

Eg/kTc

t2

et−1
dt. (6.9)

Here, σ = 5.67× 10−8 W m−2 K−4 is the Stefan-Boltzmann constant. The integral in

eq. (6.9) is evaluated numerically.

Jsc depends on the cell illumination and semiconductor bandgap. The bandgap is related

to temperature by the Varshni relationship (Varshni, 1967):

Eg(Tc) = Eg(0)−
aT 2

c
Tc +b

(6.10)

where Eg(0) is the bandgap at 0 K, and Eg(0), a and b are material-dependent constants.

The relevant parameters for the materials investigated in this chapter are given in table 6.3.

Only photons that have higher energy (lower wavelength) than the bandgap can be con-

verted into an electron-hole pair and contribute to the electric current. The corresponding

maximum wavelength of photon conversion [nm] is given by λg = 1240/Eg for Eg in eV

(Singh & Ravindra, 2012).

The bandgap wavelength λg determines the upper limit of the external quantum efficiency

(EQE) curve, Q(λ ). EQE is defined as the proportion of incident photons that are con-

verted to charge carriers at each wavelength. State-of-the-art solar cells have EQEs that

approach unity in the critical wavelength bands (Green et al., 2014). A square EQE re-
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Material Eg(0) [eV] a [10−4 eV K−1] b [K]
Ge (Varshni, 1967) 0.7412 4.561 210
CuInSe2 (Rincón et al., 1983) 0.988 1.36 210
Si (mono c-Si) (Varshni, 1967) 1.1557 7.021 1108
CdTe (Allahverdi & Yükselici, 2008) 1.502 3.24 160
GaAs (Varshni, 1967) 1.5216 8.871 572
CuGaSe2 (Meeder et al., 2003) 1.7258 2.9 244
InGaP (Ishitani et al., 1994) 1.985 7.661 544

Table 6.3: Varshni parameters for the PV materials investigated in this study. Parameters for InGaP obtained
from least-squares curve-fitting from data provided in Ishitani et al. (1994).
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Figure 6.3: (a) External quantum efficiency and (b) spectral response curves from six current world-leading
solar cells. Source: (Green et al., 2014, and references therein).
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sponse is assumed such that Q(λ ) = 0.95 for λ ≤ λg and Q(λ ) = 0 for λ > λg. In reality

Q(λ ) is not uniform across wavelengths as the factors which reduce EQE such as surface

reflection, electron-hole recombination, and minority carrier diffusion, are functions of

wavelength. The real EQE curves for six world-leading solar cells of different material

are shown in fig. 6.3a, which include perovskite, amorphous silicon (a-Si) and CuIn-

GaSeS (CIGSS) cells not considered in this chapter. The shape of real EQE curves are

also dependent on temperature, but EQE tends to only be reported for one set of ambient

conditions, usually STC. Assuming a square EQE curve and allowing the upper limit of

Q(λ ) to vary with temperature allows change in ambient temperature to be included in

the overall effects.

The EQE is related to the spectral response of a solar cell [A W−1] (Betts, 2004)

S(λ ) = Q(λ )
q
hc

λ (6.11)

where h is the Planck constant and c is the speed of light. For a constant Q(λ ) the

linear dependence on λ means that longer wavelength photons with energy just above

Eg contribute the most to the spectral response. This can be seen for the six real-world

solar cells from the spectral response plots in fig. 6.3b. From S(λ ) the short circuit current

density Jsc is calculated:

Jsc =
∫

λg

0
GT (λ )S(λ ) dλ (6.12)

where GT (λ ) is the spectral irradiance [W m−2 nm−1]. For consistency with the relation-

ship introduced earlier in eq. (6.2), the lower limit of the integration can be set to 290 nm,

the shortest wavelength found to be transmitted by the atmosphere in the radiative transfer

simulations.

6.3.2 Open circuit voltage

The open circuit voltage Voc is calculated by setting the current density to zero in eq. (6.8)

and rearranging, such that

Voc =
nkTc

q
log
(

Jsc

J0
+1
)
. (6.13)

6.3.3 Output power

The output power density of a cell is P = JV where J and V are given by eq. (6.8). As

the voltage applied across the cell increases, the resulting current decreases. The point

(Vmp,Jmp) corresponding to the maximum power can be found by taking d(JV )/dV = 0
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and rearranging to obtain

Vmp =Voc−
nkTc

q
log
(

1+
Vmpq
nkTc

)
. (6.14)

Equation (6.14) is implicit in Vmp and is solved using the Newton-Raphson numerical

method. Jmp is found by substituting Vmp for V in eq. (6.8).

6.3.4 Cell temperature

It can be seen that eqs. (6.8) to (6.10) and (6.12) to (6.14) all depend directly or indirectly

on cell temperature Tc. An increase in Tc narrows the bandgap according to eq. (6.10),

which leads to an increase in λg. This allows more photons to be converted and increases

Jsc. Conversely J0 increases which leads to a reduction in Voc. In most cases the reduc-

tion in Voc outweighs the increase in Jsc and consequently output power decreases with

increasing cell temperature. Cell temperature is a property of the energy balance of the

solar cell, which includes the shortwave radiative input. A semi-empirical correlation for

Tc derived by Skoplaki et al. (2008), using Loveday & Taki’s expression for convective

cooling, is

Tc = Ta +
0.32

8.91+2.00W
GT (6.15)

where Ta is ambient temperature, W is wind speed and GT is the plane broadband irradi-

ance [W m−2], i.e. GT (λ ) integrated over all wavelengths. W in this chapter is taken to

be 1.0 m s−1 in both past and future simulations.

6.3.5 Plane irradiance

In order to calculate GT (λ ), an assumption needs to be made about the solar module

alignment. Climate models and radiative transfer calculations provide values of horizontal

irradiance. As seen in chapter 5, a horizontal alignment for a solar panel is rarely optimal,

particularly outside of tropical regions. A tilt angle equal to latitude fares better in general,

but it still sub-optimal in areas with significant cloud. The ideal case would be to use

the method developed in chapter 5 to calculate tilted irradiance and optimal tilt, but in

the current non-optimised version of the tilt model, computing the optimal tilt for every

point of a GCM is computationally too slow. Therefore, the Barker & Christensen (2001)

optimal tilt model is used where the clearness indices are calculated from the shortwave

downwelling radiation variables (rsds and rsdt, table 6.2) contained in the climate models.

These are considered to be equivalent to the GHI and extraterrestrial horizontal irradiance

respectively, and the clearness index is simply the ratio of the two values.

151



6. FUTURE CLIMATE EFFECTS ON SPECTRAL TRANSMISSION OF IRRADIANCE

(a) Historical

00 0 0 00 0 0 0 0

10

10

1
0

20

20
20

30

30

40

40

50

50 50
50

60

60
60

60

70

70

0 10 20 30 40 50 60 70 80
Christensen-Barker optimal tilt, degrees

(b) RCP8.5

00 0 0 00 0 0 0

10

10

20

20
20

30

30

40

4
0

40

50 50
50

50 50

50

60
60

60

70

0 10 20 30 40 50 60 70 80
Christensen-Barker optimal tilt, degrees

Figure 6.4: The global, equator-facing optimal tilt angle calculated from the Christensen-Barker method,
using HadGEM2-ES climate model data as inputs, for (a) historical and (b) RCP8.5 simulations.

Figure 6.4 shows the optimal equator-facing tilt using the Christensen-Barker method for

both the historical and RCP8.5 simulations. The clearness index is undefined for the

winter hemisphere polewards of 75◦ in eq. (5.4) as extraterrestrial irradiance is zero. For

these latitudes, the panel tilt angle is assumed to be equal to latitude.

Due to its geometrical simplicity and relatively good agreement with the IntRad method

of chapter 5, the Klucher diffuse irradiance model (eq. (5.3)) is used to calculate GT

with optimal tilt angle from fig. 6.4. Exceptional accuracy in the tilted irradiance model

is not justified by uncertainty in the input variables. The application of a two-stream

solution (RODENTS) to the radiative transfer equation, which is itself an approximation,
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6.4. Modelling flowchart

Figure 6.5: Flow diagram of modelling process

also makes IntRad unusable for this investigation. At least 16 streams are required to

calculate radiances with libRadtran. Location-specific effects such as horizon shading

and surface albedo will affect the tilted irradiance in practice. On the GCM grid-cell

level, horizon shading cannot be generalised. In this simulation the surface albedo from

the IGBP dataset is used. While land-use changes are both a driver and consequence of

climate change, they are not the focus of this investigation.

6.4 Modelling flowchart

The modelling flow diagram is shown in fig. 6.5.
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Figure 6.6: The effect of an increase in (a) ice cloud optical depth (COD), (b) liquid water cloud optical
depth, (c) precipitable water vapour and (d) Ångström α exponent on the spectral transmission of solar
radiation. The y-axis is relative absorption compared to a clean, clear, dry atmosphere with only Rayleigh
scattering present except for in (d) where a background aerosol is also specified and τa1000 = 0.1. Also
shown is the bandgap of the semiconductor materials investigated at 25◦C. Solar zenith angle is 0◦ with a
zero surface albedo. Because optical depth is a function of wavelength, the conversion between cloud water
path and optical depth is taken at 600 nm using eqs. (2.31) and (2.36).

6.5 Sensitivity of PV materials to climatic variables

In fig. 6.6, the effect on relative spectral transmission of increasing pi, pw, w and aerosol

optical depth is shown, and in fig. 6.7 these effects along with cell temperature Tc are

investigated on each semiconductor material.
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Figure 6.7: The relative power output for each PV material with increasing (a) cloud optical depth, (b)
water vapour, (c) aerosol optical depth at 1 µm for Ångström exponent α = 0.25 (solid) and α = 2 (dashed)
compared to a dry, clean, cloudless atmosphere. (d) Relative power output by cell temperature compared to
standard testing conditions.

6.5.1 Clouds

It can be seen that the effects of ice clouds and water clouds (fig. 6.6a and b) are broadly

similar. Liquid water and ice cloud droplets are fairly non-selective in the UV and visible

region, with a slight tendency for shorter wavelengths to be transmitted more. This effect

increases at higher cloud optical depths. In the infrared region, cloud droplets attenuate

solar radiation more efficiently. As clouds are more opaque to longer wavelengths, the

spectrum is blue-shifted and high-bandgap PV cells will perform comparatively better

under increasing cloud cover. The notches seen around 680 and 760 nm relate to oxygen

absorption and the large jumps seen in the ice cloud extinction are due to discontinuities

in the Fu (1996) ice cloud parameterisation.
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The spectrally-dependent effect of clouds is dominated by broadband extinction (fig. 6.7a)

and any relative gains by material choice are minor compared to the total cloud attenua-

tion. Nevertheless the relative difference in power output between high and low bandgap

materials for the same cloud optical depth is not small. In cloudy regions of the world this

could be important. Liquid and ice clouds produce very similar results when convoluted

with solar cell spectral response curves. Figure 6.7a is not shown for ice.

6.5.2 Precipitable water vapour

Water vapour exhibits distinct absorption bands in the visible and near-infrared part of

the spectrum (fig. 6.6c). The majority of the water vapour absorption occurs in the near

infrared and red end of the visible part, centred at 1900, 1400, 1140 and 940 nm with

smaller bands around 820 and 710 nm and overtones further into the visible range. This

means that increases in water vapour results in a blue shift in the spectrum. The absorption

is non-linear with water vapour column depth. Figure 6.6c shows that there is a large

increase in absorption between 0 mm and 10 mm but a smaller increase between 10 mm

and 55 mm.

As spectral response of solar cells increases with wavelength, water vapour is a critical

absorber for cells with bandgaps in the infrared region. Photons with energy just be-

low the bandgap (wavelengths slightly shorter than λg) contribute the most to the output

power due to the wavelength dependence in the integral in eq. (6.12). A high-bandgap

semiconductor such as InGaP is less affected by increases in water vapour as H2O(g) is

not efficiently absorbing for photons with a greater energy than 2.0 eV. For cell materi-

als within the one junction ideal bandgap range (1.0–1.7 eV), CuGaSe2 exhibits a fairly

modest decline in output power for an increase in water vapour. The bandgaps of both

CuGaSe2 and InGaP avoid the large water vapour absorption bands in the near-infrared

part of the spectrum. At the other end of the range, c-Si and CuInSe2 perform less well as

many of the wavelengths which contribute most to the overall spectral response of these

cells are in the near-infrared and are absorbed strongly. Ge is heavily affected by water

vapour even at a low level of water vapour in the atmosphere.

6.5.3 Aerosols

Absorption by aerosols is modelled by applying a standard background rural aerosol from

Shettle (1989), which is a default option in libRadtran, and modifying the optical depth by

using the Ångström formulae (eqs. (6.5) and (6.6)). The analysis shows that the Ångström

exponent α > 0 everywhere in both the past and future climate model runs so that aerosols

attenuate shorter wavelengths more strongly. When α is small, the absorption by aerosols
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is approximately equal across wavelengths, whereas for high α there is much stronger ab-

sorption at short wavelengths compared to long. A high value of α reddens the spectrum

and favours low-bandgap materials. In polluted conditions, i.e. as τa increases, these ef-

fects become quite pronounced (fig. 6.7c, dashed lines where α = 2). τa1000, the AOD at

1 µm, is chosen as the x-axis as this corresponds to the Ångström β parameter. It should

be noted that for the monthly climate data, values of τa1000 > 0.2 are rare, however values

of τa1000 exceeding 4 exist. For a low value of α , there is little difference in relative cell

performance with increasing aerosol optical depth and cell power output is a near linear

function of τa1000 (fig. 6.7c, solid lines where α = 0.25).

6.5.4 Temperature

Increasing cell temperature has a negative effect on cell efficiency and output power

for most PV cells in normal operating conditions. The 25◦C cell temperature and

1000 W m−2 irradiance at AM1.5 prescribed by STC are not often found in reality as to

achieve this would require a high irradiance combined with a very low ambient tempera-

ture (Betts, 2004; Gottschalg et al., 2013). According to eq. (6.15), an ambient tempera-

ture of −4.3◦C would be required to achieve a cell temperature of 25◦C at 1000 W m−2

irradiance.

In fig. 6.7d the relative power output of each cell compared to Tc = 25◦C is shown. For

constant irradiance and with a slight change of notation from eq. (2.44), the power output

of a solar cell can be approximated as a linear function of its temperature so that

P
P25

= 1−Θ(Tc−25). (6.16)

and P25 is its power output at 25◦C.

For the semiconductors investigated, the temperature coefficient Θ varies from

0.0006 K−1 for InGaP to 0.0017 K−1 for c-Si over the range of Tc from 25–80◦C, noting

that the power decline with temperature is approximately linear in this range. In general,

it is found that the temperature coefficient is lower for higher bandgap cells, giving these

materials a future climate advantage. The temperature coefficients derived by the one-

diode, detailed balance method in this chapter are lower than the typical real-world values

of 0.0045 K−1 for c-Si, 0.0035 K−1 for CuInSe2 and 0.0025 K−1 for CdTe (Zondag,

2008), and lower than those calculated by Singh & Ravindra (2012) using a similar one-

diode method by 30–60% for the cells common to both studies (c-Si, GaAs, CdTe and

CdS). Singh & Ravindra used an empirical relationship for J0 based on real-world data

rather than the idealised case which likely accounts for these differences. Experiments by

Singh et al. (2008) showed that the temperature coefficient is lower for higher efficiency
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cells of the same material. This is evidenced in part by today’s world-leading 25.6% effi-

cient c-Si cell having a temperature coefficient of 0.0025 K−1 (Green et al., 2014), much

lower than the typical c-Si cell and closer to the calculated ideal value of 0.0017 K−1.

6.6 Global changes in PV energy output

The annual energy outputs are calculated by summing up the power outputs calculated at

each hour within each month, multiplied by the number of days in the month.

6.6.1 Baseline changes for c-Si

c-Si is the best understood and most widely utilised PV cell material comprising over 80%

of worldwide production (Razykov et al., 2011). Crystalline silicon provides the best

optimisation between efficiency and cost combined with low toxicity. c-Si is therefore

used as a baseline both to analyse the sensitivity of energy output to each climate variable,

and to compare the overall results from other semiconductors.

The global simulation shows that the projected change in c-Si PV energy output using the

spectral climate change factor is not homogeneous across the world (fig. 6.8). PV energy

output increases of over 10%, and in some areas over 20%, are expected in Europe, eastern

China, and parts of South America. The biggest decreases in c-Si energy output occurs in

the boreal regions, Greenland, and Antarctica, where significant deployment of solar PV

is unlikely. In more important regions, a negative change in PV output above 5% can be

expected in parts of equatorial Africa, India and northwest China.

6.6.2 Attribution of climate variables

The contributing factors to the total PV output change were investigated by modifying

clouds, water vapour, aerosol and ambient temperature one at a time to the 2080–2100

value and holding the others constant at the 1985–2005 value. In all cases, the panel tilt

angle was fixed at the optimal value for historical conditions. In fig. 6.9a, clouds (cloud

fraction, cloud optical depth and liquid cloud effective radius) was modified while the

other variables were held constant. Clouds account for much of the total changes in c-Si

energy output seen, especially in areas where a total increase in c-Si PV output is projected

for the future. By comparison with fig. 6.1a, it can be seen that cloudiness is expected

to increase in Antarctica and the high northern latitudes and accounts for much of the

reduction in c-Si PV output predicted for these areas. Figure 6.9b shows that changes due

to water vapour are largely detrimental to c-Si energy output. For much of the mid- and

low-latitude areas, the decrease in energy output is less than 2%, but can be more than
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Figure 6.8: Relative change in PV energy output for c-Si solar cells under the RCP8.5 scenario in the
HadGEM2-ES model for 2080–2100 compared to 1985–2005.

this in high latitudes. This is consistent with a study which only considered clear-sky

spectral effects of water vapour and used the real-world EQE curve for c-Si from fig. 6.3

(Smith et al., 2015). One area in eastern Africa actually sees a small increase in energy

output when comparing future to present effects of H2O. Figure 6.9c shows the changes

due to aerosols. For Australia, central Africa and western India, the increase in aerosols

lead to a large overall decrease in energy output which outweighs cloud effects in these

regions. Changes in aerosols lead to positive changes in c-Si energy output in Europe,

eastern China and the eastern US, suggestive of a reduction in anthropogenic pollution in

these regions. Clean air policies in Europe and Asia may contribute to the reduction in

atmospheric aerosol over the 2080–2100 time period, particularly for example in China.

This is noted by the increase in cloud droplet effective radius from fig. 6.1c. A reduction

in solar transmission due to aerosol effects is seen over Australia, the Himalayas and

western Africa, which could be due to a drying in these regions and is unlikely to be due

to anthropogenic emissions. The changes in output energy due to changes in expected

solar cell temperature calculated from the changes in ambient temperature alone are not

large (fig. 6.9d). This is likely due to the low temperature coefficients calculated from the

one-diode detailed balance model; at 0.0017 K−1, daytime temperatures would need to

rise at least 12◦C to exceed a 2% energy output decline.
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Figure 6.9: Components of the change in c-Si PV output with the stated variable set to the 2080–2100
values and other variables held constant at 1985–2005 values. (a) clouds; (b) water vapour; (c) aerosols; (d)
daytime temperature.

6.6.3 Differences for other semiconductors relative to c-Si

The change in energy output for each semiconductor material in the 2080–2100 timeframe

compared to 1985–2005 compared to the change for c-Si is also analysed (fig. 6.10). This

can be thought of as finding δ such that

δ =
fSCC− fSCC,Si

fSCC, Si
(6.17)

where fSCC and fSCC,Si are the spectral climate change factors calculated for the material

in question and c-Si respectively.

As expected, semiconductors with a greater sensitivity to increases in water vapour and

cloud optical depth, Ge and CuInSe2, show a more negative change in energy output

than for c-Si (fig. 6.10a,b). These are the semiconductors with lower bandgaps than c-

Si. Conversely, the semiconductor materials with higher energy bandgaps than c-Si are

more robust to a change in climate than c-Si is (fig. 6.10c–f). The greatest differences

are where the effects of a change in temperature and cloud optical depth are highest,

and are over 7% for some areas of northern Russia and Canada for InGaP (fig. 6.10f).

These locations are not ideal for siting solar PV plants, but the changes are positive in

sign for these semiconductors globally. Some differences in the changes by technology
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Figure 6.10: Normalised differences (δ in eq. (6.17)) in PV output between each semiconductor and c-Si
for changes from 2080–2100 compared to 1985–2005.

can be seen in areas of high aerosol increase (Australia, Himalayas and central Africa)

where the changes are less negative for Ge and CuInSe2 and less positive for the other

semiconductors. Assuming a large enough Ångström α parameter, this would be expected

according to fig. 6.7(c).

6.7 Comparison of HadGEM2-ES with other

climate models

As shown in fig. 6.9, clouds are the most important factor for global c-Si energy out-

put changes. Cloud extinction affects all solar wavelengths, and although cloud optical

depth creates a slight spectral effect it is dominated by overall reduction in atmospheric
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Figure 6.11: (a) coefficient of variation in rsds of 39 CMIP5 models for 1985–2005 in the CMIP5 historical
experiment; (b) same as (a), for 2080–2100 under RCP8.5; (c) number of standard deviations from the
CMIP5 mean for rsds in run 4 of the HadGEM2-ES model used in this study under the CMIP5 historical
experiment for 1985–2005; (d) same as (c), for 1985–2005 under RCP8.5.

transmittance. The second greatest effect is due to aerosols, which exhibit some spectral

dependence. Clouds are one of the greatest uncertainties inside climate models due to

how different models treat sub-grid scale processes and cloud microphysical properties

(Boucher et al., 2013).

As the HadGEM2-ES model is one of 39 climate models submitted to CMIP5 by different

modelling centres worldwide, an analysis of all 39 model ensembles used in the CMIP5

historical and RCP8.5 scenarios has been undertaken. The analysis has been undertaken

using the shortwave downwelling solar irradiance (rsds) variable. To determine where

the chosen realisations of HadGEM2-ES, run 5 of the historical and run 4 of RCP8.5, sit

within the population of all models, the number of standard deviations from the CMIP5

multi-model mean has also been analysed. The coefficient of variation (CV), defined as

the ratio of the standard deviation of the irradiance over all models to the mean of the

irradiance of all models, is used to assess the level of difference between models. A low

CV represents a low level of spread between models.

Figure 6.11a and fig. 6.11b show the coefficient of variation for 1985–2005 and 2080–

2100 respectively. Each “sample” is one year of solar irradiation for each of the 39 mod-

els, so the CV is measuring inter-year variation as well as inter-model variation. In most

162



6.8. Summary

low- and mid-latitude areas the CV is similar, or slightly higher, in the future ensemble

compared to the past. As such, climate models tend to show a similar or slightly greater

(but not much greater) spread of values for solar radiation for the most important parts

of the world for PV. Over boreal land areas and the Arctic ocean the future CMIP5 en-

sembles show a greater model spread than the historical ones, which is indicative of the

myriad climate feedbacks and predicted faster rate of warming in these regions. Fig-

ure 6.11c and d show the position of HadGEM2-ES run 5 historical and run 4 RCP8.5

within the total model population in terms of number of CMIP5 standard deviations from

the CMIP5 mean. The standard deviation from the multi-model mean is approximately

the same in both the past and future experiments, which allows the use of these particu-

lar model runs as a consistent representative of the population of climate models. Over

Europe, the Middle East, Africa and North America, HadGEM2-ES shows a tendency to

predict a higher surface irradiance than the CMIP5 mean by between 0.5 and 1.5 standard

deviations. There are some areas where HadGEM2-ES shows a lower irradiance than the

multi-model ensemble mean, for example the Himalayas and parts of South America. It

is likely that the results shown in this chapter would differ upon using a different climate

model, but if the climate model predicted less or more radiation by the same amount

in each region compared to the CMIP5 mean in past and future, such as HadGEM2-ES

appears to, the sign of the changes by region should be the same using a different model.

6.8 Summary
A handful of previous studies (table 6.1) have compared the changes in PV energy output

expected in a future climate. However, they rely on broadband irradiance only and do

not take into account interaction of the solar spectrum with the spectral response of a PV

semiconductor, and only one study has considered a tilted PV collector, whereas all others

use the values of horizontal radiation to determine the changes to PV output in a future

climate. In this chapter these two contributions are made to the existing literature.

The changes in solar PV energy output with respect to the RCP8.5 climate change sce-

nario are shown to be mostly dependent on broadband attenuation from changes in cloud

patterns. The changes in PV output are heterogeneous across the world, ranging from a

decrease of more than 10% in some parts of Africa and Australia (and the less important

regions of Antarctica and far north of North America and Russia) to increases of over

10% in Europe, the eastern US, South America and China. Although the absorption and

scattering due to clouds is a function of wavelength, the changes in spectral transmission

through clouds is dominated by the broadband effects of changes in cloud fraction and

cloud optical depth. A selection of a particular semiconductor material on the basis of its

spectral properties is not an important consideration in parts of the world where clouds
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are, and will remain, frequent. In a few locations such as western Africa and Australia the

increases in aerosol optical depth are more important than changes in cloudiness.

Comparing the results in this chapter to previous work, the outcomes are more optimistic

than the global changes shown in c-Si PV output by Crook et al. (2011) over a similar

future time frame. The RCP8.5 climate simulation used in this study is more extreme

than the A1B scenario investigated in Crook et al.. Some differences should be expected

between the studies in light of the updated climate model, different radiative forcing sce-

nario, and inclusion of spectral effects. Another reason for the more optimistic outlook

in this work is that the theoretically-derived temperature coefficients are lower than the

real-world values assumed in Crook et al.. Nevertheless, the areas where strongly positive

and strongly negative changes in PV energy output broadly agree between the two studies.

The strongly positive changes in Europe and eastern China, and negative changes in cen-

tral Africa, India, Canada, Russia and Antarctica shown in this chapter are also present in

Wild et al. (2015). The overall positive change in South America and negative change in

Australia in this analysis was found not to be statistically significant for the population of

39 CMIP5 GCMs across the CMIP5 ensemble in Wild et al. (2015) for the timeframe of

2006–2049. As this study considers a timeframe further into the future, it is possible that

a statistically significant trend would emerge for these regions in RCP8.5 by 2080–2100.

Differences in energy output between semiconductor technologies can be seen. This can

be explained by the difference in spectral responses of solar cells. Increases in clouds

and water vapour tend to shift the spectrum towards to the blue, and increases in aerosols

tend to shift the spectrum towards the red, except where the Ångström α exponent is

low. Increases in ambient temperature also negatively affect PV energy output, the extent

of which is dependent on the temperature coefficient of the semiconductor. Within the

Shockley-Queisser detailed balance limit ideal range of 1.0–1.7 eV for a single-junction

solar cell, materials with a bandgap towards the higher end of this range such as CuGaSe2

are slightly more robust to increases in clouds, water vapour, aerosols (for low α) and

temperature than materials towards the lower end of this range such as CuInSe2. As

such, high bandgap materials may show a marginal performance advantage, up to 10%

and even greater in the northern Boreal regions, for CuGaSe2 compared to c-Si over low

bandgap materials in the future. High-efficiency concentrating PV cells such as the In-

GaP/InGaAs/Ge triple-junction present an interesting case, as the top InGaP layer is ex-

pected to see a gain in energy output in the future whereas the bottom Ge layer is ex-

pected to suffer a energy output loss relative to c-Si. The middle InGaAs layer exhibits

a bandgap similar to CdTe and GaAs and will show a slight improvement compared to

c-Si. As multi-junction cells are required to be current-matched, changes in solar spectral

properties may present an additional challenge for optimisation of energy output from
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concentrating PV.
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Chapter 7

Impacts of stratospheric sulphate
geoengineering

In chapter 6, the effects of a future climate scenario on fixed-angle solar PV panels were

investigated. Spectral transmission through the atmosphere and the spectral response

of different PV materials was taken into account. It was demonstrated that the climate

change effects, including changes due to the solar spectrum, could account for power out-

put changes exceeding ±10% in many parts of the world and ±20% in localised regions,

for c-Si under the RCP8.5 forcing scenario with a 2080–2100 future time horizon. A

small spectral effect was seen with high bandgap semiconductors performing better.

The climate change scenarios laid out in the CMIP5 RCP scenarios prescribe radiative

forcing levels based on a group of socioeconomic narratives. While geoengineering is

discussed in AR5, the “headline” RCP scenarios do not consider it, however a smaller

geoengineering model intercomparison study, GeoMIP, has been created to assess the

differences between models (Kravitz et al., 2011). Geoengineering, artificially manipu-

lating the earth’s climate, has been suggested as a way to reverse or lessen the impact of

anthropogenic climate change (Budyko, 1976; Crutzen, 2006) and has received greater

attention in recent years (Boucher et al., 2013). As solar energy changes under baseline

RCP scenarios have had little attention so far, it is unlikely that a detailed global study on

solar power changes under geoengineering climate scenarios have been considered at all.

This chapter introduces such an investigation for PV, and the work of the previous chapter

is extended to include two-axis tracking PV and CSP alongside fixed-angle, optimally

oriented PV panels.

Firstly an introduction to geoengineering using stratospheric sulphate aerosols is pre-

sented. The climate model and variables of interest are then described, following which

the geoengineering experiment is introduced. The following sections report the results,

where it is shown that large and significant changes for tracking PV and CSP can be ex-

pected in energy output when geoengineering is implemented. A method of calculating

where changes are statistically significant is defined. The final section summarises.
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7.1 Background and literature review

Given the slow progress of policy action on climate change up until the present, geoengi-

neering can be considered a technological climate change mitigation strategy (Lenton &

Vaughan, 2009). It could potentially be deployed if future policy progress continued to

be inadequate or as a last-ditch attempt to stop runaway climate change if all other short-

term fixes are insufficient. Geoengineering concepts fall into two main categories: solar

radiation management (SRM) and CO2 removal. In terms of the earth’s energy budget,

SRM either reduces the input or increases the reflection of shortwave radiation to/from

the earth-atmosphere system, and CO2 removal increases the longwave output from the

earth. Both methods are designed to reduce the radiative forcing and lead to a global

cooling effect.

Stratospheric sulphate injection (SSI) is one SRM geoengineering method proposed to re-

duce planetary warming (Boucher et al., 2013) by increasing the earth’s planetary albedo

and reflecting a greater proportion of solar radiation back into space. The concept of SSI is

to mimic the production of reflective volcanic sulphate aerosols. The 1991 eruption of Mt.

Pinatubo ejected 20 Tg SO2 into the stratosphere (Bluth et al., 1992), causing a globally

averaged cooling effect of about 0.5◦C (Lacis & Mishchenko, 1995). Unlike well-mixed

greenhouse gases, stratospheric sulphate aerosols have a lifetime ranging from days to a

few years (Rasch et al., 2008) and are not evenly distributed spatially. Due to this short

lifetime, the SSI programme must be continuous to be effective.

Other SRM methods include marine cloud brightening, space sunshades, and increasing

the surface albedo (Lenton & Vaughan, 2009). There will be solar power consequences

for all of these methods. Notwithstanding the cost and practical realities of such a task,

placement of solar mirror at the L1 sun-earth Lagrange point will most likely produce

negative solar energy effects due to the reduction of incoming radiation at the top of

the atmosphere. Surface albedo enhancement on the other hand will probably increase

solar energy yield both directly from ground reflection and indirectly through atmospheric

backscattering. The effects of marine cloud brightening may be positive, negative or

neutral and probably not spatially homogeneous, depending on changes in atmospheric

dynamics.

Sulphate particles scatter radiation and increase the diffuse component at the expense of

direct and total radiation. It is expected that both PV and CSP potential would decline in

the case of a climate geoengineered with SSI (Robock et al., 2009; Oppenheimer et al.,

2014), but the effect on CSP would be greater as CSP can only use direct radiation. In

the year following the Mt. Pinatubo eruption, on-peak CSP capacity at the large SEGS

array in California was reduced by about 20% (Murphy, 2009). A secondary effect of
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sulphate injection that directly affects the radiation budget would be an increase in cloud

condensation nuclei and reduction in size of cloud droplets (Ramanathan et al., 2001)

which would affect cloud radiative properties in both the shortwave (important in this

study) and longwave (important in climate projections). Other side effects of SSI could

include ozone depletion (Tilmes et al., 2008), disruption to Asian and African monsoons

(Robock et al., 2008), and changes in precipitation patterns more generally. Because

SSI does not reverse the increasing concentrations of atmospheric CO2, the ocean will

continue to absorb some of the atmospheric excess which results in acidification. This can

be damaging for marine ecosystems and the human systems that are reliant on them. There

may be other undesirable side effects that will only become known upon deployment of

an SSI programme. Finally, ethical and practical concerns of geoengineering exist, such

as whether humans have the right to deliberately alter the climate further in preference

to targeting the source of the problem (greenhouse gas emissions), and whether such a

programme is financially, politically and technically viable.

7.2 Climate runs
The Met Office Hadley Centre coupled atmosphere-ocean model, with full carbon cycle

modelling and extended stratosphere, HadGEM2-CCS, (Martin et al., 2011; Hardiman

et al., 2012) is used to simulate historical warming from 1860 to 2005 and future warm-

ing to 2099 based on the RCP 4.5 emissions scenario. The most important atmospheric

process included is the oxidation of SO2 gas to the H2SO4 sulphuric acid aerosol con-

densate (Bellouin et al., 2007). The extended stratosphere in HadGEM2-CCS can better

represent stratospheric-tropospheric interactions than the low-top equivalent HadGEM2-

CC model, the former extending to a vertical limit of 84 km on 60 model levels and the

latter to 39 km on 37 vertical levels. Important processes for sulphate aerosols including

gravitational sedimentation are better resolved.

The SSI geoengineering simulation simulates the injection of SO2 into the tropical strato-

sphere from 2020 onwards at an altitude of 16 km to 25 km over the equator and at a rate of

10 Tg SO2 per year on top of the RCP4.5 scenario. RCP4.5 was selected as the main RCP

for analysis in GeoMIP (Kravitz et al., 2011). For both the RCP4.5 and SSI simulations,

the timeframe of 2040–2059 is used for the analysis. Photovoltaics and CSP have gener-

ally assumed lifetimes of 25–30 years (Köberle et al., 2015) so for systems developed in

2015 the analysis period for geoengineering will overlap with the system’s lifetime. After

20 years of injection starting in 2020, the geoengineering has reached its full effect. To

compare the future geoengineered (SSI) and non-geoengineered (RCP4.5) against the re-

cent past, the historical simulation output for 1985–2005 is also analysed. For the RCP4.5

and SSI simulations, three ensemble members were produced, and one member for the
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Variable CMIP5 name Name

Surface downwelling shortwave radiation rsds G
Surface diffuse downwelling shortwave radiation rsdsdiff GD
Near-surface air temperature tas Ta

Table 7.1: Variables from HadGEM2-CCS used in the SSI, RCP4.5 and historical simulations.

historical simulation is available. The climate model simulations were produced by Scott

Osprey (Oxford University) and Lawrence Jackson (University of Leeds) with the anal-

ysis performed by the author. Unlike in chapter 6, only the broadband solar radiation is

considered in this investigation (table 7.1), as spectral radiation was not available on the

3-hour timescale.

3-hourly values of total and diffuse shortwave downwelling radiation and near-surface air

temperature (G, GD and Ta respectively) are extracted for 2040–2059 from each ensem-

ble member in the SSI and RCP4.5 simulations and for 1986–2005 from the historical

simulation table 7.1. The DNI GB is simply recovered as

GB =
G−GD

cosθz
(7.1)

where cosθz is the mean cosine of the zenith angle for daytimes in the corresponding

3-hour period. This is determined by taking 6-minutely samples of cosθz and finding

cosθz =
1
N ∑

cosθz>0
cosθz, j (7.2)

where N is the number of samples in the 3-hour period in which cosθz > 0 and j runs

from 1 to N. The effective azimuth angle is taken from the central time in the 3-hour

period. The reason why cosθz is used is because solar zenith angle varies enough over

the course of the three hour period to make the midpoint time zenith unrepresentative in

some cases.

Figure 7.1 shows the differences (SSI minus RCP4.5, SSI minus historical and RCP4.5

minus historical) between the ensemble means for Ta, G and GB. Regions where the

differences between simulations are not significant at the 5% level have been shaded;

the method of calculating uncertainty is described in section 7.5. SSI cools the Earth

compared to RCP4.5 with greater cooling over land, which is also significant for the

majority of the world (fig. 7.1a). Differences between the SSI and historical runs are

smaller, and in general the SSI program does not fully reverse the underlying temperature

rise from RCP4.5 (fig. 7.1b). In RCP4.5 near-surface air temperature is warmer than

in the historical simulation as expected, with greater warming in the Arctic and over
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Figure 7.1: Changes in surface air temperature change (top row), downwelling surface shortwave radiation
(middle row) and downwelling surface direct shortwave radiation (bottom row) for SSI minus RCP4.5 (left
column), SSI minus historical (middle column) and RCP4.5 minus historical (right column). Shaded areas
are where differences between 20-year means are not significant at the 5% level.

land (fig. 7.1c). This change is significant in most regions. Changes in total radiation

are significant in fewer places than for changes in temperature (fig. 7.1d–f). The largest

changes are seen under the influence of SSI for direct radiation in fig. 7.1g–h. Global

average differences in direct radiation transmission are 5.54 W m−2 between SSI and

RCP4.5. The largest surface shortwave changes occur in the tropics for SSI because,

although the sulphate aerosol is spread across the globe, the aerosol is more concentrated

near the equator where it is injected. There are large changes in direct radiation present

in the baseline RCP4.5 climate change scenario compared to the historical (fig. 7.1i).

Figure 7.2 shows the globally averaged temperatures in the three models. The global mean

changes in temperature are area-weighted, i.e. the contribution of a grid cell to the global

average is proportional to the cosine of its latitude. It is seen that the rates of warming of

around 0.3◦C/decade are similar between all three scenarios. In RCP4.5 the trendline is

almost a linear continuation of the historical trendline, and the global mean temperature

is 1.45◦C above that in the historical simulation. SSI is successful in reducing global

average temperatures below the RCP4.5 simulation by a global average of 0.94◦C, but the

background warming trend is still present. The reduction of global temperatures in the

early 1990s due to the Mt. Pinatubo eruption are reproduced in the historical simulation,

although are not as great as the 0.5◦C suggested by Lacis & Mishchenko (1995).

171



7. IMPACTS OF STRATOSPHERIC SULPHATE GEOENGINEERING

1980 1990 2000 2010 2020 2030 2040 2050 2060
Year

13.0

13.5

14.0

14.5

15.0

15.5

16.0
G

lo
b
a
l 
a
v
e
ra

g
e
 t

e
m

p
e
ra

tu
re

 (
◦
C

)

0.30 ◦ C/dec

0.31 ◦ C/dec

0.35 ◦ C/dec

10 Tg SO2 /yr SSI

RCP 4.5
RCP historical

Figure 7.2: Global average temperature trends for the SSI, RCP4.5 and historical simulations with average
warming rates per decade. The three runs of the SSI and RCP4.5 simulations are shown separately.

Figure 7.3 shows the area-weighted trends for total radiation, direct radiation and diffuse

radiation. The historical trend for radiation is complicated by the Mt. Pinatubo eruption.

The influence of this can be seen as a decline in total and direct shortwave radiation and

an increase in the diffuse component between the years of 1991–1994. In the absence

of the Mt. Pinatubo eruption the trend is possibly for a small global brightening due to

a decrease in air pollution (Wild, 2009). The future radiation datasets show very clear

differences between RCP4.5 and SSI. The difference between the peak of Mt. Pinatubo

influence in 1992 and a “normal” year in the 1990s is approximately the same as the

difference between the RCP4.5 and SSI simulations.

7.3 Application to solar power output

Three solar power systems are considered: a fixed-angle PV array, a two-axis tracking

PV array, and a one-axis tracking CSP parabolic trough. As c-Si is currently the domi-

nant PV cell material, it is considered for this study, although as spectral effects are not

included any differences in technology will be due to temperature and low-irradiance co-

efficients in eq. (2.44), and this relationship is used to assess changes. Therefore, the

temperature effect on efficiency in this simulation (0.0045 K−1) will be more important
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Figure 7.3: Global average radiation trends for the SSI, RCP4.5 and historical simulations. The three runs
of the SSI and RCP4.5 simulations are shown separately. The influence of the 1991 Mt. Pinatubo eruption
is shaded.
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than in chapter 6 (0.0017 K−1). The cell temperature is calculated as in eq. (6.15) with

a wind speed of 1 m s−2. Fixed-angle PV panels are the most common configuration for

domestic-scale installations and utility plants. The fixed-angle PV experiment optimises

equator-facing tilt using the Barker-Christensen method using eq. (5.4) for latitudes be-

low 75◦ and equal to latitude above 75◦, and the optimisation is performed separately for

the historical, RCP4.5 and SSI climate scenarios. Analogously to chapter 6, the top-of-

atmosphere radiation (rsdt) for the historical and future time periods were obtained from

the CMIP5 portal to calculate the summer, winter and annual clearness indices required

for the Barker-Christensen tilt method.

In both the fixed and two-axis tracking PV experiments, the surface albedo is set to 0 to

remove effects of ground reflection, and the Klucher diffuse irradiance model (eq. (5.3))

is applied. The only difference therefore between the two experiments is the influence of

the incidence angle cosθi which is always equal to 1 for daytime periods in the tracking

PV case and a function of solar position (eq. (5.13)) in the fixed PV case.

The principle of CSP is to focus direct sunlight onto an absorber using mirrors, creat-

ing a temperature differential with the surroundings that can do useful work. There are

several different methods that can be used to achieve this, including linear Fresnel reflec-

tors, parabolic dishes, heliostats, and parabolic troughs (Kalogirou, 2004). As parabolic

trough CSP collectors have been extensively deployed and tested (Köberle et al., 2015),

a parabolic trough collector with a one-axis east-west tracking system such as the type

seen in the SEGS array in the Mojave Desert in California (Kearney, 1989) is used in

this analysis. In a parabolic trough collector, direct sunlight is focused onto an absorber

tube containing heat transfer fluid, usually oil, using concave mirrors. The fluid circulates

through the power plant and is used to raise steam to drive turbine generator sets. As

CSP requires direct sunlight, collectors track the sun to align the focused sunlight to the

absorber tube.

For a variety of CSP technologies, the efficiency to a good approximation has been found

to be (Kalogirou, 2004)

ηCSP = k0−
k1(Ti−Ta)

GB cosθi
(7.3)

for some empirical choices of k0 and k1. Experiments at Sandia National Laboratories

for the IST parabolic trough give k0 = 0.762 and k1 = 0.2125 (Dudley, 1995; Kalogirou,

2004). The efficiency of a CSP collector depends on the working fluid inlet temperature

and the condenser temperature, which are the largest unknowns. The fluid inlet tempera-

ture is taken to be held fixed at 115◦C following Crook et al. (2011), so that an increase in

ambient temperature improves CSP efficiency by requiring less heat from the surround-

ings to heat up the working fluid. The incidence angle in eq. (7.3) for a one-axis E-W

174



7.3. Application to solar power output

a b c

d e f

g h i

15 10 6 3 1 0 1 3 6 10 15%

10Tg/yr SO2− RCP 4.5 10Tg/yr SO2−climatology RCP 4.5 − climatology

Fi
x
e
d
-a

n
g
le

 P
V

2
-a

n
g
le

 t
ra

ck
in

g
 P

V
1
-a

n
g
le

 t
ra

ck
in

g
 C

S
P

Figure 7.4: Percentage changes in power output yield for fixed-angle PV (top row), two-angle tracking
PV (middle row) and two-angle tracking CSP (bottom row). Differences between SSI and RCP4.5 (left
column), SSI and historical (middle column) and RCP4.5 and historical (right column). Shaded areas are
where differences between 20-year means are not significant at the 5% level

parabolic trough is not the same as the incidence angle for a two-axis flat plate collector

like PV, and is given by (Kalogirou, 2004)

cosθi = cos l cosh+ cosδ sin2 h (7.4)

where l is latitude and h and δ are the hour angle and declination as defined in section 2.

Figure 7.4 shows the differences in energy output between each simulation ensemble

mean for each considered technology. Regions where changes are not significant at the

5% level have again been shaded. The overall differences for fixed-angle PV between SSI

and RCP4.5 are small and tend to be within ±3% (fig. 7.4a). Compared to the historical

simulation, in both the SSI and RCP4.5 simulations decreases in energy output of a few

percent occur in the important solar energy generating regions of Africa, the Middle East,

India and the Western US for fixed PV (fig. 7.4b,c). Geoengineering tends to slightly am-

plify the negative effects already present in RCP4.5. For 2-axis tracking PV, the changes

due to SSI over land are mostly negative compared to RCP4.5 (fig. 7.4d). The reduction in

direct radiation under SSI accounts for these differences as tracking PV systems are more

sensitive to changes in direct irradiance. SSI lessens some of the increase in tracking PV

output over Europe, the Eastern US and East Asia that is seen in RCP4.5 compared to the

historical simulation (fig. 7.4e,f).

Differences between historical and future solar energy output are larger for CSP than for

PV. In the SSI simulation energy output decreases by more than 10% compared to RCP4.5
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for many regions, particularly in a band across the equator where sulphate particles are

more concentrated (fig. 7.4g). Typically, CSP plants are most cost-effective in the arid

regions between the equator and 40◦ in both hemispheres (Köberle et al., 2015) due to the

high DNI contribution. Here too, the impacts of SSI compared to the RCP4.5 simulation

can be seen for CSP energy output. RCP4.5 shows significant positive changes to CSP

energy output in Europe, the Far East, eastern US and in Latin America, in some cases

by more than 15%, compared to the historical simulation (fig. 7.4i). These increases are

made smaller in magnitude and less significant by SSI (fig. 7.4h). The areas of greatest

change in CSP output under RCP4.5 and SSI correspond with the areas of greatest change

in direct downwelling surface shortwave radiation.

7.4 Modelling flowchart

The modelling flow diagram is shown in fig. 7.5.

7.5 Significance analysis

The significance analysis is performed by using an independent sample Student t-test to

determine whether the differences observed between each simulation are significant at the

5% level. The t-test is valid if the yearly means within each simulation satisfy a normal

distribution and the inter-simulation variances are constant. Therefore, these assumptions

were first checked before using the tests.

A normal probability plot for the 3 runs of the 20 sample years of the SSI simulation

for the grid square which contains Leeds is shown in fig. 7.6. This plots the observed

annual mean temperatures on the y-axis against a theoretical normal fit on the x-axis. If

the data were perfectly normally distributed, they would lie on the diagonal line. For

this dataset, the assumption of a normal distribution is not too inaccurate. To perform

this analysis globally, the D’Agostino-Pearson test (D’Agostino, 1971; D’Agostino &

Pearson, 1973) can be performed. This provides a probability (p-value) that the data do

not satisfy a normal distribution. This does not imply that the data are normally distributed

in reality, merely that they are “sufficiently” normal for further tests relying on the normal

assumption to be performed. A criterion of p> 0.05 is often applied to make this decision

but such a choice is subjective. For the example presented in fig. 7.6, p = 0.574, and there

is no evidence to suggest the data are not normally distributed. The data has not been de-

trended as the year-on-year global trends shown for temperature and radiation in figs. 7.2

and 7.3 are often overwhelmed by the inter-annual variability at the grid cell level (in

other words, the signal-to-noise ratio is small).
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Figure 7.5: Flow diagram of modelling process

For each test, there are 60 sample years for the SSI and RCP4.5 simulations (20 yearly

observations × 3 ensemble members) and 20 sample years for the historical simulation.

The plots of p-values falling into the categories of p < 0.01, p < 0.02, p < 0.05 and

p < 0.10 for Ta, G and GB, and the power outputs for each technology are shown in

fig. 7.7. For white areas where p > 0.10, which occurs over most land areas, there is no

evidence to suggest that the data cannot be assumed to be normally distributed.

The assumption of equal variances can be tested with the Bartlett test (Snedecor &

Cochran, 1989) assuming the data is sufficiently normally distributed, which is broadly

true for the datasets considered as shown in fig. 7.7. Again, the test returns a p-value

that can be used to make a subjective assessment of equality of variances. Figure 7.8

shows that the assumption of equal variances is valid for most land points as p > 0.10. As

the Bartlett test is sensitive to non-normality, many of the regions where the test shows
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Figure 7.6: Normal probability plot for the SSI simulations for the GCM grid cell containing Leeds

evidence of non-equal variances coincide with those that reject the normal assumption.

As the majority of grid cells did not fail the assumptions for normality or equal vari-

ances, an independent-sample t-test can be used to determine uncertainty. The indepen-

dent sample t-test determines whether the means of two ensembles are different. Like the

D’Agostino-Pearson and Bartlett tests, it returns a p-value. A low p-value indicates that

there is evidence to suggest the means are different. Shaded areas in figs. 7.1 and 7.4 are

where p > 0.05, suggesting in these regions the means between the variables in question

are not (statistically) significantly different. The unshaded areas are the ones where statis-

tical significance is observed; as expected, they tend to coincide with the largest absolute

changes.

7.6 Summary

In this chapter, the assessment of solar energy changes in a future climate, that was first

considered in chapter 6, is extended to cover a future scenario in which geoengineering

is used to deliberately used to manage global temperature rises. Global effects of strato-

spheric sulphate geoengineering have been assessed for PV and CSP energy outputs.

The climate model simulation of geoengineering with stratospheric sulphate injection
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Figure 7.7: p-values of the D’Agostino-Pearson tests for normality for the temperature, total radiation and
direct radiation (top figure) and fixed-angle PV, two-axis tracking PV and 1-axis tracking CSP (bottom
figure) for the SSI, RCP4.5 and historical simulations
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Figure 7.8: p-values of the Bartlett tests for equal variances between the SSI, RCP4.5 and historical sim-
ulations for the temperature, total radiation and direct radiation (left figure) and fixed-angle PV, two-axis
tracking PV and 1-axis tracking CSP (right figure)

shows a significant impact on CSP energy output worldwide with declines in the range of

over 10% for some land areas compared to a baseline climate change simulation without

SSI (RCP4.5). The changes are spatially variable, with a large decrease in power output

expected across the equatorial band under the SSI runs, but are negative almost every-

where. This is to be expected due to the attenuation of direct radiation. The effect of

SSI on PV is less, due to the ability of PV to utilise diffuse radiation which increases un-

der SSI. If geoengineering were to be seriously considered, the knock-on effect of likely

reduction in solar power should be built in to future forecasts.

The results presented in this chapter are from one climate model with sulphate injection

at particular latitude and altitude. Firstly, different GCMs may show different dispersion

effects and climate responses. Secondly, under different sulphate injection regimes, it is

likely that the regional changes will be different to the equatorial injection modelled in this

study (Jones et al., 2010). Sulphate injection can be planned to achieve specific climate

goals, for example the restoration of Arctic sea ice by distributing SO2 at high latitudes

(Jackson et al., 2015). With this in mind, this work shows that there is a significant
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negative difference in solar power output for CSP for the 2040–2059 timeframe between

a climate geoengineered with SSI and the RCP4.5 moderate radiative forcing scenario.

These differences are statistically significant for the important solar energy generating

regions of Africa, the Middle East, India, western USA and the northern half of Latin

America. The differences for tracking PV are less negative and are significant in fewer

regions, whereas for fixed PV the differences are small. The positive changes between the

RCP4.5 simulation and the 1986–2005 climatology are significant where they are greatest

in magnitude. Whilst local topographical and microclimatic effects, along with human,

economic and environmental considerations, will always dominate decisions on siting

solar PV and CSP arrays, climate models provide an informative picture of the future

changes to solar energy output that could be expected.

The changes in CSP output are broadly in line with what is observed by Murphy (2009)

in the years following the Mount Pinatubo eruption. Under a climate permanently forced

by a stratospheric aerosol loading similar to about half of that seen in the Mount Pinatubo

eruption, CSP output is reduced (compared to RCP4.5) over most land areas in the range

of 3–10% compared to the 20% suggested by Murphy.

Comparing the baseline climate change scenario of RCP4.5 to the historical over the

2040–2059 (fig. 7.4c and f) with the changes seen under RCP8.5 for 2080–2100 assessed

in chapter 6, it can be seen that the direction of change largely agrees between the two

studies. This should be expected as the climate models used are from the same model

family. Given the higher radiative forcing and longer timeframe for the chapter 6 study,

the magnitude of the changes in the RCP8.5 simulation are generally greater.
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Chapter 8

Conclusions and further work

In this thesis, the global changes in solar energy in future climate scenarios are inves-

tigated and models developed that can provide resource assessments given a variety of

input data. The main findings are summarised, applications of the research are discussed,

and limitations and extensions to future work suggested.

8.1 Research summary, applications, and key

findings

This results in this thesis can broadly be divided into solar resource estimation in present

and recent past climates (chapters 3–5) and resource estimation in future climates (chap-

ters 6 and 7). Here, the impact and novelty of each of the chapters 3–7 is discussed.

8.1.1 Phase change materials

Chapter 3 shows the significant effect of module operating temperature on PV energy

output. Using phase change materials to mitigate the rise in temperature throughout the

course of the day, it is shown that gains in PV power output of up to 6% are possible.

Areas where PV/PCM is predicted to be most beneficial are largely coincident with re-

gions that experience high annual insolation, typically between 30◦N and 30◦S, and the

optimal melting temperature of the PCM is influenced by the mean annual temperature.

While several modelling and experimental studies have considered PV/PCM, no previ-

ous analyses have explored this globally using diurnally- and seasonally-varying weather

conditions.

While it is shown that under the current levelised cost of electricity for solar energy and

PCM material prices such a strategy would not be cost effective in general, there may

be benefits to using PCM-enhanced cooling for technologies where material costs and

cooling demands are higher than for flat-plate crystalline silicon solar modules. One

suggestion would be using PCM as a heat sink in concentrating multijunction solar cells.
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Furthermore, PCM-cooling may be one way to mitigate any losses in PV performance

output due to temperature changes in future climates.

8.1.2 Cloud transmission statistics

Chapter 4 describes the statistics of solar transmission through clouds, compared to that

of a clear sky. This variable is denoted the clear-sky index. The analysis was performed

for cloud fractions ranging from clear sky to fully overcast for 63 sites in the UK, en-

compassing over one million data hours. This extends previous work that either provided

a one-to-one relationship between cloud fraction and solar transmission (e.g. Kasten &

Czeplak (1980)) or the statistical distributions of clearness or clear-sky index by its long-

term means (e.g. Graham & Hollands (1990)). Additionally, it provides an estimate of

solar radiation at sites where hourly cloud fraction is known but solar radiation character-

istics are not.

A theoretical model, based on radiative transfer, was used to determine clear-sky irradi-

ance. For high solar elevation angles, the clear-sky model performs well compared to

observations from the UK Met Office MIDAS network of ground irradiance measure-

ments for okta 0 (cloudless) skies. Although the modal value of clear-sky index is close

to one, there is a heavy left-tail to observations of clear sky irradiance which could be due

to unrecorded cloudiness or high atmospheric turbidity. At lower solar elevation angles,

the spread of clear-sky index values becomes greater.

The distributions of clear-sky index by cloud fraction show a progression from left-

skewed at okta 1 (one-eighth cloud coverage), to approximately symmetric at okta 6–7, to

right-skewed at okta 8. While the shape of the distributions are elevation-angle dependent,

good fits are obtained for all datapoints with solar elevation angle above 20◦ using a skew-

t distribution for oktas 0–4 and a generalised gamma distribution for oktas 5–8 and the

fog-/haze-obscured sky state. As these distributions are complex, simpler distributions to

represent the clear-sky transmission and transmission through clouds for partially cloudy,

mostly cloudy and overcast skies are suggested for fast computations. These simpler

statistics of clear-sky index form the basis of a stochastic 1-minute irradiance generator

in Bright et al. (2015) that uses an observationally-derived Markov chain model to deter-

mine the next hour’s cloud fraction based on the current hour. This 1-minute model can

be used in demand modelling and grid applications.

8.1.3 Integrated radiance method for plane irradiance

In chapter 5, the use of radiative transfer modelling is extended to cloudy skies. A model

is introduced that uses satellite-derived inputs of cloud, atmosphere and surface albedo
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to generate a surface radiance field. The surface radiances are integrated numerically to

calculate irradiation on a tilted plane. The method is referred to as IntRad.

While including clouds within radiative transfer models is a well-founded problem (in-

deed, is used by all climate models), including clouds is seldom used to model irradiances

for solar energy purposes. On the other hand, clear-sky radiation is frequently used in so-

lar energy applications (e.g. SPCTRAL2 (Bird & Riordan, 1986), SMARTS2 (Gueymard,

1995) and SPECMAGIC (Mueller et al., 2012)). There appears to be no good reason

why clouds are not included in radiative transfer models for large-scale solar irradiance

modelling, as clouds are often included as a broadband adjustment after the clear-sky

calculation (e.g. Cano et al. (1986); Mueller et al. (2004, 2012)), so it is unlikely to be

less accurate than including clouds within the radiation calculation. The assumption is

tested by comparing horizontal irradiation totals from the model to those measured by the

high-quality network of pyranometers worldwide from the BSRN network, as well as a

selection of MIDAS sites that were used in chapter 4; overall agreement is shown to be

good, although some sites differed by more than 15%, principally those at high altitude

or latitude.

The inclusion of clouds inside the radiative transfer calculation is both different to other

methods, and necessary for calculation of the ground-level diffuse radiance field for tilted

irradiance. The tilt method presented is different to “classical” tilt models in the literature,

which tend to use combinations of the direct normal irradiance and diffuse horizontal

irradiance. IntRad does not calculate the tilted irradiance as a function of the DNI and

DHI but directly from the radiative transfer calculation. One advantage of this method

is that it can be used to predict solar energy resource in areas where horizon shading is

significant, by modifying the horizon radiances to take into account the shading. Such

a method has been used by Gooding et al. (2015), with encouraging early results, with

proposed extension to city-scale solar energy resource modelling.

8.1.4 Solar energy resource in a future climate

Chapter 6 extends the radiative transfer modelling of solar radiation further by consider-

ing spectrally-resolved irradiance, and how the solar spectrum affects PV semiconductors

with differing bandgaps. This is one further advantage of including clouds within radia-

tive transfer models, as the solar transmission through clouds is spectrally dependent. This

chapter also introduces a future climate scenario for the first time. Previously, the effect

of climate change on solar energy resource has been investigated regionally or globally

in a handful of studies (e.g. Crook et al. (2011); Wild et al. (2015)), where the broad-

band solar radiation is taken as the main variable of interest. Here, two advancements are
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made. Firstly, the spectral breakdown of solar radiation is considered. As PV materials

are semiconductors with a spectral response function, different incident solar wavelengths

contribute to the output power with different weights. Secondly, as climate and radiative

transfer models provide totals of horizontal irradiance, a tilt model is applied to the cal-

culated irradiance based on the optimal tilt calculated using the Barker & Christensen

(2001) method. This will better represent real-world conditions, in which solar panel tilts

are optimised to maximise incident radiation and are seldom aligned horizontally.

Using the spectral transmission of solar radiation, the future climate changes for RCP8.5,

a high radiative forcing scenario, are shown to exceed 5% in Europe and western Russia,

the east coast of the US, eastern China, Japan, and much of Latin America over the time-

frame of 2080–2100 compared to 1985–2005. Decreases of 5% or more can be seen in the

northern and southern polar regions, central Africa, western India and north-west China.

These changes are mostly due to clouds and are replicated whichever semiconductor ma-

terial is used, implying that the spectral effect is small. However, relative differences

compared to c-Si are observed, with higher semiconductor bandgaps showing more pos-

itive changes than c-Si between present and future climates, and vice versa for lower

bandgap materials.

These forecasts can help to drive solar energy siting decisions. While the changes seen

are not significant enough for previously low-resource areas such as western Europe to

overtake high-resource areas like India, as investment decisions are made based on an

expected rate of return, and, as argued by Gueymard (2009) and Pašičko et al. (2012), a

difference of a few percent in expected energy output can make the difference between

whether a project is financially viable or not.

8.1.5 Applications of geoengineering

In chapter 7, the future climate scenarios are extended to consider geoengineering with

stratospheric sulphate aerosols. All future climate change studies on solar energy to date

have considered scenarios where no large-scale deliberate attempts to offset global tem-

perature changes have been considered. Geoengineering is one extreme method that has

been proposed to reduce surface temperatures in the absence of an effective global cli-

mate policy or adverse climate changes becoming apparent. Under a geoengineering

scenario, attenuation of direct sunlight by the aerosol layer is detrimental for concentrat-

ing solar power (CSP) in many of the regions where it is currently most appropriate and

cost-effective, compared to both the historical (1985–2005) and future scenario without

geoengineering (RCP4.5). The change in total radiation is less negative than the change in

direct radiation, and the effect of geoengineering on fixed-angle PV is small: the decrease
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in radiation is partially offset by the decrease in surface temperature, which increases PV

efficiency. 2-axis tracking PV, in which the PV collector is aligned normal to the solar

beam, is an intermediate case; increases in output for Europe, the eastern US and east

Asia are still seen in the SSI scenario, but are less positive than without geoengineering.

The locations of significant changes in energy output increase and decrease, in the non-

geoengineering scenarios, are similar between chapters 6 and 7. This would be expected

as the climate model scenarios are from the same family.

8.2 Limitations, and ideas for future work

The work presented in chapters 3, 5, 6 and 7 has been performed on GCM grids, the

smallest being 1◦×1◦ if the MODIS albedo dataset is discounted. The results presented

apply to very large areas (1◦ ≈ 110 km at the equator). Within a 1◦ grid square there are

likely to be many different regional climates. The results reported are grid-cell averages

and there can be much variation within the cell on scales of a few km or even less. In urban

areas, the aerosol profile is very different to rural areas and surface radiation will differ as

a result, most likely with a reduction in total irradiance and increase in diffuse irradiance

as a consequence of aerosol scattering. In chapters 6 and 7, to obtain an estimate for

the likely range of future climate outcomes, more regionally-applicable results can be

determined using RCMs. This has been performed by a few authors in some locations as

detailed in chapter 6. It is not practical to do RCM-scale simulations globally, due to the

additional computing time required. Therefore RCM simulations can only be performed

for small regions of interest.

More specific chapter-by-chapter suggestions are described below.

8.2.1 Phase change materials

The results in chapter 3 provide an initial assessment of where PV/PCM systems could

be worthwhile. To provide more detailed analysis, specific observed weather conditions

for the site in question should be obtained. If this is not possible, a longer-term period of

data from the ECMWF dataset should be used, and every day of a full year of data rather

than the diurnal average.

The validation of the PV/PCM energy balance model with a real-world experiment is

desirable. This was attempted with two one-cell PV/PCM systems in India. Due to equip-

ment failures it was not possible to perform a proposed validation in the time available.

Thermocouple data obtained from the PV/PCM modules, the bottom of the PCM boxes,

and a reference cell, show that the desired thermal regulation effect was observed in the
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PV/PCM module over the course of one afternoon. To infer robust conclusions it would

be necessary to run the experiment over a longer time period, and ideally to obtain power

output data alongside temperature data. Another worthwhile validation technique would

be to use a 2D or 3D computational fluid dynamics package to simulate the convection

within the phase change layer and the moving boundary of the phase change front.

The simulation in chapter 3 considered an open-mount PV/PCM module on a horizontal

panel tilt. If tilt angle was optimised, the increase in plane-of-array irradiance would drive

up module operating temperatures, facilitating the need for more cooling. In building-

integrated and building-mounted photovoltaics, operating temperatures are higher than in

open mounts because of the lack of free convection from the reverse side of the solar

module. If these additions to the model were made, it is expected that optimal PCM

temperatures would be higher than those reported in the chapter. It is not certain whether

the change in power output between PV/PCM and reference modules under these different

assumptions would change.

8.2.2 Cloud transmission statistics

The reason for the high number of observations with low clear-sky index during hours

of okta 0 at low solar elevation angles would be beneficial to investigate further. One

reason that may account for much of the difference relates to whether the observation

was made by a human observer or a cloud-base laser recorder (ceilometer). There may

be, in addition, combinations of meteorological conditions which cause such results to

occur. For example, where pyranometers are not ventilated, dew or ice can build up on

the inside of the instrument resulting in lower readings than the actual irradiance level.

This can be a particular problem in the morning on clear days. Correlating clear-sky index

observations with humidity (to estimate atmospheric absorption due to water vapour),

dew point temperature and pressure (to estimate likelihood of fog near ground level that

is not thick enough to prevent the sky being obscured, or likely instances of ice and dew

buildup), and in weather stations where both a human observer and a cloud-base laser

recorder is present, data from the automated device (to determine whether the past hour

was fully cloud-free), may provide insight into some of these low observations.

In order to better integrate the statistics of cloud coverage from observation with the work

of the rest of the thesis, the statistics of cloud transmission could be extended to reanal-

ysis and climate models. The long-term cloud fraction statistics from climate models,

which are often only output on monthly, daily, or occasionally 3-hourly timesteps, could

be used to downscale to hourly time periods by correlation with the statistics presented

in chapter 4. There are a number of challenges to performing this; firstly cloud fraction
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in climate and reanalysis models is a continuous value instead of the discrete number of

eighths from meteorological observations; secondly climate and reanalysis models use

nadir-view cloud fraction whereas human observers are most likely to report hemispher-

ical sky coverage; and thirdly, the grid cells used in GCMs are fairly large and may not

represent all of the local variations exhibited in data such as the MIDAS series.

A natural extension would be to consider the effect of cloud type on the atmospheric trans-

mission, which is recorded at MIDAS stations where there is a human observer present.

The effect of cloud type on transmission has been investigated by Kasten & Czeplak

(1980) and Matszuko (2012) for mean clear-sky index and irradiance by okta respectively,

so the distributional approach taken in chapter 4 could be extended to cloud type.

8.2.3 Integrated radiance method for plane irradiance

Currently the largest drawback to the IntRad method in chapter 5 being used more gen-

erally is the computational time required to run the calculations, around 6 hours on a 2.3

GHz Linux machine. One way to speed up the calculation would be to use 5-dimensional

lookup tables based on pre-calculated radiance fields for differing atmospheric loadings

of water vapour and aerosols, cloud optical depths, zenith angle and relative azimuth. Pre-

calculating such a lookup table would only need to be done once, but would be a large

undertaking, and would need a suitable interpolation scheme. Cloud fraction could be

used as a weighting between clear and overcast lookup tables.

The 1D implementation of clouds in the IntRad method is clearly an approximation to re-

ality. Modelling including clouds is problematic, because clouds are difficult to resolve in

time and space, and even approximately plane-parallel clouds such as marine stratocumu-

lus can have a wide variety of internal variability in cloud droplet size and optical depth

(Marshak & Davis, 2005). However, as previously mentioned, the approach taken is no

less accurate than the current methods of broadband cloud adjustment.

A full 3D radiative transfer method to include clouds would be necessary for an accurate

comparison. This has been attempted by comparison of the results with the UniSky model

which is shown to agree well for low cloud fractions but not well for high cloud fractions.

If a suitable 3D code could be used to resolve realistic clouds, it is unlikely that the kind

of year-long simulations performed for selected locations as shown in chapter 5 could be

performed in a reasonable amount of computing time. Such applications would again be

limited to validating certain situations of the 1D model.

Validation of the model with actual observations of sky radiance would be beneficial.

Such sky-radiance measuring devices exist, for example the EKO Sky Scanner. One future

piece of work will investigate integrating the radiance distributions from the EKO sky
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scanner hosted at the NREL site and comparing this to the tilted irradiance measurements

obtained from the same location. Sky radiance observations were used by Brunger &

Hooper (1993) in their diffuse radiation model. A lower-cost alternative may be to set up

a fish-eye camera at a location of interest and calibrate pixel brightness from the camera

image to radiance values. This is a modern version of the photographic technique used

by McArthur & Hay (1981). The calibration could be performed using a horizontally-

mounted pyranometer, and ideally at least one tilted pyranometer.

Finally it should be noted that the IntRad method relies on the radiances calculated by the

radiative transfer code being relatively free of error, which may not be true if the input data

used in the radiative transfer model is not of high quality. Therefore, efforts could also

be extended in the direction of obtaining higher-quality input data. This is most likely to

rest on the sampling frequency of cloud fields, which are only obtained for 8-day averages

twice per day in the method presented in chapter 5. With higher resolution data, it is likely

that differences relative to high-quality ground measurements from pyranometers would

reduce.

8.2.4 Solar energy resource in a future climate

There are several avenues for investigation in the method presented in chapter 6, and many

climate effects of high significance have not been included. Snow, which settles on panels

and blocks sunlight, will probably become less prevalent in many temperate, Arctic and

high-latitude parts of the world in a warmer climate, likely leading to a small increase

in performance during the winter. The atmospheric transmission effect of dust has been

explored by its relationship to aerosol, but the effect of dust settling and blocking sunlight

on panels is a major problem that has not been included. It was shown in chapter 6 that dry

areas of the world such as India, the Sahara, and Australia may get dustier in the future,

which may make this problem worse. A further intricacy of dust is that its settlement

and transmission properties vary with tilt angle (Garg, 1974), and properly taking into

account dust may lead to new relationships for optimal tilt. The frequency and intensity

of precipitation affects how effectively settled dust is cleaned away from panels, which is

another climate variable that can be built in to a more complex model. From a systems

reliability perspective, it has been established for a long time that increased humidity leads

to greater degradation in PV operating performance. Finally, as frequency and extremity

of weather hazards such as hurricanes and hail storms are likely to change in the future,

system downtime from storm damage could be built into the overall PV energy forecast.

This may involve the use of probabilistic modelling.

As described in the summary of chapter 6, concentrating multi-junction PV provides an
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interesting case as each layer will be affected differently by changes in the solar spectrum.

The highly concentrated solar irradiance that is focused on spectral cells leads to high op-

erating temperatures, which affects efficiency. This may be mitigated using phase change

materials, which as previously discussed due to the small size, high efficiency and high

operating temperatures of concentrating multi-junction modules may make using PCMs

cost-effective.

A very interesting and worthwhile investigation would be to produce a global map of

optimised solar cell semiconductor bandgap, using the detailed balance method, in both

present and future climates. The optimal bandgap question creates a good argument to

continue to investigate other single-junction materials to c-Si. For example, perovskites

(CH3NH3Pb(I1−xBrx)3) are low-cost cells with bandgaps that are tuneable by varying the

Br/I ratio (Noh et al., 2012), and could be a promising future material if the problem of

rapid degradation can be solved and baseline efficiencies start to approach those of c-Si

(Niu et al., 2015). In the short-to-medium term, the abundance, low material cost, and low

toxicity of silicon relative to other established PV technologies means that it is unlikely

to be overhauled as the dominant PV material.

If more time was available, producing the solar power output in a future climate for more

climate models would lead to more robust measures of confidence similar to those per-

formed by Wild et al. (2015) for broadband irradiance, and allow statistical measures of

uncertainty to be applied.

8.2.5 Applications of geoengineering

The extension to other geoengineering methods besides stratospheric sulphate injection

can be investigated. Surface albedo enhancement is interesting as it has potential to both

increase the solar energy reflected to space (net cooling) and increase the energy available

for solar modules at ground level due to both reflection onto tilted panels and backscatter-

ing from the atmosphere. The albedo of solar collectors themselves need to be built into

calculations if deployment covers a significant fraction of a GCM/RCM grid cell. Solar

PV panels tend to be dark and low albedo. CSP takes advantage of mirrors, which are

high albedo. In both cases the conversion of solar radiation to electricity will alter the

energy balance. Previous authors have modelled the extraction of energy from solar cells

as an adjustment to surface albedo (Millstein & Menon, 2011). This raises the intriguing

possibility that large solar arrays themselves could affect the regional climate.

As for chapter 6, uncertainty in climate variables is always one area in which confidence

in future results can be questioned when using a single climate model. This could be

improved by repeating the experiments for multiple CMIP5 climate models.
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8.3 Concluding remarks
The thesis has shown that computational modelling can be a useful and flexible tool for

solar energy resource prediction. A heat transfer model of a solar module shows the po-

tential benefit of passive cooling with phase change materials. Radiative transfer models,

which are used extensively in this thesis, underpin all of the radiation estimates available

in reanalysis and climate models. A range of applications are shown, including clear-sky

radiation modelling, multi-stream modelling for calculating tilted irradiance in all-sky at-

mospheres, and spectral irradiance modelling in different climate scenarios. In terms of

applications to solar energy technologies, the output of these radiative transfer models can

be combined with the spectral response of PV semiconductors to predict output power.

The effects of climate change on the solar energy resource differ by region and scenario,

but are not insignificant. If a change of ±5% is used as a benchmark of significance,

then these changes are seen in several places for PV by the end of the 21st Century under

RCP8.5. For the middle of the century under RCP4.5, there are fewer regions were a

±5% change is seen for PV as the climate changes are less severe. It may be questioned

why some of the marginal changes in PV and CSP energy output shown in chapters 6 and

7 are of great importance. One is that, if solar energy does become as widespread as the

IEA predict, at 27% of global electricity supply by 2050, then a change in expected energy

output of the order of 5% by 2050 becomes a significant amount in absolute terms. For the

“moderate” RCP4.5 scenario, this is seen in a few places for fixed PV, is more widespread

for tracking PV, and occurs over much of the world for CSP. Geoengineering does not

have a large effect on PV output, but is critical for CSP in tropical areas. Where changes

in projected PV output are negative, passive cooling by PCMs can mitigate some of the

loss in power output caused by elevated module temperature. The assimilation of all of

the separate components presented in this thesis into one model could provide the future

solar energy resource for a climate situation of interest.
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Ångström, A. 1929. On the atmospheric transmission of sun radiation and on dust in the air.
Geografiska Annaler, 11, 156–166.

Armstrong, S., & Hurley, W. G. 2010a. A thermal model for photovoltaic panels under varying
atmospheric conditions. Applied Thermal Engineering, 30(11), 1488–1495.

Armstrong, S., & Hurley, W.G. 2010b. A new methodology to optimise solar energy extraction
under cloudy conditions. Renewable Energy, 35, 780–787.

ASTM. 2003. Standard tables for reference solar spectral irradiances: Direct normal and hemi-
spherical on 37◦ tilted surface. Standard G173-03.

Azzalini, A., & Capitanio, A. 2003. Distributions generated by perturbation of symmetry with
emphasis on a multivariate skew t distribution. Journal of the Royal Statistical Society B, 65,
367–389.

Badescu, V. 2002. 3D isotropic approximation for solar diffuse irradiance on tilted surfaces.
Renewable Energy, 26(2), 221–233.

Barker, G.M., & Christensen, C.B. 2001 (21–25 April). Effects of tilt and azimuth on annual
incident solar radiation for United States locations. In: Solar Forum. Washington DC, USA.

Baruch, P., de Vos, A., Landsberg, P.T., & Parrott, J.E. 1995. On some thermodynamic aspects of
photovoltaic solar energy conversion. Solar Energy Materials and Solar Cells, 36, 201–222.

Baum, B.A., Heymsfield, A.J., Yang, P., & Bedka, S.T. 2005. Bulk scattering properties for
the remote sensing of ice clouds. Part I: Microphysical data and models. Journal of Applied
Meteorology, 44, 1885–1895.

Baum, B.A., Yang, P., Heymsfield, A.J., Bansemer, A., Cole, B.H., Merrelli, A., & Wang, C. 2014.
Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2
to 100 µm. Journal of Quantitative Spectroscopy & Radiative Transfer, 146, 123–139.

Bauwens, L., & Laurent, S. 2005. A new class of multivariate skew densities, with application to
GARCH models. Journal of Business and Economic Statistics, 23(3), 346–354.

Becker, S. 2001. Calculation of direct solar and diffuse radiation in Israel. International journal
of climatology, 21, 1561–1576.

Behrendt, T., Kuehnert, J., Hammer, A., Lorenz, E., Betcke, J., & Heinemann, D. 2013. Solar
spectral irradiance derived from satellite data: A tool to improve thin film PV performance
estimations? Solar Energy, 98, 100–110.

193

http://dx.doi.org/10.5439/1052221
http://dx.doi.org/10.5439/1052221


REFERENCES

Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., & Woodward, S. 2007.
Improved representation of aerosols for HadGEM2. Tech. rept. Met Office Hadley Centre for
Climate Change, Exeter, UK.

Bellouin, N., Mann, G.W., Woodhouse, M.T., Johnson, C., Carslaw, K.S., & Dalvi, M. 2013.
Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre
Global Environmental Model. Atmospheric Chemistry and Physics, 13(6), 3027–3044.

Belward, A., & Loveland, T. 1996. The DIS 1-km land cover data set. Global Change, the IGBP
Newsletter, 27.

Bendt, P., Collares-Pereira, M., & Rabl, A. 1981. The frequency distribution of daily insolation
values. Solar Energy, 27, 1–5.

Betts, T.R. 2004. Investigation of photovoltaic device operation under varying spectral conditions.
Ph.D. thesis, Loughborough University.

Bird, R.E., & Hulstrom, R.L. 1981. A simplified clear sky model for direct and diffuse insolation
on horizontal surfaces.

Bird, R.E., & Riordan, C. 1986. Simple solar spectral model for direct and diffuse irradiance on
horizontal and tilted planes at the earth’s surface for cloudless atmospheres. Journal of Climate
and Applied Meteorology, 25(1), 87–97.

Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R., Reinhardt, B., Renné,
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Köberle, A.C., Gernaat, D.E.H.J., & van Vuuren, D.P. 2015. Assessing current and future techno-
economic potential of concentrated solar power and photovoltaic electricity generation. Energy,
89, 739–756.

Kocifaj, M. 2012. Angular distribution of scattered radiation under broken cloud arrays: An
approximation of successive orders of scattering. Solar Energy, 86, 3575–3586.

Kocifaj, M. 2015. Unified model of radiance patterns under arbitrary sky conditions. Solar Energy,
115, 40–51.
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