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Abstract

We have investigated the Co-doping dependence of the structural, trans-
port, and magnetic properties of e-Fe;_,Co,Si epilayers grown by molecular
beam epitaxy on silicon (111) substrates. Low energy electron diffraction,
atomic force microscopy, X-ray diffraction, and high resolution transmis-
sion electron microscopy studies have confirmed the growth of phase pure,
defect free e-Fe;_,Co,Si epitaxial films with a surface roughness of ~ 1 nm.
These epilayers are strained due to lattice mismatch with the substrate,
deforming the cubic B20 lattice so that it becomes rhombohedral. The
temperature dependence of the resistivity changes as the Co concentration
is increased, being semiconducting-like for low x and metallic for x = 0.3.
The films exhibit the positive linear magnetoresistance that is character-
istic of e-Fe;_,Co,Si below their magnetic ordering temperatures Ty.q, as
well as the huge anomalous Hall effect of order several uf2cm. The order-
ing temperatures are higher than those observed in bulk, up to 77 K for
x = 0.4. The saturation magnetic moment of the films varies as a function
of Co doping, with a contribution of ~ 1 ug/ Co atom for z < 0.25. When
taken in combination with the carrier density derived from the ordinary
Hall effect, this signifies a highly spin-polarized electron gas in the low z,
semiconducting regime.

To understand the electronic structure and evolution of magnetism in B20
system we used soft X-ray absorption (XAS) and X-ray magnetic circu-
lar dichroism (XMCD) spectroscopy in total electron yield mode (TEY) to
probe the Lg 3 edges of Fe and Co in Fe;_,Co,Si thin films. Branching
ratios (Ls/(La + L3)) as a function of x, suggests that the number of holes
associated with Co increases from x=0.1 to x=0.5 where as that associated
with Fe changes little. Variation in the occupation states of Fe and Co
atoms coupled with shift in Ly 3 edges (~ 500 meV') and the evolution of
the L3 edge line shape indicates a modified band structure. The dichroism
on Fe L3 edge (TEY) varies from 0.6 x 1073 for x=0.1 to 1.4 x 1073 for
x=0.5 and that of Co evolves from being negligible for x=0.1 to 1.7 x 1073
for x=0.5. Whilst the magnetism in Fe;_,Co,Si system arises from the Co
doping, these asymmetry spectra clearly show that the magnetic moment

is delocalised on both Co and Fe sites.
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CHAPTER 1

Introduction



The rich behaviour shown by ferromagnetic semiconductors arises from an interest-
ing interplay of their electronic density of states and magnetic interactions within the
crystal structure, offering new possibilities for spintronics [1]. Whilst most magnetic
semiconductors to date are based on compound or oxide materials, the transition metal
monosilicides are promising candidates in that they are based on silicon, by far the most
common commercial semiconductor. These materials crystallize in cubic B20 structure,
the e-phase, and which belongs to the space group P2;3 [2]. They are continuously
miscible with each other and form an isostructural series compounds with endmembers
MnSi (a metallic helimagnet), FeSi (a paramagnetic narrow-gap semiconductor), and
CoSi (a metallic diamagnet) [3]. They have been studied for many years as they exhibit
a wide variety of different aspects of condensed matter physics including paramagnetic
anomalies, [4; 5] strongly correlated/Kondo insulator-like behaviour,[6-9] non-Fermi li-
quid behaviour, [10-12] unusual magnetoresistance,[3; 13; 14] and helical magnetism
[15-18] with skyrmion phases [19-22] that have associated topological Hall effects [23—
26].

Almost all work to date on the monosilicide materials has been carried out using bulk
single crystal samples. For technological applications, thin films that can be patterned
into devices with conventional planar processing techniques are required. Epilayers
of the helimagnetic metal MnSi have been grown by using molecular beam epitaxy
(MBE) by Karhu et al.,[27-29] Li et al.,[30] and Engelke et al.[31] The properties are
broadly comparable to those of the bulk material, including the presence of chiral
magnetism [28] and a topological Hall effect [30], which survives in the presence of Fe
doping [32]. Other monosilicides have received less attention to date as thin films. The
family of alloys Fe;_,Co,Si should be of particular interest for spintronics: whilst both
endmembers are non-magnetic, magnetic ordering is evident at almost all intermediate
values of = [3]. For low doping levels of Co in the semiconducting parent FeSi, a
magnetic semiconductor with a half-metallic state is expected [3; 33].

FeSi in its ground state is a non magnetic narrow band gap semiconductor [5]. It
is the only Kondo insulator that lacks a rare earth element in composition [9]. At
higher temperature the narrow band gap closes and a heavy fermion metal is obtained
[7]. Various theories based on Kondo lattice [34], spin fluctuation theory [35], and two
band Hubbard model [2] have been proposed to account for the observed properties.

Upon doping FeSi with Co, Co substitutes onto an Fe site in the crystal structure and



transforms it into a magnetic n-type semiconductor [36], before becoming metallic at
high doping densities. The Co atom donates one electron to the conduction electron
gas and one Bohr magneton to the net magnetisation of the system, making the it fully
spin polarised [33]. The theoretical calculations by Guevara et al. [33] supports full
spin polarisation in Fe;_,Co,Si system. Manyala et al. [37] made some interesting
discoveries based on Co doped FeSi in bulk system. Fe;_,Co,Si in bulk shows a huge
anomalous Hall effect [37] which they reason is due to intrinsic contribution, creation
of non Fermi liquid states [38], and a positive magnetoresistance [38] that has been
attributed to quantum interference of electrons [38] or Zeeman splitting [39] that leads

to separation of spin density of states where minority spins have higher mobility.

Most of the studies including the ones mentioned above has been on bulk single
crystal samples grown by arc melting[38; 39], levitation etc. Some attempts at growing
films have been made already using Pulsed Laser Deposition[40] but they seem to lose
the properties seen in bulk. Fe;_;Co,Si nanowires have been synthesised by DeGrave
et al. [41], their properties seem to be different than the bulk, the nano wires are
chemically unstable and are oxidised also they are not fully spin polarised for low
Co doping. Polycrystalline thin films of Fe;_,Co,Si have been grown by pulsed laser
deposition [38], and sputtering [42], but with properties that fall short of those (huge
anomalous Hall effect, high spin polarisation etc..) in single crystal samples due to
microstructural disorder and lack of phase purity.

The Fe;_,Co,Si system is also important from application point of view. The full
spin polarisation of Fe;_,Co,Si system could be used in spintronics, they can act as
spin injectors. There is, however, a significant property of the system that can perhaps
change the way we store and read data. The B20 crystal structure lacks inversion
symmetry which gives rise to Dzyaloshinskii-Moriya interaction in Fe;_,Co,Si system.
This further leads to formation of chiral spin texture called skyrmions. Skyrmions are
magnetic knots or vortices that have already been observed in Fe;_,Co,Si bulk crystal
by Lorentz Transmission Electron Microscopy (LTEM) [21]. When electrons traverse
through such a structure adiabatically, they pick up a Berry phase. The Berry phase
is then manifested in the transport measurements as an extra Hall signal, this is also
called Topological Hall Effect (THE). THE has already been observed in MnSi crystal
[27], [28]. Small Angle Neutron Scattering (SANS) studies on MnSi crystal [44] has
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Figure 1.1: Schematic picture of skyrmion motion and associated physical phenomena under
the flow of electrons. Electron current drives the flow of a skyrmion by means of the spin-
transfer torque mechanism (that the direction of the charge current is the opposite to the
electron flow). Electrons are deflected by the Lorentz force due to the emergent magnetic field
b of the skyrmion, which results in the THE. The motion of the skyrmion is accompanied by
the time-dependent emergent magnetic field (pink), and hence the emergent electric field e,

that is, emergent electromagnetic induction.[43]



previously shown a rotation of the diffraction pattern of Skyrmion Lattice Phase (SLP)
when an electric current exceeding the threshold current density (j.) of 105 Am~2 [43] is
applied transverse to the skyrmion motion. It is important to note that j. is 10° times
smaller than the current needed to induce a spin-torque based domain walls motion in
a ferromagnet [43]. This also means that the excess power dissipation would be 10!2

times lesser.

Keeping the above points in mind, this thesis presents a report on the properties
of epitaxial e-Fe;_,Co,Si layers grown on commercial Si [111] substrates, across the
doping range 0 < x < 0.5, using the growth methods previously developed deeveloped
at Leeds [14]. The films are phase pure, with a B20 lattice that is distorted by biaxial
in-plane epitaxial strain to have a rhombohedral unit cell. Although Fe;_,Co,Si is
known to possess a helimagnetic ground state [15-18], we focus our research more on
the properties in fields large enough to generate a uniformly magnetized ferromagnetic
state. We find that these epilayers display the full range of properties expected of this
material, including a characteristic temperature dependence of resistivity [13], posit-
ive linear magnetoresistance [3; 13], a very large anomalous Hall effect [37], and one
Bohr magneton (up) of magnetic moment per electron-like carrier in the low doping
(x < 0.25) regime [3; 42], indicative of the presence of a half-metallic state [33]. Nev-
ertheless, the presence of epitaxial strain, giving rise to an expanded unit cell volume,
leads to some quantitative changes, the most prominent of which is a substantial en-
hancement of the magnetic ordering temperature with respect to bulk crystals. These
epilayers are suitable for patterning into nanostructures that may find use as spin in-
jectors into silicon [45-47] or exploit the chiral nature of the magnetism at low fields in
skyrmion-based devices [48-50]. The present thesis has been laid out in a chapter wise

manner and a brief description of the chapters is as follows:

The second chapter presents the theory relevant to Fe;_,Co,Si system such as spin
splitting, helimagnetism, ferromagnetism etc. It essentially equips the reader with
the concepts necessary to understand and interpret the results presented in further
chapters. Other theoretical concepts pertaining to a particular technique or so will be

explained as the reader progresses along the chapters.



The third chapter, literature review, contains a broad review of dilute magnetic
semiconductors, transition metal silicides with particular emphasis laid on Fe;_,Co,Si

system and a current update on recent research on Fe;_,Co,Si system.

The fourth chapter is based on growth and characterisation, reports the growth
of Fe;_,Co,Si thin films by Molecular Beam Epitaxy (MBE) and further character-
isation of the films by in-situ low energy electron diffraction (LEED), reflection high
energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffrac-
tion (XRD), and transmission electron microscopy (TEM). Based on the data obtained,
results were analysed to obtain various lattice parameters of the Fe;_,Co,Si unit cell.

Finally, stress and strain relationship were investigated and final results are presented.

The fifth chapter is based on transport properties, patterning the Fe;_,Co,Si thin
films, and doing further measurements of Hall effect including ordinary Hall effect,
anomalous Hall effect and topological Hall effect. Results are presented in a very sys-
tematic manner. We saw that the Fe;_,Co,Si epilayers show characteristic positive
linear MR, the films have huge AHE, the THE looks promising and needs to be invest-
igated further.

The sixth chapter is based on Magnetic characterisation and presents the result
obtained by analysing the Fe;_,Co,;Si films using using various magnetic character-
isation techniques such as, Vibrating Sample Magnetometry (VSM), Magnetic Force
Microscopy (MEM), Soft X-ray spectroscopy etc. We see that the Fe;_,Co,Si epilayers
are fully spin polarised for low Co doping. Evolution of dichroism on Fe and Co edges

indicate that the magnetism in the system arises due to both Fe and Co atom.

The last chapter, seven, binds together the results from all the other chapters.
It constitutes detailed analysis of the results obtained by characterising Fe;_,Co,Si
epilayers in a broader picture, and finally the conclusion is presented. A future outlook

and further experiments have been suggested to finally conclude the thesis.



CHAPTER 2

Theoretical Background



2.1 Ferromagnetism in 3d transition metals

2.1 Ferromagnetism in 3d transition metals

Ferromagnetism in solid refers to a long range, spontaneous alignment of magnetic mo-
ments without any externally applied magnetic field. These materials may be divided
into two classes based on the position of the magnetic moments, it could be a localised
ferromagnet or an itinerant ferromagnet. A localised ferromagnet is represented by 4 f
or 5f rare earth metals, where magnetic moments are carried by the localised electrons.
Spin lattice models have been used to treat these localised materials successfully. On
the other hand magnetic moments in 3d metals like Fe, Co, and Ni are carried by
strongly delocalised valence electrons near the Fermi level making them itinerant fer-
romagnets. These delocalised valence electrons can be treated collectively to explain
the itinerant model. Quantum mechanical exchange is the reason for this collective
phenomena. It also reflects on the balance of electrostatic energy of electrons based on
their spins. As a consequence of Pauli’s principle, no two electrons can have same set
of quantum numbers. Electron, therefore have to be promoted to higher energy states.
Hence the parallel arrangement of spins is generally accompanied by an increase in the
kinetic energy. Another consequence of Pauli’s principle is the reduction in electrons
with same spin orientation close to each other, electron are now surrounded by exchange
holes. Keeping the same charged particles apart reduced the Coulomb repulsion. For a
parallel spin arrangement the electrostatic energy reduces as compared to antiparallel
alignment, this is exchange energy. Net energy balance when exchange energy exceeds
the kinetic energy is achieved by alignment of spin in parallel in a magnetically ordered
groundstate.

In case of ferromagnetism, the energy states of valence electrons corresponds to band
states in solids. This band magnetism gives rise to Stoner’s criteria for ferromagnetism.
It essentialy relates the balance between kinetic energy of the system and the exchange

energy with the electronic states. Stoner’s criteria is explained in the following section.

2.2 Stoner Criteria

In molecular field theory, all the spins in a system experience an identical exchange
field (M) produced by their neighbours. Through Pauli’s paramagnetism (xp), this
molecular field in a metal can magnetise the electron gas which in turn would be

responsible for the molecular field, if both M and xp are large enough. If (nq4(efp)



2.2 Stoner Criteria

and n|(er) be the spin up and spin down density of states at the Fermi level then M
may be defined as the difference between spin up and spin down density of states in an

atomic unit cell, it is given by the following equation

M= [ ny(er) — nyler))de (2.1)

As per Density Functional Theory (DFT), the spin dependent interactions enter
an exchange correlation potential V', which is a part of the net effective potential.
Interaction of M with rest of the electronic system is very small, V' can therefore be

given by the following equation

V=V°FV -M (2.2)

where V? is the exchange correlation potential for non magnetic case. V has positive
value therefore, majority or spin up electrons are strongly attracted and spin down or
minority electrons feel strong repulsive potential. A constant, I = 2V is introduced in
Stoner model to represent this enhancement or decrement in potential and is given by
the following equation:
1

I essentially represents the exchange integral or is the Stoner parameter and in a
many body system it averages over all the Coulomb interactions. It also representative
of the exchange interaction strength between the atoms. A ferromagnetic solution will

exists if the following equation is satisfied

[+D(Ep) > 1 (2.4)

This is the Stoner criterion that related exchange integral I with density of states
D(EF). The condition is fulfilled for materials with strong Coulomb effects and large
density of states, 3d transition metals are one such example. For itinerant magnetism

the Stoner criteria is fulfilled by only three transition metal, Fe, Co, and Ni.



2.3 Spin-split electronic bands

2.3 Spin-split electronic bands

One of the most important consequence of Stoner model is the spin splitting of the
electronic band structure of 3d ferromagnets. From equation 2.2 it can be derived that
the constant change (I % M)/2 of the potential V does not act on the spatial part of the
electronic wavefunction. The eigenvalues are however shifted by this constant. Thus the
two fold degeneracy of the electronic states is lifted by the exchange interaction resulting
in spin splitting of the band structure. Ignoring the spin orbit coupling, majority
and minority bands can be understood as two independent set of bands separated by
exchange interaction (I * M). The exchange splitting is not a constant and is dependent
upon the electron wave vector and symmetry of the bands. Exchange splitting is much
larger for d bands than for s or p bands. From Fe to Co to Ni the atomic no. increases
resulting in filling of d bands and moving it down below the Fermi level.the minority
density of states is unfilled for all the three elements. However the majority band, Fe
is not completely filled as Co or Ni. As a result of which Fe has more density of states

at the Fermi level than Co or Ni. The same has been shown in figure 2.1.

2.4 Spin Polarisation

Spin polarisation is a direct consequence of spin split density of states of electrons
leading to the polarisation of charge carriers in the system. Exchange energy n(e)
is responsible for the splitting of spin density of states. Also it is important to note
that the spin polarisation of the whole electron population is not representative of the
polarisation of spin density at the Fermi level (er), as it is different for different spins.
Let 1 and | represent the majority and minority spin electrons respectively. Then net

spin polarisation is given by the following equation

nt(er) —ny(er)
nT(é'F) + ni(sp)

pP= (2.5)

Fermi’s Golden rule for scattering probabilities dictates the conductivity of the
electrons and is proportional to the density of states available at the Fermi level. This
is why spin up and spin down electrons have different mobilities and it is because of this
reason that spin polarisation plays an important role in spin transport or in spintronics.

The two current model described by Mott, where both the spins have parallel channel of

10



2.4 Spin Polarisation
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Figure 2.1: Calculated density of states of some 3d metallic elements in their ferromagnetic
state. The Fermi level is denoted by . The up arrow and the down arrow represents the spin
up and spin down density of states respectively. Following Stoner’s criteria, if the spontaneous
band splitting is sufficient enough to push the spin up d-subband completely below the e, we

get a strong ferromagnet (Co and Ni) else we get a weak ferromagnet (Fe). [51]

11



2.4 Spin Polarisation
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Figure 2.2: Calculated density of states of some metallic elements in their paramagnetic state
where a 3d band has been superposed on a broader 4s band. The Fermi level is denoted by ep.
[51]
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2.5 Spin orbit coupling

conduction has successfully described the ferromagnet transport properties. Therefore,
a charge current has a spin polarisation when is driven through a ferromagnet due to
spin split density of states. The net spin polarisation (P) described by equation 2.4 is
less than unity for a ferromagnetic magnet eg. for Fe, P is 0.44, for Co it is 0.34, and
so on. However, for certain materials P can take the value 1. This in turn implies that
there is only one spin split band at the Fermi level, such materials are also known as half
metals. Half metals are not be confused with semi metals. In semi metals, the valence
band and conduction band overlap such that there are small number of holes and equal
number of electrons present eg. graphite, bismuth and antimony [52]. CrOy and Fe3O4
are examples of half metals. Half metals have long spin diffusion length which makes
them suitable for various spintronics application such as, in magnetic tunnel junctions

or in spin transistors.

2.5 Spin orbit coupling

The Spin and orbit angular momenta interacts via weak spin-orbit interaction. It acts
as a perturbation on well defined L and S states. L and S are not separately conserved
but the total angular momentum J=L+S is conserved. Here L is the orbital angular
momentum and S is the total spin angular momentum. The Hamiltonian describing

the spin orbit coupling (SOC) in second order is,

1
Hso = Wgczs (VV xp) (2.6)

where, V is the external potential acting on the electron, p is the momentum oper-
ator, m, is the bare mass of the electron, s is the spin operator described as s = ho /2

and o is the pauli matrices.

2.6 Helimagnetism in transition metal silicides

Like other transition metal silicides, FeSi crystallises in a B20 cubic structure, which
may be viewed as a distorted rocksalt structure with basis vectors as (u,u,u), (% +
u,% —u,u), (u, % + u,% — u,), and (% —u,, % + u). The primitive cell contains four
formula units of FeSi and belongs to the space group P2;3(T%). The point symmetry
at Fe and Si site is C'3. The space group P2;3 is nonsymmorphic and contains 12 sym-

metry operations such that the operations involving ('3 are associated with primitive

13



2.6 Helimagnetism in transition metal silicides

translations and the operations involving non primitive translations are combined with
tetrahedral point group T'. The lattice parameter (a) of FeSi as previously determined
by single-crystal x-ray-diffraction study come out to be 4.489 A and the corresponding
internal atom positions for Fe and Si are 0.137 and 0.842 respectively [34].

Bak and Jensen first developed the theory to describe the helical magnetic structures
in B20 materials [53]. The broken inversion symmetry in a B20 crystal gives rise
to right handed or left handed crystal chirality. The inversion symmetry constitutes
four main interactions that contributes to the free energy density of the structure.
Zeeman interaction, exchange interaction, anisotropy exchange interaction and finally
the Dzyaloshinskii- Moriya interaction that arises because of spin orbit coupling. The
final expression for the free energy density(w), resulting from interactions mentioned

above is given by the equation below [29],[53].

S2FQ(L - M)

o3 —poHM  (2.7)

w(M) = S ME(T ) + bpMENT - (v x A1) +

where, Mg represents the saturation magnetization, M represents the magnetiza-
tion vector, M = % is an unit vector in magnetization direction, H is the applied
magnetic field, S = 0.8 A is the spin per unit cell, a = 0.4489 nm is the lattice constant
of FeSi unit cell, anisotropic exchange constant is F, L is the cubic invariant that de-
scribes the anisotropy. The constants ¢; and bp are related to the spin wave stiffness
A and the Dzyaloshinskii-Moriya constant D is represented by ¢ = AS/(MZa?) and
bp = DS/(M32a3).
The Dzyaloshinskii Moriya interaction is represented by the second term in the equa-
tion, favours the perpendicular alignment of neighbouring spins where as the first term
in the equation that represents the exchange interaction favours the parallel alignment
of the neighbouring spins. These two competing interaction gives rise to one dimen-
sional modulated structures such as helical and conical phases and two dimensional
skyrmions in the crystal structure.

The helical phase consists of planes of ferromagnetically aligned spins stacked on top
of one another and perpendicular to the propagation vector,(). Each of the successive

planes have their spins oriented at a slightly different angles from each other, giving
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2.6 Helimagnetism in transition metal silicides

(a) (b)
Q

0

Figure 2.3: Magnetization structure where the arrows represent the direction of the magnet-

ization at each point. (a) Helix, (b) Cone with cone angle ¢ = §. [54]

rise to a twist with a fixed chirality. The angle slowly increases in a linear manner
along ) and spans through 27. The cone phase has an arrangement of spins similar
to that of a helix but the spins are canted towards the propagation vector () vector at
an angle ¢, also known as the cone angle. The equation below shows an expression to
calculate the magnetization of this phase with Q as the propagation vector. Using the

same expression one can calculate the magnetization for the helical phase by setting

¢ = 0.

M = Ms(sin(Q.)Cos(), cos(Q.)cos(¢), sin(¢)) (2.8)
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Literature Review
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Ferromagnetic semiconductors (FS) have been widely researched upon mainly because
of their potential use as spin-polarized carrier sources and their easy integration with
other semiconductor devices. An ideal FS should have high Curie temperature and
should be able to incorporate not only p-type, but also n-type dopants. The Eu chal-
cogenides (Eu?*) were one of the early FS that were extensively studied, but were not
successful as the ferromagnetic transition temperature or the Curie temperature (T¢)
was much lower than room temperature. The discovery of Curie temperatures as high
as 110 K in ITI-V based diluted magnetic semiconductors (DMS)[55] alloys where some
atoms are randomly replaced by magnetic atoms (such as Mn?*) generated a lot of
attention and are still researched upon. Other promising materials that exhibit large
spin polarisation include ferromagnetic oxides (CrOy and related compounds, many of
which claim to be half-metallic such as magnetic Heusler alloys, various members of
the mixed valence perovskites, e.g., LazgSr3gMnOj3 etc. But most of them, DMS such
as Gaj_,;Mn,As [55][56][57] or the less studied concentrated magnetic semiconductors,
such as EuS [58],[59] and EuO [60], and CrO[61] (half-metallic) suffer from poor elec-

trical contact or non ohmic contact to silicon.

Transition metal silicides such as MnSi, FeSi, and CoSi crystallize in cubic B20 struc-
ture (Fig. 3.1, left), belong to P2;3 space group, isostructural, and are continuously
miscible with each other. The B20 crystal structure has attracted attention because
of its peculiar geometrical characteristics. The B20 structure can be thought of as a
deformation of the rocksalt structure. The simple cubic structure becomes B20 when
distorted along the [111] direction. The crystal structure of FeSi belongs to the T#P2,3
space group. Together with FeSi other compounds involving a transition metal and a
Si atom have been found to have the same crystal structure. The unit cell contains
4 Fe atoms at crystallographically equivalent positions. The sub-lattice of transition
metal atoms, displayed in Fig. 3.1-right,

Figure 3.1 reveals that the basic structural element is an equilateral triangle of
3 Fe atoms. The structure is corner-sharing i.e. each Fe atom connects 3 triangles,
which occur with 4 different orientations along the body-diagonals of the cubic unit
cell. We focus on those binary transition metal silicides which are in the ratio 1:1
because in this case the sublattice of each element has a frustrated geometry. For two

elements in order to crystallize in the P213 space group the ratio between the atomic
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Figure 3.1: Left: The T%P2,3 crystal structure for TM-mono silicides. Right: Fe sublattice
of FeSi. The corners of the triangles, all of which are equilateral, correspond to the positions
of the Fe-atoms [62]

radii has to be satisfied. The interatomic distance for these compounds is between
2.2 A and 3 A which means that the bond length is small. Consequently, the orbitals
of the elements involved in the bonding are strongly hybridized and the compounds
have a covalent nature. In case of transition metal mono silicides, elements with the
tendency to localize electrons, such as transition metals, form covalent-like bonds with
silicon. The interplay between localization and covalency, together with the geometrical
frustration of the transition metal sublattice, leads to several unexpected phenomena.
Some transition metal mono-silicides have shown non Fermi Liquid behavior[3][63].

A remarkable feature observed from the band diagram of transition metal silicides
as calculated by the first principle band structure approximation[64] (Figure 3.2) is the
symmetry of the B20 structure. One can see that at the X, M and R point several
bands merge into a degenerate one i.e. the bands tend to stick together at certain sym-
metry points in momentum space. The sticking of bands around the high symmetry
points has consequences on the Fermi surface topology and scattering process [65]. We
observe that for MnSi several bands cross at the Fermi level and it behaves as a good
metal, while FeSi has a small gap and it is a narrow bandgap semiconductor; CoSi has

a low density of states (DOS) at the Fermi level and is a bad metal.

Another interesting property of the system rising from the interplay of the spin
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Figure 3.2: First principle band structure approximation of transition metal silicides in the
momentum space. The figure shows the DOS available at the Fermi level (indicated by a zero

on either left hand side or right hand side axis). [64] [62]
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Figure 3.3: The figure above shows magnetic ordering in a helimagnet. On each plane, there
is a ferromagnetic order but the direction of magnetization rotates along the helical direction.
The arrow on the left denotes the direction of the helix [62].

orbit coupling and exchange interaction is the Dzyaloshinsky-Moriya interaction in the
inversion symmetry broken B20 crystal which gives rise to helical spin structure in ab-
sence of any magnetic field (figure 3.3). One can find the signature of helimagnetism
in transition metal silicides such as MnSi, FeSi and Fe;_,Co,Si at low temperature by
application of small magnetic field which turns the direction of the wave vector of the
helical spin to that of the magnetic field. When the magnetic field is increased further,
a homogeneous component of the magnetic order is introduced and the direction of the
magnetic moment is tilted to that of the magnetic field so that the conical spin struc-
ture emerges. The magnetisation increases linearly with the magnetic field as the tilting
angle increases. Then the magnetisation shows a kink indicating the emergence of an
induced ferromagnetic state. Helimagnetism has been long investigated in Fe;_,Co,Si
system. Some of the earliest investigation results are from Beille et al [15], [16]. SANS
and low field magnetisation measurements were used to probe Fe;_,Co,Si and it was
found to have long period of helical structure. Also, low temperature resistivity meas-
urements exhibited positive magnetoresistance which was then attributed to alloying
effect as that would lead to repartion of magnetic moment in the helix structure. He-
limagnetism was explained in terms of occurance of Dzyaloshinsky-Moriya spin orbit
type interaction in non centriosymmetric crystal. Ishimoto et al. [66] further studied
the long helical period in FeygCog2Si single crystals by polarised neutron diffraction

and observed that in as cooled state, multiple helices transform into a single clock-
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wise helix by a magnetic field pointing in any direction. They also found out that the
propagation axis lies along < 001 > by SANS. Grigoriev et al. [67] also investigated
Fe;_,Co,Si system using Neutron diffraction and SQUID measurements. The helices
were found to be doping dependent, they switched between left for x=0.1, 0.15 Co
doping and right for x =0.2, 0.25, 0.3, 0.5 Co doping as investigated by Maleyev et al.

[18] using polarised neutrons.

The magnetisation in these compounds has been explained in the framework of
weak itinerant ferromagnetism. Itinerant magnetism in Fe;_,Co,Si system has been
long debated upon. Beille [68] found weak itinerant ferromagnetism in Fe;_,Co,Si
under high fields . Ishimoto using Polarised Neutrons (PN) Diffraction found that
Fe;_,Co,Si is composed of two kinds of magnetic moments, a 3d-like magnetic mo-
ment localised on Fe and Co sites and a weak negative moment diffused all over the
crystal lattice, The 3d like magnetic moment was found to be 0.263 £+ 0.014 pup/Fe,Co
atom and —0.046 £0.014 up/F.U. [69]. Chattopadhyay et al. [70] used specific studies
based on Mossbauer spectroscopy, Neutron and Magnetic Resonance (NMR) to estab-
lish that the magnetic electrons in Fe;_,Co,Si are itinerant in nature and that the onset
of magnetism can be understood in terms of the Stoner model. They go on to show the
Stoner type excitations in the H-T dependence of magnetisation in Fe;_,Co,Si alloys,
they also see spin fluctuation in the system that has been explained by Moriya theory

of spin fluctuations (Moriya 1982).

Even though FeSi is paramagnetic [5] and CoSi is diamagnetic, Fe;_,Co,Si is mag-
netic for intermediate compositions. Fe;_,Co,Si shows positive magnetoresistance
whereas MnSi shows negative magnetoresistance suggesting that the carriers contribut-
ing to the charge transport and to magnetism are the same. The negative magnetores-
istance in MnSi can be explained by a suppression of spin fluctuations in magnetic fields
(weak itinerant ferromagnet). In colossal magnetoresistance Manganites, the carriers
contributing to the transport and those contributing to the magnetism are different
and the scattering of the itinerant electrons on the localized ones gives rise to a pos-
itive magnetoresistence. In a low carrier density compound such as Fe;_,Co,Si same
electrons are responsible for both magnetic properties and electrical conduction. The

positive magnetoresistance is either caused by a combination of disorder and correl-
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ation effects as explained by electron-electron quantum interference effects, suggested
by Manyala et al [3] or by Zeeman splitting that decreases the density of the higher
mobility minority spin band, proposed by Onose et al [13] or on similar lines by slight
field-induced modified minority and majority spin bands that leads to small magnetic

moment by Forthaus et al[71].

Electron doping of FeSi by substituting Co for Fe produces an n-type metal Fe;_,Co,Si
(Figure 3.2 shows the band structure of Fe;_,Co,Si for x=0.253). Co replaces a Fe
atom in the unit cell and the excess 3d electrons on the Co atom for x < 0.5 occupy only
the majority spin band and the Fermi level lies in the band gap of the minority spin
band. While for x < 0.5 the Fermi level lies in the conduction band, above the band
gap of minority spin band. One of the ways to calculate the electronic structures of
Fei_,Co,Si is by the linear muffin-tin orbital (LMTO) method with the atomic sphere
approximation (ASA) in the local spin-density approximation [72]. In this model, Fe
and Co atoms in (Fe, Co) Si are treated as virtual atoms with averaged value of atomic
number by the concentration. The present system with the B20-type structure contains
four Fe/Co and four Si atoms in a cubic unit cell.

Figure 3.4 illustrates the DOS in Fe;_,Co,Si for various concentration of x (x=0
to x=1) as calculated by LMTO. Some other important theoretical studies include
Band structure approx.-linear augmented plane wave band calculation for cubic FeSi
within local density approximation by Mattheiss and Hamann [34]. Local density ap-
proximation (LDA) and generalised gradient approximation were used by Al-Sharifet
al [2] who found out that B20 structure would become unstable as compared to B2 at
a moderate pressure of 13.5 and 10.9 GPa. Theoretical results for Fe;_,Co,Si alloys
were also obtained using muffin-tin orbital method and the results were analysed using
Stoner, covalent magnetism and rigid band model by Punkknen et al[73]; it was found
that disorder affects the magnetism in the system significantly. Ab initio calculation by
Guevaraet al[33] found that the Fe rich region in Fe;_,Co,Si behave like a disordered
ferromagnetic half metal. They tried to explain the experimental results, at doping of
0.25 and higher, the system starts to segregate, reducing the value of magnetic mo-
ment and half metal like nature disappears . Zhi-Huiet et al [74] used full potential
linear augmented plane wave method to study the electronic and magnetic properties

of Fe;_,Co,Si . It was found that in Fe rich alloys, electronic and magnetic properties
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Figure 3.4: Calculated local DOS of the 3d atom (solid curves) and Si (broken curves) for
Fe1_;Co,Si at x, 0.0 (a), 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e) and 1.0 (f). Upper and lower portions
in each figure are those of majority and minority spin bands. FeSi (a) and CoSi (f) are in the

non magnetic state. The origin of energy is the Fermi level [72]
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at Fe site depends on the spin polarisation of the nearest Co atom, where as in Co
rich alloys, at Co site the same properties depend on neighbour of Fe atoms. LDA
combined with dynamical mean field theory was used by Mazurenko et al [75] to study
the spectral and magnetic properties of Fe;_,Co,Si system. They found out that Co
doping leads to ferromagnetism in the system and its itinerant nature was successfully

proved by the model.

The Density of States (DOS) gives rise to various interesting properties in Fe;_,Co,Si
system such as metal-insulator transition for x > 0.1, non Fermi liquid behaviour,
contribution of one electron by Co atom for conduction, large anomalous Hall effect,
increased conductivity etc. Fe;_,Co,Si is believed to be a half metal [3], [33] and dis-
plays positive magnetoresistance and anomalous Hall effect [3], [37]. Also the magnetic
semiconducting metal silicide Fe;_,Co,Si is known to make ohmic contact to silicon[76]
and therefore offers an alternative class of material that may serve as a promising in-
jection source for silicon spintronics that is easily integrable with the current planar
processing technology. So far the majority of studies on Fe;_;Co,Si has been based
on bulk crystals grown by melting arc method [3], [13], levitation, by pulsed laser
deposition [38] etc. Some FeSi films have been synthesised by MBE previously but
none have reported the successful growth of B20 structure. DeGrave et al. showed
the synthesis of Fe;_,Co,Si nanowires via CVD and with a polarisation of 28 £+ 7%
[41]. Recent experimental research on Fe;_,;Co,Si system includes studies on doping
dependent transport properties of Fej_,Co,Si by Onoseet al. [13] where they measure
positive magnetoresistance in the a single crystal and attribute the result to Zeeman
splitting (mentioned before) contradicting the quantum interference scenario proposed
by Manyalaet al. [3]. Doping dependence of the Hall conductivity runs parallel to
the critical field and to wave vector of helical spin suggesting that Hall conductivity
is proportional to spin orbit interaction. Also, the change in Seeback coefficient is at-
tributed to electronic structural change accompanying the transition from paramagnet
to a ferromagnet. They also found out that the Curie temperature decreases with in-
creasing pressure and above 7 GPa no helical state exists. Pressure induced quantum
phase transtion (QPT) study by Forthauset al. [71] indicates that the stability of the
ferromagnetic states decreases with increasing Co doping. The suppression of the ferro-

magnetic state is not due to structural instability but strongly coupled to the different
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degree of local crystallographic disorder. Low temperature transport, optical, thermo-
dynamic and magnetic properties of Fe;_,Co,Si were studied by Chernikovet al.[77]
and angle resolved photoemission study of FeSi by Aritaet al. [78], both of which em-
phasised on the strongly correlated metal nature of the Fe;_,Co,Si system. It is further
supported by observation of the large anomalous Hall effect by Manyalaet al. [37] and is
attributed to strongly correlated metal nature. They also find that the AHE is domin-

ated by intrinsic effect due to change in band structure rather than impurity scattering.

Recent interest in Fe;_,Co,Si system is attributed to wide interest in skyrmion
physics. Yu et al. [21] observed real space skyrmions in Fe;_,Co,Si bulk system using
Lorentz transmission electron microscopy. They applied a magnetic field of 50 mT
normal to the film and observed skyrmions in the form of a hexagonal arrangement of
swirling spin textures, with a lattice spacing of 90 nm. They backed it up with T-B
phase diagram that was found to be in good agreement with Monte Carlo simulations.
Also, Milde et al. [79] used magnetic force microscopy to track the creation and de-
struction of the skyrmion lattice on the surface of a bulk crystal of Fe;_,Co,Si (x =
0.5). They found out that the skyrmions vanish by forming elongated structures. They
used numerical simulations to show that changes of topology are controlled by singu-
lar magnetic point defects and can thus be viewed as quantized magnetic monopoles
and antimonopoles, which provide as source and sink of one flux quantum of emergent
magnetic flux, respectively.

With a rich history of experimental and theoretical studies on Fe;_,Co,Si system
we studied the epitaxial growth and characterisation of Fe;_,Co,Si system with the
aim of preserving the properties observed in bulk, finding new and interesting physics

in these epitaxially grown system.
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CHAPTER 4

Growth and Structural Characterisation
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4.1 Molecular Beam Epitaxy
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Figure 4.1: The figure above shows the adatom kinetics for basic atomic process of growth. As
the impinging flux of atoms hit the surface, processes such as adsorption, diffusion, nucleation,

and desorption takes place simultaneously during the growth cycle. [80]

4.1 Molecular Beam Epitaxy

Epitaxy is a process of growing thin films that are crystallographically aligned to the
underlying substrate. The epitaxial growth process relies on the thermodynamical
properties and adatom kinetics of the incoming target atoms and the substrate. The
surface adsorption of the target atoms take place either by transfer of electrons between
impinging atoms and the substrate (chemisorption) or by van der Waals interaction
(physisorption). Desorption and absorption of adatoms on the substrate takes place
simultaneously and is a function of the incoming flux rate, temperature of the substrate,
and the source. The ones that are adsorbed can diffuse on the substrate to form the
epitaxial film either by forming atomic terraces or by atom cluster nucleation as shown
in fig. 4.1. If n is the number of atoms, ‘jl—’tl will be the rate at which they are impinging
on an unit area of the substrate per unit time. The following equation describes if the

epitaxial growth would take place at all:

n P (4.1)
dt  \2mmkt

where P is the pressure, k is the Boltzmann constant and m is the mass of the
impinging atoms.

Various modes of epitaxial growth has been illustrated in fig. 4.2. When an epitaxial
film is grown on a substrate of the same material it is called homoepitaxy, if the film is
grown on a chemically different substrate it is called heteroepitaxy. In heteroepitaxy,
depending on the lattice mismatch and surface free energy of the materials, the growth
modes can be classified into three types as mentioned in fig. 4.3:

(a) Volmer-Weber growth: In this growth model adatom to adatom interactions are
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4.1 Molecular Beam Epitaxy

(a). Commensurate (b). Incommensurate, relaxed (c). Pseudomorphic, with
uniaxial dilation

Figure 4.2: Cross-section schematic of atomic arrangement in various modes of epitaxial
growth: (a) lattice-matched, commensurate growth; (b) lattice-mismatched, relaxed growth;

(¢) lattice-mismatched, strained pseudomorphic growth [80].

(a) (b) (c)

Figure 4.3: Growth mode of thin films: morphology of a growing film for (a) Volmer-Weber
growth, (b) Frank-van der Merwe growth and (c) Stranski-Krastanov growth, upon increas-

ing coverage in monolayers (ML).Each mode is shown for several different amounts of surface

coverage [80].
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4.1 Molecular Beam Epitaxy

much stronger than those of the adatom with the surface, which leads to the formation
of three-dimensional adatom structures or islands.

(b) Frank van der Merwe growth: In this growth model adatoms attach themselves
to surface and a complete layer of film is formed prior to growth of subsequent layers.
This is a layer by-layer growth and is two dimensional in nature, resulting in atomically
smooth layers.This is also the ideal condition for the film growth.

(c) Stranski-Krastanov growth: This intermediate growth model is characterized by
both two-dimensional (2D) layer by layer and three-dimensional (3D) island growth.
Transition from the layer-by-layer to island-based growth occurs at a critical layer
thickness and is a function of the chemical and physical properties, such as surface
energies and lattice parameters, of the substrate and film.

There are various ways of obtaining an epitaxial film, such as by Chemical Vapour
Epitaxy, Liquid Phase Epitaxy, Molecular Beam Epitaxy (MBE) etc. We used MBE to
grow high quality, single crystal, epitaxial thin films of FeCoSi by creating a molecular
beam of the target material that impinged onto the surface of the substrate, forming
an epilayer. MBE requires ultra-high vacuum (UHV) environment, of the order of
10~ mbar which ensures minimum contamination and longer mean free path of the
target atoms or molecules. The chemical composition and the atomic layer thickness of
the film is controlled by controlling rate of the incoming fluxes. For most of the MBE
machines, there are three main chambers in the MBE, a preparatory chamber, a growth
chamber and an analysis chamber each of which is equipped with its own vaccum pump
systems. The growth chamber maintains a pressure in the range of 10~'' mbars. It
has three Knudsen cells (K-cells), three electron guns and a manipulator on which the
substrate is mounted and rotated for uniform growth. The manipulator is also used for
heating the substrate and can go up very high temperatures approx. 1400°C. Often
growth chamber has Reflection High Energy Electron Diffraction (RHEED) system to
monitor layer by layer growth of the film. On the other hand the analysis chamber is
equipped with, Auger Electron Spectroscopy (AES) and Low energy electron diffraction
(LEED) systems for various post growth analysis.

Heteroepitaxy implies the epitaxial growth of film on a substrate with different lat-
tice parameter than the film. The lattice mismatch between the film and the substrate
results in the film being strained, which is characteristic of a heteroepitaxial growth.

There are different ways in which the grown film may be strained. In a commensurate
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4.1 Molecular Beam Epitaxy
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Figure 4.4: Schematic representation of a LEED instrument.

growth, the lattice mismatch is minimum i.e. grown film’s lattice parameter is nearly
matched with that of the substrate and has least defects in the structure. As the lattice
mismatch increases, the film tries to adopt the two-dimensional spacing of the substrate
and strains itself more, this is called pseudomorphic growth. If lattice mismatch is very
high and strain accommodation is not possible then dislocation defects are formed at
the interface and the film adopts its own lattice parameter resulting in a relaxed growth.
This is also called Incommensurate growth.

There are various ways of monitoring growth, both insitu and exsitu, which will be

described in the following section.

4.1.1 Low energy electron diffraction (LEED)

LEED is based on the detection of coherently backscattered diffracted electrons. A
beam of collimated, monoenergetic, and low energy electrons (~ 100 eV') are accelerated
towards the sample to be probed. The spatial distribution of the impinging electrons
that are elastically backscattered towards the electron source is determined by the
surface structure of the sample. At low electron energy, the diffraction pattern arising
from electrons from large ordered domains (> 10 nm) in a sample is very surface
sensitive. Thus, the observation of a LEED pattern yields information about the surface
structure. LEED analyser was used to give a qualitative insight into the epitaxial
structure of the Fej_,Co,Si films grown on silicon (111) substrates. The measurement
requires UHV and is mounted in the preparation chamber of MBE machine (in-situ).

Qualitative and quantitative analysis of the diffraction patterns can throw light on the
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4.1 Molecular Beam Epitaxy

Reciprocal lattice rods

Incident

Figure 4.6: Schematic description of the labels used in equation 4.1.2 used to determine the

in-plane lattice constant of the film being grown.

orientation of the film with respect to the substrate. In our films the epitaxy in the
grown layer is achieved by 30° in-plane rotation of the Fe;_,Co,Si unit cell relative
to the Si unit cell. Figure 4.4 shows a schematic diagram of a LEED instrument. It
broadly consists of a electron source, an electron grid and a phosphor screen where the

image could be seen.

4.1.2 Reflection high energy electron reflection (RHEED)

Reflection high energy electron diffraction (RHEED) is an in-situ surface sensitive tech-
nique that is used to probe the real time surface evolution of an epitaxial film. A
schematic of a RHEED system is shown in Figure 4.5. A high-energy electron beam
(1.5 A, 20 keV) is incident on the sample surface at a grazing angle between 1° to
3°. If K represent the incident electron wave vector, K’ the diffracted wave vector
then the difference between them can be denoted by AK. The incident electron wave
vector interacts with the crystal potential, the ones that follows Laue’s condition i.e.

AK equals inverse lattice vector, interfere constructively and a diffraction pattern is
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4.2 X-ray Techniques

Figure 4.7: RHEED pattern of reconstructed Si 7x7 (left) and Fe;_,Co,Si epilayer (right),
the streaks represents the constructive interference of the beam. They are characteristic of
particular system. High intensity streaks are representative of smooth surface. Also, one can

find the inter planar lattice plane spacing by analysing the consecutive streaks

obtained and is recorded on a phosphorous screen. The diffracted pattern on the screen
is the Fourier transform of the lattice interacting with the beam. We can analyse the
diffraction pattern to obtain information about the inter-planar spacing (d) and hence

the strain in the heterostructure.

(4.2)

where L is the distance between the sample surface normal and the screen, A, is the
electron wavelength corresponding to a particular energy and ¢ is the distance between
two diffracted streaks observed on the screen. A RHEED pattern can also be used
to understand the characteristics of a growing surface (real time): such as the streaks
indicating an atomically flat surface, spots that move with sample rotation indicate the

atomic smoothness and stationary spots indicating a 3D growth.

4.2 X-ray Techniques

(4.3)

X-rays are electromagnetic waves with wavelength in the range of nano meters
corresponding to the photon energy (e) of 120 keV-6 keV as given by the equation

4.2. When an X-ray photon interacts with an atom it is either absorbed or scattered,

32



4.2 X-ray Techniques

and when it interacts with a material medium which can be treated as a continuum of

atoms, it is either reflected or refracted from the material interface.

4.2.1 Scattering

The interaction of electromagnetic field of X-rays with the electrons present in a mater-
ial gives rise to X-ray scattering or X-ray diffraction. Upon interaction with a material
having a periodicity in space the scattering may give rise to constructive interference.
The periodicity in thin films correspond to the separation between the atomic layers
of different electron densities and in a crystal, the repetition of atoms from unit cells.
The angle of coherent interference 6 arising from the diffraction of X-rays from two

scattering centres with a separation d, obeys Bragg’s law [81]

n\ = 2dsin 6 (4.4)

Where n is the index of the diffraction and A is the wavelength of the X-ray used.
The equation however does not help us to find the intensity of the scattering. There-
fore to estimate the intensity of the scattering (|F¥%%!|2) in a crystal structure for a

constructive interference we use the following equation,

Fcrystal(Q) _ ij(Q)eiQ'Tj 1@ Bn (4.5)

where @ is the scattering vector and f;(Q) represents the atomic form factor of
the j'th atom. R, are the lattice vectors that define the lattice basis and r; are the
position vectors of the atom such that all the atoms in the crystal can be mapped by
R, + 7. The first term in the equation represents the Unit cell structure factor and
gives the intensity of the allowed reflection. The second term is dependent on the lattice
structure, gives the lattice sum, and is representative of the position of diffraction peaks
and their distribution in the reciprocal space. The lattice sum would equal unity unless

the scattering vector satisfies the following condition:

Q - R, =27 x integer (4.6)

R, the lattice vector can be written as
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4.2 X-ray Techniques

R, = nia1 + noas + nsas (4.7)

where (a1, as,as3) are the basis vectors and (ni,ne2,ng) are integers. For an unique
solution to the equation 4.2.1, we use the concept of reciprocal lattice, the reciprocal

lattice vectors are given by the following equations

Any lattice site in the reciprocal lattice can be mapped by the following relation

G = ha] + kay + laj (4.9)

where (h,k,1) are integers. The product of G and R,, gives us the following,

G.R,, = 2n(hny + kns + In3) = 27 X integer (4.10)

On comparing the equation with equation 4.2.1, we find the following solution
R=G (4.11)

This implies that for diffraction to take place the scattering vector should equal
the reciprocal lattice vector. This is also known as Laue condition and is equivalent to

Bragg’s law.

4.2.2 Absorption

X-ray absorption is based on the principle of photoelectric effect wherein an x-ray
photon is absorbed by an atom, the excess energy is subsequently transferred to an
electron such that the electron is then expelled from the atom leaving the atom ionised.
When the vacancy or hole thus created is filled by an electron at a higher energy level,
emitting a photon, the process is called florescence. However, if the energy that was
used to emit the photon is rather used to expel another electron from the atom, the

process is called Auger electron emission. The photoelectric absorption cross-section
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varies as a function of atomic number (Z) of the absorber, given by x Z%. Absorption
can be quantified using the linear absorption coefficient u. If dz be the infinitesimal
thickness of the material at a depth z from the surface, udz would be the attenuation

of the incident beam. The absorption equation can then be written as

—dI = I(z)pdz, (4.12)

Let I(z = 0) = Iy be the incident beam intensity at z = 0, the solution to the

differential equation is the following, using which p can experimentally determined.
I(z) = Ipe (4.13)

4.2.3 Refraction

The phenomena of refraction takes place at the interface of two matter having different
refractive indices (n). The matter can be assumed to be homogeneous, having uni-
formly distributed scattering centres, and boundaries separating them to be sharp at
the interface. The refractive index of vacuum is 1 and that of optically transparent
materials for visible wavelengths ranges between 1.2 and 2. For X-rays the refractive

index can be written as the following

n=1-4§+1ip, (4.14)

where § is of the order of 107 in solids and 10~® in air. 3 is imaginary and is smaller
than §. Therefore n is less than unity for X-rays. Since the velocity in a material is
given by ¢/n, it would seem to imply that the light travels faster in a medium than
in vacuum. this however is not the case as ¢/n is the phase velocity, not the group
velocity which is evaluated as dw/dk, and is less than c.

Quantitatively refraction can be defined by Snell’s law that relates the incident
grazing angle « to the refracted angle o/ by the equation below.

i

cosa =Mncosa , (4.15)

A refractive index less than unity leads to total external reflection. The X-rays
upon entering a medium are refracted away from the normal and in the case of total

internal reflection they don’t penetrate into the medium and are completely reflected
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Figure 4.8: A plane wave (kg) is incident on the boundary between two homogenous, isotropic,

and lossless media; kr and kp are the reflected and transmitted waves respectively.

back. The incident glancing angle less than which the total external reflection takes
place, is called the critical angle a. and can be numerically obtained by expanding the

equation above and assuming 5 to be zero, it is then given by,
e = V26 (4.16)

4.2.4 Reflection

We consider reflection from a homogeneous slab of finite thickness as shown in fig 4.8.
Let the wave vector k; be incident at an angle «, its amplitude be a;, in a similar way
we can describe the parameters for transmitted wave k7 (amplitude be ar) making
an angle o and reflected wave kg (amplitude be ar) making an angle «, with the
surface parallel to the slab. We consider a particular case of specular reflection wherein
a; = ap = a. In the X-ray region, Snell’s law (eq 4.2.4) and Fresnel’s (eq 4.2.4)
equations can be derived by imposing boundary conditions i.e the inplane component
(k) of the wave vectors and its derivatives should be continuous at the interface of the
slab. We thus arrive to the equations below (readers can refer to text by Als-Nielsen

and Des MacMorrow for detailed derivation [81])

cosa=ncosa (4.17)
and ,
— 2
r= 28 _ ¢ 04/ t=2T oz/ (4.18)
ar o+« ay o+«
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To determine the slab thickness(A or rgq,) we consider multiple reflection from
the surface of the slab as well as transmission across its interface. Taking into account
the phase shift during transmission and summing over the all the possible cases of
transmission and reflection, we obtain a geometric series that converges to the equation

below, yielding an expression for total amplitude reflectivity.

2
01 + T12P

_ 4.19
1+ roi1riep? ( )

Tslab =

Where p? = ¢’@2 is the phase factor of the rays reflected from the top and bottom
of the slab, A is the thickness of the slab, rg1, and rio are the reflections at the top
and bottom interfaces of the slab respectively. The reflected intensity ||r||? is plotted
against the scattering vector @ in fig 4.9. The oscillations or the Kiessig fringes are
due to the constructive (in phase) and destructive (out of phase) interference from the
top and bottom interfaces of the slab. The angular separation of Kiessig fringes can
be used to obtain the thickness of the slab as shown in fig 4.10 by using the Kiessig

equation,where 6, is the critical angle,d,, is the angle of the n'* peak

nA = 2A(sin? §,, — sin®6,.)'/ (4.20)

A Bruker D8 Discover system was used at Leeds, the x-ray beam is produced from
a Cu anode, collimated via slits and, passed through a monochromator to obtain the
characteristic Cu Ko wavelength (1.54 A). The filtered beam is then passed through a
scintillator detector and finally through the data logger. The system is equipped with a
Eulerian-cradle, a five-axis (x-y-z- x — ¢ ) precision sample stage. High incidence angle
scans in a symmetric § — 260 mode were used to determine the out of plane interplanar
distance of the planes lying parallel to the sample surface. In such a scan the angle 0
of the incident beam with respect to the sample surface is varied, keeping the detector
angle at 20 with respect to the incident beam. The scan reveals information about the
crystal structure, film quality, crystallographic orientation etc. of the crystal lattice.
One such spectrum is shown in fig 4.11. Grazing angle incidence X-ray diffraction,
where beam is almost parallel to the surface of the film, was used to determine the

inplane orientation of the crystal lattice and hence the associated lattice parameters.
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normalised intensity

Figure 4.9: Kiessig fringes as obtained from an epitaxially grown Fe;_,Co,Si film. The fringes
arise due to the constructive interference from the film. The solid curve shows the calculated
reflectivity (||r|?) as a function of scattering vector @, surface roughness of the film can also
be determined from the fitted curve. The periodicity of these fringes can be used to determine

the thickness of the film grown on the substrate.

Thickness: 50 +/- 3

22(n+1)/4

T v T M T T T T T T T T
1.5x10°2.0x10°2.5x10°3.0x10°3.5x10°4.0x10°4.5x10"°
2 2
0 h+1-0"n

Figure 4.10: Film thickness (nm) was calculated from the adjacent Kiessig fringes for a
epitaxially grown Feg 5Co0g.55i thin film. The red line shows the linear fit of the data points
that were obtained from fig 4.9.
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Figure 4.11: A high angle scan of Fe;_,Co,Si epilayer with x = 0.5. One can see the
characteristic (111) and (222) B20 peaks aligned parallel to corresponding Si peaks.

4.3 Atomic force microscopy

AFM is a scanning probe microscopy (SPM) technique that is used to map the surface
topology by measuring the short range van der Waals interaction between the tip and
the sample surface. The tip is made of either Si or SiN is mounted normal to the
cantilever. The cantilever used was approx. 125u m long, 40 m wide, had a resonating
frequency of 320 kHz, and stiffness/spring constant (k) of 42 N/m. We used the tapping
mode of AFM tip, the other two modes being contact and non-contact. The tapping
mode overcomes problems associated with friction, adhesion, electrostatic forces by
placing the tip in contact with the surface to provide high resolution and then lifting
the tip off the surface to avoid dragging. The resonating frequency w of the tip is given

by the following equation

wo = \/k/m, (4.21)

During the scan the tip experiences van der Waals forces that leads to modification

of the resonating frequency to the following

w=we(/l—— (4.22)
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4.4 Transmission electron microscopy

where 0F /0z is the minimal detectable force gradient.

OF 1 [4BkKpT

where A is the rms (root mean square) oscillation amplitude, B the detection band-
width, and @Q = Aw/w the quality factor of the resonance. The oscillating frequency
of the cantilever is monitored by a laser beam reflected from top of the tip and then
incident onto a photodetector. The oscillating amplitude is kept constant using a piezo-
electric actuator and a PID regulator controls the tip-sample distance, maintaining a
constant oscillation amplitude. The laser beam tracks the motion of the tip and using

a computer software a topographic image of the sample surface is thus obtained.

4.4 Transmission electron microscopy

A TEM has a tungsten filament on top that acts as an electron source. A voltage of
the order of 100-300 keV is applied to the filament to generate a high energy electron
beam by thermionic emission. The beam then passes through a vacuum chamber where
pairs of electromagnetic lens are used to focus the beam and vary the spot size before
transmitting it through the sample. The sample to be measured has to be thin enough so
as the electron beam passes through it. For our experiments, the samples were prepared
in Institute of Material Science, Univ. of Leeds using Focussed Ion Beam (FIB). The
scattered and diffracted electrons are then focussed onto a phosphor detector and an
image is obtained. Various qualitative and quantitative analyses could be done. We
used the images to confirm the epitaxial growth and perform strain analysis. Element
specific Energy-dispersive X-ray spectroscopy (EDS or EDX) was done to verify the

chemical composition of the films which are in good agreement with what we expected.

4.5 Elastic Properties/Stress and Strain

In solids stress can be defined as force acting per unit area. When a body under-
goes stress, the elastic properties of the material determines the corresponding strain
response. Within the framework of linear elastic limit, stress and strain tensors are

related by Hooke’s law as follows
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Capping layer (Pt) :

Figure 4.12: Fe;_,Co,Si epilayer with © = 0.5 on the [112] zone axis, showing the upper

(left) and lower (right) interfaces. The film can be seen to be an epitaxial single crystal.

oij = Cijri€ki, (4.24)

€ij = Sz‘jklakh (4.25)

where 0;; and ¢;; are the components of the stress and the strain tensors, Cj;;; and
Sijki constitute the stiffness and compliance tensors respectively. The stress component
o for which the force is acting on the ith face and is normal to the ith face is called
normal component and the o;;, where ¢ # j for which force acting on the jth face is
parallel to the ith face is called a shear component. Stress forms a nine component

symmetrical 2nd rank tensor which can be written in the matrix form as shown below

011 012 013
Oij = |021 022 023 (4.26)

031 032 033
The number of stress components can be reduced from nine to six under static
situation when angular acceleration vanishes and therefore the total torque equals zero

(0ij = o).

If x; jx represents the Cartesian coordinates x, y, and z respectively, the displace-
ment in each of the coordinates is represented by v; ;, the external forces acting on

the material causing a deformation can then be described by the strain tensor:
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€11 €12 €13
€ij = |ea1 €22 €23 (4.27)

€31 €32 €33

where
.0y
s = S (4.28)
and
1 . 0vj .o
KA <:clzlglo P b 5a:j> (4.29)

The elastic stiffness tensor or the moduli of elasticity Cj;z; describes the physical
property of the material. The Cj;j; is a fourth rank tensor, has 81 components and
relates strain and stress. Because of stress and strain symmetries the number of the
component it transforms into a rank 2, thirty six component tensor (using Voigt nota-

tions). For a cubic crystal the stiffness tensor has three independent components:

[Cli Ci2 Ci2 0 0

Ci2 Ci1 Cia 0O 0

Ciz2 Ci2 Cu 0 O
0 0 0 Cyu O
0 0 0 0 Cu O
0 0 0 0 0 Cul

(4.30)

0
0
0
Ccubic =
0

Values of some elastic constants for transition metal silicides are shown in the
fig. 4.13. For isotropic body the Cjjx; constants depend only on two parameters (Young’s

modulus and Poisson’s ratio), and they do not change with direction in the body.

4.6 Result and Discussion

The Fe;_,Co,Si thin films were prepared by simultaneous co-evaporation of Fe, Co, and
Si by molecular beam epitaxy (MBE) on a lightly n-doped silicon (111) substrates with
2000-3000 Qcm resistivity at room temperature. The level of Co-doping x of the various
Fe;_,Co,Si films was determined by controlling the individual rates of incoming flux.

We adopted the growth protocol described in ref. [14]. The base pressure of growth
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MnSi a=4.5598 A, Op=660 K

cjj T=6.5 T=T8 T=115
c 3.2057 3.2045 3.2047
Cy 1.2615 1.2582 1.2540
12 0.8523 0.8574 0.8477

FeSi a=4.483 A, ©,=680 K

cjj T=6.5 T=T71.8 T=2928
cp 3.4626 3.4454 3.1670
Cy 1.3916 1.3858 1.2521
c12 1.0576 1.0608 1.1298

CoSia=4.444 A, =625 K

cij T=65 T=71.8 T=292.8
c 3.5432 3.5404 3.4529
Cyy 1.1847 1.1857 1.1593
c2 1.3323 1.3331 1.3128

Figure 4.13: The table above shows the elastic constants of MnSi, FeSi, and CoSi, Debye

temperature (©p), calculated from the elastic constants. [82]

chamber was maintained in the range of 2.8-4.8 x 10~!! mbar. Prior to the deposition of
the film, the substrates were annealed at 1200°C until a well ordered 7 x 7 reconstructed
Si (111) surface was obtained. The Si(111)-7 x 7 reconstructed surface lowers the energy
of the surface and can be explained by the DAS (dimer-adatom-stacking fault) model
[83].

The reconstruction affects the surface atom layer and the top four layers, resulting

in a diamond shaped 7 x 7 unit cell. As per this model, each diamond shaped unit

Figure 4.14: Structure of unreconstructed Si (111) surface with dangling bonds marked with
a dot (e)[83].
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4.6 Result and Discussion

Figure 4.15: Top view of the reconstructed Si(111)-(7x7) surface due to the DAS model. Six

adatoms are marked X, six corner adatoms are marked Y, R and R’ are the rest atoms, [83].

cell consists of two triangular subunits each surrounded by nine Si dimers. On the
surface there are six triply coordinated Si atoms divided equally between faulted half
subunit and unfaulted half subunit cell, also called rest atoms. The top layer has twelve
adatoms, six corner adatom and six centre adatoms. Each 7x7 unit cell contains 19
dangling bonds against the 49 originally contained in the unreconstructed unit cell: 12
for the adatoms, six for the rest atoms and one for the atom in the center of the corner
hole. A low energy electron diffraction pattern demonstrating this reconstruction is
shown in Fig. 4.16(c). The films were then grown by depositing a seed layer of Fe of
~ 5.4 A thickness at room temperature, followed by the deposition of a ~ 50 nm thick
Fe;_,Co,Si layer at a net flux rate of ~ 0.4 A/S at 400°C. The films were then further
annealed at 400°C for 15 minutes, before being allowed to cool to room temperature
for further characterization.

The films grew in the (111) orientation, as can be seen from the Cu K, X-ray
diffraction (XRD) spectrum shown in Fig. 4.16(a), and are e-phase pure. In-plane
epitaxy of the Fe;_,Co,Si films is seen to be achieved by a 30° in-plane rotation of
the surface unit cell with respect to the Si, such that the Fe;_,Co,Si [112] direction
is aligned parallel to Si [110], demonstrated by the LEED pattern of a completed
epilayer in Fig. 4.16(d). Atomic force microscopy (AFM) was used to map the surface
topography of the films: an representative micrograph is shown in Fig. 4.16(b). The
r.m.s. roughness of the films were estimated from these images to be around 1 nm.

For further structural verification, high resolution transmission electron microscopy
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Figure 4.16: Structural characterization of the 50 nm thick Fe; _,Co,Si epilayers. (a) Specular
XRD spectrum of a x = 0.5 film, illustrating the phase purity of the B20 structure and the (111)
epitaxial orientation of the film. A scan showing the off-specular (002) peak at the appropriate
detector angle 26 is also shown, with the geometrical relationship between the lattice constants
measured by these two crystallographic peaks shown as an inset, defining an angle xy between
the two crystallographic directions. (b) Atomic force micrograph of the top surface of an
Fe;_,Co,Si epilayer with x = 0.5. The r.m.s. roughness is ~ 1 nm. (¢) LEED pattern of an
annealed Si (111) substrate prior to film growth. The 7 x 7 surface reconstruction is evident.
(d) LEED pattern from an Fe;_,Co,Si film z = 0.3, demonstrating epitaxial growth in the

(111) orientation.
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4.7 Strain characterization

(HRTEM) and energy dispersive X-ray analysis (EDX) were carried out on cross-section
specimens prepared by focussed ion beam (FIB). Fig. 4.17(a) and (b) show the top and
bottom interfaces of a Fei_,Co,Si film with = 0.5. The films look well-ordered
throughout and epitaxial growth can be observed with the orientation:
(111)Fe;_,Co,Si||(111)Si : [112]Fe;_,Co,Si|/[110]Si.

Sample cross sections were mapped with EDX which confirmed the homogeneous chem-
ical composition of the films.

We also measured plan-view TEM sections made by mechanical polishing. The dif-
fraction along the [111] surface normal for a Fe;_,Co,Si epilayer with z = 0.3 is shown
in Fig. 4.17(c). Double diffraction arising from the incommensurate film and substrate
lattices is observed surrounding the primary diffraction spots. An enlargement of the
spot circled in panel (c) is shown in Fig. 4.17(d) from which a line scan (depicted in
Fig. 4.17(e)) was used to determine the spot separation. From this double diffraction
spot separation Ag, and using the methods of Karhu et al.,[27] the in-plane strain for

this particular layer, averaged over the 50 nm film, was determined to be 0.92+0.07 %.

4.7 Strain characterization

Heteroepitaxy gives rise to strained growth of films as a result of the lattice mismatch
between substrate and the film. The lattice parameter of Si is 5.431 A, whilst that of
bulk FeSi is 4.482 A, falling to 4.4635 A for Fey5Cop5Si. It is to accommodate this
large difference that the film grows with the 30° in-plane rotation demonstrated above
by LEED (see fig. 4.16(c) and 4.16(d)) and HRTEM (Fig. 4.17(b)). This gives rise to
an in-plane lattice mismatch at the interface that is 4.98 % for FeSi, rising to 5.35 % for
Fey.5Cog.551. The heteroepitaxy induces biaxial tensile strain in the in-plane directions
of the Fe;_,Co,Si layers, with corresponding compression in the out-of-plane direction,
which distorts the cubic B20 lattice to have a rhombohedral form.

The position of the Fe;_,Co,Si [111] and [222] Bragg peaks, obtained from 6-
260 high angle XRD scans, were used to determine the out-of-plane [111] inter-planar
spacing of our Fe;_,Co,Si films using Braggs’ law. We define the parameter dpy;
as a measured interplanar spacing associated with a particular set of lattice planes
(hkl). A systematic decrease in out-of-plane inter-planar spacing, di1; is observed with
increasing Co content z in the films, as shown in Fig. 4.18(a). The linear variation of

the out-of-plane lattice parameter with = shows that Vegard’s law [84] is followed, as is
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Figure 4.17: HRTEM analysis of (a-b) an « = 0.5 epilayer cross-section and (c-e¢) an x = 0.3
plan view section. (a) Surface of the Feg5Cog 5Si layer viewed along the [112] zone axis. (b)
Feo.5Cop.5Si [112]/Si [110] interface, viewed along the same same zone axis for the epilayer.
(c) Plan view diffraction pattern of Fey 7Cog 3Si viewed along the [111] zone axis. The double
diffraction pattern from the combined Si [202] and Feq 7Cog 3Si [121] spot circled in (c) is shown
enlarged in (d). (e) A line scan, arising from intergrating across the strip marked by a dashed
line in (d), through the double diffraction spots (indicated by arrows, which are separated by
2Ag).
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the case in bulk crystals of this material.[85] However, there is also the large in-plane
lattice mismatch with the Si substrate that was discussed above in the case of thin
films. In order to determine this in a consistent manner, the [002] peak was found and
measured (see Fig. 4.16(a)) to yield dpp2, which can then be used to calculate the in-
plane inter-planar spacing d,,3. This is plotted as a function of x in Fig. 4.18(b). This
is seen to be of similar size (~ 1 %) as that measured using double diffraction in the
plan-view TEM. The small discrepancy at x = 0.3 between the values measured with
the two techniques can be attributed to the fact that these are two different samples,
and that the thinning of the substrate needed for TEM means that there can be some
strain relaxation in both film and substrate that is not possible when a bulk substrate
is used.

Based on data from Fig. 4.18(a) and 4.18(b), the out-of-plane compressive, €|, and
in-plane tensile, |, strains in the crystal structure were calculated using the following

expression:
epi bulk
hkl __ dhkl - dhkl
- bulk ’
Ayl

(4.31)

where di‘;il is the inter-planar spacing as measured for a given epilayer and dg‘é%k is the
corresponding bulk inter-planar spacing.[37] The results are shown in Fig. 4.18(c) and
(d). In both the cases strain follows a nonlinear relationship with the Co-doping level
x. For higher values of x the lattice is more compressed out-of-plane, whilst it is less
expanded in-plane.

The XRD and plan-view TEM methods we have used to determine the in-plane
inter-planar spacings give information averaged over the film depth. Inspection of the
TEM image shown in Fig. 4.17(b) indicates that at the interface the film is fully strained
as the lattice fringes are coherent on both sides of the interface. Nevertheless, it is clear
that this situation does not persist to any significant depth into the film, which soon
relaxes to its own strained lattice constant for a rhombohedral crystal structure which
is somewhere in between that of Si and the Fe;_,Co,Si cubic assumption of crystal
structure. This is shown as a function of z in Fig. 4.19(a), where the layer-averaged
d,y5 (determined form XRD) in our layers is seen to be slightly strained away from the
bulk value towards daogg in the Si substrate. The variation of volume strain with shear
strain in Fe;_,;Co,Si film is shown in the Fig. 4.19(b) for various Co doping ranging
from x = 0 to x = 0.5. The linearity in the relationship confirms that the epitaxial

strain in Fe;_,Co,Si film changes only the angle of the unit cell as shown in Fig. 4.18(f)
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Figure 4.18: Strain analysis. (a) Out-of-plane inter-planar spacing di1; of Fej_,Co,Si films
based on data from XRD, which is seen to follow the Vegard’s law. (b) In-plane inter-planar
spacing d,;3, based on data from XRD. (c) Out-of-plane of strain determined from data in
(¢). (d) In-plane strain determined from data in (b). (e) Rhombohedral unit cell volume as
a function of x. (f) Rhombohedral angle as a function of x. The solid line is a linear fit; the

dashed lines are guides to the eye.
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Figure 4.19: Epitaxial strain analysis. (a) Comparison of evolution of inter-planar spacing
dy 5 of epitaxial Fe;_,Co,Si films as a function of cobalt content x from data obtained by XRD,
with that of a bulk Fe;_,Co,Si crystal (from Manyala et al.) and silicon dogg. The shaded
region shows the spread of data points obtained in this study. (b) Variation of volume strain
with shear strain for various levels of Co doping in Fe;_,Co,Si films (represented by different

coloured data points). The dashed line is a straight line best fit to the data.

and that there are no structural phase changes associated with the strain. Thus, even
though the strained Fe;_,Co,Si films have a rhombohedral unit cell, they are phase
pure, consistent with the XRD data (Fig. 4.16(a)) and HRTEM images (Fig. 4.17(a)
and (b)).

Knowledge of the in-plane and out-of-plane lattice constants give a full determin-
ation of the geometry of the rhombohedral unit cell. The volume of the unit cell as
function of x is plotted in Fig. 4.18(e). The unit cell volume decreases in a non-linear
fashion with x, and always exceeds that for a bulk crystal. We have also calculated
the variation of the rhombohedral angle as a function the varying Co doping, shown in

Fig. 4.18(f), which is always slightly more than 90°.

4.8 Thickness varying Fe;3Co(-Si thin films

On the lines of investigating the variation of Co doping in Fe;_,Co,Si epitaxial sys-
tem, we investigated the thickness dependence of Fe;_,Co,Si epilayers too. Fe;_,Co,Si
epilayers with « = 0.2 of varying thickness, 2.5 nm, 5 nm, 7.5 nm, 10 nm, 20 nm, 50
nm were grown using the same protocol as mentioned earlier in the chapter. X-ray
diffraction was used to structurally characterise the films using Bragg’s law. Both in-

plane [002] and out of plane [111] Bragg peaks were identified using 6 — 26 scans and
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Figure 4.20: Strain analysis. (a) Out-of-plane lattice parameter aj1; of FeggCog2Si films

based on data from XRD. (b) In-plane lattice parameter a,,3, based on data from XRD. (c)

Out-of-plane of strain determined from data in (a). (d) In-plane strain determined from data

in (b).(e) Rhombohedral angle as a function of thickness. (f) Rhombohedral unit cell volume

as a function of x. The dashed lines are guides to the eye.
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4.8 Thickness varying Fey3Cop2Si thin films

the analysis is shown in figures 4.20 and 4.21. The out of plane Lattice parameter (LP)
increases with increasing thickness upto 4.474 A for 5 nm and then decreases slowly
upto 7 nm before dropping down drastically to 4.460 A at 10 nm thickness. It slowly in-
creases further upto 4.466 A for a 50 nm thick film (see fig.4.20 a). Similar behaviour is
observed for out of plane strain too (see fig.4.20 c¢). Due to biaxial strain in the films the
unit cell is no longer cubic but rhombohedral. The variation in rhombohedral angle as
a function of varying film thickness is shown in Fig. 4.20 e), it is slightly more than 90°
for all films with varying thickness. Overall, the film is compressively strained in out of
plane direction and tensile strained in in-plane direction with maximum magnitude of
strain at 10nm thickness for both the orientations. In plane LP, inplane strain, volume
strain, and unit cell angle angle follow similar pattern. The values increase upto 10
nm thickness and then decreases down to 50 nm thick film. It is important to note
that 10 nm seems to be the critical thickness for an Fe;_,Co,Si thin film with z = 0.2
doping. The structural behaviour of the film and hence that of the unit cell is very
different before and after the film critical thickness of 10 nm is reached. Figure 4.21
shows a linear relationship between volume strain, shear strain for films thickness 10
nm and above indicating that there is no phase change. The preliminary results have
been presented in this section. The results look promising and would pave way for

further investigations.

Overall, Fe;_,Co,Si thin films of varying Co doping as well as varying thickness
(for Co= 0.2) were successfully grown by MBE on Si (111) substrate. The films were
structurally characterised by LEED, RHEED, XRD, and TEM. The qualitative and
quantitative analysis as presented in the chapter shows that the films are epitaxial,
phase pure, and are of high quality. The lattice mismatch between the substrate and
the epitaxial film gives rise to a biaxial strain which in turn distorts the cubic struc-
ture of the unit cell (in bulk system) to a rhombohedral in the epitaxial form. These
changes in unit cell geometry induced by epitaxial strain can be expected to give rise
to modifications to various properties such as the band structure, density of states,
transport properties, magnetization and magnetic anisotropy, which we will explore in

remainder of the chapters.
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CHAPTER 5

Transport Properties
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5.1 Hall Effect

B b

. FHEEE [/ ]

Figure 5.1: Hall effect- A current carrying conductor with applied magnetic and electric fields

Various transport properties of Fe;_,Co,Si epilayers were measured using devices made
out of lithographically patterned films. Ordinary Hall effect, anomalous Hall effect and
topological Hall effect were measured. Below, is a brief description of Hall effect in a

current carrying wire after results are presented.

5.1 Hall Effect

We consider the Hall effect for a current carrying wire. An electric field Ex is applied
along x direction (longitudinal), causing a current density j, to flow in the wire. When
a magnetic field B, is applied along the z direction (transverse), the electrons are
deflected to the sides of the wire, in a direction perpendicular to both the applied

electric and magnetic field due to the Lorentz force F, acting on the charge carriers.

Fr=q(E+v x B) (5.1)

The deflection of charges causes an additional voltage to build up along the sides
of the wire which is called Hall voltage. The resulting Hall field Fy is in the negative
y direction. The Hall coefficient R is given by the equation 5.2

Ey
Ry = —%
1 JjxB

Where j, is the current density given by the equation 5.3, n is number of charge

(5.2)
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5.1 Hall Effect

carriers, e is charge, 7 is the mean free time between two successive collisions and m is

the mass of the charge carriers.

Ey
jo = ne*r == (5.3)
m

Assuming that no current flows out in the y direction, Ey is given by equation
5.2 below, where we is the cyclotron frequency of an electron under the influence of

magnetic field.

—eBTt

By (5.4)

Ey = —wCTEX =

On substituting value of jx and Ey in equation 5.5 below we obtain Ry in terms
of number of charge carriers per unit volume.

-1

Ry = (5.5)

ne

If Hall resistivity (pg) is plotted against the applied magnetic field (uoH), it is
observed that in the weak field limit the resistivity increases sharply with increasing
toH and might be linear in nature. However, at higher fields the magnetisation (M)
is saturated, the Hall resistivity is linear and has relatively smaller slope. The Hall

resistivity therefore can be written as equation 5.6 below :

pr = RoH + 47n R M (5.6)

It is sum of contribution from both the ordinary Hall effect (term on the right) and
anomalous Hall effect (second term on the right). R, is the ordinary hall coefficient
which arises due to the Lorentz force and depends only on the carrier density. R is the
anomalous Hall coefficient which arises due to the intrinsic property of the material.
So even when there is no applied magnetic field the the extra ordinary Hall effect is
present and is a spontaneous contribution, since, in a ferromagnet there is spontaneous
magnetisation. In a ferromagnet, Rs should be zero at absolute zero in a perfect lat-

tice and it increases as the temperature increases until the Curie temperature is reached.
Magnetoresistance: An ideal free electron gas will have no magnetoresistance

when the Lorentz force balances the induced electric field Ey. However in non ideal

metals the conduction electrons have a velocity distribution and the mean velocities
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5.1 Hall Effect

are different. Though Hall electric field balances the magnetic field, the individual
electrons move in curled orbits or paths due to the Lorentz force. They travel further,
scatter more and hence the resistance increases due to the presence of the magnetic
field as compared to the resistance in absence of the field. This gives rise to the posit-
ive magnetoresistance in metals. Magnetoresistance can be expressed by the equation
5.7 below as the difference in the resistivity of the metal in presence and absence of

magnetic field. This MR arises due to the Lorentz force.

MR = W (5.7)

Anomalous Hall Effect: Another phenomenon observed in case of metals and
ferromagnets is the Anomalous Hall Effect (AHE) or Extraordinary Hall Effect (EHE)
along with the Ordinary Hall Effect (OHE) explained above. The anomalous Hall effect
is due to the large localised magnetic moment in the material. It varies as a function
of temperature. The origin of AHE is debatable but three main contribution or mech-

anisms are widely accepted, they are as described below.

PAHE = Pintr T Pskew + Pside jump (5'8)

Intrinsic contribution (p;,:-): Karplus and Luttinger [86] proposed that when an
electric field is applied, the electrons (Bloch wave) in the solid gain an additional con-
tribution to the group velocity that is perpendicular to the electric field and therefore
contributes to the net Hall effect. Therefore pins p?m, where p., is the longitud-
inal resistivity. The additional velocity when summed over all the occupied bands in a
ferromagnet gives a non zero term. The additional contribution depends on the band
structure, is independent of scattering, is a consequence of spin orbit coupling, and
therefore is an intrinsic property of the material system being probed. In recent theor-
ies, the intrinsic contribution is interpreted in terms of change in Bloch wave states in

momentum space or in real space Berry phase [87].
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5.1 Hall Effect

a) Intrinsic deflection

Interband coherence induced by an E

external electric field gives rise to a e
velocity contribution perpendicular to

the field direction. These currents do

not sum to zero in ferromagnets.

d(r) oE
dt  hok

Electrons have an anomalous velocity perpendicular to
the electric field related to their Berry's phase curvature

b) Side jump

The electron velocity is deflected in opposite directions by the opposite
electric fields experienced upon approaching and leaving an impurity.
The time-integrated velocity deflection is the side jump.

c) Skew scattering

Asymmetric scattering due to
the effective spin-orbit coupling
of the electron or the impurity.

Figure 5.2: Illustration of the three main mechanisms that can give rise to an AHE. In any

real material all of these mechanisms act to influence electron motion [88].

Extrinsic contribution (pgew + Psidejump): The spin orbit coupling (SOC) not
only modifies the impurity scattering but also contributes to the extrinsic mechanism.
Extrinsic contribution can further be divided into skew scattering (pskew) and side
jump (Psidejump) mechanisms. Skew scattering is an asymmetric scattering arising due
to SOC of the impurity or electron and can be expressed as pggew X pzz [89]. In a
side jump, an electron approaches an impurity and is deflected in opposite directions
by opposite electric fields. The time integrated velocity deflection of an electron is the

side jump and can be expressed as pPsidejump X p2.. [90].

Topological Hall Effect(THE): Unlike AHE that arises due to nontrivial to-
pology in momentum space, THE arises due to nontrivial topology in real space [91].

When an electron moves through a two-dimensional electron gas and encounters a chiral
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texture that has a spatially varying magnetic field, the electron acquires a Berry phase.
The Berry phase depends on the solid angle that is subtended by the local magnetisa-
tion of the chiral structure as the electron follows its path. Whithin the adiabatic limit,
the electron moving through a skyrmion aligns its spin with the spatial magnetisation
which generates a gauge field of one quantum of flux per single skyrmion [92]. As a
result the electron experiences the emergent gauge field during the transport [93]. The
emergent gauge field generates a Hall voltage that is perpendicular to the sample plane
and unlike the AHE it doesn’t directly originate from SOC, although SOC is needed
for DMI that for instance gives skyrmions. This voltage that contributes to the net
Hall effect is termed as THE. Helimagnets that have skyrmion lattice or that have
topologically trivial chiral spin texture show THE. Hall signal thus measured for these
B20 material system have a THE component and therefore, is a signature of skyrmion
or chiral phase in the system [94] [32][24][95][30].

5.2 Result I -Transport Properties

The transport properties of our Fe;_,Co,Si films were measured in a gas-flow cryostat
with a base temperature of 1.4 K capable of applying magnetic fields of up to 8 T.
The films were patterned into Hall bars that were 5 pm wide using optical lithography;,
etched by Ar ion milling, and bonded onto a chip carrier for measurement.

Measurements of the electrical resistivity p(7, H) of the films as a function of tem-
perature 1" and magnetic field H applied perpendicular to the sample plane are shown
in Fig. 5.3. A bias current of 30 uA was used. The solid lines show the p(7T') in the ab-
sence of a magnetic field and the dashed lines show p(T) in presence of an 8 T magnetic
field. Fig. 5.3(a) shows the resistivity variation of an FeSi film. FeSi is a narrow band-
gap semiconductor,[5] and upon decreasing the temperature the resistivity increases
reaching 3700 uf2cm at 1.4 K. We determined the band-gap of the epitaxial FeSi to be
A = 30.1 £ 0.2 meV using the following relation:

Inp o (2?7’) , (5.9)

where kp is the Boltzmann constant, fitted to the high temperature data (above 50 K).
Doping FeSi with Co introduces electron-like carriers and a lowered resistivity. At
the opposite extreme, the p(7') relation for the film with z = 0.5 has a metallic form,

shown in Fig. 5.3(f), increasing with 7" for all temperatures. Intermediate values of
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5.2 Result I -Transport Properties

x yield hybrid p(T,0) dependences, with a gradual crossover from semiconductor-like
to metal-like behavior as x rises (shown in Fig. 5.3(b)-(e)). For these values of x the
p(T,0) curve is often non-monotonic, combining regions with both positive and negative
temperature coeflicients of resistance. The curves are similar to those measured for bulk
crystals at a qualitative level,[3; 13], but differ quantitatively.

In the intermediate doping regime (0 < z < 0.5), we observe some distinctive fea-
tures such as points of local maximum (7Tiax) and minimum (7res) in the resistivity that
vary with the degree of Co doping. For instance, in Fig. 5.3 (for x = 0.15) we observe a
broad maximum in p around 125 K. As the Co doping increases this maximum shifts to-
wards higher temperatures, reaching 175 K for x = 0.3, then becoming less pronounced
until it vanishes for x = 0.5. The observed broad maximum is a feature reminiscent
of the narrow band-gap semiconducting parent compound FeSi [13]. The maxima and
associated temperature shift can be explained in the framework of epitaxial strain and
Co doping. Substituting Co for Fe not only introduces volume strain (as previously
shown in Fig. 4.19(b)), but also changes the band structure, resulting in a broadening
of bands and reduced band gap.[96] Thus, increased Co doping provides more carri-
ers to be available for conduction, giving rise to the hybrid semiconducting-metallic
behaviour that we see. It is the competition between the temperature dependence of
mobility, importance of thermally activated carriers (particularly at low ) and the car-
rier concentration that gives rise to such difference in p(x,T). Fe;_,Co,Si films thus
lose the low T insulating behaviour of FeSi as x rises.

As the temperature decreases further below Ti,.x, the resistivity decreases until
a minimum (Tyes) is reached. This minimum in the resistivity curve is related to
the magnetic behaviour of the films and signifies the onset of magnetic ordering in
the Fe;_,Co,Si crystal structure.[96] The position of the minimum 7.5 varies with Co
doping and is found to follow the same trend as the magnetic ordering temperature Ty,q,
as we shall discuss later in chapter on magnetic characterisation. Ideally, Ties ~ T4,
but in the samples studied here, we find that T} is actually slightly higher. The value
of Ties increases with increasing Co doping and reaches the maximum value of ~ 92 K
for x = 0.4 before decreasing again. The transport properties of Fe;_,Co,Si epilayers
are dominated by short-ranged ferromagnetic interactions in the crystal structure.[13]
When the mean free path is of the same order as the ferromagnetic correlation length,

Tora and T almost coincide, as is the case for x = 0.1 and 0.5. However, if the mean
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Figure 5.3: Temperature dependence of resistivity in ~ 50 nm films of Fe; _,Co,Si in magnetic
fields of 0 T (solid lines) and 8 T (out of plane field, dashed lines). Increasing cobalt concen-
tration = changes the temperature coefficient of resistivity from negative (semiconductor-like)
for x = 0 to positive (metallic-like) for # = 0.5, with mixed behavior seen for intermediate
values of x. The arrows 1 and | illustrate temperatures at which there is a minimum, T;es, and

maximum, Ti,ax, in the resistivity, respectively.
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5.3 Result II -Magnetoresistance

free path is longer, then Tie is higher than T4, as we observe for Fe;_,Co,Si films in
the range 0 < z < 0.5 (and discuss later in chapter on magnetic characterisation). Also
this may be due to magnetic fluctuations occurring above the ordering temperature
which may contribute to the discrepancy between the magnetic ordering temperature
and Ties.[10] When the temperature is decreased below Ties, the resistivity further
increases for the Fe;_,Co,Si films with 0 < z < 0.5, as has been pointed out in
previous studies.[3; 16]

Overall we observe semiconducting behaviour of the films for low x and metallic
for high z. This remains the case when the measurements were performed under a
uoH = 8 T field applied perpendicular to the sample plane (dashed lines in Fig.5.3). In
the high temperature region (above ~ Tpax), the resistivity is almost unchanged with
field for all our Fe;_,Co,Si films. In the lower temperature regime, after the onset of
magnetic ordering, the magnetoresistance (MR) gradually rises in the semiconducting
regime, washing out any maximum in p(7'). Positive MR is a very typical property of

the Fe;_,Co,Si system, and shall be discussed in more detail in the next section.

5.3 Result II -Magnetoresistance

Unlike most other ferromagnetic metals, which show negative MR at high fields,[97]
Fe;_,Co;Si systems show unusual positive MR in the form of bulk crystals and epilayers.[3;
13; 14] The high field MR in these Fe;_,Co,Si samples, shown in Fig. 5.3 for a perpen-
dicular field orientation, is not only linear for x > 0 , but also isotropic for T < Tjes.
For an FeSi film, the MR has a quadratic dependence on magnetic field. Introducing
Co doping to FeSi, changes the nature of the curve from quadratic to linear at x = 0.1,
with a large MR ratio Ap/p of almost 12% in an 8 T field at 5 K.

Fig. 5.4(a) shows the MR ratio observed in Fe;_,Co,Si epilayers for different Co
doping for a field of 8 T at 5 K. As the Co content is increased from z = 0.1 to
x = 0.5, we observe that the MR remains linear at low temperatures (T' < Tyes), i.e.
in the presence of magnetic ordering. As the temperature is increased the linearity
of the MR is lost, and above Tj,.x it becomes quadratic for all our Fe;_,Co,Si films.
The maximum MR should be observed near the metal-insulator transition, where there
is the highest Coulomb interaction. This is observed here for x = 0.1, as shown in
Fig. 5.4(b) where we observe an MR ratio of almost 12%. The MR ratio decreases with

increasing Co content up to x = 0.3, and then flattens off at a level of ~ 5% for all
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Figure 5.4: Magnetoresistance in an out-of-plane field. (a) MR isotherms at 5 K for
Fe;_,Co,Si films of varying Co doping z. (b) MR ratio at 8 T and 5 K as a function of

cobalt concentration x.

higher values of x. The explanation of this low 1" positive linear MR is contested: both
quantum interference effects,[3] and Zeeman splitting of the majority and minority spin
bands, which reduces the high mobility minority spin carriers and in turn increases the

resistivity,[13] have been cited as causes.

5.4 Result 111 -Hall Effect

Hall measurements were made simultaneously with the longitudinal resistivity meas-
urements. As an example, the Hall resistivity p.,(H) for an Fe;_,Co,Si thin film with
x = 0.4 is shown in Fig. 5.5(a) for various temperatures. There is low field hysteresis
(for fields ppH < 0.3 T) and a high field linear regime. (Inset in Fig.5.5(a) are data
measured at 5 K showing the high field response.) The high field slope is due to the
ordinary Hall effect. This high field Hall slope, measured at 5 K for Fe;_,Co,Si films
with different values of x, was used to determine the type of charge carrier and carrier
density, as shown in Fig. 5.5(b), and was combined with the longitudinal resistivity
to give the mobility of the carriers in the film, as shown in Fig.5.5(c). In the bulk,
each Co dopant contributes one conduction electron to the electron gas over the whole
x range.[3] The data shown in Fig.5.5(b) show that there is a small shortfall in our
samples, with close to, but not quite, one electron-like carrier per Co dopant. It is

possible that there are defects in our film, too subtle to pick up by XRD or HRTEM,
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Figure 5.5: Hall measurements. (a) Hall resistivity p,, as a function of field for Fe;_,Co,Si
epilayers with « = 0.4 for selected temperatures. Hysteresis is observed in the extraordinary
Hall effect which diminishes at elevated temperatures. The ordinary Hall effect was extracted at
high fields above the saturation field. A hysteresis loop (M-H) at 5 K is shown inset up to higher
magnetic fields. (b) Charge carrier density expressed as electrons per formula unit inferred from
measurements of the high field ordinary Hall effect at 5 K. The dashed line illustrates the ideal
case of one electron added to the electron gas per cobalt atom. (c) Carrier mobility p as a

function of cobalt doping x at 5 K.

that act as traps preventing all the electrons released by the Co dopants from acting
as carriers. As shown in Fig.5.5(c), the mobility u of the charge carriers drops with
increasing Co doping in the films, which can be accounted for if the Co dopants act as
scattering centres.

The hysteretic part of the the Hall signal arises due to the anomalous Hall effect that
is present in magnetically ordered materials.[98] The Hall resistivity in a ferromagnetic
material is given by

poy = RoH + 47 R M, (5.10)

where R, is the ordinary Hall coefficient and Ry is the anomalous Hall coefficient.
The anomalous contribution to the Hall resistivity papy = RspoM was determined by
extrapolating the high field Hall slope, where the magnetization M is saturated, so
any topological contribution of the Hall resistivity[23; 24] is neglected in the present
analysis. pay for the z = 0.4 sample, shown in Fig.5.5(a), is as large as 2 ufdem at 5 K,
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Figure 5.6: Anomalous Hall effect. (a) Variation of anomalous Hall resistivity pam, and (b)

anomalous Hall coefficient Ry as a function of z at 5 K for Fe;_,Co,Si films.

and diminishes as T rises, becoming almost negligible at 100 K or beyond. As shown
in Fig.5.6(a), even larger values of pay can be found for lower values of x. Fe;_,Co,Si
layers with < 0.3 have pag ~ 5ufdem. The highest value we observe is 5.5 uf) cm
for x = 0.25. In Fig. 5.6(b) we plot anomalous Hall coefficient Rs as a function of x
and observe that highest value is reached for = 0.1, up to 0.67 & 0.04 cm3>C~! before
decreasing almost linearly to 0.09 & 0.01 cm 3C~! for = 0.5. The large value of R
observed in our epilayers is of similar order, but a little higher than, that observed in
bulk Fe;_,Co,Si crystals by Manyala et al.[37] This may be attributed to the strained
epitaxial structure of Fe;_,Co,Si films, in which strain increases the effective spin-orbit

coupling.

5.5 Result IV -Topological Hall Effect (THE)

Signature of Skyrmions or topologically protected magnetic vortex like structures in
B20 material have previously been investigated by measurement of Topological Hall
Effect. Yokouchi et al [32] and Kanazawa et al [99] have come up with an unique way
of treating these skyrmionic structures in MnFeSi and FeGe system. They postulate
that when applied magnetic field (external) is inclined at an angle from the normal to
the film surface, the skyrmions stretching along the field direction have an out of plane
modulation which destabilises the magnetic system. Increasing the inclination angle
suppresses the skyrmion formation completely and therefore reduces the THE arising

due to skyrmions. The same has been illustrated in figure 5.7 (a)-(d) by Kanazawa et
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al.[99]. Measuring the Hall resistance or Hall resistivity through a range of angles would
give us an understanding about the formation and annihilation of skyrmion in the B20
system.Presence of skyrmions or similar chiral structure in epitaxial Fe;_,Co,Si thin
film has been investigated by Porter et al[100] using Polarised Neutron Reflectometry
(PNR) and THE. We try to reconfirm the presence of skyrmions and understand the
dynamics of formation in Fe;_,Co,Si thin films by measuring the angular dependence

of THE following the protocol mentioned above.

The devices that were used for measurements of the Hall Effect were used for these
angle dependent measurements as well. The sample holder had a stepper motor that
could tilt the device such that the normal to the film made an angle of inclination
(0) with the applied magnetic field (see inset of fig.5.8). A series of devices patterned
out of Fe;_,Co,Si epilayers with varying x were measured at 5 K with applied mag-
netic field values extending up to 3 T. The results for Fe;_,Co,Si (z = 0.3) is shown in
the figures 5.8 and 5.9 measured at angles of § = 0°,2°,4°,6°,8°,20°, and 30°(seefig.5.9).

In figure 5.7 (a)-(d), Kanazawa et al.[99] show the variation of the angular depend-
ence of normal Hall resistivity (pé\g) and anomalous Hall resistivity (pﬁw) as a function
of u,H Cosf instead of u,H. By doing so they align the angle dependent curves such
that at low magnetic fields they lie on the universal curve as shown in the figure. Topo-
logical Hall resistivity is present only at low fields and is eliminated at higher fields. It
(topological Hall resistivity) is then extracted as a difference (Ap,,) of the Hall resistiv-
ity measured at 8 = 0° and 30°. The difference gets rid of the normal and anomalous
Hall components and is representative of the topological Hall resistivity arising due
to skyrmions. 30° is the critical angle above which no topological hall component is
observed by Yokouchi et al.[32] in B20 systems [32]. However an anomalous Hall com-
ponent is still observed in their data and to remove it they scale the difference (Apyy)

by multiplying it by the scaling factor:

cos0° — cos30°

cos0° — cos30°

We followed the protocol described above to analyse the variation of Hall resistance

(5.11)

with varying angle of inclination. The difference in the Hall resistance AR, is described

by the equation below when plotted against p,H Cos6:
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Black curves in (a)-(d): 8= 0°
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Figure 5.7: In the graphs above, (a)-(d) are conceptual graphs used by the author to show
the comparison between AR,,, and M measured at 30° (red) with respect to the one measured
at 0° (black) when plotted against u,H and p,H Cosf respectively. The black curve is referred
to as the universal curve in the main text. Graph (e) shows the comparison between the scaled

and the unscaled AR, for Hall resistances measured at 20° and 0° [99].
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Figure 5.8: The figure shows comparison between the scaled (black) and the unscaled (red)
AR,, measured at 20° (red, black )with respect to the one measured at 30° (purple), when
plotted against u,H Cosf. The inset illustrates the angle 6 between the surface normal of the
film and the applied magnetic field.

AR,y (unscaled) = Ryy(0°) — Ryy(30°) (5.12)

where 0 is the angle of inclination between the sample normal and the applied
magnetic field. To get rid of the anomalous Hall component we use the scaling factor

described by the equation below:

cos0° — cos30°

cos0° — cos30°

The results are shown in figure 5.8 and 5.9 for a device made from Fe;_,Co,Si (x =

ARy (scaled) = [Ryy(6°) — Ryy(30°)] - (5.13)

0.3) epilayer. Figure 5.8 shows the comparison between the scaled and the unscaled
AR, for Hall resistances measured at 20° with respect to the one measured at 30°, after
they have been subtracted from R, measured at 0° inclination. As skyrmions cease to
exist beyond the critical angle[32], the low angle data represents all the Hall components

viz. normal, anomalous and topological where as the high angle data contains only the
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Figure 5.9: The figure shows comparison between scaled AR, at various angles (shown
above) plotted against u,H Cosf. Figure in the inset shows the creation and destruction of

skyrmions as the sample plane is tilted with respect to the applied magnetic field.

normal and anomalous Hall components. Subtracting high angle data from low angle
data, normal and anomalous Hall component are eliminated at low fields. Therefore as
per the protocol, AR, (0°) — AR, (30°) and AR, (0°) — AR,,(20°) should represent
only the topological Hall component at low field. We, however, observe in Fig. 5.8
that at higher fields (upto 3T), even after scaling to get rid of any anomalous Hall
component, AR;,(0°) — AR, (20°) doesn’t quite scale up to AR, (0°) — AR,y (30°).
This indicates that THE extends up to higher fields but it is highly unlikely if M is
saturated or the skyrmions are not fully suppressed. Hysteresis in the B20 system has
been attributed to skyrmions [99]. Figure 5.9 shows the angle dependent Hall resistance
that were scaled scaled using equation 5.13. We observe that at low fields the hysteresis
that has been attributed to Topological Hall effect decreases with increasing angle of
inclination. In FeGe system Kanazawa et al. [99] showed that the hysteresis completely
vanishes at higher angles 5.11 indicating the absence of THE and hence the skyrmi-
ons. But unlike FeGe system , the hysteresis does not completely vanish at 20°. Also,

resistance AR, for different angles does not converge at higher field values even after
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Figure 5.10: The figure shows variation of scaled AR, as a function of varying angle of

inclination at 2.5 T. The red line is a linear fit.

scaling up. In fig. 5.10, we can see the variation of AR,, as a function of § measured at
2.5 T. As the angle of inclination increases the magnitude of AR,, decreases following
a linear trend and drops down significantly for § = 20°. But nevertheless, AR,,, doesn’t
go down to zero for § = 20°. Using y = mx + ¢, we see that if we go up to 90°, AR,
may go down to zero, 90° in which case would be the critical angle. To understand the
skyrmion formation and annihilation mechanism better we compare the graphs from
our experiments(fig. 5.9) with that obtained by Kanazawa et al. (5.11). We see that
the nature of graphs are very different from each other, especially the hysteresis loop
close to 0 T. To remove any other leftover component of AHE we used linear fitting
to fit the data experimentally obtained by us and subtract the slope from the loops.
That resulted in fig. 5.12. Upon comparing fig 5.11 with fig 5.12 we can clearly see
that the nature of the hysteresis is completely different. In case of fig 5.12 obtained
by Kanazawa et al. for FeGe system the hysteresis peaks at around 0 T. However, for
fig 5.12 for Fe;_,Co,Si system the the hysteresis peaks at around +0.08 T. Also the

unlike FeGe system the hysteresis does not quite converge to zero in Fe;_,Co,Si system.

The observations above suggest that there are various parameters that control the
skyrmion or chiral structure formation in B20 system. The experiment based on chan-
ging the inclination angle between the surface normal of the sample and the external
applied field needs to be backed up by micro-magnetic simulation or some other form

of theoretical calculations to support the experimental evidence. The critical angle 30°
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Figure 5.11: The figure above shows Ap,, at various inclination angles at 2 K in a 10 pm
wide circuit. A sudden shrinkage of hysteresis loops represents declines in skyrmion numbers

in FeGe system [99].
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Figure 5.12: The figure above shows modified AR, obtained by subtracting a slope (obtained
by linear fitting of the curves between suitable values). Panel a) shows the modified loops at

higher fields, whereas, panel b) shows loops at lesser fields.
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found by [32] for FeGe and MnFeSi system does not necessarily represent the critical
angle for rest of the B20 material system. At least it may not be the critical angle
for Fe;_,Co,Si epilayer system. We may need to go to higher angles perhaps to com-
pletely destroy the skyrmion or such chiral structure. Also, going to higher magnetic
field values might throw light on whether at the AR,, curves converge or not and
hence gives us a better insight in the physics involved in skyrmion formation. We,
currently at Leeds can go up to 3T with the particular cryostat used to measure the
angle dependent THE. The scaling factor used by Kanazawa et al. [99] to eliminate
the remaining anomalous Hall component from AR,, doesn’t eliminate the anomalous
Hall component completely as we have shown for the Fe;_,Co,Si system where AR,
at 20° doesn’t scale up at higher fields. The above discrepancies propels us towards
newer methods to find skyrmion signature in these B20 material system.

Finally, we have shown various transport properties related to Fe;_,Co,Si epilayers.
OHE was used to determine the charge carriers and their mobility in Fe;_,Co,Si epilay-
ers. A positive MR was observed for the system which is a characteristic of this system
and has been explained in the framework of quantum interference of electrons. A huge
AHE was observed too. Angle dependent THE done with 3 T of applied magnetic field

is inconclusive and needs to be done at higher magnetic field.
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CHAPTER 6

Magnetometric characterisation
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6.1 Vibrating sample magnetometry

Various magnetometric characterisation techniques such as SQUID, MFM, XMCD etc.
were used to understand the magnetic response as well as understand the evolution of

magnetism in the Fe;_,Co,Si thin films.

6.1 Vibrating sample magnetometry

VSM was used to measure the magnetisation in thin films as a function of applied
magnetic field and variable temperature. It works on the principle of Faraday’s Law
which states that the electro motive force (emf) in a circuit is equal to the rate of

change of the magnetic flux enclosed by the circuit and can be written as:
d¢
dt

The sample is vibrated at a frequency of 55 Hz and any change in current generated

(6.1)

due to the change in the magnetic flux in pick-up coil is amplified and interpreted by

the lock-in. One can either measure the magnetisation in-plane or out of plane.

6.2 Superconducting quantum interference device (SQUID)

A Quantum Design Magnetic Property Measurement System (MPMS) SQUID magne-
tometer was used to measure the magnetic moment of the thin films over a wide range
of applied magnetic field and temperatures. An MPMS system has four main com-
ponents: a detecting coil; a superconducting quantum interference device; a magnetic
shield; and a magnetic coil. SQUID is based on two main physical phenomena: Flux
quantization in a superconducting ring and the Josephson effect.

Flux quantization, as long as the superconducting ring remains in superconducting
state, the magnetic flux remains trapped within it. The trapped magnetic flux cannot
change inside the ring in a continuous manner. It can only change by discrete levels
i.e. the magnetic flux is quantized and exists in multiples of the flux quantum ®. The
quantization of the magnetic flux is due to the assumption that the Cooper pairs form
standing waves inside the superconducting ring. ®, is given by the following equation

h

by = — 6.2
0 2e ( )
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6.2 Superconducting quantum interference device (SQUID)
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Figure 6.1: Left, Current circulating in a circular ring and the resulting magnetic lines of

force. Right, a Josephson junction.

and the total flux in the superconducting ring is given by the following equation, n

is an integer.

dp = nd (6.3)

Josephson effect, when a current flows in a superconducting ring as shown in Fig-
ure 6.1 (a), then the magnetic flux in the ring can only be an integral multiple of the
flux quantum. Any external field adds to the internal flux enclosed by the ring. Since
external flux is not quantized, the current in the ring so adjusts that the net flux inside
the ring becomes quantized. If two superconductors are separated by an insulator, as
shown in Figure 6.1 (b), the waves of Cooper-pair electrons in different superconducting
regions have different phase. These electron-pairs can tunnel across the insulating junc-
tion and the electron-pair waves between the two regions are coupled. This phenomenon
is called the Josephson effect and the junction between the two superconducting regions
is called the Josephson junction.

There are two type of SQUIDs, the de-SQUID (direct current) having two Joseph-
son junctions and the rf-SQUID (resonant frequency) which has only one junction. At
Leeds, we used a Quantum Design MPMS SQUID VSM magnetometer. It uses a rf
Josephson junction to detect magnetisation. The sample is moved up and down or
vibrated in the detection coil with a frequency w leading to a current in the detection
coil, which is a function of the sample position (z). The induced current in the detec-
tion coil is inductively coupled to the SQUID ring that serves as a current to voltage

converter. The SQUID voltage is given by the following equation
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6.3 Magnetic force microscopy

V(t) = AB*sin®(wt) (6.4)

for small vibrations V(z) = Az? where z(t) = Bsin(wt). A is a scaling factor related
to the magnetic moment of the sample, B is the amplitude of sample vibration. The
current in the detection coil is nulled by the SQUID feedback and no current actually
flows through it and the feedback thus yields the actual SQUID voltage. Various
instrument electronics are used to amplify the SQUID voltage. The DC component of
the signal is proportional to 2w of the measured signal and can be extracted from other
noise signals. Quantum Design MPMS can measure in a temperature range of 1.8 K
to 400 K and can apply a magnetic field up to 7 T. Samples can be measured in both

in plane and out of plane geometry.

6.3 Magnetic force microscopy

Magnetic force microscopy is an imaging technique that is derived from tapping-mode
atomic force microscopy [101]. In AFM, the van der Waals interaction is taken into
account, whereas in MFM the magnetic stray fields or the magnetic force gradients
emanating from the sample surface are measured to image the magnetic feature of
interest. A cantilever with a tip coated with a ferromagnet is used to measure the stray

field from the sample via the force F , given by the following equation

F=vV(m-B) (6.5)

where m is the magnetic moment of the cantilever tip and B is the stray field
from the sample. The magnetic interaction of the cantilever with the sample surface
forces the resonant frequency to change as a function of variation in the magnetic field
gradient. The change in the frequency and the phase is used to map a magnetic surface
profile of the sample. The MFM images are recorded in a two step process, the first
step or the forward scan maps the topography of the sample surface, the tip is then
retracted up to 20 nm and a backward scan collects the magnetic forces or maps the

magnetic field gradient of the sample surface.
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6.4 Soft X-ray spectroscopy

6.4 Soft X-ray spectroscopy

We used soft X-ray spectroscopy, U4B beamline stationed at Brookhaven National
Laboratory, New York, USA to probe the origin of magnetism in Fe;_,Co,Si epilayers.
U4B is a bending magnet beamline that has two monochromators, one that provides
white x-rays in the energy range 80-1200 eV and the other, VUV branch that extends
down to 20 eV. We used the 80-1200 eV branch for our experiments. The x-ray beam
is then focused by a set of focusing mirrors and finally enters the entrance slit of the
monochromator that is located further down the beamline. The entrance and exit slits
can be adjusted so as to have either more intensity or better energy resolution. The
endstation that was used had UHV, a magnet that could go up to 1.5T and a cryostat
that could go down to liquid helium temperature. Samples were mounted onto a holder
and a blob of sliver paint was used to drain the current from the sample. A current to
voltage amplifier was used to measure the current that was drained in the total electron
yield (TEY) mode. The intensity of the beam was normalised continuously by a Au
grid beam monitor. Also, a magnetite sample is used as a reference for correction of

systematic errors associated with the monochromator.

X-ray absorption spectroscopy (XAS)

XAS can be measured in many ways such as by transmission, where the intensity
attenuation corresponds to absorption of photon leading to a core electron transition
to an empty state. We, however, used total electron yield (TEY) and total fluorescence
yield (TFY) modes to obtain XAS spectra of Fe;_,Co,Si thin films. In TEY mode like
transmission a core electron makes a transition to an empty state leaving a hole behind.
That hole is then filled by another electron, triggering a cascade of Auger electrons.
The Auger electrons are typically emitted from the very surface of the sample (~ 2 nm)
and can be measured using a picoammeter. In the case of TFY, an electron is excited
to a higher energy state, decays to a meta stable stable state before relaxing back to
the ground state by emitting a photon, giving rise to fluorescence. In the soft X-ray
region the signal from TEY dominates over TFY. XAS measurements were done at
room temperature using a linearly polarised light with high energy resolution of the
monochromator. An absorption resonance occurs when the incoming photon has the
same energy as that of the transition energy of an electron in the atom. We probed

the L edges corresponding to 2p — 3d transition of Fe and Co atoms in Fe;_,Co,Si
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6.4 Soft X-ray spectroscopy

thin films. Due to SOC the orbital degeneracy of the p orbital is lifted and we get two
different peaks, L3 and Ly corresponding to 2p3/; — 3d and 2p;/5 — 3d transitions
respectively. The subscript with p represents the total angular momentum (J), which is
a sum of azimuthal quantum number (1) and spin quantum number (s) The structure of
the resonance peak reveals the electronic band structure and the chemical environment

of the associated element.

X-ray Magnetic Circular Dichroism

The underlying mechanism of XMCD is similar to that of XAS but unlike XAS where
a linearly polarised light is used, a circularly polarised light is used for XMCD. The
XMCD experiment essentially consists of measuring the difference in the absorption
spectra of the left handed and right handed circularly polarised light. Photons of
different helicity have different angular momentum (%), it could be parallel (+%) or
antiparallel (—#) to the wave propogation vector k. In the case of 3d ferromagnets, d
band or the valance band is already exchange split into spin up and spin down bands
and act as a spin detector. On the other hand, upon application of external magnetic
field the core level p orbital loses orbital degeneracy due to Zeeman splitting and results
in 2p3/9 and 2p; /5 orbitals. The orbitals thus created have opposite spin orbit coupling
(j), L3 edge (j =1+ s) and L edge (j = — s), where | is the angular momentum, s
is the spin moment. XMCD can be explained using a two step model as proposed by
Stohr et al. The first step consists of transfer of angular momentum from the incident
circularly polarised photons to the excited photoelectrons in the p orbital. The angular
momentum is conserved by transferring the moment to spin via spin orbit coupling and
the photo electrons thus generated are spin polarised. The quantisation axis of the spin
polarised electrons is identical to that of the photon spin. The second step consists of the
exchange split d band acting as spin detector for the excited photoelectrons. By setting
the magnetisation M of the d band parallel to k the occupation of spin down states
is larger than the spin up states. Due to spin conservation photoelectrons undergoing
2p3/2 — 3d (2p1/2 — 3d) by spin up photons (spin down) mainly probe spin up states
(spin down states) above the Fermi level. The dipole operator doesn’t interact with

the spins and thus no spin flip is involved. The selection rules are as follows:

Al = +1 (6.6)
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Figure 6.2: XMCD spectras obtained by TEY mode (left) and TFY mode (right) for
Fep.75Co0.2551. The red and black spectra are obtained using right circularly polarised light
and left circularly polarised light respectively. The difference between these spectra gives us

the dichroism in the material.

Am = +1, Right circularly polarised photons 6.7)
= —1, Left circularly polarised photons .

Fig 6.2 shows a typical XMCD spectra for Fe;_,Co,Si thin film obtained by both
TEY and TFY modes. The difference in the intensity by left and right circularly
polarised light can be by given by following equation

Ixpyep =1" — 1% (6.8)

The intensity or the magnitude of the dichroism is dependent on the degree of
photon polarisation (Pphoton), €xpectation value of the magnetic moment of 3d band (
m ) and the angle (#) between magnetic moment (m) and angular momentum of photon

(h), the following equation then shows the dependence of the XMCD intensity

IXMCD X Pphotonh (69)

XMCD and XAS are element specific techniques, using sum rules [102] the intensity
of experimentally obtained spectra can be integrated to yield the orbital (mqp) and

spin (mgpin) moments of the individual elements by the following equation.
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Figure 6.3: The figures above show the intensity (XAS, top) and difference (XMCD, bottom)
spectra. p, g, and r that are used in the sum rules are labelled on the integrated MCD data
(dashed line) on the right hand side of the graphs. For the XAS data, a linear background is

subtracted and then normalised to the post-edge signal (Nielson and McMorrow).

Morb|ptp/atom] = W (6.10)
Mopinljuss Jatom] = — 0P = 4010 = nsa) (6.11)

r

P, q, and r are the integrated intensities of XAS and XMCD spectra and is shown
in fig. 6.3 by dashed lines in black and have been labelled appropriately. nsq represents
the number of holes in the 3d ferromagnet. In the case of 3d ferromagnets the my;p

is quenched and hence the over all magnetic moment in the system is dominated by

Mspin-

6.5 Results and Discussion I (Magnetic properties)

Magnetic characterization of Fe;_,Co,Si epilayers were carried out using a vibrating

sample magnetometer (VSM) with a sensitivity of 107 Am? and a SQUID magneto-
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meter with a sensitivity of 1071 Am?. For measurements in the VSM, several pieces
of sample cut from the same wafer were stacked up to increase the signal. The temper-
ature dependence of the magnetization of the films was measured with a 10 mT field
applied in the film plane, the results are shown in Fig.6.4(a). The critical temperatures
for magnetic ordering were determined from these curves. Since Fe;_,Co,Si is heli-
magnetic, we refer to an ordering temperature T,.q, rather than a Curie temperature.
The values of T,.q obtained for the various films have been plotted as a function of Co
content z and shown in Fig. 6.4(b). When compared with corresponding data for bulk
samples,[13; 67] we see that for our Fe;_,Co,Si epilayers Ti,,q has been significantly
increased, and is as high as 77 K for the x = 0.4 epilayer. Enhanced ordering temper-
atures with respect to bulk have also been observed in MnSi epilayers by Karhu et al.,
[27; 29] and subsequently by Engelke et al.[31] and Yokouchi et al. in the case of Fe
doping.[32]

We attribute this increased stability of the magnetic ordering in our Fe;_,Co,Si
epitaxial films to the epitaxial strain. As shown in Fig. 4.18(e), the biaxial in-plane
strain increases the unit cell volume with respect to the bulk. Studies of bulk crystals
of Fe;_,Co,Si under hydrostatic pressure show that compressing the unit cell volume
suppresses magnetic order and can even induce a quantum phase transition in the
system.[96] Based on this argument, we conclude that the epitaxial strain in these
Fe;_,Co,Si systems stabilizes the magnetic order and increases T,,q for the whole
range of x.

We determined the magnetic moment at saturation, in units of Bohr magnetons
(up) per formula unit (f.u.), from these hysteresis loops. The results are plotted as a
function of = in Fig. 6.4(c). Our results are comparable to the findings of Manyala et
al. for bulk crystals,[3] and largely in line with theoretical expectations.[33] As found
previously, we see that each Co atom contributes ~ 1 pup up to a limit of z ~ 0.25.
Beyond this point, the total moment is roughly constant at ~ 0.25 upg/f.u. The dashed
line in Fig. 6.4(c) represents the ideal result of exactly 1 pup/f.u. We can see that in the
low x range there is a small excess of moment per Co above the ideal result, suggesting
that the Co dopants could be weakly magnetizing nearby Fe atoms in this regime. In
Fig. 6.5, we show the magnetic moment per electron as a function of x for our epilayer
samples. The moment is determined from the magnetometry results in Fig. 6.4(c) and

the number of carriers from the Hall effect, as given in Fig. 5.5. The data show a
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Figure 6.4: Magnetic characterization of the Fe;_,Co,Si epilayers.(a) Magnetization as a
function of temperature in an in-plane 10 mT field. The Co concentration, x, of the films
is labeled on the graph. The inset shows a typical magnetization (M versus H) loop for a
Fe;_,Co,Si (z = 0.3) film measured at 5 K in an out-of-plane field orientation. Larger error
bars correspond to measurements by VSM. b) The ordering temperature To.q of the epitaxial
thin films shows an enhancement with respect to that of bulk material.[13; 67] FeSi (x = 0)
shows weak ferromagnetism with Ty.q ~ 10 K. Ty, determined as discussed in §5.2, is up to
10K higher than Tp.q. The dashed lines are guide to the eye. (c¢) The saturation magnetization
at 5 K, extracted from hysteresis loops of the films, expressed in Bohr magnetons per formula
unit. The value is close to 1 ~ pp per cobalt dopant atom (ideal relationship shown by the

dashed line), in good agreement with bulk,[3] for = < 0.25.
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Figure 6.5: Magnetic moment per carrier of the electron gas in Fe;_,Co,Si as a function of

cobalt doping x.

monotonic decrease in this ratio as the Co content x rises.

6.6 Results and Discussion IT (XAS and XMCD)

As mentioned before, to investigate the electronic structure and evolution of magnet-
ism in Fe;_,Co,Si system we used X-ray absorption spectroscopy and X-ray magnetic
circular dichroism respectively in total electron yield mode (TEY) to probe the L3
edges of Fe and Co in Fe;_,Co,Si thin films. The Fe;_,Co,Si films used for this ex-
periment were capped in situ with Au (approx. 1.5 nm) to prevent any oxidation and
thus surface degradation The films were saturated in the out of plane direction such
that the sample magnetisation M was parallel to the wave propagation vector k. XAS
was done in an UHV chamber at room temperature using a linearly polarised light.
XAS is an element specific technique, Fig 6.6 shows a set of normalised XAS spectra
of both Fe, Co at La 3 edges as a function of varying Fe and Co doping in Fe;_,Co,Si
thin films.

Single sharp peaks at Ly and L3 edges indicate the metallic nature of both Fe and
Co atoms in Fe;_,Co,Si epitaxial thin film system. As can be seen from the figure, the
spectral weight of Ly, L3 edges for both Fe and Co atoms are more or less in a constant
ratio [103] Also, the relative spectral weight of Fe and Co peaks shift as a function of Fe
and Co doping. We observe the Fe edge in FeSi with zero Co doping, it has the highest
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Figure 6.6: XAS spectra of Fe;_,Co,Si thin films of varying Co and Fe doping. The norm-
alised XAS spectra shows the evolution of characteristic Lo 3 edges of Fe and Co respectively.

Along with the Fe and Co edges a shoulder on Lg is also observed.

spectral weight. As we dope FeSi with Co, the Fe edge loses spectral weight and it
shifts towards Co edge and is the highest for CoSi. This may be attributed to the fact
that as we dope Co in FeSi system, each Co atom substitutes Fe atom in the crystal
structure and thus slowly dominates the whole spectra when it replaces Fe completely
to become CoSi. L3 edges of Fe and Co atoms are accompanied by a shoulder indicating
a hybridisation in epitaxial B20 structure. Evolution of the L3 edge for both Fe and
Co is shown in fig 6.7 and 6.8 respectively.

In fig 6.7, the spectrum at the top has well resolved shoulder and peak for FeSi, as
Co doping (x) increases or Fe doping decreases the shoulder and the main peak become
less resolved until they are no longer distinguishable and vice versa for fig 6.8, where
the most well resolved peak is observed for Fe;_,Co,Si with x = 0.7, and as the Co
doping decreases or Fe doping increases the peak and the shoulder are indistinguishable
from each other. Additionally, we also observe a shift in the resonance energy level of
both Ly 3 edges of Fe and Co. Both the edges are move by approximately 500 meV
indicating a change in the band structure. Since Fe;_,Co,Si thin films are biaxially
strained due to epitaxy, a change in the band structure with changing composition

of the film (Co doping) is not necessarily surprising. In order to extract quantitative
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Figure 6.7: XAS spectra of Fe;_,Co,Si thin film showing the evolution of characteristic L3
edge of Fe with varying doping content. The shaded area highlights the evolution of the shoulder
on the main L3 edge of Fe, the edges are also shifted by 500 meV, both of which when combined

together indicates a modified band structure of the system.
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Figure 6.8: XAS spectra of Fe;_,Co,Si thin film showing the evolution of characteristic
L3 edge of Co with varying doping content. The shaded area highlights the evolution of the
shoulder on the main L3 edge of Co, the edges are also shifted by 500 meV; both of which

when combined together indicates a modified band structure of the system.
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Figure 6.9: The variation in the Branching ratio of Co (blue) and Fe (red)with varying
contents in Fe;_,Co,Si thin films. The branching ratio of Fe remains almost constant (varying
little) where as that of Co increases with increasing Co doping. This suggests that the number
of core holes associated with Co increases from x=0.1 to x=0.5 where as that associated with

Fe changes little.

information from the XAS data and to understand the electronic structure better we
calculated the branching ratio. The element specific branching ratio (BR) is calculated

by the following 6.6 and the results are shown in fig 6.9

I(L3)

I(L3) + I(Ls) (6.12)

BR =

Branching ratios obtained from XAS spectra of Co increases from 0.51 (z = 0.1) to
0.56 (x = 0.5) and that of Fe deviates little from 0.56. As a function of x, it suggests
that the number of core holes associated with Co increases from x=0.1 to x=0.5 where
as that associated with Fe changes little. Variation in the occupation states of Fe and
Co atoms coupled with shift in Ly 3 edges (~ 500 meV') and the evolution of the L3
edge line shape indicates a modified band structure.

XMCD was done in an identical geometry as XAS but at 6 K and with 70% circularly
polarised light. The helicity of the circularly polarised X-rays were preserved and
magnetisation (M) of the sample was reversed by changing the polarity of the magnets.
Dichroism was obtained as a difference of two absorption spectra under different magnet

polarities. Fig 6.2 shows XMCD spectra taken in TEY and TFY modes. Qualitatively,
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Figure 6.10: Evolution of dichroism on 3 3 edges of Fe and Co atom. As the doping increases,

the dichroism become more pronounced on both the Fe and Co edges.
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the Lo 3 peaks in both TEY and TFY modes appear the same with similar features
indicating that the surface characteristics of the sample is representative of the bulk as
TEY arises from the auger electrons ejected close to the sample surface whereas TFY
arises from much deeper end of the sample. The fact that both the spectra are identical
indicates that the Au capping layer has preserved the sample in its native state and no
oxidation has taken place. Fig. 6.10 shows the systematic evolution of dichroism on
Ly 3 edges of both Fe and Co with increasing Co doping (x). The dichroism on Fe L3
edge (TEY) varies from 0.6 x 1073 for x=0.1 to 1.4 x 1073 for x=0.5 and that of Co
evolves from being negligible for x=0.1 to 1.7 x 1073 for x=0.5. Whilst the magnetism
in the Fe;_,Co,;Si system arises from the Co doping, these asymmetry spectra clearly
show that the magnetic moment is delocalised on both Co and Fe sites.

XMCD in combination with the branching ratio calculation throws light on the
evolution of magnetism in Fe;_,Co,Si system but a complete picture can only be
obtained with the band structure calculations. When FeSi, which is a non magnetic
semiconducting system is doped with Co, Co atom substitutes for an Fe atom in the
unit cell. By doing so, the Co atom donates a free d electron and modifies the band
structure. More the substitution of Co atom for Fe atom, more the availability of d
electrons. The branching ratio of Co supports the same, we see that with increasing
Co doping the branching ratio (no. of holes) increases from 0.51 for Co=0 to 0.59
for Co=0.5. When we compare this with the XMCD data, we see that the dichroism
associated with Co increases with increasing Co doping. The dicroism on the Fe edge
increases slowly with increasing Co doping but after Co doping of 0.3, the dichroism
on Fe remains more or less constant but that on Co increases. This indicates that
by the time Co doping reaches 0.3, it magnetises all the Fe atoms in the available
vicinity. We can deduce from all above is that the Co atom induces magnetisation in
the nearby Fe atom. The net magnetisation of the Fe;_,Co,Si system has contribution
not only from Co atom but Fe atom as well. This also explains why magnetic moment
was > lup/e”. Exchange interaction between Co and Fe atom could be one of the
reasons that can be attributed to the increased magnetisation of the system. Also,
along with inducing magnetism, the d electron contributed by Co atom can hop locally
from one atom to the other in the crystal structure. All of which suggests itinerant
magnetism in Fe;_,Co,Si epitaxial system. Although the previous studies by Ishimoto

et al. [69] and DeGrave et al [41] showed that elemental origin of magnetism in system
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is due to Co atoms. In the case of Fe;_,Co,Si epitaxial system both Fe and Co edges
show evolution of dichroism, along with the branching ratio calculations confirms the

presence of itinerant magnetism in FeCoSi system.

6.7 Results and Discussion III (MFM)

MFM imaging of Fe;_,Co,Si (x = 0.3) thin film was carried out at Attocube, Germany
using their standard AFM/MFM I scanning probe within a cryogen free attoDRY 1000
system. The sample was mounted on a scanning probe stage and glued to it such that
the sample plane normal was parallel to the tip. A Point Probe Plus magnetic force
Microscopy- Reflex coating (PPP-MFMR) tip with an effective magnetic moment of
1073 emu was used. The magnetisation direction of the tip was parallel to the sample
plane normal. This ensured that the tip picked up only the changes in the out of plane
direction of the sample plane. The tip resolution was better than 50 nm, effectively it
was close to 20 nm. The sample was Zero Field Cooled (ZFC) to 4 K and an external
magnetic field was applied in the out of plane direction to the sample plane.

The external magnetic field was varied so as to trace a five segment loop similar
to a standard M-H loop, starting from 0 Oe to £20,000 Oe (shown in fig. 6.11). The
magnetic force gradient of the sample was mapped using the MFM tip and images
were acquired at various applied field values. For convenience the five segment loop is
described in the table 6.7

Segment | Initial magnetic field | Final magnetic field
Number (Oe) (Oe)

1 0 20,000

2 20,000 0

3 -200 -20,000

4 -800 0

5 200 400

A series of MFM images of the same area were taken over a period of time under
different applied magnetic field. Variation in both frequency and phase components
were recorded. A set of images from segment 3 is as shown in the fig. 6.12. First two

columns of the image show the raw images thus acquired.
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Hc

Figure 6.11: A typical M-H loop showing hysteresis. The M-H loop above can be divided into

five segments as shown in the table below.
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Figure 6.12: The images are obtained from loop 3 (described before in the table) of
Fep.7Cop.3Si thin film for lower field values. The images were mapped as a function of ap-
plied magnetic field, the values of which are mentioned at the top of the images in the first
column. The first column represents the frequency variation, the second column represents
the corresponding phase variation and last column shows the corresponding FFT of the phase

component. Figure continued on the next page.
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Figure 6.13: The images are obtained from loop 3 (described before in the table) of
Fep.7Cop 351 thin films for higher field values. The images were mapped as a function of ap-
plied magnetic field, the values of which are mentioned at the top of the images in the first
column. The first column represents the frequency variation, the second column represents
the corresponding phase variation and last column shows the corresponding FFT of the phase

component.
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Qualitatively, from one image to the other, we observe variation in frequency and
phase components as a function of external magnetic field. Fe;_,Co,Si is a helimagnet
in the ground state and as we increase the external magnetic field it changes conforma-
tion, saturates at higher fields, and behaves like a ferromagnet. However, to understand
and determine the ordering degree we need to quantify the changes. Analytical tools
such as auto-correlation and Fast Fourier transform(FFT) that were inbuilt in WSxM
image processing software were used for such analyses.

Auto-correlation or self-correlation function has been widely used to analyse scan-
ning probe images. Mathematically, it is essentially a convolution of a function with
itself. For analysing images that are spatially defined and are real and bounded, it
is equivalent to comparing all the possible pixel pairs in an area and estimating the
likelihood that both will be bright as a function of the distance. The equation below

elaborates the auto-correlation function used.

G(nd, me) = Xy f(z,y) f(x + nd, y + me) (6.13)

Here f(z,y) is the raw image matrix and G(nd, me) is the auto-correlated image
matrix. f(x,y) and f (z + nd, y + me) are the measured intensities of the image areas
with (z,y) and (x 4+ nd,y + me) coordinates respectively, ¢ and e are the pixel length
along x and y axes, respectively, and n, m are any integer numbers.

The phase component of the MFM images were auto-correlated using the equation
above. We next used FFT to analyse the auto-correlated images. In other words we
used Wiener-Khinchins theorem which states that the Fourier transform of an autocor-
relation function is the power spectrum. The power spectrum helps to understand how
the intensity or strength of a signal is distributed in the frequency domain relative to
the strength of other signals present. A periodic signal will have peaks at a fundamental
frequency and its corresponding harmonics; a quasiperiodic signal will have peaks at
linear combination of two or more irrationally related frequencies and appear as a main
peak with sidebands; and chaotic dynamics will have broad band components in the
spectrum.

An example of such an analysis is as shown in the fig.6.12 where the first column
represents the frequency change, the second column represents the phase change, and

the third column shows the Fast Fourier Transform of the corresponding auto-correlated
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images (phasecomponent). We explain the results thus obtained within the limits of
the resolution of the MFM tip. As a function of magnetic field we observe changes in
both phase and frequency component in the MFM images of Fe;_,Co,Si (z = 0.3).
In the first column of fig.6.12, as the magnitude of external magnetic field increases
from —200 Oe the frequency distribution of the image changes and slowly reaches the
maximum saturation point at around —600 Oe where we observe certain patches or
spots that appear saturated and white. Beyond —800 Oe the external magnetic field
saturates the film, the white saturated spots disappear and sample shows uniform
distribution of frequency again. Similarly in the second column we observe changes
in the distribution of phase component. As a function of increasing magnetic field
domain like features seem to appear and reinforce themselves between —400 Oe and
—800 Oe, the features smooth out at other magnetic fields. For better understanding
of the magnetisation dynamics we auto correlated the phase component of the images
and obtained the power spectrum by FFT of the auto correlated images, the result
is shown in the third column of the same figure 6.12. As the magnetic field increases
in magnitude we observe distinctive frequencies appearing. The frequencies seem to
appear in a preferential direction, indicating that the ground state or the helimagnetic
state has a preferential direction of order. For a well ordered lattice such as that of a
skyrmion with six fold symmetry we should observe a hexagonal pattern in the FFT.
We, however, observe multiple strong frequencies overlaying the hexagonal pattern (if
any, as the MFM tip has limited resolution) so much so that it is difficult to resolve and
conclude. We, however, can measure the ordering parameter of the Fe;_,Co,Si thin
film as it undergoes changes under the varying magnetic field. Ordering parameter(OP)

can be determined from FFT by the following equation

I
 FWHM

where OP is the spatial ordering parameter, I is the intensity of the spot, FWHM is
the Full Width at Half Maxima of the peak frequency mapped (line scan through FFT).

oP (6.14)

This ratio has been widely used [104] to extract OP for various images representing
various degree of orderliness. To obtain the ratio we did a line scan across the observable
frequencies in the FFT and focussed on mapping the OP of the frequency with highest
intensity, in the present case it is the frequency at the centre that appears with highest

intensity. We chose it as it can be identified in every acquired image unlike the others
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Figure 6.14: The figure above shows the variation of spatial ordering parameter as a function
of applied magnetic field. We start with black squares (loop 1), then move to red circle (loop
2), then to blue triangles (loop 3), then to green triangles (loop 4), and finally to pink triangles
(loop 5).

that fade away as a function of magnetic field. We then fitted the peak to obtain I and
FWHM. The result is shown in fig.6.14.

We observe a pattern in OP as we proceed from segment 1 to segment 5. As the
magnitude of the magnetic field is increased from zero to higher up values, the OP
increases and reaches a maximum at around 700 Oe and then starts to decrease again,
segment 1 and segments 3 follow the same pattern. However, OP follows a monotonic
behaviour when magnitude of the magnetic field is decreased from a higher value to
zero Oe. We also observe that the frequency pattern at 0 Oe after a cycle does not
return to the original ground state that was observed after ZFC. Similar pattern has
been observed by Milde et al [79]. The highest OP that is observed around +700 Oe
in both 1 and 3 segments are an indication of constructive magnetic ordering in the
epitaxial Fe;_,Co,Si system. Coincidently highest Topological Hall Effect for these
system is also observed at around the same field values by Porter et al [100]. It can
there be explained that when electrons pass through a well ordered chiral structure
such as skyrmions, they couple to them and pick up a Berry phase. Each skyrmion
has one quantum flux associated with it. The Berry phase of the electrons in the

epitaxial Fe;_,Co,Si system is manifested in the transport measurements as an extra
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Figure 6.15: The figure above shows the THE contribution from Feg 7Cog 3Si thin film. The
highest THE observed around 70 mT or 700 Oe. The fig. a) on the left shows THE at extended
fields where as the fig. b) on the right shows THE at lower fields. The shaded area points to

the maximum observed in the data [100].

signal i.e. giant Topological Hall Effect (THE). Therefore the combination of both the
data strongly suggests towards a skyrmion like chiral behaviour and ordering in the

Fe1_,Co,Si system.

6.8 Results and Discussion IV (Thickness varying FesCo Si
thin films)

Figure 6.16 shows the magnetisation versus temperature curves of FeggCog2Si thin
films of varying thickness. The nature of magnetisation curves are very different for
films with thickness more than or less than 10 nm. This could possibly be due to
the some congregation or cluster formation in the films with lower thickness. But,
nevertheless, magnetisation of the film varies with varying temperature and drops off
to zero above the ordering temperature. The inset in the figure 6.16 shows the ordering
temperatures of the films. The ordering temperature increases as thickness of the film
increases from 2.5 nm (~ 5 K) to 10 nm (~ 36 K ) and then decreases monotonically
to 33 K for a 50 nm film. This is a significant result as it has previously been reported
by Karhu et al. that the ordering temperature of a film does not change at all after
reaching the critical thickness. We, however see that it does change, ever so slightly
in Fe;_,Co,Si epilayer, indicating that one can engineer the band structure and hence
change the ordering temperature by engineering strain in the Fe;_,Co,Si epilayers.

Figure 6.17 shows the variation between the ordering temperature and the corres-
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Figure 6.16: The figure above shows the variation in magnetisation as a function of temper-
ature in Fey §Cog.2Si thin films of varying thickness. The inset shows the variation in ordering
temperature as a function of thickness. The ordering temperature increases as the thickness of
the Feg §Cog.2Si thin films increases from 2.5 nm to 10 nm, after it peaks at 10 nm, it slowly

drops down to lower temperatures for higher thickness. The blue dashed line in the inset is a
guide to the eye.
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Figure 6.17: The figure above shows the variation in ordering temperature of Feg §Cog.2Si thin
film as a function of unit cell volume. The data points have been labelled with corresponding

thickness of the films. The red dashed line is a guide to the eye.

ponding volume of the unit cell. The graph shows a linear relationship between the
Ordering temperature and unit cell volume for films thickness 10nm and above. This
indicates that the films are phase pure and that there is no phase change after the

critical thickness is reached.
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Conclusion
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7.1 Summary

In this thesis I have reported the growth and characterisation of phase pure, high qual-
ity e- Fe;_,Co,Si thin films ( 50 nm) by MBE. It has been shown that changing the
Co doping changes the band structure, modifies structural, chemical properties, and
contributes to a fully spin polarised electron gas in the system. The biaxial strain
changes the unit cell structure from cubic to rhombohedral and increases the ordering
temperature of these epilayers. Evolution of dichroism on both the Fe and Co edges as
shown by XMCD is indicative of itinerant magnetism in Fe;_,Co,Si epitaxial system.
MFM, angle dependent THE, and PNR [100] indicate the presence of chiral or skyrmi-
onic structures in Fe;_,Co,Si epilayers. The results above are not exhaustive, there
is more to explore and understand the physics behind the B20 Fe;_,Co,Si epitaxial

system.

7.1 Summary

In the early report of Manyala et al., the finding of one electron-like carrier and one
up of magnetic moment per Co atom dopant in Fe;_,Co,Si (at least in the regime
x < 0.25) was interpreted as indicating the presence of a fully spin-polarized electron
gas [3]. This half-metallic state was retrodicted by band structure calculations a few
years later,[33] and its presence explains the greater stability of the magnetic order
against pressure for low x samples [96]. Other researchers at University of Leeds pre-
viously detected evidence for the partial preservation of this state in non-phase-pure
sputtered Fe;_,Co,Si polycrystalline films.[42]

In the chapter on growth and characterisation, I have shown that high quality, phase
pure Fe;_,Co,Si thin films with varying Co doping were grown on a Si [111] substrate
by MBE. In-situ LEED, XRD, TEM, and AFM were used to structurally characterise
the films. The films were found to be epitaxial with no visible misfits or defects and
with a very low surface RMS roughness (~ 1 nm), all indicating the high quality of
the thin films. Upon further analyses films were found to be biaxially strained, mak-
ing the unit cell rhombohedral rather than cubic. Nevertheless, the films still retained
their phase purity as shown by Bragg peaks obtained from XRD and linear relationship
between volume strain and shear strain.

The chapter on magnetic characterisation presented the result of Fe;_,Co,Si epilayers
investigated using SQUID, VSM, soft X-ray spectroscopy, and MFM. One of the signi-

ficant achievement is the enhancement of ordering temperature of Fe;_,Co,Si epilayers,
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upto 77K for x = 0.4. The dichroism evolving at both Fe and Co edges, probed by
XMCD shows that the magnetic moment is not necessarily localised only on the Co
atom as previously reported by Degrave et al. [41]. The gradual evolution of dichro-
ism at Fe edge with increasing Fe doping indicates that Fe atoms contribute to net
magnetisation of the sample. It is therefore possible that the Co atom magnetises the
nearby Fe atom, thereby increasing the net magnetic moment per formula unit. A shift
in the resonant peak energy accompanied by evolution of shoulder like structure in the
resonant peak of the XAS data indicates a modified band structure in Fe;_,Co,Si epi-
taxial system. The spatial ordering parameter of Fe;_,Co,Si epilayers analysed using
the MFM images shows the maximum spatial ordering in the system between 650mT
-700mT. Within similar range of applied magnetic field highest topological hall effect
was observed by Porter et al. [100] in the Fe;_,Co,Si epitaxial system.

The chapter on transport measurements presented the results obtained by measuring
the devices made from Fe;_,Co,Si thin films patterned with Hall bars. Longitudinal
resistivity, OHE, and AHE were measured at 5K. The films exhibit characteristic pos-
itive magnetoresistance. From OHE, mobility of the charge carriers and carrier density
were extracted. From the temperature dependent resistivity, as expected, the films
were found to be metallic for high Co doping (x > 3) and semiconducting like for lower
Co doping (z < 0.25). Huge anomalous Hall coefficient was determined from AHE.
Also, a set of Fe;_;Co,Si (x = 0.2) thin films with varying thickness (t) were grown
using the same protocol as described before in the chapter on growth and characterisa-
tion. Structural characterisation of the films by in-plane and out of plane XRD reveal
that due to heretoepitaxy the films are biaxially strained as a result of which the unit
cell is rhombohedral instead of cubic. The volume strain and shear strain relationship
exhibit linearity for the films ¢ > 10nm. 10nm is perhaps the critical thickness for the
epitaxial growth of the films, below which the films may not be phase pure.
Combining the results from magnetometry and Hall transport we see that for = 0.25,
in the metal-like regime, the behaviour of the Fe;_,Co,Si film is much as expected: the
moment per carrier ratio drops, falling to only about 0.5 for x = 0.5. The decrease in
the spin-polarization for high x has been previously observed and explained as being
due to local disorder in the crystal structure induced by addition of Co atoms.[33; 96].
In the low-doping semiconductor-like regime (z < 0.25), the ratio of moment per carrier

exceeds unity, arising from the small shortfall in carriers per Co that was found in the
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data presented in Fig. 5.5(b), and slight excess moment observed in Fig. 6.4(c). Phys-
ically, the underlying mechanism is not clear. A plausible picture might be that there
are a low number of Co atoms on Si antisites or in interstitial positions, too few to be
readily detected by XRD or HRTEM, that act both as charge traps and possess local
moments exceeding 1 up (either alone or by weakly polarizing neighbouring Fe sites).
More detailed studies, such as ab initio calculations, would be required to confirm this
scenario. Nevertheless, it is clear that in this regime, we have a highly-polarized elec-
tron gas. Another plausible explanation based on the evolution of magnetism in the
system (as probed by XMCD) is that the Co atom induces magnetism in nearby Fe
atoms and therefore the moment is not only localised over Co atom but Fe atom too
and hence Fe atoms contribute to the total magnetic moment of the film.

To summarize, we have grown a set of Fe;_,Co,Si epitaxial thin films, and studied
the variation in the structural, transport, and magnetic properties in the range 0 < z <
0.5. The epilayers are e-phase pure, but with a deformation of the B20 unit cell into an
rhombohedral form by the epitaxial strain. Qualitatively, the properties of our epilayer
samples are similar in many ways to those of bulk crystals. In particular, we found the
metal-insulator transition to lie in the middle of this range, with a high spin-polarization
in the semiconducting regime (z < 0.25). However there are quantitative differences,
the most important of which is the stabilization of magnetic order up to much higher
temperatures than in bulk crystals. The availability of thin films amenable to planar
processing techniques is an important step to realising spintronic devices based on the

remarkable physics of these B20-ordered materials [44; 49; 92].

7.2 Future Outlook

Since the majority of previous studies on the Fe;_,Co,Si system have been on bulk
systems, there is still a vast scope of opportunity left to investigate the epitaxial
Fe;_,Co,Si system. In this thesis, via epitaxial growth of Fe;_,Co,Si thin films, vari-
ation in doping content of Co we have shown that the biaxial strain brings about
significant changes in the system. The strain essentially modifies the band structure,
as a consequence of which we observe increased stability in magnetic ordering, and
evolution of magnetism on both Fe and Co edges (XMCD) etc. Also, the films retain
their full spin polarisation upto a certain Co doping (z < 0.3). These promising results

propels us to investigate more about the system and look for interesting physics.
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On the lines of investigating the variation of Co doping in Fe;_,Co,Si epitaxial system,
we still need to thoroughly investigate the thickness dependence of Fe;_,Co,Si epilay-
ers. The results mentioned above are very promising and highlight the need to pursue
the investigations further. The thickness varying films may be patterned into standard
Hall bars. It would be interesting to measure OHE, AHE and THE in these thin films.
Also, following the protocol by Tian et al. [105] one could scale AHE properly, isolate
the intrinsic contribution and find whether if it is side jump or skew scattering that
dominates in Fej_,Co,Si system.

One of the major challenges faced by Fe;_,Co,Si epilayers is the low ordering temper-
atures. It is well known that Germanides such as FeGe or FeCoGe have much higher
ordering temperatures [47] of the order of 270 K. It would therefore be interesting to
dope Fe;_,Co,Si system with Ge, where Ge would replace Si atom in the unit cell,
thereby increasing the ordering temperature of the system.

Another area that needs to be investigated is skyrmions in Fe;_,Co,Si epilayers. The
presence of real space skyrmions in bulk Fe;_,Co,Si has already been shown by Yu et
al. [21], and the mechanism of skyrmion formation and annihilation has been shown by
Milde et al. [79] and Kanazawa et al. [99] using MFM and nano structured Hall bars
respectively. One can therefore use direct imaging below the ordering temperature to
probe the skyrmions in Fe;_,Co,Si epilayers. One could also perhaps pattern the films
into nano sized Hall bar devices of varying sizes and measure THE. The discrete or
step wise profile of topological hall resistivity would help to understand the dynamics
of skyrmions and demonstrate the emergent magnetic quantum flux associated with
each skymion that was previously indistinguishable at a macroscopic level[99]. The
aforementioned techniques could further be backed up by band structure calculations
and micromagnetic simulations. A better understanding of the physics behind the
Fei_,Co,Si system would not only help us with the fundamental understanding but
also help in implementing them into practical applications in spintronics. Current thin
film technology is very advanced, a silicide based fully spin polarised system that is
readily integrable with the technology available in the microprocessing industry offers

some very promising device physics and opens a broader area of investigation.
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