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Abstract 

This Thesis describes the development of telescoped rhodium(II)-catalysed transformations of α-

diazo(diethoxyphosphoryl)acetates for the formation of α-methylene-γ-butyrolactones. An 

overview of synthetic approaches to α-methylene-γ-butyrolactones is given in Chapter 1, in 

addition to a discussion of published Rh(II)-catalysed C–H insertion reactions. 

 

Previous efforts in the Taylor group have established effective methods for the synthesis of α-

methylene-γ-butyrolactones, although these require relatively complex functionality in the 

precursors. The research in this Thesis focuses on the development of a one-pot Rh(II)-catalysed 

C–H insertion/olefination sequence for the synthesis of α-methylene-γ-butyrolactones III from α-

diazo(diethoxyphosphoryl)acetates I, which are readily accessible from simple alcohols. The key 

C–H insertion step enables the formation of a new C–C bond in α-phosphonolactone II, via 

reaction of the rhodium carbenoid with a C–H bond typically considered completely unreactive. 

 

 

 

 

The scope of the reaction is explored in detail, concluding with the synthesis of two natural 

products, cedarmycins A and B (IV and V) and a Staphylococcus aureus inhibitor VI (Chapter 2). 

The scope of the reaction was extended to the use of conformationally restricted substrates, 

facilitating the synthesis of α-methylene-γ-butyrolactones with complete diastereoselectivity, 

demonstrated through the synthesis of the natural product α-cyclocostunolide VII (Chapter 3). 

Finally, the development of a related procedure is described (Chapter 4). The rhodium(II)-catalysed 

cyclopropanation of allylic α-diazo(diethoxyphosphoryl)acetates is discussed as an alternative 

approach to the α-methylene-γ-butyrolactone framework. This work has been applied to the first 

total synthesis of peperomin E VIII as well as savinin IX and gadain X (Chapter 4).  
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Chapter 1 –  Introduction 

1.1  α-Methylene-γ-butyrolactones 

1.1.1.  Prevalence in Nature 
 

The α-methylene-γ-butyrolactone functionality is prevalent in Nature, comprising approximately 

3% of all known natural products.1 This naturally occurring motif imparts a wide variety of 

biological effects including antibacterial, antifungal and anticancer activities. The simplest possible 

α-methylene-γ-butyrolactone is itself a natural product known as tulipalin A 1, possessing anti-

tumour properties and isolated from the common tulip Tulipa gesneriana.2 Many of these natural 

products are also isolated from flowering plants; for example, hispitolide A 2 is isolated from 

Parthenium hispitum,3 commonly known as feverfew, and ratibinolide 3 from Ratibida 

latipalearis, a genus of the daisy family (Figure 1).4 

 

 

Figure 1: Examples of α-methylene-γ-butyrolactone containing natural products. 

 

The majority of α-methylene-γ-butyrolactone natural products are sesquiterpenes, derived from 3 

isoprene units and containing 15 carbons. They can be further classified based on their structural 

frameworks (Figure 2). Many of these examples contain fused bicyclic rings, giving rise to both 

cis- and trans-skeletons (cf. hispitolide A and ratibinolide, Figure 1). In addition, there are many 

examples of diterpene α-methylene-γ-butyrolactones, containing 20 carbons, as well as non-

terpenoid examples.5  
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Figure 2: Commonly found sesquiterpene α-methylene-γ-butyrolactone frameworks and non-

terpenoid butanolides. 

 

Sesquiterpene lactones can also be found in food sources, with lettuce and chicory representing the 

most common method of consumption for humans. They also convey benefits for plants, acting as 

defence mechanism against fungi, bacteria and insects.6 In addition to their medicinal applications, 

sesquiterpene lactones can also have negative effects, most commonly allergic reactions; for 

example, the pollen from plants that produce sesquiterpene α-methylene-γ-butyrolactones can 

cause allergic contact dermatitis, leading to sensitisation of the skin.7  

 

The biological activity of sesquiterpene lactones stems from the electrophilic nature of the α,β-

unsaturated ester, making these compounds susceptible to 1,4-addition reactions. In vivo, L-

cysteine residues or thiol-containing enzymes react via conjugate addition to form adducts that 

reduce the growth of cells or aid drug-induced cell death.5 Whilst the α-methylene-γ-butyrolactone 

functionality provides the main mode of reactivity leading to a range of effects it is other functional 

groups that enhance activity through chemical or steric influences.6 

 

Studies have shown that the biosynthesis of α-methylene-γ-butyrolactones proceeds via the 

synthesis of a common precursor which then undergoes late-stage chemical transformations to 

form the array of natural product frameworks shown in Figure 2.7 The pathway that produces 

terpene based α-methylene-γ-butyrolactones begins with an intramolecular cyclisation of farnesyl 

pyrophosphate 4 (Scheme 1). A series of oxidations affords germacrene acid 7 and costunolide 8, 

further elaboration of which gives rise to the many different terpenoid frameworks. 
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Scheme 1: Biosynthetic pathway towards terpenoid α-methylene-γ-butyrolactones. 

 

The biological activity of α-methylene-γ-butyrolactones is both wide-ranging and significant for 

the purpose of both medicinal treatments, for example as antivirals,8 and in agriculture as insect 

antifeedants,1,6 thus the development of new efficient methods for their synthesis is of much 

interest. 

 

1.1.2.  Existing routes 

 

There are many existing synthetic routes to make α-methylene-γ-butyrolactones, many of which 

have been thoroughly reviewed before,7 most recently in 2009.1 A short summary is given herein 

along with some more recent examples. 

 

The methylenation of lactones is one of the most common routes towards α-methylene-γ-

butyrolactones. For example, the dehydration of α-hydroxy-γ-lactones 10, either with or without 

prior derivatisation of the alcohol, generates α-methylene-γ-butyrolactone 11. Eschenmoser’s 

iminium salt 12, can be used as an alternative reagent to formaldehyde, forming aminomethyl 

lactone 13, which on alkylation in the presence of base generates the α-methylene-γ-butyrolactone 

11 via a Hofmann elimination.1,9 Another commonly used method to introduce the exo-methylene 

unit is by selenoxide elimination. Firstly, methylation of γ-butyrolactone 9 generates α-methyl-γ-

butyrolactone 14, which on treatment with phenylselenylchloride under basic conditions affords 

selenide 15. Subsequent oxidation and selenoxide elimination in the presence of hydrogen peroxide 

furnishes α-methylene-γ-butyrolactone 11 (Scheme 2).1 
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Scheme 2: Elimination-based methylenation approaches to α-methylene-γ-butyrolactones. 

 

The formation of α-methylene-γ-butyrolactones by lactonisation is another commonly employed 

technique. The simplest approach of this type is the cyclisation of a γ-alcohol and carbonyl such as 

an ester, acid or acid chloride, yet many of these approaches involve an initial reaction to install the 

γ-alkoxy/alkoxide ester, which then undergoes a lactonisation reaction to form the desired α-

methylene-γ-butyrolactone. For example, the treatment of crotylboronate 16 and aldehyde 17 with 

Lewis or Brønsted acid forms the γ-alkoxide ester, which subsequently undergoes in situ 

lactonisation delivering α-methylene-γ-butyrolactone 18 (Scheme 3).10 

 

 
Scheme 3: Crotylboronate derived route to α-methylene-γ-butyrolactones. 

 

A similar approach, an example of which is shown in Scheme 4, utilises a 2-bromomethylacrylic 

ester 19 and aldehyde 20 and is known as the Dreiding–Schmidt procedure.11 In this case, addition 

of zinc generates the organometallic reagent, which adds diastereostereoselectively into the 

aldehyde, before spontaneously cyclising to form the lactone 21. 
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Scheme 4: Dreiding–Schmidt procedure for synthesis of α-methylene-γ-butyrolactones. 

 

In 2011 Hodgson et al. reported a Barbier-type coupling,12 similar to that of the Dreiding–Schmidt 

procedure, that produced β-hydroxymethyl-α-methylene-γ-butyrolactones 24 via coupling of 

bromolactone 22 with aldehydes 23 as shown in Scheme 5. They found that both metallic zinc or 

Cr(II) salts could successfully be employed to efficiently convert the aromatic and aliphatic 

aldehydes, respectively in good yield, regio- and stereocontrol. 

 

 
Scheme 5: Hodgson’s Barbier-type allylation approach to α-methylene-γ-butyrolactones. 

 

Hodgson also developed a Rh(I)-catalysed asymmetric enyne rearrangement of alkynyl allyl ester 

25 to give α-methylene-γ-butyrolactone 26 (Scheme 6).13 The novel reaction was employed in the 

first reported total synthesis of (+)-anthecotulide, a butanolide type sesquiterpene lactone. 

 

 

 
Scheme 6: Hodgson’s enyne rearrangement approach to α-methylene-γ-butyrolactone 26. 
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A recent example of a lactone-forming approach is the Rauhut–Currier reaction (also known as a 

vinylogous Morita–Baylis–Hillman reaction) developed by Zhang and co-workers.14 They utilised 

a novel chiral sulfonamide phosphine 27 to catalyse the intramolecular Rauhut–Currier reaction, 

affording α-methylene-γ-butyrolactones 29 in excellent ee and high yield (Scheme 7). 

 

 
Scheme 7: Asymmetric Rauhut–Currier reaction affording α-methylene-γ-butyrolactones. 

 

Many natural products possess an α-alkylidene-γ-butyrolactone core. In many cases the additional 

substitution at the exocyclic alkene can be built into the alkylidenation or lactonisation reaction. 

However, alternative transformations of α-methylene-γ-butyrolactones are also commonplace; for 

example by olefin cross-metathesis15 and Heck cross-couplings.16 
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1.1.3.  Taylor group methodologies 

 

The synthesis of α-methylene-γ-butyrolactones has been the subject of much focus in the Taylor 

group in the past decade. Each of the routes developed comprises a lactonisation (via C–C bond 

formation) preceding a methylenation, with an emphasis towards developing one-pot tandem 

processes.17, 18 

 

The first reported approach was the telescoped intramolecular Michael/olefination (TIMO) 

sequence (Scheme 8).17 It was found that performing the two steps together was more efficient than 

sequentially with isolation of the intermediates. α-(Diethoxyphosphoryl)acetates 32 — readily 

prepared from alcohols 30 and diethoxyphosphonoacetic acid (DEPAA) 31 — are treated with base 

and, in the presence of the Michael acceptor, an intramolecular 1,4-addition occurs to afford 

bicyclic enolates 33 in a syn-selective fashion. Proton transfer and the addition of an aldehyde 

initiates a Horner–Wadsworth–Emmons (HWE) olefination reaction with paraformaldehyde to 

afford α-methylene-γ-butyrolactones 35 in an efficient, one-pot process. α-Arylidene-γ-

butyrolactones were also synthesised with the use of substituted aldehydes. 

 

 
Scheme 8: Taylor’s telescoped intramolecular Michael/olefination (TIMO) sequence. 

 

A related approach to TIMO, also a one-pot process, uses acylated phosphoranes 37 that can be 

readily synthesised from alcohols 30 and Bestmann’s ylide 36.18a The advantages of this route over 

TIMO are that it is one-pot from the alcohol 30 and is base-free although, as expected, the Wittig 

reaction was found to be slower than the analogous HWE olefination (Scheme 9). 
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Scheme 9: Taylor’s base-free Bestmann’s ylide approach to α-methylene-γ-butyrolactones. 

 

The TIMO methodology was successfully applied to the synthesis of three natural products, (+)-

paeonilactone B17a 40 and (±)-3-oxodiplophyllin 41 (synthesised using both the TIMO and 

Bestmann’s ylide approach), which was then converted into (±)-yomogin 42 (Figure 3).18b 

 

 
Figure 3: Natural products (+)-paeonilactone B, (±)-3-oxodiplophyllin and (±)-yomogin, 

successfully synthesised via TIMO methodology.  
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1.2  Rhodium(II)-catalysed C–H insertions 
 

The functionalisation of unactivated sp3 C–H bonds, normally considered inert, is an ambition for 

many within the synthetic community. With the development of a variety of achiral and chiral 

catalysts, the field of rhodium(II)-stabilised carbenoids derived from diazo compounds has 

blossomed.19 The ability to perform chemo-, regio- and stereoselective C–H insertions is now 

possible, representing the backbone of many target-based syntheses.  

 

Early studies within the area of diazo decomposition used copper to perform C–H insertion 

reactions.20 However, since the first example of a rhodium(II) catalyst being used for C–H 

insertions, the use of copper has become less common. Recently there has been a revival in the area 

of copper catalysed C–H insertions but there are only limited reports with yields or ee comparable 

to those achievable using Rh(II) catalysis.21 One reason for the relative lack of interest in copper is 

the high electrophilicity of the copper-carbenoids that tends to reduce chemo- and 

regioselectivity.22 

 

The field of rhodium(II)-catalysed diazo decomposition commenced in the 1970’s. Whilst working 

with Rh2(OAc)4, Teyssié reported the homogeneous rhodium(II)-catalysed insertion of ethyl 

diazoacetate 43 into the O–H bond of alcohols and other weak hydroxylic acids (Scheme 10).23 

 

 
Scheme 10: Teyssié’s original O–H insertion using Rh2(OAc)4. 

 

This initial discovery concerned an O–H insertion, but there has since been a great variety of 

applications including cyclopropanations, cyclopropenations, aromatic cycloadditions, ylide 

formations, N–H, and C–H insertions.24 It is the latter that is the focus of this overview. 

 
1.2.1.  Structure of Rh(II) catalysts 

 

Rh2(OAc)4 along with other rhodium(II) carboxylates and carboxamidates possesses a binuclear 

core structure with two bridging rhodium atoms that have a formal Rh–Rh single bond between 

them.25 The oxidation state of the dirhodium core is +4, giving each rhodium atom a formal +2 

oxidation state (d7 centre). The four acetate ligands in rhodium(II) acetate each bridge the rhodium 

atoms forming a cage-like structure, often referred to as a paddlewheel or lantern.25c,26 Rhodium(II) 
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carboxylates 46 possess four oxygen atoms on each rhodium atom occupying the equatorial sites, 

giving overall D4h symmetry (Figure 4).24 In contrast, rhodium(II) carboxamidates 47 typically 

favour the binding of two nitrogen and two oxygen atoms to each rhodium atom, with the cis 

arrangement (cis-[2,2]) dominant, as displayed in Figure 4.27 

 

 

Figure 4: Rhodium(II) carboxylate and cis-[2,2]-carboxamidate catalysts, with lobes representing 

vacant axial sites. 

 

With the adjacent rhodium atom occupying one axial site the other is free for coordination, giving a 

total of two free coordination sites. These sites may be occupied by weakly-bound donor ligands or 

solvents, e.g. nitriles, amines, phosphines or sulfoxides.24,25c Typically C–H insertion reactions are 

performed in a non-coordinating aprotic solvent such as DCM, DCE or toluene. Solvents such as 

THF or pyridine coordinate to, and hence deactivate,28 the catalyst changing the electronic 

structure, which is usually discerned by a colour change. For example the characteristic green 

colour of rhodium(II) carboxylates can change to blue/green and red with oxygen and nitrogen 

donors, respectively.29 Sulfur and phosphorus containing ligands can also coordinate, again 

changing the colour of the catalyst. Doyle’s rhodium(II) carboxamidate catalysts typically appear 

red in the solid-state when coordinated by solvent molecules but blue under vacuum or in poorly 

coordinating solvents.27 

 

The scarcity of rhodium means that it is expensive, with Rh2(OAc)4 costing approximately 

£250/g.30 However, this cost is somewhat compensated for by its high activity with respect to diazo 

decomposition, considerably more so than copper(I).31 A variety of chiral and achiral rhodium(II) 

catalysts are also commercially available. There are many methods currently being used in an effort 

to make rhodium(II) catalysis cheaper, for example, by immobilisation of the catalyst on solid 

supports.32 
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1.2.1.1.  Preparation of Rh(II) catalysts 

 

Rh2(OAc)4 is prepared by refluxing RhCl3 in the presence of acetic anhydride in acetic acid. 

Rhodium(II) carboxylates, carboxamidates and other ligand families are typically prepared by 

ligand substitution from Rh2(OAc)4. A Soxhlet extractor is used, with an excess of the 

corresponding carboxylic acid or amide, refluxing in chlorobenzene, in the presence of base to trap 

the liberated acetic acid (Scheme 11).27,33 

 

 
Scheme 11: Synthesis of dirhodium(II) complexes from rhodium(III) chloride. 

 

Rhodium(II) carboxylates are stable to air and thermal degradation, whereas the carboxamidates, 

which are more readily oxidised, often require axially coordinated nitrile ligands in order to 

prolong their shelf-life.24 

 

1.2.2.  Mechanism of C–H insertion 
 

For many years the exact mechanism of the C–H insertion has been the subject of much debate and 

will form the structure of the following discussion. The first step of the process is widely accepted 

to be the nucleophilic attack of the diazo compound 48 to the electrophilic rhodium catalyst via one 

of the vacant axial sites, generating ylide 49.34  This is then followed by the rate-determining step,35 

the extrusion of nitrogen gas, in which the reactive rhodium-stabilised carbenoid 50 is formed, as 

shown in Scheme 12.  

 

 
Scheme 12: Diazo decomposition initiated by coordination to rhodium(II) species, [Rh] = Rh2L4. 

 

Rh(III)Cl3. xH2O

AcOH
Ac2O

Δ

Rh2(OAc)4

Rh Rh

O O

O O
O

O

O

O

Me
Me

Me
Me

RC(X)OH
Na2CO3

PhCl, Δ

Rh2(RC(X)O)4

Rh Rh

O X

X O
X

O

O

X

R
R

R
R

X Y

N
N

X Y

N
N

[Rh] X Y

N
N

[Rh]

–N2

X Y

[Rh]

48 48' 49 50



 12 

It is believed that back-donation from the rhodium aids extrusion of the nitrogen gas. A simplified 

model of the orbital bonding interactions is shown in Figure 5. The rhodium carbenoid is singlet in 

nature with two paired electrons from the carbene sp2 orbital contributing to the Rh–C σ-bond. The 

empty p-orbital on the carbenoid carbon is able to accept electrons via back-bonding from the 

occupied Rh2 π* orbital.36 

 

  
Figure 5: Orbital interactions responsible for bonding in Rh(II) carbenoid.  

 

Following the diazo decomposition and formation of the carbenoid the C–H insertion step takes 

place. Doyle proposed one of the first transition state models for the C–H activation process. He 

suggested that the vacant p-orbital of the electrophilic carbene carbon atom overlaps with the σ-

bond of the reacting C–H bond. This proceeds with simultaneous dissociation of the carbene bound 

rhodium catalyst in a three-centred concerted transition state, as shown in Scheme 13.37 It should 

be noted that Taber et al. also suggested an alternative four-centred transition state, not shown.38 

 

  

Scheme 13: Doyle’s concerted three-centred transition state for C–H insertion. 

 

It is Doyle’s mechanism that is now widely accepted,39 however, the exact nature of the order of 

the events leading to product formation have since been investigated in more detail by Nakamura et 

al. with the aid of computational modelling based on the reaction of methyl diazoacetate with 

alkanes, catalysed by a rhodium(II) carboxylate;40 the proposed catalytic cycle is shown in Scheme 

14.  
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Firstly, diazo 52 undergoes nucleophilic addition to rhodium(II) carboxylate 51. This is followed 

by extrusion of nitrogen gas, aided by back-bonding from rhodium, forming carbenoid 54. The first 

event in the C–H insertion (transition state 56) is the hydride transfer from substrate 55, which is 

followed by reformation of the Rh–Rh bond and concomitant C–C bond formation (transition state 

57), delivering product 58 and reforming catalyst 51. 

 

 
Scheme 14: Nakamura’s model for the C–H insertion based on computational modelling. 

 

Nakamura’s findings are summarised below: 

 

− Just one rhodium atom (Rh1) takes part in the carbene binding process at any one time; the 

second rhodium atom (Rh2) acts as a bifunctional electron pool. Firstly, acting as a mobile 

ligand with cleavage of the Rh1–Rh2 bond during the carbene formation process, enhancing 

the electrophilicity of the carbene and secondly, facilitating cleavage of the Rh1–C bond 

during catalyst regeneration. 
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− During nitrogen extrusion, electron density is moved from the ligands but not Rh2. Thus, 

highly electrophilic ligands enhance diazo coordination but decelerate the nitrogen 

extrusion step. The ligands also act as a tether for Rh2. 

− Overall the C–H insertion is described as a concerted but non-synchronous three-centred 

transition state with hydride transfer from the substrate preceding C–C bond formation and 

catalyst regeneration. 

− The rhodium atoms do not directly interact with the C–H bond. 

 

In 2015, a report by Fürstner et al. documented the first crystal structure of a reactive dirhodium 

complex, an important milestone for future mechanistic investigations.41 

 

1.2.3.  General reactivity trends 
 

There are various factors that contribute towards the outcome of rhodium(II)-catalysed C–H 

insertion reactions of diazo compounds. The rhodium(II)-stabilised carbene is electrophilic, and 

through careful choice of the ligands around the dirhodium core as well as the groups adjacent to 

the carbene centre, this electrophilicity can be modulated. The nature of the substrate also 

influences the reaction outcome; based on electronic, steric and conformational effects.22 

 

1.2.3.1.  Stereoelectronic effects 
 

Taber et al. conducted early studies into the electronic and steric effects of substrates.42 By 

studying a series of β-keto esters it quickly became apparent there was a preference for which C–H 

bond is inserted into. In the case of substrate 59, tertiary C–H insertion, forming product 60 

predominated over that of the secondary C–H insertion product 61 (Scheme 15).43 

 

 
Scheme 15: Electronic effects of substrate. 

 

From Taber’s studies two important general observations were made:  

1) An order of reactivity exists for C–H bonds: 3°>2°>1°. This is due to inductive effects, 

which stabilise the build up of positive charge at the reacting centre.  
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2) The formation of 5-membered rings is favoured over that of 4- or 6-membered rings, an 

observation that has been key to the development of this field ever since. 

 

More recently there have been examples in which 4- or 6-membered rings are favoured over 5-

membered rings, however the general rule is still widely applicable.44,45 The formation of 4-

membered rings often occurs when there is activation by a donor group such as oxygen or nitrogen 

which directs the C–H insertion. Conversely, electron-withdrawing groups such as esters and acetyl 

groups are strongly deactivating.22 The power of neighbouring group activation has even been 

demonstrated by the formation of 3-membered rings.46 Lack of conformational flexibility, or 

indeed varying bond lengths can lead to 6-membered rings being formed.47  

 

It was noted by Adams and Spero in 1991,48 and later confirmed by Davies,49 that sites capable of 

stabilising positive charge, such as allylic, benzylic and α-heteroatom positions (e.g. ethers), are 

more susceptible to C–H insertions by rhodium carbenoids.  

 

Taber also investigated the steric effects of substrates on reaction outcome.42b Using substrate 62 

that contains two similar methylene C–H insertion sites, one with a methyl substituent (Ha) and the 

other with t-butyl (Hb), it was found that the insertion occurred almost entirely into the least 

hindered C–H site (Ha) forming product 63 predominantly over product 64 (Scheme 16). 

 

 
Scheme 16: Steric effects of substrate in rhodium(II)-catalysed C–H insertions. 
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1.2.3.2.  Catalyst control 

 

The ligands surrounding the dirhodium core also have a significant effect on the reactivity of the 

catalyst towards diazo decomposition. The more electron-deficient the rhodium catalyst, the more 

reactive it will be towards the diazo compound.31  

The use of Rh2(OAc)4 for diazo decomposition was first observed by Teyssié and was found to be 

highly active for O–H bond insertions. Since then various studies by Doyle and Padwa have 

enabled reactivity trends to be established by variation of the bridging dirhodium ligands.25c,37,50 By 

careful selection of the catalyst the regio- and stereoselectivity of reactions can be tuned. The 

general trend of reactivity for ligands is shown in Figure 6.31 

 

 
Figure 6: Reactivity profile for rhodium(II) catalysts by variation of bridging ligands.  

 

The more electron-withdrawing perfluorobutyrate ligand (pfb) makes the rhodium catalyst more 

electrophilic thus more reactive towards diazo decomposition. However, this was also found to 

confer reduced regio- and stereoselectivity, as demonstrated by Doyle in 1989 (Table 1).51 Based 

on the observations by Taber, insertion into a primary C–H site over a tertiary was not expected. 

Yet, both Rh2(pfb)4 and Rh2(OAc)4 led to indiscriminate reaction with both sites of diazo 

compound 65, whereas the less reactive rhodium(II) acetamidate (Rh2(acam)4) was almost 

completely selective for the tertiary site. The more reactive catalysts led to reduced isolated yields 

of 66 and 67, with carbenoid dimerisation the major competing pathway.  
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Table 1: Rhodium(II) catalyst ligand effects on chemoselectivity. 

 
Rh2L4 Isolated Yield, % Relative ratio (66:67) 

Rh2(pfb)4 56 32:68 

Rh2(OAc)4 81 53:47 

Rh2(acam)4 96 >99:<1 

 

Ikegami et al. were able to demonstrate the importance of the ligand’s steric bulk. They showed 

that by using a more sterically hindered catalyst, namely rhodium(II) triphenylacetate (Rh2(tpa)4), 

the ratio of products could be dramatically improved compared to that of Rh2(OAc)4. The 

exceptional levels of diastereocontrol were best achieved in tethered cyclic systems in which 

bicyclic products are formed. For example, the C–H insertion of diazo compound 68 generated 

trans-bicyclic lactone 69 with excellent diastereoselectivity using Rh2(tpa)4, whereas with 

Rh2(OAc)4 a mixture of products was observed (Table 2).52 

 

Table 2: Exceptional diastereocontrol using a bulky rhodium catalyst, Rh2(tpa)4. 

 
Rh2L4 Relative ratio (69:70:71) 

Rh2(OAc)4 50:19:31 

Rh2(tpa)4 94:1:5 
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1.2.4.  α-Diazocarbonyl compounds 

 

One of the key controlling factors in C–H insertion reactions are the groups adjacent to the carbene 

centre. Variation of these groups impacts the electrophilicity and hence the reactivity, chemo-, 

regio- and stereoselectivity of the insertion reactions. Diazo compounds and their corresponding 

rhodium carbenoids can be classified into three major groups; donor/acceptor, acceptor and 

acceptor/acceptor.22  

 

 
Figure 7: Classes of diazo compound/rhodium(II) carbenoid.  

 

Acceptor groups are those that withdraw electron density through resonance making the diazo 

compound less nucleophilic, hence less reactive towards diazo decomposition. Conversely, once 

the carbenoid is formed the acceptor groups increase the reactivity, as electron density is 

withdrawn from the already electrophilic centre. Donor groups, in contrast increase the reactivity 

towards diazo decomposition and decrease carbenoid reactivity. Hence, the presence of a donor 

group attenuates the reactivity of the acceptor group,49 leading to enhanced chemo-, regio- and 

stereoselectivity. The use of chiral rhodium(II) catalysts for enantioselective C–H insertions has 

been reviewed previously,22,31,45,49,53 and a short insight is provided below with a particular focus 

towards the intramolecular reactions of acceptor/acceptor carbenoids. 
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1.2.4.1.  Donor/Acceptor Carbenoids 

 

Donor/acceptor-substituted carbenoids have received by far the most attention in recent years due 

to their unique reactivity.49 The opposing electronic characteristics allow the reactivity to be 

modulated, i.e. the donor group reduces the extreme reactivity given by the acceptor group. As 

such, chemo-, regio- and stereoselectivity can be carefully controlled and has led to the 

development of a variety of chiral rhodium(II) catalysts for asymmetric C–H insertions, many of 

which are derived from amino acids (Figure 8). 

 

 
Figure 8: Amino acid-derived rhodium(II) carboxylate catalysts. 

 

McKervey was the first to develop a series of rhodium(II) N-benzenesulfonyl protected prolinate 

catalysts,54 with Rh2(BSP)4 found to be the most promising.  Good levels of enantiocontrol could 

be obtained for the intramolecular C–H insertions of α-diazopropriophenones 72 (Scheme 17). 

 

 
Scheme 17: McKervey’s asymmetric intramolecular C–H insertion reactions of α-

diazopropriophenones. 
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More than any other research group, it is the work of Davies et al. that has driven the field of the 

donor/acceptor diazocarbonyls, following the development of various proline-derived catalysts 

including Rh2(S-DOSP)4 and Rh2(S-TBSP)4.55 These catalysts were found to provide exceptional 

levels of enantioselectivity for the intermolecular reactions of donor/acceptor diazocarbonyls, 

particularly using aryl- and vinyldiazocarbonyl compounds. For example, aryldiazoacetates 74 

performed well for the C–H insertion of cycloalkanes 75, yielding products 76 in good yields and 

ee (Scheme 18). Their effectiveness is believed to be due to the C–H insertion process occurring 

through a late-transition state,40 hence the enantiopure ligands can efficiently transfer chirality to 

the products.22 

 

 
Scheme 18: Davies’ asymmetric intermolecular C–H insertion reactions of aryldiazoacetates. 

 

Since these innovative findings, the use of aryl- and vinyldiazocarbonyl compounds has been 

extended to many other intermolecular C–H insertions reactions including; α-heteroatom sites (e.g. 

oxygen- and nitrogen-containing heterocycles),56 allylic sites,57 benzylic sites58 and formed the 

basis for the synthesis many natural product/bioactive targets.59 
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1.2.4.2.  Acceptor Carbenoids 

 

The field of acceptor-substituted carbenoids has been dominated by the work of Doyle and co-

workers. This species of diazo compound was found to be active towards decomposition by 

rhodium(II) carboxylate and carboxamidate catalysts, however it is the latter that provided more 

controlled reactivity and induced higher levels of selectivity.37,51 Following the success of achiral 

carboxamidate catalysts, Doyle began studying the use of chiral catalysts, leading to the 

development of Rh2(5R-MEPY)4. The intramolecular C–H insertion of diazoacetates 77 leading to 

lactones 78 was found to be particularly effective with Rh2(5R-MEPY)4 for insertion adjacent to 

heteroatoms. However, when tested on benzylic C–H bonds the yields and enantioselectivity 

decreased (Scheme 19). 

 

 
Scheme 19: Doyle’s asymmetric intramolecular C–H insertion reactions of diazoacetates. 

 

Further systematic studies revealed additional classifications of carboxamidate catalysts that were 

more amenable to benzylic and non-stabilised C–H insertion reactions (Figure 9).  

 

 
Figure 9: Rhodium(II) carboxamidate catalysts for intramolecular C–H insertions of acceptor-

substituted diazo compounds. 
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For example, the imidazolidinone catalyst Rh2(4S-MACIM)4 was shown to deliver excellent 

asymmetric induction for the formation of cis-bicyclic lactones 80 from cyclohexanol-derived 

diazo compounds 79 (Scheme 20).60 

 

 
Scheme 20: Doyle’s asymmetric intramolecular C–H insertion reactions of diazoacetates. 

 

These catalysts remain widely used for asymmetric intramolecular C–H insertions of acceptor-

substituted diazocarbonyls. Their use has been extended to the reactions of allylic61 and aromatic62 

C–H bonds, the formation of lactams63 as well as natural products.64 

 

Unlike donor/acceptor diazocarbonyl compounds, the acceptor diazocarbonyls have been shown to 

be less effective for asymmetric intermolecular C–H insertion reactions. The higher reactivity of 

the intermediate carbenoid often leads to indiscriminate reactions leading to multiple products 

including carbenoid dimerisation.22,65 For these more reactive species the benefits of intramolecular 

reactions, i.e. entropic factors leading to the formation of 5-membered rings, seems to be essential 

for good enantioselectivity to be obtained.66 
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The third class of diazo compound contains two acceptor groups. These species are the most stable 

to diazo decomposition due to the stabilising effect of the acceptor groups. As such, more active 

catalysts, i.e. rhodium(II) carboxylates, are required to form the reactive carbenoid.33,67 Once 

formed, this class of carbenoid is by far the most reactive with the acceptor groups now 

destabilising the electrophilic carbenoid. This extreme reactivity often leads to less controlled 

reactions with reduced chemo-, regio- and stereoselectivity, perhaps accounting for the relatively 

underexplored asymmetric reactions of these species. Common side-reactions of acceptor/acceptor 

carbenoids are carbene dimerisation and extraneous water O–H insertion. This can be reduced by 

slow addition of the diazo species to a dilute rhodium(II) solution and with vigorous drying, 

respectively.64 
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The intermolecular reactions of acceptor/acceptor diazo carbenoids are in many ways analogous to 

those of acceptor diazocarbenoids; the absence of intramolecular driving forces leads to unselective 

reactions and lack of stereocontrol. This was demonstrated by Davies when comparing the reaction 

of donor/acceptor-diazo compound 81 with acceptor/acceptor-diazo compound 82. Using the 

Rh2(S-DOSP)4 catalyst for the reaction with cyclohexane generated C–H insertion products 83 and 

84 in 81% yield, 83% ee and 51% yield, 3% ee, respectively (Scheme 21).55 

 

 
Scheme 21: Davies’ asymmetric intermolecular C–H insertion reactions of aryldiazoacetates and 

diazoacetoacetates. 

 

As with acceptor-substituted carbenoids, the acceptor/acceptor compounds have also found their 

niche in the field of intramolecular C–H insertions. There are many examples of racemic C–H 

insertions catalysed by rhodium(II) carboxylates for the formation of cyclopentanones,52 γ-lactams 

and γ-lactones.37,68 In line with the general trend observed by Taber there is overwhelming 

preference for the formation of 5-membered rings. 

 

The first example of an asymmetric intramolecular C–H insertion of an acceptor/acceptor 

diazocarbonyl was reported by McKervey in 1990.69 Treatment of α-diazo-β-ketosulfone 85 with 

Rh2(S-BSP)4, previously developed within the group, delivered cyclopentanone 86 as a mixture of 

diastereomers. In order to determine ee more easily the acidic centre was epimerised, generating 

cyclopentanone 87 in good yield but with just 12% ee (Scheme 22). 
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Scheme 22: McKervey’s pioneering studies into asymmetric intramolecular C–H insertion 

reactions of acceptor/acceptor diazo compounds. 

 

α-Diazo-β-ketoesters have been much more extensively studied, with Ikegami and co-workers 

providing some of the first insights.70 Their studies focussed instead on an N-phthaloyl protected 

amino acid carboxylate catalyst, Rh2(S-PTPA)4 for the C–H insertions of diazo compounds 88 to 

cyclopentanones 89, as shown in Scheme 23.  Low ee was initially observed for methyl esters yet, 

by switching to a more bulky ester group, the ee was found to increase substantially. Other notable 

observations include the low temperature (0 °C) at which these reactions were performed as well as 

enhanced yields for insertion into benzylic sites compared to alkyl or allylic C–H bonds. The ee 

were determined following hydrolysis and decarboxylation to cyclopentanones 90. 

 

 
Scheme 23: Ikegami’s asymmetric intramolecular C–H insertion reactions of α-diazo-β-

ketoesters.53a 
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The asymmetric intramolecular C–H insertion of α-diazoacetoacetamides has also been extensively 

studied. The nitrogen atom provides a suitable handle for protecting group manipulation, which has 

enabled divergent reaction pathways to be selectively accessed. For example, substitution of the 

nitrogen atom with tBu, as in amide 91, allows for the selective formation of β-lactams 92, even 

when γ-lactams are possible, in excellent yields and good ee, as shown in Scheme 24.71 In contrast, 

when N-phenyl substituents are employed, as in amide 93, divergent pathways can be accessed 

dependent upon the chiral catalyst used and substrate functional groups; Rh2(S-PTPA)4 generated 

indolin-2-ones 94 whereas Rh2(S-PTTL)4 furnished γ-lactams 95 in good yield and ee.72 

 

 
Scheme 24: Hashimoto’s divergent intramolecular C–H insertion reactions of α-

diazoacetoacetamides affording β-, γ-lactams and indolin-2-ones.53a 
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1.2.4.4.  α-Diazophosphonocarbonyls 

 

Prior to this work, the rhodium(II)-catalysed intramolecular C–H insertion reactions of α-

diazophosphonocarbonyls was a relatively underexplored area. Of those examples published in the 

literature, there are 3 main groupings; α-diazophosphonoketones, α-diazophosphonoacetamides 

and α-diazophosphonoacetates. 

 

The earliest example of this class of C–H insertion was reported by Sturtz in 1987 for the synthesis 

of cyclopentanones from α-diazophosphonoketones, with Wolff rearrangements the major side-

reaction.73 Mikołajczyk again reported the use of α-diazophosphonoketones in 1989 as part of the 

total synthesis of (±)-sarkomycin,74 as well as in 1998 for the total synthesis of (±)-rosaprostol 

(Scheme 25).75 

 

 
Scheme 25: Mikołajczy’s intramolecular C–H insertion reaction of an α-diazophosphonoketone 

towards the synthesis of (±)-rosaprostol. 

 

The use of α-diazophosphonoacetamides for the synthesis of lactams has primarily been 

investigated by Afonso and co-workers. Their first report came in 2003 in which β- and γ-lactams 

could be selectively formed by variation of substituents to exploit electronic effects and steric 

effects.76 They reasoned that the phosphonate group was sufficiently bulky as to favour the 

formation of 5-membered rings with a trans-configuration (Scheme 26). This work was extended 

by use of chiral rhodium(II) carboxylates, including Rh2(S-DOSP)4, Rh2(S-TBSP)4 and Rh2(S-

PTPA)4, generating the products in good yields, but with poor ee.77 The group performed additional 

studies78 culminating in the use of water as an alternative to chlorinated solvents.79 Remarkably, the 

product of water O–H insertion was only observed in the absence of Rh2(OAc)4. A series of novel 

unprotected amino acid-derived rhodium(II) catalysts was also developed, displaying improved ee 

with water as the solvent.80 
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Scheme 26: Afonso’s model for trans-selectivity in β- and γ- lactam products of the intramolecular 

C–H insertion reactions of α-diazophosphonoacetamides. 

 

The only reported example of an intramolecular C–H insertion of α-diazophosphonoacetates 104 

also came from Afonso and co-workers.76 They observed a mixture of β- and γ-lactone products 

105–110 in moderate yields (Scheme 27). 

 

 
Scheme 27: Afonso’s intramolecular C–H insertion reactions of α-diazo 

(diethoxyphosphoryl)acetates. 
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1.3  Project Background and Aims 
 

A variety of synthetic approaches towards α-methylene-γ-butyrolactones have been described, 

including both lactonisation and methylenation based routes. Two approaches previously 

developed within the Taylor group, as discussed earlier, detailed a telescoped Michael 

addition/olefination sequence. Excellent selectivity and yields could be obtained, yet synthesis of 

the γ-hydroxy unsaturated carbonyl compound starting materials was not trivial. 

 

Whilst all of these routes have their merits, it was hoped that a more facile route to the α-

methylene-γ-butyrolactone framework could be developed. It was envisaged that by use of a C–H 

insertion reaction, the lactone ring may be formed by reaction with a C–H bond normally 

considered completely unreactive; hence, the α-methylene-γ-butyrolactone target molecules could 

be rapidly generated from relatively simple starting materials. As such, it was contemplated that the 

lactone ring may be formed via an intramolecular rhodium(II)-catalysed C–H insertion of α-

diazophosphonoacetates 111. As has been observed for many existing literature examples, the 

formation of 5-membered rings was expected to predominate for the intramolecular process, with 

γ-lactone 112 the desired product. Taking advantage of related Taylor group precedent, a 

subsequent Horner–Wadsworth–Emmons olefination should deliver the α-methylene-γ-

butyrolactone framework 113 (Scheme 28). 

 

 
Scheme 28: Proposed intramolecular Rh(II)-catalysed C–H insertion and HWE olefination of α-

diazophosphonoacetates towards α-methylene-γ-butyrolactones. 

 

In line with previous Taylor group methodologies it was hoped that following individual 

optimisation, these two steps could be combined as part of a more efficient telescoped procedure, 

avoiding the need for isolation and purification of the α-phosphonolactone intermediate. To the 

best of our knowledge, such a tandem sequence is without precedent. The requisite α-

diazophosphonoacetate functional group ought to be readily accessible in just 2 steps by an 

acylation and diazotisation from alcohols 114 (Scheme 29), thus increasing the generality of the 

procedure. 
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Scheme 29: Proposed 2-step synthesis of α-diazophosphonoacetates from alcohols. 

 

Following the establishment of a reliable procedure, it was planned to demonstrate the efficacy of 

the procedure through the synthesis of natural products and other biologically active compounds. 
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Chapter 2 –  Rhodium(II)-catalysed C–H insertion/olefination 

methodology 
2.1  Preparation of diazo precursors 

 

The studies began with the preparation of the α-diazo(diethoxyphosphoryl)acetates from alcohols 

using a two-step esterification and Regitz diazo transfer sequence. The coupling of alcohols with 

acids is a well-established process with an extensive list of conditions including, amongst others, 

Mitsunobu coupling (DEAD, PPh3), Steglich (DCC, DMAP) and Fischer (acid catalysis) reactions. 

The Taylor group has previously taken advantage of a less well-known cyclic coupling agent 

known as propylphosphonic anhydride (T3P), and it was decided to exploit this method in this 

work (Scheme 30).83  

 

 
Scheme 30: T3P-mediated esterification. 

 

T3P has many advantages over other commonly used coupling agents including, being non-toxic, 

non-sensitising and easy to handle. In addition the by-product of the reaction, a water-soluble 

phosphate, can be readily removed by a simple aqueous workup, meaning column chromatography 

is usually not required. Thus, the reaction of a series of alcohols with the commercially-available 

diethylphosphonoacetic acid (DEPAA) 31 using T3P and DIPEA generated α-

(diethoxyphosphoryl)acetates 116a–161a in >95% yield in most cases. Substrates with greater 

steric hindrance, such as tertiary alcohols (cf. phosphonate 128a), were met with greater difficulty. 

The mechanism of the process is shown in Scheme 31, and the range of products formed in Figure 

10. 
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Figure 10: Range of products synthesised via T3P-mediated esterification. 
† Yield given as part of a multistep process. 
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Scheme 31: Mechanism of T3P-mediated coupling of DEPAA 31 and alcohol 114. 

 

There are many possible routes to form diazo carbonyl compounds, including dehydrogenation of 

hydrazones and diazotisation of amines.84 However, the most popular choice, particularly for 

doubly activated methylene compounds such as α-(diethoxyphosphoryl)acetates 115, is using the 

Regitz diazo transfer using azides.33,85 The mechanism of the process is shown in Scheme 32.86 

 

  
Scheme 32: Mechanism of the base-mediated diazo transfer from arylsulfonyl azide. 

 

The most commonly employed azides for the diazo transfer are electron deficient sulfonyl azides, 

many of which are commercially-available (Figure 11). 
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Figure 11: Sulfonyl azides available form commercial sources.* 

 

Historically, tosyl azide 163 was the most popular option for Regitz diazo transfer reactions, 

however more recently alternatives have been shown to possess lower thermal and shock 

sensitivity making them more attractive from a safety viewpoint.87 In addition to a lower propensity 

towards explosion, these newer derivatives also produce sulfonamide side-products that can be 

more readily separated form the desired diazo compound, particularly if the diazo compound is 

crystalline. Both mesyl and tosyl azide 162 and 163 have high shock sensitivities whereas azide 

164 is more stable but relatively expensive. p-Acetamidobenzenesulfonyl azide (p-ABSA) 165 

shows no shock sensitivity, is low cost and offers greater ease of removal, often by trituration.88 p-

Dodecylsufonyl azide (DBSA) 166 has also been shown to possess favourable properties; the liquid 

sulfonamide product offers ease of removal as well as providing a non-polar handle for column 

chromatography separation. This is particularly useful for very polar diazo compounds in which 

co-elution with the sulfonamide side-product becomes a problem. p-ABSA 165 was selected as the 

azide for the diazotisation of the α-(diethoxyphosphoryl)acetates, except in cases where undesired 

co-elution occured, in which DBSA 166 was employed. 

 

Following the T3P-mediated esterification, the α-(diethoxyphosphoryl)acetates 116a–161a were 

treated under basic conditions in the presence of an azide 165 or 166, undergoing a diazo transfer 

reaction affording α-diazo(diethoxyphosphoryl)acetates 116b–161b. The range of products formed 

using this method are shown in Figure 12. 

                                                
* Each of the azides shown are available from commercial sources, e.g. Sigma Aldrich, with the 

exception of mesyl azide 162 which is not available due to safety reasons. 

iPr
S N3

Me

O O

163

S N3

iPr

O O

164

iPr

S N3

AcHN

O O

p-ABSA, 165

Me S N3

O O

162

S N3

C12H25

O O

DBSA, 166



 34 

 
Figure 12: Range of products synthesised via Regitz diazo transfer reaction. 
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α-Diazo(diethoxyphosphoryl)acetates are typically obtained as transparent yellow oils and are 

stable for a period of several months when stored at room temperature under an atmosphere of air. 

Diazo compounds 111 are UV active and less polar than their parent phosphonates 115, which are 

not UV active in the absence of other chromophores; as such, they are readily identifiable by TLC 

analysis. Purification by column chromatography is facile except when there is co-elution with by-

products of the sulfonyl azide diazotisation reagent. No issues associated with instability or 

decomposition of the azide reagents or diazo products were observed, with no special handling 

precautions required. The typical spectroscopic data for α-(diethoxyphosphoryl)acetates 115 and 

α-diazo(diethoxyphosphoryl)acetates 111 are shown in Figure 13. 

 

 

Figure 13: Typical spectroscopic data for α-(diethoxyphosphoryl)acetates 115 and α-

diazo(diethoxyphosphoryl)acetates 111. 
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2.1.1.  Studies towards an alternative homologated coupling agent 

 

The above route towards α-diazo(diethoxyphosphoryl)acetates 111 involves an esterification 

followed by a diazotisation. It was considered whether this could be reduced to a single step, 

improving overall efficiency, if pre-diazotised acid 167 could be prepared and used in the coupling 

reaction (Scheme 33).  

 

 

Scheme 33: Proposed one-step synthesis of α-diazo(diethoxyphosphoryl)acetates. 

 

The synthesis of acid 167 was envisaged via a protection/diazotisation/deprotection sequence 

(Scheme 34).  

 

 
Scheme 34: Proposed preparation of homologated acid 167. 

 

Firstly benzyl protection of DEPAA 31 furnished ester 168 in excellent yield but the subsequent 

diazotisation to generate diazoester 169 was low yielding. Unfortunately, the diazotised acid 167 

was not generated upon hydrogenation of diazoester 169. A series of side-products resulting from 

decarboxylation and/or loss of nitrogen were the only observed compounds (Figure 14). 
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Figure 14: Attempted hydrogenation of diazoester 169. 

 

An alternative route was proposed in which benzotriazole-activated acid 172 would be diazotised. 

This product could then be treated with alcohols to directly afford α-

diazo(diethoxyphosphoryl)acetates 111. Whilst amide 172 was obtained in good yield, the 

diazotisation to provide diazo compound 173 was unsuccessful, leading to the decomposition of 

ester 172 (Scheme 35).  

 

 
Scheme 35: Second proposed route, towards α-diazo(diethoxyphosphoryl)acetates 111. 

 

With the two-step procedure already providing good to excellent yields of the α-diazo 

(diethoxyphosphoryl)acetates no further investigations were conducted on this route. 
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2.2  Initial Studies on the insertion process 

2.2.1.  Rhodium(II)-catalysed C–H insertion 
 

The first objective of the C–H insertion/olefination methodology was to optimise the two steps 

separately prior to developing a telescoped sequence.† A substrate with general structure 111, 

shown in Figure 15, possesses two sites capable of undergoing C–H insertion, one affording the 

desired γ-lactone and the other the β-lactone regioisomer. It was hoped that the γ-lactone would 

predominate, in line with previous Rh(II)-catalysed C–H insertion observations. 

 

 
Figure 15: Possible C–H insertion products from Rh(II)-catalysed diazo decomposition. 

 

The investigation into the C–H insertion began by treating p-methoxyphenyl derivative 117b with a 

series of rhodium(II) catalysts. The substrate was selected on the basis that the electron-rich aryl 

unit would both increase the nucleophilicity of the C–H bond and stabilise the build up of +ve 

charge during the C–H insertion. As discussed earlier, rhodium(II) carboxylates are the catalysts of 

choice for acceptor/acceptor-substituted diazo compounds due to the greater reactivity towards 

diazo decomposition.  

 

Initially, diazo substrate 117b was treated with 5 mol% of Rh2(esp)2 in CH2Cl2 at 45 °C for 1 hour 

(Scheme 36). All of the starting material was consumed and analysis of the 1H NMR spectra of the 

unpurified reaction mixture revealed two compounds, each possessing diagnostic signals; 3.10 (dd, 

J = 23.8, J = 6.2) ppm and 3.38 (dd, J = 24.0, J = 8.7) ppm. The signals are consistent with a 

proton α to the phosphorus (which produces the large coupling constant observed), however this 

signal could be expected in both the γ- and β-lactone products. After purification by silica column 

chromatography a single product was isolated in 64% yield, with just one of these diagnostic 

                                                
† A telescoped process is one in which multiple reactions are performed without purification — in a 

single reaction vessel (one-pot), if required — with sequential addition of reagents.  

A tandem process is one in which all of the required reagents are added at the beginning of a multi-

reaction transformation. 
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signals, the dd at δ = 3.10 ppm, remaining. Analysis of its spectral data confirmed that the product 

was the desired γ-lactone. It is believed that the isolated compound is the trans-diastereomer based 

on thermodynamic considerations and that the other product observed in the crude 1H NMR 

spectrum was the cis-isomer, which epimerised during chromatography. 

 

  
Scheme 36: Rhodium(II)-catalysed intramolecular C–H insertion of α-diazo 

(diethoxyphosphoryl)acetate 117b, showing key characteristic data for product 117c. 

 

In order to confirm the proposed trans-assignment, the 1H-1H coupling constants were analysed by 

comparisons with similar compounds. Literature data for the coupling constant (3JH2-H3, Figure 16) 

demonstrated that values between 8–11 Hz indicates a trans-relationship and 4–6 Hz a cis-

relationship.89 The value observed for 3JH2-H3 in 117c is 6.2 Hz. The proximity of this value to the 

cis- and trans-boundaries meant that a definitive assignment could not be made.  

 

Confirmation of the trans-assignment was therefore sought using X-ray single crystal analysis, 

however lactone 117c was isolated as an oil. As such unsubstituted phenyl analogue 116c, which is 

a crystalline solid, was synthesised under similar conditions. A single crystal X-ray structure was 

obtained (Figure 16) and, as expected, was that of the trans-diastereomer. The similarity of the 3JH2-

H3 coupling constants of 117c (6.2 Hz) and 116c (5.9 Hz) was the basis for the trans-assignment of 

117c. 

                             
Figure 16: Single crystal X-ray structure of 116c (CCDC: 980606). Thermal ellipsoids set to 50% 

probability, shown in Olex2. 
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Attention then turned to screening other Rh(II) carboxylate catalysts to test the C–H insertion 

(Figure 17). 

 

 
Figure 17: Commercially available rhodium(II) carboxylate catalysts. 

 

Each catalyst was initially run with a loading of 5 mol% in CH2Cl2 at 45 °C for 24 h, with the 

reaction run in a round-bottom flask fitted with a reflux condenser (Table 3, Entries 1–4). The two 

least bulky catalysts, Rh2(OAc)4 and Rh2(oct)4, led to the highest yields. A reduction in catalyst 

loading did not change the outcome to any significant degree (Entry 5). More significantly, a 10-

fold decrease in concentration led to just 30% of the γ-lactone being isolated (Entry 6). The major 

product 117d, isolated in 51% yield, is the result of the carbenoid insertion into the O–H bond of 

water (Figure 18). This presumably occurred due to a greater quantity of expeditious water in the 

additional CH2Cl2 solvent and emphasised that the reaction must be kept under strictly anhydrous 

conditions. As such, the set-up changed from a large round-bottom flask to a smaller oven-dried 

sealable tube flushed with argon. 

 

The original reactions were then repeated under the new conditions. No improvement was observed 

with Rh2(OAc)4 (Entries 7–8), but with Rh2(oct)4 there was a significant increase in isolated yield 

of lactone 117c (Entries 9–11), especially so with a reduced catalyst loading of 2 mol%. This set of 

conditions (Entry 11) was chosen as optimal for investigations into reaction scope of the telescoped 

sequence, discussed later. 
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Table 3: Screening of rhodium(II) carboxylate catalysts for C–H insertion reactions of α-

diazo(diethoxyphosphoryl)acetate 117b. 

 
Entry Rh(II) catalyst Loading 

(mol%) 

Concn 

(mL/mmol) 

Conditionsa Time 

(h) 

Yield of 

117c (%) 

1 Rh2(oct)4 5 20 A 24 66 

2 Rh2(OAc)4 5 20 A 24 74 

3 Rh2(tpa)4 5 20 A 24 59 

4 Rh2(esp)2 5 20 A 24 57 

5 Rh2(oct)4 2 20 A 24 70 

6 Rh2(oct)4 2 200 A 24 30b 

7 Rh2(OAc)4 5 20 B 23 77 

8 Rh2(OAc)4 2 20 B 23 71 

9 Rh2(oct)4 5 20 B 6.5 80 

10 Rh2(oct)4 10 20 B 4 87 

11 Rh2(oct)4 2 20 B 23 89 

 
a General Conditions: 117b (0.200 mmol), CH2Cl2, 45 °C, time (h); Conditions A = 25 mL round-

bottom flask, reflux condenser; Conditions B = 10 mL oven-dried sealable tube, argon atmosphere; 
b 117d, 51% isolated. 

 

 
Figure 18: Alcohol product 117d arising from water O–H bond insertion, showing key 

characteristic data. 
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Key characterisation data for 117d
1H NMR: δOH = 3.25 (broad singlet) ppm, 
                 δCHP = 4.52 (d, J = 15.7) ppm
13C NMR: δCOH = 68.8 (d, J = 154.8) ppm
νO–H = 3272 cm-1

HRMS: 369.1064, C15H23NaO7P [M+Na]+
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2.2.2.  Horner–Wadsworth–Emmons Olefination 
 

With an optimal set of conditions for the C–H insertion in hand attention turned to the Horner–

Wadsworth–Emmons (HWE) reaction. Previous work within the Taylor group on TIMO 

methodology also utilised the HWE reaction.17-18 As such, similar conditions were employed, using 

KOBu-t as base and paraformaldehyde as the trapping agent (Table 4). α-Phosphonolactone 117c 

was selected to test the HWE reaction, affording α-methylene-γ-butyrolactone 117e, with the key 

characterisation data shown in Figure 19. 

 

 
Figure 19: α-Methylene-γ-butyrolactone product 117e showing key characteristic data. 

 

Table 4: Optimisation of HWE olefination for α-phosphonolactone 117c. 

 
Entry Solvent KOBu-t (Equiv.)  (CH2O)n (Equiv.) Yield of 117e (%) 

1 CH2Cl2 0.9 10 56 

2 THF 0.9 10 56 

3 CH2Cl2 1.0 5 68 

4 CH2Cl2 1.0 2 75 

5 CH2Cl2 1.2 5 82 

General Conditions: i) 117c (~0.200 mmol), CH2Cl2, KOBu-t, 0 °C, 30 mins; ii) (CH2O)n, −78–0 

°C, 2 h; 

 

Variation of the solvent from CH2Cl2 to THF had no impact on the isolated yield of lactone 117e 

(Entries 1–2). Previous studies within the Taylor group found that a sub-stoichiometric quantity of 

base was optimal due to the high base-sensitivity of the α-methylene-γ-butyrolactone products,17a 
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Key characterisation data for 117e
1H NMR: δHb = 5.46 (d, J = 2.7) ppm,
                 δHa = 6.36 (d, J = 3.0) ppm
13C NMR: δC=O = 170.2 ppm
νC=O = 1740 cm-1, νC=C = 1587 cm-1

HRMS: 227.0688, C12H12NaO3 [M+Na]+
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but it was found that during the reaction of α-phosphonolactone 117c there was no product 

degradation in the presence of excess base. In fact a small excess of base and a reduction in the 

equivalents of paraformaldehyde gave rise to higher reaction yields (Entries 3–5). 

 

2.2.3.  Telescoped C–H insertion/olefination process 
 

It was envisioned that the two steps discussed above could be combined into a telescoped one-pot 

process, given that the only side-product of the C–H insertion reaction is nitrogen gas. In doing so 

the efficiency of the procedure may be improved with a reduction in the number of purification 

steps and amount of solvent used. 

 

Having demonstrated the tolerance of the HWE olefination to CH2Cl2 and THF, each was trialled 

for the combined one-pot C–H insertion olefination sequence (Scheme 37). The process was 

implemented by taking the unpurified C–H insertion reaction mixture and performing the HWE 

olefination. Using CH2Cl2 throughout gratifyingly gave the α-methylene lactone 117e in 65% 

yield. Yet, when the solvent was switched to THF after the C–H insertion (by evaporation of the 

CH2Cl2), the reaction was cleaner and gave an improved yield of 71% of lactone 117e. 

 

 
Scheme 37: One-pot C–H insertion/olefination sequence. 

 

Given the ease with which the solvent can be switched (simply concentrate in vacuo then 

redissolve in THF) these conditions were taken forward for examination of the reaction scope. 

i) Rh2(oct)4 (2 mol%), CH2Cl2 
ii) KOtBu (1.5 eq.), CH2Cl2
iii) (CH2O)n (2 eq.)
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2.3  One-pot C–H insertion/olefination sequence; scope & limitations 

2.3.1.  Benzylic systems 
 

With an optimised set of conditions in hand the telescoped one-pot procedure was applied to a 

series of α-diazo(diethoxyphosphoryl)acetates to investigate steric, electronic and selectivity 

effects. The first series of substrates tested contained benzylic C–H insertion sites, which benefit 

from stabilisation of positive charge build up during the transition state. It was reasoned that more 

electron-rich aromatic rings would favour the C–H insertion more so than electron-deficient 

systems due to greater charge stabilisation. As such, the effect of electronic changes on the C–H 

insertions were investigated by manipulation of substituents on the aromatic ring (Figure 21).  

 

Most examples were tested using the optimised conditions but some substrates performed better 

using modified conditions involving changes in the quantity of base or temperature of the HWE 

olefination reaction. As expected, each of the reactions furnished solely the γ-lactone products, 

with none of the β-lactone regioisomers observed. All products were fully characterised, with 

diagnostic data shown in Figure 20. The α-methylene protons H-5a and 5b are very distinguishable 

and observed as sharp doublets with a small coupling constant. The 2JHH geminal coupling and 

corresponding COSY correlations are, in general, not observed. The coupling constant arises from 
4JHH with the proton H-3. The significantly downfield shift of H-5a is due to the deshielding effect 

of the proximal carbonyl. The 13C NMR shift and IR stretch of the carbonyl group are observed at 

values as would be typically expected. 

 

 
Figure 20: Diagnostic data for a general α-methylene-γ-butyrolactone. 
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Figure 21: One-pot C–H insertion/olefination sequence for substrates with α-aryl C–H insertion 

sites, with isolated yields shown. Conditionsa given in parentheses. 
a Conditions A: (i) Rh2(oct)4 (2 mol %), CH2Cl2 (0.05 M), 45 °C, 20 h; (ii) Remove CH2Cl2 in 

vacuo, add THF, (iii) KOBu-t (1.2 or 1.5 equiv.), 0 to −78 °C; (iv) (CH2O)n (2 equiv.), −78 to RT. 

Conditions B: (i) Rh2(oct)4 (2 mol %), CH2Cl2 (0.05 M), 45 °C, 20 h; (ii) KOBu-t (1.2 or 1.5 

equiv.), 0 to −78 °C; (iv) (CH2O)n (2 equiv.), −78 to 0 °C. 

Conditions C: (i) Rh2(oct)4 (5 mol %), CH2Cl2 (0.05 M), 45 °C, 20 h; (ii) KOBu-t (0.9 equiv.), 0 to 

−78 °C; (iv) (CH2O)n (10 equiv.), −78 to 0 °C. 
b Rh2(esp)2 used in place of Rh2(oct)4. c No HWE performed. d Starting material recovered. 
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Unsubstituted phenyl substrate 116b afforded the desired lactone 116d in good yield. Interestingly 

the more electron-rich systems 117e, 118c and 119c were not obtained in greater yields as first 

expected. In fact, the reverse trend was observed in that the more electron-rich the system was, the 

lower the isolated yield became. It is possible that the increasing number of heteroatoms present in 

the substrates has a detrimental effect during the rhodium(II)-catalysed C–H insertion, possibly by 

competing side-reactions. Naphthyl derivative 120c was also obtained in good yield. 

 

Electron-poor derivatives were then examined. As anticipated, the most electron-deficient p-CF3- 

and p-NO2-substrates 121b and 122b afforded the lactones 121c and 122c respectively, in low 

yields. Competing side-reactions may account for the reduced yield of desired product. The less 

electron-deficient p-Br-substrate 123b afforded lactone 123c in good yield, making the 

methodology more attractive for further derivatisation, e.g. for use in cross-coupling reactions. 

 

Dimethylaniline 124b was the only para-substituted system tested to afford none of the desired 

product. In this case, the C–H insertion did not proceed, with all starting material recovered. This 

was to be expected based on reports that Lewis basic compounds are able to deactivate rhodium(II) 

catalysts by coordination to one of the vacant sites.28,29b 

 

Heteroaromatic substrates were then examined. Thiophene 125b did afford the desired lactone 

125c, albeit in low yield. Indole derivative 126b did undergo the C–H insertion based on TLC and 
1H NMR analysis of the reaction mixture, however the HWE reaction was unsuccessful with 

decomposition observed. As with the dimethylaniline substrate 124b, pyridine 127b did not 

undergo the C–H insertion, again with complete recovery of starting material. Interestingly an 

immediate colour change from the characteristic green to deep red was observed upon addition of 

127b to a solution of the Rh(II) catalyst (Figure 22). 

 

 
Figure 22: Colour change of rhodium(II) catalyst from green to red on addition of 127b. 

127b

127b
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The initial studies above demonstrated that α-diazo(diethoxyphosphoryl)acetates with benzylic C–

H insertion sites do readily undergo C–H insertions. As expected electron-rich aromatic systems 

are, in general, favoured for the stabilisation of +ve charge. However, there are notable examples in 

which the presence of coordinating heteroatoms reduce the isolated yield of the lactone product or 

suppress the C–H insertion reaction. 

 

Focus then turned to examining more substituted systems with competing C–H insertion sites 

(Table 5). Dimethylphenyl substrate 128b possesses two C–H insertions sites, one benzylic and one 

primary. As with related literature precedent it was expected that the benzylic site would be 

favoured over the primary site based on electronic considerations. Unfortunately, both of the 

possible products were isolated with the benzylic insertion product 128c slightly favoured over the 

compound 128d (Entry 1). This result did, however, represent the highest yielding example thus 

far. Diazo compound 129b, which possesses a tertiary benzylic site, also worked well under the 

conditions to generate lactone 129c, possessing a quaternary centre (Entry 2). 

 

Diphenyl substrate 131b gave the desired product 131c in excellent yield and pleasingly as a single 

diastereomer (Entry 3). It was hoped that by differentiating two benzylic sites one might be 

preferred over the other. As such, a competition experiment was designed by variation of the 

substituents on the phenyl rings, making one site more electron-rich, and therefore more biased 

towards C–H insertion than the other. Hence, p-methoxyphenyl analogue 132c was synthesised. It 

was anticipated that the C–H insertion would take place preferentially at the more electron-rich 

benzylic site, α- to the PMP. Under the one-pot conditions it was found that this was indeed the 

case with the product 132c being formed in preference to the regioisomer 132d (Entry 4), but 

unlike the unsubstituted dibenzyl product 131c there was a loss of diastereoselectivity (1.6:1). In 

line with previously examined electron-rich substrates there was a small drop in isolated yield. The 

assignment of the regioselectivity was based on HMBC correlations (Figure 23). The observed 

correlations could only be present in regioisomer 132c and not in isomer 132d. 
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Table 5: One-pot C–H insertion/olefination sequence for substrates with α-aryl C–H insertion 

sites.a  

Entry Diazo Compound Product(s) Isolated Yield, % 

1 

 
128b 

       
128c                    128d 

89 (A) 
 

1.45:1 
(128c:128d) 

2 

 
129b 

 
129c 

59 (A) 

3 

 
131b 

 
131c 

84 (B) 

4 

 
132b 

 
132c 

65 (B) 

 
dr 1.6:1 

 

a Conditions A: (i) Rh2(oct)4 (2 mol %), CH2Cl2 (0.05 M), 45 °C, 20 h; (ii) Remove CH2Cl2 in 

vacuo, add THF, (iii) KOBu-t (1.2 or 1.5 equiv.), 0 to −78 °C; (iv) (CH2O)n (2 equiv.), −78 to RT. 

Conditions B: (i) Rh2(oct)4 (2 mol %), CH2Cl2 (0.05 M), 45 °C, 20 h; (ii) KOBu-t (1.2 equiv.), 0 to 

−78 °C; (iv) (CH2O)n (2 equiv.), −78 to 0 °C. 

 

 
Figure 23: Observed HMBC correlations of lactone 132c. 

O

O
P OEt
O

OEt

Ph

N2
Me

Me

O

O

PhMeMe

O

O

Me
Ph

O

O
P OEt
O

OEt

Ph

N2Me

O

O
Ph

Me

O

O
P OEt
O

OEt

Ph

N2

Ph Ph

O

O

Ph

O

O
P OEt
O

OEt

PMP

N2

Ph Ph

O

O

PMP

O

O

OMe

7
3

611
12

13

O

O

MeO

Observed HMBC
 correlations

H-7 to C-3

H-13 to C-11

H-11 to C-12
132c
65%

dr 1.6:1 132d
not observed



 

 49 

2.3.2.  Non-benzylic systems 
 

As discussed earlier, previous literature precedent shows that C–H insertion can occur with 

aliphatic C–H bonds even if not stabilised by aryl groups.49 As such, n-heptanol derived diazo 

compound 134b was subject to the one-pot conditions (Figure 24) yielding the desired γ-lactone 

134c in good yield with no observed regioisomeric side-products, further expanding the scope of 

the reaction. 

 

The effect of steric hindrance close to the C–H insertion site was examined by installation of i-Pr 

and t-Bu groups in substrates 135b and 136b respectively. As anticipated, when subject to the one-

pot conditions the increasing steric hindrance led to a decrease in isolated yield of the desired 

products 135c and 136c respectively. It is believed the increased steric hindrance leads to undesired 

side-reactions.  

 

Dimethyl substrate 130b, which possesses a tertiary C–H insertion site, reacted cleanly under the 

one-pot conditions, yet the desired lactone product 130c was obtained in a disappointing 23% 

yield, although this may be accounted for by the product’s volatility. 

 

 
Figure 24: One-pot C–H insertion/olefination sequence for substrates with non-benzylic secondary 

C–H insertion sites.a 
a (i) Rh2(oct)4 (2 mol %), CH2Cl2, 45 °C, 20 h; (ii) Remove CH2Cl2 in vacuo, add THF, KOBu-t 

(1.2 or 1.5 equiv.), 0 to −78 °C; (iii) (CH2O)n (2 equiv.), −78 to 0 °C. b Warmed to RT for HWE. 
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It was hoped that installation of a silyl group β- to the C–H insertion site would allow stabilisation 

of the positive charge, via the β-silicon effect, without the associated steric hindrance. Pleasingly 

TMS diazo derivative 137b worked well under the one-pot conditions affording the desired lactone 

137c in very good yield. 

 

The installation of oxygen functionality α- to the C–H insertion site was seen as of particular 

importance given the substructure is present in over 3000 natural products. The TBS protected 

alcohol derivative 138b was prepared from 1,3-propanediol. When subjected to the one-pot 

conditions, two products were isolated; the desired γ-lactone 138c as well as the regioisomeric β-

lactone 138d, both in poor yield (Table 6, Entry 1). The formation of the β-lactone and low isolated 

yields may be accounted for by the steric hindrance of the TBS protecting group. If the C–H 

insertion sites are relatively inaccessible, competing reactions may take place given the high 

reactivity of the rhodium carbenoid. This conjecture is somewhat supported in that moving the 

OTBS functionality one methylene unit further away from the C–H insertion site, as in compound 

139b, both increases isolated yield and sees just a single γ-lactone product 139c observed (Entry 2). 

 

Substrate 140b was prepared as an interesting chemoselectivity test, as it contains two reaction 

sites. Reaction of the carbenoid with the allylic C–H bond would generate a γ-lactone whereas 

reaction with the olefin would generate an oxabicyclo[4.1.0]heptan-2-one, the product of 

cyclopropanation. Typically, 5-membered ring products predominate in intramolecular 

rhodium(II)-catalysed C–H insertions, as such, the γ-lactone was expected to be formed selectively. 

Following reaction of diazo 140b with Rh2(oct)4 (Entry 3), a single product was observed by TLC 

analysis. Completion of the one-pot process revealed two compounds 140c and 140d, each arising 

from C–H insertion, with no evidence of a cyclopropanation product. The major product had the 

structure of desired lactone 140c and interestingly the second was the product of olefin 

isomerisation. This is favourable as it brings the vinyl substituent into conjugation. No other 

products were isolated to account for the low yield. 

 

C–H insertion into primary C–H bonds is known to be disfavoured, but it was considered whether 

it may be still be possible due the high reactivity of the acceptor/acceptor carbenoid. Substrate 

133b, which possesses a primary C–H bond was synthesised, and on treatment under the standard 

Rh(II) conditions decomposition was observed with no starting material, C–H insertion or other 

products observed by 1H NMR analysis. 
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Table 6: One-pot C–H insertion/olefination sequence for substrates with non-benzylic secondary 

C–H insertion sites.a  

 
Entry Diazo Compound Product(s) Isolated Yield, % 

1 

 
138b 

  
138c                138d 

18 (138c) 
16 (138d)b 

2 

 
139b 

 
139c 

49b 

3 

 
140b 

       
140c         140d 

38 (140c) 
9 (140d)b 

4 
 

133b 
 

133c 

0c 

 

a (i) Rh2(oct)4 (2 mol %), CH2Cl2, 45 °C, 20 h; (ii) Remove CH2Cl2 in vacuo, add THF, KOBu-t 

(1.2 or 1.5 equiv.), 0 to −78 °C; (iii) (CH2O)n (2 equiv.), −78 to 0 °C. b Warmed to RT for HWE. c 

No HWE performed. 
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2.3.2.1.  β-Benzyl-substituted systems 

 

α-Methylene/alkylidene-γ-butyrolactones containing β-benzylic groups are prevalent in Nature. 

Many of these compounds possess benzene rings with varying degrees of oxygenation. For 

example, the 3,4-methylenedioxy framework is particularly common in Nature, as found in the 

natural product savinin 174 (Figure 25).  

 

 
Figure 25: α-Methylene-γ-butyrolactone natural product, savinin 174. 

 

Access to this general framework was seen as an important extension of the current methodology, 

and as such a series of α-diazo(diethoxyphosphoryl)acetates were prepared and subjected to the 

one-pot C–H insertion olefination conditions. Firstly, the unsubstituted system 148b was treated 

under the standard conditons (Scheme 38), generating γ-lactone 148c in good yield, with no β or δ-

lactone products observed.  

 

 
Scheme 38: One-pot C–H insertion/olefination sequence for substrate 148b. 

 

Given this successful result, the 3,4-methylenedioxy substrate 149b, the precursor to savinin 174, 

was then tested (Scheme 39). On addition of Rh2(oct)4 to a solution of diazo compound 149b a 

deep orange/brown was observed instead of the usual green colour. 1H NMR and TLC analysis 

indicated the starting material had not been consumed and that diazo decomposition had not 

occurred. None of the desired C–H insertion product 149c was observed. 
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Scheme 39: Attempted C–H insertion reaction of 3,4-methylenedioxy substrate 149b.  

 

This result was puzzling given that both the unsubstituted substrate 148b and methylenedioxy 

substrate 118b, tested earlier, were successful in the one-pot sequence (Figure 26). 

 

 
Figure 26: Comparison of C–H insertion reaction outcomes for α-diazo 

(diethoxyphosphoryl)acetates 148b, 118b and 149b. 

 

Given the dramatic colour change of the solution from green to red/brown, in the case of diazo 

compound 149b, it was considered whether this may be due competing coordination of the oxygen 

lone pairs to the vacant sites on the rhodium catalyst, deactivating it towards diazo decomposition. 

This, however, seemed unlikely based on the earlier result of diazo compound 118b, which also 

possesses the 3,4-methylenedioxy framework. This compound contains one methylene unit less in 

the tether, yet worked well under the standard conditions, remaining green during the rhodium(II) 

addition, thus implying that the presence of oxygen atoms in the substrate is not in itself a 

detrimental factor. 

 

This led to consideration of an alternative explanation: it could be that diazo decomposition is 

occurring to a small extent but, instead of undergoing C–H insertion the lone pairs from the oxygen 

atom are coordinating to the carbenoid centre, shutting down the catalytic cycle and rendering the 
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decomposition product may not be observable using 1H NMR spectroscopy given the low catalyst 

loading. It is thought that the increased flexibility may be conferred by the additional methylene 

unit in the tether potentially enabling coordination of the meta-oxygen lone pairs to the carbenoid 

centre, resulting in a non-productive pathway, as shown in Scheme 40.  

 

 
Scheme 40: Proposed unproductive pathway following the formation of carbenoid 149d. 

 

In an effort to further explore this possibility it was hoped that by removing the meta-oxygen this 

coordination would no longer be possible. As such, 4-methoxy derivative 150b was synthesised 

and as anticipated successfully generated lactone 150c, albeit in moderate yield (Scheme 41). 

 

 
Scheme 41: One-pot C–H insertion/olefination sequence for diazo compound 150b. 
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As controls, the 3-methoxy and 3,4-dimethoxy derivatives 151b and 152b were also synthesised 

and subjected to the one-pot C–H insertion olefination conditions (Scheme 42). Remarkably, each 

substrate was also successful, again in moderate but unoptimised yield. 

 

 
Scheme 42: One-pot C–H insertion/olefination sequence for diazo compounds 151b and 152b. 

 

This again required the anomalous result of 3,4-methylenedioxy substrate 149b to be reconsidered. 

It seems that the conformational flexibility provided by the length of the tether is an important 

factor, but this alone does not fully account for the observed result. It is possible that the methylene 

unit joining the oxygen atoms in substrate 149b, changes the alignment of the oxygen lone pair, 

thus restricting conjugation into the aromatic ring, thereby making the lone pairs more available for 

coordination to the carbenoid centre. 

 

The above substrates have been shown to work successfully in general, although the isolated yields 

are low. This complements the earlier results, which also showed reduced yields for oxygenated 

benzene rings. The reason for this is not known but likely stems from the oxygen lone pairs, 

leading to competing side-reactions and the formation of by-products. 
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2.3.2.2.  Spirocyclic fused rings 

 

Focus then turned to disubstituted non-benzylic systems possessing tertiary C–H bonds, which 

generate spirocyclic α-methylene-γ-butyrolactones (Figure 27). α-

Diazo(diethoxyphosphoryl)acetates 141b, 142b, 143b and 144b were prepared and subjected to the 

standard one-pot C–H insertion/olefination conditions. Pleasingly, the spiro-butyl, -pentyl and -

hexyl products 142c, 143c and 144c were obtained in good yields, but unfortunately the 

spiropropyl product 141c was not formed, with decomposition observed. 

 

 
Figure 27: One-pot C–H insertion/olefination sequence for α-diazo(diethoxyphosphoryl)-acetates 

affording spirocyclic α-methylene-γ-butyrolactones.a  
a (i) Rh2(oct)4 (2 mol %), CH2Cl2, 45 °C, 20 h; (ii) Remove CH2Cl2 in vacuo, add THF, KOBu-t 

(1.2 or 1.5 equiv.), 0 to −78 °C; (iii) (CH2O)n (2 equiv.), −78 °C to RT. b No HWE performed. 

 

2.3.3.  Buchner cyclisation 

 

The reaction of triphenyl diazo compound 153b with Rh2(oct)4 under the standard conditions did 

not afford any of the desired C–H insertion product 153c, with a trace amount of an unknown side-

product and starting material being recovered (Scheme 43). Switching to toluene and replacing the 

catalyst with the more stable90 Rh2(esp)2 with heating at 100 °C for 4 h saw complete consumption 

of the starting material and formation of the same unknown product in an unoptimised 50% yield. 

Analysis of the 1H NMR data indicated the substrate had undergone a Buchner ring expansion; the 

carbene undergoes cyclopropanation with one of the aromatic rings affording norcaradiene 153d, 

which may be in equilibrium with cycloheptatriene 153e. As with Rh(II)-catalysed C–H insertions, 

the formation of 5-membered rings is favoured, hence the cyclopropanation occurs with one of the 

phenyl groups α to the oxygen. 
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Scheme 43: Rh(II)-catalysed Buchner ring expansion of diazo 153b. 

 

The Buchner ring expansion was first observed by Buchner and Curtius in 1885.91 It is an 

intramolecular cyclopropanation between a carbene and an aromatic π-system. A lot of energy is 

required for the Buchner ring expansion to occur because the aromaticity of the benzene ring is 

broken. There have since been many examples of the Buchner ring expansion using rhodium-

stabilised carbenoids,92 as well as a thorough review.93  

 

After the cyclopropanation, the bicyclo[4.1.0]heptane (norcaradiene) 153d can undergo a 

thermally-allowed reversible electrocyclic ring-opening to the cycloheptatriene 153e. In solution 

the norcaradiene and cycloheptatriene forms typically equilibrate. In the solid state one form may 

predominate, usually determined by substitution patterns and the effect of electronic and steric 

interactions. This topic has been well reviewed93 and a summary is given below.  

 

The cyclopropane possesses an occupied anti-bonding HOMO orbital, located in the C1–C6 bond. 

Substitution at C-7 with π-acceptor groups such as –CN, –CO2R, –P(O)(OR)2 and –CHO, 

withdraws electron density away from the anti-bonding HOMO orbital, shortening the bond, thus 

giving it more bonding character and hence stabilising the norcaradiene form. Cyclopropanes are 

known to be weak π-donors, but were found to favour the norcaradiene form, along with σ-donor 

substituents. Conversely, when C-7 is substituted with σ-acceptor groups, such as –CF3, the 

norcaradiene form is destabilised, favouring the cycloheptatriene form (Figure 28). 
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Figure 28: Electronic effect of substituents on norcaradiene/cycloheptatriene equilibrium. 

 

From this analysis it would be expected that the equilibrium between 153d and 153e would lie 

towards norcaradiene 153d, due to the two π-acceptors. Given that the two possible compounds 

were expected to possess similar 1H NMR spectra and may be equilibrating in solution, a single 

crystal X-ray structure was obtained (Figure 29). 

 

  
Figure 29: Single crystal X-ray structure of cycloheptatriene 153e (CCDC: 1013524).‡ Thermal 

ellipsoids set to 50% probability, shown in Olex2. 

 

Contrary to expectations, the cycloheptatriene 153e was the only compound observed. The 

predominance of the norcaradiene may only apply when in solution, with the more crystalline 

cycloheptatriene being favoured in the solid state. Alternatively, steric effects arising from the 

bulky phenyl and phosphonate functionalities may override the electronic bias towards the 

norcaradiene. 

 

                                                
‡ The crystal exhibited complete disorder of the entire molecule. The molecule was modelled in 

two positions with refined occupancies of 0.8902:0.1098(18). The two forms are related by an 

approximate inversion about a plane defined by the P=O and C=O vectors. Only the major form is 

shown. Full details can be found via The Cambridge Crystallographic Data Centre. 
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Given the single crystal X-ray structure revealed the cycloheptatriene form, the 1H NMR spectrum 

was assigned as such, with the key assignments shown in Figure 30. The presence of five proton 

signals in the δ = 5.30 – 6.40 ppm region adds weight to the argument that the cycloheptatriene is 

predominant as only four signals might be expected in this region for the norcaradiene form. The 

signal at δ = 5.31 ppm was assigned to H-7 with one coupling to the adjacent proton and the other 

to the phosphorus atom. 

 
Figure 30: Key 1H NMR data for cycloheptatriene 153e. 

 

The 13C NMR data were also intriguing. The key signal, at C-7, should provide conclusive 

evidence of which form is favoured; in the norcaradiene it is sp3 hybridised whereas in the 

cycloheptatriene it is sp2 hybridised. Yet no clear resonance could be assigned to C-7 until careful 

analysis of the 1H-13C HSCQ spectrum revealed an extremely weak signal at δ = 119.1 ppm. The 

chemical shift of this resonance seems to clearly indicate the cycloheptatriene form is favoured. 

The low strength of the signal is puzzling given that the carbon is tertiary. However, coupling with 

the nearby phosphorus atom would halve the signal intensity, yet a simple doublet is not observed. 

 

This result represents an interesting example of the Buchner ring expansion, contradicting the 

expected models, which predict the norcaradiene form should predominate over the 

cycloheptatriene. 
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2.3.4.  Variation of the aldehyde: α-Alkylidene-γ-butyrolactones 

 

In addition to α-methylene-γ-butyrolactones the one-pot methodology can be used to synthesise α-

alkylidene/arylidene-γ-butyrolactones. This class of compounds also features prominently in 

Nature, for example, in compounds like heteroplexisolide E94 and savinin95 (Figure 31). 

 

 
Figure 31: α-Alkylidene/arylidene-γ-butyrolactone natural products. 

 

Simply by replacing the paraformaldehyde with aliphatic or aromatic aldehydes it is possible to 

gain access to α-alkylidene/arylidene-γ-butyrolactones in good yields (Figure 32). In all cases a 

mixture of E- and Z-isomers was obtained, with a propensity towards the Z-isomer in most cases. 

HWE reactions tend to provide E isomers. A combination of the tertiary phosphonate and the 

proximity of the β-position substitution likely disfavours the formation of the E-isomer. 

 

The p-OMe diazo substrate 117b was selected in order to test a range of aldehydes using the one-

pot conditions (Figure 32). As expected, electron-deficient aldehydes performed best, with 4-

nitrobenzaldehyde affording the desired product 176 at 0 °C. In each of the other cases the HWE 

reactions were warmed to RT affording products 178–182, while electron-rich piperonal required 

heating to reflux in order to obtain product 177. One aromatic and one aliphatic aldehyde were then 

screened against a range of α-diazo(diethoxyphosphoryl)acetates, 116b, 134b and 143b, generally 

affording the desired products 183–188 in good yield. All products were fully characterised. 
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Figure 32: One-pot C–H insertion/olefination sequence using alkyl and aryl aldehydes.a  
 a (i) Rh2(oct)4 (2 mol %), CH2Cl2, 45 °C, 20 h; (ii) Remove CH2Cl2 in vacuo, add THF, KOBu-t 

(1.5 equiv.), 0 to −78 °C; (iii) RCHO (2 equiv.), −78 °C to RT. Z-isomer shown in products. b HWE 

was performed at 0 °C. c HWE was performed at reflux. 

 

Conditions

O

O

R1
R1

O

O
P

N2

O

OEt
OEt

R2

R2CHO

O

O

177
61%c

1:1

OMe

O

O

180
56%
1:1.2

OMe

O

O

181
39%
1.2:1

OMe

Me

O

O

182
67%
1:3.7

OMe

O

O

183
65%
1:1

O

O

184
58%
1:3.3

NO2

O

O

185
73%
1:1

O

O

186
77%
1:2.7

O

O

178
65%
1:1

OMe

NO2

O

O

187
55%
1.4:1

O

O

188
32%
1:2.4

NO2

E:Z

O

O

179
91%
1:1.5

OMe

F
O

O

176
69%b

1:1.3

OMe

NO2

O
O



 62 

2.4  Asymmetric studies 

 

The ability to synthesise a range of α-methylene-γ-butyrolactones using an efficient one-pot 

process has been demonstrated. However, with many examples of enantio-induction using chiral 

Rh(II) catalysts in the literature,22 and a wide range of these catalysts available, it seemed logical to 

test the methodology in order to gain access to enantio-enriched α-methylene-γ-butyrolactones. 

 

As discussed earlier, to the best of our knowledge, there are no literature examples of asymmetric 

induction for the intramolecular C–H insertion reactions of α-diazocarbonylacetates that afford γ-

lactone products. The work of Gois et al. exhibits the only examples of asymmetric induction of 

acceptor/acceptor diazo compounds that contain phosphonate groups. Their work on α-

diazophosphonoacetamides with various rhodium(II) carboxylates generated lactam products in 

good yields but poor ee. 

 

The one-pot conditions were applied to substrate 117b using Rh2(S-DOSP)4, one of the most 

common Rh(II) carboxylate catalysts used for asymmetric C–H insertions (Figure 33).  

 

 
Figure 33: Rh2(S-DOSP)4 catalysed C–H insertion of an α-diazo(diethoxyphosphoryl)-acetate. 

 

The desired product 117d was formed in good yield, comparable with those using Rh2(oct)4. 

Following column chromatography purification, the specific rotation of the ‘enriched’ sample was 

measured, giving  [α]D = –18.0. This result was of the same sign as the catalyst, so was treated with 

caution. Nevertheless attempts were made to separate the enantiomers on a non-enriched sample 

using chiral HPLC techniques. Unfortunately, despite screening a variety of different column types 

and eluting conditions no clear separation of the enantiomers was observed. 
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Further attempts were made to determine the ee using 1H NMR spectroscopy by utilising a chiral 

shift reagent in order to generate distinguishable diastereomeric complexes. Firstly the racemic 

sample of lactone 117d was tested by adding Eu(hfc)3 (30 mol%) to the sample. The peaks in the 
1H NMR spectra were shifted downfield relative to the undoped sample, but no peak separation 

was observed (Figure 34). A further increase in loading of the europium reagent increased the 

downfield shifting but also introduced peak broadening, such that the ee could not be determined. 

 

 

 
Figure 34: 1H NMR spectra of racemic 117d (above, left) with various quantities of Eu(hfc)3 

(above, right); a) No additive, b) 0.3 eq. of Eu(hfc)3, c) 0.56 eq. of Eu(hfc)3. 

 

Another technique that has previously been used to determine the ee of γ-butyrolactones is by the 

addition of enantiopure 1-(9-anthryl)-2,2,2-trifluoroethanol (known as Pirkle’s alcohol). The 

binding of Pirkle’s alcohol through the oxygen atoms of the lactone creates diastereomeric 

complexes (Figure 35)96 “causing predictable differences in shielding that occur for the two 

configurations of the lactone”.97 Differentiation of the diastereomeric complexes becomes possible 

and should be observed in both the 1H and 13C NMR spectra.  
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Figure 35: Binding mode of (R)-(–)-1-(9-anthryl)-2,2,2-trifluoroethanol with a γ-lactone. 

The addition of Pirkle’s alcohol to both the racemic and enantioenriched lactone 117d did produce 

a splitting of the peaks in both the 1H (Figure 36) and 13C NMR spectra (Figure 37). The 1H NMR 

spectra (Figure 36, spectra b and c) show that on addition of (R)-Pirkle’s alcohol to the γ-lactone 

there is splitting of the peaks, corresponding to the two diastereomeric complexes. Comparison of 

spectrum b (racemic 117d) with spectrum c (‘enriched’ 117d) shows that there is negligible 

difference indicating that there is little to no ee for the enriched sample. Unfortunately the peaks 

are not well defined enough to obtain an accurate ee.  

 

 
Figure 36: 1H NMR spectra of: a) racemic 117d with no additive, b) racemic 117d with 2 eq. (R)-

Pirkle’s alcohol, c) ‘enriched’ 117d with 2 eq. (R)-Pirkle’s alcohol. 

 

The 13C NMR spectrum (Figure 37) of the enriched sample containing (R)-Pirkle’s alcohol also 

induced peak splitting, but of only one peak, corresponding to the carbonyl carbon. The peaks were 

insufficiently separated for an accurate ee determination by integration. 
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Figure 37: 13C NMR spectrum of enantiomerically enriched 117d with 2 eq. (R)-Pirkle’s alcohol. 

 

Despite the good yield with the chiral Rh(II) carboxylate catalyst it appears that there is little to no 

ee imparted. Further work with alternative catalysts, for example the N-phthaloyl-protected, amino 

acid-derived rhodium(II) carboxylates used by Ikegami,70 e.g. Rh2(S-PTPA)4 may be required to 

induce any enantioselectivity. However, a prerequisite to any further studies is an effective method 

for the determination of ee. 
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2.5  Synthesis of biologically relevant α-methylene-γ-butyrolactones 

 

One of the principal aims of this project was to apply use the one-pot Rh(II)-catalysed C–H 

insertion/HWE olefination methodology as a platform to generate products with a relatively high 

level of complexity from simple, readily accessible starting materials. The total synthesis of two 

natural products, cedarmycins A and B, as well as a bioactive MRSA inhibitor is described.  

 

2.5.1.   (±) Cedarmycins A and B 

 

Two related antibiotics, cedarmycins A and B, 189 and 190 (Figure 38) were identified in 2001 by 

Furumai et al. after isolation from a cultured broth of the genus Streptomyces strain TP-A0456.98 

The butyrolactone metabolites were isolated from the plant of Cryptomeria Japonica (Japanese 

cedar) in Toyama, Japan. The group’s biological studies centred on comparisons to the well-known 

antifungal drug amphotericin B 191,99 also isolated from Streptomyces. They discovered that both 

cedarmycins exhibited their most potent activity against Candida glabrata, a yeast strain, with 

cedarmycin A in particular showing similar activity to amphotericin B (MIC = 0.40 µg/mL). Both 

compounds also exhibited weak activity against a broad range of other bacteria and yeasts. 

 

 
Figure 38: Structure of cedarmycins A and B and amphotericin B. 

 

The structures of cedarmycins A and B were elucidated with typical spectroscopic techniques; both 

natural products were found to possess a specific rotation, yet the absolute configuration of both 

compounds were not determined. 

 

Prior to this research there are no published works reporting the synthesis of cedarmycin A 189 and 

to date there has been only one published synthesis of cedarmycin B 190, by Xu et al. in 2009.100 

Their route focused on the use of an intermolecular Barbier reaction to install the primary alcohol 
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functionality in compound 194, which can undergo a simple acylation to directly afford 

cedarmycin B 190 (Figure 39). 

 

 
Figure 39: Xu’s synthesis of (±)-cedarmycin B. 

 

At 7 steps and 8% overall yield the route is relatively concise, but a lot of manipulation is required 

to install relatively simple functional groups. Furthermore, given the simplicity of the final step, O-

acylation, it seemed unusual for the group not to have synthesised cedarmycin A also.  

 

2.5.1.1.  Synthesis of (±)-cedarmycins A and B 

 

The synthesis of both cedarmycins A and B seemed attainable using the one-pot C–H 

insertion/olefination methodology, requiring C–H insertion into a methylene site with no apparent 

chemoselectivity issues. The retrosynthetic analysis of cedarmycins A and B (Figure 40) shows 

that the substrates should be readily accessible starting from propane-1,3-diol, and so the planned 

route to cedarmycins A and B using the novel one-pot C–H insertion/olefination methodology 

should be shorter than the original synthesis completed by Xu. 

 

 
Figure 40: Retrosynthetic analysis of cedarmycins A and B. 

 

First, mono-acetylation of propane-1,3,diol 196 furnished alcohol 197, which under the standard 

T3P coupling conditions afforded phosphonate 198 (Figure 41). 
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Figure 41: Attempted direct synthesis of cedarymcin B by C–H insertion. 

 

Diazotisation generated diazo compound 199 in 41% yield over 3 steps. However, on treatment 

with Rh2(oct)4, decomposition of the diazo starting material occurred based on TLC analysis, but 

the desired C–H insertion to generate product 200 did not take place. A complex mixture of 

decomposition products was observed. The methodology studies showed that the insertion reaction 

is tolerant to many functional groups, but it appears in this case that the presence of an ester α to 

the insertion site may have a detrimental effect, possibly by coordination of the oxygen lone pair to 

the carbenoid centre.101 

 

The above failed attempt to synthesise cedarmycin B led to a reconsideration of the route, instead 

necessitating a late stage installation of the hexanoyl functionality. This method would require 

prior protection of the alcohol functionality in order for the C–H insertion step to take place. 

 

During the methodology studies into the one-pot C–H insertion/olefination sequence, TBS-

protected lactone 138c was successfully synthesised in 18% yield, alongside the β-lactone 138d in 

16% yield (Table 6, Entry 1). Nevertheless, the regioisomers were separable by column 

chromatography, and thus γ-lactone 138c was taken forward for the synthesis of cedarmycins A 

and B (Figure 42). 

 

Treatment of lactone 138c with TBAF furnished known alcohol 194 in good yield with the Michael 

acceptor still intact. To conclude, treatment of the alcohol with the corresponding acid chlorides 

provided (±)-cedarmycins A 189 and B 190 in good yields. The observed spectroscopic data were 
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in full accord with those reported in the isolation publication (see Appendix I for comparison tables 

and spectra).98 This represents the first reported synthesis of (±)-cedarmycin A 189. 

 

 
Figure 42: Synthesis of (±)-cedarmycins A and B. 

 

These total syntheses have highlighted some limitations of the C–H insertion methodology. The 

presence of ester functionality as well as steric hindrance in proximity to the reactive carbenoid 

centre has been shown to be detrimental, leading to competing processes.  Despite the low yield 

and lack of selectivity in the C–H insertion steps, the overall route is marginally shorter than that 

previously reported. 
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2.5.2.  Staphylococcus aureus (MRSA) virulence inhibitors 

 

In 2014 Sieber et al. identified a collection of α-methylene-γ-butyrolactones (Figure 43) which 

possess significant activity against methicillin-resistant Staphylococcus aureus (MRSA);102 a lack 

of novel and effective antibiotics as well as rising concerns about the ‘antibiotic apocalypse’ due to 

multidrug resistant bacteria were cited as reasons behind their research. They reasoned that 

bacterial growth could be attenuated by targeting virulence factors contributing to the growth of the 

bacteria. One such virulence factor is a protein called α-hemolysin, a toxin released by the 

Staphylococcus aureus bacterium.  

 

As is most commonly the case, the reactivity of the α-methylene-γ-butryolactone stems from the 

α,β-unsaturated ester functional group reacting with cysteine residues in proteins. The modification 

of these residues in DNA binding proteins reduced their DNA affinity, hindering the transcription 

of α-hemolysin. The compounds were also found to reduce the invasion efficiency of the 

bacterium. The four compounds shown in Figure 43 were tested against S. aureus strains. 

Compounds 203 and 204 exhibited IC50 values for hemolytic activity of 4 µM and 2 µM, 

respectively. 

 

 
Figure 43: α-Methylene-γ-butyrolactones screened for inhibition of S. aureus. 

 

The α-methylene-γ-butyrolactones were designed with the same core structure with differing side 

chains but all possessing terminal alkynes for later modification in order to be identified in protein 

profiling studies (by click chemistry with functionalised azides). Sieber’s route focused on the use 

of a Reformatsky reaction to directly afford the α-methylene-γ-butyrolactone moiety. The route 

began with a Wittig olefination with benzaldehyde to generate α,β-unsaturated ester 206, followed 

by an allylic bromination affording the Reformatsky precursor 207. Treatment of compound 207 

with zinc and 5-hexynal delivered diastereomeric lactones 203 and 204. 
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Figure 44: Sieber’s synthesis of α-methylene-γ-butyrolactone MRSA inhibitors. 

 

Lactone 203 was identified as a suitable target for the one-pot C–H insertion/olefination 

methodology, with retrosynthetic analysis shown in Figure 45. The trans-diastereomer 203 was 

expected to be favoured, but accompanying formation of cis-diastereomer 204 could be expected 

based on earlier results. The other targets identified in the studies, lactones 201 and 202, were 

deemed unsuitable for the one-pot C–H insertion/olefination methodology as they would require 

selective C–H insertion into a primary site over two secondary sites.  

 

 
Figure 45: Retrosynthetic analysis of MRSA virulence inhibitor 203.  

 

Whilst the one-pot conditions were expected to work well on substrate 208 based on observations 

from the methodology scoping studies, it did present a regioselectivity issue. There are two 

possible C–H insertion sites β to the oxygen but it was expected that the desired insertion site, the 

benzylic position, would be favoured over the non-benzylic site due to greater stabilisation of 

positive charge in the transition state. 

 

The synthesis began with the formation of Weinreb amide 211 from commercial acid 210, followed 

by addition of a single equivalent of benzylmagnesium chloride to generate ketone 212. Sodium 

borohydride reduction to the alcohol 209 followed by the customary acylation and diazotization 

procedures furnished α-diazo(diethoxyphosphoryl)acetate 208 in excellent yield. This was then 
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reacted under the standard one-pot C–H insertion/olefination conditions. As anticipated, the 

reaction yielded the desired α-methylene-γ-butyrolactone 203 along with the undesired regioisomer 

214, in 49% and 19% yields, respectively. Notably, the reaction was diastereoselective for the 

trans-isomer 203. During the biological studies by Seiber the trans-lactone 203 was found to be 

markedly more potent for the inhibition of S. aureus than the cis-isomer 204. The observed 

spectroscopic data were in full accord with those reported by Sieber.102 

 

 
Figure 46: Synthesis of S. aureus inhibitor 203. 
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2.6  Conclusion 

 

A one-pot procedure for the efficient conversion of α-diazophosphonoacetates into α-methylene-γ-

butyrolactones has been developed. The transformation incorporates a C–H insertion reaction of 

otherwise inert C–H bonds for the selective formation of γ-lactones. A subsequent Horner–

Wadsworth–Emmons olefination concludes the one-pot process, circumventing the need to isolate 

and purify the intermediate α-phosphonolactone. A variety of α-methylene-γ-butyrolactones have 

been synthesised, having explored the effects of electronic and steric modifications. Excellent 

yields were obtained for insertion into both benzylic and non-stabilised C–H bonds, with the almost 

exclusive formation of γ-lactone products. The reaction was extended to the use of aldehydes other 

than formaldehyde, enabling the synthesis of α-alkylidene-γ-butyrolactones.  

 

It is anticipated that this methodology will be of significant value to the synthetic community. The 

one-pot C–H insertion/olefination sequence is a highly selective process, reacting with C–H bonds 

typically considered unreactive, generating α-methylene-γ-butyrolactones in excellent yields. 

Additionally, the requisite α-diazophosphonoacetate functional group can be readily installed in 

just two steps from alcohols by way of a T3P-mediated esterification and Regitz diazo transfer 

reaction, enabling the efficient synthesis of substrates. The use of just 2 mol% of Rh2(oct)4 and 

broad substrate scope make the methodology attractive for wide-spread implementation in natural 

product and small molecule synthesis. 

 

The methodology was applied to the synthesis of two antibacterial natural products, (±)-

cedarmycins A and B, the former of which is the first reported synthesis. Additionally, a 

Staphylococcus aureus inhibitor was successfully synthesised in an efficient sequence, with 

complete trans-diastereoselectivity. 

 

Selected research described in this Chapter is contained within published articles (see Appendix III 

and IV).103 
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Chapter 3 –   Synthesis of conformationally restricted α-

methylene-γ-butyrolactones 

3.1  Introduction 

 

Following the successful C–H insertion reactions of a variety of non-stabilised aliphatic α-

diazo(diethoxyphosphoryl)acetates, the methodology was extended to bicyclic lactones. These 

systems are amongst the most important in relation to naturally occurring compounds; 

sesquiterpene lactones, as discussed earlier, are the largest family of naturally occurring α-

methylene-γ-butyrolactone natural products. All of the sesquiterpene sub-classes are cyclic, 

comprising 5,5-, 6,5-, or 7,5-fused bicyclic lactone frameworks. As such, simple cycloalkanol 

systems were prepared in order to examine the potential of the one-pot C–H insertion/olefination 

methodology for the synthesis of bicyclic α-methylene-γ-butyrolactones. The diazo derivatives of 

cyclopentanol 145b, cyclohexanol 146b and cycloheptanol 147b, were expected to deliver the 5,5-, 

6,5-, and 7,5-, fused bicyclic lactones, respectively (Scheme 44). 

 

 
Scheme 44: Proposed synthesis of bicyclic α-methylene-γ-butyrolactones using the one-pot C–H 

insertion/olefination sequence.  

 

Firstly, 5-membered derivative 145b was treated with Rh2(oct)4 (Scheme 45), but unfortunately 

only decomposition was observed based on TLC analysis, with no evidence for the formation of 

145c. This was unexpected given that related literature precedent saw successful C–H insertions 

take place, although these examples were either with α-diazo(cyclopentylmethylketo)acetates52 or 

acceptor-substituted carbenoids.104 

 

 
Scheme 45: Attempted C–H insertion reaction cyclopentanol derivative 145b. 
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The cyclohexanol derivative 146b performed better under the one-pot C–H insertion olefination 

sequence (Scheme 46), but three products were isolated; the cis- and trans-fused 5,6-bicylic lactone 

146c (10:1 trans:cis) were obtained, as well as a smaller quantity of spirocyclic β-lactone 146d. It 

is unclear why the overall isolated yield is so low, but given the number of products isolated is 

seems likely that other undesired side-reactions are taking place. The mixture of products likely 

arises due to the flexible nature of the cyclohexane ring, which can undergo ring-flipping. As such, 

the prochiral C–H bonds become difficult to distinguish and so a mixture of C–H insertion products 

is observed. 

 

 
Scheme 46: One-pot C–H insertion/olefination sequence for cyclohexanol derivative 146b. 

 

More pleasingly, the cycloheptanol derivative 147b (Scheme 47) formed solely the γ-lactone 147c 

in good yield, albeit as a mixture of isomers (3.5:1 trans:cis), which were identified by comparison 

with literature data.105 

 

 
Scheme 47: One-pot C–H insertion/olefination sequence for cycloheptanol derivative 147b. 

 
Studies performed by Taber, Doyle and others into intramolecular C–H insertions have identified 

the preference for rhodium carbenoids to react with equatorially aligned C–H bonds in 

cyclohexane-based systems;43,60,106 for example, menthyl α-diazoacetoacetate 215 selectively forms 

γ-lactone 216 when treated with Rh2(OAc)4 (Figure 47).51 In these examples various substituent 

effects led to a bias towards one conformer by differentiating the axial and equatorial C–H bonds 

leading to high levels of diastereoselectivity. One reason cited for the equatorial selectivity of the 

insertion reaction is steric effects; axial C–H insertion would invoke unfavourable 1,3-diaxial 

interactions.107 
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Figure 47: Doyle’s diastereoselective intramolecular equatorial C–H insertion.51 

 

3.2  Conformationally restricted α-diazo(diethoxyphosphoryl)acetates 

 

This observed selectivity led to a re-examination of cyclohexanol-derived systems. It was 

anticipated that simply restricting the conformation of the cyclohexane ring by substitution with so-

called locking groups would distinguish the C–H insertion sites and deliver diastereoselective 

reactions with fewer by-products and improved yields. The 6-membered systems were selected, 

given the preference for chair conformations. As such, a series of tert-butyl cyclohexanol 

derivatives were prepared and subjected to the standard one-pot C–H insertion/olefination 

sequence.  

 

Firstly, the 4-tert-butyl-cyclohexanol systems 154b and 155b were prepared. The functionalised 

tether in syn-diazo compound 154b is fixed in an axial orientation meaning that only equatorial C–

H insertion is possible, whereas for anti-diazo compound 155b the pendant functional group is 

equatorial with the potential for both axial and equatorial C–H insertion, and therefore 

chemoselectivity. Each substrate was subjected to the standard one-pot sequence and two products 

were identified in each case; a γ- and β-lactone (Scheme 48). As hoped, each γ-lactone, 154c and 

155c, was identified as resulting solely from equatorial C–H insertion. The concurrent formation of 

separable β-lactones 154d and 155d was disappointing, however, the overall isolated yields were 

moderately improved compared to the unsubstituted cyclohexane systems. 

 

215 21680%

O

O O

N2

O
O

iPr iPr

Me Me

O

O
iPr

Me

O

N2

O

H
H

O
iPr

Me H O
O

Rh2(OAc)4, 
C6H6, Δ



 

 77 

 
Scheme 48: One-pot C–H insertion/olefination sequence for 4-tert-butyl-cyclohexanol derivatives 

154b and 155b. 

 

The earlier studies demonstrated that steric effects could have a profound influence on the 

selectivity of the C–H insertion reactions often leading to different product distributions. It was 

postulated that by bringing the tert-butyl group closer to the pendant functional group (and C–H 

insertion site) the unwanted β-lactone formation might be disfavoured. As a consequence the 2-

tert-butyl-cyclohexanol derivatives 156b and 157b were prepared and treated under the standard 

one-pot C–H insertion/olefination conditions (Scheme 49). 

 

Gratifyingly, a single product was observed from the reaction of each diazo compound; the γ-

lactones derived from equatorial C–H insertion, 156c and 157c, respectively, were obtained in 

excellent yields. Neither of the corresponding β-lactones were observed. In these cases the benefit 

of the tert-butyl group appears to be twofold: locking the conformation of the cyclohexane ring and 

providing a steric barrier to competing β-lactone formation. 
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Scheme 49: One-pot C–H insertion/olefination sequence for 2-tert-butyl-cyclohexanol derivatives 

156b and 157b. 

 

This steric effect was then further examined by the preparation of additional diazo substrates 

derived from menthol and decalinol, each possessing substitution in the 2-position (Table 7). 

Menthol derivative 158b delivered the desired diastereomer, lactone 158c, in good yield when 

subject to the one-pot conditions. Similarly the two trans-decalinol derivatives, 159b and 160b 

afforded their corresponding γ-equatorial C–H insertion products 159c and 160c, respectively, 

again in good yield. As a final example adamantane-derived diazo compound 161b was 

synthesised and when treated under the standard one-pot conditions delivered the γ-lactone 161c, 

the only possible product, in excellent yield. 

 

From these results it became apparent that restricted conformation was an important feature for 

diastereoselective intramolecular C–H insertions, with steric influences playing a significant role in 

minimising competing β-lactone formation. The above examples illustrated that substitution in the 

2-positon, relative to the pendant functional group, disfavoured β-lactone formation. As an 

extension, substitution at the 3-position was investigated to discover the degree to which steric 

effects play a role.  
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Table 7: One-pot C–H insertion/olefination sequence for conformationally restricted cyclohexyl α-

diazo(diethoxyphosphoryl)acetates. 

 
Entry Diazo Compound Product Isolated Yield, % 

1 

 
158b 

 
158c 

73 

2 

 
159b 

 
159c 

68 

3 

 
160b 

 
160c 

64 

4 

 
161b 

 
161c 

79 

    
Conditions: (i) Rh2(oct)4 (2 mol %), CH2Cl2, 45 °C, 20 h; (ii) Remove CH2Cl2 in vacuo, add THF, 

KOBu-t (1.2 or 1.5 equiv.), 0 to −78 °C; (iii) (CH2O)n (2 equiv.), −78 °C to RT. 
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3.2.1.  Steroidal α-diazo(diethoxyphosphoryl)acetates 

 

Next, in order to further explore synthetic potential, a series of steroid-derived diazo compounds 

were prepared and subjected to the standard one-pot C–H insertion/olefination conditions. Firstly, 

cholestanol derivative 217b led to a mixture of three products; an inseperable mixture of γ-lactones 

217c and 217d, each arising from equatorial C–H insertion and β-lactone 217e, which was 

separable from the γ-lactones (Scheme 50). Despite the lack of regioselectivity, this result 

demonstrated that substitution as remote as the 3-position (relative to the functionalised tether) is 

insufficient to fully impede β-lactone formation. 

 
Scheme 50: One-pot C–H insertion/olefination sequence for cholestanol derivative 217b. R = (R)-

6-methylheptan-2-yl. 

 

Similarly, the cholesterol-derived system 218b (Scheme 51), delivered a small amount of the 

undesired β-lactone 218d, but a single, separable γ-lactone product 218c was obtained. These 

observations correspond to similar investigations performed by Doyle with cholestanol and 

cholesterol derivatives,106b but no explanation was provided on the formation of a single γ-

regioisomer from the cholesterol system. This result is curious in that allylic or benzylic C–H 

bonds are typically favoured for C–H insertion over non-stabilised C–H bonds. 
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Scheme 51: One-pot C–H insertion/olefination sequence for cholesterol derivative 218b. R = (R)-

6-methylheptan-2-yl. 

 

To conclude, a final steroid-based system with substitution at the 2-position (relative to the 

functional tether) was investigated in order to reaffirm the theory regarding proximity of the steric 

influence in reference to β-lactone formation. The diazo compound 219b, derived from 11α-

hydroxyprogesterone, was prepared and pleasingly generated the desired pentacyclic lactone 219c 

as the single product, albeit in a disappointing yield (Scheme 52). An increased temperature (65 

°C) was required in order to drive the C–H insertion reaction to completion, possibly due to the 

extreme steric hindrance surrounding the insertion site. 

 

 
Scheme 52: One-pot C–H insertion/olefination sequence for 11α-hydroxyprogesterone derivative 

219b. 
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In summary, by installation of appropriate functionality on the cyclohexane ring, the outcome of 

the one-pot C–H insertion/olefination, in terms of product distribution, stereoselectivity and yield, 

can be improved. The following principles were identified: 

 

• As previously observed, restricting the conformation of the cyclohexane ring biases the C–

H insertion to equatorial sites, reducing undesired reactions hence improving yields. 

• Installation of a sterically hindering group in the 2-position relative to the functional tether 

eliminates β-lactone formation; but 3- or 4-substitution does not confer the same effect. 

 

3.3  Applications to eudesmanolide natural product synthesis 

3.3.1.  Introduction 

 

The next progression was to apply these findings to natural product targets. Sesquiterpene lactones 

constitute the vast majority of naturally occurring α-methylene-γ-butyrolactones.1,6 These 

structures are constructed from three isoprene units and possess a variety of configurational 

isomers and oxidation patterns, but almost all are cyclic. As discussed earlier, these sesquiterpene 

lactones can be subdivided into a series of smaller classes based on their structural arrangement, 

one of which are known as eudesmanolides; this class is characterised by a 6,6,5-tricyclic, γ-

lactone framework 220 as shown in Figure 48 alongside some examples of trans-annelated natural 

products.108 

 

  
Figure 48: Eudesmanolide core framework with examples of trans-annelated natural products. 

 

Eudesmanolides containing a cis-fused decalin core are rare but there are some examples; 

melanolepin B 224,109 eudesmadiene-12,6-olide 225110 and muscicolide B 226 amongst others.111 

The assignment of the cis-ring junction of the decalin core is ordinarily based on the 13C NMR shift 

for the ring junction methyl group, which appears more downfield in cis-systems than trans. 
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Figure 49: Examples of cis-annelated eudesmanolide natural products. 

 

3.3.2.  Synthesis of eudesmanolide natural product frameworks 

 

Results from the extended methodology studies included two decalin-derived diazo compounds 

159b and 160b (Table 7, Entries 2–3), which when subjected to the one-pot C–H 

insertion/olefination sequence generated the same core 6,6,5-tricyclic scaffold as eudesmanolides. 

As such, the possibility of utilising the one-pot C–H insertion/olefination methodology to 

synthesise eudesmanolide natural products was conceived. 

 

At the outset, no particular eudesmanolide natural product was targeted; instead a general approach 

to a cis- or trans-decalin framework, that could later be modified, was visualised. The decalin 

substrates, used during the earlier methodology studies, are two carbon atoms short of the 

eudesmanolide core. This necessitated the installation of the quaternary ring-junction methyl group, 

and the exocyclic carbon atom, before commencing these studies. It was anticipated that neither of 

these modifications would have a detrimental effect on the diastereoselectivity of the C–H insertion 

reaction as they will not introduce additional conformational flexibility.  

 

The retrosynthetic strategy towards the generalised eudesmanolide 227 is shown in Scheme 53. 

The tricyclic eudesmanolide framework should be accessible using the one-pot C–H 

insertion/olefination methodology as the key step from diazo compound 228. This will be derived 

from β-hydroxyketone 229 following FGI of the ketone. It is envisaged that the β-hydroxyketone 

229 should be generated by intramolecular aldol addition from keto-aldehyde 230. Installation of 

the quaternary methyl unit, by conjugate addition into enone 231, will necessitate prior protection 

of the aldehyde functionality. The enone 231 may be derived from an overall conjugate addition of 

an alkyl halide 233 to readily available cyclohexenone 232. 
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Scheme 53: Retrosynthetic strategy towards the generalized eudesmanolide framework 227. 

 

Initial efforts focussed on the synthesis of ketoaldehyde 231, albeit with the aldehyde functionality 

protected as an acetal. As such, the 1,2-additon of chloride 234 to cyclohexenone 232 was 

attempted by formation of the Grignard reagent. Unfortunately this was met with difficulty and as 

an alternative, a lithium naphthalenide catalysed 1,2-addition was implemented,112 delivering 

allylic alcohol 235 in near quantitative yield (Scheme 54). A subsequent PCC-mediated oxidative 

rearrangement furnished enone 236 in 52% yield. 

 

  
Scheme 54: Synthesis of enone 236 via a catalytic lithium naphthalenide addition/oxidation 

sequence. 

 

With enone 236 in hand, the installation of the quaternary methyl group via a 1,4-addition of a 

methyl organometallic reagent was investigated. A series of attempts were made using the 

traditional lower-order Gilman reagent (Me2CuLi generated from MeLi and CuI) but unfortunately 

were not met with success. A procedure developed from literature precedent was applied, utilising 

catalytic CuI, MeMgCl and TMSCl as an in situ quench.113 Pleasingly this generated the 1,4-adduct 

237 in near quantitative yield with no requirement for column chromatography purification 

(Scheme 55). Given the high acid lability of both the silyl enol ether and acetal functionalities, 

substrate 237 was simply refluxed in the presence of aqueous acid in order to execute a double-
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deprotection and aldol cyclisation in one step. An analogous reaction performed by Tanaka in 2001 

was reported to generate a single diastereomer of β-hydroxyketone 238, but the relative 

stereochemistry was not specified.114 We were pleased to also observe the same single diastereomer 

of the β-hydroxyketone 238, in addition to some of the dehydrated enone 239, with all spectral data 

found to be in accord with those reported by Tanaka. 

 

 
Scheme 55: Synthesis of β-hydroxyketone 238 via aldol cyclisation. 

 

The spectral data of β-hydroxyketone 238 was analysed in order to identify the relative 

stereochemistry; with 3 stereocentres present there are 4 possible diastereomers 238a–d, as shown 

in Figure 50. 

 

 
Figure 50: The four possible diastereomers of β-hydroxyketone 238.  

 

The most distinguishable feature of the 1H NMR spectrum was the resonance associated with the 

proton β to the carbonyl: δH = 4.00 (1 H, app. tt, J = 10.5, J = 5.1) ppm. The two large coupling 

constants indicate the presence of two contiguous trans-diaxial proton arrangements. This can only 

arise from two diastereomers, 238a and 238d, as shown by the highlighted protons in Figure 51. 

The other two diastereomers can therefore be ruled out. 
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Figure 51: Comparison of β-hydroxyketone diastereomers based on 1H NMR J values. The trans-

diaxial arrangements are shown in red. 

 

The differentiation of trans-decalin 238a from cis-decalin 238d was more challenging, but was 

achieved by comparing the 13C NMR chemical shifts of the ring junction methyl groups, with those 

previously reported for related compounds.115  Cis-decalins with this core structure typically 

generate chemical shift ca. δC ≈ 27 ppm, whereas trans-decalins produce a more upfield shift ca. δC 

≈ 17 ppm. The observed chemical shift of this carbon is δC = 27.7 ppm, strongly inferring a cis-6,6-

ring junction and therefore that β-hydroxyketone 238d is the sole product (Figure 52). This was 

somewhat surprising, as under the reaction conditions we expected the trans-decalin to 

predominate, on thermodynamic grounds. 

 

 
Figure 52: Key spectroscopic data for β-hydroxyketone 238d. 

 

With cis-decalin 238d in-hand it was decided to target eudesmanolide natural products containing 

the cis-decalin core. A literature search revealed two relatively simple compounds with the 

eudesmanolide core and possessing no additional oxidation. The C–H bond to be inserted using the 

one-pot C–H insertion/olefination procedure is in the requisite equatorial position; as such, it was 

hoped their synthesis could be readily accomplished. The two structures in question were isolated 

as part of a series of eudesmanolides reported by Dominguez et al. in 1985 and assigned as novel 

natural products morifolins A and B, 240 and 241, respectively. However, a later publication by 

Herz in 2004 shed doubt upon the original assignments, instead suggesting their data were identical 
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OH
H

H
H

Me

Me

H HO
H

H

HO

O
H

O OH

Me

H

O OH

Me

H

238d

238a

Key characterisation data for
β-hydroxyketone 238d

1H NMR: δHOCH = 4.00 (1 H, app. tt, J = 10.5, J = 5.1) ppm
 
13C NMR: δMe = 27.7 ppm

O OH

Me

H

238d



 

 87 

1983. Herz proposed that the structures of lactones 240 and 241 were in fact the natural products 

isocritonilide 242 and critonilide 243, respectively (Figure 53). 

 

  
Figure 53: Assigned structures of morifolins A, B and their proposed true identities, isocritonilide 

and critonilide, respectively. 

 

The lack of clarity over the matter stems from the insufficient data provided in the Dominguez 

publication, which contains partial 1H NMR, IR and MS but no 13C or 2D correlation NMR. Given 

that the one-pot C–H insertion/olefination methodology had thus far only be trialled on trans-

decalins it was seen as an interesting opportunity to explore the applicability of cis-decalins whilst 

also clearing up confusion in the literature. As such the structures assigned to morifolins A and B, 

240 and 241, were targeted. 
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3.3.3.  Synthesis of proposed structure of morifolin A 

 

Morifolin A 240, containing the endocyclic alkene was targeted first of all, beginning with silyl 

ether protection of β-hydroxyketone 238d, delivering ketone 244 (not shown) which was then 

converted into the vinyl triflate 245 under kinetic conditions (LHMDS, Tf2O, −40 °C) (Scheme 

56). Interestingly, thermodynamic vinyl triflate-forming conditions (DTBMP, Tf2O, RT) were 

unsuccessful in this case. Following literature precedent,116 an iron-catalysed cross-coupling of 

vinyl triflate 245 with MeMgCl furnished the desired endocyclic alkene 246 in excellent yield. 

Subsequent desilylation, acylation and diazotisation proved facile, affording diazo 249 in 78% 

yield over 3 steps. We were now in a position to investigate the C–H insertion/olefination sequence 

on a cis-decalin and were delighted to observe a single product from the reaction under the 

standard conditions affording the desired equatorial insertion product 240 in 64% yield. In accord 

with the trans-decalin model substrates, no β-lactone or axial C–H insertion products were 

observed. The structure of lactone 240 was proved unambiguously following acquisition of an X-

ray single crystal structure (Figure 54). 

 

 
Scheme 56: Synthesis of the proposed structure of morifolin A, lactone 240. 
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Figure 54: Single crystal X-ray structure of lactone 240 (CCDC: 1421158). Thermal ellipsoids set 

to 50% probability, shown in Olex2. 

 

On comparison of the data obtained for lactone 240 with those provided by Dominguez117 there was 

a discrepancy in the 1H NMR data (Table 8), corroborating Herz’s118 theory that the structure 

assigned to morifolin A 240 was in error and that the correct structure is most likely that of 

isocritonilide 242.119 No 13C NMR data were provided by Dominguez.  

 
Table 8: Comparison of the 1H NMR data (CDCl3) of synthetic lactone 240, ‘isolated morifolin A’ 

240 and isocritonilide 242. 

 

  

Assignment 
Data for synthetic 

lactone 240 
(400 MHz) 

Data for ‘isolated’ 
morifolin A 240 

(200 MHz)117 

Data for 
isocritonilide 242 

(270 MHz)119a 

11 0.98 
(4 H, m) 

0.82 
(3 H, s) 

0.86 
(3 H, s) 

12 1.83–1.86 
(4 H, m) 

1.81 
(3 H, s) 

1.85 
(3 H, s) 

7 2.45–2.53 
(1 H, m) 

3.24 
(1 H, m) 

3.28 
(1 H, ddddd, 

J = 7.5, J = 5.0, J = 3.5, 
J = 3.5, J = 3.0) 

8 
3.73 

(1 H, app. t, 
J = 10.9) 

4.58 
(1 H, dd, 

J = 11.2, J = 11.0) 

4.61 
(1 H, dd, 

J = 11.0, J = 7.5) 

2 5.39–5.43 
(1 H, m) 

5.38 
(1 H, m) 

5.42 
(1 H, br. s) 

15b 5.39 
(1 H, d,  J = 3.1) 

5.50 
(1 H, d, J = 3.2) 

5.53 
(1 H, d, J = 3.5) 

15a 6.06 
(1 H, d, J = 3.3) 

6.25 
(1 H, d, J = 3.5) 

6.28 
(1 H, d, J = 3.5) 
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3.3.4.  Synthesis of proposed structure of morifolin B 

 

The synthesis of the exo-methylene analogue morifolin B 241 commenced with common precursor 

ketone 244 (Scheme 57). Its treatment with (trimethylsilyl)methyl lithium cleanly afforded 1,2-

adduct 250 before a base-mediated Peterson olefination generated exocyclic alkene 251. Again, 

desilylation, acylation and diazotisation were performed without complication, delivering the key 

diazo compound 254 in 52% yield over 3 steps. Upon submission to the standard one-pot C–H 

insertion/olefination sequence, the desired γ-lactone 256 was synthesised with complete regio- and 

diastereoselectivity, albeit in a disappointing 31% yield. Isolation of cyclopropanation side-product 

255, resulting from the proximity of the alkene to the pendant carbenoid, in 22% yield provided 

some explanation for the relatively low yield of γ-lactone 241. Interestingly, we found that by 

changing the catalyst to the less-bulky Rh2(OAc)4, the yield of γ-lactone 241 could be improved to 

45%, with just 11% of the cyclopropane side-product 255. 

 

 
Scheme 57: Synthesis of the proposed structure of morifolin B, lactone 241. 
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The 1H NMR data for lactone 241 conflicted with those of morifolin B provided by Dominguez 

(Table 9).117 Again, the acquisition of a single crystal X-ray structure (Figure 55) unambiguously 

proved the identity of lactone 241, thus indicating that the structure assigned to morifolin B was in 

error and that the true structure is likely that of critonilide 243,119 as proposed by Herz.118 No 13C 

NMR data were provided by Dominguez. 

 

      
Figure 55: Single crystal X-ray structure of lactone 241 (CCDC: 1421154). Thermal ellipsoids set 

to 50% probability, shown in Olex2. 

 

Table 9: Comparison of the 1H NMR data (CDCl3) of synthetic lactone 241, ‘isolated morifolin B’ 

241 and critonilide 243. 

 

  

Assignment 
Data for synthetic 

lactone 241 
(400 MHz) 

Data for ‘isolated’ 
morifolin B 241 

(200 MHz)117 

Data for 
critonilide 243 
(270 MHz)119a 

11 
1.00  

(3 H, s) 
0.75 

(3 H, s) 
0.79 

(3 H, s) 

9 
2.09–2.23  
(3 H, m) 

1.63 
(1 H, d, J = 11.2) 
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(1 H, br. d, J = 11.0) 
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J 11.1, J 3.2) 
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(1 H, br. s) 
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3.3.5.  Synthesis of α-Cyclocostunolide 

 

Following the synthesis of lactones 240 and 241, attention returned to the synthesis of a trans-

decalin derived natural product via the same methodology. Two simple examples, α- and β-

cyclocostunolide 256 and 257, respectively, each possess a trans-decalin core (Figure 56). 

Additonally, the C–C bond that would be formed using the one-pot C–H insertion/olefination 

sequence is equatorially aligned in each compound, therefore suitable for the methodology. β-

Cyclocostunolide 257 contains the exocyclic alkene functionality that introduced chemoselectivity 

issues for diazo compound 254. As such, α-cyclocostunolide 256, containing an endocyclic alkene, 

was selected as a suitable target. 

 

 
Figure 56: trans-Annelated eudesmanolide natural products, α- and β-cyclocostunolide. 

 

Unfortunately, all attempts to directly isomerise cis-decalin 238d, already in-hand, to the more 

thermodynamically stable trans-decalin 238a were unsuccessful. Instead, a simple oxidation-

reduction sequence of β-hydroxyketone 238d was envisioned. Treatment with DMP delivered 

diketone 258, which was found to exist primarily as the keto-enol tautomer 258’, as demonstrated 

by the spectroscopic data (Scheme 58). Following slow addition of NaBH4 to a solution of diketone 

258 in MeOH, a mixture of products was observed by TLC analysis. Separation by column 

chromatography allowed these compounds to be identified as β-hydroxyketones 238a and 238c and 

complex mixture of diastereomers of over-reduction product 259, albeit in low overall yield. The 

determination of cis- or trans-geometry at the ring junction was again carried out using the 13C 

NMR chemical shifts of the quaternary methyl groups. For β-hydroxyketone 238c the signal is 

observed at δC = 26.5 ppm, whereas for β-hydroxyketone 238a it is observed at δC = 17.9 ppm, thus 

indicating that they are cis- and trans-decalins respectively. Each β-hydroxyketone was protected 

as the TBS ether; the cis-decalin 260 was obtained as an oil, whereas the trans-decalin 261 was 

sufficiently crystalline to obtain a single crystal X-ray structure (Figure 57), confirming the 

proposed framework.  
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Scheme 58: Oxidation-reduction sequence for the synthesis of β-hydroxyketones 238a and 238c. 

 

      
Figure 57: Single crystal X-ray structure of trans-decalin 261 (CCDC: 1421164). Thermal 

ellipsoids set to 50% probability, shown in Olex2. 
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Following the sequence developed earlier, trans-decalinone 261 was converted into vinyl triflate 

262 in 67% yield, but this time requiring thermodynamic conditions as the kinetic conditions, used 

earlier, were unsuccessful (Scheme 59). These results demonstrate a general trend for vinyl triflate 

formation in that cis-decalinones require kinetic conditions whereas trans-decalinones require 

thermodynamic conditions.  

 

Conversion of vinyl triflate 262 into endocyclic alkene 263 proceeded in 92% yield. The customary 

desilylation, acylation and diazotisation were performed without complication, affording diazo 

compound 266 in 80% yield over 3 steps. With the key diazo precursor in hand, the one-pot C–H 

insertion/olefination procedure was applied. We were delighted to observe α-cyclocostunolide 256 

as the single product from the reaction in reasonable yield. All of the observed data correlated with 

those published in the literature (see Appendix I for comparison tables and spectra).120  

 

 
Scheme 59: Synthesis of α-cyclocostunolide 256. 
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To conclude, cis-decalinone 260, prepared earlier, was also subjected to the synthetic sequence, 

firstly being transformed into vinyl triflate 267 under kinetic conditions in 62% yield (Scheme 60). 

Successive iron-catalysed cross coupling, desilylation, acylation and diazotisation successfully 

delivered diazo 271 in a moderate yield over 4 steps. Once again we were pleased to observe a 

single diastereomeric product, novel lactone 272, in 66% yield from the standard one-pot C–H 

insertion/olefination sequence. Given the large number of related natural products it is possible that 

lactone 272 may be found to occur naturally, in due course. 

 

 
Scheme 60: Synthesis of lactone 272. 
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3.4  Conclusion 
 

The one-pot C–H insertion/olefination methodology has been successfully applied to a series of 

conformationally restricted cyclohexane derived diazo compounds. The differentiation of the 

equatorial and axial C–H bonds through conformational restriction has enabled the 

diastereoselective synthesis of a range of bicyclic α-methylene-γ-butyrolactones. The effect of 

conformationally restricting functional groups has been shown to not only modify the conformation 

of the cyclohexane rings, but also to provide a steric barrier to β-lactone side-product formation.  

 

The one-pot C–H insertion/olefination procedure was then extended to a series of more complex 

derivatives in order to generate eudesmanolide natural product frameworks. Two cis-decalin 

derived lactones 240 and 241 were synthesised, clarifying ambiguity within previous literature 

regarding their identity. The eudesmanolide natural product α-cyclocostunolide 256 has also been 

also synthesised. 

 

The exceptional levels of diastereoselectivity observed for the reactions of conformationally 

restricted α-diazophosphonoacetates complements existing literature precedent for related systems 

and should serve as a valuable synthetic tool for further applications in natural product and target 

based syntheses. 

 

Selected results described in this Chapter are contained within recently published articles (see 

Appendix V).121 
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Chapter 4 –  Rhodium(II)-catalysed cyclopropanations of 

allylic α-diazo(diethoxyphosphoryl)acetates 

4.1  Introduction 
 

Following the development of the rhodium(II)-catalysed C–H insertion reactions of α-

diazophosphonoacetates, it was envisioned that this work could be extended to encompass the 

rhodium(II)-catalysed cyclopropanation of allylic α-diazophosphonoacetates, shown in Scheme 61.  

 

 
Scheme 61: Proposed rhodium(II)-catalysed cyclopropanation of allylic α-diazophosphonoacetates 

273 to generate α-phosphoryl-3-oxabicyclo[3.1.0]hexanones 274. 

 

The α-phosphoryl-3-oxabicyclo[3.1.0]hexanone products 274 are members of a compound class 

known as donor-acceptor cyclopropanes and are seen as privileged structures due to the presence of 

the two electron-withdrawing substituents which create a push-pull effect with polarisation of the 

C–C bond.122 This distinctive zwitterionic relationship enables a wide variety of reactions to take 

place including: ring-openings, cycloadditions and rearrangements (Figure 58).123  

 

 
Figure 58: Modes of reactivity for donor-acceptor cyclopropanes.123 
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4.2  Rhodium(II)-catalysed cyclopropanations 
 

One of the first examples of a rhodium(II)-catalysed cyclopropanation was reported in 1976 by 

Teyssié and co-workers.124 This work focussed on the intermolecular reactions of acceptor-

substituted diazocarbaronyl compounds with simple olefins (Scheme 62). 

 

 
Scheme 62: Teyssié’s intramolecular rhodium(II)-catalysed cyclopropanations. 

 

Intramolecular rhodium(II)-catalysed cyclopropanations were first reported in 1985 by Kametani et 

al., as shown in Scheme 63.125 

 

 
Scheme 63: Kametani’s intramolecular rhodium(II)-catalysed cyclopropanation. 

 

To the best of our knowledge there are just 3 published examples of intramolecular 

cyclopropanations of α-diazophosphonoacetates; these examples are contained within one report, 

by Vandewalle, which was published in 1984 (one of these examples shown in Scheme 64).81a The 

reactions were performed using copper metal (30–60 eq.) to generate the intermediate carbenoid, 

with Rh2(OAc)4 stated to be ineffective as a catalyst for the same transformation. 

 

 
Scheme 64: Copper-mediated cyclopropanation of α-diazophosphonoacetates. 
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4.3  Aims and Objectives 
 

It was envisaged that α-phosphoryl-3-oxabicyclo[3.1.0]hexanones could be prepared via a 

rhodium(II)-catalysed intramolecular cyclopropanation reaction of allylic α-

diazophosphonoacetates. It was then planned to explore the scope of the reaction and demonstrate 

the effectiveness of the procedure through the synthesis of α-methylene-γ-butyrolactone natural 

products. 

 

Following the synthesis of the α-phosphoryl-3-oxabicyclo[3.1.0]hexanone 274 a transformation 

such as a ring-opening reaction, would generate phosphonolactones 282, which could then be 

exploited in a HWE olefination to deliver the α-methylene-γ-butyrolactone framework 283 

(Scheme 65).  

 

While this process would deliver the same type of products as the previously described C–H 

insertion methodology, a number of advantages to this cyclopropanation procedure were identified 

at the outset. Given that the cyclopropanation reaction is a cheletropic process,126 the olefin 

geometry preinstalled in the α-diazo(diethoxyphosphoryl)acetate precursors 273 should be 

transferred directly to the cyclopropane product 274, with just a single diastereomer expected. In 

the case of a subsequent nucleophilic ring-opening reaction, the stereochemical information should 

then be inverted during an SN2 process; therefore the ability to control olefin geometry at the sp2 

hybridised site in diazo compound 273 could be directly transferred to an sp3 centre in the ring-

opened product 283. 

 

 
Scheme 65: Stereoselectivity transfer via rhodium(II)-catalysed cyclopropanation/nucleophilic 

ring-opening sequence.  
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The cyclopropanation reaction results in the formation of two new C–C bonds, which must be on 

the same face. This provides a significant advantage over the C–H insertion reaction, in which a 

single C–C bond is formed, because it bestows a greater degree of diastereocontrol. For example, 

in the cyclopropanation of cyclic diazo precursors 284, the tricyclic product 285 should form the 

diastereomer in which two new C–C bonds are on the same face as the C–O bond, as shown in 

Scheme 66. This is based on consideration of the least strained diastereomer, which is thought to be 

cis-diasteromer 285. A subsequent nucleophilic  ring-opening reaction would selectively deliver a 

cis-fused bicyclic lactone product 286. 

 

This is a major advantage over the C–H insertion methodology, developed earlier, in which 

conformational restriction was found to be essential in order to furnish bicyclic rings 

diastereoselectively.  

 

  
Scheme 66: Selective formation of cis-bicyclic lactones via rhodium(II)-catalysed 

cyclopropanation/nucleophilic ring-opening sequence. 
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4.4  Scope and Limitations 
 

Our initial effort foccussed on the reaction of allyl alcohol-derived diazo compound 287b, which 

was treated with 2 mol% of Rh2(oct)4 in CH2Cl2 at 45 °C for 16 hours. Pleasingly, a single product 

was obtained and identified as the desired cyclopropane 287c in 78% yield. All spectroscopic data 

were consistent with those found in the literature.127 This result was interesting as earlier studies, 

performed by Vandewalle,81a stated that the rhodium(II)-catalysed intramolecular cyclopropanation 

of α-diazophosphonolactones was ineffective. 

 

 
Scheme 67: Rhodium(II)-catalysed intramolecular cyclopropanation of allyl α-

diazo(diethoxyphosphoryl)acetate 287c forming bicyclic lactone 287b. 

 

Accordingly, several allylic α-diazo(diethoxyphosphoryl)acetates were prepared in order to fully 

examine the scope of the cyclopropanation reaction. It was observed that our standard diazotisation 

conditions (LHMDS, −78 °C–RT, then addition of azide), developed for the C–H insertion 

methodology, led to poor yields of the allylic α-diazo(diethoxyphosphoryl)acetates in some cases, 

with the major by-product being the allylic alcohol, resulting from hydrolysis. Thankfully, it was 

found that adding DBU to a pre-mixed solution of the α-(diethoxyphosphoryl)acetate and azide 

substantially improved the yields (Scheme 68). Additionally, the purification process was much 

more facile than the previous procedure, simply requiring the reaction mixture to be filtered 

through a pad of Celite and silica, followed by chromatographic purification of the filtrate.  
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Scheme 68: Diazotisation of allylic α-phosphorylacetates. 
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4.4.1.  Aliphatic-substituted systems 
Our first efforts focussed on the use of olefins with aliphatic groups. Disappointingly, in the case of 

both E- and Z- (4:1 Z:E dr) crotyl alcohol-derived diazo compounds 288b and 289b, the starting 

material was not fully consumed following treatment with Rh2(oct)4. Using 1H NMR analysis of 

the unpurified reaction mixture, a trace amount of the desired cyclopropanes 288c and 289c was 

observed,§ alongside the water O–H insertion products 288d and 289d, respectively (Scheme 69), 

but none of the compounds were isolated for full characterisation. 

 

 
Scheme 69: Rhodium(II)-catalysed diazo decomposition of crotyl derivatives 288b and 289b. 

 

Next, E- and Z-hexenol derivatives 290b and 291b were prepared and treated with Rh2(oct)4 

(Scheme 70). Similarly to the previous crotyl examples, E-derivative 290b was not fully consumed, 

with the desired cyclopropane 290c again formed alongside the corresponding water O–H insertion 

product 290d.** In contrast, the Z-derivative 291b reacted well under the same conditions, with 

complete consumption of starting material, affording cyclopropane 291c as the sole product in 66% 

isolated yield, which was fully characterised. Lower steric hindrance may favour addition to the Z-

olefin. Interestingly, E-diene substrate 292b furnished allyl cyclopropane 292c in 48% yield under 

the same conditions, indicating that the incorporation of additional unsaturation is beneficial to the 

cyclopropanation process, offering E-olefins enhanced reactivity, possibly through additional 

charge stabilisation. 
                                                
§ Diagnostic 1H NMR signals: 288c, δ = 2.53 (dt, J = 10.2, J = 5.0, CHCH2O); 288d, δ = 4.51 (dd, J = 15.8, J 

= 6.7, OCHP); 289c, δ = 2.67 (ddd, J = 11.4, J = 7.6, J = 5.1, CHCH2O); 289d, δ = 4.50 (dd, J = 8.9, J = 7.0, 

OCHP). 
** Diagnostic 1H NMR signals: 290c, δ = 2.53 (dt, J = 10.3, J = 5.0, CHCH2O); 290d, δ = 4.51 (dd, J = 15.8, 

J = 6.8, OCHP). 
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Scheme 70: Rhodium(II)-catalysed diazo decomposition of hexenol-derivatives 290b–292b. 

 

Trisubstituted aliphatic substrates 293b, derived from prenol, and 294b, derived from geraniol, 

delivered the desired cyclopropanes 293c and 294c, respectively, in good yields and as single 

diastereomers (Scheme 71). It is thought that the additional substitution makes the olefin more 

electron-rich and hence more nucleophilic, leading to improved yields of the desired cyclopropanes 

and reduced by-product formation. The increased substitution may also enable greater stabilisation 

of the positive charge than the disubstituted olefins, potentially proceeding through a more SN1-like 

process (i.e. not cheletropic). However, given that single diastereomers were obtained, the 

cyclopropanation still appears to be concerted. 
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Scheme 71: Rhodium(II)-catalysed diazo decomposition of prenol and geraniol derivatives 293b 

and 294b. 

 

One of the key aims at the outset of this work was to synthesise cis-fused bicyclic α-methylene-γ-

butyrolactones via tricyclic phosphonates. As such, 2-cyclohexen-1-ol diazo derivative 295b was 

prepared and treated with Rh2(oct)4. Pleasingly, the desired tricyclic product 295c was formed, 

albeit in a disappointing 24% yield (Scheme 72).  

 

 
Scheme 72: Rhodium(II)-catalysed diazo decomposition of cyclohexenol derivative 295b. 

 

The major by-product, observed by 1H NMR analysis of the unpurified reaction mixture, was 

cyclohexenone 232. This is believed to arise from an initial C–H insertion reaction to form a β-

lactone 295d,128 which may then undergo a [2+2]-cycloreversion reaction, forming cyclohexenone 

232 and a phosphonoketene 300, which undergoes further reactions (Scheme 73). Given that the 

C–H bond in question is both allylic and α- to a heteroatom it therefore is not unreasonable that 

this appears to be a significant competing pathway for this class of diazo compound. 

 

 
Scheme 73: Proposed competing C–H insertion leading to β-lactone 295d and subsequent [2+2]-

cycloreversion to cyclohexenone 232. 
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4.4.2.  Aromatic-substituted systems 

 

Next, the procedure was extended to the use of cinnamyl alcohol-derived diazo compounds 296b–

298b (Scheme 74). Pleasingly, each of these substrates delivered the respective cyclopropanes 

296c–298c, with complete diastereocontrol and in good to excellent yield.  

 

   
Scheme 74: Rhodium(II)-catalysed intramolecular cyclopropanation of cinnamyl α-

diazo(diethoxyphosphoryl)acetates 296b–298b forming bicyclic lactones 296c–298c. 

 

The relative configuration of cyclopropane 296c was confirmed following the acquisition of a 

single crystal X-ray structure (Figure 59), and it is assumed that 297c and 298c have the same 

configuration based on similar diagnostic 1H NMR signals.†† 

 

           
Figure 59: Single crystal X-ray structure of cyclopropane 296c (CCDC: 1465173). Thermal 

ellipsoids set to 50% probability, shown in Olex2. 
                                                
†† Diagnostic 1H NMR signals:  

296c, δ = 2.81 (app. t, J = 6.1, CHAr), δ = 3.30 (app. dt, J = 10.6, J = 5.2, CHCH2O),  

297c, δ = 2.73 (app. t, J = 6.1, CHAr), δ = 3.24 (app. dt, J = 10.6, J = 5.2, CHCH2O), 

298c, δ = 2.71 (app. t, J = 6.0, CHAr), δ = 3.24 (app. dt, J = 10.7, J = 5.2, CHCH2O), 
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Following the success of these reactions it was decided to investigate cinnamyl derivatives that 

contain a 3,4-methylenedioxy unit, as this substructure is found in many natural products. The 

saturated substrate investigated during the C–H insertion methodology studies, compound 149b, 

was unsuccessful (Chapter 2, Scheme 39). It is thought that the oxygen lone pairs coordinate to the 

carbenoid centre, leading to an unproductive pathway (Scheme 75). It is proposed that the 

introduction of unsaturation will confer additional rigidity in the molecule, minimising the 

coordination of the oxygen lone pairs to the carbenoid, enabling the desired reaction to occur. 

 

 
Scheme 75: Proposed unproductive pathway following the formation of carbenoid 149d. 

 

Pleasingly, on reaction of diazo compound 299b under the standard Rh2(oct)4 conditions, the 

desired bicyclic lactone 299c was generated in excellent yield and with complete 

diastereoselectivity (Scheme 76). It was hoped that this compound could be further elaborated for 

the synthesis of α-methylene-γ-butyrolactone natural products containing the 3,4-methylenedioxy 

framework, the synthesis of which will be discussed later, in Section 4.6. 

 

 
Scheme 76: Rhodium(II)-catalysed intramolecular cyclopropanation of 3,4-

methylenedioxycinnamyl diazo compounds 299b. 
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4.5  Ring-opening reactions of cyclopropanes 
 

The opening of cyclopropane rings can be performed by many different types of reactions and in 

the case of donor/acceptor cyclopropanes (such as the α-phosphoryl-[3.1.0]-bicyclic lactones being 

studied here) there is the possibility of performing cycloadditions,129 rearrangements and direct 

ring-opening reactions including nucleophilic, electrophilic and reductive methods. There are many 

examples of nucleophilic ring-openings using sulfur,130 nitrogen,131 oxygen,132 carbon131,133 and 

halogen134 nucleophiles. Additionally, there have been various instances demonstrating reductive 

ring-openings using lithium in ammonia,135 samarium diiodide,136 and other reductants.137 

 

In fused bicyclic systems, steric and electronic factors govern the selectivity of nucleophilic and 

reductive ring-opening reactions, which often proceed with excellent regioselectivity with respect 

to which of the cyclopropane bonds is broken. For example, in the case of π-stabilised bicylic 

cyclopropane systems such as compound 301, Figure 60, the selectivity of this process is 

determined by the degree of orbital overlap of the cyclopropane C–C bond with the π-system of the 

adjacent carbonyl unit. The bond possessing the greatest degree of orbital overlap is that which is 

broken.138 In the case of model system 301 a nucleophilic ring-opening would see attack at one of 

the cyclopropane carbons β- to the carbonyl group, with electrons flowing towards the π-system. 

As such, bonds ‘a’ or ‘b’ could be broken, resulting in cyclopentanone 302 or cyclohexanone 303, 

respectively. In the majority of cases discussed within the literature, only bond ‘a’ is broken due to 

it having greater overlap with the carbonyl π* orbital, making the process regioselective. This 

selectivity has been observed in many of the aforementioned literature examples, as well as in ring-

opening reactions of aziridines.139 There have, however, been some recent examples in which the 

selectivity has been switched, with 6-membered rings formed in preference.133b  

 

  
Figure 60: Orbital interactions responsible for high regioselectivity in ring-opening reactions of 

carbonyl-containing bicyclic rings, showing C–C σ* and C=O π* orbitals. 
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4.5.1.  Initial studies into the ring-opening reactions of α-phosphoryl-3-

oxabicyclo[3.1.0]hexanones 
 

Initial efforts for the ring-opening reactions of α-phosphoryl-3-oxabicyclo[3.1.0]hexanone 

focussed on nucleophilic ring-openings of the ‘unsubstituted’ compound 287c. Pleasingly, 

treatment with sodium ethanethiolate delivered the desired ring-opened γ-lactone product 304 in an 

unoptimised 37% yield (Scheme 77), with complete diastereoselectivity, although the relative 

configuration could not be proven definitively based on the coupling constants (which were 

discussed earlier in Chapter 2, page 39). The reaction was also completely regioselective, with 

attack at cyclopropane CH2 leading to just a single C–C bond being broken.  

 

 
Scheme 77: Thiolate ring-opening of bicyclic lactone 287c. 

 

Pleasingly, the reaction of phenyl-substituted bicyclic lactone 296c with sodium ethanethiolate also 

furnished the desired product 305, although in just 19% isolated yield, but with excellent regio- and 

diastereocontrol (Scheme 78). 

 

 
Scheme 78: Thiolate ring-opening of bicyclic lactone 296c. 

 

 Next, the use of carbon nucleophiles was investigated. The formation of the cuprate from 

phenylmagnesium bromide was necessary (the Grignard by itself led to 1,2-addition), generating 

the desired product 306 in good yield (Scheme 79). This substrate is already accessible using the 

C–H insertion methodology, but demonstrates the potential for forming ring-opened products, 

which may be useful for more complex systems. 
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Scheme 79: Organocuprate ring-opening of bicyclic lactone 287c. 

 

Attention then turned to reductive ring-openings, which were first attempted using samarium(II) 

iodide;136 the treatment of phenyl-substituted cyclopropane 296c with a freshly prepared solution of 

SmI2 afforded lactone 306 in moderate unoptimised yield, but with complete regio- and 

diastereoselectivity (Scheme 80). 

 

 
Scheme 80: Samarium(II) iodide-mediated reductive ring-opening of cyclopropane 296c. 
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undergo a variety of reactions, clearly exhibiting regioselective C–C bond breaking in ring-opening 

reactions. Initial studies into the development of a one-pot ring-opening/HWE reaction for the 

direct formation of α-methylene-γ-butyrolactones have proven challenging. 
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4.6  Natural product targets: (±)-savinin and (±)-gadain 
 

Following the successful synthesis of bicyclic lactone 299c, which contains the 3,4-

methylenedioxyphenyl unit, the synthesis of isomeric natural products savinin 174 (E-isomer, also 

known as hibalactone) and gadain 307 (Z-isomer, also known as isohibalactone), shown in Figure 

61, were attempted. The isolation of (−)-savinin was first reported in 1953 by Hartwell,95 although 

a thorough NMR assignment was not made until 1990.140 Studies have since revealed cytoxicity140 

as well as insecticidal141 and antiviral142 activities. (+)-Gadain was isolated separately in 1984 and 

found to isomerise to (+)-savinin in acidic solution.143 The synthesis of savinin and gadain has been 

performed previously, but not via cyclopropane intermediates.141,144 

 
Figure 61: Isomeric α-alkylidene-γ-butyrolactone natural products, (−)-savinin 174 and (+)-gadain 

307. 

 

It was anticipated that treatment of the bicyclic lactone 299c with SmI2 would deliver the ring-

opened phosphonolactone 149c, which could not be accessed using the C–H insertion methodology 

earlier (Chapter 2, Scheme 39). Gratifyingly, treatment of cyclopropane 299c with freshly prepared 

SmI2 generated the desired γ-lactone 149c in 38% yield, as a single diastereomer. Using conditions 

established during the earlier methodology studies, an HWE olefination was performed on lactone 

149c delivering a separable mixture of (±)-savinin 174 and (±)-gadain 307, in an overall 53% yield 

(1.9:1 174:307). The data for both natural products is in agreement with those found in the 

literature (see Appendix I for comparison tables and spectra).141 Isomerisation of gadain to savinin, 

the E-isomer, can be performed according to literature precedent.141,144a 
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Scheme 81: Synthesis of (±)-savinin and (±)-gadain. 

 

4.7  Natural product targets: (±)-peperomin E 

4.7.1.  Introduction 
 

Peperomins E and F, 308 and 309, respectively, were identified by Govindachari et al. in 1998 

following isolation from Peperomia dindigulensis, a succulent herb.145 Their structures, shown in 

Figure 62, were elucidated using typical spectroscopic techniques. Their absolute configuration 

was assigned by comparing their optical rotatory dispersion to that of peperomins A and C, which 

have known absolute stereochemistry. 

 

 
Figure 62: Lignan natural products peperomins E and F. 
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Peperomin E has been shown to possess a variety of biological activities including: antifeedant-

activity,145 cytotoxicity,146 inhibition of malignant lung tumour cells (IC50 = 1.93 µM),147 anti-

angiogenic activity,148 inhibition of cancer cell lines149 and anti-inflammatory activity.150  

 

To the best of our knowledge, prior to this research, there have been no reported syntheses of 

peperomin E. Three other lignans from the peperomin family: A, C and D, (310, 311 and 312 

respectively), have been previously synthesised, however.151 Peperomin A is a saturated analogue 

of peperomin E, whilst peperomins C and D are also saturated, they have different substitution 

patterns on the aromatic rings (Figure 63). 

 

 
Figure 63: Lignan natural products peperomins A, C and D. 
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copper-catalysed 1,4-addition of the corresponding Grignard reagent. As the aryl units are identical 

there were no diastereoselectivity issues.  Next, enolate formation and trapping with iodide 317, 

delivered the desired α,γ-dicarbonyl compound 318 with excellent de. Reduction and cyclisation 

generated γ-lactone 319 in good yield. The synthesis of peperomin A 310 was completed following 

installation of the exocyclic methyl group in excellent de. Peperomins C and D were prepared by 

similar routes. 
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Scheme 82: First asymmetric total synthesis of (+)-peperomins A by Sibi and co-workers. 

 

4.7.2.  Retrosynthetic Analysis  
 

Two possible retrosynthetic strategies for (±)-peperomin E 308 were conceived (Scheme 83): one 

requiring a nucleophilic ring-opening of tertiary cyclopropane 321 and the other a reductive ring-

opening of quaternary cyclopropane 323.  

 

 
Scheme 83: Retrosynthetic analyses for peperomin E. Ar = 3-methoxy-4,5-

methylenedioxybenzene. 
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From the above retrosynthetic analyses it is clear that the two diazo substrates 321 and 323 are 

structurally related, and it was hoped that both would be accessible in order to attempt each route, 

although the latter approach was initially selected on the basis that the reductive ring-opening had 

already been successfully performed on related systems. 

 

The retrosynthetic approach to diazo compounds 320 and 322 is shown in Scheme 84. It was 

envisaged that both diazo compounds could be derived from cinnamate 326 as a common 

precursor. Diarylacrylate 327 could be constructed via a cross-coupling reaction between 

cinnamate 326 and aryl iodide 325, which each in turn could originate from the same 

commercially-available aldehyde 324. 

 

 
Scheme 84: Retrosynthetic strategy for diazo compounds 320 and 322. 
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4.7.3.  Model studies 
 

Prior to attempting the synthesis of the natural product target, it was decided to test an 

unsubstituted-phenyl analogue as a model system to confirm that the proposed synthesis of the 

extremely sterically hindered cyclopropane was achievable. Accordingly, diphenylacrylate 329 was 

prepared by utilising a double Heck arylation of ethyl acrylate 328, as reported by Chen and co-

workers.152 Subsequent DIBAL reduction, acylation and diazotisation generated key substrate 332, 

which was then subjected to the standard Rh2(oct)4 conditions, and pleasingly, furnished the 

desired quaternary cyclopropane 333, in 51% isolated yield (Scheme 85). The modest yield was 

attributed to the formation of aldehyde 334, which was considered to arise from β-lactone 

formation and subsequent a [2+2]-cycloreversion reaction, as proposed earlier (see Scheme 73). 

Cyclopropane 333 was then taken forward and reacted with SmI2 in THF, delivering 

phosphonolactone 335. To conclude, a HWE olefination generated the analogue of peperomin E, 

α-methylene-γ-butyrolactone 336, as a fully characterised product in a reasonable unoptimised 

yield. 

 

 
Scheme 85: Model studies for peperomin E. 
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4.7.4.  Total synthesis of (±)-peperomin E 
 

Having completed the model studies, the synthesis of peperomin E commenced with the efficient 

synthesis of cinnamate 326, via Wittig olefination with 

(carbethoxymethylene)triphenylphosphorane 337 and aldehyde 324. The synthesis of iodide 325 

then began by treating aldehyde 324 with concentrated nitric acid,153 delivering the desired 

nitrobenzene 338 via nitrodeformylation. Penta-substituted nitrobenzene side-product 339 was also 

isolated. The desired tetra-substituted nitrobenzene was then reduced with Pd on carbon in the 

presence of ammonium formate delivering aniline 340,154 before diazotisation with tert-butyl nitrite 

and fluoroboric acid generated aryldiazonium salt 341.155 Diazonium salts can be tailored to be less 

thermally sensitive by utilising tetrafluoroborate counterions,156 but even so, the salt was swiftly 

treated with KI, completing the synthesis of aryl iodide 325. 

 

 
Scheme 86: Divergent synthesis of cinnamate 326 and iodide 325 from aldehyde 324. 

 

With iodide 325 and cinnamate 326 in-hand, the cross-coupling was investigated. Two Heck 

approaches were available to us: 1) diarylation of ethyl acrylate 328 or 2) monoarylation of 

cinnamate 326. Both were performed to assess the most efficient route (Scheme 87). The 

palladium-catalysed double Heck reaction was tested first, using conditions developed by Chen et 

al.,152 and this delivered the desired diarylacrylate 327, albeit in a modest 35% yield. In contrast, 

OMe

324

O

O

O

EtO
PPh3

337

OMe

326, 95%

O

O
EtO

O

THF, Δ

OMe

338, 59%

O2N

O

Oconc. HNO3

0 °C

Pd/C, 
NH4+ HCO2-

+

OMe

339, 29%

O

O

OMe

340, 93%

H2N

O

O

O2N

MeOH

KI, 
acetone/water

HBF4, 
tBuONO,

EtOH

OMe

341, 91%

N2

O

O

OMe

325, 61%

I

O

O

BF4

H

O

H

O



 118 

the monoarylation of cinnamate 326 using conditions, developed by Moreno-Mañas,157 also using 

iodide 325, supplied diarylacrylate 327 in a much more practical 87% yield. 

 

 
Scheme 87: Alternative approaches to diarylacrylate 327. 

 

4.7.4.1.  Alternative C–H insertion route 
 

Prior to attempting the cyclopropanation route, we decided that an alternative approach, using the 

C–H insertion methodology developed earlier, could first be attempted, given that we had a 

sufficient quantity of diarylacrylate 327 in-hand. This route (Scheme 88) was speculative, as 

previous attempts to incorporate the 3,4-methylenedioxybenzene group were unsuccessful. 

 

 
Scheme 88: Proposed C–H insertion route towards peperomin E via phosphonate 343. 

 

Following the preparation of diarylacrylate 327, a simple DIBAL reduction and T3P-mediated 

acylation afforded phosphonate 345, which was then was reduced under a hydrogen atmosphere 

using Pd on carbon, forming saturated phosphonate 346 in 61% yield (Scheme 89).  Unfortunately, 

side-product 347 was formed in 29% yield, arising from an unforeseen π-allyl formation, β-hydride 

elimination and olefin reduction sequence. Even so, the diazotisation of phosphonate 346 

successfully generated the key diazo compound 342 in 51% yield. Following treatment of diazo 

compound 342 with Rh2(oct)4 in CH2Cl2 for 18 h, the solution had turned from the characteristic 

green colour to a red-brown. As anticipated, the desired C–H insertion product 343 was not 

observed by either TLC or 1H NMR analysis, however, the starting material did remain. Evidently, 

the presence of the 3,4-methylenedioxy units appears to be detrimental to the catalytic process, 

probably due to coordination of the oxygen lone pairs to the rhodium carbenoid. 
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Scheme 89: Attempted synthesis of peperomin E via a C–H insertion approach.  
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4.7.4.2.  Cyclopropanation route 
 

Continuing with the originally designed cyclopropanation route, phosphonate 345 was diazotised, 

furnishing diazo compound 322 in excellent yield. We were then in a position to test the key 

rhodium(II)-catalysed cyclopropanation step. The treatment of diazo compound 322 under the 

standard Rh2(oct)4 conditions delivered the desired bicyclic lactone 323, although in just 35% 

yield. A modest improvement could be made, with a 41% isolated yield, by switching to the more 

bulky Rh2(tpa)4 catalyst. Then, samarium(II) iodide-mediated reductive ring-opening delivered the 

monocyclic lactone 343 in good yield. 

 

 
Scheme 90: Preparation of diazo precursor 322 for the Rh(II)-catalysed cyclopropanation and 

Sm(II) iodide-mediated ring-opening steps towards peperomin E. 

 

Finally, a facile HWE olefination of phosphonate 343 afforded (±)-peperomin E 308 in excellent 

yield (Scheme 91), completing its first known synthesis. Spectroscopic data were in accord with 

those reported in the isolation paper (see Appendix I for comparison tables and spectra).145 

 

 
Scheme 91: Horner–Wadsworth–Emmons olefination delivering (±)-peperomin E 308. 
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4.8  Conclusions 
 

A simple procedure has been developed for the efficient synthesis of α-phosphoryl-3-

oxabicyclo[3.1.0]hexanones, the first successful examples of a rhodium(II)-catalysed 

cyclopropanation route to this class of compound. A variety of aliphatic and aromatic substituted 

systems were prepared, exploring the effects of substitution on reaction outcome. As hoped, these 

systems have been shown to perform well in ring-opening reactions, in line with other donor-

acceptor substituted cyclopropanes. The nucleophilic and reductive ring-opening reactions have 

thus far generated products with complete regio- and diastereoselectivity. 

 

The methodology was successfully applied to the synthesis of three α-methylene-γ-butyrolactone 

natural products: (±)-savinin 174, (±)-gadain 307 and notably, the first total synthesis of (±)-

peperomin E 308. 

 

4.9  Future Work 
 

Following the successful synthesis of peperomin E via the reductive ring-opening of quaternary 

bicyclic lactone 323, a natural extension of the work would be to perform the synthesis using the 

second proposed route; the nucleophilic ring-opening of tertiary cyclopropane 321, discussed 

earlier (see, Scheme 83). Preliminary work towards this goal was performed with the requisite 

bicyclic lactone 321 synthesised from diazo compound 320 in good yield (Scheme 92). An ensuing 

ring-opening with the corresponding aryl unit would afford γ-lactone 343, completing the formal 

synthesis, but there was insufficient time to complete this sequence. 

 

 
Scheme 92: Rhodium(II)-catalysed cyclopropanation and proposed nucleophilic ring-opening route 

towards peperomin E. 

 

The development of general methodology for the nucleophilic ring-opening reactions of α-

phosphoryl-3-oxabicyclo[3.1.0]hexanones with a variety of nucleophiles including carbon, oxygen, 

Rh2(oct)4
CH2Cl2, 45 °C

320 321, 64%

O

O
P
O

OEt
OEt

N2

O

O
P

H

O OEt
OEt

O

O

O

O

OMe
OMe

nucleophilic 
ring-opening

[M]

O

O

OMe
343

O

O P

Ar
Ar

O

OEt
OEt



 122 

nitrogen and sulfur would also be valuable. The phosphonate functional group provides a useful 

synthetic handle for the installation of olefins, potentially expanding the range of heterocyclic 

products that could be prepared. The push-pull nature of the donor-acceptor moiety also allows the 

possibility of performing cycloadditions and annulations (Scheme 93). These reactions need not be 

limited to bicyclic lactones, with the synthesis of the analogous cyclopentanones and γ-lactams also 

appearing to be feasible.  

 

 
Scheme 93: Proposed elaboration of α-phosphoryl-3-oxabicyclo[3.1.0]hexanones. 

 

In addition to the above proposed work, the scope of the rhodium(II)-catalysed cyclopropanation 

reaction could be further examined for the purpose of identifying additional synthetically valuable 

frameworks. Furthermore, in line with previous precedent within the Taylor group, the 

development of tandem processes and combining multiple aspects of these reactions would also 

serve to increase the impact of these procedures, with the development of a one-pot ring-opening 

and HWE olefination procedure for the synthesis of α-methylene-γ-butyrolactones, being the 

ultimate goal. 
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Chapter 5 –   Experimental 
5.1  General Experimental Details 

 

Except where stated, all reagents were purchased from commercial sources and used without 

further purification. Except where stated, all experimental procedures were carried out under an 

atmosphere of argon or nitrogen. Anhydrous CH2Cl2, toluene and DMF were obtained from an 

Innovative Technology Inc. PureSolv® solvent purification system. Anhydrous THF was obtained 

by distillation over sodium benzophenone ketyl immediately before use. 1H NMR, 13C NMR and 
31P NMR spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer, operating at 

400 MHz, 100 MHz and 162 MHz respectively. All spectral data were acquired at 295 K. Chemical 

shifts (δ) are quoted in parts per million (ppm). The residual solvent peak, δH 7.26 and δC 77.0 for 

CDCl3, δH 2.50 and δC 39.5 for DMSO-d6 and δH 7.16 and δC 128.1 for benzene-d6 was used as a 

reference. Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity 

abbreviations used are: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Signal 

assignment was achieved by analysis of DEPT, COSY, NOESY, HMBC and HSQC experiments 

where required. Spectra were processed using ‘iNMR’ software which can be obtained free of 

charge online. Infrared (IR) spectra were recorded on either a ThermoNicolet IR-100 spectrometer 

with NaCl plates as a thin film dispersed from either CH2Cl2 or CDCl3, or a PerkinElmer UATR 

Two spectrometer. Mass-spectra were obtained by the University of York Mass Spectrometry 

Service, using electrospray ionisation (ESI) or atmospheric pressure chemical ionisation (APCI) on 

a Bruker Daltonics, Micro-tof spectrometer. Melting points were determined using Gallenkamp 

apparatus and are uncorrected. Thin layer chromatography was carried out on Merck silica gel 

60F254 pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained 

with basic aqueous potassium permanganate. Flash column chromatography was carried out using 

slurry packed Fluka silica gel (SiO2), 35–70 µm, 60 Å, under a light positive pressure, eluting with 

the specified solvent system. No issues associated with instability or decomposition of the azide 

reagents or diazo products were observed, with no special handling precautions required. 

Numbering schemes for compounds refer to NMR assignments not to compound naming. 
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General procedure A: Esterifications using T3P 

 
 

To a stirred solution of alcohol A (8.00 mmol) in toluene (40 mL) under an atmosphere of argon, 

was added sequentially DEPAA (8.40 mmol, 1.05 eq.), DIPEA (20.8 mmol, 2.6 eq.) and T3P (10.4 

mmol, 1.3 eq., 50% w/w solution in EtOAc/THF). The solution was stirred at RT for 1–4 h after 

which time it was diluted with water (50 mL) and extracted with EtOAc (3 × 100 mL) followed by 

sequential washing of the combined organic extracts with 10% aq. HCl (50 mL), sat. aq. NaHCO3 

(50 mL) and brine (50 mL). The organic extract was then dried over MgSO4 and concentrated in 

vacuo, affording the α-(diethoxyphosphoryl)acetate product B, which was used without further 

purification. 

General procedure B: Diazotisation reactions using LHMDS or NaH 

 
 

To a stirred solution of α-(diethoxyphosphoryl)acetate B (5.0 mmol) in THF (25 mL, 5 mL/mmol), 

cooled to −78 °C under an atmosphere of argon, was added LHMDS (6.0 mmol, 1.2 eq., 1.0 M 

solution in THF) or NaH (6.0 mmol, 1.2 eq., 60% dispersion in mineral oil).  The solution was 

allowed to warm at RT and stirred for 10 mins, after which time p-ABSA or DBSA (6.0 mmol, 1.2 

eq.) was added to the solution. After stirring for 1 h at RT the mixture was diluted with diethyl 

ether (100 mL) and water (25 mL) prior to extraction with diethyl ether (3 × 50 mL). The combined 

organic extracts were washed with sat. aq. NaHCO3 (2 × 25 mL), dried over MgSO4, concentrated 

in vacuo and purified by column chromatography affording the α-

diazo(diethoxyphosphoryl)acetate product C. 
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General procedure C: Diazotisation reactions using DBU 

 
 

To a stirred solution of α-(diethoxyphosphoryl)acetate B (5.0 mmol) and p-ABSA or DBSA (7.5 

mmol, 1.5 eq.) in CH2Cl2 (50 mL, 10 mL/mmol) cooled to 0 °C under an atmosphere of argon, was 

added DBU (7.5 mmol, 1.5 eq.) dropwise. The solution was stirred overnight with warming at RT, 

after which time the mixture was filtered through a pad of Celite and silica. The filtrate was 

concentrated in vacuo then purified by column chromatography affording the α-

diazo(diethoxyphosphoryl)acetate product C. 

General procedure D: One-pot Rh(II)-catalysed C-H insertion/olefination (CH2Cl2 

with THF switch) 

 
 

To an oven dried sealable tube containing α-diazo(diethoxyphosphoryl)acetate C (0.200 mmol) 

flushed with argon was added CH2Cl2 (4.0 mL) followed by Rh2(oct)4 or Rh2(esp)2 (2 or 5 mol%). 

The solution was stirred at 45 °C for 20 h and then concentrated in vacuo. The residue was diluted 

with THF (4.0 mL) and cooled to 0 °C prior to the addition of KOBu-t (0.9, 1.2 or 1.5 equiv.) 

which was stirred at 0 °C for 60 mins and then cooled to −78 °C. Aldehyde (2.0, 5.0 or 10.0 equiv.) 

was added to the solution and stirred for 15 mins at −78 °C and a further 2 h at either 0 °C, RT or 

reflux. The solution was quenched with sat. aq. NH4Cl (10 mL) and then diluted with CH2Cl2 (20 

mL). The organic layer was separated and the aqueous extracted with EtOAc (2 × 20 mL). The 

organic extracts were dried over Na2SO4, concentrated in vacuo and purified by column 

chromatography affording the α-methylene/alkylidene-γ-butyrolactone product D. 
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General procedure E: One-pot Rh(II)-catalysed C-H insertion/olefination (CH2Cl2) 

 

 
 

To an oven dried sealable tube containing α-diazo(diethoxyphosphoryl)acetate C (0.200 mmol) 

flushed with argon was added CH2Cl2 (4.0 mL) followed by Rh2(oct)4 or Rh2(esp)2 (2 or 5 mol%). 

The solution was stirred at 45 °C for 20 h. The solution was cooled to 0 °C prior to the addition of 

KOBu-t (0.9, 1.2 or 1.5 equiv.) which was stirred at 0 °C for 60 mins and then cooled to −78 °C. 

Aldehyde (2.0, 5.0 or 10.0 equiv.) was added to the solution and stirred for 15 mins at −78 °C and a 

further 2 h at either 0 °C, RT or reflux. The solution was quenched with sat. aq. NH4Cl (10 mL) 

and then diluted with CH2Cl2 (20 mL). The organic layer was separated and the aqueous extracted 

with EtOAc (2 × 20 mL). The combined organic extracts were dried over Na2SO4, concentrated in 

vacuo and purified by column chromatography affording the α-methylene/alkylidene-γ-

butyrolactone product D. 

General procedure F: Rh(II)-catalysed cyclopropanation 

 

 
 

To an oven dried sealable tube containing α-diazo-α-(dialkoxyphosphoryl)acetate E (0.200 mmol) 

flushed with argon was added CH2Cl2 (4.0 mL) followed by Rh2(oct)4 (2 mol%). The solution was 

stirred at 45 °C for 20 h and then concentrated in vacuo. The residue was purified by column 

chromatography affording the 3-oxabicyclo[3.1.0]hexan-2-one product F. 
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Preparation of samarium(II) iodide in THF (~0.1 M) 

 

To an oven dried 100 mL one-neck RBF equipped with oven dried Teflon-coated magnetic stirrer 

bar, was added samarium metal (825 mg, 6.50 mmol, 99.9% REO (Rare Earth Oxide basis), 

powder, Strem). [The samarium appeared as silvery/grey and metallic at this point.] The flask was 

tightly sealed with a suba-seal and wrapped in Parafilm®, then purged with argon (balloon) for 10 

mins. This was stirred under a positive pressure of argon and stirred at medium to high speed for 16 

h. [The samarium appeared as a fine black powder at this point (A).] THF (22.5 mL) was added, 

followed by iodine (698 mg, 2.75 mmol) dissolved in THF (5 mL). [The solution immediately 

turned from a black suspension to an orange/brown suspension (B).] The suba-seal was again 

wrapped with Parafilm® and stirring was continued for 2 h. [The mixture turned from 

orange/brown to green then to dark blue, almost black, typically within the first 5–15 mins (C–F).] 

The solution of SmI2 (~0.1 M) was allowed to settle prior to use. 

See images below for colour changes. 

 

    
A                                                            B                                                                    C 

 

   
D                                                                   E                                                                    F 
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5.2  Reaction procedures and compound characterisations 

5.2.1.  Chapter 2 

5.2.1.1.  Preparation of α-methylene-γ-butyrolactones 
 

Experimental procedures and full characterisation data are provided for all novel compounds. 

Literature compounds are not reported, but were prepared according to the available procedures, 

where provided, or adapted from similar procedures. 

Phenethyl 2-(diethoxyphosphoryl)acetate (116a) 
 

 
 

Synthesised using general procedure A with phenethyl alcohol 116 (977 mg, 8.00 mmol), toluene 

(40 mL), DEPAA (1.35 mL, 8.40 mmol), DIPEA (3.62 mL, 20.8 mmol) and T3P (6.62 g, 10.4 

mmol, 50% w/w solution in EtOAc) affording the title compound 116a as a yellow oil (2.40 g, 

100%). No further purification was required; Rf 0.34 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2984s, 1738s, 1269m, 1052m, 1025m; δH (400 MHz, CDCl3) 1.31 (6 H, td, J = 7.1, J = 0.5, H-4), 

2.96 (2 H, t, J = 7.2, H-6), 2.96 (2 H, d, J = 21.6, H-2), 4.13 (4 H, dq, J = 8.3, J = 7.1, H-3), 4.35 (2 

H, t, J = 7.2, H-5), 7.20–7.25 (3 H, m, H-8/9,10), 7.28–7.33 (2 H, m, H-8/9); δC (100 MHz, CDCl3) 

16.3 (d, J = 6.2, C-4), 34.3 (d, J = 134.3, C-2), 34.8 (C-6), 62.6 (d, J = 6.4, C-3), 66.0 (C-5), 126.6 

(C-10), 128.5 (C-9), 128.8 (C-8), 137.4 (C-7), 165.7 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 20.2; 

HRMS (ESI+): Found: 323.1020; C14H21NaO5P (MNa+) Requires 323.1019 (−0.3 ppm error), 

Found: 301.1200; C14H22O5P (MH+) Requires 301.1199 (−0.1 ppm error). 

Lab notebook reference: MGL/02/55 
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Phenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (116b) 

 

 
 

Synthesised using general procedure B with phenethyl 2-(diethoxyphosphoryl)acetate 116a (2.39 g, 

7.96 mmol), THF (40 mL), LHMDS (9.55 mL, 9.55 mmol, 1.0 M solution in THF) and p-ABSA 

(2.29 g, 9.55 mmol). Purification by column chromatography (2:1 petrol:EtOAc) afforded the title 

compound 116b as a golden yellow oil (1.42 g, 55%); Rf 0.48 (1:1 petrol:EtOAc); νmax (thin 

film)/cm-1 2984m, 2925m, 2129s, 1709s, 1280s, 1022s; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 

7.1, J = 0.7, H-4), 2.97 (2 H, t, J = 6.9, H-6), 4.04–4.23 (4 H, m, H-3), 4.41 (2 H, t, J = 6.9, H-5), 

7.19–7.26 (3 H, m, H-8/9,10), 7.28–7.34 (2 H, m, H-8/9); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-

4), 35.0 (C-6), 53.8 (d, J = 226.7, C-2), 63.5 (d, J = 5.9, C-3), 65.9 (C-5), 126.6 (C-10), 128.4 (C-

9), 128.8 (C-8), 137.2 (C-7), 163.2 (d, J = 12.3, C-1); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): 

Found: 349.0921; C14H19N2NaO5P (MNa+) Requires 349.0929 (2.4 ppm error), Found: 327.1100; 

C14H20N2O5P (MH+) Requires 327.1110 (3.2 ppm error). 

Lab notebook reference: MGL/01/03, 02/56 

Diethyl ((3SR,4RS)-2-oxo-4-phenyltetrahydrofuran-3-yl)phosphonate (116c)  
 

 
 

To an oven dried sealable tube containing phenethyl 2-diazo-2-(diethoxyphosphoryl)acetate 116b 

(51 mg, 0.160 mmol) flushed with argon was added CH2Cl2 (3.2 mL) followed by Rh2(oct)4 (6.1 

mg, 7.8 µmol). The solution was stirred at 45 °C for 23 h. Concentration in vacuo and purification 

by column chromatography (1:1 petrol:EtOAc) afforded the title compound 116c as a colourless oil 

that crystallised on standing (24 mg, 51%); Rf 0.25 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 
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2984w, 2912w, 1775s, 1253w, 1205m; m.p. 73–77 °C; δH (400 MHz, CDCl3) 1.26 (3 H, td, J = 7.1, 

J = 0.5, H-6/6’), 1.31 (3 H, td, J = 7.1, J = 0.5, H-6/6’), 3.16 (1 H, dd, J = 23.8, J = 5.9, H-2), 4.00–

4.26 (5 H, m, H-3,5,5’), 4.35 (1 H, dd, J = 9.1, J = 5.1, H-4), 4.77 (1 H, dd, J = 9.1, J = 7.8, H-4), 

7.23–7.27 (2 H, m, H-8), 7.28–7.33 (1 H, m, H-10), 7.34–7.39 (2 H, m, H-9); δC (100 MHz, 

CDCl3) 16.2 (d, J = 6.2, C-6/6’), 16.3 (d, J = 6.1, C-6/6’), 43.5 (d, J = 2.1, C-3), 47.2 (d, J = 140.4, 

C-2), 63.1 (d, J = 6.9, C-5/5’), 63.8 (d, J = 6.6, C-5/5’), 73.7 (d, J = 6.8, C-4), 126.7 (C-8), 128.0 

(C-10), 129.2 (C-9), 140.2 (d, J = 7.9, C-7), 171.6 (d, J = 2.9, C-1); δP (162 MHz, CDCl3) 19.8; 

HRMS (ESI+): Found: 321.0855; C14H19NaO5P (MNa+) Requires 321.0862 (2.4 ppm error), Found: 

299.1035; C14H20O5P (MH+) Requires 299.1043 (2.5 ppm error). 

Lab notebook reference: MGL/01/04, 01/05 

 

Note: The 1H NMR data of compound 116c match those reported158 with the exception of the H-3 

resonance: 4.00−4.26  (5 H, m, H-3,5a,5b) [lit. 3.65 (dd, J = 6.5 Hz, 3JPH = 6.0 Hz, 1H, H-3)]. In 

view of the fact that the X-ray structure of 116c was solved it seems likely that there is an error in 

the previously reported data. 

(SR)-3-Methylene-4-phenyldihydrofuran-2(3H)-one (116d) 
 

 
 

Synthesised using general procedure E with phenethyl 2-diazo-2-(diethoxyphosphoryl)acetate 116b 

(71 mg, 0.218 mmol), CH2Cl2 (4.4 mL), Rh2(oct)4 (3.4 mg, 4.4 µmol), KOBu-t (29.3 mg, 0.262 

mmol) and paraformaldehyde (13.1 mg, 0.436 mmol). Purification by column chromatography (5:1 

petrol:EtOAc) afforded the title compound as a colourless oil (28 mg, 74%); Rf 0.52 (4:1 

petrol:EtOAc); νmax (thin film)/cm-1 2919s, 1763s, 1108s, 1018s; δH (400 MHz, CDCl3) 4.21–4.31 

(2 H, m, H-3,4), 4.68–4.77 (1 H, m, H-4), 5.49 (1 H, d, J = 2.7, H-5b), 6.39 (1 H, d, J = 3.1, H-5a), 

7.21–7.25 (2 H, m, H-7), 7.29–7.34 (1 H, m, H-9), 7.35–7.41 (2 H, m, H-8); δC (100 MHz, CDCl3) 

45.6 (C-3), 72.7 (C-4), 124.0 (C-5), 127.8 (C-7/8/9), 127.8 (C-7/8/9) 129.2 (C-7/8/9), 138.8 (C-

2/6), 139.5 (C-2/6), 170.1 (C-1); HRMS (ESI+): Found: 197.0571; C11H10NaO2 (MNa+) Requires 

197.0578 (3.6 ppm error), Found: 175.0752; C11H11O2 (MH+) Requires 175.0759 (3.8 ppm error). 

Lab notebook reference: MGL/03/03, 01/10 

Obtained data in accord with reported literature.159 
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4-Methoxyphenethyl 2-(diethoxyphosphoryl)acetate (117a) 

 

 
 

Synthesised using general procedure A with 4-methoxyphenethyl alcohol 117 (3.00 g, 19.7 mmol), 

toluene (100 mL), DEPAA (3.32 mL, 20.7 mmol), DIPEA (8.93 mL, 51.3 mmol) and T3P (16.3 g, 

25.6 mmol, 50% w/w solution in THF) affording the title compound 117a as a yellow oil (6.53 g, 

100%). No further purification was required; Rf 0.21 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

3419w, 2937s, 1709s, 1491m, 1229s, 1098w, 1011s, 955w; δH (400 MHz, CDCl3) 1.32 (6 H, td, J 

= 7.1, J = 0.5, H-4), 2.89 (2 H, t, J = 7.2, H-6), 2.95 (2 H, d, J = 21.6, H-2), 3.78 (3 H, s, H-11), 

4.13 (4 H, dq, J = 8.2, J = 7.1, H-3), 4.31 (2 H, t, J = 7.2, H-5), 6.84 (2 H, d, J = 8.7, H-9), 7.14 (2 

H, d, J = 8.7, H-8); δC (100 MHz, CDCl3) 16.3 (d, J = 6.3, C-4), 34.0 (C-6), 34.3 (d, J = 134.2, C-

2), 55.2 (C-11), 62.6 (d, J = 6.2, C-3), 66.2 (C-5), 113.9 (C-9), 129.4 (C-7), 129.8 (C-8), 158.7 (C-

10), 165.9 (d, J = 6.3, C-1); δP (162 MHz, CDCl3) 20.3; HRMS (ESI+): Found: 353.1117; 

C15H23NaO6P (MNa+) Requires 353.1124 (2.2 ppm error), Found: 331.1302; C15H24O6P (MH+) 

Requires 331.1305 (0.9 ppm error). 

Lab notebook reference: MGL/01/16 
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4-Methoxyphenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (117b) 

 

 
 

Synthesised using general procedure B with 4-methoxyphenethyl 2-(diethoxyphosphoryl)acetate 

117a (3.30 g, 10.0 mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 mmol, 1.0 M solution in THF) 

and p-ABSA (2.88 g, 12.0 mmol). Purification by column chromatography (2:1 petrol:EtOAc) 

afforded the title compound 117b as a pale yellow oil (2.00 g, 56%); Rf 0.43 (1:1 petrol:EtOAc); 

νmax (thin film)/cm-1 3434m, 2939s, 2794s, 2097s, 1682s, 1491m, 1261m, 1230w, 1007w, 964w; δH 

(400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.8, H-4), 2.90 (2 H, t, J = 6.9, H-6), 3.78 (3 H, s, H-

11), 4.04–4.22 (4 H, m, H-3), 4.36 (2 H, t, J = 6.9, H-5), 6.83 (2 H, d, J = 8.8, H-9), 7.12 (2 H, d, J 

= 8.8, H-8); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 34.2 (C-6), 53.7 (d, J = 226.0, C-2), 55.2 

(C-11) 63.5 (d, J = 5.6, C-3), 66.1 (C-5), 113.9 (C-9), 129.2 (C-7), 129.8 (C-8), 158.3 (C-10), 

163.2 (d, J = 12.2, C-1); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 379.1011; 

C15H21N2NaO6P (MNa+) Requires 379.1029 (4.8 ppm error), Found: 357.1196; C15H22N2O6P 

(MH+) Requires 357.1210 (4.0 ppm error). 

Lab notebook reference: MGL/01/18 
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Diethyl ((3SR,4RS)-4-(4-methoxyphenyl)-2-oxotetrahydrofuran-3-yl)phosphonate 

(117c) 
 

 
 

To an oven dried sealable tube containing 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (62 mg, 0.174 mmol) flushed with argon was added CH2Cl2 (3.5 

mL) followed by Rh2(esp)2 (11.0 mg, 14.0 µmol). The solution was stirred at 45 °C for 23 h. 

Concentration in vacuo and purification by column chromatography (1:1 petrol:EtOAc) afforded 

the title compound 117c as a colourless oil (67 mg, 64%); Rf 0.26 (1:1 petrol:EtOAc); νmax (thin 

film)/cm-1 3412s, 2937s, 2870s, 2796w, 1748s, 1588w, 1493m, 1233m, 1162w, 1011m, 959w; δH 

(400 MHz, CDCl3) 1.25 (3 H, td, J = 7.1, J = 0.5, H-6/6’), 1.30 (3 H, td, J = 7.1, J = 0.5, H-6/6’), 

3.10 (1 H, dd, J = 23.8, J = 6.2, H-2), 3.78 (3 H, s, H-11), 3.95–4.24 (5 H, m, H-3,5), 4.28 (1 H, dd, 

J = 9.1, J = 5.3, H-4), 4.72 (1 H, dd, J = 9.1, J = 7.8, H-4), 6.87 (2 H, d, J = 8.7, H-9), 7.15 (2 H, d, 

J = 8.7, H-8); δC (100 MHz, CDCl3) 16.2 (d, J = 6.2, C-6/6’), 16.3 (d, J = 6.2, C-6/6’), 42.7 (d, J = 

2.2, C-3), 47.3 (d, J = 140.4, C-2), 55.3 (C-11), 62.9 (d, J = 6.8, C-5/5’), 63.7 (d, J = 6.4, C-5/5’), 

73.8 (d, J = 7.0, C-4), 114.5 (C-9), 127.7 (C-8), 132.0 (d, J = 7.8, C-7), 159.1 (C-10), 171.6 (d, J = 

2.7, C-1); δP (162 MHz, CDCl3) 19.9; HRMS (ESI+): Found: 351.0961; C15H21NaO6P (MNa+) 

Requires 351.0968 (1.9 ppm error), Found: 329.1160; C15H22O6P (MH+) Requires 329.1149 (−3.6 

ppm error). 

Lab notebook reference: MGL/01/19  

O

O
34

1
2

7

8

9
10

P O
O

O
5

6

6'
5'

117c

Rh2(esp)2

CH2Cl2

117b

O

O
P O

O

O

OMe

N2

OMe11



 134 

4-Methoxyphenethyl 2-(diethoxyphosphoryl)-2-hydroxyacetate (117d) 

 

 
 

To a solution of 4-methoxyphenethyl 2-diazo-2-(diethoxyphosphoryl)acetate 117b (75.0 mg, 0.210 

mmol) in CH2Cl2 (40 mL) in a 100 mL rbf, fitted with a reflux condenser flushed with argon was 

added Rh2(oct)4 (3.3 mg, 4.2 µmol). The solution was stirred at 45 °C for 24 h. Concentration in 

vacuo and purification by column chromatography (1:2 petrol:EtOAc) afforded the title compound 

117d as a colourless oil (37 mg, 51%); Rf 0.17 (1:2 petrol:EtOAc); νmax (thin film)/cm-1 3272br, 

2983w, 2845w, 1748s, 1613w, 1514s, 1246s, 1178w, 1101m, 1023s, 975m; δH (400 MHz, CDCl3) 

1.32 (6 H, t, J = 7.1, H-4,4’), 2.95 (2 H, t, J = 7.2, H-6), 3.25 (1 H, br s, OH), 3.78 (3 H, s, H-11), 

4.11–4.23 (4 H, m, H-3), 4.44 (2 H, t, J = 7.2, H-5), 4.52 (1 H, d, J = 15.7, H-2), 6.84 (2 H, d, J = 

8.7, H-9), 7.15 (2 H, d, J = 8.7, H-8); δC (100 MHz, CDCl3) 16.4 (d, J = 5.9, C-4,4’), 34.0 (C-6), 

55.2 (C-11), 63.5 (d, J = 6.8, C-3/3’), 63.8 (d, J = 6.8, C-3/3’), 67.3 (C-5), 68.8 (d, J = 154.8, C-2), 

114.0 (C-9), 128.9 (C-7), 129.9 (C-8), 158.5 (C-10), 169.5 (C-1); δP (162 MHz, CDCl3) 16.1; 

HRMS (ESI+): Found: 369.1064; C15H23NaO7P (MNa+) Requires 369.1074 (2.5 ppm error). 

Lab notebook reference: MGL/02/50B 

(SR)-4-(4-Methoxyphenyl)-3-methylenedihydrofuran-2(3H)-one (117e) 

 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (68 mg, 0.191 mmol), CH2Cl2 (3.8 mL), Rh2(oct)4 (3.0 mg, 3.8 
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µmol), THF (3.8 mL), KOBu-t (32.1 mg, 0.287 mmol) and paraformaldehyde (11.5 mg, 0.382 

mmol). Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compound 

117e as a colourless oil (30 mg, 71%); Rf 0.30 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 3456s, 

2914m, 2872s, 2795s, 1740s, 1587m, 1491s, 1273w, 1233m, 1163w, 1094w, 1016w, 821w; δH 

(400 MHz, CDCl3) 3.81 (3 H, s, H-10), 4.16–4.24 (2 H, m, H-3,4), 4.64–4.74 (1 H, m, H-4), 5.46 

(1 H, d, J = 2.7, H-5b), 6.36 (1 H, d, J = 3.0, H-5a), 6.90 (2 H, d, J = 8.7, H-8), 7.14 (2 H, d, J = 

8.7, H-7); δC (100 MHz, CDCl3) 45.0 (C-3), 55.3 (C-10), 72.9 (C-4), 114.5 (C-8), 123.7 (C-5), 

129.0 (C-7) 131.3 (C-6), 139.1 (C-2), 159.1 (C-9), 170.2 (C-1); HRMS (ESI+): Found: 227.0688; 

C12H12NaO3 (MNa+) Requires 227.0679 (−4.3 ppm error). 

Lab notebook reference: MGL/03/94, 01/20 

2-(1,3-Benzodioxol-5-yl)ethyl 2-(diethoxyphosphoryl)acetate (118a) 

 

 
 

Synthesised using general procedure A with 2-(1,3-benzodioxol-5-yl)ethanol 118 (1.31 g, 7.85 

mmol), toluene (40 mL), DEPAA (1.33 mL, 8.25 mmol), DIPEA (3.56 mL, 20.4 mmol) and T3P 

(6.50 g, 10.2 mmol, 50% w/w solution in EtOAc) affording the title compound 118a as an orange 

oil (2.69 g, 100%). No further purification was required; Rf 0.35 (1:2 petrol:EtOAc); νmax (thin 

film)/cm-1 2938s, 2865s, 1710s, 1468m, 1230s, 1013m; δH (400 MHz, CDCl3) 1.31 (6 H, td, J = 

7.1, J = 0.4, H-4), 2.86 (2 H, t, J = 7.1, H-6), 2.94 (2 H, d, J = 21.6, H-2), 4.13 (4 H, dq, J = 8.3, J = 

7.1, H-3), 4.28 (2 H, t, J = 7.1, H-5), 5.91 (2 H, s, H-11), 6.65 (1 H, dd, J = 7.9, J = 1.7, H-8), 6.71 

(1 H, d, J = 1.7, H-13), 6.72 (1 H, d, J = 7.9, H-9); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 

34.3 (d, J = 134.3, C-2), 34.6 (C-6), 62.6 (d, J = 6.2, C-3), 66.1 (C-5), 100.8 (C-11), 108.2 (C-9), 

109.2 (C-13), 121.8 (C-8), 131.1 (C-7), 146.2 (C-10), 147.6 (C-12), 165.7 (d, J = 6.1, C-1); δP (162 

MHz, CDCl3) 20.2; HRMS (ESI+): Found: 367.0908; C15H21NaO7P (MNa+) Requires 367.0917 

(2.5 ppm error), Found: 345.1090; C15H22O7P (MH+) Requires 345.1098 (2.2 ppm error). 

Lab notebook reference: MGL/01/34 
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2-(1,3-Benzodioxol-5-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (118b) 

 

 
 

Synthesised using general procedure B with 2-(1,3-benzodioxol-5-yl)ethyl 2-

(diethoxyphosphoryl)acetate 118a (3.44 g, 10.00 mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 

mmol, 1.0 M solution in THF) and p-ABSA (2.88 g, 12.0 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 118b as a yellow oil (2.02 g, 

55%); Rf 0.38 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2939s, 2098s, 1683s, 1468w, 1262s, 1229w, 

1008m; δH (400 MHz, CDCl3) 1.33 (6 H, td, J = 7.1, J = 0.8, H-4), 2.87 (2 H, t, J = 6.9, H-6), 4.06–

4.24 (4 H, m, H-3), 4.34 (2 H, t, J = 6.9, H-5), 5.92 (2 H, s, H-11), 6.64 (1 H, dd, J = 7.9, J = 1.7, 

H-8), 6.70 (1 H, d, J = 1.7, H-13), 6.73 (1 H, d, J = 7.9, H-9); δC (100 MHz, CDCl3) 16.1 (d, J = 

6.9, C-4), 34.8 (C-6), 53.9 (d, J = 227.3, C-2), 63.6 (d, J = 5.5, C-3), 66.1 (C-5), 100.9 (C-11), 

108.3 (C-9), 109.3 (C-13), 121.8 (C-8), 131.0 (C-7), 146.3 (C-10), 147.7 (C-12), 163.3 (d, J = 12.3, 

C-1); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 393.0807; C15H19N2NaO7P (MNa+) 

Requires 393.0822 (3.9 ppm error), Found: 371.1000; C15H20N2O7P (MH+) Requires 371.1003 (0.8 

ppm error). 

Lab notebook reference: MGL/01/35 
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(SR)-4-(1,3-Benzodioxol-5-yl)-3-methylenedihydrofuran-2(3H)-one (118c) 

 

 
 

Synthesised using general procedure E with 2-(1,3-benzodioxol-5-yl)ethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 118b (79 mg, 0.213 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.3 

µmol), KOBu-t (28.7 mg, 0.256 mmol) and paraformaldehyde (12.8 mg, 0.426 mmol). Purification 

by column chromatography (4:1 petrol:EtOAc) afforded the title compound 118c as a white solid 

(30 mg, 64%); Rf 0.47 (2:1 petrol:EtOAc); νmax (thin film)/cm-1 2873s, 1737s, 1481w, 1466m, 

1229s, 1022m; δH (400 MHz, CDCl3) 4.14–4.23 (2 H, m, H-3,4), 4.64–4.72 (1 H, m, H-4), 5.50 (1 

H, d, J = 2.7, H-5b), 5.97 (2 H, s, H-10), 6.39 (1 H, dd, J = 3.0, H-5a), 6.68 (1 H, d, J = 1.8, H-12), 

6.69 (1 H, dd, J = 7.8, J = 1.8, H-7), 6.79 (1 H, d, J = 7.8, H-8); δC (100 MHz, CDCl3) 45.5 (C-3), 

72.7 (C-4), 101.3 (C-10), 107.8 (C-12), 108.6 (C-8), 121.5 (C-7), 124.0 (C-5), 133.1 (C-6), 138.8 

(C-2), 147.2 (C-9), 148.4 (C-11), 170.1 (C-1); HRMS (ESI+): Found: 241.0482; C12H10NaO4 

(MNa+) Requires 241.0471 (−4.3 ppm error), Found: 219.0657; C12H11O4 (MH+) Requires 

219.0652 (−2.5 ppm error). 

Lab notebook reference: MGL/03/04, 01/39, 01/40 

5
Rh2(oct)4, CH2Cl2
then KOBu-t, THF,

(CH2O)n

118c

O

O
34

1

2

6

7

8 9

Hb

Ha

10O

O

118b

O

O
P O

O

O

O
O

11
12

N2



 138 

3,4,5-Trimethoxyphenethyl 2-(diethoxyphosphoryl)acetate (119a) 

 

 
 

Synthesised using general procedure A with 2-(3,4,5-trimethoxyphenyl)ethanol 119 (205 mg, 0.966 

mmol), toluene (4.80 mL), DEPAA (0.16 mL, 1.01 mmol), DIPEA (0.44 mL, 2.51 mmol) and T3P 

(0.80 g, 1.26 mmol, 50% w/w solution in THF) affording the title compound 119a as a yellow oil 

(360 mg, 95%). No further purification was required; Rf 0.10 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2939w, 2841w, 1733s, 1590s, 1508m, 1459m, 1422m, 1852w, 1238s, 1154w, 1123s, 

1047w, 1018s, 967s, 827m, 778m; δH (400 MHz, CDCl3) 1.28–1.31 (6 H, m, H-4), 2.88 (2 H, t, J = 

7.2, H-6), 2.94 (2 H, d, J = 21.5, H-2), 3.79 (3 H, s, H-11), 3.82 (6 H, s, H-12), 4.07–4.15 (4 H, m, 

H-3), 4.32 (2 H, t, J = 7.2, H-5), 6.41 (2 H, s, H-8); δC (100 MHz, CDCl3) 16.2 (d, J = 6.2, C-4), 

34.2 (d, J = 134.3, C-2), 35.2 (C-6), 56.0 (C-12), 60.7 (C-11), 62.6 (d, J = 6.3, C-3), 65.9 (C-5), 

105.7 (C-8), 132.9 (C-7), 136.6 (C-10), 153.1 (C-9), 165.7 (d, J = 6.0, C-1); δP (162 MHz, CDCl3) 

20.2; HRMS (ESI+): Found: 413.1351; C17H27NaO8P (MNa+) Requires 413.1336 (−3.6 ppm error), 

Found: 391.1528; C17H28O8P (MH+) Requires 391.1516 (−2.9 ppm error). 

Lab notebook reference: MGL/05/11S 

3,4,5-Trimethoxyphenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (119b) 
 

 
 

Synthesised using general procedure B with 3,4,5-trimethoxyphenethyl 2-

(diethoxyphosphoryl)acetate 119a (350 mg, 0.90 mmol), THF (4.5 mL), LHMDS (1.08 mL, 1.08 
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mmol, 1.0 M solution in THF) and p-ABSA (259 mg, 1.08 mmol). Purification by column 

chromatography (1:1 hexane:EtOAc) afforded the title compound 119b as a yellow oil (202 mg, 

54%); Rf 0.21 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2983w, 2940w, 2841w, 2125s, 1704s, 

1590s, 1508m, 1459s, 1422m, 1389m, 1352w, 1274s, 1238s, 1155w, 1124s, 1012s, 977s, 815m, 

745m, 589m, 559m; δH (400 MHz, CDCl3) 1.29 (6 H, td, J = 7.1, J = 0.7, H-4), 2.87 (2 H, t, J = 

6.9, H-6), 3.77 (3 H, s, H-11), 3.80 (6 H, s, H-12), 4.02–4.19 (4 H, m, H-3), 4.36 (2 H, t, J = 6.9, 

H-5), 6.38 (2 H, s, H-8); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 35.4 (C-6), 53.5 (d, J = 

227.1, C-2), 55.9 (C-12), 60.6 (C-11), 63.5 (d, J = 5.6, C-3), 65.9 (C-5), 105.6 (C-8), 132.8 (C-7), 

136.6 (C-10), 153.1 (C-9), 163.1 (d, J = 12.5, C-1); δP (162 MHz, CDCl3) 10.4; HRMS (ESI+): 

Found: 439.1234; C17H25N2NaO8P (MNa+) Requires 439.1241 (1.6 ppm error), Found: 417.1423; 

C17H26N2O8P (MH+) Requires 417.1421 (−0.3 ppm error). 

Lab notebook reference: MGL/05/11 

3-Methylene-4-(3,4,5-trimethoxyphenyl)dihydrofuran-2(3H)-one (119c) 

 

 
 

Synthesised using general procedure D with 3,4,5-trimethoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 119b (77 mg, 0.185 mmol), CH2Cl2 (3.7 mL), Rh2(oct)4 (2.9 mg, 3.7 

µmol), THF (3.7 mL), KOBu-t (31.1 mg, 0.278 mmol) and paraformaldehyde (11.1 mg, 0.370 

mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title compound 

119c as a colourless oil (22 mg, 45%); Rf 0.26 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 2937w, 

1763s, 1660w, 1591m, 1509m, 1461m, 1425m, 1347w, 1242m, 1124s, 1013m; δH (400 MHz, 

CDCl3) 3.83 (3 H, s, H-10), 3.84 (6 H, s, H-11), 4.17–4.24 (2 H, m, H-3,4), 4.68–4.75 (1 H, m, H-

4), 5.56 (1 H, d, J = 2.6, H-5b), 6.40–6.41 (3 H, m, H-5a,7); δC (100 MHz, CDCl3) 45.9 (C-3), 56.2 

(C-11), 60.8 (C-10), 72.7 (C-4), 104.7 (C-7), 124.3 (C-5), 135.2 (C-6), 137.4 (C-9), 138.5 (C-2), 

153.7 (C-8), 170.1 (C-1); HRMS (ESI+): Found: 287.0892; C14H16NaO5 (MNa+) Requires 287.0890 

(−0.5 ppm error), Found: 265.1071; C14H17O5 (MH+) Requires 265.1071 (−0.1 ppm error). 

Lab notebook reference: MGL/05/25 
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2-(Naphthalen-1-yl)ethyl 2-(diethoxyphosphoryl)acetate (120a) 

 

 
 

Synthesised using general procedure A with 2-(naphthalen-1-yl)ethanol 120 (861 mg, 5.00 mmol), 

toluene (25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in THF) affording the title compound 120a as a yellow oil (1.74 g, 

99%). No further purification was required; Rf 0.20 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2982w, 1735s, 1598w, 1510w, 1496w, 1445w, 1395w, 1257s, 1163w, 1113m, 1048w, 1019s, 965s, 

838w, 798w, 777s, 731s, 696m; δH (400 MHz, CDCl3) 1.31 (6 H, t, J = 7.1, H-4), 2.97 (2 H, d, J = 

21.6, H-2), 3.44 (2 H, t, J = 7.5, H-6), 4.10–4.17 (4 H, m, H-3), 4.48 (2 H, t, J = 7.5, H-5), [7.36–

7.43 (2 H, m), 7.47–7.56 (2 H, m), 7.75–7.77 (1 H, m), 7.85–7.87 (1 H, m), 8.07–8.09 (1 H, m) (H-

8,9,10,11,12,13,14)]; δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 32.0 (C-6), 34.3 (d, J = 134.2, C-

2), 62.6 (d, J = 6.2, C-3), 65.4 (C-5), [123.4, 125.4, 125.6, 126.2, 127.0, 127.5, 128.8 (C-

8,9,10,11,12,13,14)], [131.9, 133.2, 133.8 (C-7,15,16)], 165.8 (d, J = 6.1, C-1); δP (162 MHz, 

CDCl3) 20.3; HRMS (ESI+): Found: 373.1171; C18H23NaO5P (MNa+) Requires 373.1175 (1.2 ppm 

error), Found: 351.1353; C18H24O5P (MH+) Requires 351.1356 (0.9 ppm error). 

Lab notebook reference: MGL/05/15S 
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2-(Naphthalen-1-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (120b) 

 

 
 

Synthesised using general procedure B with 2-(naphthalen-1-yl)ethyl 2-

(diethoxyphosphoryl)acetate 120a (1.70 g, 4.85 mmol), THF (24 mL), LHMDS (5.82 mL, 5.82 

mmol, 1.0 M solution in THF) and p-ABSA (1.40 g, 5.82 mmol). Purification by column 

chromatography (2:1 hexane:EtOAc) afforded the title compound 120b as a yellow oil (859 mg, 

47%); Rf 0.41 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2984w, 2127s, 1708s, 1597w, 1511w, 

1445w, 1388w, 1279s, 1215s, 1164w, 1095w, 1020s, 978m, 799m, 778m, 745w; δH (400 MHz, 

CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.8, H-4), 3.45 (2 H, t, J = 7.2, H-6), 4.04–4.22 (4 H, m, H-3), 

4.55 (2 H, t, J = 7.2, H-5), [7.35–7.43 (2 H, m), 7.47–7.57 (2 H, m), 7.76–7.78 (1 H, m), 7.85–7.88 

(1 H, m), 8.06–8.08 (1 H, m) (H-8,9,10,11,12,13,14)]; δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4), 

32.2 (C-6), 53.5 (d, J = 226.9, C-2), 63.6 (d, J = 5.9, C-3), 65.5 (C-5), [123.4, 125.4, 125.7, 126.3, 

127.1, 127.6, 128.8 (C-8,9,10,11,12,13,14)], [131.9, 133.1, 133.8 (C-7,15,16)], 163.2 (d, J = 12.2, 

C-1); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 399.1075; C18H21N2NaO5P (MNa+) 

Requires 399.1080 (1.2 ppm error), Found: 377.1257; C18H22N2O5P (MH+) Requires 377.1261 (0.9 

ppm error). 

Lab notebook reference: MGL/05/15 
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3-Methylene-4-(naphthalen-1-yl)dihydrofuran-2(3H)-one (120c) 

 

 
 

Synthesised using general procedure D with 2-(naphthalen-1-yl)ethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 120b (82 mg, 0.218 mmol), CH2Cl2 (4.4 mL), Rh2(oct)4 (3.4 mg, 4.4 

µmol), THF (4.4 mL), KOBu-t (36.7 mg, 0.327 mmol) and paraformaldehyde (13.1 mg, 0.436 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

120c as a colourless oil (28 mg, 57%); Rf 0.45 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 3050w, 

2918w, 1759s, 1662w, 1598w, 1511w, 1398m, 1261w, 1230w, 1111s, 1022m, 948w, 802m, 780s; 

δH (400 MHz, CDCl3) 4.36 (1 H, dd, J = 9.0, J = 6.3, H-4), 4.89 (1 H, app. t, J = 9.0, H-4), 5.03–

5.08 (1 H, m, H-3), 5.60 (1 H, d, J = 2.7, H-5b), 6.51 (1 H, d, J = 3.0, H-5a), [7.38–7.40 (1 H, m), 

7.47 (1 H, app. t, J = 7.7), 7.53–7.60 (2 H, m), 7.81–7.88 (2 H, m), 7.91–7.95 (1 H, m) (H-

7,8,9,10,11,12,13)]; δC (100 MHz, CDCl3) 41.6 (C-3), 72.0 (C-4), 124.5 (C-5), [122.6, 125.0, 

125.5, 126.1, 126.7, 128.5, 129.3 (C-7,8,9,10,11,12,13)], [131.0, 134.2, 135.6, 137.6 (C-

2,6,14,15)], 170.4 (C-1); HRMS (ESI+): Found: 247.0728; C15H12NaO2 (MNa+) Requires 247.0730 

(0.5 ppm error), Found: 225.0902; C15H13O2 (MH+) Requires 225.0910 (3.6 ppm error). 

Lab notebook reference: MGL/05/31 
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4-Trifluoromethylphenethyl 2-(diethoxyphosphoryl)acetate (121a) 

 

 
 

Synthesised using general procedure A with 4-trifluoromethylphenethyl alcohol 121 (497 mg, 2.61 

mmol), toluene (10 mL), DEPAA (0.44 mL, 2.74 mmol), DIPEA (1.19 mL, 6.80 mmol) and T3P 

(2.16 g, 3.40 mmol, 50% w/w solution in EtOAc) affording the title compound 121a as a yellow oil 

(963 mg, 100%). No further purification was required; Rf 0.19 (1:1 petrol:EtOAc); νmax (thin 

film)/cm-1 2940s, 2890w, 1712s, 1307m, 1251m, 1146w, 1099m, 1007m, 956w; δH (400 MHz, 

CDCl3) 1.30 (6 H, td, J = 7.1, J = 0.5, H-4), 2.94 (2 H, d, J = 21.6, H-2), 3.02 (2 H, t, J = 6.8, H-6), 

4.11 (4 H, dq, J = 8.8, J = 7.1, H-3), 4.37 (2 H, t, J = 6.8, H-5), 7.35 (2 H, d, J = 8.0, H-8), 8.17 (2 

H, d, J = 8.0, H-9); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 34.3 (d, J = 134.4, C-2), 34.7 (C-

6), 62.7 (d, J = 6.2, C-3), 65.3 (C-5), 125.4 (q, J = 3.7, C-9), 126.9 (q, J = 271.1, C-11), 129.2 (C-

8), 129.7 (q, J = 32.5, C-10), 141.7 (C-7), 165.7 (d, J = 6.1, C-1); δF (376 MHz, CDCl3) −62.4; δP 

(162 MHz, CDCl3) 20.1; HRMS (ESI+): Found: 391.0878; C15H20F3NaO5P (MNa+) Requires 

391.0893 (3.7 ppm error), Found: 369.1064; C15H21F3O5P (MH+) Requires 369.1073 (2.5 ppm 

error). 

Lab notebook reference: MGL/03/10, 01/21 
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4-Trifluoromethylphenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (121b) 

 

 
 

Synthesised using general procedure B with 4-trifluoromethylphenethyl 2-

(diethoxyphosphoryl)acetate 121a (1.00 g, 2.72 mmol), THF (14 mL), LHMDS (3.30 mL, 3.30 

mmol, 1.0 M solution in THF) and p-ABSA (785 mg, 3.26 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 121b as a pale yellow oil (386 mg, 

36%); Rf 0.44 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2941s, 2099s, 1686s, 1308m, 1262m, 

1147w, 1106w, 1051w, 1006w; δH (400 MHz, CDCl3) 1.31 (6 H, td, J = 7.1, J = 0.8, H-4), 3.03 (2 

H, t, J = 6.7, H-6), 4.03–4.21 (4 H, m, H-3), 4.43 (2 H, t, J = 6.7, H-5), 7.34 (2 H, d, J = 8.0, H-8), 

7.56 (2 H, d, J = 8.0, H-9); δC (100 MHz, CDCl3) 16.1 (d, J = 6.8, C-4), 34.9 (C-6), 53.9 (d, J = 

228.8, C-2), 63.6 (d, J = 5.6, C-3), 65.3 (C-5), 125.4 (q, J = 3.8, C-9), 124.1 (q, J = 271.9, C-11), 

129.1 (q, J = 32.3, C-10), 129.3 (C-8), 141.5 (C-7), 163.3 (d, J = 11.6, C-1); δF (376 MHz, CDCl3) 

−62.4; δP (162 MHz, CDCl3) 10.4; HRMS (ESI+): Found: 417.0779; C15H18F3N2NaO5P (MNa+) 

Requires 417.0798 (4.5 ppm error), Found: 395.0964; C15H19F3N2O5P (MH+) Requires 395.0978 

(3.7 ppm error).  

Lab notebook reference: MGL/01/26 
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(SR)-3-Methylene-4-(4-(trifluoromethyl)phenyl)dihydrofuran-2(3H)-one (121c) 

 

 
 

Synthesised using general procedure E with 4-trifluoromethylphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 121b (64 mg, 0.162 mmol), CH2Cl2 (1.6 mL), Rh2(oct)4 (6.3 mg, 8.1 

µmol), KOBu-t (16.4 mg, 0.146 mmol) and paraformaldehyde (48.6 mg, 1.62 mmol). Purification 

by column chromatography (5:1 petrol:EtOAc) afforded the title compound 121c as a colourless oil 

(15 mg, 38%); Rf 0.59 (2:1 petrol:EtOAc); νmax (thin film)/cm-1 2875w, 1741s, 1307s, 1097m, 

1053w; δH (400 MHz, CDCl3) 4.24 (1 H, dd, J = 9.0, J = 7.1, H-4), 4.33–4.38 (1 H, m, H-3), 4.75 

(1 H, app. t, J = 9.0, H-4), 5.50 (1 H, d, J = 2.9, H-5b), 6.44 (1 H, d, J = 2.9, H-5a), 7.37 (2 H, d, J 

= 8.0, H-7), 7.65 (2 H, d, J = 8.0, H-8); δC (100 MHz, CDCl3) 45.3 (C-3), 72.2 (C-4), 123.8 (q, J = 

272.2, C-10), 124.7 (C-5), 126.2 (q, J = 3.8, C-8), 128.3 (C-7), 130.2 (q, J = 32.1, C-9), 138.1 (C-

2), 143.7 (C-6), 169.6 (C-1); δF (376 MHz, CDCl3) −62.6; HRMS (ESI+): Found: 265.0447; 

C12H9F3NaO2 (MNa+) Requires 265.0447 (0.0 ppm error). 

Lab notebook reference: MGL/02/63, 03/33 

4-Nitrophenethyl 2-(diethoxyphosphoryl)acetate (122a) 

 

 
 

Synthesised using general procedure A with 4-nitrophenethyl alcohol 122 (2.50 g, 15.0 mmol), 

toluene (78 mL), DEPAA (2.52 mL, 15.7 mmol), DIPEA (6.80 mL, 38.9 mmol) and T3P (12.4 g, 
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19.4 mmol, 50% w/w solution in THF) affording the title compound 122a as an orange oil (4.72 g, 

91%). No further purification was required; Rf 0.12 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2936s, 

1712s, 1577m, 1495s, 1371m, 1325m, 1249m, 1145w, 1095m, 1009m, 955w, 842w; δH (400 MHz, 

CDCl3) 1.31 (6 H, t, J = 7.1, H-4), 2.94 (2 H, d, J = 21.6, H-2), 3.08 (2 H, t, J = 6.7, H-6), 4.13 (4 

H, dq, J = 8.3, J = 7.1, H-3), 4.39 (2 H, t, J = 6.7, H-5), 7.41 (2 H, d, J = 8.8, H-8), 8.17 (2 H, d, J = 

8.8, H-9); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 34.3 (d, J = 134.6, C-2), 34.7 (C-6), 62.7 (d, 

J = 6.2, C-3), 64.9 (C-5), 123.7 (C-9), 129.8 (C-8), 145.3 (C-7/10), 146.9 (C-7/10), 165.6 (d, J = 

6.0, C-1); δP (162 MHz, CDCl3) 20.0; HRMS (ESI+): Found: 368.0875; C14H20NNaO7P (MNa+) 

Requires 368.0870 (−1.3 ppm error), Found: 346.1055; C14H21NO7P (MH+) Requires 346.1050 

(−1.3 ppm error). 

Lab notebook reference: MGL/01/11 

4-Nitrophenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (122b) 

 

 
 

Synthesised using general procedure B with 4-nitrophenethyl 2-(diethoxyphosphoryl)acetate 122a 

(212 mg, 0.614 mmol), THF (3.0 mL), LHMDS (0.740 mL, 0.740 mmol, 1.0 M solution in THF) 

and p-ABSA (177 mg, 0.737 mmol). Purification by column chromatography (1:1 petrol:EtOAc) 

afforded the title compound 122b as a colourless oil (111 mg, 49%); Rf 0.53 (1:2 petrol:EtOAc); 

νmax (thin film)/cm-1 2099s, 1681s, 1497s, 1326s, 1261s, 1006m; δH (400 MHz, CDCl3) 1.32 (6 H, 

td, J = 7.1, J = 0.8, H-4), 3.09 (2 H, t, J = 6.6, H-6), 4.05–4.23 (4 H, m, H-3), 4.45 (2 H, t, J = 6.6, 

H-5), 7.40 (2 H, d, J = 8.8, H-8), 8.18 (2 H, d, J = 8.8, H-9); δC (100 MHz, CDCl3) 16.1 (d, J = 6.8, 

C-4), 34.9 (C-6), 53.8 (d, J = 228.4, C-2), 63.6 (d, J = 5.7, C-3), 64.9 (C-5), 123.7 (C-9), 129.8 (C-

8), 145.1 (C-7/10), 146.9 (C-7/10), 163.2 (d, J = 12.2, C-1); δP (162 MHz, CDCl3) 10.3; HRMS 

(ESI+): Found: 394.0762; C14H18N3NaO7P (MNa+) Requires 394.9775 (3.2 ppm error), Found: 

372.0956; C14H19N3O7P (MH+) Requires 372.0955 (−0.2 ppm error). 

Lab notebook reference: MGL/01/15 
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(SR)-3-Methylene-4-(4-nitrophenyl)dihydrofuran-2(3H)-one (122c) 

 

 
 

Synthesised using general procedure E with 4-nitrophenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 122b (37 mg, 0.100 mmol), CH2Cl2 (2.0 mL), Rh2(esp)2 (3.8 mg, 5.0 

µmol), KOBu-t (10.1 mg, 0.090 mmol) and paraformaldehyde (30.0 mg, 0.997 mmol). Purification 

by column chromatography (2:1 petrol:EtOAc) afforded the title compound 122c as a colourless oil 

(4 mg, 18%); Rf 0.58 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2878s, 2809s, 1737s, 1575w, 

1496m, 1327m, 1092w, 1004w, 843w; δH (400 MHz, CDCl3) 4.27 (1 H, dd, J = 9.1, J = 6.8, H-4), 

4.39–4.45 (1 H, m, H-3), 4.78 (1 H, app. t, J = 9.1, H-4), 5.53 (1 H, d, J = 2.7, H-5b), 6.48 (1 H, d, 

J = 3.1, H-5a), 7.44 (2 H, d, J = 8.8, H-7), 8.26 (2 H, d, J = 8.8, H-8); δC (100 MHz, CDCl3) 45.2 

(C-3), 71.9 (C-4), 124.5 (C-8), 125.1 (C-5), 128.8 (C-7), 137.7 (C-2), 147.0 (C-6/9), 147.6 (C-6/9), 

169.2 (C-1); HRMS (ESI+): Found: 242.0427; C11H9NNaO4 (MNa+) Requires 242.0424 (−1.5 ppm 

error), Found: 220.0614; C11H10NO4 (MH+) Requires 220.0604 (−4.5 ppm error). 

Lab notebook reference: MGL/01/17 

4-Bromophenethyl 2-(diethoxyphosphoryl)acetate (123a) 
 

 
 

Synthesised using general procedure A with 2-(4-bromophenyl)ethanol 123 (1.01 g, 5.00 mmol), 

toluene (25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in THF) affording the title compound 123a as a yellow oil (1.80 g, 
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96%). No further purification was required; Rf 0.23 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2982w, 1735s, 1489m, 1443w, 1393w, 1256s, 1163w, 1114m, 1049w, 1020s, 964s, 804m; δH (400 

MHz, CDCl3) 1.29 (6 H, td, J = 7.1, J = 0.5, H-4), 2.89 (2 H, t, J = 6.9, H-6), 2.92 (2 H, d, J = 21.6, 

H-2), 4.06–4.13 (4 H, m, H-3), 4.30 (2 H, t, J = 6.9, H-5), 7.08 (2 H, d, J = 8.5, H-8/9), 7.39 (2 H, 

d, J = 8.5, H-8/9); δC (100 MHz, CDCl3) 16.2 (d, J = 6.2, C-4), 34.2 (d, J = 134.3, C-2), 34.2 (C-6), 

62.6 (d, J = 6.2, C-3), 65.5 (C-5), 120.4 (C-10), 130.6 (C-8/9), 131.5 (C-8/9), 136.4 (C-7), 165.6 (d, 

J = 6.1, C-1); δP (162 MHz, CDCl3) 20.1; HRMS (ESI+): Found: 401.0124; C14H20
79BrNaO5P 

(MNa+) Requires 401.0124 (−0.1 ppm error), Found: 379.0303; C14H21
79BrO5P (MH+) Requires 

379.0304 (0.4 ppm error). 

Lab notebook reference: MGL/05/08S 

4-Bromophenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (123b) 

 

 
 

Synthesised using general procedure B with 4-bromophenethyl 2-(diethoxyphosphoryl)acetate 

123a (1.78 g, 4.69 mmol), THF (24 mL), LHMDS (5.63 mL, 5.63 mmol, 1.0 M solution in THF) 

and p-ABSA (1.35 g, 5.63 mmol). Purification by column chromatography (2:1 hexane:EtOAc) 

afforded the title compound 123b as a yellow oil (969 mg, 51%); νmax (thin film)/cm-1 2983w, 

2129s, 1708s, 1489w, 1384w, 1279s, 1216w, 1164w, 1094w, 1022s, 979m, 815w, 596w, 560w; δH 

(400 MHz, CDCl3) 1.30 (6 H, td, J = 7.1, J = 0.8, H-4), 2.90 (2 H, t, J = 6.7, H-6), 4.02–4.19 (4 H, 

m, H-3), 4.36 (2 H, t, J = 6.7, H-5), 7.07 (2 H, d, J = 8.5, H-8), 7.40 (2 H, d, J = 8.5, H-9); δC (100 

MHz, CDCl3) 16.0 (d, J = 6.8, C-4), 34.5 (C-6), 53.8 (d, J = 228.5, C-2), 63.5 (d, J = 5.8, C-3), 

65.4 (C-5), 120.5 (C-10), 130.6 (C-8), 131.5 (C-9), 136.2 (C-7), 163.1 (d, J = 12.3, C-1); δP (162 

MHz, CDCl3) 10.4; HRMS (ESI+): Found: 427.0038; C14H18
79BrN2NaO5P (MNa+) Requires 

427.0029 (−2.2 ppm error), Found: 405.0224; C14H19
79BrN2O5P (MH+) Requires 405.0209 (−3.7 

ppm error). 

Lab notebook reference: MGL/05/08 
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4-(4-Bromophenyl)-3-methylenedihydrofuran-2(3H)-one (123c) 

 

 
 

Synthesised using general procedure D with 4-bromophenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 123b (90 mg, 0.222 mmol), CH2Cl2 (4.4 mL), Rh2(oct)4 (3.5 mg, 4.4 

µmol), THF (4.4 mL), KOBu-t (37.4 mg, 0.333 mmol) and paraformaldehyde (13.3 mg, 0.444 

mmol). Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compound 

123c as a pale yellow oil (31 mg, 55%); Rf 0.40 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2972w, 

2913w, 1761s, 1666w, 1590w, 1489m, 1412m, 1274w, 1231m, 1107s, 1010s, 947w, 825s; δH (400 

MHz, CDCl3) 4.17–4.27 (2 H, m, H-3,4), 4.71 (1 H, app. t, J = 8.4, H-4), 5.48 (1 H, d, J = 2.7, H-

5b), 6.39 (1 H, d, J = 3.0, H-5a), 7.11 (2 H, d, J = 8.5, H-7), 7.50 (2 H, d, J = 8.5, H-8); δC (100 

MHz, CDCl3) 45.1 (C-3), 72.3 (C-4), 121.8 (C-2/6/9), 124.3 (C-5), 129.5 (C-7), 132.3 (C-8), 138.3 

(C-2/6/9), 138.5 (C-2/6/9), 169.8 (C-1); HRMS (ESI+): Found: 274.9679; C11H9
79BrNaO2 (MNa+) 

Requires 274.9678 (−0.4 ppm error), Found: 252.9859; C11H10
79BrO2 (MH+) Requires 252.9859 

(−0.1 ppm error). 

Lab notebook reference: MGL/05/21 
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4-(Dimethylamino)phenethyl 2-(diethoxyphosphoryl)acetate (124a) 

 

 
 

Synthesised using general procedure A with 4-(N,N-dimethylamino)phenethyl alcohol 124 (835 

mg, 5.05 mmol), toluene (25 mL), DEPAA (0.85 mL, 5.31 mmol), DIPEA (2.29 mL, 13.1 mmol) 

and T3P (4.18 g, 6.57 mmol, 50% w/w solution in EtOAc) affording the title compound 124a as an 

orange oil (1.77 g, 100%). No further purification was required; Rf 0.44 (1:2 petrol:EtOAc); νmax 

(thin film)/cm-1 2988w, 1733s, 1522s, 1258s, 1114w, 1019s; δH (400 MHz, CDCl3) 1.32 (6 H, td, J 

= 7.1, J = 0.5, H-4), 2.86 (2 H, t, J = 7.3, H-6), 2.91 (6 H, s, H-11), 2.96 (2 H, d, J = 21.5, H-2), 

4.14 (4 H, dq, J = 8.2, J = 7.1, H-3), 4.29 (2 H, t, J = 7.3, H-5), 6.69 (2 H, d, J = 8.7, H-9), 7.10 (2 

H, d, J = 8.7, H-8); δC (100 MHz, CDCl3) 16.3 (d, J = 6.4, C-4), 33.9 (C-6), 34.3 (d, J = 134.2, C-

2), 40.7 (C-11), 62.6 (d, J = 6.2, C-3), 66.5 (C-5), 112.8 (C-9), 125.1 (C-7), 129.5 (C-8), 149.5 (C-

10), 165.8 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): Found: 366.1444; 

C16H26NNaO5P (MNa+) Requires 366.1441 (−0.8 ppm error), Found: 344.1616; C16H27NO5P 

(MH+) Requires 344.1621 (1.7 ppm error). 

Lab notebook reference: MGL/02/33 
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4-(Dimethylamino)phenethyl 2-diazo-2-(diethoxyphosphoryl)acetate (124b) 

 

 
 

Synthesised using general procedure B with 4-(dimethylamino)phenethyl 2-

(diethoxyphosphoryl)acetate 124a (1.03 g, 3.00 mmol), THF (15 mL), LHMDS (3.60 mL, 3.60 

mmol, 1.0 M solution in THF) and p-ABSA (865 mg, 3.60 mmol). Purification by column 

chromatography (3:1 petrol:EtOAc) afforded the title compound 124b as a yellow oil (327 mg, 

30%); Rf 0.48 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2985w, 2128s, 1704s, 1616w, 1523m, 

1277s, 1020s; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.6, H-4), 2.85 (2 H, t, J = 7.0, H-6), 

2.90 (6 H, s, H-11), 4.04–4.21 (4 H, m, H-3), 4.33 (2 H, t, J = 7.0, H-5), 6.67 (2 H, d, J = 8.7, H-9), 

7.06 (2 H, d, J = 8.7, H-8); δC (100 MHz, CDCl3) 15.9 (d, J = 6.9, C-4), 34.0 (C-6), 40.5 (C-11), 

53.4 (d, J = 226.5, C-2), 63.4 (d, J = 5.8, C-3), 66.3 (C-5), 112.6 (C-9), 124.8 (C-7), 129.4 (C-8), 

149.3 (C-10), 163.1 (d, J = 12.3, C-1); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 

392.1338; C16H24N3NaO5P (MNa+) Requires 392.1346 (1.9 ppm error), Found: 370.1520; 

C16H25N3O5P (MH+) Requires 370.1526 (1.8 ppm error). 

Lab notebook reference: MGL/02/54 

2-(Thiophen-3-yl)ethyl 2-(diethoxyphosphoryl)acetate (125a) 
 

 
 

Synthesised using general procedure A with 2-(thiophen-3-yl)ethanol 125 (1.03 g, 8.00 mmol), 

toluene (40 mL), DEPAA (1.35 mL, 8.40 mmol), DIPEA (3.62 mL, 20.8 mmol) and T3P (6.62 g, 

10.4 mmol, 50% w/w solution in EtOAc) affording the title compound 125a as a yellow oil (2.41 g, 
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99%). No further purification was required; Rf 0.33 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2983w, 1734s, 1393w, 1258s, 1115w, 1049w, 1020s, 968s; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 

7.1, J = 0.5, H-4), 2.97 (2 H, d, J = 21.6, H-2), 3.00 (2 H, t, J = 6.9, H-6), 4.14 (4 H, dq, J = 8.3, J = 

7.1, H-3), 4.35 (2 H, td, J = 6.9, J = 0.5, H-5), 6.98 (1 H, dd, J = 4.9, J = 1.3, H-8), 7.06 (1 H, ddt, J 

= 3.0, J = 1.3, J = 0.9, H-10), 7.27 (1 H, dd, J = 4.9, J = 3.0, H-9); δC (100 MHz, CDCl3) 16.3 (d, J 

= 6.4, C-4), 29.4 (C-6), 34.3 (d, J = 134.4, C-2), 62.7 (d, J = 6.5, C-3), 65.4 (C-5), 121.7 (C-10), 

125.6 (C-9), 128.2 (C-8), 137.6 (C-7), 165.8 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.2; HRMS 

(ESI+): Found: 329.0582; C12H19NaO5PS (MNa+) Requires 329.0583 (0.4 ppm error), Found: 

307.0768; C12H20O5PS (MH+) Requires 307.0764 (−1.6 ppm error). 

Lab notebook reference: MGL/03/01 

2-(Thiophen-3-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (125b) 
 

 
 

Synthesised using general procedure B with 2-(thiophen-3-yl)ethyl 2-(diethoxyphosphoryl)acetate 

125a (1.53 g, 5.00 mmol), THF (25 mL), LHMDS (6.00 mL, 6.00 mmol, 1.0 M solution in THF) 

and p-ABSA (1.44 g, 6.00 mmol). Purification by column chromatography (2:1 petrol:EtOAc) 

afforded the title compound 125b as a yellow oil (871 mg, 52%); Rf 0.43 (1:1 petrol:EtOAc); νmax 

(thin film)/cm-1 2989w, 2126s, 1703s, 1274s, 1017s, 977m; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 

7.1, J = 0.8, H-4), 2.99 (2 H, t, J = 6.8, H-6), 4.05–4.22 (4 H, m, H-3), 4.39 (2 H, t, J = 6.8, H-5), 

6.95 (1 H, dd, J = 4.9, J = 1.3, H-8), 7.03 (1 H, ddt, J = 2.9, J = 1.3, J = 0.7, H-10), 7.25 (1 H, dd, J 

= 4.9, J = 2.9, H-9); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 29.5 (C-6), 53.8 (d, J = 228.2, C-

2), 63.5 (d, J = 5.6, C-3), 65.3 (C-5), 121.7 (C-10), 125.6 (C-9), 128.1 (C-8), 137.4 (C-7), 163.3 (d, 

J = 12.2, C-1); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 355.0488; C12H17N2NaO5PS 

(MNa+) Requires 355.0488 (0.1 ppm error), Found: 333.0671; C12H18N2O5PS (MH+) Requires 

333.0669 (−0.8 ppm error). 

Lab notebook reference: MGL/03/09 
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(SR)-3-Methylene-4-(thiophen-3-yl)dihydrofuran-2(3H)-one (125c) 

 

 
 

Synthesised using general procedure E with 2-(thiophen-3-yl)ethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 125b (69 mg, 0.208 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.2 mg, 4.2 

µmol), KOBu-t (28.0 mg, 0.250 mmol) and paraformaldehyde (12.5 mg, 0.416 mmol). Purification 

by column chromatography (5:1 petrol:EtOAc) afforded the title compound 125c as a colourless oil 

(12 mg, 32%); Rf 0.59 (2:1 petrol:EtOAc); νmax (thin film)/cm-1 3110w, 2910w, 1761s, 1404w, 

1250m, 1109m, 1018m; δH (400 MHz, CDCl3) 4.23 (1 H, dd, J = 8.9, J = 7.3, H-4), 4.38–4.44 (1 

H, m, H-3), 4.68 (1 H, app. t, J = 8.9, J = 8.9, H-4), 5.56 (1 H, d, J = 2.8, H-5b), 6.38 (1 H, d, J = 

3.1, H-5a), 6.95 (1 H, dd, J = 5.0, J = 1.4, H-7), 7.15 (1 H, ddd, J = 3.0, J = 1.4, J = 0.5, H-9), 7.38 

(1 H, dd, J = 5.0, J = 3.0, H-8); δC (100 MHz, CDCl3) 41.0 (C-3), 71.9 (C-4), 122.6 (C-9), 123.8 

(C-5), 126.1 (C-7), 127.4 (C-8), 138.1 (C-2), 139.4 (C-6), 170.0 (C-1); HRMS (ESI+): Found: 

203.0134; C9H8NaO2S (MNa+) Requires 203.0137 (1.4 ppm error). 

Lab notebook reference: MGL/03/12 

2-(1H-Indol-3-yl)ethyl 2-(diethoxyphosphoryl)acetate (126a) 
 

 
 

Synthesised using general procedure A with 3-(2-hydroxyethyl)indole 126 (806 mg, 5.00 mmol), 

toluene (25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in EtOAc) affording the title compound 126a as a pale yellow oil 

(1.62 g, 95%). No further purification was required; Rf 0.12 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 3269br, 2983w, 1733s, 1457w, 1441w, 1392w, 1340w, 1244s, 1163w, 1113m, 1019s, 
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969s, 787w, 767w, 737s; δH (400 MHz, CDCl3) 1.31 (6 H, t, J = 7.1, H-4), 2.98 (2 H, d, J = 21.5, 

H-2), 3.11 (2 H, t, J = 7.2, H-6), 4.10–4.18 (4 H, m, H-3), 4.41 (2 H, t, J = 7.2, H-5), 7.06 (1 H, d, J 

= 2.3, H-7), 7.10–7.14 (1 H, m, H-10/11), 7.17–7.21 (1 H, m, H-10/11), 7.35–7.37 (1 H, m, H-

9/12), 7.60–7.62 (1 H, m, H-9/12), 8.40 (1 H, br s, NH); δC (100 MHz, CDCl3) 16.2 (d, J = 6.2, C-

4), 24.5 (C-6), 34.3 (d, J = 134.3, C-2), 62.7 (d, J = 6.2, C-3), 65.6 (C-5), 111.2 (C-9/12), 111.3 (C-

8), 118.5 (C-9/12), 119.3 (C-10/11), 121.9 (C-10/11), 122.3 (C-7), 127.3 (C-14), 136.2 (C-13), 

165.8 (d, J = 6.0, C-1); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): Found: 362.1130; 

C16H22NNaO5P (MNa+) Requires 363.1128 (−0.7 ppm error), Found: 340.1309; C16H23NO5P 

(MH+) Requires 340.1308 (−0.1 ppm error). 

Lab notebook reference: MGL/05/36S 

2-(1H-Indol-3-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (126b) 

 

 
 

Synthesised using general procedure B with 2-(1H-indol-3-yl)ethyl 2-(diethoxyphosphoryl)acetate 

126a (598 mg, 1.76 mmol), THF (9.0 mL), LHMDS (2.11 mL, 2.11 mmol, 1.0 M solution in THF) 

and DBSA (0.71 mL, 2.22 mmol). Purification by column chromatography (1:1 hexane:EtOAc) 

afforded the title compound 126b as a yellow oil (276 mg, 43%); Rf 0.23 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3410w, 3280br, 2984w, 2929w, 2126s, 1702s, 1457w, 1387w, 1275s, 1163w, 

1096m, 1018s, 980m, 742s; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.5, H-4), 3.14 (2 H, t, 

J = 7.1, H-6), 4.05–4.26 (4 H, m, H-3), 4.48 (2 H, t, J = 7.1, H-5), 7.05 (1 H, d, J = 2.2, H-7), 7.11–

7.15 (1 H, m, H-10/11), 7.17–7.22 (1 H, m, H-10/11), 7.35–7.37 (1 H, m, H-9/12), 7.60–7.62 (1 H, 

m, H-9/12), 8.47 (1 H, br s, NH); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 24.8 (C-6), 53.5 (d, J 

= 228.2, C-2), 63.6 (d, J = 5.8, C-3), 65.7 (C-5), 111.1 (C-8), 111.2 (C-9/12), 118.4 (C-9/12), 119.3 

(C-10/11), 121.9 (C-10/11), 122.3 (C-7), 127.2 (C-14), 136.1 (C-13), 163.3 (d, J = 12.4, C-1); δP 

(162 MHz, CDCl3) 10.7; HRMS (ESI+): Found: 388.1028; C16H20N3NaO5P (MNa+) Requires 

388.1033 (1.2 ppm error), Found: 366.1208; C16H21N3O5P (MH+) Requires 366.1213 (1.6 ppm 

error). 

Lab notebook reference: MGL/05/36 
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Synthesised using general procedure A with 2-(pyridin-3-yl)ethanol 127 (2.00 g, 16.2 mmol), 

toluene (80 mL), DEPAA (2.74 mL, 17.1 mmol), DIPEA (7.35 mL, 42.2 mmol) and T3P (13.4 g, 

21.1 mmol, 50% w/w solution in EtOAc) affording the title compound 127a as a yellow oil (4.49 g, 

92%). No further purification was required; Rf 0.44 (10:1 CH2Cl2:MeOH); νmax (thin film)/cm-1 

2938s, 2887w, 1711s, 1468m, 1249s, 1100w, 1034w, 1010m, 957w; δH (400 MHz, CDCl3) 1.31 (6 

H, td, J = 7.1, J = 0.5, H-4), 2.95 (2 H, d, J = 21.6, H-2), 2.97 (2 H, t, J = 6.8, H-6), 4.13 (4 H, dq, J 

= 8.3, J = 7.1, H-3), 4.36 (2 H, t, J = 6.8, H-5), 7.25 (1 H, ddd, J = 7.8, J = 4.8, J = 0.8, H-9), 7.60 

(1 H, ddd, J = 7.8, J = 2.3, J = 1.7, H-8), 8.48–8.51 (2 H, m, H-10,11); δC (100 MHz, CDCl3) 16.3 

(d, J = 6.1, C-4), 32.1 (C-6), 34.3 (d, J = 134.3, C-2), 62.7 (d, J = 6.5, C-3), 65.2 (C-5), 123.5 (C-

9), 133.1 (C-7), 136.5 (C-8), 148.0 (C-10), 150.1 (C-11), 165.7 (d, J = 6.1, C-1); δP (162 MHz, 

CDCl3) 20.0; HRMS (ESI+): Found: 324.0976; C13H20NNaO5P (MNa+) Requires 324.0971 (1.5 

ppm error), Found: 302.1140; C13H21NO5P (MH+) Requires 302.1152 (3.9 ppm error). 

Lab notebook reference: MGL/02/10 

2-(Pyridin-3-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (127b) 

 

 
 

Synthesised using general procedure B with 2-(pyridin-3-yl)ethyl 2-(diethoxyphosphoryl)acetate 

127a (2.00 g, 6.64 mmol), THF (35 mL), LHMDS (7.97 mL, 7.97 mmol, 1.0 M solution in THF) 

and p-ABSA (1.91 g, 7.97 mmol). Purification by column chromatography (7% MeOH in CH2Cl2) 

afforded the title compound 127b as a yellow oil (497 mg, 23%); Rf 0.44 (7% MeOH in CH2Cl2); 

νmax (thin film)/cm-1 2939s, 2098s, 1684s, 1262s, 1104w, 1078w, 1008s, 964w; δH (400 MHz, 

CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.8, H-4), 2.98 (2 H, t, J = 6.7, H-6), 4.05–4.22 (4 H, m, H-3), 
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4.41 (2 H, t, J = 6.7, H-5), 7.24 (1 H, ddd, J = 7.8, J = 4.8, J = 0.7, H-9), 7.56 (1 H, ddd, J = 7.8, J 

= 2.3, J = 1.7, H-8), 8.47–8.51 (2 H, m, H-10,11); δC (100 MHz, CDCl3) 15.8 (d, J = 6.9, C-4), 32.0 

(C-6), 53.5 (d, J = 226.1, C-2), 63.3 (d, J = 5.8, C-3), 65.0 (C-5), 123.1 (C-9), 132.7 (C-7), 136.1 

(C-8), 147.9 (C-10), 149.9 (C-11), 162.9 (d, J = 12.1, C-1); δP (162 MHz, CDCl3) 10.4; HRMS 

(ESI+): Found: 350.0876; C13H18N3NaO5P (MNa+) Requires 350.0876 (0.1 ppm error), Found: 

328.1052; C13H19N3O5P (MH+) Requires 328.1057 (1.6 ppm error). 

Lab notebook reference: MGL/02/11 

2-Methyl-1-phenylpropan-2-yl 2-(diethoxyphosphoryl)acetate (128a) 
 

 
 

Synthesised using general procedure A with 2-methyl-1-phenyl-2-propanol 128 (2.20 mL, 14.3 

mmol), toluene (70 mL), DEPAA (2.41 mL, 15.0 mmol), DIPEA (6.45 mL, 37.1 mmol) and T3P 

(11.8 g, 18.5 mmol, 50% w/w solution in EtOAc) affording the title compound 128a as a yellow oil 

(3.45 g, 74%); Rf 0.28 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2937s, 2889m, 1703s, 1241m, 

1094w, 1037m; δH (400 MHz, CDCl3) 1.31 (6 H, td, J = 7.1, J = 0.4, H-4), 1.46 (6 H, s, H-11), 2.89 

(2 H, d, J = 21.5, H-2), 3.06 (2 H, s, H-6), 4.12 (4 H, dq, J = 8.3, J = 7.1, H-3), 7.17–7.30 (5 H, m, 

H-8,9,10); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 25.6 (C-11), 35.6 (d, J = 133.8, C-2), 46.6 

(C-6), 62.4 (d, J = 6.3, C-3), 83.9 (C-5), 126.5 (C-10), 127.9 (C-9), 130.6 (C-8), 136.9 (C-7), 165.0 

(d, J = 6.2, C-1); δP (162 MHz, CDCl3) 21.0; HRMS (ESI+): Found: 351.1321; C16H25NaO5P 

(MNa+) Requires 351.1332 (3.0 ppm error). 

Lab notebook reference: MGL/02/20 
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2-Methyl-1-phenylpropan-2-yl 2-diazo-2-(diethoxyphosphoryl)acetate (128b) 

 

 
 

Synthesised using general procedure B with 2-methyl-1-phenylpropan-2-yl 2-

(diethoxyphosphoryl)acetate 128a (2.00 g, 6.10 mmol), THF (31 mL), LHMDS (7.31 mL, 7.31 

mmol, 1.0 M solution in THF) and p-ABSA (1.76 g, 7.31 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 128b as a yellow oil (1.92 g, 

89%); Rf 0.56 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2937m, 2095s, 1672s, 1268m, 1008m; δH 

(400 MHz, CDCl3) 1.31 (6 H, td, J = 7.1, J = 0.8, H-4), 1.50 (6 H, s, H-11), 3.09 (2 H, s, H-6), 

4.03–4.21 (4 H, m, H-3), 7.15–7.18 (2 H, m, H-8), 7.21–7.30 (3 H, m, H-9,10); δC (100 MHz, 

CDCl3) 16.1 (d, J = 7.0, C-4), 26.2 (C-11), 46.6 (C-6), 54.2 (d, J = 227.4, C-2), 63.4 (d, J = 5.9, C-

3), 84.7 (C-5), 126.6 (C-10), 128.0 (C-9), 130.5 (C-8), 136.6 (C-7), 162.6 (d, J = 12.4, C-1); δP 

(162 MHz, CDCl3) 11.3; HRMS (ESI+): Found: 377.1230; C16H23N2NaO5P (MNa+) Requires 

377.1237 (1.8 ppm error). 

Lab notebook reference: MGL/02/23 

(SR)-5,5-Dimethyl-3-methylene-4-phenyldihydrofuran-2(3H)-one (128c) and (SR)-5-

Benzyl-5-methyl-3-methylenedihydrofuran-2(3H)-one (128d) 

  

 
 

Synthesised using general procedure D with 2-methyl-1-phenylpropan-2-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 128b (71 mg, 0.200 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 

µmol), THF (4.0 mL), KOBu-t (33.7 mg, 0.300 mmol) and paraformaldehyde (12.0 mg, 0.400 

mmol). The HWE was performed at RT. Purification by column chromatography (8:1 
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petrol:EtOAc) afforded a mixture of the title compounds (128c:128d 1.45:1), as a colourless oil (36 

mg, 89%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for 128c; Rf 0.63 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2979w, 1763s, 1257m, 1089m; δH 

(400 MHz, CDCl3) 1.02 (3 H, s, H-10/10’), 1.56 (3 H, s, H-10/10’), 4.04 (1 H, dd, J = 3.3, J = 3.0, 

H-3), 5.57 (1 H, d, J = 3.0, H-5b), 6.48 (1 H, d, J = 3.3, H-5a), 7.20–7.23 (2 H, m, H-7/8), 7.31–

7.40 (3 H, m, H-7/8,9); δC (100 MHz, CDCl3) 25.0 (C-10/10’), 28.0 (C-10/10’), 57.1 (C-3), 85.5 

(C-4), 123.9 (C-5), 127.9 (C-9), 128.7 (C-7/8), 129.2 (C-7/8), 136.5 (C-6), 139.2 (C-2), 169.8 (C-

1); HRMS (ESI+): Found: 203.1067; C13H15O2 (MH+) Requires 203.1067 (0.0 ppm error). 

 

Data for 128d; Rf 0.46 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2979w, 2928w, 1757s, 1481w, 

1276m, 1055w; δH (400 MHz, CDCl3) 1.43 (3 H, s, H-11), 2.63 (1 H, ddd, J = 16.8, J = 2.8, J = 

2.5, H-3), 2.90 (1 H, ddd, J = 16.8, J = 2.8, J = 2.5, H-3), 2.88–3.03 (3 H, m, H-3,6), 5.46 (1 H, 

app. t, J = 2.5, H-5b), 6.07 (1 H, app. t, J = 2.8, H-5a), 7.19–7.32 (5 H, m, H-8,9,10); δC (100 MHz, 

CDCl3) 27.1 (C-11), 38.6 (C-3), 46.8 (C-6), 83.2 (C-4), 121.7 (C-5), 127.0 (C-10), 128.4 (C-9), 

130.6 (C-8), 135.3 (C-2/7), 135.5 (C-2/7), 169.8 (C-1); HRMS (ESI+): Found: 203.1066; C13H15O2 

(MH+) Requires 203.1067 (0.3 ppm error). 

Lab notebook reference: MGL/03/87, 02/25 

2-Phenylpropyl 2-(diethoxyphosphoryl)acetate (129a) 
 

 
 

Synthesised using general procedure A with 2-phenyl-1-propanol 129 (2.00 g, 14.9 mmol), toluene 

(75 mL), DEPAA (2.51 mL, 15.6 mmol), DIPEA (6.75 mL, 38.7 mmol) and T3P (12.3 g, 19.4 

mmol, 50% w/w solution in EtOAc) affording the title compound 129a as a dark orange oil (4.67 g, 

100%). No further purification was required; Rf 0.25 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2936s, 1710s, 1252s, 1036w, 1009m; δH (400 MHz, CDCl3) 1.30 (3 H, td, J = 7.1, J = 0.5, H-4/4’), 

1.31 (3 H, td, J = 7.1, J = 0.5, H-4/4’), 1.30 (3 H, d, J = 7.0, H-11), 2.94 (2 H, d, J = 21.6, H-2), 

3.12 (1 H, dqd, J = 7.4, J = 7.0, J = 6.8, H-6), 4.06–4.16 (4 H, m, H-3,3’), 4.19 (1 H, dd, J = 10.8, J 
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= 7.4, H-5), 4.27 (1 H, dd, J = 10.8, J = 6.8, H-5), 7.20–7.25 (3 H, m, H-8,10), 7.28 (2 H, m, H-9); 

δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4,4’), 18.0 (C-11), 34.2 (d, J = 134.1, C-2), 38.8 (C-6), 

62.6 (d, J = 6.2, C-3), 70.4 (C-5), 126.7 (C-10), 127.3 (C-8), 128.5 (C-9), 142.8 (C-7), 165.8 (d, J = 

6.2, C-1); δP (162 MHz, CDCl3) 20.3; HRMS (ESI+): Found: 337.1189; C15H23NaO5P (MNa+) 

Requires 337.1175 (−3.9 ppm error). 

Lab notebook reference: MGL/02/21 

2-Phenylpropyl 2-diazo-2-(diethoxyphosphoryl)acetate (129b) 
 

 
 

Synthesised using general procedure B with 2-phenylpropyl 2-(diethoxyphosphoryl)acetate 129a 

(2.00 g, 6.36 mmol), THF (32 mL), LHMDS (7.64 mL, 7.64 mmol, 1.0 M solution in THF) and p-

ABSA (1.83 g, 7.64 mmol). Purification by column chromatography (2:1 petrol:EtOAc) afforded 

the title compound 129b as a yellow oil (1.33 g, 61%); Rf 0.35 (1:1 petrol:EtOAc); νmax (thin 

film)/cm-1 2983w, 2125s, 1700s, 1390w, 1272s, 1015s; δH (400 MHz, CDCl3) 1.24–1.28 (9 H, m, 

H-4,11), 3.08 (1 H, app. sex., J = 7.0, H-6), 3.95–4.14 (4 H, m, H-3), 4.20 (1 H, dd, J = 10.7, J = 

6.9, H-5/5’), 4.28 (1 H, dd, J = 10.7, J = 7.1, H-5/5’), 7.15–7.19 (3 H, m, H-8,10), 7.23–7.28 (2 H, 

m, H-9); δC (100 MHz, CDCl3) 15.8 (d, J = 6.9, C-4), 17.5 (C-11), 38.7 (C-6), 53.6 (d, J = 226.7, 

C-2), 63.2 (d, J = 5.9, C-3), 70.0 (C-5), 126.5 (C-10), 127.0 (C-8), 128.2 (C-9), 142.4 (C-7), 163.0 

(d, J = 11.9, C-1); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 363.1081; C15H21N2NaO5P 

(MNa+) Requires 363.1080 (−0.2 ppm error), Found: 341.1261; C15H22N2O5P (MH+) Requires 

341.1261 (0.0 ppm error). 

Lab notebook reference: MGL/02/24 

p-ABSA
LHMDS

THF

O

O
P O

O

O

7
8

9
10

6 5

1 2

3
4

129b

11Me

3'
4'

129a

O

O
P O

O

O
Me N2



 160 

(SR)-4-Methyl-3-methylene-4-phenyldihydrofuran-2(3H)-one (129c) 

 

 
 

Synthesised using general procedure D with 2-phenylpropyl 2-diazo-2-(diethoxyphosphoryl)acetate 

129b (73 mg, 0.215 mmol), CH2Cl2 (4.3 mL), Rh2(oct)4 (3.3 mg, 4.3 µmol), THF (4.3 mL), KOBu-

t (39.4 mg, 0.323 mmol) and paraformaldehyde (12.9 mg, 0.430 mmol). Purification by column 

chromatography (8:1 hexane:EtOAc) afforded the title compound 129c as a colourless oil (24 mg, 

59%); Rf 0.33 (8:1 hexane:EtOAc); νmax (thin film)/cm-1 2922w, 1761s, 1661w, 1496w, 1446w, 

1406w, 1291w, 1253w, 1211w, 1103m, 1012m, 949w, 816w, 765w, 700m; δH (400 MHz, CDCl3) 

1.67 (3 H, s, H-6), 4.26 (1 H, d, J = 9.0, H-4), 4.52 (1 H, d, J = 9.0, H-4), 5.53 (1 H, s, H-5b), 6.42 

(1 H, s, H-5a), 7.27–7.39 (5 H, m, H-8,9,10); δC (100 MHz, CDCl3) 26.1 (C-6), 46.8 (C-3), 79.5 

(C-4), 123.0 (C-5), 126.2 (C-8/9/10), 127.3 (C-8/9/10), 128.8 (C-8/9/10), 143.5 (C-7), 144.1 (C-2), 

170.3 (C-1); HRMS (ESI+): Found: 211.0738; C12H12NaO2 (MNa+) Requires 211.0730 (−3.8 ppm 

error), Found: 189.0911; C12H13O2 (MH+) Requires 189.0910 (−0.4 ppm error). 

Lab notebook reference: MGL/03/95 

2-Methylpropyl 2-(diethoxyphosphoryl)acetate (130a) 
 

 
 

Synthesised using general procedure A with 2-methylpropanol 130 (593 mg, 8.00 mmol), toluene 

(40 mL), DEPAA (1.35 mL, 8.40 mmol), DIPEA (3.62 mL, 20.8 mmol) and T3P (6.62 g, 10.4 

mmol, 50% w/w solution in EtOAc) affording the title compound 130a as a yellow oil (2.02 g, 

100%). No further purification was required; Rf 0.24 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2965m, 1735s, 1394w, 1265s, 1117w, 1052w, 1024s; δH (400 MHz, CDCl3) 0.94 (6 H, d, J = 6.7, 

H-7), 1.32 (6 H, t, J = 7.1, H-4), 1.95 (1 H, app. nonet, J = 6.7, H-6), 2.97 (2 H, d, J = 21.6, H-2), 
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3.92 (2 H, d, J = 6.7, H-5), 4.17 (4 H, dq, J = 8.3, J = 7.1, H-3); δC (100 MHz, CDCl3) 16.3 (d, J = 

6.5, C-4), 19.0 (C-7), 27.6 (C-6), 34.3 (d, J = 134.0, C-2), 62.6 (d, J = 6.2, C-3), 71.6 (C-5), 165.9 

(d, J = 6.4, C-1); δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 275.1018; C10H21NaO5P 

(MNa+) Requires 275.1019 (0.3 ppm error), Found: 253.1202; C10H22O5P (MH+) Requires 

253.1199 (−1.1 ppm error). 

Lab notebook reference: MGL/03/16 

Obtained data in accord with reported literature.76 

2-Methylpropyl 2-diazo-2-(diethoxyphosphoryl)acetate (130b) 
 

 
 

Synthesised using general procedure B with 2-methylpropyl 2-(diethoxyphosphoryl)acetate 130a 

(2.02 g, 8.00 mmol), THF (40 mL), LHMDS (9.60 mL, 9.60 mmol, 1.0 M solution in THF) and p-

ABSA (2.31 g, 9.60 mmol). Purification by column chromatography (2:1 petrol:EtOAc) afforded 

the title compound 130b as a pale yellow oil (1.62 g, 73%); Rf 0.50 (1:1 petrol:EtOAc); νmax (thin 

film)/cm-1 2966m, 2127s, 1702s, 1276s, 1115w, 1019s, 978m; δH (400 MHz, CDCl3) 0.89 (6 H, d, 

J = 6.7, H-7), 1.31 (6 H, td, J = 7.1, J = 0.8, H-4), 1.91 (1 H, app. nonet, J = 6.7, J = 6.6, H-6), 3.93 

(2 H, d, J = 6.6, H-5), 4.06–4.22 (4 H, m, H-3); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 18.7 

(C-7), 27.7 (C-6), 53.7 (d, J = 227.9, C-2), 63.4 (d, J = 5.7, C-3), 71.5 (C-5), 163.4 (d, J = 11.9, C-

1); δP (162 MHz, CDCl3) 10.8; HRMS (ESI+): Found: 301.0913; C10H19N2NaO5P (MNa+) Requires 

301.0924 (3.5 ppm error), Found: 279.1104; C10H20N2O5P (MH+) Requires 279.1104 (0.2 ppm 

error). 

Lab notebook reference: MGL/03/21 

Obtained data in accord with reported literature.76 

p-ABSA
LHMDS

THF

O

O
P O

O

O

Me7
6 5

1 2

3
4

130b

Me

130a

O

O
P O

O

O

Me

Me N2



 162 

4,4-Dimethyl-3-methylenedihydrofuran-2(3H)-one (130c)  

 

 
 

Synthesised using general procedure D with 2-methylpropyl 2-diazo-2-

(diethoxyphosphoryl)acetate 130b (85 mg, 0.305 mmol), CH2Cl2 (6.1 mL), Rh2(oct)4 (3.4 mg, 6.1 

µmol), KOBu-t (41.1 mg, 0.366 mmol) and paraformaldehyde (18.3 mg, 0.610 mmol). Purification 

by column chromatography (8:1 hexane:EtOAc) afforded the title compound 130c as a colourless 

oil (9 mg, 23%); Rf 0.39 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2966w, 2929w, 1760s, 1668w, 

1464w, 1410w, 1371w, 1294m, 1169w, 1107m, 1014m; δH (400 MHz, CDCl3) 1.26 (6 H, s, H-6), 

4.03 (2 H, s, H-4), 5.54 (1 H, s, H-5b), 6.20 (1 H, s, H-5a); δC (100 MHz, CDCl3) 26.9 (C-6), 38.9 

(C-3), 78.3 (C-4), 119.9 (C-5), 144.7 (C-2), 170.8 (C-1); HRMS (ESI+): Found: 127.0758; C7H11O2 

(MH+) Requires 127.0754 (−3.6 ppm error). 

Lab notebook reference: MGL/03/42 

Obtained data in accord with reported literature.160 

1,3-Diphenylpropan-2-yl 2-(diethoxyphosphoryl)acetate (131a) 

 

 
 

Synthesised using general procedure A with 1,3-diphenylpropan-2-ol 130 (2.50 g, 11.8 mmol), 

toluene (60 mL), DEPAA (2.00 mL, 12.4 mmol), DIPEA (5.30 mL, 30.6 mmol) and T3P (9.74 g, 

15.3 mmol, 50% w/w solution in EtOAc) affording the title compound 131a as a yellow oil (4.48 g, 

98%). No further purification was required; Rf 0.26 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2938s, 

2883s, 1708s, 1249s, 1097w, 1036w, 1011m, 955w; δH (400 MHz, CDCl3) 1.29 (6 H, td, J = 7.1, J 

= 0.5, H-4), 2.82–2.96 (4 H, m, H-6), 2.87 (2 H, d, J = 21.5, H-2), 4.01–4.11 (4 H, m, H-3), 5.31–

5.39 (1 H, m, H-5), 7.18–7.24 (6 H, m, H-8,10), 7.26–7.31 (4 H, m, H-9); δC (100 MHz, CDCl3) 
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16.3 (d, J = 6.2, C-4), 34.3 (d, J = 134.4, C-2), 39.5 (C-6), 62.5 (d, J = 6.2, C-3), 76.8 (C-5), 126.5 

(C-10), 128.3 (C-9), 129.4 (C-8), 137.1 (C-7), 165.2 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 20.3; 

HRMS (ESI+): Found: 413.1472; C21H27NaO5P (MNa+) Requires 413.1488 (3.9 ppm error), Found: 

391.1661; C21H28O5P (MH+) Requires 391.1669 (1.9 ppm error). 

Lab notebook reference: MGL/01/25 

1,3-Diphenylpropan-2-yl 2-diazo-2-(diethoxyphosphoryl)acetate (131b) 
 

 
 

Synthesised using general procedure B with 1,3-diphenylpropan-2-yl 2-

(diethoxyphosphoryl)acetate 131a (1.00 g, 2.56 mmol), THF (13 mL), LHMDS (3.07 mL, 3.07 

mmol, 1.0 M solution in THF) and p-ABSA (739 mg, 3.07 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 131b as a yellow oil (778 mg, 

73%); Rf 0.62 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2939m, 2096s, 1683s, 1257s, 1009m; δH 

(400 MHz, CDCl3) 1.25 (6 H, td, J = 7.1, J = 0.7, H-4), 2.91 (4 H, d, J = 6.6, H-6), 3.88–4.10 (4 H, 

m, H-3), 4.45 (1 H, quin., J = 6.6, H-5), 7.17–7.25 (6 H, m, H-8,10), 7.26–7.37 (4 H, m, H-9); δC 

(100 MHz, CDCl3) 16.0 (d, J = 7.0, C-4), 40.1 (C-6), 54.0 (d, J = 226.5, C-2), 63.5 (d, J = 5.5, C-

3), 76.7 (C-5), 126.6 (C-10), 128.4 (C-9), 129.4 (C-8), 137.0 (C-7), 163.2 (d, J = 12.2, C-1); δP 

(162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 439.1382; C21H25N2NaO5P (MNa+) Requires 

439.1393 (2.7 ppm error), Found: 417.1565; C21H26N2O5P (MH+) Requires 417.1574 (2.0 ppm 

error). 

Lab notebook reference: MGL/01/27 
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(4RS,5SR)-5-Benzyl-3-methylene-4-phenyldihydrofuran-2(3H)-one (131c) 

 

 
 

Synthesised using general procedure E with 1,3-diphenylpropan-2-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 131b (81 mg, 0.195 mmol), CH2Cl2 (3.9 mL), Rh2(oct)4 (3.0 mg, 3.9 

µmol), KOBu-t (26.3 mg, 0.234 mmol) and paraformaldehyde (11.7 mg, 0.390 mmol). Purification 

by column chromatography (5:1 petrol:EtOAc) afforded the title compound 131c as a colourless oil 

(43 mg, 84%); Rf 0.52 (6:1 petrol:EtOAc); νmax (thin film)/cm-1 2877s, 2807w, 1738s, 895m, 721m; 

δH (400 MHz, CDCl3) 3.03 (1 H, dd, J = 14.5, J = 6.7, H-10), 3.11 (1 H, dd, J = 14.5, J = 4.6, H-

10), 3.86 (1 H, ddd, J = 7.4, J = 3.2, J = 2.9, H-3), 4.67 (1 H, ddd, J = 7.4, J = 6.7, J = 4.6, H-4), 

5.36 (1 H, dd, J = 2.9, H-5b), 6.33 (1 H, dd, J = 3.2, H-5a), 7.12–7.14 (2 H, m, ArH), 7.22–7.37 (8 

H, m, ArH); δC (100 MHz, CDCl3) 39.8 (C-10), 51.0 (C-3), 85.2 (C-4), 123.7 (C-5), [127.0, 127.8, 

128.3, 128.5, 129.1, 129.7 (C-7/8/9/12/13/14)], 135.5 (C-2/6/11), 138.8 (C-2/6/11), 140.0 (C-

2/6/11), 169.5 (C-1); HRMS (ESI+): Found: 287.1048; C18H16NaO2 (MNa+) Requires 287.1043 

(−2.1 ppm error), Found: 265.1229; C18H17O2 (MH+) Requires 265.1223 (−2.4 ppm error).  

Lab notebook reference: MGL/03/06, 01/32, 01/37 

1-(4-Methoxyphenyl)-3-phenylpropan-2-yl 2-(diethoxyphosphoryl) acetate (132a) 

 

 
 

Synthesised using general procedure A with 1-(4-methoxyphenyl)-3-phenylpropan-2-ol 132 (530 

mg, 2.19 mmol), toluene (15 mL), DEPAA (0.370 mL, 2.30 mmol), DIPEA (0.99 mL, 5.69 mmol) 

and T3P (1.81 g, 2.84 mmol, 50% w/w solution in EtOAc) affording an orange oil (972 mg) as 

crude. Purification by column chromatography (1:1 petrol:EtOAc) afforded the title compound 
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132a as a colourless oil (850 mg, 92%); Rf 0.26 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2937s, 

2872s, 1708s, 1490m, 1231s, 1012s; δH (400 MHz, CDCl3) 1.27–1.31 (6 H, m, H-4,4’), 2.75–2.93 

(4 H, m, H-6,12), 2.87 (2 H, d, J = 21.5, H-2), 3.79 (3 H, s, H-11), 4.02–4.13 (4 H, m, H-3,3’), 

5.25–5.33 (1 H, m, H-5), 6.82 (2 H, d, J = 8.7, H-9), 7.12 (2 H, d, J = 8.7, H-8), 7.17–7.24 (3 H, m, 

H-14,16), 7.25–7.31 (2 H, m, H-15); δC (100 MHz, CDCl3) 16.3 (d, J = 6.1, C-4), 34.3 (d, J = 

134.5, C-2), 38.7 (C-6), 39.5 (C-12), 55.2 (C-11), 62.3 (d, J = 6.3, C-3), 77.2 (C-5), 113.8 (C-9), 

126.5 (C-16), 128.4 (C-15), 129.1 (C-7), 129.4 (C-14), 130.4 (C-8), 137.2 (C-13), 158.3 (C-10), 

165.2 (d, J = 6.0, C-1); δP (162 MHz, CDCl3) 20.3; HRMS (ESI+): Found: 443.1587; C22H29NaO6P 

(MNa+) Requires 443.1594 (1.7 ppm error), Found: 421.1787; C22H30O6P (MH+) Requires 

421.1775 (−3.0 ppm error). 

Lab notebook reference: MGL/01/54 

1-(4-Methoxyphenyl)-3-phenylpropan-2-yl 2-diazo-2-(diethoxyphosphoryl) acetate 

(132b) 

 

 
 

Synthesised using general procedure B with 1-(4-methoxyphenyl)-3-phenylpropan-2-yl 2-

(diethoxyphosphoryl) acetate 132a (828 mg, 1.97 mmol), THF (10 mL), LHMDS (2.36 mL, 2.36 

mmol, 1.0 M solution in THF) and p-ABSA (568 mg, 2.36 mmol). Purification by column 

chromatography (1:1 petrol:EtOAc) afforded the title compound 132b as a yellow oil (621 mg, 

71%); Rf 0.40 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2939s, 2889w, 2094s, 1683s, 1490m, 

1258s, 1231w, 1009s; δH (400 MHz, CDCl3) 1.26 (6 H, td, J = 7.1, J = 0.8, H-4/4’), 2.86 (2 H, d, J 

= 6.5, H-6), 2.90 (2 H, d, J = 6.9, H-12), 3.78 (3 H, s, H-11), 3.89–4.00 (2 H, m, H-3/3’), 4.01–4.12 

(2 H, m, H-3/3’), 5.37 (1 H, m, H-5), 6.82 (2 H, d, J = 8.7, H-9), 7.10 (2 H, d, J = 8.7, H-8), 7.16–

7.24 (3 H, m, H-14,16), 7.25–7.31 (2 H, m, H-15); δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4/4’), 

16.1 (d, J = 6.9, C-4/4’), 39.2 (C-6), 40.0 (C-12), 53.2 (d, J = 232.8, C-2), 55.1 (C-11), 63.5 (d, J = 

5.4, C-3/3’), 76.8 (C-5), 113.8 (C-9), 126.6 (C-16), 128.4 (C-15), 128.9 (C-7), 129.3 (C-14), 130.3 

(C-8), 137.0 (C-13), 158.3 (C-10), 162.5 (d, J = 12.7, C-1); δP (162 MHz, CDCl3) 10.5; HRMS 

(ESI+): Found: 469.1485; C22H27N2NaO6P (MNa+) Requires 469.1499 (2.9 ppm error), Found: 

447.1680; C22H28N2NaO6P (MH+) Requires 447.1679 (−0.2 ppm error).  

Lab notebook reference: MGL/01/55 
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5-Benzyl-4-(4-methoxyphenyl)-3-methylenedihydrofuran-2(3H)-one (132c) 

 

 
 

Synthesised using general procedure E with 1-(4-methoxyphenyl)-3-phenylpropan-2-yl 2-diazo-2-

(diethoxyphosphoryl) acetate 132b (95 mg, 0.213 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.3 

µmol), KOBu-t (28.7 mg, 0.256 mmol) and paraformaldehyde (12.8 mg, 0.426 mmol). The HWE 

was performed at 0 °C. Purification by column chromatography (8:1 petrol:EtOAc) afforded the 

title compound 132c as an inseparable mixture of diastereomers A:B (1.6:1) as a colourless oil (41 

mg, 65%); Rf 0.71 (2:1 petrol:EtOAc); νmax (thin film)/cm-1 2937w, 1764s, 1513m, 1251m, 1131w, 

1032w; δH (400 MHz, CDCl3) 2.91–3.12 (2 H, m, H-11A,B), 3.78–3.85 (4 H, m, H-3A,B, H-

10A,B), 4.58–4.65 (2 H, m, H-4A,B), 5.34–5.35 (1 H, m, H-5b(A,B)), 6.30–6.31 (1 H, m, H-

5a(A,B)), 6.83 (2 H, d, J = 8.7, H-8B), 6.88 (2 H, d, J = 8.7, H-8A), 7.05 (2 H, d, J = 8.7, H-7A), 

7.14 (2 H, d, J = 8.7, H-7B), 7.12–7.38 (5 H, m, H-13/14/15(A,B)); δC (100 MHz, CDCl3) 38.7 (C-

11B), 39.6 (C-11A), 50.4 (C-3A), 50.8 (C-3B), 55.2 (C-10B), 55.3 (C-10A), 85.3 (C-4B), 85.4 (C-

4A), 114.0 (C-8B), 114.5 (C-8A), 123.5 (C-5A), 123.6 (C-5B), [127.0, 127.4, 127.8, 128.3, 128.5, 

129.1, 129.4, 129.7, 130.5, 130.8 (C-6/7/13/14/15(A/B))], 135.6 (C-12A), 138.9 (C-12B), 140.1 

(C-2B), 140.3 (C-2A), 158.6 (C-9B), 159.1 (C-9A), 169.6 (C-1B), 169.6 (C-1A); HRMS (ESI+): 

Found: 317.1144; C19H18NaO3 (MNa+) Requires 317.1148 (1.2 ppm error), Found: 295.1326; 

C19H19O3 (MH+) Requires 295.1329 (0.8 ppm error). 

Lab notebook reference: MGL/03/07, 02/28 
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1-Phenylethyl 2-(diethoxyphosphoryl)acetate (133a) 

 

 
 

Synthesised using general procedure A with 1-phenylethanol 133 (0.60 mL, 5.00 mmol), toluene 

(25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 

mmol, 50% w/w solution in EtOAc) affording the title compound 133a as a pale orange oil (1.48 g, 

99%). No further purification was required; Rf 0.31 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2983w, 2933w, 1731s, 1496w, 1452w, 1393w, 1259s, 1208w, 1163w, 1113m, 1048w, 1019s, 960s, 

888w, 836w, 795w, 761m, 699s; δH (400 MHz, CDCl3) 1.26 (3 H, td, J = 7.1, J = 0.4, H-4/4’), 1.29 

(3 H, td, J = 7.1, J = 0.4, H-4/4’), 1.56 (3 H, d, J = 6.6, H-6), 2.97 (2 H, d, J = 21.6, H-2), 4.05–

4.16 (4 H, m, H-3,3’), 5.92 (1 H, q, J = 6.6, H-5), 7.26–7.38 (5 H, m, H-8,9,10); δC (100 MHz, 

CDCl3) 16.2 (d, J = 6.3, C-4/4’), 16.2 (d, J = 6.3, C-4/4’), 21.9 (C-6), 34.6 (d, J = 133.7, C-2), 62.6 

(d, J = 6.2, C-3/3’), 62.6 (d, J = 6.2, C-3/3’), 73.6 (C-5), 126.1 (C-8/9), 128.0 (C-10), 128.4 (C-

8/9), 140.9 (C-7), 165.0 (d, J = 6.3, C-1); δP (162 MHz, CDCl3) 20.3; HRMS (ESI+): Found: 

323.1017; C14H21NaO5P (MNa+) Requires 323.1019 (0.6 ppm error), Found: 301.1198; C14H22O5P 

(MH+) Requires 301.1199 (0.6 ppm error). 

Lab notebook reference: MGL/05/05S 

1-Phenylethyl 2-diazo-2-(diethoxyphosphoryl)acetate (133b) 

 

 
 

Synthesised using general procedure B with 1-phenylethyl 2-(diethoxyphosphoryl)acetate 133a 

(1.43 g, 4.76 mmol), THF (24 mL), LHMDS (5.71 mL, 5.71 mmol, 1.0 M solution in THF) and p-

ABSA (1.37 g, 5.71 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded 

the title compound 133b as a yellow oil (1.38 g, 89%); Rf 0.56 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2984w, 2129s, 1700s, 1496w, 1453w, 1332w, 1275s, 1209w, 1164w, 1115w, 1019s, 

979m, 797w, 762w, 746w, 700m, 588m, 553m; δH (400 MHz, CDCl3) 1.28–1.33 (6 H, m, H-4,4’), 
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1.57 (3 H, d, J = 6.6, H-6), 4.05–4.24 (4 H, m, H-3,3’), 5.98 (1 H, q, J = 6.6, H-5), 7.27–7.36 (5 H, 

m, H-8,9,10); δC (100 MHz, CDCl3) 16.0 (d, J = 7.0, C-4/4’), 16.0 (d, J = 7.0, C-4/4’), 22.3 (C-6), 

54.2 (d, J = 224.3, C-2), 63.5 (d, J = 5.5, C-3/3’), 63.5 (d, J = 5.9, C-3/3’), 73.8 (C-5), 125.9 (C-

8/9), 128.0 (C-10), 128.5 (C-8/9), 140.9 (C-7), 162.8 (d, J = 11.8, C-1); δP (162 MHz, CDCl3) 10.6; 

HRMS (ESI+): Found: 349.0919; C14H19N2NaO5P (MNa+) Requires 349.0924 (1.4 ppm error). 

Lab notebook reference: MGL/05/05 

Heptyl 2-(diethoxyphosphoryl)acetate (134a) 
 

 
 

Synthesised using general procedure A with 1-heptanol 134 (930 mg, 8.00 mmol), toluene (40 

mL), DEPAA (1.35 mL, 8.40 mmol), DIPEA (3.62 mL, 20.8 mmol) and T3P (6.62 g, 10.4 mmol, 

50% w/w solution in EtOAc) affording the title compound 134a as a yellow oil (2.36 g, 100%). No 

further purification was required; Rf 0.38 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2959w, 2931m, 

2859w, 1738s, 1393w, 1267s, 1116w, 1053w, 1025s; δH (400 MHz, CDCl3) 0.84 (3 H, t, J = 6.7, 

H-11), 1.19–1.35 (8 H, m, H-7,8,9,10), 1.31 (6 H, td, J = 7.1, J = 0.2, H-4), 1.61 (2 H, app. quin., J 

= 7.3, H-6), 2.93 (2 H, d, J = 21.6, H-2), 4.09 (2 H, br t, J = 6.8, H-5), 4.14 (4 H, dq, J = 8.4, J = 

7.1, H-3); δC (100 MHz, CDCl3) 14.0 (C-11), 16.2 (d, J = 6.2, C-4), 22.5 (C-10), 25.6 (C-7), 28.4 

(C-6), 28.8 (C-8), 31.6 (C-9), 34.3 (d, J = 134.2, C-2), 62.5 (d, J = 6.2, C-3), 65.6 (C-5), 165.8 (d, J 

= 6.2, C-1); δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 317.1486; C13H27NaO5P (MNa+) 

Requires 317.1488 (0.6 ppm error), Found: 295.1675; C13H28O5P (MH+) Requires 295.1669 (−2.2 

ppm error). 

Lab notebook reference: MGL/03/17 
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Heptyl 2-diazo-2-(diethoxyphosphoryl)acetate (134b) 

 

 

 
 

Synthesised using general procedure B with heptyl 2-(diethoxyphosphoryl)acetate 134a (2.36 g, 

8.00 mmol), THF (40 mL), LHMDS (9.60 mL, 9.60 mmol, 1.0 M solution in THF) and p-ABSA 

(2.31 g, 9.60 mmol). Purification by column chromatography (3:1 petrol:EtOAc) afforded the title 

compound 134b as a pale yellow oil (1.50 g, 74%); Rf 0.65 (1:1 petrol:EtOAc); νmax (thin film)/cm-

1 2931m, 2859w, 2127s, 1705s, 1280s, 1023s, 978m; δH (400 MHz, CDCl3) 0.81 (3 H, t, J = 7.0, H-

11), 1.15–1.32 (8 H, m, H-7,8,9,10), 1.29 (6 H, td, J = 7.1, J = 0.8, H-4), 1.59 (2 H, app. quin., J = 

7.2, H-6), 4.04–4.20 (6 H, m, H-3,5); δC (100 MHz, CDCl3) 13.8 (C-11), 16.0 (d, J = 6.9, C-4), 

22.4 (C-10), 25.5 (C-7), 28.5 (C-6), 28.6 (C-8), 31.5 (C-9), 53.6 (d, J = 226.9, C-2), 63.4 (d, J = 

5.9, C-3), 65.6 (C-5), 163.3 (d, J = 12.2, C-1); δP (162 MHz, CDCl3) 10.8; HRMS (ESI+): Found: 

343.1390; C13H25N2NaO5P (MNa+) Requires 343.1393 (1.0 ppm error), Found: 321.1576; 

C13H26N2O5P (MH+) Requires 321.1574 (−0.6 ppm error). 

Lab notebook reference: MGL/03/22 

(SR)-3-Methylene-4-pentyldihydrofuran-2(3H)-one (134c) 

 

 
 

Synthesised using general procedure D with heptyl 2-diazo-2-(diethoxyphosphoryl)acetate 134b 

(78 mg, 0.244 mmol), CH2Cl2 (4.9 mL), Rh2(oct)4 (3.8 mg, 4.9 µmol), THF (4.9 mL), KOBu-t 
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(32.9 mg, 0.293 mmol) and paraformaldehyde (14.7 mg, 0.488 mmol). Purification by column 

chromatography (8:1 hexane:EtOAc) afforded the title compound 134c as a pale yellow oil (27 mg, 

66%); Rf 0.46 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2957w, 2929m, 2859w, 1763s, 1405w, 

1268m, 1112m, 1009w; δH (400 MHz, CDCl3) 0.87–0.90 (3 H, m, H-10), 1.24–1.38 (6 H, m, H-7, 

8, 9), 1.45–1.54 (1 H, m, H-6), 1.64–1.73 (1 H, m, H-6), 3.03 (1 H, app. ttt, J = 8.5, J = 5.6, J = 2.6, 

H-3), 3.97 (1 H, dd, J = 9.0, J = 5.6, H-4), 4.45 (1 H, app. t, J = 8.5, H-4), 5.59 (1 H, d, J = 2.6, H-

5b), 6.25 (1 H, d, J = 2.6, H-5a); δC (100 MHz, CDCl3) 13.9 (C-10), 22.4 (C-9), 26.0 (C-7), 31.6 

(C-8), 33.7 (C-6), 38.8 (C-3), 71.2 (C-4), 121.7 (C-5), 138.5 (C-2), 170.9 (C-1); HRMS (ESI+): 

Found: 191.1040; C10H16NaO2 (MNa+) Requires 191.1043 (1.4 ppm error). 

Lab notebook reference: MGL/03/40, 39  

3-Methylbutyl 2-(diethoxyphosphoryl)acetate (135a) 
 

 
 

Synthesised using general procedure A with 3-methyl-1-butanol 135 (882 mg, 10.0 mmol), toluene 

(50 mL), DEPAA (1.69 mL, 10.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P (8.27 g, 13.0 

mmol, 50% w/w solution in EtOAc) affording the title compound 135a as an orange oil (2.67 g, 

100%). No further purification was required; Rf 0.28 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2960w, 1735s, 1466w, 1392w, 1261s, 1116m, 1021s, 969m; δH (400 MHz, CDCl3) 0.90 (6 H, d, J 

= 6.6, H-8), 1.33 (6 H, td, J = 7.1, J = 0.4, H-4), 1.52 (2 H, app. q, J = 6.9, H-6), 1.63–1.76 (1 H, 

m, H-7), 2.94 (2 H, d, J = 21.6, H-2), 4.12–4.19 (6 H, m, H-3,5); δC (100 MHz, CDCl3) 16.3 (d, J = 

6.2, C-4), 22.3 (C-8), 24.8 (C-7), 34.3 (d, J = 134.2, C-2), 37.1 (C-6), 62.6 (d, J = 6.2, C-3), 64.2 

(C-5), 165.9 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 289.1356; 

C11H23NaO5P (MNa+) Requires 289.1175 (−1.9 ppm error), Found: 267.1356; C11H24O5P (MH+) 

Requires 267.1356 (0.0 ppm error). 

Lab notebook reference: MGL/03/47 
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3-Methylbutyl 2-diazo-2-(diethoxyphosphoryl)acetate (135b) 

 

 
 

Synthesised using general procedure B with 3-methylbutyl 2-(diethoxyphosphoryl)acetate 135a 

(1.60 g, 6.00 mmol), THF (30 mL), LHMDS (7.20 mL, 7.20 mmol, 1.0 M solution in THF) and p-

ABSA (1.73 g, 7.20 mmol). Purification by column chromatography (5:1 hexane:EtOAc) afforded 

the title compound 135b as a pale yellow oil (1.18 g, 67%); Rf 0.65 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2960w, 2125s, 1701s, 1389w, 1272s, 1215w, 1164w, 1116w, 1091w, 1016s, 977m; δH 

(400 MHz, CDCl3) 0.91 (6 H, d, J = 6.6, H-8), 1.35 (6 H, td, J = 7.1, J = 0.8, H-4), 1.54 (2 H, app. 

q, J = 6.8, H-6), 1.62–1.75 (1 H, m, H-7), 4.10–4.26 (4 H, m, H-3), 4.22 (2 H, t, J = 6.8, H-5); δC 

(100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 22.2 (C-8), 24.8 (C-7), 37.2 (C-6), 53.5 (d, J = 228.2, C-

2), 63.4 (d, J = 5.7, C-3), 64.1 (C-5), 163.3 (d, J = 12.0, C-1); δP (162 MHz, CDCl3) 10.8; HRMS 

(ESI+): Found: 315.1084; C11H21N2NaO5P (MNa+) Requires 315.1080 (−1.2 ppm error), Found: 

293.1263; C11H22N2O5P (MH+) Requires 293.1261 (−0.7 ppm error). 

Lab notebook reference: MGL/03/51 

(SR)-4-Isopropyl-3-methylenedihydrofuran-2(3H)-one (135c) 

 

 
 

Synthesised using general procedure D with 3-methylbutyl 2-diazo-2-(diethoxyphosphoryl)acetate 

135b (56 mg, 0.191 mmol), CH2Cl2 (3.8 mL), Rh2(oct)4 (3.0 mg, 3.8 µmol), THF (3.8 mL), KOBu-

t (25.7 mg, 0.229 mmol) and paraformaldehyde (11.5 mg, 0.382 mmol). Purification by column 

chromatography (8:1 pentane:diethyl ether) afforded the title compound 135c as a colourless oil (15 

mg, 56%); Rf 0.30 (8:1 pentane:diethyl ether); νmax (thin film)/cm-1 2963m, 1762s, 1409w, 1267w, 

1117m, 1039w, 979w; δH (400 MHz, CDCl3) 0.92 (3 H, d, J = 6.8, H-7/7’), 0.95 (3 H, d, J = 6.8, 
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H-7/7’), 1.87–1.99 (1 H, m, H-6), 2.93–2.99 (1 H, m, H-3), 4.16 (1 H, dd, J = 9.3, J = 4.0, H-4), 

4.35 (1 H, dd, J = 9.3, J = 8.1, H-4), 5.62 (1 H, d, J = 2.2, H-5b), 6.34 (1 H, d, J = 2.5, H-5a); δC 

(100 MHz, CDCl3) 17.7 (C-7/7’), 19.1 (C-7/7’), 31.4 (C-6), 44.6 (C-3), 68.3 (C-4), 123.1 (C-5), 

136.9 (C-2), 171.2 (C-1); HRMS (ESI+): Found: 163.0722; C8H12NaO2 (MNa+) Requires 163.0730 

(4.9 ppm error). 

Lab notebook reference: MGL/03/58 

3,3-Dimethylbutyl 2-(diethoxyphosphoryl)acetate (136a) 
 

 
 

Synthesised using general procedure A with 3,3-dimethyl-1-butanol 136 (1.02 g, 10.0 mmol), 

toluene (50 mL), DEPAA (1.69 mL, 10.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P (8.27 g, 

13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 136a as an orange oil (2.70 

g, 97%). No further purification was required; Rf 0.41 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 

2958w, 2870w, 1736s, 1478w, 1396w, 1261s, 1116m, 1023s, 971m; δH (400 MHz, CDCl3) 0.92 (9 

H, s, H-8), 1.33 (6 H, td, J = 7.1, J = 0.5, H-4), 1.57 (2 H, t, J = 7.7, H-6), 2.94 (2 H, d, J = 21.6, H-

2), 4.12–4.19 (6 H, m, H-3,5); δC (100 MHz, CDCl3) 16.3 (d, J = 6.3, C-4), 29.5 (C-8), 29.6 (C-7), 

34.3 (d, J = 134.3, C-2), 41.5 (C-6), 62.6 (d, J = 6.3, C-3), 63.4 (C-5), 165.9 (d, J = 6.0, C-1); δP 

(162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 303.1323; C12H25NaO5P (MNa+) Requires 

303.1332 (3.0 ppm error), Found: 281.1505; C12H26O5P (MH+) Requires 281.1512 (2.7 ppm error). 

Lab notebook reference: MGL/03/48 
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3,3-Dimethylbutyl 2-diazo-2-(diethoxyphosphoryl)acetate (136b) 

 

 
 

Synthesised using general procedure B with 3,3-dimethylbutyl 2-(diethoxyphosphoryl)acetate 136a 

(1.68 g, 6.00 mmol), THF (30 mL), LHMDS (7.20 mL, 7.20 mmol, 1.0 M solution in THF) and p-

ABSA (1.73 g, 7.20 mmol). Purification by column chromatography (3:1 hexane:EtOAc) afforded 

the title compound 136b as a pale yellow oil (1.22 g, 66%); Rf 0.49 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2959m, 2880w, 2125s, 1702s, 1276s, 1216w, 1164w, 1119w, 1095w, 1016s, 976m; δH 

(400 MHz, CDCl3) 0.89 (9 H, s, H-8), 1.31 (6 H, td, J = 7.1, J = 0.8, H-4), 1.54 (2 H, t, J = 7.4, H-

6), 4.06–4.22 (4 H, m, H-3), 4.21 (2 H, t, J = 7.4, H-5); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-

4), 29.4 (C-8), 29.6 (C-7), 41.6 (C-6), 53.5 (d, J = 228.5, C-2), 63.3 (C-5), 63.4 (d, J = 5.6, C-3), 

163.3 (d, J = 12.3, C-1); δP (162 MHz, CDCl3) 10.7; HRMS (ESI+): Found: 329.1223; 

C12H23N2NaO5P (MNa+) Requires 329.1237 (4.1 ppm error), Found: 307.1409; C12H24N2O5P 

(MH+) Requires 307.1417 (2.8 ppm error). 

Lab notebook reference: MGL/03/52 

(SR)-4-(tert-Butyl)-3-methylenedihydrofuran-2(3H)-one (136c) 
 

 
 

Synthesised using general procedure D with 3,3-dimethylbutyl 2-diazo-2-

(diethoxyphosphoryl)acetate 136b (58 mg, 0.189 mmol), CH2Cl2 (3.8 mL), Rh2(oct)4 (3.0 mg, 3.8 

µmol), THF (3.8 mL), KOBu-t (25.5 mg, 0.227 mmol) and paraformaldehyde (11.4 mg, 0.378 

mmol). Purification by column chromatography (8:1 pentane:diethyl ether) afforded the title 

compound 136c as a colourless oil (10 mg, 34%); Rf 0.24 (8:1 pentane:diethyl ether); νmax (thin 

film)/cm-1 2962m, 1765s, 1492w, 1401w, 1364w, 1274m, 1250w, 1119m, 1041w, 969w, 822w; δH 
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(400 MHz, CDCl3) 0.94 (9 H, s, H-7), 2.74–2.78 (1 H, m, H-3), 4.26–4.34 (2 H, m, H-4), 5.66 (1 

H, dd, J = 1.9, J = 0.7, H-5b), 6.38 (1 H, d, J = 2.1, H-5a); δC (100 MHz, CDCl3) 26.3 (C-7), 33.5 

(C-6), 49.1 (C-3), 67.8 (C-4), 124.5 (C-5), 136.2 (C-2), 171.3 (C-1); HRMS (ESI+): Found: 

177.0878; C9H14NaO2 (MNa+) Requires 177.0886 (4.7 ppm error), Found: 155.1063; C9H15O2 

(MH+) Requires 155.1067 (2.6 ppm error). 

Lab notebook reference: MGL/03/60 

3-(Trimethylsilyl)propyl 2-(diethoxyphosphoryl)acetate (137a) 
 

 
 

Synthesised using general procedure A with 3-(trimethylsilyl)-1-propanol 137 (882 mg, 10.0 

mmol), toluene (50 mL), DEPAA (1.69 mL, 10.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P 

(8.27 g, 13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 137a as an orange 

oil (3.11 g, 100%). No further purification was required; Rf 0.48 (1:2 hexane:EtOAc); νmax (thin 

film)/cm-1 2953w, 1735s, 1394w, 1248s, 1116m, 1021s, 969m; δH (400 MHz, CDCl3) −0.03 (9 H, 

s, H-8), 0.45–0.50 (2 H, m, H-7), 1.32 (6 H, td, J = 7.1, J = 0.4, H-4), 1.57–1.65 (2 H, m, H-6), 

2.94 (2 H, d, J = 21.6, H-2), 4.07 (2 H, t, J = 7.0, H-5), 4.11–4.19 (4 H, m, H-3); δC (100 MHz, 

CDCl3) −1.9 (C-8), 12.2 (C-7), 16.3 (d, J = 6.2, C-4), 23.1 (C-6), 34.3 (d, J = 134.1, C-2), 62.6 (d, J 

= 6.2, C-3), 68.1 (C-5), 165.8 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 

333.1251; C12H27NaO5PSi (MNa+) Requires 333.1258 (2.1 ppm error), Found: 311.1432; 

C12H28O5PSi (MH+) Requires 311.1438 (1.9 ppm error). 

Lab notebook reference: MGL/03/49 
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3-(Trimethylsilyl)propyl 2-diazo-2-(diethoxyphosphoryl)acetate (137b) 

 

 
 

Synthesised using general procedure B with 3-(trimethylsilyl)propyl 2-(diethoxyphosphoryl)acetate 

137a (1.86 g, 6.00 mmol), THF (30 mL), LHMDS (7.20 mL, 7.20 mmol, 1.0 M solution in THF) 

and p-ABSA (1.73 g, 7.20 mmol). Purification by column chromatography (3:1 hexane:EtOAc) 

afforded the title compound 137b as a pale yellow oil (1.26 g, 63%); Rf 0.65 (1:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2953w, 2126s, 1702s, 1276s, 1249w, 1216w, 1165w, 1119w, 1092w, 1020s, 

977m; δH (400 MHz, CDCl3) 0.04 (9 H, s, H-8), 0.44–0.48 (2 H, m, H-7), 1.33 (6 H, td, J = 7.1, J = 

0.8, H-4), 1.57–1.65 (2 H, m, H-6), 4.08–4.24 (4 H, m, H-3), 4.12 (2 H, t, J = 7.0, H-5); δC (100 

MHz, CDCl3) −1.8 (C-8), 12.3 (C-7), 16.2 (d, J = 6.9, C-4), 23.4 (C-6), 53.9 (d, J = 228.0, C-2), 

63.6 (d, J = 5.6, C-3), 68.3 (C-5), 163.5 (d, J = 12.1, C-1); δP (162 MHz, CDCl3) 10.8; HRMS 

(ESI+): Found: 359.1151; C12H25N2NaO5PSi (MNa+) Requires 359.1163 (3.3 ppm error), Found: 

337.1332; C12H26N2O5PSi (MH+) Requires 337.1343 (3.2 ppm error). 

Lab notebook reference: MGL/03/53 

(SR)-3-Methylene-4-((trimethylsilyl)methyl)dihydrofuran-2(3H)-one (137c) 
 

 
 

Synthesised using general procedure D with 3-(trimethylsilyl)propyl 2-diazo-2-

(diethoxyphosphoryl)acetate 137b (61 mg, 0.197 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 3.9 

µmol), THF (4.0 mL), KOBu-t (33.2 mg, 0.296 mmol) and paraformaldehyde (11.8 mg, 0.394 

mmol). Purification by column chromatography (8:1 petrol:EtOAc) afforded the title compound 

137c as a colourless oil (27 mg, 75%); Rf 0.33 (8:1 hexane:EtOAc); νmax (thin film)/cm-1 2955w, 
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2898w, 1768s, 1403w, 1251s, 1109m, 1017m, 841s, 693w; δH (400 MHz, CDCl3) 0.06 (9 H, s, H-

7), 0.73 (1 H, dd, J = 14.8, J = 10.9, H-6), 1.08 (1 H, dd, J = 14.8, J = 3.8, H-6), 3.05–3.14 (1 H, m, 

H-3), 3.80 (1 H, dd, J = 8.7, J = 7.6, H-4), 4.49 (1 H, app. t, J = 8.6, H-4), 5.58 (1 H, d, J = 2.8, H-

5b), 6.24 (1 H, d, J = 3.1, H-5a); δC (100 MHz, CDCl3) −0.98 (C-7), 20.8 (C-6), 35.9 (C-3), 72.7 

(C-4), 120.8 (C-5), 141.1 (C-2), 170.8 (C-1); HRMS (ESI+): Found: 207.0807; C9H16NaO2Si 

(MNa+) Requires 207.0812 (2.4 ppm error), Found: 185.0986; C9H17O2Si (MH+) Requires 

185.0992 (3.6 ppm error). 

Lab notebook reference: MGL/03/62,82 

3-((tert-Butyldimethylsilyl)oxy)propyl 2-(diethoxyphosphoryl)acetate (138a) 
 

 
 

To a solution of NaH (60% dispersion in mineral oil) (480 mg, 12.0 mmol) in THF (20 mL) cooled 

to 0 °C was added 1,3-propanediol 196 (0.80 mL, 11.0 mmol) dropwise over 5 mins. The solution 

was allowed to warm at RT and stirred for 30 mins after which TBSCl (1.51 g, 10.0 mmol) was 

added then stirred at RT for 1 h. The solution was diluted with water (25 mL), extracted with 

diethyl ether (2 × 25 mL), washed with brine (25 mL), dried over MgSO4 and concentrated in 

vacuo to afford the crude alcohol 138, which was treated under the conditions of general procedure 

A with toluene (50 mL), DEPAA (1.69 mL, 10.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P 

(8.27 g, 13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 138a as a yellow oil 

(3.32 g, 90% over 2 steps); Rf 0.22 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2956w, 2930m, 

2857w, 1738s, 1473w, 1392w, 1258s, 1100m, 1054w, 1025s, 970m, 836s, 777m; δH (400 MHz, 

CDCl3) 0.04 (6 H, s, H-10), 0.88 (9 H, s, H-9), 1.34 (6 H, t, J = 7.1, H-4), 1.85 (2 H, tt, J = 6.5, J = 

6.0, H-6), 2.96 (2 H, d, J = 21.6, H-2), 3.69 (2 H, t, J = 6.0, H-7), 4.13–4.20 (4 H, m, H-3), 4.24 (2 

H, t, J = 6.5, H-5); δC (100 MHz, CDCl3) −5.4 (C-10), 16.3 (d, J = 6.2, C-4), 18.2 (C-8), 25.8 (C-9), 

31.7 (C-6), 34.3 (d, J = 134.3, C-2), 59.2 (C-7), 62.6 (d, J = 6.3, C-3), 62.6 (C-5), 165.8 (d, J = 6.1, 

C-1); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): Found: 391.1691; C15H33NaO6PSi (MNa+) 

Requires 391.1676 (−3.8 ppm error), Found: 369.1859; C15H34O6PSi (MH+) Requires 369.1857 

(−0.5 ppm error). 

Lab notebook reference: MGL/04/01 
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 3-((tert-Butyldimethylsilyl)oxy)propyl 2-diazo-2-(diethoxyphosphoryl) acetate (138b) 

 

 
 

Synthesised using general procedure B with 3-((tert-butyldimethylsilyl)oxy)propyl 2-

(diethoxyphosphoryl) acetate 138a (2.21 g, 6.00 mmol), THF (30 mL), LHMDS (7.20 mL, 7.20 

mmol, 1.0 M solution in THF) and p-ABSA (1.73 g, 7.20 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 138b as a yellow oil (1.42 g, 

60%); Rf 0.30 (2:1 petrol:EtOAc); νmax (thin film)/cm-1 2964w, 2931w, 2866w, 2128s, 1707s, 

1474w, 1395w, 1281s, 1097m, 1024s, 838m, 777w; δH (400 MHz, CDCl3) −0.05 (6 H, s, H-10), 

0.79 (9 H, s, H-9), 1.26 (6 H, td, J = 7.1, J = 0.8, H-4), 1.77 (2 H, tt, J = 6.4, J = 6.0, H-6), 3.69 (2 

H, t, J = 6.0, H-7), 4.02–4.17 (4 H, m, H-3), 4.24 (2 H, t, J = 6.4, H-5); δC (100 MHz, CDCl3) −5.7 

(C-10), 15.9 (d, J = 6.9, C-4), 18.0 (C-8), 25.6 (C-9), 31.6 (C-6), 53.5 (d, J = 230.0, C-2), 58.8 (C-

7), 62.4 (C-5), 63.3 (d, J = 5.9, C-3), 163.1 (d, J = 11.6, C-1); δP (162 MHz, CDCl3) 10.6; HRMS 

(ESI+): Found: 417.1590; C15H31N2NaO6PSi (MNa+) Requires 417.1581 (−2.1 ppm error), Found: 

395.1768; C15H32N2O6PSi (MH+) Requires 395.1762 (−1.7 ppm error). 

Lab notebook reference: MGL/04/03 
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4-(((tert-Butyldimethylsilyl)oxy)methyl)-3-methylenedihydrofuran-2(3H)-one (138c) 

and 4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-3-methyleneoxetan-2-one (138d) 
 

 
 

Synthesised using general procedure D with 3-((tert-butyldimethylsilyl)oxy)propyl 2-diazo-2-

(diethoxyphosphoryl)acetate 138b (83 mg, 0.210 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 

µmol), THF (4.2 mL), KOBu-t (35.3 mg, 0.315 mmol) and paraformaldehyde (12.6 mg, 0.420 

mmol). Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compounds 

4-(((tert-butyldimethylsilyl)oxy)methyl)-3-methylenedihydrofuran-2(3H)-one 138c as a colourless 

oil (9 mg, 18%) and 4-(2-((tert-butyldimethylsilyl)oxy)ethyl)-3-methyleneoxetan-2-one 138d as a 

colourless oil (8 mg, 16%). 

 

Data for 138c; Rf 0.49 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2955m, 2930m, 2857m, 1766s, 

1663w, 1472m, 1408w, 1362w, 1258m, 1115s, 1039m, 1004m, 940w, 837s, 815w, 778m; δH (400 

MHz, CDCl3) 0.05 (3 H, s, H-9), 0.05 (3 H, s, H-9), 0.88 (9 H, s, H-8), 3.20–3.27 (1 H, m, H-3), 

3.65 (1 H, dd, J = 9.9, J = 7.2, H-6), 3.72 (1 H, dd, J = 9.9, J = 5.9, H-6), 4.21 (1 H, dd, J = 9.3, J = 

4.3, H-4), 4.42 (1 H, dd, J = 9.3, J = 8.2, H-4), 5.69 (1 H, d, J = 2.2, H-5b), 6.31 (1 H, d, J = 2.5, 

H-5a); δC (100 MHz, CDCl3) −5.6 (C-9), −5.5 (C-9), 18.2 (C-7), 25.7 (C-8), 41.2 (C-3), 64.8 (C-6), 

68.4 (C-4), 123.2 (C-5), 135.6 (C-2), 170.6 (C-1); HRMS (ESI+): Found: 265.1223; C12H22NaO3Si 

(MNa+) Requires 265.1230 (2.7 ppm error), Found: 243.1406; C12H23O3Si (MH+) Requires 

243.1411 (1.9 ppm error). 

 

Data for 138d; Rf 0.60 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2955m, 2930m, 2858m, 1826s, 

1472w, 1408w, 1362w, 1257m, 1208w, 1099s, 1049m, 946w, 834s, 778m; δH (400 MHz, CDCl3) 

0.07 (3 H, s, H-9), 0.07 (3 H, s, H-9), 0.90 (9 H, s, H-8), 2.00–2.09 (2 H, m, H-3), 3.80 (2 H, app. 

dd, J = 6.6, J = 5.2, H-6), 5.16 (1 H, app. ddt, J = 7.5, J = 5.7, J = 1.8, H-4), 5.47 (1 H, app. t, J = 

1.7, H-5b), 5.93 (1 H, app. t, J = 1.9, H-5a); δC (100 MHz, CDCl3) −5.5 (C-9), −5.4 (C-9), 18.3 (C-

7), 25.9 (C-8), 36.5 (C-3), 58.6 (C-6), 77.1 (C-4), 115.3 (C-5), 146.4 (C-2), 163.6 (C-1); HRMS 
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(ESI+): Found: 265.1227; C12H22NaO3Si (MNa+) Requires 265.1230 (1.3 ppm error), Found: 

243.1402; C12H23O3Si (MH+) Requires 243.1411 (3.8 ppm error). 

Lab notebook reference: MGL/04/05 

4-((tert-Butyldimethylsilyl)oxy)butyl 2-(diethoxyphosphoryl)acetate (139a) 
 

 
 

To a solution of NaH (60% dispersion in mineral oil) (240 mg, 6.00 mmol) in THF (10 mL) cooled 

to 0 °C was added 1,4-butanediol S1 (0.44 mL, 5.50 mmol) dropwise over 5 mins. The solution 

was allowed to warm at RT and stirred for 30 mins after which TBSCl (754 mg, 5.00 mmol) was 

added then stirred at RT for 1 h. The solution was diluted with water (25 mL), extracted with 

diethyl ether (2 × 25 mL), washed with brine (25 mL), dried over MgSO4 and concentrated in 

vacuo to afford the crude alcohol 139, which was treated under the conditions of general procedure 

A with toluene (25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P 

(4.14 g, 6.50 mmol, 50% w/w solution in THF) affording the title compound 139a as a yellow oil 

(1.76 g, 92% over 2 steps). No further purification was required; Rf 0.43 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2955w, 2929w, 2857w, 1737s, 1472w, 1391w, 1255s, 1164w, 1097s, 1052w, 

1023s, 968s, 892w, 834s, 774s; δH (400 MHz, CDCl3) 0.01 (6 H, s, H-11), 0.85 (9 H, s, H-10), 1.31 

(6 H, td, J = 7.1, J = 0.5, H-4), 1.51–1.58 (2 H, m, H-7), 1.65–1.72 (2 H, m, H-6), 2.93 (2 H, d, J = 

21.6, H-2), 3.60 (2 H, t, J = 6.2, H-8), 4.10–4.17 (6 H, m, H-3,5); δC (100 MHz, CDCl3) −5.4 (C-

11), 16.3 (d, J = 6.2, C-4), 18.2 (C-9), 25.1 (C-6), 25.8 (C-10), 28.9 (C-7), 34.2 (d, J = 134.2, C-2), 

62.4 (C-8), 62.6 (d, J = 6.4, C-3), 65.5 (C-5), 165.8 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.4; 

HRMS (ESI+): Found: 405.1833; C16H35NaO6PSi (MNa+) Requires 405.1833 (0.0 ppm error), 

Found: 383.2010; C16H36O6PSi (MH+) Requires 383.2013 (0.8 ppm error). 

Lab notebook reference: MGL/05/12S 
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4-((tert-Butyldimethylsilyl)oxy)butyl 2-diazo-2-(diethoxyphosphoryl)acetate (139b) 

 

 
 

Synthesised using general procedure B with 4-((tert-butyldimethylsilyl)oxy)butyl 2-

(diethoxyphosphoryl)acetate 139a (1.70 g, 4.44 mmol), THF (22 mL), LHMDS (5.33 mL, 5.33 

mmol, 1.0 M solution in THF) and p-ABSA (1.28 g, 5.33 mmol). Purification by column 

chromatography (2:1 hexane:EtOAc) afforded the title compound 139b as a yellow oil (1.05 g, 

58%); Rf 0.74 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2954w, 2930w, 2857w, 2126s, 1703s, 

1473w, 1389w, 1275s, 1257w, 1164w, 1095s, 1019s, 977s, 892w, 834s, 813w, 774s, 746w, 662w, 

589m, 560m; δH (400 MHz, CDCl3) −0.05 (6 H, s, H-11), 0.79 (9 H, s, H-10), 1.26 (6 H, td, J = 

7.1, J = 0.8, H-4), 1.45–1.52 (2 H, m, H-7), 1.61–1.68 (2 H, m, H-6), 3.54 (2 H, t, J = 6.2, H-8), 

4.02–4.18 (6 H, m, H-3,5); δC (100 MHz, CDCl3) −5.6 (C-11), 15.9 (d, J = 6.9, C-4), 18.0 (C-9), 

25.2 (C-6), 25.7 (C-10), 28.7 (C-7), 53.5 (d, J = 227.3, C-2), 62.2 (C-8), 63.3 (d, J = 6.0, C-3), 65.4 

(C-5), 163.2 (d, J = 11.9, C-1); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 431.1748; 

C16H33N2NaO6PSi (MNa+) Requires 431.1738 (−2.4 ppm error), Found: 409.1928; C16H34N2O6PSi 

(MH+) Requires 409.1918 (−2.4 ppm error). 

Lab notebook reference: MGL/05/12 
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4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-3-methylenedihydrofuran-2(3H)-one (139c) 

 

 
 

Synthesised using general procedure D with 4-((tert-butyldimethylsilyl)oxy)butyl 2-diazo-2-

(diethoxyphosphoryl)acetate 139b (87 mg, 0.213 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 

mol), THF (4.2 mL), KOBu-t (35.9 mg, 0.320 mmol) and paraformaldehyde (12.8 mg, 0.426 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

139c as a colourless oil (27 mg, 49%); Rf 0.50 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2954m, 

2929m, 2857m, 1767s, 1472w, 1257s, 1103s, 1020m, 940w, 836s, 777m; δH (400 MHz, CDCl3) 

0.05 (3 H, s, H-10), 0.05 (3 H, s, H-10), 0.89 (9 H, s, H-9), 1.72 (1 H, dddd, J = 14.0, J = 9.1, J = 

7.5, J = 5.1, H-6), 1.91 (1 H, app. ddt, J = 14.0, J = 5.7, J = 4.9, H-6), 3.17–3.26 (1 H, m, H-3), 

3.65–3.76 (2 H, m, H-7), 4.07 (1 H, dd, J = 9.1, J = 6.1, H-4), 4.51 (1 H, dd, J = 9.1, J = 8.4, H-4), 

5.60 (1 H, d, J = 2.6, H-5b), 6.27 (1 H, d, J = 2.9, H-5a); δC (100 MHz, CDCl3) −5.5 (C-10), −5.5 

(C-10), 18.2 (C-8), 25.8 (C-9), 36.3 (C-6), 36.8 (C-3), 60.5 (C-7), 71.7 (C-4), 121.7 (C-5), 138.4 

(C-2), 170.8 (C-1); HRMS (ESI+): Found: 279.1393; C13H24NaO3Si (MNa+) Requires 279.1387 

(2.1 ppm error), Found: 257.1573; C13H25O3Si (MH+) Requires 257.1567 (2.2 ppm error). 

Lab notebook reference: MGL/05/26 

But-3-en-1-yl 2-(diethoxyphosphoryl)acetate (140a) 
 

 
 

Synthesised using general procedure A with but-3-en-1-ol 140 (0.43 mL, 5.00 mmol), toluene (25 

mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 

50% w/w solution in EtOAc) affording the title compound 140a as a pale yellow oil (1.24 g, 99%). 
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No further purification was required; Rf 0.20 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2983w, 

1735s, 1643w, 1445w, 1393w, 1257s, 1163w, 1115m, 1049w, 1019s, 964s, 839w, 782w, 733w; δH 

(400 MHz, CDCl3) 1.33 (6 H, td, J = 7.1, J = 0.4, H-4), 2.40 (2 H, app. qt, J = 6.8, J = 1.4, H-6), 

2.96 (2 H, d, J = 21.6, H-2), 4.12–4.20 (6 H, m, H-3,5), 5.05–5.14 (2 H, m, H-8), 5.78 (1 H, ddt, J 

= 17.1, J = 10.3, J = 6.8, H-7); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 32.8 (C-6), 34.2 (d, J = 

134.3, C-2), 62.6 (d, J = 6.3, C-3), 64.6 (C-5), 117.4 (C-8), 133.6 (C-7), 165.8 (d, J = 6.1, C-1); δP 

(162 MHz, CDCl3) 20.3; HRMS (ESI+): Found: 273.0868; C10H19NaO5P (MNa+) Requires 

273.0862 (−2.2 ppm error), Found: 251.1048; C10H20O5P (MH+) Requires 251.1043 (−2.0 ppm 

error). 

Lab notebook reference: MGL/05/06S 

But-3-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (140b) 

 

 
 

Synthesised using general procedure B with but-3-en-1-yl 2-(diethoxyphosphoryl)acetate 140a 

(1.20 g, 4.80 mmol), THF (24 mL), LHMDS (5.76 mL, 5.76 mmol, 1.0 M solution in THF) and p-

ABSA (1.38 g, 5.76 mmol). Purification by column chromatography (1:1 hexane:EtOAc) afforded 

the title compound 140b as a yellow oil (790 mg, 60%);Rf 0.43 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2984w, 2126s, 1702s, 1643w, 1445w, 1384w, 1276s, 1164w, 1117w, 1092w, 1019s, 

978s, 797m, 746m; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.8, H-4), 2.38 (2 H, app. qt, J 

= 6.7, J = 1.3, H-6), 4.07–4.23 (6 H, m, H-3,5), 5.03–5.11 (2 H, m, H-8), 5.74 (1 H, ddt, J = 17.1, J 

= 10.3, J = 6.7, H-7); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 33.0 (C-6), 53.7 (d, J = 226.3, 

C-2), 63.5 (d, J = 5.9, C-3), 64.5 (C-5), 117.5 (C-8), 133.4 (C-7), 163.3 (d, J = 12.1, C-1); δP (162 

MHz, CDCl3) 10.6; HRMS (ESI+): Found: 299.0768; C10H17N2NaO5P (MNa+) Requires 299.0767 

(−0.1 ppm error), Found: 277.0952; C10H18N2O5P (MH+) Requires 277.0948 (−1.5 ppm error). 

Lab notebook reference: MGL/05/06 
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(SR)-3-Methylene-4-vinyldihydrofuran-2(3H)-one (140c) and 3-Methyl-4-vinylfuran-

2(5H)-one (140d) 
 

 
 

Synthesised using general procedure D with but-3-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate 

140b (58 mg, 0.210 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 µmol), THF (4.2 mL), KOBu-

t (35.3 mg, 0.315 mmol) and paraformaldehyde (12.6 mg, 0.420 mmol). Purification by column 

chromatography (8:1 pentane:diethyl ether) afforded the title compounds 3-methylene-4-

vinyldihydrofuran-2(3H)-on 140c as a colourless oil (10 mg, 38%) and 3-methyl-4-vinylfuran-

2(5H)-one 140d as a colourless oil (2.3 mg, 9%). 

  

Data for 140c;161 Rf 0.54 (4:1 pentane:diethyl ether); νmax (thin film)/cm-1 2965, 2919, 2851, 1766, 

1238, 1112; δH (400 MHz, CDCl3) 3.68–3.76 (1 H, m, H-3), 4.02 (1 H, dd, J = 9.1, J = 7.4, H-4), 

4.53 (1 H, app. t, J = 9.0, H-4), 5.23–5.28 (2 H, m, H-7), 5.62 (1 H, d, J = 2.8, H-5b), 5.71 (1 H, 

ddd, J = 16.6, J = 10.4, J = 8.2, H-6), 6.33 (1 H, d, J = 3.2, H-5a); δC (100 MHz, CDCl3) 44.0 (C-

3), 70.0 (C-4), 119.2 (C-7), 123.4 (C-5), 135.0 (C-6), 137.0 (C-2), 170.1 (C-1); HRMS (ESI+): 

Found: 147.0411; C7H8NaO2 (MNa+) Requires 147.0417 (3.5 ppm error).  

 

Data for 140d;162 Rf 0.29 (4:1 pentane:diethyl ether); νmax (thin film)/cm-1 2925, 2855, 1752, 1663, 

1432, 1337, 1208, 1077, 1045; δH (400 MHz, CDCl3) 1.94 (3 H, s, H-5), 4.88–4.89 (2 H, m, H-4), 

5.49–5.56 (2 H, m, H-7), 6.72 (1 H, dd, J = 17.8, J = 11.0, H-6); δC (100 MHz, CDCl3) 8.8 (C-5), 

69.2 (C-4), 121.0 (C-7), 124.3 (C-2), 126.9 (C-6), 152.0 (C-3), 178.1 (C-1); HRMS (ESI+): Found: 

147.0417; C7H8NaO2 (MNa+) Requires 147.0417 (−0.4 ppm error), Found: 125.0598; C7H9O2 

(MH+) Requires 125.0597 (−0.7 ppm error). 

Lab notebook reference: MGL/05/20 

Obtained data in accord with reported literature.161-162 
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Cyclopropylmethyl 2-(diethoxyphosphoryl)acetate (141a) 

 

 
 

Synthesised using general procedure A with cyclopropylmethanol 141 (0.41 mL, 5.00 mmol), 

toluene (25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in THF) affording the title compound 141a as a yellow oil (1.23 g, 

98%). No further purification was required; Rf 0.23 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2984w, 1731s, 1446w, 1394w, 1369w, 1346w, 1257s, 1164w, 1115m, 1049w, 1018s, 966s, 943w, 

889w, 839m; δH (400 MHz, CDCl3) 0.27–0.31 (2 H, m, H-7), 0.55–0.59 (2 H, m, H-7), 1.09–1.20 

(1 H, m, H-6), 1.34 (6 H, t, J = 7.1, H-4), 2.98 (2 H, d, J = 21.5, H-2), 3.97 (2 H, d, J = 7.3, H-5), 

4.14–4.21 (4 H, m, H-3); δC (100 MHz, CDCl3) 3.3 (C-7), 9.6 (C-6),  16.3 (d, J = 6.4, C-4), 34.4 (d, 

J = 134.2, C-2), 62.7 (d, J = 6.3, C-3), 70.3 (C-5), 165.9 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 

20.4; HRMS (ESI+): Found: 273.0862; C10H19NaO5P (MNa+) Requires 273.0862 (0.1 ppm error), 

Found: 251.1047; C10H20O5P (MH+) Requires 251.1043 (−1.6 ppm error). 

Lab notebook reference: MGL/05/14S 

Cyclopropylmethyl 2-diazo-2-(diethoxyphosphoryl)acetate (141b) 

 

 
 

Synthesised using general procedure B with cyclopropylmethyl 2-(diethoxyphosphoryl)acetate 

141a (1.20 g, 4.80 mmol), THF (24 mL), LHMDS (5.75 mL, 5.75 mmol, 1.0 M solution in THF) 

and p-ABSA (1.38 g, 5.75 mmol). Purification by column chromatography (2:1 hexane:EtOAc) 

afforded the title compound 141b as a yellow oil (850 mg, 64%); Rf 0.43 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2986w, 2908w, 2125s, 1700s, 1446w, 1394w, 1348m, 1275s, 1216w, 1164w, 

1115w, 1082w, 1018s, 977w, 958s, 796m, 746m, 590m, 560m; δH (400 MHz, CDCl3) 0.25–0.29 (2 

H, m, H-7), 0.52–0.57 (2 H, m, H-7), 1.07–1.17 (1 H, m, H-6), 1.33 (6 H, t, J = 7.1, H-4), 4.01 (2 
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H, d, J = 7.3, H-5), 4.10–4.25 (4 H, m, H-3); δC (100 MHz, CDCl3) 3.2 (C-7), 9.8 (C-6), 16.1 (d, J 

= 6.9, C-4), 53.9 (d, J = 226.8, C-2), 63.6 (d, J = 5.6, C-3), 70.3 (C-5), 163.5 (d, J = 12.2, C-1); δP 

(162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 299.0771; C10H17N2NaO5P (MNa+) Requires 

299.0767 (−1.4 ppm error), Found: 277.0958; C10H18N2O5P (MH+) Requires 277.0948 (−3.7 ppm 

error). 

Lab notebook reference: MGL/05/14 

Cyclobutylmethyl 2-(diethoxyphosphoryl)acetate (142a) 
 

 
 

Synthesised using general procedure A with cyclobutylmethanol 142 (0.47 mL, 5.00 mmol), 

toluene (25 mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in THF) affording the title compound 142a as a yellow oil (1.31 g, 

99%). No further purification was required; Rf 0.22 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2980w, 2941w, 1733s, 1445w, 1393w, 1334w, 1259s, 1163w, 1115m, 1049w, 1019s, 964s, 838m, 

783m, 609m; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.5, H-4), 1.71–1.96 (4 H, m, H-7,8), 

2.00–2.08 (2 H, m, H-7), 2.61 (1 H, app. heptet, J = 7.4, H-6), 2.95 (2 H, d, J = 21.6, H-2), 4.08–

4.19 (6 H, m, H-3,5); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 18.3 (C-8), 24.6 (C-7), 33.9 (C-

6), 34.3 (d, J = 133.8, C-2), 62.6 (d, J = 6.2, C-3), 69.2 (C-5), 165.9 (d, J = 6.2, C-1); δP (162 MHz, 

CDCl3) 20.4; HRMS (ESI+): Found: 287.1033; C11H21NaO5P (MNa+) Requires 287.1019 (−5.0 

ppm error). 

Lab notebook reference: MGL/05/13S 
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Cyclobutylmethyl 2-diazo-2-(diethoxyphosphoryl)acetate (142b) 

 

 
 

Synthesised using general procedure B with cyclobutylmethyl 2-(diethoxyphosphoryl)acetate 142a 

(1.28 g, 4.84 mmol), THF (24 mL), LHMDS (5.81 mL, 5.81 mmol, 1.0 M solution in THF) and p-

ABSA (1.40 g, 5.81 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded 

the title compound 142b as a brown oil (949 mg, 68%); Rf 0.50 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2981w, 2942w, 2869w, 2125s, 1700s, 1445w, 1391w, 1335w, 1276s, 1216w, 1164w, 

1117w, 1095w, 1019w, 977m, 797m, 747m, 590m, 560m; δH (400 MHz, CDCl3) 1.34 (6 H, td, J = 

7.1, J = 0.8, H-4), 1.72–1.97 (4 H, m, H-7,8), 1.99–2.08 (2 H, m, H-7), 2.57–2.68 (1 H, m, H-6), 

4.09–4.25 (6 H, m, H-3,5); δC (100 MHz, CDCl3) 16.1 (d, J = 7.0, C-4), 18.3 (C-8), 24.5 (C-7), 

34.0 (C-6), 53.8 (d, J = 228.6, C-2), 63.5 (d, J = 5.9, C-3), 69.2 (C-5), 163.6 (d, J = 12.0, C-1); δP 

(162 MHz, CDCl3) 10.8; HRMS (ESI+): Found: 313.0917; C11H19N2NaO5P (MNa+) Requires 

313.0924 (2.1 ppm error), Found: 291.1097; C11H20N2O5P (MH+) Requires 291.1104 (2.5 ppm 

error). 

Lab notebook reference: MGL/05/13 

8-Methylene-6-oxaspiro[3.4]octan-7-one (142c) 
 

 
 

Synthesised using general procedure D with cyclobutylmethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 142b (59 mg, 0.203 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.2 mg, 4.1 

µmol), THF (4.0 mL), KOBu-t (34.2 mg, 0.305 mmol) and paraformaldehyde (12.2 mg, 0.406 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

142c as a colourless oil (22 mg, 78%); Rf 0.42 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2935w, 

1760s, 1662w, 1408w, 1296m, 1117m, 1005m, 942w, 814w; δH (400 MHz, CDCl3) 1.95–2.04 (2 
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H, m, H-7), 2.18–2.30 (4 H, m, H-6), 4.32 (2 H, s, H-4), 5.80 (1 H, s, H-5b), 6.26 (1 H, s, H-5a); δC 

(100 MHz, CDCl3) 15.3 (C-7), 34.5 (C-6), 44.5 (C-3), 78.1 (C-4), 119.9 (C-5), 143.1 (C-2), 169.8 

(C-1); HRMS (ESI+): Found: 161.0571; C8H10NaO2 (MNa+) Requires 161.0573 (1.5 ppm error), 

Found: 139.0748; C8H11O2 (MH+) Requires 139.0754 (3.9 ppm error). 

Lab notebook reference: MGL/05/29 

Cyclopentylmethyl 2-(diethoxyphosphoryl)acetate (143a) 
 

 
 

Synthesised using general procedure A with cyclopentanemethanol 143 (1.00 g, 10.0 mmol), 

toluene (50 mL), DEPAA (1.69 mL, 10.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P (8.27 g, 

13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 143a as an orange oil (2.78 

g, 100%). No further purification was required; Rf 0.27 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2964s, 2872w, 1736s, 1450w, 1395w, 1271s, 1116m, 1026s, 976m; δH (400 MHz, CDCl3) 1.19–

1.29 (2 H, m, H-7), 1.32 (6 H, td, J = 7.1, J = 0.4, H-4), 1.48–1.64 (4 H, m, H-8), 1.69–1.78 (2 H, 

m, H-7), 2.20 (1 H, app. heptet, J = 7.5, H-6), 2.95 (2 H, d, J = 21.6, H-2), 4.00 (2 H, d, J = 7.2, H-

5), 4.11–4.19 (4 H, m, H-3); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 25.2 (C-8), 29.2 (C-7), 

34.2 (d, J = 134.1, C-2), 38.4 (C-6), 62.6 (d, J = 6.2, C-3), 69.4 (C-5), 165.9 (d, J = 6.1, C-1); δP 

(162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 301.1185; C12H23NaO5P (MNa+) Requires 

301.1175 (−3.1 ppm error), Found: 279.1362; C12H24O5P (MH+) Requires 279.1356 (−2.4 ppm 

error). 

Lab notebook reference: MGL/03/70 
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Cyclopentylmethyl 2-diazo-2-(diethoxyphosphoryl)acetate (143b) 

 

 
 

Synthesised using general procedure B with cyclopentylmethyl 2-(diethoxyphosphoryl)acetate 

143a (1.39 g, 5.00 mmol), THF (25 mL), LHMDS (6.00 mL, 6.00 mmol, 1.0 M solution in THF) 

and p-ABSA (1.44 g, 6.00 mmol). Purification by column chromatography (2:1 petrol:EtOAc) 

afforded the title compound 143b as a pale yellow oil (1.08 g, 71%); Rf 0.61 (1:1 petrol:EtOAc); 

νmax (thin film)/cm-1 2956m, 2872w, 2128s, 1702s, 1389w, 1279s, 1022s, 978m; δH (400 MHz, 

CDCl3) 1.18–1.27 (2 H, m, H-7), 1.33 (6 H, td, J = 7.1, J = 0.8, H-4), 1.46–1.63 (4 H, m, H-8), 

1.68–1.76 (2 H, m, H-7), 2.19 (1 H, app. heptet, J = 7.5, H-6), 4.06 (2 H, d, J = 7.1, H-5), 4.08–

4.24 (4 H, m, H-3); δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4), 25.2 (C-8), 29.1 (C-7), 38.5 (C-6), 

53.7 (d, J = 226.5, C-2), 63.5 (d, J = 5.9, C-3), 69.4 (C-5), 163.5 (d, J = 12.1, C-1); δP (162 MHz, 

CDCl3) 10.8; HRMS (ESI+): Found: 327.1068; C12H21N2NaO5P (MNa+) Requires 327.1080 (3.8 

ppm error), Found: 305.1258; C12H22N2O5P (MH+) Requires 305.1261 (1.0 ppm error). 

Lab notebook reference: MGL/03/77 

4-Methylene-2-oxaspiro[4.4]nonan-3-one (143c) 

 

 
 

Synthesised using general procedure D with cyclopentylmethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 143b (68 mg, 0.223 mmol), CH2Cl2 (4.4 mL), Rh2(oct)4 (3.5 mg, 4.7 

µmol), THF (4.4 mL), KOBu-t (37.5 mg, 0.335 mmol) and paraformaldehyde (13.4 mg, 0.446 

mmol). Purification by column chromatography (8:1 petrol:EtOAc) afforded the title compound 

143c as a colourless oil (27 mg, 79%); Rf 0.55 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2957m, 

2872w, 1765s, 1456w, 1414w, 1286w, 1112m, 1021w, 1000w; δH (400 MHz, CDCl3) 1.68–1.87 (8 

H, m, H-6,7), 4.11 (2 H, s, H-4), 5.54 (1 H, s, H-5b), 6.19 (1 H, s, H-5a); δC (100 MHz, CDCl3) 
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24.5 (C-7), 39.3 (C-6), 49.9 (C-3), 78.2 (C-4), 119.6 (C-5), 143.6 (C-2), 171.1 (C-1); HRMS 

(ESI+): Found: 175.0729; C9H12NaO2 (MNa+) Requires 175.0730 (0.4 ppm error), Found: 

153.0911; C9H13O2 (MH+) Requires 153.0910 (−0.4 ppm error). 

Lab notebook reference: MGL/03/81,80 

Cyclohexylmethyl 2-(diethoxyphosphoryl)acetate (144a)  

 

  
 

Synthesised using general procedure A with cyclohexanemethanol 144 (569 mg, 4.98 mmol), 

toluene (50 mL), DEPAA (0.84 mL, 5.23 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.12 g, 

6.47 mmol, 50% w/w solution in EtOAc) affording the title compound 144a as a yellow oil (1.44 g, 

99%). No further purification was required; Rf 0.53 (EtOAc); νmax (thin film)/cm-1 2927s, 2854m, 

1737s, 1269s, 1053w, 1026s; δH (400 MHz, CDCl3) 0.86–0.96 (2 H, m, H-6/7/8/9), 1.04–1.24 (3 H, 

m, H-6/7/8/9), 1.28 (6 H, t, J = 7.1, H-4), 1.54–1.70 (6 H, m, H-6/7/8/9), 2.91 (2 H, d, J = 21.6, H-

2), 3.89 (2 H, d, J = 6.6, H-5), 4.07–4.14 (4 H, m, H-3); δC (100 MHz, CDCl3) 16.2 (d, J = 6.2, C-

4), 25.5 (C-7/8/9), 26.1 (C-7/8/9), 29.3 (C-7/8/9), 34.1 (d, J = 134.2, C-2), 36.8 (C-6), 62.5 (d, J = 

6.2, C-3), 70.5 (C-5), 165.7 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 

315.1338; C13H25NaO5P (MNa+) Requires 315.1332. 

Note: This compound was synthesised by another person. 
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Cyclohexylmethyl 2-diazo-2-(diethoxyphosphoryl)acetate (144b)  

 

 
 

Synthesised using general procedure B with cyclohexylmethyl 2-(diethoxyphosphoryl)acetate 144a 

(597 mg, 1.98 mmol), THF (25 mL), NaH (95.0 mg, 2.37 mmol, 60% dispersion in mineral oil) and 

p-ABSA (1.44 g, 6.00 mmol). Purification by column chromatography (3:1 petrol:EtOAc) afforded 

the title compound 144b as a yellow oil (410 mg, 68%); Rf 0.85 (EtOAc); νmax (thin film)/cm-1 

2930s, 2131s, 1705s, 1280s, 1024s; δH (400 MHz, CDCl3) 0.93–1.04 (2 H, m, H-6/7/8/9), 1.11–

1.30 (3 H, m, H-6/7/8/9), 1.36 (6 H, td, J = 7.1, J = 0.8), 1.55–1.77 (6 H, m, H-6/7/8/9), 4.01 (2 H, 

d, J = 6.5, H-5), 4.11–4.27 (4 H, m, H-3); δC (100 MHz, CDCl3) 16.0 (d, J = 7.1, C-4), 25.5 (C-

7/8/9), 26.2 (C-7/8/9), 29.3 (C-7/8/9), 37.1 (C-6), 53.7 (d, J = 227.4, C-2), 63.5 (d, J = 5.6, C-3), 

70.6 (C-5), 163.5 (d, J = 12.0, C-1); δP (162 MHz, CDCl3) 10.9; HRMS (ESI+): Found: 341.1228; 

C13H23N2NaO5P (MNa+) Requires 341.1237. 

Note: This compound was synthesised by another person. 

4-Methylene-2-oxaspiro[4.5]decan-3-one (144c) 
 

 
 

Synthesised using general procedure D with cyclohexylmethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 144b (57 mg, 0.179 mmol), CH2Cl2 (3.6 mL), Rh2(oct)4 (2.8 mg, 3.6 

µmol), THF (3.6 mL), KOBu-t (30.2 mg, 0.269 mmol) and paraformaldehyde (10.8 mg, 0.358 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

144c as a colourless oil (15 mg, 50%); Rf 0.63 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2926m, 

2854w, 1759s, 1661w, 1451m, 1407w, 1305m, 1254m, 1113s, 1013s, 943m, 815m; δH (400 MHz, 

CDCl3) 1.24–1.75 (10 H, m, H-6,7,8), 4.15 (2 H, s, H-4), 5.54 (1 H, s, H-5b), 6.22 (1 H, s, H-5a); 
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δC (100 MHz, CDCl3) 22.5 (C-7), 25.0 (C-8), 36.2 (C-6), 42.4 (C-3), 75.3 (C-4), 120.7 (C-5), 144.4 

(C-2), 171.3 (C-1); HRMS (ESI+): Found: 189.0891; C10H14NaO2 (MNa+) Requires 189.0886 (−2.8 

ppm error), Found: 167.1065; C10H15O2 (MH+) Requires 167.1067 (1.1 ppm error). 

Lab notebook reference: MGL/05/33 

Cyclopentyl 2-(diethoxyphosphoryl)acetate (145a) 
 

 
 

Synthesised using general procedure A with cyclopentanol 145 (0.45 mL, 5.00 mmol), toluene (25 

mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 

50% w/w solution in THF) affording the title compound 145a as a yellow oil (1.12 g, 85%). No 

further purification was required; Rf 0.24 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2974m, 2874w, 

1730s, 1443w, 1393w, 1368w, 1259s, 1165m, 1114m, 1050w, 1019s, 966s, 839m, 780m; δH (400 

MHz, CDCl3) 1.34 (6 H, td, J = 7.1, J = 0.4, H-4), 1.54–1.90 (8 H, m, H-6,7), 2.92 (2 H, d, J = 

21.6, H-2), 4.16 (4 H, dq, J = 8.1, J = 7.1, H-3), 5.20 (1 H, tt, J = 5.6, J = 2.7, H-5); δC (100 MHz, 

CDCl3) 16.2 (d, J = 6.2, C-4), 23.6 (C-7), 32.4 (C-6), 34.5 (d, J = 133.5, C-2), 62.5 (d, J = 6.2, C-

3), 78.4 (C-5), 165.5 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.7; HRMS (ESI+): Found: 

287.1020; C11H21NaO5P (MNa+) Requires 287.1019 (−0.4 ppm error), Found: 265.1201; C11H22O5P 

(MH+) Requires 265.1199 (−0.5 ppm error). 

Lab notebook reference: MGL/05/10S 

Cyclopentyl 2-diazo-2-(diethoxyphosphoryl)acetate (145b) 
 

 
 

Synthesised using general procedure B with cyclopentyl 2-(diethoxyphosphoryl)acetate 145a (1.10 

g, 4.16 mmol), THF (21 mL), LHMDS (5.00 mL, 5.00 mmol, 1.0 M solution in THF) and p-ABSA 

(1.20 g, 5.00 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title 

compound 145b as a yellow oil (1.00 g, 83%); Rf 0.54 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 
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2972m, 2875w, 2125s, 1696s, 1478w, 1443w, 1393w, 1321w, 1274s, 1218w, 1165m, 1121m, 

1089w, 1018s, 977m, 959m, 796m, 749m; δH (400 MHz, CDCl3) 1.29 (6 H, td, J = 7.1, J = 0.8, H-

4), 1.49–1.86 (8 H, m, H-6,7), 4.04–4.19 (4 H, m, H-3), 5.21 (1 H, tt, J = 5.6, J = 2.7, H-5); δC (100 

MHz, CDCl3) 16.0 (d, J = 7.0, C-4), 23.4 (C-7), 32.6 (C-6), 53.8 (d, J = 227.0, C-2), 63.3 (d, J = 

5.6, C-3), 78.6 (C-5), 163.0 (d, J = 11.7, C-1); δP (162 MHz, CDCl3) 10.9; HRMS (ESI+): Found: 

313.0930; C11H19N2NaO5P (MNa+) Requires 313.0924 (−2.0 ppm error), Found: 291.1111; 

C11H20N2O5P (MH+) Requires 291.1104 (−2.1 ppm error). 

Lab notebook reference: MGL/05/10 

Cyclohexyl 2-(diethoxyphosphoryl)acetate (146a) 
 

 
 

Synthesised using general procedure A with cyclohexanol 146 (1.59 g, 15.9 mmol), toluene (80 

mL), DEPAA (2.68 mL, 16.7 mmol), DIPEA (7.19 mL, 41.3 mmol) and T3P (13.1 g, 20.6 mmol, 

50% w/w solution in EtOAc) affording the title compound 146a as a dark orange oil (4.43 g, 

100%). No further purification was required; Rf 0.33 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2985w, 2937s, 2862m, 1729s, 1258s, 1114w, 1016s, 964s; δH (400 MHz, CDCl3) 1.16–1.52 (6 H, 

m, H-6/7/8), 1.30 (6 H, td, J = 7.1, J = 0.5, H-4), 1.65–1.73 (2 H, m, H-6/7/8), 1.77–1.84 (2 H, m, 

H-6/7/8), 2.90 (2 H, d, J = 21.6, H-2), 4.12 (4 H, dq, J = 8.4, J = 7.1, H-3), 4.76 (1 H, tt, J = 8.7, J 

= 4.2, H-5); δC (100 MHz, CDCl3) 16.2 (d, J = 6.2, C-4), 23.5 (C-7), 25.2 (C-8), 31.3 (C-6), 34.5 

(d, J = 133.4, C-2), 62.4 (d, J = 6.3, C-3), 73.9 (C-5), 165.1 (d, J = 6.4, C-1); δP (162 MHz, CDCl3) 

20.6; HRMS (ESI+): Found: 301.1162; C12H23NaO5P (MNa+) Requires 301.1175 (4.3 ppm error), 

Found: 279.1345; C12H24O5P (MH+) Requires 279.1356 (4.0 ppm error). 

Lab notebook reference: MGL/02/43 
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Cyclohexyl 2-diazo-2-(diethoxyphosphoryl)acetate (146b) 

 

 
 

Synthesised using general procedure B with cyclohexyl 2-(diethoxyphosphoryl)acetate 146a (2.78 

g, 10.0 mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 mmol, 1.0 M solution in THF) and p-ABSA 

(2.88 g, 12.0 mmol). Purification by column chromatography (2:1 petrol:EtOAc) afforded the title 

compound 146b as a pale yellow oil (2.68 g, 88%);Rf 0.50 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2990w, 2937s, 2864m, 2124s, 1694s, 1279s, 1260s, 1115w, 1013s, 976s; δH (400 MHz, CDCl3) 

1.18–1.50 (6 H, m, H-6/7/8), 1.31 (6 H, td, J = 7.1, J = 0.8, H-4), 1.64–1.71 (2 H, m, H-6/7/8), 

1.77–1.82 (2 H, m, H-6/7/8), 4.06–4.22 (4 H, m, H-3), 4.84 (1 H, tt, J = 8.4, J = 4.1, H-5); δC (100 

MHz, CDCl3) 16.0 (d, J = 7.2, C-4), 23.2 (C-7), 25.1 (C-8), 31.4 (C-6), 53.8 (d, J = 228.0, C-2), 

63.4 (d, J = 5.7, C-3), 74.0 (C-5), 162.8 (d, J = 11.8, C-1); δP (162 MHz, CDCl3) 10.9; HRMS 

(ESI+): Found: 327.1082; C12H21N2NaO5P (MNa+) Requires 327.1010 (−0.6 ppm error), Found: 

305.1263; C12H22N2O5P (MH+) Requires 305.1261 (−0.6 ppm error). 

Lab notebook reference: MGL/02/62 
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3-Methylene-1-oxaspiro[3.5]nonan-2-one (146d), (3aSR,7aRS)-3-

Methylenehexahydrobenzofuran-2(3H)-one (trans-146c) and (3aRS,7aRS)-3-

Methylenehexahydrobenzofuran-2(3H)-one (cis-146c)  
 

 

 
Synthesised using general procedure E with cyclohexyl 2-diazo-2-(diethoxyphosphoryl)acetate 

146b (84 mg, 0.276 mmol), CH2Cl2 (5.4 mL), Rh2(oct)4 (4.3 mg, 0.006 mmol), KOBu-t (37.2 mg, 

0.331 mmol) and paraformaldehyde (16.6 mg, 0.552 mmol). Purification by column 

chromatography (20:1 hexane:EtOAc) afforded the title compounds (146d trans-146c:cis-146c 

6:10:1) (18 mg, 43%); HRMS (ESI+): Found: 175.0726; C9H12NaO2 (MNa+) Requires 175.0730 

(1.9 ppm error), Found: 153.0914; C9H13O2 (MH+) Requires 153.0910 (−2.5 ppm error). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for 146d;163 Rf 0.70 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2937, 2861, 1814, 1450, 1177, 

1107, 1011; δH (400 MHz, CDCl3) 1.41–1.96 (10 H, m, H-4,5,6), 5.41 (1 H, d, J = 1.9, H-9b), 5.80 

(1 H, d, J = 1.9, H-9a); δC (100 MHz, CDCl3) 23.0, 24.6, 34.5, 87.2, 113.0, 150.1, 163.8.  

  

Data for trans-146c;164 Rf 0.65 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2940, 2864, 1770, 1251, 

1132, 1026, 996; δH (400 MHz, CDCl3) [1.32–1.44 (3 H, m), 1.57–1.67 (1 H, m), 1.83–1.87 (1 H, 

m), 1.95–1.98 (1 H, m), 2.11–2.15 (1 H, m), 2.24–2.29 (1 H, m), 2.37–2.44 (1 H, m) H-3,5,6,7,8)], 

3.71 (1 H, ddd, J = 11.5, J = 10.8, J = 3.7, H-4), 5.38 (1 H, d, J = 3.1, H-9b), 6.06 (1 H, d, J = 3.3, 

H-9a); δC (100 MHz, CDCl3) 24.0, 24.8, 25.8, 30.4, 48.9, 83.1, 117.1, 139.6, 170.7. 
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Data for cis-146c;164 Rf 0.57 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2936, 2864, 1763, 1263, 

1127, 965; δH (400 MHz, CDCl3) 1.31–1.94 (8 H, m, H-5,6,7,8), 2.99–3.05 (1 H, m, H-3), 4.52–

4.56 (1 H, m, H-4), 5.51 (1 H, d, J = 2.3, H-9b), 6.20 (1 H, d, J = 2.5, H-9a); δC (100 MHz, CDCl3) 

20.5, 21.1, 26.3, 28.9, 39.6. 76.9, 119.8, 139.9, 171.0. 

Lab notebook reference: MGL/03/32 

Obtained data in accord with reported literature.163, 164 

Cycloheptyl 2-(diethoxyphosphoryl)acetate (147a) 
 

 
 

Synthesised using general procedure A with cycloheptanol 147 (571 mg, 5.00 mmol), toluene (25 

mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 

50% w/w solution in THF) affording the title compound 147a as a colourless oil (1.45 g, 99%). No 

further purification was required; Rf 0.31 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2982w, 2929m, 

2861w, 1728s, 1446w, 1394w, 1266s, 1113m, 1051w, 1021s, 969s; δH (400 MHz, CDCl3) 1.32 (6 

H, td, J = 7.1, J = 0.5, H-4), 1.35–1.69 (10 H, m, H-6/7/8), 1.85–1.92 (2 H, m, H-6/7/8), 2.91 (2 H, 

d, J = 21.5, H-2), 4.10–4.18 (4 H, m, H-3), 4.95 (1 H, tt, J = 8.3, J = 4.3, H-5); δC (100 MHz, 

CDCl3) 16.3 (d, J = 6.5, C-4), 22.7 (C-6/7/8), 28.2 (C-6/7/8), 33.5 (C-6/7/8), 34.6 (d, J = 133.5, C-

2), 62.5 (d, J = 6.2, C-3), 76.5 (C-5), 165.1 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.7; HRMS 

(ESI+): Found: 293.1502; C13H26O5P (MH+) Requires 293.1512 (3.5 ppm error). 

Lab notebook reference: MGL/05/45 
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Cycloheptyl 2-diazo-2-(diethoxyphosphoryl)acetate (147b) 

 

 
 

Synthesised using general procedure B with cycloheptyl 2-(diethoxyphosphoryl)acetate 147a (1.40 

g, 4.79 mmol), THF (24 mL), LHMDS (5.75 mL, 5.75 mmol, 1.0 M solution in THF) and p-ABSA 

(1.38 g, 5.75 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title 

compound 147b as a yellow oil (1.35 g, 89%); Rf 0.52 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2987w, 2930m, 2861w, 2125s, 1694s, 1446w, 1369w, 1322w, 1270s, 1215w, 1164w, 1120m, 

1015s, 961s, 885w, 974m, 746s, 590s, 555s; δH (400 MHz, CDCl3) 1.26 (6 H, td, J = 7.1, J = 0.8, 

H-4), 1.31–1.66 (10 H, m, H-6/7/8), 1.77–1.85 (2 H, m, H-6/7/8), 4.01–4.17 (4 H, m, H-3), 4.96 (1 

H, tt, J = 8.1, J = 4.2, H-5); δC (100 MHz, CDCl3) 15.8 (d, J = 7.0, C-4), 22.4 (C-6/7/8), 27.9 (C-

6/7/8), 33.5 (C-6/7/8), 53.7 (d, J = 227.0, C-2), 63.2 (d, J = 6.0, C-3), 76.5 (C-5), 162.7 (d, J = 

11.9, C-1); δP (162 MHz, CDCl3) 10.9; HRMS (ESI+): Found: 341.1226; C13H23N2NaO5P (MNa+) 

Requires 341.1237 (3.1 ppm error), Found: 319.1410; C13H24N2O5P (MH+) Requires 319.1417 (2.4 

ppm error). 

Lab notebook reference: MGL/05/47 

 

(3aSR,8aRS)-3-Methyleneoctahydro-2H-cyclohepta[b]furan-2-one (trans-147c) and 

(3aRS,8aRS)-3-Methyleneoctahydro-2H-cyclohepta[b]furan-2-one (cis-147c) 

 

 
 

Synthesised using general procedure D with cycloheptyl 2-diazo-2-(diethoxyphosphoryl)acetate 

147b (72 mg, 0.226 mmol), CH2Cl2 (4.5 mL), Rh2(oct)4 (3.5 mg, 4.5 µmol), THF (4.5 mL), KOBu-

t (38.0 mg, 0.339 mmol) and paraformaldehyde (13.6 mg, 0.452 mmol). Purification by column 
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chromatography (4:1 hexane:EtOAc) afforded the title compounds (trans-147c:cis-147c 3.5:1) (19 

mg, 51%). 

 

A small quantity of the major (trans-147c) compound was separated for characterisation. The 

minor (cis-147c) compound was characterised from a mixture.  

  

Data for trans-147c;105a,165 Colourless oil; Rf 0.50 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2929, 

2861, 1761, 1667, 1454, 1400, 1313, 1262, 1246, 998; δH (400 MHz, CDCl3) 1.40–1.82 (8 H, m, 

H-5,6,7,8,9), 2.12–2.20 (1 H, m, H-9), 2.33–2.42 (1 H, m, H-5), 2.73–2.81 (1 H, m, H-3), 4.15 (1 H 

, ddd, J = 10.6, J = 9.3, J = 4.4, H-4), 5.46 (1 H, d, J = 3.2, H-10b), 6.18 (1 H, d, J = 3.5, H-10a); 

δC (100 MHz, CDCl3) 25.1, 25.3, 27.3, 28.0, 33.0, 45.6, 83.3, 119.6, 141.0, 170.5; HRMS (ESI+): 

Found: 189.0889; C10H14NaO2 (MNa+) Requires 189.0886 (−1.8 ppm error), Found: 167.1063; 

C10H15O2 (MH+) Requires 167.1067 (2.4 ppm error). 

 

Data for cis-147c;105b Rf 0.43 (4:1 hexane:EtOAc); δH (400 MHz, CDCl3) 1.17–1.97 (9 H, m, H-

5,6,7,8,9), 2.03–2.09 (1 H, m, H-5), 3.19–3.27 (1 H, m, H-3), 4.71 (1 H , ddd, J = 10.6, J = 8.6, J = 

3.6, H-4), 5.55 (1 H, d, J = 2.7, H-10b), 6.27 (1 H, d, J = 3.1, H-10a); δC (100 MHz, CDCl3) 24.2, 

27.4, 30.6, 31.2, 31.8, 43.1, 82.3, 122.0, 140.3, 170.4. 

Lab notebook reference: MGL/05/48 

Obtained data in accord with reported literature.105 

3-Phenylpropyl 2-(diethoxyphosphoryl)acetate (148a) 
 

 
 

Synthesised using general procedure A with 3-phenyl-1-propanol 148 (1.36 g, 10.0 mmol), toluene 

(50 mL), DEPAA (2.49 mL, 15.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P (8.27 g, 13.0 

mmol, 50% w/w solution in EtOAc), with heating to 80 °C for 2 h, affording the title compound 

148a as a yellow oil (3.04 g, 97%). No further purification was required; Rf 0.23 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 2983w, 1734s, 1455w, 1393w, 1266m, 1116w, 1050w, 

1020s; δH (400 MHz, CDCl3) 1.34 (6 H, t, J = 7.1, H-4), 1.93–2.01 (2 H, m, H-6), 2.70 (2 H, t, J = 

7.7, H-7), 2.96 (2 H, d, J = 21.6, H-2), 4.13–4.21 (6 H, m, H-3,5), 7.16–7.29 (5 H, m, H-8,9,10); δC 
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(100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 30.0 (C-6), 31.9 (C-7), 34.3 (d, J = 133.9, C-2), 62.6 (d, J 

= 6.5, C-3), 64.8 (C-5), 126.0 (C-11), 128.4 (C-9/10), 128.4 (C-9/10), 141.0 (C-8), 165.8 (d, J = 

6.1, C-1); δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 337.1166; C15H23NaO5P (MNa+) 

Requires 337.1175 (2.9 ppm error), Found: 315.1349; C15H24O5P (MH+) Requires 315.1356 (2.2 

ppm error). 

Lab notebook reference: MGL/03/46 

3-Phenylpropyl 2-diazo-2-(diethoxyphosphoryl)acetate (148b) 
 

 
 

Synthesised using general procedure B with 3-phenylpropyl 2-(diethoxyphosphoryl)acetate 148a 

(1.89 g, 6.00 mmol), THF (30 mL), LHMDS (7.20 mL, 7.20 mmol, 1.0 M solution in THF) and p-

ABSA (1.73 g, 7.20 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded 

the title compound 148b as a pale yellow oil (1.18 g, 59%); Rf 0.45 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2984w, 2128s, 1702s, 1390w, 1275s, 1216w, 1164w, 1122w, 1098w, 1017s, 978m; δH 

(400 MHz, CDCl3) 1.34 (6 H, td, J = 7.1, J = 0.8, H-4), 1.93–2.01 (2 H, m, H-6), 2.68 (2 H, t, J = 

7.6, H-7), 4.10–4.26 (6 H, m, H-3,5), 7.13–7.19 (3 H, m, H-9,11), 7.24–7.28 (2 H, m, H-10); δC 

(100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 30.1 (C-6), 31.8 (C-7), 53.7 (d, J = 228.2, C-2), 63.4 (d, J 

= 5.7, C-3), 64.7 (C-5), 126.0 (C-11), 128.2 (C-9/10), 128.3 (C-9/10), 140.7 (C-8), 163.3 (d, J = 

12.1, C-1); δP (162 MHz, CDCl3) 10.8; HRMS (ESI+): Found: 363.1066; C15H21N2NaO5P (MNa+) 

Requires 363.1080 (4.0 ppm error), Found: 341.1251; C15H22N2O5P (MH+) Requires 341.1261 (2.8 

ppm error). 

Lab notebook reference: MGL/03/50 
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(SR)-4-Benzyl-3-methylenedihydrofuran-2(3H)-one (148c) 

 

 
 

Synthesised using general procedure D with 3-phenylpropyl 2-diazo-2-(diethoxyphosphoryl)acetate 

148b (73 mg, 0.215 mmol), CH2Cl2 (4.3 mL), Rh2(oct)4 (3.3 mg, 4.3 µmol), THF (4.3 mL), KOBu-

t (29.0 mg, 0.258 mmol) and paraformaldehyde (12.9 mg, 0.430 mmol). Purification by column 

chromatography (8:1 petrol:EtOAc) afforded the title compound 148c as a colourless oil (25 mg, 

62%); Rf 0.29 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2912w, 1760s, 1661w, 1497w, 1455w, 

1406w, 1268m, 1116m, 999m; δH (400 MHz, CDCl3) 2.81 (1 H, dd, J = 13.8, J = 8.9, H-6), 2.98 (1 

H, dd, J = 13.8, J = 6.9, H-6), 3.33–3.42 (1 H, m, H-3), 4.07 (1 H, dd, J = 9.2, J = 5.2, H-4), 4.34 (1 

H, dd, J = 9.2, J = 8.0, H-4), 5.43 (1 H, d, J = 2.3, H-5b), 6.27 (1 H, d, J = 2.6, H-5a), 7.16–7.19 (2 

H, m, H-8), 7.24–7.28 (1 H, m, H-10), 7.30–7.35 (2 H, m, H-9); δC (100 MHz, CDCl3) 39.9 (C-6), 

40.1 (C-3), 70.6 (C-4), 122.7 (C-5), 126.9 (C-10), 128.7 (C-8/9), 128.9 (C-8/9), 137.4 (C-2/7), 

137.5 (C-2/7), 170.7 (C-1); HRMS (ESI+): Found: 211.0721; C12H12NaO2 (MNa+) Requires 

211.0730 (4.1 ppm error), Found: 189.0902; C12H13O2 (MH+) Requires 189.0910 (4.4 ppm error). 

Lab notebook reference: MGL/03/54,57 
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3-(1,3-Benzodioxol-5-yl) 2-(diethoxyphosphoryl)acetate (149a) 

 

 
 

To powdered LiAlH4 (1.516 g, 30.5 mmol) under argon was added ether (120 mL) via cannula 

whilst being cooled to 0 °C. A solution of (E)-ethyl 3-(1,3-benzodioxol-5-yl)acrylate S2 (1.68 g, 

7.63 mmol) in ether (20 mL) was added dropwise via cannula to the suspension over 5 mins and 

stirred at 0 °C for 1 h then at RT for 30 mins. The suspension was quenched at 0 °C dropwise with 

water (1.5 mL) followed by 15% aq. NaOH (1.5 mL) and again with water (4.5 mL) then stirred for 

30 mins at RT. The solution was filtered through a pad of Celite and washed with ether (50 mL). 

The filtrate was concentrated in vacuo affording the allylic alcohol 299, which was used without 

further purification. To a solution of alcohol 299 in methanol (30 mL) was added palladium on 

carbon (10% wt. % loading, 100 mg). The flask was purged 4 times with argon then 4 times with 

hydrogen. The mixture was stirred at RT for 16 h. The mixture was filtered through a pad of Celite 

and washed with methanol (50 mL). The filtrate was concentrated in vacuo to afford the saturated 

alcohol 149, which was used without further purification. Using general procedure A with alcohol 

149, toluene (40 mL), DEPAA (1.29 mL, 8.01 mmol), DIPEA (3.46 mL, 19.8 mmol) and T3P 

(6.31 g, 9.92 mmol, 50% w/w solution in EtOAc) afforded the title compound 149a as a colourless 

oil (2.21 g, 81% over 3 steps); Rf 0.28 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2988w, 1735s, 

1511s, 1493m, 1450w, 1246s, 1116w, 1024s, 970m; δH (400 MHz, CDCl3) 1.34 (6 H, td, J = 7.1, J 

= 0.5, H-4), 1.88–1.96 (2 H, m, H-6), 2.62 (2 H, t, J = 7.6, H-7), 2.97 (2 H, d, J = 21.6, H-2), 4.11–

4.21 (6 H, m, H-3,5), 5.91 (2 H, s, H-12), 6.61–6.63 (1 H, m, H-9), 6.66–6.67 (1 H, m, H-14), 6.72 

(1 H, d, J = 7.8, H-10); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 30.3 (C-6), 31.6 (C-7), 34.3 (d, 

J = 134.2, C-2), 62.7 (d, J = 6.3, C-3), 64.6 (C-5), 100.8 (C-12), 108.2 (C-10), 108.8 (C-14), 121.2 

(C-9), 134.8 (C-8), 145.8 (C-11/13), 147.6 (C-11/13), 165.8 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 
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20.5; HRMS (ESI+): Found: 381.1061; C16H23NaO7P (MNa+) Requires 381.1074 (3.3 ppm error), 

Found: 359.1245; C16H24O7P (MH+) Requires 359.1254 (2.6 ppm error). 

Lab notebook reference: MGL/03/73, 67, 68 

3-(1,3-Benzodioxol-5-yl)propyl 2-diazo-2-(diethoxyphosphoryl)acetate (149b) 
 

 
 

Synthesised using general procedure B with 3-(1,3-benzodioxol-5-yl)propyl 2-

(diethoxyphosphoryl)acetate 149a (2.09 g, 5.83 mmol), THF (29 mL), LHMDS (7.00 mL, 7.00 

mmol, 1.0 M solution in THF) and p-ABSA (1.68 g, 7.00 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 149b as a pale yellow oil (1.35 g, 

60%);  Rf 0.66 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2984w, 2130s, 1704s, 1504w, 1490m, 

1390w, 1280s, 1246w, 1099w, 1020s, 978w; δH (400 MHz, CDCl3) 1.35 (6 H, td, J = 7.1, J = 0.7, 

H-4), 1.88–1.95 (2 H, m, H-6), 2.60 (2 H, t, J = 7.5, H-7), 4.10–4.26 (6 H, m, H-3,5), 5.90 (2 H, s, 

H-12), 6.59 (1 H, dd, J = 7.9, J = 1.7, H-9), 6.64 (1 H, d, J = 1.7, H-14), 6.70 (1 H, d, J = 7.9, H-

10); δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4), 30.4 (C-6), 31.5 (C-7), 53.8 (d, J = 228.5, C-2), 

63.5 (d, J = 5.6, C-3), 64.6 (C-5), 100.7 (C-12), 108.1 (C-10), 108.7 (C-14), 121.0 (C-9), 134.5 (C-

8), 145.8 (C-11/13), 147.6 (C-11/13), 163.3 (d, J = 12.0, C-1); δP (162 MHz, CDCl3) 10.8; HRMS 

(ESI+): Found: 407.0967; C16H21N2NaO7P (MNa+) Requires 407.0979 (2.9 ppm error), Found: 

385.1147; C16H22N2O7P (MH+) Requires 385.1159 (3.1 ppm error). 

Lab notebook reference: MGL/03/76 

149b

p-ABSA
LHMDS

149a

THF

O

O
P O

O

O

7 8

9
10

65

1 2

3
4

11 O

O
12

13
14

O

O
P O

O

O

O

O

N2



 202 

3-(4-Methoxyphenyl)propyl 2-(diethoxyphosphoryl)acetate (150a) 

 

 
 

Synthesised using general procedure A with 3-(4-methoxyphenyl)propan-1-ol 150 (831 mg, 5.00 

mmol), toluene (25.0 mL), DEPAA (1.03 g, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P 

(4.14 g, 6.50 mmol, 50% w/w solution in EtOAc) affording the title compound 150a as a yellow oil 

(1.66 g, 96%); Rf 0.09 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2982w, 1733s, 1612w, 1513s, 

1243s, 1177m, 1114m, 1019s, 964s, 834m, 813m, 783w; δH (400 MHz, CDCl3) 1.32 (6 H, t, J = 

7.1, H-12), 1.88–1.95 (2 H, m, H-7), 2.62 (2 H, t, J = 7.6, H-6), 2.95 (2 H, d, J = 21.6, H-10), 3.75 

(3 H, s, H-5), 4.10–4.19 (6 H, m, H-8,11), 6.80 (2 H, d, J = 8.7, H-2), 7.07 (2 H, d, J = 8.7, H-3); δC 

(100 MHz, CDCl3) 16.2 (d, J = 6.4, C-12), 30.2 (C-7), 30.9 (C-6), 34.2 (d, J = 134.1, C-10), 55.1 

(C-5), 62.5 (d, J = 6.3, C-11), 64.7 (C-8), 113.7 (C-2), 129.2 (C-3), 132.9 (C-4), 157.8 (C-1), 165.7 

(d, J = 6.1, C-9); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): Found: 367.1286; C16H25NaO6P 

(MNa+) Requires 367.1281 (−1.4 ppm error). 

Lab notebook reference: MGL/08/14 

3-(4-Methoxyphenyl)propyl 2-diazo-2-(diethoxyphosphoryl)acetate (150b) 
 

 
 

Synthesised using general procedure C with 3-(4-methoxyphenyl)propyl 2-

(diethoxyphosphoryl)acetate 150a (1.66 g, 4.82 mmol), DBSA (2.42 mL, 7.23 mmol), DBU (1.08 

mL, 7.23 mmol) and CH2Cl2 (48.0 mL). Purification by column chromatography (1:1 

hexane:EtOAc) afforded the title compound 150b as a pale yellow oil (1.70 mg, 95%); Rf 0.57 (1:4 

hexane:EtOAc); νmax (thin film)/cm-1 2985w, 2128s, 1702s, 1613w, 1513s, 1389w, 1276s, 1246s, 
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1018s, 978m, 813m, 746m, 591m, 560m; δH (400 MHz, CDCl3) 1.36 (6 H, td, J = 7.1, J = 0.8, H-

12), 1.91–1.98 (2 H, m, H-7), 2.63 (2 H, t, J = 7.6, H-6), 3.78 (3 H, s, H-5), 4.11–4.27 (6 H, m, H-

8,11), 6.82 (2 H, d, J = 8.7, H-2), 7.08 (2 H, d, J = 8.7, H-3); δC (100 MHz, CDCl3) 16.1 (d, J = 7.3, 

C-12), 30.4 (C-7), 30.9 (C-6), 54.0 (d, J = 226.6, C-10), 55.1 (C-5), 63.5 (d, J = 5.9, C-11), 64.8 

(C-8), 113.8 (C-2), 129.2 (C-3), 132.7 (C-4), 157.9 (C-1), 163.3 (d, J = 12.3, C-9); δP (162 MHz, 

CDCl3) 10.8; HRMS (ESI+): Found: 393.1196; C16H23N2NaO6P (MNa+) Requires 393.1186 (−2.6 

ppm error). 

Lab notebook reference: MGL/08/18 

4-(4-Methoxybenzyl)-3-methylenedihydrofuran-2(3H)-one (150c) 
 

 
 

Synthesised using general procedure D with 3-(4-methoxyphenyl)propyl 2-diazo-2-

(diethoxyphosphoryl)acetate 150b (78 mg, 0.211 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 

µmol), THF (4.2 mL), KOBu-t (28.4 mg, 0.253 mmol) and paraformaldehyde (12.7 mg, 0.422 

mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title compound 

150c as a colourless oil (20 mg, 43%); Rf 0.53 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 2912w, 

1760w, 1611m, 1513s, 1301m, 1248s, 1179m, 1114s, 1033m, 815m; δH (400 MHz, CDCl3) 2.75 (1 

H, dd, J = 13.9, J = 8.8, H-6), 2.90 (1 H, dd, J = 13.9, J = 7.0, H-6), 3.28–3.36 (1 H, m, H-3), 3.80 

(3 H, s, H-11), 4.05 (1 H, dd, J = 9.2, J = 5.1, H-4), 4.33 (1 H, dd, J = 9.2, J = 8.1, H-4), 5.42 (1 H, 

d, J = 2.3, H-5b), 6.26 (1 H, d, J = 2.6, H-5a), 6.85 (2 H, d, J = 8.6, H-9), 7.09 (2 H, d, J = 8.6, H-

8); δC (100 MHz, CDCl3) 39.0 (C-6), 40.3 (C-3), 55.2 (C-11), 70.6 (C-4), 114.1 (C-9), 122.7 (C-5), 

129.4 (C-7), 129.9 (C-8), 137.6 (C-2), 158.5 (C-10), 170.7 (C-1); HRMS (ESI+): Found: 241.0827; 

C13H14NaO3 (MNa+) Requires 241.0835 (3.5 ppm error). 

Lab notebook reference: MGL/08/31 
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3-(3-Methoxyphenyl)propyl 2-(diethoxyphosphoryl)acetate (151a) 

 

 
 

Synthesised using general procedure A with 3-(3-methoxyphenyl)propan-1-ol 151 (831 mg, 5.00 

mmol), toluene (25.0 mL), DEPAA (1.03 g, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P 

(4.14 g, 6.50 mmol, 50% w/w solution in EtOAc) affording the title compound 151a as a yellow oil 

(1.66 g, 96%); Rf 0.09 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2982w, 1736s, 1601w, 1585w, 

1489w, 1392w, 1262s, 1154w, 1117w, 1025s, 970s; δH (400 MHz, CDCl3) 1.33 (6 H, t, J = 7.1, H-

14), 1.92–2.00 (2 H, m, H-9), 2.67 (2 H, t, J = 7.7, H-8), 2.96 (2 H, d, J = 21.6, H-12), 3.78 (3 H, s, 

H-7), 4.13–4.20 (6 H, m, H-10,13), 6.72–6.77 (3 H, m, H-2,4,6), 7.16–7.21 (1 H, m, H-5); δC (100 

MHz, CDCl3) 16.3 (d, J = 6.5, C-14), 29.9 (C-9), 31.9 (C-8), 34.2 (d, J = 133.8, C-12), 55.0 (C-7), 

62.6 (d, J = 6.6, C-13), 64.7 (C-10), 111.2 (C-2/4/6), 114.2 (C-2/4/6), 120.7 (C-2/4/6), 129.3 (C-5), 

142.6 (C-3), 159.6 (C-1), 165.8 (d, J = 6.1, C-11); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): 

Found: 367.1272; C16H25NaO6P (MNa+) Requires 367.1281 (2.5 ppm error). 

Lab notebook reference: MGL/08/13 

3-(3-Methoxyphenyl)propyl 2-diazo-2-(diethoxyphosphoryl)acetate (151b) 
 

 
 

Synthesised using general procedure C with 3-(3-methoxyphenyl)propyl 2-

(diethoxyphosphoryl)acetate 150a (1.66 g, 4.82 mmol), DBSA (2.42 mL, 7.23 mmol), DBU (1.08 

mL, 7.23 mmol) and CH2Cl2 (48.0 mL). Purification by column chromatography (1:1 

hexane:EtOAc) afforded the title compound 151b as a pale yellow oil (1.61 g, 90%); Rf 0.57 (1:4 
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hexane:EtOAc); νmax (thin film)/cm-1 2983w, 2127s, 1701s, 1602m, 1584m, 1489m, 1455m, 

1389m, 1273s, 1015s, 976s, 780m, 745m, 590m, 559m; δH (400 MHz, CDCl3) 1.36 (6 H, td, J = 

7.1, J = 0.7, H-14), 1.94–2.01 (2 H, m, H-9), 2.67 (2 H, t, J = 7.6, H-8), 3.78 (3 H, s, H-7), 4.11–

4.27 (6 H, m, H-10,13), 6.71–6.77 (3 H, m, H-2,4,6), 7.20 (1 H, app. t, J = 7.8, H-5); δC (100 MHz, 

CDCl3) 16.1 (d, J = 6.9, C-14), 30.0 (C-9), 31.8 (C-8), 53.9 (d, J = 226.6, C-12), 55.0 (C-7), 63.5 

(d, J = 6.2, C-13), 64.8 (C-10), 111.1 (C-2/4/6), 114.2 (C-2/4/6), 120.6 (C-2/4/6), 129.34 (C-5), 

142.3 (C-3), 159.6 (C-1), 163.3 (d, J = 12.1, C-11); δP (162 MHz, CDCl3) 10.8; HRMS (ESI+): 

Found: 393.1177; C16H23N2NaO6P (MNa+) Requires 393.1186 (2.2 ppm error). 

Lab notebook reference: MGL/08/17 

4-(3-Methoxybenzyl)-3-methylenedihydrofuran-2(3H)-one (151c) 
 

 
 

Synthesised using general procedure D with 3-(3-methoxyphenyl)propyl 2-diazo-2-

(diethoxyphosphoryl)acetate 151b (77 mg, 0.208 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.2 mg, 4.2 

µmol), THF (4.2 mL), KOBu-t (28.0 mg, 0.250 mmol) and paraformaldehyde (12.5 mg, 0.416 

mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title compound 

151c as a colourless oil (20 mg, 44%); Rf 0.52 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 2915w, 

1762s, 1601w, 1490w, 1262s, 1154w, 1116m, 1040m; δH (400 MHz, CDCl3) 2.77 (1 H, dd, J = 

13.8, J = 9.0, H-6), 2.96 (1 H, dd, J = 13.8, J = 6.8, H-6), 3.33–3.42 (1 H, m, H-3), 3.80 (3 H, s, H-

13), 4.06 (1 H, dd, J = 9.2, J = 5.2, H-4), 4.35 (1 H, dd, J = 9.2, J = 8.0, H-4), 5.47 (1 H, d, J = 2.4, 

H-5b), 6.28 (1 H, d, J = 2.7, H-5a), 6.71–6.72 (1 H, m, H-12), 6.77 (1 H, br. d, J = 7.5, H-8/10), 

6.79 (1 H, dd, J = 8.3, J = 2.5, H-8/10), 7.23 (1 H, app. t, J = 7.9, H-9); δC (100 MHz, CDCl3) 40.0 

(C-6), 40.1 (C-3), 55.3 (C-13), 70.7 (C-4), 112.1 (C-8/10), 114.9 (C-12), 121.3 (C-8/10), 122.8 (C-

5), 129.9 (C-9), 137.7 (C-2/7), 139.1 (C-2/7), 159.9 (C-11), 170.8 (C-1); HRMS (ESI+): Found: 

241.0846; C13H14NaO3 (MNa+) Requires 241.0835 (−4.5 ppm error). 

Lab notebook reference: MGL/08/30 
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3-(3,4-Dimethoxyphenyl)propyl 2-(diethoxyphosphoryl)acetate (152a) 

 

 
 

Synthesised using general procedure A with 3-(3,4-dimethoxyphenyl)propan-1-ol 152 (981 mg, 

5.00 mmol), toluene (25.0 mL), DEPAA (1.03 g, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and 

T3P (4.14 g, 6.50 mmol, 50% w/w solution in EtOAc) affording the title compound 152a as a 

yellow oil (1.87 g, 100%); Rf 0.09 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2936w, 1732s, 1515s, 

1465m, 1257s, 1236w, 1157m, 1140m, 1116m, 1019s, 965s; δH (400 MHz, CDCl3) 1.31 (6 H, td, J 

= 7.1, J = 0.4, H-15), 1.89–1.96 (2 H, m, H-10), 2.62 (2 H, t, J = 7.6, H-9), 2.95 (2 H, d, J = 21.6, 

H-13), 3.82 (3 H, s, H-7/8), 3.84 (3 H, s, H-7/8), 4.11–4.18 (6 H, m, H-11,14), 6.68–6.77 (3 H, m, 

H-3,5,6); δC (100 MHz, CDCl3) 16.2 (d, J = 6.4, C-15), 30.2 (C-10), 31.4 (C-9), 34.2 (d, J = 134.0, 

C-13), 55.7 (C-7/8), 55.8 (C-7/8), 62.5 (d, J = 6.7, C-14), 64.7 (C-11), 111.1 (C-3/5/6), 111.5 (C-

3/5/6), 120.1 (C-3/5/6), 133.5 (C-4), 147.2 (C-1/2), 148.7 (C-1/2), 165.7 (d, J = 6.4, C-12); δP (162 

MHz, CDCl3) 20.4; HRMS (ESI+): Found: 397.1392; C17H27NaO7P (MNa+) Requires 397.1387 

(−1.4 ppm error). 

Lab notebook reference: MGL/08/12 

3-(3,4-Dimethoxyphenyl)propyl 2-diazo-2-(diethoxyphosphoryl)acetate (152b) 
 

 
 

Synthesised using general procedure C with 3-(3,4-dimethoxyphenyl)propyl 2-

(diethoxyphosphoryl)acetate 152a (1.87 g, 5.00 mmol), DBSA (2.42 mL, 7.25 mmol), DBU (1.08 

mL, 7.25 mmol) and CH2Cl2 (50.0 mL). Purification by column chromatography (1:1 

hexane:EtOAc) afforded the title compound 152b as a pale yellow oil (1.97 mg, 98%); Rf 0.53 (1:4 
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hexane:EtOAc); νmax (thin film)/cm-1 2936w, 2127s, 1701s, 1515s, 1465w, 1274s, 1260s, 1156w, 

1015s, 976s, 799m, 731s, 589s, 558s; δH (400 MHz, CDCl3) 1.36 (6 H, td, J = 7.1, J = 0.8, H-15), 

1.93–2.00 (2 H, m, H-10), 2.64 (2 H, t, J = 7.6, H-9), 3.85 (3 H, s, H-7/8), 3.87 (3 H, s, H-7/8), 

4.12–4.28 (6 H, m, H-11,14), 6.69–6.80 (3 H, m, H-3,5,6); δC (100 MHz, CDCl3) 16.0 (d, J = 7.2, 

C-15), 30.3 (C-10), 31.3 (C-9), 53.7 (d, J = 229.3, C-13), 55.6 (C-7/8), 55.7 (C-7/8), 63.5 (d, J = 

6.1, C-14), 64.7 (C-11), 111.1 (C-3/5/6), 111.5 (C-3/5/6), 120.0 (C-3/5/6), 133.2 (C-4), 147.2 (C-

1/2), 148.7 (C-1/2), 163.2 (d, J = 12.5, C-12); δP (162 MHz, CDCl3) 10.7; HRMS (ESI+): Found: 

423.1275; C17H25N2NaO7P (MNa+) Requires 423.1292 (3.9 ppm error). 

Lab notebook reference: MGL/08/16 

4-(3,4-Dimethoxybenzyl)-3-methylenedihydrofuran-2(3H)-one (152c) 
 

 
 

Synthesised using general procedure D with 3-(3,4-dimethoxyphenyl)propyl 2-diazo-2-

(diethoxyphosphoryl)acetate 152b (86 mg, 0.215 mmol), CH2Cl2 (4.3 mL), Rh2(oct)4 (3.4 mg, 4.3 

µmol), THF (4.3 mL), KOBu-t (29.0 mg, 0.258 mmol) and paraformaldehyde (12.9 mg, 0.430 

mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title compound 

152c as a colourless oil (20 mg, 37%); Rf 0.26 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 2911w, 

2836w, 1759s, 1590m, 1515s, 1465m, 1260s, 1157m, 1141m, 1115m, 1026m; δH (400 MHz, 

CDCl3) 2.75 (1 H, dd, J = 13.9, J = 8.8, H-6), 2.90 (1 H, dd, J = 13.9, J = 7.0, H-6), 3.29–3.38 (1 

H, m, H-3), 3.86 (3 H, s, H-13/14), 3.86 (3 H, s, H-13/14), 4.06 (1 H, dd, J = 9.2, J = 5.0, H-4), 

4.34 (1 H, dd, J = 9.2, J = 8.0, H-4), 5.43 (1 H, d, J = 2.3, H-5b), 6.26 (1 H, d, J = 2.6, H-5a), 6.68 

(1 H, d, J = 2.0, H-12), 6.71 (1 H, dd, J = 8.1, J = 2.0, H-8), 6.81 (1 H, d, J = 8.1, H-9); δC (100 

MHz, CDCl3) 39.6 (C-6), 40.3 (C-3), 55.8 (2 C, C-13,14), 70.5 (C-4), 111.2 (C-9), 111.9 (C-12), 

120.9 (C-12), 122.7 (C-5), 129.9 (C-7), 137.5 (C-2), 147.9 (C-10/11), 149.0 (C-10/11), 170.7 (C-

1); HRMS (ESI+): Found: 271.0950; C14H16NaO4 (MNa+) Requires 271.0941 (−3.3 ppm error). 

Lab notebook reference: MGL/08/29 
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5.2.1.1.  Buchner cyclisation 

1,1,2-Triphenylethyl 2-(diethoxyphosphoryl)acetate (153a)  
 

 
 

The procedure for the Grignard addition was followed according to the literature procedure.166  

To benzylmagnesium chloride solution (20 mL, 40 mmol, 2.0 M in THF) cooled to 0 °C under an 

atmosphere of argon, was added benzophenone S3 (5.47 g, 30 mmol). After 2 h stirring at RT a 

further addition of benzylmagnesium chloride (10 mL, 20 mmol) was made. The suspension was 

stirred overnight at RT. The suspension was quenched with sat. aq. NH4Cl. The organic layer was 

removed and the aqueous extracted with EtOAc (3 × 25 mL). The combined organic extracts were 

dried over MgSO4 and concentrated in vacuo to afford the crude product 153 as a white powder 

(9.03 g). A portion of the crude material (3.35 g) was treated under the conditions of general 

procedure A with toluene (60 mL), DEPAA (2.06 mL, 12.8 mmol), DIPEA (5.52 mL, 31.7 mmol) 

and T3P (10.1 g, 15.8 mmol, 50% w/w solution in EtOAc). Purification by column 

chromatography (1:2 petrol:EtOAc) afforded the title compound 153a as a colourless oil (389 mg, 

8% over 2 steps); Rf 0.25 (1:2 petrol:EtOAc); νmax (thin film)/cm-1 2937s, 1711s, 1251s, 1218w, 

1012s; δH (400 MHz, CDCl3) 1.25 (6 H, td, J = 7.1, J = 0.3, H-4), 2.94 (2 H, d, J = 21.5, H-2), 

4.02–4.13 (6 H, m, H-3,6), 6.60–6.65 (2 H, m, ArH), 7.06–7.18 (3 H, m, ArH), 7.20–7.35 (10 H, 

m, ArH); δC (100 MHz, CDCl3) 16.2 (d, J = 6.3, C-4), 35.2 (d, J = 134.4, C-2), 42.7 (C-6), 62.4 (d, 

J = 6.2, C-3), 87.6 (C-5), 126.3 (C-12/13), 126.4 (C-10), 127.1 (C-14), 127.5 (C-8/9), 127.8 (C-

12/13), 130.4 (C-8/9), 135.3 (C-7), 143.9 (C-11), 163.8 (d, J = 6.4, C-1); δP (162 MHz, CDCl3) 

20.3; HRMS (ESI+): Found: 475.1636; C26H29NaO5P (MNa+) Requires 475.1645 (1.8 ppm error). 

Lab notebook reference: MGL/01/61,63 
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1,1,2-Triphenylethyl 2-diazo-2-(diethoxyphosphoryl)acetate (153b)  

 

 
 

Synthesised using general procedure B with 1,1,2-triphenylethyl 2-(diethoxyphosphoryl)acetate 

153a (308 mg, 0.681 mmol), THF (3.4 mL), LHMDS (0.82 mL, 0.82 mmol, 1.0 M solution in 

THF) and p-ABSA (196 mg, 0.82 mmol). Purification by column chromatography (2:1 

petrol:EtOAc) afforded the title compound 153b as a white crystalline solid (171 mg, 53%); Rf 0.77 

(1:2 petrol:EtOAc); νmax (thin film)/cm-1 2938w, 2884w, 2100s, 1675s, 1264s, 1219w, 1005m; m.p. 

68–72 °C; δH (400 MHz, CDCl3) 1.19 (6 H, td, J = 7.1, J = 0.7, H-4), 3.81–3.93 (2 H, m, H-3), 

4.03–4.13 (2 H, m, H-3), 4.14 (2 H, s, H-6), 6.61–6.65 (2 H, m, ArH), 7.06–7.18 (3 H, m, ArH), 

7.22–7.34 (10 H, m, ArH); δC (100 MHz, CDCl3) 15.9 (d, J = 7.6, C-4), 43.3 (C-6), 55.2 (d, J = 

227.8, C-2), 63.1 (d, J = 5.4, C-3), 88.3 (C-5), 126.1 (C-12/13), 126.5 (C-10), 127.2 (C-14), 127.5 

(C-8/9), 128.0 (C-12/13), 130.3 (C-8/9), 135.3 (C-7), 144.1 (C-11), 162.2 (d, J = 10.2, C-1); δP 

(162 MHz, CDCl3) 11.0; HRMS (ESI+): Found: 501.1527; C26H27N2NaO5P (MNa+) Requires 

501.1550 (4.5 ppm error).  

Lab notebook reference: MGL/02/05 
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Diethyl ((1SR,3aSR)-1-benzyl-3-oxo-1-phenyl-3,3a-dihydro-1H-cyclohepta[c]furan-

3a-yl)phosphonate (153e)  
 

 
 

To a solution of 1,1,2-triphenylethyl 2-diazo-2-(diethoxyphosphoryl)acetate 153b (47 mg, 0.098 

mmol) in toluene (5 mL) flushed with argon was added Rh2(esp)2 (3.7 mg, 4.9 µmol). The mixture 

was stirred at 100 °C for 4 h. Concentration in vacuo and purification by column chromatography 

(1:1 petrol:EtOAc) afforded the title compound 153e as an off-white solid (22 mg, 50%); Rf 0.22 

(1:1 petrol:EtOAc); m.p. 92–95 °C; νmax (thin film)/cm-1 2936w, 1744s, 1230m, 1034w, 1009m; δH 

(400 MHz, CDCl3) 1.35 (3 H, td, J = 7.1, J = 0.4, H-6/6’), 1.38 (3 H, td, J = 7.1, J = 0.4, H-6/6’), 

3.65 (1 H, d, J = 14.6, H-12), 4.10–4.28 (4 H, m, H-5,5’), 4.11 (1 H, d, J = 14.6, H-12), 5.31 (1 H, 

dd, J = 10.0, J = 6.3, H-7), 6.15–6.22 (2 H, m, 2 × CH), 6.27–6.36 (2 H, m, 2 × CH), 7.09–7.16 (5 

H, m, H-ArH), 7.19–7.30 (3 H, m, ArH), 7.32–7.36 (2 H, m, ArH); δC (100 MHz, CDCl3) 16.4 (d, J 

= 5.6, C-6/6’), 16.7 (d, J = 5.3, C-6/6’), 45.6 (C-12), 56.0 (d, J = 145.2, C-2), 63.8 (d, J = 7.5, C-

5/5’), 64.4 (d, J = 7.3, C-5/5’), 90.0 (d, J = 3.8, C-4), 119.1 (C-7), 124.2 (d, J = 7.2, C-8/11), 125.6 

(ArCH), 126.6 (C-9/10/16/20), 127.7 (C-9/10/16/20), 127.8 (ArCH), 128.4 (ArCH), 128.5 (d, J = 

7.4, C-8/11), 129.0 (C-9/10/16/20), 129.9 (C-9/10/16/20), 130.7 (ArCH), 134.4 (C-3), 135.0 (C-

13), 141.3 (C-17), 172.7 (d, J = 3.6, C-1); δP (162 MHz, CDCl3) 17.3; HRMS (ESI+): Found: 

473.1477; C26H27NaO5P (MNa+) Requires 473.1488 (2.5 ppm error), Found: 451.1660; C26H28O5P 

(MNa+) Requires 451.1669 (2.1 ppm error). 
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5.2.1.2.  α-Alkylidene-γ-butyrolactones 
 

Note: The assignment of Z- and E-configurations for α-alkylidene/arylidene-γ-butyrolactones is 

based on literature data for similar compounds.167 The isomers can be readily distinguished by 

comparison of the alkylidene proton, which is more downfield in the E-isomer (adjacent to the 

carbonyl). 

(SR,E)-4-(4-Methoxyphenyl)-3-(4-nitrobenzylidene)dihydrofuran-2(3H)-one (E-176) 

and (SR,Z)-4-(4-Methoxyphenyl)-3-(4-nitrobenzylidene) dihydrofuran-2(3H)-one (Z-

176) 
 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (70 mg, 0.196 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 3.9 

µmol), THF (4.0 mL), KOBu-t (33.0 mg, 0.294 mmol) and 4-nitrobenzaldehyde (59.2 mg, 0.392 

mmol). The HWE was performed at 0 °C. Purification by column chromatography (4:1 

hexane:EtOAc) afforded the title compounds as an inseparable mixture of (E) and (Z) isomers (E-

176:Z-176 1:1.3), as an orange oil (44 mg, 69%); Rf 0.40 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 

2971w, 2916w, 2838w, 1752s, 1599s, 1513s, 1344s, 1248m, 1177m, 1031m; HRMS (ESI+): 

Found: 348.0850; C18H15NNaO5 (MNa+) Requires 348.0842 (−2.3 ppm error).  

 

The two isomers were characterized from the mixture. 

 

Data for E-176; δH (400 MHz, CDCl3) 3.76 (3 H, s, H-14), 4.29 (1 H, dd, J = 8.8, J = 3.4, H-4), 

4.56 (1 H, ddd, J = 8.0, J = 3.4, J = 2.5, H-3), 4.74 (1 H, dd, J = 8.8, J = 8.0, H-4), 6.83 (2 H, d, J = 

8.8, H-12), 7.09 (2 H, d, J = 8.8, H-11), 7.47 (2 H, d, J = 8.8, H-7), 7.81 (1 H, d, J = 2.5, H-5), 8.09 

(2 H, d, J = 8.8, H-8); δC (100 MHz, CDCl3) 43.8 (C-3), 55.4 (C-14), 74.2 (C-4), 115.0 (C-12), 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,
4-O2NC6H4CHO
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123.8 (C-8), 128.1 (C-11), 131.1 (C-7), 131.5 (C-2), 131.6 (C-10), 136.2 (C-5), 139.6 (C-6), 147.9 

(C-9), 159.3 (C-13), 171.7 (C-1). 

 

Data for Z-176; δH (400 MHz, CDCl3) 3.83 (3 H, s, H-14), 4.33 (1 H, dd, J = 8.4, J = 8.1, H-4), 

4.40 (1 H, ddd, J = 8.4, J = 8.1, J = 2.8, H-3), 4.74 (1 H, app. t, J = 8.4, J = 8.4, H-4), 6.69 (1 H, d, 

J = 2.8, H-5), 6.95 (2 H, d, J = 8.8, H-12), 7.23 (2 H, d, J = 8.8, H-11), 7.87 (2 H, d, J = 8.8, H-7), 

8.17 (2 H, d, J = 8.8, H-8); δC (100 MHz, CDCl3) 48.3 (C-3), 55.5 (C-14), 72.6 (C-4), 114.9 (C-12), 

123.3 (C-8), 129.5 (C-11), 130.8 (C-2), 131.4 (C-7), 133.6 (C-10), 138.3 (C-5), 139.4 (C-6), 147.8 

(C-9), 159.5 (C-13), 168.2 (C-1).  

Lab notebook reference: MGL/03/11, 04/15 

(SR,Z)-3-(1,3-Benzodioxol-5-ylmethylene)-4-(4-methoxyphenyl) dihydrofuran-2(3H)-

one (Z-177) and (SR,E)-3-(1,3-Benzodioxol-5-ylmethylene)-4-(4-

methoxyphenyl)dihydrofuran-2(3H)-one (E-177)  

 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (70 mg, 0.196 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 3.9 

µmol), THF (4.0 mL), KOBu-t (33.0 mg, 0.294 mmol) and piperonal (58.9 mg, 0.392 mmol). The 

HWE was performed at reflux. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compounds as mixture of (Z) and (E) isomers (Z-177:E-177 1.2:1), as an orange 

oil (36 mg, 56%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for Z-177; Rf 0.33 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2907w, 1743s, 1611m, 1513s, 

1489w, 1448m, 1248s, 1158s, 1073m, 1036s, 930w; δH (400 MHz, CDCl3) 3.82 (3 H, s, H-17), 

4.26 (1 H, dd, J = 8.4, J = 7.8, H-4), 4.34 (1 H, app. td, J = 8.1, J = 2.4, H-3), 4.68 (1 H, app. t, J = 

8.4, H-4), 5.99 (2 H, s, H-10), 6.52 (1 H, d, J = 2.4, H-5), 6.76 (1 H, d, J = 8.2, H-8), 6.92 (2 H, d, J 
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= 8.7, H-15), 7.15 (1 H, dd, J = 8.2, J = 1.7, H-7), 7.21 (2 H, d, J = 8.7, H-14), 7.82 (1 H, d, J = 

1.7, H-12); δC (100 MHz, CDCl3) 48.4 (C-3), 55.3 (C-17), 72.6 (C-4), 101.4 (C-10), 107.8 (C-8), 

110.9 (C-12), 114.6 (C-15), 126.7 (C-2), 127.2 (C-7), 128.0 (C-6), 129.4 (C-14), 132.2 (C-13), 

141.6 (C-5), 147.6 (C-11), 149.1 (C-9), 159.1 (C-16), 169.1 (C-1); HRMS (ESI+): Found: 

347.0873; C19H16NaO5 (MNa+) Requires 347.0890 (4.8 ppm error), Found: 325.1065; C19H17O5 

(MH+) Requires 325.1071 (1.6 ppm error). 

 

Data for E-177; Rf 0.26 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2908w, 1744s, 1644m, 1611m, 

1511s, 1491w, 1448m, 1341w, 1263m, 1218m, 1172s, 1036s, 927w; δH (400 MHz, CDCl3) 3.78 (3 

H, s, H-17), 4.26 (1 H, dd, J = 8.7, J = 2.7, H-4), 4.49–4.52 (1 H, m, H-3), 4.68 (1 H, dd, J = 8.7, J 

= 7.9, H-4), 5.94 (1 H, d, J = 1.3, H-10), 5.95 (1 H, d, J = 1.3, H-10), 6.73 (1 H, d, J = 8.1, H-8), 

6.80 (1 H, d, J = 1.8, H-12), 6.86 (2 H, d, J = 8.7, H-15), 6.93 (1 H, dd, J = 8.1, J = 1.8, H-7), 7.14 

(2 H, d, J = 8.7, H-14), 7.70 (1 H, d, J = 2.1, H-5); δC (100 MHz, CDCl3) 43.6 (C-3), 55.3 (C-17), 

74.0 (C-4), 101.5 (C-10), 108.6 (C-8), 109.6 (C-12), 114.7 (C-15), 124.3 (C-2/6), 127.0 (C-7), 

127.9 (C-2/6), 128.0 (C-14), 132.6 (C-13), 139.0 (C-5), 148.0 (C-9/11), 149.3 (C-9/11), 158.9 (C-

16), 172.9 (C-1); HRMS (ESI+): Found: 347.0873; C19H16NaO5 (MNa+) Requires 347.0890 (4.8 

ppm error), Found: 325.1066; C19H17O5 (MH+) Requires 325.1071 (1.5 ppm error). 

Lab notebook reference: MGL/03/74,88 

(SR,Z)-3-Benzylidene-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (Z-178) and 

(SR,E)-3-Benzylidene-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (E-178) 
 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (66 mg, 0.185 mmol), CH2Cl2 (3.9 mL), Rh2(oct)4 (2.9 mg, 3.7 

µmol), THF (3.9 mL), KOBu-t (31.0 mg, 0.278 mmol) and freshly distilled benzaldehyde (37.6 µL, 

0.370 mmol). The HWE was performed at RT. Purification by column chromatography (8:1 

petrol:EtOAc) afforded the title compounds as mixture of (Z) and (E) isomers (Z-178:E-178 1:1), 

as a pale yellow oil (34 mg, 65%).  
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Small quantities of each compound were isolated separately for characterisation purposes. 

  

Data for Z-178; Rf 0.33 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2887m, 2869m, 1724s, 1490s, 

1229m, 1136m; δH (400 MHz, CDCl3) 3.83 (3 H, s, H-14), 4.28 (1 H, dd, J = 8.5, J = 7.8, H-4), 

4.37 (1 H, ddd, J = 8.5, J = 7.8, J = 2.7, H-3), 4.71 (1 H, dd, J = 8.5, J = 8.5, H-4), 6.67 (1 H, d, J = 

2.7, H-5), 6.94 (2 H, d, J = 8.7, H-12), 7.23 (2 H, d, J = 8.7, H-11), 7.31–7.39 (3 H, m, H-8,9), 

7.79–7.83 (2 H, m, H-7); δC (100 MHz, CDCl3) 48.2 (C-3), 55.3 (C-14), 72.4 (C-4), 114.6 (C-12), 

128.1 (C-8), 129.1 (C-2), 129.4 (C-11), 129.7 (C-9), 130.8 (C-7), 131.9 (C-10), 133.4 (C-6), 141.7 

(C-5), 159.2 (C-13), 168.8 (C-1); HRMS (ESI+): Found: 303.0979; C18H16NaO3 (MNa+) Requires 

303.0992 (4.1 ppm error), Found: 281.1183; C18H17O3 (MH+) Requires 281.1172 (−3.8 ppm error). 

 

Data for E-178; Rf 0.25 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2877m, 1724s, 1488s, 1228m, 

1153m; δH (400 MHz, CDCl3) 3.77 (3 H, s, H-14), 4.29 (1 H, dd, J = 8.7, J = 2.7, H-4), 4.56 (1 H, 

ddd, J = 7.9, J = 2.7, J = 2.2, H-3), 4.69 (1 H, dd, J = 8.7, J = 7.9, H-4), 6.84 (2 H, d, J = 8.8, H-

12), 7.14 (2 H, d, J = 8.8, H-11), 7.26–7.31 (3 H, m, H-8,9), 7.33–7.37 (2 H, m, H-7), 7.81 (1 H, d, 

J = 2.2, H-5); δC (100 MHz, CDCl3) 43.6 (C-3), 55.3 (C-14), 74.1 (C-4), 114.6 (C-12), 126.8 (C-2), 

128.0 (C-11), 128.7 (C-8), 130.0 (C-9), 130.6 (C-7), 132.6 (C-10), 133.6 (C-6), 139.2 (C-5), 158.9 

(C-13), 172.7 (C-1); HRMS (ESI+): Found: 303.0998; C18H16NaO3 (MNa+) Requires 303.0992 

(−2.0 ppm error), Found: 281.1167; C18H17O3 (MH+) Requires 281.1172 (1.9 ppm error). 

Lab notebook reference: MGL/03/89 
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(SR,Z)-3-(2-Fluorobenzylidene)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (Z-179) 

and (SR,E)-3-(2-Fluorobenzylidene)-4-(4-methoxyphenyl) dihydrofuran-2(3H)-one 

(E-179)  
 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (71 mg, 0.199 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 

µmol), THF (4.0 mL), KOBu-t (33.5 mg, 0.299 mmol) and 2-fluorobenzaldehyde (41.6 µL, 0.398 

mmol). The HWE was performed at RT. Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compounds as mixture of (Z) and (E) isomers (Z-179:E-179 

1.5:1), as a colourless oil (54 mg, 91%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for Z-179; Rf 0.40 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2919m, 2842w, 1757s, 1611m, 

1514s, 1484m, 1456w, 1371w, 1249s, 1160m, 1107m, 1072w, 1025m, 833w, 754m; δH (400 MHz, 

CDCl3) 3.83 (3 H, s, H-16), 4.28 (1 H, dd, J = 8.7, J = 7.8, H-4), 4.36–4.41 (1 H, m, H-3), 4.71 (1 

H, app. t, J = 8.7, H-4), 6.86 (1 H, d, J = 2.1, H-5), 6.94 (2 H, d, J = 8.7, H-14), 7.00–7.05 (1 H, m, 

H-10), 7.14 (1 H, app. td, J = 7.7, J = 1.0, H-8), 7.23 (2 H, d, J = 8.7, H-13), 7.29–7.35 (1 H, m, H-

9), 8.01 (1 H, app. td, J = 7.7, J = 1.6, H-7); δC (100 MHz, CDCl3) 47.9 (C-3), 55.3 (C-16), 72.5 

(C-4), 114.6 (C-14), 115.1 (d, J = 22.0, C-10), 121.4 (d, J = 12.3, C-6), 123.6 (d, J = 3.8, C-7/8/9), 

129.3 (C-13), 131.4 (C-2/12), 131.4 (d, J = 8.7, C-7/8/9), 131.5 (C-2/12), 131.7 (d, J = 1.5, C-

7/8/9), 133.0 (d, J = 5.4, C-5), 159.2 (C-15), 160.4 (d, J = 251.0, C-11), 168.5 (C-1); HRMS 

(ESI+): Found: 321.0886; C18H15FNaO3 (MNa+) Requires 321.0897 (3.6 ppm error), Found: 

299.1071; C18H16FNaO3 (MNa+) Requires 299.1078 (2.4 ppm error). 

 

Data for E-179; Rf 0.27 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2922m, 2852w, 1752s, 1649m, 

1611m, 1581w, 1512s, 1486m, 1458w, 1351w, 1302w, 1248s, 1211s, 1174s, 1154w, 1100w, 

1064w, 1032s, 832w, 808w, 792w, 758s; δH (400 MHz, CDCl3) 3.75 (3 H, s, H-16), 4.24 (1 H, dd, 
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J = 8.7, J = 3.7, H-4), 4.50–4.54 (1 H, m, H-3), 4.71 (1 H, app. t, J = 8.4, H-4), 6.79 (2 H, d, J = 

8.7, H-14), 6.92–6.96 (1 H, m, H-7/8/9), 6.98–7.03 (1 H, m, H-10), 7.08 (2 H, d, J = 8.7, H-13), 

7.15–7.20 (1 H, m, H-7/8/9), 7.22–7.28 (1 H, m, H-7/8/9), 7.99 (1 H, d, J = 2.4, H-5); δC (100 

MHz, CDCl3) 43.8 (C-3), 55.2 (C-16), 74.0 (C-4), 114.5 (C-14), 115.7 (d, J = 22.1, C-10), 121.8 

(d, J = 12.1, C-6), 123.9 (d, J = 3.7, C-7/8/9), 128.2 (C-13), 129.4 (C-2), 130.1 (d, J = 2.2, C-

7/8/9), 130.9 (d, J = 5.4, C-5), 131.6 (d, J = 8.8, C-7/8/9), 132.0 (C-12), 158.8 (C-15), 161.2 (d, J = 

253.4, C-11), 172.0 (C-1); HRMS (ESI+): Found: 321.0887; C18H15FNaO3 (MNa+) Requires 

321.0897 (3.4 ppm error), Found: 299.1074; C18H16FNaO3 (MNa+) Requires 299.1078 (1.2 ppm 

error). 

Lab notebook reference: MGL/03/92 

(SR,Z)-3-([1,1'-Biphenyl]-4-ylmethylene)-4-(4-methoxyphenyl) dihydrofuran-2(3H)-

one (Z-180) and (SR,E)-3-([1,1'-Biphenyl]-4-ylmethylene)-4-(4-

methoxyphenyl)dihydrofuran-2(3H)-one (E-180)  

 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (70 mg, 0.196 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 3.9 

µmol), THF (4.0 mL), KOBu-t (33.0 mg, 0.294 mmol) and 4-biphenylcarboxyaldehyde (71.4 mg, 

0.392 mmol). The HWE was performed at RT. Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compounds as mixture of (Z) and (E) isomers (Z-180:E-180 1:1), 

as a pale yellow oil (43 mg, 61%).  

 

Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for Z-180; Rf 0.37 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2928m, 1749s, 1638m, 1611m, 

1513s, 1487m, 1464w, 1416w, 1371m, 1305w, 1248s, 1179w, 1155s, 1115w, 1074m, 1030s, 

915w, 834m; δH (400 MHz, CDCl3) 3.83 (3 H, s, H-18), 4.30 (1 H, app. t, J = 8.2, H-4), 4.39 (1 H, 
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app. td, J = 8.2, J = 2.6, H-3), 4.72 (1 H, app. t, J = 8.6, H-4), 6.69 (1 H, d, J = 2.6, H-5), 6.95 (2 H, 

d, J = 8.7, H-16), 7.24 (2 H, d, J = 8.7, H-15), 7.34–7.38 (1 H, m, H-13), 7.42–7.46 (2 H, m, H-12), 

7.58–7.62 (4 H, m, H-8,11), 7.92 (2 H, d, J = 8.4, H-7); δC (100 MHz, CDCl3) 48.4 (C-3), 55.3 (C-

18), 72.5 (C-4), 114.6 (C-16), 126.7 (C-8/11), 127.1 (C-8/11), 127.7 (C-13), 128.8 (C-12), 128.9 

(C-2), 129.4 (C-15), 131.5 (C-7), 132.0 (C-6), 132.4 (C-14), 140.3 (C-10), 141.2 (C-5), 142.4 (C-

9), 159.2 (C-17), 168.9 (C-1); HRMS (ESI+): Found: 379.1294; C24H20NaO3 (MNa+) Requires 

379.1305 (2.9 ppm error). 

 

Data for E-180; Rf 0.29 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 3030w, 2970w, 2934w, 2915w, 

2836w, 1749s, 1645m, 1607m, 1511s, 1487w, 1360w, 1248s, 1170s, 1033m, 834m, 766m, 698w; 

δH (400 MHz, CDCl3) 3.77 (3 H, s, H-18), 4.30 (1 H, dd, J = 8.6, J = 2.7, H-4), 4.60 (1 H, ddd, J = 

7.9, J = 2.7, J = 2.1, H-3), 4.71 (1 H, dd, J = 8.6, J = 7.9, H-4), 6.86 (2 H, d, J = 8.7, H-16), 7.17 (2 

H, d, J = 8.7, H-15), 7.33–7.37 (1 H, m, H-13), 7.40–7.45 (4 H, m, H-7/8/11/12), 7.50–7.56 (4 H, 

m, H-7/8/11/12), 7.85 (1 H, d, J = 2.1, H-5); δC (100 MHz, CDCl3) 43.8 (C-3), 55.4 (C-18), 74.2 

(C-4), 114.8 (C-16), 126.6 (C-2/6/9/10/14), 127.1 (C-7/8/11/12), 127.4 (C-7/8/11/12), 128.0 (C-

13), 128.2 (C-15), 129.0 (C-7/8/11/12), 131.3 (C-7/8/11/12), 132.6 (C-2/6/9/10/14), 132.7 (C-

2/6/9/10/14), 138.9 (C-5), 140.0 (C-2/6/9/10/14), 142.8 (C-2/6/9/10/14), 159.0 (C-17), 172.8 (C-1); 

HRMS (ESI+): Found: 357.1489; C24H21O3 (MH+) Requires 357.1485 (−1.1 ppm error). 

Lab notebook reference: MGL/03/90 

(SR,Z)-3-Ethylidene-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (Z-181) and 

(SR,E)-3-Ethylidene-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one (E-181) 
 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (71 mg, 0.199 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 

µmol), THF (4.0 mL), KOBu-t (33.5 mg, 0.299 mmol) and acetaldehyde (22.0 µL, 0.398 mmol). 

The HWE was performed at RT. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compounds as mixture of (Z) and (E) isomers (Z-181:E-181 1:1.2), as a colourless 

oil (17 mg, 39%). 
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Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for Z-181; Rf 0.33 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2913w, 1752s, 1672w, 1612w, 

1514s, 1441w, 1352w, 1305w, 1280w, 1249s, 1207w, 1180m, 1114m, 1021m; δH (400 MHz, 

CDCl3) 2.18 (3 H, dd, J = 7.4, J = 2.5, H-6), 3.81 (3 H, s, H-11), 4.12–4.19 (2 H, m, H-3,4), 4.57–

4.64 (1 H, m, H-4), 6.05 (1 H, qd, J = 7.4, J = 2.4, H-5), 6.89 (2 H, d, J = 8.8, H-9), 7.13 (2 H, d, J 

= 8.8, H-8); δC (100 MHz, CDCl3) 13.9 (C-6), 46.3 (C-3), 55.3 (C-11), 72.6 (C-4), 114.4 (C-9), 

129.1 (C-8), 130.0 (C-2), 132.3 (C-7), 140.9 (C-5), 159.0 (C-10), 170.0 (C-1); HRMS (ESI+): 

Found: 241.0832; C13H14NaO3 (MNa+) Requires 241.0835 (1.4 ppm error), Found: 219.1008; 

C13H15O3 (MH+) Requires 219.1016 (3.7 ppm error). 

 

Data for E-181; Rf 0.23 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2917w, 1756s, 1675w, 1611w, 

1512s, 1464w, 1372w, 1304w, 1246s, 1218m, 1179m, 1132w, 1023s; δH (400 MHz, CDCl3) 1.63 

(3 H, dd, J = 7.3, J = 1.8, H-6), 3.80 (3 H, s, H-11), 4.18 (1 H, dd, J = 8.9, J = 4.7, H-4), 4.22–4.27 

(1 H, m, H-3), 4.67 (1 H, app. t, J = 8.8, H-4), 6.87 (2 H, d, J = 8.7, H-9), 6.99 (1 H, qd, J = 7.3, J 

= 2.6, H-5), 7.11 (2 H, d, J = 8.7, H-8); δC (100 MHz, CDCl3) 15.3 (C-6), 42.5 (C-3), 55.3 (C-11), 

73.7 (C-4), 114.4 (C-9), 128.2 (C-8), 130.3 (C-2), 133.1 (C-7), 138.8 (C-5), 158.8 (C-10), 171.1 

(C-1); HRMS (ESI+): Found: 241.0836; C13H14NaO3 (MNa+) Requires 241.0835 (−0.5 ppm error), 

Found: 219.1010; C13H15O3 (MH+) Requires 219.1016 (2.8 ppm error). 

Lab notebook reference: MGL/04/20 
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(SR,Z)-4-(4-Methoxyphenyl)-3-pentylidenedihydrofuran-2(3H)-one (Z-182) and 

(SR,E)-4-(4-Methoxyphenyl)-3-pentylidenedihydrofuran-2(3H)-one (E-182)  
 

 
 

Synthesised using general procedure D with 4-methoxyphenethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 117b (69 mg, 0.194 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.0 mg, 3.9 

µmol), THF (4.0 mL), KOBu-t (32.7 mg, 0.291 mmol) and valeraldehdye (41.3 µL, 0.388 mmol). 

The HWE was performed at RT. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compounds as mixture of (E) and (Z) isomers (Z-182:E-182 1:3.7), as a colourless 

oil (34 mg, 67%).  

 

Small quantities of each compound were isolated separately for characterisation purposes. 

 

Data for Z-182; Rf 0.42 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2958m, 2929m, 2859w, 1754s, 

1668w, 1612w, 1514s, 1465w, 1372w, 1249m, 1177m, 1127m, 1028m, 833w; δH (400 MHz, 

CDCl3) 0.88 (3 H, t, J = 7.2, H-9), 1.25–1.42 (4 H, m, H-7,8), 2.66–2.81 (2 H, m, H-6), 3.81 (3 H, 

s, H-14), 4.13–4.19 (2 H, m, H-3,4), 4.58–4.64 (1 H, m, H-4), 5.96 (1 H, app. td, J = 7.8, J = 2.3, 

H-5), 6.90 (2 H, d, J = 8.8, H-12), 7.13 (2 H, d, J = 8.8, H-11); δC (100 MHz, CDCl3) 13.9 (C-9), 

22.3 (C-8), 27.2 (C-6), 31.1 (C-7), 46.3 (C-3), 55.3 (C-14), 72.6 (C-4), 114.4 (C-12), 129.0 (C-2), 

129.1 (C-11), 132.3 (C-10), 146.6 (C-5), 159.0 (C-13), 169.9 (C-1); HRMS (ESI+): Found: 

283.1299; C16H20NaO3 (MNa+) Requires 283.1305 (2.0 ppm error), Found: 261.1473; C16H21O3 

(MH+) Requires 261.1485 (4.8 ppm error). 

  

Data for E-182; Rf 0.33 (4:1 petrol:EtOAc); νmax (thin film)/cm-1 2930s, 1759s, 1673w, 1612w, 

1513s, 1465w, 1249s, 1180m, 1029m, 832w; δH (400 MHz, CDCl3) 0.77 (3 H, t, J = 7.2, H-9), 

1.12–1.34 (4 H, m, H-7,8), 1.87–2.02 (2 H, m, H-6), 3.80 (3 H, s, H-14), 4.16–4.25 (2 H, m, H-

3,4), 4.67 (1 H, app. t J 8.4, H-4), 6.86 (2 H, d, J = 8.7, H-12), 6.90 (1 H, app. td, J = 7.7, J = 2.5, 

H-5), 7.11 (2 H, d, J = 8.7, H-11); δC (100 MHz, CDCl3) 13.7 (C-9), 22.3 (C-8), 29.2 (C-6), 30.0 

(C-7), 42.6 (C-3), 55.3 (C-14), 73.7 (C-4), 114.4 (C-12), 128.2 (C-11), 129.2 (C-2), 133.6 (C-10), 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,

nBuCHO
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144.2 (C-5), 158.8 (C-13), 171.3 (C-1); HRMS (ESI+): Found: 283.1309; C16H20NaO3 (MNa+) 

Requires 283.1305 (−1.7 ppm error), Found: 261.1484; C16H21O3 (MH+) Requires 261.1485 (0.6 

ppm error). 

Lab notebook reference: MGL/03/93 

(SR,Z)-3-(4-Nitrobenzylidene)-4-phenyldihydrofuran-2(3H)-one (Z-183) and (SR,E)-

3-(4-Nitrobenzylidene)-4-phenyldihydrofuran-2(3H)-one (E-183) 
 

 
 

Synthesised using general procedure D with phenethyl 2-diazo-2-(diethoxyphosphoryl)acetate 

116b (75 mg, 0.230 mmol), CH2Cl2 (4.6 mL), Rh2(oct)4 (3.6 mg, 4.6 µmol), THF (4.6 mL), KOBu-

t (38.7 mg, 0.345 mmol) and 4-nitrobenzaldehyde (69.5 mg, 0.460 mmol). The HWE was 

performed at 0 °C. Purification by column chromatography (10:1 hexane:EtOAc) afforded the title 

compounds as mixture of (Z) and (E) isomers (Z-183:E-183 1:1) (44 mg, 65%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

  

Data for Z-183; Pale yellow oil; Rf 0.40 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2920w, 1754s, 

1597w, 1518s, 1345s, 1161s, 1074w, 1023w; δH (400 MHz, CDCl3) 4.39 (1 H, app. t, J = 8.0, H-4), 

4.45 (1 H, app. td, J = 7.8, J = 2.7, H-3), 4.78 (1 H, app. t, J = 8.4, H-4), 6.72 (1 H, d, J = 2.7, H-5), 

7.30–7.32 (2 H, m, H-11/12), 7.35–7.39 (1 H, m, H-13), 7.41–7.46 (2 H, m, H-11/12), 7.88 (2 H, d, 

J = 8.9, H-7), 8.19 (2 H, d, J = 8.9, H-8); δC (100 MHz, CDCl3) 48.8 (C-3), 72.4 (C-4), 123.2 (C-8), 

128.2 (C-11/12), 128.2 (C-13), 129.5 (C-11/12), 131.3 (C-7), 133.2 (C-2/6/10), 138.5 (C-5), 139.2 

(C-2/6/10), 139.3 (C-2/6/10), 147.8 (C-9), 168.0 (C-1); HRMS (ESI+): Found: 318.0749; 

C17H13NNaO4 (MNa+) Requires 318.0737 (−3.8 ppm error). 

 

Data for E-183; Pale yellow oil; Rf 0.32 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2923w, 2854w, 

1755s, 1691w, 1653w, 1598m, 1518s, 1343s, 1300w, 1226m, 1173s, 1021w; δH (400 MHz, CDCl3) 

4.33 (1 H, dd, J = 8.9, J = 3.5, H-4), 4.61 (1 H, app. dt, J = 8.1, J = 3.0, H-3), 4.78 (1 H, app. t, J = 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,
4-O2NC6H4CHO
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8.5, H-4), 7.17–7.19 (2 H, m, H-11/12), 7.24–7.34 (3 H, m, H-11/12,13), 7.45 (2 H, d, J = 8.8, H-

7), 7.84 (1 H, d, J = 2.4, H-5), 8.08 (2 H, d, J = 8.8, H-8); δC (100 MHz, CDCl3) 44.5 (C-3), 73.8 

(C-4), 123.6 (C-8), 127.0 (C-11/12), 128.0 (C-13), 129.5 (C-11/12), 130.8 (C-7), 131.4 (C-2/6/10), 

136.3 (C-5), 139.6 (C-2/6/10), 139.6 (C-2/6/10), 147.9 (C-9), 171.4 (C-1); HRMS (ESI+): Found: 

318.0746; C17H13NNaO4 (MNa+) Requires 318.0737 (−2.8 ppm error). 

Lab notebook reference: MGL/05/38 

(SR,Z)-3-Pentylidene-4-phenyldihydrofuran-2(3H)-one (Z-184) and (SR,E)-3-

Pentylidene-4-phenyldihydrofuran-2(3H)-one (E-184) 
 

 
 

Synthesised using general procedure D with phenethyl 2-diazo-2-(diethoxyphosphoryl)acetate 

116b (73 mg, 0.224 mmol), CH2Cl2 (4.5 mL), Rh2(oct)4 (3.5 mg, 4.5 µmol), THF (4.5 mL), KOBu-

t (37.7 mg, 0.336 mmol) and valeraldehyde (44.8 µL, 0.448 mmol). The HWE was performed at 

reflux. Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compounds 

as mixture of (Z) and (E) isomers (Z-184:E-184 3.3:1) (29 mg, 56%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

  

Data for Z-184; Pale yellow oil; Rf 0.53 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2957m, 2928m, 

2871w, 1755s, 1667w, 1455w, 1373w, 1175m, 1127m, 1025s; δH (400 MHz, CDCl3) 0.88 (3 H, t, J 

= 7.1, H-9), 1.25–1.43 (4 H, m, H-7,8), 2.66–2.82 (2 H, m, H-6), 4.18–4.24 (2 H, m, H-3,4), 4.61–

4.67 (1 H, m, H-4), 5.99 (1 H, td, J = 7.8, J = 2.2, H-5), 7.20–7.23 (2 H, m, H-11), 7.28–7.32 (1 H, 

m, H-13), 7.34–7.39 (2 H, m, H-12); δC (100 MHz, CDCl3) 13.8 (C-9), 22.3 (C-8), 27.2 (C-6), 31.1 

(C-7), 46.9 (C-3), 72.5 (C-4), 127.6 (C-13), 128.0 (C-11), 128.8 (C-12), 129.1 (C-2/10), 140.7 (C-

2/10), 146.9 (C-5), 169.8 (C-1); HRMS (ESI+): Found: 253.1188; C15H18NaO2 (MNa+) Requires 

253.1199 (4.5 ppm error), Found: 231.1380; C15H19O2 (MH+) Requires 231.1380 (−0.2 ppm error). 

 

Data for E-184; Pale yellow oil; Rf 0.44 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2957m, 2928s, 

2858m, 1759s, 1672w, 1456w, 1378w, 1184m, 1026m; δH (400 MHz, CDCl3) 0.76 (3 H, t, J = 7.2, 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,

nBuCHO
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H-9), 1.10–1.33 (4 H, m, H-7,8), 1.88–2.01 (2 H, m, H-6), 4.20–4.29 (2 H, m, H-3,4), 4.70 (1 H, 

app. t, J = 8.2, H-4), 6.92 (1 H, td, J = 7.7, J = 2.3, H-5), 7.19–7.21 (2 H, m, H-11), 7.26–7.29 (1 H, 

m, H-13), 7.31–7.36 (2 H, m, H-12); δC (100 MHz, CDCl3) 13.6 (C-9), 22.2 (C-8), 29.2 (C-6), 29.9 

(C-7), 43.4 (C-3), 73.5 (C-4), 127.2 (C-11), 127.4 (C-13), 129.0 (C-2/10), 129.1 (C-12), 141.7 (C-

2/10), 144.3 (C-5), 171.2 (C-1); HRMS (ESI+): Found: 253.1187; C15H18NaO2 (MNa+) Requires 

253.1199 (4.9 ppm error), Found: 231.1376; C15H19O2 (MH+) Requires 231.1380 (1.7 ppm error). 

Lab notebook reference: MGL/05/39 

(SR,Z)-3-(4-Nitrobenzylidene)-4-pentyldihydrofuran-2(3H)-one (Z-185) and (SR,E)-3-

(4-Nitrobenzylidene)-4-pentyldihydrofuran-2(3H)-one (E-185) 
 

 
 

Synthesised using general procedure D with heptyl 2-diazo-2-(diethoxyphosphoryl)acetate 134b 

(68 mg, 0.212 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 µmol), THF (4.2 mL), KOBu-t 

(35.7 mg, 0.318 mmol) and 4-nitrobenzaldehyde (62.6 mg, 0.424 mmol). The HWE was performed 

at 0 °C. Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compounds 

as mixture of (Z) and (E) isomers (Z-185:E-185 1:1) (42 mg, 68%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

  

Data for Z-185; Yellow oil; Rf 0.46 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2928m, 2857m, 

1752s, 1651w, 1597m, 1518s, 1466w, 1378w, 1344s, 1175s, 1112w; δH (400 MHz, CDCl3) 0.91 (3 

H, t, J = 7.0, H-14), 1.25–1.45 (6 H, m, H-11,12,13), 1.57–1.68 (1 H, m, H-10), 1.73–1.82 (1 H, m, 

H-10), 3.15–3.22 (1 H, m, H-3), 4.09 (1 H, dd, J = 8.9, J = 5.1, H-4), 4.52 (1 H, dd, J = 8.9, J = 7.7, 

H-4), 6.93 (1 H, d, J = 2.2, H-5), 7.89 (2 H, d, J = 8.8, H-7), 8.21 (2 H, d, J = 8.8, H-8); δC (100 

MHz, CDCl3) 14.0 (C-14), 22.5 (C-13), 26.0 (C-11), 31.7 (C-12), 34.1 (C-10), 42.0 (C-3), 70.8 (C-

4), 123.2 (C-8), 131.1 (C-7), 133.0 (C-2), 136.1 (C-5), 139.7 (C-6), 147.6 (C-9), 168.6 (C-1); 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,
4-O2NC6H4CHO
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HRMS (ESI+): Found: 312.1210; C16H19NNaO4 (MNa+) Requires 312.1206 (−0.6 ppm error), 

Found: 290.1392; C16H20NO4 (MH+) Requires 290.1387 (−1.6 ppm error). 

 

Data for E-185; Pale yellow solid; Rf 0.41 (4:1 hexane:EtOAc); m.p. 114–117 °C; νmax (thin 

film)/cm-1 2929m, 2858m, 1754s, 1598m, 1520s, 1344s, 1225m, 1183s, 1112w; δH (400 MHz, 

CDCl3) 0.86 (3 H, t, J = 7.0, H-14), 1.18–1.42 (6 H, m, H-11,12,13), 1.50–1.67 (2 H, m, H-10), 

3.53–3.60 (1 H, m, H-3), 4.28 (1 H, dd, J = 9.1, J = 2.0, H-4), 4.45 (1 H, ddd, J = 9.1, J = 7.0, J = 

0.7, H-4), 7.56 (1 H, d, J = 2.1, H-5), 7.67 (2 H, d, J = 8.8, H-7), 8.29 (2 H, d, J = 8.8, H-8); δC 

(100 MHz, CDCl3) 13.0 (C-14), 22.4 (C-13), 26.4 (C-11), 31.4 (C-12), 32.4 (C-10), 38.1 (C-3), 

70.7 (C-4), 124.1 (C-8), 130.3 (C-7), 133.4 (C-2), 133.8 (C-5), 140.3 (C-6), 147.8 (C-9), 171.6 (C-

1); HRMS (ESI+): Found: 312.1205; C16H19NNaO4 (MNa+) Requires 312.1206 (0.4 ppm error), 

Found: 290.1388; C16H20NO4 (MH+) Requires 290.1387 (−0.3 ppm error). 

Lab notebook reference: MGL/05/01 

(SR,Z)-4-Pentyl-3-pentylidenedihydrofuran-2(3H)-one (Z-186) and (SR,E)-4-Pentyl-3-

pentylidenedihydrofuran-2(3H)-one (E-186) 
 

 
 

Synthesised using general procedure D with heptyl 2-diazo-2-(diethoxyphosphoryl)acetate 134b 

(67 mg, 0.209 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 µmol), THF (4.2 mL), KOBu-t 

(35.2 mg, 0.314 mmol) and valeraldehyde (45.0 µL, 0.418 mmol). The HWE was performed at RT. 

Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compounds as 

mixture of (Z) and (E) isomers (Z-186:E-186 2.7:1) (36 mg, 77%). 

Small quantities of each compound were isolated separately for characterisation purposes. 

  

Data for Z-186; Colourless oil; Rf 0.75 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2957s, 2928s, 

2858s, 1754s, 1668m, 1466m, 1378m, 1185m, 1127s, 1027s; δH (400 MHz, CDCl3) 0.87–0.92 (6 

H, m, H-9,14), 1.24–1.49 (11 H, m, H-7,8,10,11,12,13), 1.56–1.65 (1 H, m, H-10), 2.69–2.75 (2 H, 

m, H-6), 2.88–2.97 (1 H, m, H-3), 3.92 (1 H, dd, J = 8.8, J = 5.3, H-4), 4.37 (1 H, dd, J = 8.8, J = 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,

nBuCHO
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7.9, H-4), 6.12 (1 H, td, J = 7.7, J = 1.6, H-5); δC (100 MHz, CDCl3) 13.9 (C-9/14), 14.0 (C-9/14), 

22.3 (C-8), 22.5 (C-13), 25.9 (C-11), 27.1 (C-6), 31.3 (C-7), 31.7 (C-12), 34.2 (C-10), 40.1 (C-3), 

70.8 (C-4), 128.3 (C-2), 144.1 (C-5), 170.5 (C-1); HRMS (ESI+): Found: 247.1670; C14H24NaO2 

(MNa+) Requires 247.1669 (−0.7 ppm error), Found: 225.1857; C14H25O2 (MH+) Requires 

225.1849 (−3.6 ppm error). 

 

Data for E-186; Colourless oil; Rf 0.66 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2961s, 2930s, 

2859m, 1760s, 1676m, 1466m, 1380w, 1193m, 1021m; δH (400 MHz, CDCl3) 0.87–0.94 (6 H, m, 

H-9,14), 1.22–1.57 (12 H, m, H-7,8,10,11,12,13), 2.15–2.28 (2 H, m, H-6), 3.04–3.10 (1 H, m, H-

3), 4.12 (1 H, dd, J = 9.1, J = 2.2, H-4), 4.31 (1 H, dd, J = 9.1, J = 7.3, H-4), 6.73 (1 H, td, J = 7.7, 

J = 2.0, H-5); δC (100 MHz, CDCl3) 13.8 (C-9/14), 14.0 (C-9/14), [22.4, 22.5, 26.1, 29.4, 30.7, 

31.7, 34.2 (C-6,7,8,10,11,12,13)], 37.1 (C-3), 70.8 (C-4), 129.8 (C-2), 141.5 (C-5), 171.7 (C-1); 

HRMS (ESI+): Found: 247.1666; C14H24NaO2 (MNa+) Requires 247.1669 (1.1 ppm error), Found: 

225.1851; C14H25O2 (MH+) Requires 225.1849 (−1.0 ppm error). 

Lab notebook reference: MGL/05/02 

(SR,Z)-4-(4-Nitrobenzylidene)-2-oxaspiro[4.4]nonan-3-one (Z-187) and (SR,E)-4-(4-

Nitrobenzylidene)-2-oxaspiro[4.4]nonan-3-one (E-187) 
 

 
 

Synthesised using general procedure D with cyclopentylmethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 143b (61 mg, 0.200 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 

µmol), THF (4.0 mL), KOBu-t (33.7 mg, 0.300 mmol) and 4-nitrobenzaldehyde (60.5 mg, 0.400 

mmol). The HWE was performed at 0 °C. Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compounds as an inseparable mixture of (Z) and (E) isomers (Z-

187:E-187 1:1.4), as a white solid (30 mg, 55%); Rf 0.32 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 

2959w, 2874w, 1755s, 1646w, 1597m, 1518s, 1492w, 1453w, 1344s, 1257w, 1227w, 1201w, 

1160m, 1096m, 1023m, 910w, 851m; δH (400 MHz, CDCl3) 1.61–1.96 (16 H, m, H-10E and Z,11E 

and Z), 4.04 (3 H, s, H-4E), 4.16 (3 H, s, H-4Z), 6.87 (1 H, s, H-5Z), 7.52 (2 H, dd, J = 8.9, J = 0.6, 

Rh2(oct)4, CH2Cl2
then KOBu-t, THF,
4-O2NC6H4CHO
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H-7E), 7.65 (1 H, s, H-5E), 7.86 (2 H, dd, J = 8.9, J = 0.5, H-7Z), 8.19 (2 H, d, J = 8.9, H-8Z), 8.25 

(2 H, d, J = 8.9, H-8E); δC (100 MHz, CDCl3) 24.6 (C-11E/Z), 25.3 (C-11E/Z), 37.1 (C-10E), 39.3 

(C-10Z), 50.3 (C-3E), 52.5 (C-3Z), 77.5 (C-4Z), 79.4 (C-4E), 123.1 (C-8Z), 123.5 (C-8E), 130.0 

(C-7E), 131.1 (C-7Z), 134.0 (C-5Z), 134.3 (C-5E), 136.6 (C-2E), 137.3 (C-2Z), 139.8 (C-6Z), 

140.9 (C-6E), 147.5 (C-9E/Z), 147.6 (C-9E/Z), 168.9 (C-1Z), 171.9 (C-1E); HRMS (ESI+): Found: 

296.0899; C15H15NNaO4 (MNa+) Requires 296.0893 (−1.8 ppm error), Found: 274.1082; 

C15H16NO4 (MH+) Requires 274.1074 (−2.9 ppm error). 

Lab notebook reference: MGL/05/03 

(SR,Z)-4-Pentylidene-2-oxaspiro[4.4]nonan-3-one (Z-188) and (SR,E)-4-Pentylidene-

2-oxaspiro[4.4]nonan-3-one (E-188) 

 

 
 

Synthesised using general procedure D with cyclopentylmethyl 2-diazo-2-

(diethoxyphosphoryl)acetate 143b (63 mg, 0.207 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.2 mg, 4.1 

µmol), THF (4.2 mL), KOBu-t (34.8 mg, 0.311 mmol) and valeraldehyde (44.0 µL, 0.414 mmol). 

The HWE was performed at reflux. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compounds as mixture of (Z) and (E) isomers (Z-188:E-188 2.4:1) (14 mg, 32%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 

  

Data for Z-188; Colourless oil; Rf 0.67 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2956m, 2929w, 

2871m, 1752s, 1665m, 1453m, 1370m, 1164w, 1128w, 1105m, 1025s; δH (400 MHz, CDCl3) 0.91 

(3 H, t, J = 7.2, H-9), 1.24–1.46 (4 H, m, H-7,8), 1.62–1.81 (8 H, m, H-10,11), 2.72 (2 H, app. q, J 

= 7.4, H-6), 4.02 (2 H, s, H-4), 6.08 (1 H, t, J = 7.7, H-5); δC (100 MHz, CDCl3) 13.9 (C-9), 22.3 

(C-7/8), 24.5 (C-10/11), 26.9 (C-6), 31.4 (C-7/8), 39.2 (C-10/11), 50.8 (C-3), 77.7 (C-4), 132.8 (C-

2), 141.9 (C-5), 170.1 (C-1); HRMS (ESI+): Found: 231.1354; C13H20NaO2 (MNa+) Requires 

231.1356 (0.6 ppm error), Found: 209.1536; C13H21O2 (MH+) Requires 209.1536 (−0.2 ppm error). 
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Data for E-188; Colourless oil; Rf 0.54 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2956s, 2934s, 

2872s, 1758s, 1668m, 1455m, 1383w, 1362w, 1164w, 1028s; δH (400 MHz, CDCl3) 0.93 (3 H, t, J 

= 7.1, H-9), 1.20–2.00 (12 H, m, H-7,8,10,11), 2.29 (2 H, app. q, J = 7.5, H-6), 4.00 (2 H, s, H-4), 

6.70 (1 H, t, J = 8.0, H-5); δC (100 MHz, CDCl3) 13.8 (C-9), 22.5 (C-7/8), 25.5 (C-10/11), 27.7 (C-

6), 31.0 (C-7/8), 38.6 (C-10/11), 48.8 (C-3), 79.8 (C-4), 132.5 (C-2), 141.6 (C-5), 171.4 (C-1); 

HRMS (ESI+): Found: 231.1352; C13H20NaO2 (MNa+) Requires 231.1356 (1.4 ppm error), Found: 

209.1537; C13H21O2 (MH+) Requires 209.1536 (−0.3 ppm error). 

Lab notebook reference: MGL/05/37 

 

5.2.1.3.  Cedarmycins A and B 

3-Hydroxypropyl hexanoate (197) 
 

 
 

Prepared according to the literature procedure.168   

To a solution of 1,3-propanediol (10.8 mL, 150 mmol) and triethylamine (31.4 mL, 225 mmol) in 

CH2Cl2 (100 mL) was added a solution of hexanoyl chloride (14.0 mL, 100 mmol) in CH2Cl2 (50 

mL) over 2 h. The solution was stirred at RT for a further 4 h and then concentrated in vacuo. 

Purification by column chromatography (2:1 petrol:EtOAc) afforded the title compound 197 as a 

colourless liquid (10.3 g, 59%); Rf 0.37 (2:1 petrol:EtOAc); νmax (thin film)/cm-1 3426, 2957, 2931, 

2873, 1734, 1247, 1171, 1052; δH (400 MHz, CDCl3) 0.89 (3 H, t, J = 7.0, H-6), 1.25–1.37 (4 H, m, 

H-4,5), 1.59–1.66 (2 H, m, H-3), 1.87 (2 H, app. quin., J = 6.1, H-8), 1.93 (1 H, br t, J = 5.7, OH), 

2.31 (2 H, t, J = 7.6, H-2), 3.69 (2 H, app. q, J = 5.8, H-9), 4.24 (2 H, t, J = 6.1, H-7); δC (100 

MHz, CDCl3) 13.9, 22.3, 24.6, 31.3, 31.8, 34.3, 59.2, 61.1, 174.4; HRMS (ESI+): Found: 197.1142; 

C9H18NaO3 (MNa+) Requires 197.1148 (2.9 ppm error). 

Lab notebook reference: MGL/03/63 

Obtained data in accord with reported literature.168 
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3-(2-(Diethoxyphosphoryl)acetoxy)propyl hexanoate (198) 

 

 
 

Synthesised using general procedure A with 3-hydroxypropyl hexanoate 197 (1.74 g, 10.0 mmol), 

toluene (50 mL), DEPAA (1.69 mL, 10.5 mmol), DIPEA (4.53 mL, 26.0 mmol) and T3P (8.27 g, 

13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 198 as an orange oil (3.55 g, 

100%). No further purification was required; Rf 0.30 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2960w, 2929w, 2866w, 1736s, 1459w, 1393w, 1268s, 1170m, 1114m, 1024s, 970m; δH (400 MHz, 

CDCl3) 0.88 (3 H, t, J = 7.0, H-13), 1.23–1.36 (4 H, m, H-11,12), 1.33 (6 H, td, J = 7.1, J = 0.5, H-

4), 1.58–1.64 (2 H, m, H-10), 1.98 (2 H, app. quin., J = 6.3, H-6), 2.28 (2 H, t, J = 7.6, H-9), 2.96 

(2 H, d, J = 21.6, H-2), 4.12–4.23 (8 H, m, H-3,5,7); δC (100 MHz, CDCl3) 13.9 (C-13), 16.3 (d, J 

= 6.2, C-4), 22.3 (C-12), 24.6 (C-10), 27.9 (C-6), 31.2 (C-11), 34.1 (C-9), 34.2 (d, J = 134.2, C-2), 

60.5 (C-7), 62.1 (C-5), 62.7 (d, J = 6.2, C-3), 165.7 (d, J = 6.2, C-1), 173.7 (C-8); δP (162 MHz, 

CDCl3) 20.2; HRMS (ESI+): Found: 375.1525; C15H29NaO7P (MNa+) Requires 375.1543 (4.7 ppm 

error), Found: 353.1712; C15H30O7P (MH+) Requires 353.1724 (3.3 ppm error). 

Lab notebook reference: MGL/03/65 
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3-(2-Diazo-2-(diethoxyphosphoryl)acetoxy)propyl hexanoate (199) 

 

 
 

Synthesised using general procedure B with 3-(2-(diethoxyphosphoryl)acetoxy)propyl hexanoate 

198 (1.76 g, 5.00 mmol), THF (25 mL), LHMDS (6.00 mL, 6.00 mmol, 1.0 M solution in THF) 

and p-ABSA (1.44 g, 6.00 mmol). Purification by column chromatography (2:1 petrol:EtOAc) 

afforded the title compound 199 as a pale yellow oil (1.32 g, 70%); Rf 0.50 (1:1 petrol:EtOAc); 

νmax (thin film)/cm-1 2960m, 2933m, 2873w, 2127s, 1735w, 1703s, 1458w, 1392w, 1276s, 1214w, 

1167m, 1097w, 1016s, 976m; δH (400 MHz, CDCl3) 0.82 (3 H, t, J = 7.0, H-13), 1.18–1.30 (4 H, 

m, H-11,12), 1.29 (6 H, td, J = 7.1, J = 0.8, H-4), 1.51–1.58 (2 H, m, H-10), 1.93 (2 H, app. quin., J 

= 6.3, H-6), 2.22 (2 H, t, J = 7.6, H-9), 4.04–4.23 (8 H, m, H-3,5,7); δC (100 MHz, CDCl3) 13.7 (C-

13), 16.0 (d, J = 6.9, C-4), 22.1 (C-12), 24.4 (C-10), 27.9 (C-6), 31.1 (C-11), 34.0 (C-9), 53.8 (d, J 

= 227.5, C-2), 60.2 (C-7), 62.0 (C-5), 63.5 (d, J = 5.6, C-3), 163.1 (d, J = 12.0, C-1), 173.5 (C-8); 

δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 401.1430; C15H27N2NaO7P (MNa+) Requires 

401.1448 (4.5 ppm error), Found: 379.1611; C15H28N2O7P (MH+) Requires 379.1629 (4.7 ppm 

error). 

Lab notebook reference: MGL/03/75 
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(SR)-4-(Hydroxymethyl)-3-methylenedihydrofuran-2(3H)-one (194) 

 

 
 

To a solution of 4-(((tert-butyldimethylsilyl)oxy)methyl)-3-methylenedihydrofuran-2(3H)-one 

138c (29 mg, 0.120 mmol) in THF (0.6 mL) cooled to 0 °C under an atmosphere of argon, was 

added TBAF (144 µL, 0.144, 1.0 M in THF) dropwise. The solution was stirred at 0 °C for 1 h then 

quenched with sat. aq. NH4Cl (10 mL) and extracted with diethyl ether (2 × 25 mL). The combined 

organic extracts were dried over Na2SO4 and concentrated in vacuo. Purification by column 

chromatography (1:2 hexane:EtOAc) afforded the title compound 194 as a pale yellow oil (12 mg, 

78%); Rf 0.29 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 3417br, 2924m, 1756s, 1407w, 1268m, 

1120m, 1017m, 816m; δH (400 MHz, CDCl3) 3.26–3.34 (1 H, m, H-3), 3.76–3.78 (2 H, m, H-6), 

4.27 (1 H, dd, J = 9.4, J = 4.5, H-4), 4.47 (1 H, dd, J = 9.4, J = 8.2, H-4), 5.75 (1 H, d, J = 2.3, H-

5b), 6.36 (1 H, d, J = 2.6, H-5a); δC (100 MHz, CDCl3) 40.9 (C-3), 64.1 (C-6), 68.2 (C-4), 123.6 

(C-5), 135.2 (C-2), 170.4 (C-1); HRMS (ESI+): Found: 151.0360; C6H8NaO3 (MNa+) Requires 

151.0366 (3.5 ppm error). 

Lab notebook reference: MGL/04/22 

Obtain data in accord with reported literature.100 
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Cedarmycin A (189) 

 

 
 

To a solution of 4-(hydroxymethyl)-3-methylenedihydrofuran-2(3H)-one 194 (5 mg, 0.039 mmol) 

and triethylamine (8.2 µL, 0.059 mmol) in CH2Cl2 (0.20 mL) was added 5-methylhexanoyl 

chloride (10 µL). After 2 h additional 5-methylhexanoyl chloride (10 µL) was added and stirred for 

16 h. The solution was quenched with sat. aq. NH4Cl (1 mL) and extracted with CH2Cl2 (3 × 10 

mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 189 as a 

colourless oil (6 mg, 85%); Rf 0.75 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2956m, 2871w, 

1768s, 1739s, 1468w, 1252w, 1170m, 1115m, 1019w; δH (400 MHz, CDCl3) 0.88 (6 H, d, J = 6.6, 

H-12), 1.15–1.21 (2 H, m, H-10), 1.51–1.65 (3 H, m, H-9,11), 2.31 (2 H, t, J = 7.6, H-8), 3.39–3.47 

(1 H, m, H-3), 4.16 (1 H, dd, J = 11.2, J = 7.3, H-6), 4.18 (1 H, dd, J = 9.4, J = 4.9, H-4), 4.25 (1 

H, dd, J = 11.2, J = 5.6, H-6), 4.48 (1 H, dd, J = 9.4, J = 8.4, H-4), 5.76 (1 H, d, J = 2.3, H-5b), 

6.39 (1 H, d, J = 2.7, H-5a); δC (100 MHz, CDCl3) 22.4 (C-12), 22.7 (C-9), 27.7 (C-11), 34.3 (C-8), 

38.0 (C-3), 38.3 (C-10), 64.7 (C-6), 68.1 (C-4), 124.2 (C-5), 134.5 (C-2), 169.8 (C-1), 173.5 (C-7); 

HRMS (ESI+): Found: 263.1251; C13H20NaO4 (MNa+) Requires 263.1254 (1.2 ppm error). 

Lab notebook reference: MGL/04/24 

Obtain data in accord with reported literature.98,100 
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Cedarmycin B (190) 

 

 
 

To a solution of 4-(hydroxymethyl)-3-methylenedihydrofuran-2(3H)-one 194 (3 mg, 0.023 mmol) 

and triethylamine (4.8 µL, 0.035 mmol) in CH2Cl2 (0.12 mL) was added hexanoyl chloride (3.9 

µL, 0.035 mmol). The solution was stirred at RT for 10 mins then quenched with sat. aq. NH4Cl (1 

mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic extracts were dried over 

Na2SO4 and concentrated in vacuo. Purification by column chromatography (4:1 hexane:EtOAc) 

afforded the title compound 190 as a colourless oil (3 mg, 57%); Rf 0.76 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2959m, 2936m, 2864w, 1768s, 1738s, 1270w, 1246w, 1168m, 1115m, 1018w; δH 

(400 MHz, CDCl3) 0.90 (3 H, t, J = 7.0, H-12), 1.25–1.36 (4 H, m, H-10,11), 1.62 (2 H, app. quin., 

J = 7.5, H-9), 2.32 (2 H, t, J = 7.5, H-8), 3.39–3.47 (1 H, m, H-3), 4.16 (1 H, dd, J = 11.2, J = 7.3, 

H-6), 4.18 (1 H, dd, J = 9.4, J = 4.9, H-4), 4.25 (1 H, dd, J = 11.2, J = 5.6, H-6), 4.48 (1 H, dd, J = 

9.4, J = 8.4, H-4), 5.76 (1 H, d, J = 2.4, H-5b), 6.38 (1 H, d, J = 2.7, H-5a); δC (100 MHz, CDCl3) 

13.9 (C-12), 22.3 (C-11), 24.5 (C-9), 31.2 (C-10), 34.0 (C-8), 38.1 (C-3), 64.7 (C-6), 68.1 (C-4), 

124.1 (C-5), 134.5 (C-2), 169.8 (C-1), 173.5 (C-7); HRMS (ESI+): Found: 249.1099; C12H18NaO4 

(MNa+) Requires 249.1097 (−0.8 ppm error). 

Lab notebook reference: MGL/04/11 

Obtain data in accord with reported literature.98,100 
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5.2.1.4.  Staphyloccous aureus inhibitor 

N-Methoxy-N-methylhex-5-ynamide (211) 
 

 
 

To a solution of 5-hexynoic acid 210 (2.24 g, 20.0 mmol) in CH2Cl2 (50 mL) was added 

sequentially N,O-dimethylhydroxylamine hydrochloride (2.15 g, 22.0 mmol) and DIPEA (10.5 mL, 

60.0 mmol) and T3P (19.1 g, 30.0 mmol, 50% w/w solution in EtOAc). The solution was stirred at 

RT for 1 h. The reaction was quenched with 10% aq. HCl (25 mL). The phases were separated and 

the organic washed with 2M NaOH (25 mL) and brine (25 mL), dried over MgSO4 and 

concentrated in vacuo to afford the title compound 211 as colourless oil (3.00 g, 97%). No further 

purification was required; Rf 0.70 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 3291m, 2940m, 2117w, 

1656s, 1417m, 1386m, 1179m, 1108m, 994s; δH (400 MHz, CDCl3) 1.81 (2 H, app. quin., J = 7.2, 

H-3), 1.93 (1 H, t, J = 2.7, H-6), 2.24 (2 H, td, J = 6.9, J = 2.7, H-4), 2.53 (2 H, t, J = 7.3, H-2), 

3.14 (3 H, s, H-7) 3.66 (3 H , s, H-8); δC (100 MHz, CDCl3) 17.8 (C-4), 23.0 (C-3), 30.3 (C-2), 

32.0 (C-7), 61.1 (C-8), 68.8 (C-6), 83.7 (C-5), 173.7 (C-1); HRMS (ESI+): Found: 178.0847; 

C8H13NNaO2 (MNa+) Requires 178.0838 (−5.0 ppm error), Found: 156.1021; C8H14NO2 (MH+) 

Requires 156.1019 (−1.0 ppm error). 

Lab notebook reference: MGL/04/50 

Obtained data in accord with reported literature.169 
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1-Phenylhept-6-yn-2-one (212) 

 

 
 

To a solution of N-methoxy-N-methylhex-5-ynamide 211 (1.24 g, 8.00 mmol) in THF (40 mL) 

cooled to −78 °C was added was added benzylmagnesium chloride (8.0 mL, 16.0 mmol, 2 M in 

THF). The solution was warmed to 0 °C and stirred for 30 mins then quenched with sat. aq. NH4Cl 

(50 mL). The phases were separated and the aqueous extracted with diethyl ether (3 × 50 mL). The 

combined organics were dried over MgSO4 and concentrated in vacuo. Purification by column 

chromatography (8:1 petrol:EtOAc) afforded the title compound 212 as a colourless oil (860 mg, 

58%); Rf 0.55 (8:1 petrol:EtOAc); νmax (thin film)/cm-1 3292m, 2940m, 2120w, 1709s, 1496m, 

1454m, 1366m, 1092m; δH (400 MHz, CDCl3) 1.77 (2 H, app. quin., J = 7.0, H-3), 1.93 (1 H, t, J = 

2.7, H-6), 2.19 (2 H, td, J = 6.9, J = 2.7, H-4), 2.61 (2 H, t, J = 7.2, H-2), 3.70 (2 H, s, H-7), 7.19–

7.22 (2 H, m, H-9), 7.25–7.29 (1 H, m, H-11), 7.31–7.33 (2 H, m, H-10); δC (100 MHz, CDCl3) 

17.6 (C-4), 22.2 (C-3), 40.3 (C-2), 50.2 (C-7), 69.0 (C-6), 83.5 (C-5), 127.0 (C-11), 128.7 (C-10), 

129.4 (C-9), 134.1 (C-8), 207.7 (C-1); HRMS (ESI+): Found: 209.0932; C13H14NaO (MNa+) 

Requires 209.0937 (2.6 ppm error), Found: 187.1110; C13H15O (MH+) Requires 187.1117 (3.9 ppm 

error). 

Lab notebook reference: MGL/04/51 

1-Phenylhept-6-yn-2-ol (209) 
 

 
 

To a solution of 1-phenylhept-6-yn-2-one 212 (840 mg, 4.51 mmol) in MeOH (21 mL) cooled to 0 

°C under an atmosphere of argon, was added NaBH4 (512 mg, 13.5 mmol) in 4 portions over 15 

mins. The solution was stirred at RT for 3 h then quenched with sat. aq. NaHCO3 (4 mL) and 
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concentrated in vacuo. The resulting white residue was dissolved in CH2Cl2 (15 mL) and water (15 

mL). The organic was separated and the aqueous extracted with CH2Cl2 (2 × 15 mL). The 

combined organic extracts were dried over MgSO4 and concentrated in vacuo to afford the title 

compound 209 as a colourless oil (852 mg, 100%). No further purification was required; Rf 0.48 

(4:1 petrol:EtOAc); νmax (thin film)/cm-1 3406br, 3296s, 3028w, 2937s, 2871w, 2120w, 1496m, 

1454m, 1084m, 1031w, 998w, 747m, 701s; δH (400 MHz, CDCl3) 1.52 (1 H, s, OH), 1.56–1.81 (4 

H, m, H-2,3), 1.96 (1 H, t, J = 2.7, H-6), 2.22–2.26 (2 H, m, H-4), 2.66 (1 H, dd, J = 13.6, J = 8.6, 

H-7), 2.85 (1 H, dd, J = 13.6, J = 4.2, H-7), 7.20–7.26 (3 H, m, H-9,11), 7.30–7.35 (2 H, m, H-10); 

δC (100 MHz, CDCl3) 18.4 (C-4), 24.7 (C-3), 35.7 (C-2), 44.1 (C-7), 68.5 (C-6), 72.2 (C-1), 84.3 

(C-5), 126.5 (C-11), 128.6 (C-10), 129.4 (C-9), 138.3 (C-8); HRMS (ESI+): Found: 211.1093; 

C13H16NaO (MNa+) Requires 211.1093 (0.0 ppm error). 

Lab notebook reference: MGL/04/52 

1-Phenylhept-6-yn-2-yl 2-(diethoxyphosphoryl)acetate (213) 

 

 
 

Synthesised using general procedure A with 1-phenylhept-6-yn-2-ol 209 (846 mg, 4.49 mmol), 

toluene (22.5 mL), DEPAA (0.76 mL, 4.72 mmol), DIPEA (2.03 mL, 11.7 mmol) and T3P (3.71 g, 

5.84 mmol, 50% w/w solution in EtOAc) affording the title compound 213 as a yellow oil (1.60 g, 

97%). No further purification was required; Rf 0.29 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

3291w, 2983w, 2932w, 1732s, 1496w, 1455w, 1393w, 1264s, 1164w, 1114w, 1050w, 1023s, 970s; 

δH (400 MHz, CDCl3) 1.30 (3 H, td, J = 7.1, J = 0.4, H-4/4’), 1.31 (3 H, td, J = 7.1, J = 0.4, H-

4/4’), 1.46–1.71 (4 H, m, H-11,12), 1.89 (1 H, t, J = 2.7, H-15), 2.13–2.16 (2 H, m, H-13), 2.77–

2.96 (4 H, m, H-2,6), 4.08–4.16 (4 H, m, H-3,3’), 5.08–5.14 (1 H, m, H-5), 7.16–7.21 (3 H, m, H-

8,10), 7.24-7.28 (2 H, m, H-9); δC (100 MHz, CDCl3) 16.2 (d, J = 6.6, C-4), 18.0 (C-13), 24.0 (C-

12), 32.2 (C-11), 34.3 (d, J = 134.2, C-2), 40.3 (C-6), 62.5 (d, J = 6.2, C-3), 68.6 (C-15), 75.6 (C-

5), 83.6 (C-14), 126.5 (C-10), 128.3 (C-9), 129.3 (C-8), 136.9 (C-7), 165.3 (d, J = 6.2, C-1); δP 

(162 MHz, CDCl3) 20.4; HRMS (ESI+): Found: 389.1499; C19H27NaO5P (MNa+) Requires 

389.1488 (−2.7 ppm error), Found: 367.1674; C19H27O5P (MH+) Requires 367.1669 (−1.4 ppm 

error). 
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Lab notebook reference: MGL/04/53 

1-Phenylhept-6-yn-2-yl 2-diazo-2-(diethoxyphosphoryl)acetate (208) 

 

 
 

Synthesised using general procedure B with 1-phenylhept-6-yn-2-yl 2-(diethoxyphosphoryl)acetate 

213 (1.47 g, 4.00 mmol), THF (20 mL), LHMDS (4.80 mL, 4.80 mmol, 1.0 M solution in THF) 

and p-ABSA (1.15 g, 4.80 mmol). Purification by column chromatography (2:1 hexane:EtOAc) 

afforded the title compound 208 as a yellow oil (1.29 g, 82%); Rf 0.27 (2:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3294w, 2984w, 2934w, 2126s, 1698s, 1455w, 1392w, 1366w, 1271s, 1216w, 

1164w, 1121w, 1016s, 976s; δH (400 MHz, CDCl3) 1.31 (3 H, td, J = 7.1, J = 0.7, H-4/4’), 1.33 (3 

H, td, J = 7.1, J = 0.7, H-4/4’), 1.52–1.79 (4 H, m, H-11,12), 1.94 (1 H, t, J = 2.6, H-15), 2.20 (2 H, 

td, J = 7.0, J = 2.6, H-13), 2.85–2.95 (2 H, m, H-6), 3.96–4.22 (4 H, m, H-3,3’), 5.19–5.25 (1 H, m, 

H-5), 7.19–7.31 (5 H, m, H-8,9,10); δC (100 MHz, CDCl3) 15.9 (d, J = 6.8, C-4/4’), 16.0 (d, J = 

6.8, C-4/4’), 17.9 (C-13), 24.0 (C-12), 32.5 (C-11), 40.4 (C-6), 53.5 (d, J = 226.6, C-2), 63.3 (d, J = 

5.7, C-3/3’), 63.4 (d, J = 5.7, C-3/3’), 68.7 (C-15), 75.6 (C-5), 83.4 (C-14), 126.4 (C-10), 128.2 (C-

9), 129.2 (C-8), 136.7 (C-7), 162.7 (d, J = 12.0, C-1); δP (162 MHz, CDCl3) 10.7; HRMS (ESI+): 

Found: 415.1398; C19H25N2NaO5P (MNa+) Requires 415.1393 (−1.2 ppm error), Found: 393.1579; 

C19H26N2O5P (MH+) Requires 393.1574 (−1.3 ppm error). 

Lab notebook reference: MGL/04/54 
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(4RS,5SR)-3-Methylene-5-(pent-4-yn-1-yl)-4-phenyldihydrofuran-2(3H)-one (203) 

and (4RS,5SR)-5-Benzyl-4-(but-3-yn-1-yl)-3-methylenedihydrofuran-2(3H)-one (214) 
 

 
 

Synthesised using general procedure D with 1-phenylhept-6-yn-2-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 208 (70 mg, 0.178 mmol), CH2Cl2 (3.6 mL), Rh2(oct)4 (2.8 mg, 3.6 

µmol), THF (3.6 mL), KOBu-t (30.0 mg, 0.267 mmol) and paraformaldehyde (10.7 mg, 0.356 

mmol). Purification by column chromatography (10:1 hexane:EtOAc) afforded the title compounds 

203 (21 mg, 49%) and 214 (8 mg, 19%) both as a colourless oils. 

 

Data for 203; Rf 0.52 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 3291w, 2928w, 2117w, 1764s, 

1455w, 1284w, 1230m, 1132m; δH (400 MHz, CDCl3) 1.55–1.65 (1 H, m, H-11), 1.73–1.96 (4 H, 

m, H-10,11,14), 2.22 (2 H, td, J = 6.8, J = 2.7, H-12), 3.79 (1 H, app. dt, J = 7.5, J = 3.2, H-3), 4.40 

(1 H, app. td, J = 7.9, J = 4.1, H-4), 5.40 (1 H, d, J = 2.9, H-5b), 6.36 (1 H, d, J = 3.3, H-5a), 7.19–

7.22 (2 H, m, H-7/8), 7.30–7.35 (1 H, m, H-9), 7.36–7.41 (2 H, m, H-7/8); δC (100 MHz, CDCl3) 

18.1 (C-12), 24.2 (C-11), 33.6 (C-10), 52.6 (C-3), 69.0 (C-14), 83.4 (C-13), 84.9 (C-4), 123.8 (C-

5), 127.9 (C-9), 128.3 (C-7/8), 129.2 (C-7/8), 138.9 (C-6), 140.2 (C-2), 169.6 (C-1); HRMS (ESI+): 

Found: 263.1038; C16H16NaO2 (MNa+) Requires 263.1043 (1.7 ppm error), Found: 241.1219; 

C16H17O2 (MH+) Requires 241.1223 (1.8 ppm error). 

Obtained data in accord with reported literature.102 

 

Data for 214; Rf 0.42 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 3288w, 2924m, 2117w, 1761s, 

1454w, 1268m, 1135m; δH (400 MHz, CDCl3) 1.70–1.76 (2 H, m, H-11), 2.00 (1 H, t, J = 2.7, H-

14), 2.17–2.23 (2 H, m, H-12), 2.92–3.05 (3 H, m, H-3,10), 4.45–4.49 (1 H, m, H-4), 5.61 (1 H, d, 
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J = 2.2, H-5b), 6.25 (1 H, d, J = 2.5, H-5a), 7.21–7.36 (5 H, m, H-7,8,9); δC (100 MHz, CDCl3) 

15.4 (C-12), 32.5 (C-11), 41.7 (C-10), 42.0 (C-3), 69.9 (C-14), 82.4 (C-13), 82.9 (C-4), 123.1 (C-

5), 127.1 (C-9), 128.7 (C-8), 129.6 (C-7), 135.4 (C-6), 138.1 (C-2), 169.8 (C-1); HRMS (ESI+): 

Found: 263.1043; C16H16NaO2 (MNa+) Requires 263.1043 (0.0 ppm error), Found: 241.1222; 

C16H17O2 (MH+) Requires 241.1223 (0.3 ppm error). 

 

5.2.2.  Chapter 3 

5.2.2.1.  Conformationally restricted systems 

syn-4-(tert-Butyl)cyclohexyl 2-(diethoxyphosphoryl)acetate (154a) 
 

 
 

Synthesised using general procedure A with syn-4-(tert-butyl)cyclohexanol 154 (285 mg, 1.82 

mmol), toluene (9.3 mL), DEPAA (381 mg, 1.94 mmol), DIPEA (0.84 mL, 4.81 mmol) and T3P 

(1.53 g, 2.41 mmol, 50% w/w solution in EtOAc) affording the title compound 154a as a yellow oil 

(575 mg, 94%). No further purification was required; Rf 0.21 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2945s, 1731s, 1446m, 1393m, 1363m, 1267s, 1108s, 1051w, 1022s, 965s; δH (400 MHz, 

CDCl3) 0.84 (9 H, s, H-6), 1.00 (1 H, tt, J = 12.0, J = 3.0), 1.23–1.35 (8 H, m), 1.41–1.50 (2 H, m), 

1.55–1.59 (2 H, m), 1.91–1.98 (2 H, m), 2.96 (2 H, d, J = 21.5, H-8), 4.12–4.20 (4 H, m, H-9,9’), 

5.05 (1 H, quin., J = 2.8, H-1); δC (100 MHz, CDCl3) 16.3 (d, J = 6.5, C-10,10’), 21.6 (CH2), 27.4 

(C-6), 30.4 (CH2), 32.4 (C-5), 34.7 (d, J = 133.4, C-8), 47.5 (C-4), 62.5 (d, J = 6.1, C-9,9’), 70.9 

(C-1), 165.3 (d, J = 6.6, C-7); δP (162 MHz, CDCl3) 20.9; HRMS (ESI+): Found: 357.1814; 

C16H31NaO5P (MNa+) Requires 357.1801 (−3.4 ppm error). 

Lab notebook reference: MGL/06/62 
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syn-4-(tert-Butyl)cyclohexyl 2-diazo-2-(diethoxyphosphoryl)acetate (154b) 

 

 
 

Synthesised using general procedure B with syn-4-(tert-butyl)cyclohexyl 2-

(diethoxyphosphoryl)acetate 154a (540 mg, 1.61 mmol), THF (8.0 mL), LHMDS (1.94 mL, 1.94 

mmol, 1.0 M solution in THF) and p-ABSA (466 mg, 1.94 mmol). Purification by column 

chromatography (2:1 hexane:EtOAc) afforded the title compound 154b as a yellow oil (505 mg, 

87%); Rf 0.51 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2946s, 2128s, 1694s, 1479m, 1446m, 

1361s, 1287s, 1269s, 1104s, 1017s, 975s, 793s, 747s, 590s, 560s; δH (400 MHz, CDCl3) 0.83 (9 H, 

s, H-6), 1.01 (1 H, tt, J = 12.0, J = 3.0), 1.21–1.35 (8 H, m), 1.42–1.52 (2 H, m), 1.55–1.59 (2 H, 

m), 1.89–1.96 (2 H, m), 4.08–4.24 (4 H, m, H-9,9’), 5.12 (1 H, quin., J = 2.7, H-1); δC (100 MHz, 

CDCl3) 16.1 (d, J = 7.0, C-10,10’), 21.4 (CH2), 27.3 (C-6), 30.6 (CH2), 32.4 (C-5), 47.3 (C-4), 54.1 

(d, J = 228.0, C-8), 63.3 (d, J = 6.0, C-9,9’), 71.2 (C-1), 162.9 (d, J = 12.0, C-7); δP (162 MHz, 

CDCl3) 11.3; HRMS (ESI+): Found: 383.1714; C16H29N2NaO5P (MNa+) Requires 383.1706 (−1.9 

ppm error). 

Lab notebook reference: MGL/06/64 

(3aRS,5SR,7aRS)-5-(tert-Butyl)-3-Methylenehexahydrobenzofuran-2(3H)-one (154c) 

and syn-7-(tert-Butyl)-3-Methylene-1-oxaspiro[3.5]nonan-2-one (154d) 
 

 
 

Synthesised using general procedure D with syn-4-(tert-butyl)cyclohexyl 2-diazo-2-

(diethoxyphosphoryl)acetate 154b (72 mg, 0.200 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 

µmol), THF (4.0 mL), KOBu-t (33.7 mg, 0.300 mmol) and paraformaldehyde (12.0 mg, 0.400 
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mmol). Purification by column chromatography (10:1 hexane:EtOAc) afforded the title compounds 

154c (12 mg, 29%) and 154d (8 mg, 19%). 

 

Data for 154c; white solid; Rf 0.24 (8:1 hexane:EtOAc); m.p. 48–51 °C; νmax (thin film)/cm-1 

2952s, 1763s, 1359m, 1259s, 1181s, 1124s, 1100s, 990s, 964s, 917m; δH (400 MHz, CDCl3) 0.84 

(9 H, s, H-8), 0.94–1.42 (3 H, m, H-3,4,5), 1.61–1.70 (2 H, m, H-2,3), 1.77–1.82 (1 H, m, H-5), 

2.26 (1 H, dq, J = 15.3, J = 3.4, H-2), 2.86–2.92 (1 H, m, H-6), 4.43 (1 H, q, J = 3.9, H-1), 5.53 (1 

H, s, H-10b), 6.08 (1 H, s, H-10a); δC (100 MHz, CDCl3) 20.6 (C-3), 27.2 (C-8), 27.9 (C-2), 30.2 

(C-5), 32.4 (C-7), 41.0 (C-6), 44.9 (C-4), 76.2 (C-1), 119.6 (C-10), 142.7 (C-9), 171.1 (C-11); 

HRMS (ESI+): Found: 231.1363; C13H20NaO2 (MNa+) Requires 231.1356 (−3.3 ppm error), Found: 

209.1538; C13H21O2 (MH+) Requires 209.1536 (−0.9 ppm error). 

 

Data for 154d; white solid; Rf 0.36 (8:1 hexane:EtOAc); m.p. 111–114 °C; νmax (thin film)/cm-1 

2960s, 1797s, 1438w, 1366m, 1160m, 1091m, 952m, 796m; δH (400 MHz, CDCl3) 0.88 (9 H, s, H-

6), 1.08 (1 H, tt, J = 12.2, J = 2.9, H-4), 1.25–1.42 (2 H, m, H-3), 1.70–1.81 (4 H, m, H-2,3), 2.01–

2.08 (2 H, m, H-2), 5.31 (1 H, d, J = 1.9, H-8b), 5.81 (1 H, d, J = 1.9, H-8a); δC (100 MHz, CDCl3) 

23.0 (C-3), 27.4 (C-6), 32.5 (C-5), 34.5 (C-2), 46.7 (C-4), 87.3 (C-1), 112.9 (C-8), 149.8 (C-7), 

164.0 (C-9); HRMS (ESI+): Found: 231.1352; C13H20NaO2 (MNa+) Requires 231.1356 (1.4 ppm 

error). 

Lab notebook reference: MGL/06/67 

anti-4-(tert-Butyl)cyclohexyl 2-(diethoxyphosphoryl)acetate (155a) 
 

 
 

Synthesised using general procedure A with anti-4-(tert-butyl)cyclohexanol 155 (1.56 g, 10.0 

mmol), toluene (50 mL), DEPAA (2.06 g, 10.5 mmol), DIPEA (4.52 mL, 26.0 mmol) and T3P 

(8.27 g, 13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 155a as a yellow oil 

(3.23 g, 97%). No further purification was required; Rf 0.21 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2947s, 2866m, 1730s, 1451w, 1394m, 1366m, 1260s, 1113m, 1019s, 966s; δH (400 

MHz, CDCl3) 0.82 (9 H, s, H-6), 0.92–1.12 (3 H, m), 1.26–1.36 (8 H, m), 1.75–1.81 (2 H, m), 

1.98–2.04 (2 H, m), 2.91 (2 H, d, J = 21.6, H-8), 4.10–4.17 (4 H, m, H-9,9’), 4.65 (1 H, tt, J = 11.3, 
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J = 4.5, H-1); δC (100 MHz, CDCl3) 16.3 (d, J = 6.1, C-10,10’), 25.3 (CH2), 27.5 (C-6), 31.8 (CH2), 

32.2 (C-5), 34.7 (d, J = 133.6, C-8), 46.9 (C-4), 62.5 (d, J = 6.1, C-9,9’), 75.0 (C-1), 165.3 (d, J = 

5.8, C-7); δP (162 MHz, CDCl3) 20.6; HRMS (ESI+): Found: 357.1790; C16H31NaO5P (MNa+) 

Requires 357.1801 (3.1 ppm error), Found: 335.1970; C16H32O5P (MH+) Requires 335.1982 (3.5 

ppm error). 

Lab notebook reference: MGL/06/63 

anti-4-(tert-Butyl)cyclohexyl 2-diazo-2-(diethoxyphosphoryl)acetate (155b) 
 

 
 

Synthesised using general procedure B with anti-4-(tert-butyl)cyclohexyl 2-

(diethoxyphosphoryl)acetate 155a (3.22 g, 9.63 mmol), THF (48 mL), LHMDS (11.6 mL, 11.6 

mmol, 1.0 M solution in THF) and p-ABSA (2.78 g, 11.6 mmol). Purification by column 

chromatography (2:1 hexane:EtOAc) afforded the title compound 155b as a yellow oil (2.99 g, 

86%); Rf 0.51 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2949s, 2866m, 2126s, 1698s, 1453w, 

1363w, 1279s, 1020s, 977m; δH (400 MHz, CDCl3) 0.83 (9 H, s, H-6), 0.94–1.14 (3 H, m), 1.27–

1.37 (8 H, m), 1.76–1.84 (2 H, m), 2.00–2.06 (2 H, m), 4.07–4.25 (4 H, m, H-9,9’), 4.72 (1 H, tt, J 

= 11.3, J = 4.5, H-1); δC (100 MHz, CDCl3) 15.7 (d, J = 7.3, C-10,10’), 24.9 (CH2), 27.1 (C-6), 

31.7 (CH2), 31.8 (C-5), 46.5 (C-4), 53.4 (d, J = 226.5, C-8), 63.1 (d, J = 6.3, C-9,9’), 74.8 (C-1), 

162.5 (d, J = 12.3, C-7); δP (162 MHz, CDCl3) 10.8; HRMS (ESI+): Found: 383.1711; 

C16H29N2NaO5P (MNa+) Requires 383.1706 (−1.2 ppm error). 

Lab notebook reference: MGL/06/65 
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(3aRS,5SR,7aSR)-5-(tert-Butyl)-3-Methylenehexahydrobenzofuran-2(3H)-one (155c) 

and anti-7-(tert-Butyl)-3-Methylene-1-oxaspiro[3.5]nonan-2-one (155d) 
 

 
 

Synthesised using general procedure D with anti-4-(tert-butyl)cyclohexyl 2-diazo-2-

(diethoxyphosphoryl)acetate 155b (73 mg, 0.203 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.2 mg, 4.1 

µmol), THF (4.0 mL), KOBu-t (34.2 mg, 0.305 mmol) and paraformaldehyde (12.2 mg, 0.406 

mmol). Purification by column chromatography (10:1 hexane:EtOAc) afforded the title compounds 

155c (20 mg, 47%) and 155d (5 mg, 12%). 

 

Data for 155c; colourless oil; Rf 0.36 (8:1 hexane:EtOAc); νmax (thin film)/cm-1 2954s, 2870m, 

1772s, 1395m, 1366m, 1251s, 1132s, 1079m, 1034m, 1019s, 993m; δH (400 MHz, CDCl3) 0.91 (9 

H, s, H-8), 1.06–1.34 (3 H, m, H-3,4,5), 1.62 (1 H, qd, J = 11.9, J = 3.7, H-2), 1.98–2.04 (1 H, m, 

H-3), 2.18 (1 H, dq, J = 12.5, J = 3.7, H-5), 2.29 (1 H, dq, J = 11.5, J = 3.7, H-2), 2.41 (1 H, tq, J = 

11.1, J = 3.2, H-6), 3.65 (1 H, td, J = 11.1, J = 3.7, H-1), 5.39 (1 H, d, J = 3.1, H-9b), 6.06 (1 H, d, 

J = 3.2, H-9a); δC (100 MHz, CDCl3) 25.0 (C-3), 26.4 (C-5), 27.7 (C-8), 30.1 (C-2), 32.6 (C-7), 

47.1 (C-4), 48.7 (C-6), 83.2 (C-1), 116.9 (C-10), 139.8 (C-9), 171.0 (C-11); HRMS (ESI+): Found: 

231.1362; C13H20NaO2 (MNa+) Requires 231.1356 (−2.7 ppm error), Found: 209.1532; C13H21O2 

(MH+) Requires 209.1536 (1.8 ppm error). 

 

Data for 155d; white needles; Rf 0.45 (8:1 hexane:EtOAc); m.p. 69–73 °C; νmax (thin film)/cm-1 

2969s, 2872w, 1820s, 1368m, 1193m, 1087m, 1024m, 959m, 857m, 808m; δH (400 MHz, CDCl3) 

0.90 (9 H, s, H-6), 0.94–1.46 (3 H, m, H-3,4), 1.87–1.99 (4 H, m, H-2,3), 2.04–2.12 (2 H, m, H-2), 

5.49 (1 H, d, J = 1.8, H-8b), 5.80 (1 H, d, J = 1.8, H-8a); δC (100 MHz, CDCl3) 25.0 (C-3), 27.5 (C-

6), 32.3 (C-5), 35.0 (C-2), 46.3 (C-4), 87.1 (C-1), 113.2 (C-8), 150.1 (C-7), 163.5 (C-9); HRMS 

(ESI+): Found: 231.1352; C13H20NaO2 (MNa+) Requires 231.1356 (1.5 ppm error). 

Lab notebook reference: MGL/06/68 
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(1SR,2SR)-2-(tert-Butyl)cyclohexyl 2-(diethoxyphosphoryl)acetate (156) 

 

 
 

Synthesised using general procedure A with (1SR,2SR)-2-(tert-butyl)cyclohexanol 156 (1.56 g, 

10.0 mmol), toluene (50 mL), DEPAA (2.06 g, 10.5 mmol), DIPEA (4.52 mL, 26.0 mmol) and 

T3P (8.27 g, 13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 156a as a pink 

oil (3.28 g, 98%). No further purification was required; Rf 0.33 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2938s, 2868m, 1728s, 1447m, 1396m, 1366m, 1262s, 1115m, 1051w, 1020s, 966s; δH 

(400 MHz, CDCl3) 0.83 (9 H, s, H-8), 1.09 (1 H, ddd, J = 12.4, J = 3.5, J = 2.0), 1.14–1.34 (8 H, 

m), 1.40–1.62 (4 H, m), 1.73–1.80 (1 H, m), 1.90–1.97 (1 H, m), 2.83–2.98 (2 H, m, H-10), 4.08–

4.16 (4 H, m, H-11,11’), 5.24–5.27 (1 H, m, H-1); δC (100 MHz, CDCl3) 16.1 (d, J = 6.7, C-

12/12’), 16.1 (d, J = 6.7, C-12/12’), 20.2 (CH2), 22.0 (CH2), 26.3 (CH2), 28.3 (C-8), 31.1 (CH2), 

32.4 (C-7), 34.6 (d, J = 134.4, C-10), 49.8 (C-2), 62.3 (app. t, J = 6.5, C-11,11’), 72.6 (C-1), 165.0 

(d, J = 6.3, C-9); δP (162 MHz, CDCl3) 20.7; HRMS (ESI+): Found: 357.1791; C16H31NaO5P 

(MNa+) Requires 357.1801 (2.9 ppm error). 

Lab notebook reference: MGL/06/69 

(1SR,2SR)-2-(tert-Butyl)cyclohexyl 2-diazo-2-diethoxyphosphoryl)acetate (156b) 

 

 
 

Synthesised using general procedure B with (1SR,2SR)-2-(tert-butyl)cyclohexyl 2-

(diethoxyphosphoryl)acetate 156a (1.67 g, 5.00 mmol), THF (25 mL), LHMDS (6.00 mL, 6.00 

mmol, 1.0 M solution in THF) and p-ABSA (1.44 g, 6.00 mmol). Purification by column 

chromatography (4:1 hexane:EtOAc) afforded the title compound 156b as a yellow oil (1.47 g, 

82%); Rf 0.63 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2939s, 2868m, 2125s, 1693s, 1480m, 

1447m, 1368m, 1277s, 1269s, 1222m, 1018s, 976m; δH (400 MHz, CDCl3) 0.84 (9 H, s, H-8), 
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1.10–1.49 (12 H, m), 1.57–1.64 (1 H, m), 1.74–1.82 (1 H, m), 1.86–1.93 (1 H, m), 4.05–4.23 (4 H, 

m, H-11,11’), 5.40–5.43 (1 H, m, H-1); δC (100 MHz, CDCl3) 16.0 (d, J = 7.2, C-12/12’), 16.0 (d, J 

= 7.5, C-12/12’), 20.3 (CH2), 21.9 (CH2), 26.4 (CH2), 28.3 (C-8), 31.7 (CH2), 32.4 (C-7), 50.2 (C-

2), 54.0 (d, J = 226.6, C-10), 63.3 (d, J = 5.9, C-11/11’), 63.4 (d, J = 5.9, C-11/11’), 72.6 (C-1), 

162.5 (d, J = 12.1, C-9); δP (162 MHz, CDCl3) 11.2; HRMS (ESI+): Found: 383.1690; 

C16H29N2NaO5P (MNa+) Requires 383.1706 (4.3 ppm error). 

Lab notebook reference: MGL/06/72 

(3aRS,7SR,7aRS)-7-(tert-Butyl)-3-methylenehexahydrobenzofuran-2(3H)-one (156c) 
 

 
 

Synthesised using general procedure D with (1SR,2SR)-2-(tert-butyl)cyclohexyl 2-diazo-2-

diethoxyphosphoryl)acetate 156b (75 mg, 0.208 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.2 mg, 4.2 

µmol), THF (4.2 mL), KOBu-t (35.0 mg, 0.312 mmol) and paraformaldehyde (12.5 mg, 0.416 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

156c as a white solid (39 mg, 90%); Rf 0.49 (4:1 hexane:EtOAc); m.p. 57–60 °C; νmax (thin 

film)/cm-1 2944s, 2866m, 1762s, 1669w, 1366m, 1261s, 1175m, 1145s, 1117s, 1078m, 962s, 

945m, 896m, 818m; δH (400 MHz, CDCl3) 1.00 (9 H, s, H-8), 1.15–1.34 (4 H, m), 1.65–1.79 (3 H, 

m), 2.81–2.86 (1 H, m), 4.58–4.60 (1 H, m, H-1), 5.49 (1 H, d, J = 0.8, H-10b), 6.05 (1 H, d, J = 

0.8, H-10a); δC (100 MHz, CDCl3) 20.2 (C-3/4/5), 23.8 (C-3/4/5), 28.3 (C-8), 28.5 (C-3/4/5), 32.9 

(C-7), 41.5 (C-2/6), 48.1 (C-2/6), 78.0 (C-1), 119.1 (C-10), 141.9 (C-9), 171.4 (C-11); HRMS 

(ESI+): Found: 231.1361; C13H20NaO2 (MNa+) Requires 231.1356 (−2.5 ppm error), Found: 

209.1538; C13H21O2 (MH+) Requires 209.1536 (−0.9 ppm error). 

Lab notebook reference: MGL/06/75 
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(1RS,2SR)-2-(tert-Butyl)cyclohexyl 2-(diethoxyphosphoryl)acetate (157a) 

 

 
 

Synthesised using general procedure A with (1RS,2SR)-2-(tert-butyl)cyclohexanol 157 (1.56 g, 

10.0 mmol), toluene (50 mL), DEPAA (2.06 g, 10.5 mmol), DIPEA (4.52 mL, 26.0 mmol) and 

T3P (8.27 g, 13.0 mmol, 50% w/w solution in EtOAc) affording the title compound 157a as a 

yellow oil (3.27 g, 98%). No further purification was required; Rf 0.31 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2937s, 2865m, 1727s, 1479m, 1449m, 1396m, 1368m, 1263s, 1164w, 1113s, 

1051w, 1022s, 967s, 835m, 780m; δH (400 MHz, CDCl3) 0.86 (9 H, s, H-8), 0.90–1.41 (11 H, m), 

1.60–1.67 (2 H, m), 1.80–1.86 (1 H, m), 1.94–1.99 (1 H, m), 2.81–2.95 (2 H, m, H-10), 4.09–4.16 

(4 H, m, H-11,11’), 4.72 (1 H, td, J = 10.2, J = 4.5, H-1); δC (100 MHz, CDCl3) 16.2 (d, J = 6.4, C-

12,12’), 24.4 (CH2), 25.7 (CH2), 26.6 (CH2), 28.9 (C-8), 32.7 (C-7), 32.8 (CH2), 34.8 (d, J = 134.9, 

C-10), 50.1 (C-2), 62.4 (d, J = 6.7, C-11/11’), 62.5 (d, J = 6.7, C-11/11’), 76.8 (C-1), 165.0 (d, J = 

6.0, C-9); δP (162 MHz, CDCl3) 20.6; HRMS (ESI+): Found: 357.1785; C16H31NaO5P (MNa+) 

Requires 357.1801 (4.6 ppm error), Found: 335.1989; C16H32O5P (MH+) Requires 335.1982 (−2.3 

ppm error). 

Lab notebook reference: MGL/06/70 

(1RS,2SR)-2-(tert-Butyl)cyclohexyl 2-diazo-2-diethoxyphosphoryl)acetate (157b) 
 

 
 

Synthesised using general procedure B with (1RS,2SR)-2-(tert-butyl)cyclohexyl 2-

(diethoxyphosphoryl)acetate 157a (1.67 g, 5.00 mmol), THF (25 mL), LHMDS (6.00 mL, 6.00 

mmol, 1.0 M solution in THF) and p-ABSA (1.44 g, 6.00 mmol). Purification by column 

chromatography (4:1 hexane:EtOAc) afforded the title compound 157b as a yellow oil (1.37 g, 

76%); Rf 0.60 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2936s, 2865m, 2122s, 1698s, 1478m, 
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1449m, 1395w, 1367m, 1319w, 1272s, 1220s, 1164w, 1130w, 1108w, 1018s, 976s, 951s, 817s, 

795s, 743s; δH (400 MHz, CDCl3) 0.82–1.40 (20 H, m), 1.61–1.67 (2 H, m), 1.81–1.87 (1 H, m), 

1.92–1.96 (1 H, m), 4.04–4.23 (4 H, H-11,11’), 4.84 (1 H, td, J = 10.1, J = 4.5, H-1); δC (100 MHz, 

CDCl3) 16.0 (d, J = 7.4, C-12,12’), 24.4 (CH2), 25.5 (CH2), 26.6 (CH2), 28.8 (C-8), 32.8 (C-7), 

33.4 (CH2), 50.3 (C-2), 53.8 (d, J = 227.2, C-10), 63.4 (d, J = 5.9, C-11/11’), 63.5 (d, J = 5.9, C-

11/11’), 76.6 (C-1), 162.4 (d, J = 13.0, C-9); δP (162 MHz, CDCl3) 10.9; HRMS (ESI+): Found: 

383.1705; C16H29N2NaO5P (MNa+) Requires 383.1706 (0.4 ppm error). 

Lab notebook reference: MGL/06/73 

(3aRS,7SR,7aSR)-7-(tert-Butyl)-3-methylenehexahydrobenzofuran-2(3H)-one (157c) 
 

 
 

Synthesised using general procedure D with (1RS,2SR)-2-(tert-butyl)cyclohexyl 2-diazo-2-

diethoxyphosphoryl)acetate 157b (75 mg, 0.208 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.2 mg, 4.2 

µmol), THF (4.2 mL), KOBu-t (35.0 mg, 0.312 mmol) and paraformaldehyde (12.5 mg, 0.416 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

157c as a yellow oil (33 mg, 76%); Rf 0.57 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2938s, 

2868m, 1770s, 1447w, 1408w, 1367m, 1255m, 1239s, 1151s, 1127s, 1081m, 1032m, 1009s, 995s, 

933m; δH (400 MHz, CDCl3) 0.97 (9 H, s, H-8), 1.05–1.16 (1 H, m, H-3), 1.22–1.32 (1 H, m, H-5), 

1.41 (1 H, app. qt, J = 13.1, J = 4.0, H-4), 1.56–1.64 (1 H, m, H-2), 1.85–1.96 (2 H, m, H-3,4), 

2.06–2.12 (1 H, m, H-5), 2.49 (1 H, app. tq, J = 10.8, J = 3.4, H-6), 3.63 (1 H, app. t, J = 10.6, H-

1), 5.37 (1 H, d, J = 3.1, H-10b), 6.06 (1 H, d, J = 3.3, H-10a); δC (100 MHz, CDCl3) 25.2 (C-4), 

26.0 (C-5), 26.4 (C-3), 28.1 (C-8), 32.6 (C-7), 49.0 (C-6), 51.5 (C-2), 85.4 (C-1), 117.2 (C-10), 

139.3 (C-9), 170.8 (C-11); HRMS (ESI+): Found: 231.1356; C13H20NaO2 (MNa+) Requires 

231.1356 (0.0 ppm error). 

Lab notebook reference: MGL/06/76 
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(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-(diethoxyphosphoryl)acetate (158a) 

 

 
 

Synthesised using general procedure A with L-menthol 158 (781 mg, 5.00 mmol), toluene (25 mL), 

DEPAA (1.03 g, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 50% 

w/w solution in EtOAc) affording the title compound 158a as a colourless oil (1.67 g, 100%). No 

further purification was required; Rf 0.44 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2955s, 2931s, 

2870m, 1728s, 1456m, 1390m, 1369m, 1264s, 1114m, 1052w, 1023s, 966s; δH (400 MHz, CDCl3) 

0.73 (3 H, d, J = 6.9), 0.82–1.07 (9 H, m), 1.14–1.52 (8 H, m), 1.63–1.69 (2 H, m), 1.91–2.02 (2 H, 

m), 2.92 (2 H, d, J = 21.7, H-11), 4.10–4.18 (4 H, m, H-12,12’), 4.70 (1 H, app. td, J = 10.9, J = 

4.4, H-1); δC (100 MHz, CDCl3) 16.0 (CH3), 16.2 (d, J = 6.0, C-13,13’), 20.7 (CH3), 21.9 (CH3), 

23.1 (CH2), 25.7 (CH), 31.3 (CH), 34.1 (CH2), 34.5 (d, J = 133.3, C-11), 40.6 (CH2), 46.8 (CH), 

62.5 (app. t, J = 5.8, C-12,12’), 75.6 (C-1), 165.3 (d, J = 6.3, C-10); δP (162 MHz, CDCl3) 20.7; 

HRMS (ESI+): Found: 357.1801; C16H31NaO5P (MNa+) Requires 357.1801 (0.2 ppm error). 

Lab notebook reference: MGL/06/54 

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-diazo-2-(diethoxyphosphoryl)acetate 

(158b) 
 

 
 

Synthesised using general procedure B with (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-

(diethoxyphosphoryl)acetate 158a (1.64 g, 4.90 mmol), THF (25.0 mL), LHMDS (5.90 mL, 5.90 

mmol, 1.0 M solution in THF) and p-ABSA (1.41 g, 5.90 mmol). Purification by column 

chromatography (2:1 hexane:EtOAc) afforded the title compound 158b as a yellow solid (1.59 g, 

90%); Rf 0.67 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2956s, 2127s, 1697s, 1457m, 1369m, 

1275s, 1119m, 1021s, 980s, 957s; δH (400 MHz, CDCl3) 0.75 (3 H, d, J = 7.0), 0.80–1.08 (9 H, m), 
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1.32–1.52 (8 H, m), 1.64–1.70 (2 H, m), 1.81–1.92 (1 H, m), 1.99–2.04 (1 H, m), 4.07–4.25 (4 H, 

m, H-12,12’), 4.77 (1 H, app. td, J = 10.9, J = 4.4, H-1); δC (100 MHz, CDCl3) 16.0 (CH3), 16.0 (d, 

J = 6.9, C-13,13’), 16.1 (CH3), 20.7 (CH3), 21.9 (CH3), 23.2 (CH2), 26.1 (CH), 31.4 (CH), 34.0 

(CH2), 41.0 (CH2), 47.1 (CH), 53.8 (d, J = 223.2, C-11), 63.4 (d, J = 5.7, C-12,12’), 75.9 (C-1), 

163.1 (d, J = 11.4, C-10); δP (162 MHz, CDCl3) 10.9; HRMS (ESI+): Found: 383.1718; 

C16H29N2NaO5P (MNa+) Requires 383.1706 (−3.1 ppm error). 

Lab notebook reference: MGL/06/61 

(3aR,4R,7S,7aS)-7-Isopropyl-4-methyl-3-methylenehexahydrobenzofuran-2(3H)-one 

(158c) 
 

 
 

Synthesised using general procedure D with (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-diazo-

2-(diethoxyphosphoryl)acetate 158b (71 mg, 0.197 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 

3.9 µmol), THF (4.0 mL), KOBu-t (33.2 mg, 0.296 mmol) and paraformaldehyde (11.8 mg, 0.394 

mmol). Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compound 

158c as a colourless oil (30 mg, 73%); Rf 0.41 (8:1 hexane:EtOAc); νmax (thin film)/cm-1 2958m, 

1766s, 1462m, 1388w, 1249s, 1133s, 1042s, 980s; δH (400 MHz, CDCl3) 0.88 (3 H, d, J = 7.0, H-

8/8’), 0.94 (3 H, d, J = 7.0, H-8/8’), 1.02–1.34 (5 H, m), 1.62–1.82 (4 H, m), 1.99 (1 H, hept.d, J = 

7.0, J = 3.4, H-7), 2.19 (1 H, app. tt, J = 10.5, J = 3.1, H-2), 3.60 (1 H, app. t, J = 10.7, H-1), 5.63 

(1 H, d, J = 3.0, H-11b), 6.09 (1 H, d, J = 3.2, H-11a); δC (100 MHz, CDCl3) 17.6 (C-8/8’), 19.3 

(C-9), 19.9 (C-8/8’), 24.5 (C-4/5), 28.1 (C-7), 33.5 (C-3), 35.4 (C-4/5), 46.8 (C-6), 53.9 (C-2), 84.0 

(C-1), 118.3 (C-11), 139.6 (C-10), 171.0 (C-12); HRMS (ESI+): Found: 231.1354; C13H20NaO2 

(MNa+) Requires 231.1356 (0.8 ppm error), Found: 209.1532; C13H21O2 (MH+) Requires 209.1536 

(1.8 ppm error). 

Lab notebook reference: MGL/06/66 
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(1RS,4aRS,8aSR)-Decahydronaphthalen-1-yl 2-(diethoxyphosphoryl)acetate (159a) 

 

 
 

Synthesised using general procedure A with (1RS,4aRS,8aSR)-decahydronaphthalen-1-ol 159 (201 

mg, 1.30 mmol), toluene (10 mL), DEPAA (0.22 mL, 1.37 mmol), DIPEA (0.60 mL, 3.38 mmol) 

and T3P (1.08 g, 1.70 mmol, 50% w/w solution in EtOAc) affording the title compound 159a as a 

yellow oil (425 mg, 98%). No further purification was required; Rf 0.54 (3:7 petrol:EtOAc); νmax 

(thin film)/cm-1 2982, 2924, 2853, 1731, 1448, 1394, 1263, 1114, 1021, 960; δH (400 MHz, CDCl3) 

0.79–1.95 (22 H, m), 2.94–3.00 (2 H, m), 4.13–4.20 (4 H, m), 4.93–4.96 (1 H, m); δC (100 MHz, 

CDCl3) 16.3 (d, J = 6.3), 16.3 (d, J = 6.3), 20.4, 26.2, 26.4, 29.1, 30.6, 33.4, 34.2, 34.6 (d, J = 

134.0), 36.3, 45.7, 62.5 (d, J = 6.3), 75.0, 165.4 (d, J = 6.8); δP (162 MHz, CDCl3) 20.9; HRMS 

(ESI+): Found: 355.1638; C16H29NaO5P (MNa+) Requires 355.1645 (1.9 ppm error), Found: 

333.1818; C16H30O5P (MH+) Requires 333.1825 (2.2 ppm error).  

Note: This compound was synthesised by Mariantonietta D’Acunto. 

(1RS,4aRS,8aSR)-Decahydronaphthalen-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate 

(159b) 
 

 
 

Synthesised using general procedure B with (1RS,4aRS,8aSR)-decahydronaphthalen-1-yl 2-

(diethoxyphosphoryl)acetate 159a (475 mg, 1.43 mmol), THF (9.0 mL), NaH (68.6 mg, 1.72 

mmol, 60% dispersion in mineral oil) and p-ABSA (412 mg, 1.72 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 159b as a yellow oil (350 mg, 

68%); Rf 0.80 (3:7 petrol:EtOAc); νmax (thin film)/cm-1 2927, 2857, 2126, 1698, 1448, 1290, 1277, 

1118, 1023, 981; δH (400 MHz, CDCl3) 0.87–1.97 (22 H, m), 4.11–4.29 (4 H, m), 5.02–5.04 (1 H, 

m); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9), 16.1 (d, J = 6.9), 20.3, 26.1, 26.3, 29.2, 30.8, 33.3, 
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34.0, 36.3, 45.7, 54.0 (d, J = 227.6), 63.2 (d, J = 5.5), 63.2 (d, J = 5.4), 75.3, 163.3 (d, J = 11.1); δP 

(162 MHz, CDCl3) 11.6; HRMS (ESI+): Found: 381.1556; C16H27N2NaO5P (MNa+) Requires 

381.1550 (−1.7 ppm error), Found: 359.1731; C16H30N2O5P (MH+) Requires 359.1730 (−0.2 ppm 

error).  

Note: This compound was synthesised by Mariantonietta D’Acunto. 

(3aSR,5aRS,9aSR,9bSR)-3-Methylenedecahydronaphtho[1,2-b]furan-2(9bH)-one 

(159c) 
 

 
 

Synthesised using general procedure D with (1RS,4aRS,8aSR)-decahydronaphthalen-1-yl 2-diazo-

2-(diethoxyphosphoryl)acetate 159b (82 mg, 0.229 mmol), CH2Cl2 (4.6 mL), Rh2(oct)4 (3.6 mg, 

4.6 µmol), THF (4.6 mL), KOBu-t (38.5 mg, 0.344 mmol) and paraformaldehyde (13.8 mg, 0.458 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

159c as a colourless oil (32 mg, 68%); Rf 0.56 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2923s, 

2854m, 1761s, 1447w, 1260s, 1144s, 1117m, 1081m, 949m; δH (400 MHz, CDCl3) 0.89–1.06 (2 H, 

m), 1.18–1.35 (5 H, m), 1.46–1.85 (7 H, m), 2.84–2.90 (1 H, m, H-3), 4.25 (1 H, dd, J = 4.6, J = 

2.6, H-4), 5.49 (1 H, d, J = 1.0, H-5b), 6.04 (1 H, d, J = 1.1, H-5a); δC (100 MHz, CDCl3) 26.0 

(CH2), 26.7 (CH2), 28.7 (CH2), 28.8 (CH2), 31.0 (CH2), 33.7 (CH2), 34.9 (C-8/9), 40.8 (C-3), 43.8 

(C-8/9), 80.6 (C-4), 119.1 (C-5), 142.5 (C-2), 171.0 (C-1); HRMS (ESI+): Found: 229.1207; 

C13H18NaO2 (MNa+) Requires 229.1199 (−3.4 ppm error), Found: 207.1384; C13H19O2 (MH+) 

Requires 207.1380 (−2.0 ppm error). 

Lab notebook reference: MGL/05/35 

Obtained data in accord with reported literature.165 
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(1SR,4aRS,8aSR)-Decahydronaphthalen-1-yl 2-(diethoxyphosphoryl)acetate (160a) 

 

 
 

Synthesised using general procedure A with (1SR,4aRS,8aSR)-decahydronaphthalen-1-ol 160 (271 

mg, 1.76 mmol), toluene (15 mL), DEPAA (0.30 mL, 1.85 mmol), DIPEA (0.82 mL, 4.60 mmol) 

and T3P (1.46 g, 2.30 mmol, 50% w/w solution in EtOAc) affording the title compound 160a as a 

yellow oil (390 mg, 67%). No further purification was required; Rf 0.36 (3:7 petrol:EtOAc); νmax 

(thin film)/cm-1 2983, 2921, 2855, 1730, 1447, 1394, 1264, 1114, 1023, 963; δH (400 MHz, CDCl3) 

0.78–2.02 (22 H, m), 2.93 (2 H, d, J = 21.7), 4.11–4.18 (4 H, m), 4.50 (1 H, app. td, J = 10.3, J = 

4.4); δC (100 MHz, CDCl3) 16.3 (d, J = 6.6), 16.3 (d, J = 6.3), 23.7, 25.8, 26.1, 28.7, 31.9, 33.0, 

33.8, 34.5 (d, J = 133.7), 41.2, 47.2, 62.5 (d, J = 6.2), 62.5 (d, J = 6.2), 78.6, 165.5 (d, J = 6.6); δP 

(162 MHz, CDCl3) 20.8; HRMS (ESI+): Found: 355.1648; C16H29NaO5P (MNa+) Requires 

355.1645 (−0.8 ppm error), Found: 333.1830; C16H30O5P (MH+) Requires 333.1825 (−1.3 ppm 

error).  

Note: This compound was synthesised by Mariantonietta D’Acunto. 

(1SR,4aRS,8aSR)-Decahydronaphthalen-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate 

(160b) 

 

 
 

Synthesised using general procedure B with (1SR,4aRS,8aSR)-decahydronaphthalen-1-yl 2-

(diethoxyphosphoryl)acetate 160a (390 mg, 1.17 mmol), THF (7.0 mL), NaH (56.2 mg, 1.40 

mmol, 60% dispersion in mineral oil) and p-ABSA (337 mg, 1.40 mmol). Purification by column 

chromatography (2:1 petrol:EtOAc) afforded the title compound 160b as a yellow oil (330 mg, 

78%); Rf 0.67 (3:7 petrol:EtOAc); νmax (thin film)/cm-1 2983, 2925, 2853, 2132, 1697, 1448, 1344, 

1275, 1120, 1019, 978; δH (400 MHz, CDCl3) 0.84–2.05 (22 H, m), 4.10–4.27 (4 H, m), 4.58 (1 H, 
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app. td, J = 10.2, J = 4.2); δC (100 MHz, CDCl3) 16.0 (d, J = 7.1), 16.0 (d, J = 7.1), 23.6, 25.7, 

26.0, 28.7, 32.2, 32.9, 33.4, 41.2, 47.4, 53.8 (d, J = 226.6), 63.4 (d, J = 5.7), 79.1, 163.3 (d, J = 

12.0); δP (162 MHz, CDCl3) 11.0; HRMS (ESI+): Found: 381.1532; C16H27N2NaO5P (MNa+) 

Requires 381.1550 (4.7 ppm error), Found: 359.1718; C16H30N2O5P (MH+) Requires 359.1730 (3.4 

ppm error).  

Note: This compound was synthesised by Mariantonietta D’Acunto. 

(3aSR,5aRS,9aSR,9bRS)-3-Methylenedecahydronaphtho[1,2-b]furan-2(9bH)-one 

(160c) 
 

 
 

Synthesised using general procedure D with (1SR,4aRS,8aSR)-decahydronaphthalen-1-yl 2-diazo-

2-(diethoxyphosphoryl)acetate 160b (79 mg, 0.221 mmol), CH2Cl2 (4.4 mL), Rh2(oct)4 (3.4 mg, 

4.4 µmol), THF (4.4 mL), KOBu-t (37.2 mg, 0.332 mmol) and paraformaldehyde (13.3 mg, 0.442 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

160c as a white solid (29 mg, 64%); Rf 0.72 (4:1 hexane:EtOAc); m.p. 80–83 °C (lit.165 75–77 °C); 

νmax (thin film)/cm-1 2924s, 2852m, 1766s, 1672w, 1449m, 1256m, 1241m, 1125m, 990m, 967m; 

δH (400 MHz, CDCl3) 0.98–1.46 (8 H, m), 1.65–1.77 (4 H, m), 2.08–2.13 (2 H, m), 2.43–2.51 (1 H, 

m, H-3), 3.44 (1 H, app. t, J = 10.6, H-4), 5.36 (1 H, d, J = 3.1, H-5b), 6.04 (1 H, d, J = 3.3, H-5a); 

δC (100 MHz, CDCl3) 25.1 (CH2), 25.2 (CH2), 26.1 (CH2), 29.0 (CH2), 32.6 (CH2), 32.8 (CH2), 

41.6 (C-8), 47.0 (C-9), 48.6 (C-3), 86.7 (C-4), 117.0 (C-5), 139.9 (C-2), 171.0 (C-1); HRMS 

(ESI+): Found: 229.1203; C13H18NaO2 (MNa+) Requires 229.1199 (−1.6 ppm error), Found: 

207.1380; C13H19O2 (MH+) Requires 207.1380 (0.0 ppm error).  

Lab notebook reference: MGL/05/34 

Obtained data in accord with reported literature.165 
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Adamantan-1-yl 2-(diethoxyphosphoryl)acetate (161a) 

 

 
 

Synthesised using general procedure A with adamantan-1-ol 161 (761 mg, 5.00 mmol), toluene (25 

mL), DEPAA (0.84 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 

50% w/w solution in THF) affording the title compound 161a as a colourless oil (1.53 g, 93%). No 

further purification was required; Rf 0.30 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2981w, 2910s, 

2853w, 1728s, 1584w, 1457w, 1393w, 1369w, 1355w, 1321w, 1259s, 1164w, 1103m, 1049w, 

1020s, 967s, 890m, 836w, 814w; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.5, H-4), 1.57–

1.69 (6 H, m, H-8), 2.09–2.14 (9 H, m, H-6,7), 2.85 (2 H, d, J = 21.4, H-2), 4.10–4.18 (4 H, m, H-

3); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 30.7 (C-7), 35.7 (d, J = 132.8, C-2), 36.0 (C-8), 

41.1 (C-6), 62.4 (d, J = 6.2, C-3), 82.0 (C-5), 164.5 (d, J = 6.3, C-1); δP (162 MHz, CDCl3) 21.2; 

HRMS (ESI+): Found: 353.1489; C16H27NaO5P (MNa+) Requires 353.1488 (−0.2 ppm error), 

Found: 331.1668; C16H28O5P (MH+) Requires 331.1669 (0.2 ppm error). 

Lab notebook reference: MGL/05/09S 

Adamantan-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (161b) 
 

 
 

Synthesised using general procedure B with adamantan-1-yl 2-(diethoxyphosphoryl)acetate 161a 

(1.51 g, 4.57 mmol), THF (23 mL), LHMDS (5.48 mL, 5.48 mmol, 1.0 M solution in THF) and p-

ABSA (1.32 g, 5.48 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded 

the title compound 161b as a white solid (1.21 g, 74%); Rf 0.63 (1:1 hexane:EtOAc); m.p. 51–54 

°C; νmax (thin film)/cm-1 2912s, 2855w, 2125s, 1697s, 1457w, 1321m, 1269s, 1219w, 1164w, 

1122w, 1023s, 966m; δH (400 MHz, CDCl3) 1.30 (6 H, td, J = 7.1, J = 0.8, H-4), 1.60–1.61 (6 H, 

m, H-8), 2.07–2.15 (9 H, m, H-6,7), 4.05–4.20 (4 H, m, H-3); δC (100 MHz, CDCl3) 16.0 (d, J = 
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6.8, C-4), 30.7 (C-7), 35.9 (C-8), 41.4 (C-6), 53.9 (d, J = 228.4, C-2), 63.3 (d, J = 5.6, C-3), 82.9 

(C-5), 162.0 (d, J = 12.0, C-1); δP (162 MHz, CDCl3) 11.3; HRMS (ESI+): Found: 379.1384; 

C16H25N2NaO5P (MNa+) Requires 379.1393 (2.5 ppm error), Found: 357.1567; C16H26N2O5P 

(MH+) Requires 357.1574 (2.0 ppm error). 

Lab notebook reference: MGL/05/09 

6-Methylene-4-oxatetracyclo[6.3.1.13,10.03,7]tridecan-5-one (161c) 
 

 
 

Synthesised using general procedure D with adamantan-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 161b (75 mg, 0.210 mmol), CH2Cl2 (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 

µmol), THF (4.2 mL), KOBu-t (35.3 mg, 0.315 mmol) and paraformaldehyde (12.6 mg, 0.420 

mmol). Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 

161c as a white solid (34 mg, 79%); Rf 0.47 (4:1 hexane:EtOAc); m.p. 88–90 °C; νmax (thin 

film)/cm-1 2921s, 2856m, 1967w, 1764s, 1675w, 1451w, 1279w, 1262m, 1242w, 1211m, 1151m, 

1042s, 949s; δH (400 MHz, CDCl3) [1.57–1.89 (8 H, m), 1.99–2.15 (3 H, m), 2.30–2.35 (1 H, m) 

(H-6,7,8,10,11,12,13)], 2.44–2.48 (1 H, m, H-9), 2.81–2.84 (1 H, m, H-4), 5.36 (1 H, d, J = 3.2, H-

5b), 6.14 (1 H, d, J = 3.4, H-5a); δC (100 MHz, CDCl3) 29.2 (C-9), 29.2 (C-6/8/10/12/13), 29.6 (C-

7/11), 30.9 (C-7/11), [35.8, 37.6, 39.8, 41.1 (C-6/8/10/12/13)], 53.5 (C-4), 80.4 (C-5), 117.4 (C-3), 

138.6 (C-2), 170.8 (C-1); HRMS (ESI+): Found: 227.1050; C13H16NaO2 (MNa+) Requires 227.1043 

(−3.5 ppm error), Found: 205.1230; C13H17O2 (MH+) Requires 205.1223 (−3.2 ppm error). 

Lab notebook reference: MGL/05/22 
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5-α-Cholestan-3-β-yl 2-(diethoxyphosphoryl)acetate (217a) 

 

 
 

Synthesised using general procedure A with 5-α-cholestan-3-β-ol 217 (1.94 g, 5.00 mmol), toluene 

(25 mL), DEPAA (1.03 g, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 

50% w/w solution in EtOAc) affording the title compound 217a as a white solid (2.78 g, 98%). No 

further purification was required; Rf 0.25 (1:1 hexane:EtOAc); m.p. 102–105 °C; νmax (thin 

film)/cm-1 2935s, 2915s, 2867m, 2851m, 1734s, 1469m, 1385m, 1282s, 1258s, 1201s, 1115s, 

1047m, 1029s, 969s; δH (400 MHz, CDCl3) 0.64 (3 H, s), 0.81 (3 H, s), 0.85 (3 H, d, J = 6.6), 0.86 

(3 H, d, J = 6.6), 0.89 (3 H, d, J = 6.5), 0.96–1.84 (36 H, m), 1.95 (1 H, dt, J = 12.5, J = 3.3), 2.93 

(2 H, d, J = 21.6), 4.13–4.20 (4 H, m), 4.74 (1 H, tt, J = 11.0, J = 5.3); δC (100 MHz, CDCl3) 12.0 

(CH3), 12.2 (CH3), 16.3 (d, J = 5.9, CH3), 18.6 (CH3), 21.2 (CH2), 22.5 (CH3), 22.8 (CH3), 23.8 

(CH2), 24.2 (CH2), 27.3 (CH2), 28.0 (CH), 28.2 (CH2), 28.5 (CH2), 31.9 (CH2), 33.8 (CH2), 34.6 (d, 

J = 133.7, CH2), 35.4 (C), 35.4 (CH), 35.8 (CH), 36.1 (CH2), 36.7 (CH2), 39.5 (CH2), 39.9 (CH2), 

42.5 (C), 44.6 (CH), 54.2 (CH), 56.2 (CH), 56.4 (CH), 62.6 (d, J = 5.9, CH2), 75.1 (CH), 165.4 (d, 

J = 6.2, C); δP (162 MHz, CDCl3) 20.6; HRMS (ESI+): Found: 589.3980; C33H59NaO5P (MNa+) 

Requires 589.3992 (2.0 ppm error). 

Lab notebook reference: MGL/06/49 

5-α-Cholestan-3-β-yl 2-diazo-2-(diethoxyphosphoryl)acetate (217b) 

 

 
 

Synthesised using general procedure B with 5-α-cholestan-3-β-yl 2-(diethoxyphosphoryl)acetate 

217a (2.75 g, 4.85 mmol), THF (24.3 mL), LHMDS (5.82 mL, 5.82 mmol, 1.0 M solution in THF) 

and p-ABSA (1.40 g, 5.82 mmol). Purification by column chromatography (2:1 hexane:EtOAc) 

afforded the title compound 217b as a white solid (2.38 g, 83%); Rf 0.70 (1:1 hexane:EtOAc); m.p. 

95–98 °C; νmax (thin film)/cm-1 2932s, 2867w, 2129s, 1698s, 1469w, 1375w, 1331w, 1289s, 
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1119m, 1023s, 978m; δH (400 MHz, CDCl3) 0.64 (3 H, s), 0.81 (3 H, s), 0.85 (3 H, d, J = 6.6), 0.85 

(3 H, d, J = 6.6), 0.88 (3 H, d, J = 6.5), 0.95–1.86 (36 H, m), 1.95 (1 H, dt, J = 12.5, J = 3.2), 4.10–

4.26 (4 H, m), 4.79 (1 H, tt, J = 11.0, J = 5.3); δC (100 MHz, CDCl3) 12.0 (CH3), 12.2 (CH3), 16.1 

(d, J = 7.1, CH3), 18.6 (CH3), 21.2 (CH2), 22.5 (CH3), 22.8 (CH3), 23.8 (CH2), 24.2 (CH2), 27.6 

(CH2), 28.0 (CH), 28.2 (CH2), 28.5 (CH2), 31.9 (CH2), 34.1 (CH2), 35.4 (C), 35.4 (CH), 35.8 (CH), 

36.1 (CH2), 36.7 (CH2), 39.5 (CH2), 39.9 (CH2), 42.3 (C), 44.6 (CH), 53.7 (d, J = 225.5, C), 54.1 

(CH), 56.2 (CH), 56.3 (CH), 63.6 (d, J = 5.8, CH2), 75.5 (CH), 163.0 (d, J = 11.9, C); δP (162 

MHz, CDCl3) 10.8; HRMS (ESI+): Found: 615.3875; C33H57N2NaO5P (MNa+) Requires 615.3897 

(3.6 ppm error). 

Lab notebook reference: MGL/06/53 

(1R,3aS,3bR,5aS,6aR,9aS,10aS,10bS,12aR)-10a,12a-Dimethyl-9-methylene-1-((R)-6-

methylheptan-2-yl)hexadecahydro-1H-cyclopenta[7,8]phenanthro[2,3-b]furan-8(2H)-

one (217c), (3aS,5aR,5bS,7aR,8R,10aS,10bS,12aS,12bR)-5a,7a-Dimethyl-1-methylene-

8-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[7,8]phenanthro[2,1-

b]furan-2(12bH)-one (217d), (2'S,5S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-3'-

methylene-17-((R)-6-methylheptan-2-

yl)hexadecahydrospiro[cyclopenta[a]phenanthrene-3,2'-oxetan]-4'-one (217e) 

 

 
 

Synthesised using general procedure D with 5-α-cholestan-3-β-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 217b (116 mg, 0.196 mmol), CH2Cl2 (3.9 mL), Rh2(oct)4 (3.1 mg, 3.9 

µmol), THF (3.9 mL), KOBu-t (33.0 mg, 0.294 mmol) and paraformaldehyde (11.8 mg, 0.392 

mmol). Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compounds 

217e (6 mg, 7%) along with an inseparable mixture of compounds 217c and 217d (38 mg, 44%). 
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Note: The γ-regioisomers were isolated as an inseparable 1.18:1 mixture A:B, however the β-

regioisomer could be separated for characterisation purposes. 

 

Data for 217c and 217d; white solid; Rf 0.51 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2932s, 

2867s, 1773s, 1713m, 1466m, 1383m, 1234m, 1128m, 1001m, 910m, 732s; δH (400 MHz, CDCl3) 

0.63–2.13 (86 H, m, A, B), 2.22–2.42 (2 H, m, A,B), 2.49 (1 H, tt, J = 10.6, J = 3.0, A), 2.61 (1 H, 

tq, J = 11.5, J = 3.0, B), 3.66–3.74 (2 H, m, A,B), 5.32 (1 H, d, J = 3.0, B), 5.62 (1 H, d, J = 3.0, 

A), 6.03 (1 H, d, J = 3.2, B), 6.10 (1 H, d, J = 3.2, A); δC (100 MHz, CDCl3) 11.4, 12.0, 12.1, 13.7, 

14.2, 18.6, 21.3, 21.4, 22.5, 22.8, 23.8, 24.1, 24.2, 26.2, 28.0, 28.2, 28.2, 28.6, 28.9, 31.4, 31.7, 

32.0, 33.1, 34.9, 35.3, 35.4, 35.6, 35.7, 36.1, 36.1, 37.7, 37.8, 38.2, 38.5, 39.5, 39.8, 42.2, 42.5, 

42.6, 44.5, 44.7, 45.8, 46.4, 46.7, 48.1, 53.7, 54.0, 54.2, 56.2, 56.2, 56.2, 56.3, 83.3, 83.4, 116.1, 

118.8, 139.7, 140.3, 170.9, 171.2; HRMS (ESI+): Found: 463.3535; C30H48NaO2 (MNa+) Requires 

463.3547 (2.4 ppm error). 

 

Data for 217e; yellow gum; Rf 0.59 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2931s, 2869s, 1832s, 

1467m, 1382m, 1198m, 837m; δH (400 MHz, CDCl3) 0.64–2.13 (46 H, m), 5.54 (1 H, d, J = 1.8), 

5.78 (1 H, d, J = 1.8); δC (100 MHz, CDCl3) 11.5 (CH3), 12.1 (CH3), 18.6 (CH3), 21.3 (CH2), 22.5 

(CH3), 22.8 (CH3), 23.8 (CH2), 24.2 (CH2), 28.0 (CH), 28.2 (CH2), 28.5 (CH2), 30.8 (CH2), 31.8 

(CH2), 35.4 (C), 35.4 (CH), 35.8 (CH), 36.1 (CH2), 36.5 (CH2), 37.2 (CH2), 39.5 (CH2), 39.9 

(CH2), 42.6 (C), 44.7 (CH), 54.3 (CH), 56.3 (CH), 56.4 (CH), 87.2 (C), 112.9 (CH2), 150.4 (C), 

163.7 (C); HRMS (ESI+): Found: 463.3540; C30H48NaO2 (MNa+) Requires 463.3547 (1.5 ppm 

error). 

Lab notebook reference: MGL/06/57 

Cholesteryl 2-(diethoxyphosphoryl)acetate (218a) 
 

 
 

Synthesised using general procedure A with cholesterol 218 (1.00 g, 2.59 mmol), toluene (13 mL), 

DEPAA (533 mg, 2.72 mmol), DIPEA (1.17 mL, 6.73 mmol) and T3P (2.14 g, 3.37 mmol, 50% 

w/w solution in EtOAc) affording the title compound 218a as a yellow solid (1.46 g, 100%). No 

further purification was required; Rf 0.36 (1:1 hexane:EtOAc); m.p. 75–77 °C; νmax (thin film)/cm-1 

2934s, 2868w, 1733s, 1467m, 1368w, 1271s, 1115s, 1051m, 1024s, 967s; δH (400 MHz, CDCl3) 

0.66 (3 H, s), 0.82–1.66 (39 H, m), 1.77–2.02 (5 H, m), 2.34 (2 H, d, J = 7.6), 2.94 (2 H, d, J = 
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21.6), 4.13–4.20 (4 H, m), 4.65 (1 H, dtd, J = 11.9, J = 8.1, J = 3.9), 5.37 (1 H, d, J = 3.6); δC (100 

MHz, CDCl3) 11.8 (CH3), 16.3 (d, J = 6.4, CH3), 18.7 (CH3), 19.3 (CH3), 21.0 (CH2), 22.5 (CH3), 

22.8 (CH3), 23.8 (CH2), 24.2 (CH2), 27.6 (CH2), 28.0 (CH), 28.2 (CH2), 31.8 (CH), 31.8 (CH2), 

34.6 (d, J = 133.6, CH2), 35.7 (CH), 36.1 (CH2), 36.5 (C), 36.9 (CH2), 37.9 (CH2), 39.5 (CH2), 39.7 

(CH2), 42.3 (C), 49.9 (CH), 56.1 (CH), 56.6 (CH), 62.6 (d, J = 6.3, CH2), 75.3 (CH), 122.9 (CH), 

139.3 (C), 165.2 (d, J = 6.7, C); δP (162 MHz, CDCl3) 20.6; HRMS (ESI+): Found: 587.3830; 

C33H57NaO5P (MNa+) Requires 587.3836 (1.0 ppm error). 

Lab notebook reference: MGL/06/47 

Cholesteryl 2-diazo-2-(diethoxyphosphoryl)acetate (218b) 
 

 
 

Synthesised using general procedure B with cholesteryl 2-(diethoxyphosphoryl)acetate 218a (1.37 

g, 2.43 mmol), THF (12 mL), LHMDS (2.91 mL, 2.91 mmol, 1.0 M solution in THF) and p-ABSA 

(699 mg, 2.91 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the 

title compound 218b as a yellow gum (890 mg, 62%); Rf 0.70 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2935s, 2868w, 2128s, 1698s, 1468w, 1369w, 1279s, 1121m, 1022s, 976m; δH (400 

MHz, CDCl3) 0.67 (3 H, s), 0.82–2.02 (44 H, m), 2.28–2.39 (2 H, m), 4.11–4.26 (4 H, m), 4.70 (1 

H, tdd, J = 10.8, J = 6.4, J = 4.4), 5.37 (1 H, d, J = 5.1); δC (100 MHz, CDCl3) 11.8 (CH3), 16.1 (d, 

J = 6.8, CH3), 18.7 (CH3), 19.3 (CH3), 21.0 (CH2), 22.5 (CH3), 22.8 (CH3), 23.8 (CH2), 24.2 (CH2), 

27.9 (CH2), 28.0 (CH), 28.2 (CH2), 31.8 (CH), 31.9 (CH2), 35.7 (CH), 36.1 (CH2), 36.5 (C), 36.9 

(CH2), 38.2 (CH2), 39.5 (CH2), 39.7 (CH2), 42.3 (C), 49.9 (CH), 53.8 (d, J = 225.9, C), 56.1 (CH), 

56.6 (CH), 63.5 (d, J = 5.8, CH2), 75.6 (CH), 123.1 (CH), 139.2 (C), 162.9 (d, J = 12.3, C); δP (162 

MHz, CDCl3) 10.8; HRMS (ESI+): Found: 613.3721; C33H55N2NaO5P (MNa+) Requires 613.3741 

(3.2 ppm error). 

Lab notebook reference: MGL/06/52 
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(1R,3bS,6aR,9aS,10aR,10bS,12aR)-10a,12a-Dimethyl-9-methylene-1-((R)-6-

methylheptan-2-yl)-3,3a,3b,4,6,6a,9,9a,10,10a,10b,11,12,12a-tetradecahydro-1H-

cyclopenta[7,8]phenanthro[2,3-b]furan-8(2H)-one (218c), 

(2'S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-3'-methylene-17-((R)-6-methylheptan-2-

yl)-1,2,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydrospiro[cyclopenta[a]phenanthrene-3,2'-oxetan]-4'-one (218d) 
 

 
 

Synthesised using general procedure D with cholesteryl 2-diazo-2-(diethoxyphosphoryl)acetate 

218b (118 mg, 0.200 mmol), CH2Cl2 (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 µmol), THF (4.0 mL), 

KOBu-t (33.7 mg, 0.300 mmol) and paraformaldehyde (12.0 mg, 0.400 mmol). Purification by 

column chromatography (8:1 hexane:EtOAc) afforded the title compounds 218c:218d (2:1) (35 

mg, 40%). 

 

Small quantities of each compound were isolated separately for characterisation purposes.  

 

Data for 218c; white solid; Rf 0.69 (1:1 hexane:EtOAc); m.p. 104–109 °C; νmax (thin film)/cm-1 

2935s, 2866m, 1778s, 1462m, 1382m, 1254m, 1132s, 1000s, 926m, 813m; δH (400 MHz, CDCl3) 

0.69 (3 H, s), 0.83–1.62 (32 H, m), 1.79–1.89 (1 H, m), 1.99–2.07 (2 H, m), 2.19 (1 H, dd, J = 12.7, 

J = 3.4), 2.55–2.64 (2 H, m), 2.68–2.76 (1 H, m), 3.61 (1 H, td, J = 10.8, J = 5.7), 5.37 (1 H, d, J = 

3.0), 5.51 (1 H, d, J = 5.3), 6.07 (1 H, d, J = 3.2); δC (100 MHz, CDCl3) 11.9 (CH3), 18.7 (CH3), 

20.6 (CH3), 21.1 (CH2), 22.5 (CH3), 22.8 (CH3), 23.8 (CH2), 24.2 (CH), 28.0 (CH), 28.2 (CH2), 

31.7 (CH), 31.8 (CH2), 35.8 (CH), 36.1 (CH2), 38.1 (CH2), 38.3 (CH2), 38.4 (C), 39.5 (CH2), 39.6 

(CH2), 42.3 (C), 44.6 (CH), 50.1 (CH), 56.1 (CH), 56.6 (CH), 82.8 (CH), 117.1 (CH2), 126.1 (CH), 

137.8 (C), 139.8 (C), 170.8 (C); HRMS (ESI+): Found: 461.3387; C30H46NaO2 (MNa+) Requires 

461.3390 (0.6 ppm error). 
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Data for 218d; yellow gum; Rf 0.79 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2933s, 1821s, 

1465m, 1378m, 1260m, 1191m, 1086m, 1034m, 908s, 806s, 731s; δH (400 MHz, CDCl3) 0.70–

2.33 (42 H, m), 2.92–2.97 (1 H, m), 5.34 (1 H, d, J = 1.3), 5.44–5.46 (1 H, m), 5.74 (1 H, d, J = 

1.3); δC (100 MHz, CDCl3) 11.8 (CH3), 18.7 (CH3), 18.8 (CH3), 21.1 (CH2), 22.5 (CH3), 22.8 

(CH3), 23.8 (CH2), 24.3 (CH), 28.0 (CH), 28.2 (CH2), 31.0 (CH2), 31.8 (CH2), 32.0 (CH2), 35.8 

(CH), 36.1 (C), 36.6 (CH2), 36.8 (CH2), 39.5 (CH2), 39.6 (CH2), 41.4 (CH2), 42.3 (C), 50.3 (CH), 

56.1 (CH), 56.6 (CH), 86.9 (C), 113.8 (CH2), 124.5 (CH), 138.2 (C), 148.9 (C), 163.5 (C); HRMS 

(ESI+): Found: 461.3377; C30H46NaO2 (MNa+) Requires 461.3390 (2.9 ppm error). 

Lab notebook reference: MGL/06/56 

11-α-(2-(Diethoxyphosphoryl)acetoxy)progesterone (219a) 

 

 
 

Synthesised using general procedure A with 11α-hydroxyprogesterone 219 (1.26 g, 3.81 mmol), 

toluene (19 mL), DEPAA (785 mg, 4.00 mmol), DIPEA (1.73 mL, 9.91 mmol) and T3P (3.15 g, 

4.96 mmol, 50% w/w solution in EtOAc) affording the title compound 219a as a pale yellow solid 

(1.92 g, 99%). No further purification was required; Rf 0.16 (1:8 hexane:EtOAc); m.p. 108–111 °C; 

νmax (thin film)/cm-1 2971s, 2938s, 1729s, 1703s, 1670s, 1613w, 1447w, 1391m, 1358m, 1267s, 

1115m, 1048m, 1024s, 969s; δH (400 MHz, CDCl3) 0.72 (3 H, s), 1.08–1.36 (12 H, m), 1.46–1.53 

(2 H, m), 1.59–1.77 (3 H, m), 1.85–2.06 (3 H, m), 2.09 (3 H, s), 2.16–2.45 (6 H, m), 2.55 (1 H, t, J 

= 9.1), 2.85–2.99 (2 H, m), 4.13–4.21 (4 H, m), 5.28 (1 H, app. td, J = 10.6, J = 5.1), 5.75 (1 H, s); 

δC (100 MHz, CDCl3) 14.0 (CH3), 16.4 (d, J = 6.7, 2 × CH3), 18.1 (CH3), 22.9 (CH2), 24.2 (CH2), 

31.3 (CH3), 31.5 (CH2), 33.3 (CH2), 34.0 (CH2), 35.0 (d, J = 134.9, CH2), 35.0 (CH), 36.6 (CH2), 

39.7 (C), 43.7 (C), 44.9 (CH2), 54.8 (CH), 55.3 (CH), 62.7 (app. t, J = 6.3, 2 × CH2), 62.9 (CH), 

72.3 (CH), 124.9 (CH), 165.0 (d, J = 5.9, C), 169.1 (C), 199.2 (C), 208.2 (C); δP (162 MHz, 

CDCl3) 20.0; HRMS (ESI+): Found: 531.2484; C27H41NaO7P (MNa+) Requires 531.2482 (−0.3 

ppm error), Found: 509.2663; C27H42O7P (MH+) Requires 509.2663 (0.0 ppm error). 

Lab notebook reference: MGL/06/71 
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11-α-(2-Diazo-2-(diethoxyphosphoryl)acetoxy)progesterone (219b) 

 

 
 

Synthesised using general procedure B with 11-α-(2-(diethoxyphosphoryl)acetoxy)progesterone 

219a (970 mg, 1.91 mmol), THF (9.5 mL), LHMDS (2.29 mL, 2.29 mmol, 1.0 M solution in THF) 

and p-ABSA (550 g, 2.29 mmol). Purification by column chromatography (1:20 hexane:EtOAc) 

afforded the title compound 219b as a pale yellow solid (747 mg, 73%); Rf 0.28 (1:20 

hexane:EtOAc); m.p. 143–146 °C; νmax (thin film)/cm-1 2968s, 2934s, 2129s, 1702s, 1674s, 1446w, 

1391w, 1276s, 1219w, 1164w, 1120w, 1020s, 978m, 949m; δH (400 MHz, CDCl3) 0.73 (3 H, s), 

1.09–1.38 (12 H, m), 1.45–1.54 (2 H, m), 1.60–2.00 (6 H, m), 2.10 (3 H, s), 2.15–2.46 (6 H, m), 

2.53 (1 H, t, J = 9.0), 4.09–4.28 (4 H, m), 5.40 (1 H, app. td, J = 10.6, J = 5.2), 5.75 (1 H, s); δC 

(100 MHz, CDCl3) 13.9 (CH3), 16.1 (d, J 6.6, CH3), 16.2 (d, J 6.6, CH3), 18.0 (CH3), 22.9 (CH2), 

24.2 (CH2), 31.3 (CH3), 31.5 (CH2), 33.2 (CH2), 33.9 (CH2), 34.9 (CH), 36.5 (CH2), 39.7 (C), 43.7 

(C), 45.5 (CH2), 54.6 (d, J 224.4, C), 54.6 (CH), 55.4 (CH), 62.8 (CH), 63.5 (d, J 5.8, CH2), 63.7 

(d, J 5.8, CH2), 72.1 (CH), 124.9 (CH), 162.5 (d, J 12.9, C), 168.8 (C), 198.8 (C), 208.2 (C); δP 

(162 MHz, CDCl3) 10.4; HRMS (ESI+): Found: 557.2388; C27H39N2NaO7P (MNa+) Requires 

557.2387 (−0.2 ppm error), Found: 535.2560; C27H40N2O7P (MH+) Requires 535.2568 (1.5 ppm 

error). 

Lab notebook reference: MGL/06/77 
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(1S,3aS,3bS,9aR,9bS,9cS,12aR,12bR)-1-Acetyl-9a,12b-dimethyl-12-methylene-

3,3a,4,5,8,9,9a,9b,9c,12,12a,12b-dodecahydro-1H-cyclopenta[1,2]phenanthro[4,3-

b]furan-7,11(2H,3bH)-dione (219c) 
 

 
 

Synthesised using general procedure D with 11-α-(2-diazo-2-

(diethoxyphosphoryl)acetoxy)progesterone 219b (107 mg, 0.200 mmol), CH2Cl2 (4.0 mL), 

Rh2(oct)4 (3.1 mg, 4.0 mol), THF (4.0 mL), KOBu-t (33.7 mg, 0.300 mmol) and paraformaldehyde 

(12.0 mg, 0.400 mmol). Purification by column chromatography (1:4 hexane:EtOAc) afforded the 

title compound 219c as a pale yellow solid (18 mg, 24%); Rf 0.69 (EtOAc); m.p. 152–156 °C; νmax 

(thin film)/cm-1 2940m, 2878w, 1767s, 1706s, 1666s, 1616w, 1417w, 1353m, 1250m, 1236m, 

1170m, 1134m, 1049m, 975m, 734m; δH (400 MHz, CDCl3) 0.73–2.75 (26 H, m), 4.16 (1 H, app. 

t, J = 10.8), 5.41 (1 H, d, J = 2.9), 5.76 (1 H, s), 6.18 (1 H, d, J = 3.1); δC (100 MHz, CDCl3) 10.1 

(CH3), 17.9 (CH3), 23.8 (CH2), 27.5 (CH2), 30.6 (CH2), 32.8 (CH2), 33.0 (CH3), 33.8 (CH2), 34.4 

(CH), 36.9 (CH2), 38.8 (C), 45.6 (C), 56.4 (CH), 58.3 (CH), 58.8 (CH), 60.2 (CH), 79.1 (CH), 

120.9 (CH2), 125.3 (CH), 135.7 (C), 168.1 (C), 170.0 (C), 199.4 (C), 211.4 (C); HRMS (ESI+): 

Found: 405.2025; C24H30NaO4 (MNa+) Requires 405.2036 (2.9 ppm error).  

Lab notebook reference: MGL/06/79 
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5.2.2.3.  Eudesmanolide frameworks 

1-(3-(1,3-Dioxolan-2-yl)propyl)cyclohex-2-enol (235) 
 

 
 

Procedure developed based on literature precedent.112 Lithium naphthalenide could be effectively 

prepared using literature precedent.170 

 

Lithium naphthalenide was prepared from freshly chopped lithium wire (333 mg, 48.0 mmol) and 

naphthalene (103 mg, 0.80 mmol) in dry THF (33 mL) under an atmosphere of argon,. The dark 

green mixture was cooled to –78 °C and neat 2-(3-chloropropyl)-1,3-dioxolane 234 (3.31 g, 22.0 

mmol) was added over 5 mins during which time the mixture turned light green then colourless. 

The mixture was stirred at –78 °C for 1 h. To the now yellow solution was added freshly distilled 

neat 2-cyclohexen-1-one 232 (1.92 g, 20.0 mmol) dropwise over 5 mins and stirred for 16 h with 

warming at RT. The mixture was diluted with sat. aq. NH4Cl (200 mL) and extracted with EtOAc 

(2 × 250 mL). The combined organic extracts were washed with brine (200 mL), dried over 

Na2SO4 and concentrated in vacuo to afford the title compound 235 as a colourless oil (4.00 g, 

94%), which was used without further purification; Rf 0.30 (2:1 hexane:EtOAc); νmax (thin 

film)/cm-1 3447, 2933, 2872, 1704, 1408, 1140, 1031, 941, 733; δH (400 MHz, CDCl3) 1.40–2.09 

(12 H, m), 3.83–3.98 (4 H, m), 4.86 (1 H, t, J = 4.8), 5.62 (1 H, d, J = 10.0), 5.80 (1 H, ddd, J = 

10.0, J = 4.5, J = 2.9); δC (100 MHz, CDCl3) 18.2, 19.0, 25.2, 34.3, 35.3, 42.1, 64.8, 69.6, 104.5, 

130.0, 132.6; HRMS (ESI+): Found: 235.1311; C12H20NaO3 (MNa+) Requires 235.1305 (−2.5 ppm 

error). 
Lab notebook reference: MGL/05/90 

Obtained data in accord with those reported in the literature.114 
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3-(3-(1,3-Dioxolan-2-yl)propyl)cyclohex-2-enone (236) 

 

 
 

Prepared according to the literature procedure.114 

To a suspension of PCC (4.31 g, 20.0 mmol) and Al2O3 (4.08 g, 40.0 mmol) in CH2Cl2 (50 mL) 

cooled to 0 °C was added 1-(3-(1,3-dioxolan-2-yl)propyl)cyclohex-2-enol 235 (2.12 g, 10.0 mmol) 

and stirred at RT for 1 h. The mixture was filtered through a pad of Celite and silica. The filtrate 

was concentrated in vacuo and purified by column chromatography (1:1 hexane:EtOAc) to afford 

the title compound 236 as a pale yellow oil (1.11 g, 52%); Rf 0.40 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2948, 2874, 1665, 1623, 1130, 1041; δH (400 MHz, CDCl3) 1.59–1.70 (4 H, m), 1.98 (2 

H, app. quin., J = 6.5), 2.24–2.29 (4 H, m), 2.35 (2 H, t, J = 6.7), 3.83–3.97 (4 H, m), 4.86 (1 H, t, J 

= 3.9), 5.88 (1 H, s); δC (100 MHz, CDCl3) 21.2, 22.7, 29.5, 33.2, 37.3, 37.7, 64.9, 104.0, 125.8, 

165.9, 199.8; HRMS (ESI+): Found: 233.1153; C12H18NaO3 (MNa+) Requires 233.1148 (−2.2 ppm 

error), Found: 211.1336; C12H19O3 (MNa+) Requires 211.1329 (−3.6 ppm error). 

Lab notebook reference: MGL/05/92 

Obtained data in accord with reported literature.114 

((3-(3-(1,3-Dioxolan-2-yl)propyl)-3-methylcyclohex-1-en-1-yl)oxy)trimethylsilane 

(237) 

 

 
 

Procedure developed based on literature precedent.113  

LiCl (90.0 mg, 2.12 mmol) and CuI (202 mg, 1.06 mmol) were thoroughly heat-dried under 

vacuum then dissolved in dry THF (106 mL) under an atmosphere of argon, at RT. The solution 

was cooled to –40 °C at which time 3-(3-(1,3-dioxolan-2-yl)propyl)cyclohex-2-enone 236 (4.46 g, 

21.2 mmol) and freshly distilled TMSCl (2.96 mL, 23.3 mmol) were added and the solution stirred 
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for 10 mins. MeMgCl (10.6 mL, 31.8 mmol, 3.0 M solution in THF) was added dropwise over 5 

mins and stirred at –40 °C for 45 mins. The reaction mixture was then poured onto sat. aq. NH4Cl 

(300 mL) and extracted with EtOAc (3 × 300 mL). The combined organic extracts were dried over 

MgSO4 and concentrated in vacuo to afford the title compound 237 as a yellow oil (6.18 g, 98%), 

which was used without further purification; Rf 0.81 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 

2951s, 2871m, 1662s, 1363s, 1251s, 1204m, 1192m, 1132s, 964m, 884s, 839s; δH (400 MHz, 

CDCl3) 0.17 (9 H, s, H-13), 0.94 (3 H, s, H-12), 1.22–1.43 (6 H, m), 1.58–1.72 (4 H, m), 1.82–2.02 

(2 H, m), 3.80–4.00 (4 H, m, H-11), 4.65 (1 H, s, H-2), 4.84 (1 H, t, J = 4.8, H-10); δC (100 MHz, 

CDCl3) 0.3 (C-13), 18.9 (CH2), 19.6 (CH2), 27.9 (C-12), 29.9 (CH2), 34.5 (CH2), 34.6 (C-3), 34.7 

(CH2), 43.4 (CH2), 64.8 (C-11), 104.7 (C-10), 114.6 (C-2), 149.2 (C-1); HRMS (ESI+): Found: 

321.1846; C16H30NaO3Si (MNa+) Requires 321.1856 (3.2 ppm error), Found: 299.2031; C16H31O3Si 

(MH+) Requires 299.2037 (1.9 ppm error). 
Lab notebook reference: MGL/05/93, 06/04, 06/82 

(4aSR,8RS,8aRS)-8-Hydroxy-4a-methyloctahydronaphthalen-1(2H)-one (238d) 
 

 
 

Procedure Developed based on literature precedent.114  

To a solution of ((3-(3-(1,3-dioxolan-2-yl)propyl)-3-methylcyclohex-1-en-1-yl)oxy)trimethylsilane 

237 (298 mg, 1.00 mmol), in MeOH (3.0 mL) was added 10% aq. HCl (1.6 mL) and refluxed at 80 

°C for 1 h. The reaction mixture was neutralised by sat. aq. NaHCO3 and concentrated in vacuo. 

The aqueous layer was extracted with EtOAc (3 × 50 mL) and the combined organic extracts dried 

over MgSO4 and concentrated in vacuo. Purification by column chromatography afforded the title 

compound 238d as a brown solid (119 mg, 65%); Rf 0.32 (1:1 hexane:EtOAc); m.p. 52–55 °C; νmax 

(thin film)/cm-1 3406, 2931, 2870, 1702, 1048; δH (400 MHz, CDCl3) 0.93 (3 H, s), 1.10–1.25 (3 H, 

m), 1.50 (1 H, dtd, J = 13.8, J = 3.3, J = 1.1), 1.60–1.67 (2 H, m), 1.71–2.10 (6 H, m), 2.26 (1 H, 

ddq, J = 14.5, J = 4.8, J = 1.7), 2.53 (1 H, ddd, J = 14.5, J = 13.3, J = 7.3), 4.00 (1 H, app. tt, J = 

10.5, J = 5.1); δC (100 MHz, CDCl3) 19.8 (CH2), 22.1 (CH2), 27.7 (CH3), 29.8 (CH2), 35.0 (CH2), 

37.1 (CH2), 38.5 (CH2), 39.4 (C), 67.4 (CH), 69.6 (CH), 215.0 (CO); HRMS (ESI+): Found: 

205.1204; C11H18NaO2 (MNa+) Requires 205.1199 (−2.2 ppm error), Found: 183.1382; C11H19O2 

(MH+) Requires 183.1380 (−1.6 ppm error). 

Lab notebook reference: MGL/05/94, 06/05 

Obtained data in accord with reported literature.114  
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(4aSR,8RS,8aRS)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-

1(2H)-one (244) 
 

 
 

To a solution of (4aSR,8RS,8aRS)-8-hydroxy-4a-methyloctahydronaphthalen-1(2H)-one 238d (273 

mg, 1.50 mmol) in CH2Cl2 (15 mL) at 0 °C was added 2,6-lutidine (0.44 mL, 3.75 mmol) then 

TBSOTf (0.38 mL, 1.65 mmol). The solution was stirred at 0 °C for 1 h then quenched with NH4Cl 

(50 mL) and the organic fraction separated. The aqueous layer was extracted with CH2Cl2 (2 × 50 

mL) and the combined organic fractions dried over MgSO4 and concentrated in vacuo. Purification 

by column chromatography (4:1 hexane:EtOAc) afforded the title compound 244 as a white 

crystalline solid (440 mg, 99%); Rf 0.67 (4:1 hexane:EtOAc); m.p. 55–58 °C; νmax (thin film)/cm-1 

2929s, 2857s, 1713s, 1472w, 1462m, 1252s, 1089s, 832s, 774s; δH (400 MHz, CDCl3) −0.01 (3 H, 

s), 0.03 (3 H, s), 0.82 (9 H, s), 0.94 (3 H, s), 1.10–1.29 (3 H, m), 1.45 (1 H, dtd, J = 13.7, J = 3.8, J 

= 0.7), 1.53–1.67 (2 H, m), 1.80–2.04 (5 H, m), 2.18 (1 H, dddd, J = 13.7, J = 4.6, J = 3.1, J = 1.5), 

2.46 (1 H, ddd, J = 13.5, J = 12.7, J = 6.7), 4.12 (1 H, app. td, J = 9.9, J = 4.2); δC (100 MHz, 

CDCl3) −4.9 (CH3), −3.8 (CH3), 17.9 (C), 19.7 (CH2), 22.6 (CH2), 25.6 (CH3), 27.9 (CH3), 31.2 

(CH2), 35.1 (CH2), 37.9 (CH2), 38.3 (CH2), 39.6 (C), 67.0 (CH), 70.5 (CH), 212.7 (C); HRMS 

(ESI+): Found: 319.2055; C17H32NaO2Si (MNa+) Requires 319.2064 (2.8 ppm error), Found: 

297.2232; C17H33O2Si (MH+) Requires 297.2244 (4.1 ppm error). 

Lab notebook reference: MGL/06/11,28 
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(4aSR,8RS,8aRS)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl trifluoromethanesulfonate (245) 
 

 
 

To a solution of (4aSR,8RS,8aRS)-8-((tert-butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-

1(2H)-one 244 (720 mg, 2.43 mmol) in THF (12.2 mL) cooled to −40 °C under an atmosphere of 

argon, was added LHMDS (7.28 mL, 7.28 mmol, 1.0 M solution in THF) dropwise. The solution 

was stirred at −40 °C for 1 h then trifluoromethanesulfonic anhydride (1.23 mL, 7.28 mmol) was 

added dropwise. The solution was stirred at −40 °C for 20 mins then quenched by addition of water 

(25 mL). The mixture was extracted with diethyl ether (3 × 50 mL) and the combined organic 

extracts dried over MgSO4, filtered and concentrated in vacuo. Purification by column 

chromatography (40:1 hexane:diethyl ether) afforded the title compound 245 as a colourless oil 

(835 mg, 80%); Rf 0.77 (8:1 hexane:EtOAc); νmax (thin film)/cm-1 2931s, 2858m, 1416s, 1246s, 

1205s, 1144s, 1116m, 1082m, 1028m, 934m, 874m, 836s, 775m, 628m, 601s; δH (400 MHz, 

CDCl3) 0.02 (3 H, s), 0.03 (3 H, s), 0.88 (9 H, s), 1.02–1.08 (4 H, m), 1.25–1.49 (4 H, m), 1.57–

1.64 (1 H, m), 1.68–1.81 (2 H, m), 1.97 (1 H, d, J = 8.5), 2.24–2.29 (2 H, m), 3.69 (1 H, td, J = 9.3, 

J = 3.7), 5.68 (1 H, t, J = 3.9); δC (100 MHz, CDCl3) −4.8 (CH3), −4.9 (CH3), 17.9 (C), 19.3 (CH2), 

21.5 (CH2), 25.8 (CH3), 26.9 (CH3), 28.0 (CH2), 35.4 (CH2), 35.7 (C), 38.1 (CH2), 52.9 (CH), 74.3 

(CH), 117.7 (CH), 118.5 (q, J = 319.9, C), 151.9 (C); HRMS (ESI+): Found: 451.1546; 

C18H31F3NaO4SSi (MNa+) Requires 451.1557 (2.4 ppm error), Found: 429.1737; C18H32F3O4SSi 

(MH+) Requires 429.1737 (0.1 ppm error). 

Lab notebook reference: MGL/07/30 
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tert-Butyl(((1RS,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-

yl)oxy)dimethylsilane (246) 
 

 
 

Prepared according to a modified literature procedure.116 

To a solution of (4aSR,8RS,8aRS)-8-((tert-butyldimethylsilyl)oxy)-4a-methyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl trifluoromethanesulfonate 245 (355 mg, 0.828 mmol) in THF (1.24 mL) 

and NMP (3.31 mL) under an atmosphere of argon, was added Fe(acac)3 (322 mg, 0.911 mmol). 

The solution was cooled to −25 °C and methylmagnesium chloride (2.76 mL, 8.28 mmol, 3.0 M 

solution in THF) was added dropwise. The orange solution was stirred at −25 °C for 1 h then 

quenched by careful addition of sat. aq. NH4Cl (25 mL). The mixture was extracted with diethyl 

ether (3 × 25 mL) and the combined organic extracts dried over MgSO4, filtered and concentrated 

in vacuo. Purification by column chromatography (hexane) afforded the title compound 246 as a 

colourless oil (201 mg, 82%); Rf 0.45 (hexane); νmax (thin film)/cm-1 2928s, 2858s, 1462m, 1373m, 

1251s, 1095m, 1071s, 1041s, 921s, 860m, 834s, 773s; δH (400 MHz, CDCl3) 0.01 (3 H, s), 0.03 (3 

H, s), 0.87–0.95 (12 H, m), 1.19–1.55 (7 H, m), 1.69–1.79 (5 H, m), 1.98–2.15 (2 H, m), 3.61 (1 H, 

app. td, J = 9.6, J = 3.8), 5.24–5.30 (1 H, m); δC (100 MHz, CDCl3) −4.6 (CH3), −4.5 (CH3), 18.1 

(C), 19.9 (CH2), 23.0 (CH2), 26.0 (CH3), 26.4 (CH3), 27.4 (CH3), 28.0 (CH2), 34.0 (C), 36.4 (CH2), 

39.0 (CH2), 54.1 (CH), 75.8 (CH), 120.1 (CH), 136.6 (C); HRMS (ESI+): Found: 317.2265; 

C18H34NaOSi (MNa+) Requires 317.2271 (2.0 ppm error). 

Lab notebook reference: MGL/07/34,37 
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(1RS,4aSR,8aSR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-ol (247) 

 

 
 

To a solution of tert-butyl(((1RS,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-

1-yl)oxy)dimethylsilane 246 (321 mg, 1.09 mmol) in THF (5.5 mL) under an atmosphere of argon, 

at RT was added TBAF (5.45 mL, 5.00 mmol, 1.0 M in THF). The solution was refluxed for 1 h, 

allowed to cool at RT, then quenched by addition of water (25 mL). The aqueous layer was 

extracted with diethyl ether (3 × 25 mL) and the combined organic extracts dried over MgSO4, 

filtered and concentrated in vacuo. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compound 247 as a white solid (172 mg, 88%); Rf 0.39 (8:1 hexane:EtOAc); m.p. 

65–67 °C; νmax (thin film)/cm-1 3337br, 2924s, 2863s, 2842s, 1450s, 1373m, 1353m, 1180w, 

1133w, 1080m, 1061s, 1027s, 1008s, 854s, 804s; δH (400 MHz, CDCl3) 0.86–0.91 (4 H, m), 1.21–

1.31 (2 H, m), 1.37–1.56 (5 H, m), 1.69–1.77 (1 H, m), 1.85–1.91 (4 H, m), 2.04–2.08 (2 H, m), 

3.56 (1 H, ddd, J = 11.2, J = 9.7, J = 4.3), 5.34–5.37 (1 H, m); δC (100 MHz, CDCl3) 20.1 (CH2), 

23.1 (CH2), 26.5 (CH3), 27.0 (CH3), 27.1 (CH2), 34.0 (C), 36.6 (CH2), 39.7 (CH2), 54.6 (CH), 75.6 

(CH), 120.9 (CH), 135.9 (C); HRMS (ESI+): Found: 203.1405; C12H20NaO (MNa+) Requires 

203.1406 (0.5 ppm error). 

Lab notebook reference: MGL/07/38 

(1RS,4aSR,8aSR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl 2-

(diethoxyphosphoryl)acetate (248) 
 

 
 

Synthesised using general procedure A with (1RS,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-ol 247 (145 mg, 0.804 mmol), toluene (4.0 mL), DEPAA (166 mg, 0.844 

mmol), DIPEA (0.36 mL, 2.09 mmol) and T3P (665 mg, 1.05 mmol, 50% w/w solution in THF) 
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affording the title compound 248 as a yellow oil (288 mg, 100%). No further purification was 

required; Rf 0.33 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2978w, 2931s, 2869m, 1731s, 1450m, 

1393m, 1375m, 1261s, 1111s, 1051s, 1020s, 967s; δH (400 MHz, CDCl3) 0.89–0.97 (4 H, m), 

1.23–1.36 (8 H, m), 1.41–1.58 (3 H, m), 1.68 (1 H, d, J = 9.9), 1.72–1.80 (4 H, m), 1.96–2.13 (3 H, 

m), 2.86–3.01 (2 H, m), 4.13–4.21 (4 H, m), 4.82 (1 H, app. td, J = 10.4, J = 4.2),  5.32–5.37 (1 H, 

m); δC (100 MHz, CDCl3) 16.2 (d, J = 5.7, CH3), 16.3 (d, J = 5.7, CH3), 19.4 (CH2), 22.8 (CH2), 

25.4 (CH3), 26.9 (CH3), 27.4 (CH2), 31.9 (CH2), 34.0 (C), 34.6 (d, J = 135.1, CH2), 38.9 (CH2), 

50.5 (CH), 62.5 (app. t, J = 5.3, 2 × CH2), 79.2 (CH), 122.0 (CH), 134.0 (C), 165.2 (d, J = 5.8, C); 

δP (162 MHz, CDCl3) 20.5; HRMS (ESI+): Found: 381.1802; C18H31NaO5P (MNa+) Requires 

381.1801 (−0.1 ppm error), Found: 359.1981; C18H32O5P (MH+) Requires 359.1982 (0.1 ppm 

error). 

Lab notebook reference: MGL/07/41 

(1RS,4aSR,8aSR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl 2-diazo-

2-diethoxyphosphoryl)acetate (249) 
 

 
 

Synthesised using general procedure B with (1RS,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-yl 2-diethoxyphosphoryl)acetate 248 (279 mg, 0.778 mmol), THF (3.9 

mL), LHMDS (0.93 mL, 0.934 mmol, 1.0 M solution in THF) and p-ABSA (224 mg, 0.934 mmol). 

Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 249 as a 

pale yellow oil (265 mg, 89%); Rf 0.63 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2932s, 2870w, 

2124s, 1705s, 1451w, 1376w, 1286s, 1273s, 1022s, 980m; δH (400 MHz, CDCl3) 0.91–0.99 (4 H, 

m), 1.24–1.38 (8 H, m), 1.43–1.60 (3 H, m), 1.68–1.79 (5 H, m), 1.92–2.15 (3 H, m), 4.10–4.28 (4 

H, m), 4.95 (1 H, app. td, J = 10.2, J = 4.2),  5.35–5.39 (1 H, m); δC (100 MHz, CDCl3) 16.0 (d, J = 

7.2, 2 × CH3), 19.3 (CH2), 22.8 (CH2), 25.1 (CH3), 26.9 (CH3), 27.6 (CH2), 32.3 (CH2), 34.1 (C), 

38.7 (CH2), 50.6 (CH), 53.7 (d, J = 227.8, C), 63.4 (d, J = 5.8, CH2), 63.5 (d, J = 5.8, CH2), 79.1 

(CH), 122.4 (CH), 133.6 (C), 162.7 (d, J = 12.5, C); δP (162 MHz, CDCl3) 11.0; HRMS (ESI+): 

Found: 407.1704; C18H29N2NaO5P (MNa+) Requires 407.1706 (0.5 ppm error). 

Lab notebook reference: MGL/07/42 

THF

249

p-ABSA
LHMDS

Me

OH

O
P
O

O
OMe

248
Me

OH

O
P
O

O
OMe

N2



 270 

(3aRS,5aRS,9aSR,9bRS)-5a,9-Dimethyl-3-methylene-3a,4,5,5a,6,7,9a,9b-

octahydronaphtho[1,2-b]furan-2(3H)-one (240) 
 

 
 

Synthesised using general procedure D with (1RS,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-yl 2-diazo-2-diethoxyphosphoryl)acetate 249 (72 mg, 0.187 mmol), CH2Cl2 

(3.7 mL), Rh2(oct)4 (2.9 mg, 3.7 µmol), THF (3.7 mL), KOBu-t (31.5 mg, 0.281 mmol) and 

paraformaldehyde (11.2 mg, 0.374 mmol). Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compound 240 as a white crystalline solid (28 mg, 64%); Rf 0.33 

(8:1 hexane:EtOAc); m.p. 63–66 °C; νmax (thin film)/cm-1 2931m, 2871w, 1771s, 1451m, 1378m, 

1278m, 1244s, 1081m, 1127s, 1014s, 980s; δH (400 MHz, CDCl3) 0.98–1.04 (4 H, m), 1.42–1.77 

(4 H, m), 1.83–1.86 (4 H, m, H-9,12), 1.93–1.97 (1 H, m, H-6), 2.06–2.12 (2 H, m), 2.45–2.53 (1 

H, m, H-7), 3.73 (1 H, app. t, J = 10.9, H-8), 5.39 (1 H, d, J = 3.1, H-15b), 5.39–5.43 (1 H, m, H-

2), 6.06 (1 H, d, J = 3.3, H-15a); δC (100 MHz, CDCl3) 21.8 (C-6), 22.8 (C-3), 24.7 (C-12), 26.7 

(C-11), 27.9 (C-4), 34.9 (C-10), 40.2 (C-5), 49.2 (C-7), 50.5 (C-9), 87.4 (C-8), 117.3 (C-15), 121.1 

(C-2), 133.4 (C-1), 139.3 (C-14), 170.9 (C-13); HRMS (ESI+): Found: 255.1355; C15H20NaO2 

(MNa+) Requires 255.1356 (0.2 ppm error), Found: 233.1545; C15H21O2 (MH+) Requires 233.1536 

(−4.0 ppm error). 

Lab notebook reference: MGL/07/43 
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(4aSR,8RS,8aRS)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyl-1-

((trimethylsilyl)methyl)decahydronaphthalen-1-ol (250) 
  

 
 

To a solution of (trimethylsilyl)methyllithium (4.63 mL, 4.63 mmol, 1.0 M in pentane) cooled to 

−78 °C under an atmosphere of argon, was added dropwise via cannula a solution of 

(4aSR,8RS,8aRS)-8-((tert-butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-1(2H)-one 244 

(458 mg, 1.54 mmol) in THF (2.5 mL) pre-cooled to −78 °C. The solution was stirred at −78 °C for 

30 mins and then at RT for 1 h. The solution was quenched by careful addition of water (10 mL) 

and stirred for 10 mins. The aqueous layer was extracted with diethyl ether (3 × 25 mL) and the 

combined organic extracts dried over MgSO4, filtered and concentrated in vacuo. Purification by 

column chromatography (20:1 hexane:EtOAc) afforded the title compound 250 as a colourless oil 

(497 mg, 84%); Rf 0.58 (8:1 hexane:EtOAc); νmax (thin film)/cm-1 2928s, 2857m, 1462m, 1361w, 

1249s, 1056m, 1027s, 1005m, 862m, 836s, 772s; δH (400 MHz, CDCl3) 0.05 (3 H, s), 0.06 (3 H, s), 

0.07 (9 H, s), 0.89 (9 H, s), 0.92–1.00 (2 H, m), 1.12 (3 H, s), 1.16–1.97 (14 H, m), 4.33–4.36 (1 H, 

m); δC (100 MHz, CDCl3) −4.6 (CH3), −4.2 (CH3), 0.6 (CH3), 16.9 (CH2), 17.6 (CH2), 17.9 (C), 

25.8 (CH3), 32.0 (CH3), 32.3 (CH2), 33.1 (C), 33.8 (CH2), 34.2 (CH2), 42.0 (CH2), 42.7 (CH2), 56.4 

(CH), 69.1 (CH), 74.7 (C); HRMS (ESI+): Found: 407.2754; C21H44NaO2Si2 (MNa+) Requires 

407.2772 (4.3 ppm error). 

Lab notebook reference: MGL/06/42,29,33,90 
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tert-Butyldimethyl(((1RS,4aRS,8aRS)-4a-methyl-8-methylenedecahydronaphthalen-1-

yl)oxy)silane (251) 
  

 
 

Sodium hydride was purified by washing with hexane and drying in vacuo immediately prior to the 

reaction. 

 

To a suspension of sodium hydride (827 mg, 20.7 mmol) in THF (6.5 mL) under an atmosphere of 

argon, was added via cannula a solution of (4aSR,8RS,8aRS)-8-((tert-butyldimethylsilyl)oxy)-4a-

methyl-1-((trimethylsilyl)methyl)decahydronaphthalen-1-ol 250 (497 mg, 1.29 mmol) in THF (3 

mL). The mixture was heated to reflux and stirred for 4 h then cooled at RT. The mixture was 

carefully poured into sat. aq. NH4Cl (100 mL) and extracted with diethyl ether (3 × 100 mL). The 

combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo affording the 

title compound 251 as a yellow oil (385 mg, 100%). No further purification was required; Rf 0.88 

(8:1 hexane:EtOAc); νmax (thin film)/cm-1 2929s, 2856m, 1650w, 1461m, 1362m, 1248s, 1096s, 

1082s, 1055m, 919m, 888s, 833s, 772s; δH (400 MHz, CDCl3) −0.03 (3 H, s), 0.01 (3 H, s), 0.84 (9 

H, s), 0.89 (3 H, s), 0.91–0.97 (1 H, m), 1.16–1.28 (2 H, m), 1.37 (1 H, app. dtd, J = 13.5, J = 3.2, J 

= 1.6), 1.44–1.67 (4 H, m), 1.70–1.78 (2 H, m), 1.92 (1 H, app. ddtd, J = 12.5, J = 4.7, J = 3.2, J = 

1.6), 2.00–2.13 (2 H, m), 3.76 (1 H, ddd, J = 10.8, J = 10.0, J = 4.6), 4.66 (1 H, app. dd, J = 2.8, J 

= 1.2), 4.76 (1 H, app. t, J = 2.1); δC (100 MHz, CDCl3) −4.8 (CH3), −4.1 (CH3), 18.1 (C), 20.0 

(CH2), 23.3 (CH2), 25.9 (CH3), 28.4 (CH3), 31.0 (CH2), 31.3 (CH2), 36.0 (C), 36.4 (CH2), 40.1 

(CH2), 60.0 (CH), 68.9 (CH), 112.0 (CH2), 146.4 (C); HRMS (ESI+): Found: 317.2267; 

C18H34NaOSi (MNa+) Requires 317.2271 (1.4 ppm error). 

Lab notebook reference: MGL/06/43,36,91 
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(1RS,4aRS,8aRS)-4a-Methyl-8-methylenedecahydronaphthalen-1-ol (252) 

  

 
 

To a solution of tert-butyldimethyl(((1RS,4aRS,8aRS)-4a-methyl-8-

methylenedecahydronaphthalen-1-yl)oxy)silane 251 (85 mg, 0.289 mmol) in THF (1.5 mL) under 

an atmosphere of argon, at RT was added TBAF (1.44 mL, 1.44 mmol, 1.0 M in THF). The 

solution was refluxed for 1 h, allowed to cool at RT, then quenched by addition of water (10 mL). 

The aqueous layer was extracted with diethyl ether (3 × 25 mL) and the combined organic extracts 

dried over MgSO4, filtered and concentrated in vacuo. Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compound 252 as a pale yellow oil (42 mg, 81%); Rf 0.31 (8:1 

hexane:EtOAc); νmax (thin film)/cm-1 3431br, 3068w, 2933s, 2867s, 1646m, 1450s, 1264w, 1159w, 

1064s, 1049s, 1022m, 1011m, 896s; δH (400 MHz, CDCl3) 0.89 (3 H, s), 0.97 (1 H, app. dddt, J = 

13.3, J = 3.9, J = 2.6, J = 1.3), 1.11–1.27 (2 H, m), 1.39–1.80 (8 H, m), 2.03–2.18 (3 H, m), 3.70 (1 

H, ddd, J = 11.0, J = 10.2, J = 4.4), 4.78 (1 H, app. t, J = 2.2), 4.91 (1 H, app. t, J = 2.1); δC (100 

MHz, CDCl3) 19.7 (CH2), 22.7 (CH2), 28.3 (CH3), 30.2 (CH2), 30.8 (CH2), 33.6 (CH2), 35.7 (C), 

39.9 (CH2), 60.2 (CH), 67.1 (CH), 112.8 (CH2), 146.9 (C); HRMS (ESI+): Found: 203.1400; 

C12H20NaO (MNa+) Requires 203.1406 (3.3 ppm error). 

Lab notebook reference: MGL/06/37,45,97 

(1RS,4aRS,8aRS)-4a-Methyl-8-methylenedecahydronaphthalen-1-yl 2-

(diethoxyphosphoryl)acetate (253) 
 

 
 

Synthesised using general procedure A with (1RS,4aRS,8aRS)-4a-methyl-8-

methylenedecahydronaphthalen-1-ol 252 (108 mg, 0.600 mmol), toluene (3.0 mL), DEPAA (124 

mg, 0.630 mmol), DIPEA (0.27 mL, 1.56 mmol) and T3P (496 mg, 0.780 mmol, 50% w/w solution 
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in THF) affording the title compound 253 as a yellow oil (176 mg, 82%). No further purification 

was required; Rf 0.14 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 2978w, 2932s, 2869w, 1731s, 

1648w, 1445w, 1393w, 1267s, 1113m, 1051w, 1024s, 965s; δH (400 MHz, CDCl3) 0.89 (3 H, s), 

0.94–1.00 (1 H, m), 1.16–1.66 (13 H, m), 1.78 (1 H, td, J = 13.5, J = 4.6), 1.85 (1 H, d, J = 10.8), 

1.96–2.07 (2 H, m), 2.13–2.22 (1 H, m), 2.83 (1 H, dd, J = 21.4, J = 14.5), 2.90 (1 H, dd, J = 21.4, 

J = 14.5), 4.09–4.17 (4 H, m), 4.62 (1 H, app. t, J = 2.0), 4.73 (1 H, app. t, J = 2.3), 5.15 (1 H, app. 

td, J = 11.2, J = 4.5); δC (100 MHz, CDCl3) 16.3 (d, J = 6.5, 2 × CH3), 19.7 (CH2), 22.7 (CH2), 28.0 

(CH3), 30.3 (CH2), 30.7 (CH2), 31.8 (CH2), 34.2 (d, J = 134.6, CH2), 36.3 (C), 39.6 (CH2), 56.8 

(CH), 62.5 (app. t, J = 5.7, 2 × CH2), 72.0 (CH), 112.0 (CH2), 145.8 (C), 165.1 (d, J = 5.9, C); δP 

(162 MHz, CDCl3) 20.7; HRMS (ESI+): Found: 381.1783; C18H31NaO5P (MNa+) Requires 

381.1801 (4.7 ppm error). 

Lab notebook reference: MGL/06/51  

(1RS,4aRS,8aRS)-4a-Methyl-8-methylenedecahydronaphthalen-1-yl 2-diazo-2-

diethoxyphosphoryl)acetate (254) 

 

 
 

Synthesised using general procedure B with (1RS,4aRS,8aRS)-4a-methyl-8-

methylenedecahydronaphthalen-1-yl 2-diethoxyphosphoryl)acetate 253 (175 mg, 0.488 mmol), 

THF (2.5 mL), LHMDS (0.59 mL, 0.585 mmol, 1.0 M solution in THF) and p-ABSA (141 mg, 

0.585 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title 

compound 254 as a colourless oil (146 mg, 78%); Rf 0.28 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 

2982w, 2934s, 2870m, 2124s, 1703s, 1445w, 1361w, 1289w, 1273s, 1218m, 1161m, 1120w, 

1021s, 978s; δH (400 MHz, CDCl3) 0.91 (3 H, s), 0.96–1.02 (1 H, m), 1.17–1.67 (13 H, m), 1.78 (1 

H, td, J = 13.5, J = 4.6), 1.86 (1 H, d, J = 10.8), 1.98–2.09 (2 H, m), 2.16–2.25 (1 H, m), 4.03–4.24 

(4 H, m), 4.64 (1 H, app. t, J = 2.1), 4.74 (1 H, app. t, J = 2.3), 5.22 (1 H, app. td, J = 11.2, J = 4.5); 

δC (100 MHz, CDCl3) 16.1 (app. t, J = 7.6, 2 × CH3), 19.8 (CH2), 22.7 (CH2), 28.0 (CH3), 30.3 

(CH2), 30.7 (CH2), 32.1 (CH2), 36.4 (C), 39.5 (CH2), 53.0 (d, J = 225.1, C), 57.2 (CH), 63.4 (d, J = 

5.5, CH2), 63.5 (d, J = 5.7, CH2), 72.2 (CH), 111.9 (CH2), 146.1 (C), 162.6 (d, J = 12.4, C); δP (162 

MHz, CDCl3) 11.0; HRMS (ESI+): Found: 385.1884; C18H30N2O5P (MH+) Requires 385.1887 (0.7 

ppm error). 

Lab notebook reference: MGL/06/55, 06/39, 07/13 
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(3aRS,5aRS,9aRS,9bRS)-5a-Methyl-3,9-dimethylenedecahydronaphtho[1,2-b]furan-

2(9bH)-one (241) and Diethyl ((3aRS,3a1SR,6aRS)-6a-methyl-2-

oxododecahydrobenzo[de]cyclopropa[c]chromen-1a-yl)phosphonate (255) 
 

 
 

Synthesised using general procedure D with (1RS,4aRS,8aRS)-4a-methyl-8-

methylenedecahydronaphthalen-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate 254 (77 mg, 0.200 

mmol), CH2Cl2 (4.0 mL), Rh2(OAc)4 (1.8 mg, 4.0 µmol), THF (4.0 mL), KOBu-t (33.7 mg, 0.300 

mmol) and paraformaldehyde (12.0 mg, 0.400 mmol). Purification by column chromatography (8:1 

hexane:EtOAc → 1:4 hexane:EtOAc) afforded the title compounds 241 as a white crystalline solid 

(21 mg, 45%) and 255 as a pale yellow oil (8 mg, 11%).  

 

Data for 241: Rf 0.39 (4:1 hexane:EtOAc); m.p. 66–68 °C; νmax (thin film)/cm-1 2932s, 2869w, 

1770s, 1650w, 1456m, 1378m, 1247s, 1171m, 1131s, 1024s, 991s, 964m, 936m, 892m; δH (400 

MHz, CDCl3) 1.00 (3 H, s, H-15), 1.07 (1 H, dddt, J = 13.6, J = 3.9, J = 2.6, J = 1.3, H-1), 1.42–

1.71 (5 H, m, H-2,8,9), 1.77 (1 H, td, J = 13.6, J = 4.6, H-1), 1.96–2.02 (1 H, m, H-8), 2.09–2.23 (3 

H, m, H-3,5), 2.45 (1 H, app. tq, J = 11.1, J = 3.2, H-7), 4.11 (1 H, app. t, J = 11.1, H-6), 4.80 (1 H, 

app. t, J = 1.8, H-14a), 4.88 (1 H, app. t, J = 2.0, H-14b), 5.40 (1 H, d, J = 3.0, H-12b), 6.07 (1 H, 

d, J = 3.2, H-12a); δC (100 MHz, CDCl3) 21.9 (C-8), 22.9 (C-2), 27.6 (C-15), 30.0 (C-3), 31.7 (C-

1), 37.3 (C-10), 40.0 (C-9), 48.8 (C-7), 55.9 (C-5), 80.6 (C-6), 112.7 (C-14), 117.3 (C-12), 139.8 

(C-11), 144.0 (C-4), 170.6 (C-13); HRMS (ESI+): Found: 255.1362; C15H20NaO2 (MNa+) Requires 

255.1356 (−2.5 ppm error), Found: 233.1541; C15H21O2 (MH+) Requires 233.1536 (−2.2 ppm 

error). 

 

Data for 255: Rf 0.33 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2980w, 2934s, 2868m, 1735s, 

1452s, 1392w, 1375w, 1317m, 1296m, 1249s, 1208s, 1051m, 1031s, 971s; δH (400 MHz, CDCl3) 

0.58 (1 H, d, J = 9.8, H-5), 1.07–1.14 (4 H, m), 1.20–1.68 (15 H, m), 1.80 (1 H, dd, J = 17.5, J = 

4.8, H-11), 1.85–1.93 (1 H, m), 2.05–2.08 (1 H, m), 2.13–2.22 (1 H, m, H-7), 4.09–4.34 (4 H, m, 

H-15,15’), 4.47 (1 H, ddd, J = 10.9, J = 9.9, J = 5.7, H-6); δC (100 MHz, CDCl3) 16.2 (d, J = 6.8, 

C-16/16’), 16.3 (d, J = 6.6, C-16/16’), 18.4 (C-2/8), 19.6 (C-2/8), 24.5 (d, J = 182.9, C-12), 26.4 (d, 
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J = 4.8, C-3), 26.7 (d, J = 3.9, C-3), 29.1 (C-14), 29.6 (d, J = 3.2, C-11), 31.6 (C-7), 32.1 (C-1/9), 

34.3 (C-10), 40.2 (C-1/9), 55.4 (d, J = 2.0, C-5), 62.4 (d, J = 7.4, C-15/15’), 63.2 (d, J = 5.7, C-

15/15’), 78.4 (C-6), 168.3 (d, J = 6.0, C-13); δP (162 MHz, CDCl3) 21.6; HRMS (ESI+): Found: 

379.1635; C18H29NaO5P (MNa+) Requires 379.1645 (2.7 ppm error), Found: 357.1817; C18H30O5P 

(MH+) Requires 357.1825 (2.2 ppm error). 

Lab notebook reference: MGL/07/14, 06/40, 06/58 

4a-Methylhexahydronaphthalene-1,8(2H,8aH)-dione (258) 
 

 
 

To a solution of (4aSR,8RS,8aRS)-8-hydroxy-4a-methyloctahydronaphthalen-1(2H)-one 238d (182 

mg, 1.00 mmol) in CH2Cl2 (10 mL), cooled to 0 °C was added DMP (467 mg, 1.10 mmol). The 

solution was stirred for 15 mins at 0 °C and then for 30 mins at RT after which a mixture of 1:1 sat. 

aq. NaHCO3: sat. aq. Na2S2O3 (50 mL) and CH2Cl2 (50 mL) was added and stirred vigourously for 

1 h. The organic phase was separated and the aqueous phase extracted with CH2Cl2 (2 × 50 mL). 

The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. 

Purification by column chromatography (2:1 hexane:EtOAc) afforded the title compound 258 as a 

yellow solid (142 mg, 79%); N.B. The product appears as two spots by TLC, a major (less polar) 

and minor (more polar); Rf 0.94 (major), 0.71 (minor) (2:1 hexane:EtOAc); m.p. 50–53 °C; νmax 

(thin film)/cm-1 2940s, 1593s, 1457m, 1407m, 1336w, 1248m, 1168w, 1081w, 1038w, 962m, 

829m; δH (400 MHz, CDCl3) 1.03 (3 H, s), 1.37 (2 H, td, J = 13.4, J = 4.0), 1.54 (2 H, dt, J = 13.0, 

J = 3.4), 1.69–1.77 (2 H, m), 1.87–1.99 (2 H, m), 2.28–2.43 (4 H, m), 16.02 (1 H, s); δC (100 MHz, 

CDCl3) 17.1, 26.7, 32.1, 32.8, 37.4, 114.4, 189.9; HRMS (ESI+): Found: 203.1036; C11H16NaO2 

(MNa+) Requires 203.1043 (3.1 ppm error), Found: 181.1215; C11H17O2 (MH+) Requires 181.1223 

(4.7 ppm error). 

Lab notebook reference: MGL/06/87 

 

Note: The spectroscopic data suggests the enol form 258’ predominates. 
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(4aSR,8SR,8aSR)-8-Hydroxy-4a-methyloctahydronaphthalen-1(2H)-one (238a) and 

(4aSR,8SR,8aRS)-8-Hydroxy-4a-methyloctahydronaphthalen-1(2H)-one (238c) 
 

 
 

To a solution of 4a-methylhexahydronaphthalene-1,8(2H,8aH)-dione 258 (2.04 g, 11.3 mmol) in 

MeOH (57 mL) cooled to 0 °C under an atmosphere of argon, was added NaBH4 (470 mg, 12.4 

mmol) in small portions over 1 h. The solution was stirred at 0 °C for 1 h then quenched with sat. 

aq. NaHCO3 (25 mL) and concentrated in vacuo. To the resulting white residue was added CH2Cl2 

(50 mL) and water (50 mL). The organic layer was separated and the aqueous layer extracted with 

CH2Cl2 (2 × 50 mL). The combined organic extracts were dried over MgSO4 and concentrated in 

vacuo. The crude material was purified by column chromatography (1:1 hexane:diethyl ether → 

EtOAc) affording the title compounds 238a (216 mg, 10%) and 238c (333 mg, 16%) in addition to 

mixed 238a and 238c (202 mg, 10%) and diol 258 (478 mg, 23%). 

 

Data for 238a: Colourless oil, Rf 0.61 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3554br, 2931s, 

1699s, 1458m, 1384m, 1275m, 1178m, 1087m, 1056s, 1038m, 936w; δH (400 MHz, CDCl3) 0.80 

(3 H, s, H-11), 1.17–1.36 (2 H, m), 1.41–1.47 (1 H, m), 1.49–1.67 (4 H, m), 1.82–2.02 (3 H, m), 

2.12 (1 H, d, J 9.8, H-9), 2.25–2.36 (2 H, m), 3.17 (1 H, s, OH), 3.94 (1 H, app. td, J 10.6, J 4.5, H-

8); δC (100 MHz, CDCl3) 17.9 (C-11), 19.8 (CH2), 22.2 (CH2), 32.9 (CH2), 39.7 (CH2), 40.2 (CH2), 

40.8 (C-10), 41.4 (CH2), 64.5 (C-9), 65.5 (C-8), 214.7 (C-1); HRMS (ESI+): Found: 205.1206; 

C11H18NaO2 (MNa+) Requires 205.1199 (−3.4 ppm error). 

 

Data for 238c: Colourless oil, Rf 0.68 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 3420br, 2937s, 

1692s, 1458m, 1421m, 1380w, 1321m, 1267m, 1233m, 1189w, 1141w, 1057s; δH (400 MHz, 

CDCl3) 0.97–1.02 (1 H, m), 1.07 (3 H, s, H-11), 1.34 (1 H, td, J 13.0, 4.2), 1.46–1.71 (5 H, m), 

1.80–1.93 (3 H, m), 2.19–2.33 (2 H, m), 2.45–2.46 (1 H, m, H-9), 3.70–3.81 (2 H, m, H-8, OH); δC 

(100 MHz, CDCl3) 20.3 (CH2), 21.2 (CH2), 26.5 (C-11), 31.1 (CH2), 31.8 (CH2), 39.2 (CH2), 40.8 

(C-10), 42.3 (CH2), 59.2 (C-9), 68.4 (C-8), 216.0 (C-1); HRMS (ESI+): Found: 205.1192; 

C11H18NaO2 (MNa+) Requires 205.1199 (3.5 ppm error). 

 

Lab notebook reference: MGL/07/12,15 
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(4aSR,8SR,8aSR)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-

1(2H)-one (261) 
 

 
 

To a solution of (4aSR,8SR,8aSR)-8-hydroxy-4a-methyloctahydronaphthalen-1(2H)-one 238a (205 

mg, 1.12 mmol) in CH2Cl2 (11.2 mL) at 0 °C was added 2,6-lutidine (0.33 mL, 2.80 mmol) then 

TBSOTf (0.28 mL, 1.24 mmol). The solution was stirred at 0 °C for 1 h then quenched with NH4Cl 

(50 mL) and the organic fraction separated. The aqueous layer was extracted with CH2Cl2 (2 × 50 

mL) and the combined organic fractions dried over MgSO4 and concentrated in vacuo. Purification 

by column chromatography (4:1 hexane:EtOAc) afforded the title compound 261 as a white 

crystalline solid (1.12 g, 100%); Rf 0.24 (20:1 hexane:EtOAc); m.p. 36–39 °C; νmax (thin film)/cm-1 

2925s, 2853s, 1714s, 1470m, 1381m, 1358m, 1242s, 1142m, 1094s, 1077s, 1031m, 1004m, 940m, 

901m, 830s, 779s, 666m; δH (400 MHz, benzene-d6) 0.28 (3 H, s, H-12/12’), 0.38 (3 H, s, H-

12/12’), 0.57 (3 H, s, H-11), 0.90–1.44 (17 H, m), 1.48–1.61 (1 H, m), 1.87–1.95 (2 H, m), 2.09–

2.15 (2 H, m), 4.01–4.07 (1 H, m, H-8); δC (100 MHz, benzene-d6) −4.3 (C-12/12’), –4.1 (C-

12/12’), 17.7 (C-11), 18.4 (C-13), 20.2 (CH2), 23.6 (CH2), 26.4 (C-14), 36.3 (CH2), 40.2 (CH2), 

40.9 (CH2), 41.8 (C-10), 42.5 (CH2), 64.8 (C-9), 65.7 (C-8), 208.6 (C-1); HRMS (ESI+): Found: 

319.2062; C17H32NaO2Si (MNa+) Requires 319.2064 (0.5 ppm error), Found: 297.2244; C17H33O2Si 

(MH+) Requires 297.2244 (0.0 ppm error). 

Lab notebook reference: MGL/07/40 
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(4aSR,8SR,8aSR)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl trifluoromethanesulfonate (262) 
 

 
 

To a solution of (4aSR,8SR,8aSR)-8-((tert-butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-

1(2H)-one 261 (95 mg, 0.320 mmol) and trifluoromethanesulfonic anhydride (64.0 µL, 0.384 

mmol) in CH2Cl2 (1.6 mL) at RT under an atmosphere of argon, was added 2,6-di-tert-butyl-4-

methylpyridine (99 mg, 0.480 mmol) in one portion. The suspension was stirred for 2 h at RT then 

concentrated in vacuo. The residue was taken up in hexane (25 mL), filtered and washed with 

hexane (3 × 25 mL). The solution was concentrated in vacuo. Purification by column 

chromatography (20:1 hexane:EtOAc) afforded the title compound 262 as a yellow oil (92 mg, 

67%); Rf 0.55 (20:1 hexane:EtOAc); νmax (thin film)/cm-1 2930m, 2856m, 1669w, 1416s, 1245m, 

1198s, 1142s, 1079s, 1032m, 1005w, 974m, 940m, 894m, 857m, 833s, 776s, 602s; δH (400 MHz, 

CDCl3) 0.09 (3 H, s, H-12/12’), 0.10 (3 H, s, H-12/12’), 0.89–0.93 (12 H, m, H-11,14), 1.19–1.46 

(5 H, m), 1.55–1.73 (2 H, m), 2.00–2.06 (1 H, m), 2.11–2.38 (3 H, m), 3.94 (1 H, app. td, J = 10.3, 

J = 4.3, H-8), 5.70–5.73 (1 H, m, H-2); δC (100 MHz, CDCl3) −4.2 (C-12/12’), −3.2 (C-12/12’), 

16.9 (C-11), 18.4 (C-13), 20.2 (CH2), 21.1 (CH2), 26.4 (C-14), 36.8 (CH2), 36.9 (C-10), 38.3 (CH2), 

38.7 (CH2), 52.9 (C-9), 69.2 (C8), 118.8 (q, J = 321.6, C-15), 119.1 (q, J = 1.7, C-2), 151.0 (C-1); 

HRMS (ESI+): Found: 451.1545; C18H31F3NaO4SSi (MNa+) Requires 451.1557 (2.5 ppm error), 

Found: 429.1732; C18H32F3O4SSi (MH+) Requires 429.1737 (1.2 ppm error). 

Lab notebook reference: MGL/07/47 
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tert-Butyl(((1SR,4aSR,8aRS)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-

yl)oxy)dimethylsilane (263) 
 

 
 

Prepared according to a modified literature procedure.116 

To a solution of (4aSR,8SR,8aSR)-8-((tert-butyldimethylsilyl)oxy)-4a-methyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl trifluoromethanesulfonate 262 (154 mg, 0.359 mmol) in THF (0.54 mL) 

and NMP (1.44 mL) under an atmosphere of argon, was added Fe(acac)3 (139 mg, 0.395 mmol). 

The solution was cooled to −25 °C and methylmagnesium chloride (1.20 mL, 3.59 mmol, 3.0 M 

solution in THF) was added dropwise. The orange solution was stirred at −25 °C for 1 h then 

quenched by careful addition of sat. aq. NH4Cl (25 mL). The mixture was extracted with diethyl 

ether (3 × 25 mL) and the combined organic extracts dried over MgSO4, filtered and concentrated 

in vacuo. Purification by column chromatography (hexane) afforded the title compound 263 as a 

colourless oil (97 mg, 92%); Rf 0.50 (hexane); νmax (thin film)/cm-1 2927s, 2855m, 1461m, 1378w, 

1362w, 1255s, 1119m, 1069s, 1006w, 946w, 884s, 832s, 772s, 666m; δH (400 MHz, CDCl3) 0.06 

(3 H, s, H-12/12’), 0.09 (3 H, s, H-12/12’), 0.80 (3 H, s, H-11), 0.90 (9 H, s, H-14), 1.11–1.66 (7 H, 

m), 1.82–1.84 (3 H, m, H-15), 1.89–2.12 (4 H, m), 3.79 (1 H, app. td, J = 10.3, J = 4.7, H-8), 5.28–

5.32 (1 H, m, H-2); δC (100 MHz, CDCl3) −3.5 (C-12/12’), −2.8 (C-12/12’), 16.8 (C-11), 18.3 (C-

13), 20.3 (CH2), 22.9 (CH2), 25.5 (C-15), 26.7 (C-14), 34.9 (C-10), 38.6 (CH2), 38.7 (CH2), 40.1 

(CH2), 53.5 (C-9), 70.7 (C-8), 122.5 (C-2), 135.9 (C-1); HRMS (ESI+): Found: 317.2261; 

C18H34NaOSi (MNa+) Requires 317.2271 (3.3 ppm error). 

Lab notebook reference: MGL/07/48 

MeMgCl
Fe(acac)3
NMP

THF

262 263

Me

Me

OH
Si

12

12'

1413

8

4

7

3 6

2

5

1
9
10

11

15

Me

OHOS
O

O

F

F
F

Si



 

 281 

(1SR,4aSR,8aRS)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-ol (264) 

 

 
 

To a solution of tert-butyl(((1SR,4aSR,8aRS)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-

1-yl)oxy)dimethylsilane 263 (90 mg, 0.306 mmol) in THF (1.5 mL) under an atmosphere of argon, 

at RT was added TBAF (1.53 mL, 1.53 mmol, 1.0 M in THF). The solution was refluxed for 1 h, 

allowed to cool at RT, then quenched by addition of water (25 mL). The aqueous layer was 

extracted with diethyl ether (3 × 25 mL) and the combined organic extracts dried over MgSO4, 

filtered and concentrated in vacuo. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compound 264 as a white solid (51 mg, 92%); Rf 0.27 (8:1 hexane:EtOAc); m.p. 

59–61 °C; νmax (thin film)/cm-1 3350br, 2910s, 2848s, 1446s, 1375m, 1352m, 1267m, 1163m, 

1079m, 1058s, 1018s, 933s, 8966m, 843m; δH (400 MHz, CDCl3) 0.79 (3 H, s, H-11), 1.10–1.44 (6 

H, m), 1.54–1.70 (2 H, m), 1.77–1.82 (1 H, m, H-9), 1.88 (3 H, s, H-12), 1.95–2.12 (3 H, m), 3.95 

(1 H, app. td, J = 10.4, J = 4.4, H-8), 5.31–5.35 (1 H, m, H-2); δC (100 MHz, CDCl3) 16.6 (C-11), 

20.2 (CH2), 23.0 (CH2), 24.6 (C-12), 34.8 (C-10), 38.2 (CH2), 38.2 (CH2), 40.0 (CH2), 53.5 (C-9), 

69.3 (C-8), 123.3 (C-2), 134.8 (C-1); HRMS (ESI+): Found: 203.1403; C12H20NaO (MNa+) 

Requires 203.1406 (1.7 ppm error). 

Lab notebook reference: MGL/07/49 
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(1SR,4aSR,8aRS)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl 2-

(diethoxyphosphoryl)acetate (265) 
 

 
 

Synthesised using general procedure A with (1SR,4aSR,8aRS)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-ol 264 (49 mg, 0.272 mmol), toluene (1.4 mL), DEPAA (56 mg, 0.285 

mmol), DIPEA (0.12 mL, 0.707 mmol) and T3P (225 mg, 0.354 mmol, 50% w/w solution in THF) 

affording the title compound 265 as a yellow oil (97 mg, 99%). No further purification was 

required; Rf 0.39 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2928s, 1729s, 1444m, 1393w, 1261s, 

1208w, 1163w, 1114m, 1051w, 1021s, 967s, 823m, 783m; δH (400 MHz, CDCl3) 0.81 (3 H, s, H-

11), 1.11–1.71 (16 H, m), 1.93–2.14 (4 H, m), 2.82–2.97 (2 H, m, H-14), 4.10–4.18 (4 H, m, H-

15,15’), 4.90 (1 H, app. td, J = 11.0, J = 4.9, H-8), 5.29–5.33 (1 H, m, H-2); δC (100 MHz, CDCl3) 

16.2–16.3 (3 C, m, C-11,16,16’), 19.7 (CH2), 22.7 (CH2), 23.4 (C-12), 33.2 (CH2), 34.8 (d, J = 

135.1, C-14), 34.9 (C-10), 38.0 (CH2), 39.5 (CH2), 49.3 (C-9), 62.5 (d, J = 6.4, C-15/15’), 62.5 (d, 

J = 6.4, C-15/15’), 74.1 (C-8), 123.7 (C-2), 133.2 (C-1), 165.3 (d, J = 5.8, C-13); δP (162 MHz, 

CDCl3) 20.5; HRMS (ESI+): Found: 381.1806; C18H31NaO5P (MNa+) Requires 381.1801 (−1.1 

ppm error), Found: 359.1977; C18H32O5P (MH+) Requires 359.1982 (1.3 ppm error). 

Lab notebook reference: MGL/07/50 

PhMe

265264
Me

OHHMe T3P
DIPEA
DEPAA

Me

Me

OH 8

4

7

3 6

2

5

1
9
10

11

12

O
P
O

O
O

14

15
16

15'
16'13



 

 283 

(1SR,4aSR,8aRS)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl 2-diazo-

2-diethoxyphosphoryl)acetate (266) 
 

 
 

Synthesised using general procedure B with (1SR,4aSR,8aRS)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-yl 2-diethoxyphosphoryl)acetate 265 (96 mg, 0.268 mmol), THF (1.34 

mL), LHMDS (0.32 mL, 0.321 mmol, 1.0 M solution in THF) and p-ABSA (77 mg, 0.321 mmol). 

Purification by column chromatography (4:1 hexane:EtOAc) afforded the title compound 266 as a 

pale yellow oil (91 mg, 88%); Rf 0.74 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2929m, 2122s, 

1697s, 1445m, 1368m, 1318w, 1297w, 1270s, 1163w, 1017s, 977m, 957m, 804s, 743s, 590s, 553s; 

δH (400 MHz, CDCl3) 0.80 (3 H, s, H-11), 1.10–1.71 (16 H, m), 1.92–2.12 (4 H, m), 4.04–4.24 (4 

H, m, H-15,15’), 4.98 (1 H, app. td, J = 11.0, J = 5.0, H-8), 5.30–5.33 (1 H, m, H-2); δC (100 MHz, 

CDCl3) 16.0 (C-16/16’), 16.1 (C-16/16’), 16.3 (C-11), 19.7 (CH2), 22.7 (CH2), 23.0 (C-12), 33.8 

(CH2), 35.0 (C-10), 37.9 (CH2), 39.4 (CH2), 49.4 (C-9), 54.0 (d, J = 229.1, C-14), 63.4 (d, J = 5.7, 

C-15/15’), 63.6 (d, J = 5.9, C-15/15’), 74.2 (C-8), 123.8 (C-2), 132.9 (C-1), 162.7 (d, J = 12.2, C-

13); δP (162 MHz, CDCl3) 10.8; HRMS (ESI+): Found: 407.1716; C18H29N2NaO5P (MNa+) 

Requires 407.1706 (−2.3 ppm error). 

Lab notebook reference: MGL/07/51 
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(3aSR,5aRS,9aRS,9bSR)-5a,9-Dimethyl-3-methylene-3a,4,5,5a,6,7,9a,9b-

octahydronaphtho[1,2-b]furan-2(3H)-one (α-cyclocostunolide) (256) 

 

 
 

Synthesised using general procedure D with (1SR,4aSR,8aRS)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-yl 2-diazo-2-diethoxyphosphoryl)acetate 266 (90 mg, 0.234 mmol), CH2Cl2 

(4.7 mL), Rh2(oct)4 (3.6 mg, 4.7 µmol), THF (4.7 mL), KOBu-t (39.4 mg, 0.351 mmol) and 

paraformaldehyde (14.1 mg, 0.468 mmol). Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compound 256 as a white crystalline solid (28 mg, 52%); Rf 0.38 

(8:1 hexane:EtOAc); m.p. 80–82 °C (lit.171 83–84 °C); νmax (thin film)/cm-1 2920s, 2851m, 1771s, 

1445w, 1377w, 1344w, 1286w, 1249s, 1220w, 1132m, 1118m, 1076w, 1046w, 1014w, 982m; δH 

(400 MHz, CDCl3) 0.90 (3 H, s, H-11), 1.21–1.74 (6 H, m), 1.83 (3 H, s, H-12), 1.97–2.18 (2 H, 

m), 2.34 (1 H, d, J = 11.2, H-9), 2.52 (1H, app. tq, J = 11.2, J = 3.5, H-7), 3.86 (1 H, app. t, J = 

11.0, H-8), 5.35–5.38 (2 H, m, H-2,15b), 6.05 (1 H, d, J = 3.2, H-15a); δC (100 MHz, CDCl3) 17.4 

(C-11), 21.5 (C-6), 22.8 (C-3), 23.7 (C-12), 35.9 (C-10), 37.7 (C-4), 39.2 (C-5), 51.2 (C-9), 51.5 

(C-9), 82.2 (C-8), 116.4 (C-15), 122.4 (C-2), 133.0 (C-1), 139.4 (C-14), 171.0 (C-13); HRMS 

(ESI+): Found: 255.1360; C15H20NaO2 (MNa+) Requires 255.1356 (−1.7 ppm error). 

Lab notebook reference: MGL/07/52 

Obtained data in accord with reported literature.120,171 
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(4aSR,8SR,8aRS)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-

1(2H)-one (260) 
 

 
 

To a solution of (4aSR,8SR,8aRS)-8-hydroxy-4a-methyloctahydronaphthalen-1(2H)-one 238c (316 

mg, 1.73 mmol) in CH2Cl2 (17.3 mL) at 0 °C was added 2,6-lutidine (0.50 mL, 4.33 mmol) then 

TBSOTf (0.44 mL, 1.91 mmol). The solution was stirred at 0 °C for 1 h then quenched with NH4Cl 

(50 mL) and the organic fraction separated. The aqueous layer was extracted with CH2Cl2 (2 × 50 

mL) and the combined organic fractions dried over MgSO4 and concentrated in vacuo. Purification 

by column chromatography (4:1 hexane:EtOAc) afforded the title compound 260 as a pale yellow 

oil (491 mg, 96%); Rf 0.20 (20:1 hexane:EtOAc); νmax (thin film)/cm-1 2951m, 2930s, 2856s, 

1699s, 1471m, 1462m, 1383m, 1255s, 1226m, 1172m, 1150m, 1060m, 1033s, 973s, 961s, 900s, 

836s, 775s, 688m; δH (400 MHz, benzene-d6) −0.09 (3 H, s, H-12/12’), −0.04 (3 H, s, H-12/12’), 

0.73 (3 H, s, H-11), 0.81–1.41 (14 H, m), 1.57–1.68 (3 H, m), 1.84 (1 H, qt, J = 13.1, J = 3.3), 

1.94–1.96 (1 H, m, H-9), 2.33–2.56 (3 H, m), 4.02 (1 H, app. q, J = 3.2, H-8); δC (100 MHz, 

benzene-d6) −5.0 (C-12/12’), –4.9 (C-12/12’), 16.3 (CH2), 18.1 (C-13), 20.7 (CH2), 26.1 (C-14), 

29.5 (C-11), 31.7 (CH2), 33.8 (CH2), 35.4 (C-10), 39.6 (CH2), 40.6 (CH2), 61.7 (C-9), 69.9 (C-8), 

212.3 (C-1); HRMS (ESI+): Found: 319.2068; C17H32NaO2Si (MNa+) Requires 319.2064 (−1.4 

ppm error), Found: 297.2249; C17H33O2Si (MH+) Requires 297.2244 (-1.5 ppm error). 

Lab notebook reference: MGL/07/39 
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(4aSR,8SR,8aRS)-8-((tert-Butyldimethylsilyl)oxy)-4a-methyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl trifluoromethanesulfonate (267) 
 

 
 

To a solution of (4aSR,8SR,8aRS)-8-((tert-butyldimethylsilyl)oxy)-4a-methyloctahydronaphthalen-

1(2H)-one 260 (325 mg, 1.10 mmol) in THF (5.5 mL) cooled to −40 °C under an atmosphere of 

argon, was added LHMDS (3.29 mL, 3.29 mmol, 1.0 M solution in THF) dropwise. The solution 

was stirred at −40 °C for 1 h then trifluoromethanesulfonic anhydride (0.55 mL, 3.29 mmol) was 

added dropwise. The solution was stirred at −40 °C for 20 mins then quenched by addition of water 

(25 mL). The mixture was extracted with diethyl ether (3 × 50 mL) and the combined organic 

extracts dried over MgSO4, filtered and concentrated in vacuo. Purification by column 

chromatography (hexane) afforded the title compound 267 as a colourless oil (291 mg, 62%); Rf 

0.74 (20:1 hexane:EtOAc); νmax (thin film)/cm-1 2931m, 2857s, 1416s, 1246s, 1205s, 1143s, 1074s, 

1042s, 990m, 977m, 939m, 908m, 878s, 837s, 802m, 776m, 604m; δH (400 MHz, CDCl3) −0.02 (3 

H, s, H-12/12’), 0.02 (3 H, s, H-12/12’), 0.84–0.94 (13 H, m), 1.26–1.40 (3 H, m), 1.51–1.59 (1 H, 

m), 1.74–1.86 (2 H, m), 1.94 (1 H, d, J = 3.1, H-9), 2.12–2.32 (3 H, m), 4.11 (1 H, app. q, J = 2.8, 

H-8), 5.75–5.77 (1 H, m, H-2); δC (100 MHz, CDCl3) −5.5 (C-12/12’), −4.9 (C-12/12’), 15.4 

(CH2), 17.8 (C-13), 21.6 (CH2), 25.7 (C-14), 28.0 (CH2), 28.2 (C-11), 33.2 (CH2), 33.7 (C-10), 39.9 

(CH2), 50.2 (C-9), 65.9 (C-8), 118.5 (q, J = 320.2, C-15), 119.2 (C-2), 149.0 (C-1); HRMS (ESI+): 

Found: 451.1541; C18H31F3NaO4SSi (MNa+) Requires 451.1557 (3.4 ppm error). 

Lab notebook reference: MGL/07/55 
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tert-Butyl(((1SR,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-

yl)oxy)dimethylsilane (268) 
 

 
 

Prepared according to a modified literature procedure.116 

To a solution of (4aSR,8SR,8aRS)-8-((tert-butyldimethylsilyl)oxy)-4a-methyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl trifluoromethanesulfonate 267 (270 mg, 0.630 mmol) in THF (0.95 mL) 

and NMP (2.52 mL) under an atmosphere of argon, was added Fe(acac)3 (245 mg, 0.693 mmol). 

The solution was cooled to −25 °C and methylmagnesium chloride (2.10 mL, 6.30 mmol, 3.0 M 

solution in THF) was added dropwise. The orange solution was stirred at −25 °C for 1 h then 

quenched by careful addition of sat. aq. NH4Cl (25 mL). The mixture was extracted with diethyl 

ether (3 × 25 mL) and the combined organic extracts dried over MgSO4, filtered and concentrated 

in vacuo. Purification by column chromatography (hexane) afforded the title compound 268 as a 

colourless oil (110 mg, 59%); Rf 0.93 (hexane); νmax (thin film)/cm-1 2928s, 2855w, 1446m, 

1378m, 1251s, 1153s, 1079s, 1060s, 1040s, 977s, 907s, 834s, 798s, 772s, 679m; δH (400 MHz, 

CDCl3) −0.04 (3 H, s, H-12/12’), 0.00 (3 H, s, H-12/12’), 0.77–0.89 ( 13 H, m), 1.23–1.49 (5 H, 

m), 1.63–1.65 (3 H, m, H-15), 1.74–1.88 (2 H, m), 1.98–2.04 (2 H, m), 2.28–2.35 (1 H, m), 4.06 (1 

H, app. q, J = 2.7, H-8), 5.37–5.39 (1 H, m, H-2); δC (100 MHz, CDCl3) −5.2 (C-12/12’), −4.7 (C-

12/12’), 16.1 (CH2), 18.0 (C-13), 22.5 (C-15), 23.3 (CH2), 25.7 (C-14), 28.6 (CH2), 28.8 (C-11), 

31.9 (C-10), 34.4 (CH2), 40.8 (CH2), 51.5 (C-9), 67.2 (C-8), 122.6 (C-2), 131.9 (C-1); HRMS 

(APCI+): Found: 295.2443; C18H35OSi (MH+) Requires 295.2452 (2.9 ppm error). 

Lab notebook reference: MGL/07/56 
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(1SR,4aSR,8aSR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-ol (269) 

 

 
 

To a solution of tert-butyl(((1SR,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-

1-yl)oxy)dimethylsilane 268 (99 mg, 0.336 mmol) in THF (1.68 mL) under an atmosphere of 

argon, at RT was added TBAF (1.68 mL, 1.68 mmol, 1.0 M in THF). The solution was refluxed for 

24 h, allowed to cool at RT, then quenched by addition of water (25 mL). The aqueous layer was 

extracted with diethyl ether (3 × 25 mL) and the combined organic extracts dried over MgSO4, 

filtered and concentrated in vacuo. Purification by column chromatography (8:1 hexane:EtOAc) 

afforded the title compound 269 as a colourless oil (43 mg, 71%); Rf 0.45 (8:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3354br, 2929s, 2871s, 2842s, 1448s, 1389m, 1377m, 1342w, 1255s, 1199w, 

1162m, 1072m, 1012s, 963s, 949s, 831s; δH (400 MHz, CDCl3) 0.80 (3 H, s, H-11), 0.87–0.92 (1 

H, m), 1.22–1.86 (10 H, m), 1.97–2.17 (4 H, m), 3.98 (1 H, app. q, J = 3.0, H-8), 5.65–5.68 (1 H, 

m, H-2); δC (100 MHz, CDCl3) 15.8 (CH2), 21.9 (C-12), 22.8 (CH2), 28.4 (CH2), 28.5 (C-11), 31.3 

(C-10), 31.6 (CH2), 40.4 (CH2), 51.2 (C-9), 65.3 (C-8), 125.1 (C-2), 132.3 (C-1); HRMS (ESI+): 

Found: 203.1406; C12H20NaO (MNa+) Requires 203.1406 (0.0 ppm error). 

Lab notebook reference: MGL/07/58 

(1SR,4aSR,8aSR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl 2-

(diethoxyphosphoryl)acetate (270) 
 

 
 

Synthesised using general procedure A with (1SR,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-ol 269 (21 mg, 0.116 mmol), toluene (0.58 mL), DEPAA (24 mg, 0.122 

mmol), DIPEA (0.05 mL, 0.302 mmol) and T3P (96 mg, 0.151 mmol, 50% w/w solution in THF). 
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Purification by column chromatography (1:1 hexane:EtOAc) afforded the title compound 270 as a 

pale yellow oil (26 mg, 63%); Rf 0.38 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2929m, 1732s, 

1448m, 1393w, 1261s, 1113w, 1021s, 968s, 813m; δH (400 MHz, CDCl3) 0.83–0.91 (4 H, m), 

1.24–1.54 (9 H, m), 1.58 (1 H, d, J = 2.6, H-9), 1.62–1.64 (3 H, m, H-12), 1.67–1.92 (2 H, m), 

1.98–2.16 (3 H, m), 2.79–2.94 (2 H, m, H-14), 4.10–4.18 (4 H, m, H-15,15’), 5.32 (1 H, app. q, J = 

3.1, H-8), 5.38–5.41 (1 H, m, H-2); δC (100 MHz, CDCl3) 16.2–16.3 (2 C, m, C-16,16’), 16.4 

(CH2), 22.3 (C-12), 22.8 (CH2), 28.0 (CH2), 28.3 (C-11), 30.4 (CH2), 31.6 (C-10), 34.5 (d, J = 

134.5, C-14), 40.0 (CH2), 49.4 (C-9), 62.4 (d, J = 6.5, C-15/15’), 62.5 (d, J = 6.5, C-15/15’), 70.4 

(C-8), 122.9 (C-2), 131.1 (C-1), 164.8 (d, J = 6.1, C-13); δP (162 MHz, CDCl3) 20.9; HRMS 

(ESI+): Found: 381.1802; C18H31NaO5P (MNa+) Requires 381.1801 (−0.3 ppm error), Found: 

359.1975; C18H32O5P (MH+) Requires 359.1982 (2.0 ppm error). 

Lab notebook reference: MGL/07/59 

(1SR,4aSR,8aSR)-4a,8-Dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl 2-diazo-

2-diethoxyphosphoryl)acetate (271) 
 

 
 

Synthesised using general procedure B with (1SR,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-yl 2-diethoxyphosphoryl)acetate 270 (26 mg, 72.5 µmol), THF (0.36 mL), 

LHMDS (0.09 mL, 87.1 µmol, 1.0 M solution in THF) and p-ABSA (20.9 mg, 87.1 µmol). 

Purification by column chromatography (2:1 hexane:EtOAc) afforded the title compound 271 as a 

pale yellow solid (21 mg, 75%); Rf 0.67 (1:1 hexane:EtOAc); m.p. 65–68 °C; νmax (thin film)/cm-1 

2932m, 2123s, 1706s, 1448w, 1368w, 1271s, 1217w, 1021s, 977m; δH (400 MHz, CDCl3) 0.86 (3 

H, s, H-11), 0.89–0.93 (1 H, m), 1.17–1.55 (9 H, m), 1.61–1.72 (5 H, m), 1.89–2.12 (3 H, m), 4.06–

4.25 (4 H, m, H-15,15’), 5.39–5.43 (2 H, m, H-2,8); δC (100 MHz, CDCl3) 16.0 (d, J = 7.4, C-

16/16’), 16.1 (d, J = 6.7, C-16/16’), 16.3 (CH2), 22.3 (C-12), 22.8 (CH2), 28.0 (CH2), 28.3 (C-11), 

30.7 (CH2), 31.6 (C-10), 40.0 (CH2), 49.5 (C-9), 52.9 (d, J = 226.5, C-14), 63.4 (d, J = 5.7, C-

15/15’), 63.6 (d, J = 5.7, C-15/15’), 70.5 (C-8), 122.9 (C-2), 131.2 (C-1), 162.6 (d, J = 13.1, C-13); 

δP (162 MHz, CDCl3) 11.3; HRMS (ESI+): Found: 407.1707; C18H29N2NaO5P (MNa+) Requires 

407.1706 (−0.2 ppm error). 

Lab notebook reference: MGL/07/60 
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(3aRS,5aRS,9aSR,9bSR)-5a,9-Dimethyl-3-methylene-3a,4,5,5a,6,7,9a,9b-

octahydronaphtho[1,2-b]furan-2(3H)-one 
 

 
 

Synthesised using general procedure D with (1SR,4aSR,8aSR)-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-

octahydronaphthalen-1-yl 2-diazo-2-diethoxyphosphoryl)acetate 271 (20 mg, 52.0 µmol), CH2Cl2 

(1.04 mL), Rh2(oct)4 (0.8 mg, 1.04 µmol), THF (1.04 mL), KOBu-t (8.8 mg, 78.0 µmol) and 

paraformaldehyde (3.1 mg, 104 µmol). Purification by column chromatography (8:1 

hexane:EtOAc) afforded the title compound 272 as a pale yellow oil (8 mg, 66%); Rf 0.36 (4:1 

hexane:EtOAc); νmax (thin film)/cm-1 2928s, 2865w, 1759s, 1452w, 1402w, 1380w, 1346w, 

1263m, 1156w, 1143m, 1130m, 1080m, 957m; δH (400 MHz, CDCl3) 0.91 (3 H, s, H-11), 1.05–

1.09 (1 H, m), 1.21-1.81 (9 H, m), 2.00–2.09 (2 H, m), 3.00–3.06 (1 H, m, H-7), 4.74 (1 H, dd, J = 

6.1, J = 3.8, H-8), 5.57–5.59 (2 H, m, H-2,15b), 6.19 (1 H, d, J = 1.6, H-15a); δC (100 MHz, 

CDCl3) 22.1 (C-12), 22.5 (C-3), 24.9 (C-6), 27.1 (C-11), 30.4 (C-10), 30.7 (C-4), 35.8 (C-5), 39.7 

(C-7), 46.5 (C-9), 76.9 (C-8), 121.0 (C-15), 124.3 (C-2), 129.5 (C-1), 142.0 (C-14), 170.6 (C-13); 

HRMS (ESI+): Found: 255.1359; C15H20NaO2 (MNa+) Requires 255.1356 (−1.3 ppm error), Found: 

233.1536; C15H21O2 (MH+) Requires 233.1536 (−0.1 ppm error). 

Lab notebook reference: MGL/07/64 
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5.2.3.  Chapter 4 

5.2.3.1.  Rhodium(II)-catalysed cyclopropanations 

Allyl 2-(diethoxyphosphoryl)acetate (287a) 

 

 
 

Synthesised using general procedure A with allyl alcohol 287 (1.16 g, 20.0 mmol), toluene (100 

mL), DEPAA (3.38 mL, 21.0 mmol), DIPEA (9.06 mL, 52.0 mmol) and T3P (16.5 g, 26.0 mmol, 

50% w/w solution in EtOAc) affording the title compound 287a as an orange oil (4.63 g, 98%). No 

further purification was required; Rf 0.26 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2985w, 1738s, 

1394w, 1261s, 1117w, 1050w, 1023s, 971m; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.5, 

H-4), 2.98 (2 H, d, J = 21.6, H-2), 4.12–4.19 (4 H, m, H-3), 4.61–4.64 (1 H, m, H-5), 5.24 (1 H, 

app. dq, J = 10.4, J = 1.3, H-7a), 5.35 (1 H, app. dq, J = 17.2, J = 1.5, H-7b), 5.90 (2 H, ddt, J = 

17.2, J = 10.4, J = 5.7, H-6); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4), 34.2 (d, J = 134.3, C-2), 

62.7 (d, J = 6.2, C-3), 66.1 (C-5), 118.7 (C-7), 131.5 (C-6), 165.5 (d, J = 6.1, C-1); δP (162 MHz, 

CDCl3) 20.1; HRMS (ESI+): Found: 259.0708; C9H17NaO5P (MNa+) Requires 259.0706 (−0.8 ppm 

error), Found: 237.0890; C9H18O5P (MH+) Requires 237.0886 (−1.6 ppm error). 

Lab notebook reference: MGL/03/26 

Allyl 2-diazo-2-(diethoxyphosphoryl)acetate (287b) 

 

 
 

Synthesised using general procedure C with 3-(4-methoxyphenyl)propyl 2-

(diethoxyphosphoryl)acetate 287a (2.19 g, 9.27 mmol), DBSA (4.89 g, 13.9 mmol), DBU (2.08 

mL, 13.9 mmol) and CH2Cl2 (93.0 mL). Purification by column chromatography (2:1 

petrol:EtOAc) affording the title compound 287b as a pale yellow oil (2.02 g, 83%); Rf 0.43 (1:1 

petrol:EtOAc); νmax (thin film)/cm-1 2992w, 2932w, 2129s, 1707s, 1368w, 1276s, 1020s, 983m; δH 
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(400 MHz, CDCl3) 1.33 (6 H, td, J = 7.1, J = 0.8, H-4), 4.09–4.25 (4 H, m, H-3), 4.67 (1 H, app. dt, 

J = 5.6, J = 1.4, H-5), 5.24 (1 H, app. dq, J = 10.5, J = 1.3, H-7a), 5.32 (1 H, app. dq, J = 17.2, J = 

1.5, H-7b), 5.89 (2 H, ddt, J = 17.2, J = 10.5, J = 5.6, H-6); δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, 

C-4), 53.9 (d, J = 226.1, C-2), 63.6 (d, J = 5.6, C-3), 65.9 (C-5), 118.7 (C-7), 131.4 (C-6), 163.1 (d, 

J = 12.0, C-1); δP (162 MHz, CDCl3) 10.4; HRMS (ESI+): Found: 285.0603; C9H15N2NaO5P 

(MNa+) Requires 285.0611 (2.9 ppm error), Found: 263.0792; C9H16N2O5P (MH+) Requires 

263.0791 (−0.2 ppm error). 

Lab notebook reference: MGL/08/32 

Diethyl ((1RS,5SR)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate (287c) 
 

 
 

Synthesised using general procedure F with allyl 2-diazo-2-(diethoxyphosphoryl)acetate 287b (600 

mg, 2.29 mmol), CH2Cl2 (17 mL) and Rh2(oct)4 (35.6 mg, 0.046 mmol). Purification by column 

chromatography (1:20 hexane:EtOAc) afforded the title compound 287c as a dark yellow oil (417 

mg, 78%); Rf 0.30 (1:8 hexane:EtOAc); νmax (thin film)/cm-1 2986w, 2920w, 2838w, 1764s, 

1376w, 1271w, 1243m, 1015s; δH (400 MHz, CDCl3) 1.18–1.22 (1 H, m, H-5), 1.27 (3 H, td, J = 

7.1, J = 0.5, H-7/7’), 1.29 (3 H, td, J = 7.1, J = 0.5, H-7/7’), 1.76 (1 H, ddd, J = 15.2, J = 7.8, J = 

4.7, H-5), 2.58–2.65 (1 H, m, H-3), 4.07–4.18 (5 H, m, H-4, 6,6’), 4.28 (1 H, dd, J = 9.5, J = 4.7, 

H-4); δC (100 MHz, CDCl3) 16.1 (d, J = 6.0, C-7,7’), 17.3 (d, J = 3.0, C-5), 22.5 (d, J = 207.0, C-

2), 24.3 (d, J = 1.4, C-3), 63.0 (d, J = 6.2, C-6/6’), 63.0 (d, J = 6.2, C-6/6’), 67.5 (d, J = 2.5, C-4), 

171.5 (d, J = 10.6, C-1); δP (162 MHz, CDCl3) 17.9; HRMS (ESI+): Found: 257.0552; C9H15NaO5P 

(MNa+) Requires 257.0549 (−1.2 ppm error), Found: 235.0737; C9H16O5P (MH+) Requires 

235.0730 (−3.0 ppm error). 

Lab notebook reference: MGL/03/28B 

Obtained data in accord with reported literature.127 
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(E)-But-2-en-1-yl 2-(diethoxyphosphoryl)acetate (288a) 

 

 
 

Synthesised using general procedure A with 2-buten-1-ol 288 (2.16 g, 30.0 mmol), toluene (150 

mL), DEPAA (5.06 mL, 31.5 mmol), DIPEA (13.6 mL, 78.0 mmol) and T3P (24.8 g, 39.0 mmol, 

50% w/w solution in EtOAc) affording the title compound 288a as an orange oil (7.41 g, 99%). No 

further purification was required; Rf 0.29 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2983w, 1737s, 

1446w, 1394w, 1266s, 1164w, 1115m, 1052m, 10234, 968s; δH (400 MHz, CDCl3) 1.33 (6 H, t, J 

= 7.1, H-4), 1.70–1.72 (3 H, m, H-8), 2.96 (2 H, d, J = 21.5, H-2), 4.12–4.20 (4 H, m, H-3), 4.56 (2 

H, d, J = 6.6, H-5), 5.54–5.62 (1 H, m, H-6), 5.77 –5.86 (1 H, m, H-7); δC (100 MHz, CDCl3) 16.3 

(d, J = 6.2, C-4), 17.7 (C-8), 34.3 (d, J = 134.3, C-2), 62.7 (d, J = 6.3, C-3), 66.2 (C-5), 124.5 (C-

6), 132.0 (C-7), 165.6 (d, J = 6.2, C-1); δP (162 MHz, CDCl3) 20.3; HRMS (ESI+): Found: 

273.0872; C10H19NaO5P (MNa+) Requires 273.0862 (−3.5 ppm error), Found: 251.1039; C10H20O5P 

(MH+) Requires 251.1043 (1.4 ppm error). 

Lab notebook reference: MGL/04/49 

(E)-But-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (288b) 
 

 
 

Synthesised using general procedure B with (E)-but-2-en-1-yl 2-(diethoxyphosphoryl)acetate 288a 

(2.50 g, 10.0 mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 mmol, 1.0 M solution in THF) and p-

ABSA (2.88 g, 12.0 mmol). Purification by column chromatography (2:1 petrol:EtOAc) afforded 

the title compound 288b as a yellow oil (1.50 g, 54%); Rf 0.57 (1:1 petrol:EtOAc); νmax (thin 

film)/cm-1 2984w, 2126s, 1704s, 1446w, 1376w, 1274s, 1215w, 1164w, 1113w, 1090w, 1020s, 

970m; δH (400 MHz, CDCl3) 1.34 (6 H, t, J = 7.1, J = 0.7, H-4), 1.70–1.72 (3 H, m, H-8), 4.10–

4.25 (4 H, m, H-3), 4.59–4.62 (2 H, m, H-5), 5.52–5.61 (1 H, m, H-6), 5.76–5.85 (1 H, m, H-7); δC 
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(100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4), 17.7 (C-8), 53.7 (d, J = 228.3, C-2), 63.6 (d, J = 5.9, C-

3), 66.2 (C-5), 124.5 (C-6), 132.1 (C-7), 163.2 (d, J = 12.2, C-1); δP (162 MHz, CDCl3) 10.6; 

HRMS (ESI+): Found: 299.0776; C10H17N2NaO5P (MNa+) Requires 299.0767 (−2.9 ppm error). 

Lab notebook reference: MGL/04/60 

But-2-yn-1-yl 2-(diethoxyphosphoryl)acetate (S5) 
 

 
 

Synthesised using general procedure A with 2-butyn-1-ol S4 (1.40 g, 20.0 mmol), toluene (100 

mL), DEPAA (3.38 mL, 21.0 mmol), DIPEA (9.06 mL, 52.0 mmol) and T3P (16.5 g, 26.0 mmol, 

50% w/w solution in EtOAc) affording the title compound S5 as an orange oil (4.89 g, 99%). No 

further purification was required; Rf 0.32 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2985w, 2242w, 

1742s, 1444w, 1394w, 1370w, 1266s, 1161w, 1113m, 1050w, 1023s, 973s, 838w; δH (400 MHz, 

CDCl3) 1.34 (6 H, td, J = 7.1, J = 0.5, H-4), 1.84 (3 H, t, J = 2.4, H-8), 2.90 (2 H, d, J = 21.5, H-2), 

4.14–4.21 (4 H, m, H-3), 4.68–4.70 (2 H, m, H-5); δC (100 MHz, CDCl3) 3.6 (C-8), 16.3 (d, J = 

6.4, C-4), 34.1 (d, J = 134.3, C-2), 53.8 (C-5), 62.8 (d, J = 6.2, C-3), 72.5 (C-57, 83.6 (C-6), 165.3 

(d, J = 6.0, C-1); δP (162 MHz, CDCl3) 19.7; HRMS (ESI+): Found: 249.0890; C10H18O5P (MH+) 

Requires 249.0886 (−1.4 ppm error). 

Lab notebook reference: MGL/04/77 
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(Z)-But-2-en-1-yl 2-(diethoxyphosphoryl)acetate (289a), (E)-But-2-en-1-yl 2-

(diethoxyphosphoryl)acetate (288a) and Butyl 2-(diethoxyphosphoryl)acetate (S6) 
 

 
 

To a solution of but-2-yn-1-yl 2-(diethoxyphosphoryl)acetate S5 (4.88 g, 19.7 mmol) in MeOH 

(200 mL) under an argon atmosphere was added Lindlar catalyst (400 mg). The flask was purged 4 

times with argon then 4 times with hydrogen and stirred for 2 h. The mixture was filtered through a 

pad of Celite and washed with CH2Cl2 (200 mL). The filtrate was concentrated in vacuo to afford 

the title compounds as an inseparable mixture (289a:288a:S6 6:1.5:1) as a yellow oil (4.62 g, 

94%); Rf 0.29 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2983w, 2934w, 1733w, 1445w, 1394w, 

1257s, 1113m, 1049w, 1018s, 963s, 838m, 781m; δH (400 MHz, CDCl3) 0.92 (3 H, t, J = 7.4, H-

8sat), 1.27–1.72 (28 H, m, H-(4Z,E,sat),(6sat),(7sat),(8Z,E)), 2.93–2.99 (6 H, m, H-2Z,E,sat), 4.11–

4.15 (14 H, m, H-(3Z,E,sat),(5sat)), 4.54–4.56 (2 H, m, H-5E), 4.68–4.70 (2 H, m, H-5Z), 5.50–

5.61 (2 H, m, H-7Z,E), 5.68–5.85 (2 H, m, H-6Z,E); δC (100 MHz, CDCl3) 13.1, 13.6, 16.2, 16.3, 

17.7, 18.9, 30.5, 33.6, 33.6, 34.9, 35.0, 61.1, 62.6, 62.6, 62.7, 62.7, 62.7, 65.4, 66.2, 123.6, 124.5, 

130.1, 132.0, 165.7, 165.7, 165.9; δP (162 MHz, CDCl3) 20.3, 20.3, 20.5; HRMS (ESI+): 289a and 

288a: Found: 273.0860; C10H19NaO5P (MNa+) Requires 273.0862 (0.9 ppm error), Found: 

251.1039; C10H20O5P (MH+) Requires 251.1043 (1.6 ppm error); S6: Found: 275.1009; 

C10H21NaO5P (MNa+) Requires 275.1019 (3.5 ppm error), Found: 253.1190; C10H22O5P (MH+) 

Requires 253.1199 (3.7 ppm error). 

Lab notebook reference: MGL/04/78 

Note: NMR assignment labels; Z = 289a, E = 288a, sat = S6. 
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(Z)-But-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (289b), (E)-But-2-en-1-yl 2-

diazo-2-(diethoxyphosphoryl)acetate (288b) and Butyl 2-diazo-2-

(diethoxyphosphoryl)acetate (S7) 
 

     
 

Synthesised using general procedure B with (Z)-but-2-en-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate (289a), (E)-but-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate 

(288a) and butyl 2-diazo-2-(diethoxyphosphoryl)acetate (S6) as a 6:1.5:1 mixture (2.50 g, 10.0 

mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 mmol, 1.0 M solution in THF) and p-ABSA (2.88 

g, 12.0 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title 

compounds as an inseparable mixture (289b:288b:S7 4.8:1.2:1) as an orange oil (1.19 g, 43%); Rf 

0.57 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 2984w, 2124s, 1800s, 1445w, 1381w, 1350w, 1271s, 

1214w, 1164w, 1112w, 1015s, 975s, 796m, 743s, 588s, 555s; δH (400 MHz, CDCl3) 0.87 (3 H, t, J 

= 7.4, H-8sat), 1.23–1.67 (28 H, m, H-(4Z,E,sat),(6sat),(7sat),(8Z,E)), 4.04–4.21 (14 H, m, H-

(3Z,E,sat),(5sat)), 4.54–4.56 (2 H, m, H-5E), 4.68–4.70 (2 H, m, H-5Z), 5.44–5.55 (2 H, m, H-

7Z,E), 5.64–5.79 (2 H, m, H-6Z,E); δC (100 MHz, CDCl3) 13.2, 13.6, 16.1, 16.2, 17.8, 19.0, 30.7, 

52.6, 52.6, 52.6, 54.8, 54.9, 61.1, 63.6, 63.6, 63.7, 65.5, 66.2, 123.6, 124.6, 130.4, 132.1, 163.2, 

163.3, 163.4, 163.5, 163.6; δP (162 MHz, CDCl3) 10.5, 10.5, 10.7; HRMS (ESI+): 289b and 288b: 

Found: 299.0760; C10H17N2NaO5P (MNa+) Requires 299.0767 (2.4 ppm error), Found: 277.0945; 

C10H18N2O5P (MH+) Requires 277.0948 (0.9 ppm error); S7: Found: 301.0915; C10H19N2NaO5P 

(MNa+) Requires 301.0924 (2.8 ppm error), Found: 279.1099; C10H20N2O5P (MH+) Requires 

279.1104 (1.8 ppm error). 

Lab notebook reference: MGL/04/92 

Note: NMR assignment labels; Z = 289b, E = 288b, sat = S7. 
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(E)-Hex-2-en-1-yl 2-(diethoxyphosphoryl)acetate (290a) 

 

 
 

Synthesised using general procedure A with (E)-hex-2-en-1-ol 290 (3.00 g, 30.0 mmol), toluene 

(150 mL), DEPAA (5.06 mL, 31.5 mmol), DIPEA (13.6 mL, 78.0 mmol) and T3P (24.8 g, 39.0 

mmol, 50% w/w solution in EtOAc) affording the title compound 290a as a yellow oil (8.34 g, 

100%). No further purification was required; Rf 0.34 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2961m, 2933m, 2872w, 1738s, 1445w, 1393w, 1267s, 1164w, 1115m, 1052m, 1025s, 971s, 839w, 

783w; δH (400 MHz, CDCl3) 0.89 (3 H, t, J = 7.4, H-10), 1.31–1.45 (8 H, m, H-4,9), 2.00–2.05 (2 

H, m, H-8), 2.97 (2 H, d, J = 21.5, H-2), 4.13–4.20 (4 H, m, H-3), 4.58 (2 H, d, J = 6.5, H-5), 5.56 

(1 H, dtt, J = 15.3, J = 6.5, J = 1.4, H-6), 5.79 (1 H, dtt, J = 15.3, J = 6.9, J = 1.2, H-7); δC (100 

MHz, CDCl3) 13.6 (C-10), 16.3 (d, J = 6.2, C-4), 22.0 (C-9), 34.3 (d, J = 134.3, C-2), 34.3 (C-8), 

62.7 (d, J = 6.3, C-3), 66.3 (C-5), 123.3 (C-6), 137.0 (C-7), 165.6 (d, J = 6.2, C-1); δP (162 MHz, 

CDCl3) 20.3; HRMS (ESI+): Found: 301.1183; C12H23NaO5P (MNa+) Requires 301.1175 (−2.7 

ppm error), Found: 279.1365; C12H24O5P (MH+) Requires 279.1356 (−3.3 ppm error). 

Lab notebook reference: MGL/04/63 

(E)-Hex-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (290b) 
 

 
 

Synthesised using general procedure B with (E)-hex-2-en-1-yl 2-(diethoxyphosphoryl)acetate 290a 

(2.78 g, 10.0 mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 mmol, 1.0 M solution in THF) and p-

ABSA (2.88 g, 12.0 mmol). Purification by column chromatography (2:1 hexane:EtOAc) afforded 
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the title compound 290b as a yellow oil (1.64 g, 54%); Rf 0.55 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2961w, 2933w, 2125s, 1703s, 1445w, 1380w, 1273s, 1215w, 1164w, 1114w, 1019s, 

974s, 797w, 745m, 590m, 560m; δH (400 MHz, CDCl3) 0.88 (3 H, t, J = 7.4, H-10), 1.31–1.43 (8 

H, m, H-4,9), 1.99–2.05 (2 H, m, H-8), 4.10–4.25 (4 H, m, H-3), 4.62 (2 H, app. dq, J = 6.5, J = 

1.0, H-5), 5.54 (1 H, dtt, J = 15.3, J = 6.5, J = 1.4, H-6), 5.78 (1 H, dtt, J = 15.3, J = 6.9, J = 1.2, H-

7); δC (100 MHz, CDCl3) 13.5 (C-10), 16.1 (d, J = 7.1, C-4), 21.9 (C-9), 34.2 (C-8), 53.6 (d, J = 

225.1, C-2), 63.6 (d, J = 6.0, C-3), 66.3 (C-5), 123.3 (C-6), 137.2 (C-7), 163.2 (d, J = 12.2, C-1); δP 

(162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 327.1095; C12H21N2NaO5P (MNa+) Requires 

327.1080 (−4.3 ppm error). 

Lab notebook reference: MGL/04/70 

(Z)-Hex-2-en-1-yl 2-(diethoxyphosphoryl)acetate (291a) 

 

 
 

Synthesised using general procedure A with (Z)-hex-2-en-1-ol 291 (2.16 g, 21.6 mmol), toluene 

(110 mL), DEPAA (3.65 mL, 22.7 mmol), DIPEA (9.78 mL, 56.2 mmol) and T3P (17.8 g, 28.0 

mmol, 50% w/w solution in THF) affording the title compound 291a as a yellow oil (1.87 g, 79%). 

No further purification was required; Rf 0.70 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2963m, 

2933m, 2874w, 1738s, 1460w, 1394w, 1267s, 1115m, 1056m, 1026s, 971s, 842w, 782w; δH (400 

MHz, CDCl3) 0.90 (3 H, t, 3JHH 7.4, H-10), 1.32–1.44 (8 H, m, H-4,9), 2.05–2.11 (2 H, m, H-8), 

2.97 (2 H, d, 2JHP 21.5, H-2), 4.13–4.21 (4 H, m, H-3), 4.69 (2 H, dd, 3JHH 6.9, H-5), 5.54 (1 H, dtt, 
3JHH 10.9, 3JHH 6.9, 4JHH 1.4, H-6), 5.66 (1 H, dtt, 3JHH 10.9, 3JHH 7.5, 4JHH 1.2, H-7); δC (100 MHz, 

CDCl3) 13.6 (C-10), 16.3 (d, 3JCP 6.2, C-4), 22.5 (C-9), 29.5 (C-8), 34.3 (d, 1JCP 134.3, C-2), 61.4 

(C-5), 62.7 (d, 2JCP 6.2, C-3), 122.8 (C-6), 135.6 (C-7), 165.7 (d, 2JCP 6.2, C-1); δP (162 MHz, 

CDCl3) 20.3; HRMS (ESI+): Found: 301.1181; C12H23NaO5P (MNa+) Requires 301.1175 (−1.8 

ppm error), Found: 279.1361; C12H24O5P (MH+) Requires 279.1356 (−2.0 ppm error). 

Note: This compound was synthesised by William P. Unsworth. 
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(Z)-Hex-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (291b) 

 

 
 

Synthesised using general procedure B with (Z)-hex-2-en-1-yl 2-(diethoxyphosphoryl)acetate 291a 

(385 mg, 1.38 mmol), THF (50 mL), NaH (66.4 mg, 1.66 mmol, 60% dispersion in mineral oil).   

and p-ABSA (399 mg, 1.66 mmol). Purification by column chromatography (3:1 petrol:EtOAc) 

afforded the title compound 291b as a yellow oil (315 mg, 75%); Rf 0.52 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2962w, 2128s, 1709s, 1445w, 1361w, 1279s, 1164w, 1023s, 978m; δH (400 MHz, 

CDCl3) 0.88 (3 H, t, J = 7.4, H-10), 1.30–1.43 (8 H, m, H-4,9), 2.07 (2 H, qd, J = 7.4, J = 1.3, H-8), 

4.09–4.25 (4 H, m, H-3), 4.72–4.74 (2 H, m, H-5), 5.52 (1 H, dtt, J = 10.9, J = 6.9, J = 1.5, H-6), 

5.65 (1 H, dtt, J = 10.9, J = 7.6, J = 1.3, H-7); δC (100 MHz, CDCl3) 13.5 (C-10), 16.1 (d, J = 6.9, 

C-4), 22.4 (C-9), 29.4 (C-8), 53.8 (d, J = 227.5, C-2), 61.3 (C-5), 63.6 (d, J = 6.0, C-3), 122.8 (C-

6), 136.0 (C-7), 163.3 (d, J = 12.3, C-1); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 

327.1087; C12H21N2NaO5P (MNa+) Requires 327.1080 (−2.1 ppm error), Found: 305.1262; 

C12H22N2O5P (MH+) Requires 305.1261 (−0.5 ppm error). 

Note: This compound was synthesised by William P. Unsworth. 
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Diethyl ((1RS,5SR,6SR)-2-oxo-6-propyl-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 

(291c) 
 

 
 

Synthesised using general procedure F with (Z)-hex-2-en-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 291b (212 mg, 0.697 mmol), CH2Cl2 (7.0 mL) and Rh2(oct)4 (10.8 

mg, 13.9 µmol). Purification by column chromatography (1:10 hexane:EtOAc) afforded the title 

compound 291c as a pale yellow oil (128 mg, 66%); Rf 0.15 (1:2 hexane:EtOAc); νmax (thin 

film)/cm-1 2963w, 2934w, 2874w, 1764s, 1468w, 1371w, 1254m, 1197w, 1164w, 1130w, 1022s, 

976m; δH (400 MHz, CDCl3) 0.97 (3 H, t, J = 7.1, H-10), 1.29–1.56 (10 H, m, H-7/7’,8,9), 2.02–

2.11 (1 H, m, H-5), 2.70 (1 H, dddd, J = 11.2, J = 8.0, J = 5.4, J = 0.9, H-3), 4.13–4.29 (5 H, m, H-

4/4’,6,6’), 4.42 (1 H, dd, J = 10.0, J = 5.4, H-4/4’); δC (100 MHz, CDCl3) 13.7 (C-10), 16.3 (d, J = 

6.1, C-7/7’), 16.3 (d, J = 6.1, C-7/7’), 21.9 (C-9), 24.9 (C-8), 28.1 (d, J = 2.3, C-5), 28.1 (d, J = 

203.3, C-2), 29.5 (d, J = 2.5, C-3), 63.1 (d, J = 6.3, C-6/6’), 63.2 (d, J = 6.2, C-6/6’), 64.6 (d, J = 

3.0, C-4), 170.5 (d, J = 10.0, C-1); δP (162 MHz, CDCl3) 18.8; HRMS (ESI+): Found: 299.1026; 

C12H21NaO5P (MNa+) Requires 299.1019 (−2.5 ppm error), Found: 277.1212; C12H22O5P (MH+) 

Requires 277.1199 (−4.5 ppm error). 

Lab notebook reference: MGL/04/89 
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(2E,4E)-Hexa-2,4-dien-1-yl 2-(diethoxyphosphoryl)acetate (292a) 

 

 
 

Synthesised using general procedure A with (2E,4E)-hexa-2,4-dien-1-ol 292 (491 mg, 5.00 mmol), 

toluene (25.0 mL), DEPAA (1.03 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in EtOAc) affording the title compound 292a as an orange oil (1.36 

g, 98%). No further purification was required; Rf 0.26 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2984w, 2934w, 1735s, 1444w, 1393w, 1258s, 1112s, 1020s, 965s; δH (400 MHz, CDCl3) 1.31 (6 

H, t, J = 7.1, H-4), 1.73 (3 H, d, J = 6.7, H-10), 2.95 (2 H, d, J = 21.5, H-2), 4.14 (4 H, app. quin., J 

= 7.5, H-3), 4.61 (2 H, d, J = 6.7, H-5), 5.58 (1 H, dt, J = 15.2, J = 6.7, H-6), 5.73 (1 H, dq, J = 

15.2, J = 6.7, H-9), 6.01 (1 H, ddd, J = 15.2, J = 10.5, J = 1.2, H-8), 6.24 (1 H, dd, J = 15.2, J = 

10.5, H-7); δC (100 MHz, CDCl3) 16.2 (d, J = 6.6, C-4), 18.1 (C-10), 34.3 (d, J = 134.2, C-2), 62.6 

(d, J = 6.6, C-3), 65.9 (C-5), 122.8 (C-6), 130.2 (C-8), 131.6 (C-9), 135.4 (C-7), 165.5 (d, J = 6.1, 

C-1); δP (162 MHz, CDCl3) 20.2; HRMS (ESI+): Found: 299.1026; C12H21NaO5P (MNa+) Requires 

299.1019 (−2.4 ppm error). 

Lab notebook reference: MGL/08/76 

(2E,4E)-Hexa-2,4-dien-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (292b) 
 

 
 

Synthesised using general procedure C with (2E,4E)-hexa-2,4-dien-1-yl 2-

(diethoxyphosphoryl)acetate 292a (1.36 g, 4.92 mmol), DBSA (2.47 g, 7.38 mmol), DBU (1.10 

mL, 7.38 mmol) and CH2Cl2 (49.0 mL). Purification by column chromatography (2:1 
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hexane:EtOAc) afforded the title compound 292b as a yellow oil (1.54 g, 75%); Rf 0.43 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 2985w, 2127s, 1705s, 1445w, 1375w, 1274s, 1113m, 1020s, 

797m, 745m, 590m, 561m; δH (400 MHz, CDCl3) 1.34 (6 H, td, J = 7.1, J = 0.7, H-4), 1.75 (3 H, 

dd, J = 6.7, J = 1.0, H-10), 4.09–4.25 (4 H, m, H-3), 4.68 (2 H, d, J = 6.7, H-5), 5.60 (1 H, dt, J = 

15.2, J = 6.7, H-6), 5.75 (1 H, dq, J = 15.2, J = 6.7, H-9), 6.00–6.07 (1 H, m, H-8), 6.26 (1 H, dd, J 

= 15.2, J = 10.5, H-7); δC (100 MHz, CDCl3) 16.1 (d, J = 7.1, C-4), 18.1 (C-10), 63.6 (d, J = 5.9, 

C-3), 66.0 (C-5), 122.8 (C-6), 130.2 (C-8), 131.8 (C-9), 135.6 (C-7), 163.2 (d, J = 12.6, C-1); δP 

(162 MHz, CDCl3) 10.6; HRMS (ESI+): Found: 325.0930; C12H19N2NaO5P (MNa+) Requires 

325.0924 (−1.9 ppm error). 

Lab notebook reference: MGL/08/82 

Note: C-2 not observed in 13C NMR spectrum. 

Diethyl ((1RS,5SR,6RS)-2-oxo-6-((E)-prop-1-en-1-yl)-3-oxabicyclo[3.1.0]hexan-1-

yl)phosphonate (292c) 
 

 
 

Synthesised using general procedure F with (2E,4E)-hexa-2,4-dien-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 292b (68.6 mg, 0.250 mmol), CH2Cl2 (5.0 mL) and Rh2(oct)4 (4.0 mg, 

5.0 µmol). Purification by column chromatography (1:10 hexane:EtOAc) afforded the title 

compound 292c as a pale yellow oil (33 mg, 48%); Rf 0.34 (EtOAc); νmax (thin film)/cm-1 2983w, 

1767s, 1370w, 1276m, 1246s, 1157m, 1025s, 971s, 590m; δH (400 MHz, CDCl3) 1.32 (3 H, t, J = 

7.1, H-4/4’), 1.33 (3 H, t, J = 7.1, H-4/4’), 1.72 (3 H, dd, J = 6.5, J = 1.6, H-10), 2.17 (1 H, ddd, J = 

9.4, J = 6.0, J = 5.3, H-7), 2.73 (1 H, app. dt, J = 10.3, J = 5.0, H-6), 4.14–4.22 (4 H, m, H-3,3’), 

4.27 (1 H, dd, J = 9.4, J = 3.0, H-5), 4.34 (1 H, dd, J = 9.4, J = 4.6, H-5), 5.60 (1 H, ddq, J = 15.3, 

J = 9.4, J = 1.6, H-8), 5.80 (1 H, dq, J = 15.3, J = 6.5, H-9); δC (100 MHz, CDCl3) 16.2 (C-4/4’), 

16.3 (C-4/4’), 17.9 (C-10), 29.5 (d, J = 202.7, C-2), 30.3 (C-6), 34.6 (d, J = 2.8, C-7), 62.8 (d, J = 

6.5, C-3/3’), 63.1 (d, J = 6.4, C-3/3’), 67.7 (d, J = 2.9, C-5), 124.3 (d, J = 4.8, C-8), 130.8 (C-9), 

171.7 (d, J = 9.1, C-1); δP (162 MHz, CDCl3) 16.5; HRMS (ESI+): Found: 297.0866; C12H19NaO5P 

(MNa+) Requires 297.0862 (−1.1 ppm error), Found: 275.1044; C12H20O5P (MH+) Requires 

275.1043 (−0.3 ppm error). 

Lab notebook reference: MGL/08/90 
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3-Methyl-but-2-en-1-yl 2-(diethoxyphosphoryl)acetate (293a) 

 

 
 

Synthesised using general procedure A with 3-methyl-but-2-en-1-ol 293 (431 mg, 5.00 mmol), 

toluene (25.0 mL), DEPAA (1.03 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 

6.50 mmol, 50% w/w solution in EtOAc) affording the title compound 293a as a yellow oil (1.25 g, 

95%). No further purification was required; Rf 0.24 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2982m, 2933w, 1734s, 1445w, 1392w, 1264s, 1113m, 1051w, 1029s, 968s; δH (400 MHz, CDCl3) 

1.33 (6 H, t, J = 7.1, H-4), 1.70 (3 H, s, H-8/9), 1.74 (3 H, s, H-8/9), 2.95 (2 H, d, J = 21.5, H-2), 

4.12–4.19 (4 H, m, H-3), 4.62 (2 H, d, J = 7.3, H-5), 5.31–5.36 (1 H, m, H-6); δC (100 MHz, 

CDCl3) 16.3 (d, J = 6.7, C-4), 18.0 (C-8/9), 25.7 (C-8/9), 34.3 (d, J = 134.5, C-2), 62.4 (C-5), 62.6 

(d, J = 6.6, C-3), 118.0 (C-6), 139.7 (C-7), 165.8 (d, J = 6.5, C-1); δP (162 MHz, CDCl3) 20.4; 

HRMS (ESI+): Found: 287.1021; C11H21NaO5P (MNa+) Requires 287.1019 (−0.9 ppm error). 

Lab notebook reference: MGL/08/87-1 

3-Methyl-but-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (293b) 
 

 
 

Synthesised using general procedure C with 3-methyl-but-2-en-1-yl 2-(diethoxyphosphoryl)acetate 

293a (1.24 g, 4.69 mmol), DBSA (2.35 g, 7.04 mmol), DBU (1.05 mL, 7.04 mmol) and CH2Cl2 

(47.0 mL). Purification by column chromatography (2:1 hexane:EtOAc) afforded the title 

compound 293b as a pale yellow oil (1.15 g, 85%); Rf 0.39 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2983m, 2933w, 2124s, 1700s, 1445w, 1374w, 1271s, 1110w, 1016s, 976s, 746s, 588s, 

556s; δH (400 MHz, CDCl3) 1.34 (6 H, t, J = 7.1, H-4), 1.70 (3 H, s, H-8/9), 1.74 (3 H, s, H-8/9), 

4.09–4.25 (4 H, m, H-3), 4.68 (2 H, d, J = 7.3, H-5), 5.29–5.35 (1 H, m, H-6); δC (100 MHz, 

CDCl3) 16.1 (d, J = 7.3, C-4), 18.0 (C-8/9), 25.7 (C-8/9), 62.4 (C-5), 63.6 (d, J = 5.9, C-3), 118.0 
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(C-6), 139.9 (C-7), 163.4 (d, J = 12.7, C-1); δP (162 MHz, CDCl3) 10.7; HRMS (ESI+): Found: 

313.0928; C11H19N2NaO5P (MNa+) Requires 313.0924 (−1.4 ppm error). 

Lab notebook reference: MGL/08/87-2 

Note: C-2 not observed in 13C NMR spectrum. 

Diethyl ((1SR,5SR)-6,6-dimethyl-2-oxo-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 

(293c) 
 

 
 

ynthesised using general procedure F with 3-methyl-but-2-en-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 293b (74.0 mg, 0.255 mmol), CH2Cl2 (5.1 mL) and Rh2(oct)4 (4.0 mg, 

5.1 µmol). Purification by column chromatography (1:10 hexane:EtOAc) afforded the title 

compound 293c as a pale yellow oil (39 mg, 58%); Rf 0.27 (EtOAc); νmax (thin film)/cm-1 2985w, 

1764s, 1389w, 1364w, 1260s, 1181s, 1052s, 1025s, 995s, 971s, 591m; δH (400 MHz, CDCl3) 1.24 

(3 H, s, H-8/9), 1.32 (3 H, t, J = 7.1, H-4/4’), 1.35 (3 H, t, J = 7.1, H-4/4’), 1.50 (3 H, s, H-8/9), 

2.58 (1 H, dd, J = 12.2, J = 5.3, H-6), 4.12–4.27 (5 H, m, H-3,3’,5), 4.38 (1 H, dd, J = 10.0, J = 5.3, 

H-5); δC (100 MHz, CDCl3) 16.3 (d, J = 6.2, C-4/4’), 16.3 (d, J = 6.8, C-4/4’), 16.5 (C-8/9), 21.6 

(d, J = 4.8, C-8/9), 30.0 (d, J = 2.8, C-7), 33.9 (d, J = 197.6, C-2), 36.3 (d, J = 3.8, C-6), 62.6 (d, J 

= 6.5, C-3/3’), 62.9 (d, J = 6.8, C-3/3’), 65.2 (d, J = 2.9, C-5), 171.4 (d, J = 9.8, C-1); δP (162 MHz, 

CDCl3) 18.6; HRMS (ESI+): Found: 285.0865; C11H19NaO5P (MNa+) Requires 285.0862 (−1.1 

ppm error), Found: 263.1043; C11H20O5P (MH+) Requires 263.1043 (−0.2 ppm error). 

Lab notebook reference: MGL/08/92 
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(E)-3,7-Dimethylocta-2,6-dien-1-yl 2-(diethoxyphosphoryl)acetate (294a) 

 

 
 

Synthesised using general procedure A with geraniol 294 (771 mg, 5.00 mmol), toluene (25.0 mL), 

DEPAA (1.03 mL, 5.25 mmol), DIPEA (2.26 mL, 13.0 mmol) and T3P (4.14 g, 6.50 mmol, 50% 

w/w solution in EtOAc) affording the title compound 294a as an orange oil (1.65 g, 99%). No 

further purification was required; Rf 0.27 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2980w, 2928w, 

1735s, 1444w, 1391w, 1263s, 1112m, 1051w, 1025s, 966s; δH (400 MHz, CDCl3) 1.32 (6 H, t, J = 

7.1, H-4), 1.58 (3 H, s, H-13/14), 1.67 (3 H, d, J = 0.9, H-13/14), 1.69 (3 H, d, J = 0.9, H-8), 2.00–

2.09 (4 H, m, H-9,10), 2.96 (2 H, d, J = 21.5, H-2), 4.16 (4 H, app. quin., J = 7.4, H-3), 4.64 (2 H, 

d, J = 7.2, H-5), 5.04–5.08 (1 H, m, H-11), 5.31–5.36 (1 H, m, H-6); δC (100 MHz, CDCl3) 16.3 (d, 

J = 6.6, C-4), 16.4 (C-8), 17.6 (C-13/14), 25.6 (C-13/14), 26.2 (C-10), 34.3 (d, J = 134.2, C-2), 

39.5 (C-9), 62.4 (C-5), 62.6 (d, J = 6.2, C-3), 117.7 (C-6), 123.6 (C-11), 131.9 (C-7/12), 142.9 (C-

7/12), 165.8 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): Found: 355.1644; 

C16H29NaO5P (MNa+) Requires 355.1645 (0.3 ppm error). 

Lab notebook reference: MGL/08/59 
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(E)-3,7-Dimethylocta-2,6-dien-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (294b) 

 

 
 

Synthesised using general procedure C with (E)-3,7-dimethylocta-2,6-dien-1-yl 2-

(diethoxyphosphoryl)acetate 294a (1.65 g, 4.96 mmol), p-ABSA (1.79 g, 7.45 mmol), DBU (1.11 

mL, 7.45 mmol) and CH2Cl2 (50.0 mL). Purification by column chromatography (2:1 

hexane:EtOAc) afforded the title compound 294b as a yellow oil (1.12 g, 63%); Rf 0.56 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 2981w, 2915w, 2124s, 1701s, 1444w, 1378w, 1273s, 1021s, 

975s, 797m, 744m, 588m, 559m; δH (400 MHz, CDCl3) 1.32 (6 H, td, J = 7.1, J = 0.8, H-4), 1.56 (3 

H, s, H-13/14), 1.64 (3 H, d, J = 1.0, H-13/14), 1.68 (3 H, d, J = 1.1, H-8), 1.98–2.08 (4 H, m, H-

9,10), 4.08–4.23 (4 H, m, H-3), 4.68 (2 H, d, J = 7.2, H-5), 5.01–5.05 (1 H, m, H-11), 5.28–5.32 (1 

H, m, H-6); δC (100 MHz, CDCl3) 16.0 (d, J = 6.9, C-4), 16.4 (C-8), 17.5 (C-13/14), 25.5 (C-

13/14), 26.1 (C-10), 39.4 (C-9), 53.5 (d, J = 227.1, C-2), 62.3 (C-5), 63.5 (d, J = 5.9, C-3), 117.6 

(C-6), 123.5 (C-11), 131.8 (C-7/12), 143.0 (C-7/12), 163.3 (d, J = 12.6, C-1); δP (162 MHz, CDCl3) 

10.7; HRMS (ESI+): Found: 381.1549; C16H27N2NaO5P (MNa+) Requires 381.1550 (0.3 ppm 

error). 

Lab notebook reference: MGL/08/61 
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Diethyl ((1SR,5SR,6RS)-6-methyl-6-(4-methylpent-3-en-1-yl)-2-oxo-3-

oxabicyclo[3.1.0]hexan-1-yl)phosphonate (294c) 
 

 
 

Synthesised using general procedure F with (E)-3,7-dimethylocta-2,6-dien-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 294b (71.7 mg, 0.200 mmol), CH2Cl2 (4.0 mL) and Rh2(oct)4 (3.1 mg, 

4.0 µmol). Purification by column chromatography (2:1 → 1:1 hexane:EtOAc) afforded the title 

compound 294c as a pale yellow oil (42 mg, 64%); Rf 0.20 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2977w, 2912w, 1764s, 1445w, 1391w, 1366w, 1255s, 1172s, 1051s, 1023s, 993m, 

970m, 597m; δH (400 MHz, CDCl3) 1.24 (3 H, d, J = 0.6, H-8), 1.33 (3 H, t, J = 7.1, H-4/4’), 1.36 

(3 H, t, J = 7.1, H-4/4’), 1.60 (3 H, s, H-13/14), 1.65 (3 H, d, J = 0.5, H-13/14), 1.76–1.93 (2 H, m, 

H-9), 2.03–2.12 (1 H, m, H-10), 2.17–2.26 (1 H, m, H-10), 2.59 (1 H, ddd, J = 12.5, J = 5.3, J = 

0.5, H-6), 4.11–4.29 (5 H, m, H-3,3’,5), 4.40 (1 H, dd, J = 10.0, J = 5.3, H-5), 5.05–5.10 (1 H, m, 

H-11); δC (100 MHz, CDCl3) 13.4 (C-8), 16.3 (C-4/4’), 16.3 (C-4/4’), 17.6 (C-13/14), 25.3 (C-10), 

25.6 (C-13/14), 33.8 (d, J = 1.9, C-7), 34.2 (d, J = 198.2, C-2), 34.4 (d, J = 4.2, C-9), 35.7 (d, J = 

3.6, C-6), 62.6 (d, J = 6.6, C-3/3’), 63.0 (d, J = 6.6, C-3/3’), 65.2 (d, J = 2.1, C-5), 123.2 (C-11), 

132.2 (C-12), 171.4 (d, J = 9.6, C-1); δP (162 MHz, CDCl3) 18.8; HRMS (ESI+): Found: 353.1493; 

C16H27NaO5P (MNa+) Requires 353.1488 (−1.2 ppm error), Found: 331.1668; C16H28O5P (MH+) 

Requires 331.1669 (0.1 ppm error). 

Lab notebook reference: MGL/08/62 
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Cyclohex-2-en-1-yl 2-(diethoxyphosphoryl)acetate (295a) 

 

 
 

Synthesised using general procedure A with cyclohex-2-en-1-ol 295 (481 mg, 4.90 mmol), toluene 

(24.5 mL), DEPAA (1.01 mL, 5.15 mmol), DIPEA (2.22 mL, 12.7 mmol) and T3P (4.05 g, 6.37 

mmol, 50% w/w solution in EtOAc) affording the title compound 295a as an orange oil (1.26 g, 

93%). No further purification was required; Rf 0.23 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2937s, 1730s, 1394w, 1270s, 1113m, 1050m, 1025s, 968s; δH (400 MHz, CDCl3) 1.29–1.33 (6 H, 

m, H-4,4’), 1.55–1.64 (1 H, m), 1.66–1.77 (2 H, m), 1.79–1.87 (1 H, m), 1.91–2.10 (2 H, m), 2.93 

(2 H, d, J = 21.5, H-2), 4.10–4.17 (4 H, m, H-3,3’), 5.25–5.29 (1 H, m, H-5), 5.67 (1 H, ddt, J = 

10.1, J = 3.8, J = 2.0, H-6), 5.94 (1 H, m, H-7); δC (100 MHz, CDCl3) 16.2 (2C, d, J = 6.8, C-4,4’), 

16.3 (C-8/9/10), 24.7 (C-8/9/10), 28.0 (C-8/9/10), 34.5 (d, J = 133.4, C-2), 62.5 (2C, d, J = 6.4, C-

3,3’), 69.2 (C-5), 124.9 (C-6), 133.1 (C-7), 165.5 (d, J = 6.6, C-1); δP (162 MHz, CDCl3) 20.5; 

HRMS (ESI+): Found: 299.1018; C12H21NaO5P (MNa+) Requires 299.1019 (0.1 ppm error). 

Lab notebook reference: MGL/08/56 
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Cyclohex-2-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate (295b) 

 

 
 

Synthesised using general procedure C with cyclohex-2-en-1-yl 2-(diethoxyphosphoryl)acetate 

295a (1.26 g, 4.56 mmol), p-ABSA (1.64 g, 6.84 mmol), DBU (1.02 mL, 6.84 mmol) and CH2Cl2 

(46.0 mL). Purification by column chromatography (1:1 hexane:EtOAc) afforded the title 

compound 295b as a yellow oil (1.04 g, 75%); Rf 0.49 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2984w, 2939w, 2124s, 1694s, 1270s, 1118m, 1016s, 976s, 908m, 794m, 747m, 588m, 557m; δH 

(400 MHz, CDCl3) 1.31 (3 H, td, J = 7.1, J = 0.8, H-4/4’), 1.32 (3 H, td, J = 7.1, J = 0.8, H-4/4’), 

1.56–1.78 (3 H, m), 1.80–1.88 (1 H, m), 1.91–2.10 (2 H, m), 4.07–4.23 (4 H, m, H-3,3’), 5.29–5.33 

(1 H, m, H-5), 5.69 (1 H, ddt, J = 10.1, J = 3.9, J = 2.0, H-6), 5.94 (1 H, m, H-7); δC (100 MHz, 

CDCl3) 16.0–16.2 (2C, m, C-4,4’), 16.4 (C-8/9/10), 24.7 (C-8/9/10), 28.2 (C-8/9/10), 53.8 (d, J = 

224.3, C-2), 63.4–63.5 (2C, m, C-3,3’), 69.4 (C-5), 124.9 (C-6), 133.3 (C-7), 163.1 (d, J = 12.4, C-

1); δP (162 MHz, CDCl3) 10.7; HRMS (ESI+): Found: 325.0932; C12H19N2NaO5P (MNa+) Requires 

325.0924 (−2.5 ppm error). 

Lab notebook reference: MGL/08/57 

Diethyl ((2a1SR,2bSR,5aRS)-2-oxooctahydrocyclopropa[cd]benzofuran-2a-

yl)phosphonate (295c) 
 

 
 

Synthesised using general procedure F with cyclohex-2-en-1-yl 2-diazo-2-

(diethoxyphosphoryl)acetate 295b (60 mg, 0.200 mmol), CH2Cl2 (4.0 mL) and Rh2(oct)4 (3.1 mg, 

4.0 µmol). Purification by column chromatography (1:1 hexane:EtOAc) afforded the title 

compound 295c as a pale yellow oil (13 mg, 24%); Rf 0.10 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2952w, 1759s, 1252m, 1161m, 1023s, 970s, 586m; δH (400 MHz, CDCl3) 1.35 (3 H, t, J 
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= 7.0, H-4/4’), 1.37 (3 H, td, J = 7.0, H-4/4’), 1.44–1.66 (3 H, m), 1.73–1.81 (1 H, m), 1.87–1.95 (1 

H, m), 2.10–2.27 (2 H, m, H-7,8/9), 2.79 (1 H, ddd, J = 11.7, J = 7.9, J = 6.0, H-6), 4.15–4.28 (4 H, 

m, H-3,3’), 4.93 (1 H, app. dt, J = 5.7, J = 2.7, H-5); δC (100 MHz, CDCl3) 14.1 (C-9), 16.3 (d, J = 

6.1, C-4,4’), 17.7 (d, J = 2.8, C-8), 24.4 (d, J = 1.9, C-10), 24.6 (d, J = 1.8, C-7), 29.3 (d, J = 200.1, 

C-2), 29.3 (d, J = 3.7, C-6), 63.1–63.2 (m, C-3,3’) 72.5 (d, J = 4.8, C-5), 171.0 (d, J = 9.5, C-1); δP 

(162 MHz, CDCl3) 18.9; HRMS (ESI+): Found: 297.0857; C12H19NaO5P (MNa+) Requires 

297.0862 (1.8 ppm error). 

Lab notebook reference: MGL/08/60 

Cinnamyl 2-(diethoxyphosphoryl)acetate (296a) 
 

 
 

Synthesised using general procedure A with cinnamyl alcohol 296 (4.03 g, 30.0 mmol), toluene 

(150 mL), DEPAA (5.06 mL, 31.5 mmol), DIPEA (13.6 mL, 78.0 mmol) and T3P (24.8 g, 39.0 

mmol, 50% w/w solution in EtOAc) affording the title compound 296a as a yellow oil (7.14 g, 

76%). No further purification was required; Rf 0.23 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2984w, 1737s, 1449w, 1393w, 1264s, 1163w, 1114m, 1050m, 1023s, 968s; δH (400 MHz, CDCl3) 

1.33 (6 H, t, J = 7.0, H-4), 3.01 (2 H, d, J = 21.6, H-2), 4.13–4.21 (4 H, m, H-3), 4.80 (2 H, dd, J = 

6.5, J = 1.2, H-5), 6.27 (1 H, dt, J = 15.9, J = 6.5, H-6), 6.68 (1 H, d, J = 15.9, H-7), 7.24–7.28 (1 

H, m, H-11), 7.30–7.34 (2 H, m, H-10), 7.36–7.39 (2 H, m, H-9); δC (100 MHz, CDCl3) 16.3 (d, J 

= 6.2, C-4), 34.3 (d, J = 134.2, C-2), 62.7 (d, J = 6.5, C-3), 66.0 (C-5), 122.4 (C-6), 126.6 (C-9), 

128.1 (C-11), 128.6 (C-10), 134.7 (C-7), 136.0 (C-8), 165.6 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 

20.2; HRMS (ESI+): Found: 335.1027; C15H21NaO5P (MNa+) Requires 335.1019 (−2.4 ppm error), 

Found: 313.1197; C15H22O5P (MH+) Requires 313.1199 (0.7 ppm error). 

Lab notebook reference: MGL/04/48 
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Cinnamyl 2-diazo-2-(diethoxyphosphoryl)acetate (296b) 

 

 
 

Synthesised using general procedure B with cinnamyl 2-(diethoxyphosphoryl)acetate 296a (3.12 g, 

10.0 mmol), THF (50 mL), LHMDS (12.0 mL, 12.0 mmol, 1.0 M solution in THF) and p-ABSA 

(2.88 g, 12.0 mmol). Purification by column chromatography (2:1 petrol:EtOAc) afforded the title 

compound 296b as a yellow oil (1.41 g, 42%); Rf 0.50 (1:1 petrol:EtOAc); νmax (thin film)/cm-1 

2985w, 2128s, 1707s, 1496w, 1449w, 1380w, 1275s, 1214w, 1164w, 1120w, 1020s, 975m; δH 

(400 MHz, CDCl3) 1.36 (6 H, t, J = 7.1, J = 0.8, H-4), 4.11–4.29 (4 H, m, H-3), 4.86 (2 H, dd, J = 

6.5, J = 1.3, H-5), 6.28 (1 H, dt, J = 15.9, J = 6.5, H-6), 6.68 (1 H, d, J = 15.9, H-7), 7.25–7.40 (5 

H, m, H-9,10,11); δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4), 53.9 (d, J = 227.3, C-2), 63.7 (d, J = 

5.6, C-3), 66.0 (C-5), 122.4 (C-6), 126.6 (C-9), 128.2 (C-11), 128.6 (C-10), 134.9 (C-7), 135.9 (C-

8), 163.2 (d, J = 11.8, C-1); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 361.0928; 

C15H19N2NaO5P (MNa+) Requires 361.0924 (−1.0 ppm error). 

Lab notebook reference: MGL/04/59 

Diethyl ((1RS,5SR,6SR)-2-oxo-6-phenyl-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 

(296c) 
 

 
 

To an oven dried 50 mL rbf containing cinnamyl 2-diazo-2-(diethoxyphosphoryl)acetate 296b (676 

mg, 2.00 mmol) flushed with argon was added CH2Cl2 (20 mL) followed by Rh2(oct)4 (31.1 mg, 

0.04 mmol). The solution was stirred at 45 °C for 18 h. Concentration in vacuo and purification by 
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column chromatography (1:10 hexane:EtOAc) afforded the title compound 296c as a pale yellow 

solid (490 mg, 79%); Rf 0.15 (1:2 hexane:EtOAc); m.p. 79–81 °C; νmax (thin film)/cm-1 2989w, 

2909w, 1762s, 1369w, 1251m, 1200w, 1163w, 1098w, 1049w, 1013s, 971s; δH (400 MHz, CDCl3) 

1.07 (3 H, td, J = 7.1, J = 0.5, H-7/7’), 1.21 (3 H, t, J = 7.1, H-7/7’), 2.81 (1 H, app. t, J = 6.1, H-5), 

3.30 (1 H, app. dt, J = 10.6, J = 5.2, H-3), 3.80 (2 H, dq, J = 8.2, J = 7.1, H-6/6’), 3.88–4.08 (2 H, 

m, H-6/6’), 4.41 (1 H, dd, J = 9.3, J = 2.8, H-4), 4.51 (1 H, dd, J = 9.3, J = 4.7, H-4), 7.26–7.39 (5 

H, m, H-9,10,11); δC (100 MHz, CDCl3) 16.0 (d, J = 6.3, C-7/7’), 16.2 (d, J = 5.9, C-7/7’), 28.1 (C-

3), 31.5 (d, J = 206.1, C-2), 34.9 (d, J = 3.0, C-5), 62.5 (d, J = 6.1, C-6/6’), 62.8 (d, J = 6.6, C-

6/6’), 68.0 (d, J = 2.4, C-4), 128.0 (C-11), 128.1 (C-10), 129.4 (C-9), 131.7 (d, J = 4.8, C-8), 171.9 

(d, J = 10.1, C-1); δP (162 MHz, CDCl3) 15.3; HRMS (ESI+): Found: 333.0861; C15H19NaO5P 

(MNa+) Requires 333.0862 (0.4 ppm error), Found: 311.1035; C15H20O5P (MH+) Requires 

311.1043 (2.5 ppm error). 

Lab notebook reference: MGL/04/67,61 

(E)-3-(4-Methoxyphenyl)allyl 2-(diethoxyphosphoryl)acetate (297a) 

 

 
 

Synthesised using general procedure A with (E)-3-(4-methoxyphenyl)prop-2-en-1-ol 297 (1.37 g, 

8.34 mmol), toluene (41.7 mL), DEPAA (1.72 g, 8.76 mmol), DIPEA (3.78 mL, 21.7 mmol) and 

T3P (6.90 g, 10.8 mmol, 50% w/w solution in EtOAc) affording the title compound 297a as an 

orange oil (2.79 g, 98%). No further purification was required; Rf 0.20 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2983w, 1733s, 1607m, 1512s, 1247s, 1176m, 1114m, 1023s, 966s, 841m; δH (400 

MHz, CDCl3) 1.32 (6 H, t, J = 7.1, H-4), 3.00 (2 H, d, J = 21.5, H-2), 3.80 (3 H, s, H-12), 4.13–

4.20 (4 H, m, H-3), 4.77 (2 H, d, J = 6.7, H-5), 6.14 (1 H, dt, J = 15.8, J = 6.7, H-6), 6.62 (1 H, d, J 

= 15.8, H-7), 6.85 (2 H, d, J = 8.3, H-10), 7.31 (2 H, d, J = 8.3, H-9); δC (100 MHz, CDCl3) 16.3 

(d, J = 6.6, C-4), 34.3 (d, J = 134.2, C-2), 55.2 (C-12), 62.7 (d, J = 6.7, C-3), 66.3 (C-5), 114.0 (C-

10), 120.0 (C-6), 127.8 (C-9), 128.7 (C-8), 134.5 (C-7), 160.0 (C-11), 165.7 (d, J = 6.5, C-1); δP 

(162 MHz, CDCl3) 20.2; HRMS (ESI+): Found: 365.1129; C16H23NaO6P (MNa+) Requires 

365.1124 (−1.2 ppm error). 

Lab notebook reference: MGL/08/74 
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(E)-3-(4-Methoxyphenyl)allyl 2-diazo-2-(diethoxyphosphoryl)acetate (297b) 

 

 
 

Synthesised using general procedure C with (E)-3-(4-methoxyphenyl)allyl 2-

(diethoxyphosphoryl)acetate 297a (2.79 g, 8.15 mmol), DBSA (4.09 mL, 12.2 mmol), DBU (1.82 

mL, 12.2 mmol) and CH2Cl2 (81.5 mL). Purification by column chromatography (2:1 

hexane:EtOAc) afforded the title compound 297b as a yellow oil (2.26 g, 75%); Rf 0.37 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 2985w, 2127s, 1704s, 1607m, 1512s, 1273s, 1250s, 1176w, 

1020s, 975s; δH (400 MHz, CDCl3) 1.35 (6 H, td, J = 7.1, J = 0.8, H-4), 3.80 (3 H, s, H-12), 4.11–

4.27 (4 H, m, H-3), 4.82 (2 H, dd, J = 6.7, J = 1.2, H-5), 6.14 (1 H, dt, J = 15.8, J = 6.7, H-6), 6.62 

(1 H, d, J = 15.8, H-7), 6.85 (2 H, d, J = 8.7, H-10), 7.32 (2 H, d, J = 8.7, H-9); δC (100 MHz, 

CDCl3) 16.1 (d, J = 6.9, C-4), 55.2 (C-12), 63.7 (d, J = 6.1, C-3), 66.3 (C-5), 114.0 (C-10), 120.0 

(C-6), 127.9 (C-9), 128.6 (C-8), 134.7 (C-7), 159.7 (C-11), 163.2 (d, J = 12.8, C-1); δP (162 MHz, 

CDCl3) 10.6; HRMS (ESI+): Found: 391.1032; C16H21N2NaO6P (MNa+) Requires 391.1029 (−0.6 

ppm error). 

Lab notebook reference: MGL/08/80 

Note: C-2 not observed in 13C NMR spectrum. 
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Diethyl ((1RS,5SR,6SR)-6-(4-methoxyphenyl)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-

yl)phosphonate (297c) 
 

 
 

Synthesised using general procedure F with (E)-3-(4-methoxyphenyl)allyl 2-diazo-2-

(diethoxyphosphoryl)acetate 297b (85 mg, 0.250 mmol), CH2Cl2 (5.0 mL) and Rh2(oct)4 (4.0 mg, 

5.0 µmol). Purification by column chromatography (EtOAc) afforded the title compound 297c as a 

pale yellow oil (45 mg, 53%); Rf 0.23 (EtOAc); νmax (thin film)/cm-1 2982w, 1764s, 1613w, 

1518m, 1370w, 1294w, 1249s, 1182m, 1052m, 1020s, 983s, 820m; δH (400 MHz, CDCl3) 1.09 (3 

H, td, J = 7.1, J = 0.4, H-4/4’), 1.20 (3 H, t, J = 7.1, H-4/4’), 2.73 (1 H, app. t, J = 6.1, H-7), 3.24 (1 

H, app. dt, J = 10.6, J = 5.2, H-6), 3.76 (3 H, s, H-12), 3.77–4.06 (4 H, m, H-3/3’), 4.36 (1 H, dd, J 

= 9.3, J = 2.8, H-5), 4.46 (1 H, dd, J = 9.3, J = 4.7, H-5), 6.83 (2 H, d, J = 8.8, H-10), 7.26 (2 H, d, 

J = 8.8, H-9); δC (100 MHz, CDCl3) 16.1 (d, J = 6.6, C-4/4’), 16.2 (d, J = 6.0, C-4/4’), 28.3 (C-6), 

31.6 (d, J = 206.2, C-2), 34.6 (d, J = 3.2, C-7), 55.2 (C-12), 62.5 (d, J = 6.6, C-3/3’), 62.8 (d, J = 

6.8, C-3/3’), 68.0 (d, J = 3.0, C-5), 113.4 (C-10), 123.5 (d, J = 5.6, C-8), 130.5 (C-9), 159.3 (C-11), 

171.9 (d, J = 10.2, C-1); δP (162 MHz, CDCl3) 15.5; HRMS (ESI+): Found: 363.0960; 

C16H21NaO6P (MNa+) Requires 363.0968 (2.1 ppm error), Found: 341.1140; C16H22O6P (MH+) 

Requires 341.1149 (2.6 ppm error). 

Lab notebook reference: MGL/08/88 
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(E)-3-(4-Bromophenyl)allyl 2-(diethoxyphosphoryl)acetate (298a) 

 

 
 

Synthesised using general procedure A with (E)-3-(4-bromophenyl)prop-2-en-1-ol 298 (1.58 g, 

7.43 mmol), toluene (37.2 mL), DEPAA (1.53 g, 7.80 mmol), DIPEA (3.36 mL, 19.3 mmol) and 

T3P (6.15 g, 9.66 mmol, 50% w/w solution in EtOAc) affording the title compound 298a as an 

orange oil (2.90 g, 100%). No further purification was required; Rf 0.20 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2982w, 1736w, 1488m, 1402w, 1258s, 1114m, 1049m, 1022s, 967s, 840m, 785m; 

δH (400 MHz, CDCl3) 1.32 (6 H, t, J = 7.1, H-4), 3.01 (2 H, d, J = 21.5, H-2), 4.13–4.20 (4 H, m, 

H-3), 4.78 (2 H, d, J = 6.3, H-5), 6.26 (1 H, dt, J = 15.9, J = 6.3, H-6), 6.62 (1 H, d, J = 15.9, H-7), 

7.24 (2 H, d, J = 8.5, H-9/10), 7.43 (2 H, d, J = 8.5, H-9/10); δC (100 MHz, CDCl3) 16.3 (d, J = 6.6, 

C-4), 34.3 (d, J = 134.2, C-2), 62.7 (d, J = 6.7, C-3), 65.7 (C-5), 122.0 (C-11), 123.3 (C-6), 128.1 

(C-9/10), 131.7 (C-9/10), 133.2 (C-7), 135.0 (C-8), 165.6 (d, J = 6.5, C-1); δP (162 MHz, CDCl3) 

20.1; HRMS (ESI+): Found: 413.0130; C15H20
79BrNaO5P (MNa+) Requires 413.0124 (−1.4 ppm 

error). 

Lab notebook reference: MGL/08/75 

(E)-3-(4-Bromophenyl)allyl 2-diazo-2-(diethoxyphosphoryl)acetate (298b) 

 

 
 

Synthesised using general procedure C with (E)-3-(4-bromophenyl)allyl 2-

(diethoxyphosphoryl)acetate 298a (2.90 g, 7.41 mmol), DBSA (3.72 mL, 11.1 mmol), DBU (1.66 

mL, 11.1 mmol) and CH2Cl2 (74.1 mL). Purification by column chromatography (2:1 
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hexane:EtOAc) afforded the title compound 298b as a yellow oil (2.69 g, 87%); Rf 0.42 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 2984w, 2127s, 1705s, 1488m, 1275s, 1020s, 975s, 798w, 

744w, 590w, 560w; δH (400 MHz, CDCl3) 1.33–1.37 (6 H, m, H-4), 4.12–4.28 (4 H, m, H-3), 4.83 

(2 H, dd, J = 6.4, J = 1.3, H-5), 6.26 (1 H, dt, J = 15.9, J = 6.4, H-6), 6.61 (1 H, d, J = 15.9, H-7), 

7.24 (2 H, d, J = 8.5, H-9/10), 7.44 (2 H, d, J = 8.5, H-9/10); δC (100 MHz, CDCl3) 16.3 (d, J = 7.2, 

C-4), 63.8 (d, J = 6.1, C-3), 65.9 (C-5), 122.2 (C-11), 123.3 (C-6), 128.2 (C-9/10), 131.9 (C-9/10), 

133.6 (C-7), 135.0 (C-8), 163.3 (d, J = 12.6, C-1); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): 

Found: 439.0019; C15H18
79BrN2NaO5P (MNa+) Requires 439.0029 (2.3 ppm error). 

Lab notebook reference: MGL/08/81 

Note: C-2 not observed in 13C NMR spectrum. 

Diethyl ((1RS,5SR,6SR)-6-(4-bromophenyl)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-

yl)phosphonate (298c) 

 

 
 

Synthesised using general procedure F with (E)-3-(4-bromophenyl)allyl 2-diazo-2-

(diethoxyphosphoryl)acetate 298b (97 mg, 0.250 mmol), CH2Cl2 (5.0 mL) and Rh2(oct)4 (4.0 mg, 

5.0 µmol). Purification by column chromatography (EtOAc) afforded the title compound 298c as a 

pale yellow oil (72 mg, 74%); Rf 0.32 (EtOAc); νmax (thin film)/cm-1 2982w, 1768s, 1492w, 

1369w, 1252m, 1053s, 1019s, 974m, 810m, 590m; δH (400 MHz, CDCl3) 1.09 (3 H, t, J = 7.1, H-

4/4’), 1.21 (3 H, t, J = 7.1, H-4/4’), 2.71 (1 H, app. t, J = 6.0, H-7), 3.24 (1 H, app. dt, J = 10.7, J = 

5.2, H-6), 3.81–4.08 (4 H, m, H-3/3’), 4.38 (1 H, dd, J = 9.4, J = 2.8, H-5), 4.48 (1 H, dd, J = 9.4, J 

= 4.8, H-5), 7.22 (2 H, d, J = 8.5, H-9/10), 7.43 (2 H, d, J = 8.5, H-9/10); δC (100 MHz, CDCl3) 

16.0 (d, J = 6.6, C-4/4’), 16.1 (d, J = 6.0, C-4/4’), 28.1 (C-6), 31.4 (d, J = 205.8, C-2), 34.0 (d, J = 

3.7, C-7), 62.6 (d, J = 6.6, C-3/3’), 62.9 (d, J = 6.8, C-3/3’), 67.8 (d, J = 3.1, C-5), 122.0 (C-11), 

130.9 (d, J = 5.7, C-8), 131.0 (C-9/10), 131.1 (C-9/10), 171.5 (d, J = 10.2, C-1); δP (162 MHz, 

CDCl3) 15.0; HRMS (ESI+): Found: 410.9970; C15H18
79BrNaO5P (MNa+) Requires 410.9967 (−0.6 

ppm error), Found: 389.0154; C15H19
79BrO5P (MH+) Requires 389.0148 (−1.5 ppm error). 

Lab notebook reference: MGL/08/89 
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(E)-3-(1,3-Benzodioxol-5-yl)allyl 2-(diethoxyphosphoryl)acetate (299a) 

 

 
 

Synthesised using general procedure A with (E)-3-(1,3-benzodioxol-5-yl)prop-2-en-1-ol 299 (1.95 

g, 10.9 mmol), toluene (55 mL), DEPAA (1.85 mL, 11.5 mmol), DIPEA (4.95 mL, 28.4 mmol) and 

T3P (9.05 g, 14.2 mmol, 50% w/w solution in EtOAc) affording the title compound 299a as a 

yellow oil (3.89 g, 100%). No further purification was required; Rf 0.17 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2986w, 2908w, 1733s, 1654w, 1607w, 1504m, 1491m, 1446m, 1398w, 1354w, 

1248s, 1195w, 1164w, 1021s, 965s; δH (400 MHz, CDCl3) 1.32 (6 H, t, J = 7.1, J = 0.4, H-4), 2.99 

(2 H, d, J = 21.5, H-2), 4.12–4.20 (4 H, m, H-3), 4.75 (2 H, dd, J = 6.6, J = 1.0, H-5), 5.95 (2 H, s, 

H-14), 6.09 (1 H, dt, J = 15.8, J = 6.6, H-6), 6.58 (1 H, d, J = 15.8, H-7), 6.74 (1 H, d, J = 8.0, H-

10), 6.81 (1 H, dd, J = 8.0, J = 1.6, H-9), 6.91 (1 H, d, J = 1.6, H-13); δC (100 MHz, CDCl3) 16.3 

(d, J = 6.2, C-4), 34.3 (d, J = 134.2, C-2), 62.7 (d, J = 6.2, C-3), 66.1 (C-5), 101.1 (C-14), 105.7 

(C-13), 108.3 (C-10), 120.5 (C-6), 121.5 (C-9), 130.4 (C-8), 134.5 (C-7), 147.7 (C-11/12), 148.0 

(C-11/12), 165.6 (d, J = 6.1, C-1); δP (162 MHz, CDCl3) 20.2; HRMS (ESI+): Found: 379.0920; 

C16H21NaO7P (MNa+) Requires 379.0917 (−0.8 ppm error). 

Lab notebook reference: MGL/04/65 

(E)-3-(1,3-Benzodioxol-5-yl)allyl 2-diazo-2-(diethoxyphosphoryl)acetate (299b) 
 

 
 

Synthesised using general procedure B with purification by column chromatography (1:1 

hexane:EtOAc) affording the title compound as a pale yellow solid (1.71 g, 46%); Rf 0.36 (1:1 
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hexane:EtOAc); m.p. 71–75 °C νmax (thin film)/cm-1 2985w, 2129s, 1703s, 1504m, 1491m, 1446m, 

1383w, 1355w, 1274s, 1250s, 1164w, 1101w, 1019s, 975m, 862w, 797m, 745m, 590m, 560m; δH 

(400 MHz, CDCl3) 1.36 (6 H, t, J = 7.1, J = 0.8, H-4), 4.12–4.28 (4 H, m, H-3), 4.82 (2 H, dd, J = 

6.6, J = 1.3, H-5), 5.96 (2 H, s, H-14), 6.10 (1 H, dt, J = 15.8, J = 6.6, H-6), 6.59 (1 H, d, J = 15.8, 

H-7), 6.76 (1 H, d, J = 8.0, H-10), 6.82 (1 H, dd, J = 8.0, J = 1.7, H-9), 6.92 (1 H, d, J = 1.7, H-13); 

δC (100 MHz, CDCl3) 16.1 (d, J = 6.9, C-4), 53.9 (d, J = 229.3, C-2), 63.7 (d, J = 5.6, C-3), 66.1 

(C-5), 101.2 (C-14), 105.7 (C-13), 108.3 (C-10), 120.5 (C-6), 121.6 (C-9), 130.3 (C-8), 134.8 (C-

7), 147.8 (C-11/12), 148.1 (C-11/12), 163.2 (d, J = 12.2, C-1); δP (162 MHz, CDCl3) 10.6; HRMS 

(ESI+): Found: 405.0820; C16H19N2NaO7P (MNa+) Requires 405.0822 (0.4 ppm error). 

Lab notebook reference: MGL/04/75 

Diethyl ((1RS,5SR,6SR)-6-(1,3-benzodioxol-5-yl)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-

yl)phosphonate (299c) 

 

 
 

Synthesised using general procedure F with (E)-3-(1,3-benzodioxol-5-yl)allyl 2-diazo-2-

(diethoxyphosphoryl)acetate 299b (68 mg, 0.178 mmol), CH2Cl2 (3.6 mL) and Rh2(oct)4 (2.8 mg, 

3.6 µmol). Purification by column chromatography (1:10 hexane:EtOAc) afforded the title 

compound 299c as a pale yellow solid (46 mg, 73%); Rf 0.17 (1:2 hexane:EtOAc); m.p. 96–99 °C; 

νmax (thin film)/cm-1 2980m, 2910m, 1754s, 1500m, 1489m, 1447m, 1395w, 1371m, 1311m, 

1233s, 1214w, 1180w, 1098w, 1014s, 832m, 807m, 585s; δH (400 MHz, CDCl3) 1.15 (3 H, t, J = 

7.1, H-7/7’), 1.24 (3 H, t, J = 7.1, H-7/7’), 2.74 (1 H, app. t, J = 6.1, H-5), 3.21 (1 H, app. dt, J = 

10.7, J = 5.2, H-3), 3.89–4.12 (4 H, m, H-6,6’), 4.38 (1 H, dd, J = 9.3, J = 2.8, H-4), 4.48 (1 H, dd, 

J = 9.3, J = 4.7, H-4), 5.94 (2 H, s, H-14), 6.75 (1 H, d, J = 7.9, H-10), 6.81–6.84 (2 H, m, H-9,13); 

δC (100 MHz, CDCl3) 16.1 (d, J = 6.5, C-7/7’), 16.3 (d, J = 6.0, C-7/7’), 28.4 (C-3), 31.5 (d, J = 

205.7, C-2), 34.9 (d, J = 3.0, C-5), 62.6 (d, J = 6.1, C-6/6’), 62.9 (d, J = 6.6, C-6/6’), 68.0 (d, J = 

2.4, C-4), 101.2 (C-14), 107.9 (C-10), 109.8 (C-9/13), 123.0 (C-9/13), 125.3 (d, J = 5.1, C-8), 

147.4 (C-11/12), 147.4 (C-11/12), 171.8 (d, J = 10.2, C-1); δP (162 MHz, CDCl3) 15.4; HRMS 

(ESI+): Found: 377.0750; C16H19NaO7P (MNa+) Requires 377.0761 (2.8 ppm error), Found: 

355.0925; C16H20O7P (MH+) Requires 355.0941 (4.4 ppm error). 

Lab notebook reference: MGL/04/81 
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5.2.3.2.  Ring-openings 

Diethyl ((4SR)-4-((ethylthio)methyl)-2-oxotetrahydrofuran-3-yl)phosphonate (304)  
 

 
 

To a solution of diethyl ((1RS,5SR)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 287c (47.0 

mg, 0.201 mmol) in DMF (1 mL) was added sodium ethanethiolate (20.3 mg, 0.241 mmol). The 

solution was stirred at RT for 2 h then quenched with sat. aq. NH4Cl (10 mL) and the aqueous layer 

separated. The organic layer was washed with water (2 × 10 mL) and dried over MgSO4. 

Concentration in vacuo and purification by column chromatography (1:1 hexane:EtOAc) afforded 

the title compound 304 as a colourless oil (22 mg, 37%); Rf 0.44 (1:8 hexane:EtOAc); νmax (thin 

film)/cm-1 2979w, 2915w, 2838w, 1772s, 1251m, 1160w, 1047w, 1021s, 971m; δH (400 MHz, 

CDCl3) 1.25 (3 H, t, J = 7.4, H-7), 1.34 (3 H, td, J = 7.1, J = 0.6, H-9/9’), 1.36 (3 H, td, J = 7.1, J = 

0.6, H-9/9’), 2.55 (2 H, q, J = 7.4, H-6), 2.68 (1 H, ddd, J = 13.4, J = 7.8, J = 0.8, H-5), 2.74 (1 H, 

dd, J = 13.4, J = 7.8, H-5), 2.99–3.11 (1 H, m, H-3), 3.05 (1 H, dd, J = 24.6, J = 4.9, H-2), 4.13 (1 

H, dd, J = 9.2, J = 4.1, H-4), 4.16–4.26 (4 H, m, H-8,8’), 4.56 (1 H, dd, J = 9.2, J = 6.9, H-4); δC 

(100 MHz, CDCl3) 14.6 (C-7), 16.3 (d, J = 6.1, C-9/9’), 16.3 (d, J = 6.1, C-9/9’), 25.9 (C-6), 34.7 

(d, J = 10.1, C-5), 37.6 (d, J = 2.2, C-3), 44.2 (d, J = 141.1, C-2), 63.0 (d, J = 6.8, C-8/8’), 63.7 (d, 

J = 6.8, C-8/8’), 71.7 (d, J = 5.7, C-4), 171.4 (d, J = 3.2, C-1); δP (162 MHz, CDCl3) 20.1; HRMS 

(ESI+): Found: 319.0730; C11H21NaO5PS (MNa+) Requires 319.0740 (3.0 ppm error). 

Lab notebook reference: MGL/03/31 
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Diethyl ((4SR)-4-((SR)-(ethylthio)(phenyl)methyl)-2-oxotetrahydrofuran-3-

yl)phosphonate (305) 
 

 
 

To a solution of diethyl ((1RS,5SR,6SR)-2-oxo-6-phenyl-3-oxabicyclo[3.1.0]hexan-1-

yl)phosphonate 296c (62 mg, 0.200 mmol) in THF (1.0 mL) was added sodium ethanethiolate 

(33.6 mg, 0.400 mmol). The solution was stirred at RT for 18 h then quenched with sat. aq. NH4Cl 

(10 mL), diluted with diethyl ether (10 mL) and the aqueous layer separated. The aqueous layer 

was extracted once with diethyl ether (10 mL) then the combined organic extracts were washed 

with water (2 × 10 mL) and dried over MgSO4. Concentration in vacuo and purification by column 

chromatography (1:1 hexane:EtOAc) afforded the title compound 305 as a colourless oil (14 mg, 

19%); Rf 0.28 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2978m, 2928m, 1773s, 1453w, 1254s, 

1151m, 1048m, 1023s, 972m, 702w; δH (400 MHz, CDCl3) 1.14 (3 H, t, J = 7.4, H-13), 1.25–1.32 

(6 H, m, H-7,7’), 2.33 (2 H, q, J = 7.4, H-12), 2.89 (1 H, dd, J = 24.6, J = 3.0, H-2), 3.17–3.27 (1 

H, m, H-3), 3.84 (1 H, d, J = 9.7, H-5), 3.93–4.18 (4 H, m, H-6,6’), 4.53 (1 H, dd, J = 9.4, J = 6.7, 

H-4), 4.67 (1 H, dd, J = 9.4, J = 2.5, H-4), 7.27–7.37 (5 H, m, H-9,10,11); δC (100 MHz, CDCl3) 

14.3 (C-13), 16.2 (d, J = 6.5, C-7/7’), 16.3 (d, J = 6.5, C-7/7’), 25.3 (C-12), 43.5 (C-3), 43.9 (d, J = 

136.2, C-2), 52.1 (d, J = 12.3, C-5), 62.9 (d, J = 7.3, C-6/6’), 63.8 (d, J = 6.8, C-6/6’), 70.6 (d, J = 

3.3, C-4), 128.0 (C-11), 128.3 (C-9/10), 128.9 (C-9/10), 139.4 (C-8), 171.4 (d, J = 4.2, C-1); δP 

(162 MHz, CDCl3) 19.4; HRMS (ESI+): Found: 395.1065; C17H25NaO5PS (MNa+) Requires 

395.1053 (−3.0 ppm error), Found: 373.1243; C17H26O5PS (MH+) Requires 373.1233 (−2.6 ppm 

error). 

Lab notebook reference: MGL/08/98B 
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Diethyl ((4SR)-4-benzyl-2-oxotetrahydrofuran-3-yl)phosphonate (306) 

 

 
 

Cuprate method: To a stirred solution of CuBr·DMS (61.7 mg, 0.300 mmol) in THF (0.6 mL) and 

DMS (0.2 mL) at −40 °C was added phenylmagnesium bromide (0.2 mL, 0.600 mmol, 3.0 M 

solution in diethyl ether). The solution was stirred for 20 mins with warming to −20 °C. A solution 

of diethyl ((1RS,5SR)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 287c (52 mg, 0.222 

mmol) in THF (0.6 mL) was added via cannula over 5 mins. After stirring the solution for 2 h at 

RT the reaction was quenched with sat. aq. NH4Cl (5 mL). The organic layer was separated and the 

aqueous layer extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried over 

MgSO4 and concentrated in vacuo. Purification by column chromatography (1:2 hexane:EtOAc) 

afforded the title compound 306 as a pale yellow oil (44 mg, 63%).  

 

 
 

SmI2 method: To a solution of freshly prepared SmI2 (2.00 mL, 0.200 mmol, ~0.1 M in THF) in an 

oven dried sealable tube at −78 °C under an atmosphere of argon, was added a solution of diethyl 

((1RS,5SR,6SR)-2-oxo-6-phenyl-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 296c (31 mg, 0.100 

mmol) in THF (0.5 mL). The solution was stirred at −78 °C for 5 mins then quenched with sat. aq. 

NH4Cl (5 mL) and then allowed to warm at RT. The mixture was diluted with water (5 mL) and 

extrated with diethyl ether (3 × 10 mL). The combined organic extracts were dried over MgSO4, 

filtered and concentrated in vacuo. Purification by column chromatography (1:2 hexane:EtOAc) 

afforded the title compound 306 as a pale yellow oil (15 mg, 48%). 
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Data for 306: Rf 0.52 (1:4 hexane:EtOAc); νmax (thin film)/cm-1 2983w, 2915w, 1771s, 1497w, 

1479w, 1455w, 1381w, 1252m, 1206w, 1160m, 1047w, 1020s, 972s, 753m, 703m; δH (400 MHz, 

CDCl3) 1.29–1.33 (6 H, m, H-7,7’), 2.81 (1 H, dd, J = 13.8, J = 8.6, H-5), 2.83 (1 H, dd, J = 23.9, J 

= 4.5, H-2), 2.93 (1 H, dd, J = 13.8, J = 7.1, H-5), 3.11–3.24 (1 H, m, H-3), 3.99–4.29 (5 H, m, H-

4,6,6’), 4.45 (1 H, dd, J = 9.1, J = 6.9, H-4), 7.15–7.18 (2 H, m, H-9/10), 7.23–7.27 (1 H, m, H-11), 

7.29–7.34 (2 H, m, H-9/10); δC (100 MHz, CDCl3) 16.3 (d, J = 6.1, C-7/7’), 16.3 (d, J = 6.1, C-

7/7’), 39.3 (d, J = 2.6, C-3), 39.3 (d, J = 10.1, C-5), 44.5 (d, J = 139.5, C-2), 62.9 (d, J = 6.8, C-

6/6’), 63.6 (d, J = 6.8, C-6/6’), 71.8 (d, J = 5.0, C-4), 127.0 (C-11), 128.8 (C-9/10), 129.0 (C-9/10), 

137.2 (C-8), 171.7 (d, J = 3.6, C-1); δP (162 MHz, CDCl3) 20.0; HRMS (ESI+): Found: 335.1030; 

C15H21NaO5P (MNa+) Requires 335.1019 (−3.4 ppm error), Found: 313.1205; C15H22O5P (MH+) 

Requires 313.1199 (−1.7 ppm error). 

 

Lab notebook reference: MGL/04/68, 07/83 

 

5.2.3.3.  Savinin and Gadain 

Diethyl ((3RS,4SR)-4-(benzo[d][1,3]dioxol-5-ylmethyl)-2-oxotetrahydrofuran-3-

yl)phosphonate (149c) 

 

 
 

To a solution of freshly prepared SmI2 (4.00 mL, 0.400 mmol, ~0.1 M in THF) in an oven dried 

sealable tube at −78 °C under an atmosphere of argon, was added a solution of diethyl 

((1RS,5SR,6SR)-6-(1,3-benzodioxol-5-yl)-2-oxo-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 299c 

(70.9 mg, 0.200 mmol) in THF (1.0 mL). The solution was stirred at −78 °C for 30 mins then 

quenched with sat. aq. NH4Cl (1.70 mL) and then allowed to warm at RT. The mixture was diluted 

with water (10 mL) and extracted with diethyl ether (3 × 20 mL). The combined organic extracts 

were dried over MgSO4, filtered and concentrated in vacuo. Purification by column 

chromatography (1:4 hexane:EtOAc) afforded the title compound 149c as a yellow oil (27 mg, 

38%); Rf 0.55 (EtOAc); νmax (thin film)/cm-1 2983w, 2910w, 1768s, 1503w, 1490s, 1443m, 1245s, 

1196m, 1149m, 1018s, 971s, 809w, 549w; δH (400 MHz, CDCl3) 1.33 (6 H, t, J = 7.1, H-7,7’), 
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2.69–2.87 (3 H, m, H-2,5),  3.04–3.16 (1 H, m, H-3), 4.04–4.22 (5 H, m, H-4,6,6’), 4.44 (1 H, dd, J 

= 9.1, J = 6.9, H-4), 5.94 (2 H, s, H-14), 6.60 (1 H, dd, J = 7.9, J = 1.4, H-9), 6.65 (1 H, d, J = 1.4, 

H-13), 6.74 (1 H, d, J = 7.9, H-10); δC (100 MHz, CDCl3) 16.3 (app. t, J = 6.4, C-7/7’), 39.0 (d, J = 

10.0, C-5), 39.3 (d, J = 3.0, C-3), 44.5 (d, J = 139.9, C-2), 62.9 (d, J = 7.3, C-6/6’), 63.7 (d, J = 7.0, 

C-6/6’), 71.7 (d, J = 5.3, C-4), 101.1 (C-14), 108.4 (C-13), 109.1 (C-10), 122.2 (C-9), 130.8 (C-8), 

146.6 (C-11/12), 148.0 (C-11/12), 171.7 (d, J = 3.8, C-1); δP (162 MHz, CDCl3) 20.1; HRMS 

(ESI+): Found: 379.0923; C16H21NaO7P (MNa+) Requires 379.0917 (−1.6 ppm error), Found: 

357.1100; C16H22O7P (MH+) Requires 357.1098 (−0.8 ppm error). 

Lab notebook reference: MGL/08/96 

(RS,E)-4-(benzo[d][1,3]dioxol-5-ylmethyl)-3-(benzo[d][1,3]dioxol-5-

ylmethylene)dihydrofuran-2(3H)-one ((±)-savinin) (174) and (RS,Z)-4-

(benzo[d][1,3]dioxol-5-ylmethyl)-3-(benzo[d][1,3]dioxol-5-ylmethylene)dihydrofuran-

2(3H)-one ((±)-gadain) (307) 

 
 

To a solution of diethyl ((3RS,4SR)-4-(benzo[d][1,3]dioxol-5-ylmethyl)-2-oxotetrahydrofuran-3-

yl)phosphonate 149c (59 mg, 0.166 mmol) in THF (3.3 mL) at 0 °C was added KOBu-t (27.9 mg, 

0.248 mmol). The solution was stirred at 0 °C for 60 mins, after which, piperonal (49.8 mg, 0.332 

mmol) was added to the solution, which was refluxed for 2 h. After cooling at RT, the solution was 

quenched with sat. aq. NH4Cl (10 mL). The organic layer was separated and the aqueous extracted 

with EtOAc (2 × 10 mL). The organic extracts were dried over MgSO4, filtered and concentrated in 

vacuo. Purification by column chromatography (5:1 hexane:EtOAc → 3:1 hexane:EtOAc) afforded 

the title compounds as mixture (174:307 1.9:1) (31 mg, 53%). 

 

Small quantities of each compound were isolated separately for characterisation purposes. 
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Data for savinin, 174; White solid; Rf 0.20 (4:1 hexane:EtOAc); m.p. 127–129 °C (lit.95 146.4–

148.4 °C); νmax (thin film)/cm-1 2908m, 1744s, 1646m, 1503s, 1490s, 1447s, 1341m, 1250s, 1214s, 

1180s, 1037s, 927m, 810w; δH (400 MHz, CDCl3) 2.59 (1 H, dd, J = 14.2, J = 10.1, H-13), 2.99 (1 

H, dd, J = 14.2, J = 4.5, H-13), 3.71–3.77 (1 H, m, H-3), 4.22–4.29 (2 H, m, H-4), 5.93 (1 H, d, J = 

1.4, H-20), 5.94 (1 H, d, J = 1.4, H-20), 6.05 (2 H, s, H-12), 6.64 (1 H, dd, J = 7.8, J = 1.6, H-15), 

6.67 (1 H, d, J = 1.6, H-19), 6.74 (1 H, d, J = 7.8, H-16), 6.88 (1 H, d, J = 8.1, H-8), 7.05 (1 H, d, J 

= 1.7, H-11), 7.08 (1 H, dd, J = 8.1, J = 1.7, H-7), 7.50 (1 H, d, J = 1.9, H-5); δC (100 MHz, CDCl3) 

37.5 (C-13), 39.9 (C-3), 69.5 (C-4), 101.0 (C-20), 101.7 (C-12), [108.5, 108.6, 108.8, 109.2 (C-

8,11,16,19)], 122.2 (C-15), 125.8 (C-2), 126.1 (C-7), 128.2 (C-6), 131.5 (C-14), 137.5 (C-5), 146.5 

(C-17/18), 147.9 (C-17/18), 148.3 (C-9/10), 149.2 (C-9/10), 172.6 (C-1); HRMS (ESI+): Found: 

375.0833; C20H16NaO6 (MNa+) Requires 375.0839 (1.5 ppm error), Found: 353.1019; C20H17O6 

(MH+) Requires 353.1020 (0.3 ppm error). 

Obtained data in accord with reported literature.95,140-141 

 

Data for gadain, 307; White solid; Rf 0.26 (4:1 hexane:EtOAc); m.p. 136–139 °C (lit.143 145 °C); 

νmax (thin film)/cm-1 2906w, 1741s, 1634w, 1600w, 1503s, 1488s, 1446s, 1246s, 1171s, 1083s, 

1037s, 928s, 810m; δH (400 MHz, CDCl3) 2.78 (1 H, dd, J = 13.8, J = 8.9, H-13), 2.91 (1 H, dd, J = 

13.8, J = 6.9, H-13), 3.29 (1 H, app. dtdd, J = 8.9, J = 7.1, J = 3.8, J = 1.7, H-3), 4.10 (1 H, dd, J = 

9.1, J = 3.8, H-4), 4.32 (1 H, dd, J = 9.1, J = 7.3, H-4), 5.95 (1 H, d, J = 1.4, H-20), 5.96 (1 H, d, J 

= 1.4, H-20), 6.00 (2 H, s, H-12), 6.59 (1 H, d, J = 1.7, H-5), 6.62 (1 H, dd, J = 7.9, J = 1.7, H-15), 

6.69 (1 H, d, J = 1.7, H-19), 6.76 (1 H, d, J = 7.9, H-16), 6.79 (1 H, d, J = 8.1, H-8), 7.15 (1 H, dd, 

J = 8.1, J = 1.7, H-7), 7.74 (1 H, d, J = 1.7, H-11); δC (100 MHz, CDCl3) 40.7 (C-13), 44.2 (C-3), 

69.8 (C-4), 101.0 (C-20), 101.4 (C-12), 107.9 (C-8), 108.4 (C-16), 109.3 (C-19), 110.7 (C-11), 

122.3 (C-15), 125.2 (C-2), 126.9 (C-7), 127.9 (C-6), 131.4 (C-14), 140.4 (C-5), 146.5 (C-17/18), 

147.6 (C-17/18), 147.9 (C-9/10), 149.0 (C-9/10), 169.3 (C-1); HRMS (ESI+): Found: 375.0843; 

C20H16NaO6 (MNa+) Requires 375.0839 (−1.2 ppm error), Found: 353.1027; C20H17O6 (MH+) 

Requires 353.1020 (−2.0 ppm error). 

Obtained data in accord with reported literature.143 

 

Lab notebook reference: MGL/08/100 
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5.2.3.4.  Peperomin E 

Ethyl 3,3-diphenylacrylate (329) 
 

 
 

Prepared according to a modified literature procedure.152  

To a suspension of AgOAc (2.59 g, 15.5 mmol) and Pd(OAc)2 (11.2 mg, 0.05 mmol) in AcOH (15 

mL) was added iodobenzene (1.73 mL, 15.5 mmol) and ethyl acrylate 328 (0.54 mL, 5.00 mmol). 

The mixture was stirred under an atmosphere of argon, at 110 °C for 6 h then allowed cool at RT 

and diluted with EtOAc (20 mL). The mixture was filtered through a pad of Celite, washed with 

EtOAc (200 mL) and the filtrate concentrated in vacuo. Purification by column chromatography 

(15:1 hexane:EtOAc) afforded the title compound 329 as a yellow oil (1.26 g, 100%); Rf 0.26 (15:1 

hexane:EtOAc); νmax (thin film)/cm-1 2980, 1722, 1618, 1446, 1369, 1264, 1164, 1038, 771, 697; 

δH (400 MHz, CDCl3) 1.12 (3 H, t, J = 7.1, H-13), 4.06 (2 H, q, J = 7.1, H-12), 6.37 (1 H, s, H-2), 

7.20–7.24 (2 H, m, ArH), 7.29–7.40 (8 H, m, ArH); δC (100 MHz, CDCl3) 14.0, 60.0, 117.5, 127.8, 

128.1, 128.3, 128.3, 129.1, 129.4, 139.0, 140.8, 156.5, 166.1; MS (ESI+): 275.10 (MNa+), 253.12 

(MH+). 

Lab notebook reference: MGL/04/82 

Obtained data in accord with reported literature.152 

3,3-Diphenylprop-2-en-1-ol (330) 
 

 
 

To a solution of ethyl 3,3-diphenylacrylate 329 (1.33 g, 5.27 mmol) in THF (19 mL) cooled to −78 

°C was added dropwise DIBAL (21.1 mL, 21.1 mmol, 1.0 M in hexane) and stirred for 2 h. The 

solution was quenched with water (15 mL) dropwise and stirred for 30 mins at RT before being 

filtered through a pad of Celite and silica and washed with diethyl ether (500 mL). The filtrate was 
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concentrated in vacuo. Purification by column chromatography (4:1 hexane:EtOAc) afforded the 

title compound 330 as a white solid (886 mg, 80%); Rf 0.33 (4:1 hexane:EtOAc); m.p. 60–62 °C 

(lit.172 61–63 °C); νmax (thin film)/cm-1 3325, 3056, 3024, 1598, 1494, 1444, 1074, 1013, 758, 692; 

δH (400 MHz, CDCl3) 1.50 (1 H, br s, OH), 4.23 (2 H, d, J = 6.9, H-1), 6.26 (1 H, t, J = 6.9, H-2), 

7.16–7.19 (2 H, m, ArH), 7.24–7.40 (8 H, m, ArH); δC (100 MHz, CDCl3) 60.7, 127.4, 127.5, 

127.6, 127.6, 128.2, 128.2, 129.7, 139.0, 141.8, 144.2; MS (ESI+): 249.07 (MK+), 233.09 (MNa+). 

Lab notebook reference: MGL/04/83 

Obtained data in accord with reported literature.172-173 

3,3-Diphenylallyl 2-(diethoxyphosphoryl)acetate (331) 
 

 
 

Synthesised using general procedure A with 3,3-diphenylprop-2-en-1-ol (862 mg, 4.10 mmol), 

toluene (20.5 mL), DEPAA (0.69 mL, 4.30 mmol), DIPEA (1.86 mL, 10.7 mmol) and T3P (3.40 g, 

5.33 mmol, 50% w/w solution in EtOAc) affording the title compound 331 as an orange oil (1.59 g, 

100%). No further purification was required; Rf 0.26 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2983w, 1736s, 1445w, 1265s, 1113m, 1025s, 969m, 774m, 702m; δH (400 MHz, CDCl3) 1.33 (6 H, 

t, J = 7.1, J = 0.5, H-4), 3.00 (2 H, d, J = 21.5, H-2), 4.13–4.21 (4 H, m, H-3), 4.71 (2 H, d, J = 7.1, 

H-5), 6.18 (1 H, t, J = 7.1, H-6), 7.16–7.19 (2 H, m, H-9/10/11/13/14/15), 7.23–7.40 (8 H, m, H-

9/10/11/13/14/15); δC (100 MHz, CDCl3) 16.3 (d, J = 6.3, C-4), 34.5 (d, J = 134.2, C-2), 62.7 (d, J 

= 6.2, C-3), 63.7 (C-5), 121.5 (C-6), [127.7, 127.9, 127.9, 128.2, 128.3, 129.7 (C-

9,10,11,13,14,15)], [138.4, 141.4, 147.0 (C-7,8,12)], 165.7 (d, J = 6.3, C-1); δP (162 MHz, CDCl3) 

20.2; HRMS (ESI+): Found: 411.1325; C21H25NaO5P (MNa+) Requires 411.1332 (1.8 ppm error). 

Lab notebook reference: MGL/04/84 
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3,3-Diphenylallyl 2-diazo-2-(diethoxyphosphoryl)acetate (332) 

 

 
 

Synthesised using general procedure B with 3,3-diphenylallyl 2-(diethoxyphosphoryl)acetate 331 

(1.59 g, 4.10 mmol), THF (20.5 mL), LHMDS (4.92 mL, 4.92 mmol, 1.0 M solution in THF) and 

p-ABSA (1.18 g, 4.92 mmol). Purification by column chromatography (2:1 hexane:EtOAc) 

afforded the title compound 332 as a yellow oil (823 g, 48%); Rf 0.52 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2984w, 2126s, 1703s, 1494w, 1444w, 1377w, 1348w, 1271s, 1214w, 1163w, 

1117w, 1099w, 1017s, 976s, 796m, 729s, 699s, 585s, 558s; δH (400 MHz, CDCl3) 1.35 (6 H, t, J = 

7.1, J = 0.8, H-4), 4.12–4.28 (4 H, m, H-3), 4.77 (2 H, d, J = 7.2, H-5), 6.19 (1 H, t, J = 7.2, H-6), 

7.16–7.19 (2 H, m, H-9/10/11/13/14/15), 7.22–7.39 (8 H, m, H-9/10/11/13/14/15); δC (100 MHz, 

CDCl3) 15.9 (d, J = 6.9, C-4), 53.5 (d, J = 227.1, C-2), 63.3 (C-5), 63.4 (d, J = 5.7, C-3), 121.1 (C-

6), [127.4, 127.7, 127.8, 128.0, 128.1, 129.3 (C-9,10,11,13,14,15)], [138.1, 141.0, 147.1 (C-

7,8,12)], 162.9 (d, J = 12.2, C-1); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 437.1242; 

C21H23N2NaO5P (MNa+) Requires 437.1237 (−1.1 ppm error). 

Lab notebook reference: MGL/04/85 
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Diethyl ((1SR,5SR)-2-oxo-6,6-diphenyl-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 

(333) 
 

 
 

Synthesised using general procedure F with 3,3-diphenylallyl 2-diazo-2-

(diethoxyphosphoryl)acetate 332 (78 mg, 0.188 mmol), CH2Cl2 (3.8 mL) and Rh2(oct)4 (2.9 mg, 

3.8 µmol). Purification by column chromatography (1:10 hexane:EtOAc) afforded the title 

compound 333 as a pale yellow oil (38 mg, 51%); Rf 0.18 (1:2 hexane:EtOAc); νmax (thin film)/cm-

1 2982w, 2908w, 1761s, 1600w, 1495w, 1474w, 1449w, 1388w, 1365w, 1252m, 1221w, 1195w, 

1162w, 1071w, 1054s, 1019s, 973m, 710m; δH (400 MHz, CDCl3) 1.11 (3 H, t, J = 7.1, H-7/7’), 

1.22 (3 H, t, J = 7.1, H-7/7’), 3.53 (1 H, dd, J = 12.3, J = 5.3, H-3), 3.68 (1 H, ddq, J = 10.2, J = 

9.5, J = 7.1, H-6/6’), 3.89–3.99 (1 H, m, H-6/6’), 4.04–4.13 (2 H, m, H-6/6’), 4.27 (1 H, ddd, J = 

9.9, J = 2.8, J = 0.7, H-4/4’), 4.54 (1 H, dd, J = 9.9, J = 5.3, H-4/4’), 7.16–7.34 (6 H, m, H-

9/10/11/13/14/15), 7.42–7.50 (4 H, m, H-9/10/11/13/14/15); δC (100 MHz, CDCl3) 16.2 (d, J = 6.1, 

C-7/7’), 16.2 (d, J = 6.3, C-7/7’), 33.7 (d, J = 3.2, C-3), 37.3 (d, J = 203.9, C-2), 46.5 (d, J = 2.5, 

C-5), 62.4 (d, J = 6.2, C-6/6’), 63.4 (d, J = 6.5, C-6/6’), 65.4 (d, J = 2.5, C-4), [127.6, 128.0, 128.4, 

128.6, 129.1, 129.3 (C-9/10/11/13/14/15)], 136.5 (C-8/12), 138.7 (d, J = 4.6, C-8/12), 171.3 (d, J = 

10.4, C-1); δP (162 MHz, CDCl3) 16.1; HRMS (ESI+): Found: 409.1172; C21H23NaO5P (MNa+) 

Requires 409.1175 (0.9 ppm error), Found: 387.1352; C21H24O5P (MH+) Requires 387.1356 (0.9 

ppm error). 

Lab notebook reference: MGL/04/86 
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Diethyl ((3RS,4SR)-4-benzhydryl-2-oxotetrahydrofuran-3-yl)phosphonate (335) 

 

 
 

To a solution of freshly prepared SmI2 (1.70 mL, 0.170 mmol, ~0.1 M in THF) in an oven dried 

sealable tube at −78 °C under an atmosphere of argon, was added a solution of diethyl ((1SR,5SR)-

2-oxo-6,6-diphenyl-3-oxabicyclo[3.1.0]hexan-1-yl)phosphonate 333 (33 mg, 0.085 mmol) in THF 

(0.5 mL). The solution was stirred at −78 °C for 5 mins then quenched with sat. aq. NH4Cl (1.70 

mL) and then allowed to warm at RT. The mixture was diluted with water (5 mL) and extracted 

with diethyl ether (3 × 10 mL). The combined organic extracts were dried over MgSO4, filtered and 

concentrated in vacuo. Purification by column chromatography (1:1 hexane:EtOAc) afforded the 

title compound 335 as a yellow oil (20 mg, 60%); Rf 0.29 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

2982w, 1770s, 1493w, 1453m, 1251s, 1152s, 1046m, 1019s, 971s, 749m, 705s; δH (400 MHz, 

CDCl3) 1.29 (3 H, t, J = 7.1, H-11/11’), 1.31 (3 H, t, J = 7.1, H-11/11’), 2.84 (1 H, d, J = 24.6, H-

8), 3.69 (1 H, ddd, J = 17.3, J = 11.9, J = 5.7, H-6), 3.83–4.20 (6 H, m, H-5,7,10,10’), 4.55 (1 H, 

dd, J = 9.4, J = 6.1, H-7), 7.19–7.33 (10 H, m, H-1,1’,2,2’,3,3’); δC (100 MHz, CDCl3) 16.2 (d, J = 

6.7, C-11/11’), 16.3 (d, J = 6.5, C-11/11’), 42.1 (d, J = 3.0, C-6), 44.8 (d, J = 133.1, C-8), 54.5 (d, J 

= 13.5, C-5), 63.0 (d, J = 7.0, C-10/10’), 63.8 (d, J = 6.9, C-10/10’), 70.7 (C-7), [127.2, 127.2, 

127.9, 128.2, 129.0, 129.1 (C-1/1’/2/2’/3/3’)], 141.0 (C-4/4’), 141.5 (C-4/4’), 171.9 (d, J = 5.0, C-

9); δP (162 MHz, CDCl3) 19.5; HRMS (ESI+): Found: 411.1338; C21H25NaO5P (MNa+) Requires 

411.1332 (−1.6 ppm error), Found: 389.1519; C21H26O5P (MH+) Requires 389.1512 (−1.7 ppm 

error). 

Lab notebook reference: MGL/07/94 
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4-Benzhydryl-3-methylenedihydrofuran-2(3H)-one (336) 

 

 
 

To a solution of diethyl ((3RS,4SR)-4-benzhydryl-2-oxotetrahydrofuran-3-yl)phosphonate 335 (20 

mg, 51.5 µmol) in THF (0.25 mL) at 0 °C was added KOBu-t (8.7 mg, 0.772 mmol). The solution 

was stirred at 0 °C for 60 mins and then cooled to −78 °C. Paraformaldehyde (3.1 mg, 0.103 mmol) 

was added to the solution and stirred for 15 mins at −78 °C and a further 2 h at RT. The solution 

was quenched with sat. aq. NH4Cl (10 mL). The organic layer was separated and the aqueous 

extracted with EtOAc (2 × 10 mL). The organic extracts were dried over MgSO4, filtered and 

concentrated in vacuo. Purification by column chromatography (4:1 hexane:EtOAc) afforded the 

title compound 336 as a pale yellow oil (7 mg, 52%); Rf 0.35 (4:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2023w, 1759s, 1656w, 1494m, 1451m, 1401m, 1262s, 1114s, 1030m, 813m, 748s, 703s, 

611s; δH (400 MHz, DMSO-d6) 3.82–3.87 (1 H, m), 4.05–4.10 (1 H, m), 4.26–4.35 (2 H, m), 4.65 

(1 H, d, J = 1.4), 5.88 (1 H, d, J = 1.8), 7.18–7.23 (2 H, m), 7.29–7.33 (4 H, m), 7.42–7.46 (4 H, 

m);174 δH (400 MHz, CDCl3) 3.88–4.02 (3 H, m, H-3,4,5), 4.33 (1 H, dd, J = 9.2, J = 7.1, H-4), 4.75 

(1 H, d, J = 1.9, H-6b), 6.09 (1 H, d, J = 2.1, H-6a), 7.20–7.34 (10 H, m, H-8,8’,9,9’,10,10’); δC 

(100 MHz, CDCl3) 42.3 (C-3), 55.5 (C-5), 69.8 (C-4), 124.7 (C-6), [127.2, 127.2, 127.7, 128.3, 

128.8, 129.1 (C-8,8’,9,9’,10,10’)], 136.0 (C-2), 141.5 (C-7/7’), 141.6 (C-7/7’), 170.9 (C-1); HRMS 

(ESI+): Found: 287.1044; C18H16NaO2 (MNa+) Requires 287.1043 (−0.5 ppm error), Found: 

265.1225; C18H17O2 (MH+) Requires 265.1223 (−0.6 ppm error). 

Lab notebook reference: MGL/07/94/2 

Obtained data in accord with reported literature.174 
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(E)-Ethyl 3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acrylate (326) 

 

 
 

To a solution of 5-methoxypiperonal 324 (5.17 g, 28.7 mmol) in THF (86 mL) was added 

(carbethoxymethylene)triphenylphosphorane 337 (12.0 g, 34.4 mmol) and refluxed for 16 h. 

Concentration in vacuo and purification by column chromatography (4:1 hexane:EtOAc) afforded 

the title compound 326 as a crystalline white solid (6.78 g, 95%); Rf 0.46 (4:1 hexane:EtOAc); m.p. 

65–68 °C (lit.175 76 °C); νmax (thin film)/cm-1 2996w, 2975w, 2908w, 1702s, 1622s, 1593s, 1511s, 

1431s, 1324m, 1281s, 1171s, 1137s, 1093s, 1038s, 996s, 925s, 846s, 819s, 594s, 477s; δH (400 

MHz, CDCl3) 1.31 (3 H, t, J = 7.1, H-13), 3.90 (3 H, s, H-8), 4.23 (2 H, q, J = 7.1, H-12), 5.99 (2 

H, s, H-7), 6.25 (1 H, d, J = 15.9, H-10), 6.68 (1 H, d, J = 1.4, H-4/6), 6.72 (1 H, d, J = 1.4, H-4/6), 

7.54 (1 H, d, J = 15.9, H-9); δC (100 MHz, CDCl3) 14.3 (C-13), 56.5 (C-7), 60.4 (C-12), 101.2 (C-

4/6), 101.9 (C-8), 109.0 (C-4/6), 116.6 (C-10), 129.2 (C-1/2/3/5), 137.2 (C-1/2/3/5), 143.6 (C-

1/2/3/5), 144.2 (C-9), 149.2 (C-1/2/3/5), 167.0 (C-11); HRMS (ESI+): Found: 273.0731; 

C13H14NaO5 (MNa+) Requires 273.0733 (0.8 ppm error). 

Lab notebook reference: MGL/07/80 

Obtained data in accord with reported literature.175 
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4-Methoxy-6-nitrobenzo[d][1,3]dioxole (338) and 5-Iodo-7-methoxy-4-

nitrobenzo[d][1,3]dioxole (339’) or 6-Iodo-4-methoxy-5-nitrobenzo[d][1,3]dioxole 

(339’’) 
 

 
 

Prepared according to a modified literature procedure.176 

To a stirred flask containing concentrated nitric acid (70% solution, 100 mL) cooled to 0 °C was 

added 5-methoxypiperonal 324 (10.81 g, 60.0 mmol) portionwise over 2 h. After a further 1 h the 

yellow mixture was poured onto ice water (1 L) to precipitate a pale yellow solid, which was 

collected by suction filitration and washed with water (3 × 100 mL). Purification by column 

chromatography (7:1 hexane:EtOAc) afforded the title compound 338 (6.92 g, 59%) along with 

compound 339’ or 339’’ (3.96 g, 29%). 

 

Data for 338; Pale yellow solid; Rf 0.45 (4:1 hexane:EtOAc); m.p. 130–132 °C (lit.177 145–146 °C); 

νmax (thin film)/cm-1 3109w, 1645m, 1521s, 1491s, 1451m, 1435m, 1347s, 1316s, 1218m, 1198m, 

1112s, 1090m, 970m, 918m, 861m, 770m, 742m; δH (400 MHz, DMSO-d6) 3.93 (3 H, s, OCH3), 

6.24 (2 H, s, OCH2O), 7.53 (1 H, d, J = 2.2, ArH), 7.62 (1 H, d, J = 2.2, ArH); δH (400 MHz, 

CDCl3) 3.96 (3 H, s, OCH3), 6.14 (2 H, s, OCH2O), 7.42 (1 H, d, J = 2.1, ArH), 7.56 (1 H, d, J = 

2.1, ArH); δC (100 MHz, CDCl3) 56.8, 99.0, 103.3, 104.9, 141.1, 142.8, 142.9, 148.7; HRMS 

(ESI+): Found: 220.0218; C8H7NNaO5 (MNa+) Requires 220.0216 (–0.6 ppm error). 

 

Data for 339’/339’’; Yellow solid; Rf 0.19 (4:1 hexane:EtOAc); m.p. 105–108 °C; νmax (thin 

film)/cm-1 2952w, 16988s, 1622m, 1593s, 1523s, 1484s, 1451m, 1418s, 1357s, 1300s, 1231m, 

1151m, 1092s, 1047m, 1020s, 956m, 893s, 864s, 793m, 787m, 762m, 669m, 627m; δH (400 MHz, 

CDCl3) 4.09 (3 H, s, OCH3), 6.17 (2 H, s, OCH2O), 7.03 (1 H, s, ArH), 9.73 (1 H, s, CHO); δC (100 

MHz, CDCl3) 60.9, 102.0, 103.5, 123.2 (2 C), 136.0, 141.8, 150.6, 185.1; HRMS (ESI+): Found: 
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248.0172; C9H7NNaO6 (MNa+) Requires 248.0166 (–2.6 ppm error), Found: 226.0353; C9H8NO6 

(MH+) Requires 226.0346 (–3.2 ppm error). 

 

Lab notebook reference: MGL/07/33 

NMR data in accord with reported literature.178 

Note: The correct regioisomer of compound 339 could not be determined; as such, it is assigned as 

either compound 339’ or 339’’. 

7-Methoxybenzo[d][1,3]dioxol-5-amine (340) 
 

 
 

To a suspension of 4-methoxy-6-nitrobenzo[d][1,3]dioxole 338 (6.86 g, 34.8 mmol) in MeOH (174 

mL) under an atmosphere of argon, was added ammonium formate (11.0 g, 174.0 mmol) and 

palladium on carbon (10% wt. % loading, 1.74 g). The solution was stirred for 16 h then filtered 

through a pad of Celite and washed with MeOH (100 mL). The filtrate was concentrated in vacuo. 

The residue was diluted with brine (250 mL) and extracted with EtOAc (2 × 250 mL). The 

combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. Purification 

by column chromatography (1:1 hexane:EtOAc) afforded the title compound 340 as an off-white 

solid (5.41 g, 93%); Rf 0.45 (1:1 hexane:EtOAc); m.p. 75–76 °C (lit.154 85–86 °C); νmax (thin 

film)/cm-1 3397, 3312, 3210, 2886, 1640, 1508, 1459, 1183, 1144, 1087, 1037, 958, 924, 802, 703, 

618; δH (400 MHz, DMSO-d6) 3.71 (3 H, s, OCH3), 4.83 (2 H, br. s, NH2), 5.75 (2 H, s, OCH2O), 

5.82 (1 H, d, J = 2.0, ArH), 5.86 (1 H, d, J = 2.0, ArH); δH (400 MHz, CDCl3) 3.49 (2 H, br. s br. s, 

NH2), 3.84 (3 H, s, OCH3), 5.85 (2 H, s, OCH2O), 5.86 (1 H, d, J = 2.0, ArH), 5.96 (1 H, d, J = 2.0, 

ArH); δC (100 MHz, CDCl3) 56.4, 91.0, 94.3, 100.8, 128.0, 142.1, 143.9, 149.3; HRMS (ESI+): 

Found: 169.0657; C8H10NO3 (MNa+) Requires 168.0655 (−0.8 ppm error). 

Lab notebook reference: MGL/07/19,22,35 

Obtained data in accord with reported literature.154 
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7-Methoxybenzo[d][1,3]dioxole-5-diazonium tetrafluoroborate (341) 

 

 
 

Procedure developed from literature precedent.155  

To a solution of 7-methoxybenzo[d][1,3]dioxol-5-amine 340 (5.22 g, 31.2 mmol) in ethanol (10.3 

mL), cooled to 0 °C was added an aqueous solution of HBF4 (50% w/w, 11.0 g, 62.5 mmol) 

followed by tert-butyl nitrite (7.43 mL, 62.5 mmol) dropwise. The solution was stirred for 1 h after 

which diethyl ether (50 mL) was added, forming a precipitate. The solution was filtered and the 

solid washed with diethyl ether (3 × 100 mL). The solid was dried in vacuo, affording the title 

compound 341 as a yellow solid (7.57 g, 91%). No further purification was required. Rf 0.00 (1:1 

hexane:EtOAc); m.p. decomposes at 126 °C; νmax (thin film)/cm-1 3119w, 2257s, 1624m, 1587m, 

1495s, 1454s, 1442s, 1308s, 1240s, 1223m, 1114s, 1072s, 1023s, 962m, 854s, 522m; δH (400 

MHz, DMSO-d6) 3.94 (3 H, s, OCH3), 6.45 (2 H, s, OCH2O), 7.95 (1 H, d, J = 2.0, ArH), 8.29 (1 

H, d, J = 2.0, ArH); δC (100 MHz, DMSO-d6) 57.5, 104.1, 105.9, 106.5, 116.2, 143.2, 148.0, 148.9; 

HRMS (ESI+): Found: 179.0447; C8H7N2O3 (MNa+) Requires 179.0451 (2.1 ppm error). 

Lab notebook reference: MGL/07/36 

6-Iodo-4-methoxybenzo[d][1,3]dioxole (325) 

 

 
 

To a solution of KI (10.4 g, 62.5 mmol) in water (187 mL) and acetone (125 mL) was added 7-

methoxybenzo[d][1,3]dioxole-5-diazonium tetrafluoroborate 341 (7.57 g, 28.3 mmol) over 15 

mins. The mixture was stirred for 1 h and the acetone removed in vacuo. The residue was extracted 

with diethyl ether (3 × 250 mL). The combined organic extracts were washed with sat. aq. Na2S2O3 

(250 mL) then water (250 mL) then dried over MgSO4, filtered and concentrated in vacuo. 

Purification by column chromatography (8:1 hexane:EtOAc) afforded the title compound 325 as 

white crystals (4.78 g, 61%); Rf 0.63 (4:1 hexane:EtOAc); m.p. 55–58 °C (lit.179 71–72 °C); νmax 
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(thin film)/cm-1 3098, 2939, 2893, 2775, 1623, 1483, 1443, 1414, 1288, 1230, 1175, 1097, 1031, 

966, 928, 811, 764, 709, 564; δH (400 MHz, CDCl3) 3.85 (3 H, s, OCH3), 5.94 (2 H, s, OCH2O), 

6.81–6.82 (2 H, m, ArH); δC (100 MHz, CDCl3) 56.6, 82.0, 101.7, 111.6, 116.8, 135.7, 144.4, 

149.4; HRMS (ESI+): Found: 277.9441; C8H7IO3 (MNa+) Requires 277.9434 (−2.3 ppm error). 

Lab notebook reference: MGL/07/36, 05/72 

Ethyl 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)acrylate (327) 
 

 
 

Procedure developed from literature precedent.157 

 

To an oven dried sealable tube was added (E)-ethyl 3-(7-methoxybenzo[d][1,3]dioxol-5-yl)acrylate 

326 (500 mg, 2.00 mmol), 6-iodo-4-methoxybenzo[d][1,3]dioxole 325 (834 mg, 3.00 mmol), 

TBAB (709 mg, 2.20 mmol), NaHCO3 (420 mg, 5.00 mmol), Pd(OAc)2 (44.9 mg, 0.20 mmol) and 

DMF (5 mL). The tube was sealed and flushed with argon then heated at 120 °C for 16 h. The 

mixture was cooled at RT, diluted with water (50 mL) and extracted with diethyl ether (3 × 50 

mL). The combined organic extracts were washed with brine (50 mL), dried over MgSO4, filtered 

and concentrated in vacuo. The residue was purified by column chromatography (4:1 

hexane:EtOAc) affording the title compound 327 as an orange oil that later crystallised (695 mg, 

87%); Rf 0.22 (4:1 hexane:EtOAc); m.p. 72–76 °C; νmax (thin film)/cm-1 2976w, 2939w, 2900w, 

1715s, 1627s, 1600m, 1506s, 1426s, 1377s, 1290m, 1222s, 1171m, 1112s, 1083s, 1044s, 968m, 

929s, 844s, 730s; δH (400 MHz, CDCl3) 1.16 (3 H, t, J = 7.1, H-13), 3.84 (6 H, app. s, H-7,7’), 4.07 

(2 H, q, J = 7.1, H-12), 5.97 (2 H, s, H-8/8’), 5.99 (2 H, s, H-8/8’), 6.18 (1 H, s, H-10), 6.36 (1 H, 

d, J = 1.3, H-4/4’/6/6’), 6.38 (1 H, d, J = 1.3, H-4/4’/6/6’), 6.48 (1 H, d, J = 1.5, H-4/4’/6/6’), 6.51 

(1 H, d, J = 1.5, H-4/4’/6/6’); δC (100 MHz, CDCl3) 14.0 (C-13), 56.5 (C-7/7’), 56.7 (C-7/7’), 59.9 

(C-12), 101.5 (C-8/8’), 101.8 (C-8/8’), 102.2 (C-4/4’/6/6’), 103.8 (C-4/4’/6/6’), 108.7 (C-

4/4’/6/6’), 109.0 (C-4/4’/6/6’), 116.2 (C-10), 132.9 (C-5/5’), 132.9 (C-5/5’), 135.3 (C-1/1’/2/2’), 

135.4 (C-5/5’), 136.5 (C-1/1’/2/2’), 143.1 (C-3/3’), 143.1 (C-3/3’), 148.3 (C-1/1’/2/2’), 148.8 (C-

1/1’/2/2’), 155.5 (C-9), 165.9 (C-11); HRMS (ESI+): Found: 423.1048; C21H20NaO8 (MNa+) 
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Requires 423.1050 (0.5 ppm error), Found: 401.1220; C21H21O8 (MH+) Requires 401.1231 (2.8 

ppm error). 

Lab notebook reference: MGL/07/85 

3,3-Bis(7-methoxybenzo[d][1,3]dioxol-5-yl)prop-2-en-1-ol (344) 
 

 
 

To a solution of ethyl 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)acrylate 327 (1.32 g, 3.30 mmol) 

in THF (16 mL) cooled to −78 °C was added dropwise DIBAL (6.60 mL, 6.60 mmol, 1.0 M in 

hexane) and stirred for 2 h. The solution was quenched with water (15 mL) dropwise and stirred for 

30 mins at RT before being filtered through a pad of Celite and washed with diethyl ether (500 

mL). The filtrate was concentrated in vacuo. Purification by column chromatography (4:1 

hexane:EtOAc) afforded the title compound 344 as a yellow gum (1.08 g, 91%); Rf 0.31 (4:1 

hexane:EtOAc); νmax (thin film)/cm-1 3360br, 2889w, 1626s, 1505s, 1447w, 1424s, 1376m, 1191m, 

1153m, 1085s, 1042s, 967m, 928s, 844s, 728s; δH (400 MHz, CDCl3) 2.15 (1 H, br. s, OH), 3.80 (3 

H, s, H-7/7’), 3.82 (3 H, s, H-7/7’), 4.16 (2 H, d, J = 6.8, H-11), 5.91 (2 H, s, H-8/8’), 5.95 (2 H, s, 

H-8/8’), 6.04 (1 H, t, J = 6.8, H-10), 6.31 (1 H, d, J = 1.4, H-4/4’/6/6’), 6.31 (1 H, d, J = 1.4, H-

4/4’/6/6’), 6.41 (1 H, d, J = 1.5, H-4/4’/6/6’), 6.42 (1 H, d, J = 1.5, H-4/4’/6/6’); δC (100 MHz, 

CDCl3) 56.4 (C-7/7’), 56.5 (C-7/7’), 60.4 (C-11), 101.4 (2 C, C-8,8’), [101.8, 103.8, 107.5, 109.1 

(C-4/4’/6/6’)], 126.5 (C-10), [133.1, 134.5, 134.8, 136.5, 142.9, 143.1, 143.2, 148.4, 148.5 (C-

1,1’,2,2’,3,3’,5,5’,9)]; HRMS (ESI+): Found: 381.0938; C19H18NaO7 (MNa+) Requires 381.0945 

(1.7 ppm error). 

Lab notebook reference: MGL/07/86 
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3,3-Bis(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-(diethoxyphosphoryl)acetate (345) 

 

 
 

Synthesised using general procedure A with 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)prop-2-en-

1-ol 344 (973 mg, 2.72 mmol), toluene (13.6 mL), DEPAA (559 mg, 2.85 mmol), DIPEA (1.23 

mL, 7.07 mmol) and T3P (2.25 g, 3.54 mmol, 50% w/w solution in THF) affording the title 

compound 345 as a yellow oil (1.45 g, 99%); Rf 0.26 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 

2984w, 2936w, 2902w, 1733s, 1626s, 1507s, 1426s, 1262s, 1160m, 1107s, 1042s, 1020s, 965s, 

929m, 839s, 728s; δH (400 MHz, CDCl3) 1.29 (6 H, td, J = 7.1, J = 0.4, H-15), 2.95 (2 H, d, J = 

21.5, H-13), 3.81 (3 H, s, H-8/8’), 3.83 (3 H, s, H-8/8’), 4.09–4.17 (4 H, m, H-14), 4.65 (2 H, d, J = 

7.2, H-11), 5.91 (2 H, s, H-2/2’), 5.96 (2 H, s, H-2/2’), 5.98 (1 H, t, J = 7.2, H-10), 6.31 (1 H, d, J = 

1.4, H-4/4’/6/6’), 6.33 (1 H, d, J = 1.4, H-4/4’/6/6’), 6.39 (1 H, d, J = 1.6, H-4/4’/6/6’), 6.41 (1 H, 

d, J = 1.6, H-4/4’/6/6’); δC (100 MHz, CDCl3) 16.2 (d, J = 6.6, C-15), 34.2 (d, J = 134.2, C-13), 

56.5 (C-8/8’), 56.5 (C-8/8’), 62.6 (d, J = 6.5, C-14), 63.6 (C-11), 101.4 (2 C, C-2,2’), [101.9, 103.8, 

107.7, 109.2 (C-4/4’/6/6’)], 120.5 (C-10), [132.5, 134.8, 135.2, 136.0, 143.0, 143.2, 146.2, 148.6, 

148.6 (C-1,1’,3,3’,5,5’,7,7’,9)], 165.5 (d, J = 6.5, C-12); δP (162 MHz, CDCl3) 20.2; HRMS (ESI+): 

Found: 559.1348; C25H29NaO11P (MNa+) Requires 559.1340 (−1.5 ppm error). 

Lab notebook reference: MGL/07/87 
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3,3-Bis(7-methoxybenzo[d][1,3]dioxol-5-yl)propyl 2-(diethoxyphosphoryl)acetate 

(346) and 6,6'-(Propane-1,1-diyl)bis(4-methoxybenzo[d][1,3]dioxole) (347) 
 

 
 

To a solution of 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-(diethoxyphosphoryl)acetate 

345 (457 mg, 0.852 mmol) in methanol (4.26 mL) was added palladium on carbon (10% wt. % 

loading, 17 mg). The flask was purged 4 times with argon then 4 times with hydrogen. The mixture 

was stirred at RT for 16 h. The mixture was filtered through a pad of Celite and washed with 

methanol (50 mL) and the filtrate concentrated in vacuo. Purification by column chromatography 

(1:2 hexane:EtOAc) afforded the title compounds 346 (280 mg, 61%) and 347 (86 mg, 29%). 

 

Data for 346; Yellow oil; Rf 0.21 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 2982w, 2940w, 2905w, 

1733s, 1632s, 1507s, 1449m, 1430s, 1266s, 1193s, 1128s, 1091s, 1019s, 964s, 929w, 834s; δH (400 

MHz, CDCl3) 1.30 (6 H, t, J = 7.1, H-15), 2.24 (2 H, app. q, J = 7.2, H-10), 2.94 (2 H, d, J = 21.6, 

H-13), 3.85 (6 H, s, H-8), 3.87 (1 H, t, J = 7.9, H-9), 4.05 (2 H, t, J = 6.5, H-11), 4.14 (4 H, dq, J = 

8.3, J = 7.1, H-14), 5.88 (4 H, s, H-2), 6.37 (2 H, d, J = 1.4, H-4/6), 6.38 (2 H, d, J = 1.4, H-4/6); δC 

(100 MHz, CDCl3) 16.2 (d, J = 6.1, C-15), 34.2 (d, J = 133.6, C-13), 34.2 (C-10),  46.9 (C-9), 56.6 

(C-8), 62.6 (d, J = 6.4, C-14), 63.6 (C-11), 101.2 (C-2), 101.4 (C-4/6), 107.3 (C-4/6), [133.6, 138.3, 

143.3, 148.9 (C-1,3,5,7)], 165.5 (d, J = 5.9, C-12); δP (162 MHz, CDCl3) 20.4; HRMS (ESI+): 

Found: 561.1503; C25H31NaO11P (MNa+) Requires 561.1496 (−1.1 ppm error). 
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Data for 347; Yellow oil; Rf 0.86 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 2961w, 2933w, 2874w, 

1632s, 1506s, 1449s, 1428s, 1366w, 1312m, 1193s, 1133s, 1092s, 1043s, 930s; δH (400 MHz, 

CDCl3) 0.89 (3 H, t, J = 7.3, H-11), 1.95 (2 H, app. quin., J = 7.4, H-10), 3.58 (1 H, t, J = 7.8, H-9), 

3.88 (6 H, s, H-8), 5.91–5.92 (4 H, m, H-2) 6.39 (2 H, d, J = 1.3, H-4/6), 6.42 (2 H, d, J = 1.3, H-

4/6); δC (100 MHz, CDCl3) 12.7 (C-11), 28.8 (C-10), 53.1 (C-9), 56.6 (C-8), 101.2 (C-2), 101.6 (C-

4/6), 107.3 (C-4/6), [133.4, 139.8, 143.3, 148.8 (C-1,3,5,7)]; HRMS (ESI+): Found: 367.1149; 

C19H20NaO6 (MNa+) Requires 367.1152 (0.7 ppm error). 

Lab notebook reference: MGL/07/88 

3,3-Bis(7-methoxybenzo[d][1,3]dioxol-5-yl)propyl 2-diazo-2-

(diethoxyphosphoryl)acetate (342) 

 

 
 

Synthesised using general procedure B with 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)propyl 2-

(diethoxyphosphoryl)acetate 346 (278 mg, 0.516 mmol), THF (2.58 mL), LHMDS (0.620 mL, 

0.620 mmol, 1.0 M solution in THF) and DBSA (0.21 mL, 0.620 mmol). Purification by column 

chromatography (1:2 hexane:EtOAc) afforded the title compound 342 as a yellow oil (147 mg, 

51%); Rf 0.70 (1:4 hexane:EtOAc); νmax (thin film)/cm-1 2982w, 2941w, 2906w, 2129s, 1704s, 

1633s, 1508m, 1451m, 1431m, 1369w, 1279s, 1194m, 1131s, 1092s, 1041s, 1019s, 977m; δH (400 

MHz, CDCl3) 1.36 (6 H, td, J = 7.1, J = 0.7, H-15), 2.27 (2 H, app. q, J = 7.2, H-10), 3.85 (1 H, t, J 

= 7.8, H-9), 3.87 (6 H, s, H-8), 4.11–4.27 (6 H, m, H-11,14), 5.92 (4 H, s, H-2), 6.37 (2 H, d, J = 

1.4, H-4/6), 6.39 (2 H, d, J = 1.4, H-4/6); δC (100 MHz, CDCl3) 16.2 (d, J = 6.8, C-15), 34.5 (C-

10), 47.2 (C-9), 53.7 (d, J = 231.7, C-13), 56.8 (C-8), 63.6 (d, J = 5.7, C-14), 63.9 (C-11), 101.5 

(C-2), 101.5 (C-4/6), 107.4 (C-4/6), [133.8, 138.3, 143.4, 149.1 (C-1,3,5,7)], 163.2 (d, J = 11.8, C-

12); δP (162 MHz, CDCl3) 10.7; HRMS (ESI+): Found: 587.1406; C25H29N2NaO11P (MNa+) 

Requires 587.1401 (−0.8 ppm error). 

Lab notebook reference: MGL/07/89 
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3,3-Bis(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-diazo-2-

(diethoxyphosphoryl)acetate (322) 
 

 
 

Synthesised using general procedure B with 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-

(diethoxyphosphoryl)acetate 345 (996 mg, 1.86 mmol), THF (9.30 mL), LHMDS (2.23 mL, 2.23 

mmol, 1.0 M solution in THF) and DBSA (0.75 mL, 2.23 mmol). Purification by column 

chromatography (1:1 hexane:EtOAc) afforded the title compound 322 as a yellow oil (665 mg, 

63%); Rf 0.27 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 2984w, 2943w, 2905w, 2129s, 1703s, 

1627s, 1507s, 1427s, 1275s, 1162m, 1108m, 1094m, 1044s, 1020s, 970s, 932m; δH (400 MHz, 

CDCl3) 1.34 (6 H, td, J = 7.1, J = 0.6, H-15), 3.84 (3 H, s, H-8/8’), 3.86 (3 H, s, H-8/8’), 4.08–4.27 

(4 H, m, H-14), 4.74 (2 H, d, J = 7.2, H-11), 5.95 (2 H, s, H-2/2’), 5.99 (2 H, s, H-2/2’), 6.01 (1 H, 

t, J = 7.2, H-10), 6.34–6.35 (2 H, m, H-4/4’/6/6’), 6.42 (1 H, d, J = 1.6, H-4/4’/6/6’), 6.43 (1 H, d, J 

= 1.6, H-4/4’/6/6’); δC (100 MHz, CDCl3) 16.1 (2 C, d, J = 6.9, C-15), 53.6 (d, J = 228.1, C-13), 

56.6 (C-8/8’), 56.7 (C-8/8’), 63.6–63.7 (3C, m, C-11,14), 101.6 (2 C, C-2,2’), [102.1, 103.9, 107.9, 

109.2 (C-4/4’/6/6’)], 120.3 (C-10), [132.5, 135.0, 135.4, 136.0, 143.1, 143.4, 146.9, 148.7, 148.8 

(C-1,1’,3,3’,5,5’,7,7’,9)], 163.3 (d, J = 12.7, C-12); δP (162 MHz, CDCl3) 10.6; HRMS (ESI+): 

Found: 585.1240; C25H27N2NaO11P (MNa+) Requires 585.1245 (0.7 ppm error). 

Lab notebook reference: MGL/07/91 
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Diethyl ((1SR,5SR)-6,6-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)-2-oxo-3-

oxabicyclo[3.1.0]hexan-1-yl)phosphonate (323) 
 

 
 

Synthesised using general procedure F with 3,3-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-

diazo-2-(diethoxyphosphoryl)acetate 322 (368 mg, 0.654 mmol), CH2Cl2 (13.1 mL) and Rh2(tpa)4 

(18.8 mg, 13.1 µmol). Purification by column chromatography (1:4 hexane:EtOAc → EtOAc) 

afforded the title compound 323 as an off-white solid (153 mg, 44%); Rf 0.24 (1:4 hexane:EtOAc); 

m.p. 81–84 °C; νmax (thin film)/cm-1 2926w, 1758s, 1632s, 1507m, 1429s, 1364m, 1240s, 1192s, 

1155m, 1093s, 1042s, 1015s, 968s, 929m, 728s; δH (400 MHz, CDCl3) 1.14 (3 H, t, J = 7.1, H-

15/15’), 1.27 (3 H, t, J = 7.1, H-15/15’), 3.36 (1 H, dd, J = 12.5, J = 4.8, H-10), 3.69–3.81 (1 H, m, 

H-14/14’), 3.88 (3 H, s, H-8/8’), 3.89 (3 H, s, H-8/8’), 3.91–4.01 (1 H, m, H-14/14’), 4.06–4.23 (2 

H, m, H-14/14’), 4.28 (1 H, dd, J = 9.9, J = 2.2, H-9), 4.50 (1 H, dd, J = 9.9, J = 5.3, H-9), 5.89–

5.93 (4 H, m, H-2,2’), 6.51 (1 H, br. s, H-4/4’/6/6’), 6.60–6.61 (2 H, m, H-4/4’/6/6’), 6.72 (1 H, d, 

J = 1.6, H-4/4’/6/6’); δC (100 MHz, CDCl3) 16.2 (d, J = 6.1, C-15/15’), 16.3 (d, J = 6.5, C-15/15’), 

34.5 (d, J = 4.0, C-10), 37.8 (d, J = 203.9, C-12), 46.4 (d, J = 2.8, C-11), 56.7 (C-8/8’), 56.7 (C-

8/8’), 62.3 (d, J = 6.5, C-14/14’), 63.5 (d, J = 6.9, C-14/14’), 65.5 (d, J = 3.5, C-9), 101.5 (C-2/2’), 

101.6 (C-2/2’), [102.4, 102.9, 108.1, 109.3 (C-4/4’/6/6’)], 130.6 (d, J = 1.8, C-5/5’), 133.2 (d, J = 

5.5, C-5/5’), [134.6, 135.0, 143.1, 143.9, 148.7, 149.2 (C-1/1’/3/3’/7/7’)], 171.2 (d, J = 10.5, C-13); 

δP (162 MHz, CDCl3) 16.2; HRMS (ESI+): Found: 557.1169; C25H27NaO11P (MNa+) Requires 

557.1183 (2.5 ppm error), Found: 535.1362; C25H28O11P (MH+) Requires 535.1364 (0.2 ppm error). 

Lab notebook reference: MGL/07/96,92 
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Diethyl ((3RS,4SR)-4-(bis(7-methoxybenzo[d][1,3]dioxol-5-yl)methyl)-2-

oxotetrahydrofuran-3-yl)phosphonate (343) 
 

 
 

To an oven dried sealable tube containing SmI2 (10.6 mL, 1.06 mmol, ~0.1 M solution in THF) 

under an atmosphere of argon, atmosphere and cooled to −78 °C was added dropwise a solution of 

diethyl ((1SR,5SR)-6,6-bis(7-methoxybenzo[d][1,3]dioxol-5-yl)-2-oxo-3-oxabicyclo[3.1.0]hexan-

1-yl)phosphonate 323 (142 mg, 0.266 mmol) in THF (2.66 mL). The mixture was stirred at −78 °C 

for 10 mins then quenched by addition of sat. aq. NH4Cl (5 mL) and allowed to warm at RT. The 

biphasic mixture was extracted with EtOAc (3 × 25 mL) and the combined organic extracts dried 

over MgSO4, filtered and concentrated in vacuo. Purification by column chromatography (1:2 

hexane:EtOAc) afforded the title compound 343 as a white solid (78 mg, 55%); Rf 0.44 (1:2 

hexane:EtOAc); m.p. 59–62 °C; νmax (thin film)/cm-1 2981w, 2909w, 1770s, 1633s, 1508s, 1451s, 

1433s, 1370m, 1316s, 1248s, 1197m, 1156m, 1132m, 1091s, 1042s, 1021s, 968s, 731s; δH (400 

MHz, CDCl3) 1.31 (3 H, t, J = 7.1, H-15/15’), 1.31 (3 H, t, J = 7.1, H-15/15’), 2.84 (1 H, d, J = 

24.5, H-11), 3.44–3.53 (1 H, m, H-12), 3.61 (1 H, d, J = 12.4, H-9), 3.88 (3 H, s, H-8/8’), 3.90 (3 

H, s, H-8/8’), 3.99–4.21 (5 H, m, H-13,14,14’), 4.49 (1 H, dd, J = 9.4, J = 6.0, H-13), 5.90–5.92 (4 

H, m, H-2,2’), 6.37 (1 H, d, J = 1.4, H-4/4’/6/6’), 6.41 (1 H, d, J = 1.4, H-4/4’/6/6’), 6.45 (1 H, d, J 

= 1.3, H-4/4’/6/6’), 6.46 (1 H, d, J = 1.3, H-4/4’/6/6’); δC (100 MHz, CDCl3) 16.1 (d, J = 6.5, C-

15/15’), 16.2 (d, J = 6.2, C-15/15’), 42.1 (d, J = 2.6, C-12), 44.8 (d, J = 133.0, C-11), 54.2 (d, J = 

13.9, C-9), 56.7 (C-8/8’), 56.8 (C-8/8’), 63.1 (d, J = 7.0, C-14/14’), 63.7 (d, J = 7.1, C-14/14’), 

70.6 (C-13), 101.2 (C-4/4’/6/6’), 101.4 (C-2/2’), 101.5 (C-2/2’), 101.9 (C-4/4’/6/6’), 107.6 (C-

4/4’/6/6’), 107.9 (C-4/4’/6/6’), 134.2 (C-1/1’/3/3’), 134.3 (C-1/1’/3/3’), 135.3 (C-5/5’), 136.2 (d, J 

= 1.8, C-5/5’), 143.6 (C-7/7’), 143.6 (C-7/7’), 149.2 (C-1/1’/3/3’), 149.4 (C-1/1’/3/3’), 171.7 (d, J 

= 5.4, C-10); δP (162 MHz, CDCl3) 19.7; HRMS (ESI+): Found: 559.1329; C25H29NaO11P (MNa+) 

Requires 559.1340 (1.8 ppm error). 

Lab notebook reference: MGL/08/06 
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(±)-Peperomin E (308) 
 

 
 

To a solution of diethyl ((3RS,4SR)-4-(bis(7-methoxybenzo[d][1,3]dioxol-5-yl)methyl)-2-

oxotetrahydrofuran-3-yl)phosphonate 343 (66 mg, 0.123 mmol) in THF (2.5 mL) cooled to 0 °C 

under an argon atmosphere was added KOBu-t (16.6 mg, 0.148 mmol). The solution was stirred for 

30 mins after which paraformaldehyde (18.5 mg, 0.615 mmol) was added in one portion. The 

mixture was stirred for 30 mins at 0°C then 1 h at RT then quenched by addition of sat. aq. NH4Cl 

(5 mL). The mixture was extracted with EtOAc (3 × 25 mL) and the combined organic extracts 

dried over MgSO4, filtered and concentrated in vacuo. Purification by column chromatography (2:1 

hexane:EtOAc) afforded the title compound 308 as a white crystalline solid (44 mg, 87%); Rf 0.68 

(1:1 hexane:EtOAc); m.p. 56–59 °C (lit.145 140 °C); νmax (thin film)/cm-1 2903w, 1760s, 1633s, 

1508s, 1451s, 1432s, 1363m, 1315s, 1195s, 1130s, 1092s, 1042s, 927m, 730m; δH (400 MHz, 

CDCl3) 3.66 (1 H, d, J = 11.6, H-9), 3.75 (1 H, app. dddt, J = 11.6, J = 7.7, J = 4.4, J = 2.2, H-12), 

3.88 (3 H, s, H-8/8’), 3.89 (3 H, s, H-8/8’), 3.98 (1 H, dd, J = 9.5, J = 4.4, H-13), 4.32 (1 H, dd, J = 

9.5, J = 7.7, H-13), 4.93 (1 H, d, J = 2.0, H-14b), 5.93–5.95 (4 H, m, H-2,2’), 6.14 (1 H, d, J = 2.3, 

H-14a), 6.36 (1 H, d, J = 1.5, H-4/4’/6/6’), 6.38 (1 H, d, J = 1.5, H-4/4’/6/6’), 6.45 (1 H, d, J = 1.5, 

H-4/4’/6/6’), 6.46 (1 H, d, J = 1.5, H-4/4’/6/6’); δC (100 MHz, CDCl3) 42.4 (C-12), 55.3 (C-9), 

56.8 (C-8/8’), 56.9 (C-8/8’), 69.7 (C-13), 101.1 (C-4/4’/6/6’), 101.5 (2C, C-2,2’), 101.5 (C-

4/4’/6/6’), 107.9 (C-4/4’/6/6’), 108.3 (C-4/4’/6/6’), 124.9 (C-14), 134.2, 134.3, 135.8, 136.0, 136.1, 

143.4 (C-7/7’), 143.6 (C-7/7’), 149.2, 149.5, 170.7 (C-10); HRMS (ESI+): Found: 435.1050; 

C22H20NaO8 (MNa+) Requires 435.1050 (0.1 ppm error). 

Lab notebook reference: MGL/08/09  

Obtained data in accord with reported literature.145 

Note: Obtained melting point does not match the literature value. 
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(E)-3-(7-Methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-(diethoxyphosphoryl)acetate (S9) 

 

 
 

Synthesised using general procedure A with (E)-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)prop-2-en-

1-ol S8 (1.92 g, 9.22 mmol), toluene (46.1 mL), DEPAA (1.90 g, 9.68 mmol), DIPEA (4.18 mL, 

24.0 mmol) and T3P (7.62 g, 12.0 mmol, 50% w/w solution in toluene) affording the title 

compound S9 as a yellow oil (3.56 g, 100%); Rf 0.33 (1:2 hexane:EtOAc); νmax (thin film)/cm-1 

2983w, 1733s, 1626s, 1509s, 1430s, 1259s, 1199s, 1136m, 1092m, 1041w, 1021s, 965s; δH (400 

MHz, CDCl3) 1.30 (6 H, t, J = 7.1, H-15), 2.98 (2 H, d, J = 21.5, H-13), 3.87 (3 H, s, H-8), 4.11–

4.18 (4 H, m, H-14), 4.74 (2 H, dd, J = 6.6, J = 1.0, H-11), 5.94 (2 H, s, H-2), 6.09 (1 H, dt, J = 

15.8, J = 6.6, H-10), 6.51 (1 H, d, J = 1.5, H-4/6), 6.53 (1 H, br. d, J = 15.8, H-9), 6.58 (1 H, d, J = 

1.5, H-4/6); δC (100 MHz, CDCl3) 16.2 (d, J = 6.3, C-15), 34.2 (d, J = 134.3, C-13), 56.4 (C-8), 

62.6 (d, J = 6.5, C-14), 65.9 (C-11), 100.1 (C-4/6), 101.5 (C-2), 106.9 (C-4/6), 121.0 (C-10), 130.9 

(C-1/3/5/7), 134.5 (C-9), 135.3 (C-1/3/5/7), 143.4 (C-1/3/5/7), 149.0 (C-1/3/5/7), 165.5 (d, J = 6.1, 

C-12); δP (162 MHz, CDCl3) 20.2; HRMS (ESI+): Found: 409.1018; C17H23NaO8P (MNa+) 

Requires 409.1023 (1.2 ppm error). 

Lab notebook reference: MGL/08/04 
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(E)-3-(7-Methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-diazo-2-(diethoxyphosphoryl)acetate 

(320) 

 

 
 
To a solution of (E)-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-(diethoxyphosphoryl)acetate S9 

(386 mg, 1.00 mmol) and DBSA (422 mg, 1.5 mmol) in CH2Cl2 (10.0 mL), cooled to 0 °C under 

an argon atmosphere was added DBU (0.22 mL, 1.50 mmol) dropwise. The solution was allowed 

to warm to RT and stirred for 2 h. Concentration in vacuo and purification by column 

chromatography (1:1 hexane:EtOAc) afforded the title compound 320 as a pale yellow oil (397 mg, 

96%); Rf 0.29 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2984w, 2940w, 2907w, 2127s, 1702s, 

1625m, 1509m, 1430m, 1270s, 1199m, 1092m, 1015s, 965s, 813m, 743m, 589m, 560m; δH (400 

MHz, CDCl3) 1.35 (6 H, t, J 7.1, H-15), 3.89 (3 H, s, H-8), 4.11–4.27 (4 H, m, H-14), 4.81 (2 H, d, 

J 6.6, H-11), 5.96 (2 H, s, H-2), 6.11 (1 H, dt, J 15.7, J 6.6, H-10), 6.52 (1 H, d, J 1.2, H-4/6), 6.55 

(1 H, br. d, J 15.7, H-9), 6.60 (1 H, d, J 1.2, H-4/6); δC (100 MHz, CDCl3) 16.1 (d, J 7.1, C-15), 

53.8 (d, J 225.8, C-13), 56.5 (C-8), 63.7 (d, J 5.9, C-14), 66.0 (C-11), 100.2 (C-4/6), 101.6 (C-2), 

107.0 (C-4/6), 121.0 (C-10), 130.8 (C-1/3/5/7), 134.8 (C-9), 135.5 (C-1/3/5/7), 143.5 (C-1/3/5/7), 

149.1 (C-1/3/5/7), 163.2 (d, J 12.4, C-12); δP (162 MHz, CDCl3) 10.5; HRMS (ESI+): Found: 

435.0917; C17H21N2NaO8P (MNa+) Requires 435.0928 (2.5 ppm error). 

Lab notebook reference: MGL/08/11 
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Diethyl ((1RS,5SR,6SR)-6-(7-methoxybenzo[d][1,3]dioxol-5-yl)-2-oxo-3-

oxabicyclo[3.1.0]hexan-1-yl)phosphonate (321) 
 

 
 

Synthesised using general procedure F with (E)-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)allyl 2-

diazo-2-(diethoxyphosphoryl)acetate 320 (80 mg, 0.194 mmol), CH2Cl2 (3.9 mL) and Rh2(oct)4 

(3.0 mg, 3.9 µmol). Purification by column chromatography (1:4 hexane:EtOAc → EtOAc) 

afforded the title compound 321 as a yellow solid (48 mg, 64%); Rf 0.14 (1:4 hexane:EtOAc); m.p. 

95–97 °C; νmax (thin film)/cm-1 2982w, 2909w, 1762s, 1634m, 1514m, 1432m, 1370m, 1249m, 

1195m, 1140m, 1093m, 1017s, 971s, 812m, 589m; δH (400 MHz, CDCl3) 1.16 (3 H, t, J = 7.1, H-

15/15’), 1.21 (3 H, t, J = 7.1, H-15/15’), 2.73 (1 H, app. t, J = 6.0, H-9), 3.17 (1 H, app. dt, J = 

10.6, J = 5.2, H-10), 3.88 (3 H, s, H-8), 3.91–4.09 (4 H, m, H-14/14’), 4.37 (1 H, dd, J = 9.4, J = 

2.8, H-11), 4.47 (1 H, dd, J = 9.4, J = 4.7, H-11), 5.94 (1 H, d, J = 1.4, H-2), 5.94 (1 H, d, J = 1.4, 

H-2), 6.51 (1 H, d, J = 1.0, H-4/6), 6.61 (1 H, d, J = 1.0, H-4/6); δC (100 MHz, CDCl3) 16.1 (d, J = 

6.2, C-15/15’), 16.2 (d, J = 6.2, C-15/15’), 28.7 (C-10), 31.6 (d, J = 206.1, C-13), 35.0 (d, J = 3.3, 

C-9), 56.5 (C-8), 62.5 (d, J = 6.2, C-14/14’), 63.0 (d, J = 6.7, C-14/14’), 68.0 (d, J = 3.0, C-11), 

101.5 (C-2), 103.4 (C-4/6), 109.3 (C-4/6), 126.1 (d, J = 5.6, C-5), 135.0 (C-1/3/7), 143.1 (C-1/3/7), 

148.4 (C-1/3/7), 171.8 (d, J = 10.5, C-12); δP (162 MHz, CDCl3) 15.5; HRMS (ESI+): Found: 

407.0860; C17H21NaO8P (MNa+) Requires 407.0866 (1.5 ppm error), Found: 385.1040; C17H22O8P 

(MH+) Requires 385.1047 (1.8 ppm error). 

Lab notebook reference: MGL/08/23 
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Appendices 

Appendix I:  Natural product NMR spectra and literature comparison tables 

Cedarmycin A 

Table 10: Comparison table of the 1H NMR data of the natural (δH ref)98 and synthetic (δH obs) 

cedarmycin A 189.  

 

Table 11: Comparison table of the 13C NMR data of the natural (δC ref)98 and synthetic (δC obs) 

cedarmycin A 189.  

 

 

1H NMR data of cedarmycin A (CDCl3) 

Label δH ref98 
(400 MHz) 

δH obs 

(400 MHz) 
12 0.89 6 H, d, J = 6.6 0.88 6 H, d, J = 6.6 
10 1.19 2 H, m 1.15–1.21 2 H, m 

9,11 1.55  1 H, m 1.51–1.65 3 H, m 1.62 2 H, m 
8 2.31 2 H, t, J = 7.6 2.31 2 H, t, J = 7.6 
3 3.43 1 H, m 3.39–3.47 1 H, m 

6 4.18 1 H, dd,  
J = 11.2, J = 7.3 4.16 1 H, dd, 

 J = 11.2, J = 7.3 

4 4.19 1 H, dd,  
J = 9.4, J = 5.1 4.18 1 H, dd,  

J = 9.4, J = 4.9 

6 4.25 1 H, dd,  
J = 10.9, J = 5.6 4.25 1 H, dd,  

J = 11.2, J = 5.6 

4 4.48 1 H, dd,  
J = 9.6, J = 8.5 4.48 1 H, dd,  

J = 9.4, J = 8.4 
5b 5.76 1 H, d, J = 2.4 5.76 1 H, d, J = 2.3 
5a 6.39 1 H, d, J = 2.7 6.39 1 H, d, J = 2.7 

13C NMR data of cedarmycin A (CDCl3) 

Label δC ref98 
(100 MHz) 

δC obs 

(100 MHz) ∆δC 

12 22.5 22.4 −0.1 
9 22.8 22.7 −0.1 

11 27.7 27.7 0.0 
8 34.3 34.3 0.0 
3 38.1 38.0 −0.1 

10 38.3 38.3 0.0 
6 64.7 64.7 0.0 
4 68.1 68.1 0.0 
5 124.1 124.2 +0.1 
2 134.6 134.5 −0.1 
1 169.8 169.8 0.0 
7 173.5 173.5 0.0 

5

O

O
34

1

2

6

Hb

Ha

cedarmycin A, 189

O 7 8

9
10

11
12O
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1H NMR spectrum of Cedarmycin A 189 (400 MHz, CDCl3)  
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13C NMR spectrum of Cedarmycin A 189 (100 MHz, CDCl3) 
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Cedarmycin B 

Table 12: Comparison table of the 1H NMR data of the natural (δH ref)98 and synthetic (δH obs) 

cedarmycin B 190.  

 

Table 13: Comparison table of the 13C NMR data of the natural (δC ref)98 and synthetic (δC obs) 

cedarmycin B 190.  

 

1H NMR data of cedarmycin B (CDCl3) 

Label δH ref98 
(400 MHz) 

δH obs 

(400 MHz) 
12 0.90 3 H, t, J = 7.1 0.90 3 H, t, J = 7.0 

10,11 1.32 4 H, m 1.25–1.36 4 H, m 

9 1.62 2 H, quin., 
J = 7.6 1.62 2 H, app. quin., 

J = 7.5 
8 2.34 2 H, t, J = 7.8 2.32 2 H, t, J = 7.5 
3 3.43 1 H, m 3.39–3.47 1 H, m 

6 4.18 1 H, dd, 
 J = 11.2, J = 7.3 4.16 1 H, dd, 

 J = 11.2, J = 7.3 

4 4.19 1 H, dd,  
J = 9.4, J = 5.2 4.18 1 H, dd,  

J = 9.4, J = 4.9 

6 4.25 1 H, dd,  
J = 11.2, J = 5.6 4.25 1 H, dd,  

J = 11.2, J = 5.6 

4 4.48 1 H, dd,  
J = 9.4, J = 8.3 4.48 1 H, dd,  

J = 9.4, J = 8.4 
5b 5.76 1 H, d, J = 2.2 5.76 1 H, d, J = 2.4 
5a 6.39 1 H, d, J = 2.7 6.38 1 H, d, J = 2.7 

13C NMR data of cedarmycin B (CDCl3) 

Label δC ref98 
(100 MHz) 

δC obs 

(100 MHz) ∆δC 

12 13.9 13.9 0.0 
11 22.3 22.3 0.0 
9 24.6 24.5 −0.1 

10 31.3 31.2 −0.1 
8 34.0 34.0 0.0 
3 38.1 38.1 0.0 
6 64.7 64.7 0.0 
4 68.1 68.1 0.0 
5 124.1 124.1 0.0 
2 134.6 134.5 −0.1 
1 169.9 169.8 −0.1 
7 173.5 173.5 0.0 

5

O

O
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2

6
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1H NMR spectrum of Cedarmycin B 190 (400 MHz, CDCl3)  
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13C NMR spectrum of Cedarmycin B 190 (100 MHz, CDCl3) 
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  α-Cyclocostunolide 

Table 14: Comparison table of the 1H NMR data of the natural (δH ref)120b and synthetic (δH obs) α-

cyclocostunolide 256.  

 

Table 15: Comparison table of the 13C NMR data of the natural (δC ref)120a and synthetic (δC obs) 

α-cyclocostunolide 256.  
13C NMR data of (±)-α-cyclocostunolide (CDCl3) 

Label δC ref120a 
(25.2 MHz) 

δC obs 

(100 MHz) ∆δC 

11 17.4 17.4 0.0 
6 21.5 21.5 0.0 
3 22.9 22.8 −0.1 

12 23.7 23.7 0.0 
10 36.0 35.9 −0.1 
4 37.8 37.7 −0.1 
5 39.2 39.2 0.0 
7 51.2 51.2 0.0 
9 51.3 51.5 +0.2 
8 82.1 82.2 +0.1 

15 116.3 116.4 +0.1 
2 122.3 122.4 +0.1 
1 132.9 133.0 +0.1 

14 139.3 139.4 +0.1 
13 170.8 171.0 +0.2 

 

 α-cyclocostunolide, 256

Me

Me

H 8
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13

15

1H NMR data of (±)-α-cyclocostunolide (CDCl3) 

Label δH ref120b 
(100 MHz) 

δH obs 

(400 MHz) 
11 0.90 1 H, s 0.90 1 H, s 
12 1.84 1 H, s 1.83 1 H, s 
8 3.87 1 H, t, J = 11.0 3.87 1 H, t, J = 11.0 

15b, 2 5.38 2 H, d, J 3.0 5.38 2 H, d, J 3.1 
15a 6.05 1 H, d, J 3.0 6.05 1 H, d, J 3.2 
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1H NMR spectrum of α-cyclocostunolide 256 (400 MHz, CDCl3)  
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13C NMR spectrum of α-cyclocostunolide 256 (100 MHz, CDCl3) 
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 (±)-Savinin 

Table 16: Comparison table of the 1H NMR data of the natural (δH ref)141 and synthetic (δH obs) 

savinin 174.  

 

Table 17: Comparison table of the 13C NMR data of the natural (δC ref)140 and synthetic (δC obs) 

savinin 174.  

 

1H NMR data of savinin (CDCl3) 

Label δH ref141 
(400 MHz) 

δH obs 

(400 MHz) 

13 
2.60 1 H, dd,  

J = 14.6, J = 10.4 2.59 1 H, dd,  
J = 14.2, J = 10.1 

3.00 1 H, dd,  
J = 14.6, J = 5.0 2.99 1 H, dd,  

J = 14.2, J = 4.5 
3 3.73 1 H, m 3.71–3.77 1 H, m 
4 4.21–4.26 2 H, m 4.22–4.29 2 H, m 

20 5.93 2 H, s 5.93 1 H, d, J = 1.4 
5.94 1 H, d, J = 1.4 

12 6.04 2 H, s 6.05 2 H, s 

15 
6.62–6.75 3 H, m 

6.64 1 H, dd,  
J = 7.8, J = 1.6 

19 6.67 1 H, d, J = 1.6 
16 6.74 1 H, d, J = 7.8 
8 6.88 1 H, d, J = 8.5 6.88 1 H, d, J = 8.1 

11 
7.04–7.09 2 H, m 

7.05 1 H, d, J = 1.7 

7 7.08 1 H, dd,  
J = 8.1, J = 1.7 

5 7.49 1 H, s 7.50 1 H, d, J = 1.9 

13C NMR data of savinin (CDCl3) 
Label 

ref 
δC ref140 

(100 MHz) 
Label 

obs 
δC obs 

(100 MHz) ∆δC 

13 37.4 13 37.5 +0.1 
3 39.8 3 39.9 +0.1 
4 69.4 4 69.5 +0.1 

20 101.0 20 101.0 0.0 
12 101.7 12 101.7 0.0 
8 108.4 

8, 11,  
16, 19 

108.5 +0.1 
11 108.6 108.6 0.0 
16 108.7 108.8 +0.1 
19 109.1 109.2 +0.1 
15 122.0 15 122.2 +0.2 
2 125.7 2 125.8 +0.1 
7 126.0 7 126.1 +0.1 
6 128.1 6 128.2 +0.1 

14 131.4 14 131.5 +0.1 
5 137.2 5 137.5 +0.3 

17 146.4 17, 18 146.5 +0.1 
18 147.8 147.9 +0.1 
10 148.2 9,10 148.3 +0.1 
9 149.1 149.2 +0.1 
1 172.5 1 172.6 +0.1 
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1H NMR spectrum of Savinin 174 (400 MHz, CDCl3)  
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13C NMR spectrum of Savinin 174 (400 MHz, CDCl3) 
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(±)-Gadain 

Table 18: Comparison table of the 1H NMR data of the natural (δH ref)143 and synthetic (δH obs) 

gadain 307.  

 

 

 

 

 

 gadain, 307
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1H NMR data of gadain (CDCl3) 
Label 

ref 
δH ref143 

(300 MHz) 
Label 

obs 
δH obs 

(400 MHz) 

13 
2.82 

1 H, dd,  
J = 16.8, J = 

10.8 13 
2.78 1 H, dd,  

J = 13.8, J = 8.9 

2.92 1 H, dd,  
J = 16.8, J = 8.4 2.91 1 H, dd,  

J = 13.8, J = 6.9 

3 3.31 1 H, m 3 3.29 
1 H, app. dtdd, 
J = 8.9, J = 7.1, 
J = 3.8, J = 1.7 

4 
4.12 1 H, dd,  

J = 10.8, J = 4.8 4 
4.10 1 H, dd,  

J = 9.1, J = 3.8 

4.34 1 H, dd,  
J = 10.8, J = 8.4 4.32 1 H, dd,  

J = 9.1, J = 7.3 

12, 
20 

5.96 1 H, dd,  
J = 3.0, J = 1.4 20 5.95 1 H, d, J = 1.4 

5.96 1 H, d, J = 1.4 
6.00 2 H, s 12 6.00 2 H, s 

5 6.59 1 H, d, J = 1.6 5 6.59 1 H, d, J = 1.7 

15 6.77 1 H, dd,  
J = 8.0, J = 1.5 15 6.62 1 H, dd,  

J = 7.9, J = 1.7 
19 6.70 1 H, d, J = 1.5 19 6.69 1 H, d, J = 1.7 
16 6.66 1 H, d, J = 8.0 16 6.76 1 H, d, J = 7.9 
8 6.80 1 H, d, J = 8.0 8 6.79 1 H, d, J = 8.1 

7 7.17 1 H, dd,  
J = 8.0, J = 1.5 7 7.15 1 H, dd,  

J = 8.1, J = 1.7 
11 7.75 1 H, d, J = 1.5 11 7.74 1 H, d, J = 1.7 
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1H NMR spectrum of Gadain 307 (400 MHz, CDCl3)  
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Table 19: Comparison table of the 13C NMR data of the natural (δC ref)143 and synthetic (δC obs) 

gadain 307.  
13C NMR data of gadain (CDCl3) 

Label 
ref 

δC ref143 
(100 MHz) 

Label 
obs 

δC obs 

(100 MHz) ∆δC 

13 40.7 13 40.7 0.0 
3 44.2 3 44.2 0.0 
4 69.8 4 69.8 0.0 

12, 20 101.0 20 101.0 0.0 
101.4 12 101.4 0.0 

19 107.9 8 107.9 0.0 
11 108.4 16 108.4 0.0 
16 109.3 19 109.3 0.0 
8 110.3 11 110.7 +0.4 

15 122.7 15 122.3 −0.4 
7 125.2 2 125.2 0.0 
2 126.9 7 126.9 0.0 

14 127.9 6 127.9 0.0 
6 131.4 14 131.4 0.0 
5 140.3 5 140.4 +0.1 

18 146.5 17, 18 146.5 0.0 
17 147.6 147.6 0.0 
10 147.9 9,10 147.9 0.0 
9 149.0 149.0 0.0 
1 169.3 1 169.3 0.0 

 
Note: Whilst the observed data points match extremely well with the reference data points, there is 

a discrepancy in the assignment of the peaks in the 13C NMR spectra, despite a complete agreement 

of the assignments in the 1H NMR spectra. 
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13C NMR spectrum of Gadain 307 (400 MHz, CDCl3) 
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 (±)-Peperomin E 

 

Table 20: Comparison table of the 1H NMR data of the natural (δH ref)145 and synthetic (δH obs) 

(±)-peperomin E 308.  
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1H NMR data of (±)-Peperomin E (CDCl3) 

Label δH ref145  
(200 MHz) 

δH obs 

(400 MHz) 
9 3.65 1 H, d, J = 11.5 3.66 1 H, d, J = 11.6 

12 3.70 1 H, m 3.75 

1 H, ddddd,   
J = 11.6,  

J = 7.7, J = 4.4,  
J = 2.3, J = 2.0 

8/8’ 3.88 3 H, s 3.88 3 H, s 
8/8’ 3.89 3 H, s 3.89 3 H, s 

13 3.99 1 H, dd, J = 9.4, 
J = 4.1, 3.98 1 H, dd, J = 9.5, J 

= 4.4, 

13 4.32 1 H, dd, J = 9.4, 
J = 7.3, 4.32 1 H, dd, J = 9.5, J 

= 7.7, 
14b 4.94 1 H, d, J = 1.7 4.93 1 H, d, J = 2.0 
2,2’ 5.92 4 H, s 5.93–5.95 4 H, m 
14a 6.15 1 H, d, J = 2.0 6.14 1 H, d, J = 2.3 

4/4’/6/6’ 6.37 1 H, d, J = 1.5 6.36 1 H, d, J = 1.5 
4/4’/6/6’ 6.43 1 H, d, J = 1.5 6.38 1 H, d, J = 1.5 
4/4’/6/6’ 6.50 1 H, d, J = 1.5 6.45 1 H, d, J = 1.5 
4/4’/6/6’ 6.60 1 H, d, J = 1.5 6.46 1 H, d, J = 1.5 
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1H NMR spectrum of peperomin E 308 (400 MHz, CDCl3) 
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Table 21: Comparison table of the 13C NMR data of the natural (δC ref)145 and synthetic (δC obs) 

(±)-peperomin E 308.  
13C NMR data of (±)-Peperomin E (CDCl3) 

Label ref120a δC ref145  
(50 MHz) Label obs δC obs 

(100 MHz) ∆δC 

12 42.4 12 42.4 0.0 
9 55.3 9 55.3 0.0 

8/8’ 56.8 8/8’ 56.8 0.0 
8/8’ 56.9 8/8’ 56.9 0.0 
13 69.6 13 69.7 +0.1 

4/4’ 101.5 4/4’/6/6’ 101.1 −0.4 
2,2’ 102.0 2,2’ (2 C) 101.5 −0.5 
4/4’ 101.5 4/4’/6/6’ 101.5 0.0 
6/6’ 108.4 4/4’/6/6’ 107.9 −0.5 
6/6’ 108.8 4/4’/6/6’ 108.3 −0.5 
14 125.2 14 124.9 −0.3 

5,5’ (2 C) 134.3 1/1’/3/3’/5/5’/11 134.2 0.0 1/1’/3/3’/5/5’/11 134.3 
11 135.8 1/1’/3/3’/5/5’/11 135.8 0.0 

1/1’ 136.0 1/1’/3/3’/5/5’/11 136.0 0.0 
1/1’ 136.1 1/1’/3/3’/5/5’/11 136.1 0.0 
7/7’ 143.4 7/7’ 143.4 0.0 
7/7’ 143.6 7/7’ 143.6 0.0 
3/3’ 149.2 1/1’/3/3’/5/5’/11 149.2 0.0 
3/3’ 149.5 1/1’/3/3’/5/5’/11 149.5 0.0 
10 170.7 10 170.7 0.0 

 

 
 

 

O

O

O

O

O

O

OMe

OMe

13 12

10

9

11 14

1
84'

1'
2'

5'

6'
7'

8'

5

6 7

34
2

3'

peperomin E, 308

Ha
Hb



 366 

13C NMR spectrum of peperomin E 308 (100 MHz, CDCl3) 

 



 

 367 

Appendix II:  Crystallographic data 

Compound 116c  

 

CCDC Number 980606 

Identification code  rjkt1212  

Empirical formula  C14H19O5P  

Formula weight  298.26  

Temperature/K  110.00(10)  

Crystal system  monoclinic  

Space group  P21/c 

a/Å  10.12764(18) 

b/Å  8.97571(13)  

c/Å  15.9855(3)  

α/°  90.00  

β/°  94.4074(16)  

γ/°  90.00  

Volume/Å3  1448.83(4) 

Z  4 

ρcalcg/cm3  1.367  

µ/mm-1  0.206  

F(000)  632.0  

Crystal size/mm3  0.225 × 0.1634 × 0.0635 

2Θ range for data collection/° 6.08 to 64.4 

Index ranges  -15 ≤ h ≤ 13, -13 ≤ k ≤ 13, -23 ≤ l ≤ 23  

Reflections collected  13784 

Independent reflections  4681[R(int) = 0.0270]  

Data/restraints/parameters  4681/0/183  

Goodness-of-fit on F2  1.037  

Final R indexes [I>=2σ (I)]  R1 = 0.0362, wR2 = 0.0894 

Final R indexes [all data]  R1 = 0.0431, wR2 = 0.0953  

Largest diff. peak/hole / e Å-3  0.40/-0.358 

 

The crystal was grown by evaporation of diethyl ether layered on chloroform inside a standard 

NMR tube. 
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Compound 153e  

 

CCDC Number 1013524 

Identification code  rjkt1306  

Empirical formula  C26H27O5P  

Formula weight  450.45  

Temperature/K  110.00(10)  

Crystal system  triclinic  

Space group  P-1  

a/Å  9.5981(5)  

b/Å  11.0011(9)  

c/Å  12.4360(9)  

α/°  68.604(7)  

β/°  72.191(5)  

γ/°  79.237(6)  

Volume/Å3  1159.82(14)  

Z  2  

ρcalcg/cm3  1.290  

µ/mm-1  0.153  

F(000)  476.0  

Crystal size/mm3  0.2995 × 0.1557 × 0.0689  

2Θ range for data collection/° 5.74 to 60.06 

Index ranges  -13 ≤ h ≤ 12, -14 ≤ k ≤ 15, -17 ≤ l ≤ 12  

Reflections collected  10694  

Independent reflections  6704[R(int) = 0.0282]  

Data/restraints/parameters  6704/18/446  

Goodness-of-fit on F2  1.043  

Final R indexes [I>=2σ (I)]  R1 = 0.0719, wR2 = 0.1760  

Final R indexes [all data]  R1 = 0.1018, wR2 = 0.1993  

Largest diff. peak/hole / e Å-3  0.63/-0.35  

 

The crystal was grown by evaporation of diethyl ether layered on chloroform inside a standard 

NMR tube. 
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Compound 240  

 

CCDC Number 1421158 

Identification code  rjkt1516  

Empirical formula  C15H18O2  

Formula weight  230.29  

Temperature/K  132(30)  

Crystal system  triclinic  

Space group  P-1  

a/Å  7.4631(4)  

b/Å  8.1068(4)  

c/Å  10.7071(5)  

α/°  89.047(4)  

β/°  89.710(4)  

γ/°  89.044(4)  

Volume/Å3  647.61(6)  

Z  2  

ρcalcg/cm3  1.181  

µ/mm-1  0.608  

F(000)  248.0  

Crystal size/mm3  0.2239 × 0.1846 × 0.0284  

Radiation  CuKα (λ = 1.54181)  

2Θ range for data collection/°  8.26 to 142.02  

Index ranges  -8 ≤ h ≤ 9, -9 ≤ k ≤ 7, -12 ≤ l ≤ 13  

Reflections collected  4954  

Independent reflections  2399 [Rint = 0.0157, Rsigma = 0.0212]  

Data/restraints/parameters  2399/1/176  

Goodness-of-fit on F2  1.030  

Final R indexes [I>=2σ (I)]  R1 = 0.0395, wR2 = 0.1082  

Final R indexes [all data]  R1 = 0.0439, wR2 = 0.1122  

Largest diff. peak/hole / e Å-3  0.27/-0.19  

 

The crystal was grown by evaporation of diethyl ether layered on chloroform inside a standard 

NMR tube. 
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Compound 241  

 

CCDC Number 1421154 

Identification code  rjkt1506  

Empirical formula  C15H20O2  

Formula weight  232.31  

Temperature/K  110.05(10)  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  6.95182(16)  

b/Å  12.2280(3)  

c/Å  30.5046(6)  

α/°  90  

β/°  95.654(2)  

γ/°  90  

Volume/Å3  2580.47(10)  

Z  8  

ρcalcg/cm3  1.196  

µ/mm-1  0.611  

F(000)  1008.0  

Crystal size/mm3  0.1215 × 0.081 × 0.0366  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  7.794 to 134.144  

Index ranges  -8 ≤ h ≤ 7, -10 ≤ k ≤ 14, -32 ≤ l ≤ 36  

Reflections collected  8613  

Independent reflections  4600 [Rint = 0.0192, Rsigma = 0.0302]  

Data/restraints/parameters  4600/0/309  

Goodness-of-fit on F2  1.039  

Final R indexes [I>=2σ (I)]  R1 = 0.0487, wR2 = 0.1285  

Final R indexes [all data]  R1 = 0.0633, wR2 = 0.1362  

Largest diff. peak/hole / e Å-3  0.35/-0.21  

 

The crystal was grown by evaporation of diethyl ether layered on chloroform inside a standard 

NMR tube. 
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Compound 261  

 

CCDC Number 1421164 

Identification code  rjkt1515  

Empirical formula  C17H32O2Si  

Formula weight  296.51  

Temperature/K  110.05(10)  

Crystal system  monoclinic  

Space group  C2/c  

a/Å  23.0721(10)  

b/Å  6.5804(2)  

c/Å  26.2324(11)  

α/°  90  

β/°  117.509(5)  

γ/°  90  

Volume/Å3  3532.4(3)  

Z  8  

ρcalcg/cm3  1.115  

µ/mm-1  1.161  

F(000)  1312.0  

Crystal size/mm3  0.1481 × 0.0793 × 0.0664  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  7.6 to 134.142  

Index ranges  -27 ≤ h ≤ 27, -5 ≤ k ≤ 7, -31 ≤ l ≤ 30  

Reflections collected  9587  

Independent reflections  3146 [Rint = 0.0255, Rsigma = 0.0246]  

Data/restraints/parameters  3146/0/187  

Goodness-of-fit on F2  1.043  

Final R indexes [I>=2σ (I)]  R1 = 0.0349, wR2 = 0.0925  

Final R indexes [all data]  R1 = 0.0386, wR2 = 0.0961  

Largest diff. peak/hole / e Å-3  0.34/-0.29  

 

The crystal was grown by evaporation of the hexane solution which was left standing in a round-

bottom flask. 
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Compound 296c  

 
 

CCDC Number 1465173 

Identification code  rjkt1408  

Empirical formula  C15H19O5P  

Formula weight  310.27  

Temperature/K  110.05(10)  

Crystal system  monoclinic  

Space group  P21/c  

a/Å  12.11290(15)  

b/Å  10.43581(14)  

c/Å  11.94338(15)  

α/°  90  

β/°  90.0578(13)  

γ/°  90  

Volume/Å3  1509.74(3)  

Z  4  

ρcalcg/cm3  1.365  

µ/mm-1  0.201  

F(000)  656.0  

Crystal size/mm3  0.2985 × 0.1689 × 0.1447  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  6.178 to 60.064  

Index ranges  -17 ≤ h ≤ 17, -14 ≤ k ≤ 13, -16 ≤ l ≤ 16  

Reflections collected  13086  

Independent reflections  4207 [Rint = 0.0209, Rsigma = 0.0210]  

Data/restraints/parameters  4207/0/197  

Goodness-of-fit on F2  1.080  

Final R indexes [I>=2σ (I)]  R1 = 0.0328, wR2 = 0.0859  

Final R indexes [all data]  R1 = 0.0368, wR2 = 0.0886  

Largest diff. peak/hole / e Å-3  0.39/-0.34  

 

The crystal was grown by evaporation of diethyl ether layered on chloroform inside a standard 

NMR tube. 
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a b s t r a c t

A system for the synthesis of a-alkylidene-g-butyrolactones via a one-pot CeH insertion/olefination
sequence is described. The process is based on the rhodium catalysed CeH insertion reaction of a-diazo-
a-(diethoxyphosphoryl)acetates. The mild reaction conditions, operational simplicity and ready avail-
ability of starting materials are all key features. A wide range of successful reaction systems are reported
(41 examples) highlighting the generality of the method. The application of this method in the total
synthesis of the natural products (!)-cedarmycins A and B is also described.

! 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of a-alkylidene-g-butyrolactones has captured
the interest of synthetic chemists for many years1 and remains an
extremely important endeavour today.2 One reason for the sus-
tained high level of interest in this field is that a vast number of
natural products have been isolated containing this structural motif
(a-methylene-g-butyrolactones are particularly prominent) and
this area has been well reviewed.3 Much of the reported synthetic
methodology was developed with such targets in mind, and has
facilitated many completed total syntheses. In addition, there is
significant interest in the biological activity of a-alkylidene-g-
butyrolactones: this stems from the fact that they are typically very
good Michael acceptors, in particular for cysteine residues, thus
imparting broad therapeutic potential and the capability to mod-
ulate a range of biological processes.4

Our research group became interested in the synthesis of
a-alkylidene-g-butyrolactones as part of a research program to

develop improved synthetic procedures using tandem/telescoped
reaction sequences.5 In particular a method for a-alkylidene-g-
butyrolactone synthesis based on an intramolecular Michael addi-
tion of a phosphonate6 followed by olefination, either via a Hor-
nereWadswortheEmmons (HWE)6a,b or Wittig-type olefination.6c,d

These telescoped intramolecular Michael/olefination protocols
(TIMO) enable functionalised hydroxy-enone derivatives to be con-
verted into alkylidene-g-butyrolactones in one-pot, in good overall
yield (e.g., 1/3, Scheme 1).6 More recently, we reported a modified
version of this protocol in which the key CeC bond is installed via
a rhodium(II) catalysed CeH insertion reaction of a diazo-
phosphonate, before performing the olefination via HWE olefination
in the same way (4/6, Scheme 1).7

A key advantage of the new CeH insertion methodology is the
comparative simplicity of the requisite starting materials. Unfunc-
tionalised alcohol derivatives can be used in place of the hydroxyl-
enone derivatives required for the TIMO reaction, which greatly
increases the generality and synthetic potential of this method. The
key CeH insertion step utilises a small amount of a relatively be-
nign, air-stable rhodium(II) carboxylate and furthermore, by using
a transition metal catalyst to effect this transformation, the

* Corresponding authors. E-mail addresses: richard.taylor@york.ac.uk (R.J.K.
Taylor), william.unsworth@york.ac.uk (W.P. Unsworth).
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Tetrahedron

journal homepage: www.elsevier .com/locate/ tet

http://dx.doi.org/10.1016/j.tet.2014.09.054
0040-4020/! 2014 Elsevier Ltd. All rights reserved.
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possibility of developing an asymmetric variant is introduced.8 In
a recent preliminary communication7 in this area we described the
optimisation of the key procedure, initial scoping studies and the
application of the methodology towards the synthesis of a Staphy-
lococcus aureus (MRSA) virulence inhibitor (7, Fig. 1).2g,7 Herein we
report significantly expanded substrate scope results and discuss
the strengths and limitations of the methodology along with some
stereochemical, regiochemical and stereoelectronic aspects. The
successful application of this methodology towards the first total
synthesis of the natural product (!)-cedarmycin A (8a), as well as
the synthesis of closely related (!)-cedarmycin B (8b), is also
described.9

2. Results and discussion

The requisite diazophosphonate substrates 11aeaf were made
in two steps from alcohols 9aeaf. The alcohols were first coupled
with diethyl phosphonoacetic acid (DEPAA) using propyl phos-
phonic anhydride (T3P)10 and N,N-diisopropylethylamine (DIPEA);
we have found T3P to be an excellent coupling reagent for a variety
of applications5c,e,11 and in the majority of cases the esters 10aeaf
were formed in excellent yields (usually >95%) and required no
purification other than aqueous work-up (Scheme 2). This was
followed by a Regitz diazo-transfer reaction to furnish the required
diazophosphonates, typically in good unoptimised yield
(23e89%).12 Note that LHMDS was used as the base for these
transformations as, in our hands, it generally afforded higher yields

of the diazo product than more common procedures, in which ei-
ther sodium hydride, KOBu-t or triethylamine are typically used.13

Initial efforts focused on the reactions of homobenzyl alcohol
derivatives, along with their heteroaromatic analogues. This was
because related rhodium carbenoids are reported to undergo CeH
insertion preferentially into electron-rich positions (e.g., benzylic
CeH bonds).14 The formation of unwanted four-membered ring side
products was considered to be a genuine concern during this pro-
cess, based on literature precedent for similar transformations,13a,15

and hence these substrates, which were expected to be biased to-
wards the formation of the desired five-membered ring g-lactones,
were chosen in order to probe the key reaction. Optimisation ex-
periments were first performed using diazophosphonate 11a
(Scheme 3). It was found that the CeH insertion reaction worked
best when performed at 45 "C for 20 h using 2 mol % of Rh2(oct)4 in
DCM.7 Conditions for the HWE olefination were based on those
developed as part of the TIMO reaction sequence described above;6

minor modifications made were to increase the number of equiv-
alents of KOBu-t (from 0.9 up to 1.2e1.5 equiv) and to reduce the
excess of paraformaldehyde used (from typically 5 equiv down to
2). The use of more than 1 equiv of base is noteworthy as related
HWE reactions are known to proceed better with sub-
stoichiometric amounts of base.6,17 Given that nitrogen gas is the
only byproduct formed during the CeH insertion step, it was pre-
dicted that these two steps could be performed in the one-pot
without work-up or purification. Indeed, this proved to be the
case; the most straightforward procedure is performed by con-
ducting the CeH insertion step in DCM as described above, before
cooling the crude reaction mixture and directly adding KOBu-t
(1.2e1.5 equiv), followed by paraformaldehyde (2 equiv). When
applied to diazophosphonate 11a, this telescoped one-pot sequence
resulted in the formation of a-methylene-g-butyrolactone 12a in
65% overall yield (Scheme 3). It was later found that performing
a solvent switch (DCM toTHF) between the CeH insertion and HWE
steps, led to a small increase in yield to 71%. HWE reactions aremost
commonly performed in ethereal solvents rather than chlorinated,
and this most likely accounts for the observed improvement.16 Note
that no further manipulation was performed during this solvent
switch; the DCM was simply removed under vacuum and THF was
added back into the same reaction vessel, before the HWE reaction
was completed as described above.

These conditions were then applied to a range of homobenzyl
alcohol derivatives, as well as some heteroaromatic variants
(Table 1). Electron-rich/neutral benzene derivatives generally react
well in the two-step telescoped procedure, furnishing a-methylene-
g-butyrolactones 12aee in moderate to good yields (45e74%). As
already discussed, related rhodium carbenoids are reported to insert
preferentially into electron-rich CeH bonds, hence electron-
deficient benzene derivatives were expected to be poorer sub-
strates in comparison. Pleasingly, substitution with a para-bromo
group appears not to significantly impair the reaction as product 12f
was formed in reasonable yield (55%) under the standard conditions;
the incorporation of a bromo-substituent in this example is

Fig. 1. MSRA inhibitor 7 and (!)-cedarmycins A and B.

Scheme 1. Telescoped approaches to a-alkylidene-g-butyrolactones.

Scheme 2. Formation of diazophosphonates.

Scheme 3. Formation of a-methylene-g-butyrolactone 12a. *A solvent switch (DCM to
THF) was performed following step (i).
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important as it should facilitate the installation of additional func-
tionality (e.g., in cross-coupling reactions). The yield does drop when
a more strongly electron withdrawing trifluoromethyl group is
present (12g, 29%) and decreases further in the case of para-nitro-
substituted product (12h). In these two examples the yield was in-
creased marginally by using a higher catalyst loading and a greater
excess paraformaldehyde, but the overall yields remained relatively
low. Thus, a trend is revealed,whereby the isolated yields of products
12feh decrease as the electron withdrawing ability of the para-
substituent increases. Nonetheless, the fact that some product was
isolated in all of these electronically diverse systems is positive. In-
deed, the only homobenzylic substrate that failed to react at all was
the para-dimethylamine-substituted system (11i/12i); this result is

not at all that surprising, given that Lewis basic residues capable of
coordinating to the vacant axial sites of the dirhodium(II) carboxyl-
ates are known to deactivate the catalyst.18,19 Pyridine nitrogen
atoms also appear to be incompatible (0% conversion for 11j/12j),
presumably for the same reason. Sulfur heteroatoms are better tol-
erated as evidenced by the formation of thiophene derivative 12k,
albeit in modest yield.

Substrates with additional substitution were next examined
(Table 1, 12leo). Compound 12l was generated in good yield under
the standard conditions, demonstrating that insertion into steri-
cally hindered tertiary CeH bonds can take place (for other ex-
amples, see Table 2,12abeaf). The conversion of dibenzyl substrate

Table 1
One-pot CeH insertion/olefination sequence for the formation of a-methylene-g-
butyrolactones: aromatic substratesa

a 
Conditions (A) i) 2 mol % Rh2(oct)4, DCM (0.1 M), 45 °C, 20 h; ii) Remove 

DCM in vacuo then add THF; iii) 1.5 equiv KOBu-t, 0 °C to –78 °C; iv) 2 

equiv (CH2O)n, –78 °C to RT. (B) i) 2 mol % Rh2(oct)4, DCM (0.1 M), 45 °C, 

20 h; ii) 1.2 equiv KOBu-t, 0 °C to –78 °C; iii) 2 equiv (CH2O)n, –78 °C to 0 

°C. (C) i) 5 mol % Rh2(oct)4, DCM (0.1 M), 45 °C, 20 h; ii) 0.9 equiv KOBu-

t, 0 °C to –78 °C; iii) 10 equiv (CH2O)n, –78 °C to 0 °C.

b
Rh2(esp)2 used in place of Rh2(oct)4.

Table 2
One-pot CeH insertion/olefination sequence for the formation of a-methylene-g-
butyrolactones: aliphatic substratesa

a 
Conditions i) 2 mol % Rh2(oct)4, DCM (0.1 M), 45 °C, 20 h; ii) Remove 

DCM in vacuo then add THF; iii) 1.5 equiv KOBu-t, 0 °C to –78 °C; iv) 2 

equiv (CH2O)n, –78 °C to RT.

b
HWE performed at 0 °C

c
1.2 equiv KOBu-t used.

d
The comparatively low yield is this case may result from the high volatility 

of the product

M.G. Lloyd et al. / Tetrahedron 71 (2015) 7107e7123 7109
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11m into lactone 12m is noteworthy as it proceeds with excellent
diasterocontrol, furnishing compound 12m as single trans-
diastereoisomer in excellent overall yield. Excellent regiocontrol
was also observed during the formation of the related product 12n;
in this example, the CeH insertion reaction of unsymmetrical
starting material 11n took place exclusively a-to the 4-MeO-C6H4
group,20 further highlighting the preference for insertion into
electron-rich CeH bonds. The reaction of dimethylated substrate
11o also proceeded in excellent overall yield, but gave a 1.45:1
mixture of the desired product 12o and its regioisomer 13, inwhich
insertion into one of the methyl CeH bonds has taken place. The
partial formation of lactone 13 highlights the importance of steric
factors on the key CeH insertion step. On electronic grounds, the
formation of product 12o is expected, but it appears likely that an
interplay between electronic factors and steric hindrance in the
CeH insertion step results in the partial formation of isomer 13 in
this case. Indeed, the CeH insertion step was found to be sensitive
to steric effects in a number of other examples (see later, Table 2),
which is reasonable, considering the combined bulk of phospho-
nate group and the intermediate rhodium carbenoid.

The reaction of the triphenyl substrate 14a, which did not pro-
ceed as planned, is an interesting example (Scheme 4). In this case,
treating diazo compound 14a under our standard CeH insertion
conditions resulted in almost complete recovery of the starting
material and the formation of a trace amount of an unknown side
product, which was not the expected lactone 14b. To generate
a larger amount of this product, in order to confirm its structure,
compound 14awas heated to 100 !C using the more stable catalyst
Rh2(esp)2 in place of Rh2(oct)4; this led to the complete con-
sumption of the starting material and the isolation of the same
product (15) in 50% yield, which was assigned as a rapidly equili-
brating mixture of two tautomers, norcaradiene 15a and cyclo-
heptatriene 15b. This reaction pathway (known as the Buchner
reaction) proceeds via cyclopropanation of one of the phenyl rings,
followed by reversible electrocyclic ring opening/closing. Rhodium
carbenoid mediated variants of this reaction are well-known,21 and
the ratio of the two components in anymixture is dependent on the
substituents present.21c In this case the equilibrium is biased to-
wards the cycloheptatriene tautomer, as evidenced by the high
NMR chemical shifts (dH 5.31, dC 119.0 in CDCl3) of the position la-
belled (*) in Scheme 4.21c In the solid phase, the product appears to
exist exclusively in the cycloheptatriene form 15b, as the single
diastereoisomer shown: this assignment is supported by X-ray
crystallographic data (Fig. 2).22

Attention then turned to the synthesis of a-methylene-g-
butyrolactones from non-aromatic precursors (Table 2). For the
reasons described above,13a,15 it was considered that attempting to
direct the rhodium catalysed CeH insertion into less reactive, non-
benzylic CeH bonds may lead to competing side reactions (e.g., the
formation of b- and/or d-lactones). However, we are pleased to
report that in most cases, efficient a-methylene-g-butyrolactone
synthesis can be achieved. For example, lactones 12per were all
generated using the standard two-step sequence, with no evidence
for the formation of competing b- or d-lactone products in any of
these reactions. The sensitivity of the CeH insertion step to steric
factors was highlighted above and further evidence for this can be
found in the syntheses of lactones 12s and 12t; the desired a-
methylene-g-butyrolactone products were isolated in both cases,
but the yields were lower than those of substrate 12per, seemingly
decreasing in line with the steric bulk of the substituent a-to the
CeH insertion site. A similar trend was observed during the syn-
theses of homologues 12u and 12v. The lower homologue 12u was
formed in low yield, along with a significant amount of b-lactone
side product 16a. However, the higher homologue 12v, inwhich the
bulky OTBS group is more remote from the CeH insertion site, was
formed in amuchmore respectable yield (49%), with no evidence of
b-lactone formation. The formation of lactone 12w, via insertion
into an allylic CeH bond, is noteworthy as cyclopropanation may
have been expected to compete with CeH insertion in this case.
Pleasingly, no evidence for the formation of the alternative cyclo-
propane product was observed, although a small amount of known
butenolide 17,23 which presumably forms via isomerisation of the
methylene alkene of 12w, was also isolated.

Next, attention turned to the synthesis of bicyclic ring scaffolds
(12xeaa). Unfortunately the cyclopentane-fused bicyclic product
12x was not formed under the standard reaction conditions, which
instead furnished a complex mixture of unidentified products. The
analogous cyclohexane-fused product proceeded better, although
the CeH insertion was not as regioselective as most other exam-
ples, generating a mixture of g-lactone and b-lactone products
(12y/16b 1.8:1). More positively, the a-methylene-g-butyrolactone
12y was formed with very good diasterocontrol; a 10:1 trans/cis
ratio of the two possible fused ring systems was observed, with
CeH insertion taking place predominantly into the equatorial CeH
bond. The process worked extremely well for the formation of
adamantanol-derived lactone 12z, which was formed in very good
yield over the two-step sequence (79%). Lactone 12aa, which is
derived from cycloheptanol, was also formed in good yield, with
reasonable diastereoselectivity (trans/cis 3.5:1), with no evidence
of b-lactone formation. This example is likely to be important in
target synthesis, given that a-methylene-g-butyrolactone scaffolds
based on fused five- and seven-membered rings of this type are
particularly prevalent in nature.3

g-Lactone products formed via insertion into tertiary CeH
bonds typically proceed well. First, known lactone 12ab24 was
formed via insertion into an iso-butyl CeH bond. Note that the

Fig. 2. X-ray crystal structure of cycloheptatriene 15b.

Scheme 4. Buchner cyclisation of diazo compound 14a.
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isolated yield in this casewas low (23%) but that no side products or
starting material were detected in the crude 1H NMR spectra for
this reaction; the poor yield is likely to be a result of the high
volatility of the product. We then went on to examine the forma-
tion of spirocyclic products 12aceaf. Attempts to form the spi-
rocyclic cyclopropane adduct 12ac failed under the standard
conditions, but pleasingly the analogous four-, five- and six-
membered ring variants all furnished the desired products 12adeaf
in good overall yields (50e79%).

As described in our previous communication,7 a-alkylidene-g-
butyrolactones may also accessed using the same procedure
(Table 3). Diazophosphonate 11a can treated under the standard
conditions for CeH insertion, before performing the HWE step
using a range of aromatic and aliphatic aldehydes in place of
paraformaldehyde, affording products 18aeg as mixtures of E- and
Z-isomers in fair to excellent overall yield (36e91%).

We have since gone on to show that three other diazo-
phosphonates (11d, 11p, 11ae) can also be used to furnish alkyli-
dene-g-butyrolactones (Table 4). The substrates chosen include one
benzylic, one aliphatic and one spirocyclic system and each was
reacted with an aromatic and aliphatic aldehyde, to demonstrate
the generality of the methodology. As above, the products 18hem
were formed as mixtures of E- and Z-isomers, with partial dia-
stereoselectivity for the Z-isomer in some cases, typically in good
overall yields (32e77%). Note that all of these examples are unop-
timised and were performed using the standard reaction condi-
tions, with the exception of lactone 18m. In this case, the HWE
reaction did not proceed at room temperature (as indicated by TLC
analysis) hence this step was performed at reflux.

As described above, there is an abundance of biologically im-
portant compounds containing the a-alkylidene-g-butyrolactone
motif found in nature.1e4 Future applications of this methodology
in the synthesis of such natural product targets are anticipated, as
demonstrated by the successful total syntheses of (!)-cedarmycins
A and B (8a and 8b, Scheme 5).9 Thus, lactone 12u (for its synthesis,
see Table 2 above) was first treated with TBAF to cleave the silyl
protecting group to furnish alcohol 19, before coupling it with each
of the acid chlorides 20a and 20b under standard conditions to
complete both syntheses. Both sets of spectral data were in full

agreement with those published9 and in the case of (!)-cedarmycin
A, this is its first reported total synthesis and thus confirms the
proposed structure.25 Of course, both of these syntheses are very
simple, but they do serve to highlight the relative ease with which
natural product targets can be accessed from simple precursors
using CeH activation chemistry.

3. Conclusion

The telescoped CeH insertion/olefination sequence described
has been used to convert simple alcohol derivatives into a wide
range of a-alkylidene-g-butyrolactones, typically in good overall
yield (in total, the formation of 41 distinct a-alkylidene-g-butyr-
olactone products are described). The reaction conditions are mild,
straightforward to perform and applicable to a wide range of sub-
strates. Furthermore, the products themselves are biologically im-
portant, hence the methods developed are expected to be widely
used by academic and industrial research groups. The application of
these methods in natural product synthesis has also been demon-
strated during the synthesis of (!)-cedarmycins A and B. The
methodology appears to be very well suited to natural product
synthesis and more complex biologically important targets are
currently under investigation, the results of which will be reported
in due course.

Table 3
One-pot CeH insertion/olefination sequence for the formation of a-alkylidene-g-
butyrolactones from 11aa

Entry R Product E/Z Yield (%)

1 Ph 18a 1:1 65
2 4-NO2eC6H4 18bb 1:1.3 69
3 2-FeC6H4 18c 1:1.5 91
4 4-PheC6H4 18d 1:1 61
5 3,4-OCH2OeC6H3 18ec 1:1.2 56
6 CH3 18f 1.2:1 39
7 n-Butyl 18g 1:3.7 67

a Conditions: (i) 2 mol % Rh2(oct)4, DCM (0.1 M), 45 "C, 20 h; (ii) remove DCM in
vacuo then add THF; (iii) 1.5 equiv KOBu-t, 0 "C to#78 "C; (iv) 2 equiv RCHO,#78 "C
to rt.

b HWE was performed at 0 "C.
c HWE was performed at reflux.

Table 4
One-pot CeH insertion/olefination sequence for the formation of a-alkylidene-g-
butyrolactonesa

a 
Conditions (A) i) 2 mol % Rh2(oct)4, DCM (0.1 M), 45 °C, 20 h; ii) Remove 

DCM in vacuo then add THF; iii) 1.5 equiv KOBu-t, 0 °C to –78 °C; iv) 2 

equiv (CH2O)n, –78 °C to RT.

b
HWE was performed at reflux

Scheme 5. The total syntheses of (!)-cedarmycins A and B.

M.G. Lloyd et al. / Tetrahedron 71 (2015) 7107e7123 7111



 382 

 

 

4. Experimental

4.1. General aspects

Except where stated, all reagents were purchased from com-
mercial sources and used without further purification and all ex-
perimental procedures were carried out under an atmosphere of
argon. Anhydrous CH2Cl2, toluene and diethyl ether were obtained
from an Innovative Technology Inc. PureSolv! solvent purification
system. Anhydrous THF was obtained by distillation over sodium
benzophenone ketyl immediately before use. 1H NMR and 13C NMR
spectra were recorded on a JEOL ECX400 or JEOL ECS400 spec-
trometer, operating at 400 MHz and 100 MHz, respectively. All
spectral data was acquired at 295 K. Chemical shifts (d) are quoted
in parts per million (ppm). The residual solvent peak, dH 7.26 and dC
77.0 for CDCl3 was used as a reference. Coupling constants (J) are
reported in hertz (Hz) to the nearest 0.1 Hz. The multiplicity ab-
breviations used are: s singlet, d doublet, t triplet, q quartet, m
multiplet. Signal assignment was achieved by analysis of DEPT,
COSY, HMBC and HSQC experiments where required. Infrared (IR)
spectra were recorded on either a ThermoNicolet IR-100 spec-
trometer with NaCl plates as a thin film dispersed from either
CH2Cl2 or CDCl3, or a PerkinElmer UATR II spectrometer and the
data are assigned as being strong (s), medium (m), weak (w) or
broad (br) signals. Mass spectra (low- and high-resolution) were
obtained by the University of York Mass Spectrometry Service,
using electrospray ionisation (ESI) on a Bruker Daltonics, Micro-tof
spectrometer. Melting points were determined using Gallenkamp
apparatus and are uncorrected. Thin layer chromatography was
carried out on Merck silica gel 60F254 pre-coated aluminium foil
sheets and were visualised using UV light (254 nm) and stained
with basic aqueous potassium permanganate. Flash column chro-
matography was carried out using slurry packed Fluka silica gel
(SiO2), 35e70 mm, 60!A, under a light positive pressure, eluting with
the specified solvent system. Petrol refers to petroleum ether
boiling point 40e60 !C. Ether refers to diethyl ether. Experimental
procedures and characterisation data for compounds 7, 9m, 9n,
10a,b,10d,10leo, 10per,10ae, 11a,b, 11d,11leo,11per, 11ae, 12a,b,
12d,121eo,12per,12ae,13 and 18aeg can be found in our previous
communication.7

4.2. General experimental procedures

The majority of alcohols were commercially available. Alcohols
9c,26 9i,27 9j28 and 9k29 were prepared by LiAlH4 reduction of the
corresponding carboxylic acids and gave spectral data consistent
with those in the literature.

General procedure A: esterifications using T3P (9/10)
To a stirred solution of alcohol 9 (8.00 mmol) in toluene (40 mL)

under argonwere added sequentially diethyl phosphonoacetic acid
(1.35 mL, 8.40 mmol), DIPEA (3.62 mL, 20.8 mmol) and propyl
phosphonic anhydride (6.62 g, 10.4 mmol, 50% w/w solution in
ethyl acetate/THF). The solution was stirred at rt for 4 h after which
time it was diluted with water (50 mL) and extracted with ethyl
acetate (3"100 mL) followed by sequential washing of the com-
bined organic extracts with 10% aq HCl (50 mL), satd aq NaHCO3
(50 mL) and brine (50 mL). The organic extracts were dried over
MgSO4 and concentrated in vacuo, affording the a-(diethox-
yphosphoryl)acetate product 10, which was used without further
purification.

General procedure B: diazotisation reactions (10/11)
To a stirred solution of a-(diethoxyphosphoryl)acetate 10

(5.0mmol) in THF (25mL), cooled to#78 !C under argonwas added
LHMDS (6.0 mL, 6.0 mmol, 1.0 M solution in THF). The solution was
allowed to warm to rt and stirred for 10 min. 4-
Acetamidobenzenesulfonylazide (1.44 g, 6.0 mmol) was added to

the solution forming a suspension. After stirring for 1 h at rt the
mixture was diluted with ether (100mL) andwater (25mL) prior to
extraction with ether (3"50 mL). The combined organic extracts
were washed with satd aq NaHCO3 (2"25 mL), dried over MgSO4,
concentrated in vacuo and purified by column chromatography
affording the a-diazo-a-(diethoxyphosphoryl)acetate product 11.

General procedure C: one-pot Rh(II)-catalysed CeH insertion/HWE
(11/12, DCM)

To an oven dried sealable tube containing a-diazo-a-(dialkox-
yphosphoryl)acetate 11 (0.200 mmol) flushed with argon was
added DCM (4.0 mL) followed by Rh2(oct)4 or Rh2(esp)2 (2 or
5mol %). The solutionwas stirred at 45 !C for 20 h. The solutionwas
cooled to 0 !C prior to the addition of KOBu-t (0.9, 1.2 or 1.5 equiv),
which was stirred at 0 !C for 60 min and then cooled to #78 !C.
Aldehyde (2.0, 5.0 or 10.0 equiv) was added to the solution and
stirred for 15 min at #78 !C and a further 2 h at either 0 !C, rt or
reflux. The solution was quenched with satd aq NH4Cl (10 mL) and
then diluted with DCM (20 mL). The organic layer was separated
and the aqueous extracted with EtOAc (2"20 mL). The combined
organic extracts were dried over Na2SO4, concentrated in vacuo and
purified by column chromatography affording the a-methylene/
alkylidene-g-butyrolactone product 12.

General procedure D: one-pot Rh(II)-catalysed CeH insertion/HWE
(11/12, DCM with THF switch)

To an oven dried sealable tube containing a-diazo-a-(dialkox-
yphosphoryl)acetate 11 (0.200 mmol) flushed with argon was
added DCM (4.0 mL) followed by Rh2(oct)4 or Rh2(esp)2 (2 or
5 mol %). The solution was stirred at 45 !C for 20 h and then con-
centrated in vacuo. The residue was diluted with THF (4.0 mL) and
cooled to 0 !C prior to the addition of KOBu-t (0.9, 1.2 or 1.5 equiv),
which was stirred at 0 !C for 60 min and then cooled to #78 !C.
Aldehyde (2.0, 5.0 or 10.0 equiv) was added to the solution and
stirred for 15 min at #78 !C and a further 2 h at either 0 !C, rt or
reflux. The solution was quenched with satd aq NH4Cl (10 mL) and
then diluted with DCM (20 mL). The organic layer was separated
and the aqueous extracted with EtOAc (2"20 mL). The organic
extracts were dried over Na2SO4, concentrated in vacuo and puri-
fied by column chromatography affording the a-methylene/alkyli-
dene-g-butyrolactone product 12.

4.3. 3,4,5-Trimethoxyphenethyl 2-(diethoxyphosphoryl)ace-
tate (10c)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (360 mg, 95%); Rf 0.10 (1:1 hexane/ethyl ac-
etate); nmax (thin film)/cm#1 2939w, 2841w, 1733s, 1590s, 1508m,
1459m, 1422m, 1852w, 1238s, 1154w, 1123s, 1047w, 1018s, 967s,
827m, 778m; dH (400 MHz, CDCl3) 1.28e1.31 (6H, m), 2.88 (2H, t, J
7.2), 2.94 (2H, d, J 21.5), 3.79 (3H, s), 3.82 (6H, s), 4.07e4.15 (4H, m),
4.32 (2H, t, J 7.2), 6.41 (2H, s); dC (100 MHz, CDCl3) 16.2 (d, J 6.2),
34.2 (d, J 134.3), 35.2, 56.0, 60.7, 62.6 (d, J 6.3), 65.9, 105.7, 132.9,
136.6, 153.1, 165.7 (d, J 6.0); dP (162 MHz, CDCl3) 20.2; HRMS (ESIþ):
found: 413.1351; C17H27NaO8P (MNaþ) requires 413.1336.

4.4. 2-(Naphthalen-1-yl)ethyl 2-(diethoxyphosphoryl)acetate
(10e)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (1.74 g, 99%); Rf 0.20 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm#1 2982w, 1735s, 1598w, 1510w, 1496w,
1445w, 1395w, 1257s, 1163w, 1113m, 1048w, 1019s, 965s, 838w,
798w, 777s, 731s, 696m; dH (400 MHz, CDCl3) 1.31 (6H, t, J 7.1), 2.97
(2H, d, J 21.6), 3.44 (2H, t, J 7.5), 4.10e4.17 (4H, m), 4.48 (2H, t, J 7.5),
7.36e7.43 (2H, m), 7.47e7.56 (2H, m), 7.75e7.77 (1H, m), 7.85e7.87
(1H, m), 8.07e8.09 (1H, m); dC (100MHz, CDCl3) 16.3 (d, J 6.2), 32.0,
34.3 (d, J 134.2), 62.6 (d, J 6.2), 65.4, 123.4, 125.4, 125.6, 126.2, 127.0,
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127.5, 128.8, 131.9, 133.2, 133.8, 165.8 (d, J 6.1); dP (162 MHz, CDCl3)
20.3; HRMS (ESIþ): found: 373.1171; C18H23NaO5P (MNaþ) requires
373.1175.

4.5. 4-Bromophenethyl 2-(diethoxyphosphoryl)acetate (10f)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (1.80 g, 96%); Rf 0.23 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm"1 2982w, 1735s, 1489m, 1443w, 1393w,
1256s, 1163w, 1114m, 1049w, 1020s, 964s, 804m; dH (400 MHz,
CDCl3) 1.29 (6H, td, J 7.1, 0.5), 2.89 (2H, t, J 6.9), 2.92 (2H, d, J 21.6),
4.06e4.13 (4H, m), 4.30 (2H, t, J 6.9), 7.08 (2H, d, J 8.5), 7.39 (2H, d, J
8.5); dC (100 MHz, CDCl3) 16.2 (d, J 6.2), 34.2 (d, J 134.3), 34.2, 62.6
(d, J 6.2), 65.5, 120.4, 130.6, 131.5, 136.4, 165.6 (d, J 6.1); dP (162 MHz,
CDCl3) 20.1; HRMS (ESIþ): found: 401.0124; C14H20

79BrNaO5P (MNaþ)
requires 401.0124.

4.6. 4-Trifluoromethylphenethyl 2-(diethoxyphosphoryl)ace-
tate (10g)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (963 mg, 100%); Rf 0.19 (1:1 petrol/ethyl ac-
etate); nmax (thin film)/cm"1 2940s, 2890w, 1712s, 1307m, 1251m,
1146w,1099m,1007m, 956w; dH (400MHz, CDCl3) 1.30 (6H, td, J 7.1,
0.5), 2.94 (2H, d, J 21.6), 3.02 (2H, t, J 6.8), 4.11 (4H, dq, J 8.8, 7.1), 4.37
(2H, t, J 6.8), 7.35 (2H, d, J 8.0), 8.17 (2H, d, J 8.0); dC (100MHz, CDCl3)
16.3 (d, J 6.2), 34.3 (d, J 134.4), 34.7, 62.7 (d, J 6.2), 65.3, 125.4 (q, J
3.7), 126.9 (q, J 271.1), 129.2, 129.7 (q, J 32.5), 141.7, 165.7 (d, J 6.1); dF
(376 MHz, CDCl3) "62.4; dP (162 MHz, CDCl3) 20.1; HRMS (ESIþ):
found: 391.0878; C15H20F3NaO5P (MNaþ) requires 391.0893.

4.7. 4-Nitrophenethyl 2-(diethoxyphosphoryl)acetate (10h)

Synthesised using general procedure A affording the title com-
pound as an orange oil (4.72 g, 91%); Rf 0.12 (1:1 petrol/ethyl ace-
tate); nmax (thin film)/cm"1 2936s, 1712s, 1577m, 1495s, 1371m,
1325m, 1249m, 1145w, 1095m, 1009m, 955w, 842w; dH (400 MHz,
CDCl3) 1.31 (6H, t, J 7.1), 2.94 (2H, d, J 21.6), 3.08 (2H, t, J 6.7), 4.13
(4H, dq, J 8.3, 7.1), 4.39 (2H, t, J 6.7), 7.41 (2H, d, J 8.8), 8.17 (2H, d, J
8.8); dC (100 MHz, CDCl3) 16.3 (d, J 6.2), 34.3 (d, J 134.6), 34.7, 62.7
(d, J 6.2), 64.9, 123.7, 129.8,145.3, 146.9, 165.6 (d, J 6.0); dP (162MHz,
CDCl3) 20.0; HRMS (ESIþ): found: 368.0875; C14H20NNaO7P (MNaþ)
requires 368.0870 ("1.3 ppm error).

4.8. 4-(Dimethylamino)phenethyl 2-(diethoxyphosphoryl)ac-
etate (10i)

Synthesised using general procedure A affording the title com-
pound as an orange oil (1.77 g, 100%); Rf 0.44 (1:2 petrol/ethyl ac-
etate); nmax (thin film)/cm"1 2988w, 1733s, 1522s, 1258s, 1114w,
1019s; dH (400MHz, CDCl3) 1.32 (6H, td, J 7.1, J 0.5), 2.86 (2H, t, J 7.3),
2.91 (6H, s), 2.96 (2H, d, J 21.5), 4.14 (4H, dq, J 8.2, 7.1), 4.29 (2H, t, J
7.3), 6.69 (2H, d, J 8.7), 7.10 (2H, d, J 8.7); dC (100MHz, CDCl3) 16.3 (d,
J 6.4), 33.9, 34.3 (d, J 134.2), 40.7, 62.6 (d, J 6.2), 66.5, 112.8, 125.1,
129.5, 149.5, 165.8 (d, J 6.1); dP (162 MHz, CDCl3) 20.4; HRMS (ESIþ):
found: 366.1444; C16H26NNaO5P (MNaþ) requires 366.1441.

4.9. 2-(Pyridin-3-yl)ethyl 2-(diethoxyphosphoryl)acetate (10j)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (4.49 g, 92%); Rf 0.44 (10:1 DCM/MeOH); nmax
(thin film)/cm"1 2938s, 2887w,1711s, 1468m,1249s, 1100w,1034w,
1010m, 957w; dH (400 MHz, CDCl3) 1.31 (6H, td, J 7.1, 0.5), 2.95 (2H,
d, J 21.6), 2.97 (2H, t, J 6.8), 4.13 (4H, dq, J 8.3, 7.1), 4.36 (2H, t, J 6.8),
7.25 (1H, ddd, J 7.8, 4.8, 0.8), 7.60 (1H, ddd, J 7.8, 2.3, 1.7), 8.48e8.51

(2H, m); dC (100 MHz, CDCl3) 16.3 (d, J 6.1), 32.1, 34.3 (d, J 134.3),
62.7 (d, J 6.5), 65.2, 123.5, 133.1, 136.5, 148.0, 150.1, 165.7 (d, J 6.1); dP
(162 MHz, CDCl3) 20.0; HRMS (ESIþ): found: 324.0976;
C13H20NNaO5P (MNaþ) requires 324.0971.

4.10. 2-(Thiophen-3-yl)ethyl 2-(diethoxyphosphoryl)acetate
(10k)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (2.41 g, 99%); Rf 0.33 (1:1 petrol/ethyl acetate);
nmax (thin film)/cm"1 2983w, 1734s, 1393w, 1258s, 1115w, 1049w,
1020s, 968s; dH (400 MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.5), 2.97 (2H, d,
J 21.6), 3.00 (2H, t, J 6.9), 4.14 (4H, dq, J 8.3, 7.1), 4.35 (2H, td, J 6.9,
0.5), 6.98 (1H, dd, J 4.9,1.3), 7.06 (1H, ddt, J 3.0,1.3, 0.9), 7.27 (1H, dd,
J 4.9, 3.0); dC (100 MHz, CDCl3) 16.3 (d, J 6.4), 29.4, 34.3 (d, J 134.4),
62.7 (d, J 6.5), 65.4, 121.7, 125.6, 128.2, 137.6, 165.8 (d, J 6.2); dP
(162 MHz, CDCl3) 20.2; HRMS (ESIþ): found: 329.0582;
C12H19NaO5PS (MNaþ) requires 329.0583.

4.11. 3-Methylbutyl 2-(diethoxyphosphoryl)acetate (10s)

Synthesised using general procedure A affording the title com-
pound as an orange oil (2.67 g, 100%); Rf 0.28 (1:1 hexane/ethyl
acetate); nmax (thin film)/cm"1 2960w, 1735s, 1466w, 1392w, 1261s,
1116m, 1021s, 969m; dH (400 MHz, CDCl3) 0.90 (6H, d, J 6.6), 1.33
(6H, td, J 7.1, 0.4), 1.52 (2H, app. q, J 6.9), 1.63e1.76 (1H, m), 2.94 (2H,
d, J 21.6), 4.12e4.19 (6H, m); dC (100MHz, CDCl3) 16.3 (d, J 6.2), 22.3,
24.8, 34.3 (d, J 134.2), 37.1, 62.6 (d, J 6.2), 64.2, 165.9 (d, J 6.2); dP
(162 MHz, CDCl3) 20.5; HRMS (ESIþ): found: 289.1356;
C11H23NaO5P (MNaþ) requires 289.1175.

4.12. 3,3-Dimethylbutyl 2-(diethoxyphosphoryl)acetate (10t)

Synthesised using general procedure A affording the title com-
pound as an orange oil (2.70 g, 97%); Rf 0.41 (1:2 hexane/ethyl ac-
etate); nmax (thin film)/cm"1 2958w, 2870w, 1736s, 1478w, 1396w,
1261s, 1116m, 1023s, 971m; dH (400 MHz, CDCl3) 0.92 (9H, s), 1.33
(6H, td, J 7.1, 0.5), 1.57 (2H, t, J 7.7), 2.94 (2H, d, J 21.6), 4.12e4.19 (6H,
m); dC (100 MHz, CDCl3) 16.3 (d, J 6.3), 29.5, 29.6, 34.3 (d, J 134.3),
41.5, 62.6 (d, J 6.3), 63.4, 165.9 (d, J 6.0); dP (162 MHz, CDCl3) 20.5;
HRMS (ESIþ): found: 303.1323; C12H25NaO5P (MNaþ) requires
303.1332.

4.13. 3-((tert-Butyldimethylsilyl)oxy)propyl 2-(diethox-
yphosphoryl)acetate (10u)

To a solution of NaH (480 mg, 12.0 mmol, 60% dispersion in
mineral oil) in THF (20 mL) cooled to 0 #C was added 1,3-
propanediol (0.80 mL, 11.0 mmol) dropwise over 5 min. The solu-
tion was allowed to warm to rt and stirred for 30 min after which
TBSCl (1.51 g, 10.0 mmol) was added then stirred at rt for 1 h. The
solution was diluted with water (25 mL), extracted with ether
(2$25 mL), washed with brine (25 mL), dried over MgSO4 and
concentrated in vacuo. The crude alcohol (1.96 g) was then treated
under the conditions of general procedure A affording the title
compound as a yellow oil (3.32 g, 90% over two steps); Rf 0.22 (1:1
hexane/ethyl acetate); nmax (thin film)/cm"1 2956w, 2930m,
2857w, 1738s, 1473w, 1392w, 1258s, 1100m, 1054w, 1025s, 970m,
836s, 777m; dH (400 MHz, CDCl3) 0.04 (6H, s), 0.88 (9H, s), 1.34 (6H,
t, J 7.1), 1.85 (2H, tt, J 6.5, 6.0), 2.96 (2H, d, J 21.6), 3.69 (2H, t, J 6.0),
4.13e4.20 (4H, m), 4.24 (2H, t, J 6.5); dC (100 MHz, CDCl3) "5.4, 16.3
(d, J 6.2), 18.2, 25.8, 31.7, 34.3 (d, J 134.3), 59.2, 62.6 (d, J 6.3), 62.6,
165.8 (d, J 6.1); dP (162 MHz, CDCl3) 20.4; HRMS (ESIþ): found:
391.1691; C15H33NaO6PSi (MNaþ) requires 391.1676.
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4.14. 4-((tert-Butyldimethylsilyl)oxy)butyl 2-(diethox-
yphosphoryl)acetate (10v)

To a solution of NaH (240 mg, 6.00 mmol, 60% dispersion in
mineral oil) in THF (10 mL) cooled to 0 !C was added 1,4-butanediol
(0.44 mL, 5.50 mmol) dropwise over 5 min. The solution was
allowed to warm to rt and stirred for 30 min after which TBSCl
(754 mg, 5.00 mmol) was added then stirred at rt for 1 h. The so-
lution was diluted with water (25 mL), extracted with ether
(2"25 mL), washed with brine (25 mL), dried over MgSO4 and
concentrated in vacuo. The crude alcohol (1.20 g) was then treated
under the conditions of general procedure A affording the title
compound as a yellow oil (1.76 g, 92% over two steps); Rf 0.43 (1:1
hexane/ethyl acetate); nmax (thin film)/cm#1 2955w, 2929w, 2857w,
1737s, 1472w, 1391w, 1255s, 1164w, 1097s, 1052w, 1023s, 968s,
892w, 834s, 774s; dH (400MHz, CDCl3) 0.01 (6H, s), 0.85 (9H, s), 1.31
(6H, td, J 7.1, 0.5), 1.51e1.58 (2H, m), 1.65e1.72 (2H, m), 2.93 (2H, d, J
21.6), 3.60 (2H, t, J 6.2), 4.10e4.17 (6H, m); dC (100MHz, CDCl3)#5.4,
16.3 (d, J 6.2), 18.2, 25.1, 25.8, 28.9, 34.2 (d, J 134.2), 62.4, 62.6 (d, J
6.4), 65.5, 165.8 (d, J 6.2); dP (162 MHz, CDCl3) 20.4; HRMS (ESIþ):
found: 405.1833; C16H35NaO6PSi (MNaþ) requires 405.1833.

4.15. But-3-en-1-yl 2-(diethoxyphosphoryl)acetate (10w)

Synthesised using general procedure A affording the title com-
pound as a pale yellow oil (1.24 g, 99%); Rf 0.20 (1:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2983w,1735s,1643w,1445w,1393w,
1257s, 1163w, 1115m, 1049w, 1019s, 964s, 839w, 782w, 733w; dH
(400 MHz, CDCl3) 1.33 (6H, td, J 7.1, 0.4), 2.40 (2H, app. qt, J 6.8, 1.4),
2.96 (2H, d, J 21.6), 4.12e4.20 (6H, m), 5.05e5.14 (2H, m), 5.78 (1H,
ddt, J 17.1, 10.3, 6.8); dC (100MHz, CDCl3) 16.3 (d, J 6.2), 32.8, 34.2 (d,
J 134.3), 62.6 (d, J 6.3), 64.6, 117.4, 133.6, 165.8 (d, J 6.1); dP (162MHz,
CDCl3) 20.3; HRMS (ESIþ): found: 273.0868; C10H19NaO5P (MNaþ)
requires 273.0862.

4.16. Cyclopentyl 2-(diethoxyphosphoryl)acetate (10x)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (1.12 g, 85%); Rf 0.24 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm#1 2974m, 2874w, 1730s, 1443w, 1393w,
1368w, 1259s, 1165m, 1114m, 1050w, 1019s, 966s, 839m, 780m; dH
(400MHz, CDCl3) 1.34 (6H, td, J 7.1, 0.4),1.54e1.90 (8H, m), 2.92 (2H,
d, J 21.6), 4.16 (4H, dq, J 8.1, 7.1), 5.20 (1H, tt, J 5.6, 2.7); dC (100 MHz,
CDCl3) 16.2 (d, J 6.2), 23.6, 32.4, 34.5 (d, J 133.5), 62.5 (d, J 6.2), 78.4,
165.5 (d, J 6.2); dP (162 MHz, CDCl3) 20.7; HRMS (ESIþ): found:
287.1020; C11H21NaO5P (MNaþ) requires 287.1019.

4.17. Cyclohexyl 2-(diethoxyphosphoryl)acetate (10y)

Synthesised using general procedure A affording the title com-
pound as a dark orange oil (4.43 g, 100%); Rf 0.33 (1:1 petrol/ethyl
acetate); nmax (thin film)/cm#1 2985w, 2937s, 2862m, 1729s, 1258s,
1114w, 1016s, 964s; dH (400 MHz, CDCl3) 1.16e1.52 (6H, m), 1.30
(6H, td, J 7.1, 0.5), 1.65e1.73 (2H, m), 1.77e1.84 (2H, m), 2.90 (2H, d, J
21.6), 4.12 (4H, dq, J 8.4, 7.1), 4.76 (1H, tt, J 8.7, 4.2); dC (100 MHz,
CDCl3) 16.2 (d, J 6.2), 23.5, 25.2, 31.3, 34.5 (d, J 133.4), 62.4 (d, J 6.3),
73.9, 165.1 (d, J 6.4); dP (162 MHz, CDCl3) 20.6; HRMS (ESIþ): found:
301.1162; C12H23NaO5P (MNaþ) requires 301.1175.

4.18. Adamantan-1-yl 2-(diethoxyphosphoryl)acetate (10z)

Synthesised using general procedure A affording the title com-
pound as a colourless oil (1.53 g, 93%); Rf 0.30 (1:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2981w, 2910s, 2853w, 1728s, 1584w,
1457w, 1393w, 1369w, 1355w, 1321w, 1259s, 1164w, 1103m, 1049w,

1020s, 967s, 890m, 836w, 814w; dH (400 MHz, CDCl3) 1.32 (6H, td, J
7.1, 0.5), 1.57e1.69 (6H, m), 2.09e2.14 (9H, m), 2.85 (2H, d, J 21.4),
4.10e4.18 (4H, m); dC (100 MHz, CDCl3) 16.3 (d, J 6.2), 30.7, 35.7 (d, J
132.8), 36.0, 41.1, 62.4 (d, J 6.2), 82.0, 164.5 (d, J 6.3); dP (162 MHz,
CDCl3) 21.2; HRMS (ESIþ): found: 353.1489; C16H27NaO5P (MNaþ)
requires 353.1488.

4.19. Cycloheptyl 2-(diethoxyphosphoryl)acetate (10aa)

Synthesised using general procedure A affording the title com-
pound as a colourless oil (1.45 g, 99%); Rf 0.31 (1:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2982w, 2929m, 2861w, 1728s,
1446w, 1394w, 1266s, 1113m, 1051w, 1021s, 969s; dH (400 MHz,
CDCl3) 1.32 (6H, td, J 7.1, 0.5), 1.35e1.69 (10H, m), 1.85e1.92 (2H, m),
2.91 (2H, d, J 21.5), 4.10e4.18 (4H, m), 4.95 (1H, tt, J 8.3, 4.3); dC
(100 MHz, CDCl3) 16.3 (d, J 6.5), 22.7, 28.2, 33.5, 34.6 (d, J 133.5),
62.5 (d, J 6.2), 76.5, 165.1 (d, J 6.2); dP (162 MHz, CDCl3) 20.7; HRMS
(ESIþ): found: 293.1502; C13H26O5P (MHþ) requires 293.1512.

4.20. 2-Methylpropyl 2-(diethoxyphosphoryl)acetate
(10ab)15a

Synthesised using general procedure A affording the title com-
pound as a yellow oil (2.02 g, 100%); Rf 0.24 (1:1 petrol/ethyl ace-
tate); nmax (thin film)/cm#1 2965m, 1735s, 1394w, 1265s, 1117w,
1052w, 1024s; dH (400 MHz, CDCl3) 0.94 (6H, d, J 6.7), 1.32 (6H, t, J
7.1), 1.95 (1H, app. nonet, J 6.7), 2.97 (2H, d, J 21.6), 3.92 (2H, d, J 6.7),
4.17 (4H, dq, J 8.3, 7.1); dC (100 MHz, CDCl3) 16.3 (d, J 6.5), 19.0, 27.6,
34.3 (d, J 134.0), 62.6 (d, J 6.2), 71.6, 165.9 (d, J 6.4); dP (162 MHz,
CDCl3) 20.5; HRMS (ESIþ): found: 275.1018; C10H21NaO5P (MNaþ)
requires 275.1019.

4.21. Cyclopropylmethyl 2-(diethoxyphosphoryl)acetate
(10ac)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (1.23 g, 98%); Rf 0.23 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm#1 2984w, 1731s, 1446w, 1394w, 1369w,
1346w, 1257s, 1164w, 1115m, 1049w, 1018s, 966s, 943w, 889w,
839m; dH (400 MHz, CDCl3) 0.27e0.31 (2H, m), 0.55e0.59 (2H, m),
1.09e1.20 (1H, m), 1.34 (6H, t, J 7.1), 2.98 (2H, d, J 21.5), 3.97 (2H, d, J
7.3), 4.14e4.21 (4H, m); dC (100 MHz, CDCl3) 3.3, 9.6, 16.3 (d, J 6.4),
34.4 (d, J 134.2), 62.7 (d, J 6.3), 70.3, 165.9 (d, J 6.1); dP (162 MHz,
CDCl3) 20.4; HRMS (ESIþ): found: 273.0862; C10H19NaO5P (MNaþ)
requires 273.0862.

4.22. Cyclobutylmethyl 2-(diethoxyphosphoryl)acetate (10ad)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (1.31 g, 99%); Rf 0.22 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm#1 2980w, 2941w, 1733s, 1445w, 1393w,
1334w, 1259s, 1163w, 1115m, 1049w, 1019s, 964s, 838m, 783m,
609m; dH (400 MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.5), 1.71e1.96 (4H,
m), 2.00e2.08 (2H, m), 2.61 (1H, app. heptet, J 7.4), 2.95 (2H, d, J
21.6), 4.08e4.19 (6H, m); dC (100 MHz, CDCl3) 16.3 (d, J 6.2), 18.3,
24.6, 33.9, 34.3 (d, J 133.8), 62.6 (d, J 6.2), 69.2, 165.9 (d, J 6.2); dP
(162 MHz, CDCl3) 20.4; HRMS (ESIþ): found: 287.1033;
C11H21NaO5P (MNaþ) requires 287.1019.

4.23. Cyclohexylmethyl 2-(diethoxyphosphoryl)acetate (10af)

Synthesised using general procedure A affording the title com-
pound as a yellow oil (1.44 g, 99%); Rf 0.53 (ethyl acetate); nmax (thin
film)/cm#1 2927s, 2854m,1737s,1269s,1053w,1026s; dH (400MHz,
CDCl3) 0.86e0.96 (2H, m), 1.04e1.24 (3H, m), 1.28 (6H, t, J 7.1),
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1.54e1.70 (6H, m), 2.91 (2H, d, J 21.6), 3.89 (2H, d, J 6.6), 4.07e4.14
(4H, m); dC (100 MHz, CDCl3) 16.2 (d, J 6.2), 25.5, 26.1, 29.3, 34.1 (d, J
134.2), 36.8, 62.5 (d, J 6.2), 70.5, 165.7 (d, J 6.2); dP (162 MHz, CDCl3)
20.5; HRMS (ESIþ): found: 315.1338; C13H25NaO5P (MNaþ) requires
315.1332.

4.24. 3,4,5-Trimethoxyphenethyl 2-diazo-2-(diethox-
yphosphoryl)acetate (11c)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (202 mg, 54%); Rf 0.21 (1:1 hexane/ethyl ac-
etate); nmax (thin film)/cm"1 2983w, 2940w, 2841w, 2125s, 1704s,
1590s, 1508m, 1459s, 1422m, 1389m, 1352w, 1274s, 1238s, 1155w,
1124s, 1012s, 977s, 815m, 745m, 589m, 559m; dH (400 MHz, CDCl3)
1.29 (6H, td, J 7.1, 0.7), 2.87 (2H, t, J 6.9), 3.77 (3H, s), 3.80 (6H, s),
4.02e4.19 (4H, m), 4.36 (2H, t, J 6.9), 6.38 (2H, s); dC (100 MHz,
CDCl3) 16.0 (d, J 6.9), 35.4, 53.5 (d, J 227.1), 55.9, 60.6, 63.5 (d, J 5.6),
65.9, 105.6, 132.8, 136.6, 153.1, 163.1 (d, J 12.5); dP (162 MHz, CDCl3)
10.4; HRMS (ESIþ): found: 439.1234; C17H25N2NaO8P (MNaþ) re-
quires 439.1241.

4.25. 2-(Naphthalen-1-yl)ethyl 2-diazo-2-(diethox-
yphosphoryl)acetate (11e)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (859 mg, 47%); nmax (thin film)/cm"1 2984w,
2127s, 1708s, 1597w, 1511w, 1445w, 1388w, 1279s, 1215s, 1164w,
1095w, 1020s, 978m, 799m, 778m, 745w; dH (400 MHz, CDCl3) 1.32
(6H, td, J 7.1, 0.8), 3.45 (2H, t, J 7.2), 4.04e4.22 (4H, m), 4.55 (2H, t, J
7.2), 7.35e7.43 (2H, m), 7.47e7.57 (2H, m), 7.76e7.78 (1H, m),
7.85e7.88 (1H, m), 8.06e8.08 (1H, m); dC (100MHz, CDCl3) 16.1 (d, J
6.9), 32.2, 53.5 (d, J 226.9), 63.6 (d, J 5.9), 65.5, 123.4, 125.4, 125.7,
126.3, 127.1, 127.6, 128.8, 131.9, 133.1, 133.8, 163.2 (d, J 12.2); dP
(162 MHz, CDCl3) 10.5; HRMS (ESIþ): found: 399.1075;
C18H21N2NaO5P (MNaþ) requires 399.1080.

4.26. 4-Bromophenethyl 2-diazo-2-(diethoxyphosphoryl)ace-
tate (11f)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (969 mg, 51%); Rf 0.48 (1:1 hexane/ethyl ac-
etate); nmax (thin film)/cm"1 2983w, 2129s, 1708s, 1489w, 1384w,
1279s, 1216w, 1164w, 1094w, 1022s, 979m, 815w, 596w, 560w; dH
(400MHz, CDCl3) 1.30 (6H, td, J 7.1, 0.8), 2.90 (2H, t, J 6.7), 4.02e4.19
(4H, m), 4.36 (2H, t, J 6.7), 7.07 (2H, d, J 8.5), 7.40 (2H, d, J 8.5); dC
(100 MHz, CDCl3) 16.0 (d, J 6.8), 34.5, 53.8 (d, J 228.5), 63.5 (d, J 5.8),
65.4, 120.5, 130.6, 131.5, 136.2, 163.1 (d, J 12.3); dP (162 MHz, CDCl3)
10.4; HRMS (ESIþ): found: 427.0038; C14H18

79BrN2NaO5P (MNaþ)
requires 427.0029.

4.27. 4-Trifluoromethylphenethyl 2-diazo-2-(diethox-
yphosphoryl)acetate (11g)

Synthesised using general procedure B affording the title com-
pound as a pale yellow oil (386 mg, 36%); Rf 0.44 (1:1 petrol/ethyl
acetate); nmax (thin film)/cm"1 2941s, 2099s, 1686s, 1308m, 1262m,
1147w,1106w,1051w,1006w; dH (400MHz, CDCl3) 1.31 (6H, td, J 7.1,
0.8), 3.03 (2H, t, J 6.7), 4.03e4.21 (4H, m), 4.43 (2H, t, J 6.7), 7.34 (2H,
d, J 8.0), 7.56 (2H, d, J 8.0); dC (100 MHz, CDCl3) 16.1 (d, J 6.8), 34.9,
53.9 (d, J 228.8), 63.6 (d, J 5.6), 65.3, 125.4 (q, J 3.8), 124.1 (q, J 271.9),
129.1 (q, J 32.3), 129.3, 141.5, 163.3 (d, J 11.6); dF (376 MHz, CDCl3)
"62.4; dP (162 MHz, CDCl3) 10.4; HRMS (ESIþ): found: 417.0779;
C15H18F3N2NaO5P (MNaþ) requires 417.0798.

4.28. 4-Nitrophenethyl 2-diazo-2-(diethoxyphosphoryl)ace-
tate (11h)

Synthesised using general procedure B affording the title com-
pound as a colourless oil (111 mg, 49%); Rf 0.53 (1:2 petrol/ethyl
acetate); nmax (thin film)/cm"1 2099s, 1681s, 1497s, 1326s, 1261s,
1006m; dH (400 MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.8), 3.09 (2H, t, J
6.6), 4.05e4.23 (4H, m), 4.45 (2H, t, J 6.6), 7.40 (2H, d, J 8.8), 8.18 (2H,
d, J 8.8); dC (100 MHz, CDCl3) 16.1 (d, J 6.8), 34.9, 53.8 (d, J 228.4),
63.6 (d, J 5.7), 64.9, 123.7, 129.8, 145.1, 146.9, 163.2 (d, J 12.2); dP
(162 MHz, CDCl3) 10.3; HRMS (ESIþ): found: 394.0762;
C14H18N3NaO7P (MNaþ) requires 394.9775.

4.29. 4-(Dimethylamino)phenethyl 2-diazo-2-(diethox-
yphosphoryl)acetate (11i)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (327 mg, 30%); Rf 0.48 (1:1 petrol/ethyl ace-
tate); nmax (thin film)/cm"1 2985w, 2128s, 1704s, 1616w, 1523m,
1277s,1020s; dH (400MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.6), 2.85 (2H, t,
J 7.0), 2.90 (6H, s), 4.04e4.21 (4H, m), 4.33 (2H, t, J 7.0), 6.67 (2H, d, J
8.7), 7.06 (2H, d, J 8.7); dC (100MHz, CDCl3) 15.9 (d, J 6.9), 34.0, 40.5,
53.4 (d, J 226.5), 63.4 (d, J 5.8), 66.3, 112.6, 124.8, 129.4, 149.3, 163.1
(d, J 12.3); dP (162 MHz, CDCl3) 10.6; HRMS (ESIþ): found: 392.1338;
C16H24N3NaO5P (MNaþ) requires 392.1346.

4.30. 2-(Pyridin-3-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)
acetate (11j)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (497 mg, 23%); Rf 0.44 (7% MeOH in DCM);
nmax (thin film)/cm"1 2939s, 2098s, 1684s, 1262s, 1104w, 1078w,
1008s, 964w; dH (400MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.8), 2.98 (2H, t,
J 6.7), 4.05e4.22 (4H, m), 4.41 (2H, t, J 6.7), 7.24 (1H, ddd, J 7.8, 4.8,
0.7), 7.56 (1H, ddd, J 7.8, 2.3, 1.7), 8.47e8.51 (2H, m); dC (100 MHz,
CDCl3) 15.8 (d, J 6.9), 32.0, 53.5 (d, J 226.1), 63.3 (d, J 5.8), 65.0, 123.1,
132.7, 136.1, 147.9, 149.9, 162.9 (d, J 12.1); dP (162 MHz, CDCl3) 10.4;
HRMS (ESIþ): found: 350.0876; C13H18N3NaO5P (MNaþ) requires
350.0876.

4.31. 2-(Thiophen-3-yl)ethyl 2-diazo-2-(diethoxyphosphoryl)
acetate (11k)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (871 mg, 52%); Rf 0.43 (1:1 petrol/ethyl ace-
tate); nmax (thin film)/cm"1 2989w, 2126s, 1703s, 1274s, 1017s,
977m; dH (400 MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.8), 2.99 (2H, t, J 6.8),
4.05e4.22 (4H, m), 4.39 (2H, t, J 6.8), 6.95 (1H, dd, J 4.9, 1.3), 7.03
(1H, ddt, J 2.9, 1.3, 0.7), 7.25 (1H, dd, J 4.9, 2.9); dC (100 MHz, CDCl3)
16.0 (d, J 6.9), 29.5, 53.8 (d, J 228.2), 63.5 (d, J 5.6), 65.3, 121.7, 125.6,
128.1,137.4,163.3 (d, J 12.2); dP (162MHz, CDCl3) 10.5; HRMS (ESIþ):
found: 355.0488; C12H17N2NaO5PS (MNaþ) requires 355.0488.

4.32. 3-Methylbutyl 2-diazo-2-(diethoxyphosphoryl)acetate
(11s)

Synthesised using general procedure B affording the title com-
pound as a pale yellow oil (1.18 g, 67%); Rf 0.65 (1:1 hexane/ethyl
acetate); nmax (thin film)/cm"1 2960w, 2125s, 1701s, 1389w, 1272s,
1215w, 1164w, 1116w, 1091w, 1016s, 977m; dH (400 MHz, CDCl3)
0.91 (6H, d, J 6.6), 1.35 (6H, td, J 7.1, 0.8), 1.54 (2H, app. q, J 6.8),
1.62e1.75 (1H, m), 4.10e4.26 (4H, m), 4.22 (2H, t, J 6.8); dC
(100 MHz, CDCl3) 16.0 (d, J 6.9), 22.2, 24.8, 37.2, 53.5 (d, J 228.2),
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63.4 (d, J 5.7), 64.1, 163.3 (d, J 12.0); dP (162 MHz, CDCl3) 10.8; HRMS
(ESIþ): found: 315.1084; C11H21N2NaO5P (MNaþ) requires 315.1080.

4.33. 3,3-Dimethylbutyl 2-diazo-2-(diethoxyphosphoryl)ace-
tate (11t)

Synthesised using general procedure B affording the title com-
pound as a pale yellow oil (1.22 g, 66%); Rf 0.49 (1:1 hexane/ethyl
acetate); nmax (thin film)/cm"1 2959m, 2880w, 2125s, 1702s, 1276s,
1216w, 1164w, 1119w, 1095w, 1016s, 976m; dH (400 MHz, CDCl3)
0.89 (9H, s), 1.31 (6H, td, J 7.1, 0.8), 1.54 (2H, t, J 7.4), 4.06e4.22 (4H,
m), 4.21 (2H, t, J 7.4); dC (100 MHz, CDCl3) 16.0 (d, J 6.9), 29.4, 29.6,
41.6, 53.5 (d, J 228.5), 63.3, 63.4 (d, J 5.6), 163.3 (d, J 12.3); dP
(162 MHz, CDCl3) 10.7; HRMS (ESIþ): found: 329.1223;
C12H23N2NaO5P (MNaþ) requires 329.1237.

4.34. 3-((tert-Butyldimethylsilyl)oxy)propyl 2-diazo-2-(dieth-
oxyphosphoryl) acetate (11u)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (1.42 g, 60%); Rf 0.30 (2:1 petrol/ethyl acetate);
nmax (thin film)/cm"1 2964w, 2931w, 2866w, 2128s, 1707s, 1474w,
1395w, 1281s, 1097m, 1024s, 838m, 777w; dH (400 MHz, CDCl3)
"0.05 (6H, s), 0.79 (9H, s), 1.26 (6H, td, J 7.1, 0.8), 1.77 (2H, tt, J 6.4,
6.0), 3.69 (2H, t, J 6.0), 4.02e4.17 (4H, m), 4.24 (2H, t, J 6.4); dC
(100 MHz, CDCl3) "5.7, 15.9 (d, J 6.9), 18.0, 25.6, 31.6, 53.5 (d, J
230.0), 58.8, 62.4, 63.3 (d, J 5.9),163.1 (d, J 11.6); dP (162MHz, CDCl3)
10.6; HRMS (ESIþ): found: 417.1590; C15H31N2NaO6PSi (MNaþ) re-
quires 417.1581.

4.35. 4-((tert-Butyldimethylsilyl)oxy)butyl 2-diazo-2-(dieth-
oxyphosphoryl)acetate (11v)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (1.05 g, 58%); Rf 0.74 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm"1 2954w, 2930w, 2857w, 2126s, 1703s,
1473w, 1389w, 1275s, 1257w, 1164w, 1095s, 1019s, 977s, 892w,
834s, 813w, 774s, 746w, 662w, 589m, 560m; dH (400 MHz, CDCl3)
"0.05 (6H, s), 0.79 (9H, s), 1.26 (6H, td, J 7.1, 0.8), 1.45e1.52 (2H, m),
1.61e1.68 (2H, m), 3.54 (2H, t, J 6.2), 4.02e4.18 (6H, m); dC
(100 MHz, CDCl3) "5.6, 15.9 (d, J 6.9), 18.0, 25.2, 25.7, 28.7, 53.5 (d, J
227.3), 62.2, 63.3 (d, J 6.0), 65.4,163.2 (d, J 11.9); dP (162MHz, CDCl3)
10.6; HRMS (ESIþ): found: 431.1748; C16H33N2NaO6PSi (MNaþ) re-
quires 431.1738.

4.36. But-3-en-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate
(11w)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (790 mg, 60%); Rf 0.43 (1:1 hexane/ethyl ac-
etate); nmax (thin film)/cm"1 2984w, 2126s, 1702s, 1643w, 1445w,
1384w, 1276s, 1164w, 1117w, 1092w, 1019s, 978s, 797m, 746m; dH
(400 MHz, CDCl3) 1.32 (6H, td, J 7.1, 0.8), 2.38 (2H, app. qt, J 6.7, 1.3),
4.07e4.23 (6H, m), 5.03e5.11 (2H, m), 5.74 (1H, ddt, J 17.1, 10.3, 6.7);
dC (100 MHz, CDCl3) 16.0 (d, J 6.9), 33.0, 53.7 (d, J 226.3), 63.5 (d, J
5.9), 64.5, 117.5, 133.4, 163.3 (d, J 12.1); dP (162 MHz, CDCl3) 10.6;
HRMS (ESIþ): found: 299.0768; C10H17N2NaO5P (MNaþ) requires
299.0767.

4.37. Cyclopentyl 2-diazo-2-(diethoxyphosphoryl)acetate
(11x)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (1.00 g, 83%); Rf 0.54 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm"1 2972m, 2875w, 2125s, 1696s, 1478w,
1443w, 1393w, 1321w, 1274s, 1218w, 1165m, 1121m, 1089w, 1018s,

977m, 959m, 796m, 749m; dH (400 MHz, CDCl3) 1.29 (6H, td, J 7.1,
0.8), 1.49e1.86 (8H, m), 4.04e4.19 (4H, m), 5.21 (1H, tt, J 5.6, 2.7); dC
(100 MHz, CDCl3) 16.0 (d, J 7.0), 23.4, 32.6, 53.8 (d, J 227.0), 63.3 (d, J
5.6), 78.6, 163.0 (d, J 11.7); dP (162 MHz, CDCl3) 10.9; HRMS (ESIþ):
found: 313.0930; C11H19N2NaO5P (MNaþ) requires 313.0924.

4.38. Cyclohexyl 2-diazo-2-(diethoxyphosphoryl)acetate (11y)

Synthesised using general procedure B affording the title com-
pound as a pale yellow oil (2.68 g, 88%); Rf 0.50 (1:1 petrol/ethyl
acetate); nmax (thin film)/cm"1 2990w, 2937s, 2864m, 2124s, 1694s,
1279s, 1260s, 1115w, 1013s, 976s; dH (400 MHz, CDCl3) 1.18e1.50
(6H, m), 1.31 (6H, td, J 7.1, 0.8), 1.64e1.71 (2H, m), 1.77e1.82 (2H, m),
4.06e4.22 (4H, m), 4.84 (1H, tt, J 8.4, 4.1); dC (100 MHz, CDCl3) 16.0
(d, J 7.2), 23.2, 25.1, 31.4, 53.8 (d, J 228.0), 63.4 (d, J 5.7), 74.0, 162.8
(d, J 11.8); dP (162 MHz, CDCl3) 10.9; HRMS (ESIþ): found: 327.1082;
C12H21N2NaO5P (MNaþ) requires 327.1010.

4.39. Adamantan-1-yl 2-diazo-2-(diethoxyphosphoryl)acetate
(11z)

Synthesised using general procedure B affording the title com-
pound as a white solid (1.21 g, 74%); Rf 0.63 (1:1 hexane/ethyl ac-
etate); mp 51e54 #C; nmax (thin film)/cm"1 2912s, 2855w, 2125s,
1697s, 1457w,1321m,1269s, 1219w,1164w,1122w,1023s, 966m; dH
(400 MHz, CDCl3) 1.30 (6H, td, J 7.1, 0.8), 1.60e1.61 (6H, m),
2.07e2.15 (9H, m), 4.05e4.20 (4H, m); dC (100MHz, CDCl3) 16.0 (d, J
6.8), 30.7, 35.9, 41.4, 53.9 (d, J 228.4), 63.3 (d, J 5.6), 82.9, 162.0 (d, J
12.0); dP (162 MHz, CDCl3) 11.3; HRMS (ESIþ): found: 379.1384;
C16H25N2NaO5P (MNaþ) requires 379.1393.

4.40. Cycloheptyl 2-diazo-2-(diethoxyphosphoryl)acetate
(11aa)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (1.35 g, 89%); Rf 0.52 (1:1 hexane/ethyl ace-
tate); nmax (thin film)/cm"1 2987w, 2930m, 2861w, 2125s, 1694s,
1446w, 1369w, 1322w, 1270s, 1215w, 1164w, 1120m, 1015s, 961s,
885w, 974m, 746s, 590s, 555s; dH (400 MHz, CDCl3) 1.26 (6H, td, J
7.1, 0.8), 1.31e1.66 (10H, m), 1.77e1.85 (2H, m), 4.01e4.17 (4H, m),
4.96 (1H, tt, J 8.1, 4.2); dC (100 MHz, CDCl3) 15.8 (d, J 7.0), 22.4, 27.9,
33.5, 53.7 (d, J 227.0), 63.2 (d, J 6.0), 76.5, 162.7 (d, J 11.9); dP
(162 MHz, CDCl3) 10.9; HRMS (ESIþ): found: 341.1226;
C13H23N2NaO5P (MNaþ) requires 341.1237.

4.41. 2-Methylpropyl 2-diazo-2-(diethoxyphosphoryl)acetate
(11ab)15a

Synthesised using general procedure B affording the title com-
pound as a pale yellow oil (1.62 g, 73%); Rf 0.50 (1:1 petrol/ethyl
acetate); nmax (thin film)/cm"1 2966m, 2127s, 1702s, 1276s, 1115w,
1019s, 978m; dH (400 MHz, CDCl3) 0.89 (6H, d, J 6.7), 1.31 (6H, td, J
7.1, 0.8), 1.91 (1H, app. nonet, J 6.7), 3.93 (2H, d, J 6.6), 4.06e4.22
(4H, m); dC (100 MHz, CDCl3) 16.0 (d, J 6.9), 18.7, 27.7, 53.7 (d, J
227.9), 63.4 (d, J 5.7), 71.5, 163.4 (d, J 11.9); dP (162MHz, CDCl3) 10.8;
HRMS (ESIþ): found: 301.0913; C10H19N2NaO5P (MNaþ) requires
301.0924.

4.42. Cyclopropylmethyl 2-diazo-2-(diethoxyphosphoryl)ace-
tate (11ac)

Synthesised using general procedure B affording the title com-
pound as a yellow oil (850 mg, 64%); Rf 0.43 (1:1 hexane/ethyl ac-
etate); nmax (thin film)/cm"1 2986w, 2908w, 2125s, 1700s, 1446w,
1394w, 1348m, 1275s, 1216w, 1164w, 1115w, 1082w, 1018s, 977w,
958s, 796m, 746m, 590m, 560m; dH (400 MHz, CDCl3) 0.25e0.29
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(2H, m), 0.52e0.57 (2H, m), 1.07e1.17 (1H, m), 1.33 (6H, t, J 7.1), 4.01
(2H, d, J 7.3), 4.10e4.25 (4H, m); dC (100MHz, CDCl3) 3.2, 9.8,16.1 (d,
J 6.9), 53.9 (d, J 226.8), 63.6 (d, J 5.6), 70.3, 163.5 (d, J 12.2); dP
(162 MHz, CDCl3) 10.6; HRMS (ESIþ): found: 299.0771;
C10H17N2NaO5P (MNaþ) requires 299.0767.

4.43. Cyclobutylmethyl 2-diazo-2-(diethoxyphosphoryl)ace-
tate (11ad)

Synthesised using general procedure B affording the title com-
pound as a brown oil (949 mg, 68%); Rf 0.50 (1:1 hexane/ethyl ac-
etate); nmax (thin film)/cm"1 2981w, 2942w, 2869w, 2125s, 1700s,
1445w, 1391w, 1335w, 1276s, 1216w, 1164w, 1117w, 1095w, 1019w,
977m, 797m, 747m, 590m, 560m; dH (400 MHz, CDCl3) 1.34 (6H, td,
J 7.1, 0.8), 1.72e1.97 (4H, m), 1.99e2.08 (2H, m), 2.57e2.68 (1H, m),
4.09e4.25 (6H, m); dC (100 MHz, CDCl3) 16.1 (d, J 7.0), 18.3, 24.5,
34.0, 53.8 (d, J 228.6), 63.5 (d, J 5.9), 69.2, 163.6 (d, J 12.0); dP
(162 MHz, CDCl3) 10.8; HRMS (ESIþ): found: 313.0917;
C11H19N2NaO5P (MNaþ) requires 313.0924.

4.44. Cyclohexylmethyl 2-diazo-2-(diethoxyphosphoryl)ace-
tate (11af)

Synthesised using general procedure B with NaH (1.2 equiv, 60%
dispersion in mineral oil) in place of LHMDS affording the title
compound as a yellow oil (410 mg, 68%); Rf 0.85 (ethyl acetate); nmax
(thin film)/cm"1 2930s, 2131s, 1705s, 1280s, 1024s; dH (400 MHz,
CDCl3) 0.93e1.04 (2H, m), 1.11e1.30 (3H, m), 1.36 (6H, td, J 7.1, 0.8),
1.55e1.77 (6H, m), 4.01 (2H, d, J 6.5), 4.11e4.27 (4H, m); dC
(100MHz, CDCl3) 16.0 (d, J 7.1), 25.5, 26.2, 29.3, 37.1, 53.7 (d, J 227.4),
63.5 (d, J 5.6), 70.6, 163.5 (d, J 12.0); dP (162MHz, CDCl3) 10.9; HRMS
(ESIþ): found: 341.1228; C13H23N2NaO5P (MNaþ) requires 341.1237.

4.45. (SR)-3-Methylene-4-(3,4,5-trimethoxyphenyl)dihy-
drofuran-2(3H)-one (12c)

Synthesised using general procedure D with 3,4,5-
trimethoxyphenethyl 2-diazo-2-(diethoxyphosphoryl)acetate 11c
(77 mg, 0.185 mmol), DCM (3.7 mL), Rh2(oct)4 (2.9 mg, 3.7 mmol),
THF (3.7 mL), KOBu-t (31.1 mg, 0.278 mmol) and paraformaldehyde
(11.1 mg, 0.370 mmol). The HWE was performed at rt. Purification
by column chromatography (2:1 hexane/ethyl acetate) afforded the
title compound as a colourless oil (22 mg, 45%); Rf 0.26 (2:1 hexane/
ethyl acetate); nmax (thin film)/cm"1 2937w, 1763s, 1660w, 1591m,
1509m, 1461m, 1425m, 1347w, 1242m, 1124s, 1013m; dH (400 MHz,
CDCl3) 3.83 (3H, s), 3.84 (6H, s), 4.17e4.24 (2H, m), 4.68e4.75 (1H,
m), 5.56 (1H, d, J 2.6), 6.40e6.41 (3H, m); dC (100 MHz, CDCl3) 45.9,
56.2, 60.8, 72.7, 104.7, 124.3, 135.2, 137.4, 138.5, 153.7, 170.1; HRMS
(ESIþ): found: 287.0892; C14H16NaO5 (MNaþ) requires 287.0890.

4.46. (SR)-3-Methylene-4-(naphthalen-1-yl)dihydrofuran-
2(3H)-one (12e)

Synthesised using general procedure D with 2-(naphthalen-1-
yl)ethyl 2-diazo-2-(diethoxyphosphoryl)acetate 11e (82 mg,
0.218 mmol), DCM (4.4 mL), Rh2(oct)4 (3.4 mg, 4.4 mmol), THF
(4.4 mL), KOBu-t (36.7 mg, 0.327 mmol) and paraformaldehyde
(13.1 mg, 0.436 mmol). The HWE was performed at rt. Purification
by column chromatography (4:1 hexane/ethyl acetate) afforded the
title compound as a colourless oil (28 mg, 57%); Rf 0.45 (4:1 hexane/
ethyl acetate); nmax (thin film)/cm"1 3050w, 2918w, 1759s, 1662w,
1598w, 1511w, 1398m, 1261w, 1230w, 1111s, 1022m, 948w, 802m,
780s; dH (400 MHz, CDCl3) 4.36 (1H, dd, J 9.0, 6.3), 4.89 (1H, app. t, J
9.0), 5.03e5.08 (1H, m), 5.60 (1H, d, J 2.7), 6.51 (1H, d, J 3.0),
7.38e7.40 (1H, m), 7.47 (1H, app. t, J 7.7), 7.53e7.60 (2H, m),
7.81e7.88 (2H, m), 7.91e7.95 (1H, m); dC (100 MHz, CDCl3) 41.6,

72.0, 124.5, 122.6, 125.0, 125.5, 126.1, 126.7, 128.5, 129.3, 131.0, 134.2,
135.6, 137.6, 170.4; HRMS (ESIþ): found: 247.0728; C15H12NaO2
(MNaþ) requires 247.0730.

4.47. (SR)-4-(4-Bromophenyl)-3-methylenedihydrofuran-
2(3H)-one (12f)

Synthesised using general procedure D with 4-bromophenethyl
2-diazo-2-(diethoxyphosphoryl)acetate 11f (90 mg, 0.222 mmol),
DCM (4.4 mL), Rh2(oct)4 (3.5 mg, 4.4 mmol), THF (4.4 mL), KOBu-t
(37.4 mg, 0.333 mmol) and paraformaldehyde (13.3 mg,
0.444 mmol). The HWEwas performed at rt. Purification by column
chromatography (8:1 hexane/ethyl acetate) afforded the title com-
pound as a pale yellow oil (31 mg, 55%); Rf 0.40 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm"1 2972w, 2913w,1761s,1666w,1590w,
1489m, 1412m, 1274w, 1231m, 1107s, 1010s, 947w, 825s; dH
(400 MHz, CDCl3) 4.17e4.27 (2H, m), 4.71 (1H, app. t, J 8.4), 5.48
(1H, d, J 2.7), 6.39 (1H, d, J 3.0), 7.11 (2H, d, J 8.5), 7.50 (2H, d, J 8.5); dC
(100 MHz, CDCl3) 45.1, 72.3, 121.8, 124.3, 129.5, 132.3, 138.3, 138.5,
169.8; HRMS (ESIþ): found: 274.9679; C11H9

79BrNaO2 (MNaþ) re-
quires 274.9678.

4.48. (SR)-3-Methylene-4-(4-(trifluoromethyl)phenyl)dihy-
drofuran-2(3H)-one (12g)

Synthesised using general procedure D with 4-
trifluoromethylphenethyl 2-diazo-2-(diethoxyphosphoryl)acetate
11g (83 mg, 0.162 mmol), DCM (4.2 mL), Rh2(oct)4 (3.3 mg,
4.2 mmol), KOBu-t (28.4 mg, 0.253 mmol) and paraformaldehyde
(12.7 mg, 0.422 mmol). The HWE was performed at 0 #C. Purifica-
tion by column chromatography (4:1 hexane/ethyl acetate) affor-
ded the title compound as a colourless oil (15 mg, 29%); Rf 0.59 (2:1
petrol/ethyl acetate); nmax (thin film)/cm"1 2875w, 1741s, 1307s,
1097m, 1053w; dH (400 MHz, CDCl3) 4.24 (1H, dd, J 9.0, 7.1),
4.33e4.38 (1H, m), 4.75 (1H, app. t, J 9.0), 5.50 (1H, d, J 2.9), 6.44
(1H, d, J 2.9), 7.37 (2H, d, J 8.0), 7.65 (2H, d, J 8.0); dC (100 MHz,
CDCl3) 45.3, 72.2,123.8 (q, J 272.2),124.7,126.2 (q, J 3.8),128.3,130.2
(q, J 32.1), 138.1, 143.7, 169.6; dF (376 MHz, CDCl3) "62.6; HRMS
(ESIþ): found: 265.0447; C12H9F3NaO2 (MNaþ) requires 265.0447.

4.49. (SR)-3-Methylene-4-(4-nitrophenyl)dihydrofuran-
2(3H)-one (12h)

Synthesised using general procedure Cwith 4-nitrophenethyl 2-
diazo-2-(diethoxyphosphoryl)acetate 11h (37 mg, 0.100 mmol),
DCM (2.0 mL), Rh2(esp)2 (3.8 mg, 5.0 mmol), KOBu-t (10.1 mg,
0.090 mmol) and paraformaldehyde (30.0 mg, 0.997 mmol). The
HWE was performed at 0 #C. Purification by column chromatog-
raphy (2:1 petrol/ethyl acetate) afforded the title compound as
a colourless oil (4 mg, 18%); Rf 0.58 (1:1 petrol/ethyl acetate); nmax
(thin film)/cm"1 2878s, 2809s,1737s,1575w,1496m,1327m,1092w,
1004w, 843w; dH (400 MHz, CDCl3) 4.27 (1H, dd, J 9.1, 6.8),
4.39e4.45 (1H, m), 4.78 (1H, app. t, J 9.1), 5.53 (1H, d, J 2.7), 6.48
(1H, d, J 3.1), 7.44 (2H, d, J 8.8), 8.26 (2H, d, J 8.8); dC (100 MHz,
CDCl3) 45.2, 71.9, 124.5, 125.1, 128.8, 137.7, 147.0, 147.6, 169.2; HRMS
(ESIþ): found: 242.0427; C11H9NNaO4 (MNaþ) requires 242.0424.

4.50. (SR)-3-Methylene-4-(thiophen-3-yl)dihydrofuran-
2(3H)-one (12k)

Synthesised using general procedure C with 2-(thiophen-3-yl)
ethyl 2-diazo-2-(diethoxyphosphoryl)acetate 11k (69 mg,
0.208 mmol), DCM (4.2 mL), Rh2(oct)4 (3.2 mg, 4.2 mmol), KOBu-t
(28.0 mg, 0.250 mmol) and paraformaldehyde (12.5 mg,
0.416 mmol). The HWE was performed at 0 #C. Purification by
column chromatography (5:1 petrol/ethyl acetate) afforded the title
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compound as a colourless oil (12 mg, 32%); Rf 0.59 (2:1 petrol/ethyl
acetate); nmax (thin film)/cm!1 3110w, 2910w,1761s, 1404w,1250m,
1109m, 1018m; dH (400 MHz, CDCl3) 4.23 (1H, dd, J 8.9, 7.3),
4.38e4.44 (1H, m), 4.68 (1H, app. t, J 8.9), 5.56 (1H, d, J 2.8), 6.38
(1H, d, J 3.1), 6.95 (1H, dd, J 5.0, 1.4), 7.15 (1H, ddd, J 3.0, 1.4, 0.5), 7.38
(1H, dd, J 5.0, 3.0); dC (100MHz, CDCl3) 41.0, 71.9, 122.6, 123.8, 126.1,
127.4, 138.1, 139.4, 170.0; HRMS (ESIþ): found: 203.0134;
C9H8NaO2S (MNaþ) requires 203.0137.

4.51. (SR)-4-Isopropyl-3-methylenedihydrofuran-2(3H)-one
(12s)

Synthesised using general procedure D with 3-methylbutyl 2-
diazo-2-(diethoxyphosphoryl)acetate 11s (56 mg, 0.191 mmol),
DCM (3.8 mL), Rh2(oct)4 (3.0 mg, 3.8 mmol), THF (3.8 mL), KOBu-t
(25.7 mg, 0.229 mmol) and paraformaldehyde (11.5 mg,
0.382 mmol). The HWE was performed at 0 #C. Purification by
column chromatography (8:1 pentane/ether) afforded the title
compound as a colourless oil (15 mg, 56%); Rf 0.30 (8:1 pentane/
ether); nmax (thin film)/cm!1 2963m, 1762s, 1409w, 1267w, 1117m,
1039w, 979w; dH (400 MHz, CDCl3) 0.92 (3H, d, J 6.8), 0.95 (3H, d, J
6.8), 1.87e1.99 (1H, m), 2.93e2.99 (1H, m), 4.16 (1H, dd, J 9.3, 4.0),
4.35 (1H, dd, J 9.3, 8.1), 5.62 (1H, d, J 2.2), 6.34 (1H, d, J 2.5); dC
(100 MHz, CDCl3) 17.7, 19.1, 31.4, 44.6, 68.3, 123.1, 136.9, 171.2;
HRMS (ESIþ): found: 163.0722; C8H12NaO2 (MNaþ) requires
163.0730.

4.52. (SR)-4-(tert-Butyl)-3-methylenedihydrofuran-2(3H)-one
(12t)

Synthesised using general procedure D with 3,3-dimethylbutyl
2-diazo-2-(diethoxyphosphoryl)acetate 11t (58 mg, 0.189 mmol),
DCM (3.8 mL), Rh2(oct)4 (3.0 mg, 3.8 mmol), THF (3.8 mL), KOBu-t
(25.5 mg, 0.227 mmol) and paraformaldehyde (11.4 mg,
0.378 mmol). The HWE was performed at 0 #C. Purification by
column chromatography (8:1 pentane/ether) afforded the title
compound as a colourless oil (10 mg, 34%); Rf 0.24 (8:1 pentane/
ether); nmax (thin film)/cm!1 2962m, 1765s, 1492w, 1401w, 1364w,
1274m, 1250w, 1119m, 1041w, 969w, 822w; dH (400 MHz, CDCl3)
0.94 (9H, s), 2.74e2.78 (1H, m), 4.26e4.34 (2H, m), 5.66 (1H, dd, J
1.9, 0.7), 6.38 (1H, d, J 2.1); dC (100MHz, CDCl3) 26.3, 33.5, 49.1, 67.8,
124.5, 136.2, 171.3; HRMS (ESIþ): found: 177.0878; C9H14NaO2
(MNaþ) requires 177.0886.

4.53. (SR)-4-(((tert-Butyldimethylsilyl)oxy)methyl)-3-
methylenedihydrofuran-2(3H)-one (12u) and (SR)-4-(2-((tert-
butyldimethylsilyl)oxy)ethyl)-3-methyleneoxetan-2-one (16a)

Synthesised using general procedure D with 3-((tert-butyldi-
methylsilyl)oxy)propyl 2-diazo-2-(diethoxyphosphoryl)acetate
11u (83 mg, 0.210 mmol), DCM (4.2 mL), Rh2(oct)4 (3.3 mg,
4.2 mmol), THF (4.2 mL), KOBu-t (35.3 mg, 0.315 mmol) and para-
formaldehyde (12.6 mg, 0.420 mmol). The HWE was performed at
rt. Purification by column chromatography (8:1 hexane/ethyl ace-
tate) afforded the title compounds 4-(((tert-butyldimethylsilyl)oxy)
methyl)-3-methylenedihydrofuran-2(3H)-one 12u (9 mg, 18%) and
4-(2-((tert-butyldimethylsilyl)oxy)ethyl)-3-methyleneoxetan-2-
one 16a (8 mg, 16%) as colourless oils.

4.53.1. Data for 12u. Rf 0.49 (4:1 hexane/ethyl acetate); nmax (thin
film)/cm!1 2955m, 2930m, 2857m, 1766s, 1663w, 1472m, 1408w,
1362w, 1258m, 1115s, 1039m, 1004m, 940w, 837s, 815w, 778m; dH
(400 MHz, CDCl3) 0.05 (3H, s), 0.05 (3H, s), 0.88 (9H, s), 3.20e3.27
(1H, m), 3.65 (1H, dd, J 9.9, 7.2), 3.72 (1H, dd, J 9.9, 5.9), 4.21 (1H, dd,
J 9.3, 4.3), 4.42 (1H, dd, J 9.3, 8.2), 5.69 (1H, d, J 2.2), 6.31 (1H, d, J
2.5); dC (100 MHz, CDCl3) !5.6, !5.5, 18.2, 25.7, 41.2, 64.8, 68.4,

123.2, 135.6, 170.6; HRMS (ESIþ): found: 265.1223; C12H22NaO3Si
(MNaþ) requires 265.1230.

4.53.2. Data for 16a. Rf 0.60 (4:1 hexane/ethyl acetate); nmax (thin
film)/cm!1 2955m, 2930m, 2858m, 1826s, 1472w, 1408w, 1362w,
1257m, 1208w, 1099s, 1049m, 946w, 834s, 778m; dH (400 MHz,
CDCl3) 0.07 (3H, s), 0.07 (3H, s), 0.90 (9H, s), 2.00e2.09 (2H, m), 3.80
(2H, app. dd, J 6.6, 5.2), 5.16 (1H, app. ddt, J 7.5, 5.7, 1.8), 5.47 (1H,
app. t, J 1.7), 5.93 (1H, app. t, J 1.9); dC (100 MHz, CDCl3) !5.5, !5.4,
18.3, 25.9, 36.5, 58.6, 77.1, 115.3, 146.4, 163.6; HRMS (ESIþ): found:
265.1227; C12H22NaO3Si (MNaþ) requires 265.1230.

4.54. (SR)-4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-3-
methylenedihydrofuran-2(3H)-one (12v)

Synthesised using general procedure D with 4-((tert-butyldi-
methylsilyl)oxy)butyl 2-diazo-2-(diethoxyphosphoryl)acetate 11v
(87 mg, 0.213 mmol), DCM (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 mol),
THF (4.2 mL), KOBu-t (35.9 mg, 0.320mmol) and paraformaldehyde
(12.8 mg, 0.426 mmol). The HWE was performed at rt. Purification
by column chromatography (4:1 hexane/ethyl acetate) afforded the
title compound as a colourless oil (27 mg, 49%); Rf 0.50 (4:1 hexane/
ethyl acetate); nmax (thin film)/cm!1 2954m, 2929m, 2857m, 1767s,
1472w, 1257s, 1103s, 1020m, 940w, 836s, 777m; dH (400 MHz,
CDCl3) 0.05 (3H, s), 0.05 (3H, s), 0.89 (9H, s), 1.72 (1H, dddd, J 14.0,
9.1, 7.5, 5.1), 1.91 (1H, app. ddt, J 14.0, 5.7, 4.9), 3.17e3.26 (1H, m),
3.65e3.76 (2H, m), 4.07 (1H, dd, J 9.1, 6.1), 4.51 (1H, dd, J 9.1, 8.4),
5.60 (1H, d, J 2.6), 6.27 (1H, d, J 2.9); dC (100MHz, CDCl3)!5.5,!5.5,
18.2, 25.8, 36.3, 36.8, 60.5, 71.7, 121.7, 138.4, 170.8; HRMS (ESIþ):
found: 279.1393; C13H24NaO3Si (MNaþ) requires 279.1387.

4.55. (SR)-3-Methylene-4-vinyldihydrofuran-2(3H)-one
(12w)30 and 3-methyl-4-vinylfuran-2(5H)-one (17)23

Synthesised using general procedure D with but-3-en-1-yl 2-
diazo-2-(diethoxyphosphoryl)acetate 11w (58 mg, 0.210 mmol),
DCM (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 mmol), THF (4.2 mL), KOBu-t
(35.3 mg, 0.315 mmol) and paraformaldehyde (12.6 mg,
0.420mmol). The HWEwas performed at rt. Purification by column
chromatography (8:1 pentane/ether) afforded the title compounds
3-methylene-4-vinyldihydrofuran-2(3H)-one 12w as a colourless
oil (10 mg, 38%) and 3-methyl-4-vinylfuran-2(5H)-one 17 as a col-
ourless oil (2.3 mg, 9%).

4.55.1. Data for 12w.31 Rf 0.54 (4:1 pentane/ether); nmax (thin film)/
cm!1 2965, 2919, 2851, 1766, 1238, 1112; dH (400 MHz, CDCl3)
3.68e3.76 (1H, m), 4.02 (1H, dd, J 9.1, 7.4), 4.53 (1H, app. t, J 9.0),
5.23e5.28 (2H, m), 5.62 (1H, d, J 2.8), 5.71 (1H, ddd, J 16.6, 10.4, 8.2),
6.33 (1H, d, J 3.2); dC (100MHz, CDCl3) 44.0, 70.0,119.2, 123.4, 135.0,
137.0, 170.1; HRMS (ESIþ): found: 147.0411; C7H8NaO2 (MNaþ) re-
quires 147.0417.

4.55.2. Data for 17.23 Rf 0.29 (4:1 pentane/ether); nmax (thin film)/
cm!1 2925, 2855, 1752, 1663, 1432, 1337, 1208, 1077, 1045; dH
(400 MHz, CDCl3) 1.94 (3H, s), 4.88e4.89 (2H, m), 5.49e5.56 (2H,
m), 6.72 (1H, dd, J 17.8, 11.0); dC (100 MHz, CDCl3) 8.8, 69.2, 121.0,
124.3, 126.9, 152.0, 178.1; HRMS (ESIþ): found: 147.0417; C7H8NaO2
(MNaþ) requires 147.0417.

4.56. 3-Methylene-1-oxaspiro[3.5]nonan-2-one (16b),31 (3aS-
R,7aRS)-3-methylenehexahydrobenzofuran-2(3H)-one (trans-
12y)32 and (3aRS,7aRS)-3-methylenehexahydrobenzofuran-
2(3H)-one (cis-12y)32

Synthesised using general procedure C with cyclohexyl 2-diazo-
2-(diethoxyphosphoryl)acetate 11y (84 mg, 0.276 mmol), DCM
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(5.4 mL), Rh2(oct)4 (4.3 mg, 0.006 mmol), KOBu-t (37.2 mg,
0.331 mmol) and paraformaldehyde (16.6 mg, 0.552 mmol). The
HWE was performed at 0 !C. Purification by column chromatog-
raphy (20:1 hexane/ethyl acetate) afforded the title compounds
(18 mg, 43%) (16b/trans-12y/cis-12y 6:10:1); HRMS (ESIþ): found:
175.0726; C9H12NaO2 (MNaþ) requires 175.0730. Small quantities of
each compound were isolated separately for characterisation
purposes.

4.56.1. Data for 16b.32 Rf 0.70 (4:1 hexane/ethyl acetate); nmax (thin
film)/cm#1 2937, 2861, 1814, 1450, 1177, 1107, 1011; dH (400 MHz,
CDCl3) 1.41e1.96 (10H, m), 5.41 (1H, d, J 1.9), 5.80 (1H, d, J 1.9); dC
(100 MHz, CDCl3) 23.0, 24.6, 34.5, 87.2, 113.0, 150.1, 163.8.

4.56.2. Data for trans-12y.33 Rf 0.65 (4:1 hexane/ethyl acetate);
nmax (thin film)/cm#1 2940, 2864, 1770, 1251, 1132, 1026, 996; dH
(400 MHz, CDCl3) 1.32e1.44 (3H, m), 1.57e1.67 (1H, m), 1.83e1.87
(1H, m), 1.95e1.98 (1H, m), 2.11e2.15 (1H, m), 2.24e2.29 (1H, m),
2.37e2.44 (1H, m), 3.71 (1H, ddd, J 11.5, 10.8, 3.7), 5.38 (1H, d, J 3.1),
6.06 (1H, d, J 3.3); dC (100 MHz, CDCl3) 24.0, 24.8, 25.8, 30.4, 48.9,
83.1, 117.1, 139.6, 170.7.

4.56.3. Data for cis-12y.33 Rf 0.57 (4:1 hexane/ethyl acetate); nmax
(thin film)/cm#1 2936, 2864, 1763, 1263, 1127, 965; dH (400 MHz,
CDCl3) 1.31e1.94 (8H, m), 2.99e3.05 (1H, m), 4.52e4.56 (1H, m),
5.51 (1H, d, J 2.3), 6.20 (1H, d, J 2.5); dC (100 MHz, CDCl3) 20.5, 21.1,
26.3, 28.9, 39.6, 76.9, 119.8, 139.9, 171.0.

4.57. 6-Methylene-4-oxatetracyclo[6.3.1.13,10.03,7]tridecan-5-
one (12z)

Synthesised using general procedure D with adamantan-1-yl 2-
diazo-2-(diethoxyphosphoryl)acetate 11z (75 mg, 0.210 mmol),
DCM (4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 mmol), THF (4.2 mL), KOBu-t
(35.3 mg, 0.315 mmol) and paraformaldehyde (12.6 mg,
0.420mmol). The HWEwas performed at rt. Purification by column
chromatography (4:1 hexane/ethyl acetate) afforded the title com-
pound as a white solid (34 mg, 79%); Rf 0.47 (4:1 hexane/ethyl ac-
etate); mp 88e90 !C; nmax (thin film)/cm#1 2921s, 2856m, 1967w,
1764s, 1675w, 1451w, 1279w, 1262m, 1242w, 1211m, 1151m, 1042s,
949s; dH (400 MHz, CDCl3) 1.57e1.89 (8H, m), 1.99e2.15 (3H, m),
2.30e2.35 (1H, m), 2.44e2.48 (1H, m), 2.81e2.84 (1H, m), 5.36 (1H,
d, J 3.2), 6.14 (1H, d, J 3.4); dC (100MHz, CDCl3) 29.2, 29.2, 29.6, 30.9,
35.8, 37.6, 39.8, 41.1, 53.5, 80.4, 117.4, 138.6, 170.8; HRMS (ESIþ):
found: 227.1050; C13H16NaO2 (MNaþ) requires 227.1043.

4.58. (3aSR,8aRS)-3-Methyleneoctahydro-2H-cyclohepta[b]fu-
ran-2-one (trans-12aa)33 and (3aRS,8aRS)-3-
methyleneoctahydro-2H-cyclohepta[b]furan-2-one (cis-
12aa)34

Synthesised using general procedure D with cycloheptyl 2-
diazo-2-(diethoxyphosphoryl)acetate 11aa (72 mg, 0.226 mmol),
DCM (4.5 mL), Rh2(oct)4 (3.5 mg, 4.5 mmol), THF (4.5 mL), KOBu-t
(38.0 mg, 0.339 mmol) and paraformaldehyde (13.6 mg,
0.452mmol). The HWEwas performed at rt. Purification by column
chromatography (4:1 hexane/ethyl acetate) afforded the title com-
pounds as mixture of trans and cis isomers (trans-12aa/cis-12aa
3.5:1) (19mg, 51%). A small quantity of the major (trans) compound
was separated for characterisation. The minor (cis) compound was
characterised from a mixture.

4.58.1. Data for trans-12aa.34 Colourless oil; Rf 0.50 (4:1 hexane/
ethyl acetate); nmax (thin film)/cm#1 2929, 2861, 1761, 1667, 1454,
1400,1313,1262,1246, 998; dH (400MHz, CDCl3) 1.40e1.82 (8H, m),

2.12e2.20 (1H, m), 2.33e2.42 (1H, m), 2.73e2.81 (1H, m), 4.15 (1H,
ddd, J 10.6, 9.3, 4.4), 5.46 (1H, d, J 3.2), 6.18 (1H, d, J 3.5); dC
(100 MHz, CDCl3) 25.1, 25.3, 27.3, 28.0, 33.0, 45.6, 83.3, 119.6, 141.0,
170.5; HRMS (ESIþ): found: 189.0889; C10H14NaO2 (MNaþ) requires
189.0886.

4.58.2. Data for cis-12aa.35 Rf 0.43 (4:1 hexane/ethyl acetate); dH
(400 MHz, CDCl3) 1.17e1.97 (9H, m), 2.03e2.09 (1H, m), 3.19e3.27
(1H, m), 4.71 (1H, ddd, J 10.6, 8.6, 3.6), 5.55 (1H, d, J 2.7), 6.27 (1H, d,
J 3.1); dC (100 MHz, CDCl3) 24.2, 27.4, 30.6, 31.2, 31.8, 43.1, 82.3,
122.0, 140.3, 170.4.

4.59. 4,4-Dimethyl-3-methylenedihydrofuran-2(3H)-one
(12ab)24

Synthesised using general procedure D with 2-methylpropyl 2-
diazo-2-(diethoxyphosphoryl)acetate 11ab (85 mg, 0.305 mmol),
DCM (6.1 mL), Rh2(oct)4 (3.4 mg, 6.1 mmol), KOBu-t (41.1 mg,
0.366 mmol) and paraformaldehyde (18.3 mg, 0.610 mmol). The
HWE was performed at 0 !C. Purification by column chromatog-
raphy (8:1 hexane/ethyl acetate) afforded the title compound as
a colourless oil (9 mg, 23%); Rf 0.39 (4:1 hexane/ethyl acetate); nmax
(thin film)/cm#1 2966w, 2929w, 1760s, 1668w, 1464w, 1410w,
1371w, 1294m, 1169w, 1107m, 1014m; dH (400 MHz, CDCl3) 1.26
(6H, s), 4.03 (2H, s), 5.54 (1H, s), 6.20 (1H, s); dC (100 MHz, CDCl3)
26.9, 38.9, 78.3, 119.9, 144.7, 170.8; HRMS (ESIþ): found: 127.0758;
C7H11O2 (MHþ) requires 127.0754.

4.60. 8-Methylene-6-oxaspiro[3.4]octan-7-one (12ad)

Synthesised using general procedure D with cyclobutylmethyl
2-diazo-2-(diethoxyphosphoryl)acetate 11ad (59 mg, 0.203 mmol),
DCM (4.0 mL), Rh2(oct)4 (3.2 mg, 4.1 mmol), THF (4.0 mL), KOBu-t
(34.2 mg, 0.305 mmol) and paraformaldehyde (12.2 mg,
0.406mmol). The HWEwas performed at rt. Purification by column
chromatography (4:1 hexane/ethyl acetate) afforded the title com-
pound as a colourless oil (22 mg, 78%); Rf 0.42 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2935w, 1760s, 1662w, 1408w,
1296m,1117m,1005m, 942w, 814w; dH (400MHz, CDCl3) 1.95e2.04
(2H, m), 2.18e2.30 (4H, m), 4.32 (2H, s), 5.80 (1H, s), 6.26 (1H, s); dC
(100 MHz, CDCl3) 15.3, 34.5, 44.5, 78.1, 119.9, 143.1, 169.8; HRMS
(ESIþ): found: 161.0571; C8H10NaO2 (MNaþ) requires 161.0573.

4.61. 4-Methylene-2-oxaspiro[4.5]decan-3-one (12af)

Synthesised using general procedure D with cyclohexylmethyl
2-diazo-2-(diethoxyphosphoryl)acetate 11af (57 mg, 0.179 mmol),
DCM (3.6 mL), Rh2(oct)4 (2.8 mg, 3.6 mmol), THF (3.6 mL), KOBu-t
(30.2 mg, 0.269 mmol) and paraformaldehyde (10.8 mg,
0.358 mmol). The HWEwas performed at rt. Purification by column
chromatography (4:1 hexane/ethyl acetate) afforded the title com-
pound as a colourless oil (15 mg, 50%); Rf 0.63 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2926m, 2854w, 1759s, 1661w,
1451m, 1407w, 1305m, 1254m, 1113s, 1013s, 943m, 815m; dH
(400 MHz, CDCl3) 1.24e1.75 (10H, m), 4.15 (2H, s), 5.54 (1H, s), 6.22
(1H, s); dC (100 MHz, CDCl3) 22.5, 25.0, 36.2, 42.4, 75.3, 120.7, 144.4,
171.3; HRMS (ESIþ): found: 189.0891; C10H14NaO2 (MNaþ) requires
189.0886.

4.62. 1,1,2-Triphenylethyl 2-diazo-2-(diethoxyphosphoryl)ac-
etate (14a)

Procedure for Grignard addition followed according to the lit-
erature procedure.35 To benzylmagnesium chloride solution
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(20 mL, 40mmol, 2 M in THF) cooled to 0 !C under argonwas added
benzophenone (5.47 g, 30 mmol). After 2 h stirring at rt a further
addition of benzylmagnesium chloride (10 mL, 20 mmol) was
made. The suspension was stirred overnight at rt. The suspension
was quenched with satd aq NH4Cl. The organic layer was removed
and the aqueous extracted with ethyl acetate (3"25 mL). The
combined organic extracts were dried over MgSO4 and concen-
trated in vacuo to afford the crude product as a white powder
(9.03 g). A portion of the crude material (3.35 g) was taken forward
to the following step without further purification. To a solution of
the crude material in toluene (60 mL) under argon was added se-
quentially diethyl phosphonoacetic acid (2.06 mL, 12.8 mmol),
DIPEA (5.52 mL, 31.7 mmol) and propyl phosphonic anhydride
(10.1 g, 15.8 mmol, 50% w/w solution in ethyl acetate). The solution
was stirred at 50 !C for 1.5 h. The solution was diluted with water
(50 mL) and extracted with ethyl acetate (3"25 mL) followed by
sequential washing of the combined organic extracts with 10%
aq HCl (10 mL), satd aq NaHCO3 (10 mL) and brine (10 mL), dried
overMgSO4 and concentrated in vacuo to afford and dark orange oil
(4.60 g) as crude. Purification by column chromatography (1:2
petrol/ethyl acetate) afforded 1,1,2-triphenylethyl 2-(diethox-
yphosphoryl)acetate as a colourless oil (389mg, 8% over two steps);
Rf 0.25 (1:2 petrol/ethyl acetate); nmax (thin film)/cm#1 2937s,
1711s, 1251s, 1218w, 1012s; dH (400 MHz, CDCl3) 1.25 (6H, td, J 7.1,
0.3), 2.94 (2H, d, J 21.5), 4.02e4.13 (6H, m), 6.60e6.65 (2H, m),
7.06e7.18 (3H, m), 7.20e7.35 (10H, m); dC (100 MHz, CDCl3) 16.2 (d,
J 6.3), 35.2 (d, J 134.4), 42.7, 62.4 (d, J 6.2), 87.6, 126.3, 126.4, 127.1,
127.5, 127.8, 130.4, 135.3, 143.9, 163.8 (d, J 6.4); dP (162 MHz, CDCl3)
20.3; HRMS (ESIþ): found: 475.1636; C26H29NaO5P (MNaþ) requires
475.1645. 1,1,2-Triphenylethyl 2-(diethoxyphosphoryl)acetate
(308 mg, 0.681 mmol) was then treated under the conditions of
general procedure B with THF (3.4 mL), LHMDS (0.82 mL,
0.82 mmol, 1.0 M solution in THF) and 4-
acetamidobenzenesulfonylazide (196 mg, 0.82 mmol). Purification
by column chromatography (2:1 petrol/ethyl acetate) afforded the
title compound as a white crystalline solid (171 mg, 53%); Rf 0.77
(1:2 petrol/ethyl acetate); nmax (thin film)/cm#1 2938w, 2884w,
2100s, 1675s, 1264s, 1219w, 1005m; mp 68e72 !C; dH (400 MHz,
CDCl3) 1.19 (6H, td, J 7.1, 0.7), 3.81e3.93 (2H, m), 4.03e4.13 (2H, m),
4.14 (2H, s), 6.61e6.65 (2H, m), 7.06e7.18 (3H, m), 7.22e7.34 (10H,
m); dC (100 MHz, CDCl3) 15.9 (d, J 7.6), 43.3, 55.2 (d, J 227.8), 63.1 (d,
J 5.4), 88.3, 126.1, 126.5, 127.2, 127.5, 128.0, 130.3, 135.3, 144.1, 162.2
(d, J 10.2); dP (162 MHz, CDCl3) 11.0; HRMS (ESIþ): found: 501.1527;
C26H27N2NaO5P (MNaþ) requires 501.1550.

4.63. Diethyl ((1SR,3aSR)-1-benzyl-3-oxo-1-phenyl-3,3a-dihy-
dro-1H-cyclohepta[c]furan-3a-yl)phosphonate (15b)

To a solution of 1,1,2-triphenylethyl 2-diazo-2-(diethox-
yphosphoryl)acetate 14a (47 mg, 0.098 mmol) in toluene (5 mL)
flushed with argon was added Rh2(esp)2 (3.7 mg, 4.9 mmol). The
mixture was stirred at 100 !C for 4 h. Concentration in vacuo and
purification by column chromatography (1:1 petrol/ethyl acetate)
afforded the title compound as an off-white solid (22 mg, 50%); Rf
0.22 (1:1 petrol/ethyl acetate); mp 92e95 !C; nmax (thin film)/cm#1

2936w,1744s,1230m,1034w,1009m; dH (400MHz, CDCl3) 1.35 (3H,
td, J 7.1, 0.4), 1.38 (3H, td, J 7.1, 0.4), 3.65 (1H, d, J 14.6), 4.10e4.28
(4H, m), 4.11 (1H, d, J 14.6), 5.31 (1H, dd, J 10.0, 6.3), 6.15e6.22 (2H,
m), 6.27e6.36 (2H, m), 7.09e7.16 (5H, m), 7.19e7.30 (3H, m),
7.32e7.36 (2H, m); dC (100 MHz, CDCl3) 16.4 (d, J 5.6), 16.7 (d, J 5.3),
45.6, 56.0 (d, J 145.2), 63.8 (d, J 7.5), 64.4 (d, J 7.3), 90.0 (d, J 3.8),
119.1, 124.2 (d, J 7.2), 125.6, 126.6, 127.7, 127.8, 128.4, 128.5 (d, J 7.4),
129.0, 129.9, 130.7, 134.4, 135.0, 141.3, 172.7 (d, J 3.6); dP (162 MHz,
CDCl3) 17.3; HRMS (ESIþ): found: 473.1477; C26H27NaO5P (MNaþ)
requires 473.1488.

4.64. (SR,Z)-3-(4-Nitrobenzylidene)-4-phenyldihydrofuran-
2(3H)-one (Z-18h) and (SR,E)-3-(4-nitrobenzylidene)-4-
phenyldihydrofuran-2(3H)-one (E-18h)

Synthesised using general procedure D with phenethyl 2-diazo-
2-(diethoxyphosphoryl)acetate 11d (75 mg, 0.230 mmol), DCM
(4.6 mL), Rh2(oct)4 (3.6 mg, 4.6 mmol), THF (4.6 mL), KOBu-t
(38.7 mg, 0.345 mmol) and 4-nitrobenzaldehyde (69.5 mg,
0.460 mmol). The HWE was performed at 0 !C. Purification by
column chromatography (10:1 hexane/ethyl acetate) afforded the
title compounds as mixture of (Z) and (E) isomers (Z-18h/E-18h 1:1)
(44 mg, 65%). Small quantities of each compound were isolated
separately for characterisation purposes.

4.64.1. Data for Z-18h. Pale yellow oil; Rf 0.40 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2920w, 1754s, 1597w, 1518s, 1345s,
1161s, 1074w, 1023w; dH (400 MHz, CDCl3) 4.39 (1H, app. t, J 8.0),
4.45 (1H, app. td, J 7.8, 2.7), 4.78 (1H, app. t, J 8.4), 6.72 (1H, d, J 2.7),
7.30e7.32 (2H, m), 7.35e7.39 (1H, m), 7.41e7.46 (2H, m), 7.88 (2H, d,
J 8.9), 8.19 (2H, d, J 8.9); dC (100 MHz, CDCl3) 48.8, 72.4, 123.2, 128.2,
128.2, 129.5, 131.3, 133.2, 138.5, 139.2, 139.3, 147.8, 168.0; HRMS
(ESIþ): found: 318.0749; C17H13NNaO4 (MNaþ) requires 318.0737.

4.64.2. Data for E-18h. Pale yellow oil; Rf 0.32 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2923w, 2854w, 1755s, 1691w,
1653w, 1598m, 1518s, 1343s, 1300w, 1226m, 1173s, 1021w; dH
(400MHz, CDCl3) 4.33 (1H, dd, J 8.9, 3.5), 4.61 (1H, app. dt, J 8.1, 3.0),
4.78 (1H, app. t, J 8.5), 7.17e7.19 (2H, m), 7.24e7.34 (3H, m), 7.45
(2H, d, J 8.8), 7.84 (1H, d, J 2.4), 8.08 (2H, d, J 8.8); dC (100 MHz,
CDCl3) 44.5, 73.8, 123.6, 127.0, 128.0, 129.5, 130.8, 131.4, 136.3, 139.6,
139.6, 147.9, 171.4; HRMS (ESIþ): found: 318.0746; C17H13NNaO4
(MNaþ) requires 318.0737.

4.65. (SR,Z)-3-Pentylidene-4-phenyldihydrofuran-2(3H)-one
(Z-18i) and (SR,E)-3-pentylidene-4-phenyldihydrofuran-
2(3H)-one (E-18i)

Synthesised using general procedure D with phenethyl 2-diazo-
2-(diethoxyphosphoryl)acetate 11d (73 mg, 0.224 mmol), DCM
(4.5 mL), Rh2(oct)4 (3.5 mg, 4.5 mmol), THF (4.5 mL), KOBu-t
(37.7 mg, 0.336 mmol) and valeraldehyde (44.8 mL, 0.448 mmol).
The HWE was performed at reflux. Purification by column chro-
matography (8:1 hexane/ethyl acetate) afforded the title com-
pounds as mixture of (Z) and (E) isomers (Z-18i/E-18i 3.3:1) (29 mg,
56%). Small quantities of each compound were isolated separately
for characterisation purposes.

4.65.1. Data for Z-18i. Pale yellow oil; Rf 0.53 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2957m, 2928m, 2871w, 1755s,
1667w, 1455w, 1373w, 1175m, 1127m, 1025s; dH (400 MHz, CDCl3)
0.88 (3H, t, J 7.1), 1.25e1.43 (4H, m), 2.66e2.82 (2H, m), 4.18e4.24
(2H, m), 4.61e4.67 (1H, m), 5.99 (1H, td, J 7.8, 2.2), 7.20e7.23 (2H,
m), 7.28e7.32 (1H, m), 7.34e7.39 (2H, m); dC (100 MHz, CDCl3) 13.8,
22.3, 27.2, 31.1, 46.9, 72.5, 127.6, 128.0, 128.8, 129.1, 140.7, 146.9,
169.8; HRMS (ESIþ): found: 253.1188; C15H18NaO2 (MNaþ) requires
253.1199.

4.65.2. Data for E-18i. Pale yellow oil; Rf 0.44 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2957m, 2928s, 2858m, 1759s,
1672w, 1456w, 1378w, 1184m, 1026m; dH (400 MHz, CDCl3) 0.76
(3H, t, J 7.2), 1.10e1.33 (4H, m), 1.88e2.01 (2H, m), 4.20e4.29 (2H,
m), 4.70 (1H, app. t, J 8.2), 6.92 (1H, td, J 7.7, 2.3), 7.19e7.21 (2H, m),
7.26e7.29 (1H, m), 7.31e7.36 (2H, m); dC (100 MHz, CDCl3) 13.6,
22.2, 29.2, 29.9, 43.4, 73.5, 127.2, 127.4, 129.0, 129.1, 141.7, 144.3,
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171.2; HRMS (ESIþ): found: 253.1187; C15H18NaO2 (MNaþ) requires
253.1199.

4.66. (SR,Z)-3-(4-Nitrobenzylidene)-4-pentyldihydrofuran-
2(3H)-one (Z-18j) and (SR,E)-3-(4-nitrobenzylidene)-4-
pentyldihydrofuran-2(3H)-one (E-18j)

Synthesised using general procedure D with heptyl 2-diazo-2-
(diethoxyphosphoryl)acetate 11p (68 mg, 0.212 mmol), DCM
(4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 mmol), THF (4.2 mL), KOBu-t
(35.7 mg, 0.318 mmol) and 4-nitrobenzaldehyde (62.6 mg,
0.424 mmol). The HWE was performed at 0 "C. Purification by
column chromatography (8:1 hexane/ethyl acetate) afforded the
title compounds as mixture of (Z) and (E) isomers (Z-18j/E-18j 1:1)
(42 mg, 68%). Small quantities of each compound were isolated
separately for characterisation purposes.

4.66.1. Data for Z-18j. Yellow oil; Rf 0.46 (4:1 hexane/ethyl ace-
tate); nmax (thin film)/cm#1 2928m, 2857m, 1752s, 1651w, 1597m,
1518s,1466w,1378w,1344s,1175s,1112w; dH (400MHz, CDCl3) 0.91
(3H, t, J 7.0), 1.25e1.45 (6H, m), 1.57e1.68 (1H, m), 1.73e1.82 (1H,
m), 3.15e3.22 (1H, m), 4.09 (1H, dd, J 8.9, 5.1), 4.52 (1H, dd, J 8.9,
7.7), 6.93 (1H, d, J 2.2), 7.89 (2H, d, J 8.8), 8.21 (2H, d, J 8.8); dC
(100 MHz, CDCl3) 14.0, 22.5, 26.0, 31.7, 34.1, 42.0, 70.8, 123.2, 131.1,
133.0, 136.1, 139.7, 147.6, 168.6; HRMS (ESIþ): found: 312.1210;
C16H19NNaO4 (MNaþ) requires 312.1206.

4.66.2. Data for E-18j. Pale yellow solid; Rf 0.41 (4:1 hexane/ethyl
acetate); mp 114e117 "C; nmax (thin film)/cm#1 2929m, 2858m,
1754s, 1598m, 1520s, 1344s, 1225m, 1183s, 1112w; dH (400 MHz,
CDCl3) 0.86 (3H, t, J 7.0), 1.18e1.42 (6H, m), 1.50e1.67 (2H, m),
3.53e3.60 (1H, m), 4.28 (1H, dd, J 9.1, 2.0), 4.45 (1H, ddd, J 9.1, 7.0,
0.7), 7.56 (1H, d, J 2.1), 7.67 (2H, d, J 8.8), 8.29 (2H, d, J 8.8); dC
(100 MHz, CDCl3) 13.0, 22.4, 26.4, 31.4, 32.4, 38.1, 70.7, 124.1, 130.3,
133.4, 133.8, 140.3, 147.8, 171.6; HRMS (ESIþ): found: 312.1205;
C16H19NNaO4 (MNaþ) requires 312.1206.

4.67. (SR,Z)-4-Pentyl-3-pentylidenedihydrofuran-2(3H)-one
(Z-18k) and (SR,E)-4-pentyl-3-pentylidenedihydrofuran-
2(3H)-one (E-18k)

Synthesised using general procedure D with heptyl 2-diazo-2-
(diethoxyphosphoryl)acetate 11p (67 mg, 0.209 mmol), DCM
(4.2 mL), Rh2(oct)4 (3.3 mg, 4.2 mmol), THF (4.2 mL), KOBu-t
(35.2 mg, 0.314 mmol) and valeraldehyde (45.0 mL, 0.418 mmol).
The HWE was performed at rt. Purification by column chroma-
tography (8:1 hexane/ethyl acetate) afforded the title compounds as
mixture of (Z) and (E) isomers (Z-18k/E-18k 2.7:1) (36 mg, 77%).
Small quantities of each compound were isolated separately for
characterisation purposes.

4.67.1. Data for Z-18k. Colourless oil; Rf 0.75 (4:1 hexane/ethyl ac-
etate); nmax (thin film)/cm#1 2957s, 2928s, 2858s, 1754s, 1668m,
1466m, 1378m, 1185m, 1127s, 1027s; dH (400 MHz, CDCl3) 0.87e0.92
(6H, m), 1.24e1.49 (11H, m), 1.56e1.65 (1H, m), 2.69e2.75 (2H, m),
2.88e2.97 (1H, m), 3.92 (1H, dd, J 8.8, 5.3), 4.37 (1H, dd, J 8.8, 7.9),
6.12 (1H, td, J 7.7, 1.6); dC (100 MHz, CDCl3) 13.9, 14.0, 22.3, 22.5, 25.9,
27.1, 31.3, 31.7, 34.2, 40.1, 70.8, 128.3, 144.1, 170.5; HRMS (ESIþ):
found: 247.1670; C14H24NaO2 (MNaþ) requires 247.1669.

4.67.2. Data for E-18k. Colourless oil; Rf 0.66 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2961s, 2930s, 2859m, 1760s, 1676m,
1466m, 1380w, 1193m, 1021m; dH (400 MHz, CDCl3) 0.87e0.94 (6H,
m), 1.22e1.57 (12H, m), 2.15e2.28 (2H, m), 3.04e3.10 (1H, m), 4.12
(1H, dd, J 9.1, 2.2), 4.31 (1H, dd, J 9.1, 7.3), 6.73 (1H, td, J 7.7, 2.0); dC
(100 MHz, CDCl3) 13.8, 14.0, 22.4, 22.5, 26.1, 29.4, 30.7, 31.7, 34.2,

37.1, 70.8, 129.8, 141.5, 171.7; HRMS (ESIþ): found: 247.1666;
C14H24NaO2 (MNaþ) requires 247.1669.

4.68. (SR,Z)-4-(4-Nitrobenzylidene)-2-oxaspiro[4.4]nonan-3-
one (Z-18l) and (SR,E)-4-(4-nitrobenzylidene)-2-oxaspiro[4.4]
nonan-3-one (E-18l)

Synthesised using general procedure D with cyclopentylmethyl
2-diazo-2-(diethoxyphosphoryl)acetate 11ae (61 mg, 0.200 mmol),
DCM (4.0 mL), Rh2(oct)4 (3.1 mg, 4.0 mmol), THF (4.0 mL), KOBu-t
(33.7 mg, 0.300 mmol) and 4-nitrobenzaldehyde (60.5 mg,
0.400 mmol). The HWE was performed at 0 "C. Purification by
column chromatography (8:1 hexane/ethyl acetate) afforded the
title compounds as an inseparable mixture of (Z) and (E) isomers (Z-
18l/E-18l 1:1.4), as a white solid (30 mg, 55%); Rf 0.32 (4:1 hexane/
ethyl acetate); nmax (thin film)/cm#1 2959w, 2874w, 1755s, 1646w,
1597m, 1518s, 1492w, 1453w, 1344s, 1257w, 1227w, 1201w, 1160m,
1096m, 1023m, 910w, 851m; dH (400 MHz, CDCl3) 1.61e1.96 (16H,
m, E,Z), 4.04 (3H, s, E), 4.16 (3H, s, Z), 6.87 (1H, s, Z), 7.52 (2H, dd, J
8.9, 0.6, E), 7.65 (1H, s, E), 7.86 (2H, dd, J 8.9, 0.5, Z), 8.19 (2H, d, J 8.9,
Z), 8.25 (2H, d, J 8.9, E); dC (100 MHz, CDCl3) 24.6 (E/Z), 25.3 (E/Z),
37.1 (E), 39.3 (Z), 50.3 (E), 52.5 (Z), 77.5 (Z), 79.4 (E), 123.1 (Z), 123.5
(E), 130.0 (E), 131.1 (Z), 134.0 (Z), 134.3 (E), 136.6 (E), 137.3 (Z), 139.8
(Z), 140.9 (E), 147.5 (E/Z), 147.6 (E/Z), 168.9 (Z), 171.9 (E); HRMS
(ESIþ): found: 296.0899; C15H15NNaO4 (MNaþ) requires 296.0893.

4.69. (SR,Z)-4-Pentylidene-2-oxaspiro[4.4]nonan-3-one (Z-
18m) and (SR,E)-4-pentylidene-2-oxaspiro[4.4]nonan-3-one
(E-18m)

Synthesised using general procedure D with cyclopentylmethyl
2-diazo-2-(diethoxyphosphoryl)acetate 11ae (63 mg, 0.207 mmol),
DCM (4.2 mL), Rh2(oct)4 (3.2 mg, 4.1 mmol), THF (4.2 mL), KOBu-t
(34.8 mg, 0.311 mmol) and valeraldehyde (44.0 mL, 0.414 mmol).
The HWE was performed at reflux. Purification by column chro-
matography (8:1 hexane/ethyl acetate) afforded the title com-
pounds as mixture of (Z) and (E) isomers (Z-18m/E-18m 2.4:1)
(14 mg, 32%). Small quantities of each compound were isolated
separately for characterisation purposes.

4.69.1. Data for Z-18m. Colourless oil; Rf 0.67 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2956m, 2929w, 2871m, 1752s,
1665m, 1453m, 1370m, 1164w, 1128w, 1105m, 1025s; dH (400 MHz,
CDCl3) 0.91 (3H, t, J 7.2), 1.24e1.46 (4H, m), 1.62e1.81 (8H, m), 2.72
(2H, app. q, J 7.4), 4.02 (2H, s), 6.08 (1H, t, J 7.7); dC (100MHz, CDCl3)
13.9, 22.3, 24.5, 26.9, 31.4, 39.2, 50.8, 77.7, 132.8, 141.9, 170.1; HRMS
(ESIþ): found: 231.1354; C13H20NaO2 (MNaþ) requires 231.1356.

4.69.2. Data for E-18m. Colourless oil; Rf 0.54 (4:1 hexane/ethyl
acetate); nmax (thin film)/cm#1 2956s, 2934s, 2872s, 1758s, 1668m,
1455m,1383w,1362w,1164w,1028s; dH (400MHz, CDCl3) 0.93 (3H,
t, J 7.1), 1.20e2.00 (12H, m), 2.29 (2H, app. q, J 7.5), 4.00 (2H, s), 6.70
(1H, t, J 8.0); dC (100 MHz, CDCl3) 13.8, 22.5, 25.5, 27.7, 31.0, 38.6,
48.8, 79.8, 132.5, 141.6, 171.4; HRMS (ESIþ): found: 231.1352;
C13H20NaO2 (MNaþ) requires 231.1356.

4.70. (SR)-4-(Hydroxymethyl)-3-methylenedihydrofuran-
2(3H)-one (19)9b

To a solution of 4-(((tert-butyldimethylsilyl)oxy)methyl)-3-
methylenedihydrofuran-2(3H)-one 12u (29 mg, 0.120 mmol) in
THF (0.6 mL) cooled to 0 "C under argon was added TBAF (144 mL,
0.144, 1.0 M in THF) dropwise. The solution was stirred at 0 "C for
1 h then quenched with satd aq NH4Cl (10 mL) and extracted with
ether (2$25 mL). The combined organic extracts were dried over
Na2SO4 and concentrated in vacuo. Purification by column
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chromatography (1:2 hexane/ethyl acetate) afforded the title com-
pound as a pale yellow oil (12 mg, 78%); Rf 0.29 (1:2 hexane/ethyl
acetate); nmax (thin film)/cm!1 3417br, 2924m, 1756s, 1407w,
1268m, 1120m, 1017m, 816m; dH (400 MHz, CDCl3) 3.26e3.34 (1H,
m), 3.76e3.78 (2H, m), 4.27 (1H, dd, J 9.4, 4.5), 4.47 (1H, dd, J 9.4,
8.2), 5.75 (1H, d, J 2.3), 6.36 (1H, d, J 2.6); dC (100 MHz, CDCl3) 40.9,
64.1, 68.2, 123.6, 135.2, 170.4; HRMS (ESIþ): found: 151.0360;
C6H8NaO3 (MNaþ) requires 151.0366.

4.71. (±)-Cedarmycin A (8a)9a

Preparation of 5-methylhexanoyl chloride 20a: to a solution of 5-
methylhexanoic acid (130.2 mg,1.00 mmol) in DCM (2.5 mL) at 0 #C
was added oxalyl chloride (253 mL, 3.00mmol) dropwise. Stirred for
30 min at 0 #C followed by 2 h at rt then concentrated in vacuo to
afford a colourless oil. To a solution of 4-(hydroxymethyl)-3-
methylenedihydrofuran-2(3H)-one 19 (5 mg, 0.039 mmol) and
triethylamine (8.2 mL, 0.059 mmol) in DCM (0.20 mL) was added 5-
methylhexanoyl chloride (10 mL). After 2 h additional 5-
methylhexanoyl chloride (10 mL) was added and stirred for 16 h.
The solution was quenched with satd aq NH4Cl (1 mL) and
extracted with DCM (3$10 mL). The combined organic extracts
were dried over Na2SO4 and concentrated in vacuo. Purification by
column chromatography (4:1 hexane/ethyl acetate) afforded the
title compound as a colourless oil (6 mg, 85%); Rf 0.75 (1:1 hexane/
ethyl acetate); nmax (thin film)/cm!1 2956m, 2871w, 1768s, 1739s,
1468w, 1252w, 1170m, 1115m, 1019w; dH (400 MHz, CDCl3) 0.88
(6H, t, J 6.6), 1.15e1.21 (2H, m), 1.51e1.65 (3H, m), 2.31 (2H, t, J 7.6),
3.39e3.47 (1H, m), 4.16 (1H, dd, J 11.2, 7.3), 4.18 (1H, dd, J 9.4, 4.9),
4.25 (1H, dd, J 11.2, 5.6), 4.48 (1H, dd, J 9.4, 8.4), 5.76 (1H, d, J 2.3),
6.39 (1H, d, J 2.7); dC (100 MHz, CDCl3) 22.4, 22.7, 27.7, 34.3, 38.0,
38.3, 64.7, 68.1, 124.2, 134.5, 169.8, 173.5; HRMS (ESIþ): found:
263.1251; C13H20NaO4 (MNaþ) requires 263.1254.

4.72. (±)-Cedarmycin B (8b)9

To a solution of 4-(hydroxymethyl)-3-methylenedihydrofuran-
2(3H)-one 19 (3 mg, 0.023 mmol) and triethylamine (4.8 mL,
0.035 mmol) in DCM (0.12 mL) was added hexanoyl chloride
(3.9 mL, 0.035 mmol). The solution was stirred at rt for 10 min then
quenched with satd aq NH4Cl (1 mL) and extracted with DCM
(3$10 mL). The combined organic extracts were dried over Na2SO4
and concentrated in vacuo. Purification by column chromatography
(4:1 hexane/ethyl acetate) afforded the title compound as a colour-
less oil (3 mg, 57%); Rf 0.76 (1:1 hexane/ethyl acetate); nmax (thin
film)/cm!1 2959m, 2936m, 2864w, 1768s, 1738s, 1270w, 1246w,
1168m, 1115m, 1018w; dH (400 MHz, CDCl3) 0.90 (3H, t, J 7.0),
1.25e1.36 (4H, m), 1.62 (2H, app. quin, J 7.5), 2.32 (2H, t, J 7.5),
3.39e3.47 (1H, m), 4.16 (1H, dd, J 11.2, 7.3), 4.18 (1H, dd, J 9.4, 4.9),
4.25 (1H, dd, J 11.2, 5.6), 4.48 (1H, dd, J 9.4, 8.4), 5.76 (1H, d, J 2.4),
6.38 (1H, d, J 2.7); dC (100 MHz, CDCl3) 13.9, 22.3, 24.5, 31.2, 34.0,
38.1, 64.7, 68.1, 124.1, 134.5, 169.8, 173.5; HRMS (ESIþ): found:
249.1099; C12H18NaO4 (MNaþ) requires 249.1097.
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A selective C–H insertion/olefination protocol
for the synthesis of α-methylene-γ-butyrolactone
natural products†

Matthew G. Lloyd,a Mariantonietta D’Acunto,b Richard J. K. Taylor*a and
William P. Unsworth*a

A regio- and stereoselective one-pot C–H insertion/olefination protocol has been developed for the late

stage installation of α-methylene-γ-butyrolactones into conformationally restricted cyclohexanol-deriva-

tives. The method has been successfully applied in the total synthesis of eudesmanolide natural product

frameworks, including α-cyclocostunolide.

The selective functionalization of sp3 centres via the activation
of unfunctionalised C–H bonds is of much current interest,1

given that it facilitates the synthesis of complex molecular
architectures from relatively simple precursors. Over the last
two decades, rhodium(II)-catalysed C–H insertions have
become a mainstay in this field; an array of useful reaction
modes with well-established reactivity patterns have been deve-
loped, including asymmetric variants, based on the C–H inser-
tion of rhodium-stabilised carbenoids.2 In particular, the
donor/acceptor carbenoid systems popularised by Davies have
proved to be especially valuable.2d

The acceptor/acceptor carbenoid class has received less
attention in comparison,3 although there are prominent excep-
tions.4 A useful feature of carbenoids of this type is the fact
that the additional acceptor substituent may be used as a
handle for further chemical modification; this is exemplified
by work published by our own group, in which a one-pot
rhodium(II)-catalysed C–H insertion/Horner–Wadsworth–
Emmons olefination (HWE) sequence for the conversion of
α-diazo-α-(diethoxy)phosphoryl acetates 1 into α-methylene-
γ-butyrolactones 2 was reported (Fig. 1a).5 This research
focused primarily on substrates with electron rich C–H bonds
(e.g. benzylic reaction system 1) that are well-suited to react
with electrophilic carbenoids. The work described herein con-
cerns the extension of this method to cyclohexanol derivatives
(3, Fig. 1b). These are much more challenging substrates com-

pared to those examined previously, as there is no electronic
bias to direct the C–H insertion, but the products 4 are argu-
ably more important given that a huge number of bioactive
cyclohexane-based α-methylene-γ-butyrolactone natural pro-
ducts have been isolated.6 Our aim (Fig. 1b) was to design the
cyclohexane precursors so that C–H insertion (and subsequent
olefination) occurs exclusively into equatorial C–H bonds,7 to
selectively form fused γ-lactones 4. The success of this
approach, and its application in the total synthesis of three
natural product targets and one isomeric analogue, are
described.

Our only previous attempt at performing a C–H insertion/
olefination of this type was not encouraging; when the diazo-
phosphonate derivative of cyclohexanol (i.e. compound 3, with
R = H) was treated under the standard reaction conditions
[Rh2(oct)4 (2 mol%), CH2Cl2, 45 °C, 16 h; (ii) KOBu-t, THF, −78
– 0 °C, 1 h; (iii) (CH2O)n, 0 °C – rt, 1 h]5 a diastereomeric
mixture of γ-lactones, as well as some β-lactone product, was
obtained (corresponding to insertion into all three of the high-
lighted C–H bonds in 3) and the overall yield was low.5b It was
postulated that the poor selectivity in this case may be related

Fig. 1 C–H insertion/olefination approach to α-methylene-
γ-butyrolactones.

†Electronic supplementary information (ESI) available: Experimental, spectral
and crystallographic data. CCDC 1421154, 1421158 and 1421164. For ESI and
crystallographic data in CIF or other electronic format see DOI: 10.1039/
c5ob02579f

aDepartment of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
E-mail: richard.taylor@york.ac.uk, william.unsworth@york.ac.uk
bUniversity of Salerno, Department of Chemistry and Biology, Via Giovanni Paolo II,
132, Salerno, 84084 Fisciano, Italy
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to the flexible nature of the substrate, and that by restricting
its conformation, the regio- and stereoselectivity may be
improved.

To test this idea, 4-tert-butyl cyclohexyl derivatives 5a and
5b were formed and reacted under the standard one-pot C–H
insertion/olefination conditions (Fig. 2). The expectation was
that the tert-butyl group would lock the cyclohexane scaffold in
a chair conformation to better distinguish the two γ-C–H inser-
tion sites, and improve the diastereoselectivity. Greater control
was indeed observed in both cases; γ-lactones 6a and 6b were
each isolated as single diastereoisomers, with the stereochemi-
cal outcome consistent with insertion into the equatorial C–H
bonds. However, in both reactions the overall yield was rela-
tively low, which is partly explained by the formation of
β-lactone side-products 7a and 7b (not shown, see ESI†). Pleas-
ingly, by moving the tert-butyl group closer to the C–H inser-
tion site, a significant improvement was observed; 2-tert-butyl
substrates 5c and 5d furnished α-methylene-γ-butyrolactones
6c and 6d respectively, with complete diastereoselectivity and a
significant increase in isolated yield (76% and 90%), with no
β-lactone side-products being formed in either case. The tert-
butyl group is likely to be playing two roles in these substrates,
both fixing the conformation of the cyclohexane ring and pro-
viding a steric barrier to competing β-insertion reactions. To
further probe this cooperative effect, other 2-subtituted confor-
mationally restricted systems based on menthol and decalinol
(5e, 5f and 5g) were treated under the standard conditions and
all afforded the expected γ-lactone products selectively (6e, 6f
and 6g). It is noteworthy that in all cases, there is complete
selectivity for equatorial C–H insertion, irrespective of whether
the diazoester substituent itself has an equatorial (6a, 6c, 6e,
6f ) or axial (6b, 6d, 6g) configuration.

In view of the excellent regio- and stereoselectivity observed
in these reactions, attention turned to their application in
natural product synthesis. Sesquiterpene lactones are the most
common class of α-methylene-γ-butyrolactone found in
Nature6e,8 and selected compounds from a sub-class of this
family collectively known as the eudesmanolides, are shown in
Fig. 3 (8–13).

First, compounds 8 and 9 (labelled morifolins A and B,
Fig. 3) were targeted. As the C–H insertion procedure had not
previously been tested on a cis-decalin framework (which can
potentially ring flip), they were considered to be an interesting
challenge to the methodology. An additional reason for
performing the synthesis of the morifolins was to clear up con-
fusion that exists in the literature about their structural assign-
ments. In 1985, Dominguez and co-workers isolated a series of
sesquiterpene lactones, two of which were named morifolin
A and B and assigned the structures 8 and 9 above.9 However,
in a 2004 publication,10 Herz suggested that these products
had been assigned incorrectly, and proposed that they were in
fact identical to isocritonilide 10 and critonilide 11, respecti-
vely, described by Bohlmann and co-workers in 1983.11 The
spectral data in the Dominguez publication were insufficient
to draw a definitive conclusion, and hence it was decided to
complete the total syntheses of lactones 8 and 9 to clarify the
anomaly.

The synthesis began with a lithium naphthalenide
mediated 1,2-addition of chloride 14 into cyclohexenone,12

which was followed by oxidative rearrangement with PCC,
furnishing α,β-unsaturated ketone 16 (Scheme 1). Next, the
1,4-addition of methylmagnesium chloride under Gilman-type
conditions afforded doubly-masked keto-aldehyde 17. This was
followed by an intramolecular aldol reaction under acidic con-
ditions, which furnished cis-β-hydroxyketone 18 as a single dia-
stereoisomer, as reported in the literature.13 Next, silyl
protection of the alcohol, vinyl triflate formation and iron-
catalysed cross-coupling14 with methylmagnesium chloride
furnished alkene 21 in excellent overall yield. Desilylation
using TBAF followed by a T3P-mediated acylation and Regitz
diazo transfer reaction, generated the key diazo substrate 24.
This was then primed to undergo the one-pot C–H insertion/
olefination sequence, which was performed under the

Fig. 2 C–H insertion/olefination sequence for conformationally
restricted cyclohexane derivatives 5a–g. Reaction conditions: (i)
Rh2(oct)4 (2 mol%), CH2Cl2, 45 °C, 16 h; (ii) KOBu-t, THF, −78 – 0 °C, 1 h;
(iii) (CH2O)n, 0 °C – rt, 1 h. Yields of isolated product. a β-lactone
product 7a, (12%) was also isolated; b β-lactone product 7b, (19%) was
also isolated. Fig. 3 Eudesmanolide natural products 8–13.
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standard conditions, affording α-methylene-γ-butyrolactone 8
in 64% yield with complete stereo- and regiocontrol. The
relative configuration of 8 was found to be in line with that
observed in the model studies and was assigned unambi-
guously by X-ray crystallography.15 With the identity of our syn-
thetic sample 8 confirmed, its spectral data were then
compared with those reported for the natural product mori-
folin A; significant differences between the 1H NMR data of
cis-decalin 8 and the natural product were clearly observed,
thus confirming that morifolin A had indeed been incorrectly
assigned. Thus it appears most likely that the natural isolated
material named morifolin A 8 is in fact the same as isocritoni-
lide 10, as suggested previously by Herz.10

The synthesis of the proposed structure of morifolin B 9
started with a common intermediate from the morifolin A
route, ketone 19, which was treated with TMSCH2Li to form
alcohol 25 (Scheme 2). This was followed by a base-mediated
Peterson olefination to generate exocyclic alkene 26, and sub-
sequent desilylation, acylation and diazotization as before, to
generate diazo substrate 29 in excellent overall yield. Then,
Rh2(OAc)4 catalysed C–H insertion16 and olefination in the
usual way, furnished lactone 9 as a single diastereoisomer
(which was again verified by X-ray crystallography),15 along

with a small amount of a cyclopropane side-product 30 (not
shown, see ESI†). The 1H NMR data of synthetic material 9
were again significantly different to those published for the
natural product,9 confirming that morifolin B was also in-
correctly assigned in the literature. Therefore, similarly to
morifolin A, it again seems most likely that the isolated
material named morifolin B 9 is in fact the same as critonilide
11, again as suggested previously by Herz.10

Next, attention turned to the synthesis of α-cyclocostunolide
12,17 a cytotoxic18 trans-decalin eudesmanolide natural
product with anti-trypanosomal19 and anti-coagulant activity.20

Its synthesis began with a two-step epimerisation of cis-
β-hydroxyketone 18 via an oxidation–reduction sequence,
which provided the desired trans-β-hydroxyketone 32,
in addition to diastereoisomeric cis-β-hydroxyketone 33
(Scheme 3).21

Then, the same sequence shown in Scheme 2 was per-
formed on each of these β-hydroxyketones, affording diazo
substrates 34 and 35 without complication. We were then
pleased to isolate α-cyclocostunolide 12 as the sole product
from the reaction of diazophosphonate 34 under the standard
one-pot C–H insertion/olefination conditions, with its spectral
data fully matching those of natural α-cyclocostunolide.17 In
addition, diastereomeric lactone 36 was also isolated from dia-
zophosphonate 35, and was again formed in good yield, via
selective equatorial C–H insertion.22

In summary, a highly regio- and stereoselective one-pot
C–H insertion/olefination protocol for the late-stage functiona-
lisation of conformationally restricted cyclohexanol-derivatives
has been developed. Exclusive formation of γ-lactones via
insertion into equatorial C–H bonds was observed and the
method was validated in natural product synthesis. Eudesma-
nolide sesquiterpene natural product α-cyclocostunolide 12
was synthesised in racemic form in high yield using this proto-
col. In addition, structures 8 and 9, originally assigned to the
natural products morifolin B and morifolin A, were prepared
and it was demonstrated unambiguously that the original

Scheme 1 Synthesis of α-methylene-γ-butyrolactone 8. Reagents and
conditions: (a) (1) 14, Li, naphthalene, THF, −78 °C; (2) 2-cyclohexen-1-
one, −78 °C – rt, 100%; (b) PCC, Al2O3, CH2Cl2, 0 °C – rt, 52%; (c) CuI,
LiCl, TMSCl, MeMgCl, THF, −78 °C – rt, 98%; (d) 10% aq. HCl, MeOH,
80 °C, 65%; (e) TBSOTf, 2,6-lutidine, CH2Cl2, 0 °C – rt, 99%; (f ) LHMDS,
Tf2O, THF, −40 °C, 80%; (g) Fe(acac)3, MeMgCl, THF : NMP (1 : 3), 82%;
(h) TBAF, THF, 65 °C, 88%; (i) diethylphosphonoacetic acid, DIPEA, T3P,
PhMe, rt, 100%; ( j) LHMDS, p-ABSA, THF, −78 °C – rt, 89%; (k) (1)
Rh2(oct)4 (2 mol%), CH2Cl2, 45 °C, 16 h; (2) KOBu-t, THF, 0 °C, 1 h; (3)
(CH2O)n, −78 °C – rt, 1 h, 64%.

Scheme 2 Synthesis of α-methylene-γ-butyrolactone 9. Reagents and
conditions: (a) TMSCH2Li, THF, −78 °C, 84%; (b) NaH, THF, 65 °C, 100%;
(c) TBAF, THF, 65 °C, 81%; (d) diethylphosphonoacetic acid, DIPEA, T3P,
PhMe, rt, 82%; (e) LHMDS, p-ABSA, THF, −78 °C – rt, 78%; (f ) (1)
Rh2(OAc)4 (2 mol%), CH2Cl2, 45 °C, 16 h; (2) KOBu-t, THF, 0 °C, 1 h; (3)
(CH2O)n, −78 °C – rt, 1 h, 45% (9) and 11% (30).
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structural assignments were in error. Finally, a fourth isomeric
α-methylene-γ-butyrolactone 36, which is apparently novel, was
also prepared.22 This chemistry is expected to be applicable to
a variety of synthetic targets possessing the α-methylene-
γ-butyrolactone motif.

The authors wish to thank Elsevier Foundation (M. G. L.),
the University of Salerno (M. D.) and the University of York
(W. P. U.) for funding, Dr Adrian C. Whitwood (University of
York) for X-ray crystallography and Euticals for providing T3P.
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Abbreviations 

Ac acetyl 

acac acetylacetonate 

acam acetamidate 

AIBN 2,2′-azobis(2-

methylpropionitrile) 

app. apparent 

aq. aqueous 

Ar aryl  

Bn benzyl 

br broad 

Bu n-butyl 

BtH 1H-benzotriazole 

conc. concentrated  

COSY correlation spectroscopy 

δ chemical shift 

d doublet 

DBSA 4-n-

dodecylbenzenesulfonyl 

azide 

DBU 1,8-

diazabicyclo[5.4.0]undec-

7-ene 

DCC N,N’-

dicyclohexylcarbodiimide 

DCE 1,2-dichloroethane 

DCM dichloromethane 

de diastereomeric excess 

DEAD diethyl azodicarboxylate 

DEPAA diethylphosphonoacetic 

acid 

DEPT distortionless enhancement 

by polarisation transfer 

DIBAL diisobutylaluminium 

hydride 

DIPEA N,N-diisopropylethylamine 

DMAP N,N-dimethyl-4-

aminopyridine 

DMF N,N-dimethylformamide 

DMP Dess-Martin periodinane 

DMS dimethylsulfide 

DMSO dimethylsulfoxide 

dr diastereomeric ratio 

DTBMP 2,6-di-tert-

butylmethylpyridine 

EDG electron-donating group 

ee enantiomeric excess 

eq. equivalent(s) 

ESI electrospray ionisation 

esp α,α,α’,α’-tetramethyl-1,3,-

benzenedipropionic acid 

Et ethyl 

ether diethyl ether 

EtOAc ethyl acetate 

EWG electron-withdrawing 

group 

FGI functional group 

interconversion 

h 

hex 

hour(s) 

n-hexyl 

HMBC heteronuclear multiple 

bond correlation 

HOMO Highest Occupied 

Molecular Orbital 

HPLC high performance liquid 

chromatography 

HRMS high resolution mass 

spectrometry 

HSQC heteronuclear single 

quantum coherence 

HWE Horner–Wadsworth–

Emmons  

IR infrared  
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J coupling constant (Hz) 

KHMDS potassium 

bis(trimethylsilyl)amide 

LDA lithium diisopropylamide 

LHMDS lithium 

bis(trimethylsilyl)amide 

lit. literature 

LUMO Lowest Unoccupied 

Molecular Orbital 

m meta 

m multiplet 

M molar 

Me methyl 

min(s) minute(s) 

m.p. melting point 

MRSA Methicillin-resistant 

Staphylococcus aureus 

n normal 

NaHMDS sodium 

bis(trimethylsilyl)amide 

NBS N-bromosuccinimide 

NMR nuclear magnetic 

resonance 

[O] oxidation 

o/n overnight 

o ortho 

OAc acetate 

oct octanoate 

p para 

p-ABSA 4-

acetamidobenzenesulfonyl 

azide 

PCC pyridinium chlorochromate 

petrol petroleum diethyl ether 

40–60 °C 

pfb perfluorobutyrate 

Ph phenyl 

PMP 4-methoxyphenyl 

ppm 

Pr 

parts per million 

n-propyl 

q quartet 

quin. quintet 

rbf round-bottom flask 

Rf retention factor 

RT room temperature 

s singlet 

sat. saturated  

sex. sextet 

t tertiary 

t triplet 

T3P propyl phosphonic 

anhydride 

TBAF tetra-n-butylammonium 

fluoride 

TBS tert-butyldimethylsilyl 

TEA N,N,N-triethylamine 

tert tertiary 

TFA trifluoroacetic acid 

Tf trifluoromethanesulfonyl 

(triflyl) 

THF tetrahydrofuran 

TIMO telescoped intramolecular 

Michael/olefination 

TIPS triisopropylsilyl 

TLC thin layer chromatography 

TMEDA  N,N,N’,N’-tetramethyl-

ethane-1,2-diamine 

TMS trimethylsilyl 

tpa triphenylacetate 

trityl triphenylmethyl 

Ts p-toluenesulfonyl (tosyl) 

UV ultraviolet 

vis visible 
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