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Abstract

Vertex enumeration (VE) algorithms explore the problem of listing some or all solu-
tions that lie at corners of a convex polyhedron defined by a set of linear inequalities.
Many algorithms have been developed for general polytopes. The most successful
of these, from both an empirical and theoretical viewpoint, are based on pivoting.
Dyer [24] gives an algorithm for simple polytopes which runs in time O(mn?) per
vertex. In this thesis we concentrate on the VE problem for certain special classes of
polyhedron. We also address the problem of (approximately) counting the vertices

without listing them.

Pivoting algorithms rely on the correspondence between vertices and feasible bases
and are consequently inefficient in the presence of a high degree of degeneracy such
as frequently occurs in network polyhedra. Provan [79] gives a high-level descrip-
tion of a VE algorithm for such polyhedra which has running time that is quadratic
in the number of vertices. We describe an implementation of Provan’s algorithm,
present some computational results on transportation and assignment polytopes
and discuss some practical difficulties with the algorithm. We then present an
algorithmic description of a VE method via the dual Fourier-Motzkin (F-M) elimi-
nation method. One of the difficulties with F-M is that the number of constraints
introduced in eliminating variables grows exponentially; we show that, for linear
inequality systems with at most two variables per constraint, denoted LI(2), the
growth is exponential in the number of variables but linear in the number of con-
straints. We go on to prove results which characterize the basis structure for LI(2)
and dual LI(2) systems and hence develop a new pivoting algorithm for enumerat-

ing vertices of polyhedra associated with dual LI(2) systems.

Counting the vertices of general polyhedra is # P-complete [24] and thus approz-
imate counting procedures are of interest. In particular, some fpras for counting
vertices of polyhedra associated with 0-1 Permanent, Down Sets, Independent Sets,
0-1 Knapsack Problems, 2 x n transportation problems, matroids and matchings in

a non-bipartite graph are developed.
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Chapter 1

The Problem

1.1 Introduction

Optimization is concerned with maximizing a function of certain variables (the
objective function) possibly subject to inequality or equality constraints on other
functions of the same variables (constraints). A problem of this type is called a
mathematical program, and the methods for its solution are called mathematical
programming. Such problems have been, and continue to be, extensively studied

because they provide useful models for many real-world problems.

Generally, the simplest classes of mathematical programming problems are classified
as those in which the variables are subject to only linear equalities (inequalities).
If such a problem has n real valued variables, then the constraints define a region
in n-space, R, which is a convex polyhedron. A characterization of such a region
is being that of the convex hull of a certain set of extreme points and unbounded
half-lines in R®. The extreme points are also called vertices and the half-lines are
called extreme edges or rays of the polyhedron. A polyhedron which is bounded as

a subset of R" is also known as a polytope, which is simply the convex hull of its
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vertex set. Many mathematical programming problems (including LP of course)
can be shown to have solutions lying at a vertex of a convex polyhedron defined by

some (or all) of the constraints.

For the vertex sets that are finite, methods are suggested for tackling such prob-
lems based on partial, or even total, determination of the vertices of the polyhedron.
This kind of procedure is called a vertex enumeration (VE) method, and the specific
problem of enumerating all vertices is called the VE problem. This is one of the

problems studied in the thesis.

The VE problem has a long history and many methods for its solution have been
proposed. Two variants of the problem have been identified by Chen et al. [10]
who presented on-line and off-line algorithms for enumerating vertices of polyhe-
dron defined by the system (1.1). The on-line problem is particularly important in
deterministic algorithms for global optimization [43], while the off-line problem is
the one in which P is fully defined ab initio. algorithms for the on-line problem can

be used to solve the off-line problem and vice-versa.

It is interesting to explore all the means of generating such points, especially when
the polyhedron has degenerate vertices. This has practical applications in such areas
as computational geometry, dual representations, sensitivity analysis, geometrical
optimization and so on. Despite the commendable efforts of Dyer [24, 30] and Chen
et al. [10] the problem of degeneracy is still open to competing research in the sense
that there is no algorithm for general polytopes which is polynomial in the number

of vertices.

The problems caused by degeneracy should not be under-estimated. A vertex v
is said to be degenerate if more than n of the binding hyperplanes intersect at it.
Many algorithms have been developed for vertex enumeration, notable among which
are; [2, 4, 9, 23, 24, 27, 28, 30, 56, 66, 79, 86, 91]. Some of these have good theo-

retical and empirical efficiencies. However, most of them are inefficient for highly
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degenerate polyhedra.

Competing research about solving the problem of degeneracy is as the time of writ-
ing open from both theoretical and practical point of view. The theoretical problem
is to list the vertices in a time which depends only polynomially on m and n and
the number of distinct vertices of the polyhedron. The practical problem is to do

this in a feasible computational time.

Geometrically, the above method (VE) can be equivalently stated in dual concept
as that of finding the smallest convex set containing a given set of m points in R”
(the convex hull). This has become the central problem in computational geome-
try. It is a basic intuitive problem and appears frequently as a sub-problem in the
solution of other geometrical problems and a number of other important problems
such as intersecting half-spaces or constructing Voronoi Diagrams have all shown

to be convex hull problems in disguise.

Most algorithms for computing the convex hull require maintenance and a descrip-
tion of the whole convex hull or at least of all its facets. Since the number of facets
could grow exponentially in higher dimensions, these algorithms, e.g. Seidel [88],
Swart [93], appear to exceed the capacity limits of even today’s most powerful com-

puters.

In combinatorial optimization one is interested in describing the facets of polytopes
whose vertices correspond to combinatorial objects. This opens the possibility of
doing optimization over these objects by linear programming (LP) and cutting
plane algorithms (Polyhedral Combinatorics). Examples of these are the popular
and the very challenging Travelling Salesman polytopes or Cut Polytopes. The
polytopes that arise in this area are highly degenerate. Examples of degenerate and
non-degenerate polytopes are available in Figure 1.1. Certain highly regular graphs
can be described as the skeletons of regular polyhedra. Let us now review some

necessary backgrounds and definitions.
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Non-degenerate Polytope
(Cube)

Degenerate Polytope
(Pyramid)

Figure 1.1: Degenerate and non-degenerate polyhedra
1.2 Background and Definitions

A polyhedron P is defined to be a set satisfying the following:

P = {.T eR? :Zaijxj < bi, 1= 1,..,m+n} (11)

j=1
where a;;, b; are rational constants and R" is real n space. Then, a vertex v of the
above polyhedron P is defined to be the unique point of intersection of at least n

of the binding hyperplanes H, where H is defined as follows:
j=1

A hyperplane divides R™ into two regions called half-spaces (details of some basic
definitions will be available at a later stage in this chapter). A ‘typical’ case of P
is that each vertex is the intersection of exactly n hyperplanes. Such a polytope is
called simple, or non-degenerate, and many VE algorithms are directed principally

at this class of polyhedra.

Let us review and introduce here some notation and terminology which will be

freely used later in this thesis. It is assumed that the reader is familiar with the



CHAPTER 1. THE PROBLEM 3

Convex Set

A Non—Convex Set

Figure 1.2: Convex and non-convex sets

basic theory of linear programming (LP) as is given in such books as: Hadley [41],

Jarvis et al. [63] and Williams [99] .

The n-dimensional real space is denoted by R”. A set X in R" is called a con-
ver set if given any two points z; and xo in R”, then (Az; + (1 — A)z2) € X for
each A € [0,1]. It should be noted that Az; + (1 — A)xs for A in the interval [0, 1]
represents a point on the line segment joining x; and z. Any point of the form
Az + (1= A)zy where 0 < X < 1 is called convex combination (or weighted average)

of z; and x5. Figure 1.2 is an illustration of the basic concept explained above.

The concept of extreme points or vertices plays an important role in the theory of
linear programming (LP). By definition a point x in a convex set C' is called an
extreme point of C' if  cannot be represented as a strict convex combination of
two distinct points in C. In another words, x = Az; + (1 — A)ze with A € (0,1)
and z1,x9 € X implies ¢ = x1 = x5. Figure 1.3 is an illustration of this concept

explained.

A hyperplane is considered to be a generalization of the idea of a straight line in
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non-extreme points

T2

- " int
.T]_ extreme poin

Figure 1.3: Extreme and non-extreme points

two dimensional space, R? and that of plane in three dimensional space, R®. A
hyperplane H' € R" is a set of the form {z : wx = k} where w is a non-zero
vector in R® and k is a scalar, w is sometimes called the gradient or normal to
the hyperplane. Equivalently, a hyperplane consists of all points = = (x1, Za, ..., Tp,)

satisfying the equation Z?:1 w;z; = k, that is:

H={zeR" :ijxj:k} (1.3)
7j=1
Note that equations (1.2) and (1.3) are analogous. Hence, a half-space is a collection

of points of the form {x : wz < k} that is:
Hy ={z:wz >k} (1.4)

Hy ={z:wz <k} (1.5)

The union of the two half-spaces is the entire space in R". This is illustrated in

Figure 1.4.

Geometrically, a point x € C is also said to be an extreme point, or a corner point

or a vertex of C' if x lies on some n linearly independent defining hyperplanes say,
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Hyperplane

Figure 1.4: Hyperplane and half-space

H;, 7+ € Nof C. If more than n defining hyperplanes pass through an extreme point
(vertex) such a point is called degenerate extreme point or degenerate vertex. The
excess number of planes over n is called its order of degeneracy. A polyhedron with

at least one degenerate vertex is said to be a degenerate polyhedron.

The practical uses of VE will at least depend on the number of vertices the poly-
hedron possesses. Indeed, the complexity of the VE problem will obviously depend
critically on this. In that respect there are known theoretical bounds. McMullen
[68] has proved that the maximum number of vertices a polytope defined by m
inequalities in n non-negative variables can possess is given by:

m+ [3n] m+ [in] —1

Vmaw = + (16)
m m

Note: |y]| is the largest integer not exceeding y and [y] is the smallest integer not
exceeded by y.

On the other hand, Barnette [6] has shown that, at least for non-degenerate poly-
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topes, the minimum number of vertices is given by:
Vinin = m(n — 1) + 2 (1.7)

Note: the assumption here is that all m + n inequalities are non-redundant.

For example, a linear program with m = 10 and n = 20 will have a minimum
number of vertices V,;, = 192, according to (1.7). On the other hand, by (1.6), the
same problem will have a maximum number of vertices V,,,, = 277134. It can be
noted that the gap between the lower and upper bounds is extremely large. Hence,
these bounds are not a particularly good guide to the number of vertices to expect

in a given polytope.

The dual analogue of VE is the problem of finding the smallest convex set con-
taining a given set of m points in R", the convex hull. In this direction it may be
worthwhile to review some related definitions: for a set S € R" the affine hull is
the intersection of all hyperplanes that contain S; the convex hull of S (for short
Conv(S)) is defined to be the intersection of all half-spaces that contain S; a poly-
tope in this concept is defined to be the convex hull of a finite set; a polytope P is a
k-polytope if k is the dimension of the smallest affine subspace of R* that contains

P; a k-simplex is a k-polytope formed by the convex hull of £ + 1 points in R”

k+1
with n > k; a k-simplex has k 4 1 facets and ridges; a polytope is called

2
stmplicial if every face of P is a simplex.

The dual equivalent upper bound of McMullen [68] for the maximal number of k-
faces for a d-polytope with n number of vertices is given as a theorem known as
the Upper Bound Theorem: If P is a d-polytope with n = f, vertices, then for
every k it has at most as many k-faces as the corresponding cyclic polytope, i.e:
fio1(P) < frx_1(C4(n)), where fr = fr(P) denotes the number of k-dimensional
faces in P and d is the dimension of polytope, n is the number of vertices, Cy(n) is
the cyclic polytope and & is the number of faces with LgJ < k < d implying P is
neighborly. (See [101]).
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Barany [60] suggested that the maximal number f(d) of facets of d-dimensional 0-
I-polytope is given by: 2¢ < f(d) < d! + 2d. Seidel [87] shows that (by asymptotic
argument) the number of facets is at most twice the number of k-faces of general

polytope P with k < [4] i.e:

1%]
n
fer<2d | (1.8)
i=0 ?
where i = £ if d is even and i = ! = 4] if d is odd. Thus, Seidel has given a

rough estimate bound f;_1, with a polynomial of degree [g]

1.3 Algorithms for Vertex Enumeration

A number of algorithms have been proposed for the solution of the basic problem
considered here, that of automatically enumerating all vertices of a convex polyhe-

dron formed by the finite system of inequalities given in (1.1).

While much research has been concentrated on convex polytopes (see e.g Gunbaum
[40]), it appears that, in general, they have few useful properties that can be ex-

ploited in order to enumerate easily their extreme points (vertices).

Dyer [23] was able to classify some of the related published algorithms, examples are
availablein [2,4, 6,7, 9, 10, 11, 12, 23, 24, 27, 28, 30, 38, 42, 56, 66, 67, 79, 86, 91, 93]
and so numerous to mention. Dyer [23] divides some of these algorithms into two
major categories, and further divided the second category into two main classes in
accordance with their computational schemes/methods of book-keeping. These are
the accounting systems which must be incorporated into the algorithms in order

to ensure that vertices are neither omitted nor repeated in the enumeration process.

Algorithms in the first category are classified by Dyer [23] as Constructive Inductive
(CI) algorithms. These algorithms are usually motivated by geometrical considera-

tions, as such it may be unimportant whether or not the polyhedra are degenerate.
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CI algorithms assume that the vertices for a polytope, say P, are known and subse-
quent addition of a half space, say H™, enables one to enumerate the vertices of a
new polytope P! formed by the intersection of the polyhedron P and the half space
HT, that is:

PP=H"NP (1.9)

The first published method appears to be that of Motzkin et al. [71]. Their approach
is to add inequalities in a step-by-step manner, recording at each step which ‘new’
corner points have been created and which ‘old’ ones excluded. This has certain
merits but the chief disadvantage is the case of many redundant constraints. Much
effort may be wasted calculating extreme (corner) points that may later be excluded.
Examples of CI methods can be found in [12, 36, 39, 59, 71, 76, 85, 89, 93, 94, 95].
The reader is referred to Dyer’s thesis [23] for further details.

The second category are called pivoting methods. The main deriving inspiration of
these algorithms is the simplex method of linear programming (LP) (see, for exam-
ple, [19]). These methods exploit the correspondence between the vertices and Ba-
sic Feasible Solutions (BFS). This correspondence is one-to-one for non-degenerate
polyhedra and one-to-many for degenerate one. One class of this second category
comprises methods that use accounting-method based on the defining hyperplanes.
These are called Hyperplane Oriented Pivoting (HOP), examples are available in
[5, 8, 44]. The second class comprises methods which use book-keeping based on
the feasible basis graph, called Basis Oriented Pivoting (BOP). For research in this
area, see [2, 64, 65, 82, 91]. Most vertex ranking methods may also be viewed as

belonging to this class. Examples are [18, 57, 72, 78].

The problem of determining all the extreme points of simple polytopes is equiva-
lent to that of enumerating all the basic feasible solutions for the set of constraints.
In the degenerate case, the polytope may be ‘perturbed’ by standard methods to
restore the 1-1 correspondence. Simplex tableau could be used to represent the
extreme point algebraically. Unfortunately, it is well known that (Mattheiss [65]) it

is not, in general, possible to generate a complete non-recurrent sequence of basic
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feasible solutions by simplex pivots.

The first person to adopt simplex format was Balinski [5]. He devised a flexi-
ble search method based on a careful and successive relaxation of the constraints.
For this algorithm, the accounting procedure was particularly simple, however the
method, like Motzkin’s, is inefficient in the presence of large number of redundant
constraints. This is because infeasible basic solutions might be visited. Others are
Manas and Nedoma [64], who have used the simplex tableau and generate only
basic feasible solutions. The ‘book-keeping’ for their algorithm requires a list of
the indices of the basic variables at each basic feasible solution to be held. They
attempt to trace an edge-path on the polytope terminating after each extreme point
has been visited at least once. Silverman [91] has also devised a method along the
lines which he calls the G-Path method. The main difference between the methods
of Silverman and that of Manas and Nedoma is in the use of the construction of the
G-path. This is an edge path on the polytope such that each extreme point either
lies on the path or is adjacent to some point on the path. It can be readily observed
that enumerating all extreme points of the polytope suffices to follow such a path.

However, such a path may not always exist.

Mattheiss [65] adds a further ‘generalised-slack’ variable to the constraints and views
the original polytope to be a special facet of a polytope in (n + 1)-dimensions. The
search then takes place among the extreme points of the higher dimensional poly-
tope that lie on the special facet. The points of the original polytope are then
generated as ‘neighbours’ of these points. He shows that redundant constraints do
not affect the process, but the main reason for the additional complication rests
on an unproven conjecture that fewer points will be explicitly generated than in
a search of the original polytope. Burdet [8] presents an interesting method using
recurrent applications of Phase [ linear programming method to construct a kind
of branch and bound search for the basic feasible solutions. This method will need
more simplex pivoting operations than its competitors in the non-degenerate case,

but could be useful in case of significant degeneracy. However, it seems that cer-
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tain simplifications which he claims may be made in respect of 2-dimensional and

simplicial faces will have little effect in the scheme proposed, and is easily ignorable.

Another interesting approach is that of Chernikova [12], who gives an algorithm for
determining the extreme edges of a convex polyhedral cone. This can be adopted
in a straightforward manner to find the vertices of a convex polyhedron. The idea
is comparable in many respects to that of Motzkin et al. [71] but is presented
in a slightly different fashion. This method is also discussed by Rubin [83], who
presented its application to cardinality constrained linear programming. Greenberg
[39] presents a method for computing all edges of a cone. His work is based on a
theorem from Uzawa [95], which is strengthened by incorporating certain exclusion
tests on candidate edges. The technique again has similarities with that of Motzkin

et al. [71].

Other suggestions have been made by Avis and Fukuda [4], Hadley [41] and Chen
et al. [10] and many more. In general little attention was given to the computa-
tional efficiency of the algorithms discussed above until Dyer and Proll [27] have
presented a method based on the simplex method using the format of the product
form revised simplex method [41]. They constructed a spanning tree in the feasible

basis graph of the polytope, rather than using single tableau to follow an edge path.

Dyer’s algorithm [24] is still the fastest in term of empirical evaluations, especially,
since a hashing method was incorporated as ‘book-keeping’ into his algorithm by
Ong et al. [77]. The problem of degeneracy is still an open problem. Although
the ‘perturbation’ technique of Dyer [24] worked satisfactorily for polytopes with a
small degree of degeneracy, but it still has difficulty with polytopes that have high

degree of degeneracy.

Some of the short-comings of VE algorithms could be summarised as the case may
be, that is, CI methods have one advantage over other methods: the ability to di-

rectly enumerate vertices of degenerate polyhedra. However, its major drawbacks
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are: it is inefficienct for systems with many redundant inequalities; and inappro-
priate for methods such as multicriteria or multiparametric linear programming.
Also, one obvious question associated with CI algorithms is “which order should
the constraints be added”? No results appear to exist on this problem, although

Rubin [83] has suggested a heuristic approach.

On the other hand, both HOP and BOP methods have two major drawbacks. One
is their inability to efficiently enumerate degenerate vertices, and the second is that

of potential repetitious enumeration of vertices.

For more details about these procedures, see Dyer’s thesis [23].

1.4 Restatement of the Problem

It is possible to re-define the problem (that of automatically enumerating the ver-
tices of polyhedra) as one in which a polyhedron, say P’, in R" is an input defined
by a set of linear equalities and inequalities in the variables x1, zo, ......... , Tn. Then,
the input size describing P’ is denoted by |P'|. If we assume that P’ is non-empty
(i.e. contains at least one vertex) then P' can be re-described more concisely as

follows:

P ={zeR': Az =b, = >0} (1.10)

where A is an m X n matrix with possible rank m and b is an m-vector. P’ may be

unbounded.

The V E problem with input P’ requires as output the set v(P’) of extreme points
of P' that can be described algebraically as follows:

v(P")={x € P : Az =0} (1.11)

That is, the set of corner points € P’ whose support is a linearly independent set

of columns of A (see Hadley [41] or Jarvis et al. [63]).
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It has been established (by Dyer, [24]) that there can exist no polynomial time
algorithm that can list the elements of v(P’'), because of the simple fact that there
are easily constructible classes of polyhedra where the number of vertices grows
exponentially as the description of the polyhedron, P’. Thus, it is natural to allow

some algorithms to run in time polynomial in the output size |v(P’)|.

Dyer [24] analyses the complexities of the different approaches and shows that,
of the current methods, only BOP yields algorithms whose time complexity can
reasonably be related to the output size. But, BOP is exactly the dual notion of
‘gift-wrapping’ and the time bound derived by Dyer [24] for his implementation of
a pivoting method is analogous with the O(mF'), (where F' is number of facets)

bound of Swart’s [93] implementation of the gift-wrapping method.

As such, general polyhedra have unknown polynomial time solution. The only
known polynomial time algorithms make the strong assumption that the polyhe-
dron is simple, meaning that each x € P’ has support of cardinality exactly m. In
this case the vertices of P' are in one-to-one correspondence with the feasible bases
of the underlying linear system, that is, the non-singular m x m submatrices B of

A with B~1b > 0.

“The feasible bases in turn can be efficiently enumerated by means of a pivot scheme
(by using either HOP or BOP or similar methods as explained earlier). A pivot
scheme starts by finding some initial feasible basis of the system (1.1) by solving
a linear program and a search is performed of the pivot graph of the polyhedron,
identifying the edges adjacent to a given vertex by means of feasible pivots in the
associated linear system. Dyer [24] gives detailed description of a pivot scheme
which lists the vertices of a simple polyhedron in time O(mn?) per vertex listed”.

See Provan [79].

As indicated earlier both HOP and BOP of the pivoting schemes for enumerating

vertices have a serious drawback in the case where the polyhedron P’ is not simple -
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in this case the number of feasible bases can grow exponentially with respect to both
|P'| and |v(P')|. Then pivot schemes require exponential time to enumerate the dis-

tinct vertices. Provan [79] has provided two examples that exhibit such a behaviour.

The contributions of Dyer [24] has served as an improvement over earlier methods.
However, despite his perturbation technique [24], the problem of degeneracy is still
open from both theoretical point of view and practical viewpoint. The theoretical
problem is to list the vertices in a time which depends only on m and n and the
number of distinct vertices of the polyhedron. The practical problem is to do this

in a feasible computational time.

Therefore, as stated earlier evolving a procedure (be it VE or counting algorithm)
which has both theoretical and practical efficiencies and which could explore the
possibility of solving problems of degeneracy is what motivates current research in

this very interesting and challenging field.

1.5 Research Objectives

In this chapter we have introduced the vertex enumeration problem and briefly
discussed various algorithms for its solution. The numerous algorithms cited are
aimed at determining the vertices of polyhedra defined by systems of general linear
inequalities. It is well known that, in an optimisation context, taking advantage of
the structure of particular systems of constraints has led to algorithms having vastly
improved performance over the simplex algorithm. The assignment, transportation
and maximal flow problems provide obvious examples [19]. Our research is broadly
aimed at investigating whether exploiting the properties of particular subclasses
of polyhedron can bring any advantage for the vertex enumeration/counting prob-
lem. Provan’s work on network LPs [79] suggests that this could be a useful line of
research. He has developed a VE algorithm for such, frequently degenerate, poly-
hedra which is quadratic in the number of vertices. As there is not known to be a

VE algorithm which is polynomial in the number of vertices for general, non-simple
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polyhedra, this is a significant result.

Clearly the computational load of any VE algorithm is heavily dependent on the
number of vertices so it would be useful to know this in advance of applying the
algorithm. However there is unlikely to be an efficient algorithm for determining
this number exactly as the problem is # P-complete [24]. For most polyhedra, Mc-
Mullen’s upper bound on the number of vertices is too loose to be of much use so we

turn our attention to ways in which the number of vertices might be approximated.

The purpose of this research therefore can be summarized as:
1. To develop VE algorithms for some special classes of polyhedron;

2. To investigate whether vertices of some special classes of polyhedra can be

approximately counted.

1.6 Organisation of the Thesis

As mentioned in the previous section Provan has provided a significant result for VE
in a particular class of polyhedra. He describes [79] algorithms for VE in polyhedra
arising from network LP’s and their duals, which have good theoretical efficiency.
The description is at high-level and requires careful implementation. In Chapter
2, we review Provan’s algorithm for primal network polyhedra and discuss our im-
plementation, some computational experience with it and make some observations
about its empirical performance. A summary of this work was presented at the 17%

International Symposium on Mathematical Programming (ISMP), August 2000.

Chapter 3 introduces LI(2) systems, i.e. a set of linear inequalities with at most two
non-zero coefficients in each inequality, which are related to dual network LP’s. We
survey several algorithms for the feasibility problem in LI(2), i.e. the problem of
finding a solution to the system or showing that no solution exists. It is not obvious
how to extend these algorithms to provide a VE algorithm for LI(2), indeed it is

not even clear that they guarantee to find a vertex solution. Nevertheless, they
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provide some clues on useful avenues to explore.

One such avenue is Fourier-Motzkin (F-M) elimination, which is the backbone of
Hochbaum and Naor’s algorithm [42] for the LI(2) feasibility problem. We describe
an algorithm for VE using the dual F-M method in Chapter 4 and analyse its com-
plexity for dual LI(2) systems.

In Chapter 5 we develop propositions concerning the structure of the basis for LI(2)
and dual LI(2) systems. We then exploit one of them to develop a basis oriented
pivoting (BOP) algorithm for VE in dual LI(2) in the case where the polyhedron
is simple and bounded. We show, through a comprehensive example, how the algo-
rithm works and later how it can be extended to deal with unbounded edges and

degeneracy issues.

The problem of vertex counting is discussed in Chapter 6. Following a review of
relevant background material on approximate counting, we discuss the development
of fpras for counting the vertices of certain classes of polyhedra. We also raise sev-

eral related open questions.

A summary of the research and some recommended future work are presented in

Chapter 7.



Chapter 2

Implementation of Provan’s

Algorithm

2.1 Introduction:

A network LP is an LP whose variables are associated with flow in the arcs of a
directed graph and whose constraints are associated with conservation of flow at the
nodes of the graph. Such problems include the well-known transportation and as-
signment problems [63]. Algorithms which take advantage of the special structure of
the coefficient matrix of network LP’s heavily outperform the simplex method, see
for example [55]. It is well known that such problems are inherently degenerate and
thus enumerating the vertices of network LP’s will present difficulties for pivoting
methods designed for general polyhedra. For example, the 3 assignment polytope
has only 6 vertices, but the corresponding LP has 54 basic feasible solutions (BFS).
Presented with an unperturbed problem, Dyer’s algorithm does not terminate. The
degeneracy-protected variant of Dyer’s algorithm does but produces 3 copies of each
vertex. Thus it seem certain that, in order to enumerate the vertices of network

polyhedra, it will again be necessary to devise algorithm which take advantage of

18



CHAPTER 2. IMPLEMENTATION OF PROVAN’S ALGORITHM 19

their special structure. Provan [79] has provided such an algorithm and examines its
complexity. He shows that the vertices of the network polyhedron can be listed in

time O(|E||v(P)|?), plus the time needed to find the first vertex of the polyhderon P.

From a theoretical point of view Provan’s work is an improvement over some pre-
ceding methods discussed in chapter one which may have running time which is
exponential in the number of objects (vertices) enumerated for degenerate polyhe-
dra. In contrast, the running time for Provan’s algorithms is polynomial and the

polyhedra need not be simple or bounded.

Therefore, Provan’s algorithm [79] tends to theoretically solve the problems of de-
generacy in some transportation and assignment polytopes. But its empirical eval-
uations are yet unknown. Hence, an implementation is one of the goals of this re-
search. This has been done in four sections, the first one is the outline of Provan’s
algorithm, second is detail about implementation, and the third is the computa-

tional results, and last is the conclusion.

2.2 Basic Definitions and Terminology from Graph
Theory

In this section we attempt to give some basic definitions, based on graph theory, for
detail information the reader is referred to Jarvis et al. [63]. A directed network (or
digraph) G is a graph that consists of nodes V = {1,2, 3, ....,m} and a set of directed
arcs E = {(i,7), (k,1),...., (s,t)} joining pairs of nodes in V. Arc (i, 7) is said to be
incident at nodes i and j and is directed from node i to node j. The digraph G(V, F)
is called proper if the cardinalities of V' and E satisfy |V| > 2 and |E| > 1. Two
nodes in the graph are said to be adjacent if they are directly connected by some
arc, the node i in the directed arc (i, j) is called its from-node and j its to-node. A
path from node i, to i, is a sequence of arcs P = {(i,,%1), (41, %2), -eoey (fp—1,0p) }. A
chain is a similar structure to a path except that not all arcs are necessarily directed

toward node i,. A circuit is a path from some node i, to i, plus the arc (i,,,), i.e
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a circuit is closed path. Similarly, a cycle is a closed chain.

Graph G(V, E) is said to be connected if there exists a chain between every pair
of nodes in G. This property is also known as weakly connected graph. A strongly
connected graph is one where there is a directed path from each node to every other
node. A complete graph is one where each node is connected by an arc to every
other node. A subgraph G'(V', E") of a graph G(V, E) is one that satisfies V' C V
and E' C F, with the understanding that (i, 7) € E' if both ¢ and j are in V'. If
G' # G then G'(V', E') is called proper subgraph of G(V,E). It V! =V then G' is
called a spanning subgraph of G. A component of a graph G(V, E) is subgraph that
is connected and that is not a proper subgraph of another connected subgraph, i.e

they are mazimal connected subgraphs and are also called separable pieces of a graph.

A tree is a connected graph with no cycles. A spanning tree with respect to the
graph G(V, E) is a tree that includes every node of the graph. The degree of a node

is the number of arcs incident at it.

2.3 The Algorithm

An attempt has been made to differentiate Provan’s algorithm as it appears in [79]
and some of the vague steps not mentioned in [79] that are necessary for the com-
putational implementation of the algorithm. These are categorized in the following
sections, but first the algorithm. Provan presents two algorithms that use a charac-
terization of adjacent vertices in network and dual network LP in order to perform

a traversal search of the edge graph of the polyhedron.

The general network LP has as parameters a directed loopless graph G(V, E), vertex
supplies/demands b;, i € V and edges costs a,,, lower/upper bounds, L, < cu
(infinite lower and upper bounds, but not both are allowed). It is a minimization
problem in the variables z,,, (u,v) € E in the form of equations: (2.1) is the

objective function, (2.2) is known as flow conservation or nodal balance or Kirchhoff
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equations and (2.3) are the bounds.
Minimize Z v Tup (2.1)
(u,v)EE

subject to:

Z Tuo — Z Tou = by (2.2)

u:(u,v)EE u:(v,u)EE

V€V by < Ty < Cyy (u,v) € E (2.3)
In order to perform the edge-graph search for the network LP algorithms, a pro-
cedure has been established by Provan [79] that list the adjacent vertices of each
vertex v of polyhedron P. The edge-graph search is a special case of pivoting. It
starts at some initial vertex of P found by solving the appropriate linear program
(in this case network LP). It is noted that at each stage a list of vertices rather
than bases is kept together with a sublist of those vertices left to be processed.
In a given processing step the procedure chooses a vertex v to be processed, but
first identifies the edges of P adjacent to v rather than simply the feasible bases
adjacent to the basis chosen to represent v, so that the second vertex if any is iden-
tified. An accounting procedure is incorporated to check which of these vertices
has been processed (note that in this case Provan [79] did not give detail about the
accounting procedure), and the new vertices are added to the list of vertices to be
processed. When the list of vertices is exhausted the procedure terminates with all

of the vertices listed.

Since adjacent vertices rather than adjacent bases are identified at each stage, such
a procedure will operate in time polynomial in the number of edges of P plus the

time to enumerate the adjacent edges at each processing step.
The backbone of Provan’s algorithm [79] is the following proposition.
Proposition 2.1(Provan): The edges of the polyhedron P adjacent to a vertex

v are in one-to-one correspondence with simple cycles of a directed graph G, (ex-

plained later).
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The algorithm is described in the following formats which have been extracted from

Provan [79]:

(a) Characterize the set of feasible bases of the linear systems representing the ver-
tex v. In this case vertex v which is a basic feasible solution to the linear system
(2.2) and (2.3) and represented or partitioned as follows: E'p - basic edges, E-edges
at the lower bound, and Ey - edges at the upper bound. E7; represent the edges

whose flows or component x,, are neither at lower nor at upper bounds.

(b) Determine the pivot directions with respect to each basic feasible solution, that
is the directions taken from that basic feasible solution in an attempt to bring non
basic variables into the basis. If we let (Eg, E;, Ey) represent a vertex v, and (u, v)
an edge in Ep U Ey, then inserting edge (u,v) into the spanning tree formed by
E'p creates a unique cycle C'. Thus, the pivot direction corresponds to a polyhedral
edge of P in so far as the respective change in each edge of Fg \ E% is also in the

direction away from its respective bounds.

(c) Characterize the polyhedral edges adjacent to v, by determining in steps (a)
and (b) above which of the basis of v admit non-degenerate pivot direction. This

is based on the earlier proposition 2.1 mentioned above.

(d) Give an efficient enumeration routine that will list these edges direction over all

possible basis representation for v.

(e) Modify step (c) above to list only bounded polyhedral edges.

The description of the polyhedral edges of network polyhedron P adjacent to a
vertex v can be facilitated by the following construction. First, we can contract the
edges in E% in the original graph G, and let the result be G’ = (V', E'), with edges
in E' associated with E, edges of the original graph in the obvious way. That is

to say, if the vertex under consideration is non-degenerate, contraction of Ej will
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yields one single component (which we call a pseudo-vertex). But, if the vertex is
degenerate we will get different pseudo-vertices, each with composition of vertices
in the original graph attached to Ej edges. We then let G, be the graph with

vertex set V, = V' and edges set be:
By ={(u,v) : (u,0) € E', &y = luw } U{(u,0) : (4,0) € E', &yp = Cun} (2.4)

The edges of the contracted graph GG, now describe the allowable direction of change
in the value of an edge E' in the description of pivot direction of step (b) above.

The edges E, are more or less associated with non- E7, edges.

In order to avoid listing unbounded edges of P, it is necessary to ensure in the
listing of cycles of the contracted graph G, that each cycle of the original graph G
has at least one edge that is bounded in the direction defined by the direction of
cycle in G, [79].

2.4 Tasks Necessary for Computer Implementa-
tion

Provan [79] provides a high-level description of his algorithm intended to support
the theoretical analysis rather than computer implementation. There are several
vague steps that are not detailed in the algorithm and which are essential for its

computer implementation. We need to specify how to:
1. Contract the original graph into a multi-graph.
2. Convert the multi-graph into a simple one.

3. Convert the contracted E7} edges in pseudo-vertices into trees whose vertices

point toward a root in the tree.
4. Find the cycles of the contracted graph G,.
5. Translate simple cycles of the contracted graph into cycles of the multi-graph.

6. Find the adjacent vertices from the corresponding cycles.
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7. Design accounting procedure to ensure that vertices are neither omitted nor

replicated.

2.5 Implementation

In an attempt to implement any computer algorithm a high level computer language
is ultimately needed. In our work Fortran 90 [81] was selected as it supports the

recursive procedures which are used in [79].

There are basically two algorithms developed in [79], one is primarily concerned
with primal network LP and the second, which uses similar ideas, with its dual. In
our work concentration is given to the implementation of the primal network LP

algorithm which involved the following steps:

e Code for getting an initial vertex

e Code that transforms network data into a form appropriate for Provan’s al-

gorithm
e Code for the contraction of graphs into simple graphs
e Code that finds cycles of simple graphs
e Code that finds cycles of multi-graphs and adjacent vertices
e Code that chooses a new vertex

e Code that performs the accounting procedure

The first stage of our implementation involved coding a routine capable of enumer-
ating simple cycles of simple graphs. This has became a vital subroutine of the

main program and is invoked at a later stage of the program.

2.5.1 Data structures

The data structures used are linear adjacency lists of directed graphs, with a pointer
for each node to the element of the list at which its edges begin. In the main program

some codes are developed that read in the following:
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Number of nodes n

Out-degree of each node

Adjacency list for each node

Lower bounds on each arc (edge)

Upper bounds on each arc

Initial flows on each arc

Nodes Adjacency LUP Truth Values
4 T
5 T
1 6 F
7 F
4 F
5 F
2 6 T
7 T
4 F
5 F
7 T

Figure 2.1: Data structure of an initial vertex

The data for the reversed graph, i.e. the graph in which the direction of each arc in
the original graph is reversed, are also stored in a linear adjacency list. The reversed
graph is required because, at some stages of the implementation, especially in the
construction of E} trees in pseudo-vertices, directed trees are used while at others

undirected ones are used. See Figures 2.1, 2.2.

Note that LUP(j) is a binary function, which is true if an edge j is an Ej; edge and

false otherwise. They are read in as follows:

e Out-degree of each node
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Nodes Adjacency LUP Truth Values
1 T
4 2 E
3 F
1 T
5 > -
3 F
1 F
6 T
=
1 F
7 2 T
3 T

Figure 2.2: Data structure of the reversed graph of Figure 2.1

e Adjacency list for each node

e The correspondence between each edge in the reversed graph and its mirror
edge in the original graph, i.e. link(i) = j means that the ith element of the
adjacency list for the reverse graph is the jth element of the adjacency list for

the original graph

2.5.2 Initial vertex

Any basic feasible solution to a linear program (in this case network LP) will pro-
vide an initial vertex. In our case an existing minimum cost network flow code,
modified to output the data described in 2.5.1, was used. Figure 2.3 is an example
of a transportation problem with 3 sources and 4 sinks that is used for illustration.

It was also one of the data sets used to test our program.

The adjacency data structure (used as lists for directed graphs) are used as follows:
the nodes of the sources have their corresponding adjacent nodes of the sinks. In the
reversed case, the nodes of the sinks have nodes of the sources as their adjacency,

the reversed graph is needed in the construction of a contracted graph, which is
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10 10 20
20 10 30

40
40

10 10 20 50

Figure 2.3: A network LP and its initial vertex

explained below. See also Figures 2.2, 2.4 and 2.5 for visualizations of the concept
explained (note that ‘label’ is used to indicate the number of pseudo-vertices, and
which of the vertices are in the same pseudo-vertex i.e. if vertices have the same
‘label’ value, then they are in the same pseudo-vertex, else in different ones). Also,

note that ’'label’ is the same function as ‘Name’ used below.

2.5.3 Contracting graphs into simple graphs

One of the most important steps needing to be efficiently implemented is the con-
traction of both E} and non-E} edges in order to get the required simple graphs
from which cycles and hence adjacent vertices are determined. This has been
achieved with the aid of the Union-Find algorithm from Aho et al. [1]. This
algorithm has good computational and theoretical efficiencies. It has been modified
to suit our particular need. Another modification is in the Union subroutine, with
the aid of the integer function FIND we find vertices say 7 and j and try to com-
pare which one of them has greater ordering number, this is not presented in the
original version. Also the last two steps of the original algorithm from Aho et al.

[1] are replaced by Count(i) <— 0 if i is a root. Another reason for the modification
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Nodes Adjacency LUP Values
4 T
5 T
1 & =
4 E
4 E
5 E
2 6 T
7 T
4 E
5 E
3 S T
7 T

Figure 2.4: Data structure for a vertex

is because of the data structure used in the original graph is a linked list, while our

data structure for the modified Union-Find is a doubly linked list.

2.5.3.1 Modified Union-Find algorithm

(1) INITIALIZATION:
for i <~ 1ton do
Count(i) + 1
Father(i) < 0
(2) FIND-as integer function:
Make list empty
U
while Father(v) # 0 do
Add v to the list
v < Father(v)
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Verticesin EB* that have T astheir LUP truth value
L abel
Vertex Adjacency
1 4. 5 1
2 6,7 2
3 6, 7 2
4 1 1
5 1 1
6 2
2
7 2, 3 2
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Figure 2.5: Data structure of contracted degenerate vertex of Figure 2.3

Find <~ v  N.B: v is the root of the tree containing .

Path compression is as follows:
for each w in the list do

Father(w) < v

(3) UNION:
N.B:- Union set containing ¢ and j
[ Find(j)
if Count(f;) < Count(f;) then
small + f;
large < f;
Count(large) < Count(large) + Count(small)
Count(small) < 0
Father(small) < large
N.B:- If Count(i) = 0, then i is the root

How the Union-Find algorithm is implemented can be explained with aid of an
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example, see Figures 2.6 and 2.7, as follows: Find is used as an integer function,
it starts with, say, vertex 1 and finds those vertices adjacent to it that are joined
(linked) by E} edges. Thus, from Figure 2.4, it finds vertices 4 and 5 and unions
their respective E7; edges. These three vertices are now merged into a single pseudo-
vertex. This is recorded in the array Name so that cycles in the original graph can
be recovered from the cycles which we find in the contracted graph. Note that
Name(1) = Name(4) = Name(5), since they are all in pseudo-vertex I (Figure
2.7).

G @
e |
\ \ Vo

\

L .
.
@5 Ny
NN
N

Figure 2.6: A contracted multi-graph

The Union-Find algorithm then finds vertex 2 and the vertices adjacent to it that
are joined by E7; edges. In this case vertices 6, 7 and 3 are found and their corre-
sponding E% edges are merged together into pseudo-vertex I1. Here also, Name(2)

= Name(6) = Name(7) = Name(3).

In each of the constructed pseudo-vertices, Ej edges are transformed from directed
into undirected trees, the reversed data structures are used in this case. This is to
ensure while tracing the path in each pseudo-vertex for the cycles of the original

graph appropriate paths are followed. The root of the tree in this case is vertex
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2 1,6):
/@4 \
;@) &N
LB :
" (3,5) /

Figure 2.7: A contracted simple graph

numbered 2, all other vertices are pointed toward the root. It can be noted that
vertices 6 and 7 are at the same level with respect to the position of the root and

vertex 3 is at a lower level. See Figure 2.8 for an illustration.

Note that multi-graphs have to be transformed into simple ones. Therefore, non-
E% edges are aliased into a single edges as can be seen in Figure 2.7. It has been
noted that each of the pseudo-vertex-trees has been transformed from directed to
undirected tree, a code has been established that was able to convert the directed
contracted Ej edges tree structures into undirected one so that the paths passing
through cycles involved with those E7% edges trees in their respective pseudo-vertices

are easily traced. This is done on the contracted graph.

The aliases of the non-E7}, edges of the contracted multi-graph is aided by a special
computed function called ‘Dangi(j)’. That is defined as 0 if the edge is an E%, —j
if j is in a simple loop, and £ if edge j in the original graph is merged into edge &
of the contracted simple graph.

Figure 2.7 illustrates a degenerate vertex. On the other hand contraction of a non-
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(%

Figure 2.8: Transformations of E* edges of a pseudo-vertex

degenerate vertex always yields a single component pseudo-vertex that is a loop
identical to end point. These comprise 1-edge cycles and therefore must be counted
in the cycles that create edges. After a simple graph is obtained successfully, the

next step is to find or enumerate its simple cycles.

2.5.4 Finding cycles of simple graphs

Another vital routine which is able to enumerate efficiently simple cycles of simple
graphs has been successfully implemented. This has been achieved with the aid of
Read and Tarjan’s [80] algorithm for enumerating simple cycles of directed graphs.
Implementation of [80] required firstly implementing a Depth First Search (DFS)
algorithm from Aho et al. [1] which was used to find the strongly connected com-

ponents of directed simple graphs.

Read and Tarjan’s algorithm [80] was implemented as follows:

(a) The DFS algorithm from [1] was implemented to firstly find the strongly con-



CHAPTER 2. IMPLEMENTATION OF PROVAN’S ALGORITHM 33

nected components of a directed graph. It uses a Last in-First Out (LIFO) stack;
Push was used to insert vertices onto the stack and Pop was used to get the vertices
out of the stack. The vertices are numbered by a search number in accordance with
the order they are visited. At each stage of DFS, the stack represents a path from
the root to the current vertex. If the current vertex has an edge leading to a vertex
that is already on the stack then the vertex pointed to must be a cycle-start-vertez.
It should be noted that there could be more than one cycle start vertex per strongly
connected component. It may not matter which of the starting vertex is found. The
edges that join together strongly connected components are deleted as proposed in

[80], this was done by using a binary function, which set these edges to False.

The different types of edges encountered in the algorithm are defined below :

(i) Tree edges - are edges leading to new nodes during a search.

(ii) Forward edges - are edges that go from ancestors to proper descendants, but
are not tree edges.

(iii) Back edges - are edges that go from descendants to ancestors (possibly from a
vertex to itself)

(iv) Cross edges - are edges that go between vertices that are neither ancestors nor

descendants of one another.

The visualization of the DFS algorithm implemented for generating strongly con-
nected components of directed graphs can be seen with the aid of Figure 2.9.
Strongly connected components are transformed into individual (single) compo-
nents by deleting edges connecting the vertices of the components (this has been

explained above).

(b) There is also another vague step in the Backtracking procedure of [80] for enu-
merating simple cycles, for example a path needs to be constructed that reaches
the cycle-start vertex. This path has to be different from the current path. This
procedure was not detailed in [80] or in [79]. However, with the assistance of a

Breadth First Search (BFS) algorithm from Cormen et al. [14, page 471-472] this



CHAPTER 2. IMPLEMENTATION OF PROVAN’S ALGORITHM 34

tree edge

forward edge

Component 2

Component 1

Figure 2.9: DFS procedure for strongly connected components of a di-

rected graph

has been successfully accomplished. BFS uses a First in First out (FIFO) queue; in
this case also the Push and Pop routines are invoked. Figure 2.10 is an illustration

of how BFS algorithm was implemented.

2.5.5 Finding cycles of multi-graphs and adjacent vertices

The simple cycles of the contracted graph (obtained in term of the pseudo-vertices)
have to be translated into cycles of the original graph so that flow adjustment
can be performed round the cycle in order to generate a vertex of the network
polytope. Each cycle edge in the contracted graph is aliased to several non-Ej
edges of the network. Consequently each cycle in the contracted graph has to be
expanded using all combinations of the aliased edges. This is achieved using a
depth-first search method which results in pseudo-cycles, i.e. structures of the form
(i1,71), (42, 32), vy (3p, jp) Where 4y, ji are associated with successive pseudo-vertices
in a cycle in the contracted graph and ji, 7541 are associated with the same pseudo-

vertex. A cycle of the original graph is completed by tracing the path between each
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Figure 2.10: BFS procedure for finding an alternative path

pair jg,%x+1 using the appropriate pseudo-vertex tree.

Figure 2.11 illustrates the process for the contracted simple graph of Figure 2.7.
The cycle i-ii can be translated into 9 cycles of the original graph. As an example,
cycle 1 —6 —2—4 is found as follows, in the simple cycle i —ii, edge (1, 6) is aliased
to edge ¢ —7i and edge (2,4) is aliased to edge i —i. We now need to trace the path
from 6 to 2 inside pseudo-vertex ii, which is simply (6,2), and from 4 to 1 inside
pseudo-vertex 4, which is simply (4,1). The cycle is now complete and we now look
for the cycle which includes (1,6), (2,5). The edge (3,6), which is a simple loop
on pseudo-vertex i, is also expanded into a cycle of the original graph by tracing a

path from 3 to 6 on the pseudo-vertex tree.

2.5.6 Finding adjacent vertices

A code has been developed which is able to determine adjacent vertices of the
current vertex. This can be explained using the simple cycle 1 —6 —2 -4 —1
in Figure 2.12. The first edge in the cycle must be a non-E} edge and thus the
flow in this edge must be at either the lower or upper bound. Here the edge (1,6)
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Initially, contracted cyclei-ii  is
enumerated which isthen trandated into @

simple cyclesof the original graph as
follows:

(1) 1-6-2-4

(2) 1625

(3) 1:6-2-7-34

(4) 16-2-7-35

(5) 1-7-2-4

(6) 1-7-25

(1) 1-7-34

(8) 1-7-35

(9) 3-6-2-7 (simpleloop)

Figure 2.11: Simple cycles are obtained from the contracted graph
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is at its lower bound and so the flow must increase in this edge, decrease in the
successor edge (6,2) and so on round the cycle As none of the edges have finite
upper bounds, the flow change is determined by the edges on which flow decreases,
so @ = min{10,20} = 10. After substituting the value of @) into the cycle edges we

get the new vertex shown in Figure 2.12.

2.5.7 Finding simple loops

Another routine is coded that was able to enumerate simple loops and the subse-
quent adjacent vertices. Simple loops are found when a non-E; edge of a degenerate
vertex is associated with a single pseudo-vertex, see, for example, Figure 2.12. Also,
it is possible to get a (single component-pseudo-vertex) loop when the E% edges of
a non-degenerate vertex are contracted, as shown in Figure 2.13. In this case loops
are formed by considering each non-E7 edge in turn. Flow adjustment, leading
to the discovery of adjacent vertices, is performed in a similar manner to that for

cycles.

2.6 Accounting Procedure (Hashing)

In most vertex enumeration algorithms, an accounting procedure has to be incor-
porated in order to ensure that vertices are neither omitted nor repeated in the
enumeration procedure. In our case Hashing was selected because it has been
shown to be more effective in the context of Dyer’s algorithm than the more ele-
gant AVL tree method [77]. Hashing has also been used to manage the accounting
procedure within the Chen et al. [10] algorithm. In this method, a hash function
is used to map a vertex into a cell in a hash table. If a generated vertex hashes to
an empty cell in the table, it is newly discovered. If it hashes to an occupied cell,
it is said to collide with another vertex. The two vertices are then compared on
an arc by arc basis to determine whether the generated vertex is new or a copy of
the existing vertex. Several distinct vertices may collide; the number of collisions
clearly has an effect on performance and can be influenced by the choice of hash

function. Many methods of managing collisions are suggested in Knuth [58] e.g.
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Figure 2.12: Finding a new adjacent vertex using a simple cycle
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Figure 2.13: Contraction of a non-degenerate vertex
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Chaining, Open Addressing etc. We use a hash function of modulo type:
h(r) = r modp + 1

where r is an integer encoding of the vertex v, A is its hash value and p is a prime

number. We choose p = 15001 and manage collisions by chaining method.

The hash table is implemented in the linear arrays, occupy(1 : p), vlist(1 : mvert)
with the following interpretation:

occupy(k) = 0 = there is no vertex which hashes to k&

occupy(k) = v > 0 = vertex v hashes to k and is the first encountered vertex

which does so.

The linked list vlist enables collisions to be traced as:

v, vlist(v), vlist(viist(v)), ..ccco..... , until vlist(— — —) = 0.

The vertices themselves are not stored in memory but are held on a random access

file.

2.6.1 Encoding a vertex

A vertex of a network polytope is described by flow(j),7 =1 : arcs. Each arc can
be in one of three states; we therefore encode the vertex by using 2 bits for each
arc as follows:

00 = flow(j) = low(y)

01 = low(j) < flow(j) < up(j)

115 flow(j) = up(j)
The encoded arc j is stored in bits j — 1, j of the integer SET. If SET is an 8 byte
integer, the largest available on the platform used, we can store 32 arcs in SET.
For larger problems we can either encode only the first 32 arcs, which is likely to

increase the number of collisions, or use multiple words for encoding.
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2.7 Computational Results

Empirical evaluation of any algorithm depends on its computational results. Since
test data sets are not readily available, some data sets were developed and used for
benchmarking and testing the practical efficiency of Provan’s algorithm [79]. These
were selected from both transportation and assignment problems. It is noted that
the latter are highly degenerate polyhedra, an n X n assignment problem having a
degree of degeneracy n-1. Also note has been made that there is little or nothing

in the literature with which to compare our results.

In order to ensure the accuracy of our program, most data sets have been run with
several different initial vertices. This is to ensure conformity of the execution of the
program and to confirm the exact number of vertices per data set. For example,
the transportation problem of four sources and five sinks has been classified as;
ex2a, ex2b, ex2c and ex2d. Each is a 4 x 5 transportation problem with the same
total quantities of demand and supply; same lower and upper bounds, but different
initial vertices. We denote these data sets as ex2 which represents the average of

the four results.

Results are given for the execution time of the program in seconds obtained from
an IBM Celeron 400MHZ machine with 128K memory running under Linux. The
algorithm was implemented in Fortran 90 using the Portland Group pgf90 compiler.

Table 2.1 gives the results for a set of transportation problems.

Problem | Sources | Sinks | Vertices | Degenerate | Time | Collisions | Unused

Vertices | (secs) Cells(%)
ex1 3 4 31 11| 0.03 0 99
ex2 4 5 886 48 | 1.08 1 99
ex3 4 6 3734 825 | 6.57 37 97
ex5 5 6 23346 7308 | 60.41 1702 85

Table 2.1: Computational results for transportation problems
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Solving the problems of degeneracy is of immense importance. Initially it was one
of our research goals. However, this has proven to be a difficult task for the simple
fact that for general polyhedra the number of vertices grow exponentially. As such
concentration is given to specialized polytopes (like network polyhedra by Provan
[79], simple polytope by Dyer [24] and polyhedra associated with LI(2) systems as
we discussed in Chapter 5 of this thesis). In the implementation of Provan’s work
[79] we attempt to compare the type of initial vertex used and the number of degen-
erate vertices discovered plus the number of collisions found, also to know exactly
the percentage of unused cells of the hash table used from the above transportation

problems data sets. This is clearly shown in Table 2.1.

Another benchmark set of data that is used to test our program are assignment
problems, for which all vertices are degenerate. The accuracy of the program is
easily determined by the fact that for any n x n assignment problem there are
always n! vertices. Thus, in this case we considered 3 x 3 to 7 x 7 assignment

problems. Computational results are given in Table 2.2.

Problem | n | Vertices Time | Collisions | Unused

(secs) Cells(%)
assn2 2 2 0.01 0 99
assn3 3 6 0.01 0 99
assn4 4 24 0.06 0 99
assnb 5 120 1.03 0 99
assn6 6 720 31.54 4 99
assn7 7 5040 | 1624.90 2869 98

Table 2.2: Computational results for assignment problems

Table 2.3 gives results for several assignment problems with p prohibited assign-

ments.

The increased number of collisions in problems ex5 and assn7, for example, is due

to them having more than 32 arcs and to the current implementation which uses
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Problem | p | Vertices | Time(secs) | Collisions
assnbx1 1 600 19.84 3
assn6x2 2 004 13.59 3
assnrx3 3 3216 601.68 1619
assnrxo ) 2428 314.45 569
assn8x12 | 12 7870 3972.31 2645

Table 2.3: Computational results for assignment problems with prohibited

assignments

only single-word hashing.

It is important to note that some larger data sets still give problems while trying to
test them with our program. For example there is a 6 x 10 transportation problem
which encountered problem with our code, i.e. our program is unable to execute.
This is due to the fact that our computer cannot store and process the vast number
of cycles encountered. Similar problems were encountered with higher dimensional

assignment problems, e.g. 8 x 8.

2.8 Short-Comings of Provan’s Algorithm

One of the short-comings observed with Provan’s [79] algorithm is the procession
of data sets that involved a large number of cycles. It is observed that in the 8 x 8
assignment problem whenever a new vertex is discovered, 16064 cycles correspond
to edges adjacent to the vertex. As the 8 X8 assignment problem has 40320 vertices,
approximately 648 million cycles need to be processed to obtain all the vertices of
this data set. The execution times in Table 2.2 are roughly in line with the theoretic
quadratic performance of the algorithm. Based on this the execution time for the
8 x 8 assignment is likely to be of the order of 82 * 1624.90 which is approximately

29 hours. This is clearly an unattractive proposition.
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2.9 Conclusion

The vertex enumeration algorithm for polyhedra associated with network LP im-
plemented in this chapter [79] is unusual for listing algorithms in the sense that
it does not run in time linear in the number of objects (vertices) listed, therefore,
cannot be referred to as time-per-object complexity measure as is done customarily.

The running time of the algorithm is quadratic.

Provan’s algorithm represents an important theoretical advance in dealing with
degenerate polyhedra. Our experiments, however, show that even relatively low
dimension degenerate polyhedra remain computationally challenging. It may be
noted that for the explicitly perturbed 3 x 3 assignment problem, an implemen-
tation of Dyer’s algorithm generated excess of 200,000 basic feasible solutions. A
version of Dyer’s algorithm with an implicit degeneracy-handling mechanism [23]

generated 18 basic feasible solution, 3 copies of each vertex.

Profiling information returned by pgf90 suggests that approximately 60% of the ex-
ecution time is spent in checking potential new vertices. This compares with Dyer
and Proll’s [29] figure of 90% for the accounting procedure in their algorithm. In
Provan’s algorithm, each vertex is generated many times. There does not appear
to be any way in which we can tell that a cycle will lead to an already discovered
vertex without performing flow adjustment around the cycle and hashing. Gener-
ating the same vertex more than once will necessarily lead to collisions and hence
to an expensive arc by arc check. In the Dyer-Proll algorithm [29] regeneration of
basic feasible solution was avoided by the use of the 'gamma — set’ which listed
the variables which potentially could be pivoted into the basis to give a new basic
feasible solution. Effectively, this relies on the fact that a basic feasible solution
can be uniquely described by the labels of the basic variables. This is true for the
general problem which Dyer and Proll [29] tackled but not for the problem tackled

by Provan’s algorithm because of the presence of non-trivial bounds on the variables.



Chapter 3

The LI(2) Problem

3.1 Introduction

In this chapter we survey some algorithms for Linear Programming problems with
at most two variables per constraint. The problem is that of finding some or all

solutions to the system of the form:
Az <b (3.1)

where A has at most two non-zeros per row and is denoted by LI(2). The set of
solutions to (3.1) forms a convex polyhedron. It is well known that the LP problem
where one wants to maximize a linear function subject to linear inequality con-
straints is polynomial time (Turing) equivalent to LI(2) [37]. The complexity of the
LP problem was one of the foremost open problems in theoretical computer science
until Kachiyan [54] announced a polynomial time algorithm for the LI problem.
Since then researchers have become interested in developing faster algorithms for
this type of problem. LI(2) is of significant importance and has practical appli-
cations in, e.g. mechanical verification [74]. Let us review some of the important

results.

45
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3.2 Shostak’s Algorithm for LI(2)

Shostak [90] has suggested that a linear program with at most two variables per
inequality can be represented as an undirected graph G in which each vertex rep-
resents a variable. The inequalities involving two variables, say, x; and z; are
represented as edges between vertices v; and v;; there may be multiple edges be-
tween two vertices. The graph has an additional vertex, say v,, that represents
inequalities involving one variable; these are edges connecting the corresponding
node to v,. The number of variables is normally denoted by n and the number of
inequalities by m. Without loss of generality (w.l.o.g.) it is assumed that m > n.
G therefore, consists of n + 1 vertices and m edges. Shostak [90] proved that fea-
sibility can be tested by following paths and cycles in this graph, and thus laid
the foundation for all subsequently considered algorithms for this particular type of
problem. The main feature of Shostak’s algorithm is determining upper and lower
bounds for each variable by following paths and cycles in the graph. Let us present

some related definitions and then later summarise Shostak’s result [90].

Definition 1: Let S be a set of LI(2) inequalities. A path through the as-
sociated graph G(S) is called admissible if, for 1 < j < r — 1, the inequality

a;vj + bj11v;41 < ¢; representing edge e; has a; and b;;; with opposite signs.
Definition 2: A path is a loop if its first and last vertices are identical.

Definition 3: The closure of G(S) is a graph obtained by adding a new edge to
G(S) representing the residue inequality for each simple admissible loop of G(S).

Definition 4: The residue, rp of an admissible path P is define as the triple

< ap,bp,cp > is given as:

<(1,p,bp,CP> = <a1,b1,01 >*<CL2,bQ,CQ>* ..... *<an,bn,cn>
where, < a,b,c > * < a,b,c > = < kaa,—kbb k(ca —cb) > and k = o

The residue inequality of P is define as apx + bpy < cp, where x and y are the first
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3<uw r<y+1

y+5<z2

Figure 3.1: A graph G with simple infeasible loop

and last vertices of P respectively. If ap+bp = 0 and cp < 0, the residue inequality

of P is called infeasible loop.

Theorem 1 (Shostak): Let G'(S) be a closure of G(S). Then S is satisfiable if
and only if G'(S) has no simple infeasible loop.

Shostak’s algorithm essentially has two steps:
e check for infeasible loops in G(S) and, if none is found,
e check for infeasible loops in G'(S)

From Figure 3.1, S = {3 < z,2 < y+1,y+5 < 2,z < y} and G(S) has a
simple loop for which the residue inequality, i.e. the inequality implied by the in-

equalities in the loop, is 0 < —5. Hence, the loop is infeasible and S is unsatisfiable.

The algorithm of Shostak [90] is exponential in the number of variables (worst case),
because the number of cycles in a graph on n vertices can grow exponentially in n.
Aspvall and Shiloach [3] later used it as a basis with which they develop a refined
polynomial time algorithm for the LP with at most two variables per inequality.

We now present a survey on Aspvall and Shiloach’s algorithm [3].
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3.3 Aspvall and Shiloach’s Algorithm

It is a well established fact that the solution space of a system of linear inequalities
with at most two non-zero per row (or any LI) forms a convex polyhedron, see
Jarvis et al. [63]. Aspvall and Shiloach [3] present an algorithm for LI(2) whose
time complexity is O(mn?®I) on a random access machine, where I is the size of the
binary encoding of the input, m is the number of constraints and n is the number
of variables. Let us present a summary of Aspvall and Shiloach’s result which is

also a refinement of Nelson’s algorithm [73].

Theorem 2 (Aspvall and Shiloach): The time complexity of the LI(2) algorithm

is O(mn?|I|) on a random access machine with uniform cost criterion.

Theorem 3 (Aspvall and Shiloach): The time complexity of the LI(2) algorithm

is polynomial in the size of the input on a Turing machine.

The main idea of Aspvall and Shiloach is constructing a graph G(S) for a set of

k) x max®)] (where k is the maximum length of any

LI(2) whose vertices & € [z min
path from z4 to x) can be complemented to solutions, until all variables are marked
and a feasible vector is returned. They construct in polynomial time a modified
extension S* from G(S) without examining presumably all admissible simple loops,
using a binary search technique. The algorithm will guess a value of x and push it
through G(S) in a breadth first manner. This can then give new, but not necessarily
true, upper and lower bounds on the variables. By analysing the outcome of each
guess, it is possible to chop the interval for either £ min or x max by at least half.
Let (a4 + ba)z < c4 be the extension and

CA

b A is an admissible path from xy to x in G(S) and by < 0}
A

2 min = max{

CAq
ba

The graph G(S) is said to be closed for S if [z min, z max] = X(S), where X'(S) is

zmax = min{— : A is an admissible path from zy to z in G(S) and by > 0}

defined to be projection of the solution polyhedron on the z-axis for a given system
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S. Aspvall and Shiloach’s results [3], can be summarised in the following theorem.

Theorem 3(b) (Aspvall and Shiloach): Let 2 min® and z max® be defined with
respect to G(S*). If S is satisfiable, then [z min®), 2 max®)] = X(S) for each vari-

able z; otherwise, there exists a variable z such that [z min®, z max®] = x(S5) = 0.

Below is the algorithm of Aspvall and Shiloach for constructing a feasible solution

to LI(2) systems.

Algorithm (Projector) (Aspvall and Shiloach):
Step 1. [Send guess from xg] Let i «— 1. Transfer the value g = 0 over all edges
incident to zy. For each vertex x # 1z, record the most restrictive lower and upper

bound on z.

Step 2. [Termination] If i < n, set i < i+ 1 and go to Step 3. Otherwise, the algo-
rithm terminates and returns for each x # x4 the current lower and upper bound

on z as the result.

Step 3. [Stage i.] For each vertex x # x do the following: (a) If the currently most
restrictive lower bound on x was recorded during stage 7 — 1, send it over all its
positive edges. (b) If the currently most restrictive upper bound on z was recorded
during stage i — 1, send it over all its negative edges. (c) Record new, and more

restrictive, bounds on z. Go to Step 2. [

We can understand more about Aspvall and Shiloach’s algorithm with the aid of
examples in Figures 3.2 and 3.3. Figure 3.2 is extracted from [3] and used for illus-
tration of Aspvall and Shiloach’s algorithm. Note that applying Projector yields a
simple infeasible loop. For 0 < w < 1, assign restricted lower bound w = 0 we have
in step (3) 0 < 2 < —1 which is contradictory. Thus, G(S) in Figure 3.2 has an

infeasible simple loop, so S is unsatisfiable.
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y+2<0

Figure 3.2: The graph G(S5)

Figure 3.3: The graph G(S')
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Let us examine another set of problem, S' = {w <1, w4+ <2, —2w—2 <0, z+
20<3, —x+2<2, y+2z <10} (see figure 3.3), where 0 < z, y, z, w < 0o and
by applying the algorithm we have, w =0,0<zx <2o0orzx=2,24+2y<3ory= %
and —2+ z < 2 or z = 4. So one of the feasible solutions is (z,y, z, w) = (2, %, 4,0)

which is degenerate.

3.4 Hochbaum and Naor’s Algorithm

Hochbaum and Naor [42] presented a strongly polynomial (O(mn?logm)) algo-
rithm for the feasibility of LI(2) systems, based on the Fourier-Motzkin elimination
method (F-M) [84]. It should be noted that the dual of the network LP structure
presented in chapter 2 is an LP with at most two nonzeros per row. That is the

dual of (2.1), (2.2) and (2.3) is given as follows:

Mazimize Z biy; (3.2)
uev
subject to:
Yo = Yu = Ouy (3.3)
(u,0) € B, Ay = 0,7 = 0 (3.4)

Note: we assume that the associated bound [,, or ¢,, is not necessarily finite. Al-
though, dual network linear programs are less familiar than primal ones they do
come up in several contexts, most notably in description of PERT optimization
problems and also dual objects such as min cuts, vertex covers, distances and ver-

tex potential or shadow prices.

Let us algebraically examine F-M independently and see how it becomes the back-

bone of Hochbaum and Naor’s [42] algorithm.

3.4.1 General overview of the F-M method

Let A be an m x n matrix and b be an n vector, then we can test whether the

system:

Az < b (3.5)
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has a solution, if it does we attempt to find at least one. In F-M we multiply each
inequality by a positive scalar so that all entries in the first column of A are zero

or +1 and solve (possibly after a reordering of the inequalities) the following:

!

& +ax <Bi(i=1,2..,m) (3.6)

—&4ax <Bii=m +1,....m) (3.7)

ax < Bii=m +1,...,m) (3.8)

Here, z = (&,&,....,&)" and ¢ = (&,....,&,)" and ay,aq, ...., a,, are rows of A

with the first entry deleted. Since (3.6) and (3.7) are equivalent to the following:
max (ajfﬂl —Bj) <& < min (8 — a;x ) (3.9)
m' +1<j<m” 1<i<m/

the unknown &; in (3.6) and (3.7) can be eliminated giving:
a7 — B <Bi—aix (i=1,2,..om;j=m +1,...,m) (3.10)

az < Bii=m" +1,....,m) (3.11)

The system (3.10) and (3.11) has m' (m" —m') +m —m" constraints and n-1 un-
knowns. Any solution of (3.10) and (3.11), ', could be extended to a solution
(&1,2) of (3.6), (3.7) and (3.8) by choosing &, such that (3.9) is satisfied.

It is possible to eliminate the first n-1 components of x by repeating the above pro-
cedure and end up with an equivalent problem in one unknown, which is trivial. A

solution for the original system can be derived from any solution of the final system.

Geometrically, F-M methods consist of successive projections: e.g. (3.10) and (3.11)
are projections of (3.6), (3.7) and (3.8) along the & -axis. Ziegler [101] was able to
show how the F-M method is applicable to higher dimensional polytopes and has

attempted to show their projections. Let us review some basic concepts here.

Basic objects for any discussion of geometry are points, lines, planes and so forth,
which are af fine subspaces, also called flats. Among them, the vector subspaces

of R* (which contain the origin 0 € R") are referred to as linear subspaces. Thus,
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non-empty affine subspaces are the translation of linear subspaces. The dimension
of an affine subspace is the dimension of the corresponding linear vector space.
Affine subspaces of dimension 0,1,2 and n-1 in R” are called points, lines, planes

and hyperplanes respectively.

We can take for granted that affine subspaces can be described by affine of all affine

combinations of a finite set of points:

F={xeR":2=Xzo+ ... + M\, \i ER,Z)\izl} (3.12)

i=1
Thus, for any K C R" the smallest convex set containing K is called the convex
hull of K and can be constructed as the intersection of all convex sets that contain
K:

conv(K) = ﬂ{K' CR*:KCK,K Conver} (3.13)

which is a convex set.

A V-polytope is the convex hull of a finite set of points in some R*. An H-
polyhedron is an intersection of finitely many closed halfspaces in some R". An
H-polytope is an H-polyhedron that is bounded. So in general a polytope is a set
of points P C R™ which can be presented either as a V-polytope or H-polytope.

The dimension of a polytope is the dimension of its affine hull.

F-M is a projection down to one dimension at a time. This can be discussed only
in the case of projections along coordinate axes and the general case can be reduced

to this by an af fine coordinate transformation.

We present a geometrical sketch for the case of affine polyhedra, the nice thing
about this procedure is that its idea and most of its complications can be illus-

trated in dimension 2 as can be seen in Figure 3.4.

We can start the projection with an H-polyhedron P = P(A, z) C R" and assume
that we want to project {x € R* : z;, = 0} = R"! along the xj-axis. The
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projection of P C R" can be defined in great generality; we will only use the cases
of coordinate directions, where we can use the notation for the projection of P in

the direction of ey:
proj(P)={z € R" : 2, = 0,3y € R: (z + yex) € P} (3.14)
A closely related set is the elimination set that can be represented as follows:
elimg(P)={z € R" : Jy € R: (z + yex) € P} (3.15)
An alternative to (3.15) can be given below:
elimg(P) = {x —tex : ©x € P,t € R} (3.16)
Thus, it can be stated that elimy(P) is the set of all points in R" which project to

projr(P). In particular, we can get an isomorphism elimg(P) = projp(P) X R.

We can illustrate above concepts with the aid of an example below, the same ex-
ample was used in [101] - see Figure 3.4 for the visualization of the aforementioned

concept.

—x1 — 4z < -9 (3.17)
—2x; —xy < —4 (3.18)
T, — 229 <0 (3.19)
o1 <4 (3.20)

201 + 29 <11 (3.21)
—2x1 + 6xy < 17 (3.22)
—6x1 — 290 < —6 (3.23)

By assumption we can eliminate x; and ask for the possible values of x5. Then we
see that (3.20) requires z; < 4. All other inequalities can be rewritten to give either
an upper bound on z (if the coefficient of z, is positive), or lower bound (if the

coefficient of x is negative). Furthermore, there is a solution for z, if and only if
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T

Figure 3.4: A projection of a 2-D polytope

every upper bound for x5 derived this way is larger than every lower bound.

The geometrical concept of F-M can be summarised as follows which is extracted

from Ziegler[101]:

Theorem 4 (Fourier — Motzkin Elimination-Geometrical View)
Let P = P(A,z) C R” be a polyhedron, with A € R™*" and z € R™, and choose

k < n. Construct the matrix A’ € R™ *" whose rows are:

e the rows a; of A, for all 7 with a;, = 0, and

e the sums a;,a; + (—a;x)a;Vi, j, with a; > 0 and a,; < 0, and let 2/¥ € R™ be

the corresponding column vector entries.
e 2z;, Vi with a;; = 0 and
o ayzj + (—ajx)zi, Vi, j with ay, > 0 and a;y, < 0.

Then elimg(P) = P(A’*, 2/*) and proj,(P) = P(A/*, 2/¥) N{z € R* : 2, = 0}.
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3.4.2 The Hochbaum and Naor algorithm

In general F-M does not run in polynomial time because of the simple fact that it
may generate an exponential number of inequalities in the process of eliminating
variables. However, Hochbaum and Naor show that, at each elimination step, the
number of inequalities on every edge adjacent to the variable currently to be elim-
inated can be reduced to two. This serves as a control measure for the exponential
growth of the number of inequalities. In addition, the monotone inequalities are
maintained as upper and lower envelopes where the envelopes (that are piecewise
linear functions) are characterized by their breakpoints. This allows one to dispose
of redundant inequalities in each elimination step by quickly examining all break-

points associated with the variable currently to be eliminated.

It may be interesting to note that the strongly polynomial feasibility algorithm for
monotone inequalities does not extend to a strongly polynomial optimization al-
gorithm over such inequalities. It is only strongly polynomial when the objective

function consists of a fixed number of variables, say d.

The procedure in Aspvall and Shiloach’s [3] algorithm plays an important role in
Hochbaum and Naor’s algorithm. Let us have an overview of this vital procedure.
Suppose ™" and ™ denote the respective minimum and maximum feasible val-

ues of z; so that any value of z; in the range [z7"™ zI"**] can be part of feasible

solution.

Procedure 3.1(Aspvall and Shiloach): Given a variable z; and a constant A, it can

be decided in O(mn) operations whether:
o \ <z or
o \> " or
o N < )\ < glnew,

If the procedure verifies that A satisfies the third of these conditions, the equality

x; = A is propagated to the inequalities in a manner similar to the Bellman-Ford
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algorithm for computing all shortest paths from a single source. It can be remarked
that even if the linear program in hand is infeasible, the above procedure may still
provide one of the above three answers. The high level view of the main idea behind
the algorithm is as follows: the number of inequalities in which z; (the variable to

be eliminated) participates can be significantly reduced using above procedure.

The algorithm [42] is presented as follows: Let G; denote the graph corresponding
to the linear program F;. At step ¢ of F-M the following is performed:

1. Let the neighbors of z; in the graph G; be z;,.....,xiq. Let B;, 1 < j < d
denote the set of breakpoints of the edge (z;,z;;) projected on the z; co-

ordinate, sorted in ascending order.

2. Merge the d sequences B; into a sorted sequence B (let the sorted sequence

3. Perform a binary search on the sequence B. The aim of the search is to either
obtain:
(a) a breakpoint b; € B such that /™" < b; < z7%% OR,

(b) an interval [by, b;11] 1 <1 < k such that b < ™" and 27 < by

4. In step 3(a) variable x; is assigned the value b, and contracted with vertex x,
in graph G;. In step 3(b) the number of inequalities on each edge adjacent to
x; is reduced to at most two. Now the generic F-M step [99] is applied to the

variable z;.

3.4.3 An illustrative example

In this subsection we examine an example and attempt to solve it by using the

algorithm of Hochbaum and Naor [42] as well as by directly applying F-M.

Determine a feasible solution of the following monotone inequalities:
y—z <2 (3.24)

r—y<0 (3.25)
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22—y <3
20 —2 <2
r—22<4
2z—5x <1

z, Yy, 220

3.4.4 Solution using the F-M method

28

(3.26)
(3.27)
(3.28)
(3.29)

(3.30)

Let y be the variable we want to eliminate. As it does not occur in an equation in

the above system then we can directly apply the second steps of the F-M method

(i.e we eliminate y in between the inequalities) as follows.

(3.24) yields:

y<z+2
(3.25) yields:
Ty
(3.26) yields:
22-3<y

And (3.27) yields:
y<1/2(z+2)

We can rearrange (3.31), (3.32), (3.33) and (3.34) as follows:
2,22—3<y<z+21/2(2+2)

From (3.35) we can eliminate y as follows: z < z + 2 = 0 < 2 (obvious)
also we can have:

x<1/2(z+2)
22 -3<ax+2
22 —-3<1/2(z+2)

We can see that from (3.38) that:

12 —6<24232<8&2<8/3

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
(3.37)

(3.38)

(3.39)
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Figure 3.5: A graph with initial lower and upper bounds

So putting z = 8/3 yields, from (3.36) and (3.37), x < 7/3 and x > 1/3 respectively.

Putting x = 7/3, for example, yields from (3.35):
7/3,7/3<y<13/3,7/3 (3.40)
Setting y = 7/3 we finally have the following feasible solution:

(xz,y,2) = (7/3,7/3,8/3).

3.4.5 Solution using Hochbaum and Naor’s algorithm

Let z be the variable we are interested to eliminate from the given system. We have

mazx ma.

= Y™t = M = oo,

g™ = y™in — MmN — () from non-negativity and assume x

The associated graph Gj is illustrated in Figure 3.5.

Let B, be the set of breakpoints of constraints involving z. Then:

13

Bz: _2,_a_
=255}

Suppose [ = 2, then z = by, = % by step 3 (a). In step 4 we contract z with zy in
the graph G as illustrated in Figure 3.6. As a result we have y > —2 from (3.27),
y < 2 from (3.28), z < 5 from (3.29) and z > 0 from (3.31).
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Figure 3.6: A graph G, after contracting z

(0,0)

"

Figure 3.7: A graph G, after contracting y

We then eliminate y in between inequalities (3.24) and (3.25). Let B, be the

corresponding set of breakpoints, then:
B, = {0,2}

we suppose | =1 = y = by = 0. We apply step 4 and contract y with ac;) and get
the resulting graph G5 as shown in Figure 3.7. None of the original inequalities

remain, so z = 0.

Therefore, one of the feasible solutions is (0, 0, %), which is also a degenerate basic

feasible solution.

3.5 Cohen and Megiddo’s Algorithm

A linear program with two variables per inequality is also called monotone if each
inequality is of the form:

axz; —bx; <c (3.41)
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where both a and b are positive constants. Cohen and Megiddo [13] were able to
give O(mn?) and O(n® + mn) expected time algorithms for the feasibility problem
using randomization. They have also shown that parallel implementation of these
algorithms for solving systems of m linear inequalities with n variables (where each
inequality involves at most two variables) requires O(n) time and the deterministic
algorithm uses O(mn) processors and show that the randomized algorithm uses

O(n?% + m) processors.

They present algorithms that deterministically solve the feasibility problem, that
is, either find a point that satisfies all the inequalities or conclude that no such
point exists. The analysis of Cohen and Megiddo’s algorithm is quite lengthy, but
the algorithm itself is simple. The underlying computation amounts to the basic
Bellman-Ford and Floyd-Warshall shortest path algorithm where only simple data
structures are used. The algorithms are strongly polynomial, that is, the number
of operations does not depend on the size of input numbers. The size (number of
bits) of the numbers generated by the algorithms is O(nC') where, C is the size of

the largest co-efficient in the input.

They give a time complexity of the randomized algorithm that involves many loga-
rithmic factors (log®n). It was envisaged that, careful analysis may eliminate some
of these factors. Although the algorithms given by Cohen and Megiddo [13] are
theoretically tested, it is widely agreed that it could work well in practice. The
open question is whether the O(n® + mn) bound can be achieved deterministically.
The possibility of improving the O(n® + mn) bound can be discussed, the O(n?)
factor results from the all-pairs shortest paths Floyd-Warshall computation and is
inherent from some basic frameworks. A different approach, however, may yield an

O(mn) algorithm.

If one considers as an example, an LI(2) system such that the variables correspond
to vertices of a three-dimensional grid and all inequalities are “local” i.e. each

inequality is bounded by some constant. The associated graph has a separator de-
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composition using O(n3) size separators, and hence, these LI(2) systems can be
solved in O(mn) expected time. The feasibility problem of monotone systems in-
cludes, as a very special case, the problem of detecting existence of negative weight
directed cycles in a graph with n nodes, m edges and real weights associated with
the edges using a well- known reduction. The best known bound for detecting neg-
ative weight cycles is O(mn) and hence it is believed that it is unlikely that an
O(mmn) algorithm exists for solving LI(2) systems. The reduction can be sketched
as follows: Consider a weighted graph G = (V, E,w), where w : E — R. The
corresponding monotone system is as follows: For each v € V' assign a variable z,,.
For each edge e = (u,v) € F assign the inequality z, — z, < w(e). It follows from
Cohen and Megiddo [13] that G contains a negative weight cycle if and only if the

system is infeasible.

However, despite contributions of Cohen and Megiddo [13]: where some algorithms
that solve the feasibility of LI(2) systems are adapted to find a solution that maxi-
mizes a specific variable and which can find the lexicographic maximum, some open
questions remain in regard to finding an optimal solution relative to an arbitrary
linear objective function over LI(2) systems. It is not known whether a strongly

polynomial time algorithm exists.

3.6 Conclusion

In this chapter we have reviewed some algorithms for the feasibility problem in LI(2)
systems. These algorithms either show that the system has no feasible solution or
provide a single feasible solution. It is not obvious that these methods can be
extended to determine all basic feasible solutions. Nevertheless, they provide some
ideas which we build on in developing vertex enumeration algorithms for LI(2) and

dual LI(2) systems in succeeding chapters.



Chapter 4

F-M Elimination and VFE in LI(2)

4.1 Introduction

Primal Fourier-Motzkin (F-M) is of great importance in term of determining the
optimum solution of systems that have 2 nonzeros per inequality. This method had
been extensively described and reviewed in Chapter 3. The application of various

primal F-M methods have also been discussed.

However, the dual of this method was not given much attention until recently when
Williams [99] described briefly, how it can be used for vertex enumeration (V E)
of polyhedra. Williams [98] was able to give a procedure for determining feasible
solutions for LP consisting of an arbitrary number of variables (including the 2
variables per constraint problem) using F-M method for primal case and using a
transformation for the dual case. The dual method can be used to generates all the

extreme solutions (including the optimal solution) to an LP.

63
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4.2 The Dual of Fourier’s Method

The fact that every LP model has a dual model allows Williams [98] to convert
Fourier’s method into a dual method. For the dual method Williams [98] com-
bines columns together two at a time, so as to eliminate constraints (rows) from
the model. Ultimately, we will arrive at non-negative combinations of the columns
which give the column of right-hand side coefficients of the model. The multipliers
in these non-negative linear combinations will constitute feasible solutions to the

dual model.

Suppose we are given the system (this is a similar problem used by [98]):

Y1 — dYs > —6 (4.1)
—3y1+4y2 > 3 (4.2)
Y1 — 2Yp > —2 (4.3)

fOI' Y1, Y2 Z 0.

Introducing slack variables ys, 4, y5 > 0 and y, we have:

6yo +y1 —dy2 —yzs =0 (4.4)
—3Yyo—3y1 +4y2 —ys =0 (4.5)
290+ —2y2 —ys =0 (4.6)
Yo=1 (4.7)

In order to eliminate constraint (4.4) we introduce a transformation of variables
Yo, Y1, ---, to variables uy,us,....,. The transformation can be represented by a ’trans-
portation’ graph in which the variables with positive coefficients are the source
nodes and those with negative coefficients are destination nodes. Figure 4.1 illus-

trates this for constraint (4.4).

Yo = U1 + Ua

Y1 = U3z + Ug
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U1

U2

Figure 4.1: Transformation of variables y — u

Y2 = 6/5U1 + 1/5’LL3

Y3 = 6Ug + Uy
Then
y=Alu
where
y" = [0, 1, Y2, Y3, Yar Ys) (4.8)
1 1 0 000
0O 0 1 1 00
6/5 0 1/5 0 0 0
Al = / / (4.9)
0 6 0 1 00
0O 0 0O 010
0O 0 0 001
and

uT: [u17 Uz, U3, U4, Y4, yS] (410)
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In the new variables (4.5) becomes:

11 0 000
0 0 1 100
6/5 0 1/5 0 0 0
(—3,-3,4,0,—1,0) = (9/5,-3,~11/5,—3,—1,0)
0 6 0 1 00
0 0 0 010
0 0 0 001
(4.11)
Similarly, (4.6) becomes:
(—2/5,2,3/5,1,0,—1) (4.12)
and (4.7) becomes:
(1,1,0,0,0,0) (4.13)

We now attempt to eliminate constraint (4.11). The corresponding transportation

model in Figure 4.2 leads to:

U1 = V1 + Vo + V3 + V4

us = 9/15v,
uz = 9/11vy
ug = 9/15v3
ys = 9/5v4

We again describe the transformation in matrix form as u = A?v with:

uT = [u17 Uz, U3, U4, Y4, y5] (414)

1 1 1 1 0

9/15 0 0 0 0

) 0 9/11 0 0 O
AT = (4.15)

0 0 9/15 0 O

0O 0 0 9/50

0 0 0 0 1

and

UT = [Ul, V2, V3, V4, y5] (416)
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(%1

U3

(2

Figure 4.2: Transformation of variables u — v

Now (4.12) becomes:
(4/57 1/117 1/5: _2/5a _1)

and (4.13) becomes:
(24/15,1,1,1,0)

we have y = A'A?v where,

[ 24/15 1 11

0 9/11 9/15 0
6/5 15/11 6/5 6/5

18/5 0 9/15 0
0 0 0 9/5

0 0 0 0

Al A?

= o O o O O

We now eliminate (4.17). The transportation model, Figure 4.3, yields:

V1 = W1 + Wo
Vg = W3 + Wy

v3:w5—|—w6

67

(4.17)

(4.18)

(4.19)
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w1

Wa

S
2

We

Figure 4.3: Transformation of variables v — w

2, _ 4 1 1
3’04 = 5’(1)1 + 11’(1]3 + 5’[1)5

— 4 1 1
Ys = W2 + 7 Wa + 5Ws

From above we have v = A3w with v as in (4.16) and

[ 1 1 0 0 0 0 ]
0 0 1 1 0 0
A=10 0 0o o0 1 1
2 0 5/22 0 1/2 0
04/5 0 1/11 0 1/5 |
w? = [wy, wa, ws, wy, ws, W]

(4.18) becomes:
(54/15,24/15,27/22,1,3/2,1)

y can be written in term of w as follows:

y = ALA? A3y

68

(4.20)

(4.21)

(4.22)
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where y is as in (4.8), w as in (4.21) and

54/15 24/15 27/22 1 3/2 1

0 0 9/11 9/11 9/15 9/15
18/5 6/5 18/11 15/11 9/5 6/5

AlA2A% = / / / / /5 6/ (4.23)
18/5 18/5 0 0 9/15 9/15

18/5 0 9/22 0 9/10 0
0 4/ 0 1/11 0 1/5

All constraints have now been eliminated except yo = 1, so the procedure ter-
minates. In order to obtain vertices, we scale each column of (4.23) so that the

coefficient in the first row is 1. This gives:

Yo 11 1 1 1 1 %
" 0 0 2/3 9/11 2/5 3/5 | | 2
ya | _ |1 3/4 4/3 15/11 6/5 6/5 | | 2 (424
Ys 19/4 0 0 2/535]||a
Ya 1 0 1/3 0 3/5 0 25
Ys 01/2 0 1/11 0 1/5 | | 2

The extreme solutions to yy = 1 are then Z = (1,0,0,0,0,0), Z = (0,1,0,0,0,0),
Z = (0,0,1,0,0,0), Z = (0,0,0,1,0,0), Z = (0,0,0,0,1,0), Z = (0,0,0,0,0,1).
However, it is clear that Z = (0,0,0,0,1,0), Z = (0,0,0,0,0,1) do not correspond
to vertices of systems (4.1) to (4.3) as they have more than 4 positive components

of y, and hence do not correspond to a basic feasible solution to (4.4) to (4.7).

Williams [100] proves two properties of the (primal) F-M method for which the dual

analogies are:

Property 4.1: If, after eliminating m constraints by dual F-M elimination from a
linear inequality system, a variable results from a linear combination of more than

m + 1 of the original variables, it is redundant.

Property 4.2: Any non-redundant variables, after the non-trivial elimination of

m constraints, depend on at most m + 1 of the original variables.
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The implication of property 4.1 is that zs, zg can be deleted from (4.24) and hence
that the vertices of (4.4) to (4.7) are:

v = (0,1,1,1,0)
vy = (0,3/4,9/4,0,1/2)
vs = (2/3,4/3,0,1/3,0)
vy = (9/11,15/11,0,0,1/11)

It is easily verified graphically that this is the complete and correct set of vertices.
In fact, as our experiments showed, failure to eliminate redundant variables in the

intermediate stages of the method can lead to duplication of vertices.

F-M is a potentially useful method for vertex enumeration because it is unaffected
by primal degeneracy. However a known problem with this method is that, in the
general case, the number of variables introduced through the transformations may
grow exponentially. We investigate whether this is the case for LI(2) problem or its
dual. The theoretical analysis will be given later. It should be noted that Williams
[98] did not give an explicit algorithmic description of the dual F-M method for
enumerating vertices of polyhedra, and none is available in any literature. Such a

description is given below.

4.3 An Algorithm for Vertex Enumeration via

Dual F-M

Dual F-M uses the idea of eliminating constraints in between variables and can be

expressed in terms of matrix transformations, as illustrated in Figure 4.4.

Suppose a(:,:) holds the constraint matrix, 7°(:,:) holds the cumulative transfor-
mation matrix, and 7" ,(:,:) holds the current matrix. A row of a(:,:) is used to
get the current transformation matrix 7 4(:,:). The cumulative matrix 7T'(:,:) is
the same as the current matrix 7" (3, :), when the first constraint of a(:,:) is elimi-

nated. Subsequently we set T(:,:)new < T(5,:)o1a * T-1(:,:). The constraint matrix
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)

After trangformation we get

>T1 1)

Forn>1

T(:’:r?ew < T (T A

ad —

Upaating ()

A, < ) TG

Figure 4.4: Matrix transformations in Dual F-M

a(:,:) is therefore updated as: a(:,:)new < a(:,:)oa * T-1(:,:). At each iteration the
columns of T'(:, :) that have more than n+1 variables are redundant and are deleted.
The corresponding columns of a(:,:) are also deleted. It is also clear that if, at any
stage, all non-zero coefficients in a constraint have the same sign, the corresponding
columns can be deleted. This is the case because the corresponding variables must

have value 0 as the constraints are homogeneous equations in non-negative variables.

A comprehensive algorithmic description of the procedure to find the set of vertices

Az =, x>0 (4.25)

is given below. We assume w.l.o.g b <0

Preliminaries:

Let
0 ifx=0
1 ifz#0

U(z) =

e$ be a s-dimensional unit vector with a 1 in the j"* element (i.e. it is a column

vector), dim(T) be the number of columns in T and P;, N;, Z; be the number of
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positive, negative and zero coefficients in row i, respectively.

Algorithm

e Initialisation

ROERER
B

TO<—In+1 t<—n+1
FORi=1,2,....m DO

e Elimination
IF P, =0A N; =0, CYCLE (constraint ¢ is redundant)

IF P,=0V N, = 0 THEN

C <+ {c;j:j7=1,2,....k} where ¢; < ¢2 < .... < ¢, and afj_l =0

GO TO Reduction

T «0; S+« 0; Ky+0; K,+0; Ky« 0
FOR r + 1 TO t DO
IF a,' >0 THEN
FOR 6 + 1 TO N; DO Tr',s+5<_ﬁ
S+ S+N; Ky« K,+1
w(K,) < (K, — 1) x N; + K
IF o;,' = 0 THEN
S+ S+1; Ky« Ko+1; Tlg« 1
END DO
FOR r + 1 TO t DO
IF o' <0 THEN
K,+ K,+1
FOR 6+ 1 TO P, DO T!,, 5. 1, ¢ 7+

END DO

72
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at «— at VT T T
C<+{cj:j=1,2,....k} where ¢; < ¢2 < .... < ¢

and Y0 V(T ) <i+1

e Reduction

' it ot t
T T'[e, €y, .o e

ca)

t « dim(T")

END DO

e Extraction

i T2ic ; Tgc ; T(in+1)c P
J J J ) —
v = (7, gty e ), (1=1,2,....,9)
1j 1j lj

where ¢; < ¢g < .... < ¢, and chj #0, O

4.4 Computational Results

The algorithm described in previous section has been implemented in Fortran 90
using the Portland Group pgf90 compiler running under Linux. Table 4.1 records
execution times and the maximum number of intermediate variables for a small
set of test problems taken either from this thesis or [23]. Several variants of each
problem, derived by arbitrary reorderings of the constraints, were run and the best
and worst cases are recorded in Table 4.1. Results were obtained on a 7T00MHz

Pentium III processor.

The results clearly show that the performance of the dual F-M method is sensitive
to the ordering of the constraints. However it is not clear how to identify a static
ordering which would control the growth in the number of intermediate variables.

Suppose that constraint ¢ is being eliminated and that:
p = Has : ai; > 0}, n = [{ay; : ai; <0}, z = [{ay; : az; = O}

then the number of variables in the transformed constraints is v = pxn+z. Hence a

simple greedy heuristic for dynamically ordering the constraints is, at each iteration,
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Problem | Variables | Constraints | Vertices | Variant | Max No of | Time
Variables | (secs)

1 3 5 3 a 6| 0.01
b 7| 0.01

2 4 10 36 a 96 | 0.02
b 246 | 0.10

3 12 7 31 a 310 | 0.47
b 1276 | 0.67

4 5 10 38 a 199 | 0.22
b 383 | 0.43

5 6 10 64 a 496 | 1.27
b 1351 | 3.12

6 7 10 62 a 4145 | 49.62
b > 6500 -

Table 4.1: Computational results for the F-M code

to choose to eliminate that for which v is smallest. Table 4.2 records the results
using this ordering of the constraints. These results suggest that greedy ordering
does have a good effect. However the performance of the dual F-M method does
not seem to compare with that of other methods. Problem 3, for example, is the
problem referred to as ‘ex1’ in Table 2.1. The Provan code solved this problem
significantly faster on a considerably slower computer. Problems 4-6 are solved

much faster by the hash variant of Dyer’s code, e.g. problem 6 takes only 0.03 secs.

4.5 Complexity Analysis for Dual F-M
Suppose we wish to solve the following system:
Ax =0 (4.26)

and,

Ve=1, >0
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Problem | Max Variables | Time(secs)
1 6 0.01
2 96 0.02
3 125 0.47
4 380 0.40
3 1052 2.10
6 1220 13.07

Table 4.2: Computational results for greedy ordering

Example: flows z through a network with given cost, say ¢, where A has at most
two nonzeros per column, which is associated with a digraph, say G of m nodes
and n edges, and b > 0, is the available supply of an item. And b < 0 if items are
demanded (note: b= 0 implies none of the item is available or demanded, and the
associated node in this case is called transshipment or intermediate node). Then,

of interest, is the dual of (4.26) which is:
Ay >b (4.27)

and where A” is a two per row matrix. We can use F-M on the dual (4.27) to

(4.26), as follows:

Suppose we are trying to “eliminate” row 7 from system (4.26). We can do so by
eliminating z; in the dual system (4.27). Hochbaum and Naor [42] discuss solving
LPs in this setting. They do not consider generating all vertices of polyhedra
formed by LI(2). Hochbaum and Naor’s idea [42] is to solve LI(2) using F-M by
constraining variables between breakpoints. As vertex enumeration is concerned
with all the vertices of the polyhedron, this idea is no longer valid. We must
develop new algorithms, using some inspiration from [42]. The new idea is based
on considering the 3-dimensional relationship between variables, say z; and z, and

another variable, say x;, which is to be eliminated.
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4.6 Analysis of the Algorithm

Suppose we are to solve (4.27) using F-M. Specifically, we are interested in F-
M on systems with 2 variables per constraint. Suppose m is the total number of
constraints, let x1, xo,....... ,Zn, be the variables and m;; be the number of constraints
involving z; and z;, where m;; = m ;. Assume that 0 < m;; < 2 since for m;;, we
can have only the following:

which gives either a lower or upper bound on z;. Suppose the associated graph GG
(e.g a bipartite graph with m sources and n sinks) is connected, that is, there exists
a chain or path between every node in G. This implies that the total number of
new constraints is bounded by:
> (mij + mix) < 2(n— V)m; (4.29)
gk
where

JF#i
We know that:

Zmi =2m (4.31)
=1

So, 9 7 such that:

where m; is the number of two-variable constraints containing z; and m is the total

number of such constraints.

We can choose z; (by reordering variables if necessary) as the variable to be elimi-
nated, so that from (4.28) we can have:
my = miin{mi} = miinz Mij (4.32)
J#i
Since:

n n o n
=1

i=1 j=1
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we have:

2
my < 2% (4.33)
n

Let us consider elimination of variable z; from constraints involving z; and x;. The

resulting graph is illustrated in Figure 4.5.

T

at most m;; facets and vertices

Figure 4.5: Projection of x,; along y-axis and z; along x-axis

The elimination of z; is easily visualizable in 3-dimensional space as can be seen
clearly in Figure 4.6. The assumption is that all variables 1, xs,.....,Z, are bounded.
As can be observed from Figure 4.6, x; is plotted along the z-axis, x; along the z-
axis and z; along the y-axis. Perpendicular to the z;, z; plane lies a cylinder
with at most m;; facets. Similarly, perpendicular to the z;, z; plane lies another
cylinder with at most m;; facets. The intersection of these two cylinders gives a 3-
dimensional polyhedron with at most (1m;;+m;1) facets, and less than 3-dimensional
polyhedron with at most (m; + mj1) facets, and less than 2(m; + mj;) vertices

and 3(m;; + m;;) edges. (See below).

The projection of the 3-dimensional polyhedron along z;, z; plane is obtained af-

ter elimination of the variable z; from the system. The result is a 2-dimensional
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o

Cyclinder S mi1 facets
: 3-D polytope

2(m; + mjy) vertices

T

—————— Projection of 3-D polytope
< 2(mj + mjp) vertices

Figure 4.6: A 3-D polyhedron and its 2-D projection on z; and z; plane

polyhedron, each vertex of which results from projection of a vertex from the 3-
dimensional polyhedron. The number of constraints ¢, after elimination of zi, is
less than or equal to the number of vertices of the 3-dimensional polyhedron, which

we now show is less than 2(m;; +m;1).

Claim 4.1: The number of vertices of a 3-dimensional polyhedron with at most

(mi1 + my1) facets is at most 2(m;; + m;1).

Proof:
Let f be the number of facets, e be the number of edges and v be the number of
vertices of the polyhedron.

For any 3-dimensional polyhedron, the following are true:

3v < 2e (4.34)
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since each vertex is adjacent to at least 3 edges, and by Euler’s formula:

v—e+ f=2 (4.35)
From (4.34) we have:
U+f—2=€237v (4.36)
From that we have:
fo2> g (4.37)
And then we have:
v<2(f-2)<2f (4.38)
Thus,
v<2f (4.39)

So the 3-dimensional polyhedron is less than 2(m;; + m;1) vertices. QED

After eliminating x1, let the number of constraints corresponding to m; be m;, and
the number of constraints corresponding to m;; be m;j.
Our goal is to find the relationship between the total number of constraints in the
original system, m, and the total number of constraints, m’, after eliminating the

variable z; which occurs in the fewest constraints.

After eliminating variable z, the following inequality holds:
m;j < my; + 2(m,~1 + mjl) (440)

since m;; is the old number of constraints involving 7 and j, and 2(m;; +m;1) is at

most the number of vertices after eliminating variable z;, where ¢ # j # 1.

If we sum (4.40) over ¢ and j, we have:

n n

Z Z my; < Z Z mij + 2 (Mg +my1) (4.41)

=2 j=2 =2 j=2 =2 j=2
This gives:
om < 2(m—my) +4(n — 1)my (4.42)
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and then using (4.33) we have:

, 2
m <m+ (2n—3)m, < m+ (2n—3)"2 < 5m (4.43)
n

Thus,
m < 5m (4.44)

Suppose there are M constraints when £ variables remain during the elimination.
Then we have:

My < 5Mj11 (4.45)

So we have:

My < 5" 2M, = 5" *m (4.46)

We can improve the argument above, as follows: Any edge in the 3-dimensional
polyhedron arises from some edges in one of the two intersected polyhedra. There
are only (m; + mj;) such edges. Also, any edge in the 2-dimensional projection
contains the projection of at least one edge in the 3-dimensional polyhedron. Hence
the projection can, in fact, have at most (m;; + m;1) edges and vertices. This
removes a factor of 2, and repeating the above analysis gives us a bound of 3"~2m,
rather than 5"2m. Thus, it is possible to generate at most 3"~2m non-redundant
inequalities at any level of the elimination.
ie.

My < 3" m (4.47)
Property 4.3: For the system (4.26) consisting of at most two non-zeros per col-

umn, this property remains true in the process of eliminating constraints.

Proof :

Suppose we have a two non-zeros per column system of the form A’z = b where:

by by . . b,
G292 . 0 0
, . . . as;g
A = > (4.48)
a4,1 0

0 0 . Gp; O
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and x1, x9,.., T, > 0.

In order to find feasible solutions, we start eliminating constraints by non-negative
combination of columns. In each case we end up with a two non-zeros per column
matrix. Since all b; > 0, we do not need to eliminate the first row. Then, for
example, if we want to eliminate constraint 2 from (4.48), we combine a multiple

of column 1 and column 2 and end up with the following:

by by b3
C3,1 C3,j
Al 0 (4.49)
Cjj
0 . 0 Cm—1,n

It can be noted that the entries in column 1 and column 2 for row 1 disappeared
and still we have two non-zero per column matrix as in equation (4.49). Whichever

row we eliminate we still end up with a two non-zero per column matrix. QED

4.7 Conclusion

In this chapter we have studied dual F-M and find that we can use it to enumerate
vertices of polyhedra by eliminating constraints one at a time, as suggested by
Williams [99]. One problem with this method is when a system has many redundant
constraints. A lot of energy may be used to eliminate constraints that may not be
important after all. We have presented an original algorithmic description of vertex
enumeration via dual F-M. Some computational results are presented which show
little promise for the method, even with a dynamic constraint ordering heuristic.
The relatively poor performance is particularly important as the method is a dual
method and thus does not provide any vertices until the algorithm terminates.
We have also presented theoretical results about dual F-M for certain dual LI(2)
systems and shown that for systems where variables intersect (are present in between
constraints), there is an upper bound which is ezponential only in the number of

columns, but /inear in the number of rows.



Chapter 5

A BOP Algorithm for VE in LI(2)

5.1 Introduction

In Chapter 4 we have discussed how the Fourier-Motzkin (F-M) elimination method
and its dual method are used for vertex enumeration (VE) of polyhedra associ-
ated with LP that have at most two variables per constraint. Various methods
were initially reviewed for the systems that are sometimes referred to as monotone
inequalities (inequalities of the form az — by < ¢, where both a and b are positive).
The methods included those of Hochbaum and Naor [42], Aspvall and Shiloach [3],
Shostak [90] and Megiddo [13]. Hochbaum and Naor’s method [42] is O(mn2logm)
and is one of the most efficient in term of theoretical efficiencies. The backbone
of their algorithm is F-M. Williams [98] also exploited and adapted F-M to solve
linear programmes and to generate all the vertices of polyhedra. We showed that,
except in a special case, the number of variables does not grow exponentially in
the process of F-M for LI(2) systems. However the number of variables does grow

rapidly enough for this to be a significant practical problem.

We now look at a different algorithm, which may be classified as a basis oriented

82
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pivoting method [23]. T'wo important propositions on the structure of the basis for

LI(2) and dual LI(2) systems form the backbone of our new algorithm.

5.2 Basis Structure for Dual LI(2)

The question that can be raised at this junction is, what does a basis of LP con-

sisting of no more than two variables per constraint (column) look like?

The following result is for two nonzeros per column, we will later give that of its
dual (system with no more than two per row). The backbone of our investigation

is the following proposition.

Proposition 5.1: Let B={z € R" : Az =b,b € R™, z > 0} be a linear program
with at most two non-zeros per column in A, where A is an m X n matrix; z an
n X 1 matrix and b an m x 1 matrix, with n > m. Let G be a graph on m vertices
corresponding to the rows of A, with an edge corresponding to each column of A
(i.e. an edge between i and j if these are the non-zero positions in the column).
Then the set of edges in G corresponding to any basis of A has vertex-disjoint

components which are either:
1. A tree OR
2. Contain exactly one cycle.

Proof :

Suppose A is the matrix with 2 nonzeros per column. Each column of A can be
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represented as follows:

Cij = (51)

We can start building up components of the basis by rearranging rows and columns
(using only the edges that correspond to the basis). At each stage we add a column
which has one non-zero in a new-row, but may also have a non-zero in a row already
used. Obviously, the set of edges that form the basis in this case cannot have more
than 2 edges (variables) that are connected to 2 adjacent nodes, otherwise we have

3 vectors spanning R?.

Rearranging the rows and columns of B we obtain a matrix of the form:

1,1 A12 - 0 0 0
dy 0 . 0 0 0
0 dsp . azg O as
0 0O . 0 0 0
(5.2)
0 0 dso asio .- dsp
0 0 . 0 dsio
0 0O . 0 0O . O

As we can see from above matrix, we reach an upper triangular matriz with one
additional row as the component, when a stage is reached where one can add no

more columns.

If we have r rows, then we have r-1 linearly independent vectors, and the structures

of the arranged matrix yield a tree with r-1 edges plus (possibly) one edge giving r
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spanning vectors. This is a component in G with one cycle (if we terminate with a
tree then these rows have rank deficiency 1). We can remove this component and
start again. We obtain a collection of vertex disjoint components, each having at

most one cycle.

Indeed, the basis corresponds to a collection of vertex disjoint components of G

each of which may be a tree or contains at most one cycle. QED

Corollary 5.1: If 7 is the number of component trees for any basis, then the rank
of the matrix A is given by:
Rank(A) =m —i (5.3)

(i.e. ¢ components are missing rank 1).

Proof :

Follows from the proof of above Proposition.

Corollary 5.2: For a connected network LP system, every basis corresponds to a

spanning tree.

Proof :
Since the non-zeros are all +1 and —1 in every column, there can be no non-singular
cycles. If the graph is connected it has at least one spanning tree. This is a basis

and hence all other bases must correspond to spanning trees.

5.2.1 Example

Consider the following system:

—-r + 2£L’2 — Xg = 4 (55)

—3$2 + x3 + 4I5 =-1 (56)
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Figure 5.1: The graph of the matrix A

Az7 4 brg =5 (5.9)

The above system can be re-written in matrix form as: Az = b, where:

1 0 2 2 000 O

-1 2 0 0 000 —1
Ao 0 -3 1 0 400 0 (5.10)

0 0 0 -2310 0

0 0 0 0 032 0

| 0 0 0 0 004 5 |
o’ = [x1, 23, T3, T4, T5, T, T, g (5.11)
and :

bl =7,4,-1,2,3,5] (5.12)

The graph of A is shown in Figure 5.1.

We can start building up components of the basis by rearranging rows and columns

as follows. Consider an m X m submatrix B of A, with columns; 1, 2, 4, 6, 7 and
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Figure 5.2: A graph G of the basis component B with one cycle

8 selected from A and arranged in that order i.e. column 1 of B is column 1 of A,
column 2 of B is column 2 of A, column 3 of B is column 4 of A, column 4 of B is

column 6 of A, column 5 of B is column 7 of A, column 6 of B is column 8 of A,

we get: _ )
1 0 2 00 0
-1 2 0 00 -1
0 -3 0 00 0
B = (5.13)
O 0 —-210 0
0o 0 0 32 0
0 0 0 04 5

B may be considered as one basis of the above LP with the rank of A given as
Rank(A) = m — i, where i is the number of trees. The graph of B is shown in

Figure 5.2, in this case there is no tree, so i = 0, i.e. Rank(A) =6 —0=6.

The determinant of B can be found using row 3 of the matrix and is given as:
Det(B) = |B| = 3(20 4+ 24) = 132. So the determinant of B is non-zero. Thus, B
is a non-singular matrix that has at most one cycle. In general, we can remove this

component and start again. Note that there is only one component here.
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If A is a matrix with two nonzeros per column, then its dual is a matrix, say AT
with two nonzeros per row. Based on this relationship, what will be the graphical
structures for basis of LP with at most two nonzeros per row? We try to investigate

an answer to this question below.

5.3 Basis Structure for LI(2)

Proposition 5.2: Let 8 = {y € R™ : ATy < ¢, ¢ € R*} be a linear program
with at most two non-zeros per row in A”, where AT is an n x m matrix; y an
m X 1 matrix and ¢ an n X 1 matrix, with n > m. Let G’ be a graph on m vertices
corresponding to the columns of AT, with an edge corresponding to each row of
AT (i.e. an edge between r and k if these are the non-zero positions in the row).
Then the set of edges in G’ corresponding to any basis of AT has vertex-disjoint

components which are either:
1. A tree OR
2. Contain exactly one cycle.

Proof :
A basis is determined by m rows of AT, since there are no sign-restrictions. Proof

follows from proposition 5.1 above, adding rows of AT instead.

5.3.1 Example

Consider the following system:

3y +4ys < ¢4 (5.14)
—2y1 + 3y3 < ¢ (5.15)

Yo —ys < 3 (5.16)
612 + 8ys < ¢4 (5.17)
3ys — 3ys < ¢5 (5.18)

2y3 - 2y5 S Cg (519)



CHAPTER 5. A BOP ALGORITHM FOR VE IN LI(2) 89

Figure 5.3: A graph for the matrix AT

2y —4ys < ¢ (5.20)

The above system can be re-written as:

[ 3 40 0 0 ] [ c1 ]
-2 0 3 0 0 [ Y1 ] Co
0 50 -1 O Yo C3
0 6 0 0 8 ys | < | ca (5.21)
0 03 -3 O Ya Cs
0O 0 2 0 =2 | U5 | Cs
| 2 00 0 -4 KEa
which is a system of the form ATy < ¢, where:
| 3 40 0 0 ]
-2 03 0 O
0 50 -1 0
A'=10 60 0 8 (5.22)
0 03 =3 0
0 02 0 =2
| 2 00 0 —4]

The graph of AT is given in Figure 5.3.
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Let us start building one of the components of the basis by rearranging and selecting
rows and columns of AT as follows. Consider an n x n submatrix BT with n =5
then we choose BT as 5 x 5 matrix with rows; 1, 2, 5, 6 and 7 of AT selected and
arranged in that order i.e. row 1 from row 1 of AT, row 2 from row 2 of AT, row

3 is row 5 of AT, row 4 is row 6 of AT and row 5 is row 7 of AT. We get BT as

follows: _ -
340 0 0
203 0 0
B"=| 0 03 -3 0 (5.23)
0 02 0 =2
| 2 00 0 —4]

BT may be considered as one of the bases for the above linear inequalities with the
rank of matrix A” given as Rank(A") = n—i, where i is the number of trees. Figure

5.4 shows the graph of BT which contains no tree. So Rank(AT) =n—i=5-0=>5.

BT is non-singular, since its determinant is Det(BT) = 12(16 — 12) = 48. The
graph of BT from Figure 5.4 consists of component graph with only one cycle, as
predicted by Proposition 5.2. We can remove this component and start again. Note
that we have only one component here from our example, it is possible to select
another set of rows from matrix A7 and in each case, we may either end up with

graph whose components are trees or consists of at most one cycle each.

Theorem 5.1: Let Bl = {x € R* : T2 = b, b € R® and z > 0} be a linear
program with at most two non-zeros per column with 7" as n X n triangular matrix
and x an n x 1 matrix with b an n x 1 matrix. Let G be a graph on n ver-
tices with an edge corresponding to each column of 7. Then the set of edges in G

corresponds to any basis of vertex-disjoint components of 7" if and only if it is a tree.

Proof :
By induction:

Suppose T is an n x n triangular matrix with at most two non-zeros per column.
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° @

Figure 5.4: The graph for the basis matrix B”
Choose n = 2 then we can have a triangular matrix B2 as a basis of the form:

a1 012

B} = (5.24)
0 2,2
The graph corresponding to the basis 2 X 2 triangular matrix B2 is given in Figure

9.5.

Suppose it is true for k, where k is as large as possible. Our goal is to show that it

is true for n. The graph for the basis k x k triangular matrix B% given in Figure 5.6.

The basis triangular matrix for n = k is obtained as follows: We start with a column
that has only one non-zero as its first row, then we add second column in such a
way that its second row entry is non-zero, and all entries beneath this row in the
same column are zeros, we continue in a similar fashion, until we can add no more
columns. Note that all the entries in the main diagonal of the matrix have to be

non-zeros and each column must have at most two non-zeros, with exception of the
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(2

Figure 5.5: A tree graph for matrix B2

Figure 5.6: A tree graph for matrix B%

first column. The basis B% matrix graph in this case is given as follows.

a1 ar2 . 0
. a .
Bk = 22 Tk (5.25)
0 0 - Ok

Thus, we can continue to add columns in a similar way until all the n columns of

T are exhausted. In all there will be only spanning tree with no cycle. We get B7.
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Figure 5.7: A tree graph for matrix B7}

as the basis of the triangular matrix as follows:

ai

0

1,2

2,2

0

0

a2,k

Qg k
0
0

0

a2, k+1

Qp41,k+1

0

Qk.n

Qn,n
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(5.26)

The graph of the basis triangular matrix B7 is given in Figure 5.7. Note: B is

non-singular since its diagonal entries are all non-zeros, hence the determinant is

non-zero.

5.4 A New VE Algorithm for Dual LI(2)

Suppose we have a system of the form:

Ar=b, >0

(5.27)

where A is m X n matrix with no more than 2 nonzeros per column. The graph

associated with (5.27) has:
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Spaming Tree T

Figure 5.8: Spanning Tree whose nodes are either a (i) tree, or (ii) sub-

graph with one cycle
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e m nodes, labelled Ry, Rs,...., R, each associated with a row of A;

e 1 (undirected) edges, labelled Ey, E,....,E,, each associated with a column

of A;

e Each edge E; connecting nodes R;, Ry if a;; # 0 and ay; # 0 or forming a
loop at node R; if a;; # 0 and ax; = 0, VEk.

The algorithm enumerates vertices of the polyhedron associated with (5.27) in a
similar fashion to that of Dyer [24] for more general polyhedra. The principal

differences are:

1. vertices are generated via operations on the basis graph, rather than by sim-

plex transformations;
2. the adjacency test is performed via a hash table rather than via an AVL tree;

3. the spanning tree of the feasible-basis graph of the polyhedron is constructed
breadth-first rather than depth-first.

The algorithm as described here is valid for simple bounded polyhedra. Modification
of the algorithm to handle unbounded and degenerate polyhedra are discussed later
in the chapter. ’gamma sets’ which record the set of edges that may lead from a
vertex to previously unknown vertices, are again used to control the enumeration.
The algorithm EnumerateVertices can now be outlined below. The description
uses a; to represent the jth column of A, B to represent a basis and 3 to represent
its index set, G(B) to represent the graph corresponding to B and V to represent
a vertex of (5.27). EnumerateVertices uses a subsidiary routine SOLVE, whose
purpose is to solve sets of linear equations via the components of the basis graph.

SOLVE is described separately.

EnumerateVertices

1. Compute a basic feasible solution to (5.27), by LP if necessary. Let,
B1 + {indices of basic edges}, 1 + {indices of non — basic edges}

L+ {(B,m)}, p«1, r«1
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2. Construct G(B,) from S, and determine its components
3. Determine V, using SOLVE(G(B,), b, z) and output it

4. Vj €,
determine a'j using SOLVE(G(B,), a;, a'j)
Perform the simplex ratio test, so that if k = argmin{% : a'ji > 0},
the basic edge xj, leaves basis B, :
B+ B U{j} —{k}
v+ {1,2,...,n} — (BU{k})
Y ¥ — {5}
If 3t € {1,2, ..., p} such that 5 = 5y, v + v — {k}

elsep«—p+1, L+ LU{(B,7)}

5. r+r+1
If r < p, goto 2
Stop. O

Hashing is used within Step 4 to test equivalence of bases and can be implemented
as for Provan’s algorithm, using an integer encoding of the basis index set. The
advantage of using breadth-first search is that, for each basis, the components of

its associated graph need be determined once only.

SOLVE(G, w, z)

Let G consist of nodes i = 1,2,...v labelled with w; and edges (3,j,k), i < 7,
associated with z and labelled with (a, a;i).

For each component of G:
(a) if the component is a simple loop comprising edge (i, 1, k), xy < w;/a

(b) if the component is a tree
repeat until all tree edges deleted
if 7 is a leaf node with incident edge (i, 7, k) or (4,1, k)
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T < wi/aik, Wj £ Wi — QjpTk

delete incident edge
(c) if the component contains a cycle,

1. remove nodes of degree 1 as in (b)

2. if a simple loop remains, apply (a)

3. ifa cycle (i1, 4o, k1), (42, 93, k2), -eey (441, %4, ks 1), where i, = 47, remains,
solve parametrically for xy,, z,, ....., Tx,_, as follows:
Tgy A
fors =2t
Wig = Wiy, — Gigky_1The—y

‘/L’ks—l «— wis/aisks—l

Solve xp, = A for A, and hence determine zy,,.....,zg,_,. O

5.4.1 An illustrative example

In this subsection we present an example to visualize how our new algorithm works.
For simplicity, simple lookup, rather than hashing, is used to test basis equivalence
and, at each vertex, details of how SOLVE operates are displayed only for finding

the vertex coordinates.

Problem: Find all the vertices of the following system of 4 x 6 inequalities using

EnumerateVertices.
221 + 0x9 — 223 + 04 + x5 + 0z < 5 (5.28)
0x1 — 29 + 223 + 0x4 + 05 + 326 < 6 (5.29)
—21 + 229 + 023 — 324 + 025 + Oz < 8 (5.30)
0z1 + 029 + Oz + 24 + 225 + 26 < 4 (5.31)

where z; > 0 fori =1,2,....,6. If we add slack variables to (5.28) to (5.31) we have:

221 + 0xy — 225 + Oxy + x5 + Oxg + 7 + 0zg + 09 + Ox19 = 5 (5.32)
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X7
5
12
X5,
***** "
Zi0 4 T
@-1)
Ty,
31 ,
8
Ty

Basic-Edge
,,,,,,,,,,,,, Non-Basic Edge
(-2.2)
T3
7 6 xg
, s
(-12)

Figure 5.9: The graph of the initial vertex

O.Il—.TQ+2$3+0$4+0$5+3l‘6+01‘7+$8+0$9+0$10:6

—x1 + 229 + 023 — 324 + Ox5 4+ Ox6 + Ox7 4+ O28 + T9 + 0219 = 8

0:51+0$2+0.’L’3+$4+2$5+(E6+0$7+0$8+0$9+.’E10=4

In matrix form, (5.32) to (5.35) can be written Az = b where:

2 0 =2

0 -1 2
A=

-1 2 0

0o 0 0

0 101000
0 030100
-3 00 0010
1 21000 1_

T
r = [1‘17 X2, L3, T4,T5,Te, L7,X8, L9, xlO]

v' =1[5,6,8,4]

98

(5.33)
(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

For this example, the 4 x 4 identity matrix provides an initial basis B;. Hence

Bl = {77 87 97 10}7

7 {1,2,3,4,5,6},p+ 1, r+1

We illustrate B; with aid of Figure 5.9; G(B;) consists of four components that are

simple loops. Hence SOLVE step (a) gives 7 = 5, zg = 6, 9 = 8, x19 = 4.
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The first vertex V; is:

Tr 5
T 6
| | =
Y is) 8
T10 4
Step 4 gives, via SOLVE,
2 0 -2 0
’ O ’ _1 ’ 2 ’ 0
a, = Gy = as = a, =

-1 2 0 -3
0 0 0 1

N O O

Performing simplex pivots from V) on each of these in turn gives:

Bo + frU{1} — {7} = {1,8,9,10}

Yo < {2,3,4,5,6} 7+ — {1} ={2,3,4,5,6}
B3 + B U{2} — {9} = {7,8,2,10}

v3 < {1,3,4,5,6} 71+ 1 — {2} ={3,4,5,6}
By BLU{3} - {8} ={7,3,9,10}

va < {1,2,4,5,6} v < v —{3}=1{4,5,6}
Bs + B U {4} — {10} = {7,8,9,4}

v < {1,2,3,5,6} v < v — {4} ={5,6}

Bs < PLU{5} — {10} = {7,8,9,5}

Y6 < {1,2,3,4,6} < v —{5}={6}

Br < pLU{6} — {8} = {7,6,9,10}

v {1,2,3,4,5} "y <+ y—{6}=10

99

(5.39)

= o W O

All 8 correspond to new BFS so we have: p =7, L = {(51,0), (62,72), --, (B7,77)}

Now r = 2, the graph of B is illustrated in Figure 5.10 and consists of 3 com-

ponents; two simple loops and one loop joined to an edge. SOLVE step (a) gives

13 = 6 and 7,9 = 4 from the simple loops. SOLVE (c) gives 2z, = 5 = x; = 2

2

from node 7, changes the label of 3 to 8 + z; = % and the remaining simple loop

21

at r3 gives T = 5.
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1 X7 ————— Basic-Edge
T ) 5 ************* Non-Basic Edge
1.2 (-2.2)
.’135// x3
< @-1 Ts
Z10 4 1 6
334 x2
(-32) (-1.2)
T3 8
Ty

Figure 5.10: The graph of vertex 2

The second vertex is:

T g
T 6
V| | = (5.40)
T9 %
T10 4
Step 4 gives, via SOLVE,
0 -1 0 5 0
' -1 ) 2 ) 0 , 0 , 3
2 —1 -3 2 0
0 0 1 2 1

Performing simplex pivots from V5 on each of these in turn gives:
Bs + B U {2} — {9} = {1,8,2,10}
18 < {3,4,5,6,7} v+ 10— {2} ={3,4,5,6}
Bo < P U {3} — {8} = {1,3,9,10}
Yo < {2,4,5,6, 7} v 7o — {3} ={4,5,6}
Bio < B2 U {4} — {10} = {1,8,9,4}
Y0 < {2,3,5,6,7}  vo < 7o — {4} = {5,6}
B < B U {5} — {10} ={1,8,9,5}



CHAPTER 5. A BOP ALGORITHM FOR VE IN LI(2) 101

Basic-Edge

,,,,,,,,,,,,, Non-Basic Edge

Figure 5.11: The graph of vertex 3

yi1 ¢ {2,3,4,6,7} o« v — {5} = {6}
Bz = B2 U {6} — {8} = {1,6,9,10}
Y2 < {2,3,4,5,7} <y — {6} =10
All 8 correspond to new BFS so we have: p =12, L = {(51,0), (82, 0), ..., (B12, 712) }

Now r = 3, the graph of Bj is given in Figure 5.11 and consists of three compo-
nents; two simple loops and one edge attached to another simple loop. SOLVE
gives 7 = 5 and x19 = 4 from step (a), step (c) gives 2z9 = 8 or zo = 4 from node

ry and then zg = 25 + 6 = 10 from node rs.

The third vertex is:

T 5
T 10
Vae| 0| = (5.41)
T9 4
L xlo = L. 4 =
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As y3 ={1,3,4,5,6} we update a; using SOLVE to get:

2

N |—

0

Simplex pivoting gives 7 as the exiting variable to give § = {1,8,2,10} which is

identical to B3 so no new vertex is found and

Y3 < V3 — {1} = {3a4a51 6}5 Y8 < Vs — {7} = {3145 5: 6}

Processing the rest of 73 through SOLVE gives:

—2 0 1 0

2 |, S, 01l . 3
as = a, = \ a5 = g =

0 3 0 0

0 1 2 1

Performing simplex pivots from V3 on each of these gives:
Bz < B3 U {3} — {8} ={7,3,2,10}
Y13 < {1,4,5,6,8}  y3 < 713 — {3} = {4,5,6}
Bis + B U {4} — {10} = {7,8,2,4}
y1a < {1,3,5,6,9} 3« 3 — {4} ={5,6}
Bris < B3 U {5} — {10} = {7,8,2,5}
Y15 = {1,3,4,6,9} 73 ¢ 3 — {5} = {6}
Bre < B3 U {6} — {8} ={7,6,2,10}
716 ¢+ {1,3,4,5,9} <+ —{6}=0
All these 3 correspond to new BF'S, so we have: p =16, L = {(01,0), .., (83, 0), .., (516, 716) }

Now r = 4, the graph of B, is given in Figure 5.12 which consists of three com-
ponents; two simple loops and one loop joined to an edge. SOLVE step (a) gives:
zg = 8 and 19 = 4. SOLVE (c) gives 2x3 = 6 or 23 = 3 from node ry, and
T7 =54 2x3 =11.
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Basic-Edge

Non-Basic Edge

Figure 5.12: The graph of vertex 4

The 4" vertex is:

T7 11
T3 3
Vi: = (5.42)
4 is) 8
T10 4

As y4 ={1,2,4,5,6} updating a;, as using SOLVE gives:

2 -1

! 0 7 l
a, = Gy = 2
-1 2

0 0

Simplex pivoting exchanges z; for z; to give 8 = {1,3,9,10} which is identical to
By s0
Y4 <_74_{1}: {2a4a5a6}7 Yo <_79_{7}: {2143556}

and x5 for x¢ to give f = {7,3,2,10} which is identical to 53 so

Y4 £ Vi — {2} = {45 5a 6}5 Y13 < Y13 — {9} = {11 4a 5: 6}
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SOLVE then gives:

0 1

' 0 ' 0
a, = as =

-3 0

1 2

Performing simplex pivots from V; on each of these gives:
Bi7 + BsU {4} — {10} = {7,3,9,4}
mr {1,2,5,6,8} 4« v4— {4} ={5,6}
Bis < BaU {5} — {10} = {7,3,9,5}
ms < {1,2,4,6,8t s < yu— {5} = {6}
As 4 = {6} we update ag using SOLVE to get:

w

— O Nlw

Simplex pivoting gives z3 as the exiting variable to give § = {7,6,9,10} which is

identical to 87 so no new vertex is found and
Y7 —{6}=0, 7 —{3}={1,2,4,5}

We now have: p =18, L = {(51,0), .., (67, 0), (B1s,7118) }

Now r = 5, the graph of Bs is illustrated in Figure 5.13 which consists of three
components; two simple loops and an edge joined to a loop. SOLVE step (a) gives
xz7 = b and zg = 6 from the simple loops. SOLVE (c) gives x4 = 4 from node 74,

and then zg = 3z4 + 8 = 20.

The 5% vertex is:

Ty 5
I 6
Vs = (5.43)
o) 20
X4 4
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Basic-Edge

5 fffffffffffff Non-Basic Edge

Figure 5.13: The graph of vertex 5

As v5 ={1,2,3,5,6} we update a1, as, as, as using SOLVE to get:

2 0 —2 1
) 0 , -1 , 2 0
a; = ay = a3 = a5 =

-1 2 0 6

0 0 0 2

Simplex pivoting exchanges z; for x; to give § = {1,8,9,4} which is identical to

B9 so no new vertex is found and

Y5 < V5 — {1} = {274a5a6}a Y10 < Y10 — {7} = {2: 37 5a6}

and zo for z9 to give 8 = {7,8,2,4} which is identical to 8i4 so no new vertex is

found and

V5 <_’Y5_{2}: {3a576}7 714(_714_{9}: {1a3”5a6}

and z3 for zg to give 8 = {7,3,9,4} which is identical to 8;7 so no new vertex is

found and

Y5 ¢ 5 — 13} = {5,6}, 7+ 7 — {8} ={1,2,5,6}
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and x5 for x4 to give 8 = {7,8,9,5} which is identical to B¢ so no new vertex is

found and

¥s < s — {5} = {6},

Step 4 gives through SOLVE,

W W O

Performing a simplex pivot from V5 on this gives:
ﬁlg — ﬁg, U {6} — {8} = {7, 6, 9, 4}
19 < {1,2,3,5,10} 5+ v —{6} =0

We have: p =19, L = {(81,0), .., (Bs5,0), ..., (B19,719) }

Y6 < Y6 — {4} = {1,2,3,6}

Now r = 6, the graph of Bg is illustrated in Figure 5.14 which consists of three

components; two simple loops and an edge joined to a loop. SOLVE step (a) gives

xg = 6 and z9 = 8 from the simple loops. SOLVE (c) gives 2z5 = 4 or x5 = 2 from

node r4, and then z7 =5 — x5 = 3.

The 6 vertex is:

As v6 = {1,2,3,6} we update ay, as, a3 using SOLVE to get:

Ve :

X7
xg
Ty

Zs

N O O W

I

(5.44)

Simplex pivoting exchanges z; for x; to give § = {1,8,9,5} which is identical to
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Basic-Edge

Non-Basic Edge

Ti0 4 T 6

Figure 5.14: The graph of vertex 6

11 so no new vertex is found and

Y6 < V6 — {1} = {27 3a 6}a Y11 & Y11 — {7} = {21 37 4; 6}

and z, for zg to give 8 = {7,8,2,5} which is identical to Bi5 so no new vertex is

found and

Yo < V6 — {2} = {3a6}a Y15 < Y15 — {9} = {17 3: 47 6}

and z3 for zg to give 8 = {7,3,9,5} which is identical to 8;g so no new vertex is

found and

Y6 < Yo — {3} = {6}’ Y18 € Y18 — {8} = {1’21476}

Step 4 gives through SOLVE,

N =

Q
)
I

3
0

1
2

Performing a simplex pivot from Vj on this gives:
ﬁgo — ﬁ@ U {6} — {8} = {7, 6, 9, 5}
Yoo {1,2,3,4,10} s+ 76— {6} =10
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fffffffffffff Non-Basic Edge

(12) . 22
Ty 3 T3
Tg 3 ,"
,r‘4 | (Syl) @\\\//
AN | P xs
Tio 4 T 6
ey
Ty | . Zo
sy N\ (12
8
Ty

Figure 5.15: The graph of vertex 7

We have: P = 20, L= {(ﬂl; @), ey (ﬁﬁ,@), ....... , (520,’}/20)}.
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Now r = 7, the graph of By is illustrated in Figure 5.15 which consists of three

components; two simple loops and an edge attached to a loop. SOLVE step (a)

gives z7 = 5 and xg = 8 from the simple loops. SOLVE (c) gives 3z = 6 or 24 = 2

from node 79, and then z1g = 4 — g = 2.

The 7t vertex is:

Ty 5

z 2
V| | =

T9 8

T10 2

As v, = {1,2,4,5} we update ay, as, a4, as using SOLVE to get:

2 0 0 1

0 | . = | 0 | . 0
a; = Ay = a, = as =

~1 2 -3 0

0 3 1 2

(5.45)
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Simplex pivoting exchanges x; for z7 to give 8 = {1,6,9,10} which is identical to

(12 so no new vertex is found and

Y7 & Y7 — {1} = {2a 4a 5}a Y12 & Y12 — {7} = {Qa 37 4) 5}

and z, for z9 to give § = {7,6,2,10} which is identical to S so no new vertex is

found and

Y7 & Y7 — {2} = {45 5}a Y16 < Y16 — {9} = {17 3: 4a 5}
and x4 for x1o to give § = {7,6,9,4} which is identical to Bi9 SO no new vertex is

found and

Yo & V71— {4} = {5}7 Y19 < Y19 — {10} = {1a27375}

and z5 for xyo to give § = {7,6,9,5} which is identical to B2y so no new vertex is

found and
Y7 — {5} =0, a0 < 720 — {10} ={1,2,3,4}

There is no new vertex adjacent to V7; p remains 20.

Now r = 8, the graph of By is illustrated in Figure 5.16 which consists of two com-
ponents; one simple loop and loop joined to two adjacent edges. SOLVE step (a)

gives x19 = 4 from the simple loop. SOLVE (c) gives 2x; = 5 or 21 = g from node

r1, then zo = “%:% and x8=x2+6:%.
So vertex 8 is: i i -
T g
45
_/L‘ =
Vs "= N (5.46)
.7/‘2 Z
10 4
Step 4 gives via SOLVE,
_ - _ . R o
3 3 1
a/’ = 2 a’ = 2 a/’ = 4 a/l — 3
3 1 4 3 5 1 6 0
2 2 1
0 1 2 1
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Basic-Edge

5 ,,,,,,,,,,,,, Non-Basic Edge

Figure 5.16: The graph of vertex 8

Performing simplex pivots from Vg on each of these gives:
Bor < Bz U {3} — {8} ={1,3,2,10}
o1 < {4,5,6,7,9} s < 75 — {3} ={4,5,6}
Bas 4 Bs U {4} — {10} = {1,8,2,4}
Y2 < {3,5,6,7,9t s < s — {4} ={5,6}
Bos < Bz U {5} — {10} = {1,8,2,5}
Yo3 < {3,4,6,7,9} s < s — {6} = {6}
Bos = B U {6} — {8} = {1,6,2,10}
You < {3,4,5,7,9} g+ —{6} =0
All B correspond to new BF'S, so we have: p =24, L = {(81,0), .., (Bs, D), -.(Bo4, Y24) }

Now r = 9, the graph of By is illustrated in Figure 5.17 which consists of two
components; one simple loop and loop joined to two adjacent edges. SOLVE step

(a) gives x19 = 4 from the simple loop. SOLVE (c) gives 2z3 = 6 or 3 = 3 from

node 7o, then z; = 222 = WL and 29 = 2, + 8 = Z.
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— Basic-Edge

Non-Basic Edge

The 9 vertex is:

T %
T3 3
Vo = (5.47)
27
Tg >
- '7/‘10 L 4 -

As v9 = {2,4,5,6} we update ay using SOLVE to get:

Simplex pivoting gives 9 as the exiting variable to give § = {1, 3,2,10} which is

identical to B2; so no new vertex is found and

Yo v — {2} ={4,5,6}, a1 721 — {9} ={4,5,6,7}
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Step 4 gives via SOLVE,

0 3
10 |0
ay = 3 a5 = 1

L 1 . _2_

Performing simplex pivots from V4 on each of these gives:
Bos + By U {4} — {10} = {1,3,9,4}
Y5 < {2,5,6,7,8}  y9 < v — {4} = {5,6}
Bas + By U {5} — {10} = {1,3,9,5}
o6 < {2,4,6,7,8} 9« 79— {5} = {6}
We update ag using SOLVE to give:

IS
S~
Il
— Nl W N

Simplex pivoting gives 3 as the exiting variable to give § = {1,6,9,10} which is

identical to 12 so no new vertex is found and
Yo —{6} =0, 12 72— {3} ={2,4,5}
We have: b= 267 L= {(IBI: w)a s (/B9a@)a "(B267726)}
Now r = 10, the graph of By, is illustrated in Figure 5.18 which consists of two
components; one simple loop and a loop joined to two adjacent edges. SOLVE step

(a) gives zg = 6 from the simple loop. SOLVE (c) gives 2z = 5 or 2y = 2 from

node 7, then x4 = 4 from node r, and g = 21 + 324 + 8 = % from node r3.

Vertex 10 is:

X1 g
T 6
Vie: | | = (5.48)
45
T9 o5
T4 4
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Basic-Edge

fffffffffffff Non-Basic Edge

Figure 5.18: The graph of vertex 10

As 110 = {2,3,5,6} we update as, a(3), a5) using SOLVE to get:

0 —1 :

N e O VR |0

ay = 5 as = 4 as = %
i 0 | ] 0 ] 2_

Simplex pivoting exchanges zo for x¢ to give § = {1,8,2,4} which is identical to

B2 s0 no new vertex is found and

Y10 — Y10 — {2} = {35 5a 6}7 Y22 — Y22 — {9} = {Ba 5) 6) 7}

and z3 for zg to give 8 = {1,3,9,4} which is identical to S25 so no new vertex is

found and
Y10 ¢ Y10 — {3} = {5,6}, 25 < 725 — {8} ={2,5,6,7}

and x5 for x4 to give 8 = {1,8,9,5} which is identical to 8;; so no new vertex is

found and

Y10 ¢ Y10 — {5} = {6}, i1 <y — {4} ={2,3,6}
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Basic-Edge

Non-Basic Edge

Ti0 4 T 6

Figure 5.19: The graph of vertex 11

Step 4 gives via SOLVE,

1)
ES
I

— W w o

Performing a simplex pivot from V4 gives:
Bor = Pro U {6} — {8} = {1,6,9,4}
vor < {2,3,5,7,10}  v10 ¢ 10 — {6} =0
We have: p =27, L = {(B1,0), .., (B10,0), -.(B27, 727) }

114

Now r = 11, the graph of Bj; is illustrated in Figure 5.19 which consists of two

components; one simple loop and loop joined to two adjacent edges. SOLVE step

(a) gives g = 6 from the simple loop. SOLVE (c) gives 2z5 = 4 or z; = 2 from

b—uxy
2

node ry, then 2z1 + 25 =5 or 1 =

= 3 from node r; and 29 =z + 8 =

19

5 -
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Vertex 11 is:

T %
xIg 6
‘/11 . = 19 (549)
TIg D)
Is 2

As 11 = {2, 3,6} we update ag, a3 using SOLVE to get:

0 -1
! _]- ' 2
2 -1
0 0

Simplex pivoting exchanges zo for x¢ to give § = {1,8,2,5} which is identical to

(23 so no new vertex is found and

Y1 711 — {2} ={3,6}, 23 < 723 — {9} ={3,4,6,7}

and z3 for zg to give 8 = {1,3,9,5} which is identical to 826 so no new vertex is

found and
i1 — {3} = {6}, o6 < 726 — {8} = {2,4,6,7}

Step 4 gives via SOLVE,

=

N

N

Performing a simplex pivot from V;; gives:
Bos < P11 U{6} — {8} ={1,6,9,5}
s < {2,3,4,7,10}  yy < 1 — {6} =0
We have: p =28, L = {(61,0), .-, (B11,0), --(Bas, 728) }

Now r = 12, the graph of B, is illustrated in Figure 5.20 which consists of two
components which are simple loops each joined to an edge. SOLVE (c) gives 221y =5

or xy = % from node rq, g = 8+ 1z = 22—1 from node r3 then 3z = 6 or x5 = 2 from
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RN Basic-Edge
Ty
,,,,,,,,,,,,, Non-Basic Edge
5
1
@) (-22)
T5 R
Te /"
4 (31 >@
N % ‘7"8
T10 4 T 6
e~y
Ty )
-31) R )
T3 8
g

Figure 5.20: The graph of vertex 12

node o, 19 = 4 — 1 = 2 from node ry4.

So vertex 12 is:

I g
Te 2
Vig : =, (5.50)
T9 5
T10 2 ]

As 19 = {2,4,5} we update ay, a4, as using SOLVE to get:

0 0 :
’ _% ’ 0 ’ 0
2 -3 1
1
| 5 | 1] [ 2]

Simplex pivoting exchanges xo for z9 to give 8 = {1,6,2,10} which is identical to

P24 S0 no new vertex is found and

Y12 £ Y12 — {2} = {45 5}, Yo4 £ You — {9} = {3, 4,5, 7}

and z3 for x1g to give § = {1,6,9,4} which is identical to B27 S0 no new vertex is
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Basic-Edge

Non-Basic Edge

Figure 5.21: The graph of vertex 13

found and

Y12 < Y12 — {4} = {5}’ Yor < Y1 — {10} = {2’ 3a 5’ 7}

and z5 for xqg to give § = {1,6,9,5} which is identical to 25 so no new vertex is

found and

Y2 Y12 — {5} =0, yos < 28 — {10} ={2,3,4, 7}

There is no new vertex adjacent to Viy; p remains 28.

Now r = 13, the graph of B3 is illustrated in Figure 5.21 which consists of two
components; one simple loop and a loop joined to two adjacent edges. SOLVE (a)
gives 19 = 4 from node r4,. SOLVE (c) gives 2zo = 8 or zo = 4 from node r3 and

213 = 29 + 6 or x3 = 5 from node 7o, then x7; = 5 + 225, = 15 from node r4.

Vertex 13 is:

X7 15
T 5)
Vis: | 0 | = (5.51)
i) 4
- xlo = -~ 4 =
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As 13 ={1,4,5,6} we update a; using SOLVE to get:

Simplex pivoting gives 7 as the exiting variable to give § = {1, 3,2,10} which is

identical to (21 so no new vertex is found and

Y13 — Y13 — {1} = {45 5a 6}3 Y21 — Y21 — {7} = {43 5a 6}

Step 4 gives via SOLVE,

W Bw Nw

—
N O O

Performing simplex pivots from Vj3 on each of these gives:
Bag < P13 U {4} — {10} = {7, 3,2,4}
Yoo < {1,5,6,8,9} 3 13— {4} = {5,6}
Bso + Bz U {5} — {10} = {7,3,2,5}
730 ¢ {1,4,6,8,9}  m3 < 713 — {5} = {6}
As 713 = {6} we update ag using SOLVE to get:

w

e
o
Il

— O Nlw

Simplex pivoting gives z3 as the exiting variable to give § = {7,6,2,10} which is

identical to 14 so no new vertex is found and
T3 13— {6} =0, v 116 — {3} ={1,4,5}

We have: p =30, L = {(81,0), .-, (813,0), --(B30,¥30) }
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— Basic-Edge

fffffffffffff Non-Basic Edge

Figure 5.22: The graph of vertex 14

Now r = 14, the graph of By, is illustrated in Figure 5.22 which consists of two
components; one simple loop and loop joined to two adjacent edges. SOLVE step
(a) gives 7 = 5 from the simple loop. SOLVE (c) gives z4 = 4 from node r4, then

2083 — 31y =8 or x5 = @ = 10 from node r3 and xg = x5 + 8 = 16 from node r5.

Vertex 14 is:

X7 5
xTg 16
Vig : = (5.52)
T9 10
Ty 4

As 14 = {1,3,5,6} we update ay, as, a5 using SOLVE to get:

2 —2 1

' _% ’ 2 ! 3
al = 1 a3 = CL5 ==

-1 0 3

0 0 2

Simplex pivoting exchanges z; for x; to give § = {1,8,2,4} which is identical to
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(P22 so no new vertex is found and

Y14 < Y14 — {1} = {37 9, 6}7

Yoo <— 22 — {7} = {3,5,6}

120

and z3 for zg to give 8 = {7,3,2,4} which is identical to B29 s0 no new vertex is

found and

Y14 — Y14 — {3} = {57 6}: Y29 — Y29 — {8} = {]-7 5767 9}

and x5 for x4 to give 8 = {7,8,2,5} which is identical to 8;5 so no new vertex is

found and

Y14 ¢ Y1a — {5} = {6},  v15s & 115 — {4} = {1,3,6}

Step 4 gives via SOLVE,

Performing a simplex pivot from V4 on this gives:

B3+ B U {6} — {8} ={7,6,2,4}

Y51 ¢ {1,3,5,9,10} vy — {6} =0
We have: p =31, L = {(51,0), .., (814,0), ..(Bs1,731) }

o

— NWw N[

Now r = 15, the graph of Bi; is illustrated in Figure 5.23 which consists of two

components; each a simple loop joined to an edge. SOLVE (c) gives 2z5 = 4 or

x5 = 2 from node r4 and z7 = 5 — x5 = 3 from node r; then 2x5 = 8 or 9 = 4 from

node r3 and g = T5 + 6 = 10 from node r5.

Vertex 15 is:
X7
Zg
Vis :

T2

Ts

(5.53)
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Figure 5.23: The graph of vertex 15

As 15 = {1, 3,6} we update a;, a3 using SOLVE to get:

2 —2
1
! Y ' 2
al = i (L3 =
0 0

Simplex pivoting exchanges z; for xz7 to give § = {1,8,2,5} which is identical to

(23 so no new vertex is found and

Y15 < 715 — {1} = {3,6}, 23 < 723 — {7} = {3,4,6}

and z3 for zg to give 8 = {7,3,2,5} which is identical to B3y so no new vertex is

found and

Y15 — Y15 — {3} = {6}7 Y30 — Y30 — {8} = {1a47 6a 9}

Step 4 gives via SOLVE,

N[

@
)
Il

o W

N
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Figure 5.24: The graph of vertex 16

Performing a simplex pivot from Vj5 on this gives:
Ba2 < Bi1s U{6} — {8} ={7,6,2,5}
Y2 < {1,3,4,9,10} 15 < 15 — {6} =10

We have: p =32, L = {(B1,0), .-, (B15,0), --(Bs2, 732) }

Now r = 16, the graph of Big is illustrated in Figure 5.24 which consists of two
components; one simple loop and a loop joined to adjacent edges. SOLVE (a) gives
xz7 = 5 from node r;. SOLVE (c) gives 225 = 8 or 25 = 4 from node r3, then

3x3 =6+ 29 Or T3 = 13—0 from node 79, and z10 =4 — 2¢ = % from node 74.

Vertex 16 is given as:

Wi 5
P 10
Vie Cl=17 (5.54)
i) 4
| Z10 ] | % i
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As 16 = {1,4,5} we update ay, a4, as using SOLVE to get:

2 0 1
1 1
’ _g ’ ) ’ 0
_1 _3 0
2 2
1 3
| 5 | 2 | 2 )

Simplex pivoting exchanges z; for z7 to give 8 = {1,6,2,10} which is identical to

(B4 s0 no new vertex is found and

Y16 < 16 — {1} = {4,5},  you ¢ v2a — {7} ={3,4,5}

and z4 for xqg to give § = {7,6,2,4} which is identical to $3; so no new vertex is

found and

Y16 < Yi6 — {4} = {5}a Y31 < VY31 — {10} = {L 3,9, 9}

and z5 for xqg to give § = {7,6,2,5} which is identical to B3, so no new vertex is

found and

Y16 < Y16 — {0} =0,  y32 732 — {10} ={1,3,4,9}

No new vertex is found adjacent to Vig; p remains 32.

Now r = 17, the graph of B;; is illustrated in Figure 5.25 which consists of two
components; each a simple loop joined to an edge. SOLVE (c) gives 4, = 4 from
node 74, then xg = 8 + 3x4 = 20 from node r3, and 2x3 = 6 or x3 = 3 from node r,

then z7 = 223 +5 = 11 from node r;.

Vertex 17 is:

ZT7 11
I3 3
Viz : = (5.55)
Tg 20
T4 4

As y17 ={1,2,5,6} we update a; using SOLVE to get:
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Basic-Edge

Non-Basic Edge

Figure 5.25: The graph of vertex 17

2 -1 1 3

’ O / -1 / 0 / 8
a, = ay = 2 a5 = a6 = 2
-1 2 6 3

0 0 2 1

Simplex pivoting exchanges x; for xz7 to give § = {1, 3,9,4} which is identical to
(o5 so0 no new vertex is found and
Y17 ¢ Y7 — {1} =1{2,5,6}, 725 < v25 — {7} ={2,5,6}

and zo for zg to give 8 = {7,3,2,4} which is identical to B29 s0 no new vertex is

found and

Y17 ¢ 17 — {2} = {5,6},  v29 < 7290 — {9} = {1,5,6}
and x5 for z4 to give 8 = {7,3,9,5} which is identical to 8;g so no new vertex is

found and

Y7 = e — {5} = {6}, s < s — {4} ={1,2,6}
and x¢ for 3 as the exiting variable to give § = {7,6,9,4} which is identical to 59

so no new vertex is found and

Y7 =17 — {6} = 0, Y19 719 — {3} =1{1,2,5}
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Figure 5.26: The graph of vertex 18

There is no new vertex found adjacent to Vi7; p remains 32.

Now r = 18, the graph of Big is illustrated in Figure 5.26 which consists of two
components; one simple loop and a loop joined to two adjacent edges. SOLVE (a)
gives £g = 8 from node r3. SOLVE (c) gives 2x3 = 6 or x3 = 3 from node 75, then
2x5 = 4 or x5 = 2 from node r4 and 7 = 5 + 223 — x5 = 9 from node 7;.

The 18" vertex is:

X7

xs3
Vig : =
Ty

(5.56)

N o W O

Ts

As 15 = {1,2,6} we update a; using SOLVE to get:

2 -1 2
0 , 1 , 3
al = a2 = 2 CI,G = 2
-1 2 0
0 0 :

Simplex pivoting exchanges z; for x7 to give § = {1,3,9,5} which is identical to
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Basic-Edge
z7
fffffffffffff Non-Basic Edge
5
w o (22
T5 /// i \\\ I3
s Tg (3.1)
T4 : o ). o
. : R xg
Tio 4 T 6
@)
Ty | o Xg
(-3.1) L)
8
Ty

Figure 5.27: The graph of vertex 19

(26 s0 no new vertex is found and

T8 — Y1is — {1} ={2,6}, 726 < 726 — {7} = {2,4,6}

and zo for zg to give 8 = {7,3,2,5} which is identical to B3y so no new vertex is

found and

Y18 < Y18 — {2} = {6}, 30 < 130 — {9} = {1,4,6}

and zg for z3 to give 8 = {7,6,9,5} which is identical to B2y so no new vertex is

found and
Y1s <~ 118 — {6} = 0, o0 < Y20 — {3} =1{1,2,4}

There is no new vertex found adjacent to Vig; p remains 32.

Now r = 19, the graph of Bjg is illustrated in Figure 5.27 which consists of two
components; one simple loop and a loop joined to two adjacent edges. SOLVE (a)
gives x7 = 5 from node 1. SOLVE (c) gives 3x¢ = 6 or x¢ = 2 from node 5, then

x4 =4 — xg = 2 from node r4 and z9 = 8 + 3z, = 14 from node rj.
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Vertex 19 is:

T 5
Tg 2
Vig : = (5.57)
Tg 14
Ty 2

As 19 = {1,2,5} we update a; using SOLVE to get:

2 0 1
/ 0 i _% / 0
-1 3 6
4 5 2

Simplex pivoting exchanges z; for x; to give § = {1,6,9,4} which is identical to

(27 so no new vertex is found and

Y9 19 — {1} ={2,5},  yor < v2r — {7} ={2,3,5}

and z, for z9 to give 8 = {7,6,2,4} which is identical to 83; so no new vertex is

found and

Y9 < mo — {2} = {5}, vz <z — {9} ={1,3,5}

and x5 for x4 to give 8 = {7,6,9,5} which is identical to 359 s0 no new vertex is

found and
Y19 <= Y19 — {5} = 0, 20 < Y20 — {4} ={1,2}

There is no new vertex found adjacent to Vig; p remains 32.

Now r = 20, the graph of By is illustrated in Figure 5.28 which consists of two
components; one simple loop and a loop joined to two adjacent edges. SOLVE (a)
gives £ = 8 from node r3. SOLVE (c) gives 3z¢ = 6 or x¢ = 2 from node 7, then

Ty = 4‘% = 1 from node r4 and 7 = 5 — x5 = 4 from node r;.
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T7 — Basic-Edge
5 fffffffffffff Non-Basic Edge
(-22)
T3
@3.1) @
i N | B T
Tio 4 'z 6
ey
Ty | . To
(31 L)
8
Tg

Figure 5.28: The graph of vertex 20

Vertex 20 is:

X7

Te
Vao : =
Ty

(5.58)

— 00 N

Ts

As 799 = {1, 2} we update a; using SOLVE to get:

2 =
! O ! -1
—1 2
0 G

Simplex pivoting exchanges z; for x; to give § = {1,6,9,5} which is identical to

[Bog so0 no new vertex is found and

Yoo <= 720 — {1} = {2}, 78 ¢ 728 — {7} = {2,3,4}

and z, for zg to give 8 = {7,6,2,5} which is identical to 332 s0 no new vertex is

found and

Yoo < 120 — {2} =0,  y30 732 — {9} = {1, 3,4}
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Basic-Edge

Non-Basic Edge

Figure 5.29: The graph of vertex 21

There is no new vertex found adjacent to V5; p remains 32.

Now r = 21, the graph of By; is illustrated in Figure 5.29 which consists of two
components; one simple loop and a cycle. SOLVE (a) gives 219 = 4 from node 74.

SOLVE (c. parametrically) gives: Let zo = «, then z; = 229 — 8 = 2a — 8 from

5—x1

2 = 22221 from node 1. From node ry, 25 = 223 —6 = 40 —27.

node r3 and x3 =

Hence o =40 —27= a=9. So 2, = 9,71 =18 — 8 = 10,23 = 2.

Vertex 21 is:

I 10

€3
Vor: =

T2

(5.59)

B~ © 5

Step 4 gives via SOLVE,

N Wi ol wIN
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Performing simplex pivots from V5; on each of these gives:
Baz + B U {4} — {10} = {1,3,2,4}
Y33 < {5,6,7,8,9} o1 < y21 — {4} = {5,6}
Bsa + B U {5} — {10} = {1,3,2,5}
Y34 < {4,6,7,8,9} Y21 v — {5} = {6}

We update ag using SOLVE to give:

1

Simplex pivoting gives 3 as the exiting variable to give § = {1,6,2,10} which is

identical to 24 so no new vertex is found and
Yor <= Y1 — {6} =0, o4 v2u — {3} = {4, 5}

We now have: p =34, L = {(61,0), .., (B21,0), (B34, 734) }-

Now r = 22, the graph of By, is illustrated in Figure 5.30 which consists of one

component; one loop joined to three adjacent edges. SOLVE (c) gives 2z; = 5 or

T = g from node r1, x4 = 4 from node 74, x5 = % = % from node 79, and
Tg =Ty + 6= % from node ry.
Vertex 22 is: 3 ) L
5
I )
69
ZIg -
4
Vag = (5.60)
45
To v
X4 4

As 799 = {3, 5,6} we update as, a5 using SOLVE to get:
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—— Basic-Edge

5 Non-Basic Edge
w) (22
Ty, a \\\'11"3

Figure 5.30: The graph of vertex 22

-1 %

: 1 |7
9= BT | s
T2 1

0 2

Simplex pivoting exchanges z3 for xg to give § = {1, 3,2,4} which is identical to

(B33 so no new vertex is found and

Yoz = Va2 — {3} = {5,6}, 33 < 733 — {8} = {5,6,7,9}

and x5 for z4 to give 8 = {1,8,2,5} which is identical to B23 so no new vertex is

found and
Yoz = Yoz — {5} = {6}, 23 723 — {4} = {3,6}

Step 4 gives via SOLVE,

o

Q
o
I
— Nw NI
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— Basic Edge

N7

Non-Basic Edge

Figure 5.31: The graph of vertex 23

Performing a simplex pivot from V5, on this gives:
Bss < B U{6} — {8} ={1,6,2,4}
735 < {3,5,7,9,10}  Yog 22 — {6} =0

We have: p =35, L = {(81,0), ..., (Ba2,0), ..(835, 735) }

Now r = 23, the graph of By is illustrated in Figure 5.31 which consists of one

component; one loop joined to three adjacent edges. SOLVE (c) gives 2z5 = 4 or

x5 = 2 from node r4, 1 = 5‘% = % from node r{. 2y = H% = % from node 3.
and T3 = 29+ 6 = % from node 75.
Vertex 23 is: L L
3
Al 5
43
xTg -
1
Vas = (5.61)
x 19
2 4
Iy 2

As 793 = {3,6} we update a3 using SOLVE to get:
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Simplex pivoting gives zg as the exiting variable to give § = {1,3,2,5} which is

identical to B34 so no new vertex is found and

Y23 < Y23 — {3} = {6}5 Y34 < V34 — {8} = {4, 65 7a 9}

Step 4 gives via SOLVE,

Performing a simplex pivot from V53 on this gives:
Bss < P23 U {6} — {8} = {1,6,2,5}
Y36 {3, 4, 7, 9, 10} Y23 < Yo3 — {6} = @

Now we have: p =36, L = {(81,0), .., (B23,0), -- (536, 736) }

Now r = 24, the graph of By, is illustrated in Figure 5.32 which consists of one

component; one loop joined to three adjacent edges. SOLVE (c) gives 2z; = 5 or

21 = 2 from node ry, 2o = 8 + z; = & from node r3, zg = %2 = L from node r,

and 219 = 4 — g = + from node r4.
1

Vertex 24 is:

5
I 9
15
Te -
4
‘/24 . = o1 (562)
T9 vy
1
T10 1

As 794 = {4,5} we update a4 using SOLVE to get:
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Basic-Edge

fffffffffffff Non-Basic Edge

1

0 2

_1 1

0 = 2 [ | 12
4 3| 1
2 4

3 23

| 2 | | 12

Simplex pivoting exchanges z4 for x1g to give § = {1,6, 2,4} which is identical to

(B35 so no new vertex is found and

You <= vou — {4} = {5}, 35 35 — {10} = {3,5,7,9}

and z5 for xyo to give § = {1,6, 2,4} which is identical to B35 so no new vertex is

found and

Yo4 £ Yo4 — {5} = 07 Y36 < VY36 — {10} = {37 47 77 9}

There is no new vertex found adjacent to Va4; p remains 36.

Now r = 25, the graph of By is illustrated in Figure 5.33 which consists of one

component; one loop joined to three adjacent edges. SOLVE (c) gives 2z3 = 6 or

x3 = 3 from node ry while 4 = 4 from node ry, z; = 2“3—;5 = 12—1 from node r; and

T9g =21+ 3x4+8= % from node 7j3.
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— Basic-Edge

,,,,,,,,,,,,, Non-Basic Edge

Figure 5.33: The graph of vertex 25

Vertex 25 is:

I %
I3 3
Vas =1 . (5.63)
Zg 0}
X4 4

As 95 = {2,5,6} we update ay using SOLVE to get:

= N[O N[Ww Nw

Simplex pivoting exchanges zo for x¢ to give § = {1, 3,2,4} which is identical to

(33 so no new vertex is found and

Yos <= Y25 — {2} = {5,6}, 733 « 733 — {9} = {5,6,7}

and x5 for x4 to give 8 = {1,3,9,5} which is identical to B2 s0 no new vertex is

found and

Yos <= 725 — {5} = {6}, 726 < o6 — {4} = {2,6}
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Basic-Edge

Non-Basic Edge

Figure 5.34: The graph of vertex 26

136

and x¢ for 3 as the exiting variable to give 5 = {1,6,9, 4} which is identical to a7

so no new vertex is found and

Vo5 < 25 — {6} =0,

There is no new vertex adjacent to Va5; p remains 36.

Yor <= vor — {3} = {2, 5}

Now r = 26, the graph of By is illustrated in Figure 5.34 which consists of one

component; a simple loop joined to three adjacent edges. SOLVE (c) gives 2z3 = 6

or x3 = 3 from node ry while x5 = 2 from node r4, 1 =

and 29 =8+ 1z = % from node rj3.

Vertex 26 is:

Vas :

As 796 = {2,6} we update ay using SOLVE to get:

I
xs3
To9

T

W o

25
2

2

5+2x3—x5 __
=

% from node 71,

(5.64)
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N[= Ot NW ot

Simplex pivoting exchanges zo for x¢ to give § = {1, 3,2,5} which is identical to

B34 so no new vertex is found and

Yos = Yo — {2} = {6}, 34 < 130 — {9} = {4,6,7}

and xg for z3 to give 8 = {1,6,9,5} which is identical to S5 s0 no new vertex is

found and
Yo <= Yos — {6} =0, a8 < 708 — {3} = {2,4}

There is no new vertex found adjacent to Vag; p remains 36.

Now r = 27, the graph of By; is illustrated in Figure 5.35 which consists of one
component; a loop joined to three adjacent edges. SOLVE (c) gives 2z; = 5 or

T = g from node r; while 3z = 6 or g = 2 from node 79, 4 = 4 — g = 2 from

node 4 and xg = 8+ x; + 3x4 = 32—3 from node 73.

Vertex 27 is:

Ty g
Te 2
VY27 . = 5 (565)
Tg D)
T4 2

As 97 = {2,5} we update as, a5 using SOLVE to get:

0 ;
1
' _5 ’ 0
a2 = a5 -
13
3 2
1
- 3 - - 2

Simplex pivoting exchanges zo for x¢ to give § = {1,6,2,4} which is identical to

B35 so no new vertex is found and

Yor = Yor — {2} = {5}, s < 135 — {9} =1{3,5,7}
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Basic-Edge

Non-Basic Edge

T3
Te //
T4 G @
) z
Zi0 4 Z1 6
@~
Ty )
(-3.) p (-12)
T3
8
T9

Figure 5.35: The graph of vertex 27
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and x5 for x4 as the exiting variable to give § = {1,6,9,5} which is identical to £ag

so no new vertex is found and

Yor < Yar — {5} = 0,

No new vertex is found adjacent to Va7; p remains 36.

Yog ¢ Y28 — {4} = {2}

Now r = 28, the graph of Byg is illustrated in Figure 5.36 which consists of one

component; a loop joined to three adjacent edges. SOLVE (c) gives 3z = 6 or

r¢ = 2 from node ro while 2x5 = 4 — x4 or x5 = 1 from node r4, x1 =

node r1. and 9 = 8 + 1 = 10 from node rs;.

Vertex 28 is:

Vs -

As 798 = {2} we update ay using SOLVE to get:

4
Te

To9

T

5=%5 — 9 from

(5.66)
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1 L7

Basic-Edge
5 ,,,,,,,,,,,,, Non-Basic Edge
(-2,2)
T3
< P €s
Tio 4 x 6
@y
Lo T
31 L)
T3
8
Ty

Figure 5.36: The graph of vertex 28

Simplex pivoting gives g as the exiting variable to give 8 = {1,6,2,5} which is

identical to (35 so no new vertex is found and
Yog = vas — {2} =0,  v36 < 136 — {9} = {3,4,7}
There is no new vertex found adjacent to Vag; p remains 36.
Now r = 29, the graph of Byg is illustrated in Figure 5.37 which consists of one

component; a loop joined to three adjacent edges. SOLVE (c) gives x4 = 4 from

node 7, while z, = #3224 = 10 from node r3, z3 = 22 = 8 from node r, and

T7 = 5 + 223 = 21 from node 7.
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Basic-Edge

Non-Basic Edge

Figure 5.37: The graph of vertex 29

Vertex 29 is:

T 21
I3 8
Vag : = (5.67)
To 10
X4 4

As 99 = {1,5,6} we update a; using SOLVE to get:

W

3
2

N =

[\ W Nw
= NI O NI

0

Simplex pivoting exchanges z; for x7 to give § = {1, 3,2,4} which is identical to

(33 so no new vertex is found and

Vo9 < 729 — {1} = {5,6}, 33 + 733 — {7} = {5, 6}

and x5 for x4 to give 8 = {1,3,2,5} which is identical to B3y so no new vertex is

found and

Yoo <= Y29 — {5} = {6}, 30 < 730 — {4} = {1,6}
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Basic-Edge

Non-Basic Edge

Figure 5.38: The graph of vertex 30

and zg for z3 to give 8 = {7,6,2,4} which is identical to 83; so no new vertex is

found and
Y29 £ Y29 — {6} =0, Y31 < Y31 — {3} = {1; 5}

There is no new vertex found adjacent to Vag; p remains 36.

Now r = 30, the graph of Bs is illustrated in Figure 5.38 which consists of one
component; a loop joined to three adjacent edges. SOLVE (c) gives 2x5 = 4 or

rs = 2 from node r, while 225 = 8 or x5 = 4 from node r3, r3 = 6*% = 5 from
node ro and z7 = 223 — x5 + 5 = 13 from node 7;.
Wi 13
I3 5

Vao = (5.68)
i) 4
Iy 2

As 730 = {1,6} we update a1, ag using SOLVE to get:
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1
| N e
]
]
=3
Il
1
O nlw ot
]

~
N =

0 2

Simplex pivoting exchanges z; for x; to give § = {1,3,2,5} which is identical to

B34 so no new vertex is found and

Y30 <= Y30 — {1} = {6},  y34 ¢ 34 — {7} = {4,6}

and zg for z3 to give 8 = {7,6,2,5} which is identical to 832 so no new vertex is
found and

Y30 <= Y30 — {6} =0,  v32 32 — {3} = {1,4}

No new vertex is found adjacent to V3¢; p remains at 36.

Now r = 31, the graph of Bj; is illustrated in Figure 5.39 which consists of two
components; a simple loop and a cycle. SOLVE (a) gives z; = 5 from node 7.

SOLVE (c. parametrically) gives: Let 4 = a then x4 = 4 — o from node r, and

zy = 6 — 3a from node 75 s0 24 = ** = o = 5. Hence 24 = 3, 2o = ¥ and
Tg = %
Vertex 31 is: L L
X7 5
32
Te Y
Va : =7 (5.69)
T9 %
o] 6]
As 731 = {1, 5} we update a; using SOLVE to get:
2 1
_1 2
~1 9
1 4
| 9 | 3

Simplex pivoting exchanges x; for 7 to give § = {1,6,2,5} which is identical to
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L T4
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Figure 5.39: The graph of vertex 31

(35 so no new vertex is found and

Y31 31 — {1} = {5}, 35 < 135 — {7} = {3,5}

and x5 for x4 to give 8 = {7,6,2,5} which is identical to 332 s0 no new vertex is

found and
Y31 < V31 — {5} =0, 32 y32— {4} = {1}

There is no new vertex found adjacent to V31; p remains at 36.

Now r = 32, the graph of Bs, is illustrated in Figure 5.40 which consists of one
component; a loop joined to three adjacent edges. SOLVE (c) gives 2z = 8 or

4—x6
2

6+zo __
S =

T9 = 4 from node r; then x4 = 13—0 from node ry, 5 = , O Tg = % from
node rq and z7 = 5 — x5 = % from node r;.

Vertex 32 is:

T %
10
m —_—
Vi : 613 (5.70)
To 4
[ o] |5 )

As 732 = {1} we update a; using SOLVE to get:
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Basic-Edge

Non-Basic Edge

Ty

Figure 5.40: The graph of vertex 32

Simplex pivoting gives z7; as the exiting variable to give 8 = {1,6,2,5} which is

identical to (35 so no new vertex is found and

V32 < V32 — {1} = @; Y36 < V36 — {7} = {3;4}

No new vertex is found adjacent to V39; p remains 36.

Now r = 33, the graph of Bsj is illustrated in Figure 5.41 which consists of one
component; a cycle joined to an adjacent edge. SOLVE (c) gives x4 = 4 from node

r4 (using parametric method) let o = «, from node r3 z; = 2a — 20, from node

X3 = 4‘”2;45 and, from node r9, x5 = 4o — 51 = a = 17, Hence 9 = 9,23 =

23 —
DR Try = 14.
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Basic-Edge

fffffffffffff Non-Basic Edge

Vertex 33 is:

I 14
x 23
Vig: | | = 2 (5.71)
To 17
X4 4

As 733 = {5, 6} we update a5, ag using SOLVE to get:

Y wn o|n wie

_ W W W

Simplex pivoting exchanges x5 for x4 to give § = {1, 3,2,5} which is identical to

B34 S0 no new vertex is found and

Y33 Y33 — {5} = {6}, Y34 ¢ y34 — {4} = {6}

and x¢ for 3 as the exiting variable to give § = {1, 6, 2,4} which is identical to S35

so no new vertex is found and

Y33 < 33 — {6} =0, 35 735 — {3} = {5}
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Basic-Edge

Non-Basic Edge

Figure 5.42: The graph of vertex 34

There is no new vertex adjacent to V33; p remains 36.

Now r = 34, the graph of Bs, is illustrated in Figure 5.42 which consists of one
component; a simple cycle joined to an adjacent edge. SOLVE (c) gives 2z5 = 4

or z5 = 2 from node r, (using parametric method) let z; = «, then, from node 74

T3 = 2“;3, from node ry 9 = 2a — 9, and from node r3 r; = 4o — 26 = a = %
Hence 2, = %,xg = 23—5,353 = %.
Vertex 34 is: 3 ) L
26
I 3
43
I3 a
Vs = (5.72)
25
T 3
Ty 2

As 734 = {6} we update ag using SOLVE to get:

)
o~
I
ol olon 5|83 wlon
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Basic-Edge

,,,,,,,,,,,,, Non-basic Edge

Figure 5.43: The graph of vertex 35

Simplex pivoting gives z3 as the exiting variable to give § = {1,6,2,5} which is

identical to (35 so no new vertex is found and

Yaa < Y34 — {6} =0, 36 736 — {3} = {4}

No new vertex is found adjacent to V34; p remains 36.

Now r = 35, the graph of Bsj is illustrated in Figure 5.43 which consists of one
component; a cycle joined to an adjacent edge. SOLVE (c) gives 2x; = 5 or

T = g from node 71, (using parametric method) let 4 = «, then from node ry

1-4a

5 :>oz=%Hence

r¢ = 4 — «, from node ry z9 = 6 — 3, and from node r3 x4, =

Vertex 35 is:

5
Al 9
23
Te -
6
Vas = 4 (5.73)
i) >
1
T4 6

As 735 = {5} we update a5 using SOLVE to get:
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—— Basic-Edge

Non-Basic Edge

. Tg

Figure 5.44: The graph of vertex 36

I
o
Il

58 ols &l v

Simplex pivoting gives x4 as the exiting variable to give 8 = {1,6,2,5} which is

identical to (35 so no new vertex is found and

Y35 < Y35 — {6} =0, vz 36— {4} =0

There is no new vertex found adjacent to V35; p remains 36.

Now r = 36, the graph of Bsg is illustrated in Figure 5.44 which consists of one
component; a cycle. SOLVE (c. parametrically) gives: Let x; = «, from node 7

r5 = b — 2a, from node r4 g = 4o — 6, from node ry x5 = 120 — 24 and from node

r3r; = 24 — 56 = a = %. Hence z; = %,.’EQZ %,x(;: %.
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The 36" vertex is:

56
X1 23
86
Tg 54
23
Vse : = 120 (5-74)
x2 23
3
I5 23

Now 7 = 36 but 3¢ = () so the algorithm terminates.

The complete spanning tree for the vertices of the polyhedron formed by inequalities
(5.28) to (5.31) is given in Figure 5.45. The correctness of the vertices obtained
has been verified by the dual F-M algorithm discussed in Chapter 4 and by Dyer’s

algorithm.

5.5 Complexity Analysis

The complexity of EnumerateVertices, in the absence of degeneracy, can be anal-
ysed as follows. In each loop, all computations are bounded by the number of edges
in G(B), i.e. O(m), except for the step which identifies the edge to enter the new
basis. This computation is O(n), since n is the number of edges in G(A). Assuming
a good hash function for the test for adjacency, this step will also be O(m) at worst.
Thus each loop computation is O(n) (assuming n > m). If there are v nondegener-
ate vertices in total, the complexity of the algorithm will therefore be O(nv). This

analysis excludes the time to find an initial basis.

5.6 Polyhedra with Unbounded Edges

EnumerateVertices as described in section 5.4 fails at Step 4 if 32 € ~, such that
a'ji < 0,Vi because there is then no valid primal simplex pivot. This characterises
the existence of an unbounded edge incident at V.. We can deal with this by
modifying Step 4 to be:
Vi€,
determine a; using SOLVE(G(B,), a;, a;)
if {aj; : a;; > 0} = 0 then

Y& Vr—J
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Figure 5.45: The graph of spanning tree for the 36 vertices
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output edge details
else

< as before >. 0O

5.7 Degeneracy

It is well known that algorithms based on simplex pivoting experience difficulties
in the presence of degeneracy. The primal simplex algorithm, for example, may
cycle indefinitely, i.e. a sequence of basic feasible solutions giving the same value of
the objective function may repeat unless degeneracy is dealt with [41]. It is to be
expected therefore that BOP algorithms for vertex enumeration will be affected by

degeneracy. There are two principal effects:

e the algorithm may fail because a feasible basis may have more than n adjacent

bases, violating a fundamental assumption of BOP algorithms;

e multiple copies of the same vertex may be generated because there is now a
many-one relationship between basic feasible solutions and vertices. This may

be important if further processing of the vertices is to be undertaken.

The seriousness of these effects for a particular polyhedron is influenced by its de-
gree of degeneracy. For a low degree of degeneracy explicit perturbation of the right
hand sides, although inelegant, may be sufficient to resolve any practical difficulties
with BOP algorithms. This is unlikely to be the case for a high degree of degen-
eracy. Unfortunately detecting in advance how degenerate a polyhedron is seems
impossible. Indeed Dyer [24] has shown that deciding whether a polyhedron is not
simple is NP-complete. Thus to be really useful BOP algorithms must be able to
handle degeneracy and we discuss here modifications to the algorithm in section 5.4

to enable it to do so.

The first of the above effects can be resolved by finding a mechanism for ensuring
the uniqueness of the simplex pivot in Step 4. Dyer [23] describes a randomised

perturbation scheme which does so with probability 1, may be used with any BOP
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algorithm and is not computationally expensive. We can incorporate this scheme

in EnumerateVertices as follows:

e Prior to the start of the algorithm we calculate the perturbation vector h

where
n n
hi ==Y wja— /(D wia})
7j=1 7j=1

and w; is randomly generated;

e At Step 4,

k %argmin{% : a'jz- >0}« {i: % = Zf’“ /\a;-i > 0}
ji Ji ik

If [| > 1, SOLVE(G(B,),h, ), k + argmin{% :j ey} . O
ji

5.7.1 Redundancy

The method described by Dyer [23] for solving the problem of multiple copies (rep-
etitions) of vertices relies on adjacency information, which is not stored in our
algorithm. Chen et al. [10] have suggested using distance between degenerate ver-
tices say, V; and Vj; If d = ||V, — V}|| < ¢, for small € > 0 then V; = V,. This
requires storage and pairwise comparison of all degenerate BFS, which is relatively
expensive. We suggest a new idea to be incorporated into step 3 in order to control

redundancy problem as follows:

Solve-Redundancy:

In addition to storing 8 and + for each vertex, we store § and u where p; C S and

we=A{j: j€ Bk, vj# 0} then:

T if V} is degenerate and has been output
0r = F if V} is non-degenerate or a copy of a degenerate vertex which has already

been output

After determining V,. and p, from step 3 we add:
if || = m
Output V,
o, — F
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else
ifp, #p;Vist o;=T
Output V,
O, < T
else
6« F. 0O
Let us test the above modifications with an example from Dyer [23]. Determine all

vertices to the system below:

where z; >0 (j =1,2,...,4)

We can write the system in the form of Az = b, where:

1102100
A=12011010 (5.78)
0220001

ol = [m1, 02, T3, T4, T5, T, T7) (5.79)
bt =2,2,2] (5.80)
where z; >0, (j=1,2,...,7)

Applying EnumerateVertices without modifications yields 15 basic feasible solu-

tions as illustrated in Table 5.1:

Obviously, there are repetitions. Note that |us| = |10 = |p11] = |p12] = |p3] =
|p14] = 15| = 2 < 3, meaning they are degenerate vertices. Whilst |u1| = |pg| =
lus| = |pal = |us| = |pz| = |us| = |po| = 3, meaning they are non-degenerate
vertices . We therefore apply Solve-Redundancy as follows: when Vj is generated

it is found to be degenerate. As no other degenerate vertices have been found so
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BFS | =z B 0 | vertices
1 |222|56,7|F|56,7 1
2 [1,1,2|51,7|F|51,7 2
3 1121562 F|562 3
4 [21,11]563|F]|56,3 4
5 | 1,1,2 46,7 | F | 46,7 5
6 |01,1[512|T]| 1,2 6
7 [221(513|F|513 7
8 | 222|417 |F 417 8
9 3311512 |F|46,.2 9
10 | 0,1,1|543|T| 4,3 10
11 (1,01 |463|F| 4,3

12 (01,1 |[412|F| 1,2

13 | 1,01 | 413 |F | 43

14 (01,1243 |F| 43

15 | 01,1 |743|F | 4,3

Table 5.1: Vertices of a degenerate polyhedron

far, Vs is output and dg < T. When V) is generated, it is found to be degenerate
and compared with Vg. As it is different it is output and 619 < T. When Vi, is
generated, pq; is compared with pug and p19. We find that pig = p11, 80 611 = F
and Vi; is not output. Similarly, pi3 = p1a = p15 = p10- When Vis is generated it
is compared to g, p1o and we find p19 = pg, so Vig is not output. Thus, there are

15 BF'S but only ten distinct vertices.

5.8 Algorithm for 2 Non-zero per Row

We have seen from Proposition 5.2 that the basis structure for LI(2) is similar to
that of its dual (2 non-zero per column), i.e. each component of the basis graph is
either a tree or a graph with one cycle. Therefore, it seems likely that the vertices

of LI(2) systems can be listed by a similar algorithm to that described in section
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0.4.

5.9 Conclusion

In this chapter we have proved two important propositions which characterize the
basis structure of LI(2) and dual LI(2) systems. Proposition 5.1 was used to de-
velop a new BOP algorithm for enumerating vertices of simple, bounded polyhedra
associated with dual LI(2) systems. An example of the application of this algorithm
has been presented. Extensions to the algorithm to deal with unbounded edges and

with degeneracy issues have been described.



Chapter 6

Counting Vertices of Polyhedra

6.1 Introduction

What are the differences between counting vertices and enumerating (listing) them?
Is it possible to count vertices of general polyhedra in polynomial time? These
questions will be explored in this chapter. We may recall in Chapter 1 that various
vertex enumeration algorithms were reviewed, the most successful appeared to be
those of Avis and Fukuda [4], Chen et al. [10] and Dyer [24]. However, these algo-
rithms are inefficient with polyhedra that have a high degree of degeneracy. Provan
[79] presented another algorithm that is considered to be an improvement on exist-
ing algorithms, his algorithm enumerates vertices of transportation and assignment
polyhedra associated with Network LP structures in time quadratic in the number

of vertices.
The difference between counting vertices of polyhedra and enumerating them is that

counting problems are concerned with the exact or approximate number of vertices

of the polyhedron, whilst vertex enumeration is concerned with listing the vertices.

156
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Counting problems that can be solved exactly in polynomial time have few exam-
ples. Jerrum and Liptak [51] review two counting algorithms that exhibit such
behaviour: the counting of spanning trees in connected loop-free undirected graphs
and the number of perfect matchings in a planar graph. Therefore, research in this
area is mainly concerned with problems of approximate counting and integration.
The problems we address tend to be complete for the complexity class of count-
ing problems known as #P. Formally, a counting problem f : ¥* — N is said
to belong to the complexity class #P if there exists a polynomial time predicate
X : 2" x ¥* — {0,1} and a polynomial p such that Vo € ¥*, f(z) = [{w € X*:
x(z,w) A jw| < p(|z|)}|. (See [45, 48, 51, 53]).

Once it is established that a counting problem is #P-complete then the chances
of developing a polynomial time algorithm for the exact counting (of the problem)
is indeed very small. In such a situation attention should be focused on design-
ing a polynomial-time algorithm for “Approrimate Counting’. We will define this
precisely later. Approximate counting algorithms often proceed by simulating a
suitable random walk on the set of interest, 2, (e.g. set of feasible solutions to a
combinatorial optimization problem). The random walk is said to be rapidly miz-
ing if it gets close to the uniform distribution after a polynomial number of steps.
If it can be shown that the counting problem is “self-reducible” and there exists
a rapidly mixing time Markov Chain (MC) that has uniform distribution over §2
then Markov Chain Monte Carlo (MCMC) provides a polynomial-time algorithm

for approximate counting.

MCMC provides an algorithm for the following general computational task. Let
Q2 be a very large (but finite) set of combinatorial structures (such as the set of
possible configurations of a physical system, or the set of feasible solutions to a
combinatorial optimization problem, such as 0-1-Knapsack problems), and let 7 be
a probability distribution on Q (usually uniform). The task is to sample an ele-
ment of €2 at random according to the distribution 7. In addition to their inherent

interest, combinatorial sampling problems of this kind have many computational
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applications.

The remainder of this chapter is divided into four sections; section 6.2 deals with
uniform sampling for approximate counting; section 6.3 deals with approximation
using MCMC and other sections deal with new approximate counting methods for

the vertices of certain polyhedra.

6.2 Uniform Sampling for Approximate Count-
ing

We will review briefly (see Jerrum and Wagner [53]) how almost uniform sampling
can be used for approximate counting, and survey how it might be achieved using
Markov Chain simulation. One of the counting problems that can be approximated

using uniform sampling and MC simulation is the 0-1-Knapsack problem.

Example: Let a = (ay,as,.....,a,) and b € N (set of natural numbers). We es-
timate the number N of 0-1-vectors, z € {0,1}" satisfying the inequality a.z =
oraix; < b. If the vector a of size n (items) is to be packed into a Knapsack of
capacity b, then the quantity to be estimated, 2 = {z : ax < b} can be interpreted
as the number of combinations of items that can be fitted into the Knapsack, which

we shall refer to as “Knapsack solutions”.

Definition 1: A Probabilistic Turing machine T is one equipped with special coin
tossing states. Each coin-tossing state ¢ has two possible successor states ¢h and
qt. When T enters state ¢, it moves on the next step to state gh with probability
% and to state gt with probability 1.

There are various types of Probabilistic Turing machines which can be used to
approximate functions with a high probability, leading to various randomised com-

plexity classes.
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Definition 2: A randomised approxzimation scheme (RAS) for the counting problem
f 2" = N, where N is the set of natural numbers, is a randomised algorithm that
takes as input an instance x € X* and an error tolerance € > 0, and outputs a
number N € N (a random variable for ‘coin tosses’ made by the algorithm) such

that, for every instance x, the following holds:

Prie™“f(x) < N <e‘f(z)] > (6.1)

>~ W

A fully polynomial randomised approrimation scheme (fpras) is a randomised ap-

proximation scheme that runs in time bounded by a polynomial in |z| and €.

Remarks:
1. We can replace % in (6.1) by any constant in the open interval (%, 1).

2. (6.1) is essentially equivalent to (1 —¢€)f(z) < N < (1 + ¢€)f(x), and the
requirement of a randomised approximation scheme is often specified in this

fashion.

We define the total variation distance between probability distributions = and 7

on a countable set 2 by

Dipa(m,7) Z |7 (w w)| = mazaca|r(A) — 7 (A)] (6.2)

weQ
Definition 3: A sampling problem is defined by a relation S C ¥* x ¥* between

probability instances z and “solution” w € S(z) where S(z) = {w : xSw}.

Definition 4: An almost uniform sampler for a solution set S C ¥* x ¥* is a ran-
domised algorithm that takes as input an instance z € ¥* and sampling tolerance
d > 0, and outputs a solution W € S(z) (a random variable over the ‘coin tosses’
made by the algorithm) such that the variation distance between the distribution

of W and the uniform distribution on S(z) is at most .

Definition 5: An almost uniform sampler is fully polynomial if it runs in time

bounded by a polynomial in  and log(d). We abbreviate fully-polynomial almost
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uniform sampler as fpaus.

Remarks:

1. There is no conflict in the definitions of fpras and fpaus. The running-time
dependence on the tolerance (e or d, respectively) is not the same: it is poly-

nomial in ¢ ! versus log(d) respectively.

2. The difference between exact and almost uniform sampling seems to be less
important. However, some technical difficulties arise when one attempts to
define exactly uniform sampling: e.g. when |S(z)| = 3, if we use the proba-

bilistic Turing machine as our model of computation. (See [92])

In the case of self-reducible problems (see Jerrum et al. [52]) approximate counting
can be reduced to almost uniform sampling by using a witness-checking predicate

X, and we consider the associated counting and sampling problems, f : ¥* — N as:

f(@) =[{w e X" : x(z,w) A w| < p(|z])}| (6.3)

where N is a set of natural numbers, and S C ¥* x ¥*. The computational com-
plexity of approximating f(z) and sampling almost uniformly from S(z) are closely
related. In particular, f admits an fpras if and only if S admits an fpaus. Note that
this is not true in general (see Dyer et al. [20]). The most powerful technique for

approximate sampling seems to be Markov Chain Monte Carlo.

Definition 6: A sequence (X; € Q)°, of random variables is a Markov Chain

(MC) with state space (2, if:
PriXp = y| Xy =24, X4 1 =24 1,0, Xo = 2] = Pr[Xy 1 = y| Xy = 1] (6.4)

VteNandV zyzq,....,2, € Q. Equation (6.4) encompasses the Markovian
Property, where the MCs’ antecedents prior to time ¢ are forgotten. We are inter-
ested in time-homogeneous MCs, i.e., ones for which the right-hand side of (6.4) is

independent of ¢; in this case, we set:

P(z,y) := Pr[ Xy = y| Xy = 7] (6.5)
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define the transition matriz of the MC. The t-step transition probabilities P! are
then given inductively by:

I(z,y) if t=0
dyea Pz y )Py y) if >0

where [ is the identity matrix I(z,y) = d,,. In another words, P*(z,y)[X; = y| X, =

P'(z,y) :=

z] and P! implies the same matrix multiplications. A stationary distribution of an
MC with transition matrix P is a probability distribution 7 : 2 — [0, 1] satisfying:

(y) = Y m(z)P(z,y) (6.6)

e

Thus, if X, is distributed over 7 then so is X; (indeed, so is X; Vt € N). A
finite MC always has at least one stationary distribution. An MC is wrreducible
if for all z,y € § there exists a ¢t € N such that P'(z,y) > 0; it is aperiodic if
ged{t : P(z,z) > 0} =1 Vz € Q and P’ implies the usual matrix multiplication.
A finite-state MC is ergodic if it is both irreducible and aperiodic. An ergodic MC
has a unique stationary distribution 7; moreover the MC approaches 7 in the sense
that P'(z,y) — 7(y) as t = oo for all z € Q, [53]. Informally, an ergodic MC
eventually “forgets” its starting state. Computation of the stationary distribution

is often facilitated by the following lemma.

Lemma 1 (Jerrum and Sinclair): Suppose P is the transition matrix of an MC. If

a distribution 7 : Q — [0, 1] satisfies detailed balance w.r.t. P,

7 (z)P(z,y) = 7' (y)P(y,z),Y 2,y € Q and Zﬂl(:c) =1 (6.7)

€N

then, 7' is a stationary distribution of the MC. If the MC is ergodic, then clearly,

7 =7 is the unique stationary distribution.

Proof :
See [53], we just need to check that 7 is invariant. Suppose X, is distributed as 7 .

Then,

Pr(X; = y) = » 7 (@)Px,y) = Y 7Pz = 71 (6.8)

e z€eN
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QED.

Remarks:

An MC for which (6.7) holds is said to be time-reversible. Clearly, Lemma 1 cannot
be apply to non-time-reversible MCs. In practice, this is not a problem, since the
MCs we consider are time reversible. It is difficult in general even to determine
the stationary distribution of large non-time-reversible MCs, unless there is some
special circumstance, e.g. symmetry, that can be taken into consideration. All the
usual methods for constructing MCs with specified stationary distributions produce

time-reversible MCs.

6.3 Approximation using Markov Chain Monte
Carlo Method (MCMC)

Jerrum and Sinclair [48] have correctly observed that there is “no efficient de-
terministic algorithm which is known to accurately count Knapsack solutions and
there is convincing complexity-theoretic evidence that none exists”. In fact, Valiant
[97] and Garey and Johnson [37] have even shown that the problem of counting
Knapsack solutions is #P-complete. Hence the need for approximations. A simple
(non-polynomial time) method is based on selecting uniformly at random (u.a.r) a
0, 1-vector, z € {0,1}" from the set of extreme points (corners) of an n-dimensional
boolean hypercube. If a.xz < b, then return 2" solutions, but return 0 otherwise.
The outcome is a random variable with an exact ezpectation N (number of 0, 1-

vectors).

Suppose Q2 = {z € {0,1}" : a.x < b, a € N* | b € N} is the set of all solutions
(quantities to be estimated) to the Knapsack problem. The Markov Chain My,
over {2 is defined to be a random walk on the boolean hypercube truncated by the
hyperplane H' = {z : a.x = b}. Jerrum and Sinclair [48] have shown that provided
Mnap is “rapidly mixing”, i.e. close to a static (stationary) state, and if the Markov

Chain Simulation or total number of trials is assumed to be 17¢7?n? (polynomial
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in input length n, and € !, for 0 < € < 1) then:

PI(1-5)IO0) < Z < (1+ D)) ] > (6.9)

> w

which is an fpras for the problem, where Z(random variable, similar to N in (6.1))

is the product of the sample means of the trial.

The problem of whether My,,, is rapidly mizing for the 0-1-Knapsack problem
has been resolved recently. Morris and Sinclair [70] have provided an fpras for the
problem. The Markov Chain Simulation approach described above is also used by

Dyer et al. [33].

We will later outline an approximation scheme for counting the vertices of 0-1-

Knapsack polytopes.

6.4 Approximately Counting Vertices of Polyhe-
dra

We have seen that it is possible to approximately count using uniform sampling.
Vertex counting for general polyhedra has been shown to be NP-hard by Dyer [24].
As such it is of importance to explore the possibilities of exact or approximate

counting vertices of polyhedra. Is it also #P-complete?

The basic problem is to count the vertices of a polyhedron P defined by linear
inequalities:

P={z:) ayz; <b, i=12...m} (6.10)

Like many other counting problems, this has been shown to be #P-hard by Dyer
[24] and a survey is available in [45, 48]. Therefore, we attempt to develop a fully-
polynomial randomised approximation scheme (fpras). For simplicity, we divide the
problems into two classes: (1) polyhedra with polynomially many inequalities and

(2) polyhedra with exponentially many inequalities.



CHAPTER 6. COUNTING VERTICES OF POLYHEDRA 164

6.5 Polyhedra with Polynomially Many Inequal-
ities

In this case we are concerned with approximation algorithms for polyhedra that
have non-exponential growth in the number of inequalities and that are polynomial
in the number of variables n. We will present four different sub-classes of this type,
polyhedra associated with: (I) 0-1-Permanent, (II) Down-Sets in a Partial Order,
(IIT) 0-1-Knapsack problem and (IV) 2 x n transportation problem.

6.5.1 Counting vertices of polyhedra associated with 0-1-

Permanent

What is meant by 0-1-Permanent?

Definition 7: The permanent of an n X n non-negative matrix A = (a(i, 7)) is

defined as:
per(A) =) H a(i,m(i)) (6.11)

where the sum is over all permutations 7 of {1,2,...,n}. If A is a 0,1 matrix, then
the permanent is called 0-1-Permanent. This can then be visualized as an adjacency
matrix of a bipartite graph G4 = (V1, Vs, E). It is clear that the permanent of A

can then be equivalent to the number of perfect matchings in G 4.
The problem of counting 0-1-Permanent was proved to be #P-complete by Valiant
[96]. Since the discovery of this result focus has shifted to finding efficient approxi-

mation algorithms that may have precise performance guarantees.

Suppose we are to count the vertices of a polyhedron formed by:

n
D aym; =1, = 1,2,..,n) (6.12)
=1

D ayay =1,(i=1,2,..,n) (6.13)
j=1
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:UUEO

Jerrum et al. [49] have presented a polynomial-time approximation algorithm for
the permanent of a matrix with non-negative entries. In particular, after several
attempts, Jerrum et al. [49] have resolved the question of existence of an fpras
for the permanent of a general 0, 1-matrix. The main result of their paper can be

summarised in the following theorem:

Theorem 1 (Jerrum, Sinclair and Vigoda): There exists a fully-polynomial ran-
domised approximation scheme for the permanent of an arbitrary n x n matrix A

with non-negative entries.

In the 0-1 case, the above result can be interpreted as counting approximately the
number of 0-1-vertices of the above polyhedron. This can be summarised by the

following claim and proposition, which we present without proof.

Claim 6.1: There is a 1-1 correspondence between the number of perfect match-

ings and the 0-1-vertices of the polyhedra formed from (6.12) and (6.13).

Proposition 6.1: There exists a fully-polynomial randomised approximation scheme
for counting the 0-1-vertices of a polyhedron formed by the permanent of (6.12) and
(6.13).

6.5.2 Partial order (PO)

In this case we will be concerned with two situations: (a) Down-Sets in a Partial

Order and (b) Independent sets in a bipartite graph.

(a) Down-Sets in a Partial Order (PO)
A binary relation R on a set A is called reflexive, if |V a € A, aRa. A relation R
on A is called transitive, if for a,b,c¢ € A, aRb and bRc = aRc. A relation R on A

is called antisymmetric, if for any a,b € A, aRb and bRa = a = b.
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Definition 8: A relation R on a set A is called a partial order if it is reflexive,

antisymmetric and transitive.
An example is < on the set of natural numbers.

Definition 9: Suppose we have a partial order (PO) on the set U = {1,2,...,n}.
A Down-Set S is a subset, S C U, such that if j € S and 7 < j then i € S (where

< is the given partial order).

Definition 10: An m X n integral matrix A is totally unimodular (TU) if the de-

terminant of each square submatrix of A is equal to 0,1, or —1.

It is clear from definition 10 above that we must have a;; = 0,1, or —1 if A is TU;

that is, A is a (—1,0, 1) matrix.

For a given partial order <, consider the polyhedron in R":
p1 — {z :2; <z if i <j, where 0 <z <1, Vk}. (6.14)

The coefficient matrix, AV is a two per row matrix, each with one +1 and one —1.

0.1) is also known to be #P-complete. So

The problem of counting all vertices of P
we can only attempt to develop an fpras to do approximation. To do this we need
to show that all vertices of P(®Y) are 0-1. To do this we show that the co-efficient

matrix A of P is TU. We use some results from Nemhauser and Wolsey [75].

Proposition 6.2 (Nemhauser and Wolsey): If the (—1,0, 1) matrix A has no more
than two nonzero entries in each column, and if ). a;; = 0 if column j contains

two nonzero coefficients, then A is TU.

Proposition 6.3 (Nemhauser and Wolsey): If A is TU, then the transpose AT is
TU.
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It is worth noting that a network matrix has 2 non-zeros per each column, one is

+1 and the other is —1. By Proposition 6.2 it is TU. From the above, we have:

Proposition 6.4: If the (—1,0,1) matrix B has no more than two nonzero entries

in each row and each row contains one +1 and one —1, then B is TU.

If the coefficient matrix of a polyhedron is TU, then the polyhedron has integral

vertices.

Proposition 6.5 (Nemhauser and Wolsey): If A is TU, then the polyhedron
P(b) = {z € R} : Az < b} has integral vertices for all b € Z™ for which it is

not empty.

Proof :

We consider the linear program with constraint set Az + Iy = b, x € R} and
y € RT, where A is TU and b is integral. Let (A,I) = (Ap, An), where Ag is a
basis matrix for the linear program. But a matrix obtained by a pivot operation
on A is TU, which means Agl is an integral matrix. Thus, Aglb is integral, so the

correspondence between basic feasible solutions and vertices yields the result. QED
We can combine Propositions 6.4 and 6.5 to get the following result.
Proposition 6.6: If B has at most two nonzero entries in each row, at most one
+1 and one —1, then it is TU, and the polyhedron P? = {z € R? : Bz < b} is
integral for all b € Z™ for which it is not empty.

Hence, we have:

Proposition 6.7: For a given partial order, the polyhedron P(®'Y) is integral with

0-1 vertices.
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Theorem 2: There is a 1-1 correspondence between Down-Sets and vertices of

p.1)

Proof :
If S is a Down-Set, let the vector z° be defined by: z; = 1if¢ € S, zj = 0 otherwise.

Since S is a Down-Set, z* lies in P01

. Also, it exactly satisfies n of the inequalities
0 < z; <1, and hence is a vertex. Clearly this argument can be reversed, since all

vertices of P(®Y) have coordinates 0 or 1. QED

Let us examine the relation between Down-Sets and Independent Sets in bipartite

graphs.

(b) Independent Set (IS)
Definition 11: An Independent Set (IS) of a graph G = (V, F) is a subset V' C V

of vertices such that each edge in E is incident on at most one vertex in V.

The problem of computing a maximum independent set in a graph is a NP-hard

problem. (See [37]).

A (directed) bipartite graph G is a graph whose nodes are partitioned into two sets
such that all the arcs in the graph are directed from a node in the first set (known
as an origin) to a node in the second set (known as a destination). The graph is
complete if all possible arcs are present. Figure 6.1 shows a bipartite graph G' with
a partial order (PO) and the relationship between an Independent set (IS) and the
corresponding Down-Set S. The partial order (PO) on the graph S such that a < e
because there is an arc between a and e. Similarly, b <e,b< f,c< f,c<g,d < g,
and d < h. For example the IS can be chosen to be {a, f, g} which is complemented
on the bottom to give the Down-Set {b, ¢, d, f, g}.

Dyer and Greenhill [21] have shown that the problem of counting Independent sets
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Figure 6.1: Complementary relation between elements of IS and S

in graphs with maximum degree 3 is #P-complete. Luby and Vigoda [62] describe a
Markov Chain for Independent sets in graphs of maximum degree 4 which is rapidly

mixing.

Let us investigate how we can develop an fpras for counting vertices of polyhedra

associated with Independent sets in bipartite graphs.

Claim 6.2: Any Independent Set (IS) in a bipartite graph G can be complemented

to give a Down-Set S in the associated partial order.

Proof : (See Dyer et al. [32])
This follows directly from the fact that Vo € IS there exists no y € IS such that
x <y, i.e. there is no edge between x and y. Also Vy € S, x € S iff x < y so there

is no edge between y and any z ¢ S. QED

From the above discussion and results, we see that the following polyhedron that

has IS as its set of vertices is integral. Define the polyhedron associated with
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Independent Sets (1.5) in a bipartite graph G = (V, E) as:
PS ={z: zi+y; <1, V(,j)€E,i=1,...,mj=1,.,n}

Corollary 1: If A’ is a matrix associated with Independent set IS, then it is TU.

Proof :
For j on the bottom put z; =1 —y, (j =1,...,m) then we have the polyhedron for
the corresponding partial order. QED

Comments:

From Corollary 1 and Proposition 6.7 we conclude that the Down-Sets and Inde-
pendent Sets are sets of integral vertices. The matrices associated with polyhedra
whose sets of solutions (vertices) are Down-Sets or independent sets are TU, be-
cause they have at most two nonzero per row/column that are +1 and —1. It is
not yet known whether there is an fpras for Down-Set or Independent Set. The

concluding result of this subsection can be presented below.

Open Problem: Is there an fpras for counting Down-Sets in a partial order or

Independent Sets in a bipartite graph? (See Dyer et al. [32])

The next related problem is that of counting the vertices of 0-1-Knapsack Problem.

This has also resisted attack until recently.

6.5.3 0-1-Knapsack problem

The 0-1-Knapsack problem, which is also called binary Knapsack problem, is that

of finding all solutions to the system:
> i <b (6.15)
i=1

where a;, b are integers and z; € {0,1}. This problem is known to be #P-complete
(see [48, 50] for survey). The 0-1-Knapsack problem has been quoted as an open

problem in [33, 50] since it is among a small handful of canonical problems that
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resisted attack. Recently, Morris and Sinclair [70] have solved the problem con-
cerning the mixing-time of a symmetric random walk on the n-dimensional cube
truncated by a hyperplane. They show that it is polynomial in n. As a result they
successfully obtain an fpras for counting the feasible solutions of a 0-1-Knapsack

problem.

Figure 6.2 is a 3-dimensional illustration of 0-1-hypercube truncated by a hyper-
plane. The problem in this case is trying to approximate the number of vertices

that lie on the hyperplane.

Let ¢ = (a;)!_, and b be real numbers, then the set of solutions to (6.15) can be
denoted by €2:
Q={x:dz <b} (6.16)

where © = (x;), is a 0-I-vector and a'z = ). | a;x;. From a geometrical view-
point, 2 can be viewed as the set of vertices of the n-dimensional cube {0, 1}" which
lie on one side of the hyperplane o’z = b. From a combinatorial point of view € is
the set of feasible solutions to the 0-1-Knapsack problem defined by a and b. We
can therefore denote a; as the weights of a set of n items, and b as the capacity
(weight limit) of a Knapsack. Then there is 1-1 correspondence between z € Q
and subsets set of items X whose aggregated weight does not exceed the Knapsack
capacity, given by X = {i : ; = 1}. The weight of X can then be written as
a(X) = > cx @- The problem of computing [ is #P-complete, so the aim is to

find a good approximation algorithm.

Virtually, all known approximation algorithms proceed by simulating a suitable
random walk on the set of interest ). The walk is constructed so that it converges
to a uniform distribution over €2; simulation of the walk for sufficiently many steps

therefore allows one to sample (almost) uniformly from 2, and thus to approximate

2.

Morris and Sinclair [69, 70] have recently presented an fpras for computing |€2| in
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the general case, their result can be summarised as follows:

Theorem 3 (Morris and Sinclair): Let Q be the set of solutions to an arbitrary
instance of the 0-1-Knapsack problem. The mixing time of the random walk on G,

is Toie = O(n*?).

The results of Morris and Sinclair [70] can be adapted to solve the problem of
counting all vertices of a polyhedron P, where P = {z € R* : }°7_ a;z; < b} and

Thus, is there any approximation scheme for counting all vertices of P, including

the non-integer vertices, in polynomial time?

We attempt to solve this problem. Let us assume that we are dealing with non-
degenerate (-1-Knapsack Problems. Define the Knapsack polytope as:
n
PN = {z eR": ) ajz; < b} (6.17)
7=1
where 0 < z; <1, a; and b are integers; j = 1,2, ..., n. Clearly the above polyhedron

PWVEK) js non-degenerate. The method can easily be extended if P(V5) is degenerate.

The problem can be answered if there is a relationship between the number of

(NK)

non-integer and integer vertices of P . The following observations answer this

question.

Proposition 6.8: Let PX? = {z € R" : >_" | a;z; < b} be a polyhedron where
0 < z; < 1. The number of non-integer vertices of PX? is less than or equal to n

times the number of integer vertices.

Proof :
This is true as every non-integer vertex is adjacent on P5P) to an integer vertex,

and every integer vertex has at most n neighbours. QED
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Let InV be the number of integer vertices of P5P); NonIV be the number of non-

integer vertices and ToN be total number of vertices of P.P).

Theorem 4: InV <ToN < (n+1)InV.

Proof :
Clearly InV + NonlV = ToN, so InV < ToN.
Also, by Proposition 6.8, NonIV < n x InV so
ToN = InV + NonlV < InV +n x InV
= ToN < InV(1+n) QED

Since the number of integer vertices can be approximated and the total is polyno-

mially bounded by this, we can have the following conclusion.

Theorem 5: There exists an fpras for counting all vertices of non-degenerate (-1-

Knapsack polyhedra.

Proof :

This follows from general results of Jerrum and Sinclair [48].

6.5.4 2 x n transportation polyhedra

In Chapter 2 we have implemented Provan’s algorithm for enumerating vertices that
are associated with Network LP structure. The algorithm of Provan was confirmed
to be quadratic empirically. Here we will be concerned with counting vertices of
transportation polyhedra. Like other polyhedra the problem of counting all vertices
of transportation polyhedra is #P-complete, see [24]. We attempt to explore how to
approximately count vertices of a special class of transportation polytopes, known
as 2 X n transportation polyhedra. Let us briefly introduce some definitions that

will be used later.
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Figure 6.2: A 3 — D 0-1-Knapsack cube truncated by a hyperplane

Definition 12: Consider m origin points, where 7 has a supply s; of units of
a particular item (commodity). In addition, there are n destination points, where
destination j requires d; units of commodity. We assume that s;, d; > 0. Associated
with each link (7,7), from origin ¢ to destination j, there is a unit cost ¢;; for
transportation. The problem is to determine a feasible “shipping pattern” from
origins to destinations that minimizes the total transportation cost. This problem
is known as the Hitchcock or the transportation problem. We assume that the total
supply equals total demand, i.e, the problem is balanced. In another words, the

problem is that of counting vertices of:
pliranse) — {g; . Altronse)g — p} (6.18)

where A7) is a (m+n) x (m x n) node-arc incidence matrix, it is a 2 nonzero per
column matrix, each nonzero is either +1 and —1. As we said earlier, the problem

of counting vertices of P(r®P) is #P_complete, (Dyer [24]).

Definition 13: A contingency table is a matrix of non-negative integers with
prescribed positive row and column sums. In a more technical term, let r =

(r1,72, cceeey Ty) and s = (81, Sg, ..., Sp) be two positive integer partitions of the posi-
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tive integer N. The set X, ; of contingency tables with these row and column sums

is defined by:

Z,«,s:{ZeNE"X":ZZij:ri,forl Sigm,ZZij:sj,forlgj <n}
j=1 i=1

(6.19)
The problem of approximately counting the number of contingency tables with
given row and column sums is known to be #P-complete even when m, n equals 2
[22]. Hence the need for an approximation. Dyer and Greenhill [26] have employed
a path coupling method and show that the MC for 2 row contingency tables is
rapidly mixing. Cryan and Dyer [15], Cryan et al. [16, 17] and Dyer [31] show a
similar result for any fixed m. The papers [16, 17, 31] were written after the work

for this thesis was completed.

The following results give upper bounds for approximately counting contingency
table. Let M(3_, ) denote a Markov chain with state space ), .. If X; is the state

of the chain in time ¢ then at time ¢ + 1 the state is determined by:

e Select (j1,72) u.a.r. such that 1 < j; < jo < n,

e Choose z € Tx(j1,j2) u.a.r. and let,

z(k,l) ifj=y forle{1,2}
Xi(k,j) otherwise

Xt-l—l(k:j) =

Clearly M(3, ,) is aperiodic and the following is due to Dyer and Greenhill [26].

Theorem 6 (Dyer and Greenhill): Let r = (r1,72) and s = (s1, Sa, ..., Sp) be two
positive integer partitions of the positive integer N. The Markov chain M(Em) is
rapidly mixing with mixing time 7(¢) satisfying

n(n —1)

7(e) < 5

log(Ne 1)

Note that since the Markov Chain is rapidly mixing then there can be an fpras for

the counting problem.
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N Sources

Figure 6.3: Graph of a 2 x n transportation problem

Theorem 7 (Dyer and Greenhill): Let 7(¢) denote the mixing time of the Markov

chain M(3_, ). Then

—1 -1
n(n6 )log(n

We will explore the problem of counting vertices of 2 x n transportation polyhedra.
Figure 6.3 is a graph of a 2 X n transportation problem, and 6.4 is a graph of m x 2

transportation problem.

6.5.5 Approximately counting vertices of 2xn general trans-
portation polytopes

As we have stated earlier the coefficient matrices of 2 x n transportation polytopes
are identical to those of contingency tables. Here, we are interested on how to

approximately count (by means of an fpras) vertices of transportation polyhedra
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Figure 6.4: Graph of an m x 2 transportation problem

xij 20 1

T2

S1 So S3

Figure 6.5: Table of a 2 x n general transportation problem
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formed by the constraints:

D my =1y, (i=1,2) (6.20)
7j=1

T + Toj = S5 (_] = 1, 2, ceny n) (6.21)
where 71 and 7 are the two sources (supplies) and s1, s, ...... , S, are the destinations

(demands). We assume that the sum of supply and sum of demand is the same and

denoted by N, and z;; are shipments from supply ¢ to destination j.

We assume without loss of generality that r;1 < r9 and s; < s < s3...... < s,.
Let us transform the above problem into one similar to the Knapsack problem and

attempt to find a scheme for approximate counting.

Let
yj=—2, (6.23)

then 0 <y; <1(j =1,2,....,n).

Substituting (6.23) into (6.20) we have,
Z SiY; =T1 (624)
j=1

From (6.23), x1; = s;y; and from (6.21) we have:

Toj = 8; — x1; = 85 — Sy = s;(1 — y;) (6.25)

As such, for i = 2 and r; + 79 = N we have,

Zs] yj =1y < Zs]y] N—ro=mr (6.26)

j=1
Let us choose y, as a slack variable. Then from (6.26) we have

n—1

SpYn T Z SiY; =T
7j=1
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or,

n—1
SpYn =T1 — Zsjy]
j=1
or
T — Z;L:_ll $iY;
Sn

Yn =

From 0 <y, <1, we can have two cases, case (a) for 0 < y,, we have:

= Y00 85y —
Un > 0= - >0=) sy <
n

j=1
case (b) y, <1 we can have,

n—1

Slz}rl_snfzsjyj
=1

n—1
T — Zj:l 55Y;j
Sn

Yn < 1=

combining (6.29) and (6.30) we have:

n—1

L= Sp < Zsjyj <7
j=1
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(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

where 0 <y; <1 for j =1,2,...,n, (6.31) resembles the Knapsack problem except

for the fact that it has a lower as well as an upper bound. The gap between the

upper and lower bounds in (6.31) can itself be bounded as follows:

We know that r;+r, = N and also s1+s2+....+s, = N. Thus, we have r; < % since

it is the smallest row sum and s, > % since it the largest column sum. Combining

these results we have,
2
2ri < N <ns, = 2ri <ns, = s, > -1
n

so we have;

2
=8, <11 — 1 = (1= ).
n n

The polyhedron is sketched in Figure 6.6, where:
o=y € {0,1}" ) 55y <711 — sl

as = |[{y € {0,1}" " Zsjyj > 11}
and

a2:2”—a1—a3

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
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hey

(03
a1

h1

Figure 6.6: A hypercube truncated by two hyperplanes

Figure 6.6 consists of two hyperplanes that truncate a hypercube, which we may
conveniently call the lower and upper bounds respectively. Let h; be the number
of vertices on the lower hyperplane and hy be the number of vertices on the upper

hyperplane.

We can now derive an fpras. Let a; denote the number of vertices of the Knapsack
problem bounded above by the lower hyperplane whose number of vertices is rep-
resented by h;. Let a3 represents the number of vertices of a Knapsack problem
bounded below by the upper hyperplane whose number of vertices is ho. Let ay de-
note the number of integer vertices that lie between the lower and upper hyperplanes
(these are represented in (6.34), (6.35) and (6.36)). It is possible to approximate a;,
as, h1, ha, ho + a1+ as and hy + as + a3 since these are all associated with Knapsack

problems or Knapsack Polytopes.

We wish to approximate the number of vertices hy + as + ho of the “middle” poly-
tope ( i.e. the approximate number of integer vertices bounded below by the lower
hyperplane and above by the upper hyperplane combined with approximate number

of vertices on both the hyperplanes.)
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We will use Harper, Lindsey, Bernstein and Hart’s theorem which is cited in [61]
to deduce our result. Let @), be the discrete cube and A be a subset of ),. Let
0. A be the edge boundary i.e. the number of edges of ),, which have exactly one
end-point in A.

Theorem 8(Harper et al.): Let A C @, and I be the set of the first | A| elements
of @, in binary order ( an order § is binary if for any z,y € A, x precedes y if
max(zAy) € y, i.e. the greatest element which is one of x and y but not the other is
actually in y). Then |0.A| > |01|. In particular, if |[A| = 2" then [0.A| > 2"(n — 7).
This implies that, if |A| < 27! then |0, A| > |A].

We can relate to above theorem with the notations we have been using, that is,
in the non-degenerate case, hy is equivalent to |0.A|. Since a3 and a; are mirror
images, by symmetry we can assume without loss of generality a3 > a;, but since
a; + as + az = 2" it follows that a; < 2" — qaq, i.e. a; < 2"7'. So, in the non-
degenerate case:

hi > a1, and, h; < na; (6.37)

Since we can approximate hs + a1 + ao we can use this to get the desired result,

from (6.37), i.e. provided n > 4:
h2 + hl + a9 Z hg —+ a1 + ag (638)

Also
hg + hl + a9 S h2 —+ na; + as S n(hg —+ a1 + (1,2) (639)

Thus, the number of vertices within or on the lower and upper hyperplanes is poly-
nomially related to the quantity ho + a1 + a» which is approximately countable by
an fpras. It now follows from results of Sinclair and Jerrum [48] that hy + hy + a2
has an fpras (note that the required self-reducibility property is satisfied here by
the {0,1} constraints).
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In the degenerate case, we still have h; < na; and hy > 2, so the results follows

similarly.

The method cannot easily be extended to work for n = 3 or m = 3 or higher fixed

values because the relationship to the Knapsack problem breaks down.

6.6 Polyhedra with Exponentially Many Inequal-
ities

Matroids and submodular functions (functions over sets that satisfy some proper-
ties) are known to be building blocks of some combinatorial optimization problems
whose generalizations are both network flow problems and the spanning tree prob-

lems.

Matroids are also considered to be prototypes of independence systems and 0-1-
integer programs that have special properties which could be used to obtain effi-
cient algorithms for the corresponding optimization problems. Let us review some

definitions.

Definition 14: Let S = {1,2,...,n} be a finite set and let F be a set of subsets
of S. T = (N, F) is an independence system if F; € F and F, C F} = F, € F.
Elements of F are called independent sets, and the remaining subsets of S are called

dependent sets.

Definition 15: Given an independence system Z = (S, F) we say that F' € F is a
mazimal independent set if F\J{j} ¢ F,Vj € S\F. A maximal independent set
T is mazimum if [N| < |T| VN € F. We denote m(T') = mazgscr{|N|: N € F}
and 7' C S denote the size of a maximum cardinality independent set T', m(T") < |T|
and F ={T CS:m(T) =TI}

Based on above definitions and notations the definition of matroid becomes appar-
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ent, that is:

Definition 16: M = (S, F) is a matroid if M is an independence system in which
for any subset 7' C S every independence set in 7" that is maximal in 7" (a base)

has cardinality m(T).

In this subsection we are going to present the problem of counting vertices of poly-
hedra whose sets of constraints grow exponentially. We will explore two classes of
problems: (I) Matroids, (we consider two sub-classes (Ia) Regular Matroids and (Ib)
Balanced Matroids) and (II) Matchings in non-bipartite graphs.

One of the examples of a matroid is the graphic matroids, whose bases are spanning
trees of a graph; another is vectorial matroids whose S is a set of vectors over a
field and the bases are the maximum cardinality linearly independent subsets of the

vectors.

Definition 18: Regular matroids are the subclass of matroids vectorial over every

field.

Edmonds [34] has introduced the bases-exchange graph of a matroid M denoted by
G (M) as the graph whose vertex-set is the collection of bases By and B, connected
by an edge if and only if By can be obtained from B; by fundamental operation of
removing and adding one of the ground-set elements: By = By — {e}|J{f}. Let us

present some results:

6.6.1 Matroids

The problem of counting the vertices of Matroid Polytopes which are of the form:

PM)={zeR Z:rj <m(S) for SC N} (6.40)

JES

where for any matroid M = (NN, F) with rank function m. It follows that T € F
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if FAT <m(T)iff Y sz = ISOT| < m(S), VS C N. Edmonds shows that
P(M) is integral. That is:

Theorem 9 (Edmonds): P(M) is an integral polytope.
By above theorem we have the following results.

Proposition 6.9: There is a 1-1 correspondence between the vertices of P(M) in

(6.40) and bases ( associated with its matroids.

We will be interested in two types of graphical matroids, these are regular and bal-

anced matroids:

Ia. Regular Matroid:

We have seen that a matrix is totally unimodular if all its subdeterminants are —1,
0 or +1. Totally unimodular matrices are known to be matrix representations of
regular matroids, [84]. Let A be a totally unimodular m x n matrix with columns
ai, as,..., a,, and as assumed above, let 8 be the set of bases of the associated
regular matroid. If A has full row rank, that is 8 # (), Dyer and Frieze [25] have
defined a simple (natural) random walk on B sequence By, By, By, ..... , Br,.....
€ [ as follows. At B,, randomly choose columns ¢ € B,, ' € A — B,. Let
B! = B,.|J{d'} — {a}. If B, € 8 then B,,; = B\, otherwise B,.; = B,. The

following result is due to Dyer and Frieze [25].

Theorem 10 (Dyer and Frieze): For any B € f3,

1 T
B 8m4n4)

Theorem 10 is used to show how to estimate |3| which is the set of bases of the

|Pr(B, = B] - |8 | < (1

regular matroids associated with the totally unimodular matrix A. Dyer and Frieze
[25] have also shown that the cardinality of /3 is efficiently obtainable using Binet-

Cauchy formula for the product of 2 rectangular matrices.
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Proposition 6.10: If A is a totally unimodular matrix representation of regular
matroid M and S is the set of its bases, then the number of vertices of the polyhe-

dron P(M) can be exactly counted in polynomial time.

Proof :
The proof follows from Theorem 10 and the number of the bases, |3|. The 1-1 cor-

respondence between basic feasible solutions and vertices completes the proof. QFE D

Ib. Balanced Matroids:

Feder and Mihail [35] have defined balanced matroids in simple terms to be those
matroids whose minors satisfy the property that, for any randomly chosen basis,
the presence of an element can only make any other element’s presence less likely.
We introduce some definitions and terminologies before presenting an important
result from Feder and Mihail [35] with which we are to present an approximation

of counting vertices of polyhedra associated with balanced matroids.

Definition 19: Let B be a basis chosen uniformly at random from £ and for e € S,
let e denote the event e € B. The matroid M (S, ) is said to satisfy the negative

correlation property if the inequality
Prlef] < Prle]Pr[f]

holds Ve, f € S. Note that Prle|f] < Prle]. Graphic matroids and regular matroids

are known to be negatively correlated.

Definition 20: A minor of a matroid is obtained by repeatedly performing the
operation of choosing an element e € S and then selecting either those bases that
contain e or those that do not. For graphic matroids, this operation corresponds to

contraction or deletion of selected edges from the graph.

Definition 21: A matroid M(S, 3) is balanced if all its minors, including M itself,

satisfy negative correlation.
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What are the natural and modified random walks?

Theorem 11 (Feder and Mihail): For the natural random walk on any balanced
matroid the total variation distance can be bounded by € in time ¢t = O(nlogm +

log e )n?m.

where n is the rank, m is the cardinality of the ground-set, and € is a bound on total

variation distance. The result applies to graphic and regular matroids specifically.

Theorem 11b (Feder and Mihail): For the modified random walk on any bal-
anced matroid, the total variation distance can be bounded by € in time ¢t =

O(nlogm +loge ')nd.

Open Problem: Give an fpras for arbitrary matroids.

6.6.2 Matchings in non-bipartite graphs

We briefly mentioned that the number of perfect matchings in a planar graph and
spanning trees can be counted exactly in polynomial time. However, it is not yet
known whether there is a polynomial algorithm for counting perfect matchings in
non-bipartite graphs. The challenge is, can we develop an fpras for the non-bipartite
graphs? Matching problems involve choosing a subset of the edges subject to degree

constraints on the nodes. Before then let us review some definitions.

Definition 22: If G(V, E) is a graph with set of nodes V' and set of edges E, the

number of edges that meet a node 7 is called the degree of node .

Definition 23: A matching M C FE is a subset of edges with the property that
each node in the subgraph G(M) = (V, M) is met by no more than one edge. Every
graph has a matching namely M = () (because () is a subset of every set). The
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simplest case is I-matching, and generalization of which is the b-matchings in which

node ¢ is met by no more than b;, which is a positive integer.

Definition 24: In 1-matching each node is met by exactly one edge. In some cases
each node 7 is met by at least b; edges. These type of problems are called node

covering by edges.

An integer programming formulation of the weighted 0-1, b-matching optimization
problem is:

Max Cz (6.41)
Az < b,z € B" (6.42)

where A is the node-arc incidence matrix of the graph, |E| = n, and z, = 1 means
that e is in the matching. The important property of A for matching problems is
that each of its columns contains exactly two 1's; in another words, >, a;; = 2,
Vj € E. We should note that if the graph is bipartite, then A is totally unimodular
so that the extreme points of the polyhedron;

plmateh) — {z ¢ R" : Az < b} (6.43)

are b-matchings. But, if G' contains an odd cycle, the constraint set of the linear

programming relaxation may contain fractional extreme points.

A non-empty polyhedron P = {z € R" : Az < b} with rank(A) = n is called

integral i f f all its vertices are integral.

Define a polytope associated with a graph G = (V| E) and matchings M C E as

follows:

P(M)={z R} : erglforvev, Z xeSLMJ,VoddsetsUQV}

e€d(v) e€E(U) 2
(6.44)

where U C V is an odd set if [U| > 3 and is odd, and e € E. Here §(v) is the set

of edges meeting vertex v. Edmonds has shown that the polytope P(M) is integral



CHAPTER 6. COUNTING VERTICES OF POLYHEDRA 188

with 0 — 1 vertices.

Theorem 12 (Edmonds): The polytope P(M) is the convex hull of incidence vec-

tors of matchings.

Proposition 6.14: There exists an fpras for counting the vertices of the polyhe-

dron P(M) defined in (6.44).

Proof :
The result follows from the work of Jerrum and Sinclair.

Open Problem: If }° ;) z. = 1 in (6.44), it is still unknown whether there exist

ecd
fpras for counting vertices of P(M) if G is not bipartite. (If G is bipartite it follows

from Jerrum et al. [49]).

6.7 Conclusion

In this chapter we reviewed approximate counting procedures. We discussed dif-
ferent fpras methods for counting vertices for some special classes of polyhedra
associated with IS; Down-Set, 0-1 Knapsack, 2 x n transportation, Matroids and
matchings in non-bipartite graphs. These are mainly based on existing results

21, 26, 35, 46, 47, 51, 53, 75, 97].



Chapter 7

Conclusion and Future Work

7.1 Introduction

In this chapter we give some concluding remarks about the work that has been
reported in this thesis and suggest some ways in which it can be extended. The
VE problem has been the object of substantial research effort and, as discussed in
Chapter 1, a considerable number of algorithms for its solution have been published.
Despite this the VE problem still cannot be regarded as an “easy” problem. There
are several reasons for this, in particular the fact that there can be no general VE
algorithm which is polynomial in the input size. Some BOP algorithms, e.g. Dyer
[24], have been shown to have good theoretical performance for simple polyhedra
and good empirical performance for both simple polyhedra and those with a low
degree of degeneracy. Unfortunately, the many-to-one relationship between basic
feasible solutions and vertices leads to significant difficulties for such algorithms on
highly degenerate polyhedra. Thus there is still plenty of opportunity for research
in vertex enumeration. Chapters 2, 4, 5 and 6 of this thesis describe some original

contribution to this research.

189
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7.2 Achievements of the Thesis

In Chapter 1 the aims of the research were listed as:
1. To develop VE algorithms for some special classes of polyhedron;

2. To investigate whether vertices of some special classes of polyhedra can be

approximately counted.

Here we summarise the achievements of the thesis in trying to meet those aims:

e Achievement 1: Provan [79] describes a pivoting algorithm and proves that
its running time is quadratic in the number of vertices, even when as is fre-
quently the case for networks, the polyhedron is degenerate. In Chapter 2
we discuss the non-trivial task of turning Provan’s high level description of
his primal algorithm into an implementation which allows the performance
of his algorithm to be evaluated empirically. The results tend to confirm the
quadratic nature but are perhaps disappointing in that even low dimension
networks are computationally challenging. This is in part due to the fact that
each vertex is generated several times. There does not appear to be any way
in which we can tell in advance that a cycle will lead to an already discovered
vertex without performing flow adjustment around the cycle, hashing into the
hash table and performing an expensive arc by arc check. It does not seem
possible to avoid this by use of a device such as the ‘gamma-set’ as edges of
the network may correspond to different edges in the pseudo-graph at different
points in the execution of the algorithm. In addition memory requirements of

the algorithm are substantial due to the number of cycles which arise.

e Achievement 2: Williams suggested the use of dual F-M for vertex enumer-
ation. In [98] he shows via an example, how this might be done. The approach
is attractive as it is not significantly affected by degeneracy. We provide a
complete algorithmic description of the method. Our computational experi-
ence suggests that this method is unlikely to be competitive with other VE
algorithms due to the growth in the number of intermediate variables. We

analyse the corresponding intermediate constraints growth for LI(2) systems
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and prove that, provided the associated graph is connected, the growth is lin-

ear in the number of constraints and exponential in the number of variables.

e Achievement 3: In Chapter 5 we prove two propositions on the structure of
bases for LI(2) and dual LI(2) systems. We exploit the graph representation
of the basis implied by the proposition for dual LI(2) to develop a BOP
algorithm for enumerating their vertices. We later show how to deal with

degeneracy issues in the algorithm.

e Achievement 4: In Chapter 6 we turn our attention to counting the vertices
of a polyhedron, without listing them. As this is an # P-complete problem
[24], we have developed fpras for approximately counting the vertices of poly-

hedra associated with some special classes as described in Chapter 6.

7.3 Further Work

As we have observed Provan’s algorithm [79] faces great challenge with even rela-
tively low dimension degenerate polyhedra. There is no way in which to tell whether
cycles will lead to new vertices or not. Future suggested work may involve investi-
gating whether or not a pattern can be developed and incorporated into Provan’s
algorithm that can detect when a given cycle leads to new or old discovered vertex,

without having to perform flow adjustment.

The BOP algorithm developed in Chapter 5 can be implemented and evaluated
empirically. It would be appropriate to compare the computational performance
of this algorithm with general VE codes to assess the extent of any gain made by
exploiting the dual LI(2) structure. Due to time constraints we were unable to

implement the algorithm, but some components of the implementation are:

1. Code that finds a basic feasible solution (initial vertex) to a dual LI(2) system,

using LP if necessary.

2. Code that finds the components of the basis graph. The strongly connected

components’ code used in the Provan’s code discussed in Chapter 2 may be
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modified and adapted.

3. Binary encoding for storing the g sets and ~y sets. Modification of and extrac-

tion from £, 7y is then easy in any language which supports bit manipulation.

4. Code to implement the SOLVE routine. This is potentially the most impor-
tant component as it is called several times per vertex, in order to perform

the necessary simplex pivots. It may be sub-divided into four sub-routines:

e For simple loops assign the associated variable (edge) its corresponding

nodes values (trivial).

e For a tree, identify the root and leaf nodes, and start with node that has
degree 1 and move upward to the root. Code similar to that in Provan’s

algorithm for trees in pseudo-vertices can be employed.

e For a graph with one cycle, assign edges value by starting at nodes with
degree 1 and moving upward until the cycle is reached, i.e. there are no

nodes of degree 1.

e For a cycle, break the cycle by assigning an arbitrary value to one of the

edge and solve for the others parametrically.

5. Binary encoding can also be used for the u sets. Their construction and
comparison again requires bit manipulation routines. As 7y sets are only stored
for the ‘master’ copy of a degenerate vertex, they could be stored in a separate

structure which is pointed to by the vertex list.

6. Hash tables code can be used for accounting procedure, via a simple hashing

of the binary encoded [ set.

As we noted in Chapter 5 the similar basis structures of LI(2) and dual LI(2) sug-
gest that a similar BOP algorithm can be developed for LI(2). This requires further

investigation.

In Chapter 6 some open questions are raised as to whether there are fpras for count-

ing Down-Sets with partial order and Independent Set in a bipartite graph? and
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whether there exist fpras for arbitrary matroids. If 3 4, e = 1 in (6.44) of Chap-
ter 6, it is still unknown whether there exist fpras for counting vertices of P(M) as

described in (6.44). These questions need further investigation.

In the process of completing this thesis, Dyer [31] has developed a new, more effi-
cient fpras for counting the 0-1-Knapsack solutions based on dynamic programming.
The algorithm uses dynamic programming and “provide a deterministic relative
approximation”. He also used what are called “dart throwing” techniques for the
provision of arbitrary approximations. It is recommended that further research for
counting should explore using dynamic programming on the other vertex counting

problems discussed in Chapter 6.
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