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Abstract

From their earliest origins fishes have developed a suite of adaptations for locomotion in

water. Even without data from behaviour, soft tissue, and extant relatives, it is possible to infer

a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of

gross morphology such as streamlining, fin position and tail type are optimised even in the

earliest fishes, indicating similar life strategies have been present throughout their

evolutionary history. Drag-reducing riblets ornamenting the scales of fast-moving sharks have

been subject to particularly intense research, but this has not been extended to extinct forms.

The crowns of shark scales are exposed directly to the aquatic environment offering a unique

opportunity to elucdate scale function in some of their long-extinct Palaeozoic relatives.

This thesis is the first comprehensive study of scale function in fossil fishes, and demonstrates

that sophisticated adaptations for drag-reduction existed at a remarkably early stage in fish

evolution. It is shown that riblet spacing reflects swimming speed in modern sharks, and that

drag-reduction morphology evolved in the denticles of the earliest vertebrates, including the

oldest examples known (~460 million years ago). Comparative analysis between modern

sharks and fossil taxa reveals distinct and diverse regionalisation of scale features across the

body, as well as ontogenetic changes. In addition to riblet spacing, the variation of other scale

features is investgated quantitatively in modern sharks, revealing the importance of riblet

angle in overall drag reduction. Furthermore, experimental skin friction measurements of fossil

fish scales demonstrate the potential drag reduction of a diverse range of morphologies, even

without riblets.
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block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale height above flat upper surface is 0.55mm, block thickness is 10.56mm,

see text.

Figure 3.21. Design of individual block of Nostolepis striata test plate. a) top view of block

showing scaled surface and downstream direction (black arrow); b-c) oblique views of whole

block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale height above flat upper surface is 0.97mm, block thickness is 10.47mm,

see text.
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Figure 3.22. Periodogram of velocity measurements recorded at the mid-centre of the flume

tank using laser Doppler anemometry, over 10 minutes at mean flume speed 0.32 m/s.

Figure 3.23. Flume tank setup; a) general schematic of flume system, and; b) detail of plate

assembly and rig within flume tank. During operation, the flume was blacked out to minimise

exposure to laser light. Not to scale.

Figure 3.24. Diagram of laser Doppler anemometer and flume setup. Not to scale.

Figure 3.25. Diagram showing the density of measurements at positions across the plate (x =

200-400mm), and positions away from the wall surface (z = 0-90mm).

Figure 3.26. Example of data correction, identifying the true base of a velocity profile from a

plot of raw data a), and differences between consecutive measurements; b). Corrected base

position (red lines) defined as wall-most measurement at which velocity has reached less than

0.005m/s (bold italics) and had ideally decreased from the vertically higher measurement by

0.005m/s or more (green text). Red text denotes velocity differences 0.005 m/s or smaller than

vertically higher value, or negative values (reversed flow).

Figure 3.27. Example semilog plot of velocity profile, showing approximate position of log-law

inner region and a line of best fit. The gradient of this best fit line approximates the frictional

velocity, which itself is used to calculate dimensionless wall units (y+). The inner log-law

region, defined as y+ = >30 - <100 was used to fine tune this line of best fit by iterative

exclusion of data outside this region.

Chapter 4

Figure 4.1. Representative examples of blocky flank scales; a) the ‘acanthodian’ Gomphonchus

hoppei (drawn from material figured in Valiukevičius, 2005); and b) the modern lantern shark 

Etmopterus bigelowi (drawn from material figured in Castro, 2011).

Figure 4.2. Representative examples of spine-like (a-c) and spiny scales (d-f). a) the

‘acanthodian’ Nostolepis fragilis (drawn from material figured in Valiukevičius, 2003); b) the 

thelodont Loganellia exilis (drawn from material figured in Märss et al., 2006); c) the modern

basking shark Cetorhinus maximus (drawn from material figured in Castro, 2011); d) the

‘acanthodian’ Acanthospina irregulare (drawn from material figured in Valiukevičius, 2003); e) 

the thelodont Paralogania martinssoni (drawn from material figured in Märss, 2003); and f)

the brier shark Deania calcea (courtesy of Sue Lindsay, Australian Museum).
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Figure 4.3. Representative examples of flank scales with uniform parallel riblets; a) the

‘acanthodian’ Nostolepis gaujensis (drawn from material figured in Burrow et al., 2009); b) the

thelodont Canonia grossi (drawn from material figured in Karatajūtē-Talimaa, 2002); and c) the 

modern requiem shark Carcharhinus brachyurus (courtesy of Sue Lindsay, Australian Museum).

Figure 4.4. Representative examples of smooth teardrop flank scales; a) the thelodont

Loganellia grossi (drawn from material figured in Märss et al., 2006); b) the ‘acanthodian’

Poracanthodes sp. (section 3.1) and; c) the modern angel shark Squatina californica (drawn

from material figured in Castro, 2011).

Figure 4.5. Representative examples of flank scales with converging ridges; a) the thelodonts

Overia adraini (drawn from material figured in Märss et al., 2006); and b) Thelodus laevis

(micrograph produced using material provided by Henning Blom); c) the modern gulper shark

Centrophorus granulosus (section 3.1).

Figure 4.6. Representative examples of flank scales with leading edge riblets; a) the

‘acanthodian’ Nostolepis gracilis (section 3.2); b) the ‘acanthodian’ Cheiracanthoides planus

(drawn from material figured in Vaiukevičius, 2005); and c) the modern bamboo shark 

Chiloscyllium punctatum (section 3.1).

Figure 4.7. Points of interest on shark denticles. a) overlapping head scales (‘H3’) of

Chiloscyllium plagiosum (section 3.1) showing riblet wear, and scratch marks. b) Overlapping

flank scales (‘FB1’) of Scyliorhinus canicula (section 3.1) showing polygonal ultrasculpture.

Scale bars are 50µm.

Figure 4.8. Representative examples of keel-dominated flank scales; a) the thelodont

Phlebolepis elegans; b) the ‘acanthodian’ Vernicomacanthus waynensis (Natural History

Museum, London); and the modern gulper shark Centrophorus squamosus (drawn from

material figured in Castro, 2011).

Figure 4.9. Percentage occurrence of scale morphotypes in modern sharks of different

ecologies (n = 125)

Figure 4.10. Hypothesised functions of flank dermal denticles.

Figure 4.11. Functional composition of mid – Palaeozoic taxa with dermal denticles based on

flank scale morphology.

Chapter 5
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Figure 5.1. Scanning electron micrographs of flank scales of a) the porbeagle shark Lamna

nasus and; b) the ‘acanthodian’ Nostolepis sp. cf. N. gaujensis. Scale bar on each image is 200

µm. ‘acanthodian’ image reprinted from Burrow et al., 2009 with permission from Carole

Burrow.

Figure 5.2. Schematic vertical cross sections of turbulent-flow of streamwise vortices over a) a

flat plate, and; b) riblets. Mean velocity profiles for flow in streamwise (green) and cross-flow

(orange) directions shown for riblets. Adapted for illustrative purposes from Bechert et al.,

1997, and Lee & Lee, 2001.

Figure 5.3. Boxplot showing riblet spacing measurements for ‘acanthodians’, thelodonts and

modern sharks (n = number of species) possessing distinct parallel grooves and riblets on the

scale crown surface. Boxes represent 25-75 percent quartiles with median values at vertical

division line. Statistically significant differences (Table 5.1) are indicated by left adjoining lines,

those in red indicate p values that show no significant difference after false discovery rate

(FDR) correction. Determination of shark speed categories was based on ecological and

experimental speed data, detailed in the methods section.

Chapter 6

Figure 6.1. Standardised sampling locations (orange squares) used throughout this study, and

midline transect (yellow line) from anterior-most to posterior-most sampling locations.

Scheme detailed in section 3.1. Example shown is Lamna nasus, not to scale.

Figure 6.2. Shark squamation along the midline (‘H1-3, FF2, FB2, T1-3’, Figure 6.1.) showing

scale variation from anterior to posterior. Note: It is clear from material figured in the

literature (Reif, 1985a), that the scales of Squalus acanthias have similarly smooth rostral

scales, in contrast to the sample presented here (bottom left).

Figure 6.3. Heat map of a) mean scale width (µm) and; b) scale crown aspect ratio

(length/width). Distribution interpolated across entire body from standardised sample

locations (Figure 6.1.).

Figure 6.4. Examples of Lamna nasus dermal denticles with low aspect ratio (width/length) in

the head region and high aspect ratio scale bases on the flank. Heat map of scale base aspect

ratio distribution from 19 sample locations (excluding claspers) of a 183cm male, and three

flank semi-landmarks, interpolated across entire body, and weighted according to standard

error.
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Figure 6.5. a) Transect of shark midline, showing mean riblet spacing (µm) at different

sampling locations. b) ‘Heat map’ of mean riblet spacing (µm) distribution from 19 sample

locations and semi-landmarks, interpolated across entire body, and weighted according to

standard error.

Figure 6.6. a) Transect of Lamna nasus midline, showing mean riblet angle (degrees) of all

specimens at different sampling locations. b) Heat map of mean riblet angle (degrees)

distribution from 19 sample locations, and flank semi-landmarks, interpolated across entire

body, and weighted according to standard error. Left, scanning electron microscope images of

example riblet angles, from top to bottom; riblets converging (‘H1’ head scale from 183cm

male), parallel (‘D3’ dorsal fin scale from 215cm female) and diverging (‘H3’ head scale from

127cm female).

Figure 6.7. Heat maps of mean riblet spacing (top), mean riblet angle (middle), and mean scale

width (bottom) distribution for all immature (left) and mature (right) specimens of Lamna

nasus. Images generated using sampling points detailed in Chapter 3.1.3.

Chapter 7

Figure 7.1. Raw velocity measurements (m/s) showing corrected bases of velocity profiles

(vertical bars) at horizontal positions 200-400mm, for smooth control plate (dark blue),

Loganellia scotica (red), Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes

sp. (cyan), and Nostolepis striata (orange). Data below the inferred wall level was excluded

from all analyses that follow. See section 3.2 for Methods and Materials.

Figure 7.2. Mean velocity profiles (corrected base locations) of test plates at 200-400mm from

leading edge. Including the smooth control plate (dark blue), and the scaled plates Loganellia

scotica (red), Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes sp. (cyan),

and Nostolepis striata (orange). See Appendix II, Figures S2.8-2.13 for individual plots.

Figure 7.3. Semilog plot of mean velocity profiles (corrected) of all test plates at 200-400mm

from leading edge. Including smooth control plate (dark blue), and the scaled plates Loganellia

scotica (red), Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes sp. (cyan),

and Nostolepis striata (orange). See Appendix II, Figures S2.8-2.13 for individual plots.

Figure 7.4. Bar chart showing percentage of raw negative velocity (U = < 0 m/s) measurements

recorded at a near-wall corrected position of 0.5mm vertical (z) position for all plates at all

horizontal positions (x = 200-400mm).
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Figure 7.5. Boundary layer height (99% maximum velocity) across the test plates. Including the

smooth control plate (dark blue dashed), and the scaled plates Loganellia scotica (red),

Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes sp. (cyan), and Nostolepis

striata (orange). See Appendix II for full data and individual plots.

Figure 7.6. Skin friction coefficient at horizontal positions x = 200-400mm for the smooth

control plate (dark blue), Loganellia scotica (red), Lophosteus sp. (green), Phlebolepis elegans

(purple), Poracanthodes sp. (cyan), and Nostolepis striata (orange).

Chapter 8

Figure 8.1. Scratch marks on the scales of a 680mm (total length) male Chilloscyllium

plagiosum a) from the rostrum and; b) detail of the posterior tip of a scale from the trunk

region (‘FF3’, section 3.1.). Scales are orientated anterior upwards.

Figure 8.2. Distribution of scale features in Lamna nasus, compiled for ease of reference from

figures 6.4-6.6, in Chapter 6. Top: transect of shark midline, showing mean riblet spacing (µm)

of all specimens of Lamna nasus at different sampling locations. Middle: heat map of scale

base aspect ratio distribution of a 183cm male Lamna nasus from 19 sample locations

(excluding claspers), and three flank semi-landmarks, interpolated across entire body, and

weighted according to standard error. Bottom: transect of shark midline, showing mean riblet

angle (degrees) of all specimens of Lamna nasus at different sampling locations

Figure 8.3. Scanning electron micrograph of the Silurian osteichthyan fish Lophosteus sp., from

Ohesaare Cliff, Estonia. Material courtesy of Henning Blom.

Figure 8.4. Scanning electron micrographs of the ‘acanthodian’ Milesacanthus sp. (a,b) and the

modern porbeagle shark Lamna nasus (c,d) scales. A) Milesacanthus sp. aff. M. antarctica

flank scale in ventral view showing detail of base, modified from Hairapetian, 2006. B) Dorso-

lateral view of scale from unknown body position of Milesacanthus antarctica NMV P228907,

modified from Burrow et al. 2009. C-d) Flank scales (FF2) of a 183cm male Lamna nasus in c)

ventral view and; d) lateral view.
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1. Introduction

1.1. Hydrodynamics of Fossil Fishes

Swimming has evolved at some point in every class of vertebrate, demonstrating the

advantages to locomotion in water. Movement from land in to water or simply upwards

beyond its floor, means a species can exploit previously unavailable food sources and habitat,

move and escape in three-dimensional space. There is no prospect of limitless variety in

nature; the form and behaviour of an organism is strictly governed by the physical world, and

the organisms around it. Those species which swim freely in water are no exception, and there

are remarkable convergences in nature and in our own technology which reflect this. Fishes - a

diverse and disparate group of non-tetrapod vertebrates - provide some of the best examples

of convergent evolution in the animal kingdom. Shark scales (and those of rays to a lesser

extent) are a good example of this, and are the only surviving group of fishes to still possess

dermal denticles: a scale type which erupts through the soft skin tissue. This contact between

hard tissue and environment offers a unique opportunity to explicate the function of extinct

‘‘acanthodian’’ and thelodont scales. Herein, the hydrodynamics of long extinct fishes are

investigated, both experimentally and comparatively, in light of the drag-reduction strategies

of modern sharks.

1.2. Research Motivation and Relevance

Since Aristotle (notably ‘De Motu Animalium’) swimming has fascinated biomechanicians, but

it is only since the turn of the 20th century that rigorous experimental approaches to research

have been applied. A flourish of publications in the mid 1970s (e.g. Webb, 1975; Wu et al.,

1975; Aleyev, 1977) enlivened the modern field, and the pure research they synthesised

remain important references. Since this point much fish hydrodynamics research has been

driven by commercial or industrial applications, biomimetics, and increasingly the sub-

discipline of biorobotics (e.g. Dean & Bhushan, 2010). Many of the fundamental questions

raised in these earlier texts remain unanswered or little-explored, especially those of purely

biological interest. Sharks are a prime example of this trend, heralded as the inspiration for a

suite of drag-reducing and antifouling applications, but in reality only a minority of these

studies concern shark ecology.

When living animals cannot be observed, anatomy is the next best source of information, with

gross morphology, stomach contents, and even the braincase reflecting ecology and

behaviour. Much of this information is lost as the animal decays and so cannot be applied to



2

the majority of fossil taxa. Scales however are a resistant hard tissue, known to be ecologically

significant, and reduce drag in many pelagic sharks (Reif, 1985). Their small size and relative

physical resilience means scales have high preservation potential in the fossil record, and so a

central question emerged. Can research inspired by shark scales be used retrospectively to

study their biology, and that of their ancestors?

The continued interest in shark-inspired technology has resulted in a much deeper

understanding of some fundamental mechanisms of shark scale drag-reduction. The

motivation for this work has been to further explore how applied research can secondarily

benefit our understanding of modern sharks, and of fossil fishes (specific aims and objectives

are detailed next). The approach was two-fold, and alongside more traditional functional

analyses (e.g. comparative anatomy, geometric morphometrics), engineering methods were

also used (facilitated by the Sorby Environmental Fluid Dynamics Laboratory, University of

Leeds). The continually improving resolution and decreasing cost of rapid prototyping, made

this empirical approach possible, and skin friction of fossil fishes could be measured for the

first time. This approach, and the lack of any similar research, makes this project timely and

relevant to a number of disciplines, including biology, ecology, engineering, fluid mechanics,

geology, and palaeontology.

1.3. Aims and Objectives

A comparative approach using modern sharks was adopted from the outset, serving two main

roles; to identify potential morphofunctional correlates which could be explored in fossil taxa

(Chapters 4, 5, and 6), and to guide assumptions in the experimental study (Chapter 7). The

largest assumption was that the fossil material used in modelling the species’ skin was

representative of the entire squamation. Scale morphology is known to change dramatically

across the bodies of most shark species (Reif, 1985a), and even between individuals of the

same species. It was therefore crucial to investigate the magnitude of this variability, and

justify the comparison between modern sharks and Palaeozoic taxa. This thesis is a synthesis

of three studies, the primary and overarching aims of which were to:

1) Investigate the convergence and functional significance of dermal denticle

morphology in modern sharks and fossil taxa.

Objectives:

 Assemble a dataset of images of scales of known body location.
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 Investigate functional correlates, and classify scale morphotypes.

 Measure scale variables related to hydrodynamic function in modern sharks

and between individuals of a single species.

 Map and analyse patterns of distribution of scale features if found.

 Test hypothesised relationship between riblet spacing and speed in modern

sharks (Reif, 1985), and extend to fossil relatives.

2) Empirically test the efficacy of a range of dermal denticles in reducing skin friction

drag.

Objectives:

 Based on morphofunctional correlates in modern sharks, identify suitable

fossil species and material for replicating a diversity of fish skins.

 Scan material using micro computed tomography, and use modelling software

to tessellate scales on a test plate based on articulated modern and fossil skin.

 Rapid prototype replica fish skin, and assemble rig for flume study. Laser

Doppler anemometry used to measure fluid velocity across test plates, and

smooth control plate.

 Skin friction to be approximated and relative drag-reductions interpreted.

3) Provide a context-driven analysis of the evolution of drag-reducing adaptations in

fishes.

Objectives:

 Use experimental data to supplement functional interpretations made with

comparative approaches.

 Classify fossil denticles described in literature (of known body location) using

morphotype scheme, to track occurrence through time and functional trends.

1.4. Associated publications and declaration of author contributions

In all cases, the doctoral candidate was the primary and corresponding author of material

written for publication. This material was often subject to additional edits and review by the

co-authors. This, and extensive discussion throughout the drafting process has undoubtedly
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improved the quality of the manuscripts and by extension this dissertation. General

acknowledgments can be found on page IV, and specific credits (including personal

communications) are given in text. However, to address the obfuscation of authorship credit,

all concomitant papers (at varying stages of publication) to this thesis are detailed below,

including candidate and co-author contributions.

(1) Fletcher T. M., Altringham J. D., Peakall J., Wignall P. B., Dorrell R. M. (2014)

Hydrodynamics of fossil fishes. Proceedings of the Royal Society B: Biological Sciences 281,

20140703.

Related chapters 2, 8. TMF researched and wrote the manuscript, major editorial changes

were contributed by JDA, JP, and PBW, and minor changes by RMD.

(2) Fletcher T. M., Altringham J. D., Peakall J., Wignall P. B. (SUBMITTED) Denticle Déjà

Vu: remarkable scale convergence in modern sharks and Palaeozoic fishes.

Related sections 2.4, 2.6, 3.1, and 4. TMF performed all research, and wrote the manuscript.

JDA, JP, and PBW contributed minor editorial changes.

(3) Fletcher T. M., Altringham J. D., Peakall J., Wignall P. B., McFarlane L. A., Bell M. A.

(SUBMITTED) The Evolution of Speed: function and significance of drag-reducing riblets in the

fossil record of fishes.

Related chapters 3.1, 4.4, and 6.2.3. TMF performed the research, and wrote the manuscript

with major contributions from JDA, JP, and PBW. MAB, LAF, and JDA contributed to statistical

analysis, MAB produced figure 5.4 and ran the PDR analysis following reviewer comments.

(4) Fletcher T. M., Altringham J. D., Peakall J., Wignall P. B., Bendall, V. A., Brown W. J.

(IN PREP) Dermal denticle in modern sharks: functional factors affecting scale morphology.

Related chapters 2.2-2.4, 3.1, 6. TMF performed the research and wrote the manuscript. JDA,

JP, and PBW contributed minor editorial changes. VAB provided material and facilities, and

WJB assisted with figure production.

(5) Fletcher T. M., Altringham J. D., Peakall J., Wignall P. B., Dorrell R. M., Keevil, G. M.

(IN PREP) Skin friction drag-reduction by fossil fish scales: A novel application for laser Doppler

anemometry.
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Related chapters 2, 3.2, and 7. TMF, JDA, GMK, JP, and PBW designed the project and made

major intellectual contributions. TMF performed the research with the technical assistance of

GMK, and RMD contributed to statistical analysis.

1.5. Thesis organisation

The primary goal of this project was to experimentally determine the relative drag-reduction

of different Palaeozoic fish scale morphologies. To complement empirical data and

comprehensively assess hydrodynamic adaptations, alternative functions and influences on

morphology had to be considered. The aforementioned publications were self-contained

works exploring one or many of these concepts, and as such there was inevitable overlap in

introductory and discussed content. To limit repetition and provide a more coherent narrative,

the succeeding Chapter 2 is a thorough and complete synthesis of the literature reviewed for

all aspects of the study. This includes the hydrodynamics of modern and fossil fishes, and work

to date on scale function.

Chapter 3 details methodologies for all studies, but as comparative analyses were a crucial

foundation and supplemental to experimental work, they precede lab-based content where

possible. This convention is continued for the results, beginning with Chapter 4 ‘Comparative

analysis and functional interpretations of scale morphology’, Chapter 5 ‘Drag-reducing riblets

in modern sharks and fossil fishes’, and Chapter 6 ‘ Modern shark scale variability analysis’.

Experimental results are presented in Chapter 7 ‘Experimental analysis of drag-reduction by

fossil fish scales’, before interpretations and implications of all results are discussed in Chapter

8. Chapter 9 concludes with an address of the primary aims established in Chapter 1,

discussing the contributions to knowledge this thesis presents. It also serves as retrospective;

assessing the limitations of this investigation and of those which guided its course. Finally, a

brief but optimistic prospective is presented to encourage future work in this fascinating and

truly interdisciplinary subject.
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2. Background

In this chapter the fundamental fluid principles which often govern morphology will be

described before types of drag and drag-reduction are defined. The hydrodynamics of modern

fishes will be reviewed, including whole-body adaptations and passive mechanisms of drag-

reduction, with an emphasis on scale morphology. Active flow control, including behavioural

aspects of drag-reduction will then be discussed before ecological correlates are identified.

This discursive prologue to modern fish hydrodynamics will supplement the synthesis of

research to date on fossil fishes that follows, including a geological context to observed trends

and patterns. Finally, the alternative functions of fish scales are presented, and their

usefulness for biomechanical analyses is discussed.

2.1. Fundamental Fluid Principles

a) Fluid properties

The motion in swimming organisms depends on the forces the animal imparts on a fluid, and

that fluid’s properties. In water (an almost incompressible fluid) an important factor affecting

drag and lift in fishes is the Reynolds number (Reynolds, 1883; Azuma, 1992). The Reynolds

number (Re) is an expression of the ratio of inertial and viscous forces (below), and is

influenced by the animal’s size and speed (section 2.3.1).

ܴ ݕ݁݊ ݈ ݉ݑ݊�ݏ݀ ܾ݁ =�ݎ
ݒ݁ ݈ܿ ݉)�ݕݐ݅ ݈݅�ݔ(ݏ/ ݊݁ܽ ݎܽݐ�ݎ ݒ݁ ݈݈݁݀ �݀ ݐܽݏ݅ ݊ܿ݁ (݉ )

݇݅ ݊݁݉ ݐܽ݅ ݒ݅ܿ� ݏܿ ܿ ݉)�ݕݐ݅ ଶ/ݏ)

Equation 2.1. Equation for calculating dimensionless Reynolds number (Reynolds, 1883),

where kinematic viscosity is equal to dynamic viscosity kg/(m/s) divided by fluid density

(kg/m3).

At low Re, and predominantly viscous effects, the greatest influence on drag will be surface

friction, due to moving through a relatively viscous medium with little momentum from the

propulsive forces the animal generates (Aleyev, 1977; Azuma, 1992). It is the point at which
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the Re is great enough for inertial forces to take priority in the design of the organism that

they are broadly classified as nektonic, rather than planktonic (Aleyev, 1977).

When viscous forces (those holding fluid particles together) dominate, fluid flow is laminar and

particles move in parallel ordered lines. As fluid velocity increases, inertial forces dominate and

the flow becomes turbulent, characterised by irregular movements, but still with average

motion in the mean direction of flow.

b) Boundary layer development and separation

As a fluid of uniform flow (Figure 1a) passes over a wall, molecules in contact with the surface

decelerate due to shear stress from friction. The flow velocity above this decelerating fluid

then becomes retarded, as particles move over slower-moving particles below. Counteracting

this, the fastest moving fluid in the main flow-stream above drags the underlying fluid along

and a velocity profile is formed (Figure 1b.). The region between the wall to the point at which

the fluid velocity is at 99% of the maximum ‘free stream’ velocity is called the boundary layer.

Figure 2.1. Stages of boundary layer development (A-E) on a flat plate, subject to an adverse

pressure gradient. Arrows show flow direction, with length indicating velocity and mean flow

velocity emboldened, boundary layer in blue, and zone of vortex formation or ‘wake’ in red.

In an adverse pressure gradient, such as behind the widest point of a fish’s body, the rising

static pressure (pressure energy per unit volume) of the fluid implies a reduction of dynamic

pressure (kinetic energy per unit volume) and thus a decrease in flow velocity (Batchelor,

1977; Figure 2.1c). Reduction of flow velocity induces flow to separate and reverse, forming
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counter rotating vortices near the wall (Figure 2.1d, e). This is referred to as boundary layer

separation, which increases the effective size of the object to be propelled through the fluid

and thus also the amount of drag suffered (Fish, 1998).

2.2. Drag

2.2.1. Types of drag

Drag refers to fluid forces opposing the movement of an object, impeding velocity (Azuma,

1992). For our purposes drag can be divided into two types; pressure (or form) drag, and

friction drag. Pressure drag describes the energy used to move fluid out of the way of the front

of the body and push it behind it again (form drag). Another important component of pressure

drag in submerged bodies is that produced by lifting surfaces such as fins. This is referred to as

induced drag and is produced as higher pressure fluid below a hydrofoil (lifting surface) flows

around the trailing edge towards the lower pressure upper surface. This produces vortices,

meaning some fluid rotates against mean flow, increasing drag (Aleyev, 1977; Fish, 1998).

Skin friction drag concerns the finer interactions of fluid flowing over a plane, and is defined as

any reduction in fluid velocity caused by shear stresses and forces acting on the ‘wetted’ skin

surface (Azuma, 1992; Fish, 1998). As illustrated in Figure 2.2, minimal pressure drag could be

achieved in laminar conditions with a long and pointed pencil-like body, where skin friction is

the predominant drag component. However, there must be a trade-off with physiological

limitations, and the minimal body volume requirement of the fish. Streamlining achieves this,

and (dependant on individual requirements) nektonic species are most often elliptical and

teardrop-shaped (Figure 2.2d). Consequently for the majority of pelagic fishes skin friction is an

important component of drag, and the biological strategies for reducing it are the primary

focus of this thesis.



9

Figure 2.2. Flow patterns (blue arrows) and relative drag components of submerged objects; a)

thin flat plate perpendicular to flow direction (black arrow); b) thin flat plate parallel to flow; c)

cylinder; and d. streamlined shape. Based on Talay, 1975.

2.2.2. Drag reduction

Drag reduction is crucial to efficient locomotion through a fluid, especially in the relatively

viscous and dense medium of liquid water. Beyond more general adaptations to life in water

(e.g. streamlining), a surprisingly large number of ‘imaginative solutions’ (Fish, 1998) have also

evolved to reduce drag which will be discussed next (section 2.3). Drag-reduction can help fish

achieve faster burst and cruising speeds to escape, hunt and travel longer distances. However

for the majority of fish the greatest benefit is the lower energetic expense of everyday

swimming, including holding a stationary position against currents. The way in which a fish

reduces drag varies according to physiology, behaviour and morphology of the species. The

external morphology is remarkably plastic in response to hydrodynamic constraints (e.g.

Fischer-Rousseau, 2010), which is especially fortunate in those instances where behavioural 

and physiological data are not available (e.g. very rare or extinct taxa). The mechanisms of

drag reduction will now be discussed.
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2.3. Hydrodynamics of Modern Fishes

2.3.1. Gross morphology

a) Body size

As discussed, fishes face differing fluid conditions depending on Reynolds number (Equation

2.1), determined by fluid properties and the fish’s body length and speed (Figure 2.3). For

example a tuna of length 3 metres, travelling at its highest observed speed of 22.2 m/s

(McGowan, 1999) has a Reynolds number 5.11 x 107. In larger organisms like this, inertial

forces are a more important influence on drag, and adaptations are primarily aimed at

preserving attached laminar flow or controlling turbulent boundary layers at higher speeds

through relatively inviscid fluids (Videler, 1993). Depending on body shape and skin properties,

the point of transition can vary between 9.0 x 104 to 3.0 x 106, and possibly even higher in

some cases (Aleyev, 1977). The flow type is intractably linked to Reynolds number, so fish must

not only adjust their adult morphology and behaviour to reduce drag, but also adjust to

continually changing fluid mechanics throughout ontogeny.

Adult fishes range in size from millimetres (e.g. Paedocypris) (Kottelat et al., 2005) to many

metres (e.g. Rhincodon, and the extinct Leedsichthys) (Liston et al., 2013). Small fish larvae face

very low Re (Figure 2.3) and in some species up to 98% of their swimming can be in the viscous

or intermediate flow regime (Müller et al., 2000). While essentially planktonic (unable to fight

currents), they can generate thrust to move through their relatively viscous fluid to avoid

sinking (Videler, 1993). There is debate as to whether changes during ontogeny reflect optimal

functionality for differing Re values (Weihs, 1980), or are just an energetically expensive stage

of growth before achieving a streamlined adult form (Müller & Videler, 1996; McHenry &

Lauder, 2006). While adult fish are the principal focus of this thesis, the increasing Reynolds

number with size and speed, and the associated change in flow regime are an important

consideration. Flows around objects of the same shape with the same Reynolds number are

said to be dynamically similar, which – crucially - allows for scaling in modelling experiments

(Webb, 2006).
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Figure 2.3. Mean Reynolds number of some larval and adult fish taxa in water at 10°C showing

relative influence of viscous and inertial forces. Dynamic viscosity (N s/m2 x 10-3) of seawater

from McGowan, 1999; approximate transition value from Nachtigall, 2001. Fish speed and

length data from (alphabetically) Block et al., 1992; Carey, 1982; Carey & Clark, 1995; Carey et

al., 1990; Carlson et al., 1999; Domenici, 2010 (and references therein); Froese & Pauly, 2014;

Gazzola, 2014 (and references therein); Goldman & Anderson, 1999; Graham et al., 1990;

Gunn et al., 1999; Jones, 1973; Huish & Benedict, 1977; Johnson et al. 2009; Klimley et al.,

2002; Lowe et al., 1998; McKibben & Nelson, 1986; Medved, 1983; Nakamura et al., 2010;

Nelson et al., 1997; Priede, 1984; Sambilay Jr., 1990; Semmens et al., 2013; Sims, 2000;

Sundstrom et al., 2001; Tricas, 1981. Fish images from Leis & Carson-Ewart, 2000; Nelson,

2006; and Froese & Pauly, 2014.

b) Distribution of mass and buoyancy

Buoyancy is the weight of water the animal displaces, and when deducted from the animal’s

weight gives an apparent weight. In pelagic fishes this apparent weight is near zero with
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neutral buoyancy, and the distribution of volume determines the centre of buoyancy (Blake,

1983; Videler; 1993). If the centre of mass is not in the same position along the body as the

centre of buoyancy, the animal must correct for the resulting rotation. To do this the fish may

have a gas bladder, a large, low density liver (as in sharks), or use its fins (section 2.3.3) or

other lifting surfaces (section 2.3.2) to equalise horizontal and vertical forces (Videler, 1993).

Negative buoyancy improves stability, and while more energy is required to swim and

overcome gravity, there is clearly a benefit to those benthic fishes facing strong currents

(Webb, 2006). Many Palaeozoic fishes are presumed to have been negatively buoyant because

of their heavy armour (Moy-Thomas & Miles, 1971). A trend for this armour to be lost may be

related to the migration of many fishes in to the pelagic realm during the Devonian (Lauder &

Liem, 1983; Klug et al., 2010).

c) Streamlining and body profile

Streamlining is a fundamental way to decrease form drag as it optimises pressure gradients

which develop across the body. Many fishes are dorso-ventrally or laterally compressed (e.g.

flatfishes, lookdowns respectively), or long and torpedo-like (e.g. barracuda) to minimise their

impact against the fluid as they move. Body shape should act to maintain a favourable

pressure gradient and – ideally - laminar flow, with the widest part of the body in the centre

(Blake, 1963). In some of the fastest-moving fishes, protrusions from the body surface can be

tucked into fairings that maintain the streamlined shape, where even the eyes do not protrude

(Helfman et al., 2009).

While lift is usually actively achieved with specialised surfaces such as the pectoral and caudal

fins (section 2.3.3), the gross morphology sometimes plays a role. The bodies of animals such

as sturgeon, many sharks and sea turtles resemble a typical wing profile (Figure 4). In these

cases, the body as whole can act as a lifting surface, counteracting negative buoyancy by

creating low pressure on the upper surface, and deflecting fluid downwards (Aleyev, 1977).

This is often coupled antagonistically with an asymmetrical tail which can stabilise the pitch of

forward movement (section 2.3.3.).

A diverse suite of adaptations for drag-reduction have evolved in fishes, and can be

categorised broadly as either passive (reliant on morphology), or active mechanisms (reliant on

behavioural actions), discussed next.
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Figure 2.4. Sagittal sections of aquatic animals with wing profile body shapes. a) the Palaeozoic

jawless fish Cephalaspis b) the modern sturgeon Acipenser ; c) the modern hound shark Triakis

; d) modern green sea turtle Chelonia mydas. Modified from Aleyev, 1977.

2.3.2. Passive mechanisms of drag reduction

a) Collagen

In the skin of sharks and other fishes there are highly ordered collagen fibre bundles spiralling

about the axis of the animal in both directions, forming a tight mesh. Collagen itself is

relatively inelastic, but as part of a lattice can stretch in the direction which bisects the angle of

intersection. In sharks this angle can be anything from 40-90 degrees in different regions of the

body and acts to maintain a tight external surface during flexure (Motta, 1977; Meyer &

Seegers, 2012). This prevents folding of the skin (Motta, 1977; Wainwright, 1978; Long et al.,

1996; Lindgren, 2011), which would increase form drag, and reduces the energy required to

restore body shape after a thrust swing, in essence acting as an external tendon. In the caudal
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fin of the white shark (Carcharadon carcharias), this mesh accounts for 50% of the dorsal lobe

stiffness, despite making up only 6% of its thickness (Lingham-Soliar, 2005). In terrestrial

animals the collagen fibres are normally much less strictly organised, and folding is allowed to

occur (Kardong, 2008). In air, folding has a much smaller effect on drag, and can infer benefits

such as greater freedom of movement, and a greater surface area for thermoregulatory

purposes (e.g. Lillywhite & Stein, 1987). Skin folds appear during very fast movement in

dolphins, and other aquatic mammals, and for a time was thought to be a passive control on

turbulent flow although a convincing mechanism was never provided (Aleyev, 1977; Fish,

2006).

b) Mucus and polymer additives

The epithelium produces mucus from specialised goblet cells at or near the surface of the skin

with functions including hormone-release, protection against pathogens (mainly due to its

rapid turnover), an osmotic barrier, and drag-reduction (Shephard, 1994). The thick layer of

stiff mucus found on exposed skin of modern bramble sharks also serves as general mechanical

protection, and is found convergently in bottom-dwelling rays and skates (Reif, 1985).

From a hydrodynamic perspective, a general smoothing effect has been suggested, with the

mucus effectively filling irregularities in the scale surface (Aleyev, 1977), but there appears to

be a more complex mechanism involved. Long-chain polymers found in fish mucus, even in

small quantities can reduce drag significantly (Toms, 1949; Berman, 1978; Yang, 2009).

Experiments show that mucus dissolved in water can increase the Reynolds number at which

transition between laminar and turbulent flow occurs, firstly maintaining laminar flow and

then acting to prevent full separation. Mucus is perhaps the most important feature of the

integument because it can make the greatest contribution to drag reduction (Hoyt, 1975). For

example, it has been shown using turbulent flow rheometry (a method for measuring the flow

of matter under applied force) that the Pacific Barracuda can reduce drag by 66% through

dissolution of mucus (Rosen & Cornford, 1971). The in situ drag-reducing effect has also been

shown experimentally by comparing real and wax models of trout (Daniel, 1981). Teleost fishes

very often have smooth, round, cycloid scales on their head, but ctenoid scales with spine-like

projections posterior of the widest point of the body. These comb-like structures bordering the

posterior margin of the scale could be maximising the surface area for mucus dissemination,

helping to reduce turbulent drag (Bushnell & Moore, 1991). While we can speculate that

extinct fishes reduced drag with mucus, the fossil record rarely preserves integumentary

structure. More fundamentally, it is difficult to account for mucus properties, its rate of
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production, thickness, or the fish’s behaviour. Dermal denticles have no epithelium overlying

the crowns, but lie embedded in the skin with their outer surface in direct contact with water

flow. As such, mucus production is restricted to small areas below the crowns, between the

scale bases. Modern sharks possess mucus glands, but the production rate, properties and

function of the mucus is very poorly understood for most species. The most explicit mention of

hydrodynamic function of shark mucus is in the context of olfaction, in which the authors

assumed a negligible influence on fluid flow (Rygg et al., 2013).

c) Heat exchange

Aquatic mammals and some fishes (e.g. tuna) are warm-blooded and it has been suggested

that by heating the surrounding fluid, these animals can reduce its viscosity (Fish, 1998). In

tuna, friction drag could hypothetically be reduced by 14%, but this could only be achieved

with unrealistically prolonged contact with the water (Webb, 1975; Fish and Hui, 1991), rather

than the estimated 0.1 seconds (Walters, 1962). For this reason it is unlikely that heat

exchange is a major contributor to drag reduction; it is mentioned here as one of several soft

tissue adaptations that cannot be accounted for in fossil taxa.

d) Laminarisation

Laminarisation is the promotion of well-ordered laminar flow, and in terms of drag-reduction is

the ideal way to minimise pressure drag. However, this is only the case where the boundary

layer is attached (Figure 2.5), and in adverse pressure gradients (pressure drops downstream),

detachment is more likely to occur (Webb, 1975), resulting in high pressure drag, and the

highest relative total drag (Figure 2.5). In a favourable pressure gradient, skin friction is the

largest contributor to total drag, but streamlined bodies rarely preserve laminar flow beyond

the widest point of the body. The Reynolds number, a measure of the relative influence of

inertial and viscous forces means very small planktonic organisms (and some juvenile nektonic

organisms), or slow-moving animals encounter only laminar conditions. This work will be

addressing drag-reduction by fishes which are fast and large enough to chiefly encounter (and

have adapted to) inertial fluid forces and turbulent flow. Reversion of an attached flow from

the turbulent to laminar regime occurs naturally if a favourable pressure gradient (low to high

downstream) is encountered. However, early workers postulated that riblets (the linear

streamwise valleys ornamenting the surface of shark scales), and the teeth-like structures of

ctenoid scales (ctenii) act to physically ‘comb’ fluid, and re-laminarise turbulent flow via
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physical baffling. The mechanism of riblet drag-reduction is now better understood (and

discussed later), and their action is more complex than simple vortex diffusion (see 3.2.2).

Although very little has been written about the function of ctenii, laminarisation is unlikely as

the structures do not extend beyond the laminar sublayer (section 2.1) and therefore do not

interact with the turbulent flow (Bushnell & Moore, 1991).

Figure 2.5. Relative total drag, and drag composition for different boundary-layer flow

conditions over a streamlined object. Redrawn from Webb, 1975.

e) Turbulisors

The typical streamlined fish shape consists of two regions; the contractor and the diffuser. The

contractor extends from the anterior tip of the body to the point of maximum cross-sectional

area, and the diffuser from this point to the rear. Typically, when water passes over the

contractor region of a fish (from the anterior leading edge to the widest point of the body)

laminar flow is maintained as dynamic pressure is high, pushing the fluid against the surface,

minimising drag (Fish, 1998). However, in the diffuser region (the narrowing area towards the

tail), dynamic pressure decreases and flow rotation and reversal (boundary layer separation or
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‘stall’) is prone to occur (Aleyev 1977; Batchelor 1977). Turbulisors (which can include surface

roughness, fins and gill efflux) help trigger the transition from laminar to turbulent flow by

seeding vortices and disrupting the smooth and ordered movement of fluid molecules. This

means streamwise but ‘messier’ flow transfers some fluid momentum back towards the

surface, meaning the boundary layer remains attached for longer.

Figure 2.6. Boundary layer development and separation across a fish-like form, showing the

hypothesised effect of a turbulisor on flow regime and wake formation.

To delay boundary layer separation (and in some cases maximise the area of lift) many species

use turbulisors at the widest point of their body to induce turbulent flow. In fishes where the

contractor is coated with larger and smoother scales, there tend to be rougher scales in the

diffuser region. In sharks too, the scales are often relatively smoother on the head (Reif, 1985).

Moreover the distribution of pressure across the surface in motion appears to be positively

influenced by the presence of scales, affecting thrust as well as overall drag reduction although

the mechanism is unknown (Oeffner and Lauder, 2012).

Ctenii are the small comb-like projections found on the posterior edge of ctenoid scales in

teleosts and a limited number of other groups (e.g. Polyodontidae) (Grande et al., 2002). There

is strong evidence that their role is hydrodynamic, as they occur only after the widest point on

the body where turbulent transition is likely (Figure 2.7). Ctenoid scales have been interpreted

as ‘combing’ the turbulent flow to a more stable regime (Aleyev, 1977). Ctenii would actually
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increase turbulence if they were large enough, but are considered subroughness within the

laminar sublayer, having little effect on friction drag. It is more likely that their presence

increases the surface area from which mucus can dissolve into the fluid stream (Bushnell &

Moore, 1991; section 2.3.2.).

Figure 2.7. Regions of the fish skin surface covered by cycloid (red) and ctenoid (blue) scales

and the general boundary between these zones (solid line, c), and the border between

contractor and diffuser zones (dashed line, d). A) Pomadasis guoraca (Indian grunter); b)

Diplodus annularis (annular seabream); c) Mullus barbatus pomticus (Black Sea red mullet); d)

Liza auratus (golden grey mullet); e) Mugil cepahlus (flathead mullet). Modified from Aleyev,

1977 (after Burdak, 1968).

The hydrodynamic function of ctenoid scales is supported further when assessing the

ontogenetic development of this scale type. Young and small Mugil saliens (modern leaping

mullet fish) develop cycloid scales over the entire body, but after the animal is large enough to

experience larger Reynolds numbers (Figure 2.3, section 2.3.1) and – crucially - transition these

are replaced by ctenoid scales (Videler, 1993; Figure 2.7). Ctenoid scales mostly grow behind

the gills, with some cteniod scales also growing to control highly turbulent flow exiting the gills

(Videler, 1993). They begin to form on the flanks, where transverse folds are more likely to

form during swimming (Aleyev 1977; Sire, 2004). Skin flexure is an important function (Ganguly
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& Mookerjee, 1947) as skin folds have the potential to increase drag considerably; it is a

convergence of all nektonic organisms to maintain a tight, collagen-rich skin (Aleyev, 1977;

Lindgren et al., 2007; 2011; Lingham-Soliar & Plodowski, 2007; Smith & Buchy, 2008).

Lastly, the tubercles on the rostrum (sword) of fishes such as Istiophorus (sailfish) may act as a

turbulisor, with the surface of the sword propagating a turbulent boundary layer which is

already thick by the time it reaches the main portion of the head (Aleyev, 1977; Videler, 1995).

f) Compliant surfaces

A compliant surface refers to an elastically responsive wall surface texture that can respond to

external fluctuations in pressure. A compliant coat can reduce the intensity of downstream

perturbations by up to 19%, lowering total drag by up to 7% (Choi et al., 1997). In order to

work, the surface roughness must remain small enough so as not to extend up above the

viscous sublayer (see section 2.1). The material properties must also be such that the coat

responds at the right frequency to the turbulent fluctuations. Faster moving fluid subjecting a

wall to higher frequency (and potentially higher energy) perturbations requires stiffer material

properties to minimise the deformation-driven roughness which would otherwise increase

drag (Choi et al., 1997). It is also possible to delay the transition from laminar to turbulent flow

by fine-tuning compliant coatings to changing Reynolds number (principally velocity) across

the wall (Carpenter et al., 2000). The rib-like structures on some scale surfaces are

hypothesised to support and improve adherence to this layer of soft tissue (Burdak, 1972), but

there have been no experimental attempts to demonstrate the hydrodynamic advantage in

fishes. As a soft-tissue surface structure, the material properties of compliant surfaces cannot

be accounted for in fossil material, however evidence for this passive mechanism of drag-

reduction is considered next.

A related phenomenon investigated by many biomechanicians was skin compliance and

folding, known to occur during swimming, particularly in dolphins. The calculated drag of a

dolphin based on solid models, observed speeds and estimations of muscle output (Gray,

1936) appeared to show that dolphins were swimming faster than they ought to be, and

‘Gray’s Paradox’ emerged. The most debated potential solution to this problem is that low

friction drag could be achieved by maintaining laminar flow across the body (Kramer, 1960;

1961). Mechanisms for this include skin folding whereby vortices are shifted downstream

(Sokolov et al., 1969; Aleyev, 1977; Nagamine et al., 2004), changing fluid properties in the

boundary layer through elevated body temperature (Lang & Daybell, 1963; Fish & Hui, 1991,),
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skin sloughing and eye secretions (Sokolov et al., 1969; Uskova et al., 1983 [in Russian,

referenced in Fish & Lauder, 2006]), and even microvibrations (Ridgway & Carder, 1993).

Recent studies have begun to reinvigorate ideas that dolphin skin acts as a compliant damping

complex (e.g. Pavlov, 2006), but the historical need to explain Gray’s paradox has complicated

the field enormously.

Gray’s paradox is now known to be flawed, with unrealistic estimations of muscle power (Fish

& Lauder, 2006; Askew & Marsh, 1997), and the observed dolphins may have enhanced their

swimming using the ship’s wake (Lang, 1966; Williams et al., 1992; Weihs, 2004; Fish & Lauder,

2006; Noren, 2008). It is now known that dolphins can swim in short rapid bursts while

maintaining fully attached turbulent flow (the preferred scenario over boundary layer

separation, Figure 2.5). This is supported by experiments which added extra turbulisors to a

gliding dolphin model, which did not affect drag (Lang & Daybell, 1963).

g) Riblets

To limit the drag produced by attached turbulent flow, which is much lower than any

separated flow (Fish, 1998) many fast-moving sharks have placoid scales with pronounced

parallel riblets. These streamwise ridges limit lateral transfer of momentum (Figure 2.8),

training the vortices in the direction of flow (Garcia-Mayoral & Jiménez, 2011; Oeffner &

Lauder, 2012). The vortices that form are also held away from the wall by the riblet tips,

reducing drag by up to 10% (Bechert et al., 1997). Experimental analyses of riblet optimisation

have shown that more narrowly-spaced riblets reduce drag more efficiently at higher speeds

(Dean & Bhushan, 2010). This is reflected in sharks, with riblet spacing from 40-80µm in the

fastest species, and wider in slower sharks (Reif 1985a, Chapter 5).
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Figure 2.8. Vertical cross sections of turbulent-flow (velocity = 3 m s-1) of streamwise vortices

over a) a flat plate, and; b) riblets. Mean velocity profiles for flow in cross-flow directions

shown enlarged for riblets. Adapted from Bechert et al., 1997; and Lee & Lee, 2001.

h) Converging and diverging riblets

Early experimental evidence suggested that drag-reduction is reduced if parallel riblets are

misaligned from the streamwise direction by >15°, with no benefit >30° (Walsh & Lindemann,

1984). However, the riblets of denticles have long been thought to also redirect flow across

the body surface (Reif, 1978). Of particular interest has been redirection at a small scale,

towards openings such as the nostrils and pit organs, and away from the eyes and lateral line

pore openings (Reif, 1978, 1982, 1985; Cigala-Fulgosi & Gandolfi, 1983; Raschi & Tabit, 1993;

McKenzie et al., 2014). Recent studies on the physics of converging and diverging riblets

suggest a more complicated process than simple redirection. Diverging riblets decrease

turbulent disturbances and velocity fluctuations, which would help reduce ‘noise’ at the ear-

like lateral line organs downstream. Equally, the requirement for turbulence in olfaction is met

by converging riblets, which act to increase these fluctuations and hence mixing (Koeltzsch et

al., 2002; Nugroho et al., 2013). Convergent riblets around pit organs are more difficult to

explain, and as a result their function is not fully understood (Peach & Marshall, 2000), but

similar fluid movement is predicted. Larger-scale hydrodynamic studies on riblet angle have

concentrated on the direction of the whole scale, assuming the riblets were parallel to flow,
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but this is not always the case. The v-shaped central keel of some shark pectoral fin scales has

been interpreted as a vortex generator; turbulisors whose function is to maintain boundary

layer attachment (Bechert et al., 1985). Despite this early work, very little additional research

has been conducted, and the present study is the first to map riblet angle distribution across

the entire body of a shark.

i) Bristling

In some of the fastest sharks the bases of the scales have a high aspect ratio (wide and short in

the streamwise direction) to facilitate pivoting away from the body (Pershin et al., 1976 [in

Bushnell & Moore, 1991; Bechert et al., 1986). When flow begins to rotate or reverse, the

scales are erected (by up to 50° in mako sharks) and prevent backflow, and even contribute to

thrust (Motta et al., 2012). The erect crowns also cause small, embedded vortices to form

between the scales, and streamwise flow is able to skip over the gaps (Lang et al., 2008). This

‘bristling’ action is most pronounced on the flank region where separation is most likely, but

this has been studied in a small number of taxa.

Figure 2.9. Mechanism of drag-reduction by bristling scales. Placoid scales in; a) resting

position in attached boundary layer; and b) erect position in detached recirculating flow.
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j) Passive streamwise injection and dynamic dampening

In the ribbonfish Desmodema, the negative pressure gradient experienced across most of the

body’s posterior could be reduced with subdermal canals (Walters, 1963), known to achieve

laminar flow by redistributing fluid between high and low pressure regions (Fish, 1999). It has

been suggested that streaks of low and high pressure which form across the surface could also

be controlled by exchanging fluid with the reservoir beneath scale crowns (Bechert et al.,

1986; Figure 2.10). The riblets of shark scales form gutters where the crown of one scale

overlies the riblets of another. If a region of low pressure formed above these gutters, fluid

would be injected passively to counteract it. In experimental studies porous surfaces increase

drag (although see Nagamatsu et al., 1984), where injection is perpendicular to the surface

(Kong & Schetz, 1983; Wilkinson, 1983). However, the orientation of shark scale gutters would

cause injection to occur in the streamwise direction, an arrangement which has yet to be

tested. Denticles of the fastest pelagic sharks often have very thin neck regions, which may

accommodate a larger reservoir of fluid for this purpose.

Figure 2.10. Proposed mechanism of drag-reduction by streamwise injection. A) Diagram of

vortices formed across a scaled plate with patterns of fluid suction and ejection (white

arrows); b) lateral section view, and; c) transverse section view. Mean flow direction indicated

by black arrow. Based on Bechert et al., 1986.
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k) Passive vortex manipulation

The slow-moving boxfishes (Ostraciidae) are encased in a carapace of sutured dermal bone,

known to function in defence (Walker, 2000). Despite the rigidity of their box-like body, these

fish are capable of high manoeuvrability and can achieve high drag reduction (Bartol et al.,

2003; 2005; 2008; Van Wassenbergh et al., 2015). This is a passive process whereby the

animal’s uniquely shaped body propagates vortices across the surface. These vortices form as

needed to stabilise the fish’s body, but also accelerate fluid they entrain helping to improve

velocity and reduce drag (Bartol et al., 2002).

Another example of passive vortex manipulation can be found in the humpback whale flipper

(and possibly the extinct Protospyraena), which is lined at its anterior leading edge with large

rounded tubercles (Fish & Battle, 1995). These tubercles delay boundary layer separation by

generating vortices in the troughs and reducing the adverse pressure gradient downstream

(Miklosovic et al., 2004). By keeping the boundary layer attached for longer more lift can be

achieved (Bushnell & Moore, 1991), even at the high angles of attack the flippers face during

the whale’s complex feeding behaviour. For example at 10˚ angle of attack the tubercles 

increased the lift to drag ratio by 17.6% (Watts & Fish, 2001). In modern sharks, tubercles

which form the scalloped hydrofoil of hammerhead sharks may be acting in much the same

way (Bushnell & Moore, 1991). Hammerheads are known to turn at tighter angles more

frequently than other genera, with little roll and at higher speeds (Nakaya, 1995; Kajiura et al.,

2003), however the hydrodynamic roles of tubercles in this group have yet to be studied in

detail.

Passive vortex manipulation is rare in both modern and extinct taxa, but actively controlling

flow is a very common method of stabilisation control and thrust production, discussed next.

2.3.3. Active control of flow

Active flow control involves physical exertion by the animal, to either reduce drag, produce

thrust, or both. Behavioural and physiological adaptations will be discussed first, followed by

those typically associated with thrust production. Fishes use a well-tuned combination of these

passive and active adaptations to suit their lifestyle and while behaviour and soft tissue can

rarely be preserved in the fossil record, it is important to review and discuss all adaptations for

drag-reduction.
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a) Cooperative drag-reduction/ drafting

Moving in formation is a well-known phenomenon associated with drag-reduction in

numerous species, including dolphins (e.g. Weihs, 2004; section 2.3.2), whales (Richardson et

al., 1985; Fish et al., 2013), fishes (Weihs, 1973; Partridge et al., 1983) lobsters (Bill &

Herrnkind, 1976), and even ducklings (Fish, 1994; 1995). Known as drafting, this behaviour is

thought to reduce drag by using the vortices produced by a leading animal’s locomotion. The

velocity of fluid encountered by those directly behind or diagonally behind the leader

(depending on the vortex pattern) can be significantly lower and therefore reduces the energy

required to swim through it (Fish, 1999). Though this could be classified as a passive method of

drag reduction, it does require constant repositioning of the follower to optimise the effect,

which in fishes could help reduce energetic exertion by 4-6 times (Weihs, 1974; Fish, 1999).

b) Breaching

Breaching, also known as ‘porpoising’ (Bushnell & Moore, 1991) is the action of leaping out of

the water to minimise drag. Air is a much thinner fluid and presents much less resistance than

the relatively viscous medium of water. For air-breathers this is particularly advantageous, as

the costly hydrodynamic requirement to breathe can be offset by the locomotary energy saved

in air (Hui, 1987; 1989; Fish, 1993). Many animals swim with a ballistic trajectory to maximise

airborne distance (Fish, 1999), but some such as flying fishes have enlarged pectorals as lifting

surfaces which can extend this distance substantially (Au & Weihs, 1980; Hui, 1987; Azuma,

1992; Fish, 1990).

Those animals moving at or just under the water surface experience much greater drag

because of wave formation (Webb et al., 1991; Videler, 1993). However, trapping air under fur

or feathers is one adaptation which may help offset this energetic expense, and has been

suggested as an additional benefit of breaching (Azuma, 1992).

c) Mass transfer and boundary layer acceleration

Scombrid fishes swim with their mouths open to ram ventilate their gills, and this can keep

flow laminar for 13-100% longer over the body (Aleyev, 1977). However, many fishes may also

maintain an attached boundary layer by ‘blowing’ fluid from their gills (positioned at or near
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the widest point of the body [Figure 2.7]) downstream (Walters, 1962; Webb, 1975), By

introducing extra momentum in the downstream direction along the wall, the boundary layer

becomes thinner and less likely to detach, counteracting retarding flow and reducing drag

(Bushnell & Moore, 1991; Lighthill, 1969; Fish, 1999).

d) Caudal fin morphology

As the primary producer of thrust, the tail is a hugely important aspect of fish locomotion, and

has been discussed in the context of counteracting negative buoyancy (e.g. Grove & Newell,

1936; Harris, 1936; Affleck, 1950; Alexander, 1965; Hopson, 1974; Belles-Isles, 1987; section

2.3.1.). Given the movement of the tail during swimming, decoupling active and passive flow

control is difficult to justify, and studies using static models are of limited value (Bunker &

Machin, 1991). Recent studies of the hydrodynamics of the epicercal tail of modern sharks e.g.

(Ferry & Lauder, 1996; Liao & Lauder, 2000; Wilga & Lauder, 2002) are of more use, as they

constrain the possible behaviours with a given morphology. An asymmetrical (heterocercal)

tail allows forward propulsion, but the greater relative flexibility of the upper lobe (hypocercal)

or lower lobe (epicercal), generates forces (downward or upward respectively) in the vertical

plane. Many early fishes likely had hypocercal tails (e.g. myllokunmigiids, hagfishes, lampreys,

euconodonts, anaspids, galeaspids and most thelodonts [section 2.5]), or epicercal tails (e.g.

pituriaspids, ‘acanthodians’, placoderms, chondrichthyans, osteichthyans, [Pradel et al.,

2007]).

In stabilising pitch, a lobed and asymmetrical caudal fin usually corresponds to a transversely

asymmetrical body shape, with a more rounded surface on the side of the longer lobe. This is

possibly because the wake created by the rounded surface is higher above the skin surface and

the caudal fin must extend out of the vortex zone (Aleyev, 1977). Much like a hydrofoil, the

curved surface (for example on the upper side of a sturgeon) can reduce flow velocity relative

to the flatter side, creating a pressure differential and directing flow capable of producing lift

(section 2.3.1).

The tail can also indicate the likely swimming speed of the fish, because boundary layer

separation at higher speeds occurs in the middle portion of the tail. In most cases, slow-

swimming fishes have rounded unlobed tails, which give the fish a larger surface area for

membrane stability, but perform weakly at high cruising speeds when vortices form across the

surface. The solution for faster (and sustained) movement is to discard this central portion,

and indeed some of the fastest fishes (e.g. Scombridae, Xiphiidae, Istiophoridae) have very



27

concave caudal fins with narrow lobes that avoid the vortex zone (Lauder, 2000). The peduncle

(immediately anterior to the caudal fin) tends to be narrow (and sometimes keeled) in these

fishes, as propulsion is generated primarily from undulations of the caudal fin. Deeply concave

tails are not suited to rapid acceleration and sharp direction changes, so there exists a

functional spectrum (Aleyev, 1977; Webb, 1977). While there are studies that have sought to

quantify this ecomorphological correlation in modern fishes e.g. (Azuma, 1992; Motta et al.,

1995; Pulcini et al., 2008), fossil taxa have not received the same treatment (but see Friedman,

2010).

e) Dorsal fin morphology

The principal functions of the dorsal fin (and possibly the dorsal finlets) are to prevent roll and

to enlarge the surface area giving stability during quick turns (Blake, 1983). The dorsal fin is

positioned posteriorly in fishes with a pike-like (sagittiform) morphology that are capable of

short bursts of rapid acceleration, with relatively little manoeuvring as they dart forwards

(Videler, 1993). Fishes that require manoeuvrability during rapid and sustained swimming have

their dorsal fins further forwards where they may be actively erected at critical moments and

then repositioned flush to the body surface (section 2.4.1). Alternatively, the dorsal fin acts for

defence in extant species with spines (e.g. many catfishes, Squalas acanthias, Heterodontus

portusjacksoni); which was presumably the function in extinct spinose species such as

‘acanthodians’ and hybodont sharks.

f) Paired fins

In fishes with an epicercal tail, like most sharks, the pectoral fins act to counteract the pitch of

posteriorly-produced lifting forces and are consequently fairly immobile (Videler, 1993). Acting

in much the same way, the pectoral fins of primitive Triassic teleosts are abdominal and

orientated horizontally to stabilize trajectory and to a lesser degree brake. In later teleosts the

pectorals are more dorsal and hinge vertically, playing a more active role in propulsion e.g.

Diodon. Pectoral fins can act as hydrofoils and produce lift, e.g. Acipenser (sturgeon) and

Prionace (blue shark), but their overall importance has been questioned [Wilga & Lauder,

2004]), whereas in faster swimming fishes they are more pointed (Wainwright et al., 2002),

acting as stabilisers. The Triassic Potanichthys and Thoracopterus are exceptional cases,

resembling modern (and unrelated) flying fishes, its enlarged pectoral fins were probably used

to glide above the water surface (Tintoria & Sassi, 1992; Xu et al., 2012). Pelvic fins are thought
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to be the least important for stabilisation, which may underlie their secondary loss in several

lineages including sticklebacks, true eels and seahorses (e.g. Brown et al., 2011).

2.4. Ecomorphology

2.4.1. Patterns in gross morphology

Throughout the evolution of fishes there have been repeated convergences on strikingly

similar body types (e.g. Belles-Isles, 1992; Friedman, 2010; Kocher et al., 1993; and Figure

2.11]). Mako sharks and tuna, are both fast pelagic predators and have convergent external

morphology, but their internal mechanical design is strikingly similar as well, despite 400

million years of phylogenetic separation (Donley et al., 2004). Many factors influence

morphology but all relate to movement and hydrodynamics, and schemes which classify

swimming morphotypes (e.g. Webb, 1984) are powerful tools for reconstructing the

palaeobiology of extinct species, regardless of phylogenetic association.

a) Rapid acceleration

Elongate arrow-like fishes (Figure 2.11 a-c) like pike, barracuda and others, have a dorsal and

anal fin positioned posteriorly, to assist the tail in bursts of rapid acceleration, but they are

relatively inefficient at steady swimming (Webb, 1988). The Triassic fish Saurichthys is

superficially similar to modern needlefish (Belone belone), which has served as an analogue for

a computational fluid dynamical study, highlighting the effectiveness of this dart-like

morphology (Kogan et al., 2011).

b) High manoeuvrability

Lateral compression and deepening of the body (Figure 2.11 d-j) are often associated with high

flexibility (difficult to infer in fossil taxa) in fishes such as the Pomacanthidae (angelfishes) and

Chaetodontidae (butterflyfishes) acanthomorphs (Figure 2.11j). This allows greater

manoeuvrability, with a reduced ‘turning circle’ (Videler, 1993), as the sides of the fish offer a

large surface area for braking and rapid changes in direction. Examples in the fossil record

include pycnodonts (Poyata-Ariza, 2005), the acanthomorphs Aipichthys and Pycnosteroides,

the osteichthyans Ebenaqua and Cleithrolepis, and the thelodont Furcacauda.
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c) Active demersal

Fish inhabiting complex demersal environments (Figure 2.11 k-l) tend to have elongate bodies,

tapering backwards e.g. moray eel (Muraena helena), and lungfishes. Such is the focus on low-

speed manoeuvrability that the pectoral fins may become the primary thrust generators, and

become more robust to negotiate spatially challenging habitats. Conversely, species that

propel themselves with anguilliform (eel-like) swimming may show a reduction or even

complete loss of the pectoral fins (Belles-Isles, 1992).

d) Sustained swimming

There is always a trade-off between manoeuvrability, energetic efficiency and speed (see

‘Generalists’ Figure 2.11p-v), and cruisers prioritise sustained high-speed swimming. These

fishes (e.g. tunas and their relatives) have a higher aspect ratio and a more hydrodynamically

optimal torpedo-like body, but also larger heads to prevent recoil energy being lost as they

beat their lunate caudal fins (Belles-Isles, 1992).

e) Dorsoventral compression and the ground effect

Boundary layers form against all walls interacting with a flow, including riverbeds and

seafloors, and there is a thin layer of lower velocity water at the interface (the laminar

sublayer). By exploiting this layer, dorsoventrally compressed benthic fishes expend less

energy maintaining their position at rest. Flatfishes in particular can withstand significant

water velocities before being dislodged (Arnold & Weihs, 1977; Videler, 1993), and secondary

migration of the eyes to accommodate this strategy can be tracked in their evolution

(Friedman, 2008).

Similar flattening is seen in the Early Devonian placoderm Gemuendina stuertzi, the agnathan

Drepanaspis, and the thelodont Turinia pagei, which has been compared with the extant angel

sharks (Squatina sp.) in form and lifestyle (Turner, 1992). In addition to being flattened, some

extant fishes are small enough to move in the boundary layer of fast-flowing rivers (e.g.

Etheostoma tetrazonum), where their morphology can be surprisingly independent of

hydrodynamic influences (Carlson & Lauder, 2011).
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Figure 2.11. Examples of hypothesised swimming morphotypes of extinct and extant fishes. a)

Saurichthys (Triassic); b) Aspidorhynchus (mid-Jurassic – Late Cretaceous); c) Belone belone

(extant garfish); d) Dorypterus (Permian); e) Proscinetes (Jurassic); f) Stromateus fiatola (extant

pomfret); g) Trachinotus falcatus (extant permit); h) Bobasatrania (Triassic); i) Cheirodus

(Carboniferous); j) Chaetodon (extant butterflyfish); k) Tarrasius (Carboniferous); l) Clinoporus

biporosus (extant ladder klipfish); m) Rebellatrix divaricerca (Early Triassic); n) Hypsocormus

(mid-late Jurassic); o) Scomber scombrus (extant Atlantic mackerel); p) Parasemionotus (Early

Triassic); q) Mesolepis (Carboniferous); r) Oncorhynchus mykiss (extant rainbow trout); s)

Carpiodes cyprinus (extant quillback); t) Perleidus (Early – Middle Triassic); u) Paracentrophorus

(Early Triassic); v) Serranus hepatus (extant brown comber). After Helfman et al., 2009;

Wendruff & Wilson, 2011; Belles-Isles, 1992; Webb, 1984; Kogan et al., 2011; Barbieri &

Martin, 1996; and Braun & Reif, 1982.
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2.5. Hydrodynamics in the Fossil Record of Vertebrates

This section synthesises existing knowledge of drag-reduction in Palaeozoic fishes (and other

relevant taxa), before briefly discussing long-term hydrodynamic trends in their early

evolution. Fish scales are discussed separately in section 2.6.

2.5.1. Agnathans

a) The first ‘fishes’

Locomotion is an advantage to almost every aspect of a pelagic species’ survival, whether it be

finding a mate or habitat, feeding, or avoiding being predated. In a competitive ecosystem it

pays to be able to exploit opportunities in the water column, and this is no less true for fossil

organisms than in modern communities. Tracking the early evolution of swimming proper is

difficult to constrain in fishes, partially because of the subjective classification of what makes a

‘fish’ (Figure 2.12a-b). The larval stages of tunicates (sea squirts) for example are equipped

with muscular tails, resembling some of the early Cambrian fishes of China, and with a fossil

record that is possibly much older, perhaps even Ediacaran (Vickers-Rich, 2007). Some of the

earliest ‘fishes’ including Myllokunmingia and Haikouichthys (Shu et al., 1999; 2003) of the

early Cambrian of China, have dorsal fins and muscular tails (Zhang & Hou, 2004). Regardless

of affinity Haikouichthys (Figure 2.12c) and its less commonly-preserved relatives have a clear

head and tail region, and as such are presumed to have been capable swimmers. The extant

lancelet is known to use cilia to swim after hatching, with muscle flexure and undulatory

swimming gradually taking over and becoming more complex as the animal gets larger and

faster (Stokes, 1997). This ontogenetic progression to full swimming is shared by other

vertebrates (e.g. Kimmel, 1993) and may offer a parallel to the earliest stages of the evolution

of undulatory swimming.

Early chordates lack control surfaces such as pectoral fins, so it is presumed that the tail was

the primary thrust generator (Clark, 1964; Shadwick & Lauder, 2006; Pradel et al., 2007). Those

modern fishes (and aquatic tetrapods) with reduced pectoral fins have much lower locomotor

control and rely on high flexibility to direct force, as would likely the earliest fishes (Graham et

al., 1987; Deliagina, 1997; Shadwick & Lauder, 2006). The term ‘fish’ is usually defined as

vertebrates with a mineralised skeleton (cartilage or bone), thought important for defence,

and locomotary innovation through improved muscle attachment (Long, 2011). Bony
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fragments have been found as early as the late Cambrian (Young et al., 1996), including

possibly the oldest agnathan (jawless fishes) Anatolepis (Smith & Sansom, 1995), although

some argue that these are arthropod remains (Smith & Coates, 2001).

b) Euconodonts

Well-preserved euconodonts or ‘conodont animals’ (differentiating the organism from the

tooth-like oral elements) have revealed bodies which were superficially eel-like with elongate

muscular tails (Figure 2.13a), and that the ‘elements’ used for biostratigraphy are in fact teeth

(Briggs & Clarkson, 1983). The microstructure of these elements resembles dentine/enamel-

like tissue, which is unique to true vertebrates, and an important taxanomic character (e.g.

Murdock et al., 2014). However, there has been a great deal of debate over their exact

phylogenetic placement (Figure 2.13; Briggs, 1992; Blieck et al., 2010; Turner; 2010), and it has

even been suggested that conodonts are stem-gnathostomes (Donoghue, 2000). Their

hydrodynamics are seldom discussed, but some workers have suggested the muscle fibres of

Promissum (a late Ordovician conodont from South Africa) are too small for rapid bursts of

swimming (Gabbott et al., 1995).

c) Anaspida

The anaspids were fairly small and primitive fishes, found in Silurian and Devonian of the once

Euramerican continent (Long, 2011). An interesting development in anaspids including

Pharyngolepis and Cowielepis (Figure 2.13b) was their fin-like lateral projections which had an

internal skeleton and musculature. This was a distinct advantage for manoeuvrability as a

suprabenthic organism coping with turbulence higher in the water column (Coates, 2003).

Species from late Devonian Canadian deposits had a long row of gill arches (up to 30 pairs in

Euphanerops), and have been central to discussions of an anaspid relationship to lampreys

(Figure 2.12, and; Janvier et al., 2006).
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Figure 2.12. Recent phylogenetic hypothesis; a) of all ‘fishes’ and their relatives; b) and

timescale of the evolution of Palaeozoic ‘fishes’ and their relatives, including pituriaspids. c)

Reconstruction of the early Cambrian myllokunmingiid Haikouichthys ercaicunensis. Extinct

ƚĂǆĂ�ĂƌĞ�ƐǇŵďŽůŝƐĞĚ�ǁ ŝƚŚ�Ă�ĚĂŐŐĞƌ�;ΏͿ͕�ƋƵĞƐƟŽŶ�ŵĂƌŬƐ�ŝŶĚŝĐĂƚĞ�ƵŶĐĞƌƚĂŝŶ�ƉŚǇůŽŐĞŶĞƟĐ�

placement, and inverted commas denote possibly paraphyletic taxa. (continued overleaf)
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(continued) Details of analyses and taxonomic groupings are detailed in the original source

references; a) modified from Friedman & Sallan, 2012; b) redrawn from Janvier, 2015, and; c)

from Zhang & Hou, 2004. Scale bar is 5mm.

d) Pteraspidomorphi

Members of this group have been found in both marine and freshwater deposits from the late

Ordovician (Sansom et al., 2001) until the late Devonian. The earliest pteraspidomorphs were

small fishes with symmetrical (homocercal) tails and full body armour (e.g. Astraspis) which

probably fed by filter feeding. Arandaspids such as Sacambamaspis (Figure 13f.) and later

forms such as the heterostracans (‘different shelled’), had hypocercal tails (enlarged lower

lobe) and armour chiefly around the head (Pradel et al., 2007). This was sutured and grew

incrementally producing growth rings (Keating et al., 2015), providing defence. Freedom to

move the tail more, however crudely, would have allowed the animal to plough bottom

sediments, using the pharyngeal pouches to filter edible material, probably small prey animals

and detritus (Halstead, 1973; Purnell, 2002).

Slow-moving fishes with negative buoyancy often have asymmetric, epicercal caudal fins, used

in part to create vertical lifting forces. This may have been the case for the heavily armoured,

early Devonian pteraspid Errivaspis waynensis (Figure 2.13d.) although attempts to reconstruct

its hydrodynamics have focussed on the underside of the bony head shield as a simple lifting

surface (Kermack, 1943), raised in pitch by the downward force of the tail. On this premise,

workers have suggested that Errivaspis were both benthic, moving in short powered bursts

(Aleyev, 1977), and facultative pelagic planktivores (Belles-Isles, 1987).

As discussed, fishes can reduce drag passively by controlling vortices which form across the

body (section 2.3.2). Recent wind tunnel experiments have shown that the cephalic shield of

Errivaspis waynensis acts very much like a delta wing (Botella & Fariῆa, 2008), creating vortices 

roughly parallel to the leading edge. In essence, fluid flows over these vortices and is also

pulled in, accelerating as the vortex widens posteriorly and creates lower pressure. This would

have provided an important source of lift during swimming and produced stabilising vortices to

aid yaw control, just as in modern boxfishes (Bartol et al., 2002; 2003; 2005; 2008). Later forms

did develop stabilising lateral projections on the head (cornua) in parallel to a reduction in

armour, suggesting selection for mobility and manoeuvrability (Hildebrand and Goslow, 2001;

Benton, 2005).
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Figure 2.13. Reconstructions of representative agnathan Palaeozoic fish taxa; a) the conodont

animal, from Aldridge et al., 1993; b) the Silurian anaspid Cowielepis, from Blom, 2008; c) the

Devonian galeaspid Macrothyraspis, based on Wang et al. 2005 and; d) the early Devonian

heterostracan Errivaspis, from Mark-Kurik & Botella, 2009; e) the Devonian furcacaudiform

thelodont Cometicercas, from Wilson & Caldwell, 1998; f) the Ordovician arandaspid

Sacambamaspis, modified from Gagnier, 1993 [in Benton, & Harper, 2013] and Pradel et al.,

2007 and; g) the osteostracan Diademaspis, from Keating et al., 2012. Not to scale.

e) Thelodonti

Despite their biostratigraphic use, thelodonts have not received much palaeobiological

attention from researchers (although see Turner, 1992) partly because only a small proportion

of species are described from articulated remains (Wilson and Märss, 2009). Thelodonts have

lozenge-shaped scales made of dentine which would have surrounded a pulp cavity, much like

a tooth (Märss, et al., 2007). These scales were varied in shape across the body, but tended to

be larger and more elongate towards the tail (Long, 2011). Researchers have previously noted

the resemblance of thelodont scales to those of modern sharks (e.g. Märss et al., 2007;

Chernova & Vorob’eva, 2012) but this has never been explored in any systematic detail.

Many species were flattened, dorsally compressed benthic animals (Turner, 1982, Long, 2011).

However, some of the earliest examples of well-developed symmetrical tails are found in the
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furcacaudiform thelodonts (literally ‘fork-tailed’). Furcacauda (Figure 2.13e) was a deep-

bodied species which was laterally compressed, probably pelagic and highly manoeuvrable like

the modern butterflyfish (Figure 2.11j).

f) Galeaspida

Galeaspids (Silurian-Devonian) are an unusual fish group with a diverse range of head shield

morphologies (Zhu & Gai, 2007), considered forerunners to the jawed gnathostomes (Gai et

al., 2011). They are characterised by a lack of paired fins, and a large opening at the front of

the head shield which was a modified ‘nostril’ used for water intake. A detailed study of the

galeaspid Shuyu zhejiangensis has shown that this nostril intake leads to a nasopharyngeal

complex, which in hagfish leads to the pharynx (so they could smell the water as it flowed

through). The nasopharyngeal complex in lampreys, Shuyu (and supposedly other

osteostracans) and jawed vertebrates is a dead-end pouch, referred to as a nasohypophyseal

organ (Gai et al., 2011). It is a complex feature, but is worth mentioning here as it is an

important step which accommodated the development of jaws. The Devonian galeaspid

Rhegmaspis and others have an elongate rostrum and streamlined head shield, interpreted as

reducing drag and improving manoeuvrability (Zhi-Kun et al., 2015). It is unknown how much

feeding specialisations influenced morphology in this and similar taxa but compared to dorsally

flattened galeaspids, species such as Rhegmaspsis, Macrothyraspis (Figure 2.13c), and others

with elongate rostra certainly appear to be much more active swimmers (Janvier, 1996).

g) Pituriaspida

Very little is known about pituriaspids, found in Devonian sediment of just one locality in

Western Queensland, Australia (Young, 1991). Pituriaspis doylei (one of only two known

pituriaspid species) had a long rostral elongation, but unlike similarly endowed galeaspids also

has pectoral fins. This may represent a step towards stabilisation, helping improve the yaw, roll

and pitch control of movement, and fins are also an additional source of lift and thrust.

h) Osteostraci

The osteostracans are a clade of stem gnathostomes (Figure 2.12), and a sister group to jawed

fish proper (Forey and Janvier, 1993; Sansom, 2009). They share girdle-supported paired fins
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and an epicercal tail with the gnathostomes, but their braincases have primitive lamprey-like

features (Long, 2011). This relationship has also been confirmed in a recent analysis of the

group, which also detailed the unique case of secondary loss of paired fins in the tremataspids

(Sansom, 2009). The best known of these is Cephalaspis, a genus in the Cephalaspidomorphi

(the only class within the Osteostracomorphi) which contains over 100 species (e.g.

Diademaspis, Figure 2.13g). The fossilised sutureless head shields of some species are always

of similar size, which is a feature of adult animals that have undergone a larval stage and

metamorphosis (Moy-Thomas & Miles, 1971). As with many other Palaeozoic fishes, the tail

was heterocercal and thought to both counteract negative buoyancy (Helfman et al., 2009)

and likely correct pitch for ploughing sediment.

2.5.2. Non-tetrapod gnathostomes

a) Placoderms

The Devonian period saw a huge diversity of gnathostomes (jawed fishes), after their ‘long-

fuse’ evolution throughout the Silurian (Friedman & Sallan, 2012), the most basal members of

which are the placoderms. Placoderms (‘plate-skinned’), a large class of Silurian-Devonian

fishes are now thought to be paraphyletic stem gnathostomes (Brazeau, 2009; Zhu et al., 2013;

Zhu et al., 2013; Brazeau & Friedman, 2014). They may have replaced the pteraspids and

osteostracans in morphospace, and were the dominant and most diverse Devonian fishes,

achieving global distribution in both marine and freshwater (Young, 2010). They had

depressed, sometimes flattened bodies and bony plates which covered the front of the body

(Denison, 1978). In the arthrodire placoderms, these bony carapaces (covering the head and

shoulder regions) were mobile (Long, 2011). The complex of plates around the mouth (which

self-sharpened to form a blade like beak), in partnership with the huge bite forces that could

be generated no doubt contributed to their success (Anderson & Westneat, 2003).

While many placoderms are fairly conservative in their morphology (interpreted as benthic

and slow-moving), some species had large and pointed snouts. Rostral elongation for drag-

reduction and pelagic life is most convincing in placoderms such as Oxyosteus (Figure 2.14a),

Rolfosteus (Figure 2.14b), and Carolowilhelmina, as they superficially resemble billfishes

(Dennis & Miles, 1979; Mark-Kurik & Carls, 2002). In these three genera large pectoral fins may

have been used in a similar way to those of modern billfishes; for high-speed manoeuvres in

partnership with a large rudder-like dorsal fin. However, it is not clear if the small tubercles

which ornament the bony plates of placoderms extended on to the snout. This surface



38

roughness is known to aid transition of the boundary layer in sailfish (Aleyev, 1977; Sagong et

al., 2013, and; section 2.3.2), but no hydrodynamic modelling has been performed to test this.

Figure 2.14. Reconstructions of representative Palaeozoic gnathostome fish groups. The

placoderms a) Oxyosteus, from Moy-Thomas & Miles, 1971, and; b) Rolfosteus (creative

commons image); the ‘acanthodians’ c) Nerepisacanthus, from Burrow, 2011, and; d)

Acanthodes, from Zidek, 1976. The chondricthyans e) Akmonistion, from Coates & Sequeira,

2001, and; f) Cladoselache (Benton, 2005); and the osteichthyans g) Guiyu, from Zhu et al.,

2009, and; h) Eusthenopteron, from Schultze, 1984. Not to scale.

b) ‘Acanthodians’

‘Acanthodians’ (‘spiny sharks’) are a paraphyletic grouping of jawed fishes, which in recent

analyses have either been split between the Chondricthyes (sharks and relatives) and

Osteichthyes (bony fishes), or placed as stem chondricthyans (e.g. Davis et al, 2012; Zhu et al.,

2013; Brazeau & Friedman., 2014; Giles et al., 2015), with support generally for the latter.

‘Acanthodians’ are typically small (mostly ~20cm), with an elongate spindle-like body and

heterocercal tail (Figure 2.14c-d), commonly discussed as evidence for an active pelagic

lifestyle (Denison, 1979). This is supported in part by the identification of an Early Devonian

‘acanthodian’ swimming trace, produced by a non-anguilliform (eel-like) swimming style

(Wisshak et al., 2004), although the fish would have to be in direct contact with the substrate
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to produce the trace. Perhaps because of the widespread acceptance that ‘acanthodians’ were

active predators, scale hydrodynamics are very rarely discussed (but see Reif, 1982; Hanke,

2012, and section 2.6).

c) Chondrichthyes

Despite their remarkable diversity, especially in the Carboniferous (e.g. Lund, 1990; Benton;

2005), the hydrodynamics of Palaeozoic sharks (Figure 2.14e, f) have only been discussed in a

very general sense, often with focus on the heterocercal tail (section 2.3.3). A notable

exception is the large ‘brush’ dorsal fin of the early Carboniferous shark Akmonistion (Figure

2.14e), which for a long time was thought to be a significant hydrodynamic disadvantage,

creating drag that would prohibit fast swimming (e.g. Coates & Sequeira, 2001). However,

after modelling this drag was found to be much smaller than expected (Criswell et al., 2013),

highlighting the importance of testing assumed functions experimentally.

Figure 2.15. Reconstruction of the Carboniferous chondrichthyan Iniopteryx rushlaui from

Zangerl and Case, 1973, showing large hook-like denticles on leading edge of fin.

The Devonian-Carboniferous iniopterygians, all have enlarged pectoral fins, mounted high on

the flank, just as in extant hatchetfishes and flying fishes. Although untested, it has been

argued that because these fishes are adapted to breach from the water to avoid predators and

reduce drag (section 2.3.3), iniopterygians may have done the same (Lund, 1990). In another
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iniopterygian, Iniopteryx rushlaui, (Fish & Lauder, 2006), large hook-like dermal denticles on

the leading edge of the pectoral fins are thought to function like the tubercles of humpback

whale flippers (section 2.3.2). However, as this has never been tested experimentally there is

little to contradict the original interpretation that these scales are defensive, or even sexual

(Zangerl & Case, 1973). Scale functions, particularly of modern sharks are the subject of this

thesis, and existing literature is reviewed in section 2.6.

d) Osteichthyans

Osteicthyans include the actinopterygians (ray-finned fishes) and sarcopterygians (lobe-finned

fishes), and constitute ~98% of all vertebrate species (Nelson, 2006). The early evolution of this

group is poorly understood, represented by scales and jaw fragments of the late Silurian fishes

Andreolepis and Lophosteus (Botella et al., 2007).

An interesting development in many early osteichthyans is the symmetrical fork-like tail,

possibly including the earliest articulated member Guiyu, Figure 2.14g (although the tail is not

preserved in this taxon). A forked tail (sometimes referred to as double-truncate) is a trade-off

between manoeuvrability and drag-reduction with a large enough surface area for rapid thrust

production but not enough to promote deleterious vortices that would affect pressure drag

(section 2.3.3). The Late Devonian sarcopterygian Eustenopteron (Figure 2.14h) is superficially

very similar to that of a pike, and therefore considered an ambush predator. The posteriorly

positioned dorsal and anal fins act like a dart, guiding the fish in one direction rapidly to

capture prey such as ‘acanthodians’ (Arsenault, 1982; Cote et al., 2002). This is in contrast with

the early Triassic fork-tailed coelacanth Rebellatrix divaricarca, where these fins are further

forwards to allow manoeuvrability at high speeds; unique in a group that is generally slow-

moving (Wendruff & Wilson, 2011).

Unlike other fish groups, the huge diversity of modern osteichthyans means there are usually

plenty of analogues to help elucidate the ecology and hydrodynamics of their extinct

ancestors. Unfortunately this cannot be said of the earliest osteicthyan and actinopterygian

scales, which are thick rhomboidal units, often with a surface ornament. The closest living

analogues are ‘ganoid fishes’ such as gars and bichirs, which do not have this ornament, and

therefore functional comparison is limited (section 2.6).
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2.5.3. Aquatic tetrapods

Although the focus of this thesis is Palaeozoic fishes and their modern analogues, secondarily

aquatic vertebrates are subject to the same physical constraints. They therefore offer insight

into hydrodynamic adaptations which may have evolved convergently, and independently of

phylogenetic relatedness. The most famous case of convergent evolution in aquatic tetrapods

is the tail fin, which is often secondarily heterocercal (e.g. mosasaurs, early ichthyosaurs)

(Massare, 1994). However, a well-preserved Stenopterygius (Jurassic ichthyosaur) was found

to have collagen fibres supporting the dorsal fin and, significantly, a dorsal lobe of the tail

(Lingham-Soliar, 1999; Lingham-Soliar & Plodowski, 2007). This supports the long-standing

view that ichthyosaurs were fast thunniform swimmers, but also highlights the problems of

interpreting incomplete fossil remains (Massare, 1994).

Experimental modelling has been performed for a wide range of aquatic tetrapods, including

Palaeozoic amphibians (e.g. Cruickshank & Skews, 1980), however the majority of studies on

extinct taxa concern Mesozoic reptiles e.g. ichthyosaurs, plesiosaurs, mosasaurs (e.g. Massare,

1988). Of these, none have investigated skin texture, despite reports of scale ornamentation in

some taxa and their potential role in drag-reduction. For example the late Cretaceous

mosasaur Plotosaurus (Lindgren et al., 2010) has non-imbricated and fairly rounded scales on

the head, but further back towards the flank they are rhomboidal and overlap, as in many

modern sharks (Reif, 1985), ‘acanthodians’ and thelodonts (section 3.1.2). It has also been

suggested that Plotosaurus used riblets to reduce drag (section 2.3.2; Lindgren, 2009),

however there are several important problems with this interpretation. The most important

issue is that of riblet spacing, which in modern pelagic sharks is generally between 50-150

micrometres. The slowest moving tend to have wider riblet spacing, until drag-reduction is no

longer an important influence on morphology and the scales become spinier or blocky (section

4.1.1; Reif, 1985). The inter-keel distance in Plotosaurus is 766µm, and in Ectenosaurus

clidastoides (a mosasaur) was 1062µm. Similar diamond-shaped shark scales with a dominant

central keel belong to the modern Cirrhigaleus asper (roughskin spiny dogfish), which has an

interkeel distance of ~430µm (note: this passage was written before the publication of Palmer

& Young; 2015, who have adopted this view).

Interestingly, there is geochemical evidence that large marine reptiles such as ichthyosaurs,

plesiosaurs and mosasaurs could maintain high body temperatures, even in cold climates

(Bernard et al., 2010). As discussed it has been suggested that elevated body temperature can

change the viscous properties of the relatively cool surrounding fluid (section 2.3.2). This
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method of drag reduction is unlikely due to the short amount of time that the water would be

in contact with the body (Fish, 1998).

2.5.4. Palaeozoic trends in hydrodynamic evolution

Assessing the evolutionary significance of the hydrodynamic innovations discussed so far is

difficult because it requires disentangling the many factors which contribute to the success or

failure of a species. While this is also a problem for modern ecologists, palaeontologists are in

a unique position to track morphological trends over tens to hundreds of millions of years.

This work focuses on how morphology relates to hydrodynamic function of scales (section 2.6);

however it is useful to summarise and discuss overarching evolutionary trends associated with

drag-reduction and locomotion in Palaeozoic fishes. Haikouichthys and its relatives lived during

the Cambrian radiation, and are heralded as the first ‘fish’, likely moved freely in the water

column (Long, 2011). Articulated body fossils are rare in the Ordovician but mineralised

microremains such as scales are abundant (Sansom et al., 1996; Young, 1997; Sansom et al.,

2001; 2012), demonstrating the foothold fishes already had at this early stage. Conodonts

emerge at the end-Cambrian, likely swimming in much the same simple eel-like fashion. Like

the myllokunmingiids, cononodonts were scaleless, and may have employed a mucus coat to

reduce drag, in addition to defensive and osmotic functions (Shephard, 1994). The lack of

articulated material makes palaeoecology, taxonomy, and diversity difficult to investigate for

this interval, including – unfortunately - the effects of the end-Ordovician mass extinction

(Friedman & Sallan, 2012). From the limited information available it is likely that the earliest

jawed vertebrates arose in the early Silurian, but were relatively rare compared to agnathan

taxa, which dominated marine faunas (Boucot & Janis, 1983) in to the Early Devonian (Janvier,

1996; Friedman & Sallan, 2012). Many agnathans were heavily armoured around the head, but

the trunk region was always more flexible, often covered in small plates or scales, which afford

greater flexibility and freer movement of the caudal fin.
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Figure 2.16. A) Diversity of caudal fins in some Palaeozoic fish groups, and; b) occurrence of

dorsal fins (green), paired fins (red), and anal fins (blue) in some Palaeozoic fish groups. From

a) Pradel et al., 2007, and; b) Sansom et al., 2010; 2013.

The caudal fins of early agnathans are normally heterocercal (section 2.3.3; Figure 2.16a), with

a larger upper lobe (Pradel et al., 2007). Symmetrical tail shapes evolved in groups such as

furcacaudid thelodonts (Figure 2.16a) during the Devonian, but the hydrodynamic and

ecological significance is still unclear. Heterocercal tails, as well as producing forward thrust,

are thought to counteract negative buoyancy (or positive in some cases, e.g. flying fishes) and

correct the animal’s pitch (section 2.3.3)(Aleyev, 1977). A major issue is that without observing

the living fish or knowing its internal anatomy, factors such as buoyancy cannot be accounted

for, and the heterocercal tail may either be for a benthic lifestyle with pelagic excursions or

slow, efficient cruising (like many deepwater sharks). In addition it has also been suggested

that the external morphology of caudal fins does not reflect the hydrodynamic action, which is

affected by lobe stiffness, behaviour, and flow conditions (Lauder, 2000). This limitation aside,

it is interesting to note the general trend from very simply symmetrical lobe-like tails, to the

heterocercal condition in early Palaeozoic agnathans, and then to complex symmetrical

designs in a huge number of ray-finned fishes and other more recent groups (Webb, 2006).
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Throughout the Palaeozoic there is a trend for swimming to become more complex, and there

is a general loss of the eel-like (anguilliform) style of swimming as fins evolve (Sansom et al.,

2010; 2013). This involved reduced body undulation and stiffening of the trunk, with the

majority of thrust produced by the far posterior of the body (Webb, 1982; Webb, 2006). This is

concomitant with the gradual addition of stabilising fins (Figure 2.16b), which themselves

become more mobile, with greater degrees of freedom (Moy-Thomas & Miles, 1971),

especially in the actinopterygians (e.g. Lauder & Drucker, 2004). There is also a trend for

reduced skeletal mass in Palaeozoic fishes, with the evolution of thinner scales (section 2.6)

and reduced armour in many groups. Increased mass is beneficial for stability in benthic,

current-swept habitats (Webb, 2006), so this trend may be related to an increased reliance on

paired fins for flow control (Carr, 1995).

2.6. Fish Scales

The integument is a composite organ of three layers, the epidermis, the dermis and a

basement membrane between them. This simple arrangement evolved into many familiar

structures including hair, sweat and mammary glands, feathers, teeth and scales (Pough et al.,

2007). Scales are diverse in form, development, and function, and by the broadest definition

are small units of hard mineralised tissue, which may be discrete or overlapping plates.

a) Scale types

In fishes, there are four broadly defined scale types (leptoid, cosmoid, ganoid, and placoid),

most of which are essentially a hardened integument fold (specifically the dermis), often with

ossified dermal bone as its key constituent (Ehrlich, 2015). Leptoid scales (Figure 2.17a, b)

grow concentrically and overlap, exposing only the posterior portion which can have either a

smooth (cycloid) or toothed (ctenoid) trailing edge (section 2.3.2). Cosmoid scales are

composed of two layers of bone with a cap of dentine-like cosmine above it, and grow as

lamellar bone is added at the base. Ganoid scales (e.g. Polypterus, Figure 2.17c) are similar to

cosmoid scales but have extra layers of hard enamel-like ganoin overlying the cosmine. Placoid

scales or ‘dermal denticles’ (Figure 2.17d) are tooth-like in cross section, with bone at the base,

dentine above it, and a cap of enamel (Helfman et al., 2009). These scales are embedded in the

dermis, which is unique to the cartilaginous fishes; chondrichthyes. In elasmobranchs (sharks,

skates, and rays) particularly, scale morphology has long been recognised as biomechanically
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significant, reflecting the relative importance to a species of functions such as defence, and

drag-reduction (Reif 1985a), discussed next.

Figure 2.17. Variation in the integument of some living fishes. Clockwise from top left:

Simplified cross-sections of the leptoid scales of a) Phoxinus phoxinus (common

minnow), and; b) Scomber scombrus (mackerel); c) the ganoid scales of Polypterus

senegalus (Cuvier’s bichir); and d) the placoid scales of Isurus oxyrinchus (shortfin

mako shark). Modified from Whitear, 1986 and Motta et al., 2012.

b) Physiological functions

Fishes are known to use scales as a calcium and phosphorus reservoir, which can be exploited

when supply is limited or during breeding (Whitear, 1986; Metz et al., 2014). Scales are also

thought to act as a physical barrier to osmosis (Whitear, 1986), preventing the unwanted loss

or gain of water and mineral ions, but this function in sharks is undocumented.

c) Abrasion defence

As a hard tissue barrier, any form of scale will serve a protective role against abrasion and

minor mechanical stresses (Reif, 1985). However, the morphology of shark scales is of

particular interest as they are in direct contact with the surrounding environment. This is

apparent in many rays, and benthic shark species, where the animals’ ventral surface (in direct
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contact with the substrate) is often covered in a dense mat of rounded and blocky scales. In

angel sharks (Squatina sp.) there is a particular distinction from the dorsal side, which in

contrast is sparsely covered with small mushroom-like denticles (Figure 2.18). In the benthic

longtail carpet sharks (Hemiscylliidae), scales are again smooth and robust, very often with

scratch marks in the stream wise direction betraying their intimate contact with hard

substrates (Reif, 1985). It is likely that any ornament relief (such as drag-reducing riblets)

proud of the scale surface would be susceptible to excessive wear, without conveying a

functional benefit to more sluggish benthic animals.

Figure 2.18. Dermal denticles of the angelshark Squatina squatina from the mid-body flank

region of the a) mucus-coated dorsal and b) ventral surface. Adult female, total length

1240mm, sampled at Centre for Environment Fisheries and Aquaculture Science (CEFAS),

United Kingdom.

d) Predator defence

As a primary defence many fishes throughout the Phanerozoic evolved body spines, commonly

on the dorsal fin, and in some cases envenomated (Smith & Wheeler, 2006). Scales modified to

be spiny or spine-like are much less common in teleosts than chondricthyans (but see

Carnevale & Santini, 2006), but the reason for this is unknown.

Smaller scale units, regardless of morphology allow for much greater flexibility than large stiff

plates, while still providing physical protection (Browning et al., 2013). In many extinct jawless

fishes (section 2.5.1) and modern armoured catfish, rigid bony tissue surrounds the head, but

the flank and tail have smaller scute-like elements where the greater flexure is required for

swimming. In teleosts the overlapping scales help maximise robustness and flexibility without
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too much additional weight (Vernrey & Barthelat, 2014), prompting biomimetic research

looking to improve armour (Zhu et al., 2012; 2013). The overlap between scale units is clearly

an important part of the mechanical role of skin, but individual scales can be very robust as

well. Bichirs, arapaima, gars, and others have scales which can individually withstand large

external forces (Bruet et al., 2008; Yang et al., 2013; Zimmermann et al., 2013). In the case of

modern bichirs (Polypterus sp.), there are thick peg and socket joints connecting the scales,

which are made up of layers of a dense mineralised tissue called ganoin, making the

integument as a whole particularly tough (Kerr, 1952; Smith et al., 2006; Song et al., 2011).

e) Parasites and antifouling

Parasites are a ubiquitous problem for most aquatic animals and have a long fossil record (e.g.

Cressey, 1989), although there are frequently difficulties associating them with specific hosts.

Evidence for external parasitism of fishes can be found as early as the Middle Devonian (~385

mya), in taxa such as heterostracans, antiarch placoderms, and sarcopterygians (Lukševics et

al., 2009). Just as barnacles compromise the streamlining of ships, there is a well-documented

deleterious influence of ectoparasites and other epibionts on drag in fishes (e.g. Wagner et al.,

2003; Östlund-Nilsson et al., 2005; Binning et al., 2013) and a range of other marine taxa (e.g.

Wahl, 1996; Bates & Loydell, 2003; Donovan et al., 2003). Many parasites of pelagic sharks

have highly specialised adaptations to hold their bodies close to the surface (e.g. Benz, 1992),

but it has been suggested that smoother, flatter scales are relatively easier for the parasite to

attach to (Raschi & Tebit, 1992). There is also a relatively low incidence of ectoparasitic

attachment in sharks with spiney and spine-like scale types (Reif, 1985). Spined and spine-like

scales occur in the birdbeak dogfish (Deania calcea) which has a dense covering of almost

vertical trident-like denticles, presenting a very unappealing attachment surface for epibionts

(Reif, 1985a). This is thought to be the principle function of such scales, especially in schooling

sharks (Reif 1985a), and similarly shaped scales have been reported in a range of fossil taxa

(e.g. Martill et al., 2013; section 4.2).

f) Other non-hydrodynamic functions

Little has been written about unusual scale functions in non-chondrichthyan taxa, however a

role in mating and spawning has been suggested for the modern roughbelly darters (Percina

sp.), which have ctenoid scales with long backward-pointing spines (Page, 1976).
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In bioluminescent sharks protection can be afforded from blocky and shallow scales for

abrasion resistance (e.g. Etmopterus virens), or elongate spiny scales that resist parasite

attachment (e.g. Etmopterus spinax). Despite this variation (even between closely related

species), all reflect a trade-off between a protective function, and the requirement to expose

the photophore-rich epidermis between the scale bases (Reif, 1985b). However, this condition

is rare; restricted to just two squalid subfamilies; the kitefin (Dataltiinae) and lantern sharks

(Etmopteridae).

Alternative functions of the spiney, or spine-like scale type for sharks includes aiding juveniles

split the eggcase during hatching (Grover, 1974), and even feeding as discovered recently. The

small-spotted catshark (Scyliorhinus canicula) has scales which protrude more towards the tail

region (Figure 2.19), originally suggested to be a hydrodynamic adaptation (Bone, 1975).

Recently however, these sharks have been observed bracing large food items with their tails,

anchoring it in place to bite more effectively. This behaviour is particularly common in

juveniles, whose scales protrude from the tail surface an order of magnitude more than the

adults’, and which can tackle larger, otherwise unavailable prey (Southall & Sims, 2003). While

it is probable that this behaviour occurs in other species, it should be noted that only a small

proportion of the denticles are involved in this feeding action, and for the majority parasite

resistance is still their likeliest primary function.

Figure 2.19. Dermal denticles from a) the flank (‘FB2’, Figure. 3.3); and b) the tail (‘T1’, Figure

3.3) of the small-spotted catshark Scyliorhinus canicula. Adult male specimen from

Pembrokeshire, United Kingdom, 535mm total length.
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g) Scale histology of Palaeozoic fishes

Scale histology is an important field in modern ichthyology and palaeontology, allowing the

study of tissue development and the early evolution of skeletal mineralisation (e.g. Donoghue,

2002; Donoghue et al., 2006; Sire, 2009). The focus of this thesis is the external morphology of

scales, and physical interactions with the immediate environment. Yet, as discussed the

majority of fishes have scales which sit in a pocket of soft tissue (Figure 2.17), the properties of

which cannot be accounted for if only hard parts are preserved during fossilisation. Soft tissue

features can have a significant effect on drag (section 2.3.2), so it is important to understand

this potential source of error. The primitive fish condition is a dermal (skin) skeleton composed

of discrete mineralised (dentine) units known as odontodes (Qu et al., 2013; Figure 2.20). In

most modern fishes this dermal skeleton has been lost (except for ‘teeth’ proper, fin spines,

and rarely throat denticles), except in modern chondrichthyans (sharks, rays and ratfishes)

which have a well-developed dermal skeleton of placoid scales. These scales are single

odontodes (monoodontode) which do not grow continually, but are rather replaced with

larger developing scales (Hanke & Wilson, 2010). Thelodonts are the only other group to have

monoodontode scales, unlike other primitive Palaeozoic taxa in which the scales formed from

multiple odontodes (polyodontode) attached to a bony base (Sansom et al., 2001).

Polyodontode scales grow larger without being shed, suggesting there may have been a soft

tissue covering, and not fully exposed to the water (Qu et al., 2013). Groups reported to have

taxa with polyodontode scales include early chondrichthyans, osteostracans, heterostracans,

‘placoderms’, osteichthyans, and early ‘acanthodians’ (e.g. Denison, 1979; Karatajῡtė-Talimaa, 

1995; Sire et al., 2009; Qu et al., 2015).

While it is reasonable to assume thelodont scales were exposed directly to fluid flow, other

groups are more difficult to interpret. For example the ‘acanthodians’ are known to be

paraphyletic, with some members classed as osteichthyans (bony fishes), and others as stem

chondrichthyans (Brazeau, 2009; Zhu et al., 2013). Relatively extensive histology of

‘acanthodian’ scales has shown most grow by the concentric addition of surrounding layers,

meaning soft tissue would have surrounded and covered the crown. However, a select few

‘acanthodians’ (e.g. Nostolepis robusta) grow by adding to the sides and base (Denison, 1979;

Karatajῡtė-Talimaa, 1998). Additionally, it has been suggested that ‘acanthodians’ (and some 

ray-finned fishes) are capable of post-eruptive repair and growth. The scale would erupt,

periodically sink in to the dermis and then re-erupt (Reif, 1982; Sire et al., 1987; Donoghue,

1998; Donoghue & Purnell, 1999), exposed directly to the immediate environment. The only

reconstructions of epidermal tissue in the integument of Palaeozoic fishes (Reif, 1982), shows

the odontodes at least partially exposed (the extent of which is unknown), a view supported by
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current workers (personal communication Zerina Johanson). This and other potential

limitations, justification for the inclusion of taxa, and experimental design are discussed next.

Figure 2.20. a) Simplified phylogeny of Palaeozoic vertebrates showing incidences of

monoodontode (blue) and polyodontode scales, with cross sections of the osteichthyan

Cheirolepis; the acanthodian Nostolepis; the chondrichthyan Cladoselache, and the placoderm

Ohiolepis; b) ‘non-growing’ forms of putative chondrichthyan, and; c) ’growing’ forms of

putative chondrichthyan scale. From a) Qu et al., 2013 and; b-c) Hanke & Wilson, 2010.

2.7. Limitations of Research to Date

A primary aim of this project was to empirically measure the drag-reduction of fossil fish skin

for the first time. That this has not been attempted previously reflects the theoretical and

practical limitations, and the complex interactions of abiotic and biotic factors affecting drag.
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a) Material and modelling

Vertebrate microremains or ‘ichthyoliths’ are often the only available early Palaeozoic

vertebrate fossils (Janvier, 2015). As gross morphology is often the focus of biomechanical

studies, this has undoubtedly limited attempts to model the hydrodynamics of these early

fishes.

From a practical perspective, any accurate modelling (physical or otherwise) requires a good

replica of the structure being studied. Ideally this would be real material e.g. fresh shark skin

(Lang et al., 2014), but this is not possible with extinct organisms as fossil material is often

highly altered, valuable and fragile (although see Alexander, 1984; Albert et al., 2009).

Alternatives can include a moulded cast (e.g. Han et al., 2008), manual rendering (e.g. Aleyev,

1977; Rickards et al., 1998), or rapid prototyping (e.g. Bartol et al., 2002; Wen et al., 2014).

Rapid prototyping has been in development for decades, but only recently has it become

widespread and cost effective enough for practical use. Any artificial model will have flaws,

whether due to human error or the manufacturing process, and all systems of measurement

have limited resolution. A common solution is for structures to be scaled up to minimise these

sources of error (e.g. Lang et al., 2011), while accounting for the change in Reynolds number.

In some cases the model’s verisimilitude can be compromised to minimise the influence of

variables beyond the research focus (e.g. Melchin & Doucet, 1996). In all but the most complex

systems, simplifying or isolating one aspect of a structure is an effective way of studying its

mechanics. An advantage of rapid prototyping is that the geometry of a three-dimensional

object can be modified to test a range of morphologies, with much greater precision and speed

than traditional rendering. Additionally, this improves replication, and allows concomitant

testing using computational fluid mechanics.

b) Soft tissue

Regardless of growth or internal structure, most fish scales are covered in epithelial tissue of

varying thickness (Figure 2.19a-c.) which can help reduce drag in various ways (section 2.3.2).

Therefore fossilised surfaces may not reflect the texture or properties of the skin as it would

have been in life, a significant problem for modelling. Palaeontological fluid mechanical studies

have all but ignored soft tissue, concentrating instead on gross morphology of animals with

hard exoskeletons e.g. trilobites (Miller, 1975; Fortey, 1985), eurypterids (Plotnick & Baumiller,

1988), crinoids (Baumiller & Plotnick, 1989; Plotnick & Bauer, 2014), cephalopods
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(Chamberlain & Westermann, 1976), brachiopods (Alexander, 1984), and others. In this

respect, those studies modelling active flow control (such as fins or tails) of soft-skinned

animals are potentially the most flawed, because of the variable flexibility of structures

(section 2.3.3), the precise shape of which must be subjectively approximated (e.g. DeBlois,

2013).

c) Interdisciplinary applications

Despite their popular appeal and the huge interest in biomimetic drag-reduction technologies,

the study of riblet optimisation has never been quantitatively applied to shark ecology.

Seminal work by Reif (1985) reported a correlation between ecology and scale morphology but

at the time the mechanism of riblet action was not fully understood. Furthermore, the scheme

for interpreting scale function (Reif, 1982b) has yet to be extended to include extinct fishes.

Those papers describing thelodont and ‘acanthodian’ scales occasionally mention modern

sharks for analogy (e.g. Märss, 2007), but are never more than cursory comparisons. Herein,

the function of scale morphotypes will be discussed and interpreted for both modern sharks,

and the extinct thelodonts and ‘acanthodians’, supported by experimental analysis.
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3. Methods and Materials

This thesis presents data for both comparative analyses and an experimental approach to

investigating fish scale function. Methods and materials for the comparative approach are

described first in sections 3.1, excluding elements that strongly informed the design of the

concomitant flume experiments, which are detailed in section 3.2.

3.1. Functional morphology and comparative anatomy study

3.1.1. Body regions

It has long been recognised that denticles are highly variable between species, including

extinct, non-chondrichthyan taxa such as thelodonts. Dermal denticle morphology is known to

be equally, and sometimes more, variable between the body regions of a single species, now

demonstrated in a large number of taxa (particularly Reif, 1985a). The morphological variety of

scales across the body is now routinely accounted for and reliably recorded in articulated

modern material, but this is still an issue for palaeontologists, especially those attempting to

classify isolated scales. Regionalisation can also be problematic when attempting to interpret a

general function for the scale set as a whole and ultimately the species.

In fossil taxa such as thelodonts which are rarely preserved as articulated specimens, regional

morphologies are usually presented as scale sets to justify erecting novel taxa (e.g. Turner,

1999). Several methods of dividing the body have been proposed for thelodonts (Figure 3.1),

but all recognise three distinct regions; the rostrum, pre-pectoral and post-pectoral or flank.

The body regions of thelodonts, ‘acanthodians’ and sharks were standardised for comparison

(Figure 3.2). The rostral or pre-orbital zone extends from the snout to the back of the eye, after

which the pre-pectoral region extends to where the back of the pectoral fin attaches to the

body. The flank extends from the pectoral fin attachment to the peduncle (or its equivalent) of

the tail, not including fins.
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Figure 3.1. Schemes and terms applied for differentiating body regions in thelodonts, including

the mouth/rostral area (brown), pre-orbital (purple), postpectoral or trunk (red), and the tail

region or precaudal (blue). A) Loganellia scotica after Märss & Ritchie, 1997 further defining

lateral (orange), and pinnal scales (green); b) Phlebolepis elegans after Märss, 1986; and c)

Furcacauda fredholmae after Wilson & Caldwell, 1998.

Figure 3.2. Standardised scale regions for taxa referenced in text. A) an ‘acanthodian’; b, an

early osteichthyan; c) a modern shark; d) a modern teleost; and e) a thelodont agnathan.

Based on Reif, 1985; Märss, 1986; Märss & Ritchie, 1998; and Wilson, 1998.
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3.1.2. Specimens and sampling

a) Specimens and taxa selection

Modern shark taxa were selected on the basis of their availability, and to represent the

diversity of gross morphology, scale types and ecologies (Table 3.1). Fresh cadaverous material

of Lamna nasus, Squalus acanthias and Squatina squatina was sourced from the Centre for

Environment Fisheries and Aquaculture Science (CEFAS) and Scyliorhinus canicula was found

beached in Pembrokeshire, UK. Taxidermied specimens of Chiloscyllium plagiosum,

Chiloscyllium punctatum and Centrophorus granulosus were sourced from a commercial

supplier based in the Philippines.

A wide range of fossil fish material from a number of institutions was examined for

comparative analysis and to inform the plate design of the experimental study (section 3.2).

Particular focus remained on Palaeozoic taxa, especially those with dermal denticles, of which

notable specimens are detailed in Appendix II, Table S2.1. While this was very useful, the

majority of quantitative scale data for Palaeozoic taxa were taken from the literature,

particularly figured scales in macroscopic photographs and scanning electron micrographs.

These were measured in the same way as the modern material. For details of fossil taxa

selected for the experimental analysis see section 3.2.

c) Sampling and microscopy

For modern taxa total body length was measured (tip of snout to end of tail) of frozen and

dried cadaverous specimens (Table 3.1), before 10mm2 skin samples were taken at 19

standardised sampling locations (20, including male-specific claspers), shown in Figure 3.3. To

produce dorsal-view scanning electron micrographs (Appendix I, Figures S1.6-1.10, S1.23-1.27)

skin pieces were manually cleaned of excessive underlying soft tissue, sterilised with ethanol

and dried between filter paper under a light weight. These dry, flat squares of skin were

mounted on to 12mm diameter aluminium stubs with graphite adhesive, and gold coated

before imaging.
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Table 3.1. Details of the shark specimens sampled for this study

Species Order Ecology Length (mm) Sex Utility to Present Study

Centrophorus granulosus (Bloch & Schneider, 1801)

Chiloscyllium plagiosum (Anon [Bennett], 1830)

Chiloscyllium punctatum (Müller & Henle, 1838)

Lamna nasus (Bonnaterre, 1788)

Scyliorhinus canicula (Linnaeus, 1758)

Squalus acanthias (Linnaeus, 1758)

Squatina squatina (Linnaeus, 1758)

Squaliformes

Orectolobiformes

Orectolobiformes

Lamniformes

Carcharhiniformes

Squaliformes

Squatiniformes

Pelagic

Demersal

Demersal

Pelagic

Demersal

Pelagic

Demersal

480

680

730

1270

1860

2150

1460

1830

535

1020

1240

M

M

F

F

F

F

M

M

M

F

F

Crown dimensions

Comparative anatomy

Comparative anatomy

Scale width, riblet spacing, angle, and number

As above

As above

As above

As above, and scale base geometry

Comparative anatomy

Comparative anatomy

Comparative anatomy

Sex determined by presence or absence of genital claspers. Length (mm), measured as maximum distance from tip of rostrum to tip of tail. Cadaverous
material acquired from both commercial sources, and the Centre for Environment Fisheries and Aquaculture Science (CEFAS), UK.
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Previous work on the skin of mako sharks (e.g. Lang et al., 2008) has revealed a bristling action

of shark scales, and a long and thin base in a direction perpendicular to the streamline is

thought to accommodate a pivoting action. To explore the distribution of bristling scales, the

aspect ratio of the scale base was investigated in the porbeagle shark Lamna nasus. The 183cm

male porbeagle was the largest male, and was selected for the scale base investigation as it

also enabled sampling of the genital claspers, an area of presumably low bristling. Measuring

the aspect ratio of the denticle bases required isolating the scales from the soft tissue. To

examine 3D structure in more detail, sample material remaining from the SEM mounts was

soaked in 35% H202 for 24-48 hours to remove soft tissue. Isolated scales were carefully

washed, dried, mounted on stubs with adhesive strips, and then gold-coated for SEM imaging.

A selection of Chiloscyllium punctatum and C. plagiosum scales was treated in the same way

for qualitative analysis.

3.1.3. Comparative analyses

a) Qualitative analysis

Simple observations including sketches and photographs were recorded of examined material,

with particular reference to scale morphology and functional interpretation. Comparisons of

the dorsal surface of the scale crown were prioritised, especially in the early stages of the

project. This was to assess the occurrence and adaptations for drag reduction at the exposed

surfaces, riblets, turbulising structures and ultrasculpture (microscopic ornament). As each

specimen was examined, these features were drawn and/or described, and interpretations of

function compiled in a dataset alongside stratigraphic and body region data. Scales of different

species were only compared with other scales from the same region of the body, as it was

know that scale morphology could be highly variable (e.g. Reif, 1985a). This broad and

traditional approach was an important basis for the entire project, and helped substantiate

original and published hypotheses of scale function. A scheme for the functional classification

of fossil fish scales was constructed, and from this the functions of flank scales of over 200 taxa

were proposed (sections 4.2 and 4.3). Scale type occurrence throughout geological time was

then compared to the incidence of scale types in modern sharks, providing additional insight

into the palaeoecology of the extinct species.

b) Modern shark scale variation

Measurements were made of 15-20 scales per sample using ImageJ (U. S. National Institutes of

Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014). Where scale features
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were not clear or measurable (e.g. proximal pectoral fin ‘P1’, Figure 3.3), or organs such as the

claspers were missing, data were omitted. This method allowed for scales with converging or

diverging riblets to be included in the riblet spacing analysis, although as discussed later,

heavily converging or diverging scale types were not included in the interspecies (multi-taxon)

riblet spacing study. Mean riblet spacings were calculated from 15 measurements, taken

evenly across the crown surface of each denticle (Figure 3.4). As a result the porbeagle dataset

consisted of approximately 20,400 individual riblet spacing measurements, in addition to the

concurrently recorded exposed scale width, length, riblet number, and riblet angle, described

next.

Figure 3.3. A) Standardised sampling locations for shark specimens (Lamna nasus shown) and;

b) sampling locations and a higher density sampling grid specific to Centrophorus granulosus.

Locations are; H1, tip of rostrum; H2, middle of head; H3, back of head at start of gills; MG,

exposed outer skin from the central gill; P1, proximal dorsal surface of pectoral fin; P2, middle

dorsal surface of pectoral; P3, distal dorsal surface of pectoral; FF1, top of flank anterior along

vertical transect running upwards from the back of the pectoral fin; FF2, midline of flank

anterior along same transect; FF3, bottom of flank anterior along same transect; D1, distal-

most point of dorsal fin; D2, middle of dorsal fin; D3, centre proximal-most point of dorsal fin;

FB1, top of flank posterior along vertical transect running upwards from the back of the anal

fin; FB2, midline of flank posterior along same transect; FB3, bottom of flank posterior along



59

same transect; Cl, centre of pelvic clasper; T1, proximal centre of tail/caudal fin; T2, middle of

tail along axial midline; T3, distal-most of axial midline where the caudal fin forks inwards.

Images not to scale. For ease of reference, a simplified version of this figure is presented in

section 6.1. Semilandmarks for heat mapping were equidistant between FF1 –FB1, FF2-FB2,

FF3-FB3.

Scale width was measured as the maximum exposed distance from one side of the visible scale

crown to the other, perpendicular to the stream direction. Exposed crown length was

measured as distance of the visible crown in the stream-wise direction (Figure 3.4). Riblet

angle (convergence or divergence of riblets in the streamwise direction) was calculated by

measuring the downstream angle of riblets on the left of the scale crown (Figure 3.5, ‘Angle

1’), and subtracting the angle of those on the right (Figure 3.5, ‘Angle 2’). In most cases these

were riblets either side of the largest central rib (as in Figure 3.5). Positive values using this

method signified riblets were converging, and negative values were diverging in the stream-

wise direction.

Figure 3.4. Example of evenly distributed riblet measurements of a flank scale of Carcharhinus

brachyurus (copper shark). Image modified for illustrative purposes courtesy of Sue Lindsay,

Microscopy and Microanalysis Unit, Australian Museum, Sydney.
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The width (perpendicular to streamwise direction) and length of the bases of Lamna nasus

denticles were also measured in ImageJ, and the aspect ratio calculated as width divided by

length. Body region “heat maps” were then produced using Matlab (The MathWorks, Inc.).

Means of a given variable e.g. riblet spacing, riblet number, scale width, riblet angle etc. were

applied to the sampling locations defined in Figure 3.3. These landmarks of known value were

then used for interpolation across a 2D lateral aspect image of the species, with the relative

influence of each landmark defined by its standard error. The influence of the dorsal and

pectoral fins, although connected to the flank, had a disproportionate influence on the

proximal flank values of the heat maps. To reduce this effect, additional, intermediate

landmarks were calculated between flank landmarks. Colour schemes were assigned to width

and length (black to white), aspect ratio (dark blue to white), riblet angle (dark blue to red),

and riblet spacing measurements (dark red to white) to visually differentiate these data types.

Data were checked for normality using Shapiro-Wilk tests, before Student’s t-tests for

significant difference were used for directly comparing two groups, and Tukey’s range test

used for whole body comparisons to minimise error. Tests including descriptive statistics were

performed using Excel (Microsoft) and PAST (Hammer et al., 2001) software packages.

Significance was accepted when p <0.05.

c) Riblet spacing analysis

To determine the relative size of different body regions, lateral aspect images of

representative members of extant fish families were traced using ImageJ. These were sourced

from one text (Nelson, 2006) to ensure consistency of artistic representation of the taxa. From

this the two dimensional area of the body regions could be calculated; namely the preorbital,

prepectoral, and postpectoral (Figure 3.2). In total 123 lateral view images were analysed,

representative of 119 families of extant fishes. To monitor the accuracy of this process, the full

area of the fish was traced and the area calculated, against which the sum of the three areas

could be compared and the discrepancy calculated. The process was repeated until a

difference of below 1% was achieved. Rays, skates and other dorso-ventrally flattened

demersal fishes were not included, as in these groups extensions of the pectoral fin often

precluded their being processed in this way.

The results of this investigation (Appendix I, S1.5) showed that mean largest area was the flank

(74% area), followed by the post-orbital (20%) and pre-orbital (6%). This and an analysis of 50

modern shark species (Appendix I, Table S1.30) using an alternative body region

standardisation, yielded similar results (S1.28-2.29). This informed the decision to use the flank
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(as discussed, a hydrodynamically significant region) as representative of the fish’s

squamation. However, it was first necessary to gain a better understanding of the variation of

scale morphology within these body regions to justify comparisons between species. This was

achieved by comparing the riblet spacing of different body regions in Lamna nasus, which

confirmed that the flank (sampling locations ‘FF1-3’ and ‘FB1-3’, Figure 3.3) is an area of low

variation compared to other smaller regions. Data are presented in full in results Chapter 7.

Flank scales are also more commonly reported than other scale types, making them good

candidates for a systematic approach to functional interpretation.

Figure 3.5. Technique for measuring riblet angle. This scale crown shows one central riblet

(orange) surrounded by two at diverging angles in the downstream direction. Riblet angle was

calculated as the downstream angle of the left riblet(s) relative to the central riblet (‘Angle 1)

minus the downstream angle of the right (‘Angle 2’). Negative values indicate diverging in the

down-stream direction, and positive values are converging in the downstream direction. In this

example from the mid-gills of Lamna nasus (‘MG’, Figure 3.3), the angle is -18˚ (diverging). 
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Scanning electron micrographs of the flank region of 50 modern sharks, were analysed, from

both newly imaged and existing figured material. In all cases images detailed the crowns of the

denticles that are often still embedded in the skin and articulated. Fossil material was rarely

articulated, but isolated scales were only included if they were from the flank region,

sometime referred to as the ‘trunk’. There were 11 extinct fishes with riblets that met this

requirement, of which six were ‘acanthodians’ and five were thelodonts. Riblet spacing

measurements were taken using ImageJ software, as the linear distance between riblet peaks.

Where possible 15 measurements were taken, evenly distributed across the scale surface

regardless of the number of riblets (e.g. Figure 3.4), with several measurements along the

length of the riblet-formed grooves. This method helped correct for sub-parallel riblets, and

those scales whose riblets were larger towards the centre, ensuring a reliable mean

measurement for the entire crown. In modern sharks a maximum of 15 scales were measured

per sample, although several flank sample locations from the same shark were also included

for some taxa to calculate overall mean riblet spacing for the flank. Number of scales analysed,

total measurements, and sample references for each taxa are detailed in Appendix I.

For consistency, extant shark speed categories were based principally on Reif’s (1985a)

classification. Those not included in his scheme were assigned a group based on ecological

similarity to a species of known category. For example the uncategorised great hammerhead

shark Sphyrna mokarran has a very similar ecology to the thresher shark Alopias vulpinus, a

‘fast’ species in Reif’s scheme. Available ecological data include relative speed of known prey

items, migratory records, satellite tracking, and in a small number of cases direct speed

measurements (Appendix I, Table S1.32).

The relationship between riblet spacing (the only morphological scale trait used) and

swimming speed in sharks was investigated initially with standard descriptive statistics and a

Student’s T-test of difference between the groups. However, feedback from an anonymous

reviewer prompted efforts to account for possible phylogenetic signals. Co-author Dr Mark Bell

performed phylogenetic least squares regression (PGLS) using the pgls function in the ‘caper’

package for R (Orme et al., 2013). The 229-species shark phylogeny of Vélez-Zuazo and

Agnarsson (Velez-Zuazo & Agnarsson, 2011) was used since it is the most complete and

includes 41 of the species we studied (Appendix I). The response variable ‘speed’ was a three-

state ordinal variable (‘Fast’, ‘Moderate’, and ‘Slow/Scavenger/Ambush’). The inclusion of

discrete variables in PGLS analysis has been shown to give results comparable to multinomial

variables (Jetz & Freckleton, 2015).
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3.2. Experimental Skin Friction of Fossil Fishes

To investigate the effect of scale shape on skin friction drag, flat plates of reconstructed and

rapid prototyped fossil fish squamations were produced. These were submerged in a flume

tank, and velocity across the plates was measured using laser Doppler anemometry.

3.2.1. Preliminary scale tessellation study

In order to reconstruct the skin of fossil fishes accurately and help standardise the way

repeating scale units tessellate for experimental comparison, a large number of articulated

specimens were examined. This included the modern shark samples of section 3.1, and a range

of Palaeozoic taxa, detailed in Appendix II. In addition to the shark-like condition, the inclusion

of the early oseichthyan Lophosteus required the examination of the modern ‘ganoid fish’

squamation seen in bichirs (Polypterus sp.). These are amongst the few surviving members of

the ‘Chondrostei’, a subclass of ray-finned fishes thought to have originated in the late Silurian

(the first being Andreolepis hedei). Examination of a 460mm (total length) cadaverous

specimen of Polypterus ornatipinnis (ornate bichir; acquired from the Blue Planet Aquarium,

Cheshire) confirmed published accounts of a thick mucus coating of the epithelium which

overlies the scales. A similar condition was found in a cadaverous juvenile 116mm long

Polypterus senegalus (Cuvier’s bichir; acquired as waste from a tropical fish retailer).
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Figure 3.6. An articulated specimen of Lanarkia horrida (NHMUK PV42009), highlighted in

purple. Detail of the dorsal and flank region with anterior/head region towards the right of the

image, scale bar is 2mm.

The flank region was quickly identified as an area of relatively low scale variation in all taxa,

modern and extinct. Within the flank region, which was always the largest externally exposed

area of the body (see section 3.1) there were subtle changes in morphology towards the fins,

head, and tail regions. However, as demonstrated in Lamna nasus (section 3.1) this variation

was much lower than in other body regions. Scales of all ‘acanthodian’ and thelodonts

examined formed ordered diagonal rows, with the scale bases either flush to one another or

tightly packed. Lanarkia horrida (Figure 3.6) was the only exception, with most scales randomly

arranged. However, on exceptional specimens of this species the largest spine-like scales are

arranged in long rows across the body with smaller scales between them. All other examined

thelodont and ‘acanthodian’ taxa had scales which, in well-preserved articulated remains,

tessellated uniformly in diagonal rows (Figures 3.7 and 3.8).

It was also confirmed that directional features of scales from the flank region (such a ridges,

spines or tubercles) invariably align with the direction of flow from head to tail. In addition,

microscope examination of modern shark skin showed that the neck region of the scale

(narrow region between the relatively wider crown and base) is a useful indicator of how

deeply it is embedded within the soft tissue.
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Figure 3.7. The tessellation of thelodont flank scales in articulated material. A) Thelodus

mackintoshi (NHMUK PV52445) and; b) Loganellia scotica (NHMUK PV11282). Scale bar 1mm.

Figure 3.8. The tessellation of ‘acanthodian’ flank scales in articulated material. A) Acanthodes

sulcatus (NHMUK P57555); b) Cheiracanthus latus (NHMUK PV50105); c) Ptomacanthus

anglicus (BNHM P19998); d) Diplacanthus longispinus (NHMUK PV1369). Scale bar 1mm.
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Table 3.2. Fossil material selected for flume experiments.

Species Higher Taxon Age Locality Material Source Scan Data

Loganelia scotica Thelodonti Silurian Scotland Martin Rücklin (MNHN GBP384) Synchrotron (data donated)

Lophosteus sp. Osteichthyes Silurian Ohesaare Cliff, Estonia Henning Blom (uncatalogued) On-site µCT

Nostolepis striata Acanthodii Silurian Ohesaare Cliff, Estonia Henning Blom (uncatalogued) On-site µCT

Phlebolepis elegans Thelodonti Silurian Silma Cliff, Saaremaa, Estonia Henning Blom (uncatalogued) On-site µCT

Poracanthodes sp. Acanthodii Silurian Ohesaare Cliff, Estonia Henning Blom (uncatalogued) On-site µCT
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3.2.2. Fossil Taxa Selection and Material

Flank scales were selected to represent the more commonly encountered morphologies in

Palaeozoic fishes (Table 3.2), and reflect their diversity of function. Monetary constraints

prohibited the testing of more than five rapid-prototyped scale plates, so priority was given to

those taxa with hydrodynamical features of interest, discussed next.

a) Loganellia scotica

This thelodont (Figure 3.9) has lozenge-shaped flank scales, which are smooth and rounded at

the front, tapering to a point at the posterior. This specimen was selected to represent

blockier scales, which do not have a pronounced crown or neck region. In articulated material,

these scales have low relief, and tessellate tightly to form a rough but relatively simple surface.

Figure 3.9. High resolution synchrotron radiation X-ray tomographic microscopy (SRXTM) scan

of a Loganellia scotica (Thelodonti) flank scale, GBP384 (Muséum national d’Histoire naturelle,

Paris), from the Silurian of Scotland. Scan data provided by Martin Rücklin, Naturalis

Biodiversity Center, Leiden. Figured in Rücklin et al., 2011. Surface mesh lines hidden for

clarity, images not to scale, fish scale length is 105µm.
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b) Lophosteus sp.

Lophosteus is an osteichthyan with thick, robust scales ornamented with large tubercular

projections pointing backwards in a streamwise direction (Figure 3.10). This fish is neither an

‘acanthodian’ nor a thelodont, however the specimen was chosen as it represents blockier but

directional scale morphotypes. The scales of this taxon were likely covered in soft tissue (see

section 2.7) and mucus as in the modern Polypterus. This element of the study aimed to

investigate drag-reduction of scale crown shapes rather than specific values for individual taxa,

so the inclusion of Lophosteus was an interesting way to expand the variety of morphotypes

under investigation.

Figure 3.10. X-ray microtomograph images of a Lophosteus sp. (Osteichthyes) flank scale from

the Silurian of Estonia (Ohesaare Cliff). Specimens provided by Henning Blöm, Uppsala

University. Images not to scale, fish scale length is 2.8mm.

c) Phlebolepis elegans

Phlebolepis is a common and relatively well-studied thelodont, which has elliptical and fairly

flat scales. On the trunk these scales have variable riblets running in a generally streamwise

direction, often with a dominant central keel (Figure 3.11). In articulated specimens the scales

pack tightly with no overlap. This specimen was selected to represent scales with riblets,

although it lacks the distinct neck region of many pelagic shark scales. It should be noted that
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while this particular specimen exemplifies the ribletted surface ornament, it is an inconsistent

character in this species and as such was not included in the spacing analysis of section 3.1.3c.

The focus of the experimental analysis remained on testing the hydrodynamics of different

scale morphotypes, rather than any specific taxa.

Figure 3.11. X-ray microtomograph images of a Phlebolepis elegans (Thelodonti) flank scale

from the Silurian of Estonia (Silma Cliff, Saaremaa). Specimens provided by Henning Blöm,

Uppsala University. Images not to scale, fish scale is 1.3mm.

d) Poracanthodes sp.

This ‘acanthodian’ has a kite-shaped scale crown with a flat and smooth upper surface,

ornamented with small pores (Figure 3.12). Articulated material figured in the literature

(Valiukevičius, 1992) shows tight packing of the crowns which occasionally overlap a little at 

the posterior margins. The specimen was selected to represent the typical ‘shark-like’ scale

shape, with its distinct neck region and large overhanging crown, without the riblets.
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Figure 3.12. X-ray microtomograph images of a Poracanthodes sp. (Acanthodii) flank scale

from the Silurian of Estonia (Ohesaare Cliff). Specimens provided by Henning Blöm, Uppsala

University. Images not to scale, fish scale length is 1.5mm.

e) Nostolepis striata

This ‘acanthodian’ has blocky scales, with a pointed posterior to the crown (Figure 3.13). The

crown often has riblets at the anterior which may or may not extend and converge towards

the posterior tip. The pointed tip itself is angled steeply, projecting upwards above the scale

base. The specimen was chosen to represent the spine-like scales of many groups, which

theoretically do not reduce drag as their primary function.

3.2.3. Virtual Skin Reconstruction and Standardisation

a) Scaling

Scale volumes (Figures 3.9-3.13) were first imported in to Meshlab software

(http://meshlab.sourceforge.net/), where they were resampled to reduce file size, and a
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Poisson surface reconstruction was performed to simplify the mesh without losing crown

detail. Limited computing power and resolution of three dimensional printing resulted in a

trade-off between scale size and rendering quality. After many design iterations, it was

eventually decided that a minimum standard scale size of 2mm was possible without loss of

the details we intended to study (e.g. riblets, tubercles). Resizing was performed in the CAD

(computer-aided design) program Rhinoceros 3D (Robert McNeel & Associates), before the

scale unit was positioned on a blank square block so that the neck of the scale was parallel to

its surface (Figure 3.14).

Figure 3.13. X-ray microtomograph images of a Nostolepis striata (Acanthodii) flank scale from

the Silurian of Estonia (Ohesaare Cliff). Specimens provided by Henning Blöm, Uppsala

University. Images not to scale, fish scale length is 679µm.

b) Positioning

In modern shark skin, denticles lie in the soft tissue on a level with the thinner scale neck

(between the base and crown), and the distinct neck region of many fossil fish scales suggest a

similar arrangement. Phlebolepis and Lophosteus do not have a distinct neck region, however
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the crowns of these scales can be easily differentiated from the bases, and were positioned so

that when tessellated only the crown surfaces were exposed.

c) Tessellation and merging

Once correctly positioned, further scale units were added to recreate the diagonal rows

observed in both modern sharks and fossil material. This was a slow and precise process of

fine-tuning the optimal packing of scales units, taking care to avoid large spaces or unnatural

tessellation patterns (i.e. not observed in the examined reference material). As scales were

added to the array, Boolean mesh merges were performed in Rhino 3D, which helped produce

small patches of scales which could themselves be duplicated and merged. After each merging

process, it was necessary to recheck the health of the mesh to ensure errors were not

duplicated. Although laborious, this step was vital to successfully render the stereolithic

surface geometry files which would eventually be printed.

When these scale arrays were merged with the blank plate block (described next), the

tessellation pattern was modified to produce a more realistic and uniform surface across the

entire plate. This involved positioning some scale units in such a way that they interdigitated

with those of the blocks on either side (Figure 3.15).

3.2.4. Scale Plate Design

Scale plates of 500mm were required to provide adequate wall length for the boundary layer

to develop, and while a longer plate would have been better to allow this, the cost of

production was prohibitive. There were major technical difficulties in producing a 500 x

100mm single plate, particularly the large computing power required to tessellate thousands

of repeating scale units. It was therefore necessary to design individual scale blocks, which

could be connected tightly in series and secured to the flume rig. These blocks were designed

to accommodate the scales on a stiff and flat surface, supported by two steel rods which ran

through the length of the assembled plate, pulling the individual blocks together when bolted

at either end. Two convex truncated pyramids on one side of the block, with corresponding

concave holes on the other were included to prevent flexure of the plate and guide the surface

scales towards a flat plane when tightened (Figure 3.16). The width of the blocks (i.e. the width

of the plate) was always 100mm and the height 20mm, however the thickness of each block

was dictated by the tessellation of the scales (asterisk of Figure 3.16d). Therefore the number
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of individual blocks required to complete a 500mm plate varied slightly depending on scale

type, and was an unavoidable concession (see Figures 3.17-3.21).

Figure 3.14. Completed Loganellia scale block showing tessellated scale surface (top), and

individual scale volumes embedded and merged with blank rectangular prisms, placed beside

each other before further merging operations (bottom).
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Figure 3.15. Top view of two completed and joined Loganellia scale plate blocks (top), and

detail of the interdigitating scale units (bottom). All plate blocks are 100mm in length.
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Figure 3.16. Design template for the individual plate blocks, on which a scaled surface was

applied. a) top view of block; b) back view; c) oblique view showing concave truncated

pyramids and holes for steel rod supports; d) side view, asterisk shows the only dimensional

variable of the blocks, herein referred to as block thickness, and; e) oblique view showing

corresponding convex truncated pyramids used to guide assembly of plate.
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Figure 3.17. Design of individual block of Loganellia scotica test plate. a) top view of block

showing scaled surface and downstream direction (black arrow); b-c) oblique views of whole

block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale length standardised to 2mm, height above flat upper surface is 0.6mm,

block thickness is 10.4mm, see text.
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Figure 3.18. Design of individual block of Lophosteus sp. test plate. a) top view of block

showing scaled surface and downstream direction (black arrow); b-c) oblique views of whole

block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale length standardised to 2mm, height above flat upper surface is 0.27mm,

block thickness is 10.0mm, see text.
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Figure 3.19. Design of individual block of Phlebolepis elegans test plate. a) top view of block

showing scaled surface and downstream direction (black arrow); b-c) oblique views of whole

block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale length standardised to 2mm, height above flat upper surface is 0.35mm,

block thickness is 12.4mm, see text.
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Figure 3.20. Design of individual block of Poracanthodes sp. test plate. a) top view of block

showing scaled surface and downstream direction (black arrow); b-c) oblique views of whole

block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale length standardised to 2mm, height above flat upper surface is 0.55mm,

block thickness is 10.56mm, see text.
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Figure 3.21. Design of individual block of Nostolepis striata test plate. A) top view of block

showing scaled surface and downstream direction (black arrow); b-c) oblique views of whole

block; d) side view; e-f) surface detail showing scale tessellation and downstream direction

(black arrow). Scale length standardised to 2mm, height above flat upper surface is 0.97mm,

block thickness is 10.47mm, see text.
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3.2.5. Rig Assembly and Flume Setup

a) Flume tank flow

An 8.5 m recirculating hydraulic flume tank, with 30cm cross-sectional width and 30cm depth

was used to conduct the experimental skin friction analysis. The flume is equipped with a stack

of laminarising tubes upstream (the vane) of the measurement zone, designed to minimise

small perturbations, which can propagate to alter the flow structure downstream. To

determine if there was an intrinsic structure to normal flume flow, velocity was measured in

the centre of the flume using laser Doppler anemometry (discussed next, section 3.2.6) for 10

minutes. Over this period mean velocity was 0.32m/s, ranging from 0.2-0.44 m/s (n = 59490),

with a standard error of 0.0001 m/s.

Figure 3.22. Periodogram of velocity measurements recorded at the mid-centre of the flume

tank using laser Doppler anemometry, over 10 minutes at mean flume speed 0.32 m/s.
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A periodogram was produced (using code contributed by Dr Gareth Keevil), using this data

(Figure 3.22), which showed there were fluctuations in velocity. A way of compensating for

this, would be to increase the measurement time at each spatial position. However, measuring

velocity at each of the 410 spatial positions (described next) for 10 minutes would require over

68 hours to complete each plate. Standard error of velocity measurements during the 10

minute run (n = 59530) was 0.0001 m/s. When 20 time intervals of 30 second were randomly

selected (https://www.random.org/) from the same dataset, the mean standard error was

0.0005 m/s (mean n = 2848). On this basis, a 30 second linger time was chosen, reducing the

experimental run time to ~6 hours.

b) Rig assembly

An adjustable aluminium frame was constructed above the flume, which held a single

aluminium supporting beam vertically in to the centre of the flume, approximately 4m

downstream of the vane (Figure 3.23a). A gimble was attached to the end of this beam, which

in turn was bolted to the back of the plate allowing small adjustments to be made to the angle

of the plate. It was important to achieve as horizontal and flat a surface as possible for the

laser Doppler anemometry to return spatially accurate velocity measurements, and to

minimise any pressure gradients, so a high sensitivity spirit level was used while adjusting the

plate. The plate assembly was held scale-face downwards ~16cm from the base of the flume

tank (Figure 3.23b), to reduce the influence of surface waves, which are a potential source of

error, especially in shallower flume tanks.
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Figure 3.23. Flume tank setup; a) general schematic of flume system, and; b) detail of plate

assembly and rig within flume tank. During operation, the flume was blacked out to minimise

exposure to laser light. Not to scale.

c) Flume operation

Once secured, the flume was filled with water and any bubbles adhering to the scaled surface

were removed by hand. While operating, the flume was blacked-out to minimise exposure to

laser light during experimental runs, and before the flume was activated a protective hood was

bolted over the supporting rig. The flume pump was then activated to run at ~50 cm/s

(maximum speeds over each plate ranged from 0.49 - 0.533 m/s) which is in the range of

cruising speeds for many extant fishes of a similar size to the fossil taxa (~5-25cm) (e.g.

Bainbridge, 1957; Fishbase). This speed was used for all scale plates as the experiment sought

a relative comparison of scale hydrodynamics, and not precise species-specific data.
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3.2.6. Laser Doppler Anemometry

a) Experimental setup

Laser Doppler anemometry (LDA) uses the Doppler effect of laser light hitting a seeding

particle to measure flow velocity, and is alternatively referred to as laser Doppler velocimetry

(Durst et al., 1991). An interferometer splits a laser light (argon-ion) in to two coherent beams;

the reference and measurement beams. Particles in the fluid flow alter the frequency of light

intensity depending on their velocity, and the shift relative to the reference beam can be used

to calculate this velocity. The benefits of this method include the high temporal and spatial

resolution, with around 100 2D point measurements per second, a traverse accuracy of ±0.1

mm, and laser Doppler anemometer accuracy of 0.3mm (Yeh & Hall, 2008). No calibration of

the equipment is required, and as a non-intrusive and remote method, the measurement

process has no effect on flow.

Figure 3.24. Diagram of laser Doppler anemometer and flume setup. Not to scale.

For this study, a Dantec fibre-optic LDA system was used, in conjunction with a motorised

traverse to allow navigation to specific measurement locations both along the length of the
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plate, and downwards away from the plate surface in to the freestream. During the

experiment, seeding was added to the flow which the LDA detects to measure velocity, the

seeding used was 10 µm diameter hollow borosilicate glass spheres (which have no effect on

flow), coated with silver to increase reflectivity.

b) Measurement locations

A grid of measurement locations was created to record velocity profiles at five horizontal

distances (x axis) along the plate. Each profile consisted of 82 positions (e.g. Appendix II,

section A2.2) from the point closest to the wall (z = 0 mm) in to the freestream (z = 100 mm),

with a higher density of measurements in the region closest to the wall (Figure 3.25).

Figure 3.25. Diagram showing the density of measurements at positions across the plate (x =

200-400mm), and positions away from the wall surface (z = 0-90mm).
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The plate was fixed in a flat orientation, however even a small tilt could alter the position of z =

0mm across the 500 mm surface. This along with variable scale morphology produced

erroneous results when the probe was measuring the velocity of the plate rather than the fluid

travelling over its surface. The higher density of velocity measurements close to the wall

helped minimise the loss of data resolution in this region, even after post-hoc corrections were

made to the position of z = 0mm. The extent of data loss at the base of each profile is detailed

in section 7.1, and Appendix II.

3.2.7. Data Processing

a) Mean velocity

The LDA system records a large number of velocity measurements at set positions relative to

the test plate for a linger time of up to 30 seconds (see section 3.2.6). Measurement rate is

dependent on the fluid velocity and LDA sensitivity, however by altering seeding density a

maintained rate of 100 measurements per second was achieved. As the LDA system generated

text files of measurements for every z, x position, it was necessary to preprocess this large

volume of raw data and calculate the mean velocity for each position using Matlab (The

Mathworks, Inc., USA).

b) Profile base corrections

Once means had been calculated for every position, it was necessary to retrospectively

estimate the position of the first measurement closest to the wall. The true base of each

profile was obscured during flume testing to protect workers from laser light. As a result the

variable scale geometry and sub-millimetre tilting across the 500mm plate limited the accuracy

of manually estimating vertical measurement positions relative to the test plate. To do this,

mean velocity measurements were plotted as a vertical profile and the intersection with zero

velocity was identified. To refine and standardise this process, the differences between

consecutive measurements were calculated from the highest vertical position to the base. The

true base was defined as the wall-most measurement at which velocity had reached 0.005m/s

or more from the previous (higher in the profile) measurement (an example is presented in

Figure 3.26). Following this procedure, the vertical (z) axis was also corrected, allowing for the

non-uniform spacing in measurement positions.
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Figure 3.26. Example of data correction, identifying the true base of a velocity profile from a

plot of raw data a), and differences between consecutive measurements; b). Corrected base

position (red lines) defined as wall-most measurement at which velocity has reached less than

0.005m/s (bold italics) and had ideally decreased from the vertically higher measurement by

0.005m/s or more (green text). Red text denotes velocity differences 0.005 m/s or smaller than

vertically higher value, or negative values (reversed flow).

All statistical tests and the calculations that follow use only data from these corrected plots. All

mean measurements, including values not included in the analyses are reported in Appendix II.

Raw unprocessed measurements of velocity were retained, as they provided interesting near-

wall information which mean values for velocity may not show as clearly.

c) Boundary layer thickness

Using Matlab the boundary layer thickness was calculated, by first plotting each velocity profile

with a fitted second degree polynomial curve, and extracting the vertical (z) position at which

99% of the freestream velocity was reached. Freestream velocity was defined as mean velocity

at the vertical position furthest from the wall, which because of the base correction process

described previously meant the mean average of this vertical distance was 89.499 (n = 30),

ranging from 81.35 – 89.97. Boundary layer thicknesses were then plotted for qualitative

comparison, and basic descriptive statistics performed using PAST.



88

d) Drag calculations

Within the boundary layer, fluid flow decreases towards the wall, as shear stresses increase

until a ‘no-slip’ condition is reached and fluid is stationary next to the wall. In the region above

this velocity gradually increases proportionally with decreasing shear stresses, until free

stream velocity is reached. Theoretical predictions of flow in the viscous sublayer and log law

region can be used to approximate the near-wall velocity gradient and skin friction.

Figure 3.27. Example semilog plot of velocity profile, showing approximate position of log-law

inner region and a line of best fit. The gradient of this best fit line approximates the frictional

velocity, which itself is used to calculate dimensionless wall units (y+). The inner log-law

region, defined as y+ = >30 - <100 was used to fine tune this line of best fit by iterative

exclusion of data outside this region.

First, log distance from the wall (y) was plotted against velocity (u) for all corrected

experimental data of a given profile (e.g. 250mm from the leading edge of the Lophosteus

plate) and a line of best fit was applied (Figure 3.27). The gradient of this line is equal to the

frictional velocity divided by Von Karmen’s dimensionless constant (0.41), applied to turbulent
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conditions where a no-slip condition is reached. Using the frictional velocity (U*) value, the

distance from the wall was converted to dimensionless distance y+, according to Equation 3.1.

yା =
Distance from the Wall X Frictional Velocity

Fluid Viscosity

yା =
y u ∗

v

Equation 3.1. Equations for the calculation of dimensionless wall unit y+ (Schlichting & Gersten,
1999).

Using this dimensionless distance referred to as wall units (Equation 3.1), the log law region

could be defined further, as y+ = >30 - <100. Once data which fell outside this region was

excluded, another iteration of the same process of line fitting and calculating U* (frictional

velocity) was performed (Equation 3.2). This was repeated until U* values converged to 4

decimal places. Instances where this process resulted in a feedback loop were examined and

the mean U* approximation calculated.

ݎ݂݅ ݊ݐܿ݅ ݈ܽ ݒ݁� ݈ܿ =ݕݐ݅ ඨ
ℎ݁ܽݏ ݎ݁ݐݏ�ݎ ݈ܽݓ�ݐܽ�ݏݏ ݈

݂݈ ݀݅ݑ �݀ ݁݊ ݕݐݏ݅

ݑ ∗ = ඨ
߬

ߩ

Equation 3.2. Equation used to calculate frictional velocity (U*) during approximation process

described in text (Schlichting & Gersten, 1999).
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Freestream velocity was calculated as the mean velocity of all measurements taken beyond

the boundary layer, and using the frictional velocity values, skin friction could be calculated

(Equation 3.3).

Skin friction coefficient =
Frictional Velocityଶ

1
8

x Freestream Velocityଶ

Cf =
U∗ଶ

1
8

x Uஶ
ଶ

Equation 3.3. Equation used for the calculation of skin friction coefficient (Schlichting &

Gersten, 1999).

Descriptive and basic statistical tests were then performed using PAST software. Results of this

experimental data are presented in Chapter 7, and are discussed in Chapter 8.
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4. Comparative Functional Analysis of Scale Morphology

Scale form is a reflection of physical and ecological constraints, so by studying a wide range of

modern sharks in addition to the morphometric approaches presented in Chapters 5 and 6, the

scale functions of extinct taxa can be inferred. Using specimens and data from the literature,

museum collections and fresh modern shark material, scale morphotypes are first identified.

To control for regional variation in morphology only the flank, a relatively large (section 3.1)

and homogeneous (Chapter 6) region, was used for this analysis, unless otherwise stated.

Specialised scale types are identified first as extreme end-members of a hypothesised

functional gradient, before intermediate forms are identified and their possible functions

discussed.

4.1. Comparative Analysis

4.1.1. Specialised scale morphotypes

a) Blocky, flat scales

Examination of a large number of extant sharks revealed blocky non-overlapping flank scales

are found in slow-moving, deep water sharks (section 4.2.1), and the scale type is relatively

uncommon (e.g. Etmopterus bigelowi, Figure 4.1). Extinct taxa with this scale type on the flank

include the Siluro-Devonian (~423-411mya) ‘acanthodian’ Gomphonchus hoppei (Figure 4.1),

and the Devonian (~419-383mya) thelodont Turinia australiensis among others (Appendix I).

The relatively large scale bases suggest there was exposed skin between the crowns. This is a

feature found in some modern gulper sharks, where this exposed skin is coated in thick mucus,

the function of which is likely protection (Reif, 1985b). As there are no obvious features of

hydrodynamic benefit, or specialism for parasite defence, it is assumed herein that the

function of these scales is general abrasion protection and mechanical defence.
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Figure 4.1. Representative examples of blocky flank scales; a) the ‘acanthodian’ Gomphonchus hoppei (drawn from material figured in Valiukevičius, 2005); and b) 

the modern lantern shark Etmopterus bigelowi (drawn from material figured in Castro, 2011).
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b) Spiny, and spine-like scales

Spine-like scales are typically elongate and diamond-shaped, coming to a sharper point at the

posterior, supported by ridges at the base and up to the tip. These are found in a variety of

slow-moving pelagic sharks, including the basking shark Cetorhinus maximus (Figure 4.2), the

Cuban dogfish Squalus cubensis, and many catsharks (Scyliorhinus sp.) and lantern sharks

(Etmopterus sp.) among others (Appendix I).

Spine-like scales and scales with multiple spines are common in Palaeozoic taxa, and constitute

the majority of thelodont morphotypes in particular. In modern sharks, spiny scales (differing

from singular ‘spine-like’ scales) have numerous points emanating from the crown, commonly

as three elevated ridges, of which the central spine is usually the longest. Extant examples

include the marbled catshark, Galeus area, and the brier shark, Deania calcea (Figure 4.2),

which has extraordinary trident-like scales. Palaeozoic taxa with spiny scales include the the

thelodont Paralogania martinssoni (Figure 4.2) and the ‘acanthodian’ Acanthospina irregulare

(Figure 4.2) with spines pointing backwards, raised at 50-60 degrees from the base of the scale

in some cases.

c) Uniform parallel riblets

Scales with parallel riblets have a fairly regular pattern of three or more distinct antero-

posterior aligned peaks and troughs, which are either spaced evenly or may become slightly

closer together away from the medial axis of the crown (Figure 4.3). This scale type is

specialised for drag-reduction, and is found in many pelagic sharks including the shortfin mako

Isurus oxyrhinchus (Motta et al., 2012), considered the fastest shark species

(http://www.flmnh.ufl.edu/). Riblets are a key focus of this project, and are further

investigated in Chapters 5, 6 and 7.
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Figure 4.2. Representative examples of spine-like (a-c) and spiny scales (d-f). A) the

‘acanthodian’ Nostolepis fragilis (drawn from material figured in Valiukevičius, 2003); b) the 

thelodont Loganellia exilis (drawn from material figured in Märss et al., 2006); c) the modern

basking shark Cetorhinus maximus (drawn from material figured in Castro, 2011); d) the

‘acanthodian’ Acanthospina irregulare (drawn from material figured in Valiukevičius, 2003); e) 

the thelodont Paralogania martinssoni (drawn from material figured in Märss, 2003); and f)

the brier shark Deania calcea (courtesy of Sue Lindsay, Australian Museum).
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Figure 4.3. Representative examples of flank scales with uniform parallel riblets; a) the ‘acanthodian’ Nostolepis gaujensis (drawn from material figured in Burrow

et al., 2009); b) the thelodont Canonia grossi (drawn from material figured in Karatajūtē-Talimaa, 2002); and c) the modern requiem shark Carcharhinus

brachyurus (courtesy of Sue Lindsay, Australian Museum).
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4.1.2. Intermediate scale forms

a) Smooth teardrop scales

Smooth teardrop or kite-like scales are found in the modern angel sharks Squatina sp. (Figure

4.4), which are bottom dwelling ambush predators. Several ‘acanthodians’ and thelodonts

(Figure 4.4) share this scale shape, but it is relatively rare. In isolation, the pointed trailing edge

could potentially seed deleterious vortices, but an array of tessellated scales together could

act as a turbulisor, cultivating small-scale turbulence to transfer moment back towards the

wall and keep the boundary layer attached for longer across the skin surface. However, as in

blocky and flat scales, with a smooth surface wearing more evenly, resisting abrasion from the

substrate is likely also important.

b) Converging ridges

Here the ridges on the crown converge towards a point at the posterior edge of the scale, with

the grooves becoming more shallow and narrow towards this edge (Figure 4.5). This

arrangement of converging ridges is known to increase turbulent disturbances at the surface

(Koeltzsch, 2002). However, encouraging transition to a turbulent boundary layer in this way is

a possible mechanism of reducing overall drag; it being the less deleterious alternative to full

boundary layer separation.

Some gulper sharks including Centrophorus granulosus have converging ridges on the crowns

of rhomboidal scales (Figure 4.5) which, because of their large base are separated and do not

overlap. The exposed skin in between the crowns is coated in stiff mucus, as in bramble sharks

(Silas & Selveraj, 1972), suggesting a protective function. Additionally, the hard tooth-like

scales will afford some abrasion resistance, and the ornament of the scale crowns would also

help reduce biofouling if the ridge spaces were smaller than the epibiont attempting to attach

to the surface (Bixler & Bhushan, 2012). For these reasons, and based on the occurrence of this

scale type in generally slow-moving and demersal sharks (section 4.2), their primary functions

are likely both abrasion defence and parasite resistance.
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Figure 4.4. Representative examples of smooth teardrop flank scales; a) the thelodont Loganellia grossi (drawn from material figured in Märss et al., 2006); b) the

‘acanthodian’ Poracanthodes sp. (section 3.1) and; c) the modern angel shark Squatina californica (drawn from material figured in Castro, 2011).
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c) Riblets on the leading edge

In some cases the parallel riblets are restricted to the anterior portion of the crown, for

example in bamboo sharks (Hemiscyllidae), and some ‘acanthodians’ (Figure 4.6). The function

of this morphology is not immediately apparent, but three hypotheses are presented. In the

epaulette shark Chiloscyllium punctatum (Figure 4.6), there is a distinct overlap of the crowns,

and this helps achieve a dense scale covering for mechanical defence against abrasion, like the

smooth teardrop-like scales described above. It is also possible that riblets at the leading edge

reduce the surface area of the overlying scale in contact with it. This would reduce inter-scale

friction, and therefore the energy cost of flexure during swimming. Although small, it is

reasonable to suggest the cumulative benefit of reducing scale-scale contact between

thousands of scales could be a significant energetic benefit.
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Figure 4.5. Representative examples of flank scales with converging ridges; a) the thelodonts Overia adraini (drawn from material figured in Märss et al., 2006);

and b) Thelodus laevis (micrograph produced using material provided by Henning Blom); c) the modern gulper shark Centrophorus granulosus (section 3.1).
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Figure 4.6. Representative examples of flank scales with leading edge riblets; a) the ‘acanthodian’ Nostolepis gracilis (section 3.2); b) the ‘acanthodian’

Cheiracanthoides planus (drawn from material figured in Vaiukevičius, 2005); and c) the modern bamboo shark Chiloscyllium punctatum (section 3.1).
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Chiloscyllium scales have parallel streamwise riblets that rarely extend into the posterior half

of the crown. Scratches were observed across the surface of the crown which did not extend

into the anterior region, and in articulated material they can be seen supporting the

overlapping scale at the peaks of the ridges which often appear worn (Figure 4.7). The scales of

Scyliorhinus canicula sometimes possess small polygonal structures (known as ectodermal pits)

at the front of the crowns, especially on the head and anterior of the flank. They are well-

ordered, low relief structures normally ~12-16µm diameter and hexagonal (Figure 4.7). The

function of these pits is discussed further in Chapter 6.

Figure 4.7. Points of interest on shark denticles. A) overlapping head scales (‘H3’) of

Chiloscyllium plagiosum (section 3.1) showing riblet wear, and scratch marks. b) Overlapping

flank scales (‘FB1’) of Scyliorhinus canicula (section 3.1) showing polygonal ultrasculpture.

Scale bars are 50µm.

Reducing inter-scale friction goes some way to explaining the unexposed riblets of bamboo

sharks, however it is important to note that ‘acanthodian’ scales with this ornament do not

overlap, and the value of a partial ornament remains unclear. As discussed, riblets that extend

the entire length of the crown help modern sharks reduce skin friction during swimming.

Realistically, species such as Nostolepis gracilis (Figure 4.6.) may still have achieved drag-

reduction with partial riblets, but even if this were the case there are many more

‘acanthodians’ with converging, non-parallel riblets along the anterior edge of the crown. Like

those modern sharks with converging ridges over the entire scale, one could speculate that it is

an antifouling adaptation, preventing the attachment of parasites.
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d) Keel-dominated parallel riblets

Keel-dominated forms have one central antero-posterior riblet extending the full length of the

scale. Parallel secondary riblets run alongside, and their length often determines the overall

shape of the scale crown. The riblets are sometimes held on isolated ‘wings’, which can give

the scale a cuspate appearance (Figure 4.8). Where the central keel dominates the ornament,

a ribletting effect is often still achieved through tessellation with other scales (Figure 4.8).

Riblet spacing was hypothesised to correlate with swimming speed in modern sharks, with

slower speeds associated with wider spacing (Reif, 1985a), which is confirmed in Chapter 5. As

space for riblets and grooves is restricted by the diameter of the crown surface, it is likely that

these keels serve to extend the groove width across several scales, and by doing so are

optimised for drag-reduction at slower swimming speeds.
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Figure 4.8. Representative examples of keel-dominated flank scales; a. the thelodont Phlebolepis elegans; b. the ‘acanthodian’ Vernicomacanthus waynensis

(Natural History Museum, London); and the modern gulper shark Centrophorus squamosus (drawn from material figured in Castro, 2011).
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4.2. Scale Morphotype Occurrence

4.2.1. Modern sharks

The occurrence of different scale types in modern sharks of known ecology is an important

basis for interpreting their function. Dermal denticles from the flank of 125 modern shark

species were examined from both published and fresh material, and categorised based on

ecology (source FishBase; Froese & Pauly, 2014). The scales were then assigned to one of the

seven morphotype categories described so far (Appendix I).

The incidence of the defined scale types in different ecological ranks was striking (Figure 4.9),

with a clear association between parallel riblets and pelagic ecology. None of the sharks

classified as ‘fast’ or ‘moderate speed’ (n= 42) had smooth or blocky scales on the flank, nor

did they have converging ridges ornamenting their surface. Parallel riblets also occur in

demersal and slow pelagic sharks, but are much less prevalent (~23%, n= 81) than blockier or

spiny morphotypes. Other patterns are difficult to distinguish, however spiny and spine-like

scales do occur more frequently in sharks living on or near the sea floor, where the necessity

for physical defence may be elevated.

Based on the literature and results presented so far, a semi-quantitative basis for the

interpretation of fossil scales can be constructed (Figure 4.10). It includes several intermediate

forms, and accounts for the majority of scale morphologies encountered in modern sharks,

and the ‘acanthodian’ and thelodont fossil record.
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Figure 4.9. Percentage occurrence of scale morphotypes in modern sharks of different ecologies (n =125).
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Figure 4.10. Hypothesised functions of flank dermal denticles.

4.2.2. Stratigraphic occurrence

Using the framework described above the global incidence of scale type (and hence function)

can be tracked throughout the mid-Palaeozoic, when thelodont, ‘acanthodian’, and early

chondrichthyans dominated the oceans (Figure 4.11). All of these groups were included in the

survey of 208 taxa with published scale data. Of these, 182 recorded the body region as the

flank (or equivalent terminology), and of these 167 could be classified as a particular scale

type. Scale functions were then applied using Figure 4.10, with scores of 1 for specialised single

function scales, and intermediate morphotypes were scored 0.5 for each function.

What this reveals is the presence of complex ecologies from at least the Llandovery (~440

million years ago), which includes active pelagic taxa. There appears to be a continuous

increase in those species prioritising drag-reduction throughout the Silurian, and into the early

Devonian. This is in accord with previously observed patterns of faunal diversity throughout

the end Silurian and early Devonian, showing a large-scale shift from benthic to nektonic

lifestyles in a suite of disparate taxa (Klug et al., 2010).
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4.3. Scale Regionalisation in Modern and Fossil Taxa

Scale morphology of modern sharks can vary enormously (Chapter 6), and a suite of scale

types can be found at different body regions of the same species. Examination of articulated

remains (detailed in Appendix I) and figured material of thelodonts, ‘acanthodian’s and early-

chondrichthyans proper revealed similar variation in fossil taxa. Commonly, head scales were

rounder in shape, with lower relief of crown ornamentation such as spines (if present). Of the

98 taxa with both head and flank scales recorded, only 6 had spines on the head region, and all

were thelodonts. Among these were Lanarkia horrida and Drepanolepis maerssae both of

which have much shorter spines on the head, than those of the flank region. Converging riblets

were common on the head (n = 21), as were smooth but star-shaped scales (n = 27), although

there was little consistency in the associated flank scale morphology. The clearest trend in the

majority of taxa was the streamwise elongation of flank scales relative to those on the head,

which was also observed in modern shark taxa. Scale regionalisation in modern sharks is the

subject of Chapter 6, and is discussed in Chapter 8.

4.4. Summary

In this chapter, the flank scales of thelodonts, ‘acanthodians’ and early chondricthyans are

compared with modern shark analogues. Comparative analysis suggests that blocky and

smooth scales of the flank are adapted for abrasion resistance and general mechanical

defense, whereas spiny or spine-like scales function to resist parasite attachment. Those flank

scales with uniform parallel riblets or those with keels aligned in the streamwise direction are

here interpreted as reducing skin friction drag, as in modern sharks. The occurrence of parallel

riblets in modern sharks of differing ecologies is presented which supports this view.

Intermediate forms are herein described and a flowchart of flank scale function is presented.

Using this framework, the stratigraphic occurrence of scale functions is analysed revealing an

increase in drag-reducing scale types throughout the Silurian relative to abrasion resistance

and parasite defence. Lastly, the head and flank scales of fossil taxa are compared (based on

examined and figured material), and an overarching trend for rounder and lower relief head

scales is identified.

In Chapter 5 the significance of riblet spacing for drag reduction is investigated in more detail,

and in Chapter 7, the skin friction of a number of commonly encountered scale morphotypes is

tested experimentally for the first time.
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Figure 4.11. Functional composition of mid – Palaeozoic taxa with dermal denticles based on flank scale morphology. See Appendix 1 for full data and references.
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5. Drag-reducing Riblets in Modern Sharks and Fossil Fishes

In this chapter, biomimetic investigations of riblet spacing are used retrospectively to

investigate the hydrodynamics of the animals which inspired the technology. Ecological data of

modern sharks is used to determine if riblet spacing is related to speed, and further extended

to fossil taxa for the first time. A summary of the background to this investigation is presented

first for ease of reference.

5.1. Riblet optimisation

As demonstrated in Chapter 4, there are striking convergences in the dermal denticle

morphology of modern sharks with fossil taxa, with scales adapted to a greater or lesser

degree for four distinct functions; parasite defence, abrasion resistance, drag reduction, and

luminescence (Reif, 1985a). The first three can be identified from scale morphology because

the crowns of dermal denticles are exposed directly to the environment (Whitear et al., 1986),

allowing their function to be assessed independently of overlying tissue and mucus.

Figure 5.1. Scanning electron micrographs of flank scales of a) the porbeagle shark Lamna

nasus and; b) the ‘acanthodian’ Nostolepis sp. cf. N. gaujensis. Scale bar on each image is 200

µm. ‘acanthodian’ image reprinted from (Burrow et al., 2009) with permission from Carole

Burrow.
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The parallel riblets ornamenting the surface of some fish scales (Figure 5.1) have been

identified as a key drag-reducing feature, and those of fast pelagic sharks have been the

inspiration for numerous biomimetic applications, including swimsuits, and drag-reduction on

planes and ships (Bixler & Bhushan, 2012). Riblets act to control vortices which form across the

scale surface in a turbulent flow regime, by reducing their lateral drift, and pinning the vortices

in place. This reduces the lateral transfer of momentum, meaning drag – any impedance/loss

of velocity – is reduced as well. Riblets also lift these vortices up and out of the valleys in

between the riblet peaks, minimising the surface area rotating fluid is in contact with. This

means less force is required to overcome the friction imparted by that surface, and drag is

reduced (Bechert & Hoppe, 1985; Bechert et., 2000; García-Mayoral & Jiménez, 2011; Dean &

Bhushan, 2012; Oeffner & Lauder, 2012; Figure 5.2). Scales of modern sharks become larger as

they are shed and replaced throughout the animal’s life, but riblet spacing on the flank

remains fairly constant (Raschi & Tabit, 1992), suggesting a tight optimal range related to

lifestyle (although see section 6.3).

Figure 5.2. Schematic vertical cross sections of turbulent-flow of streamwise vortices over a) a

flat plate, and; b) riblets. Mean velocity profiles for flow in streamwise (green) and cross-flow

(orange) directions shown for riblets. Adapted for illustrative purposes from Bechert et al.,

1997, and Lee & Lee, 2001.
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Since some of the earliest work recognising the potential drag-reducing properties of riblets,

experimental studies have sought to optimise their geometry (e.g. Walsh & Lindemann, 1984).

To function effectively, riblets must be spaced more narrowly than the vortices that form

across the scale, keeping them above and out of the valleys between the peaks (Figure 5.2b). It

was found that smaller riblet spacing was directly related to greater drag-reduction in faster

flows, with 2-3 riblet peaks needed to support a vortex (Bechert et al., 2000). However, this

understanding of riblet optimisation has never been applied retrospectively to study the sharks

that inspired the design.

In Chapter 4, it was demonstrated that denticles of modern sharks are comparable to those

found in many long extinct groups including the stem chondrichthyan ‘acanthodians’ (Davis et

al., 2012; Zhu et al., 2013) and the jawless thelodonts from the Palaeozoic (~383-425 million

years ago) (Märss et al., 2007), some of which have riblets on their crowns (e.g. Figure 5.1b).

Fossil fish hydrodynamics are seldom investigated (Fletcher et al., 2014), not least because

three dimensional structures are rarely preserved. While only some fossil taxa in this study are

known from articulated remains (Miles, 1973; Turner, 1982; Young & Burrow, 2004), their

scales can provide key hydrodynamic information. The riblets of 50 modern shark species were

compared to test the hypothesis that narrower spacing will be found in relatively faster extant

shark species. The riblet spacings of fossil taxa were then measured for comparison.

5.2. Riblet Spacing Analysis

Scanning electron micrographs of the flank region of 50 modern sharks, 6 ‘acanthodians’ and 5

thelodonts were analysed, from both newly imaged and existing figured material. Riblet

spacing was measured as detailed in section 3.1.3c, and was the only scale trait measured for

this analysis. The relationship between riblet spacing and swimming speed in sharks was

investigated by Dr Mark Bell using phylogenetic least squares regression (PGLS). For full

methodology see section 3.1.3c.

Taken as a whole, riblet spacing data did not depart significantly from a normal distribution,

but since there were few data in some groups and some distributions were not normal, tests

for differences in riblet spacing between groups were performed using Mann-Whitney tests,

correcting for multiple testing with the False Discovery Rate method (FDR) Benjamini &

Hochberg, 1995), using the p.adjust function in R. The PGLS test showed that there was a

strong negative correlation between riblet spacing and swimming speed, after taking

phylogeny into account (r2 = 0.244, F 8.272, p <0.001). Figure 5.3 shows distributions of riblet
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spacing in the three shark and two fossil species groups, and Figure 5.4 shows relative riblet

spacings of modern shark species on a recent phylogeny (Vélez-Zuazo & Agnarsson, 2011).

Table 5.1 shows the results of Mann-Whitney post hoc comparisons.

The analysis of riblets in modern sharks revealed a significant trend towards decreased riblet

spacing with increased swimming speed. Mean riblet spacing for ‘fast’ sharks was 63µm,

‘moderate’ was 91µm (44% wider than ‘fast’), and ‘slow’ was 111µm (75% wider than ‘fast’).

The extinct thelodonts and ‘acanthodians’ had the narrowest mean riblets at 50µm and 62µm

respectively, with spacing comparable with the fastest modern sharks.

Table 5.1 shows riblet spacing is significantly smaller in the ‘Fast’ sharks than in both

‘Moderate’ and ‘Slow/Scavenger/Ambush’ modern species. There was no significant difference

between ‘Fast’ modern sharks and the ‘acanthodians’, or thelodonts. Both the ‘Moderate’ and

‘Slow/Scavenger/Ambush’ species have significantly wider riblet spacing than the two fossil

categories, with the exception that the ‘Moderate’ and ‘acanthodians’ are not significant

following a p value correction using FDR.

Table 5.1. Comparisons of riblet spacing between ecological categories. Significant results

(<0.05) are highlighted in bold. Values in brackets represent p values following Mann-Whitney

tests and False Discovery Rate correction. Courtesy of Dr Mark Bell.

Moderate Slow Thelodonts ‘Acanthodian’

Fast W 101 6 71 79

p 0.001 (0.011) <0.001 (<0.001) 0.169 (0.507) 0.268 (0.536)

Moderate W - 39 104 113

p - 0.001 (0.17) 0.003 (0.021) 0.016 (0.081)

Slow W - - 35 39

p - - 0.003 (0.02) 0.008 (0.049)

Thelodonts W - - - 11

p - - - 0.537 (0.537)
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Empirical studies of biomimetic models show that decreasing riblet spacing has a greater drag-

reducing effect at higher speeds (Dean & Bhushan, 2010), and this negative relationship

between riblet spacing and speed in modern species of shark can now be demonstrated. This

may be related to a decrease in vortex wavelength with increasing velocity, when more

closely-packed riblets are needed to hold the vortices above the riblet valleys. The small riblet

tips reduce the contact between the vortex and the fish by lifting them out of the riblet valley,

reducing wall shear stress and skin friction (Bechert et. al. 1997; Lee & Lee, 2001). Extinct taxa

with narrowly spaced riblets appear to have been similarly adapted for speed and efficiency.

Furthermore, there is evidence that some of the earliest known fishes were similarly well

adapted for drag-reduction. The Middle Ordovician (~460 million years ago) fishes Tantalepis

gatehousi (Sansom et al., 2012) and Areyonga oervigi (Young, 1997) (possible chondricthyans)

were not included in the main analysis as the scales found were of unknown position on the

body. However their mean riblet spacing was 69µm and 77µm respectively, placing them

within the fast-moderate speed modern sharks.

Figure 5.3. Boxplot showing riblet spacing measurements for acanthodians, thelodonts and

modern sharks (n = number of species) possessing distinct parallel grooves and riblets on the
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scale crown surface. Boxes represent 25-75 percent quartiles with median values at vertical

division line. Statistically significant differences (Mann-Whitney) (Table 5.1) are indicated by

left adjoining lines, those in red indicate p values that show no significant difference after FDR

correction. Determination of shark speed categories was based on ecological and experimental

speed data, detailed in the methods section.

The smallest riblet spacing of the ‘acanthodians’ studied was the Lower to upper Middle

Devonian (~407-383 mya) genus Milesacanthus (Burrow, et al., 2006; 2009), at 40µm.

Milesacanthus scales resemble those of the shortfin mako shark (Isurus oxyrhinchus), which

can be highly flexible, especially in the flank region where adverse pressure gradients are likely

to develop at high speeds or during manoeuvres (Lang et al., 2008). The erection of these

scales, known as ‘bristling’, acts to prevent boundary layer separation by retarding any

reversing flow (Motta et al., 2012). In this and Lamna nasus (Chapter 6) the scales have a

hinge-like base, wider than it is long and smaller than the crown above. Milesacanthus also

had scales with a relatively small base, and a base length to width ratio very similar to the

mako shark, suggesting a similar bristling action.
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Figure 5.4. Plot showing the phylogeny of species included in this study which also feature in

the Vélez-Zuazo and Agnarsson, 2011 dataset. Species are coloured by speed

categories ‘slow’ (purple), ‘moderate’ (green), and ‘fast’ (blue) as in Figure 4 of the

main text. Mean spacing values illustrated by circles at each tip, where larger circles

equal larger riblet spacing. This figure was produced and the PDR analysis performed

by co-author Dr Mark Bell.

The occurrence of innovative drag-reducing morphology in fossil taxa as advanced as that seen

in the fastest modern sharks is significant. This optimal scale riblet spacing is found in the

earliest groups of scaled fishes, suggesting that there was a significant selective advantage to

being built for speed. An expansion into the pelagic realm during the Devonian from a

predominantly benthic fauna, a progression referred to as the ‘nektonic revolution’ (Klug et al.,

2010), is certainly consistent with selection for hydrodynamic efficiency; there is nowhere for

prey to hide in open water and speed can give both predator and prey a selective advantage.

5.3. Summary

In this chapter phylogenetic generalised least-squares regression is used to demonstrate a

strong relationship between riblet spacing and swimming speed in modern shark species. The

smallest spacing of riblets is associated with the fastest extant sharks, and the largest spacing

occurs in the slowest pelagic species. The appearance of riblets in fossil species suggest that

such a drag-reduction morphology evolved in the earliest vertebrates, including some of the

oldest examples known (~460 million years ago). Applying this observation to the fossil record

it appears some Palaeozoic taxa match the apparent optimum riblet spacing for drag-reduction

found in faster pelagic sharks. This implies adaptation for fast, efficient swimming. The results

demonstrate that riblet spacing is fine-tuned to the species’ ecology, and that novel and

sophisticated drag-reduction adaptations existed at the dawn of fish evolution.

In the next chapter, the variation in scale features (ncluding riblet spacing) between and within

species are investigated, principally in the modern porbeagle shark Lamna nasus.
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6. Modern shark scale variability analysis

In Chapter 4, the flank scales of fossil and modern shark scales were compared to inform

interpretations of their function. The flank is the largest region of the fish body (section 3.1),

and this chapter demonstrates the relative homogeneity of scales in this region as well. It is on

this basis that the flank region is considered representative of general scale function, for

comparison between taxa. It is noted in section 4.3 however that scale morphology can differ

between body regions, in both modern shark taxa and their extinct Palaeozoic relatives.

Quantitative analysis of scale regionalisation is rare for modern sharks (Cigala Fulgosi &

Gandolfi, 1983; Crooks, 2013), and to date only Reif’s 1985 work has addressed

hydrodynamically relevant scale features. A thorough investigation of modern shark material is

presented in this chapter, which forms a crucial basis for understanding the regionalisation of

scales in fossil taxa.

6.1. Morphological regionalisation

a) General observations

Qualitative examination of sampled modern shark material (section 3.1) revealed several

patterns of scale regionalisation. Scales from the rostral region of the head (‘H1’, Figure 6.1)

tend to be smoother, with noticeably lower relief of crown structures such as riblets (if

present). In addition to the smoothness of the individual scale crowns, and the rostral skin

surface in general, the directionality i.e. a ‘streamlined’ geometry of the scale crown is also

much smaller. Scales in this region also tend to tessellate on all sides of the crown, rather than

overlapping each other. The porbeagle shark Lamna nasus showed little change from head to

tail, however in contrast to regions more posterior, scales at the tip of the rostrum did not

overlap, and were very tightly packed. Both examined Chiloscyllium species also had blocky

and rhombic head scales with little overlap, but after this point scales become more elongate

with greater overlap.

This pattern of overlap is not repeated in Scyliorhinus canicula (Figure 6.2.), which has flat,

kite-shaped scales on the tip of the head, which overlapped but still formed a relatively

smooth surface. After this point, scale shape quickly graded to spine-like teardrops, the size of

which varied greatly across the rest of the head and flank. Of the material examined for this

study, only Centrophorus granulosus had rough surface structures on the scale crown with

radial ridges converging to a central point. This rostral scale type is very similar to many

‘acanthodian’ head scales, and just as in C. granulosus flank scales are more elongate and
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streamlined in shape. Like many ‘acanthodian’ and thelodont taxa, scale overlap was not

observed at any sampled point on the body. At the tail, scale shape is generally similar to that

of the flank; however tail scales tended to be relatively smaller, with tighter packing than body

regions upstream.

Figure 6.1. Standardised sampling locations (orange squares) used throughout this study, and

midline transect (yellow line) from anterior-most to posterior-most sampling locations.

Scheme detailed in section 3.1. Example shown is Lamna nasus, not to scale.

6.2. Crown and base dimensions

To investigate the size and basic geometry of scale crowns across the body of modern sharks,

the width and length of scales at different sampling locations were measured. Two species

were chosen, based on availability of material, and to represent contrasting modern shark

ecologies. The scales of the slow-moving, deepwater gulper shark Centrophorus granulosus do

not overlap, and the entire scale crown geometry can be measured in situ. On this basis the

flank of C. granulosus was chosen for a higher density of sampling. This was to test that the

flank region was sufficiently homogeneous enough to justify basing ecological interpretations

on scales sampled from any generically described ‘flank scale’ in the literature. The larger,

faster-moving porbeagle Lamna nasus and many other pelagic shark species have scales which

overlap, which presented a problem for measuring large numbers of scales in a limited time

period. The exposed/visible scale lengths and widths were also measured to approximate the

degree of scale overlap and crown size respectively. The base aspect ratio was also calculated
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for isolated and manually mounted scales, to test the hypothesis that wider thinner scale

bases occur in areas prone to bristling (Lang et al. 2008).

Figure 6.2. Shark squamation along the midline (‘H1-3, FF2, FB2, T1-3’, Figure 6.1.) showing

scale variation from anterior to posterior. Note: It is clear from material figured in the

literature (Reif, 1985a), that the scales of Squalus acanthias have similarly smooth rostral

scales, in contrast to the sample presented here (bottom left). Ecological data based on Ebert

et al., 2013.
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6.2.1. Crown size and geometry of Centrophorus granulosus

Significant differences in both crown width and aspect ratio were found between most

sampling positions (Table 6.1). The pectoral fin (‘P3’, Figure 6.1., Figure 6.3) had the smallest

scales with mean width of 94±3.0µm (SE), and mean length of 153±4.4µm, and the largest

scales were 333±5.0µm (SE) wide at the dorsal-most anterior of the flank, and 387±10.4µm at

the base of the dorsal fin (‘FF1’ and ‘D3’ respectively).

Compared to the 6-point sampling scheme (‘FF1-3’ and ‘FB1-3’, Figure 6.3), width and length

means were lower (0.9%, and 4.9% respectively) than the higher-resolution treatment, which

sampled 59 positions within the same bounds (Appendix I). However, a t-test revealed no

significant difference between the values obtained by these sampling methods for either

length (p = 0.84, f 2.5) or width (p = 0.23, f 1.5). Mean scale aspect ratio (length/width) ranged

from 0.90 at the anterior-most centre of the flank (‘FF2’) to 1.78 at the middle of the tail (‘T2’).

Scales were significantly longer and narrower in the tail and dorsal and pectoral fins compared

with the flank (Table 6.1) supporting earlier qualitative observations (section 6.1).

6.2.2. Crown size and geometry of Lamna nasus

As discussed, the overlap of scales in this species can obscure the crown and prevent accurate

measurement, but the exposed width can still provide an approximate indication of scale size.

Significant differences in scale width were found between most body regions (Table 6.2), and

across the midline of the shark there is a general decrease in scale width from anterior to

posterior with tail scales being ~14% smaller than those on the flank and head. Additionally the

pectoral and dorsal fin mean scale widths were 10-12% smaller than the flank and head (see

Appendix I for individual specimen plots). A similar pattern was found for exposed scale length,

with the largest values at the tip of the rostrum (‘H1’) and the proximal region of the pectoral

fin (Table 6.3). Mean aspect ratio (width/length) of exposed scale crown rises gradually across

the midline, with an increase of 6% (longer thinner scales) from the head to front flank region.

The tail scales have even longer exposed length relative to width, with an exposed aspect ratio

11.9% greater than at the head. This supports earlier observations that scales tend to be

longer and narrower towards the tail, a pattern also observed in actinopterygians (pers. comm.

Matt Friedman).

Maturity occurs in male Lamna nasus at ~8 years between 165-195cm, and ~13 years in

females at 195-245cm (Francis & Duffy, 2005; Ebert et al. 2013; Natanson et al., 2002). Widths

and lengths measured for the Lamna nasus sharks showed significantly wider and longer
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crowns in mature animals (Figure 6.5, Tables 6.2, 6.3), likely because denticles are shed during

growth and replaced by larger scales. Scale widths and lengths were also significantly greater

in female animals, perhaps reflecting the larger average size of female specimens of this

species used in this analysis.

Figure 6.5. Histogram showing mean scale width of immature (blue) and mature (red) Lamna

nasus. Males over 165 cm and females over 195 cm defined as mature (according to Ebert et

al., 2013).

6.2.3. Scale base geometry of Lamna nasus

Across the midline of the shark there is an increase in scale base aspect ratio of ~47% (i.e.

becoming wider, relative to length) from head to flank (‘H1’-‘FB2’, Figure 6.4). Scale base

aspect ratio differs significantly between most body regions, tending to be lower in the fins

and snout (Table 6.4.). These are areas where scale stability and embedded strength in the

dermis may be more important than the pivoting bristling action encouraged downstream,

especially across the flank. Another possibility is that there are changes in scale packing in

different regions, which require the scale bases be smaller in areas of higher scale density.

Alternatively base morphology may be influenced by the differing orientation of collagen fibres

across the body, which are vital for maintaining the elasticity of shark skin.
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Table 6.1. Descriptive statistics and tests for difference of crown width (µm) and crown aspect ratio in Centrophorus granulosus (48cm, male).

CROWN WIDTH (µm) p-value*

Sample N Mean SE 25% Median 75% H Mg P D FF FB Cl

All Scales 298 214.2 4.60 153.3 198.10 289.2
Head (H) 45 214.3 4.71 195.0 217.5 22.1
Mid Gills (Mg) 15 160.4 2.83 150.5 157.2 169.2 <0.001
Pectoral Fin (P) 45 131.3 5.94 88.2 142.1 164.0 <0.001 0.312
Dorsal Fin (D) 45 187.2 14.91 112.5 128.5 318.3 0.413 0.428 <0.001
Flank Front (FF) 45 288.5 6.38 257.9 285.9 329.2 <0.001 <0.001 <0.001 <0.001
Flank Back (FB) 45 315.8 3.42 300.4 315.3 334.7 <0.001 <0.001 <0.001 <0.001 0.403
Claspers (Cl) 13 169.6 4.16 157.5 167.7 182.3 0.012 0.997 0.059 0.871 <0.001 <0.001
Tail (T) 45 179.2 4.02 155.8 176.5 200.0 0.116 0.829 0.005 0.999 <0.001 <0.001 0.995

CROWN ASPECT RATIO (L/W) p-value†

Sample N Mean SE 25% Median 75% H Mg P D FF FB Cl

All Scales 285 1.29 0.02 1.03 1.21 1.50
Head (H) 45 1.16 0.03 1.01 1.15 1.32
Mid Gills (Mg) 15 0.98 0.04 0.87 0.97 1.08 0.119
Pectoral Fin (P) 45 1.56 0.06 1.28 1.54 1.72 <0.001 <0.001
Dorsal Fin (D) 45 1.43 0.03 1.24 1.40 1.62 <0.001 <0.001 0.596
Flank Front (FF) 45 1.02 0.02 0.95 1.00 1.11 0.305 1.000 <0.001 <0.001
Flank Back (FB) 45 1.05 0.02 0.98 1.07 1.11 0.847 <0.001 <0.001 <0.001 0.990
Claspers (Cl) 13 1.44 0.04 1.32 1.44 1.56 <0.001 <0.001 0.660 1.000 <0.001 <0.001
Tail (T) 45 1.57 0.06 1.21 1.60 1.85 <0.001 <0.001 1.000 0.489 <0.001 <0.001 0.553

*Crown Width - ANOVA [F(7, 290) = 70.41, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different (95% confidence
ŝŶƚĞƌǀ ĂůͿ͘Ώ��ƌŽǁ Ŷ��ƐƉĞĐƚ�ZĂƟŽ�- ANOVA [F(7, 314) = 37.68, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different
(95% confidence interval).
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Figure 6.3. Heat map of a) mean scale width (µm) and; b) scale crown aspect ratio (length/width). Distribution interpolated across entire body from standardised

sample locations (Figure 6.1.).
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Table 6.2. Summary statistics and test for difference of Lamna nasus scale width measurements (all micrometres, µm).

Sample N Mean SE 25% Median 75% p-value* F

All Scales 1421 250.70 1.12 221.00 246.44 276.02

Se
x Male 570 241.85 1.69 213.43 234.68 265.04

<0.001 1.11Female 851 256.63 1.46 227.13 252.52 282.58

M
at

u
ri

ty Immature 851 233.47 1.10 211.97 231.64 253.66 <0.001 1.78
Mature 570 276.44 1.79 247.52 276.49 305.92

p-value†

Sample N Mean SE 25% Median 75% H Mg P D FF FB

Head (H) 225 263.86 2.48 235.27 257.79 290.07
Mid Gills (Mg) 75 259.30 3.89 236.64 252.42 272.21 0.931
Pectoral Fin (P) 225 240.39 2.56 213.21 231.93 266.61 <0.001 <0.001
Dorsal Fin (D) 225 234.41 2.54 208.04 228.88 256.01 <0.001 <0.001 0.785
Flank Front (FF) 225 261.00 2.78 229.88 254.93 282.36 0.993 1.000 <0.001 <0.001
Flank Back (FB) 221 273.76 2.95 242.65 266.42 301.82 0.213 0.010 <0.001 <0.001 0.037
Tail (T) 225 228.34 2.43 202.40 223.46 256.44 <0.001 <0.001 0.061 0.775 <0.001 <0.001

SE = Standard error
Maturity = Males over 165cm and females over 195cm defined as mature, according to Ebert et al. 2013.
* p-value from Student’s T-test. Emboldened values significantly different (95% confidence interval).
† ANOVA [F(6, 1414) = 41.68, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different (95% confidence interval).
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Table 6.3. Summary statistics and test for difference of Lamna nasus exposed scale length measurements (µm).

Sample N Mean SE 25% Median 75% p-value* F

All Scales 1421 250.70 1.12 221.00 246.44 276.02

Se
x

Male 570 208.43 1.89 175.34 203.97 235.13
<0.001 1.15

Female 851 244.89 1.66 211.89 240.50 275.05

M
at

u
ri

ty Immature 851 216.23 1.42 186.99 215.20 243.45
<0.001 1.75

Mature 570 251.21 2.30 214.61 251.12 290.78

p-value†

Sample N Mean SE 25% Median 75% H Mg P D FF FB

Head (H) 225 249.01 2.97 217.16 244.72 280.28

Mid Gills (Mg) 75 261.63 5.84 229.28 262.15 284.71 0.143

Pectoral Fin (P) 225 244.29 3.13 206.56 240.74 273.50 0.964 0.009

Dorsal Fin (D) 225 222.32 2.79 190.22 220.17 251.72 <0.001 <0.001 <0.001

Flank Front (FF) 225 232.36 3.17 202.22 232.97 259.03 0.014 <0.001 0.196 0.398

SE = Standard error
Maturity = Males over 165cm and females over 195cm defined as mature, according to Ebert et al. 2013.
* p-value from Student’s T-test. Emboldened values significantly different (95% confidence interval).
† ANOVA [F(6, 1414) = 41.68, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different (95% confidence interval).
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Figure 6.4. Examples of Lamna nasus dermal denticles with low aspect ratio (width/length) in the head region and high aspect ratio scale bases on the flank. Heat

map of scale base aspect ratio distribution from 19 sample locations (excluding claspers) of a 183cm male, and three flank semi-landmarks , interpolated across

entire body, and weighted according to standard error.
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Table 6.4. Summary statistics and tests for difference of Lamna nasus scale base aspect ratio (width/length), male specimen 183cm. Statistical differences

highlighted in bold italic.

p-value†

Sample N Mean SE 25% Median 75% H Mg P D FF FB Cl

All Scales 487 1.49 0.02 1.16 1.40 1.72

Head (H) 62 1.25 0.04 1.05 1.23 1.37

Mid Gills (Mg) 25 1.52 0.08 1.15 1.44 1.8 0.007

Pectoral Fin (P) 75 1.23 0.03 1.06 1.21 1.35 1.000 0.002

Dorsal Fin (D) 75 1.30 0.03 1.14 1.27 1.42 0.997 0.067 0.978

Flank Front (FF) 75 1.59 0.05 1.33 1.54 1.76 <0.001 0.980 <0.001 0.003

Flank Back (FB) 75 1.90 0.06 1.53 1.81 2.20 <0.001 <0.001 <0.001 <0.001 0.002

Claspers (Cl) 25 1.09 0.05 0.86 1.12 1.25 0.462 <0.001 0.647 0.111 <0.001 <0.001

Tail (T) 75 1.76 0.05 1.51 1.73 2.00 <0.001 0.036 <0.001 <0.001 0.359 0.623 <0.001

† ANOVA [F(7, 479) = 34.69, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different (95% confidence

interval).
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Table 6.5. Summary statistics of Lamna nasus scale riblet spacing measurements, all in micrometres (µm).

Sample N Mean (µm) SE 25% Median 75% p-value* F

All Scales 1346 54.89 0.29 46.61 54.71 62.16

G
e

n
d

e
r Male 540 55.7 0.39 48.88 55.09 62.00

0.021 1.56Female 806 54.3 0.40 45.05 54.08 62.39

M
at

u
ri

ty Immature 806 52.87 0.36 45.23 52.15 59.28 <0.001 1.12
Mature 540 57.90 0.46 49.66 57.77 66.20

p-value†

Sample N Mean SE 25% Median 75% H Mg P D FF FB

Head (H) 225 59.84 0.50 55.18 59.45 64.58
Mid Gills (Mg) 75 59.04 0.78 54.94 57.76 63.91 0.972
Pectoral Fin (P) 150 48.63 0.49 44.43 47.74 52.63 <0.001 <0.001
Dorsal Fin (D) 225 43.69 0.38 39.5 43.58 47.38 <0.001 <0.001 <0.001
Flank Front (FF) 225 58.32 0.52 53.51 57.58 63.24 0.601 0.983 <0.001 <0.001
Flank Back (FB) 221 64.22 0.63 58.37 64.46 70.31 <0.001 <0.001 <0.001 <0.001 <0.001
Tail (T) 225 51.33 0.70 44.43 49.38 56.25 <0.001 <0.001 0.035 <0.001 <0.001 <0.001

SE = Standard error
Maturity = Males over 165cm and females over 195cm defined as mature, according to Ebert et al. 2013.
* p-value from Student’s T-test. Emboldened values significantly different (95% confidence interval).
† ANOVA [F(6, 1339) = 170.4, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different (95% confidence interval).
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6.3. Lamna nasus Riblet Spacing and Number

Optimisation studies suggest that smaller riblet spacing is more effective at reducing drag at

higher speeds (Dean & Bhushan, 2010). It may therefore be expected that some regions of a

shark’s body are more often exposed to faster moving fluid than others, perhaps reflected by

differences in riblet spacing. As with riblet angle, it was also hypothesised that individuals

within a species of the same waters would have differing riblet spacing distributions depending

on growth stage or sex-dependent ecologies. To test these hypotheses, the number of riblets

and their spacing was measured in several Lamna nasus specimens of both genders and

differing stages of maturity (Table 3.1).

Mean riblet number for all scales of all specimens (n = 1346) was 3.88±0.0, median 4, ranging

from 2-6. Riblet number was not correlated strongly with width (Pearson r = 0.38), and only

loosely positively correlated with riblet spacing (Pearson r = 0.53).

A mean riblet spacing of 54.9±0.3µm in Lamna nasus (n = 1346) places them among the fastest

modern pelagic sharks, whose riblet spacing generally ranges from ~45-80µm (Reif, 1985;

Chapter 5). Riblet spacing differed significantly between the majority of body regions (Table

6.5.). Across the midline of the shark (Figure 6.6.) there was a gentle increase in riblet spacing

of ~11% from the head to the back of the flank. As the freestream velocity remains constant,

the downstream increase in riblet spacing may reflect a thickening boundary layer, and the

downstream decrease in velocity of fluid in direct contact with the shark (investigated further

in Chapter 7). Other leading edge surfaces have similarly narrow-spaced riblets compared to

the rest of the body (mean flank, gill and tail), ~16% and 25% smaller on the pectoral and

dorsal fins respectively. Downstream along the midline from the flank to tail, riblet spacing

decreases sharply by ~23% (see Appendix I for individual specimen plots). The tail is where

thrust is generated, and narrower riblet spacing is likely reflected by the greater lateral

component of body movement, and the resulting increase in fluid velocity in this region.

The difference in mean riblet spacing between the sexes is tiny (Table 6.5, Appendix I), and just

1.4µm greater in females. Total length is not strongly correlated to mean riblet spacing

(Pearson r = 0.541), however average female specimen length was 11.5cm greater than males,

and may account for the small discrepancy.

Mature Lamna nasus had on average 8.7% wider riblet spacing than immature specimens. If

the theoretical assumption that smaller riblet spacing is more efficient at higher speeds is

correct, this suggests the larger sharks are swimming more slowly in real terms (see section

8.2.1). A more likely explanation is that a thicker boundary layer is developing over the longer
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adults, and as such near wall velocity is reduced over the flank region. As demonstrated next

(section 6.4), the angles at which riblets lie on the scale crown also vary between body regions,

and throughout ontogeny. Based on similarities in the distributions of these features (Figures

6.6, 6.7) it is unlikely that riblet angle and spacing are performing entirely separate

hydrodynamic processes, and a combination of these factors may contribute to optimisation

for drag-reduction, although the relationship remains unclear (see section 6.4).

Figure 6.6. a) Transect of shark midline, showing mean riblet spacing (µm) at different

sampling locations. b) ‘Heat map’ of mean riblet spacing (µm) distribution from 19 sample

locations and semi-landmarks (Appendix I), interpolated across entire body, and weighted

according to standard error.
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Table 6.6. Summary statistics of Lamna nasus downstream scale riblet convergence (> 0°) and divergence (< 0°) angles.

Sample N Mean (°) SE 25% Median 75% p-value† F

All Scales 1800 -3.74 0.22 -9.89 -3.92 1.31

Se
x Male 720 -3.71 0.38 -10.84 -3.20 2.00

0.897 1.4Female 1080 -3.76 0.26 -9.35 -4.34 0.76

M
at

u
ri

ty
*

Immature 1080 -6.65 0.27 -13.02 -6.96 -1.50 <0.001 1.3
Mature 720 0.62 0.29 -4.60 -0.21 4.21

p-value†

Sample N Mean SE 25% Median 75% H Mg P D FF FB

Head (H) 300 -3.48 0.64 -11.17 -4.08 3.15
Mid Gills (Mg) 100 -8.67 0.74 -14.17 -8.45 -3.42 <0.001
Pectoral Fin (P) 220 5.50 0.62 -1.17 3.83 10.16 <0.001 <0.001
Dorsal Fin (D) 300 -1.34 0.31 -4.39 -1.36 1.36 0.009 <0.001 <0.001
Flank Front (FF) 300 -5.14 0.52 -11.15 -6.05 -0.19 0.335 <0.001 <0.001 <0.001
Flank Back (FB) 280 -7.91 0.42 -2.37 -7.64 -2.37 <0.001 0.959 <0.001 <0.001 0.007
Tail (T) 300 -6.26 0.38 -1.43 -6.41 -1.43 0.006 0.033 <0.001 <0.001 0.775 0.347

SE = Standard error
Maturity = Males over 165cm and females over 195cm defined as mature, according to Ebert et al. 2013.
* p-value from Student’s T-test. Emboldened values significantly different (95% confidence interval).
† ANOVA [F(6, 1793) = 74.95, p = <0.001], p-values from Tukey’s post hoc test, emboldened results significantly different (95% confidence interval).
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6.4. Converging and Diverging Riblets of Lamna nasus

Riblets are known to be an important source of drag-reduction in sharks, but the effect of

riblet angle on shark scales has not been investigated. After studying a large number of Lamna

nasus SEM images it was observed that the downstream angle at which riblets lie across the

crown changes at different body locations. These changes in riblet angle relative to the central

keel produce both diverging and converging riblet patterns, without any association to sensory

structures (e.g. pores). Here riblet angles are measured across the body of individual species,

in order to examine spatial variations in riblet convergence/divergence and any changes in

riblet angle. This analysis is repeated for juvenile and adult specimens and for male and female

species in order to investigate changes with maturity and sex.

Figure 6.7. A) Transect of Lamna nasus midline, showing mean riblet angle (degrees) of all

specimens at different sampling locations. B) Heat map of mean riblet angle (degrees)

distribution from 19 sample locations, and flank semi-landmarks (Appendix I), interpolated

across entire body, and weighted according to standard error. Left, scanning electron

microscope images of example riblet angles, from top to bottom; riblets converging (‘H1’ head

scale from 183cm male), parallel (‘D3’ dorsal fin scale from 215cm female) and diverging (‘H3’

head scale from 127cm female).
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Across the midline, mean riblet angles are convergent on the snout but decrease (by up to 18°)

to be divergent across the flank, before becoming convergent again at the tail (Figure. 6.7).

The majority of body regions differed significantly in riblet angle (Table 6.6), with the most

convergent riblets on the pectoral and snout (‘P1’ and ‘H1’, Figure 6.1), and the most divergent

at the back of the head and flank (‘H3’, ‘FF2’ and ‘FB2’).

It is apparent that the method of drag reduction changes as the animal grows. With only a tiny

change in variance (61.8µm immature, and 60.6µm mature), mature shark scale riblets at

every sampled position are slightly more convergent than in immature specimens. Riblet angle

for mature sharks ranged from 3.3° more convergent than juveniles at the base of the dorsal

fin (‘D3’) to 14.5° more convergent at the ventral-most region of the flank posterior (‘FB3’).

Mean riblet angles of all immature specimens diverge by 6.7˚ and are significantly different (p 

= <0.001) to the mature riblet angles which converge slightly by mean 0.6˚ (Table 6.6., Figure 

6.7).

As riblet angle and spacing were measured separately, correlation between individual scales

could not be tested, but mean riblet angle and spacing of the same regions of the same

individuals (n = 89) showed little correlation (Pearson r = -0.19). Tested separately, the

correlation between riblet spacing and angle is stronger, for both immature (Pearson r = -

0.39), and mature sharks (Pearson r = -0.41). This data and the pattern of both riblet spacing

and angle observed (Figures 6.6, 6.7) suggests they are interrelated, and the two factors must

be discussed together to fully understand scale regionalisation for optimised drag reduction.

6.5. Unifying Scale Features for Optimal Drag-reduction

In Lamna nasus there is a trend from head to flank for the riblet spacing to increase, and angle

to become more divergent, and from flank to tail riblet spacing decreases and angle become

near parallel (Figures 6.6, 6.7). Without a thorough basis in experimental data, it is difficult to

disentangle the hydrodynamic effects of riblet spacing and angle. Idealised converging riblets

in pipe flow are capable of seeding vortices and encouraging turbulent perturbations, while

diverging riblets are thought to have the opposite effect, reducing turbulent fluctuations in

pressure (Nugroho et al., 2013, section 2.3.2). If the convergent riblets of shark scales create

turbulence in a similar way, it may aid the prolonged attachment of the boundary layer

downstream by transferring momentum towards the skin surface (section 2.3.2). The relatively

narrow riblet spacing on these leading edge surfaces may reflect the higher velocity fluid of a

thinner boundary layer, at an earlier stage of development. Downstream, riblets may be
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optimised for slower moving fluid as the turbulent boundary layer thickens, coupled with

gently diverging riblets optimised to reduce the turbulent fluctuations which contribute to

drag.

Observed differences between the occurrences of these features in Lamna nasus specimens of

different maturity, offers some clues (Figure 6.8). As a shark grows, the distance from leading

to trailing edges increases and so larger animals may be more prone to premature boundary

layer separation creating a larger wake. This increases pressure drag enormously (Figure 2.5),

so maximising the boundary layer attachment is especially important for larger animals. If

increased convergence of the riblets make them more effective turbulisors, this may explain

their presence on more mature individuals. There is clearly potential for much more extensive

research in this area.

6.6. Summary

In this chapter the variation in modern shark scales was investigated. In section 6.1, the

regionalisation of scale morphology was quantitatively assessed in a diverse range of sharks. A

general trend was identified in most taxa of rounder, non-overlapping scales on the rostrum,

which are often more elongate and overlapping on the flank. In section 6.2.1 this pattern of

elongation was confirmed quantitatively in Centrophorus granulosus, a deepwater slow-

moving shark chosen as the scales do not overlap in any region. This allowed the in situ

measurement of scale crown dimensions, which were least variable in scales of the flank

region. In section 6.2.2 the same analysis was applied to the fast pelagic porbeagle shark

Lamna nasus. and although scales overlapped more extensively, observations of decreased

scale size in the tail region relative to the flank (section 6.1) were confirmed. In section 6.2, the

scale base geometry of Lamna nasus was measured in a mature male specimen, in different

body regions. Base geometry is thought to reflect bristling action in sharks (e.g. Lang et al.,

2008), and data herein is the first time scale base geometry has been quantitatively assessed

across the entire body of a shark. Bases capable of greater pivoting were found on the flank,

confirming findings in Isurus oxyrhinchus (Lang et al., 2011), but further to this non-pivoting

scales were also recorded in areas such as the head and claspers for the first time.
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Figure 6.8. Heat maps of mean riblet spacing (top), mean riblet angle (middle), and mean scale width (bottom) distribution for all immature (left) and mature

(right) Lamna nasus specimens. Images generated using sampling points detailed in Chapter 3.1.3.



135

In section 6.3 and 6.4 data for the distribution of riblet number, spacing and angles are

presented for five specimens of Lamna nasus of varying age and gender. Riblet number was

not correlated strongly with width and only loosely positively correlated with riblet spacing.

Riblet spacing differed significantly between the majority of body regions and across the

midlines of the shark (Figures 6.6, 6.7). There was a gentle increase in riblet spacing from the

head to the back of the flank, before decreasing towards the tail. Riblet angles are convergent

on the snout but decrease (by up to 18°) to be gently divergent across the flank, before

becoming convergent again at the tail. Little difference was found between genders but

mature specimens had significantly wider riblet spacing and more convergent riblet angle. In

section 6.5, riblet spacing and angle are discussed together in the context of overall scale

optimisation for drag-reduction.

In the next chapter, boundary layer development will be discussed further, and experimental

data will be presented which tests the effect of scale morphology on skin friction.
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7. Experimental Analysis of Drag-reduction by Fossil Fish Scales

In the previous chapter, a comparative approach for interpreting scale function was taken

which explored patterns of scale occurrence between body regions, different taxa, and even

individuals of the same species. While this is a solid basis for identifying functionally relevant

adaptations, it is only with experimental testing that biomechanical hypotheses can be

convincingly validated. Form drag is influenced by a host of environmental factors, as well as

the fish’s body shape, musculature, and behaviour. As this - principally soft-tissue - information

is rarely preserved in the fossil record, there are many assumptions involved in modelling and

measuring this kind of drag. Instead of form drag, the focus of this chapter is skin friction,

which is the drag caused by friction of fluid moving over the surface of an object. The hard

scales of modern sharks are exposed directly to fluid flow, so by reconstructing the skin of

fossil fishes with similarly exposed scale crowns, skin friction can be calculated for a range of

extinct taxa. These are not intended as accurate species-specific values, rather as an indicator

of the different drag-reducing potential of generic scale shapes. By taking this approach, the

results can be applied to a far wider range of taxa, with a solid experimental basis to

supplement the comparative approach to interpreting scale function.

Fossil scale specimens representing five flank scale morphotypes were selected and µCT

scanned to obtain three-dimensional surface geometry. Computer-aided design (CAD)

software was used to first scale all fish scales to 2mm (in their longest direction), and

reconstruct the pattern of squamation. These were rapid-prototyped as flat plates for testing

in a flume tank, and laser Doppler anemometry was used to measure velocity profiles along

the length of the plates. Boundary layer development and skin friction drag calculations were

performed to compare reconstructed fish skin with a smooth control. For full methodology,

see section 3.2.

7.1. Data Acquisition and Processing

Flume runs lasted an average 229 minutes per plate, with LDA data recorded for a maximum of

30 seconds at 82 vertical positions per profile, and five profiles per plate (see Section 3.2.6). A

total of 16,100,813 velocity measurements were recorded for this analysis, with a mean data

acquisition of 232 measurements per second.
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Normal boundary layer development results in lower fluid velocity at the wall, and so fewer

seed particles can be detected within a limited linger time. This was observed by eye for all

velocity profiles, however there were regions of noise in validation values, frequency of data

acquisition, and the velocity measurements. Perhaps as a result, there was no statistical

correlation between vertical position and percentage data validation (Pearson r = -0.01, p =

0.58, n = 2441), or vertical position and data count (Pearson r = 0.05, p = 0.01, n = 2460).

Relative standard deviation of validation (coefficient of variance) values range from 0.6 -

36.6%, with little change towards the wall (Figure A2.8.). However, at or close to the wall mean

relative standard deviation (RSD) for data frequency is relatively higher, particularly between

0-0.4mm (mean = 133.6%, range = 119.5-172.8%), whereas further away from the wall

(≥0.05mm) values are more consistent (mean RSD = 38.2%, range = 17.1-84.0%). This is 

important, as it may reflect the differing height and geometry of scale types, which limits the

accuracy of navigation in the vertical (z) plane (see Section 3.2). The vertical location of the

wall (and true zero) must be inferred retrospectively, by identifying decreases in fluid speed

towards zero velocity at the wall. The method of correction is described in Section 3.2.7, and

raw data including the corrected position of the wall are detailed in Appendix 2. Erroneous

measurements of the solid wall were excluded from all drag calculations and statistical

treatments that follow.

As Figure 7.1 shows, there is a downward tilt of ~0.9mm across the measurement region 200-

400mm from the leading edge (~0.2°). The influence of scale geometry is difficult to

disentangle from this tilt in most cases but Nostolepis (Figure 7.1 in orange) at point x =

300mm shows a marked increase in wall height relative to the general downward trend across

the entire plate. This suggests that an area closer to the scale tip was the base of the true

profile rather than a depression between the scales.
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Figure 7.1. Raw velocity measurements (m/s) showing corrected bases of velocity profiles

(vertical bars) at horizontal positions 200-400mm, for smooth control plate (dark blue),

Loganellia scotica (red), Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes

sp. (cyan), and Nostolepis striata (orange). Data below the inferred wall level was excluded

from all analyses that follow. See section 3.2 for Methods and Materials.
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7.2. Mean Velocity Profiles

Data for all test plates, and at all positions (Figures 7.2) show normal velocity profiles, with the

slowest fluid moving closest to the plate surface (wall), gradually increasing at greater

distances away in to the freestream. The shape of the velocity profiles is rather angular with a

slower-moving band of fluid close to the wall, a small region of increasing velocity, and then a

steep ascent to the freestream. This is associated more with turbulent boundary layers, where

there is larger-scale mixing of fluid layers. Freestream velocity is reached at approximately

50cm/s, where the wall no longer has an effect on fluid velocity. From semilog plots (Figure

7.3) three regions can be differentiated by eye, the viscous sublayer at the base, a relatively

straight log-law region, and the outer layer, where freestream velocity is reached. Near-wall

velocity at the 200mm and 400mm positions is greatest on the smooth plate but remains

relatively lower than scaled plates between these points. In the log-law region, it is more

difficult to disentangle relative velocity, however it is clear that the smooth control and

Nostolepis have lower velocities than the other plates. The highest log-law region velocities

were observed in the Loganellia, Lophosteus, and Phlebolepis plates, although these are

difficult to differentiate by eye. In a downstream direction from 200-400mm, velocity gradients

in the log-law region separate in to two increasingly distinct groups of plates. The Nostolepis

and smooth plate velocity gradients become lower than the other plates downstream.

Loganellia, Lophosteus, Phlebolepis and to a lesser degree Poracanthodes have slightly steeper

gradients in the log-law region and velocity is relatively higher and contrasts strongly with the

slower group of plates (Figure 7.3). The behaviour of plates in these groups suggests similar

flow patterns, however qualitative assessment alone is not enough to justify this hypothesis.
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Figure 7.2. Mean velocity profiles (corrected base locations) of test plates at 200-400mm from leading edge. Including the smooth control plate (dark blue), and

the scaled plates Loganellia scotica (red), Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes sp. (cyan), and Nostolepis striata (orange). See

Appendix II for full data and individual plots.
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Figure 7.3. Semilog plot of mean velocity profiles (corrected) of all test plates at 200-400mm from leading edge. Including the smooth control plate (dark blue),

and the scaled plates Loganellia scotica (red), Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes sp. (cyan), and Nostolepis striata (orange). See

Appendix II for full data and individual plots.
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7.3. Boundary Layer Development

The boundary layer is the fluid influenced by shear stress at the wall, and is the vertical point

of a profile at which fluid travels at 99% of the maximum freestream velocity. The mean

velocity values discussed earlier suggest the boundary layers of all plates remained attached

during the experiment, without recirculating flow near the wall. However, examination of all

raw data recorded at 0.5mm from the wall suggests a more complicated picture (Figure 7.4),

with a small percentage of measurements below 0 m/s velocity, indicating minor flow

stagnation or reversal within the 30 second measurement time. Instances of negative velocity

account for between 0-3% (n = 69 782) of measurements in all plates, except Nostolepis which

is noticeably larger. At the leading edge (x = 200mm) of the Nostolepis test plate, 18.23% of

measurements were negative (n = 4016), and remains above 10% across the plate until it falls

to 0.03% (n = 3842) at the furthest downstream position (x = 400mm). It should be noted that

negative values are relatively small, suggesting normal fully attached transitional or fully

turbulent boundary layer behaviour, rather than full separation. Negative velocity

measurements obtained for the Nostolepis of 0.5mm vertical position at x = 200mm had a

mean average velocity of -0.003 m/s, ranging from -0.0 - 0.3 m/s (n = 732). This is an important

observation as it highlights the importance of large sample sizes provided by laser Doppler

anemometry, and supports the use of mean velocities in this analysis.

Boundary layer development was different across all plates (Figure 7.5), however there was a

general upwards trend in most cases. Nostolepis shows the most consistent boundary layer

growth across the plate, and coupled with earlier observations of fluctuating near-wall velocity

suggesting laminar to turbulent transition has already occurred further upstream than the

measurement regions x = 200-400mm. In the transition region, boundary layer thickness is

known to fluctuate as larger-scale fluid interactions begin to occur. This could explain the

highly variable boundary layer thicknesses of other plates such as Loganellia and Phlebolepis.

Both Lophosteus and Phlebolepis have very similar boundary layer shapes with a steep

decrease towards x = 250mm and a gentle rise towards 350mm, and dropping again at

400mm. The smooth control plate has an almost identical shape, except the boundary layer

thickness was much lower at the first measurement position. One interpretation is that the

higher roughness of the scaled plates caused transition to a turbulent condition upstream of

the measurement region. However it may also have been caused by upstream detachment,

and proceeding reattachment of the boundary layer at x = 250mm. This is unclear, as the near-

wall (z = 0.5mm) raw measurements for both the Lophosteus and Phlebolepis plates show very

few negative velocity measurements which we would expect to find in both if periodic
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detachment was occurring. Differences in boundary layer development, and the possible

implications are discussed in Chapter 6.

Figure 7.4. Bar chart showing percentage of raw negative velocity (U = < 0 m/s) measurements

recorded at a near-wall corrected position of 0.5mm vertical (z) position for all plates at all

horizontal positions (x = 200-400mm).

7.4. Skin Friction Coefficients

Frictional shear velocities were calculated for all profiles of all plates using Matlab (see section

3.2.7, and Appendix II for code script). Skin friction was then calculated (Figure 7.6), using

these frictional velocity calculations, and the freestream velocity (section 3.2.7.). The

distribution of skin friction measurements across the plates is rather variable, but there is a

gentle upwards trend towards the end of the plate in most cases. This is typified by

Phlebolepis, which after the first 200mm position rises gently to approximately the same skin

friction as the smooth control at 400mm, the last downstream measurement position. This

supports observations of the boundary layer, which suggest a turbulent boundary layer of

fluctuating thickness. A clear exception to this trend is the Nostolepis plate, which at 200mm

has the largest skin friction coefficient of all plates and all profiles.
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Figure 7.5. Boundary layer height (99% maximum velocity) across the test plates. Including the

smooth control plate (dark blue dashed), and the scaled plates Loganellia scotica (red),

Lophosteus sp. (green), Phlebolepis elegans (purple), Poracanthodes sp. (cyan), and Nostolepis

striata (orange). See Appendix II for full data and individual plots.

Nostolepis had the largest skin friction for most horizontal positions, and at 0.025, the largest

mean value over the entire plate as well. This was ~27.7% higher than the smooth control

plate average, which is in effect the relative skin friction drag (Table 7.1.). This perhaps reflects

the relative height of the crown spines, which at 0.97mm make Nostolepis the tallest (height

away from the wall) scales in this study. This alone is not a satisfactory explanation for

increased drag however, as the height of the crowns of the Poracanthodes scales and

Loganellia are 0.55 and 0.6mm high respectively, and both reduce skin friction drag relative to

the smooth (0mm high) plate. Loganellia is particularly interesting in this case as it reduces

skin friction drag across the plate by ~33.5% relative to the smooth control (Table 7.1.). This is

on a par with the scales of Lophosteus, which was 35.4% lower than the smooth control, and

has the lowest scale height at 0.27mm. That the skin friction relative to the smooth plate was

so similar for scales of such contrasting height, suggests that relative smoothness is only part
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of a more complicated mechanism of drag reduction. Lophosteus was in fact the plate which

reduced skin friction the greatest, and at the 250mm position is ~52.6% lower than the

equivalent position on the smooth plate.

Table 7.1. Percentage reduction in skin friction drag, relative to the smooth control plate.

Plate
Horizontal Position (mm)

200 250 300 350 400

Smooth* - - - - -

Loganellia 28.175 45.760 32.344 39.533 21.598

Lophosteus 26.665 52.541 25.195 39.625 32.809

Phlebolepis 21.402 39.017 44.789 35.614 4.856

Poracanthodes 3.315 5.555 11.949 -4.116 13.611

Nostolepis -83.737 -52.922 6.195 11.632 -19.535

*control plate

Skin friction values across the smooth and Poracanthodes plate are very similar, rising towards

the 350mm position before falling towards 400mm. Poracanthodes was chosen to represent

scales with little surface ornament but a generic shark-scale morphology, so again it is

interesting to note that skin friction at most positions in this scaled plate is lower than the

smooth control (Figure 7.6.). Lophosteus and Loganellia plates are also very similar in skin

friction distribution across the plate, with a steep rise between 250-300mm and falling again

towards the end of the plate. Faster moving flow would decrease boundary layer thickness,

and increase the average mean velocity at measurement positions in the log-law region of a

profile, and in doing so increase the calculated skin friction coefficient. This peak of skin

friction occurs more closely to the leading edge in Loganellia and Lophosteus, and

approximately 50mm downstream for Poracanthodes and the smooth control. These plates

have a sigmoidal distribution of skin friction values, and although much more subtle the

Phlebolepis plate appears to follow the same pattern.

Calculated as a whole, all but the Nostolepis plate reduced skin friction drag relative to the

smooth plate (Table 7.1). This is a clear indication that the presence of scales can dramatically

reduce skin friction (6-35 %) relative to a flat surface, even though the scales have significant

inherent topography (0.3-1 mm). Nostolepis has an erect backward pointing spine-like
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posterior to the scale crown, and was originally chosen to represent defensive, anti-parasitic

scale types. Therefore, it is perhaps not surprising that this scale type had a deleterious effect

on skin friction, although the mechanism remains unclear.

Figure 7.6. Skin friction coefficient at horizontal positions x = 200-400mm for the smooth

control plate (dark blue), Loganellia scotica (red), Lophosteus sp. (green), Phlebolepis elegans

(purple), Poracanthodes sp. (cyan), and Nostolepis striata (orange).

7.5. Summary

In this chapter, the skin friction of five commonly encountered scale morphotypes was

measured using laser Doppler anemometry. Compared with the smooth control, all but one

scale type (Nostolepis) reduced skin friction drag (by 6-35%), including scales without riblets. A

discussion of these results in combination with the preceding comparative analyses is

presented next, in Chapter 8.



147

8. Functional Morphology of Modern and Extinct Fish Scales: a synthesis and future

research directions

This chapter is a discussion of the results presented so far, of the comparative and

experimental approaches used to investigate the functional morphology. Section 8.1 focusses

on alternative functions of shark-like scales, before adaptations for drag-reduction in modern

sharks and fossil taxa are discussed in section 8.2. Implications for the early evolution of speed

are presented in 8.3, and suggestions for future research are proposed. Finally, original

contributions to knowledge and significant findings are summarised in section 8.4 to conclude

this thesis.

8.1. Functions of Modern Shark Denticles

Denticles of modern sharks are comparable to those found in many long extinct groups

including the stem chondrichthyan ‘acanthodians’ and the jawless thelodonts from the

Palaeozoic (~383-425 million years ago). Modern sharks therefore provide an excellent

analogue for these taxa, and can yield a host of ecological information not available from the

fossil record. The parallel riblets ornamenting the surface of most pelagic shark scales have

been identified as a key drag-reducing feature, and those of fast pelagic sharks have been the

inspiration for numerous biomimetic applications, including swimsuits, and drag-reduction on

planes and ships. Almost all active pelagic sharks have uniform or keeled riblets on the crown

surface, and of the species studied this was the most common scale type in modern taxa. Drag

reduction is discussed in section 8.2, but there are other important functions of shark scales

which must also be considered.

In section 4.2 a framework for the interpretation of scale function has been developed, which

builds on work by Reif on modern sharks (Reif, 1985), extending it in to the fossil record for the

first time. In contrast to Reif’s scheme, only three major functions are proposed, abrasion

resistance, parasite/antifouling defence and drag-reduction; bioluminescence as used by Reif

(1985a) is not utilised. Scales adapted to accommodate photophores in modern sharks also

have features associated with protection; either by mechanical resistance with blocky and

shallow scales (e.g. Etmopterus virens), or as a parasite defence with elongate spines (e.g.

Etmopterus spinax). This reflects a trade-off between this protection function, and exposing

the photophore-rich epidermis between the scale bases (Reif, 1985b). As a soft-tissue feature,

bioluminescence cannot be directly detected in the fossil record, and is itself rare in modern
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taxa; restricted to just two squalid subfamilies; the kitefin (Dataltiinae) and lantern sharks

(Etmopteridae). For these reasons bioluminescence is not considered a major function of

scales.

(a) Abrasion resistance

Blocky low-relief scales which lack a crown ornament are most likely adapted for abrasion

resistance. Intuitively, any features (such as spines) proud of the scale surface would be

susceptible to greater wear on contact with a solid substrate. These scales lack specialised

adaptations known to reduce drag in other taxa (e.g. riblets), and while there is evidence

presented here that generic surface roughness can help reduce drag, it is clearly not a strong

influence on scale form. This is apparent in many rays, and benthic shark species, where blocky

scale types occur predominantly on the underside of the body (author’s observations). There is

further regionalisation of scale type in benthic species, with scales of the rostrum generally

much smoother and rounder than on the flank (section 6.1). The hydrodynamic advantages of

this arrangement are discussed later (section 8.2), but in benthic species the arrangement of

scales at the rostrum may additionally relate to foraging activity. The tip of the rostrum would

be the area most susceptible to wear when searching for food. Wear patterns observed on

scales at the tip of the rostrum (snout) of the epaulette sharks Chilloscyllium plagiosum and

Chilloscyllium punctatum are not always in the streamline direction (anterior to posterior). In

fact many of the superficial scratches observed on the scale crown surfaces are perpendicular

to the stream, (e.g. Figure 8.1a). Observations by the author of the foraging activities of living

epaulette sharks (commonly found in the pet trade and public aquaria) support the hypothesis

that these scratches occur during feeding activities as the head moves from side to side.

Epaulette sharks – uniquely – can negotiate spatially complex areas by ‘walking’ with their

pectoral fins, and have even been observed on land travelling between rock pools, reflected by

similarly random scratch directions on the trunk scales (Figure 8.1b).
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Figure 8.1. Scratch marks on the scales of a 680mm (total length) male Chilloscyllium

plagiosum a) from the rostrum and; b) detail of the posterior tip of a scale from the trunk

region (‘FF3’, section 3.1.). Scales are orientated anterior upwards.

(b) Parasite / antifouling defence

In accord with previous work (Reif, 1985a) spined-and spine-like scales are here interpreted as

a defence against parasites. There is little published experimental evidence, however work on

sailfish concluded that similarly pointed v-shaped scales did not reduce skin friction (Sagong et

al., 2008), nor did they help delay boundary layer separation (Sagong et al., 2013). There is also

ecological support for this as a primary function. Firstly, there is a lack of documented

ectoparasite infection in shark species with this scale type. While absence of parasites is not

evidence in itself, there are many more accounts of infestation of pelagic species with other

scale types (e.g. Cheung & Ruggieri, 1983; Russo, 2013). In addition, the hypothesis that erect

spines contribute to drag is supported by the experimental analysis (Chapter 7), discussed

later. This suggests a functional trade-off between defensive and drag-reducing features for

pelagic species, and between drag-reduction and abrasion resistance for benthic species.

An important consideration is the anti-fouling function of riblets, recognised in biomimetic

studies as a solution for self-cleaning (Bixler & Bhushan, 2013). Riblets increase the exposed

surface area of the scale crown, and it follows that this should not only encourage growth and

encrustation, but also make it more difficult to dislodge these organisms. However, while total

surface area is increased, the accessible surface for attachment of larger organisms is reduced

to the peaks of the riblets, much like a cattle grid. The smaller riblet spacing would physically
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prevent the attachment of even the smallest epibionts (encrusting organisms). The effect of

very small epibionts on drag would be small initially, increasing surface roughness (and

therefore skin friction) and reducing the efficacy of the riblets by altering their geometry.

However, fouling is an additive process and these ‘pioneer’ fouling organisms could form the

substrate for progressively larger species (Bixler et al., 2014). Eventually these masses could

begin to compromise streamlining, negatively affecting the way fluid moves across the body

surface and increasing form drag. Additionally, riblets which help maintain higher fluid velocity

across the body surface (Chapter 7) may as a result reduce the time an encrusting organism

has to attach, and increase the force of fluid entraining and washing them away relative to a

completely smooth surface. Others have reported lower encrustation on scaled shark skin

when compared to naked animals such as whales (Bixler et al., 2014), which are apparently

more prone to biofouling.

Sharks optimise their riblet spacing for drag-reduction at different speeds (Chapter 5), but

there is an additional anti-fouling benefit at higher speeds as well. If the potential for fouling

was greater in the photic zone, this extra function would be particularly advantageous for the

faster pelagic species inhabiting it. Notably, slower-moving deep water sharks often do not

have riblets at all, instead possessing blocky or spiny denticles thought to function as abrasion

resistance and parasite defence respectively (Reif, 1985).

On examining uncleaned shark scales under the scanning electron microscope, very little

fouling was detected on either the fast-swimming lamnid shark Lamna nasus or the demersal

and relatively slow-moving Scyliorhinus canicula. The latter does not have riblets proper,

rather converging ridges, which support spines at the posterior of the crown. In this case it

may be the spines that prevent biofouling, reducing the size of crevices which could serve as

potential holdfasts. Unlike the ‘flushing’ hypothesis described above, this is the basis for

improving biomimetic sharkskin surfaces for antifouling, whereby riblet spacing is optimised to

deter different species of epibiont, rather than for reducing drag (e.g. Carman et al, 2006;

Schumacher et al., 2007). Living sharks enjoy the benefit of shedding their scales as they grow,

which presumably helps clean the skin as well. The rate of replacement has never been

measured empirically, so the contribution of this process to maintaining a clean skin is

unknown. Regardless of the mechanism it is clear that riblets do help reduce fouling, which in

turn would help reduce skin friction, firstly by keeping the riblets clean, and also by minimising

the extra surface roughness which may begin to increase both skin friction and pressure drag.
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(c) Passive gripping

An intriguing hypothesis that has emerged from this project is that the epaulette sharks could

be using their scales as grips for more efficient benthic locomotion. Their scales are blocky and

smooth, but with robust pointed tips on the crown. These often show signs of wear, especially

on the ventral surface. When ‘walking’ the animal bends its body to place one pectoral fin in a

bracing position before pulling forward the other pectoral fin as the body bends in the other

direction, assisted by the pelvic fins. As the scale crowns tilt slightly upwards they may act like

a crampon. With the shovel tip of the crown embedded in the substrate, it could provide a

great deal of grip. In addition, the pointed tip could be removed from the sediment with

relative ease. If a small amount of bristling is possible (i.e. the scale crown angle is

changeable), this would also baffle sediment behind the scale crown (which is also slightly

concave), meaning more force could be applied, increasing purchase with the sediment.

Evidence for this function is limited so far, with this being the first discussion of passive

gripping in a shark species. As discussed, wear is greater on the ventral scales of the

Chiloscyllium species examined, suggesting disproportionate exposure to the hard substrate.

8.2. Drag Reduction of Shark-like Scales

8.2.1. Riblets

Riblets act to control vortices that form across the scale surface in a turbulent flow regime, by

reducing their lateral drift, and pinning the vortices in place (e.g. Garcia-Mayoral & Jiménez,

2011; Oeffner & Lauder, 2012). This reduces the lateral transfer of momentum, meaning drag

– any impedance/loss of velocity – is reduced as well. Riblets also lift these vortices up and out

of the valleys in between the riblet peaks, minimising the surface area rotating fluid is in

contact with. This means less force is required to overcome the friction imparted by that

surface, and drag is reduced.

In Chapter 5, the ecological significance of riblet spacing was investigated quantitatively for the

first time. Empirical studies of biomimetic models show that decreasing riblet spacing has a

greater drag-reducing effect at higher speeds (Dean & Bhushan, 2010). This may be related to

a decrease in vortex wavelength with increasing velocity, when more closely-packed riblets are

needed to hold the vortices above the riblet valleys. While the mechanism remains unclear,

this negative relationship between riblet spacing and speed in modern species of shark has

herein been convincingly demonstrated. The analysis of riblets in modern sharks revealed a

significant trend towards decreased riblet spacing with increased swimming speed. Mean
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riblet spacing for ‘fast’ sharks was 63µm, ‘moderate’ was 91µm (44% wider than ‘fast’), and

‘slow’ was 111µm (75% wider than ‘fast’). This is the first quantitative confirmation of the

hypothesis that riblet spacing is related to speed (Reif, 1985a). It is also the first time

biomimetic optimisation has been retroactively applied to the animals which originally inspired

the technology.

Extinct taxa with narrowly spaced riblets appear to have been similarly adapted for speed and

efficiency. Of all the categories, the extinct thelodonts and ‘acanthodians’ had the narrowest

mean riblet spacing at 50µm and 62µm respectively, akin to the ‘fast’ and ‘moderate’ modern

sharks. Of the ‘acanthodians’ studied, Milesacanthus (of the Lower to upper middle Devonian,

~407-383 million years ago) had the narrowest mean riblet spacing at 40µm (Burrow, et al.,

2006; 2009). However, the thelodont genus Canonia had a mean riblet spacing of 37µm, which

is the narrowest of all taxa studied. ‘Acanthodians’ and thelodonts are quite small animals (of

those examined by the author, typically 10-30cm), and it is therefore important to recognise

the implications of this discovery. Smaller riblet spacing is more efficient at reducing drag at

higher speeds, but the cruising speeds of large active modern sharks is surprisingly slow. For

example the shortfin mako shark Isurus oxyrhinchus has a riblet spacing of 46µm, and is widely

considered the fastest shark (e.g. Stevens, 2008). However it has a sustained cruising speed of

just 0.5-0.9 m/s (Block et al. 1992; Klimley et al., 2002), which is a much more plausible speed

for a smaller fish. Indeed the average cruising speeds of modern taxa in the 10-30cm length

range is just over 1 m/s (http:/www.fishbase.org).

Furthermore, there is evidence that some of the earliest known fishes were similarly well

adapted for drag-reduction. The middle Ordovician (~460 million years ago) fishes Tantalepis

gatehousi and Areyonga oervigi (possible chondricthyans) were not included in the main

analysis as the scales found were of unknown position on the body. However their mean riblet

spacing was 69µm and 77µm respectively, placing them firmly within the fast-moderate speed

modern sharks. As riblets tend to occur more prominently on the flank (Chapters 4 and 6),

there is a strong likelihood that these scales are at least broadly representative of overall

squamation. There is therefore strong evidence that novel drag-reducing adaptations evolved

in, or before the middle Ordovician.
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A major finding of Chapter 6 is that the nature of drag-reduction by riblets cannot always be

described by spacing alone. In areas where riblets are broadly parallel (such as the flank),

direct comparisons can be made (such as Chapter 5), however in other areas of the body,

riblets with converging or diverging riblet patterns paint a more complicated picture. The

dataset of riblet angle measurements assembled for Lamna nasus in Chapter 6, is the first of

its kind in any shark species, and like riblet spacing shows clear regional variation (Figure 8.2).

Experimental evidence suggests that drag-reduction diminishes if parallel riblets are

misaligned from the freestream direction by >15°, with no benefit >30° (Walsh & Lindemann

1984). Non-parallel riblets at diverging angles have been shown to decrease turbulent

disturbances and velocity fluctuations, with the opposite effect for converging riblets

(Koeltzsch et al., 2002; Nugroho et al., 2013). Additionally, the v-shaped central keel of some

shark pectoral fin scales has been interpreted as a vortex generator; turbulisors whose

function is to maintain boundary layer attachment (Bechert et al. 1985; section 2.3.2). The

data reported in Chapter 6 supports this view, by demonstrating the occurrence of convergent

scales on these and other leading edges, such as the rostrum and dorsal fin. Due to the

sampling scheme used, information about the pattern of riblet angle from the tip of a leading

edge downstream is only available for the head region. Despite this, the pattern is very clear

with strongly converging scales at the tip, becoming more divergent downstream within a very

short distance, restricted to the anterior of the head region. If the putative work discussed is

correct and converging riblets create turbulence, it suggests that turbulent flow is being

encouraged almost immediately at the tip of the snout, before scales with parallel to divergent

riblets ‘rein in’ that turbulence downstream.

In most teleost fishes this transition is triggered at the point of maximum body girth with the

relatively rougher ctenoid scales and gill efflux affecting the diffuser region, where separation

is prone (section 2.3.2.). If as the evidence suggests the transition occurs before the point of

maximum body girth for Lamna nasus, a more appropriate comparison may be the sailfish

Istiophorus. It has been suggested that the tubercles of the rostrum tip of sailfish may act as a

turbulisor (Aleyev, 1977; Videler, 1995). Experimental data supports this hypothesis, but it is

important to note that at cruising speeds overall drag was largely unaffected, although skin

friction was lower immediately behind the rostrum (Sagong et al., 2013). It may be that sailfish

turbulisors act solely to counter the increased drag created by the larger wetted surface of the

elongate rostral feeding appendage at cruising speeds, and is less important at higher (and

untested) speeds.
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Chapter 6 also presents evidence that both riblet angle and spacing change throughout

ontogeny. Riblets of immature Lamna nasus diverge while those in mature individuals slightly

converge, and are ~7µm more widely spaced than immature specimens. As these are new

observations and have not been tested experimentally, it is difficult to disentangle the

hydrodynamic effects of riblet spacing and angle.

If the theoretical assumption that smaller riblet spacing is more efficient at higher speeds is

correct, it suggests the larger sharks have lower absolute swimming. Alternative explanations

for this result are that the juveniles have faster burst speeds than the larger animals. While it

may be intuitive to assume larger animals are moving at faster speeds, there is little evidence

to support this and as discussed, the normal swimming speeds of adult sharks can be

surprisingly slow. Younger and smaller sharks are more vulnerable to predation, leading many

species to utilise shallow water as nurseries during their earliest years before moving further

offshore (Castro, 1993). The benefits of relatively faster speed are clear for younger sharks, but

do not fully explain the wider spacing in adult specimens of Lamna nasus.

A relatively larger mean boundary layer thickness over the adult animals would go some way

to explaining this result, with slower moving fluid in contact with the shark. As a shark grows,

the distance from leading to trailing edges increases and so larger animals may be more prone

to premature boundary layer separation creating a larger wake. This increases pressure drag

enormously (Figure 2.5), so maximising the boundary layer attachment is especially important

for larger animals. If increased convergence of the riblets make them more effective

turbulisors (section 8.2.2), this may explain their presence on more mature individuals. The

relatively narrow riblet spacing on the leading edge surfaces (e.g. rostrum) may reflect the

higher velocity fluid of a thinner boundary layer, at an earlier stage of development.

Downstream, riblets may be wider due to reduction in fluid velocity, caused by a combination

of skin friction, and pressure-related thickening of the turbulent boundary layer. The gently

diverging riblets of the flank may be optimised to dampen turbulent fluctuations which

contribute to drag. Further investigation of ontogenetic changes in this species’ ecology is

required to explore this hypothesis, and there is clearly potential for much more extensive

research in this area.
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Figure 8.2. Distribution of scale features in Lamna nasus, compiled for ease of reference from

figures 6.4-6.6, in Chapter 6. Top) Transect of shark midline, showing mean riblet spacing (µm)

of all specimens of Lamna nasus at different sampling locations. Middle) Heat map of scale

base aspect ratio distribution of a 183cm male Lamna nasus from 19 sample locations

(excluding claspers), and three flank semi-landmarks (Appendix 1), interpolated across entire

body, and weighted according to standard error. Bottom) Transect of shark midline, showing

mean riblet angle (degrees) of all specimens of Lamna nasus at different sampling locations.

In Chapter 7 representative scale morphotypes of Palaeozoic fishes were subjected to flume

analysis, and is the first study to measure skin friction drag of any extinct vertebrate. The

jawless thelodont fish Phlebolepis was chosen to represent taxa with riblets, and the results

confirm previous reports (discussed in section 2.3.2.) that riblets do reduce skin friction drag.
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This result is particularly interesting because in order to control for scale size and overcome

the practical limitations of 3D printing, all specimens were scaled to 2mm length. This is an

issue which will inevitably be addressed in future as the quality and economy of 3D printing

improves, but as a consequence of scaling in this study the riblet spacing was ~58% wider

(between 151-336µm) than the original specimen (96-213µm). The freestream velocity was

fairly slow during these experiments (~0.5m/s), and consequently may have controlled for this.

Skin friction was reduced by 5-45% across the plate relative to the smooth control, out-

performing the pointed Nostolepis scale, and the typically shark-like scale shape of

Poracanthodes, both of which do not have riblets. It is difficult to ascribe this drag reduction to

riblet action alone however. Calculated as a whole, all but the Nostolepis plate reduced skin

friction drag relative to the smooth plate. The greatest drag reduction was recorded for

Lophosteus (~35%), a scale ornamented with stream-wise orientated tubercles (Figures 3.10;

3.18; 8.3). This demonstrates that scales do not necessarily increase skin friction even if they

increase surface roughness.

Figure 8.3. Scanning electron micrograph of the Silurian osteichthyan fish Lophosteus sp., from

Ohesaare Cliff, Estonia. Material courtesy of Henning Blom.

The riblet action described so far operates in part by reducing the lateral transfer of

momentum by controlling the drift of vortices which form across the skin surface. When

tessellated, the Lophosteus scale tubercles align to form broken streamwise ridges, which may

be acting in a similar way to the riblets of Phlebolepis. In support of this, the boundary layer

thicknesses at successive points along the Phlebolepis and Lophosteus plates were very similar.

Riblets also act to reduce the surface area in contact with the base of the boundary layer,

reducing the interaction of moving fluid and the solid wall. This may explain the relatively low
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skin friction drag reduction of Poracanthodes, in which the crowns tessellate tightly to produce

a large and flat surface. Perhaps as a consequence the skin friction distribution across the

Poracanthodes and smooth plates was also very similar. Boundary layer thickness grew much

more rapidly in Poracanthodes than other plates, which likely reflects subtler differences in

scale geometry.

Skin friction drag in Loganellia was ~33.5% lower than that of a smooth plate, despite lacking

riblets or any streamwise ornamentation. These stubby scales are rounded at the anterior and

softly pointed at the posterior, with curved upward and backward directed channels at the

sides (Figure 3.9). It is possible that these channels are directing flow upwards away from the

wall, and reducing skin friction by passive streamwise injection, as discussed in section 2.3.2.

Alternatively, like the riblets, any form of lifting the flow base to interact with structures of

lower surface area than the wall proper, would reduce skin friction drag (Dean & Bhushan,

2010). Further experimental work is required to test these hypotheses, and visualise flow

movement between and above the scales. Simple techniques such as dye-flow analysis with

high speed cameras would provide an adequate basis for a more in-depth investigation, using

high resolution particle image velocimetry. Alternatively LDA could be applied, although this

would require very high spatial accuracy of the position of the measurement volume relative

to the scale structures.

8.2.2. Turbulisors

Turbulisors trigger the transition from laminar to turbulent flow by disrupting the smooth and

ordered movement of fluid molecules. This means streamwise but ‘messier’ flow transfers

some fluid momentum back towards the surface, meaning the boundary layer remains

attached for longer. The turbulisor role of fish squamation is a little discussed aspect of their

overall hydrodynamics, but there is compelling evidence of its importance in drag-reduction.

The most convincing biological evidence of turbulisors in fishes is the distribution of ctenoid

and cycloid scales across the bodies of teleosts (Figure 2.7; section 2.3.2). Smooth cycloid

scales cover the head and often the gills, but after this point towards the posterior, rough

ctenoid scales dominate. A similar distribution of scale types can be found in many modern

sharks (Figure 6.2.), thelodonts and ‘acanthodians’, as detailed in Chapter 4. Commonly, the

scales of leading edge surfaces are smoother, but also stubbier (smaller neck region below the

crown), tessellating more closely together, and with shorter spines (if present at all). Flank

scales are almost always more elongate, and the crown extends more proudly from the scale

base, often with a streamlined ornament.
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In Chapter 7, evidence was presented which demonstrates that scales can reduce skin friction

even in the absence of riblets. A possible explanation is that vortices that are kept elevated by

scales interact with a smaller surface area relative to a smooth wall, reducing skin friction.

Scale morphology may therefore reflect a crucial trade-off between the production of

turbulence to benefit the scales downstream, and controlling the turbulence they encounter

from scales upstream. The prolonged attachment of a turbulent boundary layer in such a wide

array of modern pelagic shark species highlights the predominant influence of whole-body

hydrodynamics on scale morphology.

8.2.3. Bristling

Minimal skin friction is achieved by preserving an attached fully laminar flow regime (Figure

2.5), but the effects of pressure drag must also be considered. A perfectly smooth surface

offers the most favourable conditions for laminar flow, but as discussed is more prone to

boundary layer separation (reversal of near-wall flow), especially in unfavourable pressure

gradients. Flow separation is essentially stall, and pressure drag increases enormously across

the body surface if it occurs prematurely (Fish, 1998, Figure 2.5-2.6). In some of the fastest

pelagic sharks the passive bristling of scales is hypothesised to reduce drag and contribute to

thrust, and it has been suggested that the aspect ratio of the scale base reflects the degree of

pivoting the scale is capable of (Pershin et al., 1976 [in Bushnell & Moore, 1991]; Bechert et al.,

1986; Motta et al. 2012).

The first systematic treatment of scale base morphology for any shark is presented in Chapter

7. The results show scales with the widest and shortest bases in the streamwise direction are

found in the flank region of Lamna nasus. In addition, those scales with the squarer base type

were found on leading edge regions such as the fins and rostrum. Scale overlap can only be

roughly estimated using exposed scale length as this assumes identical crown size across the

body. However, qualitative examination of articulated skin strongly suggests a requirement for

bristling scales to have both larger and overlapping crowns. This a significant finding, as it

highlights the limitations of modelling immobile scales for experimental analyses, and the

requirement to further understand soft-tissue systems of drag-reduction. The immobile bases

of scales found on leading edge surfaces may reflect a decreased likelihood of flow separation

in these regions, and as such bristling may not be required, perhaps even increasing drag.

There is little evidence for bristling in the fossil record so far, however the Middle Devonian

acanthodian Milesacanthus (Figure 8.2) also had scales with a relatively small base, and a base

length to width ratio very similar to those of the Lamna nasus flank scales (section 6.1.2),
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suggesting a similar action. Milesacanthus has riblets on the crowns, which have a spacing

(~39-42µm) comparable to the fastest sharks (Chapter 5), but is only 20-22cm in length (based

on reconstruction of Young & Burrow, 2004). This suggests that even small fishes can benefit

from scale bristling, although the degree to which body size affects the mechanism of drag-

reduction is currently unclear.

Figure 8.4. Scanning electron micrographs of the ‘acanthodian’ Milesacanthus sp. (a,b) and the

modern porbeagle shark Lamna nasus (c,d) scales. A) Milesacanthus sp. aff. M. antarctica

flank scale in ventral view showing detail of base, modified from Hairapetian, 2006. B) Dorso-

lateral view of scale from unknown body position of Milesacanthus antarctica NMV P228907,

modified from Burrow et al. 2009. C-d) Flank scales (FF2) of a 183cm male Lamna nasus in c)

ventral view and; d) lateral view.
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8.3. The Evolution of Speed

There are remarkable similarities between the scales of modern sharks and their extinct

relatives. In section 4.2 flank scale function of 167 extinct species was interpreted based on

comparative and experimental data, and their stratigraphic occurrence is presented in Figure

4.11. This shows that complex ecologies were established from at least the Llandovery (~440

million years ago), which includes active pelagic taxa. There appears to be a continuous

increase in those species prioritising drag-reduction throughout the Silurian, and into the early

Devonian. After this point drag-reducing scales become less common compared to

morphotypes associated with abrasion resistance and parasite defence. This is coincident with

the burgeoning success of actinopterygian fishes in particular, and may relate to a shift from

hard scale based drag reduction, to soft-tissue mechanisms (e.g. compliant surfaces, mucus).

However, table 8.1 shows the results of chi squared comparison at each interval, revealing

only one significant shift in functional composition between the Emsian-Eifelian (~393 million

years ago. This step shows an increase in parasite defence and unknown/generalist

morphologies, and temporary loss of the drag-reduction and abrasion resistance functions. It is

not clear if this signal reflects genuine change in ecology or a sampling bias of different beds.

This thesis has explored the use of scales as a potential source of previously unrecoverable

ecological data, so tracking functional trends in more detail should be a priority for future

work.

The chi squred analysis suggests that the functional makeup of Palaeozoic fish communites

was largely independent of changing palaeogeography, palaeoclimate, large-scale evolutionary

trends, and any other factors contributing to palaeoecology.

Table 8.1. Chi squared results comparing the functional composition of scales found between

time intervals from the Llanvirn (Ordovician) to Fammenian (late Devonian). Categories of

scale function included drag reduction, abrasion resistance, parasite defense and

unknown/generalist (for those scales with multiple functions). Those omitted results could not

be calculated due to small ‘expected’ sample numbers.
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As discussed, the distribution of scale types across the body plays an important role in drag

reduction, particularly the prevention of boundary layer separation. The first unambiguous

occurrence of this scale regionalisation in the fossil record is in the thelodont Sandivia

melnikovi of the Upper Ordovician (~458-443 mya) of Russia (Karatajūtė-Talimaa, 1997). The 

scales of modern sharks, ‘acanthodians’ and thelodonts were directly exposed to fluid flow

(section 2.6) however the soft tissue context of these structures is unknown and so the skin

friction cannot be tested in the same way. It should be noted that many heavily armoured

fishes show a similar pattern, with a smooth head region of large bony plates, and smaller

scales along the flank. This is possibly because of the requirement for increased skin flexure in

this region, with smaller or overlapping scales perhaps helping to maintain an uninterrupted,

regular surface for both drag reduction and defence.

Nevertheless, some of the earliest fish scales have narrowly spaced riblets, suggesting that

drag-reduction and fast speeds evolved as early as the Middle Ordovician, ~460 million years

ago.

8.4. Conclusions

This thesis has focussed on the hydrodynamics of fish scales, with an emphasis on modern

sharks and Palaeozoic taxa. A combination of research methods has been employed, including

comparative anatomy, morphometrics, and the novel application of laser Doppler

anemometry for experimental analysis.



162

8.4.1. Original contributions to knowledge

The present work has demonstrated a number of novel findings on the function and evolution

of scales in fishes, including:

(1) There is a remarkable convergence in scale morphology between ‘acanthodians’,

thelodonts and modern sharks, and clear potential for further hydrodynamic and

palaeoecological investigations.

(2) In modern sharks, scale morphology can vary dramatically between body regions. Scales on

the head tend to be rounder, tessellating tightly with little or no overlap to maintain smooth

laminar flow in a favourable pressure gradient towards the widest point of the body. After this

point, where boundary layer separation is prone to occur scales are often rougher and overlap

more, possibly to induce turbulence and delay separation in this region.

(3) Almost all active pelagic sharks have uniform riblets on the crown surface, and of the

species studied this was the most common scale type in modern taxa. The occurrence of

ribletted scales in extinct species was much lower, but drag-reducing scales rose in

prominence in concurrence with the ‘nekton revolution’ throughout the end-Silurian and early

Devonian.

(4) Riblet spacing reflects speed in modern sharks and optimal riblet spacing for the fastest

sharks is narrower, in accord with existing biomimetic research. Thelodonts and ‘acanthodians’

have similar narrowly spaced riblets, placing many within the range of the fastest extant shark

species. Evidence is also presented suggesting the oldest fish scales (~460 million year ago)

were not only capable of reducing drag, but were optimised for similarly high speeds.

(5) Variation in scale features between body regions in Lamna nasus reveal regional fine-

tuning of riblet spacing and riblet angle. Evidence is presented which suggests the two riblet

properties are related, and are of hydrodynamic signifincance.

(6) Experimental data suggests the pointed scale type (associated with parasite resistance)

increased skin friction significantly. However, a variety of other fossil fish scales are capable of

reducing skin friction, even those without riblets.
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8.4.2. Future Work

(a) Modern shark ecology

With limited fossil data, modern biomechanical analogues are an important source of

information. Throughout this study, a common and persistent issue was the lack of data for

modern sharks, with just a handful of references offering quantitative scale and swimming

speed data. When compiled, reported swimming speeds of shark species were variable, and

could not be used as a basis for quantitative analysis. There is also a conspicuous bias towards

the larger more aggressive species, which represent a narrow slice of true shark diversity. With

more information available the ecological basis for speed categorisation was judged more

reliable, however the rare and smaller species of shark were often still neglected.

It is clear from the data presented herein that denticle morphology can change quite markedly

between body regions. A clear aim for the future is to map scale features in much wider range

of taxa, and further investigate the ecological and hydrodynamic basis for the ontogenetic and

sex-specific differences we have observed in Lamna nasus. An important aspect of this is the

accurate reporting of scale sampling locations, so that direct comparisons can be made.

Lastly, there are basic questions about scale biology which remain unanswered, for example

the replacement rate of denticles, or possible physiological functions such as calcium storage.

Denticle replacement may play a role in self-cleaning, and the reduction of biofouling on the

skin which may otherwise increase drag. The riblets too may be acting to prevent epibiont

attachment, but the efficacy has only been demonstrated in biomimetic studies, and the

mechanism in living sharks remains unclear.

(b) Modern shark hydrodynamics

It is apparent from these results that riblet spacing is directly related to speed, which supports

previous experimental work. However, riblet angle has not received the same intensive

research focus, or attempts at optimisation for industrial and commercial applications. It is

very important that the fundamental hydrodynamic actions of divergent and convergent

riblets are fully understood, and further studying their role and occurrence in modern sharks is

a first step to this end. Similarly, the hypothesis that streamwise injection of fluid from an

under-crown reservoir could reduce drag in modern sharks remains completely unexplored.
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The hydrodynamic function of mucus in sharks has never been investigated, which is surprising

as in other taxa mucus is known to reduce drag. There is also good evidence that the ctenii

(comb-like projections of many teleost scales) of some fish scales (discussed in Chapter 2) are

involved in the efficient dissemination of mucus in areas prone to boundary layer separation.

Since the original research decades ago, focus has shifted away from soft-tissue mechanics of

living animals, to the development of synthetic compliant surfaces and polymers. The relative

difficulty of modelling soft tissue systems is undoubtedly a factor contributing to their

historical neglect, but must be addressed if we are to understand the true complexity of drag-

reduction in modern and extinct taxa.

(c) Prospectus

There has been a huge surge in interest in fossil biomechanics, fuelled by increases in

computing power and the application of engineering techniques for novel biological analyses

(e.g. Fletcher et al., 2010). Fishes in their myriad forms have been largely neglected, despite

constituting a significant proportion of vertebrate diversity. This work is a step towards

understanding the physical constraints which have influenced their evolution for over half a

billion years. Furthering this work will help improve our technology, in the new field of

palaeobiomimetics. Moreover, it will help shed light on the complex mechanics of our deepest

ancestors, and the modern marine life we are obliged to understand and protect.

“So long, and thanks for all the fish”

Douglas Noel Adams, 1978
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Appendix I. Supplementary Data Relating to Comparative Analysis

A1.1. Modern Shark Variability Analysis – Centrophorus granulosus

a) Specimen

Figure Supplementary S1.1. Photographs of a stuffed gulper shark (Centrophorus granulosus)

specimen before sampling; a single 480mm male caught in Zamboanga, Mindanao, Phillipines in

2013. Top, lateral view; centre, dorsal view; and bottom shows dorsal detail of the flank region.

Scale bar fine intervals are 1 cm.
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b) Sampling locations

Figure S1.2. Sampling locations of Centrophorus granulosus, showing region of high resolution

sampling on flank. Green squares indicate data collected but not classified as the flank proper

during analyses. Orange squares indicate sampling locations used for both high resolution and

low resolution mapping of scale width and length.
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c) Scanning electron microscopy

Figure S1.3. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is

Centrophorus granulosus, a 480mm male. See Chapter 3.1.3. for sampling locations. Scale bars

are 500µm.
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c) Raw scale crown measurement data

Table S1.1. Raw width measurements (µm) of 15 scale crowns from 20 body locations of a 480mm male Centrophorus granulosus. Values rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 268 213 174 150 179 182 77 110 133 333 358 302 259 303 307 350 166 206 192 152

Scale 2 257 228 182 148 138 159 67 95 133 334 279 275 263 300 308 343 157 191 195 154

Scale 3 265 222 179 157 130 167 96 99 156 330 333 275 248 335 298 331 185 187 174 174

Scale 4 232 220 217 156 152 157 97 96 120 325 337 306 245 333 326 309 158 206 162 140

Scale 5 276 227 221 162 142 151 79 105 144 316 333 327 284 344 316 312 187 206 153 158

Scale 6 198 178 208 158 171 165 92 106 118 326 364 256 242 341 305 269 193 206 177 154

Scale 7 225 215 192 182 163 166 80 119 110 319 343 307 260 322 315 309 180 195 200 150

Scale 8 233 210 158 169 188 167 100 107 123 267 295 312 235 330 299 342 149 179 224 162

Scale 9 221 215 146 150 174 137 85 128 142 318 323 271 270 348 278 304 168 219 148 173

Scale 10 259 206 171 150 163 139 67 116 141 355 332 286 224 328 301 316 176 183 160 173

Scale 11 198 225 175 154 176 156 72 115 98 342 334 298 234 337 291 335 179 200 162 164

Scale 12 232 237 143 179 153 147 74 114 103 288 337 292 248 369 317 288 162 189 197 148

Scale 13 259 217 214 168 160 152 66 124 89 319 332 272 216 334 314 284 145 184 222 147

Scale 14 245 230 214 151 174 125 75 129 134 360 320 276 231 343 324 261 - 222 215 131

Scale 15 243 218 172 171 141 142 66 121 126 337 373 286 190 297 292 301 - 175 233 124
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Table S1.2. Raw length measurements (µm) of 15 scale crowns from 20 body locations of a 480mm male Centrophorus granulosus. Values rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 325 259 232 154 179 218 132 192 193 417 344 259 275 308 272 391 252 227 345 268

Scale 2 193 222 231 172 215 246 117 175 225 343 310 251 256 348 254 340 212 228 303 280

Scale 3 241 258 249 159 199 209 141 174 218 364 355 274 249 354 281 338 260 195 307 293

Scale 4 230 223 219 151 236 211 158 178 193 346 394 262 238 365 272 336 255 191 324 272

Scale 5 233 262 244 139 193 247 168 158 202 357 381 263 271 372 281 340 242 195 352 318

Scale 6 269 244 257 135 238 259 158 159 196 342 400 268 236 393 299 370 304 238 329 223

Scale 7 213 218 211 166 221 221 179 188 211 343 345 268 254 389 338 341 202 212 366 275

Scale 8 225 242 213 147 197 221 162 182 162 345 289 253 239 378 292 333 229 224 351 258

Scale 9 264 260 211 139 220 179 156 213 190 416 341 256 284 414 317 330 279 208 311 261

Scale 10 341 279 210 155 185 236 155 163 180 418 363 270 266 359 284 304 251 229 304 303

Scale 11 269 251 233 198 182 225 156 179 141 416 371 268 293 394 261 301 258 228 344 247

Scale 12 278 227 245 166 185 246 170 189 167 396 322 286 286 394 296 292 207 231 316 290

Scale 13 277 221 240 180 206 189 153 182 108 410 402 280 272 354 311 306 214 234 352 267

Scale 14 270 228 226 169 179 211 167 191 165 441 379 245 212 376 333 298 - 244 345 250

Scale 15 305 223 250 122 178 219 128 196 177 456 388 254 243 359 323 301 - 191 373 262
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Table S1.3. Mean width and length measurements (µm) used for high resolution flank study.

Mean of 15 scale crowns from 120 body locations of a 480mm male Centrophorus granulosus.

Sampling locations detailed in Chapter 3.1.3. of main text and supplementary figure A1.2 which

precedes this table. Asterisks denotes data from locations detailed in Table 1 and 2.

Sample Location Mean Width (n=15) Mean Length (n=15)

CG_001 343.2022 355.7148

CG_002 352.9967333 353.1551333

*CG_003 (FF1) 332.8147333 359.0219333

CG_004 306.2500667 348.2068

CG_005 287.4680667 301.3404667

CG_006 238.5742 238.1581333

CG_007 213.4942667 227.1436667

CG_008 238.6156 253.8282667

CG_009 232.0419333 253.5458

CG_010 260.2537333 277.4511333

CG_011 289.9298 317.9884667

CG_012 302.1193333 349.6306667

CG_013 283.9075333 337.3041333

CG_014 286.3078 321.8882667

*CG_015 (FB1) 330.9742667 370.4362667

CG_016 276.6521333 317.4204667

CG_017 294.906 340.4233333

CG_018 236.7892 292.2907333

CG_019 341.0988 360.5124667

CG_020 300.4616 304.7328

CG_021 274.4744667 320.2222

CG_022 283.3530667 309.4782

CG_023 270.2181333 295.4958

CG_024 285.1635333 308.6301333

CG_025 287.8741333 321.2779333

CG_026 320.6712 322.9095333

CG_027 324.3097333 354.9341333

CG_028 300.2768 331.5708667

CG_029 319.4705333 352.7454

CG_030 344.8656 348.0449333

CG_031 320.7544667 371.7474667

CG_032 323.6776667 309.2988

CG_033 312.8450667 345.2823333

CG_034 324.7070667 359.8592667

CG_035 315.1111333 334.4718667

CG_036 339.7396667 354.9452667

CG_037 302.9805333 301.9738

CG_038 236.5091333 255.4742

*CG_039 (FF2) 289.3248667 263.9144

CG_040 288.437 269.974
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CG_041 309.719 304.3975333

CG_042 300.5356 309.2054

CG_043 290.5626 336.3720667

CG_044 305.2065333 315.3381333

CG_045 316.3632 357.3482667

CG_046 312.7708667 329.5219333

CG_047 308.1211333 358.0902

CG_048 318.9006667 324.3064

CG_049 340.1048 349.6798667

CG_050 317.7593333 331.3307333

*CG_051 (FB2) 306.0026667 294.3224

CG_052 323.7414667 353.2922667

CG_053 320.1056667 332.7737333

CG_054 211.5312 231.5557333

CG_055 210.1222667 225.3413333

CG_056 252.9958 259.0394667

CG_057 249.1372667 270.6431333

CG_058 265.8541333 290.9726

CG_059 268.9488667 290.3234

CG_060 294.8490667 321.6198667

CG_061 293.5878667 309.0010667

CG_062 292.2068 314.7822667

CG_063 298.3280667 301.1434667

CG_064 278.1637333 299.7860667

CG_065 287.1298 316.7651333

CG_066 267.5128 286.0952667

CG_067 264.4452 305.3991333

CG_068 236.8315333 284.4640667

CG_069 269.684 283.8637333

*CG_070 (FF3) 243.3992 258.2494

CG_071 241.5594 267.3918667

CG_072 267.5684 299.3847333

CG_073 275.7359333 303.1803333

CG_074 281.4974 300.3226

CG_075 272.1116667 298.6636

CG_076 271.8015333 290.8284667

CG_077 290.0711333 311.8188667

CG_078 303.3436667 312.1494667

CG_079 296.9876667 296.5674

CG_080 294.1258 308.5588

CG_081 299.1325333 321.3729333

*CG_082 (FB3) 310.3322667 328.1878

CG_083 234.1302667 255.5161333

CG_084 242.3046667 273.4233333

CG_085 248.1509333 284.6248667

CG_086 266.5854 292.5008
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CG_087 296.8594 325.8781333

CG_088 299.7863333 353.4679333

CG_089 331.1356 360.5499333

CG_090 354.236 387.2304

CG_091 366.2528667 452.4502667

CG_092 395.0169333 429.1254667

CG_093 321.4921333 383.3107333

CG_094 269.5779333 309.4416667

CG_095 297.6537333 333.9079333

CG_096 304.0614667 363.4905333

CG_097 310.4851333 336.7329333

CG_098 316.2746 370.6933333

CG_099 367.7267333 399.8726

CG_100 347.768 370.0480667

CG_101 279.7222667 319.0768667

CG_102 241.0214667 274.3878667

CG_103 247.7571333 279.1179333

CG_104 265.5458667 296.5334667

CG_105 265.8666 291.3410667

CG_106 264.765 289.1823333

CG_107 237.9094667 266.3213333

*CG_Dorsal_01 112.3004 181.2226667

*CG_Dorsal_02 124.7366 181.8934

*CG_Dorsal_03 324.5824 387.3578667

*CG_Head_01 240.8515333 262.2556

*CG_Head_02 217.5345333 241.1225333

*CG_Head_03 184.4107333 231.2929333

*CG_MidGill_01 160.4341333 156.7788667

*CG_Pec_01 160.2597333 200.9680667

*CG_Pec_02 154.1594667 222.5358667

*CG_Pec_03 79.3728 153.3443333

*CG_Tail_01 196.5402 218.3247333

*CG_Tail_02 187.5908 334.8146

*CG_Tail_03 153.5048 271.0940667
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A1.2. Modern Shark Variability Analysis – Lamna nasus

a) Specimens

Figure S1.4. Photographs of a porbeagle shark (Lamna nasus) specimen during sampling; a

215cm female (see Chapter 3.1.3.) caught in United Kingdom between 2012-2013, and stored at

Centre for Environment Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK. Top, lateral

view of entire specimen; and bottom shows lateral detail of the flank region. Scale bar fine

intervals are 1 cm. Note: test sample removed at centre of flank, not retained for analysis.
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Table S1.4. Lamna nasus specimens and specimen numbers used in the analysis. All specimens

were wild caught and sourced by Victoria Bendall (CEFAS, Lowestoft, United Kingdom).

Species Specimen Number Sex Maturity Total Length (cm)

Lamna nasus LN 01 F Mature 215

Lamna nasus LN 03 F Immature 186

Lamna nasus LN 04 F Immature 127

Lamna nasus LN 05 M Immature 146

Lamna nasus LN 06 M Mature 183

Maturity = Males over 165cm and females over 195cm defined as mature, according to Ebert et

al. 2013.

Figure S1.5. Mean percentage area of different regions (defined in body text) of fish bodies (n

=123).

Pre-orbital area

Post-orbital

Post-pectoral
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b) Scanning electron microscopy

Figure 1.6. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is Lamna

nasus LN01, a 215cm mature female. See Chapter 3.1.3. for sampling locations. Scale bars are

500µm.
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Figure S1.7. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is Lamna

nasus LN03, a 186cm immature female. See Chapter 3.1.3. for sampling locations. Scale bars are

500µm.
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Figure S1.8. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is Lamna

nasus specimen LN04, a 127cm immature female. See Chapter 3.1.3. for sampling locations. Scale

bars are 500µm.
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Figure S1.9. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is Lamna

nasus specimen LN05, a 146cm immature male. See Chapter 3.1.3. for sampling locations. Scale

bars are 500µm.
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Figure S1.10. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is Lamna

nasus specimen LN06, a 183cm mature male. See Chapter 3.1.3. for sampling locations. Scale

bars are 500µm.
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c) Riblet spacing measurements

Table S1.5. Riblet spacing measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN01, a 215cm mature female. See Chapter 3.1.3.

for sampling locations. Note pelvic claspers were not present, other missing data denotes riblets were not present on the scale crowns. Values have been rounded

to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 59 64 67 56 - 57 52 38 57 44 56 80 60 65 71 71 - 57 70 68

Scale 2 44 55 64 57 - 47 42 42 45 37 61 72 55 74 58 71 - 53 66 78

Scale 3 53 64 71 55 - 39 45 48 41 49 61 85 55 77 70 69 - 55 74 74

Scale 4 54 60 70 64 - 44 48 41 51 39 55 61 56 79 58 68 - 66 62 81

Scale 5 41 62 68 61 - 45 40 47 48 44 53 71 66 63 64 64 - 49 64 81

Scale 6 54 69 64 65 - 41 42 39 47 42 58 70 59 80 79 68 - 51 77 77

Scale 7 47 71 75 48 - 40 48 40 38 39 58 70 56 73 65 68 - 64 67 61

Scale 8 44 73 67 53 - 42 48 45 40 38 49 67 55 66 70 63 - 56 71 65

Scale 9 40 57 61 66 - 40 46 41 41 39 54 70 65 77 56 54 - 70 72 88

Scale 10 46 73 57 67 - 40 49 44 40 45 55 67 69 71 69 61 - 51 69 79

Scale 11 47 71 71 48 - 43 48 40 42 39 48 70 59 62 67 57 - 65 72 75

Scale 12 56 70 59 58 - 40 45 40 49 52 47 71 55 73 67 61 - 60 72 67

Scale 13 51 67 61 48 - 39 46 36 58 37 56 60 61 81 61 66 - 62 65 73

Scale 14 43 61 57 55 - 45 52 45 62 44 55 67 64 79 74 67 - 62 67 70

Scale 15 53 77 68 55 - 39 53 44 47 47 55 72 55 82 61 65 - 66 74 69
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Table S1.6. Riblet spacing measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN03, a 186cm immature female. Note pelvic

claspers were not present; other missing data denotes riblets were not present on the scale crowns. See Chapter 3.1.3. for sampling locations. Values have been

rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 70 59 63 47 - 43 39 43 46 44 51 65 58 44 60 45 - 44 45 37

Scale 2 56 59 54 48 - 51 46 50 41 28 45 58 59 60 62 54 - 46 59 40

Scale 3 55 52 42 62 - 39 63 44 40 33 59 67 51 60 59 60 - 47 55 50

Scale 4 65 56 60 61 - 46 56 44 39 32 54 60 57 62 75 44 - 42 50 42

Scale 5 54 58 59 65 - 44 48 44 37 42 63 52 56 89 64 49 - 44 49 47

Scale 6 58 68 56 53 - 41 46 39 37 32 48 63 55 61 75 45 - 42 36 46

Scale 7 52 61 55 59 - 50 43 33 40 32 65 69 48 71 67 44 - 47 47 39

Scale 8 59 62 52 56 - 45 48 42 39 43 49 68 67 63 72 48 - 45 40 41

Scale 9 64 55 52 57 - 44 44 46 46 31 45 52 58 74 73 38 - 48 40 42

Scale 10 59 48 56 50 - 46 49 44 31 46 44 75 56 63 72 42 - 39 45 36

Scale 11 45 44 56 57 - 37 43 49 36 35 43 75 59 69 63 45 - 54 39 36

Scale 12 56 61 55 55 - 45 49 36 38 30 59 83 49 51 76 - - 37 53 43

Scale 13 59 53 54 63 - 44 49 42 47 46 67 67 48 80 69 - - 44 48 38

Scale 14 67 57 52 58 - 46 52 45 50 46 46 66 52 55 56 - - 44 41 49

Scale 15 49 55 62 46 - 44 43 40 40 42 59 57 64 50 66 - - 40 53 49
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Table S1.7. Riblet spacing measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN04, a 127cm immature female. Note pelvic

claspers were not present; other missing data denotes riblets were not present on the scale crowns. See Chapter 3.1.3. for sampling locations. Values have been

rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 59 67 51 57 - 47 50 47 49 43 59 59 70 70 65 49 - 47 50 48

Scale 2 58 59 65 55 - 53 52 44 39 43 44 73 57 89 50 52 - 46 47 49

Scale 3 60 66 47 56 - 39 60 41 38 39 47 54 59 83 67 54 - 39 39 48

Scale 4 53 75 54 54 - 44 52 38 44 39 55 60 56 76 59 62 - 43 42 52

Scale 5 58 59 65 51 - 50 56 35 41 41 49 65 59 64 47 73 - 40 41 51

Scale 6 58 51 68 55 - 48 58 42 46 42 53 59 55 62 63 56 - 35 36 42

Scale 7 59 73 59 57 - 47 43 43 44 37 55 60 60 78 73 72 - 47 53 49

Scale 8 61 58 57 69 - 54 58 42 33 41 51 60 53 65 53 59 - 37 44 52

Scale 9 56 60 66 54 - 44 63 41 38 38 53 58 61 84 55 56 - 45 46 52

Scale 10 65 62 67 68 - 52 59 39 46 42 46 71 54 69 49 51 - 36 46 52

Scale 11 57 62 64 58 - 56 54 46 39 45 48 66 46 76 57 61 - 40 43 51

Scale 12 52 74 59 53 - 56 56 44 38 45 49 62 57 66 63 50 - 45 47 51

Scale 13 64 64 74 63 - 41 57 43 39 39 55 55 60 73 74 53 - 44 42 51

Scale 14 56 55 64 63 - 41 55 42 36 40 50 54 52 67 47 49 - 41 44 51

Scale 15 56 73 67 59 - 47 54 42 42 35 52 51 48 54 51 62 - 46 39 48
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Table S1.8. Riblet spacing measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN05, a 146cm immature male. Note pelvic

claspers were present; however missing data denotes riblets were not present on the scale crowns. See Chapter 3.1.3. for sampling locations. Values have been

rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 57 55 62 61 - 52 50 42 48 50 53 58 49 61 87 55 - 51 58 59

Scale 2 49 60 59 65 - 49 52 45 46 48 51 64 55 68 69 55 - 50 56 55

Scale 3 50 62 64 56 - 47 54 44 47 43 48 64 55 56 69 64 - 50 52 51

Scale 4 66 53 60 64 - 46 44 50 47 46 57 54 65 65 79 58 - 58 53 47

Scale 5 61 55 67 54 - 43 47 47 50 37 52 59 49 53 70 59 - 54 46 43

Scale 6 59 52 63 54 - 35 48 45 48 50 45 75 56 63 69 46 - 49 46 46

Scale 7 47 49 67 77 - 52 44 49 48 43 46 50 56 58 79 58 - 50 45 42

Scale 8 56 51 54 56 - 49 39 55 41 39 61 55 63 64 58 61 - 48 57 40

Scale 9 62 45 65 62 - 47 47 50 61 45 55 67 52 65 65 61 - 56 43 38

Scale 10 58 55 58 55 - 48 42 42 51 49 55 67 54 62 67 72 - 45 50 42

Scale 11 61 56 61 62 - 46 45 51 42 41 49 64 51 64 72 68 - 50 51 40

Scale 12 56 51 68 58 - 46 46 48 49 55 46 60 53 61 76 57 - 46 37 36

Scale 13 58 58 69 56 - 58 55 49 53 47 55 63 56 59 71 65 - 56 57 43

Scale 14 63 60 66 55 - 45 47 39 40 42 44 66 62 53 56 60 - 57 52 40

Scale 15 47 48 61 53 - 47 47 43 40 44 42 66 62 58 66 55 - 45 47 38
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Table S1.9. Riblet spacing measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN06, a 183cm mature male. Note pelvic claspers

were present; however missing data denotes riblets were not present on the scale crowns. See Chapter 3.1.3. for sampling locations. Values have been rounded to

whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 80 69 60 68 - 57 68 54 49 39 55 57 55 78 73 58 - 43 58 45

Scale 2 58 59 60 60 - 51 55 47 49 43 62 70 56 68 64 72 - 58 49 63

Scale 3 73 74 54 51 - 50 48 48 55 45 52 58 62 69 71 57 - 45 58 56

Scale 4 62 58 63 60 - 58 55 44 44 38 58 59 55 67 63 80 - 50 46 48

Scale 5 72 67 60 65 - 57 54 55 47 37 57 52 51 70 66 64 - 56 55 46

Scale 6 73 62 67 73 - 52 57 48 52 42 65 58 55 75 54 66 - 49 45 59

Scale 7 76 61 62 61 - 42 54 50 49 42 68 60 58 66 69 64 - 51 49 47

Scale 8 65 65 78 79 - 50 55 52 46 39 62 62 63 64 62 67 - 48 44 53

Scale 9 60 54 61 69 - 51 53 46 54 46 61 72 51 54 63 68 - 50 58 52

Scale 10 60 60 56 65 - 51 52 57 49 37 53 70 54 66 59 70 - 55 52 45

Scale 11 56 58 59 69 - 52 55 45 51 39 64 71 54 70 72 62 - 55 50 59

Scale 12 69 62 67 64 - 55 50 51 50 43 66 66 56 68 58 63 - 50 55 56

Scale 13 62 65 62 69 - 52 60 50 50 44 63 74 54 74 70 72 - 49 48 45

Scale 14 51 73 61 61 - 52 48 44 49 47 61 58 56 72 67 67 - 49 59 50

Scale 15 54 55 64 60 - 53 58 51 52 38 58 72 55 62 58 65 - 50 51 46
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c) Crown width measurements

Table S1.10. Crown width measurements (µm) for scale crowns at different sampling locations of Lamna nasus specimen LN01, a 215cm mature female. See Chapter

3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 294 307 334 290 300 285 292 301 282 254 311 306 271 319 328 322 - 274 274 277

Scale 2 269 321 312 277 265 253 248 312 296 228 320 335 290 340 294 328 - 226 246 261

Scale 3 315 265 308 307 321 253 302 294 285 229 360 370 288 355 322 358 - 267 266 284

Scale 4 273 239 326 385 265 221 253 307 286 242 332 297 246 305 319 297 - 263 276 305

Scale 5 258 317 313 308 276 232 233 312 322 231 319 282 260 320 350 286 - 260 325 293

Scale 6 292 275 298 340 259 283 281 313 302 257 309 318 300 401 378 297 - 239 320 255

Scale 7 252 308 339 306 338 243 260 251 303 228 366 303 255 328 310 307 - 271 274 293

Scale 8 280 312 305 313 290 277 299 306 295 223 338 279 275 307 390 323 - 226 285 237

Scale 9 275 309 312 328 270 288 227 301 300 222 417 290 304 341 328 323 - 296 279 266

Scale 10 300 267 290 313 288 239 311 358 303 218 393 303 281 321 330 266 - 248 276 240

Scale 11 342 266 384 323 224 246 301 291 291 219 323 306 234 382 330 261 - 263 306 248

Scale 12 283 268 328 302 299 249 272 265 241 272 300 318 232 365 338 253 - 245 302 215

Scale 13 258 283 303 328 277 233 254 250 295 228 332 269 252 344 382 298 - 307 268 261

Scale 14 279 272 318 283 283 267 283 262 293 269 266 339 268 392 328 340 - 265 275 257

Scale 15 292 328 290 296 245 210 274 244 320 277 285 307 212 326 322 294 - 293 287 255
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Table S1.11. Crown width measurements (µm) for scale crowns at different sampling locations of Lamna nasus specimen LN03, a 186cm immature female. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 276 256 252 231 213 267 195 272 236 237 251 263 215 260 239 234 - 259 184 196

Scale 2 305 251 242 249 222 245 237 279 246 181 251 245 239 256 275 285 - 225 224 210

Scale 3 299 227 233 252 228 208 246 281 258 179 352 263 261 256 249 292 - 246 234 221

Scale 4 272 275 272 262 200 248 230 277 197 208 268 260 206 259 254 239 - 195 230 210

Scale 5 273 262 256 251 209 218 223 222 235 191 339 248 254 289 254 229 - 244 210 180

Scale 6 301 279 266 247 235 220 184 208 254 209 239 229 243 278 284 240 - 208 188 212

Scale 7 367 252 255 256 222 226 193 215 253 177 314 260 208 248 264 230 - 237 212 201

Scale 8 279 296 246 241 245 251 242 256 201 235 238 240 253 271 282 256 - 184 193 186

Scale 9 330 256 255 260 257 229 173 270 253 202 261 251 223 303 290 221 - 253 210 214

Scale 10 299 248 323 234 259 217 225 265 218 216 272 260 221 266 274 222 - 204 224 191

Scale 11 255 259 251 252 214 203 209 343 216 174 229 276 252 282 283 229 - 210 240 187

Scale 12 269 270 250 258 312 223 233 221 204 199 344 272 230 290 341 - - 213 272 182

Scale 13 318 241 260 258 237 201 173 282 238 204 197 243 230 291 265 - - 202 245 192

Scale 14 304 258 236 272 223 240 172 247 241 205 268 256 217 230 273 - - 187 194 190

Scale 15 276 267 233 258 221 259 214 243 240 177 331 227 229 243 265 - - 178 281 247
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Table S1.12. Crown width measurements (µm) for scale crowns at different sampling locations of Lamna nasus specimen LN04, a 127cm immature female. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 228 263 206 259 237 203 196 237 233 192 265 262 255 304 251 201 - 237 227 261

Scale 2 260 230 232 270 221 225 232 254 193 187 250 262 244 289 220 214 - 232 204 223

Scale 3 252 224 212 230 245 187 202 223 195 177 246 228 232 341 285 243 - 215 189 223

Scale 4 251 244 238 248 251 216 221 230 220 211 258 258 215 315 294 262 - 210 178 255

Scale 5 302 250 230 260 246 215 231 244 206 196 236 252 235 268 215 264 - 194 188 239

Scale 6 267 193 249 257 230 206 205 249 223 181 252 254 212 275 243 227 - 182 177 194

Scale 7 273 267 231 215 218 212 214 256 239 173 249 256 233 290 282 251 - 191 216 263

Scale 8 305 273 224 239 231 203 219 252 193 185 226 273 206 299 244 234 - 213 210 233

Scale 9 253 234 255 255 216 171 246 236 232 187 281 244 215 284 247 230 - 216 213 261

Scale 10 271 257 262 260 231 230 224 262 247 204 217 273 233 317 236 227 - 196 205 232

Scale 11 265 217 242 249 230 214 222 252 244 193 223 267 210 340 267 245 - 190 243 210

Scale 12 249 239 219 270 240 229 196 225 232 216 245 259 218 286 276 216 - 231 239 223

Scale 13 240 252 267 242 239 177 201 242 211 175 276 223 250 312 285 253 - 209 202 251

Scale 14 227 218 257 237 242 219 205 231 223 185 286 282 195 278 256 240 - 219 235 256

Scale 15 284 243 247 253 232 236 193 223 250 171 250 229 192 303 261 253 - 219 242 221
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Table S1.13. Riblet Crown width measurements (µm) for scale crowns at different sampling locations of Lamna nasus specimen LN05, a 146cm immature male. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 265 244 237 251 206 212 243 182 229 229 218 254 179 221 284 189 - 194 250 208

Scale 2 273 261 214 223 184 215 216 225 224 196 259 242 235 246 239 208 - 216 238 234

Scale 3 235 262 197 224 180 213 248 218 235 192 219 212 220 224 258 232 - 187 193 206

Scale 4 270 201 241 233 221 195 200 221 249 217 204 225 213 266 269 194 - 233 175 205

Scale 5 263 234 221 234 182 205 201 240 228 175 261 255 182 246 259 200 - 229 210 221

Scale 6 268 205 219 204 233 188 211 225 210 242 222 262 191 225 235 185 - 217 175 238

Scale 7 229 232 229 228 182 241 200 234 213 196 230 224 216 223 288 204 - 204 167 192

Scale 8 220 229 162 228 205 213 197 215 216 197 262 213 216 268 242 213 - 180 210 186

Scale 9 243 189 212 240 212 242 228 237 208 177 210 255 211 255 270 208 - 214 170 257

Scale 10 250 228 212 211 222 211 189 213 220 233 244 246 229 254 289 218 - 204 228 181

Scale 11 296 231 231 224 224 249 234 223 208 202 220 238 200 249 280 230 - 204 200 195

Scale 12 237 253 213 226 203 213 202 205 225 226 267 274 227 234 247 176 - 213 197 138

Scale 13 234 222 258 234 193 204 240 223 224 190 228 246 226 270 265 218 - 215 204 162

Scale 14 285 244 218 242 230 198 222 228 239 174 206 268 230 240 227 213 - 209 207 138

Scale 15 241 218 224 198 182 225 222 220 210 189 189 239 235 253 265 207 - 198 208 173
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Table S1.14. Crown width measurements (µm) for scale crowns at different sampling locations of Lamna nasus specimen LN06, a 183cm mature male. See Chapter

3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 342 277 242 240 267 302 355 216 255 219 283 261 259 332 301 230 - 224 196 235

Scale 2 380 225 222 260 257 302 324 208 279 216 326 339 259 267 279 328 - 248 286 265

Scale 3 328 260 248 238 226 296 307 296 260 193 310 206 269 232 264 225 - 191 264 237

Scale 4 275 222 274 247 235 298 296 219 247 198 283 263 259 274 259 291 - 270 185 175

Scale 5 327 286 255 231 273 282 291 257 204 158 309 255 262 256 278 256 - 278 262 170

Scale 6 325 260 235 254 223 305 342 293 283 200 348 259 234 288 253 258 - 275 269 286

Scale 7 323 243 300 234 291 197 324 235 237 192 356 216 265 244 321 282 - 324 223 212

Scale 8 331 329 301 283 271 211 294 277 222 201 279 228 256 254 329 251 - 282 215 192

Scale 9 321 228 232 278 258 282 271 272 303 216 291 314 253 244 248 227 - 228 231 212

Scale 10 273 247 211 246 183 263 335 311 235 179 291 252 246 343 239 262 - 227 203 214

Scale 11 220 246 314 287 279 276 282 249 273 170 293 305 235 342 311 217 - 277 251 250

Scale 12 310 219 322 248 230 278 325 237 271 199 305 241 232 340 256 231 - 263 245 204

Scale 13 299 256 222 249 256 294 320 257 289 214 306 303 234 329 290 299 - 282 175 192

Scale 14 228 291 248 272 215 239 285 221 229 183 343 260 246 349 294 230 - 286 226 207

Scale 15 236 227 251 257 297 266 315 227 260 159 331 336 307 260 264 222 - 277 255 204
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d) Exposed scale length measurements

Table S1.15. Exposed crown length measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN01, a 215cm mature female. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 304 229 338 311 241 262 384 254 306 300 297 304 241 320 296 309 - 219 269 326

Scale 2 225 236 308 235 278 279 283 297 274 263 265 330 276 334 274 360 - 267 239 229

Scale 3 216 216 330 306 272 258 312 302 252 261 307 356 220 304 299 365 - 286 247 236

Scale 4 255 234 323 412 407 262 268 248 207 267 240 338 284 340 293 341 - 185 238 341

Scale 5 269 191 301 295 262 239 307 227 248 239 289 270 307 327 332 325 - 216 247 262

Scale 6 279 222 311 342 285 287 270 218 260 252 281 337 219 333 360 351 - 186 288 320

Scale 7 288 246 309 370 315 223 343 217 278 205 248 310 292 274 246 256 - 226 277 175

Scale 8 231 263 322 283 264 272 266 252 257 259 285 307 239 327 344 318 - 242 222 223

Scale 9 270 238 348 332 287 232 301 257 303 259 221 327 324 296 317 274 - 253 245 281

Scale 10 293 238 314 309 304 288 381 310 302 242 314 283 218 300 343 262 - 194 235 255

Scale 11 263 237 342 382 268 327 260 303 258 251 281 369 240 337 341 294 - 187 224 225

Scale 12 266 248 298 363 270 221 305 211 232 266 280 314 197 324 301 258 - 219 233 198

Scale 13 330 254 356 353 267 319 254 235 325 307 325 337 241 305 330 275 - 210 254 236

Scale 14 271 242 290 261 306 251 316 263 299 272 256 370 223 317 311 280 - 283 197 229

Scale 15 375 261 327 259 261 270 311 320 279 323 259 332 296 347 288 336 - 209 233 221
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Table S1.16. Exposed crown length measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN03, a 186cm immature female. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 288 238 222 262 233 311 197 256 244 203 214 216 203 213 226 214 - 175 201 215

Scale 2 276 235 281 271 252 271 178 276 233 176 205 236 236 214 241 220 - 172 150 177

Scale 3 293 213 225 250 223 266 207 282 192 217 271 246 209 234 247 194 - 205 195 198

Scale 4 268 251 294 270 197 284 232 189 218 216 215 262 195 230 242 199 - 175 201 206

Scale 5 265 230 230 216 199 197 239 211 238 198 239 243 235 222 219 221 - 181 154 161

Scale 6 274 283 310 323 249 275 210 234 240 239 218 249 225 219 177 190 - 131 179 205

Scale 7 340 254 180 295 211 275 238 220 258 173 251 225 260 190 272 233 - 186 197 226

Scale 8 337 187 242 313 214 291 218 239 228 217 235 246 193 201 198 226 - 146 193 195

Scale 9 339 281 328 310 237 211 218 313 230 193 192 258 166 215 228 187 - 233 179 165

Scale 10 297 200 297 267 212 243 225 257 196 216 221 250 223 175 257 198 - 188 178 192

Scale 11 276 221 187 265 226 245 214 342 215 230 239 224 203 224 246 227 - 157 188 151

Scale 12 290 238 232 277 291 286 231 272 202 229 278 167 152 215 240 - - 196 201 137

Scale 13 282 242 185 292 209 248 192 244 237 185 211 203 218 212 238 - - 156 183 133

Scale 14 288 276 240 275 196 307 182 324 233 160 186 256 198 238 245 - - 222 208 162

Scale 15 277 260 199 316 207 264 178 290 230 239 264 173 115 217 213 - - 222 231 187
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Table S1.17. Exposed crown length measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN04, a 127cm immature female. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 249 209 208 242 255 235 194 188 191 165 258 248 243 289 241 234 - 198 132 215

Scale 2 212 235 284 267 264 259 216 178 192 189 205 246 258 176 185 250 - 213 177 178

Scale 3 252 257 262 251 241 221 204 169 191 160 200 229 253 265 307 234 - 190 169 187

Scale 4 275 210 295 232 263 199 249 215 183 214 262 292 259 260 300 275 - 209 159 163

Scale 5 269 270 243 265 257 192 242 228 195 200 214 283 237 215 230 208 - 217 158 187

Scale 6 254 222 275 276 276 202 194 239 203 159 251 208 204 265 250 228 - 198 151 179

Scale 7 268 201 210 232 272 190 222 222 143 178 222 277 283 268 268 214 - 213 165 182

Scale 8 285 254 247 264 276 240 227 267 200 196 236 299 261 276 242 195 - 230 166 217

Scale 9 262 257 255 287 242 232 251 238 227 165 271 265 193 239 272 215 - 187 184 237

Scale 10 240 271 294 262 213 255 222 253 176 166 228 284 247 225 267 204 - 167 201 245

Scale 11 226 217 227 243 259 233 192 235 189 191 189 215 211 297 230 262 - 163 127 195

Scale 12 222 258 294 236 284 220 218 164 183 176 254 237 237 241 277 202 - 194 174 212

Scale 13 282 191 234 259 251 245 170 232 178 189 226 243 263 219 244 211 - 171 160 175

Scale 14 279 181 257 238 271 164 176 269 196 180 249 279 238 256 251 251 - 221 201 229

Scale 15 286 202 221 273 313 218 159 228 182 216 225 222 202 263 254 258 - 152 183 203
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Table S1.18. Exposed crown length measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN05, a 146cm immature male. See

Chapter 3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 300 159 238 227 217 239 208 201 218 221 201 248 153 264 156 151 - 121 218 140

Scale 2 270 220 188 183 175 151 260 256 186 184 201 247 196 227 171 155 - 166 194 227

Scale 3 220 216 187 224 185 194 214 253 230 198 223 192 167 200 176 160 - 159 113 140

Scale 4 288 186 219 245 160 164 196 217 205 195 180 216 193 194 229 210 - 145 116 212

Scale 5 311 225 175 216 173 221 219 246 203 178 190 243 158 210 198 135 - 136 144 178

Scale 6 211 181 214 221 192 194 195 269 188 196 177 233 131 151 150 129 - 154 181 210

Scale 7 177 224 190 177 204 230 158 246 206 182 171 268 165 214 193 172 - 159 165 221

Scale 8 229 209 123 280 185 210 259 230 212 223 217 264 159 202 247 155 - 161 176 204

Scale 9 270 181 182 195 220 188 268 233 175 151 185 222 143 150 175 176 - 173 125 301

Scale 10 207 231 221 200 202 207 171 146 216 200 206 214 202 195 159 150 - 168 142 163

Scale 11 264 222 238 205 234 180 199 188 205 207 153 209 188 187 170 173 - 155 196 132

Scale 12 244 204 167 213 203 194 194 221 234 133 180 294 171 230 133 152 - 182 176 130

Scale 13 221 213 200 160 158 219 201 153 199 187 212 241 212 195 197 160 - 174 141 179

Scale 14 257 202 198 165 203 224 199 196 181 178 104 221 154 241 182 166 - 152 163 151

Scale 15 205 177 238 174 191 183 193 231 227 195 181 157 163 162 194 147 - 130 177 125
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Table S1.19. Exposed crown length measurements (µm) for scales at different sampling locations of Lamna nasus specimen LN06, a 183cm mature male. See Chapter

3.1.3. for sampling locations. Values have been rounded to whole digits.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 284 248 196 210 276 341 316 170 226 237 177 233 215 268 225 203 - 175 127 231

Scale 2 337 245 220 262 262 292 345 173 219 219 176 174 247 240 194 252 - 140 172 218

Scale 3 340 177 226 248 202 298 282 278 223 258 236 178 257 223 166 228 - 164 146 228

Scale 4 253 235 262 192 238 271 293 174 214 157 154 117 240 230 164 158 - 178 139 160

Scale 5 342 189 217 245 329 290 333 238 260 144 228 224 238 171 198 203 - 168 224 153

Scale 6 262 222 205 197 247 335 305 274 226 171 259 226 229 174 174 223 - 182 195 208

Scale 7 304 252 253 254 262 212 261 203 205 175 209 253 201 203 266 230 - 202 136 180

Scale 8 321 246 251 280 195 225 303 251 171 159 135 268 204 176 187 211 - 204 137 209

Scale 9 235 200 213 275 236 323 294 277 258 223 175 214 197 211 196 169 - 144 169 174

Scale 10 275 248 223 283 193 233 297 294 173 194 252 240 232 286 188 175 - 140 172 169

Scale 11 249 215 282 241 263 326 229 255 166 150 277 159 245 259 191 162 - 180 189 233

Scale 12 335 211 240 284 230 264 248 232 226 148 247 244 213 253 227 220 - 178 189 181

Scale 13 294 239 164 213 262 291 296 182 229 237 177 278 176 182 178 214 - 143 150 192

Scale 14 192 220 207 229 258 245 198 220 196 168 230 215 270 177 207 169 - 168 137 181

Scale 15 244 195 297 285 275 230 330 260 237 174 179 242 251 184 221 172 - 163 150 168
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e) Riblet number

Table S1.20. Riblet number for scale crowns at different sampling locations of Lamna nasus specimen LN01, a 215cm mature female. See Chapter 3.1.3. for sampling

locations.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 4 4 5 4 - 5 5 4 5 5 4 4 4 3 3 3 - 3 3 3

Scale 2 5 5 5 4 - 5 4 6 5 5 4 5 5 4 3 4 - 3 3 3

Scale 3 4 3 4 4 - 6 5 6 5 5 5 4 4 4 4 5 - 3 3 4

Scale 4 4 5 4 5 - 4 4 5 3 5 5 4 4 3 4 3 - 3 3 3

Scale 5 4 5 5 4 - 4 5 5 3 4 5 4 3 5 4 3 - 4 5 3

Scale 6 4 4 5 5 - 5 5 5 4 5 4 4 5 4 3 3 - 4 4 4

Scale 7 4 5 5 5 - 4 5 5 6 5 5 4 4 3 4 3 - 3 3 4

Scale 8 5 4 4 4 - 5 5 5 4 4 5 4 5 3 4 4 - 3 3 3

Scale 9 4 4 5 5 - 5 4 6 5 3 6 3 4 3 5 4 - 4 3 3

Scale 10 5 4 5 5 - 4 5 6 4 4 5 3 3 4 4 4 - 5 3 3

Scale 11 4 3 5 5 - 4 5 5 5 4 5 3 3 5 4 4 - 5 3 3

Scale 12 3 4 5 5 - 4 5 6 5 5 5 4 3 3 4 3 - 3 3 3

Scale 13 4 4 5 5 - 5 5 5 4 4 5 3 4 3 5 3 - 5 3 4

Scale 14 4 4 5 4 - 6 5 6 5 5 4 5 3 4 4 3 - 3 3 3

Scale 15 4 4 4 5 - 5 5 5 5 5 5 3 3 3 5 3 - 5 3 3
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Table S1.21. Riblet number for scale crowns at different sampling locations of Lamna nasus specimen LN03, a 186cm immature female. See Chapter 3.1.3. for

sampling locations.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 4 4 4 5 - 5 4 5 4 5 5 3 3 5 4 5 - 4 3 3

Scale 2 5 5 5 5 - 4 5 4 5 4 5 4 3 4 3 5 - 4 3 3

Scale 3 4 4 5 3 - 4 3 5 4 3 6 3 5 4 3 4 - 4 3 3

Scale 4 4 4 4 3 - 4 3 5 4 3 4 3 3 4 3 3 - 4 3 3

Scale 5 4 4 4 3 - 5 5 5 5 4 5 4 4 3 3 3 - 5 3 3

Scale 6 4 4 5 5 - 4 4 4 5 5 4 3 3 5 3 3 - 4 6 3

Scale 7 6 3 4 3 - 3 4 5 4 4 5 3 4 3 3 3 - 4 3 3

Scale 8 5 5 4 3 - 5 4 4 4 4 5 3 4 3 3 4 - 3 3 3

Scale 9 5 4 4 4 - 4 3 5 4 5 5 4 3 4 3 3 - 5 4 4

Scale 10 4 4 5 4 - 3 5 4 4 4 5 3 3 4 3 3 - 4 3 3

Scale 11 4 5 5 4 - 3 5 5 4 3 5 3 4 5 3 3 - 4 5 3

Scale 12 4 4 4 4 - 4 3 4 3 4 5 3 4 5 4 - - 4 4 3

Scale 13 4 5 5 3 - 5 4 5 3 4 3 3 3 4 3 - - 4 4 3

Scale 14 4 4 3 4 - 3 3 5 3 3 5 3 3 3 4 - - 3 3 3

Scale 15 4 4 3 4 - 4 4 4 4 3 5 3 3 4 3 - - 3 5 4
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Table S1.22. Riblet number for scale crowns at different sampling locations of Lamna nasus specimen LN04, a 127cm immature female. See Chapter 3.1.3. for

sampling locations.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 3 5 4 4 3 3 3 5 5 4 5 3 4 4 4 3 - 5 4 4

Scale 2 4 4 3 5 3 5 4 5 5 4 5 4 4 3 4 3 - 5 3 3

Scale 3 5 3 4 4 3 4 3 4 3 3 4 3 4 3 4 4 - 5 3 3

Scale 4 5 4 3 5 3 3 4 5 5 5 4 3 3 3 5 4 - 4 3 5

Scale 5 5 5 4 5 3 3 4 5 3 4 3 4 3 3 3 5 - 4 3 5

Scale 6 5 3 5 5 3 5 4 4 5 3 4 3 3 3 4 3 - 4 3 3

Scale 7 3 3 4 3 4 4 4 5 5 4 3 3 3 3 4 3 - 3 4 5

Scale 8 5 4 3 4 3 4 4 5 5 4 3 3 3 3 3 4 - 5 3 3

Scale 9 5 3 3 5 3 3 3 4 5 3 4 3 3 3 3 5 - 3 4 5

Scale 10 5 5 3 5 3 4 3 5 5 2 3 4 4 4 3 3 - 3 3 5

Scale 11 4 3 4 5 3 3 4 5 4 3 3 3 3 5 4 3 - 4 5 3

Scale 12 5 4 3 5 4 3 4 4 5 3 4 3 3 4 4 3 - 4 5 3

Scale 13 4 4 3 5 3 3 3 4 4 3 5 3 4 3 4 5 - 3 4 4

Scale 14 4 3 3 5 3 5 3 4 4 3 5 3 3 3 3 4 - 4 5 5

Scale 15 5 3 3 5 4 5 3 4 5 5 4 3 3 4 4 4 - 4 5 3



237

Table S1.23. Riblet number for scale crowns at different sampling locations of Lamna nasus specimen LN05, a 146cm immature male. See Chapter 3.1.3. for sampling

locations.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 5 3 4 4 - 3 4 3 5 4 4 4 4 3 4 3 - 3 5 3

Scale 2 4 5 3 3 - 3 4 4 4 3 5 3 5 3 3 3 - 3 3 3

Scale 3 4 4 3 4 - 3 4 3 4 4 5 3 5 4 3 3 - 3 3 4

Scale 4 4 3 4 4 - 3 4 4 5 4 3 3 3 4 3 3 - 3 3 3

Scale 5 4 4 3 5 - 3 4 4 4 3 5 3 3 4 3 3 - 3 4 3

Scale 6 5 3 3 4 - 3 3 4 3 5 5 3 3 4 3 3 - 3 3 4

Scale 7 5 4 4 3 - 5 3 3 3 3 5 3 4 4 4 3 - 3 4 3

Scale 8 4 3 3 5 - 3 3 3 4 5 3 5 3 4 3 3 - 3 3 3

Scale 9 3 3 3 5 - 5 4 3 3 3 3 3 3 3 3 3 - 3 3 3

Scale 10 3 3 3 3 - 3 3 3 4 5 4 3 5 3 4 3 - 3 5 4

Scale 11 5 4 4 5 - 5 5 3 4 3 4 3 3 5 4 4 - 3 3 3

Scale 12 3 5 4 4 - 3 3 3 4 3 5 5 5 3 3 3 - 3 3 3

Scale 13 3 4 3 5 - 3 4 4 3 3 4 3 5 5 3 3 - 3 3 3

Scale 14 4 4 3 5 - 3 4 3 4 3 4 4 3 3 3 3 - 3 3 3

Scale 15 4 4 3 3 - 4 4 3 4 3 5 3 3 4 4 3 - 3 3 3
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Table S1.24. Riblet number for scale crowns at different sampling locations of Lamna nasus specimen LN06, a 183cm mature male. See Chapter 3.1.3. for sampling

locations.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 4 4 4 3 - 5 5 3 4 5 5 3 3 4 4 3 - 3 3 5

Scale 2 5 4 3 4 - 5 5 3 5 4 5 4 4 3 4 5 - 3 5 5

Scale 3 5 4 3 5 - 5 5 5 5 5 5 3 3 3 3 4 - 3 5 5

Scale 4 4 4 4 4 - 5 4 4 5 5 4 3 4 4 3 3 - 4 3 3

Scale 5 5 3 4 3 - 5 4 5 5 4 5 4 4 3 4 3 - 4 5 3

Scale 6 4 5 3 3 - 5 5 5 5 5 5 4 3 4 4 3 - 5 5 4

Scale 7 3 3 4 4 - 4 5 4 4 5 3 3 4 3 4 4 - 4 3 3

Scale 8 4 5 4 3 - 3 4 5 4 5 5 3 3 3 5 3 - 5 4 3

Scale 9 5 4 3 5 - 5 5 4 5 5 5 3 3 3 3 3 - 3 4 4

Scale 10 5 3 3 4 - 5 5 3 3 4 4 3 3 5 3 3 - 3 3 3

Scale 11 4 3 4 4 - 5 4 4 4 4 4 3 4 5 3 3 - 3 4 5

Scale 12 5 3 4 3 - 4 5 4 5 4 4 3 3 5 4 4 - 3 5 3

Scale 13 4 4 3 3 - 5 5 4 5 5 5 3 3 4 4 3 - 5 3 3

Scale 14 3 4 3 5 - 5 4 4 4 5 5 4 3 5 4 3 - 4 3 3

Scale 15 4 3 4 3 - 5 5 3 4 4 5 4 5 3 3 3 - 5 4 3
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Table S1.25. Riblet convergence and divergence angles (degrees) for scale crowns at different sampling locations of Lamna nasus specimen LN01, a 215cm mature

female. See Chapter 3.1.3. for sampling locations. Note negative values are diverging in the streamwise direction (anterior to posterior of crown), and positive values

indicate riblets converge to a point at the posterior.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 12 -7 -6 -3 - 7 6 3 3 0 -6 -9 -6 -6 -4 0 - -7 -12 -4

Scale 2 9 -13 -9 -3 - 17 10 -8 2 0 4 -11 -7 1 -8 1 - 2 -2 2

Scale 3 13 -9 -4 3 - 7 5 5 3 0 -10 -7 -11 -3 -4 -4 - -5 -9 -5

Scale 4 5 -2 -9 1 - 17 23 4 2 -1 3 -9 -8 -5 -9 0 - -4 -5 -1

Scale 5 6 -11 -6 4 - 8 9 5 0 8 -5 -9 -12 -4 -9 0 - -7 -1 4

Scale 6 2 -3 -7 -1 - 15 3 0 -5 4 -2 -11 -9 -1 -6 -4 - -9 -1 4

Scale 7 3 -2 -6 1 - 4 10 -1 -1 -9 -6 -12 -10 -2 -8 -1 - -5 0 0

Scale 8 11 -3 -6 1 - 5 9 3 -2 0 -9 -7 -13 -3 -4 0 - -9 1 3

Scale 9 2 -5 -6 -1 - 5 1 7 1 -4 -6 -9 -4 1 -6 0 - -5 -4 -5

Scale 10 8 -9 -9 -5 - 6 5 0 4 0 -6 -10 -10 -3 -3 -2 - -11 -3 1

Scale 11 2 -11 -11 -4 - 4 25 10 16 -4 -11 -9 -9 -4 -5 0 - -7 -2 -1

Scale 12 13 1 -3 1 - 12 8 5 19 -2 -5 -6 -7 3 -10 1 - -5 -5 2

Scale 13 6 -6 -6 -3 - 10 -1 2 -2 -4 -4 -10 0 -1 -6 0 - -1 1 2

Scale 14 11 -2 -18 -1 - 18 14 -1 2 3 -5 -7 4 -2 -10 0 - 2 2 2

Scale 15 5 1 -7 -5 - 2 6 -1 10 2 -1 -5 -6 -4 -9 0 - -5 -2 1

Scale 16 -3 -3 -12 -5 - 4 8 -3 -2 2 -2 -4 -7 -2 -16 0 - -6 2 0

Scale 17 -4 0 -9 -9 - 18 8 6 4 -2 -5 -9 -5 -4 -2 5 - 0 -9 -4

Scale 18 10 -5 -5 -3 - 10 11 9 18 5 -7 -11 -5 -1 -11 2 - -3 -5 -5

Scale 19 1 -6 -3 -10 - 9 -3 6 -2 0 -2 -6 -6 3 -8 1 - -4 -3 -2

Scale 20 11 -1 -8 4 - 13 4 5 15 -3 -2 -3 -7 0 -10 2 - -6 5 0
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Table S1.26. Riblet convergence and divergence angle (degrees) for scale crowns at different sampling locations of Lamna nasus specimen LN03, a 186cm immature

female. See Chapter 3.1.3. for sampling locations. Note negative values are diverging in the streamwise direction (anterior to posterior of crown), and positive values

indicate riblets converge to a point at the posterior.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 4 -9 -12 -8 - 6 2 -1 -5 -2 -7 -3 1 4 -11 - - -7 -3 -13

Scale 2 17 -12 -9 -8 - 4 0 -1 -3 -3 0 -6 -6 3 -5 - - -5 -7 -11

Scale 3 4 -10 -5 -10 - 7 4 0 0 0 1 -10 14 -1 -7 - - -1 -1 -3

Scale 4 1 -2 -8 -9 - 2 -4 -2 1 1 -6 -6 10 -7 -10 - - -3 -4 -11

Scale 5 8 -3 -15 -8 - 5 -3 -8 -4 -3 -2 -11 -2 -17 -8 - - -2 -6 -10

Scale 6 0 -7 -15 -13 - 3 3 1 0 4 2 -8 9 -18 -8 - - 3 -6 -8

Scale 7 5 -3 -8 -9 - 3 3 -8 -2 0 -7 -7 10 -10 -4 - - -10 -5 -7

Scale 8 4 -14 -6 -12 - 2 -5 -7 -3 1 -1 -7 3 -3 -7 - - -7 -5 -6

Scale 9 -2 -3 -11 -14 - 10 -7 -4 -9 -1 -4 -8 2 -10 -8 - - -8 -1 -9

Scale 10 6 -4 -5 -14 - 8 -5 -1 -12 8 -4 -16 -1 -7 -9 - - -1 -5 -1

Scale 11 1 -9 -3 -6 - 11 -3 -7 -4 -1 2 -10 2 -8 -3 - - -11 0 -4

Scale 12 25 -13 -7 -8 - 8 2 -1 -3 1 -5 -10 2 -12 -9 - - -7 -4 -8

Scale 13 3 0 -8 -1 - 2 -2 -2 -3 -1 4 -5 4 -17 -4 - - -3 1 -8

Scale 14 13 -6 -16 -6 - 3 -3 -2 2 -1 10 -7 -2 -5 -11 - - -3 4 -8

Scale 15 12 -11 -5 -2 - 6 5 -3 0 -4 -6 -3 20 -10 -5 - - -3 1 -10

Scale 16 12 -4 -5 -4 - 6 -5 -4 -5 -1 2 -11 9 1 -13 - - -5 -6 -9

Scale 17 2 -9 -11 -7 - 12 2 0 4 0 3 -8 13 -11 -2 - - -4 0 -8

Scale 18 12 -11 -15 -4 - 5 -2 -1 0 3 -1 -15 4 -11 -5 - - -5 1 -4

Scale 19 5 -13 -9 -10 - 3 2 -2 5 1 2 -8 -4 -11 -4 - - -3 10 -3

Scale 20 1 -4 -5 2 - 7 -3 0 -1 2 -5 -14 14 0 -14 - - -13 1 -6
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Table S1.27. Riblet convergence and divergence angle (degrees) for scale crowns at different sampling locations of Lamna nasus specimen LN04, a 127cm immature

female. See Chapter 3.1.3. for sampling locations. Note negative values are diverging in the streamwise direction (anterior to posterior of crown), and positive values

indicate riblets converge to a point at the posterior.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 4 -5 -15 -16 14 -3 -1 -10 -4 -4 -11 -14 -8 -17 -15 -18 - -16 -12 -11

Scale 2 5 -10 -11 -20 12 8 2 -5 -6 -3 -14 -18 -6 -14 -16 -13 - -14 4 -11

Scale 3 12 -4 -21 -19 28 6 -2 -4 -7 -4 -10 -12 -13 -14 -9 -10 - -7 -13 -13

Scale 4 7 -5 -12 -14 24 3 -4 -4 -1 -3 -10 -17 -11 -23 -14 -16 - -14 -7 -9

Scale 5 7 -11 -18 -12 26 -5 -1 1 3 -4 -10 -18 -12 -9 -18 -15 - -11 -13 -5

Scale 6 5 -17 -18 -17 26 -9 -4 -7 -6 -7 -9 -10 -14 -7 -16 -18 - -10 -15 -9

Scale 7 7 -4 -15 -8 18 3 -4 -5 -7 0 -4 -19 -14 -10 -18 -8 - -11 -13 -10

Scale 8 15 -8 -16 -14 25 -6 -8 -3 -8 -5 -17 -14 -7 -13 -15 -15 - -15 -16 -9

Scale 9 8 -14 -24 -9 20 -2 0 -2 -5 -2 -9 -16 -13 -12 -14 -17 - -12 -2 -9

Scale 10 9 -12 -20 -17 26 10 -2 -4 -2 -4 -8 -15 -15 -12 -13 -14 - -7 -14 -20

Scale 11 14 -2 2 -12 23 2 -1 -2 -10 3 -9 -15 -13 -5 -6 -28 - -13 -13 -12

Scale 12 15 -10 -10 -10 13 -19 -3 -6 -6 -2 -12 -19 -6 -13 -11 -18 - -11 -8 -11

Scale 13 -6 -12 -14 -16 20 -8 -1 -2 -5 0 0 -9 -14 -9 -10 -13 - -11 -16 -3

Scale 14 8 -8 -13 -18 31 -20 -1 -5 -7 -4 -5 -11 -13 -14 -15 -17 - -10 -11 -11

Scale 15 11 -12 -6 -11 27 0 -5 4 -2 -4 -11 -16 -9 -6 -19 -18 - -8 -13 -8

Scale 16 6 -5 -20 -14 26 5 -3 -5 -11 2 -6 -20 -6 -12 -11 -17 - -13 -6 -15

Scale 17 10 -21 1 -11 34 -2 -1 -6 -9 2 -4 -18 -5 -20 -19 -19 - -10 -19 -11

Scale 18 3 -12 -18 -13 31 -2 -5 0 -8 0 -18 -9 -12 -4 -17 -17 - -15 -13 -12

Scale 19 1 -16 -20 -14 21 6 -1 0 -7 0 -14 -13 -20 -15 -7 -13 - -7 -6 -10

Scale 20 2 -5 -13 -12 27 3 1 -5 -5 0 -1 -17 -9 -10 -17 -17 - -8 -18 -14
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Table S1.28. Riblet convergence and divergence angle (degrees) for scale crowns at different sampling locations of Lamna nasus specimen LN05, a 146cm immature

male. See Chapter 3.1.3. for sampling locations. Note negative values are diverging in the streamwise direction (anterior to posterior of crown), and positive values

indicate riblets converge to a point at the posterior.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 -2 -16 -25 -5 - 0 2 -1 -5 -6 -17 -17 2 -4 -13 -16 - -14 -8 -14

Scale 2 -4 -16 -15 -8 - 2 2 -8 -6 -4 -7 -13 -4 -14 -19 -10 - -8 -3 -16

Scale 3 3 -21 -27 -12 - -4 -8 -4 -1 -7 -12 -22 -10 -10 -15 -4 - -6 -12 -15

Scale 4 7 -15 -24 -15 - -4 -3 -15 -6 -12 -21 -13 -1 -16 -23 -12 - -16 -15 -22

Scale 5 -5 -12 -24 -24 - -7 1 -1 -9 0 -12 -13 3 -13 -7 -17 - -11 -16 -12

Scale 6 -1 -11 -22 -19 - 5 5 -6 -7 -5 -21 -15 -4 -15 -16 -14 - -10 -14 -9

Scale 7 4 -17 -21 -18 - -1 3 -21 -9 -10 -15 -15 1 -10 -14 -17 - -11 -13 -12

Scale 8 3 -5 -17 -21 - -5 -5 -4 -6 -6 -3 -26 0 -18 -20 -13 - -12 -17 -20

Scale 9 -2 -18 -17 -24 - -2 -1 -4 0 -1 -9 -19 -9 -5 -22 -3 - -20 -11 -13

Scale 10 0 -17 -19 -18 - 2 0 -2 0 -3 -4 -19 -9 -9 -14 -17 - -23 -18 -11

Scale 11 5 -20 -19 -25 - -10 4 -5 -11 -3 -8 -21 -8 -13 -25 -14 - -11 -7 -19

Scale 12 -3 -11 -24 -22 - -2 0 -10 -9 -11 -15 -18 -3 -5 -19 -13 - -6 -11 -18

Scale 13 -1 -22 -16 -14 - -2 1 -9 0 -2 -15 -17 -1 -5 -20 -3 - -16 -3 -13

Scale 14 8 -12 -25 -20 - -5 -2 -19 -11 -3 -4 -13 1 -16 -11 -16 - -7 -16 -17

Scale 15 9 -23 -18 -19 - 2 2 4 -7 1 -10 -21 2 -8 -17 -14 - -12 -20 -18

Scale 16 -2 -21 -28 -9 - -6 3 -1 -4 -7 0 -9 0 -11 -17 -20 - -5 -19 -15

Scale 17 2 -19 -6 -4 - -4 3 -3 -8 -2 -13 -13 -1 -12 -9 -14 - -15 -3 -10

Scale 18 5 -10 -22 -17 - 2 0 -3 -4 -8 -6 -19 4 -18 -16 -11 - -6 -4 -13

Scale 19 4 -13 -16 -17 - -5 -2 1 -17 -5 -13 -24 -2 -10 -14 -13 - -11 -19 -9

Scale 20 7 -16 -10 -16 - 2 -5 -3 -4 -3 -19 -15 2 -15 -6 -10 - -10 -10 -6
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Table S1.29. Riblet convergence and divergence angle (degrees) for scale crowns at different sampling locations of Lamna nasus specimen LN06, a 183cm mature

male. See Chapter 3.1.3. for sampling locations. Note negative values are diverging in the streamwise direction (anterior to posterior of crown), and positive values

indicate riblets converge to a point at the posterior.

H1 H2 H3 MG Pec1 Pec2 Pec3 Dors1 Dors2 Dors3 FF1 FF2 FF3 FB1 FB2 FB3 Cl Tail1 Tail2 Tail3

Scale 1 15 9 -17 0 - 17 11 2 7 -2 5 -1 11 -5 -4 1 - -1 4 -10

Scale 2 14 -3 -4 -3 - 7 15 -1 2 3 1 -1 16 5 -5 3 - -3 -3 3

Scale 3 35 2 -4 1 - 14 16 3 1 -3 -10 -7 17 -2 0 0 - -7 6 0

Scale 4 -2 2 -4 -4 - 9 9 1 -5 6 2 -2 12 -2 -6 6 - 2 2 -1

Scale 5 16 -3 -5 -5 - 10 0 4 8 4 8 -2 14 -6 -7 7 - 3 -2 -11

Scale 6 13 -1 -5 1 - 19 8 3 1 7 -14 -3 7 2 -3 -10 - 1 -2 0

Scale 7 23 1 -5 -4 - 9 6 0 8 0 -3 -7 14 1 1 1 - 3 5 -2

Scale 8 38 2 1 2 - -10 18 -1 8 9 1 4 15 -5 1 2 - -2 4 -5

Scale 9 22 1 -7 -2 - 0 4 3 -4 -1 2 -1 8 3 -2 1 - -7 -2 -9

Scale 10 17 0 -7 -5 - 14 6 1 -1 9 1 0 12 3 -2 5 - -1 5 -11

Scale 11 27 1 -1 -10 - 5 16 4 -7 3 3 0 17 3 -8 -2 - 4 6 3

Scale 12 20 6 7 -8 - 6 12 3 -1 6 -5 -10 6 -4 -9 -7 - 12 2 -2

Scale 13 29 1 -1 -5 - 11 19 1 9 9 17 5 11 1 -4 2 - 10 3 -5

Scale 14 9 1 -6 -1 - 10 26 -1 0 -4 -1 -1 15 -2 -8 3 - 3 4 -9

Scale 15 16 -2 -19 -15 - 9 11 7 1 -6 0 -3 32 -1 -9 0 - 7 -7 2

Scale 16 16 10 -3 -11 - 12 16 8 0 0 4 0 17 2 -3 0 - -1 7 -3

Scale 17 7 1 -10 -15 - 15 20 -7 -1 -3 -5 -2 26 4 -3 -11 - 8 5 1

Scale 18 2 1 -8 -4 - 7 7 0 5 -4 3 -5 24 -7 -5 -2 - -7 0 -10

Scale 19 28 -2 2 3 - 1 5 1 6 -3 -3 -10 9 -5 -7 0 - 3 4 -10

Scale 20 4 -1 -4 9 - 10 18 5 1 6 2 -3 11 -1 -4 6 - 6 -4 -13
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d) Heat maps of preceding data

Figure S1.11 Heat maps of mean riblet spacing (µm) distribution in individual Lamna nasus

specimens, generated from sampling points detailed in Chapter 3.1.3.
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Figure S1.12. Heat maps of mean riblet convergence/divergence angles (degrees) in individual

Lamna nasus specimens, generated from sampling points detailed in Chapter 3.1.3.
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Figure S1.13. Heat maps of mean scale width (µm) distribution in individual Lamna nasus

specimens, generated from sampling points detailed in Chapter 3.1.3.
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Figure S1.14. Heat maps of mean exposed scale length (µm) distribution in individual Lamna

nasus specimens, generated from sampling points detailed in Chapter 3.1.3.
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Figure S1.15. Heat maps of mean riblet spacing (top), mean riblet angle (middle), and mean scale

width (bottom) distribution for all male (left) and female (right) Lamna nasus specimens. Images

generated using sampling points detailed in Chapter 3.1.3.
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Figure S1.16. Histogram showing mean riblet angle of immature (blue) and mature (red) Lamna

nasus. Mature males over 165 cm and females over 195 cm, defined according to Ebert et al.

(2013).

Figure S1.17. Histogram showing mean riblet spacing for all body regions of male (blue) and

female (red) Lamna nasus specimens.
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A1.3. Modern Shark Comparative Anatomy – Other Sampled Species

a) Specimens

Figure S1.18. Photographs of stuffed Chiloscyllium plagiosum specimen pre-sampling, a single

680mm male caught in the Phillipines in 2013. Top, lateral view; centre, dorsal view; and bottom

shows dorsal detail of the flank region. Scale bar fine intervals are 1 cm.
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Figure S1.19. Photographs of stuffed Chiloscyllium punctatum specimen pre-sampling, a single

730mm female caught in Surigao, the Phillipines in 2013. Top, lateral view; centre, dorsal view;

and bottom shows dorsal detail of the flank region. Scale bar fine intervals are 1 cm.



252

Figure S1.20. Photographs of a Squatina squatina specimen before sampling, a 124cm female

(see Chapter 3.1.3.) caught in United Kingdom between 2012-2013, and stored at Centre for

Environment Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK. Top, dorsal view of

entire specimen; and bottom, ventral view of entire specimen. Scale bar fine intervals are 1 cm.
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Figure S1.21. Photographs of a Squalus acanthias specimen before sampling, a 102cm female

(see Chapter 3.1.3.) caught in United Kingdom in 2013, and sampled at the Centre for

Environment Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK. Top, lateral view; centre,

dorsal view; and bottom shows lateral detail of the flank region. Scale bar fine vertical intervals

are 1 cm.
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Figure S1.22. Photographs of a Scyliorhinus canicula specimen before sampling, a 535mm male

(see Chapter 3.1.3.) beached in Pembrokeshire, United Kingdom in 2014. Top, lateral view;

centre, dorsal view; and bottom shows lateral detail of the flank region. Scale bar fine numbers

are centimetre intervals.
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b) Scanning electron microscopy

Figure S1.23. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is a 680mm

male Chiloscyllium plagiosum. See Chapter 3.1.3. for sampling locations. Scale bars are 500µm.
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Figure S1.24. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is a 730mm

female Chiloscyllium punctatum. See Chapter 3.1.3. for sampling locations. Scale bars are 500µm.
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Figure S1.25. Examples of scanning electron micrographs of modern shark skin used for scale

comparative analysis at different sampling locations. Specimen is a 1240mm female Squatina

squatina. Note that the dorsoventrally compressed body form of this species limits the use of the

analogous landmarks detailed in Chapter 3.1.3, and so brief descriptions of sampling location are

provided for clarity. Scale bars are 1mm, except ‘Ventral of mid-Tail’ which is 500µm.
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Figure S1.26. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is a 1020mm

female Squalus acanthias. See Chapter 3.1.3. for sampling locations. Scale bars are 500µm.
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Figure S1.27. Examples of scanning electron micrographs of modern shark skin used for scale

measurements and comparative analysis at different sampling locations. Specimen is a 535mm

male Scyliorhinus canicula. See Chapter 3.1.3. for sampling locations. Scale bars are 500µm.

A1.4. Inter-species riblet spacing analysis
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Figure S1.28 A. Box and whisker plot of mean scale riblet spacing in different regions of Lamna

nasus (215 cm, female) as detailed in Figure 1a. B. Plot of body regions by percentage area,

calculated from lateral view figured images of modern sharks species in this study (n=50).

Figure S1.29 Standardised body regions for area calculations, head (orange), pectoral fin (blue),

dorsal fin (red), flank (green), and tail/caudal fin (turquoise).
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Table S1.30. Percentage area of shark regions (defined in previous figure)

Species Head Pectoral Dorsal Flank Tail Other

Alopias_pelagicus 7.6 12.1 3.9 33.7 25.3 17.3

Alopias_vulpinus 8.1 9.2 4.7 30.9 28.9 18.2

Apisturus_canutus 11.7 7.7 0.8 28.7 16.3 34.7

Apristurus kampae 11.8 13.4 1.1 47.4 21.6 4.7

Apristurus laurussoni 11.6 13.3 1.1 49.7 19.9 4.2

Carcharhinus_acronotus 11.8 7.9 5.8 33.7 13.3 27.5

Carcharhinus_albimarginatus 11.3 6.5 5.6 42.8 12.8 20.9

Carcharhinus_altimus 12.5 8.9 6.2 36.6 12.6 23.1

Carcharhinus_amblyrhynchos 13.5 7.0 6.6 36.5 16.4 20.0

Carcharhinus_brachyurus 9.2 8.9 5.1 36.3 14.0 26.5

Carcharhinus_brevipinna 12.3 6.8 5.5 38.0 12.3 25.0

Carcharhinus_cerdale 10.6 10.1 7.2 31.2 14.1 26.8

Carcharhinus_falciformis 10.1 7.8 5.0 36.5 15.2 25.4

Carcharhinus_galapagensis 11.8 8.7 7.1 33.9 16.2 22.3

Carcharhinus_isodon 10.1 8.1 6.0 36.0 14.6 25.2

Carcharhinus_leucus 14.1 7.9 7.5 39.0 12.3 19.3

Carcharhinus_limbatus 11.6 8.4 6.3 34.5 13.2 26.0

Carcharhinus_longimanus 9.6 12.6 8.7 35.0 14.9 19.2

Carcharhinus_melanopterus 12.1 8.4 5.8 33.1 12.9 27.6

Carcharhinus_obscurus 10.7 9.0 5.0 40.0 12.6 22.7

Carcharhinus_perezii 11.0 7.4 6.0 39.4 14.6 21.7

Carcharhinus_plumbeus 12.4 11.4 10.0 27.1 14.8 24.4

Carcharhinus_porosus 9.6 6.9 5.1 38.6 13.7 26.1

Carcharhinus_signatus 12.5 9.3 4.5 41.0 12.1 20.6

Carcharodon_carcharias 14.8 10.5 5.4 32.7 11.3 25.3

Galeocardo_cuvier 12.6 7.1 5.2 40.8 13.2 21.1

Galeorhinus galeus 10.4 6.0 4.7 41.7 11.3 25.9

Hexanchus_griseus 12.9 5.1 1.5 40.8 13.0 26.8

Hexanchus_nakamurai 10.0 4.7 1.9 43.3 15.2 25.0

Isurus_oxyrhinchus 13.1 8.3 5.4 37.6 11.5 24.1

Isurus_paucus 10.6 11.5 5.3 37.4 12.0 23.1

Lamna_ditropis 14.1 7.2 6.9 32.9 10.3 28.6

Lamna_nasus 13.3 8.9 6.9 34.2 14.3 22.4

Megachasma_pelagios 17.8 8.3 3.1 26.0 21.0 23.7

Nasolamia_velox 13.2 8.5 7.0 37.9 10.8 22.6

Negaprion_brevirostris 10.9 10.2 4.7 35.6 10.8 27.6

Odontaspis_ferox 10.3 5.9 5.6 36.9 12.6 28.7

Prionace_glauca 11.1 9.8 4.7 39.4 12.6 22.5

Rhincodon_typus 9.8 9.1 5.4 30.8 14.3 30.6

Rhizoprionodon_longurio 11.3 6.3 5.8 36.6 12.5 27.4

Rhizoprionodon_terraenovae 12.1 7.7 6.1 36.9 12.2 25.0

Sphyrna_corona 9.7 7.4 10.3 25.8 17.6 29.1

Sphyrna_lewini 10.5 5.5 7.2 34.9 14.3 27.6

Sphyrna_media 8.3 5.3 6.8 34.4 15.1 30.2

Sphyrna_mokarran 7.8 6.7 8.5 31.2 15.9 30.0
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Sphyrna_tiburo 7.6 8.5 8.1 30.2 16.9 28.7

Sphyrna_tudes 8.3 7.0 9.1 29.3 17.9 28.3

Sphyrna_zygaena 7.1 5.9 7.6 34.9 16.3 28.2

Triaenodon_obesus 9.0 8.1 5.3 36.3 12.9 28.3

Zameus_squamulosus 10.6 3.2 1.8 59.7 10.1 14.7
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Table S1.31. Source figures and mean riblet distances of taxa included in this study.
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Modern Sharks
Alopias pelagicus
Alopias vulpinus

Apristurus canutus
Apristurus kampae
Apristurus laurussoni

Carcharhinus acronotus
Carcharhinus albimarginatus
Carcharhinus altimus
Carcharhinus amblyrhynchos
Carcharhinus brachyurus
Carcharhinus brevipinna
Carcharhinus cerdale
Carcharhinus falciformis
Carcharhinus galapagensis
Carcharhinus isodon
Carcharhinus leucus
Carcharhinus limbatus
Carcharhinus longimanus
Carcharhinus melanopterus
Carcharhinus obscurus
Carcharhinus perezii
Carcharhinus plumbeus
Carcharhinus porosus
Carcharhinus signatus

Carcharodon carcharias

Galeocardo cuvier

Galeorhinus galeus

Hexanchus griseus
Hexanchus nakamurai

Isurus oxyrhinchus
Isurus paucus

Lamna ditropus
Lamna nasus

Megachasma pelagios

1
1

1
1
1

1
1
1
1, 2
1, 3
1
1
1, 2
1
1
1
1
1
2
1, 3
1
1,2
1
1

1, 2

1, 2

1

1, 2
1

1, 2
1

1
1, 4

1

15
15

4
3
8

15
15
15
30
15
15
15
45
15
10
11
15
15
15
30
15
9
15
15

25

14

15

25
15

26
15

15
20

11

225
225

60
48
120

225
225
225
449
225
225
225
675
225
150
165
225
225
225
450
225
585
225
225

369

210

225

375
225

390
225

225
265

165

47.52 ±0.3
44.26 ±0.3

87.22 ±1.1
121.87 ±1.1
82.77 ±0.5

75.12 ±0.8
51.69 ±0.4
85.48 ±0.5
88.61 ±0.7
79.27 ±0.5
74.69 ±0.7
111.88 ±0.5
48.56 ±0.4
72.73 ±0.4
82.66 ±1.2
145.12 ±2.0
49.22 ±0.5
78.88 ±0.8
103.70 ±2.1
67.86 ±0.6
64.86 ±0.7
107.11 ±1.1
64.30 ±0.4
70.65 ±0.5

82.14 ±0.5

274.63 ±2.5

96.21 ±0.6

161.75 ±1.0
99.47 ±0.5

46.14 ±0.3
61.92 ±0.4

72.29 ±0.6
57.7 ±0.9

96.88 ±0.6
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Nasolamia velox

Negaprion brevirostris

Odontaspis ferox

Prionace glauca

Rhincodon typus

Rhizoprionodon longurio
Rhizoprionodon terraenovae

Sphyrna corona
Sphyrna lewini
Sphyrna media
Sphyrna mokarran
Sphyrna tiburo
Sphyrna tudes
Sphyrna zygaena

Triaenodon obesus

Zameus squamulosus

‘Acanthodians’
Gladiobranchus probaton

Milesacanthus ancestralis
Milesacanthus antarcticus

Nostolepis gaujensis
Nostolepis gracilis
Vernicomacanthus waynensis

Thelodonts
Canonia costulata
Canonia grossi

Kataporodus gemellus

Nikolivia milesi

Thelodus bicostatus

Extinct Chondricthayns
(unknown body location)

Areyonga oervigi
Tantalepis gatehousei

1

2

1

1, 2

1,5

1
1

1
1, 2
1
1
1
1
1, 2

1, 2

1

6

7, 8
9

7,8
10
11

12
12-15

12,16

17

18

19
4

15

18

15

51

23

30
15

15
16
15
15
14
15
45

15

8

7

2
5

5
2
15

3
13

5

3

1

5
2

225

256

225

699

345

225
225

225
236
225
225
210
225
675

225

120

137

94
119

103
56
225

45
384

151

90

30

60
56

80.04 ±0.5

52.44 ±0.9

107.46 ±0.8

119.04 ±1.1

81.62 ±0.6

64.50 ±0.4
73.29 ±0.5

49.31 ±0.4
46.83 ±0.2
56.52 ±0.4
69.04 ±0.5
48.82 ±0.4
65.90 ±0.4
45.37 ±0.2

98.21 ±1.4

171.93 ±2.2

44.35 ±1.4

41.90 ±1.0
38.72 ±1.0

99.16 ±2.9
51.08 ±1.1
96.74 ±0.7

38.10 ±0.6
35.71 ±0.6

51.23 ±0.6

66.83 ±1.8

59.98 ±2.3

77.26±3.7
69.05±1.8
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Source Data for Supplementary Table 1.31.

1. Castro JI. The sharks of North America. New York: Oxford University Press; 2011.

2. Reif WE. Squamation and ecology of sharks. Courier Forschungsinstitut. Senckenberg Frankfurt

am Main. 1985; 78: 1-255.

3. Sue Lindsay, Microscopy and Microanalysis Unit, Australian Museum, Sydney

4. Tom Fletcher, School of Earth and Environment, University of Leeds

5. Kuthalingam MDK, Luther G, Livingston P, Murty VS. Further occurrences of the whale shark,

Rhincodon typus Smith in the Indian coastal waters. Indian Journal of Fisheries 1973; 20: 646-651.

6. Hanke GF, Davis SP. Redescription of the acanthodian Gladiobranchus probaton Bernacsek &

Dineley, 1977, and comments on diplacanthid relationships. Geodiversitas. 2008; 30: 303–330.

7. Hairapetian V, Valiukevicius J, Burrow CJ. Early Frasnian acanthodians from central Iran. Acta

Palaeontologica Polonica. 2006; 51: 499-520.

8. Burrow CJ, Long JA, Trinajstic K. Disarticulated acanthodian and chondrichthyan remains from
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10. Valiukevičius J. Silurian acanthodian biostratigraphy of Lithuania. Geodiversitas. 2005; 27: 349-

380.

11. Märss T, Wilson MVH, Thorsteinsson R. Silurian and Lower Devonian thelodonts and putative

chondrichthyans from the Canadian Arctic Archipelago. Special Papers in Palaeontology. 2006; 75:

1–144.

12. Märss, T. A new Late Silurian or Early Devonian thelodont from the Boothia Peninsula, Arctic

Canada. Palaeontology. 1999; 42: 1079-1099.

13. Karatajūtė-Talimaa VN. Lower Devonian (Lochkovian) thelodonts from October Revolution 

Island (Severnaya Zemlya Archipelago, Russia). Geodiversitas. 2002; 24: 791–804.

14. Blom H. Vertebrate remains from Upper Silurian–Lower Devonian beds of Hall and North

Greenland. Geology of Greenland Survey Bulletin. 1999; 182: 1–80.

15. Märss T, Wilson MVH, Thorsteinsson R. New thelodont (Agnatha) and possible chondrichthyan

(Gnathostomata) taxa established in the Silurian and Lower Devonian of the Canadian Arctic

Archipelago. Proceedings of the Estonian Academy of Sciences, Geology. 2002; 51: 88-120.
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16. Turner S. A new articulated thelodont (Agnatha) from the Early Devonian of Britain.

Palaeontology. 1982; 25: 879–889.

17. Turner S. Siluro-Devonian thelodonts from the Welsh Borderland. Journal of the Geological

Society. 1973; 129: 557–584.

18. Young GC. Ordovician microvertebrate remains from the Amadeus Basin, central

Australia. Journal of Vertebrate Paleontology. 1997; 17: 1-25.

19. Sansom IJ, Davies NS, Coates MI, Nicoll RS, Ritchie A. Chondrichthyan-like scales from the Middle
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Table S1.32. Ecological data informing category decisions for modern sharks.
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Alopias pelagicus 262-316 Coastal/oceanic Yes Yes Fast

A. vulpinus 260-762 Fast Coasta/oceanic Yes Yes Fast

Apisturus canutus 42.8-45.5 Demersal No Slow/Scavenger/Ambush

A. kampae Slow/Scavenger/Ambush

A. laurissonis Slow/Scavenger/Ambush

Carcharhinus acronotus 103-141.3 Coastal, Reef No No Moderate

C. albimarginatus 174-275 Coastal, Reef No Yes Fast

C. altimus 200-282 Deep, Reef No Yes Moderate

C. amblyrhynchos Nearshore Reef Yes No Moderate

C. brachyurus 193-305 car, clup Coastal, Reef Yes Yes Moderate

C. brevipinna 171-242 clup, scoph Coastal, Reef Yes Yes Fast

C. cerdale 85-116 Demersal Moderate

C. falciformis 203-305 Fast car, scom Oceanic, Reef Yes Yes Fast

C. galapagensis 205-330 Fast balist, pleur, ser Coastal, Reef No No Moderate

C. isodon 129.8-189 clup, scia, scom Coastal, Demersal No Yes Fast

C. leucus 160-324 car, cent, meg, mug, scom Coastal, Reef No Yes Moderate

C. limbatus 142.5-202
car, clup, elop, haem, inverts,
mug squid

Coastal, Reef No Yes Fast

C. longimanus 180-350 cor, scom, Oceanic Yes Yes Fast

C. melanopterus Reef No No Moderate
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C. obscurus 270.1-384 Fast
car, mug, octopus, pleur, ser,
sph

Coastal/oceanic,
Reef

Yes Yes Fast

C. perezii 170-249 exo, sco Coastal, Reef No No Moderate

C. plumbeus 180-234 Nearshore
car, catfish, clup, lut, mug,
sciaen, scom, small sharks,
spar, sph, syn

Coastal, Reef Yes Yes Moderate

C. porosus 73-110 small bony fish Coastal, Demersal No Yes Moderate

C. signatus 287 Bathyal, Demersal No Yes Fast

Carcharodon carcharias 339.5-600 Fast mammals, sharks
Pelagic, Coastal,
Oceanic

Yes Yes Fast

Galeocardo cuvier 290-472 Nearshore
Coastal/oceanic,
Demersal

Yes Scavenger Moderate

Galeorhinus galeus 155-198 scom Coastal, Demersal Yes Rarely Moderate

Hexanchus griseus 325-482 Slow
Bathyal,
Bathydemersal,
Demersal

Yes Ambush Slow/Scavenger/Ambush

H. nakamurai 144-169
Bathyal,
Bathydemersal,
Demersal

No Scavenger Slow/Scavenger/Ambush

Isurus oxyrhinchus 195-380 Fast
inverts, istio, Prionace glauca,
xiph

Coastal/oceanic Yes Yes Fast

I. paucus 228.6-427 Fast dio, squid Oceanic Yes Fast

Lamna ditropis 158-282 Fast gad, salm Coastal/Oceanic Yes Yes Fast

L. nasus 186-263 Fast
alep, clup, gad, scom, sebas,
str

Coastal/Oceanic Yes Yes Fast

Megachasma pelagios 450-544 Planktonic
Bathydemersal,
Oceanic

Yes No Slow/Scavenger/Ambush

Nasolamnia velox 125-161
Coastal/oceanic,
Demersal

No No Moderate
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Negaprion brevirostris 227-291 Nearshore
bat, eng, ger, haem, hem,
lutjan, spar

Coastal, Reef Yes Yes Moderate

Odontaspis ferox 364
Coastal/oceanic,
Demersal

Yes Moderate

Prionace glauca 182-383 Nearshore bram, clup, gad, sal, scom, str Pelagic/oceanic Yes Yes Fast

Rhincodon typus 900-1218
clup, Planktonic, occassional
scom,

Pelagic/oceanic Yes Yes Slow/Scavenger/Ambush

Rhizoprionodon longurio 83-116 fishes, inverts Coast, Demersal No Moderate

R. terraenovae 80-106.5 small fishes, pleur Coast, Demersal No Yes Moderate

Sphyrna corona 67.2 Coastal, Demersal No Fast

S. lewini 135-326 Fast Coastal/oceanic Yes Yes Fast

S. media 82.7-111 fishes, shrimp, squid Demersal No Moderate

S. mokarran 210-548 car, meg, Sharks Coastal/oceanic Yes Yes Fast

S. tiburo 68-130.8 inverts, spa Coastal, Reef No No Moderate

S. tudes 80-148 Fast ari, inverts
Coastal/oceanic,
Demersal

No No Moderate

S. zygaena 240-266 Fast Pelagic/oceanic Yes Yes Fast

Triaenodon obesus 105-168 Nearshore reef fishes, Crustaceans Benthic, Reef No No Moderate

Zameus squamulosus Demersal No Slow/Scavenger/Ambush

Abbreviations: alep = Alepisauriformes; ari = Ariidae; balist = Balistidae; bat = Batrachoididae; bram = Bramidae; car = Carangiformes; cent = Centropomidae; clup =

Clupidae; cor = Coryphaenoides; dio = Diodontidae; elop = Elopidae; eng = Engraulidae; exo = Exocoetidae; gad = Gadiformes; ger = Gerreidae; haem = Haemulidae;

hem = Hemiramphidae; Inverts = Invertebrates; ist = Istiophoridae; lut = Lutjanidae; meg = Megalopidae; mug = Mugilidae; pleur = Pleuronectiformes; sal =

Salmonidae; scia = Sciaenidae; scop = Scophthalmidae; scom = Scombridae; ser = Serranidae; Spa = Sparidae; sph = Sphyraenidae; str = Stromateidae; syn =

Syngnathidae; xiph = Xiphiidae
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Principle Source Data for Supplementary Table 2

Castro JI. The sharks of North America. New York: Oxford University Press; 2011.

Froese R, Pauly D. FishBase 2011. World Wide Web electronic publication. www.fishbase.org, (06/2014)

Reif WE. Squamation and ecology of sharks. Courier Forschungsinstitut. Senckenberg Frankfurt am Main. 1985; 78: 1-255.
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Appendix II Supplementary Data Relating to Experimental Analysis

A2.1. Examined material

Table S2.1 List of institutions and notable fossil specimens used to inform the design of scaled plate blocks.

Institution Taxa (uncorrected / as catalogued) Specimen number (on label) Figure Squamation

Scale overlap (not
including spines)

Well-ordered
rows

Packing / interscale
spacing

Natural
History
Museum,
London, UK

Acanthodes sulcatus
Cheiracanthus latus
Climatius reticulates
Diplacanthus longispinus
Lanarkia horrida

Loganellia scotica

Parexus falcatus
Ptomacanthus anglicus

Thelodus mackintoshi
Uraniacanthus spinosus
Vernicomacanthus waynensis

P57555/6
P50105
P1343a
P1369
P11030
P42009
P11282
P13026
P130
P16615.1
P19998
P52444
P20000.1
P24938a

S2.1.
S2.2.
S2.3.
S2.4.

S2.6.

No
No
No
No
No
No
No
No
No
No
No
No
No
No

Yes
Yes
Yes
Yes Variable
Variable
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight

National
Museum of
Scotland,
Edinburgh,
UK.

Acanthodes sp.
Climatius reticulates

Diplacanthus longispinus
Ischnacanthus gracilis
Lanarkia horrida

Lanarkia lanceolota
Loganellia scotica

1950 38 9
1887 35 5C

1891 92 199
1953 4 3
1956 14 16
1991 48 3
1991 48 8
1991 48 6
1902 39 1
1995 93 2
1995 93 5
1905 3 2
FR 1623

S2.5.

No
No

No
No
No
No
No
No
No
No
No
No
No

Yes
Yes

Yes
Yes
Yes
Partially
?
Partially
Yes
Yes
Yes
Yes
Yes

Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight



272

Logania scotica

Parexus falcatus
Shielia taiti

Thelodus sp.
Vernicomacanthus uncinatus

1965 59 7
1905 3 4
1905 3 5
1905 4
1967 65 18
1967 65 20
1967 65 21
1986 34 1
1887 35 4
1929 5 41
1901 68 2
FR 1422
189192208

No
No
No
No
No
No
No
No
No
No
No
?
No
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Partially
Yes
Yes
Yes
?
Yes
Yes

Tight
Tight
?Tight
Tight
Tight
Tight
Tight
?Tight
Tight
Tight
?
Tight
Tight

Sedgwick
Museum of
Earth
Sciences,
Cambridge,
UK
(including
off-site
store)

Canobius politus
Cheirolepis cummingiae
Cheirolepis trailli

Ctenothrissa radians
Diplacanthus longispinnus
Diplacanthus striatus
Diplopterus agassizii
Eugnathus orthostomus
Holoptychius andersoni

Hoplopteryx lewisiensis
Hoplopteryx superbus
Pholidophorus latiusculus

E4855
H9927
H4477
H4488
B94763
H4406
H4410
H4587
J61279
P594
H4667
B8961
B8969
N/A

No
No
No
No
Yes
No
No
Partially
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
?
Yes
Yes
Yes
Yes
?
Yes
Yes
Yes

Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight
Tight

University
Museum of
Zoology,
Cambridge,
UK

Indet. Acanthodian

Homalacanthus affinis
Meidiichthys browni
Mesacanthus mitchelli
Indet. Palaeoniscid

GN13
GN19
GN21
GN25
GN311.2
GN1
GN411

No
No
No
No
Partially
No
Partially

Yes
Yes
?
Yes
Yes
Yes
Yes

Tight
Tight
Tight
Tight
Tight
Tight
Tight



273

Figure S2.1. Flank scales of the acanthodian Acanthodes sulcatus, NHMUK P57555. Scale bar =

2mm.

Figure S2.2. Flank scales of the acanthodian Cheiracanthus latus, NHMUK P50105. Scale bar =

1mm.
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Figure S2.3. Flank scales of the acanthodian Climatius reticulatus, NHMUK P1343a. Scale bar =

2mm.

Figure S2.4. Flank scales of the acanthodian Diplacanthus longispinus, NHMUK P1369. Scale

bar = 2mm.
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Figure S2.5. Flank scales of the thelodont Lanarkia lanceolata, NMS 1991486. Scale bar

increments = 10 mm.

Figure S2.6. Flank scales of the thelodont Loganellia scotica, NHMUK P11282. Scale bar = 1mm.
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b) Modern examined material

Polypterus senegalus

Figure S2.7. Polypterus senegalus bichir specimen used to examine scale tessellation of a

‘ganoid fish’, and, informing the design of the Lophosteus scale blocks using the primitive

condition of actinopterygian squamation. Specimen was 363mm.

A2.2. Laser Doppler Anemometry Data Acquisition

Table S2.2. Raw LDA data acquisition during smooth plate experimental run, showing number

of measurements used to calculate mean velocity, and validation (%).

Vertical
(mm)

Smooth Plate Horizontal Profile Position
200 mm 250 mm 300 mm 350 mm 400 mm

n V. (%) n V. (%) n V. (%) n V. (%) n V. (%)

0 6 50 1 100 0 NaN 1 100 24 87.5
0.01 11 53.54 1 100 0 NaN 8 86.67 48 91.92
0.02 9 30.1 0 NaN 0 NaN 7 64.38 28 96.43
0.03 16 36.4 0 NaN 0 NaN 1 0 81 87.86
0.04 6 33.86 8 50 0 NaN 4 50 89 85.73
0.05 3 100 10 80.95 1 100 2 100 117 85.06
0.06 2 20 11 51.67 0 NaN 1 100 214 87.04
0.07 0 NaN 19 57.22 4 50 3 100 250 87.59
0.08 2 16.67 995 87.89 24 98.44 2 100 358 91.52
0.09 0 NaN 5913 81.09 7 90 4 83.33 378 89.69
0.1 6 26.73 4800 80.93 19 68.89 7 58.33 490 87.93
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0.2 81 84.46 2028 72.38 1531 82.15 1392 82.93 1615 86.68
0.3 778 87.11 3596 60.94 675 87.02 5237 79.38 2475 89.64
0.4 1673 74.08 5565 76.43 1483 86.18 4045 84.22 2439 89.8
0.5 1743 87.99 2823 86.37 1257 87.14 1566 89.92 1926 88.93
0.6 1491 90.79 1972 84.86 1401 86.43 1150 90 1703 87.3
0.7 1676 90.79 1826 78.06 1419 90.71 1237 92.35 1794 89.4
0.8 1778 92.22 1945 89.62 1366 92.82 1051 90.19 2190 91.65
0.9 1492 89.57 1849 92.31 1318 92.13 1066 90.75 2605 90.42
1 1542 90.05 1823 91.77 1168 92.82 1110 91.25 2935 90.21

1.1 1604 90.5 1866 90.62 1194 92.67 1428 92.18 3009 89.88
1.1 1534 91.16 1782 92.63 1250 91.91 1474 92.26 3345 88.98
1.2 1930 90.55 2037 91.19 1369 93.1 1637 93.06 3406 88.94
1.3 2363 92.57 2036 93.36 1431 94.06 1871 93.42 3774 89.63
1.4 2557 91.16 2105 92.38 1468 93.5 1966 92.67 3596 89.27
1.5 2816 92.66 2292 92.03 1543 94.74 2034 91.86 3831 90.73
1.6 2882 91.66 2297 92.57 1588 93.77 1940 92.11 3773 91.07
1.7 2959 92.22 2123 91.62 1738 94.93 2002 93.08 3967 89.45
1.8 2875 90.83 2216 93.11 1690 93.61 1997 89.42 3767 89.26
1.9 2874 92.12 2304 93.02 1860 94.64 2092 94.31 4015 91.66
2 3105 92.83 2313 93.26 1802 93.6 2149 91.9 3944 91.01

2.1 2906 92.74 2180 94.01 1712 94.25 2156 92.82 3859 90.78
2.2 3000 93.32 2307 93.34 1737 94.28 2143 93.92 3989 91.16
2.3 3017 91.02 2264 93.58 1787 94.09 2062 93.66 4043 90.72
2.4 2966 94.02 2215 94.38 1742 94.06 2144 92.93 3982 91.17
2.5 2965 92.55 2133 94.02 1836 94.69 2129 94.42 3953 90.53
2.6 2866 93.05 2252 93.48 1831 95.18 2167 94.89 3854 91.83
2.7 3052 92.31 2265 94.65 1801 93.38 2121 94.23 4160 91.35
2.8 3031 93.32 2282 94.08 1842 93.67 2172 92.53 4077 90.38
2.9 3085 93.16 2311 93.4 1947 94.88 2232 93.54 4218 91.63
3 3147 93.67 2259 92.89 1986 92.91 2121 92.4 4244 91.15

3.15 3271 94.27 2269 94.36 1849 95.2 2274 94.77 4146 91.86
3.3 3159 92.83 2219 93.19 1837 94.37 2334 93 4174 91.04
3.5 3023 93.16 2346 93.22 1924 96.2 2361 93.74 4061 91.67
3.7 3467 93.47 2294 92.21 1970 95.15 2397 93.5 4134 92.4
3.9 3345 93.54 2409 94.59 1884 96.2 2395 93.49 4406 93.75
4.1 3113 93.82 2370 95.08 1812 95.14 2370 93.2 4277 93.51
4.3 2918 93.78 2284 94.33 1868 94.8 2442 93.96 4459 92.85
4.5 3043 93.56 2450 93.66 1914 94.99 2276 93.74 4529 92.12

4.75 3069 93.97 2332 94.12 1908 94.54 2411 95.13 4411 92.53
5 3173 93.67 2385 94.27 1917 95.9 2352 94.43 4577 92.87

5.25 3096 93.48 2401 95.39 2012 91.71 2267 92.58 4781 92.73
5.5 3088 93.43 2389 94.37 1971 95.7 2344 94.05 4871 91.91

5.75 3055 94.28 2417 93.61 1823 95.42 2251 94.33 4652 91.86
6.05 3073 91.97 2415 95.29 2008 96.15 2350 95.01 4619 92.43
6.68 3084 93.66 2401 94.52 1934 96.74 2277 94.79 4934 92.35
7.39 3145 93.29 2486 95.72 2022 95.48 2325 95.33 5057 93.02
8.16 3205 93.63 2345 94.25 2063 95.74 2342 94.42 4849 92.53
9.02 3018 94.15 2401 94.71 2213 95.78 2470 94.62 4484 93.53
9.97 2992 93.77 2433 94.52 2014 94.64 2441 93.52 4569 93.3

11.02 3171 93.29 2578 95.08 2110 94.96 2484 94.46 4734 93.75
12.18 3084 92.42 2895 94.07 2263 96.2 2478 94.76 5236 94.13
13.46 3361 94.46 2548 96.02 2304 95.82 2551 96.05 5112 93.29
14.88 3197 93.31 2541 94.94 2363 94.9 2666 95.69 4972 93.73
16.44 3257 94.23 2546 94.82 2293 94.85 2763 94.41 4763 93.53
18.17 3347 94.57 2532 96.28 2275 95.13 2538 94.16 5195 94.04
20.08 3444 94.81 2446 95.02 2702 95.93 2564 93.53 5420 93.5
22.19 3467 94.41 2406 96.41 2408 95 2572 95.55 5065 94.08
24.53 3254 94.76 2510 94.5 2365 95.1 2558 94.71 5185 93.39
27.11 3541 94.87 2399 95.52 2354 96.2 2621 95.4 5046 94.57
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29.96 3374 93.98 2317 95.34 2459 94.19 2807 94.88 4864 93.56
33.11 3435 95.11 2394 95.52 2387 95.28 2658 94.9 5049 94.26
36.59 3522 95.59 2487 96.4 2561 96.13 1069 97.58 5408 94.03
40.44 3332 94.01 2112 95.93 2527 96.06 2566 95.28 5065 93.86
44.69 3137 95.47 2454 96.16 2315 95.55 1500 93.89 4861 94.41
49.39 3430 94.95 2536 94.85 2444 96.5 2129 93.91 5140 94.2
54.59 3189 95.21 1932 95.15 2306 95.96 2394 92.24 4519 95.29
60.33 3147 94.99 2150 95.68 2442 96.97 1988 96.01 4194 94.69
66.67 2876 95.37 2001 96.33 2080 95.49 1639 95.06 4323 94.56
73.69 2834 94.89 2086 96.2 2495 96.2 4445 92.28 3542 94.14
81.44 2594 95.55 1936 95.53 1884 95.33 3832 93.89 3703 94.08

90 3178 94.69 1923 97.15 1873 95.61 4285 94.72 3387 94.13

Table S2.3. (Below) Raw LDA data acquisition during Loganellia scotica plate experimental run,

showing number of measurements used to calculate mean velocity, and validation (%).

Vertical
(mm)

Loganellia scotica Plate Horizontal Profile Position
200 mm 250 mm 300 mm 350 mm 400 mm

n V. (%) n V. (%) n V. (%) n V. (%) n V. (%)

0 14449 94.31 4156 61.21 19699 94.5 23643 97.5 10032 98.41
0.01 21512 96.79 3546 70.08 23904 94.69 21244 97.33 16799 97.79
0.02 19412 95.39 5066 79.36 21307 93.48 19857 95.33 17720 97.25
0.03 373 67.68 12057 93.4 19847 90.9 0 80.86 22485 94.77
0.04 338 65.53 9552 77.62 20916 90.23 7278 86.58 17262 91.36
0.05 374 68.3 5481 94.31 26678 92.75 18058 97.55 12990 85.93
0.06 288 69.03 410 76.49 29361 92.83 0 65.66 16116 83.93
0.07 378 64.4 3447 98.25 18591 90.81 1853 95.46 11792 82.44
0.08 142 70.13 1110 98.62 2365 65.16 334 81.23 3659 63.97
0.09 275 64.15 4748 87.63 2559 66.37 2097 96.99 3209 62.73
0.1 225 70.19 16090 95.61 2855 70.27 10214 98.61 3587 63.14
0.2 1155 84.08 32494 83.65 1370 50.49 19764 95.77 1601 53.16
0.3 620 77.09 7631 82.11 1239 52.61 1477 54.1 1816 52.78
0.4 595 64.1 32933 79.55 1503 55.79 1155 50.77 2362 71.77
0.5 1079 52.79 11640 63.87 1602 81.84 1468 61.69 2750 83.63
0.6 934 81.46 2855 63.89 1838 79.11 1776 67.34 2544 91.08
0.7 1266 82.91 2295 60.2 1720 84.52 1598 63.84 2818 89.77
0.8 1341 86.64 1940 66.08 1707 89.86 1639 84.89 3334 90.59
0.9 1221 88.6 2680 90.28 1883 91.37 2115 90.31 5198 90.81
1 1302 89.43 2737 89.59 2619 89.45 2548 91.39 5997 89.52

1.1 1490 83.17 3211 89.24 3168 90.01 3226 91.62 6389 89.2
1.1 1385 79.27 3229 89.73 3189 90.27 3082 91.68 6458 90.01
1.2 2017 90.55 3745 90.23 3476 92.07 3477 91.68 6479 89.49
1.3 2477 89.27 4069 90.81 3686 90.44 3624 91.1 6494 88.99
1.4 2814 89.27 3889 91.42 3892 90.57 4050 91.4 7067 89.34
1.5 2940 88.2 3747 91.37 3953 91.97 6740 90.53 7334 90.92
1.6 3124 89.96 4169 91.05 4105 91.07 5972 90.27 7374 90.97
1.7 3262 90.17 4227 89.86 4146 90.48 6284 91.23 7434 89.96
1.8 3434 89.62 4330 92.03 4189 91.92 6812 89.61 7400 90.64
1.9 3445 90.31 4250 91.49 4410 92.27 6962 90.51 7587 90.87
2 3676 88.63 4270 91.75 4294 92.13 6874 90.13 7854 90.57

2.1 3549 89.8 4205 91.49 4472 92.47 6880 90.72 7867 90.24
2.2 3583 89.9 4454 92.65 4268 91.98 7251 90.78 8009 90.54
2.3 3763 90 4677 91.35 4436 92.22 7277 90.43 8027 90.31
2.4 3703 91.53 4793 92.69 4612 90.56 7019 90.76 8336 90.07
2.5 3867 91.5 4980 91.83 4769 92.44 7554 89.98 8297 90.67
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2.6 3777 90.52 5252 91.17 4758 91.41 7161 90.07 8339 90.4
2.7 3937 91.81 5108 92.76 4855 92.15 7352 91.51 8558 90.28
2.8 4060 92.15 5195 91.97 4784 91.36 7192 91.86 8462 90.39
2.9 3700 91.73 5048 91.96 4868 92.98 7329 92.06 8722 90.6
3 3692 92.1 5129 92.11 4684 93.41 7454 92.4 8783 91.67

3.15 3869 91.84 5127 92.12 4674 93.2 7508 91.95 8544 90.75
3.3 3744 92.06 5213 92.18 4723 92.65 7295 91.32 8770 91.05
3.5 3737 91.49 5031 92.66 4727 93.16 7660 91.82 8800 91.2
3.7 3750 92.34 5183 92.84 4469 93.49 8140 91.34 8721 91.2
3.9 3703 92.43 5196 92.2 4447 93.32 7748 91.77 8950 91.06
4.1 3711 92.61 5121 93.26 4686 92.61 8197 91.84 9189 91.47
4.3 3811 93.16 5132 91.82 4477 93.39 8123 91.58 8602 91.41
4.5 3727 93.35 5230 92.67 4626 93.83 7721 92.48 8880 90.77

4.75 5658 91.83 5328 92.92 4724 94.71 7835 92.66 8834 92.07
5 5243 92.53 5348 93.3 4731 94.06 7677 92.06 8995 91.95

5.25 5186 92.51 5100 93.54 4488 94.17 7774 92.66 8952 91.86
5.5 5199 91.89 5122 93.38 4556 92.37 7513 91.93 8805 90.72

5.75 5330 92.18 5009 93.38 4602 93.32 7867 92.63 8821 92.83
6.05 5345 92.45 5389 93.79 4621 94.84 8160 92.69 8776 92.35
6.68 5359 93.01 5208 94.02 4675 94.26 8207 93.32 8758 92.19
7.39 5312 92.14 5329 93.51 4657 93.85 7906 93.07 9388 92.23
8.16 5327 93.46 5338 93.59 4548 94.65 8276 92.97 9632 92.52
9.02 5546 93.24 5385 94.35 4718 94.96 8009 92.67 9608 92.5
9.97 5532 92.63 5339 94.56 4670 94.7 8258 93.28 9332 93.27

11.02 6106 93.91 5403 93.85 4776 93.92 8148 93.39 9383 92.12
12.18 5809 92.76 5887 93.11 4707 95.38 8167 94.04 9178 93.97
13.46 5798 93.12 6320 94.68 4851 94.25 8354 93.17 9206 92.59
14.88 5889 94.1 5451 94.67 4846 94.07 7691 93.96 9157 93.88
16.44 5802 92.89 5550 95.04 4856 94.12 8279 93.92 9520 92.84
18.17 5574 94.06 5375 94.52 4786 95.08 8149 94.63 9461 93.57
20.08 5760 93.78 5425 94.47 4689 94.43 8041 93.86 9673 93.65
22.19 5751 94.49 5496 95.13 4506 95.12 8391 93.91 9509 93.85
24.53 5666 92.97 5365 95.2 4797 95.04 8091 94.04 9263 93.3
27.11 5612 94.32 5442 94.81 4838 95.37 8314 94.16 9721 93.67
29.96 5593 94.33 5329 94.23 4758 94.88 8875 93.24 9494 93.8
33.11 5611 93.97 5387 93.92 4564 95.43 7944 94.06 9406 93.26
36.59 5430 94.79 5123 93.83 4832 94.78 7254 93.64 9154 93.52
40.44 5429 94.36 5104 95.1 4578 95.5 7509 93.58 9189 93.47
44.69 5307 94.3 4685 93.51 4623 94.66 5122 88.39 8564 94.09
49.39 5355 94.71 5095 94.13 4581 93.63 7530 94.16 8403 94.03
54.59 5190 94.13 5304 94.64 4494 95.67 6942 94 8161 93.18
60.33 5321 94.72 4990 94.99 4160 95.28 6703 94.25 8005 93.78
66.67 5114 92.5 5486 94.15 4450 95.11 5632 94.1 7929 94.01
73.69 4839 94.23 4905 95.03 3894 94.32 6401 94.1 7720 94.6
81.44 4782 93.45 5790 94.53 4332 95.05 9181 94.01 6838 92.4

90 6434 94.44 4313 94.69 3694 96.15 6362 94.41 7124 93.33

Table S2.4. (below) Raw LDA data acquisition during Lophosteus sp. plate experimental run,

showing number of measurements used to calculate mean velocity, and validation (%).

Vertical
(mm)

Lophosteus sp. Plate Horizontal Profile Position
200 mm 250 mm 300 mm 350 mm 400 mm

n V. (%) n V. (%) n V. (%) n V. (%) n V. (%)

0 18145 93.81 0 98.42 5324 97.09 34496 89.77 15961 95.33
0.01 21421 92.61 0 99.46 494 59.24 31086 90.3 35125 91.8
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0.02 23601 91.14 0 95 620 53.89 31284 89.81 32360 88.19
0.03 25926 91.94 0 95.45 254 45.28 19692 80.86 10688 73.93
0.04 23970 93.33 0 98.08 199 47.46 11899 76.31 6188 67.14
0.05 24526 93.94 0 95.14 11224 91.85 4985 67.3 1682 53.93
0.06 25091 94.61 0 92.33 30598 91.04 4475 65.66 2283 57.32
0.07 23525 94.56 0 95.01 33880 90.82 4348 65.43 2368 58.16
0.08 23195 94.06 0 93.3 38522 87.19 3886 65.14 1666 56.95
0.09 25284 94.53 0 94.43 14440 91.12 3273 66.88 1518 56.87
0.1 22065 94.8 0 95.53 18776 92.55 3183 64.83 1525 55.65
0.2 14577 95.06 1 0 1475 58.17 2907 65.12 2164 72.38
0.3 2958 68.06 7 50 1426 47.75 2476 83.33 2372 67.66
0.4 1833 51.82 758 67.43 2086 80.9 3632 88.5 2911 80.26
0.5 2055 49.97 3494 69.05 2313 80.24 3786 88.91 3129 87.13
0.6 2439 74.94 4176 77.3 2713 82.93 3725 88.98 2947 89.57
0.7 2968 81.69 4196 81.82 2315 86.23 3789 88.89 3250 89.79
0.8 2917 67.71 3885 82.22 2348 90.11 4000 89.43 3889 88.38
0.9 3333 82.94 3788 83.15 2676 87.01 4498 88.37 4184 87.14
1 3677 87.22 4164 85.48 3197 88.96 5164 88.98 4297 90.03

1.1 4143 88.12 4271 86.48 3537 89.79 5660 89.07 4867 89.76
1.1 4172 87.46 4417 86.46 3577 89.93 5283 89.44 4823 89.64
1.2 4181 86.5 4729 87.16 3899 88.28 5645 87.31 4926 90.27
1.3 4619 87.81 5327 87.22 4143 88.98 5619 88.41 5132 89.51
1.4 5058 86.59 5274 87.26 4323 89.47 5949 89.55 5005 90.47
1.5 5287 87.64 5128 87.34 4318 89.28 5846 88.98 5298 88.13
1.6 5643 88.21 5171 87.87 4374 89.65 6128 88.81 7568 88.35
1.7 5875 87.73 5325 88.23 4573 89.61 6127 89.33 6842 88.72
1.8 5688 86.76 5365 88.66 4586 88.89 6199 89.55 7126 89.42
1.9 6031 87.59 5376 89.54 4471 90.16 6131 90.07 7585 88.3
2 5861 87.18 5387 90.19 4652 90.6 6183 89.48 7539 89.06

2.1 6139 88.98 5491 89.91 4758 88.04 6122 89.77 7554 89.07
2.2 6119 88.22 5389 90.14 4572 91.13 6349 90.28 7543 87.98
2.3 5932 87.79 5567 89.52 4753 89 6187 91.12 7925 89.61
2.4 6301 88.04 5501 90.19 4651 90.06 6053 89.86 7952 89.96
2.5 6147 88.24 5331 89.73 7241 89.31 6245 90.31 8080 89.28
2.6 6483 88.5 5375 90.59 6874 88.89 6232 91.35 7820 89.68
2.7 6294 89.16 5690 90.61 7281 88.94 6304 90.95 8106 89.83
2.8 6345 88.17 5582 90.71 7860 89.2 6123 90.45 8151 88.89
2.9 6220 88.01 5740 90.9 7950 89.65 6301 90.83 7888 90.06
3 6228 88.33 5509 90.05 8246 89.32 6007 90.65 8510 89.87

3.15 6526 88.53 5505 90.77 8215 89.74 6240 90.84 8516 89.09
3.3 6724 89.52 5522 90.53 7827 90.67 6304 91.34 8491 89.21
3.5 6394 89.36 5534 91.19 7414 89.66 6319 91.53 8350 90.31
3.7 6595 89.8 5446 91.57 7624 90.54 6445 90.73 8377 89.89
3.9 6636 89.69 5572 92.12 7765 90 6452 90.68 8613 90.12
4.1 6423 87.88 5570 90.43 7372 91.36 7100 91.5 8424 90.91
4.3 6584 89.88 5704 90.14 7513 91.03 7124 92.24 8256 90.44
4.5 6661 89.98 5558 91.21 7530 90.87 7183 91.63 8265 90.68

4.75 6613 89.93 5559 91.43 7270 90.63 6531 92.49 8298 90.98
5 6307 89.48 5564 91.36 7519 90.45 6456 91.82 8101 91.43

5.25 6446 90.47 5646 91.68 7441 91.2 6578 91.8 8160 92.14
5.5 6721 90.63 5605 92.23 7609 91.7 6536 91.03 8115 91.05

5.75 6664 90.36 5783 91.19 7477 92 6537 92.93 8046 90.88
6.05 6464 90.17 5756 92.09 7624 91.87 6531 91.24 7952 91.51
6.68 6630 91.42 5460 92.4 7401 92.24 6741 92.78 7909 91.44
7.39 6850 90.31 5217 93.41 7403 92.68 6556 92.47 8085 92.07
8.16 6818 90.73 5668 91.5 7287 92.45 6629 93.29 8555 92.33
9.02 6897 90.17 5726 92.1 7491 92.24 6760 93.59 8137 92.99
9.97 6904 91.37 6002 91.25 7484 92.49 6830 92.95 8603 92.32

11.02 7366 91.31 5972 91.57 7412 92.91 6850 91.98 8285 92.51



281

12.18 7106 91.65 6843 92.49 7711 92.46 6864 93.7 8207 92.17
13.46 7483 91.22 6861 93.11 7668 93.38 6857 93.27 8074 92.87
14.88 7441 91.74 6125 92.93 7597 93.63 6509 94.19 8187 92.42
16.44 7506 92.58 5977 92.96 7559 92.8 6728 93.61 8165 92.4
18.17 7098 91.3 5926 93.21 7543 93.41 6987 93.27 8428 92.34
20.08 7554 92.54 5825 93.37 9643 92.43 6748 93.21 8087 93.22
22.19 7335 92.38 6434 93.36 7226 92.99 6757 93.2 8483 92.66
24.53 7373 92.88 5763 92.77 7486 92.24 6706 93.42 8279 93.08
27.11 7106 92.34 5856 93.75 7612 93.43 6570 92.98 8508 92.21
29.96 6904 93.3 5878 93.84 7678 93.57 7478 94.09 8240 93.69
33.11 6752 93.03 5850 93.77 7297 93.84 6530 93.86 8425 92.68
36.59 6720 93.08 6023 94.31 7380 93.18 3700 95.71 9267 92.95
40.44 6972 93.42 5514 93.31 7148 93.3 6427 93.3 7764 93.41
44.69 6691 93.38 5600 93.6 7689 94.13 4591 93.26 8122 93
49.39 6807 93.11 6574 93.62 6623 92.83 5887 94.31 7710 93.18
54.59 6312 93.24 4975 93.5 7366 93.92 5578 90.99 6674 93.14
60.33 7068 93.21 5035 93.78 7450 93.54 5100 95.07 6074 92.47
66.67 6694 92.08 5421 93.49 6759 93.64 4997 94.37 7551 93.07
73.69 5856 91.97 4810 93.88 7819 93.34 5405 94.34 7073 92.48
81.44 5975 93.48 5233 94.03 5955 93.69 5905 93.1 6741 93.65

90 8113 92.99 4197 93.98 5325 93.41 6741 93.15 5632 92.93

Table S2.5. (Below) Raw LDA data acquisition during Phlebolepis elegans plate experimental

run, showing number of measurements used to calculate mean velocity, and validation (%).

Vertical
(mm)

Phlebolepis elegans Plate Horizontal Profile Position
200 mm 250 mm 300 mm 350 mm 400 mm

n V. (%) n V. (%) n V. (%) n V. (%) n V. (%)

0 63 35.75 13511 92.74 632 57.96 1073 59.82 28150 93.45
0.01 41 27.73 16636 95.93 2682 80.15 1880 64.69 30570 93.34
0.02 51 27.62 16098 95.51 4786 84.94 2603 66.94 28047 92.66
0.03 72 36.94 22073 96.46 11187 91.11 4220 73.44 11177 84.12
0.04 63 29.31 16772 96.79 12273 91.41 7663 80.95 4115 71.12
0.05 76 34.29 21358 97.5 8460 89.19 19212 87.82 2005 60.69
0.06 91 34.69 17142 98.22 13484 91.96 16773 84.12 1597 55.36
0.07 91 34.25 9488 99.21 17687 92.79 18652 87.93 1446 54.37
0.08 105 36.47 669 78.16 21940 94.72 11557 81.77 1407 56.02
0.09 118 37.34 483 69.77 23559 95.23 10855 81.15 1416 52.02
0.1 302 48 4069 91.99 24086 94.68 6899 73.37 2266 50.34
0.2 6465 85.57 3152 69.97 27734 93.7 2137 54.83 2487 73.96
0.3 15201 93.44 3080 62.08 2156 53.19 2046 48.73 3235 71.36
0.4 14152 81.44 2301 51.9 2309 70.84 3166 65.09 3537 78.4
0.5 2170 53.47 2492 56.78 2564 76 4277 88.39 3167 78.37
0.6 3067 59.21 3463 63.34 3312 86.88 4540 87.66 3587 87.41
0.7 3401 68.87 3718 87.71 3389 86.71 4483 90.93 3893 87.15
0.8 3625 89.27 3739 87.69 3124 84.2 4216 90.25 4936 89.22
0.9 3493 88.5 3790 83.14 3839 90.24 4781 89.32 6308 88.17
1 3750 85.81 4422 91.37 4788 91.3 5784 91.39 6808 90.26

1.1 4590 90.48 5426 91.33 5539 90.45 5948 91.54 7336 89.33
1.1 4677 89.79 5235 91.08 5370 90.22 6178 90.7 7251 90.38
1.2 5492 89.2 6341 90.18 6276 91.21 6283 91.84 7560 89.7
1.3 6428 91.52 7045 90.69 6475 91.27 6540 91.64 7877 89.63
1.4 8734 89.81 7818 90.67 6514 91.94 6821 91.2 8131 90.53
1.5 8669 89.88 8084 90.63 6893 91.35 6800 91.42 8188 90.76
1.6 9244 88.55 8085 89.95 7106 92.15 6879 91.84 8268 90.02
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1.7 9896 89.49 8530 90.92 7440 91.66 6892 91.79 8279 89.15
1.8 9678 90.46 8583 90.66 7270 91.95 6964 91.17 8498 90.57
1.9 9941 89.94 8418 90.89 7333 91.57 7044 91.76 8702 90.44
2 10106 89.32 8662 90.97 7683 91.13 7105 92.34 8485 90.63

2.1 10469 89.11 8871 91.29 8191 90.73 7466 91.17 8829 91.38
2.2 10406 89.74 8902 90.72 8485 91.43 7537 91.86 8951 91.54
2.3 10330 88.83 8709 91.33 8254 90.75 7499 91.17 8863 91.01
2.4 10301 89.27 9017 91.81 8363 91.58 7057 92.72 9281 90.62
2.5 10405 89.97 8613 91.58 8205 92.1 7522 92.56 9098 91.54
2.6 10300 89.54 8427 90.65 8290 90.67 7490 91.85 9437 90.5
2.7 10485 89.57 8702 90.25 8399 91.23 7415 92.27 9051 91.27
2.8 10388 90.24 8759 90.18 8425 91.13 7394 92.46 9539 90.6
2.9 10493 89.61 8707 91.35 8626 91.44 7405 92.44 9366 90.99
3 10601 90.06 8840 91.77 8498 92.34 7272 93.46 9471 91.45

3.15 10901 90.92 8947 92.48 8864 92.03 7309 92.4 9489 91.57
3.3 10700 90.34 8967 92.04 8740 92.65 7375 91.18 9789 90.55
3.5 10756 90.47 9018 91.9 8399 92.7 7683 93.36 9678 91.7
3.7 10863 89.89 8998 92.06 8583 91.97 7752 93.59 9519 91.9
3.9 10830 90.66 9231 91.75 8867 92.25 7550 92.76 9720 91.07
4.1 10666 90.96 9208 91.37 8694 92.16 7828 92.68 9901 91.27
4.3 11415 90.71 9243 92.02 8746 92.38 8077 93.08 9987 91.75
4.5 10577 89.95 9262 91.42 8682 91.62 7647 93.37 9996 93.02

4.75 10786 90.5 9253 92.79 8972 92.8 8019 93.6 9863 92.16
5 10825 90.76 9226 91.41 9002 91.92 7696 92.91 9597 92.98

5.25 10586 90.12 9259 92.52 9028 91.93 7734 93.68 9607 92.49
5.5 10942 91.12 9382 92.68 8864 92.94 7674 92.95 9882 92.44

5.75 10882 91.1 9166 92.48 8685 92.77 7470 93.28 9811 92.47
6.05 10710 90.08 9213 92.4 9036 92.92 7661 93.75 9906 93.32
6.68 11114 91.35 9207 92.82 8742 93.15 8176 93.4 9582 93.15
7.39 11018 91.18 9076 92.44 8369 93.3 7635 92.49 9980 92.6
8.16 11237 90.21 9369 93.14 8636 93.4 7527 93.65 10223 93.15
9.02 11227 90.57 9717 93.02 8722 93.48 8026 93.68 10329 93.85
9.97 11231 91.25 10086 91.89 8778 93.08 7923 94.23 10414 93.55

11.02 11680 91.12 9890 92.67 8794 93.1 8133 94.17 10352 93.3
12.18 10875 91.04 9862 92.81 9034 93.96 8122 93.77 10118 93.3
13.46 11882 91.25 10686 92.84 9438 92.95 8036 95.28 10251 94.14
14.88 12205 91.66 10045 92.88 9119 93.02 8053 94.82 10124 93.17
16.44 12150 92.09 9828 92.68 8902 92 7969 94.73 10348 93.9
18.17 12107 92.42 10038 92.86 9198 94.28 8554 94.18 10217 93.45
20.08 11990 92.42 9929 93.99 9972 93.48 8221 94.39 10221 93.91
22.19 12018 92.63 10136 93.38 9273 94.01 8100 94.98 10498 93.23
24.53 12245 93.46 10020 93.32 9107 93.08 8022 94.2 10468 93.52
27.11 11950 92.95 9969 93.5 9222 93.78 8188 94.93 10673 93.42
29.96 12037 93.11 9881 94.08 9393 94.06 7889 94.42 10002 93.62
33.11 11796 93.29 9799 93.44 9212 93.36 8025 95.08 10431 93.99
36.59 11748 92.22 9903 92.71 9280 93.92 6690 94.57 10652 93.89
40.44 11992 93.31 8902 93.77 8984 94.72 7304 94.45 9764 94.14
44.69 11744 93.35 9527 94.07 9291 93.84 6160 94.8 10008 94.01
49.39 11445 93.03 10036 93.83 8282 94.4 7883 95.07 9247 93.19
54.59 11474 94 9308 93.6 8793 93.73 7000 93.95 9233 94.89
60.33 11789 93.7 9153 94.17 8521 93.51 7099 94.94 8773 94.51
66.67 11881 93.49 9437 93.88 8983 95.29 6092 95.64 9418 93.43
73.69 11149 92.83 9228 94.25 9366 93.98 6327 94.99 9779 93.59
81.44 11237 92.35 9260 93.86 8171 94.51 7430 94.88 7500 94.23

90 11872 92.86 8456 95.12 7337 95.09 7123 95.23 9146 94.73
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Table S2.6. (Below) Raw LDA data acquisition during Poracanthodes sp. plate experimental

run, showing number of measurements used to calculate mean velocity, and validation (%).

Vertical
(mm)

Poracanthodes sp. Plate Horizontal Profile Position
200 mm 250 mm 300 mm 350 mm 400 mm

n V. (%) n V. (%) n V. (%) n V. (%) n V. (%)

0 0 50 0 100 0 NaN 0 100 1130 70.24
0.01 0 53.54 0 100 0 NaN 0 86.67 2395 81.67
0.02 0 30.1 0 NaN 0 NaN 0 64.38 2032 85.76
0.03 0 36.4 0 NaN 0 NaN 0 0 12159 91.02
0.04 0 0 0 50 0 NaN 0 50 11558 92.74
0.05 0 0 0 80.95 0 100 0 100 22092 95.85
0.06 0 14.29 0 51.67 0 NaN 0 100 28423 96.64
0.07 0 0 0 57.22 0 50 2 100 22789 96.38
0.08 0 0 0 87.89 0 98.44 1 0 22860 95.75
0.09 0 NaN 0 81.09 0 90 0 83.33 23575 95.25
0.1 0 26.73 0 80.93 0 68.89 0 58.33 10712 88.17
0.2 0 84.46 0 72.38 0 82.15 6 6.22 1517 55.19
0.3 0 87.11 1 0 2 33.33 5 6.28 2519 59.21
0.4 1 0 0 76.43 0 86.18 31 17.33 2016 69.45
0.5 4 7.75 1 0 29 22.51 129 35.8 2404 61.85
0.6 0 90.79 2 16.67 1226 64.85 596 48.83 2824 89.41
0.7 0 90.79 12 11.62 7816 87.02 1032 54.83 2784 91.4
0.8 4 11.01 121 36.82 4642 71.28 1984 70.96 3062 89.47
0.9 12260 92.77 362 48.69 2919 54.89 2037 74.35 3465 90
1 9972 84.42 1016 56.88 3353 71.79 2184 84.21 4004 89.1

1.1 2225 71.59 2203 68.29 3691 86.03 2387 85.9 4616 89.23
1.1 2141 73.89 2253 68.55 3657 85.57 2383 86.15 4464 88.5
1.2 3175 81.19 3636 67.99 3542 75.25 2954 89.99 4976 90.08
1.3 4443 81.84 3508 68.24 3849 88.31 3900 89.65 5262 89.93
1.4 4805 81.81 3833 74.85 3823 88.97 4887 89.83 5468 89.9
1.5 5101 77.16 4383 88.25 3968 89.24 5217 89.23 5546 91.16
1.6 5617 76.27 4634 88.95 4731 88.26 5734 88.35 5571 90.34
1.7 5140 87.8 4774 88.11 4954 89.8 6121 88.55 5711 90.75
1.8 6080 88.42 4517 88.41 5751 89.71 6440 89.55 5611 89.42
1.9 6415 88.22 4890 90.39 6067 88.51 6751 90.04 5580 89.66
2 7179 87.94 5708 89.88 6653 89.07 6642 89.2 5716 90.46

2.1 7974 87.62 6484 89.17 6907 88.71 6754 88.95 5738 90.19
2.2 8444 87.42 7188 90.24 6819 89.24 6801 90.52 5828 90.6
2.3 8579 87.54 7293 89.58 7032 89.63 6770 90.19 5871 90.93
2.4 8781 87.48 7389 89.16 7248 89.69 6887 89.95 5715 90.65
2.5 9112 87.15 7518 88.51 7768 88.93 7176 89.55 5659 91
2.6 9430 87.98 7605 88.92 7701 89.28 7099 89.27 5812 90.2
2.7 9272 88.28 7853 89.48 7243 90.08 7269 90.68 5530 91.6
2.8 9378 87.99 7816 89.58 7199 88.53 7142 89.54 5733 91.11
2.9 9539 88.1 7919 88.88 7285 89.11 7173 90.36 5603 92.08
3 9775 87.9 8081 89.52 7362 90.77 7243 90.76 5493 91.29

3.15 9895 88.72 8285 90.98 7643 89.86 7219 90.85 5536 91.85
3.3 9796 87.25 7952 90.42 7606 89.29 7258 91.31 5420 91.77
3.5 9789 88.9 8130 88.82 7772 91.5 7346 90.2 5680 91.98
3.7 9677 89.45 8110 88.87 7120 90.4 7816 90.88 5708 91.94
3.9 9489 88.8 8208 89.57 7719 90.62 7703 91.35 5575 92.26
4.1 9860 89.95 8213 90.25 7739 90.47 7358 91.28 5686 93.22
4.3 9734 89.51 8215 89.46 7854 91.16 7411 90.75 5861 92.63
4.5 9768 88.54 8279 90.35 7695 91.7 7222 91.17 5996 92.63

4.75 9957 89.01 8420 90.61 7835 91.98 7026 91.32 5841 92.14
5 9827 89.8 8643 90.82 7923 91.58 7102 90.06 6107 92.27
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5.25 9985 89.11 8405 91.28 7943 91.87 7142 91.68 6139 92.34
5.5 9995 89.82 8725 91.18 8080 90.81 7173 91.59 5942 92.53

5.75 9964 89.78 8623 91.68 8142 91.97 6997 91.92 6324 92.78
6.05 9796 89.79 8753 91.63 7929 90.71 7100 92.47 6383 93.31
6.68 10126 89.17 8887 90.72 7591 91.5 7355 92.85 6315 92.22
7.39 10087 90.74 8941 91.36 8140 91.54 7236 92.68 6315 92.85
8.16 10154 89.96 8773 90.06 8197 90.86 7541 92.34 6257 92.99
9.02 10218 90.48 8742 90.28 8137 91.4 7632 92.23 6049 94.06
9.97 10053 90.68 9259 91.78 8325 91.55 7561 92.01 6298 93.4

11.02 10684 90.36 9533 91.06 8475 91.66 7151 92.05 6742 92.36
12.18 10309 90.87 10329 91.27 8257 92.51 7443 92.59 6919 93.34
13.46 10677 89.99 9805 91.12 8422 91.81 7541 92.91 6815 93.02
14.88 10710 90.19 9106 91.91 8977 91.73 7647 92.29 6833 93.55
16.44 10687 89.93 9352 92.34 9037 92.16 7602 92.67 6667 93.61
18.17 10976 91.32 9370 92.07 8942 92.01 7397 92.9 6591 93.48
20.08 10812 91.96 9257 91.84 8933 92.22 7860 92.52 6745 93.2
22.19 11101 91.33 9145 91.47 8875 92.96 7511 92.53 6333 93.15
24.53 10834 91.99 9547 93.01 8702 92.56 7676 93.3 6300 94
27.11 11136 91.72 9569 92.11 8668 92.12 7919 93.15 6396 93.13
29.96 11032 92.34 9514 93.13 8475 92.3 8160 93.01 6229 93.46
33.11 11123 91.39 9529 92.76 8899 92.86 7736 92.82 6185 93.38
36.59 10627 91.91 9134 93.21 9091 92.28 6352 93.57 6343 93.67
40.44 10739 92.35 9115 93.41 8619 92.39 6772 93.42 6260 93.21
44.69 11008 92.16 9375 91.92 8344 93 5082 93 5596 93.12
49.39 11073 91.49 8790 92.22 8719 92.87 7177 93.12 6326 93.34
54.59 10395 91.7 8598 92.85 8143 92.88 6835 93.35 5831 93.88
60.33 10039 91.95 8686 92.7 8076 92.72 6357 92.77 5542 93.74
66.67 9600 92.16 8746 93.35 7715 92.28 5528 93.38 4960 93.57
73.69 9571 92.86 8474 92.69 8351 93.05 5897 92.96 5501 93.61
81.44 9325 92.3 8452 93.11 8713 92.42 7135 93.07 5554 92.98

90 11757 91.61 7773 93.72 6859 93.08 5706 93.43 3833 93.63

Table S2.7. (below) Raw LDA data acquisition during Nostolepis striata plate experimental run,

showing number of measurements used to calculate mean velocity, and validation (%).

Vertical
(mm)

Nostolepis striata Plate Horizontal Profile Position
200 mm 250 mm 300 mm 350 mm 400 mm

n V. (%) n V. (%) n V. (%) n V. (%) n V. (%)

0 42 27.84 19466 98.42 31581 92.52 30313 94.06 18738 97.43
0.01 115 44.55 5877 99.46 35543 92.95 31128 93.8 16187 90.71
0.02 145 52.8 1172 95 33359 94.64 31300 94.1 7520 91.38
0.03 138 50.98 1309 95.45 18959 95.92 30224 93.3 8890 93.38
0.04 115 45.42 9727 98.08 16796 95.63 28576 93.07 9848 85.6
0.05 121 48.9 17838 95.14 32017 95.09 17820 90.54 5395 83.91
0.06 321 62.84 21742 92.33 17159 93.68 19139 89.6 7157 81.99
0.07 307 58.39 23541 95.01 15390 93.35 25230 92.99 15854 89.94
0.08 875 71.78 22245 93.3 19881 92.79 26742 94.5 24485 92.11
0.09 339 60.61 13755 94.43 8722 92.65 26967 91.34 24849 91.08
0.1 1929 79.02 16382 95.53 17370 97.37 25298 91.12 11984 81.22
0.2 7213 87.84 23147 88.18 23593 85.57 1990 63.29 1545 63.36
0.3 4067 75.96 2519 60.64 27648 68.08 1918 56.27 1816 64.62
0.4 3204 60.74 2597 58.58 3989 61.68 2017 67.04 1887 53.97
0.5 3250 55.94 2911 66.04 2055 57.09 2181 61.95 4092 72.37
0.6 3766 52.68 3708 55.81 2393 52.65 2052 55.36 3842 84.63
0.7 4016 53.65 3424 59.46 2628 52.76 2324 80.17 3708 86.35
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0.8 4315 69.63 4059 65.69 2502 53.47 2781 87.83 4453 86.95
0.9 4290 72.94 4606 79.37 2949 77.01 3418 88 5562 88.39
1 4003 66.89 5250 87.01 3407 88.85 4168 89.27 6194 85.46

1.1 4645 77.37 5467 85.29 3872 88.04 4271 88.29 6331 85.88
1.1 4461 72.39 5501 84.98 3950 88.47 4471 88.89 6187 85.61
1.2 5701 86.59 5694 86.79 4707 87.61 4820 88.19 6801 87.48
1.3 6704 82.57 6347 87 5436 89.09 4986 87.46 7016 87.65
1.4 7151 80.74 6542 88.28 5582 87.72 5344 88.13 7181 87.54
1.5 7612 81.83 6954 86.7 5824 89.01 5480 89.23 7353 86.93
1.6 8243 85.91 7464 87.32 5681 88.81 5402 87.6 7530 87.9
1.7 8587 86.3 7332 88.07 6245 87.44 5538 89.21 7699 87.42
1.8 8893 86.42 7683 87.31 6591 87.15 5691 88.79 8201 87.97
1.9 8818 86.21 7425 88.88 6569 89.18 5520 90.2 7851 88.01
2 9163 84.51 7689 88.22 6700 88.84 5552 89.95 8258 87.31

2.1 9109 87.01 8050 87.58 6874 88.96 5674 89.95 8032 87.74
2.2 9451 85.97 7840 87.1 7182 89.05 5877 89.49 8336 88.35
2.3 9588 85.31 8106 88.31 6830 88.8 6039 89.55 8166 87.35
2.4 9932 87.4 8379 87.62 7417 88.54 6010 89.88 8420 88.53
2.5 9931 86.99 8568 87.98 7456 89.27 5883 88.65 8678 86.61
2.6 10232 86.41 8710 87.98 7189 88.75 6035 89.8 8573 88.13
2.7 10327 87.6 8520 86.97 7572 88.35 6071 89.07 8721 85.88
2.8 10177 86.03 8962 87.5 7002 88.9 6291 90.73 8723 88
2.9 10105 86.78 9175 88.3 7190 89.45 6167 90.69 8736 87.66
3 10366 87.27 8946 88.48 7494 89.46 6244 90.43 8899 88.32

3.15 10596 87.16 9145 88.82 7727 88.71 6200 90.31 9042 87.73
3.3 10560 87.54 8997 89.11 7705 89.46 6336 88.09 9285 88.31
3.5 10305 87.85 9223 87.72 7300 90.63 6728 89.3 9190 87.42
3.7 10414 87.38 9066 89.07 7657 90.01 6931 90.01 9512 88.28
3.9 10367 87.41 9257 88.14 7717 90.02 6636 90.66 9411 89.17
4.1 10496 87.47 9446 88.74 7859 89.34 6712 90.66 9514 88.09
4.3 10823 87.49 9145 89.28 7899 90.41 6523 90.97 9353 89.34
4.5 10594 87.8 9444 87.78 8110 89.28 6708 90.09 9498 90.19

4.75 10787 87.94 9660 89.45 8095 89.86 6768 90.62 9694 89.38
5 10592 86.66 9625 89.62 7707 90.24 6748 90.27 9584 89.45

5.25 10906 87.73 9596 88.21 7737 90.54 6597 90.68 9597 89.35
5.5 10712 88.62 9883 89.66 8148 90.26 6483 91.22 9466 88.43

5.75 10588 87.16 9657 89.83 8272 90.24 6888 91.92 9851 89.77
6.05 10993 87.53 9622 89.66 8312 89.78 6898 92.01 9540 90.5
6.68 11138 88.43 9075 89.91 8089 91.3 6765 92.05 9763 90.04
7.39 10807 89.47 9802 90.2 8609 91.17 6742 91.82 10256 89.2
8.16 10328 89.27 10074 89.89 8811 91.33 6830 92.82 10203 89.94
9.02 11121 89.53 9993 90.34 8881 91.11 7013 91.85 10321 90.22
9.97 11567 89.58 10314 91.23 9005 91.39 7180 91.52 10403 91.21

11.02 9348 90.97 10669 90.56 8972 91.54 7397 92.53 10492 91.4
12.18 11857 90.51 11405 90 9049 90.33 7357 92.66 10412 91.64
13.46 12079 88.96 10531 90.41 9015 91.54 7524 92.89 10521 91.09
14.88 11958 90.11 10579 90.17 9043 92.07 7521 93.48 10729 91.81
16.44 11930 90.12 10326 91.38 9128 92.29 7647 93.46 10408 92.11
18.17 12190 91.17 10650 91.44 9214 91.43 7387 92.3 10858 92.02
20.08 11752 90.8 10291 91.54 8895 92.53 7203 92.95 10888 92.63
22.19 11969 89.95 10456 90.52 9023 91.82 7350 93.26 10810 91.31
24.53 11929 91.17 10399 91.86 9074 91.2 7167 92.9 10629 91.52
27.11 12079 90.61 10301 91.81 9214 92.49 7560 92.88 11152 92.21
29.96 11908 91.48 10375 91.09 8976 92.73 7959 93.05 10772 91.57
33.11 11952 90.71 10109 92.38 8958 93.67 7458 93.05 10978 92.36
36.59 11350 91.58 9907 92.53 8762 92.04 6583 93.47 10342 91.71
40.44 11736 91.01 9176 92.12 8803 92.84 7458 93.83 10334 91.64
44.69 11265 91.57 8493 92.96 8380 92.87 5437 94 9720 92.67
49.39 11298 91.74 10113 92.69 9219 92.99 7126 93.46 9386 92.04
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54.59 10618 91.63 9670 91.85 8718 92.8 6338 94.03 9657 92.55
60.33 10492 91.97 9010 92.65 8067 92.66 6028 93.97 8563 92.51
66.67 10536 92 9600 92.52 7977 93.64 5478 93.74 8554 91.54
73.69 10359 91.69 8888 92.25 8045 92.3 5447 93.82 9421 92.81
81.44 9655 92.33 8310 93.16 8738 92.93 7643 93.68 7346 91.99

90 11742 91.54 9456 92.36 6564 92.99 5946 93.54 7425 92.77

A2.3. Raw velocity data and profile corrections

Table S2.8. (below) Smooth control plate. Raw LDA data showing mean velocity at different

vertical positions (z), for five horizontal locations (200-400mm), and the corrected base of each

profile (red line) and data subsequently excluded from analysis (red).

Raw vertical position Z (mm)
Smooth Plate Mean velocity (m/s)

200 mm 250 mm 300 mm 350 mm 400 mm

0 0.003 0.022 0.000 -0.038 0.182
0.01 -0.002 0.005 0.000 0.012 0.179

0.02 -0.002 0.000 0.000 -0.004 0.166

0.03 0.003 0.000 0.000 0.007 0.171
0.04 -0.004 0.028 0.000 0.024 0.176
0.05 0.045 0.036 -0.003 0.041 0.181
0.06 0.010 0.030 0.000 0.034 0.192
0.07 0.000 0.028 -0.003 0.009 0.184

0.08 0.002 0.004 0.002 0.020 0.189
0.09 0.000 0.003 0.012 0.011 0.193

0.1 0.001 0.003 0.016 0.049 0.200
0.2 0.177 0.012 0.033 0.037 0.214
0.3 0.194 0.059 0.162 0.047 0.226
0.4 0.204 0.080 0.189 0.095 0.237
0.5 0.245 0.180 0.211 0.230 0.248
0.6 0.266 0.249 0.247 0.240 0.256
0.7 0.285 0.263 0.266 0.263 0.268
0.8 0.297 0.284 0.269 0.264 0.278
0.9 0.304 0.306 0.279 0.284 0.286
1 0.309 0.307 0.288 0.285 0.292

1.1 0.322 0.323 0.294 0.294 0.298
1.1 0.317 0.310 0.298 0.290 0.295
1.2 0.326 0.323 0.306 0.300 0.302
1.3 0.334 0.325 0.313 0.300 0.309
1.4 0.327 0.333 0.311 0.307 0.310
1.5 0.335 0.340 0.320 0.315 0.313
1.6 0.356 0.342 0.328 0.312 0.320
1.7 0.348 0.351 0.328 0.327 0.337
1.8 0.356 0.350 0.339 0.329 0.338
1.9 0.353 0.363 0.333 0.320 0.343
2 0.360 0.367 0.341 0.333 0.340

2.1 0.360 0.359 0.341 0.337 0.334
2.2 0.368 0.372 0.346 0.349 0.349
2.3 0.369 0.376 0.353 0.343 0.350
2.4 0.370 0.368 0.347 0.346 0.353
2.5 0.373 0.374 0.363 0.350 0.352
2.6 0.377 0.374 0.363 0.346 0.345
2.7 0.371 0.376 0.360 0.358 0.367
2.8 0.375 0.379 0.373 0.366 0.363



287

2.9 0.382 0.382 0.363 0.370 0.363
3 0.377 0.383 0.373 0.369 0.366

3.15 0.389 0.388 0.375 0.372 0.365
3.3 0.390 0.385 0.377 0.375 0.378
3.5 0.387 0.398 0.379 0.387 0.379
3.7 0.398 0.398 0.394 0.388 0.375
3.9 0.396 0.404 0.390 0.378 0.382
4.1 0.399 0.407 0.403 0.393 0.384
4.3 0.390 0.405 0.402 0.387 0.395
4.5 0.408 0.410 0.401 0.389 0.396

4.75 0.397 0.416 0.403 0.402 0.405
5 0.419 0.418 0.418 0.412 0.409

5.25 0.415 0.415 0.418 0.410 0.417
5.5 0.420 0.417 0.415 0.417 0.415

5.75 0.414 0.428 0.411 0.402 0.416
6.05 0.425 0.428 0.421 0.424 0.417
6.68 0.428 0.438 0.431 0.425 0.428
7.39 0.438 0.451 0.431 0.431 0.441
8.16 0.442 0.447 0.439 0.446 0.450
9.02 0.444 0.456 0.451 0.460 0.450
9.97 0.446 0.462 0.459 0.463 0.451

11.02 0.453 0.476 0.470 0.468 0.471
12.18 0.463 0.487 0.470 0.473 0.475
13.46 0.479 0.479 0.478 0.479 0.477
14.88 0.474 0.493 0.481 0.482 0.481
16.44 0.486 0.499 0.490 0.493 0.487
18.17 0.500 0.502 0.495 0.493 0.497
20.08 0.511 0.507 0.494 0.497 0.504
22.19 0.512 0.512 0.498 0.502 0.512
24.53 0.507 0.528 0.504 0.511 0.509
27.11 0.513 0.527 0.514 0.506 0.513
29.96 0.522 0.515 0.521 0.519 0.514
33.11 0.518 0.509 0.520 0.517 0.530
36.59 0.519 0.508 0.509 0.528 0.521
40.44 0.516 0.512 0.519 0.526 0.526
44.69 0.517 0.516 0.526 0.514 0.525
49.39 0.520 0.518 0.519 0.521 0.529
54.59 0.524 0.519 0.527 0.533 0.512
60.33 0.526 0.509 0.513 0.522 0.519
66.67 0.523 0.513 0.513 0.522 0.528
73.69 0.518 0.512 0.516 0.524 0.524
81.44 0.522 0.525 0.516 0.522 0.522

90 0.520 0.512 0.516 0.521 0.524

Table S2.9. (below) Loganellia scotica plate. Raw LDA data showing mean velocity at different

vertical positions (z), for five horizontal locations (200-400mm), and the corrected base of each

profile (red line) and data subsequently excluded from analysis (red).

Raw vertical position Z (mm)
Loganellia scotica Mean velocity (m/s)

200 mm 250 mm 300 mm 350 mm 400 mm

0 0.000 0.000 0.000 0.000 0.000
0.01 0.000 0.000 0.000 0.000 0.000
0.02 0.000 0.000 0.000 0.000 0.000
0.03 0.000 0.000 0.001 0.000 0.000
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0.04 -0.001 0.000 0.001 0.000 0.000
0.05 0.000 0.000 0.001 0.000 0.002
0.06 0.000 0.006 0.001 0.000 0.002

0.07 0.000 0.000 0.001 0.000 0.004
0.08 0.000 0.000 0.007 0.001 0.019
0.09 0.000 0.000 0.005 0.000 0.018

0.1 0.000 0.000 0.005 0.000 0.016

0.2 0.000 0.004 0.035 0.000 0.109

0.3 0.000 0.002 0.141 0.053 0.158

0.4 0.037 0.001 0.213 0.134 0.242
0.5 0.067 0.093 0.270 0.219 0.281
0.6 0.242 0.235 0.287 0.264 0.293
0.7 0.262 0.222 0.302 0.281 0.316
0.8 0.273 0.278 0.311 0.305 0.323
0.9 0.290 0.324 0.323 0.326 0.332
1 0.309 0.327 0.327 0.327 0.330

1.1 0.312 0.333 0.339 0.332 0.342
1.1 0.313 0.331 0.342 0.336 0.337
1.2 0.326 0.344 0.340 0.335 0.348
1.3 0.333 0.346 0.345 0.344 0.344
1.4 0.340 0.353 0.353 0.359 0.357
1.5 0.342 0.355 0.358 0.360 0.358
1.6 0.351 0.362 0.356 0.358 0.365
1.7 0.344 0.359 0.360 0.360 0.362
1.8 0.351 0.360 0.372 0.369 0.363
1.9 0.355 0.366 0.379 0.372 0.360
2 0.364 0.374 0.377 0.374 0.372

2.1 0.364 0.377 0.377 0.383 0.370
2.2 0.359 0.382 0.383 0.387 0.378
2.3 0.377 0.387 0.381 0.383 0.385
2.4 0.371 0.383 0.385 0.380 0.386
2.5 0.368 0.384 0.390 0.393 0.386
2.6 0.378 0.391 0.391 0.385 0.385
2.7 0.381 0.392 0.395 0.391 0.395
2.8 0.382 0.396 0.403 0.392 0.390
2.9 0.380 0.391 0.407 0.391 0.395
3 0.380 0.394 0.397 0.403 0.396

3.15 0.395 0.396 0.400 0.404 0.393
3.3 0.394 0.412 0.405 0.400 0.405
3.5 0.389 0.399 0.418 0.408 0.398
3.7 0.392 0.403 0.404 0.413 0.409
3.9 0.399 0.408 0.412 0.408 0.412
4.1 0.398 0.406 0.419 0.417 0.420
4.3 0.409 0.420 0.418 0.428 0.418
4.5 0.398 0.418 0.417 0.429 0.414

4.75 0.406 0.421 0.422 0.433 0.420
5 0.409 0.432 0.427 0.425 0.427

5.25 0.415 0.422 0.429 0.431 0.428
5.5 0.409 0.419 0.439 0.432 0.446

5.75 0.420 0.421 0.432 0.438 0.444
6.05 0.419 0.437 0.433 0.451 0.442
6.68 0.428 0.435 0.438 0.454 0.442
7.39 0.424 0.446 0.453 0.453 0.453
8.16 0.443 0.456 0.456 0.464 0.466
9.02 0.443 0.455 0.462 0.466 0.466
9.97 0.446 0.454 0.461 0.475 0.469

11.02 0.455 0.469 0.470 0.474 0.484
12.18 0.473 0.473 0.466 0.476 0.478
13.46 0.469 0.482 0.483 0.488 0.487
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14.88 0.480 0.484 0.495 0.492 0.488
16.44 0.485 0.487 0.502 0.491 0.496
18.17 0.483 0.495 0.496 0.489 0.496
20.08 0.481 0.493 0.507 0.502 0.500
22.19 0.485 0.495 0.505 0.502 0.498
24.53 0.491 0.500 0.503 0.507 0.504
27.11 0.486 0.496 0.503 0.511 0.505
29.96 0.489 0.505 0.501 0.504 0.506
33.11 0.489 0.506 0.504 0.506 0.504
36.59 0.492 0.497 0.509 0.506 0.508
40.44 0.487 0.501 0.504 0.508 0.508
44.69 0.485 0.498 0.507 0.511 0.501
49.39 0.491 0.498 0.507 0.513 0.500
54.59 0.495 0.504 0.504 0.512 0.502
60.33 0.489 0.499 0.507 0.506 0.507
66.67 0.489 0.498 0.508 0.509 0.514
73.69 0.493 0.501 0.503 0.511 0.504
81.44 0.488 0.503 0.500 0.509 0.505

90 0.494 0.496 0.502 0.511 0.500

Table S2.10. (below) Lophosteus sp. plate. Raw LDA data showing mean velocity at different

vertical positions (z), for five horizontal locations (200-400mm), and the corrected base of each

profile (red line) and data subsequently excluded from analysis (red).

Raw vertical position Z (mm)
Lophosteus sp. Mean velocity (m/s)

200 mm 250 mm 300 mm 350 mm 400 mm

0 0.000 0.000 0.000 0.001 0.001
0.01 -0.001 0.000 0.002 0.001 0.001

0.02 -0.001 0.000 0.002 0.001 0.002

0.03 -0.001 0.000 0.003 0.005 0.012
0.04 0.000 0.000 0.000 0.008 0.021
0.05 0.000 0.000 0.002 0.027 0.098
0.06 -0.001 0.000 0.003 0.036 0.087
0.07 -0.001 0.000 0.003 0.038 0.091
0.08 -0.001 0.000 0.003 0.049 0.135
0.09 -0.001 0.000 0.002 0.061 0.134

0.1 -0.001 0.000 0.002 0.072 0.143

0.2 0.000 0.257 0.078 0.138 0.235
0.3 0.012 0.045 0.108 0.247 0.260
0.4 0.058 0.045 0.228 0.270 0.292
0.5 0.106 0.070 0.262 0.300 0.309
0.6 0.213 0.140 0.299 0.315 0.318
0.7 0.260 0.197 0.315 0.328 0.335
0.8 0.256 0.234 0.322 0.344 0.345
0.9 0.289 0.275 0.336 0.343 0.353
1 0.306 0.296 0.342 0.357 0.353

1.1 0.317 0.317 0.353 0.369 0.370
1.1 0.332 0.326 0.356 0.357 0.369
1.2 0.328 0.332 0.357 0.366 0.366
1.3 0.335 0.337 0.359 0.369 0.382
1.4 0.348 0.357 0.369 0.376 0.375
1.5 0.345 0.364 0.366 0.366 0.378
1.6 0.352 0.373 0.374 0.383 0.385
1.7 0.364 0.381 0.369 0.387 0.393
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1.8 0.360 0.388 0.391 0.388 0.396
1.9 0.369 0.386 0.380 0.400 0.406
2 0.375 0.386 0.387 0.404 0.392

2.1 0.366 0.390 0.396 0.400 0.395
2.2 0.373 0.392 0.402 0.403 0.393
2.3 0.372 0.403 0.395 0.403 0.409
2.4 0.380 0.403 0.395 0.409 0.414
2.5 0.383 0.399 0.403 0.403 0.410
2.6 0.390 0.406 0.413 0.418 0.414
2.7 0.389 0.417 0.401 0.416 0.410
2.8 0.389 0.414 0.413 0.417 0.416
2.9 0.381 0.423 0.408 0.417 0.407
3 0.390 0.408 0.413 0.424 0.428

3.15 0.395 0.420 0.416 0.420 0.428
3.3 0.394 0.418 0.418 0.422 0.428
3.5 0.392 0.425 0.425 0.427 0.424
3.7 0.404 0.422 0.427 0.430 0.435
3.9 0.405 0.425 0.438 0.435 0.435
4.1 0.407 0.421 0.432 0.438 0.435
4.3 0.418 0.430 0.434 0.443 0.448
4.5 0.419 0.428 0.443 0.446 0.433

4.75 0.420 0.439 0.446 0.449 0.453
5 0.409 0.438 0.448 0.454 0.445

5.25 0.425 0.439 0.449 0.458 0.449
5.5 0.435 0.441 0.446 0.459 0.456

5.75 0.433 0.444 0.460 0.452 0.460
6.05 0.434 0.453 0.457 0.463 0.459
6.68 0.440 0.454 0.462 0.463 0.462
7.39 0.450 0.448 0.472 0.469 0.477
8.16 0.449 0.461 0.466 0.478 0.482
9.02 0.453 0.463 0.481 0.484 0.480
9.97 0.459 0.480 0.484 0.490 0.491

11.02 0.468 0.483 0.489 0.493 0.491
12.18 0.474 0.479 0.496 0.496 0.500
13.46 0.482 0.487 0.492 0.500 0.499
14.88 0.495 0.492 0.496 0.502 0.501
16.44 0.491 0.497 0.507 0.505 0.512
18.17 0.498 0.499 0.507 0.507 0.515
20.08 0.503 0.507 0.521 0.522 0.514
22.19 0.504 0.518 0.506 0.524 0.516
24.53 0.513 0.520 0.517 0.529 0.520
27.11 0.520 0.518 0.526 0.527 0.521
29.96 0.511 0.524 0.527 0.530 0.524
33.11 0.517 0.526 0.528 0.527 0.527
36.59 0.510 0.524 0.517 0.524 0.529
40.44 0.512 0.532 0.538 0.526 0.536
44.69 0.511 0.518 0.525 0.534 0.529
49.39 0.512 0.529 0.525 0.538 0.535
54.59 0.517 0.517 0.537 0.532 0.520
60.33 0.518 0.524 0.524 0.533 0.529
66.67 0.522 0.519 0.528 0.531 0.526
73.69 0.513 0.516 0.525 0.529 0.528
81.44 0.520 0.527 0.525 0.530 0.529

90 0.530 0.515 0.525 0.532 0.525
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Table S2.11. (below) Phlebolepis elegans plate. Raw LDA data showing mean velocity at

different vertical positions (z), for five horizontal locations (200-400mm), and the corrected

base of each profile (red line) and data subsequently excluded from analysis (red).

Raw vertical position Z (mm)
Phlebolepis elegans Mean velocity (m/s)

200 mm 250 mm 300 mm 350 mm 400 mm

0 -0.001 0.000 0.002 0.006 0.001
0.01 0.000 0.000 0.001 0.006 0.001
0.02 0.000 0.000 0.000 0.006 0.001
0.03 -0.001 0.000 0.000 0.005 0.002

0.04 0.000 0.000 0.000 0.003 0.005
0.05 -0.001 0.000 0.001 0.002 0.010
0.06 0.000 0.000 0.000 0.004 0.019
0.07 0.001 0.000 0.000 0.002 0.021
0.08 0.000 0.000 0.000 0.005 0.029

0.09 -0.001 0.003 0.000 0.004 0.029
0.1 0.000 0.001 0.000 0.007 0.051

0.2 0.001 0.003 0.000 0.100 0.185

0.3 0.000 0.034 0.051 0.137 0.222
0.4 0.015 0.091 0.197 0.231 0.254
0.5 0.075 0.167 0.234 0.284 0.274
0.6 0.190 0.221 0.276 0.300 0.305
0.7 0.240 0.272 0.291 0.314 0.302
0.8 0.271 0.300 0.306 0.321 0.323
0.9 0.296 0.311 0.327 0.331 0.333
1 0.305 0.322 0.334 0.344 0.330

1.1 0.314 0.339 0.352 0.334 0.343
1.1 0.319 0.329 0.349 0.346 0.346
1.2 0.330 0.345 0.352 0.350 0.356
1.3 0.332 0.348 0.346 0.357 0.357
1.4 0.341 0.356 0.359 0.365 0.364
1.5 0.339 0.360 0.364 0.357 0.357
1.6 0.346 0.358 0.370 0.369 0.364
1.7 0.354 0.370 0.379 0.366 0.368
1.8 0.356 0.366 0.366 0.378 0.380
1.9 0.355 0.375 0.380 0.383 0.377
2 0.363 0.376 0.381 0.380 0.373

2.1 0.369 0.385 0.385 0.385 0.388
2.2 0.370 0.378 0.387 0.408 0.388
2.3 0.384 0.381 0.388 0.398 0.391
2.4 0.373 0.389 0.389 0.389 0.396
2.5 0.378 0.392 0.391 0.398 0.393
2.6 0.380 0.381 0.400 0.399 0.404
2.7 0.387 0.394 0.398 0.403 0.399
2.8 0.381 0.388 0.396 0.404 0.411
2.9 0.380 0.391 0.409 0.413 0.404
3 0.374 0.395 0.404 0.410 0.411

3.15 0.384 0.387 0.414 0.403 0.405
3.3 0.386 0.403 0.405 0.412 0.415
3.5 0.391 0.394 0.406 0.410 0.420
3.7 0.398 0.404 0.407 0.416 0.420
3.9 0.407 0.405 0.414 0.420 0.416
4.1 0.397 0.409 0.416 0.432 0.426
4.3 0.405 0.412 0.426 0.429 0.428
4.5 0.405 0.414 0.422 0.430 0.427

4.75 0.415 0.419 0.430 0.436 0.442
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5 0.416 0.424 0.439 0.435 0.435
5.25 0.408 0.429 0.434 0.439 0.425
5.5 0.422 0.426 0.437 0.432 0.439

5.75 0.417 0.437 0.439 0.444 0.438
6.05 0.409 0.424 0.446 0.448 0.445
6.68 0.428 0.427 0.445 0.460 0.448
7.39 0.426 0.447 0.450 0.458 0.458
8.16 0.436 0.444 0.457 0.460 0.463
9.02 0.442 0.446 0.460 0.464 0.459
9.97 0.440 0.462 0.468 0.471 0.466

11.02 0.460 0.461 0.477 0.474 0.480
12.18 0.453 0.467 0.468 0.479 0.486
13.46 0.466 0.467 0.483 0.491 0.479
14.88 0.483 0.471 0.489 0.487 0.493
16.44 0.481 0.480 0.487 0.488 0.491
18.17 0.479 0.484 0.488 0.497 0.492
20.08 0.485 0.492 0.498 0.498 0.497
22.19 0.483 0.493 0.495 0.494 0.502
24.53 0.495 0.497 0.501 0.499 0.508
27.11 0.488 0.506 0.502 0.510 0.509
29.96 0.495 0.499 0.509 0.509 0.513
33.11 0.498 0.508 0.513 0.511 0.514
36.59 0.502 0.503 0.512 0.515 0.514
40.44 0.496 0.502 0.505 0.507 0.503
44.69 0.496 0.506 0.510 0.515 0.512
49.39 0.489 0.505 0.508 0.515 0.505
54.59 0.488 0.506 0.509 0.515 0.510
60.33 0.494 0.499 0.506 0.518 0.512
66.67 0.496 0.500 0.511 0.512 0.519
73.69 0.502 0.510 0.514 0.503 0.514
81.44 0.509 0.496 0.506 0.505 0.510

90 0.487 0.492 0.509 0.506 0.511

Table S2.12. (below) Poracanthodes sp. plate. Raw LDA data showing mean velocity at

different vertical positions (z), for five horizontal locations (200-400mm), and the corrected

base of each profile (red line) and data subsequently excluded from analysis (red).

Raw vertical position Z (mm)
Poracanthodes sp. Mean velocity (m/s)

200 mm 250 mm 300 mm 350 mm 400 mm

0 0.000 0.000 0.000 0.000 0.000
0.01 0.000 0.000 0.000 0.000 0.000
0.02 0.000 0.000 0.000 0.000 0.000
0.03 0.000 0.000 0.000 0.000 0.000
0.04 0.000 0.000 0.000 0.000 0.000
0.05 0.000 0.000 0.000 0.000 0.000
0.06 0.000 0.000 0.000 0.000 0.000
0.07 0.000 0.000 0.000 0.000 0.000
0.08 0.000 0.000 0.000 0.006 0.000
0.09 0.000 0.000 0.000 0.000 0.000

0.1 0.000 0.000 0.000 0.000 0.000
0.2 0.000 0.000 0.000 -0.001 0.048
0.3 0.000 -0.023 -0.011 0.000 0.097

0.4 0.000 0.000 0.000 -0.001 0.194
0.5 -0.008 -0.126 0.001 0.017 0.210
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0.6 0.000 0.004 0.001 0.046 0.268

0.7 0.000 -0.001 0.000 0.097 0.291

0.8 0.045 0.002 0.007 0.178 0.302

0.9 0.000 0.007 0.052 0.226 0.311
1 0.017 0.080 0.196 0.261 0.326

1.1 0.160 0.165 0.243 0.284 0.332
1.1 0.170 0.157 0.230 0.282 0.328
1.2 0.178 0.179 0.264 0.298 0.342
1.3 0.202 0.222 0.282 0.309 0.344
1.4 0.230 0.253 0.309 0.319 0.352
1.5 0.251 0.290 0.311 0.324 0.353
1.6 0.274 0.306 0.328 0.332 0.362
1.7 0.296 0.321 0.330 0.353 0.363
1.8 0.314 0.333 0.337 0.355 0.368
1.9 0.322 0.337 0.346 0.357 0.378
2 0.330 0.357 0.350 0.361 0.377

2.1 0.341 0.350 0.354 0.367 0.372
2.2 0.336 0.361 0.355 0.369 0.374
2.3 0.343 0.357 0.365 0.366 0.386
2.4 0.342 0.363 0.366 0.375 0.380
2.5 0.343 0.369 0.373 0.389 0.391
2.6 0.362 0.361 0.373 0.388 0.395
2.7 0.356 0.377 0.386 0.392 0.397
2.8 0.355 0.378 0.378 0.391 0.399
2.9 0.364 0.383 0.386 0.390 0.394
3 0.369 0.391 0.387 0.399 0.393

3.15 0.367 0.395 0.402 0.402 0.398
3.3 0.383 0.389 0.399 0.400 0.407
3.5 0.384 0.397 0.406 0.405 0.406
3.7 0.377 0.401 0.401 0.413 0.409
3.9 0.385 0.402 0.410 0.412 0.418
4.1 0.383 0.402 0.407 0.420 0.418
4.3 0.388 0.409 0.416 0.425 0.431
4.5 0.398 0.412 0.420 0.421 0.426

4.75 0.401 0.420 0.416 0.432 0.427
5 0.398 0.422 0.426 0.435 0.434

5.25 0.403 0.425 0.431 0.434 0.438
5.5 0.415 0.438 0.437 0.441 0.440

5.75 0.415 0.425 0.429 0.440 0.442
6.05 0.413 0.443 0.443 0.440 0.446
6.68 0.421 0.446 0.431 0.447 0.456
7.39 0.423 0.445 0.459 0.454 0.458
8.16 0.429 0.445 0.456 0.459 0.466
9.02 0.441 0.456 0.458 0.470 0.478
9.97 0.441 0.466 0.463 0.480 0.469

11.02 0.457 0.461 0.480 0.477 0.478
12.18 0.460 0.467 0.477 0.480 0.491
13.46 0.469 0.488 0.485 0.490 0.496
14.88 0.483 0.479 0.492 0.496 0.496
16.44 0.482 0.484 0.495 0.502 0.507
18.17 0.484 0.494 0.498 0.500 0.500
20.08 0.490 0.500 0.501 0.501 0.506
22.19 0.512 0.505 0.508 0.513 0.504
24.53 0.509 0.504 0.514 0.516 0.507
27.11 0.500 0.512 0.512 0.517 0.520
29.96 0.511 0.510 0.511 0.511 0.512
33.11 0.508 0.518 0.524 0.517 0.516
36.59 0.510 0.507 0.519 0.521 0.519
40.44 0.508 0.513 0.521 0.525 0.526
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44.69 0.509 0.523 0.522 0.525 0.531
49.39 0.514 0.516 0.518 0.522 0.528
54.59 0.509 0.524 0.531 0.524 0.527
60.33 0.510 0.517 0.522 0.523 0.522
66.67 0.510 0.514 0.518 0.531 0.534
73.69 0.513 0.518 0.524 0.527 0.524
81.44 0.508 0.514 0.512 0.527 0.529

90 0.506 0.513 0.514 0.513 0.515

Table S2.13. (below) Nostolepis striata plate. Raw LDA data showing mean velocity at different

vertical positions (z), for five horizontal locations (200-400mm), and the corrected base of each

profile (red line), data subsequently excluded from analysis (red).

Raw vertical position Z (mm)
Nostolepis striata Mean velocity (m/s)

200 mm 250 mm 300 mm 350 mm 400 mm

0 -0.001 0.000 0.000 0.000 0.000
0.01 0.000 0.000 0.000 0.000 0.000
0.02 0.000 0.000 0.000 0.000 0.000
0.03 -0.001 0.000 0.000 0.000 0.000
0.04 0.000 0.000 0.000 0.000 0.000
0.05 0.001 0.000 0.000 0.001 0.000
0.06 0.000 0.000 0.000 0.001 0.001
0.07 0.000 0.000 0.000 0.001 0.001
0.08 0.000 0.000 0.000 0.000 0.001
0.09 0.000 0.000 0.000 0.000 0.002

0.1 0.000 0.000 0.000 0.001 0.005

0.2 0.000 0.004 0.000 0.087 0.131

0.3 0.008 0.050 0.003 0.094 0.185
0.4 0.035 0.033 0.048 0.182 0.173
0.5 0.058 0.140 0.128 0.198 0.232
0.6 0.092 0.115 0.127 0.195 0.246
0.7 0.129 0.168 0.120 0.246 0.256
0.8 0.215 0.215 0.179 0.260 0.272
0.9 0.236 0.256 0.265 0.271 0.272
1 0.236 0.268 0.275 0.285 0.281

1.1 0.263 0.279 0.284 0.286 0.291
1.1 0.265 0.282 0.289 0.290 0.289
1.2 0.275 0.290 0.295 0.299 0.287
1.3 0.291 0.290 0.306 0.301 0.302
1.4 0.290 0.305 0.311 0.310 0.317
1.5 0.294 0.302 0.314 0.317 0.311
1.6 0.300 0.315 0.320 0.321 0.315
1.7 0.311 0.318 0.326 0.319 0.319
1.8 0.312 0.320 0.331 0.332 0.336
1.9 0.318 0.322 0.328 0.331 0.327
2 0.323 0.336 0.332 0.331 0.333

2.1 0.324 0.337 0.343 0.333 0.328
2.2 0.323 0.333 0.336 0.340 0.343
2.3 0.335 0.339 0.341 0.355 0.340
2.4 0.341 0.348 0.350 0.345 0.345
2.5 0.338 0.348 0.357 0.347 0.354
2.6 0.347 0.351 0.356 0.356 0.348
2.7 0.346 0.351 0.365 0.358 0.358
2.8 0.351 0.355 0.359 0.358 0.365
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2.9 0.350 0.366 0.367 0.364 0.363
3 0.356 0.362 0.371 0.369 0.361

3.15 0.362 0.366 0.370 0.362 0.375
3.3 0.361 0.369 0.376 0.373 0.373
3.5 0.369 0.377 0.381 0.384 0.378
3.7 0.376 0.375 0.382 0.385 0.381
3.9 0.366 0.384 0.387 0.379 0.389
4.1 0.377 0.385 0.390 0.392 0.396
4.3 0.393 0.387 0.393 0.397 0.393
4.5 0.387 0.394 0.401 0.403 0.394

4.75 0.391 0.397 0.401 0.409 0.402
5 0.402 0.395 0.399 0.413 0.406

5.25 0.403 0.402 0.408 0.406 0.420
5.5 0.404 0.414 0.409 0.415 0.417

5.75 0.409 0.416 0.416 0.420 0.433
6.05 0.428 0.409 0.420 0.429 0.426
6.68 0.430 0.424 0.428 0.434 0.434
7.39 0.423 0.436 0.446 0.446 0.439
8.16 0.438 0.448 0.455 0.446 0.449
9.02 0.441 0.448 0.461 0.460 0.462
9.97 0.452 0.459 0.469 0.469 0.476

11.02 0.462 0.465 0.470 0.475 0.479
12.18 0.470 0.472 0.493 0.486 0.482
13.46 0.489 0.484 0.494 0.493 0.499
14.88 0.479 0.493 0.499 0.494 0.495
16.44 0.490 0.498 0.510 0.493 0.498
18.17 0.502 0.505 0.514 0.508 0.500
20.08 0.509 0.509 0.519 0.505 0.513
22.19 0.508 0.514 0.517 0.519 0.533
24.53 0.510 0.511 0.523 0.524 0.526
27.11 0.521 0.525 0.525 0.522 0.525
29.96 0.519 0.526 0.530 0.524 0.533
33.11 0.518 0.521 0.515 0.525 0.524
36.59 0.510 0.517 0.526 0.524 0.530
40.44 0.518 0.523 0.516 0.537 0.525
44.69 0.509 0.520 0.531 0.530 0.532
49.39 0.512 0.519 0.525 0.538 0.528
54.59 0.517 0.526 0.534 0.529 0.535
60.33 0.504 0.524 0.533 0.538 0.531
66.67 0.510 0.516 0.527 0.528 0.520
73.69 0.513 0.526 0.529 0.523 0.531
81.44 0.509 0.524 0.525 0.534 0.534

90 0.510 0.524 0.526 0.525 0.539
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A2.4. Corrected velocity profiles

Figure S2.8. Top, corrected velocity profiles of smooth control plate at different horizontal

locations (200-400mm). Bottom, semilog plots of same data.
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Figure S2.9. Top, corrected velocity profiles of Loganellia scotica plate at different horizontal

locations (200-400mm). Bottom, semilog plots of same data.
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Figure S2.10. Top, corrected velocity profiles of Lophosteus sp. plate at different horizontal

locations (200-400mm). Bottom, semilog plots of same data.
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Figure S2.11. Top, corrected velocity profiles of Phlebolepis elegans plate at different

horizontal locations (200-400mm). Bottom, semilog plots of same data.
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Figure S2.12. Top, corrected velocity profiles of Poracanthodes sp. plate at different horizontal

locations (200-400mm). Bottom, semilog plots of same data.
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Figure S2.13. Top, corrected velocity profiles of Nostolepis striata plate at different horizontal

locations (200-400mm). Bottom, semilog plots of same data.
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A2.5. Shear stresses

Table S2.14. Shear stresses for 200 mm horizontal position of all plates.

200mm Horizontal Position

Smooth Control Loganellia Lophosteus Phlebolepis Poracanthodes Nostolepis

Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa)

0 0.005 0 0.004 0 0.003 0 0.008 0 0.005 0 0.003524

0.1 0.092 0.1 0.080 0.1 0.035 0.1 0.047 0.1 0.055 0.1 0.030762

0.2 0.078 0.2 0.103 0.2 0.079 0.2 0.105 0.2 0.086 0.2 0.067025

0.3 0.087 0.3 0.075 0.3 0.110 0.3 0.114 0.2 0.087 0.3 0.089177

0.4 0.079 0.4 0.074 0.4 0.077 0.4 0.088 0.3 0.091 0.4 0.11222

0.5 0.076 0.5 0.070 0.5 0.077 0.5 0.067 0.4 0.097 0.5 0.120134

0.6 0.076 0.6 0.067 0.6 0.093 0.6 0.068 0.5 0.093 0.6 0.09501

0.7 0.074 0.7 0.066 0.7 0.075 0.7 0.069 0.6 0.090 0.7 0.086578

0.8 0.075 0.8 0.070 0.8 0.069 0.8 0.065 0.7 0.090 0.8 0.094046

0.9 0.070 0.8 0.070 0.9 0.070 0.8 0.065 0.8 0.070 0.9 0.073318

1 0.068 0.9 0.063 0.9 0.069 0.9 0.068 0.9 0.068 0.9 0.07755

1 0.066 1 0.063 1 0.068 1 0.060 1 0.069 1 0.068392

1.1 0.067 1.1 0.063 1.1 0.062 1.1 0.064 1.1 0.066 1.1 0.067631

1.2 0.069 1.2 0.062 1.2 0.069 1.2 0.059 1.2 0.064 1.2 0.067661

1.3 0.067 1.3 0.059 1.3 0.066 1.3 0.059 1.3 0.065 1.3 0.06685

1.4 0.063 1.4 0.059 1.4 0.061 1.4 0.059 1.4 0.063 1.4 0.065647

1.5 0.066 1.5 0.055 1.5 0.060 1.5 0.055 1.5 0.062 1.5 0.06593

1.6 0.062 1.6 0.055 1.6 0.059 1.6 0.059 1.6 0.061 1.6 0.063497

1.7 0.064 1.7 0.058 1.7 0.060 1.7 0.054 1.7 0.064 1.7 0.063931

1.8 0.062 1.8 0.057 1.8 0.061 1.8 0.058 1.8 0.058 1.8 0.064454

1.9 0.064 1.9 0.056 1.9 0.057 1.9 0.058 1.9 0.059 1.9 0.062132

2 0.064 2 0.054 2 0.061 2 0.059 2 0.059 2 0.058921

2.1 0.062 2.1 0.054 2.1 0.055 2.1 0.059 2.1 0.063 2.1 0.063328

2.2 0.064 2.2 0.052 2.2 0.056 2.2 0.055 2.25 0.061 2.2 0.060072

2.3 0.064 2.3 0.056 2.3 0.056 2.3 0.054 2.4 0.060 2.3 0.062418

2.4 0.063 2.4 0.056 2.4 0.056 2.4 0.059 2.6 0.061 2.4 0.061975

2.5 0.059 2.5 0.060 2.5 0.059 2.5 0.055 2.8 0.055 2.5 0.061835

2.6 0.062 2.6 0.056 2.6 0.057 2.6 0.053 3 0.056 2.6 0.060386

2.7 0.059 2.7 0.054 2.7 0.055 2.7 0.053 3.2 0.056 2.7 0.062719

2.8 0.060 2.85 0.056 2.8 0.057 2.85 0.051 3.4 0.057 2.8 0.061909

2.9 0.063 3 0.054 2.95 0.058 3 0.054 3.6 0.057 2.95 0.063399

3.05 0.062 3.2 0.053 3.1 0.055 3.2 0.053 3.85 0.056 3.1 0.06073

3.2 0.065 3.4 0.055 3.3 0.057 3.4 0.064 4.1 0.061 3.3 0.061335

3.4 0.059 3.6 0.056 3.5 0.055 3.6 0.062 4.35 0.057 3.5 0.063125

3.6 0.066 3.8 0.055 3.7 0.057 3.8 0.057 4.6 0.055 3.7 0.061262

3.8 0.063 4 0.056 3.9 0.051 4 0.055 4.85 0.059 3.9 0.057117

4 0.062 4.2 0.052 4.1 0.056 4.2 0.056 5.15 0.054 4.1 0.066087

4.2 0.059 4.45 0.052 4.3 0.057 4.45 0.056 5.78 0.054 4.3 0.060649

4.4 0.058 4.7 0.051 4.55 0.053 4.7 0.059 6.49 0.056 4.55 0.062075
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4.65 0.058 4.95 0.056 4.8 0.053 4.95 0.053 7.26 0.055 4.8 0.059432

4.9 0.063 5.2 0.050 5.05 0.057 5.2 0.053 8.12 0.063 5.05 0.063313

5.15 0.066 5.45 0.053 5.3 0.056 5.45 0.058 9.07 0.056 5.3 0.058612

5.4 0.064 5.75 0.050 5.55 0.060 5.75 0.052 10.12 0.054 5.55 0.06188

5.65 0.062 6.38 0.050 5.85 0.060 6.38 0.052 11.28 0.053 5.85 0.06194

5.95 0.062 7.09 0.050 6.48 0.056 7.09 0.046 12.56 0.061 6.48 0.06135

6.58 0.060 7.86 0.054 7.19 0.062 7.86 0.053 13.98 0.055 7.19 0.060794

7.29 0.067 8.72 0.053 7.96 0.055 8.72 0.055 15.54 0.049 7.96 0.0623

8.06 0.059 9.67 0.051 8.82 0.060 9.67 0.053 17.27 0.049 8.82 0.056687

8.92 0.065 10.72 0.053 9.77 0.054 10.72 0.052 19.18 0.052 9.77 0.057425

9.87 0.065 11.88 0.050 10.82 0.052 11.88 0.056 21.29 0.046 10.82 0.056157

10.92 0.059 13.16 0.049 11.98 0.058 13.16 0.050 23.63 0.042 11.98 0.056505

12.08 0.061 14.58 0.045 13.26 0.055 14.58 0.054 26.21 0.042 13.26 0.063864

13.36 0.063 16.14 0.040 14.68 0.050 16.14 0.047 29.06 0.040 14.68 0.054279

14.78 0.057 17.87 0.044 16.24 0.052 17.87 0.048 32.21 0.038 16.24 0.051088

16.34 0.055 19.78 0.039 17.97 0.050 19.78 0.044 35.69 0.044 17.97 0.051638

18.07 0.060 21.89 0.044 19.88 0.047 21.89 0.045 39.54 0.037 19.88 0.041653

19.98 0.044 24.23 0.039 21.99 0.050 24.23 0.039 43.79 0.039 21.99 0.042782

22.09 0.053 26.81 0.039 24.33 0.046 26.81 0.038 48.49 0.040 24.33 0.04572

24.43 0.042 29.66 0.038 26.91 0.048 29.66 0.039 53.69 0.042 26.91 0.039375

27.01 0.044 32.81 0.042 29.76 0.044 32.81 0.040 59.43 0.044 29.76 0.039022

29.86 0.047 36.29 0.039 32.91 0.041 36.29 0.039 65.77 0.046 32.91 0.04242

33.01 0.040 40.14 0.032 36.39 0.044 40.14 0.037 72.79 0.043 36.39 0.038627

36.49 0.040 44.39 0.034 40.24 0.039 44.39 0.042 80.54 0.044 40.24 0.045264

40.34 0.038 49.09 0.035 44.49 0.041 49.09 0.039 89.1 0.051 44.49 0.038294

44.59 0.044 54.29 0.039 49.19 0.035 54.29 0.040 49.19 0.0401

49.29 0.041 60.03 0.035 54.39 0.034 60.03 0.041 54.39 0.038289

54.49 0.040 66.37 0.040 60.13 0.039 66.37 0.044 60.13 0.037198

60.23 0.047 73.39 0.040 66.47 0.049 73.39 0.044 66.47 0.042335

66.57 0.040 81.14 0.040 73.49 0.042 81.14 0.042 73.49 0.041912

73.59 0.039 89.7 0.048 81.24 0.043 89.7 0.041 81.24 0.038832

81.34 0.043 89.8 0.049 89.8 0.04042
89.9 0.044

Table S2.15. (below) Shear stresses for 250 mm horizontal position of all plates.

250 mmm Horizontal Position

Smooth Control Loganellia Lophosteus Phlebolepis Poracanthodes Nostolepis

Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa)

0 0.013 0 0.015 0 0.000 0 0.018 0 0.028 0 0.024

0.1 0.049 0.1 0.116 0.1 0.000 0.1 0.066 0.1 0.034 0.1 0.071

0.2 0.087 0.2 0.110 0.2 0.043 0.2 0.103 0.2 0.080 0.2 0.073

0.3 0.098 0.3 0.125 0.3 0.047 0.3 0.113 0.3 0.086 0.3 0.101

0.4 0.115 0.4 0.096 0.4 0.066 0.4 0.111 0.3 0.090 0.4 0.117

0.5 0.085 0.5 0.073 0.5 0.069 0.5 0.073 0.4 0.101 0.5 0.117

0.6 0.088 0.6 0.067 0.6 0.079 0.6 0.071 0.5 0.099 0.6 0.102
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0.7 0.073 0.7 0.065 0.7 0.080 0.7 0.076 0.6 0.085 0.7 0.077

0.8 0.071 0.7 0.063 0.8 0.079 0.8 0.071 0.7 0.073 0.8 0.071

0.9 0.071 0.8 0.063 0.9 0.078 0.9 0.067 0.8 0.070 0.9 0.069

1 0.072 0.9 0.062 1 0.077 0.9 0.067 0.9 0.074 0.9 0.068

1 0.069 1 0.062 1 0.078 1 0.064 1 0.070 1 0.067

1.1 0.071 1.1 0.063 1.1 0.073 1.1 0.062 1.1 0.066 1.1 0.063

1.2 0.068 1.2 0.061 1.2 0.070 1.2 0.061 1.2 0.068 1.2 0.068

1.3 0.067 1.3 0.059 1.3 0.068 1.3 0.060 1.3 0.063 1.3 0.065

1.4 0.069 1.4 0.059 1.4 0.066 1.4 0.059 1.4 0.063 1.4 0.066

1.5 0.065 1.5 0.061 1.5 0.063 1.5 0.063 1.5 0.060 1.5 0.063

1.6 0.066 1.6 0.052 1.6 0.064 1.6 0.055 1.6 0.060 1.6 0.064

1.7 0.064 1.7 0.057 1.7 0.059 1.7 0.058 1.7 0.062 1.7 0.062

1.8 0.065 1.8 0.056 1.8 0.064 1.8 0.057 1.8 0.060 1.8 0.064

1.9 0.064 1.9 0.060 1.9 0.059 1.9 0.058 1.9 0.059 1.9 0.063

2 0.064 2 0.055 2 0.057 2 0.056 2 0.060 2 0.062

2.1 0.065 2.1 0.053 2.1 0.060 2.1 0.056 2.1 0.058 2.1 0.063

2.2 0.064 2.2 0.056 2.2 0.059 2.2 0.052 2.2 0.058 2.2 0.064

2.3 0.063 2.3 0.058 2.3 0.057 2.3 0.054 2.35 0.059 2.3 0.061

2.4 0.064 2.4 0.057 2.4 0.054 2.4 0.055 2.5 0.059 2.4 0.062

2.5 0.060 2.5 0.054 2.5 0.058 2.5 0.055 2.7 0.057 2.5 0.063

2.6 0.066 2.6 0.050 2.6 0.062 2.6 0.055 2.9 0.054 2.6 0.059

2.7 0.066 2.75 0.051 2.7 0.059 2.7 0.056 3.1 0.055 2.7 0.062

2.8 0.061 2.9 0.057 2.8 0.061 2.8 0.055 3.3 0.050 2.8 0.062

2.9 0.063 3.1 0.057 2.9 0.057 2.95 0.051 3.5 0.057 2.95 0.061

3.05 0.059 3.3 0.053 3.05 0.057 3.1 0.051 3.7 0.053 3.1 0.063

3.2 0.061 3.5 0.051 3.2 0.055 3.3 0.049 3.95 0.055 3.3 0.063

3.4 0.067 3.7 0.049 3.4 0.058 3.5 0.056 4.2 0.056 3.5 0.059

3.6 0.061 3.9 0.052 3.6 0.056 3.7 0.049 4.45 0.053 3.7 0.061

3.8 0.063 4.1 0.047 3.8 0.055 3.9 0.052 4.7 0.055 3.9 0.058

4 0.063 4.35 0.049 4 0.050 4.1 0.051 4.95 0.057 4.1 0.057

4.2 0.062 4.6 0.050 4.2 0.055 4.3 0.049 5.25 0.055 4.3 0.064

4.4 0.062 4.85 0.053 4.4 0.053 4.55 0.053 5.88 0.053 4.55 0.061

4.65 0.061 5.1 0.053 4.65 0.060 4.8 0.055 6.59 0.052 4.8 0.063

4.9 0.062 5.35 0.050 4.9 0.058 5.05 0.051 7.36 0.056 5.05 0.059

5.15 0.060 5.65 0.055 5.15 0.053 5.3 0.050 8.22 0.051 5.3 0.060

5.4 0.062 6.28 0.045 5.4 0.051 5.55 0.050 9.17 0.053 5.55 0.060

5.65 0.062 6.99 0.052 5.65 0.053 5.85 0.048 10.22 0.050 5.85 0.057

5.95 0.060 7.76 0.053 5.95 0.053 6.48 0.051 11.38 0.053 6.48 0.060

6.58 0.061 8.62 0.050 6.58 0.050 7.19 0.055 12.66 0.054 7.19 0.057

7.29 0.056 9.57 0.047 7.29 0.052 7.96 0.052 14.08 0.054 7.96 0.057

8.06 0.062 10.62 0.054 8.06 0.051 8.82 0.054 15.64 0.058 8.82 0.055

8.92 0.059 11.78 0.045 8.92 0.049 9.77 0.049 17.37 0.053 9.77 0.055

9.87 0.056 13.06 0.046 9.87 0.056 10.82 0.056 19.28 0.049 10.82 0.053

10.92 0.062 14.48 0.042 10.92 0.058 11.98 0.052 21.39 0.040 11.98 0.058

12.08 0.058 16.04 0.043 12.08 0.053 13.26 0.046 23.73 0.053 13.26 0.053

13.36 0.064 17.77 0.045 13.36 0.050 14.68 0.052 26.31 0.049 14.68 0.048

14.78 0.060 19.68 0.038 14.78 0.050 16.24 0.051 29.16 0.036 16.24 0.049

16.34 0.056 21.79 0.041 16.34 0.052 17.97 0.052 32.31 0.047 17.97 0.048
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18.07 0.053 24.13 0.036 18.07 0.047 19.88 0.045 35.79 0.041 19.88 0.053

19.98 0.051 26.71 0.040 19.98 0.044 21.99 0.041 39.64 0.043 21.99 0.044

22.09 0.053 29.56 0.041 22.09 0.044 24.33 0.037 43.89 0.045 24.33 0.048

24.43 0.046 32.71 0.032 24.43 0.050 26.91 0.036 48.59 0.043 26.91 0.047

27.01 0.052 36.19 0.038 27.01 0.044 29.76 0.045 53.79 0.045 29.76 0.050

29.86 0.045 40.04 0.036 29.86 0.040 32.91 0.037 59.53 0.045 32.91 0.045

33.01 0.034 44.29 0.036 33.01 0.044 36.39 0.038 65.87 0.039 36.39 0.036

36.49 0.035 48.99 0.045 36.49 0.040 40.24 0.045 72.89 0.045 40.24 0.041

40.34 0.038 54.19 0.041 40.34 0.045 44.49 0.041 80.64 0.042 44.49 0.041

44.59 0.039 59.93 0.045 44.59 0.039 49.19 0.038 89.2 0.040 49.19 0.038

49.29 0.044 66.27 0.042 49.29 0.037 54.39 0.040 54.39 0.041

54.49 0.043 73.29 0.037 54.49 0.039 60.13 0.038 60.13 0.043

60.23 0.035 81.04 0.041 60.23 0.044 66.47 0.047 66.47 0.039

66.57 0.039 89.6 0.040 66.57 0.045 73.49 0.041 73.49 0.040

73.59 0.039 73.59 0.041 81.24 0.040 81.24 0.048

81.34 0.045 81.34 0.050 89.8 0.040 89.8 0.044
89.9 0.037 89.9 0.040

Table S2.16. (below) Shear stresses for 300 mm horizontal position of all plates.

300mm Horizontal Position

Smooth Control Loganellia Lophosteus Phlebolepis Poracanthodes Nostolepis

Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa)

0 0.011 0 0.028 0 0.013 0 0.009 0 0.006 0 0.029

0.01 0.018 0.1 0.080 0.1 0.084 0.1 0.091 0.1 0.032 0.1 0.085

0.02 0.037 0.2 0.120 0.2 0.111 0.2 0.090 0.2 0.089 0.2 0.115

0.12 0.039 0.3 0.118 0.3 0.081 0.3 0.083 0.3 0.098 0.3 0.125

0.22 0.088 0.4 0.077 0.4 0.078 0.4 0.078 0.4 0.079 0.4 0.132

0.32 0.092 0.5 0.082 0.5 0.072 0.5 0.074 0.4 0.079 0.5 0.136

0.42 0.081 0.6 0.074 0.6 0.075 0.6 0.074 0.5 0.085 0.6 0.079

0.52 0.076 0.7 0.070 0.7 0.071 0.7 0.069 0.6 0.074 0.7 0.069

0.62 0.076 0.8 0.066 0.8 0.068 0.8 0.068 0.7 0.072 0.8 0.070

0.72 0.070 0.9 0.065 0.9 0.070 0.9 0.071 0.8 0.074 0.8 0.070

0.82 0.070 1 0.067 1 0.066 0.9 0.065 0.9 0.071 0.9 0.069

0.92 0.071 1 0.065 1 0.065 1 0.067 1 0.070 1 0.068

1.02 0.066 1.1 0.060 1.1 0.063 1.1 0.060 1.1 0.065 1.1 0.069

1.02 0.071 1.2 0.060 1.2 0.066 1.2 0.061 1.2 0.064 1.2 0.067

1.12 0.071 1.3 0.063 1.3 0.064 1.3 0.062 1.3 0.066 1.3 0.066

1.22 0.070 1.4 0.062 1.4 0.063 1.4 0.058 1.4 0.066 1.4 0.066

1.32 0.068 1.5 0.061 1.5 0.066 1.5 0.061 1.5 0.062 1.5 0.067

1.42 0.066 1.6 0.059 1.6 0.059 1.6 0.060 1.6 0.063 1.6 0.063

1.52 0.064 1.7 0.057 1.7 0.059 1.7 0.061 1.7 0.062 1.7 0.065

1.62 0.066 1.8 0.059 1.8 0.060 1.8 0.056 1.8 0.062 1.8 0.068

1.72 0.066 1.9 0.059 1.9 0.058 1.9 0.057 1.9 0.061 1.9 0.065

1.82 0.064 2 0.056 2 0.058 2 0.055 2 0.060 2 0.062

1.92 0.067 2.1 0.057 2.1 0.059 2.1 0.054 2.1 0.061 2.1 0.063
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2.02 0.063 2.2 0.057 2.2 0.057 2.2 0.054 2.2 0.058 2.2 0.066

2.12 0.062 2.3 0.059 2.3 0.058 2.3 0.053 2.3 0.054 2.3 0.064

2.22 0.067 2.4 0.054 2.4 0.058 2.4 0.057 2.45 0.059 2.4 0.069

2.32 0.061 2.5 0.058 2.5 0.059 2.5 0.054 2.6 0.058 2.5 0.063

2.42 0.066 2.6 0.059 2.6 0.056 2.6 0.053 2.8 0.058 2.6 0.066

2.52 0.062 2.7 0.059 2.7 0.056 2.7 0.054 3 0.057 2.7 0.065

2.62 0.061 2.8 0.060 2.8 0.056 2.8 0.058 3.2 0.057 2.85 0.061

2.72 0.061 2.9 0.055 2.9 0.057 2.95 0.056 3.4 0.056 3 0.062

2.82 0.063 3.05 0.055 3.05 0.057 3.1 0.049 3.6 0.054 3.2 0.062

2.92 0.062 3.2 0.052 3.2 0.055 3.3 0.049 3.8 0.054 3.4 0.062

3.07 0.064 3.4 0.057 3.4 0.056 3.5 0.051 4.05 0.053 3.6 0.061

3.22 0.065 3.6 0.050 3.6 0.051 3.7 0.058 4.3 0.051 3.8 0.062

3.42 0.060 3.8 0.053 3.8 0.055 3.9 0.053 4.55 0.052 4 0.060

3.62 0.062 4 0.056 4 0.056 4.1 0.052 4.8 0.052 4.2 0.064

3.82 0.061 4.2 0.051 4.2 0.055 4.3 0.049 5.05 0.050 4.45 0.061

4.02 0.063 4.4 0.051 4.4 0.058 4.55 0.052 5.35 0.053 4.7 0.056

4.22 0.062 4.65 0.053 4.65 0.056 4.8 0.055 5.98 0.048 4.95 0.058

4.42 0.063 4.9 0.050 4.9 0.055 5.05 0.053 6.69 0.054 5.2 0.059

4.67 0.061 5.15 0.051 5.15 0.053 5.3 0.052 7.46 0.053 5.45 0.057

4.92 0.059 5.4 0.054 5.4 0.052 5.55 0.051 8.32 0.051 5.75 0.057

5.17 0.058 5.65 0.050 5.65 0.057 5.85 0.049 9.27 0.050 6.38 0.065

5.42 0.061 5.95 0.049 5.95 0.052 6.48 0.051 10.32 0.050 7.09 0.061

5.67 0.056 6.58 0.049 6.58 0.050 7.19 0.055 11.48 0.052 7.86 0.061

5.97 0.058 7.29 0.047 7.29 0.057 7.96 0.045 12.76 0.055 8.72 0.057

6.6 0.055 8.06 0.050 8.06 0.051 8.82 0.051 14.18 0.048 9.67 0.059

7.31 0.055 8.92 0.045 8.92 0.050 9.77 0.051 15.74 0.057 10.72 0.053

8.08 0.051 9.87 0.055 9.87 0.047 10.82 0.048 17.47 0.045 11.88 0.058

8.94 0.050 10.92 0.052 10.92 0.054 11.98 0.050 19.38 0.047 13.16 0.055

9.89 0.057 12.08 0.047 12.08 0.054 13.26 0.043 21.49 0.050 14.58 0.051

10.94 0.055 13.36 0.042 13.36 0.052 14.68 0.047 23.83 0.046 16.14 0.053

12.1 0.056 14.78 0.050 14.78 0.048 16.24 0.047 26.41 0.036 17.87 0.047

13.38 0.054 16.34 0.048 16.34 0.050 17.97 0.048 29.26 0.046 19.78 0.048

14.8 0.052 18.07 0.039 18.07 0.048 19.88 0.044 32.41 0.043 21.89 0.047

16.36 0.051 19.98 0.044 19.98 0.048 21.99 0.041 35.89 0.038 24.23 0.046

18.09 0.049 22.09 0.042 22.09 0.049 24.33 0.041 39.74 0.046 26.81 0.040

20 0.049 24.43 0.041 24.43 0.042 26.91 0.044 43.99 0.039 29.66 0.048

22.11 0.048 27.01 0.045 27.01 0.043 29.76 0.044 48.69 0.043 32.81 0.045

24.45 0.040 29.86 0.034 29.86 0.046 32.91 0.040 53.89 0.040 36.29 0.038

27.03 0.043 33.01 0.038 33.01 0.045 36.39 0.040 59.63 0.039 40.14 0.041

29.88 0.041 36.49 0.043 36.49 0.045 40.24 0.042 65.97 0.039 44.39 0.040

33.03 0.043 40.34 0.036 40.34 0.040 44.49 0.036 72.99 0.042 49.09 0.040

36.51 0.038 44.59 0.040 44.59 0.040 49.19 0.038 80.74 0.044 54.29 0.043

40.36 0.038 49.29 0.037 49.29 0.043 54.39 0.038 89.3 0.042 60.03 0.036

44.61 0.047 54.49 0.035 54.49 0.042 60.13 0.039 66.37 0.045

49.31 0.038 60.23 0.043 60.23 0.042 66.47 0.039 73.39 0.044

54.51 0.035 66.57 0.036 66.57 0.041 73.49 0.041 81.14 0.045

60.25 0.042 73.59 0.043 73.59 0.040 81.24 0.041 89.7 0.039

66.59 0.040 81.34 0.046 81.34 0.041 89.8 0.044
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73.61 0.038 89.9 0.039 89.9 0.040

81.36 0.041
89.92 0.039

Table S2.17. (overleaf) Shear stresses for 350 mm horizontal position of all plates.

350 mm Horizontal Position

Smooth Control Loganellia Lophosteus Phlebolepis Poracanthodes Nostolepis

Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa) Z [mm] t (Pa)

0 0.000 0 0.004 0 0.024 0 0.023 0 0.004 0 0.012

0.01 0.026 0.1 0.091 0.01 0.030 0.01 0.035 0.1 0.116 0.1 0.091

0.02 0.002 0.2 0.126 0.02 0.054 0.11 0.103 0.2 0.066 0.2 0.101

0.03 0.000 0.3 0.110 0.03 0.065 0.21 0.125 0.3 0.087 0.3 0.092

0.04 0.001 0.4 0.093 0.04 0.065 0.31 0.108 0.4 0.086 0.4 0.102

0.05 0.007 0.5 0.097 0.05 0.076 0.41 0.074 0.5 0.085 0.5 0.115

0.06 0.011 0.6 0.073 0.06 0.080 0.51 0.071 0.6 0.078 0.6 0.072

0.07 0.051 0.7 0.071 0.07 0.084 0.61 0.071 0.7 0.076 0.7 0.071

0.17 0.061 0.8 0.066 0.17 0.112 0.71 0.068 0.7 0.075 0.8 0.068

0.27 0.063 0.9 0.064 0.27 0.079 0.81 0.063 0.8 0.074 0.9 0.069

0.37 0.099 0.9 0.069 0.37 0.080 0.91 0.067 0.9 0.069 1 0.071

0.47 0.075 1 0.063 0.47 0.074 1.01 0.063 1 0.071 1 0.068

0.57 0.074 1.1 0.066 0.57 0.072 1.01 0.065 1.1 0.066 1.1 0.069

0.67 0.068 1.2 0.063 0.67 0.072 1.11 0.059 1.2 0.066 1.2 0.068

0.77 0.068 1.3 0.061 0.77 0.070 1.21 0.062 1.3 0.064 1.3 0.070

0.87 0.071 1.4 0.059 0.87 0.067 1.31 0.064 1.4 0.066 1.4 0.068

0.97 0.075 1.5 0.059 0.97 0.067 1.41 0.062 1.5 0.064 1.5 0.068

1.07 0.071 1.6 0.059 1.07 0.066 1.51 0.058 1.6 0.061 1.6 0.065

1.07 0.072 1.7 0.059 1.07 0.067 1.61 0.057 1.7 0.059 1.7 0.070

1.17 0.071 1.8 0.058 1.17 0.062 1.71 0.059 1.8 0.056 1.8 0.067

1.27 0.066 1.9 0.059 1.27 0.067 1.81 0.059 1.9 0.058 1.9 0.064

1.37 0.070 2 0.063 1.37 0.064 1.91 0.058 2 0.057 2 0.066

1.47 0.067 2.1 0.056 1.47 0.061 2.01 0.055 2.1 0.061 2.1 0.064

1.57 0.066 2.2 0.055 1.57 0.063 2.11 0.061 2.2 0.059 2.2 0.071

1.67 0.066 2.3 0.057 1.67 0.058 2.21 0.057 2.3 0.059 2.3 0.064

1.77 0.065 2.4 0.056 1.77 0.059 2.31 0.055 2.4 0.058 2.4 0.065

1.87 0.063 2.5 0.059 1.87 0.059 2.41 0.058 2.5 0.058 2.5 0.067

1.97 0.067 2.6 0.058 1.97 0.060 2.51 0.055 2.6 0.053 2.6 0.065

2.07 0.067 2.7 0.054 2.07 0.057 2.61 0.055 2.75 0.055 2.7 0.064

2.17 0.066 2.8 0.056 2.17 0.057 2.71 0.055 2.9 0.058 2.8 0.065

2.27 0.063 2.95 0.051 2.27 0.062 2.81 0.055 3.1 0.056 2.9 0.065

2.37 0.066 3.1 0.060 2.37 0.056 2.91 0.053 3.3 0.055 3.05 0.064

2.47 0.064 3.3 0.060 2.47 0.059 3.06 0.051 3.5 0.054 3.2 0.064

2.57 0.064 3.5 0.054 2.57 0.058 3.21 0.052 3.7 0.055 3.4 0.066

2.67 0.064 3.7 0.054 2.67 0.064 3.41 0.053 3.9 0.059 3.6 0.063

2.77 0.065 3.9 0.053 2.77 0.060 3.61 0.055 4.1 0.057 3.8 0.063

2.87 0.064 4.1 0.057 2.87 0.058 3.81 0.053 4.35 0.052 4 0.062
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2.97 0.068 4.3 0.055 2.97 0.056 4.01 0.054 4.6 0.053 4.2 0.062

3.12 0.061 4.55 0.057 3.12 0.060 4.21 0.053 4.85 0.052 4.4 0.063

3.27 0.059 4.8 0.049 3.27 0.054 4.41 0.054 5.1 0.051 4.65 0.062

3.47 0.062 5.05 0.055 3.47 0.059 4.66 0.051 5.35 0.054 4.9 0.062

3.67 0.067 5.3 0.051 3.67 0.053 4.91 0.054 5.65 0.054 5.15 0.059

3.87 0.058 5.55 0.050 3.87 0.054 5.16 0.056 6.28 0.049 5.4 0.062

4.07 0.064 5.85 0.050 4.07 0.053 5.41 0.051 6.99 0.050 5.65 0.060

4.27 0.057 6.48 0.049 4.27 0.058 5.66 0.053 7.76 0.052 5.95 0.059

4.47 0.060 7.19 0.053 4.47 0.055 5.96 0.053 8.62 0.053 6.58 0.065

4.72 0.066 7.96 0.051 4.72 0.051 6.59 0.056 9.57 0.052 7.29 0.058

4.97 0.062 8.82 0.052 4.97 0.055 7.3 0.049 10.62 0.048 8.06 0.058

5.22 0.060 9.77 0.050 5.22 0.055 8.07 0.049 11.78 0.048 8.92 0.059

5.47 0.063 10.82 0.044 5.47 0.058 8.93 0.047 13.06 0.049 9.87 0.054

5.72 0.059 11.98 0.044 5.72 0.049 9.88 0.047 14.48 0.049 10.92 0.060

6.02 0.063 13.26 0.044 6.02 0.048 10.93 0.049 16.04 0.049 12.08 0.056

6.65 0.057 14.68 0.042 6.65 0.048 12.09 0.050 17.77 0.049 13.36 0.056

7.36 0.061 16.24 0.044 7.36 0.053 13.37 0.050 19.68 0.042 14.78 0.050

8.13 0.054 17.97 0.046 8.13 0.052 14.79 0.041 21.79 0.052 16.34 0.051

8.99 0.054 19.88 0.046 8.99 0.057 16.35 0.041 24.13 0.048 18.07 0.047

9.94 0.057 21.99 0.039 9.94 0.057 18.08 0.044 26.71 0.045 19.98 0.046

10.99 0.050 24.33 0.035 10.99 0.054 19.99 0.040 29.56 0.041 22.09 0.045

12.15 0.052 26.91 0.036 12.15 0.050 22.1 0.042 32.71 0.046 24.43 0.045

13.43 0.050 29.76 0.041 13.43 0.052 24.44 0.040 36.19 0.043 27.01 0.040

14.85 0.049 32.91 0.038 14.85 0.049 27.02 0.044 40.04 0.036 29.86 0.044

16.41 0.050 36.39 0.036 16.41 0.046 29.87 0.044 44.29 0.041 33.01 0.038

18.14 0.047 40.24 0.040 18.14 0.046 33.02 0.039 48.99 0.037 36.49 0.039

20.05 0.050 44.49 0.043 20.05 0.041 36.5 0.040 54.19 0.047 40.34 0.037

22.16 0.044 49.19 0.036 22.16 0.041 40.35 0.036 59.93 0.046 44.59 0.042

24.5 0.041 54.39 0.037 24.5 0.041 44.6 0.043 66.27 0.040 49.29 0.047

27.08 0.042 60.13 0.044 27.08 0.043 49.3 0.038 73.29 0.043 54.49 0.039

29.93 0.038 66.47 0.041 29.93 0.040 54.5 0.040 81.04 0.043 60.23 0.041

33.08 0.042 73.49 0.039 33.08 0.042 60.24 0.037 89.6 0.039 66.57 0.039

36.56 0.042 81.24 0.042 36.56 0.038 66.58 0.037 73.59 0.040

40.41 0.047 89.8 0.038 40.41 0.042 73.6 0.036 81.34 0.039

44.66 0.038 44.66 0.043 81.35 0.039 89.9 0.044

49.36 0.039 49.36 0.040 89.91 0.036

54.56 0.042 54.56 0.036

60.3 0.033 60.3 0.040

66.64 0.041 66.64 0.044

73.66 0.046 73.66 0.040

81.41 0.043 81.41 0.040
89.97 0.039 89.97 0.044

Table S2.18. (below) Shear stresses for 400 mm horizontal position of all plates.

400 mm Horizontal Position



309

Smooth
Control Loganellia Lophosteus Phlebolepis Poracanthodes Nostolepis

Z [mm] t (Pa) Z [mm] t (Pa) Z t (Pa) Z t (Pa) Z t (Pa) Z t (Pa)

0 0.070 0 0.023 0 0.019 0 0.026 0 0.004 0 0.030

0.01 0.072 0.01 0.051 0.01 0.044 0.01 0.038 0.01 0.071 0.1 0.101

0.02 0.062 0.02 0.048 0.02 0.061 0.02 0.053 0.11 0.100 0.2 0.094

0.03 0.067 0.03 0.050 0.03 0.103 0.03 0.055 0.21 0.094 0.3 0.115

0.04 0.083 0.13 0.111 0.04 0.101 0.04 0.066 0.31 0.114 0.4 0.082

0.05 0.076 0.23 0.131 0.05 0.107 0.05 0.063 0.41 0.074 0.5 0.071

0.06 0.073 0.33 0.089 0.06 0.112 0.06 0.079 0.51 0.070 0.6 0.072

0.07 0.075 0.43 0.072 0.07 0.105 0.16 0.085 0.61 0.068 0.7 0.069

0.08 0.076 0.53 0.070 0.08 0.104 0.26 0.093 0.71 0.069 0.8 0.068

0.18 0.074 0.63 0.071 0.18 0.086 0.36 0.077 0.81 0.066 0.9 0.068

0.28 0.075 0.73 0.065 0.28 0.099 0.46 0.077 0.91 0.066 1 0.067

0.38 0.070 0.83 0.069 0.38 0.075 0.56 0.070 1.01 0.069 1 0.068

0.48 0.073 0.93 0.065 0.48 0.074 0.66 0.069 1.01 0.067 1.1 0.066

0.58 0.073 1.03 0.061 0.58 0.073 0.76 0.068 1.11 0.065 1.2 0.067

0.68 0.073 1.03 0.061 0.68 0.067 0.86 0.068 1.21 0.062 1.3 0.068

0.78 0.068 1.13 0.062 0.78 0.070 0.96 0.063 1.31 0.059 1.4 0.067

0.88 0.071 1.23 0.063 0.88 0.067 1.06 0.064 1.41 0.063 1.5 0.069

0.98 0.069 1.33 0.060 0.98 0.064 1.06 0.064 1.51 0.063 1.6 0.065

1.08 0.065 1.43 0.059 1.08 0.069 1.16 0.065 1.61 0.060 1.7 0.068

1.08 0.067 1.53 0.062 1.08 0.066 1.26 0.064 1.71 0.059 1.8 0.066

1.18 0.067 1.63 0.059 1.18 0.062 1.36 0.063 1.81 0.060 1.9 0.068

1.28 0.064 1.73 0.058 1.28 0.068 1.46 0.058 1.91 0.061 2 0.066

1.38 0.067 1.83 0.058 1.38 0.062 1.56 0.060 2.01 0.058 2.1 0.066

1.48 0.064 1.93 0.058 1.48 0.061 1.66 0.059 2.11 0.059 2.2 0.065

1.58 0.065 2.03 0.057 1.58 0.058 1.76 0.058 2.21 0.062 2.3 0.067

1.68 0.069 2.13 0.058 1.68 0.059 1.86 0.059 2.31 0.060 2.4 0.068

1.78 0.067 2.23 0.057 1.78 0.059 1.96 0.060 2.41 0.057 2.5 0.064

1.88 0.066 2.33 0.054 1.88 0.057 2.06 0.059 2.51 0.055 2.6 0.068

1.98 0.063 2.43 0.060 1.98 0.057 2.16 0.054 2.61 0.060 2.7 0.065

2.08 0.067 2.53 0.059 2.08 0.058 2.26 0.059 2.71 0.056 2.8 0.068

2.18 0.065 2.63 0.055 2.18 0.056 2.36 0.058 2.81 0.056 2.9 0.066

2.28 0.064 2.73 0.057 2.28 0.059 2.46 0.058 2.91 0.056 3.05 0.066

2.38 0.066 2.83 0.057 2.38 0.056 2.56 0.056 3.06 0.058 3.2 0.067

2.48 0.065 2.93 0.059 2.48 0.056 2.66 0.055 3.21 0.054 3.4 0.066

2.58 0.060 3.08 0.056 2.58 0.059 2.76 0.057 3.41 0.055 3.6 0.068

2.68 0.070 3.23 0.055 2.68 0.059 2.86 0.052 3.61 0.054 3.8 0.062

2.78 0.068 3.43 0.051 2.78 0.060 2.96 0.056 3.81 0.051 4 0.063

2.88 0.063 3.63 0.056 2.88 0.055 3.11 0.051 4.01 0.054 4.2 0.065

2.98 0.067 3.83 0.056 2.98 0.056 3.26 0.051 4.21 0.052 4.4 0.063

3.13 0.062 4.03 0.055 3.13 0.057 3.46 0.055 4.41 0.055 4.65 0.064

3.28 0.066 4.23 0.054 3.28 0.060 3.66 0.053 4.66 0.050 4.9 0.063

3.48 0.063 4.43 0.054 3.48 0.052 3.86 0.051 4.91 0.053 5.15 0.063

3.68 0.063 4.68 0.051 3.68 0.059 4.06 0.054 5.16 0.053 5.4 0.064

3.88 0.060 4.93 0.052 3.88 0.053 4.26 0.055 5.41 0.056 5.65 0.059

4.08 0.060 5.18 0.052 4.08 0.057 4.46 0.051 5.66 0.053 5.95 0.061
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4.28 0.062 5.43 0.057 4.28 0.052 4.71 0.052 5.96 0.051 6.58 0.062

4.48 0.059 5.68 0.054 4.48 0.051 4.96 0.053 6.59 0.052 7.29 0.062

4.73 0.067 5.98 0.049 4.73 0.056 5.21 0.048 7.3 0.051 8.06 0.056

4.98 0.064 6.61 0.052 4.98 0.054 5.46 0.050 8.07 0.059 8.92 0.058

5.23 0.063 7.32 0.050 5.23 0.055 5.71 0.050 8.93 0.047 9.87 0.058

5.48 0.066 8.09 0.052 5.48 0.055 6.01 0.048 9.88 0.055 10.92 0.050

5.73 0.059 8.95 0.055 5.73 0.055 6.64 0.049 10.93 0.047 12.08 0.055

6.03 0.057 9.9 0.052 6.03 0.055 7.35 0.047 12.09 0.058 13.36 0.054

6.66 0.059 10.95 0.048 6.66 0.053 8.12 0.053 13.37 0.050 14.78 0.053

7.37 0.065 12.11 0.043 7.37 0.052 8.98 0.045 14.79 0.047 16.34 0.049

8.14 0.061 13.39 0.041 8.14 0.050 9.93 0.047 16.35 0.047 18.07 0.045

9 0.054 14.81 0.039 9 0.048 10.98 0.050 18.08 0.045 19.98 0.043

9.95 0.053 16.37 0.046 9.95 0.050 12.14 0.051 19.99 0.046 22.09 0.048

11 0.057 18.1 0.043 11 0.047 13.42 0.046 22.1 0.039 24.43 0.050

12.16 0.048 20.01 0.041 12.16 0.048 14.84 0.045 24.44 0.043 27.01 0.044

13.44 0.045 22.12 0.035 13.44 0.045 16.4 0.041 27.02 0.045 29.86 0.043

14.86 0.046 24.46 0.042 14.86 0.042 18.13 0.039 29.87 0.037 33.01 0.045

16.42 0.044 27.04 0.039 16.42 0.043 20.04 0.041 33.02 0.040 36.49 0.033

18.15 0.046 29.89 0.036 18.15 0.046 22.15 0.040 36.5 0.042 40.34 0.043

20.06 0.047 33.04 0.042 20.06 0.048 24.49 0.040 40.35 0.038 44.59 0.041

22.17 0.043 36.52 0.040 22.17 0.045 27.07 0.039 44.6 0.041 49.29 0.033

24.51 0.045 40.37 0.040 24.51 0.040 29.92 0.042 49.3 0.042 54.49 0.044

27.09 0.042 44.62 0.038 27.09 0.044 33.07 0.034 54.5 0.037 60.23 0.042

29.94 0.041 49.32 0.035 29.94 0.043 36.55 0.039 60.24 0.046 66.57 0.041

33.09 0.049 54.52 0.036 33.09 0.041 40.4 0.038 66.58 0.036 73.59 0.039

36.57 0.045 60.26 0.038 36.57 0.047 44.65 0.044 73.6 0.040 81.34 0.047

40.42 0.043 66.6 0.040 40.42 0.035 49.35 0.037 81.35 0.041 89.9 0.040

44.67 0.043 73.62 0.037 44.67 0.041 54.55 0.040

49.37 0.041 81.37 0.040 49.37 0.041 60.29 0.040

54.57 0.042 89.93 0.039 54.57 0.043 66.63 0.035

60.31 0.039 60.31 0.036 73.65 0.040

66.65 0.039 66.65 0.047 81.4 0.036

73.67 0.040 73.67 0.042 89.96 0.045

81.42 0.039 81.42 0.033

89.98 0.048 89.98 0.045

A2.6. Frictional velocity calculations

Code used for the generation of U* approximations (see body text of section 3.2):

nu=1.004*1e-6; %viscocity
I=100;%iteration count max out
load fm.mat %load the file with all the data

for j=1:length(fm(1,1:end))/3; %take the file loaded , number of columns with
data in, not the first, it's the second to the end ignoring every other one

a(:,1)=fm(:,1+(j-1)*3); %a= picks out the distance/depth column (in
millimetres)



311

a(:,2)=fm(:,2+(j-1)*3); %picks out u
y=zeros(I+1,length(a(2:end,1))); %preallocates variables for speed
yp=zeros(I+1,length(a(2:end,1)));
u=zeros(I+1,length(a(2:end,1)));

for i=1:I+1 %iteration loop to find friction velocity
u(i,:)=a(2:end,2); %defines velocity ignoring the first term because

we don't want a zero depth (can't take a log of zero)
if i==1 %saying it's fitting a slope of best fit between all of the

experimental data
y(i,:)=log(a(2:end,1)/1e3); %log distance (adjusted to metres)
p=polyfit(y(i,:),u(i,:),1); %this is calculating the slope

else
[spv,pos]=max(a(:,2));
vec1=find(a(1:pos,2)<=0.99*a(pos,2));
yul=0.3*max(a(vec1,1));
yp(i,:)=a(2:end,1)/1e3*us(i-1,j)/nu; %here we're defining

dimnesionless distance away from the wall (distance in mm divided by 1000,
times by shear stress we calculated, divided by kinematic viscocity

y(i,:)=log(yp(i,:)); %log dimensionless distance/depth
vec2=find(yp(i,:)>=30 & a(2:end,1)'<yul); %finds the dimensionless

distance greater than 30 less than 100 wall units
p=polyfit(y(i,vec2),u(i,vec2),1); %finds the slope again based on

previous subset of data
end
us(i,j)=p(1)*0.41; %defines the shear velocity as the slope of best

fit times Von Karmens constant K
if i>1 && abs(us(i,j)-us(i-1,j))/abs(us(i,j))<=1e-4 %terminates the

loop if results are converging to 4 decimal places
break

end
end
us(find(us==0))=NaN; %turns all zeros to NaN (not a number)
plot(us(:,j)) %plotting the shear velocity against the number of

iterations made until constant for every plate
hold on

end

A2.7. Skin friction coefficients

Table S2.19. Skin friction coefficients for all plates at horizontal positions 200-400mm. See

Chapter 7 for plots.

Plate Horizontal Position (mm)

200 250 300 350 400

Smooth 0.015705 0.018109 0.023481 0.02612 0.020061

Loganellia 0.01128 0.009823 0.015886 0.015794 0.015728

Lophosteus 0.011518 0.008594 0.017565 0.01577 0.013479

Phlebolepis 0.012344 0.011044 0.012964 0.016818 0.019087

Poracanthodes 0.015185 0.017103 0.020675 0.027195 0.017331

Nostolepis 0.028856 0.027693 0.022026 0.023082 0.02398


