Search in Weighted Constraint Satisfaction Problems

by

Daniel Peter Black

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

The University of Leeds
School of Computing

June 2003

The candidate confirms that the work submitted is his own and that the
appropriate credit has been given where reference has been made to the
work of others.

This copy has been supplied on the understanding that it is copyright
material and that no quotation from the thesis may be published

without proper acknowledgement.

Abstract

A wide variety of real-world optimisation problems can be modelled as Weighted
Constraint Satisfaction Problems (WCSPs). Such problems are NP-hard and require
an exponential amount of time to find the optimal solution.

This thesis concentrates on the University Examination Timetabling Problem.
A general abstraction of this problem has been used, as there are many institution-
specific rules which could be incorporated into the problem. The use of this problem
type allows WCSPs to be investigated using realistic problem data and allows a
comparison with previously published results for the problem instances used.

We have examined some existing variable ordering heuristics and defined new
ones. An analysis methodology has been defined that allows the characteristics of
“good” solutions to be identified. Different methods of identifying difficult to solve
sub-problems and the use of such methods in variable ordering has been investigated.
Incorporating the weight, or preference, associated with constraints into variable or-
dering heuristics has been found to be beneficial to finding solutions of low cost. The
analysis methodology has been used to examine the relationship between solutions
of different quality and the knowledge derived has been used to define, and justify,
two new variable ordering heuristics.

The usefulness of different value ordering heuristics has been examined. Value
selection on the error incurred with past assignments and the use of “look-ahead”
have been investigated. Variable ordering heuristics have been extended to try and
exploit the advantages of such value ordering heuristics. The use of stochasticity
with such orderings has been investigated and has led to a new class of hybrid value
ordering heuristics being defined.

Finally two hybrid search algorithms have been defined that attempt to concen-
trate search upon the sections of the problem instance which have the largest effect
upon the overall quality of solutions found. Such methods are shown to be at least

competitive with standard tree based search techniques.

Acknowledgements

I would like to thank my supervisors Professor Barbara Smith and Professor
Roger Boyle for helping me throughout my time at Leeds and doing the right thing
when things didn’t look too good. I would like to thank my family who have put
up with me as I've gone through thick and thin. Special thanks goes to the Fenton
Academicals and everyone else who has made Leeds a home away from home. Also,
to my two best friends during my time in Leeds, Ullli who always made me smile,
and Neill, who was always up for a pint and a chat. Finally, thanks goes to those

people who have help me out in one way or another during my PhD...

i

Contents

1 Constraint Satisfaction 1
1.1 What is Constraint Satisfaction 1
1.1.1 The N-queens Problem 1

1.1.2 A Formal Definition 2

1.1.3 Finding a Solution oL oo, 3

1.1.4 Chronological Backtracking 4

1.1.5 Variable and Value Orderings 5

1.2 Weighted Constraint Satisfaction 9
1.21 Search of WCSPso 9

1.3 Overview oL 12
2 An Introduction to CSP Research 13
2.1 Classical CSPs o 13
2.1.1 Problem Complexity 13
2.1.2 Randomly Generated Problems 14
2.1.2.1 Finding Difficult Random Problem Instances. 15

2.1.3 Advanced Solution Methods 15
2.1.3.1 Incorporating “Look-Ahead” Into Search 16

2.1.3.2 Intelligent Backtracking 17

2.1.3.3 Alternative Tree Traversal Techniques 18

2.2 Partial CSPs L 19
2.2.1 Problem Typeso 20
2211 MAX-CSPs 21

2.2.1.2 Weighted CSPs 23

2.2.1.3 WCSPs in the Real-World 23

2.3 Real World problems 0 oo 24
2.3.1 Nurse Rostering 0. 24
2.3.2 Car Sequencing 25

i

4

2.3.3 Advanced Optimisation Methods
2.3.3.1 Local Search
2.3.3.2 Genetic Algorithms
2.3.3.3 “Squeaky-Wheel” Optimisation

2.4 Summaryol

University Examination Timetabling
3.1 Problem Definitions L
3.2 A Search Algorithm L o
3.2.1 Backtracking oo Lo
3.2.2 Exploitation of problem structure during complete search . . .
3.3 Problem Features and Parameters
3.4 The Experiments
3.5 Sample Sizes.
3.6 Problem Constraint Weights

Variable Ordering Heuristics

4.1 Introduction

4.2 Static Heuristics
4.2.1 Analysis Method L.

29
34
36
36
39
40
42
43
45

49

4.2.1.1 General comparison between several variable orderings 50

4.2.1.2 Direct comparison between two orderings

4.2.2 Standard Methods oL
4.2.2.1 Maximum Clique

4222 Summary oo

4.3 'The Effect of Edge Weights
4.3.1 Weighted Degrees
4.3.2 Maximum Weighted Cliques
4.3.2.1 Summary oo

4.3.3 Weighted Clique Partitions
4.3.4 Summaryol e

4.4 Using Constraint Backward Degree In Variable Ordering
4.4.0.1 Comparisons With The Work Of Others

441 Summaryo e e

4.5 Dynamic Heuristicso Lo 0oL
4.5.1 Standard Methods
4.5.1.1 Related Static Ordering Heuristics

v

92

5

4.5.1.2 Search Using Standard Dynamic Methods
4.5.2 Dynamic methods for Weighted CSP
4.5.2.1 Summary oo

4.6 Conclusions

Value Ordering Heuristics
5.1 Imtroductiono
5.2 Experiments L
5.3 Results.
5.3.1 “Blind” Value Ordering
5.3.2 Non-Stochastic Value Orderings
5.3.2.1 Error-based value ordering
5.3.2.2 Incorporating Look-Ahead
5.3.3 The Comparison of Value Orderings
5.3.3.1 The cost of look-ahead
5.3.3.2 Summaryo
5.3.4 Stochastic Value Orderings
5.3.4.1 Stochastic Search with “look ahead”
5.3.4.2 Exploiting Look-ahead in the Variable Ordering . . .
5.3.4.3 Summary
5.3.5 Tie-breaking During Search
5.3.6 Hybrid Heuristics
5.3.6.1 Summaryo

5.4 Conclusions

Hybrid Search

6.1 Related Search Methods

6.2 Hybrid Search Implementation

6.3 Results.

6.4 Discussion e e
6.4.1 'The Effect of Domain Size on Hybrid Search

6.5 Summary e

Conclusions

7.1 Summary of the work presented
7.1.1 Variable Ordering
7.1.2 Value Ordering

105
105
106
107
107
108
108
108
111
113
116
117
117
120
123
124
125
128
129

130
131
132
135
141
142
143

7.1.3 Hybrid Searcho 147

7.2 Major Contributionso 148
7.3 Limitations 148
74 Future Work 149
Bibliography 151
A Examples 159
B Results Compendium 163

vi

List of Figures

1.1
1.2

1.3
1.4

21

3.1

3.2

3.3

4.1
4.2

4.3

4.4
4.5

A solution to the 4-queens problem.
Constraints corresponding to the assignment v; = 1 in a 4-queens

problem.
Tree based searcho 0oL

Finding a solution to the 5-queens problem.
Example Problem Graph for the problem defined in Table 3.2.

How the solution quality improves as search progresses. Extant So-
lution Cost versus Consistency Checks. The search algorithm was
stopped after 10,000,000 checks.

An example of the mean and std.dev. of increasingly larger sample

The distribution of constraint weights for the HEC-S-92 problem.
The heaviest constraints are to the left and the lightest to the
right. Note that the right hand tail is not shown; however, it merely

continues in a gradually decreasing fashion.

Distribution of error from constraint to constraint.
Distribution of error for three different variable orderings, focusing
on the constraints which incur the most error.
Distribution of improvement in error incurred by different constraints.
The constraints are ordered according to the improvement. The num-
bered sections of the graph refer to the different groups of constraints,
as explained above. L L
A degree ordering for the problem given in Figure 2.1 and Table 3.2. .
A forward degree(FD) ordering for the problem given in Figure 2.1
and Table 3.2. The calculations are given in Table 4.1.

vil

15

93
o4

4.6 A variable weight ordering(VAR) for the problem given in Figure 2.1
and Table 3.2.o
4.7 Mean constraint backward degree of the heaviest set for the HEC-S-
92, YOR-F-83, and UTE-S-92 problems. Each point on the x-axis
defines the minimum weight of constraints in the heaviest set. For 0
this is the set of all constraints and for the largest constraint weight
the set only contains this constraint. These results show that the
constraints in the heaviest set tend to have a lower backward degree.
4.8 Two example problems. Lo
4.9 Degree versus Weighted Degree in the YOR-F-83 problem
4.10 A weighted degree ordering(WD) for the problem given in Figure 2.1
and Table 3.2.
411 A weighted forward degree ordering(WFD) for the problem given in
Figure 2.1 and Table 3.2. The calculations are given in Table 4.11. . .
4.12 A backward degree ordering(BD) for the problem given in Figure 2.1
and Table 3.2. The calculations are given in Table 4.32.
4.13 A weighted backward degree ordering(WBD) for the problem given
in Figure 2.1 and Table 3.2. The calculations are given in Table 4.33.

5.1 An example of the intermediate constraints of constraint ¢; consider-
ing the variables 1 to 5.. 0oL

5.2 An example of shared past neighbour variables.

6.1 An example of the reduction in minimum solution cost as a complete

search progresses. Lo

A.1 Constraint graph of a second example problem.

viil

%)

69

69

List of Tables

21

3.1
3.2

4.1

4.2

4.3

4.4

4.5

An example of the effects of Forward Checking propagation. 17
Problem parameters. 40
Student Course Selections, 42
How the variable forward degrees (f.d.) vary as the FD ordering of

Figure 4.5 is constructed. 35
Comparison of initial solutions found by the ERR-LOW value or-
dering for various problems and variable orderings. Solutions marked
with a * are those for which search required re-assignments to find a
solution. The lowest solution costs for each problem are given in bold. 56
Features of the critical constraint set for the HEC-S-92, YOR-F-83
and UTE-S-92 problems over the DEG, FD and VAR variable or-
derings. The total error along with the mean and standard deviation
of distribution of constraint backward degrees are recorded. These
3 problems instances show results characteristic of all instances from
the problem set used. o7
Comparison of mean costs of solutions found and the median number
of unlabels required to find them by the ERR-RND value ordering
for various problems and variable orderings. The low domain size
has been used. The bold figures show which variable ordering found
significantly better solutions, to a 5% level of confidence, for each
problem.o 60
Mean cost of the initial solutions found using the ERR-RND value
ordering on three (non)-clique based variable orderings. Bold type
shows the lower mean cost, to 5% significance, of each pair as defined
by the Z test. 61

X

4.6

4.7

4.8

4.9

4.10

4.12

4.11

4.13

4.14

Comparison of critical constraint sets under (non)-clique variable or-

(1913

derings. means that there is no significant difference. The d.o.
column records which was the dominant ordering with respect to so-
lution costs; the bold mean backward degree (mean b.d.), which of
the orderings has such for the critical constraints and; the size defines
the size of the critical constraint set require to establish this to a 5%
level of confidence.
63

Mean cost of the initial solutions found using the ERR-RND value
ordering on three (non)-clique based variable orderings using the low
domain size. Bold type shows the lower mean cost, to 5% significance,
of each pair as defined by the Z test.
Mean cost of the initial solutions found using the ERR-LOW value
ordering on three (non)-clique based variable orderings as performed
on the lower problem domain sizes.
Analysis of the mean backward degrees (mean b.d.) of the critical
constraints for each variable ordering pair. d.o. records which is the

dominant ordering with respect the the solutions found. The bold

type emphasises for which ordering the mean b.d. is significantly lower. 65

Median number of unlabels required to find a solution for each vari-
able ordering pair. Lo
Mean solution cost when comparing (forward) degree and weighted
(forward) degree using the ERR-RND value ordering and high do-
main sizes. Bold type shows the lower mean cost, to 5% significance,
of each pair as defined by the Z test.
How the variable weighted forward degrees (w.f.d.) vary as the WFD
ordering of Figure 4.11 is constructed.
Comparison of the mean constraint backward degree, for (weighted)
degree variable orderings (column DEG/WD b.d.), of constraints in
the critical set of size. The column d.o. indicates which ordering was
dominant. Bold values show which mean constraint backward degree
was significantly lower for each variable ordering pair.
Comparison of the mean constraint backward degree, for (weighted)

forward degree variable orderings, of constraints in the critical size.

71

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Mean solution cost when comparing (forward) degree and weighted
(forward) degree using the ERR-RND value ordering and lower do-
main sizes. Bold type shows the lower mean cost, to 5% significance,
of each pair as defined by the Z test. 72
Median number of unlabels required by successful ERR-RIND searches
on problems using the lower domain sizes.

73
Direct comparison of the mean constraint backward degree, for (weighted)
degree variable orderings (DEG b.d. and WD b.d.), of constraints in
the critical set of size. d.o. records which ordering was dominant
with respect to solution costs. The solutions examined are those
found when searching using the lower domain sizes.

73
Direct comparison of the mean constraint backward degree, for (weighted)
forward degree variable orderings, of the critical constraints. The so-
lutions examined are those found when using the lower domain sizes. 73
Mean solution costs when comparing the (weighted) clique based or-
derings using the ERR-RND value ordering heuristic. Bold type
shows the lower mean cost, to 5% significance, of each pair as defined
by the Z test. 74
Direct comparison of variables orderings which incorporate maximum
and weighted maximum cliques when using the high domain size. d.o.
records which ordering is dominant with respect to solution cost. CLQ)
b.d. and WCLQ b.d. record the mean backward degree of the critical
constraints, whose number is defined by size, under each ordering.
The bold type is used to show which mean b.d. is significantly lower. 75
Mean error of solutions found using the ERR-RND value ordering
on the variable orderings that incorporate maximum and maximum
weighted cliques using the lower domain sizes. Bold type shows the
lower mean cost, to 5% significance, of each pair as defined by the Z
test. . .o e 76
Number of unlabels required by search using the variable orderings
that incorporate maximum and maximum weighted cliques using the

lower domain sizes. 76

xi1

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

Direct comparison between solutions found using ERR-RND and
variable orderings that incorporate maximum and weighted maximum
cliques using the lower domain sizes. d.o. records which ordering is
dominant with respect to solution cost. CLQ b.d. and WCL(Q b.d.
record the mean backward degree of the critical constraints, whose
number is defined by size, under each ordering. The bold type is
used to show which mean b.d. is significantly lower.
Mean solution costs of each variable ordering for higher domain sizes.
Bold type shows the lower mean cost, to 5% significance, of each pair
as defined by the Z test.,
Analysis of the mean backward degrees of the critical constraints (the
number of which is given in size) between MV and WCLQ-VAR.
d.o. records which ordering is dominant with respect to solution
cost. WCLQ b.d. and MV b.d. record the mean backward degree
of the critical constraints, whose number is defined by size, under
each ordering. The bold type is used to show which mean b.d. is
significantly lower.o oo oL
Mean solution costs for lower domain sizes. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.
Analysis of the mean backward degrees of the critical constraints be-
tween MV and WCLQ-VAR using the lower domain sizes.
Mean solution costs for higher domain sizes. Bold type shows the
lower mean cost, to 5% significance, of each pair as defined by the Z
test. . . oL e
Analysis of the mean backward degrees of the critical constraints using
the MV and ME orderings.
Mean solution costs for lower domain sizes. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.
Analysis of the mean backward degrees of the critical constraints using
the MV and ME orderings and the low domain sizes.
How the variable backward degrees (b.d.) vary as the BD ordering
of Figure 4.12 is constructed.
How the variable weighted backward degrees (w.b.d.) vary as the
WBD ordering of Figure 4.13 is constructed.

xii

7

82

82

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

Comparison of the mean solution costs using VAR, BD and WBD
for ERR-RND. Bold values signify significantly lower mean distri-
bution using the Z-test at 5% significance.
Comparison of the mean solution costs using VAR, BD and WBD
for ERR-RND using the low domain sizes. Bold values signify sig-
nificantly lower mean distribution using the Z-test at 5% significance.
The number of unlabels required by ERR-RND when using VAR,
BD and WBD on the low domain sizes.
Comparison of the results of this investigation with the results from
[17] and [32]. These problem correspond to the low domain size.
The original results of [17] and [32] were given in proportion to the
number of students. For ease of comparison these numbers have been
converted into total error form (hence some decimals appear due to
rounding). Lol
Mean solution costs found using the ERR-RND value ordering.
Bold type shows the lower mean cost, to 5% significance, of each
pair as defined by the Z test. Results with a * required re-labelling
to find viable results.o Lo oo
Mean solution costs using the ERR-RND value ordering on the low
domain sizes. Bold type shows the lower mean cost, to 5% signifi-
cance, of each pair as defined by the Z test..
The median number of unlabels required by ERR-RND search when
searching using the low domain sizes.
Mean solution costs when searching using the ERR-RIND value or-
dering on the high domain size. Bold type shows the lower mean cost,
to 5% significance, of each pair as defined by the Z test. Values with
a * show when re-labelling was required to find viable solutions.
Mean solution costs when searching using the ERR-RIND value or-
dering using the low domain sizes. Bold type shows the lower mean
cost, to 5% significance, of each pair as defined by the Z test.
The median number of unlabels required by ERR-RND when search-
ing using the low domain sizes.
Mean solution costs when searching using ERR-RIND on the high
domain sizes. Bold type shows the lower mean cost, to 5% signifi-

*

cance, of each pair as defined by the Z test. Values with a * show

when re-labelling was required to find viable solutions.

xiii

90

97

99

4.45 Mean solution costs when searching using ERR-RND and the low
domain sizes. Bold type shows the lower mean cost, to 5% signifi-
cance, of each pair as defined by the Z test..

4.46 The median number of unlabels required by ERR-RND when search-

ing using the low domain sizes.

5.1 Comparison of the lowest solution found using the LOW, RND and
ERR-LOW value orderings for 5 problems using the high domain
size. Experiments on other problem instances show similar results. .
5.2 Comparison of ERR-LOW and IC-LOW searches. The bold val-
ues highlight which value ordering (val. ord.) was superior for each
problem /variable ordering combination. Values marked with a * re-
quired the use re-labelling to find a viable solution.
5.3 Comparison of ERR-LOW and IC-LOW searches using the low
domain Sizes. Lo e
5.4 Comparison of the critical constraints of each value ordering with
respect to the other for the HEC-S-92 and KING-96 problems
using various variable orderings (var.ord.). The mean intermediate
degree of such constraints is shown with the size of critical constraint
sets required to show significance (in the size column).
5.5 Comparison of the median number of consistency checks (x 1000)
required to find a solution using the ERR-LOW and IC-LOW value
orderings. The value with a * required re-labelling to find a solution.
5.6 As before the median number of consistency checks required by ERR-
LOW and IC-LOW using the low domain sizes.
5.7 Comparison of the mean solution cost of ERR-RND and IC-RND
searches using the high domain size. Bold values show which value
ordering (val.ord.) finds solutions of significantly lower cost
5.8 Comparison of mean solution cost of the ERR-RND and IC-RND
value orderings (val.ord.) for the low domain sizes..
5.9 Comparison of the critical constraints of each value ordering with
respect to the other. The mean shared backward degree of such con-
straints is shown. The bold values are significantly lower and size
gives the number of critical constraints required to establish this sig-
nificance. “-” has been used to represent when the results of search

using the value ordering pairs were not significantly different.

xXiv

. 107

5.10 Comparison, using the high domain size, of the mean solution costs
found using ELA variable ordering with ERR-RND and IC-RND
value ordering. The mean solution cost of ERR-RND using WBD
is also given to compare the overall quality of solutions found using
ELA. . . e

5.11 Comparison, using the low domain size, of the mean solution costs
found using ELA variable ordering with ERR-RND and IC-RND
value ordering. The mean solution cost of ERR-RND using WBD
is also given to compare the overall quality of solutions found using
ELA. . e

5.12 Comparison of the mean, standard deviation and minimum solution
costs found by stochastic search (ERR-RIND). The cost of the solu-
tion found by non-stochastic search (ERR-LOW). The probability
of a solution of smaller cost occurring in the stochastic solution dis-
tribution is also given. These are the results of search using WBD
and the high domain size. The value with a * required re-labelling to
find a solution. Lo

5.13 The mean solution costs found using hybrid value ordering (ERR-
HYD) versus pure stochastic (ERR-RND). These results are for
the high domain size. o 0oL

5.14 The mean solution costs found using hybrid value ordering (ERR-
HYD) versus pure stochastic (ERR-RND) using low domain sizes. .

5.15 Comparison of the best results of this investigation with the results
from [17] and [32].. Lo

6.1 The number of constraints with a weight above 50% of the maximum
weight and the number of variables involved in these constraints. . .
6.2 Comparison of the best solution found by limited and unlimited searches
of the critical sub-problem.00 000000
6.3 Comparison HYD-BIG for various variable orderings on the high
domain size. The mean and minimum solution costs are given. The
bold results are those that are the lowest, with significance for the
mean costs, for a problem instances.
6.4 Comparison of the mean and minimum costs of solutions found using

HYD-TEN for various variable orderings on the high domain size.

XV

. 133

. 137

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Al
A2

A3

A4

Comparison of the mean and minimum of the solution samples taken
by ERR-RND, HYD-BIG and HYD-TEN using the WBD vari-
able ordering on the high domain size.
Comparison of the mean and minimum costs of solutions found using
HYD-BIG for various variable orderings on the low domain size.
Comparison of the mean and minimum costs of solutions found using
HYD-TEN for various variable orderings on the low domain size. .
Comparison of the mean and minimum of the solution samples taken
by ERR-RND, HYD-BIG and HYD-TEN using the WBD vari-
able ordering on the low domain size.

Comparison of the median number of unlabels required by ERR-

. 139

. 139

140

RND, HYD-BIG and HYD-TEN using the WBD variable ordering.141

Comparison of the mean and minimum of the solution samples taken
by ERR-RND, HYD-BIG and HYD-TEN using the WBD vari-
able ordering on the low domain size.
Comparison of the best results of this investigation with the results
from [17] and [32].. Lo

An example of the backtrack method described in Algorithm 4.

The error produced by each constraint for the solution found by the
search in Table A.4. The critical constraints, as used in a general
comparison, would consist of those with the largest error.
The difference in error produced by each constraint for the solution
found by the search of the Table 3.2 problem using DEG and WD.
The critical constraints, as used in a direct comparison, would consist
of those with the largest error difference in favour of the superior
ordering. e
An example of search using the ERR-LOW value ordering heuristic
on the example problem given in Table 3.2 and Figure 2.1. For sim-
plicity a pws of {2,1} has been used (i.e. there is an error of 2 for
each pair of consecutive exams taken by each student and an error
of 1 for each pair of exams separated by only one slot). There are 5
timetable slots and each column shows the error that will be incurred
by assigning an exam to a time-slot of each row (with an “x” being
used to record that a value has been pruned). The bold values define

the minimum error that is incurred at the time of the assignment. .

xXvi

142

. 161

A.5 An example of how the wsd of a variable develops as assignments are

made to related variables.

xvii

Glossary

Variable Ordering

e DEG - recursively, the variable with the largest degree is ordered next; then
the variable with the next largest degree; and so on. Tie breaks are made

arbitrarily.

e FD - the variable with the largest forward degree is placed next in the variable

ordering. Tie breaks are made arbitrarily.

e VAR - the variable with the largest weight is ordered next. Variable weight
is defined as the number of students who are required to sit the corresponding

exam.

e CLQ-DEG - the variables of a mazimum clique is placed at the start of the
variable ordering (ordered arbitrarily). The remaining variables are ordered
according to DEG.

e CLQ-FD - the variables of a mazimum clique is placed at the start of the
variable ordering (ordered arbitrarily). The remaining variables are ordered

according to FD.

e CLQ-VAR - the variables of a mazimum clique is placed at the start of the
variable ordering (ordered arbitrarily). The remaining variables are ordered
according to VAR.

e WD - the variable with the largest weighted degree is ordered next.
e WEFD - the variable with the largest weighted forward degree is ordered next.

e WCLQ-DEG - the variables of a mazimum weighted clique is placed at the
start of the variable ordering (ordered arbitrarily). The remaining variables

are ordered according to DEG.

xviil

WCLQ-FD - the variables of a mazimum weighted clique is placed at the
start of the variable ordering (ordered arbitrarily). The remaining variables

are ordered according to FD.

WCLQ-VAR - the variables of a mazimum weighted clique is placed at the
start of the variable ordering (ordered arbitrarily). The remaining variables

are ordered according to VAR.

MYV - variables are ordered using a weighted clique partition with the variables
of the heaviest clique being ordered first. The clique weight is defined as the

sum of the variable weights of clique variables.

ME - variables are ordered using a weighted clique partition with the variables
of the heaviest clique being ordered first. The clique weight is defined as the
sum of the edge weights of the clique edges.

BD - the variable with the largest backward degree is ordered next. Tie breaks

are made according to the variable with the largest degree.

WBD - the variable with the largest weighted backward degree is ordered next.

Tie breaks are made according to the variable with the largest weighted degree.

FF - the variable with the smallest domain size is chosen next. Tie breaks are

made arbitrarily.

BZ - the variable with the smallest domain size is chosen next. Tie breaks

are made according to largest degree.

DD - the variable with the smallest ratio between domain size and degree is
chosen next. The domain size is divided by the degree and the variable with

the smallest such value is chosen.

BD-NTB - the variable with the largest backward degree is chosen next. Tie

breaks are made arbitrarily.

BD-DTB - the variable with the largest backward degree is chosen next. Tie

breaks are made according to the largest degree.

BD-D - the variable with the smallest ration between backward degree and
degree is chosen next. The backward degree is divided by the degree and the

variable with the smallest such value is chosen.

Xix

e WSD - the variable with the highest weighted saturation degree is chosen next.

Tire breaks are made arbitrarily.

e WSD-WD - the variable with the highest ratio between weighted saturation
degree and weighted degree is chosen next. The weighted saturation degree is
divided by the weighted degree and the variable with the highest such value is

chosen.

e WBD-WD - the variable with the highest ratio between weighted backward
degree and weighted degree is chosen next. The weighted backward degree is
divided by the weighted degree and the variable with the highest such value is
chosen.

e ELA - variables are ordered to try and exploit the nature of look-ahead algo-
rithms. The constraints are considered in decreasing weight order, with the
heaviest constraint first. For each constraint in order, if none of the constraint
variables have been placed in the current variable ordering, then the heaviest

constraint variable is placed next in the static ordering.

Value Orderings

o LOW - the value assigned to the current variable is the lowest value available

(i.e. lowest value which satisfies the hard constraints).

e RND - the value assigned to the current variable is chosen randomly and
uniformly from the set of values available (i.e. lowest value which satisfies the

hard constraints).

e ERR-LOW - the value assigned to the current variable is that which will
incur the least error with previous assignments. Tie breaks are made on the

lowest value.

e ERR-HIGH - the value assigned to the current variable is that which will
incur the least error with previous assignments. Tie breaks are made on the

highest value.

e ERR-RND - the value assigned to the current variable is that which will incur

the least error with previous assignments. Tie breaks are made randomly.

XX

e ERR-HYD - the value assigned to the current variable is chosen using either
of the ERR-LOW, ERR-HIGH or ERR-RND heuristics. Which is defined

according to the current variable and varies across the variable ordering.

o IC-LOW - the value assigned to the current variable is that which will incur
the least error with previous assignments combined with the error that is
guaranteed to occur in future assignments as defined using look-ahead. Tie

breaks are made on the lowest value.

e IC-HIGH - the value assigned to the current variable is that which will incur
the least error with previous assignments combined with the error that is
guaranteed to occur in future assignments as defined using look-ahead. Tie

breaks are made on the highest value.

e IC-RND - the value assigned to the current variable is that which will incur
the least error with previous assignments combined with the error that is
guaranteed to occur in future assignments as defined using look-ahead. Tie

breaks are made randomly.

Hybrid Search Algorithms

e HYD-BIG - a limited complete search is performed on the critical constraints
using the ERR-LOW value ordering. The best solution found by this search
is then extended a set number of times using the ERR-RIND value ordering

and a defined variables ordering.

e HYD-TEN - a limited complete search is performed on the critical constraints
using the ERR-LOW value ordering. A set of best solutions found by this
search are then each extended a set number of times using the ERR-RND

value ordering and a defined variable ordering.

e HYD-WBD - the search procedure follows that of HYD-TEN; however,
the limited complete search is performed on the set of variables ordered first
by the WBD variable ordering.

Terms

e Backward Degree - the backward degree of a variable is the number of

previous variables in the ordering which occur in a constraint with the given

xx1

variable.

Critical Constraints - the critical constraints are those which have the

biggest impact upon solution quality.

Degree - the degree of a variable is the number of variables which occur in a

constraint with the given variable.

Domain Size - the domain size of a variable is the number of consistent

assignments which can currently be made to the given variable.

Forward Degree - the forward degree of a variable is the number of future

variables in the ordering which occur in a constraint with the given variable.

Look-ahead - look-ahead is a process where the current assignments to vari-
ables are propagated. Whether possible future assignments conflict with cur-
rent assignments and the error that would be incurred between future and

current assignments are considered.

Maximum Clique - the maximum clique of a graph is the largest sub-graph

that forms a clique, where every vertex is connected to every other vertex.

Maximum Weighted Clique - the maximum weighted clique of a graph
is the largest weighted sub-graph that forms a clique, where every vertex is
connected to every other vertex and sub-graph weight is defined as the sum of

all edge weights in the sub-graph.

Weighted Backward Degree - the weighted backward degree is the sum
of the weights associated with edges or constraints which include the given

variable and at least one variable which precedes it in the variable ordering.

Weighted Clique Partition - a weighted clique partition breaks the problem
graph into sub-graphs each of which forms a clique, where every vertex is
connected to every other vertex. Each sub-graph or clique is associated with
a weight, defined by either the sum of sub-problem vertex weights or by the

sum of sub-problem edge weights.

Weighted Degree - the weighted degree of a variable is the sum of the weights

associated with edges or constraints which include the given variable.

xxii

e Weighted Saturation Degree - the weighted saturation degree of a variable
considers the weights of constraints which prune the domain of the given vari-
able. As several constraints can prune the same value, of the given variable,
the maximum such weight is recorded and the sum of such maximum weights

for each pruned value is the weighted saturation degree.

xxiil

Chapter 1

Constraint Satisfaction

1.1 What is Constraint Satisfaction

Constraint Satisfaction consists of the set of problems where values must be assigned
to a set of variables such that a set of rules, or constraints, are obeyed, or satisfied.
Such problems can take many forms such as colouring every country on a map where
neighbouring countries are different colours. Another example are Enigma Puzzles.
These take the form of a word sum, e.g. SEND + MORE = MONEY, where
each letter corresponds to a single digit (a non-zero number in the case of the
leading letters S and M). The aim of the problem is to assign a different number
to each letter such that the sum is correct. In the example given the assignments
{(§=9), (E=5),(N=6), (D=T),(M=1), (0=0), (R=38), (Y =2)} satisty
the sum because 9567 + 1085 = 10652.

1.1.1 The N-queens Problem

The N-queens problem is often used to introduce Constraint Satisfaction Prob-
lems(CSPs) as most people are familiar with the queen piece of the chess set. The
problem consists of placing N queens onto a chess board of size N x N. The
constraints of the problem specify that no two queens can take each other. In chess
the queen piece can move any number of squares in one particular direction at a
time. This direction can be horizontal, vertical or diagonal. In order to satisfy the
problem constraints, or rules, no two queens can be placed on the same horizontal,
vertical or diagonal line. The aim of the problem is to place all N queens on the
board such that the constraints are satisfied. A solution to the 4-queens problem is

given in Figure 1.1.

Chapter 1 2 Constraint Satisfaction

Q

Figure 1.1: A solution to the 4-queens problem.

1.1.2 A Formal Definition

Earlier in this chapter a CSP was defined as the problem of assigning values to a
set of variables such that all of the problem constraints are satisfied. A more formal
definition of a Classical CSP is as a tuple < V, D,C >. The set V describes a set
of n problem variables (V = wvy,...,v,). The superset D is defined as the set of
possible variable assignments to each variable (D = D; N Dy N ... N D,) D; is the
set of possible assignments to, or the domain of, variable v;(i.e. D; = [y, ...,1,)
with each [; being a possible label to the variable and the number of possible labels,
or the domain size, being m. A constraint, in the set of constraints C, is a set of
no-goods. A no-good is a tuple of assignments that cannot be made and is of the
form (v; = ly, vs = ly) which states that variable 1 cannot be assigned label 2 if
variable 3 has been assigned label 2, and vice versa. No-goods can consist of several
violating assignments, the number of which defines the arity of, or the number of
variables involved in, the constraint (which is 2 above). Therefore, the constraints
are used to define the rules of the problem. How the problem at hand is defined in
the mathematical framework (as a Classical CSP in this case) is called modelling.
Problems, particularly more complex problems, can often be modelled in more than
one way, each with different advantages.

In the case of the N-Queens problem the variables represent each line of the
chess board and the values are the squares of the line where a queen could be
placed. Before any queens are placed on the board, each of the variables 1 to N
can be assigned a value from 1 to N. The constraints define where a queen cannot
be placed. For example, a queen could be placed in the top left hand square of the

board (v; = 1). Constraints are defined so that none of the queens on other lines

Chapter 1 3 Constraint Satisfaction

(11=1, vy =2)
(Ul_]-av?::)
(Ul_]-av?::)
1)1—1,’1)4—1)

Figure 1.2: Constraints corresponding to the assignment v; = 1 in a 4-queens prob-
lem.

(the variables vy to vy) are in conflict with such a move. The constraints relevant
to the assignment v; = 1, and where N = 4, are listed in Figure 1.2. Note that the
model used implies no two queens will be placed on the same horizontal line so this
rule does not need to be included in the constraint definition. This is one possible
way of modelling the N-queens problem and the implication specified in the last
sentence reduces the amount of constraint information that needs to be stored.

Classical CSPs take the form of a decision problem. The aim of the problem
is to determine whether a satisfactory assignment can be made (i.e. find a solution).
In the case of the N-queens problem the aim of the problem is to determine whether
N queens can be placed on an N by N chessboard with the results being: yes - they
can; or no - they cannot.

Research into Classical CSPs tends to focus on artificial problems, such as the
N-queens problem. Another example is the Zebra problem. The Zebra problem is
of a type that can be found in Logic puzzle books or in the weekend newspaper.
It consists of 5 individuals of different nationality who live next to each other in
different coloured houses. Each has a distinct pet, favourite drink and smokes a
distinct brand of cigarette. The problem gives several statements such as “The
Norwegian lives next to the Blue house.” or “Kools are smoked in the house next to
the house where the Horse is kept.”. The aim of the problem is to determine which
individual keeps a zebra as his pet. The problem only has one answer which makes
it particularly difficult and of interest to research. Although the problem requires a
specific answer (the Japanese man) it can still be considered as a decision problem

as the aim is still to find a/the solution.

1.1.3 Finding a Solution

In order to find a solution, if one exists, or be sure that a solution does not exist,

the approach to solving the problem needs to be performed in a regimented fashion.

Chapter 1 4 Constraint Satisfaction

The first queen will be placed in a square and only moved once it can be shown
that all of the other queens cannot be placed on the board. After the first queen
has been placed on the board the second queen is placed on a square that does not
conflict with the first queen. This queen is only moved when all possible positions
for the remaining queens have been attempted. The search for a solution continues
in this manner. Such a search method is guaranteed to find a solution if one exists
or prove that a solution does not exist otherwise.

Another approach to finding a solution would be to place all of the queens on
the board and move the pieces one at a time to try and reduce the number of queens
that can take each other. This process continues until a solution is found or some
time limit is reached. Such a search method is not guaranteed to find a solution to
the problem and cannot prove that a solution does not exist. However, it may be a
quicker method of finding solutions.

Each time a queen is placed on the board or moved to a new square many deci-
sions have to be made. The most common decisions are “which square” and “which
queen”. When a human attempts to solve this problem (s)he applies a certain knowl-
edge to such decisions, such as “move the queen which is in conflict with the most
other queens”. One of the main aims of research into Constraint Satisfaction is to
incorporate such knowledge into computer algorithms which solve CSPs. Computers
will not do this and unless told to do so will attempt to solve a problem with no

intuition.

1.1.4 Chronological Backtracking

With respect to solving CSPs the most common complete search methods are based
upon Depth First Search (DFS). DFS extends the current partial solution by as-
signing values to variables one at a time. When a value cannot be assigned to a
variable an inconsistency has been found in the current partial solution. In such a
case DFS backtracks, unlabelling assignments of the partial solution and trying
new assignments. The search process forms a tree, known as the search tree, an
example of which is given in Figure 1.3. Each node represents an assignment to a
variable and the corresponding partial solution of the node assumes this and the
assignments to all ancestors of the current node. The root node corresponds to a
partial solution with no assignments and is where search starts and ends. With
respect to the search tree in Figure 1.3, the nodes are searched in the pre-order (i.e.
0,1,4,5,6,2,7,8,9,3,10,11,12,0).

Chapter 1 5 Constraint Satisfaction

Figure 1.3: Tree based search

Each assignment made by the DFS algorithm is known as an instantiation and
DFS is also known as Chronological Backtracking because the backward moves
made by search merely move back to the previous assignment. More intelligent
backward moves can be made by search and a brief description of one such method

is described later.

1.1.5 Variable and Value Orderings

Other research into CSPs has concentrated upon the order in which the variables
are tackled by search. The variable order can be crucial with respect to how much
search is required to find a solution, or prove that a solution does not exist. For
example, it may be appropriate to make a variable assignment earlier in search if
attempting to do so later may be particularly difficult. Variable orderings fall into
two categories: static and dynamic. Static variable orderings are determined before
search begins often using analysis of the problem structure such as the degree of
variables, where the degree of a variable is the number of constraints it is involved in.
Dynamic variable orderings choose which variable should be assigned a value next
during search. Such methods can utilise information gathered during search such as
pruning performed using look-ahead. Commonly used methods include choosing the
variable with the smallest domain [37], the smallest domain in proportion to variable
degree [3|, and more recently, in [35|, defining how constrained (a combination of
graph density and constraint tightness) the remaining problem will become. The
aim of such heuristics is to tackle the variables in an order which will result in the
remaining sub-problem being easier to satisfy.

When trying to solve a Classical CSP, the aim of search is either; to find a

solution, and hence prove the problem has a solution; or to prove that there are

Chapter 1 6 Constraint Satisfaction

no solutions to the problem. Value ordering cannot affect the number of nodes of
a search tree visited in searching for all solutions, merely the order in which they
are considered. When searching for a single solution, however, assigning values in
a particular order can result in a solution being found quicker. Intelligent value
ordering heuristics developed for Classical CSPs work on the principle of choosing
the value that seems most likely to lead to a solution. For each variable, assigning
a value which maximises the size of the subsequent search sub-tree should minimise
the size of search for a single solution. For example, in graph colouring problems
this leads to the choice of a value that will minimise the chromatic number of the
remaining sub-problem. Bear in mind that the values from some domains will be
pruned by the current assignment.

One form of Classical CSP that has received considerable attention is the mini-
mum colour graph colouring problem. Graph colouring consists of assigning values,
or colours, to nodes of a graph such that no two connected nodes share the same
value. The minimum colour problem consists of minimising the number of colours
used in colouring all of the nodes of a graph. A common method of finding solu-
tions to this problem is to assign the lowest available value, entitled the sequential
colouring method in [55]. This method is often accompanied by a dynamic vari-
able ordering heuristic [8,55,79|. At each stage of search, the variable which has the
smallest domain size is assigned a value, on the rationale that the variable with the
smallest domain is that which is the most difficult to assign a value to. By assigning
the lowest value available, search makes the same value choice for variables with no
past neighbours in the variable order. Then as further assignments are made, search
attempts to assign values which have already been used for unrelated variables. Us-
ing this has the effect of reducing the number of values removed from the domains
of future variables because their past neighbours will be assigned as few different
values as possible.

For other Classical CSPs, methods have been developed that try and maximise
the number of solutions within the future sub-problem. The work of Dechter and
Pearl [22] reduces the future sub-problem into a tree structure. Then the number
of solutions for this relaxed problem can be calculated in polynomial time, and the
best such value assigned. This method was extended by Vernooy and Havens [70] to
consider multiple tree-based future sub-problems combined to give the probability
that a value is in a solution. Geelen has defined a formula to calculate the promise
of a variable or a value, with dynamic variable and value orderings being based upon

this measure [33].

Chapter 1 7 Constraint Satisfaction

Frost and Dechter have developed a simpler method of value ordering [29] where
values are assigned according to the aim of minimising conflicts. It considers the
pruning performed by assignments. Each time an assignment is made the possible
future assignments which conflict with this assignment can be ignored or pruned.
By assigning values which prune fewer future variable values, the number of possible
future solutions is maintained at as high a level as possible. Such methods are easily
applicable to graph colouring problems; although their performance is not known.
Graph colouring problems are also related to Frequency Assignment Problems, and
variations of value ordering by minimising conflicts can be found in [40] developed
(apparently) independently, by Hurley et al, of the work of Frost and Dechter [29].
An example of variable and value ordering in action on the 5-queens problem, using

the definition from Section 1.1.2, can be found in Figure 1.4.

Chapter 1 8 Constraint Satisfaction

Figure 1.4: Finding a solution to the 5-queens problem.
Variables are ordered by domain size and values are ordered by minimum number
of prunes in the future sub-problem (the value of which is given in the top right
hand corner of each square). Heavily shaded squares of the chess board are pruned
values. Search proceeds as follows.
Top Left Figure: The first variable is chosen arbitrarily as all variables have the
same domain size. Equally the assignment to the first variable is chosen arbitrarily.
Top Right Figure: The second variable is chosen arbitrarily; however, it is assigned
the 4th value as it prunes fewer future values (i.e. it will shade fewer unshaded
squares of the board).
Bottom Left Figure: The 3rd variable is chosen next as it has the smallest domain.
It only has one value so there is no need to perform value ordering.
Bottom Right Figure: The 4th variable is chosen next, again arbitrarily. Followed
by the only remaining variable. Both assignments to these last two variables are
given as each only has one consistent assignment.

Chapter 1 9 Constraint Satisfaction

1.2 Weighted Constraint Satisfaction

The definition of Weighted CSPs (WCSPs) is an extension to the CSP definition.
Each constraint of the problem has an associated error. If a solution violates a
constraint, then the error associated with the corresponding no-good is incurred.
Every solution has a cost which consists of the sum of all errors incurred by the

solution. The aim of the problem is to find the solution of minimum cost.

1.2.1 Search of WCSPs

The search algorithm used takes the form of that used to search Classical CSPs.
However, it must be adapted to consider soft constraints. The search, label, and
unlabel functions are defined in Algorithms 1, 2 and 3 respectively.

Algorithm 1 is the search function which maintains the current search depth
and continues searching until this value is < 0, in which case search has reached
the root of the search tree and stops. Line 7 tests if the search depth is > n or
whether a full solution has been found. If this is the case the new extant solution
cost (the solution will always be extant) is recorded in line 9 and search backtracks
and continues in line 10. Line 13 tests whether the current variable can be assigned
a value (as recorded by the last call to the label or unlabel function) and whether
the current solution cost is lower than the extant. If both of these assertions are
true then an assignment can be made (line 15); if not no assignment is possible and
the previous assignment must be undone for search to continue (line 17).

The label function (Algorithm 2) makes an assignment in line 5. Then the
consistency of this assignment is checked (line 11) with all previous assignments
(defined by the loop on line 7). The consistent variable maintains the fact that
the current assignment must be consistent throughout the process. If the current
assignment is consistent (tested in line 14) then the solution cost is updated (line 18),
else the current assignment is removed from the set of possible assignments to the
current variables (line 16). This process is continued until a consistent assignment
is found or the domain of the current variable is exhausted (both of which are tested
in line 3).

The unlabel function (Algorithm 3) reverses this process. The domain of the
current variables is reset (line 4) and the search depth is decrease so that the current
variable is the previous assignment (i.e. the one that need to be undone). The
current assignment to this variable is removed from the variable domain (line 7);

the solution cost updated (line 8); and the assignment is reset (line 9). The function

Chapter 1 10 Constraint Satisfaction

Algorithm 1 Search
1 begin

2 search depth:=1

s extant := oo

4 consistent .= TRUFE

5 while search depth > 0

6 do

7 if search depth > n

8 then

9 extant := search_cost

10 consistent := unlabel(search_ depth, search_ cost)
11 fi

13 if consistent and search_cost < extant

14 then

15 consistent := label(search _depth, search cost)

16 else

17 consistent := unlabel(search__depth, search_ cost)
18 fi

19 od
20 end

then determines whether a new assignment can be made in line 10. This assertion

is passed back to the search Algorithm using the consistent variable.

Chapter 1 11 Constraint Satisfaction

Algorithm 2 Label(search_ depth, solution _cost)

1 begin

2 consistent := FALSE

3 while | Dgearch depth |> 0 and !consistent

y do

5 Usearch depth = & @ € Dgearch depth

6 congsistent :=T'RUFE

7 fori=1 to search depth—1

8 do

9 if consistent

10 then

11 consistent :=!con flict(vi, Vgparch depth)
12 fi B

13 od

14 if !consistent

15 then

16 Dsearcb_ depth = Dsearcb_ depth — @

17 else

18 solution__cost = solution_ cost + cost(Vgearch depth)
19 fi B
20 od

21 end(consistent)

Algorithm 3 unlabel(search depth, solution cost)

1 begin

2 if search depth < number of variables

3 then

4 Dgearch _depth =D

5 search _depth := search _depth — 1

¢ fi

7 Dgearch _depth ‘= Psearch depth — Vsearch_depth
8 solution_ cost := solution_cost — cost(Vgeqrch depth)
9 Usearch_depth ‘= 0
w0 if Dgearch_depth = 0
11 then
12 consistent := FALSE
13 else
14 consistent .= TRUFE
15 fi

16 en?i(consistent)

Chapter 1 12 Constraint Satisfaction

1.3 Overview

In the next chapter research into CSPs that is relevant to this thesis is reviewed.
Chapter 3 reviews the literature which focuses upon the University Examination
Timetabling Problem from the early beginnings of the problem to the present day.
Basic search methods used in this thesis and an analysis of the problem instances
on which experiments are performed are given. Chapter 4 investigates the use
of variable ordering heuristics in WCSPs and analyses the qualities that make a
solution “good”. Chapter 5 considers how value ordering can improve the solutions
found by search. Hybrid Search for WCSPs is introduced in Chapter 6 and several
combinations of search methods have been compared empirically. The work of this

thesis is then concluded in Chapter 7.

Chapter 2

An Introduction to CSP Research

Due to the fact that Constraint Satisfaction Problems arise in many areas of Com-
puter Science, and indeed life, they come in many shapes and sizes. The features of
some problems may be specific only to that problem, or to very similar problems.
The aim of this introduction to the topic is not to list every single type of CSP,
but to introduce problems relevant to the work on examination timetabling in this

thesis.

2.1 Classical CSPs

2.1.1 Problem Complexity

The complexity of a problem is defined by the complexity of the best method, or
algorithm, for finding a solution. The complexity of an algorithm is defined by the
amount of time, or number of steps, that it will require to find a solution in the
worst case as a factor of the problem size. A polynomial time algorithm requires,
in the worst case, a time of the order n* (where k is a constant and k¥ > 1) to find
a solution to a problem of size n, represented as O(n*).

The class of NP-hard problems is defined as those problems that require an
exponential amount of time in the worst case, O(k™) where k is a constant and & > 1,
to find a solution. The solutions to such problems can be checked for correctness
using an algorithm. A problem is NP-complete if it is NP-hard and the solution
checking algorithm requires polynomial time. Most CSP decision problems, where
the problem aim is to find a solution such as for N-queens, are NP-complete, while
most Weighted CSPs fall into the category NP-hard.

13

Chapter 2 14 An Introduction to CSP Research

2.1.2 Randomly Generated Problems

A great deal of research into Classical CSPs has concentrated upon randomly gen-
erated binary problems. Binary problems only constrain assignments between 2
variables. The use of random problems overcomes limits on the number of example
instances which research methods can be applied to. For example, the most obvious
and vigorously researched feature of Classical CSPs is that of finding solutions us-
ing the minimum amount of effort. When comparing methods of finding a solution,
more confidence can be gained regarding the superiority of a method as the sample
of problem instances increases in size. Random problems are usually defined as a
tuple of form < n, m, p1, po >. The number of variables is defined by n; the number
of values that can be assigned to each variable by m; the density of the problem
by pi; and the constraint tightness by p;. There are many variations upon this
definition (a description of some can be found in [62]), some with respect to spe-
cific notation, others to whether p;and p, define strict proportions or probabilities;
however, the general properties remain the same. The density of the problem is
defined by the proportion, or probability, of constraints occurring between variable
pairs. The tightness of constraints is defined as the proportion, or probability, of
no-goods between two variables. During the rest of this thesis a constraint is defined
between a subset of the problem variables (of size 2 in this case) and each consists
of a set of no-goods between assignments to the variable subset.

Random binary CSPs can therefore be represented by a graph, known as a con-
straint graph; with nodes representing problem variables; and edges representing
constraints. The density, therefore, defines the number of constraints in the prob-
lem, or the number of edges in the constraint graph, and the constraint tightness,
the number of no-goods in each constraint. The term over-constrained is used to
describe the situation when the density or constraint tightness of a problem are large
enough to ensure that the problem has no solution. The specifics of how random
Classical CSPs of this nature are generated is not of relevance to this thesis; how-
ever, it should be noted that there are different methods and badly formed methods
could lead to misleading results. Figure 2.1 given an example of a constraint graph.
The density of this graph is the number of constraints in the graph divided by the
maximum number of possible constraints in the graph (i.e. the number of edges in
a complete graph), in this case % or 0.73. The tightness of constraints within the
graph is dependant upon the type of constraints in the problem. It is calculated,
in a similar way to density, as the number of no-goods (i.e. pair of inconsistent

assignments) divided by the maximum possible number of no-goods.

Chapter 2 15 An Introduction to CSP Research

Figure 2.1: Example Problem Graph for the problem defined in Table 3.2.

2.1.2.1 Finding Difficult Random Problem Instances

A large proportion of research has examined the difficulty of finding a solution, or
proving that no solution exists, to randomly generated problem instances as the
problem parameters are varied. There has been a large amount of research into
the phase-transition in random problems (originally discovered by Cheeseman, et
al, in [18] and developed in terms of random binary CSPs by Williams, et al, in [81]
and Smith in [66]), where there is a sudden shift between solvable and unsolvable
problem instances as the constraint tightness is varied. It has been shown that
the most difficult problems (on average) occur for the parameters where the phase-
transition occurs. Such work has helped to define specific parameters where problem
instances are particularly difficult to solve. Samples of such difficult problems have
subsequently been used to analyse the performance of different methods of finding

solutions.

2.1.3 Advanced Solution Methods

The most common method of finding a solution to a problem instance is by search.
Search methods fall into two categories: complete and incomplete. Complete
search methods will always find a solution if one exists and will prove that one
does not otherwise, although they may require an exponential amount of time.
Incomplete search methods may find a solution; however, they cannot determine

whether a solution exists or not and will search indefinitely unless some stopping

Chapter 2 16 An Introduction to CSP Research

criteria are defined. On the other hand, the advantage of using incomplete search
methods is that, if correctly defined, they may be able to find solutions considerably
quicker than complete methods. There now follows an overview on complete search
methods with respect to classical CSPs; incomplete search methods will be discussed

later.

2.1.3.1 Incorporating “Look-Ahead” Into Search

There have been many improvements made to the basic search algorithm with at-
tempts to add some intelligence. One such improvement is the use of “look-ahead”
developed by Haralick and Elliott in [37]. “Look-ahead” examines the implication
of an assignment or potential assignment with respect to the problem constraints.
An example of this is Forward Checking(FC). Each time an assignment is made
the search algorithm can look ahead and calculate the effects upon variables yet to
be assigned a value, or un-assigned variables. Related variables, which occur
within the scope of a constraint (i.e. both are connected by an edge in the constraint
graph) along with the current variable, can be pruned where they conflict with the
current assignment. This is merely pruning the domain, i.e. removing a possible as-
signment, of un-assigned variables when the conflicting assignment is made and not
when the later assignment is attempted. This allows search to identify when there
are no satisfying assignments to an un-assigned variable, with respect to the assign-
ments made so far, without wasting time assigning values to un-related variables.
The process of pruning all of the values in the domain of a variable is called domain
wipe-out and using look-ahead in this manner helps to reduce the amount of search
performed by backtracking as soon as a domain wipe-out is discovered. The only
cost is a more complex method of maintaining the domains of un-assigned variables
which is often little in comparison to savings made. An example for the propagation
used by FC can be found in Table 2.1.

A more intelligent form of “look-ahead” is to enforce arc-consistency(AC) dur-
ing search. A sub-problem consisting of the future (i.e. un-assigned) variables
and their remaining domains is arc-consistent if all pairs of possible future assign-
ments are consistent with respect to the binary problem constraints. For example,
if a possible variable assignment is inconsistent with every possible assignment to
another future variable, then the given assignment can be eliminated or pruned.
When combined with a search algorithm such a procedure forms a Maintaining
Arc-Consistency (MAC) algorithm.

Chapter 2 17 An Introduction to CSP Research

Remaining Domain values
| Assignment | CS | MA [EN [SS | PY
PC—1 231]23123[23] 23
CS—2 - 3 23] 3] 3
MA=3 - - 1231 0| 0

Table 2.1: An example of the effects of Forward Checking propagation.

The effects of 3 consecutive assignments to the variables of the problem in the
graph of Figure 2.1 when domain size is limited to 3. After these 3 assignments no
possible assignment can be made to the variables SS and PY. Forward Checking will
propagate each assignment as it is made (i.e. calculate the information in the table)
and will be able to ascertain that this partial solution cannot be extended. Without
such a look-ahead technique search may attempt to assign a value to EN and in
such a case would not discover the inconsistency until SS or PY are considered for
assignment.

2.1.3.2 Intelligent Backtracking

Incorporating intelligence into search has also been applied to the process of back-
tracking (performed by the unlabel() function in the description above). The draw-
back of the Chronological Backtracking procedure is that it does not necessarily
move back to the actual cause of the inconsistency. If such a cause were to be an
assignment made near the start of search, chronological backtracking would exhaus-
tively search the search sub-tree below this assignment for no gain. This process is
known as thrashing.

Intelligent backtracking includes methods such as Gaschnig’s Backjumping (BJ)
[31]; however, one of the most advanced methods is Conflict-directed Backjumping
(CBJ), devised by Prosser [61]. CBJ records which assignments have caused a
value to be pruned from the domain of an un-assigned variable (this is regardless of
whether look-ahead detects the inconsistency or if it is detected as an assignment
is attempted). When an assignment cannot be made search can jump back and
unlabel all variables below the deepest conflicting variable. Because the assignments
between the un-assignable variable and its deepest conflicting relation would have
been fruitlessly searched, the completeness of the algorithm is maintained. Research
has shown that such intelligent backtracking can be extremely useful.

Such a method has been extended by Ginsberg to form Dynamic Backtrack-
ing [36]. Dynamic backtracking does not require that variable assignments made
between the current un-assignable variable and its deepest related variable be unla-

belled. The variable order is altered so that the conflicting related variable is moved

Chapter 2 18 An Introduction to CSP Research

down the variable order such that it directly precedes the current un-assignable
variable. This prevents the search process repeating the assignments made to the
variables between the conflicting variables. Provided pruning through look-ahead is

carefully maintained the method retains the completeness of search.

2.1.3.3 Alternative Tree Traversal Techniques

Harvey and Ginsberg have developed Limited Discrepancy Search [38|, or LDS,
which employs a different approach to how the search tree is searched. It has al-
ready been mentioned, in this section, how altering the variable ordering so that the
difficult to assign variables are placed near the start can reduce search effort. How-
ever, such a variable ordering also has the drawback that if such a difficult to assign
variable was to be the cause of inconsistencies deeper in search, a large amount of
search effort may be required to reassign such a variable even if intelligent back-
tracking methods were used. In order to combat such “bad” moves early in search
LDS systematically searches all paths that differ from the current partial solution
by one assignment. If, subsequently, a solution is yet to be found, the process is
repeated for solutions that differ by two assignments. Then, by three assignments,
and so on. Provided the search is performed systematically completeness is main-
tained by the algorithm. The nature of this search means that a small number of
“bad” assignments that may occur near the root of the search tree can be altered
without the need for exhaustive search.

Meseguer’s Interleaved Depth-First Search [57], or IDFS, provides a similar
search method. When a domain wipe-out is encountered, rather than backtrack
to the previous (conflicting) variable, search backtracks to the first variable and
attempts an alternate assignment. Once all of the first variable assignments have
been attempted, search considers an alternative second variable assignment. Then,
the various assignments to the first variable are repeated. This form of search is
actually analogous to Breadth First Search (BFS); however, at each node of the
search order it performs a depth first traversal of the search sub-tree. Breadth First
Search searches the search tree a level at a time, rather than a branch at a time like
DFS. As search moves deeper every consistent solution at that depth is considered
and extended in the next level of search. With respect to the search tree in Figure
1.3, the nodes are visited in the order 0,1, 2, 3,4,5,6,7,.... As with BFS problems
regarding storage space are encountered by IDFS; however, the DFS element of the
search means that solutions to the problem may be available as the BF'S progresses.

Walsh’s Depth-bounded Discrepancy Search(DDS) [76] combines both LDS and

Chapter 2 19 An Introduction to CSP Research

IDFS incorporating the best features of both. This search method limits the number
of discrepancies considered during each iteration of the algorithm by limiting the
depth at which they can occur. Search starts by concentrating on those paths to the
bottom of the search tree which differ for assignments made to variables near the
start of the variable ordering. As more iterations of the algorithm are performed,
paths which differ by more and more variable assignments are considered. The LDS
element allows the search to explore paths down the search tree which differ from
the first path by a limited number of discrepancies (by 1 discrepancy to begin with,
followed by 2 discrepancies, followed by 3,...). The IDFS element of the search limits
the maximum depth at which these discrepancies can occur. At the start of search
discrepancies are limited to the top of the tree where conventional wisdom would
suggest the mistakes are most likely to have been made; however, as search progresses
this maximum depth is increased. Experiments in |76] demonstrate empirically the
superiority of DDS over both LDS and IDFS.

2.2 Partial CSPs

Partial CSPs, or PCSPs, were first defined by Freuder and Wallace in [27] as
an extension to the Classical CSP framework. When problems are over-constrained,
search should try and find a “good” partial solution to the problem. What constitutes
a “good” partial solution can vary from one problem to another. In some cases it
may consist of finding a full solution that satisfies as many constraints as possible;
while in another finding as large a partial solution as possible that does not violate
any constraints may be the order of the day. In either case, PCSPs correspond to
optimisation problems. Such problems have had a great deal of research performed
on them with reference to specific real world problems (a brief description of three
such problems is given in section 2.3); however, it is an important issue to link the
advances made on artificial problems with those made in the real world. Different
types of Partial CSP arise depending upon what is being relaxed in the search for a
“good” solution. A brief overview of these are given in Section 2.2.1.

Higher level frameworks have been defined that encompass all types of CSP.
Semi-ring-Based [4] and Valued-CSPs [65] have been developed separately and sub-
sequently shown to be interchangeable in [5]. Both define the possible tuple costs,
and operators to compare and combine costs. In the case of Classical CSPs, tu-
ples are associated with the boolean values TRUFE and FALSFE corresponding to

whether the tuple is a good or a no-good. They are combined using the logical

Chapter 2 20 An Introduction to CSP Research

and (A) operator; however, different definitions allows different problem types to
be defined. These definitions are made at an abstract level that allows any form
of CSP to be defined. Such a framework can also help to compare CSP types and
allow definitions such as look-ahead to be extended to other CSP types where the

definition may not be so obvious.

2.2.1 Problem Types

A Probabilistic CSP, as defined by Fargier and Lang [25], is a CSP where each
constraint has an associated value. This value specifies the probability that the
constraint is in the problem. Such uncertainty about a constraint is evident in
real world problems, e.g. the possibility of road works in the Travelling Salesman
Problem. Given a problem instance with a number of constraints which might need
to be considered, a whole range of sub-problems provide possible perturbations of
the problem. Each of these sub-problems will have a probability of occurring. The
aim of the problem is to find a solution with the maximum probability of being the
solution to the actual problem. This is given by the probability that the constraints
which a solution violates are in the actual problem. In this model the preference
defines the extent to which the constraint is applicable to the problem being defined.
In the following models a preference is associated with each constraint which defines
the constraint importance when finding a solution.

A Fuzzy CSP can be used to define a real world problem where an amount
of tolerance is allowed in finding satisfying valuations for the problem constraints.
In [24], Dubios, et al, define the order of preference by a fuzzy relation which
assigns a value in the range [0..1] to each satisfying tuple, or labelling of the variables,
of a constraint. The variable labellings associated with the constraint are; completely
valid if the value is 1; invalid if the value is 0; or valid to a certain extent otherwise.
So the tuples of constraints have varying amounts of preference, depending upon
how well the constraint is satisfied. Each constraint is said to have a preference
distribution. The problem can also model required constraints by only using 1 and
0 as levels of preference for the relevant tuples. Then the aim, as defined in [24], is
to find a solution, or full set of labellings, which maximises the minimum constraint
preference that is achieved. [24] extends CSP techniques such as arc-consistency to
Fuzzy CSPs. Such a method is similar to Possibilistic CSPs as defined by Schiex
in [64].

Lexicographical CSPs have been introduced in [26], by Fargier and Lang, to try

Chapter 2 21 An Introduction to CSP Research

and combat the fact that in Fuzzy CSPs only minimum constraint preference for a
solution is considered in calculating the solution preference. In fact, in a large real
world problem, this preference or error may be unavoidable to a certain degree and
the comparison of solutions on this value may not give a true comparison. As with
Fuzzy CSPs all of the constraints have a preference distribution. The preferences of
the constraint tuples referred to by a solution are placed into a list. Then these lists
of preferences can be ordered and compared by counting the number of constraints
with a particular level of preference from the least preferred upward. When they
differ, the solution which has fewer constraints of that level of preference is the better
as in general its constraints are solved better when looking from bottom up-wards.
Hierarchical CSPs encompass the notion that constraints should be grouped ac-
cording to their importance. In many real-world problems constraints are defined
as different types of constraints and not merely the collection of no-goods as used
in random CSP models. Therefore, constraint types often come in an order of pref-
erence and can be grouped together in a constraint hierarchy, a term originally
used by Wilson and Borning in [82]. Within the hierarchy, constraints can still be
assigned weights and preferences; however, when used strictly a constraint is in-
finitely more important than another if it belongs to a higher level of the constraint
hierarchy. Solution costs are subsequently given as a tuple such that each num-
ber represents the solution cost for each level of the hierarchy. Provided that each
level is distinct the hierarchy can consist of different types of CSP. For example,
a Classical CSP could be used at the top level to define the rules of the problem,
with different Partial CSP models being used at lower levels depending upon the
real-world constraint being modelled. The Constraint Hierarchy has been extended
by Kam and Lee [43] to consider “fuzzy” boundaries between each level, forming a
Fuzzy Constraint Hierarchy. Such an adaptation extends the framework such
that a large error to an important constraint of one hierarchy level may encroach
upon the importance of a less important constraint of the preceding level.
Maximal-CSPs (MAX-CSP) and Weighted CSPs (WCSP) are two other Partial
CSPs of more relevance to the rest of this thesis. They are described in more detail

below.

2.2.1.1 MAX-CSPs

The MAX-CSP was originally proposed in [27] as a form of PCSP and has the same
structure as a Classical CSP; however, the objective is to satisfy as many constraints

as possible. The cost of a (partial) solution is the number of constraints that have not

Chapter 2 22 An Introduction to CSP Research

been satisfied. As an extension of Classical CSPs, a large amount of work has been
produced extending the research into Classical CSPs to MAX-CSP. An example is
the extension of look-ahead. Look-ahead in MAX-CSP performs less pruning than
for Classical CSPs. It is mainly used to increase the lower bound of partial solutions
by counting the minimum number of constraint violations caused when assigning a
value to a future variable (i.e., a variable that has not been assigned a variable
before). This minimum cost will always be incurred when assignments are made
to this future variable, with respect to the current partial solution, and so can be
included in the lower bound. Arc-consistency has been extended, in the form of
Directed Arc-inconsistencies (defined below), to consider possible errors that will be
incurred between pairs of future variables.

Look-ahead for MAX-CSP was first defined in [27] and later optimised by Larrosa
and Meseguer [47]. The initial work of Wallace and Freuder concentrated upon the
extension of techniques applied to Classical CSPs. In [73]| and [49] new variable
ordering heuristics are proposed for MAX-CSP using several extensions of algorithms
used to search Classical CSP. This work was extended by Wallace [71] by considering
methods to increase and decrease the lower and upper bounds respectively. By doing
so the evidence shows that less search effort is required to search the problem. Such
work with regard to bounds has been continued in several directions.

The use of Directed Arc-inconsistency Counts (DACs) to increase the lower
bound, as defined in [71], has been improved several times. DACs are an exten-
sion of “look-ahead” information and are used to calculate whether any possible
assignment that can be made to a future variable must incur some error. The mini-
mum such error must always be incurred when extending the current partial solution
and so can be added to the partial solution cost, which acts as the current lower
bound. The use of DACs has been extended by Larrosa and Meseguer [45,46,48|.

Several methods of defining the lower bound to a problem instance have been
examined by Cabon, et al in [14] with a hybrid Russian Doll Search (RDS) proving
to be the best. However; they only compare how the lower bound is developed over
time and do not compare overall search results. RDS performs searches on sub-
problems of increasing size with each larger sub-problem containing the previously
smaller one (hence the Russian Doll). This technique has been extended by Meseguer
and Sanches and combined with a search algorithm [58]. Their results on random
problem instances show that in order for the lower bound to become effective the
problem needs to be either complete or very dense.

The remainder of the work into MAX-CSPs by Freuder and Wallace has, in

Chapter 2 23 An Introduction to CSP Research

the main, concentrated upon hill-climbing local search methods [72, 74, 75], which
are described in more detail in section 2.3.3. Tabu search, which is similar to hill-
climbing and is also described in more detail later, has also been implemented for
MAX-CSP by Galinier and Hao [30]; however, it is only compared to hill-climbing

which limits any conclusions.

2.2.1.2 Weighted CSPs

Weighted CSPs are very similar to MAX-CSPs. A weight, in the range [1..00],
is associated with each constraint and if a solution does not satisfy it, then the
solution cost includes the constraint weight. A WCSP is equivalent to a MAX-CSP
if all constraints have a weight of 1, as the solution cost function will merely count
the number of violated constraints. The weight of co defines that a constraint cannot
be violated by any valid solution, and so a WCSP is equivalent to a Classical CSP
if all constraints have the weight oo. This leads to the definition of hard and soft
constraints. A hard constraint is a constraint that cannot be violated, as it has a
weight of co. A soft constraint can be violated, but at a cost given by the constraint
weight. Generally, the hard constraints are used to define the rules of the problem
while the soft constraints define the optimisation criteria of the problem.

WCSP constraints can be considered in two ways. Each constraint can be as-
sociated with a weight or each constraint no-good can be associated with a weight.
Both cases are equivalent. Obviously the first constraint definition is encompassed
by the second definition. The second definition can be defined by the first, by using
multiple constraints to define the various errors between two variables. In practice
the second definition is used. However, when talking about WCSP constraints it is
good to distinguish between the hard and the soft constraints. Therefore, in this
thesis when a reference is made to the hard constraints it refers to the hard no-goods

of a constraint.

2.2.1.3 WCSPs in the Real-World

The WCSP model is widely used both implicitly and explicitly in solving real-world
problems. The use of WCSP as a framework for research has the drawback that
random problems require a constraint weight set which needs to be distinct so as
to; not provide the same results as random MAX-CSP instances; and be similar to
weights found in the real-world. However, the similarity between MAX-CSP and
WCSP means that random MAX-CSP instances can be used for exhaustive testing

Chapter 2 24 An Introduction to CSP Research

while real-world problems modelled using WCSP can be used to confirm results.
This has been the case when search method have been implemented for MAX-CSP
as in [14] and [58] where after testing for random MAX-CSP problem instances the

Frequency Assignment Problem has been used as a real-world comparison problem.

2.3 Real World problems

The motivation behind constraint satisfaction work is that it can be applied to real-
world problems. Solving such real-world problems can increase efficiency in industry,
distribute work between workers evenly or maintain achievable schedules. In this
section two real-world problems are introduced. It should be noted that the following
problems are given to provide a flavour of the kind of problems that occur in the
real world. Although the vast majority of real-world optimisation problems can be
modelled using WCSPs or Constraint Programming in general, other approaches
to solving the problems (such as Integer Linear Programming) may be both more
suitable and more commonly used. These problems will be used to illustrate some of

the advanced optimisation methods which are currently used on real-world problems.

2.3.1 Nurse Rostering

The problem of Nurse Rostering, as investigated in exists in [1], all major hospitals
and other similar institutions. The problem consists of producing a 24 hour schedule
such that a specific number of nurses are required to be present in a ward at any time.
The number can vary as, for example, more nurses may be required during the day
than during the night. Also, nurses can have specific skills or rank. Subsequently,
a matron may have to be on duty at all times during the day or a nurse with a
specific skill may need to be on hand at all times. There are also the preferences
of the nurses to consider. For example, one nurse may require a particular day off.
Rules or preferences concerning whether nurses have to work equal numbers of each
shift over a longer period of time may also arise. The core problem forms a decision
problem; however, the addition of preferences result in a optimisation element to the
problem. An approach to solving the problem as a CSP could consider each shift
in turn and assign personnel to that shift such that all skill requirements are met
and nurse roster patterns are within an acceptable level of the desired preference for
each member of staff. In such an approach variable ordering would correspond to

the order in which shifts where considered with the actual variables recording each

Chapter 2 25 An Introduction to CSP Research

staff position on the shift. It would be desirable to consider shift which are hard
to assign staff to first such as the night shift. Value ordering would correspond to

which staff are assigned to each shift with each value representing a staff member.

2.3.2 Car Sequencing

Car Sequencing problems are used to defined the optimal order of cars in a pro-
duction line [21,69]. As cars are passed along a modern production line they move
continuously and mechanics work on them while they move along. Each group of
mechanics work on a specific feature(e.g. sunroof, rear spoiler, etc...) of the car
and need to stay within a distance of a base where they access parts and tools.
Therefore, each feature of a car can only be “fitted” on a sub-part of the production
line. The over-constrained nature of this problem arises because each part can only
be fitted to so many cars at once. This is not a problem if the cars move down the
production line at a slow rate. If the production line speed is slow enough to allow
the most time consuming feature to be fitted to every single car then no cost will
be incurred from having to pause the production line. However, different cars in a
sequence will have different features or specifications. The aim of the motor com-
pany is to run the production line at as fast a speed as possible without requiring
it to be paused. Constraint Satisfaction methods are used to order the cars such
that the production line can run at a fixed speed, which forms a decision problem,
or to order the cars such that the speed of the production line can be maximised,
an optimisation problem. Placing the cars with the most time consuming feature
across the ordering will mean that the workers who fit that feature may have enough
time to fit that feature. The problem becomes more complicated as more features
need to be fitted to each car.

2.3.3 Advanced Optimisation Methods

The optimisation search methods which are commonly used on real-world problems
tend to be incomplete (i.e. they are not guaranteed to find an optimal solution). The
size of the search space of large problems means that it is rare that complete search
methods visit a significant proportion of the search tree. In tree-based search it is
difficult for search to jump from one section of the tree to another that may offer
significantly different, and possibly better, solutions, without losing the property
of completeness. To this extent stochastic methods are of more interest when

searching in the real-world. Stochastic search incorporates a random element

Chapter 2 26 An Introduction to CSP Research

into search such that the same search method can be applied several times with

different results. Several common optimisation methods are described below.

2.3.3.1 Local Search

Local search techniques avoid the problems of tree-based search. By allowing changes
to any variable assignment, as opposed to only the last assignment, the search
procedure can focus on those variables which are involved in a significant proportion
of the solution error at each search iteration. Such search methods can also be called
“hill-climbing” methods. The position in a landscape is defined by the assignments
made to the variables. The height of the current point in the landscape is given
by the solution quality. Hill-climbing methods always try to climb upward. The
drawback of such methods is that they can often lead to dead-ends where the current
solution cannot be improved at all. Such points of the landscape are known as local-
optima. Such a situation would occur if a search method were to climb and reach
the top of a hill that is not the highest hill in the landscape. There have been many
attempts to get around this, such as restarting search and the use of tabu lists.
By restarting search the hill-climbing procedure may start climbing from another
part of the landscape. Tabu lists remember a number of the last moves made by
search. By doing so it can attempt to move away from a previously search-area and
move away from the local optimum. Davenport and Tsang |21] use a variant of the
hill-climbing approach to search on the car sequencing problem. The cars of the
sequence are moved to positions where they result in a lower cost. They develop
a new method of escaping from local optima by increasing constraint weights and
show that it is superior to similar methods of escaping local optima. Tabu search
has been applied to examination timetabling by Di Gaspero and Schaerf [32]. In
such an implementation exams are moved from one timetable slot to another such
that a cost is reduced. They have shown that a standard Tabu search can compete

with more traditional Constraint Programming methods.

2.3.3.2 Genetic Algorithms

Genetic Algorithms provide a method of searching evenly across the whole solution
space while being able to concentrate on improving the solution cost. One of the
common, yet not so well cited, drawbacks of GAs are that they require experimenta-
tion to perfect the parameter settings. This, however, is countered by the fact that a

basic implementation should provide reasonable results and a more problem specific

Chapter 2 27 An Introduction to CSP Research

implementation should improve results even more. GAs operate on a population of
elements. In a simple implementation each element is a, possibly inconsistent, solu-
tion to the problem. A fitness operator decides which elements are “fitter” or better
than others and the fitter elements are combined, or mate, to form a new population.
Two parent solutions mate in two main ways. A combination function combines
two elements together. Such a method can be as simple as chopping solutions in
half and recombining them. Mutation, as the name suggests, applies a random
mutation function to the assignments of a solution. As the population number in-
creases GAs can converge toward a population of fit elements. Implementations
with respect to exam timetabling have to overcome the large obstacle of fitting two
half schedules together. GAs have been applied to Nurse Rostering by Aickelin and
Dowsland [1]. Each solution is represented as a sequence of shift patterns for a
set of nurses. The crossover operator combines two sequences of shift patterns; the
mutation operator randomly reassigns a nurse to a different shift pattern; and the
fitness function determines whether a solution is feasible and how closely it satisfies
the nurses preferences. The sequences that make up a population are ordered ac-
cording to fitness and then chosen for recombination according to their position in
this order. In [1| such a method is extended further to take advantage of problem

structure; however, the overlying principle of GAs remains.

2.3.3.3 “Squeaky-Wheel” Optimisation

“Squeaky Wheel” optimisation [42] is an optimisation method that re-applies search
continually re-ordering the problem variables in order to tackle the variables which
are harder to find assignments for. This idea behind this incomplete optimisation
technique is that it is only by applying search that the difficult parts of the problem
can be identified. After search has been applied to the problem, the results of search
are examined and each variable has its contribution to the solutions found assessed.
The variables are then re-ordered so that those variables that have a large negative
effect upon the solution quality are moved up the variable order so that they are
tackled earlier in search, hopefully resulting in better assignments by search. This
method has not been applied to university examination timetabling; however, it is
of relevance to such a real-world problem where small parts of the problem may
have a big effect upon the solution quality. “Squeaky-wheel” optimisation provides a
method of identifying such parts of the problem. “Squeaky-wheel” optimisation has
been applied to a variety of problems both real-world and artificial. An application

to scheduling a production line is shown to be superior to Tabu search and Integer

Chapter 2 28 An Introduction to CSP Research

Programming in [42], where a comparison with graph colouring methods is also
provided. However, possibly due to the vast amount of research into solving graph
colouring problems, “Squeaky-wheel” optimisation is only shown to be competitive
at best.

2.4 Summary

In this section I have introduced the research into Constraint Satisfaction Problems
and the terms used that are relevant to this thesis. Extensions to the basic search
methods used, which attempt to instill intelligence, to find a solution to a problem
have been described. Several examples of real-world problems have been introduced
to familiarise the reader with the wide variety of CSPs that occur in the real-world.
Incomplete search methods which are commonly used to solve such problems have

also been covered.

Chapter 3
University Examination Timetabling

The University Examination Timetabling Problem (UETTP) is a problem encoun-
tered by universities around the world; that of trying to examine all students for
the courses they have chosen to take while satisfying the conditions which define an
acceptable examination schedule. With respect to this investigation, an acceptable
examination timetable is one where no student is required to sit two exams at any
one time. This is the most common requirement of a solution to the UETTP be-
cause if such a situation where to arise the student involved would be required to
sit the two exams in succession and either in a separate room from other students
or under strict supervision from an examination invigilator. Such an occurrence
is not pleasurable to the student under the stress of examination; neither to the
university which is required to instigate the special circumstances for the examina-
tions. In most cases this requirement is achievable and often, as is the case in this
investigation, is a requirement of any valid solution to the problem. With respect
to Weighted CSPs the constraints which model such a rule are hard constraints.
This problem can usually be solved very easily and has many solutions. There-
fore, the problem is often extended to consider criteria that are to be optimised.
These criteria can take many forms and vary from one institution to another; how-
ever, the most common are spacing or proximity constraints. Proximity con-
straints attempt to spread out the timetable slots of the exams which a student sits.
In the model used in this investigation, defined and used in [16,17, 32|, a cost is
associated with each occurrence where a student sits x exams within y timetable
slots. In order to keep the problem simple only binary constraints are considered.
This leads to the definition of a proximity weight set (pws). This is tuple of
values that define the error incurred when a student sits 2 exams within 2, 3, 4 or 5

timetable slots. The pws is therefore a set of 5 values, for example {5,4,3,2,1}. In

29

Chapter 3 30 University Examination Timetabling

exam timetabling it is assumed that not sitting x exams in y periods is of greater,
or at least equal, importance than not sitting x exams in y + 1 periods. The error
incurred is restricted to sitting x exams in y periods exactly; otherwise, sitting 2
exams in 2 consecutive slots would incur the error of all pws values as the 2 exams
are also within 3, 4 and 5 slots. The pws size of 5 has been used in keeping with
the work of [16,17,32]; however, it is worth noting that if the pws is too large then
search will rarely consider distant proximities, or constraints with a large y, resulting
is redundancy.

When defining experiments to be conducted it must be considered which prox-
imity weight set should be used. The work of Carter, et al [17] uses the pws of
{16,8,4,2,1}, yet does not explain why this set has been chosen. A major consid-
eration is how much more important is sitting 2 exams in y periods than 2 exams
in y + 1 periods? In the pws of [17] the answer is: twice as important. Using
{16,8,4,2,1} as the pws is, in fact, a justifiable choice as it both reflects a sub-
stantial increase in importance with proximity, while avoiding a situation whereby
this increase is so marked that it effectively leads to a hierarchy of distinct groups
of constraints. In the latter situation the over-emphasis on the closer proximity
constraints may lead to the more distant proximity constraints, between timetable
slots distant in time, rarely being considered; which would question their use in the
problem model.

The overall cost of a solution is therefore the sum of the proximity weights
incurred for each student (defined in 3.2). In practice the problem consists of a file
which defines the pws, a file that contains a list of each course and the number of
students who are registered for it, and a file where each line consists of the course
choices of a particular student. In the next section some mathematical terms that
are used in this thesis are defined.

Other constraints can be introduced to the model, such as limits on the number
of students who can sit exams at the same time or a maximum limit on the number
exams assigned to a single slot; however, in keeping with the model of [16,17,32] and
to prevent the model becoming too complicated, these have not been considered in
this investigation.

Early attempts to solve the problem concentrated on graph colouring. Ensuring
that no student is required to sit 2 exams at once means that no pair of exams
which are both selected by the same student can be assigned to the same slot of
the exam timetable. This is analogous to a graph colouring constraint. Therefore,

a problem consisting only of such constraints forms either a minimum colour graph

Chapter 3 31 University Examination Timetabling

colouring problem, if the aim is to minimise the length of the exam schedule; or
a fixed k-colour graph colouring problem, if the aim is to find a feasible schedule
for a fixed exam period of length k. Such work includes that of Mehta [56] and
Leighton [50] whose work was inspired by applying graph colouring research into real-
world problems. From such early beginnings modelling exam timetabling problems
has included many other features. Later research has concentrated upon specific
instances of the problem at a particular institution. This has led to many varieties
of problem aims being considered. Such investigations use a range of methods to
model and find solutions to the problem. The most popular method in early attempts
is Linear Programming which has been used in [41,44,52]. More detailed overviews
into earlier work can be found in [15].

As with any real-world problem, exam timetabling problem instances can vary
with respect to the specific aims from one institution to another. Burke and Elliman
[12] give an overview of such aims derived from the results of a questionnaire sent

“real world politics” of

to many British universities. This can be termed as the
the problem. Differences can include; the importance of spacing out the exams
sat by students; regulations regarding exam invigilation; whether room assignments
need to be considered; whether certain exams need to be sat in a particular order;
and so on. Much of the research into exam timetabling at a particular institution
considers a specific problem with respect to such politics. The aim of research,
however, should be to concentrate upon the problem in general. By comparing and
improving techniques to the general problem such techniques can subsequently be
extended to specific problems.

Such a framework was originally proposed by Carter, et al. in [17], derived from
earlier work in [44], and has been used in other work since. This framework has been
used in this thesis as it can be expressed as a Weighted CSP and results obtained
can also be compared with the work of others. A Weighted CSP model of the
problem has been used by Lim, et al [51] where a greedy search heuristic has been
applied to a specific problem instance. The actual methods examined by Carter, et
al [17] consider various variable orderings in conjunction with a constructive search
method. Their work has been extended into a commercial timetabling package which
is used to schedule the examination timetables of institutions across the world. The
research in [17,51] provides a good starting point for looking at applying Constraint
Satisfaction techniques to the UETTP; however, such work has not been extended
to cover issues such as intelligent Constraint Programming search methods.

The most interesting features of the less general and more institution-specific

Chapter 3 32 University Examination Timetabling

work includes how the problem is broken down into phases such as assigning exams
to timetable slots and assigning exams to rooms. Such a staged approach to the
problem can be found in [44,52,80] and allows the problem to be broken down into
problem stages that can be modelled in a simpler fashion. Other methods include the
use of Constraint Logic Programming (CLP) [6] where assigning exams to slots, to
rooms, and allowing preferences have all been incorporated into a single model. Such
work demonstrates the usefulness of constraint programming packages; however, it
does not provide any suggestions as to the development of new problem solving
techniques and concentrates upon examining how a UETTP can be modelled. The
job-shop scheduling problem has also been used to model examination timetabling
[60], with advantages in the use of previously discovered optimisation techniques for
job-shop; however, again the focus of this work is how a UETTP can be modelled.

The use of TABU search to find solutions has received attention in [32,80]. The
work of Di Gaspero and Schaerf [32] applies TABU using the standardised framework
to the suite of problem instances given in [17]. The results obtained are shown to
be better than those of [17] only in some cases. Schaerf has also provided a detailed
overview of recent work in [63]. White and Xie extend TABU to incorporate a
long term memory that prevents updating to the most actively assigned variables.
However, they only compare results for two problem instances providing little insight
into the performance of their methods with other work in the field.

The major source of recent developments can be attributed to the work of the
Nottingham based ASAP group. In [13] Burke, et al have used constraint pro-
gramming and incorporated a stochastic element into dynamic variable ordering
by choosing for assignment during search the best variable, as defined by a vari-
able heuristic, from a randomly chosen sub-set of the variables. The use of a small
stochastic element in variable ordering has also been briefly investigated by Carter?
and this may be an interesting line of future research. The majority of the research
performed by this group has used evolutionary based methods to seek results. In [11],
and later [10], Burke and Newall use a “Memetic” algorithm to search for solutions.
Such an algorithm uses evolutionary based operations, the mutation of solutions in
this case, with a local search method, a hill-climbing algorithm. Such methods are
used to combine evolution with methods that correspond to an organism’s ability
to adapt to its environment.

In [53] Marin, et al use a Genetic Algorithm to evolve the search strategy used

by a more traditional search method. Each element of their sample population en-

From personal communication.

Chapter 3 33 University Examination Timetabling

codes combinations of search methods, variable and value orderings. Marin has also
implemented a GA which evolves solutions to the problem (i.e. each element of the
sample population is a solution) [54|. He tackles the problem of two parent solu-
tions combining to make a child that is an inconsistent solution by use of a clique
based crossover operator. A set of assignments that form a clique in the constraint
graph are forced upon a child which starts with the assignments of its other parent.
When a forced assignment results in an inconsistency with another variable assign-
ment, which shall be called the inconsistent variable, the inconsistent variable
takes the value that was forced off the variable that it was inconsistent with. If this
forced assignment results in another inconsistency the process continues. Such an
approach to avoiding inconsistencies is similar to that used in [17] where inconsis-
tent variables are either given a new assignment or de-assigned. The results of such
GA approaches to the problem are often not comparable with those found in [17]
as, although the same sample problem instances are used, often different problem
parameters or problem definitions are used.

Some of the previous work into exam timetabling has attempted to use random
problems. As mentioned in previous sections, random problems are extremely useful
for research. The drawback of using random problems for real-world problems is that
it can be hard to replicate the general problem structure that can be found in the
real-world. A number of students could randomly choose a set of courses; however,
in reality course selection will be dependent upon a whole variety of factors that
may be hard to model. Random problems tend to produce a constraint graph with
similar degrees for each variable. Exam timetabling graphs have been shown, by
Walsh [77], to show a small-world structure whereby many nodes of the constraint
graph are clustered locally with a small number of constraints linking such clusters.
In the real-world a small number of exams tend to be related to a large number of
others while most exams tend to have very low degrees. A similar pattern occurs
for the constraint weights of the problem with a small number of constraints having
large weights and a larger number with increasingly smaller weights. The work of
Coudert |20] has shown that real-world graph colouring problems tend to contain a
large clique whose size defines the chromatic number. The work of [20] has shown
that by labelling the variables of such a clique first an optimal solution can be
found easily. Random problems would need to incorporate phenomena such as
“small world-ness” and large cliques so that more advanced search techniques that
consider such problem features will be tested fully. Random graphs with a small-

world structure can be produced; however, problems would still arise when assigning

Chapter 3 34 University Examination Timetabling

suitable constraint weights.

3.1 Problem Definitions

Problems are defined as a set S of student combinations {Si, Sy, ..., S, } of exams
from an exam set E. Each S; represents the exams which student 7 is required to
sit.

The variables L = {ly,1s, ..., L} record the timetable slot of each exam, where
an exam is in the range 1 to m. The pws(l;, ;) function defines the proximity weight
between labels ¢ and j. The solution error COST (L) is defined thus:

COST(L) = Z pws(ly, 1) : Va,Vy € S, (3.2)
vSies

A constraint (or exam combination), C;, is defined as a set of exams which occur

in a student combination.

Each C; can be considered as the set of variables (i.e. exams) to which it applies.

Ci ={L'} where L' C L (3.4)

The set of all constraints (exam combinations) C' cover all existing combinations,
such that:

Ua=USs (3.5)

Two constraints (exam combinations) are said to be related if they contain com-

mon variables (exams) in their scope.

;NG # 0 (3.6)

The neighbourhood of a variable (exam) is defined as the set of exams which

occur in a student combination with the variable (exam) in question.

Chapter 3 35 University Examination Timetabling

N, = | S (3.7)

1,T E€S;

The degree of a variable (exam) is defined as the size of its neighbourhood.

d(z) =| Nq | (3-8)

The weight of a variable (exam) is the number of students required to sit the

related exam.
Wy =[{Si: SieS and z € S;} | (3.9)
The neighbourhood of a constraint (combination of exams) is the set of related
constraints (exam combinations):
The degree of a constraint (combination of exams) is defined as the size of its
neighbourhood.
d(C;) = | Ne, | (3.11)
Constraints can be partially ordered using the following < definition and where
O, < Oy defines the variable order (i.e. variable a occurs earlier than variable b).

Ci<C; & max O, <mazx Oy, a € C; and b € C;

The neighbourhood of a constraint C; is the set of constraints that are related
to it. A backward neighbour of a constraint C; is a related constraint C; such
that C; < C;. The constraint backward neighbourhood is the set of all backward
neighbour constraints.

Po, ={C, : C, €C—C; and C;NCy #£ 0 and C, < Ci} (3.12)

Subsequently, the constraint backward degree is:

CBDe, =|Pg, | (3.13)

Note that in the definitions of (3.12) and (3.13), several of the constraints in the

constraint backward neighbourhood (C; C P¢;) may include the same past variables

Chapter 3 36 University Examination Timetabling

and will be counted more than once in CBDg,. This is reasonable because each of

these constraints will have an effect on how well the constraint will be satisfied.
The set of students involved in a constraint (exam combination) is the set of

students that select every variable (exam) within the constraint scope (exam com-

bination).

Wc]. = {Sk : S5, e S and Cj - Sk} (314)

The weight of a constraint is the size of this set (i.e. the number of students who

select every exam from the combination.

w(C) =W, | (3.15)

As students are added to an empty problem, each student combination that
includes the constraint variables (exam combination) will include other variables
(exams) which occur in one of the other constraint student combinations, but may

also include variables (exams) unique to its combination.

ve;ec,vs,es, | ss2 | s (3.16)
SieWcj SiEWCj — Sk
The same relationship applies when considering how the variable (exam) degree

increases as more students are required to sit a course.

Vee E, VS, €S, |J Si2 U s (3.17)
S;€S ,x€S; S;€S—Sk ,TES;

3.2 A Search Algorithm

3.2.1 Backtracking

Backtracking within the problem can be for two reasons. Either the current partial
solution is no better than the extant solution or a hard constraint has been violated.
I shall discuss each of these situations separately. In the case of the first instance,
which I shall call a soft backtrack, search can move back until the current partial
solution cost, or the lower bound, is less than the extant solution cost. Figure
3.1 demonstrates how such backtracking can be used to lower the extant solution
cost. As search time, measure on the x-axis, increases the best solution found so

far, or extant, improves, as measured by the y-axis. However, a non-intelligent,

Chapter 3 37 University Examination Timetabling

HEC-5-92

94000 : : : :
deg ——

92000 8

90000 1

88000 1

86000 §

Extant Solution Cost

84000 1

82000 | 8

80000 ' ' : '
0 2000 4000 6000 8000 10000

Consistency Checks (x 1000)

Figure 3.1: How the solution quality improves as search progresses. Extant Solution
Cost versus Consistency Checks. The search algorithm was stopped after 10,000,000
checks.

or dumb, value ordering heuristic has been used in the experiment in Figure 3.1.
When searching WCSPs, it is very important to use a value ordering heuristic that
attempts to apply some criteria as to which value is best. The value order in Figure
3.1 uses the lowest available value as commonly used when searching Classical CSPs.

When search uses a more intelligent value ordering once it finds a solution it
rarely finds a better solution without backtracking by a significant amount. This
phenomenon is due to the fact that the value ordering will assign values which incur
an optimal, or near optimal, error cost with respect to the current partial solution.
To improve upon these assignments a large amount of work needs to be undone.
This leads to thrashing behaviour. An attempt was made to incorporate CBJ into
the search procedure; however, as most constraints connected to variables assigned
at the bottom of the search tree incur some error, this provided little, if any, gain.
Therefore, DFS of the search tree could only provide a single solution.

Finding a solution also requires the satisfaction of the hard constraints. Again
chronological backtracking required large amounts of time to resolve inconsistencies,
if it could resolve them at all. An implementation of CBJ specific to the hard

constraints did not show any noticeable improvement. As the hard constraints are

Chapter 3 38 University Examination Timetabling

graph colouring constraints an implementation of CBJ, which backtracks to the
deepest variable that prunes a value from the current un-assignment variable, will
usually backtrack to the deepest related variable, in a manner similar to graph based
backjumping (GBJ defined in [23]). Added that domain wipe-out will only occur in
constraints with a degree larger than the domain size, and each past variable can
only prune at most one value, then a large proportion of the previously assigned
variables will be candidates to backtrack to. When considering intelligent variable
orderings, in general, variables with a large degree will be assigned first. Therefore,
any intelligent backtracking method, such as GBJ, is unlikely to back-jump further
than 1 or 2 variables.

Therefore, the backtrack method described in Algorithm 4 has been used to find
consistent solution when searching on a problem with a low domain size. This back-
track procedure is the one used by Carter et al [17], Morgenstern [59] and Larporte
and Desroches [44], being applied to timetabling and graph colouring problems.
When a variable z cannot be assigned a consistent value, this function forces an
assignment on this variable and undoes previous assignments that are in conflict
with it. A value is selected for assignment to z from the original domain D (as z’s
domain D, has no consistent values) in line 3. The exact method used to choose
d can vary; an example being, choosing the d that will cause the minimum num-
ber of re-shuffles in lines 13 — 23. Then in lines 4 to 26 the effects of this choice
are instigated. Every past neighbour of x, where o4, ..., 0, defines the place in the
variable ordering of each variable, that has been assigned the same value d (v; is
the value that variable i has been labelled with) is processed (line 4). Depending
upon whether other consistent values can be assigned to these past neighbours (as
determined in line 8) the variable is either re-assigned (line 10), or unlabelled (line
12) and re-shuffled. Lines 13 to 23 move the recently unlabelled variable i down the
variable order until it is directly after = (i.e. all re-shuffled variables are tackled next
by search). Note that Algorithm 4 does not specify how the current partial solution
cost is updated. An example of this Algorithm in action is given in Table A.1 of
Appendix A.

During search, any variable that is unlabelled will be involved in re-assignment,
whether immediately, in line 10, or later in the search after re-shuffling; however,
it is important to make the distinction as to when the re-assignment occurs. To
this end the term “re-assignment” has been used when a new value is immediately
re-assigned (in line 10) and the term “re-label” has been used to describe the fact

that a variable has been assigned a new value at some point in search (in either line

Chapter 3 39 University Examination Timetabling

Algorithm 4 When the current variable 'x’ cannot be assigned a consistent value:

2 begin
3 wy:=d,dd € D

4 fori:=1ton

5 do

6 ifv,=d A 0; <o,

7 then

8 ﬁ-| D; ‘> 0

9 then

10 vi:=e,de €D,
11 else

12 v; = @

13 top = o;

14 bottom := o,

15 0; 1= 0y

16 for j:=1ton
17 do

19 if bottom > o; > top
20 then

21 0j=0;—1
22 fi

23 od

24 fi

25 fi

26 od

27 end

10 or after a re-shuffle). In either the “re-assignment” or the “re-shuffle” case the

variable will be “unlabelled” whether re-labelled immediately or later on in search.

3.2.2 Exploitation of problem structure during complete search

Thrashing behaviour in complete search, i.e. when attempting to improve upon the
initial solution, can occur for several reasons. For example, if 2 variables at the end
of the variable order are unrelated then every minimal error incurring assignment
of each (where nomin; is the number of minimal error incurring assignments that
can be made to variable ¢) will need to be compared together for no gain (a total of
nomin,_ . nomin,, needless assignments). Such a waste of computation is avoided
because the value ordering heuristic which has been used in these experiments selects

one of the values with the lower error cost. Therefore, there is no need to try

Chapter 3 40 University Examination Timetabling

alternative assignments provided the variable in question has no effect on future
assignments in the complete search. A stable set, of size > 1, can then be defined
at the end of the variable ordering, or the portion of it to which complete search
is applied. A stable set is a set of nodes of a graph; none of which are connected
to each other in the graph. When backtracking from variables within this stable
set, search can jump back to above the variable at the start of the stable set. Such
a move is equivalent to CBJ [61] although conflict occurrence between variables is
assumed as problems are over-constrained.

The effect of such a search can be amplified by ordering the variables such that
a large stable set occurs at its end. As variables in such a stable set will have
low degrees such an ordering may complement variable ordering methods which
order such variables near the end of an ordering. I have defined a variable ordering
heuristic that uses a greedy heuristic to place a large stable set at the end of the
variable order for the critical sub-problem. Such a heuristic, in practice, does little
when searching large problems and so the results presented in this thesis do not try
and improve upon the first feasible solution found. However, in Chapter 6 complete
search of small sub-problems is performed. In such cases, where the number of
variables in the stable set represents a large proportion of all variables, a reduction

in search effort can be made.

3.3 Problem Features and Parameters

| problem | #courses | density | #comp | max.comp. | max.clique | low | high |

HEC-S-92 81 0.42 1 81 17 18 | 23
STA-F-83 139 0.14 3 62 13 13 | 18
KING-96 141 0.07 3 136 7 8 12
YOR-F-83 181 0.29 1 181 18 21 | 30
UTE-S-92 184 0.08 2 177 10 10 | 14
EAR-F-83 190 0.27 1 190 21 24 | 31
TRE-S-92 261 0.18 3 259 20 23 | 30
LSE-F-91 381 0.06 4 378 17 18 | 22
KFU-S-93 461 0.06 22 434 19 20 | 24

Table 3.1: Problem parameters.

Table 3.1 lists the problem parameters of the nine smallest problems for which all

of the experiments have been performed on before the results of these experiments

Chapter 3 41 University Examination Timetabling

are then extended to larger problems. These problems are part of a suite of problems
first used in [17] and now available on the internet as benchmark problems?. They
come from a variety of different institutions from around the world. The #courses
column defines the number of problem variables or the problem size. As the problem
size increases, search methods that are not purely tree-based become the only usable
search methods. The research of this thesis examines search using a high domain
size (the size of which is given in the high column) then applies the results to the
low domain (given in the low column). The high domain sizes have been chosen to
be large enough so that intelligent search is not required, or at least hardly required,
to find a solution. Experiments have been performed on the high domain size so
analysis into the performance of search without the use of intelligent backtracking
can be performed. The same experiments are performed using the low domain
size so that the effect of the intelligent backtracking method can be included in
any conclusions. Subsequently any improvement or degradation of solution quality
shall be defined as being as the result of the search methods used and/or the use
of intelligent backtracking. The low domain size can be seen to be close to the
maximum clique size (given in column max.clique). A clique is a complete sub-
graph within a problem. The maximum clique of a problem is the largest sub-set of
problem variables such that a constraint exists between every pair of variables in the
sub-set. The maximum clique size defines a lower bound on the number of colours
required to colour the constraint graph and, in the case of real-world problems, tends
to indicate how many colours will be required to colour the overall problem [20].
The maximum clique size, which is independent of proximity constraints, certainly
defines the minimum number of colours required to form a graph colouring because a
different colour is required by each node in the clique. As the domain size approaches
this lower bound, i.e. the number of slots required, finding a solution becomes more
difficult.

The problems consist of two files: a student data file and a course data file. The
student data file consists of a list of student course choices. Each line corresponds
to a single student and consists of the codes of the courses taken by that student.
From such data the problem constraints can be defined. The course file lists the
course codes and the number of students registered to each course on a line per
course basis. This file is not actually needed; however, it has been used for error
checking. A small example problem can be found in Table 3.2 which is translated

into the graph shown in Figure 2.1.

ftp:/ /ftp.mie.utoronto.ca/pub/carter /testprob

Chapter 3 42 University Examination Timetabling

Dan CS MA PY
Kevin CS MA PY
Debbie CS MA PC
Andy CS MA SS
Neill CS PC SS
Mani MA PY PC
[ain MA PY PC
Martin PC SS EN
Simon PC SS EN

Table 3.2: Student Course Selections

Table 3.1 also records the number of problem components that exist within each
problem (in column #comp). The components of the problem are sub-problems
that are connected, i.e. there is a path from every sub-problem variable to another,
yet dis-connected from every other component, i.e. there is no path from one com-
ponent to another in the problem constraint graph. The statistics show that the
majority of the problem instances have more than one component. Therefore, such
instances could be broken down into sub-problems and tackled independently; how-
ever, the size of the maximum component (in column max.comp.) shows that in
all but one case the components consist of one very large sub-problem with those
remaining being very small. Therefore, breaking the problem instances into sub-

problems would not reduce computational effort by any significant amount.

3.4 The Experiments

The WCSP model was coded using C++ on a Linux OS. The experiments were
performed on a Pentium 2, 350 MHz Linux computer with 512KB of RAM. Although
optimisation was not the single issue when implementing the model efficient code
was strived for. There are several CSP toolkits available; however, none was used
during this investigation due to its specific nature with respect to problem types.
The amount of CPU time required to find a solution to a problem instance varied
from about 70 CPU secs. for the smallest problem to about 200,000 CPU secs for
the largest(although the largest problem was exceptionally large). For the majority

of problems a number of CPU secs in the thousands was required to find a solution.

Chapter 3 43 University Examination Timetabling

3.5 Sample Sizes

Later in this thesis stochastic search techniques are used. When using methods with
a random element it is important to take a sample of runs of sufficient size. The
samples help to establish the confidence in search heuristics and would be used in
the real-world to find a solution of lowest cost. Figure 3.2 compares the mean and
standard deviation of the solution costs of an example sample. As can be seen by
100 samples any bias in sampling has generally been avoided. The sample size of
100 has therefore been used. When comparing two distributions it is important to
prove, to a certain level of confidence, that there is a significant difference between
the samples. To this end, the Z Test shall be used. Based upon the assumption that
the distribution is normally distributed, the Z value (described by equation 3.18) is
a measure of how far away the mean of a sampled distribution(z) is from another ()

with respect to the standard deviation(c) and the sample size(N) [19].

K (3.18)

Z:U/\/N

For the two distributions to be considered similar to a significance of 0.05 then

—1.96 < Z < 1.96. The sample size of 100 was often large enough to show differences

between samples to the given level of confidence.

Chapter 3 44 University Examination Timetabling

25000

24800

24600

24400

24200 \

24000 \ f Wos o

23800

Mean Solution Cost

23600
10 20 30 40 50 60 70 80 90

Sample Size

1900
1800

1700

1600

1500 \

1400 \

1300 \

Std.dev Solution Cost

1200 \

ey r~
W

900
10 20 30 40 50 60 70 80 90
Sample Size

Figure 3.2: An example of the mean and std.dev. of increasingly larger sample sizes.

Chapter 3 45 University Examination Timetabling

HEC-5-92
550 T T T T T T

500
450
400
350
300
250
200
150
100

50

0 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Constraint

constraint wel ght

Weight

Figure 3.3: The distribution of constraint weights for the HEC-S-92 problem. The
heaviest constraints are to the left and the lightest to the right. Note that the
right hand tail is not shown; however, it merely continues in a gradually decreasing
fashion.

3.6 Problem Constraint Weights

Figure 3.3 gives an example of the distribution of constraint weights. The weight of
a constraint is the number of students who are registered for all of the combination
of courses covered by the constraint. The distributions for all of the problems follow
this pattern of a few constraints with very large weights and increasingly more
constraints as the constraint weights get lighter. The terms heavy and light are
used when comparing constraint weights. A constraint is heavier than another if it
has a larger weight and is lighter if it has a smaller weight. The distribution shown
occurs as a result of the general problem structure.

Many real world problems, and exam timetabling in particular, show small-
world behaviour such that the problem structure tends to consist of localised cliques,
sub-graphs where every variable is connected to every other variable within the
clique, in addition to problem edges which link the various localised parts of the
problem [78|. This problem structure occurs in UETTPs because institutions tend
to consist of several faculties or schools, e.g., English, Maths, Computing, Music,

etc... Students who study at an institution tend to study within one particular

Chapter 3 46 University Examination Timetabling

school, which corresponds to the localised nature of small-world problems. However,
students can often take electives, where they study a course in a totally different
school to their own, or study a joint honours course, where a combination of two,
or possibly more, schools contribute to the choice of courses taken by a student.
Hence the localised parts of the problem are connected together. The many light
constraints of the constraint weight distribution correspond to these non-localised
constraints. The localised parts of the problem correspond to the heavier weights.

The heaviest weights correspond to compulsory courses in large schools.

Chapter 4

Variable Ordering Heuristics

4.1 Introduction

For any CSP the order in which search tackles variables can be crucial with respect
to the difficulty in finding an initial solution and the quality of this solution. For
example, it may be appropriate to make a variable assignment earlier in search if
attempting to do so later may be particularly difficult. Equally, if a variable is con-
nected by heavily weighted edges (in examination timetabling, edge weight is the
number of students sitting that combination of exams), then it may be appropriate
to assign it a value near the start of search to avoid incurring a big error cost. In this
section, I intend to compare several variable ordering heuristics and determine which
are preferable with respect to the problem and value ordering heuristic used. The
choice of value ordering heuristic used will be justified in the next chapter. Com-
parisons are made between; existing variable ordering heuristics used on Classical
CSPs; heuristics which have already been proposed for this and related real-world
problems; and new heuristics, which I have developed, extended from reasoning be-
hind the heuristics in the previous two categories. An analysis method has been
defined and used in comparing the results of different search methods.

Variable ordering heuristics can be classed as either static or dynamic. The
static class of heuristics define the ordering before search begins, while the dynamic
methods use data generated during search to determine which variable search should
assign a value to next. Both methods have advantages and disadvantages. The obvi-
ous advantage of dynamic methods is that they can estimate whether the expansion
of the current partial solution will cause a problem for a particular future variable.
While a static ordering may be able to determine when such a situation is probable

(e.g. by comparing variable degrees), static methods cannot consider difficult future

47

Chapter 4 48 Variable Ordering Heuristics

assignments which are particular to the current partial solution. In general static
variable ordering heuristics are quicker to apply than dynamic methods because dy-
namic methods must be re-applied throughout search, as opposed to one application
before search.

The motivation behind variable orderings with respect to Weighted CSPs falls
into two aims. The first aim is to find a feasible solution, i.e. satisfying the hard
constraints, with the minimum number of backtracks. A great deal of research has
been conducted into this area on a wide variety of Classical CSPs [22,23,28,34,35,61,
62,66,67,69]. The second aim is to minimise the error incurred by the solutions found
(i.e. minimise the violations of the soft constraints). As the problems considered
are over-constrained (with respect to soft constraints), this takes the form of trying
not to violate soft constraints with large weights over those with smaller weights.
When comparing solutions both of these aims need to be considered. The extremes
of considering these being; searching for an optimal solution to the soft constraints
with no regard to the amount of time required by search; and searching for a solution
to the hard constraints with no regard to the soft constraints. The two methods are
incomparable if one is faster but does not satisfy the soft constraints well, and the

other finds good solutions to the soft constraints but is slow.

4.2 Static Heuristics

Commonly used heuristics order the variables based upon the problem structure.
Measures such as variable degree can suggest which assignments will have a big
impact upon whether search will find a solution (Classical CSP). The work of Carter
et al. |17] states that placing the largest clique at the start of the ordering, and
arranging the rest of the variables according to a heuristic, aids search. This view is
extended by Coudert [20], to a greater extent, where graph colouring problems are
solved optimally using the maximum clique. The rationale behind ordering variables
to solve the hard constraints as quickly as possible also applies, to some degree, to
minimising the error in the soft constraints. A hard constraint becomes difficult to
satisfy as the values of related variables are pruned. This results in less choice when
assigning values so as to minimise the error in the related soft constraint. As shown
later in section 4.3, this is not a direct relationship as constraint weights can vary
considerably.

In the experiments two value ordering heuristics have been used. These are:

e ERR-LOW: the value which incurs the least increase in error with respect

Chapter 4 49 Variable Ordering Heuristics

to the past variables is selected, tie-breaking upon the lowest value(i.e. the

earliest such slot in the timetable).

¢ ERR-RND: the value which incurs the least increase in error with respect to

the past variables is selected, tie-breaking randomly.

Non-stochastic value orderings (ERR-LOW) will always find the same initial so-
lution (with respect to a problem instance and a non-stochastic variable ordering).
The quality of this solution can vary, although it is later shown (see Section 5.3.5)
that it is usually worse than the mean found by the equivalent stochastic method.
The non-stochastic results give an indication of which variable ordering is best; how-
ever, the multiple samples of the stochastic value ordering gives better confidence

in the results.

4.2.1 Analysis Method

When comparing the solutions found using different variable orderings we try to
define a set of critical constraints that have the largest impact on the solution
quality. Different ways of defining the critical constraints can be used. For example,
the heaviest constraints could be deemed critical as they have the potential to incur
a large amount of error. However, such a simple definition does not consider sub-
problem difficulty. A heavy constraint may be considered not critical if the variables
in its scope have a low degree. In such a case, despite the constraint having a heavy
weight, the sub-problem structure in the vicinity of the constraint is sparse, resulting
in the constraint being satisfied easily. On the other hand, identifying some sub-
problem features can be a difficult, or even NP-complete, task. In such a case, the
amount of effort required to process a problem before search may not be repaid by
improved search.

The variable order used can be considered when defining the critical constraints.
Such critical constraints will be variable order specific and will allow a definition
that considers how the constraints will be encountered by search. An example of
variable order specific information is variable forward degrees, which can be used
to order the variables before search. All critical constraint definitions that use
information from search, as is the case when comparing the solutions found using
different variable orderings (as in this chapter), will be variable order specific. A
further subset of these variable order specific critical constraints are search specific
critical constraints. As critical constraints defined in this way are based upon a set

of problem solutions they will differ from one set of search solutions to another.

Chapter 4 50 Variable Ordering Heuristics

Once these constraints have been found, the properties they hold under different
variable orderings can be identified and used to shed light on why one ordering
satisfies critical constraints better than another. The critical constraint set has been
used because non-critical constraints will tend to have less impact upon solution
quality. Including too many non-critical constraints in the critical constraint set
should be avoided.

The question of which constraints are critical to finding a good solution cannot
be fully answered without performing search. However, if a general characteristic of
the set could be identified (i.e. one that is independent of any variable order), then
an ordering based upon this characteristic should result in a better variable ordering
strategy.

The comparison method has been broken down into two cases; general compari-

son between several variable orderings; and direct comparison between two orderings.

4.2.1.1 General comparison between several variable orderings

This method is used when comparing the solutions found using several unrelated
variable orderings. In this case the critical set is defined as those constraints that
incur the most error. An example can be found in Table A.2 of Appendix A. The
critical constraint set is search specific and will depend upon the variable ordering.
An example of the error that occurs across the constraints of a problem is given in
Figure 4.1. Each constraint is a discrete point on the x-axis with constraint positions
ordered by the error incurred by each constraint. The y-axis shows the error incurred
by each constraint of the x-axis. The shape of the error distribution, as in Figure
4.2, can vary considerably. In some problem solutions only a few constraints may
incur the majority of the error leading to a relatively flat line with a sharp jump
at the the rightmost end. On the other hand, the error may be more evenly spread
leading to a gradual increase with a small jump at the rightmost end.

The size of the critical set is defined as a percentage of the total number of
constraints. In Figure 4.1 this corresponds to a set point on the x-axis. Other
possible definitions include; all constraints that incur more than a percentage of the
maximum error incurred, defined by a set point on the y-axis of Figure 4.1; or those
constraints that incur a percentage of the total error, defined by a proportion of the
area under the line in Figure 4.1. It will be assumed that constraints toward the left
side of the error distribution are non-critical. In comparisons between the critical
sets for different variable orderings, it is important to use a common critical set

definition because critical sets may include non-critical constraints. Moreover, when

Chapter 4 51 Variable Ordering Heuristics

1000 T T T T T T

800 r
700

500 r
400

Constraint Error

200
100

O 1 1 1 1
0 200 400 600 800 1000 1200 1400

Constraint (Ordered by Error)

Figure 4.1: Distribution of error from constraint to constraint.
Constraints are ordered by the size of the error incurred in the example solutions.

1600

1400

1200

1000

800

Contraint Error

600

400

200 ==

0
1300 1320 1340 1360 1380 1400 1420

Constraint

Figure 4.2: Distribution of error for three different variable orderings, focusing on
the constraints which incur the most error.

Chapter 4 52 Variable Ordering Heuristics

comparing the solutions found by different variable orderings, the error distribution
shape may differ from one ordering to another, as in Figure 4.2 where different
orderings have different rates of increase. Under such conditions, an error-based
critical set may include many more of the non-critical constraints for one ordering
than for another. The advantage of using a critical set size of a fixed proportion of
the total number of constraints is that it is less susceptible than other methods to
bias caused by differences in the shape of the error distribution.

The percentage used is 1% and can be so small because each problem consists
of thousands of constraints. Furthermore, the distribution of constraint weights has
heavy outliers which suggests that only a small number of constraints will incur a
large error. Experiments have shown that the conclusions are not affected by a small
change in the % defining the critical constraint set. Whether the error incurred by
the constraints of the critical set maintains the same order of magnitude as the
overall error from one variable ordering to another can be used as a guideline to

whether the percentage used is suitable.

4.2.1.2 Direct comparison between two orderings

This analysis method has been developed to compare two variable orderings that
are related in some way (e.g. degree and weighted degree). In this case, the overall
aim is to establish where and why one ordering improves over another. The critical
constraints are defined as those that contribute the most to the improvement, incur-
ring the biggest saving. The critical set will therefore be specific to the two variable
orderings being compared in each comparison (in fact, to the sample of solutions for
each ordering). An example can be found in Table A.3 of Appendix A. Figure 4.3
shows an example distribution of constraint improvements for two related variable
orderings. Under the direct comparison, the constraints of the problem fall into

three general groups:
1. those that incur a larger error for the superior ordering.
2. those that show little difference with respect to error incurred.

3. those that contribute most to the saving made by the superior ordering with

respect to the inferior ordering.

All three groups occur when comparing solutions of differing cost; group 3, as a
large improvement must be made somewhere; group 2, as a large number of lighter

constraints will not incur any noticeable error; and group 1, as any improvement is

Chapter 4 53 Variable Ordering Heuristics

200
150 1 2 3
100

50

-50 |

Error Improvement

-100

-150

-200

-250

0 200 400 600 800 1000 1200 1400

Constraint (Ordered by Error Improvement)

Figure 4.3: Distribution of improvement in error incurred by different constraints.
The constraints are ordered according to the improvement. The numbered sections
of the graph refer to the different groups of constraints, as explained above.

usually made at the expense of some increase in error from related constraints. In
addition, group 2, which consists of lighter constraints, will have had little impact
on the path taken down the search tree. Therefore, they will tend be satisfied with
no reference to the potential error that they could incur. It is important that, when
defining the size of the critical constraint set, a large number of constraints from
this second group are not included as most of these constraints will be non-critical.

Group 3 can be very small with only a few heavy constraints constituting the
difference between the solutions found by the two orderings. Only the constraints
that provide the most improvement should be included in the critical set, so including
constraints from group 2 should be avoided. The critical set size only needs to be
large enough to avoid bias and to show a significant difference in the analysis of
the constraints of the set as effected by the variable orderings. The set size is
initialised to an arbitrary size of 10 then, if required, increased until the measures
used in the comparison differ significantly. A big increase may lead to the inclusion
of constraints from the group 2. However, this can be taken into consideration when
debating the results of any analysis. Also, the two orderings in question may not
differ significantly at all, in which case the analysis would be inconclusive for any
size set. The same critical set size need not be used from one comparison to another
because each comparison is different. Each comparison is derived from the distinct

relationship between the pair of variable orderings being compared.

Chapter 4 54 Variable Ordering Heuristics

4.2.2 Standard Methods

The variable ordering heuristics that have been compared initially are:

e Degree (DEG): variables are ordered by decreasing degree, such as LF in [50].
A variable with a large degree will have a larger impact on the search than a
variable with a smaller degree, as it interacts with more variables. An example

can be found in Figure 4.4.

e Forward Degree (FD): variables are ordered on decreasing forward degree. The
forward degree of a variable represents the number of future neighbours or the
degree within the future sub-problem. This is the opposite of node width, as
defined in [69], which is the degree of the past sub-problem. A variable with a
large forward degree will render more possible future assignments invalid than
a variable with a smaller forward degree. An example can be found in Figure
4.5. The calculations used to establish the ordering in Table 4.1.

e Variable Weight (VAR): variables are ordered on decreasing variable weight.
Variable weight corresponds to the number of students sitting the exam that
the variable represents. By assigning values to heavily weighted variables first,
search attempts to maximise the available values for these variables and hence

reduce the error incurred by them. An example can be found in Figure 4.6.

Figure 4.4: A degree ordering for the problem given in Figure 2.1 and Table 3.2.

Chapter 4 55 Variable Ordering Heuristics

Figure 4.5: A forward degree(FD) ordering for the problem given in Figure 2.1 and
Table 3.2. The calculations are given in Table 4.1.

f.d. at iteration
node || degree || 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 || order
CS 4 413 |-1-1-1- 2
MA 4 41312]-]-1- 3
PY 3 312|11]0]0]- 5
PC 5 50--1-1-]- 1
SS 4 41312 1]-|- 4
EN 2 2/1(1]1]0/0 6

Table 4.1: How the variable forward degrees (f.d.) vary as the FD ordering of Figure
4.5 is constructed.

Figure 4.6: A variable weight ordering(VAR) for the problem given in Figure 2.1
and Table 3.2.

Table 4.2 compares the costs of the initial solutions found by the ERR-LOW
value ordering, with the highlighted costs being the lowest for a problem. Ordering
variables according to variable weight (the VAR column) always results in a lower
cost solution in comparison with degree and forward degree orderings in the results
shown. This observation is also backed up by search with the related stochastic
algorithm (ERR-RND) where mean solution costs are compared using the Z test.

Degree ordering results in a lower initial solution cost than forward degree ordering

Chapter 4 56 Variable Ordering Heuristics

variable ordering

problem | DEG | FD | VAR
HEC-S-92 | 23984 | 22890 | 19455
STA-F-83 | 63678 | 66541 | 61971
KING-96 | 15880 | 16258 | 13557
YOR-F-83 | 22512 | 22589 | 21067
UTE-S-92 | 41860 | 51098 | 39522
EAR-F-83 | 29419 | 31273* | 27469*
TRE-S-92 | 27375 | 30345* | 24602*
LSE-F-91 | 27100 | 28004* | 22355
KFU-S-93 | 64902 | 65845 | 52014

Table 4.2: Comparison of initial solutions found by the ERR-LOW value ordering
for various problems and variable orderings. Solutions marked with a * are those for
which search required re-assignments to find a solution. The lowest solution costs
for each problem are given in bold.

for all but three of the problems. In the exceptional cases the costs cannot be
distinguished at the 5% level of significance.

By observation successful searches require very similar numbers of consistency
checks as, in most cases, no backtracks are performed and each constraint is only
referred to once and the number of values pruned across the whole search is simi-
lar for different variable orderings. These consistency checks(there are several per
assignment because value ordering requires that several assignments be tested) are
performed when the last of the constraint variable, as specified by the variable or-
dering, is assigned a value. Therefore, measures of the search effort have not been
compared for the high domain size.

A general analysis has been performed for each problem across the three variable
orderings. The critical constraints are defined as those constraints which incur the
most error. Features of the constraints in the critical constraint set are compared
for the three different orderings on the HEC-S-92, YOR-F-83, and UTE-S-92
problems in Table 4.3. Several properties of these set have been compared across
the three variable orderings (defined by the var. ord. column). The error incurred
by the constraints in this set (labelled error) indicates whether these constraints are
satisfied better from one ordering to the next. The mean and standard deviation of
the constraint backward degrees, defined as formula 3.13 in Chapter 3, are also given

(mean b.d. and std.dev. b.d.). Previous related assignments prune the domains of

Chapter 4 57 Variable Ordering Heuristics

| problem | var. ord. | error | mean b.d. | std.dev. b.d. |

HEC-S-92 | DEG |4880.09] 27.36 8.81
FD | 4502.86 | 23.5 9.44
VAR | 342749 | 11.86 7.87
YOR-F-83] DEG | 1886.52] 38.33 8.56
FD | 1984.11 | 38.21 851
VAR | 1582.84 | 22.94 8.44
UTE-S-92 | DEG | 8331.8 | 18.47 6.56
FD | 11589.7 | 29.2 10.47
VAR | 6827.33 7.2 3.34

Table 4.3: Features of the critical constraint set for the HEC-S-92, YOR-F-83 and
UTE-S-92 problems over the DEG, FD and VAR variable orderings. The total
error along with the mean and standard deviation of distribution of constraint back-
ward degrees are recorded. These 3 problems instances show results characteristic
of all instances from the problem set used.

the constraint variables so that a large constraint backward degree increases the
likelihood that the constraint will incur a large error. However, the amount of
domain pruning that occurs cannot be determined without performing search, so
the constraint backward degree has been used as a substitute.

The differences in error incurred by the critical constraints correspond to the
differences in overall solution cost, with the ordering of variable ordering superiority
being the same. This is particularly notable for the big differences between the
orderings on the UTE-S-92 problem.

Where the error incurred by the critical constraints is lower for one variable
ordering than another, there is a similar relationship in the mean backward degree
of the constraints in the two sets. The Z test has been applied to establish, for each
problem, where the difference in constraint backward degree is significant between
variable orderings. This is so for all but the DEG and FD orderings respectively
of the HEC-S-92 and YOR-F-83 problems. The lower error may correspond to a
reduction in value pruning of the domains of the critical constraint variables, which
leads to the lower mean constraint backward degree. However, it could also be
the case that when the error is lower, the lower mean backward degree is a result of
different constraints being in the critical constraint set. To eliminate this possibility,
Figure 4.7 compares the mean backward degree (on the y-axis) of the heaviest set.
The heaviest set is defined as the set of constraints with the greatest weight. The

mean backward degree across the whole problem may be higher(the left most side

Chapter 4 58 Variable Ordering Heuristics

of the graph where the heaviest set consists of all constraints). However, the mean
backward degree for the heaviest constraints is lower when the total solution cost is
lower. The exception is that the two heaviest constraints of the YOR-F-83 problem
have a slightly higher backward degree for the VAR ordering, however, the general
trend remains. The fact that the heaviest constraints, on average, have a lower
backward degree, with the opposite being the case for lighter constraints, concurs
with the notion that it is these heavy constraints for which the VAR ordering
improves upon DEG and FD (i.e. the critical constraint sets tend to consist of
heavy constraints) because for a small set of the heaviest constraints (the right
hand side of the graph) the mean backward degree of the set is lower. Consequently,
if this is true, the difference in the backward degree of the critical constraint sets
for each variable ordering are not as a result of each consisting of distinct sets of
constraints.

The observation that VAR results in a lower solution cost does not necessarily
apply when the domain size used by search is lower. The results in Table 4.4 show
that this is in fact the case. The lower the domain size, the more important the
hard constraints become. In order for search to proceed when a domain wipe-out is
discovered it must first go back and undo the previous assignments that have caused
the domain wipe-out (i.e. the process of re-labelling), as described in Algorithm 4.
When a lower domain size is used, a domain wipe-out is more likely as there are
fewer values to be removed, hence pruning of a domain is more critical. Also, there
are fewer values that past assignments can take, so the probability of a variable’s
past neighbours being assigned all possible values increases. In order for search to
continue, the past variable assignments that have caused one of the values to be
pruned must be either re-assigned or re-shuffled (i.e. undone and considered later
by search). Re-assignment and re-shuffling of a variable are both classed as variable
unlabels as both require that the value of a previously assigned variable (or a label)
is reversed. Although such moves are necessary for search to continue, they are
considered bad with respect to minimising constraint error.

Search cost is also an important consideration. Table 4.4 also shows the median
number of unlabels used to find a solution (ignoring searches that find no solution).
A comparison between these values and the average solution error show that VAR
finds better solutions even when it requires more unlabels than DEG and FD.
Search with an ordering that requires more unlabels does not always result in a
higher solution cost if the constraints involved in the unlabelling are lighter, and

so generally incur less error. Equally, the re-labels may only result in a small error

Chapter 4 59 Variable Ordering Heuristics

HEC-S-92

20} ¢

15 -

Mean Backward Degree

10

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Minimum Constraint Weight

YOR-F-83

Mean Backward Degree

0 1000 2000 3000 4000 5000 6000 7000
Minimum Constraint Weight

UTE-S-92

Mean Backward Degree

0 5000 10000 15000 20000 25000 30000

Minimum Constraint Weight

Figure 4.7: Mean constraint backward degree of the heaviest set for the HEC-
S-92, YOR-F-83, and UTE-S-92 problems. Each point on the x-axis defines
the minimum weight of constraints in the heaviest set. For 0 this is the set of all
constraints and for the largest constraint weight the set only contains this constraint.
These results show that the constraints in the heaviest set tend to have a lower
backward degree.

Chapter 4 60 Variable Ordering Heuristics

increase if only a few extra variables need to be considered. The same type of
general analysis as used in Table 4.3, for the higher domain size, resulted in the
same correlation between constraint backward degree and constraint error. When
the number of unlabels is high, the constraints whose variables are the subject of

re-labelling may also have an impact upon the error cost of solutions.

mean solution cost | median # unlabels
variable ordering

problem | DEG | FD | VAR | DEG |FD] VAR
HEC-S-92 | 43187.6 | 43869.8 | 39123.5 8 19 47
STA-F-83 | 112507 | 109879 | 103798 2 7 1
KING-96 34022 | 35245.6 | 32573 0 4
YOR-F-83 | 43022.5 | 43389.9 | 42483.1 61 95 77
UTE-S-92 | 93755.7 | 97102.9 | 81395.7 5 16 9
EAR-F-83 | 49355.3 | 50486.2 | 49394.6 11 24 34
TRE-S-92 | 45262.5 | 46405.7 | 42291.3 12 37 7
LSE-F-91 | 38221.7 | 39851.4 | 35254.8 18 63 7
KFU-S-93 | 96759.6 | 99330.5 | 88439.2 8 29 6

Table 4.4: Comparison of mean costs of solutions found and the median number
of unlabels required to find them by the ERR-RND value ordering for various
problems and variable orderings. The low domain size has been used. The bold
figures show which variable ordering found significantly better solutions, to a 5%
level of confidence, for each problem.

4.2.2.1 Maximum Clique

The work of Carter, et al, [17] states that “using a clique strategy is very useful on
real problems” with reference to placing the variables of a maximum clique at the
start of the variable ordering. This remark is made with reference to minimising
schedule lengths and use of this strategy extends to their work on fixed schedule
lengths, although a comparison of results is not given. It is known that real-world
graph colouring problems, where the minimum number of colours is required, can
be solved exactly at little cost by finding the maximum clique of the graph [20].
This is due to the fact that real-world graphs tend to be 1-perfect, i.e. the minimum
number of colours required to colour the graph equals the number of nodes in the
maximum clique of the graph. In such a case, solutions to the problem are found
by assigning colours to the maximum clique and then proceeding with colouring

the remaining sub-graph. Such a method does not extend itself directly to exam

Chapter 4 61 Variable Ordering Heuristics

variable ordering

CLQ- CLQ- CLQ-

problem DEG DEG FD FD VAR VAR
HEC-S-92 23995 24096.5 || 23898.3 | 24119.4 | 21756.1 | 22969.8
STA-F-83 || 65128.1 | 63164.7 || 64897.8 | 63873.2 || 63856.1 | 61513.7
KING-96 15510.7 | 15288.9 || 16021.9 | 15774.1 || 14531.9 | 14622.6
YOR-F-83 || 22659.2 | 22742.5 || 23096.7 | 23223.6 || 21876.3 | 21888.9
UTE-S-92 49934 50422.3 || 54891.8 | 57125.6 | 40093.3 | 41101.3
EAR-F-83 || 29248.5 | 30923.9 | 29482.2 | 31003.5 || 29038.1 | 29837.5
TRE-S-92 || 26612.2 | 26191.8 || 27277.7 | 26717.3 | 24901.6 | 25343.7
LSE-F-91 || 25179.6 | 25400.6 || 26399.3 | 25999.5 || 22632.9 | 23497.2
KFU-S-93 | 66944.2 | 65771.5 || 67904.6 | 68537.6 | 58818.7 | 63174.3

Table 4.5: Mean cost of the initial solutions found using the ERR-RND value
ordering on three (non)-clique based variable orderings. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.

timetabling because of the soft constraints, and because the domain size is fixed.
However, the notion of placing a maximum clique first could still be used.

In order to test the validity of this idea, I have compared several pairs of vari-
able orderings. Degree (DEG), Forward Degree (FD) and Variable Weight (VAR)
orderings have been compared to equivalent orderings which place the variables of
the maximum clique at the start of the order (named CLQ-DEG, CLQ-FD, and
CLQ-VAR).

The maximum clique was found by a branch and bound method which increases
the size of the clique by placing viable variables in it. When the clique cannot be
expanded and the clique is the largest found so far it is stored. Then the algorithm
backtracks removing the previous variable from the clique. The size of the maximum
cliques can be found in Table 3.1.

Table 4.5 shows the mean solution cost results of these orderings when ERR-
RND value ordering is used. The results show that VAR leads to solutions of lower
cost in all but one case. With the other two orderings, starting with the maximum
clique sometimes improves the solutions found and sometimes not. Overall, VAR,
or CLQ-VAR in one case, remains the best ordering.

In order to establish why the use of the maximum clique can improve search in
some cases while not in others a direct comparison between the clique and non-clique

variable orderings has been performed.

Chapter 4 62 Variable Ordering Heuristics

Table 4.6 compares the pairs of orderings from Table 4.5 (ignoring indistinguish-
able pairs). For each problem and variable ordering (var.ord.); the best column
states whether the ordering with or without the maximum clique was best (labelled
w and w/o respectively); and the size column records the size of the critical con-
straint set. The mean backward degree of the critical constraints for the (non) clique
based ordering is also given (mean b.d. w/o and mean b.d. w) with the bold values
describing which value is significantly lower to the 5% level of confidence. These re-
sults show that for all but one case (STA-F-83 using DEG) the dominant ordering
of the pair has a significantly lower backward degree over the critical constraints.

When a comparison of mean solution error is performed using the solutions found
for the low domain sizes the same pattern holds, ignoring indistinguishable pairs, in
all but four cases. The results of this comparison are in Table 4.7. Such similarity
between results over different domain sizes is not unexpected. The orderings of each
pair are related so any reduction in the quality of solutions found as the domain size
is lowered will be similar. Subsequently, the significant improvement required for one
ordering to become superior to its counterpart is less likely. Again VAR outperforms
its clique counterpart (CLQ-VAR) in the majority of cases and the superiority
within DEG based pairs varies from one problem to another. The superiority of
FD over CLQ-FD becomes apparent as the domain size is lowered. Again the use
of the maximum clique does not provide enough improvement to alter the ordering
of superiority between the DEG, FD and VAR based variable orderings.

These results counter the work in [17] which suggests that use of a maximum
clique leads to lower cost solutions. It is worth considering that the experiments
performed in [17] do not consider stochastic value ordering, as has been used above.
The value assignment scheme used in [17] is more akin to the ERR-LOW search
method!. The equivalent results to Table 4.7 for ERR-LOW are given in Table
4.8. The comparison is inconclusive, interestingly for the VAR ordering pairs for
which VAR outperformed CLQ-VAR comprehensively under ERR-RND. When
the lowest error tie-break is used the clique based ordering finds a lower cost solution
in more cases than when the random error tie break is used. There are many reasons
why the results might differ from those mentioned, although not given, in [17]. Even
the most basic search procedures will be encoded differently by different people which
could lead to minor discrepancies. As ERR-LOW searches only find one solution,
re-trials will give exactly the same results preventing re-runs with average results

to eliminate chance from the comparison. It is also worth noting that many of the

From person communication with M. W. Carter.

Chapter 4 63 Variable Ordering Heuristics

| problem | var. ord. | d.o. | size | mean b.d. w/o | mean b.d. w |

HEC-S-92 DEG w/o || 10 18.4 29.8
STA-F-83 DEG w 86 16.88 18.40
FD w - - -
VAR w 10 22.3 10.8
KING-96 DEG w 31 9.68 8.39
FD w 38 10.24 8.42
VAR |w/o || - - -
UTE-S-92 FD w/o | - - -
VAR |w/o || - - -
EAR-F-83| DEG |w/o | 87 32.10 35.83
FD w/o || 112 34.62 38.14
VAR | w/o | 10 17 27.6
TRE-S-92 DEG w 10 44.4 13.6
FD w 10 47.6 13.4
VAR |w/o | 10 9.7 997
LSE-F-91 FD w 10 37.9 21.6
VAR | w/o || 10 8.3 195

Table 4.6: Comparison of critical constraint sets under (non)-clique variable
orderings. “-“ means that there is no significant difference. The d.o. column
records which was the dominant ordering with respect to solution costs; the bold
mean backward degree (mean b.d.), which of the orderings has such for the critical
constraints and; the size defines the size of the critical constraint set require to
establish this to a 5% level of confidence.

variable ordering

CLQ- CLQ- CLQ-

problem DEG DEG FD FD VAR VAR
HEC-S-92 | 43187.6 | 43285.1 | 43869.8 | 42827.8 | 39123.5 | 42513.8
STA-F-83 112507 | 106200 109879 | 106233 103798 | 102513
KING-96 34022 34684.9 || 35245.6 | 35647.5 32573 | 32810.7
YOR-F-83 || 43022.5 | 43637.9 || 43389.9 | 44014.2 || 42483.1 | 43417.2
UTE-S-92 || 93755.7 | 93194.5 || 97102.9 | 98159.4 || 81395.7 | 82452
EAR-F-83 || 49355.3 | 51434.3 | 50486.2 | 52469.5 | 49394.6 | 51406
TRE-S-92 | 45262.5 | 44868.4 || 46405.7 | 47134.8 || 42291.3 | 44609.2
LSE-F-91 || 38221.7 | 38664.2 | 39851.4 | 39449.5 | 35254.8 | 36903.5
KFU-S-93 || 96759.6 | 99252.4 | 99330.5 | 101649 | 88439.2 | 95577.7

Table 4.7: Mean cost of the initial solutions found using the ERR-RND value
ordering on three (non)-clique based variable orderings using the low domain size.
Bold type shows the lower mean cost, to 5% significance, of each pair as defined by
the Z test.

Chapter 4 64 Variable Ordering Heuristics

variable ordering

CLQ- CLQ- CLQ-

problem | DEG DEG FD FD VAR VAR
HEC-S-92 | 42520 | 46199 43458 | 44454 41473 | 52712
STA-F-83 | 108173 | 102828 || 109436 | 103974 | 111534 | 101964
KING-96 | 35660 | 33062 | 33667 | 35116 | 33058 | 31788
YOR-F-83 | 44846 | 43351 44874 | 44046 43330 | 41253
UTE-S-92 | 100199 | 92570 | 89319 | 98326 83845 | 81216
EAR-F-83 | 50983 | 54678 50715 | 53905 47862 | 51866
TRE-S-92 | 44770 | 50165 | 42551 | 48606 | 43333 | 43451
LSE-F-91 | 39542 | 42019 | 39019 | 38321 | 36992 | 44915
KFU-S-93 - 102519 || 95733 | 93642 || 98416 | 93859

Table 4.8: Mean cost of the initial solutions found using the ERR-LOW value
ordering on three (non)-clique based variable orderings as performed on the lower
problem domain sizes.

problems have more than one maximum clique and which of these is used in the
ordering may result in both positive and negative effects. In this investigation the
first maximum clique found was used. The ERR-LOW results in Table 4.8 could
be expected to fall below the equivalent ERR-RND mean in Table 4.7 (see Section
5.3.5 in the next chapter). This is not the case in several instances.

The critical constraint backward degree has been calculated with reference to
the original variable ordering (i.e. the effect of re-assignments on the ordering has
not been considered). This is in keeping with the aim of analysing post-search
information to generalise the effects of the decisions made before search begins.
Table 4.9 repeats the process of direct comparison between the variable ordering
pairs (as performed in Table 4.6). It is not clear from these results whether the
deductions made in previous sections apply. As the use of a maximum clique was
superior for only 5 instances, little knowledge can be gained.

Table 4.10 compares the number of unlabels required by search for each pair
of variable orderings. As with the error cost of the solutions found, the use of a
maximum clique can often improve search with respect to the number of unlabels
required by search. Using FD, which in previous experiments usually requires more
unlabels than DEG or VAR, an improvement can be achieved, most notably the
large improvement for the YOR-F-83 problem. For the DEG and VAR orderings
there is no consistent pattern. Whether the use of a maximum clique reduces or

increases the number of unlabels required by search would appear, from these results,

Chapter 4 65 Variable Ordering Heuristics

‘ problem ‘ var. ord. ‘ d.o. H size ‘ mean b.d. w/o ‘ mean b.d. w ‘

HEC-S-92 FD w 14 26.29 30.14
VAR | w/o | 10 10.9 20.9
STA-F-83 DEG w 125 19.50 20.90
FD w 63 19.35 21.13
VAR w 77 15.82 17.44
KING-96 DEG w/o | 42 8.10 9.07
FD | w/o | 16 9 10.75
VAR |w/o|| - - -
YOR-F-83| DEG |w/o| 10 16.4 30.6
FD | w/o| 10 16.6 29.7
VAR |w/o | 10 9.2 23.1
UTES92 | FD | w/o| - - -
VAR |w/o | - - -
EAR-F-83 DEG w/o | 15 23.6 29.33
FD w/o | 10 19.6 26.2
VAR | w/o| 10 11.6 29
TRE-S-92 DEG w 10 40.1 18.1
FD w/o | 38 38.24 30.79
VAR |w/o | 10 9 27.3
LSE-F-91 DEG w/o | 10 12.9 24
VAR | w/o || 10 9.5 24.5
KFU-S-93 | DEG | w/o || 52 33.10 36.23
FD w/o | 39 38.33 42.54
VAR w/o | 10 18.5 30.7

Table 4.9: Analysis of the mean backward degrees (mean b.d.) of the critical con-
straints for each variable ordering pair. d.o. records which is the dominant ordering
with respect the the solutions found. The bold type emphasises for which ordering
the mean b.d. is significantly lower.

Chapter 4 66 Variable Ordering Heuristics

variable ordering

CLQ- CLQ- CLQ-
problem | DEG | DEG | FD | FD | VAR | VAR
HEC-S5-92 8 2 19 18 47 38
STA-F-83 2 0 7 2 1 0
KING-96 0 0 4 2 3 3
YOR-F-83 | 61 49 95 76 7 83
UTE-S-92 5 3 16 10 9 3
EAR-F-83 | 11 14 24 30 34 42
TRE-S-92 | 12 7 37 22 7 8
LSE-F-91 18 6 63 13 7 7
KFU-S-93 8 10 29 30 6 9

Table 4.10: Median number of unlabels required to find a solution for each variable
ordering pair.

to be problem (or institution) specific, rather than depending upon the variable

ordering.

4.2.2.2 Summary

This section of work has shown that a static variable ordering based upon variable
weight out-performs degree based orderings. The conclusion is based upon samples
of 100 searches for each problem, so although only 9 problem instances have been
used the conclusion should extend to other problem instances. It also shows that the
use of a maximum clique at the start of the variable ordering can usually improve
search in terms of the amount of search effort. The results have also shown that the
use of a maximum clique in variable ordering can be at the expense of solution cost,
most notably when the domain size is lowered, although the superiority /inferiority of
the underlying variable ordering is usually maintained. The analysis of each solution
set has shown that the lower solution cost is linked to a lower backward degree of

the constraints that incur the most error.

Chapter 4 67 Variable Ordering Heuristics

4.3 The Effect of Edge Weights

Problem features such as variable degrees and cliques are commonly used to define
variable orderings when solving constraint satisfaction problems. Such notions can
also be extended to take advantage of the constraint weights used in the Weighted
CSP model. An example of such an extension is Weighted Degree Order (also called
Largest Weighted Degree [17] or Generalised Largest First [40]). The weighted
degree of a variable is the sum of the weights of the edges related to the variable,
i.e. the weight of the constraints involving the variable.

It is reasonable to assume that, in real world problems, variables with a large
weighted degree will also tend to have a large degree. In addition to the definitions
used in Section 3.1, the weighted degree of an exam (variable), where S; is the set

of course selections for student 7, is defined as:

wdw) = 3 (181-1) (@.1)
VS;€S , z€S;

The weighted degree (wd(x) defined in 4.1) and degree (d(z) defined in 3.8) of
a variable are both concerned with the set of students that take a particular exam
(x). The larger the size of some of the student combinations (| S; |) in 4.1, the larger
wd(z) is. An increase in the number of exams taken by each student will tend to
increase d(z) because it will tend to increase the variable neighbourhood size (N,
3.7, i.e. the number of other exams an exam cannot clash with), and hence the
degree.

However, there is no direct correspondence between weighted variable degrees
and variable degrees, because increases in either the size of student combinations or
variable weight do not directly lead to an increase in d(x) (see Figure 4.8). In the
real world, different areas of the problem can have slightly different properties. For
example, students from different departments of an institution may have different
numbers of courses to choose from. Some departments may have fewer students, yet
still maintain a large set of possible course choices. Figure 4.9 shows this relationship
in a real world problem. There is a clear correlation between the Degree (on the x-
axis) and the Weighted Degree (on the y-axis) with a curve leading from the bottom
left hand corner to the top right hand corner of the Figure. However, the data also
shows that a large weighted degree does not necessarily imply a large degree. The
degrees of the variables with large weighted degrees (greater than 600) are anywhere
in the region of 40 to 120.

Chapter 4

68 Variable Ordering Heuristics

Problem 1
S; = {01; 02,03}

SZ = {CI: C4, 65}

Problem 2
Sl = {Cla C2, C3, C4, C5}
SZ = {Cla Ca, Cy4, C5}

53 = {CI: 06} S3 = {Cla C4, Cs, CG}
Sy = {01702,03}

wd(cy) =5 wd(cy) = 12

d(Cl) =5 d(Cl) =5

S; is the set of course choices (from courses c¢; to ¢g) for student i.

d(c;) is the same in both problems, despite the fact that wd(c;) is larger in the
right hand problem.

Figure 4.8: Two example problems.

YOR-F-83

14000

12000 | . '
3 ’ . o
P 10000 | . -
S 8000 .
g .

N
g 00 T " .
e + o+ st r
(=]
T 4000 | e . e W
= . T Lt i*i# T
T + o+
2000 + +¢++ :ti}r};r# ++$& if +++ * +
& ﬂ“*ﬂ *
+¢++* +++
0 + + I I I I I
0 20 40 60 80 100 120
Variable Degree

Figure 4.9: Degree versus Weighted Degree in the YOR-F-83 problem

Chapter 4 69 Variable Ordering Heuristics

I intend to examine the relationship between variable orderings based upon other

problem features and the corresponding orderings which incorporate edge weights.

4.3.1 Weighted Degrees

The two pairs of orderings that shall be compared are:

e degree ordering (DEG) and weighted degree ordering (WD).

e forward degree ordering (FD) and weighted forward degree ordering (WFD)

Examples of these two variable orderings can be found in Figures 4.10 and 4.11.

o s e

Figure 4.10: A weighted degree ordering(WD) for the problem given in Figure 2.1
and Table 3.2.

MA P cs — Py

Figure 4.11: A weighted forward degree ordering(WFD) for the problem given in
Figure 2.1 and Table 3.2. The calculations are given in Table 4.11.

Chapter 4 70 Variable Ordering Heuristics

variable ordering
problem DEG | WD | FD | WFD

HEC-S-92 | 23995 | 21216.8 | 23898.3 | 24735.5
STA-F-83 | 65128.1 | 62875.7 | 64897.8 | 63774.4
KING-96 | 15510.7 | 14558.1 | 16021.9 | 15885.8
YOR-F-83 || 22659.2 | 21922.5 | 23096.7 | 22570.4
UTE-S-92 | 49934 | 39433.2 | 54891.8 | 44710.4
EAR-F-83 || 29248.5 | 29004.2 | 29482.2 | 29949.9
TRE-S-92 || 26612.2 | 24684.8 | 27277.7 27142

LSE-F-91 || 25179.6 | 22228.4 || 26399.3 | 24421.6
KFU-S-93 || 66944.2 | 60026.4 || 67904.6 | 64713.5

Table 4.12: Mean solution cost when comparing (forward) degree and weighted
(forward) degree using the ERR-RIND value ordering and high domain sizes. Bold
type shows the lower mean cost, to 5% significance, of each pair as defined by the Z
test.

w.f.d. at iteration
node || weighted degree || 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 || ord
CS 10 10(6|4-]-1- 3
MA 12 12 - -1-1]-1- 1
PY 8 8 14200/ - 5
PC 12 1219 -|-1-1|- 2
SS 8 8 |71412]-]- 4
EN 4 4 141212]0|01 6

Table 4.11: How the variable weighted forward degrees (w.f.d.) vary as the WFD
ordering of Figure 4.11 is constructed.

Table 4.12 compares the initial solutions found using these variable orderings
using the ERR-RND value ordering. The superiority of DEG over FD extends
to the equivalent weighted orderings where WD outperforms WFD. Search using
WD clearly outperforms DEG and FD is outperformed by WFD on all but the
HEC-S-92 and the EAR-F-83 problems. To find out why this is the case, a direct
comparison between the solutions found by each pair of variable orderings has been
performed.

As with the comparison method in 4.2.2.1, the critical constraint set is defined as
those constraints that offer the most improvement under the dominant ordering of
the pair. The initial critical constraint set size is set to 10. Table 4.13 compares the

mean backward degree of constraints in the critical constraint set for the (weighted)

Chapter 4 71 Variable Ordering Heuristics

degree orderings. The mean b.d. is significantly lower for WD. This is as expected,
as a lower constraint backward degree generally implies that a constraint variable
will be pruned less, which, in turn, generally implies less error will be incurred by
a constraint. Table 4.14 shows the same results when the same method is applied
to the comparison of the (weighted) forward degree orderings. Again the ordering
which results in a significantly lower constraint backward degree, on average over
the critical constraints, corresponds to the dominant ordering, which in this case

does vary.

| prob | d.o. |size | DEG b.d. | WD b.d. |

HEC-5-92 | WD | 10 28.9 8.8
STA-F-83 | WD | 10 16.2 7.4
KING-96 | WD | 10 8.2 3.5
YOR-F-83 | WD | 10 35.6 9.6
UTE-S-92 | WD | 10 214 6.6
TRE-S-92 | WD | 10 40.4 17.2
LSE-F-91 | WD | 10 38.5 16.5
KFU-S-93 | WD | 10 31.7 10.4

Table 4.13: Comparison of the mean constraint backward degree, for (weighted)
degree variable orderings (column DEG/WD b.d.), of constraints in the critical set
of size. The column d.o. indicates which ordering was dominant. Bold values show
which mean constraint backward degree was significantly lower for each variable
ordering pair.

| prob | | size | FD b.d. | WFD b.d. |
HEC-S-92 [FD [14 | 25.71 33.93
STA-F-83 | WFD | 10 17 4.5
KING-96 | WFD | 10 | 9.8 4.7
YOR-F-83 | WFD | 10 | 346 16.4
UTE-S-92 | WFD | 10 | 33.3 6.6
EAR-F-83 | FD |218 | 39.13 41.43
LSE-F-91 | WFD | 10 | 39.9 16
KFU-S-93 | WFD | 10 | 30.6 14.6

Table 4.14: Comparison of the mean constraint backward degree, for (weighted)
forward degree variable orderings, of constraints in the critical size.

Table 4.15 compares the mean solution costs found when searching on problems

using the lower domain sizes. Again WD outperforms the related un-weighted

Chapter 4 72 Variable Ordering Heuristics

variable ordering
problem DEG | WD | FD | WFD

HEC-5-92 || 43187.6 | 38716 | 43869.8 | 43170.7
STA-F-83 || 112507 | 103919 | 109879 | 103968
KING-96 34022 | 33802.8 || 35245.6 | 34944.8
YOR-F-83 || 43022.5 | 42556.3 || 43389.9 | 42584.6
UTE-S-92 || 93755.7 | 82348.1 || 97102.9 | 88109.9
EAR-F-83 || 49355.3 | 49844.9 | 50486.2 | 50357.8
TRE-S-92 || 45262.5 | 41784.6 | 46405.7 | 45513.5
LSE-F-91 || 38221.7 | 34896.2 | 39851.4 | 37455.9
KFU-5-93 || 96759.6 | 89562 | 99330.5 | 97681.4

Table 4.15: Mean solution cost when comparing (forward) degree and weighted
(forward) degree using the ERR-RND value ordering and lower domain sizes. Bold
type shows the lower mean cost, to 5% significance, of each pair as defined by the Z
test.

ordering (DEG) with the exception of the EAR-F-83 problem when the solution
costs are indistinguishable at the 5% level of confidence. This is the same pattern
that occurs when searching using the high domain size. The WFD ordering shows a
general superiority over FD; yet again they are indistinguishable in two cases. Table
4.16 gives the number of unlabels required by search for each problem/variable
ordering combination. As with the comparison between DEG and WD, a high
number of unlabels required by search, when using the lower domain values, result
in search considering heavier constraints first, which may not be the best strategy as
this will lead to unlabelling of variables in the scope of these constraints. Between
DEG and WD neither ordering is superior over all the problems with respect to
unlabels required by search. The use of WD over DEG is justifiable provided a
small increase in search is acceptable. An analysis between FD and WFD shows
that WFD requires fewer unlabels in the majority of cases. Coupled with the lower
solution costs resulting from using WFD this shows WFD can be considered to be
superior to FD.

The direct comparison method is repeated in Tables 4.17 and 4.18, where the
weighted orderings (WD and WFD) prove to have lower backward degrees for the
defined critical constraints. This reinforces the explanation of the superiority of the

weighted orderings.

Chapter 4 73 Variable Ordering Heuristics

variable ordering
problem | DEG \ WD H FD \ WEFED
HEC-S-92 8 33 19 33
STA-F-83 2 1 7 3
KING-96 0 3 4 3
YOR-F-83 61 74 95 86
UTE-S-92 5 8 16 20
EAR-F-83 11 35 24 57
TRE-S-92 12 7 37 34
LSE-F-91 18 6 63 39
KFU-S-93 8 8 29 21

Table 4.16: Median number of unlabels required by successful ERR-RIND searches
on problems using the lower domain sizes.

‘ problem ‘ d.o. ‘ size ‘ DEG b.d. ‘ WD b.d. ‘

HEC-S-92 | WD | 10 31.5 6.8
STA-F-83 | WD | 10 14.7 6.2
KING-96 | WD | 10 8.9 4.6
YOR-F-83 | WD | 10 39 10.1
UTE-S-92 | WD | 10 21.9 6

TRE-S-92 | WD | 10 41.3 9.5
LSE-F-91 | WD | 10 374 12.6
KFU-S-93 | WD | 10 30.3 7.1

Table 4.17: Direct comparison of the mean constraint backward degree, for
(weighted) degree variable orderings (DEG b.d. and WD b.d.), of constraints in
the critical set of size. d.o. records which ordering was dominant with respect to
solution costs. The solutions examined are those found when searching using the
lower domain sizes.

| problem | d.o. [size | FD b.d. | WFD b.d. |

HEC-S-92 | WFD | 10 29.5 12.6
STA-F-83 | WFD | 10 16.5 3.8
KING-96 | WFD | 10 7.8 2.8
YOR-F-83 | WFD | 10 29 8.7
UTE-S-92 | WFD | 10 26.8 4.3
TRE-S-92 | WFD | 10 49.8 15.4
LSE-F-91 | WFD | 10 40.2 15.1
KFU-S-93 | WED | 10 29.8 15.6

Table 4.18: Direct comparison of the mean constraint backward degree, for
(weighted) forward degree variable orderings, of the critical constraints. The so-
lutions examined are those found when using the lower domain sizes.

Chapter 4 74 Variable Ordering Heuristics

4.3.2 Maximum Weighted Cliques

The weight of a weighted clique is defined as the weight of all of the variables within
it. The motivation behind placing a maximum weighted clique, defined as a clique of
any size which has a maximum weight, at the start of the ordering is not just that of
assigning values to variables that may encounter a large amount of pruning (as with
un-weighted cliques of section 4.2.2.1), but also that the weighted clique variables
may be critical to the error of the resulting solution. I have compared weighted and
un-weighted cliques to develop an insight as to whether this is the case.

Table 4.19 compares DEG, FD and VAR with related orderings which either
have a maximum clique, or a maximum weighted clique at the start of the ordering
for stochastic search (ERR-RND). Some of the pairs of orderings are indistinguish-
able from each other at the 5% level of confidence, for example all of the HEC-S-92
results. Where this is the situation the pairs of distributions are considered to be too
similar to make any accurate judgements. Those mean errors that are significantly

lower have been highlighted.

variable ordering pairs

CLQ- WCLQ- CLQ- WCLQ- CLQ- WCLQ-

problem DEG DEG FD FD VAR VAR
HEC-S-92 || 24096.5 | 24032.9 || 24119.4 | 24423.4 | 22969.8 | 23139.6
STA-F-83 || 63164.7 | 65441.9 || 63873.2 65705 61513.7 | 62762.7
KING-96 15288.9 | 14917.3 || 15774.1 | 15502.3 || 14622.6 14537.2
YOR-F-83 || 22742.5 | 22940.3 || 23185.2 | 23421.5 || 21888.9 | 22145.9
UTE-S-92 || 50422.3 | 44343.1 | 57125.6 | 51271.2 || 41101.3 | 42003.4
EAR-F-83 || 30923.9 | 30613.7 || 31003.5 | 30821.3 || 29837.5 | 30005.6
TRE-S-92 26191.8 | 26135.4 26717.3 | 26671.9 25343.7 | 25124.4
LSE-F-91 || 25400.6 | 25053.9 || 25999.5 25834 23497.2 | 23132.8
KFU-S-93 || 65771.5 | 69495.1 || 68537.6 | 70517.7 || 63174.3 | 60794

Table 4.19: Mean solution costs when comparing the (weighted) clique based or-
derings using the ERR-RND value ordering heuristic. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.

The results of Table 4.19 show that neither of the CLQ or WCLQ orderings
is consistently better for all problems or all base variable orderings. Examining
the superiority across each problem, however, shows that for some problems CLQ
is superior to WCLQ whether combined with DEG, FD, or VAR, and for some

problems the opposite is the case.

Chapter 4 75 Variable Ordering Heuristics

‘ prob ‘ var.ord. ‘ d.o. ‘ # ‘ CLQ b.d. ‘ WCLQ b.d. ‘
STA-F-83 DEG CLQ 10 8.2 12.3
FD CLQ |10 6.6 10.9
VAR CLQ |10 4.9 9.9
KING-96 DEG | WCLQ | 10 9.5 7
FD | WCLQ | 12| 833 6.42
YOR-F-83 | DEG CLQ |10 33.1 18
FD CLQ 10 32.2 18
VAR CLQ 11 24.64 16.82
UTE-S-92 DEG WCLQ | 10 20.1 14.2
FD WCLQ | 10 29.8 22.5
VAR CLQ - - -
EAR-F-83 | DEG | WCLQ | 10 46.7 29.8
TRE-S-92 | VAR | WCLQ | 18 26.72 22.39
LSE-F-91 DEG | WCLQ | - - -
VAR | WCLQ | - - -
KFU-S-93 | DEG CLQ |10 34.4 22.4
FD CLQ |[10| 315 20
VAR WCLQ | 24 25.79 19.33

Table 4.20: Direct comparison of variables orderings which incorporate maximum
and weighted maximum cliques when using the high domain size. d.o. records
which ordering is dominant with respect to solution cost. CLQ b.d. and WCLQ
b.d. record the mean backward degree of the critical constraints, whose number is
defined by size, under each ordering. The bold type is used to show which mean
b.d. is significantly lower.

This suggests that superiority of the ordering has more to do with the actual
clique used than the resulting order of the remaining variables. The results of a
direct analysis between the solutions found by each variable ordering pair of Table
4.19 are shown in Table 4.20.

Of the 3 problems where a maximum clique is superior to a weighted maximum
clique it is for only one of these that the critical constraints in the direct comparison
(Table 4.20) have a lower mean b.d. for the maximum clique orderings. This suggests
that the variable orderings are too similar for the critical constraint definition to
clearly identify critical constraints, a hypothesis which is backed up by the number

of statistically indistinguishable pairs in Table 4.19.

Chapter 4 76 Variable Ordering Heuristics

variable ordering pairs
CLQ- WCLQ- CLQ- WCLQ- CLQ- | WCLQ-
problem DEG DEG FD FD VAR VAR
HEC-S-92 | 43285.1 | 42113.6 || 42827.8 | 42772.4 || 42513.8 | 43346.4
STA-F-83 | 106200 | 111933 106233 | 109803 || 102513 | 103572
KING-96 | 34684.9 | 33014.7 || 35647.5 | 34741.5 | 32810.7 | 32403.5
YOR-F-83 || 43637.9 | 43481.7 | 44014.2 | 44150.1 || 43417.2 | 42614
HEC-S-92 93194.5 | 89662.3 || 98159.4 | 93873.2 || 82452 88031.7
STA-F-83 51434.3 | 51093.5 52469.5 | 51880.5 51506 | 51004.5
KING-96 44868.4 | 44519.2 || 47134.8 | 45723.4 || 44609.2 | 42828.4
YOR-F-83 || 38664.2 | 39110.3 || 39449.5 | 40010.6 || 36903.5 | 36221.4
UTE-S-92 || 99252.4 | 99856.2 101649 102396 || 95577.7 | 91038.1

Table 4.21: Mean error of solutions found using the ERR-RIND value ordering on
the variable orderings that incorporate maximum and maximum weighted cliques
using the lower domain sizes. Bold type shows the lower mean cost, to 5% signifi-
cance, of each pair as defined by the Z test.

variable ordering pairs
CLQ- | WCLQ- || CLQ- | WCLQ- || CLQ- | WCLQ-

problem | DEG DEG FD FD VAR VAR
HEC-S-92 2 5 18 16 38 85
STA-F-83 0 2 2 11 0 1
KING-96 0 0 2 3 3 4
YOR-F-83 | 49 46 76 75 83 65
UTE-S-92 3 2 10 7 5 7
EAR-F-83 14 13 30 28 42 43
TRE-S-92 7 8 22 27 8 7
LSE-F-91 6 7 13 11 7 5
KFU-S-93 10 12 30 27 9 6

Table 4.22: Number of unlabels required by search using the variable orderings that
incorporate maximum and maximum weighted cliques using the lower domain sizes.

The same two experiments have been carried out to compare maximum weighted
clique ordering with their maximum clique when searching under the lower domain
sizes. Table 4.21 compares the mean solution costs of each CLQ-WCLQ pair.
The pattern of superiority remains the same for all but 2 pairs and there are also
more distinguishable pairs. For each general ordering (DEG, FD or VAR) there
are only two problems for which CLQ out-performs WCLQ. These results show

that using a maximum weighted clique in a variable ordering will lead to lower cost

Chapter 4 7 Variable Ordering Heuristics

‘ prob ‘ var.ord. ‘ d.o. ‘ # ‘ CLQ b.d. ‘ WCLQ b.d. ‘

HEC-S-92 | DEG | WCLQ | 10 | 34.1 13.1
STA-F-83 | DEG | CLQ |525| 16.92 16.31
FD | CLQ |340| 16.92 16.18
VAR | CLQ | 10 6.4 10
KING-96 | DEG | WCLQ | 10 9.5 7.1
FD |WCLQ | 61 | 9.11 7.98
VAR | WCLQ | 10 8.1 5.3
YOR-F83| VAR | WCLQ | 10 | 2438 20.5
UTE-S-92 | DEG | WCLQ | 10 | 20.6 12.3
FD |WCLQ | 10 | 327 16.4
VAR | CLQ | 10 7.4 9.6
EAR-F-83| FD |WCLQ| 14 | 40.57 32
VAR | WCLQ | 10 36 27.5
TRE-S92 | DEG | WCLQ | 10 | 335 20.7
FD |WCLQ | 10 | 298 20.8
VAR | WCLQ | 12 | 25.83 20.83
LSEF9l | DEG | CLQ | - _ :
FD | CLQ | - - -
VAR | WCLQ | - - -
KFU-S93 | VAR | WCLQ | 12 | 21.17 13.5

Table 4.23: Direct comparison between solutions found using ERR-RND and vari-
able orderings that incorporate maximum and weighted maximum cliques using the
lower domain sizes. d.o. records which ordering is dominant with respect to solution
cost. CLQ b.d. and WCLQ b.d. record the mean backward degree of the critical
constraints, whose number is defined by size, under each ordering. The bold type
is used to show which mean b.d. is significantly lower.

solutions. With respect to the number of unlabels required by search, Table 4.22
shows that related WCLQ and CLQ require a similar number of unlabels. This
is to be expected due to the similarity between the orderings. A direct comparison
between the ordering pairs (Table 4.23) shows a lower critical constraint set mean
b.d. for the superior ordering for all but 2 comparisons when CLQ is the dominant
ordering. Little analysis can be done into this as there are only 4 clear comparisons
where CLQ is dominant.

4.3.2.1 Summary

The results of this section have shown that the solutions found by placing a maximum

weighted clique at the start of the variable ordering can improve upon the solutions

Chapter 4 78 Variable Ordering Heuristics

found when using a maximum clique. This is most notable for the low domain
sizes. However, little information can be gained from this conclusion as the resulting
variable orderings are very similar and the superiority of orderings which use a clique
over related non-clique based orderings, in general, remains the same regardless of
the clique type. Thus the use of maximum weighted cliques over maximum cliques

in variable ordering has little effect.

4.3.3 Weighted Clique Partitions

A clique partition of a graph is a set of cliques such that each node of the graph
is a member of exactly one clique of the set. Clique partitions come from the field
of graph theory, where the problem of minimising the number of cliques in the
partition is related to graph colouring. Previous results have shown that placing the
maximum clique at the start of the variable ordering can aid search with respect to
finding a solution of low error cost. This idea can be extended so that once search
progresses past the clique at the start of the ordering, the method is re-applied to
the subsequent sub-problem. Continued application leads to a clique covering. This
clique covering will have large cliques at the start and cliques of size 1 toward the end
of the ordering. A weighted clique partition of a graph extends this definition
to consider the weights of nodes or edges in some way. The drawback to using a
variable ordering based upon a clique covering is that finding a maximum clique is a
NP-complete problem. Finding the maximum clique of the original problem may be
justifiable if a significantly better solution can be found; however, re-applying this
process a number of times requires even more time. This time may be better spent
running more stochastic searches using more conventional variable orderings.

I have implemented a method that finds a clique covering using a sequential (or
greedy) method. The advantage is that the cliques can be found quickly. How-
ever, there is no guarantee of the quality of the cliques found in comparison to the
maximum weight possible and the starting variable used is critical. I have initially
ordered the variables by decreasing degree. The method is described in Algorithm
5.

Chapter 4 79 Variable Ordering Heuristics

Algorithm 5 Find clique partition

1 begin

2 U:=1{1,2,..,n}

s while U # {}

4 do

5 degree_order(U)

6 C:={}

7 forv:=1to |U |

8 do

9 T = Uy, Uy €U

10 in_clique := FALSE

11 fori:=1to |C|

12 do

13 if lin _clique

14 then

15 add_to_clique := TRUFE
16 for j:=1to | C; |

17 do

18 if |E(z,C; ;) then add_to_ clique := FALSE fi
19 if add to_ clique

20 then

21 C;Uzx

22 in_clique :=TRUFE
23 fi

24 od

25 fi

26 od

27 if lin_ clique

28 then

29 i=|C|+1

30 C; == {x}

31 fi

32 od

33 best :=1

34 for j:==1to | C|

35 do

36 if W(C;) > W(Chest) then best :=j fi
97 od

38 U - Cbest

40 for j:=n— |U|+1ton—|U |+ | Ches |
41 do

42 Omaz Chegr = .7

43 Cbest — max Cbest

#“ od

45 od

46 end

Chapter 4 80 Variable Ordering Heuristics

The set U, which is first defined in line 2, is the set of variables which have yet to
be placed in the variable ordering. The variables in U are ordered by degree in line 5
and considered in turn. For each of these variables, {u1, ..., u, }, an attempt is made
to put the current one, z (line 9), in a clique. The in_ cliqgue variable maintains
whether this can be done for each of the cliques in the current clique set C' (line 6).
Lines 11 to 26 loop round the clique set; line 13 ensures that the current variable is
only added to one clique; and lines 15 to 24 attempt to add the current variable to
the current clique C;. In order for the current variable to be added to the current
clique it must be connected, E(z,y) must be true (line 18), to each variable in the
current clique (the loop at line 16). If the current variable cannot be added to any
clique then lines 27 to 31 create a new clique. Lines 33 to 37 find the “best” clique
by the clique weight, defined later, as (.- The variables of this clique are then
removed from the unordered variables U (line 38) and added to the variable ordering
01, ..., 0 in lines 40 to 44. After the best clique has been added to the ordering the
whole process is repeated again, until all of the variables have been ordered and U
is an empty set (line 3).

Table 4.24 compares the solutions found using the clique partition ordering (MV
as the maximal cliques are weighted by vertex weight) with those found using VAR
with a maximum weighted clique at the start (WCLQ-VAR). A maximum weighted
clique ordering was used for comparison because it uses the same information as
MYV, but in a less vigorous way. VAR is used because it is the best of the WCLQ
orderings. The results show that MV is always outperformed by WCLQ-VAR
which demonstrates that the use of maximum weighted cliques works best when
the ordering also incorporates another ordering method. A direct comparison of
the results, see Table 4.25, shows that WCLQ-VAR consistently has a lower mean
backward degree (mean b.d.) over the critical constraints.

The above analysis also applies when searching using a lower domain size as
the solution cost comparison (Table 4.26) and direct critical constraint comparison
(Table 4.27) show.

How the cliques are weighted is also relevant. The above results are based upon
cliques that have been weighted by variable weight (MV). I have also defined a
second method that defines the clique weight as the sum of the clique edge weights
(ME), which reflects the relationship between variables within the clique. A com-
parison of the solution costs found by each method can be found in Table 4.28. The
MYV ordering is clearly superior to ME with Table 4.29 showing a direct analysis.

This can also be seen for lower domain sizes in Tables 4.30 and 4.31. The MV order

Chapter 4 81 Variable Ordering Heuristics

variable ordering

problem MV | WCLQ-VAR
HEC-S-92 [24227.2] 23139.6
STA-F-83 || 63211.4 | 62762.7
KING-96 | 15049.7 | 14537.2
YOR-F-83 || 22525.9 | 22145.9
UTE-S-92 || 45100.4 | 42003.4
EAR-F-83 || 29965.1 30005.6
TRE-S-92 || 26488 25124.4
LSE-F-91 | 24518.4| 23132.8
KFU-S-93 || 67782 60794

Table 4.24: Mean solution costs of each variable ordering for higher domain sizes.
Bold type shows the lower mean cost, to 5% significance, of each pair as defined by
the Z test.

‘ problem ‘ d.o. ‘ size ‘ MV b.d. ‘ WCLQ-VAR b.d. ‘
HEC-S-92 | WCLQ-VAR | 10 | 328 9.2
STA-F-83 | WCLQ-VAR | 10 13.2 6.1
KING-96 | WCLQ-VAR | 10 8.1 4.9
YOR-F-83 | WCLQ-VAR | 10 38.3 16.5
UTE-S-92 | WCLQ-VAR | 12 15.17 8.17
TRE-S-92 | WCLQ-VAR | 10 41.6 20.2
LSE-F-91 | WCLQ-VAR | 10 38.2 20.1
KFU-5-93 | WCLQ-VAR | 10 41.6 11.9

Table 4.25: Analysis of the mean backward degrees of the critical constraints (the
number of which is given in size) between MV and WCLQ-VAR. d.o. records
which ordering is dominant with respect to solution cost. WCLQ b.d. and MV
b.d. record the mean backward degree of the critical constraints, whose number is
defined by size, under each ordering. The bold type is used to show which mean
b.d. is significantly lower.

Chapter 4 82 Variable Ordering Heuristics

variable ordering

problem MV ‘ WCLQ-VAR
HEC-5-92 | 42823.5 43346.4
STA-F-83 | 109700 103572
KING-96 | 34025.2 32403.5
YOR-F-83 | 44286.6 42614

UTE-S-92 | 89517.6 88031.7
EAR-F-83 | 51891.8 51004.5
TRE-S-92 | 45699.4 42828.4
LSE-F-91 | 37929.2 36221.4
KFU-S-93 | 99576.9 91038.1

Table 4.26: Mean solution costs for lower domain sizes. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.

‘ problem ‘ d.o. ‘ size ‘ MV b.d. ‘ WCLQ-VAR b.d. ‘
STA-F-83 | WCLQ-VAR | 10 | 147 5.6
KING-96 | WCLQ-VAR | 10 8.7 5.9
YOR-F-83 | WCLQ-VAR | 10 34.5 17.6
UTE-S-92 | WCLQ-VAR | 21 12.71 7.95
EAR-F-83 | WCLQ-VAR | 11 37.55 29
TRE-S-92 | WCLQ-VAR | 10 47.2 18.3
LSE-F-91 | WCLQ-VAR | 10 32.9 19.9
KFU-S-93 | WCLQ-VAR | 10 39.3 10.9

Table 4.27: Analysis of the mean backward degrees of the critical constraints between
MYV and WCLQ-VAR using the lower domain sizes.

Chapter 4 83 Variable Ordering Heuristics

variable ordering
problem MV ‘ ME
HEC-S-92 | 24227.2 24140
STA-F-83 | 63211.4 | 63143.8
KING-96 | 15049.7 | 15722.2
YOR-F-83 | 22525.9 | 22572.3
UTE-S-92 | 45100.4 | 47269.1
EAR-F-83 | 29965.1 | 32187.3
TRE-S-92 | 26488 | 28603.2
LSE-F-91 | 24518.4 | 26307.9
KFU-S-93 | 67782 | 70153.6

Table 4.28: Mean solution costs for higher domain sizes. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.

| problem [d.o. | size | MV b.d. | ME b.d. |
KING-96 [MV] 10 | 5.7 10.2
UTE-S-92 [MV | 10 | 7.9 19.3
EAR-F-83 | MV | 10 | 28.9 51.1
TRE-S-92 [MV | 10 | 37.1 75.9
LSE-F-91 [MV | 10 | 33.3 58

Table 4.29: Analysis of the mean backward degrees of the critical constraints using
the MV and ME orderings.

maintains some general problem structure information. In ME this information has
been removed and the clique weighting concentrates only on the clique variables,

resulting in a higher solution cost.

Chapter 4 84 Variable Ordering Heuristics

variable ordering
problem MV [ME
HEC-S-92 | 42823.5 | 44358.3
STA-F-83 | 109700 | 109985
KING-96 | 34025.2 | 34416.9
YOR-F-83 | 44286.6 | 44153.6
UTE-S-92 | 89517.6 | 93161.4
EAR-F-83 | 51891.8 | 54208
TRE-S-92 | 45699.4 | 47552.4
LSE-F-91 | 37929.2 | 40323
KFU-S-93 | 99576.9 | 105029

Table 4.30: Mean solution costs for lower domain sizes. Bold type shows the lower
mean cost, to 5% significance, of each pair as defined by the Z test.

‘ problem ‘ d.o. ‘ size ‘ MV b.d. ‘ ME b.d. ‘

HEC-5-92 | MV | - - -
KING-96 | MV | 10 4.7 7.1
UTE-S-92 | MV | 10 6 23.2
EAR-F-83 | MV | 10 29.7 52.9
TRE-S-92 | MV | 10 29 63.9
LSE-F-91 | MV | 10 23.7 38.2
KFU-S-93 | MV | 10 29.2 46.2

Table 4.31: Analysis of the mean backward degrees of the critical constraints using
the MV and ME orderings and the low domain sizes.

Chapter 4 85 Variable Ordering Heuristics

4.3.4 Summary

I have shown how DEG and FD can be extended to the WCSP framework by
including constraint weight information. Both extensions, WD and WFD, are
superior with respect to searching for lower solution costs; although both generally
require more unlabels to find feasible solutions.

I have repeated this extension method to develop orderings which use maximum
weighted cliques (an extension from the CLQ orderings) and have shown that they
have an effect similar to that observed for CLQ. There is no clear improvement
or degradation of solution or search cost when such cliques are used in a variable
ordering. Continued analysis has suggested that improvements due to CLQ and
WCLQ depend on the actual clique used and not to the general method.

I have extended the use of weighted cliques to define 2 new orderings, on weighted
clique partition, MV and ME using 2 different definitions of clique weight. Results
have shown that neither ordering leads to better solutions. As the orderings lose
general problem information, as MV does when compared to WCLQ-VAR and
ME when compared to MV, the quality of solutions degrades.

I have continued the comparison between the solution cost attributed to critical
constraints and the mean backward degree of such constraints. The results uphold
the general hypothesis that increased error in the critical constraints, and subse-
quently the whole problem, is due to the large constraint backward degree of these

constraints.

Chapter 4 86 Variable Ordering Heuristics

4.4 Using Constraint Backward Degree In Variable
Ordering

A large proportion of the analysis performed in this chapter has focused on the
backward degree of the critical constraints, i.e. the constraints that affect search
the most. It has been shown that when one variable ordering results in solutions
with a lower mean cost than another variable ordering, the mean backward degree
of the critical constraints is lower. The definition of the critical constraints
has varied depending upon whether a direct analysis between 2 related orderings, or
a general analysis between un-related orderings, is being performed. However, the
use of constraint backward degree in the analysis remains the same. If the critical
constraint set could be defined before search, then a variable ordering that minimises
their backward degree could be constructed. Unfortunately, the critical constraints
cannot be defined before search, but we can approximate the critical constraint set.

Due to the distribution of constraint weights, where there are a few constraints
with very large weights and increasingly more lighter constraints, those constraints
which incur the significant cost for a solution will be those with large weights.
Therefore, constructing a variable order that minimises the backward degree of these
constraints may result in lower mean solution costs. Minimising the backward degree
has been suggested by Freuder in relation to backtrack free search [28]; however, in
this case it is used to the benefit of search overall. I have developed 2 algorithms
based around Algorithm 6 which order variables by sequentially placing the variable
with the maximum backward degree (tie breaking on degree) next in the order.

Lines 1—4 initialise the ordering and record the degree of each variable (stored in
the d array). Then the Algorithm sequentially places variables in the final ordering
one by one (line 6). The backward degree array (bd) is reset (lines 7 — 9) and the
current backward degree, with respect to the partially generated ordering (the first
elements of ord), of each variable is calculated (lines 10 —16). Then a sort procedure
reorders the elements of the ord array not placed in the new ordering (i.e. elements
[to n) in largest bd order first, tie-breaking on largest d, reshuffling bd and d so that
equivalent elements correspond to those in the bd array.

An example of a backward degree ordering is given in Figure 4.12.

Chapter 4 87 Variable Ordering Heuristics

Algorithm 6 Order the variable array ord according to backward degree.
1 begin

2 foreachie€l,..,n do

3 ord[i]| =i

y d[i] = degree(i)

5 od

6

7

8

9

foreach €l,...n—1do
foreach i € 1,...,n do

bd[i] =0

od
10 foreach i € 1,...,] do
11 foreach j €1,...,n do
12 if (edge(ord][i], ord[j])) then
18 bd[j] + +
14 fi
15 od
16 od
17 sort ord according to bd tie —break on d
18 od
19 end

Figure 4.12: A backward degree ordering(BD) for the problem given in Figure 2.1
and Table 3.2. The calculations are given in Table 4.32.

Chapter 4 88 Variable Ordering Heuristics

b.d at iteration
node || degree || 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 || order
CS 4 011 |-1|-1]-1- 2
MA 4 011]|2)-1]-]- 3
PY 3 011]|2(3[4]- 5
PC 5 O|-|-1-1]-1- 1
SS 4 011]|2(3]-]- 4
EN 2 01 11212 6

Table 4.32: How the variable backward degrees (b.d.) vary as the BD ordering of
Figure 4.12 is constructed.

This backward degree ordering (BD) may not place the heaviest constraints of
the problem at the start of the ordering; however, it should minimise backward
degree across the variable ordering and so help to minimise constraint backward
degrees as well as minimise re-labelling. Following my work extending variable
orderings to incorporate constraint weight information I have also implemented a
second ordering of weighted backward degree (WBD), an example of which can
be found in Figure 4.13. This ordering is essentially the same; however, instead of
defining the degree in line 4 of Algorithm 6 it calculates the weighted degree (i.e.
the sum of the weight of all constraints for which the variable is in the scope) and
the weighted bd is calculated in line 13 by bd[j|+ = edgeweight(ord|[i], ord[j]). This
ordering should address the problem of minimising the backward degree of the heavy
constraints in the ordering. The backward degree of a variable is also known as the
width of a node, as used by Tsang [69]; however, BD does not correspond to the
Minimum Width Ordering (MWO) of [69] where the width of a variable ordering,
defined as the maximum width or backward degree of a variable, is minimised.

Figure 4.13: A weighted backward degree ordering(WBD) for the problem given in
Figure 2.1 and Table 3.2. The calculations are given in Table 4.33.

Chapter 4 89 Variable Ordering Heuristics

w.b.d. at iteration
node || weighted degree | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 || order
CS 10 0|4|-|-1|-1|- 2
MA 12 0|-|-|-1|-1- 1
PY 8 0{4|6|-|-1|- 3
PC 12 013 |5|7|-1|- 4
SS 8 0/1(3[3|6]0 5
EN 4 0010024 6

Table 4.33: How the variable weighted backward degrees (w.b.d.) vary as the WBD
ordering of Figure 4.13 is constructed.

Table 4.34 compares the variable weight based ordering (VAR) with the two
newly proposed orderings. The comparison is made with VAR as it is a consis-
tently good ordering compared to DEG or FD. Although its performance can be
improved by the use of cliques these have not been used for simplicity. The results
show that WBD out-performs both VAR and BD on all of the given problems.
Comparing BD and VAR separately, VAR is significantly superior for the major-
ity of problems; however, this is expected as BD does not try to incorporate any
constraint weight information at all. A better comparator for BD would be the
degree ordering (DEG), against which BD produces significantly better solutions

for all but one problem, where they are indistinguishable.

variable ordering

problem VAR | BD | WBD
HEC-S-92 || 21756.1 | 23226.3 | 20636
STA-F-83 || 63856.1 | 63467.3 | 62333.7
KING-96 | 14531.9 | 14656.7 | 13265.7
YOR-F-83 || 21876.3 | 22307.6 | 20989.4
UTE-S-92 || 40093.3 | 44213.8 | 39000.3
EAR-F-83 || 29038.1 | 29427.3 | 27581.7
TRE-S-92 || 24901.6 | 25126.7 | 23562.9
LSE-F-91 [22632.9 | 23000.3 | 21072.7
KFU-S-93 | 58818.7 | 63774.1 | 55886.7

Table 4.34: Comparison of the mean solution costs using VAR, BD and WBD
for ERR-RND. Bold values signify significantly lower mean distribution using the
Z-test at 5% significance.

When the same experiments are performed with the low domain sizes (in Table
4.35), the same observations hold true, on the whole. Again WBD performs best,

Chapter 4 90 Variable Ordering Heuristics

variable ordering
problem VAR | BD | WBD

HEC-S-92 || 39123.5 | 42234.4 | 38148.2
STA-F-83 || 103798 | 110166 | 102160
KING-96 32573 | 32794.4 | 30908.2
YOR-F-83 || 42483.1 | 42485.1 | 41065.5
UTE-S-92 || 81395.7 | 83402.5 | 81156.1
EAR-F-83 || 49394.6 | 50000 | 47090.3
TRE-S-92 || 42291.3 | 43020.3 | 39616.8
LSE-F-91 || 35254.8 | 36744.4 | 32695.3
KFU-S-93 | 88439.2 | 93855.4 | 85055.1

Table 4.35: Comparison of the mean solution costs using VAR, BD and WBD
for ERR-RND using the low domain sizes. Bold values signify significantly lower
mean distribution using the Z-test at 5% significance.

except in two problems (HEC-S-92 and UTE-S-92) for which it is not significantly
superior to VAR. Again VAR outperforms BD; however, BD consistently requires
fewer unlabels than either of the other 2 orderings (see Table 4.36). This suggests
that BD may be a good choice of variable ordering when search finds it extremely
difficult to find feasible solutions.

Chapter 4 91 Variable Ordering Heuristics

variable ordering
problem | VAR | BD | WBD

HEC-5-92 47 7 61
STA-F-83 1 0 1
KING-96 0 1
YOR-F-83 || 77 19 31
UTE-S-92 9 2 7
EAR-F-83 | 34 3 25
TRE-S-92 7 2 4
LSE-F-91 7 2 3
KFU-S-93 6 1 3

Table 4.36: The number of unlabels required by ERR-RND when using VAR,
BD and WBD on the low domain sizes.

4.4.0.1 Comparisons With The Work Of Others

The majority of the problems used in this investigation are those used in [17]. This
suite of problems can be used as a set of benchmarks on which to test any new
search methods. Unfortunately, although these problems are used often, search
methods still tend to focus on institution-specific criteria such as maximum room
space. Although such criteria are important when assessing search methods, different
institutions have different criteria and general comparisons between search methods
should concentrate upon the base problem.

The work of Di Gaspero and Schaerf [32] includes a comparison of the results
of their method with those produced by the LBT method of Carter, et al [17].
The LBT method is similar in description to the search algorithm used in this
investigation; however, few details are given in [17]. Table 4.37 compares the mean
and minimum results of the search using WBD as developed in this investigation
with the results of both [17] and [32]. The results of their TABU search method
can be seen to be competitive with those of Carter, et al. The results of search
using WBD can be seen to outperform TABU in all but one instance (YOR-F-
83). WBD outperforms LBT in 5 instances showing that it too is competitive
with LBT. A full comparison of the results presented in this thesis can be found in

Appendix B.

Chapter 4 92 Variable Ordering Heuristics

WBD LBT [17] TABU [32]

problem || wbd mean [wbdmin| max | min | mean | min

HEC-5-92 38148.2 33549 56460 30488.4 || 35569.8 | 35005.2

STA-F-83 102160 97095 | 112485.1 | 98676.5 | 101924.8 | 98248.8

YOR-F-83 | 41065.5 39249 46955.9 | 39239.7 39616.1 38581

UTE-S-92 81156.1 747 105325 70950 86075 79750

EAR-F-83 47090.3 43120 92312.5 40950 02437.5 01412.5

TRE-S-92 39616.8 37317 47982 41875.2 45801 43620

LSE-F-91 32695.3 30274 36255.8 28623 43343.4 42253

KFU-S-92 85055.1 78724 118212.9 | 74886 104305.5 96282

RYE-S-93 132320 111455 126313 | 83825.9

CAR-F-92 88810.1 79865 || 151035.8 | 114197.8 || 103146.4 | 95778.8

UTA-S-92 77147.6 72783 | 136102.4 74431 95597 89317.2

CAR-S-91 100206 89415 | 201419.4 | 120174.6 110019 | 104941.2

PUR-S-93 143976 139210 150160 | 117124.8 - -

Table 4.37: Comparison of the results of this investigation with the results from [17]
and [32]. These problem correspond to the low domain size. The original results
of [17] and [32] were given in proportion to the number of students. For ease of
comparison these numbers have been converted into total error form (hence some
decimals appear due to rounding).

4.4.1 Summary

The work of this section follows on from the results of previous sections which have
shown the solution quality is related to the backward degree of constraints. Variable
ordering heuristics have been developed to exploit this fact. Results show that such
heuristics are superior to other tested heuristics. Results have also been compared
to the published results and the new methods have been shown to at least compete

with the state of the art search results.

Chapter 4 93 Variable Ordering Heuristics

4.5 Dynamic Heuristics

When searching for a low error-cost initial solution dynamic heuristics should hold
an advantage over static variable orderings as they can adapt to the current partial
solution (i.e. the solution so far) during search. Here I examine how well dynamic
heuristics perform with respect to each other and related static orderings and define

under which circumstances methods may encounter difficulty.

4.5.1 Standard Methods

In Classical CSPs the Fail-first, Brelaz and DD heuristics are regularly used when
attempting to tackle a random or real-world problem. Each tries to identify which
of the unassigned variables will be most difficult to assign a value to. The most
commonly used heuristics apply the Fail-First Principle [37|. This principle states
that the next move made by search should be that which is most likely to result in
a inconsistent solution (i.e. failure). The principle works in two ways. First of all,
it applies the idea that it is best to assign a value to a variable which has a high
probability of failure while a valid assignment still exists as opposed to leaving the
assignment until later in search when such a failure may be unavoidable. Secondly,
the implementation of the principle implies that search includes look-ahead which
identifies a definite failure as soon as it occurs. In fact the work of Smith and Grant
shows that the Fail-First principle is flawed [68]; however, they show that choosing
the next variable on smallest domain is a good choice. This is due to the fact that
it help to reduce the amount of branching, or the number of values a variable can
be assigned, nearer the root of the tree.

The heuristic called Fail-First(FF), attempts to tackle the problem choosing as
next the variable with the smallest domain size. This is based upon the assumption
that if a variable has few possible assignments, the reduction in choice will mean
that the constraints in which it is involved with will be more difficult to solve.
A drawback of this method for the UETTP is that it arbitrarily chooses the first
variable as all variables start with the same number of possible assignments. The
Brelaz heuristic(BZ) [8] avoids this problem by extending this heuristic so that
where a tie between variables occurs the variable with the largest degree is chosen.
The variable with the largest degree is considered a good choice because it will have
a large impact on the rest of the problem, pruning more values, etc. This method
has been widely used in graph colouring where it is also known as DSATUR. The

drawback of these methods is that they fail to consider the number of possible

Chapter 4 94 Variable Ordering Heuristics

variable assignment choices in relation to the degree of the variable. A variable with
a large degree may have a larger domain size than another with a very small degree,
yet the variable with the larger degree is more likely to be involved in a difficult sub-
problem. This gives rise to a heuristic which ranks variables based upon domain size
divided by degree(DD) [3]. It is generally considered, for the reasons given above,
that DD is better than BZ which, in turn, is better than FF.

4.5.1.1 Related Static Ordering Heuristics

One of the disadvantages of dynamic variable ordering heuristics is that they have to
be applied to the unassigned variables each time an assignment is made. Therefore,
this expenditure of effort must be justified with lower solution error costs (i.e. better
solutions). To this end, each of the dynamic orderings have been compared to a
related static ordering which attempts to simplify the reasoning behind the dynamic
selection procedure into the static framework. In each case the calculation of domain
size has been generalised to the calculation of the backward degree. The related

orderings are as follows:

e backward degree with no tie break (BD-INTB): the variables are ordered on
the number of past neighbours (which is maximised). There are no tie-breaks
so the first variable (when all variables have a backward degree of 0) is variable

number 1. This static ordering corresponds to the FF dynamic ordering.

e backward degree with degree tie break (BD-DTB): as above, bu tie-breaks
are decided on the largest degree. The first variable in the ordering is that

with the largest degree. This ordering corresponds to BZ.

e backward degree over degree (BD-D): the variables are ordered upon min-
imising the backward degree divided by the degree. This ordering corresponds
to DD.

Chapter 4 95 Variable Ordering Heuristics
variable ordering pairs

problem FF ‘ BD-NTB H BZ ‘ BD-DTB H DD ‘ BD-D
HEC-S-92 | 23395.9 | 23184.5 || 23475.7 | 23226.3 || 24062.4 | 22291.8
STA-F-83 | 62719.2 | 62476.4 || 63425.5 | 63467.3 | 64814.1 | 64446.2
KING-96 | 14675.8 | 14558.2 | 14754.9 | 14656.7 | 15159.5 | 14667.5
YOR-F-83 | 22644.7 | 22780.8 | 22551.7 | 22307.6 || 22208 23886
UTE-S-92 | 44189.6 | 44075.5 | 45145.7 | 44213.8 || 46496.7 | 45151.6
EAR-F-83 | 31355.1 | 31041.2 || 29597.6 | 29427.3 | 29343.2 | 33131.6
TRE-S-92 | 26010.8 | 26473.6 | 25586.5 | 25126.7 || 25619.9 | 30103.7*
LSE-F-91 | 23709.7 | 23742.2 || 23107.3 | 23000.3 || 23632.4 | 29166.6*
KFU-S-93 | 65761.4 | 66313.9 || 64910.8 | 63774.1 || 66952.7 | 84652.4*

Table 4.38: Mean solution costs found using the ERR-RND value ordering. Bold
type shows the lower mean cost, to 5% significance, of each pair as defined by the Z
test. Results with a * required re-labelling to find viable results.

4.5.1.2 Search Using Standard Dynamic Methods

The mean solution cost when searching with each dynamic ordering is compared
to the related static ordering in Table 4.38. Dynamic searches using FF are in
the main indistinguishable from those of their related static ordering, BD-NTB.
In 3 of the 4 cases where the ordering pairs were significantly different at the 5%
level of confidence BD-NTB was the superior ordering. Similarly, search using
BZ was outperformed by BD-DTB for all but the 4 cases when the ordering pairs
were indistinguishable. Both dynamic orderings select the next variable primarily
on saturation degree. These results show that when searching under a high domain
size, when a simple depth first search is unlikely to encounter any difficulties, the
dynamic nature of such heuristics leads to slightly higher solution costs. Coupled
with the extra cost of calculating the data required for dynamic selection the related
static orderings are a better choice in this case.

The same is not the case when searching using DD. In 6 of the 8 significantly
different pairs of DD and BD-D, DD is superior. It is worth noting, however, that
search using BD-D encounters problems finding solutions as demonstrated by the
fact that for the TRE-S-92, LSE-F-91 and KFU-S-93 problems re-labelling is
required to find any solutions. Difficulty finding valid solutions is a result of search
focusing on an area of the search space which has few solutions. The few solutions
found in such areas lead to high solution costs. All 3 orderings use the general

strategy of choosing the variable which will prove to be the most difficult to find

Chapter 4 96 Variable Ordering Heuristics

a valid assignment for, but the results show that different implementations of this
strategy can vary in quality.

The same comparison is made when searching using the lower domain sizes in
Table 4.39. The most noticeable feature of the comparison between FF and BD-
NTB at the lower domain sizes is that the pairs of solution sets are distinguishable
in all but 3 cases with neither ordering being dominant. The opposite is the case
when comparing BZ with BD where only 4 ordering pairs are distinguishable. Sub-
sequently, no clear analysis of dominance can be made from such a low number of
sample cases. The comparison between DD and BD-D shows similar results as
when searching using the higher domain sizes with the static ordering dominating
for the smaller problems and the dynamic for the larger. The number of unlabels
required by BD-D, shown in Table 4.40, are high in comparison to those by DD, so
it comes as little surprise that DD appears superior given the difficulties in finding
valid solutions when using BD-D. Generally, the dynamic ordering heuristics re-
quire fewer unlabels than their static counterparts. This is as expected considering
that the general principle of tackling difficult variables first should imply incurring
fewer unlabels (most noticeably for the YOR-F-83 problem). Again the asser-
tion regarding superiority of FF, BZ or DD holds when searching using the lower

domain size.

variable ordering pairs

problem FF |[BD-NTB| BZ | BD | DD | BD-D
HEC-S-92 | 39791.5 | 39413.5 | 41059.8 | 42234.4 || 41585.7 | 40220
STA-F-83 | 101165 | 102917 || 105802 | 110166 110302 | 102376
KING-96 | 32022.9 | 33907.8 || 32783.7 | 32794.4 || 33965.9 | 32790.7
YOR-F-83 | 43704 43468 42388.2 | 42485.1 | 42358.9 | 44491.8
UTE-S-92 | 86605.8 | 88982.8 86189.9 | 83402.5 | 89129.1 | 86954.2
EAR-F-83 | 51619.4 | 51171.1 || 50306.8 | 50000 | 49435.6 | 53406
TRE-S-92 | 44541.9 | 44988.2 43502.7 | 43020.3 || 43272.2 | 48040.1
LSE-F-91 | 36251.5 | 36230.8 | 36884.5 | 36744.4 | 36750.9 | 43658.7
KFU-S-93 | 96594.1 | 94963.1 | 93882.4 | 93855.4 || 94642.8 | 111624

Table 4.39: Mean solution costs using the ERR-RND value ordering on the low
domain sizes. Bold type shows the lower mean cost, to 5% significance, of each pair
as defined by the Z test.

Chapter 4 97 Variable Ordering Heuristics

variable ordering pairs
problem | FF ‘ BD-NTB H BZ ‘ BD H DD ‘ BD-D
HEC-S-92 | 10 11 1 7 2 62
STA-F-83 | 0 0 0 0 1 14
KING-96 | 0O 0 0 0 0 1
YOR-F-83 | 7 33 3 119 4 68
UTE-S-92 | 1 2 1 2 1 3
EAR-F-83 | 0 4 0 3 0 37
TRE-S-92 | 0 5 0 2 0 73
LSE-F-91 | O 0 0 2 0 115
KFU-S-93 | 1 4 0 1 2 70

Table 4.40: The median number of unlabels required by ERR-RIND search when
searching using the low domain sizes.

4.5.2 Dynamic methods for Weighted CSP

It has already been shown that static variable orderings can incorporate information
regarding the weights associated to constraints to improve the solutions found by
search. I have applied the same rationale to dynamic variable orderings. The fol-
lowing 2 dynamic variable orderings are derived as extensions of more conventional

dynamic orderings:

e WSD - weighted saturation degree (also referred to as Generalised Saturation
Degree in [40]). This ordering is derived from BZ which is also know as order-
ing on variable saturation degree. The wsd value of an unassigned variable
during search is calculated by Algorithm 7, with the next variable assignment
being made to the variable with the highest wsd. Rather than count the num-
ber of domain values that have already been used, as BZ does, the maximum
weight of the edges which prune a particular domain value is recorded. Line
3 loops through each possible original domain value of the variable j (D),
i.e. without pruning. Line 6 loops through all possible past variables of j
(P;), which are related to j (edge(j, k)) and are assigned the domain value d
(It = d), determining which of the constraints between these variables is the
heaviest (recorded in the max wgt variable). An example of how the wsd of
a future variable develops as assignments are made can be found in Table A.5

in Appendix A.

Chapter 4 98 Variable Ordering Heuristics

e WSD-WD - weighted saturation degree divided by weighted degree. This is
a weighted extension of the DD dynamic variable ordering. The wsd part
of this ordering is calculated in the manner above; however, the decision as
to which variable will have a value assigned to it next, divides wsd by the
weighted degree (wd). The next variable for assignment chosen is that with
the smallest such value. The aim of this extension to the WSD ordering is to
quantify, in a similar way to the normalisation of data, the wsd value of each
future variable during search such that the relevance to the problem structure

local to the variable is considered.

Algorithm 7 Calculate the wsd for a variable j

1 begin

2 wsd=0

s foreach d € {di,...,d,} = D;

y do

5 mazr_wgt =0

6 foreach £ : k € P; and edge(j,k) and I, =d
7 do

8 if (edgeweight(j, k) > max_wgt) then
9 max_wgt = edgeweight(j, k)

10 fi

11 od

12 wsd + = mazr_wgt

13 od

14 end

Table 4.41 compares the solution costs of the BZ and DD dynamic orderings
with their weighted counterparts. In these results WSD consistently out-performs
BZ in every case with the consideration of the constraint weight data being com-
plementary to the original ordering. The same cannot be said of the WSD-WD
ordering which only out-performs DD for the 3 smallest problems and requires
re-labelling during search to find any solutions when searching the larger problem
instances. It would appear that in WSD-WD using the constraint weight informa-
tion interferes with the search for a feasible solution.

The same comparison is performed when searching using the lower domain sizes
in Table 4.42. Again WSD out-performs BZ; however, for 2 problems (HEC-S-
92 and YOR-F-83) BZ is the superior ordering. This is as a result of search

using WSD ignoring the primary aim of finding feasible solutions. The number of

Chapter 4 99 Variable Ordering Heuristics

variable ordering pairs

problem BZ \ WSD H DD \ WSD-WD
HEC-S-92 || 23475.7 | 20059.1 || 24062.4 21166.9
STA-F-83 || 63425.5 | 60898.4 || 64814.1 | 62623.8
KING-96 || 14754.9 | 13580.4 || 15159.5 | 14446.4
YOR-F-83 || 22551.7 | 21086.9 22208 25764
UTE-S-92 || 45145.7 | 40255.3 || 46496.7 49528.8
EAR-F-83 || 29597.6 | 28753.1 || 29343.2 | 35700.9*
TRE-S-92 || 25586.5 | 23502.1 || 25619.9 27536*
LSE-F-91 | 23107.3 | 21139.6 | 23632.4 | 29315.9*
KFU-S-93 || 64910.8 | 56502 66952.7 | 97812.4%*

Table 4.41: Mean solution costs when searching using the ERR-RND value order-
ing on the high domain size. Bold type shows the lower mean cost, to 5% significance,
of each pair as defined by the Z test. Values with a * show when re-labelling was
required to find viable solutions.

unlabels required by the searches in these cases, given in Table 4.43, can be seen to
be considerably higher for WSD. When searching with the WSD dynamic ordering
it is expected that a higher number of unlabels would be required as domain size is
lowered. This can be considered to be a trade-off between the primary search goal
of finding viable solutions and the secondary goal of finding solutions with a lower
cost. The results show that in most cases an increase in the number of unlabels
required when incorporating constraint weight information into DD does not lead
to major search problems in finding viable solutions; however, if the use of WSD
leads to problems finding viable solutions it will have a resulting effect on the quality
solutions with respect to solution cost. The results of Table 4.42 also confirm the
unsuitability of WSD-WD, with Table 4.43 showing that this extension to DD
results in a very large increase in the number of unlabels in most cases.

The two dynamic variable orderings with constraint weight information can also
be compared to related static variable orderings. As with the similar comparison
for FF, BZ and DD, the saturation degree information can be relaxed to backward
degree. In the weighted case, however, weighted saturation degree is relaxed to
weighted backward degree (wbd). The wbd is defined in 4.2 (i.e. the sum of
the weight of the constraints (W¢;) between the given variable (z) and its past
neighbours(F;)):

wbd(x) = Z We, : z,y€Cjand y € P, (4.2)

Chapter 4

100

Variable Ordering Heuristics

variable ordering pairs

problem BZ | WSD DD | WSD-WD
HEC-S-92 || 41059.8 | 41933.1 || 41585.7 | 43733.1
STA-F-83 105802 | 99230.2 | 110302 105519
KING-96 | 32783.7 | 32796.9 | 33965.9 34231.5
YOR-F-83 || 42388.2 | 43760.9 | 42358.9 | 48092.4
UTE-S-92 | 86189.9 | 81549.9 || 89129.1 95292

EAR-F-83 || 50306.8 | 50961.7 | 49435.6 | 59559.3
TRE-S-92 || 43502.7 | 41746.5 || 43272.2 50435

LSE-F-91 || 36884.5 | 35045.8 || 36750.9 | 47389.2
KFU-S-93 || 93882.4 | 84643.2 || 94642.8 108937

Table 4.42: Mean solution costs when searching using the ERR-RND value or-
dering using the low domain sizes. Bold type shows the lower mean cost, to 5%
significance, of each pair as defined by the Z test.

variable ordering pairs
problem || BZ ‘ WSD H DD ‘ WSD-WD
HEC-S-92 || 1 46 2 55
STA-F-83 || 0 1 1 10
KING-96 0 0 2
YOR-F-83 | 3 91 4 98
UTE-S-92 || 1 6 1 23
EAR-F-83 || 0 39 0 77
TRE-S-92 | 0 9 0 105
LSE-F-91 || O 13 0 120
KFU-S-93 | 0 5 2 76

Table 4.43: The median number of unlabels required by ERR-RND when searching
using the low domain sizes.

Chapter 4 101 Variable Ordering Heuristics
variable ordering pairs

problem WSD \ WBD H WSD-WD \ WBD-WD
HEC-S-92 | 20059.1 | 20636 21166.9 | 20129.2
STA-F-83 || 60898.4 | 62333.7 62623.8 62578.2
KING-96 || 13580.4 | 13265.7 | 14446.4 13843
YOR-F-83 || 21086.9 | 20989.4 25764 21140
UTE-S-92 | 40255.3 | 39000.3 | 49528.8 41736.2
EAR-F-83 | 28753.1 | 27581.7 || 35700.9* | 28881.4*
TRE-S-92 || 23502.1 | 23562.9 27536* 23492*
LSE-F-91 | 21139.6 | 21072.7 | 29315.0% | 21794.3*
KFU-S-93 56502 55886.7 | 97812.4* | 86290.4*

Table 4.44: Mean solution costs when searching using ERR-RND on the high
domain sizes. Bold type shows the lower mean cost, to 5% significance, of each pair
as defined by the Z test. Values with a * show when re-labelling was required to
find viable solutions.

The two related static variable orderings are subsequently:

e WBD : the weighted backward degree ordered largest first. Corresponding to
WSD.

e WBD-WD : the weighted backward degree divided by the weighted degree
ordered smallest first. Corresponding to WSD-WD.

The initial comparisons are shown in Table 4.44. Only 5 of solution sets for the
WSD/WBD ordering pairs are significantly different making any analysis difficult.
On the whole WBD is better in this case as it does not require re-calculation of
the heuristic during search. However, WBD-WD clearly out-performs its dynamic
counterpart with only one exception where the solution sets are not significantly dif-
ferent. It is worth noting that for the larger problems, both WSD-WD and WBD-
WD require re-labelling for search to find solutions. In each of these cases WBD-
WD outperforms WSD-WD considerably suggesting that WSD-WD is not the
best implementation of its general strategy as a relaxed static ordering interpreta-
tion is superior. This general strategy does not compare well with WSD/WBD as
WBD-WD nearly always results in higher cost solutions.

As the domain size is lowered and the primary search aim of finding viable
solutions becomes more difficult the static orderings become more dominant (as
shown in Table 4.45).

Chapter 4 102 Variable Ordering Heuristics

variable ordering pairs

problem | WSD | WBD [WSD-WD | WBD-WD
HEC-S-92 || 41933.1 | 41059.9 43733.1 38379.1
STA-F-83 | 99230.2 | 102418 105519 102529
KING-96 | 32796.9 | 31348.2 | 34231.5 31998.4
YOR-F-83 | 43760.9 | 42193 45430.9 35467.8
UTE-S-92 | 81549.9 | 83711.6 95292 85789.8
EAR-F-83 || 50961.7 | 50180.8 || 55793.1 49669.6
TRE-S-92 || 41746.5 | 39977 50435 39922.3
LSE-F-91 || 35045.8 | 33884 43017.7 33598.2
KFU-S-93 | 84643.2 | 87800.7 108937 86290.4

Table 4.45: Mean solution costs when searching using ERR-RND and the low
domain sizes. Bold type shows the lower mean cost, to 5% significance, of each pair
as defined by the Z test.

variable ordering pairs
problem | WSD | WBD || WSD-WD | WBD-WD
HEC-S-92 46 61 55 63
STA-F-83 1 1 10 1
KING-96 3 1 2 1
YOR-F-83 91 31 98 16
UTE-S-92 6 7 23 10
EAR-F-83 39 25 7 30
TRE-S-92 9 4 105 4
LSE-F-91 13 5 120 6
KFU-S-93 5 5 76 5

Table 4.46: The median number of unlabels required by ERR-RND when searching
using the low domain sizes.

Chapter 4 103 Variable Ordering Heuristics

4.5.2.1 Summary

None of the standard dynamic variable ordering methods has been shown to be
superior to any of the others. Static relaxations of FF and BZ have been shown
to be competitive with respect to solution cost. The number of unlabels required
when searching using the standard dynamic methods are extremely low which is as
expected as this was the primary aim in their development.

Two dynamic variable ordering heuristics that consider constraint weights were
compared with related standard dynamic methods. WSD found lower cost solu-
tions at the expense of search requiring more unlabels. WSD-WD proved not to
be a very effective heuristic at all. These heuristics were also compared to static
relaxations where WBD proved to be competitive with WSD and WBD-WD un-
surprisingly superior to WSD-WD. Hence, the static heuristics are preferable in

this case because they are cheaper to use.

4.6 Conclusions

In this chapter I have developed a new analysis method to compare the results of
search using different static variable orderings (Section 4.2.1). By identifying the
critical constraints of an ordering, the features of the constraints that have con-
tributed the most to the quality of an ordering can be examined. I have used this
general scheme in two ways; to compare the solutions found using several unrelated
orderings in a general manner; and to directly compare the solutions found using
two related orderings. These analysis methods, which have been applied throughout
the chapter, have been used to show that the backward degree of the critical con-
straints is an important consideration when trying to reduce the error cost of the
solutions found by search. I have applied this new finding, derived from post-search
analysis, to develop a variable ordering that finds solutions with significantly lower
costs than other static variable ordering methods.

I have investigated the use of both maximum cliques and maximum weighted
cliques in search, with mixed results for the stochastic search techniques used (sec-
tion 4.2.2.1). Results have suggested that the actual clique used in such methods
determines the effect of the method and not merely the general use of maximum
cliques. I have extended such methods to consider a static ordering consisting of a
clique partition, developing a new greedy algorithm to generate such partitions, with

results showing that when search concentrates upon small sections of the problem

Chapter 4 104 Variable Ordering Heuristics

at a time, results are worse than if search tackles variables from across the whole
problem.

I have shown that by incorporating constraint weight information into static
variable orderings used in traditional Constraint Satisfaction Problems, search can
find solutions with a lower error cost(section 4.3). This is the first time a direct
comparison has been made between weighted and un-weighted variable orderings.
I have also analysed the incorporation of weights into commonly used dynamic
orderings with results showing that WSD can outperform un-weighted dynamic
variable orderings with respect to solution cost at the expense of a small increase in
the number of unlabels required during search (section 4.5.2).

[have compared the various dynamic variable ordering methods used with related
static variable orderings. Results have shown that when finding consistent solutions
is not difficult, such static orderings can compete with their dynamic counterparts
with respect to solution cost (section 4.5.1).

The key contribution of this chapter is the identification of backward degree as
a key factor in how well critical constraints are satisfied and the extension of this
knowledge to develop the BD and WBD variable orderings.

Chapter 5

Value Ordering Heuristics

5.1 Introduction

The use of value orderings can allow search to follow a path down the search tree that
is more likely to result in a low cost solution. However, there is no optimal method
with regard to the variety of problems and variable ordering methods. Various
features of the search that is performed, and the problem which it is applied to,
can affect the suitability of the value ordering heuristics available. The aim of
this section is to examine the performance of value ordering heuristics in different
situations and consider why in some cases one heuristic is better (in terms of finding
good solutions) than another.

The value ordering heuristics that are to be investigated fall into three cate-
gories described by their selection criteria of; the error produced by the current
partial solution (called error based selection); the error of the current partial solu-
tion plus the minimum potential error in the future variables, as calculated using
look-ahead (look-ahead based selection); and irrespective of current or potential
costs (blind selection). The first two categories provide an alternative use of the
data that is gathered for pruning by pure DFS, and DFS combined with forward
checking, respectively. The last category can be combined with any degree of look-
ahead. Different value ordering heuristics can also be broken down into dynamic
and static methods. The difference between the two is that it is possible to de-
termine the static value order before search as they do not change during search,
whereas, dynamic methods depend upon information generated during search. Of
the methods described above blind selection is static while look-ahead and error

based selection are both dynamic.

105

Chapter 5 106 Value Ordering Heuristics

5.2 Experiments

It is often desirable to compare results to a control value ordering. Such a value
ordering uses a random value selection method (called RND). The random value
selection heuristic is an example of a stochastic value ordering heuristic. Such
heuristics have some random element in their selection criteria which means that
different trials of the search will lead to different solutions. The investigation will
first assess the performance of non-stochastic methods against each other.

The non-stochastic value orderings that have been considered consist of meth-
ods which are categorised as blind, error based, and look-ahead based selection (as
defined before).

e The blind method is a lowest consistent, or available, value selection (or
LOW). This heuristic corresponds to value ordering as commonly used in
the Classical CSP field.

e The error based methods consist of selecting the value which generates the
lowest error and tie-breaks on; the lowest such value (or ERR-LOW); or the
highest such value (or ERR-HIGH). An example of search using ERR-LOW
is given in Table A.4 of Appendix A.

e There are two look-ahead based methods being considered, both of which
select the value with the lowest combined error and minimal potential future
error, yet each tie-break differently. As above, two variations tie-break on the
lowest (IC-LOW) and highest (IC-HIGH) such value. A third method has
been derived as a result of the way in which the iterative count (IC) values,
which are used to record minimum potential future error, are generated. In
order to save computation time, these values are updated in a lazy way and so
are only calculated, with respect to the future variables, until they are greater
than the minimum value already found within the domain of the variable in

question.

Chapter 5 107 Value Ordering Heuristics

value ordering

problem || LOW | ERR-LOW | RND
HEC-S-92 || 92386 23984 32654
KING-96 || 66962 15880 27633
YOR-F-83 || 60872 22512 33183
UTE-S-92 | 151777 41860 73545
EAR-F-83 || 80707 29419 46487

Table 5.1: Comparison of the lowest solution found using the LOW, RND and
ERR-LOW value orderings for 5 problems using the high domain size. Experiments
on other problem instances show similar results.

5.3 Results

5.3.1 “Blind” Value Ordering

Table 5.1 compares, for a static degree-based variable ordering, the initial solution
found by the lowest value selection heuristic (labelled LOW) with that found by
ERR-LOW. As the results show, the lowest value selection always finds an initial
solution which is worse than lowest error selection. This is the result of bad selections
(in terms of error incurred) throughout search. In assigning a value to a variable,

search encounters one of two situations:

1. If the lowest value has been selected by the neighbour of a variable (and is

thus inconsistent), then the next consistent value is selected.

2. If the lowest value has not been assigned to any past neighbour then it is

assigned to the current variable.

As situation 1 results in students being required to sit consecutive exams, a large
proportion of assignments made using lowest value selection to variables with one
or more past neighbours will incur some error.

The Table also shows information about the initial solutions found using a ran-
dom selection value ordering giving the minimum for a sample set of 100 runs. The
results show that the lowest value selection method is consistently worse than the
random selections. Like the lowest value ordering heuristic, random ordering does
not consider the error incurred when assigning a variable and so is always likely to
make costly assignments; however, it does not consistently make bad assignments in
the same way as lowest value selection has been shown to. Both are called “blind”

value ordering methods because neither looks at any search data when selecting a

Chapter 5 108 Value Ordering Heuristics

value. The results show that, for such problems, blind value ordering does not result
in competitive results compared to intelligent value ordering. This is as would be
expected. Using RIND as a control will show little as intelligent value ordering will

almost always outperform it.

5.3.2 Non-Stochastic Value Orderings
5.3.2.1 Error-based value ordering

The error based value orderings, ERR-LOW and later ERR-RND, base the selec-
tion of the value to be assigned to a variable upon the amount of error an assignment
will incur with the previously assigned variables. As shown above, this basic heuris-
tic improves upon blind value ordering. In some cases several variables may incur
the same amount of error, or even incur no error at all. In such a case ERR-LOW

selects the lowest value incurring the minimum error.

5.3.2.2 Incorporating Look-Ahead

The previous section has shown how, using information regarding the error that a
value assignment will incur, can improve the initial solution that is found by search.
By incorporating extra information, in this case produced by look-ahead, search
should be able to detect future error earlier and so find solutions of a lower cost.

Table 5.2 compares the initial solutions found by the two non-stochastic value
ordering heuristics on the 9 smallest problems for 3 different static variable orderings.
The highlighted values are those of lowest cost with reference to the problem and
the variable ordering used. Three of the experiments(marked *) produced no result.
This is a consequence of the nature of non-stochastic value ordering, whereby only
one search path is considered and if this path results in a sub-problem that is difficult
to solve, with respect to the hard constraints, then it is likely that thrashing will
occur. In these cases re-labelling has been used to find a solution.

Although the additional look-ahead information should lead to an improved value
ordering, and subsequent initial solution, the experiments show that this is not al-
ways the case. For the KING-96 problem, look-ahead based value ordering resulted
in an improvement for all of the variable orderings used. On the other hand, for
problems such as YOR-F-83 no improvement has occurred. Between these two
extremes lie problems where one variable ordering leads to an improvement while
another does not. The first two situations could be the result of problem-specific

features, while the latter must also consider the way in which variables have been

Chapter 5 109 Value Ordering Heuristics
| | | variable ordering |
| problem | wvalord. || VAR | BD | WBD |

HEC-S-92 | ERR-LOW || 19455 | 22897 | 19064
IC-LOW 20862 | 23411 | 21328
STA-F-83 | ERR-LOW | 61971 | 63734 | 62695
IC-LOW 61026 | 61446 | 62355
KING-96 | ERR-LOW || 13557 | 14354 | 12897
IC-LOW 12876 | 13280 | 12708
YOR-F-83 | ERR-LOW | 21067 | 22912 | 20252*
IC-LOW 23726 | 25042 | 24327
UTE-S-92 | ERR-LOW || 39522 | 45511 | 42488
IC-LOW 40847 | 43917 | 41977
EAR-F-83 | ERR-LOW | 27469* | 29671 | 26771
IC-LOW 31250 | 33002 | 29093
TRE-S-92 | ERR-LOW || 24602* | 24091 | 23097
IC-LOW 28133 | 28450 | 28123
LSE-F-91 | ERR-LOW || 22355 | 23410 | 21772
IC-LOW 27189 | 27851 | 26520
KFU-5-93 | ERR-LOW || 52014 | 67339 | 54179
IC-LOW 71292 | 75959 | 68466

Table 5.2: Comparison of ERR-LOW and IC-LOW searches. The bold values
highlight which value ordering (val. ord.) was superior for each problem/variable
ordering combination. Values marked with a * required the use re-labelling to find
a viable solution.

ordered. The experiments have been repeated using the lower domain size, in Table

5.3, with similarly inconclusive results.

Chapter 5 110 Value Ordering Heuristics
‘ ‘ H variable ordering ‘
‘ problem ‘ val.ord. H VAR ‘ BD ‘ WBD ‘

HEC-S-92 | ERR-LOW || 41473 | 41290 | 35664
IC-LOW 48272 | 40558 | 35933
STA-F-83 | ERR-LOW || 111534 | 104084 | 102341
IC-LOW | 102865 | 103555 | 102409
KING-96 | ERR-LOW || 33058 32648 | 31344
IC-LOW 32978 | 30632 | 31932
YOR-F-83 | ERR-LOW | 43330 | 42249 | 41629
IC-LOW 44671 45925 44668
UTE-S-92 | ERR-LOW || 83845 | 87370 | 78781
IC-LOW 90654 | 81474 | 84499
EAR-F-83 | ERR-LOW | 47862 | 47130 | 43946
IC-LOW 52646 54267 51137
TRE-S-92 | ERR-LOW || 43333 | 44728 | 40700
IC-LOW 45785 46512 45802
LSE-F-91 | ERR-LOW || 36992 | 36757 | 33863
IC-LOW 39064 42083 36839
KFU-S-93 | ERR-LOW || 98416 | 95054 | 88029
IC-LOW 90225 | 100521 | 92507

Table 5.3: Comparison of ERR-LOW and IC-LOW searches using the low domain

sizes.

Chapter 5 111 Value Ordering Heuristics

5.3.3 The Comparison of Value Orderings

By examining which constraints incurred what cost, the portions of the problem
which cause one method to be better than another can be ascertained. This may shed
some light on what factors contribute to one value ordering heuristic’s superiority
over another. The definition of critical constraints has been used in the previous
chapter to analyse why one variable ordering provides superior results to another.
In the case of comparing value orderings, the variable orderings used are the same.
However, the solutions found by two value orderings can still be compared with
respect to critical constraints that offer the most improvement over the alternate
value ordering.

In comparing ERR-LOW and IC-LOW, the circumstances under which the
look-ahead information used by IC-LOW will benefit search needs to be deter-
mined. Look-ahead in value ordering considers constraints which have one assigned
and one un-assigned variable in their scope because all constraint are binary. The
calculation performed by look-ahead determines the minimum error that will be in-
curred by assigning a value to the un-assigned variable of the constraint. This error
is guaranteed to be incurred with respect to the current partial solution. When
selecting a value for assignment to the current variable, look-ahead can be applied
for each possible assignment and such calculations used when choosing a value.

Suppose we have the set of problem variables V' = {vy, ..., v,}. We can define the
set of intermediate constraints at any point during search, as the set of constraints
(vi,vj) € Candv; € Pandv; € F (where P is the set of past variables and F is the
set of future or un-assigned variables). When the current variable, v,, is assigned
a value, the error incurred by all intermediate constraints will be considered
when choosing a value. The intermediate constraints of a constraint have the same
deepest variable as the given constraint and their remaining variables will be deeper
in the variable ordering than that of the given constraint. An illustrative example is
given in Figure 5.1 where constraints ¢y, c3 and ¢4 are the intermediate constraints
of constraint ¢;. When variable 1 is assigned a value, constraint ¢; is considered.
When assignments are made to variables 2, 3 and 4, constraint ¢; is considered,
among others. Finally, when a value is assigned to variable 5, look-ahead has already
calculated the costs of the possible assignments. Variables 2, 3, and 4 are called the
intermediate variables. Therefore, the constraints for which the use of look-ahead
will be advantageous will be those with a large number of intermediate variables,
known as a large intermediate degree. The definition of intermediate degree

extends the backward degree, or width [69], definition to try and focus on constraints

Chapter 5 112 Value Ordering Heuristics

Figure 5.1: An example of the intermediate constraints of constraint ¢; considering
the variables 1 to 5.

that will be hard to satisfy when using forward checking. The intermediate degree
of a variable is more akin to the bandwidth of a variable, defined by Tsang as the
maximum distance to a related variable within the variable ordering [69]. However,
only past variables within the current variables neighbourhood are considered.

Table 5.4 compares, using the direct comparison method defined in Chapter 4,
the mean intermediate constraint degree of the critical constraint set for each value
ordering. The critical constraint set is defined as the constraints which incurred the
least error for the solution set in comparison to the solution set for the opposite
value ordering. Table 5.4 shows results for the HEC-S-92 and KING-96 problems
using three different variable orderings; however, the results for other problems and
using the lower domain size showed the same behaviour. The mean number of
intermediate variables was compared and with the size of the critical constraint set
being increased from 10 until they differed at the 5% level of confidence. The mean
number of intermediate variables for the critical constraint set using look-ahead,
in the column IC-LOW, is always significantly lower than those for results found
without look-ahead, in the column ERR-LOW. This data suggests that IC-LOW
finds it more difficult to satisfy constraints with a high intermediate degree than
ERR-LOW.

Chapter 5 113 Value Ordering Heuristics

| problem | var.ord. | ERR-LOW | IC-LOW | size |

HEC-5-92 | VAR 8.08 11.65 30
BD 8.49 14.73 22

WBD 3.20 4.79 17

KING-96 VAR 13.59 20.96 11
BD 10.49 17.46 15

WBD 1.34 3.16 13

Table 5.4: Comparison of the critical constraints of each value ordering with respect
to the other for the HEC-S-92 and KING-96 problems using various variable
orderings (var.ord.). The mean intermediate degree of such constraints is shown
with the size of critical constraint sets required to show significance (in the size
column).

5.3.3.1 The cost of look-ahead

Tables 5.5 and 5.6 compare the median number of consistency checks needed to find
a solution using the high and low domain sizes respectively. The results show that
IC-LOW requires at least 5 times as many checks as ERR-LOW. This increase in
cost is due to the fact that a large proportion of the checks performed by search are
solely used to select a value. In order for such an increase in cost to be justifiable,

confidence that the search will result in superior results is required.

Chapter 5 114 Value Ordering Heuristics
| | | variable ordering |
| problem | wvalord. [VAR [BD | WBD |

HEC-5-92 | ERR-LOW || 392 384 384
IC-LOW || 2249 | 2069 | 1885
STA-F-83 | ERR-LOW || 306 306 306
IC-LOW 1698 | 1471 | 1425
KING-96 | ERR-LOW || 95 92 92
IC-LOW 463 439 405
YOR-F-83 | ERR-LOW | 1750 | 1722 | 943*
IC-LOW || 10065 | 9728 | 10439
UTE-S-92 | ERR-LOW || 257 248 248
IC-LOW 1052 | 1209 | 1095
EAR-F-83 | ERR-LOW | 1100* | 1811 | 1811
IC-LOW || 9558 | 10962 | 11250
TRE-S-92 | ERR-LOW || 1365* | 2243 | 2243
IC-LOW || 13484 | 12360 | 12588
LSE-F-91 | ERR-LOW || 1223 | 1223 | 1223
IC-LOW || 4215 | 5876 | 5372
KFU-5-93 | ERR-LOW || 1732 | 1732 | 1732
IC-LOW || 39679 | 16850 | 10365

Table 5.5: Comparison of the median number of consistency checks (x1000) required
to find a solution using the ERR-LOW and IC-LOW value orderings. The value
with a * required re-labelling to find a solution.

Chapter 5

115

Value Ordering Heuristics

Table 5.6: As before the median number of consistency checks required by ERR-

H variable ordering

‘ problem ‘ val.ord. H VAR ‘ BD ‘ WBD ‘
HEC-S-92 | ERR-LOW || 244 171 | 1187
IC-LOW || 1762 | 1238 | 1156
STA-F-83 | ERR-LOW | 120 116 117
IC-LOW 935 | 861 | 843
KING-96 | ERR-LOW | 44 33 34
IC-LOW 220 | 199 | 196
YOR-F-83 | ERR-LOW | 2153 | 744 | 992
IC-LOW || 6834 | 5625 | 5451
UTE-S-92 | ERR-LOW || 122 | 108 | 101
IC-LOW 589 | 608 | 601
EAR-F-83 | ERR-LOW || 1026 | 751 | 1102
IC-LOW || 7039 | 6509 | 7066
TRE-S-92 | ERR-LOW | 1061 | 911 | 1012
IC-LOW || 7905 | 8115 | 6298
LSE-F-91 | ERR-LOW || 617 | 516 | 538
IC-LOW || 3818 | 3844 | 3391
KFU-5-93 | ERR-LOW | 1913 | 749 | 776
IC-LOW || 7893 | 6864 | 6030

LOW and IC-LOW using the low domain sizes.

Chapter 5 116 Value Ordering Heuristics

5.3.3.2 Summary

In summary, value orderings based upon some measure of the potential error incurred
by an assignment lead to solutions of a lower cost. How such a measure is computed
can also affect the solution found. The use of look-ahead can improve a solution,
but empirical results show that the advantage is not apparent in all cases. However,
the comparison is not conclusive. Each result is from a single solution, due to the
search being non-stochastic, and there is the chance that the path to this solution
may have encountered a problem feature that causes an exceptionally large amount
of error to be incurred.

The cost of using look-ahead is high and, in this case, we cannot be confident

that it will produce superior results so its use is not justified.

Chapter 5 117 Value Ordering Heuristics

5.3.4 Stochastic Value Orderings

Of the stochastic value ordering heuristics used in these experiments, one is error
based and the other is look-ahead based. The error based method (ERR-RND)
orders values in a similar way to ERR-LOW, except that ties are broken randomly
rather than on lowest value. The look-ahead based method (IC-RIND) has a similar
relationship with IC-LOW. Stochastic value orderings should help to establish, for
a given problem and variable ordering, whether the use of look-ahead information
improves the solutions found. One of the advantages of stochastic search methods
is that they allow an ensemble of different solutions to be found. Then the best
solution found, whether defined on solution cost or some user-defined preference, can
be selected for use. The ensembles of solutions found in the different experiments
will be compared on the mean solution cost as heuristics are best compared using a

sample rather than on individual runs.

5.3.4.1 Stochastic Search with “look ahead”

The same experiments were repeated using the equivalent stochastic value orderings.
Table 5.7 compares the mean solution costs of the two value ordering heuristics for
the three variable orderings using the high domain size. The value ordering which
is superior on average to a 5% level of confidence is highlighted in bold type. A
comparison with the same results using the non-stochastic variants, in Table 5.2,
shows that the better heuristic is different for only 3 instances. Table 5.8 compares
the same set of results using the low domain size. Again, the results are different
from the equivalent non-stochastic value ordering in only one case. An analysis
of the number of intermediate variables for the critical constraint set of each value
ordering pair was performed. The results were similar to those for the non-stochastic
value ordering pairs and so confirmed the analysis. The median search costs required
to find a solution for the stochastic value ordering are given. This resulted in less
variation in the search cost for a value ordering from one variable ordering to another,
when compared to non-stochastic value ordering. However, the same pattern with
respect to the cost of look-ahead was observed, with IC-RIND requiring at least
5 times more consistency checks than ERR-RND. The same assertion from this
analysis, that confidence in an improvement due to the use of look-ahead will be

required before it can be used, applies.

Chapter 5

118

Value Ordering Heuristics

variable ordering

problem

val.ord.

VAR

[BD

| WBD

HEC-5-92

ERR-RND

21756.1

23226.3

20636

IC-RND

22676.7

23588.2

22318

STA-F-83

ERR-RND

63856.1

63467.3

62333.7

IC-RND

63423.2

63218.9

63345.6

KING-96

ERR-RND

14531.9

14656.7

13265.7

IC-RND

13634.1

13412.5

13291.3

YOR-F-83

ERR-RND

21876.3

22307.6

20989.4

IC-RND

23963.6

25355.6

24182.8

UTE-S-92

ERR-RND

40093.3

44213.8

39000.3

IC-RND

39732.3

43849.5

41066.1

EAR-F-83

ERR-RND

29038.1

29427.3

27581.7

IC-RND

31153.2

33383.7

30941.8

TRE-S-92

ERR-RND

24901.6

25126.7

23562.9

IC-RND

28929.4

28257.9

28401.7

LSE-F-91

ERR-RND

22632.9

23000.3

21072.7

IC-RND

25116.8

26118.1

25406.6

KFU-S-93

ERR-RND

58818.7

63774.1

55886.7

IC-RND

67947.1

69989.2

68410.3

Table 5.7: Comparison of the mean solution cost of ERR-RND and IC-RND
searches using the high domain size. Bold values show which value ordering
(val.ord.) finds solutions of significantly lower cost .

Chapter 5

119

Value Ordering Heuristics

Table 5.8: Comparison of mean solution cost of the ERR-RND and IC-RND

variable orderings |

| problem | valord. | VAR | BD | WBD |
HEC-S-92 | ERR-RND | 39123.5 [42234.4 [38148.2
ICCRND | 46896 | 41260.6 | 42749.9
STA-F-83 | ERR-RND | 103798 | 110166 | 102160
IC-RND || 104735 | 106282 | 104753
KING-96 | ERR-RND || 32573 | 32794.4 | 30908.2
IC-RND || 32451.8 | 30644.1 | 31937
YOR-F-83 | ERR-RND || 42483.1 | 42485.1 | 41065.5
IC-RND || 48350.4 | 45765.7 | 46392.6
UTE-S-92 | ERR-RND | 81395.7 | 83402.5 | 81156.1
IC-RND || 90266.7 | 83493.2 | 89709.3
EAR-F-83 | ERR-RND | 49394.6 | 50000 | 47090.3
IC-RND | 58299.3 | 53466.4 | 54584.8
TRE-S-92 | ERR-RND | 42291.3 [43020.3 | 39616.8
IC-RND || 45960.5 | 45839.4 | 44724.6
LSE-F-91 | ERR-RND | 35254.8 | 36744.4 | 32695.3
IC-RND || 38412.4 | 39000.1 | 36980.8
KFU-5-93 | ERR-RND | 88439.2 | 93855.4 | 85055.1
IC-RND | 94582 | 97692.1 | 102013

value orderings (val.ord.) for the low domain sizes.

Chapter 5 120 Value Ordering Heuristics

o
(2
G
(&)
(&

Figure 5.2: An example of shared past neighbour variables.

5.3.4.2 Exploiting Look-ahead in the Variable Ordering

The situation where look-ahead can improve upon purely error-based value selec-
tion has already been discussed. However, it is also important to consider when
the use of look-ahead may result in a value assignment which ultimately results in
a greater error. A shared past neighbour variable of a constraint is a variable
which is connected to, and precedes in the variable order, all of the constraint vari-
ables. Figure 5.2 depicts an example of shared past neighbours. In this example the
constraint (3,5) has two shared past neighbours(variables 1 and 2). Such variables
will pose a problem when value ordering during search using the defined look-ahead
method because assignments made to these variables (1 and 2 in this case) will
be optimised considering the possible error of each constraint variable assignment;
however, the error incurred by the constraint (3,5) will not be considered until one
of the constraint variables is assigned a value. This optimisation of the constraints
(1,3), (1,5), (2,3) and (2,5) before constraint (3,5) may result in the non-optimal
assignment to the constraint variables. Therefore, the number of shared past neigh-
bour variables of a constraint should indicate whether the look-ahead based value
ordering will be of advantage with respect to a constraint. The number of such
variables is called the shared backward degree.

Table 5.9 compares, using the direct comparison method, the shared backward
degree of the critical constraint sets of each value ordering pair. For the majority

of pairs for the smaller problems the shared backward degree is significantly lower

Chapter 5 121 Value Ordering Heuristics

for the IC-RIND value ordering. For the larger problems the results are mixed.
However, as problem size increases the advantage of look-ahead value ordering di-

minishes.

‘ problem ‘ var.ord. ‘ ERR-RND ‘ IC-RND ‘ size ‘

HEC-S-92 | VAR 3 1.5 11
BD 3 _ _
WBD 5.36 0.5 11
STA-F-83 | VAR 3.02 0.33 | 12
BD 5.73 3 22
WBD 4.94 1.57 | 16
KING-96 | VAR _ - -
BD 2.09 1.31 | 22
WBD 3 _ _
YOR-F-83 | VAR 1.59 2.75 | 17
BD _ _ _
WBD 41.38 2.25 | 13
UTE-S92 | VAR 1 2 12
BD 2.85 1.5 13
WBD ; ; 3
EAR-F-83 | VAR 2.87 167 | 15
BD 7.33 13 12
WBD 3.5 6 12
TRE-S-92 | VAR 1.67 333 | 12
BD 10 6.5 11
WBD 1.53 5 15
LSE-F91 | VAR 1.31 2.20 | 16
BD 3.09 1.5 11
WBD 3.09 8.5 11

Table 5.9: Comparison of the critical constraints of each value ordering with respect
to the other. The mean shared backward degree of such constraints is shown. The
bold values are significantly lower and size gives the number of critical constraints
required to establish this significance. “-” has been used to represent when the results
of search using the value ordering pairs were not significantly different.

A variable ordering, called ELA, has been developed to try and exploit look-
ahead. It orders variables in a manner such that the shared backward degree of the
heaviest constraints (i.e. the pairs of exams which are the most popular combina-
tions) will be minimised while ignoring the number of intermediate variables. The

ordering is constructed by considering the constraints in the order heaviest first.

Chapter 5 122 Value Ordering Heuristics

| | ELA | WBD |
problem | ERR-RND | IC-RND | ERR-RND
HEC-S-92 | 20636 | 23274.2 | 22487.2
STA-F-83 | 62333.7 | 60949.9 | 61139.8
KING-96 | 13265.7 | 15147.5 | 13752.8
YOR-F-83 | 20989.4 | 223732 | 23745.4
UTE-S-92 | 39000.3 | 43544.5 | 41786.2
EAR-F-83 | 27581.7 | 30510.5 | 31388.1
TRE-S-92 | 23562.9 | 26886 27650
LSE-F-91 | 21072.7 | 25831.1 | 25623.3
KFU-S-93 | 60934.8 | 68644.9 | 55886.7

Table 5.10: Comparison, using the high domain size, of the mean solution costs found
using ELA variable ordering with ERR-RND and IC-RND value ordering. The
mean solution cost of ERR-RND using WBD is also given to compare the overall
quality of solutions found using ELA.

Then, provided none of the constraint variables have already been placed in the
ordering, the constraint variable with the heaviest variable weight is placed next in
the order. The shared backward degree of the heaviest constraint is reduced be-
cause the heuristic attempts to place at least one of the constraint variables of these
constraints near the start of the ordering. By ignoring the remaining variable of a
constraint once one variable in its scope has been placed in the order, the number
of intermediate variable will increase until another constraint places them in the
ordering. Other variable orderings will not attempt to do this.

Table 5.10 compares the performance of the two stochastic value orderings using
this new variable ordering. In the majority of cases ERR-RIND outperforms I1C-
RND suggesting two possibilities about the reasoning behind ELA. Either it is
false and low shared backward degrees combined with no limitation on the number
of intermediate variables do not result in an increased performance for look-ahead;
or these constraint features also favour pure error based value ordering. The fact
that ERR-RND using ELA outperforms ERR-RND using WBD also, suggests
that the latter is the case.

The same comparison was made using the low domain sizes. Again ERR-RND
outperforms IC-RND using the ELA variable ordering; however, ERR-RND us-
ing ELA is not superior to WBD. WBD considers the backward degree of con-
straints, indirectly. On the other hand, ELA ignores the remaining variable in a

constraint once one constraint variable has been placed in the ordering. Although

Chapter 5 123 Value Ordering Heuristics

| | ELA | WBD |
problem | ERR-RND | IC-RND | RR-RND
HEC-S-92 | 42994.9 | 51311.8 | 38148.2
STA-F-83 | 99331.2 | 106188 | 102160
KING-96 | 343069 | 33621.1 | 30908.2
YOR-F-83 | 42826.5 | 49289 | 41065.5
UTE-S-92 | 86899.7 | 103712 | 81156.1
EAR-F-83 | 51635.8 | 53517.9 | 47090.3
TRE-S-92 | 44901 | 51499.3 | 39616.8
LSE-F-91 | 40417 | 48717.4 | 32695.3
KFU-S-93 | 93232 123961 | 85055.1

Table 5.11: Comparison, using the low domain size, of the mean solution costs found
using ELA variable ordering with ERR-RND and IC-RND value ordering. The
mean solution cost of ERR-RND using WBD is also given to compare the overall
quality of solutions found using ELA.

such an action can reduce the shared backward degree of critical constraints it in no

way guarantees a reduction in overall backward degree.

5.3.4.3 Summary

In summary, the use of stochasticity by way of random tie breaks provides several
advantages. First, when comparing search types stochasticity allows samples of
solutions to be compared. This allows confidence in the conclusions derived from
empirical analysis. Second, the use of stochasticity can lead to a lower cost solution
than non-stochastic methods provided a large enough sample is used. Third, in the
real world, solution quality is not so clear cut. Therefore, a set of possible solutions
is often provided to the end user for him /her to chose from at his/her discretion. The
ensembles of solutions found by each method backs up, in the main, the deductions
made using the empirical results for non-stochastic search regarding the superiority
of either error based or look-ahead based value ordering. The situations under
which constraints are satisfied better and worse when using look-ahead have been
examined. This has led to the definition of a variable ordering which attempts to

exploit look-ahead; however, results have not been clear.

Chapter 5 124 Value Ordering Heuristics

5.3.5 Tie-breaking During Search

In this section I intend to compare stochastic and non-stochastic value ordering
search results and examine when non-stochastic value ordering makes a “good” move
and when some element of stochasticity is a better option.

There exists an overall solution space which contains every feasible solution (i.e.
satisfying the hard constraints) each with an associated cost. This space would
be generated by a blind random value ordering method which attempts to pick
solutions at random. Error and look-ahead based value ordering and their tie-
breaking methods will explore a smaller solution space. The aim of such methods is
to concentrate search on areas of the solution space that contain the best solutions.
The size of the solution space depends on the tie-break method chosen. Random
tie-breaking leads to a solution space whose size is dependent upon the number of
variable assignments that require a tie-break and the number of values involved in
the tie-breaks. Provided that more than a few variables are involved in tie-breaks,
the size of the reduced solution space is likely to be too large to search in its entirety.
Of more concern is traversing this space to one of its lower cost members or to reduce

this space yet again, removing higher cost members.

| | ERR-RND | ERR-LOW |

problem mean | std.dev. | min. cost prob.
HEC-S-92 | 20636 | 1052.74 | 18480 || 19064 | 0.0681
STA-F-83 | 62333.7 | 1226.06 | 59370 || 62695 | 0.6141
KING-96 | 13265.7 | 371.4 | 12452 || 12897 | 0.1611
YOR-F-83 | 20989.4 | 454.571 | 19744 || 20252* | 0.0526
UTE-S-92 | 39000.3 | 2106.3 | 35418 || 42488 | 0.9515
EAR-F-83 | 27581.7 | 1052.63 | 25073 || 26771 | 0.2206
TRE-S-92 | 23562.9 | 496.729 | 22406 || 23097 | 0.1736
LSE-F-91 | 21072.7 | 626.991 | 19284 || 21772 | 0.8686
KFU-S-93 | 55886.7 | 2667.13 | 51872 || 54179 | 0.2611

Table 5.12: Comparison of the mean, standard deviation and minimum solution
costs found by stochastic search (ERR-RND). The cost of the solution found by
non-stochastic search (ERR-LOW). The probability of a solution of smaller cost
occurring in the stochastic solution distribution is also given. These are the results
of search using WBD and the high domain size. The value with a * required
re-labelling to find a solution.

Tie-breaking on the lowest value leads to one solution out of the reduced solution

space. If tie-breaking on the lowest value is consistently a “good” move during search

Chapter 5 125 Value Ordering Heuristics

it may provide a quick and easy method of finding a solution to the problem. The
results presented in previous sections have shown that lowest value tie-breaking
usually provides a solution with a cost below, and if not below not far above, the
mean cost of a random sample of the search space. A direct comparison is given
in Table 5.12. The reason for this consistency may lie in the assignments made to
variables with no past neighbours in the variable ordering. If values in the middle
of the current domain are chosen, future variable domains will incur potential errors
either side of this value, with reference to the pws(proximity weight set, see Chapter
3). Whereas lowest value tie-breaking will mean that half of this potential error is

lost.

5.3.6 Hybrid Heuristics

Hybrid value ordering heuristics combine several value ordering strategies, depending
upon the depth in search. As mentioned in the previous section, when assigning a
value to a variable with no past neighbour, tie-breaking on the lowest value will
result in less potential error in future variables. To this end a hybrid heuristic
(called ERR-HYD) has been developed that tie-breaks on lowest value when there
is no past neighbour, and otherwise tie-breaks randomly.

Table 5.13 compares the mean solution cost of the solutions found by ERR-
RND and ERR-HYD, for three variable orderings and using the high domain
size. The results show that the use of hybrid value ordering can be useful although
this is not always the case. In fact, in 8 cases ERR-HYD is the superior value
ordering and in 8 cases ERR-RND is superior. As the hybrid value ordering uses
a lowest value tie-break when a variable has no past neighbours, the number of such
variables in the first half of the variable ordering was compared. Only the first half of
the variable ordering was considered because for some variable orderings a number
of such variables occurred near the end of the ordering. Such variables will have
little or no impact upon the effectiveness of hybrid value ordering. The majority of
variable orderings only had 1 “no past neighbour” variable which consisted of the first
variable or the ordering. However, STA-F-83 had more than 1 for all three variable
orderings and the VAR ordering had more than 1 for the KING-96, YOR-F-83,
EAR-F-83 and KFU-S-93 problems. It is worth noting that for none of these
instances does ERR-RIND outperform ERR-HYD.

Table 5.14 shows the results of the same experiments repeated using the low

domain size. These results are similar to those in Table 5.13 such that for approx-

Chapter 5 126 Value Ordering Heuristics
variable ordering
problem val.ord. VAR BD ‘ WBD
HEC-S-92 | ERR-HYD || 21231.6 | 23110.9 | 20325.6
ERR-RND || 21756.1 | 23226.3 20636
STA-F-83 | ERR-HYD || 61897.9 | 62901.7 | 61669.6
ERR-RND || 63856.1 | 63467.3 | 62333.7
KING-96 | ERR-HYD || 14251.3 | 15054.2 13221
ERR-RND || 14531.9 | 14656.7 | 13265.7
YOR-F-83 | ERR-HYD || 21544.1 22267 | 20764.8
ERR-RND || 21876.3 | 22307.6 | 20989.4
UTE-S-92 | ERR-HYD | 40219.4 | 46613.1 | 40214.7
ERR-RND | 40093.3 | 44213.8 | 39000.3
EAR-F-83 | ERR-HYD || 29000.4 | 29696.3 | 26719.8
ERR-RND || 29038.1 | 29427.3 | 27581.7
TRE-S-92 | ERR-HYD || 24912.2 | 25055.7 | 23496.7
ERR-RND || 24901.6 | 25126.7 | 23562.9
LSE-F-91 | ERR-HYD || 22868.8 | 23561.2 | 21283.4
ERR-RND || 22632.9 | 23000.3 | 21072.7
KFU-S-93 | ERR-HYD || 58903.5 | 65346.1 57183
ERR-RND || 58818.7 | 63774.1 | 55886.7

Table 5.13: The mean solution costs found using hybrid value ordering (ERR-
HYD) versus pure stochastic (ERR-RND). These results are for the high domain

size.

Chapter 5 127 Value Ordering Heuristics

variable ordering

problem val.ord. VAR ‘ BD ‘ WBD
HEC-S-92 | ERR-HYD || 39733.6 | 41016.2 | 36953
ERR-RND || 39123.5 | 42234.4 | 38148.2
STA-F-83 | ERR-HYD || 103240 | 105725 | 101371
ERR-RND || 103798 110166 102160
KING-96 | ERR-HYD | 32370.6 | 32873.6 | 31000.9
ERR-RND 32573 | 32794.4 | 30908.2
YOR-F-83 | ERR-HYD || 42003.9 | 42900.5 | 41208.4
ERR-RND || 42483.1 | 42485.1 | 41065.5
UTE-S-92 | ERR-HYD || 81267.9 | 87646.3 | 81143.6
ERR-RND || 81395.7 | 83402.5 | 81156.1
EAR-F-83 | ERR-HYD || 48063.2 | 50310.7 | 45842.7
ERR-RND || 49394.6 50000 47090.3
TRE-S-92 | ERR-HYD || 42443.3 | 43101.9 | 39503.3
ERR-RND || 42291.3 | 43020.3 | 39616.8
LSE-F-91 | ERR-HYD || 35683.9 | 37035.8 | 33178.4
ERR-RND || 35254.8 | 36744.4 | 32695.3
KFU-S-93 | ERR-HYD || 89644.9 | 95900.9 84820
ERR-RND || 88439.2 | 93855.4 | 85055.1

Table 5.14: The mean solution costs found using hybrid value ordering (ERR-
HYD) versus pure stochastic (ERR-RND) using low domain sizes.

imately half of the significantly different instance pairs ERR-HYD is superior to
ERR-RND, and vice versa for the other half (the ratio is in fact 9 to 7 which
favours ERR-HYD slightly). Of the 7 instance pairs whose variable orders have
more than one “no past neighbour” variable only KFU-S-93 using VAR contra-
dicts the pattern shown when using the high domain size. This suggests that the
use of hybrid value ordering is of more use when several such variables occur in the
variable ordering.

The lowest solution cost found by ERR-HYD was then compared to that found
by ERR-RND and published results in [17] and [32]. This comparison can be found
in Table 5.15. Like ERR-RND, ERR-HYD outperforms TABU in all but one
case. However, ERR-HYD results in the lowest solution cost in only one case
(CAR-S-91) as LBT provides a better solution for the remaining cases where
ERR-HYD outperforms ERR-RND. In each of the cases where ERR-RND is
superior to LBT, ERR-HYD is superior also. This shows that ERR-HYD is
equally competitive with LBT. A full comparison of the results presented in this

Chapter 5 128 Value Ordering Heuristics

| problem | ERR-RND [ERR-HYD || LBT [17] | TABU [32] |

HEC-S5-92 33549 32775 30488.4 35005.2
STA-F-83 97095 97258 98676.5 98248.8
YOR-F-83 39249 38909 39239.7 38581
UTE-S-92 TTTAT 77749 70950 79750
EAR-F-83 43120 41346 40950 51412.5
TRE-S-92 37317 38007 41875.2 43620
LSE-F-91 30274 31085 28623 42253
KFU-S-92 78724 79805 74886 96282
RYE-S-93 111455 108526 83825.9 -
CAR-F-92 79865 80269 114197.8 || 95778.8
UTA-S-92 72783 73585 74431 89317.2
CAR-S-91 89415 86894 120174.6 || 104941.2
PUR-S-93 139210 139236 117124.8 -

Table 5.15: Comparison of the best results of this investigation with the results
from [17] and [32].

thesis can be found in Appendix B.

5.3.6.1 Summary

The relationship between the solutions found when using related stochastic and
non-stochastic value ordering heuristics has been examined. This has lead to the
development of a hybrid value ordering heuristic(ERR-HYD) which combines the
best elements of each method. Results show that such a heuristic competes with a
pure stochastic method(ERR-RIND) in general and surpasses ERR-RND when
the variable ordering used has more than one variable with no past neighbours. A
comparison of results with published results shows that ERR-HYD is competitive

with the current best search method.

Chapter 5 129 Value Ordering Heuristics

5.4 Conclusions

By applying value ordering, search can be guided toward solutions with a low cost.
Different methods have been tested, notably both stochastic and non-stochastic,
error-based and look-ahead based. Empirical research has shown that error-based
value selection improves upon blind selection and that in some cases the use of look-
ahead information can further the improvement. Some analysis of why look-ahead
does not always enhance search has been performed. Such analysis is vital as it can
reduce the workload when solving both this problem and other related real-world
problems. The development of a variable ordering that exploits the use of look-ahead
has proved inconclusive, although this is a good idea that should be given further
consideration. A novell hybrid heuristic has been developed that aims to improve
upon the solutions found by stochastic value orderings. Results have shown that
such a heuristic is at least competitive with methods in the literature, depending
upon the nature of the variable ordering used.

The key contribution of this chapter is the hybrid value ordering heuristic method

which has been used to incorporate problem knowledge into solution methods.

Chapter 6

Hybrid Search

The work in Chapter 4 has shown that solution cost is closely related to the cost
of satisfying the critical constraints. A complete search of the solution space would
reduce the error incurred by the critical constraints and subsequently the overall
solution cost. However, it has already been pointed out in Chapter 2, Section 2.3.3,
that a complete search of a real-world problem instance will, in practice, never finish.
In order to use the power of complete search to reduce the critical constraint error
cost, yet avoid the drawbacks of a complete search of the whole problem instance, I
suggest a hybrid search method. Hybrid search breaks the search for solutions down

into two parts as follows:

e The first part consists of a complete search for the optimal solution to the

critical constraints.

e The second part then extends the partial solution found to apply to the whole

problem using a stochastic sampling technique.

It should be noted that the optimal solution to a problem does not necessarily
contain the optimal solution to the critical constraints; however, as the critical
constraints have been shown to have a major effect on overall solution quality, an
optimal assignment to the critical constraints will lead to an improved solution to the
problem instance in question. The performance of such a search will be compared to
a pure stochastic sampling method with the question being: Will finding significantly
better solutions to the critical sub-problem, i.e. the sub-problem consisting of
the critical constraints, lead to better solutions to the overall problem?

The idea of combining search algorithms was initially suggested by Borrett, et

al |7]. However, their work consisted of swapping between traditional tree searching

130

Chapter 6 131 Hybrid Search

algorithms during search. The hybrid search method suggested in this thesis is more
akin to the search procedure suggested by Coudert [20] where the maximum clique
of a graph colouring problem is found before a sequential colouring is performed,
first to the nodes of this clique then to the remaining nodes. However, the two
parts of finding a solution in [20] are different types of search; one is a search for
a sub-problem with a specific structure; the other a graph colouring assignment

problem.

6.1 Related Search Methods

Intelligent backtracking methods have been used in the domain of classical CSPs
to jump back up the search tree to areas of difficulty (dynamic backtracking [36],
backjumping [31], conflict-directed backjumping [61], etc...). Their main drawback,
in the context of what incomplete backtracking tries to achieve, is that because
they are complete the search can only ever expect to visit a small proportion of the
search tree in large problems. Real world problems are often over-constrained, i.e.
all constraints cannot be satisfied. The introduction of soft constraints and the fact
that problems are over-constrained mean that a large proportion of variables will be
in the scope of constraints that have not been satisfied. Application of these methods
to soft constraints results in intelligent backtracking methods failing to jump up the
search tree by any significant amount as an assignment responsible for some error
will be near by in the variable ordering. Even application to hard constraints has
proved to be difficult because the definition of which variable is responsible for an
inconsistency is hard to establish.

The motivation behind “Squeaky Wheel” optimisation [42] is that the difficult
parts of the problem can be identified. The variables of the problem are re-ordered
so that those variables that have a large negative effect upon the solution quality are
moved up the variable order. The drawback of this method with respect to exam
timetabling is the distribution of edge weights. Such problems only contain a small
number of heavily weighted constraints, and increasingly more lighter constraints, it
is the heavily weighted constraints that will be critical to solution quality. Work in
Chapter 4 has identified these critical constraints and generalised their definition to
one that can be applied before search. This is the definition of critical constraint
used from now on, i.e. critical constraints are defined without any search infor-
mation. By reducing their backward degree, i.e. by moving the critical constraint

variables, or critical variables, up the variable order, lower cost solutions can be

Chapter 6 132 Hybrid Search

found. However, if the critical constraints can be tackled by merely applying this
knowledge to the heaviest constraints, then continual definition of a current critical
constraint set and re-ordering will require a lot of work for small gains.

Limited Discrepancy Search [38] was introduced in Chapter 2. The principle used
is that inconsistencies are usually due to a small number of “bad” assignments near
the start of search. This is a useful principle in designing variable ordering heuristics
and suggests that they should attempt to place critical variables near the start of
the variable order. Application of this method to WCSPs could focus on reassigning
the variables in the scope of the critical constraints; however, no consideration of
the quality of satisfaction of the critical constraints is used, which could lead to
time being wasted on extending solutions where the critical constraints are satisfied
poorly.

Interleaved Depth-First Search |57| searches the solution space evenly, such that
paths from across the whole search tree are considered during search. This “even-
ness” property is useful when critical variables are near the start of the variable
order as a whole variety of solutions to the critical constraints will be considered.
As opposed to re-assigning the variables at the bottom of the variable ordering like
DFS, IDFS re-assigns the first variable, performing a depth first traversal to find
a solution, then re-assigns the second variable once all possible assignments to the
first variable have been considered. The drawback of this method is that it requires
exponential space which is an impossible requirement in the real-world. A usable
limited form of IDFS is presented in [57]; however, it still requires partial search
trees to be stored, although the storage space required is linear to search depth,
and the search does not search the solution space as evenly as IDFS. Limited IDFS
trades some of the even-ness of search for efficiency; however, it is concerned with
searching the whole solution space which is not feasible when trying to optimise
solutions for real world problems.

Depth-bounded Discrepancy Search [76] combines both IDFS and LDS. The use
of DDS would encounter the same problems as LDS. Time could be wasted extending

partial solutions to the critical constraints which are not very good.

6.2 Hybrid Search Implementation

In the context of hybrid search the critical constraints are defined as those that are
heaviest, i.e. have the largest weight. Such a definition allows the critical constraints

to be defined before search. The size of the set of critical constraints must not be too

Chapter 6 133 Hybrid Search

| problem || Constraints | Variables |

HEC-5-92 9 3
STA-F-83 20 12
KING-96 23 23
YOR-F-83 17 14
UTE-S-92 19 12
EAR-F-83 11 10
TRE-S5-92 15 13
LSE-F-91 11 13
KFU-S-93 10 3
RYE-S-93 22 11
CAR-F-92 19 15
UTA-S5-92 7 6
CAR-S-91 3 6
PUR-S-93 6 4

Table 6.1: The number of constraints with a weight above 50% of the maximum
weight and the number of variables involved in these constraints.

large, because such a definition will not allow the complete search phase of hybrid-
search to find or improve partial solutions to the problem, or too small, as there will
be little gain from optimising only a small number of critical constraints. The size
has been defined in terms of 10 variables for several reasons. A larger size will result
in poorer results from the complete search and, as Table 6.1 shows, a set of this
size will, in most cases, contain the majority of the variables related to the heaviest
constraints. The number of variables required to cover the critical constraints is
specific to the distribution of constraint weights in the problem instance.

Two hybrid search procedures have been implemented. The first, referred to as
HYD-BIG, performs a complete search method on the critical sub-problem and
takes a stochastic sample of 100 solutions derived from the best solution found by
the complete search.

The second method, HYD-TEN, records the last 10 solutions, the partial
solutions, found by a complete search of the critical sub-problem (the best solution
found will improve as complete search progresses) and samples 10 full solutions, the
sample solutions, from each of these partial solutions stochastically. The number
of partial solutions extended has been chosen as 10 because if this number is any
larger the number of sample solutions from each partial solution will need to be
reduced accordingly to balance the total search effort. The 10 sample solutions

which are extended from each partial solution, in practice, provide enough variety

Chapter 6 134 Hybrid Search

to search the various tie-breaks encountered during value ordering later in search.
Most tie-breaks occur for the first few variable assignments, which are tackled by
the complete search; therefore, only a small number of runs are required to search
the lower tie-breaks sufficiently. Increasing the number of solutions extended from
each partial solution, and subsequently decreasing the number of partial solutions
extended, will, due to the aforementioned small number of tie-breaks deeper in the
tree, result in little improvement upon the best sample solution for each partial
solution.

A search limit has been set on the complete search, because even for a sub-
problem of just 10 variables, complete search often requires a large amount of time.
It was decided that a suitable limit would be the number of consistency checks
required when taking 100 stochastic samples of the whole problem instance as this
is the search method with which the hybrid search results are compared.

HYD-BIG captures the original motivation of hybrid search which is to exhaus-
tively search for an optimal solution for the critical constraints and extend this to
create solutions to the problem as a whole. HYD-TEN records a set of such solu-
tions which should be dissimilar. Such a variety of solutions should hopefully lead
to low solution costs. Figure 6.1 gives an example of how the extant solution cost is
reduced by a complete search. After a period of large reductions, smaller improve-
ments are made gradually as search progresses and as the backtracking reaches the
variables near the start of the variable ordering. As more improvements are made the
assignments of each improving solution should be more and more dissimilar. There-
fore, provided the complete search follows this pattern, and does not find a near
optimal solution straight away, HY D-TEN will have a variety of good solutions to
extend into full solutions

Table 6.2 compares the minimum solution costs of the solutions found when
search is limited with the optimal solution of each problem instance (i.e. a complete
search of the critical sub-problem). As would be expected, the solution quality is
better using a high domain as the problem is easier. These results could be a factored
into whether the solutions found by hybrid search are of good quality.

It is worth noting that the structure of the critical sub-problem for each instance
may lead to thrashing behaviour, defined in Chapter 2, when performing complete
search. Two of the nine problems examined have disconnected critical sub-problems
and others may be sparse. Although exploitation of such sub-problem features
during the search of a large problem may not offer significant improvement, in

complete search of a sub-problem of 10 variables it may allow an improvement.

Chapter 6 135 Hybrid Search

HEC-S-92 Ciritical Sub-Problem Search
3000 T T T T T

" extant
2800

2600
2400
2200
2000

Extant Solution Cost

1800

1600

1400

1200 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000

Consistency Checks (x1000)

Figure 6.1: An example of the reduction in minimum solution cost as a complete
search progresses.

The Stable set method described in Chapter 3 has been used.

6.3 Results

The two hybrid search methods implemented have been tested on each of the sample
problem instances using five different variable orderings. The 10 critical variables
are placed at the start of the ordering, to be assigned values by complete search, and
the remaining variables are ordered according to previously defined static variable
heuristics (VAR, BD and WBD, defined in chapter 4). The first sets of experiments

were performed using the larger domain sizes and then repeated using the lower sizes.

Chapter 6 136 Hybrid Search

low domain high domain
problem | limited ‘ un-limited || limited ‘ un-limited
HEC-S-92 | 4722 4138 1266 1220
STA-F-83 | 6769 5994 3103 2624
KING-96 1044 1044 137 137
YOR-F-83 | 229 85 3 3
UTE-S-92 | 11512 8870 4872 3742
EAR-F-83 573 236 16 14
TRE-S-92 894 520 320 188
LSE-F-91 482 290 160 113
KFU-S-93 | 5257 4909 947 947

Table 6.2: Comparison of the best solution found by limited and unlimited searches
of the critical sub-problem.

variable ordering
VAR BD WBD
problem mean ‘ min. mean ‘ min. mean ‘ min.

HEC-S-92 || 19111.1 | 17283 || 18353 | 18353 | 19159.5 | 18849
STA-F-83 || 59928.5 | 58939 | 60928.8 | 58596 | 58811.1 | 57672
KING-96 13814.9 | 13242 || 13931.4 | 12576 | 12169.1 | 11800
YOR-F-83 || 20706.3 | 19951 | 21644.5 | 20888 | 20017.8 | 19394
UTE-S-92 || 37516.4 | 36146 || 42309.9 | 41758 | 39203.2 | 38755
EAR-F-83 27932 26381 | 26005.4 | 25984 || 25860.1 | 25391
TRE-S-92 || 23469.3 | 23282 || 24577.7 | 24331 || 22513.5 | 22386
LSE-F-91 || 19740.1 | 19673 | 21002.7 | 20846 || 18509.1 | 18368
KFU-5-93 || 51202.4 | 50047 || 56685.5 | 56523 || 52614.3 | 51672

Table 6.3: Comparison HYD-BIG for various variable orderings on the high domain
size. The mean and minimum solution costs are given. The bold results are those
that are the lowest, with significance for the mean costs, for a problem instances.

Table 6.3 compares the solution costs found by HYD-BIG using the three
variable orderings. The mean and minimum (min.) solution costs of each sample
are both shown. The minimum solution cost has been shown in this comparison,
and those that follow, because the minimum costs of the solutions found by different
variable orderings and algorithms are needed to compare the solutions found by a
stochastic search with those found by non-stochastic searches. As hybrid search
combines both stochastic and non-stochastic search methods it is safer to compare

the solution sets using both measures. The results in Table 6.3 show the superiority

Chapter 6 137 Hybrid Search

of the WBD variable ordering method. This is as expected and follows on from the
results in Chapter 4. VAR has a significantly lower mean, and minimum cost, for
UTE-S-92 and KFU-S-93. However, the general trend remains.

variable ordering
VAR BD WBD
problem mean ‘ min. mean ‘ min. mean ‘ min.

HEC-S-92 18646 | 16600 19588 | 18353 || 18807.9 | 18236
STA-F-83 || 60033.2 | 59259 || 61243.8 | 58981 || 58832.1 | 57878
KING-96 13814.5 | 13338 || 13669.7 | 12962 || 12117.3 | 11800
YOR-F-83 || 20750.5 | 20029 21926 | 20888 | 20616 | 19427
UTE-S-92 39117 | 36253 | 40410.6 | 37525 || 38775.2 | 36944
EAR-F-83 || 27790.9 | 26017 || 26374.9 | 25984 | 26251 | 25393
TRE-S-92 || 23357.6 | 22669 | 24577.7 | 24331 || 22513.5 | 22386
LSE-F-91 || 19682.4 | 19103 || 21739.8 | 20719 || 20100.4 | 18120
KFU-S-93 || 52039.5 | 49135 || 58610.6 | 53137 || 54369.6 | 51672

Table 6.4: Comparison of the mean and minimum costs of solutions found using
HYD-TEN for various variable orderings on the high domain size.

The same experiment was carried out using the HYD-TEN algorithm. The
results in Table 6.4 show that again WBD has a low mean solution cost in most
cases. The competitiveness of the VAR ordering is increased in this set of results,
with the solutions found by VAR being equally good, with respect to mean solution
cost, for about half of the problem instances. However, VAR only records the
minimum solution cost in 3 instances. Comparison of the average solution cost, by
any measure, will be more sensitive for HY D-TEN as samples are being taken from

several, possibly different, starting partial solutions.

Chapter 6 138 Hybrid Search

ERR-RND HYD-BIG HYD-TEN

problem mean ‘ min. mean ‘ min. mean ‘ min.

HEC-S-92 || 20636 | 18480 | 19159.5 | 18849 | 18807.9 | 18236
STA-F-83 | 62333.7 | 59370 || 58811.1 | 57672 | 58832.1 | 57878
KING-96 || 13265.7 | 12452 || 12169.1 | 11800 || 12117.3 | 11800
YOR-F-83 | 20989.4 | 19744 || 20017.8 | 19394 20616 19427
UTE-S-92 || 39000.3 | 35418 || 39203.2 | 38755 || 38775.2 | 36944
EAR-F-83 || 27581.7 | 25073 || 25860.1 | 25391 26251 25393
TRE-S-92 || 23562.9 | 22406 || 22513.5 | 22386 || 22513.5 | 22386
LSE-F-91 || 21072.7 | 19284 | 18509.1 | 18368 | 20100.4 | 18120
KFU-S-93 || 55886.7 | 51872 | 52614.3 | 51672 | 54369.6 | 51672

Table 6.5: Comparison of the mean and minimum of the solution samples taken by
ERR-RND, HYD-BIG and HYD-TEN using the WBD variable ordering on
the high domain size.

The two hybrid search algorithms were then compared with each other and the
stochastic search algorithm ERR-RND, from the previous two chapters, in Table
6.5. All three algorithms use the WBD variable ordering; however, ERR-RND
does not place the critical variables at the start of the variable ordering so the
variable orderings will differ. The results show that both hybrid search methods
outperform ERR-RND. HYD-BIG has a significantly lower mean than ERR-
RND for all but two problem instances; however, HY D-TEN is also competitive,
outperforming ERR-RND for those two instances and equalling HYD-BIG for 3
of the other problems.

The above three experiments were then performed using the lower domain sizes.
Table 6.6 compares HYD-BIG for the five variable orderings; Table 6.7 repeats
this process for HYD-TEN; and Table 6.8 compare the two hybrid search methods
with ERR-RND.

Chapter 6 139 Hybrid Search
variable ordering
VAR BD WBD
problem mean ‘ min. mean ‘ min. mean ‘ min.
HEC-S-92 38481 38481 35921 | 31971 35013 35013
STA-F-83 104478 | 103004 || 99490.5 | 98815 | 102245 | 102245
KING-96 || 32610.6 | 31982 32335 | 31073 | 31365.1 | 31258
YOR-F-83 || 41956.1 | 39447 || 41436 | 41353 | 41312.1 | 40404
UTE-S-92 81985 80335 || 80021.9 | 79819 || 81750.3 | 81543
EAR-F-83 || 47379.7 | 45906 | 50012.8 | 49978 49718 46930
TRE-S-92 || 41759.4 | 41721 || 44509.4 | 44094 || 40873.5 | 40501
LSE-F-91 || 35481.4 | 35409 | 32827.4 | 32724 || 34345.1 | 34314
KFU-S-93 || 92289.4 | 91455 | 90287.6 | 83898 | 82103.2 | 82058

Table 6.6: Comparison of the mean and minimum costs of solutions found using

HYD-BIG for various variable orderings on the low domain size.

variable ordering
VAR BD WBD

problem mean ‘ min. mean ‘ min. mean ‘ min.
HEC-S-92 || 39320.3 | 33585 || 38045.7 | 31971 | 36197 | 33528
STA-F-83 | 104497 | 103004 || 99577.3 | 98815 || 102245 | 102245
KING-96 | 32816.1 | 32106 || 32401.1 | 30972 | 31116.9 | 30826
YOR-F-83 || 42350.9 | 40228 || 42485.4 | 41353 | 42513.5 | 40404
UTE-S-92 | 83089.4 | 78493 || 82550.9 | 78880 | 81118.6 | 79899
EAR-F-83 | 49342 | 45906 || 49745.8 | 48205 | 47101.7 | 44405
TRE-S-92 || 42240.7 | 39327 || 43116.1 | 39383 | 40089.5 | 38933
LSE-F-91 || 35601.9 | 33636 || 34781.7 | 32760 | 33722.6 | 32909
KFU-S-93 || 89775.9 | 86818 || 97104.8 | 83898 | 82312.7 | 79964

Table 6.7: Comparison of the mean and minimum costs of solutions found using

HYD-TEN for various variable orderings on the low domain size.

Chapter 6 140 Hybrid Search

ERR-RND HYD-BIG HYD-TEN
problem mean ‘ min. mean ‘ min. mean ‘ min.
HEC-S-92 || 38148.2 | 33549 35013 35013 36197 | 33528
STA-F-83 || 102160 | 97095 | 102245 | 102245 || 102245 | 102245
KING-96 || 30908.2 | 29525 || 31365.1 | 31258 | 31116.9 | 30826
YOR-F-83 || 41065.5 | 39249 | 41312.1 | 40404 | 42513.5 | 40404
UTE-S-92 || 81156.1 | 77747 || 81750.3 | 81543 | 81118.6 | 79899
EAR-F-83 || 47090.3 | 43120 49718 46930 | 47101.7 | 44405
TRE-S-92 || 39616.8 | 37317 || 40873.5 | 40501 | 40089.5 | 38933
LSE-F-91 || 32695.3 | 30274 || 34345.1 | 34314 | 33722.6 | 32909
KFU-5-93 || 85055.1 | 78724 || 82103.2 | 82058 | 82312.7 | 79964

Table 6.8: Comparison of the mean and minimum of the solution samples taken by
ERR-RND, HYD-BIG and HYD-TEN using the WBD variable ordering on
the low domain size.

The comparison of HYD-BIG, in Table 6.6, is similar to that when using the
higher domain values; however, in this case BD becomes more competitive, out-
performing WBD in two cases and equalling WBD in one. The most reasonable
explanation for this is that BD will avoid re-labelling. In fact BD requires fewer
unlabels in all but one case and for the exception both WBD and BD require a
low number of unlabels. The comparison of HYD-TEN in Table 6.7 shows WBD
to be the superior variable ordering, although it does not have the lowest mean in
5 cases so such a conclusion should be taken tentatively. The comparison of the
different algorithms in Table 6.8 shows ERR-RND to be superior to HYD-BIG
in most cases. It is worth noting at this point the results of HYD-BIG: HEC-S-92
and STA-F-83 and HYD-TEN: STA-F-83. The solution sets of these searches
only contain one solution, regardless of the number of samples taken. This was due
to the partial solution found by the complete search of the critical sub-problem re-
sulting in no tie-breaks later on in search. In 4 instances HYD-TEN is at least as
good as either ERR-RND or HYD-BIG with respect to the mean solution cost,

suggesting hybrid search could be competitive.

Chapter 6

141

Hybrid Search

| problem || ERR-RND | HYD-BIG | HYD-TEN |

HEC-5-92 61 80 49
STA-F-83 1 1 1
KING-96 1 1 1
YOR-F-83 31 133 23
UTE-S-92 7) 6
EAR-F-83 25 4 18
TRE-S-92 4 19 2
LSE-F-91) 92 9
KFU-S-93) a0 3

Table 6.9: Comparison of the median number of unlabels required by ERR-RIND,
HYD-BIG and HYD-TEN using the WBD variable ordering.

6.4 Discussion

The results of the previous section show that for a higher domain size the use
of hybrid search can lead to better solutions. However, when the domain size is
lower such an improvement is less frequent. Table 6.9 compares the number of
unlabels required by the search algorithm. As mentioned in previous chapters, as
the number of unlabels required by search increases, in general, the quality of the
solutions found by search decreases. The most noticeable feature of this Table is
that HYD-BIG usually requires a larger number of unlabels to find solutions. This
explains the poor quality of the solutions found by this search method. However,
HYD-TEN, more often than not, requires fewer unlabels than HYD-BIG. The
single solution, to the critical sub-problem, found by HYD-BIG must play a large
part in the number of subsequent unlabels required by the stochastic second search.
As only one such solution is extended into complete solutions it is very important
that these assignments do not lead to an increased possibility of unlabels later in
search. Because HYD-TEN uses a sample of solutions to be extended, except in
the case of STA-F-83 where only one minimal solution is found, when the solutions
are extended there will be a lower probability of requiring a large number of unlabels.
It should also be noted that HYD-TEN always requires fewer unlabels, on average,
than ERR-RND. This explains the improvement of HYD-TEN over HYD-BIG
and its competitiveness with ERR-RND.

Chapter 6 142 Hybrid Search

ERR-RND HYD-TEN HYD-WBD

problem mean ‘ min. mean ‘ min. mean ‘ min.

HEC-5-92 || 38148.2 | 33549 36197 | 33528 | 36945.1 | 33513
STA-F-83 || 102160 | 97095 || 102245 | 102245 || 101267 | 96949
KING-96 | 30908.2 | 29525 | 31116.9 | 30826 | 30249.2 | 29099
YOR-F-83 || 41065.5 | 39249 || 42513.5 | 40404 | 41164.9 | 39635
UTE-S-92 || 81156.1 | 77747 || 81118.6 | 79899 | 79031.8 | 77479
EAR-F-83 || 47090.3 | 43120 | 47101.7 | 44405 | 44930.7 | 41170
TRE-S-92 || 39616.8 | 37317 | 40089.5 | 38933 39928 39123
LSE-F-91 | 32695.3 | 30274 || 33722.6 | 32909 34055 32632
KFU-S-93 || 85055.1 | 78724 || 82312.7 | 79964 | 83259.2 | 78784

Table 6.10: Comparison of the mean and minimum of the solution samples taken
by ERR-RND, HYD-BIG and HYD-TEN using the WBD variable ordering
on the low domain size.

6.4.1 The Effect of Domain Size on Hybrid Search

These results suggest that extending a variety of partial solutions in hybrid search
can lead to better complete solutions. However, the lower domain size results in
re-labels being made which incur a larger cost than the re-labels performed in pure
stochastic search. The variable orderings used by ERR-RND and HYD-TEN,
although they are both based upon WBD, differ by the fact that HYD-TEN
places the critical variables at the start of the variable ordering. The definition of the
critical variables is such that only the soft constraints are considered. WBD does
consider the hard constraints indirectly because a variable with a small weighted
backward degree will be connected to only a few past variables. Such a variable
ordering has already been shown to be superior to other tested orderings using a
low domain size in Chapter 4. To this end, the experiments using HYD-TEN on
the low domain size were repeated where the definition of critical variables is that
defined by the WBD variable ordering. In effect the overall variable ordering used
was WBD, with the first 10 variables being searched using the complete search
method.

The results in Table 6.10 show that such a method, labelled HYD-WBD, is
superior to HYD-TEN and subsequently more competitive with ERR-RND. In
5 out of the 9 problems HYD-WBD finds the lowest cost solution to the problem.
With respect to the mean cost of the solutions found using hybrid search, HYD-
TEN and HYD-WBD have the lowest mean solution cost in 6 out of the 9 problem

instances.

Chapter 6 143 Hybrid Search
ERR- | HYD- || HYD-
problem RND TEN WBD || LBT [17] || TABU |[32]

HEC-S-92 || 33549 | 33528 || 33513 || 30488.4 35005.2
STA-F-83 || 97095 | 102245 || 96949 | 98676.5 98248.8
YOR-F-83 || 39249 || 40404 | 39635 39239.7 38581
UTE-S-92 || 77747 || 79899 || 77479 70950 79750
EAR-F-83 || 43120 44405 41170 40950 51412.5
TRE-S-92 || 37317 || 38933 || 39123 || 41875.2 43620
LSE-F-91 30274 32909 32632 28623 42253
KFU-S-92 | 78724 | 79964 || 78784 74886 96282
RYE-S-93 || 111455 || 114766 || 112267 | 83825.9 -
CAR-F-92 || 79865 | 81927 | 81446 | 114197.8 || 95778.8
UTA-S-92 || 72783 | 74205 || 74447 74431 89317.2
CAR-S-91 || 89415 | 89832 || 87757 || 120174.6 104941.2
PUR-S-93 || 139210 | 143539 - 117124.8 -

Table 6.11: Comparison of the best results of this investigation with the results
from [17] and [32].

Finally, the results gained so far have been compared to the published results
of Carter et al [17] and Di Gaspero and Schaerf [32] in Table 6.11. Again, as with
ERR-RND, HYD-WBD outperforms TABU in all but one problem instance.
HYD-WBD, however, is the overall superior search method in only two cases.
The problem instances for which HYD-WBD outperforms ERR-RND are often
the cases where both methods are inferior to other published methods. However,
overall HYD-WBD competes with LBT. A full comparison of the results presented
in this thesis can be found in Appendix B.

6.5 Summary

In this chapter the notion of Hybrid Search has been introduced and been suggested
as a method of taking advantage of the critical constraint definition. Three novell
and different hybrid search methods have been implemented, each exploiting dif-
ferent features of search. These methods have been shown to be superior to pure
stochastic sampling when searching using a high domain size; and competitive when
the domain size is lowered. The best method has been shown to outperform the
TABU search results of [32] and compete with the LBT search method of [17].
The key contribution of this chapter is the use of complete search to satisfy the

critical constraints.

Chapter 7
Conclusions

The contributions and conclusions of the work reported in this thesis are given below.

The limitations of the work and possible future work are also discussed.

7.1 Summary of the work presented

The methods in this thesis have been applied to the University Examination Timetabling
Problem (UETTP) as modelled by a Weighted CSP. The overall best results found
have improved upon the best published for some cases. Even when the best solutions
found are not as good as the published results they are still competitive.

The extension of Classical CSP tree-based search methods to Weighted CSPs has
been investigated. Methods have been implemented and are valid for all WCSPs. It
has been confirmed that complete backtracking, whether chronological or intelligent,
rarely leads to; any improvement upon the first solution found by search; or the
elimination of any violations of hard constraints. Therefore, all conclusions are
drawn from searches where only the first complete solution is sought.

When comparing the performance of search heuristics the quality, or the cost,
of the solutions found has been used. However, the work of this thesis has focused
upon why one search heuristic leads to better solutions than another. Two analysis
methods have been defined, in Chapter 4, to analyse the performance of searches by
examining the properties of the solutions found. The general analysis method allows
comparison between any number of unrelated searches and the direct analysis allows
a comparison between two related searches, related by modified variable orderings
or different value ordering heuristics in the case of this investigation. Such analysis
methods define a set of critical constraints as those which incurred a large amount of

error for the solutions being examined. These critical constraints are then examined

144

Chapter 7 145 Conclusions

statistically to identify features responsible for low solution costs. In the case of
Chapter 4 this amounted to calculating the mean backward degree of the critical
constraints, i.e. the number of related constraints connected to past variables in the
variable ordering. These new methods can be applied to any CSP although they are
most useful to problems which incorporate some measure of preference to constraint
satisfaction, as do WCSPs.

7.1.1 Variable Ordering

The order in which variables are tackled by search is of importance to both finding
a solution and finding a good solution. Both static and dynamic variable orderings
were investigated, in Chapter 4, with reference to these aims.

The aforementioned analysis methods have been applied to examine the perfor-
mance of various static variable orderings. The constraint backward degree of the
critical constraints has been identified as a key factor in the quality of the solu-
tions found by search. This result has been used to justify a new variable ordering,
WBD, which orders the variables on decreasing weighted backward degree. Search
using this heuristic outperforms the tested static variable orderings. Such a vari-
able ordering will apply to all WCSPs, with its effectiveness depending upon the
distribution of constraint weights in the problem instance.

As in the work of Carter et al [17], the importance of the maximum clique of a
problem to search was investigated. Search using a variable ordering heuristic which
places the variables of a maximum clique at the start the ordering has been examined
empirically. The motivation behind such a variable ordering is that the maximum
cliques will be the most difficult parts of the problem for search to find valid and
low cost solutions. The use of maximum cliques and maximum weighted cliques in
such a way has proved inconclusive. Notably, this conflicts with the conclusions of
Carter et al, in [17]. No details of the exact methods used are given in [17| leaving
this conflict unexplained although some suggestions have been given in Chapter 4.
The most plausible explanation is that search methods have been implemented in a
different way. Such work is of relevance to solving real-world problems where finding
a good solution to difficult sub-problems can be more important than the search of
the remaining problem.

The incorporation of constraint weights into measures used to generate both
static and dynamic variable orderings for Classical CSPs has been investigated and

found to be useful in finding solutions of low cost although at the expense of some

Chapter 7 146 Conclusions

extra search effort. Although such variable orderings have been used before the
direct analysis performed helped to identify the reason for this superiority. This is
of particular importance to WCSPs, and other Partial CSP types, where the benefit
of incorporating preference information into heuristics may need to be investigated.

Two dynamic variable orderings extended from Classical CSP methods, by incor-
porating constraint weights, were tested empirically. Both heuristics extended the
count of the number of values pruned from a variable’s domain (where a previous
assignment causes a hard constraint conflict) to consider the maximum weight of
the constraints which prune a value (note that more than one previous assignment
can conflict with subsequent assignment). This was called the weighted saturation
degree. The Brelaz heuristic which, for Classical CSPs, selects as next the variable
with the lowest domain size, tie breaking on degree, was found to be inferior to
it’s weighted extension. However, a related static variable ordering, which relaxed
weight saturation degree to weighted backward degree, was found to be equally com-
petitive. The conclusion of this was that static variable ordering heuristics may be
more suitable to WCSPs than their dynamic counterparts. This was also shown
to be case when the domain size used is close to the minimum required to satisfy
the hard constraints. It is in such a case that one would expect dynamic variable
ordering heuristics to be superior and so the conclusion of the study would appear

to be counter intuitive to conventional variable ordering wisdom.

7.1.2 Value Ordering

Work in Chapter 5 has shown that the ordering which values are chosen is also
critical to the cost of solutions. “Blind” value ordering heuristics, that do not take
into account in any way the error incurred by an assignment, were shown to be far
inferior to more conventional methods. Conventional methods that select a value on
the lowest error that will be incurred with respect to the previous assignments has
been implemented. Tie-breaking can be performed non-stochastically by the lowest
such minimal error value, or stochastically by choosing from the set of minimal error
values uniformly.

Both non-stochastic and stochastic value ordering heuristics have been compared.
The research in Chapter 5 has shown that the error-based stochastic value ordering
can lead to a solution of lower cost given a large enough sample size; although, error-
based non-stochastic value ordering tends to lead search to a “good” solution. This

applies to searches of all WCSPs of a size large enough to render complete search as

Chapter 7 147 Conclusions

impractical. However, the performance of the non-stochastic lowest minimal error
value selection may be specific to the UETTP and the constraint structure used.

The use of look-ahead information in value ordering heuristics has been investi-
gated. In addition to the error incurred with respect to the past assignments, the
error that will be incurred with respect to the current variable assignment and future
assignments has been considered. Although the full impact of such future assign-
ments cannot be known until they are attempted, a reduced amount of information
can be gained. Such information can be seen to be of benefit in some cases; how-
ever, no overall conclusion can be ascertained. A variable ordering that attempted
to exploit the heuristic was developed, but again no clear conclusion could be made.
Empirical results have shown that the use of look-ahead is reasonably expensive
and should only be used when there is confidence in its superiority. As this con-
fidence could not be obtained the conclusion that look-ahead is too expensive was
derived. Although look-ahead has been used in WCSPs before, it’s application to
value ordering is novel.

A hybrid value ordering heuristic has been defined which combines several value
ordering heuristics. A combination of the stochastic and non-stochastic error based
heuristics was investigated. Which heuristic is used when is dependent upon the
number of related past variables with respect to the variable ordering used. When a
variable has no past neighbours the non-stochastic method is a better choice. Results
in Chapter 4 have shown that such a heuristic is superior to a pure stochastic value
ordering whenever more than one variable has no past neighbours. Such a method
is extendible to all WCSPs and the general idea could be used in any CSP especially
for which a good but expensive value ordering heuristic exists. Such an expensive
heuristic can be applied when it will be most beneficial with a cheaper heuristic
being used for the remaining variables. This method is new and it’s application to
other WCSP and CSPs is of interest, specifically for problems where sub-problem
difficulty can vary across the problem as a whole (as is the case with the UETTP).

7.1.3 Hybrid Search

The motivation behind the analysis of the critical constraints has been extended
to form a hybrid search method. This method performs a complete search on the
critical constraints, the definition of which is simplified as the heaviest constraints.
Then the results of this search, which will be in the form of partial solutions, are

extended using a stochastic search. Such a search has been shown to be competitive

Chapter 7 148 Conclusions

with standard search methods and when the domain size used is high, in relation to
the minimum domain size possible, it has been shown to be superior. Such a search
method is applicable in principle to all WCSPs; however, it requires some definition

of critical constraints.

7.2 Major Contributions

In summary the key contributions of this work lie in; the modelling of the UETTP as
a WCSP; the identification methods for finding the critical constraints of a problem
instance and the specific way they have been used; and the development of hybrid
algorithms to exploit the problem structure with respect to the critical constraint

in finding quality solutions to the problem.

7.3 Limitations

The work of this investigation is limited to a single WCSP type. This has been
justified in that this allows the use of real-world data and the fact that the problem
has been abstracted to a general level. As with any research that uses real-world
problem instances the issue of whether results are problem specific occurs. This has
been considered throughout the work conducted, however, more confidence in the
results, conclusions and methods developed would be gained by extending the work
to, or to abstractions of, other problem types.

The nature of the problem abstraction used has limited this study to binary
constraints. The UETTP, and real-world problems in general, often use non-binary
constraints. In principle, the methods described can be extended to non-binary
constraints; however, this would require a large amount of work. At a basic level
the satisfaction of non-binary constraints might only be considered when the last
assignment to a constraint variable is made; however, as the arity of the constraints
in the critical constraint set increase, the size of the critical constraint set will have
to decrease in order to prevent the number of variables involved in the set becoming
too large. A large number of variables involved in the critical constraint set would
restrict the effectiveness of hybrid search techniques because the complete search
section requires an exponentially increasing amount of time to remain effective. The
interpretation of graph based terms such as backward degree would need to be in-
vestigated in order to find a extension to the binary definition that is still workable

in the non-binary situation with respect to the research of this investigation. Prob-

Chapter 7 149 Conclusions

lems which contain a mix of both binary and non-binary constraints, which UETTPs

could conceivably be, would complicate matters even further.

7.4 Future Work

Confidence in results increases as the number of problem instances tested increases;
however, one of the major limitations of WCSP research in general is the lack of
a large testbed of problems. A random problem generator would address this lim-
itation, to some degree, by providing a limitless set of artificial problem instances.
Research into random generation of small-world problem graphs (2,39, 78] could
be extended to generate random problem instances with different constraint weight
distributions.

In Chapter 4 the two aims of search, which are to satisfy the hard constraints
and optimise the soft constraints, are discussed. Each variable ordering heuristic
addresses these aims in different ways. The use of a dynamic variable heuristic
which combines two heuristic measures could be investigated. The two problem
aims of satisfying the hard constraints and minimising soft constraint error could be
combined in a single heuristic measure with precedence of each aim being dependant
upon the sub-problem structure.

The use of stochastic value ordering heuristics could be extended to consider
near minimal error assignments. The current best method selects the next value for
assignment by which has the lowest error and tie-breaks randomly. An extended
heuristic would allow an assignment that is non-minimal, with respect to the error
incurred, and would tie-break with a probability distribution related to the different
errors associated with each possible value selection. The usefulness of small amounts
of stochasticity in variable ordering has been observed by Bresina [9] and may also
apply to value ordering.

The limitations of using look-ahead in value ordering could be addressed by the
use of a hybrid value ordering heuristic. Look-ahead information could be limited
to, and hence would only need to be calculated for, variables at the start of search.
The remaining variable assignments would be chosen using a cheaper, or less com-
putationally expensive, heuristic. The aim would be to use all available information
to optimise the assignments to the critical constraints while not incurring a large
computational cost for the rest of search.

Hybrid search could be extended to consider other search methods. A stochastic

sample of a larger critical sub-problem could find better partial solutions. The best

Chapter 7 150 Conclusions

of these solutions could then be extended. This would avoid the cost of having to

extend every partial solution, as would be the case if a stochastic sample of the

whole problem was taken.

Bibliography

[1] Uwe Aickelin and Kathryn A. Dowsland. Exploiting problem structure in a
genetic algorithm approach to a nurse rostering problem. Journal of Scheduling,
3:139-153, 2000.

[2] A-L. Barabési and R. Albert. Emergence of scaling in random networks. Sci-
ence, (286):509-512, 1999.

[3] Christian Bessiere and Jean-Charles Regin. MAC and combined heuristics:
Two reasons to forsake FC (and CBJ?) on hard problems. In Principles and
Practice of Constraint Programming CP-96, pages 61-75, 1996.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semi-rings.
In Proceedings of IJCAI-95. Morgan Kaufman, 1995.

[5] S. Bistarelli, U. Montanari, F. Rossi, T.Schiex, G. Verfaillie, and H. Fargier.
Semi-ring-based CSPs and valued CSPs: Frameworks, properties, and compar-
ison. Constraints, 4(3):275-316, 1999.

[6] P. Boizumault, Y. Delon, and L. Peridy. Constraint logic programming for
examination timetabling. The Journal of Logic Programming, pages 217-233,
1995.

[7] J. E. Borrett, Edward P. K. Tsang, and N. R. Walsh. Adaptive constraint
satisfaction: The quickest first principle. In Proceedings of ECAI-96, pages
160-164, 1996.

[8] D. Brelaz. New methods to color the vertices of a graph. Communications of
the ACM, 22(4):251-256, 1979.

[9] John L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of
AAAI/TAAI-96, Vol. 1, pages 271-278, 1996.

151

Chapter 7 152 BIBLIOGRAPHY

[10] E. K. Burke and J. P. Newall. A multi-stage evolutionary algorithm for the
timetable problem. IEEE Transactions on Evolutionary Computation, 3.1:63—
74, 1999.

[11] E. K. Burke, J. P. Newall, and R. F. Weare. A memetic algorithm for university
exam timetabling. In E. K. Burke and P. Ross, editors, The Practice and
Theory of Automated Timetabling (PATAT-96), volume 1153 of Lecture Notes
in Computer Science (LNCS), pages 241-250. Springer, 1996.

[12] E.K. Burke, D.G. Elliman, P.H. Ford, and R.F. Weare. Examination
timetabling in British universities - a survey. In E. K. Burke and P. Ross,
editors, PATAT-96, volume 1153 of LNCS, pages 76-92. Springer, 1996.

[13] E.K. Burke, J.P. Newall, and R.F. Weare. A simple heuristically guided search
for the timetable problem. In E. Alpaydin and C Fyte, editors, Proceedings of
EIS-98, pages 574-579. ICSC Academic Press, 1998.

[14] B. Cabon, S. de Givry, and G. Verfaillie. Anytime lower bounds for constraint
violation minimisation problems. In M. Maher and J.-F. Puget, editors, Prin-
ciples and Practice of Constraint Programming CP-98, volume 1520 of LNCS,
pages 117-131. Springer, 1998.

[15] M. W. Carter. A survey of practical applications of examination timetabling
algorithms. Operations Research, 34(2):193-202, 1986.

[16] M. W. Carter, G. Laporte, and J. W. Chinneck. A general examination schedul-
ing system. Interfaces, 24(3):109-120, 1994.

[17] M. W. Carter, G. Laporte, and S. Y. Lee. Examination timetabling: Algorith-
mic strategies and applications. Journal of the Operational Research Society,
47:373-383, 1996.

[18] P. Cheeseman, B. Selman, and W. M. Taylor. Where the really hard problems
are. In Proceedings of IJCAI-91, pages 331-337, 1991.

[19] P. R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995.

[20] O. Coudert. Exact coloring of real-life graphs is easy. In Proceedings of the 34th
Annual ACM IEEE Design Automation Conference, pages 121-126, 1997.

[21] A.J. Davenport and E.P.K. Tsang. Solving constraint satisfaction sequencing
problems by iterative repair. In Proceedings of PACLP-99, pages 345-357, 1999.

Chapter 7 153 BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34:1-38, 1988.

Rina Dechter. Enhancement schemes for constraint processing: backjumping,
learning, and cutset decomposition. Artificial Intelligence, 31(3):273-312, 1990.

D. Dubios, H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a basis
for flexible constraint satisfaction. In Proceedings of the 2nd IEEE International

Conference on Fuzzy Systems, pages 1131-1136, 1993.

H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a prob-
abilistic approach. In M. Clark, R. Kruse, and S. Moral, editors, Proceedings
of ECSQARU-93, volume 747 of LNCS, pages 97-104. Springer-Verlag, 1993.

H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in fuzzy con-
straint satisfaction problems. In Proceedings of EUFIT-93, pages 1128-1134,
1993.

E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, (58):21-70, 1992.

Eugene C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM, 29(1):24-32, 1982.

D. Frost and R. Dechter. Look-ahead value ordering of constraint satisfaction
problems. In In Proceedings of IJCAI-95, pages 572-578, 1995.

Philippe Galinier and Jin-Kao Hao. Tabu search for maximal constraint satis-

faction problems. In Principles and Practice of Constraint Programming CP-97,
pages 196-208, 1997.

J. Gaschnig. Performance Measurement and Analysis of Certain Search Algo-
rithms. PhD thesis, Department of Computer Science, Carnegie-Mellon Uni-
versity, 1979.

L. Di Gaspero and A. Schaerf. Tabu search techniques for examination
timetabling. In Proceedings of PATAT-00, pages 76-179, 2000.

P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction prob-
lems. In Proceedings of ECAI-92, pages 31-35, 1992.

Chapter 7 154 BIBLIOGRAPHY

[34] I. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. Random constraint
satisfaction: Flaws and structure. Research report 98.23, School of Computer
Studies, University of Leeds, 1998.

[35] I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. An empirical
study of dynamic variable ordering heuristics for the constraint satisfaction

problem. In Principles and Practice of Constraint Programming CP-96, volume
1118 of LNCS, pages 179-193. Springer, 1996.

[36] M. L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Re-
search, 1:25-46, 1993.

[37] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263—-313, 1980.

[38] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings
of IJCAI-95, pages 607-613, 1995.

[39] T. Hogg. Refining the phase transition in combinatorial search. Artificial In-
telligence, 81(1-2):127-154, 1996.

[40] S. Hurley, D. H. Smith, and S. U. Thiel. FASoft: A system for discrete channel
frequency assignment. Radio Science, 32(5):1921-1939, 1997.

[41] D. Johnson. Timetabling university examinations. Journal of the Operational
Research Society, 41(1):39-47, 1990.

[42] David E. Joslin and David P. Clements. ”Squeaky wheel” optimization. Journal
of Artificial Intelligence Research, 10:353-373, 1999.

[43] R.W.L. Kam and J.H.M. Lee. Fuzzifying the constraint hierarchies framework.
In Principles and Practices of Constraint Programming CP-98, volume 1520 of
LNCS, pages 280-294. Springer-Verlag, 1998.

[44] G. Laporte and S. Desroches. Examination timetabling by computer. Comput-
ers and Operations Research, 11(4):351-360, 1984.

[45] J. Larossa and P. Meseguer. Partition based lower bound for MAX-CSP. In
J. Jaffar, editor, Principles and Practice of Constraint Programming CP-99,
pages 303-315, 1999.

Chapter 7 155 BIBLIOGRAPHY

[46] J. Larrosa and P. Meseguer. Exploiting the use of DAC in MAX-CSP. In Prin-
ciples and Practice of Constraint Programming CP-96, pages 308-322, 1996.

[47] J. Larrosa and P. Meseguer. Partial lazy forward checking. URL : cite-

seer.nj.nec.com/larrosa97partial.html, 1997.

[48] J. Larrosa, P. Meseguer, T. Schiex, and G. Verfaillie. Maintaining reversible
DAC for MAX-CSP. Artificial Intelligence, 107:149-163, 1999.

[49] Javier Larrosa and Pedro Meseguer. Optimization-based heuristics for maximal
constraint satisfaction. In Ugo Montanari and Francesca Rossi, editors, Prin-
ciples and Practice of Constraint Programming CP-95, volume 976 of LNCS,
pages 103-120. Springer, 1995.

[50] F. T. Leighton. A graph colouring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards, 84(6):489-506, 1979.

[61] Andrew Lim, Ang Juay Chin, and Oon Wee Chong. A campus-wide university
examination timetabling application. In Proceedings of IAAT 2000, pages 1020—
1015, 2000.

[52] Vahid Lofti and Robert Cerveny. A final-exam-scheduling package. Journal of
the Operational Research Society, 42(3):205-216, 1991.

[53] H. Terashima Marin, P. M. Ross, and M. Valenzuela-Rendon. Evolution of
constraint satisfaction strategies in examination timetabling. In Proceedings of
GECCO-99, pages 635—642. Morgan Kaufmann, 1999.

[64] Hugo Terashima Marin. Combinations of GAs and CSP Strategies for Solving
the Examination Timetabling Problem. PhD thesis, Instituto Tacnol’ogico y de
Estudios Superiores de Monterrey, 1998.

[65] David W. Matula, George Marble, and Joel D. Isaacson. Graph coloring algo-
rithms. In R. C. Read, editor, Graph Theory and Computing, pages 109-122.
Academic Press, Inc., 1972.

[56] N. K. Mehta. The application of a graph coloring method to and examination
scheduling problem. Interfaces, 11(5):57-65, 1981.

[57] P. Meseguer. Interleaved depth-first search. In Proceedings of IJCAI-97, pages
1382-1387, 1997.

Chapter 7 156 BIBLIOGRAPHY

[58] Pedro Meseguer and Marti Sanchez. Specializing Russian doll search. In Toby
Walsh, editor, Principles and Practice of Constraint Programming CP-01, vol-
ume 2239 of LNCS, pages 464-479. Springer, 2001.

[59] Craig Morgenstern. Distributed coloration neighborhood search. In David S.
Johnson and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, 1993, volume 26, pages 335-357.
American Mathematical Society, 1996.

[60] W.P.M. Nuijten, G.M. Kunnen, E.H.L. Aarts, and F.P.M. Dignum. Exam-
ination time tabling: A case study for constraint satisfaction. In EFCAI-9/
Workshop on Constraint Satisfaction Issues Raised by Practical Applications,
pages 11-19, 1994.

[61] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Compu-
tational Intelligence, 9(3):268-299, 1993.

[62] P. Prosser. An empirical study of phase transitions in binary constraint satis-
faction problems. Journal of Artificial Intelligence, (81):81-109, 1996.

[63] Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence
Review, 13(2):87-127, 1999.

[64] T. Schiex. Possibilistic constraint satisfaction problems or “How to handle soft
constraints?”. In D. Dubois, M. P. Wellman, B. D’Ambrosio, and P. Smets,
editors, Uncertainty in Artificial Intelligence: Proceedings of the Fighth Con-
ference, pages 268-275. Morngan Kaufmann, 1992.

[65] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. In Proceedings of 1JCAI-95. Morgan Kaufman, 1995.

[66] B. M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In Proceedings of ECAI-94, pages 100-104, 1994.

[67] B. M. Smith and S. A. Grant. Modelling exceptionally hard constraint satis-
faction problems. In G. Smolka, editor, Principles and Practice of Constraint
Programming - CP97, volume 1330 of LNCS, pages 182-195. Springer, 1997.

[68] Barbara M. Smith and Stuart A. Grant. Trying harder to fail first. In Proceed-
ings of ECAI-98, pages 249-253, 1998.

Chapter 7 157 BIBLIOGRAPHY

[69] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[70] M. Vernooy and W. S. Havens. An examination of probibilistic value-ordering
heuristics. In Proceedings of IJCAI-99, pages 340-352, 1999.

[71] R. Wallace. Directed arc consistency preprocessing. In M. Meyer, editor, Se-
lected Papers from ECAI-9/, volume 923 of LNCS, pages 121-137. Springer,
1995.

[72] R. J. Wallace. Analysis of heuristic methods for partial constraint satisfaction

problems. In Principles and Practice of Constraint Programming CP-96, 1996.

[73] R. J. Wallace and E. C. Freuder. Conjunctive width heuristics for maximal
constraint satisfaction. In Proceedings of AAAI-93, pages 762-768, 1993.

[74] Richard Wallace and Eugene Freuder. Heuristic methods for over-constrained
constraint satisfaction problems. In Michael Jampel, Eugene Freduer, and
Michael Maher, editors, OCS-95: Workshop on Over-Constrained Systems at
CP-95, 18 1995.

[75] Richard J. Wallace and Eugene C. Freuder. Anytime algorithms for constraint
satisfaction and SAT problems. In Working Notes of IJCAI-95 Workshop on
Anytime Algorithms and Deliberation Scheduling, 1995.

[76] Toby Walsh. Depth-bounded discrepancy search. In Proceedings of IJCAI-97,
pages 1388-1395, 1997.

[77] Toby Walsh. Search in a small world. In Proceedings of IJCAI-99, pages 1172—
1177, 1999.

[78] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks. Na-
ture, (393):440-442, 1998.

[79] D. J. A. Welsh and M. B. Powell. The upper bound to the chromatic number
of a graph and its application to timetabling problems. The Computer Journal,
10:85-86, 1967.

[80] George M. White and Bill S. Xie. Examination timetables and tabu search
with longer-term memory. In Edmund K. Burke and Wilhelm Erben, editors,
PATAT-00, number 2079 in LNCS, pages 85-103. Springer, 2000.

BIBLIOGRAPHY 158

[81] C.P. Williams and T. Hogg. Exploiting the deep structure of constraint prob-
lems. Journal of Artificial Intelligence, (70):73-117, 1994.

[82] M. Wilson and A. Borning. Hierarchical constraint logic programming. The
Journal of Logic Programming, 16:277-318, 1993.

Appendix A

Examples

Remaining Domain Values
| Action || PC| CS | MA[SS | PY | EN
- 123123123 11.23[1,23]1,2,3
PC—1 1 | 23 | 23] 23| 23 | 2.3
CS=2 1 2 3 3 3 2,3
MA=3 1 2 3 0 0 2,3
Forced SS=1 1 2 3 1 0 2,3
Undo 0 2 3 1 0 2,3
Reshuffle CS | MA | SS PC | PY | EN
2 3 1 0 0 2.3

Table A.1: An example of the backtrack method described in Algorithm 4.
In this example and attempt is being made to assign 3 colours to the graph in
Figure 2.1. After the first 3 assignments an assignment cannot be made to SS. An
assignment is forced upon it and any conflicting assignment is unlabelled (in this
case PC=1). As the variable PC has no alternative assignment it is shuffled down
the variable ordering for later consideration. If an alternative assignment to PC had
existed, then this assignment would have been made. This method of re-assignment
or re-shuffling (depending upon whether consistent assignments exist) is performed
on every assignment that conflicts with the forced assignment (SS= 1 in this case).

159

APPENDIX A. EXAMPLES 160

| Constraint | Error |
(CSMA) | 8
(SS,PC)
(PY,PC)
(CS,PY)
(CS.55)
(CS,PC)
(MA,PY)
(MA,PC)
(MA,SS)
(PC.EN)
(SS5,EN)

OO OO O NN =D

Table A.2: The error produced by each constraint for the solution found by the
search in Table A.4. The critical constraints, as used in a general comparison,
would consist of those with the largest error.

‘ Constraint H DEG ‘ WD H Diff. ‘

(CSMA) || 8 0 8
(SS,PC) 6 3 3
(PY,PC) 4 2 2
(CS,PY) 2 0 2
(CS,SS) 2 2 0
(MAPC) | 0 0 0
(PC.EN) 0 0 0
(MA,SS) 0 2 | -2
(CS,PC) 0 4 | 4
(SS,EN) 0 | 4 | 4
(MAPY) | 0 8 | -8
| Total | 22 |21 [1 |

Table A.3: The difference in error produced by each constraint for the solution
found by the search of the Table 3.2 problem using DEG and WD. The critical
constraints, as used in a direct comparison, would consist of those with the largest
error difference in favour of the superior ordering.

APPENDIX A. EXAMPLES 161

Slot | PC=1
PC 1 0
2 0
3 0
4 0
5 0
CS—4
CS 1 X X
2 4 4
3 2 2
4 0 0
5 0 0
MA=5
MA 1 X X X
2 8 12 12
3 4 12 12
4 0 X X
5 0 8 8
SS=2
SS 1 X X X X
2 6 8 8 8
3 3 7 8 8
4 0 X X X
5 0 4 X e
PY=2
PY 1 X X X X X
2 4 6 6 6 6
3 2 6 10 10 10
4 0 X X X X
5 0 4 X X X
EN=5
EN 1 X X X X X X
2 4 4 4 X X X
3 2 2 2 6 6 6
4 0 0 0 2 2 2
5 0 0 0 0 0 0

Table A.4: An example of search using the ERR-LOW value ordering heuristic on
the example problem given in Table 3.2 and Figure 2.1. For simplicity a pws of
{2,1} has been used (i.e. there is an error of 2 for each pair of consecutive exams
taken by each student and an error of 1 for each pair of exams separated by only
one slot). There are 5 timetable slots and each column shows the error that will be
incurred by assigning an exam to a time-slot of each row (with an “x” being used to
record that a value has been pruned). The bold values define the minimum error
that is incurred at the time of the assignment.

APPENDIX A. EXAMPLES

Figure A.1: Constraint graph of a second example problem.

Domain of SS

‘Action 1‘2‘3‘ 4 ‘5 WSd‘
- 000 0 0| O
CS=1|1(0]0 0 0 1
MA=4|1|0|0 2 0| 3
PY=4 |(1/0]|0] 2,3 |0] 4
PC=4 |1|0]0]234(0| 5

162

Table A.5: An example of how the wsd of a variable develops as assignments are

made to related variables.

The domain size of each variable is 5; the problem is that described in Figure A.1;
and a pws of {2,1} has been used. For each value in the domain of SS the weight
of the edges, or constraints, which prune the value is recorded. For example, for the
partial assignment {C'S = 1, MA = 4, PY = 4}, the value 4 is pruned by both
MA and PY. The weight of the constraints which prune the values are recorded as
2 and 3 respectively. The wsd of the variable is the sum of the maximum pruning
constraint weight for each value (i.e. the sum of the maximum values in each element

of a table row.

Appendix B

Results Compendium

The following 2 pages given the lowest solution found using the different search
algorithms, value orderings and variable orderings on the lower problem domain
sizes. The best solution for each problem has been highlighted in bold. Where a

entry occurs the experiment was not carried out. This situation occurs for the

larger problems when the drawbacks of inferior heuristics would be magnified.

163

Search Alg/

Problem Instance

Value Ord. | Var. Ord. | HEC-S-92 | STA-F-83 | KING-96 | YOR-F-83 | UTE-5-92 | EAR-F-83 | TRE-5-92
DEG 37540 99415 | 31173 39775 84174 42847 40483
FD 37007 99939 | 33134 39672 83269 16307 12276
VAR 34850 97911 | 30629 39892 78034 44656 39851
BD 35629 | 100594 | 32212 40000 78307 44493 39477
WBD 33549 97095 | 29525 39249 TTTAT 43120 37317
CLQ-DEG | 37575 99933 | 31865 41300 82958 46892 41429
CLQ-FD 37346 | 100951 | 33025 40879 83615 47700 41990
ERR-RND | CLQ-VAR | 35953 98554 | 30721 40157 78309 46671 40991
WCLQDEG | 37566 | 101050 | 30760 41244 82344 16387 41229
WCLQ-FD | 37963 | 100127 | 32357 41015 83650 46933 41828
WCLQ-VAR | 36849 98202 | 30089 39942 81018 47317 39679
MV 37131 | 101503 | 31959 41510 82830 46807 42537
ME 37646 | 101163 | 32688 41246 83165 19563 43437
B7 36357 | 101888 | 31159 40076 80576 45378 39777
DD 35738 | 101727 | 31428 | 38910 79949 44720 40278
WSD 35239 97805 | 31315 39306 77221 43493 38645
VAR 36943 | 100124 | 30339 14228 84204 47830 41970
IC-RND BD 36879 | 101776 | 30593 43374 80962 19652 42119
WBD 35070 | 101339 | 31827 42894 85313 47677 41375
ELA 39380 | 100276 | 30714 42467 89577 47242 42662
VAR 38481 | 103004 | 31982 39447 80335 45906 41721
HYD-BIG BD 31971 | 98815 | 31073 41353 79819 49978 44094
WBD 35013 | 102245 | 31258 40404 81543 46930 40501
VAR 33585 | 103004 | 32106 40228 78493 45906 39327
HYD-TEN BD 31971 | 98815 | 30072 41353 78880 48205 39383
WBD 33528 | 102245 | 30826 40404 79899 44405 38933
VAR 35114 | 105347 | 31782 41274 78852 46749 40847
HYD- BD 35312 | 100534 | 33329 41195 84583 46478 39860
WBD 33513 | 96949 | 29099 | 39635 77479 41170 39123

NWAIANAINOD SLINSHY “d XIANHddV

791

Search Alg/

Problem Instance

Value Ord. | Var. Ord. |[LSE-F-91 | KFU-5-93 | RYE-S-93 | CAR-F-02 | UTA-S-02 | CAR-5-91 | PUR-S-93
DEC 34013 89413 - - - - -
FD 36077 87901 - - - - -
VAR 31771 78384 - - - - -
BD 33497 85155 | 124165 | 84705 77435 - 143256
WBD 30274 78724 | 111455 | 79865 | 72783 89415 | 139210
CLQ-DEC | 35265 89799 - - - - -
CLQ-FD 35606 01448 - - - - -
ERR-RND | CLQ-VAR | 33934 84745 - - - - -
WCLQ-DEG | 33847 89559 - - - - -
WCLQFD | 36083 93143 - - - - -
WCLQ-VAR | 33499 81423 - - - - -
MV 34624 91376 - - - - -
ME 35505 96100 - - - - -
BZ 32721 86603 - - - - -
DD 32860 85577 - - - - -
WSD 30212 | 76267 - - - - -
VAR 33847 82958 - - - - -
IC-RND BD 35384 83273 - - - - -
WBD 34062 87948 - - - - -
ELA 36039 93361 - - - - -
VAR 35409 91455 - - - - -
HYD-BIG BD 32724 83898 - - - - -
WBD 34314 82058 - - - - -
VAR 33636 86818 B - - - -
HYD-TEN BD 32760 83808 - - - - -
WBD 32909 79964 | 114766 | 81927 74205 89832 143539
VAR 32619 83672 B - - - -
HYD- BD 34531 84466 - - - - -
WBD 32632 78784 | 112267 | 81446 74447 87757 | 142436

NWAIANAINOD SLINSHY “d XIANHddV

991

