
University of Sheffield

Department of Computer Science

Formal Analysis of Concurrent
Programs

Thesis submitted for degree of PhD

Author:
Alasdair Armstrong

Supervisor:
Georg Struth

May, 2016



Abstract

In this thesis, extensions of Kleene algebras are used to develop algebras for
rely-guarantee style reasoning about concurrent programs. In addition to
these algebras, detailed denotational models are implemented in the interac-
tive theorem prover Isabelle/HOL. Formal soundness proofs link the algebras
to their models. This follows a general algebraic approach for developing
correct by construction verification tools within Isabelle. In this approach,
algebras provide inference rules and abstract principles for reasoning about
the control flow of programs, while the concrete models provide laws for rea-
soning about data flow. This yields a rapid, lightweight approach for the
construction of verification and refinement tools. These tools are used to
construct a popular example from the literature, via refinement, within the
context of a general-purpose interactive theorem proving environment.



Declaration

This thesis contains material from the following papers:

• A. Armstrong, V. B. F. Gomes and G. Struth. Lightweight Program
Construction in Isabelle/HOL. In D. Giannakopoulou and G. Salaün
(eds.), SEFM 2014, LNCS 8702. [AGS14c]

• A. Armstrong, V. B. F. Gomes and G. Struth. Algebras for program
correctness in Isabelle/HOL. In P. Höfner, P. Jipsen, W. Kahl and
M. E. Müller (eds.), RAMiCs 2014, LNCS 8428. [ABFGS14]

• A. Armstrong, V. B. F. Gomes and G. Struth. Algebraic Principles
for Rely-Guarantee Style Concurrency Verification Tools. In C. Jones,
P. Pihlajasaari and J. Sun (eds.), FM 2014, LNCS 8442. [AGS14a]

• A. Armstrong, G. Struth and T. Weber. Programming and automat-
ing mathematics in the Tarski-Kleene hierarchy. In R. Berghammer,
B. Möller and M. Winter (eds.), Journal of Logical and Algebraic Meth-
ods in Programming, 83(2):87-102 (March 2014). [ASW14]

• A. Armstrong, G. Struth and T. Weber. Program Analysis and Verifi-
cation Based on Kleene Algebra in Isabelle/HOL. In S. Blazy, C. Paulin-
Mohring and D. Pichardie (eds.), ITP 2013, LNCS 7998. [ASW13b]

• A. Armstrong and G. Struth. Automated Reasoning in Higher-Order
Regular Algebra. In T. Griffin and W. Kahl (eds.), RAMiCS 2012,
LNCS 7560. [AS12]

Isabelle theory files supporting this thesis can be found online at:

http://thesis.alasdair.eu

http://thesis.alasdair.eu


Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Georg Struth,
for being a wonderful mentor during my PhD experience. I greatly appreciate
his assistance and considerable expertise in guiding my research efforts, not
to mention his assistance in writing research papers and this very thesis itself.
In addition, I would like to thank the other members of my Supervisory team,
Prof. Marian Gheorge and Dr. Joab Winkler for their valuable contributions
during the course of my PhD studies.

I would like to extend special thanks to Dr. Tjark Weber for helping
to provide me with the fantastic opportunity to spend time studying in
Uppsala during my PhD, as well as lending his expertise to my research
efforts. I would also like to thank everyone in the UPMARC research group
in Uppsala for being extremely welcoming and friendly during my time there.

I wish to thank my fellow PhD student, Victor Gomes. His talent for
Isabelle and his assistance in writing papers has been extremely helpful over
the course of my PhD. Furthermore, I’d like to thank the other regular
attendees of our V.T. reading group, Dr. Brijesh Dongol, Dr. James Cranch,
Dr. Kirill Bogdanov, and Prof. Lindsay Groves while he visited Sheffield,
for valuable discussions on many varied subjects and papers in the field of
concurrency and beyond. I would also like to thank Dr. Simon Foster for his
insights into interactive and automated theorem proving techniques.

I would like to thank Prof. Ian Hayes and Prof. Cliff Jones for inviting
me to their rely-guarantee meeting after FM2014, as well as all the other
attendees including Dr. Robert Colvin. Their insights into the rely-guarantee
method were extremely enlightening and helped me greatly.

Thanks to Prof. John Derrick and Dr. Anthony Simons for providing
me with excellent opportunities and assistance in furthering my research
horizons during the course of my studies. I am very grateful for such oppor-
tunities.

I also wish to thank the excellent flatmates I had the good fortune to
spend my time living with during my PhD: Sarah, Dave, Mike, Dom and
Belinda, thank you all for putting up with me! I’d also like to thank all my
many other friends in Sheffield and elsewhere for making the time outside
my studies here so enjoyable.

Last but not least, I would like to thank my family for all their support
during my PhD.



Contents

1 Introduction 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Principles of Algebraic Tool Design . . . . . . . . . . . . . . . 6
1.3 Research Contributions and Thesis Overview . . . . . . . . . 8

2 The Rely-Guarantee Method 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Owicki-Gries Method . . . . . . . . . . . . . . . . . . . . 12
2.3 The Rely-Guarantee Method . . . . . . . . . . . . . . . . . . 13
2.4 Concurrent Separation Logic . . . . . . . . . . . . . . . . . . 17

3 Algebraic Preliminaries 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Dioids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Kleene Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Models of Kleene Algebra and Dioids . . . . . . . . . . . . . . 23

3.4.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Binary Relations . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Further Models . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Galois Connections . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Weak Kleene Algebras and Dioids . . . . . . . . . . . . . . . . 27
3.9 Kleene Algebra with Tests and Hoare Logic . . . . . . . . . . 28
3.10 Action Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.11 ?-continuous Kleene Algebra . . . . . . . . . . . . . . . . . . . 30
3.12 Weak ω-Algebra and Demonic Refinement Algebra . . . . . . 30
3.13 Quantales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Isabelle/HOL 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Mechanising Algebras in Isabelle . . . . . . . . . . . . . . . . 34
4.3 Custom Reasoning Tactics . . . . . . . . . . . . . . . . . . . . 38

1



5 Program Verification with Schematic Kleene Algebra 40
5.1 Applying Algebra to Program Verification . . . . . . . . . . . 41
5.2 Schematic KAT and Flowchart Schemes . . . . . . . . . . . . 41
5.3 Formalising a Metatheorem . . . . . . . . . . . . . . . . . . . 45
5.4 Verification of Flowchart Equivalence . . . . . . . . . . . . . . 46
5.5 Hoare Logic with Kleene Modules . . . . . . . . . . . . . . . . 50
5.6 Verification Examples . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Algebra for Rely-Guarantee part 1 55
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 A Rely-Guarantee Algebra . . . . . . . . . . . . . . . . . . . . 57
6.3 Breaking Compositionality . . . . . . . . . . . . . . . . . . . . 60
6.4 Finite Language Model . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Enriching the Model . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Algebra for Rely-Guarantee part 2 68
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 A Refined Algebra for Rely-Guarantee . . . . . . . . . . . . . 69

7.2.1 Tests in the Algebra . . . . . . . . . . . . . . . . . . . 74
7.2.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Infinite Language Model . . . . . . . . . . . . . . . . . . . . . 77
7.3.1 The Shuffle Operation . . . . . . . . . . . . . . . . . . 78
7.3.2 Stuttering and Mumbling Closure . . . . . . . . . . . . 81
7.3.3 Relies and Guarantees . . . . . . . . . . . . . . . . . . 81
7.3.4 Properties of Shuffle and Traces . . . . . . . . . . . . . 84
7.3.5 Concurrency Rule . . . . . . . . . . . . . . . . . . . . 87
7.3.6 Interchange Laws . . . . . . . . . . . . . . . . . . . . . 91
7.3.7 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Examples 93
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Tests in the Model . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3 Assignment Statements . . . . . . . . . . . . . . . . . . . . . 96
8.4 Example: Find P . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.5 The FINDP program . . . . . . . . . . . . . . . . . . . . . . . 101
8.6 FINDP refinement proof . . . . . . . . . . . . . . . . . . . . . 104
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2



9 Conclusion 112
9.1 General Contribution . . . . . . . . . . . . . . . . . . . . . . . 113
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.3 Experience with Isabelle . . . . . . . . . . . . . . . . . . . . . 114
9.4 Final Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendices 117

A Derivation of the Rely-Guarantee Inference Rules 117

B List of Algebraic Structures 120

3



Chapter 1

Introduction

4



1.1 Introduction

Over the past decade multi-core processors have become ubiquitous, with
multi-threaded, concurrent programming becoming the norm for many appli-
cations. The importance and timeliness of concurrency verification is there-
fore of key importance. In this setting, extensions of Hoare logic supporting
concurrency are becoming increasingly important for both the development
and verification of such concurrent programs. One such extension of Hoare
logic for concurrent programs is Jones’ rely-guarantee method [Jon81]. This
method provides a compositional approach to verifying concurrent programs—
the verification or development of large concurrent programs can be reduced
to the independent verification or development of individual subprograms.

For simple imperative programs, extensions of Kleene algebra give a suc-
cinct and lightweight setting for reasoning about control flow. Algebras such
as Kleene algebra with tests (KAT) [Koz00] and Kleene algebra with domain
(KAD) [DMS06] provide a formalisation of propositional Hoare logic, that
is, Hoare logic without the assignment rule. These algebras give a strati-
fied approach to program verification and refinement: At the most abstract,
algebras are used to derive inference rules and refinement laws, as well as
reason about control flow. At the most concrete, detailed models support
fine-grained reasoning about data flow and, in the case of concurrency, inter-
ference. This approach therefore imposes a clean and desirable separation
of concerns between the abstract control flow and concrete data flow of a
program.

The applicability of Kleene algebras and variants has been demonstrated
via numerous applications, for instance, compiler optimisation [KP00], pro-
gram construction [BS10], transformation and termination [DMS11], static
analysis [FD07] and concurrency control [Coh00].

To make this algebraic method applicable for concrete program develop-
ment and verification tasks, its integration into tools is essential. To capture
the flexibility of the method, a number of features are desirable. First, solid
mathematical models for fine-grained program behaviour must be imple-
mented. Second, one would like an abstract layer at which inference rules
and refinement laws can be easily derived. Third, a high degree of proof au-
tomation is mandatory for the analysis of large, real-world programs. For all
these features, interactive theorem proving tools, such as Isabelle [NPW02],
appear to provide both the requisite flexibility and power. The overall ap-
proach taken in this thesis for developing such program verification and con-
struction tools in Isabelle is described in Section 1.2.

As mentioned, for sequential programs, the applicability of algebra, and
variants of Kleene algebra in particular, is well known. For concurrent pro-
grams, the situation is much less clear. In this thesis, new algebras are consid-
ered which can provide for concurrent programs the same kind of lightweight
and succinct setting that variants of Kleene algebra provide for simple imper-

5



ative programs. It is perhaps fair to state that interference is the essence of
concurrency. As such, algebras that allow reasoning about interference must
be developed to bring the benefits of the algebraic approach into this concur-
rent world. Jones’ rely guarantee method provides much of the inspiration
for the development of these algebras. These algebras are implemented in
Isabelle and are linked with detailed infinite language-based semantics, such
that the verification, and construction of concurrent programs via refinement
can be done within an interactive theorem proving environment.

1.2 Principles of Algebraic Tool Design

It has previously not been entirely clear how the world of abstract algebras
can be utilised in the construction of concrete tools for the development and
verification of real-world programs. Isabelle offers features suitable for engi-
neering algebraic hierarchies, which can then be linked to concrete models
via soundness proofs. This allows for the stratified approach described in
Section 1.1. Such hierarchies and the methods used to implement them in
Isabelle are described in Chapter 3 and Chapter 4. In this section, it is shown
how program verification and construction tools can be developed along two
axes. For the first axis consider how one can go from the abstract algebraic
layer to a concrete tool for program verification or refinement. This is shown
in Figure 1.1.

Algebra Intermediate Semantics Concrete Semantics

Control flow Abstract data flow Concrete data flow

Verification conditions — Verification tools

Refinement laws — Construction tools

Figure 1.1: Algebraic tool design principles

As an example, consider Kozen’sKleene Algebra with tests [Koz00] (KAT).
In KAT one can derive all the rules of propositional Hoare logic for simple
while programs, that is, Hoare logic without the assignment rule. By ex-
tending KAT with residuals, as in Pratt’s action algebra one can even ob-
tain refinement rules for simple while programs. This algebraic level, where
verification and refinement rules can be derived is depicted as the leftmost
column of Figure 1.1.

The intermediate semantics—the middle column of Figure 1.1—would in
this example be binary relations. Binary relations form a model of KAT,
and are a widely used standard semantics for simple while programs.

By instantiating the intermediate semantics, in this case binary relations,

6



with a concrete notion of program stores one obtains the rightmost column,
the concrete semantics. For simple while programs, this might be represented
in Isabelle as a record of program variables. For developing and verifying
programs involving pointers and dynamic memory, it also could be instanti-
ated with a formalisation of the heap. At this level, it is possible to link into
already well-developed and extensive Isabelle libraries for dealing with such
data types.

As mentioned, this process, whereby the type of KAT is instantiated to
the type of binary relations over that signature, and finally to the type of
binary relations over some specific notion of program store, gives the first
axis upon which program verification and construction tools are based.

For the second axis, domain specific algebras are considered for different
aspects of program analysis. For example:

• KAT embeds a Boolean algebra of tests or assertions into a Kleene
algebra to enable reasoning about while loops and if statements.

• SKAT, schematic Kleene algebra with tests, extends KAT with axioms
for data flow, specifically assignment. It allows for the equivalence of
Manna’s flowchart schemes to be proven algebraically.

• ω-algebras extend Kleene algebras with an infinite iteration operator,
and therefore are an important step towards supporting notions of total
correctness, where programs are not guaranteed to terminate.

• DRA, demonic refinement algebra, is a variant of KAT for total correct-
ness. DRA introduces a strong iteration operator which stands for fi-
nite or infinite operation in order to handle potentially non-terminating
programs.

• Action algebras have residuals for the sequential composition operator.
In this setting refinement rules can be derived in addition to verification
rules.

• bi-Kleene algebra extends Kleene algebras with a notion of parallel
composition in addition to the usual sequential composition. Previ-
ously, concurrent Kleene algebra sought to capture the interaction be-
tween these two composition operators as an exchange law. In this
thesis, extensions of bi-Kleene algebra called rely-guarantee algebras
are used to capture the notion of interference between concurrent pro-
grams.

• In a quantale, every isotone function is guaranteed to have a least and
greatest fixpoint. In this setting one can derive rules for recursion via
standard fixpoint theory.

7



The complete relationship between the above algebraic structures (and
more) is given in Figure 3.1. This overall approach to developing program
verification and refinement tools is described in full detail for sequential pro-
grams using SKAT in Chapter 5, before being expanded to cover concurrent
programs with the rely-guarantee method in Chapters 6 through 8. Essen-
tially the algebra is used to provide a clean separation of concerns between
the abstract level of refinement laws, and the concrete level where data flow
can be considered. The use of algebra in this way allows verification and
construction tools to be developed in a rapid fashion—given one tool, often
a new one can be developed for a slightly different application domain with
relatively little effort, simply by changing several axioms, or by using another
model.

1.3 Research Contributions and Thesis Overview

The primary aim of this thesis is to use the approach in Section 1.2 to
develop tools for rely-guarantee reasoning within the Isabelle/HOL theorem
prover. To achieve this algebras and models for rely-guarantee reasoning are
conceived and developed within Isabelle, and used to construct prototype
verification tools. These tools have been used to verify canonical examples
from the literature.

In this section, the content and research contributions contained within
this thesis are summarised on a chapter by chapter basis.

• Chapter 2 presents an overview of existing work on the rely-guarantee
method. Furthermore, the rely guarantee method is briefly compared
and contrasted to other methods for reasoning about concurrent pro-
grams, such as the Owicki-Gries method and concurrent separation
logic.

• Chapter 3 presents in full detail the hierarchy of algebras briefly de-
scribed in Section 1.2. Furthermore, the introduction of these algebras
is used to introduce Isabelle/HOL, including showing basic proofs, as
well as the techniques and methods for formalising algebraic hierarchies
within Isabelle.

As part of the work involved in this thesis, the algebraic hierarchies
used have been formalised in Isabelle, and some have been released
as libraries for the Isabelle Archive of Formal Proofs. Specifically files
for variants of idempotent semirings (dioids) and Kleene algebra were
released [ASW13a], as well as files for Kozen’s Kleene algebra with tests
and von Wright’s demonic Refinement algebra [AGS14b].

• Chapter 5 illustrates an alternative to the approach given in Section 1.2
by mechanising Angus and Kozen’s schematic Kleene algebra with tests

8



(SKAT) [AK01] in Isabelle. This approach differs from that in Sec-
tion 1.2 by using a more syntactic/grammar based on term algebras.
Despite these differences, this chapter serves as an illustration of how
Isabelle can be used in the construction of program verification tools
without the additional complexity of concurrency.

Schematic Kleene algebra is intended to algebraically model Manna’s
flowchart schemes [Man74]. The chapter presents the techniques used
to mechanise SKAT in Isabelle before formalising a complex flowchart
equivalence proof due to Manna. While Manna’s proof is based on
diagrammatic visual reasoning, the proof here is a mechanisation of
Angus and Kozen’s algebraic proof.

The chapter then presents a novel approach to implementing a program
verification tool in Isabelle for simple while programs using SKAT. This
approach uses Kleene Modules to separate the type of assertions from
those of tests. While this method is used out of necessity due to how
SKAT is defined, it provides several conceptual benefits. This chapter
represents the first concrete verification tool based on such algebras.

• Chapter 6 presents a basic algebra and model for verifying concur-
rent programs with the rely-guarantee method. Algebraic axioms from
which the rely-guarantee rules can be derived are investigated. It is
noted that there exists a key mismatch between algebraic methods
and traditional methods for verifying concurrent programs. Algebraic
methods are inherently compositional by nature, which seems at odds
with the pervasive interference in shared memory concurrency, that
makes compositionality a challenge. To address this, operations are
considered that break the algebraic compositionality in such a way to
express interesting properties of concurrent programs. These ideas are
elaborated on in further chapters.

• Chapter 7 presents an enhanced variant of the rely-guarantee algebra
presented in Chapter 6. This algebra includes operators for more fine-
grained reasoning about interference. Furthermore it supports deriving
correct programs by refinement, unlike the algebra in Chapter 6. From
this algebra both Jones-style inference rules for program verification,
and equivalent rules for refinement can be derived.

In addition to this, an infinite language/trace based model for this
Algebra is described in detail. This model effectively provides a de-
notational semantics for program verification and construction using
the rely-guarantee method. Linking this model with the algebra con-
stitutes a soundness proof for this model. Both the algebra and the
model are implemented in Isabelle. This constitutes the first mech-
anisation (that the author is aware of) of a refinement calculus for

9



rely-guarantee with a denotational semantics in an interactive theo-
rem prover. Previous work on the mechanisation of rely-guarantee (in
both Coq and Isabelle) mostly do not appear to support constructing
correct programs via refinement, and are based on operational seman-
tics [Nie03, MPdS13].

The infinite trace model in this chapter is influenced by prior work by
Brookes [Bro93] and Dingel [Din02]. The algebra has some similari-
ties with prior work on refinement calculi for rely-guarantee such as
in [HJC13]. In contrast to prior work, it can be shown that certain
operations that make their semantics more complex; such as pervasive
stuttering and mumbling are actually unnecessary for constructing a
working tool for refinement.

• Chapter 8 details how more concrete parts of the model from Chapter 7
operate. Specifically a description of how tests (in the sense of Kozen’s
KAT) work within the model. Furthermore, it contains details of how
the assignment statement is implemented in the model.

In addition, this chapter contains an example of the algebra from Chap-
ter 7 being used for a refinement proof within Isabelle. A derivation of
the common FINDP example is given, used before in [Nie01, HJC13]
for example. This example shows that refining concurrent programs
within Isabelle can be done relatively straightforwardly via the use of
custom Isabelle tactics.

10



Chapter 2

The Rely-Guarantee Method

11



2.1 Introduction

As mentioned in Chapter 1, extensions of Hoare logics are becoming in-
creasingly important for the verification and development of many kinds of
programs, including concurrent and multiprocessor programs. Additionally,
as previously claimed in Chapter 1, is perhaps fair to state that interference
is the essence of concurrency. In the context of shared-variable concurrency,
such interference manifests as the state of one process being changed by an-
other. This is pictorially demonstrated in Figure 2.1. It is certainly the case
that no non-trivial program can sensibly operate under arbitrary interfer-
ence, so in order to verify and develop concurrent programs, methods must
be developed and used that take specific interferences from another process
or environment into account.

P1 P2‖

Figure 2.1: Two concurrent processes interfering

In this chapter, prior work on the Owicki-Gries method, the rely-guarantee
method, and on concurrent separation logic are all described and contrasted
as possible solutions to the problem of verifying and developing programs
under interference. Most attention is given to rely-guarantee, but all of
these methods are in some sense extensions of Hoare logic aiming to provide
additional Hoare-style inference rules to handle concurrent composition. Of
course, given the well known complexity of implementing concurrent pro-
grams, such rules are often rather non-trivial, and can even offer substantial
insight into the nature of concurrency itself.

2.2 The Owicki-Gries Method

The Owicki-Gries method [Owi75, OG76] represents a seminal approach to
extending Hoare logic to capture concurrency. The Parallel rule given by
Owicki and Gries states that

{P1}X{Q1} {P2}Y {Q2}
{P1 ∧ P1}X‖Y {Q1 ∧Q2}

provided the proofs of {P1}X{Q1} and {P2}Y {Q2} are interference free.
This interference freedom property is also referred to as the Einmischungs-
frei property. While the Owicki-Gries method could perhaps be seen as
an attempt at a compositional proof method, it is not compositional, as

12



if the final Einmischungsfrei property fails, then the entire program devel-
opment up till that point may well have to be totally re-done. Neverthe-
less, the Owicki-Gries method has proven quite successful in practice, even
when compared with compositional approaches [dRdBH+01b]. Furthermore
it is known that the Owicki-Gries proof rule is unsound for programs which
manipulate pointers—as there is a possibility of race conditions involving
attempts to update or deallocate shared pointers [Bro04].

2.3 The Rely-Guarantee Method

One of the most popular extensions of Hoare logic for concurrent programs
is Jones’ rely-guarantee method [Jon81]. A main benefit of this method,
especially over Owicki-Gries, is compositionality: the verification of large
concurrent programs can be reduced to the independent verification of in-
dividual subprograms. The effect of interactions or interference between
subprograms is captured by rely and guarantee conditions. Rely conditions
describe the effect of the environment on an individual subprogram. Guar-
antee conditions, in turn, describe the effect of an individual subprogram
on the environment. By constraining a subprogram by a rely condition,
the global effect of interactions is captured locally. Compare Figure 2.2
with Figure 2.1. In Figure 2.2 the interference between the programs P1

and P2 has been abstracted away into guarantee conditions, which are then
used as the rely condition for the opposing process. Note that a program
is only required to satisfy its guarantee as long as its rely condition holds.
In this thesis, rely and guarantee conditions are collectively referred to as
interference constraints. In this way, the rely-guarantee method provides
compositionality—rather than reasoning about the complicated interference
between many concurrent components, we can reason about the components
and their interference constraints separately.

G1

P1

R1

G2

P2

R2

‖

Figure 2.2: Interaction captured by relies and guarantees

The rely-guarantee rules as they appear in this thesis (Figure 6.1 in
Chapter 6 and Figure 7.4 in Chapter 7) were first given by Jones in [Jon81,

13



Jon83]. The remainder of this section attempts to give a (in no way complete)
overview of related work done on the rely-guarantee method since then.

Stirling [Sti88] presents rely-guarantee (although not named as such) as
extension of the Owicki-Gries method. He extends the Hoare triples with
sets of environment invariants, giving quintuples which are very much in
the style of Jones. These environment invariants are used to encode the
properties that are guaranteed to be preserved by both the environment a
program runs in and by the program itself. By showing that the results of
the interference freedom test in the Owicki-Gries method can be encoded in
these environment invariants, Stirling is able to prove completeness of his
system relative to Owicki-Gries.

Xu et al. [XdRH97] present a systematic approach to the rely-guarantee
method. They provide a proof system for partial correctness and demon-
strate that this system can be extended to verify properties such as deadlock
freedom and convergence. The language used in their paper is essentially
the same as in [OG76], being an extension of Dijkstra’s guarded command
language with the addition of parallel composition and a synchronisation
statement. For this language, they present an operational semantics in the
style of [Sti88]. Finally, they prove soundness and relative completeness
of the proof system w.r.t. their operational semantics. For relative com-
pleteness their method is to demonstrate that rely-guarantee is essentially a
compositional variant of the Owicki-Gries method, which has been proven
complete in e.g. [Apt81]. In this context completeness implies that all valid
programs can be proven correct using the proof method.

Nieto [Nie03, Nie01] formalises both the Owicki-Gries method and the
Rely-Guarantee method in Isabelle/HOL. Her mechanisation follows the
work of Xu et al. by giving an operational semantics for concurrent programs,
and then proving both soundness and compositionality (for rely-guarantee).
It is worth noting that Nieto’s method does not allow nesting of parallel
statements. A program consists of multiple sequential component programs
which are all placed in parallel with each other at the top level. Her proofs
of soundness follow this structure, first proving soundness for atomic pro-
grams, then sequential component programs and finally parallel programs.
The soundness proof and program semantics given in this thesis do not have
this limitation.

Nieto’s mechanisation is relatively succinct and elegant, as the opera-
tional approach of Xu et al. proves ideal for this purpose. The approach in
this thesis differs by giving a denotational semantics for concurrent programs
and proving soundness by linking this semantics with an abstract algebra in
which all the rules of the rely-guarantee calculus can be derived. Nieto’s
formalisation consists of around 1000 lines of specification and 2660 lines
of proof steps for 184 lemmas including Owicki-Gries, Rely-Guarantee, and
verification condition generators for each. By contrast, the formalisation in
this thesis encompasses over 500 lemmas and over 5000 lines of proof steps

14



for just Rely-guarantee alone.
The denotational approach used in this thesis owes a great deal to the

work of Brookes [Bro93]. In his paper ‘Full abstraction for a shared variable
parallel language’, Brookes presents transition traces—sequences of state
pairs of the form (σ, σ′) ∈ Σ2. For example

(σ0, σ0)(σ1, σ
′
1) . . . (σn−1, σ

′
n−1)(σn, σ

′
n) (2.1)

is a transition trace. The transition (σn, σ
′
n) would be an example of a

program transition, while the transitions between them σ′n)(σn+1 are en-
vironment transitions. In Brookes’ paper, program transitions (σ, σ′) are
only allowed to occur within a transition trace provided it is possible for
a command C to perform a computation from σ to σ′ according to some
operational semantics. These sets of transition traces are closed under the
operations of stuttering and mumbling. The mumble language w† for a tran-
sition trace w is generated inductively: Assume σ1, σ2, σ3 ∈ Σ and u, v, w are
transition traces. First, w ∈ w†. Secondly, if u(σ1, σ2)(σ2, σ3)v ∈ w† then
u(σ1, σ3)v ∈ w†.

The stutter language w

†

for a transition trace w is also defined inductively
in much the same way: Assume σ1, σ2 ∈ Σ and u, v, w are transition traces.
First w ∈ w

†

. Secondly, if u(σ1, σ2)v ∈ w

†

then u(σ1, σ2)(σ2, σ2)v ∈ w

†

and
u(σ1, σ1)(σ2, σ2)v ∈ w

†

.
Using these transition traces Brookes is able to prove full abstraction.

Very roughly speaking, this entails that two sets of transition traces are
equivalent iff both sets of traces have the same behaviour w.r.t. the opera-
tional semantics. In a trace semantics that is not fully abstract, one might
be able to distinguish between programs such as skip; skip and skip.

Dingel [Din02] builds upon Brookes’ transition traces by giving a re-
finement calculus that allows for the formal, step-wise development of both
shared variable and message passing concurrent programs from abstract spec-
ifications. Dingel uses exactly Stirling’s [Sti88] notion of environment invari-
ants to provide a notion of context-sensitive refinement, wherein programs
are refined within a context representing the actions of the environment.

At this point it is perhaps helpful to show how relies and guarantees oc-
cur within transition traces. This is depicted in Figure 2.3. The rely condi-
tion imposes constraints on the environment transitions, while the guarantee
speaks about the transitions made by the program.

Concurrency for transition traces is achieved via shuffling. This is al-
ready a well studied operation in formal language theory and in the con-
text of process algebra [BW90] where concurrency is implemented as shuffle.
Properties of this operator have been extensively studied. For example, find-
ing the proper varieties of language closed under shuffle has been studied by
Bloom and Ésik [BE96, BE95]. Shuffling over infinite languages has been
studied by Mateescu et al. [MMRS97]. Definitions of this operator for both
finite and infinite traces are given in Chapter 6 and Chapter 7 respectively.

15



σ0 . . . σ′n)(σn+1 . . . (σm, σ
′
m) . . . σ′x)(σx+1 . . . (σy, σ

′
y)

precondition rely rely

guarantee guarantee
postcondition

Figure 2.3: Relies and guarantees for a transition trace

In contrast to Brookes’ transition traces, one can also consider a deno-
tational approach to rely-guarantee based on so called Aczel traces, which
originate from an unpublished note by Aczel. Aczel traces are process in-
dexed state pairs. Unlike transition traces, Aczel traces are required to be
connected, such that in an Aczel trace

(σ0, p1, σ
′
0)(σ1, p2, σ

′
1) . . . (σn, p3, σ

′
n),

it is required that σ′0 = σ1. The middle elements of the transitions, p1,p2 and
p3 are process labels. These traces are used for example in [dBHdR99]. In
contrast to shuffling transition traces, concurrency in this setting has a more
intersection-like flavour. To explain; in Aczel traces concurrent composition
X‖Y will typically match program transitions from X with environment
transitions in Y , and vice versa. Elements of X and Y where this matching
cannot be achieved are simply not included in the composition. In this
thesis, transition trace style semantics are used exclusively, however it seems
reasonable to suggest that the laws presented in succeeding Chapters should
hold for either style of trace.

Hayes et al. [HJC13] give a refinement calculus for rely-guarantee which
shares many features with the rely-guarantee algebra described in Chap-
ters 6 and 7. These refinement rules for rely-guarantee enable a more general
kind of ‘rely guarantee thinking ’ as opposed to simply verifying programs us-
ing the standard rely-guarantee rules. Hayes et al. introduce a command
(guar g • c) which behaves as c, but only allows for atomic steps that ei-
ther stutter. or satisfy g between their pre- and post-state. A step in c
which violates this is not a valid step in (guar g • c). Using a Morgan style
specification statement [p, q] [Mor88], the statement

(guar g • [p, q])

implements a program from p to q where every atomic step satisfies g (or
stutters).

The second novel command Hayes et al. describe is a rely command
(rely r • c) which is intended to reflect the idea of c being implemented in
an environment that provides interference of at most r. The stronger the
rely condition (the more it states about the environment), the easier this
command is to implement.

16



Using these commands Hayes et al. consider general specifications of the
form

(guar g • (rely r • [p, q])) v c,

where c is a command that refines the specification. They note that this is
equivalent to the standard Jones quintuple

r, g ` {p}c{q}.

In [HJC13] their refinement calculus is based of an operational rather than
denotational semantics, but it would in theory be very well suited to the
denotational approach. The similarities between their work and the alge-
bra and model in Chapter 7 is discussed further in that chapter. Hoare
et al. [HMSW11] give a definition of rely-guarantee in concurrent Kleene
algebra, defining the Jones quintuple as

r, g ` {p}c{q} ⇐⇒ p(r‖c) ≤ q ∧ c ≤ g.

where r and g are power invariants, that is, elements that are invariant under
arbitrary powers such that

r? = r and r(?) = r.

A clear deficiency in this encoding is that c is required to implement g un-
conditionally, even if its rely condition fails.

This thesis builds upon this concurrent Kleene algebra approach in Chap-
ter 6, and further by incorporating ideas from, and shared with, Hayes et
al. [HJC13] in Chapter 7.

2.4 Concurrent Separation Logic

While this thesis is primarily concerned with the rely-guarantee method, con-
current separation logic [O’H07] represents another approach to handling the
interference between programs. In concurrent separation logic the parallel
rule becomes

{P1}X{Q1} {P2}Y {Q2}
{P1 ∗ P1}X‖Y {Q1 ∗Q2}

where ∗ is separating conjunction. Separation logic [ORY01, Rey02] in gen-
eral emphasises the idea of resource separation as a means to controlling the
complexity of interaction between processes. Separating conjunction allows
reasoning about modifications to one part of some state, while guaranteeing
that other parts remain unaffected. This seems like a natural fit for reasoning
with concurrent programs, where, as emphasised, one is primarily concerned

17



with guaranteeing the lack of interference between processes. If concurrent
processes are operating on separate parts of some resource, in the sense of
separation logic, then they should be able to execute in parallel, which is ex-
actly what the above rule states. This gives a notion of disjoint concurrency,
as opposed to the interference based concurrency of rely-guarantee.

Given the algebraic bent of this thesis, it would be remiss not to mention
the connection between concurrent separation logic and concurrent Kleene
algebra [OPVH15, HMSW11]. Indeed, using similar Isabelle techniques to
those presented in this thesis for rely-guarantee (and SKAT) can give a
Isabelle based construction and verification tool for concurrent separation
logic [DGS15].

There are also attempts to unify the separation logic and rely-guarantee
approaches, giving a rely-guarantee calculus equipped with a notion of sep-
arating conjunction. Vafeiadis [Vaf08] has performed some exciting research
in this direction.

18



Chapter 3

Algebraic Preliminaries

19



3.1 Introduction

In this chapter the algebraic foundations for this thesis are described. A
hierarchy of algebras is presented starting with idempotent semirings, or
dioids, which describe the interaction between sequential composition and
choice in programs. These are expanded to Kleene algebras and omega
algebras which add notions of finite and strictly infinite iteration respectively.
Action algebras add residuals useful for program construction by refinement,
and Quantales enhance Kleene algebras with notions from complete lattices,
within which concepts from fixpoint theory can be utilised.

CDQ

wCDQQ

ACT

wACT

wQ ωA

KA

wKA

D

wD

SL

CL

Figure 3.1: Class inclusions for join semilattices (SL), complete lattices (CL),
weak dioids (wD), dioids (D), weak Kleene algebras (wKA), Kleene algebras
(KA), weak action algebras (wACT), action algebras (ACT), weak quantales
(wQ), quantales (Q), ω-algebras (ωA), weak completely distributive quan-
tales (wCDQ) and completely distributive quantales (CDQ).

Figure 3.1 gives the class inclusions for the algebras described in this sec-
tion. For each algebra with a multiplication operator, there is also a variant
in which multiplication is commutative. There are also variations with more
than one multiplication operator (with one being commutative), resulting in
bi-algebras, for example a bi-Kleene algebra, or bi-dioid (a trioid).

20



3.2 Dioids

A semigroup is an algebraic structure (S, ·) where · is an associative binary
operation. A monoid is an algebraic structure (M, ·, 1) where:

• (M, ·) is a semigroup,

• 1 is an identity element such that 1 · x = x = x · 1 holds for all x.

A monoid or semigroup is commutative if its binary operator commutes, i.e.
x · y = y · x. A semiring is an algebraic structure (S,+, ·, 0, 1) where:

• (S,+, 0) is a commutative monoid,

• (S, ·, 1) is a monoid,

• the distributive laws x · (y+z) = x ·y+x ·z and (x+y) ·z = x ·z+y ·z
hold for all x, y, and z,

• the annihilation laws 0 · x = 0 and x · 0 = 0 hold for all x.

A semiring is weak if the right annihilation law x · 0 does not hold. An
idempotent semiring, or dioid is a semiring where the addition operator is
idempotent, that is x + x = x. Typically the multiplication operator in
statements such as x · y is omitted and written via juxtaposition as xy.

For the purposes of reasoning about programs, the intuition of the oper-
ators in a dioid is usually as follows:

• x+ y models non-deterministic choice between two programs x and y,

• x · y models sequential composition between x and y,

• 0 models abort,

• 1 models skip.

In this context it is essential that multiplication is not commutative. Of-
tentimes standard programming notation x; y will be used for sequential
composition, especially for longer examples found in later chapters. How-
ever, there is no reason why one should restrict oneself to only considering
sequential composition. It is equally possible for multiplication to represent
concurrent composition of programs. In this case, we obtain a commuta-
tive dioid which models the interaction between concurrent composition and
non-deterministic choice. To model situations involving the interaction be-
tween both sequential and concurrent composition, we introduce a trioid as
a structure (S,+, ·, ‖, 0, 1) such that:

• (S,+, ·, 0, 1) is a dioid.

• (S,+, ‖, 0, 1) is a commutative dioid.

21



This definition of a trioid is a special case of a more general definition where
the units of sequential and concurrent composition are not shared. For cer-
tain models (e.g. multirelations) sequential composition and concurrent com-
position do not share units in this way. Note that in a trioid there are no
axioms governing the interaction between the sequential composition · and
the parallel composition ‖.

3.3 Kleene Algebra

While dioids can capture the interaction between sequential/parallel com-
position and non-deterministic choice, for programming, notions of iteration
are essential. A Kleene algebra is a dioid expanded with a star operation
which satisfies both the left unfold axiom

1 + x · x? ≤ x?

and left and right induction axioms

z + x · y ≤ y ⇒ x? · z ≤ y and z + y · x ≤ y ⇒ z · x? ≤ y.

In a Kleene algebra the equivalence 1+x·x? = x? and the right unfold axiom
1 + x? · x ≤ x? are derivable as theorems. Thus iteration x∗ is modelled as
the least fixpoint of the function λy.1 + x · y, which is the same as the least
fixpoint of λy.1 + y ·x. A commutative Kleene algebra is a Kleene algebra in
which multiplication is commutative.

A bi-Kleene algebra is a structure (K,+, ·, ||, 0, 1, ?, (?)) where

• (K,+, ·, 0, 1, ?) is a Kleene algebra,

• (K,+, ||, 0, 1, (?)) is a commutative Kleene algebra.

A concurrent Kleene algebra [HMSW11] is a bi-Kleene algebra which
satisfies the interchange law

(x‖y)(w‖z) ≤ (xz)‖(yw).

In some contexts, it is also useful to add a meet operation u to a bi-
Kleene algebra, such that (K,+,u) is a distributive lattice. Such an algebra
is called a bi-Kleene algebra with meet. This is particularly needed in the
context of refinement, where we want to represent specifications as well as
programs—while intersecting programs rarely makes sense, intersection of
specifications is very useful.

22



3.4 Models of Kleene Algebra and Dioids

3.4.1 Languages

A word is a possibly empty sequence of letters from an alphabet Σ. The set
of all (finite) words over Σ is denoted by Σ∗, and the empty word is denoted
by ε. A language L is a set of such words over an alphabet Σ. A language
is finite iff all its words are finite. Some common operations over languages
are as follows:

• The language product XY of two languages X and Y consists of words
of the form st where s ∈ X and t ∈ Y .

• The Kleene closure X∗ is defined as

X∗ =
⋃
i∈N

Xi

where X0 = {ε}, X1 = X, and Xi+1 = XiX.

• The shuffle ‖ of two finite words is defined inductively as ε‖s = {s},
s‖ε = {s}, and as‖bt = a(s‖bt) ∪ b(as‖t), which is then lifted to the
shuffle product of languages X and Y as

X‖Y = {x‖y : x ∈ X ∧ x ∈ Y }.

The parallel Kleene closure X(∗) can be defined in the same way as the usual
Kleene closure, replacing the language product with the shuffle product.

The regular languages are defined recursively as follows:

• The empty language ∅ is regular.

• The singleton language {a} is regular for each a in Σ.

• If X and Y are regular, then XY is regular, the union X∪Y is regular,
and the Kleene closure X∗ is regular.

It is well known that all finite languages are regular.
It is well known that (regular) languages with language union as +, lan-

guage product as ·, the empty language as 0, the empty word language {ε}
as 1, and the Kleene closure as the star form Kleene algebras. In fact, Kleene
algebras are complete with respect to the equational theory of regular lan-
guages [Koz94]. This means that any equation that can be proven between
regular languages, can also be proven via the axioms of Kleene algebra. This
implies that equations in Kleene algebra are decidable. Moreover, commu-
tative Kleene algebras are complete with respect to the equational theory

23



of regular languages over multisets [Con71], that is languages in which let-
ters within words are allowed to commute arbitrarily. It follows that equa-
tions in (commutative) Kleene algebras are decidable. Kozen’s complete-
ness proof for Kleene algebras has been mechanised in Coq by Braibant and
Pous [BP12]. This proof is highly complex—it involves defining matrices
over Kleene Algebras, and proving that those matrices in turn form Kleene
algebras. It then uses techniques from automata theory whereby automata
are encoded as matrices to prove completeness.

More formally:

Theorem 1. (Σ∗,∪, ·, ∅, {ε}, ∗) is a Kleene algebra.

Theorem 2. (Σ∗,∪, ‖, ∅, {ε}, (∗) is a commutative Kleene algebra.

Theorem 3. (Σ∗,∪, ·, ‖, ∅, {ε}, (∗)) is a concurrent Kleene algebra.

3.4.2 Binary Relations

Another standard model for Kleene algebra is given by binary relations. A
binary relation on a set A is a subset of the Cartesian product A× A. The
product of two relations R and S is defined as

R ◦ S = {(x, z) | ∃y. (x, y) ∈ R ∧ (y, z) ∈ S}.

The identity relation Id on a set A is defined as

Id = {(x, x) | x ∈ A}.

The reflexive transitive closure R∗ for a relation R is given by R∗ = R+∪ Id,
where the transitive closure R+ is defined as

R+ =
⋃
i∈N

Ri,

where R0 = R and Ri+1 = Ri ◦R.

Theorem 4. (A×A,∪, ◦, ∅, Id, ∗) is a Kleene algebra for any set A.

In addition to being complete with respect to the equational theory of
regular languages, Kleene algebras are complete with respect to the equa-
tional theory of binary relations as well [Koz94].

Binary relations yield a standard semantics for sequential programs, but
are unsuitable for concurrent programs due to the lack of any suitable oper-
ator for parallel composition.

24



3.4.3 Further Models

Pomsets, partially ordered multisets, represent a natural generalisation of
words (which can be seen as totally ordered multisets, or tomsets) into a
concurrent setting [Gis88]. Regular series-parallel pomsets are those which
can be constructed via sequential and parallel composition, in a similar fash-
ion to how the regular languages are constructed from regular expressions.
Bi-Kleene algebras are sound and complete with respect to the equational
theory of regular series-parallel pomset languages, and the equational theory
is again decidable [LS13]. Regular series-parallel pomset languages with a
suitable notion of pomset subsumption form concurrent Kleene algebras.

3.5 Lattices

A join semilattice (S,≤) is a poset for which binary joins (or suprema) exist,
whereas a complete join semilattice is a poset for which arbitrary joins exist.
Meet semilattices and complete meet semilattices are obtained by duality
via the inverse order. Formally, a join or suprema for a subset S of a poset
is the greatest element x such that x is greater than or equal to all elements
in S. Meets or infima are defined in a dual fashion as the least element x
less than or equal to all elements in S.

Equivalently a join semilattice may be defined as an algebraic structure
(S,+) where

• (S,+) is a commutative semigroup,

• x+ x = x,

i.e. + is an associative, commutative and idempotent operator over S. The
connection between the order theoretic (S,≤) and the algebraic (S,t) is
given by the natural partial order x ≤ y ⇐⇒ x + y = y. It is well known
that every complete join semilattice is also a complete meet semilattice, hence
a complete lattice. This is because the presence of arbitrary joins implies
the existence of arbitrary meets (and vice versa).

In a lattice, the meet and join operators satisfy the absorption laws

x+ (x u y) = x and x u (x+ y) = x.

An (algebraic) lattice (L,+,u) is distributive if for all x, y, and z in L:

x u (y + z) = (x u y) + (x u z).

The Knaster-Tarski theorem states that every isotone function on a com-
plete lattice L has both a least and greatest fixpoint, or more generally, that
the set of fixed points of f in L is itself a complete lattice. Furthermore
Kleene’s fixed point theorem states that any Scott-continuous function f

25



has a least fixpoint, defined as the suprema of the ascending Kleene chain of
f . A Scott-continuous function is one which preserves all directed suprema,
i.e. ∑

f(D) = f
(∑

D
)

where D has the property that for any a, b ∈ D there exists a c ∈ D such that
a ≤ c and b ≤ c. All isotone functions are Scott-continuous. The ascending
Kleene chain of f is

⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ f(f(f(⊥))) ≤ . . .

In other words, any Scott-continuous function on a complete lattice (or rather
a complete partial order) can be iterated from the bottom element to find the
least fixed point. One can apply order reversal to obtain a similar result for
greatest fixpoints, but Scott-continuous functions in the inverse order must
be antitone (in the non-inverse order) which hardly ever holds in practice.
Both these theorems have been proven in Isabelle and are useful for reasoning
about iteration as fixed points.

3.6 Boolean Algebra

A Boolean algebra is a structure (B,+,u, , 0, 1) where:

• (B,+,u) is a distributive lattice,

• x+ 0 = x and x u 1 = x for all x (identity),

• x+ x = 1 and x u x = 0 for all x (complementation).

The simplest non-trivial Boolean algebra is the two-element Boolean al-
gebra. It has two elements, 0 and 1, and its operations are defined by the
following rules.

+ 0 1
0 0 1
0 1 1

u 0 1
0 0 0
0 0 1

x 0 1
x 1 0

This algebra represents simple Boolean logic, where 0 is false, 1 is true, + is
or, u is and, and is not.

A second common boolean algebra is the power set Boolean algebra for a
set S. This is a Boolean algebra where the elements are subsets of S. Here,
+ is set union (∪), u is set intersection (∩), 0 is the empty set (∅), 1 is the
set S, and is complementation relative to S.

26



3.7 Galois Connections

A Galois connection between two partially ordered sets (A,≤) and (B,≤) is
a pair of functions f : A→ B and g : B → A such that

f(x) ≤ y ⇐⇒ x ≤ g(y).

The function f is the lower adjoint while g is the upper adjoint. Identifying
functions as adjoints of Galois connections is highly desirable, as they are
known to satisfy many useful properties. In this section, some applications
of Galois connections as they relate to our verification tool are considered.
For a detailed overview of properties of Galois connections, see [Aar92].

Using Galois connections some notable laws for reasoning with fixed
points can be derived, in particular, the least fixpoint fusion law states that
if f is a lower adjoint, h and k are isotone functions and f ◦ h = k ◦ f then
f(µh) = µk. Similarly, the greatest fixpoint fusion law states that if g is an
upper adjoint, h and k are isotone functions then g(νh) = νk.

These fusion laws have a long history in program refinement and speci-
fication. First explicitly named as such in Meijer’s Functional Programming
with Bananas, Lenses, Envelopes and Barbed Wire [MFP91], they go back
at least as far as Stoy’s Denotational Semantics [Sto77]. More recently they
have been recognised as generally useful program transformation rules, es-
pecially for functional programs.

3.8 Weak Kleene Algebras and Dioids

For applications involving total correctness rather than partial correctness,
certain axioms of Kleene algebra and dioids are no longer applicable. In
particular the right annihilation axiom x0 = 0 should not hold in such
situations—clearly if x doesn’t terminate, then the 0 will never be able to
abort x. A weak dioid, or weak Kleene algebra is one in which this right
annihilation axiom does not hold. In general, for any algebra in this section
with the right annihilation law, there exists a weak variant without it.

Furthermore if the right distributivity law xy + xz ≤ x(y + z) does not
hold for some algebra in addition to right annihilation not holding, then one
has a near algebra. This is the case in for example, process algebras where
the behaviours in Figure 3.2 are different. For the models considered in this
thesis, right distributivity always holds, but right annihilation often does
not. It is always the case that the opposite of a Kleene algebra, i.e. one
where the order of operands for multiplication has been reversed, is a Kleene
algebra. However, it is not the case that left Kleene algebras need be closed
under opposition [Koz90].

27



x

y z

x

y

x

z

Figure 3.2: Right distributivity

3.9 Kleene Algebra with Tests and Hoare Logic

For modelling actual programs with conditional statements and while loops,
Kleene Algebra must be extended with a notion of tests. Program tests and
assertions are added to Kleene Algebras by embedding a boolean algebra of
tests between 0 and 1. Following Kozen [Koz00], a Kleene algebra with tests
(KAT) is a structure (K,B,+, ·,? , 0, 1, ) where (K,+, ·,∗ , 0, 1) is a Kleene
algebra and (B,+, ·, , 0, 1) a Boolean subalgebra of K. The operations are
overloaded with + as join, · as meet, 0 as the minimal element and 1 the
maximal element of B. Complementation is only defined on B. We write
x, y, z for arbitrary elements of K and a, b, c for tests in B. Conditionals
and loops can now be expressed:

if b { x } else { y } = bx+ by, while b do { x } = (bx)∗b.

Tests play a double role as assertions to encode (the validity of) Hoare triples:

{|b}| x{|c}| ⇐⇒ bxc = 0.

Multiplying a program x by a test b at the left or right means restricting its
input or output by the condition b. Thus the term bxc states that program x
is restricted to precondition b in its input and to the negated postcondition
c in its output. Accordingly, bxc = 0 means that x cannot execute from b
without establishing c. This faithfully captures the meaning of the Hoare
triple {|b}| x{|c}| . It is well known that algebraic relatives of all rules of
Hoare logic except assignment can be derived in KAT [Koz00], and that
binary relations under union, relational composition, the unit and the empty
relation, and the reflexive transitive closure operation form a KAT where the
tests are subsets of the identity relation Id.

In the context of concurrency, this approach is no longer appropriate, as
tests can no longer be assumed to satisfy the KAT axioms in the presence of
interference. The following approach by Tarlecki [Tar85] can be used instead.
One can encode validity of a Hoare triple as

` {x}y{z} ⇐⇒ xy ≤ z

for arbitrary elements of a Kleene algebra (not necessarily a KAT). Never-
theless all the rules of propositional Hoare logic except the assignment axiom
can still be derived [HMSW11].

28



3.10 Action Algebra

An action algebra [Pra90, Koz93] is an structure (A,+, ·, 0, 1, ?,←,→), such
that (A,+, ·, 0, 1) is a dioid, and satisfying

xy ≤ z L⇐⇒ x ≤ z ← y, and xy ≤ z R⇐⇒ y ≤ x→ z, (3.1)
1 + x?x? + x ≤ x? ≤ x?, (3.2)

1 + yy + x ≤ y =⇒ x? ≤ y. (3.3)

Axiom (3.1) defines the left and right residuals ← and → as upper adjoints
of − · y and x · − respectively. In other words, (3.1L) and (3.1R) describe
families of Galois connections indexed by y and x. A commutative action
algebra is one in which xy = yx. In such an action algebra the left and right
residuals coincide. It is straightforward to show that for any action algebra,
(A,+, ·, 0, 1, ?) is a Kleene algebra.

Action algebra is so called as it was intended by Pratt to model action
logic, wherein the right residual models preimplication of actions, had a
then b, for example: “Had I bet on that horse I’d be rich”. Conversely,
postimplication models b if ever a, for example: “I’ll be rich if that horse ever
wins”. For a comprehensive list of the properties of action algebras and their
most important models formalised in Isabelle see [ASW13a], which includes
the language and the relational model.

In [Pra90] Pratt is able to show that action algebra can be equation-
ally axiomatised, i.e. the variety, ACT, of action algebras, is finitely based.
The key insight of Pratt is that the star itself can be equationally axioma-
tised. For the Kleene algebra signature this is not possible, as shown by
Redko [Red64]. This set of equivalent axioms to (3.1)–(3.3) is shown below:

x→ y ≤ x→ (y + z), x(x→ y) ≤ y ≤ x→ xy,

y ← x ≤ (y + z) ≤ x, (y ← x)x ≤ y ≤ yx ≤ x
x? ≤ (x+ y)?, 1 + x?x? + x ≤ x?,

(x→ x)? ≤ x→ x.

That action algebra can be equationally axiomatised is potentially interesting
for automated reasoning as it implies that theorems of action algebra can
potentially be solved by theorem provers specialised for equational reasoning,
such as Waldmeister [BH96]. One might further hypothesise that automated
reasoning tools such as sledgehammer in Isabelle might also be able to reason
more effectively with action algebra as opposed to Kleene algebra. However,
this does not appear to be the case, at least for sledgehammer [Arm12].

An obvious consequence of the existence of these residuals is that any
inequality x ≤ y in action algebra can be rewritten as either 1 ≤ a → b
or 1 ≤ b ← a. Interpreting 1 ≤ as the symbol for theoremhood, `, it can

29



be seen that the theorems of action algebra are its reflexive elements. This
gives a Hilbert-style system for action logic.

From the perspective of program verification and refinement using regular
algebras, we can rewrite the Tarlecki style triple px ≤ q as x ≤ p → q.
Swapping the order into the refinement ordering p→ q w x we can see that
we end up with a Galois connection

p→ q w x ⇐⇒ {p}x{q},

which captures the relationship between program refinement and Hoare-style
program verification. In general p → q can be thought of as a specification
statement modelling the greatest program from p to q. In Section 3.13 we
show that pre- and post-implications are guaranteed to exist in the more
general setting of quantales.

3.11 ?-continuous Kleene Algebra

Kozen’s ?-continuous Kleene algebra [Koz94], also called an N-algebra by
Conway [Con71] is a dioid satisfying the law

xy∗z =
∑
{xynz | n ∈ N}.

This law can be seen as the definition of y∗ as a suprema of the set of
powers of y combined with an infinite left and right distributivity law (see
Section 3.13).

One advantage of ?-continuous Kleene algebra over Kleene algebra is that
the while the completeness proof for Kleene algebra and regular languages
is extremely involved, the equivalent completeness proof for ?-continuous
Kleene algebra can be performed by straightforward induction.

3.12 Weak ω-Algebra and Demonic Refinement
Algebra

A weak ω-algebra [LS11] is a left Kleene algebra expanded with an omega
operator satisfying

xxω = xω,

y ≤ z + x · y =⇒ y ≤ xω + x?z.

These axioms are called the ω-unfold axiom and the ω-coinduction axiom
respectively. In this thesis, the ω operator can be considered to represent
strictly infinite iteration. Iteration that is either finite or infinite is therefore
represented as

x∞ = x? + xω.

30



While KAT, and Kleene algebra in general, provide a propositional Hoare
logic for partial correctness reasoning, algebraic reasoning about total cor-
rectness and non-termination can be done in the context of ω-algebra [HS10,
Gut12]. For an alternative treatment of non-termination, von Wright [vW04]
introduces a demonic refinement algebra (DRA) as a structure

(D,+, ·, 0, 1, ?,∞)

where:

• (D, ·,+, 0, 1, ?) is a Kleene algebra,

• The strong iteration operator ∞, which represents both finite or in-
finite iteration, satisfies the unfolding axiom x∞ = xx∞ + 1 and the
induction axiom z ≤ xz + y =⇒ z ≤ x∞y

VonWright’s intended model for DRA is (positively) conjunctive predicate
transformers over a state space Σ. That is, functions of type

(Σ→ {0, 1})→ (Σ→ {0, 1}).

which distribute over arbitrary (non-empty) conjunctions of predicates. Such
a model represents (demonically) non-deterministic programs according to a
weakest precondition semantics. The demonic in demonic non-determinism,
and DRA itself, represents that we have no possible influence over the choice
operator +.

3.13 Quantales

A (unital) quantale is a dioid based on a complete lattice where the mul-
tiplication distributes over arbitrary suprema. Formally, it is a structure
(S,≤, ·, 1) such that (S,≤) is a complete lattice, (S, ·, 1) is a monoid and

x
(∑

Y
)

=
∑
y∈Y

xy,
(∑

X
)
y =

∑
x∈X

xy.

In a quantale x? is the sum of all powers xn, that is

x? =
∑
n∈N

xn.

All quantales are Kleene algebras, and also ?-continuous Kleene algebra.
Quantales were considered by Conway under the name S-algebra, or standard
Kleene algebra [Con71]. Furthermore, in a quantale one can prove that the
star is equal to the following fixed points from Section 3.3, i.e.

x? = µy.1 + xy = µy.1 + yx.

31



In a quantale the pre-implication and post-implication operators of action
algebra can also be derived as

x→ z =
∑
{y | xy ≤ z}, and z ← y =

∑
{x | xy ≤ z}.

The omega operator from Section 3.12 can be defined in the context of
a completely distributive quantale [HMSW11] where

x u
∑

Y =
∑
y∈Y

x u y,

i.e. one where meets distribute over arbitrary joins. In such a quantale, xω

can be defined as a greatest fixpoint

xω = νy.xy.

In such quantales where an omega operator can be defined it is often
useful to drop the left infinite distributivity law

x
(∑

Y
)

=
∑
y∈Y

xy,

as this law implies x0 = 0 when Y = ∅. As per Section 3.8 such quantales
are called weak quantales.

32



Chapter 4

Isabelle/HOL

33



4.1 Introduction

Isabelle/HOL [PNW11] is one of the most popular and well established inter-
active theorem proving (ITP) environments. It is widely used for formalising
mathematics and in a multitude of computing applications.

Isabelle supports the engineering of theory hierarchies for algebras and
their models. This feature is provided by Isabelle’s type classes and lo-
cales [Bal10, HW08]. Type classes in Isabelle are similar to those in func-
tional programming languages such as Haskell. Locales provide a more gen-
eral module mechanism. The two concepts are linked and can often be used
interchangeably. Classes usually suffice for simple algebraic specifications
and locales for more complex parametric ones. Classes and locales provide
a mechanism for theorem propagation: a theorem proved in a certain class
is automatically valid in all subclasses; a model that belongs to a class is
therefore an element of all superclasses.

Proofs within Isabelle have traditionally been based on reasoning with
built-in rewrite-based simplifiers, domain-specific theorem provers, special
solvers and tactics. This type of reasoning often requires considerable user
expertise and domain-specific knowledge of library functions and lemmas.
More recently, external automated theorem proving (ATP) systems and sat-
isfiability modulo theories (SMT) solvers have been integrated via the Sledge-
hammer tool. When Sledgehammer is invoked on a proof goal, it uses a rel-
evance filter to automatically gather hypothesis which are potentially useful
for discharging said goal. It then passes both these hypotheses and the goal
to the external provers. On success, the external proof output is internally
reconstructed by Isabelle to ensure trustworthiness. Isabelle has a small,
trustworthy logical Kernel, so proofs verified by Isabelle have an extremely
high degree of trustworthiness. The Sledgehammer tool is complemented by
additional tools such as Nitpick [BN10] and Quickcheck [Bul12], which search
for counterexamples. For a recent overview of this automation technology
see [BBN11].

In the following section, the algebras and concepts introduced in Chap-
ter 3 are used as a vehicle from which the basics of the Isabelle interactive
theorem prover are introduced.

4.2 Mechanising Algebras in Isabelle

In Isabelle a dioid can be defined using the typeclass functionality as

class dioid = semiring + ord +
assumes add-idem[simp]: x+ x = x
and less-eq-def: x ≤ y ←→ x+ y = y

As can be seen, a dioid is defined by extending the pre-existing semiring
class with the additional axiom add-idem. The add-idem law is defined

34



as a simplification rule by using the simp attribute, so it can be used by
Isabelle’s built in simplifiers and other tactics. The natural partial order
x ≤ y ←→ x + y = y is also introduced in the dioid typeclass. A simple
property of dioids is that addition is (left) isotone. This can be stated as a
lemma in Isabelle as:

lemma (in dioid) add-iso: x ≤ y =⇒ x+ z ≤ y + z

To prove such a lemma in Isabelle, we could manually apply rewriting rules
and simplification steps ourselves, for example:

lemma (in dioid) add-iso: x ≤ y =⇒ x+ z ≤ y + z
apply (simp only: less-eq-def)
apply (subst add-assoc[symmetric])
apply (subst add-assoc)
apply (subst add-commute) back
apply (subst add-assoc[symmetric])
apply (subst add-assoc) back
apply simp
done

In the above proof we begin by applying the definition of the natural partial
order, which gives us the goal of (x+z)+(y+z) = y+z with the assumption
x+y = y. The next two steps simply apply associativity rules to rewrite the
goal to x+ (z + y) + z = y+ z. The next line applies the add-commute rule
to rewrite the goal to x + (y + z) + z = y + z. The back statement is used
to backtrack between various possible substitutions of add-commute. The
following two steps again apply associativity to rewrite the goal back to the
form (x+ y) + (z+ z) = y+ z. The simplifier can then be used complete the
proof by using the assumption and the add-idem axiom.

This is a very long-winded way of completing such a simple proof in
Isabelle, but serves to exemplify what one could term the apply-style form
of proofs in Isabelle. This is the style of reasoning with ‘built-in rewrite-
based simplifiers, domain-specific theorem provers, special solvers and tac-
tics’ that was mentioned in Section 4.1. Isabelle also features a structured
proof language called Isar [Wen07], which allows for proofs to be written
in a human-readable form. Note that in the above proof, it is essentially
impossible to follow the proof state without stepping through the solution
within the theorem prover. Using Isar, the above proof can be rewritten as
below.

lemma (in dioid) add-iso: x ≤ y =⇒ x+ z ≤ y + z
proof −
assume x ≤ y
hence [simp]: x+ y ≤ y by (simp add: less-eq-def)

have (x+ z) + (y + z) = x+ (z + y) + z

35



by (simp add: add-assoc)
also have ... = x+ (y + z) + z
by (subst add-commute, simp)

also have ... = (x+ y) + (z + z)
by (simp add: add-assoc[symmetric] del: add-idem)

also have ... = y + z
by simp

finally show ?thesis
by (simp add: less-eq-def)

qed

Now each step of the proof is readily apparent, as the actual steps are not
hidden within the internal prover state, as was the case in the apply-style
proof.

It would however be rather inconvenient to be forced to write all proofs at
such a fine level of granularity. As mentioned, Isabelle provides built in inte-
gration with external automated theorem proving tools via the sledgehammer
tool [BBN11]. Using sledgehammer the add-iso lemma can be proved simply
as:

lemma (in dioid) add-iso: x ≤ y =⇒ x+ z ≤ y + z
by (metis add-assoc add.left-commute add-idem less-eq-def)

The sledgehammer tool calls external theorem prover tools and SMT
solvers which are used as a relevance filters to identify appropriate lemmas for
proving the desired result. The proof is then reconstructed in Isabelle using
the metis theorem prover. Proofs reconstructed via metis are guaranteed to
be correct, as metis produces proofs which are verified by Isabelle’s logical
kernel. As such, none of the external theorem provers nor SMT solvers need
be trusted.

The relationship between between dioids and Kleene algebra in Isabelle
is established automatically, as Kleene algebras are defined as an expansion
of a dioid with a star operation satisfying the above properties, as shown:

class kleene-algebra = dioid + star-op +
assumes star-unfoldl: 1 + x · x? ≤ x?
and star-inductl: z + x · y ≤ y ⇒ x? · z ≤ y
and star-inductr: z + y · x ≤ y ⇒ z · x? ≤ y

The integration of ATP tools in Isabelle via Sledgehammer allows for
proofs to be presented at near textbook level granularity. This is shown in
Figure 4.1 for a fixpoint fusion law.

36



theorem fixpoint-fusion [simp]:
fixes k :: 'b::complete-lattice ⇒ 'b
and h :: 'a::complete-lattice ⇒ 'a
and f :: 'a ⇒ 'b
assumes upper-ex: lower-adjoint f
and hiso: mono h and kiso: mono k
and comm: f◦h = k◦f
shows f (µ h) = µ k

proof
show k (f (µ h)) = f (µ h) using monoD[OF hiso]
by (metis comm fp-compute o-eq-dest-lhs)

next
fix y :: 'b assume ky: k y = y
obtain g where conn: galois-connection f g
by (metis lower-adjoint-def upper-ex)

have µ h ≤ g y
proof (rule fp-induct)
fix x y :: 'a assume x ≤ y thus h x ≤ h y
by (rule monoD[OF hiso])

next
have f (g y) ≤ y by (metis conn deflation)
hence f (h (g y)) ≤ y by (metis comm kiso ky monoD o-def)
thus h (g y) ≤ g y by (metis conn galois-connection-def)

qed
thus f (µ h) ≤ y by (metis conn galois-connection-def)

qed

Figure 4.1: Fixpoint fusion in Isabelle

37



4.3 Custom Reasoning Tactics

In this section, the flexibility of Isabelle as a generic ITP system is demon-
strated by constructing a tactic for deciding equations in ?-continuous Kleene
algebra. An advantage of ?-continuous Kleene algebra over Kleene algebra is
that while the completeness proof for Kleene algebra and regular languages
is extremely involved, the equivalent completeness proof for ?-continuous
Kleene algebra can be performed by straightforward induction [Koz97]. By
combining this completeness result with an existing library for deciding reg-
ular expression equivalence in Isabelle [KN10], it is possible to construct a
tactic in Isabelle to automatically decide equations in ?-continuous Kleene
algebra.

We start by mapping regular expressions (over natural numbers) to their
equivalent expressions in Kleene algebra. This is extremely simple as the
operations of regular expressions and Kleene algebra coincide, and indeed,
regular expressions are ground terms in the language of Kleene algebra.

primrec rexp-hom :: (nat ⇒ 'a) ⇒ nat rexp ⇒ 'a where
rexp-hom v Zero = 0

| rexp-hom v One = 1
| rexp-hom v (Atom a) = v a
| rexp-hom v (Plus x y) = rexp-hom v x + rexp-hom v y
| rexp-hom v (Times x y) = rexp-hom v x · rexp-hom v y
| rexp-hom v (Star x) = (rexp-hom v x)?

The completeness theorem can then be proven in Isabelle:

lemma completeness: lang x = lang y =⇒ rexp-hom v x = rexp-hom v y

Proving this theorem requires a few hundred lines of Isabelle, so the proof is
elided here.

Given the completeness theorem, a tactic can be implemented as follows.
First, it rewrites an expression in Kleene algebra to the form expected by
the completeness theorem by applying rexp-hom-thm. Second, it applies
the completeness theorem for ?-continuous Kleene algebra. Third, it applies
soundness of the decision procedure for regular languages. Finally, it evalu-
ates the decision procedure for regular languages. This tactic is implemented
in Isabelle/ML (the SML dialect used for programming Isabelle) and shown
in Figure 4.2.
Using this tactic, equations in ?-continuous Kleene algebra can then be
proven automatically as shown:

lemma (in star-continuous-ka) 1 +x ·x? + y+ z = 1 · (z+ y+x? + 0) by ka

lemma (in star-continuous-ka) x+ y = y + x · 1 by ka

If one is willing to simply assume completeness of Kleene algebra in
Isabelle without mechanising the proof, then this tactic becomes available

38



val ka-tac = Subgoal.FOCUS (fn {ctxt, concl, ...} =>
let
val rexp-hom-goal = dummy-all (@{term op ⇒} $
to-ka (term-of concl) $ term-of concl) |> Syntax.check-term ctxt

val rexp-hom-thm =
Goal.prove ctxt [] [] rexp-hom-goal (fn {ctxt,...} => auto-tac ctxt)

val completeness-thm =
hd (Locale.get-witnesses ctxt RL
[@{thm star-continuous-ka.completeness}])

in
rtac rexp-hom-thm 1
THEN rtac completeness-thm 1
THEN rtac @{thm soundness} 1
THEN eval-tac ctxt 1

end)

Figure 4.2: A decision procedure for ?-continuous Kleene algebra

in Kleene algebra. Furthermore, many useful Kleene algebras are in fact
?-continuous, so only having access to this tactic for ?-continuous algebras
is not a significant drawback.

More recent versions of Isabelle than those used for constructing this
tactic feature the Eisbach tactic language [MWM14]. This tactic language
allows tactics like the one above to be constructed by even non-expert users of
Isabelle, as they no longer require complex implementations in Isabelle/ML.
This tactic language has been used in Chapter 8 to construct refinement and
verification tools for rely-guarantee reasoning.

39



Chapter 5

Program Verification with
Schematic Kleene Algebra

40



5.1 Applying Algebra to Program Verification

This chapter demonstrates how Kleene Algebra can be applied in practice
to the verification of simple while programs. It therefore serves as a demon-
stration of the principles of algebraic tool design described in Chapter 1. We
have already seen in Chapter 3 how the rules of propositional Hoare logic
can be derived in KAT, but to apply KAT in program development and ver-
ification, formal treatment of assignments and program states is required.
Axioms for assignments have been added, for instance, in schematic Kleene
algebra with tests (SKAT) [AK01]. This extension of KAT is targeted at
modelling the transformation of flowchart schemes. Flowchart schemes are
flowcharts built from the following basic constructs:

start end loop v := f(e) P (e)T F

A classical reference for flowchart schemes, scheme equivalence, and trans-
formation is Manna’s book Mathematical Theory of Computation [Man74].
Flowchart schemes represent unevaluated programs, and flowchart equiva-
lence represents program equivalence under all possible interpretations of
the function and relation symbols appearing in assignments and tests (f and
P in the above flowchart constructs). A formalisation of SKAT in Isabelle
is discussed in this section; our formalisation of a complex flowchart equiv-
alence proof [Man74, AK01] is presented in Section 5.4. In this chapter the
conceptual development of SKAT together with its formalisation in Isabelle
is given. In addition, a verification tool within Isabelle for simple while pro-
grams is described, wherein pre- and post-conditions are represented in a
novel way using a Kleene module.

This chapter is primarily based upon material appearing in

• A. Armstrong, G. Struth and T. Weber. Program Analysis and Verifi-
cation Based on Kleene Algebra in Isabelle/HOL. In S. Blazy, C. Paulin-
Mohring and D. Pichardie (eds.), ITP 2013, LNCS 7998. [ASW13b]

5.2 Schematic KAT and Flowchart Schemes

In this section a development of SKAT within Isabelle is presented. A ranked
alphabet or signature Σ consists of a family of function symbols f , g, . . . and
relation symbols P , Q, . . . together with an arity function mapping symbols
to N. There is always a null function symbol with arity 0, it serves the
same purpose as null in most programming languages. In Isabelle, ranked

41



alphabets are implemented as a type class. Variables are represented by nat-
ural numbers. Terms over Σ, or Σ-expressions, are defined as a polymorphic
Isabelle datatype.

datatype 'a trm = App 'a "'a trm list" | Var nat

Arity checks are omitted to avoid polluting proofs with side conditions.
In practice, verifications will fail if arities are violated. Variables and Σ-
expressions form assignment statements; together with predicate symbols
they form tests in SKAT. Predicate expressions (atomic formulae) are also
implemented as a datatype.

datatype 'a pred = Pred 'a "'a trm list"

Evaluation of terms, predicates and tests relies on an interpretation func-
tion. It maps function and relation symbols to functions and relations. It is
used to define a notion of flowchart equivalence [AK01, Man74] with respect
to all interpretations. It is also needed to formalise Hoare logic in Section 5.5
by interpreting Σ-expressions in semantic domains. In Isabelle, it is based
on the following pair of functions.

record ('a, 'b) interp =
interp-fun :: 'a ⇒ 'b list ⇒ 'b
interp-rel :: 'a ⇒ 'b relation

Σ-expressions are now included into SKAT expressions, which models
flowchart schemes.

datatype 'a skat-expr =
SKAssign nat "'a trm"

| SKPlus "'a skat-expr" "'a skat-expr" (infixl "⊕" 70)
| SKMult "'a skat-expr" "'a skat-expr" (infixl "�" 80)
| SKStar "'a skat-expr"
| SKBool "'a pred bexpr"
| SKOne
| SKZero

In this datatype, SKAssign is the assignment constructor; it takes a variable
and a Σ-term as arguments. The other constructors represent the opera-
tions of KAT, and thus capture the programming constructs of sequential
composition, conditionals and while loops. The type ’a pred bexpr represents
Boolean combinations of predicates, which form the tests in SKAT. The con-
crete connection between the SKAT syntax and Manna’s flowchart schemes
is discussed in [AK01], but it is not formalised here. The type ’a skat-expr
is therefore the freely-generated term algebra for the KAT signature, with
predicates and assignments as variables.

Having formalised the SKAT syntax a notion of flowchart equivalence
can be given using Isabelle’s quotient types [KU11, HK13]. First define the

42



obvious congruence on SKAT terms that includes the KAT axioms and the
SKAT assignment axioms

x := s; y := t = y := t[x/s];x := s (y /∈ FV (s)),

x := s; y := t = x := s; y := t[x/s] (x /∈ FV (s)),

x := s;x := t = x := t[x/s],

a[x/t];x := t = x := t; a.

In the following inductive definition only the equivalence axioms, a single
Kleene algebra axiom and an assignment axiom are shown explicitly. Ad-
ditional recursive functions for free variables and substitutions support the
assignment axioms.

inductive skat-cong :: ('a::ranked-alphabet) skat-expr ⇒ 'a skat-expr ⇒ bool
(infix ≈ 55) where
refl [intro]: p ≈ p

| sym [sym]: p ≈ q =⇒ q ≈ p
| trans [trans]: p ≈ q =⇒ q ≈ r =⇒ p ≈ r
. . .
| mult-assoc: (p� q)� r ≈ p� (q � r)
. . .
| assign1: Jx 6= y; y /∈ FV sK =⇒

SKAssign x s � SKAssign y t ≈ SKAssign y (t[x/s]) � SKAssign x s
. . .

Isabelle’s quotient package now allows for formally taking the quotient of
SKAT expressions with respect to skat-cong. This means that the SKAT
axioms are imposed on the SKAT term algebra given by ’a skat-expr. The
SKAT axioms then become available for reasoning about SKAT expressions.

quotient-type 'a skat = ('a::ranked-alphabet) skat-expr / skat-cong

Using this notion of equivalence on SKAT expressions additional syntac-
tic sugar is defined by lifting constructors to SKAT operations, for instance,

lift-definition skat-plus :: ('a::ranked-alphabet) skat ⇒ 'a skat ⇒ 'a skat
(infixl + 70) is SKPlus

We have used Isabelle’s transfer tactic to provide nice programming syntax
and lift definitions from the congruence. For instance,

lemma skat-assign1:
Jx 6= y; y /∈ FV sK =⇒ (x := s · y := t) = (y := t[x/s] · x := s)

An interpretation statement formally shows in Isabelle that the algebra thus
constructed forms a KAT.

definition tests :: ('a ranked-alphabet) skat ord where
tests = Lcarrier = test-set, le = (λp q. skat-plus p q = q)M

43



definition free-kat :: ('a ranked-alphabet) skat test-algebra where
free-kat = Lcarrier = UNIV, plus = skat-plus, mult = skat-mult,

one = skat-one, zero = skat-zero, star = skat-star,
test-algebra.test = testsM

interpretation skt: kat free-kat

Proving this statement required some work. First, it uses a comprehensive
implementation of Kleene algebra with tests defined with explicit carrier sets
in Isabelle. This implementation differs from prior implementations in the
Archive of Formal Proofs [AGS14b], in that it has the carrier set of the
algebra explicitly formalised as a set in Isabelle, rather than as a type. This
KAT library contains about 100 lemmas for dealing with the Kleene star and
combined reasoning about the interaction between actions and tests. For
example, typical properties of the star and tests are (p+ q)∗ = p∗(q · p∗)∗,
(pq)∗p = p(qp)∗ or bp = pc⇐⇒ bp!c =!bpc.

Second, it must be shown that the quotient algebra constructed satisfies
the KAT axioms, including the axioms of Boolean algebra for the subalgebra
of tests. A principal complication comes from the fact that Boolean com-
plementation is defined as a partial operation, that is, on tests only; thus it
cannot be directly lifted from the congruence. It must be defined indirectly
using Isabelle’s indefinite description operator, which substantially compli-
cates proofs. After this interpretation proof, most statements shown for
KAT are automatically available in the quotient algebra. The unfortunate
exception is again the partially defined negation symbol, which is not fully
captured by the interpretation statement. Here, KAT theorems need to be
duplicated by hand for this quotient algebra.

When defining a quotient subtype, Isabelle automatically generates two
coercion functions. The abs-skat function maps elements of type ’a skat-
expr to elements of the quotient algebra type ’a skat, while the rep-skat
function maps in the converse direction. Both these functions are again
based on Isabelle’s definite description operator, which can be unwieldy.
However, for inductively defined types such as those used above, the following
equivalent, and computationally more appealing, recursive function instead
of abs-skat can be used instead. This allows for simple proofs via induction
to be performed.

primrec abs :: 'a::ranked-alphabet skat-expr ⇒ 'a skat (b-c [111] 110) where
abs (SKAssign x y) = x := y

| abs (SKPlus x y) = abs x + abs y
| abs (SKMult x y) = abs x · abs y
| abs (SKBool p) = test-abs p
| abs SKOne = 1
| abs SKZero = 0
| abs (SKStar x) = (abs x)?

44



Mathematically, abs (or b−c) is a homomorphism. It is primarily useful for
programming various tactics.

5.3 Formalising a Metatheorem

The following metatheorem due to Angus and Kozen (Lemma 4.4 in [AK01])
has been formalised as an example. This metatheorem that can be instanti-
ated, for instance, to check commutativity conditions, eliminate redundant
variables or rename variables in flowchart transformation proofs. This the-
orem can be instantiated to develop tactics that support proof automation
in the flowchart example of the next section.

theorem metatheorem:
assumes kat-homomorphism f
and kat-homomorphism g
and

∧
a. a ∈ atoms p =⇒ f a · q = q · g a

shows f p · q = q · g p

Proof of this metatheorem proceeds by induction on p, expanding Angus and
Kozen’s proof. The predicate kat-homomorphism in the theorem states that
f and g are KAT homomorphisms. This notion is defined for any function
f in Isabelle as a locale:

locale kat-homomorphism =
fixes f :: 'a::ranked-alphabet skat-expr ⇒ 'b::ranked-alphabet skat
assumes hom-plus: f (x ⊕ y) = f x + f y
and hom-test-plus: f (SKBool (P :+: Q)) = f (SKBool P) + f (SKBool Q)
and hom-mult: f (x � y) = f x · f y
and hom-test-mult: f (SKBool (P :·: Q)) = f (SKBool P) · f (SKBool Q)
and hom-star: f (SKStar x) = (f x)?

and hom-one: f SKOne = 1
and hom-test-one: f (SKBool BOne) = 1
and hom-zero: f SKZero = 0
and hom-test-zero: f (SKBool BZero) = 0
and hom-not: f (SKBool (BNot P)) = !(f (SKBool P))
and hom-tests: f (SKBool P) ∈ carrier tests

which formalises that f must preserve all the operations of SKAT. The func-
tions f and g map from SKAT terms into the SKAT quotient algebra defined
previously, hence they have the same type as abs. The atoms function re-
turns all the atomic subexpressions of a SKAT term, i.e. all the assignments
and atomic tests.

Angus and Kozen have observed that if q commutes with all atomic
subexpressions of p, then q commutes with p. This is a simple instantiation
of the metatheorem. It can be obtained in Isabelle as follows:

45



lemmas skat-comm = metatheorem[OF abs-hom abs-hom]

This instantiates f and g using the fact that abs is a KAT morphism.
Lemma 4.5 in [AK01] states that if a variable x is not read in an expres-

sion p, then setting it to null will eliminate it from p.

lemma eliminate-variables
assumes x /∈ reads p
shows bpc · x := null = beliminate x pc · x := null

In the statement of this lemma, reads p is a recursive function that returns
all the variables on the right-hand side of all assignments within p, and the
function eliminate x p removes all assignments to x in p.

As mentioned, the metatheorem and its various instances can be used to
develop tactics that check for commutativity and eliminate variables. These
tactics take expressions of the quotient algebra and coerce them into the
term algebra to perform these syntactic manipulations. All the machinery
for these coercions, such as abs, is thereby hidden from the user. A simple
application example is given by the following lemma.

lemma comm-ex: (1 := Var 2; 3 := Var 4) = (3 := Var 4; 1 := Var 2)
by skat-comm

5.4 Verification of Flowchart Equivalence

The SKAT implementation from the previous section has been used to ver-
ify a well known flowchart equivalence example in Isabelle. It is attributed
by Manna to Paterson [Man74]. The flowcharts can be found at page
16f. in Angus and Kozen’s paper [AK01] or pages 254 and 258 in Manna’s
book [Man74]; they are reproduced here in Figure 5.2. Manna’s proof es-
sentially uses diagrammatic reasoning, whereas Angus and Kozen’s proof is
equational. Their algebraic proof can be reconstructed at the same level of
granularity in Isabelle. The two flowcharts, translated into SKAT by Angus
and Kozen, are shown in Figure 5.1.

In the code, lists delimited by brackets indicate blocks of sequential code;
loop expressions indicate the star of a block of code that follows. The seq
function converts a block of code given as a list of SKAT expressions into a
SKAT expression. The halt command sets all non output variables used in
the scheme to null. To make algebraic reasoning more efficient, Angus and
Kozen introduce definitions that abbreviate atomic commands, in particular
assignments, and tests. Their example is followed here (see Figure 5.3). The
flowchart equivalence problem can then be expressed more succinctly and
abstractly in KAT, as all assignment statements, which are dealt with by
SKAT, have been abstracted.
The proof that rewrites these KAT expressions, however, needs to descend to
SKAT in order to derive commutativity conditions between expressions that

46



definition scheme1 ≡ seq
[ 1 := vx, 4 := f (Var 1), 1 := f (Var 1)
, 2 := g (Var 1) (Var 4), 3 := g (Var 1) (Var 1)
, loop
[ !(P (Var 1)), 1 := f (Var 1)
, 2 := g (Var 1) (Var 4), 3 := g (Var 1) (Var 1)
]

, P (Var 1), 1 := f (Var 3)
, loop
[ !(P (Var 4)) + seq
[ P (Var 4)
, (!(P (Var 2)) · 2 := f (Var 2))?

, P (Var 2), ! (P (Var 3))
, 4 := f (Var 1), 1 := f (Var 1)
]

, 2 := g (Var 1) (Var 4), 3 := g (Var 1) (Var 1)
, loop
[ !(P (Var 1)), 1 := f (Var 1)
, 2 := g (Var 1) (Var 4), 3 := g (Var 1) (Var 1)
]

, P (Var 1)
, 1 := f (Var 3)
]

, P (Var 4)
, (!(P (Var 2)) · 2 := f (Var 2))?

, P (Var 2), P (Var 3), 0 := Var 2
, halt
]

definition scheme2 ≡
[ 2 := f vx, P (Var 2)
, 2 := g (Var 2) (Var 2)
, skat-star (seq
[ !(P (Var 2))
, 2 := f (f (Var 2))
, P (Var 2)
, 2 := g (Var 2) (Var 2)
])

, P (Var 2), 0 := Var 2, halt
]

Figure 5.1: Equivalent flowchart schemes formalised in Isabelle

47



start

y := f(x)

P (y)

loop y := g(y, y)

P (y)

y = f(f(y)) z := y

halt

F T

F T

Scheme S6E [Man74, p. 258]

start

y1 := x

y4 := f(y1)

y1 := f(y1)

y2 := g(y1, y4)

y3 := g(y1, y1)

P (y1)

y1 := f(y3)

P (y4)

P (y2)

y2 := f(y2) P (y3)

z := y2

halt

F

T

T

F

TF

T

F

Scheme S6A [Man74, p. 254]

Figure 5.2: Two equivalent flowchart schemes

48



seq [x1,p41,p11,q214,q311,loop [!a1,p11,q214,q311],a1,p13
,loop [!a4 + seq [a4,(!a2·p22)?,a2,!a3,p41,p11]

,q214,q311,loop [!a1,p11,q214,q311],a1,p13]
,a4,(!a2·p22)?,a2,a3,z2,halt]

=
seq [s2,a2,q222,(seq [!a2,r22,a2,q222])?,a2,z2,halt]

Figure 5.3: Abbreviated forms of scheme1 and scheme2

depend on variables and Σ-terms. These conditions are then lifted to KAT.
The condition expressed in Lemma comm-ex from Section 5.3, for instance,
reduces to the KAT identity pq = qp when abbreviating 1 := V ar 2 as p, and
3 := V ar 4 as q. In our proof these commutativity conditions are inferred
in a lazy fashion. This follows Angus and Kozen’s proof essentially line by
line.

The proof heavily depends on the underlying KAT library. Additionally,
the tactics mentioned in the previous section have to be further refined to
be able to efficiently manipulate the large SKAT expressions that occur in
the proof. Most of these implement commutations in lists of expressions
modulo commutativity conditions on atomic expressions which are inferred
from SKAT terms on the fly.

The size of our proof as a LATEX document is about 12 pages, twice as
many as in Angus and Kozen’s manual proof, but this is essentially due
to aligning their horizontal equational proofs in a vertical way due to Is-
abelle’s syntax. A previous proof in a special-purpose SKAT prover re-
quired 41 pages [AHK06]. This impressively demonstrates the power of
Isabelle’s proof automation. Previous experience in theorem proving with
algebra shows that the level of proof automation in algebra is often very
high [HS07, GSW11, FS12]. In this regard, the proof experience here is
perhaps slightly underwhelming, as custom tactics and low-level proof tech-
niques were needed for our step-by-step proof reconstruction. A higher de-
gree of automation seems difficult to achieve, and a complete automation of
the scheme equivalence proof is currently out of reach. The main reason is
that the flowchart terms in KAT are much longer, and combinatorially more
complex, than those in typical textbook proofs.

Decision procedures for variants of Kleene algebras, can help overcome
these difficulties, as can be seen in Pous’ formalisation of SKAT in Coq [Pou13a],
which was developed concurrently with the Isabelle implementation pre-
sented in this Chapter. Pous gives a decision procedure for not only Kleene
Algebra, but also mechanises a decision procedure for KAT based on guarded
strings due to Kozen. By using this decision procedure Pous is able to give
a significantly shorted proof of the above theorem—this is because he can
automate all the reasoning steps that only rely on axioms of KAT, and focus

49



on the core complexity of the proof. The decision procedure in Chapter 4
for ?-continuous Kleene algebra cannot be used here as it is unable to deal
with the tests found in KAT.

5.5 Hoare Logic with Kleene Modules

It is well known that Hoare logic—except the assignment rule—can be en-
coded in KAT as well as in other variants of Kleene algebra such as modal
Kleene algebras [MS06] and Kleene modules [EMS03]. The latter are alge-
braic relatives of propositional dynamic logic. This chapter represents the
first combination of these algebras with the assignment rule and their appli-
cation in program verification.

Here a novel approach has been used in which SKAT and Kleene modules
are combined. This allows for the separation of tests conceptually from the
pre- and post-conditions of programs.

A Kleene module [Lei06] is a structure (K,L, :) where K is a Kleene
algebra, L a join-semilattice with least element ⊥ and : a mapping of type
L×K → L where

P : (x+ y) = P : x t P : y,

P : (x · y) = P : x : y,

P : 0 = ⊥,

(P tQ) : x = P : x tQ : x,

(P tQ) : x ≤ Q −→ P : x∗ ≤ Q,
P : 1 = P.

In this context, L models the state space, propositions or assertions of a
program, K its actions, and the scalar product maps a proposition and an
action to a new proposition. We henceforth assume that L is a Boolean
algebra with maximal element > and use a KAT instead of a Kleene algebra
as the first component of the module. The interaction between assertions, as
modelled by the Boolean algebra L, and tests, as modelled by the Boolean
algebra B, is captured by the new axiom

P : p = P u (> : p).

The scalar product > : p coerces the test p into an assertion (> does not
restrict it); the scalar product P : p is therefore equal to a conjunction
between the assertion P and the test p.

Isabelle’s locales are used to implement modules over KAT. Hoare triples
can then be defined as usual.

definition hoare-triple :: 'b ⇒ 'a ⇒ 'b ⇒ bool ({|-}| -{|-}| [54,54,54] 53) where
{|P }| x{|Q}| ≡ P :: x vL Q

As : is a reserved symbol in Isabelle, :: is used for the scalar product. The
index L refers to the Boolean algebra of assertions and the order vL is the
order on this Boolean algebra. The Hoare rules excluding assignment can
now be derived as theorems in these modules [EMS03]. In Isabelle this is

50



achieved almost automatically via sledgehammer. Applying the resulting
Hoare-style calculus—which operates by equational reasoning—for program
verification requires the provision of more fine-grained syntax for assertions
and refinement statements in addition to adding some form of assignment
axiom.

This first-order syntax is obtained once more by specialising KAT to
SKAT, and by interpreting the SKAT expressions in the Boolean algebra
of propositions or states. As is common, program states are represented as
functions from variables to values. Assertions correspond to sets of states.
Hence the Boolean algebra L is instantiated as a powerset algebra over states.
Similar implementations are already available in theorem provers such as Is-
abelle, HOL and Coq [Nip98, Sch06, CG10, NMS+08], but they have not
been implemented as simple instantiations of more general algebraic struc-
tures. Assignment statements are translated in Gordon style [CG10] into
forward predicate transformers which map assertions (preconditions) to as-
sertions (postconditions).

This is, of course, compatible with the module-based approach. To im-
plement the scalar product within the KAT module, we begin by writing an
evaluation function which, given an interpretation and a SKAT expression,
returns the forward predicate transformer for that expression.

fun eval-skat-expr ::
('a::ranked-alphabet, 'b) interp ⇒ 'a skat-expr ⇒ 'b mems ⇒ 'b mems
where
eval-skat-expr D (SKAssign x t) ∆ = assigns D x t ∆

| eval-skat-expr D (SKBool a) ∆ = filter-set (eval-bexpr D a) ∆
| eval-skat-expr D (p� q) ∆ = eval-skat-expr D q (eval-skat-expr D p ∆)
| eval-skat-expr D (p⊕q) ∆ = eval-skat-expr D p ∆ ∪ eval-skat-expr D q ∆
| eval-skat-expr D (SKStar p) ∆ = (

⋃
n. iter n (eval-skat-expr D p) ∆)

| eval-skat-expr D SKOne ∆ = ∆
| eval-skat-expr D SKZero ∆ =

It can now be proven that if two SKAT expressions are equivalent accord-
ing to the congruence defined in Section 5.2, then they represent the same
predicate transformer. The proof is by induction. This property allows the
lifting of the eval-skat-expr function to the quotient algebra.

theorem skat-cong-eval:
skat-cong p q =⇒ ∀∆. eval-skat-expr D p ∆ = eval-skat-expr D q ∆

lift-definition eval ::
('a::ranked-alphabet, 'b) interp ⇒ 'a skat ⇒ 'b mems ⇒ 'b mems
is eval-skat-expr

Using this lifting, one can reason algebraically in instances of SKAT that
have been generated by the evaluation function. This enables the derivation

51



of an assignment rule for forward reasoning in Hoare logic from the SKAT
axioms.

lemma hoare-assignment: P [x/t] ⊆ Q =⇒ {|P }| x := t{|Q}|

We could equally derive a forward assignment rule P {|x := s}| P [x/s], but
this seems less useful in practice.

To facilitate automated reasoning a notion of loop invariants is added as
syntactic sugar on while loops. Invariants are assertions used by the tactic
that generates verification conditions.

while b invariant i do { p } = (bp)∗b.

A refined while rule which uses the loop invariant is as follows.

lemma hoare-while-inv:
assumes b-test: b ∈ carrier tests
and Pi : P ⊆ i and iQ: i ∩ (UNIV ::!b) ⊆ Q
and inv-loop: {|i ∩ (UNIV :: b)}| p{|i}|
shows {|P }| while b invariant i do { p }{|Q}|

Note that this particular rule has been instantiated to the powerset algebra
of states, but it could as well have been defined abstractly.

Isabelle already provides a package for Hoare logic [Sch06]. Since there
is one Hoare rule per programming construct, it uses a tactic to blast away
the control structure of programs. A similar tactic for our SKAT-based
implementation, called hoare-auto can easily be implemented.

5.6 Verification Examples

This variant of Hoare logic has been applied to prove the partial correctness
of some simple algorithms. Instead of applying each rule manually, the tactic
hoare-auto is used to make their verification with sledgehammer almost fully
automatic. Note that more complex examples would certainly require more
user interaction or perhaps even more sophisticated tactics to discharge the
generated proof obligations. In addition, libraries for more complex data
types would be required. These simple examples are given in Figure 5.4

Finally, the algebraic approach described in the previous section is ex-
pressive enough for deriving further program transformation or refinement
rules, which would only be admissible (not derivable) in Hoare logic. As an
example consider the two proofs of two simple Hoare-style inference rules
given in Figure 5.5. Program refinement or transformation rules could be
derived in a similar way given suitable constructs in the algebra, as per
Section 3.10.
Only the derivation of the first rule is not fully automatic. The side condition
P :: p = (> :: p) u P expresses the fact that if assertion P holds before

52



lemma euclids-algorithm:
{|mem. mem 0 = x ∧mem 1 = y}|
WHILE !(pred (EQ (Var 1) (NAT 0)))
INVARIANT {mem. gcd (mem0) (mem1) = gcd x y}
DO

2 := Var 1;
1 := MOD (V ar0) (V ar1);
0 := Var 2

WEND
{|{mem. mem 0 = gcd x y}}|
by hoare-auto (metis gcd-red-nat)

lemma factorial:
{|{mem. mem 0 = x}}|
1 = NAT 1;
(WHILE !(pred (EQ (Var 0) (NAT 0)))
INVARIANT {mem. fact x = mem 1 ∗ fact (mem 0)}
DO

1 := MULT (Var 1) (Var 0); 0 := MINUS (Var 0) (NAT 1)
WEND)
{|{mem. mem 1 = fact x}}|
by hoare-auto (metis fact-reduce-nat)

Figure 5.4: Simple verification examples

lemma derived-rule1:
assumes P1, P2, Q1, Q2 ⊆ carrier A and p ∈ carrier K
and {|P1}| p{|Q1}| and {|P2}| p{|Q2}|
shows {|P1 u P2}| p{|Q1 uQ2}|
using assms
apply (auto simp add: hoare-triple-def assms, subst A.bin-glb-var)
by (metis A.absorb1 A.bin-lub-var A.meet-closed A.meet-comm mod-closed mod-join)+

lemma derived-rule2:
assumes P,Q,R ⊆ carrier A and p ∈ carrier K and P :: p = (> :: p)uP
and {|Q}| p{|R}|
shows {|P uQ}| p{|P uR}|
by (insert assms) (smt derived-rule1 derived-rule2 insert-subset)

Figure 5.5: Derived Hoare logic rules

53



execution of program p, which is the left-hand side of the equation, then it
also holds after p is executed. The expression > :: p represents the assertion
that holds after p is executed without any input restriction.

These examples demonstrate the benefits of the algebraic approach in
defining syntax, deriving domain-specific inference rules and linking with
more refined models and semantics of programs with exceptional ease. While,
in the context of verification, these tasks belong more or less to the meta-
level, they are part of actual correctness proofs in program construction,
transformation or refinement. This could likely be an important domain for
future applications.

5.7 Conclusion

In this Chapter schematic Kleene algebra with tests has been implemented
in Isabelle/HOL. This represents the first application of KAT/SKAT within
a verification tool built with a standard interactive theorem prover. Pous’
implementation of SKAT in Coq [Pou13a] was done concurrently and inde-
pendently. The only prior mechanisation of SKAT was in Aboul-Hosn and
Kozen’s KAT-ML [AHK06], an extremely specialised system, and therefore
lacking a great deal of the utility provided by a general interactive theorem
prover. In particular, it does not allow the verification of programs as in
Section 5.5 and 5.6.

The implementation of schematic Kleene algebra in this chapter has been
used to formalise a complex flowchart equivalence proof by Angus and Kozen.
The proof is significantly shorter than a previous formalisation in a custom
theorem prover for Kleene algebra with tests. The proof follows Angus and
Kozen’s manual proof almost exactly and translates it essentially line-by-line
into Isabelle, despite some weaknesses in proof automation which sometimes
forced reasoning at quite a low level.

SKAT has been extended to support the verification of simple algorithms
in a Hoare-logic style. This approach provides a seamless bridge between our
abstract algebraic structures and concrete programs as per the approach out-
lined in Section 1.2. We have tested our approach on a few simple verification
examples. Beyond that, additional Hoare-style rules and tactics for proof au-
tomation have been derived abstractly in the algebraic setting. These can be
instantiated to different semantics and application domains. In the context
of verification the main applications of algebra seem to be at this meta-level.
The situation is different when developing programs from specifications or
proving program equivalence, as the flowchart scheme tranformation shows.

This Chapter serves as an example of the benefits algebra can bring in
program development and verification. In future chapters, similar techniques
based on the rely-guarantee method will be used to investigate algebras for
concurrent programs.

54



Chapter 6

Algebra for Rely-Guarantee
part 1

55



6.1 Introduction

To make the rely-guarantee method applicable to concrete program develop-
ment and verification tasks, its integration into tools is essential. To capture
the flexibility of the method, a number of features appear desirable. First,
solid, denotational or operational, mathematical models for fine-grained pro-
gram behaviour must be implemented. Second, one would like an abstract
layer at which inference rules and refinement laws can be derived easily.
Third, a high degree of proof automation is mandatory for the analysis of
complex, concrete programs.

This Chapter presents an approach for providing such a tool integration
in the interactive theorem proving environment Isabelle/HOL, following the
general principles outlined in Section 1.2. At the most abstract level, al-
gebras are used to reason about the control flow of programs as well as for
deriving inference rules and refinement laws. In the context of rely-guarantee
these axioms give a concise account of what the rely-guarantee method actu-
ally entails, and provide insights into the conceptual and operational role of
interference constraints. Such structural insights are a main contribution of
this approach. At the most concrete level, detailed models of program stores
can support fine-grained reasoning about program data flow and interfer-
ence. These models are then linked with the algebras via soundness proofs.
Isabelle allows these layers to be implemented in a modular way and relate
them formally with one another. This provides a high degree of confidence
in the correctness of this development, and also supports the construction of
custom proof tactics and procedures for program verification and refinement
tasks. By virtue of being implemented in Isabelle, the entire implementation
is guaranteed to be correct by construction.

In this Chapter algebraic principles for rely-guarantee style reasoning are
examined. Starting from [HMSW11], a basic minimal set of axioms for rely
and guarantee conditions, which suffice to derive the standard rely-guarantee
inference rules, is derived. However, algebra by its nature is inherently com-
positional (see Section 6.3 for details), so it turns out that naïve forms of
these axioms do not fully capture the semantics of interference in execution
traces. It is therefore necessary to explore how the compositionality of these
axioms can be broken in the right way, so as to capture the intended trace
semantics.

Second, a simple trace based semantics (which so far is restricted to finite
executions and disregards termination and synchronisation) is linked to these
algebras by formal soundness proof. Despite the simplicity of this model, a
prototypical verification tool within Isabelle can be demonstrated by verify-
ing a simple example from the literature. Beyond that, this approach pro-
vides a coherent framework from which more complex and detailed models
and algebras can be implemented in future chapters, especially Chapter 7.

Third, the usual inference rules of the rely-guarantee method with the

56



exception of assignment axioms, are derived directly from the algebra, and
the assignment axioms are derived from the models. This formalisation in
Isabelle allows one to reason seamlessly across these layers, which capture
both the control flow and the data flow of concurrent programs respectively.

This chapter is primarily based upon material appearing in

• A. Armstrong, V. B. F. Gomes and G. Struth. Algebraic Principles
for Rely-Guarantee Style Concurrency Verification Tools. In C. Jones,
P. Pihlajasaari and J. Sun (eds.), FM 2014, LNCS 8442. [AGS14a]

6.2 A Rely-Guarantee Algebra

First it is shown that bi-Kleene algebras (Section 3.3) can be expanded into
a simple algebra that supports the derivation of rely-guarantee style infer-
ence rules. This development does not use the interchange law of concurrent
Kleene algebra for several reasons. First, this law fails for fair parallel compo-
sition x ‖f y in models with possibly infinite, or non-terminating programs.
In this model, x · y 6≤ x ‖f y whenever x is non-terminating. Secondly,
and perhaps most relevantly, it is not needed for deriving the usual rules of
rely-guarantee.

Definition 1. A rely-guarantee algebra is a structure

(K, I,+,u, ·, ‖, ?, 0, 1),

where

• (K,+,u) is a distributive lattice,

• (K,+, ·, ‖, 0, 1) is a trioid,

• (K,+, ·, 0, 1, ?) is a Kleene algebra.

• I is a distinguished subset of rely and guarantee conditions or inter-
ference constraints that satisfy the following axioms:

r‖r ≤ r, (6.1)
r ≤ r‖r′, (6.2)

r‖(x · y) = (r‖x) · (r‖y), (6.3)
r‖x+ ≤ (r‖x)+. (6.4)

By convention, r and g refer to elements of I, depending on whether they
are used as relies or guarantees, and x, y, z for arbitrary elements of K. The
operations ‖ and u must be closed with respect to I.

The general idea here is to constrain a program by a rely condition by
executing the two in parallel. Axiom (6.1) states that interference from a

57



constraint being run twice in parallel is no different from just the interfer-
ence from that constraint begin run once in parallel. Axiom (6.2) states
that interference from a single constraint is less than interference from it-
self and another interference constraint. Axiom (6.3) allows an interference
constraint to be split across sequential programs. Axiom (6.4) is similar to
Axiom (6.3) in intent, except it deals with finite iteration.

Some elementary consequences of these rules are

1 ≤ r, r? = r · r = r = r‖r, r‖x+ = (r‖x)+.

Theorem 5. Axioms (6.1), (6.2) and (6.3) are independent.

Proof. Isabelle’s Nitpick [BN10] counterexample generator can be used to
construct models which violate each particular axiom while satisfying all
others.

Theorem 6. Axiom (6.3) implies (6.4) in a quantale where ‖ distributes
over arbitrary suprema.

Proof. In a quantale, x+ can be defined as a sum of powers x+ =
∑

i≥1 x
i

where x1 = x and xi+1 = x · xi. By induction on i we get r‖xi = (r‖x)i,
hence

r‖x+ = r‖
∑
i≥1

xi =
∑
i≥1

r‖xi =
∑
i≥1

(r‖x)i = (r‖x)+.

In first-order Kleene algebras (6.3) and (6.4) are independent, but it is
impossible to find a counterexample with Nitpick because it generates only
finite counterexamples, and all finite Kleene algebras are a fortiori quantales.

Jones quintuples can be encoded in this setting as

r, g ` {p}x{q} ⇐⇒ p · (r‖x) ≤ q ∧ x ≤ g. (6.5)

This means that program x when constrained by a rely r, and executed
after p, behaves as q. Moreover, all behaviours of x are included in its
guarantee g. This encoding is due to [HMSW11]. The key difference is that
the interference constraints are only required to satisfy axioms (6.1)–(6.4),
rather than be power invariants (see Section 2.3). Axioms (6.1)–(6.4) are
all implied by the stronger requirements for power invariants [HMSW11].
Note that this encoding is stronger than in traditional rely-guarantee, as x is
required to unconditionally implement g. This limitation of the encoding is
circumvented later, in Chapter 7. Although, note that the algebra here could
easily be extended with some additional operator f such that f(r, x) ≤ q
would encode that x implements q only under interference of at most r. For
more complex examples than those presented in Section 6.6 such an encoding
proves useful.

58



Theorem 7. The standard rely-guarantee inference rules shown in Figure
6.1 can be derived with the above encoding (6.5).

Proof. This statement has been formalised in Isabelle, so a fully detailed
proof is not given here. However, to demonstrate the algebraic style of
reasoning involved, the derivation of the parallel rule is given.

For the parallel rule, we have the assumptions

p1(r1‖x) ≤ q1, p2(r2‖x) ≤ q2, x ≤ g1, y ≤ g2 g1 ≤ r2, and g2 ≤ r1.

It must be shown that

(p1 u p2)((r1 u r2)‖x‖y) ≤ q1 u q2, and x‖y ≤ g1‖g2.

Showing x‖y ≤ g1‖g2 is trivial due to isotonicity. Next we show that:

(p1 u p2)((r1 u r2)‖x‖y) ≤ p1(r1‖x‖y)

≤ p1(r1‖x‖g2)
≤ p1(r1‖x‖r1)
≤ p1(r1‖x)

≤ q1

The same reasoning can be applied to show that

(p1 u p2)((r1 u r2)‖x‖y) ≤ q2,

which completes the proof of the parallel rule.

Based on Theorem 5 and Theorem 6, (6.1) to (6.4), which are all nec-
essary to derive these rules, represent a minimal set of axioms from which
these inference rules can be derived.

If residuals are added to the rely-guarantee algebra quintuples can be
encoded in the following way, which is equivalent to the encoding in Equation
(6.5).

r, g ` {p}x{q} ⇐⇒ x ≤ r/(p→ q) u g. (6.6)

which can be shown via properties of residuals as follows:

p(r‖x) ≤ q ∧ x ≤ g ⇐⇒ (r‖x ≤ p→ q) ∧ x ≤ g ⇐⇒ x ≤ r/(p→ q) u g.

This encoding allows for thinking in terms of program refinement, as in [HJC13],
since r/(p→ q)ug defines the weakest program that when placed in parallel
with interference from r, and guaranteeing interference at most g, goes from
p to q—essentially a generic specification for a concurrent program.

59



p · r ≤ p
Skip

r, g ` {p}1{p}

r′ ≤ r g ≤ g′ p ≤ p′ r′, g′ ` {p′}x{q′} q′ ≤ q
Weakening

r, g ` {p}x{q}

r, g ` {p}x{q} r, g ` {q}y{s}
Sequential

r, g ` {q}x · y{s}

r1, g1 ` {p1}x{q1} g1 ≤ r2 r2, g2 ` {p2}y{q2} g2 ≤ r1
Parallel

r1 u r2, g1‖g2 ` {p1 u p2}x‖y{q1 u q2}

r, g ` {p}x{q} r, g ` {p}y{q}
Choice

r, g ` {p}x+ y{q}

p · r ≤ p r, g ` {p}x{p}
Star

r, g ` {p}x?{p}

Figure 6.1: Rely-guarantee inference rules

6.3 Breaking Compositionality

While the algebra in the previous section is adequate for deriving the stan-
dard inference rules, its equality is too strong to capture many interesting
statements about concurrent programs. Consider the following congruence
rule for parallel composition, which is inherent in the algebraic approach in
Section 6.2:

x = y =⇒ r‖x = r‖y.

This can be read as follows; if x and y are equal, then they must be equal
under all possible interference from any arbitrary r. In general, all the op-
erators in any algebra must satisfy such congruence laws. At first, this
might seem to preclude any fine-grained reasoning about interference using
purely algebraic approaches. This is not the case, but breaking this inherent
compositionality in just the right way to capture interesting properties of
interference requires extra work. Consider the case where x and y behave
the same under no interference; we need a way to state that they are equal
in this case without requiring that they are equivalent under arbitrary (or
any) interference. More concretely, x and y might perform the same task,
yet x performs it atomically, whereas y does not. In such a case, y should
be much more vulnerable to interference from its environment (r above).

60



A way of achieving this is to expand the rely-guarantee algebra from
Section 6.2 with an additional function π : K → K and redefining our
quintuples as,

r, g ` {p}x{q} ⇐⇒ p · (r‖c) ≤π q ∧ x ≤ g. (6.7)

Where x ≤π y is π(x) ≤ π(y). Since for any operator • it is not required
that

π(x) = π(y) =⇒ π(x • z) = π(y • z),

compositionality can be broken in just the right way, provided that appropri-
ate properties for π are chosen. These properties are extracted from prop-
erties of the trace model, which will be explained in detail in the coming
sections. Many of these properties however, can be derived from the simple
fact that, in the trace model, π = λx. x u c, where c is healthiness condition
filtering out ill-defined traces. The most important such properties are:

π(x) ≤ x, (6.8)
π(π(x)) = π(x), (6.9)

x ≤ y =⇒ x ≤π y. (6.10)

In addition to these properties, π must satisfy the following:

x? ≤π π(x)?, (6.11)
x · y ≤π π(x) · π(y), (6.12)

z + x · y ≤π y =⇒ x? · z ≤π y, (6.13)
z + y · x ≤π y =⇒ z · x? ≤π y. (6.14)

For any operator •, the operator x •π y is the defined as π(x • y), and xπ

is defined as π(x?).

Theorem 8. (π(K),+π, ·π, π, 0, 1) is a Kleene algebra.

Proof. The operator π is a retraction (6.9), that is, π2 = π. Therefore,
x ∈ π(K) iff π(x) = x. This condition can then be used to check the
closure conditions for all operations. This property has been formalised in
Isabelle.

Definition 2. We re-define the rely-guarantee algebra as a structure

(K, I,+,u, ·, ‖, ?, π, 0, 1)

which, in addition to the rules in Section 6.2, satisfies (6.8) to (6.14) for π.

Theorem 9. All rules in Figure 6.1 can be derived in this algebra. For each
rule, the encoding in (6.7) is used for the quintuple, rather than the encoding
in (6.5).

61



Proof. Their proofs remain the same as in Theorem 7, mutatis mutandis.
As an example, the main part of the derivation of the parallel rule from
Theorem 7 becomes:

(p1 u p2)((r1 u r2)‖x‖y) ≤π p1(r1‖x‖y)

≤π p1(r1‖x‖g2)
≤π p1(r1‖x‖r1)
≤π p1(r1‖x)

≤π q1

6.4 Finite Language Model

Now a finite language model is constructed satisfying the axioms in Sec-
tion 6.2 and 6.3. Restricting attention to finite languages means issues such
termination side-conditions need not be considered, nor must additional re-
strictions on parallel composition, such as fairness. However, as will be seen
in Chapter 7, all the results in this section can be adapted to potentially
infinite languages, and this Isabelle/HOL formalisation includes general def-
initions by using coinductively defined lazy lists to represent words, and
having a weakly-fair shuffle operator for such infinite languages.

Consider languages where the alphabet contains letters which are state
pairs of the form (σ1, σ2) ∈ Σ2. A word in such a language is connected if
every such pair in a word has the same first state as the previous transition’s
second state. For example, (σ1, σ2)(σ2, σ3) is connected, while (σ1, σ2)(σ3, σ3)
is connected only if σ2 = σ3. Sets of connected words are essentially Aczel
traces [dBHdR99] lacking the usual process labels. Denote the set of all con-
nected words by C. The function π from the previous section is defined as
λX. X ∩ C.

Sequential composition in this model is language product, as per usual.
Concurrent composition is the shuffle product defined in Section 3.2. As
mentioned, the shuffle product is associative, commutative, and distributes
over arbitrary joins. Both products share the same unit, {ε} and zero, ∅.
In Isabelle proving properties of shuffle is surprisingly tricky (especially if
one considers infinite words as will be seen in Chapter 7). For a in-depth
treatment of the shuffle product over infinite words see Subsection 7.3.1
or [MMRS97].

Theorem 10. (P((Σ2)?),∪, ·, ‖, ∅, {ε}) forms a trioid.

The interference constraints in this model are sets containing all the
words which can be built from some set of state pairs in Σ2. The function 〈R〉
lifts a relation R to a language containing words of length one for each pair in

62



R. The set of interference constraints I is then defined as {r. ∃R.r = 〈R〉?}.
This definition ensures that elements of I are power invariants in the sense
of [HMSW11], which as noted in Section 6.2 is enough to prove (6.1)–(6.4).

Theorem 11. (P((Σ2)?), I,∪, ·, ‖, ?, π, ∅, {ε}) is a rely-guarantee algebra as
defined in Definition 2.

Since 〈R〉 is atomic, it satisfies several useful properties, such as,

〈R〉?‖〈S〉 = 〈R〉?; 〈S〉; 〈R〉?, 〈R〉?‖〈S〉? = (〈R〉?; 〈S〉?)?.

To demonstrate how this model works, consider the graphical represen-
tation of a language shown below.

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

The language contains the following six words

(σ1, σ1)(σ1, σ2)(σ2, σ3), (σ1, σ2)(σ1, σ2)(σ2, σ3),

(σ2, σ2)(σ1, σ2)(σ2, σ3), (σ1, σ1)(σ3, σ2)(σ2, σ3),

(σ1, σ2)(σ3, σ2)(σ2, σ3), (σ2, σ2)(σ3, σ2)(σ2, σ3),

where only the first, (σ1, σ1)(σ1, σ2)(σ2, σ3) is consistent. This word is high-
lighted with solid arrows in the diagram above. Now if one shuffles the
single state pair (σ2, σ3) into the above language, one ends up with a lan-
guage containing all the words (and more not shown) represented in the
diagram below:

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

σ2

σ1

σ3

By performing this shuffle action, there is no longer a connected word
from σ1 to σ3, but instead there is a connected word from σ2 to σ3 and
σ1 to σ3. These new connected words were constructed from previously
unconnected words—the shuffle operator can generate many connected words
from two unconnected words. If we only considered connected words, à
la Aczel traces, it would be impossible to define such a shuffle operator
directly on the traces themselves, and instead one would have to rely on some
operational semantics to generate traces in the concurrent composition, or
perform concurrent composition in some other way (see Section 2.3).

63



6.5 Enriching the Model

To model and verify programs, additional concepts such as tests and assign-
ment axioms are required. A test is any language P where P ≤ 〈Id〉. Such
a language is a restriction of the identity relation to P and is denoted by
IdP . The statement test(P ) denotes 〈IdP 〉. In Kleene algebra the sequential
composition of two tests should be equal to their intersection. However, the
traces test(P ); test(Q) and test(P ∩Q) are incomparable, as all words in the
former have length two, while all the words in the latter have length one.
This means that these tests at first seem rather different to those of Kozen’s
KAT. To overcome this problem, one can use the concepts of stuttering and
mumbling, following [Bro93] and [Din02]. As introduced in Chapter 2 we in-
ductively generate the mumble language w† for a word w in a language over
Σ2 as follows: Assume σ1, σ2, σ3 ∈ Σ and u, v, w ∈ (Σ2)?. First, w ∈ w†.
Secondly, if u(σ1, σ2)(σ2, σ3)v ∈ w† then u(σ1, σ3)v ∈ w†. This operation is
lifted to languages in the obvious way as

X† =
⋃
{x†. x ∈ X}.

Stuttering is represented as a rely condition 〈Id〉? where Id is the identity
relation. Two languages X and Y are equal under stuttering if

〈Id〉?‖X =π 〈Id〉?‖Y.

Assuming mumbling is applied to both sides of the following equation, it
is the case that

test(P ∩Q) ≤π test(P ); test(Q)

as the longer words in test(P ); test(Q) can be mumbled down into the shorter
words of test(P ∩Q), whereas stuttering gives the opposite direction,

〈Id〉?‖(test(P ); test(Q)) ≤π 〈Id〉?‖test(P ∩Q).

For the remainder of this Chapter assume that all languages are implicitly
mumble closed.

Using tests, if statements and while loops are encoded as

if P { X } else { Y } = test(P );X + test(−P );Y,

while P { X } = (test(P );X)?; test(−P ).

Next, the operator end(P ) is defined to contain all the words which end in
a state satisfying P . Some useful properties of end include

end(P ); testQ ≤π end(P ∩Q), test(P ) ≤ end(P ),

range(IdP ◦R) ≤ P =⇒ end(P ); 〈R〉? ≤π end(P ).

64



In this model, assignment is defined as

x := e =
⋃
v. test{σ. eval(σ, e) = v} · x← v

where x ← v denotes the atomic command which assigns the value v to x.
This is very different to how assignment is encoded in SKAT, as this is purely
defined within the model, whereas SKAT has syntactic axioms for handling
assignment.

The eval function atomically evaluates an expression e in the state σ.
Using this definition, the assignment rule

unchanged(vars(e)) ∩ preserves(P ) ∩ preserves(P [x/e]),

unchanged(−{x})
` {end(P )} x := e {end(P [x/e])}.

can be derived.
The rely condition states the following: First, the environment is not

allowed to modify any of the variables used when evaluating e, i.e. those
variables must remain unchanged. Second, the environment must preserve
the precondition. Third, the postcondition of the assignment statement is
also preserved. In turn, the assignment statement itself guarantees at min-
imum that it leaves every variable other than x unchanged. In truth, de-
pending on e, many more complex statements can be guaranteed based on
the exact nature of the assignment. For example the assignment x := x− 2
can also guarantee that x will always decrease. The predicates preserves and
unchanged are defined as

preserves(P ) = 〈{(σ, σ′). P (σ) =⇒ P (σ′)}〉?,
unchanged(X) = 〈{(σ, σ′). ∀v ∈ X. σ(v) = σ′(v)}〉?.

Further predicates useful for defining interference constraints can be defined
in a similar fashion. For example, one could define increasing and decreasing,
defined much as unchanged except they only requiring that variables increase
or decrease, rather than stay the same.

6.6 Examples

To demonstrate how the parallel rule behaves, consider the following simple
statement, which simply assigns two variables in parallel:

〈Id〉?, 〈>〉? ` {end(x = 2 ∧ y = 2 ∧ z = 5)}
x := x+ 2 ‖ y := z

{end(x = 4 ∧ y = 5 ∧ z = 5)}.

65



The environment 〈Id〉? is only giving us stuttering interference. Since this
program is being considered in isolation, no guarantees need to be made
about how it affects the environment. To apply the parallel rule from Fig-
ure 6.1, the interference constraints and pre/postcondition are weakened or
strengthened as needed to fit the form of the parallel rule.

First, the rely condition is weakened to

unchanged{x} u unchanged{y, z}.

Second, the guarantee condition is strengthened to

unchanged{y, z} ‖ unchanged{x}.

When the parallel rule is applied, each assignment’s rely will become the
other assignment’s guarantee. Finally, the precondition and postcondition is
split into end(x = 2) u end(y = 2∧z = 5) and end(x = 4) u end(y = 5∧z = 5)
respectively. Upon applying the parallel rule, two trivial goals are obtained:

〈unchanged{x}〉?, 〈unchanged{y, z}〉? ` {end(x = 2)} x := x+ 2 {end(x = 4)},
〈unchanged{y, z}〉?, 〈unchanged{x}〉? ` {end(y = 2 ∧ z = 5)}

y := z

{end(y = 5 ∧ z = 5)}.

These goals can easily be tackled with the assignment rule from Section 6.5.
Figure 6.2 shows the FINDP program, which has been used by numerous

authors e.g. [Owi75, Jon81, dRdBH+01a, HJC13]. The program finds the
least element of an array satisfying a predicate P . The index of the first
element satisfying p is placed in the variable fmin. If no element of the
array satisfies P , then f will be set to the length of the array. The program
has two subprograms, A and B, running in parallel, one of which searches
the even indices while the other searches the odd indices. A speedup over a
sequential implementation is achieved as A will terminate when B finds an
element of the array satisfying P which is less than iA.

This FINDP program can be verified using just the algebra and model
described previously in this chapter. More details are included in the paper
upon which this chapter is based [AGS14a]. A proof of this fact is not
included here as a complete (refinement) proof in Isabelle of the correctness
of this algorithm is given in Chapter 8, albeit using the refined algebra from
Chapter 7.

6.7 Conclusion

In this Chapter variants of semirings and Kleene algebras intended to model
rely-guarantee and interference based reasoning have been introduced. A

66



fA := len(array);

fB := len(array);

iA = 0

while iA < fA ∧ iA < fB {
if P (array[iA]) {

fA := iA

} else {
iA := iA + 2

}
}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

iB = 1

while iB < fA ∧ iB < fB {
if P (array[iB]) {

fB := iB

} else {
iB := iB + 2

}
}


;

fmin = min(fA, fB)

Figure 6.2: FINDP Program

simple, finite, interleaving model for these algebras using familiar concepts
from traces and language theory has been given. This theory has been imple-
mented in Isabelle/HOL, providing a solid mathematical basis on which to
build a prototype tool for mechanised refinement and verification tasks. This
implementation serves as a basis from which further interesting aspects of
concurrent programs, such as refinement based proofs, and non-termination
can be explored in future chapters.

Algebra clearly plays a very important role in this development. First,
it allowed us the inference rules of rely-guarantee to be derived very rapidly
and with little proof effort. The algebra provides simple and minimal laws
from which a rely-guarantee calculus can be derived using the quintuple
encoding found in [HMSW11]. Second, it yielded an abstract layer at which
many properties that would be difficult to prove in concrete models can
be verified with relative ease by simple equational reasoning. Third, as
pointed out in Chapter 3, some fragments of the algebras considered are
even decidable. Therefore, decision procedures for some aspects of rely-
guarantee reasoning can be implemented in Isabelle. For example, the ?-
continuous Kleene algebra decision procedure from Section 3.11 can be used,
as the language model forms a quantale and therefore a ?-continuous Kleene
algebra. However, due to the presence of parallel composition and additional
constructs such as π it is doubtful that decision procedures would be very
useful.

In the coming Chapters, the algebraic approach presented here will be
refined to allow much more fine grained reasoning about interference, in
contrast to the rather all or nothing approach given by the π operator.

67



Chapter 7

Algebra for Rely-Guarantee
part 2

68



7.1 Introduction

In Chapter 6 a simple algebra was considered whereby an operator π(x) was
utilised to enable the algebra to encode non-trivial statements about con-
current programs. In the finite language model considered previously, this
corresponded to restricting sets of execution traces to only the consistent
traces; those where the environment always skips (i.e. does nothing). In this
chapter, this approach is enriched by an operator that lets us describe the
behaviour of a program’s environment in a more fine grained way. This op-
erator allows the definition of a concurrency rule that in some sense captures
the true essence of the rely-guarantee method more faithfully, specifically
that the guarantee condition holding should depend on the rely condition
holding. This link between the rely and the guarantee is absent in Chap-
ter 6. In addition, the finite language model is replaced by a detailed infinite
language based model. The key part of the soundness proof for the rely-
guarantee algebra is given in full detail, despite having also been mechanised
in Isabelle.

7.2 A Refined Algebra for Rely-Guarantee

It is no longer assumed that the interference constraints r,g and the processes
x,y are elements of the same algebra—in this richer setting, attempting to
conflate both interference constraints and programs into a one-sorted algebra
becomes unwieldy. In the model, we would like interference constraints to be
relations and for programs to be traces. Interference constraints are taken
to be elements of a complete lattice (I,v), whereas programs/processes are
considered to be elements of the following algebra:

Definition 3. The program algebra is an algebra

(K,+,u, ·,→, ‖, ?, ω, 0, 1),

where:

• (K,+,u) is a distributive lattice (Section 3.5),

• (K,+, ·, ‖, 0, 1) is trioid (Section 3.2),

• (K,+, ·, 0, 1, ?, ω) is a weak ω-algebra (Section 3.12),

• The preimplication operator → satisfies the Galois connection

xy ≤ z ⇐⇒ y ≤ x→ z. (7.1)

69



Consider two operators B and : of type I → K → K, with the following
intuitive meanings: The process rBx behaves as x as long as its environment
satisfies the invariant r. The process r : x is a restriction of the process x to
just those executions where all environment steps satisfy the invariant r. The
operator π(x) from Chapter 6 is therefore intended to be equivalent to ⊥ : x
where ⊥ is the least interference constraint (no interference). Naïvely, one
might expect that these operators should be adjoints of a Galois connection

r : x ≤ y ⇐⇒ x ≤ rB y. (7.2)

However this is not necessarily the case, as there exist models in which this
Galois connection does not hold, including the model considered later in
this Chapter (Section 7.3). Note however, that for this model (7.2) does
in fact hold when considering both stutter-mumble and prefix closed traces
(Subsection 7.3.3). In models where (7.2) does not hold, one typically has
only the left implication

x ≤ rB y =⇒ r : x ≤ y. (7.3)

A closure, or exterior operator is an isotone idempotent function f such
that x ≤ f(x) (extensiveness). Conversely, a co-closure, or interior opera-
tor f is an isotone and idempotent function satisfying the co-extensiveness
property f(x) ≤ x. It is required that rB− is a closure operator. The upper
adjoint in every Galois connection is a closure operator, and indeed, every
closure operator arises in this way from a suitable Galois connection. This
implies that there exists a subset P of K where (7.2) holds provided y ∈ P .
For the traces model later in this chapter we will see that P corresponds to
the prefix and stutter-mumble closed traces.

It turns out that the : operator is unnecessary as we can state all the
laws we require as a property of B. Furthermore the Jones quintuple can be
stated purely in terms of B. Additionally the B operator leads to a natural
refinement calculus for rely-guarantee.

While it is no longer the case that programs and interference constraints
are both elements of the same algebra, the notion that interference con-
straints correspond to a subset of programs is preserved with the operator
〈−〉 : I → K which lifts interference constraints to programs. Intuitively, 〈g〉
is the greatest program satisfying the constraint g.

Definition 4. An interference algebra can be now defined as a two-sorted
structure

(K, I,B, 〈−〉),

where:

• K is the algebra from Definition 3.

70



• I is a complete lattice (I,v). Join and meet in this lattice are denoted
by t and u respectively. The top and bottom elements are > and ⊥
respectively.

• B is a closure operator

• The B and 〈−〉 operators satisfy:

(rBx)(rB y) ≤ rBxy, (7.4)
(rBx)? ≤ rBx?, (7.5)

r ≤ g =⇒ gBx ≤ rBx, (7.6)
>Bx = x, (7.7)

〈g1〉‖〈g2〉 ≤ 〈g1 t g2〉, (7.8)
〈g1〉〈g2〉 ≤ 〈g1 t g2〉, (7.9)
〈g〉? = 〈g〉, (7.10)

(x u 〈g〉)(y u 〈g〉) = xy u 〈g〉, (7.11)
(r t g2Bx1 u 〈g1〉) ‖ (r t g1Bx2 u 〈g2〉) ≤ r B (x1 u 〈g1〉)‖(x2 u 〈g2〉).

(7.12)

Axiom (7.4) and (7.5) give the behaviour of B w.r.t. sequential compo-
sition; namely, B is required to sub-distribute over sequential composition,
as in the rely-guarantee algebra from Chapter 6. This axiom is visualised
graphically in Figure 7.1. Such diagrams are intended to provide a intuitive
feel for how the axioms work over just the definitions themselves—for the se-
qential composition rules this may be unnecessary, but it serves to introduce
the notation for the more interesting parallel case. Note that in a quantale
(7.5) could be derived from (7.4), but this is not possible here. Axiom (7.6)
states that B is antitone in its first argument. Intuitively, ⊥Bx must be
greater than >Bx as ⊥Bx is a program that only behaves as x when its
environment does nothing (stutters), otherwise it can do anything. On the
other hand >Bx is always equal to x (7.7)—it behaves as x, no matter
how much interference it receives from the environment. Axioms (7.8) to
(7.11) describe how 〈−〉 interacts with the program composition operators.
Essentially they state the following: that the guarantee of both sequential
and parallel composition is the combination of the guarantee for both sub-
programs, that guarantee is invariant under the star, and that intersection
by a guarantee distributes over sequential composition. Axiom (7.11) lets
us distribute guarantees over sequential composition, similarly to how B
sub-distributes as per (7.4). This axiom is shown in Figure 7.2.

The final axiom (7.12) describes how concurrent composition interacts
with the B operator. This axiom is considerably more complex than those
shown previously, and requires a more in depth explanation. Breaking the

71



(rBx)(rB y) ≤ rBxy

x y

r

B
r

B

; ≤

r

B

;x y

Figure 7.1: Diagrammatic depiction of axiom (7.4)

(x u 〈g〉)(y u 〈g〉) = xy u 〈g〉

;x y

〈g〉 〈g〉
u u

=
;x y

〈g〉
u

Figure 7.2: Diagrammatic depiction of axiom (7.11)

(r t g2 B x u 〈g1〉)‖(r t g1 B y u 〈g2〉) ≤ rB(x u 〈g1〉)‖(y u 〈g2〉)

〈g1〉
u

x

r t g2

B

〈g2〉
u

y

g1 t r

B

≤

r

B

x y

〈g1〉 〈g2〉
u u

Figure 7.3: Diagrammatic depiction of axiom (7.12)

72



above down, x1 u 〈g1〉 is describing a program x1 in which every program
transition satisfies the guarantee g1. However, this only holds true as long
as each environment transition satisfies either r or g2. The guarantee g2
is coming from the other side of the parallel composition, where we have
a program that behaves as x2 u 〈g2〉 as long as its environment behaves as
r or g1. The entire parallel composition can be seen as being run in an
external environment which guarantees that r holds. This rule is intended
to capture the circularity inherent in the rely-guarantee method—each of the
two programs is relying on the other program, which in turn is relying on
the first program, and so on. Figure 7.3 gives a diagrammatic presentation
of the above—as can be seen the guarantees for each program becomes part
of the rely for the other, and the global rely condition is pushed within both
sides of the parallel composition.

In this setting the definition of the rely-guarantee quintuple is

r, g ` {p}x{q} ⇐⇒ x ≤ p→ rB q u 〈g〉. (7.13)

Note that precedences are such that p → rBx u y is p → (rB(x u y)).
The right-hand side of the inequality, p→ rB q u 〈g〉 describes all processes
starting from a state p which when run in an environment satisfying the rely
r, must implement the program q, which in turn guarantees that it does not
execute steps outside its guarantee g. Note the difference between (rB q)u〈g〉
and rB qu〈g〉. The first guarantees g irrespective of the environment r, while
the second guarantees g only if the environment satisfies r.

Compare this with the specification statement from [HJC13] discussed in
Section 2.3

(guar g • (rely r • [p, q])) v x.

In the notation used here, this would roughly be x ≤ 〈g〉 u (rB(p→ q)).
While rBx has essentially the same intuitive meaning as (rely r • x), as
does (guar g • x) and xu 〈g〉, the specification statement here must be in a
completely different order, as above in 7.13.

The order used by Hayes et al. does not make sense as a specifica-
tion statement for a generic concurrent program in the interference algebra
from Definition 4 (obviously this is not to say that it is incorrect within
Hayes paper). Reasons for this are (partly) as follows: First, as previously
mentioned, it is not necessarily the case that rB(x u 〈g〉) is the same as
(rBx) u 〈g〉. Second p→ (rB q) is distinct from rB(p→ q) in the following
sense: rB(p→ q) ignores the possible environment transition between the
precondition p and the program that tries to implement q, while p→ (rB q)
does not. The specification statement/quintuple (6.6) in Chapter 6 is closer
to that of Hayes et al.

73



7.2.1 Tests in the Algebra

To keep the algebraic side as simple as possible, no particular axioms are
assumed for tests. In general, when we need a property we expect to hold
for tests in some model, it is simply assumed it holds as an assumption when
deriving proof rules dependent on those properties. As an example, when
deriving the parallel rule for rely-guarantee, we need the following property
of tests: (p → x)‖(p → y) ≤ p → x‖y (where p is a test), but we simply
take that as a premise of that particular rely-guarantee rule in the algebra.
Note also that while p is used in the above rule much like an atomic test
in KAT, postconditions q are oft intended to represent programs ending in
states satisfying q—this is similar in intent to the Tarlecki triples [Tar85]
px ≤ q discussed in Chapter 3.

Theorem 12. Assuming the tests p1, p2, q1 and q2 satisfy

(p1 → x)‖(p2 → y) ≤ (p1 u p2)→ (x‖y), and q1‖q2 ≤ rB q1 u q2,

the standard rely-guarantee concurrency rule

r t g1 ≤ r2 r t g2 ≤ r1 g1 t g2 ≤ g r1, g1 ` {p1}x{q1} r2, g2 ` {p2}y{q2}
r, g ` {p1 u p2}x‖y{q1 u q2}

can be derived in this algebra.

Proof. Translated via (7.13) the assumptions

r1, g1 ` {p1}x{q1} and r2, g2 ` {p2}y{q2}

become

x ≤ p1 → r1B〈g1〉 u q1 and y ≤ p2 → r2B〈g2〉 u q2

respectively. Along with Axiom (7.12) these can be used to derive the con-
sequence of the rely-guarantee parallel rule via straightforward inequational
reasoning.

(x‖y) ≤ (p1 → r1B q1 u 〈g1〉)‖(p2 → r2B q2 u 〈g2〉) (assumptions)
≤ p1 u p2 → (r1B q1 u 〈g1〉)‖(r2B q2 u 〈g2〉) (properties of tests)
≤ p1 u p2 → (r t g2B q1 u 〈g1〉)‖(r t g1B q2 u 〈g2〉) (assumptions)
≤ p1 u p2 → (q1 u 〈g1〉)‖(q2 u 〈g2〉) (7.12)
≤ p1 u p2 → rB(q1‖q2) u (〈g1〉‖〈g2〉) (properties of u)
≤ p1 u p2 → rB(q1 u q2) u 〈g1 t g2〉 (7.10, properties of tests)

74



As can be seen, the derivation of the standard parallel composition rule
from this axiom in the algebra is straightforward—this shouldn’t be too sur-
prising, as Axiom (7.12) is intended to capture the key complexity inherent
in this rule, minus any properties of tests. The difficulty of course lies in
proving that Axiom (7.12) is valid for any particular model. In the follow-
ing Section a model for this algebra is given based on infinite traces, and
Axiom (7.12) is derived within it.

Theorem 13. All the other rules from Figure 7.4 can be derived in the
interference algebra.

Proof. All the other rules are straightforward to derive using simple inequa-
tional reasoning. For full details see Appendix A, or the Isabelle implemen-
tation.

Skip
r, g ` {p}1{p}

r′ ≤ r g ≤ g′ p ≤ p′ r′, g′ ` {p′}x{q′} q′ ≤ q
Weakening

r, g ` {p}x{q}

r, g ` {p}x{q} r, g ` {q}y{s}
Sequential

r, g ` {p}x · y{s}

r1, g1 ` {p1}x{q1} g1 ≤ r2 r2, g2 ` {p2}y{q2} g2 ≤ r1
Parallel

r1 u r2, g1 t g2 ` {p1 u p2}x‖y{q1 u q2}

r, g ` {p}x{q} r, g ` {p}y{q}
Choice

r, g ` {p}x+ y{q}

r, g ` {p}x{p}
Star

r, g ` {p}x?{p}

r, g ` {p}x{p} r, g ` {p}xω{x?}
Omega

r, g ` {p}xω{p}

Figure 7.4: Updated rely-guarantee inference rules

7.2.2 Refinement

The definition of the rely-guarantee quintuple in (7.13) lends itself nat-
urally to thinking in terms of refinement, whereby programs are derived

75



p→ rB p u 〈g〉 v 1 (Skip)

p→ rB q u 〈g〉 v (p→ rB s u 〈g〉)(s→ rB q u 〈g〉) (Sequential)

(p1 u p2)→ rB(q1 u q2) u 〈g1 t g2〉
v

(p1 → r t g2B q1 u 〈g1〉)‖(p2 → r t g1B q2 u 〈g2〉)
(Parallel)

p→ rB p u 〈g〉 v (p→ rB p u 〈g〉)? (Star)

Figure 7.5: Rely-guarantee refinement rules

incrementally from a specification. The right-hand side of the quintuple
p → (rB q u 〈g〉) can be seen as the greatest program from p to q, that
guarantees g in an environment r. This is therefore a suitable specification
statement for an arbitrary concurrent program. When thinking in terms of
refinement, the order ≤ is usually flipped as x v y ⇐⇒ y ≤ x. This
order naturally allows reasoning from the specification to the program, as
the specification will always be greater than the program. The order v is
called the refinement order. The quintuple r, g ` {p}x{q} therefore holds iff
x is a refinement of p→ rB q u 〈g〉.

Much as in the action algebra from Section 3.10, each of the inference
rules in Figure 7.4 can be translated to an equivalent rely-guarantee refine-
ment rule. For example, the sequential rule would become

p→ rB q u 〈g〉 v (p→ rB s u 〈g〉)(s→ rB q u 〈g〉).

Other refinement rules are given in Figure 7.5.
In the following section, an infinite language model for the above algebra

is given. It is perhaps easy to imagine a great variety of language/trace based
models (with an interleaving parallel composition operator) applicable to the
above algebra. However it remains to be seen if this algebra is more broadly
applicable beyond those models traditionally considered in the rely-guarantee
literature.

76



7.3 Infinite Language Model

In this section a model for rely-guarantee style reasoning based on (poten-
tially) infinite languages is presented. Such a model is considerably more
complicated than the finite language model presented in Chapter 6. In par-
ticular, many operations that can be defined inductively for finite traces must
instead be defined co-inductively for infinite traces. Furthermore, issues such
as fairness must now be considered for the parallel composition operator.

Traces are potentially infinite sequences of state transitions, for example,

(σ0, σ
′
0)(σ1, σ

′
1)(σ2, σ

′
2)(σ3, σ

′
3) . . .

As before the transitions (σ0, σ
′
0), (σ1, σ

′
1) etc are called program transitions,

while transitions between program transitions such as σ′0)(σ1 are called envi-
ronment transitions. Potentially infinite languages are therefore sets contain-
ing such potentially infinite words, or equivalently they taken to be subsets
of (Σ2)∞.

Sequential combination of languages is defined as

XY = {xy | x ∈ X ∧ y ∈ Y } ∪ {x | x ∈ X ∧ ¬finite(x)}.

Preimplication is defined as in a quantale (Section 3.13), by

X → Y =
⋃
{Z | XZ ⊆ Y }.

The iteration operators can then be defined as fixpoints

Xω = νY.XY,

X? = µY.{ε} ∪XY,
X∞ = Xω ∪X?.

Lemma 14. (K,∪, ·, ?, 0, 1) is a weak Kleene algebra (Section 3.8).

Lemma 15. (K,∪, ·, ?, ω, 0, 1) is a weak ω-algebra (Section 3.12).

Denote the set of all finite traces as F . For sequential composition we
have infinite distributivity from the right, but only for finite languages from
the left

(
⋃

X)Y =
⋃
{XY | X ∈ X}, X ⊆ F =⇒ X(

⋃
Y) =

⋃
{XY | Y ∈ Y}.

Lemma 16. (K,⊆, ·) is a weak quantale

A language X is prefix closed iff xy ∈ X implies x ∈ X. Unlike many
trace based models for concurrent programs, here it is not assumed that sets
of traces are prefix closed. This is primarily to keep the model as simple as
possible.

77



For implementing this model in Isabelle, extensive use is made of An-
dreas Lochbihler et al’s coinductive library [Loc10, BHL+14]. This library
provides a type of coinductive lazy lists, 'a llist, which function much like
the lists found in lazy functional programming languages such as Haskell.
Since Isabelle features strict evaluation, defining functions over such lists
is not as simple as it would be in Haskell, as will be seen in Subsection
7.3.1. All the properties and definitions in this section have been formalised
in Isabelle, barring Lemma 34 in Subsection 7.3.4 and certain properties of
stutter-mumble closure (see Section 7.3.2)

7.3.1 The Shuffle Operation

Define xxt y as the shuffle of words x and y along a trajectory t. A tra-
jectory is a potentially infinite word over the alphabet {l, r}. Figure 7.6
demonstrates how this works for two simple words x and y. The trajectory
t determines in which orders the state pairs are selected from x and y in the
final shuffle xxt y.

y = b0 b1 b2 b3

t = lrlrrllr

xxt y = a0 b0 a1 b1 b2 a2 a3 b3

x = a0 a1 a2 a3

Figure 7.6: An example of a shuffle.

In Figure 7.6 the notation an and bn is used to represent the state pairs
(σn, σ

′
n) and (τn, τ

′
n) respectively. More formally, the shuffle of two languages

can be defined as

xxt ε = x,

εxt y = y,

x:x′xt:t′ y:y′ =

{
x:(x′xt′ y:y′) if t = l

y:(x:x′xt′ y′) if t = r.

The shuffle of two potentially infinite words cannot be defined so straight-
forwardly in Isabelle. As mentioned, Isabelle is a strictly-evaluated, rather
than lazily-evaluated language, so the above definition would fail to termi-
nate when both arguments are infinite. This function therefore needs to be
defined coinductively in Isabelle as an unfold.

definition op x :: 'a llist → (unit + unit) llist → 'b llist → ('a + 'b) llist
where xxt y ≡ unfold-llist

78



(λ(t, x, y). t = LNil)
(λ(t, x, y). case (lhd t) of Inl () → Inl (lhd x) | Inr () → Inr (lhd y))
(λ(t, x, y). case (lhd t) of Inl () → (ltl t, ltl x, y) | Inr () → (ltl t, x, ltl y))
(t, x, y)

The above definition constructs the shuffle in the following way. The
first function λ(t, x, y).t = LNil ensures that the function terminates when
the trajectory is empty. The second function takes either the first element of
x or y depending on whether the head of the trajectory is l or r respectively.
The final function generates the next seed value for the unfold. Finally the
initial seed value for the unfold is given to unfold-llist as (t, x, y)

Typically functions over lazy lists in Isabelle are prefixed with the letter
‘l’ to differentiate them from those over finite lists, so the hd function would
be lhd, and so on. Note that the shuffle operation xxt y is only well defined
when the number of l elements in t is equal to the length of x, and similarly
for the r elements of t and the length of y. A trajectory is said to be valid
w.r.t. a pair of words if this is the case. In Isabelle, this is encoded by the
predicate

definition Valid :: 'a llist → (unit + unit) llist → 'b llist → bool where
Valid x t y ≡ llength (L t) = llength x ∧ llength (R t) = llength y.

Valid x t y enforces a very weak notion of fairness on shuffles, whereby any
event in x or y is eventually guaranteed to occur in xxt y.

Another thing to note is the type of the x operation in Isabelle. It takes
two words of types 'a llist and 'b llist respectively, and produces a word of
type ('a + 'b) llist. Obviously when 'a and 'b are equal, the sum type can
be stripped away to end up with a word of type 'a llist. For the most part
this is done implicitly when it is clear, but the function

〈−,−〉− :: ('a→ 'c)→ ('b→ 'c)→ ('a + 'b)→ 'c,
〈f, g〉(Inl a) = f a,

〈f, g〉(Inr b) = g b,

is often used in Isabelle to eliminate the sum type, in particular when in-
stantiated as 〈id, id〉. Furthermore we have the functions

L :: ('a + 'b) llist→ 'a llist and R :: ('a + 'b) llist→ 'b llist

which return words containing the left and right parts of a word over 'a+ 'b
respectively.

We now define the operator xx y (notice the lack of a trajectory). Unlike
xxt y, which returned a single interleaving of x and y, the operation xx y
returns all interleavings of x and y for all valid trajectories. This is used
later to derive (7.12) in the model. It is defined straightforwardly as

xx y = {xxt y. ∃t. Valid x t y}. (7.14)

79



Lemma 17. (7.14) is equivalent to xx y = {z. L z = x ∧R z = y}.

The equivalent definition of xx y in Lemma 17 is typically much simpler
to work with than when xx y is defined in terms of xxt y. Figure 7.7 shows
the shuffling of two short finite words along all valid trajectories. As in Figure
7.6 each letter an or bn represents a state pair (σn, σ

′
n) or (τn, τ

′
n) respectively.

As can been seen, even for such short words, the resulting shuffle language
contains many potential interleavings. In general, shuffling causes a large
‘combinatorial explosion’ in the number of words in a language. This can
make verification tasks quite tricky, assuming one is not able to abstract
away from analysing individual interleaving sequences.

Finally, the shuffle operation is lifted to languages in the obvious manner
as

X‖Y = {xx y. x ∈ X ∧ y ∈ Y }.

Lemma 18. (K,∪, ‖, 0, 1) is a commutative dioid.

Lemma 19. (K,∪, ·, ‖, 0, 1) is a trioid.

y = b0 b1

x = a0 a1

a0 a1 b0 b1

a0 b0 a1 b1

a0 b0 b1 a1

b0 b1 a0 a1

b0 a0 b1 a1

b0 b0 b1 b1

xx y =

Figure 7.7: An example of shuffling with all possible valid trajectories.

A canonical inhabitant of the set xx y is given by alternate(x, y), which,
as the name suggests, simply alternates between picking elements from x
and y. For example,

alternate(a0a1, b0b1b2) = a0b0a1b1b2.

alternate satisfies all the properties one would expect, namely,

alternate(x, y) ∈ xx y, L alternate(x, y) = x, and R alternate(x, y) = y.

80



7.3.2 Stuttering and Mumbling Closure

Following [Bro93] and [Din02] and reiterating the definitions in Section 2.3
the mumble language w† for a word w ∈ K is generated inductively: Assume
σ1, σ2, σ3 ∈ Σ and u, v, w ∈ K. First, w ∈ w†. Secondly, if u(σ1, σ2)(σ2, σ3)v ∈
w† then u(σ1, σ3)v ∈ w†.

The stutter language w

†

for a trace w is also defined inductively in much
the same way: Assume σ1, σ2 ∈ Σ and u, v, w ∈ K. First w ∈ w

†

. Secondly,
if u(σ1, σ2)v ∈ w

†

then u(σ1, σ2)(σ2, σ2)v ∈ w

†

and u(σ1, σ1)(σ2, σ2)v ∈ w

†

.
Both these operations are lifted to languages in the obvious way as

X† =
⋃
{x†. x ∈ X} and X

†

=
⋃
{x

†

. x ∈ X}.

Lemma 20. −† and −

†

are closure operators.

Lemma 21. Stuttering and mumbling commute: X†

†

= X

††

Lemma 22. Stuttering and mumbling preserve prefix closure.

Define the stutter-mumble closure of X as X‡ where X‡ = X†

†

.

Lemma 23. X‡ ∪ Y ‡ = (X ∪ Y )‡

Lemma 24. X‡Y ‡ = (XY )‡

Lemma 25. X‡? = X?‡ and X‡ω = Xω‡

In general, and in contrast to Chapter 6, it is not assumed that any
arbitrary language X is stutter-mumble closed unless explicitly denoted as
such by X‡. Furthermore, stutter-mumble closure is avoided in order to
keep proofs as straightforward as possible, nor is stutter-mumble closure
required for the example in Chapter 8. In [Bro93] Brookes uses stutter-
mumble closure to ensure full-abstraction (see Section 2.3), however we are
able to prove what we need to prove without requiring such a strong property
for our trace semantics.

7.3.3 Relies and Guarantees

Having defined traces in the model, we now turn our attention to the relies
and guarantees. As discussed in Section 7.2 and in contrast to Chapter 6 the
algebra we are now considering is a two sorted algebra with different objects
representing programs and interference constraints.

Interference constraints are considered to be reflexive and transitively
closed relations, such that R = R?. Reflexive and transitive closure is
required because one cannot in general assume anything about the exact
amount of interference received between any pair of program transitions.
The join of two interference constraints, RtG, is therefore simply (R∪G)?,
similarly, the meet of interference constraints, RuG, is defined as (R∩G)?.

81



Lemma 26. Interference constraints form a complete lattice.

〈G〉 defines the greatest set of traces such that each program transition
comes from the interference constraint G.

The : operator from Section 7.2 is defined as

R : X = {x | env(R, x) ∧ x ∈ X}.

The predicate env(R, x) holds for an interference constraint R and a trace
x provided every environment transition in x is contained within R. It is
defined as

env(R, x) ⇐⇒ ∀x′ σ σ′ τ τ ′ x′′. x 6= x′(σ, σ′)(τ, τ ′)x′′ ∨ (σ′, τ) ∈ R.

The operator R : X therefore filters out all the traces from X where the
environment performs an action not permitted by R. If every environment
transition in x satisfies R, then x will be in R : X.

The B operator from Section 7.2 is defined as

RBX = {y| ∃x∈X. x 'R y},

x 'R y ⇐⇒ (∃z x′ σ σ′ τ τ ′ τ ′′ y′.
x = z(σ, σ′)(τ, τ ′)x′

∧ y = z(σ, σ′)(τ, τ ′′)y′

∧ (σ′, τ) /∈ R
∧ env(R, z(σ, σ′)))

∧ finite(x) = finite(y)

∨ (x = y ∧ env(R, x)).

For a pair of words x and y, x 'R y if both words are equal and their
environment transitions never violate R, or if they are equal up until the
point where an environment transition occurs which violates R. Therefore
RBX defines the set of words such that every x ∈ RBX corresponds to a
word in X up until R is violated by the environment, after which point x
may perform any possible combination of program and environment steps.

Note that if x is finite then y must also be finite—this is required for the
sequential composition axioms (7.4). This is justifiable as it is reasonable
to assume that programs containing no loops cannot be made infinite by
the environment. All processes containing loops will still contain infinite
divergences after an environment transition fails. However, all the other
axioms can still be derived without this condition being present within 'R,
and this has been verified in Isabelle. Given a more in depth treatment
of termination perhaps this condition could be removed. One could also
imagine reducing this equivalence to an implication, with the obvious caveat
that 'R would no longer be an equivalence relation, but this has not been
investigated thoroughly.

82



Lemma 27. R : − is a closure operator and RB− is a co-closure operator

Lemma 28. 'R is an equivalence relation.

The following lemma states that B and : are well behaved w.r.t. stutter-
mumble closure.

Lemma 29. RBX‡ = (RBX)‡ and R : X‡ = (R : X)‡

A note on prefix closure

As mentioned above it is not assumed that sets of traces are prefix closed.
This is primarily to keep the model as simple as possible. We can prove all
the properties we require from Section 7.2 without it, so why would we want
it? Well, in concert with stutter-mumble closure, it does allow for several
nice properties to be proven, such as the Galois connection between : and B
discussed in Section 7.2.

However to prove this, we must slightly redefine the : operator for prefix
and stutter-mumble closed traces. A trace x is in R :̂X if env(R, x) holds or
if it is of the form

x = x′(σ, σ′)(τ, τ) . . . (τ, τ)

where (σ′, τ) /∈ R and env(R, x′(σ, σ′)). In other words, a trace in R :̂X may
only stutter finitely after an environment step occurs which is not in R.

Theorem 30. If X and Y are prefix and stutter-mumble closed, the Galois
connection

R :̂X ≤ Y ⇐⇒ X ≤ RBY

from Section 7.2 holds in the infinite traces model

Proof. For the left to right implication assume R :̂X ≤ Y holds. It must be
shown for all x that x ∈ X implies that x 'R y for some y ∈ Y . There are
two possibilities for x, either env(R, x) holds, or it does not. The case where
env(R, x) holds is trivial, as this straightforwardly implies x ∈ R :̂ X, and
thus x ∈ Y and x 'R x.

The more complex case is when env(R, x) does not hold. In this case
there must exist a minimal point in x where the environment step fails to
satisfy R (see Lemma 31), formally:

∃x′ σ σ′ τ τ ′ x′′.
x = x′(σ, σ′)(τ, τ ′)x′′

∧ env(R, x(σ, σ′))

∧ (σ′, τ) /∈ R
∧ finite(x′)

83



We know from prefix closure that x′(σ, σ′)(τ, τ ′) ∈ X. As X is stutter-
mumble closed, x′(σ, σ′)(τ, τ)(τ, τ ′) must also be in X. Due to prefix closure,
this implies that x′(σ, σ′)(τ, τ) ∈ X. From the definition of :̂ we can conclude
that x′(σ, σ′)(τ, τ) ∈ R :̂X, and therefore x′(σ, σ′)(τ, τ) ∈ Y . It is clear that
x 'R x′(σ, σ′)(τ, τ) and this completes this half of the proof.

For the right to left implication we assume the right hand side of the
implication and that x ∈ R :̂ X and show x ∈ Y . It is either the case that
env(R, x) and x ∈ X, or

x ∈{x(σ, σ′)(τ, τ) . . . (τ, τ) | ∃τ ′ x′.
env(R, x(σ, σ′))

∧ x(σ, σ′)(τ, τ ′)x′ ∈ X
∧ (σ′, τ) /∈ R
∧ finite(x)},

which is the case when there is an environment transition in x violating R.
This can be followed be finite stuttering of τ . The case where env(R, x) and
x ∈ X holds is is trivial. The left hand side of the implication translates to

∀x∈X. ∃y∈Y. y 'R x.

From x ∈ X we therefore obtain a y ∈ Y such that x 'R y, however since
env(R, x), it must be the case that x = y, and therefore x ∈ Y .

For the other case we know that x has the form x′(σ, σ′)(τ, τ) . . . (τ, τ)
for some x′, σ and τ , such that (σ′, τ) /∈ R and that there must exist an
x′′ where x′(σ, σ′)(τ, τ) . . . (τ, τ)(τ, τ ′)x′′ is in X‡ and therefore X. Due to
prefix closure x′(σ, σ′)(τ, τ) must also be in X. We can therefore obtain a
y ∈ Y such that x′(σ, σ′)(τ, τ) 'R y. From the definition of 'R we can see
that x′(σ, σ′)(τ, τ) must be a prefix of y (modulo stuttering), and therefore
x′(σ, σ′)(τ, τ) ∈ Y . This completes the proof.

It is interesting to note that this property appears to rely quite heavily on
properties provided by prefix closure, as well as stutter and mumble closure.
The Galois connection in Theorem 30 cannot be proven in a model without
them, as one cannot show that x ∈ X if x ∈ R :̂ X without such closure
conditions. Not requiring this Galois connection in the algebra in Section
7.2 therefore allows a wider array of potential models without such notions.

In the Isabelle theory backing this Chapter, prefix closure is not for-
malised.

7.3.4 Properties of Shuffle and Traces

In this section, several properties of the shuffle operator and traces are given.
All of these properties are used for deriving the concurrency rule (7.12) from
Section 7.2 in the model, as shown in Subsection 7.3.5.

84



Lemma 31. The property ¬env(R, x) implies there exists xp, σ, σ′, τ , τ ′,
and xt, where

1. x = xp(σ, σ
′)(τ, τ ′)xt

2. (σ′, τ) /∈ R

3. finite(xp)

4. env(R, xp(σ, σ
′))

Proof. Conditions 1 -3 come directly from the definition of env, which fails
when x contains an environment step not in R. We can show inductively that
if this is not the first such failure, then there must be one before it, and so
on, until we find the first. This gives us a way to split x into xp(σ, σ′)(τ, τ ′)xt
in such a way that condition 4 holds.

Lemma 31 allows for a variant of x 'R y which does not rely on env.
First define

x ∼R y ⇐⇒ ∃z x′ σ σ′ τ τ ′ τ ′′ y′.
x = z(σ, σ′)(τ, τ ′)x′

∧ y = z(σ, σ′)(τ, τ ′′)y′

∧ (σ′, τ) /∈ R
∧ finite(x) = finite(y)

∧ env(R, z(σ, σ′)).

Clearly x 'R y = (x ∼R y ∨ (x = y ∧ env(R, x)), now define

x ∼̂R y ⇐⇒ ∃z x′ σ σ′ τ τ ′ τ ′′ y′.
x = z(σ, σ′)(τ, τ ′)x′

∧ y = z(σ, σ′)(τ, τ ′′)y′

∧ (σ′, τ) /∈ R,
∧ finite(x) = finite(y)

which is ∼R without any requirement that env(R, z(σ, σ′)).

Lemma 32. x ∼̂R y ⇐⇒ x ∼R y

Proof. The direction x ∼R y =⇒ x ∼̂R y is trivial. For the other direction,
look at the shared prefix of x and y, which is z(σ, σ′), if env(R, z(σ, σ′)) then
x ∼R y trivially holds. If ¬env(R, z(σ, σ′)) we apply Lemma 31 to find a
shared prefix for which x ∼R y holds.

85



This lemma is very useful, as it lets one avoid having to reason specifically
about the first environment transition failure when proving x 'R y (which
would often require induction), and instead reason about any such failure.
However when x 'R y is assumed in a proof one may always assume the
shared prefix before the environment failure contains only valid environment
steps.

Lemma 33. For a trace (σ, σ′)x(τ, τ ′), if finite(x), x ∈ 〈G〉 and (σ′, τ) /∈
R tG there exists w, γ, γ′, and ϕ, such that

∀τ ′. ∃ϕ′ w′. (σ, σ′)x(τ, τ ′) = w(γ, γ′)(ϕ,ϕ′)w′ ∧ (γ′, ϕ) /∈ R ∧ env(R,w(γ, γ′))

Proof. By induction on x.

Intuitively Lemma 33 states that if there exists some environment failure
from an environment R tG between σ′ and τ , which are separated by some
program transitions in x that all satisfy G, then the environment failure
must have been caused by the global environment R, and there must be an
environment transition in (σ, σ′)x(τ, τ ′) where this occurs.

Lemma 34. The shuffle

Z = xp(σ0, σ
′
0)(σ1, σ

′
1)xtx yp(τ0, τ

′
0)(τ1, τ

′
1)yt

is equal to⋃
{(xpx y′p){(σ0, σ′0)y′′p(τ0, τ

′
0)(τ1, τ

′
1)y
′
t(σ1, σ

′
1)}(xtx y′′t ) | yp = y′py

′′
p ∧ yt = y′ty

′′
t }

∪
⋃
{(xpx y′p){(σ0, σ′0)y′′p(τ0, τ

′
0)(σ1, σ

′
1)x
′
t(τ1, τ

′
1)}(x′′t x yt) | yp = y′py

′′
p ∧ xt = x′tx

′′
t }

∪
⋃
{(xpx y′p){(σ0, σ′0)y′′p(σ1, σ

′
1)}(xtx y′′′p (τ0, τ

′
0)(τ1, τ

′
1)yt) | yp = y′py

′′
py
′′′
p }

∪
⋃
{(x′px yp){(τ0, τ ′0)x′′p(σ0, σ′0)(σ1, σ′1)x′t(τ1, τ ′1)}(x′′t x yt) | xp = x′px

′′
p ∧ xt = x′tx

′′
t }

∪
⋃
{(x′px yp){(τ0, τ ′0)x′′p(σ0, σ′0)(τ1, τ ′1)y′t(σ1, σ′1)}(xtx y′′t ) | xp = x′px

′′
p ∧ yt = y′ty

′′
t }

∪
⋃
{(x′px yp){(τ0, τ ′0)y′′p(τ1, τ

′
1)}(x′′′p (σ0, σ

′
0)(σ1, σ

′
1)xtx yt) | xp = x′px

′′
px
′′′
p }

Note that for the conditions yp = y′py
′′
p and similar there is an implicit as-

sumption that y′p is finite, which is omitted for brevity.

Proof. Consider the six possible ways that (σ0, σ
′
0), (σ1, σ

′
1), (τ0, τ

′
0) and

(τ1, τ
′
1) could be arranged in any interleaving in Z:

1. (σ0, σ
′
0)(τ0, τ

′
0)(τ1, τ

′
1)(σ1, σ

′
1)

2. (σ0, σ
′
0)(τ0, τ

′
0)(σ1, σ

′
1)(τ1, τ

′
1)

3. (σ0, σ
′
0)(σ1, σ

′
1)(τ0, τ

′
0)(τ1, τ

′
1)

86



4. (τ0, τ
′
0)(σ0, σ

′
0)(σ1, σ

′
1)(τ1, τ

′
1)

5. (τ0, τ
′
0)(σ0, σ

′
0)(τ1, τ

′
1)(σ1, σ

′
1)

6. (τ0, τ
′
0)(τ1, τ

′
1)(σ0, σ

′
0)(σ1, σ

′
1)

The above statement formalises this fact, using equational reasoning to ex-
pand the possible interleavings of the shuffle. It splits xp, xt, yp, and yt as
appropriate between the interesting pairs listed above.

7.3.5 Concurrency Rule

Theorem 35. The following concurrency axiom from Section 7.2 holds in
the potentially infinite language model:

(R tG2BX u 〈G1〉)‖(R tG1BY u 〈G2〉) ≤ RB(X u 〈G1〉)‖(Y u 〈G2〉)

Proof. We begin by performing the following simplifications using the defi-
nition of B to the left hand side of the inequality:

(R tG2BX u 〈G1〉)‖(R tG1BY u 〈G2〉)
= {x | ∃x′∈X u 〈G1〉. x′ 'RtG2 x}‖{y | ∃y′∈Y u 〈G2〉. y′ 'RtG1 y}

=
⋃
{xx y | (∃x′∈X u 〈G1〉. x′ 'RtG2 x) ∧ (∃y′∈Y u 〈G2〉. y′ 'RtG1 y)}.

This reduces the problem of solving the inequality into showing

xx y ∈ RB(X u 〈G1〉)‖(Y u 〈G2〉)

from the assumptions

x′ ∈ X, (7.15)
x′ ∈ 〈G1〉, (7.16)

y′ ∈ Y, (7.17)
y′ ∈ 〈G2〉, (7.18)

x′ 'RtG2 x, (7.19)
y′ 'RtG1 y. (7.20)

Obviously it suffices to prove that

xx y ∈ RBx′x y′

which in turn, becomes

∀z∈xx y. ∃z′∈x′x y′. z′ 'R z. (7.21)

87



In other words, for any particular interleaving z of x and y, a trace z′ in
x′x y′ must be constructed such that z′ 'R z. We start by expanding the
definitions of 'R in the assumptions.

x′ 'RtG2 x ⇐⇒ (x′ ∼RtG2 x) ∨ (x′ = x ∧ env(R tG2, x))

y′ 'RtG1 y ⇐⇒ (y′ ∼RtG1 y) ∨ (y′ = y ∧ env(R tG1, y))

The case where x′ = x and y′ = y is obviously trivial as this implies z′ = z.
For the case where neither x′ = x nor y′ = y, we obtain x1, x2, x3, σ0, σ′0,

σ1, σ′1, σ′′1 , y1, y2, y3 τ0, τ ′0, τ1, τ ′1, and τ ′′1 from x′ ∼RtG2 x and y′ ∼RtG1 y
where

x′ = x1(σ0, σ
′
0)(σ1, σ

′
1)x2 (7.22)

x = x1(σ0, σ
′
0)(σ1, σ

′′
1)x3 (7.23)

y′ = y1(τ0, τ
′
0)(τ1, τ

′
1)y2 (7.24)

y = y1(τ0, τ
′
0)(τ1, τ

′′
1 )y3 (7.25)

σ′0)(σ1 /∈ R tG2 (7.26)
τ ′0)(τ1 /∈ R tG1 (7.27)

env(R tG2, x1(σ0, σ
′
0)) (7.28)

env(R tG1, y1(τ0, τ
′
0))) (7.29)

finite(y2) = finite(y3) (7.30)
finite(x2) = finite(x3) (7.31)

To prove (7.21), consider the interleavings of

z ∈ x1(σx, σ′x)(τx, τ
′
x)x3 x y1(σy, σ

′
y)(τy, τ

′
y)y3.

which are enumerated by Lemma 34, as the following cases:

1. For this case there exists a y′1 and y′′1 where y1 = y′1y
′′
1 and there exists

a y′3 and y′′3 where y3 = y′3y
′′
3 such that

z ∈ (x1x y
′
1){(σ0, σ′0)y′′1(τ0, τ

′
0)(τ1, τ

′′
1 )y′3(σ1, σ

′′
1)}(x3x y′′3).

We know that y′1 and y′3 are finite by Lemma 34. This implies that
x1x y′1 is also finite, which ensures that the subtrace where R is vio-
lated by the environment actually exists.

From the definition of x we know that there must exist valid trajecto-
ries t1 and t2 such that

z = (x1xt1 y
′
1)(σ0, σ

′
0)y
′′
1(τ0, τ

′
0)(τ1, τ

′′
1 )y′3(σ1, σ

′′
1)(x3xt2 y

′′
3).

We now construct the trace

z′ = (x1xt1 y
′
1)(σ0, σ

′
0)y
′′
1(τ0, τ

′
0)(τ1, τ

′
1)(alternate((σ1, σ

′
1)x2, y2)),

88



(which is clearly in x′x y′) and prove that z′ 'R z. Since z′ 6= z, by
Lemma 32 we are only required to prove that z′ ∼̂R z. This is done by
finding an environment step that is not in R, and for which both z′

and z are equal to up until that environment transition. In this case
t′0)(t1 is not in R by (7.27). We must also show that the finiteness of
x3xt2 y

′′
3 is the same as alternate((σ1, σ

′
1)x2, y2)—this is trivial due to

(7.30) and (7.31). Such finiteness goals are always trivial throughout
the proof, so they will be omitted from future cases.

2. For this case there exists a y′1 and y′′1 where y1 = y′1y
′′
1 and there exists

a x′3 and x′′3 where x3 = x′3x
′′
3 such that

z ∈ (x1x y
′
1){(σ0, σ′0)y′′1(τ0, τ

′
0)(σ1, σ

′′
1)x′3(τ1, τ

′′
1 )}(x′′3 x y3).

Again y′1 and x′3 are finite by Lemma 34.

Similarly to case 1, we acquire valid trajectories t1 and t2 such that

z = (x1xt1 y
′
1)(σ0, σ

′
0)y
′′
1(τ0, τ

′
0)(σ1, σ

′′
1)x′3(τ1, τ

′′
1 )(x′′3 xt2 y3),

and construct z′ as

z′ = (x1xt1 y
′
1)(σ0, σ

′
0)y
′′
1(τ0, τ

′
0)(σ1, σ

′
1)(alternate(x2, (τ1, τ

′
1)y2)).

For this case proving z′ ∼̂ z is trickier than in case 1. This is because
neither (7.26) nor (7.27) occurs in z′ or z. Instead, we inspect the
subsequence (σ0, σ

′
0)y
′′
1(τ0, τ

′
0)(σ1, σ

′′
1). We can prove y′′1 is finite, as y1 is

itself finite. Furthermore σ′0)(σ1 /∈ RtG2 (7.26), and y′′1(τ0, τ
′
0) ∈ 〈G2〉

by (7.18). This allows Lemma 33 to be applied, obtaining w, γ, γ′ and
ϕ such that

∀σ′′′1 . ∃ϕ′ w′. (σ0, σ
′
0)y
′′
1(τ0, τ

′
0)(σ1, σ

′′′
1 ) = w(γ, γ′)(ϕ,ϕ′)w′.

∧ γ′)(ϕ /∈ R
∧ env(R,w(γ, γ′)).

(7.32)

Instantiating σ′′′1 as σ′′1 and σ′1 respectively, we obtain

∃ϕ′ w′. z = (x1xt1 y
′
1)w(γ, γ′)(ϕ,ϕ′)w′x′3(τ1, τ

′′
1 )(x′′3 xt2 y3),

and

∃ϕ′ w′. z′ = (x1xt1 y
′
1)w(γ, γ′)(ϕ,ϕ′)w′(alternate(x2, (τ1, τ

′
1)y2)).

Now z′ and z share a common finite prefix up until a point where R is
violated by the environment, which is what we need to prove z′ ∼̂R z,
and therefore z′ 'R z.

89



3. For this case there exists a y′1, y′′1 and y′′′1 where y1 = y′1y
′′
1y
′′′
1 such that

z ∈ (x1x y
′
1){(σ0, σ′0)y′′1(σ1, σ

′
1)}(x3x y′′′1 (τ0, τ

′
0)(τ1, τ

′
1)y3).

Again with y′1 and y′′1 being finite by Lemma 34.
We again obtain trajectories t1 and t2 such that

z = (x1xt1 y
′
1)(σ0, σ

′
0)y
′′
1(σ1, σ

′
1)(x3xt2 y

′′′
1 (τ0, τ

′
0)(τ1, τ

′
1)y3),

and construct z′ as

z′ = (x1xt1 y
′
1)(σ0, σ

′
0)y
′′
1(σ1, σ

′
1)(alternate(x2, (y

′′′
1 (τ0, τ

′
0)(τ1, τ

′
1)y3))).

Like in case 2, Lemma 33 is applied to obtain an environment transition
that violates R.

∀σ′′′1 . ∃ϕ′ w′. (σ0, σ
′
0)y
′′
1(σ1, σ

′′′
1 ) = w(γ, γ′)(ϕ,ϕ′)w′.

∧ γ′)(ϕ /∈ R
∧ env(R,w(γ, γ′)).

(7.33)

Instantiating σ′′′1 as σ′′1 and σ′1 respectively, we obtain

∃ϕ′ w′. z = (x1xt1 y
′
1)w(γ, γ′)(ϕ,ϕ′)w′(x3xt2 y

′′′
1 (τ0, τ

′
0)(τ1, τ

′
1)y3),

and

∃ϕ′ w′.
z′ = (x1xt1 y

′
1)w(γ, γ′)(ϕ,ϕ′)w′(alternate(x2, (y

′′′
1 (τ0, τ

′
0)(τ1, τ

′
1)y3))).

As in case 2, z′ and z share a common finite prefix up until a point
where R is violated by the environment, which is what we need to
prove z′ ∼̂R z, and therefore z′ 'R z.

Obviously there are 3 more cases demanded by Lemma 34, but cases 4-6
are symmetrical to cases 1-3 w.r.t. x, σ and y, τ respectively.

Finally we consider the case where either x′ = x or y′ = y, but not both.
In this instance the proof essentially reduces to the same situations as case
3 and case 6 from when both equalities were false.

This property is quite tricky to prove in Isabelle, partly because it is
difficult to get Isabelle to recognise the similarities between all 9 cases in-
volved in the proof. It ends up being easier to ignore the proof engineering
involved in extracting the common aspects of these cases, and simply copy
and paste proof segments where appropriate, mutatis mutandis. Further-
more, certain lemmas required by this property, such as Lemma 34 are very
tedious to prove mechanically, requiring a great deal of equational reasoning
within large set comprehensions. Overall the Isabelle proof of this property
amounts to several thousand lines of proof script. The other axioms from
Section 7.2 are much more straightforward, so their proofs are elided here,
given that they have been formalised in Isabelle.

90



7.3.6 Interchange Laws

The exchange law below from [HHM+11] does not hold in this model, except
in the case where X and Y are finite. Given the presence of the preimpli-
cation operator, a similar exchange law exists for it, again with the same
constraint on X and Y .

X ⊆ F ∧ Y ⊆ F =⇒ (X‖Y )(Z‖W ) ⊆ XW‖Y Z,
X ⊆ F ∧ Y ⊆ F =⇒ (X →W )‖(Y → Z) ⊆ (X‖Y )→ (Z‖W ).

These properties are quite useful in practice, as certain elements of the model
are guaranteed to be finite, such as tests.

7.3.7 Soundness

Theorem 36. ((Σ2)∞, {R | R = R∗},B, 〈−〉) is an interference algebra.

Proof. All the rules for an interference algebra in Definition 4 have been
proven in Isabelle. The most complex rule, (7.12), has been also been proven
above in Subsection 7.3.5.

In this Chapter it has been shown that all the rules of (propositional)
rely-guarantee can be derived in the interference algebra from Section 7.2,
and furthermore that the (potentially) infinite trace model in this Section
satisfies the rules of the rely/guarantee algebra. This constitutes a proof
that rely/guarantee is sound w.r.t the infinite language semantics presented
in this Section.

7.4 Conclusion

In this Chapter, a refined algebra for rely-guarantee reasoning has been de-
veloped and presented. A key axiom was given in (7.12), and it was proven
in Subsection 7.3.5, in addition to being proven within Isabelle. This axiom
constitutes the core complexity of the soundness proof for the rely-guarantee
algebra. The vast majority of the mechanisation effort for the infinite lan-
guage model went into verifying this particular axiom. In general, properties
involving shuffling tend to be quite hard to verify. This is partly due to the
large combinatorial blowup in language size caused by shuffling. One ad-
vantage pomset based models might have over interleaving semantics is that
this explosion in language sizes would be avoided.

The algebra and model in this Chapter significantly improves on the al-
gebra and model in Chapter 6. In particular, this algebra better captures the
nature of interference between concurrent processes, and does so in a more
general fashion. Unlike the encoding of the Jones quintuple in Chapter 6,
based on [HMSW11], the encoding in this Chapter more faithfully captures

91



the intended relation between the rely and guarantee. In essence, the en-
coding in [HMSW11] and Chapter 6 is an over-simplification, and fails to
capture all the intended properties of interference. This improved encoding
has the benefit of greatly simplifying verification and refinement efforts using
this algebra and model.

In the next chapter this algebra and model is used to verify actual pro-
grams, and it is explained how tests and assignment statements can be en-
coded in the model.

92



Chapter 8

Examples

93



8.1 Introduction

In this chapter, the model presented in Section 7.3 is expanded with notions
of tests, as well as assignment statements. The addition of such constructs al-
lows for the verification and refinement of actual concurrent programs within
Isabelle. It will be shown how the common FINDP example, oft used with
the rely-guarantee literature, can be derived via refinement within Isabelle.

8.2 Tests in the Model

A test, denoted test(P ), contains sequences with a single transition in which
both the first and last states of that transition satisfy P . In other words,
tests are singleton stuttering steps satisfying P .

test(P ) = {(σ, σ) | P (σ)}.

The program F ; test(P ) therefore denotes any terminating program which
finishes (by stuttering) in a state satisfying P . In general, rather than allow-
ing arbitrary stuttering, statements are defined with the minimum amount
of stuttering required1. In fact, the only stuttering in this model is a single
explicit step after each assignment statement. For succinctness, F ; test(P )
is abbreviated as end(P ). Note that this is inconsistent with the definition
of end in Chapter 6. For proving correctness, the postcondition q from the
quintuple (7.13) is assumed to be an element of the form end(Q). This gives
a total correctness interpretation of the quintuple, wherein programs are re-
quired to terminate in states ending in Q. If end(Q) is defined as >; test(Q)
then one obtains a partial correctness setting wherein programs may either
terminate in states satisfying Q or diverge. The proof rules presented in this
section hold for either definition of end unless specified otherwise.

An interference constraint that preserves the predicate P , preserve(P ),
can be defined as

preserve(P ) = {(σ, σ′) | P (σ) =⇒ P (σ′)}?.

For the sake of concision preserve(P ) is sometimes denoted ~P .
In KAT, the conjunction of tests p and q is simply pq. Here, however,

things are rather more tricky. In general, for a program end(P ∧ Q) there
are two ways to break it up into a program end(P ) that establishes P and
another end(Q) that establishes Q. First, we can establish P , and then
sequentially establish Q guaranteeing that both the environment and the
program implementing end(Q) will preserve P . This is described by the rule

~P B end(P ∧Q) v end(P ); (test(P )→ ~P B end(Q) ∩ 〈~P 〉).
1In general, allowing more stuttering (and mumbling) gives nicer algebraic properties,

especially for tests. However, this comes at the expense of making proofs significantly
more complicated.

94



Second, we can establish P and Q in parallel provided that the environment
preserves P and Q, and if the program implementing end(P ) can guarantee
that it preserves Q, and vice versa for end(Q) and P . This is described by
the rule

~P u ~QB end(P ∧Q) v end(P ) ∩ 〈 ~Q〉 ‖ end(Q) ∩ 〈~P 〉.

Fortunately for disjunction things are simpler, as we have

test(P ∨Q) = test(P ) + test(Q).

Technically, a dual rule also exists for conjunction as

test(P ∧Q) = test(P ) ∩ test(Q),

but this is less useful as ∩, unlike +, is not an implementable programming
construct. As mentioned, test(P ); test(Q) is not in general the conjunction
of P and Q. However, test(P ); test(Q) can usually be refined to test(P ∧Q)
when used as a precondition:

test(P ); test(B)→ RB end(Q) ∩ 〈G〉 v test(P ∧B)→ RB end(Q) ∩ 〈G〉.

This property holds whenever R ≤ ~P , and whenever either test(Q) 6= ∅
or test(P ∧ B) 6= ∅. In other words, it must be the case that R preserves
the precondition P , and either the post state must be reachable, or the
conjunction of P and B cannot be empty. These side-conditions appear to
be a consequence of total correctness—in a partial correctness setting (where
end(Q) = >; test(Q)) they are unnecessary.

A similar rule allows redundant tests to be dropped:

test(P ); test(B)→ RB end(Q) ∩ 〈G〉 v test(P )→ RB end(Q) ∩ 〈G〉.

Here it is only required that R ≤ ~P . These two rules allow for the following
inference rule, allowing tests to be pushed into preconditions:

R ≤ ~P =⇒ R,G ` {P ∧B}X{Q} =⇒ R,B ` {P}test(B);X{Q}.

Finally we have that

RB end(P ∧Q) ∩ 〈G〉 v test(P ); test(Q)

whenever R ≤ ~P , and test(P ∧Q) 6= ∅. This statement allows a specification
implementing P and Q to be refined to a pair of tests for P and Q. This relies
on the environment preserving P between test(P ) and test(Q), so test(Q)
is then guaranteed to start in a state satisfying P (and Q). For this to
work, there must exists at least one state where P and Q both hold, hence
test(P ∧Q) 6= ∅.

95



These rules are particularly useful as they allow one to define inference
rules for the if statement and while loop, defined exactly as in KAT by

if B { X } else { Y } = test(B);X ∪ test(¬B);Y,

while B do { X } = (test(B);X)?; test(¬B).

Of course this definition of while using the star is only suitable for partial
correctness. For total correctness while would be defined as

while B do { X } = (test(B);X)∞; test(¬B),

where the loop can be split into finite and infinite parts

(test(B);X)?; test(¬B) ∪ (test(B);X)ω.

In general the approach here is to give a termination proof that (test(B);X)ω

reduces to 0 under the influence of the rely condition, then allowing us to
treat the loop as in the partial correctness world where termination is as-
sumed. The inference rules for the if statement and (partial correctness)
while loop are shown in Figure 8.1.

R ≤ ~B R,G ` {P ∧B}X{Q} R,G ` {P ∧ ¬B}Y {Q}
If Statement

R,G ` {P}if B { X } else { Y }{Q}

R ≤ ~I R,G ` {I ∧ P}X{I}
While (Partial)

R,G ` {I}while P do { X }{¬P ∧ I}

Figure 8.1: Inference rules for if and partial correctness while

8.3 Assignment Statements

The assignment statement is defined here as

v := E = {(σ, σ′)(σ′, σ′) | σ′ = (v ← E)σ}.

For a state σ the expression (v ← E)σ modifies the value of v in σ such
that it equals E. Here the exact nature of the state or store being used is
left unspecified—in general it will change depending on the program being
verified. This encoding differs from the encoding used in Chapter 6, as there
the expression E was evaluated before the assignment statement as a test.
This encoding is considerably more straightforward.

Common properties of program stores/heaps have been considered in the
context of separation logic via separation algebras [COY07, DGS15] and also

96



algebraic separation logic [DHM11]. Such separation algebras have been
mechanised in Isabelle by Klein et al. [KKB12a, KKB12b] and Dongol et
al [DGS15]. In theory it should be possible to cleanly integrate them here,
but for the purposes of simplicity it is typically assumed in the upcoming
examples that the program store can be represented as a simple record of
variables.

The assignment inference rule for rely/guarantee is

preserve(Q[E/v]), G ` {Q[E/v]} v := E {Q}.

where

G = {(σ, (v ← E)σ) | Q[E/v](σ)}

The pre- and post-conditions are the same as in Hoare logic. The validity of
the assignment rule depends on the environment not falsifying the precon-
dition Q[E/v] before the assignment executes. This gives the rely condition
preserve(Q[E/v]). The guarantee condition G requires slightly more expla-
nation. The guarantee therefore guarantees that the program will start in
a state satisfying Q[E/v], and finish in that same state where v has been
updated. It can guarantee that it starts in this state precisely because it
relies on the fact that the environment will preserve the validity of Q[E/v].

Note that this assignment rule is the ‘correct way round’, where the
substitution occurs in the precondition as per Hoare logic, rather than the
(confusingly) Floyd-style rule in Chapter 6. The assignment inference rule
is equivalent to the following refinement rule derived as follows:

Theorem 37.

test(Q[E/v])→ preserve(Q[E/v]) B end(Q) ∩ 〈G〉 v v := E.

where G = {(σ, (v ← E)σ) |σ. Q[E/v](σ)}.

Proof. Assume w ∈ v := E. From the definition of assignment obtain σ and
σ′ where

w = (σ, σ′)(σ′, σ′) and σ′ = (v ← E)σ.

It must be shown that w ∈ test(Q[E/v])→ preserve(Q[E/v])Bend(Q)∩〈G〉.
Applying the Galois connection for preimplication (7.1) and the definition
of w, this becomes

(τ, τ)(σ, σ′)(σ′, σ′) ∈ preserve(Q[E/v]) B end(Q) ∩ 〈G〉

where τ is a state satisfying Q[E/v]. Given Q[E/v] is inhabited, it can be
shown that there must exist a (τ ′, τ ′) in test(Q). Now consider the two cases
where (τ, σ) ∈ preserve(Q[E/v]) and (τ, σ) /∈ preserve(Q[E/v]).

97



The first case is trivial as it can be shown that σ satisfies Q[E/v] and
therefore σ′ satisfies Q. As such (τ, τ)(σ, σ′)(σ′, σ′) is in end(Q) ∩ 〈G〉—
showing that (σ, σ′) satisfies the guarantee is straightforward given how it is
defined.

For the second case it can be shown that

(τ, τ)(σ, σ′)(σ′, σ′) 'preserve(Q[E/v]) (τ, τ)(σ, σ)(σ′, σ′)(τ ′, τ ′).

(τ, τ)(σ, σ)(σ′, σ′)(τ ′, τ ′) is in end(Q)∩ 〈G〉 as every step is an identity tran-
sition (and therefore in any guarantee), while (τ ′, τ ′) is in test(Q).

Using these rules for tests and assignments, it is possible to mechanically
verify and refine concurrent programs within Isabelle. Examples of this are
given in the following section.

8.4 Example: Find P

First, the state of the program (given previously in Figure 6.2) is defined
as a record containing all the variables used in the program, as well as the
array to be searched.

record store =
s-fA :: nat
s-fB :: nat
s-iA :: nat
s-iB :: nat
s-fmin :: nat
s-A :: nat list

A program is then a language of words containing store × store pairs.

type-synonym program = (store × store) llist set

The var datatype represents the set of possible variables. The array, s-A,
is immutable so it is not a valid variable. Furthermore, the assignment
axiom above has no notion of array indexing and therefore does not handle
assignment to arrays.

datatype var = fA | fB | iA | iB | fmin

Rather than just giving definitions in Isabelle (which can be rather cryp-
tic for the uninitiated), some of the definitions in this Chapter are given
as Z specifications—although some of the quirks of Z notation are ignored
in favour of more standard mathematical notation as used throughout this
thesis. A Z specification for the above store is given in Figure 8.2. Such
specifications are used throughout this chapter where the Isabelle notation
is unwieldy or unclear.

98



Store
fA : N
fB : N
iA : N
iB : N
fmax : N
A : N list

Figure 8.2: Z specification for the store

The function deref looks up the values of variables in the store

primrec deref :: var ⇒ store ⇒ nat where
deref fA s = s-fA s

| deref fB s = s-fB s
| deref iA s = s-iA s
| deref iA s = s-iB s
| deref fmax s = s-fmax s

To implement the FINDP program, a datatype representing program expres-
sions is needed

datatype expr =
Const nat

| Var var
| ALen
| Lookup expr
| BinOp nat ⇒ nat ⇒ nat expr expr
| Fun nat ⇒ nat expr

An expression can either be a constant value, a variable, the length of the
array, a statement which looks up the result of an expression in the array, a
binary operation applied to two expressions, or a unary operator applied to
an expression. The following Isabelle function defines how expressions are
evaluated.

primrec eval-expr :: expr ⇒ store ⇒ nat where
eval-expr (Const c) s = c

| eval-expr (Var v) s = deref v s
| eval-expr ALen s = length (s-A s)
| eval-expr (Lookup x) s = s-A s ! eval-expr x s
| eval-expr (BinOp f x y) s = f (eval-expr x s) (eval-expr y s)
| eval-expr (Fun f x) s = f (eval-expr x s)

The expr datatype only gives expressions over natural numbers. For if state-
ments and while loops boolean expressions are also needed. These are given
by the bool-expr datatype.

99



datatype bool-expr =
BTrue (1)

| BFalse (0)
| BDisj bool-expr bool-expr (infixl ⊕ 65)
| BConj bool-expr bool-expr (infixl ⊗ 70)
| BImpl bool-expr bool-expr
| BIff bool-expr bool-expr
| BNot bool-expr
| BExpr1 nat ⇒ bool expr
| BExpr2 nat ⇒ nat ⇒ bool expr expr
| BArray nat ⇒ nat list ⇒ bool expr

Boolean expressions can either be BTrue (true) or BFalse (false). They
can be combined using the standard logical operations of disjunction (BDisj
denoted ⊕), conjunction (BConj denoted ⊗), implication (BImpl) and if and
only if (BIff). They can also be negated (BNot). Finally, the generators of
a boolean expression are either unary predicates over expressions (BExpr1),
binary predicates over expressions (BExpr2), or a predicate comparing an
expression to the contents of the array. Given that bool-expr is essentially the
absolutely free (or ground term) boolean algebra for the above generators,
a much more minimalistic definition could be given, as many of the above
operations can be defined in terms of one another. However, here simplicity
is valued over concision, to ensure that everything works smoothly within
Isabelle. Boolean expressions can be evaluated with the following function:

primrec eval-bool-expr :: bool-expr ⇒ store ⇒ bool where
eval-bool-expr BTrue s = True

| eval-bool-expr BFalse s = False
| eval-bool-expr (BDisj x y) s = (eval-bool-expr x s ∨ eval-bool-expr y s)
| eval-bool-expr (BConj x y) s = (eval-bool-expr x s ∧ eval-bool-expr y s)
| eval-bool-expr (BImpl x y) s = (eval-bool-expr x s → eval-bool-expr y s)
| eval-bool-expr (BIff x y) s = (eval-bool-expr x s ↔ eval-bool-expr y s)
| eval-bool-expr (BNot x) s = (¬ eval-bool-expr x s)
| eval-bool-expr (BExpr1 f x) s = f (eval-expr x s)
| eval-bool-expr (BExpr2 f x y) s = f (eval-expr x s) (eval-expr y s)
| eval-bool-expr (BArray p x) s = p (eval-expr x s) (s-A s)

The function which updates the store is defined in the obvious fashion as

primrec assign :: var ⇒ expr ⇒ store ⇒ store (infix ← 67) where
(fA ← e) s = store.make (eval-expr e s) (s-fB s) (s-iA s) (s-iB s) (s-fmax s) (s-A s)

| (fB ← e) s = store.make (s-fA s) (eval-expr e s) (s-iA s) (s-iB s) (s-fmax s) (s-A s)
| (iA ← e) s = store.make (s-fA s) (s-fB s) (eval-expr e s) (s-iB s) (s-fmax s) (s-A s)
| (iB ← e) s = store.make (s-fA s) (s-fB s) (s-iA s) (eval-expr e s) (s-fmax s) (s-A s)
| (fmax ← e) s = store.make (s-fA s) (s-fB s) (s-iA s) (s-iB s) (eval-expr e s) (s-A s)

100



The reason to define expressions in such a way, rather than simply using
arbitrary expressions within Isabelle, is to enable easily computable substi-
tution operations to be defined over them. For expressions the substitution
function e-subst is defined as:

primrec e-subst :: expr ⇒ expr ⇒ var ⇒ expr where
e-subst (Const c) e v = Const c

| e-subst (Var v') e v = (if v = v' then e else Var v')
| e-subst ALen e v = ALen
| e-subst (Lookup x) e v = Lookup (e-subst x e v)
| e-subst (BinOp f x y) e v = BinOp f (e-subst x e v) (e-subst y e v)
| e-subst (Fun f x) e v = Fun f (e-subst x e v)

The definition of substitution for boolean expressions is similar, except the
nicer syntax of x[e/v] is introduced for the substitution of e for the variable
v in a boolean expression e.

primrec be-subst :: bool-expr ⇒ expr ⇒ var ⇒ bool-expr (-[-/-]) where
be-subst BTrue e v = BTrue

| be-subst BFalse e v = BFalse
| be-subst (BDisj x y) e v = BDisj (x[e/v]) (y[e/v])
| be-subst (BConj x y) e v = BConj (x[e/v]) (y[e/v])
| be-subst (BImpl x y) e v = BImpl (x[e/v]) (y[e/v])
| be-subst (BIff x y) e v = BIff (x[e/v]) (y[e/v])
| be-subst (BNot x) e v = BNot (x[e/v])
| be-subst (BExpr1 f x) e v = BExpr1 f (e-subst x e v)
| be-subst (BExpr2 f x y) e v = BExpr2 f (e-subst x e v) (e-subst y e v)
| be-subst (BArray p x) e v = BArray p (e-subst x e v)

The following two lemmas are used to prove that the assignment rule holds,
by relating the assign function with substitution.

lemma [simp]: eval-expr e ((xv ← E) s) = eval-expr (e-subst e E xv) s

lemma assign-eval-bool:
eval-bool-expr (Q[E/xv]) s ↔ eval-bool-expr Q ((xv ← E) s)

8.5 The FINDP program

Now that the basic setup has been performed in defining expressions, substi-
tution, and the store over which FINDP executes, the actual FINDP program
can be introduced. The Isabelle code for the FINDP program from Figure 6.2
in Section 6.6 can be seen in Figure 8.3. Some additional syntactic sugar for
‖ has been defined as

parallel {X} meanwhile {Y } = X‖Y,

101



so that parallel compositions may be laid across multiple lines in a more
readable manner. In the FINDP program, the first parallel subprogram is
called subprogram A, and the second is subprogram B.

definition FINDP :: (nat → bool) → program where
FINDP P ≡
fA := ALen;
fB := ALen;
parallel {
iA := Const 0;
while (iA less than fA) ⊗ (iA less than fB) do {
if BExpr1 P (Lookup (Var iA)) {
fA := Var iA

} else {
iA := Var iA ADD Const 2

}
}

} meanwhile {
iB := Const 1;
while (iB less than fA) ⊗ (iB less than fB) do {
if BExpr1 P (Lookup (Var iB)) {
fB := Var iB

} else {
iB := Var iB ADD Const 2

}
}

};
fmin := MIN (Var fA) (Var fB)

Figure 8.3: The FINDP program in Isabelle

Before diving into the refinement proof, the loop invariants for both the
while loops within the parallel composition are given below:

definition invariant-A P ≡
BArray (λi arr. ∀i'. i' < i ∧ even i' → ¬ P (arr ! i')) (Var iA)
⊗ BExpr1 even (Var iA)
⊗ BArray (λi arr. i < length arr → P (arr ! i)) (Var fA)
⊗ BExpr2 (op <) (Var fA) (BinOp (op +) ALen (Const 1))

102



definition invariant-B P ≡
BArray (λi arr. ∀i'. i' < i ∧ odd i' → ¬ P (arr ! i')) (Var iB)
⊗ BExpr1 odd (Var iB)
⊗ BArray (λi arr. i < length arr → P (arr ! i)) (Var fB)
⊗ BExpr2 (op <) (Var fB) (BinOp (op +) ALen (Const 1))

Written more readably as a Z specification, invariant-B becomes:

invariant-B[P ]
Store

∀i. i < iB ∧ odd(i) =⇒ ¬P (A ! i)
odd(iB)
fB < length(A) =⇒ P (A ! fB)
fB < length(A) + 1

In words, it states that the loop in subprogram B preserves the fact that all
odd indices of the array less than the current index do not satisfy P , that
the index is always odd, that fB is never greater than the length of the array,
and that if it is less than the length of the array, then the value of the array
at index fB satisfies P . The invariant for subprogram A is symmetric, so no
Z specification for it is provided.

After the loops both terminate, and therefore the parallel composition,
the following test will hold:

definition loop-post P ≡
BExpr2 (op <) (BinOp min (Var fA) (Var fB)) (BinOp (op +) ALen (Const 1))
⊗ BArray (λfmax arr. ∀i. i < fmax → ¬ P (arr ! i)) (BinOp min (Var fA) (Var fB))
⊗ BArray (λfmax arr. fmax < length arr → P (arr ! fmax))

(BinOp min (Var fA) (Var fB))

as a Z specification:

loop-post[P ]
Store

min(fA, fB) < length(A) + 1
∀i.i < min(fA, fB) =⇒ ¬P (A ! i)
min(fA, fB) < length(A) =⇒ P (A ! min(fA, fB))

In words, this states that after the loop executes, the minimum of fA and
fB, min(fA, fB), will be either equal to the length of the array or less than
it. There can be no indices into the array less than this value for which P
holds. If it is less than the length of the array, then it is an index into the
array at a point where P holds.

The final postcondition for FINDP is as follows:

103



definition post P ≡
BExpr2 (op <) (Var fmin) (BinOp (op +) ALen (Const 1))
⊗ BArray (λfmin arr. ∀i. i < fmin → ¬ P (arr ! i)) (Var fmin)
⊗ BArray (λfmin arr. fmin < length arr → P (arr ! fmin)) (Var fmin)

It is the same as loop-post P except the variable fmin replaces the minimum
value of fA and fB.

8.6 FINDP refinement proof

The statement of the FINDP refinement proof in Isabelle is as follows:

theorem findp-refine: T 0 → ({} B F · T (post P) ∩ guar >) v FINDP P
(is ?specification v -)

proof −

Recall that T P → (R B F · T Q ∩ guar G) is the specification for a
program that begins in a state P and terminates in a state Q guaranteeing
G given an environment satisfying R. The syntax here is slightly different
from previously due to Isabelle’s syntax. T P is the same as test(P ) and
F · T Q is end(Q). This theorem states that we need to prove that Figure
8.3 is a refinement of the specification that implements post P from any
precondition under no interference, and guarantees nothing (i.e. it might
produce arbitrary interference).

The proof begins by using the refinement rule for sequential composition
followed by the assignment rule.

have ?specification v
T 0 → ({} B F · T (Var fA = ALen) ∩ guar >);
T (Var fA = ALen) → ({} B F · T (post P) ∩ guar >)
by refine

also have ... v
fA := ALen;
T (Var fA = ALen) → ({} B F · T (post P) ∩ guar >)
by verify

The refine and verify tactics are simple tactics written in Isabelle’s Eisbach
tactic language [MWM14]. The refine tactic simply applies refinement rules
wherever it can, whereas verify is used to refine specifications into assign-
ments and attempts to discharge the preconditions of the assignment rule.
This first step introduces the variable fA initialised to the length of the array.
This is then repeated for the variable fB.

also have ... v
fA := ALen;
T (Var fA = ALen) → ({} B F · T (Var fA = ALen ⊗ Var fB = ALen) ∩ guar >);
T (Var fA = ALen ⊗ Var fB = ALen) → ({} B F · T (post P) ∩ guar >)
by refine

104



also have ... v
fA := ALen;
fB := ALen;
T (Var fA = ALen ⊗ Var fB = ALen) → ({} B F · T (post P) ∩ guar >)
by verify

Next, the final assignment statement fmax := MIN (Var fA) (Var fB)
is implemented by showing that it goes from the postcondition of the loop,
loop-post P, to the final postcondition post P. This leaves the specification
T (Var fA = ALen ⊗ Var fB = ALen) → ({} B F · T (loop-post P) ∩ guar >)

for the parallel part of the FINDP program.

also have ... v
fA := ALen; fB := ALen;
T (Var fA = ALen ⊗ Var fB = ALen) → ({} B F · T (loop-post P) ∩ guar >);
T (loop-post P) → ({} B F · T (post P) ∩ guar >)
by refine

also have ... v
fA := ALen;
fB := ALen;
T (Var fA = ALen ⊗ Var fB = ALen) → ({} B F · T (loop-post P) ∩ guar >);
fmax := MIN (Var fA) (Var fB)
by (verify add: loop-post-def post-def)

The next step is to introduce the parallel parts of the FINDP pro-
gram. The lemma findp-parallel-post states that the overall postcondition,
loop-post P, of the parallel composition can be derived from the individ-
ual postconditions of the parallel subprograms (which can be seen in the
code below). The specifications for both parallel subprograms are defined as
schematic variables ?specification-A and ?specification-B respectively. The
rely and guarantee conditions rely-A[P ] and rely-B[P ] are also introduced.
The rely condition for one parallel subprogram is the guarantee of the other.
A Z specification describing rely-A is given in Figure 8.4. Given that the
two subprograms are symmetric, the specification for rely-B would be sim-
ilar, just replacing iA with iB, odd with even and so on. In Isabelle it was
checked that these specifications were somehow minimal by removing parts
of the specification and attempting to run the proof script without them.

In words, each subprogram depends on its environment not modifying its
own internal variables—for subprogram A this amounts is fA and iA being
unchanged. The array A is immutable, so the environment cannot change it.
The environment then guarantees that either it remains in a state where fB
is equal to the length of A (when it has not found anything satisfying P ), or
it transitions to a state such that A′ ! f ′B satisfies P and for every odd index
v less than f ′B, A

′ ! v does not satisfy P . In this case f ′B must be less than
fB and f ′B is set to iB (which itself remains unchanged). In Isabelle syntax
rely-A P is rely-A[P ], and similarly for rely-B[P ].

105



rely-A1[P ]
∆Store

A′ = A
f ′A = fA
i′A = iA
∀v < f ′B. odd(v) =⇒ ¬P (A′ ! v)
f ′B < fB
f ′B = iB
i′B = iB

rely-A2[P ]
∆Store

A′ = A
f ′A = fA
i′A = iA
i′B < iB
fB = length(A) =⇒ f ′B = length(A′)

rely-A[P ] =̂ (rely-A1[P ] ∨ rely-A2[P ])∗

Figure 8.4: Z specification for rely-A

also have ... v
fA := ALen;
fB := ALen;
parallel {
T (Var fA = ALen) →
(rely-A P B F · T (BNot ((iA < fA) ⊗ (iA < fB)) ⊗ inv-A P) ∩ guar (rely-B P))

} meanwhile {
T (Var fB = ALen) →
(rely-B P B F · T (BNot ((iB < fA) ⊗ (iB < fB)) ⊗ inv-B P) ∩ guar (rely-A P))

};
fmax := MIN (Var fA) (Var fB)
(is -v -; -; parallel { ?specification-A } meanwhile { ?specification-B }; -)
by (refine add: findp-parallel-post)

Now it is shown that ?specification-A can be refined into the concrete parallel
subprogram par-A P.

106



also have ... v
fA := ALen;
fB := ALen;
parallel {
par-A P

} meanwhile {
T (Var fB = ALen) →
(rely-B P B F · T (BNot ((iB < fA) ⊗ (iB < fB)) ⊗ inv-B P) ∩ guar (rely-A P))

};
fmax := MIN (Var fA) (Var fB)

This is done as a separate subproof. First the isotonicity tactic is applied
to focus on the relevant part of the program that needs to be refined. The
schematic variable ?if-pre defines a weakened precondition used in this re-
finement proof. A more readable Z specification of ?if-pre is given in Figure
8.5.

proof isotonicity
let ?if-pre =

BArray (λi arr. ∀i'. i' < i ∧ even i' −→ ¬ P (arr ! i')) (Var iA) ⊗
BExpr1 even (Var iA) ⊗
BArray (λi arr. i < length arr −→ P (arr ! i)) (Var fA) ⊗
BExpr2 op < (Var fA) (BinOp op + ALen (Const (Suc 0))) ⊗
BExpr2 op < (Var iA) (Var fA)

if-pre
Store

∀i.i < iA ∧ even(i) =⇒ ¬P (A ! i)
even(iA)
fA < length(A) =⇒ P (A ! fA)
fA < length(A) + 1
iA < fA

Figure 8.5: Z specification for ?if-pre for A

The first part of this subproof is to refine the assignment statement from
Figure 8.3 that introduces and initialises the loop index variable iA to zero.

have ?specification-A v
T (Var fA = ALen) →
(rely-A P B F · T (Var fA = ALen ⊗ Var iA = Const 0) ∩ guar (rely-B P));
T (Var fA = ALen ⊗ Var iA = Const 0) →
(rely-A P B F · T (BNot (iA < fA ⊗ iA < fB) ⊗ inv-A P) ∩ guar (rely-B P))

by refine

107



also have ... v
iA := Const 0;
T (Var fA = ALen ⊗ Var iA = Const 0) →
(rely-A P B F · T (BNot (iA < fA ⊗ iA < fB) ⊗ inv-A P) ∩ guar (rely-B P))

by (verify add: subset-iff preserve-def rely-A-def
store.defs rely-B-def test-def Language.test-def)

Notice that now the verify tactic requires more arguments than previously
when it was called with no arguments at all—this is because we are now
refining in the context of a parallel subprogram where the rely and guarantee
condition must be taken into consideration. The next step is to introduce
the while loop. This requires a more involved proof, as the preconditions for
the while rule must be discharged.

also have ... v
iA := Const 0;
while (iA < fA ⊗ iA < fB) do {
T (inv-A P ⊗ (iA < fA ⊗ iA < fB)) →
(rely-A P B F · T (inv-A P) ∩ guar (rely-B P))

}
apply refine
apply (simp add: inv-A-def)
apply (rule rtrancl-mono)
apply (simp add: preserve-def inv-A-def subset-iff rely-A-def)
apply (simp-all only: state-existence)
apply (simp add: lessthan-def inv-A-def)
apply (rule-tac x = store.make 0 0 0 0 0 [] in exI)
apply (simp add: store.defs)
apply (simp add: lessthan-def inv-A-def)
apply (rule-tac x = store.make 1 1 0 0 0 [1] in exI)
by (simp add: store.defs)

The precondition of the loop body specification is now weakened to ?if-pre
before the if statement within the while loop is introduced. For this the
custom Eisbach weakening tactic is used.

also have ... v
iA := Const 0;
while (iA < fA ⊗ iA < fB) do {
T ?if-pre → (rely-A P B F · T (inv-A P) ∩ guar (rely-B P))

}
by weakening (simp add: inv-A-def lessthan-def)

Now the body of the loop can be refined to the if statement. This step also
requires a slightly more involved proof.

also have ... v
iA := Const 0;
while (iA < fA ⊗ iA < fB) do {
if BExpr1 P (Lookup (Var iA)) {
T (?if-pre ⊗ BExpr1 P (Lookup (Var iA))) →

108



(rely-A P B F · T (inv-A P) ∩ guar (rely-B P))
} else {
T (?if-pre ⊗ BNot (BExpr1 P (Lookup (Var iA)))) →
(rely-A P B F · T (inv-A P) ∩ guar (rely-B P))

}
}
apply refine
apply (rule rtrancl-mono)
apply (simp add: rely-A-def preserve-def subset-iff)
apply (simp add: state-existence inv-A-def)
apply (rule-tac x = store.make 0 0 0 0 0 [] in exI)
by (simp add: store.defs)

The postcondition for the first branch of the if statement is then strengthened
slightly to allow it to be refined into the required assignment statement.
Again the weakening tactic is used—despite the name it can be used to
weaken preconditions or strengthen postconditions.

also have ... v
iA := Const 0;
while (iA < fA ⊗ iA < fB) do {
if BExpr1 P (Lookup (Var iA)) {
T (?if-pre ⊗ BExpr1 P (Lookup (Var iA))) →
(rely-A P B F · T (inv-A P ⊗ BExpr1 P (Lookup (Var iA))) ∩ guar (rely-B P))

} else {
T (?if-pre ⊗ BNot (BExpr1 P (Lookup (Var iA)))) →
(rely-A P B F · T (inv-A P) ∩ guar (rely-B P))

}
}
by weakening simp

The first branch of the if statement is now refined into the assignment
fA := Var iA.

also have ... v
iA := Const 0;
while (iA < fA ⊗ iA < fB) do {
if BExpr1 P (Lookup (Var iA)) {
fA := Var iA

} else {
T (?if-pre ⊗ BNot (BExpr1 P (Lookup (Var iA)))) →
(rely-A P B F · T (inv-A P) ∩ guar (rely-B P))

}
}
apply (verify add: rely-A-def preserve-def subset-iff inv-A-def

test-def Language.test-def rely-B-def store.defs)
by auto

The second branch of the if statement can then be refined into the assignment
statement iA := Var iA ADD Const 2.

109



also have ... v
iA := Const 0;
while (iA < fA ⊗ iA < fB) do {
if BExpr1 P (Lookup (Var iA)) {
fA := Var iA

} else {
iA := Var iA ADD Const 2

}
}
apply (verify add: rely-A-def preserve-def subset-iff inv-A-def

test-def Language.test-def rely-B-def store.defs)
using less-Suc-eq by auto

This completes the subproof for subprogram A.

also have ... v par-A P
by (simp add: par-A-def)

finally show ?specification-A v par-A P .
qed

The same proof can then be repeated for subprogram B. Since the proof is
effectively the same as above, for the purposes of this refinement it has been
taken out and proven in the separate lemma par-B-proof.

also have ... v
fA := ALen;
fB := ALen;
parallel {
par-A P

} meanwhile {
par-B P

};
fmax := MIN (Var fA) (Var fB)
by isotonicity (auto intro: verify par-B-proof)

Expanding the definitions of par-A P and par-B P one arrives at the final
form of the FINDP program from Figure 8.3.

also have ... v
fA := ALen;
fB := ALen;
parallel {
iA := Const 0;
while (iA < fA) ⊗ (iA < fB) do {
if BExpr1 P (Lookup (Var iA)) {
fA := Var iA

} else {
iA := Var iA ADD Const 2

}
}

} meanwhile {
iB := Const 1;

110



while (iB < fA) ⊗ (iB < fB) do {
if BExpr1 P (Lookup (Var iB)) {
fB := Var iB

} else {
iB := Var iB ADD Const 2

}
}

};
fmin := MIN (Var fA) (Var fB)
by (simp add: par-A-def par-B-def)

also have ... v findp P
by (simp add: findp-def)

Finally, all the previous steps are collated into the overall goal of the theorem.

finally show ?specification v FINDP P .
qed

which completes the proof.

8.7 Conclusion

In this chapter the model given in Section 7.3 was expanded with the requisite
notions of tests and assignments for refining concrete programs. The model is
easily powerful and extensive enough, that many further program constructs
could be defined and use. In this section, only the minimum amount was
formalised so as to refine the FINDP program. The experience of using
Isabelle in the above refinement proof is overall very positive. Custom tactics
allow much of the reasoning to be abstracted away, and many of the proof
steps can be discharged via simple calls to the refine or verify tactics. These
tactics are not hard to implement—compared to the development of tactics
in Isabelle/ML, as seen in Section 3.11, Eisbach makes the development of
such tactics available to even the novice Isabelle user. While verification
condition generator tactics, such as those in Chapter 5, could previously
take several days to build and debug, the tactics used above were developed
over the span of less than an hour. Custom tactics can therefore easily be
created to support every new program refinement task.

In addition to custom tactics, Isabelle takes care of handling the state
of the proof, preventing any mistakes from being made. Once the core com-
plexity of the refinement task has been achieved, which is mostly identifying
the correct loop invariants and interference constraints, the refinement can
proceed straightforwardly. Even the more complex apply-style steps in the
above refinement rarely amount to calling anything other than either the
simplifier/auto, or using sledgehammer.

111



Chapter 9

Conclusion

112



9.1 General Contribution

This thesis elaborates on a general approach using algebra in Isabelle for de-
veloping program verification and construction tools within Isabelle. First,
SKAT has been mechanised as a case study in the use of algebra in the veri-
fication of simple while programs. The increased generality over Hoare logic
was demonstrated via the formalisation of a complex flowchart equivalence
proof. Such a proof would not be possible using only Hoare logic. Further-
more it was shown that the use of algebra allows for the derivation of new
programming constructs and inference rules for them—a useful feature in
practical applications.

Second, this approach was used to conceive a rely-guarantee algebra with
a minimalistic set of axioms for a rely-guarantee calculus. Based on these
axioms a prototypical tool was constructed based on a simple finite language
model. Note that due to a rather limited treatment of interference, this
algebra does not quite capture the full expressivity of the rely-guarantee
method. Nevertheless, it remains suitable for simple verification tasks.

Third, constructs were added to the rely-guarantee algebra to support
fine grained reasoning about interference in concurrent programs. Again, a
minimalistic set of axioms was investigated for these new operations, and it
was shown that a complete set of inference rules for rely-guarantee could be
derived from them.

Fourth, a detailed model based on infinite languages was presented. Prov-
ing that this model satisfies the laws of the rely-guarantee algebra constitutes
a soundness proof for the rely-guarantee calculus arising from the axioms of
the rely-guarantee algebra. Mechanising this model within Isabelle proved
to be quite tricky. Properties of the shuffle operator alone such as associa-
tivity are rather tricky to prove. Combining this with interference results
in quite difficult proofs, such as in Chapter 7. This complexity is demon-
strated by the proof of the main parallelism rule for the algebra in Chapter 7.
Note the level of detail required by the interactive theorem prover tends to
make such proofs much harder to mechanically verify than to prove them by
hand. Section 9.3 contains information on the overall scope and size of the
Isabelle formalisation, as well as conclusions on the overall use of Isabelle
and interactive theorem proving in general.

Finally, the rely-guarantee algebra and the infinite language model was
applied to a well known example from the literature: the FINDP program.
This program was constructed via refinement within Isabelle. Overall, the
derivation of this program within Isabelle was quite smooth, and greatly
assisted by Isabelle’s new Eisbach tactic language—a feature not used else-
where in this thesis due to its recent addition in Isabelle 2015. While the
verification tools given throughout this thesis are perhaps prototypical in
nature, I believe they offer some insight into the use of interactive theorem
proving tools in program verification and construction tasks.

113



9.2 Future Work

In this section some possible directions for future work are listed:

• Despite having a powerful infinite trace based model mechanised in
Isabelle, which fully supports reasoning about non-termination, rela-
tively little attention has been given to this issue in this thesis. This is
partly because the example given in Chapter 8 is clearly terminating,
and therefore suitable for a partial correctness approach.

• There are some limitations inherent in the idempotent semiring based
algebraic approach for program verification. A notable example of
this is that it is hard to reason about local state. Typical Morgan
style refinement-calculi usually have some notion of a frame, allow-
ing for reasoning about local state. Integrating separation logic style
approaches could perhaps be an interesting way to work around this
problem, and is a topic of current research [Vaf08]. Furthermore con-
structs such as procedure calls are not straightforward to encode within
a Kleene-algebra based approach.

• It would be very interesting to investigate non-traditional models for
rely-guarantee. The approach in Section 7.3 is very much inspired by
Brookes’ transition traces. It would nicely validate the algebraic ap-
proach, if the axioms given in Chapter 7 were shown to be applicable
for such models. Those models, could, for instance, be based on par-
tially ordered multisets (pomsets), automata, or even more esoteric
models.

• While FINDP is a commonly used example, and therefore useful for
comparison purposes, it is not a particularly complicated example.
More complicated examples could be formalised within Isabelle. Doing
so would likely suggest areas for improvement in terms of automation
for verification and refinement tasks within Isabelle.

9.3 Experience with Isabelle

Overall the construction of both the infinite traces model and FINDP exam-
ple in Chapters 6, Chapter 7 and Chapter 8 constitutes just over 10,000 lines
of Isabelle proof script. As of the time of writing this constitutes around 933
separate theorems and lemmas and 110 unique definitions. As mentioned
in Section 2.3 this is substantially longer than previous implementations of
the rely-guarantee method in Isabelle [Nie01]. Mostly this is due to the diffi-
culty of implementing a denotational semantics as opposed to an operational
one. However, this approach has many advantages. First, adding a new con-
struct to an operational semantics would require most proofs to be updated

114



with additional cases to handle the new construct. By contrast, new con-
structs can be seamlessly added to the algebra/language in this thesis, and
no existing properties in the model would need to change. In this sense, the
approach here is more extensible and modular. Second, the approach in this
thesis offers arbitrary nested parallelism and supports proof by refinement,
neither of which were present in previous mechanisations.

The formalisation of SKAT with Angus and Kozen’s algebraic proof of
Manna’s flowchart scheme equivalence constitutes around 8800 lines of Is-
abelle proof script. Part of this length comes from the custom Kleene Algebra
and Boolean algebra with explicit carrier sets libraries. These libraries are
more expressive (but harder to work with) than those in the AFP, and were
developed as part of this formalisation. A large amount of the length of
this formalisation effort comes from the flowchart equivalence proof, which
constitutes around 3300 lines. This could probably be shortened with better
automation, as mechanisations in Coq have shown [Pou13b].

Developed along with various co-authors, libraries for variants of idempo-
tent semirings, Kleene algebra, and Kleene algebra with tests were developed
as part of the work involved in this thesis [ASW13a, AGS14b]. These repre-
sent in total around 7900 lines of Isabelle proof script.

Overall, the experience of using Isabelle as part of this thesis has been
overwhelmingly positive. While mechanising certain tricky properties can
at times be extremely difficult compared to paper proofs, the confidence
Isabelle provides is certainly worthwhile. Even when mechanising such hard
properties, using Isabelle to guide one’s proof search to ensure no missteps
are made is often worthwhile, despite the difficulties. There are in fact many
areas where the use of an automated theorem proving tool makes one’s life
considerably easier than using pen and paper. For example, in the case
of the FINDP example, Isabelle can keep track of all the assumptions and
state inherent in the proof; and automation allows tedious and repetitive
parts of the refinement to be blasted away. This is perhaps where interactive
theorem proving tools shine brightest—when proofs are simple, but otherwise
repetitive and long winded. This is certainly the case for a lot of program
verification tasks, but tends to be less the case for concurrent programs.
However, once the core difficulty of the concurrent interaction/interference
involved has been identified and formalised, proofs of concurrent programs
can largely occur straightforwardly, as in the sequential case. For example,
in the FINDP proof, once the correct invariants and interference constraints
are identified, the proof is straightforward and largely automatic.

9.4 Final Conclusion

Overall this thesis uses algebras based on idempotent semirings to develop
tools for the verification and refinement of concurrent programs within Is-

115



abelle/HOL. This goes further than previous work, both within and without
interactive theorem proving tools. It does this by providing a complete mech-
anised denotational semantics for rely-guarantee, backed with a convenient
algebraic layer for the derivation of inference and refinement rules. It has
been shown that this approach and mechanisation is applicable for concrete
refinement tasks. Despite being somewhat prototypical in nature, I believe
that this approach offers many advantages for the development of concurrent
algorithms.

116



Appendix A

Derivation of the
Rely-Guarantee Inference
Rules

117



Theorem 38. The sequential rule

r, g ` {p}x{q} r, g ` {q}y{s}
r, g ` {q}xy{s}

can be derived in the algebra.

Proof. Translated via (7.13) the assumptions

r, g ` {p}x{q} and r, g ` {q}y{s}

become

x ≤ p→ rB〈g〉 u q and y ≤ q → rB〈g〉 u q

To prove the rule, it must be shown that

xy ≤ (p→ rB〈g〉 u q)(q → rB〈g〉 u q) ≤ (p→ rB〈g〉 u s)

The first inequality is trivial, for the second, the Galois connection for preim-
plication is used, and then the proof can be achieved via straightforward
equational reasoning as follows:

p(p→ rB〈g〉 u q)(q → rB〈g〉 u q)
≤ (rB〈g〉 u q)(q → rB〈g〉 u q)
≤ rB(〈g〉 u q)(q → rB〈g〉 u q)
≤ rB q(q → rB〈g〉 u q)
≤ rB rB〈g〉 u q
≤ rB rB〈g〉 u q

Theorem 39. The choice rule

r, g ` {p}x{q} r, g ` {p}y{q}
r, g ` {p}x+ y{q}

can be derived in the algebra.

Proof. This rule is trivial as

x+ y ≤ (p→ rB〈g〉 u q) + (p→ rB〈g〉 u q) ≤ (p→ rB〈g〉 u q).e

Theorem 40. The skip rule

p ≤ 〈g〉
r, g ` {p}1{p}

118



can be derived in the algebra.

Proof. This rule is also trivial as

1 ≤ p→ rB〈g〉 u p ⇐⇒ p ≤ rB〈g〉 u p ≤ rB p.

Theorem 41. The star rule
r, g ` {p}x{p}
r, g ` {p}x?{p}

can be derived in the algebra.

Proof. We must show that

x? ≤ p→ rB〈g〉 u p.

To do so we use the special case of the Kleene algebra induction axioms

xy ≤ y =⇒ x? ≤ y,

We must then prove

x(p→ rB〈g〉 u p)
≤ (p→ rB〈g〉 u p)(p→ rB〈g〉 u p)
≤ (p→ rB〈g〉 u p).

The first inequality is just applying the assumption and the second is a
special case of the sequential rule where p, q and s are equal.

Theorem 42. Assuming the test p satisfies

p · p→ rB p = p→ rB p

The omega rule

r, g ` {p}x{p} r, g ` {p}xω{x?}
r, g ` {p}xω{p}

can be derived in the algebra.

Proof. We must show that

xω ≤ p→ rB〈g〉 u x?

≤ p→ rB〈g〉 u (p→ rB〈g〉 u p)
≤ p→ rB(p→ rB〈g〉 u p)
≤ p→ p→ rB rB〈g〉 u p
≤ pp→ rB〈g〉 u p
≤ p→ rB〈g〉 u p

119



Appendix B

List of Algebraic Structures

120



Definition 5. A semigroup is an algebraic structure (S, ·) where

(x · y) · z = x · (y · z).

Definition 6. A monoid is an algebraic structure (M, ·, 1) where:

• (M, ·) is a semigroup,

• 1 is an identity element such that 1 · x = x = x · 1 holds for all x.

Definition 7. A commutative monoid is a monoid (M, ·) where x · y = y ·x.

Definition 8. A semiring is an algebraic structure (S,+, ·, 0, 1) where:

• (S,+, 0) is a commutative monoid,

• (S, ·, 1) is a monoid,

• the distributive laws x · (y+z) = x ·y+x ·z and (x+y) ·z = x ·z+y ·z
hold for all x, y, and z,

• the annihilation laws 0 · x = 0 and x · 0 = 0 hold for all x.

Definition 9. A weak semiring is a semiring in which is the right annihila-
tion law x · 0 does not hold.

Definition 10. An idempotent semiring or dioid is a semring where addition
is idempotent, i.e.

x+ x = x.

Definition 11. A commutative dioid is a dioid (S,+, ·, 0, 1) where x·y = y·x.

Definition 12. A Kleene algebra (S,+, ·, 0, 1, ?) is a dioid expanded with a
star operation satisfying both the left unfold axiom

1 + x · x? ≤ x?

and left and right induction axioms

z + x · y ≤ y ⇒ x? · z ≤ y and z + y · x ≤ y ⇒ z · x? ≤ y.

Definition 13. A bi-Kleene algebra is a structure (K,+, ·, ||, 0, 1, ?, (?)) where

• (K,+, ·, 0, 1, ?) is a Kleene algebra,

• (K,+, ||, 0, 1, (?)) is a commutative Kleene algebra.

Definition 14. A concurrent Kleene algebra [HMSW11] is a bi-Kleene al-
gebra which satisfies the interchange law

(x‖y)(w‖z) ≤ (xz)‖(yw).

121



Definition 15. A (join/meet) semilattice is a structure (S,+) where

• (S,+) is a commutative semigroup,

• x+ x = x.

Definition 16. A lattice is a structure (S,+,u) where:

• (S,+) is a join semilattice,

• (S,u) is a meet semilattice,

• x+ (x u y) = x and x u (x+ y) = x.

Definition 17. A distributive lattice is a lattice (S,+,u) where

x u (y + z) = (x u y) + (x u z).

Definition 18. A Boolean algebra is a structure (B,+,u, , 0, 1) where:

• (B,+,u) is a distributive lattice,

• x+ 0 = x and x u 1 = x for all x (identity),

• x+ x = 1 and x u x = 0 for all x (complementation).

Definition 19. A Galois connection between two partially ordered sets
(A,≤) and (B,≤) is a pair of functions f : A→ B and g : B → A such that

f(x) ≤ y ⇐⇒ x ≤ g(y).

Definition 20. A Kleene algebra with tests (KAT) [Koz00] is a structure

(K,B,+, ·,? , 0, 1, )

where (K,+, ·,∗ , 0, 1) is a Kleene algebra and (B,+, ·, , 0, 1) a Boolean sub-
algebra of K, that is, B ⊆ K. Complementation is only defined on the
Boolean subalgebra.

Definition 21. An action algebra [Pra90] is an structure

(A,+, ·, 0, 1, ?,←,→),

such that (A,+, ·, 0, 1) is a dioid, and satisfying

xy ≤ z L⇐⇒ x ≤ z ← y, and xy ≤ z R⇐⇒ y ≤ x→ z,

1 + x?x? + x ≤ x? ≤ x?,
1 + yy + x ≤ y =⇒ x? ≤ y.

122



Definition 22. A ?-continuous Kleene algebra [Koz94], also called an N-
algebra by Conway [Con71] is a dioid satisfying the law

xy∗z =
∑
{xynz | n ∈ N}.

Definition 23. A weak ω-algebra [LS11] is a left Kleene algebra expanded
with an omega operator satisfying

xxω = xω,

y ≤ z + x · y =⇒ y ≤ xω + x?z.

Definition 24. A demonic refinement algebra (DRA) [vW04] is a structure

(D,+, ·, 0, 1, ?,∞)

where:

• (D, ·,+, 0, 1, ?) is a Kleene algebra,

• The strong iteration operator ∞, which represents both finite or in-
finite iteration, satisfies the unfolding axiom x∞ = xx∞ + 1 and the
induction axiom z ≤ xz + y =⇒ z ≤ x∞y

Definition 25. A quantale is a structure (S,≤, ·, 1) such that (S,≤) is a
complete lattice, (S, ·, 1) is a monoid and

x
(∑

Y
)

=
∑
y∈Y

xy,
(∑

X
)
y =

∑
x∈X

xy.

Definition 26. A rely-guarantee algebra is a structure

(K, I,+,u, ·, ‖, ?, 0, 1),

where

• (K,+,u) is a distributive lattice,

• (K,+, ·, ‖, 0, 1) is a trioid,

• (K,+, ·, 0, 1, ?) is a Kleene algebra.

• I is a distinguished subset of rely and guarantee conditions or inter-
ference constraints that satisfy the following axioms:

r‖r ≤ r,
r ≤ r‖r′,

r‖(x · y) = (r‖x) · (r‖y),

r‖x+ ≤ (r‖x)+.

123



Definition 27. An interference algebra is a two sorted algebra

(K, I,B, 〈−〉),

where:

• K is an algebra (K,+,u, ·,→, ‖, ?, ω, 0, 1) where (K,+,u) is a distribu-
tive lattice, (K,+, ·, ‖, 0, 1) is trioid, and (K,+, ·, 0, 1, ?, ω) is a weak
ω-algebra. Additionally the preimplication operator → satisfies

xy ≤ z ⇐⇒ y ≤ x→ z.

• I is a complete lattice (I,v). Join and meet in this lattice are denoted
by t and u respectively.

• B is a closure operator

• The B and 〈−〉 operators satisfy:

(rBx)(rB y) ≤ rBxy,

(rBx)? ≤ rBx?,

r ≤ g =⇒ gBx ≤ rBx,

>Bx = x,

〈g1〉‖〈g2〉 ≤ 〈g1 t g2〉,
〈g〉〈g〉 = 〈g〉,
〈g〉? = 〈g〉,

(x u 〈g〉)(y u 〈g〉) = xy u 〈g〉,
(r t g2Bx u 〈g1〉) ‖ (r t g1B y u 〈g2〉) ≤ r B (x u 〈g1〉)‖(y u 〈g2〉).

124



Bibliography

[Aar92] C.J. Aarts. Galois connections presented calculationally,
1992.

[ABFGS14] A. Armstrong, V. B. F. Gomes, and G. Struth. Algebras
for program correctness in Isabelle/HOL. In P. Jipsen and
W. Kahl, editors, RAMiCS 2014, 2014.

[AGS14a] A. Armstrong, V. B. F. Gomes, and G. Struth. Algebraic
principles for rely-guarantee style concurrency verification
tools. In C. B. Jones, P. Pihlajasaari, and J. Sun, editors, FM
2014, volume 8442 of LNCS, pages 78–93. Springer, 2014.

[AGS14b] A. Armstrong, V. B. F. Gomes, and G. Struth. Kleene alge-
bras with tests and demonic refinement algebras. Archive
of Formal Proofs, 2014. http://afp.sourceforge.net/
entries/KAT_and_DRA.shtml.

[AGS14c] A. Armstrong, V. B. F. Gomes, and G. Struth. Lightweight
program construction and verification tools in Isabelle/HOL.
In D. Giannakopoulou and G. Salaün, editors, SEFM 2014,
volume 8702 of LNCS, pages 5–19. Springer, 2014.

[AHK06] K. Aboul-Hosn and D. Kozen. KAT-ML: an interactive theo-
rem prover for Kleene algebra with tests. Journal of Applied
Non-Classical Logics, 16(1–2):9–34, 2006.

[AK01] A. Angus and D. Kozen. Kleene algebra with tests and pro-
gram schematology. Technical Report TR2001-1844, Com-
puter Science Department, Cornell University, July 2001.

[Apt81] K. R. Apt. Recursive assertions and parallel programs. Acta
Informatica, 15(3):219–232, 1981.

[Arm12] A. Armstrong. An evaluation of automated theorem prov-
ing in regular algebra, 2012. Extended abstract presented at
RAMiCs 13.

125

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml
http://afp.sourceforge.net/entries/KAT_and_DRA.shtml


[AS12] A. Armstrong and G Struth. Automated reasoning in higher-
order regular algebra. In T. Griffin and W. Kahl, editors,
RAMiCs 2012, volume 7560 of LNCS. Springer, 2012.

[ASW13a] A. Armstrong, G. Struth, and T. Weber. Kleene algebra.
Archive of Formal Proofs, 2013. http://afp.sourceforge.
net/entries/Kleene_Algebra.shtml.

[ASW13b] A. Armstrong, G. Struth, and T. Weber. Program analysis
and verification based on Kleene algebra in Isabelle/HOL. In
S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP
2013, number 7998 in LNCS, pages 197–212. Springer, 2013.

[ASW14] A. Armstrong, G. Struth, and T. Weber. Programming
and automating mathematics in the Tarski-Kleene hierarchy.
Journal of Logical and Algebraic Methods in Programming,
83(2):87–102, March 2014.

[Bal10] C. Ballarin. Tutorial to locales and locale interpretation. In
Contribuciones Científicas en honor de Mirian Andrés. Ser-
vicio de Publicaciones de la Universidad de La Rioja, Spain,
2010.

[BBN11] J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic
proof and disproof in Isabelle/HOL. In C. Tinelli and
V. Sofronie-Stokkermans, editors, FroCos 2011, volume 6989
of LNCS, pages 12–27. Springer, 2011.

[BE95] S. L. Bloom and Z. Ésik. Nonfinite axiomatizability of
shuffle inequalities. In P. D. Mosses, M. Nielsen, and
M. I. Schwartzbach, editors, Proceedings of the 6th Interna-
tional Joint Conference CAAP/FASE on Theory and Prac-
tice of Software Development, TAPSOFT ’95, pages 318–333.
Springer, 1995.

[BE96] S. L. Bloom and Z. Ésik. Free shuffle algebras in language
varieties. Theor. Comput. Sci., 163(1&2):55–98, 1996.

[BH96] A. Buch and T. Hillenbrand. Waldmeister: High performance
equational theorem proving. In J. Calmet and C. Limon-
gelli, editors, Proceedings of the 4th International Symposium
on Design and Implementation of Symbolic Computation Sys-
tems, volume 1128 of LNCS, pages 63–64. Springer, 1996.

[BHL+14] J. C. Blanchette, J. Hölzl, A. Lochbihler, P. Lorenz,
A. Popescu, and D. Traytel. Truly modular (co)datatypes
for Isabelle/HOL. In G. Klein and R. Gamboa, editors, ITP
2014, volume 8558 of LNCS, pages 93–110. Springer, 2014.

126

http://afp.sourceforge.net/entries/Kleene_Algebra.shtml
http://afp.sourceforge.net/entries/Kleene_Algebra.shtml


[BN10] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample
generator for higher-order logic based on a relational model
finder. In M. Kaufmann and L. C. Paulson, editors, ITP
2010, number 6172 in LNCS, pages 131–146. Springer, 2010.

[BP12] T. Braibant and D. Pous. Deciding kleene algebras in coq.
Logical Methods in Computer Science, 8(1), 2012.

[Bro93] S. Brookes. Full abstraction for a shared variable parallel
language. In M. Okada and P Panangaden, editors, LICS 93,
page 98–109, 1993.

[Bro04] S. D. Brookes. A semantics for concurrent separation logic. In
P. Gardner and N. Yoshida, editors, CONCUR 2004, volume
3170 of LNCS, pages 16–34. Springer, 2004.

[BS10] R. Berghammer and G. Struth. On automated program con-
struction and verification. In C. Bolduc, J. Desharnais, and
B. Ktari, editors, MPC 2010, number 6120 in LNCS, pages
22–41. Springer, 2010.

[Bul12] L. Bulwahn. The new quickcheck for isabelle - random, ex-
haustive and symbolic testing under one roof. In C. Haw-
blitzel and D. Miller, editors, CPP 2012, volume 7679 of
LNCS, pages 92–108. Springer, 2012.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra. Num-
ber 18 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1990.

[CG10] H. Collavizza and M. Gordon. Forward with Hoare. In A. W.
Roscoe, C. B. Jones, and K. R. Wood, editors, Reflections on
the Work of C. A. R. Hoare, pages 101–121. Springer, 2010.

[Coh00] E. Cohen. Separation and reduction. In R. C. Backhouse and
J. Nuno Oliveira, editors, MPC 2000, volume 1837 of LNCS,
pages 45–59. Springer, 2000.

[Con71] J. H. Conway. Regular algebra and finite machines. Chapman
and Hall, 1971.

[COY07] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action
and abstract separation logic. In L. Ong, editor, Proceedings
of the 22nd Annual IEEE Symposium on Logic in Computer
Science, LICS ’07, pages 366–378, Washington, DC, USA,
2007. IEEE Computer Society.

127



[dBHdR99] F. S. de Boer, U. Hannemann, and W.-P. de Roever. For-
mal justification of the rely-guarantee paradigm for shared-
variable concurrency: a semantic approach. In J. M. Wing,
J. Woodcock, and J. Davies, editors, FM’99 — Formal Meth-
ods, number 1709 in LNCS, pages 1245–1265. Springer, 1999.

[DGS15] B. Dongol, V. B. F. Gomes, and G. Struth. A program
construction and verification tool for separation logic. In
R. Hinze and J. Voigtländer, editors, MPC 2015, volume 9129
of LNCS, pages 137–158. Springer, 2015.

[DHM11] H.-H. Dang, P. Höfner, and B. Möller. Algebraic separation
logic. J. Log. Algebr. Program., 80(6):221–247, 2011.

[Din02] J. Dingel. A refinement calculus for shared-variable parallel
and distributed programming. Formal Aspects of Computing,
14(2):123–197, 2002.

[DMS06] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with
domain. ACM Trans. Comput. Log., 7(4):798–833, 2006.

[DMS11] J. Desharnais, B. Möller, and G. Struth. Algebraic notions
of termination. Logical Methods in Computer Science, 7(1),
February 2011.

[dRdBH+01a] W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency verifi-
cation: an introduction to state-based methods. Cambridge
University Press, Cambridge, 2001.

[dRdBH+01b] W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Verifi-
cation: Introduction to Compositional and Noncompositional
Methods, volume 54 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2001.

[EMS03] T. Ehm, B. Möller, and G. Struth. Kleene modules. In
R. Berghammer, B. Möller, and G. Struth, editors, RelMiCS,
volume 3051 of LNCS, pages 112–124. Springer, 2003.

[FD07] T. Fernandes and J. Desharnais. Describing data flow anal-
ysis techniques with kleene algebra. Science of Computer
Programming, 65(2):173–194, 2007.

[FS12] S. Foster and G. Struth. Automated analysis of regular alge-
bra. In B. Gramlich, D. Miller, and U. Sattler, editors, IJCAR
2012, volume 7364 of LNCS, pages 271–285. Springer, 2012.

128



[Gis88] J. L. Gischer. The equational theory of pomsets. Theoretical
Computer Science, 61(2–3):199–224, 1988.

[GSW11] W. Guttmann, G. Struth, and T. Weber. Automating al-
gebraic methods in Isabelle. In S. Quin and Z. Qiu, editors,
ICFEM 2011, volume 6991 of LNCS, pages 617–632. Springer,
2011.

[Gut12] W. Guttmann. Algebras for iteration and infinite computa-
tions. Acta Inf., 49(5):343–359, 2012.

[HHM+11] C. A. R. Hoare, A. Hussain, B. Möller, P. W. O’Hearn, R. L.
Petersen, and G. Struth. On locality and the exchange law
for concurrent processes. In J.-P. Katoen and B. König, edi-
tors, CONCUR 2011, number 6901 in LNCS, pages 250–264.
Springer, 2011.

[HJC13] I. J. Hayes, C. B. Jones, and R. J. Colvin. Refining rely-
guarantee thinking. Technical report, University of Newcas-
tle, 2013.

[HK13] B. Huffman and O. Kuncar. Lifting and transfer: A modu-
lar design for quotients in isabelle/hol. In G. Gonthier and
M. Norrish, editors, CPP2013, volume 8307 of LNCS, pages
131–146. Springer, 2013.

[HMSW11] C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Con-
current Kleene algebra and its foundations. J. Log. Algebr.
Program., 80(6):266–296, 2011.

[HS07] P. Höfner and G. Struth. Automated reasoning in Kleene
algebra. In F. Pfenning, editor, CADE, volume 4603 of LNCS,
pages 279–294. Springer, 2007.

[HS10] P. Höfner and G. Struth. Algebraic notions of nontermina-
tion: Omega and divergence in idempotent semirings. J. Log.
Algebr. Program., 79(8):794–811, 2010.

[HW08] F. Haftmann and M. Wenzel. Local theory specifications in
Isabelle/Isar. In S. Berardi, F. Damiani, and U. de’Liguoro,
editors, TYPES 2008, volume 5497 of LNCS, pages 153–168.
Springer, 2008.

[Jon81] C. B. Jones. Development methods for computer programs
including a notion of interference. PhD thesis, Oxford Uni-
versity, 1981.

129



[Jon83] C. B. Jones. Specification and design of (parallel) programs.
In R. E. A. Mason, editor, IFIP Congress, pages 321–332,
1983.

[KKB12a] G. Klein, R. Kolanski, and A. Boyton. Mechanised separation
algebra. In L. Beringer and A. P. Felty, editors, ITP 2012,
volume 7406 of LNCS, pages 332–337. Springer, 2012.

[KKB12b] G. Klein, R. Kolanski, and A. Boyton. Separation algebra.
Archive of Formal Proofs, 2012, 2012.

[KN10] A. Krauss and T. Nipkow. Regular sets and expressions.
Archive of Formal Proofs, May 2010. http://afp.sf.net/
entries/Regular-Sets.shtml, Formal proof development.

[Koz90] D. Kozen. On kleene algebras and closed semirings. In
B. Rovan, editor, MFCS’90, volume 452 of LNCS, pages 26–
47. Springer, 1990.

[Koz93] Dexter Kozen. On action algebras. In Logic and Information
Flow, pages 78–88. MIT Press, 1993.

[Koz94] D. Kozen. A completeness theorem for Kleene algebras and
the algebra of regular events. Information and Computation,
110(2):366–390, 1994.

[Koz97] D. Kozen. Automata and computability. Undergraduate texts
in computer science. Springer, 1997.

[Koz00] D. Kozen. On Hoare logic and Kleene algebra with tests.
ACM TOCL, 1(1):60–76, 2000.

[KP00] D. Kozen and M.-C. Patron. Certification of compiler op-
timizations using Kleene algebra with tests. In J. Lloyd,
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi,
L. Moniz Pereira, Y. Sagiv, and P. J. Stuckey, editors, Compu-
tational Logic, volume 1861 of LNCS, page 568–582. Springer,
2000.

[KU11] C. Kaliszyk and C. Urban. Quotients revisited for Is-
abelle/HOL. In W. C. Chu, W. E. Wong, M. J. Palakal,
and C-C. Hung, editors, SAC, pages 1639–1644. ACM, 2011.

[Lei06] H. Leiß. Kleene modules and linear languages. J. Log. Algebr.
Program., 66(2):185–194, 2006.

[Loc10] Andreas Lochbihler. Coinductive. Archive of Formal Proofs,
February 2010. http://afp.sf.net/entries/Coinductive.
shtml, Formal proof development.

130

http://afp.sf.net/entries/Regular-Sets.shtml
http://afp.sf.net/entries/Regular-Sets.shtml
http://afp.sf.net/entries/Coinductive.shtml
http://afp.sf.net/entries/Coinductive.shtml


[LS11] M. R. Laurence and G. Struth. Omega algebras and regular
equations. In RAMICS 2011, volume 6663 of LNCS, pages
248–263. Springer, 2011.

[LS13] M. R. Laurence and G. Struth. Completeness results for bi-
Kleene algebras and regular pomset languages, 2013. (sub-
mitted).

[Man74] Z. Manna. Mathematical theory of computation. McGraw-
Hill, 1974.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Func-
tional programming with bananas, lenses, envelopes and
barbed wire. In J. Hughes, editor, Proc. 5th ACM Conf.
Functional Programming Languages and Computer Architec-
ture, volume 523 of LNCS, pages 124–144. Springer, 1991.

[MMRS97] A. Mateescu, G. D. Mateescu, G. Rozenberg, and A. Salomaa.
Shuffle-like operations on ω-words. In G. Păun and A. Salo-
maa, editors, New Trends in Formal Languages, number 1218
in LNCS, pages 395–411. Springer, 1997.

[Mor88] C. Morgan. The specification statement. ACM Trans. Pro-
gram. Lang. Syst., 10(3):403–419, 1988.

[MPdS13] N. Moreira, D. Pereira, and S. M. de Sousa. On the mechani-
sation of rely-guarantee in Coq. Technical report, Faculdade
de Ciências, Universidade do Porto, 2013.

[MS06] B. Möller and G. Struth. Algebras of modal operators and
partial correctness. Theor. Comput. Sci., 351(2):221–239,
2006.

[MWM14] D. Matichuk, M. Wenzel, and T. C. Murray. An isabelle proof
method language. In G. Klein and R. Gamboa, editors, ITP
2014, LNCS, pages 390–405. Springer, 2014.

[Nie01] L. P. Nieto. Verifcation of Parallel Programs with the Owicki-
Gries and Rely-Guarantee Methods in Isabelle/HOL. PhD
thesis, Technische Universität München, October 2001.

[Nie03] L. P. Nieto. The rely-guarantee method in Isabelle/HOL.
In P. Degano, editor, Programming Languages and Systems,
number 2618 in LNCS, pages 348–362. Springer, 2003.

[Nip98] T. Nipkow. Winskel is (almost) right: Towards a mechanized
semantics. Formal Asp. Comput., 10(2):171–186, 1998.

131



[NMS+08] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and
L. Birkedal. Ynot: Dependent types for imperative programs.
In J. Hook and P. Thiemann, editors, ICFP, pages 229–240.
ACM, 2008.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2002.

[OG76] S. S. Owicki and D. Gries. An axiomatic proof technique for
parallel programs I. Acta Inf., 6:319–340, 1976.

[O’H07] P. W. O’Hearn. Resources, concurrency, and local reasoning.
Theor. Comput. Sci., 375(1-3):271–307, 2007.

[OPVH15] P. W. O’Hearn, R. L. Petersen, J. Villard, and A. Hus-
sain. On the relation between concurrent separation logic
and concurrent kleene algebra. J. Log. Algebr. Meth. Pro-
gram., 84(3):285–302, 2015.

[ORY01] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In L. Fribourg, ed-
itor, CSL 2001, volume 2142 of LNCS, pages 1–19. Springer,
2001.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs.
PhD thesis, Cornell University, 1975.

[PNW11] L. Paulson, T. Nipkow, and M. Wenzel. Isabelle. http://
www.cl.cam.ac.uk/research/hvg/Isabelle/index.html,
2011.

[Pou13a] D. Pous. Kleene algebra with tests and Coq tools for while
programs. In S. Blazy, C. Paulin-Mohring, and D. Pichardie,
editors, ITP 2013, number 7998 in LNCS, pages 180–196.
Springer B, 2013.

[Pou13b] D. Pous. Kleene algebra with tests and coq tools for while
programs. In S. Blazy, C. Paulin-Mohring, and D. Pichardie,
editors, ITP 2013, volume 7998 of LNCS, pages 180–196.
Springer, 2013.

[Pra90] V. R. Pratt. Action logic and pure induction. In J. van
Eijck, editor, JELIA ’90, volume 478 of LNCS, page 97–120.
Springer, 1990.

[Red64] V. N. Redko. On defining relations for the algebra of regular
events. Ukraïn. Mat. Z., 16:120–126, 1964. In Russian.

132

http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html


[Rey02] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS 2002, pages 55–74. IEEE Computer
Society, 2002.

[Sch06] N. Schirmer. Verification of sequential imperative programs in
Isabelle-HOL. PhD thesis, Technische Universität München,
2006.

[Sti88] C. Stirling. A generalization of Owicki-Gries’s hoare logic for
a concurrent while language. Theoretical Computer Science,
58(1âĂŞ3):347 – 359, 1988.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, Cam-
bridge, MA, USA, 1977.

[Tar85] A. Tarlecki. A language of specified programs. Science of
Computer Programming, 5:59–81, 1985.

[Vaf08] V. Vafeiadis. Modular fine-grained concurrency verification.
PhD thesis, University of Cambridge, 2008.

[vW04] J. von Wright. Towards a refinement algebra. In B Möller
and E. Boiten, editors, MPC 2002, volume 51, pages 23 – 45,
2004.

[Wen07] M. Wenzel. Isabelle/Isar – a generic framework for human-
readable proof documents. In R. Matuszewski and A. Za-
lewska, editors, From Insight to Proof — Festschrift in Hon-
our of Andrzej Trybulec, Studies in Logic, Grammar, and
Rhetoric. University of Białystok, 2007.

[XdRH97] Q. Xu, W-P. de Roever, and J. He. The rely-guarantee
method for verifying shared variable concurrent programs.
Formal Aspects of Computing, 9(2):149–174, 1997.

133


	Introduction
	Introduction
	Principles of Algebraic Tool Design
	Research Contributions and Thesis Overview

	The Rely-Guarantee Method
	Introduction
	The Owicki-Gries Method
	The Rely-Guarantee Method
	Concurrent Separation Logic

	Algebraic Preliminaries
	Introduction
	Dioids
	Kleene Algebra
	Models of Kleene Algebra and Dioids
	Languages
	Binary Relations
	Further Models

	Lattices
	Boolean Algebra
	Galois Connections
	Weak Kleene Algebras and Dioids
	Kleene Algebra with Tests and Hoare Logic
	Action Algebra
	-continuous Kleene Algebra
	Weak -Algebra and Demonic Refinement Algebra
	Quantales

	Isabelle/HOL
	Introduction
	Mechanising Algebras in Isabelle
	Custom Reasoning Tactics

	Program Verification with Schematic Kleene Algebra
	Applying Algebra to Program Verification
	Schematic KAT and Flowchart Schemes
	Formalising a Metatheorem
	Verification of Flowchart Equivalence
	Hoare Logic with Kleene Modules
	Verification Examples
	Conclusion

	Algebra for Rely-Guarantee part 1
	Introduction
	A Rely-Guarantee Algebra
	Breaking Compositionality
	Finite Language Model
	Enriching the Model
	Examples
	Conclusion

	Algebra for Rely-Guarantee part 2
	Introduction
	A Refined Algebra for Rely-Guarantee
	Tests in the Algebra
	Refinement

	Infinite Language Model
	The Shuffle Operation
	Stuttering and Mumbling Closure
	Relies and Guarantees
	Properties of Shuffle and Traces
	Concurrency Rule
	Interchange Laws
	Soundness

	Conclusion

	Examples
	Introduction
	Tests in the Model
	Assignment Statements
	Example: Find P
	The FINDP program
	FINDP refinement proof
	Conclusion

	Conclusion
	General Contribution
	Future Work
	Experience with Isabelle
	Final Conclusion

	Appendices
	Derivation of the Rely-Guarantee Inference Rules
	List of Algebraic Structures

