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Abstract

This work presents Boxed Molecular Dynamics (BXD), an

efficient simulation tool for studying long time scale pro-

cesses which are inaccessible to conventional methods of sim-

ulation. Boxed Molecular Dynamics is explained and intro-

duced in the context of modelling the dynamics of proteins

and peptides. Two major applications of Boxed Molecular

Dynamics are reported.

1) - The mechanical unfolding of proteins induced by Atomic

Force Microscopy methods is investigated. For the first time,

experimental data is reproduced and unfolding pathways are

investigated without the use of high artificial pulling forces

which makes the simulation less realistic.

2) - A cheap and accurate in silico screening tool is devel-

oped to aid with the discovery and production of medicinal

cyclic peptides. Enzymatic peptide cyclization is investi-

gated by BXD and the ability of amino acid sequences to

cyclize is predicted with an accuracy of 76 %.
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Chapter 1

Introduction

1.1 Proteins

Proteins are large biopolymers which perform a vast array of tasks in

living organisms. Examples include forming structures, catalysing reac-

tions, DNA replication, molecule and ion transport as well as enabling

movement.1 Proteins are made up of chains of amino acids linked to-

gether. There are 20 naturally occurring amino acids all sharing a com-

mon structure of a central carbon atom flanked by COOH and NH2

groups. The general structure of an amino acid is shown in figure 1.1.

Figure 1.1: general structure of an amino acid. Note the left handed stere-
ochemistry which is present in all naturally occurring amino acids.

Amino acids differ in the identity of the R group known as the

side chain, which defines the property of the amino acid. The twenty

natural amino acids are shown in figure 1.2 and can be divided into

those with polar, non-polar and ionic side chains. Amino acids with

polar or ionic side chains are hydrophillic and are generally found on

the outside of a protein where they can interact with water. Ionic side
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chains often form salt bridges where a cationic side chain interacts with

an anionic side chain, stabilising the structure of the protein. Amino

acids with non-polar side chains are hydrophobic and are usually found

in the water free core of a protein. These competing effects underly

many of the structural and functional properties of proteins and other

biomolecular machinary.2

Figure 1.2: the 20 naturally occurring amino acids which can be classified
according to the nature of their side chains.

The ribosome is a structure in the cell which builds up a chain of
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1.1 Proteins

amino acids into a protein one link at a time. Amino acids join together

via the condensation reaction shown in figure 1.3.

Figure 1.3: amino acids form a chain via the condensation reaction to build
up a protein.

Once incorporated into a protein chain the amino acids are known

as residues as some of the original atoms are lost in the condensation re-

action. The chain of carbon and nitrogen atoms which has been formed

is known as the backbone. The smallest proteins known as peptides

have less than ten residues while the largest discovered, titin, has around

34000 which equates to over half a million atoms.

Protein structure exists on four levels. Primary structure is the

sequence of residues forming the chain. Secondary structure is the local

three dimensional form of the chain, held in place by the hydrogen

bonding between carbonyl oxygens and amide hydrogens on the protein

backbone. The two forms of secondary structure found in nature are

3
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alpha helices and beta sheets, shown in figure 1.4. In an alpha helix

the backbone forms a right handed helix with the side chains radiating

outwards. In a beta sheet the backbone is layered into parallel strands

while the side chains stick out to the sides. Alpha helices and beta

sheets are joined by short unstructured sections of chain known as turns

or links.

Figure 1.4: a section of alpha helix (top) and beta sheet (bottom). The
peptide backbone is shown by the ribbon and the hydrogen bonds, which
stabilize the secondary structure are shown by the dashed lines.

Tertiary structure is the arrangement of secondary structure into

independent units known as a domains. Unlike secondary structure,

which is fixed by hydrogen bonds between backbone atoms, tertiary

structure is also determined by interactions between the side chains. As

there are 20 amino acids there is a very large number of possible inter-

actions and hence a wide range of possible tertiary structures. Water

plays a role in tertiary structure formation; in many proteins the hy-

drophobic side chains are placed in the water free core of the protein

while hydrophilic side chains are exposed to the solvent. A selection of

domains is shown below in figure 1.5.
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Figure 1.5: A selection of protein domains showing different tertiary struc-
tures which are classified as all alpha, all beta, alpha/beta (alternating sec-
tions of alpha helix and beta sheet) and alpha+beta (segregated alpha he-
lixes and beta sheets). Alpha helixes are shown in red, beta sheets in blue
and the flexible linkers between units of secondary structure are shown in
grey. These structures were chosen to show a broad spectrum of the types
of secondary structure and their combinations. Structures were downloaded
in pdb form from the RCSB databank: 1IMQ (all alpha), 1TIT (all beta),
2ZFL(alpha/beta) and 3BGM (alpha + beta).

Quaternary structure is the highest level of structure and is defined

as the arrangement of multiple folded subunits relative to each other.

Each folded subunit is a seperate chain of amino acids with distinct

tertiary structure. As such a quaternary protein is not a single covalent

molecule but a complex of several smaller units. An example of a protein

showing quaternary structure is shown below in figure 1.6.
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Figure 1.6: a protein showing quaternary structure: the arrangement of
folded subunits, shown by different colours, relative to each other. The pro-
tein shown is an E. coli class Ia ribonucleotide reductase, the structure was
downloaded from the RCSB databank (5CNU) and was chosen because it
shows a high level structure which is clearly made up of independant folded
subunits.

Many proteins show a very high degree of conformational flexibility

and do not exhibit any stable structure. Known as intrinsically disor-

dered proteins, these species can form indepentent subunits or occur as

flexible linkers between stable protein domains in larger structures.3

Protein function is crucial to countless biological processes and un-

derstanding it is vital to treating and curing most diseases and condi-

tions. Function comes from structure and dynamics; proteins move and

change conformation at room temperature and form labile complexes

with other proteins and smaller molecules. These processes are hard

to observe in experiment4–6 so some form of simulation is necessary to

investigate protein dynamics. One such method is Molecular Dynamics

(MD).

6
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1.2 Molecular Dynamics

Since the first Molecular Dynamics study in 19577 MD simulation has

become a useful tool for the advancement of chemical and biological

understanding.4 MD allows the elucidation of many structures and pro-

cesses that cannot be directly observed by experiment4–6 and is becom-

ing increasingly popular in the study of biological systems since it was

first used to study protein structure in 1976.8 Aspects of biology ex-

plored by MD include enzyme catalysis,9 protein folding,10–14 ion and

small molecule transport15;16 and ligand binding.17

MD is used to observe dynamic processes of biomolecules such as

conformational change, or to calculate properties such as structure. The

property or process under investigation is modelled as a function of the

position and velocity of each atom in the system. Biomolecules undergo

significant structural fluctuation at room temperature and a simulation

needs to be time resolved to capture this. For example, to find the

structure of a protein, the positions of the atoms are calculated over a

period of time and averaged, as the structure is not fixed and will vary

with the dynamics of the system. This differs from a small molecule

quantum mechanical calculation where a structure is obtained from a

simple potential energy minimisation.

To simulate the time evolution of a molecule (known as a trajec-

tory) it is necessary to model the interactions between the atoms. MD

defines these interactions classically, for example covalent bonds are

treated as simple harmonic oscillators while non-covalent interactions

are modelled with simple electrostatic and Lennard-Jones potentials.

This is done in order to reduce the cost of the calculation; there are

too many atoms in biomolecules for electrons to be explicitly included.

Each atom is described by a set of parameters such as covalent bond

force constants and Lennard-Jones constants. The parameters used to

calculate the potential energy, known as a force-field, differ between
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models.

Knowing the potential energy, the position and velocity of each

atom can be calculated and propagated forwards in time. This is done

by applying Newtonian mechanics to each atom using a finite difference

method where dynamics are calculated over a series of discrete time

steps rather than on a continuous scale in order to make the computation

less expensive. MD simulations use numerous finite difference methods,

or integrators, to calculate a trajectory. The primary integrator used in

this work is the Leapfrog integrator.18

1.3 The Long Timescale Problem

The idea of inputing a set of atomic coordinates into a computer and

watching a protein fold, or an enzyme catalyse a reaction, sounds too

good to be true. Indeed, MD faces a major problem with the timescales

involved in most biological processes. This is demonstrated by the ex-

ample of protein folding - given a sequence of amino acids, what is

the lowest free energy structure? In theory this would be answered by

starting an MD simulation with a chain of amino acids and watching the

trajectory take the molecule into its the lowest free energy conforma-

tion. The quantity calculated here would be the average position of the

atoms in the conformation corresponding to the native structure. This

is unlikely to be found by MD as proteins fold on a timescale of mil-

liseconds to seconds and sometimes even longer,19 while the time step

of an MD simulation is around one femtosecond. This would require

propagating the trajectory over a very large number of time steps.

This brute force structure calculation has been shown to be possible

in principle by the Shaw group, who used a specially built supercom-

puter to fold a number of proteins using MD simulations.20–22 Despite

the promise of these simulations, the problem of long time scales re-

mains as the force fields used in MD simulations are parameterised by
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reproducing physical quantities of liquids, such as density, from short

timescale simulations. It has been shown that these force fields do not

remain fully valid when extended over the much longer timescales of

protein folding.23

The long timescales arise from the fact that the free energy land-

scape of a protein is very complicated, featuring many wells and barriers

with meta-stable states and kinetic traps. This makes the conformation

space hard to explore in sufficient detail in a reasonable amount of time.

Given a one dimensional reaction coordinate x which describes a

process such as protein folding, the probability of x having a particular

value is related to the corresponding free energy and the temperature

in the following way:

P (x) = e
−G(x)
kBT (1.1)

It is clear from equation 1.1 that areas of high free energy will

rarely be sampled because of the vanishingly small probability of the

trajectory arriving there. This means that the trajectory will move

downhill into whatever free energy well it finds first and stay there as

the barriers around the well are too high to be crossed in a timescale

accessible to simulation. Convergence will be poor as few regions of the

conformational space have been sampled. This problem, common to

many biological processes, is illustrated below in figure 1.7.
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Figure 1.7: in the ideal simulation the trajectory takes the molecule into
its lowest free energy conformation. In reality the free energy landscape is
complex, featuring many local minima with barriers between them. The
trajectory finds a minimum and stays there. The simulator cannot know
whether this is a local or a global minimum as only a small fraction of the
conformation space will have been sampled.

1.4 Long Timescale Methods

Numerous methods exist which deal with this problem. Known as ac-

celerated sampling methods, these techniques usually fall into one of

three categories: biasing methods, reactive flux methods and tempera-

ture methods. In this section some of the more common techniques are

reviewed.

1.4.1 Biasing Methods

With these methods a reaction coordinate x is defined to describe the

process under investigation. The potential energy is modified so that

the trajectory moves along x more easily, crossing barriers that would

otherwise be too high for an unbiased trajectory to move over.
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Umbrella Sampling

Umbrella sampling24;25 modifies the potential energy function by adding

a bias which pushes the trajectory over barriers. The modified potential

U ′ (r) is obtained by adding a biasing term which is a function of the

position along the reaction coordinate:

U ′ (r) = U (r) +W (x) (1.2)

where U ′ (r) is the new potential energy function, U (r) is the original

potential and W (x) is the biasing potential along the reaction coordi-

nate, usually chosen to be a harmonic potential or umbrella:

W (x) = k (x− x0)2 (1.3)

where k is a constant and x0 is the centre of the umbrella. In practice

many simulations, with biasing potentials centred on different values of

x0, are combined. Between the set of simulations the reaction coordinate

is covered by umbrellas, allowing all barriers to be crossed. This is shown

in figure 1.8.

Figure 1.8: umbrella sampling places a series of harmonic biasing potentials
along the reaction coordinate.

The unbiased free energy is recovered via the Weighted Histogram

Analysis Method or WHAM26. From the whole set of simulations, the
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biased probability P ′i (x) of observing a state in which the reaction co-

ordinate has a value of x in simulation i is

P ′i (x) =
P (x) e

−Wi(x)

kBT∑
i e
−U(r)+Wi(x)

kBT

(1.4)

where P (x) is the probability of the reaction coordinate having value x

with the unbiased free energy (see equation 1.1), Wi (x) is the biasing

potential used in simulation i and U (r) is the unbiased potential energy.

Recovering P (x) will allow the unbiased free energy along the reaction

coordinate to be obtained as, by rearranging equation 1.1,

∆G (x) = −kBT ln [P (x)] (1.5)

where ∆G (x) is the free energy a function of the reaction coordinate.

Computing P (x) is non trivial and convoluted.

A more advanced version of Umbrella Sampling is Adaptive Bias

Umbrella Sampling (27) where the biasing potential is expanded to cover

the whole reaction coordinate, and varied on the fly until the simulation

populates all states equally. At this point the combination of the free

energy and biasing potential results in a flat energy surface as all points

along the reaction coordinate are equally probable. The advantage of

this is that the free energy can be recovered as the negative of the biasing

potential rather than via more convoluted algorithms.

Metadynamics

Metadynamics fills in free energy wells to flatten out the energy land-

scape along the reaction coordinate.28 A biasing potential is constructed

by adding Gaussian potentials, until the well is filled up and then crosses

into the next well. This is then filled up and the process is repeated

until the free energy along the reaction coordinate is flat, allowing the

reaction coordinate to be well sampled. This is illustrated in figure 1.9.
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Figure 1.9: metadynamics fills up free energy wells with biasing potentials
(blue) and allows the trajectory (red) to travel easily along the reaction
coordinate.

As with adaptive bias umbrella sampling the biasing potential will

converge to the negative of the unbiased free energy along the reaction

coordinate.

In general, biasing methods quickly accelerate the sampling of a

reaction coordinate and allow the observation of many processes which

would be inaccessible to conventional MD. However, unbiasing the re-

sults to obtain equilibrium free energies and kinetics is often compli-

cated. Also for methods such as metadynamics, prior knowledge of the

free energy profile along the reaction coordinate is needed which limits

the number of applications.

1.4.2 Reactive Flux Methods

Reactive flux methods are based on Transition State Theory32;33 (TST)

in which the phase space is partitioned into two sections separating

states A and B with a dividing surface between them. The rate constant

for transition from A to B is defined as the flux through this dividing

surface:

KTST
AB = κ

e
−W(x∗)

kBT∫ x∗
−∞ e

−W (x∗)
kBT dx

(1.6)
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where x is the reaction coordinate describing the path from states A to

B, x∗ is value of x at which the dividing surface is located and W (x∗) is

the reversible work needed to move the system from state A to x∗. The

fraction represents the equilibrium probability of finding the system at

x∗ compared to the probability of being at A. The constant κ represents

the fraction of trajectories which, on reaching the transition state x∗,

cross over and reach state B.

Expressed informally, the TST equation states that the rate con-

stant for a transition from A to B is equal to the chance of finding

the system at the transition state, multiplied by the probability of the

trajectory then crossing over to state B and remaining there. Equation

1.6 forms the basis of reactive flux methods. The dividing surface x∗ is

formally the transition state between A and B however this does not

have to be the case; equation 1.6 is valid for arbitrary states A and B

which do not have to represent stable states. The position of the surface

x∗ can also be arbitrary.

In general these methods work by dividing up the phase space with

many such surfaces and calculating the rate constants between them.

A selection of reactive flux methods is reviewed below.

Milestoning

Milestoning29;30 places a series of planes or milestones in phase space

along a reaction coordinate. A set of conventional MD simulations are

initiated on and restricted to each plane, generating an ensemble of

conformations for each plane. Each of these conformations is then run

as a separate unbiased trajectory until it reaches the next plane, at

which point it is terminated. A trajectory initiated at plane Hn has a

lifetime τ+ if it ends at plane Hn+1, and τ - if it ends at plane Hn−1.

This is shown below in figure 1.10.
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Figure 1.10: in milestoning planes are placed along a reaction coordinate
between reactants and products. Conformations are released from a plane
until they hit the next one and the time taken from release to collision is
recorded.

The distribution of trajectory lifetimes going from plane Hn to

Hn+1 is written as Kn
+ (τ), and as Kn

- (τ) for those going from plane

Hn to Hn−1. K0
- and Km

+ are zero as below plane H0 and above plane

Hm there are no other planes to hit. If the equilibrium probability

P eq (n) of a trajectory being found on milestone Hn were known then the

free energy along the reaction coordinate could be found from equation

1.5, as such a distribution would represent the probability of finding a

trajectory along the reaction coordinate. The probability of finding a

trajectory at Hn at time t is

Pn (t) =

∫ t

0

[
1−

∫ t−t′

0

Kn (t− t′)

]
Qn (t′) dt′ (1.7)

where the integrand is the probability of arriving at Hn at time t′ and

not leaving before time t.

Kn (t− t′) is defined as Kn
+ +Kn

- and Qn (t′) is defined as

Qn (t′) = 2δ (t)Pn (0) +

∫ t

0

Qn±1 (t′′)K±n±1 (t− t′′) dt′′. (1.8)
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Equation 1.8 is the probability of a transition to Hn expressed

as a sum over the initial conditions of the starting trajectories Pn (0),

and over previous transitions to Hn+1 followed by a transition to Hn.

Solving equations 1.7 and 1.8 gives the equilibrium probability of finding

a trajectory at Hn at time t:

P eq (n) = lim
t→∞

Pn (t) (1.9)

where limt→∞ Pn (t) is found by running the trajectories until the distri-

butions of lifetimes converges. Now the free energy along the reaction

coordinate is obtained from equation 1.5.

A recent modification31 of milestoning replaces the dividing sur-

faces with polygons rather than simple planes. The polygons, known as

Voronoi polyhedra, divide the phase space into a network of tessellating

cells. Trajectories are initiated in each cell and confined within it. The

frequency at which the trajectory hits a boundary between polyhedra

is used to calculate the rate constant for passage between them. In this

way the phase space can be sampled in multiple dimensions rather than

along a one dimensional reaction coordinate.

Forward Flux Sampling

In forward flux sampling35 (FFS) a series of planes (denoted λ0, λ1, ...λn)

are defined in the phase space between the product and reactant regions

(A and B). Trajectories are initiated on λ0 which lies on the initial state

A. If a trajectory reaches λ1 then its conformation is stored and used to

restart multiple trial trajectories. If a trial trajectory reaches the next

plane λ2 then it is counted as a success, and as a failure if it returns to

λ1. Successful trajectories are again stored and used as starting points

for a fresh set of trial trajectories until the final state B is reached. This

is illustrated below in figure 1.11.
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Figure 1.11: in forward flux sampling, planes are placed along the phase
space between initial state A and final state B. A trajectory is released from
plane λ0 at state A and the conformation is stored if it reaches the next plane
λ1. This stored conformation is used to seed multiple trial trajectories from
λ1. The ratio of successful trajectories that reach the next plane (red) to
trajectories which return to the previous plane (blue) is used to calculate the
probability of passage between planes. Once this is known for each plane the
free energy from states A to B can be calculated.

The ratio of successful to failed trajectories at plane λm gives the

probability of transition from λm to λm+1. Once this is known for all

the planes then the free energy for the entire process is obtained by

using equation 1.5. FFS has the added advantage that a sequence of

successful trial trajectories that make it all the way to state B can be

joined together to form an unbiased trajectory representing the overall

transition from A to B.

In addition to the two methods described above there are many

other reactive flux methods which work in a similar way. These in-

clude transition path sampling,36 transition interface sampling,37 the

weighted ensemble method38 and the finite temperature string method.39

These methods accelerate the rate of sampling because a trajectory must

only reach the next boundary. This allows energy barriers to be crossed

as the boundaries act as a ratchet, allowing the process to be simulated
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in a series of small hops rather than one large unlikely jump from A to B.

The advantage of these techniques is that no biasing of the poten-

tial energy is needed which simplifies the generation of equilibrium free

energies and kinetics. However these methods often require multiple

trajectories to be run at different points in the phase space, compli-

cating the procedure and requiring prior knowledge of the free energy

landscape.

One of the major limitations of both biasing and reactive flux meth-

ods is the need to define a reaction coordinate. This is often difficult

as the motion of biomolecules is highly dimensional, with many pro-

cesses requiring movement accross a large proportion of the 3N degrees

of freedom available to a molecule of N atoms. Because of this it can be

hard to find a one dimensional reaction coordinate which differentiates

between the states of the system and describes the pathways between

them.40

1.4.3 Temperature Methods

Temperature methods vary the temperature of the simulation in order

to push the trajectory over free energy barriers. The most basic of these

techniques is simulated annealing.

Simulated Annealing

In simulated annealing41 the temperature is raised which lifts the system

over free energy barriers. The temperature is then reduced so that the

molecule falls into an energy minimum and the process is repeated, ex-

ploring multiple minima which would not be accessed by a conventional

trajectory, see figure 1.12.
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Figure 1.12: simulated annealing heats and cools the system to explore
multiple energy minima.

Replica Exchange

Simulated annealing has developed into the replica exchange method42

where separate simulations are carried out at different temperatures.

These simulations, known as replicas, do not interact but can swap

temperatures with their neighbours. Because of this the trajectories

take a random walk in temperature space which allows them to cross

barriers easily and cool down into minima that would otherwise not be

sampled.

The advantage of temperature methods is that the phase space

can be efficiently sampled without modifying the potential energy or

dividing up the phase space with boundaries. This requires no prior

knowledge of the process under investigation. Also there is no need to

define a reaction coordinate to describe the process of interest, which

is a major limitation of many accelerated sampling methods as a suit-

able coordinate does not always exist. However, simulated annealing

does not allow equilibrium dynamics to be reconstructed and replica

exchange is a complicated process to implement as many trajectories
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must run in parallel and swap temperatures with each other.

Now that MD has been introduced along with a selection of acceler-

ated sampling methods, the method used in this work will be explained.
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Chapter 2

Method

Boxed Molecular Dynamics (BXD) is a method of calculating the free

energy and kinetics of a slow process. It is a simple method which does

not require any modification of the potential energy or any prior knowl-

edge of the process under investigation. In this chapter the foundations

of BXD will be introduced along with the assumptions on which it relies

and the conditions under which these are valid.

2.1 Accelerated Classical Dynamics (AXD)

BXD is based on Transition State Theory32 and is similar to several re-

active flux methods. Boundaries are placed along a reaction coordinate

which partition the phase space into a series of boxes. The boundaries

are reflective and confine the trajectory within a box. This is done by

monitoring the value of the reaction coordinate as the simulation pro-

gresses. If the value crosses a threshold at which a boundary is located

then the velocities of the atoms are inverted with respect to the reaction

coordinate. This is illustrated in figure 2.1.
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Figure 2.1: the velocity of an atom is reflected with respect to the reaction
coordinate when a boundary is hit. If the velocity before the collision is v
with a component vparallel along the reaction coordinate then the velocity
after the reflection is given as v′ = v − 2vparallel.

To understand the link with TST consider a simple system of two

reflecting boundaries shown below in figure 2.2. This set-up is an early

version of BXD known as Accelerated Classical Dynamics (AXD).

Figure 2.2: the AXD set-up. Reflective boundaries lock the trajectory in
the region near the transition state. The accelerated rate constant kAXD is
quickly converged as the important region of phase space near the transition
state is well sampled.

One boundary is placed on the transition state while another is

22



2.1 Accelerated Classical Dynamics (AXD)

placed nearby on the reactants side, locking the trajectory in the area

of phase space Γ1. According to TST the reaction rate will be the

frequency at which a trajectory hits the boundary between Γ0 and

Γ1. TST assumes that trajectories cross the boundary at the transi-

tion state, while in BXD and AXD the trajectory is reflected from the

boundary. However these two cases are equivalent providing the boxes

are in equilibrium. This is because a reflected trajectory is the same

as a trajectory which leaves and is replaced by an incoming one on the

reflected path.43

By locking the trajectory in Γ1 the region around the transition

state is sampled more often leading to an accelerated rate constant

kAXD. This is related to the actual rate constant kTST in the following

way:

kTST = kAXDPCORR (2.1)

where kTST is the actual rate constant for the reaction, kAXD is the

accelerated rate and PCORR is a correction factor equal to the probability

of finding the system within Γ1, calculated as

Pcorr =
Γ1

Γ1 + Γ2
(2.2)

which is the fraction of reactant phase space enclosed in region Γ1. Pcorr

can be reearanged into a function of the rate constants for diffusion

between Γ1 and Γ2:

Γ1

Γ1 + Γ2
=

1

1 + Γ2
Γ1

=
1

1 + k1,2

k2,1

. (2.3)

Equation 2.2 can be derived from the principles of TST, as the

TST rate constant for the reaction shown in figure 2.2 is defeined as

kTST =
〈|µ|δ(q, p)Θ(q, p)〉

ΓR
(2.4)
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where kTST is the TST rate constant for diffusion from the reactant state

to product space, |µ| is the magnitude of the velocity vector normal to

the dividing surface in phase space, Θ(q, p) is a function of the position

q and momenta p of the system which is unity when the system is in the

reactant region R and zero otherwise, δ(q, p) is a Dirac delta function

which is unity at the dividing surface and ΓR is the phase space volume

of region R. As the reactant space is divided by a reflecting boundary

into Γ1 and Γ2 equation 2.4 can be rewritten as

kTST =
〈|µ|δ(q, p)Θ(q, p)〉

Γ1 + Γ2

=
〈|µ|δ(q, p)Θ(q, p)〉

Γ1

Γ1

Γ1 + Γ2

= kAXDkCORR

(2.5)

which gives equation 2.2, as the term 〈|µ|δ(q,p)Θ(q,p)〉
Γ1

is directly calculated

from AXD by locking the trajectory in Γ1. The rate constants k12

and k21 necessary to calculate PCORR can be obtained by locking the

trajectory in box Γ1+Γ2. The speed-up gained from AXD is due to the

fact that it is much faster to converge kAXD and PCORR separately than

it is to converge kTST . This is because an unconstrained trajectory

would rarely visit the region near the transition state if there was a

barrier between reactants and products.

2.2 Main Idea of BXD

BXD works in the same way as AXD but with multiple boundaries

placed along the whole reaction coordinate. The trajectory starts in a

box and after a certain number of collisions with the next boundary it

is allowed through into the next box. This process is then repeated and

the trajectory passes into the next box, and so on until the final box has

been reached and the direction is reversed. The location of the boxes

does not affect the result as TST is still valid if the boundary does not
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lie on a transition state.33

Placing these boundaries along the reaction coordinate allows free

energy barriers to be crossed quickly. This is due to the fact that, after

the trajectory enters a new box, it cannot go back into the previous

one. In this way the boxes act as a ratchet, preventing the trajectory

from rolling back downhill. This is illustrated in figure 2.3. When the

final box has been reached the direction of travel is reversed and the

process continues until the entire reaction coordinate has been sampled

multiple times in both directions.

Figure 2.3: reflecting boundaries (red lines) along the reaction coordinate
confine the trajectory (blue ball) into boxes allowing free energy barriers to
be crossed. The boxes act like a ratchet and stop the trajectory rolling back
downhill.

Figure 2.4 shows a plot of the reaction coordinate value against

time for a typical BXD simulation, illustrating how the trajectory moves

through the boxes.
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Figure 2.4: a plot of the reaction coordinate value against simulation time
from a BXD simulation shows how the trajectory (blue) moves through the
boxes and samples the phase space. The reflective boundaries are shown by
red lines.

In this way the entire reaction coordinate is scanned until the sam-

pling converges. Splitting the phase space into boxes not only allows

free energy barriers to be crossed, it also makes it possible to calculate

the rate constants and free energy along the reaction coordinate. This

is shown in figure 2.5.

Increasing the resolution in this way reveals many fine details of

the free enrgy landscape. These details are generally meaningful as the

uncertainty in the free energy, resulting from the distribution of first

passage times used to calculate the rate constant, is usually less than

one percent. This figure is very low because on each boundary there

are tpyically over 100000 first passage times. It should be noted that in

this work the free energies presented are the result of averaging 10 to

20 individual free energies and the uncertainty is calculated as the stan-

dard deviation of the set of free energies used to calculate the average.

This error is larger than the error coming from the distribution of first

passage times, which suggests that independent trajectories extensivly

sample slightly different pathways.
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Figure 2.5: illustration of BXD showing boundaries (ρm, ρm−1, ...ρ0) placed
along the reaction coordinate, dividing the phase space into boxes. The rate
constants between each box and its neighbours are quickly calculated and are
used to obtain the free energy along the reaction coordinate. Dotted lines
show smaller bins within the boxes which increase the resolution of the free
energy.

BXD is similar to umbrella sampling in that the trajectory is re-

stricted in various windows placed in phase space, however the main dif-

ference is that BXD uses a square well restraint rather than a harmonic

constraint, and BXD also provides simultaneous kinetics and thermo-

dynamics without the need for compliacted unbiasing routines.

While the trajectory is in box m the time between successive col-

lisions with the boundary ρm−1 is recorded. These times are referred to

as first passage times (FPTs). The set of FPTs for each boundary is

used to calculate the rate constant for crossing the boundary:

km,m−1 =
1

〈τm,m−1〉
(2.6)

where km,m−1 is the rate constant for diffusion from box m into box

m − 1 and 〈τm,m−1〉 is the mean of the first passage times (MFPT)

on boundary ρm−1. Once the rate constant for diffusion in the opposite
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direction is known then the equilibrium constant between the two boxes

is calculated as

Km,m−1 =
km−1,m

km,m−1

(2.7)

where Km,m−1 is the equilibrium constant for diffusion between boxes

m and m− 1. The free energy difference between boxes m and m− 1 is

simply

∆Gm,m−1 = −RT lnKm,m−1. (2.8)

In this way it is possible to obtain the free energy along the whole

reaction coordinate. It is also possible to calculate the probability of a

trajectory populating any box m as a function of time. For a series of

boxes the rate of change of the population of box m is

dnm (t)

dt
= km−1,mnm−1 (t)+km,+1,mnm+1−nm (km,m−1 + km,m+1) (2.9)

where nm (t) is the population in box m as a function of time. The

right hand side of equation 2.9 is the flux entering the box minus the

flux leaving. For a system of N boxes equation 2.9 can describe the

population of every box in matrix form:

dn (t)

dt
= Mn (t) (2.10)

where M is an N by N matrix of rate constants and n (t) is a vector

of length N of the populations of each box as a function of time. The

solution to equation 2.10 can be expressed through the eigenvalues and

eigenvectors of M as

n (t) = UeλtU−1n (0) (2.11)

where n (0) is a vector containing the initial population of each box

which is assigned from a Boltzmann distribution, U is the eigenvector
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matrix obtained by diagonalising M and λ is the vector of correspond-

ing eigenvalues. In general the eigenvalues are all negative and one will

be separated from the others by several orders of magnitude. If an irre-

versible reaction is being studied then the flux out of the products box

can be set to zero and the resulting lowest eigenvalue is taken to be the

rate constant for the reaction.

BXD has much in common with other reactive flux sampling meth-

ods such as milestoning and forward flux sampling. All three methods

place boundaries in phase space along a reaction coordinate, allowing

the barriers to be crossed while calculating the free energy along the

coordinate. However, BXD has the advantage of yielding kinetic and

thermodynamic information simultaneously. BXD is also a very simple

technique; a single trajectory can be left alone by the user to sample

the reaction coordinate. In milestoning, multiple trajectories need to be

initiated in different boxes which is more complicated and also requires

prior knowledge of the conformational space. In forward flux sampling

trajectories must be stored at various points and used to start a new

batch of trial runs.

2.3 High Resolution BXD

The resolution of the free energy can be increased in the analysis of

a BXD simulation. There are two methods of doing this: a WHAM

approach or by box splitting.

2.3.1 WHAM for BXD

In our adaptation of the Weighted Histogram Analysis Method (WHAM)

the phase space within each box is divided up into smaller bins, shown

as dashed lines within each box in figure 2.5. Note that these bins are

for analysis purposes only and are not present in the simulation. Once
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the free energy has been calculated along the reaction coordinate the

probability of the trajectory being in box m is given as

P (m) =
1∑

n e
−∆Gn
kBT

e
−∆Gm
kBT (2.12)

where −∆Gn is the free energy of box n and the summation is the total

free energy of all the other boxes. The box to box free energies are

normalised so that

∑
n

P (n) = 1. (2.13)

Given that the trajectory is in box m, the probability p (j) of being in

the jth bin within box m is the amount of time spent in bin j divided

by the total time spent in box m. This probability is then multiplied by

the probability of being in box m to give the normalised probability of

finding the trajectory in bin j compared to the rest of the entire reaction

coordinate:

P (j) = P (m) p (j) (2.14)

In this way, the resolution of the free energy can be increased

to an arbitrary level. This procedure is more simple and stable than

the WHAM algorithm used to recover Boltzmann free energies from

umbrella sampling.

2.3.2 Box Splitting

Box splitting is the other method of increasing the resolution of the free

energy. In the analysis stage each box is split into smaller parts, shown

in figure 2.6.
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Figure 2.6: the resolution of the free energy can be increased by adding
extra boxes in the analysis stage.

Note that the smaller box is only for analysis purposes and is not

present in the simulation. The rate constant kAB is calculated directly

from the BXD simulation using equation 2.6. The lower half of figure 2.6

is similar to the set-up shown in figure 2.2 hence equation 2.1 applies,

as kAB can be written as the product of an accelerated rate constant

and a correction factor:

kAB = kCBPCORR (2.15)

Because of equations 2.2 and 2.3 it is possible to rewrite equation

2.15 as

kAB = kCB
1

1 +KCA

= kCB
1

1 + e
−∆GCA
kBT

(2.16)

whereKCA is the equilibrium constant between boxes C and A (equation

2.7) and ∆GCA
RT

is the free energy difference between C and A, calculated
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as

∆GCA = −kB ln
P (C)

P (A)
(2.17)

where P (C)
P (A)

is the ratio of the probabilities of finding the trajectory in box

C and box A. This ratio is equal to the ratio of the time spent in each box

which is obtained from analysing the plot of reaction coordinate against

time. By rearranging equation 2.16 and repeating for the rate constants

between box C and B it is possible to double the resolution of both the

free energy and the rate constants along the reaction coordinate. Figure

2.7 shows the effect of increasing the resolution of the free energy using

the BXD implementation of WHAM.

Figure 2.7: increasing the resolution of the free energy along end to end
distance for peptide P1 (see Chapter 4). The resolution was increased from
1 Å to 0.25 Å using our WHAM approach.

Now that BXD has been introduced the assumptions on which it

relies will be examined along with the conditions under which they are

valid.
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2.4 Decorrelation and Ergodicity

2.4 Decorrelation and Ergodicity

BXD relies on the assumption that the motion within a box is stochastic

and that sequential hits and velocity inversions are uncorrelated, i.e.

the time between hits must be longer than the correlation time. In

general this is not the case; a trajectory reflected from a boundary

can sometimes turn back quickly. These short-time-correlated events

need to be accounted for. This is done by removing the FPTs which

correspond to these fast events, a process known as decorrelation.43

Figure 2.8 shows a set of FPTs from a boundary in a BXD simulation.

Figure 2.8: a typical distribution of first passage times for a boundary be-
tween boxes in a BXD simulation. The initial very steep section corresponds
to fast correlated collisions which are removed from the set of FPTs used to
calculate the rate constant. This ensures that the assumption of stochastic
motion within each box is kept valid.

The log frequency distribution of FPTs shown in figure 2.8 is split

into two parts. The initial steep section comes from fast correlated colli-

sions against the boundary while the flatter section comes from ergodic

collisions where the trajectory has had time to come to equilibrium in

between hits. To decorrelate the statistics the FPTs from the steep

section are removed. Then the rate constant in equation 2.6 will only

be calculated with FPTs which are greater than the correlation time of

the system τcor.
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In practice this is done by defining a cutoff value τcor below which

FPTs are ignored. The free energy is then calculated for different values

of τcor which is increased until the free energy no longer changes. At

this point the statistics are decorrelated and the value of τcor at which

this happens is the characteristic correlation time for that system. An

example of decorrelation from an actual BXD simulation of a cyclic

peptide precursor S7 (see chapter 4) is shown in figure 2.9.

Figure 2.9: to remove FTPs corresponding to fast correlated motion a cutoff
value τcor is defined. This is varied until the free energy no longer changes. In
this example the free energy no longer changes when τcor is increased above
50 fs hence this was taken as the decorrelation time for this simulation of
cyclic peptide precursor S7 (See Chapter 4).

Once the statistics have been decorrelated equation 2.1 is valid as

dynamic recrossing no longer contribute to the MFPT.

The other condition that must be met is that the boxes must be

in equilibrium with each other. This is because equation 2.2 assumes

that the system is ergodic i.e. every point in phase space has an equal

probability of being visited by a trajectory. This is possible only if the

trajectory has time to forget its previous state after a collision. If the

box is too small then this will not be possible as the time in between

collisions with a boundary will be less than τcor so the trajectory will
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2.4 Decorrelation and Ergodicity

never relax.

It is possible to check that the boxes are large enough by inspecting

the plot of the reaction coordinate value against time. One such plot

is shown in figure 2.10 for a box that is too small and a box that is

sufficiently large. If the box is too small then the trajectory can be seen

to hit a boundary very frequently whereas if the box is large enough

then the trajectory has plenty of time to explore the box in between

collisions with the boundary.

Figure 2.10: if a box is too small (left) then the trajectory hits the bound-
aries (red) too frequently and cannot equilibrate within the box. Decorrela-
tion here is impossible as there are no FPTs longer than the characteristic
decorrelation time. If the box is large enough (right) then decorrelation is
possible as the trajectory can explore the box and come to equilibrium in
between collisions with the boundary.

Another indication of the boxes being too small is if there is no

value of τdecor for which the free energy converges, as by definition if a

box were smaller than the correlation length then decorrelation would

not be possible.

For BXD to be accurate the rate constants must be converged. To

check for convergence the data from a BXD simulation is split in half.
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The free energy is calculated from half of the data as well as from the

full dataset. If the two free energies are the same then the simulation

has converged. See Appendix A for a more detailed description of how

BXD is used and a worked example of obtaining a free energy profile.

BXD has recently been used to get converged rates and free ener-

gies for processes up to a timescale of seconds44 including desorption of

ions from monolayers, diamond etching and peptide cyclization. Now

that BXD has been introduced along with an assessment of the con-

ditions under which it is valid, the next chapters will introduce some

recent applications and developments.

The aim of the first application reported here was to investigate

whether BXD could be used to succesfully model AFM protein pulling:

a very long time scale process with a parge protein molecule. By bench-

marking against readily available experimental data it was possible to

prove that BXD was capable of accuratly simulating a process which

traditionally is very computationally demanding, and to push the limits

of what could be achieved by using an enhanced sampling algorithm on

modest hardware. The second application was undertaken to show that

BXD has practical uses and can be used to help solve an urgent problem

in medicinal science: the shortage of antibiotics.
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Chapter 3

Atomic Force Microscopy

Protein Pulling

3.1 Introduction

Proteins are an important component of all bimolecular machines where

their mechanical properties are often crucial. Titin for example is a

molecular spring which plays a part in human muscle function; defects

on the part of titin have been linked to heart and lung failure.45;46 Me-

chanical resistance is also important for many other proteins such as

those that bind cells together in living tissue.47 The mechanical proper-

ties of proteins have been studied by Atomic Force Microscopy (AFM),

where an AFM probe is used to pull and unfold single protein domains

or chains of domains. The aim of these experiments is to shed some

light on protein folding and unfolding pathways and to discover why

certain proteins are more mechanically robust than others.45

The first AFM studies of the mechanical properties of proteins was

done by Rief, Gaub and Fernandez et. al. in 1995.48;49 These early stud-

ies used an AFM probe to measure the interaction force between two

strands of DNA. One strand of DNA was attached to a solid bead while

another was attached to the AFM tip. The two strands were brought

together for a certain amount of time and then separated, with the force
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needed to separate the strands being measured by the AFM probe. The

authors found that the force needed to separate the two strands varied

depended on how long the two strands were left in contact before being

pulled apart.

These studies were important because they took advantage of the

then recent discovery that functional groups could be attached to AFM

tips and used to pull apart large molecules, opening up a whole new field

of experimental biochemistry. The dependence of the force of interac-

tion between the DNA strands on the initial contact time suggested that

some dynamic process such as conformational change was responsible

for the interactions which were being probed.

This is highly relevent to computational studies because techniques

such as MD can in principle be used to directly observe the relationship

between the dynamics of a biomolecule and its resistance to force.

AFM is a technique whereby a sharp nano scale tip is attached to

a thin cantilever. The position of the cantilever can be measured via

laser reflection to a very high level of accuracy down to the nanometre

scale. Once in contact with a material the deflection of the cantilever is

known. Knowing this displacement as well as the force constant of the

cantilever allows the force acting upon the tip to be calculated. In AFM

protein pulling one end of a chain of protein domains, or concatemer,

is attached to the cantilever tip while the other is anchored to a solid

surface. The tip is then retracted causing the domains to unfold. This

is shown below in figure 3.1.
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Figure 3.1: the AFM protein pulling experiment. An AFM tip pulls apart
a chain of protein domains.

Two methods of AFM pulling are common: Force Clamp (FC)

where the tip is retracted at a constant force, and Velocity Clamp (VC)

where the tip is retracted at constant velocity. FC experiments50–54

produce a plot of extension versus applied force or extension vs time at

a range of forces, and VC experiments55–59 record the force exerted by

the cantilever against protein extension. Typical experimental traces

from VC and FC methods are shown below in figure 3.2.
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Figure 3.2: typical experimental traces from AFM pulling experiments. FC
mode (top) keeps the force constant and records extension against time, with
each step corresponging to a single domain unfolding. VC mode (bottom)
extends the protein at a constant speed and records the force exerted against
extension, with each peak in the trace corresponding to the unfolding of a
domain. The increasing height of the peaks is due to the domains unfolding
at higher forces due to the reduced elasticity in the chain as domains become
straightened out. Reproduced from Ref.60 with permission from The Royal
Society of Chemistry.

Comparison of these experiments with MD simulations should be

possible and will reveal otherwise inaccessible information about pro-

tein dynamics, which could lead to insights into the factors affecting

the mechanical stability of proteins as well as the mechanism of their

mechanical unfolding.

However the time scale of a typical AFM pulling experiment is

much longer than anything that can be simulated by MD. VC exper-

iments are performed on a timescale of microseconds to milliseconds

while FC unfolding can take as long as seconds. The free energy of

40



3.1 Introduction

AFM protein extension is very high meaning that it is a rare event not

often sampled by conventional MD.

In addition to the standard long timescale problem the dynamics of

AFM protein pulling varies with the pulling speed. High speed pulling

experiments tend to involve dynamical pathways whereas low speed ex-

periments involve a more stochastic process where more pathways and

conformations are explored. Despite attempts to increase the timescale

of simulation or reduce the timescale of pulling, simulation and experi-

ment have not yet met in the middle.

In this chapter BXD is applied to the AFM protein pulling exper-

iment to replicate both VC and FC modes.

Experimental data are reproduced and insights into the mechanical

unfolding process are presented. AFM unfolding will be simulated for

three protein domains: Protien L which binds antibodies, I27 which

forms part of the muscle protein Titin and IM9 which plays a role in

the immune system. The structures of these domains are shown below

in figure 3.3.
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Figure 3.3: the structures of the protein domains that feature in this study.
Structures are taken from the RCSB Protein Databank: 1IMQ (IM9), 1TIT
(I27) and 1K53 (Protein L).

3.1.1 Existing Methods of Simulation

Most simulations of the AFM experiments involve the application of an

artificial force to the system; a technique known as Steered Molecular

Dynamics (SMD).61 A virtual harmonic spring is attached to each end

of the protein. Moving the springs apart at constant velocity applies a

force which pulls the ends of the protein apart in a similar way to how

the AFM experiment operates. The extension of the spring is recorded

as the protein unfolds and this provides a plot of force versus extension

which mimics the VC experiments. SMD can also mimic FC experi-

ments by applying a constant force along the vector between the ends

of the protein, pulling them apart with a constant force rather than at

a constant speed.

SMD has been used to investigate the mechanical unfolding of a

number of protein domains. The I27 domain of titin is an all beta

sheet domain which is well studied by experiment and simulation. VC

experiments have found that I27 has a high mechanical strength and

consequently unfolds at a high pulling force of around 150 to 200 pN
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at a range of pulling speeds between 1 and 5000 nm per second.55;62 As

the force builds up I27 extends by a very small amount until the peak

unfolding force is reached, after which a rapid collapse of the structure

leads to large extensions and a decrease of the force.57;62 Theoretical

studies63–67 have used SMD to pull I27 and have found that the me-

chanical behaviour comes from the backbone hydrogen bonds between

the terminal beta sheets.

Early SMD work by Schulten, Rief and Fernandez et. al.55;64–67

reported the sequence of events undergone by I27 when a force is ap-

plied in simulation. The initial 10 Å of extention does not result in

any structural change. After the extension increases to around around

14 Å the A’ and G beta strands slide past each other as 6 hydrogen

bonds between them rupture. Figure 3.4 shows these strands in I27

and the hydrogen bonds between them. After these strands separate

the remaining strands fail one by one at lower pulling forces until the

molecule is linear.

Figure 3.4: the structure of I27 and the hydrogen bonds between the A’ and
G strands which are responsible for the mechanical strength of the domain.

Protein L is a mixed alpha + beta domain which shows similar me-

chanical strength and unfolding behaviour to I27.68 SMD was used to

investigate the mechanical unfolding of protein L61 which was found to
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be similar to I27 in that a cluster of backbone hydrogen bonds between

beta strands withstand a high force and then suddenly fail, leading to

complete unfolding. SMD suggests61 that when the force is initially ap-

plied the N terminal beta strand reorientates to align with the applied

force. This minor conformational change yields a very small extension

yet is responsible for the peak unfolding force. This rearrangement dis-

rupts the hydrogen bonds between the N and C terminal beta strands,

leading to a rupture of the contacts between them. The structure of

Protein L and the hydrogen bonds responsible for the initial force re-

sistance are shown below in figure 3.5. The main difference between

Protein L and I27 was found to be that I27 populates a number of in-

termediate states along the unfolding pathway while Protein L unfolds

via a simple two state system.61

Figure 3.5: the structure of Protein L and the hydrogen bonds responsible
for the initial resistance of the domain according to SMD studies61.

All alpha domains such as IM9 unfold at much lower forces than

all beta, alpha + beta or alpha/beta domains.57;61 This is thought to be

due to the absence of a cluster of backbone hydrogen bonds which are

loaded all at once, and share the force as is found in beta sheets. Instead

the backbone hydrogen bonds are loaded sequentially and fail one at a

time, leading to a gradual unravelling at low force rather than the initial

resistance followed by sudden failure displayed by I27 and Protein L.61
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This view is confirmed by computational studies where SMD was used

to unfold a number of all alpha domains.69–71 In summary SMD has

been used to show that the secondary structure of a protein or domain

is a major factor in determining the resistance to pulling.55 Another

major factor is the direction in which the force is applied, with proteins

being much stronger if their topography results in the force being ap-

plied along the long axis of betra strands which are hydrogen bonded to

each other, due to the fact that the lead is then shared between multiple

hydrogen bonds.57;61, such as with I27 and the A’-G mechanical clamp

(see figure 3.4).

SMD applies a pulling speed or force that is several orders of mag-

nitude greater than that of the corresponding experiment. The effect of

this on the validity of the simulations is under debate. Experiment has

shown that for I27 the excessive pulling speeds and forces used have not

negatively impacted the results of the simulations, however it is possible

that it is a problem for systems that do not share the same mechanical

characteristics as I27.71 BXD differs in that no force or pulling speed

is applied, instead the system diffuses along the reaction coordinate of

end to end distance with no modification of the potential.

3.2 Method

Calculations were performed using the BXD subroutine implemented in

CHARMM.72 After every time step the BXD code recieves the atomic

positions and velocities from the CHARMM integrator which are used

to update the value of the reaction coordinate. If the value of the reac-

tion coodinate has change such that a boundary has been crossed then

the velocity of each atom is inverted with respect to the reaction coordi-

nate (see figure 2.1), and the new inverted velocities are passed back to

the integrator. The inversion is performed in the centre of mass frame
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to converve linear and angular momentum.

The reaction coordinate was chosen as the distance between the

two termini of the protein domain as this would correspond to the co-

ordinate sampled by the AFM pulling experiments. This end to end

distance coordinate was later translated to extension by subtracting

the equilibrium value. The EEF1 (Effective Energy Function 1) im-

plicit solvent model73 and CHARMM 19 force field were used for the

simulations along with the Langevin thermostat set to 303 K. To begin

with the PDB structures for the three domains were equilibrated un-

der the forcefield and solvent model for 500 ns before BXD simulations

commenced.

For IM9 and Protein L boxes were placed at intervals of 0.75 Å

from 11.25 Å to 320.25 Å, and from 21 Å to 320.25 Å respectively.

For I27 the boxes were at intervals of 0.5 Å from 20 Å to 330 Å. Be-

tween 5000 and 2000 inversion events were required in each box before

a boundary could be passed. Initially the reaction coordinate was sam-

pled downwards from zero extension to the lowest boundary in order to

fully explore the local minimum before the direction was reversed and

the protein domain began to extend. Sampling was continued until a

linear conformation had been achieved.

Simulations were also carried out with boxes at intervals of 0.5 Å,

0.25 Å and 0.125 Å in order to ascertain that the result was independent

of box size and placing. The free energy along end to end distance for

protein L, calculated at different box sizes, is shown in figure 3.6.
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Figure 3.6: free energy along end to end distance for Protein L with box
sizes of 0.5 Å (red) and 0.75 Å (blue). Solid lines represent the average
free energy of 10 individual trajectories. Dotted lines show one standard
deviation. The uncertainty resulting in the distribution of FPTs used to
calculate the rate constants (see Chapter 2) is very small as the trajectory
remains in each box for a long time. The more significant uncertainty shown
here result from each trajectory sampling a slightly different pathway. The
uncertainty at small extensions is very small as the unfolding pathways are all
the same initially: The force builds up until the hydrogen bonds between the
terminal beta strands rupture. At higher extensions the uncertainty increases
as a wider range of pathways can be accessed as units of secondary structure
break down.

It is clear from figure 3.6 that the free energy does change slightly

with box size. However for Protein L, 0.5 Å was found to be the limit of

how small the boxes could be before it became impossible to decorrelate

the trajectories. Presumably this is because the correlation length for

Protein L is slightly below 0.5 Å. With 0.75 Å boxes the decorrelation

procedure worked well while with larger boxes the simulation took too

long. Because of this it was decided to use a box size of 0.75 Å. For I27

the trajectories were well decorrelated with a box size of 0.5 Å while

larger boxes did not allow the simulation to proceed, hence a box size of

0.5 Å was chosen. For each protein domain 30 unfolding BXD runs were
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obtained. The total simulation time for each domain was of the order

of tens of nanoseconds. The decorrelation time used in the procedure,

which removes correlated short time events, was found to be 600 fs for

each system. This value was obtained by calculating the free energy at

a number of different decorrelation times and taking the smallest value

for which it had converged (see figure 3.7).

Figure 3.7: decorrelating the free energy for I27. Different decorrelation
times, shown in femptoseconds by the number on the end of each line, were
used to calculate the free energy. On going from 600 to 1000 fs the free energy
no longer changed so 600 fs was taken as the correlation time for I27.

The set of box-to-box rate constants yields both the free energy

and all the information necessary for a description of the kinetics of

unfolding along the pulling reaction coordinate.

3.2.1 Treatment of Solvent Effects

Including water molecules in the unfolding simulations would be pro-

hibitively expensive due to the very large box that would be needed

to cover an extended protein. Therefore the solvent effects are treated

implicitly with the EEF1 solvent model73 which modifies the potential

energy of the system to mimic the effects of water. The solvation free
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energy of a molecule is modelled as

∆Gslv(total) =
N∑
i=1

∆Gref
i −

N∑
i=1

N∑
j 6=i

fi(rij)Vj (3.1)

where N is the number of solute atoms, ∆Gref
i is the solvation free

energy of atom i, and Vj is the volume of atom j. The functionf(rij) is

the solvation free energy density function

f(rij) =
αj

4πr2
ij

e
−

„
rij−Rj
λj

«2

(3.2)

where rij is the distance between atoms i and j, Rj is the Van Der

Waals radius of atom j, λj is the correlation length of atom j (3.5 Å for

most atoms) and αj is a coefficient of proportionality given by

αj =
2∆Gfree

j

λj
√
π

(3.3)

where Gfree
j is the solvation free energy of the isolated atom j, which is

close to ∆Gref
j . The main point of equation 3.1 is that for each atom,

the solvation free energy is taken to be that of itself fully immersed in

water, minus a term to account for the atom being partially exposed.

The solvation energy from equation 3.1 is added to the potential energy

of the solute derived from the force field:

WEEF1 = U (r) + ∆Gslv (3.4)

where WEEF1 is the new effective energy under the EEF1 model, U (r)

is the potential energy from the force field and Gslv is the solvation free

energy from equation 3.1. While the EEF1 model takes the solvent into

account at the molecular scale, Langevin Dynamics is used to replicate

the bulk properties of water. This is done by modifying the Newtonian

equations of motion to take into account friction and random collisions

with water molecules, which is added onto the force derived from the
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gradient of U (r), the potential energy derived from the force field. The

Langevin equation is defined as

Fi (t) = mia+ γivimi +
√

2γkBTmiRi (t) (3.5)

where Fi (t) is the force acting on atom i as a function of time, γi is

the friction coefficient between water and atom i, kB is the Boltzmann

constant, T is the temperature of the simulation and Ri (t) is a function

introducing random collisions between atom i and water. Langevin Dy-

namics allows the temperature of the simulation to be controlled as T

affects the amplitude of the thermal jostling experienced by the solute

atoms. The friction coefficient γi allows the viscosity of bulk water to

be replicated.

Mechanical unfolding has for I27 at least, been shown to be partly

mediated by water as after the initial rupture of the A’-G hydrogen

bonds (see figure 3.4) the hydrophobic core of the domain is destabilised

by the water which acclerates the collapse of the protein structure.55;64

It is also possible that the hydrogen bonds which are broken in the A’-

G rupture are re-formed with water which would lower the barrier to

unfolding. However the relaxation time of water is typically between 1

and 2 ns74 meaning that, for a simulation using explicit water, unless a

conformation persists for at least this time then the arrangment of the

water molecules around it will not be realistic and the conformation will

not be properly stabilised. Because accelerated sampling methods such

as BXD and SMD often involve rapid conformational change, with SMD

unfolding simulations often completly unfolding the protein in around

a single nanosecond63–67, it may be that implicit solvent models are the

more appropriate choice.61
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3.3 Results and Discussion

3.3.1 BXD Calculation of Unfolding Free Energies

and Replication of VC Experiments

Free energies as a function of the end-to end distance and their gradi-

ents are shown in figures 3.8, 3.9 and 3.10 for I27, protein L and IM9

respectively. Points A to E indicate particularly important regions of

the free energy, corresponding to minima and maxima of the force. The

snapshots of the structures at those regions are also shown. The dashed

line and dotted line represent one standard deviation from the calcu-

lated average. For the free energy profiles this was calculated by taking

the standard deviation of the ensemble of free energies from each indi-

vidual unfolding trajectory. Each free energy profile was converted into

force by differentiation and then the average force and standard devia-

tion were taken from the ensemble of individual force versus extension

plots.
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Figure 3.8: free energy and force along the pulling coordinate for I27.
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Figure 3.9: free energy and force along the pulling coordinate for Protein
L.
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Figure 3.10: free energy and force along the pulling coordinate for IM9.
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The main insights from the above figures are that the mechanical

strength of a protein depends on the secondary structure of the region to

which the force is initially applied, which can be determined by observ-

ing which region is the first to fail. For I27 the force increases rapidly,

to a high value with little extension until hydrogen bonds bentween the

A’ and G beta strands (see figure 3.4) rupture, in agreement with SMD

studies63–67. For IM9 the force is loaded onto alpha helix; the hydro-

gen bonds between them fail sequentially leading to gradual unfolding

of the whole domain at low forces. Protein L has a mixture of alpha

helixes and beta sheets and and a force-extension profile which is simi-

lar to that of I27. The initial force is loaded onto a series of hydrogen

bonds between beta strands rather than onto an alhpa helix, support-

ing the suggestion that the resistance depends on the local structure

of the region which is first to experience the force. The partially un-

folded structures of Protein L and I27 show that beta sheets fail one at

a time after the initial rupture which leads to more peaks at lower forces.

The structures along the unfolding pathway (figures 3.8 and 3.9)

show that the initial rupture of I27 and Protein L exposes the hydropho-

bic core to the water which may result in issues with the implicit solvent

model, as the hydrophobic effect and water stabilisation of ruptures hy-

drogen bonds will not be fully reproduced, however because of the fast

time scale at which these conformations change in the simulation an

implicit solvent model may still be better.61

It should be noted that mechanical unfolding is a completely differ-

ent process to thermal unfolding in vivo.75 While thermal unfolding free

energies feature small barriers separating stable states, the AFM probe

pulls the protein apart, forming an unnatural linear conformation with

a very high free energy. This is supported by the fact that there is no

correlation between the mechanical and thermal stability of a protein.76

The difference between the two kinds of unfolding is illustrated in figure

3.11.
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Figure 3.11: in vivo unfolding features stable states separated by small
energy barriers. Unfolded states retain much of their secondary structure.
With mechanical unfolding the AFM probe pulls the protein apart to higher
and higher free energies along an unnatural pathway.

As the free energy represents thermodynamical free energy along

the reaction coordinate x, by definition the change of the free energy

is equivalent to mechanical work required for displacement along the

reaction coordinate (protein extension in this case), and mechanical

force is given by the gradient of the free energy,

F =
dW

dx
≈ dG

dx
(3.6)

where W is the work required, provided that the extension is slow

enough for equilibrium thermodynamics to be valid. In the limit of

higher speed the kinetics of protein pulling should be considered in

more detail. As the kinetics of mechanical unfolding changes with pul-

ing speeds a number of models have been developed to describe this de-

pendence.77–79 In principle BXD theory can be applied to a wide range

of pulling speeds and the relationship of the pulling force and pulling

speed can be obtained, but this study focuses on the limit of slow speed
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where simple thermodynamical argument leads to equation 3.6.

Some features of the free energies are similar for all three protein

domains. At low extensions near equilibrium there is a well, which is

steep for the beta containing domains I27 and L, and relatively smooth

and broad for the all alpha IM9 domain. This difference is due to the

fact that, for I27 and protein L, the initial force is loaded onto beta

sheets which hold out to high forces before suddenly rupturing, whereas

with IM9 the initial force is loaded onto alpha helices which rupture

gradually at low forces.45;57;62 This well is situated around the global

minimum along the extension coordinate and corresponds roughly to

the equilibrium native structure of the domain under the conditions of

the simulation.

The force curves generated by BXD have a similar shape to those

produced by SMD, however the forces reported by SMD are at least

an order of magnitude higher than those from BXD, and also from any

experimental force curves. This discrepency in the SMD force curves

is due to the artificial forces used in the simulation which are several

orders of magnitude greater than those used in the AFM experiments.

For all three proteins the equilibrium well is followed by an in-

flection point before a region of less steep free energy is reached. This

inflection point corresponds to breaking the native structure once a peak

unfolding force is reached, corresonding to a transiton from point A to

point B in figures 3.8 to 3.10. I27 and Protein L have a deeper equi-

librium well and a more pronounced inflection point than that of the

alpha domain IM9. This is due to the fact that beta sheets offer more

mechanical resitance than alpha helixes.45 On going from the bottom of

the well to the inflection point does not result in significant change in

the equilibrium structure, before a sudden rupture between beta sheets

leads to a reduction in the force. This is due to the brittle nature

of beta-sheets; initially the force is shared between multiple hydrogen
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bonds which fail suddenly, allowing the beta sheet to unravel easily.57;62

This is responsible for the sudden reduction in the force on going form

point B to C in figures 3.8 to 3.10. The hydrogen bonds responsible for

the initial resistance are shown in figure 3.12.

Next the other beta sheets are loaded and fail sequentially in a

similar brittle manner, until they have all unfolded and the force again

increases as a linear conformation is reached (point D). The shape of

the free energy curve calculated from fully atomistic simulations is very

much in line with the suggestions made to explain experimental results80

and theoretical models.81

For the alpha-protein IM9 after the initial increase the force re-

mains flatter and shows smaller peaks and troughs than those of the

I27 protein. This is because the connections within alpha helices, and

the helices themselves fail more gradually leading to lower forces. This

is in agreement with the literature; Brockwell reports that the all alpha

IM9 domain unfolds below the noise limit of the experiment45 and SMD

simulations69–71 suggest that the mechanical weakness of alpha helices

is due to the fact that only one backbone hydrogen bond is loaded at a

time, leading to sequential failure and an unravelling of the helix.

Protein L is a combination of beta sheets and alpha helices. Ini-

tially the force profile and free energy is similar to that of I27 as the

force is initially resisted by beta sheets in both proteins. After the first

beta sheet fails (see figure 3.12) a strong intermediate structure remains.

The resistance of a beta sheet in this intermediate is responsible for the

large force peak at moderate extensions of Protein L (going from points

C to D). After this beta sheet fails the force curve flattens out as an

alpha helix unravels gradually before the remaining structure fails and

a linear conformation is reached (point E).
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Figure 3.12: Structures responsible for force peaks in I27 and Protein L.
Breaking the native structures (top two) requires the maximum pulling force
as they represent the bottom of steep free energy wells around the native
structure. The hydrogen bonds responsible for the initial resistance are shown
as blue lines. These bonds rupture simultaneously causing a large structural
change and rapid extension of the domain. In protein L there are two systems
of hydrogen bonds, which unzip sequentially. The structure of the interme-
diate responsible for the hump in the force curve of protein L is shown at the
bottom, corresponding to point D in figure 3.9. Arrows indicate the direction
and points of application of the experimental pulling force.

In the experiment it is not a single protein domain but their se-

quence, a concatemer that is pulled. However, knowing the free energy

of an individual domain and its gradient, and assuming that the domains

extend independently and sequentially one by one allows reconstruction

of the experimentally observed dependence of the force vs protein ex-

tension, shown by figure 3.13 alongside experimental force curves.
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Figure 3.13: The teeth due to extension of a chain of the proteins for I27
(frame a) and Protein L (frame b). When one domain is extended to the point
where the force increases to the value necessary to break out of the native
well of the next domain, it’s native structure quickly passes the inflection
point and breaks down leading to the sharp fall of the pulling force. Then
the process is repeated. Frames a and b correspond to I27 and Protein L
respectively. The teeth are generated by repeating the section of the force
curve beyond the initial peak force and the point where the force reaches
this value again. This mimics the experimental force trace where a chain of
domains unfolds one at a time. Experimental force curves for I27 (frame c)
and Protein L (frame d) are shown for comparison. I27 experimental data
is taken from Ref.62 and Protein L data from Ref.61 with permission from
Elsevier.

As shown by figure 3.13 frame a, for I27 BXD qualitatively repro-

duces the overall structure of the experimentally observed teeth in the

dependence of force on extension. The peak force and the length of the

tooth are both well reproduced. Frame b of figure 3.13 is the same as

frame a but for Protein L. The main peak (DB for I27, EB for Protein

L) in both frames is reached when an expanding member of the con-

catemer reaches a linear extension and the force becomes sufficient to

break the native structure of the next member of the chain. Then the

process is repeated.
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No multiple teeth can be obtained during the extension of a se-

quence of IM9 as there is no sharp decrease of the force at the point

of inflection. The slope of the free energy for the alpha-protein IM9 in

figure 3.10 is lower than that of protein L and I27 respectively. These

observations are in agreement with experiment where alpha domains

were found to be less robust and showed neither significant peaks nor

teeth in the dependence of the force vs extension.

In a number of experiments the humps of the force were observed

and also attributed to the structural changes in small proteins,55;80

which are also present in our simulations. The experimental depen-

dence of the force on the extension is typically less structured than

those shown by figures 3.8 and 3.9 as BXD provides the free energy and

force curves at a higher resolution that the AFM experiments. This has

allowed the identification of an intermediate structure in the mechanical

unfolding of Protein L (see figure 3.12.

The assumption that the unfolding events witnessed in the concate-

mer are equivalent to the unfolding in isolated domains is common.50;82

However the extent to which it is valid is not fully resolved as coop-

erative motion of the concatemer and domain-domain interactions can

affect the results of the experiment.83 In certain systems domains have

been shown to unfold together rather than independently70 and in VC

experiments the unfolding forces depend on the number of domains in

the concatemer.82;83

In a recent study,84 Uribe et.al. used umbrella sampling to calcu-

late the free energy along end to end distance for a set of small peptides.

The free energies obtained are very similar in shape to those shown in

figures 3.8 to 3.10. In particular, the free enregies reported by Uribe

show a distinct equilibrium well representing the native structure, fol-

lowed by an inflection point leading to a region of less steep free energy.
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These results are very much in line with the findings presented here and

suggest that the free energies obtained by BXD are correct. Despite

the free energies presented by Uribe being for small peptides of around

10 amino acids, the reaction coordinate used by Uribe is that of me-

chanical unfolding and the basic shape of the free energy profile is much

the same as those generated by BXD for larger proteins, suggesting the

mechanical unfolding free energies calculated by BXD are of the correct

form.

3.3.2 BXD Kinetic Description of FC Experiments

Force Clamp is another mode of AFM pulling in which proteins are

pulled with a constant force and the distribution of unfolding times is

measured, giving the rate constant for unfolding at that particular force.

Another quantity reported in the FC experiments is the protein exten-

sion as a function of the pulling force. Typical measured unfolding times

(inverse rate constants) are in the order of seconds,50–54 which neverthe-

less can be within the reach of BXD. Figures 3.14 and 3.15 summarize

the results of modelling the FC experiments. It is clear from figures 3.8

to 3.10 that unfolded states would never be reached as the free energies

are too high. It is thought that the application of force along the pulling

coordinate tilts the free energy profile and allows mechanical unfolding

to occur.85;86 To test this theory the free energies obtained with BXD

were adjusted to take a pulling force into account. If the force mod-

ified free energies allow FC experimental data to be reproduced then

the theory of force tilted free energy profiles for mechanical unfolding is

supported.

Frame A shows the force adjusted free energy obtained by modi-

fying box-to-box rate constants with the factor exp
(
±∆xF

kbT

)
so that

k′n,n−1 = kn,n−1exp

(
∆xF

kbT

)
, k′n−1,n = kn−1,nexp

(
−∆xF

kbT

)
(3.7)
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where ∆x is the box size. For each free energy profile an end point

was chosen to correspond to the maximum extension under that pulling

force. The choice of end point depended on the shape of the free energy.

For low forces (< 30 pN) the free energy rises monotonically with no

transition state or well present, which implies no or extremely slow

unfolding. In this case the end point was defined as the inflection point

in the free energy in the initial native well at which peak force is reached.

For intermediate forces (30 to 50 pN) the free energy is tilted to show

two wells, the native structure well at zero extension and a well at

extensions of 50 to 100 Å. In this case the second well was chosen as the

final state because it represents a transition from the native structure

to a stable unfolded conformation. At higher forces (> 60 pN) the force

adjusted free energy shows three wells and the final well was chosen as

a final state. The kinetic end points are shown by frame A in figures

3.14 and 3.15 by the arrows and the dependence of the endpoint on the

external force, that is the extent to which the domain unfolds at each

force, is shown by frame B in comparison with that of experiment.52
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Figure 3.14: free energies for Protein L obtained with modified rate con-
stants (equation 3.7) which include an additional factor taking into account
the external force in the FC experiment (frame A). The assumed end points
are shown by arrows and are also shown in frame B as a function of the
applied force (red squares) and compared with the experimental data (black
line). The estimated rate constant of unfolding is shown by the red line in
frame C and compared with experiment shown by black line. For the force
below 60 pN the theoretical rate constant remains flat, underestimating the
experimental data by 2 orders of magnitude. The rate constent then grows
fast at higher forces as the unfolding becomes barrierless. It must be noted
that the experimental error bar is not known but may be significant.
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Figure 3.15: free energies for the protein domain I27 obtained with modi-
fied rate constants (equation 3.7) which include additional factor taking into
account external force in the FC experiment (frame A). The assumed end
points are shown by arrows and are also shown in frame B as a function
of the applied force (red squares). Experimental data is absent here. The
estimated rate constant of unfolding is shown in frame C by the red line
and compared with experiment shown by the black line. For the force above
60 pN the theoretical rate constant starts growing fast as the unfolding be-
comes barrierless. It must be noted that the experimental error bar is not
known but may be significant as the experiment is unable to detect very fast
unfolding events.

There is significant difference between the calculation and experi-

ment for the extension versus force data as well as with the unfolding

rates versus applied force data (frames B and C). This is probabily be-

cause the rates of unfolding, as well as the amount to which a domain

extends for a given force are highly dependent of the height of the free

energy barrier for unfolding. The main barrier(s) to unfolding, for both

I27 and Protein L, for forces above 20 pN are in a region of the PMF

where the uncertainy is quite high (see figures3.8 to 3.10 ) and hence

this slight lack of convergence in the important regions of the free energy

could explain the large discrepency with experimental data. It should

also be noted that quantitative agreement with all aspects of experi-

mental data for such a long timescale process as AFM induced infolding
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would represent an unprecedented achievement in atonistic simulation.

Considering the modest resources used in the simulation and fact that

BXD is a simple and fast algorithm, the results obtained with BXD,

especially in the reproduction of the VC experiment (figure 3.13) are

generally encouraging.

In order to estimate the unfolding times, the matrix of rate box-to-

box rate constants M (see Chapter 2 equation 2.10) was truncated by

removing all boxes beyond the box which represents maximum exten-

sion (frame B figures 3.14 and 3.15). The rate constant corresponding

to motion from this last box to the box at a lower extension was then

set to zero. This was done to mimic the FC experiment where the pro-

teins are extended irreversibly. The eigenvalues of the kinetic matrix

now determine the kinetic rate constants of unfolding at this particular

force. Usually the lowest eigenvalue of a kinetic matrix M is separated

from all other eigenvalues and determines the reaction characteristic

rate constant for unfolding at that force. This was repeated for a range

of experimental forces. Frame C in figures 3.14 and 3.15 compares the

calculated rate constanta with experiment. For medium force the cal-

culated characteristic times are within the range of 102 to 103 seconds

which is approximately 2-3 orders of magnitude higher than the reported

experimental result. At higher forces (c. 50 pN) the reaction becomes

barrierless, unfolding becomes very fast and the rate constant increases

dramatically.

Quantitative agreement with experiment has not been achieved

here but it must be taken into account that BXD estimates the reac-

tion rates in the order of minutes based on fully atomistic simulations

without any modifications of the force field. However the qualitative

agreement with the FC experiment suggests that the tilting of the free

energy by the applied force does indeed allow mechanical unfolding to

occur.
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Comparison of BXD calculations with FC experiment allows mod-

ifications of the force field to be suggested which may improve the

agreement with experiment. If the equilibrium well in the free energy

is steeper and the region after the inflection point is flatter, then the

agreement between experiment and theory in the frames on the right of

figures 3.14 and 3.15 should improve. The former can be achieved by

adjusting the parameters of hydrogen bonds responsible for the gradient

of the free energy on the right hand side of the equilibrium well.

Also in these simulations an implicit solvent model was used to

reduce the cost of the simulations, common practice in mechanical un-

folding simulations.61 There is evidence that the barrier to unfolding is

lowered by the presence of water molecules. For example, with a protein

such as I27 where unfolding is resisted by multiple hydrogen bonds in

beta sheets it is thought that ruptured hydrogen bonds can reform with

water rather than within the protein, lowering the energetic cost of rup-

ture and hence reducing the height of the unfolding barrier.55;64 Using

explicit water instead of implicit solvent model also may improve the

agreement with experiment reproduce this but this is computationally

expensive.

Perhaps an approach similar to that outlined by Korotkin et. al.

could be used, which treats explicitly only the water molecules which

are in close proximity to the protein, and the rest of the water box by

a hydrodynamic approach.91

Similarly to the velocity clamp experiments, force clamp experi-

ments can be affected by the fact that AFM experiments pull a concate-

mer of many protein domains. It is assumed that each domain unfolds

fully and independently of the others. Based on this assumption each

of the steps in the extension vs time trace of FC pulling is assumed to

be from a single domain and the data for each domain is averaged.
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However if this independence of unfolding events is not wholly

correct then the situation becomes complicated. Cooperative motion of

the concatemer, interactions between domains and energy storage in the

chain would make analysis of the experimental data much more difficult

and inconclusive. The debate as to whether this central assumption

is valid is ongoing51 and AFM studies of the refolding of a concate-

mer show that cooperative motion drives the process.92 Simulation of a

concatemer and investigation of cooperative effects will be a future goal.

It is also possible that the measured force at which unfolding events

occur does not exactly correspond to reality. Thermal fluctuations in

the position of the AFM tip may cause protein domains to unfold pre-

maturely at forces other than that registered by the experiment53 and if

the concatemer is not pulled perpendicular to the solid surface to which

it is attached then the force along the pulling coordinate could be less

than what is measured.53

A key difference between simulation and the AFM experiment is

the dependence of unfolding force upon the direction in which the force

is applied to the domain. Secondary structure alone does not fully ex-

plain the mechanical resistance of proteins,87 as some proteins, such as

I27 and TNfn3 with similar secondary structure in the region to which

the force is apllied, show dissimilar unfolding forces. Brockwell et. al.88

demonstrate that the dependence of the mechanical resistance upon the

direction of applied force is due to the arrangement of the secondary

structure with respect to the angle of the force. When the force is ap-

plied in parallel to beta strands the load is shared between multiple

hydrogen bonds resulting in a strong resistance, and when the load is

applied perpendicular to the beta strands the hydrogen bonds rupture

one at a time, leading to less resistance.

Carrion-Vazquez et.al.89 show that the choice of linkage between

the protein domains in the concatemer affects the direction in which
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force is applied to each domain and hence the force at which they un-

fold. As linkages are not included in the BXD simulations it is possible

that this explains some of the discrepency between experimental data

and the simulation. Zoldak and Rief90 suggest that, as proteins un-

fold at different forces when pulled in different directions, end to end

distance could be an unsuitable choice of reaction coordinate for me-

chanical unfolding, however for most systems the main features such

as barrier height and position are captured sufficiently. BXD does not

apply a force to the protein, instead the dynamics along the coordinate

of end to end distance are simulated, with extension occuring along the

vector between the N and C terminals. While this may be incorrect

due to the discussed effects of pulling direction relative to the hydro-

gen bonds between beta strands, it is probable that BXD does not fail

on this account because overall agreement with experimental unfolding

forces are good (figure 3.13). Also the mechanical clamp between the

A’ and G beta strands is correctly identified as the key structure re-

sponsible for I27s mechanical strength (see figure 3.4), suggesting that

the dynamics simulated with BXD are similar to those of the AFM ex-

periment and the anisotropy of a domains mechanical strength has not

had a significant effect on the results of the simulations.

After a domain unfolds the AFM tip recoils and the force is no

longer applied to the concatemer for a certain amount of time.93 Any

unfolding events that take place in less time than this recoil time will

be missed. In the experiments from which the data is taken for com-

parion to the BXD simulation this detection threshold is roughly 5 ms,

corresponding to log10(kunfold) ≈ 2.3. This effect would affect the ex-

perimental unfolding time vs force curve as fast unfolding events would

be missed because the force is not applied for this period. Based on

the above factors the results obtained by BXD are in good qualative

agreement with the FC experiments.
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Recently it has been discussed in the literature whether the kinet-

ics of the FC experiment can be described by a single rate.92 In principle

BXD allows reproduction of complicated kinetics. For example it has

been shown that given the initial conditions peptide cyclization kinetics

can exhibit both simple single exponential and complicated power law

behaviour.94 Describing this phenomena in AFM experiments will re-

quire more work. However this study only shows that BXD is capable of

recovering realistic rates and very long characteristic times observed in

the FC experiments. In future, quantitative agreement with experiment

will be attempted by addressing the issues discussed above.

3.4 Conclusions

The above discussion can be summarized as follows:

1)BXD reproduces realistic pulling forces (in the order hundreds of pN)

observed in VC experiments.

2)Initially the force increases without affecting the equilibrium structure

significantly. When a threshold force is reached a structural unit fails,

followed by the sequential failure of the remaining structural units at

lower forces until a linear conformation is reached.

3)Beta-sheets resist the force well before failing abruptly leading to pro-

nounced peaks and troughs in the force vs extension curves, whereas al-

pha helices fail gradually at lower forces, leading to a flatter force curve.

4)The force vs extension curves reproduced by BXD reveal intermediate

structures along the mechanical unfolding pathway. These structures

can easily be visualized.

5)Qualitative agreement with the FC experiments has been achieved on

unfolding processes up to a timescale of seconds. The assumption that
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the application of force tilts the free energy landscape, thus allowing me-

chanical unfolding to proceed,85;86 has been confirmed.

We believe that this is the first time that the mechanical unfolding

of proteins has been simulated under realistic conditions without artif-

ically high pulling forces, providing reliable confirmation of the factors

affecting mechanical stability as well as the unfolding pathways and free

energies

3.5 Further work

The following issues will be addressed later:

1) - The calculatons will be repeated with explicit solvent to achieve a

better agreement with experiment.

2) - An attempt to go beyond the assumption of slow pulling will be

made. This may allow investigation of the dependence of the maximum

pulling force on the pulling speed observed in experiment. BXD is well

suited for this as it provides kinetic information along the whole reac-

tion coordinate.

3) - Simulating the extension of a concatomer may make it possible to

assess the importance of cooperative effects and also answer the question

whether the humps which correspond to the breaking of the structures

within a single member of the concatomer are not detected. This is

within the reach of BXD but will require more work.

Thus BXD is an efficient theoretical tool to study long time processes

such as mechanical unfolding.
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Chapter 4

In Silico Screening of

Medicinal Cyclic Peptides

4.1 Introduction

This chapter presents another application of BXD: predicting the propen-

sity of amino acid sequences to form cyclic peptides.

Traditional drug discovery has focused on designing small molecules

which work by binding to a particular bimolecular target responsible for

the disease or condition.95;96 Binding to the target causes it to lose its

biological activity, for example by blocking the active site of an enzyme.

Despite these insights pharmaceutical research and development has

been declining in efficiency for several decades.97–99 The situation has

become especially urgent in the field of antibiotics, where widespread

resistance to conventional small molecule drugs is a major threat to

world health.100–102

One factor in the reduced effectiveness of drug discovery is that,

despite the recent increases in the understanding of the mechanisms of

disease, the number of possible targets for a conventional drug or Active

Pharmaceutical Ingredient (API) is highly limited. Indeed, traditional

small molecule APIs are, in general, only effective against targets that
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contain a discrete hydrophobic pocket or are integral to the outside or

membrane of a cell. Together this accounts for only twenty percent of

all known disease related targets.98 Another problem facing drug devel-

opment is the low solubility of many APIs103;104 and their inability to

be taken orally.96;97;105

Overcoming these problems will require a dramatic innovation in

drug discovery along with the introduction of new classes of compounds.97;98

Cyclic peptides are a promising candidate with much potential for pro-

viding new types of antibiotic and anti-infection drugs.97;98;105;106;122

Consisting of a ring of between 5 and 30 amino acids, cyclic peptides

have a number of features which allow them to target biomolecules

which cannot be affected by traditional small molecule APIs.106;107 For

example, their large size and complexity allows more reliable and selec-

tive binding to large extended binding sites as well as the targeting of

protein-protein interactions, both cases where conventional drugs strug-

gle.97;98;108–112

Cyclic peptides provide a degree of pre-organisation which reduces

the entropic cost of binding while retaining enough flexibility to inter-

act well with dynamic protein targets which are very difficult for small

molecule APIs.106;107;113 There is also evidence to suggest that a cyclic

conformation helps improve other areas of performance such as mem-

brane permeability, metabolic stability and the overall interaction with

the body.106;107;114 as well as an increase in the overall stability of the

molecule over a linear equivalent.98;108–112

Since the first cyclic peptide drug Gramicidin S (figure 4.1) was

introduced as an antiseptic in 1944115 there are now at least thirty

cyclic peptides on the market with more in clinical trials97 most of

which are antibiotics, anti-infection or anti-cancer agents97 which are in

very high demand due to antibiotic resistance.100–102 Recent advances in

peptide synthesis have increased the ease of cyclic peptide production

73



4.1 Introduction

and study98 and hence the stage is set for cyclic peptides to become a

valuable aspect of modern medicine.

Figure 4.1: Gramicidin S, the first medicinal cyclic peptide, was discovered
in 1944 and used to prevent infection in gunshot wounds.

The first step of cyclic peptide manufacture is to obtain the linear

peptide precursor, by inserting a fragment of DNA that codes for the

desired peptide into E. coli bacteria which then produce the peptide,

or by chemical synthesis. Both methods are capable of producing low

cost product on the scale of kilograms. Now that the linear precursor

has been produced it must be cyclized - the most difficult part of the

process.116–120;141;143

The three forms of cyclization are head to tail, where the C and N

terminals come together to form the ring, side chain to side chain where

two side chains join together (often via a disulphide bond) and head or

tail to side chain. This work focuses on head to head cyclization as this

is the approach taken by the experimental collaborators. There are two
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approaches to cyclising the linear peptide: via conventional chemical

synthesis or via enzymatic cyclization.

4.1.1 Conventional Synthesis

The linear peptide is anchored to an insoluble polystyrene bead. This

prevents the peptides reacting with each other as the insoluble bead

immobilises the peptide,116 preventing them from reacting with each

other rather than cyclising. This technique allows the necessary dilute

reaction conditions to be mimicked without compromising on yield. The

cyclization reaction step is carried out with a Palladium catalyst before

the product is cleaved from the support. In order to prevent a head

or tail to side chain cyclization a number of protecting groups (small

chemical motifs which attach to a group to stop it taking part in the

reaction) are added to the peptide and must be removed later.

The advantage of this method is that overall yield is high, as in-

termolecular reactions are prevented by the beads, and the protecting

groups ensure that only head to tail cyclisaion takes place. Purification

of the product is easy as the large size of the insoluble beads means

impurities can be rinsed away. This is a significant advantage of this

process as product purity is critical; impurities such as leftover solvent

and catalyst are major safety concerns which are heavily regulated.121

This method is limited by the ability of the linear precursor to

preorganise into a conformation where the N and C terminus are close

to each other so that the reaction can occur. This conformation is

thought of as the transition state for cyclization and its adoption by

the linear precursor is the limiting factor of conventional cyclic peptide

synthesis.116–120;141;143 For a peptide to change conformation there must

be rotation around the bonds in the backbone. Rotation around the

peptide bond (the bond between amino acid residues) is limited due to

it being a partial double bond caused by the resonance shown in figure
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4.2. The other two bonds can rotate but the accessible torsion angles

are limited due to interactions between the side chains.

All naturally occurring amino acids are in L stereochemistry hence

the peptide bond is in the trans conformation. For an all L peptide to

adopt a cyclic conformation large amounts of steric strain build up in the

backbone, because the trans conformations force the other two backbone

bonds to adopt unfavourable torsion angles far from their equilibrium

values.116 Many organisms which produce cyclic peptides overcome this

by including D amino acids into the sequence, inducing a turn in the

linear peptide which makes a cyclic conformation less disfavoured. This

is because the backbone torsion angles do not need to move as far from

their equilibrium values to complete the ring. D amino acids are intro-

duced in nature by changing the stereochemistry of L amino acids with

the enzyme L Amino Acid Oxidase. Unfortunately D amino acids are

expensive so some other method is needed for synthesis.123

Figure 4.2: resonance forms of the peptide bond lead to a bond order
greater than one which hinders rotation.

Another way to introduce cis peptide bonds into the precursor is
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to include the artificial amino acid Pseudoproline in the precursor. This

induces a turn in the peptide backbone as shown in figure 4.3. After

cyclization the pseudoproline is converted into Threonine. The peptide

termini can also be brought closer together by using a metal ion to

chelate to the peptide backbone, lowering the energy of the cyclization

transition state as the interactions with the metal holds the near cyclic

conformation in place, shown in figure 4.4.

Figure 4.3: addition of pseudoproline (red) in the linear precursor reduces
the steric strain of the cyclization transition state due to the turn in the
peptide backbone.

Figure 4.4: chelation to a metal ion can stabilise the cyclization transition
state.
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A wide range of organic catalysts can temporarily react with spe-

cific side chains to hold the peptide in a horseshoe conformation, re-

ducing the distance between the termini. See reference116 for details.

Despite all these methods of reducing the energy barrier to cyclization

the efficiency of conventional synthesis varies depending on the peptide

to be synthesised, there being some sequences for which no method is

successful.116;124

4.1.2 Enzymatic synthesis

Many cyclic peptides are found in nature125–128 where they are synthe-

sised without employing any of the methods described above. Instead

the linear peptides are produced by the ribosome and are then cyclized

by enzymes. One well studied enzyme is PatG, found in the cyanobac-

teria Prochloron. Prochloron lives in a symbiosis with the marine or-

ganism Lissoclinum patella A.K.A. the Indo-Pacific Sea Slime (figure

4.5). Prochloron bacteria produce a variety of cyclic peptides which

have shown anti cancer activity,125 the most famous being Patellamide

A (figure 4.6) which has anti cancer properties and was discovered in

1982.129

Figure 4.5: Lissoclinum patella or Indo-Pacific Sea Slime. The green colour-
ing comes from symbiotic cyanobacteria which produce anti cancer cyclic
peptides using the PatG enzyme. Author: Nick Hobgood. Reproduced
from Wikipedia Commons under the Creative Commons Attribution-Share
Alike 3.0 Unported licence. See htt ps://creativecommons.org/licenses/by-
sa/3.0/deed.en for licence certificate.
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Figure 4.6: Patellamide A, the most well known cyclic peptide produced
by Prochloron cyanobacteria.

PatG works by taking a linear peptide and catalysing the cycliza-

tion reaction. Before cyclization begins the linear precursor is sometimes

modified by other enzymes, a number of amino acids can be converted

into other heterocyclic groups. The linear substrate of n amino acids

(represented by X) can be written as Xn...X2X1AYDG where X1 must

be Proline. This is because the peptide bond between X1 and X2 must

be in the cis conformation for the enzyme to work, and Proline is the

only natural amino acid which makes the isomerism possible at room

temperature.

The AYDG section is a recognition tag which binds to the ac-

tive site of PatG, the cis geometry of the X2 − Pro bond allows the

peptide chain to stick out away from the body of the enzyme. If the

X1X2 bond were trans then a large steric clash between enzyme and

substrate would prevent binding. The necessary presence of a Proline

or some other modified amino acid which increases the probability of

a cis peptide bond occurring, is probably common to most enzymatic

cyclization reactions as Proline is found in most short cyclic peptides.130

The proposed mechanism of PatG cyclization is shown below in figure
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4.7.

Figure 4.7: simplified scheme of PatG cyclization.

In more detail, the steps of the reaction are as follows:

1) - The AYDG tag binds to the active site of PatG (figure 4.7 frame a).

2) - Cleavage of the AYDG tag and binding of the Proline terminal

oxygen to the Ser783 group on PatG (figure 4.7 frame b).

3) - The bound peptide adopts a conformation where the free N termi-

nus is close to the anchored Proline (figure 4.7 frame c). This is referred

to as the Pre Cyclization Conformation (PCC).

4) - Head to tail cyclization reaction.

5) - Release of cyclic product (figure 4.7 frame d).

If the peptide does not cyclize within a certain time after binding

then the AYDG tag will be cleaved via a spontaneous hydrolysis reaction
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and the peptide will be released in the linear form. This time limit is

not known and is currently under investigation. The structure of PatG

is shown in figure 4.8.

Figure 4.8: the PatG enzyme. The groups which form the active site and
bind to the AYDG tag are shown in yellow. The red structure has been
proposed as a plug which, after peptide binding, moves in to prevent water
from interfering with the head to tail cyclization reaction. The gaps in the
structure are due to sections of flexible linker which are not resolved by X-ray
crystallography. Structure taken from RCSP data bank (4AKS).

The mechanism shown in figure 4.7 represents the best current

knowledge of PatG cyclization,126 however the point at which the linear

substrate adopts the PCC has not been confirmed. It could occur before

binding (frame a figure 4.7), between binding and AYDG tag cleavage

(frame b figure 4.7) or after tag cleavage (as proposed in frame c figure
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4.7).

It is also not known to what extent the enzyme assists the substrate

in adopting the PCC. It is possible that the enzyme mechanically folds

the substrate into the PCC after binding, or this step could be diffu-

sional with the enzyme waiting for the peptide to find a cyclic conforma-

tion. Also, it has not been confirmed whether the conformational search

to adopt the PCC, assisted or otherwise, is rate limiting or whether the

rate of cyclization depends on other steps such as binding, tag cleavage

or the final cyclization reaction. Another unresolved aspect of the cy-

clization mechanism is the role of the proposed hydrophobic plug, shown

in red on figure 4.8. It is thought that this structure could prevent wa-

ter from accessing the active site once the peptide is bound,126 as water

molecules would interfere with the head to tail cyclization reaction.

4.1.3 Objectives

The aims of this study are to use BXD to address the following:

1) - To Develop a method of predicting whether or not a sequence of

amino acid residues can be cyclized by the PatG enzyme.

2) - Make a high throughput in silico screening tool for designing medic-

inal cyclic peptides.

3) - Investigate the mechanism of PatG cyclization. Is the adoption of

the PCC diffusional or enzyme assisted, and is it the rate limiting step?

4) - Test the model on other enzymes to determine if the mechanism of

PatG cyclization is common to other enzymes.

5) - Find some general rules for what makes a peptide cyclisable.
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4.2 Existing Methods of Predicting Pep-

tide Cyclization

A major limitation of any method of cyclic peptide synthesis is the

lack of understanding of what factors affect the propensity of a linear

precursor to adopt a cyclic conformation, necessary for the reaction to

occur.141 Most computational studies on cyclic peptides focus on the

prediction of the structure of the cyclic product108–112 rather than the

probability that the linear precursor will cyclize. However some theo-

retical studies have been made and are discussed in the following.

In 1992 Cavelier-Frontin et. al. investigated the effect of the dif-

ferent ways of arranging the amino acids in the linear precursor.141

The cyclic tetrapeptide Chlamydocin consists of four amino acids Aib−
Phe − Pro − Ala, where Aib is aminoisobutyric acid which induces a

peptide to form alpha-helixes.142 Chlamydocin can be synthesised from

four linear peptides: Aib−Phe−Pro−Ala (A) Phe−Pro−Ala−Aib
(B), Pro−Ala−Aib−Phe (C) or Ala−Aib−Phe−Pro (D). Precursor

C is the only one that cyclizes.

The authors first investigated whether steric effects in the differ-

ent precursors hinder ring closure to different extents. This was done

by taking the experimental structure of each amino acid in the cyclic

product and using them to reconstruct the precursors A,B,C and D.

Single point energy calculations were then carried out for each of the

linear structures at close end to end distances to calculate the potential

energy of the cyclization transition state for each peptide. No signifi-

cant difference in these energies was found so the authors ruled out this

factor.

Cavelier-Frontin et. al. then used an energy minimisation on each

of the four transition states to find the relaxed structure for each linear
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peptide for which the potential energy was lowest. Single point calcula-

tions were carried out on these structures and the difference in energy

between them and the transition state was calculated and taken to be

the activation energy for cyclization. It was found that linear peptide

C, the only one which can cyclize, had the lowest activation energy.

After this successful trial the same method was extended to four other

four membered cyclic peptides and the correct precursor was identified

in each case.

Despite its success this method is limited due to the fact that it

does not consider the conformational space of the peptide. Only sin-

gle, static structures are taken for the transition and extended states of

the peptide and the cyclization reaction is assumed to be a function of

the difference in potential energy between these structures. This is a

static view of the system which is not suited to the dynamical nature of

biomolecules. Also the structures considered were generated by simple

energy minimisations which do not explore the complicated conforma-

tional space of the peptide; there is no way of knowing whether the

structure chosen as the extended conformation is in fact the global free

energy minimum or one of many local minima which exist in equilibrium.

While these limitations may not be critical for very short pep-

tides it is unlikely that this method could be extended to large systems

where the conformational space is larger and more complicated. This

was the case when Besser et. al.143 applied the above method to other

four membered cyclic peptides and found it to be unsuccessful. Despite

these shortcomings credit should be given for what was achieved at a

time when a more rigorous calculation or simulation would have been

very expensive.

In their work Besser et. al. assumed that the ability of a linear

sequence to cyclize depends on the probability of finding the system in

a cyclization transition state structure, that is with the termini close

84



4.2 Existing Methods of Predicting Peptide Cyclization

together. This was done by first generating an ensemble of possible

conformations of the linear peptide. For this a Monte Carlo Multiple

Minimisation (MCMM)131 method was used. A starting structure is

chosen and rotations of the peptide backbone bonds are introduced by

changing the angle of torsion of randomly selected bonds. An energy

minimisation is performed on the new structure which is then compared

to the previous step. Only the backbone bond angles were varied in or-

der to focus on the ’signal’ of peptide conformational change rather than

the ’noise’ of side chain fluctuations. If it is sufficiently different it is ac-

cepted and the angles are perturbed again and the process is repeated,

the new structures being compared to all the previous accepted ones.

Every time a structure is accepted it is added to an overall set of po-

tential energy minima. Besser et. al. used this process until they had

a large number of structures from which they selected the 300 that had

the lowest potential energy.

Each of these was then used as a seed in a separate MCMM cal-

culation until a very large number of conformations had been gathered.

MCMM generates an ensemble corresponding to a particular tempera-

ture which determines the magnitude of the torsion angle change, higher

temperatures lead to larger perturbations. The next step was to apply

MCMM method to starting structures where the ends of the peptide

were close together, representing a conformation from which the cy-

clization reaction could occur.

During the MMCM procedure some structures were constrained so

the ends of the peptide remained close together, resulting in an ensem-

ble of transition state structures. In order to estimate the probability

of a transition state occurring each of the structures in the unrestricted

ensemble were compared to the set of transition state structures. The

total number of structures from the ensemble which were found to be

close to a transition state structure was divided by the total number of

structures in the ensemble to give the probability of finding the peptide
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at the transition state. This is illustrated in figure 4.9.

This approximation of transition state probability relies on the

system being sampled ergodically so that a fair Boltzmann weighted

ensemble is produced. Because of this the MCMM run used to generate

an ensemble was continued for around 300000 steps.

Figure 4.9: the Monte Carlo Multiple Minimisation procedure used by
Bresser et. al.143 to generate an ensemble of conformations of a peptide.

The cyclization probability of five peptides calculated in this way

were compared to experimental data. At 300 K the coefficient of correla-

tion between theoretical and experimental data was only 0.59 implying

a poor performance of the model.143 By changing the temperature in

the MCMM procedure and generating a new ensemble of structures at
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1000 K the coefficient of correlation was improved to 0.92 and after the

temperature was again increased to 5000 K the coefficient fell to 0.78.

The authors attribute this effect to discrepancies in the force field used.

At all temperatures the most and least likely peptides to cyclize were

ranked correctly, the ordering of the others being incorrect. Despite this

seemingly low success rate the peptides which were furthest apart in cy-

clization probability correspond to a factor of 2 in the experimental rate

of cyclization. This limit on the accuracy of the method is quite good

considering that the rate constant for cyclization of peptides can vary

by a factor of 500.132 The authors also report that each conformational

search took around 4 hours143 on a cluster of 8 400 MHz processors,

which is a very short simulation time especially considering the very

modest processors used.

In a recent study of peptide cyclization133 Yongye et. al. used

conventional unbiased MD to investigate the cyclization ability of three

small peptides. After running 20 ns trajectories of each peptide they col-

lected the most common conformations that were sampled. To predict

which sequences would cyclize they compared the number of extended

conformations where the ends are far apart to the number of transition

state structures. This method is conceptually similar to that of Besser

et. al. the difference being MD was used to sample the conformational

space rather than MCMM. Two out of the three peptides are known

from experiment to cyclize readily.

The peptide which cyclizes best in experiment was found to have

well populated conformations where the ends of the peptide are held

close together by backbone hydrogen bonds, presumably making the

cyclization reaction more likely. The peptide which does not cyclize

was found to have well populated extended conformations where the

termini are far apart and few with the ends close together, making cy-

clization less likely.
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The authors reported that the third peptide provided inconclusive

results as the backbone was stiff,133 meaning that conformational sam-

pling was poor during the simulation due to the large energy barrier of

rotation of backbone bonds. This prevented meaningful results from be-

ing obtained as the conformational space must be well sampled for the

relative numbers of extended and transition state structures to match

the true Boltzmann ensemble.

BXD has previously been used to investigate peptide cyclization by

Shalashilin et. al. in 2012.94 The aim of this study was to reproduce the

findings of Volk and Hochstrasser134–136 who investigated the kinetics

of peptide cyclization. A cyclic peptide was produced with the ends

joined together by a sulphur bridge. Flash photolysis is used to break

this bond leaving a sulphur radical on each end of the peptide, bond

cleavage taking place on the sub picosecond timescale. The peptide

is then free to diffuse until the ends come together again and the two

radicals recombine to reform the sulphur bridge and cyclize the peptide

again. The presence of the radicals leads to a characteristic absorption

which is monitored over time and the rate at which the strength of

the absorption decreases is related to the rate of the cyclization of the

peptide. The procedure is shown in figure 4.10.
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Figure 4.10: monitoring the rate at which the absorption from the sulphur
radicals is quenched allows the rate constants for cyclization to be calculated.

Shalashilin et. al. used BXD to calculate the rate constants of

cyclization for the peptides studied by Volk et. al.134–136 The reaction

coordinate was defined as the distance between the two ends of the pep-

tide and boundaries were placed along it at distances of between 3 and

40 Å. The phase space along the coordinate was sampled as the tra-

jectory diffused through the boxes (see figure 2.3) allowing box to box

rate constants to be determined (equation 2.6) which were then used to

calculate the free energy along the reaction coordinate (equations 2.6

to 2.8). The resolution of the rate constants was increased by using

the procedure described in reference94 (see equations 2.15 to 2.17) and

equations 2.9 to 2.11 were used to calculate the rate of cyclization.

In the experiments134–136 the cyclization of the peptide is irre-

versible as it involves the recombination of the sulphur radicals. To
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take this into account in the analysis of the BXD rate constants a tran-

sition state for cyclization is set at 5 Å and the rate constant for crossing

the boundary placed at 5 Å to higher extensions is set as zero, mim-

icking the irreversible nature of the radical recombination. The rate

constants for cyclization were estimated by calculating the population

of the box at 5 Å with respect to time and were in excellent agreement

with the experiments of Volk et. al.,134–136 matching the experimental

data over several orders of magnitude. Each peptide took a few CPU

days to converge.

No other literature on the prediction of peptide cyclization could

be found, and no studies could be found where cyclization was predicted

for the enzymatic route rather than for conventional synthesis. Given

that BXD has already successfully been applied to peptide cyclization

and is a proven way of overcoming the long timescale problem44 that

affected the work of Besser et. al.143 it was decided that BXD would be

used to undertake the blind test.

4.3 Method

4.3.1 The Blind Test

The Jaspars group at Aberdeen University are developing a method of

cyclic peptide synthesis which uses the PatG enzyme to cyclize linear

peptides into designer cyclic products, avoiding many of the limitations

of traditional cyclic peptide synthesis. The aim is to use a single enzyme

that can cyclize a general linear peptide which will lead to easier pro-

duction than conventional synthetic methods which have variable yields

depending on the sequence.116;124 Enzymatic cyclization also has the

advantage that no harmful catalysts or other reagents must be added

leading to a safer and cheaper production of APIs as purification and

quality control would be easier.
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Seeking to improve the efficiency of their enzymatic production

the Jaspars group presented a challenge: given a number of amino acid

sequences could we predict which ones would cyclize with their enzymes?

Two sets of sequences were given: one from PatG and one from an

enzyme from another species of cyanobacteria, AcyG. These peptides

that do cyclize were mixed in with other sequences which are known

from experiment not to cyclize. The experimental results of cylisation

were withheld until a prediction had been made. Thus the model and all

the various parameters would have to be developed in the dark - a blind

test. If the model were successful then this would aid the Jaspars group

design medicinal cyclic peptides as less time would be spent trying to

produce products which cannot be cyclized.

4.3.2 Predicting Cyclization with BXD

BXD was used to calculate the free energy of cyclization for the pep-

tide sequences provided by the Jaspars group. The reaction coordinate

chosen was the distance between the two ends of the peptide as it is

these termini which must come together to cyclize the substrate thus

this coordinate differentiates between cyclized and linear states, and the

free energy along it should correspond to the free energy of cyclization.

This is shown below in figure 4.11.

Figure 4.11: end to end distance is a reaction coordinate which describes
peptide cyclization.
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Boundaries were placed at intervals of between 1 and 2 Å along the

reaction coordinate and the number of collisions required to pass into

the next box was set at 1000. The boxes started at 3 Å and continue

upwards to a length at which the peptide is judged to be mainly linear.

This upper limit was produced empirically and was usually around 2.5 Å

multiplied by the number of amino acids in the chain. This limit reflects

a compromise between effective sampling and simulation efficiency. If

the peptide does not extend to high enough free energies then the num-

ber of pathways sampled on the way down the reaction coordinate will

be limited, however if too much time is spent at high extensions then

the simulations will be slow.

For each peptide 20 trajectories were simulated with BXD, start-

ing from the linear conformation with a different initial distribution of

velocities. This ensures that the phase space is well sampled as there are

20 sets of initial conditions. Simulations were continued until the free

energy had converged for each peptide. Convergence was checked by

taking the data from each of the 20 trajectories and splitting it in half.

Each half dataset was used to calculate the free energy and this was

compared to the free energy calculated with all the data. If the two free

energies were similar then that trajectory was said to have converged,

and if not then more simulations were carried out until each peptide had

20 converged trajectories. Usually this occurred when a trajectory had

completed around 20 to 50 cycles in both directions (similar to those

shown in figure 2.4) through the reaction coordinate. The free energy

was then calculated for each of the 20 trajectories and then averaged.

The EEF1 implicit solvent model was used, as in Chapter 3 for the

AFM unfolding study. While the EEF1 model is not the most accurate

solvent model it is suitable for this application as it is very fast, which

is a requirement as 20 trajectories were simulated for each member of a

large set of peptides. The EEF1 model is very basic however this may be

more appropriate for this application as it is not known to what extent

the bound substrate is exposed to water, as the role of the hydrophobic
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plug (red structure in figure 4.8) has not been resolved hence a more

accurate solvent model may not be appropriate.

The set of sequences provided by the Jaspars group for AcyG and

PatG are shown below:

PatG

8 residue

WAPWVWLP (8a)

EDWYFDHP (8b)

MDCWINYP (8c)

VIQHYLFP (8d)

10 residue

YSNKPSDFSP (10a)

QENHVFIQFP (10b)

TSQIWGSPVP (10c)

PTGIPDHCEP (10d)

12 residue

ILGEGEGWNYNP (12a)

NEFMQTGSYSGP (12b)

YWRNNTPKPMYP (12c)

LTPGQWHMKWVP (12d)

15 residue

HAFIGYDQDPTGKYP (15a)

VPYMPKADKFCMSCP (15b)

KHLRHHQLQVHSHEP (15c)

TLGCMNGTERCLGLP (15d)

20 residue

TYFAVTLTSRIWCLWFYYEP (20a)
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WGNGTGLDWKLLTGGISASP (20b)

miscellaneous

VALKLALKLALPRGPRP (S15)

VGAGIGFP (S10)

VPAPIPFP (S7)

The miscellaneous sequences were provided some weeks later as

more experimental data became available.

The following sequences were provided for PatG. Modified residues

are denoted by X and Y. Italic letters indicate D stereochemistry rather

than the usual L. The groupings of the sequences are arbitary and ar-

ranged for convenience of plotting the free energies.

set A

VGAGIGFX (B1) X=Pesudoproline

VGAGIGFX (B2) X=Aib

VGAGIGFX (B3) X=Piperidine

set B

VGAGIGX (B4) X=Piperidine

CITXC (B5) X=Propyn-Alanine

GSKLQIDP (B6)

set C

EDWYFDHP (B7)

QENHVFIQFP (B8)

NEFMQTGSYSGP (B9)

LTPGQWHMKWVP (B10)

set D

RTVXMTVX (B11) X=ThH

VTMXVTRX (B12) X=ThH
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VTRXVTMX (B13) X=ThH

MTVXTRVX (B14) X=ThH

set E

XSKLQIDP (B15) X=Z-Fmoc

XSKLQIDP (B16) X=Z-TFA

XSKLQIDP (B17) X=Z-Ac

XSKLQIDP (B18) X=Z

set F

XSKLQIDP (B19) X=Z-Fmoc

XSKLQIDP (B20) X=Z-TFA

XSKLQIDP (B21) X=Z-Ac

XSKLQIDP (B22) X=Z

set G

XSKLQIDP (B23/n28) X=Ser-Ac

XSKLQIDP (B24/n29) X=T-Ac

DXYSKLQP (B25) X=Piperidine Y=Cbz

TDXYSKLQP (B26) X=Piperidine Y=Cbz

set H

DCSPAKCSLLCSNP (B27)

VALKLALKLALPRGPRP (B28)

VCGETCVGGTCNTPGCTCSWPVCTRNGLP (B29)

The modified residues are shown below in figure 4.12
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Figure 4.12: modified residues present in the PatG sequences.

The decorrelation procedure was used on the rate constants cal-

culated by BXD was done as described in section 2.1.1 by varying the

cuttoff τdecor until the free energy no longer changed. For all peptides

τdecor was found to be 120 fs. An example of the procedure is shown in

figure 4.13.

Figure 4.13: decorrelation of the free energy along end to end distance for
the peptide S7. A value of 50 fs was chosen as the decorrelation time as the
free energy no longer changed when it was increased any further.

4.4 Theory

The following assumptions are made about enzymatic cyclization:
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1) - The rate limiting step is the formation of the PCC by the substrate

(frame c figure 4.7).

2) - The formation of the PCC is diffusional: the peptide finds a cyclic

conformation through its own dynamics without assistance from the en-

zyme.

3) - The sequence of residues in the substrate is the only factor affecting

the rate at which the PCC is adopted.

These assumptions are made to simplify the model. Without as-

sumption 1 the chemical reactions of binding and cyclization would have

to be included which would necessitate the simulation of quantum dy-

namics and electronic structure. This would be prohibitively expensive

for any high throughput screening tool. Assumption 2 simplifies the

theory further by allowing the peptide to be simulated without the en-

zyme. This makes the simulations much cheaper. Assumption 3 allows

the model to be used for different systems as only the identity of the

substrate needs to be considered.

Based on the above assumptions the rate constant of enzymatic

cyclization is

kc = P 6=K (4.1)

where kc is the overall rate constant of cyclization, P 6= is the probability

of the peptide adopting the PCC and the factor K, which is assumed

to be the same for all peptides, accounts for all the stages in figure

4.7 apart from formation of the PCC. The PCC is defined as when the

termini are 4 Å away from each other. Because of the assumptions made

in the model this probability is the only factor in equation 4.1 which

changes from peptide to peptide. P 6= is calculated from the equation
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below

P 6= =
e
−∆G6=
RT∑Nbox

i=1 e
−∆Gi
RT

(4.2)

where the numerator is the Boltzmann factor for the box covering the

transition state at 4 Å and the denominator is the partition function for

all the boxes along the reaction coordinate. The assumption that only

P 6= varies between peptides is made to increase computational efficiency

as it means the peptides can be simulated in isolation. Fortunately this

simple treatment increases the usefulness of the study; if the model is

accurate and the free energy along the cyclization coordinate is enough

to predict enzymatic cyclization then the PatG enzyme only holds one

of the peptide and cyclization is diffusional. If the model fails to make

accurate predictions then the enzyme must do more to catalyse the

cyclization. The model will not only help design cyclisable sequences

but the it will illuminate the mechanism of PatG cyclization.

4.4.1 Asessing Model Performance

The model ranks the peptides in order of how likely they are to cyclize,

whereas the experimental data only states whether or not that sequence

can be cyclized with a binary yes or no. To compute the accuracy of

the model it is necessary to compare the same data; the ranking of

sequences must be converted into a yes/no prediction. To do this the

Jaspars group provided us with the relative numbers of peptides that

do and do not cyclize. Once this number is known the sequences are

ranked according to their value of P 6= calculated by BXD. If we know

the number N of peptide which do cyclize then the top N peptides in

the ranking are said to cyclize and the others are said not to. A direct

comparison between model and experiment is then possible.
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4.5 Results

In general the set of 20 free energies for each peptide are well converged

with a standard deviation from the mean of around 1 kJmol−1. An

example of an average free energy with one standard deviation is shown

in figure 4.14.

Figure 4.14: example of average free energy showing average of 20 trajec-
tories plus or minus a standard deviation. Taken from the peptide S10 with
the EEF1 solvent model.

4.5.1 AcyG

For the AcyG dataset the free energies along the cyclization coordinate

are shown below in figures 4.15 to 4.20. The transition state at 4 Å is

shown by the grey line.

99



4.5 Results

Figure 4.15: Free energy along end to end distance for 8 membered pep-
tides.

Figure 4.16: Free energy along end to end distance for 10 membered pep-
tides.
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Figure 4.17: Free energy along end to end distance for 12 membered pep-
tides.

Figure 4.18: Free energy along end to end distance for 15 membered pep-
tides.
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Figure 4.19: Free energy along end to end distance for 20 membered pep-
tides.

Figure 4.20: Free energy along end to end distance for miscellaneous pep-
tides.

4.5.2 PatG

For the PatG dataset the calculations were carried out both with and

without the AYDG tag which is shown in figure 4.7. This was done to
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investigate whether the substrate adopts the PCC before or after the

AYDG tag is cle aved. Most of the PatG sequences are not yet converged

so the results presented here are preliminary. When the ADYG tag was

included the model performed very poorly and the results were random.

All the cyclization probabilities were ver y low, of the order of 0.00001.

With the AYDG tag removed the performance was better, the early

results are shown in table 4.2. The free energies along the cyclization

coordinate, with the AYDG tag removed, are shown below in figures

4.21 to 4.28.

Figure 4.21: Free energy along end to end distance for set A.
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Figure 4.22: Free energy along end to end distance for set B.

Figure 4.23: Free energy along end to end distance for set C.
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Figure 4.24: Free energy along end to end distance for set D.

Figure 4.25: Free energy along end to end distance for set E.
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Figure 4.26: Free energy along end to end distance for set F.

Figure 4.27: Free energy along end to end distance for set G.
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Figure 4.28: Free energy along end to end distance for set H.

For the Acy dataset most free energies have a minimum at aroun

15 Å. This is probably due to the fact that at a medium end to end

distance the peptide backbone angles are more favourable and result in

less torsion strain than at longer or shorter extensions. For the PatG

dataset the free energies of the sequences that do cyclize show a well at

much shorter extensions, this could be because of the inclusion of ar-

tificial and heterocyclic amino acids such as ThH, which induce a turn

in the peptide backbone and reduce the energetic cost of bringing the

termini close together. An example of this is the AcyG sequence S7,

which unlike mose AcyG sequences, contains several proline residues.

The results of applying equation 4.2 to the free energies shown

above are shown below in tables 4.1 and 4.2 for the AcyG and PatG

datasets respectivly. The sequences are ranked according to their val-

ues of P 6=. If N peptides are known to cyclize then the top N in the

ranking are predicted as ’yes’ by BXD. This prediction is compared to

the experimental result to assess if the model was correct.

107



4.5 Results

Table 4.1: results of the Blind Test for AcyG. The number of sequences
which cyclize was known to be 12. The accuracy here is 15 out of 21 or 71
%. The experimental result column shows a yes/no answer to whether the
data provided by the Jaspars group shows the peptide to cyclize.

Peptide P 6= Rank Prediction Experimental result BXD correct?
10b 0.067 1 yes yes yes
S7 0.042 2 yes yes yes
8d 0.033 3 yes yes yes
12b 0.024 4 yes yes yes
15d 0.023 5 yes yes yes
8b 0.022 6 yes yes yes
12d 0.018 7 yes no no
10c 0.017 8 yes yes yes
15b 0.007 9 yes no no
15c 0.006 10 yes no no
10a 0.005 11 yes yes yes
20b 0.002 12 yes yes yes
10d 0.002 13 no no yes
12a 0.002 14 no yes no
15a 0.001 15 no yes no
S15 0.001 16 no no yes
8a 0.001 17 no yes no
8c 0.001 18 no no yes

S10 0.001 19 no no yes
20a 0.001 20 no no yes
12c 0.000 21 no no yes
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Table 4.2: results of the Blind Test for PatG. The number of sequences
which cyclize was known to be 11. The accuracy here is 23 out of 29 or 79
%.

Peptide P 6= Rank Prediction Experimental result BXD correct?
B13 0.849 1 yes yes yes
B11 0.838 2 yes yes yes
B12 0.583 3 yes yes yes
B18 0.554 4 yes yes yes
B14 0.338 5 yes yes yes
B8 0.191 6 yes yes yes
B4 0.126 7 yes yes yes
B7 0.092 8 no yes no
B9 0.090 9 yes yes yes
B17 0.083 10 no yes no
B1 0.074 11 yes yes yes
B27 0.024 12 no no no
B3 0.019 13 yes no no
B10 0.019 14 no no yes
B15 0.013 15 no no yes
B5 0.008 16 yes no no
B6 0.005 17 no no yes
B2 0.002 18 no no yes
B28 0.001 19 no no yes
B16 0.000 20 no no yes
B25 0.000 21 no no yes
B26 0.000 22 yes no no
B20 0.000 23 no no yes
B23 0.000 24 no no yes
B29 0.000 25 no no yes
B24 0.000 26 no no yes
B21 0.000 27 no no yes
B22 0.000 28 no no yes
B19 0.000 29 no no yes

4.6 Discussion

Across both datasets BXD correctly predicted the cyclization of 38 out

of 50 peptides, achieving an accuracy of 76 percent. If the model was
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random and guessed yes or no then the chance of correctly guessing 38

out of 50 would be 0.0002 %. There is a strong correlation between

the free energy along the cyclization coordinate and the ability of the

enzyme to cyclize the peptide which suggests that the rate limiting step

of cyclization is the peptide adopting the PCC. This suggests that the

enzyme does not actively bring the ends of the peptide together, rather

it waits for cyclization to happen diffusively.

This result supports the assumptions made in equation 4.1 that

only the rate at which the peptide adopts the PCC varied from sequence

to sequence, the binding, cleavage and release steps143 happening at ap-

proximately the same rate between sequences. When the AYDG tag

was added to the simulation the model performed very poorly. Perfor-

mance improved dramatically when the tag was removed. This strongly

implies that the sequence of events proposed in figure 4.7 is correct, i.e.

the AYDG tag is cleaved before the peptide adopts a cyclic conforma-

tion.

It should be noted that the cyclization probabilities for AcyG are

all low. Besser et. al. report cyclization probabilities of between 0.1

and 0.6 for several peptides. This difference is probably due to the fact

that the peptides studied here are all L sequences with no turn inducing

residues in the backbone. For the PatG dataset the probabilities of cy-

clization are much higher, in the range given by Besser et. al.. The PatG

sequences contain many Proline residues and heterocycles which are not

present in the AcyG dataset. Hence the higher cyclization probabilities

of the PatG sequences is concurrent with the theory that heterocycles

and Proline residues increase the rate of cyclization by inducing a turn

in the backbone.117–120
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4.6.1 Factors Affecting Cyclization

What factors affect the ability of a cyclic peptide to cyclize? Although

all the discussion in the literature focuses on what makes a peptide cy-

clize in traditional non enzymatic synthesis the conclusions might still

be valid for the case of enzymatic cyclization, as the blind test above

concluded that cyclization probability correlates with the properties of

the independent precursor peptide. In this section the results of the

BXD simulations will be checked against the conclusions drawn in the

literature. This analysis will only be performed with the structures in

the AcyG dataset as the literature studies focus on peptides comprised

of the naturally occuring amino acids..

Some studies116;137 report that chain length is a factor; longer se-

quences are easier to cyclize because the total flexibility is higher and

the termini can come close together without creating as much strain

in the backbone. To see whether or not this is the case for the pep-

tides studies here a plot of cyclization probability against chain length

is shown in figure 4.29.

Figure 4.29: transition state probability against chain length for success-
fully predicted peptides.
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It is clear from figure 4.29 that there is no correlation between

chain length and cyclization probability. While longer peptides are in-

deed more flexible this might not have as large an effect as expected as

a longer peptide will have more conformational space to search before

it arrives at the cyclization transition state. This is equivalent to an

entropy penalty (transition states are less likely to be found as over-

all phase space volume is higher) offsetting the enthalpy bonus of the

torsion angles in the backbone being more favourable in the transition

state.

Yongye et. al. found that hydrogen bonding between the peptide

termini in the transition state lowered its energy and made cyclization

more likely.133 The occupancy of each hydrogen bond was calculated,

that is the fraction of trajectory frames for which the hydrogen bond was

present. This occupancy was found to correlate with the experimental

rate of cyclization. To investigate whether or not this is the case here

the trajectories from the BXD simulations were analysed. The struc-

tures of the cyclization transition states for peptides that were correctly

predicted are shown below in figure 4.30 for those that do cyclize, and

by figure 4.31 for those that do not. Structures were calculated by

taking all the trajectory frames for which the termini were 4 Å apart

and averaging them. Side chains were not included in the calculation

of the average and are not shown in the diagrams because their mo-

tion is fast compared to backbone movement which is more important

for conformational change. Clustering analysis was performed to check

the multiplicity of conformations at the transition state. For all the

trajectories one transition state conformation was present much more

frequently than any other, this conformation was used to calculate the

average. Hydrogen bonds are shown by purple lines.
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Figure 4.30: transition state structures of peptides that were correctly
predicted to cyclize.
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Figure 4.31: transition state structures of peptides that were correctly
predicted to cyclize.

Hydrogen bonds were defined as existing when the donor and ac-

ceptor atoms are within 3 Å of each other, and form an angle of less

than 20 degrees with the proton, which is consistent with the accepted

definition in the literature.138 The occupancy of each hydrogen bond

was calculated as the fraction of frames corresponding to a transition

state in which the bond was present, rather than over the whole trajec-

tory as was done by Yongye et. al. This was done because Yongye et.

al. used unconstrained MD simulations where the ensemble of confor-

mations reflected the true Boltzmann weighted ensemble, with a BXD

simulation the trajectory spends more time in high energy regions so
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hydrogen bond occupancy averaged over the whole trajectory is not

meaningful. Figure 4.32 shows the calculated cyclization probability

against the occupancy of the inter terminal hydrogen bond.

Figure 4.32: cyclization probability against occupancy of inter terminal
hydrogen bond.

It is clear from figure 4.32 that there is no correlation between

the strength of the inter terminal hydrogen bond and the cyclization

probability. In their study of the cyclization rates of a large library of

linear peptides137 Thakkar et. al. reported that peptides with large

side chains on their C termini cyclize less readily. Figure 4.33 shows

cyclization probability against the molar volume of the side chain on

the C terminus.
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Figure 4.33: cyclization probability against molar volume of side chain on
C terminus. Volumetric data taken from reference139.

Again there is no real correlation between the molar volume of the

C terminal side chain and the cyclization probability. It might be said

with caution that amino acids with the largest side chains should not be

placed on the C terminus of the linear precursor but there are only three

data points for these larger side chains. However it is plausible that the

steric bulk of these side chains prevents the terminal carbon and nitro-

gen atoms from coming within reactive range of each other. Thakkar

et. al. also report that many of the sequences that do not cyclize are

rich in Lys, Arg and Thr or contain the motifs ArgArg, LysLys, ArgLys,

LysArg, ThrThr, ThrLys or LysThr. This correlation is not present in

the sequences studied here; the sequences alone give no hint of whether

or not they will cyclize.

Cavelier-Frontin et. al. examined the values of the backbone angles

in the transition states of the peptides they studied. The distribution
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of the backbone angles Ψ and Φ (see figure 4.34) is often plotted in a

Ramachandran plot (see figure 4.35).

Figure 4.34: the angles used to create Ramachandran space. The third
angle ω is not included as it is usually close to 180 degrees due to its partial
double bond character.

Figure 4.35: the allowed regions of Ramachandran space. Blue areas are
highly favoured and green areas moderately so. Certain regions correspond
to alpha helices or beta sheets.

Each amino acid residue contributes one point to the Ramachan-

dran plot. Certain areas of Ramachandran space correspond to beta

sheets or alpha helices. The Ramachandran plots of the transition states
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of the peptides which were correctly predicted to cyclize are shown in

figure 4.36 and in figure 4.37 for those that were correctly predicted not

to.

Figure 4.36: Ramachandran plots for peptides correctly predicted to cy-
clize.

118



4.6 Discussion

Figure 4.37: Ramachandran plots for peptides correctly predicted not to
cyclize.

Cavelier-Frontin et. al. noticed that the peptide that cyclized most

readily had a transition state which featured backbone angles that oc-

cupied the centre of the Ramachandran plot. Inspection of figures 4.36

and 4.37 shows that this is not the case in this study; there appears to

be no link between the cyclization probability of a peptide and the Ra-

machandran plot of its cyclization transition state; the transition state

Ramachandran plots of sequences that do and do not cyclize are very

similar.

In a 2013 study140 Diadone et. al. showed that the cyclization abil-

ity of peptides depended on the structure of the extended conformation.

119



4.6 Discussion

Peptides that cyclize more readily were found to have Hydrogen bonds

that stabilised a turn in the lowest free energy open conformation, mak-

ing cyclization easier. This conclusion was drawn for larger peptides of

around 20 or more amino acids which consisted of repeating GlySer

units. To see if this conclusion can be carried over to shorter peptides

containing different amino acids the lowest free energy, or extended,

structures of the peptides are shown in figures 4.38 and 4.39.

Figure 4.38: extended structures of peptides that were correctly predicted
to cyclize.
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Figure 4.39: extended structures of peptides that were correctly predicted
not to cyclize.

Figures 4.38 and 4.39 show that there is no correlation between

the probability of cyclization and hydrogen bond stabilised turns in the

extended conformation. Peptides 10c, 15b and 15c show this character-

istic but they are poor to middling in terms of cyclization.

After having examined the results of this study in light of the con-

clusions drawn in the literature it seems that we have not yet been able

to find any rule of thumb to explain the different rates of cyclization.

Rather than inspecting the transition states and extended structures it

is necessary to extensively sample the conformational space of a peptide
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to predict its cyclization probability. No simple dependence on sequence

could be made out from this dataset however this is not a problem as

the calculations are cheap (roughly one CPU day per peptide per tra-

jectory) hence high volume in silico screening is possible.

The performance of the model was good given its simplicity in

modelling only the peptide diffusion rather than including any of the

enzyme of the chemical reactions. Given the models simple implementa-

tion with a cheap solvent model and the presence of the substrate only,

an accuracy of over 75 percent can be seen as a success. The incorrect

predictions could be due to limitations in the assumption that the only

factor affecting cyclization probability is the ability of the linear precur-

sor to adopt a cyclic conformation and that the enzymes play no active

role in assisting this. Despite this it seems that these assumptions are

mostly correct.

The inaccuracy in the model could also come from the parameter

chosen for the distance between the ends of the peptide at the transition

state. The 4 Å transition state distance is close to that used in the

literature141;143 of around 3 Å, however it is much harder to sample the

conformational space at a separation of 3 Å than at 4 Å due to the

much increased free energy at closer distances. The extra Angstrom

of separation should not make much difference as the transition state

found by a classical forcefield cannot accurately reflect that of a real

chemical reaction where bonds are breaking and being formed.
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4.7 Conclusion

The work presented in this chapter can be summarised as follows:

1) - BXD can accurately predict whether or not a given sequence can be

cyclized by the Acy or PatG enzyme. The model achieved an accuracy

of 76 %.

2) - The rate limiting step of enzymatic cyclization with PatG and AcyG

is the substrate peptides conformational search to adopt a cyclic confor-

mation (PCC).

3) - The peptide is not assisted by the enzyme while it adopts the PCC,

it is a diffusional process.

4) - Cleavage of the AYDG tag occurs after the peptide is bound to the

enzyme and before the PCC is adopted.

5) - The rates of binding, AYDG cleavage and product release do not

vary significantly between substrates.

6) - Based on analysis of the AcyG dataset there is no simple rule of

thumb has been found to predict whether or not a sequence can be cy-

clized.

7) - Predictions were made quickly and cheaply, each trajectory con-

verged in between 1 and 5 CPU days.

4.8 Further Work

Further work will focus on making predictions for more sequences and

for different enzymes in order to increase the scope of the model and
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test the validity of its assumptions on more systems. The insights about

the mechanism of cyclization are not obtained directly and are some-

what speculative. More sophisticated BXD simulations, including the

enzyme or other stages of cyclization, could be undertaken to carefully

check the conclusions drawn here.

We are also working with experimentalists who are now trying to

measure the rates of PatG cyclization rather than providing a simple

yes/no answer. This will allow direct comparison of the BXD results

with the experimental rankings as the experimental data will consist of

a list of peptides ranked in order of their rates of cyclization.
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Chapter 5

Conclusion and Further Work

BXD has been shown to be a useful tool for efficient simulation of long

timescale processes. Insights have been into the mechanical unfolding

of proteins, using what we believe to be the first all atom simulation

of AFM protein pulling without the use of high artificial pulling forces.

BXD has been shown to be a very powerful tool, as experimental data

was accurately reproduced for the VC experiments and insights were

gained into the mechanical unfolding of three protein domains. All this

was done with trajectories that ran on a single CPU core for between

one and two weeks. Accurately simulating a biomolecular process which

occurs over a time scale of miliseconds to seconds would usually require

specially built supercomputers, convoluted algorithms or very large ad-

ditional forces.

BXD has also been used to build a fast and accurate in silico

screening tool for the production of medicinal cyclic peptides, as well

as to shed light on the mechanism of enzyatic peptide cyclisation. This

shows that BXD can be applied to areas of real world importance such

as the search for novel antibiotics. Because of the high speed at which

calculations converge, roughly two days on a single core, and the fact

that the high accuracy was maintained accross a dataset of 50 sequences,

the BXD screening tool presented here is applicable to the pharmaceu-

tical industry where very large libraries of candidates must be checked.
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BXD is a novel technique in that, for these applications, both ki-

netic and thermodynamic information is provided quickly and on mod-

est hardware, without the need for powerful computers or convoluted

biasing routines or modification of the potential energy landscape. Fur-

ther work will focus on the following three areas:

1) - AFM protein pulling will be simulated with concatamers rather

than individual domains, and explicit water will be used.

2) - Simulation of peptide cyclisation will continue with more datasets

from different enzymes.

3) - BXD will be added to other MD packages such as GROMACS in

order to benafit from GPU acceleration.
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Appendix A

Worked Example of Free

Energy Calculation

This chapter gives a detailed account of how to calculate free energy

using BXD. The example chosen is the small peptide B11 (see Chapter

4) with end to end distance as a reaction coordinate. For the input

files and other analysis scripts used in BXD contact the author at jj-

booth1989@yahoo.com. Many of the processes outlined here are close

to being automated so for future studies BXD will be much faster and

easier to carry out.

A.1 Box Placing

Placing the boundaries along the reaction coordinate (see Chapter 2) is

a balance between computational efficiency and the quality of the sam-

pling. If the boxes are too large then the simulation will be slow as the

trajectory will still have to travel to higher regions of free energy with-

out assistance from the ratched effect of the boundaries. If the boxes are

too small then the kinetics and thermodynamics obtained will not be

valid as the trajectory will not relax between collisions and the decor-

relation proceedure, which ensure that the mathematical foundation of

BXD is valid, will not work. In general it is best to make the boxes as

127



A.1 Box Placing

large as possible without sacrificing the speedup provided by BXD.

To determine the best arrangement of boundaries, a quick BXD run

is carried out where the boxes are spaced widely apart. The number of

collisions required to pass into the next box is set to a very low num-

ber such as 5 in order to quickly determine the optimimum boundary

locations. If the trajectory does not quickly cycle through the reaction

coordinate then the boxes are too large, as anything other than a fast

cycle time will increase to a much slower time when the numbner of

collisions requiured is increased from 5 to a much larger number for the

production run.

In this example, initial boundaries were placed at intervals of 1 Å,

from 4 Å to 26 Å, with 5 collisions required to pass into the next box.

These boundaries were too widely spaced as a trace of the reaction co-

ordinate against simulation time (figure A.1) shows that the trajectory

stalls and does not quickly complete a cycle of the reaction coordinate.

Figure A.1: In this box placing BXD run the boundaries (red lines) are too
far apart resulting in a stalled simulation, as the trajectory (black line) does
not leave the upper box.
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The box sizes are reduced in areas where the trajectory stalls and

the box placing runs are repeated until the trajectory can cycle through

the reaction coordinate quickly. In this case the final boundries went in

intervals of 0.5 Å from 3.5 Å to 6 Å, and from 22 Å to 26 Å, with the

region in between 6 Å and 22 Å having boundaries at intervals of 1 Å.

In general the regions of denser boundaries represent areas of steeper

free energy where the trajectory requires more assistance. The trace of

reaction coordinate against time for the final satisfactory arrangement

of boundaries is shown below in figure A.2.

Figure A.2: a good distribution of boundaries allows the reaction coordinate
to be sampled efficiently.

Care must be taken not to make the boxes too small, which would

prevent the decorelation proceedure (see Chapter 2) from working and

undermine the results provided by BXD. To check if this is the case the

trajectory can be inspected to see how frequently it collides with the

boundaries of each box. Figure A.3 shows an example where the boxes
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are far enough apart for decorelation to be successful and where they

are so close together that the trajectory rattles between the boundaries

without any ergodic sampling of the phase space within the box.

Figure A.3: if a box is too small (left) then the trajectory hits the bound-
aries (red) too frequently and cannot equilibrate within the box. Decorrela-
tion here is impossible as there are no FPTs longer than the characteristic
decorrelation time. If the box is large enough (right) then decorrelation is
possible as the trajectory can explore the box and come to equilibrium in
between collisions with the boundary.

Once an efficient distribution of boundaries has been found the

number of collisions should be increased from 5 to around 1000 for the

production run. As of 2016 this proceedure has been fully automated

by the Glowacki group in Bristol and boundaries are adjusted on the fly

to optimise the efficiency of the simulations.

A.2 Collision Threshold

The number of collions required to pass from one box to the next must

be high enough for the trajectory to equillibriate and sample each box

well, but not so high that the trajectory spends too long in each box

and does not cycle through the reaction coordinate many times, which

would limit the range of different pathways that the trajectory samples.
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The ideal value for this parameter has been empirically determined to

be around 1000.

A.2.1 Decorrelation

Once the boundaries have been placed and a production run is under-

way the decorrelation time for the system needs to be found. After the

trajectory has completed around 20 cycles through the reaction coordi-

nate the free energy is calculated with a decorelation time of 0 fs. The

free energy is calculated again with an increased decorelation time until

it no longer changes. The decorelation time τ at which the free energy

has converged is taken as the decorelation time of the system and is used

to calculate the final free energy of the production run. This process is

illustrated below in figure A.4 for the peptide used in this example. For

a theoretical description of decorelation see Chapter 2.

Figure A.4: the free energy is calculated at different decorrelation times
until it no longer changes. The time τ at which the free energy no longer
changes is taken to be the decorrelation time of the system, in this case 300
fs.
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A.3 Convergence

To check whether a simulation has converged, while a production run

is still progressing the free energy is calculated after a certain time has

passed, usually one day, and again after double that period. If there is

no significant change between the two free energies then that trajectory

is said to be converged. If the free energy has not yet converged then

the test is repeated at longer time intervals until convergence is reached.

Figure A.5 shown an example of a free energy which has converged and

one which has not.

Figure A.5: to test for convergence the free energy is calculated after 1
day and again after 2 days. If the free energy changes significantly (top
frame) then it has not converged and the calculations continue, the conver-
gence check being repeated at intervals of 2 days and 4 days.. If there is no
significant chnge (bottom) then the free energy has converged.

Note that the procedure described above is for a single trajec-

tory. To better sample the phase space multiple independent trajecto-

ries should be generated and their individual free energies calculated in
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the above way, until they have all converged and are then averaged.
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