

Methodology for the Formal Specification of
RTL RISC Processor Designs

(With Particular Reference to the ARM6)

by

Daniel Paul Schostak

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The University of Leeds

School of Computing

October 2003

The candidate confirms that the work submitted is his own and

that the appropriate credit has been given where reference

has been made to the work of others. This copy has been supplied on

the understanding that it is copyright material and that no quotation from

the thesis may be published without proper acknowledgement.

 i

Acknowledgements
The research described in this thesis was carried out as part of an EPSRC funded project

on the formal specification and formal verification of the ARM6. This project involved

collaboration between a team at the University of Leeds to formally specify the ARM6

and a team at the University of Cambridge to formally verify the ARM6. The team at

the University of Leeds has included Prof. Graham Birtwistle, Dr. Keith Hobley, Robin

Hotchkiss, Dominic Pajak and Daniel Schostak; that at the University of Cambridge

has included Anthony Fox and Prof. Mike Gordon.

Thanks are expressed for the assistance members of both teams provided in relation to

this project. In particular, the author would like to thank Graham Birtwistle for

bringing this project to the attention of the author. Also ARM Ltd. must be thanked for

making available documents relating to the design of the ARM6 and the other support

the company provided during this project. Lastly, the author would like to thank

Matthew Hubbard for acting as supervisor during the final preparation of this thesis.

The contribution of the author to this project was the development of a methodology for

the formal specification of RTL RISC processor core designs and the application of

this methodology to the design of the ARM6. In addition, the author provided support

to help other members of the teams to understand the details of the design of the ARM6.

ARM is a registered trademark of ARM Limited.

MIPS and R2000 are registered trademarks of MIPS Technologies, Incorporated.

 ii

Abstract
Due to the need to meet increasingly challenging objectives of increasing performance,

reducing power consumption and reducing size, synchronous processor core designs

have been increasing significantly in complexity for some time now. This applies to

even those designs originally based on the RISC principle of reducing complexity in

order to improve instruction throughput and the performance of the design.

As designs increase in complexity, the difficulty of describing what the design does,

and demonstrating the design does indeed do this, also increases. The usual practice of

describing designs using natural languages rather than formal languages exacerbates this

because of the ambiguities inherent in natural language descriptions. Hence this thesis

is concerned with the development of a scalable methodology for the creation of

formal descriptions of synchronous processor core designs.

Not only does the methodology of this thesis provide a standardised approach for

describing synchronous processor core designs, but the descriptions that it generates

can be used as a basis for the formal verification of the design; and thus facilitate

solutions to the problems that increasing complexity poses for traditional validation.

The concept of different presentations of one description is part of the methodology of

this thesis and is used to reconcile differences in how the description is best used for

one purpose or another.

The methodology of this thesis was developed for the formal specification of the ARM6

processor core and thus this design provides the primary example used in this thesis.

Case studies of the use of the methodology of this thesis with other processor cores and

a modernised version of the ARM6 are also discussed.

 iii

Table of Contents

Acknowledgements .. i

Abstract ... ii

1 Introduction.. 1

1.1 Specification and Design .. 2

1.2 Specification and Synthesis .. 3

1.3 Specification and Simulation .. 4

1.4 Specification and Verification .. 6

1.5 Related Research... 9

1.6 Outline of this Thesis .. 12

1.7 Contributions of this Thesis .. 13

2 Methodology .. 15

2.1 Aims.. 15

2.2 Basis .. 16

2.2.1 Hierarchical Representation... 16

2.2.2 Definition of Terms ... 17

2.2.3 Use in Formal Verification .. 19

2.2.4 Relation to Aims .. 23

2.3 Method .. 24

2.3.1 Mathematical ... 24

2.3.2 Engineering.. 48

2.3.3 Executable.. 52

2.4 Comparison of Presentations .. 70

2.5 Summary ... 72

3 Overview of the ARM6.. 73

3.1 Outline of Informal Programmer’s Model Specification.................................. 73

3.1.1 Operating Modes.. 73

3.1.2 Exceptions.. 74

3.1.3 Register Banks ... 75

3.1.4 Instruction Set .. 75

3.1.5 Instruction Set Encoding.. 77

3.2 Outline of Informal Hardware Implementation Specification 79

 iv

3.2.1 Signal Description.. 79

3.2.2 Coprocessors.. 81

3.2.3 Datapath of Processor Core ... 82

3.2.4 Control Subsystem of Processor Core ... 84

3.3 Summary ... 88

4 Specifying the ARM6 .. 89

4.1 General Principles... 89

4.2 Mathematical Presentation.. 95

4.3 Engineering Presentation .. 99

4.4 Executable Presentation .. 100

4.5 Summary ... 106

5 Overview of the Modernised ARM6 ... 107

5.1 Modernising the ARM6 .. 107

5.2 Outline of Informal Programmer’s Model Specification................................ 110

5.3 Outline of Informal Hardware Implementation Specification 111

5.3.1 Signal Description.. 111

5.3.2 Coprocessors.. 112

5.3.3 Datapath of Processor Core ... 112

5.3.4 Control Subsystem of Processor Core ... 114

5.4 Summary ... 119

6 Specifying a Modernised ARM6 ... 120

6.1 General Principles... 120

6.2 Mathematical Presentation.. 127

6.3 Engineering Presentation .. 132

6.4 Executable Presentation .. 132

6.5 Summary ... 137

7 Further Applications .. 138

7.1 Motivation for Selection of Chosen Processor Cores 138

7.2 Overview of the DLX ... 139

7.2.1 Outline of Informal Programmer’s Model Specification......................... 139

7.2.2 Outline of Informal Hardware Implementation Specification 141

7.3 Specifying the DLX .. 146

7.4 Overview of the Simplified MIPS R2000... 148

 v

7.4.1 Outline of Informal Programmer’s Model Specification......................... 148

7.4.2 Outline of Informal Hardware Implementation Specification 152

7.5 Specifying the Simplified MIPS R2000 ... 157

7.6 Summary ... 160

8 Conclusions.. 161

Bibliography.. 163

Appendix A: DLX Formal Specification—Mathematical Presentation 165

A.1 Datapath Specification .. 165

A.2 Datapath Control Specification... 171

A.3 Pipeline Control Specification .. 186

Appendix B: DLX Formal Specification—Engineering Presentation 191

B.1 Datapath Specification .. 191

B.2 Datapath Control Specification... 191

B.3 Pipeline Control Specification .. 199

Appendix C: General Simulator—Reusable Modules in Executable Presentation 201

C.1 common.sml.. 201

C.2 inputs.sml .. 226

C.3 buses.sml... 228

C.4 latches.sml... 244

C.5 outputs.sml .. 250

C.6 signals.sml... 252

C.7 state.sml .. 256

C.8 coordinator.sml ... 279

 vi

List of Tables and Figures
Figure 2-1: Example Intermediate Specifications in Formal Verification......................20

Figure 2-2: Example Formal Verification Hierarchy..21

Figure 2-3: Three Stage Instruction Pipelining...26

Figure 2-4: Five Stage Instruction Pipelining ...27

Table 2-1: Life Cycle of an Instruction in Three Stage Instruction Pipeline29

Table 2-2: Life Cycle of an Instruction in Five Stage Instruction Pipeline30

Table 2-3: Syntax for Transfers between the Entities in a Specification........................35

Figure 2-5: Resolving Discontinuities in Bits an Entity is Defined Over.......................36

Table 2-4: Syntaxes for Expressing Forms of Combinational Logic..............................38

Figure 2-6: Example of Mathematical Presentation of Datapath Specification..............39

Table 2-5: Summary of Timing Annotations for Specification of the ARM6................41

Figure 2-7: Layout of Mathematical Presentation of Datapath Control Specification ...47

Figure 2-8: Example of Engineering Presentation of Datapath Control Specification...49

Table 2-6: Summary of Reusable Modules of Executable Presentation.........................54

Table 2-7: Summary of Modules Particular to Each Executable Presentation59

Figure 2-9: Interaction of Modules of an Executable Presentation.................................60

Figure 2-10: Example *_LOGIC Function of functions_datapath_*.sml Module64

Figure 2-11: Example datapath_specification Function of Datapath.sml Module65

Figure 2-12: Partial Waveform Trace Created by Simulating the Original ARM6........68

Figure 2-13: Partial Behavioural Trace Created by Simulating the Original ARM668

Table 3-1: ARM6 Operating Modes ...73

Figure 3-1: ARM6 Program Status Register ...75

Figure 3-2: ARM6 Instruction Set Encoding ..77

Table 3-2: Types of ARM6 Bus Transfer ...80

Table 3-3: Coprocessor Response Types for the ARM6 ..81

Figure 3-3: ARM6 Processor Core Datapath ..83

Table 3-4: Key to Datapath Diagram..84

Figure 3-4: Dataflow of ARM6 Control Blocks ...86

Figure 4-1: Instruction Steps Used to Specify the Original ARM6................................94

Table 4-1: Summary of Modules Used for the Simulation of ARM6 Coprocessors103

Figure 5-1: Modernised ARM6 Instruction Set Encoding..110

Table 5-1: Types of Modernised ARM6 Bus Transfer ...111

Table 5-2: Equivalents of Modernised ARM6 Memory Signals112

Figure 5-2: Modernised ARM6 Processor Core Datapath..113

 vii

Table 5-3: Data Hazards of Modernised ARM6...117

Table 5-4: Structural Hazards of the Modernised ARM6...118

Figure 6-1: Instruction Steps Used to Specify the Modernised ARM6126

Figure 7-1: DLX Instruction Set Encoding...140

Figure 7-2: DLX Processor Core Datapath...142

Table 7-1: Data Hazards of DLX..146

Figure 7-3: MIPS R2000 Instruction Set Encoding ..150

Table 7-2: Unified Bus Equivalents of MIPS R2000 Memory Signals152

Table 7-3: Timing of Signals for MIPS R2000 Memory Accesses153

Figure 7-4: MIPS R2000 Processor Core Datapath ..154

Table 7-4: Data Hazards of MIPS R2000 ...157

 1

1 Introduction
Specification is an important part of the process of successfully developing a product;

since without it, how well the nature of the product can be defined cannot be assessed

and nor can continuity within the development process. Depending on the complexity of

the product, specifications may be required at different levels of abstraction:

1. The development of all but the most trivial of products will benefit from a statement

in general terms of what the product can be used for and in what circumstances;

without defining how these criteria should be met. Specifications of such generality

are valuable in providing an overview of the product and hence are best expressed in

a natural language instead of a language created to be mathematically representable

(a defining feature of formal specifications). For instance, at this level of abstraction

the ARM6 processor core may be specified as a processor core that supports

execution of instructions defined by the ARM Instruction Set Architecture version 3

(see Seal and Jaggar 2000) using a 32-bit address space. The operating conditions

under which the ARM6 processor core may be used are no different from those of

most general-purpose processor cores, so these do not need to be explicitly specified.

2. Specifications at the preceding level of abstraction will be too generalised to provide

an adequate description of the functionality of even moderately complex products.

Hence another specification is needed that presents what the product can do in detail;

but does so with an appropriate structure, so the specification is still readable despite

added detail. Returning to the example of the ARM6 processor core, specification of

the ARM Instruction Set Architecture version 3 itself would be required, as well as

specification of performance objectives (such as power consumption, size and speed)

and the interfaces used to connect the ARM6 processor core and other devices.

(Note the level of abstraction of these three features requiring specification is similar

insofar as details of how the ARM6 processor core should meet the specification

should be omitted and is dissimilar in terms of its specificity to an implementation of

the ARM6 processor core—see discussion of Programmer’s Model specification in

section 2.2.2.) While informal specifications, such as that of Seal and Jaggar (2000)

for the Instruction Set Architecture specification, are used at this level of abstraction,

sufficient detail is involved that use of formal specifications can be advantageous

(see discussion in following sections).

3. Specifications at both the preceding levels of abstraction only define what products

can do, but not how any of what can be done, should be done. In simple instances,

 2

how it should be done may be apparent from what can be done, but for products of

moderate complexity, this is unlikely to be so in every instance. Thus specification at

another less general level of abstraction is needed to indicate how the functionality of

the product is achieved. Continuing with the example of the ARM6 processor core,

this is the level of abstraction of the Hardware Implementation specification.

Although the formal specification developed using the methodology of this thesis for

the ARM6 processor core was based on the informal ARM2x Block Specifications,

the formal specification resolves several points found to be not wholly unambiguous

in the original. Hence, the detail involved in specifications at this level of abstraction

is sufficient for the use of formal specifications to be advantageous.

The methodology of this thesis is concerned with developing formal specifications at

the third level of abstraction listed. Consideration of the relevance of such specifications

to the process of developing a processor core in certain key areas follows. (Note that

section 2.2 provides further definition of the terms Instruction Set Architecture and

Hardware Implementation as used by the methodology of this thesis.)

1.1 Specification and Design

The design may be developed before the Hardware Implementation specification itself,

from specifications at higher levels of abstraction. However, the translation process

required to construct the design according to such specifications involves the details that

the Hardware Implementation specification should include. Therefore separating

development of the design and the Hardware Implementation specification may involve

duplication of work. Similarly, using informal Hardware Implementation specifications,

instead of formal Hardware Implementation specifications while developing the design,

and then creating the latter from the former, may involve further duplication of work.

Indeed, the use of a natural language by informal specifications often introduces

unintended ambiguities, which must be resolved equally for the success of the design

and for the development of a formal specification.

Consequently it might be argued an explicit Hardware Implementation specification

serves to document necessary work, such that creating the former before beginning on

the design does not need to involve significantly more work than just treating the design

as the Hardware Implementation specification. Since the approach required to create

formal specifications reflects the desired behaviour of designs—complete, predictable

 3

and unambiguous—better than the approach required to create informal specifications,

using the former may uncover or avoid problems in the design that the latter does not.

For example, Sawada (1999) pp. 168-169 reports finding a number of design faults with

the FM9801 processor core just by creating a formal specification of it, even after using

functional simulation to perform an initial verification. However informal specifications

are still more commonly used than formal specifications, because the latter often require

a background in mathematics and/or logic that most engineers who design and/or verify

processor cores lack. Thus, one of the aims of the methodology developed for this thesis

is its accessibility to engineers regardless of such background (see section 2.1).

1.2 Specification and Synthesis

Traditionally, processor cores were designed at a level of abstraction sufficient for

fabrication of the finished product direct from the design. Now it is common to design

at a level of abstraction that offers greater flexibility to make minor modifications

without further changes to the design becoming necessary, greater scalability to handle

increasing complexity and greater independence from the technology used to fabricate

the finished product. The process of transforming a design from this level of abstraction,

to one that may be used in the fabrication of the finished product, is termed synthesis;

and usually involves mapping a Register Transfer Level (RTL) representation to one

consisting only of logic gates. (Registers are entities used to store intermediate results,

thus a RTL representation specifies the intermediate results a design stores, as well as

where it stores the intermediate results, and how the intermediate results flow through

the design.)

The logic gate representation synthesised from a RTL representation usually requires

further transformations such as place and route (which finalises component layout and

component interconnections) before it can be used to fabricate the finished product.

While functional simulation can be used to ensure that the logic gate representation

before and after such transformations behaves identically for appropriate test vectors,

functional simulation of logic gates is much more computationally intensive than RTL.

Therefore, methodologies using equivalence checkers have been developed to minimise

the extent of functional simulation of logic gates required—see, for example, Chander

and Vaideeswaran (2001). Such tools can be used to prove the functional equivalence of

two versions of a logic gate representation of a design, a RTL representation of a design

and a logic gate representation of a design, or two versions of a RTL representation of

 4

a design (although not all tools support each of these different proof tasks equally well).

The availability of such tools allows this thesis to focus on RTL designs without

reducing the rigour that formal specification introduces, because equivalence checkers

may be used to propagate this to representations at lower levels of abstraction.

Research such as that of Blumenröhr and Eisenbiegler (1997) on using theorem provers

to construct synthesis tools, and not the more usual informal programming techniques,

shows how synthesis may become a formal method rather than a process that requires

the application of formal methods. Currently, formally constructed synthesis tools

cannot match the extent to which informally constructed synthesis tools can optimise

the resultant logic gate representations. Yet, should this change, formal specifications

could become much more important in the synthesis process since these would provide

the natural starting point for the tools that perform formal synthesis.

Another area of research with implications for the methodology of formal specification

developed for this thesis is that of synthesis from algorithmic descriptions rather than

RTL specifications. For example, Heath and Durbha (2001) document how a version of

the MIPS R2000 processor core was synthesised from a purely algorithmic description

and a prototype of the finished product created. Again, the issue preventing adoption of

this technique of synthesis is that the standard methods are much better at optimising

the resultant logic gate representations. If synthesis from algorithmic descriptions

became accepted, the level of representation at which it is appropriate to construct

formal specifications would change from the RTL level to the algorithmic level.

1.3 Specification and Simulation

The use of functional simulation to model the behaviour of a design under stimulus,

using algorithms to approximate the behaviour that the design would have, if fabricated,

is standard practice. Hence, it is used for various purposes that would otherwise require

the much more expensive and labour intensive option of creating an actual prototype of

the finished product. For example, functional simulation is used to perform verification

(see section 1.4), to observe the behaviour of a design as it is developed (rather than

waiting for the entire design to be completed), to evaluate how modifications to a design

affect its behaviour, and so on.

 5

Accuracy of simulation tools is limited by the extent to which physical characteristics

are simplified, such as by treating the value of a signal as discrete instead of continuous,

but in most cases, this is not a problem since these simplifications reflect assumptions in

the method used to create the design itself. However, serious problems with accuracy

may arise because simulation tools only model a description of a design and thus rely on

the correspondence of a description and the finished product it is being used to model.

Finding such problems using just simulation tools would be difficult as it would involve

examining all the output to determine whether it matches what would be predicted by

the specification and even then this depends on having supplied the correct stimulus for

incorrect output to be elicited. Yet if the description used for simulation is derived from

a formal specification using a provably correct algorithm, or is a formal specification,

the problem is reduced to whether the specification is correct. (As noted in section 1.2,

confidence in the correspondence between descriptions at the RTL level of abstraction,

which is the level at which most functional simulation is done when creating a design

rather than evaluating possibilities for a design, may be obtained by using tools such as

equivalence checkers.)

Executable specifications can be used directly for functional simulation and thus have

the advantages discussed above over those specifications that cannot be used directly for

functional simulation. Furthermore, executable specifications allow the output from

simulation tools to be compared to the desired output as inferred from a specification at

a higher level of abstraction (which because it is simpler is more likely to be correct).

This can be useful in finding problems with the executable specification; for example,

Anderson and Shaw (1997; pp. 57-58) report discovering three bugs in this fashion;

one of which might otherwise not have been discovered until a prototype was created,

when it would have been more difficult to fix. Conversely with complex specifications,

if the result of some interaction between different entities is not clear from an inspection

of the specification, the behaviour exhibited may be observed directly by applying

appropriate stimulus in functional simulation.

The speed at which simulation tools can model the behaviour of a design is important:

the greater the speed, the greater the use that can be made of the simulation tool before

time constraints require the first prototype, and/or the first revision, to be constructed.

For this reason, most simulation tools are written in informal programming languages

and particularly those, such as C or C++, regarded as facilitating the development of

 6

fast programs. However, by using appropriate methodologies, like the one outlined by

Wilding et al (2001), programs may be developed using formal programming languages

without compromising on speed or on provability. As indicated by Wilding et al (2001),

to achieve ninety percent of the speed of C programs, some of the functional aspects of

primitive types like arrays may have to be discarded; but if the interface is not altered,

proofs can be constructed to ensure this is harmless. Consequently, the creation of

executable specifications is one of the aims of the methodology developed for this thesis

(see section 2.1).

1.4 Specification and Verification

Verification that should be performed on any design may be categorised as follows:

1. CORRECTNESS: does the design fulfil all of the functions it was intended to?

2. PERFORMANCE: does the design use more power than it should, function inefficiently

or otherwise fail to meet operational objectives? (The size or area of the design

should also be included in this category.)

3. QUALITY: were physical faults introduced into the design by the fabrication process?

Each of these categories has its role in assuring the usability of the finished product that

results from a design. However, the first is arguably more fundamental than the others,

and it is this category that is pertinent for the specifications that may be created using

the methodology developed for this thesis.

Bergeron (2000) discusses the following methods used for verifying the correctness of

commercial designs:

• CODE REVIEWS: require each significant part of a design to be inspected by someone

other than the person who created that part for any errors missed during its creation.

• FUNCTIONAL SIMULATION: used as described in section 1.3 to model the behaviour of

a design such that the predicted output can be compare to the desired output.

• CODE COVERAGE: an add-on to functional simulation that provides an indication of

how well the different parts of a design may have been exercised by various stimuli.

• LINTING TOOLS: perform static analysis on the description of a design to identify

possible instances of common errors made when writing such descriptions.

 7

• MODEL CHECKING: attempts to prove particular properties of a design using logic;

either propositions that should always be true or ones that should always be false.

Code coverage, if supplemented by knowledge about a design, may indicate errors by

demonstrating that some part of a design is not exercised even when the correct stimuli

are supplied to a design. However, it is primarily used to quantify the quality of

functional simulation, and not to find errors directly, as code reviews are likely to find

these kinds of errors, and others besides, without requiring significant amounts of

functional simulation. While limited analysis of the functionality of a design is involved

in code coverage, linting tools involve no such analysis. Hence, the utility of such tools

for finding errors is also limited, because only probable errors, instead of definite errors,

can be identified using linting tools.

For all but the simplest designs, to use functional simulation to test that the modelled

and the desired output of a design are identical for all stimuli would be unfeasible due to

the required computation time. Hence, usually only the important properties are tested

using stimuli carefully chosen to give the best possibility of finding errors in the design.

For example, though all instructions in the ARM Instruction Set Architecture version 3

are conditionally executed (see section 3.1), the task of testing the correctness of this for

a processor core designed to implement this Instruction Set Architecture can be reduced

to testing whether condition codes are evaluated correctly using functional simulation of

an assembly language routine that:

1. Sets the Current Program Status Register’s status flags to one of 16 possible values.

2. For one of the fifteen possible condition codes execute a branch to a failure routine

or to next part of the test depending on whether branch should fail to execute or not.

3. Repeat 2 for each of the fifteen possible condition codes.

4. Repeat 1 2 3 for each of the sixteen possible values of the status flags.

Each complete set of stimuli (such as that provided by the code required to implement

steps 1 and 2 in the above example) is called a test vector, and a set of several of these

(such as that provided by the code needed to implement steps 3 and 4) may be required

to test just one property.

 8

The methods of verification considered so far attempt to find the errors in a design,

rather than demonstrate that the design is correct, but model checking as a method of

formal verification attempts to prove the correctness of a design. Still it is not applied to

a design as a whole, but to individual properties of that design, and thus it only assures

the correctness of the aspects of the design associated with those properties.

Furthermore, the computation time that model checkers may require to prove properties

on a design, or a part of a design, increases with the complexity of that design or part.

Theorem provers are another type of tool that can be used for formal verification and,

unlike model checkers, can be used to prove the correctness of a design as a whole.

Such tools work by demonstrating that one specification follows from another

(for example that a specification at the second level of abstraction listed in section 1.1,

follows from one at the third) and thus in contrast to the previous methods require

explicit formal specifications before application is possible. (Although the properties

used by model checkers must be expressed in a mathematically representable language,

the specification of the design as a whole can be left implicit.) However, as discussed in

previous sections creating a specification before a design, or creating the specification

as the design itself is created, often results in better productivity than creating the design

from an implicit specification. Consequently, the requirement for explicit specifications

is not necessarily a disadvantage, and if a formal specification is developed alongside

the design, rather than after or before, neither the design nor the verification processes

are delayed.

The use of theorem provers is less straightforward than use of any of the other methods

discussed before, due to the extent of the contributions and interventions required from

the user; which increases with the complexity of the design to which theorem provers

are applied. Moreover, while the previous methods can be used with a background

similar to that required for the design of processor cores, with some minor additions,

use of theorem provers requires an additional specialist background. These are two of

the main reasons preventing the adoption of theorem provers as the tools of choice for

verification of processor cores in industry. Nevertheless, as reported by Kam et al

(2000; p. 1501), methods of verification that cannot be used to prove the correctness of

a design as a whole require an unsustainable growth in computation to achieve

reasonable levels of confidence in the correctness of designs as complexity increases.

Indeed, the rate at which the computation required is growing is actually greater than

 9

the rate at which the capability for computation is growing. Therefore one of the aims of

the methodology developed for this thesis is that the formal specifications it can be used

to create should be suitable for use with formal verification in general (see section 2.1)

and theorem provers in particular (see section 2.2.3).

1.5 Related Research

Although, as discussed above, a formal specification of a processor core design may be

useful for more than just formal verification, most research on applying formal methods

to processor core designs assumes this is its primary purpose. Hence related research on

formal verification of processor core designs is discussed with reference to the approach

to formal specification that it uses.

Not surprisingly, the focus of research has changed over time to reflect as far as possible

the state of the art in the design of processor cores. Hence initially research concerned

processor cores with no pipelining such as the Viper (Cohn 1988), microcoded control

such as the AAMP5 (Srivas and Miller 1996) or both like the FM8501 (Hunt 1994).

These early processor cores differ substantially from the ARM6, which is pipelined and

has hardwired control, and it is not one of the aims of the methodology developed for

this thesis to be able to specify these processor cores (see section 2.1) since the tactics

required might be quite different. Thus, the selection of research discussed here is later

and concerned with processor cores that, like the ARM6, may be described as RISC.

The latest research often considers additional features such as out-of-order execution

(for example, Kristic et al 1999), which some recent commercial processor core designs

(such as the PowerPC 620) have included. However, as briefly discussed in section 5.1,

the work required to add these features to the ARM6 processor core (the main focus of

this thesis) and then alter the methodology of this thesis to specify the resultant design

would be significant. Therefore, these features are not considered in detail in this thesis

and thus research that focuses on such features is not discussed here.

Burch and Dill (1994) decompose their specification of an implementation of the DLX

according to the items of state that an assembly language programmer may reference,

such as the instruction memory and the register file. A formula, using a simple syntax of

if then else expressions, Boolean values, Boolean operators and uninterpreted functions,

is constructed for each item of state and specifies how its current value is mapped onto

its next value with reference to ‘pipe registers’, which maintain intermediate results

 10

between mappings and ensure that the formal specification is clock cycle accurate.

Since the behavioural features of the implementation are specified independently of

the implementation itself and combinational logic that calculates a result, rather than

just selects one of several possible results, is specified only by uninterpreted functions,

the resultant formal specification is quite abstract. This could be advantageous for

configurable implementations because the formal specification may well abstract over

individual configurations. Conversely, the formal specification and the implementation

differ sufficiently in abstraction that errors may be masked or that some features such as

an instruction that has different execution times according to the data it is executed on

may be very difficult to represent.

Although Windley (1995) describes his generic interpreter theory in terms of specifying

a non-pipelined processor core (AVM-1) created for the purposes of formal verification,

Coe (1994) used this theory to create a formal specification of the SAWTOOTH

processor core, which is a pipelined design. The formal specification is written using

constructs developed in the HOL theorem prover instead of a syntax created especially

for formal specification of processor cores and consists of three levels of interpreters.

In general, the formal specification is intended to reflect the VHDL implementation,

such that the least abstract interpreter (the Electronic Block Model) is decomposed into

functions corresponding to components in this implementation. The Phase interpreter

rewrites these functions such that the definition of each is incorporated into functions

that completely specify the behaviour of the processor core for particular clock phases

as appropriate. The most abstract interpreter, the Pipeline interpreter describes how

these clock phase functions should be combined to specify the behaviour exhibited in

one clock cycle. These three interpreters accurately represent the implementation of

the SAWTOOTH processor core; but not without some significant duplication of effort,

even though no single interpreter itself provides a complete formal specification.

Tahar and Kumar (1998) also wrote their formal specification of an implementation of

the DLX processor core in the HOL theorem prover and similarly used three interpreters

to decompose the formal specification. Although the Electronic Block Model interpreter

is less behavioural than that of Coe (1994), and Stage interpreter is used instead of

Pipeline interpreter, the main difference in the approach of these formal specifications

concerns the use Tahar and Kumar make of instruction classes. The function definitions

for the Phase interpreter and the Stage interpreter are distinguished by instruction class

 11

(and in the case of the Phase specification by clock phase as before), which facilitates

understanding of how the DLX may be used by the assembly language programmer

from the formal specification of its implementation. However, the formal specification

is not itself executable and as presented does not readily allow for the specification of

instruction classes that require iteration or other complex behaviours.

Formal specifications have been written directly using other formal provers than HOL.

For example, Sawada (1999) used the ACL2 theorem prover for formal specification of

the implementation of the FM9801 processor core. This formal specification specifies

the next state of the processor core in terms of functions that specify the next state of

significant blocks in the design, which in turn are specified in terms of functions that

specify the next state of the components that comprise these blocks. The decomposition

is continued until components are being described in terms of simple logical operations

on standard state components such as register files and latches. Although this provides

an accurate representation of the full implementation of the FM9801 processor core,

how the processor core is used by the assembly language programmer is obscured by

decomposing the formal specification according to the structure of the implementation.

In addition, ACL2 is based on the LISP programming language, which in its treatment

of programs as lists is quite different to the programming languages that will be familiar

to most hardware engineers. (The ML programming language, on which HOL is based,

is more conventional in its treatment of programs as collections of functions.)

All the approaches considered so far attempt to create formal specifications to represent

the design directly, albeit at somewhat different levels of abstraction. Other approaches

have attempted to substitute simpler designs for actual implementations such that

formal specifications may be created for the former rather than the latter. For example,

Levitt and Olukotun (1997) developed a systematic process by which a pipelined design

may be converted to a sequential design, provided that the number of pipeline artefacts

exposed by the pipelined design is small. Conversely Kroening et al (2000) developed

a systematic process to convert a sequential design to a pipelined design. In either case,

the conversion process may be formally verified so formal specification is necessary

only for the simpler sequential design. However, both these approaches are particular to

pipelined designs and, though the approach of Kroening et al (2000) is more adaptable,

both these approaches do not readily allow the use of custom optimisations to meet

commercial performance objectives.

 12

Most research on the formal specification (and formal verification) of processor cores

has not directly concerned ARM processor cores. However, two examples of research

on ARM processor cores may be found in Huggins and van Campenhout (1998) and

Bickford (2000). Huggins and van Campenhout researched a version of the ARM2

processor core (which lacks some of the features of the ARM6 considered in this thesis)

and created several iterations of a formal specification of its implementation using

abstract state machines. Although the formal specifications were divided up by

instruction class, the level of abstraction at which the least abstract iteration specified

the design is similar to that of Burch and Dill (1994). Bickford (2000) reports specifying

a VHDL implementation of the ARM7 processor core (which from the report appears

to be an early version that supports the same instruction set architecture as the ARM6).

This formal specification was largely created automatically from the VHDL design by

tools developed for the specification and verification of VHDL designs. It represented

the implementation of the ARM7 processor core as a one clock cycle state machine.

Although this automation may be verified to provide confidence in the equivalence of

the design and the formal specification, it was in part carried out due to the difficulty of

understanding some of the VHDL code and thus its use may devalue human readable

formal specifications. In addition, reliance on automation to create formal specifications

from VHDL removes any incentive to develop the formal specification of the design

together with, or even before, the design, as well as precluding the use of alternatives

to VHDL such as Verilog.

1.6 Outline of this Thesis

The remainder of this thesis will be presented as follows:

2. METHODOLOGY: Discussion of the framework used for specification in this thesis

and its relation to previous work.

3. OVERVIEW OF THE ARM6: Summary of main features of the ARM6 processor core.

4. SPECIFYING THE ARM6: Discussion of the history of the methodology of this thesis

in relation to specifying the ARM6 processor core and the interesting cases

encountered in creating this specification.

5. MODERNISING THE ARM6: Discussion of advanced processor design techniques

currently used in industry and those that were applied to the ARM6 processor core

for this thesis.

 13

6. SPECIFYING A MODERNISED ARM6: Discussion of changes made to the methodology

of this thesis to facilitate the specification of the modernised ARM6 processor core

and the interesting cases encountered in creating this specification.

7. FURTHER APPLICATIONS: Demonstration that the approach to specification used in

this thesis may be used with processor cores other than those of the ARM family,

using the DLX and MIPS R2000 as examples because of the different design aims.

8. CONCLUSIONS: Discussion of the import of this thesis in terms of the practicality of

the formal specification of processor cores at the RTL level of abstraction and

suggestions for further work.

1.7 Contributions of this Thesis

The main contributions made by the research described in this thesis are as follows:

2. METHODOLOGY: a general methodology for the complete formal specification of

RISC processor core designs at the RTL level of abstraction was developed.

Reusable modules have been developed such that a simulator may be constructed

as part of a formal specification by representing both in a programming language

according to the general methodology. (The ML programming language was used

to create example implementations of the reusable modules.)

4. SPECIFYING THE ARM6: a complete formal specification of the entire implementation

(excluding only features for backwards compatibility with prior processor cores that

did not support 32-bit address spaces) of the ARM6 processor core was created.

The ARM6 processor core was designed to meet commercial objectives rather than

to facilitate the application of formal methods and thus its formal specification posed

quite a challenge. Of note is the formal specification of coprocessor instructions,

multi-cycle instructions and the exception model. The simulator created as part of

the formal specification of the ARM6 was used to test the formal specification

against the test vectors developed by ARM Ltd. to validate the ARM6.

5. MODERNISING THE ARM6: various modern techniques of processor core design

were applied to the design of the original ARM6 to create a modernised version of

the ARM6 processor core, which still embodied many of the principles of

commercial design inherent in the original ARM6.

6. SPECIFYING A MODERNISED ARM6: a complete formal specification was created of

the modernised ARM6. Of note is the formal specification of multi-cycle instructions

and the exception model. The simulator created as part of the formal specification of

 14

the modernised ARM6 processor core was used to test the formal specification

against the test vectors developed by ARM Ltd. to validate the ARM6.

7. FURTHER APPLICATIONS: complete formal specifications were created of the DLX

processor core as well as the simplified MIPS R2000 processor core designed for

this thesis. Although simulators were not created for these processor cores, enough of

the general methodology developed for this thesis was applied to both to show that

it can be used with RISC processor cores other than those related to the ARM6.

The full details of the formal specifications and the reusable modules are not included in

the main text, but complete examples are provided in the appendices of this thesis.

 15

2 Methodology
Creating a formal specification of the ARM6 processor core was not straightforward

and several approaches were tried before finding one that could be used to create

satisfactory specifications. Detailing each approach in the order it was developed would

involve some unnecessary repetition, so this chapter presents the general methodology

for formal specification of RISC processors that may be extrapolated from the process

of specifying the ARM6. An account of the various approaches tried and how each

contributed to this general methodology may be found in the discussion of section 4 and

section 6.

2.1 Aims

The general aims of this methodology may be derived from the motivating factors for

using formal specifications already discussed in section 1, but the particular aims that

this general methodology was developed to meet may be summarised as follows:

1. Model accurately those aspects of a hardware design essential to correct operation of

a processor core at the Register Transfer Level (RTL) level of abstraction:

♦ All the circuits especially created for the processor should be specified: not only

should datapath dataflow and pipeline dataflow be detailed, but datapath control

and pipeline control should be detailed also (these terms are explained below).

♦ The details of standard functional units like the ALU should be abstracted away

because such components are not created especially for a particular processor core

but reused from libraries of previous designs.

2. The method should be applicable to all RISC processor cores—not just the ARM6 or

any other one example.

3. Resultant specifications should be usable for formal verification without being

inaccessible to engineers and thus respectively should be:

♦ Representable in mathematical terms.

♦ Require minimal formal methods background to understand.

4. Resultant specifications should have an executable presentation:

♦ To provide insight into how the processor core would operate if fabricated.

♦ To aid in creating a simulator for the processor core based on the specification,

rather than the implementation.

 16

In the second aim, ‘RISC processor’ is used primarily to designate pipelined processors

with hardwired control. Yet, this term is often used, irrespective of the implementation,

for processors with instruction sets optimised to promote instruction speed in general

and that of frequently used instructions in particular (to maximise overall throughput of

typical programs). This latter usage most clearly indicates the main motivation behind

the so-called Reduced Instruction Set Computers: eliminating unnecessary complexity

(Furber 1989; pp. 66–67). Still this usage, unlike the first, does not easily distinguish

the processors this method is directly applicable to, from those it is not; hence the first

is preferred in this thesis. As an aside, the microcode ROMs of processors that use

microcoded control instead of hardwired control (and thus can be RISC only in terms of

the latter usage) may be treated like the PLAs used for hardwired control in most cases

(Furber 1989; pp. 25–27). Thus though such processors are not considered in this thesis,

it is not unreasonable to expect that little or no modification would be required to apply

the methodology of this thesis to such processors.

2.2 Basis

2.2.1 Hierarchical Representation

It is natural to specify microprocessors at differing levels of abstraction according to

the purpose for which the specification is being made. The highest level of abstraction

that must be considered for this methodology is associated with the Instruction Set

Architecture specification, which specifies a processor in terms of the changes made to

its state by each instruction in its instruction set. (Note typically the memory subsystem

and supported coprocessors are included as part of the state of the processor at this level

of abstraction, but external peripherals like hard drives or serial ports are not included

since interactions with these are normally deferred to the system level of abstraction.)

By contrast, the Hardware Implementation specification (associated with the lowest

levels of abstraction that will be considered for this methodology) specifies a processor

in terms of how changes in its state are accomplished when its instruction set is treated

as a whole.

Particular Hardware Implementation specifications may vary in their level of abstraction

according to the nature of the basic constructs that are used to describe the processor

being specified. For example, Hardware Implementation specifications using transistors

will be less abstract than those that use logic gates and these in turn less abstract than

those that use Register Transfer Level (or RTL) representations. However the focus of

 17

this thesis, and thus of this methodology, is on RTL abstractions, because Verilog and

other Hardware Description Languages (or HDLs) are used widely by industry for

commercial processor design at this level of abstraction. Furthermore there exist tools

(equivalence checkers) to demonstrate the equivalence of a representation of a processor

in a HDL at this level and the netlists produced by synthesis tools (which describe how

to fabricate the finished product), so there is little need to specify the details introduced

by lower levels of abstraction. Hence, the term Hardware Implementation specification

is used in this thesis, unless stated otherwise, to refer to RTL abstractions.

2.2.2 Definition of Terms

In spite of the difference in the levels of abstraction, some similarities may be identified

between Instruction Set Architecture and Hardware Implementation specifications.

Both use the concept of transfers to express how the state at some time tn is transformed

to the state at time tn + 1; t referring to some appropriate measure of time for the level

of abstraction. Generally, t is defined as the time needed to complete an instruction for

Instruction Set Architecture specifications and hence is relative to the instruction

executed at time tn. For Hardware Implementation specifications, t is defined in terms of

the processor clock cycle and thus is independent of individual instructions. (Note that

some processor designs allow the clock cycle to be manipulated so some clock cycles

may be longer than others, but because this stalls the processor core independently of

the internal state described by its Hardware Implementation specification, this does not

need to be factored into t.) Therefore a multiply instruction will need more nanoseconds

than a simple add instruction on most modern processors and this will be reflected in t

for Hardware Implementation specifications but ignored by t for Instruction Set

Architecture specifications.

Both specifications use transfers, which relate units of state one-to-one, or many-to-one

if necessary, with respect to sets of units of state appropriate to the level of abstraction.

The Instruction Set Architecture may define units of state such as the following:

• Each register directly addressable by the instructions in the instruction set in each set

of registers of the processor being specified. (This should be irrespective of whether

the registers are physically located in the processor core or an attached coprocessor.)

• Each memory location in the memory attached to the processor.

 18

while the Hardware Implementation specification may define units of state such as:

• Each register directly addressable by the instructions in the instruction set in each set

of registers of the processor core being specified.

• Each memory element, like static latches, in the processor core being specified.

Hence, the Instruction Set Architecture specification may describe transfers involving

memory and coprocessors directly, whilst the Hardware Implementation specification

must describe changes to the state external to the processor core being specified

indirectly in terms of the signals it uses to communicate with memory and coprocessors

(which collectively form its environment).

Both specifications may use transfers that involve an operation over some (or all) of

the units of state being transferred, though the operation used should be appropriate to

the level of abstraction. Hence, the Instruction Set Architecture specification should use

whatever operation best describes the transformation performed during the transfer,

while the Hardware Implementation specification should use operations supported by

the logical units it includes. For example, the Instruction Set Architecture specification

would use appropriate multiplication operations to specify the transfers characteristic of

multiplication instructions. However unless the Hardware Implementation specification

includes dedicated multiplication units, it could not use any multiplication operations

and must instead use appropriate combinations of the simpler operations afforded by

the logical units defined by the specification (typically addition and shift operations).

For either specification, the function of the processor being specified may be described

in terms of sequences of transfers. Hence, the Instruction Set Architecture specification

should describe separate sequences for each of the instructions in the instruction set of

the processor being specified. However, the Hardware Implementation specification

cannot separate sequences of transfers on this basis, since it considers the instruction set

as a whole. Instead the latter specification should consider its sequences of transfers

as merely defining the data subsystem (or datapath) of the processor being specified,

which requires the further definition of some control subsystem specification indicating

how the prior state of the processor core determines what sequence of transfers applies.

For the Instruction Set Architecture specification there is no such demarcation between

control and data subsystems since describing the transfers necessary for each instruction

 19

separately resolves the choices for which the Hardware Implementation specification

requires the control subsystem.

The same Instruction Set Architecture specification may apply equally to processors

that would need quite different Hardware Implementation specifications. For instance,

the ARM Instruction Set Architecture version four applies both to those processors with

an ARM7 processor core (a Von Neumann architecture with three stage pipeline) and

those with an ARM9 processor core (a Harvard architecture with five stage pipeline).

Moreover, Instruction Set Architectures may be designed such that certain parameters

are only fully specified in particular implementations. For example, the Sun SPARC

Instruction Set Architecture specifies that the total number of registers available in

the processor core should be 8 + 16n where 1 ≤ n ≤ 32 (n being specified for particular

processor cores). Similarly, the data abort behaviour differs between ARM7 and ARM9

processor cores, but both implement the ARM Instruction Set Architecture version four.

Therefore, it is useful to have another term for referring to specifications that include

such details, but are otherwise identical to the Instruction Set Architecture specification;

the term “Programmer’s Model specification” will be used in this thesis.

The Programmer’s Model specification and the Hardware Implementation specification

do not only differ in data, operational and temporal abstractions as indicated above.

Indeed, the former is concerned with describing the behaviour of particular instructions,

whereas the latter is concerned with describing the structure of the processor core itself.

More simply while behavioural specifications describe input-output mappings,

structural specifications concentrate on how the basic constructs of the specification

connect with each other. However, the conclusion from such simple definitions that

Hardware Implementation specifications derived from RTL abstractions are behavioural

in nature should be avoided. The overall approach at this level is more similar to that of

lower level Hardware Implementation specifications, which are indisputably structural

in nature (since these may be used directly to fabricate the processor being specified).

2.2.3 Use in Formal Verification

To help ensure the third aim of this methodology is fulfilled (see section 2.1), it is worth

considering how the formal specifications that result from this methodology may be

used for formal verification. However, rather than consider each of the methods for

 20

formal verification of processor cores discussed in section 1.5, this presentation will

focus on the method of theorem proving.

In broad terms, applying theorem proving to the formal verification of a processor core

entails proving the proposition that the Programmer’s Model specification follows from

the Hardware Implementation specification. This involves proving theorems concerning

the mapping between the two specifications, but the significance of the differences that

must be transformed by this mapping suggests the proofs involved might be intractable

for all but the simplest processor cores. However, by using intermediate specifications,

the mapping may be decomposed into simpler steps with theorems defined over these

rather than over the entire mapping.

For example, as a first step in performing the mapping between the two specifications

the behavioural approach of the Programmer’s Model specification could be substituted

for the Hardware Implementation specification’s structural approach as this difference,

unlike the others, admits no gradations. Since the difference in temporal abstraction is

the most easily quantifiable of the remaining differences between the two specifications,

this provides the most straightforward means of further subdividing the mapping:

Specification Approach Temporal Abstraction

Hardware Implementation structural two phase clock cycle

Phase behavioural clock phase

Stage behavioural clock cycle

Programmer’s Model behavioural instruction cycle (arbitrary clock cycle length)

Figure 2-1: Example Intermediate Specifications in Formal Verification

Between the Stage and the Programmer’s Model specifications, further specifications

might be required as the difference in temporal abstraction is still quite significant.

For instance, another specification might be inserted that does not pipeline instructions

but still specifies instructions using pipeline stages clocked in a round robin fashion.

The use of intermediate specifications simplifies the theorems required for proving that

a Hardware Implementation specification entails the Programmer’s Model specification,

though not without increasing the number of theorems that must be proved. In particular

the number of theorems that must be proved between the most abstract specification of

the structural approach and the least abstract specification of the behavioural approach

 21

are increased, which by virtue of the difference between the two specifications are likely

to be the most complex of the theorems to be proved. Continuing the previous example,

without the intermediate specifications the proof would need such theorems for each of

the instructions defined by the Programmer’s Model specification. However with

intermediate specifications the proof would need about six times as many such theorems

as each instruction would be divided into constituent pipeline stages and clock phases.

In practice, not all instruction divisions would be unique (the instruction fetch stage

would be identical for most instructions, for instance) and therefore some theorems

would be duplicated. Nevertheless, it is unlikely enough theorems would be duplicated

to radically reduce the number to be proved between the most abstract specification of

the structural approach and the least abstract specification of the behavioural approach.

However, the number of theorems may be significantly reduced by the introduction of

another intermediate specification derived from the Programmer’s Model specification

that abstracts over the semantics of instructions. For example, for most RISC processors

simple arithmetic instructions like addition and subtraction only differ with respect to

what operation is performed; not on what logical units are involved, how the operands

are derived, and so forth. Hence one data processing instruction class can be used for

all such simple arithmetic instructions. If similar reductions to all remaining instructions

are possible, the extra theorems needed to introduce an Instruction Class specification

Hardware Implementation
Specification Phase Specification

Stage Specification

Instruction Class
Specification

Programmer’s Model
Specification

Structural Specification Behavioural Specification

Integrated Control
& Data Subsystems

Separate Control
& Data Subsystems

Specification over InstructionsSpecification over Instruction ClassesSpecification over Integration of
Instruction Classes with Instructions

Figure 2-2: Example Formal Verification Hierarchy

 22

are not as significant as the diminution in the number of theorems needed concerning

other intermediate specifications by using instruction classes, and not instructions.

Returning to the previous example of a formal verification outline, the process hierarchy

and specifications involved may be summarised now as shown by Figure 2-2, in which

the arrows depict verification steps; vertical arrows depicting verification steps

involving specifications with different temporal abstractions.

The instruction decode process described by the Hardware Implementation specification

often involves determining appropriate general behaviours first, before determining

instruction specific behaviours. For instance, primary decode on the ARM6 determines

such general behaviours as how the source for the address register should be selected

and how the ALU operation should be selected, while secondary decode will ensure that

the address is calculated correctly and that the appropriate ALU operation is performed.

The general behaviours should be understood in terms of instruction steps rather than

instruction classes because while the latter may take many clock cycles to complete,

the former should be defined to complete in one clock cycle.

On the face of it, an instruction class should consist of the individual instruction steps

necessary to complete it, but the relationship is not always so simple. For example,

whereas it would seem reasonable to derive the load instruction class separately from

the store instruction class with respect to the ARM6 Programmer’s Model specification,

this is not reflected in the Hardware Implementation specification. Instead the latter

defines the initial instruction step to be common between both of the instruction classes:

only subsequent instruction steps are defined separately for the load instruction class

and the store instruction class. Moreover, the ARM6 Programmer’s Model specification

implies no distinction between an immediate shift data processing instruction class and

a register shift instruction class, though the Hardware Implementation specification

requires one. This requirement arises because register shift data processing instructions

need an extra instruction step over the immediate shift data processing instructions.

One data processing instruction class could be used, if its temporal decomposition into

one or two instruction steps is subordinated to its functional decomposition when

instantiated for an immediate shift instruction or a register shift instruction. Yet this

would introduce significant complexity and obscure aspects of the implementation that

limit what can be performed in an instruction step.

 23

Therefore to simplify the mappings between instruction classes and instruction steps,

instruction classes should not only derive from the Programmer’s Model specification,

but should be defined also to ensure the independence of temporal decomposition from

functional decomposition in its mapping. In which case, instruction steps abstract over

transfer sequences in particular clock cycles whereas instruction classes abstract over

the sequences of instruction steps necessary for particular instructions. (Note that

correspondence between instruction steps for the Phase specification of a processor core

and its Hardware Implementation specification still may be many-to-one. For example,

with respect to the ARM6, an immediate data processing instruction class is defined by

its Hardware Implementation specification, while the Phase specification considers this

a special case of an immediate shift data processing instruction class. There is no reason

to define a separate instruction class for the Phase specification in this instance,

because the behavioural decomposition needed to handle the special case correctly is of

the same order as that needed to handle the different types of immediate shift rather than

that needed to handle the differences between an immediate shift and a register shift.)

2.2.4 Relation to Aims

In conclusion, the overall aim of this methodology may be now defined as: to derive

formal Phase specifications from informal Hardware Implementation specifications.

The former should use the same units of state and functional units as the latter, such that

the first aim of this methodology (see section 2.1) may be met. However, it should use

the approach of the Programmer’s Model specification for instruction classes rather than

that of the Hardware Implementation specification for instruction steps. In other words,

the Phase specification should abstract over the individual signals that jointly determine

all the general behaviours of an instruction step and instead use instruction steps directly

to determine appropriate general behaviours. The Phase specification instruction steps

should be derived from the instruction classes of the Programmer’s Model specification

using temporal decomposition only, since functional decomposition is required only

because of the signals that the Phase specification instruction steps abstract over.

Hence, it is best to defer functional decomposition until mapping the instruction steps of

the Phase specification onto those of the Hardware Implementation specification.

(This requires, as noted above, that the instruction classes should be chosen such that

functional decomposition and temporal decomposition are independent of each other.)

 24

Although the step from Phase specification to Hardware Implementation specification

is not trivial, it is not so radical that it would seem unreasonable to suppose an algorithm

might be developed further to this methodology to ensure the process is both verifiable

and consistent. (Of course for commercial quality processors additional optimisations

might have to be made by hand to any resulting Hardware Implementation specification,

but this would only require proving the equivalence of the affected parts of the design

at one level of abstraction.) The converse step to the Programmer’s Model specification

is more difficult and might require further intermediate specifications, as noted above,

but aided by the way in which instruction steps are derived for the Phase specification.

Therefore, the compromise between using the same units of state and functional units as

the Hardware Implementation specification and deriving all the instruction steps from

the Programmer’s Model specification helps ensure that the third aim (see section 2.1)

of this methodology may be met.

2.3 Method

It has been found useful to present the Phase specification of a processor core in one of

three ways: mathematical, engineering, and executable. Since the mathematical method

was used for the initial formulation of the Phase specification, this is discussed first and

of the three, it is the one that most easily lends itself to use in formal verification, just as

its name suggests. The engineering method involves straightforward modification of

certain aspects of the presentation of the mathematical method to make the specification

more readily understandable by those involved in processor design with no background

in formal methods. Finally the executable method builds on the engineering method and

involves presenting the specification in some programming language, and embedding

this presentation in the general simulator developed with this methodology, such that

the formal specification can be used to run programs written for the processor core

being specified. (This thesis uses the functional programming language Standard ML,

rather than an imperative language like C++, since the former provides constructs that,

if used, allow reasonably straightforward mathematical representation of any program.)

2.3.1 Mathematical

A Phase specification, like the Hardware Implementation specification it derives from,

considers a processor core in terms of two subsystems: one for data and one for control.

Following the conclusions of section 2.2.4, these two subsystems must be specified over

particular instruction classes: the behaviour of the datapath for one must be specified

 25

separately to that for another and likewise for the specification of the control subsystem.

Such partitioning should pose no problem for specification of the datapath subsystem

since this involves, albeit at a lower level of abstraction, effectively the same transfers

as the Programmer’s Model specification from which the instruction classes are derived.

However not all the behaviour of the control subsystem can be specified separately for

particular instruction classes. This is because the behaviour relating to instruction flow

actually describes how the individual specifications for particular instruction classes

should be combined to indicate the total behaviour of a processor core as determined by

the contents of its pipeline at any time. Hence, any Phase specification may be divided

into three sub-specifications:

1. DATAPATH SPECIFICATION: for each instruction class describes the sequence of

transfers needed, at the Hardware Implementation specification level of abstraction,

to specify how each instruction class should change the units of state visible to

(mentioned by) the Programmer’s Model specification. Any operations used in

these transfers should be represented using uninterpreted functions.

2. DATAPATH CONTROL SPECIFICATION: for each instruction class describes the set of

interpreted functions necessary to specify the output signals of a processor core and

the interpretations of the set of functions used by the relevant datapath specification.

It also describes any sequences of transfers required by these interpreted functions

(which is not particular to any set of instructions and so cannot be specified by any

datapath specification).

3. PIPELINE CONTROL SPECIFICATION: describes the set of interpreted functions required

to specify how the entire behaviour of a processor core may be constructed from

input signals and the units of state relating to instruction flow using instruction steps.

It also describes any sequences of transfers required by these interpreted functions.

The terms listed above are used to denote the relevant fully qualified term in this thesis

for reasons of brevity. For example, ‘Datapath Control specification’ is used instead of

‘the Phase specification of the control subsystem concerning the datapath.’ Likewise for

sub-specifications that should be partitioned by instruction class, thus the partition of

the ‘Datapath Control specification for the multiplication instruction class’ is referred to

simply as the ‘Multiplication Datapath Control specification.’

 26

How the instruction class partitions of Datapath and Datapath Control specifications

should be further divided into instruction steps is dependent on how the processor core

being specified is pipelined. In essence, a processor core is pipelined so that each stage,

the pipelining splits instructions into, uses a different section of the processor core and

instructions one stage apart can be overlapped. For instance, one of the simplest ways

to pipeline a processor core involves dividing instructions into the following stages:

1. Instruction Fetch (IF)

2. Instruction Decode (ID)

3. Execute (EXE)

such that any successive three instructions may be overlapped as shown in Figure 2-3.

(The ARM6 processor core is pipelined in this way, so further details about this method

of pipelining are given in section 3.2.4.)

t1 t2 t3

i
1

i
2

i
3

Instruction
Fetch

Instruction
Decode Executei

1
i

2
i

4

t4 t5 t6

t4 t5 t6

t1 t2 t3

Instruction
Fetch

Instruction
Decode Execute

Instruction
Fetch

Instruction
Decode Execute

Instruction
Fetch

Instruction
Decode Execute

Instruction
Fetch

Instruction
Decode Execute

Instruction
Fetch

Instruction
Decode Execute

Figure 2-3: Three Stage Instruction Pipelining

In Figure 2-3, both Datapath specifications and Datapath Control specifications relate to

the rows, which represent the life cycles of particular instructions. On the other hand,

Pipeline Control specifications relate to the columns, which represent the utilisation of

different sections of a processor core by different instructions concurrently. (Note that,

for simplicity, the diagram makes no account of any instructions that require more than

one clock cycle in the Execute stage.)

 27

The more complex methods of pipelining split instructions into more pipeline stages,

effectively subdividing one or more of the pipeline stages used in three stage pipelining.

One common method subdivides the Execute stage further as follows:

3. result calculation (Execute or EXE)

4. memory access (Memory or MEM)

5. update state of processor (Writeback or WB)

The exact details of what each stage involves depends on the memory model used by

the processor core that implements this method of pipelining. However the similarities

far outweigh the differences, as may be seen if the pipelines of the modernised ARM6

(see section 5.3.4) and the DLX (see section 7.2.2.3) are considered.

The way in which extra stages are used to extend overlapping of successive instructions

is illustrated in Figure 2-4 for the above method of pipelining, but again without

considering how an instruction might require more than one clock cycle in any stage

following the Instruction Decode stage. It is worth noting that though more clock cycles

(as denoted by ti) are required to process each instruction in pipelines with more stages,

it is the most complex stages that are normally divided to provide these extra stages.

Hence, the pipeline stages that determine the minimum time each clock cycle must last

are the ones that are simplified. Consequently if one processor core implementation uses

a pipeline with more stages than another implementation, although the same instruction

result
calculation

memory
access

update state
of processor

result
calculation

memory
access

update state
of processor

Instruction
Fetch

Instruction
Decode

result
calculation

memory
access

update state
of processor

result
calculation

memory
access

update state
of processor

result
calculation

memory
access

update state
of processor

result
calculation

memory
access

update state
of processor

result
calculation

memory
access

update state
of processor

result
calculation

memory
access

update state
of processor

t1 t2 t3 t4 t5 t6 t7 t8 t10t9

t1 t2 t3 t4 t5 t6 t7 t8 t10t9

i
1

i
2

i
1

i
2

i
3

i
4

i
5

i
6

Instruction
Fetch

Instruction
Decode

Instruction
Fetch

Instruction
Decode

Instruction
Fetch

Instruction
Decode

Instruction
Fetch

Instruction
Decode

Instruction
Fetch

Instruction
Decode

Instruction
Fetch

Instruction
Decode

Instruction
Fetch

Instruction
Decode

Figure 2-4: Five Stage Instruction Pipelining

 28

will need more clock cycles on the former, each clock cycle should be of less duration,

making the overall time required much less, or at worst the same.

The life cycle of an instruction on a processor core, irrespective of pipelining method,

may be described in terms of:

• PIPELINE LATCH: As an instruction completes each pipeline stage in its life cycle,

some state has to be passed on to the next stage until it completes its final stage.

Instead of considering this in terms of the individual latches used to preserve and

drive items of state for the next stage, it is useful to refer to one pipeline latch that

abstracts over all these latches.

• TIME: The ideal time in clock cycles an instruction should take to reach some stage in

its life cycle; ideal in the sense it is assumed that one clock cycle is required to fetch

the instruction and that it does not have to wait to enter the Instruction Decode stage.

(The instruction would have to wait if one of the preceding instructions required

multiple clock cycles in one of the stages following the Instruction Decode stage.)

• PIPELINE ACTIVITIES: The activities an instruction requires of a processor core in

each of the pipeline stages it enters expressed in terms of the pipelining method of

the processor core. For instance, the Instruction Fetch stage records the result of

attempting to read an instruction from memory, but the activity associated with this

will be the effect of another instruction in another pipeline stage, not of the one that

enters Instruction Fetch if the memory read succeeded.

• PRE-FETCH QUEUE: This collectively refers to the stages that an instruction enters

before it is decoded and thereby in which it cannot determine any pipeline activities.

Typically, the Instruction Fetch stage and any stages used to preserve instructions

when a preceding instruction does not complete a post Instruction Decode stage in

one clock cycle.

Hence, the life cycle of an instruction in the three stage pipeline depicted in Figure 2-3

may be described as in Table 2-1, while that of an instruction in the five stage pipeline

depicted in Figure 2-4 may be described as in Table 2-2. Note unlike either depiction,

both tables take into account what should happen if an instruction requires more than

one clock cycle in the Execute stage; m is used to denote the time when an instruction

has its last iteration in the Execute stage. (Iteration in a pipeline stage does not imply

 29

Time Pipeline Latch Pipeline Activities

t1 Fetch

… Pre-decode

t2 Decode Decode

t3, 3 < m

Decode

Execute

Fetch

Decode

Execute (not final)

tn, n ≥ 4 ∧ n < m
Decode

Execute

Decode

Execute (not final)

tm, m ≥ 3
Execute Fetch

Execute (final)

Table 2-1: Life Cycle of an Instruction in Three Stage Instruction Pipeline

any iteration of the pipeline activities associated with that pipeline stage: each iteration

may determine its own pipeline activities.) In both cases, an instruction can only iterate

in the Execute stage. The stages that comprise the pre-fetch queue have no activities and

therefore have no reason to require iteration—if it will take more than one clock cycle

to fetch an instruction then it is more common to freeze the state of the processor core

than require iteration in the Instruction Fetch stage. While the Instruction Decode stage

has an activity, it is uncommon for this activity to involve calculations that can become

complex enough to require iteration. However as shown in both tables an instruction

may require the activity associated with the Instruction Decode stage while it iterates in

the Execute stage. Different five stage pipeline variants might well allow iteration of

instructions in different stages post the Instruction Decode stage, but for convenience

Table 2-2 reflects the pipeline of the modernized ARM6—see section 5.3.4.

In light of this discussion of how an instruction’s life cycle is related to its pipelining,

several points may be made about the creation of specifications using this methodology:

1. Neither datapath specifications nor datapath control specifications should describe

any of the stages in the Pre-fetch queue of a processor core.

2. Both datapath specifications and datapath control specifications should divide into

pipeline stages first (to give instruction steps) and then into pipeline activities.

 30

Time Pipeline Latch Pipeline Activities

t1 Fetch

… Pre-decode

t2 Decode Decode

t3, 3 < m

Decode

Execute

Fetch

Decode

Execute (not final)

t4, 4 < m
Decode

Execute

Decode

Execute (not final)

t3 Memory Memory

tn, n ≥ 5 ∧ n < m
Decode

Execute

Decode

Execute (not final)

tn – 1 Memory Memory

tn – 2 Writeback Writeback

tm, m = 3
Execute Fetch

Execute (final)

tm, m = 4
Execute Fetch

Execute (final)

t3 Memory Memory

tm, m ≥ 5
Execute Fetch

Execute (final)

tm – 1 Memory Memory

tm – 2 Writeback Writeback

tm, m = 3 Memory Memory

tm, m ≥ 4 Memory Memory

tm – 1 Writeback Writeback

tm, m ≥ 3 Writeback Writeback

Table 2-2: Life Cycle of an Instruction in Five Stage Instruction Pipeline

 31

3. Pipeline control specifications should describe how the pre-fetch queue operates and

how each instruction in the pipeline, but not in the pre-fetch queue, contributes via

the activities specified by datapath specifications and datapath control specifications

to the overall behaviour of a processor core. Hence, pipeline control specifications

should define at least a NXTIC function and an IC function. The first specifies how

an instruction in the Instruction Decode stage and any other pertinent signals (such as

an indicator for data hazards—see section 5.3.4) determine the instruction class that

should govern behaviour associated with the Instruction Decode stage. The second

specifies how the latched result of NXTIC and any pertinent signals (like an indicator

whether the instruction passed its condition code) determine the instruction class that

should govern behaviour associated with the Execute stage.

a. If iterations in one or more stages are supported, pipeline control specifications

should define a NXTIS function and an IS function. These are similar in purpose

to NXTIC and IC respectively, but specify associated time, not instruction class.

Consequently the instruction step that should govern behaviour associated with

the Instruction Decode stage can be determined by combining NXTIC and NXTIS,

just as combining IC and IS provides the instruction step for the Execute stage.

(If the processor core does not support the iteration of instructions in any stage,

instruction steps and instruction classes may be conflated.)

b. Pipeline control specifications for processor cores with pipelines that have more

than three stages are unlikely to require further functions similar to NXTIC, IC,

NXTIS, or IS (unless the Instruction Decode stage is further subdivided).

Otherwise, instruction steps associated with stages following the first subdivision

of the Execute stage can be determined by just appropriately buffering IC and IS

through the relevant pipeline latches.

c. When the operations of the datapath and the control subsystem in one clock cycle

are divided into two or more phases, then IC and IS should be specified explicitly

for each clock phase. (This may just involve latching the results of IC and IS from

initial calculation in the first clock phase.) NXTIC and NXTIS, on the other hand,

only need to be specified in the clock phase instruction decode is first performed

and any subsequent clock phases.

4. Interaction between the pipeline control specification and the other specifications

should be kept simple by arranging its functions so that those which specify signals

required by the other specifications precede the NXTIC, IC, NXTIS and IS functions,

while those which require signals specified by functions in the other specifications

 32

follow these functions. This is not always possible. For example, forwarding units or

hazard units (see section 5.3.4) should be specified by pipeline control specifications.

Yet, these require signals defined by functions in the datapath control specification

(such as register addressing signals) while being required by functions that specify

other signals in the datapath control specification (like write enable signals).

Therefore, to allow relatively straightforward consideration of dependencies between

the pipeline control specification and the other specifications, the functions that

specify logic such as forwarding units should be presented in separate arrangements.

Then the converse of the usual relationship may be applied: the functions defined by

the datapath control specification should be arranged so those which specify signals

required in the specification of logic such as forwarding units precede those which

use the signals produced by such logic.

Applying this to the example of a three stage pipeline in Figure 2-3: for each instant tn,

n ≥ 2 an instruction class is valid the datapath and the datapath control specifications

describe what each relevant pipeline activity entails for that particular instruction class.

The pipeline control specification requires that the instruction in the Execute latch

specifies the Fetch and the Execute activities and that Decode activities are specified by

the instruction in the Decode latch (both latches are occupied by the same instruction

when it iterates in the Execute stage). This involves the translation of the instruction in

the Decode latch into its instruction class and the association of an instruction class with

the instruction in the Execute latch. (The latter will typically just be the instruction class

derived when the instruction was in the Decode latch, but when the instruction involves

the evaluation of a condition code, for example, then the pipeline control specification

would indicate when a null instruction class must be substituted for the original one.)

Once the instruction classes have been determined, then the pertinent pipeline activities

may be determined by using both the datapath and the datapath control specifications of

these instruction classes. Finally, the pipeline control specification is responsible for

describing how the entire life cycle of an instruction is managed in terms of latches and,

when appropriate, the time the instruction has taken. (Hence, in terms introduced in

section 2.2.3, the pipeline control specification relates to the control subsystem blocks

that perform primary decode while the datapath control specification relates to those

that perform secondary decode.)

 33

Having thus established the general nature of the specifications that the methodology of

this thesis can be used to develop, it is now worth considering the types of entities that

such specifications must involve:

• BUS: provides connection from one component to one or more other components

(components being either memory elements or combinatorial logic).

• COMBINATIONAL LOGIC: component used to transform its inputs in some manner and

output the result; its result at any instant reflecting the values of its inputs at that

same instant (propagation delays are assumed to be zero in this thesis).

• MEMORY ELEMENT: component used to store the value of an input for some period

and then output that stored value even if the value of its input subsequently changed.

The particular instances used depend on the Hardware Implementation specification of

the processor core being specified. However, the following list of instances defined for

the ARM6 processor core should be reasonably representative.

• COMBINATIONAL LOGIC

♦ Functional Units: combinational logic best described with respect to its function

rather than its composition in terms of logic gates. For example: barrel shifter;

arithmetic logic unit (ALU); zero-padder; sign-extender and so forth.

♦ Multiplexers: combinational logic best described with respect to how its inputs

combine to form its output, rather than its composition in terms of logic gates.

♦ Static Logic: combinational logic best described with respect to its composition

in terms of logic gates. (Unlike functional units or multiplexers, these components

are often created for particular processor cores and cannot be reused for

significantly different processor cores.)

• MEMORY ELEMENTS

♦ Latch: memory element that constantly outputs a stored value of its data input,

except when it is transparent, then the value stored changes to the value driven on

the data input and this possibly changing value is transferred to the output instead.

In general, because clock cycles on the ARM6 are subdivided into two phases,

this component is transparent in one phase whilst its output is stable in the other.

 34

 CONDITIONAL LATCH: latch that allows the value to be stored to be set only if

some condition is met. (The latch may also never be transparent in one phase,

just as the more general kind of latch.)

 R-S LATCH: latch that allows an individual bit of the value stored to be set

without affecting any of its other bits, or all bits of the value stored to be reset

at the same time. These two actions may be requested independently such that

one of the two should be defined to have priority, if both can be requested in

the same clock phase.

The entities considered so far derive from the Hardware Implementation specification,

but certain entities are best treated in terms of the Programmer’s Model specification,

despite the differences in the level of abstraction; these entities include main memory,

register banks or caches. Although these entities may be implemented using RAM cells

or gated registers, the interaction with the other entities at the RTL level of abstraction

is in terms of some well-defined interface and not this implementation. Such interfaces

describe the signals that should be used to perform transfers between the entities and

thus it is the implementation of such interfaces, as far as it concerns the processor core,

which must be specified when the methodology of this thesis is used. In general terms,

the datapath specification describes when the interface is used to perform transfers,

whereas the datapath control specification describes the implementation of the interface

in terms of its signals. (Note this should be true even in the case of instruction fetches,

since these are performed when an instruction reaches a particular point in its life cycle.

Still the pipeline control specification may need to specify how the result is latched,

depending on how the associated block of pipeline latches is implemented.)

In order that all connections used for transfers be specified to the same level of detail,

transfers always must be specified as either proceeding from a bus or to a bus. Note that

both outputs of and inputs to the processor core are essentially the same type of entity

as buses, but are denoted boldface to make clear that these, unlike buses, are not just

internal to the processor core. Still to avoid unnecessary complexity the same name,

rather than different names for each, may be used for a latch, the bus that may be used

to drive it in one phase and the bus that it drives in another phase, because the entity

referred to can be determined from the context in most situations. (Generally, the buses

are valid in distinct phases—the first when the latch is transparent and the second when

 35

1 ()op 1 2f , , , nB B B B← …

Output of combinational logic ‘op’ drives bus ‘B’ and

performs its calculations using the specified n buses.

(When convenient, see below, both latches and inputs

may be the actual parameters used with a function.)

2 LB ← , B L← , B l←

Output of the latch ‘L’ drives bus ‘B’. If the latch ‘L’

is transparent, it is denoted as ‘L’ if the new value

should be used and ‘l’ if the old value should be used.

3 B ← B , 0B B← One bus ‘B0’, or an input ‘B’, drives another bus ‘B’.

4 []MEM← …B
Output of memory read port drives input ‘B’.

(Ellipsis omits the input used to address memory.)

5 []REGB ← … , []PSRB ← …
Output of register bank read port drives bus ‘B’.

(Ellipsis omits the bus used to address register bank.)

6 L B← Value on bus ‘B’ is used to update the latch ‘L’.

7 B←B Value on bus ‘B’ is used to drive the output ‘B’.

8 logic_expr L B⇒ ←
Value on bus ‘B’ is used to update the latch ‘L’ when

‘<logic_expr>’ evaluates to true.

9 []MEM ←… B
Value on output ‘B’ is used to update memory via

memory write port. (Ellipsis omits the output used

to address memory.)

10 []REG B←… , []PSR B←…
Value on bus ‘B’ is used to update one register via

register bank write port. (Ellipsis omits the bus used

to address register bank.)

Table 2-3: Syntax for Transfers between the Entities in a Specification

it is not—and the latch will occur on the left hand side of transfers when transparent and

on the right hand side when it is not.) Hence, when specifying the actual parameters for

the functions used to describe the combinational logic of the control specifications of

the datapath or the pipeline, equations like 2 above and 3 above may be only implicit in

arguments passed to the function (rather than explicit in the description of the dataflow

required for the specification).

As noted above, the Hardware Implementation specification may make reference to

several types of latch, which differ in terms of what happens when the latch is updated.

The conditional latch requires that updates be described in terms of equation 8 above

rather than equation 6 above. Since it is appropriate to require a logical expression

 36

(Boolean not digital) as the antecedent of the implication, if one signal indicates

whether a latch should be updated when it is transparent by whether it is driven HIGH,

then an abstraction should be used to represent that control signal directly as a Boolean.

This allows more straightforward equations such as 0LB B⇒ ← to be used instead of

equations like () 01 LB B= ⇒ ← . By contrast, R-S latches do not require definition of

further equations: simply reinterpretation of the nature of the bus that drives the value of

the data input of R-S latches. While for other types of latches this bus would indicate

the value that should be stored (such that the latch would become undefined if the value

driven by the bus is undefined), for R-S latches it abstracts over the exact details of

how the reset and set signals interact to determine the value that should be stored by

indicating this value directly. Therefore, a specification may indicate that a R-S latch

should maintain its stored value simply by not defining the value of the bus that drives

its data input for the relevant clock phases.

Since each bus and each memory element may be defined over different sets of bits,

standard notation should be used to denote the set of bits relevant to each. This involves

a list of bits separated by commas—a colon rather than a comma may be used to denote

inclusive ranges—and enclosed in square brackets. The ARM6 Program status registers,

for example, are defined over bits 31 – 28, 7 – 6, and 4 – 0, such that ‘[31:28, 7:6, 4:0]’

is used to qualify all references to a program status register in the ARM6 specifications.

Discontinuities in the set of bits an entity is defined over are often not made explicit in

the Hardware Implementation specification, except when the entity is used in

continuous contexts. Hence, as shown in Figure 2-5 the ARM6 program status registers

may be implemented as 11-bit registers, but before any value can be transferred from

N Z C V I F

M[4:0]

N Z C V I

0

31 30 29 28 7

5 4 3 2 1 0

M[4:0]
4 3 2 1 010 9 8 7 6 5

I F
7 6

M[4:0]
4 3 2 1 0

F
6

N Z C V
31 30 29 28

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

Figure 2-5: Resolving Discontinuities in Bits an Entity is Defined Over

 37

these registers to one of the 32-bit data registers, each bit present in the 11-bit register

must be mapped to its 32-bit location and the discontinuities filled with zeroes (or ones).

However the specifications developed by the methodology of this thesis abstract over

the actual implementation of discontinuous entities, as this relates more to efficiency

than function. Consequently, the first step of Figure 2-5 is hidden by this abstraction,

and this allows the process and its converse to be denoted as follows:

[] [] [] []
[] []

2031: 0 31: 28 0 7 : 6 0 4 : 0

31: 28,7 : 6, 4 : 0 31: 28,7 : 6,4 : 0

B A A A

A B

← ++ ++ ++ ++

←

where B[31:0] is a 32-bit register and A[31:28,7:6,4:0] a 11-bit program status register

(‘++’ denotes bit concatenation and xn denotes the replication n times of the bit x).

Although it might seem that using the same notation for the qualification of

discontinuous entities and bit selection from an entity could be confusing, this is

standard practice and in general the set of bits each entity is defined over is clear when

that entity is placed in the context of the processor core it is part of. In such contexts,

one particular set of bits is often defined as characteristic of the fundamental word of

that processor core (bits 31 – 0 for the ARM6 processor core), and again following

standard practice, qualification may be omitted for word typed entities. Entities that

refer to abstractions, such as Booleans or instruction classes, rather than digital values,

should be simply qualified with ‘[*]’ to indicate clearly these have been introduced by

the Phase specification to abstract over the Hardware Implementation specification and

may have no direct relations in the latter.

The range of transfers required in the specification of a processor core may be expressed

in terms of one syntax, as discussed above, but one syntax cannot conveniently express

the different forms of combinational logic required. Table 2-4 shows the syntaxes used

in the development of the methodology of this thesis. (Of these four, only 4 is necessary

to describe combinational logic derived from the Hardware Implementation function.

Still 2 allows one complex output expression for combinational logic like multiplexers

and PLAs—Programmable Logic Arrays—to be decomposed into several simpler ones.

3 allows further simplification of 2 under certain circumstances, while 1 is useful for

specifying combinational logic dedicated to bit concatenation clearly.)

 38

1
[]
[]
[]

1 1

name

bit_field msb : b
f

bit_field b : lsbn n

= … …

is used to define the concatenation of n bit fields

to form one value as described by the bit slices on

the right hand side. The size of each bit field

should be either that of the corresponding bit slice,

or one, when one bit is to be extended to fill that

bit slice. The concatenation should read from top

to bottom.

2

1 1

name

output_expr logic_expr
f

output_expr logic_exprn n

=

… …

is used to define combinational logic in terms of

the selection of one of n output expressions

according to which of the logical expressions on

the right hand side evaluates to true; whether or not

the combinational logic is actually implemented as

a multiplexer or not. (Note each logical expression

should be mutually exclusive of all the others and

for clarity output expressions should not overlap.)

3
()name 1f TRUE logic_expr= ,

()name 1f FALSE logic_expr=

are used as shorthand for 2 when n = 2 and

logic_expr2 = ¬logic_expr1; output_expr1 = 1 and

output_expr2 = 0 must also be true for the first,

whereas output_expr1 = 0 and output_expr2 = 1

must also be true for the second.

4 namef output_expr=
is used to define combinational logic that maps to

one output expression in all situations.

Table 2-4: Syntaxes for Expressing Forms of Combinational Logic

where an output expression is an expression that evaluates to either some digital value,

some Boolean value or other type of value defined by the Phase specification such as

an instruction class. The output expressions that evaluate to digital values should use

standard logical operators to refer to logic gates (for example: ¬ = not, ∧ = and, ∨ = or).

Other functions such as ‘++’ for bit concatenation or ‘ADD’ for addition should be used

to abstract over combinational logic that Phase specifications may assume correct,

because such entities are designed for reuse rather than particular processor cores and

therefore should be proved correct independently of usage in particular processor cores.

Output expressions that evaluate to an abstraction defined by the Phase specification

should only use operators appropriate to this abstraction, such as logical operators for

Boolean values, to prevent any complication of the abstraction.

 39

It should be possible to specify the control logic of most processor cores using one of

the four syntaxes discussed above and although the syntax used in specifying transfers

may need extending before it can be used with memory elements not considered above,

this should be reasonably straightforward. For example, three stage pipelines, such as

that used by the original ARM6, do not require explicit references to pipeline latches

(see section 4), whereas five stage pipelines often do (see section 6, section 7.3 and

section 7.5). These may be conveniently denoted like register banks, but addressed by

the name of the buses that each is used to preserve. Hence if the pipeline latch between

the Execute stage and the Memory stage is referred to as ‘ []EXE MEM … ’ for brevity,

and it preserves the value driven on the ALU bus, ‘ []EXE MEM ALU ’ denotes when

the value preserved by the pipeline latch is used instead of the current value driven on

the ALU bus. The set of signals a pipeline latch preserves should be part of its definition

in the relevant Phase specification, so indicating when the value stored for a particular

addressing signal is updated is superfluous (by contrast with the register bank notation)

and can be omitted from the datapath control specification.

Data Processing (Addressing Mode 1: Immediate and Immediate Shift)

ID …

2
DIN IREGϕ←

…

IF …

[] []{ }
2

R15 31: 2 31: 2INCϕ←

[] []
2

3 2t

31: 2 1: 0
AREG tINC AREG

ALUϕ

 ++ ←

…

EXE …

[]()
1 shifterALUB f , 4 : 0B SHIFTOPϕ←

…

()
2 ALUf ALUA, ALUBALU ϕ←

…

Figure 2-6: Example of Mathematical Presentation of Datapath Specification

 40

From the preceding discussions of the syntax of transfers between entities (in relation to

Table 2-3) and the notation for indicating the juncture in the lifecycle of an instruction

(in relation to Table 2-1 and Table 2-2), the method for mathematical presentation of

datapath specifications illustrated in Figure 2-6 may be derived. Each row in the table

specifies one pipeline activity and the pipeline activities are grouped by pipeline stage

(indicated by the presence or absence of a border between rows). The left-hand column

is used to label the pipeline activity the row specifies and groups of rows are arranged

according to the order in which the pipeline stage associated with each is entered;

hence explicit labelling of pipeline stages is unnecessary.

The example derives from the three stage ARM6 specification, so Instruction Decode is

the first pipeline stage shown at time t2 because the only preceding pipeline stage

(Instruction Fetch at time t1) has no pipeline activities associated with it to be specified.

Each pipeline stage takes one clock cycle, but this is subdivided further into two phases

on the ARM6; hence the arrow that shows the direction of each transfer is labelled with

φ1 if the transfer occurs in phase one and φ2 if the transfer occurs in phase two.

Moreover, transfers are ordered so those that occur in phase one are specified before

those that occur in phase two. After being grouped by clock phase, data dependency and

probable timing are used to arrange further the transfers within these groups.

In general if a bus or latch is only referred to in the specification of one pipeline stage of

an instruction class, no qualification is required with respect to when, in the lifecycle of

the instruction class, the bus or latch is driven or sampled. If the pipeline stage iterates,

qualification may still be omitted provided that the pipeline activities associated with

the pipeline stage are also iterated. However when a bus or latch needs qualification,

denoting the time in unstalled cycles relative to the Instruction Fetch stage is sufficient;

letters may be used to indicate a variable number of cycles over which a pipeline stage

and associated pipeline activities may iterate. Hence the complete annotation scheme

developed for the three stage ARM6 is as summarised in Table 2-5.

To handle every form of iteration in the Execute stage that may be required by any of

the instruction classes supported by the three stage ARM6, three kinds of annotation

must be defined for the Execute stage. The first kind shown in Table 2-5 is for

instruction classes that require no iteration, such as the data processing instruction class,

 41

Driven or sampled in Annotation Comments

Instruction Decode t2

Execute t3

Execute (1st iteration) t3 Used when pipeline activities of first iteration

differ from subsequent ones.

Execute (2nd iteration) t4 Used when pipeline activities of second iteration

differ from first iteration and subsequent ones.

Execute (… iteration) … Used when pipeline activities of this iteration

differ from both prior and subsequent iterations.

Execute (any iteration) tn Used when consecutive iterations can occur with

identical pipeline activities.

Execute (final iteration) tm Used when pipeline activities of final iteration

must differ from those of prior consecutive ones.

Table 2-5: Summary of Timing Annotations for Specification of the ARM6

while the second is for those that perform iterations without iterating pipeline activities.

Some instruction classes only require this second kind, like the swap instruction class,

but others, such as the multiplication instruction class, also require the third kind.

However, no instruction class solely requires the third kind of annotation, as iterations

providing initialisation always precede the iterations with identical pipeline activities

and in some cases, succeeding iterations providing finalisation are required. Note that,

because the number of consecutive iterations with identical pipeline activities performed

may depend on how an instruction class is instantiated, the n and m of the third kind of

timing annotation are variables. Thus the pipeline activities of the consecutive iterations

can be specified once with the n indicating that those pipeline activities may be repeated

several times, if iteration is required in the relevant pipeline stage upon instantiation.

(Without the use of such variables, separate specifications would be required for each of

the different numbers of iterations in a pipeline stage possible for an instruction class.)

By returning to Figure 2-6 and considering the transfers it shows, some observations

may be now made about the methodology for creating mathematical presentations:

 42

1. As already discussed, timing annotation is only used when it is necessary to avoid

confusion about when a bus or a latch is being sampled or driven; thereby preventing

superfluous detail from obscuring the presentation of the specification.

2. When a transfer needs the value of a signal from a preceding clock cycle, rather than

its value in the current clock cycle, the appropriate timing annotation should be used

to qualify direct references to this signal in the datapath specification. For instance,

the second transfer depicted for the Instruction Fetch activity requires the value of

the bottom two bits of the AREG bus from the clock cycle that immediately precedes

the activity, thus it refers to []
2t

1: 0AREG . This has the advantage of clarifying

which signals are buffered and which are original, as well as indicating the extent of

any buffering. However the datapath control specification should note the method

used to buffer the value of a signal, so the completeness of the overall specification

is not affected.

3. Timing annotation should not be used with functions in the datapath specification,

since functions should be used to describe combinational logic only (that is logic

which does not involve any memory elements). Sequential logic should be described

by transfers specified as part of the datapath specification or part of the dataflow

associated with the datapath control specification (and may require timing annotation

because it does involve memory elements).

4. Complete definition of operations such as fALU (…) and fshifter(…) is shared between

the datapath specification and the datapath control specification, with the latter

supplying the interpretations of the operations that the former leaves uninterpreted.

Therefore the name used for the operation in both specifications should be identical,

and unique, so that an operation in the datapath specification and its interpretation in

the datapath control specification may be readily associated. However, the nature of

the parameter list given for an operation may differ between the two specifications.

Whereas in the parameter list of an operation, the second specification should refer to

every signal used by the interpretation of the operation, the first specification should

refer to the subset of these signals associated with dataflow only and not control.

(Although the parameter list shown for the fshifter operation may appear to contravene

this requirement, in general shift operations are often expressed with two parameters:

the value to shift—in this case, that on the B bus—and the amount of shift to apply—

in this example, that on the SHIFTOP[4:0] bus. Hence to refer to the B bus only in

the parameter list might be misunderstood as indicating that the amount of shift that

can be applied is fixed.)

 43

5. A datapath specification of an instruction class should be general enough to include

minor variations, and hence avoid unwarranted proliferation of instruction classes.

However, it should not be so general that, even when considered in conjunction with

all other contributors to an overall specification of a processor core, the completeness

of that overall specification is compromised. For instance, the transfer that specifies

the output of the shifter combinational logic (fshifter) drives the ALUB latch, refers to

the B bus rather than either of the two buses that may drive the value of the B bus.

It is the datapath control specification of this instruction class which specifies when

the B bus takes the value of the RB bus and when it takes the value of the IMM bus,

according to which variants of the data processing instruction class use an immediate

and which a third register value. Doing this for every transfer that involves a bus

driven by a multiplexer, may make datapath specifications hard to understand due to

the increased number of indirect references using datapath control specifications.

Hence, for convenience, when one bus will be always selected to drive another bus

(or latch), irrespective of how an instruction class may be instantiated, then that bus

may be referred to directly by that instruction class. For example,
1

ALUA RAϕ←

could be used for the data processing instruction class instead of
1

ALUA Aϕ← ,

because the RA bus will be selected always to drive the A bus.

6. Though, as noted in 5 above, the number of instruction classes may be minimised by

the appropriate use of references in the datapath specification, when this is applied to

complex processor cores the readability of the datapath specification may suffer.

Therefore whenever the function definition itself in the datapath control specification

appears simpler than the process of referencing it with an uninterpreted function in

the datapath specification, the imprecision inherent in substituting the definition for

the reference is outweighed by increased readability. In general, most, if not all,

references to multiplexers may be replaced by a vector listing each of the values that

it may select for its result. (To avoid confusion the vector should be enclosed with

curly braces as shown in the second transfer listed for the Instruction Fetch activity.)

Most other instances of combinational logic are more varied in how a result is driven,

and thus it is not appropriate to substitute associated definitions for the references in

the datapath specification. (An exception may be made when the instruction class

reduces the definition of the combinational logic for this instruction class to driving

one of its inputs as its output; so when appropriate ()
2 ALUf ALUA, ALUBALU ϕ←

might be replaced with
2

ALUBALU ϕ← .)

 44

7. When curly braces enclose an entire transfer, such as with the first transfer shown for

the Instruction Fetch activity, this indicates that the transfer may or may not occur

depending on the value of the write enable signal the datapath control specification

associates with the latch. Consequently, just as when curly braces are used to enclose

the range of options a multiplexer may select from, curly braces around a transfer

indicate that the datapath specification does not completely describe the transfer and

the datapath control specification should be consulted. The 0LB B⇒ ← form of

specifying transfers could be used to make the role of the write enable signal explicit,

but this would introduce terms from the datapath control specification unnecessarily.

While the reference should be clearly noted, in most cases it should be inferable from

the name used for the latch (or register) in the datapath specification and the name

used for the write enable signal in the datapath control specification. (For example,

the R15 of the first transfer depicted for the Instruction Fetch activity is paired with

the PCWEN[0] write enable signal in the relevant datapath control specification.)

Note that curly braces are not used thus when the datapath control specification of

an instruction class ties a write enable signal to one value, such that depending on

this value the associated transfer always occurs or never occurs. If it always occurs,

the relevant datapath specification should describe the transfer with no enclosing

curly braces, and if it never occurs, the transfer should be omitted altogether.

8. The use of curly braces to indicate that dataflow depends on how an instruction class

is instantiated may be used to indicate when pipeline activities may or may not occur,

just by enclosing the labels associated with those pipeline activities in curly braces.

a. This use of curly braces may be needed in the specification of processor cores that

allow one or more pipeline stages preceding the final pipeline stage to iterate with

identical pipeline activities. For instance, the modernised ARM6 may iterate in

the Execute stage (which is the third of five) and it supports instruction classes

implemented by iteration in the Execute stage with identical pipeline activities.

However, as Table 2-2 shows, the set of pipeline activities an instruction class

determines in the Execute stage differs at time t5 and later in its life cycle from

time t3 or time t4. Consequently the timing annotation tn cannot be used in the way

outlined above until time t5, unless it is possible to indicate that pipeline activities

(such as the Writeback pipeline activity at time t4) do not apply in every case.

Although the pipeline control specification indicates which pipeline activities

apply when, and therefore indirectly what curly braces used in this way refer to,

the purpose should be noted directly in the datapath specification as well.

 45

b. Processor cores may have structural hazards that prevent an instruction class

progressing from one pipeline stage to the next, even when all the results from

that stage are ready. For example, as noted in Table 5-4, the modernised ARM6

requires any instruction class that alters the operating mode of the processor core

to do so after at least one iteration in the Execute stage. However, an instance of

the data processing instruction class only needs one iteration in the Execute stage

to write the CPSR (see section 3.1.3) and calculate the result that should be stored

in the destination register during the Writeback stage. This is so even if the write

to the CPSR involves restoring the SPSR rather than just updating the status flags

and the destination register is the program counter such that the register update

occurs in the Execute stage to optimise pipeline flushing. The required delaying of

writing the CPSR to the second iteration in the Execute stage could be handled by

defining two separate data processing instruction classes, but this would involve

unnecessary duplication in respect of the pipeline activities of the first iteration in

the Execute stage. Hence, the most elegant solution is to have only one definition,

but with the labels of the pipeline activities of the second iteration enclosed in

curly braces and the circumstances under which these pipeline activities apply

clearly noted.

9. If explicit references to pipeline latches are used, then any buffering required before

the value of a bus could be preserved by a pipeline latch may be left implicit for

simplicity of presentation. For example, the modernised ARM6 requires the value

driven on the ALU bus in the Execute stage to be preserved until the Writeback stage,

utilising the []EXE MEM … pipeline latch and the []MEM WB … pipeline latch.

However, while the ALU bus is driven in φ2 of the Execute stage, and so no buffering

is required before its value may be preserved by the []EXE MEM … pipeline latch,

the value preserved by this pipeline latch will be driven in φ1 of the Memory stage.

Hence, this value would need to be buffered to preserve it to φ2 of the Memory stage,

before it could be preserved by the []MEM WB … pipeline latch. If made explicit,

however, this would obscure the direct relationship between the original value driven

in φ2 of the Execute stage and the value used in φ1 of the Writeback stage.

Most of these points, apart from 3 and 4, are not fundamental to the methodology for

creating a mathematical presentation of the Phase specification of a processor core.

However, such points are still important because one of the aims for this methodology

 46

(see section 2.1) is that its results be readable by those who do not have a background in

formal methods as well as by those who do.

Just as the mathematical presentation of datapath specifications is based on the syntax

for transfers between entities shown in Table 2-3, that of datapath control specifications,

and pipeline control specifications, is based on the syntaxes for expressing forms of

combinational logic shown in Table 2-4. However, the relation is more straightforward

with the latter presentations than with the former: only the recommended layout

requires further comment. Control specifications should be divided into sections

according to clock phase, and for datapath control specifications, pipeline stage and

pipeline activity. Figure 2-7 illustrates this layout with a skeleton of the multiplication

datapath control specification for the modernised ARM6. Note that the pipeline activity

(such as EXE rather than Execute in Figure 2-7) and timing annotation taken together

are sufficient to indicate the point in the life cycle of an instruction being specified.

However, indicating the pipeline stage improves the readability of the specification

when it is considered in conjunction with the datapath specification it is linked to and

the pipeline control specification. The sections should provide all timing information

necessary for control specifications, however, for convenience, function definitions

should be ordered according to input bus data dependency within these sections.

Appendix A should be consulted for a complete example of a mathematical presentation

of a processor core.

Multiplication

Instruction Decode t2 ID φ2

…

Execute t3 IF φ1

…

Execute t3 IF φ2

…

Execute t3 ID φ2

…

 47

Execute t3 EXE φ1

…

Execute t3 EXE φ2

…

Execute tn IF φ1

…

Execute tn IF φ2

…

Execute tn ID φ2

…

Execute tn EXE φ1

…

Execute tn EXE φ2

…

Memory t3 MEM φ1

…

Memory t3 MEM φ2

…

Memory tn MEM φ1

…

Memory tn MEM φ2

…

Writeback t3 WB φ1

…

Writeback tn WB φ1

…

Figure 2-7: Layout of Mathematical Presentation of Datapath Control Specification

 48

2.3.2 Engineering

The engineering presentation differs from the mathematical presentation with respect to

construction of the datapath control specifications and the pipeline control specification.

Nevertheless, much of the preceding section on the mathematical presentation applies to

the engineering presentation as well, because datapath specifications that are created for

a mathematical presentation may be used unchanged with an engineering presentation.

Furthermore, the fundamental characteristics of the datapath control specifications and

pipeline control specification, as well as how these relate to the datapath specifications,

are identical for a mathematical presentation and an engineering presentation.

As shown by Figure 2-8, the engineering presentation is organised by pipeline activity

before it is organised by signal, whereas the mathematical presentation is organised by

instruction class, and then by instruction step, before it is organised by signal as well.

Since the definitions used to specify signals are not split across instruction classes and

instruction steps by the engineering presentation, lookup tables are used, rather than

mathematical functions, so how signal behaviour varies according to the instruction step

is not obscured. Indeed this relationship is no longer left implicit in the framework

imposed on the specifications by the presentation, but is made explicit by references to

Instruction Fetch φ1

…

NMREQ

IC IS

* *

data_proc t3 0

mrs_msr t3 0

reg_shift t3 1

reg_shift t4 0

mla_mul t3 0

mla_mul tn ¬MULX[0]

… … …

…

 49

Instruction Fetch φ2

…

NBW

IC IS MULX PENCZ

* * 0 0

data_proc t3 x x 1

mrs_msr t3 x x 1

reg_shift t4 x x 1

mla_mul tn 1 x 1

… … … … …

x x x x x

…

Instruction Decode φ2

…

Execute φ1

…

PENCZ

IC[*] =

ldm

IC[*] =

stm
IS AND(IREG[15 : 0], MASK[15 : 0])

* * * 1

5

1

4

1

3

1

2

1

1

1

0 9 8 7 6 5 4

3

2

1

0

false false x x x x x x x x x x x x x x x x x x

true x tm x x x x x x x x x x x x x x x x 1

x x t3 x x x x x x x x x x x x x x x x x

x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

x x x x x x x x x x x x x x x x x x x 0

…

Execute φ2

…

Figure 2-8: Example of Engineering Presentation of Datapath Control Specification

 50

IC[*] and IS[*] as required. Consequently, while the mathematical presentation of

datapath control specifications is more useful in ascertaining the signal behaviours that

an instruction class is comprised of, the engineering presentation is more useful in

determining how the behaviour of one signal should differ according to instruction class

(and instruction step).

Note, if the processor core being specified divides its clock cycle into several phases,

the pipeline activities used to organise the engineering presentation also must be divided

as shown by Figure 2-8 (the ARM6 processor core uses a clock cycle of two phases.)

Often processor cores that use multiple clock phases are designed so that the validity of

the value driven by combinational logic does not need to be assured in the clock phases

that the values of the inputs to the combinational logic are changing. The lookup table

specifying the combinational logic should only be included when the value driven by

combinational logic does need to be assured. Thus, in most cases, each lookup table

should be defined in only one of the clock phase divisions of the pipeline activity

associated with the combinational logic specified by the lookup table.

To make engineering presentations more accessible to those with no background in

formal methods, the lookup tables that form the basis of the engineering presentations

should be similar to the truth tables that are part of any background in processor design.

However, some minor differences should be observed to facilitate the creation of

concise specifications using the engineering presentation. For example, lookup tables,

like the mathematical functions of mathematical presentations, should be specified with

actual parameters rather than the formal parameters normally used with truth tables.

This clarifies which signals determine the arguments a function abstraction is applied to,

and thus which signals are used by the combinational logic (that the function represents)

to determine the signal it drives, without requiring analysis of pertinent function calls in

relevant datapath specifications. Furthermore, it removes any requirement to define

explicit signals for any simple expressions used to derive arguments only infrequently

or that result from some abstraction over the Hardware Implementation specification

(see the definition of fPENCZ in Figure 2-8). Likewise, simple expressions may be used in

the results column of the lookup table, as well as explicit values, unlike truth tables

(illustrated by the definition of fNMREQ in Figure 2-8).

 51

Lookup tables should not have more than one results column and this results column

should not be labelled, since the name of the signal driven by the combinational logic

represented by the function is supplied by the heading that introduces the lookup table.

While truth tables may have multiple results columns, and thus each must be labelled,

using this approach for the lookup tables of the engineering presentation would lessen

the correspondence with the mathematical functions of the mathematical presentation.

Therefore, to represent combinational logic that drives several signals at the same time,

n-tuples should be used to label the signals—FWDAEN and FWDA in f(FWDAEN, FWDA)—

and the results—for example, (1’b0, 32’hxxxx_xxxx)—since these can be used with

both mathematical functions and lookup tables.

Whereas the use of ‘x’ in the argument columns of lookup tables to indicate matching

any of the values that may be supplied for the relevant arguments is also standard for

truth tables, the use of non-mutually exclusive matches in the same definition is not.

Nevertheless, as exemplified by the definition of fPENCZ in Figure 2-8, fewer matches

need to be defined when non-mutually exclusive matches are used in conjunction with

the rule that the first match encountered in scanning the lookup table from top to bottom

is the one that applies. (This rule has precedent in the semantics of case statements in

both the Verilog hardware description language and the ML programming language,

for instance, so it should not be counterintuitive to the users of this methodology.)

Though the mathematical presentation splits the definition of the mathematical function

specifying a signal’s behaviour across all relevant instruction steps, each sub-definition

should be mathematically complete since it is referred to IC[*] and IS[*] by its placing

(in the layout of the specification) and not as one of the actual parameters used with it.

Nonetheless, considering the sum of the sub-definitions associated with the definition of

a mathematical function is not enough to guarantee the completeness of this definition,

unless some mapping is assumed for instruction steps with no associated sub-definition.

In these cases, the result of the function should be “don’t care” in the strongest sense,

implying that, regardless of the actual value the signal corresponding to the function

may take when the implementation is synthesised, the correctness of instruction steps

with no associated sub-definitions is still guaranteed. Since the engineering presentation

does not split the definition of lookup tables across instruction steps, it is convenient for

these cases to be made explicit using ‘x’ in the results column—just as discussed above

in respect of the arguments columns—not omitted as per the mathematical presentation.

 52

(As noted above, specifying processor cores with clock cycles divided into phases

requires the definition of lookup tables to be split across pipeline activities divided by

clock phase. In such cases, the same considerations for splitting the definition of

mathematical functions across instruction steps apply in ensuring the completeness of

each lookup table definition.)

When an instruction class iterates in a pipeline stage and all the iterations involve

identical pipeline activities, the last iteration may not involve all the pipeline activities

involved in the preceding iterations. For example, referring to the instruction life cycle

shown in Table 2-2, it is clear that (as is the case for the multiplication instruction class

on the modernised ARM6) the last iteration in the Execute stage may be identical to

the preceding iterations but can not involve the Decode pipeline activity. In such cases,

the pipeline control specification should indicate that the responsibility for determining

the behaviour of the omitted pipeline activity belongs to some pipeline stage other than

the one in which the iteration occurred. Thus, whereas lookup tables may be defined for

the pipeline activity that will be omitted, in the specification of an instruction class that

iterates with identical pipeline activities, these will not be referred to in the last iteration.

Hence, contention between these lookup tables and those for the specification that

determines the behaviour of the omitted pipeline activity is not possible (but, if it were,

this would indicate a structural hazard in the pipelining of the relevant processor core).

To make this clear in lookup tables, the standard notation ‘z’ for high impedance values

(normally used with tristate buses) may be used to indicate matches that never should be

referred to. The same approach may be used also with the mathematical functions of

mathematical presentations.

Appendix B should be consulted for a complete example of an engineering presentation

of a processor core.

2.3.3 Executable

Both the mathematical presentation and the engineering presentation are executable

insofar as the behaviour of a processor core specified by either, given an initial state,

should be fully determinable from the specification alone. The executable presentation,

on the other hand, represents a specification using a high-level programming language,

within the framework of a general simulator, such that the work necessary to simulate

the behaviour of the processor core specified might be automated using a computer.

 53

Therefore, the strategy for the creation of the executable presentation is best discussed

with reference to the framework provided by the general simulator.

The programming language chosen for the development of the general simulator

discussed in this thesis, and thus for the executable specifications created for this thesis

as well, was Standard ML. Although this thesis only discusses executable presentations

with reference to Standard ML for this reason, the essence of this discussion applies

regardless of the programming language used to create an executable presentation—

particularly if care is taken to preserve as much of the interface of the general simulator

as is possible when implementing it in the relevant programming language.

The reusable modules of the general simulator are summarised in Table 2-6. Note that

the *_ prefix indicates that different versions of the same abstract type should be

defined for use with each different instance of an entity required by the processor core

being specified. In particular, different versions of the *_bank, the *_writeport_signals

and the *_readport_signals abstract types should be defined for each distinct bank of

physical registers required by the processor core being specified.

In general, the summary of Table 2-6 is organised so an abstract type is not listed before

any of the abstract types upon which its definition depends. For example, the bus

abstract type defines a function to create an instance of this type from an instance of

the input type and the latch abstract type defines a function to create an instance of the

latch abstract type from the bus abstract type. Hence, Table 2-6 summarises the input

abstract type before the bus abstract type and the bus abstract type before the latch

abstract type.

Since Standard ML does not support object-oriented programming constructs as such,

some care had to be taken with the implementation of the modules summarised in

Table 2-6, such that the Standard ML implementation would be reusable. For example,

most functions are defined as part of the abstract type that the functions operate on,

such that the details of the type are not exposed; and all abstract types define functions

to provide an interface that does not expose the internal details of the type. This allows

each abstract type to be implemented efficiently without mathematical representation of

the relationships between the different abstract types becoming infeasible. In addition,

 54

MODULE ABSTRACT TYPE ENCAPSULATES / REPRESENTS SCOPE

common.sml digital_value signal values as partial words

inputs.sml input inputs to processor cores

buses.sml bus buses in processor cores

 trace history of values driven on buses

during simulation

latches.sml latch latches in processor cores

outputs.sml output outputs of processor cores

signals.sml core_inputs every input in the environment of

a processor core

 core_outputs every output in the environment

of a processor core

state.sml *_readport_signals read port of specific bank of

physical registers

*_bank

 *_writeport_signals write port of specific bank of

physical registers

*_bank

 *_bank specific bank of physical registers

including read and write ports

state

 tube device that outputs all data stored

to an address in memory to stdout

memory

 memory memory system environment

 buffer pipeline latches state

 environment external environment including

every input, every output and

memory system

 state internal state including every bus,

every latch, every pipeline latch

and banks of physical registers

coordinator.sml processor processor core being simulated

including environment and state

Table 2-6: Summary of Reusable Modules of Executable Presentation

some abstract types are defined local to others, with only functions that specifications

may need to access exposed by the abstract types to which an abstract type is local.

Hence, the name of a function is prefixed with the name of the abstract type for which

 55

the function is defined and, if it exposes another function, the name of the abstract type

for which the function it exposes is defined.

As indicated in Table 2-6, a local definition of an abstract type of the reusable modules

is only used when instances of the local abstract type should be exclusively managed by

the abstract type to which it is local. When one abstract type is defined local to another,

the local abstract type should still define functions to provide its interface to the type

to which it is local. Although the functions of the abstract type to which another is local

may just invoke those of the local abstract type to provide access to its interface and

thus be fairly simple to implement, adding these functions makes part of the interface of

the abstract type to which another is local dependent on the local abstract type itself.

Hence, interdependency between the interfaces of the reusable modules is minimised by

defining abstract types as local to others only when the advantage of this encapsulation,

in terms of helping to ensure correct simulation, outweighs the disadvantage of

introducing interdependencies. Note that when one abstract type maintains collections

of another that is not local to it, it provides functions to inspect items of the collections

(on which functions of the relevant abstract type may be used); not functions to access

the interface of the abstract type that the collection consists of.

In several instances, one or more of the component types of an abstract type is qualified

as optional. This indicates the use of the option type to wrap the component type, so that

the option value NONE may be substituted when no instance is available and when one

is available the SOME constructor can be used to preserve its value in an option value.

Therefore, NONE designates when the entity associated with a component type stores,

or drives, an unknown value. Depending on whether this value is used by another entity,

as well as how it is used, this may be indicative of improper initialisation in the design

or the program being simulated. Accordingly, the reusable modules were implemented

to propagate the unknown value and the modules implemented to specify a design

should propagate the unknown value whenever possible. (Combinational logic used

when a design is reset to perform initialisation should not propagate the unknown value,

unless the reset signal itself is unknown, otherwise it would not be possible to simulate

exiting reset.) Furthermore, the modules implemented to specify a design should trap

the unknown value with a suitable error message, when it has propagated to a point that

it should not have (for example, to be used as one of the operands of an addition).

 56

Note that the option type is also used by some functions so that NONE designates when

an operation has failed. However, these functions are defined by fundamental modules,

such as common.sml, thus the significance of NONE should be clear from the context

in which it is used.

The digital_value abstract type is the most fundamental since other abstract types use it

when the value of the entity being specified should be represented directly and not via

an abstraction. For example, the bus and the latch abstract types use unique identifiers

for each entity that the abstract types might be instantiated to represent and associate

these identifiers with instances of the digital_value abstract type to encapsulate an entity

that should be represented directly. Note that although the digital_value abstract type

presented in the common.sml subsection of Appendix C assumes a 32-bit word is used

to represent partial words (so that the value of a 1-bit wide bus would be represented as

a 32-bit word of which only the value of bit zero is valid), this is not unduly restrictive.

The size of the word used to represent partial words may be changed fairly easily

because most of the functions that provide the interface of this abstract type iterate over

a list of valid indices and do not expose the size of the collection that is iterated over.

Therefore, only changes to common.sml should be required and this should not involve

much more than modifying the list of valid indices.

Most of the abstract types defined by both the signals.sml and the state.sml modules

must manage arbitrary collections of data. The association list allows such collections

to be managed as a list of pairs by pairing each value with an appropriate key and due to

its relative simplicity (in respect to implementation and mathematical representation),

it is used unless another solution is much more efficient. Note that in some instances,

the pairs that form the basis of the association lists are encapsulated in abstract types,

such that the association list is defined as a list of one type and not a pair. For example,

part of the definition of the state abstract type involves a list of the bus abstract type,

which is an association list with the *_buses enumerated type providing the key and

the other element of the pair providing the data.

The core_inputs abstract type uses two solutions to manage the same collection of data;

one is an association list (the list of the input abstract type) and the other is a record that

defines fields to associate an optional value with each identifier of the inputs

enumerated type. Despite the duplication that is involved in maintaining two copies of

 57

the same collection of data, the record is used to optimise references to the values of

particular inputs and the association list is used to optimise iterating over the values of

every input. Indeed when the speed of simulations involving each solution separately

were compared to the speed of simulations involving both solutions, it was found that

simulation speed was increased by using both solutions and not just one or the other.

Note the core_outputs abstract type does not use the same solutions as the core_inputs

because simulations do not often need to iterate over the values of every output.

Apart from the trace abstract type, which is discussed towards the end of this section,

the most complex solution to managing a collection of data is used by the memory

abstract type. The solution uses an array of an optional array of optional digital_value

abstract types to represent memory. In analogy to the fundamentals of virtual memory,

the root array divides memory into pages, and for each known element of the root array,

a sub-array divides the page into individual memory addresses, each of which may be

associated with data as appropriate. If an element in the root array is NONE—that is,

the unknown value—then no data has been associated with any of the addresses that

would fall in the range of the page that has been omitted; each page is added only when

a value is stored to an address that would fall in its range. This has the advantage of

being analogous to simple implementations of virtual memory and thus should be

familiar to those who would use the reusable modules and particularise each module for

the processor core being specified. However, the functions that provide the interface to

the memory abstract type, and thus the interface itself, are no different from those that

would be used to provide an interface if an association list, with addresses as the key,

was used to manage the collection of data. Therefore, as already noted above, this hides

the details of this solution when considering interaction with other abstract types and

simplifies mathematical representation of these interactions.

In addition to the array, the tuple used to define the memory abstract type incorporates

the tube abstract type, functions to indicate which addresses the memory subsystem

should abort and optional bool primitive types to indicate when an access has aborted.

See Appendix C for an example Standard ML implementation of the reusable modules,

which is derived from the executable presentation of the modernised ARM6 as well as

a more detailed summary of each of the modules. To create an executable presentation,

these modules must be particularised for the processor core being specified (the details

 58

specific to the modernised ARM6 have been removed) and additional modules must be

implemented to specify the processor core itself:

alu.sml, shifter.sml, …: modules that provide definitions of standard functional units

such as an ALU or barrel shifter.

FUNCTIONS AND, ADD, … for an ALU

ASR, LSL, … for a barrel shifter

…

DESCRIPTION Individual definition of every operation of each standard functional unit.

DEFINITION Functions that map values of the inputs to the standard functional unit

to the values of the outputs of the standard functional unit appropriate to

the operation the function defines. (Most often, the values of the inputs

and of the outputs will be of the digital_value abstract type, such that

these functions are used to wrap invocations of functions defined for

the digital_value abstract type like digital_value_add.)

functions_datapath_*.sml: modules that provide definitions to specify every signal in

the datapath control specification for each clock phase of each pipeline activity.

(For example, functions_datapath_fetch_ph1.sml, functions_datapath_fetch_ph2.sml

and functions_datapath_decode_ph2.sml were created for the original ARM6 for

this purpose.)

FUNCTIONS *_LOGIC

DESCRIPTION Functions that are equivalent to, bar the _LOGIC suffix (to distinguish

identifiers for function definitions and identifiers for enumerated types),

the functions of the mathematical presentation and the lookup tables of

the engineering presentation for the datapath control specification.

DEFINITION Functions that map an instance of the state abstract type to an instance

of the bus abstract type (or tuple of instances of the bus abstract type)

that represents the appropriate signal as well as the value it should take,

according to the specified instances of the classes enumerated type,

the steps enumerated type and the phases enumerated type.

 59

datapath.sml: module that provides the definitions that specify every transfer

required by both the datapath specification and the specification of the dataflow for

the datapath control specification.

FUNCTIONS datapath_specification

DESCRIPTION Function that is equivalent to the concatenation of every transfer

specified by the datapath specification, qualified by instruction step and

clock phase, and the dataflow of the datapath control specification.

DEFINITION Function that mutates an instance of the environment abstract type and

an instance of the state abstract type, by updating the buses

encapsulated by the state abstract type and the outputs encapsulated by

the environment abstract type, according to the specified instances of

the stages enumerated type, the classes enumerated type, the steps

enumerated type and the phases enumerated type.

functions_pipeline.sml: module that provides definitions to specify every signal in

the pipeline control specification.

FUNCTIONS *_LOGIC

DESCRIPTION Functions that are equivalent to, bar the _LOGIC suffix (to distinguish

identifiers for function definitions and identifiers for enumerated types),

the functions of the mathematical presentation and the lookup tables of

the engineering presentation for the datapath control specification.

DEFINITION Functions that map an instance of the state abstract type to an instance

of the bus abstract type (or tuple of instances of the bus abstract type)

that represents the appropriate signal as well as the value it should take,

according to the specified instances of the phases enumerated type.

pipeline.sml: module that provides the definitions that specify every transfer

required by the pipeline control specification.

FUNCTIONS pipeline_specification

DESCRIPTION Function that is equivalent to the concatenation of every transfer

specified by the pipeline control specification, qualified by clock phase.

DEFINITION Function that mutates an instance of the environment abstract type and

an instance of the state abstract type, directly, by updating the buses

encapsulated by the state abstract type, and indirectly, by invoking

the datapath_specification function, according to the specified instance

of the phases enumerated type.

Table 2-7: Summary of Modules Particular to Each Executable Presentation

 60

Figure 2-9 depicts, for the original ARM6, how interactions between the modules

summarised in Table 2-6 and in Table 2-7 relate to the behaviour of the processor core

being specified. The state abstract type is used to encapsulate entities inside the box

labelled ‘ARM6 Core’, while the environment abstract type is used to encapsulate those

outside this box as well as the entities used to encapsulate the signals that facilitate

communication between the state and the environment abstract types. Arrows between

different entities correspond to the transfers specified by the datapath.sml module and

by the pipeline.sml module. The definitions of the functions_*.sml modules are shown

grouped together in the small circle labelled ‘PLAs’; this label is for convenience and

should not be taken to imply that it is necessary to assume that all combinational logic,

apart from standard functional units, is implemented using a PLA.

Status
Registers

Data
Registers

Latches Conditional
Latches

Reset-Set
Latches

Sequential Logic

Combinational Logic
PLAs

ALUBarrel
Shifter

Buses

ARM6 Core

External Inputs:
BIGEND, nRESET.

Clock

Memory

Coprocessors

R-Ports R-Ports

W-Ports W-Port

O
u
t
p
u
t
s

Inputs

Figure 2-9: Interaction of Modules of an Executable Presentation

The algorithm used by the coordinator.sml module to perform the simulation may be

summarised as follows:

1. Initialises memory with an appropriately formatted string, which should contain

both the program to be simulated and any data that it requires.

Banks of physical registers may be initialised with an appropriately formatted string,

or left empty if the program does not require initialisation of every physical register

at reset.

 61

Environment events (which specify the value to be maintained for an external input,

until overridden by another environment event involving the same external input,

as soon as the specified number of clock cycles has elapsed), may be initialised from

an appropriately formatted string. Still the default constructor for the environment

abstract type should set up the minimum number of environment events required for

the processor core being specified to exit reset properly.

2. Invokes the environment_init_inputs function defined by the state.sml module.

a. Sets new CLK[*] (to appropriate identifier of phases enumerated type).

b. If now in first clock phase, checks whether any environment events are scheduled

for this clock cycle, and if some are, updates external inputs as appropriate.

3. Invokes the state_init_buses function defined by the state.sml module.

a. Resets all buses to the undefined value.

b. Resets state of the read ports and the write ports of each bank of physical registers

as appropriate for clock phase specified by CLK[*] and nature of port.

4. Invokes the pipeline_specification function defined by the pipeline.sml module

using the value of the CLK[*] input in the latest instance of the environment

abstract type as the current clock phase.

a. Invokes functions defined by the function_pipeline.sml module, as appropriate

for the current clock phase.

b. Invokes the datapath_specification function defined by the datapath.sml module,

for each pipeline stage that may dictate pipeline activities and which currently has

an instruction step associated with it (because of, depending on the pipeline stage,

the values of NXTIC[*] and NXTIS[*], IC[*] and IS[*] or buffered versions of

IC[*] and IS[*].) Each function invocation uses the latest instances of the state

and the environment abstract types.

i. Invokes environment_*_memory_read or environment_*_memory_write

(both of these functions are defined in the state.sml module), if memory access

completes in this clock phase.

ii. Invokes the state_update_buses function defined by the state.sml module,

which creates appropriate instances of the bus abstract type with the values of

the inputs in the instance of the environment abstract type.

iii. Invokes the functions defined by the function_datapath.sml module as needed

to derive particular instances of the bus abstract type with appropriate values,

using the state_insert_buses function defined by the state.sml module to add

these buses to the instance of the state abstract type. (Instances of the bus

 62

abstract type are derived in groups and all the instances derived for one group

are added to the state abstract type by one invocation of state_insert_buses.

Consequently, buses created as the result of an invocation on one group may be

regarded as having been created in parallel and potentially only dependent on

those buses created by prior invocations on other groups.) Note the functions

defined by the state.sml module to perform register operations using the ports

of one of the banks of physical registers may be invoked also as appropriate.

(The status of these ports, which determines the register operation each may be

used to perform, is automatically updated when the relevant buses are added to

the instance of the state abstract type by an invocation of state_insert_buses.)

iv. Invokes the environment_update_outputs function defined by state.sml to reset

all outputs in the instance of the environment abstract type as appropriate for

the clock phase and the nature of the output. It also assigns values to outputs,

as appropriate, by processing the values that relevant buses have at the end of

the clock phase and that relevant latches had at the start of the clock phase.

5. Invokes the state_update_latches function defined by the state.sml module.

a. Resets all the latches that are transparent this clock phase to the undefined value.

Note conditional latches are not only reset when the relevant write signal is true,

but also when the write signal is the undefined value, whereas reset-set latches

are only reset to the undefined value when the bus that feeds the latch is not itself

the undefined value. (For both types of latches, though, it also must be the correct

clock phase for the latch to be transparent.)

b. Processes all the buses that have defined values at the end of this clock phase and

sets any associated latches with the appropriate values.

c. Processes all the latches that have defined values so far and if any of these latches

should in turn drive the value of another latch then these chained latches are set

with the appropriate values.

6. If an instance of the tube abstract type has transmitted the end-of-terminal character

or the current instruction would cause an infinite loop by jumping to its own address

in memory then stop else goto 2.

Note that this algorithm is cycle-based: combinational logic is effectively evaluated as

one function at the start of a clock phase while sequential logic is updated in response to

this evaluation at the end of a clock phase. The alternative is event-based simulation,

which requires each entity, combinational or sequential, to be modelled separately and

 63

be evaluated when changes occur to the entities that determine its value; such changes

are described as events. (The grouping described in step 4.b.iii of the above algorithm

is used to improve efficiency by avoiding recalculation rather than so the modifications

made to entities for one group cause the evaluation of entities of another group.)

Cycle-based simulation requires much less modelling than event-based simulation and

is easier to optimise so calculations are performed only when the result will be used.

Event-based simulation is required when timing and delay information for each entity

should be used in the simulation, since cycle-based simulation ignores such information.

Still, the Phase specifications that the methodology of this thesis may be used to create

do not include timing and delay information, therefore cycle-based simulation is used

for executable presentations because of its potential for greater efficiency.

Using cycle-based simulation has the additional advantage of providing a check that

all transfers are specified to the same level of detail (in terms of either proceeding from

a bus or to a bus). Both the mathematical and the engineering presentations may leave

certain transfers, such as from combinational logic to a bus or from an input to a bus,

implicit in how the results of such transfers are used. However, this is to aid readability,

not because these presentations do not share the same requirement that all transfers

should be specified to the same level of detail. Note although the reusable modules of

the executable presentation provide functions to determine the value stored in a latch at

the start of a clock phase using an identifier for the latch, instead of the bus that it drives

its value on, the value to be latched cannot be accessed thus. Therefore, it was deemed

more important to avoid the complications that would be introduced by having to define

the bus that each latch drives, as well as the bus that drives each latch, than to make

it more explicit that latches drive values onto buses before these values are used.

The modules particular to each executable presentation should not define new types,

since the reusable modules should define every type needed to describe the behaviour of

the processor core being specified. Many of the types defined by the reusable modules

need to be particularised for the processor core being specified, before the type is usable

by the executable presentation however. For example, the *_latches enumerated types

must be assigned appropriate identifiers for each latch required by the processor core

being specified, and the memory abstract type may or may not need to distinguish

aborts relating to instruction accesses from those relating to data accesses.

64

f
u
n

N
M
R
E
Q
_
L
O
G
I
C

i
c

i
s

P
H
1

s
t
a
t
e

=

l
e
t

v
a
l

O
'

=

b
u
s
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e
(
N
M
R
E
Q
_
B
U
S
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

O

[
(
B
I
T
_
_
0
,

B
I
T
_
_
0
)
]
)
;

v
a
l

I
'

=

b
u
s
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e
(
N
M
R
E
Q
_
B
U
S
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

I

[
(
B
I
T
_
_
0
,

B
I
T
_
_
0
)
]
)
;

…

v
a
l

n
m
u
l
x
_
0
'

=

f
n

(
)

=
>

b
u
s
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e
(
N
M
R
E
Q
_
B
U
S
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
n
o
t
(

(
s
t
a
t
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

s
t
a
t
e

M
U
L
X
_
B
U
S
)

g
u
a
r
d

"
i
n
v
o
k
e
d

N
M
R
E
Q
_
L
O
G
I
C

b
e
f
o
r
e

c
a
n

u
s
e

M
U
L
X

b
u
s
"

)
)
;

i
n

c
a
s
e

(
i
c
,

i
s
)

o
f

(
D
A
T
A
_
P
R
O
C
,

T
3
)

=
>

O
'

|

(
M
R
S
_
M
S
R
,

T
3
)

=
>

O
'

|

(
R
E
G
_
S
H
I
F
T
,

T
3
)

=
>

I
'

|

(
R
E
G
_
S
H
I
F
T
,

T
4
)

=
>

O
'

|

(
M
L
A
_
M
U
L
,

T
3
)

=
>

I
'

|

(
M
L
A
_
M
U
L
,

T
N
)

=
>

n
m
u
l
x
_
0
'

(
)

…

e
n
d

Fi
gu

re
 2

-1
0:

 E
xa

m
pl

e
*_

L
O

G
IC

 F
un

ct
io

n
of

 fu
nc

tio
ns

_d
at

ap
at

h_
*.

sm
l M

od
ul

e

65

|

d
a
t
a
p
a
t
h
_
s
p
e
c
i
f
i
c
a
t
i
o
n

D
A
T
A
_
P
R
O
C

T
3

P
H
2

e
n
v
i
r
o
n
m
e
n
t

s
t
a
t
e

=

(
*

F
e
t
c
h

D
a
t
a
p
a
t
h

*
)

l
e
t

v
a
l

(
e
n
v
i
r
o
n
m
e
n
t
'
,

s
t
a
t
e
'
)

=

(
f
n

x

=
>

(
x
,

s
t
a
t
e
_
u
p
d
a
t
e
_
b
u
s
e
s

s
t
a
t
e

x
)
)
(
e
n
v
i
r
o
n
m
e
n
t
_
m
e
m
o
r
y
_
r
e
a
d

e
n
v
i
r
o
n
m
e
n
t
)
;

v
a
l

s
t
a
t
e
'

=

a
r
e
g
_
b
l
o
c
k
_
d
a
t
a
f
l
o
w

e
n
v
i
r
o
n
m
e
n
t
'

s
t
a
t
e
'

P
H
2
;

v
a
l

i
n
c

=

(
I
N
C
_
L
O
G
I
C

D
A
T
A
_
P
R
O
C

T
3

P
H
2

s
t
a
t
e
'
)

g
u
a
r
d

"
I
N
C
_
L
O
G
I
C

=

N
O
N
E

i
n

d
a
t
a
p
a
t
h
_
s
p
e
c
i
f
i
c
a
t
i
o
n

D
A
T
A
_
P
R
O
C

T
3

P
H
2
"
;

v
a
l

s
t
a
t
e
'

=

s
t
a
t
e
_
i
n
s
e
r
t
_
b
u
s
e
s

s
t
a
t
e
'

[
S
O
M
E

i
n
c
]
;

(
*

E
x
e
c
u
t
e

D
a
t
a
p
a
t
h

*
)

v
a
l

a
l
u
_
l
o
g
i
c

=

(
A
L
U
_
L
O
G
I
C

D
A
T
A
_
P
R
O
C

T
3

P
H
2

s
t
a
t
e
'
)

g
u
a
r
d

"
A
L
U
_
L
O
G
I
C

=

N
O
N
E

i
n

d
a
t
a
p
a
t
h
_
s
p
e
c
i
f
i
c
a
t
i
o
n

D
A
T
A
_
P
R
O
C

T
3

P
H
2
"
)
;

v
a
l

(
a
l
u
,

a
l
u
n
z
c
v
)

=

(
f
n

(
S
O
M
E

a
l
u
,

S
O
M
E

a
l
u
n
z
c
v
)

=
>

(
a
l
u
,

a
l
u
n
z
c
v
)

|

_

=
>

e
r
r
o
r

"
…

i
n

d
a
t
a
p
a
t
h
_
s
p
e
c
i
f
i
c
a
t
i
o
n

D
A
T
A
_
P
R
O
C

T
3

P
H
2
"
)

a
l
u
_
l
o
g
i
c

v
a
l

s
t
a
t
e
'

=

s
t
a
t
e
_
i
n
s
e
r
t
_
b
u
s
e
s

s
t
a
t
e
'

[
S
O
M
E

a
l
u
,

S
O
M
E

a
l
u
n
z
c
v
]
;

…

i
n

(
e
n
v
i
r
o
n
m
e
n
t
'
,

s
t
a
t
e
'
)

e
n
d

Fi
gu

re
 2

-1
1:

 E
xa

m
pl

e
da

ta
pa

th
_s

pe
ci

fic
at

io
n

Fu
nc

tio
n

of
 D

at
ap

at
h.

sm
l M

od
ul

e

 66

None of the abstract types defined by the reusable modules expose the constructors

necessary for direct manipulation of the abstract type, thus the modules particular to

each executable presentation, and the reusable modules, must use the functions that

provide the interface for each abstract type. These functions are summarised along with

the relevant abstract type in the summaries of each reusable module in Appendix C.

Note modules particular to each executable presentation should mostly use functions

from state.sml and environment.sml as well as the functions to construct instances of

the bus abstract type. As may be seen by the cross-references within the summaries of

Appendix C, the other functions are defined mainly to be used by the reusable modules.

Figure 2-10 illustrates an example function of the functions_datapath_*.sml module.

Since most programming languages do not provide a straightforward method for

splitting up the definition of functions, as in the layout of the mathematical presentation,

the layout is based on that of the engineering presentation. The separate definitions of

one function for the mathematical presentation could have been combined into one that

used nested if then else expressions for the executable presentation, but this definition

would not be as clear or as readily understandable as that shown in Figure 2-10 due to

the complexity of the definitions that would be required. The let in end expression

defines appropriate bindings for the case of expression to enhance its resemblance to

the lookup table that would be defined by the engineering presentation (see Figure 2-8).

This facilitates comparisons between the engineering and the executable presentations,

required to ensure that the two presentations are equivalent.

Similarities between the datapath_specification function of the datapath.sml module

and the datapath specification of the mathematical presentation are less pronounced

than those between the functions of the executable and the engineering presentations.

Still, as shown in Figure 2-11, the datapath_specification function pattern matches on

the instruction class and the instruction step, each clause describing pipeline activities

associated with one pipeline stage (the Execute stage in the example of Figure 2-11).

This reflects how the mathematical presentation decomposes the datapath specification.

However, while the mathematical presentation treats all pipeline activities as separate,

the executable presentation uses comments to demarcate different pipeline activities

associated with the same pipeline stage. Both distinguish between pipeline activities

associated with one pipeline stage and those associated with different pipeline stages.

 67

The datapath_specification function differs principally from the datapath specification

in terms of the timing with which the transfers are specified. As discussed above,

transfers to latches are not noted in datapath_specification, but are performed

automatically at the end of the clock phase. Furthermore, datapath_specification derives

instances of the bus abstract type in groups and adds instances to the state abstract type

by one invocation of the state_insert_buses function on these groups. This use of groups

provides more detail, about which buses may be driven in parallel and which depend on

values of other buses, than the mathematical presentation; which effectively handles

each transfer as being in a group by itself. (datapath_specification also makes explicit

the timing of the dataflow for the datapath control specification, by indicating when

local functions which specify this dataflow such as areg_block_dataflow are invoked;

the mathematical presentation leaves this implicit.)

Note the considerations discussed above for the functions_datapath_*.sml module

apply equally to the functions_pipeline_*.sml module, while those discussed above for

the datapath.sml module apply equally to the pipeline.sml module. In both instances,

the layout is the same for the two modules, but the interface by which the functions

are invoked is different (see Table 2-7).

Once the executable presentation has been created, the tube abstract type may be used

to output appropriate messages to stdout during simulation and thereby indicate whether

the simulation is progressing as expected. Nevertheless, this approach cannot provide

the detailed information that is often necessary to determine why the simulation failed

to progress as expected. Instead the trace abstract type may be used to trace the values

driven on buses at specified intervals during simulation. This internal representation

may be queried directly to discover the value driven on a bus at a specific point in time,

or it may be converted to a TDML representation using the trace_to_tdml_file function

and a text representation using the trace_to_text_file.

TDML or Timing Diagram Markup Language is an XML based standard for

representing waveform traces developed by Si2, which is documented at

http://www.si2.org/si2_publications/tdml/. TDML representations may be viewed in

waveform viewers that support this standard with results such as shown in Figure 2-12,

which was exported from TimingViewer for Microsoft Windows (developed by Forte

Design Systems).

68

UNE
XEC

UNE
XEC

UNE
XEC

UNE
XEC

SW
I_EX

SW
I_EX

SW
I_EX

BR
BR

BR
T3

T3
T3

T3
T3

T4
T5

T3
T4

T5

n(1
111

,SA
FE)

n(1
111

,SV
C)

n(1
110

,SV
C)

n(1
110

,SV
C)

ABO
RTI

NST

DA
TAA

BT IC IS

AB
OR

T CPA CPB NFIQ NIR
Q

NRE
SET RAA RBA

Fi
gu

re
 2

-1
2:

 P
ar

tia
l W

av
ef

or
m

 T
ra

ce
 C

re
at

ed
 b

y
Si

m
ul

at
in

g
th

e
O

ri
gi

na
l A

R
M

6

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

R
E
S
E
T

C
P
S
R
w
r
i
t
e

0
x
x
x
x
x
D
3

S
P
S
R
w
r
i
t
e

x
x
x
x
x
x
x
x

R
E
G
r
e
a
d

x
x
x
x
x
x
x
x

1
5

R
E
G
r
e
a
d

x
x
x
x
x
x
x
x

1
4

R
E
G
w
r
i
t
e

0
0
0
0
0
0
0
0

1
5

R
E
G
w
r
i
t
e

x
x
x
x
x
x
x
x

1
4

R
E
G
w
r
i
t
e

x
x
x
x
x
x
x
x

1
4

0
0
0
0
0
0
0
0

E
A
0
0
0
0
2
E

B

0
x
0
0
0
0
0
0
B
8

R
E
G
r
e
a
d

0
0
0
0
0
0
0
8

1
5

R
E
G
r
e
a
d

x
x
x
x
x
x
x
x

1
4

R
E
G
w
r
i
t
e

0
0
0
0
0
0
C
0

1
5

Fi
gu

re
 2

-1
3:

 P
ar

tia
l B

eh
av

io
ur

al
 T

ra
ce

 C
re

at
ed

 b
y

Si
m

ul
at

in
g

th
e

O
ri

gi
na

l A
R

M
6

 69

The text representation, as illustrated in Figure 2-13, does not represent the values of

individual buses because this level of detail would make it difficult to understand.

Instead it summarises behaviour visible at the level of abstraction of the Programmer’s

Model specification, but as it occurs in the Phase specification so Figure 2-13 shows

multiple register writes to the same register for the RESET exception, since these occur

in different clock cycles as the exception iterates in the Execute stage (see Figure 4-1).

Note the format used for this text representation is similar to that used for the trace files

produced by Dominic Pajak’s ML simulator of his Programmer’s Model specification

of the ARM6, to facilitate comparison between simulations using his simulator and

simulations using the executable presentation of the original ARM6.

The trace abstract type does not maintain information about the values of latches, inputs

or outputs, since the values of these will be either driven on a bus or driven by a bus;

and the memory required to trace a simulation may be reduced by omitting information

about the values of these entities. Internally the trace abstract type divides all the buses

that may be driven in a clock phase into groups according to when and with which other

instances of the bus abstract type an instance of the bus abstract type will be added to

the state abstract type by one invocation of the state_insert_buses function. As noted in

the summary of the algorithm of the coordinator.sml module, the buses created from

one invocation may be regarded as having been created in parallel and potentially only

dependent on those buses created by prior invocations. The trace_to_tdml_file function

thus allows the time for which a value is driven on a bus in a clock phase to be scaled

such that the values of buses it may depend on are represented as being driven before

the value of the bus.

Since the trace abstract type was developed to help debug the executable presentation of

a formal specification, it is defined in terms of reference primitive types and array types

for efficiency and not in terms of more mathematically representable types. Types that

are more mathematically representable require instances of abstract types to be modified

by creating a new instance from the current instance that includes the changes.

Although the automatic garbage collection provided by the Standard ML interpreter

should ensure the memory allocated to old instances is freed up when the old instance

is no longer required, reference primitive types and array types significantly improve

the speed with which the values driven on buses may be traced. The trace abstract type

maintains information on the values driven on buses in arrays of arrays with:

 70

1. A root array for each clock phase, which is a dynamically resizable array of

2. an array of pages similar to that created for the memory abstract type, but indexed by

the clock cycle at which the value of a bus is traced. Each page is an array of

3. an array of timing groups indexed by the ordinal number of the invocation of

state_insert_buses on the group of buses in which an instance of the bus abstract type

was added to the state abstract type such that the value of the relevant bus is traced.

Each timing group is an array of

4. an array of trace elements indexed by the ordinal number of the bus when the group,

in which it is added as an instance of the bus abstract type by an invocation of

state_insert_buses such that the value of the bus is traced, is alphabetically sorted.

Each trace element is an optional union type of all the possible types of bus values.

Note that the use of root arrays of pages improves the efficiency of tracing values

driven on buses for non-continuous intervals of clock cycles as well as for intervals that

start significantly after simulation itself began, since no page needs to be instantiated

unless it is referred to one or more clock cycles for which trace information is required.

2.4 Comparison of Presentations

The mathematical and the engineering presentations present the datapath specification,

and the specification of dataflow, in identical fashion using sequences of transfers.

Although the executable presentation uses explicit sequences of transfers to buses in

the datapath_specification function, transfers to latches are implicit in how functions of

the reusable modules are particularised to the processor core being specified, rather than

explicit in the functions particular to the executable presentation of the processor core.

Despite this, because the datapath_specification function pattern matches on

instruction step, not just clock phase, the similarity between the sequences of transfers

specified by the datapath_specification function of the executable presentation and

those specified by the datapath specification of the other presentations is pronounced.

The datapath_specification function would be more efficient if it pattern matched on

clock phase only and specified the set of transfers that any instruction step might require

in each clock phase, but only by significantly diminishing the correspondence between

the executable presentation and the other presentations.

The layout of the mathematical presentation of the datapath control specification with

functions split across instruction steps, allows dependencies in the evaluation of logic

 71

to be clearly specified by the order in which each instruction step presents functions.

However, the engineering and the executable presentations are probably more useful for

understanding the individual nature of each entity of combinational logic, since both of

these presentations detail the behaviour of each entity using one definition. (Note that

the engineering presentation uses one definition for each clock phase in which the value

driven by the combinational logic is valid. In general, this is only one clock phase and

one definition, but even when it is not, the number of definitions needed is still less than

for mathematical presentations.) Mathematical presentations could be created to specify

combinational logic with the same number of definitions as engineering presentations,

but would be harder to maintain and to understand as a consequence, because functions

do not scale so straightforwardly with the size of the definition as lookup tables (or case

of expressions).

In certain respects, the engineering presentation may be viewed as intermediate between

the mathematical and the executable presentations. Its datapath specification is identical

to the mathematical presentation, its datapath control and pipeline control specifications

use lookup tables similar to the case of expressions of the executable presentation.

Transformation from lookup tables to case of expressions is fairly straightforward and

could be automated by a suitable ‘parser’ and ‘compiler’. However, transformation of

transfers from the datapath specifications of mathematical and engineering presentations

is more problematic, since the order of transfers not shared between the specifications of

every instruction would have to be determined. (Note that the engineering presentation

is useful in itself, apart from as an intermediate, since unlike an executable presentation

it is not limited by being written in one programming language rather than another.)

In terms of formal verification (Fox 2002), the concept of the explicit definition of

control signals in the datapath control and the pipeline control specifications facilitated

more detailed modelling of the Hardware Implementation specification as intended.

Furthermore, the treatment of instruction classes and instruction steps developed for

the methodology of this thesis was for the most part adopted, and proved useful in

showing how the proof could be decomposed. Yet contrary to the recommendations of

this section, Fox (2002) modified the specification of the ARM6 discussed in section 4

so the datapath control and the pipeline control specifications used unitary definitions of

mathematical functions and the equivalent of a unitary datapath_specification function

merged with a pipeline_specification function. These modifications were undertaken

 72

to reduce the number of cases that had to be considered in order to prove correctness for

each instruction class and in conjunction with various other simplifications to facilitate

the initial verification attempt. Moreover, some of these modifications would be needed

to create one presentation from another. Hence, that such modifications were made

demonstrates the need for the flexibility which incorporation of three presentations into

the methodology of this thesis provides rather than that the methodology of thesis is not

flexible enough.

2.5 Summary

Tahar and Kumar (1998) provided the inspiration for much of the first attempt at

developing the mathematical presentation of the datapath specification (see section 4.2).

Nonetheless, significant additions and modifications were made to ensure the aims that

this methodology was developed to meet were met:

1. Development of datapath control specification and pipeline control specification

for the specification of control logic.

2. Subdivision of the Phase specification to facilitate addition of the datapath control

and the pipeline control specifications to create complete specification of

implementation of processor core.

3. Use of executable layout rather than structural layout.

4. Division of instruction classes into instruction steps.

5. Explicit distinction between pipeline activities and pipeline stages in specification.

6. Development of explicit syntax for the mathematical presentation.

7. Introduction of timing annotation.

8. Concept of optional transfers and optional pipeline activities, which occur only on

certain instantiations of the relevant instruction class.

9. Addition of engineering presentation and executable presentation.

10. Use of explicit notation for buffering of buses by pipeline latches.

(The history behind these changes is documented in section 4, and to a lesser extent in

section 6; section 2.3 presents the general methodology that was developed as a result of

making these additions and modifications.)

 73

3 Overview of the ARM6
This section considers the features of the original ARM6 in sufficient detail to provide

a basis for the discussion of the formal specification of the original ARM6 (created as

the methodology presented in section 2.3 was developed) in section 4. Section 3.1

describes the ARM6 at the level of abstraction appropriate for programming the ARM6

using assembly language, while section 3.2 focuses on the level of abstraction required

to understand how and why the original ARM6 behaves as it does. (Section 2.2.1

defines more completely the use of the terms Programmer’s Model specification and

Hardware Implementation specification.)

3.1 Outline of Informal Programmer’s Model Specification

The ARM6 processor core has a 32-bit address bus that supports 32-bit address spaces.

It can transfer 32 bits of data (one word) in one bus cycle but also supports one byte

transfers between memory and the processor core. The 32-bit data bus is also used for

transfers between the processor core and an attached coprocessor or between memory

and an attached coprocessor (the addresses for all memory transfers are generated by

the ARM6 processor core). Up to sixteen different coprocessors may be attached to

the processor core and used to interpret and execute relevant coprocessor instructions

when requested by the ARM6 processor core. The encoding of these instructions is

only partially defined by the ARM Instruction Set Architecture version 3 (the version

that applies to the ARM6) and completed according to the Instruction Set Architecture

of the relevant coprocessor. This allows each coprocessor’s Instruction Set Architecture

to define instructions that are suitable for performing the function(s) of the coprocessor,

but which the ARM6 processor core can interpret well enough to determine the actions

that the instruction needs the processor core to perform.

3.1.1 Operating Modes

Mode Abbr. Privileged Purpose

user USR no normal program execution

fiq FIQ yes interrupt handling requiring fast response time

irq IRQ yes interrupt handling in general

supervisor SVC yes operating system program execution

abort ABT yes handling data abort and pre-fetch abort exceptions

undefined UND yes handling the undefined instruction exception

Table 3-1: ARM6 Operating Modes

 74

The six operating modes supported by the ARM6 processor core are summarised in

Table 3-1.

3.1.2 Exceptions

The following seven exceptions may be raised on the ARM6 processor core:

1. RESET: occurs when the nRESET input to the processor core is deasserted after being

taken LOW and is used to initialise the ARM6 processor core when first powered up.

2. DATA ABORT: occurs when the processor core executes an instruction that tries to

read from or write to an illegal address (an address that is deemed inaccessible in

the processor core’s current operating mode by the memory management subsystem.)

3. FAST INTERRUPT REQUEST: occurs when the processor core detects the nFIQ input

asserted LOW before executing its next instruction and when this type of interrupt

is not masked out.

4. INTERRUPT REQUEST: occurs when the processor core detects the nIRQ input

asserted LOW before executing its next instruction and when this type of interrupt

is not masked out.

5. PRE-FETCH ABORT: occurs when the processor core attempts to execute an instruction

pre-fetched from an illegal address (see 2 above).

6. SOFTWARE INTERRUPT: occurs when the processor core executes the SWI instruction.

7. UNDEFINED INSTRUCTION TRAP: occurs when the processor core attempts to execute

coprocessor instructions not recognised by an attached coprocessor or an instruction

that is defined as UNDEFINED by the ARM Instruction Set Architecture version 3.

(This allows software emulation of coprocessor instructions, or of future extensions

to the ARM Instruction Set Architecture that redefine instructions currently defined

as UNDEFINED, by writing an appropriate exception handler.)

All seven exceptions cause the processor core to restart instruction pre-fetching from

an address (exception vector) and enter an apposite operating mode (see section 3.1.1).

Fast interrupt requests are masked out by the reset and fast interrupt request exceptions,

while all exceptions mask out interrupt requests. In addition, all but the reset exception

require the processor core to store program status information and the return address

such that program execution can be resumed after the exception has been handled.

 75

3.1.3 Register Banks

The ARM6 has two register banks:

• DATA REGISTER BANK: consists of thirty general-purpose 32-bit registers plus

program counter. Only sixteen registers (R0 – R15), including the program counter,

are visible to the programmer at any one time; references to registers R8 – R14

may be mapped to different physical registers depending on the operating mode of

the processor core.

• PROGRAM STATUS REGISTER BANK: consists of one current program status register

(or CPSR) and one saved program status register (SPSR) for each privileged

operating mode. Each register stores four status flags (N [negative], Z [zero],

C [carry] and V [overflow]), two interrupt masks (I [IRQ], F [FIQ]) and five bits for

the operating mode (M). The arrangement of these eleven bits within a 32-bit register

is as follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V 0 I F 0 M

Figure 3-1: ARM6 Program Status Register

Note R15 corresponds to the program counter and R14 to the link register (the register

used to store a subroutine or an exception handler return address). Other data registers

have standard uses in ARM assembly programming (for example, the stack pointer

should be R13) but these are not enforced by the hardware.

3.1.4 Instruction Set

The instruction set supported by the ARM6 is as follows:

• CONTROL INSTRUCTIONS

♦ Flow Modifiers: branch to address (with or without use of link register).

♦ Mode Modifiers: software interrupt [allows operating system code to be called by

user code].

• DATA PROCESSING OPERATIONS

♦ Arithmetic Operations: addition (with or without carry); subtraction (with or

without carry). Forms of without carry arithmetic operations are also provided that

just set the status flags. (One operand may be shifted or right rotated before use.)

 76

♦ Logical Operations: and; exclusive or; inclusive or; bit clear [and not]. Forms of

the first two are also provided that just set the CPSR status flags. (One operand

may be shifted or right rotated before use.)

♦ Multiplication Operations: 32-bit multiplication (with or without addition of

initial value).

♦ Transfer Operations: move value (with or without negation) to some data register

(the value may be also shifted or right rotated before use); move value to

program status register; move value from program status register to data register.

• MEMORY INSTRUCTIONS

♦ Single Data Transfer: load data register (word or unsigned byte) from memory;

store value (word or byte) to memory.

♦ Block Data Transfer: load non-empty subset of the data registers with

consecutively located words from memory (if in privileged mode may be used

to change mode if the program counter is loaded or to load user bank registers

if not loaded); store words from non-empty subset of the data registers to

consecutive memory locations (if in privileged mode may be used to store values

from user bank registers).

♦ Semaphore Instruction: load data register then store data register (using word or

unsigned byte values) at same memory location. [Source and destination register

may be the same]

• COPROCESSOR INSTRUCTIONS [if not supported by any coprocessor in the system

being considered then these behave as the Undefined Instruction described below.]

♦ Data Operation: cause coprocessor to perform coprocessor defined operation.

♦ Data Transfer: provide values of successive memory locations to coprocessor;

store values provided by coprocessor to successive memory locations.

♦ Register Transfer: load data register with the value provided by coprocessor;

transfer value from processor core to coprocessor.

• INSTRUCTION SET EXTENDERS

♦ Undefined Instruction: cause an undefined exception.

Note that all instructions are conditionally executed; fifteen different condition codes

may be used (including ‘always execute’) and an instruction will execute if and only if

its four bit condition code is met by the CPSR status flags.

 77

3.1.5 Instruction Set Encoding
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 opcode S Rn Rd shift amount shift 0 Rm Data Processing
(immediate shift)

cond 0 0 0 1 0 R L 0 field_mask Rd SBZ Rm Transfer Operation
(register ↔ PSR)

cond 0 0 0 1 0 B 0 0 Rn Rd SBZ 1 0 0 1 Rm Semaphore Instruction

cond 0 0 0 opcode S Rn Rd Rs 0 shift 1 Rm Data Processing
(register shift)

cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Data Processing
(multiplication)

cond 0 0 1 opcode S Rn Rd rotate_imm 8_bit_immediate Data Processing
(immediate)

cond 0 0 1 1 0 R 1 0 field_mask SBO rotate_imm 8_bit_immediate Transfer Operation
(immediate → PSR)

cond 0 1 0 P U B W L Rn Rd 12_bit_offset Single Data Transfer
(immediate offset)

cond 0 1 1 P U B W L Rn Rd shift amount shift 0 Rm Single Data Transfer
(register offset)

cond 0 1 1 x 1 x x x x Undefined Instruction
cond 1 0 0 P U S W L Rn register list Block Data Transfer
cond 1 0 1 L 24_bit_offset Branch / Flow Modifier

cond 1 1 0 P U N W L Rn CRd cp_number 8_bit_offset Coprocessor
Memory Transfer

cond 1 1 1 0 opcode1 CRn CRd cp_number opcode2 0 CRm Coprocessor
Data Operation

cond 1 1 1 0 opcode1 L CRn Rd cp_number opcode2 1 CRm Coprocessor
Register Transfer

cond 1 1 1 1 24_bit_swi_number Software Interrupt /
Mode Modifier

Figure 3-2: ARM6 Instruction Set Encoding

The following list explains the standard abbreviations used in Figure 3-2:

• ‘SBZ’ stands for Should Be Zero.

• ‘SBO’ stands for Should Be One.

• ‘cond’ is the condition code.

• ‘opcode’ determines the exact arithmetic, logical, or register transfer operation

performed by data processing operations.

• ‘S’ indicates an instruction should change the CPSR.

♦ If set for data processing operations then if ‘Rd’ is the program counter in mode

with an SPSR, this is restored to the CPSR; otherwise the CPSR status flags are

updated.

♦ If set for block data transfers in a privileged mode, transfers user mode registers

rather than the registers of the current mode. (Note if set and the program counter

is loaded then the registers transferred are of the current mode, not the user mode,

and the relevant SPSR is restored to the CPSR.)

• ‘shift’ determines the shift operation (logical shift left, logical shift right,

arithmetic shift right or right rotate) that should be performed on the register ‘Rm’;

‘shift amount’ indicates the amount by which the register ‘Rm’ should be shifted and

‘rotate_imm’ indicates the amount by which to right rotate ‘8_bit_immediate’ value.

 78

• If ‘R’ = 0 the PSR transfer should involve the CPSR and if ‘R’ = 1 the SPSR.

• ‘field_mask’ indicates which of the four bytes of the CPSR or relevant SPSR

should be updated when considered as 32-bit registers.

♦ If transfer operation Register ← PSR then ‘field_mask’ SBO.

• ‘L’ indicates the direction of transfer instructions.

♦ If memory transfer then ‘L’ = 0 indicates register (coprocessor) → memory and

‘L’ = 1 register (coprocessor) ← memory.

♦ If PSR transfer then ‘L’ = 0 indicates register ← PSR and ‘L’ = 1 register → PSR.

♦ If coprocessor register transfer then ‘L’ = 0 indicates register → coprocessor and

‘L’ = 1 indicates register ← coprocessor.

• ‘L’ when set for branches indicates that the link register should be updated.

• ‘A’ when set indicates that some value should be added to the multiplication result.

• ‘register list’ has bits corresponding to each data register (bit 0 ⇒ R0, bit 1 ⇒ R1

and so forth), which when set indicate the corresponding register should be used in

the block data transfer.

• ‘Rd’ is the destination register.

♦ If transfer operation Register → PSR then ‘Rd’ SBO.

♦ If data processing that only sets the status flags then ‘Rd’ SBZ.

• ‘Rn’, ‘Rm’ and ‘Rs’ are source registers.

♦ If transfer operation Register → PSR then ‘Rm’ SBZ.

♦ If multiplication operation and ‘A’ = 0 then ‘Rn’ SBZ.

• ‘B’ = 0 indicates word memory transfer and ‘B’ = 1 indicates byte memory transfer.

• ‘U’ = 0 indicates offset is subtracted from the base address (and block data transfer

should proceed downwards) while ‘U’ = 1 indicates offset is added to base address

(and block data transfer should proceed upwards).

• ‘P’ and ‘W’ determine the various addressing modes of memory transfer instructions.

♦ For single data transfer operations:

‘P’ = 0 indicates use of post-indexed addressing (the base address is modified by

the offset after memory access). Since writeback is assumed, in a privileged mode

‘W’ = 1 indicates memory access should be treated as if non-privileged.

‘P’ = 1 indicates use of pre-indexed addressing (the base address is modified by

the offset before memory access) with writeback only if ‘W’ = 1

 79

♦ For block data transfer operations:

‘P’ = 0 indicates that the memory locations accessed should include the word at

the base address and ‘P’ = 1 indicates that the word should be excluded.

‘W’ = 1 indicates that the register used for the base address should be updated

after transfer and ‘W’ = 0 indicates that it should not.

♦ For coprocessor memory transfers:

‘P’ = 0 indicates use of post-indexed addressing with writeback only if ‘W’ = 1.

‘P’ = 1 indicates use of pre-indexed addressing with writeback only if ‘W’ = 1.

• ‘cp_number’ is the number of the coprocessor that should execute the instruction.

• ‘opcode1’ and ‘opcode2’ are the fields that the ARM Instruction Set Architecture

version 3 suggests should encode the opcode of coprocessor instructions.

• ‘CRd’ is the field that the ARM Instruction Set Architecture version 3 suggests

should encode the destination register for coprocessor instructions.

• ‘CRm’ and ‘CRn’ are fields the ARM Instruction Set Architecture version 3 suggests

should encode the source registers for coprocessor instructions.

• ‘N’ is the bit the ARM Instruction Set Architecture version 3 suggests should encode

memory transfer length for coprocessor instructions.

3.2 Outline of Informal Hardware Implementation Specification

The ARM6 processor core memory interface conforms to the von Neumann architecture

in assuming that it connects one read-write memory to the ARM6 processor core,

which contains all instructions and all data. (This assumption still applies even when

the ARM6 processor core memory interface is connected indirectly to main memory via

a cache and a write buffer like in the ARM610. The Memory Management Unit that

controls the operation of such components interacts with the ARM6 processor core as

a coprocessor—also with the abort signal, see below—such that the memory interface

may still treat the connection to main memory as direct.)

3.2.1 Signal Description

The ARM6 processor core can use the address bus ADDR and the two data buses

DIN (Data IN) and DOUT (Data OUT) to make one of four different types of transfer

 80

shown in Table 3-2; transfer type itself is signalled using two processor core outputs:

nMREQ (not Memory REQuest) and SEQ (SEQuential).

nMREQ SEQ Transfer Type

0 0 NON-SEQUENTIAL: request for memory transfer to or from an address

that may bear no relation to that of the previous memory transfer.

0 1 SEQUENTIAL: request for memory transfer to or from an address

that is the same as, or one word after, the previous memory transfer.

1 0 INTERNAL: indicates no memory transfer should occur but

an address may be presented for the memory system to prepare on.

1 1 COPROCESSOR: indicates data transfer between the processor core

and a coprocessor, which should be ignored by the memory system.

Table 3-2: Types of ARM6 Bus Transfer

Addressing on the ARM6 processor core is pipelined by asserting the relevant signals

at the end of the bus cycle before the one in which the specified transfer is performed.

The term bus cycle is used to refer to each individual datum transfer, because,

depending on the memory system, the ARM6 processor core may need to wait state for

several clock cycles on non-sequential transfers.

The following signals are also involved in memory transfers:

• ABORT: This input is asserted HIGH by the memory system

to indicate that the requested memory transfer is not valid.

• LOCK: This output is HIGH when the processor core

performs a semaphore operation to indicate the memory system must not allow

another device to access memory until the signal goes LOW.

• nBW (not Byte, Word): This output is LOW for byte sized memory transfers

and HIGH for word sized memory transfers.

• nOPC (not OPCode): This output is LOW for instruction fetches and

HIGH for data memory transfers.

• nRW (not Read, Write): This output is LOW to indicate read transfers and

HIGH to indicate write transfers.

• nTRANS (not TRANSlate): When this output is LOW the memory system

should treat the memory transfer as if the processor core is in user mode.

 81

The following signals reflect the general environment of the ARM6 processor core:

• nFIQ (not Fast Interrupt reQuest): This asynchronous input is taken LOW

when the processor core should raise the fast interrupt request exception.

• nIRQ (not Interrupt ReQuest): This asynchronous input is taken LOW

when the processor core should raise the interrupt request exception.

• nM (not operating Mode): This output indicates the logical inverse of

the mode bits of the CPSR of the processor core.

• nRESET (not RESET): This asynchronous input is taken LOW

to indicate that the processor core should invalidate the instructions in its pipeline

and raise the reset exception when the signal goes HIGH.

3.2.2 Coprocessors

Coprocessors do not perform their own instruction fetches but must record those of

the ARM6 processor core and follow its pipeline so that when requested the coprocessor

can execute an instruction or take part in a transfer with the ARM6 processor core.

(Therefore coprocessors must have access to the DIN bus, as well as the nMREQ,

nOPC and nRESET signals.) The ARM6 processor core itself is responsible for

evaluating the condition code of a coprocessor instruction and then indicating whether

the coprocessor should execute it by taking the nCPI (not CoProcessor Instruction)

output LOW. A coprocessor is responsible for decoding tracked instructions to indicate

whether it can execute instructions when requested using CPA (CoProcessor Absent)

and CPB (CoProcessor Busy) as shown in Table 3-3. Note if more than one coprocessor

is attached to the ARM6 processor core, its CPA input should be the logical AND of

each coprocessor’s CPA output with CPB likewise constructed from the CPB outputs.

If no coprocessor indicates it can execute the coprocessor instruction or participate in

a coprocessor transfer, the ARM6 processor core takes the undefined instruction trap.

CPA CPB Response Type

0 0 the coprocessor can execute the instruction or participate in the transfer.

0 1 the coprocessor is busy but might be able to execute the instruction or

participate in the transfer at some later point.

1 1 no coprocessor is present that can execute the instruction or participate in

the transfer.

Table 3-3: Coprocessor Response Types for the ARM6

 82

Handshaking between the ARM6 processor core and coprocessors occurs as follows:

1. If the instruction in the Decode stage of each coprocessor is a coprocessor instruction

or requests a coprocessor transfer, then each coprocessor drives its CPA output and

its CPB output appropriately.

2. If a coprocessor instruction enters the Execute stage of the ARM6 processor core or

an instruction that requests a coprocessor transfer, and it passes its condition code,

the ARM6 processor core takes nCPI LOW to indicate that the relevant coprocessor

may start executing the instruction or making the transfer. The ARM6 processor core

busy-waits while CPB is asserted if CPA was deasserted and CPB asserted at 1.

However if an interrupt occurs then the ARM6 processor core will deassert nCPI and

serve the interrupt (assuming that the interrupt was not masked out by the CPSR),

whereas if the coprocessor reasserts CPA, the undefined instruction trap exception

will be taken.

3. If a coprocessor memory transfer is being performed then the ARM6 processor core

should stop supplying addresses for the transfer when the coprocessor deasserts both

CPA and CPB.

3.2.3 Datapath of Processor Core

The datapath of the ARM6 processor core may be depicted as shown in Figure 3-3.

Buses are depicted using arrows and the relationship between buses and the components

it connects may be determined by the direction of approach:

• Arrows from the left and from below denote inputs to the connected component.

(Note arrows from below are used instead of arrows from the left as needed to make

the diagram clearer.)

• Arrows from the right denote outputs from the connected component.

• Arrows from the top denote signals that control the operation of the component:

which function should be performed by combinational logic; condition under which

a static latch should be transparent; or whether a register port should transfer data,

and if it should, which register the data should be transferred to or from.

Buses that connect to components in the control subsystem of the ARM6 processor core

are depicted as terminating at or beginning with the name of the relevant control block;

for clarity, these connections are depicted orthogonal to those concerned solely with

83

Fi
gu

re
 3

-3
: A

R
M

6
Pr

oc
es

so
r

C
or

e
D

at
ap

at
h

Se
e

Ta
bl

e
3-

4
fo

r k
ey

 to
 th

e
m

aj
or

 c
om

po
ne

nt
s.

Th
e

co
nv

en
tio

ns
 u

se
d

in
 d

ep
ic

tin
g

bu
se

s w
ith

 a
rr

ow
s a

re
 d

is
cu

ss
ed

 in
 S

ec
tio

n
3.

2.
3.

R
eg

ist
er

B
an

k

Pr
og

ra
m

St
at

us
R

eg
is

te
rs

B
an

k

M
ux

M
ux

A
LU

Sh
ift

er

A
LU

R
A

R
B

PC
B

us
IN

C
[3

1:
2]

+

4

A
R

EG

D
O

U
T

A
D

D
R

M
ux

M
em

or
y

In
te

rf
ac

e

By
te

R
ep

lic
at

or

AC
TL

,
PS

R

BC
TL

,
PS

R

Ze
ro

Pa
dd

er

PS
R

A
LU

B

SC
TL

M
C

TL

A
A

LU
A

SC
TL

SK
P

SK
P,

PS
R,

W
C

TL

PE
N

C
AD

D

SHIFTOP[4:0]

SH
O

U
T

AL
U

, I
D

EC

ID
EC

AL
U

C
TL

AL
U

C
TL

, I
N

T,
PS

R,
 W

C
TL

PS
R

A
LU

N
ZC

V

ALU[31:26,7:0]

SCTLC

PSRFB

CPSRLPS
R,

 P
SR

, S
C

TL

SC
TL

PS
R

PS
R

PS
R

R
D

PS
R

SH
C

O
U

T

ID
EC

ID
EC

B

IREG

D
A

TAPI
PE

PI
PE

M
ux

D
IN

, S
EQ

D
IN

Fi
el

d
Ex

tra
ct

or
& Fi
el

d
Ex

te
nd

er

D
IN

IM
M

 /
D

IN
’

ID
EC

AREG[31:2]

A
R

EG
L

A
R

EG
L

AREGN

IN
T

SK
P

D
C

TL
BW

C
PS

R

M
ux

PSRC

OFFSET

D
O

U
T

SC
TL

 84

depicts combinational logic that performs arithmetic and/or logical

functions. Simple adder units are labelled with ‘+’ while more

complicated logic units are labelled with ‘ALU’.

Depicts combinational logic that creates its output by selecting its inputs.

It is labelled with ‘Mux’ for multiplexer.

depicts combinational logic that performs specific function(s). The logic

is labelled with a name that suitably describes the function(s) that the unit

can perform.

 depicts static latch. It is labelled with the name of the latch.

depicts a register bank. It is labelled with the name of the register bank.

(Note that the small rectangles on the left hand side depict write ports

while the small rectangles on the right hand side depict read ports.)

depicts an interface between the processor core and other components in

the processor. It is labelled with a name that describes the purpose of

the interface. (Signals from the processor core are depicted as inputs,

while signals to the processor core are depicted as outputs.)

Table 3-4: Key to Datapath Diagram

datapath dataflow. Each arrow is labelled with the name of the bus that it represents,

except for the arrows that represent control signals.

3.2.4 Control Subsystem of Processor Core

The preceding presentation of the datapath of the ARM6 processor core did not need

to consider the pipelining of the ARM6 processor core at all, but any presentation of

the control subsystem of the ARM6 processor core must. The activities performed by

the ARM6 processor core divide into three pipelined stages:

1. INSTRUCTION FETCH: latches the instruction, if any, fetched from memory in reply

to signals presented to memory in the previous clock cycle and, if appropriate,

presents signals to memory to fetch an instruction in the next clock cycle.

2. INSTRUCTION DECODE: decodes the instruction for execution in the next clock cycle.

(If the current instruction in the execute stage only needs one more clock cycle then

the next instruction is decoded, or else decode of the current instruction continues.)

3. EXECUTE: carries out the operations of its instruction by reading relevant registers,

performing appropriate calculations, making any suitable memory accesses or

 85

coprocessor transfers and, if appropriate, writing the results to pertinent registers.

This may take more than one clock cycle.

Note the purpose of Fetch is to keep the processor core supplied with instructions for

both Decode and Execute, so fetch activities occur for the first and the last clock cycles

an instruction is in Execute. This pipelining requires four latches rather than three for

storing instructions, with the extra Pre-decode latch used to store an instruction between

Fetch and Decode during all but the last iteration of the Execute stage.

In addition to implementing the pipeline, the ARM6 processor core control subsystem

must map each instruction to the sequence of datapath control signals that transforms

the state of the ARM6 processor core appropriately for the instruction. Instead of

achieving this mapping all at once, the control subsystem of the ARM6 processor core

uses a two level decode structure. As discussed in section 2.2.3, primary decode

determines general behaviour in the current instruction step of an instruction while

secondary decode instantiates the instruction step to accomplish particular behaviour.

Both the instruction pipeline and the primary decode are comprised of blocks

responsive to instructions in the instruction pipeline, but which operate irrespective of

which instructions are in which pipeline stages. In contrast, secondary decode involves

blocks that, except when instruction classes are in the Execute stage, do not influence

the behaviour of the ARM6 processor core at all.

The dataflow between the blocks that comprise the control subsystem of the ARM6

processor core is depicted in Figure 3-4, and the behaviour each block is responsible for

is briefly summarised in the following list. (Note that although the ALU block is listed,

it is not shown in the diagram because it simply buffers an input from the IDEC block.)

• Instruction Pipeline

♦ PIPE: presents the instruction being executed this clock cycle and the instruction

that should be decoded if execution of the current instruction will be completed

this clock cycle. It also buffers the result of the last instruction fetch.

♦ PIPESTAT: associates two items of state with each instruction in the PIPE block:

one marks an instruction invalid so that it will not be executed, whilst the other

indicates that the pre-fetch abort exception should be raised if an attempt is made

to execute the instruction. Instructions not yet being executed are marked invalid

86

ID
EC

PI
PE

PI
PE

ST
AT

IN
T

C
O

N
D

SE
Q

M
C

TL
M

U
L

PE
N

C
SE

Q
PE

N
C

A
D

D

A
C

TL
B

C
TL

W
C

TL
PS

R
SK

P
A

R
EG

D
C

TB
LW

SC
TL

A
LU

C
TL

Fi
gu

re
 3

-4
: D

at
af

lo
w

 o
f A

R
M

6
C

on
tr

ol
 B

lo
ck

s

N
ot

e
th

at
 th

e
ar

ro
w

s
do

 n
ot

 re
pr

es
en

t s
pe

ci
fic

 s
ig

na
ls

—
on

ly
 th

at
 s

om
e

(o
r a

ll)
 o

f t
he

 s
ig

na
ls

 p
ro

du
ce

d
by

 o
ne

 b
lo

ck
 a

re
 u

se
d

by
 a

no
th

er
 (a

rr
ow

s
fr

om

th
e

to
p

or
 th

e
le

ft
re

pr
es

en
tin

g
in

pu
ts

 a
nd

 a
rr

ow
s

fr
om

 th
e

bo
tto

m
 o

r t
he

 ri
gh

t r
ep

re
se

nt
in

g
ou

tp
ut

s)
. T

he
 d

as
he

d
bo

xe
s

en
cl

os
e

th
e

m
aj

or
 g

ro
up

in
gs

 o
f

th
e

bl
oc

ks
 o

f t
he

 c
on

tro
l s

ub
sy

st
em

 (w
he

th
er

 p
ip

el
in

e
or

 p
rim

ar
y

de
co

de
, f

or
 e

xa
m

pl
e)

, b
ut

 h
av

e
no

 p
ur

po
se

 o
th

er
 th

an
 th

at
.

 87

 when the instruction being executed directly writes to the program counter,

whereas the abort status is set if the instruction fetch itself caused the abort.

• Primary Decode:

♦ COND: in the first clock cycle of the execution of an instruction this block

determines whether the instruction passes its condition code.

♦ IDEC: generates the signals that the Secondary Decode blocks (see below) use

to generate the signals that control the datapath. These signals are generated for

the instruction step indicated by the SEQ block using the opcode of the instruction

being executed or that of the next instruction to be executed, as appropriate.

♦ INT: detects interrupts and exceptions. This block indicates when to handle

interrupts and exceptions (recording status information as required), prioritising if

more than one is pending.

♦ SEQ: determines the instruction step that should be decoded this clock cycle

(that is, the next step of the instruction currently being executed or the first step of

the next instruction to be executed).

• [Instruction Non-specific] Secondary Decode

♦ ACTL: selects the address field used for data register bank read port which

outputs onto the RA bus (but not which register set to access).

♦ ALU: buffers an IDEC control signal to help determine when the ALUA latch

should be transparent.

♦ ALUCTL: generates the signals that control the ALU datapath component

(function select and carry select).

♦ AREG: buffers the bottom two bits of the address register so byte extraction and

misaligned word rotation may be performed properly on the values resulting from

memory read accesses.

♦ BCTL: selects the address field used for the data register bank read port which

outputs onto the RB bus (but not which register set to access).

♦ DCTLBW: generates the signal that controls the replicator datapath component

and the signal that controls the field extractor datapath component.

♦ PSR: generates the signal that controls the register set the data register bank ports

should operate on, buffers the appropriate program status registers as required and

generates the signal that controls the operation of the PSRDAT multiplexer.

 88

♦ SCTL: selects the signal that controls the barrel shifter datapath component,

buffers the value used for register controlled shifts and adjusts the shifter carry out

for some register controlled shifts.

♦ SKP: generates the signal that controls the AREG multiplexer, the signals that

control bus cycles and those that control whether the data register bank write ports

are active.

♦ WCTL: selects the address field used for the data register bank write port which

receives input from the ALU bus (but not which register set to access).

• [Multiplication Specific] Secondary Decode

♦ MCTL: generates the signal that controls the shift amount of the barrel shifter

datapath component, the signal that indicates whether to borrow to ALUCTL and

the signal that indicates whether the multiplication has terminated.

♦ MUL: buffers the value of the multiplier to provide the sequence of bit slices that

the MCTL and the ALUCTL blocks require to generate the sequence of signals

that control the operation of the barrel shifter and the ALU datapath components

to implement a 2-bit Booth’s algorithm. It also generates the signal that indicates

whether all the bits in the multiplier have been used yet.

• [Block Transfer Specific] Secondary Decode

♦ PENCADD: counts the number of 1’s in the bottom sixteen bits of an instruction

and selects the offset, if any, required for address calculation. (Branches and

exception entry also make use of this block to select the offset to adjust the value

of the program counter by, for the appropriate return address.)

♦ PENCSEQ: generates the address field of the highest priority unused register,

specified in the transfer list, for the BCTL and WCTL blocks, as well as the signal

that indicates whether all registers in the transfer list have been used yet.

3.3 Summary

The behaviour of most instructions defined by the Programmer’s Model of the ARM6

(except only that of control modifiers and instruction set extenders—see section 3.1.4),

is dependent on a significant number of options (see section 3.1.5). This is reflected in

added complexity in the control logic of the Hardware Implementation of the ARM6

(see section 3.2.4). Nonetheless, this also makes the ARM6 of interest for specification

(see section 4 and section 6).

 89

4 Specifying the ARM6
The methodology of this thesis was primarily developed in the process of specifying

the original ARM6. Therefore this section focuses on what this specification involved—

section 4.1—and how it was developed with respect to each of the three presentations

used with this specification—section 4.2, section 4.3 and section 4.4 (see section 2.3

for details on the method underlying each presentation).

4.1 General Principles

The following instruction classes were used to specify the ARM6:

•CONTROL INSTRUCTIONS

♦ br: encapsulates flow modifiers (see section 3.1.4).

♦ swi_ex: encapsulates mode modifiers (see section 3.1.4) and exceptions raised by

external events (see section 3.1.2) such as interrupts and memory aborts.

• DATA PROCESSING OPERATIONS

♦ data_proc: encapsulates arithmetic operations, data register transfer operations

and logical operations (see section 3.1.4) with immediates or immediate shifts

(see section 3.1.5).

♦ mla_mul: encapsulates multiplication operations (see section 3.1.4).

♦ mrs_msr: encapsulates transfer operations involving the program status registers

(see section 3.1.4).

♦ reg_shift: encapsulates arithmetic operations, data register transfer operations and

logical operations (see section 3.1.4) with register shifts (see section 3.1.5).

• MEMORY INSTRUCTIONS

♦ ldm: encapsulates block data transfers from memory to the ARM6 processor core

(see section 3.1.4).

♦ ldr: encapsulates single data transfers from memory to the ARM6 processor core

(see section 3.1.4).

♦ stm: encapsulates block data transfers from the ARM6 processor core to memory

(see section 3.1.4).

♦ str: encapsulates single data transfers from the ARM6 processor core to memory

(see section 3.1.4).

♦ swp: encapsulates semaphore instructions (see section 3.1.4).

 90

• COPROCESSOR INSTRUCTIONS

♦ cdp_und: encapsulates coprocessor data operations (see section 3.1.4).

♦ ldc_stc: encapsulates coprocessor data transfers (see section 3.1.4).

♦ mcr: encapsulates transfer of register value from processor core to coprocessor

(see section 3.1.4).

♦ mrc: encapsulates transfer of value from coprocessor to processor core register

(see section 3.1.4).

• INSTRUCTION SET EXTENDERS

♦ cdp_und: encapsulates undefined instructions (see section 3.1.4).

• NULL INSTRUCTIONS

♦ unexec: substituted for the instruction class that would otherwise have entered

the Execute stage when the pipeline control logic detects that the instruction class

failed its condition code (see section 3.1.4).

Note that arithmetic operations, data register transfer operations and logical operations

are all included in one instruction class because these differ primarily in what operation

is performed, not how it is performed. Indeed, sufficient similarity also exists between

arithmetic operations, data register transfer operations and logical operations that use

immediate shifts and those that use an immediate, for these to be in one instruction class

as well. Still, this is not so for arithmetic operations, data register transfer operations

and logical operations that involve register shifts and those that involve an immediate,

or an immediate shift, since the former require an instruction step to initialise the shift.

Though the final instruction step is in common, to define one instruction class, not two,

would introduce unnecessary complications (see section 2.2.3).

It may seem odd to use one, instead of two separate, instruction classes to encapsulate

coprocessor data operations and undefined instructions. However, as far as the ARM6

processor core is concerned a coprocessor data operation is an undefined instruction that

one coprocessor may accept and an undefined instruction is a coprocessor instruction

every coprocessor must reject.

The instruction classes used to specify the ARM6 were decomposed into the following

instruction steps (see Table 2-5 for the key to the timing annotation used to denote

individual instruction steps):

 91

BR INSTRUCTION CLASS

t3 IF Prefetch from branch target.

 EXE Calculation of branch target.

t4, t5 IF Sequential prefetches from that of t3 IF to refill the pipeline.

 EXE Calculation of return address.

If required by instantiation, r14 is updated with the return address.

SWI_EX INSTRUCTION CLASS

t3 IF Prefetch from exception vector.

t4, t5 IF Sequential prefetches from that of t3 IF to refill the pipeline.

 EXE Calculation of return address.

Calculation of new value for CPSR, writing of new value to CPSR and

copying of old value to appropriate SPSR.

r14 is updated with the return address.

DATA_PROC INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2, or from the address indicated by result

of the operation if program counter is the destination register.

 EXE Calculation of result of the operation.

If required by instantiation, calculation of new values for status flags and

update of CPSR with these new values or the value of an SPSR.

If required by instantiation, the destination register is updated with result

of the operation.

MLA_MUL INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Initialisation of latches in multiplication specific secondary decode logic

(see section 3.2.4).

Destination register is updated with value of accumulate register (or zero,

if instantiated as a MUL instruction).

tn EXE Calculation of partial result of the multiplication.

Destination register is updated with the partial result of the multiplication.

Determination of whether further partial results are required.

If required by instantiation, calculation of new values for status flags and

update of CPSR with these new values.

 92

MRS_MSR INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE If required by instantiation, value of the CPSR or an SPSR is read.

If required by instantiation, the new value is calculated and used to update

the CPSR or an SPSR.

If required by instantiation, the destination register is updated with value

of the CPSR or an SPSR.

REG_SHIFT INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Initialisation of SCTL logic with value for register controlled shift.

t4 IF If program counter is the destination register, prefetch from the address

indicated by the result of the operation.

 EXE Calculation of result of the operation.

If required by instantiation, calculation of new values for status flags and

update of CPSR with these new values or the value of an SPSR.

If required by instantiation, the destination register is updated with result

of the operation (except when program counter is the destination register).

LDM INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of start address for block transfer from memory and

presentation of start address to memory.

t4 EXE Data read from memory.

If required by instantiation, the base register is updated.

If required by instantiation, presentation of next address to memory.

tn EXE Data read from memory.

Destination register is updated with data read in EXE tn–2.

If required by instantiation, presentation of next address to memory.

tm EXE Destination register is updated with data read in EXE tm–2.

If required by instantiation, CPSR is updated with the value of an SPSR.

 93

LDR INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of address and presentation of address to memory.

t4 EXE Data read from memory.

If required by instantiation, the base register is updated.

t5 EXE Destination register is updated with data read in EXE t4.

STM INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of start address for block transfer from memory and

presentation of start address to memory.

t4 EXE If required by instantiation, the base register is updated.

If required by instantiation, presentation of next address to memory.

Store data is read from data register and written to memory.

tn EXE If required by instantiation, presentation of next address to memory.

Store data is read from data register and written to memory.

STR INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of address and presentation of address to memory.

t4 EXE If required by instantiation, the base register is updated.

Store data is read from data register and written to memory.

SWP INSTRUCTION CLASS

t3 IF Sequential fetch from that of t2.

 EXE Calculation of address and presentation of address to memory.

t4 MEM Data read from memory.

Presentation of address to memory.

t5 WB Store data is read from data register and written to memory.

t6 EXE Destination register is updated with data read in EXE t4.

CDP_UND INSTRUCTION CLASS

t3 IF If first iteration in this pipeline stage, sequential fetch from that of t2.

 94

LDC_STC INSTRUCTION CLASS

t3 IF If first iteration in this pipeline stage, sequential fetch from that of t2.

 EXE If last iteration in this pipeline stage, calculation of start address and

presentation of start address to memory.

tn EXE If required by instantiation, presentation of next address to memory.

The base register is updated.

MCR INSTRUCTION CLASS

t3 IF If first iteration in this pipeline stage, sequential fetch from that of t2.

t4 EXE Data to be transferred is read from data register and written to coprocessor.

MRC INSTRUCTION CLASS

t3 IF If first iteration in this pipeline stage, sequential fetch from that of t2.

t4 EXE Data is read from coprocessor.

t5 EXE Destination register (or status flags of CPSR if program counter is used as

destination register) is updated with data read in EXE t4.

UNEXEC INSTRUCTION CLASS

t3 IF Sequential fetch from that of t2.

Figure 4-1: Instruction Steps Used to Specify the Original ARM6

Note that iteration occurs in the t3 instruction steps of coprocessor instruction classes,

while the coprocessor busy-waits the ARM6 processor core (see section 3.2.2), so that

the pipeline activities for these instruction steps must be modified for the iteration.

While the datapath specification describes the dataflow necessary to implement each of

the instruction steps listed above, the datapath control specification describes how each

is implemented by the functionality of the secondary decode logic (see section 3.2.4).

The pipeline control specification not only describes the functionality of the PIPE and

the PIPESTAT blocks, it also describes primary decode functionality by indicating how

instructions in the Decode and the Execute latches are translated into instruction classes:

• IDEC: associates an instruction class with the instruction in the Decode latch.

• SEQ: determines the next instruction step for the instruction in the Execute latch,

or that the instruction requires no further instruction steps because it has terminated.

• COND: detects whether an instruction fails its condition code (see section 3.1.4)

when it first enters the Execute latch and substitutes the unexec instruction class for

that of the instruction if it does.

 95

• INT: detects when exceptions occur (see section 3.1.2) and it causes the swi_ex

instruction class to be substituted for that of the instruction in the Decode latch,

when it is appropriate for the exception to be taken.

4.2 Mathematical Presentation

More than one attempt was required to generate the Phase specification of the ARM6:

two were made before the successful attempt that resulted in a complete specification.

(The methodology presented in section 2.3.1 derives from this third attempt). Both of

the unsuccessful attempts partitioned the specification into a datapath specification and

a datapath control specification, but did not separate the pipeline control specification

from the datapath control specification. In contrast to the second and the third attempts,

the first attempt did not attempt to distinguish specification of the pipeline activities

associated with each pipeline stage from the specification of each pipeline stage itself.

Indeed while the first attempt used a structural approach for the datapath specification,

the approach used for the datapath control specification was intended to be executable.

The structural approach decomposed the specification of each instruction class into

specifying the behaviour exhibited as an instruction of that instruction class occupies

the Instruction Fetch stage, the Instruction Decode stage and then the Execute stage.

The other approach decomposed the specification of each instruction class into

specifying the behaviour that an instruction of that instruction class causes as it occupies

the Instruction Decode stage and the Execute stage (but the behaviour was labelled

according to the pipeline stage, not the pipeline activity).

Work to specify the ARM6 using the methodology of the first attempt was discontinued

when it became clear that using two distinct approaches for the datapath specification

and the datapath control specification did not so much provide for different perspectives

as it did confusion. Moreover, without subdivision into constituent pipeline activities,

the specification of some of the instruction steps in the datapath control specification

lacked definition in terms of overall function. The second attempt to specify the ARM6

solved most of these problems by using a layout much the same as that of Figure 2-6 for

its datapath specification and that of Figure 2-7 for its datapath control specification.

The primary difference in layouts between the second attempt and the third attempt

involves how the behaviour associated with the Instruction Fetch stage, as an instruction

progresses through the instruction pipeline, is specified. The datapath specification of

 96

the second attempt describes how the instruction of the instruction class being specified

is read from memory at t1, whereas that of the third attempt only specifies an instruction

is read from memory at t3. Additionally the datapath specification of the second attempt

describes how the program counter is incremented in the Instruction Fetch stage at t1,

and at t2, so that the program counter reads as the address of the instruction plus eight in

the Execute stage. The datapath specification of the third attempt leaves this implicit in

the behaviour associated with the Instruction Fetch pipeline activities of the instructions

that preceded the instruction of the instruction class being specified. These differences

arguably result from the main difference between the methodology of the second and

the third attempts to specify the ARM6: whether the pipeline control specification and

the datapath control specification are two distinct specifications.

Since the second attempt to specify the ARM6 did not separate datapath control and

pipeline control, functions that would be defined once in a pipeline control specification

had to be duplicated across every instruction class of the datapath control specification.

This not only obscured the independence of these functions from the instruction class

being specified, but also unnecessarily complicated the process of understanding how

the specifications of the instruction classes of the instructions in the instruction pipeline

should be combined to indicate the behaviour expected of the ARM6 processor core.

Consequently, work to specify the ARM6 using the methodology of the second attempt

was discontinued, when these disadvantages became apparent, and work was begun

using the methodology from which that outlined in section 2.3.1 is derived.

The use of notation for pipeline latches to avoid the necessity to explicitly name signals

buffered from previous pipeline stages was first developed for the modernised ARM6

(see section 6.2) and is discussed as part of the general methodology in section 2.3.1.

Still, the Phase specification of the original ARM6 would not significantly benefit from

the use of this notation, as little of the datapath of the original ARM6 is pipelined and

the abstraction of instruction steps encapsulates most, if not all, of the control signals

buffered from the Instruction Decode stage to the Execute stage in the original ARM6.

However, using notation for a pipeline latch between the Instruction Decode stage and

the Execute stage for the few signals, such as NXTIC[*], that require buffering between

two pipeline stages, would make the style of the specification of the original ARM6

more consistent with that of the modernised ARM6.

 97

Nonetheless, many of the features of the general methodology discussed in section 2.3.1

were developed in the process of creating the Phase specification of the original ARM6,

before work on the Phase specification of the modernised ARM6 began. For example:

• The primary technique of abstraction used in the datapath specification pertains to

the use of outputs from combinational logic, such as a multiplexer or a barrel shifter,

in transfers without specifying the operation that the combinational logic performs.

This allows the definition of instruction classes to abstract over instructions of

similar function that perform the same transfers. However, problems arise when

dealing with instructions of similar function that do not perform the same transfers.

For instance, the base register of single data transfer instructions is updated only if

the P and the W bits in the encoding of the instruction have the appropriate values,

while data processing instructions and multiplication instructions update the CPSR

only if the S bit is set (see section 3.1.5). Defining separate instruction classes for

when the transfer occurs, and when it does not, would unduly increase the number of

instruction classes that need to be defined given that several instruction classes

would be identical but for one transfer. Hence, the notation of curly braces enclosing

an entire transfer was developed to indicate when the transfer may or may not occur

depending on the value of the write enable signal the datapath control specification

associates with the write port. (Note the datapath specification of an instruction class

may include transfers that are still performed but are unnecessary in one or more of

its instantiations, which is different because this reflects redundancy in the design.

For example, an instantiation of the multiplication instruction class that does not add

an initial value to the multiplication result, still performs the register read to produce

this initial value and the transfers so one of the inputs of the ALU is driven with it,

even though the ALU will output zero regardless of its inputs in this case.)

• The Programmer’s Model of the ARM6 assigns every instruction a condition code

(see section 3.1.4), such that the Phase specification of the ARM6 must describe how

an instruction that fails its condition code does not execute. Initially the solution used

reflected that used in the design: a function was defined to specify the signal that

indicates if an instruction failed its condition code while functions defined to specify

signals that indicate whether effects, visible at the Programmer’s Model specification

level of abstraction, should occur, checked this signal. Nevertheless, this introduces

asymmetry between the datapath and the datapath control specifications in terms of

how evident it is that behaviour occurs only if the instantiation of an instruction class

 98

does not fail its condition code. Moreover, the definition of a significant number of

the functions defined by the datapath control specification of every instruction class

was complicated by the need to check whether the condition code had been failed.

Therefore this approach was abandoned with the third attempt to specify the ARM6

in favour of creating an instruction class (that is, unexec) to specify the behaviour of

an instruction that fails its condition code, which can be substituted, as specified by

the pipeline control specification, for another instruction class. Since it is determined

whether an instruction has passed its condition code in the Execute stage rather than

the Instruction Decode stage, the substitution occurs with respect to the IC function

and not the NXTIC function (as mentioned in section 2.3.1). Note that this approach

would not be possible using the methodologies of the first two attempts to specify

the ARM6, since it is not possible to specify the substitution of one instruction class

for another as part of the Phase specification itself without separate pipeline control

and datapath control specifications.

• The development of a strategy for timing annotations as shown in Table 2-5 and

discussed in section 2.3.1 was motivated by the need to specify instruction classes,

such as swp, which iterate in the Execute stage without iterating pipeline activities,

or ldm, which may also iterate in the Execute stage with identical pipeline activities

(see Figure 4-1). This strategy was created for the first attempt to specify the ARM6

and used without significant changes in subsequent attempts. Before the third attempt

to specify the ARM6, the Phase specification did not itself describe how

specifications of the instruction classes of the instructions in the instruction pipeline

should be combined to indicate the behaviour expected of the ARM6 processor core.

This is not so much of an omission when iteration cannot occur in any pipeline stage,

because each instruction class consists of the same sequence of instruction steps.

Thus to combine the specifications, it is a simple matter to select the instruction step

associated with each pipeline stage by the instruction that the pipeline stage contains

and aggregate the pipeline activities, if any, associated with each instruction step.

However, the situation is more complex when iteration can occur (as shown by

Table 2-1 and Table 2-2), so to be able to specify this in the Phase specification itself

was one of the main reasons behind separating the pipeline control specification and

the datapath control specification. The separate pipeline control specification allows

the NXTIC, the IC, the NXTIS and the IS functions to be defined. These functions

indicate which instruction steps specify the pipeline activities that need combining;

as discussed in section 2.3.1 as part of the general methodology of this thesis.

 99

As noted in section 6.2, types were defined to package together the signals used to drive

register read ports and register write ports in the specification of the original ARM6

since this allowed each read port and each write port to be characterised by one signal

(albeit an abstract signal). However, as explained in the detailed discussion of this issue

in section 6.2, this abstraction was not appropriate for the modernised ARM6;

consequently it was not included in the general methodology presented in section 2.3.1.

The ARM6 uses two different methods to resolve the control hazards that result from

modifying the value of the program counter in the Execute stage—instead of updating it

with the value from the incrementer—because the prefetch queue holds two instructions

fetched with the assumption that the program counter would be updated with the value

from the incrementer. One method relies on the observation that control instructions

iterate three times in the Execute stage, and that if the modification is made in the first,

the instructions in the prefetch queue will be replaced with the instructions that succeed

the instruction fetched for the new value of the program counter. The other method

marks the instructions in the prefetch queue invalid and requires that the unexec

instruction class be substituted for that of any instructions thus marked such that

subsequent instruction fetches can introduce valid instructions into the prefetch queue.

Specification of the instruction classes that use the first method for the resolution of

control hazards is sufficient to specify the first method, since it is an integral feature of

each instruction class that uses it. However, specification of the second method requires

interaction between the datapath control and the pipeline control specifications,

because the latter specification must detect when the former specification indicates that

the program counter has been modified and invalidate instructions in the prefetch queue

as necessary. If one control specification was used instead of two, the second method

could not be specified as just described, to reflect its implementation in the design;

instead it would have to be specified similarly to the first method and thus complicate

the specification of instruction classes that can modify the program counter.

4.3 Engineering Presentation

The methodology documented in section 2.3.2 reflects that developed in the process of

creating the engineering presentation of the formal specification of the original ARM6

from the mathematical presentation. No problems were encountered in this process,

since any that would have been discovered had already been solved in order to create

the mathematical presentation.

 100

4.4 Executable Presentation

Several versions of the executable presentation of the Phase specification of the ARM6

were developed before the one from which the methodology described in section 2.3.3

is derived. In contrast to the first two attempts to develop the mathematical presentation,

every superseded version of the executable presentation, but the first, was complete and

deprecated only to add new features or optimise existing features. The versions

primarily differ with respect to the implementation of the reusable modules rather than

that of the modules particular to each executable presentation. Indeed, the modules

particular to each executable presentation only differ between versions when changes in

the interface of the reusable modules must be reflected in how these modules are used.

The versions of the executable presentation developed for the Phase specification of

the ARM6 may be summarised as follows.

1. This version was primarily derived from the mathematical presentation, in contrast to

the following versions which are mainly derived from the engineering presentation.

Instead of the modules particular to each executable presentation discussed in

section 2.3.3, and used by the following versions, this version uses one

specification.sml module, which defines a datapath function and a pipeline function.

These functions do not perform transfers or calculations but return a pair to indicate

the transfers and the calculations that should be performed by the reusable modules.

Although this had the advantage of representing the Phase specification of the ARM6

more as a data structure than as part of the simulator itself and thus would facilitate

using this representation with other programs, the verboseness of this approach

rendered the representation difficult to follow. Moreover, this approach depended on

the feature of the ML programming language that allows functions to be passed as

arguments to, or results of, other functions. This feature is not as well supported by

non-functional programming languages and thus this approach unnecessarily restricts

the languages that could be used to implement the executable presentation.

2. The second version was the first complete version of an executable presentation of

the Phase specification of the ARM6. It implemented the reusable modules as well as

the modules particular to each executable presentation largely as discussed in

section 2.3.3 with the following major exceptions. The digital_value abstract type

was comprised by a function to indicate which bits of the word were in fact valid and

a 32-tuple to correspond to the 32-bit word. (Although this use of functions relies on

 101

the same feature of functional programming languages as deprecated for version 1,

this usage is part of the interface of the digital_value abstract type and thus could be

redesigned for other programming languages that do not support this feature without

much modification to the executable presentation of the Phase specification itself.)

No trace abstract type was implemented in the buses.sml module and the memory

abstract type was defined as an association list of instances of the digital_value

abstract type (with one element of the pair for the address and the other for the data

stored at the address). The state.sml module was much simpler with no support for

memory aborts, other than as scheduled by environment events (see section 2.3.3),

no tube abstract type, and the environment abstract type maintaining association lists

for the input and the output abstract types directly rather than using the core_inputs

and the core_outputs abstract types. Finally, error conditions were allowed to raise

Bind, Match, and Option.Option exceptions directly according to the assumption that

was incorrect due to the error condition, such that handle expressions were required

to display appropriate error messages.

3. A number of variants of the third version were implemented in order to evaluate

potential optimisations and new features. Nonetheless, all variants were derived from

version 2 and used guard and guardf syntactic sugar to manage error conditions by

just raising one type of exception with an appropriate error message (see Appendix C

for examples), thus reducing the amount of work required to handle error conditions.

In addition, the tube abstract type was introduced to improve support for simulating

the test vectors that ARM Ltd. developed for validating the original ARM6.

a. Several variants of the digital_value abstract type were created to evaluate

optimisations to how iteration over the elements of the 32-tuple is performed and

to make more use of tail recursion in recursive function definitions.

b. Several variants of the memory abstract type were created to evaluate using arrays

to represent memory (as discussed in section 2.3.3), rather than an association list,

and using functions that are maintained by the memory abstract type to indicate

which memory addresses the memory subsystem should abort. The use of arrays

produced significantly faster simulations and the use of functions for aborts

proved more convenient than environment events, so both these modifications

were incorporated into later versions of the executable presentation as standard.

c. Two variants were created to assess how trace information might be produced by

the simulator. The first variant maintained trace information for each clock phase

as an item in a list ordered according to the number of clock phases since

 102

simulation began. (Each item is an optional array of an optional array of the traces

union type with each element in the array of arrays maintaining data for the signal

dictated by the correspondence of the indices of the element to the group in which

state_insert_buses is invoked on the signal and the position of the signal within

this group. This method of mapping a signal onto the indices of an array of arrays

is the same as that used by the trace abstract type discussed in section 2.3.3.)

Although this allowed the trace information to be recorded reasonably efficiently

during simulation, the trace information needed to be resorted in order of signals

to write the trace file and the time required to do this increased significantly with

the number of clock phases traced. Therefore the second variant was developed,

which indexes trace information by signal during simulation and not just when

writing the trace file. The second variant slows simulation more than the first

since it requires more work to be done on each new clock phase than just adding

a new item to a list. Still this decrease was much less significant than the increase

in the speed with which the trace file is written. Hence the trace abstract type

implemented by the second variant was the one incorporated into later versions of

the executable presentation as standard.

4. This version modified the interface to the digital_value abstract type to not expose

the way in which the implementation of this type determines which bits of the word

encapsulated by an instance of this type are valid, but require a list of bit ranges that

the implementation itself converts to the internal implementation. This facilitated

evaluation of different definitions for the digital_value abstract type, as modules that

use the digital_value abstract type did not require any further modifications.

Different combinations of n-tuples, functions, arrays and vectors were considered

and the 32-element array and 32-element vector pair referred to in the definition of

the digital_value abstract type was the most efficient. Hence this was the one

incorporated into later versions of the executable presentation as standard, along with

various optimisations to the digital_value abstract type that became possible due to

the use of this definition (see the common.sml subsection of Appendix C).

5. This was the last version created and modified how the environment abstract type

maintains its collections of input and output abstract types to use the core_inputs and

the core_outputs abstract types (see the signals.sml subsection of Appendix C)

instead of association lists of instances of the input and the output abstract types.

This change was included in the general methodology discussed in section 2.3.3 as it

 103

improved the efficiency of simulation and facilitated simulation of coprocessors by

modelling (see the following discussion) rather than by environment events.

As noted in section 6.4, types were defined to package together the signals used to drive

register read ports and register write ports in the specification of the original ARM6

since this allowed each read port and each write port to be characterised by one signal

(albeit an abstract signal). However, as explained in the detailed discussion of this issue

in section 6.4, this abstraction was not appropriate for the modernised ARM6 such that

it was not included in the general methodology presented in section 2.3.3. Apart from

this feature, every feature of the last version of the executable presentation of the Phase

specification of the original ARM6 that could be generalised was included.

How the processor core being specified interacts with attached coprocessors is specific

to the Programmer’s Model specification of the processor core being specified.

Therefore the provision of support for the simulation of coprocessors in the last version

of the executable presentation could not be generalised for the general methodology

presented in section 2. Nevertheless, the following discussion should still be instructive

when extending the executable presentation of the specification of other processor cores

to support simulation of tightly coupled processor cores.

Table 4-1 summarises the abstract types that were implemented to provide support for

the simulation of coprocessors, as well as the abstract type implemented to represent

the trickbox coprocessor developed by ARM Ltd. Some of the test vectors created by

MODULE ABSTRACT TYPE ENCAPSULATES / REPRESENTS SCOPE

coprocessor.sml coprocessor_instruction coprocessor instruction and

instruction step that the ARM6

currently associates with it

 coprocessor_pipeline follower of the pipeline of

the ARM6 (see section 3.2.2)

coprocessor

 coprocessor ARM6 coprocessors

trickbox.sml trickbox_state state of ARM6 coprocessor

used to validate interaction of

the ARM6 and its environment

Table 4-1: Summary of Modules Used for the Simulation of ARM6 Coprocessors

 104

ARM Ltd. to validate the original ARM6 use the trickbox coprocessor, thus including

support for the trickbox coprocessor in the executable presentation of the specification

of the original ARM6 facilitated simulation of these test vectors for this thesis.

The following minor changes to the state.sml module (see section 2.3.3) were necessary

to provide support for the simulation of coprocessors:

• The tuple used to define the environment abstract type was altered to include a list of

coprocessor abstract type instances and an environment_add_coprocessor function

was defined to manage adding instances of the coprocessor abstract type to this list

(and thus to simulate attaching a coprocessor to the ARM6 processor core).

• The environment_init_inputs function was altered to invoke coprocessor_update on

every instance of the coprocessor abstract type in the list maintained by the specified

instance of the environment abstract type. (The coprocessor_update function is used

to coordinate the simulation of the behaviour of the relevant coprocessor. It arranges

the updating of the instance of the coprocessor_pipeline abstract type maintained by

the specified instance of the coprocessor abstract type, according to the specified

instance of the core_inputs abstract type, to simulate the pipeline follower behaviour.

In addition, it organises creation of appropriate instances of the inputs abstract type

to represent the signals that the relevant coprocessor should drive when the function

is invoked.)

To avoid the necessity of further changes to the state.sml module, the coprocessor

abstract type should be used to encapsulate ARM6 coprocessors as follows:

1. By maintaining the number associated with the coprocessor, it can determine which

coprocessor instructions apply to the coprocessor (by checking the cp_number field

of the coprocessor instruction opcode—see section 3.1.5).

2. By maintaining the instruction step, in terms of the ARM6 processor core pipeline,

that the coprocessor should create instances of the inputs abstract type in response to,

in order to simulate driving signals to the ARM6 processor core. Note that because

the processor core, not the coprocessor, is being specified, it is sufficient to model

the behaviour of the coprocessor rather than how this behaviour is implemented.

Hence it may not be necessary to model further the details of how the coprocessor

pipelines instructions.

 105

3. By maintaining the function that models the behaviour of the coprocessor in terms of

the signals that should be driven in response to the instruction step currently being

processed by the ARM6 processor core, this function may be invoked as appropriate

by the coprocessor_update function.

Therefore any ARM6 coprocessor may be represented by instantiating the coprocessor

abstract type with an appropriate function to specify its behaviour and a number that

should be associated with it. Nonetheless, if it is necessary to maintain state between

different invocations of the function that models the behaviour of the coprocessor,

reference primitive types must be used such that although the bindings referenced by

the function cannot change, what the bindings reference can. This use of reference

primitive types does not complicate mathematical representation of the executable

presentation of the Phase specification of the ARM6, as the interface of the coprocessor

abstract type does not expose these types. Indeed, it not only improves simulation

efficiency, but it also facilitates generalisation of the coprocessor abstract type because

any state that an instantiation may require is not exposed by the function used to create

the instantiation.

The execution of every applicable test of the ARM6 validation test suite developed by

ARM Ltd. on the design described by the Phase specification of the original ARM6

was simulated using the executable presentation so that all of the following were tested:

1. Reset behaviour.

2. Every instruction defined by the Programmer’s Model specification.

3. Data abort behaviour.

4. Prefetch abort behaviour.

5. FIQ and IRQ behaviour.

6. Every coprocessor interaction.

This involved the simulation of approximately 2.5 million instructions and 4.75 million

clock cycles. The mean CPI (clock cycles per instruction) of the design was around 1.9

for the simulated tests. (However, as validation tests are often atypical of programs that

will be run on processors this CPI can be no more than a guide.) Mean simulation speed

was approximately 880 clock cycles per second or around 460 instructions per second.

(Simulation was performed using the PolyML 4.1.2 implementation of Standard ML,

 106

which may be downloaded at http://www.polyml.org/, on a 1GHz Intel Pentium III PC

under the Linux operating system.)

4.5 Summary

Significant work was involved in developing the methodology of this thesis to create

the Phase specification of the original ARM6. However, this had the advantage that

relatively few changes were required before this methodology could be used to create

Phase specifications of the modernised ARM6 (see section 6.5), the MIPS R2000 and

the DLX (see section 7.6).

The creation of the Phase specification of the original ARM6 serves to demonstrate that

the methodology of this thesis is applicable even to commercial processor core designs,

which are often quite complex. In particular, the methodology of this thesis provided

elegant solutions to describing relatively large numbers of instruction classes,

coprocessor interactions, pipelined addressing and the complexities that result from

irregular instruction set encodings.

 107

5 Overview of the Modernised ARM6
The original ARM6 was designed in the early 1990s, and as such, its design no longer

represents the state of the art in processor design. Consequently, some of the methods

used to design modern processors were considered as part of the work for this thesis,

and of these, several were used to develop a modernised ARM6 that better represents

modern processor designs and to which the methodology of this thesis could be applied.

Section 5.1 outlines the methods that were considered, as well why some and not others

were used, while section 5.2 and section 5.3 present informal summaries of the design

that was developed.

5.1 Modernising the ARM6

As noted in section 3.2 the memory interface of the ARM6 processor core conforms to

the von Neumann architecture, but most modern processor cores use memory interfaces

that conform to some form of the Harvard architecture. In strict terms, the latter requires

one memory for data and one memory for instructions, but in more general terms

processor cores can conform to the Harvard architecture by using memory interfaces

with one memory read port for instructions and one memory read-write port for data.

Often the final processor is not connected to separate data and instruction memories,

but to one main memory with the memory interface of the processor core itself

connected to two caches, one for data and one for instructions. Overall this should allow

general-purpose computing—because the ratio of instruction memory and data memory

is not fixed—with simultaneous data accesses and instruction fetches (when the caches

have stabilised). (Note that this thesis is not concerned with the specification of systems

in which processor cores are used, but only with the specification of processor cores.

Hence no distinction is made between the main memory and any cache attached to it,

and if multiple caches are attached to the same main memory with separate interfaces,

then each is treated as a main memory in its own right.)

Changing the memory interface of the ARM6 to conform to the Harvard architecture

can double the available memory bandwidth, but it cannot double the performance of

the ARM6 processor core—it can only improve the performance of the instructions that

involve accesses to data memory. Nonetheless by making this change the pipelining of

the ARM6 processor core may be improved by further splitting its third pipeline stage

(see section 5.3.4):

 108

3. EXECUTE: performs appropriate calculations and, if appropriate, presents signals

to data memory to prepare an access in the next clock cycle. This may take more than

one clock cycle.

4. MEMORY: if appropriate, performs access involving data memory.

5. WRITEBACK: if appropriate, writes the results to pertinent registers.

This allows the overlapping of five instructions rather than three in one clock cycle,

with a corresponding increase in throughput, since the Harvard architecture guarantees

the Instruction Fetch stage and the Memory stage can be performed simultaneously.

The performance benefits of the improved pipelining are not just limited to the increase

in throughput: although the Execute stage suggested above is still more complex than

that of the other pipeline stages, it is simpler than that of the ARM6 processor core and

pipeline stage complexity is one of the limiting factors on clock speed.

However, the coprocessor interface described in section 3.2.2 cannot be integrated with

the five stage pipeline outlined above. The Memory stage must be used to transfer data

to or from an attached coprocessor because otherwise the buses needed for the transfer

may be required by the Memory stage of another instruction. Accordingly MCR, MRC,

LDC with one register and STC with one register now require only one clock cycle in

the Execute stage since the transfer for each can be performed in one Memory activity.

Yet the protocol described in section 3.2.2 requires that each of these instructions

should take at least two clock cycles in the Execute stage: in the first CPA and CPB

should be deasserted to indicate that an attached coprocessor can perform the transfer;

in the second CPA and CPB should be reasserted to indicate that the transfer is finished.

This is not especially problematic for MCR and MRC instructions since these define

the transfer length to be one anyway, rendering the indication of the second clock cycle

that the transfer is finished superfluous. The second clock cycle in the Execute stage

cannot be omitted for LDC or STC instructions with one register, nor can it be present

because then such instructions cannot be distinguished from LDC or STC instructions

with two registers.

Therefore the modernised ARM6 considered in this thesis uses a memory interface that

conforms to the Harvard architecture in general terms and has a five stage pipeline

similar to that outlined above, but does not support any coprocessor instructions.

(Details of the five stage pipeline, including hazards, are considered in section 5.3.4.)

 109

Although the coprocessor handshaking protocol could be easily redesigned for use with

the modernised ARM6, this would not require significantly different logic to implement

and hence should pose no problems for the methodology developed in this thesis.

Consequently to focus on those aspects of the modernised ARM6 more likely to require

improvements in the methodology, no coprocessor handshaking protocol is supported

and all coprocessor instructions are automatically decoded as undefined instructions.

Of the advanced pipelining techniques surveyed in Hennessy and Patterson (1996;

pp. 166–173, 220–334), which require hardware support and not just compiler support,

the ARM6 already implements conditional instructions. The simplest form of

speculative execution using delay slots (see section 7.2.2.3) is implemented by the DLX

and the MIPS R2000, which are considered in section 7. Although neither implements

branch instructions that do not execute the instruction in the delay slot when the branch

is not taken, such instructions may be implemented similarly to conditional instructions

on the ARM6.

More sophisticated forms of speculative execution that also involve branches require

branch prediction buffers or branch target buffers. The former allow predictions of

whether branches will be taken or not before the branch condition itself is evaluated,

while the latter allow predictions before the branch itself is decoded since such buffers

associate the addresses of branches with the target address or the fall-through address.

Both forms may be used to reduce the number of incorrect instruction fetches made by

processor cores after branch instructions when the prediction is correct: the second form

can reduce the number to none at all. However, neither form has been implemented on

the modernised ARM6 considered in this thesis. The first form would not be useful

unless branch target address calculation was moved to the Instruction Decode stage and

would only require relatively simple alterations to specify. (The pipeline control logic

would need to record appropriate state and be allowed to modify the program counter in

the Instruction Decode stage.) While the second form could be useful without altering

general branch processing and would require the addition of another fundamental entity

responsible for recording the necessary associations, this entity is essentially a cache.

Hence the interactions with it could be specified easily in terms similar to those used for

other memory entities and in a much simpler fashion.

 110

Finally it is worth considering why out-of-order execution, which allows an instruction

to enter the Execute stage without waiting for all preceding instructions to complete,

has not been added to the modernised ARM6. The simplest form involves encoding

multiple operations in VLIWs (Very Long Instruction Words), such that each operation

would be equivalent to an instruction on the original ARM6 but all these operations

would enter the Execute stage simultaneously. However adding VLIWs to the ARM6

would necessitate radical changes to its Programmer’s Model specification.

Furthermore, compilers not hardware are responsible for scheduling and thus much of

the complexity that results from supporting VLIWs. Superscalar processor cores allow

multiple instructions to enter the Execute stage by fetching several instructions at once,

but without exposing this to the Programmer’s Model specification. Hence these require

implementation of dynamic scheduling in hardware to resolve any conflicting demands

for resources by the instructions in the Execute stage. This would most likely require

significant changes to the methodology of this thesis before it could be used to specify

the resultant ARM6. Given the complexity of the Programmer’s Model specification of

the ARM6, attempting to modernise it as discussed above, and also make it superscalar,

would involve too many modifications in just one iteration of modernisation.

5.2 Outline of Informal Programmer’s Model Specification

Since this thesis is concerned with formal specification at the RTL level of abstraction,

it is not essential to update the Programmer’s Model of the modernised ARM6 to reflect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 opcode S Rn Rd shift amount shift 0 Rm Data Processing
(immediate shift)

cond 0 0 0 1 0 R L 0 field_mask Rd SBZ Rm Transfer Operation
(register ↔ PSR)

cond 0 0 0 1 0 B 0 0 Rn Rd SBZ 1 0 0 1 Rm Semaphore Instruction

cond 0 0 0 opcode S Rn Rd Rs 0 shift 1 Rm Data Processing
(register shift)

cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Data Processing
(multiplication)

cond 0 0 1 opcode S Rn Rd rotate_imm 8_bit_immediate Data Processing
(immediate)

cond 0 0 1 1 0 R 1 0 field_mask SBO rotate_imm 8_bit_immediate Transfer Operation
(immediate → PSR)

cond 0 1 0 P U B W L Rn Rd 12_bit_offset Single Data Transfer
(immediate offset)

cond 0 1 1 P U B W L Rn Rd shift amount shift 0 Rm Single Data Transfer
(register offset)

cond 0 1 1 x 1 x x x x Undefined Instruction
cond 1 0 0 P U S W L Rn register list Block Data Transfer
cond 1 0 1 L 24_bit_offset Branch / Flow Modifier
cond 1 1 0 x Undefined Instruction
cond 1 1 1 0 x Undefined Instruction

cond 1 1 1 1 24_bit_swi_number Software Interrupt /
Mode Modifier

Figure 5-1: Modernised ARM6 Instruction Set Encoding

 111

developments announced since version three of the ARM Instruction Set Architecture

(the latest version discussed in Seal and Jaggars’ standard reference of 2000 is 5TE).

Indeed the only modification to the Programmer’s Model of the modernised ARM6

used in this thesis directly results from changes made to its Hardware Implementation.

As discussed in section 5.1, the Hardware Implementation of the modernised ARM6

does not support coprocessor instructions; therefore all coprocessor instructions are now

undefined instructions. The modified instruction set encoding is shown in Figure 5-1

(see section 3.1.5 for key to abbreviations).

5.3 Outline of Informal Hardware Implementation Specification

As discussed in section 5.1, the modernised ARM6 processor core memory interface

conforms to the Harvard architecture by having one read port for an instruction memory

and one read-write port for a data memory.

5.3.1 Signal Description

In general, the signals for the modernised ARM6 have been chosen to reflect those of

the original ARM6 as far as possible. Indeed most memory signals are duplicated and

prefixed with either ‘D’ to indicate signals for the data memory port or ‘I’ to indicate

signals for the instruction memory port. (The following assumes some familiarity with

the details of the original signals presented in section 3.2.1.)

The two address buses are DA and IA while the three data buses are DIN, DOUT and

IDIN (Instruction Data IN). DnMREQ and DSEQ are used to signal data transfer types,

while InMREQ and ISEQ signal instruction transfer types. Both sets of signals encode

transfer types as shown in Table 5-1.

nMREQ SEQ Transfer Type

0 0 NON-SEQUENTIAL: request for memory transfer to or from an address

that may bear no relation to that of the previous memory transfer.

0 1 SEQUENTIAL: request for memory transfer to or from an address

that is the same as, or one word after, the previous memory transfer.

1 0 INTERNAL: indicates no memory transfer should occur but

an address may be presented for the memory system to prepare on.

1 1 RESERVED: should not occur on the modernised ARM6.

Table 5-1: Types of Modernised ARM6 Bus Transfer

 112

Addressing on the modernised ARM6 processor core is pipelined in the same manner as

the original ARM6 (see section 3.2.1 for details).

The remaining signals involved in transfers with data memory or instruction memory

are defined with reference to the original ARM6 signals as shown in Table 5-2.

ORIGINAL ARM6 MODERNISED ARM6

 DATA MEMORY INSTRUCTION MEMORY

ABORT DABORT IABORT

LOCK DLOCK

nBW DnBW

nOPC

nRW DnRW

nTRANS DnTRANS InTRANS

Table 5-2: Equivalents of Modernised ARM6 Memory Signals

The same input signals that reflect the general environment of the original ARM6

(nFIQ, nIRQ and nRESET) are used on the modernised ARM6. The nM output signal

is duplicated as DnM and InM, on the other hand.

5.3.2 Coprocessors

As discussed in section 5.1, the Hardware Implementation of the modernised ARM6

does not support coprocessor instructions; therefore all coprocessor instructions are now

undefined instructions.

5.3.3 Datapath of Processor Core

The modernised ARM6 processor core datapath was designed as depicted in Figure 5-2.

Note the following changes from the datapath of the original ARM6 processor core:

• The modernised ARM6 has an extra register read port RC for reading the value of

the register to be stored in store, store multiple and swap instructions. Likewise it has

an extra register write port WB for writing the value read from memory to the register

to be loaded in load, load multiple and swap instructions.

• While the register read ports operate in φ2 and the register write ports operate in φ1

on the modernised ARM6, the reverse is true for the original ARM6.

113

Fi
gu

re
 5

-2
: M

od
er

ni
se

d
A

R
M

6
Pr

oc
es

so
r

C
or

e
D

at
ap

at
h

Se
e

Ta
bl

e
3-

4
fo

r
ke

y
to

 th
e

m
aj

or
 c

om
po

ne
nt

s;
 F

ig
ur

e
5-

2
al

so
 u

se
s

ex
pl

ic
it

pi
pe

lin
e

la
tc

he
s,

la
be

lle
d

w
ith

 a
bb

re
vi

at
io

ns
 o

f
th

e
pi

pe
lin

e
st

ag
es

 th
at

ea
ch

 b
rid

ge
s.

Th
e

co
nv

en
tio

ns
 u

se
d

in
 d

ep
ic

tin
g

bu
se

s w
ith

 a
rr

ow
s a

re
 d

is
cu

ss
ed

 in
 S

ec
tio

n
3.

2.
3.

IA
R

EG

+

IF
/ID

Re
gi

st
er

B
an

k

Pr
og

ra
m

St
at

us
R

eg
is

te
rs

B
an

k

R
B

ID
/E

X
E

Sh
ift

er

R
C

A
LU

EX
E/

M
EM

R
A

By
te

R
ep

lic
at

or
+

4

B
yt

e
R

ot
.

&
 Z

er
o

Ex
.

M
EM

/W
B

M
ux

M
ux

M
ux

M
ux

M
ux

D
A

R
EG

D
IN

’

W
D

AT
A

D
at

a
M

em
or

y
D

IN

In
str

uc
tio

n
M

em
or

y
IA

[3
1:

2]
ID

INPI
PE

IA
R

EG
[3

1:
2]

AREGN

SK
P

IN
T

SK
P

SK
P,

W
C

TL

SCTLC

PSRFB

CPSRLPS
R,

 P
SR

, S
CT

L

M
ux

SH
C

O
U

T

SC
TL

ALU[31:26,7:0]

A
LU

A
LU

N
ZC

V

Ze
ro

Pa
dd

er

IMM

A

SHIFTEROP[4:0]

A
LU

A

A
LU

B

PS
R

R
D

CPSR[C]

PS
R

PS
R

SC
TL

M
CT

L

D
O

U
T

D
A

C
PS

R

PS
R

SH
O

U
T

AL
U

C
TL

4

ID
EC

ID
EC

D
C

TL
BW

ID
EC

AC
TL

BC
TL

CC
TL

PS
R

PS
R

PS
RD

AT

IAREG[31:2]

R
15

[3
1:

2]

D
A

R
EG

L

BC

OFFSET

ALU[31:2]

AL
U

CT
L,

 IN
T,

PS
R,

 W
C

TL

SK
P,

W
C

TL
SC

TL
SC

TL

 114

• The modernised ARM6 cannot use one incrementer for sequential fetches from

instruction addresses and data addresses; it requires separate incrementers for each.

• Register reads are performed one clock cycle earlier than on the original ARM6:

read ports RA and RB operate in the Instruction Decode stage not the Execute stage.

Although read port RC operates in the Execute stage, its operation is not equivalent

to that of read ports RA and RB on the original ARM6 because its value is not used

until the Memory stage.

• To ensure backwards compatibility, if PC refers to the address of the instruction in

the Execute stage, if the value of the program counter is used in the first iteration of

the instruction in the Execute stage, its value must equal PC + 8; otherwise its value

must equal PC + 12. Hence, the instruction incrementer is used to calculate in tn φ1

the sequential instruction address for tn φ2 rather than in tn - 1 φ2, so that if it is used

to update the program counter, it is always one clock cycle ahead.

• Since results are not stored in destination registers (except for the program counter)

until writeback, forwarding of values is required such that following instructions that

use the results before writeback occurs get the right values and these instructions stall

only if the result has not been read from memory (see section 5.3.4 for more details).

• Byte rotation and zero padding, as appropriate, of the value read from memory in

load and swap instructions is implemented in a specialized functional unit rather than

the barrel shifter.

5.3.4 Control Subsystem of Processor Core

The activities performed by the modernised ARM6 divide into five pipelined stages:

1. INSTRUCTION FETCH: latches the instruction, if any, fetched from instruction memory

in reply to signals presented to instruction memory in the previous clock cycle and,

if appropriate, presents signals to fetch an instruction in the next clock cycle.

2. INSTRUCTION DECODE: decodes the instruction for execution in the next clock cycle

(if the current instruction in the execute stage only needs one more clock cycle then

the next instruction is decoded, or else decode of the current instruction continues)

and reads any relevant registers.

3. EXECUTE: performs appropriate calculations and, if appropriate, presents signals

to data memory to prepare an access in the next clock cycle. This may take more than

one clock cycle.

 115

4. MEMORY: if appropriate, performs access involving data memory.

5. WRITEBACK: if appropriate, writes the results to pertinent registers.

Note, as on the original ARM6, fetch activities occur for the first and the last clock cycle

an instruction is in the Execute stage. Furthermore the same number of latches is used

to store instructions in the pipeline, since it is more efficient to pipeline pertinent results

from primary decode in the Decode stage, and secondary decode in the Execute stage,

for both the Memory stage and the Writeback stage than perform any further decode.

The control subsystem of the modernised ARM6 was designed to preserve as much of

that of the original ARM6 as possible and thus also the commercial principles of design

that underlie it. Nevertheless, full advantage was taken of the opportunities provided by

using a five stage pipeline rather than a three stage pipeline for simplifying aspects of

the control subsystem. For example, on the original ARM6 the registers involved in

the transfers made by load multiple or store multiple instructions are specially buffered

for one or two clock cycles before being used. However, on the modernised ARM6,

these registers may be buffered in the same manner as any other signals required for

the Memory stage or the Writeback stage without special considerations.

Since the modernised ARM6, unlike the original ARM6, performs register reads,

register writes and memory operations in different pipeline stages, certain data hazards

need to be resolved on the modernised ARM6 that do not apply to the original ARM6.

This necessitates additional control logic as summarised in Table 5-3.

Read After Write

Data Hazard An instruction that performs its final iteration in the Execute stage at tn

may not write the result of its calculations into its destination register

until tn + 2. Similarly if it reads from data memory in the Memory stage

at tn + 1, writeback of the resulting value does not occur until tn + 2.

Therefore if the instructions that enter the Execute stage at either tn + 1

or tn + 2 need either of these results, the relevant register cannot be read

as usual in the corresponding Instruction Decode stage (tn or tn + 1).

 116

Resolution In general, forwarding logic is used so that, irrespective of the value

read at tn or tn + 1, the A, B or C multiplexers can select the correct value

at tn + 1 and tn + 2. However, values read from memory are not available

until tn + 2 and cannot be forwarded even then if byte rotation is required.

Consequently, an instruction that requires the memory value at tn + 1

must be interlocked in the Instruction Decode stage for one clock cycle

when forwarding is possible and two when it is not. (An instruction that

requires the memory value at tn + 2 must be interlocked one clock cycle,

if forwarding is not possible.) Note that store multiple instructions and

store instructions read the register to be stored in the Execute stage

rather than the Instruction Decode stage. Thus, should such instructions

require the use of the memory value at tn + 1 for the register to be stored,

the instructions must interlock in the Execute stage for one clock cycle.

(This cannot be detected and dealt with in the Instruction Decode stage,

since the register to be read is not determined until the Execute stage.)

Data Hazard A store multiple instruction that stores the base register to memory

and updates it, stores the updated value unless the base register is R0.

This proves problematic because the original ARM6 also does not store

the updated value if the base register is R1 and its Programmer’s Model

exposes this behaviour.

Resolution These instructions are of limited use, so the complications involved in

making the modernised ARM6 behave as the Programmer’s Model for

the original ARM6 are not worthwhile. Hence, use of such instructions

on the modernised ARM6 is deprecated.

Write After Write

Data Hazard A load instruction or load multiple instruction can be constructed that

attempts to update the base register with a value read from memory in

the same clock cycle as it should be updated with the new base address.

Resolution These instructions serve little purpose; so rather than specify which of

the two writes should prevail, the use of such instructions is deprecated.

(Note behaviour for load multiple instructions that load the base register

from memory and update the base register with the new base address,

but not in the same clock cycle, differs between the original ARM6 and

the modernised ARM6. Hence these instructions are also deprecated.)

 117

Data Hazard The dedicated write port for updating the program counter with a value

from the incrementer and both the general-purpose write ports operate

at the same time.

Resolution The data hazard can only occur if the dedicated write port operates

when one of the others updates the program counter, but the measures

discussed below for preventing control hazards also prevent this hazard.

Table 5-3: Data Hazards of Modernised ARM6

Implementing the behaviours required by the Programmer’s Model of the ARM6 for

each instruction using the datapath of the original ARM6 necessitates the resolution of

several structural hazards. In most cases the limitations of its three stage pipeline and

the von Neumann architecture of its memory interface necessitate several iterations in

the Execute stage for the instructions that would generate such hazards. These hazards

arise when the resources required of the datapath to implement certain behaviours in

one clock cycle exceed those available. Hence such hazards can often be resolved,

without requiring any extra iterations in the Execute stage for the effected instructions,

by assigning the behaviours in contention to different but already required iterations.

However the preceding approach to the resolution of structural hazards in the design of

the original ARM6 is less effective with respect to the design of the modernised ARM6,

Status in Design of
Structural Hazard

Original ARM6 Modernised ARM6

Simultaneous writeback of updated base

and value loaded from memory.

(Effects: loads; load multiples.)

Writeback split over

two clock cycles.

Two write ports so

hazard does not apply.

Processing the value to store to memory

at the same time as the A and B buses

are used in preparing inputs for ALU.

(Effects: stores; store multiples; swaps.)

Dataflow split across

two clock cycles

(needs introduction of

extra cycle for swaps).

Independent read port

and dataflow for value

to store to memory so

hazard does not apply.

Simultaneous access of data memory

and instruction memory.

(Effects: loads; load multiples; stores;

store multiples; swaps.)

Accesses split over

two clock cycles.

Two incrementers and

two memory ports so

hazard does not apply

(the data memory port

is read-write).

 118

Status in Design of
Structural Hazard

Original ARM6 Modernised ARM6

Reading the register used to provide

shift amount at the same time as reading

the registers used to prepare the inputs

for ALU.

(Effects: register shift data processing.)

Register read to obtain

the shift amount in

an extra clock cycle

before register reads

for ALU.)

Register read to obtain

the shift amount in

an extra clock cycle

before register reads

for ALU.)

Calculating address to be used for

memory access and address to update

base register with.

(Effects: loads; stores.)

Calculations split over

two clock cycles.

Data address dataflow

detached from ALU so

hazard does not apply.

Calculating first address to be used for

block memory transfers and the address

to update base register with.

(Effects: load multiples; store multiples)

Calculations split over

two clock cycles.

Calculations split over

two clock cycles.

(Note this requires that

block transfers of one

take two clock cycles

not one clock cycle.)

The mapping of registers R8 – R14 onto

physical registers by operating mode

(see section 3.1.3) changes only in φ2;

between changes only one of the six sets

of physical registers, which R8 – R14

may map onto, can be accessed for

register reads and register writes.

(Effects all instructions except branches

and immediate transfers to PSR.)

Register reads and

register writes occur in

the Execute stage.

Therefore, except for

load multiples that

force USR mapping,

all instruction classes

can be defined so that,

whichever comes next,

the mapping in φ1 for

its first iteration in

the Execute stage

will be as expected.

Instruction classes that

alter operating mode

must not do so before

the second iteration in

the Execute stage and

must be followed by

at least one stall or

have a third iteration.

Load multiples and

store multiples that

force USR mapping

should not be followed

by an instruction that

uses R8 – R14.

Table 5-4: Structural Hazards of the Modernised ARM6

since the latter often reduces the number of iterations that the instructions in question

require in the Execute stage. Therefore, sufficient resources are introduced to eliminate

 119

particular structural hazards in the design of the modernised ARM6 altogether,

whenever the reduction in the number of iterations needed outweighs the complexity of

the logic involved.

The nature of the Pre-fetch queue of the modernised ARM6 has not changed from that

of the original ARM6. In general, instruction classes that alter the program counter on

the modernised ARM6 do so via the IAREG[31:2] bus and the address incrementer in

the Execute stage, without waiting until the instruction class enters the Writeback stage.

Hence the control hazards in the design of the original ARM6 still apply to the design of

the modernised ARM6 and are most significant in the latter. Other control hazards

also apply to the latter design and involve load instructions or load multiple instructions

in which the program counter is one of the register destinations. Such instructions

cannot update the program counter until the Writeback stage, as neither the new value

nor the data abort status can be obtained before this stage. Hence the same resolution as

on the original ARM6 can be used for all control hazards—flushing the Pre-fetch queue

and refilling it with valid instructions—but those involving program counter changes in

the Writeback stage also require the Pre-fetch queue to be interlocked until writeback to

the program counter occurs.

5.4 Summary

The modernised ARM6 was designed to implement, except for coprocessor instructions,

the same Programmer’s Model specification as the original ARM6. The main change in

the implementation involved using a Harvard architecture with a five stage pipeline

rather than a von Neumann architecture with a three stage pipeline. Indeed a number of

other changes, such as the addition of forwarding logic, were a direct consequence of

reconciling this change with the desire for backwards compatibility. Still, apart from

certain modifications necessary to implement these changes, the control subsystem of

the modernised ARM6 is little changed from that of the original ARM6. Not all changes

were associated with an increase in complexity of the design: the deeper pipelining of

the modernised ARM6 facilitated simplification of certain aspects (for example,

calculating when each of the registers involved in a block data transfer should be loaded

or stored).

 120

6 Specifying a Modernised ARM6
To demonstrate that it is possible to use the methodology developed for this thesis with

modern processor designs, the methodology was used to specify the modernised ARM6

introduced in section 5. Section 6.1 outlines what the resultant specification involved;

while section 6.2, section 6.3 and section 6.4 relate how it was developed in respect of

each of the three presentations used with this specification (see section 2.3 for details on

the method underlying each presentation).

The methodology of this thesis was reasonably mature when it was applied to creating

a Phase specification of the modernised ARM6, thus it was decided that the design

would be developed using this specification instead of being constructed beforehand.

This decision was taken in order to demonstrate that the methodology of this thesis

could be used as part of the design process itself, not just when the design is complete

(as with the original ARM6 and all but a few details of the DLX and the MIPS R2000—

see section 7).

6.1 General Principles

The scope of the specification of the modernised ARM6 is noticeably different to that of

the original ARM6 in some respects. For example, while coprocessor instruction classes

were required for specification of the original ARM6 and not the modernised ARM6,

specification of the modernised ARM6, unlike that of the original ARM6, must consider

the Memory and the Writeback pipeline activities. Although such differences as these

were simply inferred from the modifications used to create the modernised ARM6,

others were only discovered in the process of producing the Phase specification itself.

For instance, to specify interlock handling on the modernised ARM6, it was necessary

to define an instruction class for interlocking other instruction classes in the pipeline,

while on the original ARM6 a description of the pipeline control logic and the nature of

the instruction classes that could interlock, was sufficient.

The following instruction classes were used to specify the modernised ARM6:

• CONTROL INSTRUCTIONS

♦ br: encapsulates flow modifiers (see section 3.1.4).

♦ swi_ex: encapsulates mode modifiers (see section 3.1.4) and exceptions raised by

external events (see section 3.1.2) such as interrupts and memory aborts.

 121

• DATA PROCESSING OPERATIONS

♦ data_proc: encapsulates arithmetic operations, data register transfer operations

and logical operations (see section 3.1.4) with immediates or immediate shifts

(see section 3.1.5).

♦ mla_mul: encapsulates multiplication operations (see section 3.1.4).

♦ mrs_msr: encapsulates transfer operations involving the program status registers

(see section 3.1.4).

♦ reg_shift: encapsulates arithmetic operations, data register transfer operations and

logical operations (see section 3.1.4) with register shifts (see section 3.1.5).

• MEMORY INSTRUCTIONS

♦ ldm: encapsulates block data transfers from memory to the modernised ARM6

(see section 3.1.4).

♦ ldr: encapsulates single data transfers from memory to the modernised ARM6

(see section 3.1.4).

♦ stm: encapsulates block data transfers from the modernised ARM6 to memory

(see section 3.1.4).

♦ str: encapsulates single data transfers from the modernised ARM6 to memory

(see section 3.1.4).

♦ swp: encapsulates semaphore instructions (see section 3.1.4).

• INSTRUCTION SET EXTENDERS

♦ und: encapsulates undefined instructions (see section 3.1.4). Note Figure 5-1,

rather than Figure 3-2, defines the associated instruction encodings.

• NULL INSTRUCTIONS

♦ stall: inserted by pipeline control logic in the Execute stage, in order to interlock

the instruction class in the Instruction Decode stage.

♦ unexec: substituted for the instruction class that would otherwise have entered

the Execute stage when the pipeline control logic detects that the instruction class

failed its condition code (see section 3.1.4).

This list of instruction classes is very similar to that given for the original ARM6 in

section 4.1, which is unsurprising since the modernised ARM6 was designed to support

the same Instruction Set Architecture as the original ARM6, except for the support of

coprocessor instructions (see section 5.1). Indeed the subsumption of instruction classes

concerning coprocessors into the undefined instruction class (cdp_und is renamed und

 122

to make this clearly evident) is one of the significant differences between the two lists.

The other is the addition of the stall instruction class, as required for the specification of

the hazard logic needed to implement the five stage pipeline of the modernised ARM6

so it can support the same Instruction Set Architecture as that of the original ARM6

(see section 5.3.4).

The similarities between the instruction steps used to specify the modernised ARM6

and those used to specify the original ARM6 are less pronounced than the similarities

between the instruction classes. This is due to the assignment of some pipeline activities

to new pipeline stages on the modernised ARM6, as well as measures taken to deal with

control hazards on the modernised ARM6. Still, by comparing the following list with

that for the original ARM6 (see section 4.1), it may be seen that the overall use of

pipeline activities by an instruction step specified for the modernised ARM6 is akin to

that by the equivalent instruction step for the original ARM6. (See Table 2-5 for the key

to the timing annotation used to denote individual instruction steps.)

BR INSTRUCTION CLASS

t3 IF Prefetch from branch target.

 EXE Calculation of branch target.

t4, t5 IF Sequential prefetches from that of t3 IF to refill the pipeline.

 EXE Calculation of return address.

t5 WB If required by instantiation, r14 is updated with the return address.

SWI_EX INSTRUCTION CLASS

t3 IF Prefetch from exception vector.

t4, t5 IF Sequential prefetches from that of t3 IF to refill the pipeline.

 EXE Calculation of return address.

Calculation of new value for CPSR, writing of new value to CPSR and

copying of old value to appropriate SPSR.

t5 WB r14 is updated with the return address.

 123

DATA_PROC INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2, or from the address indicated by result

of the operation if program counter is the destination register.

 EXE Calculation of result of the operation.

If required by instantiation, calculation of new values for status flags and

update of CPSR with these new values.

 WB If required by instantiation, the destination register is updated with result

of the operation (except when program counter is the destination register).

{t4} (Instruction step only applies if program counter is the destination register

and instantiation requires value of an SPSR to be restored to the CPSR.)

 IF Sequential prefetch from that of t3 to refill the pipeline.

 EXE CPSR is updated with value of an SPSR.

MLA_MUL INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Initialisation of latches in multiplication specific secondary decode logic

(see section 3.2.4).

 WB Destination register is updated with value of accumulate register (or zero,

if instantiated as a MUL instruction).

tn EXE Calculation of partial result of the multiplication.

Determination of whether further partial results are required.

If required by instantiation, calculation of new values for status flags and

update of CPSR with these new values.

 WB Destination register is updated with the partial result of the multiplication.

MRS_MSR INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE If required by instantiation, value of the CPSR or an SPSR is read.

If required by instantiation, the new value is calculated and used to update

the CPSR (unless the update might alter the operating mode) or an SPSR.

 WB If required by instantiation, the destination register is updated with value

of the CPSR or an SPSR.

{t4} (Instruction step only applies if instantiation requires update to the CPSR

that might change the operating mode.)

 EXE New value is used to update the CPSR.

 124

REG_SHIFT INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Initialisation of SCTL logic with value for register controlled shift.

t4 IF If program counter is the destination register, prefetch from the address

indicated by the result of the operation.

 EXE Calculation of result of the operation.

If required by instantiation, calculation of new values for status flags and

update of CPSR with these new values or the value of an SPSR.

 WB If required by instantiation, the destination register is updated with result

of the operation (except when program counter is the destination register).

LDM INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of start address for block transfer from memory and

presentation of start address to data memory.

 MEM Data read from data memory.

 WB Destination register is updated with data read in MEM t3.

t4 EXE Calculation of result with which to update the base register.

If required by instantiation, presentation of next address to data memory.

 MEM If required by instantiation, data read from data memory.

 WB Destination register is updated with data read in MEM t4.

If required by instantiation, the base register is updated with result

calculated in EXE t4.

tn EXE Presentation of next address to data memory.

 MEM Data read from data memory.

 WB Destination register is updated with data read in MEM tn.

{tm+1} (Instruction step only applies if instantiation requires the value of an SPSR

to be restored to the CPSR.)

{tm+2} (Instruction step only applies if instantiation requires the value of an SPSR

to be restored to the CPSR.)

 EXE CPSR is updated with the value of an SPSR.

 125

LDR INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of address and presentation of address to data memory.

Calculation of result with which to update the base register.

 MEM Data read from data memory.

 WB Destination register is updated with data read in MEM t3.

If required by instantiation, the base register is updated with result

calculated in EXE t3.

STM INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of start address for block transfer from memory and

presentation of start address to data memory.

Store data is read from data register.

 MEM Data is written to data memory.

t4 EXE Calculation of result with which to update the base register.

If required by instantiation, presentation of next address to data memory.

If required by instantiation, store data is read from data register.

 MEM If required by instantiation, data is written to data memory.

 WB If required by instantiation, the base register is updated with result

calculated in EXE t4.

tn EXE Presentation of next address to data memory.

Store data is read from data register.

 MEM Data is written to data memory.

STR INSTRUCTION CLASS

t3 IF Sequential prefetch from that of t2.

 EXE Calculation of address and presentation of address to data memory.

Calculation of result with which to update the base register.

Store data is read from data register.

 MEM Data is written to data memory.

 WB If required by instantiation, the base register is updated with result

calculated in EXE t3.

 126

SWP INSTRUCTION CLASS

t3 IF Sequential fetch from that of t2.

 EXE Calculation of address and presentation of address to data memory.

 MEM Data read from data memory.

 WB Destination register is updated with data read in MEM t3.

t4 EXE Presentation of address to data memory.

Store data is read from data register.

 MEM Data is written to data memory.

UND INSTRUCTION CLASS

t3 IF Sequential fetch from that of t2.

STALL INSTRUCTION CLASS

tn (This instruction step has no associated pipeline activities, since it is used

to delay the fetch normally initiated when the instruction class preceding

the interlocked instruction class leaves the EXE pipeline stage.)

UNEXEC INSTRUCTION CLASS

t3 IF Sequential fetch from that of t2.

Figure 6-1: Instruction Steps Used to Specify the Modernised ARM6

Note the IF and the EXE pipeline activities are referred to the Execute pipeline stage,

while the MEM and the WB pipeline activities are referred to the Memory stage and

the Writeback stage, respectively. Hence, WB pipeline activities occur one clock cycle

after MEM pipeline activities with the same timing annotation, which in turn occur

one clock cycle after IF and EXE pipeline activities with the same timing annotation.

(For brevity, the ID pipeline activity is not included in the above list of instruction steps,

because it may be assumed to occur one clock cycle before the results of register reads

are used.)

The use of optional instruction steps by such instruction classes as data_proc and ldm,

may appear to contravene the principle that instruction classes and instruction steps

should be defined such that the independence of temporal decomposition from

functional decomposition in mappings from one to the other is ensured (as introduced in

section 2.2.3). Nonetheless, because the optional instruction steps occur after those that

are not optional, and not before or amidst, instantiations of such instruction classes

should be viewed as terminating early when the optional instruction steps do not occur,

 127

instead of having a significantly different function (in the same way the number of

iterations performed for one instruction step does not matter).

6.2 Mathematical Presentation

As already noted in section 6, the methodology of this thesis was well developed when

it was applied to the modernised ARM6. Consequently, although some modifications

were required to the methodology in order to create the mathematical presentation of

the modernised ARM6, none of these necessitated respecification. This contrasts with

the specification of the original ARM6, which involved two separate attempts to create

the mathematical presentation before the final successful attempt (see section 4.2).

The first modification made to the methodology was the introduction of notation for

pipeline latches discussed in section 2.3.1, to avoid the need to explicitly name signals

buffered from previous pipeline stages. For example, it is evident from Figure 5-2 that

the value on the ALU bus in the Execute stage may be used in both the Memory stage

and the Writeback stage. This could be handled by explicitly specifying that:

2
ALUMEM1 ALUϕ← such that the bus driven by ALUMEM1 in

MEM φ1 can be used to access the value that

was driven on the ALU bus in EXE φ2.

1
ALUMEM2 ALUMEM1ϕ← such that the bus driven by ALUMEM2 in

MEM φ2 can be used to access the value that

was driven on the ALU bus in EXE φ2.

2
ALUWB1 ALUMEM2ϕ← such that the bus driven by ALUWB1 in

WB φ1 can be used to access the value that

was driven on the ALU bus in EXE φ2.

However, it is simpler and clearer to refer to []EXE MEM ALU instead of ALUMEM1

or ALUMEM2 (whether buffering from MEM φ1 to MEM φ2 is required is left implicit,

as it may be inferred from the context) and []MEM WB ALU rather than ALUWB1.

The specification of the original ARM6 defined types to package together the signals

used to drive register read ports and register write ports. For instance:

 128

()n 1000, USR register read from the user operating mode r8

()()true, n 1000, USR register write is enabled to the user operating mode r8

where n(x, y) is a function used to explicitly map a virtual reference ‘x’, using a bank

select signal ‘y’, onto a physical register in the appropriate bank of physical registers.

Each register port was specified as driven by one abstract signal, which as shown above,

either referenced an invocation of n(x, y), if it was a read port, or a pair of an invocation

and a Boolean value to indicate if a write should occur, if it was a write port.

Although this provides convenient abstractions for use in describing how register banks

perform register operations, the modernised ARM6 uses the signals pertaining to

register operations for other purposes. For example, the register write for data read from

data memory is scheduled in the Execute stage but is performed in the Writeback stage.

As the write enable signal is buffered across the pipeline stages, it may be forced low

due to a data abort. Furthermore, to specify the forwarding logic, the write enable signal

and the write address signal must be examined independently. Since the specification of

the register bank must decompose the port signal union types, repeated decomposition

could be reduced by specifying the forwarding logic as part of the register bank.

However, this would invalidate the assumption of the methodology of this thesis that

components such as register banks are readily reusable between processor cores and

may be verified independently of particular processor cores. Therefore, it was decided

to treat each of the signals in the specification of the modernised ARM6 that relate to

register operations as separate and furthermore not to include packaging together signals

for register reads and for register writes in the discussion of the general methodology of

this thesis in section 2.3.1.

The forwarding logic is also specified separately from the A, B and C multiplexers,

rather than with direct selection of the forwarding path by the appropriate multiplexer,

as shown in Figure 5-2. A forward bus and a forward enable are specified for each of

the three multiplexers: the forward bus is driven with the value of the forwarding path

while the forward enable indicates whether the value on the forward bus should be used

in preference to the value on the bus from the register read port. (When the multiplexer

would select the immediate bus instead of the bus from the register read port anyway,

for example, the forward enable is ignored.) Specifying the forwarding logic in this way

 129

simplifies the specification of the A, B and C multiplexers, as well as allowing

forwarding logic to be specified as part of the pipeline control specification instead of

as part of the datapath control specification. (The A, B and C multiplexers are specified

as part of the datapath control specification, as each instruction class may select inputs

using different criteria, but forwarding logic is not dependent on instruction class and

thus specifying it as part of the datapath control specification would involve

unnecessary duplication across instruction classes.)

The forward bus and the forward enable of each multiplexer are not packaged together,

for the same reasons that the write enable signal and the write address signal are not.

However, in both cases it is convenient to specify one function that calculates both of

the signals, rather than repeat the same calculations in two functions. This is denoted by

defining a function with an n-tuple of names as well as an n-tuple of results rather than

one name and one result; for example:

()RWAA,
RWAEN2

f 1110,1

=

 the logic drives 14 onto RWAA[3:0] and 1 onto RWAEN2[0]

As discussed in section 5.3.4, the modernised ARM6 has data hazards that do not affect

the original ARM6 and which, in certain circumstances, can only be overcome by

interlocking effected instructions in the Instruction Decode stage or the Execute stage.

Such data hazards are the result of the interaction of two instructions in the pipeline,

and thus cannot be described in terms of the pipeline activities of one instruction class.

Therefore, the logic responsible for detecting the data hazards that require an instruction

to interlock in the pipeline was specified as part of the pipeline control specification,

instead of as part of the datapath control specification. The imposition of an interlock in

the Instruction Decode stage is also fully described by the pipeline control specification,

as it is handled by inserting the stall instruction class into the Execute stage to prevent

the affected instruction class from leaving the Instruction Decode stage and entering it.

By contrast, just the pipeline control specification cannot be used to describe how

instruction classes interlock in the Execute stage, as the datapath control specification of

the effected instruction class will assign it pipeline activities that have effects visible at

the level of abstraction of the Programmer’s Model specification (such as indicating that

a store will occur in the next clock cycle). Hence, the pipeline control specification

 130

describes how an instruction class interlocked in the Execute stage is prevented from

progressing to its next instruction step, whereas its datapath control specification

indicates how the pipeline activities associated with it are prevented from having effects

visible at the level of abstraction of the Programmer’s Model specification.

Both structural hazards and control hazards can be described in terms of the results of

the pipeline activities of one instruction class. Consequently, in most cases the logic that

resolves these hazards is just described as part of the datapath control specification of

the effected instruction class. However, in some cases such as a load instruction with

the program counter as the destination register or the base register when base writeback

is enabled, it is convenient to use the mechanism for interlocking instruction classes in

the Instruction Decode stage to stall the instructions that succeed the load instruction

until the pipeline can be flushed. (The discussion of the use of pipeline flushes to handle

control hazards in section 4.2 also applies to the modernised ARM6, because it uses

pipeline flushes in the same way as the original ARM6.)

For the most part, the logic required to handle exceptions, and thus the functions used to

specify it, is the same for the original ARM6 and the modernised ARM6, since both

support the same exceptions and handle these exceptions in the Execute pipeline stage.

The modernised ARM6 does not support coprocessor instructions, but still handles

undefined instructions as if these were instructions that every coprocessor must reject in

the Execute stage except that the rejection occurs without reference to CPA or CPB

(see section 3.2.2). Conversely, the modernised ARM6 compared to the original ARM6

has an added complication in how data aborts are handled: the abort may occur when

the instruction that performed the memory access is no longer in the Execute stage

(because an instruction enters the Memory stage to perform its final memory access).

This is resolved by substituting the unexec instruction class for that of the instruction in

the Execute stage when a data abort is detected the clock phase after an instruction left

the Execute stage (when that instruction is in the Memory stage). The substitution

occurs in φ2 rather than φ1 so that the timing of the abort signal is not made critical for

the pipeline control logic. However to make the substitution in φ2, the value of IC[*]

must be calculated anew for φ2 instead of just latched from φ1. (Note that substitution

could be avoided by modifying the relevant functions of every instruction class so that

transfers that have effects visible at the level of the Programmer’s Model specification

are prevented directly. However, this solution was not used because it would diminish

 131

the abstraction provided by instruction classes, since these modifications are related to

interactions in the pipeline rather than the instruction class being specified.)

The final change required in the application of the methodology of this thesis to create

the mathematical presentation of the modernised ARM6 relates to how primary decode

is performed. The original ARM6 used two PLAs to perform primary decode: a fast one

with a small number of inputs to calculate only the register read port addressing signals

and a standard one for calculating all the other control signals. This is not mentioned in

section 3 or section 4, because the implementation of the original ARM6 separated

primary decode into two PLAs to improve the timing of its critical path. The choice of

two PLAs instead of one thus relates to facilitating a particular implementation strategy,

instead of providing behaviour required by the design. However, the modernised ARM6

does require two PLAs, since the calculation of the register read port addressing signals

is based on which instruction class should enter (or iterate) in the Execute stage,

and calculation of this involves signals that indicate whether an interlock should occur

because of the register read port addressing signals. This interdependency is resolved by

using a fast PLA to calculate the register read port addressing signals on the assumption

the instruction class in the Instruction Decode stage is not pre-empted by an exception

or interlocked. The standard PLA can then calculate all the other control signals

according to which instruction class actually enters (or iterates) in the Execute stage,

since the signals that indicate whether an interlock should occur can use the results of

the fast PLA. (It does not matter that the fast PLA may lead to incorrect register reads

when an interlock or an exception occurs, because in both these cases the register reads

will not have effects visible at the level of the Programmer’s Model specification.)

The NXTIC function abstracts over primary decode by decoding the instruction class

instantiated by an instruction (see section 2.3.1), thus to define NXTIC twice—once for

each PLA—in the mathematical specification would involve significant duplication

without really reflecting the distinction between the two PLAs. Therefore the need for

two PLAs is simply noted when the NXTIC function is defined: the actual parameters of

the standard PLA are specified in the definition while those that would be different for

the fast PLA are specified in the note.

 132

6.3 Engineering Presentation

The engineering presentation of the formal specification of the modernised ARM6

was created from the mathematical presentation using a straightforward application of

the methodology of this thesis. No modifications to the methodology were required,

because those that would have been necessary had already been made in order to create

the mathematical presentation.

6.4 Executable Presentation

Some modifications were required to the methodology of this thesis in order to create

the executable presentation of the modernised ARM6, but all but one of these follow on

from those required to create the mathematical presentation. The sole exception

pertains to the use of separate memory ports for data memory and instruction memory.

Although the executable presentation was not adapted to instantiate two memories—

since this would be needed for specialist applications of the Harvard architecture only

(for example, when the instructions are accessed from a ROM)—but the functions

defined in state.sml to be used to perform memory accesses were differentiated:

• The memory abstract type defines a dbus_operation and an ibus_operation function,

which, like the original bus_operation function, analyse instances of the output type

to determine the bus operation that should be performed. However dbus_operation

only examines outputs relating to data accesses while ibus_operation only examines

outputs relating to instruction accesses. (As instruction accesses do not alter memory,

the ibus_operation function only returns an optional instance of instruction data

instead of the tuple returned by the dbus_operation and the bus_operation functions.)

• The memory abstract type exposes a data_memory_read, a data_memory_write and

an instruction_memory_read function, to invoke dbus_operation and ibus_operation

on behalf of the functions defined by the environment abstract type. These replace

the memory_read and the memory_write functions defined in the original state.sml.

As before, the environment abstract type exposes functions to invoke

data_memory_read, data_memory_write and instruction_memory_read by defining

functions with the same name but prefixed with environment_.

• The functions and the bindings in the memory and the environment abstract types

concerning memory aborts were duplicated to create one version for data aborts and

one version for instruction aborts. Two versions were created in this case because

 133

memory controllers often distinguish between instruction accesses and data accesses

when determining whether an access should be aborted.

These modifications were sufficient to encapsulate separate memory ports for

instruction reads and data reads or writes, without limiting the type of programs that

could be simulated.

On the original ARM6, only the Instruction Decode pipeline activities used to perform

initialisation for an instruction that will enter the Execute stage in the next clock cycle

are not associated with the Execute stage. Hence, the datapath_specification function

(which specifies the dataflow of the datapath and the datapath control specifications—

see Table 2-7) could be invoked without any reference to the pipeline stage, since T2

would be passed as its instruction step actual parameter whenever it was invoked for

pipeline activities not associated with the Execute stage. Yet, on the modernised ARM6,

pipeline activities are associated with every stage, except the Instruction Fetch stage.

Therefore, the pipeline stage for which the datapath_specification function is invoked

had to be added as one of its parameters and when the datapath_specification function

is invoked for each pipeline stage had to be considered carefully:

• When φ1:

1st datapath_specification WB: The pipeline activities of the Writeback stage

must be performed before those of the Execute stage, so the latter can access

the register write addressing signals when the forwarding logic is simulated.

2nd datapath_specification EXE: The pipeline activities of the Memory stage

could be performed before those of the Execute stage, but this would allow

datapath_specification EXE to use functions to access data memory based on

the outputs created by datapath_specification MEM (contrary to the behaviour

defined by the memory model for the modernised ARM6).

3rd datapath_specification MEM.

• When φ2:

1st datapath_specification ID: The pipeline activities of the Instruction Decode stage

must be performed before those of the Execute stage, so the latter can access

the register read addressing signals when the hazard logic is simulated.

2nd datapath_specification MEM: The pipeline activities of the Memory stage

must be performed before those of the Execute stage, because the latter

 134

overwrites outputs that datapath_specification MEM may need when an access

to data memory is simulated.

3rd datapath_specification EXE.

Note that if the executable presentation was created using a programming language with

support for concurrent operations, the data_specification function could be constructed

to have much less dependence on the order of pipeline stages in which it is invoked.

A number of changes were required to support straightforward translation of notation

using pipeline latches to avoid explicitly naming signals buffered from previous

pipeline stages. First, a bus_buffer and a latch_buffer function were added to the bus

and the latch abstract types. These functions return an optional pair of pipeline stages

indicating the pipeline stages, if any, at which the buffering should begin and end.

Second, a buffer abstract type is defined local to the state abstract type, which the latter

instantiates to perform buffering of buses and latches. See Section 2.3.3 for details of

how the buffer abstract type is defined and the functions that provide the interface to

this abstract type.

The use of the buffer abstract type is transparent to the specification of a processor core.

A formal parameter for an optional pipeline stage is added to the state_lookup_*_bus

and the state_lookup_*_latch functions (which are used to ascertain the value of a bus,

or a latch, in an instance of the state abstract type—see section 2.3.3). If a pipeline stage

is supplied when either function is invoked the list of buses or of latches returned by

buffer_lookup_buses or buffer_lookup_latches is used, instead of the list maintained by

the state abstract type, to determine the value of the specified bus or the specified latch.

Note that the buffer_update function is generic insofar as it relies on the bus_buffer and

the latch_buffer functions to indicate which pipeline latch the value of a bus or a latch

should be buffered in first. These functions are also used to indicate when the value of

a bus or a latch may be discarded because the old instance of the buffer abstract type

buffered the value in the last pipeline latch in which the value needed to be buffered.

Still the buffer_update function is also implementation specific in assumptions it makes

about which pipeline latches may be required to buffer values from the old instance of

the buffer abstract type, and how this should be done, for reasons of efficiency.

 135

Since the specification of the modernised ARM6 does not package together signals for

register reads or signals for register writes (see section 6.2), it was necessary to modify

the abstract types defined to encapsulate register read ports and register write ports.

Although register read ports and register write ports are still encapsulated in terms of

the signals used to drive these entities, instances of the abstract type are initialised and

updated with the relevant constituent signals rather than created only when needed and

when all its constituent signals have been created. Previously the reg_readport_signals

and the reg_writeport_signals abstract types were defined by common.sml to allow

buses to be created using instances of these types, but this is no longer necessary

because the specification does not package together signals for register operations.

Hence, these abstract types were made local to the reg_bank abstract type in state.sml.

This provides a better abstraction than was possible with the signals packaged together,

as the reg_bank abstract type is responsible for proper use of the reg_readport_signals

and the reg_writeport_signals abstract types. (Instances of the reg_readport_signals

and the reg_writeport_signals abstract types represent the read ports and the write ports

of the register bank represented by an instance of the reg_bank abstract type.)

The main change made to the reg_bank abstract type to support the changes made to

the reg_readport_signals and the reg_writeport_signals abstract type was to deprecate

the use of individual functions, such as reg_bank_raa, to update different instances of

these abstract types in favour of one function: reg_bank_ports_update. This function

is invoked by state_insert_buses when new instances of the bus abstract type are added

to an instance of the state abstract type, and it examines the list of new instances for any

pertaining to read ports or write ports, updating instances of the reg_readport_signals

and the reg_writeport_signals abstract types accordingly. Previously state_insert_buses

was responsible for determining when individual functions such as reg_bank_raa

should be invoked for an instance of the reg_bank abstract type, and while transferring

this responsibility to a function defined by the reg_bank abstract type may decrease

simulation speed it improves the abstraction with respect to register banks.

Note the modernised ARM6 has two banks of physical registers: the data register bank

and the program status register bank. Although the preceding discussion refers to

abstract types defined for the data register bank, the same points apply to abstract types

defined for the program status register bank as well.

 136

As noted in section 6.2, the NXTIC function encapsulates two PLAs. Although this

could be just noted in the mathematical presentation and the engineering presentation,

another solution is required in the executable presentation. The function body of NXTIC

was implemented local to a FAST_NXTIC_LOGIC and a NXTIC_LOGIC function with

these functions supplying the appropriate actual parameters to the local function.

Unnecessary duplication was thus avoided, without obscuring the PLA that is simulated

to calculate the value of NXTIC.

The execution of every applicable test of the ARM6 validation test suite developed by

ARM Ltd. on the design described by the Phase specification of the modernised ARM6

was simulated using the executable presentation so that all of the following were tested:

1. Reset behaviour.

2. Every instruction defined by the Programmer’s Model specification.

3. Data abort behaviour.

4. Prefetch abort behaviour.

This involved the simulation of approximately 1.1 million instructions and 2.0 million

clock cycles. The mean CPI (clock cycles per instruction) of the design was around 1.7

for the simulated tests. (However, as validation tests are often atypical of programs that

will be run on processors this CPI can be no more than a guide.) Mean simulation speed

was approximately 785 clock cycles per second or around 460 instructions per second.

Comparing these figures to those for the executable presentation of the original ARM6,

the CPI has been improved by about 10 percent. Although the mean simulation speed of

the modernised ARM6 is around 17 percent slower in terms of clock cycles per second,

the mean simulation speed in terms of instructions per second is about the same.

(Simulation was performed using the PolyML 4.1.2 implementation of Standard ML,

which may be downloaded at http://www.polyml.org/, on a 1GHz Intel Pentium III PC

under the Linux operating system.)

Note that the trickbox coprocessor (see section 4.4) was used to test the interrupt

behaviour of the original ARM6, but this was not possible with the modernised ARM6

since it provides no coprocessor support. Hence environment events (see section 2.3.3)

had to be used to test the interrupt behaviour of the modernised ARM6 instead.

 137

6.5 Summary

Only relatively minor changes were required to the general methodology of this thesis,

such that it could be used to create the formal specification of the modernised ARM6.

This provides evidence that this methodology is sufficiently adaptable to fulfil its aim of

applicability to all RISC processor cores as well as its aim of executable presentation

(see section 2.1).

The only design work performed before work was begun on the specification itself,

was to draft the datapath of the modernised ARM6 in the manner shown by Figure 5-2.

(This figure shows the final version, which differs from the first only due to changes

necessary to correct some problems with the design—found in the process of producing

the Phase specification.) Consequently, some modifications to the overall structure of

the Phase specification of the modernised ARM6, like adding the stall instruction class,

had to be made relatively late in the process of producing the specification itself.

However, it is arguable that this involved no more work than would have been required

had the design been developed using a standard methodology, not the methodology of

this thesis. Indeed, it may have involved less work due to the higher level of abstraction

used by the methodology of this thesis. Therefore, that these changes were necessary

indicates only what is to be expected when the methodology of this thesis is used in

the design process, not that it cannot be used in the design process.

Although the Phase specification of the modernised ARM6 created for this thesis

could not be used directly to fabricate the design that it specifies, the translation process

should be relatively straightforward (given the similarities with the original ARM6).

This provides evidence that the design of a processor core and its formal specification

can be developed in conjunction using the methodology of this thesis.

 138

7 Further Applications
The formal specification methodology presented in this thesis was developed apropos of

the ARM6 processor core, but one of its guiding aims was that it should be applicable

to other RISC processor cores as well (see section 2.1). Since the ARM6 processor core

was designed and used for commercial purposes, the suitability of this methodology for

processor cores with industrial levels of complexity has been shown to some extent.

Indeed the level of abstraction that this methodology focuses on requires knowledge of

what would be company confidential implementation details, if the design in question

was intended for commercial purposes. Consequently, to demonstrate the generality of

this methodology, processor cores were selected according to whether the principles

underlying the Programmer’s Model of the processor core differed sufficiently from

those underlying the Programmer’s Model of the ARM6.

7.1 Motivation for Selection of Chosen Processor Cores

The DLX processor core was selected because besides being widely used in some form

or other as the subject for formal verification and formal specification in the literature,

its Programmer’s Model tends to emphasise simple instructions with very few options

(see section 7.2.1). This is in contrast with the Programmer’s Model of the ARM6,

which tends to focus on extracting as much useful work as possible from an instruction

without confusing the purpose of the instruction (see section 3.1.4). Both approaches

can be used to achieve reasonably fast processor cores, though in rather different ways.

The DLX approach maximises parallelism in the Execute stage, often the busiest stage,

and minimises the complexity of the control subsystem, which together give the design

much shorter clock cycles than would be possible otherwise. The ARM6 approach

minimises the number of instructions that would be required to do particular tasks

without unduly increasing clock cycle length, thus reducing the overall time for the task

since fetching instructions from memory can take significant amounts of time.

Unlike the ARM6, the DLX was designed for pedagogic purposes and is described in

various forms in the literature in order to emphasise particular design strategies.

However, this thesis uses the design as originally developed in chapters two and three of

Hennessy and Patterson (1996). Since this treatment lacks an instruction set encoding,

this was obtained from the documentation relating to DLXsim—the DLX simulator

recommended on the home page of its publisher at http://www.mkp.com/. (This ensures

object code compatibility between the executable specification developed for this thesis

 139

and the standard simulator for the DLX.) The control subsystem is also left unspecified,

so this has been extrapolated from one described in Hennessy and Patterson (1994) for

a simplified implementation of the MIPS R2000 processor core (which is developed in

chapters five and six of this book), because the two processor cores are fairly similar.

Despite the above, the DLX processor core used in this thesis is still incomplete in that

the memory model implicit in its memory interface is not very realistic and it provides

no means of raising or handling exceptions. Other designs described in the literature

have resolved these problems in various ways, but no particular solution is standard.

Therefore in order to demonstrate the generality of the methodology of this thesis on

another complete processor, a simplified MIPS R2000 processor core is also used

(inspired in part by the one detailed in Hennessy and Patterson 1994, but not the same).

This forestalls making any arbitrary changes to the original DLX processor core design,

but without necessitating too much extra work given the similarities between the two.

7.2 Overview of the DLX

The DLX processor core supports 32-bit address spaces. It uses a 30-bit address bus for

instruction addresses as all opcodes are 32 bits (one word) in size and must be aligned.

Since it supports byte, halfword (16-bit) and word data transfers, a 32-bit address bus

is used for data accesses. All the data buses (one each for instruction reads, data reads

and data writes) are 32-bit.

Note the DLX presented in Hennessy and Patterson (1996) has an integrated FPU

(Floating-Point Unit), but no implementation details are given on the interaction

between the FPU and the DLX processor core itself. Since the formal specification

developed for the DLX processor core in this thesis therefore does not model the FPU,

the floating-point instructions as well as the multiplication and the division instructions

(which also require the FPU) of the DLX are not considered in this thesis.

7.2.1 Outline of Informal Programmer’s Model Specification

The DLX processor core has one operating mode and supports no exceptions. It has

one register bank of thirty-one general-purpose 32-bit registers numbered R1 – R31;

R0 reads as zero and cannot be altered. The program counter is not directly accessible,

but the return address for subroutines is stored in R31 by the hardware.

 140

The instruction set supported by the DLX is as follows:

• CONTROL INSTRUCTIONS

♦ Flow Modifiers: branch to address only if register is equal (or unequal) to zero;

jump to address (with or without use of link register).

• DATA PROCESSING OPERATIONS

♦ Arithmetic Operations: addition (signed or not); subtraction (signed or not);

load high immediate [moves immediate into upper half of register].

♦ Logical Operations: and; exclusive or; inclusive or.

♦ Set Conditional: compares two registers and sets or clears another according to

whether condition is met. Possible conditions are: less than; greater than; less than

or equal; greater than or equal; equal; not equal.

♦ Shift Operations: shift left logical; shift right arithmetic; shift right logical.

• MEMORY INSTRUCTIONS

♦ Single Data Transfer: load data register from memory (word, halfword signed

or not, byte signed or not); store value (word, halfword, byte) to memory.

Although the DLX has far fewer instructions than the ARM6, some can be synthesized

using R0. For example, following Hennessy and Patterson (1996; pp. 98, 101) a move

from one register to another is simply an add for which one of the sources is R0 and

loading a constant is just an add immediate for which the source register is R0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 x rs SBZ immediate (offset) BEQZ, BNEZ
0 0 0 0 1 x instruction index J, JAL
0 1 0 0 1 x rs SBZ JR JALR

0 0 0 0 0 0 rs rt rd SBZ 1 0 x 0 x x arithmetic register and
SEQ, SNE, SLT, SGT

0 0 0 0 0 0 rs rt rd SBZ x 0 0 1 x 0 logical register and
shift register

0 0 0 0 0 0 rs rt rd SBZ 1 0 0 1 0 1 logical register
0 0 0 0 0 0 rs rt rd SBZ 0 0 0 1 1 1 shift register
0 0 0 0 0 0 rs rt rd SBZ 1 0 1 1 0 x SLE, SGE
0 0 0 0 0 0 rs rt rd SBZ 0 1 0 1 0 x SLEU, SGEU

0 x 1 0 x x rs rt immediate
arithmetic immediate

and SEQI, SNEI,
SLTI, SGTI

0 0 1 1 x x rs rt immediate logical immediate
and load high immediate

0 1 0 1 x 0 SBZ rt rd SBZ sa
0 1 0 1 1 1 SBZ rt rd SBZ sa shift immediate

0 1 1 1 0 x rs rt immediate SLEI, SGEI
1 1 0 1 0 x rs rt immediate SLEUI, SGEUI
1 0 0 x 0 x rs (base) rd immediate (offset) load
1 0 0 0 1 1 rs (base) rd immediate (offset) load
1 0 1 0 0 x rs (base) rd immediate (offset) store
1 0 1 0 1 1 rs (base) rd immediate (offset) store

Figure 7-1: DLX Instruction Set Encoding

 141

The following list explains the abbreviations used in Figure 7-1:

• ‘SBZ’ stands for Should Be Zero.

• ‘sa’ stands for shift amount.

• ‘rd’ is the destination register.

• ‘rs’ is the primary source register. (Note if load high immediate then ‘rs’ SBZ.)

• ‘rt’ is the secondary source register or destination register for immediate instructions.

• ‘SEQ’, ‘SNE’, ‘SLT’, ‘SGT’, ‘SLE’, ‘SGE’, ‘SLEU’, ‘SGEU’, ‘SLEI’, ‘SGTI’,

‘SLEUI’ and ‘SGEUI’ are the mnemonics for set conditional instructions.

• ‘BEQZ’ and ‘BNEZ’ are the mnemonics for branch instructions.

• ‘J’, ‘JAL’, ‘JR’ and ‘JALR’ are the mnemonics for jump instructions.

7.2.2 Outline of Informal Hardware Implementation Specification

The DLX processor core memory interface conforms to the Harvard architecture by

having one read port for connection to an instruction memory and one read-write port

for connection to a data memory.

7.2.2.1 Signal Description

Since Hennessy and Patterson (1996) do not detail the input and the output signals that

form the environment of the DLX processor core, only signals for the memory interface

are considered in this thesis. To make comparison with the ARM6 processor core easier,

the signals used approximate those of the modernised ARM6 (see section 5.3.1).

The DLX processor core uses the 32-bit bus DA to present addresses to data memory

and the 30-bit bus IA to present addresses to instruction memory. The data memory

uses the DIN bus to present data to the DLX, which uses the DOUT bus to present data

to data memory; instruction memory uses the IDIN bus to present opcodes to the DLX.

Transfer type is indicated by DMREQ for data memory accesses and IMREQ for

instruction memory accesses: if HIGH in either case then an access is requested

otherwise no access should take place.

Note that the DLX processor core asserts addressing signals in the same clock cycle as

the associated memory access. DMREQ and IMREQ are asserted in φ2 to indicate

whether the relevant memory should drive the pertinent data bus. However, DA and IA

are asserted in φ1 to give the relevant memory time to prepare the memory access.

142

Fi
gu

re
 7

-2
: D

L
X

 P
ro

ce
ss

or
 C

or
e

D
at

ap
at

h

Se
e

Ta
bl

e
3-

4
fo

r
ke

y
to

 th
e

m
aj

or
 c

om
po

ne
nt

s;
 F

ig
ur

e
7-

2
al

so
 u

se
s

ex
pl

ic
it

pi
pe

lin
e

la
tc

he
s,

la
be

lle
d

w
ith

 a
bb

re
vi

at
io

ns
 o

f
th

e
pi

pe
lin

e
st

ag
es

 th
at

ea
ch

 b
rid

ge
s.

Th
e

co
nv

en
tio

ns
 u

se
d

in
 d

ep
ic

tin
g

bu
se

s w
ith

 a
rr

ow
s a

re
 d

is
cu

ss
ed

 in
 S

ec
tio

n
3.

2.
3.

+

IF
/ID

R
eg

is
te

r
Ba

nk

ID
/E

X
E

A
LU

EX
E/

M
EM

M
EM

/W
B

M
ux

M
ux

M
ux

D
at

a
M

em
or

y
D

IN

In
str

uc
tio

n
M

em
or

y

AL
U

C
TL

4

IR[25:21] IR[20:16]

RWEN[0]
RWA[3:0]

R
S

RT

ID
EC

Fi
el

d
Ex

te
nd

+

ID
IN

PCSRC[0]

=0

ID
EC

A B

D
at

a
Se

le
ct

or
D

O
U

T

D
A

D
at

a
Ex

tra
ct

or

M
uxREGSRC[0]

D
IN

’

D
O

U
T

PCWEN[0]

B
TA

[3
1:

2]

IN
C

[3
1:

2]

PC
[3

1:
2]

IA
[3

1:
2]

Sh
ift

er

M
ux

SA [4
:0

]

M
ux

SH
O

U
T

R
ES

U
LT

SC
TL

IM
M

[4
:0

]

A
LU

O
U

T

D
O

U
TC

TL

D
IN

C
TL

SA
’[

4:
0]

16

RS[31:]

R
D

IM
M

IRIRWRITE[0]

 143

The following signals are also involved in data memory accesses:

• DnRW (Data not Read, Write): This output is LOW to indicate read transfers

and HIGH to indicate write transfers.

• DSIZE (Data SIZE): This output is ‘00’ to indicate a byte transfer,

‘01’ to indicate a halfword transfer and ‘10’ to indicate a word transfer.

Note since the DLX processor core considered in this thesis does not support exceptions

(see section 7.1), the memory system cannot indicate whether an access failed by

driving an ABORT signal, so it is assumed that memory accesses always succeed.

The following signal reflects the general environment of the DLX processor core:

• nRESET (not RESET): This input is taken LOW to indicate that

the processor core should invalidate the instructions in its pipeline and start fetching

from address 0x00000000.

7.2.2.2 Datapath of Processor Core

The design of the DLX processor core datapath used in this thesis may be depicted as

shown in Figure 7-2.

7.2.2.3 Control Subsystem of Processor Core

The activities performed by the DLX processor core divide into five pipelined stages:

1. INSTRUCTION FETCH: presents signals to instruction memory, if appropriate, to fetch

an instruction and latches the instruction, if any, fetched from instruction memory

in reply to these signals.

2. INSTRUCTION DECODE: decodes the instruction for execution in the next clock cycle

and reads any relevant registers.

3. EXECUTE: performs appropriate calculations.

4. MEMORY: if appropriate, presents signals to data memory to perform an access and

then performs access.

5. WRITEBACK: if appropriate, writes the results to pertinent register.

 144

Note that because the DLX processor core does not support instructions that require

multiple clock cycles in the Execute stage, fetch activities occur every clock cycle.

Furthermore, the latches that buffer instructions after fetching, until the Execute stage,

do not need to be considered separately from the pipeline latches that are used to buffer

general signals between pipeline stages. This contrasts with the ARM6 processor core

(see section 3.2.4 and section 5.3.4).

An implementation of the control subsystem of the DLX processor core would require

fewer blocks than the ARM6 processor core, as the following outline shows. (For ease

of comparison, the names used in section 3.2.4 for the ARM6 blocks are also used here

as appropriate.)

• Primary Decode:

♦ IDEC: generates the signals that the Secondary Decode blocks (see below) use

to generate the signals that control the datapath. These signals are generated for

the opcode stored in the IR latch.

• Secondary Decode

♦ ALUCTL: generates the signals that control the ALU.

♦ DCTLBW: generates the DSIZE signal, the signal that controls the data selector

and the signal that controls the data extractor.

♦ SCTL: generates the signals that control the shifter.

♦ SKP: generates the signal that controls the PC multiplexer and the signal that

controls whether the register bank write port is active.

No ‘Instruction Pipeline’ group of control blocks is required, since the pipeline itself

need not be considered apart from the pipeline latches on the datapath, as noted above,

and no state needs to be associated with the instructions in the pipeline. This is because

instruction fetches never abort (see section 7.2.2.1) and branch or jump instructions alter

the program counter in the Instruction Decode stage without invalidating the instruction

resulting from the Fetch stage. The fetched instruction is said to be in the ‘delay slot’ of

the branch or the jump instruction and the compiler, not the hardware, is responsible for

ensuring that it causes no side effects whether the branch is taken or not. If the compiler

inserts a NOP in the delay slot, then the hardware effectively performs a pipeline flush;

but the delay slot may be used more productively as follows:

 145

• To insert an instruction that would otherwise precede the branch instruction,

provided this rearrangement does not corrupt the intended algorithm.

• To insert the instruction that would otherwise be the target of the branch instruction,

provided this rearrangement causes no side effects if the branch is not taken.

• To insert an instruction that would otherwise succeed the branch instruction,

provided this rearrangement causes no side effects if the branch is taken.

It is still worthwhile to break the decoding of an instruction into Primary Decode and

Secondary Decode. However Primary Decode only requires an equivalent of IDEC

since neither exceptions nor instructions that need multiple cycles in the Execute stage

are supported by the DLX processor core. Secondary Decode also requires fewer blocks

because the regularity of the encoding of source registers and the destination register

means that the signals that would otherwise need to be produced by equivalents of

ACTL, BCTL and WCTL can be generated by IDEC directly. Regularity of encoding

also allows direction generation of the signal that controls how an immediate is formed

by IDEC. Nonetheless, encoding also complicates some aspects of Secondary Decode.

For example, bits 31 – 26 determine the function of data processing instructions that

do not use an immediate and bits 5 – 0 the function of those that do, but the encoding of

these bits is sufficiently irregular to require ALUCTL to treat each separately.

Data Hazard An instruction in the Execute stage at tn and the Memory stage at tn + 1,

will not write any result of calculations in the former or any result of

reading memory in the latter into its destination register until tn + 2.

Hence if the instructions that are in the Execute stage at tn + 1 or tn + 2

need either of these results, the relevant register cannot be read as usual

in the corresponding Instruction Decode stage (tn or tn + 1).

Resolution In general, forwarding logic is used so that, irrespective of the value

read at tn or tn + 1 the A or B multiplexers can select the correct value

at tn + 1 and tn + 2. However, values read from memory are not available

until tn + 2 so that an instruction which requires the memory value at tn + 1

must be interlocked in the Instruction Decode stage for one clock cycle.

Store instructions bypass the forwarding logic to obtain the value of

the register to store (the B multiplexer must pass on the immediate value

so that the address can be calculated) and thus must be interlocked in

the Instruction Decode stage for two clock cycles in the worst cases.

 146

Data Hazard The value of the relevant source register of branch instructions and

jump instructions is used in the same Instruction Decode stage it is read.

Hence changes that would be made to this register when the instructions

in the Execute stage and in the Memory stage enter the Writeback stage

would be disregarded.

Resolution Forwarding cannot be used so the branch instruction or jump instruction

must interlock in the Instruction Decode stage for two clock cycles or

one clock cycle, depending on whether the instruction that would alter

the source register is in the Execute stage or the Memory stage.

Table 7-1: Data Hazards of DLX

The DLX processor core has neither structural hazards (due to the relative simplicity of

its instruction set) nor control hazards (since these are exposed by its use of delay slots

to the Programmer’s Model) unlike the modernised ARM6 (see section 5.3.4).

Nevertheless it does possess a number of Read After Write data hazards, as summarised

in Table 7-1.

7.3 Specifying the DLX

The specification of the DLX processor core developed for this thesis (see Appendix A

for the mathematical presentation and Appendix B for the engineering presentation;

no executable presentation was developed) defines the following instruction classes:

• CONTROL INSTRUCTIONS

♦ ctrl: encapsulates flow modifiers (see section 7.2.1).

• DATA PROCESSING OPERATIONS

♦ data: encapsulates arithmetic operations, logical operations, set conditional and

shift operations (see section 7.2.1).

• MEMORY INSTRUCTIONS

♦ load: encapsulates single data transfers from memory to the DLX processor core

(see section 7.2.1).

♦ store: encapsulates single data transfers from the DLX processor core to memory

(see section 7.2.1).

 147

• NULL INSTRUCTIONS

♦ stall: inserted in the Instruction Decode stage by pipeline control logic to interlock

the instruction class associated with the opcode latched in IR.

♦ undef: used when an opcode cannot be decoded into one of the instructions

defined by the Programmer’s Model specification for the DLX processor core

(see section 7.2.1).

The formal specification of the DLX processor core did not require any further changes

to the methodology of this thesis following those made for the formal specification of

the modernised ARM6 (see section 6). Nonetheless the application of this methodology

to the DLX processor core did give rise to some interesting observations:

1. On the DLX processor core, branch instructions and jump instructions are optimised

to modify the program counter in the Instruction Decode stage so that the compiler

does not need to manage more than one branch delay slot. (The compiler is unlikely

to be able to use any additional branch delay slots as productively as it can the first.)

Hence, specification of the instruction fetch pipeline activity must be split between

the Instruction Decode stage and the Execute stage, in contrast to its specification for

the original ARM6 and the modernised ARM6 as part of the Execute stage only.

Although this split could be made by the specification of just the transfer that updates

the program counter in the Instruction Decode stage, this would be rather inelegant;

thus φ1 of the instruction fetch pipeline activity is specified in the Execute stage,

whereas φ2 is specified in the Instruction Decode stage. (To split the specification of

a pipeline activity between two or more pipeline stages is not problematic as long as

it is clear that this does not introduce any conflicts between the transfers required by

the pipeline activity.) Furthermore, to stall the pipeline on the DLX processor core

the stall instruction class itself must be inserted in the Instruction Decode stage,

whereas on the modernised ARM6 processor core it is inserted in the Execute stage.

(In both cases the instruction class that requires the stall, because it cannot proceed to

the Execute stage, is interlocked in the Instruction Decode stage, but in the latter case

it still dictates the pipeline activities for this pipeline stage.)

2. The need for some form of pipeline flushing mechanism on the DLX processor core

is avoided by the use of a delay slot for branch instructions and jump instructions.

This simplifies the control logic required to implement the DLX and in turn

simplifies the formal specification of an implementation of the DLX.

 148

3. As the DLX processor core lacks any instructions that require multiple clock cycles

in the Execute stage, no distinction between instruction steps and instruction classes

needs to be made in its formal specification.

4. The dataflow for data processing instructions that perform shifts rather than

arithmetic or logic, is quite different on the DLX processor core. Hence instead of

using one instruction class for data processing instructions with appropriate options,

two instruction classes could have been used. This would permit the identification,

for each instruction class, of one function to specify solely its distinctive behaviour;

other functions would just specify default behaviours. Yet while this would reflect

the differences in emphasis between the Programmer’s Model of the DLX and that of

the ARM6 (see section 7) most clearly, one instruction class was used to highlight

similarity of usage for all data processing instructions. (Moreover this allows some of

the more advanced techniques of the methodology of this thesis to be exemplified.)

7.4 Overview of the Simplified MIPS R2000

The MIPS R2000 processor core uses one 32-bit address bus and one 32-bit data bus for

accessing 32-bit address spaces. Although it does not use separate buses to perform

instruction accesses and data accesses, the buses are used in alternate clock phases for

instruction accesses and data accesses, so both types of accesses may be performed in

one clock cycle. It supports byte, halfword (16-bit) and word data transfers as well as

word instruction transfers.

The MIPS R2000 discussed in this thesis is based on the simplified version presented in

Hennessy and Patterson (1994), but with various alterations to make it more similar to

the commercial version detailed in the standard reference of Kane and Heinrich (1992).

7.4.1 Outline of Informal Programmer’s Model Specification

The commercial version of the MIPS R2000 processor core has two operating modes

and supports various exceptions. Up to four coprocessors may be attached to it.

However, the version of the MIPS R2000 presented in this thesis supports a subset of

the exceptions supported by the commercial version and has only one operating mode.

Although it does not support coprocessors, it implements two registers extracted from

the system control coprocessor that relate to exception handling.

 149

The register bank organization of the MIPS R2000 is identical to that of the DLX: it has

one register bank of thirty-one general-purpose 32-bit registers numbered R1 – R31;

R0 reads as zero and cannot be altered. The program counter is not directly accessible,

but by default the return address for subroutines is stored in R31 by the hardware.

The instruction set supported by the MIPS R2000 processor core presented in this thesis

and by the commercial version is identical except for coprocessor instructions:

• CONTROL INSTRUCTIONS

♦ Flow Modifiers: branch to address only if condition is passed (and some, with or

without use of link register); jump to address (with or without use of link register);

jump to register (with or without use of specified register as link register).

♦ Mode Modifiers: system call [allows user code to call operating system code];

breakpoint trap [allows user code to call debugging code].

• DATA PROCESSING OPERATIONS

♦ Arithmetic Operations: addition (signed or not); subtraction (signed or not);

load upper immediate [moves immediate into upper half of register].

♦ Logical Operations: and; exclusive or; inclusive or; not or.

♦ Set Conditional: compares register with value and sets or clears another register

according to whether it is less than (signed or not) that value.

♦ Shift Operations: shift left logical; shift right arithmetic; shift right logical.

• MEMORY INSTRUCTIONS

♦ Single Data Transfer: load data register from memory (non-aligned word, word,

halfword signed or not, byte signed or not); store value (non-aligned word, word,

halfword, byte) to memory.

• COPROCESSOR INSTRUCTIONS

♦ Move From Coprocessor: load data register from coprocessor register

[implemented only to access registers extracted from system control coprocessor].

• INSTRUCTION SET EXTENDERS

♦ Reserved Instruction: cause a reserved instruction exception.

Note the main difference between signed operations and unsigned operations is that

overflow exceptions (see below) may be raised with the former but not with the latter.

 150

Further instructions can be synthesized for the MIPS R2000 processor core using R0,

just as with the DLX processor core (see section 7.2.1).

If Figure 7-1 and Figure 7-3 are compared, it is apparent that the instruction sets

supported by the MIPS R2000 and the DLX presented in this thesis are similar.

Although the DLX allows more conditions to be used with set conditional instructions

than the MIPS R2000, the latter allows more conditions to be used with flow modifiers.

Hence, it is fairer to compare the DLX and the MIPS R2000 in terms of support for

conditional instructions in general, rather than set conditional instructions in particular;

and on this basis, both are more or less equal.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 x rs rt immediate (offset) BEQ, BNE
0 0 0 1 1 x rs SBZ immediate (offset) BGTZ, BLEZ

0 0 0 0 0 1 rs x 0 0 0 x immediate (offset) BGEZ, BGEZAL,
BLTZ, BLTZAL

0 0 0 0 1 x instruction index J, JAL
0 0 0 0 0 0 rs SBZ 0 0 1 0 0 0 JR
0 0 0 0 0 0 rs SBZ rd SBZ 0 0 1 0 0 1 JALR
0 0 0 0 0 0 code 0 0 1 1 0 x BREAK, SYSCALL

0 0 0 0 0 0 rs rt rd SBZ 1 0 0 x x x arithmetic register and
logical register

0 0 0 0 0 0 rs rt rd SBZ 0 0 0 1 x 0 shift register
0 0 0 0 0 0 rs rt rd SBZ 0 0 0 1 1 1 shift register
0 0 0 0 0 0 rs rt rd SBZ 1 0 1 0 1 x SLT and SLTU

0 0 1 0 x x rs rd immediate arithmetic immediate,
SLTI and SLTIU

0 0 1 1 x x rs rt immediate logical immediate,
LUI

0 0 0 0 0 0 rs rt rd sa 0 0 0 0 x 0 shift immediate
0 0 0 0 0 0 rs rt rd sa 0 0 0 0 1 1 shift immediate
1 0 0 0 x x rs (base) rd immediate (offset) load
1 0 0 1 0 x rs (base) rd immediate (offset) load
1 0 0 1 1 0 rs (base) rd immediate (offset) load
1 0 1 0 x x rs (base) rd immediate (offset) store
1 0 1 1 1 0 rs (base) rd immediate (offset) store
0 1 0 0 0 0 0 0 0 0 0 rt rd SBZ MFC0

Figure 7-3: MIPS R2000 Instruction Set Encoding

The following list explains the abbreviations used in Figure 7-3:

• ‘SBZ’ stands for Should Be Zero.

• ‘sa’ stands for shift amount.

• ‘rd’ is the destination register.

• ‘rs’ is the primary source register. (Note if load upper immediate then ‘rs’ SBZ.)

• ‘rt’ is the secondary source register or destination register for immediate instructions.

• ‘BEQ’, ‘BNE’, ‘BGTZ’, ‘BLEZ’, ‘BGEZ’, ‘BGEZAL’, ‘BLTZ’, and ‘BLTZAL’ are

the mnemonics for branch instructions.

• ‘J’, ‘JAL’, ‘JR’ and ‘JALR’ are the mnemonics for jump instructions.

 151

• ‘code’ is ignored by the hardware and may be used for software parameters.

• ‘BREAK’, ‘SYSCALL’ are the mnemonics for mode modifiers.

• ‘SLT’, ‘SLTU’, ‘SLTI’, ‘SLTUI’, are the mnemonics for set conditional instructions.

• ‘MFC0’ is the mnemonic for move from coprocessor instruction.

The following eight exceptions may be raised on the MIPS R2000 processor core

presented in this thesis:

1. RESET: occurs when the nRESET input to the processor core is deasserted after being

taken LOW and is used to initialise the MIPS R2000 when first powered up.

2. INSTRUCTION ADDRESS: occurs when a non-aligned instruction access is attempted

(this can only happen because of jump register instructions).

3. INTEGER OVERFLOW: occurs when ALU performs signed operation that resulted in

2’s-complement overflow.

4. SYSTEM CALL: occurs when the processor core executes the SYSCALL instruction.

5. BREAKPOINT TRAP: occurs when the processor core executes the BREAK instruction.

6. RESERVED INSTRUCTION: occurs when the processor core attempts to execute

instructions not defined in Figure 7-3.

7. LOAD ADDRESS: occurs when a non-aligned data load is attempted, except when

instruction explicitly allows non-aligned data access (that is: LWL or LWR).

8. STORE ADDRESS: occurs when a non-aligned data store is attempted, except when

instruction explicitly allows non-aligned data access (that is: SWL or SWR).

Reset is distinguished from other exceptions by the use of 0xbfc00000 as the address

from which instruction pre-fetching is started; the other exceptions use 0xbfc00100.

Therefore all exceptions except for reset must write the appropriate exception code into

the cause register (register 13 in the system control coprocessor):

2. INSTRUCTION ADDRESS = 4

3. INTEGER OVERFLOW = 12

4. SYSTEM CALL = 8

5. BREAKPOINT TRAP = 9

6. RESERVED INSTRUCTION = 10

7. LOAD ADDRESS = 4

8. STORE ADDRESS = 5

 152

and also must write the address of the instruction that directly caused the exception into

the exception program counter or epc (register 14 in the system control coprocessor).

Note if the instruction that directly caused the exception is in the delay slot of a branch,

or a jump, instruction (see section 7.4.2.3), then the BD field of the cause register is set

to indicate this and the epc register is not updated with the address of the instruction in

the delay slot, but with the address of the branch, or the jump, instruction. (This ensures

the value in the epc register can be used, without modification, as the return address,

once the exception has been handled.)

7.4.2 Outline of Informal Hardware Implementation Specification

The MIPS R2000 memory interface conforms to the Harvard architecture by performing

data accesses and instruction accesses in alternate clock phases, so that the same buses

may be used to perform a data access and an instruction access in the same clock cycle.

7.4.2.1 Signal Description

Since Kane and Heinrich (1992) do not detail the input and the output signals that form

the environment of the MIPS R2000 processor core and no “user’s manual” related to it

(which might provide such details) was found, only the signals for the memory interface

are considered in this thesis. (The commercial version of the MIPS R2000 supports

several external interrupts and software interrupts, which this thesis does not consider

because the work involved would be significant and much of it would not provide

extra evidence that the methodology of this thesis is applicable to RISC processor cores

other than the ARM. In particular, it would entail consideration of two operating modes

and further system control coprocessors.)

UNIFIED BUSES SEPARATE BUSES

 DATA MEMORY INSTRUCTION MEMORY

ADDR DA IA

MREQ DMREQ IMREQ

nRW DnRW

SIZE DSIZE

DATA DIN IDIN

DATA DOUT

Table 7-2: Unified Bus Equivalents of MIPS R2000 Memory Signals

 153

Although the MIPS R2000 uses the same signals to perform both data accesses and

instruction accesses, to ease comparison with the DLX and the ARM6 processor cores,

the MIPS R2000 is presented as using the same signals as discussed in section 7.2.2.1

for the DLX (which approximate the signals of the modernised ARM6). Table 7-2

shows the relationship between the signals defined because separate buses were used,

for data accesses and instruction accesses, and the signals that would be defined if

unified buses were used.

The MIPS R2000 splits memory accesses over three clock phases, and as illustrated in

Table 7-3, data accesses and instruction accesses are offset by one clock phase such that

the equivalent signals using unified buses may be driven in each clock phase by one or

the other access, not both. A TLB is a Translation Lookaside Buffer, which maps

virtual addresses presented by the MIPS R2000 into physical addresses in memory.

Since the MIPS R2000 discussed in this thesis does not include coprocessor support for

accessing the TLB, it is referred to for timing purposes only.

 tn φ1 tn φ2 tn + 1 φ1 tn + 1 φ2

I-SIDE READ TLB I-CACHE I-CACHE

OUTPUTS IA IMREQ

[DnRW = 0]

[DSIZE = 01]

INPUTS IDIN

D-SIDE READ TLB D-CACHE D-CACHE

OUTPUTS DA DMREQ

DnRW = 0

DSIZE

INPUTS DIN

D-SIDE WRITE TLB D-CACHE D-CACHE

OUTPUTS DA DMREQ

DnRW = 1

DSIZE

DOUT

INPUTS

Table 7-3: Timing of Signals for MIPS R2000 Memory Accesses

154

Fi
gu

re
 7

-4
: M

IP
S

R
20

00
 P

ro
ce

ss
or

 C
or

e
D

at
ap

at
h

Se
e

Ta
bl

e
3-

4
fo

r
ke

y
to

 th
e

m
aj

or
 c

om
po

ne
nt

s;
 F

ig
ur

e
7-

4
al

so
 u

se
s

ex
pl

ic
it

pi
pe

lin
e

la
tc

he
s,

la
be

lle
d

w
ith

 a
bb

re
vi

at
io

ns
 o

f
th

e
pi

pe
lin

e
st

ag
es

 th
at

ea
ch

 b
rid

ge
s.

Th
e

co
nv

en
tio

ns
 u

se
d

in
 d

ep
ic

tin
g

bu
se

s w
ith

 a
rr

ow
s a

re
 d

is
cu

ss
ed

 in
 S

ec
tio

n
3.

2.
3.

+

IF
/ID

Re
gi

st
er

B
an

k

ID
/E

X
E

A
LU

EX
E/

M
EM

M
EM

/W
B

M
ux

M
ux

M
ux

D
at

a
M

em
or

y
D

IN

In
str

uc
tio

n
M

em
or

y

AL
U

C
TL

4

IR[25:21] IR[20:16]

RWEN[0]
RWA[3:0]

R
S

RT

ID
EC

Si
gn

Ex
te

nd

Sh
ift

Le
ft

2

+

PCSRC[1:0]

CO
N

D

ID
EC

V
[0

]

IN
T

D
at

a
Se

le
ct

or
D

O
U

T

D
at

a
Ex

tra
ct

or

M
uxREGSRC[0]

D
IN

’

D
O

U
T

IR

M
ux

M
ux

M
ux

Sh
ift

er

M
ux

SA [4
:0

]

IM
M

[1
0:

6]
IM

M

BA

A[4:0]

M
ux

SH
O

U
T

R
ES

U
LT

SC
TL

IN
T

A
LU

O
U

T

EPC[31:2]

IN
T

VTR[31:2]

IN
T

IN
C

[3
1:

2]

IA
[3

1:
2]

A[31:2]

A[1:0]

IN
T

B
TA

[3
1:

2]

D
A

IM
M

’[
31

:2
]

D
O

U
TC

TL

D
IN

C
TL

SA
’[

4:
0]

16

IN
C

A

IN
C

B

EA

D
IN

C
TL

D
O

U
TC

TL

M
ux

0[
1:

0]

D
IN

C
TL

M
ux

PC
’[

31
:2

]

PC
[3

1:
2]

ID
IN

IN
T CAUSE

IN
T

IN
T

EA[1:0]

EA[31:2]

 155

The MIPS R2000 detects address exceptions (see section 7.4.1) by itself, thus to allow

the memory system to indicate that an access failed by driving an ABORT signal,

would introduce unnecessary complications, without providing much more evidence of

the applicability of the methodology of this thesis to RISC processor cores other than

the ARM.

The following signal reflects the general environment of the DLX processor core:

• nRESET (not RESET): This input is taken LOW to indicate that

the processor core should invalidate the instructions in its pipeline and start fetching

from address 0xbfc00000.

7.4.2.2 Datapath of Processor Core

The design of the datapath of the MIPS R2000 processor core presented in this thesis

may be depicted as shown in Figure 7-4. Note the EA adder may be used to calculate

data addresses in φ1 and instruction addresses in φ2, thus preventing the necessity for

two separate adders.

7.4.2.3 Control Subsystem of Processor Core

The activities performed by the MIPS R2000 divide into five pipelined stages:

1. INSTRUCTION FETCH: presents signals to instruction memory, if appropriate, to fetch

an instruction.

2. INSTRUCTION DECODE: latches instruction, if any, fetched from instruction memory

in response to the signals asserted in the Instruction Fetch stage and decodes it for

execution in the next clock cycle; reading any relevant registers.

3. EXECUTE: performs appropriate calculations and, if appropriate, presents address to

data memory to prepare for an access in the Memory stage.

4. MEMORY: if appropriate, presents signals to data memory to perform an access and

then performs access.

5. WRITEBACK: if appropriate, writes the results to pertinent register.

Note that as with the DLX processor core (see section 7.2.2.3), fetch activities occur

every clock cycle.

 156

An implementation of the control subsystem of the MIPS R2000 discussed in this thesis

would require fewer blocks than the ARM6, as the following outline shows. (For ease

of comparison, the names used in section 3.2.4 for the ARM6 blocks are also used here

as appropriate.)

• Instruction Pipeline:

♦ PIPESTAT: records whether the opcode latched in the IR latch this clock cycle

should be flushed because an exception was taken in the previous clock cycle.

• Primary Decode:

♦ IDEC: generates the signals that the Secondary Decode blocks (see below) use

to generate the signals that control the datapath. These signals are generated for

the opcode stored in the IR latch.

♦ INT: detects exceptions. This block indicates when to handle exceptions

(recording status information as needed), prioritising if more than one is pending.

It is also responsible for updating the cause and the epc registers.

• Secondary Decode

♦ ALUCTL: generates the signals that control the ALU and the EA adder.

♦ DCTLBW: generates the DSIZE signal, the signal that controls the data selector

and the signal that controls the data extractor.

♦ SCTL: generates the signals that control the shifter.

♦ SKP: generates the signal that controls the PC multiplexer and the signal that

controls whether the register bank write port is active.

This outline is very similar to that for the DLX in section 7.2.2.3; the main difference

being the addition of the PIPESTAT and the INT control blocks for exception handling.

(The comments made for the DLX, in this section, on the use of branch delay slots and

the regularity of instruction encoding apply equally to the MIPS R2000.) In contrast to

the DLX (see Table 7-1), the MIPS R2000 has only one Read After Write data hazard,

as summarised in Table 7-4, and has no requirement for logic to interlock the pipeline

because unlike the DLX it makes:

• use of delay slots for load instructions,

• use of a separate adder, rather than the ALU, to calculate store addresses,

• branch instructions and jump instructions not bypass forwarding paths.

 157

Data Hazard An instruction in the Execute stage at tn and the Memory stage at tn + 1,

will not write any result of calculations in the former or any result of

reading memory in the latter into its destination register until tn + 2.

Hence if the instructions that are in the Execute stage at tn + 1 or tn + 2

need either of these results, the relevant register cannot be read as usual

in the corresponding Instruction Decode stage (tn or tn + 1).

Resolution In general, forwarding logic is used so regardless of the value read at tn

or tn + 1 the A, or B multiplexers can select the correct value at tn + 1

and tn + 2. However values read from memory are not available until tn + 2

so an instruction at tn + 1 is said to be in the ‘delay slot’ of a load at tn and

it is the compiler, not the hardware, that is responsible for ensuring that

the instruction at tn + 1 does not require the value read from memory.

(The only exception to this concerns the lwl and the lwr instructions,

since forwarding of the value from the writeback stage to the extractor

is implemented to handle this case.) Although the compiler may insert

a NOP in the delay slot such that the hardware effectively interlocks,

the delay slot may be used more productively by rearranging

instructions around the load instruction to insert one that does not use

the value it reads from memory, provided that the intended algorithm

is not corrupted.

Table 7-4: Data Hazards of MIPS R2000

The MIPS R2000 has no control hazards due to flow modifiers, since these are exposed,

as with the DLX, to the Programmer’s Model by the use of delay slots. However, it has

one control hazard due to how exceptions are handled: the exception instruction class

enters the Execute pipeline stage when the instruction that caused the exception leaves

the pipeline stage in which the exception was detected. Therefore, the instruction that

caused the exception and the instruction that was fetched while the exception occurred

must be flushed.

7.5 Specifying the Simplified MIPS R2000

The following instruction classes were used to specify the MIPS R2000 developed for

this thesis:

• CONTROL INSTRUCTIONS

♦ ctrl: encapsulates flow modifiers (see section 7.4.1).

 158

♦ excp: encapsulates mode modifiers and exceptions (see section 7.4.1).

• DATA PROCESSING OPERATIONS

♦ data: encapsulates arithmetic operations, logical operations, set conditional and

shift operations (see section 7.4.1).

• MEMORY INSTRUCTIONS

♦ load: encapsulates single data transfers from memory to the MIPS R2000

(see section 7.4.1).

♦ store: encapsulates single data transfers from the MIPS R2000 to memory

(see section 7.4.1).

• COPROCESSOR INSTRUCTIONS

♦ mfc: encapsulates reading the cause and the epc registers (see section 7.4.1).

• NULL INSTRUCTIONS

♦ unexec: inserted in the Instruction Decode stage by pipeline control logic to flush

the instruction class associated with the opcode latched in IR.

Most of the differences between this list of instruction classes and the list presented for

the DLX in section 7.3 relate to the support the MIPS R2000 provides for exceptions.

Since the DLX discussed in this thesis does not support exceptions, no equivalents for

the excp, the mfc and the unexec instruction classes were defined for the DLX.

Furthermore, no equivalent for the undef instruction class of the DLX was defined for

the MIPS R2000 because the MIPS R2000 uses the excp instruction class to decode

reserved instructions (since if the reserved instruction enters the Execute pipeline stage,

an exception should be raised).

It was not necessary to define an equivalent for the stall instruction class of the DLX,

because the MIPS R2000 does not need to use pipeline interlocks to resolve hazards

(see section 7.2.2.3).

As for the formal specification of the DLX processor core, the formal specification of

the MIPS R2000 processor core did not require further changes to the methodology of

this thesis following those made for the formal specification of the modernised ARM6

(see section 6). Of the observations cited in section 7.3, in relation to the application of

this methodology to the DLX processor core, 3 and 4 are relevant to the application of

this methodology to the MIPS R2000 processor core as well.

 159

Only the mathematical presentation of the formal specification of the MIPS R2000

processor core was created, but this was sufficient to make the following observations:

1. The DLX presented in section 7.2 and the MIPS R2000 are sufficiently similar that

the forwarding logic can be specified for both using the same function. Other logic,

and some of the transfers each makes, were sufficiently similar that the specification

for the DLX could be adapted for the MIPS R2000 in each case. This illustrates that

the specifications created with the methodology of this thesis can be used to compare

the features of different designs.

2. Although the value on the PC[31:2] bus is pipelined in case the pipeline control logic

needs to update the epc register because an exception has occurred, it was convenient

to specify the pipelining on the datapath, rather than as part of pipeline control logic.

Not only did this allow the latches involved in the pipelining to be abstracted away

in favour of the pipeline latches that are used to buffer general signals between

pipeline stages, but it clarified the relation between the value selected for PC'[31:2]

and the instruction class in the Execute stage. (The ctrl instruction class forces

selection of the value of PC[31:2] associated with itself and not that associated with

the instruction class in the Instruction Decode stage; see section 7.4.1.)

3. The version of the MIPS R2000 developed for this thesis accurately models much of

the behaviour that would be expected of the commercial version of the MIPS R2000

processor core in relation to memory accesses. In particular, it models the timing of

the signals involved in memory accesses correctly to the level of the clock phase.

Therefore, the successful application of the methodology of this thesis in specifying

the version of the MIPS R2000 presented in this thesis shows that this methodology

is not limited to processor cores that perform memory accesses in the same way as

the ARM6, or in some unrealistic fashion (like the DLX). (The main simplification in

the memory model implemented by the MIPS R2000 presented in this thesis

concerns not providing any means for the memory system to indicate when an access

should not occur. However, the alterations required to eliminate this simplification

would be similar to those made to the specification of the modernised ARM6 to add

support for data aborts, because the simplification was made more to reduce the work

needed to specify pipeline control rather than to reduced the work needed to specify

memory accesses.)

4. Although the exception model of the commercial version of the MIPS R2000

processor core was not completely implemented for the version of the MIPS R2000

 160

developed for this thesis, most of its characteristic features were adopted in one form

or another. For example: the use of the cause register instead of exception vectors for

all but the reset exception; the relation between the instruction that was the cause of

the exception and the return address that is stored; as well as that the return address

is stored in a dedicated register (the epc)—not the default link register. Such features

are quite different from the exception model used by both the original ARM6 and

the modernised ARM6, yet no modifications were required to the methodology of

this thesis when the mathematical presentation of a processor core with these features

was created. This provides further evidence of the applicability of this methodology

to RISC processor cores other than the ARM.

7.6 Summary

While no engineering presentation was created for the specification of the MIPS R2000

processor core, no problems were encountered when the methodology outlined in

section 2.3.2 was used to create one for the specification of the DLX processor core.

Likewise, no executable presentations were created for either of these specifications,

but as the development of both specifications was straightforward, at least in terms of

applying the methodology of this thesis to create the mathematical presentations,

creating an executable presentation of either specification should not prove difficult.

Indeed the Standard ML executable presentation developed for the modernised ARM6

implements every feature of the specifications of both the DLX and the MIPS R2000

(like explicit pipeline buffers) that would require alterations in the reusable modules of

its general simulator.

No changes were required to the general methodology of this thesis so it could be used

to create the formal specification of the DLX and the MIPS R2000 processor cores

presented in this thesis. This serves to illustrate the applicability of this methodology

to all RISC processor cores and not just one example.

Only an informal Programmer’s Model specification such as that given in section 7.2.1,

or section 7.4.1, and the datapath schematics of Figure 7-2 and Figure 7-4 were used

to develop the formal specification of the DLX and the MIPS R2000 processor cores—

no Hardware Implementation specification was used. This shows that the methodology

of this thesis can be used for designing processor cores, rather than just for formalising

a particular design after it has been created.

 161

8 Conclusions
Four different processor cores were specified using the methodology of this thesis for

this thesis. In part this was possible because of the similarities between the DLX and

the MIPS R2000 on the one hand and the original ARM6 and the modernised ARM6 on

the other. Nevertheless, each of these processor cores had particular features that made

the application of the methodology of this thesis worthwhile (see section 4, section 6,

section 7.3 and section 7.5).

The Phase specification of the original ARM6 describes the original ARM6 in terms of

the same entities as the ARM2x Block Specifications (albeit with tristate buffers and

other logic that is not readily synthesizable replaced with equivalent logic that is),

which describe the original ARM6 at the RTL level of abstraction. This illustrates that,

as required by its first aim (see section 2.1), the methodology of this thesis may be used

to create formal specifications that model accurately those aspects of a hardware design

essential to the correct operation of a processor core at the RTL level of abstraction.

Evidence that the methodology of this thesis is applicable to all RISC processor cores,

and thus meets its second aim, is supplied by the mere fact of its successful application

to four different processor cores. Moreover, the development of three presentations—

the mathematical for formal verification, the engineering to minimise the prerequisite

formal methods background and the executable to facilitate automation of simulation—

makes it clear how the methodology of this thesis meets its third and fourth aims.

Consequently, the methodology of this thesis is suitable for the formal specification of

processor cores at the RTL level of abstraction.

The methodology of this thesis might be further developed as follows:

• An algorithm could be created to automate the process of converting between each of

the different presentations, and in particular, from the engineering to the executable.

If all but the initial presentation of the specification of a processor core were created

by the application of this algorithm to the initial presentation, then formal proof of

the correctness of this algorithm would be sufficient to show that each presentation

is identical to the other presentations of the specification of a processor core.

• Although the Phase specifications that may be generated with the methodology of

this thesis and the corresponding Hardware Implementation specifications are of

 162

slightly different levels of abstraction (see section 2.2), it is not inconceivable that

an algorithm could be created to generate a Hardware Implementation specification

(particularly if described in Verilog or some other hardware description language)

from a Phase specification. Again, formal proof of the correctness of this algorithm

would be sufficient to demonstrate that the Hardware Implementation specification

and the Phase specification are consistent with each other.

• The transfers, as well as the interpretations of the associated uninterpreted functions,

which constitute the Phase specifications that can be created with the methodology of

this thesis, could be readily translated into the proprietary property languages of

commercial model checking tools. The relevant tool could then be used to check

equivalence of the formal specification created using the methodology of this thesis

and an existing synthesisable RTL Hardware Implementation specification.

• Although only latch based designs that required clock cycles of two distinct phases

were considered in this thesis, the methodology of this thesis can be easily adapted to

flip-flop based designs that operate on the positive or the negative edge of a clock

by considering only one distinct phase. (In which case, the mechanism described for

the simulation of updates to sequential logic in section 2.3.3 behaves similarly to

the non-blocking assignment of Verilog.)

• Processor cores with complex microarchitectures comprised of several components,

such as separate units to perform memory fetches independently of the main unit that

performs the integer operations, are becoming more frequent. The methodology of

this thesis could be adapted for such processor cores by stipulating each component

requires separate specification in the same way that the datapath, the datapath control

and the pipeline control do. It is likely that other changes would be necessary also,

because such processor cores are quite different from those specified for this thesis.

 163

Bibliography
Anderson, Allan H. and Shaw, Gary A. (1997) “Executable Requirements and

Specifications” in Journal of VLSI Signal Processing, Vol. 15, pp. 49-61.

ARM (1991) ARM6 Design Documentation.

ARM (1991) ARM2x Block Specifications.

ARM (1993) ARM DDI0001F: ARM6 Data Sheet.

ARM (1996) ARM DDI0004E: ARM610 Data Sheet.

Bergeron, Janick (2000) Writing Testbenches: Functional Verification of HDL Models.

Kluwer Academic Publishers.

Bickford, M. (2000) “Verifying a Pipelined Microprocessor” in The 19th Digital

Avionics Systems Conference, Vol. 1, pp. 1A5/1-1A5/8.

Blumenröhr, C. and Eisenbiegler, D. (1997) “An Efficient Representation for Formal

Synthesis” in 10th Tenth International Symposium on System Synthesis, pp. 9-15.

Burch, J. R. and Dill, D. L. (1994) “Automatic verification of pipelined microprocessor

control” in Computer-Aided Verification, Vol. 818 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 68-80.

Chander, Subash and Vaideeswaran (2001) “Addressing Verification Bottlenecks of

Fully Synthesized Processor Cores using Equivalence Checkers” in Proceedings of

ASP-DAC 2001, pp. 175-180.

Coe, Michael (1994). Results from Verifying a Microprocessor. Master Thesis,

Laboratory for Applied Logic, University of Idaho at ftp://lal.cs.byu.edu/pub/hol/

lal-papers/coe.thesis.ps.

Cohn, A. (1988) “A Proof of Correctness of the Viper Microprocessor: The First Level”

in VLSI Specification, Verification and Synthesis, pp. 27-72.

Fox, A. (2002) Formal Verification of the ARM6 micro-architecture. Technical Report

No. 548, Computer Laboratory, University of Cambridge.

Furber, S. (1989) VLSI RISC Architecture and Organization. Marcel Dekker.

Heath, J. R. and Durbha, S. (2001) “Methodology for Synthesis, Testing, and

Verification of Pipelined Architecture Processors from Behavioural-level-only

HDL code and a Case Study Example” in Proceedings of the 2001 IEEE

SoutheastCon Conference, pp. 143-149.

Hennessy, J. L. and Patterson, D. A. (1996) Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers.

Hennessy, J. L. and Patterson, D. A. (1994) Computer Organization and Design: The

Hardware/Software Interface. Morgan Kaufmann Publishers.

 164

Huggins, James and van Campenhout, David (1998). “Specification and Verification of

Pipelining in the ARM2 RISC Microprocessor” in ACM Transactions on Design

Automation of Electronic Systems, Vol. 3, No. 4, pp. 563-580.

Hunt Jr., W. A. (1994) FM8501: A Verified Microprocessor. Lecture Notes in

Computer Science, Vol. 795, Springer-Verlag.

Kam, T.; Rawat, S.; Kirkpatrick, D.; Roy, R.; Spirakis, G. S.; Sherwani, N. and

Peterson, C. (2000) “EDA Challenges Facing Future Microprocessor Design” in

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,

Vol. 19, No. 12, pp. 1498-1506.

Kane, G. and Heinrich, J. (1992) MIPS RISC Architecture. Prentice-Hall.

Kroening, Daniel; Paul, Wolfgang and Mueller, Silvia (2000). Proving the Correctness

of Pipelined Micro-Architectures at http://www-wjp.cs.uni-sb.de/projects/

comparch/papers/pipe.ps.

Krstic, S.; Cook, B.; Launchbury, J. and Matthews, J. (1999) Top-level Refinement in

Processor Verification at http://www.cse.ogi.edu/PacSoft/projects/Hawk/

papers/kclm.ps.

Levitt, J. and Olukotun, K. (1997). “Verifying Correct Pipeline Implementation for

Microprocessors” in Proceedings of ICCAD 1997, pp. 162-170.

Pajak, D. (2003) Specification of Microprocessor Instruction Set Architectures: ARM

Case Study. PhD Thesis (submitted), School of Computing, University of Leeds.

Sawada, J. (1999) Formal Verification of an Advanced Pipelined Machine. PhD Thesis,

The University of Texas at http://www.cs.utexas.edu/users/boyer/

sawada/dissertation/diss.ps.gz.

Seal, D. (ed.) and Hagger, D. (2000) ARM Architecture Reference Manual.

Addison-Wesley Pub.

Srivas, M. K. and Miller, S. P. (1996) “Applying Formal Verification to the AAMP5

Microprocessor: A Case Study in the Use of Formal Methods” in Formal Methods

in System Design, Vol 8, No. 2, pp. 153-188.

Tahar, S. and Kumar, R. (1998). “A Practical Methodology for the Formal Verification

of RISC Processors” in Formal Methods in Systems Design, Vol 13, No. 2,

pp. 159-225.

Wilding, M.; Greve, D. and Hardin, D. (2001) “Efficient Simulation of Formal

Processor Models” in Formal Methods in System Design, Vol. 18, pp. 233-248.

Windley, P. (1995) Formal Modelling and Verification of Microprocessors at

ftp://lal.cs.byu.edu/pub/hol/lal-papers/formal.uP.modeling.ps.

 165

Appendix A:
DLX Formal Specification—Mathematical Presentation

See section 7.2 for an informal outline of the DLX processor core.

A.1 Datapath Specification

Terms Used

This specification uses the following terms from the Datapath Control Specification:

• Functional Units: fALU; fEQZ; fEXTRACTOR; fFIELD; fSELECTOR; fSHIFTER.

• Latches: SA[4:0].

• Multiplexers: fA; fB; fPC; fRD; fRESULT; fSA'.

• Register Read Addressors: fRSA; fRTA.

• Register Write Addressors: RWA[4:0].

• Register Write Enablers: RWEN[0].

• Write Signal: fPCWEN.

The terms that are used in the transfers defined by this specification are summarised in

the following table.

Term Type Valid Description

A latch φ2 Used to buffer the result of the fA multiplexer such that

the ALU can use it as an input.

ALUOUT bus φ2 Output of the fALU functional unit indicating the result of

the ALU operation.

B latch φ2 Used to buffer the result of the fB multiplexer such that

the ALU or the shifter can use it as an input.

DA output φ1 Used to drive address for data memory read-write port.

Note the specification refers to DA in φ2 only to indicate

the association between the data memory access in φ2

and the address asserted using DA in φ1.

DIN input φ2 Provides the data, if any, requested by the DLX using

the data memory read-write port.

 166

Term Type Valid Description

DOUT output φ2 Used to drive the data, if any, necessary for the operation

of the data memory read-write port this clock cycle.

IA[31:2] output φ1 Used to drive address for instruction memory read port.

Note the specification refers to IA in φ2 only to indicate

the association between the instruction memory access

in φ2 and the address asserted using IA in φ1.

IDIN input φ2 Provides the opcode, if any, requested by the DLX using

the instruction memory read port.

IMM bus φ2 Output of the fFIELD multiplexer indicating the immediate,

if any, suitable for the instruction class being specified.

INC[31:2] latch φ2 Used to buffer an incremented value of PC for use in

determining its new value and to enable a return address

to be saved for those jump instructions that need one.

IR latch φ2 Used to buffer opcode from last Instruction Fetch stage

for the current Instruction Decode stage.

PC[31:2] latch φ1 Used to buffer output of fPC multiplexer for driving IA in

the next Instruction Fetch stage.

RESULT bus φ2 Output of the fRESULT multiplexer used to selects either

the ALU output or the shifter output, as appropriate for

the instruction class being specified.

RS bus φ2 Output of the register bank that presents the value for

read port RS.

RT bus φ2 Output of the register bank that presents the value for

read port RT.

SA'[4:0] bus φ2 Output of the fSA' multiplexer used to provide the input

to the shifter that determines the amount it shifts by.

SHOUT bus φ2 Output of the fSHIFTER functional unit indicating the result

of the ALU operation.

 167

The transfers defined by this specification are summarised in the following table.

Transfer Phase Description

[] []
1

31: 2 PC 31: 2ϕ←IA IF φ1 Present address latched in PC[31:2]

to instruction memory.

[] []
1

INC 31: 2 PC 31: 2 1ϕ← + IF φ1 Increment value latched in PC[31:2]

and latch result in INC[31:2].

[]
2

I- MEM 31: 2ϕ ← IDIN IA IF φ2 Instruction memory presents value at

location IA[31:2] on IDIN bus.

[]()
[] ()

2 PC

0 1
PC 31: 2 f

PCWEN

ϕ

= ⇒
← …

IF φ2 Select next address for presentation

to instruction memory and latch in PC

if appropriate.

()
2 FIELDIMM fϕ← … ID φ2 Extract appropriate immediate from

opcode being decoded; sign-extend it

or zero-extend it as necessary.

()
2 RSAREG fRS ϕ← … ID φ2 Register Bank read port RS presents

requested value on RS bus.

()
2 RTAREG fRT ϕ← … ID φ2 Register Bank read port RT presents

requested value on RT bus.

()
2 shifterfSHOUT ϕ← … EXE φ2 Shifter presents its result on SHOUT.

()
2 ALUfALUOUT ϕ← … EXE φ2 ALU presents its result on ALUOUT.

()
2 RESULTfRESULT ϕ← … EXE φ2 Result of shifter or result of ALU

selected as result of instruction class

as appropriate.

()
2 selectorfDOUT ϕ← … EXE φ2 Select data to be stored from RT,

buffered by ID/EXE pipeline latch,

and zero-pad it to word as necessary.

[]
1

EXE MEM ALUOUTϕ←DA MEM φ1 Present address driven on ALUOUT,

buffered by EXE/MEM pipeline latch,

to data memory.

[]
1

EXE MEM DOUTϕ←DOUT MEM φ1 Present value driven on DOUT,

buffered by EXE/MEM pipeline latch,

to data memory.

 168

Transfer Phase Description

[]
2

D- MEM ϕ←DA DOUT MEM φ2 Data memory updates location DA

with value presented on DOUT bus.

[]
2

D- MEMϕ←DIN DA MEM φ2 Data memory presents value at

location DA[31:2] on DIN bus.

()
2 extractorfDIN ϕ

′← … MEM φ2 Extract requested data from word that

data memory returned; sign-extend it

or zero-extend it as necessary.

[]()
[] ()

1 RD

0 1
REG 4 : 0 f

RWAEN
RWA ϕ

= ⇒

 ← …

WB φ1 If appropriate update specified register

with value selected from the DIN' bus

or the ALUOUT bus, both buffered by

MEM/WB pipeline latch.

Dataflow

Data Processing

IF []
2

I- MEM 31: 2ϕ ← IDIN IA

[] []
2

PC 31: 2 INC 31: 2ϕ←

ID []
2

REG 25 : 21RS IRϕ ←

[]
2

REG 20 :16RT IRϕ ←

[] []
[]2

16

16

15 15 : 0IMM
0 15: 0

IR IR
IRϕ

 ++ ←
++

 1

IF [] []
1

31: 2 PC 31: 2ϕ←IA

[] []
1

INC 31: 2 PC 31: 2 1ϕ← +

EXE []()
2 shifterf B, 4 : 0SHOUT SAϕ

′←

()
2 ALUf A,BALUOUT ϕ←

2

ALUOUTRESULT SHOUTϕ
 ←

 1

MEM

WB []
[]

[]
1

REG MEM WB 15 :11
MEM WB

REG MEM WB 20 :16

IR
RESULT

IR ϕ

 ←

 2

 169

Load

IF []
2

I- MEM 31: 2ϕ ← IDIN IA

[] []
2

PC 31: 2 INC 31: 2ϕ←

ID []
2

REG 25 : 21RS IRϕ ←

[] []
2

16IMM 15 15 : 0IR IRϕ← ++

IF [] []
1

31: 2 PC 31: 2ϕ←IA

[] []
1

INC 31: 2 PC 31: 2 1ϕ← +

EXE ()
2 ALUf A,BALUOUT ϕ←

2
RESULT ALUOUTϕ←

MEM []
1

EXE MEM ALUOUTϕ←DA

[]
2

D- MEMϕ←DIN DA

()
2 extractorfDIN ϕ

′← DIN

WB [] []
1

REG MEM WB 20 :16 MEM WBIR DINϕ
 ′ ←

Store

IF []
2

I- MEM 31: 2ϕ ← IDIN IA

[] []
2

PC 31: 2 INC 31: 2ϕ←

ID []
2

REG 25 : 21RS IRϕ ←

[]
2

REG 20 :16RT IRϕ ←

[] []
2

16IMM 15 15 : 0IR IRϕ← ++

IF [] []
1

31: 2 PC 31: 2ϕ←IA

[] []
1

INC 31: 2 PC 31: 2 1ϕ← +

EXE ()
2 ALUf A,BALUOUT ϕ←

2
RESULT ALUOUTϕ←

[]()
2 selectorf ID EXEDOUT RTϕ←

 170

MEM []
1

EXE MEM ALUOUTϕ←DA

[]
1

EXE MEM DOUTϕ←DOUT

[]
2

D- MEM ϕ←DA DOUT

WB

Control

IF []
2

I- MEM 31: 2ϕ ← IDIN IA

[]
[]

[] []
[]

2

INC 31: 2
PC 31: 2 31: 2 IF ID 31: 2

31: 2
IMM INC

RS
ϕ

 ← +

 3

ID []
2

REG 25 : 21RS IRϕ ←

[] []
[] []2

6

16

25 25 : 0
IMM

15 15 : 0

IR IR

IR IRϕ

 ++ ←
++

 4

IF [] []
1

31: 2 PC 31: 2ϕ←IA

[] []
1

INC 31: 2 PC 31: 2 1ϕ← +

EXE []
1

B ID EXE 31: 2INCϕ ←

2
ALUOUT Bϕ←

2
RESULT ALUOUTϕ←

MEM

WB [] []{ }
1

REG 11111 MEM WB ALUOUTϕ← 5

Stall

IF []{ }
2

30PC 31: 2 0ϕ← 6

ID

IF [] []
1

31: 2 PC 31: 2ϕ←IA

EXE

MEM

WB

 171

Undefined

IF []
2

I- MEM 31: 2ϕ ← IDIN IA

[] []
2

PC 31: 2 INC 31: 2ϕ←

ID

IF [] []
1

31: 2 PC 31: 2ϕ←IA

[] []
1

INC 31: 2 PC 31: 2 1ϕ← +

EXE

MEM

WB

A.2 Datapath Control Specification

Terms Used

This specification uses the following terms from the Datapath Specification:

• Buses: ALUOUT, IMM, RESULT, RS, RT, SA'[4:0], SHOUT.

• Inputs: DIN, IDIN.

• Latches: A, B, INC[31:2], IR, PC[31:2].

• Outputs: DA, DOUT, IA[31:2].

and the following terms from the Pipeline Control Specification:

• Buses: FWDA, FWDAEN[0], FWDB, FWDBEN[0]

• Inputs: NRESET[0].

The terms that are used in the transfers defined by this specification are summarised in

the following table.

 172

Term Type Valid Description

RWA[4:0] bus φ1 Used to drive address for register bank write port and

thus determines the register updated when a write occurs.

RWEN[0] bus φ1 Used to drive enable for register bank write port and

thus determines whether a write occurs.

SA[4:0] latch φ2 Used to buffer the relevant bits of the instruction opcode

for determining an immediate shift amount.

The terms that are used in the functions defined by this specification are summarised in

the following table. (Note unless stated otherwise, all values in referred to in the table

are 32-bit.)

Function Description

()ADD ,operand modifier

alu_result

=

Sum of operand and modifier—no overflow.

()SUB ,operand modifier

alu_result

=

Difference of operand and modifier—no overflow.

()NZ operand flags= Tests operand and returns 2-bit value: flags[N] =

bit 31 of operand (indicates if operand is negative);

flags[Z] = 0 unless operand is equal to zero.

()AND ,operand modifier

alu_result

=

Bitwise AND of operand and modifier.

()EOR ,operand modifier

alu_result

=

Bitwise Exclusive OR of operand and modifier.

()ORR ,operand modifier

alu_result

=

Bitwise inclusive OR of operand and modifier.

()LSL ,operand shift_amount

shifter_result=

Logical Shift Left by 5-bit amount of operand.

()LSR ,operand shift_amount

shifter_result=

Logical Shift Right by 5-bit amount of operand.

()ASR ,operand shift_amount

shifter_result=

Arithmetic Shift Right by 5-bit amount of operand.

 173

The functions defined by this specification are summarised in the following table.

Note that each function is specified in the same phase that its result is valid.

Function Specifies Valid Description

fA multiplexer φ1 Selects the value of RS, forward path from MEM,

forward path from WB, or buffered INC to drive

the A bus.

fALU functional unit φ2 Calculates result of requested ALU operation.

fB multiplexer φ1 Selects the value of RT, forward path from MEM,

forward path from WB, or the immediate to drive

the B bus.

fDMREQ output φ2 Signals whether data memory should perform

requested memory access in this clock cycle.

fDNRW output φ1 Signals to data memory whether read access or

write access may be requested in this clock cycle.

fDSIZE output φ1 Signals to data memory the size of the access that

may be requested in this clock cycle.

fEQZ bus φ2 Indicates if tested value is equal to zero.

fEXTRACTOR functional unit φ2 Zero-extends or sign-extends 8-bit or 16-bit value

extracted from 32-bit value as appropriate for

bottom two bits of the address word was read from

if byte or halfword was requested; otherwise word

is passed on unaltered.

fFIELD functional unit φ2 Zero-extends or sign-extends 16-bit or 26-bit value

to form the appropriate immediate.

fIMREQ output φ2 Signals if instruction memory should perform

requested memory operation in this clock cycle.

fPC multiplexer φ2 Selects the value of INC, the result of the adder that

calculates branch targets and jump targets or RS

to drive the PC bus.

fPCWEN bus φ2 Determines if the PC latch is transparent in φ2.

(Note the PC latch is never transparent in φ1.)

fRD multiplexer φ1 Selects the value of DIN' or ALUOUT, buffered by

MEM/WB pipeline latch, to drive the RD bus.

 174

Function Specifies Valid Description

fRESULT multiplexer φ2 Selects the value of SHOUT or ALUOUT to drive

the RESULT bus.

fRSA bus φ2 Drives address for register bank read port RS and

thus determines the register read by this port.

fRTA bus φ2 Drives address for register bank read port RT and

thus determines the register read by this port.

fRWA2 bus φ2 Determines the address that should be used to drive

the register bank write port when the instruction

currently in EXE enters WB and thus the register

that the instruction will update in WB.

fRWEN2 bus φ2 Determines whether the register bank write port

should be enabled when the instruction in EXE

enters WB and thus whether the instruction writes

to a register in WB.

fSA' multiplexer φ2 Selects the value of the SA latch, the A latch or

hardwired constant 16 to drive the SA' bus.

fSELECTOR functional unit φ2 Zero-pads bottom 8 bits or 16 bits of 32-bit value

as appropriate for bottom two bits of the address

that the byte or halfword will be written to; if word

will be written then its value is passed on unaltered.

fSHIFTER functional unit φ2 Calculates result of requested shifter operation.

Dataflow

[] []
1

4 : 0 MEM WB 4 : 0RWA RWA2ϕ ←

[] []
1

0 MEM WB 0RWEN RWEN2ϕ ←

[] []
1

SA 4 : 0 ID EXE 4 : 0IMMϕ ←

 175

Logic

Data Processing

Instruction Decode t2 IF φ2

()IMREQf 1=

[]
[]
[]

[]

[]

[]PC

0 ,
31: 2 ,
31: 2 ,

f 31: 2
IF ID 31: 2 ,

,
31: 2

EQZ
IMM
INC

INC
INC

IR
RS

=

[]()PCWENf 0 1=NRESET

Instruction Decode t2 ID φ2

() []RSAf 25 : 21IR IR=

() []RTAf 20 :16IR IR=

()
[] []

[] [] [] []
[]

16

16
FIELD

32

0 15 : 0 31: 26 0011xx

f 15 15 : 0 31: 26 0011xx 31: 26 000000
x 31: 26 000000

IR IR

IR IR IR IR IR
IR

 ++ =
= ++ ≠ ∧ ≠
 =

Execute t3 EXE φ1

[]
[]

[]

[]
[]A

,
0 , 0 1

f ID EXE 31: 2 , 0 1
ID EXE

FWDA
FWDAEN FWDA FWDAEN

INC RS FWDAEN
RS

 = = ≠

[]
[]

[]
[]

[]
[] []
[] []

B

,
0 , 31: 26 000000

ID EXE ,f 0 1 31: 26 000000
ID EXE , 0 1 31: 26 000000
ID EXE

FWDB
FWDBEN IMM IR

IMM FWDB FWDBEN IR
IR RT FWDBEN IR
RT

 ≠

= = ∧ =
 ≠ ∧ =

176

E
xe

cu
te

 t 3
 E

X
E

 φ
2 [

]

(
)

[
]

[
]

[
]

(
)

(
)

[
]

[
]

[
]

(
)

(
)

[
]

[
]

[
]

(
)

(
)

[
]

[
]

A
LU

A
D

D
,

31
:2

6
00

10
0x

31
:2

6
00

00
00

5:
0

10
00

0x
SU

B
,

31
:2

6
00

10
1x

31
:2

6
00

00
00

5:
0

10
00

1x
A

N
D

,
31

:2
6

00
11

00
31

:2
6

00
00

00
5:

0
10

01
00

O
R

R
,

31
:2

6
00

11
01

31
:2

6
0

,
f

,
ID

EX
E

A
B

IR
IR

IR
A

B
IR

IR
IR

A
B

IR
IR

IR
A

B
IR

IR

A B
IR

=
∨

=
∧

=

=
∨

=
∧

=

=
∨

=
∧

=

=
∨

=

 =

[
]

(
)

(
)

[
]

[
]

[
]

(
)

(
)

(
)[

]
[

]
[

]
(

)
[

]
[

]
[

]

(
)

(
)[

]
[

]
[

]
(

)

00
00

0
5:

0
10

01
01

EO
R

,
31

:2
6

00
11

10
31

:2
6

00
00

00
5:

0
10

01
10

5:
0

10
10

00
N

Z
SU

B
,

Z
31

:2
6

01
10

00
31

:2
6

11
00

00
31

:2
6

00
00

00
5:

0
01

00
00

N
Z

SU
B

,
Z

31
:2

6
01

10
01

31
:2

6
11

00
01

IR
A

B
IR

IR
IR

IR
A

B
IR

IR
IR

IR

A
B

IR
IR

I

∧
=

=
∨

=
∧

=

=
∨

=
∨

=
∨

=
∧

=

¬
=

∨
=

∨
[

]
[

]
[

]

(
)

(
)[

]
[

]
[

]
(

)
[

]
[

]
[

]

(
)

(
)[

]
[

]
[

]
(

)
[

]

5:
0

10
10

01
31

:2
6

00
00

00
5:

0
01

00
01

5:
0

10
10

10
N

Z
SU

B
,

N
31

:2
6

01
10

10
31

:2
6

11
00

10
31

:2
6

00
00

00
5:

0
01

00
10

N
Z

SU
B

,
N

31
:2

6
01

10
11

31
:2

6
11

00
11

31
:2

6
00

00
00

IR
R

IR IR
A

B
IR

IR
IR

IR

A
B

IR
IR

IR

=
∨

=
∧

=

=

∨
=

∨
=

∨
=

∧

=

¬
=

∨
=

∨
=

[
]

[
]

(
)

(
)[

]
(

)
(

)[
]

[
]

[
]

(
)

[
]

[
]

[
]

(
)

(
)[

]
(

)
(

)[
]

[
]

[
]

(
)

[
]

5:
0

10
10

11
5:

0
01

00
11

N
Z

SU
B

,
N

5:
0

10
11

00
31

:2
6

01
11

00
31

:2
6

11
01

00
31

:2
6

00
00

00
5:

0
01

01
00

N
Z

SU
B

,
Z

N
Z

SU
B

,
N

31
:2

6
01

11
01

31
:2

6
11

01
01

31
:2

6
N

Z
SU

B
,

Z

IR IR

A
B

IR
IR

IR
IR

IR
A

B
A

B
IR

IR
IR

A
B

=
∨

∧

=

∨

=

∨
=

∨
=

∨
=

∧

=

¬
∨

=
∨

=
∨

[
]

[
]

[
]

[
]

(
)

[
]

[
]

[
]

(
)

[
]

[
]

[
]

[
]

(
)

32

5:
0

10
11

01
00

00
00

5:
0

01
01

01

31
:2

6
00

1x
xx

31
:2

6
00

11
11

x
31

:2
6

xx
x1

1x
31

:2
6

00
00

00
5:

0
xx

x1
1x

31
:2

6
01

1x
xx

31
:2

6
11

0x
xx

5:
0

10
1x

xx
5:

0
01

0x
xx

IR IR

IR
IR

IR
IR

IR
IR

IR
IR

IR

=
∨

=
∧

=

≠

∨
=

∧

=
∨

≠
∨

=
∨

∧

≠

∧
≠

≠
∧

≠

177

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

(
)

SA

4:
0

31
:2

6
01

01
xx

,
[4

:0
]

31
:2

6
00

00
00

5:
0

00
01

xx
f

ID
EX

E
,

10
00

0
31

:2
6

00
11

11
4:

0
xx

xx
x

31
:2

6
01

01
xx

31
:2

6
00

11
11

31
:2

6
00

00
00

5:
0

00
01

xx

SA
IR

A
A

IR
IR

IR
IR

SA
IR

IR
IR

IR

′

=

=

∧
=

 =

=

≠

∧
≠

∧
≠

∨
≠

 7

[
]

[
]

[
]

(
)

[
]

[
]

[
]

[
]

(
)

[
]

(
)

[
]

[
]

[
]

(
)

[
]

(
)

[
]

[
]

SH
IF

TE
R

LS
L

,
4:

0
31

:2
6

01
01

0x
31

:2
6

00
11

11
IR

31
:2

6
00

00
00

5:
0

00
01

0x
,

LS
R

,
4:

0
31

:2
6

01
01

10
IR

31
:2

6
00

00
00

5:
0

00
01

10
f

ID
EX

E
,

A
SR

,
4:

0
31

:2
6

01
01

11
IR

31
:2

6
00

00
00

5
4:

0

B
SA

IR
IR

IR
B

B
SA

IR
IR

IR
B

SA
IR

IR
SA

′
=

∨
=

∨
=

∧
=

′
=

∨
=

∧
=

 =

′
=

∨
=

∧

′

[
]

(
)

[
]

[
]

[
]

[
]

(
)

32

:0
00

01
11

x
31

:2
6

01
01

xx
31

:2
6

00
11

11
31

:2
6

00
00

00
5:

0
00

01
xx

IR
IR

IR
IR

=

≠

∧
≠

∧
≠

∨
≠

 7

[
]

[
]

[
]

(
)

[
]

[
]

[
]

(
)

[
]

[
]

[
]

[
]

(
)

[
]

R
ES

U
LT

31
:2

6
=0

01
xx

x
31

:2
6

00
11

11
31

:2
6

xx
x1

1x
31

:2
6

00
00

00
5:

0
xx

x1
1x

31
:2

6
01

1x
xx

31
:2

6
11

0x
xx

5:
0

10
1x

xx
5:

0
01

0x
xx

,
f

ID
EX

E
,

31
:2

6

IR
IR

AL
U

O
U

T
IR

IR
IR

IR
IR

IR
IR

AL
U

O
U

T IR
SH

O
U

T
IR

SH
O

U
T

∧
≠

∨

≠
∧

=
∧

≠
∧

∨

=

∨
=

=
∨

=

 =

[

]
[

]
[

]
(

)
[

]
[

]
[

]
[

]
(

)
[

]
[

]
[

]
(

)
[

]
[

]
[

]
32

=0
10

1x
x

31
:2

6
00

11
11

31
:2

6
00

00
00

5:
0

00
01

xx
31

:2
6

00
1x

xx
31

:2
6

01
01

xx
31

:2
6

00
00

00
5:

0
00

01
xx

x
31

:2
6

xx
x1

1x
31

:2
6

00
00

00
5:

0
xx

x1
1x

31
:2

6
01

1x
xx

31
:2

6
11

0x
xx

5:
0

10
1

IR
IR

IR
IR

IR
IR

IR
IR

IR
IR

IR
IR

IR

∨
=

∨
=

∧
=

≠
∧

≠
∧

≠
∨

≠

=
∨

≠
∨

=
∨

∧

≠

∧
≠

≠

[

]
(

)
xx

x
5:

0
01

0x
xx

IR

 ∧

∧
≠

[
]

(
)

[
]

(
)

[
]

[
]

(
)

[
]

R
W

A
2,

R
W

EN
2

15
:1

1
,1

31
:2

6
00

00
00

f
ID

EX
E

20
:1

6
,1

31
:2

6
00

00
00

IR
IR

IR
IR

IR

=

=

≠

 178
Memory t3 MEM φ1

Memory t3 MEM φ2

()DMREQf 0=

Writeback t3 WB φ1

[]
[]RD

MEM WB ,
f

MEM WB
DIN

RESULT
RESULT

′
=

Load

Instruction Decode t3 IF φ2

()IMREQf 1=

[]
[]
[]

[]

[]

[]PC

0 ,
31: 2 ,
31: 2 ,

f 31: 2
IF ID 31: 2 ,

,
31: 2

EQZ
IMM
INC

INC
INC

IR
RS

=

[]()PCWENf 0 1=NRESET

Instruction Decode t3 ID φ2

() []RSAf 25 : 21IR IR=

() [] []16
FIELDf 15 15 : 0IR IR IR= ++

Execute t3 EXE φ1

[]
[]

[]

[]
[]A

,
0 , 0 1

f ID EXE 31: 2 , 0 1
ID EXE

FWDA
FWDAEN FWDA FWDAEN

INC RS FWDAEN
RS

 = = ≠

[]
[]

[]
[]

B

,
0 ,

ID EXE ,f
ID EXE ,
ID EXE

FWDB
FWDBEN

IMM IMM
IR
RT

=

179

E
xe

cu
te

 t 3
 E

X
E

 φ
2 [

]
(

)
A

LU

,
f

,
A

D
D

,
ID

EX
EA B

A
B

IR

 =

[
]

R
ES

U
LT

,
f

ID
EX

E
,

AL
U

O
U

T IR
AL

U
O

U
T

SH
O

U
T

 =

[
]

(
)

[
]

(
)

R
W

A
2,

R
W

EN
2

f
ID

EX
E

20
:1

6
,1

IR
IR

=

M
em

or
y

t 3
M

E
M

 φ
1

()
D

N
R

W
f

0
=

[
]

(
)

[
]

[
]

[
]

[
]

[
]

D
SI

ZE

00
31

:2
6

10
0x

00
01

31
:2

6
10

0x
01

f
EX

E
M

EM
10

31
:2

6
10

00
11

xx
31

:2
6

10
0x

0x
31

:2
6

10
00

11

IR IR
IR

IR IR
IR

=

=

=

=

≠

∧
≠

180

M
em

or
y

t 3
M

E
M

 φ
2

()
D

M
R

EQ
f

1
=

[
]

[
]

[]
(

)
[

]
[

]
[

]
[

]
(

)
[

]
[

]
[

]
[

]
(

)
[

]
[

]
[

]
[

]
(

)
[

]
[

]

24 24 24 24

EX
TR

A
C

TO
R

7
7:

0
31

:2
6

10
00

00
1:

0
00

15
15

:8
31

:2
6

10
00

00
1:

0
01

23
23

:1
6

31
:2

6
10

00
00

1:
0

10

31
31

:2
4

31
:2

6
1

,
f

EX
E

M
EM

,
EX

E
M

EM

D
IN

D
IN

IR
RE

SU
LT

D
IN

D
IN

IR
RE

SU
LT

D
IN

D
IN

IR
RE

SU
LT

D
IN

D
IN

IR

D
IN

IR
RE

SU
LT

++
=

∧
=

++
=

∧
=

++
=

∧
=

++
=

 =

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

(
)

[
]

[
]

24 24 24 24

16

00
00

0
1:

0
11

0
7:

0
31

:2
6

10
01

00
1:

0
00

0
15

:8
31

:2
6

10
01

00
1:

0
01

0
23

:1
6

31
:2

6
10

01
00

1:
0

10
0

31
:2

4
31

:2
6

10
01

00
1:

0
11

15
15

:0
31

:2
6

1

RE
SU

LT
D

IN
IR

RE
SU

LT
D

IN
IR

RE
SU

LT
D

IN
IR

RE
SU

LT
D

IN
IR

RE
SU

LT

D
IN

D
IN

IR

∧
=

++
=

∧
=

++
=

∧
=

++
=

∧
=

++
=

∧
=

++
=

[
]

[
]

(
)

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

16

16 16 32

00
00

1
1:

0
00

31
31

:1
6

31
:2

6
10

00
01

1:
0

10
0

15
:0

31
:2

6
10

01
01

1:
0

00
0

31
:1

6
31

:2
6

10
01

01
1:

0
10

31
:2

6
10

00
11

1:
0

00
31

:2
6

10
0

x
31

:2
6

10
0x

00

RE
SU

LT

D
IN

D
IN

IR
RE

SU
LT

D
IN

IR
RE

SU
LT

D
IN

IR
RE

SU
LT

D
IN

IR
RE

SU
LT

IR
IR

∧
=

++
=

∧
=

++
=

∧
=

++
=

∧
=

=
∧

=
≠

≠
∧

[]
(

)
[

]
[

]
(

)
x0

1
0

0
31

:2
6

10
00

11
1:

0
00

RE
SU

LT
IR

RE
SU

LT

∨

≠
∧

≠

∨
≠

W
ri

te
ba

ck
 t 3

 W
B

 φ
1 [

]
[

]
R

D

M
EM

W
B

,
f

M
EM

W
B

D
IN

D
IN

RE
SU

LT′

′

=

 181

Store

Instruction Decode t3 IF φ2

()IMREQf 1=

[]
[]
[]

[]

[]

[]PC

0 ,
31: 2 ,
31: 2 ,

f 31: 2
IF ID 31: 2 ,

,
31: 2

EQZ
IMM
INC

INC
INC

IR
RS

=

[]()PCWENf 0 1=NRESET

Instruction Decode t3 ID φ2

() []RSAf 25 : 21IR IR=

() []RTAf 20 :16IR IR=

() [] []16
FIELDf 15 15 : 0IR IR IR= ++

Execute t3 EXE φ1

[]
[]

[]

[]
[]A

,
0 , 0 1

f ID EXE 31: 2 , 0 1
ID EXE

FWDA
FWDAEN FWDA FWDAEN

INC RS FWDAEN
RS

 = = ≠

[]
[]

[]
[]

B

,
0 ,

ID EXE ,f
ID EXE ,
ID EXE

FWDB
FWDBEN

IMM IMM
IR
RT

=

Execute t3 EXE φ2

[]
()ALU

,
f , ADD ,

ID EXE

A
B A B

IR

 =

[]RESULT

,
f ID EXE ,

ALUOUT
IR ALUOUT

SHOUT

 =

[]() ()RWA2,
RWEN2

f ID EXE xxxxx,0IR

=

182

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

24 16
8

8
16

24

1
SE

LE
C

TO
R

0
7

:0
31

:2
6

10
10

00
1:

0
00

0
7

:0
0

31
:2

6
10

10
00

1:
0

01
0

7
:0

0
31

:2
6

10
10

00
1:

0
10

7
:0

0
31

:2
6

10
10

00
1:

0
11

,
0

f
ID

EX
E

,
ID

EX
E

RT
IR

AL
U

O
U

T
RT

IR
AL

U
O

U
T

RT
IR

AL
U

O
U

T
RT

IR
AL

U
O

U
T

AL
U

O
U

T IR RT

++
=

∧
=

++
++

=
∧

=
++

++
=

∧
=

++
=

∧
=

 =

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[]
(

)
[

]
[

]
(

)

6

16

32

15
:0

31
:2

6
10

10
01

1:
0

00
15

:0
0

31
:2

6
10

10
01

1:
0

10
31

:0
31

:2
6

10
10

11
1:

0
00

31
:2

6
10

10
01

0
0

x
31

:2
6

10
10

00
31

:2
6

10
10

11
1:

0
00

RT
IR

AL
U

O
U

T
RT

IR
AL

U
O

U
T

RT
IR

AL
U

O
U

T
IR

AL
U

O
U

T
IR

IR
AL

U
O

U
T

++

=
∧

=

++
=

∧
=

=

∧
=

≠

∨
≠

∧

≠
∧

≠

∨
≠

M
em

or
y

t 3
M

E
M

 φ
1

()
D

N
R

W
f

1
=

[
]

(
)

[
]

[
]

[
]

[
]

[
]

D
SI

ZE

00
31

:2
6

10
10

00
01

31
:2

6
10

10
01

f
EX

E
M

EM
10

31
:2

6
10

10
11

xx
31

:2
6

10
00

0x
31

:2
6

10
00

11

IR IR
IR

IR IR
IR

=

=

=

=

≠

∧
≠

M
em

or
y

t 3
M

E
M

 φ
2

()
D

M
R

EQ
f

1
=

W
ri

te
ba

ck
 t 3

 W
B

 φ
1

183

C
on

tr
ol

In
st

ru
ct

io
n

D
ec

od
e

t 3
IF

 φ
2

()
IM

R
EQ

f
1

=

[] [
]

[
]

[
]

[
]

[
]

[
]

[]
[

]
[

]
[

]
[

]
[

]
[]

[
]

(
)

[
]

[
]

[
]

PC

30

0
,

31
:2

31
:2

6
00

01
0x

0
26

31
:2

,
31

:2
IF

ID
31

:2
31

:2
6

00
00

1x
31

:2
6

00
01

0x
0

26
31

:2
,

f
31

:2
31

:2
6

01
00

1x
IF

ID
31

:2
,

,
x

31
:2

6
0x

00
1x

31
:2

EQ
Z

IN
C

IR
EQ

Z
IR

IM
M

IM
M

IN
C

IR
IR

EQ
Z

IR
IN

C
RS

IR
IN

C IR
IR

RS

=
∧

=

+

=
∨

=
∧

≠

=

=

≠

[
]

31
:2

6
00

01
0x

IR

∧

≠

[]
(

)
PC

W
EN

f
0

1
=

N
R

E
SE

T

In
st

ru
ct

io
n

D
ec

od
e

t 3
ID

 φ
2

(
)

[
]

R
SA

f
25

:2
1

IR
IR

=

(
)

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

16 6
FI

EL
D

32

15
15

:0
31

:2
6

00
01

0x

f
25

25
:0

31
:2

6
00

00
1x

x
31

:2
6

00
01

0x
31

:2
6

00
00

1x

IR
IR

IR

IR
IR

IR
IR IR

IR

++

=

=
++

=

≠
∧

≠

(
)

[]
31

EQ
Z

0
f

0
i

RS
RS

i
=

=
=

∨

 184

Execute t3 EXE φ1

[]
[]

[]

[]A

,
0 ,

f ID EXE 31: 2 00ID EXE 31: 2 ,
ID EXE

FWDA
FWDAEN

INCINC
RS

 = ++

Execute t3 EXE φ2

[]
ALU

,
f ,

ID EXE

A
B A

IR

 =

[]RESULT

,
f ID EXE ,

ALUOUT
IR ALUOUT

SHOUT

 =

[]() () []
() []RWA2,

RWEN2

11111,1 31: 26 0x0011
f ID EXE

xxxxx,0 31: 26 0x0011
IR

IR
IR

 == ≠

Memory t3 MEM φ1

Memory t3 MEM φ2

()DMREQf 0=

Writeback t3 WB φ1

[]
[]RD

MEM WB ,
f

MEM WB
DIN

RESULT
RESULT

′
=

Stall

Instruction Decode t3 IF φ2

()IMREQf 0=

[]
[]
[]

[]

[]

30
PC

0 ,
31: 2 ,
31: 2 ,

f 0
IF ID 31: 2 ,

,
31: 2

EQZ
IMM
INC

INC
IR

RS

=

[]() []PCWENf 0 0= ¬NRESET NRESET

 185
Instruction Decode t3 ID φ2

Execute t3 EXE φ1

Execute t3 EXE φ2

[]() ()RWA2,
RWEN2

f ID EXE xxxxx,0IR

=

Memory t3 MEM φ1

Memory t3 MEM φ2

()DMREQf 0=

Writeback t3 WB φ1

Undefined

Instruction Decode t3 IF φ2

()IMREQf 1=

[]
[]
[]

[]

[]

[]PC

0 ,
31: 2 ,
31: 2 ,

f 31: 2
IF ID 31: 2 ,

,
31: 2

EQZ
IMM
INC

INC
INC

IR
RS

=

[]()PCWENf 0 1=NRESET

Instruction Decode t3 ID φ2

Execute t3 EXE φ1

Execute t3 EXE φ2

[]() ()RWA2,
RWEN2

f ID EXE xxxxx,0IR

=

 186
Memory t3 MEM φ1

Memory t3 MEM φ2

()DMREQf 0=

Writeback t3 WB φ1

A.3 Pipeline Control Specification

Terms Used

This specification uses the following terms from the Datapath specification:

• Inputs: IDIN.

• Latches: IR.

This specification uses the following terms from the Datapath Control specification:

• Buses: RD, RESULT, RWA2[4:0], RWEN2[0].

• Register Read Addressors: fRSA; fRTA.

• Register Write Addressors: RWA[4:0].

• Register Write Enablers: RWEN[0].

The terms that are used in the transfers defined by this specification are summarised in

the following table.

Term Type Valid Description

IC[*] special φ1, φ2 The instruction class that should be associated with

the instruction in EXE this clock cycle.

NRESET[0] input φ2 External input that indicates when any instructions in

the pipeline should be ignored and the program counter

should be reset to 0x00000000.

The functions defined by this specification are summarised in the following table.

Note that each function is specified in the same phase that its result is valid.

 187

Function Specifies Valid Description

fFWDA bus φ1 Presents value of forward path the fA multiplexer

should use as selection option.

fFWDAEN bus φ1 Indicates when the fA multiplexer would select

value read from RS register bank read port whether

it should select value presented by fFWDA instead.

fFWDB bus φ1 Presents value of forward path the fB multiplexer

should use as selection option.

fFWDBEN bus φ1 Indicates when the fB multiplexer would select

value read from RT register bank read port whether

it should select value presented by fFWDB instead.

fIRWRITE bus φ2 Determines whether to update opcode latched in IR

or not—if stall should be inserted into pipeline,

update should not occur.

fNXTIC special φ2 The instruction class that should be associated with

the instruction in ID this clock cycle.

fSTALL bus φ2 Indicates when data hazard has been detected by

hazard unit and stall must be inserted into pipeline.

Dataflow

• IDEC control logic:

[] []
1φ

IC * *NXTIC←

• PIPE control logic:

[] []
1φ

* IR IF IDIRWRITE IDIN⇒ ←

188

Fo
rw

ar
di

ng
 L

og
ic

ϕ 1

[
]

[
]

[
]

[
]

[]
[]

(
)

[]
[

]
[

]
(

)
[]

[
]

FW
D

A
,

FW
D

A
EN

,
EX

E
M

EM
0

1
EX

E
M

EM
4:

0
ID

EX
E

4:
0

EX
E

M
EM

,
,1

ID
EX

E
4:

0
,

0
1

4:
0

ID
EX

E
4:

0
,

f
EX

E
M

EM
4:

0
,

0
,

EX
E

M
EM

0

RD
RW

EN
2

RW
A2

RS
A

RE
SU

LT
RD

RS
A

RW
EN

RW
A

R
RW

A
RW

A2
RW

EN
RW

EN
2

≠
∨

≠
∧

=
∧

=

 =

[
]

[
]

(
)

[]
[

]
[

]

(
)

[]
[

]
[

]
(

)
[]

[
]

[
]

(
)

4:
0

EX
E

M
EM

,1
EX

E
M

EM
0

1
EX

E
M

EM
4:

0
ID

EX
E

4:
0

EX
E

M
EM

0
1

EX
E

M
EM

4:
0

ID
EX

E
4:

0
xx

xx
,0

0
1

4:
0

ID
EX

E
4:

0

SA
RE

SU
LT

RW
EN

2
RW

A2
RS

A

RW
EN

2
RW

A2
RS

A

RW
EN

RW
A

RS
A

=
∧

=

≠

∨
≠

∧

≠
∨

≠

[
]

[
]

[
]

[
]

[]
[]

(
)

[]
[

]
[

]
(

)
[]

[
]

FW
D

B,
FW

D
BE

N

,
EX

E
M

EM
0

1
EX

E
M

EM
4:

0
ID

EX
E

4:
0

EX
E

M
EM

,
,1

ID
EX

E
4:

0
,

0
1

4:
0

ID
EX

E
4:

0
,

f
EX

E
M

EM
4:

0
,

0
,

EX
E

M
EM

0

RD
RW

EN
2

RW
A2

RT
A

RE
SU

LT
RD

RT
A

RW
EN

RW
A

R
RW

A
RW

A2
RW

EN
RW

EN
2

≠
∨

≠
∧

=
∧

=

 =

[
]

[
]

(
)

[]
[

]
[

]

(
)

[]
[

]
[

]
(

)
[]

[
]

[
]

(
)

4:
0

EX
E

M
EM

,1
EX

E
M

EM
0

1
EX

E
M

EM
4:

0
ID

EX
E

4:
0

EX
E

M
EM

0
1

EX
E

M
EM

4:
0

ID
EX

E
4:

0
xx

xx
,0

0
1

4:
0

ID
EX

E
4:

0

TA
RE

SU
LT

RW
EN

2
RW

A2
RT

A

RW
EN

2
RW

A2
RT

A

RW
EN

RW
A

RT
A

=
∧

=

≠

∨
≠

∧

≠
∨

≠

189

H
az

ar
d

Lo
gi

c

ϕ 2

[]
[]

[
]

[
]

[
] [

]
[]

[]

[]
[

]
[]

[
]

[
]

(
)

[]
[

]

ST
A

LL

*
,

*
ct

rl
31

:2
6

01
00

1x
*

,
0

1
4:

0
4:

0
4:

0
,

EX
E

M
EM

0
1

EX
E

M
EM

4:
0

4:
0

,
f

TR
U

E
4:

0
,

EX
E

M
EM

4:
0

,
0

,
EX

E
M

EM
0

IC
N

XT
IC

IR
N

XT
IC

RW
EN

2
RW

A2
RS

A
RS

A
RW

EN
2

RW
A2

R
RT

A
RW

A2
RW

A2
RW

EN
2 RW

EN
2

=
∧

=
∧

=
∧

=
∨

=
∧

=

 =

[
]

(
)

[]
[]

[
]

[
]

[
]

[
]

(
)

(
)

[]
[]

[
]

[
]

(
)

[]
[

]
[

]
(

)

4:
0

*
lo

ad
0

1
4:

0
4:

0
4:

0
4:

0

*
st

or
e

0
1

4:
0

4:
0

EX
E

M
EM

0
1

EX
E

M
EM

4:
0

4:
0

SA

IC
RW

EN
2

RW
A2

RS
A

RW
A2

RT
A

N
XT

IC
RW

EN
2

RW
A2

RT
A

RW
EN

2
RW

A2
RT

A

∨

=

∧
=

∧
=

∨
=

∨

=

∧

=

∧
=

∨

=

∧
=

190

G
en

er
al

 L
og

ic

ϕ 2

[] []

[]
[]

[
]

[
]

[
]

N
X

TI
C

0
1

0
1

da
ta

0x
10

xx
,0

01
1x

x,
01

01
x0

,
10

x0
xx

,x
00

1x
0,

10
01

01
,

31
:2

6
31

:2
6

00
00

00
5:

0
01

01
11

,0
11

10
x,

11
01

0x
00

01
11

,1
01

10
x,

01
01

0x
lo

ad
,

f
0

,
0

ST
AL

L

IR
IR

IR

IR

ST
AL

L

=
∧

≠
∧

∈
∨

=
∧

∈

 =

N
R

E
SE

T

N
R

E

N
R

E
SE

T

[]
[]

[
]

{
}

[]
[]

[
]

{
}

[]
[]

[
]

{
}

[]
[]

[]
[]

[
]0

1
0

1
31

:2
6

10
0x

0x
,1

00
01

1
st

or
e

0
1

0
1

31
:2

6
10

10
0x

,1
01

01
1

ct
rl

0
1

0
1

31
:2

6
00

01
0x

,0
10

01
x

st
al

l
0

1
0

1
0

1
0

1
0x

10
xx

,0
01

1x
x,

01
01

x
un

de
f

31
:2

6

ST
AL

L
IR

ST
AL

L
IR

ST
AL

L
IR

ST
AL

L
ST

AL
L

IR

=
∧

≠
∧

∈
=

∧
≠

∧
∈

=
∧

≠
∧

∈
≠

∨
=

=
∧

≠
∧

∉

SE
T

N
R

E
SE

T
N

R
E

SE
T

N
R

E
SE

T
N

R
E

SE
T

[
]

[
]

0,
01

01
11

,
10

x0
xx

,x
00

1x
0,

10
01

01
,

01
11

0x
,1

10
10

x,
10

0x
0x

,1
00

01
1,

31
:2

6
00

00
00

5:
0

00
01

11
,1

01
10

x,
01

01
0x

10
10

0x
,1

01
01

1,
00

01
0x

,0
10

01
x

IR
IR

∧
≠

∨
∉

[]
(

)
[]

IR
W

R
IT

E
f

0
0

ST
AL

L
ST

AL
L

=
¬

1 If

 lo
gi

ca
l o

pe
ra

tio
n

or
 lo

ad
 h

ig
h

im
m

ed
ia

te
 th

en
 th

e
2nd

 o
pt

io
n

is
 u

se
d;

 o
th

er
w

is
e

th
e

1st
 o

pt
io

n
is

 u
se

d.

2 If
 in

st
an

ce
 o

f t
he

 in
st

ru
ct

io
n

cl
as

s i
s o

f t
he

 I-
ty

pe
 in

st
ru

ct
io

n
en

co
di

ng
 th

en
 th

e
2nd

 o
pt

io
n

is
 u

se
d;

 o
th

er
w

is
e

th
e

1st
 o

pt
io

n
is

 u
se

d.

3 If
 ju

m
p

in
st

ru
ct

io
n

an
d

al
so

 in
st

an
ce

 o
f

th
e

in
st

ru
ct

io
n

cl
as

s
is

 o
f

th
e

R
-ty

pe
 in

st
ru

ct
io

n
en

co
di

ng
 th

en
 th

e
3rd

 o
pt

io
n

is
 u

se
d,

 e
ls

e
fo

r
th

e
J-

ty
pe

 o
r b

ra
nc

h
in

st
ru

ct
io

n
fo

r
w

hi
ch

th

e
as

so
ci

at
ed

 c
on

di
tio

n
w

as
 m

et
 th

e
2nd

 o
pt

io
n

is
 u

se
d;

 o
th

er
w

is
e

th
e

1st
 o

pt
io

n
is

 u
se

d.

4 If
 b

ra
nc

h
in

st
ru

ct
io

n
th

en
 th

e
2nd

 o
pt

io
n

is
 u

se
d;

 o
th

er
w

is
e

th
e

1st
 o

pt
io

n
is

 u
se

d.

5 O
nl

y
ap

pl
ie

s i
f j

um
p

an
d

lin
k

in
st

ru
ct

io
n.

6 O

nl
y

ap
pl

ie
s i

f N
R

E
SE

T[
0]

 ≠
 1

.
7 N

ot
e

th
er

e
is

 n
o

sl
a

eq
ui

va
le

nt
 o

f
sr

a,
 s

o
th

e
in

st
an

ce
 o

f
th

is
 in

st
ru

ct
io

n
cl

as
s

w
ith

 I
R[

31
:2

6]
 =

 %
01

01
01

, o
r

th
e

in
st

an
ce

 w
ith

 I
R[

31
:2

6]
 =

 %
00

00
00

 a
nd

 I
R[

5:
0]

 =
 %

00
01

01
,

is
 u

nd
ef

in
ed

 a
nd

 th
us

 fo
r c

on
ve

ni
en

ce
 is

 a
ss

um
ed

 to
 b

eh
av

e
as

 sl
l.

Appendix B:
DLX Formal Specification—Engineering Presentation

See section 7.2 for an informal outline of the DLX processor core.

Datapath Specification

This is identical to the datapath specification given for the mathematical presentation in

Appendix A.

Datapath Control Specification

Terms Used

See Appendix B for details of terms used in this specification.

Dataflow

[] []
1

4 : 0 MEM WB 4 : 0RWA RWA2ϕ ←

[] []
1

0 MEM WB 0RWEN RWEN2ϕ ←

[] []
1

SA 4 : 0 ID EXE 4 : 0IMMϕ ←

Logic

Instruction Fetch ϕ2

IMREQ

IC

*

stall 0

x 1

PC

IC IR EQZ

*

3

1

3

0

2

9

2

8

2

7

2

6

0

stall x x x x x x x 032

ctrl 0 0 0 1 0 0 0 INC[31:2]

ctrl 0 0 0 1 0 1 1 INC[31:2]

 192

IC IR EQZ

*

3

1

3

0

2

9

2

8

2

7

2

6

0

ctrl 0 0 0 1 0 x x IMM[31:2] + IF/ID[INC[31:2]]

ctrl 0 0 0 0 1 x x IMM[31:2] + IF/ID[INC[31:2]]

ctrl 0 1 0 0 1 x x RS[31:2]

x x x x x x x x INC[31:2]

PCWEN

IC

*

stall ⌐NRESET[0]

x 1

Instruction Decode ϕ2

RSA

IC

*

stall xxxxx

undef xxxxx

x IR[25:21]

RTA

IC

*

data IR[20:16]

store IR[20:16]

x xxxxx

FIELD

IC IR

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

stall x x x x x x x x x x x x x32

undef x x x x x x x x x x x x x32

 193

IC IR

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

data 0 0 1 1 x x x x x x x x 016 ++ IR[15:0]

data 0 0 0 0 0 0 1 0 0 1 x x 016 ++ IR[15:0]

ctrl 0 0 0 0 1 x x x x x x x IR[25]6 ++ IR[25:0]

ctrl 0 0 0 1 0 x x x x x x x IR[15]16 ++ IR[15:0]

ctrl x x x x x x x x x x x x x32

x x x x x x x x x x x x x IR[15]16 ++ IR[15:0]

EQZ

IC RS

*

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0 9 8 7 6

5

4

3

2

1

0

ctrl 0 1

ctrl x 0

x

Execute ϕ1

A

IC FWDAEN

* 0

stall x x32

undef x x32

ctrl x ID/EXE[INC[31:2] ++ 00

x 1 FWDA

x 0 RS

B

IC ID/EXE[IR] FWDAEN

*

3

1

3

0

2

9

2

8

2

7

2

6

0

data 0 0 0 0 0 0 x ID/EXE[IMM]

data x x x x x x 1 FWDA

data x x x x x x 0 RT

 194

IC ID/EXE[IR] FWDAEN

*

3

1

3

0

2

9

2

8

2

7

2

6

0

load x x x x x x x ID/EXE[IMM]

store x x x x x x x ID/EXE[IMM]

x x x x x x x x x32

Execute ϕ2

ALU

IC ID/EXE[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

data 0 0 1 0 0 x x x x x x x ADD(A, B)

data 0 0 0 0 0 0 1 0 0 0 0 x ADD(A, B)

data 0 0 1 0 1 x x x x x x x SUB(A, B)

data 0 0 0 0 0 0 1 0 0 0 1 x SUB(A, B)

data 0 0 1 1 0 0 x x x x x x AND(A, B)

data 0 0 0 0 0 0 1 0 0 1 0 0 AND(A, B)

data 0 0 1 1 0 1 x x x x x x ORR(A, B)

data 0 0 0 0 0 0 1 0 0 1 0 1 ORR(A, B)

data 0 0 1 1 1 0 x x x x x x EOR(A, B)

data 0 0 0 0 0 0 1 0 0 1 1 0 EOR(A, B)

data 0 1 1 0 0 0 x x x x x x NZ(SUB(A, B))[Z]

data 1 1 0 0 0 0 x x x x x x NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 1 0 1 0 0 0 NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 0 1 0 0 0 0 NZ(SUB(A, B))[Z]

data 0 1 1 0 0 1 x x x x x x ⌐NZ(SUB(A, B))[Z]

data 1 1 0 0 0 1 x x x x x x ⌐NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 1 0 1 0 0 1 ⌐NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 0 1 0 0 0 1 ⌐NZ(SUB(A, B))[Z]

data 0 1 1 0 1 0 x x x x x x #NZ(SUB(A, B))[N]

data 1 1 0 0 1 0 x x x x x x #NZ(SUB(A, B))[N]

data 0 0 0 0 0 0 1 0 1 0 1 0 #NZ(SUB(A, B))[N]

data 0 0 0 0 0 0 0 1 0 0 1 0 #NZ(SUB(A, B))[N]

 195

IC ID/EXE[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

data 0 1 1 0 1 1 x x x x x x ⌐NZ(SUB(A, B))[N]

data 1 1 0 0 1 1 x x x x x x ⌐NZ(SUB(A, B))[N]

data 0 0 0 0 0 0 1 0 1 0 1 1 ⌐NZ(SUB(A, B))[N]

data 0 0 0 0 0 0 0 1 0 0 1 1 ⌐NZ(SUB(A, B))[N]

data 0 1 1 1 0 0 x x x x x x NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 1 1 0 1 0 0 x x x x x x NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 1 0 1 1 0 0 NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 0 1 0 1 0 0 NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 0 1 1 1 0 1 x x x x x x ⌐NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 1 1 0 1 0 1 x x x x x x ⌐NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 1 0 1 1 0 1 ⌐NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

data 0 0 0 0 0 0 0 1 0 1 0 1 ⌐NZ(SUB(A, B))[N] ∨ NZ(SUB(A, B))[Z]

load x x x x x x x x x x x x ADD(A, B)

store x x x x x x x x x x x x ADD(A, B)

ctrl x x x x x x x x x x x x A

x x x x x x x x x x x x x x32

SA'

IC ID/EXE[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

data 0 1 0 1 x x x x x x x x SA[4:0]

data 0 0 0 0 0 0 0 0 0 1 x x A[4:0]

data 0 0 1 1 1 1 x x x x x x 10000

x x x x x x x x x x x x x IR[15]16 ++ IR[15:0]

 196
SHIFTER

IC ID/EXE[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

data 0 1 0 1 0 x x x x x x x LSL(B, SA'[4:0])

data 0 0 1 1 1 1 x x x x x x LSL(B, SA'[4:0])

data 0 0 0 0 0 0 0 0 0 1 0 x LSL(B, SA'[4:0])

data 0 1 0 1 1 0 x x x x x x LSR(B, SA'[4:0])

data 0 0 0 0 0 0 0 0 0 1 1 0 LSR(B, SA'[4:0])

data 0 1 0 1 1 1 x x x x x x ASR(B, SA'[4:0])

data 0 0 0 0 0 0 0 0 0 1 1 1 ASR(B, SA'[4:0])

x x x x x x x x x x x x x IR[15]16 ++ IR[15:0]

RESULT

IC ID/EXE[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

stall x x x x x x x x x x x x x32

undef x x x x x x x x x x x x x32

data 0 0 1 1 1 1 x x x x x x SHOUT

data 0 0 1 x x x x x x x x x ALUOUT

data x x x 1 1 x x x x x x x x32

data 0 1 1 x x x x x x x x x ALUOUT

data 1 1 0 x x x x x x x x x ALUOUT

data 0 0 0 0 0 0 x x x 1 1 x x32

data 0 0 0 0 0 0 1 0 1 x x x ALUOUT

data 0 0 0 0 0 0 0 1 0 x x x ALUOUT

data 0 1 0 1 x x x x x x x x SHOUT

data 0 0 0 0 0 0 0 0 0 1 x x SHOUT

data x x x x x x x x x x x x x32

x x x x x x x x x x x x x ALUOUT

 197
RWA2, RWAEN2

IC ID/EXE[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

data 0 0 0 0 0 0 (IR[15:11], 1)

data x x x x x x (IR[20:16], 1)

load 0 0 0 1 0 1 (IR[20:16], 1)

ctrl 0 x 0 0 1 1 (11111, 0)

x x x x x x x (xxxxx, 0)

EXTRACTOR

IC ID/EXE[IR] ALUOUT

*

3

1

3

0

2

9

2

8

2

7

2

6

1

0

store 1 0 1 0 0 0 0 0 024 ++ RT[7:0]

store 1 0 1 0 0 0 0 1 016 ++ RT[7:0] ++ 08

store 1 0 1 0 0 0 1 0 08 ++ RT[7:0] ++ 016

store 1 0 1 0 0 0 1 1 RT[7:0] ++ 024

store 1 0 1 0 0 1 0 0 016 ++ RT[15:0]

store 1 0 1 0 0 1 1 0 RT[15:0] ++ 016

store 1 0 1 0 1 1 0 0 RT

x x x x x x x x x x32

Memory ϕ1

DNRW

IC

*

load 0

store 1

x x

 198
DSIZE

IC EXE/MEM[IR]

*

3

1

3

0

2

9

2

8

2

7

2

6

load 1 0 0 x x x 00

load 1 0 0 x 0 1 01

load 1 0 0 0 1 1 10

store 1 0 1 0 x x 00

store 1 0 1 0 0 1 01

store 1 0 1 0 1 1 10

x 1

Memory ϕ2

DMREQ

IC

*

load 1

store 1

x 0

EXTRACTOR

IC EXE/MEM[IR] RESULT

*

3

1

3

0

2

9

2

8

2

7

2

6

1

0

load 1 0 0 0 0 0 0 0 (DIN[7])24 ++ DIN[7:0]

load 1 0 0 0 0 0 0 1 (DIN[15])24 ++ DIN[15:8]

load 1 0 0 0 0 0 1 0 (DIN[23])24 ++ DIN[23:16]

load 1 0 0 0 0 0 1 1 (DIN[31])24 ++ DIN[31:24]

load 1 0 0 1 0 0 0 0 024 ++ DIN[7:0]

load 1 0 0 1 0 0 0 1 024 ++ DIN[15:8]

load 1 0 0 1 0 0 1 0 024 ++ DIN[23:16]

load 1 0 0 1 0 0 1 1 024 ++ DIN[31:24]

 199

IC EXE/MEM[IR] RESULT

*

3

1

3

0

2

9

2

8

2

7

2

6

1

0

load 1 0 0 0 0 1 0 0 (DIN[15])16 ++ DIN[15:0]

load 1 0 0 0 0 1 1 0 (DIN[31])16 ++ DIN[31:16]

load 1 0 0 1 0 1 0 0 016 ++ DIN[15:0]

load 1 0 0 1 0 1 1 0 016 ++ DIN[31:16]

load 1 0 0 0 1 1 0 0 DIN

x x x x x x x x x x32

Writeback ϕ1

RD

IC

*

data MEM/WB[RESULT]

load MEM/WB[DIN']

ctrl MEM/WB[RESULT]

x x32

Pipeline Control

Dataflow

• IDEC control logic:

[] []
1φ

IC * *NXTIC←

• PIPE control logic:

[] []
1φ

* IR IF IDIRWRITE IDIN⇒ ←

Forwarding Logic

ϕ1

See Appendix B for mathematical presentation of this logic.

Hazard Logic

ϕ2

See Appendix B for mathematical presentation of this logic.

 200

General Logic

ϕ2

NXTIC

NRESET STALL IR

0

0

3

1

3

0

2

9

2

8

2

7

2

6

5

4

3

2

1

0

1 0 0 x 1 0 x x x x x x x x data

1 0 0 0 1 1 x x x x x x x x data

1 0 0 1 0 1 x 0 x x x x x x data

1 0 0 1 0 1 1 1 x x x x x x data

1 0 0 1 1 1 0 x x x x x x x data

1 0 1 1 0 1 0 x x x x x x x data

1 0 0 0 0 0 0 0 1 0 x 0 x x data

1 0 0 0 0 0 0 0 x 0 0 1 x 0 data

1 0 0 0 0 0 0 0 1 0 0 1 0 1 data

1 0 0 0 0 0 0 0 0 0 0 1 1 1 data

1 0 0 0 0 0 0 0 1 0 1 1 0 x data

1 0 0 0 0 0 0 0 1 0 1 1 0 x data

1 0 0 0 0 0 0 0 0 1 0 1 0 x data

1 0 1 0 0 x 0 x x x x x x x load

1 0 1 0 0 0 1 1 x x x x x x load

1 0 1 0 1 0 0 x x x x x x x store

1 0 1 0 1 0 1 1 x x x x x x store

1 0 0 0 0 1 0 x x x x x x x ctrl

1 0 0 1 0 0 1 x x x x x x x ctrl

1 0 x x x x x x x x x x x x undef

x x x x x x x x x x x x x x stall

IRWRITE

STALL

0

0 1

1 0

201

A
pp

en
di

x
C

: G
en

er
al

 S
im

ul
at

or
—

R
eu

sa
bl

e
M

od
ul

es
 in

 E
xe

cu
ta

bl
e

Pr
es

en
ta

tio
n

Se
e

se
ct

io
n

2.
3.

3
fo

r a
n

ex
pl

an
at

io
n

of
 h

ow
 th

e
re

us
ab

le
 m

od
ul

es
 p

re
se

nt
ed

 in
 th

is
 A

pp
en

di
x

m
ay

 b
e

us
ed

 to
 c

re
at

e
an

 e
xe

cu
ta

bl
e

pr
es

en
ta

tio
n.

C
.1

 c
om

m
on

.s
m

l

Th
is

 m
od

ul
e

co
ns

is
ts

 o
f t

he
 c

om
m

on
 d

ef
in

iti
on

s t
ha

t p
ro

vi
de

 th
e

ba
si

s f
or

 th
e

de
fin

iti
on

s o
f o

th
er

 m
od

ul
es

.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
di

gi
ta

l_
va

lu
es

 e
nu

m
er

at
ed

 ty
pe

: R
ep

re
se

nt
s

in
di

vi
du

al
 b

its
 u

si
ng

 ‘I
’ a

nd
 ‘O

’,
ra

th
er

 th
an

 ‘1
’ a

nd
 ‘0

’ (
si

nc
e

th
es

e
ar

e
pr

ed
ef

in
ed

 to
 b

e
of

 th
e

in
t t

yp
e)

or
 b

oo
l (

si
nc

e
th

e
co

nt
in

ua
l n

ee
d

to
 re

fe
r t

o
‘tr

ue
’ a

nd
 to

 ‘f
al

se
’ w

ou
ld

 p
ro

du
ce

 u
nw

ie
ld

y
sp

ec
ifi

ca
tio

ns
).

•
di

gi
ta

l_
va

lu
e

ab
st

ra
ct

 ty
pe

: R
ep

re
se

nt
s

pa
rti

al
 w

or
ds

 w
ith

 re
fe

re
nc

e
to

 a
 3

2-
bi

t w
or

d.
 D

ef
in

ed
 u

si
ng

 a
 3

2-
el

em
en

t a
rr

ay
 to

 c
or

re
sp

on
d

to
 3

2-
bi

t w
or

d

pa
ire

d
w

ith
 a

 3
2-

el
em

en
t v

ec
to

r t
o

sp
ec

ify
 w

hi
ch

 b
its

 o
f t

he
 w

or
d

ar
e

in
 fa

ct
 v

al
id

.

•
cl

as
se

s e
nu

m
er

at
ed

 ty
pe

: R
ep

re
se

nt
s e

ve
ry

 in
st

ru
ct

io
n

cl
as

s o
f t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

 w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

•
ph

as
es

 e
nu

m
er

at
ed

 ty
pe

: R
ep

re
se

nt
s e

ve
ry

 c
lo

ck
 p

ha
se

 o
f t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

 w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

•
st

ag
es

 e
nu

m
er

at
ed

 ty
pe

: R
ep

re
se

nt
s e

ve
ry

 p
ip

el
in

e
st

ag
e

of
 th

e
pr

oc
es

so
r c

or
e

be
in

g
sp

ec
ifi

ed
 w

ith
 a

 u
ni

qu
e

id
en

tif
ie

r.

•
st

ep
s

en
um

er
at

ed
 ty

pe
: R

ep
re

se
nt

s
ev

er
y

tim
in

g
an

no
ta

tio
n

us
ed

 to
 d

es
cr

ib
e

ea
ch

 o
f t

he
 in

st
ru

ct
io

n
st

ep
s

of
 th

e
pr

oc
es

so
r c

or
e

be
in

g
sp

ec
ifi

ed
 w

ith

a
un

iq
ue

 id
en

tif
ie

r.

•
*_

ph
ys

ic
al

_r
eg

s
en

um
er

at
ed

 t
yp

e:
 F

or
 e

ac
h

ba
nk

 o
f

ph
ys

ic
al

 r
eg

is
te

rs
 r

eq
ui

re
d

by
 t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

, r
ep

re
se

nt
s

ev
er

y
ph

ys
ic

al

re
gi

st
er

 in
 th

at
 b

an
k

w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

(E
ac

h
ba

nk
 o

f p
hy

si
ca

l r
eg

is
te

rs
 sh

ou
ld

 b
e

as
so

ci
at

ed
 w

ith
 it

s o
w

n
*_

ph
ys

ic
al

_r
eg

s e
nu

m
er

at
ed

 ty
pe

.)

202

•
*_

vi
rt

ua
l_

re
gs

 u
ni

on
 ty

pe
: F

or
 e

ac
h

ba
nk

 o
f p

hy
si

ca
l r

eg
is

te
rs

 re
qu

ire
d

by
 th

e
pr

oc
es

so
r c

or
e

be
in

g
sp

ec
ifi

ed
, a

 tu
pl

e
of

 th
e

op
tio

na
l t

yp
es

 re
qu

ire
d

to
 r

ep
re

se
nt

 e
ac

h
ph

ys
ic

al
 r

eg
is

te
r

as
 a

 v
irt

ua
l r

eg
is

te
r

at
 th

e
Pr

og
ra

m
m

er
’s

 M
od

el
 le

ve
l o

f a
bs

tra
ct

io
n.

 (E
ac

h
ba

nk
 o

f p
hy

si
ca

l r
eg

is
te

rs
 s

ho
ul

d
be

as
so

ci
at

ed
 w

ith
 it

s o
w

n
*_

vi
rt

ua
l_

re
gs

 e
nu

m
er

at
ed

 ty
pe

.)

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

e
x
c
e
p
t
i
o
n

E
r
r
o
r

o
f

s
t
r
i
n
g
;

 f
u
n

e
r
r
o
r

e
r
r
o
r

=

r
a
i
s
e

E
r
r
o
r
(
e
r
r
o
r
)

 n
o
n
f
i
x

g
u
a
r
d
;

 f
u
n

g
u
a
r
d

(
S
O
M
E

o
p
t
i
o
n
,

_

)

=

o
p
t
i
o
n

|

g
u
a
r
d

(
N
O
N
E

,

e
r
r
o
r
)

=

r
a
i
s
e

E
r
r
o
r
(
e
r
r
o
r
)
;

 i
n
f
i
x

g
u
a
r
d
;

 n
o
n
f
i
x

g
u
a
r
d
f
;

 f
u
n

g
u
a
r
d
f

(
x
,

(
f
,

e
r
r
o
r
)
)

=

(
f

x
)

g
u
a
r
d

e
r
r
o
r
;

 i
n
f
i
x

g
u
a
r
d
f
;

 d
a
t
a
t
y
p
e

c
l
a
s
s
e
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

 v
a
l

c
l
a
s
s
e
s
_
t
o
_
s
t
r
i
n
g

:

c
l
a
s
s
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

c
l
a
s
s
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 d
a
t
a
t
y
p
e

s
t
e
p
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

 v
a
l

s
t
e
p
s
_
t
o
_
s
t
r
i
n
g

:

s
t
e
p
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

s
t
e
p
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

 d
a
t
a
t
y
p
e

p
h
a
s
e
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

203

v
a
l

p
h
a
s
e
s
_
t
o
_
s
t
r
i
n
g

:

(
p
h
a
s
e
s

-
>

s
t
r
i
n
g
)

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

p
h
a
s
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

 d
a
t
a
t
y
p
e

s
t
a
g
e
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

 v
a
l

s
t
a
g
e
s
_
t
o
_
s
t
r
i
n
g

:

(
s
t
a
g
e
s

-
>

s
t
r
i
n
g
)

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

p
i
p
e
l
i
n
e

s
t
a
g
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

 d
a
t
a
t
y
p
e

b
i
t
s

=

B
I
T
_
3
1

|

B
I
T
_
3
0

|

B
I
T
_
2
9

|

B
I
T
_
2
8

|

B
I
T
_
2
7

|

B
I
T
_
2
6

|

B
I
T
_
2
5

|

B
I
T
_
2
4

|

B
I
T
_
2
3

|

B
I
T
_
2
2

|

B
I
T
_
2
1

|

B
I
T
_
2
0

|

B
I
T
_
1
9

|

B
I
T
_
1
8

|

B
I
T
_
1
7

|

B
I
T
_
1
6

|

B
I
T
_
1
5

|

B
I
T
_
1
4

|

B
I
T
_
1
3

|

B
I
T
_
1
2

|

B
I
T
_
1
1

|

B
I
T
_
1
0

|

B
I
T
_
_
9

|

B
I
T
_
_
8

|

B
I
T
_
_
7

|

B
I
T
_
_
6

|

B
I
T
_
_
5

|

B
I
T
_
_
4

|

B
I
T
_
_
3

|

B
I
T
_
_
2

|

B
I
T
_
_
1

|

B
I
T
_
_
0
;

 v
a
l

b
i
t
s
_
t
o
_
i
n
t

=

f
n

B
I
T
_
_
0

=
>

0

|

B
I
T
_
_
1

=
>

1

|

B
I
T
_
_
2

=
>

2

|

B
I
T
_
_
3

=
>

3

|

B
I
T
_
_
4

=
>

4

|

B
I
T
_
_
5

=
>

5

|

B
I
T
_
_
6

=
>

6

|

B
I
T
_
_
7

=
>

7

|

B
I
T
_
_
8

=
>

8

|

B
I
T
_
_
9

=
>

9

|

B
I
T
_
1
0

=
>

1
0

|

B
I
T
_
1
1

=
>

1
1

|

B
I
T
_
1
2

=
>

1
2

|

B
I
T
_
1
3

=
>

1
3

|

B
I
T
_
1
4

=
>

1
4

|

B
I
T
_
1
5

=
>

1
5

|

B
I
T
_
1
6

=
>

1
6

|

B
I
T
_
1
7

=
>

1
7

|

B
I
T
_
1
8

=
>

1
8

|

B
I
T
_
1
9

=
>

1
9

|

B
I
T
_
2
0

=
>

2
0

|

B
I
T
_
2
1

=
>

2
1

|

B
I
T
_
2
2

=
>

2
2

|

B
I
T
_
2
3

=
>

2
3

|

B
I
T
_
2
4

=
>

2
4

|

B
I
T
_
2
5

=
>

2
5

|

B
I
T
_
2
6

=
>

2
6

|

B
I
T
_
2
7

=
>

2
7

|

B
I
T
_
2
8

=
>

2
8

|

B
I
T
_
2
9

=
>

2
9

|

B
I
T
_
3
0

=
>

3
0

|

B
I
T
_
3
1

=
>

3
1
;

 d
a
t
a
t
y
p
e

d
i
g
i
t
a
l
_
v
a
l
u
e
s

=

I

|

O
;

 f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
s
_
t
o
_
c
h
a
r

I

=

#
"
1
"

|

d
i
g
i
t
a
l
_
v
a
l
u
e
s
_
t
o
_
c
h
a
r

O

=

#
"
0
"
;

 a
b
s
t
y
p
e

d
i
g
i
t
a
l
_
v
a
l
u
e

=

D
I
G
I
T
A
L

o
f

b
o
o
l

v
e
c
t
o
r

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

a
r
r
a
y

w
i
t
h

l
o
c
a
l

v
a
l

b
i
t
s

=

[

B
I
T
_
_
0
,

B
I
T
_
_
1
,

B
I
T
_
_
2
,

B
I
T
_
_
3
,

B
I
T
_
_
4
,

B
I
T
_
_
5
,

B
I
T
_
_
6
,

B
I
T
_
_
7
,

B
I
T
_
_
8
,

B
I
T
_
_
9
,

B
I
T
_
1
0
,

B
I
T
_
1
1
,

B
I
T
_
1
2
,

B
I
T
_
1
3
,

B
I
T
_
1
4
,

B
I
T
_
1
5
,

B
I
T
_
1
6
,

B
I
T
_
1
7
,

B
I
T
_
1
8
,

B
I
T
_
1
9
,

B
I
T
_
2
0
,

B
I
T
_
2
1
,

B
I
T
_
2
2
,

B
I
T
_
2
3
,

B
I
T
_
2
4
,

B
I
T
_
2
5
,

B
I
T
_
2
6
,

B
I
T
_
2
7
,

B
I
T
_
2
8
,

B
I
T
_
2
9
,

B
I
T
_
3
0
,

B
I
T
_
3
1

]
;

v
a
l

r
_
b
i
t
s

=

[

B
I
T
_
3
1
,

B
I
T
_
3
0
,

B
I
T
_
2
9
,

B
I
T
_
2
8
,

B
I
T
_
2
7
,

B
I
T
_
2
6
,

B
I
T
_
2
5
,

B
I
T
_
2
4
,

B
I
T
_
2
3
,

B
I
T
_
2
2
,

B
I
T
_
2
1
,

B
I
T
_
2
0
,

B
I
T
_
1
9
,

B
I
T
_
1
8
,

B
I
T
_
1
7
,

B
I
T
_
1
6
,

B
I
T
_
1
5
,

B
I
T
_
1
4
,

B
I
T
_
1
3
,

B
I
T
_
1
2
,

B
I
T
_
1
1
,

B
I
T
_
1
0
,

B
I
T
_
_
9
,

B
I
T
_
_
8
,

B
I
T
_
_
7
,

B
I
T
_
_
6
,

B
I
T
_
_
5
,

B
I
T
_
_
4
,

B
I
T
_
_
3
,

B
I
T
_
_
2
,

B
I
T
_
_
1
,

B
I
T
_
_
0

]
;

204

v
a
l

i
n
d
i
c
e
s

=

[

0
,

1
,

2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,

1
0
,

1
1
,

1
2
,

1
3
,

1
4
,

1
5
,

1
6
,

1
7
,

1
8
,

1
9
,

2
0
,

2
1
,

2
2
,

2
3
,

2
4
,

2
5
,

2
6
,

2
7
,

2
8
,

2
9
,

3
0
,

3
1

]
;

v
a
l

r
_
i
n
d
i
c
e
s

=

[

3
1
,

3
0
,

2
9
,

2
8
,

2
7
,

2
6
,

2
5
,

2
4
,

2
3
,

2
2
,

2
1
,

2
0
,

1
9
,

1
8
,

1
7
,

1
6
,

1
5
,

1
4
,

1
3
,

1
2
,

1
1
,

1
0
,

9
,

8
,

7
,

6
,

5
,

4
,

3
,

2
,

1
,

0

]
;

v
a
l

p
a
i
r
s

=

[

(
B
I
T
_
_
0
,

0
)
,

(
B
I
T
_
_
1
,

1
)
,

(
B
I
T
_
_
2
,

2
)
,

(
B
I
T
_
_
3
,

3
)
,

(
B
I
T
_
_
4
,

4
)
,

(
B
I
T
_
_
5
,

5
)
,

(
B
I
T
_
_
6
,

6
)
,

(
B
I
T
_
_
7
,

7
)
,

(
B
I
T
_
_
8
,

8
)
,

(
B
I
T
_
_
9
,

9
)
,

(
B
I
T
_
1
0
,

1
0
)
,

(
B
I
T
_
1
1
,

1
1
)
,

(
B
I
T
_
1
2
,

1
2
)
,

(
B
I
T
_
1
3
,

1
3
)
,

(
B
I
T
_
1
4
,

1
4
)
,

(
B
I
T
_
1
5
,

1
5
)
,

(
B
I
T
_
1
6
,

1
6
)
,

(
B
I
T
_
1
7
,

1
7
)
,

(
B
I
T
_
1
8
,

1
8
)
,

(
B
I
T
_
1
9
,

1
9
)
,

(
B
I
T
_
2
0
,

2
0
)
,

(
B
I
T
_
2
1
,

2
1
)
,

(
B
I
T
_
2
2
,

2
2
)
,

(
B
I
T
_
2
3
,

2
3
)
,

(
B
I
T
_
2
4
,

2
4
)
,

(
B
I
T
_
2
5
,

2
5
)
,

(
B
I
T
_
2
6
,

2
6
)
,

(
B
I
T
_
2
7
,

2
7
)
,

(
B
I
T
_
2
8
,

2
8
)
,

(
B
I
T
_
2
9
,

2
9
)
,

(
B
I
T
_
3
0
,

3
0
)
,

(
B
I
T
_
3
1
,

3
1
)

]
;

v
a
l

r
_
p
a
i
r
s

=

[

(
B
I
T
_
3
1
,

3
1
)
,

(
B
I
T
_
3
0
,

3
0
)
,

(
B
I
T
_
2
9
,

2
9
)
,

(
B
I
T
_
2
8
,

2
8
)
,

(
B
I
T
_
2
7
,

2
7
)
,

(
B
I
T
_
2
6
,

2
6
)
,

(
B
I
T
_
2
5
,

2
5
)
,

(
B
I
T
_
2
4
,

2
4
)
,

(
B
I
T
_
2
3
,

2
3
)
,

(
B
I
T
_
2
2
,

2
2
)
,

(
B
I
T
_
2
1
,

2
1
)
,

(
B
I
T
_
2
0
,

2
0
)
,

(
B
I
T
_
1
9
,

1
9
)
,

(
B
I
T
_
1
8
,

1
8
)
,

(
B
I
T
_
1
7
,

1
7
)
,

(
B
I
T
_
1
6
,

1
6
)
,

(
B
I
T
_
1
5
,

1
5
)
,

(
B
I
T
_
1
4
,

1
4
)
,

(
B
I
T
_
1
3
,

1
3
)
,

(
B
I
T
_
1
2
,

1
2
)
,

(
B
I
T
_
1
1
,

1
1
)
,

(
B
I
T
_
1
0
,

1
0
)
,

(
B
I
T
_
_
9
,

9
)
,

(
B
I
T
_
_
8
,

8
)
,

(
B
I
T
_
_
7
,

7
)
,

(
B
I
T
_
_
6
,

6
)
,

(
B
I
T
_
_
5
,

5
)
,

(
B
I
T
_
_
4
,

4
)
,

(
B
I
T
_
_
3
,

3
)
,

(
B
I
T
_
_
2
,

2
)
,

(
B
I
T
_
_
1
,

1
)
,

(
B
I
T
_
_
0
,

0
)

]
;

l
o
c
a
l

f
u
n

b
i
t
_
i
n
_
r
a
n
g
e
'

b
b
s

=

l
e
t

v
a
l

t
t
s

=

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

f
a
l
s
e
)
;

f
u
n

e
x
p
l
o
d
e
_
b
i
t
_
r
a
n
g
e

(
(
b
1
,

b
2
)
:
:
b
s
)

=

l
e
t

f
u
n

s
u
b
_
r
a
n
g
e

(
(
b
,

i
)
:
:
i
s
)

(
N
O
N
E

)

=

i
f

b

=

b
1

t
h
e
n

(
A
r
r
a
y
.
u
p
d
a
t
e
(
t
t
s
,

i
,

t
r
u
e
)
;

s
u
b
_
r
a
n
g
e

i
s

(
S
O
M
E

b
2
)
)

e
l
s
e

i
f

b

=

b
2

t
h
e
n

(
A
r
r
a
y
.
u
p
d
a
t
e
(
t
t
s
,

i
,

t
r
u
e
)
;

s
u
b
_
r
a
n
g
e

i
s

(
S
O
M
E

b
1
)
)

205

e
l
s
e

s
u
b
_
r
a
n
g
e

i
s

N
O
N
E

|

s
u
b
_
r
a
n
g
e

(
(
b
,

i
)
:
:
i
s
)

(
S
O
M
E

b
'
)

=

(
A
r
r
a
y
.
u
p
d
a
t
e
(
t
t
s
,

i
,

t
r
u
e
)
;

i
f

b

=

b
'

t
h
e
n

(
)

e
l
s
e

s
u
b
_
r
a
n
g
e

i
s

(
S
O
M
E

b
'
)
)

|

s
u
b
_
r
a
n
g
e

(

[
]
)

(
_

)

=

(
)

i
n

i
f

b
1

=

b
2

t
h
e
n

A
r
r
a
y
.
u
p
d
a
t
e
(
t
t
s
,

b
i
t
s
_
t
o
_
i
n
t

b
1
,

t
r
u
e
)

e
l
s
e

s
u
b
_
r
a
n
g
e

r
_
p
a
i
r
s

N
O
N
E
;

i
f

b
s

=

[
]

t
h
e
n

(
)

e
l
s
e

e
x
p
l
o
d
e
_
b
i
t
_
r
a
n
g
e

b
s

e
n
d

|

e
x
p
l
o
d
e
_
b
i
t
_
r
a
n
g
e

(

b
b
s
)

=

(
)

i
n

(
e
x
p
l
o
d
e
_
b
i
t
_
r
a
n
g
e

b
b
s
;

A
r
r
a
y
.
e
x
t
r
a
c
t
(
t
t
s
,

0
,

N
O
N
E
)
)

e
n
d

i
n

f
u
n

b
i
t
_
i
n
_
r
a
n
g
e

(

(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
:
:
[
]
)

=

V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

_

=
>

t
r
u
e

)

|

b
i
t
_
i
n
_
r
a
n
g
e

(

(
B
I
T
_
_
0
,

B
I
T
_
3
1
)
:
:
[
]
)

=

V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

_

=
>

t
r
u
e

)

|

b
i
t
_
i
n
_
r
a
n
g
e

(
b
b
s

a
s

(
b
1
,

b
2

)
:
:
[
]
)

=

i
f

b
1

=

b
2

t
h
e
n

l
e
t

v
a
l

i

=

b
i
t
s
_
t
o
_
i
n
t

b
1

i
n

V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i
'

=
>

i
'

=

i
)

e
n
d

e
l
s
e

b
i
t
_
i
n
_
r
a
n
g
e
'

b
b
s

|

b
i
t
_
i
n
_
r
a
n
g
e

(

[
]
)

=

V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

_

=
>

f
a
l
s
e
)

|

b
i
t
_
i
n
_
r
a
n
g
e

(
b
b
s

)

=

b
i
t
_
i
n
_
r
a
n
g
e
'

b
b
s

e
n
d

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

b

b
b
s

=

D
I
G
I
T
A
L
(
b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

b
)
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
i
n
s
t
a
n
c
e

b
b
s

(
w
o
r
d

:

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s

)

=

206

D
I
G
I
T
A
L
(

b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
,

A
r
r
a
y
.
f
r
o
m
L
i
s
t

[

#
3
2

w
o
r
d
,

#
3
1

w
o
r
d
,

#
3
0

w
o
r
d
,

#
2
9

w
o
r
d
,

#
2
8

w
o
r
d
,

#
2
7

w
o
r
d
,

#
2
6

w
o
r
d
,

#
2
5

w
o
r
d
,

#
2
4

w
o
r
d
,

#
2
3

w
o
r
d
,

#
2
2

w
o
r
d
,

#
2
1

w
o
r
d
,

#
2
0

w
o
r
d
,

#
1
9

w
o
r
d
,

#
1
8

w
o
r
d
,

#
1
7

w
o
r
d
,

#
1
6

w
o
r
d
,

#
1
5

w
o
r
d
,

#
1
4

w
o
r
d
,

#
1
3

w
o
r
d
,

#
1
2

w
o
r
d
,

#
1
1

w
o
r
d
,

#
1
0

w
o
r
d
,

#
9

w
o
r
d
,

#
8

w
o
r
d
,

#
7

w
o
r
d
,

#
6

w
o
r
d
,

#
5

w
o
r
d
,

#
4

w
o
r
d
,

#
3

w
o
r
d
,

#
2

w
o
r
d
,

#
1

w
o
r
d

]

)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
e
n
g
t
h

(
D
I
G
I
T
A
L
(
t
t
s
,

_
)
)

=

V
e
c
t
o
r
.
f
o
l
d
l

(
f
n

(
t
,

n
)

=
>

i
f

t

t
h
e
n

n

+

1

e
l
s
e

n
)

0

t
t
s
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e

(
D
I
G
I
T
A
L
(
t
t
s
,

_
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

(
(
b
,

i
)
:
:
i
s
)

(
S
O
M
E
(
r
a
n
g
e

a
s

(
m
s
b
,

_

)
)
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

i
f

i
s

=

[
]

t
h
e
n

[
(
m
s
b
,

b
)
]

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

i
s

(
S
O
M
E
(
m
s
b
,

b
)
)

e
l
s
e

r
a
n
g
e
:
:
(
i
f

i
s

=

[
]

t
h
e
n

[
]

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

i
s

N
O
N
E
)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

(
(
b
,

i
)
:
:
i
s
)

(
N
O
N
E

)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

i
f

i
s

=

[
]

t
h
e
n

[
(
b
,

b
)
]

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

i
s

(
S
O
M
E
(
b
,

b
)
)

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

[
]

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

i
s

N
O
N
E

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

(

[
]
)

(
S
O
M
E
(
r
a
n
g
e

)
)

=

[
r
a
n
g
e
]

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

(

[
]
)

(
N
O
N
E

)

=

[
]

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
y
p
e
'

r
_
p
a
i
r
s

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t

b

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

(
f
n

b

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

b
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

b
)
)

e
l
s
e

N
O
N
E
)

(
b
i
t
s
_
t
o
_
i
n
t

b
)

207

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l
'

(
i
:
:
i
s
)

o
p
t
i
o
n

=

l
e
t

v
a
l

o
p
t
i
o
n
'

=

c
a
s
e

o
p
t
i
o
n

o
f

S
O
M
E

n

=
>

S
O
M
E
(
n

+

n

+

(
i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

a
n
d
a
l
s
o

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

=

I

t
h
e
n

1

e
l
s
e

0
)
)

|

N
O
N
E

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

S
O
M
E
(
i
f

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

=

I

t
h
e
n

1

e
l
s
e

0
)

e
l
s
e

N
O
N
E

i
n

i
f

i
s

=

[
]

t
h
e
n

o
p
t
i
o
n
'

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l
'

i
s

o
p
t
i
o
n
'

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l
'

(

[
]
)

o
p
t
i
o
n

=

o
p
t
i
o
n

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l
'

r
_
i
n
d
i
c
e
s

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
m
p
a
r
e

(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
m
p
a
r
e
'

(
i
:
:
i
s
)

r
e
s
u
l
t

=

(

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
,

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

(
f
a
l
s
e
,

f
a
l
s
e
)

=
>

i
f

i
s

=

[
]

t
h
e
n

r
e
s
u
l
t

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
m
p
a
r
e
'

i
s

r
e
s
u
l
t

|

(
t
r
u
e
,

t
r
u
e

)

=
>

l
e
t

v
a
l

r
e
s
u
l
t
'

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
'
,

i
)
,

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)

o
f

(
I
,

O
)

=
>

S
O
M
E

G
R
E
A
T
E
R

|

(
O
,

I
)

=
>

S
O
M
E

L
E
S
S

|

(
_
,

_
)

=
>

r
e
s
u
l
t

i
n

i
f

i
s

=

[
]

t
h
e
n

r
e
s
u
l
t
'

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
m
p
a
r
e
'

i
s

r
e
s
u
l
t
'

e
n
d

|

(
_
,

_

)

=
>

N
O
N
E

)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
m
p
a
r
e
'

(

[
]
)

r
e
s
u
l
t

=

r
e
s
u
l
t

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
m
p
a
r
e
'

i
n
d
i
c
e
s

(
S
O
M
E

E
Q
U
A
L
)

e
n
d

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

b
b
s

(
D
I
G
I
T
A
L
(
t
t
s
,

_
)
)

=

(
b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
)

=

t
t
s
;

208

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n
'

(
i
:
:
i
s
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

N
O
N
E

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n
'

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n
'

(

[
]
)

=

N
O
N
E

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n
'

r
_
i
n
d
i
c
e
s

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o
'

(
i
:
:
i
s
)

o
p
t
i
o
n

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

i
f

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

=

I

t
h
e
n

S
O
M
E

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

S
O
M
E

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o
'

i
s

(
S
O
M
E

t
r
u
e
)

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

o
p
t
i
o
n

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o
'

i
s

o
p
t
i
o
n

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o
'

(

[
]
)

o
p
t
i
o
n

=

o
p
t
i
o
n

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o
'

i
n
d
i
c
e
s

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
_
s
e
t

b

(
d
i
g
i
t
a
l
_
v
a
l
u
e

a
s

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

b
i
t

=

l
e
t

v
a
l

i

=

b
i
t
s
_
t
o
_
i
n
t

b

i
n

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

l
e
t

v
a
l

w
o
r
d
'

=

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)

i
n

A
r
r
a
y
.
u
p
d
a
t
e
(
w
o
r
d
'
,

i
,

b
i
t
)
;

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
'
)
)

e
n
d

e
l
s
e

N
O
N
E

e
n
d
;

209

l
o
c
a
l

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d

b
i
t

b
b
s

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

d
a
t
a
t
y
p
e

e
x
t
e
n
d
_
s
t
a
t
e

=

U
N
S
T
A
R
T
E
D

|

K
E
E
P
_
O
L
D

|

E
X
T
E
N
D
_
N
E
W

|

F
I
N
I
S
H
E
D
;

v
a
l

t
t
s
'

=

b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d
'

(
i
:
:
i
s
)

s
t
a
t
e

=

(

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
,

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

(
f
a
l
s
e
,

f
a
l
s
e
)

=
>

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d
'

i
s

(
i
f

s
t
a
t
e

=

E
X
T
E
N
D
_
N
E
W

t
h
e
n

F
I
N
I
S
H
E
D

e
l
s
e

s
t
a
t
e
)

|

(
t
r
u
e
,

t
r
u
e

)

=
>

i
f

s
t
a
t
e

=

K
E
E
P
_
O
L
D

o
r
e
l
s
e

s
t
a
t
e

=

U
N
S
T
A
R
T
E
D

t
h
e
n

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d
'

i
s

K
E
E
P
_
O
L
D

e
l
s
e

f
a
l
s
e

|

(
t
r
u
e
,

f
a
l
s
e
)

=
>

i
f

s
t
a
t
e

=

E
X
T
E
N
D
_
N
E
W

o
r
e
l
s
e

s
t
a
t
e

=

K
E
E
P
_
O
L
D

t
h
e
n

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d
'

i
s

E
X
T
E
N
D
_
N
E
W

e
l
s
e

f
a
l
s
e

|

(
f
a
l
s
e
,

t
r
u
e

)

=
>

f
a
l
s
e

)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d
'

(

[
]
)

s
t
a
t
e

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d
'

i
n
d
i
c
e
s

U
N
S
T
A
R
T
E
D

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

o
r
e
l
s
e

n
o
t
(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
)

t
h
e
n

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

e
l
s
e

b
i
t
)
)
)

e
l
s
e

N
O
N
E

e
n
d

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n
_
e
x
t
e
n
d

b
b
s

d
i
g
i
t
a
l
_
v
a
l
u
e

=

c
a
s
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n

d
i
g
i
t
a
l
_
v
a
l
u
e
)

o
f

S
O
M
E

s
i
g
n

=
>

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d

s
i
g
n

b
b
s

d
i
g
i
t
a
l
_
v
a
l
u
e

|

N
O
N
E

=
>

N
O
N
E

210

v
a
l

d
i
g
i
t
a
l
_
v
a
l
u
e
_
z
e
r
o
_
e
x
t
e
n
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
x
t
e
n
d

O

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d

b
i
t

b
b
s

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

v
a
l

t
t
s
'

=

b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d
'

(
i
:
:
i
s
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

a
n
d
a
l
s
o

n
o
t
(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
)

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d
'

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d
'

(

[
]
)

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d
'

i
n
d
i
c
e
s

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

o
r
e
l
s
e

n
o
t
(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
)

t
h
e
n

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

e
l
s
e

b
i
t
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e

(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

d
a
t
a
t
y
p
e

c
o
n
c
a
t
e
n
a
t
e
_
s
t
a
t
e

=

U
N
S
T
A
R
T
E
D

|

S
T
A
R
T
E
D
'

|

S
T
A
R
T
E
D

|

F
I
N
I
S
H
E
D
'

|

F
I
N
I
S
H
E
D
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

(
i
:
:
i
s
)

s
t
a
t
e

=

(

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
,

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

(
f
a
l
s
e
,

f
a
l
s
e
)

=
>

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

i
s

s
t
a
t
e

|

(
t
r
u
e
,

f
a
l
s
e
)

=
>

i
f

s
t
a
t
e

=

S
T
A
R
T
E
D
'

o
r
e
l
s
e

s
t
a
t
e

=

U
N
S
T
A
R
T
E
D

t
h
e
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

i
s

S
T
A
R
T
E
D
'

e
l
s
e

i
f

s
t
a
t
e

=

F
I
N
I
S
H
E
D
'

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

i
s

F
I
N
I
S
H
E
D

|

(
f
a
l
s
e
,

t
r
u
e

)

=
>

i
f

s
t
a
t
e

=

S
T
A
R
T
E
D

o
r
e
l
s
e

s
t
a
t
e

=

U
N
S
T
A
R
T
E
D

t
h
e
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

i
s

S
T
A
R
T
E
D

211

e
l
s
e

i
f

s
t
a
t
e

=

F
I
N
I
S
H
E
D

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

i
s

F
I
N
I
S
H
E
D
'

|

(
t
r
u
e
,

t
r
u
e

)

=
>

f
a
l
s
e

)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

(

[
]
)

s
t
a
t
e

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
n
c
a
t
e
n
a
t
e
'

i
n
d
i
c
e
s

U
N
S
T
A
R
T
E
D

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)

o
r
e
l
s
e

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

w
o
r
d

e
l
s
e

w
o
r
d
'
,

i
)
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e

(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e
'

(
i
:
:
i
s
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

a
n
d
a
l
s
o

n
o
t
(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
)

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e
'

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e
'

(

[
]
)

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e
'

i
n
d
i
c
e
s

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

w
o
r
d

e
l
s
e

w
o
r
d
'
,

i
)
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
l
i
c
e

b
b
s

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

v
a
l

t
t
s
'

=

b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
;

212

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
l
i
c
e
'

(
i
:
:
i
s
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)

a
n
d
a
l
s
o

n
o
t
(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
l
i
c
e
'

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
l
i
c
e
'

(

[
]
)

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
l
i
c
e
'

i
n
d
i
c
e
s

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
p
l
i
c
e

(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
p
l
i
c
e
'

(
i
:
:
i
s
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)

a
n
d
a
l
s
o

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
p
l
i
c
e
'

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
p
l
i
c
e
'

(

[
]
)

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
p
l
i
c
e
'

i
n
d
i
c
e
s

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)

o
r
e
l
s
e

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

w
o
r
d

e
l
s
e

w
o
r
d
'
,

i
)
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
m
a
p

f

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

D
I
G
I
T
A
L
(
t
t
s
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

f

(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)

e
l
s
e

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c

f

(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c
'

(
i
:
:
i
s
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)

<
>

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

f
a
l
s
e

213

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c
'

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c
'

(

[
]
)

=

t
r
u
e

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c
'

i
n
d
i
c
e
s

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)

t
h
e
n

f

(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
'
,

i
)
,

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)

e
l
s
e

A
r
r
a
y
.
s
u
b
(
w
o
r
d
'
,

i
)
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

l
o
c
a
l

f
u
n

n
o
t
'

x

=

i
f

x

=

O

t
h
e
n

I

e
l
s
e

O
;

f
u
n

a
n
d
'

(
x
,

y
)

=

i
f

x

=

I

a
n
d
a
l
s
o

y

=

I

t
h
e
n

I

e
l
s
e

O
;

f
u
n

o
r
'

(
x
,

y
)

=

i
f

x

=

O

a
n
d
a
l
s
o

y

=

O

t
h
e
n

O

e
l
s
e

I
;

f
u
n

x
o
r
'

(
x
,

y
)

=

i
f

x

<
>

y

t
h
e
n

I

e
l
s
e

O
;

f
u
n

a
d
d
'

(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

c

=

l
e
t

v
a
l

r
e
s
u
l
t

=

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O
)
;

f
u
n

a
d
d
'
'

(
i
:
:
i
s
)

c

=

(

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

i
)
,

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

(
f
a
l
s
e
,

f
a
l
s
e
)

=
>

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

a
d
d
'
'

i
s

c

|

(
t
r
u
e
,

t
r
u
e

)

=
>

l
e
t

v
a
l

c
'

=

i
f

A
r
r
a
y
.
s
u
b
(
w
o
r
d
'
,

i
)

=

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

t
h
e
n

(
i
f

c

=

I

t
h
e
n

A
r
r
a
y
.
u
p
d
a
t
e
(
r
e
s
u
l
t
,

i
,

I
)

e
l
s
e

(
)
;

A
r
r
a
y
.
s
u
b
(
w
o
r
d
'
,

i
)
)

e
l
s
e

(
i
f

c

=

O

t
h
e
n

A
r
r
a
y
.
u
p
d
a
t
e
(
r
e
s
u
l
t
,

i
,

I
)

e
l
s
e

(
)
;

c
)

i
n

i
f

i
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

a
d
d
'
'

i
s

c
'

e
n
d

214

|

(
_
,

_

)

=
>

f
a
l
s
e

)

|

a
d
d
'
'

(

[
]
)

c

=

t
r
u
e

i
n

i
f

a
d
d
'
'

i
n
d
i
c
e
s

c

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

r
e
s
u
l
t
)
)

e
l
s
e

N
O
N
E

e
n
d

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
a
d
d

(
x
,

y
)

c

=

a
d
d
'

(
x
,

y

)

c
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
u
b

(
x
,

y
)

c

=

a
d
d
'

(
x
,

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
n
o
t

y
)
)

c
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
n
o
t

x

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
m
a
p

(
n
o
t
'
)

x
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
a
n
d

(
x
,

y
)

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c

(
a
n
d
'
)

(
x
,

y
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
o
r

(
x
,

y
)

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c

(
o
r
'

)

(
x
,

y
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
x
o
r

(
x
,

y
)

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
y
a
d
i
c

(
x
o
r
'
)

(
x
,

y
)

e
n
d
;

l
o
c
a
l

d
a
t
a
t
y
p
e

o
p
e
r
a
t
i
o
n

=

D
R
O
P

|

R
D
R
O
P

|

R
T
A
K
E

|

T
A
K
E
;

f
u
n

o
p
e
r
a
t
e

(
n
,

t
t
s
)

o
p
e
r
a
t
i
o
n

=

l
e
t

v
a
l

(
b
o
u
n
d
,

c
o
m
p
a
r
e
)

=

c
a
s
e

o
p
e
r
a
t
i
o
n

o
f

D
R
O
P

=
>

(
3
2
,

o
p
>
=
)

|

R
D
R
O
P

=
>

(
~
1
,

o
p
<
=
)

|

R
T
A
K
E

=
>

(
~
1
,

o
p
>

)

|

T
A
K
E

=
>

(
3
2
,

o
p
<

)
;

f
u
n

o
p
e
r
a
t
e
'

n

(
i
:
:
i
s
)

=

i
f

n

<
=

0

t
h
e
n

i

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

b
o
u
n
d

e
l
s
e

o
p
e
r
a
t
e
'

(
i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

n

-

1

e
l
s
e

n
)

i
s

|

o
p
e
r
a
t
e
'

n

(

[
]
)

=

b
o
u
n
d
;

v
a
l

n
'

=

o
p
e
r
a
t
e
'

n

(
i
f

o
p
e
r
a
t
i
o
n

=

D
R
O
P

o
r
e
l
s
e

o
p
e
r
a
t
i
o
n

=

T
A
K
E

t
h
e
n

i
n
d
i
c
e
s

e
l
s
e

r
_
i
n
d
i
c
e
s
)

i
n

V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

c
o
m
p
a
r
e
(
i
,

n
'
)

a
n
d
a
l
s
o

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

e
n
d
;

215

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
'
,

w
o
r
d
'
)

(
t
t
s
,

w
o
r
d
)

i
n
d
i
c
e
s

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y
'

(
j
j
s

a
s

j
:
:
j
s
)

(
i
i
s

a
s

i
:
:
i
s
)

=

(

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

j
)
,

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

(
t
r
u
e
,

t
r
u
e

)

=
>

(

A
r
r
a
y
.
u
p
d
a
t
e
(
w
o
r
d
'
,

j
,

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)
;

i
f

j
s

=

[
]

o
r
e
l
s
e

i
s

=

[
]

t
h
e
n

w
o
r
d
'

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y
'

j
s

i
s

)

|

(
f
a
l
s
e
,

t
r
u
e

)

=
>

i
f

j
s

=

[
]

t
h
e
n

w
o
r
d
'

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y
'

j
s

i
i
s

|

(
_
,

f
a
l
s
e
)

=
>

i
f

i
s

=

[
]

t
h
e
n

w
o
r
d
'

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y
'

j
j
s

i
s

)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y
'

(

_
)

(

_
)

=

w
o
r
d
'

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y
'

i
n
d
i
c
e
s

i
n
d
i
c
e
s

e
n
d

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
d
r
o
p

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

n
)

=

D
I
G
I
T
A
L
(
o
p
e
r
a
t
e

(
n
,

t
t
s
)

D
R
O
P
,

w
o
r
d
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
d
r
o
p

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

n
)

=

D
I
G
I
T
A
L
(
o
p
e
r
a
t
e

(
n
,

t
t
s
)

R
D
R
O
P
,

w
o
r
d
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
a
k
e

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

n
)

=

D
I
G
I
T
A
L
(
o
p
e
r
a
t
e

(
n
,

t
t
s
)

T
A
K
E
,

w
o
r
d
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
t
a
k
e

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

n
)

=

D
I
G
I
T
A
L
(
o
p
e
r
a
t
e

(
n
,

t
t
s
)

R
T
A
K
E
,

w
o
r
d
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
a
s
r

(
i
m
m
e
d
i
a
t
e

a
s

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

s
h
i
f
t
_
a
m
n
t
)

=

l
e
t

v
a
l

s
i
g
n

=

g
e
t
O
p
t
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
s
i
g
n

i
m
m
e
d
i
a
t
e
,

O
)
)
;

v
a
l

(
t
t
s
'
,

w
o
r
d
'
)

=

(
o
p
e
r
a
t
e

(
g
e
t
O
p
t
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

s
h
i
f
t
_
a
m
n
t
,

0
)
,

t
t
s
)

D
R
O
P
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

s
i
g
n
)
)

i
n

D
I
G
I
T
A
L
(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

w
o
r
d
'
)

(
t
t
s
'
,

w
o
r
d
)

i
n
d
i
c
e
s
)

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
s
l

(

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

s
h
i
f
t
_
a
m
n
t
)

=

l
e
t

v
a
l

(
t
t
s
'
,

w
o
r
d
'
)

=

(
o
p
e
r
a
t
e

(
g
e
t
O
p
t
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

s
h
i
f
t
_
a
m
n
t
,

0
)
,

t
t
s
)

R
D
R
O
P
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O

)
)

i
n

D
I
G
I
T
A
L
(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

w
o
r
d
'
)

(
t
t
s
'
,

w
o
r
d
)

r
_
i
n
d
i
c
e
s
)

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
s
r

(

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

s
h
i
f
t
_
a
m
n
t
)

=

l
e
t

v
a
l

(
t
t
s
'
,

w
o
r
d
'
)

=

(
o
p
e
r
a
t
e

(
g
e
t
O
p
t
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

s
h
i
f
t
_
a
m
n
t
,

0
)
,

t
t
s
)

D
R
O
P
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O

)
)

216

i
n

D
I
G
I
T
A
L
(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

w
o
r
d
'
)

(
t
t
s
'
,

w
o
r
d
)

i
n
d
i
c
e
s
)

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
o
l

(
i
m
m
e
d
i
a
t
e

a
s

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

r
o
t
_
a
m
n
t

)

=

c
a
s
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
e
n
g
t
h

i
m
m
e
d
i
a
t
e
)

o
f

0

=
>

i
m
m
e
d
i
a
t
e

|

l
e
n
g
t
h

=
>

l
e
t

v
a
l

r
o
t
_
a
m
n
t
'

=

(
g
e
t
O
p
t
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

r
o
t
_
a
m
n
t
,

0
)
)

m
o
d

l
e
n
g
t
h
;

v
a
l

f
r
o
n
t
_
t
t
s

=

o
p
e
r
a
t
e

(
r
o
t
_
a
m
n
t
'
,

t
t
s
)

R
T
A
K
E
;

v
a
l

b
a
c
k
_
t
t
s

=

o
p
e
r
a
t
e

(
r
o
t
_
a
m
n
t
'
,

t
t
s
)

R
D
R
O
P
;

i
n

D
I
G
I
T
A
L
(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)
)

(
f
r
o
n
t
_
t
t
s
,

w
o
r
d
)

i
n
d
i
c
e
s
)

(
b
a
c
k
_
t
t
s
,

w
o
r
d
)

r
_
i
n
d
i
c
e
s
)

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
o
r

(
i
m
m
e
d
i
a
t
e

a
s

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

r
o
t
_
a
m
n
t

)

=

c
a
s
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
e
n
g
t
h

i
m
m
e
d
i
a
t
e
)

o
f

0

=
>

i
m
m
e
d
i
a
t
e

|

l
e
n
g
t
h

=
>

l
e
t

v
a
l

r
o
t
_
a
m
n
t
'

=

(
g
e
t
O
p
t
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

r
o
t
_
a
m
n
t
,

0
)
)

m
o
d

l
e
n
g
t
h
;

v
a
l

f
r
o
n
t
_
t
t
s

=

o
p
e
r
a
t
e

(
r
o
t
_
a
m
n
t
'
,

t
t
s
)

D
R
O
P
;

v
a
l

b
a
c
k
_
t
t
s

=

o
p
e
r
a
t
e

(
r
o
t
_
a
m
n
t
'
,

t
t
s
)

T
A
K
E

i
n

D
I
G
I
T
A
L
(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
p
y

(
t
t
s
,

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)
)

(
f
r
o
n
t
_
t
t
s
,

w
o
r
d
)

i
n
d
i
c
e
s
)

(
b
a
c
k
_
t
t
s
,

w
o
r
d
)

r
_
i
n
d
i
c
e
s
)

e
n
d

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e

b
b
s

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

v
a
l

r
e
p
l
i
c
a
t
e

=

V
e
c
t
o
r
.
f
o
l
d
r
i

(
f
n

(
i
,

t
r
u
e
,

i
s
)

=
>

i
:
:
i
s

|

(
_
,

f
a
l
s
e
,

i
s
)

=
>

i
s
)

[
]

(
t
t
s
,

0
,

N
O
N
E
)
;

v
a
l

(
t
t
s
'
,

w
o
r
d
'
)

=

(
b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O
)
)
;

217

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

(

j
:
:
j
s
)

(
i
i
s

a
s

i
:
:
i
s
)

=

(

c
a
s
e

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

j
)

o
f

t
r
u
e

=
>

l
e
t

v
a
l

_

=

A
r
r
a
y
.
u
p
d
a
t
e
(
w
o
r
d
'
,

j
,

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
)

i
n

i
f

j
s

=

[
]

t
h
e
n

i
s

=

[
]

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

j
s

i
s

e
n
d

|

f
a
l
s
e

=
>

i
f

j
s

=

[
]

t
h
e
n

f
a
l
s
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

j
s

i
i
s

)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

(
j
j
s

a
s

j
:
:
j
s
)

(

[
]
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
'
,

j
)

t
h
e
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

j
j
s

r
e
p
l
i
c
a
t
e

e
l
s
e

i
f

j
s

=

[
]

t
h
e
n

t
r
u
e

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

j
s

[
]

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

(

_
)

(

_
)

=

t
r
u
e

i
n

i
f

r
e
p
l
i
c
a
t
e

<
>

[
]

a
n
d
a
l
s
o

d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
i
c
a
t
e
'

i
n
d
i
c
e
s

r
e
p
l
i
c
a
t
e

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
'
,

w
o
r
d
'
)
)

e
l
s
e

N
O
N
E

e
n
d

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
l

f

e

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

A
r
r
a
y
.
f
o
l
d
l
i

(
f
n

(
i
,

a
,

e
'
)

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

f

(
a
,

e
'
)

e
l
s
e

e
'
)

e

(
w
o
r
d
,

0
,

N
O
N
E
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
r

f

e

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

A
r
r
a
y
.
f
o
l
d
r
i

(
f
n

(
i
,

a
,

e
'
)

=
>

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

f

(
a
,

e
'
)

e
l
s
e

e
'
)

e

(
w
o
r
d
,

0
,

N
O
N
E
)
;

l
o
c
a
l

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
i

f
o
l
d

f

e

(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

i
,

i
e
n
d
)

=

l
e
t

f
u
n

s
l
i
c
e
_
p
a
i
r
s

(
i
i
s
'

a
s

(

(
b
,

i
'
'
)
)
:
:
i
s
'
)

(

N
O
N
E
)

=

i
f

b

<
>

i

t
h
e
n

s
l
i
c
e
_
p
a
i
r
s

i
s
'

N
O
N
E

e
l
s
e

(

c
a
s
e

(
i
e
n
d
)

o
f

N
O
N
E

=
>

s
l
i
c
e
_
p
a
i
r
s

i
i
s
'

(
S
O
M
E

0
)

|

S
O
M
E

n

=
>

i
f

n

<
=

0

t
h
e
n

[
]

e
l
s
e

s
l
i
c
e
_
p
a
i
r
s

i
i
s
'

(
S
O
M
E

n
)

)

|

s
l
i
c
e
_
p
a
i
r
s

(

(
i

a
s

(
_
,

i
'
'
)
)
:
:
i
s
'
)

(
S
O
M
E

n
)

=

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
'
'
)

t
h
e
n

i
f

n

=

1

t
h
e
n

[
i
]

e
l
s
e

i
:
:
s
l
i
c
e
_
p
a
i
r
s

i
s
'

(
S
O
M
E
(
n

-

1
)
)

218

e
l
s
e

s
l
i
c
e
_
p
a
i
r
s

i
s
'

(
S
O
M
E

n
)

|

s
l
i
c
e
_
p
a
i
r
s

(

[
]
)

(

_
)

=

[
]
;

v
a
l

p
a
i
r
s

=

s
l
i
c
e
_
p
a
i
r
s

p
a
i
r
s

N
O
N
E

i
n

i
f

c
a
s
e

i
e
n
d

o
f

N
O
N
E

=
>

t
r
u
e

|

S
O
M
E

n

=
>

l
e
n
g
t
h

p
a
i
r
s

=

n

t
h
e
n

S
O
M
E
(
f
o
l
d

(
f
n

(
(
b
,

i
)
,

e
'
)

=
>

f

(
b
,

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)
,

e
'
)
)

e

p
a
i
r
s
)

e
l
s
e

N
O
N
E

e
n
d

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
l
i

f

e

s
l
i
c
e

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
i

f
o
l
d
l

f

e

s
l
i
c
e
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
r
i

f

e

s
l
i
c
e

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
i

f
o
l
d
r

f

e

s
l
i
c
e

e
n
d

l
o
c
a
l

v
a
l

z
e
r
o

=

D
I
G
I
T
A
L
(
V
e
c
t
o
r
.
t
a
b
u
l
a
t
e
(
3
2
,

f
n

i

=
>

i

<
=

5
)
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O
)
)

i
n

v
a
l

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
u
n
t
_
o
n
e
s

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
l

(
f
n

(
x
,

y
)

=
>

i
f

x

=

O

t
h
e
n

y

e
l
s
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
a
d
d

(
y
,

z
e
r
o
)

I
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
a
d
d

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
c
o
u
n
t
_
o
n
e
s
"
)

(
z
e
r
o
)

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t

b
b
s

i
n
t

=

l
e
t

v
a
l

(
t
t
s
,

w
o
r
d
)

=

(
b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O
)
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t
'

(
i
:
:
i
s
)

i
n
t

=

l
e
t

v
a
l

(
d
i
v
_
b
y
_
2
,

m
o
d
_
b
y
_
2
)

=

(
i
n
t

d
i
v

2
,

i
n
t

m
o
d

2
)
;

i
n

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

t
r
u
e

=
>

(

A
r
r
a
y
.
u
p
d
a
t
e
(
w
o
r
d
,

i
,

i
f

m
o
d
_
b
y
_
2

=

1

t
h
e
n

I

e
l
s
e

O
)
;

i
f

i
s

=

[
]

t
h
e
n

d
i
v
_
b
y
_
2

=

0

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t
'

i
s

d
i
v
_
b
y
_
2

)

219

|

f
a
l
s
e

=
>

i
f

m
o
d
_
b
y
_
2

=

1

t
h
e
n

f
a
l
s
e

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

d
i
v
_
b
y
_
2

=

0

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t
'

i
s

d
i
v
_
b
y
_
2

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t
'

(

[
]
)

i
n
t

=

i
n
t

d
i
v

2

=

0

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t
'

i
n
d
i
c
e
s

i
n
t

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

e
l
s
e

N
O
N
E

e
n
d
;

d
a
t
a
t
y
p
e

b
a
s
e

=

B
I
N

|

O
C
T

|

D
E
C

|

H
E
X
;

l
o
c
a
l

f
u
n

d
i
v
_
b
y
_
t
w
o

(
#
"
0
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
5
"

e
l
s
e

#
"
0
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

O
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
1
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
5
"

e
l
s
e

#
"
0
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

I
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
2
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
6
"

e
l
s
e

#
"
1
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

O
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
3
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
6
"

e
l
s
e

#
"
1
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

I
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
4
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
7
"

e
l
s
e

#
"
2
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

O
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
5
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
7
"

e
l
s
e

#
"
2
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

I
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
6
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
8
"

e
l
s
e

#
"
3
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

O
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
7
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
8
"

e
l
s
e

#
"
3
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

I
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
8
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
9
"

e
l
s
e

#
"
4
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

O
)
)

|

d
i
v
_
b
y
_
t
w
o

(
#
"
9
"
:
:
x
s
,

c
)

=

(
f
n

(
x
s
'
,

c
'
)

=
>

(
(
i
f

c

=

I

t
h
e
n

#
"
9
"

e
l
s
e

#
"
4
"
)
:
:
x
s
'
,

c
'
)
)

(
d
i
v
_
b
y
_
t
w
o

(
x
s
,

I
)
)

|

d
i
v
_
b
y
_
t
w
o

(

x
x
s
,

c
)

=

(
x
x
s
,

c
)
;

f
u
n

r
e
m
a
i
n
d
e
r

(
#
"
1
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
2
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
3
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
4
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
5
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
6
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
7
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
8
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(
#
"
9
"
:
:
x
s
)

=

t
r
u
e

|

r
e
m
a
i
n
d
e
r

(

_
)

=

f
a
l
s
e
;

f
u
n

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(

[
]
,

y
y
s
)

=

(
[
]
,

y
y
s
)

|

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(
#
"
0
"
:
:
x
s
,

y
:
:
y
s
)

=

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(
x
s
,

y
s
)

220

|

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(
#
"
0
"
:
:
x
s
,

[
]
)

=

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(
x
s
,

[
]
)

|

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(

x
x
s
,

y
y
s
)

=

(
x
x
s
,

y
y
s
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s
_
s
e
t

(

i
s
)

(
d
i
g
i
t
a
l
_
v
a
l
u
e

)

(

[
]
)

=

S
O
M
E

i
s

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s
_
s
e
t

(
i
:
:
i
s
)

(
d
i
g
i
t
a
l
_
v
a
l
u
e

a
s

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

(
x
:
:
x
s
)

=

l
e
t

v
a
l

_

=

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

t
h
e
n

A
r
r
a
y
.
u
p
d
a
t
e
(
w
o
r
d
,

i
,

x
)

e
l
s
e

(
)

i
n

c
a
s
e

(
i
s

=

[
]
)

o
f

f
a
l
s
e

=
>

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
r
e
l
s
e

x

=

O

t
h
e
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s
_
s
e
t

i
s

d
i
g
i
t
a
l
_
v
a
l
u
e

x
s

e
l
s
e

N
O
N
E

|

t
r
u
e

=
>

i
f

f
o
l
d
l

(
f
n

(
x
,

y
)

=
>

y

o
r
e
l
s
e

x

=

I
)

f
a
l
s
e

x
s

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E

i
s

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s
_
s
e
t

(

[
]
)

(
d
i
g
i
t
a
l
_
v
a
l
u
e

)

(

x
x
s
)

=

i
f

f
o
l
d
l

(
f
n

(
x
,

y
)

=
>

y

o
r
e
l
s
e

x

=

I
)

f
a
l
s
e

x
x
s

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E

[
]
;

f
u
n

s
k
i
p

(
1
,

_
:
:
i
s
)

=

S
O
M
E

i
s

|

s
k
i
p

(
2
,

_
:
:
_
:
:
i
s
)

=

S
O
M
E

i
s

|

s
k
i
p

(
3
,

_
:
:
_
:
:
_
:
:
i
s
)

=

S
O
M
E

i
s

|

s
k
i
p

(
4
,

_
:
:
_
:
:
_
:
:
_
:
:
i
s
)

=

S
O
M
E

i
s

|

s
k
i
p

(
_
,

_
)

=

N
O
N
E
;

f
u
n

z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
]
)

=

i
f

n

<
=

0

t
h
e
n

[
]

e
l
s
e

O
:
:
(
z
e
r
o
_
e
x
t
e
n
d
(
n

-

1
,

[
]
)
)

|

z
e
r
o
_
e
x
t
e
n
d
(
n
,

x
:
:
x
s
)

=

i
f

n

<
=

0

t
h
e
n

x
:
:
x
s

e
l
s
e

x
:
:
(
z
e
r
o
_
e
x
t
e
n
d
(
n

-

1
,

x
s
)
)
;

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t

D
E
C

b
b
s

x
x
s

=

l
e
t

v
a
l

(
t
t
s
,

w
o
r
d
)

=

(
b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O
)
)
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

(

_
)

(

[
]
,

y
y
s
)

=

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

y
y
s
)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

(
i
:
:
i
s
)

(
x
x
s
,

y
y
s
)

=

l
e
t

v
a
l

(
x
x
s
'
,

c
)

=

d
i
v
_
b
y
_
t
w
o

(
x
x
s
,

O
)
;

v
a
l

(
x
x
s
'
'
,

y
y
s
'
)

=

r
e
m
o
v
e
_
z
e
r
o
_
e
x
t
e
n
s
i
o
n
_
p
a
i
r

(
x
x
s
'
,

y
y
s
)
;

i
n

221

c
a
s
e

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)
)

o
f

t
r
u
e

=
>

(

A
r
r
a
y
.
u
p
d
a
t
e
(
w
o
r
d
,

i
,

c
)
;

i
f

i
s

=

[
]

t
h
e
n

i
f

r
e
m
a
i
n
d
e
r

x
x
s
'
'

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

y
y
s
'
)

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
s

(
x
x
s
'
'
,

y
y
s
'
)

)

|

f
a
l
s
e

=
>

i
f

c

=

I

t
h
e
n

N
O
N
E

e
l
s
e

i
f

i
s

=

[
]

t
h
e
n

i
f

r
e
m
a
i
n
d
e
r

x
x
s
'
'

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

y
y
s
'
)

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
s

(
x
x
s
'
'
,

y
y
s
'
)

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

(

[
]
)

(
x
x
s
,

y
y
s
)

=

i
f

r
e
m
a
i
n
d
e
r

x
x
s

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E
(
D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
,

y
y
s
)

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
n
d
i
c
e
s

(
x
x
s
,

x
x
s
)

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t

r
a
d
i
x

b
b
s

x
x
s

=

l
e
t

v
a
l

n

=

c
a
s
e

r
a
d
i
x

o
f

B
I
N

=
>

1

|

O
C
T

=
>

3

|

H
E
X

=
>

4

|

D
E
C

=
>

e
r
r
o
r

"
P
a
t
t
e
r
n

m
a
t
c
h
i
n
g

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t

u
n
e
x
p
e
c
t
e
d
l
y

f
a
i
l
e
d
"
;

v
a
l

t
t
s

=

b
i
t
_
i
n
_
r
a
n
g
e

b
b
s
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
i
s

(
x
:
:
x
s
)

y
s

=

l
e
t

v
a
l

y

=

c
a
s
e

(
r
a
d
i
x
,

x
)

o
f

(
_
,

#
"
x
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
O

]
)
)

|

(
_
,

#
"
0
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
O

]
)
)

|

(
_
,

#
"
1
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
I

]
)
)

|

(
B
I
N
,

_

)

=
>

N
O
N
E

222

|

(
_
,

#
"
2
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
O
,

I

]
)
)

|

(
_
,

#
"
3
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
I
,

I

]
)
)

|

(
_
,

#
"
4
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
O
,

O
,

I

]
)
)

|

(
_
,

#
"
5
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
I
,

O
,

I

]
)
)

|

(
_
,

#
"
6
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
O
,

I
,

I

]
)
)

|

(
_
,

#
"
7
"
)

=
>

S
O
M
E
(
z
e
r
o
_
e
x
t
e
n
d
(
n
,

[
I
,

I
,

I

]
)
)

|

(
O
C
T
,

_

)

=
>

N
O
N
E

|

(
H
E
X
,

#
"
8
"
)

=
>

S
O
M
E
(

[
O
,

O
,

O
,

I
]

)

|

(
_
,

#
"
9
"
)

=
>

S
O
M
E
(

[
I
,

O
,

O
,

I
]

)

|

(
_
,

#
"
A
"
)

=
>

S
O
M
E
(

[
O
,

I
,

O
,

I
]

)

|

(
_
,

#
"
a
"
)

=
>

S
O
M
E
(

[
O
,

I
,

O
,

I
]

)

|

(
_
,

#
"
B
"
)

=
>

S
O
M
E
(

[
I
,

I
,

O
,

I
]

)

|

(
_
,

#
"
b
"
)

=
>

S
O
M
E
(

[
I
,

I
,

O
,

I
]

)

|

(
_
,

#
"
C
"
)

=
>

S
O
M
E
(

[
O
,

O
,

I
,

I
]

)

|

(
_
,

#
"
c
"
)

=
>

S
O
M
E
(

[
O
,

O
,

I
,

I
]

)

|

(
_
,

#
"
D
"
)

=
>

S
O
M
E
(

[
I
,

O
,

I
,

I
]

)

|

(
_
,

#
"
d
"
)

=
>

S
O
M
E
(

[
I
,

O
,

I
,

I
]

)

|

(
_
,

#
"
E
"
)

=
>

S
O
M
E
(

[
O
,

I
,

I
,

I
]

)

|

(
_
,

#
"
e
"
)

=
>

S
O
M
E
(

[
O
,

I
,

I
,

I
]

)

|

(
_
,

#
"
F
"
)

=
>

S
O
M
E
(

[
I
,

I
,

I
,

I
]

)

|

(
_
,

#
"
f
"
)

=
>

S
O
M
E
(

[
I
,

I
,

I
,

I
]

)

|

(
_
,

_

)

=
>

N
O
N
E

i
n

c
a
s
e

(
y
,

s
k
i
p

(
n
,

i
i
s
)
)

o
f

(
S
O
M
E

y
,

S
O
M
E

i
s
)

=
>

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
s

x
s

(
y
:
:
y
s
)

|

(
S
O
M
E

y
,

N
O
N
E

)

=
>

i
f

y
s

=

[
]

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E
(
y
:
:
y
s
,

x
s
)

|

(
_
,

_

)

=
>

i
f

y
s

=

[
]

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E
(

y
s
,

x
s
)

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
i
s

(

[
]
)

y
y
s

=

S
O
M
E
(
y
y
s
,

[
]
)
;

v
a
l

d
i
g
i
t
a
l
_
v
a
l
u
e

=

D
I
G
I
T
A
L
(
t
t
s
,

A
r
r
a
y
.
a
r
r
a
y
(
3
2
,

O
)
)

i
n

c
a
s
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t
'

i
n
d
i
c
e
s

x
x
s

[
]
)

o
f

S
O
M
E
(
y
y
s
,

x
s
)

=
>

(

c
a
s
e

(
f
o
l
d
l

(
f
n

(
y
,

S
O
M
E

i
i
s
)

=
>

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s
_
s
e
t

i
i
s

d
i
g
i
t
a
l
_
v
a
l
u
e

y

|

(
y
,

N
O
N
E
)

=
>

N
O
N
E
)

(
S
O
M
E

i
n
d
i
c
e
s
)

y
y
s
)

o
f

S
O
M
E

_

=
>

S
O
M
E
(
d
i
g
i
t
a
l
_
v
a
l
u
e
,

x
s
)

|

N
O
N
E

=
>

N
O
N
E

)

223

|

N
O
N
E

=
>

N
O
N
E

e
n
d
;

v
a
l

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t

B
I
N

e
n
d
;

l
o
c
a
l

f
u
n

m
u
l
_
b
y
_
t
w
o

(

[
]
,

c
)

=

S
O
M
E
(
[
]
,

c
)

|

m
u
l
_
b
y
_
t
w
o

(

x
:
:
x
s
,

c
)

=

l
e
t

v
a
l

(
x
s
'
,

c
'
)

=

(
f
n

S
O
M
E
(
x
s
'
,

c
'
)

=
>

(
S
O
M
E

x
s
'
,

c
'
)

|

_

=
>

(
N
O
N
E
,

O
)
)

(
m
u
l
_
b
y
_
t
w
o

(
x
s
,

c
)
)
;

v
a
l

x
'
_
c
'
'

=

c
a
s
e

(
x
)

o
f

(
#
"
0
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
1
"
,

O
)

e
l
s
e

(
#
"
0
"
,

O
)
)

|

(
#
"
1
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
3
"
,

O
)

e
l
s
e

(
#
"
2
"
,

O
)
)

|

(
#
"
2
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
5
"
,

O
)

e
l
s
e

(
#
"
4
"
,

O
)
)

|

(
#
"
3
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
7
"
,

O
)

e
l
s
e

(
#
"
6
"
,

O
)
)

|

(
#
"
4
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
9
"
,

O
)

e
l
s
e

(
#
"
8
"
,

O
)
)

|

(
#
"
5
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
1
"
,

I
)

e
l
s
e

(
#
"
0
"
,

I
)
)

|

(
#
"
6
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
3
"
,

I
)

e
l
s
e

(
#
"
2
"
,

I
)
)

|

(
#
"
7
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
5
"
,

I
)

e
l
s
e

(
#
"
4
"
,

I
)
)

|

(
#
"
8
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
7
"
,

I
)

e
l
s
e

(
#
"
6
"
,

I
)
)

|

(
#
"
9
"
)

=
>

S
O
M
E
(
i
f

c
'

=

I

t
h
e
n

(
#
"
9
"
,

I
)

e
l
s
e

(
#
"
8
"
,

I
)
)

|

(

_
)

=
>

N
O
N
E

i
n

(
f
n

(
S
O
M
E
(
x
'
,

c
'
'
)
,

S
O
M
E

x
s
'
)

=
>

S
O
M
E
(
x
'
:
:
x
s
'
,

c
'
'
)

|

_

=
>

N
O
N
E
)

(
x
'
_
c
'
'
,

x
s
'
)

e
n
d
;

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

(

i
0
:
:
i
s
)

(
0
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

S
O
M
E
(
i
s
,

(
N
O
N
E
,

N
O
N
E
,

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
0
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
0
)
)

e
l
s
e

N
O
N
E
)
)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

(

i
1
:
:
i
0
:
:
i
s
)

(
1
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

S
O
M
E
(
i
s
,

(
N
O
N
E
,

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
1
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
1
)
)

e
l
s
e

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
0
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
0
)
)

e
l
s
e

N
O
N
E
)
)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

(

i
2
:
:
i
1
:
:
i
0
:
:
i
s
)

(
2
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

S
O
M
E
(
i
s
,

(
N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
2
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
2
)
)

e
l
s
e

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
1
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
1
)
)

e
l
s
e

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
0
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
0
)
)

e
l
s
e

N
O
N
E
)
)

224

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

(
i
3
:
:
i
2
:
:
i
1
:
:
i
0
:
:
i
s
)

(
3
,

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

S
O
M
E
(
i
s
,

(
i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
3
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
3
)
)

e
l
s
e

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
2
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
2
)
)

e
l
s
e

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
1
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
1
)
)

e
l
s
e

N
O
N
E
,

i
f

(
V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
0
)
)

t
h
e
n

S
O
M
E
(
A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
0
)
)

e
l
s
e

N
O
N
E
)
)

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

(

_
)

(
_
,

_

)

=

N
O
N
E

i
n

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

D
E
C

(
d
i
g
i
t
a
l
_
v
a
l
u
e

a
s

D
I
G
I
T
A
L
(
t
t
s
,

w
o
r
d
)
)

=

l
e
t

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

(
i
:
:
i
s
)

x
x
s

=

l
e
t

v
a
l

(
x
x
s
'
,

c
'
)

=

(
m
u
l
_
b
y
_
t
w
o

(
x
x
s
,

i
f

V
e
c
t
o
r
.
s
u
b
(
t
t
s
,

i
)

t
h
e
n

A
r
r
a
y
.
s
u
b
(
w
o
r
d
,

i
)

e
l
s
e

O
)
)

g
u
a
r
d

"
m
u
l
_
b
y
_
t
w
o

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

d
e
c
_
t
o
_
s
t
r
i
n
g
"
;

v
a
l

x
x
s
'
'

=

i
f

c
'

=

I

t
h
e
n

#
"
1
"
:
:
x
x
s
'

e
l
s
e

x
x
s
'

i
n

i
f

i
s

=

[
]

t
h
e
n

x
x
s
'
'

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

i
s

x
x
s
'
'

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

(

[
]
)

x
x
s

=

x
x
s

i
n

i
m
p
l
o
d
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

r
_
i
n
d
i
c
e
s

[
#
"
0
"
]
)

e
n
d

|

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

r
a
d
i
x

(
d
i
g
i
t
a
l
_
v
a
l
u
e

)

=

l
e
t

v
a
l

(
n
,

n
'
)

=

c
a
s
e

(
r
a
d
i
x
)

o
f

B
I
N

=
>

(
0
,

0
)

|

O
C
T

=
>

(
c
a
s
e

(
3
2

m
o
d

3
)

o
f

0

=
>

2

|

n

=
>

n

-

1
,

2
)

|

H
E
X

=
>

(
c
a
s
e

(
3
2

m
o
d

4
)

o
f

0

=
>

3

|

n

=
>

n

-

1
,

3
)

|

D
E
C

=
>

e
r
r
o
r

"
P
a
t
t
e
r
n

m
a
t
c
h
i
n
g

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

u
n
e
x
p
e
c
t
e
d
l
y

f
a
i
l
e
d
"

f
u
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

i
i
s

n

=

l
e
t

v
a
l

(
i
s
,

(
b
i
t
3
,

b
i
t
2
,

b
i
t
1
,

b
i
t
0
)
)

=

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

i
i
s

(
n
,

d
i
g
i
t
a
l
_
v
a
l
u
e
)
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
s

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'
"
;

225

v
a
l

d
i
g
i
t

=

c
a
s
e

(
b
i
t
3
,

b
i
t
2
,

b
i
t
1
,

b
i
t
0

)

o
f

(
N
O
N
E
,

N
O
N
E
,

N
O
N
E
,

N
O
N
E

)

=
>

#
"
x
"

|

(
S
O
M
E

I
,

S
O
M
E

I
,

S
O
M
E

I
,

S
O
M
E

I
)

=
>

#
"
F
"

|

(
S
O
M
E

I
,

S
O
M
E

I
,

S
O
M
E

I
,

_

)

=
>

#
"
E
"

|

(
S
O
M
E

I
,

S
O
M
E

I
,

_
,

S
O
M
E

I
)

=
>

#
"
D
"

|

(
S
O
M
E

I
,

S
O
M
E

I
,

_
,

_

)

=
>

#
"
C
"

|

(
S
O
M
E

I
,

_
,

S
O
M
E

I
,

S
O
M
E

I
)

=
>

#
"
B
"

|

(
S
O
M
E

I
,

_
,

S
O
M
E

I
,

_

)

=
>

#
"
A
"

|

(
S
O
M
E

I
,

_
,

_
,

S
O
M
E

I
)

=
>

#
"
9
"

|

(
S
O
M
E

I
,

_
,

_
,

_

)

=
>

#
"
8
"

|

(
_
,

S
O
M
E

I
,

S
O
M
E

I
,

S
O
M
E

I
)

=
>

#
"
7
"

|

(
_
,

S
O
M
E

I
,

S
O
M
E

I
,

_

)

=
>

#
"
6
"

|

(
_
,

S
O
M
E

I
,

_
,

S
O
M
E

I
)

=
>

#
"
5
"

|

(
_
,

S
O
M
E

I
,

_
,

_

)

=
>

#
"
4
"

|

(
_
,

_
,

S
O
M
E

I
,

S
O
M
E

I
)

=
>

#
"
3
"

|

(
_
,

_
,

S
O
M
E

I
,

_

)

=
>

#
"
2
"

|

(
_
,

_
,

_
,

S
O
M
E

I
)

=
>

#
"
1
"

|

(
_
,

_
,

_
,

_

)

=
>

#
"
0
"

i
n

i
f

i
s

=

[
]

t
h
e
n

[
d
i
g
i
t
]

e
l
s
e

d
i
g
i
t
:
:
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

i
s

n
'
)

e
n
d

i
n

i
m
p
l
o
d
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t
'

r
_
i
n
d
i
c
e
s

n
)

e
n
d
;

v
a
l

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

B
I
N

e
n
d

e
n
d

e
n
d
;

 d
a
t
a
t
y
p
e

p
h
y
s
i
c
a
l
_
r
e
g
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

 v
a
l

p
h
y
s
i
c
a
l
_
r
e
g
s
_
t
o
_
s
t
r
i
n
g

:

i
n
p
u
t
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

p
h
y
s
i
c
a
l
_
r
e
g
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

226

d
a
t
a
t
y
p
e

v
i
r
t
u
a
l
_
r
e
g
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

 (
*

I
f

a

p
r
o
c
e
s
s
o
r

c
o
r
e

h
a
s

s
e
v
e
r
a
l

b
a
n
k
s

o
f

p
h
y
s
i
c
a
l

r
e
g
i
s
t
e
r
s

(
f
o
r

e
x
a
m
p
l
e
,

t
h
e

A
R
M
6

h
a
s

o
n
e

f
o
r

d
a
t
a

r
e
g
i
s
t
e
r
s

a
n
d

o
n
e

f
o
r

p
r
o
g
r
a
m

s
t
a
t
u
s

r
e
g
i
s
t
e
r
s
)
,

s
e
p
a
r
a
t
e

d
a
t
a
t
y
p
e
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

f
o
l
l
o
w
i
n
g

t
h
e

e
x
a
m
p
l
e

a
b
o
v
e
.

*
)

C
.2

 i
np

ut
s.

sm
l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s u

se
d

to
 re

pr
es

en
t i

np
ut

s t
o

pr
oc

es
so

r c
or

es
.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
*_

in
pu

ts
 e

nu
m

er
at

ed
 ty

pe
: F

or
 e

ac
h

ty
pe

 o
f i

np
ut

, r
ep

re
se

nt
s e

ve
ry

 in
pu

t t
o

th
e

pr
oc

es
so

r c
or

e
be

in
g

sp
ec

ifi
ed

 w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

•
in

pu
t a

bs
tra

ct
 ty

pe
: E

nc
ap

su
la

te
s

an
 in

pu
t t

o
th

e
pr

oc
es

so
r

co
re

 b
ei

ng
 s

pe
ci

fie
d.

 D
ef

in
ed

 a
s

un
io

n
of

 tu
pl

es
 o

f
ea

ch
 in

pu
ts

 e
nu

m
er

at
ed

 ty
pe

 a
nd

th
e

ty
pe

 o
f

in
pu

t a
ss

oc
ia

te
d

w
ith

 th
at

 ty
pe

. (
In

 m
os

t c
as

es
, a

ny
 in

pu
t o

f
th

e
pr

oc
es

so
r

co
re

 b
ei

ng
 s

pe
ci

fie
d

m
ay

 b
e

en
ca

ps
ul

at
ed

 u
si

ng
 o

ne
 in

pu
ts

en
um

er
at

ed
 ty

pe
 a

ss
oc

ia
te

d
w

ith
 in

pu
ts

 o
f t

he
 d

ig
ita

l_
va

lu
e

ab
st

ra
ct

 ty
pe

, s
o

th
e

in
pu

t a
bs

tra
ct

 ty
pe

 w
ill

 c
on

si
st

 o
f o

nl
y

on
e

tu
pl

e
of

 th
es

e
ty

pe
s.)

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
in

pu
t a

bs
tra

ct
 ty

pe

♦
 i

np
ut

_*
_i

ns
ta

nc
e:

 f
or

 e
ac

h
ty

pe
 o

f
va

lu
e

th
at

 c
an

 b
e

as
so

ci
at

ed
 w

ith
 t

he
 i

de
nt

ifi
er

s
of

 t
he

 *
_i

np
ut

s
en

um
er

at
ed

 t
yp

es
, c

re
at

es
 a

n
in

st
an

ce
 o

f

th
e

in
pu

t a
bs

tra
ct

 ty
pe

 w
ith

 a
 sp

ec
ifi

ed
 id

en
tif

ie
r a

nd
 a

 sp
ec

ifi
ed

 v
al

ue
.

♦
 i

np
ut

_i
s_

sa
m

pl
ed

:
in

di
ca

te
s

if
th

e
in

pu
t

as
so

ci
at

ed
 w

ith
 t

he
 s

pe
ci

fie
d

in
st

an
ce

 o
f

th
e

in
pu

t
ab

st
ra

ct
 t

yp
e

sh
ou

ld
 b

e
sa

m
pl

ed
 i

n
th

e
sp

ec
ifi

ed

cl
oc

k
ph

as
e.

♦
 i

np
ut

_*
: f

or
 e

ac
h

ty
pe

 o
f v

al
ue

 th
at

 c
an

 b
e

as
so

ci
at

ed
 w

ith
 th

e
id

en
tif

ie
rs

 o
f t

he
 *

_i
np

ut
s

en
um

er
at

ed
 ty

pe
s,

in
sp

ec
ts

 th
e

id
en

tif
ie

r a
nd

 th
e

va
lu

e

fr
om

 w
hi

ch
 a

n
in

st
an

ce
 o

f t
he

 in
pu

t a
bs

tra
ct

 ty
pe

 w
as

 c
on

st
ru

ct
ed

.

227

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

d
a
t
a
t
y
p
e

i
n
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e

*
)

 v
a
l

i
n
p
u
t
_
d
i
g
i
t
a
l
_
f
r
o
m
_
s
t
r
i
n
g

:

c
h
a
r

l
i
s
t

-
>

(
i
n
p
u
t
s

*

c
h
a
r

l
i
s
t
)

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
t
t
e
m
p
t
s

t
o

m
a
p

c
o
n
s
e
c
u
t
i
v
e

c
h
a
r
a
c
t
e
r
s

f
r
o
m

t
h
e

h
e
a
d

o
f

a

l
i
s
t

o
f

c
h
a
r
a
c
t
e
r
s

t
o

a

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
p
u
t
s

d
a
t
a

t
y
p
e
.

I
t

r
e
t
u
r
n
s

a
n

o
p
t
i
o
n
a
l

p
a
i
r

o
f

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

i
n
p
u
t
s

c
o
n
s
t
r
u
c
t
o
r

a
n
d

t
h
e

r
e
m
a
i
n
d
e
r

o
f

t
h
e

l
i
s
t

o
f

c
h
a
r
a
c
t
e
r
s
.

*
)

 v
a
l

d
i
g
i
t
a
l
_
i
n
p
u
t
s
_
t
o
_
s
t
r
i
n
g

:

i
n
p
u
t
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
p
u
t
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

 a
b
s
t
y
p
e

i
n
p
u
t

=

D
I
G
I
T
A
L

o
f

(
i
n
p
u
t
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

w
i
t
h

l
o
c
a
l

v
a
l

i
n
p
u
t
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

:

i
n
p
u
t
s

-
>

(
b
i
t
s

*

b
i
t
s
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
p
u
t
s

d
a
t
a

t
y
p
e

t
o

t
h
e

b
i
t

r
a
n
g
e
s

t
h
a
t

a
r
e

v
a
l
i
d

f
o
r

t
h
e

i
n
p
u
t

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r
.

*
)

i
n

f
u
n

i
n
p
u
t
_
i
s
D
i
g
i
t
a
l

i
n
p
u
t
'

(
D
I
G
I
T
A
L
(
i
n
p
u
t
,

_
)
)

=

i
n
p
u
t
'

=

i
n
p
u
t
;

f
u
n

i
n
p
u
t
_
d
i
g
i
t
a
l
_
v
a
l
u
e

(
D
I
G
I
T
A
L
(
i
n
p
u
t
,

v
a
l
u
e
)
)

=

S
O
M
E

(
i
n
p
u
t
,

v
a
l
u
e
)
;

f
u
n

i
n
p
u
t
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

(
i
n
p
u
t
,

v
a
l
u
e
)

=

l
e
t

v
a
l

v
a
l
i
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

(
i
n
p
u
t
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

i
n
p
u
t
)

v
a
l
u
e

i
n

i
f

v
a
l
i
d

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
i
n
p
u
t
,

v
a
l
u
e
)
)

e
l
s
e

N
O
N
E

e
n
d
;

v
a
l

i
n
p
u
t
_
i
s
_
s
a
m
p
l
e
d

:

i
n
p
u
t

-
>

p
h
a
s
e
s

-
>

b
o
o
l

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

i
n
p
u
t
_
t
o
_
s
t
r
i
n
g

(
D
I
G
I
T
A
L
(
i
n
p
u
t
,

v
a
l
u
e
)
)

=

(
d
i
g
i
t
a
l
_
i
n
p
u
t
s
_
t
o
_
s
t
r
i
n
g

i
n
p
u
t
)

^

"

=

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

e
n
d

e
n
d

228

C
.3

 b
us

es
.s

m
l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s u

se
d

to
 re

pr
es

en
t b

us
es

 in
 p

ro
ce

ss
or

 c
or

es
 a

nd
 to

 tr
ac

e
th

e
va

lu
es

 a
ss

oc
ia

te
d

w
ith

 th
es

e
bu

se
s d

ur
in

g
si

m
ul

at
io

n.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
*_

bu
se

s e
nu

m
er

at
ed

 ty
pe

: F
or

 e
ac

h
ty

pe
 o

f b
us

, r
ep

re
se

nt
s e

ve
ry

 b
us

 o
f t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

 w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

•
bu

s
ab

st
ra

ct
 ty

pe
: E

nc
ap

su
la

te
s

a
bu

s
of

 th
e

pr
oc

es
so

r c
or

e
be

in
g

sp
ec

ifi
ed

. D
ef

in
ed

 a
s

un
io

n
of

 tu
pl

es
 o

f e
ac

h
bu

se
s

en
um

er
at

ed
 ty

pe
 a

nd
 th

e
ty

pe

of
 b

us
 a

ss
oc

ia
te

d
w

ith
 th

at
 ty

pe
.

•
tr

ac
es

 u
ni

on
 ty

pe
: U

ni
on

 o
f e

ve
ry

 ty
pe

 a
ss

oc
ia

te
d

w
ith

 th
e

bu
se

s e
nu

m
er

at
ed

 ty
pe

.

•
tr

ac
e

ab
st

ra
ct

 ty
pe

: E
nc

ap
su

la
te

s
va

lu
es

 a
ss

oc
ia

te
d

w
ith

 b
us

es
 d

ur
in

g
si

m
ul

at
io

n.
 S

ee
 d

et
ai

le
d

di
sc

us
si

on
 in

 s
ec

tio
n

2.
3.

3
fo

r m
or

e
on

 h
ow

 th
is

 ty
pe

is
 c

on
st

ru
ct

ed
 a

s w
el

l a
s h

ow
 it

 is
 u

se
d.

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
bu

s a
bs

tra
ct

 ty
pe

♦
 b

us
_*

_i
ns

ta
nc

e:
 fo

r e
ac

h
ty

pe
 o

f v
al

ue
 th

at
 c

an
 b

e
as

so
ci

at
ed

 w
ith

 th
e

id
en

tif
ie

rs
 o

f t
he

 *
_b

us
es

 e
nu

m
er

at
ed

 ty
pe

s,
cr

ea
te

s
an

 in
st

an
ce

 o
f t

he
 b

us

ab
st

ra
ct

 ty
pe

 w
ith

 th
e

sp
ec

ifi
ed

 id
en

tif
ie

r a
nd

 th
e

sp
ec

ifi
ed

 v
al

ue
.

♦
 b

us
_f

ro
m

_i
np

ut
: c

on
st

ru
ct

s
an

 a
pp

ro
pr

ia
te

 in
st

an
ce

 o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
 fr

om
 a

n
in

st
an

ce
 o

f t
he

 in
pu

t a
bs

tra
ct

 ty
pe

 to
 re

pr
es

en
t t

he
 d

riv
in

g
of

a
bu

s b
y

an
 in

pu
t.

♦
 b

us
_b

uf
fe

r:
 in

di
ca

te
s

w
he

th
er

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
 s

ho
ul

d
be

 b
uf

fe
re

d
us

in
g

pi
pe

lin
e

la
tc

he
s,

an
d

if
it

sh
ou

ld
, a

t w
hi

ch

pi
pe

lin
e

st
ag

e
bu

ff
er

in
g

sh
ou

ld
 b

eg
in

 a
nd

 a
t w

hi
ch

 it
 sh

ou
ld

 e
nd

.

229

♦
 b

us
_*

:
fo

r
ea

ch
 ty

pe
 o

f
va

lu
e

th
at

 c
an

 b
e

as
so

ci
at

ed
 w

ith
 th

e
id

en
tif

ie
rs

 o
f

th
e

*_
bu

se
s

en
um

er
at

ed
 ty

pe
s,

in
sp

ec
ts

 th
e

id
en

tif
ie

r
an

d
th

e
va

lu
e

fr
om

 w
hi

ch
 a

n
in

st
an

ce
 o

f t
he

 b
us

 a
bs

tra
ct

 ty
pe

 w
as

 c
on

st
ru

ct
ed

.

•
tr

ac
e

ab
st

ra
ct

 ty
pe

♦
 t

ra
ce

_i
ni

t:
co

ns
tru

ct
s

an
 in

st
an

ce
 o

f t
he

 tr
ac

e
ab

st
ra

ct
 ty

pe
 w

ith
 e

le
m

en
ts

 in
iti

al
is

ed
 u

si
ng

 th
e

em
pt

y
co

lle
ct

io
n

as
 w

el
l a

s
th

e
sp

ec
ifi

ed
 n

um
be

r o
f

cl
oc

k
cy

cl
es

 si
nc

e
si

m
ul

at
io

n
be

ga
n

an
d

th
e

sp
ec

ifi
ed

 c
ur

re
nt

 c
lo

ck
 p

ha
se

.

♦
 t

ra
ce

_a
t:

m
od

ifi
es

 t
he

 s
pe

ci
fie

d
in

st
an

ce
 o

f
th

e
tr

ac
e

ab
st

ra
ct

 t
yp

e
to

 s
to

re
 t

ra
ce

 i
nf

or
m

at
io

n
fo

r
th

e
sp

ec
ifi

ed
 n

um
be

r
of

 c
lo

ck
 c

yc
le

s
si

nc
e

si
m

ul
at

io
n

be
ga

n
an

d
th

e
sp

ec
ifi

ed
 c

ur
re

nt
 c

lo
ck

 p
ha

se
 u

nt
il

tr
ac

e_
at

 is
 in

vo
ke

d
ag

ai
n.

♦
 t

ra
ce

_i
f:

m
od

ifi
es

 t
he

 s
pe

ci
fie

d
in

st
an

ce
 o

f
th

e
tr

ac
e

ab
st

ra
ct

 t
yp

e
to

 s
to

re
 t

ra
ce

 i
nf

or
m

at
io

n
on

ly
 i

f
th

e
sp

ec
ifi

ed
 f

un
ct

io
n

m
ap

s
th

e
cu

rr
en

t

nu
m

be
r o

f c
lo

ck
 c

yc
le

s s
in

ce
 si

m
ul

at
io

n
be

ga
n

an
d

th
e

cu
rr

en
t c

lo
ck

 p
ha

se
 o

nt
o

th
e

bo
ol

 p
rim

iti
ve

 ty
pe

 v
al

ue
 tr

ue
.

♦
 t

ra
ce

_a
dd

_b
us

es
: m

od
ifi

es
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 tr
ac

e
ab

st
ra

ct
 ty

pe
 to

 s
to

re
 tr

ac
e

in
fo

rm
at

io
n

ab
ou

t t
he

 v
al

ue
 o

f e
ac

h
in

st
an

ce
 o

f t
he

 b
us

ab
st

ra
ct

 ty
pe

 in
 th

e
sp

ec
ifi

ed
 li

st
 u

nl
es

s
tra

ce
 in

fo
rm

at
io

n
sh

ou
ld

 n
ot

 b
e

st
or

ed
 fo

r t
he

 c
ur

re
nt

 n
um

be
r o

f c
lo

ck
 c

yc
le

s
si

nc
e

si
m

ul
at

io
n

be
ga

n
an

d

th
e

cu
rr

en
t c

lo
ck

 p
ha

se
.

♦
 t

ra
ce

_l
oo

ku
p_

*:
 in

sp
ec

ts
 th

e
va

lu
e,

 if
 a

ny
, t

ha
t w

as
 tr

ac
ed

 f
or

 th
e

sp
ec

ifi
ed

 *
_b

us
es

 e
nu

m
er

at
ed

 ty
pe

 a
t t

he
 s

pe
ci

fie
d

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s

si
nc

e
si

m
ul

at
io

n
be

ga
n

an
d

in
 th

e
sp

ec
ifi

ed
 c

lo
ck

 p
ha

se
.

♦
 t

ra
ce

_n
s_

pe
r_

cc
: m

od
ifi

es
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 tr
ac

e
ab

st
ra

ct
 ty

pe
 s

uc
h

th
at

 e
ac

h
cl

oc
k

cy
cl

e
is

 a
ss

um
ed

 to
 ta

ke
 th

e
sp

ec
ifi

ed
 n

um
be

r o
f

na
no

se
co

nd
s t

o
co

m
pl

et
e.

♦
 t

ra
ce

_s
ig

na
l_

sc
al

in
g:

 m
od

ifi
es

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f

th
e

tr
ac

e
ab

st
ra

ct
 ty

pe
 s

o
on

ly
 th

e
sp

ec
ifi

ed
 p

er
ce

nt
ag

e
of

 th
e

nu
m

be
r

of
 n

an
os

ec
on

ds

ea
ch

 c
lo

ck
 p

ha
se

 is
 a

ss
um

ed
 to

 ta
ke

 is
 d

iv
id

ed
 u

p
ac

co
rd

in
g

to
 th

e
nu

m
be

r o
f t

im
in

g
gr

ou
ps

, w
ith

 si
gn

al
s i

n
th

e
re

sp
ec

tiv
e

tim
in

g
gr

ou
ps

 a
ss

um
ed

to
 b

e
va

lid
 fr

om
 th

e
re

le
va

nt
 d

iv
is

io
n

of
 th

e
ap

pr
op

ria
te

 c
lo

ck
 p

ha
se

. S
ee

 th
e

di
sc

us
si

on
 o

f t
he

 re
pr

es
en

ta
tio

n
of

 tr
ac

e
in

fo
rm

at
io

n
as

 a
 T

D
M

L
fil

e

in
 se

ct
io

n
2.

3.
3.

230

♦
 t

ra
ce

_t
o_

td
m

l_
fil

e:
 se

e
th

e
di

sc
us

si
on

 o
f t

he
 re

pr
es

en
ta

tio
n

of
 tr

ac
e

in
fo

rm
at

io
n

as
 a

 T
D

M
L

fil
e

in
 se

ct
io

n
2.

3.
3

fo
r a

 su
m

m
ar

y
of

 th
is

 fu
nc

tio
n.

♦
 t

ra
ce

_t
o_

te
xt

_f
ile

: s
ee

 th
e

di
sc

us
si

on
 o

f t
he

 re
pr

es
en

ta
tio

n
of

 tr
ac

e
in

fo
rm

at
io

n
as

 a
 te

xt
 fi

le
 in

 se
ct

io
n

2.
3.

3
fo

r a
 su

m
m

ar
y

of
 th

is
 fu

nc
tio

n

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

d
a
t
a
t
y
p
e

d
i
g
i
t
a
l
_
b
u
s
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

b
u
s

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

d
i
g
i
t
a
l
_
v
a
l
u
e

a
b
s
t
r
a
c
t

t
y
p
e

*
)

 d
a
t
a
t
y
p
e

b
o
o
l
e
a
n
_
b
u
s
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

b
u
s

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

b
o
o
l

p
r
i
m
i
t
i
v
e

t
y
p
e

*
)

 d
a
t
a
t
y
p
e

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

b
u
s

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
l
a
s
s
e
s

d
a
t
a

t
y
p
e

*
)

 d
a
t
a
t
y
p
e

i
n
s
_
s
t
e
p
_
b
u
s
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

b
u
s

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

s
t
e
p
s

d
a
t
a

t
y
p
e

*
)

 v
a
l

d
i
g
i
t
a
l
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

:

d
i
g
i
t
a
l
_
b
u
s
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
b
u
s
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

b
o
o
l
e
a
n
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

:

b
o
o
l
e
a
n
_
b
u
s
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

b
o
o
l
e
a
n
_
b
u
s
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

:

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

i
n
s
_
s
t
e
p
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

:

i
n
s
_
s
t
e
p
_
b
u
s
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
s
t
e
p
_
b
u
s
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 l
o
c
a
l

v
a
l

b
u
s
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

:

d
i
g
i
t
a
l
_
b
u
s
e
s

-
>

(
b
i
t
s

*

b
i
t
s
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
b
u
s
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

b
i
t

r
a
n
g
e
s

t
h
a
t

a
r
e

v
a
l
i
d

f
o
r

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r
.

*
)

231

d
a
t
a
t
y
p
e

t
r
a
c
e
s

=

D
I
G
I
T
A
L
_
T
R
A
C
E

o
f

(
d
i
g
i
t
a
l
_
v
a
l
u
e

)

|

B
O
O
L
E
A
N
_
T
R
A
C
E

o
f

(
b
o
o
l

)

|

I
N
S
_
C
L
A
S
S
_
T
R
A
C
E

o
f

(
c
l
a
s
s
e
s

)

|

I
N
S
_
S
T
E
P
_
T
R
A
C
E

o
f

(
s
t
e
p
s

)

i
n

a
b
s
t
y
p
e

b
u
s

=

D
I
G
I
T
A
L

o
f

(
d
i
g
i
t
a
l
_
b
u
s
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e

)

|

B
O
O
L
E
A
N

o
f

(
b
o
o
l
e
a
n
_
b
u
s
e
s

*

b
o
o
l

)

|

I
N
S
_
C
L
A
S
S

o
f

(
i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

*

c
l
a
s
s
e
s

)

|

I
N
S
_
S
T
E
P

o
f

(
i
n
s
_
s
t
e
p
_
b
u
s
e
s

*

s
t
e
p
s

)

a
n
d

t
r
a
c
e

=

T
R
A
C
E

o
f

(

i
n
t

r
e
f

*

(
i
n
t

r
e
f

*

p
h
a
s
e
s

r
e
f
)

*

(
(
i
n
t

*

p
h
a
s
e
s

-
>

b
o
o
l
)

r
e
f

*

b
o
o
l

r
e
f
)

*

(

t
r
a
c
e
s

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

*

t
r
a
c
e
s

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y
)

*

(
i
n
t

r
e
f

*

i
n
t

r
e
f
)

)

w
i
t
h

f
u
n

b
u
s
_
i
s
D
i
g
i
t
a
l

d
i
g
i
t
a
l
_
b
u
s

(

D
I
G
I
T
A
L
(
b
u
s
,

_
)
)

=

d
i
g
i
t
a
l
_
b
u
s

=

b
u
s

|

b
u
s
_
i
s
D
i
g
i
t
a
l

_

_

=

f
a
l
s
e
;

f
u
n

b
u
s
_
i
s
B
o
o
l
e
a
n

b
o
o
l
e
a
n
_
b
u
s

(

B
O
O
L
E
A
N
(
b
u
s
,

_
)
)

=

b
o
o
l
e
a
n
_
b
u
s

=

b
u
s

|

b
u
s
_
i
s
B
o
o
l
e
a
n

_

_

=

f
a
l
s
e
;

f
u
n

b
u
s
_
i
s
I
n
s
C
l
a
s
s

i
n
s
_
c
l
a
s
s
_
b
u
s

(
I
N
S
_
C
L
A
S
S
(
b
u
s
,

_
)
)

=

i
n
s
_
c
l
a
s
s
_
b
u
s

=

b
u
s

|

b
u
s
_
i
s
I
n
s
C
l
a
s
s

_

_

=

f
a
l
s
e
;

f
u
n

b
u
s
_
i
s
I
n
s
S
t
e
p

i
n
s
_
s
t
e
p
_
b
u
s

(

I
N
S
_
S
T
E
P
(
b
u
s
,

_
)
)

=

i
n
s
_
s
t
e
p
_
b
u
s

=

b
u
s

|

b
u
s
_
i
s
I
n
s
S
t
e
p

_

_

=

f
a
l
s
e
;

f
u
n

b
u
s
_
d
i
g
i
t
a
l
_
v
a
l
u
e

(

D
I
G
I
T
A
L
(
b
u
s
,

v
a
l
u
e
)
)

=

S
O
M
E

(
b
u
s
,

v
a
l
u
e
)

|

b
u
s
_
d
i
g
i
t
a
l
_
v
a
l
u
e

_

=

N
O
N
E
;

f
u
n

b
u
s
_
b
o
o
l
e
a
n

(

B
O
O
L
E
A
N
(
b
u
s
,

v
a
l
u
e
)
)

=

S
O
M
E

(
b
u
s
,

v
a
l
u
e
)

|

b
u
s
_
b
o
o
l
e
a
n

_

=

N
O
N
E
;

f
u
n

b
u
s
_
i
n
s
_
c
l
a
s
s

(
I
N
S
_
C
L
A
S
S
(
b
u
s
,

v
a
l
u
e
)
)

=

S
O
M
E

(
b
u
s
,

v
a
l
u
e
)

|

b
u
s
_
i
n
s
_
c
l
a
s
s

_

=

N
O
N
E
;

f
u
n

b
u
s
_
i
n
s
_
s
t
e
p

(

I
N
S
_
S
T
E
P
(
b
u
s
,

v
a
l
u
e
)
)

=

S
O
M
E

(
b
u
s
,

v
a
l
u
e
)

|

b
u
s
_
i
n
s
_
s
t
e
p

_

=

N
O
N
E
;

f
u
n

b
u
s
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

(
b
u
s
,

v
a
l
u
e
)

=

l
e
t

v
a
l

v
a
l
i
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

(
b
u
s
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

b
u
s
)

v
a
l
u
e

i
n

i
f

v
a
l
i
d

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
b
u
s
,

v
a
l
u
e
)
)

e
l
s
e

N
O
N
E

e
n
d
;

232

f
u
n

b
u
s
_
b
o
o
l
e
a
n
_
i
n
s
t
a
n
c
e

(
b
u
s
,

v
a
l
u
e
)

=

S
O
M
E
(
B
O
O
L
E
A
N
(
b
u
s
,

v
a
l
u
e
)
)
;

f
u
n

b
u
s
_
i
n
s
_
c
l
a
s
s
_
i
n
s
t
a
n
c
e

(
b
u
s
,

v
a
l
u
e
)

=

S
O
M
E
(
I
N
S
_
C
L
A
S
S
(
b
u
s
,

v
a
l
u
e
)
)
;

f
u
n

b
u
s
_
i
n
s
_
s
t
e
p
_
i
n
s
t
a
n
c
e

(
b
u
s
,

v
a
l
u
e
)

=

S
O
M
E
(
I
N
S
_
S
T
E
P
(
b
u
s
,

v
a
l
u
e
)
)
;

v
a
l

b
u
s
_
f
r
o
m
_
i
n
p
u
t

:

i
n
p
u
t

-
>

b
u
s

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

b
u
s
_
b
u
f
f
e
r

:

b
u
s

-
>

(
s
t
a
g
e
s

*

s
t
a
g
e
s
)

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

b
u
s
_
t
o
_
s
t
r
i
n
g

(

D
I
G
I
T
A
L
(
b
u
s
,

v
a
l
u
e
)
)

=

(
d
i
g
i
t
a
l
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

=

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

|

b
u
s
_
t
o
_
s
t
r
i
n
g

(

B
O
O
L
E
A
N
(
b
u
s
,

t
r
u
e

)
)

=

(
b
o
o
l
e
a
n
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

=

"

^

(
"
t
r
u
e
"

)

|

b
u
s
_
t
o
_
s
t
r
i
n
g

(

B
O
O
L
E
A
N
(
b
u
s
,

f
a
l
s
e
)
)

=

(
b
o
o
l
e
a
n
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

=

"

^

(
"
f
a
l
s
e
"

)

|

b
u
s
_
t
o
_
s
t
r
i
n
g

(
I
N
S
_
C
L
A
S
S
(
b
u
s
,

v
a
l
u
e
)
)

=

(
i
n
s
_
c
l
a
s
s
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

=

"

^

(
c
l
a
s
s
e
s
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

|

b
u
s
_
t
o
_
s
t
r
i
n
g

(

I
N
S
_
S
T
E
P
(
b
u
s
,

v
a
l
u
e
)
)

=

(
i
n
s
_
s
t
e
p
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

=

"

^

(
s
t
e
p
s
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

l
o
c
a
l

v
a
l

b
u
s
_
d
i
g
i
t
a
l
_
t
r
a
c
e

:

d
i
g
i
t
a
l
_
b
u
s
e
s

-
>

p
h
a
s
e
s

-
>

(
i
n
t

*

i
n
t
)

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

p
h
a
s
e

a
n
d

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
b
u
s
e
s

d
a
t
a

t
y
p
e
,

t
h
e

t
i
m
i
n
g

g
r
o
u
p

a
n
d

p
o
s
i
t
i
o
n

i
n

t
h
i
s

t
i
m
i
n
g

g
r
o
u
p

t
h
a
t

s
h
o
u
l
d

b
e

u
s
e
d

t
o

t
r
a
c
e

i
t
.

*
)

v
a
l

b
u
s
_
b
o
o
l
e
a
n
_
t
r
a
c
e

:

b
o
o
l
e
a
n
_
b
u
s
e
s

-
>

p
h
a
s
e
s

-
>

(
i
n
t

*

i
n
t
)

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

b
o
o
l
e
a
n
_
b
u
s
e
s

d
a
t
a

t
y
p
e
,

t
h
e

t
i
m
i
n
g

g
r
o
u
p

a
n
d

p
o
s
i
t
i
o
n

i
n

t
h
i
s

t
i
m
i
n
g

g
r
o
u
p

t
h
a
t

s
h
o
u
l
d

b
e

u
s
e
d

t
o

t
r
a
c
e

i
t
.

*
)

v
a
l

b
u
s
_
i
n
s
_
c
l
a
s
s
_
t
r
a
c
e

:

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

-
>

p
h
a
s
e
s

-
>

(
i
n
t

*

i
n
t
)

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

p
h
a
s
e

a
n
d

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

d
a
t
a

t
y
p
e
,

t
h
e

t
i
m
i
n
g

g
r
o
u
p

a
n
d

p
o
s
i
t
i
o
n

i
n

t
h
i
s

t
i
m
i
n
g

g
r
o
u
p

t
h
a
t

s
h
o
u
l
d

b
e

u
s
e
d

t
o

t
r
a
c
e

i
t
.

*
)

v
a
l

b
u
s
_
i
n
s
_
s
t
e
p
_
t
r
a
c
e

:

i
n
s
_
s
t
e
p
_
b
u
s
e
s

-
>

p
h
a
s
e
s

-
>

(
i
n
t

*

i
n
t
)

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

p
h
a
s
e

a
n
d

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
s
t
e
p
_
b
u
s
e
s

d
a
t
a

t
y
p
e
,

t
h
e

t
i
m
i
n
g

g
r
o
u
p

a
n
d

p
o
s
i
t
i
o
n

i
n

t
h
i
s

t
i
m
i
n
g

g
r
o
u
p

t
h
a
t

s
h
o
u
l
d

b
e

u
s
e
d

t
o

t
r
a
c
e

i
t
.

*
)

233

f
u
n

b
u
s
_
t
o
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(

D
I
G
I
T
A
L
(
b
u
s
,

v
a
l
u
e
)
)

p
h

=

(
(
b
u
s
_
d
i
g
i
t
a
l
_
t
r
a
c
e

b
u
s

p
h
)

g
u
a
r
d

(
"
C
a
n
n
o
t

t
r
a
c
e

"

^

(
d
i
g
i
t
a
l
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

i
n

"

^

(
p
h
a
s
e
s
_
t
o
_
s
t
r
i
n
g

p
h
)
)
,

D
I
G
I
T
A
L
_
T
R
A
C
E
(
v
a
l
u
e
)

)

|

b
u
s
_
t
o
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(

B
O
O
L
E
A
N
(
b
u
s
,

v
a
l
u
e
)
)

p
h

=

(
(
b
u
s
_
b
o
o
l
e
a
n
_
t
r
a
c
e

b
u
s

p
h
)

g
u
a
r
d

(
"
C
a
n
n
o
t

t
r
a
c
e

"

^

(
b
o
o
l
e
a
n
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

i
n

"

^

(
p
h
a
s
e
s
_
t
o
_
s
t
r
i
n
g

p
h
)
)
,

B
O
O
L
E
A
N
_
T
R
A
C
E
(
v
a
l
u
e
)

)

|

b
u
s
_
t
o
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
I
N
S
_
C
L
A
S
S
(
b
u
s
,

v
a
l
u
e
)
)

p
h

=

(
(
b
u
s
_
i
n
s
_
c
l
a
s
s
_
t
r
a
c
e

b
u
s

p
h
)

g
u
a
r
d

(
"
C
a
n
n
o
t

t
r
a
c
e

"

^

(
i
n
s
_
c
l
a
s
s
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

i
n

"

^

(
p
h
a
s
e
s
_
t
o
_
s
t
r
i
n
g

p
h
)
)
,

I
N
S
_
C
L
A
S
S
_
T
R
A
C
E
(
v
a
l
u
e
)

)

|

b
u
s
_
t
o
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(

I
N
S
_
S
T
E
P
(
b
u
s
,

v
a
l
u
e
)
)

p
h

=

(
(
b
u
s
_
i
n
s
_
s
t
e
p
_
t
r
a
c
e

b
u
s

p
h
)

g
u
a
r
d

(
"
C
a
n
n
o
t

t
r
a
c
e

"

^

(
i
n
s
_
s
t
e
p
_
b
u
s
e
s
_
t
o
_
s
t
r
i
n
g

b
u
s
)

^

"

i
n

"

^

(
p
h
a
s
e
s
_
t
o
_
s
t
r
i
n
g

p
h
)
)
,

I
N
S
_
S
T
E
P
_
T
R
A
C
E
(
v
a
l
u
e
)

)
;

v
a
l

b
u
s
_
t
r
a
c
e
_
p
h
a
s
e

:

b
u
s

-
>

p
h
a
s
e
s

-
>

p
h
a
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

b
u
s

a
b
s
t
r
a
c
t

t
y
p
e

a
n
d

p
h
a
s
e

t
h
e

p
h
a
s
e

t
h
a
t

s
h
o
u
l
d

b
e

u
s
e
d

t
o

t
r
a
c
e

i
t
.

*
)

v
a
l

t
i
m
i
n
g
_
g
r
o
u
p
s

:

p
h
a
s
e
s

-
>

i
n
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

r
e
t
u
r
n
s

t
h
e

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

t
i
m
i
n
g

g
r
o
u
p
s

r
e
q
u
i
r
e
d

t
o

t
r
a
c
e

t
h
e

v
a
l
u
e
s

o
f

b
u
s
e
s

a
c
t
i
v
e

i
n

t
h
e

s
p
e
c
i
f
i
e
d

c
l
o
c
k

p
h
a
s
e
.

*
)

v
a
l

t
i
m
i
n
g
_
g
r
o
u
p
_
e
l
e
m
e
n
t
s

:

p
h
a
s
e
s

-
>

i
n
t

-
>

i
n
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

r
e
t
u
r
n
s

t
h
e

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

p
o
s
i
t
i
o
n
s

r
e
q
u
i
r
e
d

t
o

t
r
a
c
e

t
h
e

v
a
l
u
e
s

o
f

b
u
s
e
s

a
c
t
i
v
e

i
n

t
h
e

s
p
e
c
i
f
i
e
d

c
l
o
c
k

p
h
a
s
e

a
n
d

w
h
i
c
h

b
e
l
o
n
g

t
o

t
h
e

s
p
e
c
i
f
i
e
d

t
i
m
i
n
g

g
r
o
u
p
.

*
)

v
a
l

w
r
i
t
e
_
t
r
a
c
e

p
h
a
s
e
s

-
>

i
n
t

*

i
n
t

-
>

b
o
o
l

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

c
h
e
c
k
s

w
h
e
t
h
e
r

t
h
e

s
p
e
c
i
f
i
e
d

p
o
s
i
t
i
o
n

i
n

t
h
e

s
p
e
c
i
f
i
e
d

t
i
m
i
n
g

g
r
o
u
p

i
s

u
s
e
d

t
o

t
r
a
c
e

a

v
a
l
u
e

i
n

t
h
e

s
p
e
c
i
f
i
e
d

p
h
a
s
e
;

i
f

t
h
e

v
a
l
u
e

o
f

a

b
u
s

i
s

v
a
l
i
d

i
n

m
o
r
e

t
h
a
n

o
n
e

c
l
o
c
k

p
h
a
s
e
,

i
t

s
h
o
u
l
d

b
e

t
r
a
c
e
d

u
s
i
n
g

o
n
l
y

o
n
e

c
l
o
c
k

p
h
a
s
e
.

*
)

f
u
n

l
o
o
k
u
p
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
a
r
r
a
y
,

(
m
,

n
,

i
)
)

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
a
r
r
a
y
,

m
)
)

o
f

S
O
M
E

g
r
o
u
p

=
>

(

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
g
r
o
u
p
,

n
)
)

o
f

S
O
M
E

p
a
g
e
s

=
>

l
e
t

v
a
l

(
p
a
g
e
_
n
u
m
b
e
r
,

p
a
g
e
_
e
n
t
r
y
)

=

(
i

d
i
v

1
0
0
0
0
,

i

m
o
d

1
0
0
0
0
)

234

i
n

i
f

p
a
g
e
_
n
u
m
b
e
r

<

A
r
r
a
y
.
l
e
n
g
t
h

p
a
g
e
s

t
h
e
n

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r
)
)

o
f

S
O
M
E

p
a
g
e

=
>

A
r
r
a
y
.
s
u
b
(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y
)

|

N
O
N
E

=
>

N
O
N
E

e
l
s
e

N
O
N
E

e
n
d

|

N
O
N
E

=
>

N
O
N
E

)

|

N
O
N
E

=
>

N
O
N
E
;

f
u
n

u
p
d
a
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
a
r
r
a
y
,

(
m
,

n
,

i
)
,

v
a
l
u
e
)

p
h

=

l
e
t

v
a
l

g
r
o
u
p

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
a
r
r
a
y
,

m
)
)

o
f

S
O
M
E

g
r
o
u
p

=
>

g
r
o
u
p

|

N
O
N
E

=
>

l
e
t

v
a
l

g
r
o
u
p

=

A
r
r
a
y
.
a
r
r
a
y
(
t
i
m
i
n
g
_
g
r
o
u
p
_
e
l
e
m
e
n
t
s

p
h

m
,

N
O
N
E
)

i
n

(
A
r
r
a
y
.
u
p
d
a
t
e
(
a
r
r
a
y
,

m
,

S
O
M
E

g
r
o
u
p
)
;

g
r
o
u
p
)

e
n
d
;

v
a
l

(
p
a
g
e
_
n
u
m
b
e
r
,

p
a
g
e
_
e
n
t
r
y
)

=

(
i

d
i
v

1
0
0
0
0
,

i

m
o
d

1
0
0
0
0
)
;

v
a
l

p
a
g
e
s

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
g
r
o
u
p
,

n
)
)

o
f

S
O
M
E

p
a
g
e
s

=
>

l
e
t

v
a
l

l
e
n
g
t
h

=

A
r
r
a
y
.
l
e
n
g
t
h

p
a
g
e
s

i
n

i
f

l
e
n
g
t
h

<
=

p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

(
f
n

p
a
g
e
s

=
>

(
A
r
r
a
y
.
u
p
d
a
t
e
(
g
r
o
u
p
,

n
,

S
O
M
E

p
a
g
e
s
)
;

p
a
g
e
s
)
)

(
A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
p
a
g
e
_
n
u
m
b
e
r

+

1
,

f
n

x

=
>

i
f

x

<

l
e
n
g
t
h

t
h
e
n

A
r
r
a
y
.
s
u
b
(
p
a
g
e
s
,

x
)

e
l
s
e

N
O
N
E
)
)

e
l
s
e

p
a
g
e
s

e
n
d

235

|

N
O
N
E

=
>

l
e
t

v
a
l

p
a
g
e
s

=

A
r
r
a
y
.
a
r
r
a
y
(
p
a
g
e
_
n
u
m
b
e
r

+

1
,

N
O
N
E
)

i
n

(
A
r
r
a
y
.
u
p
d
a
t
e
(
g
r
o
u
p
,

n
,

S
O
M
E

p
a
g
e
s
)
;

p
a
g
e
s
)

e
n
d
;

v
a
l

p
a
g
e

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r
)
)

o
f

S
O
M
E

p
a
g
e

=
>

p
a
g
e

|

N
O
N
E

=
>

l
e
t

v
a
l

p
a
g
e

=

A
r
r
a
y
.
a
r
r
a
y
(
1
0
0
0
0
,

N
O
N
E
)

i
n

(
A
r
r
a
y
.
u
p
d
a
t
e
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r
,

S
O
M
E

p
a
g
e
)
;

p
a
g
e
)

e
n
d

i
n

A
r
r
a
y
.
u
p
d
a
t
e
(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y
,

S
O
M
E

v
a
l
u
e
)

e
n
d
;

f
u
n

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

P
H
1
)

=

c
c

+

c
c

|

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

P
H
2
)

=

c
c

+

c
c

+

1
;

f
u
n

p
h
a
s
e
_
t
o
_
c
c

(
p
h
a
s
e
,

P
H
1
)

=

(
p
h
a
s
e

)

d
i
v

2

|

p
h
a
s
e
_
t
o
_
c
c

(
p
h
a
s
e
,

P
H
2
)

=

(
p
h
a
s
e

-

1
)

d
i
v

2

i
n

f
u
n

t
r
a
c
e
_
i
n
i
t

(
c
c
,

p
h
)

=

l
e
t

v
a
l

_

=

i
f

c
c

<

0

t
h
e
n

e
r
r
o
r

"
A
t
t
e
m
p
t

t
o

c
r
e
a
t
e

t
r
a
c
e

i
n
s
t
a
n
c
e

w
i
t
h

n
e
g
a
t
i
v
e

c
l
o
c
k

c
y
c
l
e
"

e
l
s
e

(
)
;

v
a
l

l
a
s
t
_
p
h
a
s
e

=

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

p
h
)

i
n

T
R
A
C
E
(
r
e
f

l
a
s
t
_
p
h
a
s
e
,

(
r
e
f

l
a
s
t
_
p
h
a
s
e
,

r
e
f

p
h
)
,

(
r
e
f

(
f
n

(
_
,

_
)

=
>

t
r
u
e
)
,

r
e
f

t
r
u
e
)
,

(
A
r
r
a
y
.
a
r
r
a
y

(
t
i
m
i
n
g
_
g
r
o
u
p
s

P
H
1
,

N
O
N
E
)
,

A
r
r
a
y
.
a
r
r
a
y

(
t
i
m
i
n
g
_
g
r
o
u
p
s

P
H
2
,

N
O
N
E
)
)
,

(
r
e
f

1
0
5
0
,

r
e
f

2
)
)

e
n
d

f
u
n

t
r
a
c
e
_
a
t

(
T
R
A
C
E
(
p
h
a
s
e
s
,

(
p
h
a
s
e
,

p
h
)
,

(
f
,

t
r
a
c
e
)
,

t
r
a
c
e
s
,

c
o
n
f
)
)

(
c
c
,

p
h
'
)

=

l
e
t

v
a
l

_

=

i
f

c
c

<

0

t
h
e
n

e
r
r
o
r

"
A
t
t
e
m
p
t

t
o

t
r
a
c
e

n
e
g
a
t
i
v
e

c
l
o
c
k

c
y
c
l
e
"

e
l
s
e

(
)
;

v
a
l

p
h
a
s
e
'

=

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

p
h
'
)

236

i
n

i
f

p
h
a
s
e
'

>

!
p
h
a
s
e
s

t
h
e
n

p
h
a
s
e
s

:
=

p
h
a
s
e
'

e
l
s
e

(
)
;

p
h
a
s
e

:
=

p
h
a
s
e
'
;

p
h

:
=

p
h
'
;

t
r
a
c
e

:
=

!
f

(
c
c
,

p
h
'
)

e
n
d
;

f
u
n

t
r
a
c
e
_
i
f

(
T
R
A
C
E
(
p
h
a
s
e
s
,

(
p
h
a
s
e
,

p
h
)
,

(
f
,

t
r
a
c
e
)
,

t
r
a
c
e
s
,

c
o
n
f
)
)

f
'

=

(
f

:
=

f
'
;

t
r
a
c
e

:
=

f
'

(
p
h
a
s
e
_
t
o
_
c
c

(
!
p
h
a
s
e
,

!
p
h
)
,

!
p
h
)
)
;

f
u
n

t
r
a
c
e
_
a
d
d
_
b
u
s
e
s

(
T
R
A
C
E
(
_
,

(
p
h
a
s
e
,

p
h
)
,

(
_
,

r
e
f

t
r
u
e
)
,

(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
,

c
o
n
f
)
)

=

l
e
t

v
a
l

p
h

=

!
p
h
;

f
u
n

t
r
a
c
e
_
a
d
d
_
b
u
s

b
u
s

=

l
e
t

v
a
l

p
h
'

=

b
u
s
_
t
r
a
c
e
_
p
h
a
s
e

b
u
s

p
h
;

v
a
l

(
(
m
,

n
)
,

v
a
l
u
e
)

=

b
u
s
_
t
o
_
t
r
a
c
e
_
e
l
e
m
e
n
t

b
u
s

p
h
'
;

i
n

u
p
d
a
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
c
a
s
e

p
h
'

o
f

P
H
1

=
>

p
h
1
_
t
r
a
c
e

|

P
H
2

=
>

p
h
2
_
t
r
a
c
e
,

(
m
,

n
,

!
p
h
a
s
e
)
,

v
a
l
u
e
)

p
h
'

e
n
d

i
n

a
p
p

(
f
n

S
O
M
E

b
u
s

=
>

t
r
a
c
e
_
a
d
d
_
b
u
s

b
u
s

|

N
O
N
E

=
>

(
)
)

e
n
d

|

t
r
a
c
e
_
a
d
d
_
b
u
s
e
s

(
_

)

=

(
f
n

_

=
>

(
)
)
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e

(
T
R
A
C
E
(
_
,

_
,

_
,

(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
,

c
o
n
f
)
)

b
u
s

(
c
c
,

p
h
)

=

l
e
t

v
a
l

p
h
'

=

b
u
s
_
t
r
a
c
e
_
p
h
a
s
e

b
u
s

p
h

i
n

(
f
n

S
O
M
E
(
D
I
G
I
T
A
L
_
T
R
A
C
E

v
a
l
u
e
)

=
>

S
O
M
E
(
v
a
l
u
e
)

|

_

=
>

N
O
N
E
)

(
(
f
n

S
O
M
E

(
m
,

n
)

=
>

l
o
o
k
u
p
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
c
a
s
e

p
h
'

o
f

P
H
1

=
>

p
h
1
_
t
r
a
c
e

|

P
H
2

=
>

p
h
2
_
t
r
a
c
e
,

(
m
,

n
,

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

p
h
)
)
)

|

_

=
>

N
O
N
E
)

(
b
u
s
_
d
i
g
i
t
a
l
_
t
r
a
c
e

b
u
s

p
h
'
)
)

e
n
d
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
b
o
o
l
e
a
n

(
T
R
A
C
E
(
_
,

_
,

_
,

(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
,

c
o
n
f
)
)

b
u
s

(
c
c
,

p
h
)

=

l
e
t

v
a
l

p
h
'

=

b
u
s
_
t
r
a
c
e
_
p
h
a
s
e

b
u
s

p
h

i
n

(
f
n

S
O
M
E
(
B
O
O
L
E
A
N
_
T
R
A
C
E

v
a
l
u
e
)

=
>

S
O
M
E
(
v
a
l
u
e
)

|

_

=
>

N
O
N
E
)

(
(
f
n

S
O
M
E

(
m
,

n
)

=
>

l
o
o
k
u
p
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
c
a
s
e

p
h
'

o
f

P
H
1

=
>

p
h
1
_
t
r
a
c
e

|

P
H
2

=
>

p
h
2
_
t
r
a
c
e
,

(
m
,

n
,

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

p
h
)
)
)

|

_

=
>

N
O
N
E
)

(
b
u
s
_
b
o
o
l
e
a
n
_
t
r
a
c
e

b
u
s

p
h
'
)
)

e
n
d
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
i
n
s
_
c
l
a
s
s

(
T
R
A
C
E
(
_
,

_
,

_
,

(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
,

c
o
n
f
)
)

b
u
s

(
c
c
,

p
h
)

=

l
e
t

v
a
l

p
h
'

=

b
u
s
_
t
r
a
c
e
_
p
h
a
s
e

b
u
s

p
h

237

i
n

(
f
n

S
O
M
E
(
I
N
S
_
C
L
A
S
S
_
T
R
A
C
E

v
a
l
u
e
)

=
>

S
O
M
E
(
v
a
l
u
e
)

|

_

=
>

N
O
N
E
)

(
(
f
n

S
O
M
E

(
m
,

n
)

=
>

l
o
o
k
u
p
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
c
a
s
e

p
h
'

o
f

P
H
1

=
>

p
h
1
_
t
r
a
c
e

|

P
H
2

=
>

p
h
2
_
t
r
a
c
e
,

(
m
,

n
,

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

p
h
)
)
)

|

_

=
>

N
O
N
E
)

(
b
u
s
_
i
n
s
_
c
l
a
s
s
_
t
r
a
c
e

b
u
s

p
h
'
)
)

e
n
d
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
i
n
s
_
s
t
e
p

(
T
R
A
C
E
(
_
,

_
,

_
,

(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
,

c
o
n
f
)
)

b
u
s

(
c
c
,

p
h
)

=

l
e
t

v
a
l

p
h
'

=

b
u
s
_
t
r
a
c
e
_
p
h
a
s
e

b
u
s

p
h

i
n

(
f
n

S
O
M
E
(
I
N
S
_
S
T
E
P
_
T
R
A
C
E

v
a
l
u
e
)

=
>

S
O
M
E
(
v
a
l
u
e
)

|

_

=
>

N
O
N
E
)

(
(
f
n

S
O
M
E

(
m
,

n
)

=
>

l
o
o
k
u
p
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
c
a
s
e

p
h
'

o
f

P
H
1

=
>

p
h
1
_
t
r
a
c
e

|

P
H
2

=
>

p
h
2
_
t
r
a
c
e
,

(
m
,

n
,

c
c
_
t
o
_
p
h
a
s
e

(
c
c
,

p
h
)
)
)

|

_

=
>

N
O
N
E
)

(
b
u
s
_
i
n
s
_
s
t
e
p
_
t
r
a
c
e

b
u
s

p
h
'
)
)

e
n
d
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
l
a
s
t
_
p
h
a
s
e

(
T
R
A
C
E
(
r
e
f

l
a
s
t
_
p
h
a
s
e
,

_
,

_
,

_
,

_
)
)

=

l
a
s
t
_
p
h
a
s
e
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
n
s
_
p
e
r
_
c
c

(
T
R
A
C
E
(
_
,

_
,

_
,

_
,

(
r
e
f

n
s
,

_

)
)
)

=

n
s
;

f
u
n

t
r
a
c
e
_
l
o
o
k
u
p
_
s
i
g
n
a
l
_
s
c
a
l
i
n
g

(
T
R
A
C
E
(
_
,

_
,

_
,

_
,

(
_
,

r
e
f

s
c
a
l
i
n
g
)
)
)

=

i
f

s
c
a
l
i
n
g

=

0

t
h
e
n

0

e
l
s
e

1
0
0

d
i
v

s
c
a
l
i
n
g
;

f
u
n

t
r
a
c
e
_
n
s
_
p
e
r
_
c
c

(
T
R
A
C
E
(
_
,

_
,

_
,

_
,

(
n
s
,

_

)
)
)

n
s
'

=

n
s

:
=

n
s
'
;

f
u
n

t
r
a
c
e
_
s
i
g
n
a
l
_
s
c
a
l
i
n
g

(
T
R
A
C
E
(
_
,

_
,

_
,

_
,

(
_
,

s
c
a
l
i
n
g
)
)
)

0

=

s
c
a
l
i
n
g

:
=

0

|

t
r
a
c
e
_
s
i
g
n
a
l
_
s
c
a
l
i
n
g

(
T
R
A
C
E
(
_
,

_
,

_
,

_
,

(
_
,

s
c
a
l
i
n
g
)
)
)

s
c
a
l
i
n
g
'

=

i
f

s
c
a
l
i
n
g
'

>

0

a
n
d
a
l
s
o

s
c
a
l
i
n
g
'

<
=

1
0
0

t
h
e
n

s
c
a
l
i
n
g

:
=

1
0
0

d
i
v

s
c
a
l
i
n
g
'

e
l
s
e

e
r
r
o
r

(
I
n
t
.
t
o
S
t
r
i
n
g

s
c
a
l
i
n
g
'

^

"

i
s

o
u
t

o
f

b
o
u
n
d
s

f
o
r

t
r
a
c
e
_
s
i
g
n
a
l
_
s
c
a
l
i
n
g
"
)
;

f
u
n

o
u
t
p
u
t
L
i
n
e

o
s

x

=

(
T
e
x
t
I
O
.
o
u
t
p
u
t

(
o
s
,

x
)
;

T
e
x
t
I
O
.
o
u
t
p
u
t

(
o
s
,

"
\
n
"
)
)
;

l
o
c
a
l

f
u
n

w
r
i
t
e
_
t
r
a
c
e
_
h
e
a
d
e
r

o
s

(
(
s
t
a
r
t
_
n
s
,

l
a
s
t
_
n
s
)
,

p
h
a
s
e
s
)

(
(
i
_
p
a
g
e
_
n
u
m
b
e
r
,

i
_
p
a
g
e
_
e
n
t
r
y
)
,

(
l
a
s
t
_
p
a
g
e
_
n
u
m
b
e
r
,

j
)
)

=

(

a
p
p

(
o
u
t
p
u
t
L
i
n
e

o
s
)

[

"
<
!
D
O
C
T
Y
P
E

t
i
m
i
n
g
.
d
i
a
g
r
a
m

P
U
B
L
I
C

\
"
-
/
/
T
D
M
L

W
o
r
k
i
n
g

G
r
o
u
p
/
/
D
T
D

X
M
L
-
P
C
I
S
T
D
M
L
.
D
T
D

1
9
9
9
0
5
1
4

D
r
a
f
t

1
.
1

T
i
m
i
n
g

D
i
a
g
r
a
m

M
a
r
k
u
p

L
a
n
g
u
a
g
e

D
T
D
/
/
E
N
\
"

\
"
x
m
l
-
p
c
i
s
t
d
m
l
.
d
t
d
\
"
>
"
,

"
<
t
i
m
i
n
g
.
d
i
a
g
r
a
m

d
e
f
a
u
l
t
.
t
i
m
e
.
u
n
i
t
s
=
\
"
1
E
-
1
2

s
\
"
>
"
,

238

"

<
t
d
m
l
.
a
d
m
i
n
.
i
n
f
o
>
"
,

"

<
t
o
o
l
.
i
n
f
o
>
"
,

"

<
t
d
m
l
.
n
a
m
e
>
S
M
L

s
i
m
u
l
a
t
o
r

t
r
a
c
e

f
i
l
e
<
/
t
d
m
l
.
n
a
m
e
>
"
,

"

<
t
d
m
l
.
t
y
p
e
>
S
M
L

s
i
m
u
l
a
t
o
r
<
/
t
d
m
l
.
t
y
p
e
>
"
,

"

<
/
t
o
o
l
.
i
n
f
o
>
"
,

"

<
/
t
d
m
l
.
a
d
m
i
n
.
i
n
f
o
>
"
,

"

<
s
o
u
r
c
e
s
>
"
,

"

<
c
o
n
n
.
s
o
u
r
c
e
>
"
,

"

<
c
o
n
n
e
c
t
i
o
n

c
o
n
n
.
t
y
p
e
=
\
"
O
\
"

i
d
=
\
"
C
L
K
\
"
>
<
c
o
n
n
.
n
a
m
e
>
C
L
K
<
/
c
o
n
n
.
n
a
m
e
>
<
/
c
o
n
n
e
c
t
i
o
n
>
"
,

(
*

N
o
t
e

s
t
r
i
n
g
s

d
e
c
l
a
r
i
n
g

t
h
e

b
u
s
e
s

t
h
a
t

c
a
n

b
e

t
r
a
c
e
d

i
n

t
h
e

p
r
o
c
e
s
s
o
r

c
o
r
e

s
h
o
u
l
d

b
e

i
n
s
e
r
t
e
d

h
e
r
e
.

*
)

"

<
/
c
o
n
n
.
s
o
u
r
c
e
>
"
,

"

<
/
s
o
u
r
c
e
s
>
"
,

"

<
s
i
g
n
a
l

s
h
o
w
=
\
"
1
\
"

s
h
o
w
.
g
r
i
d
=
\
"
0
\
"

c
l
o
c
k
=
\
"
1
\
"

i
n
v
e
r
t
e
d
=
\
"
1
\
"
>
"
,

"

<
c
o
n
n
.
p
t
r

c
o
n
n
.
i
d
=
\
"
C
L
K
\
"
>
<
/
c
o
n
n
.
p
t
r
>
"
,

"

<
c
l
o
c
k
.
i
n
f
o
>
"
,

"

<
p
e
r
i
o
d
>
<
n
u
m
b
e
r
>
2
1
0
0
<
/
n
u
m
b
e
r
>
<
/
p
e
r
i
o
d
>
"
,

"

<
d
u
t
y
.
c
y
c
l
e
>
<
n
u
m
b
e
r
>
5
0
<
/
n
u
m
b
e
r
>
<
/
d
u
t
y
.
c
y
c
l
e
>
"
,

"

<
t
i
m
e
.
o
f
f
s
e
t
>
<
n
u
m
b
e
r
>
0
<
/
n
u
m
b
e
r
>
<
/
t
i
m
e
.
o
f
f
s
e
t
>
"
,

"

<
j
i
t
t
e
r
.
f
a
l
l
i
n
g
>
<
n
u
m
b
e
r
>
0
<
/
n
u
m
b
e
r
>
<
/
j
i
t
t
e
r
.
f
a
l
l
i
n
g
>
"
,

"

<
j
i
t
t
e
r
.
r
i
s
i
n
g
>
<
n
u
m
b
e
r
>
0
<
/
n
u
m
b
e
r
>
<
/
j
i
t
t
e
r
.
r
i
s
i
n
g
>
"
,

"

<
u
n
c
e
r
t
a
i
n
t
y
.
f
a
l
l
i
n
g
>
<
n
u
m
b
e
r
>
0
<
/
n
u
m
b
e
r
>
<
/
u
n
c
e
r
t
a
i
n
t
y
.
f
a
l
l
i
n
g
>
"
,

"

<
u
n
c
e
r
t
a
i
n
t
y
.
r
i
s
i
n
g
>
<
n
u
m
b
e
r
>
0
<
/
n
u
m
b
e
r
>
<
/
u
n
c
e
r
t
a
i
n
t
y
.
r
i
s
i
n
g
>
"
,

"

<
/
c
l
o
c
k
.
i
n
f
o
>
"
,

"

<
w
a
v
e
f
o
r
m
>
"
,

"

<
e

s
=
\
"
Z
\
"
>
<
/
e
>
"

]
;

l
e
t

v
a
l

g

=

f
n

(
x
,

(
n
s
,

f
l
u
s
h
)
)

=
>

(
o
u
t
p
u
t
L
i
n
e

o
s

(
"

<
e

s
=
\
"
"

^

I
n
t
.
t
o
S
t
r
i
n
g

(
x

m
o
d

2
)

^

"
\
"

t
e
=
\
"
"

^

I
n
t
.
t
o
S
t
r
i
n
g

n
s

^

"
\
"
>
<
/
e
>
"
)
;

i
f

f
l
u
s
h

t
h
e
n

T
e
x
t
I
O
.
f
l
u
s
h
O
u
t

o
s

e
l
s
e

(
)
)
;

f
u
n

f

(
p
a
g
e
_
n
u
m
b
e
r
,

S
O
M
E

p
a
g
e
)

=

A
r
r
a
y
.
a
p
p
i

g

(
p
a
g
e
,

i
f

p
a
g
e
_
n
u
m
b
e
r

<
>

i
_
p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

0

e
l
s
e

i
_
p
a
g
e
_
e
n
t
r
y
,

i
f

p
a
g
e
_
n
u
m
b
e
r

<
>

l
a
s
t
_
p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E

j
)

|

f

(
p
a
g
e
_
n
u
m
b
e
r
,

N
O
N
E

)

=

e
r
r
o
r

"
A
r
r
a
y
.
s
u
b

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

w
r
i
t
e
_
t
r
a
c
e
_
h
e
a
d
e
r
"

i
n

A
r
r
a
y
.
a
p
p
i

f

(
p
h
a
s
e
s
,

i
_
p
a
g
e
_
n
u
m
b
e
r
,

N
O
N
E
)

e
n
d
;

239

a
p
p

(
o
u
t
p
u
t
L
i
n
e

o
s
)

[

"

<
e

t
e
=
\
"
"

^

l
a
s
t
_
n
s

^

"
\
"
>
<
/
e
>
"
,

"

<
/
w
a
v
e
f
o
r
m
>
"
,

"

<
/
s
i
g
n
a
l
>
"

]
;

T
e
x
t
I
O
.
f
l
u
s
h
O
u
t

o
s

)
;

l
o
c
a
l

f
u
n

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(

N
O
N
E
)

=

"
s
=
\
"
Z
\
"
"

|

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
S
O
M
E
(

D
I
G
I
T
A
L
_
T
R
A
C
E
(
d
i
g
i
t
a
l
_
v
a
l
u
e
)
)
)

=

l
e
t

d
a
t
a
t
y
p
e

u
n
k
n
o
w
n
_
s
t
a
t
e

=

N
U
L
L

|

P
R
E
F
I
X
E
D

|

S
U
F
F
I
X
E
D

|

M
I
X
E
D
;

v
a
l

(
x
x
s
,

y
)

=

f
o
l
d
r

(
f
n

(
#
"
x
"
,

(
x
s
,

P
R
E
F
I
X
E
D
)
)

=
>

(

x
s
,

S
U
F
F
I
X
E
D
)

|

(
#
"
x
"
,

(
x
s
,

y

)
)

=
>

(

x
s
,

y

)

|

(
x
,

(
x
s
,

N
U
L
L

)
)

=
>

(
x
:
:
x
s
,

P
R
E
F
I
X
E
D
)

|

(
x
,

(
x
s
,

S
U
F
F
I
X
E
D
)
)

=
>

(
x
:
:
x
s
,

M
I
X
E
D

)

|

(
x
,

(
x
s
,

y

)
)

=
>

(
x
:
:
x
s
,

y

)
)

(
[
]
,

N
U
L
L
)

(
e
x
p
l
o
d
e

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

B
I
N

d
i
g
i
t
a
l
_
v
a
l
u
e
)
)
;

v
a
l

s
i
z
e

=

l
e
n
g
t
h

x
x
s

i
n

i
f

s
i
z
e

=

1

t
h
e
n

"
s
=
\
"
"

^

i
m
p
l
o
d
e

x
x
s

^

"
\
"
"

e
l
s
e

"
s
=
\
"
V
\
"

v
s
=
\
"
"

^

(
i
f

y

=

M
I
X
E
D

o
r
e
l
s
e

s
i
z
e

<
=

8

t
h
e
n

i
m
p
l
o
d
e

x
x
s

e
l
s
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

H
E
X

d
i
g
i
t
a
l
_
v
a
l
u
e
)

^

"
\
"
"

e
n
d

|

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
S
O
M
E
(

B
O
O
L
E
A
N
_
T
R
A
C
E
(

t
r
u
e
)
)
)

=

"
s
=
\
"
V
\
"

v
s
=
\
"
t
r
u
e
\
"
"

|

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
S
O
M
E
(

B
O
O
L
E
A
N
_
T
R
A
C
E
(

f
a
l
s
e
)
)
)

=

"
s
=
\
"
V
\
"

v
s
=
\
"
f
a
l
s
e
\
"
"

|

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
S
O
M
E
(
I
N
S
_
C
L
A
S
S
_
T
R
A
C
E
(

i
n
s
_
c
l
a
s
s
)
)
)

=

"
s
=
\
"
V
\
"

v
s
=
\
"
"

^

c
l
a
s
s
e
s
_
t
o
_
s
t
r
i
n
g

i
n
s
_
c
l
a
s
s

^

"
\
"
"

240

|

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

(
S
O
M
E
(

I
N
S
_
S
T
E
P
_
T
R
A
C
E
(

i
n
s
_
s
t
e
p
)
)
)

=

"
s
=
\
"
V
\
"

v
s
=
\
"
"

^

s
t
e
p
s
_
t
o
_
s
t
r
i
n
g

i
n
s
_
s
t
e
p

^

"
\
"
"

i
n

f
u
n

w
r
i
t
e
_
t
r
a
c
e
_
b
o
d
y

o
s

(
(
f
i
r
s
t
_
n
s
,

l
a
s
t
_
n
s
)
,

p
h
a
s
e
s
)

(
(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
,

m
a
x
_
i
n
c
)

(
(
i
_
p
a
g
e
_
n
u
m
b
e
r
,

i
_
p
a
g
e
_
e
n
t
r
y
)
,

(
l
a
s
t
_
p
a
g
e
_
n
u
m
b
e
r
,

j
)
)

=

l
e
t

v
a
l

p
h
1
_
i
n
c

=

m
a
x
_
i
n
c

d
i
v

(
t
i
m
i
n
g
_
g
r
o
u
p
s

P
H
1
)
;

v
a
l

p
h
2
_
i
n
c

=

m
a
x
_
i
n
c

d
i
v

(
t
i
m
i
n
g
_
g
r
o
u
p
s

P
H
2
)
;

f
u
n

h

i
n
c

(
(
S
O
M
E

t
r
a
c
e
s
_
p
a
g
e
,

p
h
a
s
e
s
_
p
a
g
e
)
,

(
i
,

j
)
)

=

A
r
r
a
y
.
a
p
p
i

(
f
n

(
i
,

x
)

=
>

l
e
t

v
a
l

(
n
s
,

f
l
u
s
h
)

=

A
r
r
a
y
.
s
u
b
(
p
h
a
s
e
s
_
p
a
g
e
,

i
)

i
n

o
u
t
p
u
t
L
i
n
e

o
s

(
"

<
e

"

^

w
r
i
t
e
_
t
r
a
c
e
_
e
l
e
m
e
n
t

x

^

"

t
e
=
\
"
"

^

I
n
t
.
t
o
S
t
r
i
n
g

(
n
s

+

(
c
a
s
e

x

o
f

N
O
N
E

=
>

0

|

_

=
>

i
n
c
)
)

^

"
\
"
>
<
/
e
>
"
)
;

i
f

f
l
u
s
h

t
h
e
n

T
e
x
t
I
O
.
f
l
u
s
h
O
u
t

o
s

e
l
s
e

(
)

e
n
d
)

(
t
r
a
c
e
s
_
p
a
g
e
,

i
,

j
)

|

h

i
n
c

(
(
N
O
N
E
,

p
h
a
s
e
s
_
p
a
g
e
)
,

(
i
,

j
)
)

=

A
r
r
a
y
.
a
p
p
i

(
f
n

(
i
,

(
n
s
,

f
l
u
s
h
)
)

=
>

(
o
u
t
p
u
t
L
i
n
e

o
s

(
"

<
e

s
=
\
"
Z
\
"

t
e
=
\
"
"

^

I
n
t
.
t
o
S
t
r
i
n
g

n
s

^

"
\
"
>
<
/
e
>
"
)
;

i
f

f
l
u
s
h

t
h
e
n

T
e
x
t
I
O
.
f
l
u
s
h
O
u
t

o
s

e
l
s
e

(
)
)
)

(
p
h
a
s
e
s
_
p
a
g
e
,

i
,

j
)
;

f
u
n

g

p
h

i
n
c

(
(
m
,

n
)
,

o
p
t
i
o
n
)

=

(

a
p
p

(
o
u
t
p
u
t
L
i
n
e

o
s
)

[

"

<
s
i
g
n
a
l

s
h
o
w
=
\
"
1
\
"

s
h
o
w
.
g
r
i
d
=
\
"
0
\
"
>
"
,

"

<
c
o
n
n
.
p
t
r

c
o
n
n
.
i
d
=
\
"
"

^

p
h

^

"
_
"

^

(
i
f

m

>

9

t
h
e
n

"
"

e
l
s
e

"
_
"
)

^

I
n
t
.
t
o
S
t
r
i
n
g

(
m
)

^

(
i
f

n

>

9

t
h
e
n

"
_
"

e
l
s
e

"
_
_
"
)

^

I
n
t
.
t
o
S
t
r
i
n
g

(
n
)

^

"
\
"
>
<
/
c
o
n
n
.
p
t
r
>
"
,

"

<
w
a
v
e
f
o
r
m
>
"
,

"

<
e

s
=
\
"
Z
\
"
>
<
/
e
>
"

]
;

l
e
t

v
a
l

s
l
i
c
e

=

f
n

p
a
g
e
_
n
u
m
b
e
r

=
>

(
i
f

p
a
g
e
_
n
u
m
b
e
r

<
>

i
_
p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

0

e
l
s
e

i
_
p
a
g
e
_
e
n
t
r
y
,

i
f

p
a
g
e
_
n
u
m
b
e
r

<
>

l
a
s
t
_
p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

N
O
N
E

e
l
s
e

S
O
M
E

j
)

i
n

c
a
s
e

(
o
p
t
i
o
n
)

o
f

S
O
M
E

a
r
r
a
y

=
>

A
r
r
a
y
.
a
p
p
i

(
f
n

(
p
a
g
e
_
n
u
m
b
e
r
,

S
O
M
E

p
h
a
s
e
s
_
p
a
g
e
)

=
>

h

i
n
c

(
(
i
f

p
a
g
e
_
n
u
m
b
e
r

<

A
r
r
a
y
.
l
e
n
g
t
h

a
r
r
a
y

t
h
e
n

A
r
r
a
y
.
s
u
b
(
a
r
r
a
y
,

p
a
g
e
_
n
u
m
b
e
r
)

e
l
s
e

N
O
N
E
,

p
h
a
s
e
s
_
p
a
g
e
)
,

s
l
i
c
e

p
a
g
e
_
n
u
m
b
e
r
)

|

_

=
>

e
r
r
o
r

"
A
r
r
a
y
.
s
u
b

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

w
r
i
t
e
_
t
r
a
c
e
_
b
o
d
y
"
)

(
p
h
a
s
e
s
,

i
_
p
a
g
e
_
n
u
m
b
e
r
,

N
O
N
E
)

241

|

N
O
N
E

=
>

A
r
r
a
y
.
a
p
p
i

(
f
n

(
p
a
g
e
_
n
u
m
b
e
r
,

S
O
M
E

p
h
a
s
e
s
_
p
a
g
e
)

=
>

h

i
n
c

(
(
N
O
N
E
,

p
h
a
s
e
s
_
p
a
g
e
)
,

s
l
i
c
e

p
a
g
e
_
n
u
m
b
e
r
)

|

_

=
>

e
r
r
o
r

"
A
r
r
a
y
.
s
u
b

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

w
r
i
t
e
_
t
r
a
c
e
_
b
o
d
y
"
)

(
p
h
a
s
e
s
,

i
_
p
a
g
e
_
n
u
m
b
e
r
,

N
O
N
E
)

e
n
d
;

a
p
p

(
o
u
t
p
u
t
L
i
n
e

o
s
)

[

"

<
e

t
e
=
\
"
"

^

l
a
s
t
_
n
s

^

"
\
"
>
<
/
e
>
"
,

"

<
/
w
a
v
e
f
o
r
m
>
"
,

"

<
/
s
i
g
n
a
l
>
"

]
;

T
e
x
t
I
O
.
f
l
u
s
h
O
u
t

o
s

)
;

f
u
n

f

P
H
1

(
m
,

S
O
M
E

a
r
r
a
y
)

=

l
e
t

v
a
l

i
n
c

=

p
h
1
_
i
n
c

*

m

i
n

A
r
r
a
y
.
a
p
p
i

(
f
n

(
n
,

x
)

=
>

g

"
P
H
1
"

i
n
c

(
(
m
,

n
)
,

x
)
)

(
a
r
r
a
y
,

0
,

N
O
N
E
)

e
n
d

|

f

P
H
2

(
m
,

S
O
M
E

a
r
r
a
y
)

=

l
e
t

v
a
l

i
n
c

=

p
h
2
_
i
n
c

*

m

i
n

A
r
r
a
y
.
a
p
p
i

(
f
n

(
n
,

x
)

=
>

i
f

w
r
i
t
e
_
t
r
a
c
e

P
H
2

(
m
,

n
)

t
h
e
n

g

"
P
H
2
"

i
n
c

(
(
m
,

n
)
,

x
)

e
l
s
e

(
)
)

(
a
r
r
a
y
,

0
,

N
O
N
E
)

e
n
d

|

f

P
H
1

(
m
,

N
O
N
E

)

=

l
e
t

v
a
l

b
o
u
n
d

=

t
i
m
i
n
g
_
g
r
o
u
p
_
e
l
e
m
e
n
t
s

P
H
1

m
;

f
u
n

i
t
e
r

n

=

i
f

n

<

b
o
u
n
d

t
h
e
n

(
g

"
P
H
1
"

0

(
(
m
,

n
)
,

N
O
N
E
)
;

i
t
e
r

(
n

+

1
)
)

e
l
s
e

(
)

i
n

i
t
e
r

0

e
n
d

|

f

P
H
2

(
m
,

N
O
N
E

)

=

l
e
t

v
a
l

b
o
u
n
d

=

t
i
m
i
n
g
_
g
r
o
u
p
_
e
l
e
m
e
n
t
s

P
H
2

m
;

f
u
n

i
t
e
r

n

=

i
f

n

<

b
o
u
n
d

t
h
e
n

(
i
f

w
r
i
t
e
_
t
r
a
c
e

P
H
2

(
m
,

n
)

t
h
e
n

g

"
P
H
2
"

0

(
(
m
,

n
)
,

N
O
N
E
)

e
l
s
e

(
)
;

i
t
e
r

(
n

+

1
)
)

e
l
s
e

(
)

242

i
n

i
t
e
r

0

e
n
d

i
n

A
r
r
a
y
.
a
p
p
i

(
f

P
H
1
)

(
p
h
1
_
t
r
a
c
e
,

0
,

N
O
N
E
)
;

A
r
r
a
y
.
a
p
p
i

(
f

P
H
2
)

(
p
h
2
_
t
r
a
c
e
,

0
,

N
O
N
E
)

e
n
d

e
n
d
;

f
u
n

w
r
i
t
e
_
t
r
a
c
e
_
f
o
o
t
e
r

o
s

(
(
f
i
r
s
t
_
n
s
,

l
a
s
t
_
n
s
)
,

p
h
a
s
e
s
)

=

(

a
p
p

(
o
u
t
p
u
t
L
i
n
e

o
s
)

[

"

<
v
i
e
w
.
g
r
o
u
p
>
"
,

"

<
v
i
e
w

b
e
g
i
n
.
t
i
m
e
=
\
"
"

^

f
i
r
s
t
_
n
s

^

"
\
"

e
n
d
.
t
i
m
e
=
\
"
"

^

l
a
s
t
_
n
s

^

"
\
"
>
<
/
v
i
e
w
>
"
,

"

<
/
v
i
e
w
.
g
r
o
u
p
>
"
,

"
<
/
t
i
m
i
n
g
.
d
i
a
g
r
a
m
>
"

]

)
;

f
u
n

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e

(
n
s
,

s
c
a
l
i
n
g
)

t
r
a
c
e
s

(
i
,

j
)

f
i
l
e

=

l
e
t

v
a
l

(
i
_
p
a
g
e
_
n
u
m
b
e
r
,

i
_
p
a
g
e
_
e
n
t
r
y
)

=

(
(
i

)

d
i
v

1
0
0
0
0
,

(
i

)

m
o
d

1
0
0
0
0
)
;

v
a
l

(
j
_
p
a
g
e
_
n
u
m
b
e
r
,

j
_
p
a
g
e
_
e
n
t
r
y
)

=

(
(
i

+

j
)

d
i
v

1
0
0
0
0
,

(
i

+

j
)

m
o
d

1
0
0
0
0
)
;

v
a
l

j

=

i
f

i
_
p
a
g
e
_
n
u
m
b
e
r

=

j
_
p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

j

e
l
s
e

j
_
p
a
g
e
_
e
n
t
r
y
;

v
a
l

p
h
a
s
e
s

=

A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
j
_
p
a
g
e
_
n
u
m
b
e
r

+

1
,

f
n

p
a
g
e
_
n
u
m
b
e
r

=
>

i
f

i
_
p
a
g
e
_
n
u
m
b
e
r

<
=

p
a
g
e
_
n
u
m
b
e
r

t
h
e
n

l
e
t

v
a
l

b
a
s
e

=

p
a
g
e
_
n
u
m
b
e
r

*

1
0
0
0
0

*

n
s

i
n

S
O
M
E
(
A
r
r
a
y
.
t
a
b
u
l
a
t
e
(
1
0
0
0
0
,

f
n

p
a
g
e
_
e
n
t
r
y

=
>

(
b
a
s
e

+

n
s

*

p
a
g
e
_
e
n
t
r
y
,

p
a
g
e
_
e
n
t
r
y

m
o
d

5
0
0

=

0
)
)
)

e
n
d

e
l
s
e

N
O
N
E
)
;

v
a
l

f
i
r
s
t
_
n
s

=

(
f
n

(
f
s
t
,

_
)

=
>

I
n
t
.
t
o
S
t
r
i
n
g

f
s
t
)

(
A
r
r
a
y
.
s
u
b
(
(
A
r
r
a
y
.
s
u
b
(
p
h
a
s
e
s
,

i
_
p
a
g
e
_
n
u
m
b
e
r
)
)

g
u
a
r
d

"
A
r
r
a
y
.
s
u
b

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e
"
,

i
_
p
a
g
e
_
e
n
t
r
y
)
)
;

v
a
l

l
a
s
t
_
n
s

=

(
f
n

(
f
s
t
,

_
)

=
>

I
n
t
.
t
o
S
t
r
i
n
g

f
s
t
)

(
A
r
r
a
y
.
s
u
b
(
(
A
r
r
a
y
.
s
u
b
(
p
h
a
s
e
s
,

j
_
p
a
g
e
_
n
u
m
b
e
r
)
)

g
u
a
r
d

"
A
r
r
a
y
.
s
u
b

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e
"
,

j
_
p
a
g
e
_
e
n
t
r
y
)
)
;

v
a
l

o
s

=

T
e
x
t
I
O
.
o
p
e
n
O
u
t

f
i
l
e

i
n

w
r
i
t
e
_
t
r
a
c
e
_
h
e
a
d
e
r

o
s

(
(
f
i
r
s
t
_
n
s
,

l
a
s
t
_
n
s
)
,

p
h
a
s
e
s
)

(
(
i
_
p
a
g
e
_
n
u
m
b
e
r
,

i
_
p
a
g
e
_
e
n
t
r
y
)
,

(
j
_
p
a
g
e
_
n
u
m
b
e
r
,

j
)
)
;

243

w
r
i
t
e
_
t
r
a
c
e
_
b
o
d
y

o
s

(
(
f
i
r
s
t
_
n
s
,

l
a
s
t
_
n
s
)
,

p
h
a
s
e
s
)

(
t
r
a
c
e
s
,

i
f

s
c
a
l
i
n
g

=

0

t
h
e
n

0

e
l
s
e

n
s

d
i
v

s
c
a
l
i
n
g
)

(
(
i
_
p
a
g
e
_
n
u
m
b
e
r
,

i
_
p
a
g
e
_
e
n
t
r
y
)
,

(
j
_
p
a
g
e
_
n
u
m
b
e
r
,

j
)
)
;

w
r
i
t
e
_
t
r
a
c
e
_
f
o
o
t
e
r

o
s

(
(
f
i
r
s
t
_
n
s
,

l
a
s
t
_
n
s
)
,

p
h
a
s
e
s
)
;

T
e
x
t
I
O
.
c
l
o
s
e
O
u
t

o
s

e
n
d

i
n

f
u
n

t
r
a
c
e
_
t
o
_
t
d
m
l
_
f
i
l
e

(
T
R
A
C
E
(
l
a
s
t
_
p
h
a
s
e
,

_
,

_
,

t
r
a
c
e
s
,

(
r
e
f

n
s
,

r
e
f

s
c
a
l
i
n
g
)
)
,

i
,

N
O
N
E

)

=

i
f

i

<

0

o
r
e
l
s
e

i

>

!
l
a
s
t
_
p
h
a
s
e

t
h
e
n

f
n

_

=
>

(
)

e
l
s
e

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e

(
n
s
,

s
c
a
l
i
n
g
)

t
r
a
c
e
s

(
i
,

!
l
a
s
t
_
p
h
a
s
e

-

i

+

1

)

|

t
r
a
c
e
_
t
o
_
t
d
m
l
_
f
i
l
e

(
T
R
A
C
E
(
l
a
s
t
_
p
h
a
s
e
,

_
,

_
,

t
r
a
c
e
s
,

(
r
e
f

n
s
,

r
e
f

s
c
a
l
i
n
g
)
)
,

i
,

S
O
M
E

j
)

=

i
f

i

<

0

o
r
e
l
s
e

i

>

!
l
a
s
t
_
p
h
a
s
e

o
r
e
l
s
e

j

<
=

0

t
h
e
n

f
n

_

=
>

(
)

e
l
s
e

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e

(
n
s
,

s
c
a
l
i
n
g
)

t
r
a
c
e
s

(
i
,

i
f

i

+

j

-

1

>

!
l
a
s
t
_
p
h
a
s
e

t
h
e
n

!
l
a
s
t
_
p
h
a
s
e

-

i

+

1

e
l
s
e

j
)

e
n
d
;

l
o
c
a
l

v
a
l

t
r
a
c
e
_
i
n
s
t
r
u
c
t
i
o
n
'

:

i
n
t

*

i
n
t

-
>

t
r
a
c
e
s

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

*

t
r
a
c
e
s

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

=

(
*

f
u
n
c
t
i
o
n

r
e
t
u
r
n
s

a

l
i
s
t

o
f

s
t
r
i
n
g
s

t
h
a
t

n
o
t

o
n
l
y

d
i
s
a
s
s
e
m
b
l
e

t
h
e

i
n
s
t
r
u
c
t
i
o
n

e
x
e
c
u
t
e
d

b
e
t
w
e
e
n

t
h
e

t
w
o

s
p
e
c
i
f
i
e
d

c
l
o
c
k

c
y
c
l
e
s
,

b
u
t

a
l
s
o

d
e
s
c
r
i
b
e
s

e
v
e
r
y

t
r
a
n
s
f
e
r

p
e
r
f
o
r
m
e
d

i
n

i
t
s

e
x
e
c
u
t
i
o
n
.

*
)

v
a
l

w
r
i
t
e
_
i
n
s
t
r
u
c
t
i
o
n

:

o
u
t
s
t
r
e
a
m

-
>

s
t
r
i
n
g

l
i
s
t

-
>

u
n
i
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

f
o
r
m
a
t
s

a

l
i
s
t

o
f

s
t
r
i
n
g
s

p
r
o
d
u
c
e
d

b
y

t
h
e

t
r
a
c
e
_
i
n
s
t
r
u
c
t
i
o
n

f
u
n
c
t
i
o
n

t
o

o
u
t
p
u
t

t
h
e

r
e
s
u
l
t

t
o

t
h
e

s
p
e
c
i
f
i
e
d

o
u
t
p
u
t

s
t
r
e
a
m
.

*
)

f
u
n

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e

(
t
r
a
c
e
s

a
s

(
p
h
1
_
t
r
a
c
e
,

p
h
2
_
t
r
a
c
e
)
)

(
i
,

j
)

f
i
l
e

=

l
e
t

v
a
l

j

=

i
f

j

m
o
d

2

=

0

t
h
e
n

j

e
l
s
e

j

+

1
;

v
a
l

t
r
a
c
e
_
i
n
s
t
r
u
c
t
i
o
n

:

o
u
t
s
t
r
e
a
m

-
>

b
o
o
l

*

i
n
t

*

(
i
n
t

*

i
n
t
)

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

d
e
t
e
c
t
s

e
v
e
r
y

i
n
s
t
r
u
c
t
i
o
n

e
x
e
c
u
t
e
d

b
e
t
w
e
e
n

t
h
e

t
w
o

s
p
e
c
i
f
i
e
d

c
l
o
c
k

c
y
c
l
e
s

a
n
d

i
n
v
o
k
e
s

t
h
e

t
r
a
c
e
_
i
n
s
t
r
u
c
t
i
o
n
'

a
n
d

t
h
e

w
r
i
t
e
_
i
n
s
t
r
u
c
t
i
o
n

f
u
n
c
t
i
o
n
s

a
s

e
a
c
h

i
s

d
e
t
e
c
t
e
d
.

*
)

v
a
l

o
s

=

T
e
x
t
I
O
.
o
p
e
n
O
u
t

f
i
l
e

244

i
n

t
r
a
c
e
_
i
n
s
t
r
u
c
t
i
o
n

o
s

(
i
f

i

m
o
d

2

=

0

t
h
e
n

i

e
l
s
e

i

-

1
,

N
O
N
E
)
;

T
e
x
t
I
O
.
c
l
o
s
e
O
u
t

o
s

e
n
d

i
n

f
u
n

t
r
a
c
e
_
t
o
_
t
e
x
t
_
f
i
l
e

(
T
R
A
C
E
(
l
a
s
t
_
p
h
a
s
e
,

_
,

_
,

t
r
a
c
e
s
,

_
)
,

i
,

N
O
N
E

)

=

i
f

i

<

0

o
r
e
l
s
e

i

>

!
l
a
s
t
_
p
h
a
s
e

t
h
e
n

f
n

_

=
>

(
)

e
l
s
e

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e

t
r
a
c
e
s

(
i
,

!
l
a
s
t
_
p
h
a
s
e

+

1
)

|

t
r
a
c
e
_
t
o
_
t
e
x
t
_
f
i
l
e

(
T
R
A
C
E
(
l
a
s
t
_
p
h
a
s
e
,

_
,

_
,

t
r
a
c
e
s
,

_
)
,

i
,

S
O
M
E

j
)

=

i
f

i

<

0

o
r
e
l
s
e

i

>

!
l
a
s
t
_
p
h
a
s
e

o
r
e
l
s
e

j

<
=

0

t
h
e
n

f
n

_

=
>

(
)

e
l
s
e

w
r
i
t
e
_
t
r
a
c
e
_
f
i
l
e

t
r
a
c
e
s

(
i
,

i
f

i

+

j

-

1

>

!
l
a
s
t
_
p
h
a
s
e

t
h
e
n

!
l
a
s
t
_
p
h
a
s
e

+

1

e
l
s
e

i

+

j
)

e
n
d

e
n
d

e
n
d

e
n
d

C
.4

 l
at

ch
es

.s
m

l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s u

se
d

to
 re

pr
es

en
t l

at
ch

es
 in

 p
ro

ce
ss

or
 c

or
es

.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
*_

la
tc

he
s e

nu
m

er
at

ed
 ty

pe
: F

or
 e

ac
h

ty
pe

 o
f l

at
ch

, r
ep

re
se

nt
s e

ve
ry

 la
tc

h
of

 th
e

pr
oc

es
so

r c
or

e
be

in
g

sp
ec

ifi
ed

 w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

•
la

tc
h

ab
st

ra
ct

 t
yp

e:
 E

nc
ap

su
la

te
s

a
la

tc
h

of
 t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

. D
ef

in
ed

 a
s

un
io

n
of

 t
up

le
s

of
 e

ac
h

la
tc

he
s

en
um

er
at

ed
 t

yp
e

an
d

th
e

ty
pe

 o
f l

at
ch

 a
ss

oc
ia

te
d

w
ith

 th
at

 ty
pe

.

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
la

tc
h

ab
st

ra
ct

 ty
pe

♦
 l

at
ch

_*
_s

ou
rc

e:
 f

or
 e

ac
h

ty
pe

 o
f

va
lu

e
th

at
 c

an
 b

e
as

so
ci

at
ed

 w
ith

 th
e

id
en

tif
ie

rs
 o

f
th

e
*_

la
tc

he
s

en
um

er
at

ed
 ty

pe
s,

in
di

ca
te

s
th

e
id

en
tif

ie
r

of

th
e

*_
bu

se
s e

nu
m

er
at

ed
 ty

pe
 a

ss
oc

ia
te

d
w

ith
 th

e
bu

s t
ha

t d
riv

es
 th

e
la

tc
h

as
so

ci
at

ed
 w

ith
 th

e
sp

ec
ifi

ed
 v

al
ue

 o
f t

he
 *

_l
at

ch
es

 e
nu

m
er

at
ed

 ty
pe

.

245

♦
 l

at
ch

_i
sT

ra
ns

pa
re

nt
: i

nd
ic

at
es

 if
 th

e
la

tc
h

as
so

ci
at

ed
 w

ith
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 la
tc

h
ab

st
ra

ct
 ty

pe
 s

ho
ul

d
be

 tr
an

sp
ar

en
t i

n
th

e
sp

ec
ifi

ed

cl
oc

k
ph

as
e.

♦
 l

at
ch

_f
ro

m
_b

us
: c

on
st

ru
ct

s
an

 a
pp

ro
pr

ia
te

 in
st

an
ce

 o
f t

he
 la

tc
h

ab
st

ra
ct

 ty
pe

 fr
om

 a
n

in
st

an
ce

 o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
 to

 re
pr

es
en

t t
he

 d
riv

in
g

of

a
la

tc
h

by
 a

 b
us

.

♦
 l

at
ch

_f
ro

m
_l

at
ch

:
re

pr
es

en
ta

tiv
e

of
 w

he
n

th
e

va
lu

e
of

 o
ne

 l
at

ch
 d

riv
es

 a
 b

us
,

w
hi

ch
 i

n
tu

rn
 d

riv
es

 a
no

th
er

 l
at

ch
 w

ith
 n

o
in

te
rv

en
in

g

co
m

bi
na

tio
na

l l
og

ic
. C

on
se

qu
en

tly
, c

on
st

ru
ct

s a
n

ap
pr

op
ria

te
 in

st
an

ce
 o

f t
he

 la
tc

h
ab

st
ra

ct
 ty

pe
 fr

om
 a

n
in

st
an

ce
 o

f t
he

 la
tc

h
ab

st
ra

ct
 ty

pe
.

♦
 l

at
ch

_*
: f

or
 e

ac
h

ty
pe

 o
f v

al
ue

 th
at

 c
an

 b
e

as
so

ci
at

ed
 w

ith
 th

e
id

en
tif

ie
rs

 o
f t

he
 *

_l
at

ch
es

 e
nu

m
er

at
ed

 ty
pe

s,
in

sp
ec

ts
 th

e
id

en
tif

ie
r a

nd
 th

e
va

lu
e

fr
om

 w
hi

ch
 a

n
in

st
an

ce
 o

f t
he

 la
tc

h
ab

st
ra

ct
 ty

pe
 w

as
 c

on
st

ru
ct

ed
.

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

d
a
t
a
t
y
p
e

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

l
a
t
c
h

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

d
i
g
i
t
a
l
_
v
a
l
u
e

a
b
s
t
r
a
c
t

t
y
p
e

*
)

 d
a
t
a
t
y
p
e

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

l
a
t
c
h

t
h
a
t

i
s

n
o
t

t
r
a
n
s
p
a
r
e
n
t

i
f

a
n

a
s
s
o
c
i
a
t
e
d

w
r
i
t
e

e
n
a
b
l
e

s
i
g
n
a
l

i
s

d
e
a
s
s
e
r
t
e
d

a
n
d

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

d
i
g
i
t
a
l
_
v
a
l
u
e

a
b
s
t
r
a
c
t

t
y
p
e
.

*
)

 d
a
t
a
t
y
p
e

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

l
a
t
c
h

t
h
a
t

a
l
l
o
w
s

a
n

i
n
d
i
v
i
d
u
a
l

b
i
t

o
f

t
h
e

v
a
l
u
e

s
t
o
r
e
d

t
o

b
e

s
e
t

w
i
t
h
o
u
t

a
f
f
e
c
t
i
n
g

a
n
y

o
f

i
t
s

o
t
h
e
r

b
i
t
s
,

o
r

a
l
l

b
i
t
s

o
f

t
h
e

v
a
l
u
e

s
t
o
r
e
d

t
o

b
e

r
e
s
e
t

a
t

t
h
e

s
a
m
e

t
i
m
e
.

*
)

 d
a
t
a
t
y
p
e

b
o
o
l
e
a
n
_
l
a
t
c
h
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

l
a
t
c
h

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

b
o
o
l
e
a
n

p
r
i
m
i
t
i
v
e

t
y
p
e

*
)

 d
a
t
a
t
y
p
e

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

l
a
t
c
h

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
l
a
s
s
e
s

d
a
t
a

t
y
p
e

*
)

 d
a
t
a
t
y
p
e

i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s

=

(
*

c
o
n
s
t
r
u
c
t
o
r
s

f
o
r

e
v
e
r
y

l
a
t
c
h

t
h
a
t

s
h
o
u
l
d

b
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

s
t
e
p
s

d
a
t
a

t
y
p
e

*
)

246

v
a
l

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

:

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

:

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

:

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

b
o
o
l
e
a
n
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

:

b
o
o
l
e
a
n
_
l
a
t
c
h
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

b
o
o
l
e
a
n
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

:

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 v
a
l

i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

:

i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 a
b
s
t
y
p
e

l
a
t
c
h

=

D
I
G
I
T
A
L

o
f

(
d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

|

C
O
N
D
I
T
I
O
N
A
L

o
f

(
c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

|

R
E
S
E
T
_
S
E
T

o
f

(
r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

|

B
O
O
L
E
A
N

o
f

(
b
o
o
l
e
a
n
_
l
a
t
c
h
e
s

*

b
o
o
l
)

|

I
N
S
_
C
L
A
S
S

o
f

(
i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s

*

c
l
a
s
s
e
s
)

|

I
N
S
_
S
T
E
P

o
f

(
i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s

*

s
t
e
p
s
)

w
i
t
h

l
o
c
a
l

v
a
l

l
a
t
c
h
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

:

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

-
>

(
b
i
t
s

*

b
i
t
s
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

b
i
t

r
a
n
g
e
s

t
h
a
t

a
r
e

v
a
l
i
d

f
o
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r
.

*
)

247

v
a
l

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l
_
r
a
n
g
e

:

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

-
>

(
b
i
t
s

*

b
i
t
s
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

b
i
t

r
a
n
g
e
s

t
h
a
t

a
r
e

v
a
l
i
d

f
o
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r
.

*
)

v
a
l

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t
_
r
a
n
g
e

:

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

-
>

(
b
i
t
s

*

b
i
t
s
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

b
i
t

r
a
n
g
e
s

t
h
a
t

a
r
e

v
a
l
i
d

f
o
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r
.

*
)

i
n

f
u
n

l
a
t
c
h
_
i
s
D
i
g
i
t
a
l

d
i
g
i
t
a
l
_
l
a
t
c
h

(

D
I
G
I
T
A
L
(
l
a
t
c
h
,

_
)
)

=

d
i
g
i
t
a
l
_
l
a
t
c
h

=

l
a
t
c
h

|

l
a
t
c
h
_
i
s
D
i
g
i
t
a
l

_

_

=

f
a
l
s
e
;

f
u
n

l
a
t
c
h
_
i
s
C
o
n
d
i
t
i
o
n
a
l

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

(
C
O
N
D
I
T
I
O
N
A
L
(
l
a
t
c
h
,

_
)
)

=

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

=

l
a
t
c
h

|

l
a
t
c
h
_
i
s
C
o
n
d
i
t
i
o
n
a
l

_

_

=

f
a
l
s
e
;

f
u
n

l
a
t
c
h
_
i
s
R
e
s
e
t
S
e
t

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

(

R
E
S
E
T
_
S
E
T
(
l
a
t
c
h
,

_
)
)

=

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

=

l
a
t
c
h

|

l
a
t
c
h
_
i
s
R
e
s
e
t
S
e
t

_

_

=

f
a
l
s
e
;

f
u
n

l
a
t
c
h
_
i
s
B
o
o
l
e
a
n

b
o
o
l
e
a
n
_
l
a
t
c
h

(

B
O
O
L
E
A
N
(
l
a
t
c
h
,

_
)
)

=

b
o
o
l
e
a
n
_
l
a
t
c
h

=

l
a
t
c
h

|

l
a
t
c
h
_
i
s
B
o
o
l
e
a
n

_

_

=

f
a
l
s
e
;

f
u
n

l
a
t
c
h
_
i
s
I
n
s
C
l
a
s
s

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

(

I
N
S
_
C
L
A
S
S
(
l
a
t
c
h
,

_
)
)

=

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

=

l
a
t
c
h

|

l
a
t
c
h
_
i
s
I
n
s
C
l
a
s
s

_

_

=

f
a
l
s
e
;

f
u
n

l
a
t
c
h
_
i
s
I
n
s
S
t
e
p

i
n
s
_
s
t
e
p
_
l
a
t
c
h

(

I
N
S
_
S
T
E
P
(
l
a
t
c
h
,

_
)
)

=

i
n
s
_
s
t
e
p
_
l
a
t
c
h

=

l
a
t
c
h

|

l
a
t
c
h
_
i
s
I
n
s
S
t
e
p

_

_

=

f
a
l
s
e
;

f
u
n

l
a
t
c
h
_
d
i
g
i
t
a
l
_
v
a
l
u
e

(

D
I
G
I
T
A
L
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

S
O
M
E

(
l
a
t
c
h
,

v
a
l
u
e
)

|

l
a
t
c
h
_
d
i
g
i
t
a
l
_
v
a
l
u
e

_

=

N
O
N
E
;

f
u
n

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l

(
C
O
N
D
I
T
I
O
N
A
L
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

S
O
M
E

(
l
a
t
c
h
,

v
a
l
u
e
)

|

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l

_

=

N
O
N
E
;

f
u
n

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t

(

R
E
S
E
T
_
S
E
T
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

S
O
M
E

(
l
a
t
c
h
,

v
a
l
u
e
)

|

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t

_

=

N
O
N
E
;

f
u
n

l
a
t
c
h
_
b
o
o
l
e
a
n

(

B
O
O
L
E
A
N
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

S
O
M
E

(
l
a
t
c
h
,

v
a
l
u
e
)

|

l
a
t
c
h
_
b
o
o
l
e
a
n

_

=

N
O
N
E
;

f
u
n

l
a
t
c
h
_
i
n
s
_
c
l
a
s
s

(

I
N
S
_
C
L
A
S
S
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

S
O
M
E

(
l
a
t
c
h
,

v
a
l
u
e
)

|

l
a
t
c
h
_
i
n
s
_
c
l
a
s
s

_

=

N
O
N
E
;

f
u
n

l
a
t
c
h
_
i
n
s
_
s
t
e
p

(

I
N
S
_
S
T
E
P
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

S
O
M
E

(
l
a
t
c
h
,

v
a
l
u
e
)

|

l
a
t
c
h
_
i
n
s
_
s
t
e
p

_

=

N
O
N
E
;

f
u
n

l
a
t
c
h
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

(
l
a
t
c
h
,

v
a
l
u
e
)

=

l
e
t

v
a
l

v
a
l
i
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

(
l
a
t
c
h
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

l
a
t
c
h
)

v
a
l
u
e

248

i
n

i
f

v
a
l
i
d

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
l
a
t
c
h
,

v
a
l
u
e
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l
_
i
n
s
t
a
n
c
e

(
l
a
t
c
h
,

v
a
l
u
e
)

=

l
e
t

v
a
l

v
a
l
i
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

(
l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l
_
r
a
n
g
e

l
a
t
c
h
)

v
a
l
u
e

i
n

i
f

v
a
l
i
d

t
h
e
n

S
O
M
E
(
C
O
N
D
I
T
I
O
N
A
L
(
l
a
t
c
h
,

v
a
l
u
e
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t
_
i
n
s
t
a
n
c
e

(
l
a
t
c
h
,

v
a
l
u
e
)

=

l
e
t

v
a
l

v
a
l
i
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

(
l
a
t
c
h
_
r
e
s
e
t
_
s
e
t
_
r
a
n
g
e

l
a
t
c
h
)

v
a
l
u
e

i
n

i
f

v
a
l
i
d

t
h
e
n

S
O
M
E
(
R
E
S
E
T
_
S
E
T
(
l
a
t
c
h
,

v
a
l
u
e
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

l
a
t
c
h
_
b
o
o
l
_
i
n
s
t
a
n
c
e

(
l
a
t
c
h
,

v
a
l
u
e
)

=

S
O
M
E
(
B
O
O
L
E
A
N
(
l
a
t
c
h
,

v
a
l
u
e
)
)
;

f
u
n

l
a
t
c
h
_
c
l
a
s
s
e
s
_
i
n
s
t
a
n
c
e

(
l
a
t
c
h
,

v
a
l
u
e
)

=

S
O
M
E
(
I
N
S
_
C
L
A
S
S
(
l
a
t
c
h
,

v
a
l
u
e
)
)
;

f
u
n

l
a
t
c
h
_
s
t
e
p
s
_
i
n
s
t
a
n
c
e

(
l
a
t
c
h
,

v
a
l
u
e
)

=

S
O
M
E
(
I
N
S
_
S
T
E
P
(
l
a
t
c
h
,

v
a
l
u
e
)
)
;

v
a
l

l
a
t
c
h
_
d
i
g
i
t
a
l
_
s
o
u
r
c
e

:

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

-
>

d
i
g
i
t
a
l
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
b
u
s
e
s

d
a
t
a

t
y
p
e

a
c
c
o
r
d
i
n
g

t
o

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

f
o
r
m
e
r

s
h
o
u
l
d

b
e

d
r
i
v
e
n

b
y

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
t
e
r
.

*
)

v
a
l

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l
_
s
o
u
r
c
e

:

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

-
>

d
i
g
i
t
a
l
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

c
o
n
d
i
t
o
n
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

d
i
g
i
t
a
l
_
b
u
s
e
s

d
a
t
a

t
y
p
e

a
c
c
o
r
d
i
n
g

t
o

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

f
o
r
m
e
r

s
h
o
u
l
d

b
e

d
r
i
v
e
n

b
y

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
t
e
r
.

*
)

v
a
l

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t
_
s
o
u
r
c
e

:

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

-
>

d
i
g
i
t
a
l
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
n
s
t
r
u
c
t
o
r

o
f

249

t
h
e

d
i
g
i
t
a
l
_
b
u
s
e
s

d
a
t
a

t
y
p
e

a
c
c
o
r
d
i
n
g

t
o

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

f
o
r
m
e
r

s
h
o
u
l
d

b
e

d
r
i
v
e
n

b
y

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
t
e
r
.

*
)

v
a
l

l
a
t
c
h
_
b
o
o
l
e
a
n
_
s
o
u
r
c
e

:

b
o
o
l
e
a
n
_
l
a
t
c
h
e
s

-
>

b
o
o
l
e
a
n
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

b
o
o
l
e
a
n
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

b
o
o
l
e
a
n
_
b
u
s
e
s

d
a
t
a

t
y
p
e

a
c
c
o
r
d
i
n
g

t
o

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

f
o
r
m
e
r

s
h
o
u
l
d

b
e

d
r
i
v
e
n

b
y

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
t
e
r
.

*
)

v
a
l

l
a
t
c
h
_
i
n
s
_
c
l
a
s
s
_
s
o
u
r
c
e

:

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s

-
>

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
c
l
a
s
s
_
b
u
s
e
s

d
a
t
a

t
y
p
e

a
c
c
o
r
d
i
n
g

t
o

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

f
o
r
m
e
r

s
h
o
u
l
d

b
e

d
r
i
v
e
n

b
y

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
t
e
r
.

*
)

v
a
l

l
a
t
c
h
_
i
n
s
_
s
t
e
p
_
s
o
u
r
c
e

:

i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s

-
>

i
n
s
_
s
t
e
p
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
s
_
s
t
e
p
_
b
u
s
e
s

d
a
t
a

t
y
p
e

a
c
c
o
r
d
i
n
g

t
o

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

f
o
r
m
e
r

s
h
o
u
l
d

b
e

d
r
i
v
e
n

b
y

t
h
e

b
u
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
t
e
r
.

*
)

v
a
l

l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t

:

l
a
t
c
h

-
>

p
h
a
s
e
s

-
>

b
o
o
l

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

e
x
a
m
i
n
e
s

t
h
e

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

u
s
e
d

t
o

c
r
e
a
t
e

a
n

i
n
s
t
a
n
c
e

o
f

t
h
e

l
a
t
c
h

a
b
s
t
r
a
c
t

t
y
p
e

t
o

d
e
t
e
r
m
i
n
e

w
h
e
t
h
e
r

t
h
e

l
a
t
c
h

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r

s
h
o
u
l
d

b
e

t
r
a
n
s
p
a
r
e
n
t

i
n

t
h
e

s
p
e
c
i
f
i
e
d

c
l
o
c
k

p
h
a
s
e
.

*
)

v
a
l

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l
_
w
r
i
t
e
_
s
i
g
n
a
l

:

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

-
>

b
o
o
l
e
a
n
_
b
u
s
e
s

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s

d
a
t
a

t
y
p
e

t
o

t
h
e

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

b
o
o
l
e
a
n
_
b
u
s
e
s

d
a
t
a

t
y
p
e

t
h
a
t

a
b
s
t
r
a
c
t
s

o
v
e
r

t
h
e

w
r
i
t
e

s
i
g
n
a
l

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

l
a
t
c
h

t
h
a
t

t
h
e

f
o
r
m
e
r

a
b
s
t
r
a
c
t
s

o
v
e
r
.

*
)

v
a
l

l
a
t
c
h
_
f
r
o
m
_
b
u
s

:

b
u
s

-
>

l
a
t
c
h

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

l
a
t
c
h
_
f
r
o
m
_
l
a
t
c
h

:

l
a
t
c
h

-
>

(
b
u
s

*

l
a
t
c
h
)

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

250

f
u
n

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(

D
I
G
I
T
A
L
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

(
d
i
g
i
t
a
l
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

|

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(
C
O
N
D
I
T
I
O
N
A
L
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

(
c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

|

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(

R
E
S
E
T
_
S
E
T
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

(
r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

|

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(

B
O
O
L
E
A
N
(
l
a
t
c
h
,

t
r
u
e

)
)

=

(
b
o
o
l
e
a
n
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
"
t
r
u
e
"

)

|

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(

B
O
O
L
E
A
N
(
l
a
t
c
h
,

f
a
l
s
e
)
)

=

(
b
o
o
l
e
a
n
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
"
f
a
l
s
e
"

)

|

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(

I
N
S
_
C
L
A
S
S
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

(
i
n
s
_
c
l
a
s
s
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
c
l
a
s
s
e
s
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

|

l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

(

I
N
S
_
S
T
E
P
(
l
a
t
c
h
,

v
a
l
u
e
)
)

=

(
i
n
s
_
s
t
e
p
_
l
a
t
c
h
e
s
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

=

"

^

(
s
t
e
p
s
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

e
n
d

e
n
d

C
.5

 o
ut

pu
ts

.s
m

l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s u

se
d

to
 re

pr
es

en
t o

ut
pu

ts
 o

f p
ro

ce
ss

or
 c

or
es

.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
*_

ou
tp

ut
s e

nu
m

er
at

ed
 ty

pe
: F

or
 e

ac
h

ty
pe

 o
f o

ut
pu

t,
re

pr
es

en
ts

 e
ve

ry
 o

ut
pu

t o
f t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

 w
ith

 a
 u

ni
qu

e
id

en
tif

ie
r.

•
ou

tp
ut

 a
bs

tra
ct

 ty
pe

: E
nc

ap
su

la
te

s
an

 o
ut

pu
t o

f t
he

 p
ro

ce
ss

or
 c

or
e

be
in

g
sp

ec
ifi

ed
. D

ef
in

ed
 a

s
un

io
n

of
 tu

pl
es

 o
f e

ac
h

ou
tp

ut
s

en
um

er
at

ed
 ty

pe
 a

nd

th
e

ty
pe

 o
f

ou
tp

ut
 a

ss
oc

ia
te

d
w

ith
 t

ha
t

ty
pe

. (
U

su
al

ly
 a

ny
 o

ut
pu

t
of

 t
he

 p
ro

ce
ss

or
 c

or
e

be
in

g
sp

ec
ifi

ed
 m

ay
 b

e
en

ca
ps

ul
at

ed
 u

si
ng

 o
ne

 o
ut

pu
ts

en
um

er
at

ed
 ty

pe
 a

ss
oc

ia
te

d
w

ith
 o

ut
pu

ts
 o

f t
he

 d
ig

ita
l_

va
lu

e
ab

st
ra

ct
 ty

pe
, s

o
th

e
ou

tp
ut

 a
bs

tra
ct

 ty
pe

 w
ill

 c
on

si
st

 o
f o

nl
y

on
e

tu
pl

e
of

 th
es

e
ty

pe
s.)

251

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
ou

tp
ut

 a
bs

tra
ct

 ty
pe

♦
 o

ut
pu

t_
*_

in
st

an
ce

:
fo

r
ea

ch
 ty

pe
 o

f
va

lu
e

th
at

 c
an

 b
e

as
so

ci
at

ed
 w

ith
 th

e
id

en
tif

ie
rs

 o
f

th
e

*_
ou

tp
ut

s
en

um
er

at
ed

 ty
pe

, c
re

at
es

 a
n

in
st

an
ce

 o
f

th
e

ou
tp

ut
 a

bs
tra

ct
 ty

pe
 w

ith
 a

 sp
ec

ifi
ed

 id
en

tif
ie

r a
nd

 a
 sp

ec
ifi

ed
 v

al
ue

.

♦
 o

ut
pu

t_
*:

 fo
r e

ac
h

ty
pe

 o
f v

al
ue

 th
at

 c
an

 b
e

as
so

ci
at

ed
 w

ith
 th

e
id

en
tif

ie
rs

 o
f t

he
 *

_o
ut

pu
ts

 e
nu

m
er

at
ed

 ty
pe

, i
ns

pe
ct

s
th

e
id

en
tif

ie
r a

nd
 th

e
va

lu
e

fr
om

 w
hi

ch
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 o
ut

pu
t a

bs
tra

ct
 ty

pe
 w

as
 c

on
st

ru
ct

ed
.

♦
 o

ut
pu

t_
is

D
ri

ve
n:

 i
nd

ic
at

es
 i

f
th

e
ou

tp
ut

 a
ss

oc
ia

te
d

w
ith

 t
he

 s
pe

ci
fie

d
in

st
an

ce
 o

f
th

e
ou

tp
ut

 a
bs

tra
ct

 t
yp

e
sh

ou
ld

 b
e

dr
iv

en
 i

n
th

e
sp

ec
ifi

ed

cl
oc

k
ph

as
e.

♦
 o

ut
pu

t_
fr

om
_b

us
:

co
ns

tru
ct

s
an

 a
pp

ro
pr

ia
te

 i
ns

ta
nc

e
of

 t
he

 o
ut

pu
t

ab
st

ra
ct

 t
yp

e
fr

om
 a

n
in

st
an

ce
 o

f
th

e
ou

tp
ut

 a
bs

tra
ct

 t
yp

e
to

 r
ep

re
se

nt

th
e

dr
iv

in
g

of
 a

n
ou

tp
ut

 b
y

a
bu

s.

♦
 o

ut
pu

t_
fr

om
_l

at
ch

:
co

ns
tru

ct
s

an
 a

pp
ro

pr
ia

te
 i

ns
ta

nc
e

of
 t

he
 o

ut
pu

t
ab

st
ra

ct
 t

yp
e

fr
om

 a
n

in
st

an
ce

 o
f

th
e

ou
tp

ut
 a

bs
tra

ct
 t

yp
e

to
 r

ep
re

se
nt

th
e

dr
iv

in
g

of
 a

n
ou

tp
ut

 b
y

a
la

tc
h.

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

d
a
t
a
t
y
p
e

o
u
t
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

 v
a
l

d
i
g
i
t
a
l
_
o
u
t
p
u
t
s
_
t
o
_
s
t
r
i
n
g

:

o
u
t
p
u
t
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

o
u
t
p
u
t
s

d
a
t
a

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t

*
)

 a
b
s
t
y
p
e

o
u
t
p
u
t

=

D
I
G
I
T
A
L

o
f

(
o
u
t
p
u
t
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

w
i
t
h

l
o
c
a
l

v
a
l

o
u
t
p
u
t
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

:

i
n
p
u
t
s

-
>

(
b
i
t
s

*

b
i
t
s
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

o
u
t
p
u
t
s

d
a
t
a

t
y
p
e

t
o

t
h
e

b
i
t

r
a
n
g
e
s

t
h
a
t

a
r
e

v
a
l
i
d

f
o
r

t
h
e

o
u
t
p
u
t

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r
.

*
)

i
n

252

f
u
n

o
u
t
p
u
t
_
i
s
D
i
g
i
t
a
l

o
u
t
p
u
t
'

(
D
I
G
I
T
A
L
(
o
u
t
p
u
t
,

_
)
)

=

o
u
t
p
u
t
'

=

o
u
t
p
u
t
;

f
u
n

o
u
t
p
u
t
_
d
i
g
i
t
a
l
_
v
a
l
u
e

(
D
I
G
I
T
A
L
(
o
u
t
p
u
t
,

v
a
l
u
e
)
)

=

S
O
M
E

(
o
u
t
p
u
t
,

v
a
l
u
e
)
;

f
u
n

o
u
t
p
u
t
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

(
o
u
t
p
u
t
,

v
a
l
u
e
)

=

l
e
t

v
a
l

v
a
l
i
d

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

(
o
u
t
p
u
t
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
a
n
g
e

o
u
t
p
u
t
)

v
a
l
u
e

i
n

i
f

v
a
l
i
d

t
h
e
n

S
O
M
E
(
D
I
G
I
T
A
L
(
o
u
t
p
u
t
,

v
a
l
u
e
)
)

e
l
s
e

N
O
N
E

e
n
d
;

v
a
l

o
u
t
p
u
t
_
i
s
D
r
i
v
e
n

:

o
u
t
p
u
t

-
>

p
h
a
s
e
s

-
>

b
o
o
l

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

o
u
t
p
u
t
_
f
r
o
m
_
b
u
s

b
u
s

:

b
u
s

-
>

o
u
t
p
u
t

o
p
t
i
o
n

=

(
*
S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

o
u
t
p
u
t
_
f
r
o
m
_
l
a
t
c
h

l
a
t
c
h

:

l
a
t
c
h

-
>

o
u
t
p
u
t

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

o
u
t
p
u
t
_
t
o
_
s
t
r
i
n
g

(
D
I
G
I
T
A
L
(
o
u
t
p
u
t
,

v
a
l
u
e
)
)

=

(
d
i
g
i
t
a
l
_
o
u
t
p
u
t
s
_
t
o
_
s
t
r
i
n
g

o
u
t
p
u
t
)

^

"

=

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

e
n
d

e
n
d

C
.6

 s
ig

na
ls

.s
m

l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s t

ha
t a

re
 u

se
d

to
 e

nc
ap

su
la

te
 e

ve
ry

 in
pu

t a
nd

 e
ve

ry
 o

ut
pu

t i
n

th
e

en
vi

ro
nm

en
t o

f t
he

 p
ro

ce
ss

or
 c

or
e

be
in

g
sp

ec
ifi

ed
.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
co

re
_i

np
ut

s
ab

st
ra

ct
 ty

pe
: E

nc
ap

su
la

te
s

ev
er

y
in

pu
t i

n
th

e
en

vi
ro

nm
en

t o
f

th
e

pr
oc

es
so

r
co

re
 b

ei
ng

 s
pe

ci
fie

d.
 D

ef
in

ed
 a

s
a

pa
ir

of
 a

 r
ec

or
d

w
ith

a
fie

ld
 fo

r e
ac

h
id

en
tif

ie
r o

f t
he

 in
pu

ts
 e

nu
m

er
at

ed
 ty

pe
s o

f t
he

 o
pt

io
na

l t
yp

e
it

is
 a

ss
oc

ia
te

d
w

ith
 a

nd
 a

 li
st

 o
f t

he
 in

pu
t a

bs
tra

ct
 ty

pe
.

253

•
co

re
_o

ut
pu

ts
 a

bs
tra

ct
 ty

pe
: E

nc
ap

su
la

te
s

ev
er

y
ou

tp
ut

 in
 th

e
en

vi
ro

nm
en

t o
f t

he
 p

ro
ce

ss
or

 c
or

e
be

in
g

sp
ec

ifi
ed

. D
ef

in
ed

 a
s

a
re

co
rd

 w
ith

 a
 fi

el
d

fo
r

ea
ch

 id
en

tif
ie

r o
f t

he
 o

ut
pu

ts
 e

nu
m

er
at

ed
 ty

pe
 o

f a
n

op
tio

na
l t

up
le

 o
f t

he
 ty

pe
 it

 is
 a

ss
oc

ia
te

d
w

ith
 a

nd
 th

e
ou

tp
ut

 a
bs

tra
ct

 ty
pe

.

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
co

re
_i

np
ut

s a
bs

tra
ct

 ty
pe

♦
 c

or
e_

in
pu

ts
_i

ni
t:

co
ns

tru
ct

s a
n

in
st

an
ce

 o
f t

he
 c

or
e_

in
pu

ts
 a

bs
tra

ct
 ty

pe
 w

ith
 th

e
em

pt
y

co
lle

ct
io

n.

♦
 c

or
e_

in
pu

ts
_u

pd
at

e_
in

pu
t:

re
m

ov
es

 a
ny

 in
st

an
ce

 o
f

th
e

in
pu

t a
bs

tra
ct

 ty
pe

 c
on

st
ru

ct
ed

 w
ith

 th
e

sp
ec

ifi
ed

 *
_i

np
ut

s
en

um
er

at
ed

 ty
pe

 id
en

tif
ie

r

fr
om

 th
e

co
lle

ct
io

n
of

 th
e

sp
ec

ifi
ed

 c
or

e_
in

pu
ts

 a
bs

tra
ct

 ty
pe

 to
 re

pr
es

en
t i

ns
ta

nc
es

 w
he

n
th

e
as

so
ci

at
ed

 in
pu

t h
as

 th
e

un
kn

ow
n

va
lu

e.

♦
 c

or
e_

in
pu

ts
_u

pd
at

e_
fr

om
_i

np
ut

s:
 a

dd
s

sp
ec

ifi
ed

 in
st

an
ce

s
of

 th
e

in
pu

t a
bs

tra
ct

 ty
pe

 to
 th

e
co

lle
ct

io
n

of
 th

e
sp

ec
ifi

ed
 c

or
e_

in
pu

ts
 a

bs
tra

ct
 ty

pe
,

re
pl

ac
in

g
an

y
pr

io
r i

ns
ta

nc
es

 c
on

st
ru

ct
ed

 w
ith

 id
en

tic
al

 v
al

ue
s o

f t
he

 *
_i

np
ut

s e
nu

m
er

at
ed

 ty
pe

.

♦
 c

or
e_

in
pu

ts
: i

ns
pe

ct
s c

ol
le

ct
io

n
of

 th
e

sp
ec

ifi
ed

 c
or

e_
in

pu
ts

 a
bs

tra
ct

 ty
pe

 a
s a

 li
st

.

♦
 c

or
e_

in
pu

ts
_*

:
in

sp
ec

ts
 a

ny
 in

st
an

ce
 in

 th
e

co
lle

ct
io

n
of

 th
e

sp
ec

ifi
ed

 c
or

e_
in

pu
ts

 a
bs

tra
ct

 ty
pe

 a
ss

oc
ia

te
d

w
ith

 th
e

re
le

va
nt

 in
pu

t (
sp

ec
ifi

ed
 a

s

pa
rt

of
 th

e
na

m
e

of
 th

e
fu

nc
tio

n)
.

♦
 c

or
e_

in
pu

ts
_l

oo
ku

p_
in

pu
t:

in
sp

ec
ts

 a
ny

 in
st

an
ce

 in
 th

e
co

lle
ct

io
n

of
 th

e
sp

ec
ifi

ed
 c

or
e_

in
pu

ts
 a

bs
tra

ct
 ty

pe
 c

on
st

ru
ct

ed
 w

ith
 th

e
sp

ec
ifi

ed
 v

al
ue

of
 th

e
*_

in
pu

ts
 e

nu
m

er
at

ed
 ty

pe
.

•
co

re
_o

ut
pu

ts
 a

bs
tra

ct
 ty

pe

♦
 c

or
e_

ou
tp

ut
s_

in
it:

 c
on

st
ru

ct
s a

n
in

st
an

ce
 o

f t
he

 c
or

e_
ou

tp
ut

s a
bs

tra
ct

 ty
pe

 w
ith

 th
e

em
pt

y
co

lle
ct

io
n.

♦
 c

or
e_

ou
tp

ut
s_

up
da

te
_o

ut
pu

ts
:

re
m

ov
es

 a
ny

 in
st

an
ce

s
of

 th
e

ou
tp

ut
 a

bs
tra

ct
 ty

pe
 c

on
st

ru
ct

ed
 w

ith
 id

en
tif

ie
rs

 o
f

th
e

*_
ou

tp
ut

s
en

um
er

at
ed

 ty
pe

as
so

ci
at

ed
 w

ith
 o

ut
pu

ts
 t

ha
t

th
e

ou
tp

ut
_i

sD
ri

ve
n

fu
nc

tio
n

in
di

ca
te

s
sh

ou
ld

 b
e

dr
iv

en
 b

y
th

e
pr

oc
es

so
r

co
re

 i
n

th
e

sp
ec

ifi
ed

 c
lo

ck
 p

ha
se

to
 re

pr
es

en
t w

he
n

th
e

va
lu

e
dr

iv
en

 is
 u

nk
no

w
n.

254

♦
 c

or
e_

ou
tp

ut
s_

up
da

te
_f

ro
m

_o
ut

pu
ts

:
ad

ds
 t

he
 s

pe
ci

fie
d

in
st

an
ce

s
of

 t
he

 o
ut

pu
t

ab
st

ra
ct

 t
yp

e
to

 t
he

 c
ol

le
ct

io
n

of
 t

he
 s

pe
ci

fie
d

co
re

_o
ut

pu
ts

ab
st

ra
ct

 ty
pe

, r
ep

la
ci

ng
 a

ny
 p

rio
r i

ns
ta

nc
es

 c
on

st
ru

ct
ed

 w
ith

 id
en

tic
al

 v
al

ue
s o

f t
he

 *
_o

ut
pu

ts
 e

nu
m

er
at

ed
 ty

pe
.

♦
 c

or
e_

ou
tp

ut
s:

 in
sp

ec
ts

 c
ol

le
ct

io
n

of
 th

e
sp

ec
ifi

ed
 c

or
e_

ou
tp

ut
s a

bs
tra

ct
 ty

pe
 a

s a
 li

st
.

♦
 c

or
e_

ou
tp

ut
s_

*:
 in

sp
ec

ts
 in

st
an

ce
 in

 th
e

co
lle

ct
io

n
of

 th
e

sp
ec

ifi
ed

 c
or

e_
ou

tp
ut

s
ab

st
ra

ct
 ty

pe
 a

ss
oc

ia
te

d
w

ith
 th

e
re

le
va

nt
 o

ut
pu

t (
sp

ec
ifi

ed
 a

s

pa
rt

of
 th

e
na

m
e

of
 th

e
fu

nc
tio

n)
.

♦
 c

or
e_

ou
tp

ut
s_

lo
ok

up
_o

ut
pu

t:
in

sp
ec

ts
 in

st
an

ce
 in

 th
e

co
lle

ct
io

n
of

 th
e

sp
ec

ifi
ed

 c
or

e_
ou

tp
ut

s
ab

st
ra

ct
 ty

pe
 c

on
st

ru
ct

ed
 w

ith
 th

e
sp

ec
ifi

ed
 v

al
ue

of
 th

e
*_

ou
tp

ut
s e

nu
m

er
at

ed
 ty

pe

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

t
y
p
e

i
n
p
u
t
_
r
e
c
o
r
d

=

(
*

r
e
c
o
r
d

w
i
t
h

a

f
i
e
l
d

o
f

t
h
e

d
i
g
i
t
a
l
_
v
a
l
u
e

o
p
t
i
o
n

t
y
p
e

f
o
r

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

i
n
p
u
t
s

d
a
t
a

t
y
p
e

*
)

 a
b
s
t
y
p
e

c
o
r
e
_
i
n
p
u
t
s

=

C
O
R
E

o
f

i
n
p
u
t
_
r
e
c
o
r
d

*

i
n
p
u
t

l
i
s
t

w
i
t
h

v
a
l

c
o
r
e
_
i
n
p
u
t
s
_
i
n
i
t

:

u
n
i
t

-
>

c
o
r
e
_
i
n
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

:

c
o
r
e
_
i
n
p
u
t
s

-
>

i
n
p
u
t
s

-
>

c
o
r
e
_
i
n
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

:

c
o
r
e
_
i
n
p
u
t
s

-
>

i
n
p
u
t

l
i
s
t

-
>

c
o
r
e
_
i
n
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

c
o
r
e
_
i
n
p
u
t
s

(
C
O
R
E
(
_
,

x
x
s
)
)

=

x
x
s
;

(
*

f
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

f
i
e
l
d

i
n

t
h
e

r
e
c
o
r
d

o
f

t
h
e

c
o
r
e
_
i
n
p
u
t
s

a
b
s
t
r
a
c
t

t
y
p
e

t
o

r
e
t
u
r
n

t
h
e

v
a
l
u
e

o
f

t
h
a
t

f
i
e
l
d

f
o
r

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

c
o
r
e
_
i
n
p
u
t
s

a
b
s
t
r
a
c
t

t
y
p
e
.

E
a
c
h

f
u
n
c
t
i
o
n

s
h
o
u
l
d

b
e

n
a
m
e
d

u
s
i
n
g

c
o
r
e
_
i
n
p
u
t
s
_

s
u
f
f
i
x
e
d

w
i
t
h

t
h
e

n
a
m
e

o
f

t
h
e

f
i
e
l
d

i
t

i
n
s
p
e
c
t
s
.

*
)

255

v
a
l

c
o
r
e
_
i
n
p
u
t
s
_
l
o
o
k
u
p
_
i
n
p
u
t

:

c
o
r
e
_
i
n
p
u
t
s

-
>

i
n
p
u
t
s

-
>

d
i
g
i
t
a
l
_
v
a
l
u
e

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

e
n
d
;

 t
y
p
e

o
u
t
p
u
t
_
r
e
c
o
r
d

=

(
*

r
e
c
o
r
d

w
i
t
h

a

f
i
e
l
d

o
f

t
h
e

(
o
u
t
p
u
t

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

o
p
t
i
o
n

t
y
p
e

f
o
r

e
a
c
h

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

o
u
t
p
u
t
s

d
a
t
a
t
y
p
e

*
)

 a
b
s
t
y
p
e

c
o
r
e
_
o
u
t
p
u
t
s

=

C
O
R
E

o
f

o
u
t
p
u
t
_
r
e
c
o
r
d

w
i
t
h

v
a
l

c
o
r
e
_
o
u
t
p
u
t
s
_
i
n
i
t

:

u
n
i
t

-
>

c
o
r
e
_
o
u
t
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

c
o
r
e
_
o
u
t
p
u
t
s
_
u
p
d
a
t
e
_
o
u
t
p
u
t
s

:

c
o
r
e
_
o
u
t
p
u
t
s

-
>

p
h
a
s
e
s

-
>

c
o
r
e
_
o
u
t
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

c
o
r
e
_
o
u
t
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
o
u
t
p
u
t
s

:

c
o
r
e
_
o
u
t
p
u
t
s

-
>

o
u
t
p
u
t

l
i
s
t

-
>

p
h
a
s
e
s

-
>

c
o
r
e
_
o
u
t
p
u
t
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

c
o
r
e
_
o
u
t
p
u
t
s

:

c
o
r
e
_
o
u
t
p
u
t
s

-
>

o
u
t
p
u
t

l
i
s
t

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

(
*

f
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

f
i
e
l
d

i
n

t
h
e

r
e
c
o
r
d

o
f

t
h
e

c
o
r
e
_
o
u
t
p
u
t
s

a
b
s
t
r
a
c
t

t
y
p
e

t
o

r
e
t
u
r
n

t
h
e

v
a
l
u
e

o
f

t
h
a
t

f
i
e
l
d

f
o
r

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

c
o
r
e
_
o
u
t
p
u
t
s

a
b
s
t
r
a
c
t

t
y
p
e
.

E
a
c
h

f
u
n
c
t
i
o
n

s
h
o
u
l
d

b
e

n
a
m
e
d

u
s
i
n
g

c
o
r
e
_
o
u
t
p
u
t
s
_

s
u
f
f
i
x
e
d

w
i
t
h

t
h
e

n
a
m
e

o
f

t
h
e

f
i
e
l
d

i
t

i
n
s
p
e
c
t
s
.

*
)

v
a
l

c
o
r
e
_
o
u
t
p
u
t
s
_
l
o
o
k
u
p
_
o
u
t
p
u
t

:

c
o
r
e
_
o
u
t
p
u
t
s

-
>

o
u
t
p
u
t
s

-
>

d
i
g
i
t
a
l
_
v
a
l
u
e

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

e
n
d

256

C
.7

 s
ta

te
.s

m
l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s t

ha
t a

re
 u

se
d

to
 e

nc
ap

su
la

te
 th

e
st

at
e

an
d

th
e

en
vi

ro
nm

en
t o

f t
he

 p
ro

ce
ss

or
 c

or
e

be
in

g
sp

ec
ifi

ed
.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
*_

re
ad

po
rt

_s
ig

na
ls

 a
bs

tra
ct

 ty
pe

: E
nc

ap
su

la
te

s
st

at
e

of
 re

ad
 p

or
ts

 o
f e

ac
h

ba
nk

 o
f p

hy
si

ca
l r

eg
is

te
rs

 re
qu

ire
d

by
 th

e
pr

oc
es

so
r c

or
e

be
in

g
sp

ec
ifi

ed
.

Fo
r e

ac
h

ba
nk

 o
f p

hy
si

ca
l r

eg
is

te
rs

, d
ef

in
ed

 a
s t

up
le

 o
f t

he
 a

pp
ro

pr
ia

te
 v

ir
tu

al
_r

eg
s u

ni
on

 ty
pe

 a
nd

 th
e

ap
pr

op
ria

te
 p

hy
si

ca
l_

re
gs

 e
nu

m
er

at
ed

 ty
pe

.

•
*_

w
ri

te
po

rt
_s

ig
na

ls
 a

bs
tra

ct
 ty

pe
: E

nc
ap

su
la

te
s s

ta
te

 o
f w

rit
e

po
rts

 o
f e

ac
h

ba
nk

 o
f p

hy
si

ca
l r

eg
is

te
rs

 re
qu

ire
d

by
 th

e
pr

oc
es

so
r c

or
e

be
in

g
sp

ec
ifi

ed
.

Fo
r e

ac
h

ba
nk

 o
f p

hy
si

ca
l r

eg
is

te
rs

, d
ef

in
ed

 a
s

tu
pl

e
of

 th
e

op
tio

na
l b

oo
l t

yp
e

fo
r w

rit
e

en
ab

le
 s

ta
tu

s,
th

e
ap

pr
op

ria
te

 p
hy

si
ca

l_
re

gs
 e

nu
m

er
at

ed
 ty

pe

an
d

th
e

ap
pr

op
ria

te
 v

ir
tu

al
_r

eg
s u

ni
on

 ty
pe

.

•
*_

ba
nk

 a
bs

tra
ct

 ty
pe

: E
nc

ap
su

la
te

s
th

e
st

at
e

of
 e

ac
h

ba
nk

 o
f

ph
ys

ic
al

 r
eg

is
te

rs
 r

eq
ui

re
d

by
 th

e
pr

oc
es

so
r

co
re

 b
ei

ng
 s

pe
ci

fie
d.

 F
or

 e
ac

h
ba

nk
 o

f

ph
ys

ic
al

 re
gi

st
er

s,
de

fin
ed

 a
s

a
tu

pl
e

of
 a

 li
st

 o
f t

he
 a

pp
ro

pr
ia

te
 p

hy
si

ca
l_

re
gs

 e
nu

m
er

at
ed

 ty
pe

 a
ss

oc
ia

te
d

w
ith

 th
e

di
gi

ta
l_

va
lu

e
ty

pe
, a

n
m

-tu
pl

e
of

th
e

ap
pr

op
ria

te
 r

ea
dp

or
t_

si
gn

al
s

ab
st

ra
ct

 t
yp

e
an

d
an

 n
-tu

pl
e

of
 t

he
 a

pp
ro

pr
ia

te
 w

ri
te

po
rt

_s
ig

na
ls

 a
bs

tra
ct

 t
yp

e;
 w

ith
 m

 e
qu

al
 to

 t
he

 n
um

be
r

of

re
ad

 p
or

ts
 a

nd
 n

 e
qu

al
 to

 th
e

nu
m

be
r o

f w
rit

e
po

rts
 fo

r
th

e
ba

nk
 b

ei
ng

 sp
ec

ifi
ed

.

•
tu

be
 a

bs
tra

ct
 t

yp
e:

 D
et

ec
ts

 w
he

n
a

by
te

 o
r

a
w

or
d

is
 s

to
re

d
to

 a
 p

ar
tic

ul
ar

 a
dd

re
ss

 a
nd

 o
ut

pu
ts

 c
or

re
sp

on
di

ng
 c

ha
ra

ct
er

 o
r

ch
ar

ac
te

rs
 t

o
st

do
ut

.

D
ef

in
ed

 a
s

tu
pl

e
of

 th
e

bo
ol

 ty
pe

 to
 in

di
ca

te
 w

he
th

er
 a

n
en

d-
of

-te
rm

in
al

 c
ha

ra
ct

er
 h

as
 b

ee
n

ou
tp

ut
, t

he
 d

ig
ita

l_
va

lu
e

ty
pe

 to
 in

di
ca

te
 th

e
ad

dr
es

s a
nd

a
pa

ir
of

 th
e

di
gi

ta
l_

va
lu

es
 e

nu
m

er
at

ed
 ty

pe
 to

 re
co

rd
 th

e
w

or
d

al
ig

nm
en

t o
f t

he
 a

dd
re

ss
.

•
m

em
or

y
ab

st
ra

ct
 ty

pe
: E

nc
ap

su
la

te
s

th
e

m
em

or
y

sy
st

em
 o

f t
he

 p
ro

ce
ss

or
 c

or
e

be
in

g
sp

ec
ifi

ed
. S

ee
 d

et
ai

le
d

di
sc

us
si

on
 in

 s
ec

tio
n

2.
3.

3
fo

r m
or

e
on

ho
w

 th
is

 ty
pe

 is
 c

on
st

ru
ct

ed
 a

s w
el

l a
s h

ow
 it

 is
 u

se
d.

257

•
bu

ffe
r

ab
st

ra
ct

 ty
pe

: E
nc

ap
su

la
te

s
th

e
us

e
of

 p
ip

el
in

e
la

tc
he

s
to

 a
vo

id
 e

xp
lic

itl
y

na
m

in
g

si
gn

al
s

bu
ff

er
ed

 fr
om

 p
re

vi
ou

s
pi

pe
lin

e
st

ag
es

. D
ef

in
ed

 a
s

n-
tu

pl
e

of
 p

ai
rs

 c
on

si
st

in
g

of
 a

 li
st

 o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
 a

nd
 a

 li
st

 o
f t

he
 la

tc
h

ab
st

ra
ct

 ty
pe

; w
ith

 n
 e

qu
al

 to
 th

e
nu

m
be

r o
f p

ip
el

in
e

la
tc

he
s u

se
d

by

th
e

pr
oc

es
so

r c
or

e
be

in
g

sp
ec

ifi
ed

.

•
en

vi
ro

nm
en

t
ab

st
ra

ct
 ty

pe
: E

nc
ap

su
la

te
s

th
e

en
vi

ro
nm

en
t o

f
th

e
pr

oc
es

so
r

co
re

 b
ei

ng
 s

pe
ci

fie
d.

 D
ef

in
ed

 a
s

a
tu

pl
e

of
 th

e
m

em
or

y
ab

st
ra

ct
 ty

pe
,

a
pa

ir
of

 th
e

co
re

_i
np

ut
s

an
d

th
e

co
re

_o
ut

pu
ts

 a
bs

tra
ct

 ty
pe

s,
as

 w
el

l a
s

a
tu

pl
e

of
 a

n
in

t t
o

in
di

ca
te

 th
e

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s

si
nc

e
si

m
ul

at
io

n

be
ga

n,
 th

e
ph

as
es

 e
nu

m
er

at
ed

 ty
pe

 to
 in

di
ca

te
 th

e
cu

rr
en

t c
lo

ck
 p

ha
se

 a
nd

 a
 li

st
 o

f p
ai

rs
 o

f t
he

 in
t p

rim
iti

ve
 ty

pe
 a

nd
 a

n
in

pu
t a

bs
tra

ct
 ty

pe
. (

Th
e

lis
t

of
 p

ai
rs

 in
di

ca
te

s w
he

n,
 w

ith
 re

fe
re

nc
e

to
 th

e
nu

m
be

r o
f c

lo
ck

 c
yc

le
s s

in
ce

 si
m

ul
at

io
n

be
ga

n,
 a

n
in

pu
t s

ho
ul

d
ha

ve
 a

 n
ew

 v
al

ue
 a

ss
oc

ia
te

d
w

ith
 it

.)

•
st

at
e

ab
st

ra
ct

 ty
pe

: E
nc

ap
su

la
te

s t
he

 st
at

e
of

 th
e

pr
oc

es
so

r c
or

e
be

in
g

sp
ec

ifi
ed

. D
ef

in
ed

 a
s a

 tu
pl

e
of

 th
e

bu
ffe

r a
bs

tra
ct

 ty
pe

, t
he

 tr
ac

e
ab

st
ra

ct
 ty

pe
,

a
pa

ir
co

ns
is

tin
g

of
 a

 li
st

 o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
 a

s w
el

l a
s a

 li
st

 o
f t

he
 la

tc
h

ab
st

ra
ct

 ty
pe

 a
nd

 a
 tu

pl
e

of
 e

ve
ry

 b
an

k
ab

st
ra

ct
 ty

pe
.

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
*_

re
ad

po
rt

_s
ig

na
ls

 a
bs

tra
ct

 ty
pe

♦
 *

_r
ea

dp
or

t_
si

gn
al

s_
in

it:
 c

on
st

ru
ct

s a
n

in
st

an
ce

 o
f t

he
 *

_r
ea

dp
or

t_
si

gn
al

s_
in

it
ab

st
ra

ct
 ty

pe
 w

ith
 a

ll
el

em
en

ts
 in

iti
al

is
ed

 to
 th

e
un

kn
ow

n
va

lu
e.

♦
 *

_r
ea

dp
or

t_
si

gn
al

s_
up

da
te

: i
f s

pe
ci

fie
d

in
st

an
ce

 o
f t

he
 *

_v
ir

itu
al

_r
eg

s
un

io
n

ty
pe

 h
as

 e
le

m
en

ts
 n

ot
 s

et
 to

 th
e

un
kn

ow
n

va
lu

e,
 re

le
va

nt
 e

le
m

en
ts

in
 t

he
 s

pe
ci

fie
d

in
st

an
ce

 o
f

th
e

*_
re

ad
po

rt
_s

ig
na

ls
_i

ni
t

ab
st

ra
ct

 t
yp

e
ar

e
re

pl
ac

ed
 a

nd
,

if
ap

pr
op

ria
te

,
th

e
el

em
en

t
of

 t
he

 *
_p

hy
si

ca
l_

re
gs

en
um

er
at

ed
 ty

pe
 is

 re
ca

lc
ul

at
ed

.

♦
 *

_r
ea

dp
or

t_
si

gn
al

s_
ph

ys
ic

al
: i

ns
pe

ct
s *

_p
hy

si
ca

l_
re

gs
 e

nu
m

er
at

ed
 ty

pe
 e

le
m

en
t o

f s
pe

ci
fie

d
in

st
an

ce
 o

f t
he

 *
_r

ea
dp

or
t_

si
gn

al
s a

bs
tra

ct
 ty

pe
.

•
*_

w
ri

te
po

rt
_s

ig
na

ls
 a

bs
tra

ct
 ty

pe

♦
 *

_w
ri

te
po

rt
_s

ig
na

ls
_i

ni
t:

co
ns

tru
ct

s a
n

in
st

an
ce

 o
f t

he
 *

_w
ri

te
po

rt
_s

ig
na

ls
_i

ni
t a

bs
tra

ct
 ty

pe
 w

ith
 a

ll
el

em
en

ts
 in

iti
al

is
ed

 to
 th

e
un

kn
ow

n
va

lu
e.

258

♦
 *

_w
ri

te
po

rt
_s

ig
na

ls
_u

pd
at

e:
 if

 s
pe

ci
fie

d
in

st
an

ce
 o

f t
he

 *
_v

ir
tu

al
_r

eg
s

un
io

n
ty

pe
 h

as
 e

le
m

en
ts

 n
ot

 s
et

 to
 th

e
un

kn
ow

n
va

lu
e,

 o
r u

nk
no

w
n

va
lu

e

is
 n

ot
 sp

ec
ifi

ed
 a

s t
he

 v
al

ue
 o

f t
he

 w
rit

e
en

ab
le

 si
gn

al
, t

he
 re

le
va

nt
 e

le
m

en
ts

 in
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 *
_w

ri
te

po
rt

_s
ig

na
ls

_i
ni

t a
bs

tra
ct

 ty
pe

ar
e

re
pl

ac
ed

 a
nd

, i
f a

pp
ro

pr
ia

te
, t

he
 *

_p
hy

si
ca

l_
re

gs
 e

nu
m

er
at

ed
 ty

pe
 e

le
m

en
t i

s r
ec

al
cu

la
te

d.

♦
 *

_w
ri

te
po

rt
_s

ig
na

ls
_w

ri
te

: i
ns

pe
ct

s t
he

 b
oo

l p
rim

iti
ve

 e
le

m
en

t o
f t

he
 sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 *
_w

ri
te

po
rt

_s
ig

na
ls

 .

♦
 *

_w
ri

te
po

rt
_s

ig
na

ls
_p

hy
si

ca
l:

in
sp

ec
ts

 *
_p

hy
si

ca
l_

re
gs

 e
nu

m
er

at
ed

 ty
pe

 e
le

m
en

t o
f s

pe
ci

fie
d

in
st

an
ce

 o
f t

he
 *

_w
ri

te
po

rt
_s

ig
na

ls
 a

bs
tra

ct
 ty

pe
.

•
*_

ba
nk

 a
bs

tra
ct

 ty
pe

♦
 *

_b
an

k_
in

it:

co
ns

tru
ct

s
an

in

st
an

ce

of

th
e

*_
ba

nk

ab
st

ra
ct

ty

pe

w
ith

el

em
en

ts

in
iti

al
is

ed

us
in

g
*_

re
ad

po
rt

_s
ig

na
ls

_i
ni

t
an

d

*_
w

ri
te

po
rt

_s
ig

na
ls

_i
ni

t a
s w

el
l a

s t
he

 e
m

pt
y

co
lle

ct
io

n.

♦
 *

_b
an

k_
po

rt
s_

in
it:

 re
pl

ac
es

 e
le

m
en

ts
 in

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 *

_b
an

k
ab

st
ra

ct
 ty

pe
, a

s
ap

pr
op

ria
te

 fo
r s

pe
ci

fie
d

cl
oc

k
ph

as
e,

 w
ith

 re
su

lt
of

in
vo

ki
ng

 th
e

*_
re

ad
po

rt
_s

ig
na

ls
_i

ni
t a

nd
 th

e
*_

w
ri

te
po

rt
_s

ig
na

ls
_i

ni
t f

un
ct

io
ns

.

♦
 *

_b
an

k_
po

rt
s_

up
da

te
:

fo
r

ea
ch

 b
us

 i
n

th
e

sp
ec

ifi
ed

 l
is

t
of

 i
ns

ta
nc

es
 o

f
th

e
bu

s
ab

st
ra

ct
 t

yp
e,

 i
nv

ok
es

 *
_r

ea
dp

or
t_

si
gn

al
s_

up
da

te
 o

r

*_
w

ri
te

po
rt

_s
ig

na
ls

_u
pd

at
e,

 i
f

ap
pr

op
ria

te
,

on
 t

he
 r

el
ev

an
t

el
em

en
t

of
 t

he
 s

pe
ci

fie
d

in
st

an
ce

 o
f

th
e

*_
ba

nk
 a

bs
tra

ct
 t

yp
e

w
ith

 t
he

 v
al

ue
 o

f

th
e

in
st

an
ce

 o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
.

♦
 *

_b
an

k_
*:

 in
sp

ec
ts

 th
e

va
lu

e
as

so
ci

at
ed

 w
ith

 th
e

ph
ys

ic
al

 r
eg

is
te

r,
ad

dr
es

se
d

by
 th

e
re

le
va

nt
 in

st
an

ce
 o

f
th

e
*_

re
ad

po
rt

_s
ig

na
ls

 a
bs

tra
ct

 ty
pe

(s
pe

ci
fie

d
as

 p
ar

t o
f t

he
 n

am
e

of
 th

e
fu

nc
tio

n)
 in

 th
e

sp
ec

ifi
ed

 *
_b

an
k

ab
st

ra
ct

 ty
pe

, i
n

th
e

co
lle

ct
io

n
of

 th
e

sp
ec

ifi
ed

 *
_b

an
k

ab
st

ra
ct

 ty
pe

.

♦
 *

_b
an

k_
*:

 r
ep

la
ce

s
th

e
va

lu
e

as
so

ci
at

ed
 w

ith
 th

e
ph

ys
ic

al
 r

eg
is

te
r,

ad
dr

es
se

d
by

 th
e

re
le

va
nt

 in
st

an
ce

 o
f

th
e

*_
w

ri
te

po
rt

_s
ig

na
ls

 a
bs

tra
ct

 ty
pe

(s
pe

ci
fie

d
as

 p
ar

t o
f t

he
 n

am
e

of
 th

e
fu

nc
tio

n)
 in

 th
e

sp
ec

ifi
ed

 *
_b

an
k

ab
st

ra
ct

 ty
pe

, i
n

th
e

co
lle

ct
io

n
of

 th
e

sp
ec

ifi
ed

 *
_b

an
k

ab
st

ra
ct

 ty
pe

 w
ith

th
e

sp
ec

ifi
ed

 v
al

ue
; n

o
re

pl
ac

em
en

t o
cc

ur
s i

f t
he

 in
st

an
ce

 o
f t

he
 *

_w
ri

te
po

rt
_s

ig
na

ls
 a

bs
tra

ct
 ty

pe
 in

di
ca

te
s t

ha
t t

he
 w

rit
e

ha
s n

ot
 b

ee
n

en
ab

le
d.

259

•
tu

be
 a

bs
tra

ct
 ty

pe

♦
 t

ub
e_

in
it:

 c
on

st
ru

ct
s a

n
in

st
an

ce
 o

f t
he

 tu
be

 a
bs

tra
ct

 ty
pe

 w
ith

 a
 d

ef
au

lt
ad

dr
es

s a
nd

 a
ss

um
in

g
no

 e
nd

-o
f-

te
rm

in
al

 c
ha

ra
ct

er
 h

as
 b

ee
n

tra
ns

m
itt

ed
.

♦
 t

ub
e_

m
ap

: r
ep

la
ce

s
th

e
ad

dr
es

s
th

at
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 tu
be

 a
bs

tra
ct

 ty
pe

 u
se

s t
o

de
te

ct
 w

he
n

a
ch

ar
ac

te
r o

r c
ha

ra
ct

er
s s

ho
ul

d
be

 w
rit

te
n

to
 st

do
ut

.

♦
 t

ub
e_

eo
t:

in
sp

ec
ts

 w
he

th
er

 th
e

en
d-

of
-te

rm
in

al
 c

ha
ra

ct
er

 h
as

 b
ee

n
tra

ns
m

itt
ed

 b
y

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 tu

be
 a

bs
tra

ct
 ty

pe
 tr

an
sm

itt
ed

.

♦
 t

ub
e_

tr
an

sm
it:

 in
sp

ec
ts

 w
he

th
er

 th
e

sp
ec

ifi
ed

 s
to

re
 o

cc
ur

s
to

 th
e

ad
dr

es
s

m
ai

nt
ai

ne
d

in
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f
th

e
tu

be
 a

bs
tra

ct
 ty

pe
, a

nd
 if

it
do

es
, o

ut
pu

ts
 c

or
re

sp
on

di
ng

 c
ha

ra
ct

er
 o

r
ch

ar
ac

te
rs

 to
 s

td
ou

t;
if

on
e

of
 th

es
e

is
 th

e
en

d-
of

-te
rm

in
al

 c
ha

ra
ct

er
, t

he
 b

oo
l p

rim
iti

ve
 ty

pe
 u

se
d

to
 in

di
ca

te
 th

at
 th

is
 c

ha
ra

ct
er

 h
as

 b
ee

n
tra

ns
m

itt
ed

 is
 u

pd
at

ed
 a

cc
or

di
ng

ly
.

•
m

em
or

y
ab

st
ra

ct
 ty

pe

♦
 m

em
or

y_
in

it:
 c

on
st

ru
ct

s
an

 i
ns

ta
nc

e
of

 t
he

 m
em

or
y

ab
st

ra
ct

 t
yp

e
us

in
g

th
e

em
pt

y
co

lle
ct

io
n

w
ith

 n
o

in
st

an
ce

 o
f

th
e

tu
be

 a
bs

tra
ct

 t
yp

e
an

d

w
hi

ch
 w

ill
 n

ot
 a

bo
rt

an
y

m
em

or
y

ac
ce

ss
es

.

♦
 m

em
or

y_
*a

bo
rt

:
in

sp
ec

ts
 t

he
 s

pe
ci

fie
d

in
st

an
ce

 o
f

th
e

m
em

or
y

ab
st

ra
ct

 t
yp

e
an

d
re

tu
rn

s
an

 a
pp

ro
pr

ia
te

 i
ns

ta
nc

e
of

 t
he

 i
np

ut
 a

bs
tra

ct
 t

yp
e

to
 i

nd
ic

at
e

if
an

 a
cc

es
s

ha
s

be
en

 a
bo

rte
d

by
 t

he
 m

em
or

y
su

bs
ys

te
m

.
(T

w
o

fu
nc

tio
ns

 a
re

 n
ec

es
sa

ry
 i

f
in

st
ru

ct
io

n
ac

ce
ss

es
 m

ay
 b

e
ab

or
te

d

in
de

pe
nd

en
tly

 o
f d

at
a

ac
ce

ss
es

.)

♦
 m

em
or

y_
up

da
te

:
re

pl
ac

es
 th

e
el

em
en

ts
 in

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f

th
e

m
em

or
y

ab
st

ra
ct

 ty
pe

 th
at

 s
pe

ci
fy

 a
n

ac
ce

ss
 h

as
 a

bo
rte

d,
 a

cc
or

di
ng

 to

w
he

th
er

 th
e

ac
ce

ss
es

 d
es

cr
ib

ed
 b

y
th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 c
or

e_
ou

tp
ut

s a
bs

tra
ct

 ty
pe

 sh
ou

ld
 a

bo
rt.

♦
 m

em
or

y_
*a

bo
rt

_m
ap

:
re

pl
ac

es
 t

he
 f

un
ct

io
n

th
e

sp
ec

ifi
ed

 i
ns

ta
nc

e
of

 t
he

 m
em

or
y

ab
st

ra
ct

 t
yp

e
us

es
 t

o
ch

ec
k

if
an

 a
cc

es
s

sh
ou

ld
 a

bo
rt

w
ith

th
e

sp
ec

ifi
ed

 fu
nc

tio
n.

 (T
w

o
fu

nc
tio

ns
 a

re
 re

qu
ire

d
if

in
st

ru
ct

io
n

ac
ce

ss
es

 m
ay

 a
bo

rt
in

de
pe

nd
en

tly
 o

f d
at

a
ac

ce
ss

es
.)

♦
 m

em
or

y_
tu

be
_*

: f
un

ct
io

ns
 to

 in
vo

ke
 e

ac
h

of
 th

e
fu

nc
tio

ns
 d

ef
in

ed
 fo

r t
he

 tu
be

 a
bs

tra
ct

 ty
pe

 o
n

th
e

in
st

an
ce

 m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce

of
 th

e
m

em
or

y
ab

st
ra

ct
 ty

pe
.

260

♦
 *

_m
em

or
y_

re
ad

, *
_m

em
or

y_
w

ri
te

:
bo

th
 th

es
e

fu
nc

tio
ns

 d
et

er
m

in
e

va
lu

es
 o

f
in

st
an

ce
s

of
 th

e
ou

tp
ut

 a
bs

tra
ct

 ty
pe

 a
nd

 in
vo

ke
 a

 lo
ca

l f
un

ct
io

n,

na
m

ed
 *

bu
s_

op
er

at
io

n,
 w

ith
 th

es
e

va
lu

es
 a

nd
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 m
em

or
y

ab
st

ra
ct

 ty
pe

. T
hi

s
lo

ca
l f

un
ct

io
n

to
 th

e
m

em
or

y
ab

st
ra

ct
 ty

pe

pa
tte

rn
 m

at
ch

es
 o

n
th

e
va

lu
es

 o
f

ou
tp

ut
s,

to
 d

et
er

m
in

e
th

e
bu

s
op

er
at

io
n

in
 p

ro
gr

es
s

an
d

th
en

 it
 p

er
fo

rm
s

th
is

 o
pe

ra
tio

n
on

 th
e

co
lle

ct
io

n
of

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 m

em
or

y
ab

st
ra

ct
 ty

pe
. *

_m
em

or
y_

re
ad

 a
nd

 *
_m

em
or

y_
w

ri
te

 c
he

ck
 th

at
 th

e
op

er
at

io
n

pe
rf

or
m

ed
 is

 c
on

si
st

en
t w

ith

th
e

re
qu

es
te

d
op

er
at

io
n,

 a
nd

 d
ep

en
di

ng
 o

n
th

e
re

qu
es

te
d

op
er

at
io

n,
 e

ith
er

 re
tu

rn
 th

e
va

lu
e

re
ad

 fr
om

 m
em

or
y

as
 th

e
re

le
va

nt
 in

st
an

ce
 o

f t
he

 in
pu

t

ab
st

ra
ct

 ty
pe

 o
r t

he
 sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 m
em

or
y

ab
st

ra
ct

 ty
pe

 w
ith

 th
e

re
le

va
nt

 v
al

ue
 a

dd
ed

 to
 it

s c
ol

le
ct

io
n.

•
bu

ffe
r a

bs
tra

ct
 ty

pe

♦
 b

uf
fe

r_
in

it:
 c

on
st

ru
ct

s a
n

in
st

an
ce

 o
f t

he
 b

uf
fe

r a
bs

tra
ct

 ty
pe

 w
ith

 a
ll

el
em

en
ts

 in
iti

al
is

ed
 to

 th
e

un
kn

ow
n

va
lu

e.

♦
 b

uf
fe

r_
up

da
te

: f
or

 e
ac

h
pi

pe
lin

e
la

tc
h,

 b
uf

fe
rs

 th
e

lis
t o

f i
ns

ta
nc

es
 o

f t
he

 b
us

 a
bs

tra
ct

 ty
pe

 a
nd

 th
e

lis
t o

f i
ns

ta
nc

es
 o

f t
he

 la
tc

h
ab

st
ra

ct
 ty

pe
 fr

om

th
os

e
sp

ec
ifi

ed
 in

 th
e

fu
nc

tio
n

in
vo

ca
tio

n
or

 th
e

pr
ec

ed
in

g
pi

pe
lin

e
la

tc
h,

 a
s a

pp
ro

pr
ia

te
, i

n
th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 b
uf

fe
r a

bs
tra

ct
 ty

pe
.

♦
 b

uf
fe

r_
lo

ok
up

_b
us

es
:

re
tu

rn
s

th
e

lis
t

of
 i

ns
ta

nc
es

 o
f

th
e

bu
s

ab
st

ra
ct

 t
yp

e
bu

ff
er

ed
 i

n
th

e
sp

ec
ifi

ed
 i

ns
ta

nc
e

of
 t

he
 b

uf
fe

r
ab

st
ra

ct
 t

yp
e

fo
r

th
e

sp
ec

ifi
ed

 p
ip

el
in

e
la

tc
h.

♦
 b

uf
fe

r_
lo

ok
up

_l
at

ch
es

:
re

tu
rn

s
th

e
lis

t o
f

in
st

an
ce

s
of

 th
e

la
tc

h
ab

st
ra

ct
 ty

pe
 b

uf
fe

re
d

in
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f
th

e
bu

ffe
r

ab
st

ra
ct

 ty
pe

 f
or

th
e

sp
ec

ifi
ed

 p
ip

el
in

e
la

tc
h.

•
st

at
e

ab
st

ra
ct

 ty
pe

♦
 s

ta
te

_t
ra

ce
:

in
sp

ec
ts

 th
e

in
st

an
ce

 o
f

th
e

tr
ac

e
ab

st
ra

ct
 ty

pe
 m

ai
nt

ai
ne

d
by

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f

th
e

st
at

e
ab

st
ra

ct
 ty

pe
. N

ot
e

th
at

 th
e

tr
ac

e

ab
st

ra
ct

 ty
pe

 is
 d

ef
in

ed
 u

si
ng

 r
ef

er
en

ce
 p

rim
iti

ve
 ty

pe
s

on
ly

 s
uc

h
th

at
 th

e
in

st
an

ce
 re

tu
rn

ed
 b

y
th

is
 fu

nc
tio

n
m

ay
 b

e
us

ed
 to

 m
od

ify
 th

e
in

st
an

ce

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 st
at

e
ab

st
ra

ct
 ty

pe
 a

s w
el

l a
s t

o
in

sp
ec

t i
t.

♦
 s

ta
te

_i
ni

t:
co

ns
tru

ct
s

an
 in

st
an

ce
 o

f t
he

 s
ta

te
 a

bs
tra

ct
 ty

pe
 w

ith
 e

le
m

en
ts

 in
iti

al
is

ed
 u

si
ng

 *
_b

an
k_

in
it,

 b
uf

fe
r_

in
it

as
 w

el
l a

s
th

e
em

pt
y

co
lle

ct
io

n,

as
 a

pp
ro

pr
ia

te
.

261

♦
 s

ta
te

_l
oo

ku
p_

*_
bu

s:
 in

sp
ec

ts
 th

e
va

lu
e

as
so

ci
at

ed
 w

ith
 th

e
sp

ec
ifi

ed
 *

_b
us

es
 e

nu
m

er
at

ed
 ty

pe
 in

 th
e

lis
t o

f
in

st
an

ce
s

of
 th

e
bu

s
ab

st
ra

ct
 ty

pe

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 st
at

e
ab

st
ra

ct
 ty

pe
 it

se
lf,

 o
r i

ts
 in

st
an

ce
 o

f t
he

 b
uf

fe
r a

bs
tra

ct
 ty

pe
, i

f a
 p

ip
el

in
e

la
tc

h
is

 sp
ec

ifi
ed

.

♦
 s

ta
te

_l
oo

ku
p_

*_
la

tc
h:

 in
sp

ec
ts

 th
e

va
lu

e
as

so
ci

at
ed

 w
ith

 th
e

sp
ec

ifi
ed

 *
_l

at
ch

es
 e

nu
m

er
at

ed
 ty

pe
 in

 th
e

lis
t o

f i
ns

ta
nc

es
 o

f t
he

 la
tc

h
ab

st
ra

ct
 ty

pe

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 st
at

e
ab

st
ra

ct
 ty

pe
 it

se
lf,

 o
r i

ts
 in

st
an

ce
 o

f t
he

 b
uf

fe
r a

bs
tra

ct
 ty

pe
, i

f a
 p

ip
el

in
e

la
tc

h
is

 sp
ec

ifi
ed

.

♦
 s

ta
te

_i
ns

er
t_

bu
se

s:
 a

dd
s

th
e

sp
ec

ifi
ed

 in
st

an
ce

s
of

 th
e

bu
s

ab
st

ra
ct

 ty
pe

 to
 th

e
lis

t m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 s
ta

te
 a

bs
tra

ct
 ty

pe
.

A
ls

o
in

vo
ke

s *
_b

an
k_

po
rt

s_
up

da
te

 o
n

th
e

sp
ec

ifi
ed

 in
st

an
ce

s o
f t

he
 b

us
 a

bs
tra

ct
 ty

pe
.

♦
 s

ta
te

_*
_b

an
k_

*:
 f

un
ct

io
ns

 t
o

in
vo

ke
 e

ac
h

of
 t

he
 *

_b
an

k_
*

fu
nc

tio
ns

 d
ef

in
ed

 f
or

 t
he

 *
_b

an
k

ab
st

ra
ct

 t
yp

e
on

 t
he

 i
ns

ta
nc

es
 m

ai
nt

ai
ne

d
by

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 st

at
e

ab
st

ra
ct

 ty
pe

.

•
en

vi
ro

nm
en

t a
bs

tra
ct

 ty
pe

♦
 e

nv
ir

on
m

en
t_

in
it:

 c
on

st
ru

ct
s

an
 i

ns
ta

nc
e

of
 t

he
 e

nv
ir

on
m

en
t

ab
st

ra
ct

 t
yp

e
w

ith
 e

le
m

en
ts

 i
ni

tia
lis

ed
 u

si
ng

 m
em

or
y_

in
it,

 c
or

e_
in

pu
ts

_i
ni

t,

co
re

_o
ut

pu
ts

_i
ni

t a
s

w
el

l a
s

th
e

m
in

im
um

 n
um

be
r

of
 e

nv
iro

nm
en

t e
ve

nt
s

(o
r

sc
he

du
le

d
ch

an
ge

s
in

 th
e

va
lu

es
 o

f
ex

te
rn

al
 in

pu
ts

)
re

qu
ire

d
fo

r

th
e

pr
oc

es
so

r c
or

e
be

in
g

sp
ec

ifi
ed

 to
 e

xi
t r

es
et

 p
ro

pe
rly

.

♦
 e

nv
ir

on
m

en
t_

tu
be

_*
: f

un
ct

io
ns

 to
 in

vo
ke

 e
ac

h
of

 th
e

m
em

or
y_

tu
be

_*
 fu

nc
tio

ns
 d

ef
in

ed
 fo

r t
he

 m
em

or
y

ab
st

ra
ct

 ty
pe

 o
n

in
st

an
ce

 m
ai

nt
ai

ne
d

by

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 e

nv
ir

on
m

en
t a

bs
tra

ct
 ty

pe
.

♦
 e

nv
ir

on
m

en
t_

lo
ok

up
_*

_i
np

ut
:

in
vo

ke
s

th
e

co
re

_i
np

ut
s_

lo
ok

up
_i

np
ut

fu

nc
tio

n
de

fin
ed

fo

r
th

e
co

re
_i

np
ut

s
ab

st
ra

ct

ty
pe

on

in

st
an

ce

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 e
nv

ir
on

m
en

t a
bs

tra
ct

 ty
pe

.

♦
 e

nv
ir

on
m

en
t_

lo
ok

up
_*

_o
ut

pu
t:

in
vo

ke
s

th
e

co
re

_o
ut

pu
ts

_l
oo

ku
p_

ou
tp

ut
 f

un
ct

io
n

de
fin

ed
 f

or
 t

he
 c

or
e_

ou
tp

ut
s

ab
st

ra
ct

 t
yp

e
on

 i
ns

ta
nc

e

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 e
nv

ir
on

m
en

t a
bs

tra
ct

 ty
pe

.

♦
 e

nv
ir

on
m

en
t_

lo
ok

up
_c

yc
le

:
in

sp
ec

ts
 t

he
 s

pe
ci

fie
d

in
st

an
ce

 o
f

th
e

en
vi

ro
nm

en
t

ab
st

ra
ct

 t
yp

e
to

 d
et

er
m

in
e

th
e

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s

si
nc

e

si
m

ul
at

io
n

be
ga

n.

262

♦
 e

nv
ir

on
m

en
t_

lo
ok

up
_p

ha
se

:
in

sp
ec

ts

th
e

sp
ec

ifi
ed

in

st
an

ce

of

th
e

en
vi

ro
nm

en
t

ab
st

ra
ct

ty

pe

to

de
te

rm
in

e
th

e
va

lu
e

of

th
e

ph
as

es

en
um

er
at

ed
 ty

pe
 th

at
 c

or
re

sp
on

ds
 to

 th
e

cl
oc

k
ph

as
e

be
in

g
si

m
ul

at
ed

.

♦
 e

nv
ir

on
m

en
t_

m
em

or
y_

*a
bo

rt
_m

ap
:

in
vo

ke
s

th
e

m
em

or
y_

*a
bo

rt
_m

ap

fu
nc

tio
n

de
fin

ed

fo
r

th
e

m
em

or
y

ab
st

ra
ct

ty

pe

on

th
e

in
st

an
ce

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 e
nv

ir
on

m
en

t a
bs

tra
ct

 ty
pe

.

♦
 e

nv
ir

on
m

en
t_

*_
m

em
or

y_
re

ad
:

in
vo

ke
s

th
e

*_
m

em
or

y_
re

ad
 f

un
ct

io
n

de
fin

ed
 f

or
 t

he
 m

em
or

y
ab

st
ra

ct
 t

yp
e

on
 t

he
 i

ns
ta

nc
e

m
ai

nt
ai

ne
d

by

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 e

nv
ir

on
m

en
t a

bs
tra

ct
 ty

pe
.

♦
 e

nv
ir

on
m

en
t_

*_
m

em
or

y_
w

ri
te

:
in

vo
ke

s
th

e
*_

m
em

or
y_

w
ri

te
 f

un
ct

io
n

de
fin

ed
 f

or
 t

he
 m

em
or

y
ab

st
ra

ct
 t

yp
e

on
 t

he
 i

ns
ta

nc
e

m
ai

nt
ai

ne
d

by

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 e

nv
ir

on
m

en
t a

bs
tra

ct
 ty

pe
.

•
st

at
e

ab
st

ra
ct

 ty
pe

 a
nd

 e
nv

ir
on

m
en

t a
bs

tra
ct

 ty
pe

♦
 s

ta
te

_i
ni

t_
bu

se
s:

 in
iti

al
is

es
 to

 e
m

pt
y

co
lle

ct
io

n
th

e
lis

t o
f b

us
es

 m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 st
at

e
ab

st
ra

ct
 ty

pe
.

♦
 s

ta
te

_u
pd

at
e_

bu
se

s:
 a

dd
s

th
e

in
st

an
ce

s
of

 t
he

 b
us

 a
bs

tra
ct

 t
yp

e
co

ns
tru

ct
ed

 b
y

in
vo

ki
ng

 b
us

_f
ro

m
_i

np
ut

 o
n

ev
er

y
in

st
an

ce
 o

f
th

e
in

pu
t

ab
st

ra
ct

 ty
pe

 re
tu

rn
ed

 b
y

th
e

co
re

_i
np

ut
s

fu
nc

tio
n

in
vo

ke
d

on
 th

e
in

st
an

ce
 o

f t
he

 c
or

e_
in

pu
ts

 a
bs

tra
ct

 ty
pe

 m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce

of
 th

e
en

vi
ro

nm
en

t a
bs

tra
ct

 ty
pe

, w
he

n
in

pu
t_

is
_s

am
pl

ed
 in

vo
ke

d
on

 th
e

in
st

an
ce

 o
f

th
e

in
pu

t a
bs

tra
ct

 ty
pe

 in
di

ca
te

s
th

at
 th

e
as

so
ci

at
ed

 in
pu

t

sh
ou

ld
 b

e
sa

m
pl

ed
 in

 th
e

cl
oc

k
ph

as
e

be
in

g
si

m
ul

at
ed

 (i
nd

ic
at

ed
 b

y
th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 e
nv

ir
on

m
en

t a
bs

tra
ct

 ty
pe

).

♦
 s

ta
te

_u
pd

at
e_

la
tc

he
s:

 i
nv

ok
es

 l
at

ch
_f

ro
m

_b
us

 a
nd

 l
at

ch
_f

ro
m

_l
at

ch
,

as
 r

eq
ui

re
d,

 t
o

co
ns

tru
ct

 n
ew

 i
ns

ta
nc

es
 o

f
th

e
la

tc
h

ab
st

ra
ct

 t
yp

e.

la
tc

h_
is

Tr
an

sp
ar

en
t

is
 u

se
d,

 w
ith

 r
ef

er
en

ce
 t

o
th

e
cl

oc
k

ph
as

e
be

in
g

si
m

ul
at

ed
 (

as
 i

nd
ic

at
ed

 b
y

th
e

sp
ec

ifi
ed

 i
ns

ta
nc

e
of

 t
he

 e
nv

ir
on

m
en

t

ab
st

ra
ct

 ty
pe

),
to

 r
em

ov
e

in
st

an
ce

s
of

 th
e

la
tc

h
ab

st
ra

ct
 ty

pe
 f

ro
m

 th
e

co
lle

ct
io

n
m

ai
nt

ai
ne

d
by

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f

th
e

st
at

e
ab

st
ra

ct
 ty

pe

an
d

ad
d

th
e

ne
w

 in
st

an
ce

s a
cc

or
di

ng
 to

 w
he

n
th

e
as

so
ci

at
ed

 la
tc

h
sh

ou
ld

 b
e

tra
ns

pa
re

nt
.

263

♦
 e

nv
ir

on
m

en
t_

up
da

te
_o

ut
pu

ts
: i

nv
ok

es
 c

or
e_

ou
tp

ut
s_

up
da

te
_f

ro
m

_o
ut

pu
ts

 to
 a

dd
, t

o
th

e
in

st
an

ce
 o

f t
he

 c
or

e_
ou

tp
ut

s
ab

st
ra

ct
 ty

pe
 m

ai
nt

ai
ne

d
by

th
e

sp
ec

ifi
ed

 i
ns

ta
nc

e
of

 t
he

 e
nv

ir
on

m
en

t
ab

st
ra

ct
 t

yp
e,

 i
ns

ta
nc

es
 o

f
th

e
ou

tp
ut

s
ab

st
ra

ct
 t

yp
e

co
ns

tru
ct

ed
 b

y
in

vo
ki

ng
 o

ut
pu

t_
fr

om
_b

us
 a

nd

ou
tp

ut
_f

ro
m

_l
at

ch
 o

n
co

lle
ct

io
ns

 m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 st
at

e
ab

st
ra

ct
 ty

pe
.

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

l
o
c
a
l

l
o
c
a
l

v
a
l

v
i
r
t
u
a
l
_
t
o
_
p
h
y
s
i
c
a
l

:

v
i
r
t
u
a
l
_
r
e
g
s

-
>

p
h
y
s
i
c
a
l
_
r
e
g
s

o
p
t
i
o
n

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

a
t
t
e
m
p
t
s

t
o

m
a
p

a
n

i
n
s
t
a
n
c
e

o
f

v
i
r
t
u
a
l
_
r
e
g
s

t
o

a
n

i
n
s
t
a
n
c
e

o
f

p
h
y
s
i
c
a
l
_
r
e
g
s
.

I
t

r
e
t
u
r
n
s

a
n

o
p
t
i
o
n
a
l

p
h
y
s
i
c
a
l
_
r
e
g
s
.

*
)

a
b
s
t
y
p
e

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

=

R
E
G

o
f

v
i
r
t
u
a
l
_
r
e
g
s

*

p
h
y
s
i
c
a
l
_
r
e
g
s

o
p
t
i
o
n

w
i
t
h

v
a
l

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s
_
i
n
i
t

:

u
n
i
t

-
>

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s
_
u
p
d
a
t
e

:

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

-
>

v
i
r
t
u
a
l
_
r
e
g
s

-
>

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s
_
v
i
r
t
u
a
l

(
R
E
G
(
v
i
r
t
u
a
l
,

_

)
)

=

v
i
r
t
u
a
l
;

f
u
n

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s
_
p
h
y
s
i
c
a
l

(
R
E
G
(
_

,

p
h
y
s
i
c
a
l
)
)

=

p
h
y
s
i
c
a
l
;

v
a
l

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s
_
t
o
_
s
t
r
i
n
g

:

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

e
l
e
m
e
n
t

o
f

t
h
e

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

a
b
s
t
r
a
c
t

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

e
n
d
;

a
b
s
t
y
p
e

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

=

R
E
G

o
f

b
o
o
l

o
p
t
i
o
n

*

v
i
r
t
u
a
l
_
r
e
g
s

o
p
t
i
o
n

*

p
h
y
s
i
c
a
l
_
r
e
g
s

o
p
t
i
o
n

w
i
t
h

v
a
l

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
i
n
i
t

:

u
n
i
t

-
>

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
u
p
d
a
t
e

:

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

-
>

d
i
g
i
t
a
l
_
v
a
l
u
e

*

v
i
r
t
u
a
l
_
r
e
g
s

-
>

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

264

v
a
l

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
w
r
i
t
e

:

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

-
>

b
o
o
l

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
v
i
r
t
u
a
l

(
R
E
G
(
_
,

v
i
r
t
u
a
l
,

_

)
)

=

v
i
r
t
u
a
l
;

f
u
n

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
p
h
y
s
i
c
a
l

(
R
E
G
(
_
,

_

,

p
h
y
s
i
c
a
l
)
)

=

p
h
y
s
i
c
a
l
;

v
a
l

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
t
o
_
s
t
r
i
n
g

:

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

e
l
e
m
e
n
t

o
f

t
h
e

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

a
b
s
t
r
a
c
t

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

e
n
d

(
*

I
f

a

p
r
o
c
e
s
s
o
r

c
o
r
e

h
a
s

s
e
v
e
r
a
l

b
a
n
k
s

o
f

p
h
y
s
i
c
a
l

r
e
g
i
s
t
e
r
s

(
f
o
r

e
x
a
m
p
l
e
,

t
h
e

A
R
M
6

h
a
s

o
n
e

f
o
r

d
a
t
a

r
e
g
i
s
t
e
r
s

a
n
d

o
n
e

f
o
r

p
r
o
g
r
a
m

s
t
a
t
u
s

r
e
g
i
s
t
e
r
s
)
,

t
h
e

r
e
a
d

p
o
r
t
s

a
n
d

t
h
e

w
r
i
t
e

p
o
r
t
s

f
o
r

e
a
c
h

s
h
o
u
l
d

b
e

e
n
c
a
p
s
u
l
a
t
e
d

u
s
i
n
g

s
e
p
a
r
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e
s

d
e
f
i
n
e
d

a
s

p
e
r

t
h
e

e
x
a
m
p
l
e

a
b
o
v
e
.

*
)

i
n

a
b
s
t
y
p
e

r
e
g
_
b
a
n
k

=

R
E
G
_
B
A
N
K

o
f

(
(
p
h
y
s
i
c
a
l
_
r
e
g
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
)

l
i
s
t

*

(
*

n
-
t
u
p
l
e

o
f

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

t
o

c
o
r
r
e
s
p
o
n
d

t
o

n

r
e
a
d

p
o
r
t
s

*
)

*

(
*

n
-
t
u
p
l
e

o
f

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

t
o

c
o
r
r
e
s
p
o
n
d

t
o

n

w
r
i
t
e

p
o
r
t
s

*
)

w
i
t
h

v
a
l

r
e
g
_
b
a
n
k
_
i
n
i
t

:

u
n
i
t

-
>

r
e
g
_
b
a
n
k

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

r
e
g
_
b
a
n
k
_
p
o
r
t
s
_
i
n
i
t

:

r
e
g
_
b
a
n
k

-
>

p
h
a
s
e
s

-
>

r
e
g
_
b
a
n
k

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

r
e
g
_
b
a
n
k
_
p
o
r
t
s
_
u
p
d
a
t
e

:

r
e
g
_
b
a
n
k

-
>

b
u
s

o
p
t
i
o
n

l
i
s
t

-
>

r
e
g
_
b
a
n
k

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

r
e
g
_
b
a
n
k
_
i
n
i
t
_
r
e
g
_
b
a
n
k

:

r
e
g
_
b
a
n
k

-
>

p
h
y
s
i
c
a
l
_
r
e
g
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e

l
i
s
t

-
>

r
e
g
_
b
a
n
k

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

a
n

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

t
o

a
n
o
t
h
e
r
,

r
e
p
l
a
c
i
n
g

t
h
e

c
o
l
l
e
c
t
i
o
n

t
h
a
t

a
s
s
o
c
i
a
t
e
s

v
a
l
u
e
s

w
i
t
h

c
o
n
s
t
r
u
c
t
o
r
s

o
f

t
h
e

p
h
y
s
i
c
a
l
_
r
e
g
s

d
a
t
a

t
y
p
e

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

c
o
l
l
e
c
t
i
o
n
.

A
n

e
r
r
o
r

s
h
o
u
l
d

o
c
c
u
r

i
f

t
h
e

s
p
e
c
i
f
i
e
d

c
o
l
l
e
c
t
i
o
n

a
s
s
o
c
i
a
t
e
s

c
o
n
s
t
r
u
c
t
o
r
s

o
f

t
h
e

p
h
y
s
i
c
a
l
_
r
e
g
s

d
a
t
a

t
y
p
e

w
i
t
h

i
n
s
t
a
n
c
e
s

o
f

t
h
e

d
i
g
i
t
a
l
_
v
a
l
u
e

a
b
s
t
r
a
c
t

t
y
p
e

t
h
a
t

d
o

n
o
t

h
a
v
e

t
h
e

c
o
r
r
e
c
t

b
i
t
s

v
a
l
i
d

f
o
r

t
h
e

r
e
g
i
s
t
e
r

a
s
s
o
c
i
a
t
e
d

w
i
t
h

t
h
e

r
e
l
e
v
a
n
t

c
o
n
s
t
r
u
c
t
o
r
.

*
)

v
a
l

r
e
g
_
b
a
n
k
_
t
o
_
s
t
r
i
n
g

:

r
e
g
_
b
a
n
k

-
>

s
t
r
i
n
g

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

m
a
p
s

e
a
c
h

p
a
i
r

o
f

t
h
e

a
s
s
o
c
i
a
t
i
o
n

l
i
s
t

e
l
e
m
e
n
t

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

t
o

a

s
t
r
i
n
g

t
o

f
a
c
i
l
i
t
a
t
e

p
r
o
d
u
c
t
i
o
n

o
f

d
e
b
u
g

o
u
t
p
u
t
.

*
)

265

(
*

f
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

e
l
e
m
e
n
t

i
n

t
h
e

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

a
b
s
t
r
a
c
t

t
y
p
e

t
u
p
l
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e
,

w
h
i
c
h

r
e
t
u
r
n

t
h
e

v
a
l
u
e

t
h
e

c
o
l
l
e
c
t
i
o
n

o
f

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

p
h
y
s
i
c
a
l
_
r
e
g

d
a
t
a

t
y
p
e

t
h
a
t

t
h
e

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s
_
p
h
y
s
i
c
a
l

f
u
n
c
t
i
o
n

r
e
t
u
r
n
s

w
h
e
n

i
n
v
o
k
e
d

o
n

t
h
e

r
e
l
e
v
a
n
t

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
r
e
a
d
p
o
r
t
_
s
i
g
n
a
l
s

a
b
s
t
r
a
c
t

t
y
p
e

t
h
a
t

i
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e
.

E
a
c
h

f
u
n
c
t
i
o
n

s
h
o
u
l
d

b
e

n
a
m
e
d

u
s
i
n
g

r
e
g
_
b
a
n
k
_

s
u
f
f
i
x
e
d

w
i
t
h

t
h
e

n
a
m
e

o
f

t
h
e

r
e
a
d

p
o
r
t

t
h
a
t

i
t

i
n
s
p
e
c
t
s
.

*
)

(
*

f
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

e
l
e
m
e
n
t

i
n

t
h
e

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

a
b
s
t
r
a
c
t

t
y
p
e

t
u
p
l
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e
,

w
h
i
c
h

u
p
d
a
t
e

t
h
e

v
a
l
u
e

t
h
e

c
o
l
l
e
c
t
i
o
n

o
f

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

a
s
s
o
c
i
a
t
e
s

w
i
t
h

t
h
e

c
o
n
s
t
r
u
c
t
o
r

o
f

t
h
e

p
h
y
s
i
c
a
l
_
r
e
g

d
a
t
a

t
y
p
e

t
h
e

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
p
h
y
s
i
c
a
l

f
u
n
c
t
i
o
n

r
e
t
u
r
n
s

w
h
e
n

i
n
v
o
k
e
d

o
n

t
h
e

r
e
l
e
v
a
n
t

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s

a
b
s
t
r
a
c
t

t
y
p
e

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

w
i
t
h

t
h
e

s
p
e
c
i
f
i
e
d

v
a
l
u
e
.

I
f

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
w
r
i
t
e

r
e
t
u
r
n
s

f
a
l
s
e

w
h
e
n

i
n
v
o
k
e
d
,

n
o

u
p
d
a
t
e

o
c
c
u
r
s
;

b
u
t

i
f

r
e
g
_
w
r
i
t
e
_
p
o
r
t
_
s
i
g
n
a
l
s
_
w
r
i
t
e

r
e
t
u
r
n
s

t
r
u
e

a
n
d

r
e
g
_
w
r
i
t
e
p
o
r
t
_
s
i
g
n
a
l
s
_
p
h
y
s
i
c
a
l

r
e
t
u
r
n
s

t
h
e

u
n
k
n
o
w
n

v
a
l
u
e

w
h
e
n

i
n
v
o
k
e
d
,

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

r
e
g
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

s
h
o
u
l
d

b
e

i
n
i
t
i
a
l
i
s
e
d

t
o

t
h
e

e
m
p
t
y

c
o
l
l
e
c
t
i
o
n

s
i
n
c
e

a
n
y

v
a
l
u
e

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

r
e
g
i
s
t
e
r

b
a
n
k

m
a
y

h
a
v
e

b
e
e
n

u
p
d
a
t
e
d

a
n
d

t
h
u
s

a
l
l

a
r
e

n
o
w

e
f
f
e
c
t
i
v
e
l
y

t
h
e

u
n
k
n
o
w
n

v
a
l
u
e
.

E
a
c
h

f
u
n
c
t
i
o
n

s
h
o
u
l
d

b
e

n
a
m
e
d

u
s
i
n
g

r
e
g
_
b
a
n
k
_

s
u
f
f
i
x
e
d

w
i
t
h

t
h
e

n
a
m
e

o
f

t
h
e

w
r
i
t
e

p
o
r
t

t
h
a
t

i
t

s
i
m
u
l
a
t
e
s
.

*
)

e
n
d

e
n
d
;

(
*

I
f

a

p
r
o
c
e
s
s
o
r

c
o
r
e

h
a
s

s
e
v
e
r
a
l

b
a
n
k
s

o
f

p
h
y
s
i
c
a
l

r
e
g
i
s
t
e
r
s

(
f
o
r

e
x
a
m
p
l
e
,

t
h
e

A
R
M
6

h
a
s

o
n
e

f
o
r

d
a
t
a

r
e
g
i
s
t
e
r
s

a
n
d

o
n
e

f
o
r

p
r
o
g
r
a
m

s
t
a
t
u
s

r
e
g
i
s
t
e
r
s
)
,

e
a
c
h

b
a
n
k

s
h
o
u
l
d

b
e

e
n
c
a
p
s
u
l
a
t
e
d

u
s
i
n
g

s
e
p
a
r
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e
s

d
e
f
i
n
e
d

a
s

p
e
r

t
h
e

e
x
a
m
p
l
e

a
b
o
v
e
.

*
)

l
o
c
a
l

a
b
s
t
y
p
e

t
u
b
e

=

T
U
B
E

o
f

(
b
o
o
l

*

d
i
g
i
t
a
l
_
v
a
l
u
e

*

(
d
i
g
i
t
a
l
_
v
a
l
u
e
s

*

d
i
g
i
t
a
l
_
v
a
l
u
e
s
)
)

w
i
t
h

v
a
l

t
u
b
e
_
i
n
i
t

:

u
n
i
t
(
)

-
>

t
u
b
e

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

t
u
b
e
_
a
d
d
r

(
T
U
B
E
(
_
,

a
d
d
r
,

_
)
)

=

a
d
d
r
;

f
u
n

t
u
b
e
_
m
a
p

(
T
U
B
E
(
e
o
t
,

_
,

_
)
)

a
d
d
r

=

l
e
t

v
a
l

a
d
d
r
_
_
1

=

f
n

(
)

=
>

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t

B
I
T
_
_
1

a
d
d
r
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t

B
I
T
_
_
1

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

t
u
b
e
_
m
a
p
"
;

v
a
l

a
d
d
r
_
_
0

=

f
n

(
)

=
>

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t

B
I
T
_
_
0

a
d
d
r
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t

B
I
T
_
_
0

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

t
u
b
e
_
m
a
p
"

266

i
n

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

a
d
d
r

t
h
e
n

S
O
M
E
(
T
U
B
E
(
e
o
t
,

a
d
d
r
,

(
a
d
d
r
_
_
1

(
)
,

a
d
d
r
_
_
0

(
)
)
)
)

e
l
s
e

N
O
N
E

e
n
d
;

f
u
n

t
u
b
e
_
e
o
t

(
T
U
B
E
(
e
o
t
,

_
,

_
)
)

=

e
o
t
;

v
a
l

t
u
b
e
_
t
r
a
n
s
m
i
t

:

t
u
b
e

-
>

(
*

t
u
p
l
e

o
f

v
a
l
u
e
s

o
f

r
e
l
e
v
a
n
t

s
i
g
n
a
l
s

*
)

-
>

t
u
b
e

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

i
n

a
b
s
t
y
p
e

m
e
m
o
r
y

=

M
E
M
O
R
Y

o
f

d
i
g
i
t
a
l
_
v
a
l
u
e

o
p
t
i
o
n

a
r
r
a
y

o
p
t
i
o
n

a
r
r
a
y

*

(
b
o
o
l

o
p
t
i
o
n

*

b
o
o
l

o
p
t
i
o
n
)

*

(
(
d
i
g
i
t
a
l
_
v
a
l
u
e

-
>

b
o
o
l
)

*

(
d
i
g
i
t
a
l
_
v
a
l
u
e

-
>

b
o
o
l
)
)

*

t
u
b
e

o
p
t
i
o
n

w
i
t
h

l
o
c
a
l

f
u
n

a
d
d
r
e
s
s

(
p
a
g
e
_
n
u
m
b
e
r
,

p
a
g
e
_
e
n
t
r
y
)

=

l
e
t

v
a
l

p
a
g
e
_
n
u
m
b
e
r
'

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
s
l

(
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

p
a
g
e
_
n
u
m
b
e
r
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

p
a
g
e
_
n
u
m
b
e
r

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

a
d
d
r
e
s
s
"
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

I

[
(
B
I
T
_
_
4
,

B
I
T
_
_
4
)
]
)
;

v
a
l

p
a
g
e
_
e
n
t
r
y
'

=

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
s
l

(
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

p
a
g
e
_
e
n
t
r
y

)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
i
n
t

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

p
a
g
e
_
e
n
t
r
y

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

a
d
d
r
e
s
s
"
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

I

[
(
B
I
T
_
_
1
,

B
I
T
_
_
1
)
]
)
;

i
n

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
o
r

(
p
a
g
e
_
n
u
m
b
e
r
'
,

p
a
g
e
_
e
n
t
r
y
'
)
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
o
r

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

a
d
d
r
e
s
s
"

e
n
d
;

f
u
n

c
h
e
c
k
_
m
e
m
o
r
y

(

[
]
)

=

N
O
N
E

|

c
h
e
c
k
_
m
e
m
o
r
y

(
(
x
,

v
a
l
u
e
)
:
:
x
s
)

=

i
f

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

x

a
n
d
a
l
s
o

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
q
u
a
l
_
t
y
p
e

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

v
a
l
u
e

t
h
e
n

c
h
e
c
k
_
m
e
m
o
r
y

x
s

e
l
s
e

S
O
M
E
(
x
,

v
a
l
u
e
)
;

f
u
n

p
a
g
e
_
e
n
t
r
y

d
i
g
i
t
a
l
_
v
a
l
u
e

=

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
r
i

(
f
n

(
_
,

I
,

x
)

=
>

x

+

x

+

1

|

(
_
,

O
,

x
)

=
>

x

+

x
)

0

(
d
i
g
i
t
a
l
_
v
a
l
u
e
,

B
I
T
_
_
2
,

S
O
M
E

1
4
)
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
l
i

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

p
a
g
e
_
e
n
t
r
y
"
;

267

f
u
n

p
a
g
e
_
n
u
m
b
e
r

d
i
g
i
t
a
l
_
v
a
l
u
e

=

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
r
i

(
f
n

(
_
,

I
,

x
)

=
>

x

+

x

+

1

|

(
_
,

O
,

x
)

=
>

x

+

x
)

0

(
d
i
g
i
t
a
l
_
v
a
l
u
e
,

B
I
T
_
1
6
,

N
O
N
E
)
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
o
l
d
l
i

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

p
a
g
e
_
n
u
m
b
e
r
"
;

f
u
n

w
o
r
d
_
a
l
i
g
n

d
i
g
i
t
a
l
_
v
a
l
u
e

=

(

f
n

S
O
M
E

d
i
g
i
t
a
l
_
v
a
l
u
e
'

=
>

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
_
s
e
t

B
I
T
_
_
1

d
i
g
i
t
a
l
_
v
a
l
u
e
'

O
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
_
s
e
t

B
I
T
_
_
1

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

w
o
r
d
_
a
l
i
g
n
"

|

N
O
N
E

=
>

(
f
n

S
O
M
E

d
i
g
i
t
a
l
_
v
a
l
u
e
'

=
>

d
i
g
i
t
a
l
_
v
a
l
u
e
'

|

N
O
N
E

=
>

d
i
g
i
t
a
l
_
v
a
l
u
e

)

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
_
s
e
t

B
I
T
_
_
1

d
i
g
i
t
a
l
_
v
a
l
u
e

O
)

)

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
i
t
_
s
e
t

B
I
T
_
_
0

d
i
g
i
t
a
l
_
v
a
l
u
e

O
)
;

f
u
n

d
e
l
e
t
e

a
d
d
r

p
a
g
e
s

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r

a
d
d
r
)
)

o
f

(
S
O
M
E

p
a
g
e
)

=
>

A
r
r
a
y
.
u
p
d
a
t
e
(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y

a
d
d
r
,

N
O
N
E
)

|

(
N
O
N
E

)

=
>

(
)
;

f
u
n

f
i
n
d

a
d
d
r

p
a
g
e
s

=

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r

a
d
d
r
)
)

o
f

(
S
O
M
E

p
a
g
e
)

=
>

A
r
r
a
y
.
s
u
b
(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y

a
d
d
r
)

|

(
N
O
N
E

)

=
>

N
O
N
E
;

f
u
n

i
n
s
e
r
t

a
d
d
r

p
a
g
e
s

v
a
l
u
e
'

=

l
e
t

v
a
l

p
a
g
e
_
n
u
m
b
e
r

=

p
a
g
e
_
n
u
m
b
e
r

a
d
d
r
;

v
a
l

p
a
g
e
_
e
n
t
r
y

=

p
a
g
e
_
e
n
t
r
y

a
d
d
r

i
n

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r
)
)

o
f

(
S
O
M
E

p
a
g
e
)

=
>

(

c
a
s
e

(
A
r
r
a
y
.
s
u
b
(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y
)
)

o
f

(
S
O
M
E

v
a
l
u
e
)

=
>

A
r
r
a
y
.
u
p
d
a
t
e

(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y
,

S
O
M
E
(
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e

(
v
a
l
u
e
,

v
a
l
u
e
'
)
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
r
e
p
l
a
c
e

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

i
n
s
e
r
t
"
)
)

268

|

(
N
O
N
E

)

=
>

A
r
r
a
y
.
u
p
d
a
t
e

(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y
,

S
O
M
E
(
(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d

O

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

v
a
l
u
e
'
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

i
n
s
e
r
t
"
)
)

)

|

(
N
O
N
E

)

=
>

l
e
t

v
a
l

p
a
g
e

=

A
r
r
a
y
.
a
r
r
a
y
(
1
6
3
8
4
,

N
O
N
E
)
;

v
a
l

v
a
l
u
e
'

=

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d

O

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

v
a
l
u
e
'
)

g
u
a
r
d

"
d
i
g
i
t
a
l
_
v
a
l
u
e
_
p
a
d

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

i
n
s
e
r
t
"

i
n

A
r
r
a
y
.
u
p
d
a
t
e
(
p
a
g
e
,

p
a
g
e
_
e
n
t
r
y
,

S
O
M
E

v
a
l
u
e
'
)
;

A
r
r
a
y
.
u
p
d
a
t
e
(
p
a
g
e
s
,

p
a
g
e
_
n
u
m
b
e
r
,

S
O
M
E

p
a
g
e

)

e
n
d

e
n
d
;

(
*

t
h
e

d
b
u
s
_
o
p
e
r
a
t
i
o
n

a
n
d

t
h
e

i
b
u
s
_
o
p
e
r
a
t
i
o
n

f
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

t
o

p
a
t
t
e
r
n

m
a
t
c
h

o
n

t
h
e

v
a
l
u
e
s

o
f

r
e
l
e
v
a
n
t

o
u
t
p
u
t
s

a
n
d

t
h
u
s

d
e
t
e
r
m
i
n
e

t
h
e

b
u
s

o
p
e
r
a
t
i
o
n
,

i
f

a
n
y
,

i
n

p
r
o
g
r
e
s
s
,

s
u
c
h

t
h
a
t

i
t

c
a
n

p
e
r
f
o
r
m

t
h
i
s

o
p
e
r
a
t
i
o
n

o
n

t
h
e

c
o
l
l
e
c
t
i
o
n

o
f

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

m
e
m
o
r
y

a
b
s
t
r
a
c
t

t
y
p
e
.

T
h
e
s
e

f
u
n
c
t
i
o
n
s

s
h
o
u
l
d

r
e
t
u
r
n

a

p
a
i
r

o
f

t
h
e

o
p
t
i
o
n
a
l

m
e
m
o
r
y

a
b
s
t
r
a
c
t

t
y
p
e

a
n
d

t
h
e

o
p
t
i
o
n
a
l

d
i
g
i
t
a
l
_
v
a
l
u
e

a
b
s
t
r
a
c
t

t
y
p
e
.

T
h
i
s

p
a
i
r

s
h
o
u
l
d

i
n
c
l
u
d
e

t
h
e

u
p
d
a
t
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

m
e
m
o
r
y

a
b
s
t
r
a
c
t

t
y
p
e

w
h
e
n

t
h
e

*
b
u
s
_
o
p
e
r
a
t
i
o
n

f
u
n
c
t
i
o
n

p
e
r
f
o
r
m
e
d

a

m
e
m
o
r
y

w
r
i
t
e

b
u
s

o
p
e
r
a
t
i
o
n

a
n
d

t
h
e

v
a
l
u
e

r
e
a
d

f
r
o
m

m
e
m
o
r
y

a
s

a

d
i
g
i
t
a
l
_
v
a
l
u
e

a
b
s
t
r
a
c
t

t
y
p
e

w
h
e
n

t
h
e

*
b
u
s
_
o
p
e
r
a
t
i
o
n

f
u
n
c
t
i
o
n

p
e
r
f
o
r
m
e
d

a

m
e
m
o
r
y

r
e
a
d

b
u
s

o
p
e
r
a
t
i
o
n
.

*
)

i
n

f
u
n

m
e
m
o
r
y
_
i
n
i
t
(
)

=

M
E
M
O
R
Y
(
A
r
r
a
y
.
a
r
r
a
y
(
6
5
5
3
6
,

N
O
N
E
)
,

(
S
O
M
E

f
a
l
s
e
,

S
O
M
E

f
a
l
s
e
)
,

(
f
n

x

=
>

f
a
l
s
e
,

f
n

x

=
>

f
a
l
s
e
)
,

N
O
N
E
)
;

f
u
n

m
e
m
o
r
y
_
i
n
i
t
_
m
e
m
o
r
y

(
M
E
M
O
R
Y
(
_
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

t
u
b
e
)
)

m
e
m
o
r
y

=

c
a
s
e

(
c
h
e
c
k
_
m
e
m
o
r
y

m
e
m
o
r
y
)

o
f

N
O
N
E

=
>

l
e
t

v
a
l

m
e
m
o
r
y
'

=

A
r
r
a
y
.
a
r
r
a
y
(
6
5
5
3
6
,

N
O
N
E
)
;

v
a
l

_

=

a
p
p

(
f
n

(
a
d
d
r
,

w
o
r
d
)

=
>

i
n
s
e
r
t

a
d
d
r

m
e
m
o
r
y
'

w
o
r
d
)

m
e
m
o
r
y

i
n

M
E
M
O
R
Y
(
m
e
m
o
r
y
'
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

t
u
b
e
)

e
n
d

269

|

S
O
M
E
(
x
,

v
a
l
u
e
)

=
>

e
r
r
o
r

(
"
(
"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

x
)

^

"
,

"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g

v
a
l
u
e
)

^

"
)

i
s

n
o
t

o
f

t
h
e

p
r
o
p
e
r

t
y
p
e

t
o

d
e
s
c
r
i
b
e

a

m
e
m
o
r
y

l
o
c
a
t
i
o
n

i
n

m
e
m
o
r
y
_
i
n
i
t
_
m
e
m
o
r
y
"
)
;

v
a
l

m
e
m
o
r
y
_
d
a
b
o
r
t

:

m
e
m
o
r
y

-
>

i
n
p
u
t

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

m
e
m
o
r
y
_
i
a
b
o
r
t

:

m
e
m
o
r
y

-
>

i
n
p
u
t

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

m
e
m
o
r
y
_
u
p
d
a
t
e

:

m
e
m
o
r
y

-
>

c
o
r
e
_
o
u
t
p
u
t
s

-
>

m
e
m
o
r
y

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

f
u
n

m
e
m
o
r
y
_
d
a
b
o
r
t
_
m
a
p

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

(
_
,

i
a
b
o
r
t
_
m
a
p
)
,

t
u
b
e
)
)

d
a
b
o
r
t
_
m
a
p

=

M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

(
d
a
b
o
r
t
_
m
a
p
,

i
a
b
o
r
t
_
m
a
p
)
,

t
u
b
e
)
;

f
u
n

m
e
m
o
r
y
_
i
a
b
o
r
t
_
m
a
p

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

(
d
a
b
o
r
t
_
m
a
p
,

_

)
,

t
u
b
e
)
)

i
a
b
o
r
t
_
m
a
p

=

M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

(
d
a
b
o
r
t
_
m
a
p
,

i
a
b
o
r
t
_
m
a
p
)
,

t
u
b
e
)
;

f
u
n

m
e
m
o
r
y
_
t
o
_
s
t
r
i
n
g

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

_
,

_
,

_
)
)

=

A
r
r
a
y
.
f
o
l
d
r
i

(
f
n

(
i
,

S
O
M
E

p
a
g
e
,

s
)

=
>

A
r
r
a
y
.
f
o
l
d
r
i

(
f
n

(
j
,

S
O
M
E

w
o
r
d
,

s
)

=
>

s

^

"
0
x
"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

H
E
X

(
a
d
d
r
e
s
s

(
i
,

j
)
)
)

^

"
\
t
0
x
"

^

(
d
i
g
i
t
a
l
_
v
a
l
u
e
_
t
o
_
s
t
r
i
n
g
_
f
m
t

H
E
X

w
o
r
d
)

^

"
\
n
"

|

(
j
,

N
O
N
E
,

s
)

=
>

s
)

s

(
p
a
g
e
,

0
,

N
O
N
E
)

|

(
i
,

N
O
N
E
,

s
)

=
>

s
)

"
"

(
m
e
m
o
r
y
,

0
,

N
O
N
E
)
;

f
u
n

m
e
m
o
r
y
_
t
u
b
e
_
i
n
i
t

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

_

)
)

=

M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

S
O
M
E
(
t
u
b
e
_
i
n
i
t
(
)
)
)
;

f
u
n

m
e
m
o
r
y
_
t
u
b
e
_
m
a
p

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

S
O
M
E

t
u
b
e
)
)

a
d
d
r

=

(
f
n

S
O
M
E

t
u
b
e
'

=
>

S
O
M
E
(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

S
O
M
E

t
u
b
e
'
)
)

|

_

=
>

N
O
N
E
)

(
t
u
b
e
_
m
a
p

t
u
b
e

a
d
d
r
)

|

m
e
m
o
r
y
_
t
u
b
e
_
m
a
p

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

N
O
N
E

)
)

a
d
d
r

=

(
f
n

S
O
M
E

t
u
b
e
'

=
>

S
O
M
E
(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

S
O
M
E

t
u
b
e
'
)
)

|

_

=
>

N
O
N
E
)

(
t
u
b
e
_
m
a
p

(
t
u
b
e
_
i
n
i
t
(
)
)

a
d
d
r
)
;

f
u
n

m
e
m
o
r
y
_
t
u
b
e
_
u
n
m
a
p

(
M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

_

)
)

=

M
E
M
O
R
Y
(
m
e
m
o
r
y
,

a
b
o
r
t
s
,

a
b
o
r
t
_
m
a
p
s
,

N
O
N
E
)
;

f
u
n

m
e
m
o
r
y
_
t
u
b
e
_
a
d
d
r

(
M
E
M
O
R
Y
(
_
,

_
,

_
,

t
u
b
e
)
)

=

(
f
n

S
O
M
E

t
u
b
e

=
>

S
O
M
E
(
t
u
b
e
_
a
d
d
r

t
u
b
e
)

|

_

=
>

N
O
N
E
)

t
u
b
e
;

f
u
n

m
e
m
o
r
y
_
t
u
b
e
_
e
o
t

(
M
E
M
O
R
Y
(
_
,

_
,

_
,

t
u
b
e
)
)

=

(
f
n

S
O
M
E

t
u
b
e

=
>

S
O
M
E
(
t
u
b
e
_
e
o
t

t
u
b
e
)

|

_

=
>

N
O
N
E
)

t
u
b
e
;

270

v
a
l

d
a
t
a
_
m
e
m
o
r
y
_
r
e
a
d

:

m
e
m
o
r
y

-
>

o
u
t
p
u
t
s

-
>

i
n
p
u
t

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

d
a
t
a
_
m
e
m
o
r
y
_
w
r
i
t
e

:

m
e
m
o
r
y

-
>

o
u
t
p
u
t
s

-
>

m
e
m
o
r
y

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

i
n
s
t
r
u
c
t
i
o
n
_
m
e
m
o
r
y
_
r
e
a
d

:

m
e
m
o
r
y

-
>

o
u
t
p
u
t
s

-
>

i
n
p
u
t

o
p
t
i
o
n

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

e
n
d

e
n
d

e
n
d
;

a
b
s
t
y
p
e

b
u
f
f
e
r

=

B
U
F
F
E
R

o
f

(
*

S
e
e

S
u
m
m
a
r
y

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

w
i
t
h

v
a
l

b
u
f
f
e
r
_
i
n
i
t

:

u
n
i
t

-
>

b
u
f
f
e
r

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

b
u
f
f
e
r
_
u
p
d
a
t
e

b
u
f
f
e
r

-
>

b
u
s

l
i
s
t

*

l
a
t
c
h

l
i
s
t

-
>

b
u
f
f
e
r

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

b
u
f
f
e
r
_
l
o
o
o
k
u
p
_
b
u
s
e
s

b
u
f
f
e
r

-
>

s
t
a
g
e
s

-
>

b
u
s

l
i
s
t

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

v
a
l

b
u
f
f
e
r
_
l
o
o
o
k
u
p
_
l
a
t
c
h
e
s

b
u
f
f
e
r

-
>

s
t
a
g
e
s

-
>

l
a
t
c
h

l
i
s
t

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

e
n
d

i
n

a
b
s
t
y
p
e

e
n
v
i
r
o
n
m
e
n
t

=

E
N
V
I
R
O
N
M
E
N
T

o
f

m
e
m
o
r
y

*

(
c
o
r
e
_
i
n
p
u
t
s

*

c
o
r
e
_
o
u
t
p
u
t
s
)

*

(
i
n
t

*

p
h
a
s
e
s

*

(
i
n
t

*

i
n
p
u
t
)

l
i
s
t
)

a
n
d

s
t
a
t
e

=

S
T
A
T
E

o
f

(
*

t
u
p
l
e

o
f

p
h
y
s
i
c
a
l

r
e
g
i
s
t
e
r

b
a
n
k
s

*
)

*

(
b
u
s

l
i
s
t

*

l
a
t
c
h

l
i
s
t
)

*

b
u
f
f
e
r

*

t
r
a
c
e

w
i
t
h

f
u
n

s
t
a
t
e
_
t
r
a
c
e

(
S
T
A
T
E
(
_
,

_
,

_
,

t
r
a
c
e
)
)

=

t
r
a
c
e
;

v
a
l

s
t
a
t
e
_
i
n
i
t

:

u
n
i
t

-
>

s
t
a
t
e

=

(
*

S
e
e

S
u
m
m
a
r
y

o
f

F
u
n
c
t
i
o
n
s

t
h
a
t

P
r
o
v
i
d
e

I
n
t
e
r
f
a
c
e

o
f

T
y
p
e
s

D
e
f
i
n
e
d

b
y

M
o
d
u
l
e

a
b
o
v
e
.

*
)

(
*

F
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

t
o

i
n
v
o
k
e

t
h
e

f
u
n
c
t
i
o
n
s

s
u
f
f
i
x
e
d

w
i
t
h

_
i
n
i
t

a
n
d

_
t
o
_
s
t
r
i
n
g

t
h
a
t

a
r
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

o
n

t
h
e

i
n
s
t
a
n
c
e
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

s
t
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e
.

*
)

271

l
o
c
a
l

f
u
n

f
i
n
d

f

x

(

[
]

)

=

N
O
N
E

|

f
i
n
d

f

x

(
x
'
:
:
x
s
'
)

=

c
a
s
e

(
f

x
'
)

o
f

S
O
M
E
(
x
'
'
,

v
a
l
u
e
)

=
>

i
f

x

=

x
'
'

t
h
e
n

S
O
M
E
(
v
a
l
u
e
)

e
l
s
e

f
i
n
d

f

x

x
s
'

|

N
O
N
E

=
>

f
i
n
d

f

x

x
s
'

i
n

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

_
,

_
)
)

(
N
O
N
E

)

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

=

f
i
n
d

b
u
s
_
d
i
g
i
t
a
l
_
v
a
l
u
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

(
b
u
s
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

=

f
i
n
d

b
u
s
_
d
i
g
i
t
a
l
_
v
a
l
u
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
b
u
s
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
b
o
o
l
e
a
n
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

_
,

_
)
)

(
N
O
N
E

)

b
o
o
l
e
a
n
_
b
u
s

=

f
i
n
d

b
u
s
_
b
o
o
l
e
a
n

b
o
o
l
e
a
n
_
b
u
s

(
b
u
s
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
b
o
o
l
e
a
n
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

b
o
o
l
e
a
n
_
b
u
s

=

f
i
n
d

b
u
s
_
b
o
o
l
e
a
n

b
o
o
l
e
a
n
_
b
u
s

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
b
u
s
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
c
l
a
s
s
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

_
,

_
)
)

(
N
O
N
E

)

i
n
s
_
c
l
a
s
s
_
b
u
s

=

f
i
n
d

b
u
s
_
i
n
s
_
c
l
a
s
s

i
n
s
_
c
l
a
s
s
_
b
u
s

(
b
u
s
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
c
l
a
s
s
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

i
n
s
_
c
l
a
s
s
_
b
u
s

=

f
i
n
d

b
u
s
_
i
n
s
_
c
l
a
s
s

i
n
s
_
c
l
a
s
s
_
b
u
s

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
b
u
s
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
s
t
e
p
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

_
,

_
)
)

(
N
O
N
E

)

i
n
s
_
s
t
e
p
_
b
u
s

=

f
i
n
d

b
u
s
_
i
n
s
_
s
t
e
p

i
n
s
_
s
t
e
p
_
b
u
s

(
b
u
s
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
s
t
e
p
_
b
u
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

_
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

i
n
s
_
s
t
e
p
_
b
u
s

=

f
i
n
d

b
u
s
_
i
n
s
_
s
t
e
p

i
n
s
_
s
t
e
p
_
b
u
s

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
b
u
s
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

_
,

_
)
)

(
N
O
N
E

)

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
d
i
g
i
t
a
l
_
v
a
l
u
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
a
t
c
h

(
l
a
t
c
h
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
d
i
g
i
t
a
l
_
v
a
l
u
e

d
i
g
i
t
a
l
_
v
a
l
u
e
_
l
a
t
c
h

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
l
a
t
c
h
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

_
,

_
)
)

(
N
O
N
E

)

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

(
l
a
t
c
h
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
l
a
t
c
h
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

_
,

_
)
)

(
N
O
N
E

)

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

(
l
a
t
c
h
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
r
e
s
e
t
_
s
e
t

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
l
a
t
c
h
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

_
,

_
)
)

(
N
O
N
E

)

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
i
n
s
_
c
l
a
s
s

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

(
l
a
t
c
h
e
s

)

272

|

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
i
n
s
_
c
l
a
s
s

i
n
s
_
c
l
a
s
s
_
l
a
t
c
h

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
l
a
t
c
h
e
s

b
u
f
f
e
r

s
t
g
)
;

f
u
n

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
s
t
e
p
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

_
,

_
)
)

(
N
O
N
E

)

i
n
s
_
s
t
e
p
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
i
n
s
_
s
t
e
p

i
n
s
_
s
t
e
p
_
l
a
t
c
h

(
l
a
t
c
h
e
s

)

|

s
t
a
t
e
_
l
o
o
k
u
p
_
i
n
s
_
s
t
e
p
_
l
a
t
c
h

(
S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

_
)
)

(
S
O
M
E

s
t
g
)

i
n
s
_
s
t
e
p
_
l
a
t
c
h

=

f
i
n
d

l
a
t
c
h
_
i
n
s
_
s
t
e
p

i
n
s
_
s
t
e
p
_
l
a
t
c
h

(
b
u
f
f
e
r
_
l
o
o
k
u
p
_
l
a
t
c
h
e
s

b
u
f
f
e
r

s
t
g
)

e
n
d
;

f
u
n

s
t
a
t
e
_
i
n
s
e
r
t
_
b
u
s
e
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)
)

n
e
w
_
b
u
s
e
s

=

l
e
t

v
a
l

b
a
n
k
s
'

=

(
*

r
e
s
u
l
t

o
f

i
n
v
o
k
i
n
g

t
h
e

f
u
n
c
t
i
o
n
s

s
u
f
f
i
x
e
d

_
u
p
d
a
t
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

o
n

t
h
e

i
n
s
t
a
n
c
e
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

s
t
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e
.

*
)

v
a
l

b
u
s
e
s
'

=

f
o
l
d
l

(
f
n

(
S
O
M
E

n
e
w
_
b
u
s
,

b
u
s
e
s
'
)

=
>

n
e
w
_
b
u
s
:
:
b
u
s
e
s
'

|

(
N
O
N
E
,

b
u
s
e
s
'
)

=
>

b
u
s
e
s
'
)

b
u
s
e
s

n
e
w
_
b
u
s
e
s
;

v
a
l

_

=

t
r
a
c
e
_
a
d
d
_
b
u
s
e
s

t
r
a
c
e

n
e
w
_
b
u
s
e
s

i
n

S
T
A
T
E
(
b
a
n
k
s
'
,

(
b
u
s
e
s
'
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)

e
n
d
;

(
*

F
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

t
o

i
n
v
o
k
e

t
h
o
s
e

f
u
n
c
t
i
o
n
s

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

t
h
a
t

p
r
o
v
i
d
e

f
o
r

i
n
s
p
e
c
t
i
o
n

o
f

r
e
a
d

p
o
r
t
s

a
n
d

s
i
m
u
l
a
t
i
o
n

o
f

w
r
i
t
e

p
o
r
t
s
.

*
)

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t

(
)

=

l
e
t

v
a
l

f

=

f
n

(
c
c
,

(
i
,

v
)
)

=
>

(
c
c
,

(
i
n
p
u
t
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e
(
i
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

v

[
(
B
I
T
_
_
0
,

B
I
T
_
_
0
)
]
)
)

g
u
a
r
d

"
i
n
p
u
t
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

u
n
e
x
p
e
c
t
e
d
l
y

r
e
t
u
r
n
e
d

N
O
N
E

i
n

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
"
)

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
_
i
n
i
t
(
)
,

(
c
o
r
e
_
i
n
p
u
t
s
_
i
n
i
t
(
)
,

c
o
r
e
_
o
u
t
p
u
t
s
_
i
n
i
t
(
)
)
,

(
~
1
,

P
H
1
,

m
a
p

f

[
(
0
,

(
B
I
G
E
N
D
_
I
N
P
U
T
,

O
)
)
,

(
0
,

(
N
F
I
Q
_
I
N
P
U
T
,

I
)
)
,

(
0
,

(
N
I
R
Q
_
I
N
P
U
T
,

I
)
)
,

(
0
,

(
N
R
E
S
E
T
_
I
N
P
U
T
,

O
)
)
,

(
4
,

(
N
R
E
S
E
T
_
I
N
P
U
T
,

I
)
)
]
)
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
m
e
m
o
r
y

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
)

m
e
m
o
r
y
'

=

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
_
i
n
i
t
_
m
e
m
o
r
y

m
e
m
o
r
y

m
e
m
o
r
y
'
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
m
e
m
o
r
y
_
t
o
_
s
t
r
i
n
g

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

_
,

_
)
)

=

m
e
m
o
r
y
_
t
o
_
s
t
r
i
n
g

m
e
m
o
r
y
;

273

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
i
n
i
t

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
)

=

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
_
t
u
b
e
_
i
n
i
t

m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
m
a
p

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
)

a
d
d
r

=

(
f
n

S
O
M
E

m
e
m
o
r
y
'

=
>

S
O
M
E
(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
'
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
)

|

_

=
>

N
O
N
E
)

(
m
e
m
o
r
y
_
t
u
b
e
_
m
a
p

m
e
m
o
r
y

a
d
d
r
)
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
u
n
m
a
p

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
)

=

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
_
t
u
b
e
_
u
n
m
a
p

m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

t
i
m
i
n
g
)
;

l
o
c
a
l

f
u
n

q
u
i
c
k
s
o
r
t

l
t

(

[
]
)

x
x
s
'

=

x
x
s
'

|

q
u
i
c
k
s
o
r
t

l
t

(
x
:
:
[
]
)

x
x
s
'

=

x
:
:
x
x
s
'

|

q
u
i
c
k
s
o
r
t

l
t

(
x
:
:
x
s
)

x
x
s
'

=

l
e
t

f
u
n

p
a
r
t
i
t
i
o
n

(
l
,

r
,

[
]
)

=

q
u
i
c
k
s
o
r
t

l
t

l

(
x
:
:
q
u
i
c
k
s
o
r
t

l
t

r

x
x
s
'
)

|

p
a
r
t
i
t
i
o
n

(
l
,

r
,

y
:
:
y
s
)

=

i
f

l
t
(
x
,

y
)

t
h
e
n

p
a
r
t
i
t
i
o
n

(
y
:
:
l
,

r
,

y
s
)

e
l
s
e

p
a
r
t
i
t
i
o
n

(
l
,

y
:
:
r
,

y
s
)

i
n

p
a
r
t
i
t
i
o
n

(
[
]
,

[
]
,

x
s
)

e
n
d
;

v
a
l

f
i
l
t
e
r

:

(
i
n
t

*

i
n
p
u
t
)

l
i
s
t

-
>

(
i
n
t

*

i
n
p
u
t
)

l
i
s
t

=

(
*

f
u
n
c
t
i
o
n

s
h
o
u
l
d

d
i
s
c
a
r
d

a
n
y

i
t
e
m
s

i
n

t
h
e

s
p
e
c
i
f
i
e
d

l
i
s
t

t
h
a
t

i
n
c
l
u
d
e

i
n
s
t
a
n
c
e
s

o
f

t
h
e

i
n
p
u
t

a
b
s
t
r
a
c
t

t
y
p
e

c
r
e
a
t
e
d

w
i
t
h

c
o
n
s
t
r
u
c
t
o
r
s

o
f

t
h
e

i
n
p
u
t
s

d
a
t
a

t
y
p
e

a
s
s
o
c
i
a
t
e
d

w
i
t
h

i
n
p
u
t
s

t
h
e

p
r
e
s
e
n
t
a
t
i
o
n

m
o
d
e
l
s

i
t
s
e
l
f
.

F
o
r

e
x
a
m
p
l
e
,

i
t

s
h
o
u
l
d

d
i
s
c
a
r
d

t
h
o
s
e

i
n
s
t
a
n
c
e
s

w
i
t
h

c
o
n
s
t
r
u
c
t
o
r
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

d
a
t
a

i
n
p
u
t
s

f
r
o
m

m
e
m
o
r
y
.

*
)

i
n

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
e
v
e
n
t
s

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

(
c
y
c
l
e
,

p
h
a
s
e
,

_
)
)
)

e
v
e
n
t
s

=

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

(
c
y
c
l
e
,

p
h
a
s
e
,

q
u
i
c
k
s
o
r
t

(
f
n

(
(
x
,

_
)
,

(
y
,

_
)
)

=
>

x

<
=

y
)

(
f
i
l
t
e
r

e
v
e
n
t
s
)

[
]
)
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
i
n
p
u
t

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

(
i
n
p
u
t
s
,

_

)
,

_
)
)

i
d

=

c
o
r
e
_
i
n
p
u
t
s
_
l
o
o
k
u
p
_
i
n
p
u
t

i
n
p
u
t
s

i
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
o
u
t
p
u
t

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

(
_
,

o
u
t
p
u
t
s
)
,

_
)
)

i
d

=

c
o
r
e
_
o
u
t
p
u
t
s
_
l
o
o
k
u
p
_
o
u
t
p
u
t

o
u
t
p
u
t
s

i
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
l
o
o
k
u
p
_
c
y
c
l
e

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

_
,

(
c
y
c
l
e
,

_
,

_
)
)
)

=

c
y
c
l
e
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
l
o
o
k
u
p
_
p
h
a
s
e

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

_
,

(
_
,

p
h
a
s
e
,

_
)
)
)

=

p
h
a
s
e
;

274

l
o
c
a
l

f
u
n

i
n
p
u
t
_
e
v
e
n
t
_
p
r
o
c
e
s
s

n

(

[
]
)

=

(
[
]
,

[
]
)

|

i
n
p
u
t
_
e
v
e
n
t
_
p
r
o
c
e
s
s

n

(
(
m
,

i
n
p
u
t
)
:
:
x
s
)

=

i
f

m

>

n

t
h
e
n

(
[
]
,

(
m
,

i
n
p
u
t
)
:
:
x
s
)

e
l
s
e

(
f
n

(
i
n
p
u
t
s
,

e
v
e
n
t
s
)

=
>

(
i
n
p
u
t
:
:
i
n
p
u
t
s
,

e
v
e
n
t
s
)
)

(
i
n
p
u
t
_
e
v
e
n
t
_
p
r
o
c
e
s
s

n

x
s
)

i
n

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
i
n
p
u
t
s

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

(
~
1
,

_
,

e
v
e
n
t
s
)
)
)

=

l
e
t

v
a
l

(
x
s
,

e
v
e
n
t
s
'
)

=

i
n
p
u
t
_
e
v
e
n
t
_
p
r
o
c
e
s
s

0

e
v
e
n
t
s

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

i
n
p
u
t
s

x
s
,

o
u
t
p
u
t
s
)
,

(
0
,

P
H
1
,

e
v
e
n
t
s
'
)
)

e
n
d

|

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
i
n
p
u
t
s

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

(
c
c
,

P
H
1
,

e
v
e
n
t
s
)
)
)

=

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

s
i
g
n
a
l
s
,

(
c
c
,

P
H
2
,

e
v
e
n
t
s
)
)

|

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
i
n
p
u
t
s

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

(
c
c
,

P
H
2
,

e
v
e
n
t
s
)
)
)

=

l
e
t

v
a
l

(
x
s
,

e
v
e
n
t
s
'
)

=

i
n
p
u
t
_
e
v
e
n
t
_
p
r
o
c
e
s
s

(
c
c

+

1
)

e
v
e
n
t
s
;

v
a
l

m
e
m
o
r
y
'

=

m
e
m
o
r
y
_
u
p
d
a
t
e

m
e
m
o
r
y

o
u
t
p
u
t
s
;

v
a
l

x
s
'

=

(
f
n

x
s
'

=
>

(
c
a
s
e

(
m
e
m
o
r
y
_
i
a
b
o
r
t

m
e
m
o
r
y
'
)

o
f

S
O
M
E

x

=
>

x
:
:
x
s
'

|

_

=
>

x
s
'
)
)

(
c
a
s
e

(
m
e
m
o
r
y
_
d
a
b
o
r
t

m
e
m
o
r
y
'
)

o
f

S
O
M
E

x

=
>

x
:
:
x
s

|

_

=
>

x
s
)
;

v
a
l

i
n
p
u
t
s
'

=

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

(
*

r
e
s
u
l
t

o
f

r
e
p
e
a
t
e
d

c
a
l
l
s

t
o

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

t
o

c
l
e
a
r

v
a
l
u
e
s

s
t
o
r
e
d

f
o
r

a
l
l

i
n
p
u
t
s

f
r
o
m

m
e
m
o
r
y

*
)

x
s

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
'
,

(
i
n
p
u
t
s
'
,

o
u
t
p
u
t
s
)
,

(
c
c

+

1
,

P
H
1
,

e
v
e
n
t
s
'
)
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
m
e
m
o
r
y
_
d
a
b
o
r
t
_
m
a
p

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)
)

d
a
b
o
r
t
_
m
a
p

=

l
e
t

v
a
l

m
e
m
o
r
y
'

=

m
e
m
o
r
y
_
d
a
b
o
r
t
_
m
a
p

m
e
m
o
r
y

d
a
b
o
r
t
_
m
a
p
;

v
a
l

i
n
p
u
t
s
'

=

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

i
n
p
u
t
s

(
*

c
o
n
s
t
r
u
c
t
o
r

f
o
r

i
n
p
u
t

o
n

w
h
i
c
h

d
a
t
a

a
b
o
r
t

i
s

d
r
i
v
e
n

*
)

v
a
l

m
e
m
o
r
y
'

=

m
e
m
o
r
y
_
u
p
d
a
t
e

m
e
m
o
r
y
'

o
u
t
p
u
t
s

275

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
'
,

(
c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

i
n
p
u
t
s
'

(
c
a
s
e

(
m
e
m
o
r
y
_
d
a
b
o
r
t

m
e
m
o
r
y
'
)

o
f

S
O
M
E

x

=
>

[
x
]

|

_

=
>

[
]
)
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
m
e
m
o
r
y
_
i
a
b
o
r
t
_
m
a
p

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)
)

i
a
b
o
r
t
_
m
a
p

=

l
e
t

v
a
l

m
e
m
o
r
y
'

=

m
e
m
o
r
y
_
i
a
b
o
r
t
_
m
a
p

m
e
m
o
r
y

i
a
b
o
r
t
_
m
a
p
;

v
a
l

i
n
p
u
t
s
'

=

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

i
n
p
u
t
s

(
*

c
o
n
s
t
r
u
c
t
o
r

f
o
r

i
n
p
u
t

o
n

w
h
i
c
h

i
n
s
t
r
u
c
t
i
o
n

a
b
o
r
t

i
s

d
r
i
v
e
n

*
)

v
a
l

m
e
m
o
r
y
'

=

m
e
m
o
r
y
_
u
p
d
a
t
e

m
e
m
o
r
y
'

o
u
t
p
u
t
s

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
'
,

(
c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

i
n
p
u
t
s
'

(
c
a
s
e

(
m
e
m
o
r
y
_
i
a
b
o
r
t

m
e
m
o
r
y
'
)

o
f

S
O
M
E

x

=
>

[
x
]

|

_

=
>

[
]
)
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)

e
n
d

e
n
d
;

l
o
c
a
l

v
a
l

i
s
_
n
r
e
s
e
t
_
h
i
g
h

:

c
o
r
e
_
i
n
p
u
t
s

-
>

b
o
o
l

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

r
e
t
u
r
n
s

t
r
u
e

i
f

t
h
e

r
e
s
e
t

s
i
g
n
a
l

i
s

d
e
a
s
s
e
r
t
e
d

i
n

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

c
o
r
e
_
i
n
p
u
t
s

a
b
s
t
r
a
c
t

t
y
p
e
;

r
e
t
u
r
n
s

f
a
l
s
e

i
f

t
h
e

r
e
s
e
t

s
i
g
n
a
l

h
a
s

t
h
e

u
n
k
n
o
w
n

v
a
l
u
e

i
n

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e
.

*
)

i
n

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
d
a
t
a
_
m
e
m
o
r
y
_
r
e
a
d

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)
)

=

l
e
t

v
a
l

i
n
p
u
t
s
'

=

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

i
n
p
u
t
s

(
*

c
o
n
s
t
r
u
c
t
o
r

f
o
r

i
n
p
u
t

o
n

w
h
i
c
h

d
a
t
a

f
o
r

m
e
m
o
r
y

r
e
a
d

i
s

d
r
i
v
e
n

*
)

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
f

i
s
_
n
r
e
s
e
t
_
h
i
g
h

i
n
p
u
t
s
'

t
h
e
n

(
f
n

S
O
M
E

i
n
p
u
t

=
>

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

i
n
p
u
t
s
'

[
i
n
p
u
t
]

|

_

=
>

i
n
p
u
t
s
'
)

(
d
a
t
a
_
m
e
m
o
r
y
_
r
e
a
d

m
e
m
o
r
y

o
u
t
p
u
t
s
)

e
l
s
e

i
n
p
u
t
s
'
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
d
a
t
a
_
m
e
m
o
r
y
_
w
r
i
t
e

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)
)

=

l
e
t

v
a
l

i
n
p
u
t
s
'

=

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

i
n
p
u
t
s

(
*

c
o
n
s
t
r
u
c
t
o
r

f
o
r

i
n
p
u
t

o
n

w
h
i
c
h

d
a
t
a

f
o
r

m
e
m
o
r
y

r
e
a
d

i
s

d
r
i
v
e
n

*
)

i
n

E
N
V
I
R
O
N
M
E
N
T
(
i
f

i
s
_
n
r
e
s
e
t
_
h
i
g
h

i
n
p
u
t
s
'

t
h
e
n

(
f
n

S
O
M
E

m
e
m
o
r
y
'

=
>

m
e
m
o
r
y
'

|

_

=
>

m
e
m
o
r
y
)

(
d
a
t
a
_
m
e
m
o
r
y
_
w
r
i
t
e

m
e
m
o
r
y

o
u
t
p
u
t
s
)

e
l
s
e

m
e
m
o
r
y
,

(
i
n
p
u
t
s
'
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
i
n
s
t
r
u
c
t
i
o
n
_
m
e
m
o
r
y
_
r
e
a
d

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)
)

=

l
e
t

v
a
l

i
n
p
u
t
s
'

=

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
i
n
p
u
t

i
n
p
u
t
s

(
*

c
o
n
s
t
r
u
c
t
o
r

f
o
r

i
n
p
u
t

o
n

w
h
i
c
h

d
a
t
a

f
o
r

m
e
m
o
r
y

r
e
a
d

i
s

d
r
i
v
e
n

*
)

276

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
f

i
s
_
n
r
e
s
e
t
_
h
i
g
h

i
n
p
u
t
s
'

t
h
e
n

(
f
n

S
O
M
E

i
n
p
u
t

=
>

c
o
r
e
_
i
n
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
i
n
p
u
t
s

i
n
p
u
t
s
'

[
i
n
p
u
t
]

|

_

=
>

i
n
p
u
t
s
'
)

(
i
n
s
t
r
u
c
t
i
o
n
_
m
e
m
o
r
y
_
r
e
a
d

m
e
m
o
r
y

o
u
t
p
u
t
s
)

e
l
s
e

i
n
p
u
t
s
'
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g
)

e
n
d

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
a
d
d
r

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

_
,

_
)
)

=

m
e
m
o
r
y
_
t
u
b
e
_
a
d
d
r

m
e
m
o
r
y
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
e
o
t

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

_
,

_
)
)

=

m
e
m
o
r
y
_
t
u
b
e
_
e
o
t

m
e
m
o
r
y
;

f
u
n

s
t
a
t
e
_
i
n
i
t
_
b
u
s
e
s

(
s
t
a
t
e

a
s

S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)
)

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

_
,

(
c
c
,

P
H
1
,

_
)
)
)

=

l
e
t

v
a
l

b
a
n
k
s
'

=

(
*

r
e
s
u
l
t

o
f

i
n
v
o
k
i
n
g

t
h
e

f
u
n
c
t
i
o
n

s
u
f
f
i
x
e
d

_
p
o
r
t
s
_
i
n
i
t

t
h
a
t

a
r
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

o
n

t
h
e

i
n
s
t
a
n
c
e
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

s
t
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e
.

*
)

i
n

(
t
r
a
c
e
_
a
t

t
r
a
c
e

(
c
c
,

P
H
1
)
;

S
T
A
T
E
(
b
a
n
k
s
'
,

(
[
]
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)
)

e
n
d

|

s
t
a
t
e
_
i
n
i
t
_
b
u
s
e
s

(
s
t
a
t
e

a
s

S
T
A
T
E
(
b
a
n
k
s
,

(
_
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)
)

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

_
,

(
c
c
,

P
H
2
,

_
)
)
)

=

l
e
t

v
a
l

b
a
n
k
s
'

=

(
*

r
e
s
u
l
t

o
f

i
n
v
o
k
i
n
g

t
h
e

f
u
n
c
t
i
o
n

s
u
f
f
i
x
e
d

_
p
o
r
t
s
_
i
n
i
t

t
h
a
t

a
r
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

o
n

t
h
e

i
n
s
t
a
n
c
e
s

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

s
t
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e
.

*
)

i
n

(
t
r
a
c
e
_
a
t

t
r
a
c
e

(
c
c
,

P
H
2
)
;

S
T
A
T
E
(
b
a
n
k
s
'
,

(
[
]
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)
)

e
n
d
;

f
u
n

s
t
a
t
e
_
u
p
d
a
t
e
_
b
u
s
e
s

s
t
a
t
e

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

(
i
n
p
u
t
s
,

_
)
,

(
_
,

p
h
a
s
e
,

_
)
)
)

=

s
t
a
t
e
_
i
n
s
e
r
t
_
b
u
s
e
s

s
t
a
t
e

(
m
a
p

(
f
n

x

=
>

i
f

i
n
p
u
t
_
i
s
_
s
a
m
p
l
e
d

x

p
h
a
s
e

t
h
e
n

b
u
s
_
f
r
o
m
_
i
n
p
u
t

x

e
l
s
e

N
O
N
E
)

(
c
o
r
e
_
i
n
p
u
t
s

i
n
p
u
t
s
)
)
;

277

f
u
n

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s

(
s
t
a
t
e

a
s

(
S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

l
a
t
c
h
e
s
)
,

b
u
f
f
e
r
,

t
r
a
c
e
)
)
)

(
E
N
V
I
R
O
N
M
E
N
T
(
_
,

_
,

(
_
,

p
h
a
s
e
,

_
)
)
)

=

l
e
t

f
u
n

l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t
'

l
a
t
c
h

d
e
f
a
u
l
t

=

c
a
s
e

(
l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l

l
a
t
c
h
)

o
f

S
O
M
E
(
c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
,

_
)

=
>

l
e
t

v
a
l

c
o
n
d
i
t
i
o
n

=

(
f
n

S
O
M
E

b
o
o
l

=
>

b
o
o
l

|

_

=
>

d
e
f
a
u
l
t
)

(
s
t
a
t
e
_
l
o
o
k
u
p
_
b
o
o
l
e
a
n
_
b
u
s

s
t
a
t
e

N
O
N
E

(
l
a
t
c
h
_
c
o
n
d
i
t
i
o
n
a
l
_
w
r
i
t
e
_
s
i
g
n
a
l

c
o
n
d
i
t
i
o
n
a
l
_
l
a
t
c
h
)
)
;

v
a
l

t
r
a
n
s
p
a
r
e
n
t

=

l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t

l
a
t
c
h

p
h
a
s
e

i
n

(
t
r
a
n
s
p
a
r
e
n
t

a
n
d
a
l
s
o

c
o
n
d
i
t
i
o
n
,

f
a
l
s
e
)

e
n
d

|

_

=
>

c
a
s
e

(
l
a
t
c
h
_
r
e
s
e
t
_
s
e
t

l
a
t
c
h
)

o
f

S
O
M
E
(
r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
,

_
)

=
>

(
f
n

S
O
M
E

_

=
>

(
t
r
u
e
,

f
a
l
s
e
)

|

_

=
>

(
f
a
l
s
e
,

f
a
l
s
e
)
)

(
s
t
a
t
e
_
l
o
o
k
u
p
_
d
i
g
i
t
a
l
_
v
a
l
u
e
_
b
u
s

s
t
a
t
e

N
O
N
E

(
l
a
t
c
h
_
r
e
s
e
t
_
s
e
t
_
s
o
u
r
c
e

r
e
s
e
t
_
s
e
t
_
l
a
t
c
h
)
)

|

_

=
>

(
l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t

l
a
t
c
h

p
h
a
s
e
,

t
r
u
e
)
;

f
u
n

i
n
i
t
i
a
l
i
s
e
_
l
a
t
c
h
e
s

(
l
a
t
c
h
:
:
l
a
t
c
h
e
s
)

=

(
c
a
s
e

(
l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t
'

l
a
t
c
h

t
r
u
e
)

o
f

(
t
r
u
e
,

_
)

=
>

i
n
i
t
i
a
l
i
s
e
_
l
a
t
c
h
e
s

l
a
t
c
h
e
s

|

(
f
a
l
s
e
,

_
)

=
>

l
a
t
c
h
:
:
(
i
n
i
t
i
a
l
i
s
e
_
l
a
t
c
h
e
s

l
a
t
c
h
e
s
)
)

|

i
n
i
t
i
a
l
i
s
e
_
l
a
t
c
h
e
s

(

[
]
)

=

[
]
;

v
a
l

i
n
i
t
i
a
l
i
s
e
d

=

i
n
i
t
i
a
l
i
s
e
_
l
a
t
c
h
e
s

l
a
t
c
h
e
s
;

f
u
n

l
a
t
c
h
_
f
r
o
m
_
l
a
t
c
h
'

l
a
t
c
h

=

c
a
s
e

(
l
a
t
c
h
_
f
r
o
m
_
l
a
t
c
h

l
a
t
c
h
)

o
f

(
S
O
M
E
(
b
u
s
,

l
a
t
c
h
)
)

=
>

(
c
a
s
e

(
l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t
'

l
a
t
c
h

f
a
l
s
e
)

o
f

(
t
r
u
e
,

_
)

=
>

(
t
r
a
c
e
_
a
d
d
_
b
u
s
e
s

t
r
a
c
e

[
S
O
M
E

b
u
s
]
;

S
O
M
E

l
a
t
c
h
)

|

_

=
>

N
O
N
E
)

|

(
N
O
N
E

)

=
>

N
O
N
E
;

278

f
u
n

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

(
b
u
s
:
:
b
u
s
e
s
)

=

(

c
a
s
e

(
l
a
t
c
h
_
f
r
o
m
_
b
u
s

b
u
s
)

o
f

S
O
M
E

l
a
t
c
h

=
>

(

c
a
s
e

(
l
a
t
c
h
_
i
s
T
r
a
n
s
p
a
r
e
n
t
'

l
a
t
c
h

f
a
l
s
e
)

o
f

(
t
r
u
e
,

_

)

=
>

(
f
n

S
O
M
E

c
h
a
i
n
e
d

=
>

c
h
a
i
n
e
d
:
:
l
a
t
c
h
:
:
s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

b
u
s
e
s

|

_

=
>

l
a
t
c
h
:
:
s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

b
u
s
e
s
)

(
l
a
t
c
h
_
f
r
o
m
_
l
a
t
c
h
'

l
a
t
c
h
)

|

(
f
a
l
s
e
,

t
r
u
e

)

=
>

e
r
r
o
r

(
(
l
a
t
c
h
_
t
o
_
s
t
r
i
n
g

l
a
t
c
h
)

^

"

c
a
n
n
o
t

b
e

p
e
r
f
o
r
m
e
d

i
n

"

^

(
p
h
a
s
e
s
_
t
o
_
s
t
r
i
n
g

p
h
a
s
e
)
)

|

(
f
a
l
s
e
,

f
a
l
s
e
)

=
>

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

b
u
s
e
s

)

|

N
O
N
E

=
>

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

b
u
s
e
s

)

|

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

(

[
]
)

=

f
o
l
d
r

(
f
n

(
l
a
t
c
h
,

l
a
t
c
h
e
s
)

=
>

(
f
n

S
O
M
E

c
h
a
i
n
e
d

=
>

c
h
a
i
n
e
d
:
:
l
a
t
c
h
e
s

|

_

=
>

l
a
t
c
h
e
s
)

(
l
a
t
c
h
_
f
r
o
m
_
l
a
t
c
h
'

l
a
t
c
h
)
)

i
n
i
t
i
a
l
i
s
e
d

i
n
i
t
i
a
l
i
s
e
d
;

v
a
l

l
a
t
c
h
e
s
'

=

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s
'

b
u
s
e
s

i
n

S
T
A
T
E
(
b
a
n
k
s
,

(
b
u
s
e
s
,

l
a
t
c
h
e
s
'
)
,

(
f
n

P
H
1

=
>

b
u
f
f
e
r

|

P
H
2

=
>

b
u
f
f
e
r
_
u
p
d
a
t
e

b
u
f
f
e
r

(
b
u
s
e
s
,

l
a
t
c
h
e
s
'
)
)

p
h
a
s
e
,

t
r
a
c
e
)

e
n
d
;

f
u
n

e
n
v
i
r
o
n
m
e
n
t
_
u
p
d
a
t
e
_
o
u
t
p
u
t
s

(
E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

o
u
t
p
u
t
s
)
,

t
i
m
i
n
g

a
s

(
_
,

p
h
a
s
e
,

_
)
)
)

(
S
T
A
T
E
(
(
_
,

_
)
,

(
b
u
s
e
s
,

l
a
t
c
h
e
s
)
,

_
,

_
)
)

=

l
e
t

v
a
l

y
y
s

=

f
o
l
d
r

(
f
n

(
x
,

y
s
)

=
>

c
a
s
e

(
o
u
t
p
u
t
_
f
r
o
m
_
b
u
s

x
)

o
f

S
O
M
E

y

=
>

i
f

o
u
t
p
u
t
_
i
s
D
r
i
v
e
n

y

p
h
a
s
e

t
h
e
n

y
:
:
y
s

e
l
s
e

y
s

|

_

=
>

y
s
)

[
]

b
u
s
e
s
;

v
a
l

y
y
s

=

f
o
l
d
r

(
f
n

(
x
,

y
s
)

=
>

c
a
s
e

(
o
u
t
p
u
t
_
f
r
o
m
_
l
a
t
c
h

x
)

o
f

S
O
M
E

y

=
>

i
f

o
u
t
p
u
t
_
i
s
D
r
i
v
e
n

y

p
h
a
s
e

t
h
e
n

y
:
:
y
s

e
l
s
e

y
s

|

_

=
>

y
s
)

y
y
s

l
a
t
c
h
e
s

i
n

E
N
V
I
R
O
N
M
E
N
T
(
m
e
m
o
r
y
,

(
i
n
p
u
t
s
,

c
o
r
e
_
o
u
t
p
u
t
s
_
u
p
d
a
t
e
_
f
r
o
m
_
o
u
t
p
u
t
s

(
c
o
r
e
_
o
u
t
p
u
t
s
_
u
p
d
a
t
e
_
o
u
t
p
u
t
s

o
u
t
p
u
t
s

p
h
a
s
e
)

y
y
s

p
h
a
s
e
)
,

t
i
m
i
n
g
)

e
n
d

e
n
d

e
n
d

279

C
.8

 c
oo

rd
in

at
or

.s
m

l

Th
is

 m
od

ul
e

pr
ov

id
es

 d
ef

in
iti

on
s t

ha
t a

re
 u

se
d

to
 e

nc
ap

su
la

te
 th

e
pr

oc
es

so
r b

ei
ng

 sp
ec

ifi
ed

.

Su
m

m
ar

y
of

 T
yp

es
 D

ef
in

ed
 b

y
M

od
ul

e

•
pr

oc
es

so
r a

bs
tra

ct
 ty

pe
: E

nc
ap

su
la

te
s t

he
 p

ro
ce

ss
or

 b
ei

ng
 sp

ec
ifi

ed
. D

ef
in

ed
 a

s p
ai

r o
f t

he
 st

at
e

ab
st

ra
ct

 ty
pe

 a
nd

 th
e

en
vi

ro
nm

en
t a

bs
tra

ct
 ty

pe
.

Su
m

m
ar

y
of

 F
un

ct
io

ns
 th

at
 P

ro
vi

de
 In

te
rf

ac
e

of
 T

yp
es

 D
ef

in
ed

 b
y

M
od

ul
e

•
pr

oc
es

so
r a

bs
tra

ct
 ty

pe

♦
 p

ro
ce

ss
or

_i
ni

t:
co

ns
tru

ct
s i

ns
ta

nc
e

of
 th

e
pr

oc
es

so
r a

bs
tra

ct
 ty

pe
 w

ith
 e

le
m

en
ts

 in
iti

al
is

ed
 u

si
ng

 st
at

e_
in

it
an

d
en

vi
ro

nm
en

t_
in

it
as

 a
pp

ro
pr

ia
te

.

♦
 p

ro
ce

ss
or

_i
ni

t_
tu

be
:

fu
nc

tio
n

in
vo

ke
s

th
e

en
vi

ro
nm

en
t_

in
it_

tu
be

 f
un

ct
io

n
de

fin
ed

 f
or

 th
e

en
vi

ro
nm

en
t a

bs
tra

ct
 ty

pe
 o

n
in

st
an

ce
 m

ai
nt

ai
ne

d
by

th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f t

he
 p

ro
ce

ss
or

 a
bs

tra
ct

 ty
pe

.

♦
 p

ro
ce

ss
or

_i
ni

t_
*:

 fu
nc

tio
ns

 to
 c

on
ve

rt
th

e
sp

ec
ifi

ed
 s

tri
ng

 re
pr

es
en

ta
tio

n
of

 a
 re

gi
st

er
 b

an
k

or
 m

em
or

y
to

 a
n

as
so

ci
at

io
n

lis
t o

f a
pp

ro
pr

ia
te

 ty
pe

s

an
d

in
vo

ke
, a

s
ap

pr
op

ria
te

, o
ne

 o
f

th
e

st
at

e_
in

it_
*_

ba
nk

 f
un

ct
io

ns
 d

ef
in

ed
 f

or
 th

e
st

at
e

ab
st

ra
ct

 ty
pe

 o
r

th
e

en
vi

ro
nm

en
t_

in
it_

m
em

or
y

fu
nc

tio
n

de
fin

ed
 f

or
 th

e
en

vi
ro

nm
en

t a
bs

tra
ct

 ty
pe

 o
n

th
e

ap
pr

op
ria

te
 in

st
an

ce
 m

ai
nt

ai
ne

d
by

 th
e

sp
ec

ifi
ed

 in
st

an
ce

 o
f

th
e

pr
oc

es
so

r
ab

st
ra

ct
 ty

pe
 a

nd

th
e

as
so

ci
at

io
n

lis
t.

♦
 p

ro
ce

ss
or

_*
_t

o_
st

ri
ng

:
fu

nc
tio

ns
 to

 in
vo

ke
 th

e
en

vi
ro

nm
en

t_
m

em
or

y_
to

_s
tr

in
g

fu
nc

tio
n

de
fin

ed
 b

y
th

e
en

vi
ro

nm
en

t a
bs

tra
ct

 ty
pe

 a
nd

 e
ac

h
of

th
e

st
at

e_
*_

ba
nk

_t
o_

st
ri

ng
 f

un
ct

io
ns

 d
ef

in
ed

 f
or

 t
he

 s
ta

te
 a

bs
tra

ct
 t

yp
e

on
 t

he
 a

pp
ro

pr
ia

te
 i

ns
ta

nc
es

 m
ai

nt
ai

ne
d

by
 t

he
 s

pe
ci

fie
d

in
st

an
ce

 o
f

th
e

pr
oc

es
so

r a
bs

tra
ct

 ty
pe

.

280

♦
 p

ro
ce

ss
or

_s
im

ul
at

e:
 f

un
ct

io
n

si
m

ul
at

es
 b

eh
av

io
ur

 o
f

pr
oc

es
so

r
co

re
 b

ei
ng

 s
pe

ci
fie

d,
 w

he
n

its
 s

ta
rti

ng
 s

ta
te

 a
nd

 e
nv

iro
nm

en
t

re
fle

ct
 t

ha
t

re
pr

es
en

te
d

by
 th

e
in

st
an

ce
s

of
 th

e
st

at
e

an
d

th
e

en
vi

ro
nm

en
t a

bs
tra

ct
 ty

pe
s

m
ai

nt
ai

ne
d

by
 th

e
sp

ec
ifi

ed
 in

st
an

ce
 o

f t
he

 p
ro

ce
ss

or
 a

bs
tra

ct
 ty

pe
,

us
in

g
th

e
al

go
rit

hm
 d

is
cu

ss
ed

 in
 se

ct
io

n
2.

3.
3.

St
an

da
rd

 M
L

Im
pl

em
en

ta
tio

n
of

 M
od

ul
e

a
b
s
t
y
p
e

p
r
o
c
e
s
s
o
r

=

P
R
O
C
E
S
S
O
R

o
f

s
t
a
t
e

*

e
n
v
i
r
o
n
m
e
n
t

w
i
t
h

f
u
n

p
r
o
c
e
s
s
o
r
_
i
n
i
t

(
)

=

P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
_
i
n
i
t
(
)
,

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
(
)
)
;

l
o
c
a
l

d
a
t
a
t
y
p
e

t
u
p
l
e
_
s
t
a
t
e

=

B
E
G
I
N

|

F
I
R
S
T

|

E
N
D
;

f
u
n

g
e
t
_
t
u
p
l
e

s
t
a
t
e

n

[
]

=

(

c
a
s
e

(
s
t
a
t
e
,

n

>

1
)

o
f

(
E
N
D
,

f
a
l
s
e
)

=
>

S
O
M
E
(
[
[
]
]
,

[
]
)

|

(
_
,

_

)

=
>

N
O
N
E

)

|

g
e
t
_
t
u
p
l
e

s
t
a
t
e

n

(

#
"

"
:
:
x
s
)

=

(

c
a
s
e

(
s
t
a
t
e
,

n

>

1
)

o
f

(
E
N
D
,

t
r
u
e

)

=
>

(
f
n

S
O
M
E

(
y
y
s
,

x
s
'
)

=
>

S
O
M
E
(
[
]
:
:
y
y
s
,

x
s
'
)

|

_

=
>

N
O
N
E
)

(
g
e
t
_
t
u
p
l
e

F
I
R
S
T

(
n

-

1
)

x
s
)

|

(
E
N
D
,

f
a
l
s
e
)

=
>

N
O
N
E

|

(
_
,

_

)

=
>

g
e
t
_
t
u
p
l
e

F
I
R
S
T

n

x
s

)

|

g
e
t
_
t
u
p
l
e

s
t
a
t
e

n

(
#
"
\
t
"
:
:
x
s
)

=

(

c
a
s
e

(
s
t
a
t
e
,

n

>

1
)

o
f

(
E
N
D
,

t
r
u
e

)

=
>

(
f
n

S
O
M
E

(
y
y
s
,

x
s
'
)

=
>

S
O
M
E
(
[
]
:
:
y
y
s
,

x
s
'
)

|

_

=
>

N
O
N
E
)

(
g
e
t
_
t
u
p
l
e

F
I
R
S
T

(
n

-

1
)

x
s
)

|

(
E
N
D
,

f
a
l
s
e
)

=
>

N
O
N
E

|

(
_
,

_

)

=
>

g
e
t
_
t
u
p
l
e

F
I
R
S
T

n

x
s

)

|

g
e
t
_
t
u
p
l
e

s
t
a
t
e

n

(
#
"
\
n
"
:
:
x
s
)

=

(

c
a
s
e

(
s
t
a
t
e
,

n

>

1
)

o
f

(
E
N
D
,

f
a
l
s
e
)

=
>

S
O
M
E
(
[
[
]
]
,

x
s
)

281

|

(
B
E
G
I
N
,

_

)

=
>

g
e
t
_
t
u
p
l
e

B
E
G
I
N

n

x
s

|

(
_
,

_

)

=
>

N
O
N
E

)

|

g
e
t
_
t
u
p
l
e

s
t
a
t
e

n

(

x
:
:
x
s
)

=

(
f
n

S
O
M
E
(
y
:
:
y
s
,

x
s
'
)

=
>

S
O
M
E
(
(
x
:
:
y
)
:
:
y
s
,

x
s
'
)

|

_

=
>

N
O
N
E
)

(
g
e
t
_
t
u
p
l
e

E
N
D

n

x
s
)
;

f
u
n

g
e
t
_
t
u
p
l
e
s

n

s
t
r
i
n
g

=

c
a
s
e

(
g
e
t
_
t
u
p
l
e

B
E
G
I
N

n

s
t
r
i
n
g
)

o
f

S
O
M
E
(
t
u
p
l
e
,

[
]

)

=
>

S
O
M
E
(
[
t
u
p
l
e
]
)

|

S
O
M
E
(
t
u
p
l
e
,

s
t
r
i
n
g
'
)

=
>

(
f
n

S
O
M
E

t
u
p
l
e
s

=
>

S
O
M
E
(
t
u
p
l
e
:
:
t
u
p
l
e
s
)

|

_

=
>

N
O
N
E
)

(
g
e
t
_
t
u
p
l
e
s

n

s
t
r
i
n
g
'
)

|

_

=
>

N
O
N
E
;

f
u
n

p
a
r
s
e
_
d
i
g
i
t
a
l
_
v
a
l
u
e

[
]

=

N
O
N
E

|

p
a
r
s
e
_
d
i
g
i
t
a
l
_
v
a
l
u
e

x
x
s

=

l
e
t

v
a
l

(
r
a
d
i
x
,

x
x
s
'
)

=

c
a
s
e

(
x
x
s
)

o
f

(
#
"
2
"
:
:
(
#
"
_
"
:
:
x
s
)
)

=
>

(
B
I
N
,

x
s
)

|

(
#
"
8
"
:
:
(
#
"
_
"
:
:
x
s
)
)

=
>

(
O
C
T
,

x
s
)

|

(
#
"
0
"
:
:
(
#
"
x
"
:
:
x
s
)
)

=
>

(
H
E
X
,

x
s
)

|

(
#
"
0
"
:
:
(
#
"
X
"
:
:
x
s
)
)

=
>

(
H
E
X
,

x
s
)

|

(

_
)

=
>

(
D
E
C
,

x
x
s
)

i
n

d
i
g
i
t
a
l
_
v
a
l
u
e
_
f
r
o
m
_
s
t
r
i
n
g
_
f
m
t

r
a
d
i
x

[
(
B
I
T
_
3
1
,

B
I
T
_
_
0
)
]

x
x
s
'

e
n
d
;

f
u
n

p
a
r
s
e
_
p
a
i
r
s

(
f
,

g
)

(
S
O
M
E
(
[
x
,

y
]
:
:
p
a
i
r
s
)
)

=

(
f
n

(
(
S
O
M
E

(
x
'
,

[
]
)
,

S
O
M
E

(
y
'
,

[
]
)
)
,

S
O
M
E

p
a
i
r
s
'
)

=
>

S
O
M
E
(
(
x
'
,

y
'
)
:
:
p
a
i
r
s
'
)

|

_

=
>

N
O
N
E
)

(
(
f

x
,

g

y
)
,

p
a
r
s
e
_
p
a
i
r
s

(
f
,

g
)

(
S
O
M
E
(
p
a
i
r
s
)
)
)

|

p
a
r
s
e
_
p
a
i
r
s

(
f
,

g
)

(
S
O
M
E
(

[
]
)
)

=

S
O
M
E
(
[
]
)

|

p
a
r
s
e
_
p
a
i
r
s

(
f
,

g
)

(
_

)

=

N
O
N
E

i
n

(
*

F
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

t
o

i
n
v
o
k
e

t
h
e

s
t
a
t
e
_
i
n
i
t
_
*
_
b
a
n
k

f
u
n
c
t
i
o
n
s

t
h
a
t

a
r
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

o
n

t
h
e

i
n
s
t
a
n
c
e

o
f

t
h
e

s
t
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

p
r
o
c
e
s
s
o
r

a
b
s
t
r
a
c
t

t
y
p
e

w
i
t
h

a
n

a
p
p
r
o
p
r
i
a
t
e

a
s
s
o
c
i
a
t
i
o
n

l
i
s
t

c
r
e
a
t
e
d

f
r
o
m

t
h
e

s
p
e
c
i
f
i
e
d

s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f

t
h
e

r
e
g
i
s
t
e
r

b
a
n
k
.

*
)

282

l
o
c
a
l

f
u
n

p
a
r
s
e
_
c
c

c
c

=

(
f
n

S
O
M
E

(
v
a
l
u
e
,

[
]
)

=
>

d
i
g
i
t
a
l
_
v
a
l
u
e
_
e
v
a
l

v
a
l
u
e

|

_

=
>

N
O
N
E
)

(
p
a
r
s
e
_
d
i
g
i
t
a
l
_
v
a
l
u
e

c
c
)
;

f
u
n

p
a
r
s
e
_
i
n
p
u
t
'

(
S
O
M
E
(
i
,

[
]
)
,

[
#
"
1
"
]
)

=

(
f
n

S
O
M
E

(
i
n
p
u
t
)

=
>

S
O
M
E
(
i
n
p
u
t
)

|

_

=
>

N
O
N
E
)

(
i
n
p
u
t
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

(
i
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

I

[
(
B
I
T
_
_
0
,

B
I
T
_
_
0
)
]
)
)

|

p
a
r
s
e
_
i
n
p
u
t
'

(
S
O
M
E
(
i
,

[
]
)
,

[
#
"
0
"
]
)

=

(
f
n

S
O
M
E

(
i
n
p
u
t
)

=
>

S
O
M
E
(
i
n
p
u
t
)

|

_

=
>

N
O
N
E
)

(
i
n
p
u
t
_
d
i
g
i
t
a
l
_
i
n
s
t
a
n
c
e

(
i
,

d
i
g
i
t
a
l
_
v
a
l
u
e
_
g
e
n

O

[
(
B
I
T
_
_
0
,

B
I
T
_
_
0
)
]
)
)

|

p
a
r
s
e
_
i
n
p
u
t
'

(
_
,

_

)

=

N
O
N
E
;

f
u
n

p
a
r
s
e
_
t
r
i
p
l
e
s

(
S
O
M
E
(
[
x
,

y
,

z
]
:
:
t
r
i
p
l
e
s
)
)

=

(
f
n

(
(
S
O
M
E

x
'
,

S
O
M
E

y
'
)
,

S
O
M
E

t
r
i
p
l
e
s
'
)

=
>

S
O
M
E
(
(
x
'
,

y
'
)
:
:
t
r
i
p
l
e
s
'
)

|

_

=
>

N
O
N
E
)

(
(
p
a
r
s
e
_
c
c

x
,

p
a
r
s
e
_
i
n
p
u
t
'

(
i
n
p
u
t
_
d
i
g
i
t
a
l
_
f
r
o
m
_
s
t
r
i
n
g

y
,

z
)
)
,

p
a
r
s
e
_
t
r
i
p
l
e
s

(
S
O
M
E

t
r
i
p
l
e
s
)
)

|

p
a
r
s
e
_
t
r
i
p
l
e
s

(
S
O
M
E
(

[
]
)
)

=

S
O
M
E
(
[
]
)

|

p
a
r
s
e
_
t
r
i
p
l
e
s

(
_

)

=

N
O
N
E

i
n

f
u
n

p
r
o
c
e
s
s
o
r
_
i
n
i
t
_
e
v
e
n
t
s

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

s
t
r
i
n
g

=

(
f
n

S
O
M
E

e
v
e
n
t
s

=
>

S
O
M
E
(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
e
v
e
n
t
s

e
n
v
i
r
o
n
m
e
n
t

e
v
e
n
t
s
)
)

|

_

=
>

N
O
N
E
)

(
p
a
r
s
e
_
t
r
i
p
l
e
s

(
g
e
t
_
t
u
p
l
e
s

3

(
e
x
p
l
o
d
e

s
t
r
i
n
g
)
)
)

e
n
d
;

f
u
n

p
r
o
c
e
s
s
o
r
_
i
n
i
t
_
m
e
m
o
r
y

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

s
t
r
i
n
g

=

(
f
n

S
O
M
E

m
e
m
o
r
y

=
>

S
O
M
E
(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
m
e
m
o
r
y

e
n
v
i
r
o
n
m
e
n
t

m
e
m
o
r
y
)
)

|

_

=
>

N
O
N
E
)

(
p
a
r
s
e
_
p
a
i
r
s

(
p
a
r
s
e
_
d
i
g
i
t
a
l
_
v
a
l
u
e
,

p
a
r
s
e
_
d
i
g
i
t
a
l
_
v
a
l
u
e
)

(
g
e
t
_
t
u
p
l
e
s

2

(
e
x
p
l
o
d
e

s
t
r
i
n
g
)
)
)

e
n
d
;

f
u
n

p
r
o
c
e
s
s
o
r
_
m
e
m
o
r
y
_
a
b
o
r
t
_
m
a
p

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

a
b
o
r
t
_
m
a
p

=

P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
_
m
e
m
o
r
y
_
a
b
o
r
t
_
m
a
p

e
n
v
i
r
o
n
m
e
n
t

a
b
o
r
t
_
m
a
p
)
;

f
u
n

p
r
o
c
e
s
s
o
r
_
i
n
i
t
_
t
u
b
e

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

=

P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
i
n
i
t

e
n
v
i
r
o
n
m
e
n
t
)
;

f
u
n

p
r
o
c
e
s
s
o
r
_
t
u
b
e
_
m
a
p

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

a
d
d
r

=

(
f
n

S
O
M
E

e
n
v
i
r
o
n
m
e
n
t
'

=
>

S
O
M
E
(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
'
)
)

|

_

=
>

N
O
N
E
)

(
e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
m
a
p

e
n
v
i
r
o
n
m
e
n
t

a
d
d
r
)
;

f
u
n

p
r
o
c
e
s
s
o
r
_
t
u
b
e
_
u
n
m
a
p

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

=

P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
u
n
m
a
p

e
n
v
i
r
o
n
m
e
n
t
)
;

283

(
*

F
u
n
c
t
i
o
n
s

s
h
o
u
l
d

b
e

d
e
f
i
n
e
d

t
o

i
n
v
o
k
e

t
h
e

s
t
a
t
e
_
*
_
b
a
n
k
_
t
o
_
s
t
r
i
n
g

f
u
n
c
t
i
o
n
s

t
h
a
t

a
r
e

d
e
f
i
n
e
d

f
o
r

e
a
c
h

*
_
b
a
n
k

a
b
s
t
r
a
c
t

t
y
p
e

o
n

t
h
e

i
n
s
t
a
n
c
e

o
f

t
h
e

s
t
a
t
e

a
b
s
t
r
a
c
t

t
y
p
e

m
a
i
n
t
a
i
n
e
d

b
y

t
h
e

s
p
e
c
i
f
i
e
d

i
n
s
t
a
n
c
e

o
f

t
h
e

p
r
o
c
e
s
s
o
r

a
b
s
t
r
a
c
t

t
y
p
e
.

*
)

f
u
n

p
r
o
c
e
s
s
o
r
_
m
e
m
o
r
y
_
t
o
_
s
t
r
i
n
g

(
P
R
O
C
E
S
S
O
R
(
_
,

e
n
v
i
r
o
n
m
e
n
t
)
)

=

e
n
v
i
r
o
n
m
e
n
t
_
m
e
m
o
r
y
_
t
o
_
s
t
r
i
n
g

e
n
v
i
r
o
n
m
e
n
t
;

f
u
n

p
r
o
c
e
s
s
o
r
_
t
r
a
c
e

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

_
)
)

=

s
t
a
t
e
_
t
r
a
c
e

s
t
a
t
e
;

f
u
n

p
r
o
c
e
s
s
o
r
_
t
u
b
e
_
a
d
d
r

(
P
R
O
C
E
S
S
O
R
(
_
,

e
n
v
i
r
o
n
m
e
n
t
)
)

=

e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
a
d
d
r

e
n
v
i
r
o
n
m
e
n
t
;

l
o
c
a
l

v
a
l

i
s
_
i
n
f
i
n
i
t
e
_
l
o
o
p

:

s
t
a
t
e

*

s
t
a
t
e

-
>

b
o
o
l

=

(
*

f
u
n
c
t
i
o
n

t
h
a
t

c
h
e
c
k
s

w
h
e
t
h
e
r

t
h
e

p
r
o
c
e
s
s
o
r

c
o
r
e

i
s

e
x
e
c
u
t
i
n
g

a
n

i
n
s
t
r
u
c
t
i
o
n

t
h
a
t

b
r
a
n
c
h
e
s

t
o

i
t
s
e
l
f
.

*
)

i
n

f
u
n

p
r
o
c
e
s
s
o
r
_
s
i
m
u
l
a
t
e

c
h
e
c
k
_
i
n
f
i
n
i
t
e
_
l
o
o
p

p
r
o
c
e
s
s
o
r

=

l
e
t

v
a
l

t
e
r
m
i
n
a
t
e
_
l
o
o
p

=

c
a
s
e

c
h
e
c
k
_
i
n
f
i
n
i
t
e
_
l
o
o
p

o
f

t
r
u
e

=
>

(
f
n

(
s
t
a
t
e
,

s
t
a
t
e
'
)

=
>

f
n

e
n
v
i
r
o
n
m
e
n
t
'

=
>

i
s
_
i
n
f
i
n
i
t
e
_
l
o
o
p

(
s
t
a
t
e
,

s
t
a
t
e
’
)

o
r
e
l
s
e

c
a
s
e

(
e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
e
o
t

e
n
v
i
r
o
n
m
e
n
t
'
)

o
f

S
O
M
E

t
r
u
e

=
>

t
r
u
e

|

_

=
>

f
a
l
s
e
)
)

|

f
a
l
s
e

=
>

(
f
n

(
s
t
a
t
e
,

s
t
a
t
e
'
)

=
>

f
n

e
n
v
i
r
o
n
m
e
n
t
'

=
>

c
a
s
e

(
e
n
v
i
r
o
n
m
e
n
t
_
t
u
b
e
_
e
o
t

e
n
v
i
r
o
n
m
e
n
t
'
)

o
f

S
O
M
E

t
r
u
e

=
>

t
r
u
e

|

_

=
>

f
a
l
s
e
)
;

f
u
n

p
r
o
c
e
s
s
o
r
_
s
i
m
u
l
a
t
e
'

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
,

e
n
v
i
r
o
n
m
e
n
t
)
)

=

l
e
t

v
a
l

e
n
v
i
r
o
n
m
e
n
t
'

=

e
n
v
i
r
o
n
m
e
n
t
_
i
n
i
t
_
i
n
p
u
t
s

e
n
v
i
r
o
n
m
e
n
t
;

v
a
l

s
t
a
t
e
'

=

s
t
a
t
e
_
i
n
i
t
_
b
u
s
e
s

s
t
a
t
e

e
n
v
i
r
o
n
m
e
n
t
'
;

v
a
l

p
h
a
s
e

=

e
n
v
i
r
o
n
m
e
n
t
_
l
o
o
k
u
p
_
p
h
a
s
e

e
n
v
i
r
o
n
m
e
n
t
'
;

v
a
l

(
e
n
v
i
r
o
n
m
e
n
t
'
,

s
t
a
t
e
'
)

=

p
i
p
e
l
i
n
e
_
s
p
e
c
i
f
i
c
a
t
i
o
n

p
h
a
s
e

e
n
v
i
r
o
n
m
e
n
t
'

s
t
a
t
e
'
;

v
a
l

s
t
a
t
e
'

=

s
t
a
t
e
_
u
p
d
a
t
e
_
l
a
t
c
h
e
s

s
t
a
t
e
'

e
n
v
i
r
o
n
m
e
n
t
'

284

i
n

c
a
s
e

(
p
h
a
s
e
)

o
f

(
P
H
1

)

=
>

p
r
o
c
e
s
s
o
r
_
s
i
m
u
l
a
t
e
'

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
'
,

e
n
v
i
r
o
n
m
e
n
t
'
)
)

|

(
P
H
2

)

=
>

i
f

t
e
r
m
i
n
a
t
e
_
l
o
o
p

(
s
t
a
t
e
,

s
t
a
t
e
'
)

e
n
v
i
r
o
n
m
e
n
t
'

t
h
e
n

P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
'
,

e
n
v
i
r
o
n
m
e
n
t
'
)

e
l
s
e

p
r
o
c
e
s
s
o
r
_
s
i
m
u
l
a
t
e
'

(
P
R
O
C
E
S
S
O
R
(
s
t
a
t
e
'
,

e
n
v
i
r
o
n
m
e
n
t
'
)
)

e
n
d
;

v
a
l

t
i
m
e
r

=

T
i
m
e
r
.
s
t
a
r
t
C
P
U
T
i
m
e
r
(
)
;

v
a
l

p
r
o
c
e
s
s
o
r
'

=

p
r
o
c
e
s
s
o
r
_
s
i
m
u
l
a
t
e
'

p
r
o
c
e
s
s
o
r
;

v
a
l

(
g
c
,

{
s
y
s
,

u
s
r
}
)

=

(
T
i
m
e
r
.
c
h
e
c
k
G
C
T
i
m
e

t
i
m
e
r
,

T
i
m
e
r
.
c
h
e
c
k
C
P
U
T
i
m
e
r

t
i
m
e
r
)
;

v
a
l

_

=

p
r
i
n
t

"
\
n
"
;

v
a
l

_

=

p
r
i
n
t

(
"
G
a
r
b
a
g
e
-
c
o
l
l
e
c
t
i
o
n
:

"

^

(
T
i
m
e
.
t
o
S
t
r
i
n
g

g
c

)

^

"
s
\
n
"
)
;

v
a
l

_

=

p
r
i
n
t

(
"
S
y
s
t
e
m
:

"

^

(
T
i
m
e
.
t
o
S
t
r
i
n
g

s
y
s
)

^

"
s
\
n
"
)
;

v
a
l

_

=

p
r
i
n
t

(
"
U
s
e
r

(
i
n
c
l
.

g
c
)
:

"

^

(
T
i
m
e
.
t
o
S
t
r
i
n
g

u
s
r
)

^

"
s
\
n
"
)

i
n

p
r
o
c
e
s
s
o
r
'

e
n
d

e
n
d

e
n
d

