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Abstract 

In these past few years the subject of porous metals has gained considerable 

attention. The area of flow and heat transfer behaviour in porous metals used 

as regenerators is the focus of this work. 

A total of 37 porous metal samples have been produced to evaluate their 

characteristics as regenerators, these include 12 replicated porous metal 

samples made from commercially pure aluminium using three different NaCl 

preform particle sizes and two packing methods. The replication method using 

argon only was improved to become more efficient, tests were done to 

determine adequate time and temperature for uniform porous metal sample 

production. In total 4 different protocols (W, X, Y and Z) were developed to 

produce different levels of porosity (from 61 to 78%) by changing certain 

variables in the production process. 

Other porous metal samples were manufactured with the objective of having a 

wide range of structures and material comparisons; 7 SS304L wire mesh 

samples, 3 wire felt samples (Al, Cu and SS304L), to evaluate the effect of pore 

size, 5 packed sphere samples (Al, AISI 52000 chrome steel, Cu, soda glass 

and SS420) and 10 additive layer manufactured samples (SS316L and Ti6Al4V) 

to evaluate the effect of material and porosity levels. 

All the samples were tested on pressure drop and heat transfer capabilities, 

they were compared with the literature using Reynolds and Stanton numbers, 

the thermal conductivity was also measured, a characteristic that had to be 

estimated in previous work due to a lack of an experimental test rig, which was 

developed during this research. 

It was found that the best performing ones were the stainless steel wire 

meshes, the wire felts and the replicated porous metals. Several correlations 

involving pore size, porosity and material effects were proposed as an aid for 

designing regenerators obtained from the experimental results. The replicated 

porous metals have the potential of being used as regenerators if they can be 

made from high efficiency materials and of a smaller pore size than the ones 

discussed here, their advantage is that they may be modified to a large range of 

specifications, being able to replicate the behaviour of other structures. 
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Nomenclature 

Uppercase Letters 
 
ACS Cross section area 
AHT Heat transfer or surface area 
ASp Specific surface area 
C Form drag coefficient 
D0 Insulation transversal length 
DH Hydraulic diameter 
DP Pore/Particle diameter 
DR Regenerator diameter 
DW Wire diameter 
K Permeability 
L Length 
L1 Upper aluminium piece length 
L2 Lower aluminium piece length 
LC Characteristic length 
LR Regenerator length 
N Coordination number 
NSph Number of Spheres 
NTUR Regenerator number of transfer units 
NTUW Wall number of transfer units 
Pr Prandtl number 
Q Heat 
QC Heat lost 
QH Heat gained 
Re Reynolds number 
ReK Permeability based Reynolds number 
Rtc Regenerator heat capacity to wall heat capacity ratio 
St Stanton number 
T0 Initial temperature 
Ta Adimensional temperature 
TAir Air temperature 
TC Cold temperature 
TEx External insulation temperature 
TH Hot temperature 
TR Regenerator temperature 
V Volume 
V1 Compressed gas volume 
V2 Expanded gas volume 
VM Material volume 
VP Pore volume 
VR Regenerator or bulk volume 
X Tortuosity 
 
Lowercase Letters 
 
a Constant 
b Constant 
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c Constant 
cAir Air specific heat 
cM Material specific heat 
cR Regenerator specific heat 
d Representative unit cell dimension 
dw Window diameter 
h Convective heat transfer coefficient 
i Instant value in x axis (Crank-Nicolson) 
k Thermal conductivity 
kAl Aluminium thermal conductivity 
kIn Insulation material thermal conductivity 
kM Material thermal conductivity 
kR Regenerator thermal conductivity 
l Instant value in y axis (Crank-Nicolson) 
mM Material mass 
ṁ Mass flow rate 
ṁAir Air mass flow rate 
r Radius 
t Time 
ta Adimensional time 
vD Superficial velocity 
vε Velocity through the pores 
x Independent variable distance 
xa Adimensional distance 
y Dependent variable distance 
 
Greek Letters 
 
γ Surface tension 
ΔP Pressure drop 
Δx Distance difference 
δi Diffusion number 
ε Porosity 
ε0 Random packing density 
η Regenerator efficiency 
λR Regenerator dimensionless thermal conductivity 
λW Wall dimensionless thermal conductivity 
� Fluid absolute viscosity 
π Pi value (3.141592) 
ρ Density 
ρM True density or material density 
ρR Regenerator or bulk density 
Φ Wire mesh shape factor 
ψ Inlet temperature response time 
 
Other Symbols 
 
! Factorial 
∂ Partial derivative 
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Chapter 1. Introduction 

Porous metal production and research has been gaining in popularity since the 

first efforts on the replication process came to light in the 60s [1], particularly in 

the last 15 years; research is summarised in reviews such as those of Banhart 

[2], Conde [3] or Goodall and Mortensen [4]. Notable development work in this 

area has been done in Professor Mortensen's group at the Ecole Polytechnique 

Federale de Lausanne in Switzerland. 

Within the techniques for producing porous metals, replication is one of the 

most experimentally direct and simple, offering a significant level of structural 

control over the porous metal. In research, the materials produced by replication 

are commonly characterised as porous metals, sponges or microcellular metals. 

The method involves the shaping of a metal by driving it in the liquid state into 

the free space of a “preform” made from particles of a solid space holder 

material that defines the form of the resulting porous metal [3], [5]. After cooling 

and solidifying the metal the elimination of the preform material takes place by 

dissolution or oxidation. A common space holder for aluminium [6]-[10] or 

aluminium alloy [11]-[14] porous samples is a group of NaCl particles. It has 

convenient characteristics such as being easily obtainable, non-toxic, dissolves 

in water, and has a relatively high melting point (801°C) so it can be used with 

metals that have a lower melting temperatures. If other types of materials are 

used as space holders it is possible to produce porous metals with even higher 

melting points [15]. 

In this study the equipment and experimental steps to be followed for the 

production of porous metals by the replication technique are presented. These 

steps are fairly simple to apply in a laboratory; in other research groups further 

variants of the same procedure can be found, using different machinery. For 

successful development however, a good grasp of the individual technique and 

equipment to be used is indispensable. The porous metals obtained will be 

tested for their heat transfer performance as regenerators. 

The regenerator was developed in 1816, it was made as part of the Stirling 

engine, which operates on the basis of heat transfer, producing output energy 

from a difference in temperature [16], [17]. 
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In Figure 1.1 a two piston Stirling engine can be seen, it should be noted that 

this is one of many configurations or arrangements for this type of engine. In 

this example a V type engine with both pistons connected to one crankshaft is 

shown. The spaces above the pistons are connected by a pipe in which the 

regenerator sits in the middle [17]. 

 

Figure 1.1 - Stirling engine diagram. A - Space for expansion, B - Space for 

compression, C - regenerator, D - heater, E - cooler, F - fuel inlet, G - air inlet, H 

- exhaust products of combustion, J - water inlet, K - water outlet, L - exhaust-

gas inlet-air preheater [17]. 

 

Current manufacturing technology allows us to build regenerators that 

cooperate to obtain efficiencies that resemble the calculated ones. Porous 

metals are a relatively new option that helps achieve this objective. These 
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porous metals have a significant amount of interconnected voids, which may 

allow fluid flow through it; having a large surface area, and in combination with 

specific metal characteristics such as heat capacity and thermal conductivity 

makes them a considerable element to transfer heat from and to fluids. The 

knowledge of the function the interconnected pore structure has on the fluid 

properties that passes through a porous material is essential for many industry 

processes involving different fields such as engineering, chemistry and/or 

geology. It is needed to model or predict the effect of the structure on the fluid 

flow reducing the full complexity of the structure to a reasonable number of 

parameters. Three of the most important structural characteristics of a porous 

material are surface area, porosity and pore size [18].  

The purpose of a regenerator can be explained with reference to a Stirling 

engine. The essential role is to better the effectiveness of the cycle, to achieve 

this it employs a heat exchanger; many engines use them, however, a good 

heat exchanger cannot enhance an engine with other defects. The parts 

forming a Stirling engine are a heater, the regenerator, a cooler and an inlet air 

preheater [19]. 

The Stirling engine may work with a reversed cycle, acting as a refrigerator (a 

mode of operation where work is used to create a temperature difference), the 

terms then change since the engine is now working to reduce the temperature 

instead of increasing it; the previously mentioned "heater" is now a "freezer" 

and the "preheater" becomes the "precooler". If the engine is used as a heat 

pump the terms change once more; the heat pump increases the temperature 

of the received heat using work; the heater becomes the ‘absorber’ and the 

cooler is now the ‘heater’. 

The regenerator acts as a simple heat exchanger; it receives the energy from 

the working fluid when it moves through it from the hot to the cold side; the 

regenerator precools the fluid; in the second half of the cycle the regenerator 

discharges the heat within to the working fluid passing the other way, from the 

cold to the hot side, the regenerator preheats the fluid. 

Regenerators are also used in other applications such as in blast furnaces; in 

which the exhaust fumes at high temperature travel through ceramic bricks, 

capturing the heat, then when the cycle is inverted the fuel is preheated while 
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passing the bricks; this furnace is known as the open hearth furnace or 

Siemens - Martin regenerative furnace, invented in the 1860's to produce steel 

[20]. 

At the moment there is no set of established rules for regenerator design, 

however, there are several conflicting requirements to answer for them to work 

effectively. In the Table 1.1 the ideal characteristics for a regenerator are 

shown, the relative importance between them is not known [19], [85], [115]. 

REQUIREMENT REASON HOW TO OBTAIN 

Maximum heat capacity The matrix needs to 

capture the largest 

amount of energy 

available to make the 

process more efficient. 

There needs to be a 

large and solid 

element. 

Minimum flow resistance When the working fluid 

passes the matrix the 

opposition to the flow 

should be minimum. 

There needs to be a 

small element with a 

high porosity. 

Minimum dead space The volume of working 

space should be as small 

as possible. 

There needs to be a 

small element with 

low porosity 

Maximum heat transfer To obtain the maximum 

heat transfer the element 

must have a high surface 

area. 

There needs to be a 

large matrix with very 

fine struts. 

Minimum contamination 

build up 

The working fluid must 

be free from any 

impurities, preventing 

blockage. 

There needs to be a 

matrix that offers no 

obstruction to the 

flow. 

Minimum thermal 

conductivity 

The matrix needs to 

prevent energy travel 

through itself to make the 

process more efficient. 

The element needs 

to be made from a 

material that does 

not conduct heat. 

Table 1.1 - Ideal regenerator design requirements. 
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A typical regenerator is made from a porous matrix that allows the working fluid 

to pass through it, usually made from a material that is resistant to corrosion 

and high temperatures, wire meshes are currently used as regenerators, porous 

metals can also be used for this purpose; they have an advantage over wire 

meshes in that they can be tailored to many different shapes and a wide array 

of porosities, the challenge lies in producing the best structure for the purpose, 

it must have a high heat transfer area and provoke the less possible pressure 

drop when the fluid passes through it. 

The main objective for this work is to compare the characteristics of replicated 

porous aluminium samples as regenerators with other alternative structures 

available, making it possible to select the best structure for this purpose, as well 

as evaluating the advantages and disadvantages of each. As different 

structures are not all available in the same metal or alloy, it was also necessary 

to explore the dependency of performance of the material in isolation of 

structural changes. 

As the primary processing method used in the laboratory for porous aluminium 

production, the space holder or replication technique was examined, evaluated 

and upgraded. Three different pore sizes of porous aluminium samples were 

produced (controlled by the size of the space holder particles) and two packing 

methods of the space holder were used (random and vibrated). These were 

compared with existing and commercially-available regenerator structures or 

alternative porous metal candidates, such as; packed beds of ball bearings 

made from different materials (stainless steel, chrome steel, copper, aluminium 

and soda glass); felt-like samples made from pressed short wires of three 

different materials (stainless steel, copper and aluminium); stainless steel wire 

mesh samples of different pore apertures; and stainless steel and Ti6Al4V 

samples produced by additive manufacturing. 

This thesis consists of 9 chapters, introduction in this present one, Chapters 2, 

3 and 4 cover relevant parts of the literature and Chapter 5 gives the 

experimental procedures used. Since there were significant further 

developments of the porous aluminium processing technique during the work 

described in this thesis, relevant results are reported and discussed in Chapter 

6, after that, the focus is on the performance of porous aluminium samples and 
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comparable materials for regenerator purposes, Chapter 7 discusses the flow 

test results and Chapter 8 gives the heat transfer results, in both these chapters 

the performance results are discussed as well, conclusions are drawn about the 

relative performance of different porous structures and the metals from which 

they are made in Chapter 9. 
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Chapter 2. Processing of Porous Metals 

2.1. Porous Materials 

A porous material is a material that has many free spaces in its structure, they 

are called voids or pores. The pore sizes vary from a few nanometres to many 

millimetres, the size is dependent on the porous material's purpose. They can 

be made from organic materials, polymers, metals or ceramics. For example in 

the natural world they exist as trees, bone structures and beehives, to name a 

few. They permit an elevated strength to weight ratio, reducing localised stress, 

to prevent potential collapse in the structure. In engineering a homogeneous 

material is often preferred, however in the natural world the reverse effect 

happens, meaning that the pores are of different sizes in the same structure, 

this is defined as porosity gradation [3], [18], [21], [22]. 

The most common terms used in this particular area of porous materials are: 

true density, which is the density of a material not including pores or voids; bulk 

density is the density of a material including open pores and voids; pore volume 

is the addition of the volumes of the individual pores; pore size is the distance 

between the walls of the pore, its width or diameter; porosity is the relationship 

between the total pore volume to the apparent volume of the sample or particle 

and finally surface area, which is the area of solid surface of the material. The 

equations are presented in Table 2.1. 

Term Equation (Units) 
True Density      

  
 (kg/m3) 

Bulk Density      
  

 (kg/m3) 

Pore Volume          (m3) 

Porosity     
  

 (adimensional) 

Surface Area (dependent on shape) 
(sphere as example) 

Or 
Heat Transfer Area (for this work) 

         (m2) 

Specific Surface Area     
   

  
 

 

Table 2.1 - Common equations used in the area of porous materials. 
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The characterisation of a porous material is dependent on the pore size 

according to IUPAC (International Union of Pure and Applied Chemistry); 

Roquerol and Liu mention three classifications: microporous, mesoporous and 

macroporous materials, their definitions follow [23], [24]. 

A microporous material has a pore size smaller than 2 nm; an example would 

be in the medical profession, making tapes for wound cover to prevent bacterial 

infection but still allowing air passage to provide a sterile environment [25]. 

A mesoporous material has a pore size in between 2 and 50 nm; example 

applications are in low bulk silica particles, zeolites, sieves, solar energy 

capture. They are used in catalysis, separation, adsorption and as hosts for 

certain molecules due to their uniform pore sizes [26]. 

A macroporous material has a pore size larger than 50 nm; commonly used for 

filters, anode material for fuel cells, stationary phases for different types of 

chromatography, bioreactors, microfluidic chips, filtering and heat transfer 

applications [27]. In this work, this type of material is used for a heat transfer 

application, the regenerator. 

After defining the general characteristics of porous materials the focus in the 

next section is only for porous metals, which is the main interest of this work. 

 

2.2. Porous Metals 

The porous metals produced in this work are in the macroporous materials 

group. Previously a metal containing pores in its structure was considered to be 

defective, it was discarded since it was not acceptable for engineering 

applications. Currently the concept has changed due to the porous metals' 

specific mechanical and physical properties which cannot be obtained in other 

materials [27]. 

One of the key advantages of porous metals when compared to bulk and 

porous structures separately are that they can use certain properties from both 

groups, making a compound material with several properties of bulk metals, 

such as their heat capacity, malleability, ductility, thermal and / or electrical 

conductivity, and properties from porous structures, such as permeability, 
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reduced weight and relatively high structural strength when the low density is 

accounted for. 

These characteristics can be combined to produce a material with a high heat 

capacity and be permeable to a fluid, a heat exchanger; or a material with a 

high stress resistance with low weight, an automotive impact protector, to give 

two examples. The properties of the porous metal can be easily modified to 

accommodate both groups of properties from the solid and the porous structure. 

A porous metal is generally considered as such when, apart from the solid, it 

includes another phase (liquid, gas) that is distributed throughout all its 

structure. These regions including the second phase are called cells, voids or 

pores. The structure surrounding the pore is the actual metal; this structure, 

depending on its shape is named a strut if its thickness is smaller than the pore, 

or wall if its larger, a micrograph can be seen in Figure 2.1. 

 

 

Figure 2.1 - Typical characteristics of a porous metal structure [28]. 

 

If there is a limited value of cells, most of them will be independent from one 

another and contained as pockets surrounded by metal, this is a closed cell 

structure aptly called a porous metal. If the pore fraction in the sample 

Wall 

Strut 

Window 

Cell/Pore 
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increases, there will be a time when they will converge with each other, 

producing a chain of free space that reaches the external surroundings; this is 

an open cell structure and may be called a metal sponge [18], [29]. 

In determining the properties of a porous metal the two most important factors 

are the solid metal it is made from and its structural shape. Within the structural 

shape a simple identification would be if the porous metal has open cells or 

closed cells. 

To determine the volume fraction of the solid a measurement of the mass and 

volume has to be done, knowing the density of the metal the porosity can be 

obtained. To know the cell size, 2D image analysis may be done on images 

obtained from optical or electron microscopy [30] or for 3D images X-ray 

tomography is used [31]. The values obtained from these can be considered an 

average for the sample, though residual porosity may be present if the limit of 

the equipment is exceeded, for example, cells smaller than the minimum 

detection limit of the equipment will not be quantified in the results. 

Porous metals can be manufactured with two different types of cells in the 

structure, open cell, closed cell or it can be a combination of the two types. In 

open cell porous metals there is a network of interconnected beams or columns 

permitting liquid or gas to flow through it [18], [21]. Its counterpart, the closed 

cell porous metal, is built by a network of interconnected neighbouring 

impenetrable pores. Their characteristics allow them to be employed in different 

situations; the open cell porous metal is used basically in heat transfer and 

filtering applications, while the closed cell porous metal is used in structural 

applications like impact absorption or the construction industry. 

Their advantages compared to non metallic porous samples is their stiffness, 

ability to tolerate high temperatures and more resistant to certain environmental 

conditions. Compared to solid metals, porous metals can have an elevated 

specific stiffness (stiffness to weight ratio) especially for bending and their 

structure can be altered in a myriad of ways (size, shape, porosity, cell size) to 

meet the demands of a preferred application. 

Next the focus will be on the different options available for porous metal 

manufacturing. 
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2.3. Porous Metal Production 

In the development of porous metals a classification commonly used for 

processing techniques is by the state of matter in which the sample is built. For 

example when foaming a liquid metal by injecting gas or mixing it with gas 

releasing compounds such as titanium hydride, calcium carbonate or lithium 

borohydride, the product exits the manufacturing with mostly round pores 

usually due to the bubbles originated from the gas. 

Other processes include investment casting, using a space holder to give the 

desired free space to the sample or the sintering of certain mixes that can 

include metal powders with polymers. To make porous metals with very high 

porosities electrochemical deposition may be used, as well as metal vapour 

deposition [2]. 

After reviewing their properties the different ways to produce porous metals are 

discussed. In Figure 2.2 a diagram of the different ways to produce a porous 

metal is shown [2]. In the following sections a detailed explanation of certain of 

these methods is presented. 

 

 

Figure 2.2 - An outline of several porous metal production techniques. 

 

2.3.1. General Production Methods 

2.3.1.1. Foaming 

It takes place when a compound that reacts with heat is added to the molten 

metal, this material decomposes and produces gas which causes the metal to 

expand, the bubble created by the compound bursts, giving way to the pore. On 
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occasion a mixer is used to reduce the processing time and to produce smaller 

bubbles. This technique makes closed cell porous metals with an elevated 

porosity. 

A way to produce porous metals with blowing agents is by adding calcium metal 

to the molten aluminium at 680°C, agitating it to increase the viscosity through 

producing various compounds (calcium oxides, calcium-based intermetallics). 

After this, titanium hydride (the blowing agent) is added to the mix, releasing 

hydrogen gas to the liquid metal and causing expansion of the melt, before 

cooling to solidify the aluminium. The process can be made more effective if it is 

carried out in an enclosed volume as the material can be made to expand until 

this volume is filled. Then the sample may be removed and any final machining 

steps carried out [32]. 

Another alternative to adding a foaming compound is to inject gas into the 

molten metal; this technique is used by two companies, Hydro Aluminium in 

Norway (www.hydro.com) and Cymat Aluminium in Canada (www.cymat.com). 

Their process consists of first adding silicon carbide, aluminium oxide or 

magnesium oxide particles to increase the viscosity of the mixture. The liquid is 

then foamed in the next stage by directly injecting a gas into it (which could be 

air, nitrogen or argon) using appropriately built mixers to create the fine bubbles 

which are needed to produce a high quality porous metal. The combination of 

bubbles and melted aluminium rises to the surface of the liquid, turning into a 

dry porous structure as the metal solidifies and the molten metal drains from it. 

Then it is moved out of the surface by a conveyor belt permitting its 

solidification. The porous metal is then levelled out by a couple of rolls 

producing closed skins at the top and bottom. Aluminium alloys have also been 

used, such as AlSi10Mg and wrought alloys 1060, 3003, 6016 or 6061 [33], 

[34]. 

The reported porosity obtained for this type of porous metal can start at around 

80% and be as high as 98% and the cell size can be from 3 mm up to 25 mm. 

The wall thickness and density are directly related, they both are inversely 

related to the extent of the voids. These parameters can be affected by the 

modification of the gas feed rate and the impeller velocity [34]. 
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Some of the advantages of direct foaming are the low densities and the amount 

of porous metal that can be produced. Two disadvantages of direct foaming is 

that at some point the porous metal needs to be split (the production is 

continuous), damaging the cells locally and that it is quite brittle because of the 

addition of ceramic material required to stabilise the pores in the liquid. 

2.3.1.2. Gas-Eutectic Transformation 

Another option to create a porous metal is with a metal - hydrogen system; the 

molten metal is mixed with hydrogen gas until the objective composition is met 

then the liquid metal solidifies. The porosity obtained is similar to that provided 

by the infiltration method, which is approximately 70% [21]. 

2.3.1.3. Compacting with a Foaming Agent 

To make a sintered porous metal the heat needed for the operation does not 

have to be obtained from an external source, they can be formed using the 

energy released from the reaction of the mixing powders. 

To compact the powders together there are several methods available, isostatic 

or uniaxial pressing, rod extrusion or powder rolling. When the heat treatment is 

due the time it is applied depends on the temperature reached; it ranges 

between a few seconds to several minutes; the heat causes the agent's 

reaction, inducing bubbling that gives way to the pores in the metal [42]. 

This technique is used when porous alloys and / or intermetallics are needed, 

usually to obtain a porous structure from materials with high melting points. The 

exothermic reaction speeds up as it progresses through the large surface area 

of the sample, this method is called Self - propagating High - temperature 

Synthesis or SHS [43], and has been used to produce NiAl and NiTi alloys. 

2.3.1.4. Co-compaction of Powders of Two Materials, One Leachable 

in this method two powders (usually metal and NaCl) are mixed together and 

compacted. The NaCl is acting as a space holder. After the powders merge the 

NaCl is eliminated from the mixture using water. The range of densities 

obtained with this method is between 30 to 50% of the full density, and the cell 

size depends on the particle size used, which can vary from 10 µm to 10 mm 

[21]. 
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2.3.1.5. Powder Sintering 

To produce a porous metal sample from powder, it is pressed to form a tight 

compact and then sintered to join the particles together, diminishing the pore 

fraction. To achieve a porous metal by sintering the process needs to be 

stopped at a certain time before the sample is fully dense. This process has 

succeeded with copper [38], titanium [39] and steels [40]. Using porous 

titanium, samples have been made with large particles (from 0.18 mm to 2 mm) 

to increase the porosity [41] as the particle surface area, and driving force for 

sintering are reduced. 

The sintered material is similar to expected shapes of solid materials, like 

castings, forgings and several manufactured forms. This method is used to 

create bonds between small granules of materials by applying heat. On 

occasion a preform can be used in conjunction to give a certain space between 

the particles, decomposing during the heat treatment, carbamide is commonly 

used. The difference with the previous method is that the preform is not 

leachable, it eliminates with the heat. 

This process is a very complex one, due to the fact that it has many variables 

depending on the material that is to be sintered; changes with sintering can 

happen at the same time or one after the other. Some of these may be 

particular to porous materials, others may be common to any polycrystalline 

material exposed to high temperatures. The impact, economically speaking, of a 

powder metallurgy process is dependent on the inherent changes that the 

process produces, such as in the structure. It has to be considered that the 

material has two phases, porosity and solid material. Considering that each has 

its own characteristics, such as size, form, distribution and quantity. 

Apart from the joining of grains, this procedure is useful to achieve different 

goals, including: creating alloys, giving a heat treatment to a metal, bonding 

materials and / or increasing their density, which happens with almost all of the 

different types of sintering. Even though the opposite can be achieved, growth 

or no dimensional change, this is particularly preferred in most commercial 

applications [42]. 
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Within sintering two variants can be identified. The first one is hot pressing; this 

is a process in which the powder aggregate is affected by an elevated heat 

source and additional pressure; as with all sintering the heat source should not 

be as high to reach the powder’s melting point. Sintering is a solid state process 

since no liquids are involved. It is most commonly used for ceramics and 

refractory metals. 

In liquid phase sintering the heat applied is sufficient to melt one or more of the 

elements present in the powder composed of powders of multiple materials. 

This then flows into the pores of the powder and may alloy with the other 

compounds returning to a solid. This process is used to obtain high densities in 

a compound. In fibre metallurgy metal fibres are employed instead of powder, 

the porosity is highly variable as it depends on the amount of material used. The 

fibres can be made by machining or melt spinning, and then they are 

compacted and / or sintered; an additional coating could be included to improve 

attachment between them. If fibres are used the porosity in the powder compact 

can be greatly augmented, while liquid phase sintering ensures good bond 

strength between fibres [18], [24]. 

Stages in Sintering 

A key characteristic of the sintering process is that it occurs at a fixed 

temperature; of course there is the option to change the times of the process to 

obtain different results. Considering this it would be helpful to explain the 

conditions in which sintering happens time wise. Since there are many 

variations in the whole process it will be handled in general terms. In Figure 2.3 

the stages are shown. 

 

Figure 2.3 - Time lapse of powder particles during the sintering process. 
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1) Bonding 

It happens as the thermal energy allows the material to create grain boundaries. 

This occurs in those places where there is close contact between particles. 

Most of the process occurs during heating before reaching the desired sintering 

temperature. In this  stage there are no changes in the dimension of the sample 

but there are changes within it such as the consistency and inner connections 

[44]. 

2) Neck Growth 

The new connecting areas are called necks; the necks get larger as the material 

is exposed to the high heat, meaning a higher amount of association between 

the material, it does not reduce the porosity as the size remains the same, nor 

does it affect the interconnectivity of the porosity [42]. 

3) Pore Channel Closure 

This corresponds to a large change in the porosity of  the sample, obstructing 

the interconnected pathways, producing closed and disconnected pores. This is 

an extremely significant change if the original interest is to have a fluid flow 

through the mass, such as in filtering [45]. 

4) Pore Rounding 

This is a natural result of neck growth, it happens when material at the surface 

of the pore migrates to the neck  regions, causing the pore to be remodelled 

into a more rounded version. This occurs to isolated and interconnecting pores 

alike, leaning more to the isolated ones [45]. 

5) Pore Shrinkage 

This is considered the most significant stage out of the six; however it is 

encountered at long times. It depends mostly on the time that the powder is 

exposed to the high heat, making the sample denser. It includes movement 

from the solid portion of the material into the cavities and motion from the gas in 

the pore to the outside surfaces [46]. 
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6) Pore Coarsening 

If it occurs, it happens after all the other stages have finished. It consists of the 

decrease and removal of tiny separated pores and the increase in size of bigger 

ones. This causes a growth in size of the pores and a lesser number of them. 

There is no increase in density in this stage [44]. 

Variables in the Sintering Process [42], [47] 

1) Particle Size 

If the particle size is diminished the sintering rate is increased, due to the 

abundant surface in the whole mass.  

2) Particle Shape 

If more irregular shaped particles are used, the surface roughness increases, 

diminishing the performance of the sintering process. 

3) Particle Structure 

A sheer grain structure is needed to help the sintering process; it has a good 

result on various transport mechanisms. If there are more lattice imperfections, 

for example dislocations, there may be a benefit to the sintering process by 

enhancing the rate of certain diffusion processes. 

4) Particle Composition 

Sintering can be influenced by addition of alloys or contaminants in a metal, 

increasing or decreasing the rate. Surface impurities or oxidation are not 

advantageous to the process. 

5) Green Density 

If this characteristic decreases it means a higher quantity of internal surface 

area and a larger driving force, consequently better sintering. However high 

green density improves the ease of handling pre-sintering. 

6) Temperature 

Sintering is very dependent on this characteristic. If there is an increase in 

temperature the speed and degree of any changes happening also increases. 
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The transport mechanism controlling the sintering may change with different 

temperatures. 

7) Time 

It is not as meaningful when you compare this characteristic to the temperature. 

The sintering rate decreases with time. As time progresses the driving force 

from the process is reduced and it becomes harder to eliminate all of the 

porosity by sintering. One of the important parameters about time is the 

economics of the procedure; a lengthier time uses more energy, increasing the 

cost of finished product [18]. 

2.3.1.6. The Sintering Dissolution Process 

When pressing and sintering does not achieve the desired porosity, the cell size 

is not large enough for a certain application or a better control over the 

procedure is required, one can resort to the space holder method. The use of a 

space holder, creating an extra stage in the process, includes using another 

type of material acting as a volume occupier that in the end, after removing it, 

will leave an empty space in the processed metal. The general process is 

shown in Figure 2.4, metal powder and space holder particles are mixed, 

pressed and eliminated before sintering takes place. This procedure increases 

green body strength and compaction making it viable to shape the part before 

sintering to avoid damaging the cell structure [48]. 

 

 

Figure 2.4 - The Sintering Dissolution Process. 
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This is one of the original techniques to produce a porous metal using 

aluminium powder and NaCl powder mixture as metal and space holder. In this 

method the mix temperature is elevated to work around the melting point of 

aluminium (660°C) and well under the melting point of the NaCl (801°C); the 

sintering time may vary from 2.5 to 50 hours, depending on the mixture type 

and sample size [49]. 

The operating temperature should be kept lower than 680°C to avoid the 

separation of the aluminium from the compound; the space holder is removed 

by water leaching, ending up with the porous aluminium [28]. In this work the 

porous metals have a range of porosities from 45 to 83% and a pore size range 

from 0.3 mm to 1.0 mm, taking up to six hours for the sintering process to 

complete. 

In the space holder removal phase of the process, special care needs to be 

taken if the desired porosity of the porous metal will be under 60%, as it has 

been found by Zhao that NaCl particles may be almost completely surrounded 

by aluminium and remain, the water leaching time must be increased [28]. 

In some cases the addition of magnesium and tin to the compact can help the 

sintering step, reducing the oxide layer [50]. 

Titanium has been used [51], producing porous samples with low porosity range 

between 20 and 53%, higher porosities are achievable, however the pores are 

much larger and are difficult to vary in size. Steels have also been produced 

[52], achieving high porosities (≈ 70%), some samples include micro porosities, 

which is not desirable for many applications, by adding boron to them they aim 

to eliminate it. 

2.3.1.7. Sintering with Other Space Holders 

When using other space holders, they can be removed before or during the 

start of sintering. In some cases carbamide (in the form of spheres or flakes) is 

used as a space holder [18], like NaCl it may be leached before starting the 

sintering process [53]. Using ammonium hydrogen may require that the 

leaching stage in the previous process to be included in the sintering stage [54]. 

These space holders are used to make porous structures with materials of 



20 
 

higher melting temperatures, certain steel alloys, titanium and copper porous 

samples have been produced. 

For titanium and titanium alloy porous structures the space holder materials that 

are commonly used are NaCl [55], carbamide [31] and magnesium particles 

[56]. 

Other space holders apart from NaCl have been used, such as carbamide 

(CH4N2O) and ammonium bicarbonate (NH5CO3). In some processes these 

compounds are not removed from the compact by dissolving them, instead, 

they are eliminated by heat treatments at somewhat low temperatures (around 

200°C) before the sintering step, or at its initial stage. The purpose of using 

these materials as space holders is to obtain porous metals with higher melting 

points, which require more support during sintering. Some of the samples 

produced with these space holders are made from titanium [31], stainless steel 

[57] and copper [58]. 

The use of carbamide is not exclusive to higher melting point metals, it has also 

been used as a space holder with lower melting point metals such as aluminium 

[59] and magnesium [60]. It can also be removed by washing it away with water 

in certain stainless steel porous samples [52]. The shape of the porous metals' 

pores depends on the shape of the space holder, most commonly they are 

available as spheres or irregular shapes [61]. 

Another material used as a space holder is potassium carbonate, K2CO3. This 

compound can be eliminated completely from the porous metal by heat 

treatment, leaching is not required. It breaks down when it reaches a 

temperature of 891°C. It is used to produce high melting point porous metals, 

like copper [62] or iron [63]. 

For high temperature applications porous metals have been produced out of 

Nickel - Titanium alloys using cold pressed powders only [64], the average 

porosity obtained was in the range of 40% and grain size range between 50 µm 

and 200 µm showing very good super elasticity and a symmetric pore 

distribution. By adding NaCl [65] and sintering the compound afterwards. 

Another alloy used to make porous structures using an NaCl space holder is 

stainless steel - chrome - molybdenum [66]. The range of porosities obtained 
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was from 40 to 58%, relatively low, with interconnected pores in a size range of 

25 µm to 200 µm given by the space left by the NaCl particles after sintering; 

the powder grain size ranged from 18 µm to 22 µm, these porous metals have 

high mechanical energy absorption due to the material's high ductility. 

When the powders are sintered without a space holder the porosity tends to be 

low, on average 35%. When the NaCl space holder is used the porosity may be 

increased by the size and abundance of the granules; however, this technique 

will introduce two pore sizes in the sample. 

Polymers and binders have also been used as space holders. They are used to 

keep the shape of the powder (free space) until the sintering step, producing the 

desired part [67]. Nonetheless, this technique prevents precise control over the 

pore size and shape, since the polymers are significantly weaker than the 

metal. Metal Injection Moulding may be used to conform powders for sintering, 

making it a viable technique for porous metal manufacturing [68]. An alloy that 

is commonly used with this method is Ti6Al4V with poly methyl methacrylate 

(PMMA) acting as a space holder [69], stainless steel porous samples have 

also been made using PMMA space holders [70]. The PMMA space holder is 

removed from the porous metal while increasing the temperature during the 

sintering process. 

2.3.1.8. Freeze Casting 

An alternative to adding the preform to the powders while mixing or using 

PMMA is to make space holder particles in-situ, this is where freeze casting is 

used. This technique has been applied to titanium [71] and stainless steel [72]. 

A suspension of metal powder and water is made, then chilled uniaxially below 

freezing temperatures. When the water freezes, it pushes the powder particles 

away, joining them, thus acting as the space holder. The preform is then 

eliminated by sublimation, creating the voids in the porous metal, between the 

powder grains. Then sintering gives the grains the close-knit structural strength. 

This process creates a sample with high anisotropy [71]. 

2.3.1.9. Gas Entrapment 

Another technique to produce porous metals is gas entrapment. Gas pressure 

is used to expand the frames composed by powder, one of the conditions is that 
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the process occurs at very high temperatures; another, that the metal or alloy 

has to be highly deformed [73]. Titanium and nickel - titanium alloys are 

commonly used, the porosities achieved by this method are on average 57%. 

This is a relatively low porosity and initially pores were found to be closed, open 

pores were created by changing the pressure in the final stages of sintering, 

increasing the porosity due to the material's ductility. 

The procedure happens as follows, the metal or alloy powder is compacted 

within an inert gas (usually argon), the gas accommodates itself within the 

voids, which become isolated voids. Vacuum sintering takes place making 

connections between the powder grains and broadening the cells due to the 

argon's pressure [74]. The diagram of the process can be seen in Figure 2.5. 

 

 

Figure 2.5 - The Gas Entrapment Process. 

 

With this technique the shape of the porous metal can be modified. If a uniaxial 

force is applied to the sample during the pores' growth, it can hold it in place, 

causing the cells to be regulated [75]. If heating and cooling periods are applied 

the boundaries between the voids may disappear, increasing porosity [76]. 

2.3.1.10. Additive Layer Manufacturing 

A newer porous metal producing technique is Additive Layer Manufacturing 

(ALM). The previous methods mentioned generate pores that are arbitrary, they 

are uncertain in size, pattern and region. With ALM it is completely different, 
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since the sample outcome is based on a 3D image created by computer aided 

design (CAD) and produced into the desired part. Notable companies producing 

this type of equipment are Renishaw (www.renishaw.com) and Arcam 

(www.arcam.com). In the process the machine interprets the image file 

uploaded into layers. In Selective Laser Melting (SLM) metal powder is fed onto 

a manufacturing surface creating a layer. 

According to the CAD file, a concentrated heat source, such as a laser beam, 

melts the granules of powder which are to be part of the final solid shape. The 

manufacturing surface is then moved downward and another powder layer is 

placed on top, repeating the process until the final sample is completed The 

schematic for the procedure can be seen in Figure 2.6. The unused powder is 

sieved and recycled. The materials that are commonly used in this process are 

titanium and stainless steel 316L [77]. 
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Figure 2.6 - Process followed to build a porous metal using Additive Layer 

Manufacturing. 

Electron Beam Melting (EBM) (another ALM technique) has frequently been 

used to work with lattices made from titanium or titanium alloys such as 

Ti6Al4V, general structures are cubic based or diamond based [78]. EBM is a 

very adjustable procedure, to create more complex shapes, tomography 

pictures are often used as CAD files [79]. 

Other porous metals produced with EBM for biomedical usage are from cobalt 

and chrome alloys [79] and for operations using electricity or heat transfer, 

copper [80]. 
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2.3.1.11. Spark Plasma Sintering 

To produce a microstructure with fine grain size from powders, Spark Plasma 

Sintering (SPS) is used instead of regular sintering for the aluminium with NaCl 

space holder technique and for nickel - titanium alloys [81]. They have very low 

porosities of around 6% when compared to bulk TiNi, grain size being very 

small at around 50 nm creating nano sized pores, these porous metals promise 

biocompatibility due to the good attachment of cells. 

 

2.3.2. Liquid Metal Replication Methods 

2.3.2.1. Lost Foam Casting 

This process is applied to obtain porous samples from metals and alloys that 

have relatively low melting points, such as copper, aluminium and lead. First a 

porous structure pattern is made, occasionally with polystyrene, it must include 

a sprue so the molten metal reaches the pattern; if several of these patterns are 

to be produced they can be joined using glue to form a cluster; the cluster is 

covered with a permeable refractory coating, leaving it to dry; then the cluster is 

placed in a foundry container; sand is added to cover the free space between 

the container and the cluster, being compacted to ensure a proper fit; the liquid 

metal is poured through the sprue and pattern, replacing the polystyrene, after 

cooling the porous metal is removed from the mould. This method produces a 

highly porous material as well [24]. 

2.3.2.2. Infiltration 

In this technique liquid metal is forced into the free spaces of a preform or 

space holder, here there is usually a lower porosity when compared to the 

previous couple of methods [2]. The preform material most commonly used is 

NaCl [18], others used are clays [35], corundum [36] and porous alumina [37] 

for glass - alumina composite materials, although these latter are not removed. 

To introduce the metal a pressure system forces it to occupy the spaces 

between the preform particles. Another way is to mix the preform granules with 

the molten metal, in Figure 2.7 the infiltration method can be seen. 
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Figure 2.7 - Process followed to make a porous metal using infiltration. 

To build porous metals of higher porosity, for example reaching 87% via the 

investment casting route, the space holder packing density when in the preform 

must be increased; this can be achieved by compacting it using Cold Isostatic 

Pressing, to maintain the same structure [82]; or by merging the NaCl particles 

together using sintering, however this reduces the particle surface area (the 

driving force for sintering to take place) and, as a direct consequence, the 

porous metal surface area; so here, when different densities were required, a 

vibration based route was followed. 

The latter methods should be more effective when using NaCl particles smaller 

than 1 mm, since by reduction in size they are less prone to breaking and have 

an increased proportion of surface area to volume, increasing the driving force 

for sintering. Since the particle sizes in this study are larger and extra 

equipment would be needed to employ these routes, these techniques have not 

been used, keeping the method efficiently achievable. 

Another method to control the size and shape of the space holder particles was 

applied by Goodall and Mortensen [14], modifying individual NaCl granules. 

Small powder particles of NaCl are blended with a binder, such as water and 

flour, giving the freedom to shape the paste into any desired form; after drying, 

the binder is removed by heating up the blend. This process is not difficult to 

follow to create a preform, the complexity rather arises when infiltrating; if the 

pressure is not controlled properly and precisely the small scale porosity inside 

the particles might get filled by molten metal, as well as the larger free space in 

between them. 

NaCl is widely used as a preform due to its favourable characteristics like high 

melting point, high solubility in water, non toxic, low cost and readily available. 

However if one is aiming to produce porous samples out of higher melting point 
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metals an alternative preform material would be sodium aluminate [15]. Its 

melting point is well above that of NaCl (≈ 1650°C) [83]. This and other 

alternative materials, while having advantages, also have downsides, frequently 

including a higher purchase cost and increased difficulty to dissolve. 

To carry out replication processing with small particle size space holders a 

greater infiltration pressure is needed. The production rig for this study has 

been tested for pressures up to 7 bar, beyond which the risk of leaks from the 

graphite gaskets increases. To go beyond this pressure level an alternate 

design of infiltration chamber would be required. In one such design, the gasket 

areas are located apart from the high temperature part, with additional 

protection from circulation of low temperature water. This type of equipment 

(cold wall pressure chambers) is much more intricate and higher in expense 

than the one available. 

The space holder manufacturing process or replication is one of the most 

straightforward and low-cost processes available to make porous metals. It 

gives a great advantage as part of a strategy to design, produce and test the 

effect of changing each porous metal structural characteristic or mix of 

characteristics to improve the regenerator performance. As of today, no tests 

have been published on replicated porous metals as regenerators. 

The development phases to produce a porous aluminium sample by the 

replication method start with the preparation of the space holder. The preform is 

in essence the negative of the actual porous metal, it will be dissolved at the 

end leaving the shape of the porous metals' cells; as such, the size of the pores 

depends on it as well. The material for the preform must have a higher melting 

point than the porous material, it must not react with the it even with the 

increase in temperature and it must be capable of being eliminated smoothly 

from the porous metal once solidified. 

NaCl complies with these characteristics. Its melting point is 801°C [18], well 

above the melting point of aluminium (660°C) and the operating temperature of 

the infiltration process (740°C) [149]. It is inactive when in contact with liquid 

aluminium or water and it does not pose the threat of reaction producing any 

dangerous compounds [3]. 
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Porous metals processed by the replication method have a lower porosity range 

(from 65 to 75% on average) and therefore more consistent results than other 

techniques, culminating in less empty volume space and a larger capacity for 

heat absorption, being more suitable to be employed as a regenerator. 

Replication is one of the easiest and low cost methods to produce porous 

metals, it also provides a myriad of options for structure architecture [3]. 

There are many techniques in the area of porous metals which can be applied 

and modified for a particular goal; with our current manufacturing method, which 

is infiltration using NaCl as the preform, the aim is to create porous metals with 

different size, shape, structure, pore size and material in order to achieve a 

large amount of data from our test rigs to determine the best regenerator test 

samples that can be obtained. 

In previous works [150], to improve contact between the NaCl particles sintering 

has been used, increasing the porosity up to 80%, this additional step takes 

some time. Another process [9] focuses on the melting of salt crystals to 

produce spheres, however this also takes more time and is costly. Cold 

Isostatic Pressing (CIP) has also been applied for this purpose, giving a 

superior stiffness and strength values when compared to the sintering process 

[8]. A simple way of increasing the contact between the particles of the sample 

holder is to vibrate the preform so the particles arrange themselves in a better 

way, this increases the porosity to around 76% [149]. 

There have been several variations of the basic method used to produce porous 

metals (using space holders) in this work. Previous research in the group had 

used induction heating and argon gas pressurisation of aluminium contained 

within a glass tube, also containing NaCl [3], [151], another was the vacuum - 

argon method [152], argon only (pressurisation) method [120], [149] and 

infiltration using a mechanical pressure. In particular the latter three of these 

methods were explored in the present work, with the greatest focus on the 

argon gas (pressurisation) method, the basic process of which was refined 

considerably for application here, in Table 2.2 some of the reported processing 

and structural characteristics are shown. 
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Material 
Infiltration 
Pres/Temp 

(bar/°C) 

Preform 
Processing 

Preform 
Packing 
density 

(%) 

Porous 
Metal 

density 
(%) 

Particle 
size 
(µm) 

Particle 
shape 

Ref. 

Al 5/750 
Sintering 

(785°C) 
≈ 75 20 - 27 500 Sphere [201] 

Al, 

Al12.6Si 
5/750 

Sintering 

(785°C) 
≈ 75 20 400 Sphere [11] 

Al 5/750 
CIP/Sintering 

(750°C) 
70 - 90 13 - 30 40 - 400 Sphere [202] 

Al 2-80/710 CIP/Sintering 67 - 86 12 - 32 75 - 400 Sphere [7] 

Al, Al-

Mg 
4-80/710 

CIP (10-60 

MPa)/Sintering 
64 - 93 5 - 35 75 - 400 

Sphere, 

Angular 
[12] 

Al 80/710 
CIP (5-60 

MPa)/Sintering 
64 - 90 10 - 35 75 - 400 Sphere [8] 

Al 
0.96-

2.48/760 

CIP (32-50 

MPa)/Sintering 

(730°C) 

59 - 72 29 - 41 
1400 - 

2000 
Sphere [196] 

Mg 1-4/750 None 64 22 - 33 
1000 - 

2000 
Sphere [169] 

 

Table 2.2 - Processing and structural characteristics of replicated porous 

metals. 

From the table above it can be seen that these techniques have certain 

limitations.  For example, the random packing of equiaxed particles leads to 

around 64% of space being filled [203], so this represents an effective lower 

limit on the porosity that can be obtained with the basic method. There will be a 

certain limitation with regard to the pressure applied for non-wetting metals, 

which is discussed in more detail in section 6.2. 

The inter-relation between processing and structure in great manner depends 

on the preform, from the table the range of its packing density will vary the 

amount of molten metal that is present in the final porous metal structure, 

another parameter is the infiltration pressure, if it increases, the amount of 

molten metal in the final structure is higher as well, reducing the porosity. The 

preform volume fraction will not be completely filled until a certain infiltration 

pressure is reached, infiltration is a gradual process [3]. 
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The different shaped preform particles can be created using methods such as 

evaporation from brine, which creates cubes or antisolvent precipitation, which 

creates elongated parallelepipeds, hopper shaped as well as cubes. 

Aluminium is commonly used to produce porous metals by replication due to its 

low cost, density and melting point. The research done on these elements as 

heat exchangers have included for use in airborne equipment and heat sinks for 

electronic equipment [143], having a large surface area, which is expected to be 

good for heat transfer; aluminium was thus the material chosen here to explore 

some of the structures that can be produced as a porous metal and test for 

regenerator properties. 

In this chapter there has been an extensive view on the ways to produce porous 

metals, from general production to liquid replication methods, focusing on the 

various aspects of different techniques and the effects produced by changing 

certain parameters in the process, in Chapter 3 the regenerator, the Stirling 

engine and its cycle will be presented to associate porous metals with the 

regenerator application. 
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Chapter 3. Regenerators and Heat Transfer - Engineering 
and Theory 

3.1. The Regenerator 

A regenerator is a temporary heat storage unit for certain applications in which 

the thermal energy contained within a fluid is taken from it, only to be returned 

at a later stage of the process. It is used as an efficiency boost in a cycle in 

which a fluid is circulating in opposite directions between high and low 

temperature regions. It assists in restricting the exchange of heat between the 

two sides, which would narrow the temperature difference and reduce the 

efficiency of operation. In Figure 3.1 the configuration of an Alpha type Stirling 

engine and its regenerator can be seen. 

 

 

Figure 3.1 - Alpha type Stirling engine configuration [84]. 

 

Functionally there is a requirement for good heat exchange from the hot 

working fluid to the cold regenerator in the first half of the cycle and also heat 

exchange from the hot regenerator to the cold working fluid during the return 

phase of operation. As for heat exchangers, there is also the requirement for 

regenerators to set up as little opposition to the flow of gas as possible, as this 

would take energy away from the process. Nevertheless, despite these 

similarities regenerators differ fundamentally from heat exchangers, where the 

purpose is to move thermal energy only in a single direction, as the thermal 

energy must remain in the regenerator for subsequent return to the working 

fluid. 
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Both the regenerator and heat exchanger have the same exact relationship with 

the fluid, their efficiency and behaviour depend on the thermal conductivity and 

specific heat value of the material it is made out of [85]. A heat exchanger's 

efficiency will diminish if the heat is not transferred through the solid; this 

characteristic may be contrasted with a regenerator, since it has to return the 

captured heat to the fluid in the second half of the cycle, the movement of 

energy through the material must be low; if it is not, the temperature variation 

between the hot and cold side will be minimal causing the system to slow down 

and suffer energy losses to the surrounding environment. 

A heat exchanger should ideally be made from a material with high thermal 

conductivity, such as aluminium, while for a regenerator a low thermal 

conductivity material element is needed, since at the start, the heat moves from 

the fluid to the solid and then, in the second half of the cycle, from the solid to 

the fluid. If the regenerator has a large value of thermal conductivity the energy 

would be transported through the porous metal, diminishing the energy change 

between the fluid and solid, lowering the efficiency of the element. For both 

types of component, a large specific heat value is required however [85]. 

One of the applications that uses regeneration is the Stirling engine, in the next 

section its operation will be addressed. 

 

3.2. The Stirling Engine 

A specific example of a case in which a regenerator is used is a Stirling engine. 

The Stirling engine is an external heat engine, meaning it can receive its input 

energy from a broad scope of sources via heat transfer. It has an elevated 

efficiency when compared to internal combustion engines, being an enticing 

option for power generation for the current and next generations of energy 

supply [86]. 

There are two containers (referred to as sides or chambers) within a Stirling 

engine; the expansion, or hot, side and the contraction, or cold, side. The heat 

enters the system on the hot side and causes the expansion of the working 

fluid. The regenerator often currently used in this type of engine is made out of 

a porous metal with an high surface area. 
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The effectiveness of the element depends on the type of material it is made out 

of. For example, in the General Motors (www.gm.com) Research Laboratories 

Ground Power Unit 3 Stirling engine and the Philips MP1002CA [87] the 

regenerator materials used are stainless steel meshes since they possess an 

elevated value of specific heat and a low value of thermal conductivity, as well 

as, importantly, the ability to withstand high temperature environments without 

melting or oxidising. 

Other materials (aluminium, copper and brass) have been proven to be inferior 

in performance when compared against these stainless steel meshes [85]. 

However, no investigation of the effect of the structure (as distinct from the 

material) has been reported. 

The Stirling engine has stages with different levels of temperatures and 

pressures affecting the working gas. It has no need for valves since the flow is 

restrained by volume expansion. The cycle can be reversed, meaning it can 

deliver heat if mechanical energy is introduced or deliver mechanical energy if 

heat is introduced; it can double as a heat pump or refrigerator if needed. 

It is composed by a group of pistons, heat exchangers, the regenerator and the 

working gas. When absorbing heat from an external source, such as exhaust 

gases from another process, it generates the piston motion [19]. In Figure 3.2 

the application of a Stirling engine is shown [88], to dissipate heat from an 

electronic system. 

In the next section the operation of the engine's cycle is presented with fine 

detail. 

 

Figure 3.2 - MSI ECOlution Chipset Cooler [88]. 
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3.3. The Closed Regenerative Thermodynamic Cycle 

The Stirling cycle operates in 4 steps, each one may be inverted. In the "ideal" 

(but not possible due to practical aspects) cycle there are 2 constant volume 

stages in which the fluid crosses the regenerator, becoming preheated or 

precooled. The 2 remaining stages occur at constant temperature in which the 

fluid comes in contact with a hot or cold source [89], [90]. In Figure 3.3 the cycle 

is shown with a pressure - volume diagram, and each of the key stages in the 

cycle will now be reviewed. 

. 

 

Figure 3.3 - Pressure - Volume diagram of the Stirling cycle [91]. 

 

1-2(a): The gas expands at a hot temperature TH, the left piston travels down 

 as the right one remains motionless. To stay at the same temperature, 

 the gas absorbs heat energy QH from the supply. 

2-3(b): At constant volume V2 the gas at an elevated temperature moves from 

 the left container through the regenerator to the right container, it leaves 

 heat Q in the regenerator reducing the temperature TH to TC and 

 operating both pistons during the process. 
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3-4(c): The gas compresses at a cold temperature TC, the right piston shifts up 

 as the left one remains motionless. To stay at the same temperature, the 

 gas releases heat energy QC to the environment. 

4-1(d): At constant volume V1 the gas at a lower temperature travels from the 

 right container through the regenerator to the left container, it absorbs 

 heat Q stored in the regenerator from stage 2-3 having to absorb less 

 heat from the supply to reach TH, improving the cycle's efficiency. 

In Figure 3.4 the schematic diagram of the Stirling cycle is shown. 

 

 

Figure 3.4 - Stirling cycle operation schematic diagram [92]. 

 

The regenerator is possibly the best innovation made by Robert Stirling in the 

development of the air engine; it is a component that permits recuperating 

energy. Stirling’s idea was to recover the heat extracted in stage 2-3 and 

provide it back to the working fluid in stage 4-1. The regenerator's function is to 

V2 

V1 
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preheat and precool the working fluid, greatly improving the cycle's efficiency 

[90]. 

A current acceptable regenerator structure is the stacked layers of wire mesh 

[94], packed beds of spheres [93] and another is the development of porous 

metal structures that allow a fluid to pass through the pores [94]. 

The main issue of regenerators is the resistance that opposes the flow of gas 

through it, which is the reason why low viscosity gasses such as hydrogen or 

helium are necessary to reduce friction losses. On occasion these losses are so 

elevated that make the engine deliver a better performance if the regenerator is 

removed, losing the possibility to recover the energy that can be stored in it. 

From simple energy capture results it is not possible to determine if thermal 

conductivity is important for regenerator purposes, stainless steel has a low 

thermal conductivity and copper a high one, they both absorb similar amounts 

of energy when a hot fluid passes through them. Further tests are needed to 

prove this as Timoumi suggests that a regenerator needs to have a high heat 

capacity and a low conductivity to minimize internal heat loss [85]. 

The majority of the data on regenerators has been obtained using steady flow 

experiments, Tanaka focused his work on investigating the regenerator 

performance in an oscillating flow using different materials and structures, such 

as stainless steel in wire mesh structure, nickel in porous structure and bronze 

in a sintered structure and different porosities ranging from 37 to 96% [94]. 

One of the issues in their experiments was the thermocouples' temperature 

difference between the registered and the actual when using 50 µm 

thermocouples, having to correct the data. When using 25 µm thermocouples 

the problem is greatly reduced, that is why these are the ones used in the 

current work. 

The relationship between the pressure drop and the piston speed was 

converted into the relationship between the friction factor and Reynolds number. 

Friction factor is a term related to the shear stress at the wall, which is a force 

that generates losses in the system, for the ideal performance it should be as 

low as possible. 
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The speed at which the piston worked was from 100 to 600 RPM and 0.1 to 1 

MPa of pressure. In general, the friction factor values are different with different 

materials, determining that the mesh diameter was not convenient as the 

representative length for other porosities and regenerator shapes. On the other 

hand to establish the relationship between friction factor and Reynolds number 

the hydraulic diameter was used, as it depends on the porosity, mesh diameter 

and mesh shape. It was established that the shape factor was the ratio between 

the mesh surface area and the mesh volume [94]. 

It was stated [19] that the pressure drop in uniaxial flow is lower for a certain 

Reynolds number, suggesting that the friction factor in an oscillating flow is 

bigger; the regenerator efficiency (η) was calculated from the formula: 

 

 

 
  

            

           
 Eq. 3.1 

 

where QH,in is the input heat from the supply, QC,out is the output heat to the 

cooler and QC,in is the input heat from the cooler; using the instantaneous 

temperatures at a certain given time; if the regenerator efficiency increases the 

heat transfer loss in the regenerator decreases this happens when the mesh 

number of wire went up (smaller pores). 

When the relation between heat capacity in different materials to the working 

fluid is large, the Number of Transfer Units (NTUR) and regenerator efficiency 

can be expressed as: 

 

                 Eq. 3.2 

 

Doing substitutions introducing heat in the equation: 

 

      
               
            

 Eq. 3.3 
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Next the mean heat transfer coefficient (h) is substituted: 

 

   
       

  ṁ   
 Eq. 3.4 

 

where ṁAir is the average flow rate for a half cycle. 

These are some of the basic equations to analyse the behaviour of a porous 

material acting as a regenerator, however certain ideas and equations need to 

be proven and adapted to different circumstances that can arise [19]. This 

occurred in this work while testing different types of wire meshes as stacked 

columns using three different sizes of wire mesh, confirming that in fact the 

pressure drop increases as the Reynolds number decreases. 

 

3.4. Existing Regenerators 

The regenerator is made from a porous matrix. Currently the most common 

Stirling engines use stainless steel mesh screens as their regenerator material, 

the size of the regenerator depending on the size of the engine, for example: 

x Philips 400hp/cyl Stirling engine uses 6 regenerators that are 75 mm in 

length and 160 mm in diameter with its mesh number at 100 consisting of 

89 screens and a porosity of 0.582. 

x USS V-160 uses 1 regenerator of 30 mm in length and 65 mm in 

diameter with its mesh number at 200 consisting of 300 screens and a 

porosity of 0.69. 

x Clapham 5.0CC uses 1 regenerator of 25 mm in length and 7.3 mm in 

diameter made from stainless steel locking wire and a porosity of 0.416, 

(this is an example that does not use the mesh configuration). 

The Philips engine is at least five times larger than the USS engine. 

Performance wise it is proven that within Stirling engines the brake horsepower 

output has efficiencies of around 26% [16]. 
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To choose or build a regenerator one must take into account the characteristics 

mentioned in Table 1.1, for maximum heat capacity a dense material with high 

specific heat is preferred, for minimum flow losses the element must be highly 

porous, based on the literature the range of porosities varies from 0.416 to 0.85 

[17]. 

There needs to be a high surface area, translating into a matrix with many 

struts, the element must have a low thermal conductivity and it must not change 

its properties drastically in the range of operating temperatures which is 

between 300 and 1100 Kelvin [87]; in the literature there is not a structured 

material selection process or a study on the balance between pressure drop 

and heat transfer; pressure drop values through the regenerator vary from 

engine to engine, depending on its size and speed of operation, typical values 

for a 500W gamma type engine range from 10 to 14 kPa [206]. 

All reported regenerators use stainless steel, virtually all in the form of wire 

meshes except one. Exploration of alternative materials and structures has 

been extremely limited. 

In this chapter the regenerator element has been discussed, looking at its 

characteristics to work in the Stirling engine application, exploring the way its 

cycle behaves and the considerations to take when designing one, existing 

regenerators have been mentioned and the materials that ideally would perform 

best, setting a baseline for design; in Chapter 4 the flow and thermal 

characteristics of porous metals will be addressed, this to understand the 

features to consider when manufacturing regenerators. 
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Chapter 4. Flow and Thermal Behaviour of Porous 
Metals 

It has been shown that it is possible to make porous metals with a variety of 

characteristics which are interesting and have been explored for some heat 

management applications, in particular as regenerators. Thermal and flow 

behaviour of porous metals is complex however, and there has not yet been a 

systematic investigation over a wide range of structural types in the same test to 

truly say what is the best or optimal structure and optimal material for a porous 

metal for an application such as a regenerator. This is therefore the question 

that this thesis will attempt to answer. The first approach will be to understand 

the parameters that govern the flow properties of porous metals. 

 

4.1. Fluid Flow in Porous Metals 

The law that oversees the flow of fluids through a porous media is Darcy's law, 

defined by Henry Darcy in 1856 [95]. It came from his work analysing water 

seepage through packed beds made from sand, and is conceptually similar to 

other one dimensional transport laws. This law focuses on fluids moving at a 

certain velocity (superficial velocity = vD) travelling a certain distance (LR) 

generating a difference in pressure between two points or pressure drop (ΔP) 

through a porous element. 

The fluid discharge (ṁAir) travelling through the porous element equals the 

product of its permeability (K) flow area (ACS) and pressure drop (ΔP) divided by 

the absolute viscosity (�) of the fluid and the length of the regenerator (LR): 

 

 ṁ    
      
   

 Eq. 4.1 

 

Since the superficial fluid velocity (  ) is obtained from the discharge (ṁAir) 

divided by the cross sectional area (   ): 
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ṁ   

   
       

  
  

 
 
    Eq. 4.2 

 

Eq. 4.2 is used for very small permeability-dependent Reynolds numbers (ReK) 

of around 1, since Darcy's law is based on the velocity of water moving through 

sand (very low speeds) [96]. 

 

 

 

 

The value of fluid velocity (  ) can also be substituted by the velocity through 

the porous metal. This velocity ( ε) [97] considers the metal part of the porous 

element by dividing the superficial velocity (  ) by the volumetric void fraction or 

porosity (ε) of the porous metal. Even if both velocities can be used, which of 

them is applied in a particular situation must be mentioned to avoid 

misunderstanding. 

For faster velocities, a new term has to be included in the equation to calculate 

pressure drop [98], this effect adds the second term to the equation, known as 

the form drag coefficient (C) [99], Eq. 4.2 now turns into: 

 

 
  
  

 
 
             Eq. 4.3 

 

This new quadratic term is applied for permeability dependent Reynolds number 

values between 5 and 80, as proven by Dybbs and Edwards [100] and Fand 

[101] with packed spheres and spheres of different sizes in one pack. This is 

known as the extended Darcy-Forchheimer equation, extensively used to 

calculate pressure drop in porous elements [102]. 

If the value of ReK exceeds 80 a cubic term must be introduced to the equation, 

as demonstrated by Lage for correct pressure drop calculation in porous metals 

[103]. This is confirmed by Forchheimer as well [104]. The equation is as 

follows: 
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      Eq. 4.4 

 

K and C are obtained by fitting a curve using the pressure drop data, one way to 

do this is to apply a least squares quadratic curve fit [96] or a least squares 

cubic curve fit [103] if ReK > 80. Another option is to divide equations 4.3 and 4.4 

by vD changing the equations into linear and quadratic forms: 

 

 
  
    

 
 
          Eq. 4.5 

 

 
  
    

 
 
  

       
  

      Eq. 4.6 

 

substituting coefficients a and b 

 

 
  
    

       Eq. 4.7 

 

 
  
    

            Eq. 4.8 

 

To obtain the experimental values in this work, the quadratic turned into linear 

form (Eq. 4.7) was used since the values of ReK are lower than 80 for all 

samples.  

When the superficial velocity approaches zero the pressure drop / velocity rate 

becomes constant; the opposite effect occurs when the velocity increases to 

relatively high values, the first term then becoming trivial [105]. 
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For flow investigations on porous metals Dukhan used the Forchheimer – 

extended Darcy equation (Eq. 4.3), which is widely accepted to accurately 

describe the pressure drop of a fluid passing through porous media [106]. 

From the previous equations it can be seen that there is a conflict between the 

pressure drop and the permeability, a high pressure drop through a porous 

element represents a low value of permeability giving way to low Reynolds 

numbers. 

The porous metals in Dukhan's work are relatively large (5.08 cm x 10.16 cm x 

24.13 cm) and the porosities high, from 92 to 94%. The flow speed ranged from 

0.77 m/s to 2.73 m/s. The pressure drop was seen to increase in a quadratic 

way compared to the velocity, in compliance with the work from Boomsma, 

Lage and Bhattacharya [96], [103], [107]. 

Dukhan also found a good comparison with previous results obtained by a 

significant number of authors [106]. However, there is a need to analyse porous 

samples from different materials to see if there are different pressure drop 

results from them, as well as a larger range of flow rate (different Reynolds 

numbers). 

There has been analysis of porous structures made from copper, nickel and a 

nickel – chromium alloy with pore sizes from 0.5 mm to 5 mm, velocities ranging 

from close to stationary to 20 m/s, others using water as a fluid at speeds from 

stationary to 0.1 m/s [108]. Testing Reynolds numbers from 10 to 5,000 found 

that the Forchheimer law was verified and that the permeability does not 

depend on the fluid nature, demonstrating that the pore size itself is enough to 

describe flow laws in porous metals, however, of course porosity and possibly 

pore shape would also be affecting factors. 

It is important to point out that the variance in the pressure drop when 

comparing uniaxial and oscillatory flows is from four to six times higher than the 

steady flow at the same Reynolds number [109]. 

In Zhao’s experiments [109] three different mesh size stainless steel meshes 

were used, three values of fluid displacement (controlled by the oscillations in 

his apparatus) and Reynolds numbers from 0.001 to 0.13. At higher Reynolds 
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numbers the sinusoidal variation of the pressure drop phase presents lags but it 

remains independent from the oscillation in the fluid.  

This paper [109] made a comparison with previous results obtained by a 

significant number of authors, however, there is a need to analyse porous 

samples from different materials to see if there are different pressure drop 

results from them, as well as a larger range of flow rate (Reynolds numbers). 

 

4.2. Models for Permeability 

4.2.1. Despois and Mortensen 

This model is based on the microstructure of open pore microcellular materials 

it considers the obstacles presented by the "bottlenecks" in the path of the fluid 

as these control the flow rate. Replicated porous metals fall into this category of 

porous materials, where the bottlenecks are the windows that connect the 

pores. Assuming that there is a window through which all the fluid enters and 

another through which all the fluid exits, the area of the windows is estimated 

considering that the window to be circular in shape, another consideration is the 

random packing density of the spherical particles ε0 = 0.64, the porosity ε and 

the particle/pore radius r. 

The model considers a thick slab of porous metal of thickness 2r and a length of 

1 m to calculate the number of pores, which is also the number of windows, 

giving the final equation for the model as: 

 

   
   

   
    

       
 
   

 Eq. 4.9 

 

showing that there is a strong dependence on porosity. This model also 

includes that the average window size starts to close when the porous metal 

passes the value of 0.36 of solid fraction [7]. 
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4.2.2. Fourie and Du Plessis 

This model was created to predict the pressure drop in a Newtonian fluid 

passing through a highly porous material with a uniformly distributed velocity. It 

is based on assuming a piece-wise plane Poiseuille flow and a simple 

geometric model to predict the Darcy and Forchheimer regimes. 

It applies analytical concepts from volume averaging to the Navier-Stokes 

equation considering a representative elementary volume, porosity and a 

representative unit cell consisting of a geometrical distribution of rectangles with 

three axes (x, y and z), the cells are located in such a way that one of the axes 

is always parallel to the fluid velocity. 

Another parameter considered in this model is the tortuosity (X) which is the 

total length of the pore within the length scale divided by the length scale of the 

sample. The porosity is considered as the ratio between the pore diameter and 

the cell dimension, the specific surface area is determined by the cell dimension 

porosity and cell size may be determined by optical microscopy, in this case a 

tetrakaidecahedral cell is used. The porous metals used to test this model are 

Duocel and the cross section of the struts considered is triangular. The 

permeability in this model is calculated as: 

   
    

         Eq. 4.10 

in this equation there is a strong dependence on porosity, pore size and 

characteristic length of the sample, included to obtain the tortuosity [179]. 

 

4.2.3. Furman, Finkelstein and Cherny 

In this model the NaCl particles are considered to be spherical, considering the 

lack of wettability of the NaCl by the molten metal, air pockets are formed 

between the particles called air collars, when solidification happens the pore 

sizes are defined by two dimensions, the maximum being the particle size and 

the minimum is the diameter of an air collar or two times the capillary radius. 

The resulting permeability equation is: 
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    Eq. 4.11 

 

where N is the number of capillary radii for one NaCl particle, it is called the 

coordination number and it is calculated based on the solid fraction of the 

porous metal [198], this model applies the concept of bottleneck or window from 

the Despois and Mortensen model. 

In all three models it is clearly seen that there is a dependency on the porosity 

at different power levels, the pore size is included directly in the first model as 

the radius, indirectly in the second model as part of the porosity calculation and 

in the third as a calculation of the minimum pore radius, the window size is 

considered in the first model to grow smaller up to when the volume fraction of 

material reaches 36%. 

Having explored the terms required to describe the flow behaviour, the concepts 

surrounding the heat transfer part will now be addressed, the effects that the 

material, pore size, sample length, etc. have on the ability of the porous metals 

to capture and release energy will be investigated, as this is the main 

requirement for them to act as a regenerator. 

 

4.3. Heat Transfer in Porous Metals 

The study of heat transfer inside a regenerator is challenging because of the 

size of the voids and the complex structural characteristics. To record the speed 

of flow and quantity of thermal energy at specific points within the regenerator, 

the measuring equipment must be placed in the free space within the pores, 

leading to a complicated experimental setup which currently is not feasible, 

particularly not without having a significant impact on the behaviours it would be 

supposed to be measuring. For this reason the heat transfer coefficient of the 

regenerator is the usual characteristic parameter obtained [110]. This is 

calculated from the relationship between the regenerator and the fluid it is in 

contact with. 
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Some of the concepts to be analysed and determined are the effective thermal 

conductivity, permeability and the form drag coefficient of porous metal samples 

with different porosities and pore sizes. One of the ideas or ways to approach 

this challenge is by creating a theoretical model, like the one mentioned 

previously [107]; this model was made to determine the thermal conductivity kR, 

representing the porous metal structure by a two dimensional hexagonal array 

where the fibres form the sides of the hexagons. The metal at the intersection of 

the two fibres was represented as an intersection of circular cross section. This 

analysis proved that the effective thermal conductivity of the porous metal 

depends strongly on the porosity and the relation between the cross sections of 

the fibre and the intersection. This theoretical model was validated 

experimentally, using high porosity (0.85 ≤ ε ≤ 0.97) porous aluminium and air 

and water as their working fluid [107]. 

These workers continued with another analysis to estimate this effective thermal 

conductivity, but now in terms of the porosity and the solid and fluid 

conductivities; additional models were made to predict the value of permeability, 

modified from the work of Du Plessis to include a wider range of porosities from 

0.85 to 0.97 instead of the original model which was only acceptable for 

porosities above 0.97 [111]. 

Up to now the porous metals discussed have been tested with air, helium and 

water, there is another fluid used to test porous metals with which is 50% water 

– 50% ethylene glycol solution. Boomsma compares heat exchangers on the 

basis of required pumping power against thermal resistance [112]. The open 

cell porous aluminium heat exchangers generated thermal resistances two to 

three times lower than the best commercially available heat exchanger tested, 

while needing the same pumping power, this is due to the high surface area of 

porous metals and high conductivity of aluminium, indicating they perform well 

as heat exchangers. 

The properties of a porous metal follow the combination of the particular metals 

or alloys that it is made from. For conductivity (both thermal and electrical) there 

are few evaluations in porous metals made from processed powders. As both 

use the same transport mechanism (free electrons) they are expected to be 
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related. Electrical conductivity ranges in porous metals made by the space 

holder method are in Table 4.1 [18]. 

The general tendency is that the electrical and thermal conductivity of the 

porous metal decreases as porosity increases, data for different pore size and 

density of copper samples is available [113]. 

 

Metal Pore Size (µm) ε (%) Conductivity 
(S/m) x 106 Reference 

Cu 
250->1000 
120-500 

70-85 
50-85 

0.26-6.26 
0.13-0.31 

[63] 
[145] 

Ti 
150-400 
136-403 

10-67 
31-64 

0.33-1.41 
0.13-0.69 

[114] 
[146] 

Fe 425-1500 68-76 0.95-1.45 [63] 
Al 452->2000 63-83 0.62-4.26 [144] 

 

Table 4.1 - Electrical conduction characteristics of powder processed porous 

metals. 

 

It has been found in copper and iron porous samples that the electrical 

conductivity increases proportionally with the pore size, the reason being the 

improved connection within the cell walls (more metal) [63]. Since the powder 

processed porous metals may contain oxides and other contaminants [12], their 

conductivity is lower when compared to samples made by other methods. Li 

found that the value of electrical conductivity for titanium was reduced by almost 

30% when powder processed as compared to commercially available titanium 

[114]. All these trends would be expected to be reproduced for thermal 

conductivity. Processed powders are considered for this work since two of the 

methods used to produce the regenerator test samples in this work are made 

from them (SLM and EBM). 

The global efficiency of the Stirling engine is affected by the amount of energy 

needed to push the working fluid through the porous metal. This can be 

identified as the pressure drop across the regenerator or the permeability of the 

element to gas flow (these two parameters are interlinked). It is understandable 

that for the regenerator to keep a high heat transfer efficiency more available 
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material (the surface area) is needed. However, as the amount of material 

present increases, it will interfere more extensively with the working gas flow. 

Here is where the challenge arises, striking the correct balance between these 

two characteristics. 

There are a variety of structures which can be used as the porous regenerator. 

Regenerators can be a bed of granular material, a wire coil, an irregularly 

shaped wire mesh, or stack of wire mesh layers. While placing the regenerator 

structure into an engine a common fault is that is does not form a full seal within 

the structure as the working fluid must not be able to bypass the regenerator, or 

the efficiency will be lowered; this type of defect is common with the wire mesh 

layers structure and so this was considered in the testing of the wire mesh 

regenerator samples, preventing the working fluid to pass around it. 

The stainless steel wire nets that are used as regenerators for the Stirling 

engine have a large specific heat value, high surface area and low thermal 

conductivity, yet they are not ideal due to difficulty in getting good contact with 

the edge of the container and significant pressure drop. If the nets are oversized 

compared to the container the edge problem can be solved, however, it 

increases the pressure drop. As a third consideration, the arrangement of the 

wire meshes can be crucial to performance. Packing them in a certain way 

(random or deliberate) and the distance between each net will have a large 

effect on their efficiency [115]. 

One of the reasons for this study is that open cell metal samples have a 

particularly useful characteristic; their structure can be modified in several ways. 

If their density, pore size or pore shape is altered, the thermal performance and 

pressure drop through the finished regenerator changes as well, and such 

behaviour presents the opportunity of better control of properties through 

processing when compared to the alternative structures. 

The measurement of the thermal behaviour in porous metals has been done in 

two ways, comparing the heat exchange between two solids (a surface and a 

porous metal) or between the gas and the solid (a porous metal and a fluid). 

The first method places the porous metal in contact with a heated surface, then 

the heat exchange between it and the passing fluid is registered and compared 
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with the heat exchange between the hot surface and the passing fluid. This way 

is used to test them as heat exchangers. 

A study for high porosity (> 85%) porous metals as heat exchangers was done 

by Zhao, analysing properties such as conduction and convection, showing that 

they are a promising element for heat dissipation in various applications due to 

their high surface area (1000 - 3000 m2/m3) and, if needed they can be 

compressed to obtain higher values of up to 8000 m2/m3 [116]. 

The other way to test porous metals monitors how heat is transferred from the 

gas to the porous metal. A gas flows constantly through the sample heating it 

until reaching the same temperature as the fluid (at which point heat transfer will 

stop under the second law of thermodynamics). The fluid flow entering the 

porous metal undergoes a temperature step change and the exiting 

temperature is recorded until it reaches the same value as the entering 

temperature (within experimental accuracy). The heat transfer coefficient is 

obtained by matching the exiting temperature curve with the curve provided by 

the Schumann and Hausen model, the equations are given in section 4.2.1 

[117], [118]. This model is often named the single blow method [110], [119], 

[120], [121], a full explanation of one experimental embodiment of the approach 

is given later. 

Most of the examinations using the latter approach to the testing of porous 

metals concentrated on packed beds of particles with porosities ranging from 40 

to 50% [117], [122], [123], [124] or bundles of wire nets [94], [125], [126], 

although other studies have been carried out for ceramic porous structures 

[127], [128], giving insight of what can be analysed from these structures, even 

if the results obtained differ from what would be expected for porous metals due 

to their different base material properties. 

Previous tests [94] have been carried out on porous aluminium produced by 

investment casting to obtain the pressure drop and the heat transfer coefficient. 

The pressure drop value obtained is much lower when compared to wire net 

layers, principally due to the elevated value of porosity (90%). This is, however, 

not a desirable feature, as it leads empty volume inside the engine which is 

effectively “dead” space, with a proportion of the gas which is not able to go 

through the full cycle (as would be required in the ideal case). It would also be 
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anticipated that the heat absorption capacity of such a porous metal is low, 

reducing the efficiency when compared to the wire mesh layers. 

To improve the heat transfer coefficient of high porosity porous aluminium, 

attempts have been made to compress the samples, lowering porosity (from 95 

to 60%), leading to the materials performing better as heat exchangers; 

however, the pumping power of the fluid needs to increase as well, consuming 

more energy [112]. 

One experimental technique that can be applied to analyse both the behaviour 

of heat exchangers as well as regenerators is the single blow method [120], 

[126], [129]. Applied to regenerators, another technique used is analysis under 

oscillatory flow. This method more closely resembles the role of the 

regenerator, for example, in a Stirling engine, which is based on a closed 

regenerative thermodynamic cycle. When both methods are compared, the 

variation in the value of the heat transfer coefficient found is not significant. For 

a Reynolds number inside the voids of 60 or larger there is a maximum 

difference of 15% [94], [115]. The oscillatory flow test equipment design is not 

as straightforward to construct as the single blow test rig, since it operates at an 

elevated cycle rate (frequently multiple Hertz). 

To obtain results from the single blow technique rig, three stages are to be 

completed [130]. These are the experiment itself, as explained in Chapter 5, 

modelling of the heat transfer and the pairing of the experimental data to the 

model. As the heat is being transferred in a dynamic situation, it is not possible 

to simply measure values and calculate the heat transfer, rather the response 

for particular values must be simulated and compared with the experiment to 

find a match. 

The ideal single blow test proceeds as follows; a sample at a certain fixed 

temperature suddenly comes in contact with a steady flow of a fluid at a 

different (higher) temperature, causing a step change in the thermal 

environment; the heat moves from the fluid (since it is at a higher temperature) 

to the sample, generating an outlet temperature curve or hike curve; the test 

concludes when both temperatures (inlet and outlet) are stable within the 

precision of the equipment used. After this, the outlet curve is paired with the 

curve produced by the model and the heat transfer coefficient is estimated [94]. 
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To estimate the hike curve of the outlet temperature, equations can be used to 

create a mathematical model resembling the regenerator form and fluid 

conditions. There are various categories of models that analyse the single blow 

method [131], the model used for this work will be approached in detail. 

 

4.3.1. Dimensionless Groups 

In the analysis of heat transfer, the complexity of a real situation can be reduced 

to allow the comparison of the behaviour of different materials by the use of 

particular parameters, referred to as dimensionless groups. The key values will 

now be explained. 

4.3.1.1. Reynolds Number (Re) 

The Reynolds number Re is a dimensionless number that represents the ratio of 

the inertial forces to viscous forces, it allows comparison of how a fluid flows 

through different structures; to calculate the Reynolds number through the 

porous metal samples the pore diameter (DP) or the hydraulic diameter (DH) was 

considered [96], [93], the resulting equations using these two parameters are: 

 

    
ṁ     

     
 

ṁ     

    
 Eq. 4.12 

 

where ṁAir is the mass flow rate, � is the dynamic viscosity of the air at the test 

temperature, ACS is the cross section area of the porous metal and ε is the 

porosity. DP and DH are commonly referred to as the characteristic length LC of 

the porous sample [157], [171]. From the equation it can be seen that the 

number increases with the mass flow rate and the pore size (less obstruction), if 

there is less obstruction the pressure drop through the element is low, resulting 

in a high Reynolds number. 

4.3.1.2. Prandtl Number (Pr) 

The Prandtl number Pr is a dimensionless number depending solely on the 

working fluid's properties, it is the rate of heat transfer in different fluids, the ratio 
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between the momentum diffusivity, also known as the kinematic viscosity to the 

thermal diffusivity of the fluid [93]. 

 

     
     
  Eq. 4.13 

 

It is used to gauge the effectiveness of movement and heat transport by 

diffusion at a certain speed through the thermal boundary layers. If the number 

is low (much smaller than 1) it means that the conductivity produces a larger 

effect, if the number is high (much larger than 1) the viscosity dominates the 

effect [93]. 

For air and many gases the Prandtl number oscillates between 0.7 and 0.8; for 

these experiments the Prandtl number for air is considered to be 0.711 at 40°C 

[181]. 

4.3.1.3. Stanton Number (St) 

The Stanton number (St) is a dimensionless number used to gauge convective 

heat transfer in fluids, it is the relationship between the convective heat transfer 

coefficient and the specific heat of the fluid [182], it can be calculated with Eq. 

4.14. 

 

     
     
ṁ       

 Eq. 4.14 

 

This number directly depends on the relationship between the convective heat 

transfer coefficient of an element and the fluid it comes in contact with, 

considering the fluid to be the same (air) the properties of the material directly 

influence this value, a common value range for Stanton numbers in metals is 

from 0.03 - 0.3, if the value is low (≈ 0.03) it is less effective for heat convection, 

if the value is high (≈ 0.3) it is better suited for this purpose [93]. 
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A common way to present the data obtained from these tests is using the 

Reynolds number vs. Stanton number multiplied by the Prandtl number raised 

to the power 2/3 (Re vs. StPr2/3). 

The power 2/3 is an approximation over a range of Prandtl numbers from 0.5 to 

15 causing the least error in the 0.5 to 1 range, it is satisfactory for all gases in 

laminar flow, for a turbulent flow the analytical solution approximates the power 

value to 1/2, for laminar flow in long tubes the power value is near 1, for finite 

sized tubes (such as would be encountered in heat exchangers) the 2/3 power 

is near correct, thus being a reasonable arrangement [93]. 

 

4.3.2. Models to Analyse the Data Obtained from the Single Blow Method 

As discussed, the regenerator sample in this test experiences a sudden change 

in the temperature of the fluid environment it is placed in. This difference is 

affected by the characteristics of the material it is made of, the particular 

properties of the fluid and the features of the testing equipment. To interpret the 

mix of these conditions equations constituting a mathematical model are applied 

to forecast the end data. 

There are two main categories of mathematical models to consider based on 

the test characteristics [131]. The first is considering that the heat capacity of 

the fluid is limited (A.), the second is considering that the heat capacity of the 

fluid is limitless (B.). 

 

 

 

 

 

The first model group (A.) breaks down into two further categories (A1. and 

A2.); these consider the difference between the thermal resistance in the middle 

of the regenerator and the fluid. The first of these is the Schumann - Hausen 

Single Blow Mathematical Model 

A. Heat Capacity of the Fluid (C) < ∞ B. Heat Capacity of the Fluid (C) = ∞ 
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model, which is applied if a thermal resistance exists between the fluid and the 

solid material, the second type is applied if the thermal resistance is insignificant 

(i.e. a value close to zero). 

 

 

 

 

 

 

When the fluid is a gas with a small heat capacity it is recommended to 

presume the solid works under a defined fluid heat capacity. Within the fluid and 

the solid there is a temperature difference along the x axis, parallel to the fluid 

flow direction. 

The Schumann - Hausen model had its origin in the late 1920's and was tested 

practically to learn the behaviour of heat transfer from a fluid to a group of ball 

bearings [117]. The exit experimental curve of temperature change with time 

was matched to the curve from the model to extract the heat transfer coefficient 

of the packed bed [122]. 

Other researchers applied Schumann's model to other structures to determine 

the effects produced by wire layer nets and a packed bed of ball bearings with 

varying void fraction volumes through several Reynolds number flow values, 

developing heat transfer and pressure drop equations [125]. 

The thermal conductivity of the solid is considered of high value in the Y axis 

(perpendicular to the flow) and nonexistent in the X axis (parallel to the flow), 

the temperature change will only happen in the X direction. 

The assumptions of the model are: 

 1. The barrier surrounding the solid does not absorb heat. 

 2. A sudden change in temperature occurs at the entrance. 

A. Heat Capacity of the Fluid (C) < ∞ 

A1. Thermal Resistance Fluid → Solid (R) > 0 
        "Schumann - Hausen" 

A2. Thermal Resistance 
Fluid → Solid  (R) ≈ 0 
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 3. The solid has very high transversal thermal conductivity. 

 4. The solid has very low longitudinal thermal conductivity. 

 5. The fluid's speed does not change. 

 6. The heat transfer coefficient is consistent throughout the solid.                                                                                                                                                                                                                                                                                                                                           

The expression of the energy balance for a volume that is increased by an 

incremental distance Δx is derived. The heat infiltrating the new volume is the 

addition of the heat leaving and the heat accumulated in the solid [131]. 

The equation is: 

 

ṁ               
      

  
          ṁ                  Eq. 4.15 

 

where ṁAir is the air mass flow rate, cAir is the air heat capacity, TAir is the air 

temperature, h is the heat transfer coefficient, AHT is the heat transfer area, LR is 

the length of the regenerator and TR is the regenerator temperature. 

The heat of the fluid leaving that distance is: 

 

                    
     
     Eq. 4.16 

 

Consequently: 

 

 
ṁ         

    

     
             Eq. 4.17 

 

For the regenerator a similar analysis is made. The heat gained by the solid is 

the heat lost from the fluid. The equation is: 
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          Eq. 4.18 

 

where ACS is the cross section area of the regenerator. 

Consequently: 

 

 
         

    

   
             Eq. 4.19 

 

The adimensional variables are: 
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Eq. 4.20 

 

 

Adimensional equations for the fluid and the solid: 

 

 
      
   

           
    
   

           Eq. 4.21 

 

Boundary conditions: 

 

                               Eq. 4.22 

 

To obtain the exit curve from the model, the analytical result of equations in Eq. 

4.21 is presented as [132]: 
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  Eq. 4.23 

 

The result from this equation is the exit flow temperature curve, depending on 

the NTUR variation which was plotted against adimensional time ta. 

There are several considerations that the Schumann - Hausen model does not 

include: 

1. A perfect step change in temperature is unattainable [130]. 

To solve this issue the way to interpret the step change temperature curve is to 

use an exponential change, producing a random value of entry temperature in 

place of a perfect step change in temperature [121,133,134], this produces an 

effective fix in the results.  

2. Assuming that the wall of the container does not absorb heat is
 unrealistic, the sample holder will gain some heat, affecting the exit 
 temperature. 

If this amount of heat entering the wall is not considered the resulting heat 

transfer coefficient will be inaccurate. To prevent this, the effects caused by the 

thermal conductivity of the wall, number of transfer units of the wall and the 

capacitance relationship between the regenerator and the wall were included in 

the calculations. It was proved that they had a considerable effect as the results 

showed a difference of more than 30% when compared with the outcome of the 

straightforward Schumann - Hausen model [110].  

3.  Since there is a pressure drop caused by the solid, the Joule -
 Thomson effect alters the exit temperature and must be included. 

It was established that the amount of heat in a fluid may decrease or increase 

when it reaches an obstacle in the flow direction [135]. Researchers 

demonstrated that this effect only happens when the pressure drop is 

considerably high (200 kPa produces a 3% temperature dip) [115].  
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4. The longitudinal thermal conductivity impacts greatly on certain types of 
 regenerators, mainly the ones used at very low temperatures. 

The absence of this effect in the calculations may cause a significant 

miscalculation in the assessment of the number of transfer units by a factor of 

1.8 [130]. The effect has been shown to impact number of transfer units larger 

than 2 [136] and larger than 3 [121].  

5. The effect of radial thermal conduction within the regenerator is 
 neglected. 

Researchers noted that for the single blow method studies assumed the 

temperature distribution inside the solid was uniform, however, irregular 

distribution does exist. From their results it was found that the radial conductivity 

had an effect on the number of transfer units of the regenerator close to a 9% 

decrease in value when compared to the results without considering this 

conductivity. This consideration must be applied to regenerators with an 

elevated number of transfer units, larger than 150; if the tested regenerator has 

a lower value of NTUR this effect becomes trivial [126]. 

 

4.3.3. Single Blow Model Applied in This Work 

Since the characteristics for this work include a set heat capacity of the fluid and 

a thermal resistance between the fluid and the regenerator the Schumann - 

Hausen route was followed, with some of the considerations that were 

applicable to the test samples that were produced. 

The route followed for this study is based on the model proposed by Chang 

[126]. The Joule - Thomson effect was not included in the Schumann - Hausen 

model, since the pressure drop value produced by the samples are in the range 

of 5 to 15 kPa, an order of magnitude lower than the 200 kPa present in the 

literature experiment. The radial conductivity effect is not considered, based on 

the fact that the maximum NTUR values obtained for these samples are around 

80, considerably lower than the limit NTUR value of 150. 

The partial differential equations used to create the exit temperature curve are: 



60 
 

 

     
                                 Eq. 4.24 

   
     

    
                    Eq. 4.25 

   
        

    
                       Eq. 4.26 

 

The adimensional variables are: 
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Eq. 4.27 

 

The start and boundary conditions are: 

 

                          

                    
   
     

   
     

    
   
     

   
     

Eq. 4.28 

 

This arrangement consists of three partial differential equations, for the fluid, for 

the regenerator and for the wall. Distance and time are independent, and the 

temperatures of the fluid, regenerator and wall are to be obtained. These 

equations are of the second order, forming parabolas affected by the boundary 

conditions [137]. 
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4.3.4. Numerical Scheme 

An explicit finite difference scheme is used to solve the parent equations for this 

single blow model. It has an accuracy of the second order in distance and time. 

Afterwards a correction method was applied, the Crank - Nicolson scheme, to 

refine the results. Then the results were compared with those obtained by the 

Kohlmayr analytical solution [132]. 

To solve the equations of the fluid, solid and wall a discretisation process took 

place to define the positions of each in distance and time. Considering that the 

radial conductivity was not taken into account, since the samples had lower 

NTUR values than 150, discretisation was performed only in the direction parallel 

to the movement of the fluid. 

To near each component of the partial differential equations, the following 

approximations were applied: 

Second Order Centre Space 

 

    
    

                

    Eq. 4.29 

 

First Order Forward Time 

 

   
   

         

   Eq. 4.30 

 

First Order Forward Space 

 

   
   

         

   Eq. 4.31 
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These equations were introduced to the partial differential equations of the fluid, 

solid and wall, obtaining: 

 

               

                                    
     

           

     
                   

                        

   
       

 

        
     
      

       
 

               
            

Eq. 4.32 

 

From these equations it can be noted that the solution of each point depends on 

the solution of the previous point in time (l, l+1) and distance (i, i+1) [137]. 

Consideration has to be taken in the number of calculations the equations will 

entail. If the difference between time points (Δt) and distance points (Δx) are 

close to zero the data will reach the actual value of the solution but it will 

increase the computation time. If the difference between time points (Δt) and 

distance points (Δx) is substantial the computation time is short but the solution 

may not be balanced or it may have poor convergence. 

To obtain an acceptable solution, which is stable and will converge, the value of 

the diffusion number (δi   λR(Δτ Δx2) [138] will be a maximum of 0.5. It is 

recommended for this value to be lower than 0.17 to minimise the inaccuracy of 

the solution. For the samples tested in this study, the diffusion number was 

maintained lower than 0.5. Since this value is dependent on λR for each sample, 

the difference in time and distance was obtained to guarantee a balance 

between having convergence and stability while considering computing time for 

the solution. 

For fine tuning of the results the Crank - Nicolson method was applied to the 

equations of the regenerator and the wall (Eq. 4.25 and Eq. 4.26). Several 

repetitions were performed until the temperatures of the regenerator, wall and 

fluid converged. To apply this method the value of l+1 must be known, if the 

value is nonexistent, or it has not been found, the solution cannot be achieved. 

This is the reason why the method is applied as a correction method after the 
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explicit method to improve the results, reaching towards the actual solution 

[115], [129]. 

The equations for the Crank - Nicolson method are: 

 

             
      
             

           

 
 

 
     
    

                               

 
 

         
               

     

 

Eq. 4.33 

 

   
       

       
      
     

   
       

 

 
 

 
     
    

     
         

         
       

 

 
  

            
               

     

Eq. 4.34 

 

This numerical solution value was evaluated against the original value (without 

correction scheme), the difference between them in the exit temperature was 

0.6%, with the numerical solution value being lower by this percentage.  

 

4.3.5. Effect of the Regenerator Characteristics on Exit Temperature 

To interpret the effect of the regenerators' properties the curves are defined by 

the relation between the NTUR value and the maximum gradient of the exit 

temperature curve [132]. The ideal regenerators will have a high value of 

maximum gradient, if the NTUR value of the sample is larger the exit curve 

gradient will increase. 
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To increase the NTUR value of a regenerator the surface area value must be 

higher, or the flow rate of the fluid passing through must be lower. Both of these 

characteristics will increase the maximum gradient. 

When searching for the NTUR value the effect of the wall must be considered. 

This is obtained by estimating the values of the number of transfer units on the 

wall, the heat capacity relationship between the regenerator and the wall and 

the thermal conductivity of the wall [132]. 

The heat in the fluid will transfer towards two elements, the regenerator sample 

or the wall. If the heat crosses through the wall it will not pass through the 

regenerator, diminishing its thermal performance. 

The longitudinal heat transfer through the regenerator depends on the type of 

material the regenerator is made of and the structure it possesses. The effect 

can be changed by altering the thermal conductivity, which has an inverse effect 

on the maximum gradient of the exit temperature curve. 

The regenerator prevents contact between the low and high temperature sides 

of the system. If its longitudinal thermal conductivity value is small it fulfils the 

isolation role, increasing the efficiency of the cycle. 

The relationship between the heat capacity of the regenerator and the heat 

capacity of the wall (Rtc) indicates that if the regenerator's heat capacity value 

increases and the heat capacity value of the wall decreases, the efficiency of 

the regenerator will be higher, which is observed as an increase of the 

maximum gradient. If this effect is not considered when obtaining the results the 

NTUR value of the regenerator will be falsely enhanced [132]. 

The inlet temperature response time (ψ) is the time it takes the inlet 

temperature to achieve stability, it depends on the equipment efficiency. If the 

response time is reduced the results will be less reliable. The NTUR may be 

undervalued if this effect is not considered [132]. 

In Chapter 5 an explanation of how these factors affect the exit temperature 

curve is given in more detail. 
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4.3.6. Curve Matching Methods 

After applying and solving the model for the exit fluid temperature curve the 

predicted curve needs to be matched with the curve obtained from the 

experimental data. Duplicating the curve exactly is somewhat ambitious, 

considering experimental errors and discrepancies from the model's results. 

There are a few techniques that can be applied to solve these issues in the 

single blow method by simplifying the part of the data where fitting is sought. 

a) Maximum Slope Method 

There is an intricate relationship between the NTUR of a regenerator and the 

maximum slope value of the outlet curve, and a method using this was 

developed by Locke [123]. The data from the experimental exit curve is derived 

once and matched with the predicted model. The matching is done over a single 

point, the maximum gradient value. The technique has been used extensively 

[124], [125], it can be applied to regenerators with an NTUR value larger than 2 

[132]. 

b) Selected Point Matching Technique 

For this technique only a certain number of points are used to predict the NTUR 

value of a regenerator. Since matching the entire curve is practically impossible 

only part of the curve is matched. Some researchers considered a perfect 

response time (ψ) and matched the curve only in a certain area [139], however, 

this technique was only valid for NTUR values up to 20. 

For the selected points matching technique different points in the experimental 

curve are chosen, which then are matched with the predicted value from the 

model for that time, obtaining a tentative theoretical NTUR value. This is done 

with other points in different times, to obtain the actual NTUR the mean of all 

these values is considered [121], [133]. 

c) Differential Fluid Enthalpy Method 

This is a slightly more complicated technique since it involves the specification 

of the testing equipment's NTUR value from the fluid to the wall, the time 

constant of the thermocouples, regenerator specific heat and time constant of 

the temperature signal at the entrance. For this technique the temperature 
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values from the inlet and outlet were integrated considering time as a reference. 

The values are multiplied by the ratio of fluid capacity then deducted from each 

other to have the enthalpy difference between those two points [140]. 

d) Least Squares Method 

In this technique the matching takes place over all of the data using the least 

square error, it is also known as direct curve matching. In previous experiments 

[141] the comparison between experimental and model predicted data was 

made using several techniques. The NTUR value obtained with the differential 

fluid enthalpy method and the least squares method was overestimated, 

considering that the step change in these experiments was not fast enough, 

allowing the temperature at the entrance to escalate progressively and affecting 

the exit temperature curve. However small this variation in the exit temperature 

is, the maximum gradient will be affected, which is the reason why the response 

time at the entrance should be minimal. 

4.4. Summary of the State of the Art 

Regenerators used for Stirling engines are commonly stainless steel wire 

meshes of several sizes, mesh 100 (150 µm) and mesh 200 (75 µm) are 

common, their dimensions vary, their length ranges from 20 to 75 mm and 

diameters from 14 to 160 mm, depending on the engine that holds them. 

Research has explored the use of porous metals in general, and examples have 

been tested in a varied array of configurations such as in experiments 

performed by Du Plessis [111], Bhattacharya [107] and Boomsma [96]. 

However these tests were all done on different rigs in different ways (air or 

water as the working fluid for example), and there is no comparison across an 

array of different structures and materials through the same tests measuring 

both pressure drop and heat transfer through the regenerator matrix. 

Therefore, it would be of great value to make a systematic assessment of 

parameters relating to heat transfer and flow behaviour for a wider variety of 

porous structures made from different materials, under conditions of potential 

relevance to the Stirling engine. This is the focus of the work described here, 

and this, along with the assessment of many types of porous material not 

previously analysed, is the main original contribution of the work. 
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Chapter 5. Experimental Methods: Apparatus, 
Processing and Data Interpretation 

The goal of this work is to understand the capabilities of different materials and 

structures as regenerators, and to find potential new candidate materials for 

regenerators. For the latter goal, the requirements for a regenerator are set out 

in Table 1.1. The material and structure that is currently used as a regenerator 

is the 200 stainless steel mesh, and this is the baseline regenerator for this 

work. 

From the requirements of a regenerator a broad array of samples were tested 

for heat transfer and flow behaviour. 

For many of these samples aluminium was used for its ease of structure 

tailoring with the replication process and its high specific heat, copper was 

chosen for its high thermal conductivity and density; chrome steel was chosen 

to compare against stainless steel, having similar values except for the thermal 

conductivity, which is higher; soda glass was chosen to compare its low thermal 

conductivity value against stainless steel and Ti6Al4V was chosen to compare 

against the stainless steel porous structure made by additive manufacturing. 

After collecting the data, identification of the best materials, and the ranking of 

the remainder, is done by considering a summation of the performance relative 

to the key attributers defined in Table 1.1. While this method does not take into 

account different emphasis that may be placed on different attributes (for 

example heat capacity may have a greater effect on efficiency), it provides a 

basis for comparison of materials. 

Considering the properties of stainless steel, which is the material most 

commonly used for regenerators and basing the selection on a high density, 

high specific heat a material selection chart considering these properties can be 

developed and is shown in Figure 5.1. 
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Figure 5.1 - Tentative regenerator material selection chart based on density 

and specific heat. 

From this chart it can be seen that when considering these two properties 

stainless steels are close to the limit of what is available, the others being 

nickel-copper alloys and the closest material to this limit nickel-titanium alloys 

(Nitinol), however, now cost would come into consideration as comparing it to 

steel it is 400 times more expensive [197]; for this work out of the materials from 

the chart only the stainless steels 304L, 316L, 420 and chrome steel were 

available, aluminium was chosen since it was the easiest material to work with 

for creating the replicated porous metals, copper and soda glass were chosen 

to compare the others against a material with a very high and very low thermal 

conductivity. Initially the experimental methods used to create and test samples 

will be described. 

 

5.1. Replication Process 

The space holder technique or replication method [3] is one method used to 

produce porous metals. The molten metal is infiltrated around a space holder or 

preform which has the purpose of keeping the pore space free of metal until it is 

eliminated by a chemical method (such as dissolution) or by increasing the heat 

(causing chemical breakdown and evaporation). NaCl was first used to produce 

porous aluminium, and has since been a frequent choice for the space holder 
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material [8], [147]. This method was first attempted in 1965 [148], it was seen as 

cheap and safe, since NaCl is non-toxic and can be dissolved with water. In the 

method the cell diameter can be modified by the space holder's particle size 

and the porosity changed by the density of the preform packing, pressure 

applied to infiltrate and precise technique used [8]. 

In this investigation porous metals were made by implementing the space 

holder technique, using 99.7% pure aluminium (William Rowland Ltd, Sheffield) 

and NaCl as the preform material. To obtain an array of samples, three different 

preform particle sizes were used (1.09 mm, 1.55 mm and 2.18 mm). For these 

porous metals the packing method was at random, meaning that the NaCl 

particles were simply poured into the infiltration mould. Another batch of 

replicated porous metals was made to analyse the packing method, using only 

one size (1.55 mm) of NaCl particles; this time the space holder was vibrated 

for 1 minute to ensure the NaCl particles were closer between them than the 

ones from the non-vibrated preforms leaving less free space. When the mould 

was prepared and sealed with an ingot of aluminium placed above and melted, 

the molten aluminium is pushed into the preform by argon gas pressure. 

The infiltration method was modified, improved and developed during this 

investigation (discussed in detail in Chapter 6). In this chapter the equipment 

used in the space holder arrangement, metal infiltration, the outcome of 

different infiltration pressures and sample extraction, the production of the other 

types of samples (meshes, felts, ball bearings and ALM porous metals) and the 

flow and heat transfer equipment to measure and analyse all the produced 

specimens will be discussed. 

The preforms are made with Hydrosoft water softening NaCl granules 

(http://www.aquadition.co.uk/shop/granular-water-softener-salt-25kg/). The 

granules are separated into different size ranges using six stacked sieves, the 

NaCl particles collected are from the green coloured sieves (2.00 mm, 1.40 mm 

and 1.00 mm) for the respective preform range, this is explained in Figure 5.2. 
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Figure 5.2 - Stacked sieves diagram to obtain the three preform sizes used in 

this work. 

 

The granules left in the 2 mm sieve are smaller than 2.36 mm and larger than 2 

mm, their average is 2.18 mm, they are used as the preform for the "C" 

samples. The granules left in the 1.4 mm sieve are smaller than 1.7 mm and 

larger than 1.4 mm, their average is 1.55 mm, they are used as the preform for 

the "B" samples. The granules left in the 1 mm sieve are smaller than 1.18 mm 

and larger than 1 mm, their average is 1.09 mm, they are used as the preform 

for the "A" samples. 

Additionally, three sets of samples were made to observe the effect of the 

packing density of the preform. This characteristic varies in an inverse way to 

the porous metal porosity. If the space holder particles are simply randomly 

loaded into the infiltration container the highest porosities that can be obtained 

are around 70%.  

In addition, other porous metal samples were produced using different methods 

to have a wide array for comparison with the porous aluminium samples. 

In the following section the equipment and techniques used to produce porous 

metal samples by replication is presented. 

 

 

 

 

2.36 mm Sieve 

1.70 mm Sieve 

1.18 mm Sieve 

Container 

2.00 mm Sieve 

1.40 mm Sieve 

1.00 mm Sieve 
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5.2. Replicated Porous Metal Manufacturing Equipment 

5.2.1. Apparatus 

For producing porous metals by replication with the vacuum - argon or the 

argon only methods the apparatus needed is composed of a top loading 

electrical resistance furnace, an airtight stainless steel infiltration chamber, a 

vacuum pump, valves and pipe system, supply of argon gas and a copper block 

for longitudinal cooling from bottom to top. In Figure 5.3 the porous metal 

production equipment is shown. 

 

 

Figure 5.3 - Porous metal infiltration equipment. 

 

The infiltration mould and the connecting part of the pipe system are made from 

stainless steel, and they are attached to the argon gas tank and the vacuum 

pump via two hoses and the pertinent accessories. The argon gas has a 10 bar 

regulator installed and the vacuum pump a manometer to measure the vacuum 

level. 

There are four valves and a vacuum manometer in the pipe system, valve A is 

used to allow the argon gas to pass towards the "+" fitting, valve B allows the 
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vacuum to do the same and valve C controls the connection between the + 

fitting and the replication chamber, the relief valve sits at the top; in Figure 5.4 

the valve system can be seen. 

 

 

Figure 5.4 - Infiltration valve system. 

 

The infiltration mould is shown in Figure 5.5, and is composed of a chamber 

wall, a base and a lid which has a welded stainless steel pipe leading up to the 

valve system. The parts are kept together by four stainless steel threaded rods 

attached to the base with four 13 mm M8 chrome steel nuts. The chamber wall 

is placed in a groove machined into the base, and the lid, which also has a 

groove matching the chamber wall machined into it, is placed on top; the rods 

go through the lid to be attached by another group of four chrome steel nuts. 

Graphite paper is cut to discs fitting into the machined grooves on the top and 

the bottom of the chamber wall, and as the nuts are tightened the force causes 

the graphite paper to be sandwiched between the chamber wall and the top and 

bottom plate, forming a seal. Initially stainless steel nuts were used for 

durability, however, after some tests it was found that the nuts harmed the rods' 

Vacuum 
Manometer 

Relief Valve 

Valve C 

Valve B Valve A 
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threads, leading to a decision to use chrome steel nuts instead. Nevertheless, 

these lasted for a maximum of a small number of runs, and were usually 

discarded after one cycle for consistency in the results and preventing leaks of 

the vacuum or gas pressure. 

 

 

Figure 5.5 - Infiltration mould schematics and image [149].  

 

 

5.2.2. Processing 

The procedure to make a porous aluminium sample is as follows. Initially it was 

discovered that by placing irregular aluminium pieces in the infiltration mould 

the samples produced were different from one another. To have more 

consistent results it was observed that the interior edge of the mould should be 

close to the aluminium block at all points. For this reason and after several 

trials, it was decided to recast the aluminium bar feedstock into sizes slightly 

smaller than the interior diameter of the infiltration mould, which is 51 mm. For 

efficiency, four steel moulds were made for this purpose with an interior 

diameter of 50 mm. 99.7% pure aluminium ingot was placed in a crucible in a 

furnace at 800°C for an hour, and was then poured into the four steel moulds to 

produce the bars. These bars were cut into four pieces each, providing 

cylindrical ingots of roughly 200 g for each run. 
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The infiltration mould was prepared by first taking the separate parts (the 

chamber wall, lid and base) and sanding away any impurities or build up from 

previous experiments. Special care was taken with the top and bottom edges of 

the chamber wall since they make the seal which holds the gas pressure or 

vacuum depending on the infiltration method. The inside of the mould was 

sprayed with a thin coat of boron nitride powder in aerosol form to prevent the 

bonding of the molten aluminium with the stainless steel wall; care was taken to 

get full coverage of the inside of the chamber. The top and bottom edges of the 

chamber wall were kept free from boron nitride spray to avoid leaks. Graphite 

gasket rings were used as a seal between the mould cylinder and the base and 

the lid. 

To prepare the space holder the NaCl particles must be sieved to the chosen 

size range; the size of the particles used has an almost exact relationship with 

the size of the pores in the porous metal. For this operation two sieves are 

needed, and a container and lid as well to contain the material while sieving 

takes place. After pouring a sufficient quantity (around 500 g) of NaCl in the top, 

larger mesh size sieve, the lid was placed on top, with the finer mesh size sieve 

below and the container to collect fines below that. The stack was then agitated 

manually or in a sieve shaker for 1 minute. Depending on the porous metal 

sample height required, the amount of NaCl that needs to be placed in the 

mould, can vary between 100 g and 300 g. 

After the boron nitride coat was dry, the NaCl was poured into the mould and 

the pre-cast aluminium bar added on top. The height of the chamber was 15 

cm, and it was found that after placing the NaCl to be infiltrated at the bottom 

and the aluminium bar on top, if there was a considerable (more than about 1 

cm) gap remaining between the aluminium bar and the mould lid, irregular 

samples were common. This issue was solved by adding more aluminium on 

top of the bar, which could be another piece of the pre-cast aluminium bar or 

irregular pieces of aluminium ingot, just sufficient to fill the empty space; the 

shape of the extra piece (or pieces) were not found to have an effect. It was 

also important for more consistent successful infiltrations that the whole bottom 

face of the pre-cast aluminium bar was in contact with the top face of the NaCl 

particles to be infiltrated. 
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5.2.2.1. Vacuum - Argon Infiltration 

This technique was used initially, following the same procedure for mould 

preparation, with the 51 mm diameter mould and another mould of 100 mm 

diameter. After adding the NaCl particles of the space holder and the aluminium 

bar on top the graphite gasket was placed in the groove and the lid placed on 

top of the chamber. The chamber was then closed by tightening the nuts on the 

rods. Valve A was closed, valves B and C were opened, and the vacuum pump 

was activated to remove the air from the infiltration cylinder and pipes. If the 

system had a good seal, the pressure in the vacuum gauge would read around 

50 Torr, which was used as a confirmation check before the chamber and pipe 

system were put in the furnace. 

The heating pattern for this method had two heating ramps with a dwell time in 

between and another after reaching infiltration temperature. Both ramps have a 

heating rate of 10°C per minute. The first dwell time is for 30 minutes at 400°C, 

and is to reduce thermal gradients and ensure that all components are at the 

same temperature before reaching the infiltration temperature, which is set at 

740°C. The second dwell time was set at two hours, to ensure the aluminium is 

fully melted before infiltration. Ten minutes before infiltration, valves B and C 

are closed and valve A is opened to allow the argon gas to pass into the 

cylinder. 

Too little gas entering the chamber will not provide sufficient pressure to drive 

the aluminium into the NaCl (aluminium does not wet NaCl and so will not 

spontaneously flow in between the NaCl particles), causing limited infiltration. 

This was found to occur for pressures somewhat below 1 bar. If the pressure is 

very high (above around 3 bar), the flow rate of gas into the mould will be great, 

and will hit the molten aluminium with force, producing a jet of gas which can 

penetrate through the aluminium, and disturb the NaCl particle packing, leading 

to poor infiltration and defects. It was found that the best range of regulator 

pressure for good infiltration results was between 1.5 and 2 bar. However the 

results obtained were not always consistent, and a contributing factor to this is 

the vacuum seal, which was not always of consistent quality. 

After letting the gas into the chamber, the chamber was left in the furnace for 

ten minutes under the same pressure, then taken out and set down on top of a 
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cylinder shaped copper slab at room temperature, to promote longitudinal 

cooling (from bottom to top) over inward cooling (from the edges to the centre), 

such that shrinkage in the metal on final solidification took place outside the 

NaCl particles. It was essential for valve A to remain open to maintain the gas 

pressure constant in the chamber until the porous metal was fully solidified 

(around 5 minutes), preventing possible sudden changes in the sample 

structure. This technique was reported not to be satisfactory (Figure 5.6) when 

porous space holders were used [14], and the pressure was too high; as the 

liquid metal was found to have crept into the miniature cracks of the space 

holder due to the differential pressure between the vacuum they contained and 

the pressure applied. 

 

 

Figure 5.6 - Unsuccessful porous metal samples due to porous space holders 

and overpressure. 

 

5.2.2.2. Mechanical Pressure Infiltration 

As discussed previously, to cause infiltration, the molten metal requires a force 

to act upon it and move it in the required direction, overcoming its natural 

tendency not to wet the NaCl. A new method was trialled using a manually-

displaced piston rather than a gas pressure to achieve this. The piston was 

accommodated into an extra lid for the 51 mm mould, and a new mould was 

designed to test production of a smaller size of porous metals at 20 mm in 

diameter. In Figure 5.7 the 51 mm and 20 mm mechanical infiltration moulds 

are shown. The intention was that applying pressure in this way would allow 

51 mm 
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greater sensitivity and control at the low pressure end of infiltration; with gas 

pressure the difference between the pressure required to cause infiltration and 

a pressure which would lead to almost isolated pores might be low compared to 

the precision of the regulator. 

 

 

Figure 5.7 - Mechanical infiltration moulds, 51 mm (left) and 20 mm (right). 

 

Another basic difference of this technique when compared with the gas and 

vacuum method is that instead of pushing the molten aluminium around the 

space holder, the manual piston pushes the preform into the molten aluminium. 

The reason for this was that if the piston was pushed into the liquid metal a very 

good seal would be required around the piston to prevent the metal flowing 

back out past it (liquid aluminium being very fluid), and not all of the preform 

would then be infiltrated (in addition the piston would become blocked in the 

cylinder on solidification). Having a good seal would require high forces to move 

the piston, and the good control that was sought would have been lost. 

20 mm 
51 mm 
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The key characteristic of the samples made using this method was that the 

porosity was found to be not uniform throughout the volume. The porosity at the 

edge of the sample is irregular (Figure 5.8), this is caused by the fact that the 

aluminium is not directly pressurised, the pressure is coming through the bed of 

NaCl particles, producing a higher pressure gradient through the bed when 

compared to the other methods. 

 

 

Figure 5.8 - Unsuccessful samples produced with the mechanical infiltration 

method. 

 

To try and obtain more homogeneous samples, the infiltrating temperature was 

changed to alter the viscosity of the molten aluminium. The initial operating 

temperature was set at 740°C, obtaining the results discussed above. At 760°C 

the molten metal flowed better, however, a greater quantity accumulated at the 

bottom of the sample, producing a greater difference in porosity between the 

bottom and top parts, without solving the porosity issue at the edge of the 

cylinder; also, the NaCl particles in the preform started to merge together due to 

the temperature being closer to its melting point (801°C) under the force 

received from the piston. 

An explanation for this phenomena may be the solidification shrinkage of the 

aluminium [153], this effect may be pulling the aluminium towards the bottom of 

the sample where it first solidifies; this effect is routinely encountered in casting, 

for example when producing the aluminium bars for infiltration. When pouring 

the liquid aluminium into the 50 mm steel mould, care had to be taken when the 

20 mm 
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change in temperature created a void in the bar, prompting the addition of more 

liquid metal to compensate for this effect. 

At 720°C the results seemed to improve, with little difference between the 

porosities of the bottom and the top and less difference from the porosities at 

the edge compared with the centre, the downside of this temperature was that 

since the viscosity of the aluminium is lower, greater force is needed to move 

the piston, possibly with the assistance of a press the procedure would have 

been achievable for a larger quantity of samples but this once again may limit 

the precision and, if higher pressures are applied, the risk of failure of the 

chamber increases with repeated use. The successful porous metals made by 

the method had a porosity of roughly 70% and samples with the three pore 

sizes were achievable. In Figure 5.9 a successfully produced sample can be 

seen. 

 

 

Figure 5.9 - Successful sample produced by the mechanical infiltration method. 

 

20 mm 
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These samples were made with the intention of finding an alternative 

manufacturing method to the vacuum - argon and argon only techniques, yet 

the smaller size mould was not suitable for making samples of a large enough 

sample size to pore size ratio to reproducible results on testing. The same 

technique was run with the 51 mm chamber, but with the increase in cross 

sectional area, it needed a greater force to push the preform into the molten 

metal, magnifying the concern of damaging the mould. A small number of 

samples were made at 760°C, with the same defects as the 20 mm samples. 

5.2.2.3. Argon Only Infiltration 

The defects noted in the techniques described before meant that an improved 

technique was required for the work presented here. The main method used for 

the samples discussed was argon only infiltration. Using spherical granular 

NaCl, the mould and chamber are prepared in an identical manner to the 

vacuum - argon method. The closing and opening of the valves and the 

infiltration procedure is however different. When the mould has been joined to 

the valve system the chamber undergoes a seal test, initially all valves are 

closed then valves B and C are opened, the vacuum pump is turned on to 

withdraw the air from the infiltration chamber and ducts, and the vacuum 

pressure gauge should read around 50 Torr if the arrangement has an 

acceptable seal. 

However there is in addition a second part of this check; the vacuum pump is 

turned off and the pressure in the chamber monitored. The vacuum value of 50 

Torr should hold for at least 5 seconds before it starts to climb slowly (at a rate 

of less than 50 Torr per second). Indication of failure in this test would be if by 

turning off the vacuum the gauge needle jumped quickly or the value started to 

climb rapidly. The most common issue for this was fund to be an incorrect 

torquing of the nuts closing the lid, although other instances occurred from time 

to time such as a damaged base or lid gasket or an incorrect positioning of the 

base or lid in their respective grooves. If the test is passed, valve B is closed 

and the relief valve of the system is opened to allow atmospheric air in, the 

chamber is placed in the preheated furnace. 

Initially the heating pattern for this method was the same as for the vacuum - 

argon method. However, after many trials it was found that the time could be 
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reduced considerably per sample. The previous profile had been developed for 

a chamber under vacuum where heat transfer would be low. The presence of 

air however allows convection to operate and speeds up the rate at which the 

aluminium becomes heated and melted. The new pattern has only one heating 

ramp with a dwell time after reaching infiltration temperature of at least fifty 

minutes, sufficient time to melt the aluminium bar piece and ensure 

homogeneity. The heating rate for the ramp is 20°C per minute, the infiltration 

temperature is set at 740°C. A minute before infiltration, valve C and the relief 

valve are closed. The infiltration pressure is set using the cylinder's regulator, 

and valve A is opened swiftly to allow the argon gas to pass into the cylinder. 

Infiltration with this approach presents the same concern as with the vacuum - 

argon method, valve A has to be opened rapidly as, if the gas flowing into the 

chamber is slow, it may be able to find its way through the small crevices in the 

boron nitride layer between the mould wall and the aluminium, filling up the free 

space between the preform particles and so preventing the aluminium from 

occupying those parts on infiltration. For each particle size of the preform, the 

infiltration pressure had to be varied slightly, smaller particle size, larger 

infiltration pressure, although not by much. In Table 5.1 the pressure values for 

each particle size used are given. 

 

Particle Size (mm) Infiltration Pressure (bar) 
1.09 3.5 
1.55 3.0 
2.18 2.5 

 

Table 5.1 - Initial infiltration pressures applied to obtain a replicated porous 

metal. 

 

This infiltration pressure has a great effect on the porosity and by consequence 

the pressure drop required to cause air to travel through the structure. The void 

space between the NaCl particles remaining unfilled by aluminium decreases as 

the infiltration pressure increases, which reduces the aperture between the 

pores in the structure. 
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After infiltration, the cylinder is left under the argon gas pressure in the furnace 

for one minute, then taken out and set on the copper slab at room temperature 

for longitudinal cooling. Valve A was left open for five minutes to keep the 

pressure until solidification of the metal. This technique may be applied to 

porous space holders [14], with less risk of the metal getting into the pace 

holder internal pores. In Chapter 6 an evaluation of the different infiltration 

pressures used is shown and the effects produced on the samples. As well as a 

more detailed explanation of the replication process development. 

The general technique for porous metal processing described in this work has 

been applied by other investigators in many ways. While making these samples 

the porosity targeted is on average 70%, except for the ones produced with the 

vibration method, which have on average 76% porosity. 

To compare the regeneration performance of the porous metal samples made 

by the replication method other porous metal samples were created; the first 

structure is the wire mesh, which is a structure that is commonly used to make 

regenerators. 

 

5.3. Wire Mesh Sample Manufacturing 

Four sheets of different size 10 (10 wires per inch, 2 mm holes), 20 (20 wires 

per inch, 1 mm holes), 30 (30 wires per inch, 0.5 mm holes), 200 (200 wires per 

inch, 75 µm holes) stainless steel 304L woven wire mesh were obtained from 

Inoxia (www.inoxia.co.uk) as raw material to produce the stacked wire mesh 

samples to test as regenerators. 

To reach the target diameter of 51 mm a Norton 6DB Fly Press was used. The 

mesh sheets were cut into 60 mm squares and were stacked in sets of 5 sheets 

per operation round of the fly press. The sheet set was placed between two 

slabs of thin (1.5 mm) aluminium to ensure even cutting of the stainless steel 

sheets by the fly press. 

After the amount of layers were processed the stacked sheets were kept 

together by threading them with a thin (0.025 mm) stainless steel wire on 8 

points of the cross section forming a knot at one end; this procedure was 
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applied to the 10, 20 and 30 meshes. For the 200 mesh since the pores were 

considerably smaller than the other meshes the sheets were joined by 

surrounding them with the wire twice, instead of threading. In Figure 5.10 the fly 

press, mesh sheets, aluminium plates and a finished sample can be seen. 

The next structure to produce is the wire felt, these samples can be interpreted 

structure wise as an in between structure of the replicated and the mesh 

samples, since these are made using wires (like the mesh) but with an irregular 

pattern of pores (like the replicated porous metals). 

  

  

Figure 5.10 - Equipment used for the production of the wire mesh samples. 

 

5.4. Pressed Wire Felt Sample Manufacturing 

Three 500 m rolls of the same size diameter wire (0.25 mm) made from three 

different materials (commercially pure 99.5% aluminium, commercially pure 

99.9% Copper and AISI 304L stainless steel) were obtained from Advent 

Research Materials (www.advent-rm.com) as raw product to manufacture the 

regenerator wire felt samples. 

Initial trials to produce a pressed wire felt sample showed that a variation in the 

wire length was necessary. If the wires were of the sample were on average 

100 mm in length, while pressing the wires certain patterns emerged which was 
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undesirable for the aim of achieving a random pressing of the wires. To avoid 

the patterns, in the next trial, the wires were cut to an average length of 25 mm; 

this produced a sample without obvious patterns but it proved too brittle, it could 

not be handled properly. 

The suitable option was a mix of lengths, 80% of the wires were 100 mm in 

length on average and 20% of the wires were cut to a length of 25 mm. This 

technique proved best, the short wires reduced the pattern formation and the 

long wires prevented the sample from breaking into pieces. 

Once the wires were cut they were placed in a 51 mm diameter steel mould and 

a plunger placed on top. A manual hydraulic press was used at a pressure of 2 

metric tons to produce the samples. Aiming for a sample of 51 mm in diameter 

and 25.4 mm in length with a porosity of roughly 70%; a length of between 300 

and 310 metres of wire was cut for each sample in pieces at the stated lengths. 

In Figure 5.11 the cut wires, mould, manual hydraulic press and finished sample 

can be seen. The next section explains the production of the packed spheres 

samples, this structure is used in flow and heat transfer applications as well. 

 

   

Figure 5.11 - Equipment used for the production of the wire felt samples. 

 

5.5. Packed Spheres Sample Manufacturing 

Five packs containing 10,000 spheres with a nominal diameter of 2 mm made 

from different materials (commercially pure 99.5% aluminium, AISI 52100 

Chrome Steel, commercially pure 99.9% copper, AISI 420 Stainless steel and 

Soda Lime Silica Glass) were obtained from three different companies, GMS 

Ball Company Limited (www.gmsball.co.uk), Dejay Distribution Limited 
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(www.dejaydistribution.co.uk) and VWR (uk.vwr.com) as raw material to 

assemble the packed spheres samples for regenerator testing. 

To contain the packed spheres cages made from a circumference of acetate 

sheet and two stainless steel 304L wire mesh (1.5mm pore size) lids were built. 

The lids were threaded to each other on the exterior part of the circumference at 

8 points after placing the spheres inside the cage. Porosities from 38 to 42% 

were achieved, in packing range comparable to previous experiments [93]. In 

Figure 5.12 the spheres, cage and finished sample can be seen. 

Currently there are other techniques available to produce porous metals via 

CAD design, taking advantage of this, the following section explores the 

Selective Laser Melting production technique. 

   

Figure 5.12 - Equipment used for the production of the packed spheres 

samples. 

 

5.6. Selective Laser Melting (SLM) Sample Manufacturing 

Five samples made by multiple runs of Selective Laser Melting were produced 

using the same CAD file used to produce the Ti6Al4V porous samples [154] in 

section 5.7.  

The scans were exported to an STL file, in which for the SLM process the 

sample requires support bars to sustain the weight while it is being made. 

The samples were made from SS316L powder with a size range of 15 µm to 45 

µm. The chemical composition provided by the manufacturer can be seen in 

Table 5.2. 
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Element Fe Cr Ni Mo Mn Si N Cu O C P S 
% BAL 17.8 12.9 2.35 1.25 0.06 0.04 0.03 0.0185 0.012 0.012 0.005 

 

Table 5.2 - Chemical composition of SS316L powder used for sample 

production. 

 

The powder was spread in layers of 40 µm. When the machine finished the 

sample was freed from the base and the supports were removed, the remaining 

powder inside the porous metal was blown away using high pressurised air. 

A sketch of support placing can be seen in Figure 5.13 as well as the building 

cycle being run. In Figure 5.14 three finished samples are shown. The next 

section is focused on the Electron Beam Melting process, using the same CAD 

design as with the SLM samples the following ones are made from Ti6Al4V to 

compare with the stainless steel 316 porous samples. 

 

 

 

Figure 5.13 - Supports placing structure scan (left) and SLM cycle run (right). 
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Figure 5.14 - SLM SS316L porous samples, SS316L(5) (left), SS316L (3) 

(centre) and SS316L (1) (right). 

 

5.7. Electron Beam Melting (EBM) Sample Manufacturing 

To understand the effect of metal properties on porous structure behaviour, it 

was also desired to make the same forms from another metal. Five samples 

made by multiple runs of Electron Beam Melting (EBM) of Ti6Al4V powder were 

produced using a porous geometry extracted from an X-ray computerised 

tomography scan of packed spheres made from glass [154].  

The solid to void relation was obtained by applying certain limit values during 

the solid creating procedure. This process is called segmentation, to produce 

rigorous images this process is of the utmost importance [155]. These samples 

were built using a specific limit value for each one giving a specific volume of 

void fraction, respecting the regions of the voids. 

The scans were exported to an STL file, where extra design changes took 

place, such as expansion or contraction of surfaces to attain the different void 

fraction volumes and setting the diameter of the sample at 51 mm and the 

length of 25.5 mm. In Figure 5.15 the five different sample scans are shown. 
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Figure 5.15 - Computer aided design porous metal sample structures for EBM 

processing. 

The sphere size of 3.9 mm is the size of the pore, this was altered by the 

change in surface quantity due to the scaling for each sample while keeping the 

spherical shape. The critical point of note about these samples is not that this is 

likely to be a suitable processing route for regenerator materials (the method is 

not likely to be suitable for large volume of production), but rather that the series 

of operations produces samples where the density changes while the relative 

positions of the pores remains fixed; this should permit the variations in 

behaviour with density to be clearly understood, in isolation from the changes 

due to the random structure of a porous metal. 

The samples were made from Ti6Al4V powder with a size range of 40 µm to 

100 µm. The chemical composition provided by the manufacturer can be seen 

in Table 5.3. 

 

Element Ti Al V Fe O N C H 
% BAL 6.1 4.1 0.16 0.13 0.011 0.005 0.002 

 

Table 5.3 - Chemical composition of Ti6Al4V powder used for sample 

production. 

 

The production happened under a controlled vacuum atmosphere, at a pressure 

of 0.0013 mbar using a voltage of 60 kV and a current within a range of 1.9 mA 

to 3 mA for the melting beam. The energy use in these machines is modified 

while the manufacture is occurring. The reason for this is to make up for certain 

points in the process in which the beam requires more or less intensity [156]. 
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The powder is spread in layers of 70 µm, the electron beam worked in a 

continuous pattern in single beam fashion. When the machine finished the 

remaining powder in the porous structure was swept from its inside using high 

pressurised air. In Figure 5.16 three of the finished samples can be seen. After 

explaining all production processes some example images of all produced 

samples are shown in the next section. 

 

Figure 5.16 - EBM Ti6Al4V porous samples, Ti6Al4V(5) (left), Ti6Al4V(3) 

(centre) and Ti6Al4V(1) (right). 

 

5.8. Example Images and Structure Characterisation of the 
Produced Samples 

In the following figures the images of all structures available for this work are 

shown, the quantitative results of the structure characterisation are shown in 

Table 5.4. The pore size is determined by the salt particle size range in the 

replicated samples and for the ball bearing structure the pore size is determined 

to be in the same order of magnitude as the ball bearing size, for window size in 

our 2D scan there is a rough measurement taken for the samples, the strut 

geometry in the replicated porous metals considering that they were made with 

spherical particles are mostly triangular in shape [8]. 
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Figure 5.17 - Example image of the replicated porous aluminium sample A1 

structure. 

 

Figure 5.18 - Example image of the replicated porous aluminium sample B1 

structure. 
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Figure 5.19 - Example image of the replicated porous aluminium sample C1 

structure. 

 

 

Figure 5.20 - Example image of the replicated porous aluminium sample V1 

structure. 
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Figure 5.21 - Example image of the wire mesh sample 10 Mesh structure. 

 

 

Figure 5.22 - Example image of the wire mesh sample 20 Mesh structure. 
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Figure 5.23 - Example image of the wire mesh sample 30 Mesh structure. 

 

 

Figure 5.24 - Example image of the wire mesh sample 200 Mesh structure. 
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Figure 5.25 - Example image of the wire felt sample Al Felt structure. 

 

 

Figure 5.26 - Example image of the packed spheres sample Al Sph structure. 
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Figure 5.27 - Example image of the Additive Layer Manufactured sample 

Ti6Al4V (3) structure. 

 

Figure 5.28 - Example image of all structures available for this study (Top: 

Replicated porous metals, Middle: Wire meshes, Bottom: Wire felt, Packed bed 

of spheres and ALM porous samples). 
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Samples 
Porosity 

(%) 
Pore/Particle 

Size (mm) 
Measured 

Window (mm) 

Calculated 
Window Size 

(mm) 

Wire 
Size 
(mm) 

A 70 - 73 1.00 - 1.18 0.33 0.26 - 

B 69 - 70 1.40 - 1.70 0.44 0.37 - 

C 70 - 72 2.00 - 2.36 0.62 0.51 - 

V 75 - 78 1.40 - 1.70 0.64 0.52 - 

10 Mesh 78 - 81 2.00 - - 0.56 

20 Mesh 75 1.00 - - 0.36 

30 Mesh 73 0.50 - - 0.28 

200 Mesh 75 0.075 - - 0.052 

Felts 69 - 70 - 0.13 0.09 (smallest) 0.25 

Sphere 

Beds 
38 - 42 2.00 0.85 0.73 (smallest) - 

ALM 61 - 83 3.90 1.08 0.84 - 

 

Table 5.4 - Structure characterisation of the porous metal samples used for this 

study. 

 

The measurement of the replicated, packed spheres and ALM porous metal 

samples' window size was taken by averaging 10 window sizes and the 

calculation was made using Eq. 5.1 [7]. 

     
  

 

  
    
    

  Eq. 5.1 

 

For the calculation of the felt and packed spheres smallest window size a 

diagram created in AutoCAD to measure the smallest possible space in 

between the three circular sections was considered creating an equilateral 

triangle in the middle which is the window as can be seen in Figure 5.29. 
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Figure 5.29 - Window in between spheres or wires. 

 

5.9. Apparatus for Pressure Drop Measurement in Porous 
Materials 

The equipment used to measure pressure drop across porous metals 

developed by Barari [157] consists of two fans, a sample holder with a pressure 

transducer, an orifice plate with a pressure transducer, an autotransformer and 

CPU with a data acquisition card (DAQ) to register the information. The two 1 

kW fans, specified for use at high velocity, are placed in a sealed square 

wooden container, intaking atmospheric air and forcing it through the pipe and 

porous metal sample holder system. The fan velocity is regulated by the 

manually controlled 8 ampere autotransformer and an exit valve attached to the 

wooden container. The schematic diagram is shown in Figure 5.30. 

 

 

Figure 5.30 - Pressure test rig schematic diagram. 
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An issue appeared with the fans at low speeds; a great deal of fluctuation 

occurred, which was solved with the combination of using both the exit valve 

and the fans at high speed, the valve was used for regular, coarse tuning of the 

speed and the manual control of the autotransformer for focused tuning of the 

speed. 

The intake system consists of an ABS pipe 52.9 mm in diameter with a wall 

thickness of 3.5 mm; the pipe length before meeting the orifice plate was 1.5 m, 

this to guarantee a fully developed flow. The flange type orifice plate is 

calibrated against an Original Equipment Manufacturer (OEM)-calibrated 

laminar flow meter (Cussons Technology, model P7250) with a discharge 

coefficient of 0.632 and a maximum inaccuracy of ± 0.5%. For the pressure 

drop measurements across the orifice plate a Furness Controls differential 

pressure transducer type 332-4W with a maximum inaccuracy of ± 0.25% was 

used. The locations of the pressure tapping points were specified following BS 

EN ISO 5167-1:1997 [158]. When fully assembled, the fittings and pipe system 

were set under an absolute pressure of 1.3 bar for a short time span, and were 

covered in soap and water, searching for cracks in the polymer which would be 

evident by the formation of bubbles. None were observed. 

For flow rate measure corrections involving room temperature, pressure and 

humidity a wall mounted psychrometric thermometer was used and cross 

referenced with a digital thermometer (VelociCalc type 8347 A). For 

measurements across the regenerator samples a differential pressure 

transducer (Omega model DPGM409DIFF-350HDWU) with a maximum 

inaccuracy including linearity, hysteresis and reproducibility of ± 0.08% was 

employed. 

The sample holder is made from two flanges and a 200 mm piece of pipe, on 

the pipe three 5 mm screws were arranged uniformly around it to hold the 

sample in place, 3.5 mm of their length is embedded in the wall and only 1.5 

mm in the pipe; the effect of this on the pressure drop measurements was found 

to be imperceptible. To prevent sample movement and air flow around the 

sample inside the holder, thread seal tape was applied to the circumference of 

the samples [157]. 



99 
 

The data acquisition card connected to the CPU is from National Instruments 

model PCI - 6221; LabView software was used to receive and interpret the 

information received from the pressure transducers. 

After the flow equipment details have been shown next is the explanation of the 

testing procedure to obtain the pressure drop results. 

5.10. Pressure Drop Testing Procedure 

After placing the samples in the 200 mm holder and locking the four nuts and 

bolts on each side the fans were activated. Regular tuning was controlled by the 

exit valve and the fine tuning with the voltage selector controlling the 

autotransformer. Sample pressure drop readings were taken at 24 different flow 

rates and repeated 20 times at each point to ensure a correct value. In Figure 

5.31 an example is shown of the readings, average values are registered for 

each sample to plot the following figures for each sample.  

The data obtained from the pressure drop tests was plotted on graphs using the 

velocity obtained by dividing the air mass flow rate by the cross sectional area, 

called superficial velocity. For the first set of graphs the pressure drop was 

divided by the length of each sample (allowing variations in this length to be 

accounted for) and the superficial velocity for comparison. 

 

Figure 5.31 - Average linear pressure drop values for sample A1 taken from 20 

runs. 
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The pressure drop (ΔP) does not show simple linear behaviour with velocity, so 

to calculate the form drag and the permeability of each sample a curve fitting 

process was applied using Eq. 4.6. Linear regression was implemented to 

calculate coefficients a and b present in Eq. 4.8. To ensure an acceptable fit the 

coefficient of determination (R2) was calculated as well, and found to have a 

range from 0.9964 to 0.9999 for all samples. 

The range of superficial velocities spans from 1.25 m/s to 6.25 m/s, the latter 

value obtained from the maximum allowed velocity when testing the sample 

with the highest pressure drop without exceeding the limits of the test 

equipment. 

After looking at the flow testing equipment in the next section the equipment to 

test the samples' heat transfer properties is presented. 

 

5.11. Apparatus for Heat Transfer Measurement in Porous 
Materials 

This equipment is arranged to work in conjunction with the pressure drop 

apparatus described previously. It is constructed based on the single - blow 

method for the interpretation of heat transfer data. It consists of two fans, a 

sample holder with thermocouples installed on the ABS pipe on each side, an 

orifice plate with its pressure transducer, an autotransformer and CPU with a 

data acquisition card (DAQ) to register the information. The two 1 kW fans, 

specified for use at high velocity, are placed in a sealed square wooden 

container, intaking atmospheric air and forcing it through the pipe and porous 

metal sample holder system. The fan velocity is regulated by the manually 

controlled 8 ampere autotransformer and an exit valve attached to the wooden 

container [157]. The schematic diagram is shown in Figure 5.32. 

 



101 
 

 

Figure 5.32 - Heat transfer test rig schematic diagram. 

 

To obtain reliable results using the single - blow method the flowing heated air 

must remain steady in terms of temperature variations. An Omega AHF - 14240 

inline heater powered and controlled by a 240 VAC was positioned at the end of 

the pipe system to heat up the air arriving at room temperature. The fans drew 

air through the heater and made it flow into the pipe system. A two position 

electronic switch regulates the status of the heater to off or on, while a 

proportional integral derivative (PID) controller connected to LabView software 

managed the operating period of the device. 

To harmonize the heater operation with the input voltage a synchronous solid-

state relay (SSR) was employed. The heater cycle was fixed at seven hertz, 

working from PID to DAQ to SSR to a K type thermocouple positioned next to 

the heater giving temperature readings back to the PID, closing the information 

circuit. 

The heater was internally fitted with 10 sheets of stainless steel wire mesh to 

help straighten any variation in air flow caused by the heating coils, before 

passing through the 1.5 m of ABS pipe before reaching the orifice plate, 

guaranteeing a fully developed flow. For the pressure drop measurements 

across the orifice plate a Furness Controls differential pressure transducer (type 

332-4W) with a maximum inaccuracy of ± 0.25% was used. The location of the 

pressure tapping points was determined following BS EN ISO 5167-1:1997 

[158]. 

A detour section was installed on the main pipe to produce a reproducible 

pressure as in the test section by keeping it at the same level of pressure drop. 
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The detour section is accessed by a three way ball valve operated by a 90 

degree pneumatic mini - rotary vane actuator (Norgren M/60284/90) for 

reduction in actuation time (0.15 s) and to automatise the system. 

A globe valve was placed on the detour section to compensate for the sudden 

change in pressure from a free flow pipe to the pressure drop created by the 

sample. This sudden change prevented the heater from rapidly adjusting the 

temperature before the sample, taking a short time before reaching equilibrium. 

Before running the actual test, the detour section valve was set to resemble the 

same pressure drop as given by the sample, eliminating the jump in pressure, 

and the resulting change in incoming air temperature on switching. 

The sample holder is made from two flanges and a 100 mm piece of pipe, on 

the pipe three 5 mm screws were arranged uniformly around it to hold the 

sample in place, 3.5 mm of their length is embedded in the wall and only 1.5 

mm in the pipe. To prevent sample movement and air flow around the sample 

inside the holder, thread seal tape was applied to the circumference of the 

samples. 

To ensure a fast thermal response of the inlet and outlet (before and after the 

sample) temperature differences, two Omega K type 0.25 mm thermocouples 

were placed in the middle of the pipe, with an assisting cord to stabilise their 

movement. These thermocouples are calibrated to respond in 3 milliseconds at 

an air speed of 20 m/s; registering the signals were two Farnell 300TX 

transmitters with an inaccuracy of ± 0.2%. The data acquisition card connected 

to the CPU is from National Instruments model PCI - 6221; LabView software 

was used to receive and interpret the information received from the temperature 

transmitters [157]. 

Another property that is needed in the regenerator analysis is the thermal 

conductivity, the testing rig to obtain this value is explained in the following 

section. 
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5.12. Effective Thermal Conductivity 

To include thermal conductivity in the model calculations one must take into 

account the material of the regenerator and the structure it has. Since the 

porous metals are not a solid block of material, this value is lower than the 

thermal conductivity of the bulk metal. The samples have a variable structure, 

which is the reason why their individual thermal conductivity was challenging to 

assess. 

To calculate a prediction for the precise effective thermal conductivity in porous 

media is problematic since it involves two phases, solid and fluid; it depends on 

the location of the solid, fluid and the boundary between them [159]. This 

parameter may on the other hand be estimated or obtained from tests. 

In previous studies the thermal conductivity of porous media has been obtained 

for packed beds built with sintered powders. Their equations are based on the 

porosity and thermal conductivity of the material making up the porous 

structure. Numerous equations to predict their thermal conductivity have been 

suggested, often very specific to a particular type of material. A representative 

structural design to calculate the thermal conductivity of a porous metal of high 

porosity has been introduced, which is based on the cell geometry shape [160] 

and was expressed by Eq. 5.2 [107]: 

                        
    

 
    

    
  

 Eq. 5.2 

 

where kR is the effective thermal conductivity of the regenerator and kM is the 

thermal conductivity of the material. The values obtained were consistent with 

the experimental values from another researcher [161]. 

To measure the effective thermal conductivity of the samples another 

experimental rig was employed (developed by Mr Ahmed Abuserwal, Dept. 

Mechanical Engineering, University of Sheffield). This equipment consists of a 

100 Watt heater, two heat flux aluminium pieces, a container in which cold 

water flows, polyisocyanurate foam as insulation material and twelve 
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thermocouples to register the temperature differences. The test rig diagram can 

be seen in Figure 5.33. 

 

Figure 5.33 - Thermal conductivity test rig. 

The heater was set to 80°C, and the flowing cold water, which is used to 

remove heat from the experimental rig and create a balance in the heat flow, 

was set at 5°C. To transport the heat between them and the specimen 

efficiently, both heat flux pieces were made from commercially pure (99.7%) 

aluminium. 

The regenerator sample is placed in the middle of the two aluminium blocks, 

and for precise contact with the flux meters both surfaces of the regenerator 

were treated by sanding the surface for optimal contact. Three K-type 

thermocouples of 1.5 mm in diameter were installed at different points around a 

spiral in the four joints between components; they were calibrated against both 

a mercury and a digital thermometer using the freezing and boiling points of 

water as reference. The maximum error was set at ± 0.2°C. The heat loss by 

radiation between the layers was found to be less than 1.5% [162]. To achieve 

this, the temperature of the external insulation surface at three different points 
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was measured (Tex). To ensure the authenticity of the obtained thermal 

conductivity values the equipment was tested with three different materials of 

which their thermal conductivity is well known: common brass (CuZn37), 

chrome steel and commercially pure (99.7%) aluminium. The results varied only 

within 5% of the established amounts [191]. 

All components were kept in place by locking two aluminium plates at the top 

and bottom using four sets of nuts and bolts. After the experiment reaches 

stabilisation the temperature differences were registered and the average taken 

for calculation. 

The heat transport by radiation and convection is considered to be insignificant. 

Convection is suppressed by having the heater on top, and radiation is less 

significant at lower temperatures. The flux of heat was therefore principally by 

conduction and was assumed to be directional from the heater to the water 

container. The equations for heat flow through the aluminium pieces are: 

 

            
             

  
 Eq. 5.3 

 

            
             

  
 Eq. 5.4 

 

ACS is the area of the sample and aluminium piece, kAl is the thermal 

conductivity of aluminium, L1 is the length of the upper aluminium piece and L2 

is the length of the lower aluminium piece. 

To obtain the loss of energy to the surroundings (Qex) the heat equation was 

applied to the insulation material. The temperature Tex was the average of the 

external temperature of the insulation material at all heights and sides. 

 

     
               

     
  

 
 Eq. 5.5 
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kIn is the thermal conductivity of the insulation material polyisocyanurate, LR is 

the length of the regenerator, D0 is the transversal length of the insulation and 

DR is the diameter of the regenerator. 

To calculate the heat flow through the regenerator one must average the heat 

flow through the upper and lower aluminium pieces minus the heat loss to the 

environment. The equation is: 

 

    
         

      Eq. 5.6 

 

To obtain the effective thermal conductivity of the regenerator the energy 

equilibrium equation is: 

 

    
    

                
 Eq. 5.7 

 

To ensure accurate measurement every sample was measured on both 

positions, face up and face down, the result is the average of these two values. 

Following the calculation of the thermal conductivity values for the regenerator 

samples the adimensional value of thermal conductivity needs to be known, it is 

calculated with Eq. 4.24: 

 

    
     

ṁ         
  

 

After focusing on the heat transfer testing equipment the next section contains 

the explanation on how to test the samples and the considerations that need to 

be taken. 
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5.13. Heat Transfer Test Procedure 

For the heat transfer tests thread seal tape (EAGLE, www.wickes.co.uk) was 

used for wrapping the circumference of each sample to prevent the passing of 

heated air between the outer circumference and the pipe wall. The wrapped 

sample was placed in the holder and the holder in turn placed between the 

flanges of the rig with the two corresponding gaskets in place to prevent 

leakage, with the whole assembly held in place by eight sets of nuts and bolts. 

The fans were then started and afterwards the heater was set; the heater was 

programmed to run only when the fans are active to prevent damaging the 

heater and / or causing a risk of fire. Before starting the tests the system 

needed to reach a stable temperature to prevent the heating up of the cold rig 

itself from affecting inlet and outlet temperatures. Initially the warm up time for 

the rig was 30 minutes; after a few trials it was found that 15 minutes was 

sufficient time to prepare the equipment. 

Most of the time the three way valve remains on the position directing the air 

towards the detour section. After the rig is preheated the air passes through the 

orifice plate and then reaches the three way ball valve, which is activated, 

changing the flow of air to go through the sample. At this time the flow rate is 

set at the highest flow rate to be tested, at around 6.25 m/s. Before switching, 

with the three way valve is directed towards the detour section, the globe valve 

is adjusted to provide a resistance to flow and only allow the same flow rate to 

pass through it (this, as explained before, is to prevent the jump in pressure on 

changing the gas flow path from one route to the other and thereby inhibiting 

the adjustment of the heater to a new temperature if the flow rate is changed). 

When room temperature is reached the nuts and bolts are fastened and the test 

is ready to start. The LabView software to record data is activated at the same 

time as the solenoid that operates the three way ball valve to cause hot air to 

pass through the sample. Each test lasts until well after (approximately 50 

seconds) the outlet temperature is constant when compared to the inlet 

temperature. 

After testing and recording the required data, the nuts and bolts of the sample 

holder with the inlet flange are loosened and the sample is cooled down to room 
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temperature by the flow of unheated air through the gap between the flange and 

the sample holder. To accelerate this cool down a moist cloth is placed on top 

of the gap, reaching the target temperature in approximately three minutes. The 

process is then repeated for the next flow rate. A total of six flow rates are 

registered per sample and the whole assessment is repeated three times for a 

more accurate result. 

The next section explains how to interpret the information and values obtained 

from the heat transfer tests, it shows data for illustrative purposes only, the 

results are in Chapters 7 and 8. 

 

5.14. Data Interpretation 

In this work the methods chosen to calculate the heat transfer coefficient were 

the maximum slope method and the least squares method, as other 

researchers did [115], [126], [127], [142]. The effects for the heat transfer 

towards the wall, the response time at the entrance and the thermal conductivity 

in direction of the flow were considered. The Joule - Thomson effect and radial 

conductivity were not considered. 

In Figure 5.34 a chart showing three runs (green, yellow and red) made for the 

replicated porous aluminium sample A1 can be seen; from these three runs an 

average value curve is registered to calculate the subsequent coefficients, seen 

in Figure 5.35. It can also be noted that by changing temperature within the runs 

the difference between each inlet - outlet run stays practically the same, 

indicating that the behaviour of the sample does not change. 
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Figure 5.34 - Three thermal test runs for sample A1 at 2.55 m/s (each colour 

indicates a different run). 

 

5.14.1. Thermal Data 

In the typical temperature-time data obtained from the test rig a step change is 

visible for the inlet temperature as a gradual increase of the outlet temperature 

takes place. Both lines show fluctuation with the inlet temperature having more 

than the outlet, this is due to the turbulence in the fluid before entering the 

sample caused by its velocity. When the air passes through the sample, it acts 

as a flow straightener [163], lowering the air speed and generating a pressure 

drop, which is the reason why the outlet temperature line is smoother. 

It can be seen that the outlet temperature does not reach the same value as the 

inlet temperature, and in fact this will never happen, even if the duration of the 

test is increased. This is because there is heat loss from the regenerator 

through the wall of the system. (This heat loss through the wall is included in the 

calculation model used for the analysis as explained in section 4.2.2). 
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Figure 5.35 - Resulting average curve from a thermal test run for sample A1 at 

2.55 m/s. 

 

When experimental data were examined, a slight variation was found in the time 

it took the three way globe valve to open when compared to the start of the test. 

Preheating the system causes the elements to expand, and this affected the 

globe valve by increasing the response time after it is activated by the switch. 

Initially when building the test rig the opening of the globe valve was driven by 

the laboratory compressed air feed, which had a maximum pressure of 6 bar. 

This somewhat limited the speed of the response due to the expansion of the 

valve, which led on occasion to it not working at all. This was solved by 

installing a compressed air tank feeding the valve; the regulator on the tank 

allowed for higher pressures to be used, up to 10 bar. Currently for this study 

the regulator is set at 8 bar, more than enough pressure to overcome the 

expansion effect of the valve. 

The obtained experimental data from the test rig should be changed into 

adimensional data before applying the curve matching technique. 

The time was converted to an adimensional value using Eq. 4.24: 
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ṁ        
    

  

 

In which ta is the adimensional time, ṁAir is the air mass flow rate, cAir the heat 

capacity, t the time at that point, mR the mass of the regenerator and cR the 

specific heat of the regenerator's material. 

The temperature was converted to an adimensional value using Eq. 4.20: 

 

       
       
        

  

 

In which TaAir is the adimensional temperature, TAir is the temperature at that 

point, T0 is the minimum outlet temperature and TAiri is the maximum inlet 

temperature. 

 

5.14.2. Smoothing Process 

To dispense with the unwanted noise that may alter the results of the 

experimental data points a smoothing process was applied, as described below. 

Periodically, outliers were present in the data set, possibly caused by electrical 

noise or equipment signal error. If the smoothing process was applied 

considering these outliers, the result would be distorted and not display 

behaviour representative of the real data, for which reason they were 

eliminated. For this purpose an outlier was defined as a point in a data set 

which is an exceptional indication of the irregular instability within the data, 

which can be caused by an unusual change in the experimental method, 

calculation or recording inaccuracy [164] Such points were identified and 

manually removed from the data. 

From here the smoothing process was started using the Curve Fitting Tool from 

MathWorks MATLAB software. The procedure chosen was the Moving Average 

method. This technique builds a series of points which are the averages of a 

few sequential values of the original series. The equation applied was: 
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                 Eq. 5.8 

 

From here zk+1, ..., zn-k builds a new series of points based on the averages of 

the original set of points; it is also known as running mean or rolling averages 

approach [165]. In the equation zt is the average value for a certain point, k is 

the number of points surrounding zt and 2k+1 is the interval [166]. In Figure 

5.36 a chart of the values that emerge from the Moving Average method. 

 

Figure 5.36 - Point series created by the Moving Average method for the A1 

sample at 2.55 m/s. 

 

5.14.3. Curve Fit Process 

After applying the Moving Average to the data a curve fitting method was 

performed, to ensure that the points of the first derivative curve from the data 

follow one another. The curve fitting method uses splines, which are numeric 

functions defined by polynomial functions, giving a certain smoothness to the 

links between them. 
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There are different degrees of polynomials, a linear spline is made from first 

order polynomials. To ensure that the derived curve points follow one another 

the polynomial function should be at least of the second order or quadratic level. 

If the polynomial functions are of the third order or cubic it gives a better 

guarantee of the accuracy of the curves. For this work these are the ones used 

[138]. 

The equation applied to the data by the MATLAB software is: 

 

                      
   
    

 

  
 

 Eq. 5.9 

 

In this equation p is the order of the spline, xn and yn are the coordinates of a 

specific point and s is the spline used. After this the program applies numerical 

solutions and it shows the fitted curve in a chart which the user evaluates and 

decides if the fit is correct. 

In Figure 5.37 the data points, smoothed data and fitted curve can be seen, the 

R squared value is higher than 0.9962 for all samples. 

To understand if the curve fits, the residual values must be taken into account. 

A residual value is the discrepancy between the experimental data and the fitted 

curve. If the residual value is similar or lower in magnitude when compared to 

the random variation of the experimental data points it signifies that the fitted 

curve may be considered to be correct. 

The difference between the residuals and the random variation are shown in 

Figure 5.38, from these values it is clear that the curve is a good fit. 
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Figure 5.37 - Magnified view of a range of the adimensional outlet temperature 

values. Data points, smoothed data and fitted curve for the A1 sample at 2.55 

m/s. 

 

Figure 5.38 - Magnified view of the random temperature variation compared to 

the residual values obtained from the curve fitting for the A1 sample at 2.55 m/s. 
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The numerical values are an intrinsic operation of the software, giving the error 

evaluation using the sum of squared residuals (SSR) which measures the 

difference between the experimental and the predicted data [167]. 

 

                 
 

   

 Eq. 5.10 

 

The variable yi is the set value of the original variable, xi is the independent 

variable and f(xi) is the new value of yi. 

The coefficient of determination was also used, this value expresses how 

adequately the data fits a statistical model [168]. 

It is also named the R squared value, and has a range between zero and one. If 

the value is closer to 1 it means that the fit is better. It may be interpreted as a 

percentage, for example if the R squared value is 0.96 it signifies that the fitted 

curve is 96% in agreement with the data. 

The equation incorporates two values, the regression sum of squares: 

             
 

 

 Eq. 5.11 

 

and the total sum of squares: 

             
 

 

 Eq. 5.12 

 

Coefficient of determination: 

    
   
    

         
 

         
 

 Eq. 5.13 
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5.14.4. Derived Curve 

After performing the smoothing and curve fitting the experimental data, to 

determine the maximum gradient the curve is differentiated. This gives rise to a 

second curve of which its highest value is the maximum gradient. 

To obtain this curve the command "differentiate" was introduced in the code as 

bx=differentiate(cf_,X), which applies the following equation in the program: 

 

   
   

             x 
    Eq. 5.14 

 

5.14.5. Exit Temperature Forecast Curve 

To successfully forecast the exit temperature curve with the model the 

characteristics and natural properties of the porous metals to be tested must be 

imputed as meticulously as possible. 

5.14.5.1. Entrance Temperature 

One of the parameters is the air temperature at the entrance, as mentioned in 

Chapter 4, to register a perfect step change in the temperature is practically 

implausible; however, the approximation to this generated by the equipment is 

sufficient. The function that governs the temperature at the entrance is in Eq. 

4.28: 

 

                  

 

meaning that the temperature increase depends on the time raised at an 

exponential rate. This equation makes up for the difference in value from an 

ideal step change to the actual step change. This equation is applied to the 

experimental data in order to calculate the value of the temperature response ψ. 

This value was obtained for each run of each sample and was included in the 

calculations. 
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There is a small drop in temperature after the moment the test is started, which 

was caused by a small quantity of air trapped between the ball valve and the 

sample, which was colder is because it is not in contact with the incoming hot 

air until the start of the test (up to that moment the air is passing through the 

detour section) and from the other side it is blocked by the sample, allowing 

extra cooling to take place in the meantime before starting the test. Since the 

fitted curve does not consider this event, this instant is discarded ahead of any 

smoothing alteration. In Figure 5.39 The typical exit temperature fitted curve for 

a replicated aluminium porous structure can be seen. 

 

 

Figure 5.39 - Exit temperature fitted curve for the A1 sample at 2.55 m/s. 

 

5.14.5.2. Specific Heat Proportion Rtc 

The relationship between the heat capacity of the sample and the heat capacity 

of the wall was calculated based on the length of the sample and the length of 

the wall, from here the mass of the wall is obtained from the wall's volume. The 

mass of the thread seal tape used to prevent the hot air passing through the 

space between the wall and the sample was insignificantly small (≈ 1.3 g) when 

compared to the wall mass (≈ 70 g). The equation is present in Eq. 4.27: 
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5.14.5.3. Regenerator Thermal Conductivity kR, NTUR and NTUW Values 

The measured kR values for the replicated porous metals, wire felts and additive 

manufactured samples are in Table 5.5. The effective thermal conductivity for 

the wire meshes and packed spheres was less than 0.1 W/mK (lowest possible 

value to register with the test rig) due to the poor contact between its layers or 

particles, the thermal conductivity test rig was not able to determine the values 

for these samples, they were estimated as were the NTUR and NTUW. 

Sample Material kM (W/mK) kR (W/mK) 
A1 Aluminium 205.0 26.4 
A2 Aluminium 205.0 25.7 
A3 Aluminium 205.0 18.8 
B1 Aluminium 205.0 27.3 
B2 Aluminium 205.0 28.9 
B3 Aluminium 205.0 28.2 
C1 Aluminium 205.0 25.0 
C2 Aluminium 205.0 24.7 
C3 Aluminium 205.0 26.0 
V1 Aluminium 205.0 19.9 
V2 Aluminium 205.0 16.6 
V3 Aluminium 205.0 20.0 

Al Felt Aluminium 205.0 6.5 
Cu Felt Copper 385.0 9.4 

SS304L Felt Stainless Steel 304L 16.2 1.1 
SS316L (1) Stainless Steel 316L 16.2 2.2 
SS316L (2) Stainless Steel 316L 16.2 2.0 
SS316L (3) Stainless Steel 316L 16.2 1.6 
SS316L (4) Stainless Steel 316L 16.2 1.3 
SS316L (5) Stainless Steel 316L 16.2 1.1 
Ti6Al4V (1) Titanium Alloy Ti6Al4V 6.7 0.8 
Ti6Al4V (2) Titanium Alloy Ti6Al4V 6.7 0.7 
Ti6Al4V (3) Titanium Alloy Ti6Al4V 6.7 0.6 
Ti6Al4V (4) Titanium Alloy Ti6Al4V 6.7 0.5 
Ti6Al4V (5) Titanium Alloy Ti6Al4V 6.7 0.4 

 

Table 5.5 - Measured thermal conductivities for the porous metal samples with 

a value higher than 0.1 W/mK. 

Now that all the criteria are available the exit temperature curve may be 

calculated by the model. The estimated values of NTUR, NTUW and the 
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measured value for kR are introduced to run the program. The code produces 

the fitted curve and places it on the same graph as the experimental data. If one 

curve is placed on top of the other then these estimated values of NTUR and 

NTUW are correct; if this is not the case, the process is repeated iteratively until 

this occurs. 

5.14.5.4. Matching Data (Replicated Sample) 

As discussed earlier, matching the data is a procedure that needs special care, 

included in the following figures are the changes in various parameters to study 

the effect they have on the results. 

To equalise the predicted to the experimental data, two methods were 

explained earlier, the maximum gradient was more direct when compared to 

matching all the points of the curve. To achieve this the values of the specific 

heat capacity of the regenerator in proportion to the wall, and effective thermal 

conductivity must be known to estimate correctly the number of transfer units of 

the wall and the sample. 

If the regenerator has an inconsequential value for the number of transfer units 

compared to the wall and effective thermal conductivity, estimating the number 

of transfer units for the regenerator becomes simpler; this is applicable to the 

regenerators made from wire screens. 

The wire net screens have small contact points with the sample holder; also, 

they are made from stainless steel, which has a very low thermal conductivity 

(16.2 W/mK) compared to other metals. This makes the number of transfer units 

through the wall and the effective thermal conductivity value to be negligible 

when predicting the number of transfer units through the regenerator. 

In comparison, the porous metals have a generous contact surface with the 

holder, increasing the number of transfer units travelling through the wall due to 

the high thermal conductivity of aluminium (205.0 W/mK), more than an order of 

magnitude larger than stainless steel (16.2 W/mK). These two parameters must 

be specified accurately to predict the number of transfer units of the 

regenerator.  
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The reliability and accuracy of the method used were investigated. To 

demonstrate this in Figures 5.40, 5.41 and 5.42 the effect of incorrectly 

estimating the values of NTUR, kR and NTUW for sample A1 at 2.55 m/s is shown 

to provoke a considerable variation in the exit temperature curve, symbolising 

the physical effect they have on the sample. 

Before the exit temperature curve reaches stabilisation it may be divided into 

"reaction regions" to describe the physical meaning of what occurs in the test 

sample. These regions are introduced for illustration purposes only, they do not 

have a set range value and are independent for each porous sample. 

The Start Region is primarily affected by the heat absorbed by the sample 

caused by convection between the fluid and the porous metal; the number of 

transfer units (NTUR) of the regenerator dominates the behaviour in this region. 

An effect is present in the End Region as well, however it is negligible when 

compared to the Start Region. 

 

Figure 5.40 - The effect of changing the NTUR value on the fit to experimental 

data for replicated porous aluminium samples. 
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In Figure 5.40 the difference between imputing correct and incorrect values for 

the number of transfer units (NTUR) of the samples is clearly observed. All other 

values in the program were correct. 

The orange line represents the experimental values for the A1 sample at an air 

speed of 2.55 m/s. The blue line represents the model's fitted curve with what 

was determined to be the correct value for the number of transfer units of the 

porous metal (NTUR = 7). The red and green lines represent the fitted curve with 

incorrect values for the number of transfer units of the sample at 4 and 10 

respectively. The purple line is set at NTUR = 0.7, an order of magnitude lower 

than the correct amount, indicating that the sample would absorb a very small 

amount of heat before the system reaches stabilisation. The Start Region was 

used as the beginning of the curve matching process, since the NTUR is seldom 

affected by the other variables. 

After the convection process fills the porous metal with a certain amount of heat 

conduction within the sample takes charge of the effect. In Figure 5.41 it can be 

seen that by changing the value of the effective thermal conductivity the most 

significant movement in the data occurs in the Middle Region. If the conductivity 

in the regenerator is lower it takes longer for the temperature to reach 

stabilisation since a higher amount is escaping through the wall. 
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Figure 5.41 - The effect of changing the kR value on the fit to experimental data 

for replicated porous aluminium samples. 

 

In Figure 5.41 the difference between imputing correct and incorrect values for 

the effective thermal conductivity on the porous aluminium samples is noted. All 

other values in the program were correct. 

The orange line represents the experimental values for the A1 sample at an air 

speed of 2.55 m/s. The blue line represents the model's fitted curve with the 

correct value for the effective thermal conductivity (kR = 26.37 W/mK). The red 

and green lines represent the fitted curve with incorrect values for the effective 

thermal conductivity at 31.37 W/mK and 21.37 W/mK respectively, this variation 

is small, but noticeable. The purple line is set at 2.637 W/mK, an order of 

magnitude lower than the correct amount. 

After both convection and conduction fill the sample with heat the air and 

porous metal start to transfer heat to the lowest conductivity material in the 
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is the reason why changing the value of the number of transfer units through the 

wall (NTUW) has the effect in the End Region. 

 

 

Figure 5.42 - The effect of changing the NTUW value on the fit to experimental 

data for replicated porous aluminium samples. 

 

In Figure 5.42 the difference between imputing correct and incorrect values for 

the number of transfer units of the wall (NTUW) is noted. All other values in the 

program were correct. 

The orange line represents the experimental values for the A1 sample at an air 

speed of 2.55 m/s. The blue line represents the model's fitted curve with the 

correct value for the number of transfer units of the wall (NTUW = 0.25). The red 

and green lines represent the fitted curve with incorrect values for the number of 

transfer units at 0.15 and 0.35 respectively. The purple line is set at NTUW = 

0.025, an order of magnitude lower than the correct amount, indicating that the 

wall would absorb a very small amount of heat before the system reaches 

stabilisation. The effect of the NTUW on the Start Region is very small since the 
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heat transfer follows the easiest route possible, a material with a high heat 

capacity first and so on. 

5.14.5.5. Matching Data (Mesh Sample) 

A comparison with the previous graphs of the curve matching behaviour while 

changing the different curve matching parameters (NTUR, kR and NTUW) for the 

30 mesh sample is made; this is done to examine the difference if the sample is 

made from a different structure (replicated porous aluminium against mesh). 

When comparing the behaviour of the replicated porous metals to the wire 

meshes while changing the values of NTUR, kR and NTUW a similar behaviour 

can be seen. In Figure 5.43 the NTUR change graph for the 30 mesh sample is 

presented. 

 

Figure 5.43 - The effect of changing the NTUR value on the fit to experimental 

data for wire meshes. 

 

In this graph the difference between imputing correct and incorrect values for 
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The orange line represents the experimental values for the 30 Mesh sample at 

an air speed of 2.55 m/s. The blue line represents the model's fitted curve with 

the correct value for the number of transfer units of the porous aluminium (NTUR 

= 17). The red and green lines represent the fitted curve with incorrect values 

for the number of transfer units of the porous aluminium at 14 and 20 

respectively. The purple line is set at NTUR = 1.7, an order of magnitude lower 

than the correct amount, again indicating that the sample would absorb a very 

small amount of heat before the system reaches stabilisation. The change in the 

Start Region for the mesh is not as significant when compared to the Start 

Region of the A1 porous sample (Figure 5.40); this occurs due to the difference 

in structure between the samples and the material (Al vs. SS304L) it can be 

noticed that the plateau at the beginning of the graph from the mesh sample is 

longer when compared to the mesh, this translates to the difference in NTUR 

values from 7 for the replicated porous aluminium to 17 for the mesh. In Figure 

5.44 the kR change graph for the mesh can be seen. 

 

Figure 5.44 - The effect of changing the kR value on the fit to experimental data 

for wire meshes. 
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In this graph the difference between imputing correct and incorrect values for 

the effective thermal conductivity on the aluminium porous samples is noted. All 

other values in the program were correct. As with the A1 sample, the significant 

change when altering the thermal conductivity value happens in the Middle 

Region. 

The orange line represents the experimental values for the 30 Mesh sample at 

an air speed of 2.55 m/s. The blue line represents the model's fitted curve with 

the correct value for the effective thermal conductivity (kR = 0.05 W/mK). The 

red and green lines represent the fitted curve with incorrect values for the 

effective thermal conductivity at 2.5 W/mK and 5 W/mK respectively. The purple 

line is set at 10 W/mK, higher than two orders of magnitude than the correct 

amount. The difference in the behaviour of the lines when compared to the kR 

graph (Figure 5.41) of the A1 sample is due to the structure and material, in 

Figure 5.45 the 30 Mesh NTUW change graph can be seen. 

 

 

Figure 5.45 - The effect of changing the NTUW value on the fit to experimental 

data for wire meshes. 
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In this graph the difference between imputing correct and incorrect values for 

the number of transfer units of the wall (NTUW) is noted. All other values in the 

program were correct. 

The orange line represents the experimental values for the 30 Mesh at an air 

speed of 2.55 m/s. The blue line represents the model's fitted curve with the 

correct value for the number of transfer units of the wall (NTUW = 0.03). The red 

and green lines represent the fitted curve with incorrect values for the number of 

transfer units of the wall at 0.003 and 0.3 respectively. The purple line is set at 

NTUW = 3, three orders of magnitude higher than the correct amount. When 

compared to the A1 sample NTUW Change graph (Figure 5.42) the behaviour is 

very similar. 

 

5.15. Summary of Steps to Obtain an NTUR Graph 

1. Perform the run on the heat transfer test rig. 

2. From the output data change time and temperature to adimensional 

 values, and calculate the constants needed to obtain the exit 

 temperature curve (average mass flow rate, air density based on the 

 temperature of the test, entrance temperature constant pressure, 

 minimum and maximum temperature values to set the upper and lower 

 limits of the graph, specific heat proportion). 

3. Estimate the values of NTUR and NTUW (and kR if it was not measured), 

 input the physical characteristics of the sample and the data from the test 

 to the MATLAB code to calculate the exit temperature curve (smoothing, 

 curve fitting, plotting). 

4. If the curve does not fit the experimental data step 3 is repeated until this 

 occurs. 

5. The correct values for that sample at that flow rate are registered, this 

 translates to one point for one sample in the NTUR graph. 

6. If the NTUR value is correct the MATLAB code repeats the process for 

 the next flow rate. 
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In this chapter the experimental methods for porous metal production are 

shown, it includes the description of the equipment and the three different ways 

to produce porous metals by the replication technique, out of the three, the 

argon only technique was selected to produce the samples for this work. 

Apart from these samples others were created with the purpose of comparing 

different structures (mesh, felt, packed spheres and ALM samples) to determine 

the best for regenerator purposes and to evaluate if the replicated samples 

have the opportunity to challenge the wire meshes that are currently used as 

regenerators in Stirling engines. 

In the second part of the chapter the testing procedure for flow and heat transfer 

is addressed and finally the manner in which the results are to be interpreted is 

presented in detail with a short summary in the final subsection; in Chapter 6 

the replication process developments are explained in detail. 
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Chapter 6. Replication Technique Developments 

From a general understanding and specific applications, porous metals create 

interest within the materials community. Their applications have been 

suggested and tested experimentally, they have been used in impact absorption 

producing low weight structures, as heat exchanger units due to their large heat 

transfer area, as bone substitution implants in the body, just to name a few. 

Even though an advanced knowledge concerning their structure, properties and 

production methods is available; there is still left to complete the information on 

the particular characteristics and outcomes that the different building processes 

create. 

The porous metal production process known as replication, entails a molten 

metal being forced into the free spaces between granules of a disposable 

preform element; this process permits an elevated level of control. However, the 

procedure depends on personal knowledge. The objective of these protocol 

alternatives is to create porous metals in a simple and direct manner, allowing 

to adjust their properties by certain modifications in the procedure. Open cell 

porous aluminium samples with a porosity range of 61 to 78% and a pore size 

range of 1.00 mm to 2.36 mm were made. 

First to discuss are the assessments done prior to choosing the replication 

production technique parameters to produce all regenerator samples. 

 

6.1. Initial Tests 

For aluminium infiltration gravity is not enough force the molten metal to enter 

into the NaCl space holder particles, due to the elevated value of the metal 

surface tension. This is the reason why assistance is needed for the three 

methods explored here. The vacuum - argon process was applied previously in 

the laboratory at Sheffield, yet when running the cycle, the rate of quality 

sample production was low and sample variation remained high. After the 

challenges presented by the mechanical pressure method (as discussed earlier) 

for this work the option of the argon only method appeared to be the most 
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viable, and when compared to the other two methods it seemed the most 

suitable approach for further development. 

When performing the argon only method initially the rate of fully successful 

infiltrations with no observable defects (Section 6.2) was low (around 1 out of 

10), although this was still advantageous compared to the vacuum - argon 

method where the rate of defect-free specimen production was around 1 out of 

15. This, and the many drawbacks of the mechanical pressure method, meant 

that test trials were started with the argon only method. 

It was found that the process was significantly affected by very small variations 

in the operating protocol. For example, initially irregular pieces of aluminium 

ingot were placed directly on top of the preform without considering their 

arrangement or the free space between them, giving rise to poor infiltrations 

even when raising the pressure to elevated values (5 - 6 bar); this problem was 

corrected with the manufacturing of the aluminium bars which fitted closely in 

the chamber. After this, the infiltration pressure which needed to be applied was 

much lower (3 - 4 bar) and the rate of defect-free samples produced increased 

to around 3 out of 10. 

Another change was filling the infiltration mould almost to the top by adding 

more NaCl or a larger piece of the aluminium bar, this produced much better 

results, with the rate of defect-free samples increased to around 8 in 10. There 

were additional advantages to productivity. 

Following the heating pattern of the furnace used with the vacuum - argon 

method the rate of sample production only allowed two samples per day, with 

the new method, up to five samples a day could be produced. This was 

achieved by reducing the dwell time from two hours to 50 minutes per sample. 

The infiltration pressure used was 3.5 bar. 15 samples were produced for the 

purpose of establishing the shortest acceptable dwell time. 
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6.2. Sample Defects 

Visual assessment of the samples took place, evaluating the infiltration of the 

NaCl preform from a range of 1 (worst) to 5 (best) at different dwell times, in 

Table 6.1 the results are shown. The assessment was based on the uniformity 

of the structure from the outside, this type of defect has been caused in other 

experiments [199] by the preheating temperature of the mould, indicating that at 

a lower preheating temperature (500°C) the molten metal solidifies faster than 

when using a higher value (550°C), however in these experiments the mould is 

not preheated and the defects can be attributed to the dwell time and infiltration 

temperature; additionally the samples were split in half to observe the internal 

structure, these defects are of the macroscopic nature. 

 

Dwell Time (min) Al Sample Assessment 
120 1 4 
120 2 5 
120 3 5 
60 4 5 
60 5 5 
60 6 4 
30 7 2 
30 8 2 
30 9 1 
40 10 4 
40 11 4 
40 12 3 
50 13 4 
50 14 5 
50 15 5 

 

Table 6.1 - Dwell time assessment for the replication process of aluminium 

samples. 

 

The optimal operation temperature for infiltration was also evaluated. Parting 

from the 740°C from the vacuum - argon method, two additional temperatures 

were tested, nine porous aluminium samples were produced for this purpose. 
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The infiltration pressure used was 3.5 bar. Visual assessment of the samples 

took place, evaluating the infiltration of the NaCl preform from a range of 1 

(worst) to 5 (best) at different temperatures, in Table 6.2 the results are shown.  

 

Temperature (°C) Al Sample Assessment 
740 16 5 
740 17 5 
740 18 5 
720 19 4 
720 20 3 
720 21 4 
760 22 4 
760 23 4 
760 24 3 

 

Table 6.2 - Temperature assessment for the replication process of aluminium 

samples. 

 

In Figure 6.1 sample 20 can be seen, made with the furnace set at 720°C. The 

sample has noticeable defects on the side, in this case the liquid metal's 

viscosity is higher, improperly filling all the crevices between the NaCl preform. 

 

Figure 6.1 - Sample 20, infiltrated at 720°C with noticeable defects on the outer 

wall. 

51 mm 
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In Figure 6.2 sample 24 can be seen, made with the furnace set at 760°C. The 

aluminium's viscosity is lower (2%) [200] due to the higher temperature, in this 

case causing it to encase and infiltrate some of the NaCl particles, this prevents 

their leaching. This type of defect is of the microscopic kind, it has been seen by 

other researchers and is attributed to the high infiltration pressure pushing the 

molten aluminium into the salt particles, not just around them [9]. 

 

 

Figure 6.2 - Sample 24, infiltrated at 760°C with noticeable defects in its interior 

structure. 

 

In Figure 6.3 sample 16 can be seen, made with the furnace set at 740°C. The 

sample structure looks uniform when compared to the others, in the end 

confirming that 740°C was a suitable temperature for these processes. 

51 mm 
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Figure 6.3 - Sample 16, infiltrated at 740°C with a uniform structure. 

 

The defects present in Figures 6.1 and 6.2 were similar to the defects present in 

the samples produced to evaluate the dwell time, this to illustrate the 

assessment values 3, 4 and 5; for values 1 and 2 the defects were more 

noticeable. 

The infiltration pressure is related to the capillary radius directly by using the 

Young-Laplace equation. 

 

    
      

  Eq. 6.1 

 

This depends on J the surface tension of the molten aluminium (0.89 Nm [195]) 

and T�the contact angle between the molten aluminium and the NaCl particles 

(139° [196]). 

With an infiltration pressure of around 3 bar for a sealed chamber under 

vacuum the molten metal would be predicted by the equation above to be able 

to infiltrate preform particles with spaces of 9 µm, so the infiltration of particles 

of 100 µm diameter should not have been a challenge, however, for the type of 

51 mm 
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experimental setup in this work it was not found to be possible due to the fact 

that the system is not under vacuum, and in addition to this there may be 

possible leaks at the top of the mould, reducing the actual infiltration pressure 

applied. 

During the melting process the chamber is open to the atmosphere, leaving air 

to flow freely inside it, once the aluminium melts it captures the air present in 

the free spaces of the preform, when the argon pressure is applied to the liquid 

metal it compresses the air toward the bottom of the chamber, which is the 

reason why the preform with these particle sizes (1 - 2.36 mm) is infiltrated at 

these pressure levels. 

The addition of boron nitride spray to the mould prevented the bonding between 

the molten aluminium and the stainless steel after cooling down, making it 

easier for the samples to be removed. Taking special consideration for the 

bottom and top edges of the mould to be free from any impurities and in perfect 

contact with the graphite gaskets was also found to be critical in obtaining a 

good seal. 

The drying time of the boron nitride coat was found to also play a small but 

important part of the process; after a few trials of the coating not being dried 

properly before adding the preform it was found that when pouring the NaCl 

particles and then shaking the mould slightly to position the top layer of the 

particles as a flat surface, the movement of the particles removed the layer of 

boron nitride, preventing it from being effective. It was noted that heating the 

mould for some time at a relatively low temperature (100°C) helped with the 

drying, however, it was not compulsory as the coating will dry naturally if left for 

sufficient time. 

Originally the mould was assembled with the pipes and valves system and 

introduced in the furnace directly, however, this caused uncertainty in the 

outcome of processing. When repeating the process exactly with each trial the 

result could still be positive or negative. For some of the unsuccessful cases, 

the fault was traced to the moment of infiltration or in the cooling period. The 

indicator of a fault was a leak of the molten metal at the bottom of the mould 

while infiltrating, or a leak of argon while cooling down the mould on the copper 
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slab, and therefore the fault was attributed to improper sealing of the chamber. 

To prevent this occurring, the vacuum seal test step was developed.  

The end result after making all these changes to the original argon only (or gas 

only) method is that, if following the process steps precisely, the rate of uniform 

to non uniform porous metal structures improved from approximately 1 out of 10 

to approximately 9 out of 10 samples, further attention to the fine details could 

possibly achieve 10 out of 10 uniform samples in the near future. The 

production rate was increased from a maximum of 2 a day to 5 a day. The 

procedure has been adopted by other workers and applied successfully, for 

example to magnesium, by using a protective atmosphere of sulphur 

hexafluoride [169] during the infiltration procedure; it can also be used for 

different size moulds.  

After determining the correct parameters for infiltration the alternatives in the 

replication technique to produce samples with different characteristics are 

presented, these are named infiltration protocols. 

 

6.3. Infiltration Protocols 

The infiltration protocols were developed from the need to produce quality 

samples by replication, exploring different options of pressures, preform density 

and accessories or extra materials to be used as aides in the technique. For all 

protocols the same procedure for the aluminium bar preparation, the furnace 

temperature and heating rate and sample extraction remain the same. The 

difference lies in the preform preparation, mould preparation and infiltration 

pressure used. All protocols are for the 51 mm diameter infiltration mould. In 

these techniques efforts have been made to minimise the use of complicated 

machinery so the method is easily applicable and as rapid as possible. 

Originally the preform was made from Hydrosoft water softening NaCl tablets, 

these tablets were square shaped 20 mm pieces and had to be broken down 

and refined manually to fit the particle size of the desired preform. At the start of 

the study a production run of 6 samples was made to find out if the shape of the 

NaCl particle had an effect on the porosity of the resulting porous metal, the 

results are given in Table 6.3. 
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NaCl Particle Shape ε (%) 
Irregular 63.5 
Irregular 63.0 
Irregular 63.1 
Spherical 63.1 
Spherical 62.6 
Spherical 63.3 

 

Table 6.3 - Porosity differences between samples with irregular and spherical 

preform particle shape. 

 

It was found that, the shape of the NaCl particles (irregular and spherical) had 

no major effect on the porosity of the samples when compared to the change in 

production protocol [149]. The porosity was measured using the sample volume 

and bulk weight. In Figure 6.4 the two shapes of the NaCl particles are shown, 

as well as two of the produced samples, to illustrate the visible differences 

among them. To save time and energy the Hydrosoft tablets were substituted 

by Hydrosoft granules. 
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Figure 6.4 - Shape of the NaCl particles and the porous metal produced (Left: 

Broken Hydrosoft tablets produce irregular shaped pores; Right: Hydrosoft 

granules produce spherical shaped pores). 

 

6.3.1. Protocol W 

Protocol W can be called the modified technique to process porous metals 

using the replication method; it is the technique emerging with all the changes 

and improvements over the original argon only technique, the description of this 

protocol is in Section 5.2.2.3. 

As mentioned before, the methods for aluminium bar production, furnace and 

sample extraction remain unchanged. At the preform preparation stage, 

considering an average size of NaCl particles of 1.55 mm, and depending on 

2 mm 

51 mm 
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the height of the porous metal required, the amount of NaCl used varies from 

100 g to 300 g; consequently the amount of aluminium should be between 200 

g and 400 g on average. 

Images of samples produced by this protocol are in Figure 6.5, these were 

produced with the irregular preform particles. 

 

 

Figure 6.5 - Protocol W porous metals are made of 99.7% aluminium in an 

open cell configuration with irregular shape preform particles, a pore size 

average of 1.55 mm, an average porosity of 63%, measuring 51 mm in diameter 

and 25.4 mm in height. 

 

6.3.2. Protocol X 

Protocol X was devised as a means to reduce the infiltration pressure applied 

and so to boost the porosity of the porous metal created. Higher pressures were 

needed to cause infiltration than were expected purely from considerations of 

the surface tension of the liquid aluminium, suggesting that some gas or vapour 

existed in the preform, requiring an additional pressure to be overcome. The 

difference of this protocol from protocol W is that in the preform preparation, an 

additional step is present. 

This step is the addition of fine NaCl particles to the infiltration mould, before 

pouring in the NaCl particles which make up the preform. The schematic 

diagram can be seen in Figure 6.6. 

51 mm 
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Figure 6.6 - Protocol X schematic diagram. 

 

The size of these particles is roughly one fourth the size of the infiltration NaCl, 

it was determined from previous infiltration tests in which was noted that the 

molten aluminium did not creep into the particles, creating an effective stop for 

the liquid metal, the size recommended for each particle size of NaCl used in 

preforms here can be seen in Table 6.4. The amount of fine NaCl added per 

infiltration round was 100 g. 

 

Infiltration NaCl Particles Fine NaCl Particles 
1.09 mm < 250 µm 
1.55 mm < 400 µm 
2.18 mm < 500 µm 

 

Table 6.4 - Fine NaCl particle size recommended for each infiltration NaCl 

particle size.  

 

51 mm 
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The purpose of these fine NaCl particles is to create a pocket of free space at 

the bottom of the mould, allowing that the air contained inside it to be moved 

from the preform intended to be infiltrated into this space. This permits the 

molten aluminium to occupy the space between the infiltration NaCl particles. 

Overall this change manifests itself in a reduced requirement for pressure, 3 bar 

compared to 3.5 bar for protocol W. With this pressure the molten metal will not 

infiltrate the fine NaCl particles also preventing the aluminium from reaching the 

bottom of the mould, this way avoiding a leak. To this extent, the control of 

infiltration with the use of fine NaCl is self-regulating; there will be no infiltration 

of the fine NaCl unless the sizes greater than the fine NaCl are fully infiltrated. 

Another effect is that by reducing the infiltration pressure a uniform yet more 

porous sample can be produced. When compared to samples made by protocol 

W, protocol X samples have an increase of 5% in porosity, moving from an 

average of 63 to 66%, while still keeping uniformity in its structure. Images of 

samples produced by this protocol are in Figure 6.7. 

 

 

Figure 6.7 - Protocol X porous metals are made of 99.7% aluminium in an open 

cell configuration with spherical shape preform particles, a pore size average of 

1.55 mm, an average porosity of 66%, measuring 51 mm in diameter and 25.4 

mm in height. 

 

6.3.3. Protocol Y 

The objective of protocol Y is, like protocol X, to reduce the infiltration pressure 

and to increase the porosity of the porous metals. Like protocol X, protocol Y 

51 mm 
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uses the fine NaCl at the bottom of the mould. Here the difference lies in the 

removal of the bottom gasket of the mould, located in the base groove, to 

provide a path for gas from the fine NaCl to be evacuated from the chamber. 

By removing this gasket, the infiltration pressure applied falls greatly from 3 bar 

in protocol X to 1 bar in protocol Y. As with protocol X this amount of pressure is 

enough to infiltrate the preform but not the fine NaCl particles, meaning that the 

absence of the gasket does not introduce the risk of leaks. 

Additionally, by this reduction of infiltration pressure, a porous metal with a 

higher porosity than one made using protocol X can be produced. When 

compared to samples made by protocol X, protocol Y samples have a further 

increase of around 5% in porosity, moving from an average 66 to 70% while still 

keeping uniformity in its structure. Images of samples produced by this protocol 

are in Figure 6.8. 

 

 

Figure 6.8 - Protocol Y porous metals are made of 99.7% aluminium in an open 

cell configuration with spherical shape preform particles, a pore size average of 

1.09 mm, 1.55 mm and 2.18 mm respectively, an average porosity of 70%, 

measuring 51 mm in diameter and 25.4 mm in height. 

 

To demonstrate the effect of preform particle size at a relatively low infiltration 

pressure of 1 bar, these three samples made with protocol Y have very similar 

porosities. The change of the NaCl particle size has no noticeable effect 

compared to the protocol used. This is only valid for low infiltration pressures. 

As mentioned before, with higher infiltration pressures (> 1 bar) when changing 

51 mm 
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the NaCl particle size of the preform, the infiltration pressure does increase if 

the NaCl particle is smaller. 

 

6.3.4. Protocol Z 

For protocol Z, as before, the idea was to further increase the porosity of the 

porous metal, this time keeping the same infiltration pressure as with protocol Y 

of 1 bar. As with protocol Y a layer of fine particle size NaCl is used and the 

bottom gasket is absent from the base groove. 

The key step of protocol Z is to vibrate the space holder NaCl particles once 

they have been introduced into the mould, so that they are accommodated 

more efficiently, eliminating a larger amount of free space where the molten 

metal could pass, increasing the density of the space holder, and decreasing 

that of the porous metal. 

To meet this objective, after adding the fine NaCl particles at the bottom of the 

infiltration mould, two circles made from 2 mm thick Kaowool sheet of 51 mm in 

diameter are added on top of the fine NaCl particles before pouring the 

infiltration NaCl particles (this layer prevents mixing of the two different particle 

sizes). After doing so, the mould and base are attached to a vibrating table, the 

set was shaken for one minute at 50 Hz and a 0.01 m amplitude. 

After the mould and base were vibrated, the regular steps of the protocol 

(identical to Protocol Y) are followed. The increase in porosity was a 

considerable rise from the 70% of protocol Y, reaching 76% on average. 

Images of samples produced by this protocol are in Figure 6.9. 
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Figure 6.9 - Protocol Z porous metals are made of 99.7% aluminium in an open 

cell configuration with spherical shape preform particles, a pore size average of 

1.55 mm, an average porosity of 76%, measuring 51 mm in diameter and 25.4 

mm in height. 

 

In summary these four protocols were developed to increase the porosity of 

replicated open cell porous aluminium samples, the porosity change overall was 

from 63 to 76% on average with a reduction in infiltration pressure from 3.5 bar 

to 1 bar. In protocols X, Y and Z the addition of the fine NaCl particles provide a 

place for air contained in the space holder while infiltrating and acting as a stop 

for the molten metal as well. In Table 6.5 the characteristics of the protocols are 

summarised. 

Protocol ε (%) 
Infiltration 

NaCl 
Particle 

Size (mm) 

Infiltration 
Pressure 

(bar) 

Fine 
NaCl 

Particle 
Size 
(µm) 

Bottom 
Gasket 

Removal 
Preform 
Vibration 

W 63.5 1.55 3.5 x x x 
W 63.0 1.55 3.5 x x x 
W 63.1 1.55 3.5 x x x 
X 66.3 1.55 3.0 < 400 x x 
X 66.2 1.55 3.0 < 400 x x 
X 66.1 1.55 3.0 < 400 x x 
Y 70.0 1.09 1.0 < 250 9� x 
Y 70.0 1.55 1.0 < 400 9� x 
Y 70.8 2.18 1.0 < 500 9� x 
Z 76.2 1.55 1.0 < 400 9� 9�
Z 75.7 1.55 1.0 < 400 9� 9�
Z 76.6 1.55 1.0 < 400 9� 9�

 

Table 6.5 - Four different infiltration protocols and their characteristics. 

51 mm 
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Protocols Y and Z use a much lower infiltration pressure of 1 bar, while still 

producing a uniform structure. The removal of the graphite gasket at the bottom 

enables a minute flow of air to escape from the infiltration mould, allowing for a 

higher difference in pressure, preventing the compression of the air present in 

the space holder, allowing for a much smoother infiltration. If this process were 

to be done without the fine NaCl particles the aluminium would have been likely 

to be able to escape from the chamber, but the fine NaCl layer is not infiltrated 

at 1 bar, keeping the aluminium inside the mould. 

Frequently, the region of poor infiltration is found at the base of the porous 

metal, likely to be as the molten aluminium has the longest distance to travel to 

reach here. This is the reason why the mould is left in the furnace under 

pressure for a minute after infiltration, before placing it on the copper slab. On 

rare occasions there is also another poorly-infiltrated region found at the top, 

where the top of the preform NaCl meets the molten metal. To avoid influence 

of either of these areas, which may not pre representative of the material as a 

whole the top and bottom parts of the porous metal are removed with a band 

saw after infiltration. 

The mechanical cutting of the sample must be done before leaching the NaCl 

out. If the porous metal is cut after leaching the internal structure will be 

damaged and may create a blockage, preventing a fluid from being able to pass 

through it. If the cuts have to be made after leaching a favourable technique is 

Electro Discharge Machining (EDM) since it is a non-contact cutting method that 

does not load the sample; it is also known as spark erosion. 

After discussing the alternatives of porous metal production by replication, in the 

next section the amount of pressure used to infiltrate is discussed in more 

detail. 

 

6.4. Effect of Infiltration Pressure on the Replicated Porous 
Metals 

Several tests using Protocol X were done to evaluate the effect of the infiltration 

pressure on the porous metals produced. A 3 bar infiltration pressure was used 
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to make samples with a pore size (from the particle size of the NaCl used) of 

1.55 mm on average, obtaining a uniform structure all around and a porosity of 

66%. If the NaCl particle size was increased to 2.18 mm the pressure needed to 

infiltrate and obtain good infiltration with similar density was 2.75 bar. If the 

NaCl particle size was decreased 1.09 mm the infiltration pressure needed for a 

uniform structure rose to 3.25 bar. This means that if the surface area of the 

preform increases (smaller NaCl particles) the liquid metal needs a larger force 

to act upon it to produce infiltration [170]. 

Depending on the method used, the difference between the values of infiltration 

pressure when changing the space holder particle size decreases as the 

infiltration pressure value decreases. In Table 6.6 the pressure applied to 

infiltrate the different preform particle sizes depending on the protocol used are 

shown. 

 

Protocol Particle Size (mm) Infiltration Pressure (bar) 
W 1.09 4.00 
W 1.55 3.50 
W 2.18 3.00 
X 1.09 3.25 
X 1.55 3.00 
X 2.18 2.75 

Y & Z 1.09 - 2.18 1.00 
 

Table 6.6 - Infiltration pressures applied depending on the protocol used. 

 

When using Protocol Y or Z, 1 bar is used for the three preform particle sizes, at 

lower pressures the change in particle size is less significant when considering 

infiltration pressure. 

Using a fixed 1.55 mm NaCl particle size and Protocol X (nominally 3 bar 

infiltration pressure), tests were done varying the pressures to observe the 

effect on the porosity of the produced samples, yielding the results shown in 

Table 6.7. 
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Infiltration Pressure (bar) ε (%) 
2.5 69 
3 67 

3.5 66 
4 65 
5 63 
6 62 
7 61 

 

Table 6.7 - Protocol X infiltration pressure increase test results. 

 

It has to be noted that using a lower infiltration pressure increases the porosity 

of the sample, however, visible structural defects start to appear. When using a 

higher infiltration pressure some of the NaCl particles became enclosed by the 

metal, making the sample impractical for regenerator purposes. In Figure 6.10 

the differences between the surface appearance of samples after infiltration and 

before dissolution of the NaCl are shown. The left image is of a test using an 

infiltration pressure of 1 bar, and it can be seen that the outer surface of the 

preform contains only a few traces of the metal. The middle image is of a test 

using an infiltration pressure of 3 bar, a uniform infiltration. The last image is of 

a test using an infiltration pressure of 7 bar, where few of the NaCl particles are 

visible, being enclosed within the metal. These are surface images, from 

experience it was found that they are representative of the bulk condition as 

well, in the next section, the samples that were produce for this work are 

detailed. 

 

Figure 6.10 - Infiltration pressure effect on porous metals, under (left), correct 

(middle) and over infiltration (right). 

10 mm 
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6.5. Replicated Porous Aluminium Samples Produced for this 
Work 

The argon only method was the infiltration method selected for porous metal 

production after evaluating the other existing techniques in the department. 12 

replicated porous metal samples were made using Protocols Y and Z to test for 

their performance as regenerators, using the argon only protocols newly 

developed for this work, applying low infiltration pressure to obtain the highest 

porosity samples available with these protocols. Their characteristics are in 

Table 6.8. 

Sample 
Preform 

Particle size 
(mm) 

Length 
(mm) ε (%) 

A1 1.09 25.1 69.6 
A2 1.09 25.3 69.9 
A3 1.09 25.6 73.0 
B1 1.55 25.0 69.0 
B2 1.55 26.1 69.2 
B3 1.55 25.2 70.2 
C1 2.18 25.0 69.7 
C2 2.18 23.9 70.8 
C3 2.18 25.6 72.2 
V1 1.55 26.7 76.3 
V2 1.55 25.8 78.0 
V3 1.55 25.2 75.3 

 

Table 6.8 - Measured Characteristics of the replicated porous metal samples. 

 

6.6. Processing Developments Made 

The need to develop porous metals by replication with a consistent uniform 

structure and to obtain higher porosities than the ones available (≈ 63%) with 

the argon only method (called Protocol W) required an exploration of alternative 

techniques. 

One way to obtain higher porosities is to compact or densify the salt bed [196], 

or alternatively to lower the infiltration pressure [149]. The first development 

made was adding the fine NaCl particles at the bottom of the mould to provide a 

refuge space for gas present in between the infiltration NaCl particles. This 
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permitted reducing the infiltration pressure from 3.5 to 3 bar and the porosity of 

the resulting samples increased from 63 to 66%; this development was called 

Protocol X. 

Further into the investigation it was noted that the fine NaCl particles acted as a 

stop for the liquid aluminium preventing it from reaching the bottom of the 

mould, this allowed for the bottom gasket to be removed permitting the air 

located in between the NaCl particles to escape, allowing a further reduction of 

the infiltration pressure from 3 to 1 bar and a porosity increase from 66 to 70%; 

this development was called Protocol Y. 

The final development in the replication process was made with the sole 

purpose of increasing the porosity of the samples, it consisted of vibrating the 

preform for one minute before assembling the mould, this step allows for the 

NaCl particles to achieve higher packing densities than in the previous 

protocols, applying this condition increases the sample porosity from 70 to 76%; 

this development was called Protocol Z. 

In this chapter the developments to the argon only replication process are 

presented, the chapter starts with the explanation of the initial tests done to 

improve the available technique to increase the rate of suitable quality (uniform 

structure) samples produced and the speed at which they can be obtained, 

when these parameters were known (furnace temperature and production cycle 

length). 

The next step was to develop a way to increase the porosity and reduce the 

infiltration pressure while keeping the uniform structure, four protocols were 

created (W, X, Y and Z), where different parameters may be selected, 

depending on the porosity level needed from a replicated porous metal (61 to 

76%), finally the 12 replicated porous metal samples produced for this work 

were made applying the last two protocols only (Y and Z) to have two different 

porosity levels for testing (70 and 76%); following in Chapter 7 the results, 

analysis and discussion of the flow tests. 
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Chapter 7. Flow Tests - Results, Analysis and 
Discussion 

7.1. Replicated Porous Aluminium Samples 

The outcome of the values indicates that the permeability increases 

proportionally to the pore size and the form drag decreases inversely to the 

pore size; however, if the size difference between pores is narrow the random 

structure has a larger effect, which is the reason why in the replicated porous 

metals' case the K and C values are random. 

The sample characteristics and the calculated values for permeability K and 

form drag C for this group are in Table 7.1. In Figure 7.1 the pressure drop 

values for the replicated porous aluminium samples can be seen. 

Sample DR (mm) LR (mm) mR (g) DP (mm) ε (%) K x 10-8 (m2) C x 10-3 (m-1) 
A1 51.0 25.1 42.22 1.09 69.6 1.40 10.0 
A2 50.8 25.3 41.71 1.09 69.9 3.80 10.0 
A3 50.9 25.6 38.02 1.09 73.0 0.48 8.7 
B1 50.9 25.0 42.53 1.55 69.0 2.80 10.1 
B2 50.8 26.1 44.03 1.55 69.2 3.70 10.0 
B3 50.9 25.2 41.29 1.55 70.2 0.70 14.0 
C1 51.0 25.0 41.66 2.18 69.7 1.70 8.9 
C2 51.1 23.9 38.79 2.18 70.8 2.80 12.0 
C3 50.9 25.6 38.95 2.18 72.2 1.26 12.0 
V1 50.4 26.7 34.10 1.55 76.3 1.80 2.7 
V2 50.7 25.8 30.96 1.55 78.0 1.50 2.4 
V3 50.7 25.2 33.89 1.55 75.3 2.50 2.2 

 

Table 7.1 - Sample characteristics, permeability and form drag values for the 

replicated porous metals. 
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Figure 7.1 - Replicated porous metals' linear pressure drop against superficial 

velocity. 

The group of porous metals with the lowest pressure drop is the one containing 

the vibrated samples (V). These have a considerably higher porosity on 

average by 9%, when compared to the non vibrated samples (A, B and C). The 

effect is evident in the form drag values as well. 

For the non vibrated samples with different pore size, the difference between 

the pressure drop, permeability and form drag values does not appear to be 

systematic with these variables. This is caused by variation in several factors; 

the empty space within the sample, the location, form, surface and size of the 

particles composing the space holder. Sample B3 is an example of the 

irregularity in the flow properties that may occur in these porous metals. 

In a series of experiments it was demonstrated previously that for a group of 

particles these previous characteristics may affect the result by 20 to 30% due 

to the effect of random packing when compared to a tight packing [105]. For 

example a perfectly packed space holder of 50 mm in height could be increased 

between 60 mm and 65 mm at random packing. 

The tightness of fit for the space holder is also likely to be affected by the 

friction of the particles between themselves and the container, their density, the 

size proportion of the particles to the container and other factors that were 

outside the scope of this research. Next are the pressure drop results for the 

wire mesh samples are presented. 
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7.2. Wire Mesh Samples 

The sample characteristics and the calculated values for permeability K and 

form drag C for this group are in Table 7.2. In Figure 7.2a the pressure drop 

values for the wire mesh samples can be seen. An additional graph is present in 

Figure 7.2b, the "Y" axis is in the logarithmic base 10 scale to better discern the 

samples' pressure drop behaviour. 

Sample DR (mm) LR (mm) mR (g) DP (mm) ε (%) K x 10-8 
(m2) 

C x 10-3 
(m-1) 

10 Mesh 10 51 9 29.00 2.000 81 1.5000 0.70 
10 Mesh 20 51 18 57.33 2.000 81 1.6700 0.79 
10 Mesh 30 51 24 86.09 2.000 78 1.5000 1.00 
10 Mesh 40 51 33 115.32 2.000 78 1.5200 0.94 

20 Mesh 51 26 110.35 1.000 75 0.5300 1.90 
30 Mesh 51 26 115.20 0.500 73 0.2660 3.00 
200 Mesh 51 12 50.49 0.075 75 0.0216 15.00 

 

Table 7.2 - Sample characteristics, permeability and form drag values for the 

wire mesh samples. 

 

 

Figure 7.2a - Wire meshes' linear pressure drop against superficial velocity. 
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Figure 7.2b - Wire meshes' linear pressure drop (log scale) against superficial 

velocity. 

From these charts the sample that creates the highest pressure drop is the 200 

Mesh, which has the smallest pore size, 30 times smaller than the 10 Mesh 

samples and a form drag 15 times higher. 

Between the 10 Mesh samples the variation in permeability and form drag is 

due to the random positioning of the mesh layers, for example considering the 

10 Mesh 30 vs. 10 Mesh 40, more layers means more obstruction for the air to 

pass through, however, the random arrangement causes the form drag to be 

0.94 for the 10 Mesh 40 but 1.00 for the 10 Mesh 30 when, logically, it should 

be the other way around. This indicates the level to which the random 

arrangements of the porous metal structure can affect the results in these tests. 

From these samples it is clear that by reducing the pore size the permeability 

diminishes and the form drag increases. In the following section the pressure 

drop results for the wire felt samples are presented. 
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7.3. Wire Felt Samples 

The sample characteristics and the calculated values for permeability K and 

form drag C for this group are in Table 7.3. In Figure 7.3 the pressure drop 

values for the wire felt samples can be seen. 

Sample DR (mm) LR (mm) mR (g) ε (%) K x 10-8 (m2) C x 10-3 (m-1) 
Al Felt 51 24 40.21 69 0.190 4.3 
Cu Felt 51 24 132.71 70 0.182 4.1 

SS304L Felt 51 25 121.83 70 0.190 4.0 
 

Table 7.3 - Sample characteristics, permeability and form drag values for the 

wire felt samples. 

 

Figure 7.3 - Wire felts' linear pressure drop against superficial velocity. 

From the graph it can be determined that the pressure drop difference between 

the samples is around 10%. The lowest pressure drop was produced by the 

stainless steel felt and the highest by the aluminium felt. The permeability value 

for the aluminium felt is slightly higher than the others, however the difference 

falls within the expected margin of error of the measurements. In the following 

section the pressure drop results for the packed spheres samples are 

presented. 
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7.4. Packed Spheres Samples 

The sample characteristics and the calculated values for permeability K and 

form drag C for this group are in Table 7.4. In Figure 7.4 the pressure drop 

values for the packed spheres samples can be seen. 

Sample DR (mm) LR (mm) mR (g) DP (mm) NSph ε (%) 
K x 
10-8 
(m2) 

C x 
10-3 
(m-1) 

Al Sph 51 30 94.40 2.03 7700 42 0.27 11.0 
Cr Steel 

Sph 51 27 265.28 1.99 8100 39 0.42 10.4 

Cu Sph 51 30 311.94 2.03 7900 43 0.52 12.6 
Soda Glass 

Sph 51 30 95.05 2.00 8100 38 0.22 13.8 

SS420 Sph 51 29 271.42 2.00 8400 40 0.48 12.0 
 

Table 7.4 - Sample characteristics, permeability and form drag values for the 

packed spheres samples. 

 

Figure 7.4 - Packed spheres' linear pressure drop against superficial velocity. 

The chart shows that the soda glass spheres sample produces the highest 

pressure drop, approximately 30% higher than the chrome steel spheres, they 

also have the highest form drag and the lowest permeability value; this could be 

due to the soda glass's tighter packing. In the following section the pressure 

drop results for the SLM produced porous samples are presented. 
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7.5. SLM SS316L Porous Samples 

The sample characteristics and the calculated values for permeability K and 

form drag C for this group are in Table 7.5. In Figure 7.5 the pressure drop 

values for the SS316L porous samples can be seen.  

Sample DR (mm) LR (mm) mR (g) DP (mm) ε (%) K x 10-8 
(m2) 

C x 10-3 
(m-1) 

SS316L (1) 51.1 25.6 159.94 3.9 61.8 2.0 2.20 
SS316L (2) 51.0 25.5 142.24 3.9 65.7 2.7 1.47 
SS316L (3) 50.8 25.3 116.41 3.9 71.5 3.7 1.08 
SS316L (4) 51.0 25.3 93.32 3.9 77.3 3.9 0.68 
SS316L (5) 51.0 25.2 73.72 3.9 82.0 3.8 0.45 

 

Table 7.5 - Sample characteristics, permeability and form drag values for the 

SLM SS316L porous samples. 

 

Figure 7.5 - SLM SS316L porous samples' linear pressure drop against 

superficial velocity. 

This chart demonstrates that sample SS316L (1) with the highest pressure drop 

has the lowest porosity of 62%, on average 3.5 times higher than SS316L (5), 

the form drag follows this pattern as well. In the permeability values the 

discrepancy is between samples SS316L (4) and SS316L (5) which 

theoretically their values should be higher for SS316L (5) and lower than 

SS316L (4), however, it falls within experimental error. In the following section 

the pressure drop results for the EBM produced porous samples are presented. 
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7.6. EBM Ti6Al4V Porous Samples 

The sample characteristics and the calculated values for permeability K and 

form drag C for this group are in Table 7.6. In Figure 7.6 the pressure drop 

values for the EBM Ti6Al4V porous samples can be seen. 

Sample DR (mm) LR (mm) mR (g) DP (mm) ε (%) K x 10-8 
(m2) 

C x 10-3 
(m-1) 

Ti6Al4V (1) 51.5 25.6 74.16 3.9 66.4 2.0 1.96 
Ti6Al4V (2) 51.3 25.6 67.64 3.9 70.9 2.6 1.37 
Ti6Al4V (3) 51.0 25.4 56.31 3.9 75.3 3.1 0.90 
Ti6Al4V (4) 51.2 25.4 43.08 3.9 81.3 3.7 0.55 
Ti6Al4V (5) 51.0 25.4 39.89 3.9 82.5 3.8 0.42 

 

Table 7.6 - Sample characteristics, permeability and form drag values for the 

EBM Ti6Al4V porous metal samples. 

 

Figure 7.6 - EBM Ti6Al4V porous samples' linear pressure drop against 

superficial velocity. 

The titanium alloy samples produced have a similar behaviour to the porous 

stainless steel samples with the ranges of pressure drop, permeability and form 
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7.7. Pore Size Change Effect on Flow Through Porous 
Structures 

In a porous metal the effect that the pore size has on pressure drop (Table and 

Figure 7.7) can be seen clearly in the wire mesh sample group while keeping a 

similar structure and material. 

Sample Pore Size (mm) ΔP/LRvD (kPa s/m2) 
10 Mesh 10 2.000 3.43 
10 Mesh 20 2.000 3.55 
10 Mesh 40 2.000 4.06 

20 Mesh 1.000 9.27 
30 Mesh 0.500 16.13 
200 Mesh 0.075 130.73 

 

Table 7.7 - Pore size effect on pressure drop on the wire mesh samples at 2.55 

m/s. 

 

Figure 7.7 - Pore size effect on pressure drop of the wire mesh samples at 2.55 

m/s. 
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From Table 7.7 it can be seen that the pressure drop increases steadily with the 

reduction of pore size. In Figure 7.2 the pore size effect can be seen for all 

velocities. 

With layer quantity the pressure drop increases slightly, from 10 to 20 layers the 

increase is 3.5%, from 20 to 40 layers the increase is 14.4%; however, when 

the pore size is halved (20 Mesh) the increase in pressure drop is 122%, much 

more significant. If the pore size is halved again (30 Mesh) the pressure drop 

increases another 74%. The difference between 3.5% - 14% and 122% - 74% is 

due to the random positioning of the mesh sheets. An empirical correlation 

relating pore size and pressure drop using these four points for the wire mesh 

samples would be: 

 

 
  
   

            
          

      
  

  Eq. 7.1 

 

This equation indicates that, within the range of mesh pore sizes tested, there is 

possibly an inverse proportionality between pore diameter and normalised 

pressure drop. 

When comparing 30 Mesh to 200 Mesh the pore size difference has a factor of 

6.67, the pressure drop difference has a factor of 8.1. With this information it 

can be established that the relationship between pore size and pressure drop is 

of a higher order than a linear behaviour. 

 

7.8. Porosity Change Effect on Flow Through Porous Structures 

In a porous metal the effect that the porosity has on pressure drop (Table and 

Figure 7.8) can be seen clearly in the SLM SS316L sample group while keeping 

a similar structure and material. 
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Sample ε (%) ΔP/LRvD (kPa s/m2) 
SS316L (1) 61.8 7.47 
SS316L (2) 65.7 5.10 
SS316L (3) 71.5 3.72 
SS316L (4) 77.3 2.56 
SS316L (5) 82.0 1.84 

 

Table 7.8 - Porosity effect on pressure drop on the SLM SS316L samples at 

2.55 m/s. 

 

Figure 7.8 - Porosity effect on pressure drop for the SLM SS316L samples at 

2.55 m/s. 
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increases. An empirical correlation relating porosity and pressure drop using 

these five points for the SLM SS316L samples would be: 

 
  
   

                Eq. 7.2 

 

When comparing both equations (Mesh Eq. 7.1 vs. ALM sample Eq. 7.2), the 

fact that they are a completely different fit shows evidence that the relationship 

between the mesh structure and the ALM structure to pressure drop does not 

behave in the same way. 

 

7.9. Permeability Data Comparison 

In Figure 7.9 the comparison between the replicated samples with results 

provided by Despois and Mortensen and Fourie and Du Plessis is shown. In this 

graph [7] the evolution of the permeability (K) normalized by the square of the 

pore size (DP2) in function of the regenerator density (ρR) can be seen. 

 

Figure 7.9 - Replicated porous metal density vs. normalised permeability. 
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The difference between the two equations [7] represented by the straight and 

segmented lines is that in the Despois and Mortensen equation the effect of the 

pores being closed off is considered. The difference between Despois and our 

production process is that Despois uses an increase in the infiltration pressure 

to change the density and in our process the particles are rearranged keeping 

the same infiltration pressure. 

The location of the four samples in the upper right corner of the graph (A1, A2, 

B1, B2) is due to the variations in the structure that cannot be perfectly 

controlled by this infiltration process, such as strut thickness or window size. For 

regenerator purposes these four perform better than the rest, having a higher 

permeability value, allowing the fluid to pass through them with less energy. The 

samples from the Furman equation are infiltrated at different pressures while 

maintaining a porosity of about 60%. 

In Figure 7.10 and Figure 7.11 a comparison between porosity, pore size and 

permeability can be seen. The range of porosities for the Bhattacharya and Du 

Plessis samples ranges from 0.899 to 0.972 and from 0.973 to 0.978 

respectively, the permeability values changes greatly in the Du Plessis batch 

due to the pore size of their samples (250 µm, 400 µm and 600 µm). 

In Figure 7.10 there is a slight trend in which by increasing the porosity the 

permeability increases and in the second graph the trend is more noticeable, 

this indicates that the pore size has a larger impact in the regenerator's 

permeability than the porosity. The uncertainty analysis is explained in 

Appendix 3. 
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Figure 7.10 - Permeability comparison, Porosity vs. Permeability. 

 

Figure 7.11 - Permeability comparison, Pore size vs. Permeability. 
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It is clear that the porosity and pore size have a substantial effect on pressure 

drop agreeing with the work of Dukhan [102] in which  8 different samples are 

tested, 4 of a high porosity value (91.5 to 92.4%) and 4 of a low porosity value 

(67.9 to 79.4%), and two different pore sizes. The study considers the reciprocal 

of the permeability value against the first surface area based parameter and 

considering the Ergun parameter: 

  
   

         
 

   Eq. 7.3 

giving values that well agree with the power equation of the curve for all the 

samples in this work, agreeing with previous researchers: 

                 Eq. 7.4 

 

 

 

 

 

With the flow tests on the regenerator samples it can be clearly seen that the 

pressure drop through them increases as the pore size (by consequence 

window size) decreases as shown in the work done by Despois in which to 

calculate the pressure drop in the replicated porous aluminium samples the 

diameter of the window or "bottlenecks" is inversely proportional to the value [7]. 

For the porosity it is a similar case, the pressure drop is affected by the level of 

porosity in the sample, if the porosity increases the air flow passing through it 

has less obstruction in its path, generating a lower pressure drop, such effect 

has been investigated by other researchers as well [96], [107], [204]; the work 

done by Dietrich relates the porosity of the sponge as inversely proportional to 

the pressure drop, an effect that is seen in the samples of this work.  

In this chapter the results for flow tests on the porous metal samples are 

presented, each section contains the experimental data given by the test rig and 

analysed in the terms which are of interest for the regenerator application, this 

being the amount of pressure drop produced by the sample at a certain velocity, 

next was to analyse the effect of pore size and porosity on pressure drop, 

concluding with a permeability comparison with several models available in the 

literature by different authors; following in Chapter 8 the determination and 

analysis of the number of transfer units NTUR and heat transfer coefficient h for 

all samples will be made. 
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Chapter 8. Heat Transfer Tests - Results, Analysis and 
Discussion 

8.1. NTUR Values of Each Structure Group of Porous Metals 

8.1.1. Replicated Porous Aluminium Samples 

In Figure 8.1 the NTUR values obtained for the porous aluminium samples at six 

different flow rates are shown; as mentioned in section 4.1 the Reynolds 

number was obtained for the flow in each sample using Eq. 4.12, the 

characteristic length considered was the average pore size for each sample 

[157], [171]. 

 
Figure 8.1 - NTUR values for the replicated porous metal samples. 

Out of the replicated porous metal samples the group with the highest NTUR 

value was that shown in blue in the figure, those having the smallest average 

pore size of 1.09 mm; they were followed by the group shown in yellow with a 

1.55 mm pore size and last those shown in green with the pore size of 2.18 mm. 

The group shown in red was composed by the vibrated samples having a pore 

size of 1.55 mm as well but made with a higher porosity of around 76% 

compared to 70% for the other three groups. The vibrated samples have a 

lower NTUR than the samples from the yellow group having the same pore size 

with only a 22% loss in NTUR. 
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8.1.2. Wire Mesh Samples 

In Figure 8.2a the NTUR values obtained for the wire mesh samples at six 

different flow rates are shown; the characteristic length used was the hydraulic 

diameter DH calculated with Eq. 8.1 [94] and the Reynolds number was obtained 

for the flow in each sample using Eq. 8.2 [94]. An additional graph is present in 

Figure 8.2b, the "Y" axis is in the logarithmic base 10 scale to better discern the 

samples' NTUR values. 

 

    
    

       Eq. 8.1 

 

    
        

  
ṁ     

    
 Eq. 8.2 

 

where DW is the wire diameter of the mesh, Φ is the shape factor which for a 

wire screen is 4 [115], ρAir is the density of the air and    is the superficial 

velocity of the air. 

 

Figure 8.2a - NTUR values for the wire mesh samples. 
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Figure 8.2b - NTUR values (log scale) for the wire mesh samples. 

 

Out of the wire net samples the one with the highest NTUR value was the 200 

Mesh, having the smallest pore size and highest surface area, this mesh 

number is in fact commonly used as a regenerator [94]. It was followed by the 

other meshes (in decreasing order 30, 20 and 10). 

The group shown in the figure in blue was composed by 10 Mesh with different 

numbers of layers, their change over a wide range of Reynolds numbers is 

limited and the actual values are small when compared to other nets. 
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8.1.3. Wire Felt Samples 

In Figure 8.3 the NTUR values obtained for the felt samples at six different flow 

rates are shown; the characteristic length used was the hydraulic diameter 

calculated with Eq. 8.1 and the Reynolds number was obtained for the flow in 

each sample using Eq. 8.2. 

 

 

Figure 8.3 - NTUR values for the wire felt samples. 

 

These samples show the best type of material to be used as a regenerator. The 

stainless steel sample has the highest number of transfer units, which is likely to 

be the main reason why it is one of the most common materials used in 

regenerator applications, in comparison the copper and aluminium felts did not 

perform as well. 
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8.1.4. Packed Spheres Samples 

In Figure 8.4 the NTUR values obtained for the packed spheres samples at six 

different flow rates are shown. The Reynolds number was obtained for the flow 

in each sample using Eq. 8.1, the characteristic length considered was the 

sphere diameter for each sample [157], [172]. 

 

 

Figure 8.4 - NTUR values for the packed spheres samples. 

 

As with the felt samples, the packed spheres show the behaviour of the different 

materials used, allowing them to be compared for an equivalent structure in a 

way that is not possible for porous metals, because of the specific nature of 

different processing methods to different materials. The stainless steel sample 

again has the highest NTUR values among the others, chrome steel and copper 

performed very similar, soda glass is the worst performing one of the group. 
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8.1.5. SLM SS316L Porous Samples 

In Figure 8.5 the NTUR values obtained for the stainless steel porous samples 

made through selective laser melting are shown. Since the pore size is 

considerably larger than the replicated porous metals (3.9 mm as opposed to 

1.09 mm - 2.18 mm) the NTUR values are much lower. The Reynolds number 

was obtained for the flow in each sample using Eq. 4.12, the characteristic 

length considered was the pore diameter. 

 

 

Figure 8.5 - NTUR values for the SLM SS316L porous samples. 
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having the lowest porosity of the group (61.8%), by consequence the highest 
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rates which is a desirable quality, however, their NTUR values are low compared 

to other porous material types. 
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8.1.6. EBM Ti6Al4V Porous Samples 

In Figure 8.6 the NTUR values obtained for the Ti6Al4V porous samples made 

through Electron Beam Melting are shown. As for the previous stainless steel 

porous samples the pore size is considerably larger than the replicated porous 

metals (3.9 mm as compared to 1.09 mm - 2.18 mm), by consequence, the 

NTUR values are lower. While it should be remembered that smaller pore size 

structures are possible with such methods, the intention here is to create 

samples where the effect of density can be examined systematically, so these 

are not realistic candidates for applications. The Reynolds number was 

obtained for the flow in each sample using Eq. 4.12, the characteristic length 

considered was the pore size diameter. 

 

 

Figure 8.6 - NTUR values for the EBM Ti6Al4V porous samples. 

 

This group of Ti6Al4V porous samples has a strong similarity with the previous 

batch; since the CAD design is very similar; the sample with the highest mass 

and lowest porosity has the highest NTUR values Ti6Al4V (1). In the following 

section the heat transfer coefficient h results for all porous metal samples are 

presented. 
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8.2. h Values of Each Structure Group of Porous Metals 

After knowing the number of transfer units within each sample the heat transfer 

coefficient (h) may be obtained using Eq. 8.3. 

 

   
    ṁ       

   
 Eq. 8.3 

 

For the replicated porous aluminium samples the calculation of the heat transfer 

area (AHT) is done using Eq. 8.4 [173], it equals the product of the regenerator's 

volume (VR), calculated using sample measurements, by the specific surface 

area (ASp). 

 

           Eq. 8.4 

 

For the calculation of the specific surface area (ASp) Eq. 8.5 is used [174]. 

 

     
  
  

 Eq. 8.5 

 

This equation is derived from the one used to calculate the specific surface area 

of the packed spheres samples, the difference is that for the porous metals the 

equation includes the term "ε" instead of "1- ε", reason for this is that the pore 

space is in place of the solid sphere. 
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8.2.1. Replicated Porous Aluminium Samples 

In Figure 8.7 the h values obtained for the replicated porous aluminium samples 

at six different flow rates are shown. 

 

 

 

Figure 8.7 - h values for the replicated porous aluminium samples. 

 

It can be noted that the group shown in green (samples with a 2.18 mm pore 

diameter) have the highest values of heat transfer coefficient, especially sample 

C1. However to achieve this value the Reynolds number is approximately 

double the value of the A2 sample. In this case A2 achieves 70% of the h value 

compared to the C1 sample at half the Reynolds number, making it a more 

efficient regenerator. 
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8.2.2. Wire Mesh Samples 

For the wire meshes the calculation of the heat transfer area (AHT) is done using 

Eq. 8.6 [115], it includes the net wire diameter (DW): 

 

     
        

  
 Eq. 8.6 

 

In Figure 8.8 the h values obtained for the mesh samples at six different flow 

rates are shown; the Reynolds number was obtained for the flow in each 

sample using Eq. 8.2, the characteristic length considered was the hydraulic 

diameter. 

 

Figure 8.8 - h values for the wire mesh samples. 

 

In this batch of samples the best performing one was the 200 mesh, considering 

only heat transfer coefficient, ideally it would be best if the Reynolds number 

was higher; the other samples have lower h values at higher Reynolds 

numbers. 
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8.2.3. Wire Felt Samples 

For the wire felts the calculation of the heat transfer area (AHT) is done using Eq. 

8.6. 

In Figure 8.9 the h values obtained for the felt samples at six different flow rates 

are shown; the Reynolds number was obtained for the flow in each sample 

using Eq. 8.2, the characteristic length considered was the hydraulic diameter. 

 

 

Figure 8.9 - h values for the wire felt samples. 

 

For the wire felts the best performing sample was the stainless steel felt. Their 

structure also provides for high heat transfer coefficients at relatively low 

Reynolds numbers, making them a viable option as regenerators. 
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8.2.4. Packed Spheres Samples 

For the packed spheres samples the calculation of the heat transfer area (AHT) 

is done using Eq. 8.7 [175]. 

          
               Eq. 8.7 

This equation is to calculate the surface area of a sphere (π    
 ) and then 

multiplied by the total number of spheres (NSph) that form the packed bed. The 

characteristic length used is the sphere diameter. For the calculation of the 

specific surface area (ASp) Eq. 8.8 [174]. 

     
      

  
 Eq. 8.8 

In Figure 8.10 the h values obtained for the packed spheres samples at six 

different flow rates are shown; the Reynolds number was obtained for the flow 

in each sample using Eq. 4.12, the characteristic length considered was the 

sphere diameter for each sample. 

 

Figure 8.10 - h values for the packed spheres samples. 
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8.2.5. SLM SS316L Porous Samples 

For the SLM stainless steel porous samples the calculation of the heat transfer 

area (AHT) is done using Eq. 8.4. 

In Figure 8.11 the h values obtained for the stainless steel porous samples at 

six different flow rates are shown; the Reynolds number was obtained for the 

flow in each sample using Eq. 4.12, the characteristic length considered was 

the pore size of each sample. 

 

 

Figure 8.11 - h values for the SLM SS316L porous samples. 

 

The best performing sample out of this group is the SS316L (1) due to its higher 

mass, capturing more heat than the others. For the rest of the samples as the 

porosity increases the heat transfer coefficient decreases. 

 

 

95 

145 

195 

245 

295 

345 

700 900 1100 1300 1500 1700 1900 2100 2300 

h 
(W

/m
2  K

)  

Re 

0.62 0.66 0.72 0.77 0.82 



178 
 

8.2.6. EBM Ti6Al4V Porous Samples 

For the EBM Ti6Al4V porous samples the calculation of the heat transfer area 

(AHT) is done using Eq. 8.4. 

In Figure 8.12 the h values obtained for the EBM Ti6Al4V porous samples at six 

different flow rates are shown; the Reynolds number was obtained for the flow 

in each sample using Eq. 4.12, the characteristic length considered was the 

pore size of each sample. 

 

 

Figure 8.12 - h values for the EBM Ti6Al4Vporous samples. 

 

As with the stainless steel porous samples the best performing one out of this 

group is the Ti6Al4V (1) due to its higher mass, as mentioned before, the CAD 

design for these two groups is very similar, it can be seen that the difference 

between the first sample and the rest of the group is comparable in both figures. 
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8.3. Pore Size Change Effect on the Heat Transfer Coefficient 

In a porous metal the effect that the pore size has on the heat transfer 

coefficient (Table 8.1 and Figure 8.13) can be seen clearly in the wire mesh 

sample group while keeping a similar structure and material. 

 

Sample Pore Size (mm) h (W/m2K) 
10 Mesh 10 2.000 390 
10 Mesh 20 2.000 394 
10 Mesh 40 2.000 391 

20 Mesh 1.000 494 
30 Mesh 0.500 509 
200 Mesh 0.075 1103 

 

Table 8.1 - Pore size effect on heat transfer coefficient of the wire mesh 

samples at 2.55 m/s. 

 

Figure 8.13 - Pore size effect on heat transfer coefficient of the wire mesh 

samples at 2.55 m/s. 
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An empirical correlation relating pore size and heat transfer coefficient using 

these four points for the wire mesh samples would be: 

 

             
       Eq. 8.9 

 

From Table 8.1 it can be seen that the heat transfer coefficient increases 

steadily with the reduction of pore size, from Figure 8.14 the similar trends of 

the velocity against heat transfer coefficient can be seen, if another velocity is 

chosen similar results are produced.  

 

 

Figure 8.14 - Pore size effect on heat transfer coefficient for the wire mesh 

samples at different velocities. 
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the heat transfer coefficient with Eq. 8.3 these two values cancel each other out, 

leaving the same value for h. 

When the pore size is halved (20 Mesh) the increase in the heat transfer 

coefficient is 26% on average. When comparing 30 Mesh to 200 Mesh the pore 

size difference has a factor of 6.67, the heat transfer coefficient difference has a 

factor of 2.17.  

8.4. Porosity Change Effect on the Heat Transfer Coefficient 

In a porous metal the effect that the porosity has heat transfer coefficient (Table 

8.2 and Figure 8.15) can be seen clearly in the SLM SS316L sample group 

while keeping a similar structure and material. 

Sample ε (%) h (W/m2K) 
SS316L (1) 61.8 190 
SS316L (2) 65.7 151 
SS316L (3) 71.5 136 
SS316L (4) 77.3 115 
SS316L (5) 82.0 96 

 

Table 8.2 - Porosity effect heat transfer coefficient on the SLM SS316L samples 

at 2.55 m/s. 

 

Figure 8.15 - Porosity effect on heat transfer coefficient for the SLM SS316L 

samples at 2.55 m/s. 
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An empirical correlation relating porosity and heat transfer coefficient using 

these five points for the SLM SS316L samples would be: 

 

                   Eq. 8.10 

 

When comparing both sets of equations (Mesh Eq. 8.9 vs. ALM sample 

Eq.8.10), the fact that they are a completely different fit shows evidence that the 

relationship between the mesh structure and the replicated structure to heat 

transfer coefficient does not behave in the same way. In Figure 8.16 the 

porosity effect can be seen for all velocities. 

 

Figure 8.16 - Porosity effect on heat transfer coefficient for the SLM SS316L 

samples at different velocities. 
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8.5. Material Change Effect on the Heat Transfer Coefficient 

In a porous structure the effect that the material has on the heat transfer 

coefficient (Table 8.3 and Figure 8.17) can be seen in the packed spheres 

sample group while keeping a similar structure, porosity range and longitudinal 

thermal conductivity close to 0, due to the lack of contact between the spheres. 

Sample Material Q/V=cRρR(1-ε) (kJ/m3K) h (W/m2K) 
Al Sph Aluminium 1413 260 

Cr Steel Sph Chrome Steel 2292 317 
Cu Sph Copper 1980 291 

Glass Sph Glass 1298 228 
SS420 Sph Stainless Steel 420 2137 332 
Ni-Ti45 Sph Nitinol ≈ 3254 ≈ 414 

 

Table 8.3 - Material effect on heat transfer coefficient on the packed spheres 

samples at 2.55 m/s. 

 

 

 

Figure 8.17 - Material effect on heat transfer coefficients of the packed spheres 

samples at 2.55 m/s. 
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From Table 8.3 it can be seen that the heat transfer coefficients follow a trend 

when multiplying the specific heat of the material times the density of the 

material times the solid volume fraction, this is known as the volumetric heat 

capacity or energy density. 

In a comparison for example, the specific heat of the aluminium is the highest of 

the group at 0.90 kJ/kg K, the stainless steel 420 has a value of 0.46 kJ/kg K, 

approximately half of the aluminium. The density of aluminium is approximately 

a third of the stainless steel 420 (2700 kg/m3 vs. 7750 kg/m3). An empirical 

correlation relating the volumetric heat capacity to the heat transfer coefficient 

considering these five materials would be: 

 

                            Eq. 8.11 

 

From section 3.4, materials that theoretically would perform good as a 

regenerator in this case would be nickel and copper alloys, having high 

volumetric heat capacity values. For example, Nitinol (Ni-45Ti) is a nickel - 

titanium alloy with a density of 6475 kg/m3 and a heat capacity of 0.838 kJ/kg K 

[180]; if considered a possible material to create a packed spheres sample and 

a porosity of 0.4 it would have a volumetric heat capacity of 3254 kJ/m3 K and a 

heat transfer coefficient of 414 W/m2 K on average, if fitted with Eq. 8.11. 

If the material's density and specific heat increase, the heat transfer coefficient 

increases as well, these are two characteristics that are favoured among 

regenerators; in general terms by choosing a material with a high density and 

considerable specific heat value one may design a more efficient regenerator, 

as mentioned in Chapters 1 and 3. 
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8.6. Thermal Conductivity Change Effect on the Heat Transfer 
Coefficient 

In a regenerator the effect of the longitudinal thermal conductivity is considered. 

In Table 8.4 and Figure 8.18 the samples' characteristics can be seen, these 

are made from the same material and have very similar porosities. 

Sample kR (W/mK) Q=cRmRΔT (kJ) AHT (m2) h (W/m2K) 
Al Felt 6.51 0.036 0.23 261 
A2 Rep 25.71 0.038 0.20 243 
Al Sph 0.1 0.085 0.10 260 

 

Table 8.4 - Thermal conductivity effect on the heat transfer coefficients of the 

aluminium samples at 2.55 m/s. 

 

Figure 8.18 - Thermal conductivity effect on the heat transfer coefficients of the 

aluminium samples. 

 

From Figure 8.18 it can be seen that the results do not show an obvious trend 
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8.7. Structure Change Effect on the Heat Transfer Coefficient 

In a porous material the effect that the change in the structure provokes can be 

seen in Table 8.5 and Figure 8.19, four different structures (mesh, felt, packed 

spheres and replicated) made from different grades of stainless steels are 

compared and analysed. 

 

Sample cM (J/kg K) ρM (kg/cm3) AHT (m2) h (W/m2K) 
(SS304L) 30 Mesh 500 8030 0.205 509 

SS304L Felt 500 8030 0.233 571 
SS420 Sph 460 7740 0.105 332 
SS316L (1) 500 7990 0.055 190 

 

Table 8.5 - Structure change effect on the heat transfer coefficients of the 

stainless steel samples at 2.55 m/s. 

 

Figure 8.19 - Structure effect on the heat transfer coefficients of the stainless 

steel samples at 2.55 m/s. 
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area, it is followed by the 30 mesh; both these samples are made from wires 

showing similar behaviour in heat transfer situations. 

The packed spheres sample has a high heat transfer coefficient because of its 

high mass, but it does not allow the air to pass as freely as the other samples., 

offering poorer performance. The ALM sample has the lowest heat transfer 

coefficient due to the lowest heat transfer area, this is caused by the large pore 

size of the sample, 3.9 mm. An empirical correlation relating the heat transfer 

area to the heat transfer coefficient considering these four samples would be: 

                       Eq. 8.12 

 

In general terms the wire made samples due to their higher heat transfer area 

are the best choice as regenerators in this case, it could be possible for a 

replicated porous metal to challenge the wire made samples if a smaller pore 

size is used, at the moment this type of sample has not been produced. 

8.8. ALM (SLM vs. EBM) Porous Samples' h Comparison 

In Figure 8.20 the comparison between the ALM samples made from two 

different materials can be seen. 

 

Figure 8.20 - Additive Layer Manufactured samples' h comparison. 
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In this graph when considering the heat transfer coefficients of both these sets 

of samples it can be noted that they are very similar, most falling between the 

acceptable error value. These samples were produced using the same CAD file, 

however, the manufacturing processes are different, SLM for the stainless steel 

samples and EBM for the Ti6Al4V samples. 

In the SLM process the sample needs supports to hold its weight while being 

built, reason why the porosity of these is lower than the EBM made samples. A 

possible reason of why the EBM samples has similar h values throughout 

except in 4 points where it is higher may be due to the longitudinal thermal 

conductivity value, which is lower (6.7 W/mK) when compared to the stainless 

steel samples (16.2 W/mK). 

 

8.9. General Performance of the Different Materials 

It is clear that the heat transfer coefficient is affected by parameters such as the 

porosity and the pore size, as was shown in the work from Tong and London 

[125] and Kays and London [93] where the Stanton times the Prandtl number 

elevated to the 2/3 power were used; in Kays and London's work they propose 

a correlation applied to wire screens using 6 different porosities, from a range of 

0.602 to 0.832 at different Reynolds numbers, showing that the heat transfer 

coefficient increases as the porosity decreases, the same occurs in Tong and 

London's work applied to a packed bed of lead spheres with a porosity value of 

0.39, in both cases the heat transfer coefficient increases proportionally with the 

Reynolds number, as shown in Barari's work as well [120], confirming the 

samples' behaviour is consistent with that seen by other researchers. 

With the heat transfer tests on the regenerator samples it can be clearly seen 

that the heat transfer coefficient increases when decreasing pore size, when 

decreasing pore size the area of heat transfer increases, allowing more heat to 

be captured by the sample as expected from the work done by Walker [19] in 

which he states that a more efficient regenerator needs a larger heat transfer 

area. 

This effect can be seen for the porosity too, if the solid volume fraction 

increases there is more material present to capture more energy, this effect can 
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be seen in the work done by Lu [205] on Duocel porous aluminium, by reducing 

sample porosity (higher material density) the heat transfer coefficient increases. 

The effect of the thermal conductivity through the samples is not significant, the 

extraction of heat away from the surface is not the rate limiting behaviour, from 

Figure 8.19, the heat transfer coefficient is directly dependent on the heat 

transfer area, the most significant transfer of heat is from the air to the available 

area, if the value is large more heat is transferred, by the proposed equation in 

this graph the behaviour observed is of the linear nature. 

In Table 8.6 the assessment of the performance of the different materials and 

structures against the baseline 200 Mesh regenerator sample is shown, the 

table lists the requirements for a regenerator from Table 1.1. In this assessment 

there is a number assigned from 1 to 10, in which 1 means very low 

performance and 10 means exceptionally good performance. 

 

 High cR High ρ High ε Low ε High AHT Low k Total Marks 
SS304L 200 

Mesh 6 9 8 2 10 9 44 

Rep Al 10 3 7 3 4 2 29 
Rep Al (Vib) 10 3 8 2 3 2 28 
SS304L 10 

Mesh 6 9 8 2 2 9 36 

SS304L 20 
Mesh 6 9 8 2 3 9 37 

SS304L 30 
Mesh 6 9 8 2 4 9 38 

Al Felt 10 3 7 3 5 2 30 
Cu Felt 4 10 7 3 5 1 30 

SS304L Felt 6 9 7 3 5 9 39 

Al Sph 10 3 4 6 2 2 27 

Cu Sph 4 10 4 6 2 2 28 
Cr Steel Sph 5 9 4 6 2 7 33 
Glass Sph 8 1 4 6 2 10 31 
SS420 Sph 5 9 4 6 2 8 34 

SS316L ALM 
(1) 6 9 7 3 1 8 34 

Ti6Al4V ALM 
(1) 6 5 7 3 1 9 31 

  

Table 8.6 - Performance of materials depending on the table of requirements 

for the regenerator application. 
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From this table it can be seen that the baseline material has the highest marks, 

the closest one after that is the SS304L felt, having a similar wire based 

structure and material properties falling behind only on the amount of heat 

transfer area, this is due to the wider wire diameter of the felt sample (0.25 mm) 

against the wire diameter of the mesh (0.075 mm), all the other samples 

perform lower. The weighting of each of the parameters is unknown [19], for 

example from tests in this work the importance of the thermal conductivity was 

less than the other parameters, caution needs to be taken in comparisons 

between results where the thermal conductivity changes significantly but other 

behaviours are similar. 

With the knowledge gained here, the potential for development of replicated 

porous metals to act as regenerators can be discussed. The replicated porous 

metals have potential in gaining advantage in certain qualities such as a higher 

heat transfer area by reducing the pore size and if a better material were 

available (stainless steel) it could perform as well (or even better) as the 

baseline material, however it would be difficult to create since for replication a 

higher melting point material to serve as the preform is needed. 

To consider the potential of replicated porous metal the following changes can 

be made, these are discussed in the context of the key dimensionless groups 

and the limits the process offers, their tentative location in comparison with the 

samples tested in this work is shown in Appendix 1 Figure A4c. 

 

CHANGING THE PORE SIZE: It is possible to obtain the same specific 

 surface area as the 200 mesh, simply by producing a replicated sample 

 with a 180 µm pore size keeping the porosity the same, however 

 because the material is aluminium the NTUR value would not increase 

 much, in total the NTUR value only increases by 3.6 times (this when 

 comparing the A samples vs. the C samples) according to NTUR values, 

 Stanton times Prandtl number elevated to the 2/3 would increase as 

 Reynolds number lessens, the behaviour area is shown in Figure A4c 

 (DP Change). 
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CHANGING THE POROSITY: If the porosity is decreased to a value of 

 approximately 64% (before the closing of the pores [7]) the effect is the 

 increase of the NTUR value, approximately by 2 full units for the 

 replicated porous samples (this when comparing the B samples vs. the V 

 samples, 70 vs. 76 % porosity), the behaviour area is shown in Figure 

 A4c (ε Change). 

 

CHANGE IN BOTH:  If both properties are changed the replicated sample 

 becomes more efficient having a higher heat transfer rate, however by its 

 new location, it is obvious that pore size has the larger effect, since the 

 Reynolds number drops closer to the area of the DP Change, ideally the 

 best replicated aluminium sample would have a lower porosity to keep 

 the high flow rate, however it is impossible due to the closing off of the 

 pores, the behaviour area is shown in Figure A4c (Change in Both). 

 

In this chapter the results for heat transfer tests on the porous metal samples 

are presented, each section contains the experimental data given by the test rig 

and analysed in the terms which are of interest for the regenerator application, 

this being the heat transfer coefficient present in each sample at a certain 

velocity, next was to analyse the effect of pore size, porosity, material and 

structure change effects on the heat transfer coefficient finally concluding with a 

property comparison between the two sets of samples with very similar 

structure and different material (ALM porous metals); following in Chapter 9 the 

conclusions and future work are presented. A wide range of porous structures 

can now be directly compared, for full details see the graphs on Appendix 1 for 

comparisons of pressure drop, NTUR and heat transfer coefficients. 
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Chapter 9. Conclusions and Future Work 

9.1. Conclusions 

This work encompasses the subject of the production and fluid and heat 

transfer behaviour of various groups of porous structures and materials. The 

results obtained aim to help develop new ways to design and manufacture 

regenerator elements. In total 37 porous material samples with different 

methods of production made from different materials tested as regenerators has 

been achieved; this is the largest database obtained for this type of material. 

The argon only replication method was modified to produce replicated porous 

metal samples with different porosities and pore sizes, establishing the 

requirements by developing the technique into four novel protocols (W, X, Y and 

Z), each one to produce porous metals with a different porosity, from 61 to 78% 

[149]. 12 replicated porous metal samples with three different pore sizes of 1.09 

mm, 1.55 mm and 2.18 mm and two preform packing variations, random and 

vibrated have been produced. The argon only replication process has been 

improved to work more effectively, the production rate was increased from 2 

samples per day to 5 samples per day and the rate of uniform samples 

produced was increased from 1 in 10 to 9 in 10. 

Apart from the replicated porous metal samples and with the purpose of testing 

a wide array of structures made from different materials as regenerators, 25 

additional porous samples were created using different methods; analysing the 

effects produced by changing these two characteristics (structure and material). 

The other structures and materials analysed were wire meshes (7) (stainless 

steel 304L), wire felts (3) (Al, Cu and stainless steel 304L), packed bed of 

spheres (5) (Al, chrome steel, Cu, soda glass and stainless steel 420) and 

additive layer manufactured porous metals following a particular random pattern 

(10) (stainless steel 316L and Ti6Al4V). 

The wire meshes were selected with different open mesh space sizes (taken as 

a measure equivalent to the pore sizes; 2 mm, 1 mm, 0.5 mm and 0.075 mm) to 

study the effect that pore size has on regenerator efficiency. From this test it 

was determined that pore size has a large impact on regenerator efficiency, the 

smaller the pore size the larger the heat transfer surface area, hence a better 
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regenerator. To fill a gap in the existing literature an empirical correlation 

relating the pore size to the pressure drop has been proposed, along with an 

empirical correlation relating the pore size to the heat transfer coefficient for the 

wire meshes. 

The impact that porosity has on pressure drop is less significant than pore size 

however it still has an effect, as the porosity increases the pressure drop 

decreases. For heat transfer, increasing the porosity decreases the NTUR and 

heat transfer coefficient. To fill a gap in the existing literature an empirical 

correlation relating the porosity to the pressure drop has been proposed and an 

empirical correlation relating the porosity to the heat transfer coefficient for the 

replicated porous metals as well. 

The thermal conductivity values for the porous metal samples was measured 

improving the accuracy of the results, this data is a significant extension of the 

existing database. The effect that the material has on the regenerator samples 

has been determined, it was concluded that the materials most suitable for this 

purpose would be iron, copper and their alloys; preferably steels and stainless 

steels. The absolute maximum performance (ignoring cost and processing 

issues) for materials in the Cambridge Engineering Selector software database 

2014 edition is for Nitinol (Ni-45-Ti), having the highest volumetric heat capacity. 

The performance these samples have when considering pressure drop were 

compared against the literature and it was determined that they follow a similar 

trend, however, due to the randomness of the structure, and possibly the shape 

of the pores, some of the samples' permeability values proved better than 

expected, having a higher permeability value without losing thermal 

performance. 

When considering heat transfer the samples were compared against results 

from other researchers using Stanton number, the results consistently show that 

the wire mesh samples perform better as regenerators; however, the replicated 

porous metals have the advantage of being tailored to a wide array of 

specifications, being able to reproduce behaviours of the meshes or the packed 

spheres samples respectively, their location in Figure A4c (in between all 

samples) allows for them to emulate the behaviour of other types of structures 

with certain modifications.  
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It is worth pursuing lower pore size replicated porous metals for regeneration, 

perhaps introducing new methods of production to accommodate other types of 

structures and materials, having a much lower cost in the end when compared 

to the additive manufactured porous metals. The extensive range of tests and 

results is aimed to help researchers design new regenerator samples based on 

the different properties and characteristics from the different porous materials 

and structures discussed in this work. 

 

9.2. Future Work 

To improve the results obtained from this research several suggestions can be 

made in the form of future work. These ideas require additional time and 

resources to implement, reason why they were not carried out during the course 

of this work. 

Initial runs have been made to analyse the samples using an X-ray 

computational tomography scan based in the Medical Advanced Manufacturing 

Research Centre of the University of Sheffield; this would give the exact surface 

area of any tested sample, the results will be more accurate than the current 

ones. Several images have been taken of the porous samples, however, 

currently the resources are not enough to have the complete analysis, sample 

images can be seen in Figure 9.1. 
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Figure 9.1 - X-Ray Computational tomography scans of the Al felt and A2 

replicated samples. 

The image clearly shows the internal structure of the samples, they can be used 

to detect poorly infiltrated regions of the porous metals and as an initial scan for 

future research using computational fluid dynamics, creating a model out of the 
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different types of structures to understand the flow behaviour when it passes 

through the porous structure using the experimental data obtained from this 

work. By measuring the surface area of the porous metal samples, the values of 

the heat transfer coefficient will be closer to reality. 

A hybrid sample made from layers of replicated porous aluminium and 20 Mesh 

has been manufactured to improve the replicated porous metal's heat transfer 

performance, however, the full analysis has not been performed yet due to time 

constraints, initial values of NTUR at 2.55 m/s are around 9, above the replicated 

porous aluminium's highest value of 7.3 but lower than the 20 mesh's value of 

11.5. Further analysis is needed. 

The replicated vibrated samples (V group) show promise of good NTUR values 

when compared to the non vibrated samples, especially the 2.18 mm pore size 

samples (C group) samples achieving lower pressure drop than them but 

around the same range of NTUR values, new samples using vibration are 

suggested. 

Replicated porous metal samples with smaller pore size should be made at the 

same level of porosity to improve the heat transfer performance, the challenge 

lies on the limitation of the replication process, which is followed due to its 

simplicity and low cost when compared for example with the additive layer 

manufactured samples. 
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Appendix 1. General Graphs and Data Tables 

In Figure A1a and Figure A1b (log scale "Y" axis) the general pressure drop 

graphs including all produced samples can be seen. 

In Figure A2a and Figure A2b (log scale "Y" axis) the general number of 

transfer units NTUR graphs including all produced samples can be seen. 

In Figure A3a and Figure A3b (log scale "Y" axis) the general heat transfer 

coefficient h graphs including all produced samples can be seen. 

In Figure A4a (log scale) the Reynolds number against Stanton number times 

Prandtl number elevated to the 2/3 power including uncertainty values can be 

seen for wire meshes and packed spheres compared with the results from Kays 

and London. 

In Figure A4b (log scale) the general Reynolds number against Stanton number 

times Prandtl number elevated to the 2/3 power including all produced samples 

can be seen. This is a common way to present this type of results (Kays and 

London). 

In Figure A4c (log scale) the general Reynolds number against Stanton number 

times Prandtl number elevated to the 2/3 power including all produced samples 

by region can be seen. 

In Figure A5 the pressure drop against heat transfer coefficient can be seen for 

all samples. 

In Table A1 the experimental data for all samples can be seen. 
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Figure A1a - General linear pressure drop graph. 
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Figure A1b - General linear pressure drop graph (log scale). 
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In the general pressure drop graphs the performance of the six types of 

samples can be seen. 

Group 1. Replicated porous metal samples 

This group (blue) can be divided into two subgroups, the non vibrated and 

vibrated preform porous metals. Within all sample groups it has the second 

highest linear pressure drop. Considering only linear pressure drop, the best 

sample to be used as a regenerator would be the V3 sample. 

Group 2 Wire mesh samples 

For this group (orange) the difference between the samples relies on the pore 

size of the mesh, having the 200 mesh as the sample with the highest linear 

pressure drop caused by a pore size of 0.075 mm and the lowest linear 

pressure drop for the 10 mesh samples with a pore size of 2 mm. Within all 

sample groups its linear pressure drop range is present in all areas of the 

graph, due to the different pore sizes. Considering only linear pressure drop, the 

best sample to be used as a regenerator would be the 10 mesh 10 layer wire 

mesh. 

Group 3 Wire felt samples 

For this group (green) the felt structures were very similar in construction, 

reason why the linear pressure drop between them stays rather constant. Within 

all sample groups it has the third highest linear pressure drop. Considering only 

linear pressure drop, the best sample to be used as a regenerator would be the 

SS304L felt. 

Group 4 Packed spheres samples 

For this group (red) the packed spheres structures generate the highest linear 

pressure drop as a group. This is caused by the low porosity (≈ 40%) of the 

structures when compared to the others (> 61%). Considering only linear 

pressure drop, the best sample to be used as a regenerator would be the 

chrome steel sample. 
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Group 5 Stainless steel 316L samples 

For this group (purple) the structure is based on a large pore size (3.9 mm), 

reason why the samples occupy the low linear pressure drop area of the chart, 

the difference between them is the porosity, ranging from 67 to 82%. 

Considering only linear pressure drop, the best sample to be used as a 

regenerator would be the SS316L (5) sample. 

Group 6 Titanium alloy Ti6Al4V samples 

This group's (light blue) structure is based on the same CAD files as the 

stainless steel samples, they have a very similar linear pressure drop as the 

previous group, having the same pore size of 3.9 mm they are present in the 

lower part of the graph. The porosity difference ranges between 68 and 83%. 

Considering only linear pressure drop, the best sample to be used as a 

regenerator would be the Ti6Al4V (5) sample. 

From the graph it can be determined that the sample that generates the highest 

linear pressure drop is the 200 Mesh. The lowest linear pressure drop is caused 

by the Ti6Al4V (5) sample. 

From the evidence it can be noted that the pore size plays a more important 

role than the porosity while generating a linear pressure drop. For example, the 

porosity of the 200 Mesh is 74.65%, compared to the porosity of the packed 

spheres of roughly 40%; the spheres generate a lower linear pressure drop than 

the mesh due to the larger space between the packed spheres when compared 

to the space between the wires of the mesh. 

The porosity has an effect on linear pressure drop, as seen with the additive 

manufactured porous metals, only not as substantial as to when the pore size is 

changed dramatically. 
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Figure A2a - General NTUR value graph. 
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Figure A2b - General NTUR value graph (log scale). 
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In the general NTUR graphs the performance of the six types of samples can be 

seen. As a regenerator the important characteristic to have from this chart is a 

high NTUR value at a low Reynolds number. 

Group 1. Replicated porous metal samples 

This group (blue) can be divided into four subgroups, the A, B, C and V 

samples. The A samples are the best performing samples of the group. The B 

samples are next in line, these samples have a larger pore size at 1.55 mm. 

Afterwards the C samples have a pore size of 2.18 mm. Finally the V samples 

have a higher porosity (≈ 76%) than the A, B and C samples (≈ 70%) and a 

pore size of 1.55 mm, they have approximately the same NTUR range as the C 

samples, this occurs due to an increase in porosity and a decrease in pore size. 

The replicated porous metals performed well compared to most of the other 

groups, especially the A samples; the only samples that had higher NTUR values 

were three mesh samples and the three felts. Considering only NTUR value, the 

best sample to be used as a regenerator would be the A2. 

Group 2 Wire mesh samples 

For this group (orange) the difference between the samples relies on the pore 

size of the mesh; the 200 Mesh is the sample with the highest NTUR range at 

the lowest range of Reynolds numbers of the group. The 30 and 20 mesh 

samples also performed at relatively high NTUR values. From the 10 Mesh 

samples it was found that NTUR value increases proportionally with the number 

of layers added. Considering only NTUR value, the best sample to be used as a 

regenerator would be the 200 Mesh. 

Group 3 Wire felt samples 

For this group (green) the NTUR values are noticeably different, their structure 

and porosities are similar, the difference relies on the material, having different 

thermal conductivities, densities and specific heat values, all having an impact 

on the resulting NTUR. Considering only NTUR value, the best sample to be used 

as a regenerator would be the SS304L sample. 
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Group 4 Packed spheres samples 

For this group (red) the NTUR value expand through a large range of Reynolds 

numbers, their structure and porosities are similar, the difference between them 

relies on the material, having different thermal conductivities, densities and 

specific heat values, all having an impact on the resulting NTUR. Considering 

only NTUR value, the best sample to be used as a regenerator would be the 

stainless steel 420, which has the lowest thermal conductivity, high density and 

mid range specific heat. 

Group 5 Stainless steel 316L samples 

For this group (purple) the NTUR values are small, expanding through a large 

range of Reynolds numbers, their structure and material are similar, the 

difference between them relies on the porosity; it is inversely proportional to the 

NTUR value. When considering only the NTUR value, the best sample to be used 

as a regenerator would be the SS316L (1), which has the lowest porosity, giving 

the highest NTUR value. 

Group 6 Titanium alloy Ti6Al4V samples 

This group's (light blue) structure is the same as the one used to produce the 

stainless steel samples, they have a very similar NTUR value, the porosity in 

these samples is slightly higher due to the different manufacturing process. The 

SLM process needs supports to hold the samples while building, the EBM does 

not; reason why the SS316L samples are less porous. The NTUR and Re have 

very little variation, slightly lower than the SS316L samples. Considering only 

NTUR value, the best sample to be used as a regenerator would be the Ti6Al4V 

(1), having the lowest porosity and the highest NTUR value. 

From the chart the pore size and structure type have a large impact on the 

NTUR, more so than porosity. The structures that favour a high NTUR are the 

wire type structures, with the replicated porous metals closely following; the 

packed spheres while keeping up with the replicated porous metals in NTUR 

value they deliver it at a much higher pressure drop, which is not convenient for 

regenerators. 
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Figure A3a - General heat transfer coefficient value graph. 
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Figure A3b - General heat transfer coefficient value graph (log scale). 
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In the general heat transfer coefficient graphs the performance of the six types 

of samples can be seen. As a regenerator the important characteristic to have 

from this chart is a high heat transfer coefficient at a high Reynolds number. 

Group 1. Replicated porous metal samples. 

This group (blue) performed well compared to the other groups except the wire 

mesh and wire felt samples. With a smaller pore size, the replicated porous 

metals may challenge the heat transfer coefficient levels of the wire produced 

samples. For these porous metals, an empirical correlation to obtain the pore 

size necessary to match the heat transfer coefficient of the 200 mesh is given in 

Eq. A1. 

 

             
        Eq. A1 

 

the sample would require to have a pore size of at least 5 times smaller to 

match the specific surface area (structure dependent) and an NTUR value 

(material dependent) 13 times higher if it were made from aluminium. 

Considering only heat transfer coefficients, the best sample to be used as a 

regenerator would be the C2. 

Group 2 Wire mesh samples 

This group (orange) is the best performer in terms of heat transfer coefficient. 

Considering only heat transfer coefficients, the best sample to be used as a 

regenerator would be the 200 mesh. 

Group 3 Wire felt samples 

This group (green) performs better than most of the other samples except the 

some of the wire mesh samples. Considering only heat transfer coefficients, the 

best sample to be used as a regenerator would be the SS304L felt. 
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Group 4 Packed spheres samples 

This group (red) performs worse than most of the other groups except the 

additive manufactured samples. They behave similar due to close porosity 

values between them and to their structure. The difference relies on the material 

properties. Considering only heat transfer coefficients, the best sample to be 

used as a regenerator would be the stainless steel 420. 

Group 5 Stainless steel 316L samples. 

For this group (purple) their structure and material are similar, the difference 

between them relies on the porosity; like the NTUR value, it is inversely 

proportional to the heat transfer coefficient but directly proportional to the 

Reynolds number. When considering only the heat transfer coefficients, the 

best sample to be used as a regenerator would be the SS316L (1), which has 

the lowest porosity. 

Group 6 Titanium alloy Ti6Al4V samples 

This group's (light blue) structure is basically the same as the one used to 

produce the stainless steel samples, they have similar heat transfer coefficients, 

the porosity in these samples is slightly higher due to the different 

manufacturing process. Considering only heat transfer coefficients, the best 

sample to be used as a regenerator would be the Ti6Al4V (1), having the lowest 

porosity. 

From the chart it can be seen that the pore size and structure type have a large 

impact on the heat transfer coefficient as it does with the NTUR value explained 

in the previous graphs, more so than porosity. The structures that have a high 

heat transfer coefficient are the wire type structures and the replicated samples; 

the packed spheres have comparable heat transfer coefficient values to the 

replicated samples, however they display it at a much higher pressure drop 

values, which is not desirable for regenerators. 
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Figure A4a - Re vs. St*Pr2/3 for mesh and packed spheres [93]. 
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Figure A4b - Re vs. St*Pr2/3 for all samples. 
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Figure A4c - Behaviour regions of all produced samples. 
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Figure A5 - Linearised pressure drop against heat transfer coefficient of all 

produced samples. 
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Figure A4a shows the gas flow through a randomly packed wire mesh layer 

structure at different porosities and a randomly packed spherical structure at a 

porosity range between 0.37 and 0.39 from Kays and London, the chart is 

obtained from experimental data and touching of the layers is considered. 

In this chart the wire mesh samples and the packed spheres samples are 

included. They show a comparable correlation to the data presented by Kays 

and London [93]. 

In Figure A4b all the produced samples are present in the chart, clearly showing 

that every sample group is contained in a certain area. 

In Figure A4c the different regions where the samples behave can be seen. The 

replicated porous metal samples' region falls in between the mesh and packed 

spheres, this indicates that, depending on the application, the replicated porous 

metals may be tailored to fit the requirements already presented by these two 

groups. 

As a regenerator the baseline sample is the 200 Mesh, is located in the upper 

left corner of the graph, indicating a high Stanton number and low Reynolds 

number. The other wire meshes have a lower Stanton number, which is not 

desirable, they perform at a relatively high Reynolds number, which is desirable, 

however, priority is given to the Stanton number. The other wire produced 

structure, the felts, performed well, one of them, the SS304L felt, can rival the 

meshes. The other two, of different material characteristics, have lower Stanton 

numbers, becoming less effective for regeneration. 

The packed spheres Reynolds and Stanton values places them on the lower 

right of the chart close to the additive manufactured samples, they have a 

relatively low Stanton number and high Reynolds number, qualities that are not 

desirable for a regenerator, the other way around is preferred, High Stanton 

number and low Reynolds number. 
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In Figure A5 the linearised pressure drop against heat transfer coefficient is 

shown, it can be seen that the baseline regenerator sample (200 Mesh) has a 

high pressure drop and high heat transfer coefficient as well, ideally the 

characteristics that would suit a regenerator would be a low pressure drop and 

a high heat transfer coefficient, the trade off in this case is the pressure drop, 

even if the process spends energy on passing the fluid through the porous 

matrix it is preferred over a low ability of heat transfer. 

The effectiveness of a regenerator depends on the ability of receiving heat 

against the energy required to pass the fluid through it; pore size conflicts with 

the pressure drop, a balance between these two characteristics is needed. 

The advantage of the replicated porous metals is that they can be tailored to 

have the desired characteristics for a regenerator, these are a small pore size, a 

high porosity, a material with a high density, considerable specific heat value, 

low thermal conductivity, high heat transfer area; all these leading to a high heat 

transfer coefficient, it also needs to generate a low pressure drop, however, 

aluminium is a very limited material for this application, as shown at the end of 

Chapter 8 while discussing the tentative regions for a replicated aluminium 

porous sample. 

An advantage of the meshes compared to the replicated porous metals is the 

lack of longitudinal thermal conductivity; as the mesh layers are not bonded 

together they receive all the heat from the hot air and not the heat that travels 

by conduction through them, adding a material with low thermal conductivity 

such as stainless steel to the equation makes for a better regenerator. To 

counteract this effect, the replicated porous metal, instead of being one piece, 

could be cut into thin layers with a relatively free space in between, such as the 

mesh. 
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Superficial 
Velocity 

Parameter 
vD 

(2.55 m/s) 
vD 

(3.60 m/s) 
vD 

(4.40 m/s) 
vD 

(5.08 m/s) 
vD 

(5.69 m/s) 
vD 

(6.23 m/s) 
REPLICATED POROUS ALUMINIUM SAMPLES 

A1 
ΔP/LRvD 

(kPa s/m2) 32.62 45.29 55.02 63.57 71.50 79.20 

Re 257.97 367.70 451.14 518.49 582.06 634.10 
NTUR 7.00 6.70 6.40 6.10 5.90 5.80 

h (W/m2K) 229.89 313.64 367.58 402.65 437.20 468.21 
St*Pr(2/3) 0.040 0.039 0.037 0.035 0.034 0.033 

A2 
ΔP/LRvD 

(kPa s/m2) 30.45 42.04 51.45 59.60 67.14 74.61 

Re 263.04 369.61 450.24 521.01 583.40 636.60 
NTUR 7.30 6.90 6.60 6.30 6.10 5.90 

h (W/m2K) 242.53 322.11 375.32 414.57 449.48 474.39 
St*Pr(2/3) 0.042 0.039 0.038 0.036 0.035 0.034 

A3 
ΔP/LRvD 

(kPa s/m2) 30.57 41.36 49.87 57.04 63.77 69.46 

Re 252.04 356.22 436.13 502.64 562.21 615.92 
NTUR 7.00 6.70 6.40 6.10 5.90 5.80 

h (W/m2K) 218.98 296.24 346.46 380.57 411.72 443.41 
St*Pr(2/3) 0.040 0.038 0.036 0.034 0.033 0.033 

B1 
ΔP/LRvD 

(kPa s/m2) 31.96 44.19 54.03 62.45 70.25 77.40 

Re 376.99 532.14 651.28 750.78 840.81 919.03 
NTUR 6.20 5.50 5.10 4.80 4.60 4.40 

h (W/m2K) 299.58 375.14 425.73 461.91 495.75 518.31 
St*Pr(2/3) 0.051 0.045 0.042 0.040 0.038 0.036 

B2 
ΔP/LRvD 

(kPa s/m2) 32.43 44.89 55.19 63.75 71.87 78.82 

Re 376.78 532.27 654.01 752.32 840.63 918.29 
NTUR 6.30 5.80 5.40 5.20 5.00 4.70 

h (W/m2K) 290.96 378.41 432.90 479.53 515.21 529.03 
St*Pr(2/3) 0.050 0.046 0.043 0.041 0.039 0.037 

B3 
ΔP/LRvD 

(kPa s/m2) 41.33 58.33 71.37 83.42 94.61 106.07 

Re 369.07 523.93 642.41 739.43 829.55 907.46 
NTUR 6.20 5.70 5.30 5.00 4.80 4.60 

h (W/m2K) 290.27 378.84 431.91 469.00 505.11 529.53 
St*Pr(2/3) 0.051 0.047 0.043 0.041 0.039 0.038 

C1 
ΔP/LRvD 

(kPa s/m2) 28.38 39.56 48.05 55.59 62.52 68.67 

Re 520.56 728.05 888.04 1022.22 1143.38 1251.16 
NTUR 4.50 4.20 3.90 3.70 3.60 3.50 

h (W/m2K) 304.06 396.90 449.55 490.94 534.28 568.41 
St*Pr(2/3) 0.052 0.049 0.045 0.043 0.042 0.041 

C2 
ΔP/LRvD 

(kPa s/m2) 37.44 51.38 62.71 72.09 82.02 91.33 

Re 503.79 711.93 869.74 1004.79 1123.98 1231.96 
NTUR 4.70 4.00 3.70 3.60 3.45 3.40 

h (W/m2K) 320.83 385.86 436.04 490.13 525.43 567.56 
St*Pr(2/3) 0.057 0.048 0.045 0.044 0.042 0.041 
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C3 
ΔP/LRvD 

(kPa s/m2) 37.09 50.93 62.10 71.73 81.11 89.55 

Re 502.27 706.29 859.21 995.10 1112.55 1217.87 
NTUR 4.50 4.00 3.80 3.75 3.70 3.60 

h (W/m2K) 285.97 357.46 413.11 472.15 520.84 554.73 
St*Pr(2/3) 0.051 0.045 0.043 0.042 0.042 0.041 

V1 
ΔP/LRvD 

(kPa s/m2) 9.49 12.73 15.25 17.53 19.48 21.58 

Re 337.55 468.67 576.53 664.08 745.64 816.31 
NTUR 4.50 4.45 4.40 4.30 4.20 4.10 

h (W/m2K) 194.50 267.06 324.83 365.65 401.01 428.57 
St*Pr(2/3) 0.037 0.036 0.036 0.035 0.034 0.033 

V2 
ΔP/LRvD 

(kPa s/m2) 8.63 11.65 13.88 15.90 17.73 19.22 

Re 344.62 484.13 593.67 684.25 762.41 836.60 
NTUR 5.10 4.90 4.70 4.40 4.20 4.00 

h (W/m2K) 210.67 284.34 334.45 360.87 383.82 401.11 
St*Pr(2/3) 0.039 0.037 0.036 0.033 0.032 0.030 

V3 
ΔP/LRvD 

(kPa s/m2) 7.42 10.09 12.19 13.91 15.52 17.15 

Re 347.84 489.54 594.95 687.45 767.49 842.69 
NTUR 4.00 3.50 3.20 3.10 3.00 2.90 

h (W/m2K) 178.56 219.89 244.33 273.49 295.49 313.62 
St*Pr(2/3) 0.033 0.029 0.026 0.025 0.025 0.024 

WIRE MESH SAMPLES 
10 Mesh 10 

ΔP/LRvD 
(kPa s/m2) 3.43 4.45 5.16 5.59 6.16 6.55 

Re 413.43 575.34 702.98 811.57 905.31 990.97 
NTUR 1.50 1.30 1.15 1.05 1.00 0.97 

h (W/m2K) 390.28 470.71 508.77 536.29 569.74 604.95 
St*Pr(2/3) 0.076 0.066 0.059 0.054 0.051 0.049 

10 Mesh 20 
ΔP/LRvD 

(kPa s/m2) 3.55 4.49 5.29 5.90 6.45 6.98 

Re 408.44 570.45 695.08 800.99 899.36 983.91 
NTUR 3.00 2.50 2.20 2.00 1.85 1.75 

h (W/m2K) 393.84 458.38 491.51 514.91 534.78 553.44 
St*Pr(2/3) 0.077 0.064 0.057 0.051 0.048 0.045 

10 Mesh 30 
ΔP/LRvD 

(kPa s/m2) 4.25 5.52 6.40 7.20 7.94 8.84 

Re 339.68 477.92 584.26 669.53 749.48 820.93 
NTUR 5.00 4.20 3.70 3.40 3.25 3.15 

h (W/m2K) 436.35 515.69 555.38 584.84 625.80 664.36 
St*Pr(2/3) 0.082 0.069 0.061 0.056 0.054 0.052 

10 Mesh 40 
ΔP/LRvD 

(kPa s/m2) 4.06 5.22 6.07 6.89 7.53 8.12 

Re 346.96 485.79 587.03 676.03 753.84 825.88 
NTUR 6.00 5.10 4.70 4.40 4.20 3.90 

h (W/m2K) 390.60 464.86 517.68 558.11 594.06 604.34 
St*Pr(2/3) 0.074 0.063 0.058 0.055 0.052 0.048 

20 Mesh 
ΔP/LRvD 

(kPa s/m2) 9.27 11.86 13.58 15.20 16.52 18.13 
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Re 175.99 246.18 301.66 347.31 388.85 426.49 
NTUR 11.50 10.00 8.90 8.10 7.70 7.50 

h (W/m2K) 494.32 601.26 655.73 687.10 731.29 781.25 
St*Pr(2/3) 0.091 0.079 0.070 0.064 0.061 0.059 

30 Mesh 
ΔP/LRvD 

(kPa s/m2) 16.13 20.03 22.86 25.33 27.43 29.45 

Re 125.04 176.00 214.54 248.25 276.74 302.60 
NTUR 16.00 14.40 13.00 12.00 11.30 11.00 

h (W/m2K) 509.14 644.98 709.77 758.10 795.82 847.09 
St*Pr(2/3) 0.094 0.084 0.076 0.070 0.066 0.064 

200 Mesh 
ΔP/LRvD 

(kPa s/m2) 130.73 149.75 164.59 176.73 187.11 196.74 

Re 25.25 35.40 43.37 50.02 56.10 61.09 
NTUR 82.00 74.00 68.00 64.00 61.00 59.00 

h (W/m2K) 1103.22 1395.97 1571.57 1705.86 1823.71 1920.70 
St*Pr(2/3) 0.208 0.188 0.173 0.163 0.155 0.150 

WIRE FELT SAMPLES 
Al Felt 

ΔP/LRvD 
(kPa s/m2) 22.55 27.86 31.90 35.48 38.59 41.51 

Re 100.00 138.95 169.30 194.72 217.94 236.97 
NTUR 9.00 8.20 7.50 6.80 6.30 6.00 

h (W/m2K) 260.69 330.05 367.79 383.55 397.71 411.85 
St*Pr(2/3) 0.045 0.041 0.037 0.034 0.031 0.030 

Cu Felt 
ΔP/LRvD 

(kPa s/m2) 22.39 27.49 31.37 34.47 37.55 40.14 

Re 102.78 145.32 177.10 202.57 226.84 247.17 
NTUR 15.00 13.70 12.30 11.10 10.10 9.40 

h (W/m2K) 433.15 559.33 612.00 631.74 643.68 652.76 
St*Pr(2/3) 0.076 0.069 0.062 0.056 0.051 0.048 

SS 304 Felt 
ΔP/LRvD 

(kPa s/m2) 21.72 26.63 30.32 33.55 36.28 39.02 

Re 103.26 143.70 174.44 201.81 225.59 246.59 
NTUR 20.00 19.00 18.00 17.00 16.00 15.00 

h (W/m2K) 570.70 754.53 867.69 948.08 997.49 1022.18 
St*Pr(2/3) 0.099 0.094 0.089 0.084 0.079 0.074 

PACKED SPHERES SAMPLES 
Al Sph 

ΔP/LRvD 
(kPa s/m2) 39.45 52.54 62.73 71.08 78.83 86.36 

Re 800.19 1136.30 1391.81 1607.79 1809.99 1954.55 
NTUR 4.00 3.60 3.40 3.20 3.10 3.00 

h (W/m2K) 260.37 332.77 384.95 418.53 456.44 476.99 
St*Pr(2/3) 0.027 0.025 0.023 0.022 0.021 0.021 

Cr Steel Sph 
ΔP/LRvD 

(kPa s/m2) 38.79 52.25 63.02 71.77 79.94 87.81 

Re 852.92 1196.38 1462.37 1689.61 1898.15 2065.75 
NTUR 4.90 4.40 4.10 3.90 3.70 3.60 

h (W/m2K) 316.82 399.06 454.52 499.53 532.41 563.76 
St*Pr(2/3) 0.031 0.028 0.026 0.024 0.023 0.023 

Cu Sph 
ΔP/LRvD 

(kPa s/m2) 41.52 56.72 68.49 78.47 87.64 96.40 

Re 804.01 1126.16 1377.11 1599.08 1792.07 1896.55 
NTUR 4.50 4.10 3.90 3.70 3.60 3.50 
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h (W/m2K) 291.24 371.67 432.32 476.27 519.32 534.33 
St*Pr(2/3) 0.031 0.028 0.026 0.025 0.024 0.024 

Glass Sph 
ΔP/LRvD 

(kPa s/m2) 50.01 66.86 79.92 90.49 100.91 110.44 

Re 887.69 1232.84 1511.70 1752.44 1959.53 2088.15 
NTUR 3.50 3.20 3.00 2.90 2.80 2.70 

h (W/m2K) 227.83 289.30 332.56 372.67 402.34 413.44 
St*Pr(2/3) 0.021 0.020 0.018 0.018 0.017 0.016 

SS 420 Sph 
ΔP/LRvD 

(kPa s/m2) 40.36 54.73 65.59 75.65 84.59 92.89 

Re 829.41 1162.67 1435.44 1648.82 1851.12 2021.54 
NTUR 5.30 4.70 4.30 4.10 3.90 3.80 

h (W/m2K) 332.04 412.77 466.23 510.63 545.32 580.25 
St*Pr(2/3) 0.033 0.029 0.027 0.026 0.024 0.024 

SELECTIVE LASER MELTING (SLM) SAMPLES 
SS 316L (1) 

ΔP/LRvD 
(kPa s/m2) 7.47 10.37 12.39 14.15 15.75 17.10 

Re 923.65 1311.62 1606.56 1855.86 2089.25 2256.12 
NTUR 1.60 1.45 1.33 1.25 1.20 1.15 

h (W/m2K) 186.72 240.29 269.96 293.10 316.76 327.81 
St*Pr(2/3) 0.029 0.026 0.024 0.023 0.022 0.021 

SS 316L (2) 
ΔP/LRvD 

(kPa s/m2) 5.10 7.03 8.43 9.63 10.70 11.62 

Re 914.42 1282.64 1567.82 1811.44 2035.02 2214.71 
NTUR 1.30 1.20 1.10 1.02 0.95 0.90 

h (W/m2K) 150.47 194.82 218.30 233.87 244.71 252.30 
St*Pr(2/3) 0.025 0.023 0.021 0.019 0.018 0.017 

SS 316L (3) 
ΔP/LRvD 

(kPa s/m2) 3.72 5.15 6.21 7.10 7.89 8.57 

Re 919.56 1288.01 1575.02 1828.89 2049.62 2169.12 
NTUR 1.16 1.06 1.00 0.95 0.91 0.88 

h (W/m2K) 136.09 174.18 200.94 221.66 237.95 243.52 
St*Pr(2/3) 0.024 0.022 0.020 0.019 0.019 0.018 

SS 316L (4) 
ΔP/LRvD 

(kPa s/m2) 2.56 3.34 4.08 4.58 5.11 5.60 

Re 844.11 1172.32 1437.50 1666.42 1863.34 1985.65 
NTUR 1.07 1.01 0.95 0.88 0.83 0.80 

h (W/m2K) 115.29 151.14 174.31 187.18 197.41 202.77 
St*Pr(2/3) 0.022 0.021 0.019 0.018 0.017 0.016 

SS 316L (5) 
ΔP/LRvD 

(kPa s/m2) 1.84 2.43 2.87 3.26 3.56 3.87 

Re 784.77 1100.10 1358.19 1560.09 1751.50 1912.75 
NTUR 0.95 0.87 0.81 0.76 0.72 0.70 

h (W/m2K) 95.74 122.91 141.28 152.26 161.94 171.94 
St*Pr(2/3) 0.020 0.018 0.017 0.016 0.015 0.014 

ELECTRON BEAM MELTING SAMPLES 
Ti 6Al 4V (1) 

ΔP/LRvD 
(kPa s/m2) 6.81 9.26 11.27 12.81 14.22 15.54 

Re 920.17 1306.69 1600.52 1848.88 2081.40 2247.64 
NTUR 1.56 1.46 1.35 1.29 1.25 1.23 

h (W/m2K) 181.08 240.66 272.57 300.87 328.21 348.75 
St*Pr(2/3) 0.032 0.030 0.027 0.026 0.025 0.025 
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Ti 6Al 4V (2) 
ΔP/LRvD 

(kPa s/m2) 4.89 6.61 7.95 9.03 10.05 10.97 

Re 894.75 1255.05 1534.09 1772.47 1991.23 2167.06 
NTUR 1.32 1.19 1.12 1.06 1.03 1.01 

h (W/m2K) 148.91 188.31 216.63 236.89 258.59 275.96 
St*Pr(2/3) 0.027 0.024 0.023 0.021 0.021 0.020 

Ti 6Al 4V (3) 
ΔP/LRvD 

(kPa s/m2) 3.49 4.51 5.48 6.27 6.93 7.60 

Re 865.65 1212.50 1482.69 1721.68 1929.47 2041.96 
NTUR 1.22 1.13 1.05 0.99 0.96 0.94 

h (W/m2K) 134.27 174.20 197.94 216.71 235.50 244.04 
St*Pr(2/3) 0.025 0.023 0.021 0.020 0.020 0.019 

Ti 6Al 4V (4) 
ΔP/LRvD 

(kPa s/m2) 2.17 2.82 3.39 3.90 4.25 4.69 

Re 796.52 1106.22 1356.45 1572.46 1758.28 1873.69 
NTUR 1.04 0.97 0.90 0.86 0.80 0.79 

h (W/m2K) 105.38 136.50 155.30 172.02 178.93 188.29 
St*Pr(2/3) 0.021 0.020 0.018 0.018 0.016 0.016 

Ti 6Al 4V (5) 
ΔP/LRvD 

(kPa s/m2) 1.61 2.10 2.39 2.72 3.03 3.29 

Re 781.64 1095.70 1352.76 1553.86 1744.50 1905.10 
NTUR 0.88 0.84 0.80 0.76 0.73 0.71 

h (W/m2K) 87.45 117.02 137.59 150.15 161.91 171.97 
St*Pr(2/3) 0.018 0.017 0.016 0.015 0.015 0.014 

 

Table A1 - General experimental data for all tested samples. 
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Appendix 2. Porous Metal Sample Characteristics 

 

# Sample Type Material cM 
(J/kg K) 

kM 
(W/mK) 

kR 
(W/mK) 

1 A1 Replication Al 900[184] 205.0[190] 26.4 
2 A2 Replication Al 900 205.0 25.7 
3 A3 Replication Al 900 205.0 18.8 
4 B1 Replication Al 900 205.0 27.3 
5 B2 Replication Al 900 205.0 28.9 
6 B3 Replication Al 900 205.0 28.2 
7 C1 Replication Al 900 205.0 25.0 
8 C2 Replication Al 900 205.0 24.7 
9 C3 Replication Al 900 205.0 26.0 
10 V1 Replication Al 900 205.0 19.9 
11 V2 Replication Al 900 205.0 16.6 
12 V3 Replication Al 900 205.0 20.0 
13 10 Mesh 10 Mesh SS304L 500[185] 16.2[185] < 0.1 
14 10 Mesh 20 Mesh SS304L 500 16.2 < 0.1 
15 10 Mesh 30 Mesh SS304L 500 16.2 < 0.1 
16 10 Mesh 40 Mesh SS304L 500 16.2 < 0.1 
17 20 Mesh Mesh SS304L 500 16.2 < 0.1 
18 30 Mesh Mesh SS304L 500 16.2 < 0.1 
19 200 Mesh Mesh SS304L 500 16.2 < 0.1 
20 Al Felt Felt Al 900 205.0 6.5 
21 Cu Felt Felt Cu 386[184] 385.0[190] 19.4 
22 SS304L Felt Felt SS304L 500 16.2 1.1 
23 Al Sph Packed Spheres Al 900 205.0 < 0.1 
24 Cr Steel Sph Packed Spheres Cr Steel 464[186] 46.6[194] < 0.1 
25 Cu Sph Packed Spheres Cu 386 386.0 < 0.1 
26 Glass Sph Packed Spheres Soda Glass 990[191] 1.0[191] < 0.1 
27 SS 420 Sph Packed Spheres SS420 460[187] 24.9[187] < 0.1 
28 SS316L (1) SLM SS316L 500[188] 16.2[188] 2.4 
29 SS316L (2) SLM SS316L 500 16.2 2.1 
30 SS316L (3) SLM SS316L 500 16.2 1.6 
31 SS316L (4) SLM SS316L 500 16.2 1.3 
32 SS316L (5) SLM SS316L 500 16.2 0.9 
33 Ti6Al4V (1) EBM Ti6Al4V 526[189] 6.7[189] 0.9 
34 Ti6Al4V (2) EBM Ti6Al4V 526 6.7 0.7 
35 Ti6Al4V (3) EBM Ti6Al4V 526 6.7 0.6 
36 Ti6Al4V (4) EBM Ti6Al4V 526 6.7 0.4 
37 Ti6Al4V (5) EBM Ti6Al4V 526 6.7 0.3 

 
 



222 
 

 
 
 

 
 
 
 

# Sample ρ (g/cm3) mR (g) LR (mm) DR (mm) ε (%) 

1 A1 2.70[192] 42.22 25.1 51.0 69.6 
2 A2 2.70 41.71 25.3 50.8 69.9 
3 A3 2.70 38.02 25.6 50.9 73.0 
4 B1 2.70 42.53 25.0 50.9 69.0 
5 B2 2.70 44.03 26.1 50.8 69.2 
6 B3 2.70 41.29 25.2 50.9 70.2 
7 C1 2.70 41.66 25.0 51.0 69.7 
8 C2 2.70 38.79 23.9 51.1 70.8 
9 C3 2.70 38.95 25.6 50.9 72.2 
10 V1 2.70 34.10 26.7 50.4 76.3 
11 V2 2.70 30.96 25.8 50.7 78.0 
12 V3 2.70 33.89 25.2 50.7 75.3 
13 10 Mesh 10 8.03[185] 29.00 9.0 51.0 81.0 
14 10 Mesh 20 8.03 57.33 18.0 51.0 81.0 
15 10 Mesh 30 8.03 86.09 24.0 51.0 78.0 
16 10 Mesh 40 8.03 115.32 33.0 51.0 78.0 
17 20 Mesh 8.03 110.35 26.0 51.0 75.0 
18 30 Mesh 8.03 115.20 26.0 51.0 73.0 
19 200 Mesh 8.03 50.49 12.0 51.0 75.0 
20 Al Felt 2.70 40.21 24.0 51.0 69.0 
21 Cu Felt 8.96[193] 132.71 24.0 51.0 70.0 
22 SS304 Felt 8.03 121.83 25.0 51.0 70.0 
23 Al Sph 2.70 94.40 30.0 51.0 42.0 
24 Cr Steel Sph 7.81[194] 265.28 27.0 51.0 39.0 
25 Cu Sph 8.96 311.94 30.0 51.0 43.0 
26 Glass Sph 2.48[191] 95.05 30.0 51.0 38.0 
27 SS 420 Sph 7.74[187] 271.42 29.0 51.0 40.0 
28 SS316L (1) 7.99[188] 134.81 25.6 51.1 61.8 
29 SS316L (2) 7.99 125.31 25.5 51.0 65.7 
30 SS316L (3) 7.99 116.41 25.3 50.8 71.5 
31 SS316L (4) 7.99 93.32 25.3 51.0 77.3 
32 SS316L (5) 7.99 73.72 25.2 51.0 82.0 
33 Ti6Al4V (1) 4.43[189] 74.16 25.6 51.5 66.4 
34 Ti6Al4V (2) 4.43 67.64 25.6 51.3 70.9 
35 Ti6Al4V (3) 4.43 56.31 25.4 51.0 75.3 
36 Ti6Al4V (4) 4.43 43.08 25.4 51.2 81.3 
37 Ti6Al4V (5) 4.43 39.89 25.4 51.0 82.5 
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# Sample K x 10-8 
(m2) 

δK x 10-8 
(m2) 

C x 10-3 
(m-1) 

δC x 10-3 
(m-1) 

St*Pr2/3 

(at 
2.55m/s) 

δSt*Pr2/3 

(at 
2.55m/s) 

1 A1 1.4 ± 0.4 10 ± 1 0.040 ± 0.002 
2 A2 3.8 ± 0.3 10 ± 1 0.042 ± 0.002 
3 A3 0.48 ± 0.03 8.7 ± 0.5 0.040 ± 0.002 
4 B1 2.8 ± 0.1 10.1 ± 0.5 0.051 ± 0.002 
5 B2 3.7 ± 0.2 10 ± 1 0.050 ± 0.002 
6 B3 0.7 ± 0.2 14 ± 1 0.051 ± 0.002 
7 C1 1.7 ± 0.3 8.9 ± 0.4 0.052 ± 0.002 
8 C2 2.8 ± 0.2 12 ± 1 0.057 ± 0.002 
9 C3 1.26 ± 0.04 12 ± 1 0.051 ± 0.002 
10 V1 1.8 ± 0.1 2.7 ± 0.1 0.037 ± 0.001 
11 V2 1.50 ± 0.04 2.4 ± 0.1 0.039 ± 0.002 
12 V3 2.5 ± 0.2 2.2 ± 0.1 0.033 ± 0.001 
13 10 Mesh 10 1.5 ± 0.1 0.7 ± 0.1 0.076 ± 0.004 
14 10 Mesh 20 1.67 ± 0.04 0.79 ± 0.05 0.077 ± 0.003 
15 10 Mesh 30 1.5 ± 0.1 1.0 ± 0.1 0.082 ± 0.003 
16 10 Mesh 40 1.52 ± 0.02 0.94 ± 0.03 0.074 ± 0.003 
17 20 Mesh 0.53 ± 0.01 1.9 ± 0.1 0.091 ± 0.004 
18 30 Mesh 0.266 ± 0.002 3.0 ± 0.1 0.094 ± 0.004 
19 200 Mesh 0.0216 ± 0.0001 15 ± 1 0.21 ± 0.02 
20 Al Felt 0.190 ± 0.001 4.3 ± 0.1 0.045 ± 0.002 
21 Cu Felt 0.182 ± 0.001 4.1 ± 0.1 0.076 ± 0.003 
22 SS304 Felt 0.190 ± 0.001 4.0 ± 0.1 0.099 ± 0.004 
23 Al Sph 0.27 ± 0.01 11 ± 1 0.027 ± 0.001 
24 Cr Steel Sph 0.42 ± 0.02 10.4 ± 0.4 0.031 ± 0.001 
25 Cu Sph 0.52 ± 0.03 12.6 ± 0.4 0.031 ± 0.001 
26 Glass Sph 0.22 ± 0.01 13.8 ± 0.5 0.021 ± 0.001 
27 SS 420 Sph 0.48 ± 0.03 12.0 ± 0.4 0.033 ± 0.001 
28 SS316L (1) 2.0 ± 0.1 2.2 ± 0.1 0.032 ± 0.001 
29 SS316L (2) 2.7 ± 0.1 1.47 ± 0.05 0.026 ± 0.001 
30 SS316L (3) 3.7 ± 0.2 1.08 ± 0.05 0.024 ± 0.001 
31 SS316L (4) 3.9 ± 0.2 0.68 ± 0.04 0.022 ± 0.001 
32 SS316L (5) 3.8 ± 0.1 0.45 ± 0.03 0.020 ± 0.001 
33 Ti6Al4V (1) 2.0 ± 0.1 1.96 ± 0.05 0.032 ± 0.001 
34 Ti6Al4V (2) 2.6 ± 0.1 1.37 ± 0.03 0.027 ± 0.001 
35 Ti6Al4V (3) 3.1 ± 0.2 0.9 ± 0.1 0.025 ± 0.001 
36 Ti6Al4V (4) 3.7 ± 0.2 0.55 ± 0.04 0.021 ± 0.001 
37 Ti6Al4V (5) 3.8 ± 0.1 0.42 ± 0.03 0.018 ± 0.001 
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Appendix 3. Uncertainty Analysis 

To obtain the uncertainty values for permeability (K), form drag (C) and Stanton 

number (St) given in Appendix 2 the uncertainties provided by the equipment 

manufacturers and the uncertainties from each of the variables present in the 

parameter calculations were considered, calculating them using the root sum 

squares method explained by Taylor [183]. 

For the mass flow rate:  
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For the replicated and ALM porous metals:  
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For the wire meshes and wire felts several of the equations used are the same 

as for the replicated and ALM porous metals, they will not be repeated. The new 

equations are: 
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For the packed spheres: 

     
    

   
  

     

    
 Eq. A3s 

 

To calculate the uncertainty values for the permeability (K) and the form drag 

(C) from the curve fitting derived from the pressure drop and superficial velocity 

values, the linearised form of the Darcy-Forchheimer equation is used (Eq. 4.7): 

 

 
  
    

       Eq. A3t 

 

where a and b are the constant values obtained from the fitted curve, having the 

form of the least squares fitting equation: 

        Eq. A3u 

 

the uncertainties for K and C are calculated from: 
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  Eq. A3v 

 

assuming zero uncertainty for the dynamic viscosity and density: 
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