
Applications and Variations of the Maximum Common

Subgraph for the Determination of Chemical Similarity

by Edmund Duesbury

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of

Philosophy

The University of Sheffield

Faculty of Social Sciences

Information School

October 2015



Edmund Duesbury Acknowledgements

Acknowledgements

I first wish to give thanks to my supervisors, Professor Peter Willett and Doctor John Holliday, for

their valuable input and guidance. This thesis would not have been possible without them. I extend

my thanks to several members of the chemoinformatics research group. My colleage James Wallace,

whose valuable information on KNIME and Java helped me with my work, particularly when getting

started. Matthew Seddon also, for his knowledge on mathematics. Jorge Valencia, for a number of

interesting nights and discussions. Nor Sani, Lucyantie Mazalan and Hasmila Omar I thank, for their

valable contributions of biscuits and chocolates to aid my cognitive functioning. Other members of

the chemoinformatics research group I give my thanks to, include Christos Kannas, Val Gillet, Hua

Xiang, Sonny Gan, Richard Sherhod and Eleanor Gardiner.

Several others gave support which aided the work of this project, including

• George Papadatos and Stephan Beisken, for introducing me to KNIME and KNIME develop-

ment

• Basil Hartzoulakis, for inspiring me to pursue a path in chemoinformatics

• Eleanor Gardiner and Dave Cosgrove, for their valuable input with an implementation of RAS-

CAL

• John May, for much advice on usage and support with the Chemistry Development Kit

• Yuanyuan Zhu and Professor Jeffrey Yu, for additional information on their graph matching

algorithm consR

• Andrew Dalke, for implementation details and explanations on his algorithm fMCS

• Peter Englert, for invaluable information in the usage of ChemAxon’s maximum common sub-

structure algorithm

• Hua Xiang, for information on chemoinformatics datasets as well as weighting schemes

• Andreas Bender, for some insightful discussions within the discipline of chemoinformatics

I would also like to give thanks to the Shodokan Aikido dojo in Sheffield, including (but not limited

to) instructures Scott Allbright and Celine Pagnier, particularly for their help in my progression to

shodan in Aikido, as well as teaching experience in non-academic matters.

2



Edmund Duesbury Acknowledgements

Finally I am grateful for the support of my family, including my parents, my sister and my grand-

mother Zona, which kept me going throughout my time at Sheffield. I look forward to working with

Will Pitt, along with my future colleages, at the chemoinformatics division at UCB Celltech, the

position of which I could not obtained without the help of my doctoral supervisors.

3



Edmund Duesbury Abstract

Abstract

The Maximum Common Substructure (MCS), along with numerous graph theory techniques, has

been used widely in chemoinformatics. A topic which has been studied at Sheffield is the hyperstruc-

ture concept - a chemical definition of a superstructure, which represents the graph theoretic union

of several molecules. This technique however, has been poorly studied in the context of similarity-

based virtual screening. Most hyperstructure literature to date has focused on either construction

methodology, or property prediction on small datasets of compounds.

The work in this thesis is divided into two parts. The first part describes a method for construct-

ing hyperstructures, and then describes the application of a hyperstructure in similarity searching in

large compound datasets, comparing it with extended connectivity fingerprint and MCS similarity.

Since hyperstructures performed significantly worse than fingerprints, additional work is described

concerning various weighting schemes of hyperstructures.

Due to the poor performance of hyperstructure and MCS screening compared to fingerprints, it was

questioned whether the type of maximum common substructure algorithm and type had an influence.

A series of MCS algorithms and types were compared for both speed, MCS size, and virtual screening

ability. A topologically-constrained variant of the MCS was found to be competitive with fingerprints,

and fusion of the two techniques overall improved active compound recall.
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Chapter 1

Introduction

Similarity in general is a highly subjective topic, which manifests differently depending on the task

at hand. In the discipline of chemoinformatics, molecules are often represented as graphs, and graph

theory has become a popular method for deriving hypotheses for chemical phenomena. An intuitive

method for calculating similarity involves the Maximum Common Subgraph (MCS), often referred

to in chemoinformatics as the Maximum Common Substructure. Briefly, the MCS can be thought of

as the intersection or overlap of two graphs, otherwise showing features shared between each graph.

Due to the inherently NP-complete nature of the MCS detection problem, extensive research has

been performed to yield accurate solutions in feasible time frames. Recent research has presented

methods that make it possible to perform similarity searching of large compound datasets. This thesis

focuses on using the MCS to search compound datasets, as well as to calculate the graphical unions of

molecules, referred to as hyperstructures, which to date have not been examined for searching large

datasets of compounds. Importantly, this thesis has three underlying objectives:

• To create MCS-based method(s) for the construction of hyperstructures

• To evaluate the computational feasibility of various MCS types, algorithms, and the hyperstruc-

ture concept in similarity searching of large datasets, typically in excess of 100 000 compounds.

• To compare the MCS-based methods with molecular fingerprints - an industry standard for

similarity-based virtual screening

Chapter 2 introduces the reader to the terms of graph theory relevant to the work being carried out

in this thesis. This is extended to chemical graph theory, describing what a chemical graph is, and

15



Edmund Duesbury Chapter 1: Introduction

outlining common methods of representing molecules, including the widely used types of molecular

fingerprint that are used for fast similarity searching. Literature on the MCS and hyperstructures is

then introduced, focusing on MCS computation and hyperstructure calculation. Some applications of

hyperstructures will be discussed, most of which are outside the domain of similarity searching.

Chapter 3 defines similarity searching in both graph theoretical and non-graph theoretical terms. A

diverse set of literature is discussed here, concentrating on similarity equations used in conventional

database searching. The activity cliff concept is introduced in this chapter, highlighting differences

between chemical similarity types. Some similarity visualisation methods (such as activity landscape

visualisation) are briefly covered. Data fusion is also overviewed here, detailing the types of data

fusion, and their uses in virtual screening.

Chapter 4 introduces the main body of experimental work concerning hyperstructures. This chapter

aims to address aspects of all three objectives, accomplishing the first objective of an MCS-based

hyperstructure construction method, in addition to examining and comparing its speed and recall in

similarity-based virtual screening of three large chemical datasets. Here, the hyperstructure con-

cept, an inexact MCS method (via data fusion), and a high performance molecular fingerprint data

fusion method are evaluated for virtual screening. Details of the similarity searching, including a sub-

structure similarity-based method for hyperstructures, are detailed here. The main conclusion from

this chapter is that the fingerprint method is the fastest and most powerful virtual screening method,

though fusion of the three techniques yields interesting results, and all three techniques complement

each other in the types of compounds retrieved. We also show the benefits of using an asymmetric

similarity coefficient when concerning hyperstructures, compared to traditional symmetric similar-

ity coefficients. Much of the work in this chapter was recently published as an article (Duesbury,

Holliday, & Willett, 2015).

Chapter 5 explores the second objective further, where recent work on weighting schemes at Sheffield

is applied to hyperstructure similarity searching. Objective three is also re-explored, as fingerprints

are compared with the weighting methods. Five different weighting schemes are used on hyperstruc-

tures whose edges are weighted, based on the frequency of overlap with the molecules that the hyper-

structure was trained on. Additional influences on the topology types found in molecules (i.e. rings

and chains) are assessed via the weighting schemes. The presence of artefacts referred to as “ghost

substructures” - features present in the hyperstructure that are absent from its training molecules - are

monitored throughout the searches.
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Chapter 6 focuses on objective two, although purely on MCS algorithms as opposed to hyperstruc-

tures. Objective three is also re-explored, as fingerprints are compared with the MCS methods. This

chapter evaluates various MCS algorithms and MCS types in similarity searching, in contrast to

Chapter 4 which uses one MCS algorithm for two graph-based techniques. To date, no extensive

comparisons of MCS algorithms have been performed in chemoinformatics since the turn of the mil-

lenium. This work continues a comparison of clique-based MCS algorithms carried out at Sheffield

in 1997, using both recent algorithms, as well as older algorithms which have been proven to have

high performances. This chapter presents three benchmarks, notably a set of compounds which are

challenging for exact MCS algorithms to compute in a short space of time. The virtual screening

performance of a subset of the algorithms and MCS types is also assessed, with particular attention

paid to whether an exact MCS is actually needed for satisfactory virtual screening, as opposed to a

viable and significantly faster inexact solution. This chapter also gives some insight into the relevance

of the tested MCS types to biological activity.

Chapter 7 concludes the thesis, offering some extensions to the work carried out on hyperstructure

and MCS similarity searching, as well as highlighting the main conclusions and worth of the research

carried out.
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Chapter 2

Hyperstructures and Chemical Graphs

2.1 Overview

The molecular hyperstructure is a somewhat neglected concept which originated not from graph the-

ory, but from chemistry itself. The hyperstructure has a distinct set of properties that makes it po-

tentially attractive for a number of applications in the discipline of chemoinformatics. This chapter

overviews the concept of graph theory, in both chemical and mathematical terms. A selection of

methods for analysing graphs is introduced, mostly with a focus on chemical graphs. The subgraph

problem is then introduced, along with methods for analysing and finding subgraphs. This then leads

onto the hyperstructure concept, which is introduced first with a description of its history, along with

details on methods for constructing, searching with, and applications of hyperstructures.

2.2 Graph Theory and Chemical Structures

2.2.1 Introduction

Ever since the first widely accepted publication was presented by Leonhard Euler in 1736 on the

Seven Bridges of Königsberg, graph theory has developed into an independent subject. Euler’s paper

presented the idea of attempting to visit the four land masses of the city by crossing each of the seven

bridges exactly once. In abstracting this problem as a graph, the problem is more easily visualised.

Simply put, a graph is a set of vertices or nodes, that may or may not be connected to other vertices by

edges or arcs (Figure 2.1). In Euler’s example, the vertices represent the four land masses, whereas

the edges represent the bridges (Figure 2.2) (Diestel, 2006; Euler, 1741).
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node

d(v) = 2

edge

d(v) = 1

(a)

a a

b

c

a

1

1

12
d(v) = 3

d(v) = 2

(b)
Figure 2.1. a) is a graph where the nodes, edges and degree are indicated (for instance, the node with
a degree of 1 has its degree as it has only one edge incident to it). b) is a directed graph with arbitrarily
assigned node labels, and edge weights.

(a) (b)
Figure 2.2. A representation of the seven bridges of Königsberg (a), and in graph form (b).

Graph theory has been used to abstract many problems in the real world, both within and without

chemistry. This not only simplifies the problem domain, but also enables the application of graph

matching algorithms to more feasibly solve a problem (some of which will be explained later in this

chapter). An old example is the travelling salesman problem, whereby one wishes to find the short-

est distance to travel between a set of points. Graph theory has been applied to solve this problem

(Kruskal, 1956), and has also been applied to several others, including the analysis of the World Wide

Web, in which nodes represent web pages and edges represent hyperlinks (Broder et al., 2000), and
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Figure 2.3. A graph with its edges marked (left), and its line graph (right)

to address problems in natural language processing and artificial intelligence (Navigli & Ponzetto,

2012).

2.2.2 Graph Theory Terminology

Mathematically a graph, G, can be written as G = (V, E), where V and E represent the vertices and

edges respectively. An edge in graph theory is where two vertices are connected, or adjacent to each

other, thus the connected vertices v1 and v2 form an edge so that (v1, v2) ∈ E(G). E(G) and V(G)

represent the edge and vertex sets in a graph, respectively. The degree of a node is the number of

edges it possesses (Figure 2.1b). Note that a node may be connected to itself, which also counts

towards the degree of the node (though this phenomenon does not occur in chemical graphs). For an

undirected graph with a vertex count of |V | and an edge count of |E|, the graph density is defined as

D =
2|E|

|V |(|V | − 1)

thus, a dense graph would be one with a high level of connectivity - more nodes would be connected

between each other, than in a sparse graph. A graph which possesses nodes with descriptors is classed

as a labelled graph. Likewise, when edges have descriptors, a graph is considered weighted (Figure

2.1b). An example of a labelled weighted graph is the map of the London underground, where the

nodes represent each tube stop, and the edges are described by colour, each colour signifying a differ-

ent route. A directed graph has edges which point from one node to another. A flow diagram could

be thought of as a directed graph, for each edge directs a node to the next node in sequence.

A line graph is a graph which is constructed from the edges of an existing graph. Thus, an edge in
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a graph G is converted to a vertex in L(G). Two vertices are connected in L(G) if the corresponding

edges in G are connected to a common vertex (Whitney, 1932). An example of line graph derivation

is shown in Figure 2.3.

A complement graph Ḡ is where given a graph G = (V, E), the complement graph contains the inverse

of the edges, thus Ḡ = (V, Ē). In short, if one views a graph’s edge set as an adjacency matrix

(explained later), the complement set of edges Ē is where each element of the adjacency matrix is

inverted (0 is set to 1, and vice versa) (Bomze, Budinich, Pardalos, & Pelillo, 1999).

2.2.2.1 Graph Isomorphism. Two graphs G1 and G2 are isomorphic if there is a bijective, or one-

to-one mapping of vertex sets V1 → V2, and a likewise bijective mapping of edges E1 → E2. Simply

put, a graph is isomorphic to another graph if their topologies are identical. Figure 2.4 shows an

example of graph isomorphism (Diestel, 2006). Isomorphism between two graphs can be determined

via the use of matrix algebra. This however relies on eigendecomposition, the basic mathematics of

which can be read in (A. R. Leach & Gillet, 2007a).

Figure 2.4. An example of graph isomorphism. Identically numbered nodes in the two graphs corre-
spond to each other.

2.2.2.2 Subgraphs and Supergraphs. A subgraph of graph G is a graph G
′

such that G
′

⊆ G,

thus possessing a smaller set of the vertices and edges of the parent graph. An induced subgraph is a

subgraph G′ of a graph G where all edges connecting the used vertices V ′ in G′ are also present in G.

An edge-induced subgraph by contrast is a set of edges taken from the parent graph, in which vertices

incident (connected to) to the edges are included. A subgraph is a common subgraph of graphs G1 and

G2 if it is isomorphic to the subgraphs G′1 and G′2 of G1 and G2 respectively. The Maximum Common

Induced Subgraph (MCIS, Figure 2.5c) is the largest (in terms of vertices) induced subgraph com-

mon to G1 and G2, whereas the Maximum Common Edge Subgraph (MCES), is the largest number

of edges isomorphic to G1 and G2 (Diestel, 2006; Raymond & Willett, 2002b). The MCES can

be further abstracted into the connected (cMCES) and disconnected MCES (dMCES). The cMCES
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(Figure 2.5d) is the single MCES graph, where all the nodes in the subgraph are connected to at least

one other node in the subgraph. The dMCES (Figure 2.5e) by contrast, sometimes referred to the

maximum overlap set (MOS), can contain multiple (separated) subgraphs, representing all the edges

in common between the graphs being matched. It is important to distinguish between the MCIS and

the MCES. From this point and onwards in this thesis, the term Maximum Common Subgraph (MCS)

will be used if the distinction between MCIS and MCES is not important. As will be shown later

in this chapter, the MCS is an important concept in chemistry as it forms the basis for graph-based

similarity searching, as well as a method for constructing hyperstructures.

In order to understand the basis of what hyperstructures are, the concept of supergraphs must be

introduced. A supergraph quite simply is the converse of a subgraph, being that the parent graph of

a subgraph is its supergraph. A common supergraph GS of two graphs G1 and G2 is where there

exist subgraph isomorphisms from G1 to GS , and G2 to GS . The Minimum Common Supergraph

(MiCS) likewise is the common supergraph between the two graphs with the fewest nodes and edges,

of all possible common supergraphs (Figure 2.5f) (Bunke, Jiang, & Kandel, 2000). A simple contrast

between the MCS and the MiCS, is to think of the MCS as G1 ∩ G2, being the boolean AND, or

intersection of vertices and edges between two graphs. The MiCS in contrast could be thought of as

G1 ∪G2, being the boolean OR, or the union of the vertices and edges of the two graphs. This is not

strictly true, as some kind of mapping would be required to assign vertices from G1 to G2, otherwise

the union would simply be V1 + V2. More correctly, the MiCS would be the union of the MCS and

the difference graph (i.e. G2 - G1), where the difference and MCS are connected via a set of edges

formally referred to as the embedding (Bunke et al., 2000).

In this thesis, the term compression will be used to refer to the relationship of superstructure (and

thus hyperstructure) size, to the cumulative size of the graphs used to build the superstructure. A

more stringent, or “better” compression, refers to a relatively small hyperstructure given a set of

unique input graphs. This concept will be discussed in more detail later in this chapter.

2.2.2.3 Cliques. A clique in graph theory is a series of vertices such that each vertex is connected

to each other vertex. A maximal clique in a graph is a clique that cannot be extended - no nodes can

be added to it which can enlarge the clique (whilst keeping it a clique). A maximum clique of a graph

is a maximal clique of the largest possible size (in terms of nodes), bringing the possibility that a

graph can in fact possess multiple maximum cliques. Clique detection algorithms make up a group of

methods which are important for finding the MCS of graphs, some of which will be explained later

in the chapter. A triangle is an example of a clique, for all the nodes are connected to each other
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(Raymond & Willett, 2002b).

2.2.2.4 Vertex Covers. Given a graph G with vertices V and edges E, A vertex cover C is a subset

of vertices such that for all edges (u, v) ∈ E, u ∈ C or v ∈ C. Thus, it is a set of vertices which

“includes” all the edges in the graph, being that for each edge in the graph G, there is at least one

vertex in the cover which is adjacent to said edge. In analogy to clique terminology, a minimal vertex

cover is one where no vertices can be removed from a cover without losing edges (Figure 2.5g), and

a minimum vertex cover is a vertex cover of the smallest size in the graph. A related concept is that

of an independent set, which is a set of vertices in which no vertex is adjacent to another in the set.

A maximum independent set is actually the opposite set of vertices to its corresponding minimum

vertex cover (that is, subtracting a minimum vertex cover from a graph will leave a maximum inde-

pendent set). Of greater relevance to the work of this thesis, is that the maximum independent set of a

complement graph Ḡ corresponds to the maximum clique in the graph G. Likewise, given a minimum

vertex cover C in Ḡ, the corresponding maximum clique in G is V −C (Bomze et al., 1999).

2.2.2.5 Median Graph. The median graph concept represents the centroid of a set of graphs.

Nebeský (1971) was the first to mention the term “median graph” in the literature, defining first a

median vertex as the centre between three vertices, then the median graph itself as a graph where all

triplets of vertices in the graph have just one median. By contrast, Jiang, Müunger, and Bunke (2001)

defined a median graph g as the most representative graph of a graph set S with N graphs, in this

case by having the smallest sum of distances of its nodes to other nodes of other graphs. This can be

shown as g ∈ S given that the distance m of g to the members of set S follows the condition

m = min
( N∑

i=1

d(g, gi)
)

where d(g, gi) is the distance from the median graph to graph i from set S . Previous applications of

the median graph include the classification of graphs (Ferrer, Valveny, Serratosa, Riesen, & Bunke,

2010), optical character recognition (Jiang et al., 2001) and image clustering (Hlaoui & Wang, 2006).

2.2.3 Representation of Chemical Structures

Chemical compounds were represented by graphs for a long time before the discipline of chemoin-

formatics existed. The first recorded application of graph theory in chemistry was by Cayley (1857),

who used graph theory in an attempt to represent all the forms of paraffin with five atoms, the carbon

atoms being nodes with the chemical bonds as the edges. However, it was Sylvester (1878) who
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(a) (b) (c)

(d) (e) (f)

(g)
Figure 2.5. 2.5a is G1 whereas 2.5b is G2. 2.5c is the MCIS, 2.5d is the cMCES of G1 and G2,
and 2.5e is the dMCES. 2.5f is the MiCS. Note how the MCES has a greater coverage of G1 and G2
compared to the MCIS. 2.5g is a minimal vertex cover of G2 (The cover vertices being highlighted in
green).

generalised this in mathematical terms of graph theory, referring at one point directly to Cayley’s

work. Since these publications there are now three main methods of representing chemical graphs

computationally to date, these being linear notations, connection tables, and molecular descriptors.

2.2.3.1 Connection Tables. Also known as a coordinate list (May & Steinbeck, 2014), an early

method of rigorously defining compounds was the connection table (also known as chemical table

file). One of the first publications showing a format reminiscent of modern connection tables is by
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node

edge

(a)

1       

2       

3       

4       

5       

6       

OH       
7       

atom

bond

(b)



1 2 3 4 5 6 7
1 0 1 0 0 0 2 1
2 1 0 2 0 0 0 0
3 0 2 0 1 0 0 0
4 0 0 1 0 2 0 0
5 0 0 0 2 0 1 0
6 2 0 0 0 1 0 0
7 1 0 0 0 0 0 0


(c)

1 (2, 6, 7)
2 (1, 3)
3 (2, 4)
4 (3, 5)
5 (4, 6)
6 (1, 5)
7 (6)

(d)
Figure 2.6. Graph representations of the compound phenol. a) is an example of a graph, and b) is the
weighted (bond type) and labelled (atom type) version of that graph to represents phenol. c) is the
adjacency matrix of phenol, which depicts which nodes (row-wise) are bound to which other nodes
(column-wise). In this example, an edge’s weight is displayed (1 or 2 representing a single or double
bond respectively), and no edge is identified as a 0, rather than the binary statement of being adjacent
or not. d is the adjacency list of phenol, where for a given row (or node identifier), the adjacent node
identifiers are given in brackets.

Dyson, Cossum, Lynch, and Morgan (1963). Initially, they converted a molecular graph to a “cipher"

depicting a linear arrangement of the atoms with relevant bond types. The “cipher" was then as-

sembled into what was referred to as an “extended matrix," a simple form of connection table which

described which atoms were connected to which other atoms in the molecule, and the respective bond

types. Perhaps surprisingly, Hiz (1964) also presented an implementation involving cipher matrices

(apparently being unaware of the work done at CAS), though the cipher was assembled into an ad-

jacency matrix (Figure 2.6c) to describe which atoms (including hydrogens) were connected to each

other (and by what nature of bond). One of the most widely used connection table formats now is

the MDL MOLFile format, an example of which is shown in Figure 2.7b. The first three lines of the

format represent the header, which often stores the molecule’s name. The next line represents the
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(a) (b)
WLN Z1YQR CQ DQ

SMILES Oc1ccc(cc1O)[C@@H](O)CN

InChI InChI=1/C8H11NO3/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-3,8,10-12H,4,9H2/t8-
/m0/s1

(c)
Figure 2.7. Multiple representations of the neurotransmitter noradrenaline, these being a) a graph
representation, b) a connection table, and c) linear notations.

counts of features (such as atoms and bonds). The block afterwards gives the details of each atom,

including 3-dimensional coordinates and atom type. The final block gives bond information, with

details including which atom is connected to what and the order of the bond. An extension to the

MOLFile format is the Structure-Data File (SDF), which has become a popular file format as it has

the facility for an unlimited number of user-defined properties to be assigned to each atom (Dalby et

al., 1992).

2.2.3.2 Other Tabular Notations. It should be noted that, although connection tables are a very

useful method for representing molecules due to their (relatively) small storage requirement, there

are other tabular forms of representing graphs that are more practical in certain applications. The

adjacency matrix (Figure 2.6c) is less storage-efficient but gives all neighbours of a node in one row.

This form of representation is often needed in algorithms that rely on matrix operations (examples

of which are presented later in the chapter). Even more efficient and compact for storing adjacency

information is the adjacency list (Figure 2.6d) which has the smallest time requirements for finding

nodes that are adjacent to another. The reader is directed to May and Steinbeck (2014) for further
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examples and explanation regarding these three forms of graph representation.

2.2.3.3 Linear Notations. Linear notations of molecules are useful as, like connection tables,

they define the exact topology of a molecule with all the necessary atomic and bond features. Unlike

connection tables however, they are far more compact and thus have a far smaller storage footprint

(usually well under a kilobyte in size for a typical small molecule). Wiswesser Line Notation (WLN)

was the first comprehensive linear notation for chemistry, which defined a large and complex set of

rules for linear representation of commonly-occurring fragments in molecules (Wiswesser, 1954).

This would rely on using single characters to represent fragments, such as the letter “R" for benzene.

Due to its complexity however , WLN has since been largely superceded by the Simplified Molecu-

lar Input Line Entry Specification (SMILES). SMILES represents a more human-readable notation,

which computationally is also easier to calculate (Weininger, 1988). Sybyl Line Notation (SLN) was

also another line notation, which provided some alternative features to SMILES, such as a slightly

simpler ring definition system (Ash, Cline, Homer, Hurst, & Smith, 1997). SLN though is largely

restricted to Tripos applications (Certara Enhances SYBYL-X Drug Design and Discovery Software

Suite, 2013) and is thus not a widely supported format.

To illustrate the simplicity of SMILES, the SMILES of noradrenaline is represented in Figure 2.7c.

Hydrogen atoms are ignored in SMILES unless explicitly defined, and otherwise are inferred from the

valences of the non-hydrogen atoms. Atoms are denoted by their symbols, thus carbon is represented

by “C" for example. Lower case atoms represent their presence in an aromatic system (like benzene).

Brackets denote branches from an atom, such as the (O) representing the oxygen which branches

from a carbon atom (atom 9), which is otherwise part of a short chain attached to the benzene ring.

A number is used to denote a ring opening, with the same number used to close the ring later in the

line. Finally, the @ and / symbols are used to denote chiral bonds.

A somewhat more recent development in linear notation is the International Chemical Identifier

(InChI). Launched formally in 2005, InChI was developed to give a standardised notation for struc-

tural representation. InChI presents different layers of information of a compound separated with

forward slashes (Stein, Heller, & Tchekhovski, 2003). Using the example in Figure 2.7c, the InChI

version is the first item given (1, in this example), with the molecular formula after the first slash,

the connectivity of non-hydrogen and hydrogen atoms after the second and third slashes respectively,

then the remaining information relates to stereochemistry. InChiKey is a further development on

the application of InChI and internet searching, which compresses InChI into a 27-character hash

code to allow for faster searching. Only the first 14 characters are used to describe the topology,
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which in most cases is all that is required when performing compound matching (Heller & Mc-

Naught, 2009). InChI is used widely as a method for performing quick exact structure matching.

The ChEMBL database is one such example which uses InChI and InChI Key for searching (Gaulton

et al., 2011). The databases PubChem (Bolton, Wang, Thiessen, & Bryant, 2008) and ChemSpider

(Williams, Tkachenko, Golotvin, Kidd, & McCann, 2010) also use InChI as search tools. Although

it is quicker to search using InChiKey over InChI, the former has had reported some rare but never-

theless notable collisions (Pletnev et al., 2012). Thus, one should consider double-checking using an

alternative notation (such as InChI) when using InChiKey to look up identical molecules (when full

accuracy is essential).

2.2.3.4 Canonicalisation. It should be noted that for all of the formats discussed, multiple repre-

sentations of the same molecule are possible. Consider the SMILES of ethanol - this could be repre-

sented as CCO, but also as OCC. Whilst it is possible to attempt to generate all the non-unique forms

of a molecule and use these as a “dictionary" when doing structure searching, it is often computa-

tionally intractable as this gives rise to a combinatorial problem. Canonicalisation methods have thus

been developed in order to generate a unique representation of each molecule. Several of these exist,

so only a few will be discussed. WLN attempted to enforce canonicalisation via the alphanumeric

ordering of fragments. As an example, benzoic acid can be represented as QVR (hydroxyl-carbonyl-

benzene), or as RVQ. With alphanumeric ordering however, only QVR is allowed as Q is ordered

before R alphabetically (Vollmer, 1983).

Of importance is the Morgan algorithm, which was used to generate unique identifiers for the Chem-

ical Abstracts Service (CAS). Briefly, this algorithm relied on assigning each atom in a structure

a unique number based on the connectivity of its neighbours, its neighbours’ neighbours and thus

for the entire environment about an atom, the atoms with the greater “overall" connectivities being

assigned the lowest numbers (Morgan, 1965). CANGEN was developed by Weininger, Weininger,

and Weininger (1989) to generate a canonical form of SMILES. This relied on assigning chemical

descriptors to atoms as opposed to simply looking at degree sums, then converting the descriptors

to integers and ranking them. In order to ensure that each atom had a different number assigned, the

ranks were replaced with their corresponding prime numbers. In the next step, each atom was assigned

a new rank based on the product of the primes of its neighbours. In cases where ties still existed after

the prime products step (often happening in highly symmetric molecules), the ranks were doubled

and the lowest rank (selected arbitrarily in ties) was reduced by one. Sadly no formal specification

of CANGEN was actually published so a number of different canonicalisation types exist (O’Boyle,

29



Edmund Duesbury Chapter 1: Introduction

2012). In addition, the CANGEN paper made no mention of how stereochemistry was handled, and

used Daylight’s aromaticity system. The Chemistry Development Kit (CDK), for example, recently

made modifications to the way aromaticity and stereochemistry were handled in their method - two

such things which differ in a number of canonicalisation algorithms (May, 2013; O’Boyle, 2012).

Work however, is in progress to create a standard canonicalisation specification (O’Boyle, 2012).

The InChI format has a complex yet standardised canonicalisation algorithm which is somewhat sim-

ilar to the methodology of CANGEN. In brief, atoms are ranked in a structure in order of element

type, and then valency. These ranks are then used to represent each atom as its neighbours (in other

words, each atom is assigned a descriptor consisting of the ranks of its neighbours), and the atoms

are then re-ranked based on the lexographical ordering of these neighbourhood descriptors. Some

additional minor steps are performed to ensure unique ordering, and some additional steps are taken

to account for tautomers and isotopes (Hull, Barnard, & Thomas, 2011).

2.2.3.5 Molecular Descriptors. Molecular descriptors represent a diverse range of properties that

can be derived from a molecular graph, though do not usually describe a molecular graph in its full

detail. These can be categorised into 1, 2 and 3-dimensional (1D, 2D and 3D) descriptors. A 1D

descriptor normally is a numeric value representing a property of a molecule on the whole, and thus

is rather generalised. Such 1D descriptors can include counts (such as the number of atoms, or

number of rotatable bonds) and physicochemical properties, including solubility. 2D descriptors are

properties which look at 2D aspects of a molecule, usually on the fragment level, and thus are more

specific to a molecule’s topology. 3D methods are concerned with the steric space that a molecule

can occupy, sometimes referred to as the conformations that a molecule can occupy (A. R. Leach &

Gillet, 2007b). Here we will focus primarily on 2D methods as these are the descriptors which are

most concerned with hyperstructures.

2.2.3.6 Molecular Keysets and Fingerprints. Molecular keysets, sometimes referred to as frag-

ment codes, are dictionaries of pre-defined fragments. Such dictionaries can be applied to search a

database of compounds, given that the fragments, or features of the database compounds have already

been defined. Traditionally the presence or absence of a feature in a molecule has been represented us-

ing a bitstring. With an example, assume that a keyset is made of 100 fragments. This would likewise

correspond to 100 respective bits in a query molecule, all initially set as 0 (or "off"). Upon identifying

a fragment in the molecule from the dictionary, the respective bit would be set to 1 (or "on") in the

query molecule’s bitstring. Molecular keysets were initially developed for use with punched card

sorters or optical coincidence cards (Willett, 1987), the original rationale to improve the efficiency
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Molecule Atom pair hash-code Example

C.X3 –2 –CX1 4603c2fa

O.X1 –3 –CX1 3a03d3c0

O.X1 –2 –C.X3 de658b6a

CX1 –3 –CX1 1fcf3d5d
Table 2.1
An example of the atom pairs method describing propanone. Atoms are represented by their atom
type, Pi electrons (represented as a dot), and number of non-hydrogen connections (X, then a num-
ber). The hyphens delimit the atom descriptors and the path distance. Hash-codes were generated
using a cyclic redundancy check hashing algorithm (crc32).

of structure and substructure searching (Christie, Leland, & Nourse, 1993; Hagadone, 1992). More

recently they have been used for virtual screening methods (M. Johnson, Basak, & Maggiora, 1988;

Krasowski, Siam, Iyer, & Ekins, 2009; Papadatos et al., 2009). The 960 keys released by MDL are one

example of a keyset, which were originally constructed to optimise substructure searching (Durant,

Leland, Henry, & Nourse, 2002).

Molecular keysets represent a poor method for uniquely defining molecules because of the ambiguity

of molecular representation. Several molecules may share the same collection of fragments, yet the

molecules differ as the fragments are arranged in different topologies. Furthermore, it is awkward

to update a pre-coded fragment dictionary for a large database of molecules, for the keyset must be

recalculated for each molecule. These problems, however, are unsurprising given that keysets were

not designed to fully describe a molecule’s structure in the first place. Thus, the application of more

rigorous notations like linear notations and connection tables is more suitable for defining structures

(Willett, 1987). The ambiguity of keysets, however, makes them far better suited to similarity and

substructure searches, which will be explained in more detail later in this chapter.

An extension from molecular keysets are hashed fingerprints, which describe a molecule with a

series of bits, but following an algorithmic generation of bits from a rule set, as opposed to using

a pre-defined dictionary of fragments. This can give an enormous variety of bits, and thus a far
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more diverse representation of compounds. Crucial to the development of hashed fingerprints is the

generation of fragments. Armitage and Lynch (1967) described one such method, where molecules

were abstracted first as atom-bond-atom pairs. These pairs were then linked to yield a series of chains

of atoms and bonds, which were common between two molecules. The method was ultimately used to

yield a non-redundant set of fragments, which could be used for describing molecules and performing

basic similarity calculations. Crowe, Lynch, and Town (1970) extended this work by describing two

types of fragments referred to as “augmented atoms" and “bonded pairs." The augmented atoms in

this case referred to taking an atom and encoding its immediate neighbours and bond types attached

to it, yielding a small fragment of a molecule. Bonded pairs encoded the information around a bond,

being the bond order, the two atom types on the bond, and the types of bonds attached to these atoms

(though not the atom types of their neighbours). A frequency analysis of the fragments generated

from a 5% sample of the CAS database was performed, which at the time contained almost 600 000

known synthesised compounds (Crowe et al., 1970). Adamson et al. (1973) encoded the aforemen-

tioned fragments into bitstrings, which were used as part of a presence-or-absence of feature screening

process. It should be noted that sometimes the term “fingerprint” refers simply to hashed fingerprints,

but in other publications the term may be used to refer to any method that generates a bitstring from

a molecule (Owen, Nabney, Medina-Franco, & López-Vallejo, 2011; Willett, 2009).

The atom pairs method described by Carhart, Smith, and Venkataraghavan (1985) was proposed as

a descriptor for Structure-Activity Relationship (SAR) analysis. The atom pairs method started by

selecting two atoms and describing them by their element type, the number of Pi electrons, and how

many non-hydrogen connections they had. The number of atoms between the two atoms (including

the atoms themselves) was also included as a descriptor. Hashing could then be performed to turn the

generated descriptors of a molecule into integers. This generated a simple yet descriptive fingerprint

for a molecule (Table 2.1).

Several other fingerprints have been developed since the atom pairs method. A selection of these will

be overviewed here, though the reader is directed to a review by Cereto-Massagué et al. (2015) for

more information on fingerprint types. Daylight introduced path fingerprints, a fingerprint similar to

the chain-building method of Armitage and Lynch (1967) which encoded descriptors of atoms along

paths of set lengths in a molecule. As an example, if a length of 4 was chosen then paths of 1, 2, 3 and

4 atoms were enumerated in a molecule (James, Weininger, & Delany, 2004). Extended connectivity

fingerprints, also known as radial or circular fingerprints, described a molecule via fragments instead

of paths, exploring the neighbourhood of an atom in a radial manner, similar to the way the Morgan
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<63570918>       

<74621457>       

Molecule 1 Molecule 2
63570918 63570918
74621457 74621457
63570951 63570918
74621457 63539205
63570918 63539205
63539205 63539205

(c)
Figure 2.8. An example of how extended connectivity fingerprints are computed for two molecules -
molecule 1 (top) and molecule 2 (bottom). a) Assuming a simple atomic descriptor of element type,
descriptors are first assigned to each atom. b) These descriptors are then hashed to give integers.
c) Neighbours of each atom are then taken into account. In this case, the neighbour integers are
appended to the atom in question and the enlarged descriptor is re-hashed into a different integer.
Only one neighbourhood iteration is shown but any number of iterations is possible.

algorithm worked. These were originally developed by Dubois (1973), who introduced this finger-

printing method to generate a series of fragments for compound screening. These were not however

referred to as fingerprints, instead as Fragments Reduced to an Environment that is Limited (FRELs)

(Dubois, Panaye, & Attias, 1987). Scitegic (now owned by Accelrys/BIOVIA and Dassault) however

used the method to generate fingerprints, starting with a variant of the Daylight atomic invariants rules

(Weininger et al., 1989) as a descriptor (Rogers & Hahn, 2010). Figure 2.8 gives an example of how

extended connectivity fingerprints are calculated.

2.2.3.7 Reduced Chemical Graphs. Reduced Chemical Graphs are loosely related to graph-

theoretical hypergraphs - graphs where an edge can represent several vertices in the graph that the

hypergraph has been abstracted from (Bunke, Dickinson, Kraetzl, Neuhaus, & Stettler, 2008). In

reduced graphs however, a vertex represents one or more atoms (and zero or more bonds) from a

molecule. Several forms of abstraction exist, where reduced graph nodes can represent ring systems
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and ring linkers, or functional groups (Gillet et al., 1987). Reduced graph similarity can be more

useful than conventional graph similarity for virtual screening, when one wishes to seek less apparent

structural similarities. This is particularly important in scaffold hopping, where relying on exact topo-

logical similarity may fail. Reduced graphs have been used outside of similarity searching, including

in clustering and Markush structure searching (Birchall & Gillet, 2010).

2.3 Substructure Searching

Modern chemoinformatics search techniques can be divided into three classes: exact; substructure;

and similarity searches. Exact searches test for the identity of one molecular graph with another,

which essentially translates to the labelled and weighted graphs being isomorphic, possessing the

same topology of atom and bond labels. Exact matching is now relatively trivial with the ability

to quickly determine isomorphism, in addition to standardised string matching, such as the matching

of InChI strings. Substructure searching tests for subgraph isomorphism, finding the presence of a

graph within another graph. Similarity searching by contrast attempts to produce a numerical measure

which represents a degree of shared features between two molecules (discussed in detail in Chapter

3).

The main use of substructure searching is the finding of analogues of a particular scaffold, which

is particularly useful when most similarity methods (which consider the molecule on the whole, as

opposed to the local level) would fail to exhaustively find such analogues (this however is not the

case when using asymmetric coefficients (Willett, 2009), though these will not be discussed here).

An example substructure search with noradrenaline is shown in Figure 2.9. A-77636 for example,

possesses a similar level of activity to noradrenaline, against the alpha-2a adrenergic receptor.

Substructure searching commonly relies on subgraph isomorphism - testing to see whether an sub-

graph within the database molecule(s) exists, which is isomorphic to the query. In chemistry it is

somewhat simpler to perform graph matching than in most other graph theory contexts, due to the

comparatively low connectivity (or in other words, the degree of each node is generally small) of

chemical graphs, and that molecular graphs are generally labelled and weighted. The latter property

in particular can be used to specifically tailor graph matching algorithms to hasten the search for

subgraphs, for labelled nodes are usually assigned to nodes of the same type in the other graph (and

the same being for bonds).

In an ideal case, graph matching algorithms are used to perform substructure searching. In practice
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Figure 2.9. A small number of hits from a substructure search using noradrenaline as the query, in
the ChEMBL14 database.

however, graph matching algorithms are somewhat slow and thus impractical for large databases.

Molecular keysets and/or fingerprints can be used to act as screens - molecules in the databases are

selected which possess all ’on’ bits that the query has, and then these molecules can be subjected

to the computationally intensive graph-matching algorithm to complete the substructure search. In

most cases involving substructure searching, the user is only interested ultimately in the presence

or absence of a given substructure rather than partial matches. This presence/absence requirement

is advantageous for improving the speed of substructure searching, as for a given query, the rarest

features can be prioritised for in searching (e.g. an arsenic atom is rarer than a carbon atom, so in

all database molecules the arsenic would be the first feature to look for). This was demonstrated by

Ehrlich and Rarey (2012), who showed that such prioritisation could dramatically improve search

speeds for substructure searching and make it easily feasible for searching of large datasets.

2.3.1 Subgraph Isomorphism Algorithms

Subgraph isomorphism algorithms will be briefly described here, primarily because a number of

MCS algorithms (in particular, subgraph enumeration algorithms) rely on subgraph isomorphism al-

gorithms to calculate both the cMCS and dMCS (Section 2.2.2.2). This of course means that one can

also view an MCS as a series of common subgraph isomorphisms between two graphs.
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2.3.1.1 Ullmann’s Algorithm. Ullmann’s algorithm is a backtracking algorithm (McGregor,

1982) that was developed to enumerate all subgraph isomorphisms between two graphs. It was widely

used at the time, and is often used as a benchmark for time-comparison of graph-matching algorithms

(Cordella, Foggia, Sansone, & Vento, 1999; Ehrlich & Rarey, 2012). The algorithm’s aim was to

create all the match matrices which denote the subgraph isomorphisms from G2 onto G1. A match

matrix has m × n rows by columns, where m is the number of nodes from G1 and n is the number of

nodes from G2. For a match matrix that denotes a unique subgraph isomorphism, each column is a

set of 0s with one of the elements of the column set to 1 - the 1 indicating that the relevant node from

G2 matches G1. The algorithm would start by constructing an adjacency matrix for each of the two

graphs being matched. An initial match matrix would be computed based on degree correspondences

of atoms (a 1 would be set for a pair of atoms if the degree in G2 was greater or equal to the atom in

G1). As the initial matrix would have an “excess" of elements set as 1, the algorithm would enumerate

every valid form of the matrix, each form differing by at least one of these elements (which would

be set as 0). In order to verify that a match matrix specified a subgraph isomorphism from G2 to

G1, a matrix C would be constructed such that C = MT (MB)T , where M is a match matrix and B is

the adjacency matrix of G2. If all of the 1-elements in the adjacency matrix of G1 were also 1 in C,

then a subgraph isomorphism was identified. Ullmann also described a simple refinement procedure

which set 1 elements in the initial match matrix to 0 based on the absence of a neighbour in the match

matrix (to the vertex in both graphs) which is also set to 1 in the match matrix (Ullmann, 1976). As

Ullmann’s algorithm enumerates all possible subgraph isomorphisms, it is somewhat unfeasible for

finding the MCS. However, it has been shown to be very effective for simply proving that a subgraph

isomorphism exists between two graphs (Ehrlich & Rarey, 2012).

Gouda and Hassaan (2012) applied two extensions to the Ullmann algorithm to get a boost in speed

of between 1 and 3 orders of magnitude. The first modification involved sorting the input vertices in

order of connectivity, where the first vertex in the list to be analysed was that of maximum degree in

the graph, whereas subsequent vertices were those which have the highest connectivity to previous

members in the list (in descending order). The second modification relied on the fact that a vertex

in the subgraph will have a neighbourhood of vertices and edges which are a subset of the vertices

and edges of the equivalent vertex in the parent graph. Thus, the labels of the vertices and edges will

also be identical. To exploit this, they constructed a bit matrix where the dimensions were the distinct

neighbourhoods of the 2 graphs being compared, a 1 in the matrix signifying a neighbourhood match,

and a 0 otherwise signifying no match. This bit matrix was thus used to perform vertex matching
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between the graphs, but at a significantly reduced search space.

2.3.1.2 VF2. The VF2 algorithm (Cordella, Foggia, Sansone, & Vento, 2001) was originally de-

veloped to test for subgraph isomorphism in directed graphs. The VF2 algorithm attempts to enumer-

ate subgraphs, given an input matching to start with (that is, anything other than 2-vertex subgraphs).

VF2 is a backtracking depth-first search, as opposed to a breadth-first search. It also introduced the

concept of a state - a subset of nodes (and edges) of the common subgraph thus identified. Although

originally designed to be used on directed graphs, the algorithm has been implemented in the CDK

for use with molecules to find the cMCS (Rahman, Bashton, Holliday, Schrader, & Thornton, 2009).

It applied heuristics which relied on matching nodes and edges in the states to find subgraph isomor-

phisms quickly, based on the topology of the immediate neighbours of a given state. VF2 alone has

been shown to be significantly faster than Ullmann’s algorithm for substructure searching, particularly

when the aim is to find only one subgraph isomorphism, as opposed to all (Ehrlich & Rarey, 2012).

2.4 Finding the Maximum Common Subgraph

Of particular relevance to this thesis is the MCS, for the MCS is often used in the construction (and

application) of hyperstructures in order to achieve the optimal overlap and compression. Aside from

hyperstructures, uses for the MCS include bioactivity prediction of compounds (Y. Cao, Jiang, &

Girke, 2008), protein function prediction (Borgwardt et al., 2005), similarity searching (Raymond &

Willett, 2002a), and in malware detection (Sirageldin, Selamat, & Ibrahim, 2011). It should be noted

that in chemistry, the MCES is generally more useful than the MCIS as the MCES covers a greater

proportion of the two chemical graphs than the MCIS does. In a hyperstructure context for example,

the MCES would be expected to give a superior compression effect. The MCIS however may be

more suitable for reduced graphs, where nodes in said reduced graphs encompass many features of

molecules. Also, the MCES can be unsuitable in reduced graphs due to tendency for there to be no

compatible edges between more complex reduced graph methodologies (Barker et al., 2006). This of

course highlights a use for the MCIS in identifying more sparse similarities that the MCES would fail

to identify between two graphs.

Determination of the MCS is an example of a Non-Deterministic polynomial time Complete prob-

lem (NP-complete). NP problems are decision problems (i.e. there exists a yes/no answer) such

that a solution is (currently) impossible to find in polynomial time, although given an “oracle" or a

previously found solution, the solution is verifiable in polynomial time. NP-complete problems are
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the hardest of all NP problems to solve, where an NP-complete problem can be reduced to another

NP problem in polynomial time. This has important implications, for if a polynomial solution can

be found for one NP-complete problem, then all other NP-complete problems can be transformed

to become solvable in polynomial time too. It should be noted that a related class of problems

exists called NP-hard, which are at least as difficult to solve as NP-complete. These however do not

necessarily have to belong in NP, and may not even be decision problems (although many do belong

in NP). An NP-complete problem can also be transformed into an NP-hard problem in polynomial

time. (Cook, 1971; Garey & Johnson, 1979). It should be noted that it is currently unknown whether

P = NP or P , NP (P representing problems solvable in polynomial time). There is a lot of interest

in solving this, so much so that a million dollar cash price will be awarded to the group who finds the

answer to this question (Carlson, Jaffe, & Wiles, 2006). Many NP-complete problems that exist are

currently tackled using approximate solutions in order to get a near solution, rather than obtaining the

exact solution. Other NP-complete problems mentioned in this chapter include the maximum clique,

minimum vertex cover and maximum independent set problems.

As mentioned previously, the maximum clique problem can be reduced to finding the minimum vertex

cover (or maximum independent set) in a complement graph (Bomze et al., 1999). Although we will

not review said algorithms here, interested readers are directed to a paper by X. Huang, Lai, and

Jennings (2006), where a number of MCS-finding approaches are reviewed, in addition to attempts

to use minimum vertex cover algorithms to obtain the MCS. In addition, two promising approximate

algorithms by (Pullan, 2009) and (Ugurlu, 2012) are fast algorithms which often yield optimum so-

lutions for the minimum vertex cover problem, which can otherwise be used to yield sharp lower

bounds for maximum clique algorithms.

2.4.1 Application of Cliques to Find the MCS

The idea of applying clique detection to find the MCS (specifically the MCES) of two graphs seems

unintuitive at first, particularly as the graphs themselves may not exhibit cliques . The key to this lies

in the modular product of two graphs, where maximum clique detection can be used to find the MCIS.

Maximum clique detection is an NP-hard problem, having been shown that it is hard to approximate

in polynomial time within a factor of n1−ε for n nodes in a graph, and ε = klogn, where k is a constant

and ε > 0 (Håstad, 1999). As will be shown later, several algorithms exist in the literature which have

been developed for clique detection.

The modular product of two graphs, sometimes referred to as a compatibility graph, is a graph with
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the vertex set V1 × V2 of graphs G1 and G2 respectively. If the edge set of G1 is E(G1), where an

edge is a pair of vertices (e.g. (u1, u2)), and by analogy for E(G2) and G2, then an edge between two

vertices exists in the modular product where

(ui, u j) ∈ E(G1) and (vi, v j) ∈ E(G2) or

(ui, u j) < E(G1) and (vi, v j) < E(G2)

with (ui, u j) being a pair of vertices in an edge in G1, and (vi, v j) being a pair of vertices in an edge

in G2. On construction, the maximum clique(s) in the modular product correspond to the MCIS

between the two graphs (Barrow & Burstall, 1976; Kozen, 1978). In weighted and labelled graphs,

an additional condition applies such that only nodes of the same label are matched, and likewise for

the edge-matching conditions, i.e:

w(ui, u j) = w(vi, v j)

where w() gives the vertex and edge labels for a pair of vertices in an edge.

Using Figure 2.10 to demonstrate the modular product, it can be observed that edges exist between

nodes of the modular product when an edge exists for G1 for a given two vertices, and an edge also

exists for G2. Vertices A and B in G1 and X and Y in G2 show this, for an edge exists between both

A and B in G2, and X and Y in G1, thus giving rise to an edge between vertices 1 and 5. An edge also

exists between vertices 1 and 12, for no edge exists between the corresponding G2 vertices A and D,

and neither is there an edge between X and Z in G1. No edge however exists between vertices 1 and

2, for whilst there exists an edge between X and Y in G1, vertex A is not joined to vertex A in G2.

It should also be noted that four cliques (and thus 2 unique MCISs) are highlighted in the example.

Clique (4,8,12) for example corresponds to the MCIS involving vertices (B,C,D) in G1, and (X,Y,Z)

in G2.

2.4.1.1 Adaptations to find the MCES. Though the method discussed so far finds the MCIS, it

is generally the MCES that is sought in chemoinformatics (the two are contrasted with their modular

products in Figure 2.12). Notably, finding the MCES is computationally simpler than the MCIS as

one must take into account both vertex and edge labels, rather than just vertex labels as in the MCIS

(and thus the modular product will contain fewer nodes and edges). Whitney (1932) proved that
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A

B

C

D

X Y Z
G1

G2

Figure 2.10. Modular product of two graphs G1 and G2, where G1 is a linear connection of 3 nodes
(X, Y and Z) and G2 a linear connection of 4 nodes (A, B, C and D). Edges in bold are part of the 4
cliques that exist, whereas edges in light grey are not part of these cliques. The numbers have been
assigned to each node of the modular product for referencing purposes.

G1 G2 L(G1) L(G2)

Figure 2.11. An example of the ∆-Y exchange phenomenon adapted from Raymond and Willett
(2002b).

it is possible to reconstruct a graph from its respective line graph, and vice versa. By analogy, it

is therefore possible to construct the MCES from the MCIS. When seeking the MCES, a modular

product should be constructed from the line graphs instead of the original graphs. Thus, a vertex in

the modular product will now represent an edge match between the two original graphs, instead of a

vertex match. Of course, one may instead construct the modular product directly from the original

graphs, but ensuring that a vertex in the modular product represents an edge match (while also en-

suring that the vertex labels on each edge also correspond). Further details of this methodology are

40



Edmund Duesbury Chapter 1: Introduction

given in Chapter 6, in section 6.2.2.

Reconstruction of line graphs back to the original graphs is possible in all cases with one exception

- the ∆-Y exchange, where the conversion of the two graphs in Figure 2.11 (the delta and the Y-

shaped graphs, hence the name ∆-Y) leads to two edge graphs which are isomorphic, as opposed

to unique. The ∆-Y exchange thus leads to erroneous results for the MCES when translating back

from line graphs to the original graphs, though such erroneous results are easy to prune - for the

presence of ∆-Y exchanges leads to results with different degree sequences (the MCES in 2 graphs

should have the same degree sequences). This line graph exploitation was used in the work of Koch

(2001) who referred to the modular product as the “edge product" when seeking the MCES. This

technique was also used in the MCS-finding algorithms TOPSIM (Durand, Pasari, Baker, & Tsai,

1999) and RASCAL (Raymond, Gardiner, & Willett, 2002b), the latter of which was developed here

at Sheffield.
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1 = (1,2)
2 = (2,3)
3 = (3,4)
4 = (4,5)
5 = (5,6)
6 = (6,2)

L(G1)

L(G2) MCES12L(MCES12)

(b)
Figure 2.12. Finding the 2.12a MCIS and the 2.12b MCES of two graphs, using the modular products
of G1 and G2. The nodes of the modular product cliques used are labelled (edges not shown) in both
instances. Note that the MCIS and MCES in this example are isomorphic, but as shown in Figure 2.5
that is not always the case.
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2.4.2 MCS Categories - Modifying the Modular Product

As one may have gathered, the modular product graph constructed from two molecular graphs can

be large, and more importantly, highly dense in edges. A large edge density often results from the

sparseness in degree of chemical graphs, leading to a more time-consuming search process for clique

detection algorithms. Although a more powerful clique detection algorithm can be used, it is also

worth simplifying the modular product without removing chemical meaning (or size) from the MCS

retrieved.

Kawabata (2011) introduced the topologically-constrained dMCS (tdMCS), a concept which has par-

allels in older publications, though is not defined as tdMCS in those publications (Barker et al., 2006;

Klinger & Austin, 2005; Takahashi, Sukekawa, & Sasaki, 1992). The tdMCS has the attractive prop-

erty of producing a dMCS that yields more realistic alignments, whilst being faster to calculate than

a conventional dMCS (i.e. if a geometric alignment is obtained using an MCS in a similar fashion to

Kawabata (2011), the application of a strict tdMCS will yield a non-distorted geometric alignment).

Although the dMCS is suitable for mapping multiple “fragments” between two molecules, no con-

straints on the distance between the fragments are considered. Consider the example in Figure 2.13a,

where two sets of edges are mapped which when, for instance, aligned in 3D or used to produce a

hyperstructure, would otherwise yield nonsensical results.

Construction of the tdMCS relies on the concept of topological distance T (a, b) between two atoms

(or edges) a and b. In this case, topological distance refers to the minimum path distance between two

features in the graph. The tdMCS is the dMCS resulting from a constraint applied when constructing

edges in the modular product graph:

|TA(ai, bi) − TB(a j, b j)| ≤ θ f or1 ≤ i < j ≤ |m|

for two graphs A and B. θ represents a threshold on the maximum allowed difference in distance

between two pairs of atoms (or edges). |m| represents the number of nodes in the modular product

graph. Essentially, any edge in the modular product that violates this constraint is deleted, the max-

imal clique(s) of which correspond to tdMCSs. Figure 2.13b is a tdMCS where θ = 0. Of note, the

same constraint can be applied to the cMCS to yield the tcMCS, in analogy with the tdMCS.

Kawabata (2011) remarked that the tdMCIS yielded better agreements with alignments of superim-

posed ligands in ligand-protein structures, than with the dMCIS. In addition, Klinger and Austin
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Figure 2.13. An example of two molecules where the dMCES yields an unsatisfactory alignment.
The two sets of offending edges are coloured in purple and scarlet. In the dMCES example, a pair of
corresponding edges are circled. In the first molecule the topological distance between the edges is
3, whereas in the second molecule the distance is 2. These edges are thus matched differently in the
tdMCES to satisfy the distance constraint of 0. Adapted from (Kawabata, 2011)

(2005) tested a neural network MCS algorithm on two types of MCS, referred to as “bond types” and

“topological distances.” The former was a concept similar to the dMCIS whereas the latter would be

a tdMCIS with a threshold difference of 0 bonds. The tdMCIS in this study was shown to generally

obtain superior recall statistics than the dMCIS in virtual screening of a 10102 compound dataset.

A complex set of heuristics was introduced by Raymond, Gardiner, and Willett (2002a), in attempt

to retrieve an MCS equivalent or near in size to the dMCS whilst significantly reducing the required

search time. The heuristics involved deleting both nodes and edges from the modular product graph.

Node deletion heuristics relied on local symmetry in benzene rings and/or aromatic rings with com-

mon substituents to remove redundant mappings. Edge deletion heuristics relied on exploiting fea-

tures in ring systems, as well as certain substructures containing large numbers of Carbon-Carbon

single bonds.

2.4.3 Clique Detection with Graph Colouring

Partly as a result of the application of cliques to obtain the MCS of two graphs, there have been a

number of algorithms developed to allow the detection of cliques. One class of algorithms relies

on the principle of graph colouring, an NP-complete problem which stemmed from the four colour

problem, a theorem which was initially proposed by Francis Guthrie in 1852. This theorem was even-

tually proved (computationally) by Appel and Haken (Appel & Haken, 1977). Originally colouring

was proposed as a method for colouring countries on a map (i.e. no neighbouring country would have

the same colour). Mathematically, graph colouring (of vertices) can be represented as a function c(v)

for a given vertex v, such that c(v1) , c(v2) when (v1, v2) ∈ E(G). As with maps, each vertex must

have a colour that is different from its neighbours’ colours. The smallest number of unique colours in
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Figure 2.14. A demonstration of a coloured graph which contains a clique (where the clique vertices
are {2, 3, 4, 5, 6}). The chromatic number here is 5.

a graph is denoted by its chromatic number, sometimes written as χ(G) for a graph G (Diestel, 2006).

On inspection of Figure 2.14 it soon becomes clear how graph colouring is useful in clique detection,

for all the nodes in a clique have different colours. Thus, a clique can be easily detected by merely

finding that for a given node, all of its neighbours possess different colours. It is ultimately this fact

that a number of clique detection algorithms rely on, despite graph colouring also being NP-complete.

2.4.4 Clique Detection Algorithms and the MCS

In its simplest form, a (backtracking) clique detection algorithm involves traversing a search tree

based on a recursive definition (Pardalos & Xue, 1994; Raymond, 2002)

ω(G) = max{1 + ω(NG(v)), ω(G \ v)}

where ω(G) is the maximum clique of graph G (usually the modular product in this work), NG(v) is

the set of vertices adjacent to vertex v in G, and G \ v is graph G with vertex v deleted. In pseudocode

the algorithm can be represented as in Algorithm 1. A high-performance algorithm based on this

methodology is the Carraghan-Pardalos algorithm (Carraghan & Pardalos, 1990), which follows a

non-recursive form of Algorithm 1. Here, the vertices in G are in ascending order of degree, where
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v1 has the smallest degree in G, v2 has the smallest degree in G \ v1, and vk is the vertex of smallest

degree in G \ {v1, ..., vk−1}.

Data: vertex set G (of modular product), current clique C, max clique ω(G)
Result: Maximum Clique ω(G)
Function FindCliques(G):

while G is not empty do
select v from G;
C = C ∪ v;
FindCliques(NG(v)) ;
if |C| > |ω(G)| then

ω(G) = C
end
G = G \ v ;

end
Algorithm 1: A simple backtracking maximum clique detection algorithm

Readers interested in finding more about clique detection algorithms are directed to a review by

Gardiner, Artymiuk, and Willett (1997), as well as a review on some alternative applications on

clique detection (Pardalos & Rebennack, 2010). A number of clique detection algorithms will now

be discussed.

2.4.4.1 The Bron-Kerbosch Algorithm. One of the most widely-used maximal clique detection

algorithms is the Bron-Kerbosch algorithm (Bron & Kerbosch, 1973). In its simplest form, the al-

gorithm can be represented recursively as in Algorithm 2. The algorithm is in many ways similar to

the basic maximum clique detection algorithm, in that it recurses through neighbourhoods of selected

vertices in the graph. However, a notable feature is that it keeps track of previously-used vertices

(represented as X in Algorithm 2) to avoid futile backtracking. In addition, it reports all maximal

cliques found, not just a maximum. A modification of the algorithm by the same authors, and more

formally defined by Cazals and Karande (2008), features the utilisation of a “pivot vertex” selected

from P∪ X. Vertices would only be considered for clique exploration if they were not adjacent to the

pivot vertex.

Koch (2001) developed three algorithms which extended the Bron-Kerbosch algorithm, all of which

relied on removing redundant cliques that did not contribute to finding the MCS when using the

modular (or edge) product of two graphs. The principle behind this was the application of c-edges.

Given a modular product of a graph with itself, the c-edges are the edges in the product where the

edges (e1, f1) and (e2, f2) possess a common vertex, where (e1,e2) is an edge in G1 and ( f1, f2) is

an edge in G2. In this case for clique detection, G1 is isomorphic to G2. A clique is spanned by
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Data: vertices in clique R, current vertex set (of modular product graph) P, previously-processed
vertices X

Result: Maximal Cliques C
Function BK(R, P, X):

if P is empty and X is empty then
add R to C ; // A maximal clique has been found

end
else

for vertex v ∈ P do
BK(R ∪ v, P ∩ NG(v), X ∩ NG(v)) ;
P = P ∪ v ;
X = X ∪ v ;

end
end

Algorithm 2: The Bron-Kerbosch Algorithm. The vertices of the input graph are represented by the
set P.

a connected graph of c-edges, thus Koch (2001) applied the modified Bron-Kerbosch algorithm to

find these connected c-edges, and then translated the set to the relevant vertices in the parent graph

to yield the maximum clique in G (Figure 2.16). The maximum clique of the c-edges, a c-clique,

corresponds to the cMCES between the two graphs - a problem which is simpler to solve compu-

tationally than finding the dMCES. A c-clique in graph theory terms is actually a path, instead of a

clique. Thus, the maximum c-clique is actually the longest path in a modular product (where only

c-edges are used). Primarily because of c-edge exploitation, it was found that Koch’s algorithms

were significantly quicker than the standard Bron-Kerbosch algorithm for finding the MCS between

graphs using this simple modification. This algorithm, despite the above description, can be applied

to non-isomorphic graphs and thus yields the maximal c-cliques between the two graphs.

2.4.4.2 TOPSIM. The MCES-finding algorithm TOPSIM relies on finding the maximum clique

in a reduced compatibility graph of the line graphs of two weighted graphs. The “reduced” com-

patibility graph is constructed where nodes are made only for matching atom and bond labels. A

node in the modular product here is labelled as (e, e′) where e is an edge from G1 and e′ is an edge

from G2 of the same edge label, and the vertices on the edge both have the same labels as in e.

Edges between these nodes are constructed in the same way as with the modular product, and like

the modular product, the maximum clique corresponds to the MCES. Another way of viewing this

concept is to think of it as a modular product of two line graphs, but where only nodes are kept which

correspond to edges that possess the same properties between the two graphs - edge weights, and

vertex labels (Figure 2.15).
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A branch-and-bound algorithm was employed for clique detection in TOPSIM, much like that de-

scribed in Algorithm 1. Starting from the root, the depth-first algorithm explores each node of the

tree (which represents a node in the reduced modular product). The next node chosen in the tree (or

rather, the node at the next depth level) is considered legal if it is connected to every other node in the

clique identified so far (or if no clique has been found, the first node is selected by default). Once all

possible nodes in a path have been explored, the algorithm backtracks, deleting nodes and exploring

different paths in the same branch (or perhaps exploring a different branch of the tree). The largest

clique found is thus returned upon exhaustion of the entire tree. The lower bound of the algorithm is

the maximum clique determined from a pruned version of the reduced modular product (the pruning

will not be discussed, though it aimed to preserve edges which had identical neighbouring edges in

both graphs). The upper bound by contrast is the maximum possible clique size. (Durand et al., 1999)

2.4.4.3 Babel’s Algorithm. Babel (1994) defined a colouring algorithm for finding the maximum

weighted clique of a graph. The algorithm starts initially with a random vertex, and then starts assign-

ing colours such that neighbours do not possess the same colour. The next vertex chosen in the graph

is the one with the greatest number of colours already assigned to its neighbours, in effect colouring

vertices in a localised order of degree. The algorithm used to find the maximal cliques is a branch

and bound algorithm. Branch and bound algorithms rely on building a search tree where each node

represents a potential solution to a problem, and the deeper down the search tree, the more specific the

solution becomes. The “bound" part of the name refers to the construction of upper and lower bounds

- evaluated solutions are removed if they fall outside these boundaries. “Branch" however refers to

the splitting of a solution into a more specific solution set. The upper bound for the Babel algorithm

is the largest assigned colour for a vertex, and the lower bound is the weight of the heaviest clique

found over the course of the algorithm. The algorithm works on the fact that if a vertex is in a clique

then the number of colours assigned to its neighbours must be equal to, or greater than the number of

colours in the greatest clique found (otherwise the vertex is eliminated from the graph being studied).

2.4.4.4 RASCAL. Raymond, Gardiner, and Willett (2002b) developed the algorithm RApid Sim-

ilarity CALculaiton (RASCAL) for both graph-based similarity searching, and MCES detection in

chemical structures. At its release date, the algorithm was shown to perform several times quicker

than three other algorithms (on a clique-detection level). RASCAL relies on an initial screening

process to significantly boost the speed of searching, before a more computationally intensive graph-

matching procedure is applied to find the MCES. The initial screening consists of two cost-based

distances, which are used as fast-performing screening tiers, so that an MCS search is only performed
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e5  C=C
e6  C-C

e'1  C-N
e'2  C=N

e'3  C-C
e'4  C=C
e'5  C-C

(c) Compatible edges of G1 and G2. The set on the left represents the first 3 edge comparisons,
whereas the set on the right is the other 3 comparisons. dashed lines indicate an edge correspondence
between G1 (left of each set) to G2 (right)
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(d) The modular product of the line graphs. Nodes in green are compatible (as in same edge and
edge-vertex labels between the two graphs, shown in Figure 2.15c). The maximal clique in the
reduced modular product (with the shown green nodes) is emphasised with bold lines.
Figure 2.15. the MCES-finding methodology of TOPSIM

when a pair of molecules passes both tiers (in other words, they are similar enough to qualify for an

MCS calculation). The first tier involves the calculation of a distance measure between two graphs,

based on summation operations of sorted degree sequences of two graphs. The second tier is similar

to the first, but instead of degree sequence, vertices are described using edge codes (of each edge

incident to the vertex). Edge codes here represent the edge label (which accounts for the fact that

chemical graphs are weighted), along with the two vertices on the edge.

The MCS algorithm of RASCAL is a branch-and-bound algorithm for finding cliques in the modular

product of two line graphs, with the condition that upon finding the MCES via the clique, the degree
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1

2

34

5

(a) G (b) G ×G
Figure 2.16. 2.16a is a graph G with its c-edges represented as dashed lines. 2.16b is the modular
product of G with itself, with the c-edges shown in bold. Note how the c-edges form a path, which
when translated to the relevant vertices yields the maximum clique in G.

sequences of the nodes of the relevant subgraphs are compared to investigate if a ∆-Y exchange has

occurred. Non-identical degree sequences indicate the presence of such an exchange, thus the clique

is ignored for MCES translation.

An alternative form of graph colouring is used, referred to as node partitioning in RASCAL. Nodes

in the modular product are initially grouped into colours or “partitions” based on whether they can

actually be neighbours with each other. In the case of the modular product, given all the vertex pairs

(vi, v j) in the modular product, those with the same vi are grouped in the same partition. Effectively,

as graph G1 would have n atoms, then there would be n partitions to start with. During each iteration

of the clique search, vertices remaining in the search tree can be re-assigned into other partitions

based on whether they are not neighbours with the existing nodes in a partition. This acts as a fast

method of shrinking the “chromatic number” (which also serves as an upper bound), as opposed to

re-colouring the graph with each iteration.

RASCAL utilises three different methods for calculating the upper bound bound, based on the size of

the candidate set of nodes to add to the clique. During a stage in the search process, the calculated

upper bound is calculated as the minimum of these three values:

• If the candidate set possesses less than 150 vertices, then a greedy graph-colouring algorithm

is used. The estimated chromatic number χ(G)is a potential upper bound. Graph colouring has

been shown to give a poor estimate of χ(G) as the size of the graph increased. It was found

that a range of 125 to 175 gave a reliable upper bound for this, thus the median of 150 is used

(Raymond et al., 2002b).

• If however, the candidate set possesses more than 150 vertices, then a projection bounds method
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is used instead, which calculates the upper bound as the sum of all the bond types which are

shared by the two graphs, between a given pair of two atoms (e.g. the minimum of each of C-C,

C=C, C=O bonds in G1 or G2).

• The number of existing partitions (after re-partitioning).

RASCAL also employes two pruning heuristics. Kikusts pruning is performed at each backtrack

instance of the algorithm in attempt to remove neighbouring nodes to a clique, which otherwise could

not possibly extend the clique. The other heuristic is used whenever the currently explored clique

has only one node. This heuristic seeks to find symmetric equivalence classes for the given modular

product node in the clique, between the two graphs. Such symmetric nodes are redundant, and thus

are pruned from the search. This heuristic is particularly useful in highly symmetric compounds, and

can thus hasten the search speed considerably.

Barker et al. (2006) used RASCAL to find the MCS in reduced graphs as a similarity measure. No-

tably, the MCIS and MCES were used, and two types of reduced graph were made. The first type

were “topologically-connected” graphs, where only nodes connected immediately to each other were

joined by edges in the reduced graph (in other words, a standard reduced graph). The other was

“fully connected,” where all nodes in the reduced graph were connected, and each edge was assigned

a weight based on the shortest path length from one node to the other in the topologically-connected

graph (essentially, a tdMCS where θ = 0). They noted that the MCIS on the fully-connected reduced

graphs yielded the best results in virtual screening. Although this seems surprising given that the

MCES is normally assumed to be more suitable as an MCS, the small sizes of the reduced graphs

made it less likely that edges (i.e pairs of nodes) would match between the two. Notably, the method

was also competitive with Daylight fingerprints in active compound and scaffold recall. A similar

piece of work (Takahashi et al., 1992) allowed for overlapping features in the reduced graph, and

edges in the fully-connected reduced graphs could have multiple weights (representing multiple paths

from one feature to another, instead of simply the shortest path).

2.4.4.5 Iterated Local Search. The maximal clique detection algorithm by Grosso, Locatelli, and

Pullan (2008) is an iterated local search procedure, relying heavily on neighbourhood rules to obtain

a maximal clique. The algorithm relies on three fundamental aspects: movement operators; node

penalisation; and restart rules. A modification of this method has been used by ChemAxon to give a

fast-performing dMCES method (Englert, P, Personal Communication, August 2013).
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Two operators were mentioned in this clique detection algorithm. The first is an "add" move, which

augments the current clique with an immediate neighbouring node not present in the clique. The

other operator is a "swap" move, which adds a node not adjacent to exactly 1 other node in the clique,

and then removing its neighbours in the clique (there should only be one neighbour to this). This

yields an equal-sized clique to the previous, but transformed to a different space in the given graph.

Node penalties are assigned to a node whenever it has already been featured in a clique computed

from a previous iteration, where the penalty is equivalent to the number of cliques it had featured

in. Finally, the restart rule returns a clique to a smaller former state. The simplest restart rule here

reverts the clique to a selected node in the entire graph, and its immediate neighbours. A more

complex restart rule involves only performing such a restart if the move is guaranteed to remove a

minimum fixed number of nodes (set as 4 in this article for optimum performance). This restart rule,

combined with the said node penalties and a node selection mechanism that gave priority to nodes

with the highest degrees, was claimed to give the best performances. However, the algorithm is non-

deterministic, with most stages relying on random selection to some degree, with little mentioned as

alternatives to random selection. Despite this caveat, as well as being a maximal clique algorithm (as

opposed to maximum), the algorithm obtained a maximum clique on the vast majority of tests in the

aforementioned article (Grosso et al., 2008).

2.4.4.6 van Berlo Algorithm. van Berlo, de Groot, Reinders, and de Ridder (2009) extends the

Bron-Kerbosch algorithm to find the maximal clique corresponding to the cMCIS and cMCES, in

a similar c-edge approach to that used by Koch (2001), as detailed in Figure 2.17. A set of addi-

tional heuristics were applied to improve search times. Notably, the upper bound of the algorithm

(the maximal clique size) is calculated using bipartite graph-matching of known c-edges and d-edges

connected to the nodes in the currently identified clique. All identified c-edges are also added at the

same time, rather than one at a time, which the authors claimed to improve search time. In addition,

the algorithm orders nodes in the search tree based on their “centrality” (an average of shortest path

lengths to every other node in the modular product), where those that are most central are selected

first. Another interesting heuristic in their article is the application of 68 “atom-types,” which are

assigned to atoms in the two molecules. An initial MCS is found by matching based on these atom

types (that is, these atom types are assigned as labels). The mapping from this MCS is then used to

seed the search for the actual MCS, in which the atomic symbol is used as the label. Interestingly this

method was to calculate similarity (using a graph-theoretic equivalent of the Tanimoto coefficient),

and was compared with extended connectivity fingerprint similarity. The authors remarked that the
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two methods were of comparable performance for predicting gene transcript levels.

Figure 2.17. Basic methodology of how the van Berlo algorithm finds the cMCIS between the two
subgraphs of the molecules depicted in a), using a modular product of the two graphs. b) depicts
the search tree for the two graphs. c) depicts the c-nodes (blue nodes, analogous to c-edges from
Koch (2001)) and d-nodes (green nodes) in the modular pruduct, when the clique in the search tree
has a size of 2. d) shows the c- and d-node matches. A bi-partite matching is constructed from this
in e) from which the size of the maximal clique can be estimated (that is, no node from one of the
two graphs can feature twice in the maximal clique). The matching here yields 4 edges, which when
added to the current clique size of 2 yields an upper bound of 6 for the maximal clique size. Adapted
from (van Berlo et al., 2009)
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2.4.4.7 MaxCliqueSeq. Depolli, Konc, Rozman, Trobec, and Janežič (2013) for their exact clique

detection algorithm “MaxCliqueSeq,” developed a more robust (approximate) colouring method than

that of (Babel, 1994) (Figure 2.18). Starting from the first colour (red, in this case), this colour is

assigned to the highest-degree vertex (instead of a randomly chosen one, as is the case with the Babel

algorithm). Neighbours of this coloured vertex are then removed from a set dictating the vertices

to colour, Vcopy. Once Vcopy is empty, the set is refilled with uncoloured vertices, and the colour is

incremented to the next colour. The next vertex chosen for colouring is the first available in Vcopy,

and the process is then repeated until all vertices are coloured.

In addition to the use of this approximate colouring algorithm, MaxCliqueSeq relies on ordering the

vertices in descending order of degree prior to searching for cliques. Interestingly, adjacency matrices

and working vertex sets in the algorithm are encoded as bitstrings to hasten their manipulation. The

actual algorithm is a depth-first backtracking algorithm, which relies on successive removal of non-

neighbours and identically-coloured neighbours to the current clique set (Figure 2.19). A pruning

condition is utilised:

|U | + |C| ≤ |Cmax|

where |U | is the size of the working set of vertices to explore, and |C| is the size of the current clique,

and |Cmax| the size of the largest found clique. Whenever this condition is breached, the algorithm

stops exploring that particular branch of the search tree.

2.4.4.8 Englert and Kovacs Heuristics. The work of Englert and Kovács (2015) has been

claimed by its authors to be the quickest inexact method for finding the dMCES between two

molecules. Most of the information to be presented here has been obtained through e-mail com-

munications with the main author (Englert, P, Personal Communication, August 2013), which com-

plements their recent publication on the workings of their algorithm in 2015 (Englert & Kovács,

2015). The algorithm seeks the maximum clique in the modular product of two graphs using the

fast (though inexact) clique detection method of Grosso et al. (2008). A number of heuristics are

applied both during and after the clique search, to improve the time performance, and to optimise

the MCS returned upon completion of the clique search. Two main heuristics are applied to bias

the search space. The first involves the calculation of a “connectivity score” which represents the

number of c-edges in a candidate node during clique expansion. Nodes with a higher connectivity

score are selected, biasing the search to find a less fragmented MCS. The second is a similarity
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Figure 2.18. Graph colouring algorithm of MaxCliqueSeq, the figure adapted from the same source
(Depolli et al., 2013). For V , translucent nodes represent previously-coloured nodes in the graph. For
Vcopy, vertices shaded in grey represent uncoloured neighbours of the vertex being coloured, whereas
unshaded vertices represent uncoloured non-neighbours. Translucent vertices here are otherwise un-
eligible for consideration for the given stage.
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Figure 2.19. Clique detection algorithm of MaxCliqueSeq, the figure adapted from the same source
(Depolli et al., 2013), where the graph being searched is that in Figure 2.18. Downward-facing arrows
represent the inclusion of a vertex into the clique set C, and crosses represent a vertex’s elimination

measure based on the Morgan algorithm, which is used to find estimates for good matching atoms (or

bonds) between the two graphs (Morgan, 1965). This similarity measure utilises the Daylight Atomic

Invariants rule (Weininger et al., 1989) to define atoms, so in essence is an extension of extended

connectivity fingerprinting. The reported similarity is defined as the maximum radius (in topological

distance) at which the environments are identical between the two atoms. During clique expansion,

nodes are selected in the modular product with the highest weighted sum of the scores from these

two heuristics. In addition, the “labelled projection” upper bound for the largest possible size of the

dMCES by Raymond, Gardiner, and Willett (2002b) is used as an early termination criterion (the

upper bound being defined before clique expansion started). From the author’s tests, this MCES

algorithm, with the heuristics, was able to find a maximal clique in just 1000 steps (compared with

100 billion as quoted in Grosso, Locatelli, and Pullan (2008) ). Additional heuristics are used to

modify the MCS post-clique search to improve the quality of the mapping; the quality score being

based on topological distance constraints, and the difference in degree between two bonds.
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2.4.5 cMCS via Subgraph Enumeration

One method of finding the cMCS is to enumerate all common subgraphs and identify the biggest

one(s) between two molecules. Unsurprisingly, this method can yield the cMCS as the largest frag-

ments in common are identified. An early reported technique in this category is by Armitage and

Lynch (1967), a technique proposed originally for reaction mapping as well as for determining chem-

ical similarity (Figure 2.20). In this method, all connected substructures of 2 atoms in length are

enumerated between each molecule. Those 2-atom substructures which do not match (atom and bond

types) are discarded. The remaining substructures are then extended by one atom, and the atom and

bond type filter is applied again. This process is continued until given an extension - no common

subgraphs exist, thus all fragments in common are retrieved. This method employs a small number of

heuristics, including a canonicalisation step for fragments (which involves checking the atom iden-

tifiers of the original fragment against its inverse), and removal of identical fragments (identical in

terms of atom identifiers in each molecule, not labels).

Varkony, Shiloach, and Smith (1979) extended the above algorithm for multiple “similarity defini-

tions,” enabling users to produce MCSs which ignored atom and bond types, topology-type matching

(i.e. ring atoms could not map to chain atoms) and even to take into account the attachment points

of a substructure in a molecule. This algorithm employs additional heuristics to hasten the search.

One important heuristic starts the algorithm with the smallest molecule of the two (or more) for

enumeration, as the smallest structure generally possesses the least substructures. Canonicalisation

in this case uses a key for checking, and duplicate fragments are removed based on isomorphism,

instead of their canonical keys. After the fragments are extended, edges that cannot be a part of any

larger common subgraph are marked so that they are not extended in future.

The algorithm by Takahashi, Satoh, Suzuki, and Sasaki (1987) largely continued the Varkony algo-

rithm but with a faster method for subgraph isomorphism, employing set reduction. An example is

shown in Figure 2.21. The atoms of the structures are represented as bitstrings containing atom, bond

type and degree information. This is a particularly quick method for facilitating subgraph isomor-

phism, given that the subgraphs enumerated were in canonical form. It is extremely quick to use

bitwise operators to compare atoms, owing to processors being specifically designed to efficiently

handle bitwise logic.

2.4.5.1 CDK Clique Detection Algorithms. The Chemistry Development Kit contains a selec-

tion of complementary MCS algorithms. CDK currently features two clique detection algorithms,
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Figure 2.20. A simplified example of the algorithm of Armitage and Lynch (1967) applied to cyclo-
hexone oxime and caprolactam. Fragments do not have atom identifiers shown, and thus identical
fragment types are not displayed. This means that although two cMCSs are yielded of different
chemical formulae, several mappings involving those two formulae are possible with this algorithm.

CDKMCS and MCS+ (Rahman et al., 2009). The CDKMCS algorithm is an inexact depth-first MCIS

search algorithm, which relies on finding the maximum clique in the modular product, in a similar

fashion to the Bron-Kerbosch algorithm. Search speed is enhanced using bitstrings to represent the
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H       3       C       1       

2       

CH       3       3       

atom
C N O ...

v1 1 0 0 ...
v2 1 0 0 ...
v3 1 0 0 ...

bond
S D T A
1 0 0 0
1 0 0 0
1 0 0 0

degree
1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

(a) Query substructure, v

H       3       C       1       

2       

3       CH       2       
4       

CH       3       5       

atom
C N O ...

u1 1 0 0 ...
u2 1 0 0 ...
u3 1 0 0 ...
u4 1 0 0 ...
u5 1 0 0 ...

bond
S D T A
1 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0
1 0 0 0

degree
1 2 3 4 5 6
1 0 0 0 0 0
1* 1 0 0 0 0
1* 1* 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

(b) File structure, u

v2 = 100|1000|010000
u3 = 100|1100|111000
v2 ∧ u3 = 100|1000|010000 = v2

(c) Relationship

Figure 2.21. Employment of bitstrings to compare atoms. Asterisks in the bitstrings of u show that
these bits are set as 1 despite not being otherwise absent features in the molecule, to facilitate the
usage of the bitwise and operator with the other molecule - referred to as the “maximum rule.” In
2.21c the application of the bitwise and operator to the two atoms v2 and u3 yields a result equivalent
to v2, thus v2 is allowed to match u3. Adapted from Takahashi et al. (1987)

search tree (being the clique nodes, extension nodes and forbidden nodes per iteration), though it

introduces a sharp cut-off of iterations (based on the sum of the atom count in the 2 molecular graphs)

to severely reduce computation time. MCS+ as implemented in CDK is the c-clique approach of Koch

(2001) with an improved version of the Bron-Kerbosch algorithm (Cazals & Karande, 2008), where

the McGregor algorithm is used to extend the solution, to yield the MCS. Often the CDK algorithms

have a time threshold, which is related to the sum of the number of atoms in the two molecules being

compared. MCS+ relies on said time threshold.

2.4.5.2 VFLib. A unification of VF2 in CDK with other MCS algorithms, called VFLib, was

developed in an attempt to improve the size of the MCS retrieved. On execution, VF2 must satisfy

one of two conditions:

• find an MCS which is isomorphic to one of the two input molecules

• the time limit (as used in MCS+) is not exceeded
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if either of these conditions fail, then the MCS+ and CDKMCS algorithms are both executed sep-

arately. The solutions from these are combined, and then extended with the McGregor algorithm in

attempt to yield a larger MCS.

A hybrid approach exists in CDK which combines VFLib, MCS+ and CDKMCS algorithms (despite

the latter two being used in VFLib anyway), referred to as the DEFAULT method. The two molecular

graphs in this method are first tested to see if one is a subgraph of the other. If this is not the case,

then CDKMCS is used. if CDKMCS timed out, or if the solution retrieved is not equal to the size of

one of the two input molecules, then VFLib is used to calculate the MCS (Rahman et al., 2009).

2.4.5.3 fMCS. A cMCS method that is descended from the Varkony and Takahashi algorithms

(Takahashi et al., 1992; Varkony et al., 1979) is fMCS from Dalke Scientific (Dalke, 2013; Dalke

& Hastings, 2013). Like the ancestor algorithms, the algorithm first deletes all atoms and bonds

that are not in common between the molecules being compared, yielding fragments. The largest

fragment from each molecule is taken, and the smallest of these largest fragments is optimistically

tested for subgraph isomorphism in the other molecule(s), and then extended. If this fails to yield

the cMCS, the method then starts with single bond fragments instead, which are enumerated from

the input graphs. Canonicalisation of fragments in this case rely on the Morgan algorithm to hasten

the process, and branches of the subgraph extension tree are pruned if they are predicted to have an

undesirable predicted maximum extension size.

2.4.6 Other MCS Algorithms

Described in this subsection are algorithms used to find the MCS, which we feel do not fit into other

categories previously described.

2.4.6.1 McGregor Algorithm. The McGregor algorithm is another backtracking algorithm ini-

tially proposed for reaction mapping purposes, in which atoms and bonds not in common between

the two graphs are used to generate the reaction maps (McGregor & Willett, 1981). The algorithm

acts to find the MCES in a labelled and weighted graph. It works in a similar way to the Ullmann

algorithm, though the match matrix is investigated in the algorithm on the matching of corresponding

edges, rather than vertices. The algorithm sets the initial match matrix to have all elements as 1, and

progressively sets elements to 0 where one edge in G1 does not correspond to the equivalent edge in

G2. Correspondence is checked via the construction of two matrices, one for each graph, with p × q

dimensions - p representing the nodes of the graph and q being the edges. A 1 for position (i, j) in one
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of these matrices indicates that node i is connected to edge j. An ordering scheme is also suggested

which is used to modify the order of edges explored given the currently found subgraph, such as to

maximise the number of corresponding edges between the two graphs as soon as possible. McGregor

commented however that maximising the coverage of corresponding edges early on did not always

yield the best solution to begin with. Thus, he created the “priority lists" in advance, in an attempt to

find which path to explore deep to maximise the chances of finding the MCES. (McGregor, 1982)
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Second  MatchAll vertices assigned
Vertex cover heuristics

(if required)
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Figure 2.22. An example of the anchor selection and expansion algorithm on two graphs. After calcu-
lating the similarity matrix the anchors are assigned, using nodes of high similarity and a greater-than-
average degree in the graph (highlighted as the first green vertices, being (u6, v5) and (u2, v4)). These
are used as expansion points for matching the remaining vertices. All possible pairs of neighbours of
the two anchors in this case are enumerated and sorted in descending order of similarity. The most
similar pair of which possesses vertices which have not already been matched is selected as the new
anchor (shown with a grey box surrounding the vertex names for the first and second matches). After
all the vertices have been matched (only the first two matching steps being shown), the graph is then
passed to the vertex covering heuristics in cases where the match is not optimal to generate the final
match matrix.

2.4.6.2 consR. Zhu, Qin, Yu, Ke, and Lin (2011) used an approach termed as anchor selection and

expansion, which generates a match matrix between two large graphs, in order to find the MCES, with

their approximate algorithm “consR.” The anchors here are vertices which possess a high similarity

and comparatively large degrees between the two graphs - using a similarity matrix S such that

M[u, v] = S l[u, v] × S g[u, v]
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where S l is the local similarity matrix and S g is the global similarity matrix (both similarities ex-

plained in more detail in Chapter 3). u and v represent vertices in G1 and G2 respectively. Anchors

are then expanded to match neighbouring nodes between the two graphs, using the local similarity

matrix. The expansion picks the neighbouring vertex sets to the anchors, and generates a list of

possible “candidate pairs.” The pair of vertices with the greatest similarity is thus registered in the

match matrix, and any other candidate pairs are assigned provided that none of the vertices in the pair

have been previously assigned. These assigned vertices then become anchors themselves for which

neighbourhood expansion is then repeated, until the whole graph has been analysed (Figure 2.22).

Zhu et al. (2011) implemented a refinement of the match matrix M based on vertex covers. Re-

finement in this approach relies on attempting to re-match nodes from the two graphs, which are not

present in the vertex covers. This is based on the idea that as vertex cover nodes are edge-rich, said

nodes are more likely to possess correctly-matched edges than ones outside the covers. Ideally a

minimum vertex cover is sought, as a smaller vertex cover yields more vertices to refine. It should be

noted however that the finding of a minimum cover is itself an NP-complete problem, so the authors

used randomly-determined minimal vertex covers instead for cover-based refinement. Minimal vertex

covers cannot have any vertices removed without conflicting with the cover constraints. Due to the

random determination of minimal vertex covers, this is one of the only MCS algorithms reviewed

here which is non-deterministic.

The authors defined a relationship to relate the two graph covers, which involves constructing a

weighted bipartite graph of vertices V(G1)−C and V(G2)− F2. F1 represents the matched vertices in

G1 which are in the cover C. F2 likewise is the same concept for G2. However, we are trying to infer

properties from G2 using only the cover from G1. F2 can therefore be inferred via the relationship

F2 = M[F1]. An edge is drawn between each node of one side of the bipartite graph with each node

on the other side, and a weight is allocated to each edge based on the formula

w(u, v) = |M[N(u) ∩ F1] ∩ (N(v) ∩ F2)|

where N(u) represents the immediate neighbouring vertices of vertex u. Weights essentially are as-

signed based on whether any of the neighbours of u are in the vertex cover, have already been matched

(are a member of M), which in turn correspond to any matched neighbours of vertex v in the inferred

cover of G2. For each node in the smaller of the two sets in the bipartite graph, the greatest weight is

chosen to determine which vertex v matches u. The reasoning behind this is better explained in (Zhu
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et al., 2011), along with the heuristics used to calculate vertex covers.

2.4.6.3 kCombu. Kawabata (2011) described a “build-up” algorithm referred to as “kCombu” for

finding the MCIS, circumventing the potentially costly requirement of constructing and searching

a modular product graph used in clique detection MCS algorithms (Figure 2.23). In the context of

generating the MCIS, atom pairs are generated (a match of an atom in one graph, with an atom from

the other graph) and sorted based on a heuristic score. A fixed number K of correspondences are

generated (where the first element is one of the top K pairs), and for each extension of each corre-

spondence, the next best-scoring pair is added. This process continues until all (matchable) atoms

have been used. The fact that multiple correspondences are produced, means that up to K MCISs can

be obtained (though in practice several of these MCS results can be isomorphic).

Figure 2.23. Overview of the build-up algorithm, adapted from (Kawabata, 2011).

The heuristic score consists of three distances. Namely, a distance representing the difference in

the number of neighbours between two atoms, an extended-connectivity value based on the Morgan

algorithm which involves summing up the degrees of neighbours (Figure 2.24), and a topological

distance similar to the tdMCS constraint described earlier. The lower the heuristic score, the better a

match the atom pairs is.

2.4.6.4 MultiMCS. An exact algorithm proposed by Hariharan et al. (2011) represents a “Di-

vide and Conquer” strategy to finding the dMCS. Briefly, the method relies on enumerating maximal

connected subgraphs; in this case using a modified form of the Bron-Kerbosch algorithm to find c-

cliques, although the subgraph enumeration algoriths discussed above can also be adapted for a similar

purpose. The maximal subgraphs are then sorted in descending order of size, and then sequentially
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Figure 2.24. The build-up algorithm extended-connectivity heuristic. A represents the first iteration
of the algorithm, where each atom is assigned a value equal to the number of heavy atom connections.
For the next iteration (B), an atom’s value now represents the sum of its neighbours. This is likewise
for C, the second iteration. Adapted from (Kawabata, 2011).

intersected. The combination of maximal subgraphs that yields the largest size is deemed the MCS.

Although this strategy had a power law in time taken - O(10MCS size); by breaking down one of the

two molecules to be compared into fragments (usually involving the arbitrary breaking of chain-chain

bonds), a performance of O(2MCS size) was obtained.

2.5 Chemical Hyperstructures

2.5.1 Development of Definitions and Properties of Hyperstructures

In translating graph theory to chemistry, an ideal hyperstructure represents the MiCS (Section 2.2.2.2)

of a set of chemical graphs. However, the concept of hyperstructures has actually existed before the

MiCS was introduced (Bunke et al., 2000). Technically, the first technique in chemoinformatics to re-

semble hyperstructures is Free-Wilson analysis, an early QSAR technique which relates a bioactivity

value to a set of congeneric compounds (a set of similar compounds based on a common lead) based

on substitutions of terminal functional groups, around a common scaffold. A simple multivariate

regression equation is constructed in Free-Wilson analysis with different weights for the presence or

absence of a given substituent (Free & Wilson, 1964).

Perhaps the first work to feature the hyperstructure concept most similar to the work in this thesis, lay

in a classification procedure introduced by Menon and Cammarata (1977), having several parallels

to Free-Wilson analysis (except that this method was not used for QSAR). A parallel piece of work

using the term "hypermolecule" was presented by Simon, Badilescu, and Racovitan (1977), who used

a minimisation procedure to create hyperstructures for regression analysis. The term "hyperstructure"

was also used to describe a somewhat related piece of work by Mercier, Fabart, Sobel, and Dubois

(1991) which first featured in 1973 (Dubois, Laurent, & Aranda, 1973). This latter concept represents

63



Edmund Duesbury Chapter 1: Introduction

not the MiCS of a set of chemical graphs, but the MCS of all the molecules (called the "focus" in this

case), where the rest of the molecule groups were abstracted into nodes forming a tree.

The origins of hyperstructure work at Sheffield lie in a conference proceedings by Vladutz and Gould

(1988). The theoretical concept was proposed to increase efficiency of substructure searching, as well

as reducing the storage requirements (of the queries). Thus, rather than performing a database search

with each individual query structure, the query structures are combined into a hyperstructure by a

given method to allow just one database search, typically via subgraph isomorphism of the database

structure onto the hyperstructure. This search time improvement was proven to be significantly faster

than the total time for the multiple substructure queries, at a later date (R. D. Brown, Downs, Willett,

& Cook, 1992).

Vladutz and Gould (1988) gave a somewhat loose definition of a hyperstructure, being a labelled and

weighted graph generated by superimposing similar structural graphs overlaying common elements.

The node and edge labels represent the source compound(s) from which the node or edge originated.

R. D. Brown et al. (1992) presented the more specific definition of “This is a pseudomolecule formed

by the superimposition of sets of molecules in such a way that areas of structural commonality are

only stored once,” which emphasises the point over a reduced storage overhead. The most specific

definition to date is from N. Brown, Willett, Wilton, and Lewis (2003), who suggested that a hy-

perstructure is “a single structure representation of a library, which is generated by the sequential

overlapping of each molecular graph in the library to the current hyperstructure. The overlapping

is carried out so as to minimise the size (in terms of numbers of nodes and edges) of the resulting

hyperstructure." In this thesis, this latest definition will be used.

Due to the nature of the way they are constructed, hyperstructures are not bound by the laws of va-

lence, as shown with the chlorine atoms with 2 connections in Figure 2.25d. Unlike typical chemical

graphs, they also often possess a high connectivity (several nodes having high degrees). The latter

point in particular has a negative impact on the search speed of graph matching algorithms, due to the

greater number of potential subgraphs that could exist between a hyperstructure and another graph.

Hyperstructures may also exhibit the phenomenon of “ghost" substructures - substructures which

occur in the hyperstructure, but do not actually appear in any one query individually (Figure 2.25e).

Formally, a ghost substructure Gg can be defined such that for the vertices (or edges) V(Gg) of the

ghost substructure,
⋂

o∈Gg

= ∅, where o is the set of query structures for the given atom/bond in the

hyperstructure that were used to build the given atom/bond. This definition is particularly useful for
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Figure 2.25. Hyperstructure constituents. (a), (b) and (c) represent the starting structures, which are
compressed to give the hyperstructure (d). (e) is a possible ghost structure. (f) depicts the query
structures that match to each bond of the ghost substructure. Atoms with non-standard valences are
underlined in red.

finding ghost substructures in a hyperstructure, for it shows that when applying the Boolean AND to

each edge from the matched substructure, a null set is returned if a ghost substructure is found. To

give an example using the information in Figure 2.25f starting with bond 7 = {a,c}, if we compare

this with bond 6 = {a} then the intersection is {a}. Intersecting this with bond 5 = {a,b} gives

{a} as well. However, intersecting this with bond 4 = {c}, then the result is {}, indicating that it

is a ghost substructure. It is curious to note that almost no work has gone into investigating the

effects of ghost substructures. Vladutz and Gould (1988) employed the Boolean AND method to

ensure that only structures found by the hyperstructure matched “genuine" substructures found in

the queries. R. D. Brown et al. (1992) likewise avoided the matching of ghost substructures. How-

ever, R. D. Brown, Downs, Jones, and Willett (1994) described a screening method for identifying

ghost substructures, relying on a dictionary of predefined fragments. Hyperstructures in this work,

would only be kept when all the fragments identified existed also in the input molecules. It has been

suggested that the effects of ghost substructures are detrimental to virtual screening and substructure

searching, but this remains to be proved (N. Brown, 2002).
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2.5.2 Construction of Hyperstructures

The NP-complete problem of hyperstructure construction was first approached on a theoretical basis

by Vladutz and Gould (1988), who introduced two approximate methods of hyperstructure construc-

tion (though it appears that they did not implement them). The first method aims to achieve maximum

overlap via the stepwise overlap of each molecule onto the growing hyperstructure, essentially in an

attempt to find the MiCS. Using the MCES as the initial alignment, the nodes and edges not already

in the hyperstructure are appended in some way as to match the topology of the query.

The other approach Vladutz and Gould (1988) suggested, referred to by R. D. Brown et al. (1992) as

“stepwise superimposition," starts with generating a giant clique. The clique consists of 100 carbon

atoms, and 20 of each heteroatom that the authors assumed would be present in the database structures

that the hyperstructure is built from. All the atoms are connected to each other (hence the clique),

giving a great number of bonds. Structures are fitted randomly to this via atom-label matching, in or-

der from lowest to highest numbered atoms in the graph (for example, carbons from 1-100, nitrogens

101-120). At the end of hyperstructure generation, those nodes and edges with no origin structures

assigned are deleted.

R. D. Brown et al. (1992) implemented and tested variants of these two methods in their work. The

maximal overlap method in this work uses the McGregor algorithm (McGregor, 1982) to implement

the MCS search. Before graph matching is performed, each node for a molecule has an “environment"

matrix calculated, which represents the number of types of atoms a given topological distance from

the atom in a molecule. The atoms of a query molecule can then be matched to the structure of

interest via environment similarity to speed up finding the MCS. McGregor’s algorithm is then used

to perform the subgraph matching in a stepwise fashion, increasing a fragment in size by matching

nodes adjacent to the fragment produced so far, from the current alignment(s). Being a branch-and-

bound algorithm, the upper bound is the maximum number of edge correspondences that could result

for each node, and thus the search tree is pruned of paths below this value. It should be noted that,

in contrast to the random order of molecules that Vladutz and Gould (1988) used, the authors found

that the quickest and most efficient way was to start with the largest structure, to follow with the most

similar structure, then to assemble the hyperstructure in this descending list of similarity.

The other implemented method was the atom assignment technique (Figure 2.26), based on the “step-

wise superimposition" method. Unlike the original method, however, no bonds are created to start

with (or rather, only the atoms are created), so bonds are added during the matching process instead of
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Figure 2.26. The mapping of two molecular graphs onto the pre-defined atoms in the atom assign-
ment method, where a dashed line indicates the mapping (starting from the atom highlighted in green,
which in the first graph is the atom with the greatest connectivity). The bonds in the hyperstructure
are not shown.

being deleted at the end. Query nodes are also mapped in decreasing order of connectivity, as opposed

to a random order. When tested, it was shown that atom assignment only had a minor detriment to

compression efficiency compared to the maximal overlap method, despite the significantly smaller

construction time.

It will be emphasised that whilst one seeks to find most “compressed” hyperstructure (otherwise the

MiCS) of all the input graphs, there is no proof that better compression actually improves the appli-

cation domain that the hyperstructure is being used for (such as similarity searching). It is assumed

here that one should obtain as best a compression as possible to minimise the occurrence of ghost

substructures (in particular, large ones). Consider the example in Figure 2.27. Two hyperstructures

are created, from two different alignments. Noting that the three constituent structures used to build

the hyperstructures are of different ring sizes, the latter hyperstructure has the rings joined side-by-

side, as opposed to “in-between" with the former. The former not only has a superior compression,

but also a reduced propensity for ghost substructures.
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Figure 2.27. The construction of two hyperstructures b) and c) from the query structures in a). b)
represents the hyperstructure with the best compression (obtained via MCS), whereas in c), the hy-
perstructure is constructed using a poorer overlap, resulting in a notably worse node and edge com-
pression than b). The ghost substructure which maps onto c) is shown as a grey dashed molecule.

2.5.2.1 Machine-Learning Algorithms for Hyperstructure Construction. R. D. Brown,

Downs, et al. (1994) implemented a Genetic Algorithm (GA) previously employed for graph matching

(R. D. Brown, Jones, Willett, & Glen, 1994) in an attempt to create a quicker-performing method than

the two exact algorithms just mentioned. Briefly, genetic algorithms are a class of random search al-

gorithms which work on the principle of Darwinian evolution to find an optimal solution to a problem

domain. This typically relies on modifying a set of solutions in a series of evolutionary steps, making

both small and large adjustments to each solution of each generation, and passing the best solution(s)

from each generation.

The said GA uses the dMCES (Section 2.2.2.2) as the template for building hyperstructures from two

compounds. Atoms from the query structure are mapped onto the hyperstructure, provided that the

atom types are the same, and that the bond between them possess the same label and weight. The

fitness between a query and a hyperstructure is the number of correctly matched edges. Once the

mapping of optimal fitness had been found, any atoms from the query which don’t map are appended

to the hyperstructure. When applied to hyperstructure generation, the GA was found to have an almost
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5-fold improvement in speed compared to the atom assignment method (R. D. Brown, Downs, et al.,

1994).

N. Brown et al. (2003) also applied a GA based on the work of R. D. Brown, Jones, et al. (1994)

to generate and search hyperstructures. This algorithm uses Sybyl atom types (Clark, Cramer, &

Van Opdenbosch, 1989) instead of simply the elemental types for atom matching. An additional

feature added is the application of a meta-evolutionary GA to evolve parameters controlling the

population size (the number of chromosomes), and the number of operations that the algorithm runs

for. N. Brown (2002) also investigated the effect of compound diversity on the properties of the GA,

finding that, perhaps unsurprisingly, compression ratios were worse than when using a random set of

compounds of equivalent size.

In contrast to MCS and genetic algorithm-based supergraph construction, Han, Wilson, and Hancock

(2015) used an Expectation-Maximisation algorithm to construct supergraphs from a set of input

graphs. This work finds the median graph from the training set to initialise the supergraph. The

subgraph is then modified for each consecutive input graph by means of minimising a concept called

“code-length,” which manifests as a sum of the probability of finding a training set graph in the super-

graph, and the von Neumann entropy of the supergraph. This diverges from the previously discussed

approach of finding a supergraph of minimal “compression.” Ultimately, this approach was used in

both classification of several types of object (including classifying mutagenicity of a compound set),

as well as for clustering via PCA.

2.5.3 Predictive Applications of Hyperstructures

The first example of a hyperstructure being used to predict properties was by Menon and Cammarata

(1977), using a set of moderately dissimilar drugs from six therapeutic classifications. These were

manually and arbitrarily overlapped into a scaffold containing thirteen nodes which represented var-

ious functional groups or atoms from each molecule. The 10 most variable of these 13 substituents

were converted into standardised molecular refractivities for the given group present from a given

input drug molecule (see Figure 2.28 for a simplified example), and the data submitted to Principal

Component Analysis (PCA) in a moderately successful attempt to classify the compounds by one of

their six therapeutic classifications.

Mercier et al. (1991) used their concept to build regression models to predict glucuronic acid conju-

gation capacity for a set of alcohols. In this method, each subsequent node along each tree path of
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Figure 2.28. A simplified example of the superstructure usage by Menon and Cammarata (1977)
resembling the methodology of Free-Wilson analysis. The three compounds in 2.28a are overlapped
to yield the superstructure in 2.28b. A tabular representation of the substituents is shown in 2.28c,
and the molecular refractivities standardised with respect to chlorine for the groups is shown in 2.28d.

the constructed hyperstructure (from the alcohols) represents a more complex or greater substituent,

which in turn is more specific to a lower number of the input molecules. These nodes also contain

properties related to the said functional groups which are used to generate regression models. The

hyperstructure model marginally outperformed a Free-Wilson model and a Hansch analysis (reduction

of compounds to 1D descriptors and building a regression model from these).

Simon et al. (1977) described a process for generating hypermolecules, using a "standard" molecule

as the starting point (usually a highly active molecule against the target in question). The construc-

tion processes of this method relies relies on obtaining the best assignments for a molecule’s atoms

to the given hypermolecule by minimising an error function for activity prediction. Notably, this

work uses the Minimal Topological Difference (MTD) approach, which assigns to each node of the

hypermolecule, -1 if is occupied in the standard molecule, +1 if it is not, and 0 if it is irrelevant for

steric fit (that is, the node has no atoms from the given molecule assigned to it). The sum of these

gives the MTD, which the authors used in a regression equation to model activity.

The hyperstructure concept was further extended to give rise to the Activity-Weighted Chemical Hy-

perstructure (AWCH). The AWCH is a hyperstructure in which each edge is weighted with an asso-

ciated activity and inactivity at each edge, these being based on the numbers of active and inactive
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molecules which have been mapped to the given edges. It was claimed that AWCHs should have an

advantage over techniques such as substructural analysis (Nisius, Vogt, & Bajorath, 2009) due to the

ability of the AWCH to better take into account a molecule’s topology and the topology’s relation

to activity. Though, when the AWCH concept was used in a substructural analysis experiment, it

was found to be less effective at enriching for active compounds than the 988-bit hashed UNITY

fingerprints. The reasons for this were however never explored, for this virtual screening work was

performed as an afterthought and did not represent the main focus of the work. One suggested possi-

bility was that “rogue" ghost substructures introduced noise into the searches (N. Brown, 2002).

The work of Klinger and Austin (2006) is essentially a more elaborate investigation into the AWCH,

using the Bron-Kerbosch algorithm instead of a genetic algorithm for finding the MCIS (as opposed

to the MCES). The MCIS in question is topologically constrained, where the topological distance (θ)

is set to 0. The method is concerned with finding the maximum weighted clique when performing

similarity searching, and thus uses the Bron-Kerbosch algorithm to find the maximum cliques with

the highest sum of weights (the same weight definition as used in the AWCH concept, but for nodes).

The authors found that there was no significant difference between weighted and unweighted sim-

ilarity searching using their hyperstructures. On increasing the number of active compounds in the

hyperstructure (up to 5 reference molecules) the recall of the technique improved, though interestingly

introducing information from inactives worsened the results. The authors remarked however that the

inactive compounds were randomly selected, as opposed to being chosen as near neighbours of the

active reference compounds. Other experiments included removing weakly-weighted edges, which

had a detrimental effect on the recall (implying that weakly-weighted edges are still important in

active compound retrieval), and a comparison with MAX rule MCS group fusion (see chapter 3 for

information on group fusion), where no significant difference was found in recall between the two

techniques. Considering how extensive this study was - there is an implication that applying simple

frequency weighting to hyperstructures is futile, at least as an MCS-based technique.

A related concept to hyperstructures is Molecular Field Topology Analysis (MFTA), introduced by

Palyulin, Radchenko, and Zefirov (2000). The concept is related to Comparative Molecular Field

Analysis (CoMFA), except that MFTA does not align molecules in 3D. Instead, analagous to the max-

imum overlap method, it relies on finding the MCS to overlay molecules to generate the hypergraph

(in this case using clique detection on the modular product of two graphs). Using a vector to represent

descriptors for each atom and bond, a similarity coefficient is used to match atoms and bonds on the

two graphs based on these vectors, which was in turn used for both construction and application.
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Unlike previous methods described which have relied on screening databases, MFTA is a QSAR

method. MFTA uses Partial Least Squares (PLS) regression on derived descriptors from the con-

structed hypergraph, which are present on the query molecule. Though for the results given MFTA

gave more accurate test-set predictions than CoMFA on a set of congeneric compounds, no ability to

perform extensive scaffold hopping (or testing it on non-congeneric compounds) was demonstrated.

The authors commented however that when they reimplemented the GA by R. D. Brown, Jones, et

al. (1994), the GA performed worse than their overlapping method in terms of computation time and

compression quality.

A pharmacophore tool which is based on the hyperstructure concept is the Genetic Algorithm with

Linear Assignment of Hypermolecular Alignment of Datasets (GALAHAD) (N. Richmond et al.,

2006). Briefly, a pharmacophore represents a set of steric and electrostatic constraints which a

molecule must satisfy in order to bind to a receptor (Wermuth, Ganellin, Lindberg, & Mitscher,

1998). GALAHAD extends the MFTA method to three dimensions, creating an alternate alignment

method called a 3D hypermolecule. Starting from the first molecule, it initially assigns pharma-

cophore features to the molecule, and flexibly aligns features from this molecule to the features of its

nearest neighbour (derived from clustering using pharmacophore features), and continues for the next

molecules in descending order of similarity. A Procrustes transformation is then applied to the initial

alignment to maximise the overlap (a Procrustes transformation involving movement, rotation and

scale transformations, but otherwise no node or edge adjustments). A cost distance-based function is

used to calculate alignment quality, and is used to choose those features to remove which contributed

to large cost distances, thus generating a reduced feature set. After applying filters to remove geo-

metric incompatibilities, the final pharmacophores can then be applied to test the activity class of test

molecules, also allowing the user to select features in the pharmacophore based on how often they

appear in the set of molecules used to construct it. GALAHAD was used to align sets of ligands

from Protein DataBank (PDB) files (with known binding conformations), and in general managed to

reproduce the majority of binding conformations. GALAHAD has recently been used to explain the

binding hypothesis of certain small drug libraries (Pizzirani et al., 2008; Zhao, Yuan, Huang, Ji, &

Zhu, 2010), and has also been used to guide the development of novel CYP11B2 inhibitors (Lucas et

al., 2008).
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2.5.4 Caveats with 3D Methods

It is noteworthy to mention that most of the hyperstructure construction methods mentioned so far

are in two dimensions. The main reason for keeping to two dimensions is the problem of conforma-

tional complexity. Single, non-terminal aliphatic bonds in molecules are rotatable, and thus enable

a molecule to change shape to occupy a greater variety of 3D space, as opposed to being rigid and

hence possessing one shape. This is sometimes referred to as the conformational space of a molecule,

and thus must be accounted for when using 3D methods, for the 3D shape of a molecule is key in its

interaction with a receptor. A molecule with more rotatable bonds has more possible conformations,

and thus is able to access a greater range of conformational space. In receptor-ligand interactions,

only a small fraction (if not one) of these conformers represents an optimal shape for a binding inter-

action. The same applies for molecular alignment - when aligning two molecules it is often the most

overlapping conformations of each molecule that give the best alignment. It can be a time consuming

process to evaluate each individual conformation in a potentially vast set of conformers. Furthermore,

when aligning several molecules the optimal conformation(s) of each molecule must be chosen. Al-

though in most molecular alignment problems it is preferable to select low-energy conformations for

alignment (the majority of bound ligands in receptors are of near-minimal energy conformations),

several low-energy conformations can still exist for a molecule, which also increases with the number

of rotatable bonds. Therefore, the 3D alignment of a hypermolecule is an NP-complete problem that

can possess a time requirement far beyond simply aligning the conformations of two molecules. The

majority of the methods discussed generally rely on using a large number of molecules to construct

hyperstructures, so 3D alignment is somewhat unviable. For GALAHAD (and other pharmacophore

construction tools) this problem is simplified as, when applying the pharmacophore, a set of discon-

nected features is being aligned, as opposed to the atoms and bonds of query molecules. Furthermore

only a small number of compounds (i.e. below ten) are used to construct the pharmacophore when

alignments are made (A. R. Leach, Gillet, Lewis, & Taylor, 2010).

2.6 Conclusions

This chapter has introduced graph theory in both a mathematical and chemical context, in addition

to a number of ways of representing molecular graphs. Exact structure, substructure and similarity

searching have been introduced along with methodologies for each, particularly in the context of the

MCS. Hyperstructures have also been defined, and the history of their development up to now has
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been overviewed.

RASCAL and the Ullmann algorithm are notable benchmarks for comparing with other algorithms

for finding the MCS. It is key to note that there is still a need for fast-running algorithms for finding

the MCS between graphs, as much work is still underway on both approximate and exact algorithms

to date. The work by both Gouda and Hassaan (2012) and Zhu et al. (2011) indicates a movement

towards taking into account neighbourhood information of a node in graphs to find the MCS. The

majority of MCS algorithms reviewed here are all back-tracking algorithms.

Hyperstructures have been constructed using three methods. The first relies on using the MCES to

overlap structures and then append new groups. The second method relies on starting with an excess

of atoms of a number of element types, and assigns query structure atoms (and bonds) to the excess

and removes any un-used atoms at the end of the procedure. The third method relies on the usage

of GAs to construct hyperstructures, based on maximising the number of correctly-matched edges.

The latter two methods have been shown to be faster than the first, mainly due to the fact that the

then slow MCS-searching procedure was the limiting step. However, both of these methods are also

non-deterministic, producing different hyperstructures with each execution. Ghost substructures have

so far been neglected in all hyperstructure publications, and it is largely unknown what their effect on

database searching is. Most work involving hyperstructures also has primarily relied on using large

numbers of molecules to build hyperstructures, and the results when applying the concept to virtual

screening are somewhat lacking, with only Palyulin et al. (2000), N. Brown et al. (2003) and Klinger

and Austin (2006) attempting to use hyperstructures in some way to enrich for bioactive compounds.
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Chapter 3

Similarity Measures in

Chemoinformatics

3.1 Introduction

Computational similarity searching has a wide number of applications in chemoinformatics ranging

from retrieving analogues of a chemical series, to obtaining novel druglike molecules active against

a drug target in de novo design. This review will introduce the concept of chemical similarity, with

an emphasis on quantifying the similarity between molecules, using 2D graph theory techniques.

Chemical space and activity landscapes will be briefly discussed too, with emphasis on methods for

visualising similarity. In addition, the concept of data fusion will be introduced and how this fits in

with the hyperstructure concept discussed in the chapter 2.

3.2 What is Similarity?

An important point to start with is how similarity is realised in general. Similarity is in fact a highly

subjective property depending on what an individual is looking for and the objects being compared.

A good example would be to compare an apple, an orange and a basketball, and ask which of these

two objects are the most similar? One would perhaps think that as apples and oranges are both fruits

they are more similar, yet others would argue that the orange is more similar to the basketball because

of their colour and shape. Lin (1998) defines similarity in an Information Retrieval (IR) sense, being

that objects are more similar if they have fewer differences between them, and are identical if they

possess no differences. Ratcliff and McKoon (1989) in psychology argue that similarity in sentences
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relies not only on the shared characteristics but also on word ordering in a sentence. In addition to

the sharing of characteristics, Sanfeliu and Fu (1983) proposed another definition of similarity based

on edit distance - the number of operations required to change one object into another. An important

feature that such similarity definitions have in common is that a similarity measure can consist of

three aspects:

• A descriptor, or set of descriptors to represent each object (a number of which have been re-

viewed in chapter 2)

• A weighting scheme to assign differing degrees of importance to the descriptors used

• A similarity coefficient to provide a quantitative measure based on the proportion of descriptors

the objects have in common. (Willett, 2009; Willett & Winterman, 1986)

In chemoinformatics, when molecules are referred to as "similar," it usually refers to a similar topol-

ogy (or shape, in 3D) and similar content and positioning of functional groups between the two

molecules. Put more simply, they look like each other. The importance of similarity in chemoinfor-

matics is expressed in the similar property principle, which states that structurally similar molecules

have a tendency to exhibit similar properties (including biological activity). A widely cited reference

regarding the similar property principle is M. A. Johnson and Maggiora (1990), although similar

wordings of this exist in older publications (A. C. Brown & Fraser, 1868; Wilkins & Randić, 1980).

This explains why, in general, chemical analogues of a chemical series usually possess comparable

properties and bioactivity to other analogues. The Similarity Ensemble Approach (SEA) illustrates a

successful application of the similar property principle. SEA in brief performs a similarity search of a

test query against a database of drugs with known targets in order to predict the therapeutic properties

of the test compound, based on what ligands it is most similar to. This method has been used to

predict new drug targets of molecules (Keiser et al., 2009), and also to predict side effects of existing

drugs while explaining their mechanism of action (Lounkine et al., 2012). Interestingly, results from

SEA show that similarity searching can be used to predict new targets for molecules where their

known target has little sequence relationship and no evolutionary history to the new target - the only

link being the sturctural similarity between the ligands of the two targets. Boström, Hogner, and

Schmitt (2006) showed, using protein-ligand complexes obtained from the PDB, that similar ligands

generally exhibit similar binding modes for a given drug target (based on their relative orientations

in the binding sites). It has also been demonstrated that a QSAR model can accurately predict the

76



Edmund Duesbury Chapter 3: Similarity Measures in Chemoinformatics

activity of a new compound if it is sufficiently similar to the compounds used to build the QSAR

model (He & Jurs, 2005).

It should be briefly mentioned that the similar property principle is a rule of thumb and there are

always deviations from this. An example is shown in Figure 3.1 with a set of inhibitors against cy-

clooxygenase 1. Here, a reference inhibitor (Figure 3.1a) is contrasted with an structurally similar but

otherwise inactive analogue (Figure 3.1b), yet a dissimilar molecule with a different scaffold possesses

potency against the same inhibitor (Figure 3.1c). Cases involving two structurally similar molecules

with great differences in bioactivity (as shown in the aforementioned Figure) are termed activity cliffs.

A typical approach for activity cliff finding is R-group analysis, where chemists deliberately seek a

change in one side chain in the scaffold of a molecule to cause a significant change in bioactivity.

This, however, will lead to the creation of analogue libraries with a poor chemical diversity and a

scarcity of unique scaffolds (Xue & Bajorath, 1999). Readers who are interested in further reading on

activity cliff prediction are directed to the review by Guha (2012), with additional examples covered

in (Cramer, 2012; Griffen, Leach, Robb, & Warner, 2011).
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F       S       
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(a) Reference.
IC50 = 0.0205 µm

N       N       
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O       

O       

F       

F       F       

(b) Similarity = 0.301.
IC50 > 100 µm

OH       

OH       

OH       

HO       

(c) Similarity = 0.061.
IC50 = 4.713 µm

Figure 3.1. A set of Cyclooxygenase 1 inhibitors from (Zarghi & Arfaei, 2011). IC50 values are
for the COX-1 protein, and similarity values are ECFP6 Tanimoto similarity values to the reference
molecule.

Ultimately, this deviation stems from the way that a ligand interacts with a protein binding site, in that

often only a few key chemical groups in a molecule actually take part in the binding of a molecule.

This can often mean that two molecules with low structural similarity can bind to a target with similar

potency, often through the preservation of a small number of functional groups at a fixed geometric

distance from each other. Several techniques exist to try to identify such dissimilar molecules, the

process of which is often referred to as scaffold hopping (Schneider, Schneider, & Renner, 2006;

Schuffenhauer, 2012). On the other hand, two very similar molecules may differ only by one atom
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(for instance, the presence of a methyl as opposed to an ethyl group) yet possess orders of magni-

tudes of difference in binding potency. Activity cliffs can have several reasons for their occurrences.

The change of a single atom or bond may for instance, completely alter the binding orientation of a

compound in its receptor. In less profound cases, replacing polar groups with non-polar groups for

example, may significantly alter the activity depending on the original function of the polar group in

the receptor.

3.3 Weighting Schemes

The idea of applying weights to modify the results of searches existed well before chemoinformatics.

A good example exists in the field of information retrieval, where Spärck Jones (1972) suggested

prioritising rare search terms to improve result specificity, and demonstrated that weighted terms sig-

nificantly improved recall in document searching using key terms. Robertson and Spärck Jones (1976)

compared a number of weighting schemes in document retrieval. They noted that two assumptions of

independence held - that “the distribution of terms in relevant documents is independent and their dis-

tribution in all documents is independent," and that “the distribution of terms in relevant documents

is independent and their distribution in non-relevant documents is independent." This was in sharp

contrast to the application of different ordering principles, where both the presence and absence of

terms from documents made a large difference in accuracy, compared to just the presence of terms.

Willett and Winterman (1986) introduced weighting schemes to chemoinformatics, initially testing

three different weighting schemes. The first scheme tested was simply the frequency of a fragment

occurring in a molecule. The second scheme was based on the size of a molecule, assigning prefer-

ence to fragments in smaller molecules. The third was based on the frequency of a fragment in the

entire dataset, the scheme assigning preference to uncommon fragments in the dataset. These three

weighting schemes were tested using integer counts, and also using binary fingerprints (presence or

absence only). It was found that in virtual screening, the difference between binary weighting and

counts was profound; frequency weighting generally improving virtual screening yield over binary

weighting. However, between the three weighting schemes mentioned (in both binary and counts),

there was little difference in results.

More recently, Arif, Holliday, and Willett (2009) experimented with both database and query

molecule fragment weighting, notably using the Accelrys ECFC fingerprints (ECFP with frequency

weighting), which yielded the best virtual screening results out of all fingerprint types. It was found
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that symmetric weighting schemes, where the same weighting schemes are used on both reference and

database fingerprints, performed better than asymmetric schemes. Reasons for this related to differ-

ences in upper bounds between different weighting schemes. Interestingly, the worse the fingerprint

performed in similarity searching, the more the weighting schemes improved their performances,

with log-transforming or square-rooting the frequency generally being the best symmetric measure

for ECFC fingerprints. This added information on top of what was orignally reported by Willett and

Winterman (1986) is perhaps why frequency-based weighting schemes are not used commonly when

the industry standard of extended-connectivity fingerprints are used, for there is little to no benefit in

applying weights to such high-performance fingerprints. Work was also done on inverse weighting,

where a rare fragment is ranked preferentially, also in some cases yielding small improvements in

virtual screening ability with the ECFC fingerprints (Arif, Holliday, & Willett, 2010). A more recent

study by Holliday, Willett, and Xiang (2012) largely confirmed the other studies, though highlighted

the Cosine similarity coefficient as being more amenable to weighting schemes than the Tanimoto

coefficient.

All weighting in this section thus far has concentrated on frequency weighting, but there is no reason

why alternative weighting types can be used, particularly when searching for very specific com-

pounds. One example is by Stiefl and Zaliani (2006), who utilised a node-weighting scheme in

reduced graphs based on the 3D structure of the ligand-receptor complex, assigning weights to fea-

tures where interactions occurred. The weighting scheme was shown to outperform even the FlexX

2.0 docking method (Rarey, Kramer, Lengauer, & Klebe, 1996), in both terms of virtual screening

propensity and speed. Furthermore, fusion of the FlexX and weighted reduced graph method im-

proved recall slightly.

3.4 Similarity Coefficients

The similarity coefficient is the measure that is used to compare descriptors and generate a similarity

score. Several coefficients exist and have been used for similarity studies long before chemoinfor-

matics, and compared to weighting schemes, an extensive amount of research has been conducted on

coefficients. This review will highlight some of the more popular and useful coefficients in chemoin-

formatics, notably discussing two classes of coefficient - symmetric and asymmetric. Symmetric

coefficients give an identical similarity when comparing molecule A with molecule B, to comparing

B to A (exchanging the query for the candidate has no effect). Asymmetric, by contrast, may yield
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Coefficient Expression

Tanimoto
c

a + b − c

Cosine
c
√

ab

Russell-Rao
c
n

Forbes
cn
ab

Fossum
n
(
c − 1

2

)2

(c + a)(c + b)

Yule
nc − ab

cd + (a − c)(b − c)

Simpson
c

min(a, b)

Baroni-Urbani/Buser

√
cd + c

√
cd + a + b − c

Table 3.1
A selection of similarity coefficients which have been used in chemoinformatics. See subsection 3.4.1
for variable definitions

different answers for such an exchange. One should note that this is not an exhaustive review of co-

efficients. Readers are directed to an article by Todeschini et al. for a comprehensive list of similarity

coefficients (Todeschini et al., 2012), and Raymond and Willett for examples of coefficients used in

graph similarity (Raymond & Willett, 2002a). Note however, that Todeschini et al. have differing

definitions of symmetric and asymmetric coefficients to the terminology used here. A selection of

(binary) coefficients mentioned in this thesis is shown in Table 3.1.

3.4.1 Symmetric coefficients

Frequently, molecules are represented as bitstrings in similarity searching. The first molecule for

example, has bitstring B1 with a bits set to “on,” and with B2 and b being the bitstring and number

of “on” bits for the second molecule. B1 has the same length has B2. Arguably the most important

coefficient for similarity searching is the Jaccard Index (Jaccard, 1908), which was first developed

in comparing biological communities based on their species composition. Mathematically equivalent
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(and often far more cited) is the Tanimoto coefficient, which is the most popular coefficient for bit-

strings (Rogers & Tanimoto, 1960). This coefficient can be represented as

S T =
c

a + b − c

where

c =

n∑
i

δB1iB2in = |B1| = |B2| d = n − a − b + c

and δi j represents the Kronecker delta function for two values (bits, for example) i and j

δi j =

 1 if i = j

0 if i , j

More simply put, c is the number of bits that are set as “on” in both molecules, n represents the length

of the bitstring, and d represents the number of indices in each bitstring where the given bit is set to

“off” in both bitstrings. Bits, for example, could relate to fingerprints, where each bit represents the

presence of absence of a particular molecular fragment. This however assumes that the fingerprints of

the two molecules are of the same length. It also assumes that a bit of a particular position in the first

bitstring corresponds to the same structural feature in the other bitstring, at the same position. When

integer arrays (sometimes referred to as counts) are used instead of bitstrings, the parameters for the

coefficient are adjusted as

a =

n∑
i

x2
i b =

n∑
i

y2
i c =

n∑
i

xiyi

where xi represents the frequency of feature i in the first molecule, and yi the same for the other

molecule. Although this definition assumes that both arrays are of the same size, this can easily be

adjusted for when the fingerprints are of different lengths (Horvath, Marcou, & Varnek, 2013).

A related metric in graph matching is the Wallis distance (Wallis, Shoubridge, Kraetz, & Ray, 2001),

which uses the MCES as the basis for comparison. The coefficient for graphs G1 and G2 is represented

as

S W =
|G12|

|G1| + |G2| − |G12|

where |G12| is the number of edges in the MCES. For both coefficients, the closer the similarity is

to 1, the more similar the molecules are (1 signifying identity), and vice versa. It should be noted

81



Edmund Duesbury Chapter 3: Similarity Measures in Chemoinformatics

that fingerprint similarity is generally preferable to graph-based similarity in virtual screening, due to

its vast improvement in time performance with an almost negligible loss in enrichment over MCES

similarity searching (Raymond & Willett, 2002a). The two similarity types however can complement

each other, as they have the potential to retrieve different sets of compounds of similar average en-

richments (Raymond & Willett, 2002a; Willett, 2009). When using the MCIS instead of the MCES,

the values of |G1|, |G2| and |G12| can be used to represent atom counts instead of bond counts.

Holliday, Salim, Whittle, and Willett (2003) noted that similarity coefficients have an upper bound on

similarity which relates to the difference in size between two molecules being compared. They also

found that there was a tendency for the Tanimoto coefficient to select larger structures over smaller

structures in similarity searching. Although they identified that the Yule and Simpson coefficients are

not dependent on molecular size, their relative performance in virtual screening is worse than the Tan-

imoto coefficient. Interestingly, a modified form of the Russell-Rao coefficient was found to be biased

towards the selection of large compounds, as its upper bound of similarity increased as the bit density

of the database molecule increased relative to the reference molecule. The opposite was demonstrated

for a modified Forbes coefficient, which was found to be biased towards small compounds (Holliday

et al., 2003). Haranczyk and Holliday (2008) found that size-biased coefficients were detrimental to

clustering compounds, with the Russell-Rao and Forbes (amongst other strongly biased coefficients)

causing active compounds to be more spread amongst clusters.

3.4.2 What is the Best Symmetric Coefficient?

The standard symmetric coefficient used is the Tanimoto coefficient, first popularised by Willett and

Winterman after demonstrating that it outperformed five other coefficients in similarity searching of a

wide variety of small compound sets (Willett & Winterman, 1986). More extensive studies have been

performed more recently, using a far greater number of coefficients and compounds in the compar-

isons, obtaining comparable results. Holliday, Hu., and Willett (2002) for example also demonstrated

that the Tanimoto at the time remained the most suitable fingerprint for use in virtual screening.

Selection of diverse compound sets can be as, if not more, important than simply finding a virtual

screening method that is accurate at retrieving homogeneous active compounds, even if a severe

compromise in activity is required to retrieve a greater diversity of compounds. As inferred in the

previous section, choosing a similarity coefficient with a size bias may hinder the retrieval of diverse

compounds. Haranczyk and Holliday (2008) found that correlation coefficients generally outper-

formed association coefficients when used in both clustering and selection of diverse compound sets.
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However, the Baroni-Urbani/Buser coefficient exhibited a comparable performance in clustering, and

also retrieved a set of compounds with a size distribution most similar to the original dataset when

used to select a maximally diverse set of compounds. The simple match coefficient however retrieved

the greatest number of Murcko scaffolds. Al Khalifa, Haranczyk, and Holliday (2009) performed a

follow-up study involving non-binary coefficients, and found that in contrast to the previous study,

size bias in coefficients had no apparent effect in similarity searching and clustering. They identified

no clearly superior coefficient in their studies, though they recommended the Tanimoto and Dice

coefficients (along with two other association coefficients) as the most versatile in their studies. The

Cosine and Fossum coefficients were also notably powerful for use in non-hierarchical clustering.

An extensive study on 44 non-redundant binary coefficients was performed by Todeschini et al.

(2012). The Tanimoto coefficient was found to generally perform better than the majority of co-

efficients. However, two additional similarity coefficients (referred to as CT4 and HL) were found to

have slightly (but significantly) better recall rates than the Tanimoto on the MDDR and WOMBAT

databases (see Chapter 4 for descriptions of these databases), especially in the case of the latter. Also

of significance in this study is a set of multivariate statistics which shows which similarity coefficients

are similar to each other in terms of similarity value correlation. Notably, the coefficients could be

classified into four groups, which showed clearly in the plots generated from the multivariate statistics.

This has potential implications for choosing coefficients for similarity fusion, which will be discussed

later in this chapter.

3.4.3 Asymmetric Coefficients

Asymmetric coefficients have been studied less extensively in the literature than symmetric coeffi-

cients. One of the most classically cited asymmetric coefficients is the Tversky coefficient, originally

proposed in the field of psychology to account for differences in syntax when comparing one object to

another (for instance, the idea that the phrase "Turks fight like tigers" is different to the phrase "tigers

fight like Turks") (Tversky, 1977). The coefficient can be written as

S Tv =
c

α(a − c) + β(b − c) + c
α = 0 and β = 1→

c
b

α = 1 and β = 0→
c
a

where α and β are floating point values been 0 and 1. In addition, α may be replaced with 1 − β to

normalise the weights. Setting both values to 1 yields the Tanimoto coefficient, thus it is desirable

to have the two parameters different to ensure asymmetry, and throughout this thesis, α will thus be
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defined as 1 − β (Wang, Eckert, & Bajorath, 2007). If a represents the database molecule and b the

reference molecule, and α = 1 − β, a value of β close to 1 will yield results akin to substructure

similarity, whereas a value closer to 0 will bias the search towards superstructure similarity. An

example is illustrated in Figure 3.2.

HN       

(a)

N       
H       

CH       3       

(b)

HN       

H       3       C       

NH       S       

HO       

CH       3       

(c)

Figure 3.2. An example illustrating the different scenarios arising using the Tversky coefficient, the
similarity in this case being the MCES (number of edges in common). Here, molecule (b) is a sub-
structure of molecule (a). (a) has 17 edges, whereas (b) has 6. a represents the number of edges in
molecule (a), and b for molecule (b). c = b as molecule (b) is a substructure of (a). Using a β of 0.5,
a similarity of 0.522 may be obtained. With a β of 1.0 however, a similarity of 1.0 will be obtained.
Another molecule, molecule (c) by contrast is a superstructure of (a) with an extra 8 edges (25 edges
in total). If a now represents the number of bonds in molecule (a), and b representing the number of
bonds in molecule (c), a β of 0.5 will yield a similarity of 0.810. If β however is 0.0, a superstructure
similarity will be obtained, yielding 1.0 as the similarity.

A number of recent studies have been performed on the coefficient to assess the effect of the value

of β (quoted as α in these studies) in virtual screening. X. Chen and Brown (2007) showed that

putting increasingly high weights on reference compounds yielded improved hit rates over symmetric

searches. Wang et al. (2007) demonstrated that bit density has an important role in influencing the

results with the Tversky coefficient. When the bit density of the query molecule was higher than

the inactive compounds in the selected dataset (assuming actives in the dataset have comparable bit

densities to the query), then increasing β decreased similarity values for inactive compounds, for it

was more likely that the inactive compound would possess fewer relevant features - and thus were

penalised for feature loss. On the other hand, if actives have lower bit densities than inactives, then it

is advantageous to lower β to penalise feature gain. A similar issue exists when comparing molecules

of different sizes, for a given fixed molecule, it is likely that a larger molecule will exhibit more

features in common than a smaller molecule (Wang et al., 2007). Horvath et al. (2013), however,

found that a high value of β, 0.9, outperformed symmetric coefficients in every test when screening

against various target types in the ChEMBL database, even in the case of feature-sparse sets. They
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found that a low value of β was actually worse than a high value in terms of success rate for feature-

sparse sets. However, they did not compare the feature densities of the actives with the decoys, though

as the same decoys were used in all datasets, it is assumed that the superior performance of the high

β value overall can be attributed to actives overall being more feature-rich. Despite this, a low β still

marginally outperformed the Tanimoto coefficient on low density datasets, and the two values of β

retrieved somewhat complementary sets of compounds. This implies that perhaps both values of β

should be used in searching (referring to the Data Fusion section in this chapter). A high value of β is

also recommended by Daylight in their internal tests on the Tversky Coefficient (Daylight Chemical

Information Systems, 2011) .

Senger (2009) utilised the Tversky coefficient, using Daylight fingerprints as a descriptor, in a

substructure-search fashion to perform scaffold hopping on a number of ligands for drug targets. The

initial search however retrieved a large number of false positives, so the molecules were fragmented

via single bonds and the fragments were used with the Tversky coefficient again to refine the initial

list. This fragment-based filtering enabled the author to retrieve several molecules with different

scaffolds, on the basis that the other fragments surrounding the core were highly similar.

Unsurprisingly the Tversky coefficient is not the only asymmetric fingerprint that has been studied,

though it is easily the most popular. Yoshida, Shida, and Kindo (2001) argued that asymmetric simi-

larity is more suitable than symmetric similarity when comparing documents, proposing a coefficient

resembling the Tversky coefficient with an β value of 1.0 or 0.0 (depending on context). B. Cao,

Yang, Sun, and Chen (2011) used an asymmetric coefficient to predict the ratings that a user would

assign to an item, based on similar ratings by similar users. Mestres and Maggiora (2005) also review

a number of additional examples of asymmetric coefficients used in a number of disciplines.

3.5 Graph Theory Similarity

A number of concepts relating to graph similarity were already touched on in the previous chapter.

Subgraph isomorphism in particular is of great relevance, in which isomorphic graphs could be re-

garded as possessing maximum similarity, though several independent methods exist which attempt

to quantify graph similarity. Applications of graph similarity outside of chemistry include image

analysis (Evans, Wilson, & Hancock, 1995; Han et al., 2015), document clustering (Wang, Ni, Sun,

Tong, & Chen, 2011) and biometric identification (Aldridge et al., 2011). This section will attempt to

review a small subset of such similarty methods, a more detailed list of which is reviewed by (Conte,

Foggia, Sansone, & Vento, 2004).
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Typically graph similarity methods rely on two aspects to calculate similarity - a method of matching

graphs, and a similarity measure. Tsai and Fu (1979) introduced a cost distance function - a value

assigned for the transformation of one node into another. This was based on calculating differences

between properties assigned to each node in the two graphs being compared. Ultimately the distance

function was used with the maximum likelihood method to generate the best subgraph isomorphism

between two graphs. The same authors later extended the concept to allow for node insertion and

deletion (Tsai & Fu, 1983).

Sanfeliu and Fu (1983) went on to define two forms of graph distances - feature-based, and cost-

based. Feature distance was defined as the application of a measure (such as Euclidean distance) to

calculate the distance between vectors of descriptors for the graphs. Cost distance by contrast was

defined as the minimum number of operations required to transform one graph into another. It was

specified that this could be done either by transforming the first graph directly into the second, or

by using an external reference (termed a "grammar" in this work) to mediate the process. In this

work, a set of cost functions was devised, along with a grammar, in order to distinguish handwritten

characters, using an iterative process in order to find the minimum cost necessary for transformation.

Raymond and Willett (2002a) commented that feature-based distances correspond (though are not

limited) to the use of fingerprints, whereas cost-based distances correspond to the use of molecular

graphs directly.

Although a similar process could be applied with molecular graphs (albeit without the grammar due

to the way molecules are readily representable as graphs), it has been shown that the MCS actually is

related to cost distance, in that any minimal cost distance computation actually can be used to retrieve

the MCS of two graphs, and vice versa. MCS is related to edit distance through the relationship

d(G1,G2) = |EG1| + |EG2| − |EMCS |

This is a useful relationship, for no cost functions need to be defined, seeing as the MCS is generally

not arbitrarily defined. This relationship assumes the application of a certain cost function - where

node deletion and insertion have a cost of 1, identical edge and node substitutions have no cost, with

otherwise infinite cost if their labels differ (infinite cost meaning they cannot be performed) (Bunke,

1997, 1998). The previous chapter discusses a selection of methods used to determine the MCS of

two graphs, the rest of this section focuses on non-MCS methods to determine graph similarity.

Umeyama (1988) introduced a spectral similarity method between two graphs built on the isomor-
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phism eigendecomposition method (described in the appendix of A. R. Leach and Gillet (2007a)). By

multiplying the eigenvector matrix of one graph with the transposed eigenvector matrix of the another

graph with the same number of nodes, a similarity matrix could be obtained: S = U1UT
2 . Applying

the Hungarian algorithm to this matrix (finding the optimum value for each row or column, in this

case the highest value), the optimum mapping of one graph to another could be found. Zhu, Qin, Yu,

Ke, and Lin (2011) extended this method to allow matching of graphs with different node numbers,

which they termed the “global similarity" of two graphs. They found, however, that this method often

did not find the optimal node assignment in less similar graphs, thus they introduced the concept of

“local similarity". This was a matrix where nodes were matched based on a normalisation of the

degrees of their k-nearest neighbours (a relationship of the sum of degrees in the neighbourhoods, to

the number of vertices and edges in the neighbourhoods in the two graphs) - thus nodes in the two

graphs with similar neighbourhoods would have higher similarities. The same authors used a method

based on these two similarities to find the MCES, as detailed in the previous chapter.

A related concept to graph similarity is molecular alignment, in which the method attempts to find

the best superimposition of one molecule onto another. Although in principle a 3D technique, several

similarity definitions are of noteworthy mention and are relevant to topological graph techniques.

N. J. Richmond, Willett, and Clark (2004) utilised an image recognition-inspired technique to align

molecules in 3D. A cost function was defined to assign distances to atom pairs between the two

molecules, based on the difference in partial charges, and a histogram binned on geometrical distance

to represent local similarity. After applying a small set of filters, including one related to the refine-

ment procedure in Ullmann’s algorithm, the resulting similarity matrix would be subjected to a linear

assignment algorithm (such as the Hungarian algorithm) to find the best alignment. It was mentioned

that partial charge was used as a descriptor to implicitly represent the connectivity of an atom, in

addition to heteroatom pharmacophore type (especially hydrogen bond acceptor/donor strengths).

The algorithm was later used in the pharmacophore tool GALAHAD, as explained in the previous

chapter.

Berglund and Head (2010) presented another atom assignment method, which in contrast to the work

of N. J. Richmond et al. (2004) relied on discrete descriptors. 25 atom types were defined, and

each atom in a molecule was described by a bitstring defining the presence or absence of atoms with

one of the 25 types, at a given topological distance. For comparing two molecules, the Tanimoto

coefficient was used to generate an atom similarity matrix based on these bitstrings. The method

employed an anchor-expansion method somewhat remeniscent of the work by Zhu et al. (2011) to
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select optimal pairs from the similarity matrix, rather than simply using a linear assignment. In this

case, only one anchor was used and multiple runs were performed using different anchors rather than

selecting increasing numbers of anchors. An “atom substitution” matrix was also used, which allowed

to compute partial similarities between otherwise different bits set.

White and Wilson (2010) constructed a distribution of fragments derived from a set of input

molecules. This distribution was used to enumerate all possible new molecules by selecting a scaffold

fragment, and linking other fragments systematically at the R-groups on the scaffold fragment. This

enumerated “projection set” of molecules was used to create a Gaussian Mixture Model (GMM),

using weighted adjacency matrices as the input for the model. The GMM was sampled to cre-

ate “quasi-molecules,” which were subjected to an alignment with the projection set. The quasi-

molecules of sufficient similarity were chosen. This method was used in an attempt to recreate a set

of cyclooxygenase-2 actives, and epidermal growth factor receptor actives. Ultimately, the application

of FP2 OpenBabel fingerprints (O’Boyle et al., 2011) for ranking the projection set proved superior

to this method for finding active compounds, though the graph-based method was shown to sample a

diverse range of compounds.

Teixeira and Falcao (2013) also reported an alignment method based on neighbourhoods. Atoms

were described via their bond neighbourhoods, where each bond was described through a tuple of

continuous descriptors. The similarity between two bonds was a weighted product of these descrip-

tors, which was adjusted accordingly when the bonds are further away from the two atoms being

compared. The Hungarian algorithm was then applied to select the maximum bond similarities and

these were added to yield a similarity between the two atoms. Once the process had been repeated for

all atoms, the Hungarian algorithm was then applied to the atom similarity matrix to yield an atom

assignment, which could then be used for similarity calculations with the Tanimoto coefficient. The

method was compared with the FP2 fingerprint from Open Babel (O’Boyle et al., 2011), a path-based

fingerprint which encapsulates some ring information. Although the method outperformed FP2 in

terms of activity class description for a set of 31 steroids, FP2 is not an industry-standard fingerprint

and its performance is known to be somewhat inferior to extended connectivity fingerprints, at least

according to one QSAR study (Myint, Wang, Tong, & Xie, 2012).

3.6 The Activity Landscape Paradigm

As has been mentioned previously, the similar property principle is a rule of thumb. There are of

course instances where molecules of seemingly high structural similarity have great differences in ac-
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tivity, the compounds reported in Figure 3.1 being a good example. Such large differences in activity

amongst congeneric compounds have been referred to as activity cliffs. Such terminology stems from

the concept of the activity landscape, where the chemical space of compounds is typically represented

in an N-dimensional space (dimensions typically representing descriptors), with an additional dimen-

sion describing the activity. As demonstrated in Figure 3.3, compounds close together in chemical

space are regarded as being structurally similar, and the converse of course for those distant from

each other in chemical space. A good QSAR or similarity search method will accurately describe the

chemical space of the problem domain, including (if not especially) activity cliffs. Activity cliffs are

of interest in drug design as the slow and expensive task of finding novel scaffolds can be avoided,

by applying a small targeted modification to an existing molecule to significantly improve the activ-

ity. Unsurprisngly, several methods have been produced in an attempt to describe and exploit this

paradigm (Guha, 2012; Maggiora, 2006).

An important point to mention is the overlap of the landscape concept with that of Matched Molecular

Pairs (MMP), where a MMP represents a pair of compounds that differ via a single connected sub-

structure, like a ring or functional group (A. G. Leach et al., 2006). Generally, MMPs are structurally

similar, and thus ones with large activity differences represent activity cliffs. The majority of such

MMP "cliffs" involve transformations that have no more than one or two atoms difference in the sizes

of the substructures. MMPs thus represent a useful complement to fingerprint descriptors in activity

space, for instances when fingerprints fail to identify molecules as "similar" which are otherwise

defined as MMPs (X. Hu, Hu, Vogt, Stumpfe, & Bajorath, 2012). This chapter will not be reviewing

MMPs, thus the reader is directed to a recent review by Dossetter, Griffen, and Leach (2013) for more

information on MMPs.

Shanmugasundaram and Maggiora (2001) introduced the Structure-Activity Similarity (SAS) plot as

a method of finding activity cliffs in a simple manner (Figure 3.4). The SAS plot is divided into

four quarters. Compounds with high structural similarity but low activity similarity (that is, they

have large differences in activity) form activity cliffs. Compounds with low structural similarity and

high activity similarity by contrast represent similarity cliffs - a concept related to but not identical to

scaffold hops (scaffold hops being a change in the core of a molecule, rather than a large similarity

difference) (Y. Hu, Stumpfe, & Bajorath, 2011; Iyer, Stumpfe, Vogt, Bajorath, & Maggiora, 2013).

Compounds with low structural and activity similarity would be classed as "non-descriptive," and

those with high structural and activity similarity would give rise to smooth regions in the landscape.

Non-descriptive and smooth regions follow the similar property principle, whereas the other two
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Figure 3.3. Adapted from Peltason, Iyer, and Bajorath (2010). The x and y axes represent chemical
space, where molecules close together on the landscape are structurally more similar than distant
molecules. The z axis (in addition to colouring) represents activity, where red areas are populated
with molecules of high activity and green areas with low activity, and white represents areas which
are not populated by molecules. Molecules A, B and C are all structurally similar, yet note the large
differences in activity, represented on the landscape by their close positions yet widely differing z-axis
values.

classes do not. Activity cliffs have been shown to be the rarest of the four quadrants mentioned (at

least when concerning only active compounds), whereas similarity cliffs by contrast are the most

common. Both of course are useful, though in quite different ways - for similarity cliffs can often

lead to novel scaffolds, yielding otherwise unexplored patent space in drug discovery (Iyer et al.,

2013). Guha and Van Drie (2008) introduced the Structure-Activity Landscape Index (SALI) as a

quantitative method for finding activity cliffs

S ALIi, j =
|Ai − A j|

1 − sim(i, j)

where i and j are two molecules, Ai is the activity of molecule i (any activity measure, such as an

IC50), and sim(i, j) is a similarity function between the two molecules.

Several methods exist for visualising activity landscapes from a set of compounds. Other than the SAS

plot mentioned, Guha and Van Drie (2008) described two visualisation methods. The first involved

constructing a directed graph where nodes represented compounds, and edges were formed between

two compounds if the SALI value is above a threshold. The other method involved creating a SALI

matrix of the compounds, and visualising it as a heatmap. Wawer, Peltason, Weskamp, Teckentrup,

and Bajorath (2008) created a network graph (termed in their work "network-like similarity graph")

where nodes represented compounds, and edges connected nodes if the two compounds formed an
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Figure 3.4. Adapted from Guha (2012). The SAS plot here can be divided into four clear distinct
quarters, which in numerical order correspond to activity cliffs; non-descriptive; similarity cliffs; and
smooth regions.

activity cliff. Interestingly the graph was made viewable in 2D via the application of an energy min-

imisation technique based on modelling a compromise between electrostatic repulsion (of atoms), and

attraction via Hooke’s law (acting on edges in the graph) (Fruchterman & Reingold, 1991). Peltason

et al. (2010) initially discussed using two descriptors as the x and y axes separately. However, the

main body of the work discussed utilising multi-dimensional scaling to generate 2D coordinates for

a distance matrix, based on fingerprints calculated for the compounds in the dataset. Activity was

applied to the plot as the third axis, a smooth surface being generated through interpolation of the

points via the geostatistical technique of Kriging. This technique has been successfully applied in
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QSAR and QSPR by Teixeira and Falcao (2014). The models generated were trained using either

fingerprints, 1666 e-DRAGON descriptors (Tetko et al., 2005), or their previously published align-

ment descriptor, overviewed in the previous section (Teixeira & Falcao, 2013). All models were

found to be competitive with 3D-QSAR models for predicting Dihydrofolate Reductase Inhibitor

activity, noting that using distance-based metrics (as opposed to similarity coefficients) yielded better

prediction accuracy. The same technique was applied for aqueous solubility prediction, though was

outperformed by previously published (and otherwise unrelated) models.

3.7 Data Fusion

Sheridan and Kearsley (2002) stated that it was not enough to simply rely on one similarity measure

alone; there simply is no similarity measure good enough to describe all characteristics of molecules

for similarity searching. However, this does not exclude the combination of different sources of infor-

mation to improve accuracy. This is data fusion in its basic form. The term “data fusion” in computer

science originated in the 1980s in the United States’ Department of Defense, who sponsored its de-

velopment from which it emerged into its own discipline (Hall & Llinas, 1997). Data fusion in a

non-computational sense is a very old technique, one good example being trial by jury (twelve inde-

pendent decisions being used for a conviction, as opposed to just one). Its usage in chemoinformatics

is somewhat more recent, a classic example of which is consensus scoring in docking applications

(and other structure-based methods), which often involves combining several scoring functions to

improve accuracy (Feher, 2006). This section however is more concerned with data fusion for ligand-

based methods, a few of many examples which will be described here.

Data fusion in chemoinformatics can be divided into two areas - similarity fusion, and group fusion.

Similarity fusion involves the fusion of rankings obtained from different similarity searches using the

same reference structure. Group fusion on the other hand uses multiple reference structures using

the same similarity measure, where a similarity search is performed for each reference structure and

the rankings/similarities are fused to obtain a consensus (Whittle, Gillet, Willett, Alex, & Loesel,

2004). One should note that there is a wide array of potential fusion rules that can be used, ranging

from simple statistics (such as taking the mean average of similarity scores) to machine learning

techniques or utilising complex multivariate statistics (Willett, 2013). Fusion rules that have typically

been used at Sheffield are the SUM and MAX rules, the former being the addition of all the similarity

scores (or ranks) for a compound, and the latter being the selection of the highest score (or lowest

rank if the compounds are sorted in descending order of score) for a given compound.
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The first examples of similarity fusion that appeared in chemoinformatics were at research groups in

Merck and Sheffield. Kearsley et al. (1996) and Sheridan, Miller, Underwood, and Kearsley (1996)

described systems for their in-house screening system which utilised 2D and 3D fingerprints with

chemical probe information, yielding various combinations of similarity searches. Little emphasis

was put into interpreting the significance of their data fusion methods, though they noted that fusion

was generally (though not consistently) beneficial, despite also noting that the rankings of their geo-

metric (3D) and topological (2D) methods were highly correlated. Many properties and relationships

are now known in data fusion, some of which will be described here.

Holliday et al. (2002) demonstrated effective similarity fusion through the SUM fusion of up to three

different similarity coefficients, taking each coefficient from different groups after performing cluster

analysis to identify complementary coefficients. It has been shown that similarity fusion is more

effective when the active molecules used are strongly clustered in chemical space, compared to the

inactive molecules (Whittle et al., 2004). Whittle, Gillet, Willett, and Loesel (2006b) and Whittle,

Gillet, Willett, and Loesel (2006a) also performed extensive studies into similarity fusion. They

noted that similarity fusion using both different similarity coefficients and different fingerprints gave

potentially useful fusions, based on an upper bound calculation from the ranked compound lists. In

practice, however, the fusion rules used (amongst them MAX and SUM) failed to yield consistent

improvements over conventional similarity searching, in contrast to group fusion, which consistently

outperformed searching with one reference structure. It was noted that data fusion generally works

better when the ranked compound lists for each search are weakly correlated, providing more com-

plementary information sources. A good example of this was shown with the Russell-Rao and Forbes

coefficients, two coefficients which when fused demonstrated a notable improvement in recall. The

MAX fusion rule on the scores was shown to generally be the best fusion rule for group fusion,

whereas the sum of ranks is the best rule for similarity fusion. In group fusion-based virtual screen-

ing, a technique called reciprocal rank data fusion was found to be consistently (albeit only slightly)

superior to MAX and SUM fusion (tested on both similarity scores and ranks), amongst several other

fusion rules tested. Reciprocal rank can be defined for a given database molecule d, as

p∑
i=1

1
ri(d)

where ri() is a function that returns the rank of the database molecule, for the similarity search against

reference molecule ri, where there are p reference molecules (B. Chen, Mueller, & Willett, 2010).
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Pareto ranking is a technique introduced into chemoinformatics, primarily used as a fitness function

for evolutionary algorithms. It has been popular in compound library design, where it can be used

in multiobjective optimisation to select the best compromises between several desirable variables

(Ekins, Honeycutt, & Metz, 2010; Gillet, Khatib, Willett, Fleming, & Green, 2002). Pareto ranking

in brief, attempts to select non-dominated solutions when optimising for multiple objectives. A non-

dominated solution is a data point (a compound in this case), for which moving to another point in the

problem space is guaranteed to result in a decrease in at least one objective. At the same time however,

this solution has no other data point that is better than it in all objectives (Gillet et al., 2002). Cross,

Baroni, Carosati, Benedetti, and Clementi (2010) utilised Pareto ranking as a form of group fusion,

between receptor active site, and ligand-weighted GRID molecular interaction fields (MIF). Pareto

ranking was shown to be generally the best group fusion, in combination with a form of similarity

fusion between the receptor-based and ligand-based MIFs. It was generally best for overall accuracy,

as well as in virtual screening and chemotype retrieval. To note, two forms of Pareto ranking were

used; the first breaking ties after one iteration of ranking with the SUM rule, and the other method

relying on two more iterations of Pareto ranking (using one molecule less with each iteration) to

increase ranking precision, remaining ties again being broken with the SUM rule. The latter was

shown to be slightly better than the former. Pareto ranking was also shown to be more accurate and

robust than the SUM rule in similarity fusion of 3D structure and ligand-based methods, attributed to

the fact that it chooses only the best-ranked from each list rather than looking at all the ranks (both

high and low) for each compound (Svensson, Karlén, & Sköld, 2012).

Turbo similarity searching (TSS) represents a special form of group fusion. Introduced by Hert et

al. (2005), the concept relies on performing a similarity search with one reference molecule, and

then selecting its nearest neighbours from the search and performing searches for each (and thus

fusing the results as in group fusion). This technique relies on the assumption of the similar property

principle, being that the nearest neighbours of the reference compound are also assumed to be active.

This assumption proves to hold in general, as Figure 3.5 demonstrates, noting that the top 20 in this

case have at least a 50% chance of being active. Indeed, they found that using around 100 nearest

neighbours increasingly improved the efficacy of fusion, though adding more than this tended to drop

the accuracy with the inclusion of more inactives. The same phenomenon was also observed with

scaffold hopping, where increasing the number of nearest neighbours improved framework retrieval.

Hert et al. (2006) extended this work by applying the concept to binary kernel discrimination and sub-

structural analysis (machine-learning techniques), and showed that these machine learning techniques
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Figure 3.5. Adapted from Figure 2 in (Hert et al., 2005). This graph represents the average probability
of a compound being active with respect to its rank. The inset graph is a higher-detail snapshot of the
first 20 ranks.

were generally inferior to standard group fusion, though tended to outperform group fusion when the

activity class was highly dissimilar. Arif, Hert, Holliday, Malim, and Willett (2009) extended this

work by applying the concept to fragment weighting, which largely confirmed the results of the pre-

vious findings on turbo similarity searching, finding also that the square root in frequency weighting

was the best weighting scheme. Gardiner et al. (2009) performed extensive testing using TSS, using

several fingerprint types, numerical and topological descriptors, and reduced graphs. In particular it

was noted that TSS was beneficial in homogeneous compound sets, using higher-performance finger-

prints, and reduced graphs. The concept was extended to substructural analysis, where it was shown

that conversely the technique was beneficial on diverse sets but not so much on homogeneous sets.

The same authors also showed that inclusion of a small number of nearest neighbours gave beneficial

results when predicting aqueous solubility using extended connectivity fingerprints.
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3.7.1 Why Data Fusion is Believed to Work

The experimental rationale for why data fusion works can be traced back to recent work in Informa-

tion Retrieval. Spoerri (2008) applied several different search systems to seek relevant documents in

text-based datasets. It was noted that ranked lists from each search were complementary, though the

existing overlap proved to be advantageous - the percentage of relevant documents retrieved increased

exponentially with the number of searches to be fused. This yielded a strong power law model (though

the relationship is actually sigmoidal as the accuracy must plateau as it reaches 100%). This finding

was referred to as the Authority effect, and Spoerri (2008) recommended that a good data fusion rule

should be used to exploit this. Holliday, Kanoulas, Malim, and Willett (2011) performed related work

to show that the concept also worked in chemoinformatics, also demonstrating the power law when

applied to similarity fusion. Interestingly the authority effect in group fusion was shown to be more

pronounced than in similarity fusion, but was shown to be parabolic (that is, there was an optimal

number of molecules to use, instead of a power law), the optimum value supposedly being somewhat

dependent on the diversity of the dataset used.

To complement this work, Whittle et al. (2006a) performed an experimental analysis also on similarity

and group fusions. It was shown that fusion of uncorrelated similarity coefficients (based on Pearson’s

correlation of matched pairs in the top 1000 compounds of the ranked lists) tended to improve data

fusion potential, especially the Russell-Rao and Forbes coefficients, whose size-bias behaviours are

otherwise opposite (Holliday et al., 2003). Group fusion was shown to generally be superior to simi-

larity fusion, in particular when a diverse set of molecules is used as references (again, to have more

complementary sources of information). The SUM fusion rule was identified as the best for similarity

fusion, whereas the MAX rule was best for group fusion. Related theoretical work mentioned that

predicting the precise nature of data fusion is non-trivial, relying on eight different distributions for

the fusion of just two ranked lists (Whittle et al., 2006b).

3.8 Conclusion

As mentioned in this chapter, similarity is highly subjective and many methods exist for measuring

it, within and without chemoinformatics. From an information retrieval context, similarity typically

relies on a weighting scheme, a descriptor, and a coefficient - established methods existing for each

of the three categories, though the choice of method varies depending on the desired outcome. Al-

though log-transforming or square-rooting the frequency of fingerprint bits has generally been shown
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to consistently improve virtual screening accuracy, the magnitude of improvement depends on the

fingerprint (extended connectivity for example being improved only slightly). Similarly, though the

Tanimoto coefficient is an established and generally-applicable standard, a number of viable alterna-

tives exist, such as the Tversky coefficient. Comparatively less work has been done to extend this to

graph-based similarity, though it is known that graph and fingerprint similarity largely complement

each other in terms of retrieved compounds.

No one similarity method exists that is the be-all and end-all of virtual screening. This is why ac-

companying concepts like activity landscapes and data fusion exist, which attempt to account for

shortfalls in individual methods. Group fusion in particular has been shown to be a powerful yet

easily-implemented fusion method, which is also somewhat related to the hyperstructure concept (in

that molecules are merged in some form).

This chapter has only discussed a small amount of the research existing in similarity. For more infor-

mation on similarity, a comprehensive review by Willett (2009) details several methods and explains

several concepts behind similarity searching. Willett (2013) is also a good place to further one’s

knowledge on data fusion.
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Chapter 4

Construction and Virtual Screening of

Hyperstructures

4.1 Introduction

This work represents the starting point for the three objectives outlined in the introduction. A method

for constructing hyperstructures is described, along with a search procedure and a benchmark method

against which the hyperstructure search is compared, using various evaluation measures. The benefits

and problems of hyperstructure searching will then be assessed and summarised, with suggestions

for future methodology and improvements to the concept. This chapter has an emphasis on virtual

screening performance, that is - recall and diversity. Recall in this case refers to the ability of a

method to prioritise ranking of active compounds over inactive ones. Diversity will be explained in

more detail in the methods section.

4.2 Materials and Methods

4.2.1 Hardware and Software

The hardware used in this study featured an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz processor

with 16 GB of DDR3 RAM clocked at 1333 MHz, running Kubuntu 13.10. The Konstanz Information

Miner (KNIME) 2.8.2 (Berthold et al., 2008, 2009) running Java 1.6 was used for all experimental

aspects in this study, and the Chemistry Development Kit 1.5.3 (CDK) was used for all chemoinfor-

matics functionality, unless otherwise noted (Steinbeck et al., 2003). 64-bit R 2.15.2 R: A Language
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and Environment for Statistical Computing (2008) was used to calculate all correlation statistics re-

ported, and the hyperstructure construction and search software was developed in Java, for use with

KNIME.

4.2.2 Compound Data Sets

Three datasets have been used for the purposes of this study: the MDL Drug Data Report (MDDR)

(BIOVIA Databases | Sourcing Databases: BIOVIA Available Chemicals Directory (ACD), n.d.); the

WOrld of Molecular BioAcTivity (WOMBAT) (Good & Oprea, 2008); and the Maximum Unbiased

Validation dataset (MUV) (Rohrer & Baumann, 2009). The MDDR and WOMBAT data sets have

been used in much previous work, both at Sheffield and (in the case of MDDR) elsewhere. The

MDDR data set comtains 102 540 compounds, whereas WOMBAT contains 128 049 compounds.

The version of MDDR used here was provided to the Sheffield chemoinformatics group for academic

research purposes in late 1997. 11 MDDR activity classes were used to define the active models;

the classes originally being suggested by Hert et al. (2004), giving a total of 8184 unique active

molecules. Of these actives, 8099 were only active against one of the 11 classes, the rest being active

against two or more targets. The version of WOMBAT used in this study was originally derived from

the study of Arif, Holliday, and Willett (2009). The same processes for MDDR were also applied to

14 classes used in WOMBAT, yielding 8767 unique actives. WOMBAT actives were used as defined

by Arif, Holliday, and Willett (2009), where the 14 classes in question consisted of the largest number

of compounds possessing a pIC50 ≥ 5.0. The MUV dataset was included as an alternative benchmark,

due to its design consideration of distance equivalence. Active molecules in MUV have been selected

in the datasets which are of similar structural resemblance to their chosen decoy molecules, thus

avoiding analogue bias that is often found in other datasets (as in the other two data sets used here).

The numbers of actives per class, with overall similarity statistics, are reported in Tables 4.1, 4.2

and 4.3 for the MDDR, WOMBAT and MUV datasets respectively. The numbers of actives for each

MUV dataset have not been reported as each class in the MUV dataset contains 30 actives and 15 000

decoys.

All explicit hydrogen atoms were converted to implicit hydrogens for the purposes of this study.

For each class, 10 maximally diverse compounds were selected as a training set using the MaxMin

algorithm as implemented in the KNIME version of RDKit, with a randomly assigned seed (Ashton

et al., 2002). These 10 molecules would be subsequently removed from the dataset to remove bias

from the virtual screening statistics. 10 compounds were chosen in this case, for two reasons. Firstly,
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targetID class Actives S̄ AA S σ
AA S̄ AI S σ

AI

6233 5HT3 Antagonist 752 0.145 0.022 0.103 0.010
6235 5HT1A Agonist 827 0.138 0.018 0.102 0.011
6245 5HT Reuptake Inhibitor 359 0.130 0.023 0.098 0.012
7701 D2 Antagonist 395 0.147 0.021 0.105 0.009
31420 Renin Inhibitor 1,130 0.288 0.051 0.114 0.006
31432 Angiotensin II AT1 Antagonist 943 0.249 0.047 0.108 0.008
37110 Thrombin Inhibitor 803 0.177 0.033 0.111 0.009
42731 Substance P Antagonist 1,246 0.153 0.019 0.109 0.009
71523 HIV-1 Protease Inhibitor 750 0.195 0.037 0.111 0.007
78331 Cyclooxygenase Inhibitor 636 0.111 0.013 0.095 0.012
78374 Protein Kinase C Inhibitor 453 0.124 0.029 0.097 0.014

Table 4.1
The numbers of actives and similarity statistics for the classes used in the MDDR dataset, using
RDKit standard Morgan fingerprints at a radius of 3 as the descriptor. S̄ represents the mean pair-
wise similarity (MPS) and S σ is the standard deviation of similarity values. Subscript AA denotes
similarity between active molecules in the class, and AI is the inter-similarity between actives and
inactives.

targetID class Actives S̄ AA S σ
AA S̄ AI S σ

AI

1 5HT3 Antagonist (rat) 474 0.319 0.129 0.118 0.039
2 5HT1A Agonist (rat) 503 0.142 0.102 0.104 0.032
3 D2 Antagonist (rat) 1,128 0.193 0.104 0.111 0.036
4 Renin Inhibitor (human) 421 0.206 0.119 0.115 0.037
5 Angiotensin II AT1 Antagonist (rat) 722 0.240 0.113 0.110 0.032
6 Thrombin Inhibitor (human) 220 0.173 0.127 0.095 0.030
7 Substance P Antagonist (human) 142 0.323 0.201 0.095 0.030
8 HIV-1 Protease Inhibitor (human) 596 0.146 0.105 0.102 0.030
9 Cyclooxygenase Inhibitor (human) 558 0.176 0.101 0.109 0.035
10 Protein Kinase C Inhibitor (rat) 842 0.174 0.111 0.109 0.032
11 Acetylcholine esterase inhibitor (human) 910 0.159 0.090 0.104 0.034
12 Factor Xa inhibitor (human) 694 0.188 0.102 0.109 0.035
13 Matrix metalloprotease inhibitor (human) 965 0.156 0.100 0.091 0.030
14 Phosphodiesterase inhibitor (human) 592 0.189 0.116 0.106 0.034

Table 4.2
The numbers of actives and similarity statistics for the classes used in the WOMBAT dataset.

this number was chosen to leave enough active compounds available for searching for in each dataset.

Notably, this was of particular concern with the MUV dataset - as most classes have only 30 actives,

removing the 10 compounds would leave 20 actives in the dataset to search for. Secondly, the find-

ings of Klinger and Austin (2006) found that the benefit from adding more reference compounds was
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targetID class S̄ AA S σ
AA S̄ AI S σ

AI

466 sphingosine-1-phosphate 1 receptor potentiators 0.121 0.054 0.117 0.037
548 protein kinase A inhibitors 0.134 0.083 0.105 0.037
600 steroidogenic factor 1 inhibitors 0.126 0.063 0.118 0.038
644 rho kinase 2 inhibitors 0.123 0.074 0.106 0.039
652 HIV reverse transcriptase RNase 0.108 0.049 0.109 0.038
689 ephrin type-A receptor 4 antagonist inhibitors 0.114 0.043 0.110 0.034
692 steroidogenic factor 1 activators 0.113 0.039 0.113 0.037
712 heat shock protein 90 kDa alpha inhibitors 0.108 0.047 0.105 0.033
713 estrogen receptor-alpha coactivator binding inhibitors 0.116 0.051 0.115 0.036
733 estrogen receptor-beta coactivator binding inhibitors 0.114 0.053 0.112 0.038
737 estrogen receptor-alpha coactivator binding potentiators 0.131 0.051 0.120 0.039
810 focal adhesion kinase inhibitors 0.112 0.059 0.106 0.037
832 Cathepsin G 0.154 0.097 0.120 0.035
846 factor XIa 0.162 0.092 0.116 0.037
852 factor XIIa 0.152 0.092 0.115 0.034
858 dopamine receptor D1 allosteric modulators 0.116 0.060 0.111 0.037
859 muscarinic receptor M1 allosteric modulators 0.126 0.037 0.121 0.036

Table 4.3
The numbers of actives and similarity statistics for the classes used in the MUV datasets.

increasingly diminishing in virtual screening (up to 5 references). 10 compounds was chosen as the

MCS algorithm used was fast enough to handle this alignment, whilst not having a detrimental effect

on the searching of any particular dataset - both in terms of actives per dataset, and virtual screening

power of the hyperstructure. RDKit standard Morgan fingerprints were used with a maximum radius

of 3 (similar to the ECFP_6 fingerprint found in Pipeline Pilot (Rogers & Hahn, 2010), folded into

1024 bits) as the fingerprint descriptor for this study. RDKit standard Morgan Fingerprints differ

only by the atom typing definitions to ECFP fingerprints, in that isotope information is added, and

the valance-hydrogen count parameter is removed (Landrum, 2012). ECFP_4 and ECFP_6 are both

fingerprints that are known to achieve high recall rates, though ECFP_6 has been shown to be slightly

more powerful in similarity studies (Papadatos et al., 2009).

4.2.3 Maximum Common Substructure

The MCES for all purposes of this chapter, was found using the MaxCommonSubstructure method

developed for JChem 6.1.0, 2014 by ChemAxon (Englert & Kovács, 2015; Kovács & Englert, 2013).

This method was chosen with speed in mind, instead of the size of the common substructure retrieved

(though we found the latter to be satisfactory in internal tests). Additional performance information of
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Figure 4.1. The hyperstructure construction process with two molecules, shown in blue and red - bold
bonds indicate those in the MCS between the two molecules. In the resulting hyperstructure, black
bonds and atoms indicate the MCS, while unique bonds and atoms are coloured based on the original
molecules.

this algorithm can be found in Chapter 6, and background information on the algorithm is in Chapter

2.

4.2.4 Hyperstructure Construction and Application

Construction in this methodology is based on the method of (R. D. Brown, Downs, et al., 1994). The

construction process (Figure 4.1) used is as follows, starting from a set of input molecules:

1. Select the largest molecule and remove it from the set of available molecules. This molecule is

now the first hyperstructure.

2. Select the next most similar molecule, based on the number of bonds in common between the

hyperstructure and this molecule.

3. Use the MCS procedure to overlap and then to append this molecule to the hyperstructure,

and remove this molecule from the set. Bonds of different types may be overlapped, yielding

degenerate bond types (depicted by dashed lines in the hyperstructures).

4. Repeat steps 2 and 3 until the set is empty.

This process relied on finding the MCES between two molecules to produce the hyperstructures.
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Algorithms 3 and 4 (in Appendix A) detail the process for which the MCES is used. Briefly, bonds

in the non-hyperstructure were tested for presence or absence in the MCES. Bonds absent from the

MCS were added to the hyperstructure (and any “missing” atoms as well), whereas bonds in the

hyperstructure that are in the MCES, were adjusted to allow for both the relevant hyperstructure

and non-hyperstructure bond to match. The ChemAxon MCS was obtained using default settings,

except that bond types were ignored. In the case where bonds were matched with different labels, the

resulting bond in the hyperstructure was adjusted to allow mapping of all bond types in subsequent

searches. If aromatic and single bonds overlapped, then the resulting hyperstructure bond created

would allow the mapping of both single and aromatic bonds. Although different bond labels were

allowed to map, for this work we maintained the rule that identical atom labels must match. Whilst it

would be interesting to see what effect this has, it is beyond the scope of this work.

4.2.5 Similarity Searching

The Tanimoto coefficient is the standard similarity coefficient for quantifying chemical structural sim-

ilarity. For standard MCS searching in this study, the Tanimoto coefficient has been used. When con-

cerning hyperstructures however, we decided to use the asymmetric Tversky coefficient over symmet-

ric coefficients. Several advantages of this coefficient in virtual screening are mentioned in Chapter 3.

We believe that this coefficient is more suitable for similarity searching using hyperstructures due to

the size differences (notably in this work, the number of bonds) between hyperstructure and database

molecules. The hyperstructure is highly likely to be significantly bigger than the majority of database

molecules, let alone the molecules used to construct the hyperstructure. In addition, it is expected

that substructure similarity plays a large part in suitable similarity searching, as the hyperstructure

collectively represents the scaffolds present in the input molecules. The Tversky coefficient can be

biased towards substructure similarity, in order to take advantage of this hypothesis.

The Tversky coefficient is described in Chapter 3. In this chapter, c represents the number of common

edges between the hyperstructure and the database molecule, as calculated using the JChem dMCES

method. The hyperstructure has a bonds, and the database molecule has b bonds. β was set to 0.3;

0.5 (symmetric); 0.7; 0.8; 0.9; 0.95; and 1.0 to determine how this variable had an affect on similarity

searching. Higher values of β give a near substructure-like search, whereas lower values bias the

results towards a superstructure-like search. It is expected that higher values of β will yield better

retrieval rates as the size difference between hyperstructure and database molecule is rendered less

important.
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As a comparison to gain some idea of the hyperstructure’s performance in similarity searching, two

additional search methods were employed. The methods were as follows:

• Hyperstructure construction and searching, using the Tversky coefficient with the aforemen-

tioned values of β

• MCS group fusion using the Tanimoto coefficient (either using MAX or AVG fusion on the

similarity scores)

• RDKit Morgan fingerprint group fusion at a maximum radius of 3 for the fingerprints. Both

MAX or AVG fusion is applied on the similarity scores separately.

The MAX fusion rule has generally been shown to be the most suitable fusion rule in group fusion

virtual screening (Whittle et al., 2004), and is expected to thus outperform the AVG rule in this study.

Although somewhat superior fusion rules exist (refer to Chapter 3), this study is not concerned with

seeking the best fusion rule - the rules here have simply been used as effective benchmarks.

4.2.5.1 Similarity Fusion. As it is known that graph theory similarity and fingerprint similarity

are somewhat complementary (and thus the same is assumed of hyperstructure searches) (Raymond

& Willett, 2002a), it is assumed that the three methods would be suitable candidates for further data

fusion. AVG fusion has thus been applied to the three rules to give three pairwise combinations, as

well as the AVG of all 3. The AVG rule has been shown in general to be more suited to data fusion

of ranks, than the MAX fusion rule (Willett, 2013), noting that when concerning ranks and similarity

scores, SUM and AVG rules yield identical orders. In this case, the hyperstructure searches have

been performed with a β of 0.9 as this was found to be the optimal value for fruitful virtual screening

from a number of sources (Daylight Chemical Information Systems, 2011; Horvath et al., 2013). In

addition, as explained in the results section, this was found to be a generally satisfactory value for

suitable recall rates in our experiments. The fusion methods are summarised in Figure 4.2. Table 4.4

also explains the meanings of the method abbreviations used here.

4.2.6 Evaluation Metrics

4.2.6.1 Virtual Screening. The Boltzmann-Enhanced ROC score (BEDROC) has been chosen to

evaluate the power of the similarity searches. A ROC (ROC) curve is a plot of the true positive rate

against the false positive rate, and can be used to determine how well a model classifies data. The
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FPMAX MCSMAX HS90

Figure 4.2. Summary of the search methods employed in this study. The arrows indicate which search
methods are fused via the MAX rule (top-down)

Method Description
(Tversky) HS 30 Hyperstructure search applied using Tversky similarity coefficient,

with a β of 0.3
(Tversky) HS 50 As above, with a β of 0.5
(Tversky) HS 70 As above, with a β of 0.7
(Tversky) HS 80 As above, with a β of 0.8
(Tversky) HS 90 As above, with a β of 0.9
(Tversky) HS 95 As above, with a β of 0.95
(Tversky) HS 100 As above, with a β of 1.0
FP MAX Fingerprint Tanimoto similarity with the MAX fusion rule applied to

the similarity scores
FP AVG Fingerprint Tanimoto similarity with the AVG fusion rule applied to

the similarity scores
HS MAX The best reported hyperstructure similarity, out of all the values of β

used
MCS MAX Maximum Common Substructure Tanimoto similarity (based on the

bonds in the MCS and the two structures being compared), with the
MAX fusion rule applied to the similarity scores

MCS AVG As above, but using the AVG fusion rule
FPMAX MCSMAX SUM fusion of FP MAX and MCS MAX ranks (not scores)
FPMAX HS90 SUM fusion of FP MAX and Tversky HS 90 ranks
MCSMAX HS90 SUM fusion of MCS MAX and Tversky HS 90 ranks
FPMAX MCSMAX HS90 SUM fusion of FP MAX, MCS MAX and Tversky HS 90 ranks

Table 4.4
Descriptions of the abbreviations of search methods employed here.

area under this curve (AUROC) ideally should be as close to 1.0 as possible (better at classifying),

as a value of 0.5 indicates that the model is no better than random. BEDROC in this case represents
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a special case of ROC in that it ranks a method on its ability to retrieve active compounds as early

in the ranking order as possible, rather than its overall classification accuracy, which is what AU-

ROC denotes. Thus, BEDROC is better suited to assessing virtual screening ability than AUROC

is. Another advantage of BEDROC is that it is not as easily influenced as AUROC by the ratio of

actives to inactive compounds (or positive to negative data). Like AUROC, BEDROC scales from

0.0 to 1.0, a value closer to 1.0 indicating superior virtual screening performance whereas a value

closer to 0.0 indicates the worst virtual screening performance (random). Unlike AUROC, however,

a BEDROC of 0.5 implies intermediate virtual screening ability, instead of random, as it would for

AUROC (Truchon & Bayly, 2007).

A small problem with BEDROC is the requirement of setting a tuning factor α, which determines how

many of the top-ranked compounds contribute to the BEDROC score. A higher value of α means that

a smaller percentage of the top-ranked compounds contribute to the majority of the BEDROC score.

A value of 160.9 for α has been chosen in this study as it corresponds to an Enrichment factor (EF)

of 1%, where 80% of the BEDROC score is explained by the top 1% of compounds in the ranked list

(Truchon & Bayly, 2007). The EF for the top 1% of ranked compounds was also included as it is

easier to interpret than the BEDROC score. It should be noted that whilst it has generally been shown

that BEDROC and EF are highly correlated (Riniker & Landrum, 2013), BEDROC takes account of

the ratio of actives to inactives, where EF does not. The same study notes that the two measures are

uncorrelated when this ratio differs between activity classes.

4.2.6.2 Hyperstructure Information. Compression (of bonds) in this case, is defined by the

equation

CB =

NQ∑
1

BQi

BH × NQ

where BQi is the number of bonds in query structure i, BH is the number of bonds in the resulting

hyperstructure, and NQ is the number of query structures used to build the hyperstructure. This is a

standardised measure resulting in a value from 0 to 1, where a value closer to 1 indicates a superior

compression. This statistic can be thought of as the proportion of bonds from the queries that have

been fully overlapped in the hyperstructure. The same analogy is made with atoms, and is referred to

here as CA . It is expected generally that compression statistics correlate with the average similarity

of the active compounds in the class, though due to the diverse nature (in both structure and size) of
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active compounds selected, this is not expected to be a strong correlation.

4.2.6.3 Diversity Evaluation. Although it is useful to observe the overall virtual screening per-

formance of a method, it is also of interest to see how powerful a method is in obtaining a diverse

and heterogeneous set of compounds. In some cases, the diversity is actually more important than

simply the active compound retrieval if it leads to finding a new scaffold for a particular therapeutic

problem domain. A “scaffold” in this work has been defined as a Bemis-Murcko framework (Bemis &

Murcko, 1996), with atom and bond information removed, and has been calculated using the RDKit

tools in KNIME. We have utilised a number of statistics in this work to measure diversity.

The first statistic is the “First-Found” scaffold enrichment factor, using the top 1% of the ranked

list of molecules (represented here as EFFF1%). “First-Found” refers to the rank of the top-ranked

molecule belonging to a scaffold, thus ignoring all subsequent molecules belonging to the scaffold.

Although this measure of obtaining diversity has been criticised for several statistical flaws (Mackey

& Melville, 2009), we have used it here as we are only interested in whether an active scaffold is

identified or not in a ranked list. We are not interested in how the compound ranks are distributed

for the given active scaffold. This represents a common goal in a virtual screening project, if one is

seeking new scaffolds.

The second measure is the mean number of active molecules per active scaffold in the top 1% ranking

(represented here as x̄F1%). A lower value of this statistic indicates that a search method retrieves on

average fewer actives per scaffold, and is therefore less biased towards finding analogues for a small

number of scaffolds. The standard deviation (sF1%) of the number of actives per active framework

has also been calculated.

The mean pairwise similarity (using the same fingerprints as for searching) of said actives in the top

1% ranking has also been calculated to complement the framework statistics, represented as S̄ F1%.

We regard this statistic to be less useful than framework information as it is less able to distinguish

between a set of moderately similar analogues of one series, compared to several series with very

similar analogues.

4.2.6.4 Complementarity. Another aspect of interest is to assess the complementarity of the com-

pounds retrieved for two methods, especially when comparing the fingerprinting similarity with hy-

perstructure similarity. This can be of potential interest in the aspect of similarity fusion - where

rankings from different similarity search methods are fused to obtain a consensus score. To com-

pare rank lists, the top 5% of ranked compounds were used, and the number of matched pairs were

108



Edmund Duesbury Chapter 4: Construction and Virtual Screening of Hyperstructures

Method Description

S̄ AA MPS between active compounds in an activity class, of a mentioned dataset

S σ
AA Standard deviation of the above

S̄ AI MPS of actives compared with inactives in an activity class, of a mentioned
dataset

S σ
AI Standard deviation of the above

a The number of on bits (or edges) in the reference molecule of the similarity
coefficients used in this article

b The number of on bits (or edges) in the database molecule

c The number of on bits in common between the reference and database
molecule. Alternatively when concerning graph theory - the number of edges
in the MCS

β The weighting used in the Tversky coefficient to bias towards either substruc-
ture and superstructure similarity

α parameter which determines how many of the top-ranked compounds con-
tribute to the BEDROC score. Note that this is unrelated to β!

CB Bond compression of a hyperstructure

CA Atom compression of a hyperstructure

EFFF1% “First-Found” scaffold enrichment factor, using the top 1% of the ranked list
of molecules.

x̄F1 The mean number of active molecules per active framework, in the top 1% of
compounds identified.

sF1 standard deviation of the above

S̄ 1 mean pairwise similarity of the top 1% of compounds identified, using Morgan
fingerprints with a radius of 6 and the Tanimoto coefficient.

Table 4.5
Descriptions of symbols which are frequently referred to in this chapter.

recorded per comparison (a matched pair meaning that the same compound occurs in both lists).

These comparisons are represented as heatmaps in Appendix C. R was used to compute this value

for each dataset, as well as performing Wilcoxon signed-rank tests and obtaining the matched pair

numbers.

4.2.6.5 Physicochemical Properties. To get an idea of whether the search techniques retrieved

different sets of molecules, we calculated a number of physicochemical descriptors. These were cal-

culated for the active compounds in the top 1% of the ranked database resulting from each similarity

search method. The descriptors used were the counts of the number of rotatable bonds, heavy atoms,

heteroatoms and rings; the length of the largest acyclic chain, and the fragment complexity. This last
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descriptor was the CDK implementation of the work described by Nilakantan et al. (2006):

C = |B2 − A2 + A| + H/100

where A is the number of non-hydrogen atoms, B is the number of bonds, C is the fragment complexity

and H is the number of heteroatoms.

To assess the overlap between the ranked lists resulting from two different search methods, we calcu-

lated the number of actives common to the top 1% of the two ranked lists.

4.3 Results and Discussion

4.3.1 Virtual Screening Recall Performance

Figures 4.3, 4.4, 4.5 displays the BEDROC scores for each activity class, for the similarity search

methods mentioned, in addition to HS 80 and HS 95, and the four SUM fusion methods as depicted in

Table 4.4. Figure 4.6 (and Table E.1 in Appendix E) displays summary virtual screening statistics for

FP MAX, (Tversky) HS 90, MCS MAX, and the fusions of the three techniques (as detailed in Table

4.4). Figure 4.6 displays EF1% and BEDROC for each method, mean-averaged over all the activity

classes for a dataset. The immediate conclusion from these statistics is, on comparing the mean values

of BEDROC score, that the FP MAX was significantly superior to HS MAX, with MCS MAX lying

between the two. In all three datasets the fingerprints significantly (and consistently) outperformed

hyperstructures in virtual screening ability, as seen from the mentioned Table and Figures. This sug-

gests that fingerprints were better suited to virtual screening (on these datasets), the p-values for the

Wilcoxon signed-rank tests being significant (Figure 4.6). As seen in Figures 4.3, 4.4, 4.5 however,

MCS MAX in some of the classes (notably where the BEDROC scores were lower) outperformed FP

MAX, though as FP MAX’s performance improved, MCS MAX improved at a slower pace and was

quickly outperformed. The observation that fingerprints generally match or outperform MCS-based

methods is consistent with the related work of Raymond and Willett (2002a), though in this work the

fingerprints used are of a better standard in terms of virtual screening recall.

Virtual screening statistics for each activity class are tabulated in Appendix D. A noteworthy observa-

tion is the contrast between the EF and BEDROC scores. Using Table D.6 as an example, two values

of 20 have been achieved for the EF, yet the BEDROC score for Substance P Antagonists was higher

than for 5HT3 Antagonists. As the actives clustered at superior ranks in Substance P Antagonists than

for 5HT3 antagonists, this implies that the ranking of the activity class with the higher BEDROC is
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better, despite the search method identifying all active compounds in the top 5% fraction for both

activity classes.
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Figure 4.3. BEDROC scores for the search methods, per activity class, for MDDR
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Figure 4.4. BEDROC scores for the search methods, per activity class, for WOMBAT
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Figure 4.5. BEDROC scores for the search methods, per activity class, for MUV
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In the specific case of MUV, the results are somewhat harder to interpret than the other datasets,

due the statistics being based on a small number of actives (20) being sought after. Fingerprints again

generally performed better than the other two methods. Of interest are the 4 cases where the best value

of β was 0.5 or lower - in contrast to the other two datasets where higher values of β have been shown

to be best. For these cases, an increase in the value of β actually worsened the BEDROC and EF

scores (Table D.7). For the cases mentioned where the value of β was 0.3 or 0.5, these results suggest

that the active molecules in the test sets had a lower similarity to the respective hyperstructures than

inactives, which seems counter-intuitive. It is unclear why this may have been the case, though the

comparatively unbiased nature of the MUV dataset, and the small number of active compounds may

explain this.

4.3.2 Diversity Performance

Figure 4.7 (and Table E.2 in Appendix E) displays summary virtual screening statistics (relating to

scaffold retrieval) for FP MAX, (Tversky) HS 90, MCS MAX, and the fusions of the three techniques

(as detailed in Table 4.4). The charts in Appendix B display the EFFF1% and x̄F1% for each activity

class, for the similarity search methods mentioned, in addition to HS 80 and HS 95. Figure 4.7

summarises the same information across the activity classes as mean averages.

Across all classes of the three datasets, it can be seen that the hyperstructures almost always yielded

a lower x̄F1% than the FP MAX and MCS MAX methods, the latter actually (thought not statisti-

cally significant) having the largest number of compounds per framework of all methods presented.

For hyperstructures, these results were statistically significant for MDDR and MUV as shown in

Figure 4.7, suggesting that the top-ranked active molecules retrieved by hyperstructures were more

heterogeneous than those retrieved with fingerprints (in relation to the number of actives retrieved).

However, hyperstructure searches here retrieved a far smaller number of frameworks than fingerprints

did (as evidenced by a significantly lower scaffold enrichment factor). This suggests that although

hyperstructures retrieved a less analogous set of actives, fewer active scaffolds were retrieved overall.

In addition, in Figure B.6 (MUV), points with a x̄F1% of 0.0 retrieved no active molecules in the

top 1%, and therefore should be ignored for diversity comparisons. No apparent advantage (and

for that matter, no significant difference) is seen in the mean pairwise similarity of actives retrieved

across the three datasets, suggesting that hyperstructures were better at picking a greater variety of

scaffolds rather than generally more dissimilar sets (Appendix D). MCS MAX by comparison had no

significant difference in framework retrieval compared to fingerprints, and combined with its inferior
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(a) MDDR

(b) MUV

(c) WOMBAT
Figure 4.6. Bar charts showing mean recall statistics for the datasets. Dark-coloured bars indicate that
the method has a mean significantly different from that of FP (p ≤ 0.05), as determined by a paired
2-tailed Wilcoxon signed-rank test. Error bars represent one standard error of the mean, above and
below the mean.
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(a) MDDR

(b) MUV

(c) WOMBAT
Figure 4.7. Bar charts showing mean scaffold-retrieving statistics for the datasets. Dark-coloured bars
indicate that the method has a mean significantly different from that of FP (p ≤ 0.05), as determined
by a paired 2-tailed Wilcoxon signed-rank test. Error bars represent one standard error of the mean,
above and below the mean.
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virtual screening performance (compared to fingerprints), hyperstructure searches seem more useful

for retrieving a diverse set of actives, as opposed to retrieving a greater proportion of scaffolds.

4.3.3 Relative Performances

Figure 4.8. Bar chart for the MDDR dataset, showing the ranks of three parameters for each similarity
method, that are being optimised for in this study. Methods are sorted in descending order of their
BEDROC rank, where the higher the value of the rank - the better the property is. Values for Kendall’s
W and the associated p value are given for the relevant statistic for each dataset, where Kendall’s W
quantifies the agreement in rankings between the activity classes of the dataset for a search method.

Figure 4.9. Bar as described in Figure 4.8, but for the WOMBAT dataset

118



Edmund Duesbury Chapter 4: Construction and Virtual Screening of Hyperstructures

Figure 4.10. Bar as described in Figure 4.8, but for the MUV dataset

The value of β appears to have had a strong influence on the recall statistics, and to a lesser extent

the diversity of the actives retrieved. Kendall’s W test was applied to the BEDROC scores to attempt

to find consistent agreement between the different activity classes, for a given search method. The

results are presented in Figures 4.8, 4.9 and 4.10 (the values of the mean ranks are in Table F.1),

where it is clear that all the rankings are significant - that is, for each activity class, a method ranks

similarity, thus implying a consistent performance of a search method. . β values of 0.8, 0.9 and 0.95

generally rank highest for hyperstructure similarity searches, somewhat confirming what we expected

(as mentioned in the Methods section). The same analysis using Kendall’s W test was performed us-

ing EF1%, though as the results were almost identical to the BEDROC rank results, they have not been

shown here.

Kendall’s W test was also performed on the two framework statistics (Mean rank values shown in

Tables F.2 and F.3) There is less agreement than with the BEDROC scores, especially in WOMBAT

(though the WOMBAT W value is still significant). β values of 0.8 and 0.9 performed better than

other values for scaffold enrichment (Table F.2). Otherwise, the trends observed here were relatively

similar to those for the BEDROC ranks.

When concerning x̄F1%, 0.9, the β value that scored best for BEDROC was actually one of the worst

values for obtaining diverse results, at least in the context of hyperstructures. In fact, it appears that

diversity and BEDROC were opposed for all the methods - a result not entirely surprising, consider-

ing that active compounds which are more similar to inactives than the actives, are more likely to be
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chosen by less powerful methods. MCS MAX and FP MAX are extreme examples - techniques with

relatively high BEDROC scores, yet they retrieved several compounds per unique framework. This

implies that higher performing techniques exploit the similar property principle better, retrieving a

greater proportion of analogues. Likewise, this also implies that hyperstructures are actually not so

suitable for analogue retrieval. It is evident that essential information relating to compound activity

is lost when constructing hyperstructures in this work, as individual queries(through MAX fusion)

outperformed hyperstructures. This is particularly evident in the more heterogeneous activity classes,

like cyclooxygenase inhibitors.

To show the differences in the kinds of active compounds retrieved by hyperstructures and finger-

prints, the top five ranked actives involved in the MDDR COX inhibitors search are shown in Figure

4.11b, with the reference structures from which the hyperstructure was constructed being in Figure

4.11a. Comparisons of these two reveal that the hyperstructure similarity search identified three scaf-

folds not present in the reference structures (actives 56, 346 and 485). Of note, the top five compounds

retrieved by FP MAX (Figure 4.11c) all share the same scaffold (with r9) and generally differ from

each other by just one atom. This ability to prioritise analogues over non-analogues is a major reason

for why FP MAX outperformed Tversky HS 90 (and it is unsurprising this works so well given that

10 molecules with different scaffolds are used as the reference set).

4.3.4 Method Complementarity

The overlaps of the ranks of the matched compounds are summarised in the heatmaps in Figure

C.1 in Appendix C. As most of the heatmaps display similar results, one example has been picked

and displayed in Figure 4.12. The immediate finding of note is that the fingerprint, MCS fusion

and hyperstructure results were markedly complementary. MCS fusion and hyperstructures became

less complementary as the value of β neared 0.9 or 0.95 (the ones that retrieved higher BEDROC

scores), though were still somewhat complementary with roughly only half of the compounds being

in common in the matched lists. The different rankings between fingerprints and graph-matching has

been shown previously by Raymond and Willett (2002a), who showed that, on average, 30% of the

active compounds retrieved from graph similarity and fingerprint similarity methods were different.

Perhaps unsurprisingly, the overlaps between more different values of β also decreased, though this

may have been due to a difference in recall rate, rather than actual complementarity. These results

were ultimately the reason behind the fusion of FP MAX, MCS MAX and HS 90 in various forms as

discussed later in this section. However, it is unknown how other values of β could affect performance,
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Figure 4.11. Compounds involved in the MDDR COX inhibitors search. 4.11a shows the molecules
used to construct the hyperstructure (numbered arbitrarily). 4.11b shows the top five-ranked active
compounds retrieved by the hyperstructure, with their ranks displayed. 4.11c shows the top five-
ranked active compounds retrieved by FP MAX, with their ranks displayed.

though one would expect that lowering the value would improve compound diversity, at the cost of

compound and scaffold recall.

4.3.5 Time and Compression Results

Table 4.6 shows the performance times of the hyperstructure and MCS searches, and Table 4.7 shows

the extent of the compressions of the input molecules. Comparing with the hyperstructures, the typi-

cal search time requirement in MDDR was roughly two orders of magnitude greater than fingerprint

searches, though for WOMBAT the time requirements were greater than this, and the opposite can

be observed for MUV. The hyperstructure searches were consistently faster than MCS in all datasets
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Construction Database Searching
targetID HS HS MCS FP HS:MCS HS:FP
6233 1.467 906 1,847 15.2 0.491 59.5
6235 1.033 1,408 2,264 59.2 0.622 23.8
6245 0.633 1,089 2,019 14.5 0.540 75.3
7701 0.901 1,484 2,120 14.6 0.700 101.4
31420 1.585 2,433 4,940 33.6 0.493 72.4
31432 1.627 2,134 3,392 19.5 0.629 109.6
37110 1.036 1,858 2,941 17.2 0.632 107.8
42731 2.312 3,169 3,975 44.1 0.797 71.8
71523 2.258 2,952 4,043 23.5 0.730 125.5
78331 1.077 1,340 2,189 20.4 0.612 65.7
78374 1.013 1,993 2,575 20.9 0.774 95.4
mean 1.358 1,888 2,937 25.7 0.638 82.6

(a) MDDR

Construction Database Searching
targetID HS HS MCS FP HS:MCS HS:FP
1 1.632 9,860 49,260 20.5 0.200 480.1
2 0.566 5,973 32,919 20.3 0.181 294.7
3 3.606 56,539 141,896 25.6 0.398 2,208.6
4 1.437 4,725 19,572 19.9 0.241 237.5
5 1.414 6,523 23,918 16.3 0.273 401.4
6 0.379 1,997 14,952 17.1 0.134 116.7
7 0.910 4,150 27,770 16.5 0.149 252.1
8 0.479 3,985 19,724 16.5 0.202 241.5
9 1.198 9,849 48,361 16.2 0.204 608.9
10 1.647 18,469 87,894 18.4 0.210 1,002.8
11 3.321 12,575 81,207 23.0 0.155 547.0
12 0.485 13,756 38,933 22.3 0.353 617.0
13 3.579 4,775 36,093 19.8 0.132 241.3
14 2.412 3,639 34,018 28.7 0.107 126.8
mean 1.648 11,201 46,894 20.1 0.210 526.9

(b) WOMBAT

Construction Database Searching
targetID HS HS MCS FP HS:MCS HS:FP
466 0.669 190 1,470 6.7 0.129 28.3
548 0.516 125 1,204 6.5 0.103 19.2
600 0.602 160 1,410 7.5 0.114 21.2
644 0.507 130 1,177 7.0 0.110 18.5
652 0.609 178 1,347 6.6 0.132 26.8
689 0.566 191 1,469 7.8 0.130 24.5
692 0.562 199 1,187 6.6 0.168 30.3
712 0.394 204 1,406 6.7 0.145 30.5
713 0.512 191 1,396 6.6 0.137 29.0
733 0.574 204 1,515 6.8 0.135 29.8
737 0.643 222 1,841 10.3 0.121 21.6
810 1.369 225 1,387 7.3 0.162 30.9
832 0.544 208 1,792 6.7 0.116 31.1
846 0.402 159 1,570 6.3 0.101 25.2
852 0.376 259 1,769 8.0 0.146 32.4
858 0.605 237 2,178 6.9 0.109 34.3
859 0.528 269 2,426 8.0 0.111 33.9
mean 0.587 197 1,561 7.2 0.128 27.5

(c) MUV

Table 4.6
Time performances on the constructed hyperstructures, as well as for MCS fusion and Fingerprint
searching for each class in the MDDR dataset, reported in seconds. Fingerprint similarity here
includes the time taken to create the fingerprints. HS:MCS is the fraction of time that the hyperstruc-
ture search took compared to the MCS search, and likewise for HS:FP for hyperstructures against
fingerprints.
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Compression Size
targetID CB CA BH AH

6233 0.376 0.533 63 40
6235 0.338 0.498 76 46
6245 0.333 0.485 75 47
7701 0.310 0.405 84 60
31420 0.388 0.610 115 69
31432 0.360 0.580 99 55
37110 0.337 0.516 100 61
42731 0.326 0.501 123 73
71523 0.297 0.420 124 81
78331 0.351 0.534 68 41
78374 0.309 0.460 89 55
mean 0.339 0.504 92 57

(a) MDDR

Compression Size
targetID CB CA BH AH

1 0.391 0.537 130 90
2 0.347 0.482 74 49
3 0.291 0.386 178 126
4 0.273 0.340 153 115
5 0.320 0.478 136 83
6 0.352 0.514 71 44
7 0.320 0.402 113 82
8 0.307 0.431 99 64
9 0.283 0.346 144 109
10 0.368 0.624 94 51
11 0.223 0.260 163 131
12 0.349 0.495 92 61
13 0.303 0.421 87 58
14 0.359 0.516 78 49
mean 0.321 0.445 115 79

(b) WOMBAT

Compression Size
targetID CB CA BH AH

466 0.369 0.602 80 44
548 0.377 0.640 66 35
600 0.357 0.559 77 44
644 0.356 0.533 64 39
652 0.347 0.548 80 46
689 0.372 0.607 74 41
692 0.364 0.589 66 37
712 0.358 0.538 74 45
713 0.323 0.494 81 49
733 0.353 0.522 73 45
737 0.372 0.624 76 41
810 0.326 0.476 68 42
832 0.338 0.539 77 44
846 0.375 0.597 59 34
852 0.337 0.471 75 49
858 0.356 0.549 73 43
859 0.364 0.586 74 42
mean 0.356 0.557 73 42

(c) MUV

Table 4.7
Compression statistics on the constructed hyperstructures. CB is the bond compression; CA is for
atom compression; BH represents the number of bonds in the hyperstructure and AH , the number of
atoms.
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Figure 4.12. Heat map representing the numbers of matched pairs for the ranks of the MDDR com-
pounds tested with the methods shown, in this case for the Cyclooxygenase Inhibitors class. Red
corresponds to low overlap, whereas green corresponds to high overlap.

- The speed-up for hyperstructure searches in MUV and WOMBAT being between 0.1 and 0.4, de-

pending on the activity class. The time difference between MCS and hyperstructure searching was

less apparent in MDDR, though hyperstructures were still consistently faster. Unsurprisingly there is

a positive relationship between the number of bonds and the search time, with a similar relationship

existing for construction time. The size of the hyperstructure does not always increase with time

performance. An example is the 163 bond hyperstructure for WOMBAT’s target ID of 11, whose

search ran faster than the 94 bond hyperstructure of target ID 10. One should note, however, that

this reflects more on the inexact nature of the MCS algorithm used, as opposed to the nature of the

hyperstructure. One would expect a conventional exact MCS algorithm to have exponential time

scaling, with graph size. From internal correlation calculations (not shown), we found that there was

no significant relationship between bond compression and virtual screening performance.

4.3.6 Similarity Fusion

When looking at BEDROC scores, the Wilcoxon tests (Figure 4.6 and Table E.1) and the mean ranks

(Figures 4.8, 4.9 and 4.10, and Table F.1), none of the fusion methods outperformed FP MAX, though

one should note that the rank difference is insignificant when comparing FPMAX with FPMAX MC-
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method Mean(x̄F1) sd(x̄F1) Mean(BEDROC) sd(BEDROC)

FP AVG 2.766 0.249 0.932 0.099
FP MAX 2.553 0.269 0.860 0.069
FPMAX HS90 2.712 0.302 0.817 0.065
FPMAX MCSMAX 2.455 0.238 0.839 0.034
FPMAX MCSMAX HS90 2.653 0.324 0.831 0.041
MCS AVG 2.904 0.414 0.762 0.053
MCS MAX 2.202 0.236 0.601 0.061
MCSMAX HS90 2.454 0.357 0.668 0.078
Tversky HS 100 1.151 0.702 0.084 0.108
Tversky HS 30 1.436 0.152 0.348 0.170
Tversky HS 50 1.648 0.222 0.487 0.211
Tversky HS 70 2.005 0.273 0.624 0.179
Tversky HS 80 2.132 0.268 0.662 0.168
Tversky HS 90 2.258 0.443 0.512 0.138
Tversky HS 95 2.377 0.444 0.368 0.134

(a) Activity class 31420 (Renin inhibitors)

method Mean(x̄F1) sd(x̄F1) Mean(BEDROC) sd(BEDROC)

FP AVG 2.254 0.500 0.289 0.041
FP MAX 2.855 0.419 0.526 0.057
FPMAX HS90 2.507 0.873 0.417 0.082
FPMAX MCSMAX 3.135 0.641 0.576 0.055
FPMAX MCSMAX HS90 2.618 0.653 0.490 0.074
MCS AVG 2.408 0.754 0.156 0.028
MCS MAX 3.406 0.921 0.474 0.071
MCSMAX HS90 2.299 0.758 0.351 0.092
Tversky HS 100 2.025 0.546 0.223 0.033
Tversky HS 30 1.583 0.804 0.043 0.036
Tversky HS 50 1.653 0.834 0.074 0.052
Tversky HS 70 1.965 0.925 0.121 0.068
Tversky HS 80 2.021 0.783 0.157 0.078
Tversky HS 90 1.977 0.550 0.233 0.090
Tversky HS 95 1.946 0.414 0.234 0.055

(b) Activity class 78331 (Cyclooxygenase inhibitors)

Table 4.8
Virtual screening statics for replicates of two MDDR activity classes. “sd" in this case represents the
standard deviation.

SMAX (Table E.1). The fusion of all three methods, FPMAX MCSMAX HS90, was not significantly

worse than fingerprints alone, though the grossly increased time requirement and lack of benefit in

diversity retrieval makes the method redundant. The same observations can be made when concerning

EFFF1% (Figure 4.7 and Table E.2). By contrast, the best of these fusions for x̄F1 were FPMAX HS90
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and MCSMAX HS90, noting that in all datasets the results were significant, in contrast to EFFF1%.

The summary plots (Figures 4.8, 4.9 and 4.10) also highlight the trade-off between BEDROC and

molecules retrieved per framework. If one is interested only in retrieving active compounds with

no regard for diversity, then FP MAX represents the best choice overall. However, if one is more

interested in retrieving a different set of scaffolds (and thus reducing analogue retrieval), one of the

hyperstructure fusion techniques, notably FPMAX HS90 (due to being faster than MCSMAX HS90),

would be more suitable, though at a cost in recall.

4.3.7 Variability

To assess the variability of the methods tested, the most diverse (Cyclooxygenase inhibitors, class

78331) and least diverse (Renin inhibitors, class 31420) activity classes were chosen from the MDDR

database. Five similarity searches were performed for each activity class, each time using a different

random seed for the diversity selection of the reference molecules. Due to time constraints it was

unfeasible to obtain a greater number of replicates, so statistical tests cannot reliably be performed on

these results. The results for virtual screening variability are shown in Table 4.8. For renin inhibitors,

Hyperstructures alone displayed a greater variability in BEDROC than any of the other methods.

Interestingly the fusion methods all have more consistent BEDROC scores, comparable to those of

fingerprints - implying that they were less dependent on the reference compounds used. A similar pat-

tern is also observable for the cyclooxygenase inhibitors, where (relative to the mean) the variability

for hyperstructures was high. Variability in the framework statistic x̄F1% amongst hyperstructures was

also higher than other methods, the other methods generally having more similar variabilities, for both

activity classes. These results at least suggest that hyperstructures are better utilised in fusion with

fingerprints to make them less dependent on the reference compounds used, regardless of whether the

dataset is homogeneous or heterogeneous.

4.3.8 Physicochemical Properties of Retrieved Compounds

The physicochemical properties shown in Table 4.9 (MDDR only) highlight some statistically sig-

nificant differences in the molecules between hyperstructure, MCS and fingerprint searches. Of im-

mediate note is that hyperstructures retrieve significantly larger (more atoms) active molecules than

fingerprints. The size difference is apparent, in spite of the fact that the Tversky coefficient has

been used in order to attempt to reduce size bias. However, the size difference is only about 1.5

atoms, despite statistical significance. In addition to being larger, the molecules are more complex

126



Edmund Duesbury Chapter 4: Construction and Virtual Screening of Hyperstructures

Method Complexity Largest Chain Rotatable Bonds Heavy Atoms Heteroatoms Rings

FP MAX 3570 15.022 11.511 32.253 7.714 3.874
MCS MAX 3146 13.188 10.554 29.995 6.793 3.655
Tversky HS 90 3969 16.469 12.486 33.913 7.632 3.873
p_MCS MAX 0.002 0.005 0.054 0.005 0.005 0.175
p_Tversky HS 90 0.010 0.042 0.083 0.032 1.000 0.765

Table 4.9
Mean values of physicochemical properties of the actives of the top 1% ranked lists for given methods,
derived from the MDDR dataset. Values with the prefix “p_” reflect the p-values from paired 2-tailed
Wilcoxon signed rank tests, tested against FP MAX.

and possess larger acyclic chains, but have no significant difference in heteroatom and ring count.

This implies that the molecules are less “feature-rich” and more chain-rich. By contrast, the MCS-

retrieved active molecules are smaller and less chain-rich, though also possessing significantly less

heteroatoms. These observations have been made from the MDDR dataset, and it is thus assumed

that the same will apply for the other datasets.

4.4 Conclusions

The results of this investigation showed that both hyperstructures and MCS fusion, at least for the

datasets used, are inferior to a conventional fingerprinting method for performing virtual screening

(according to BEDROC scores). Both techniques retrieve fewer active compounds, and fewer active

scaffolds than fingerprint searching, and also take significantly longer to calculate. It is also note-

worthy that hyperstructures are more dependent on the reference compounds used to construct the

hyperstructure, than fingerprints and MCS fusion are.

The value of the β parameter does have some influence on both virtual screening recall and the di-

versity of compounds retrieved. From the Kendall W results, we suggest as a rule of thumb to use

a β of 0.9. From this value, it is suggested that substructure-based similarity is preferable for most

virtual screening applications. It is unclear why a value of 1.0 performed so badly; evidently some

form of size bias is required for accurate similarity. For example, if two compounds of different sizes

are perfect substructures of another molecule, then a β of 1.0 will treat both as identical irrespective

of their differing sizes. Perhaps in their current states, there are too many inactive molecules that are

unintentionally overlapping well with otherwise undesirable elements of the hyperstructure, and thus

we have to rely on the difference in numbers of edges in the hyperstructure and database molecules

somewhat to improve active/inactive distinction. Related to this hypothesis, N. Brown (2002) claimed
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that “rogue ghost substructures” were potentially responsible for the poor relative performance of hy-

perstructures to fingerprints in his work on similarity searching. Evidently from the diversity results

here, the value of β could be adjusted if the experimenter desires a superior diversity, though at the

cost in recall.

Hyperstructure searches have a consistent tendency to yield fewer analogues than fingerprint searches,

although they have also been shown to have worse scaffold retrieval in general when compared with

fingerprints. The complementarity between hyperstructure, MCS fusion and fingerprint ranked lists,

suggested that data fusion of the three techniques would be feasible in improving similarity searching.

This has somewhat supported the actual results obtained from such fusion, though at a great cost in

search time (that is, compared to fingerprints alone). Of note, we have identified that the fusion

of fingerprints and hyperstructures (at a β of 0.9 in similarity searching) is the best trade-off of the

fusion rules between virtual screening recall, and retrieval of a diverse set of molecular frameworks,

though the fusion of fingerprints and MCS yields a recall comparable to fingerprint fusion (though

at a lower scaffold retrieval). It is currently unknown as to exactly how a different value of β will

affect fusion performance, though it is likely that a lower value will worsen both active compound

and active scaffold recall.

There are several potential reasons why hyperstructures perform differently to fingerprints, aside from

the worsened ability to find analogues. The most obvious possible cause is the binary nature of graph

mapping, which minimises multiple mappings of the same feature compared with fingerprint com-

parisons (some bits, particularly with radial fingerprints of increasingly large radii, partially represent

other bits). This degeneracy could be important, leading to the potential idea of applying edge weight-

ing to hyperstructures based on frequency of overlap (as explored in Chapter 5). It is also unknown

what effect ghost substructures have on search results - The effects of ghost substructures are explored

in Chapter 5.
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Chapter 5

Similarity Searching with Modified

Hyperstructures

5.1 Introduction

This work continues with the theme of similarity-based virtual screening from chapter 4. The focus of

this chapter is on weighting of hyperstructures and application of topological constraints in similarity

searching, again measuring recall and diversity of the methods tested. In addition, the influence of

“ghost substructures” mentioned in the chapter 2 will be monitored in this chapter, as it is currently

unknown whether they have an effect on similarity searching, or have differing frequencies in active

and inactive molecules. One should note that, shortly after completing the experimental work of this

chapter, we came across the work of Klinger and Austin (2006). The work in the mentioned article

is highly similar to the work described here, but with some interesting differences, which will be

elaborated on at the end of this chapter.

5.2 Materials and Methods

The methodology here, unless otherwise stated, is the same as described in chapter 4, including the

datasets used, hyperstructure construction methodology, similarity searching and evaluation metrics

used.
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5.2.1 Monitoring Ghost Substructures

R. D. Brown, Downs, et al. (1994) utilised a fragment dictionary to search for ghosts in hyperstruc-

tures. A set of substructures were obtained from the union of all the substructures found (from the

dictionary) in the molecules used to build a hyperstructure. These would represent the hyperstruc-

ture’s substructures. When performing subgraph isomorphism with a query molecule against a hyper-

structure, the subgraph isomorphism would only be performed if the hyperstructure contained all of

the substructures that the query contained. We believe this has a number of problems for determining

ghost substructures:

• The construction of a hyperstructure itself guarantees the production of ghost substructures,

provided that the hyperstructure is not isomorphic to one of the input molecules. This is be-

cause, at the very least, the constructed hyperstructure (if not isomorphic) will be bigger than

its input molecules, and thus the largest substructure (i.e. itself) will not feature in the input

molecules. It would be better to obtain substructures directly from the hyperstructure, rather

than its input molecules, as a greater yield of ghosts should be possible.

• It is highly dependent on the fragment dictionary used (which may not be readily available),

and the dictionary itself may not necessarily encapsulate all possible ghosts

• The use of fragment dictionaries require subgraph isomorphism checks for each fragment.

When using thousands of fragments this can be a time consuming process, particularly in large

database searching (despite recent improvements in time complexity for subgraph isomorphism

tests).

When performing similarity searching, we are only interested in ghost substructures in the hyperstruc-

ture that a query molecule maps to. The MCS provides a basis for finding ghosts in the hyperstructure

which are relevant to the query. We have adopted a different technique for finding ghost substruc-

tures, based on the methodology of extended connectivity fingerprints. Figure 5.1 shows an example

of how ghost substructures are enumerated for a hyperstructure. For each atom in a molecule, all

bonds up to a fixed path length from the atom are included in a radial fashion to form a subgraph

(i.e. a breadth-first search). Duplicate subgraphs are then removed on the basis of the identifiers

of the bonds in the MCS. This means that isomorphic substructures are allowed, provided that they

originate from different parts of the MCS. Given that each bond in the hyperstructure has originated
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from at least one (but often more) bond from the input molecules, we can perform an intersection of

the molecular origins of each bond in a given substructure. If the intersection yields an empty set,

then the substructure is a ghost (refer to chapter 2 for more examples on ghost substructures). An

example of the same technique being applied to the MCS of a hyperstructure and query is shown in

Figure 5.2, where the bond origin information from the hyperstructure is copied to the MCS. In this

work, the radius for the technique is set to 4 for finding radial ghost substructures.

5.2.2 Bond Weighting

This concept was applied by N. Brown et al. (2003) in the concept of activity-weighted hyperstruc-

tures (or hypermolecules), though in the concept of substructural analysis (see chapter 2 for further

details). In this chapter instead, it is applied in similarity searching. As with the cited work, bonds

are weighted based on their frequency of overlap, though in this chapter, only active molecules are

used during construction. The weight of a bond in the weighted hyperstructure is also proportional to

the number of MCSs it was in. An example is presented in Figure 5.3.

Five weighting schemes (W1-W5) used by Arif, Holliday, and Willett (2009) and Holliday et al.

(2012) have been used to generate “similarity weights” for hyperstructure bonds. A set of weights w

in the hyperstructure, with a weight w j for each hyperstructure bond j, was assigned in the construc-

tion process (i.e. the bond’s overlap frequency). Modification through one of the weighting schemes

yielded the final weight y j. The weighting schemes are as follows, starting with the first weight

W1 : y j = 1

which is a binary weight, which otherwise ignores any weights assigned to the bond during hyper-

structure construction. In other words, all bonds have equal weights, and otherwise mirror the results

obtained in chapter 4. W2 by contrast is just the original assigned weight of the bond:

W2 : y j = w j

The next two weighting schemes are simple modifications, being the natural logarithm and the square

root respectively

W3 : y j = ln(w j)

W4 : y j =
√w j

The logarithmic term in W3 exists mainly to remove features weighted at 1 (log of 1 gives 0), yet

the magnitude between higher weights matters less with this scheme. W4 simply lessens the effect of
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Figure 5.1. Finding ghost substructures in a hyperstructure. In parts 5.1b and 5.1c, bold edges in
the hyperstructure represent the identified substructure from the central atom (circled). A copy of the
subgraph is shown with the atoms labelled, with an accompanying table to show the set intersection
process.

more highly weighted bonds. W5 is a normalisation of W2 based on the maximum weight found in

the hyperstructure:

W5 : y j = 0.5 + 0.5 w j
max{w}

This weighting scheme has been successful in text-based information retrieval (Salton & Buckley,

1988).
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(a) MCS between the hyperstructure in Figure 5.1 with a database molecule. The bond weights have been
carried over from the hyperstructure to the MCS.
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Figure 5.2. Finding ghost substructures in the MCS (as opposed to the hyperstructure) between a
hyperstructure and a database molecule. In this particular example, no ghost substructures exist as all
intersections are non-empty.

The gain in active compound recall has not generally been shown to have a great benefit over bi-

nary weighting, when using weighting schemes with extended connectivity fingerprints for virtual

screening. Despite this, W4 and W5 have consistently been shown to outperform W1 (in cases where

weights are applied to both reference and database molecules), whereas W3 is ranked somewhat lower

than W1, with W2 consistently ranking worst. By contrast, when only the reference structures are

weighted, W2 and W4 have generally outperformed W1, whereas W3 and W5 have usually been

inferior to W1 (Arif, Holliday, & Willett, 2009; Holliday et al., 2012). In this study, the database

molecule bonds all had a weight of 1 (in other words, W1 is used on the bonds), so one would expect

that W2 and W4 would outperform W1 with hyperstructures. This, of course, assumes that fragment-

based virtual screening behaves in a similar manner to hyperstructure similarity searching, which

chapter 4 has otherwise shown to not be the case.

For similarity searching, a continuous form of the Tversky coefficient has been used:

S Tv =

∑
k∈MCS

xkyk

β
( ∑

i<MCS
xi

2
)

+ (1 − β)
( ∑

j<MCS
y j

2
)

+

( ∑
k∈MCS

xkyk

)

where xi represents the weight of bond i in the database molecule and y j the weight in the reference

molecule (or hyperstructure) for bond j. The numerator of the equation is the weighted sum of the
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bonds in both molecules, which feature in the MCS. By contrast,
( ∑

i<MCS
xi

2
)

and
( ∑

j<MCS
y j

2
)

repre-

sent the squared weights for the bonds in the relevant molecules that are not in the MCS. As xi = 1 in

this study, the equation can be simplified to

S Tv =

∑
k∈MCS

yk

β d + (1 − β)
( ∑

j<MCS
y j

2
)

+

( ∑
k∈MCS

yk

)
where d is the number of bonds in the database molecule that are not present in the MCS.
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OH       
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2       2       

1       
1       1       

1       

1       

1       

1       1       
2       

2       2       

3       3       

∪

∪

Figure 5.3. Example of hyperstructure construction with bond weighting, based on the frequency of
overlap. Bold edges represent the MCS between two molecules, and numbers on the hyperstructures
(right-most graphs) represent bond frequency weights. The order of molecules in this example has
been arbitrarily chosen.

Hyperstructure search methods will be named as HS_90_wa, where a is a number from 1 to 5 that

identifies the weight scheme used, and 90 represents a β value of 0.9. FP denotes fingerprint group

fusion as used from chapter 4, and FP HS90_wa is SUM rank fusion of FP with HS_90_wa. As a

value of 0.9 was found to be most effective for virtual screening in chapter 4, β was set to 0.9 for this
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study.

5.2.3 Topology Type Matching

In an attempt to reduce the number of ghost substructures present between the MCS of the hyper-

structure and query molecule, we decided to implement a feature that remembers and enforces the

topology type of the bond in the hyperstructure. We hypothesised that this will have an effect on the

number of ghost substructures mapped, for the creation of new rings during the hyperstructure process

is one common way of producing ghost substructures. However, we also expect it to have in impact on

the scaffold hopping ability of the search process, being that ghost substructures should theoretically

be responsible for the ability to retrieve new scaffolds. Namely, whether the bond originates entirely

from chains, rings, or both, in the input molecules. Examples are presented in Figure 5.4. It should be

noted that the construction order (that is, the order of input molecules used) is unchanged - topology

information is ignored during the sorting process for input molecules.

O       

NH       

O       

NH       

O       

∪       

Key:
Chains only
Rings   only

(a) In this example, a ring in the hyperstructure (far right molecule) has been constructed from two chains
overlapping. Note however that this ring is only allowed to map to chain molecules.

H       2       C       
H       
N       

CH       2       

N       
O       

O       

O       

N       
O       

HN       

N       

O       

O       

HN       
∪       

(b) An example with bonds that map both chains and rings (black bonds)

Figure 5.4. Topology type enforcement examples. MCS bonds are shown in bold for the input graphs.
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5.3 Results and Discussion

5.3.1 Virtual Screening Recall Performance

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 4.545 1.00 9.77 · 10−4

HS 90 w2 1.818 1.86 · 10−2 9.77 · 10−4

HS 90 w3 3.364 5.37 · 10−2 9.77 · 10−4

HS 90 w4 3.364 0.28 9.77 · 10−4

HS 90 w5 3 2.07 · 10−2 9.77 · 10−4

FP HS90 w1 8.909 1.00 8.30 · 10−2

FP HS90 w2 6.182 1.37 · 10−2 4.88 · 10−3

FP HS90 w3 8.182 0.18 4.88 · 10−3

FP HS90 w4 8.364 0.21 2.44 · 10−2

FP HS90 w5 8.455 0.12 1.37 · 10−2

FP 9.818 1.00 1.00

(a) BEDROC. Kendall’s W (tested on the ranks of
each activity class) = 0.659, p = 1.28e-39

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 3.818 1.00 1.95 · 10−3

HS 90 w2 2.818 0.58 9.77 · 10−4

HS 90 w3 3.091 0.37 9.77 · 10−4

HS 90 w4 4 0.52 9.77 · 10−4

HS 90 w5 2.727 0.12 9.77 · 10−4

FP HS90 w1 8.091 1.00 6.74 · 10−2

FP HS90 w2 7.455 0.97 0.12
FP HS90 w3 8.727 0.64 2.44 · 10−2

FP HS90 w4 9.091 0.41 0.64
FP HS90 w5 6.636 5.37 · 10−2 4.88 · 10−3

FP 9.545 1.00 1.00

(b) EFFF1. Kendall’s W = 0.600, p = 9.47e-35

Table 5.1
Virtual screening results for the MDDR dataset. The “Mean Rank” column shows the mean of the
ranks, of all the methods. Cells in bold typeface indicate the weighting scheme that performed best
for a given similarity method, and cells shaded in grey indicate the maximum rank across all methods.
The “Wilcoxon p” columns presents the p-values for two-tailed Wilcoxon signed-rank tests, “vs w1”
for the method being tested against the w1 equivalent, and “vs FP MAX” for the given method against
FP.

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 1.941 1.00 1.53 · 10−5

HS 90 w2 3.706 3.51 · 10−2 7.63 · 10−5

HS 90 w3 4.794 3.81 · 10−4 5.48 · 10−4

HS 90 w4 4.529 2.58 · 10−3 6.52 · 10−4

HS 90 w5 4.941 1.53 · 10−5 3.05 · 10−5

FP HS90 w1 4.471 1.00 1.53 · 10−5

FP HS90 w2 6.882 0.17 1.53 · 10−4

FP HS90 w3 8.294 8.39 · 10−4 2.14 · 10−4

FP HS90 w4 7.794 1.06 · 10−2 2.90 · 10−4

FP HS90 w5 8.529 1.53 · 10−5 1.51 · 10−3

FP 10.118 1.00 1.00

(a) BEDROC. Kendall’s W = 0.243, p = 3.35e-17

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 4.853 1.00 1.10 · 10−3

HS 90 w2 4 0.15 8.51 · 10−4

HS 90 w3 4.588 0.67 1.33 · 10−3

HS 90 w4 4.676 0.53 1.09 · 10−3

HS 90 w5 4.059 0.10 7.25 · 10−4

FP HS90 w1 7.618 1.00 1.07 · 10−2

FP HS90 w2 6.059 0.18 5.64 · 10−3

FP HS90 w3 7.088 0.47 1.31 · 10−2

FP HS90 w4 6.647 0.33 4.09 · 10−3

FP HS90 w5 7.147 0.93 5.08 · 10−3

FP 9.265 1.00 1.00

(b) EFFF1. Kendall’s W = 0.157, p = 5.71e-08

Table 5.2
Virtual screening results results for the MUV dataset.

Tables 5.1a, 5.2a and 5.3a display BEDROC mean ranks and statistical significance for each weight

for the activity classes of the respective databases. Likewise, Tables 5.1b, 5.2b and 5.3b display

the same statistics derived from EFFF1. The raw virtual screening statistics are in Appendix G. It
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Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 1.857 1.00 1.22 · 10−4

HS 90 w2 1.5 7.85 · 10−2 1.22 · 10−4

HS 90 w3 4.821 1.22 · 10−4 1.22 · 10−4

HS 90 w4 3.429 3.05 · 10−3 1.22 · 10−4

HS 90 w5 4.607 1.22 · 10−4 1.22 · 10−4

FP HS90 w1 6 1.00 1.22 · 10−4

FP HS90 w2 6.214 0.78 1.22 · 10−4

FP HS90 w3 9.536 1.22 · 10−4 5.80 · 10−2

FP HS90 w4 8.321 3.66 · 10−4 2.44 · 10−4

FP HS90 w5 9.143 1.22 · 10−4 2.02 · 10−2

FP 10.571 1.00 1.00

(a) BEDROC. Kendall’s W = 0.763, p = 2.54e-66

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 4.214 1.00 2.44 · 10−4

HS 90 w2 1.464 2.66 · 10−3 1.22 · 10−4

HS 90 w3 4.821 0.43 8.54 · 10−4

HS 90 w4 2.929 3.76 · 10−2 1.22 · 10−4

HS 90 w5 3.857 0.30 8.54 · 10−4

FP HS90 w1 7.893 1.00 1.07 · 10−2

FP HS90 w2 5.571 2.32 · 10−3 1.22 · 10−4

FP HS90 w3 9.143 0.14 0.14
FP HS90 w4 7.964 0.90 5.25 · 10−3

FP HS90 w5 8.036 0.63 5.04 · 10−2

FP 10.107 1.00 1.00

(b) EFFF1. Kendall’s W = 0.724, p = 6.15e-62

Table 5.3
Virtual screening results for the WOMBAT dataset.

is clear from the grey-shaded rows in each table that overall, FP again outperformed all other tech-

niques used for the datasets, and significantly so judging from the p-values. The vast majority of

the other techniques in the tables were significantly worse than FP, and there was no clear pattern

amongst the small number of exceptions which were not significantly different than FP. So far, this

remains consistent with the findings of Chapter 4, where hyperstructure similarity was generally out-

performed by fingerprint similarity. Despite this negative outcome, some interesting patterns can be

observed in MDDR and WOMBAT. The MUV results by contrast seem to show no apparent benefit in

any weighting scheme, and there appears to be little performance differences between hyperstructure

search techniques (excluding the fusion technique).

Upon analysis of the BEDROC scores of MDDR and WOMBAT, we note from the significant agree-

ment in ranks from Kendall’s W, that the W3 scheme was overall ranked better than W1 in recall for

all the hyperstructure searches. In MUV and WOMBAT, the paired Wilcoxon tests show that W3 was

significantly better than W1, whereas MDDR yielded a result of borderline significance at the 0.05

threshold. It was also observed that W4 was competetive with W1, whilst the W2 scheme ranked

worst of all techniques. Similar conclusions can be drawn for scaffold retrieval. Internal tests were

performed on other values of β, but a value of 0.9 was still generally the best to use. Alternative

trends were found for different β values, though this is beyond the scope of this study and will not be

discussed.

On looking at the results for EFFF1 (and hence scaffold retrieval), an immediate point to note is that

the majority of results for each weighting scheme are not significantly different from W1. This is in
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contrast to BEDROC, where clear advantages (and disadvantages) to W1 can be observed. W3 only

ranked as better than W1 in WOMBAT (and even then, not significantly so). In the other datasets,

W1 remained the best option for scaffold retrieval (for hyperstructures alone). The implication from

this, is that the choice of weighting scheme evidently had a greater effect on analogue retrieval, as

opposed to scaffold retrieval.

The fusion technique FP HS90 was generally ranked above all of the non-fusion hyperstructure meth-

ods, for all weighting schemes. For all three datasets, the BEDROC results suggested, however, that

no individual weighting scheme performed best for this technique. MDDR highlighted W1 as the

best, whereas MUV and MDDR showed that W5 and W3 were significantly better in recall than

W1, respectively. In only one instance was this technique not significantly worse than FP - W3, for

the WOMBAT dataset for both BEDROC and EFFF1. The same weighting scheme pattern can be ob-

served for scaffold hopping, judging from the EFFF1 results, where no weighting scheme significantly

outperformed FP.

The results here differ somewhat to the work done on fingerprints (Arif, Holliday, & Willett, 2009;

Holliday et al., 2012), where there was a small benefit to using weighting schemes other than W1

when only the reference structure was weighted. W2 performed well with fingerprints and W3 gener-

ally didn’t, yet in this work no consistent benefit has been observed using weighting schemes, for this

particular hyperstructure search technique. The somewhat superior performance of W3 compared to

other weighting schemes likely arises from its discounting of bonds with a weight of 1 - theoretically

biasing a search towards analogue similarity.

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 4 1.00 9.77 · 10−4

HS 90 w2 1.227 1.95 · 10−3 9.77 · 10−4

HS 90 w3 4 0.97 9.77 · 10−4

HS 90 w4 2.909 0.18 9.77 · 10−4

HS 90 w5 3.409 0.10 9.77 · 10−4

FP HS90 w1 9 1.00 4.20 · 10−2

FP HS90 w2 5.727 1.95 · 10−3 9.77 · 10−4

FP HS90 w3 8.818 0.21 6.84 · 10−3

FP HS90 w4 8.091 0.10 4.88 · 10−3

FP HS90 w5 8.455 0.32 6.67 · 10−3

FP 10.364 1.00 1.00

(a) BEDROC. Kendall’s W = 0.674 , p = 7.13e-41

Mean Rank Wilcoxon p
Method vs w1 vs FP MAX

HS 90 w1 3.182 1.00 9.77 · 10−4

HS 90 w2 2.273 0.24 9.77 · 10−4

HS 90 w3 4.045 0.15 9.77 · 10−4

HS 90 w4 3.5 0.64 1.95 · 10−3

HS 90 w5 2.455 4.20 · 10−2 9.77 · 10−4

FP HS90 w1 8.818 1.00 6.74 · 10−2

FP HS90 w2 6.909 0.41 3.22 · 10−2

FP HS90 w3 9 0.47 0.32
FP HS90 w4 8.636 0.97 0.41
FP HS90 w5 7.545 6.84 · 10−3 9.77 · 10−3

FP 9.636 1.00 1.00

(b) EFFF1. Kendall’s W = 0.686 , p = 7.36e-42

Table 5.4
Virtual screening results for the MDDR dataset when topology type matching is applied.
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5.3.1.1 Topology Type Matching. As with the results for non topology type matching, none

of the hyperstructure-based techniques outperformed fingerprints (Table 5.4). W3, unlike for the

non-topology enforced results (MDDR), was competitive with W1. Although it achieved the same

BEDROC ranks as W1, its scaffold recall was superior, albeit not on a significant level. W2, W4 and

W5 remain as inferior weighting techniques for both HS 90 and FP HS90. It is unclear whether the

topology type enforcement technique retrieved different molecules than the non-enforced technique,

seeing that there was little apparent difference in active and scaffold recall between the two techniques.

On comparing our approach with that of Klinger and Austin (2006), we note some important differ-

ences in methodology:

• Their work specifically sought the maximum-weighted tdMCIS (θ = 0) between a weighted

hyperstructure and a query molecule - both in hyperstructure construction and similarity

searching. Our approach simply used the weights obtained from the MCES provided by the

ChemAxon algorithm, which otherwise finds an unweighted MCES.

• The (symmetric) Wallis coefficient (Wallis et al., 2001) was used, instead of the asymmetric

approach in this work.

• The maximum number of compounds used in hyperstructure construction was 5, as opposed to

10 as in this work.

Their approach showed that a weighted hyperstructure actually obtained comparable active compound

recalls compared to unweighted ones. Clearly it is beneficial to search for a maximum-weighted MCS

(as opposed to an unweighted one), though the topological distance limit clearly has an effect as well.

They also noted that the hyperstructure approach was comparable in recall to MAX-rule MCS group

fusion, which contradicted our results in Chapter 4. The deletion of edges from the hyperstructure

(where the weight is 1) yielded a decrease in active compound recall. The nearest parallel in our

work, the application of the W3 weighting scheme, yielded an improvement in recall in two of the

three datasets.

5.3.2 Ghost Substructure Information

On analysis of the ghost substructure information in the top 1% ranked compounds of a search method

(Table 5.5), we observed that the proportion of ghosts identified was consistently slightly smaller for

actives compared to inactives. It is unclear what the significance of this observation is, other than
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that the highly-ranked inactive molecules generally possess slightly more molecular features that

are absent in the molecules used to build the hyperstructures. This may imply that molecules with

a greater proportion of ghost substructures should be penalised against in hyperstructure searches,

though more investigations are needed to see if this is not simply an artefact of the current search

process (for instance, using alternative hyperstructures). This finding would be consistent with the

idea of “rogue” ghost substructures being detrimental to virtual screening (N. Brown, 2002).

Method Gp_A Gp_I G_A G_I S_A S_I

HS 90 0.356 0.424 28.353 33.075 79.082 77.791
FP HS90 0.364 0.4 27.912 30.265 75.902 75.433

FP 0.36 0.393 25.871 26.46 71.102 67.671

Table 5.5
MDDR Ghost substructure results for compounds in the top 1% ranked compounds for a given search
method. Ghost substructures are derived from the MCS between the hyperstructure and database
molecule. The subscript A results to active compounds, whereas I identifies inactives (in other words,
true positives and false positives respectively, if all compounds in the list were assumed to be ac-
tive). G is the mean number of unique ghost substructures per compound, S is the mean number of
substructures in a compound, and Gp is G

S .

To get a basic idea of the influence of specific ghost substructures, we calculated the frequencies of

each ghost substructure, in the actives and inactives of the top 1% ranked compounds. Using the

5HT reuptake inhibitors activity class as the example here, 46 active compounds and 984 inactives

were identified by the HS 90 search. Ghost substructures were treated as duplicates if their InChI

strings were identical (in other words, they are isomorphic graphs). We appreciate that this ignored

the fact that isomorphic ghosts may arise from different bonds of the hyperstructure, but this purpose

is primarily for visualisation (and is difficult to visualise dense graphs like hyperstructures). The

most frequent ghosts are shown in Figure 5.5. There is a certain degree of overlap between the top

five active and inactive ghosts identified, noting that two of the substructures are isomorphic, and the

others exhibiting a similar size and topology. For the active ghosts, the mean frequency is 2.14 with a

standard deviation of 2.83, whereas for inactives the mean frequency is 4.85 with a standard deviation

of 21.3. In both cases the median frequency is 1, highlighting that the vast majority of ghosts iden-

tified occurred only once. The ghosts shown to have the greatest actives-to-inactives frequency ratio

(Figure 5.5c) are somewhat different between the other two sets - whilst two of the ghosts occurred in

the top five for actives and inactives, the other three are generally more dissimilar. This provides some

indication that ghost substructures are indeed important for the retrieval of certain active compounds

(presumably ones of different structural type to the actives used to build the compounds).
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(a) Five most commonly occuring ghost substructures in the retrieved active compounds.
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(b) Five most commonly occuring ghost substructures in the retrieved inactive compounds.
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(c) Five ghost substructures which occur more commonly in actives than inactives. Determined on the basis of
standardising their frequencies across all the substructures identified in the actives (and likewise for inactives),
and measuring the difference in standardised frequencies.
Figure 5.5. Commonly occuring ghost substructures in the MDDR 5HT reuptake inhibitors activity
class, resulting from the top 1% ranked compounds of the HS 90 search.

5.4 Conclusions

This chapter demonstrates, for the hyperstructure search technique used, that the W3 weighting

scheme was competitive (if not slightly better) with W1, particularly for the hyperstructure-fingerprint

fusion technique. However, as the differences in performance were only slight, and with fingerprints

still generally outperforming the hyperstructure searches, this yields a result of otherwise little benefit

in virtual screening. This was observed for active compound recall, yet no significant differences

were observed for scaffold retrieval, suggesting that different proportions of analogues were obtained.

Topology type matching in hyperstructures, surprisingly, had no beneficial effect on virtual screening,

with little effect on the rankings of methods and weighting schemes, and with none of the methods

outperforming fingerprints alone.

141



Edmund Duesbury Chapter 5: Similarity Searching with Modified Hyperstructures

It is clear that some ghost substructures clearly are important in the retrieval of active compounds,

though as mentioned by N. Brown (2002), some “rogue” substructures may compromise the results.

Further investigation (i.e. substructural analysis) is needed to discern what sort of ghost substructures

occur frequently in active and inactive compounds and how these affect recall and scaffold hopping.

It may be worth applying substructural analysis to ghost substructures that have a disproportionate

presence in active and inactive compounds, to observe influences the virtual screening performance

of the current hyperstructure searches.

When compared with the results of this chapter, the work of Klinger and Austin (2006) suggests that

the type of MCS, and MCS algorithm employed, have a significant effect on hyperstructure virtual

screening (and ghost substructures). The effects on virtual screening performance will be explored in

the next chapter, where different MCS algorithms and different MCS types are compared.
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Chapter 6

Evaluation of MCS algorithms for

Alignment and Virtual Screening

6.1 Introduction

Recently there has been a lack of extensive comparisons of MCS algorithms in chemoinformatics.

Brint and Willett (1987) were the first authors to compare MCS algorithms, where a clique detection

algorithm was compared with a subgraph enumeration algorithm to find the 3D MCS. Gardiner et al.

(1997) reviewed a set of clique-detection algorithms for finding alignments of 3D molecules (a gener-

ally simpler problem compared to a 2D perspective). They identified two clique-detection algorithms

worthy of note - the Bron-Kerbosch algorithm (Bron & Kerbosch, 1973), and the Carraghan-Pardalos

algorithm (Carraghan & Pardalos, 1990). Conte, Foggia, and Vento (2007) more recently performed

a comparison of three MCS algorithms, though these algorithms were published before the turn of

the millenium and no algorithm emerged as being generally superior in terms of time performance.

It is not known whether the exactness of an MCS algorithm is linked to virtual screening ability in

similarity searching. Furthermore, it is not well known how different types of MCS (i.e. cMCS,

dMCS and tdMCS) compare in similarity searching. This work sets out to evaluate an assortment

of MCS algorithm types, both in terms of time complexity, and suitability for chemical similarity

searching and hyperstructure virtual screening. For more information on MCS algorithms, readers

are directed to chapter 2, as well as to reviews by Raymond and Willett (2002b) and Ehrlich and

Rarey (2011).
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6.2 Materials and Methods

6.2.1 A Note on Implementation

It is worth mentioning before going into depth with the methodology, that it is almost impossible to

obtain similar results to those that the original authors presented for their algorithms. This is mainly

due to differences in programming and implementations (i.e. some concepts explained in the papers

have multiple methods of implementation). We have tried to implement the algorithms here as closely

to the original papers as possible, but we appreciate that it is impossible to recreate the original imple-

mentation unless the source code and/or program is provided (as is the case with CDK’s VFLibMCS

algorithm). Of note is that all algorithms here have been programmed using Java for the KNIME

platform (for details on hardware and software see the Methods section in Chapter 4), whereas most

of the algorithms were originally implemented in C/C++, the latter of which will often result in faster

run times. This chapter describes how we have implemented the aspects of the MCS algorithms, as

well as the tests and evaluation measures used.

The MCS algorithms used in this paper are summarised in Table 6.1. All clique detection algorithms,

and fMCS have been implemented with a time-out condition - that is, none of their algorithms may

explore a given solution beyond this time limit. SMSD and VFLibMCS have also had the same

time-out condition introduced. For the kcombu, consR and CDKMCS algorithms, there was no need

to introduce a time-out condition due to their inexact nature, and thus would be highly unlikely to

exceed the time constraints imposed in this chapter. ChemAxon_MCS has the same situation, though

we did not possess the source code for this proprietary algorithm, and thus could not introduce a time

constraint anyway.

Of the exact clique detection methods implemented in this work, we only found a cMCS solution for

the Bron-Kerbosch algorithm, as depicted in Algorithm 3 of (Hariharan et al., 2011). In brief, this

modification relied on expanding a clique with a given vertex, provided that said vertex possessed at

least one c-edge (defined in Chapter 2) to a member of the current clique in question. Unfortunately

we could not apply such a modification to the other three exact algorithms due to the heuristics in-

volved in each algorithm. The algorithms that relied on graph colouring in particular caused problems

when attempting to implement this condition. The c-clique problem (finding the cMCS via clique

detection) to our knowledge cannot be solved by modifying the modular product alone. In fact, if a

modular product is constructed purely of c-edges, then finding the cMCS is actually a case of finding

the longest path, rather than being a clique detection problem. For these reasons, and since no cMCS
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Output MCS type Algorithm Reference(s) Number of
MCSs

Exact cMCS VFLibMCS (Rahman et al., 2009) >1
SMSD (Rahman et al., 2009) >1
fMCS (Dalke, 2013) 1

All MaxCliqueSeq (D) (Depolli et al., 2013) 1
Bron-Kerbosch (BK) * (Bron & Kerbosch, 1973; Hari-

haran et al., 2011)
All

Carraghan-Pardalos
(CP)

(Carraghan & Pardalos, 1990) 1

RASCAL (Raymond et al., 2002b) 1
Approximate cMCS CDKMCS (Rahman et al., 2009) >1

All kcombu * (Kawabata, 2011) K (arbitrary
parameter)

dMCS consR (Zhu et al., 2011) 1
ChemAxon_MCS
(CA_MCS) *

(Englert & Kovács, 2015;
Grosso et al., 2008)

1

Table 6.1
The MCS algorithms to be evaluated. “All” for MCS type refers to the ability of an algorithm to sup-
port dMCS, tdMCS and hMCS types. Abbreviations are referred to in brackets, which are sometimes
used in the results tables due to space constraints.
* These algorithms can also be used to compute the cMCS.

solutions currently exist for the CP, RASCAL and MaxCliqueSeq algorithms, we have been unable

to use them to calculate the cMCS in this study.

6.2.2 Modular Product of Two Graphs

As explained in detail in Chapter 2, the modular product of two graphs is sought using clique de-

tection algorithms, where a maximum clique corresponds to a maximum common substructure. As

we are seeking the MCES (edge-matching) instead of the MCIS (effectively, node matching), the

modular product is constructed between the line graphs of the molecules, rather than the molecular

graphs. Therefore, the node set V(G) in the modular product G, represents the pairs of matched bonds

between the molecular graphs, not the pairs of matched atoms.
The node set of the modular product in this work, V(G), is defined as

V(G) =

|E(G1)|⋃
i=1

|E(G2)|⋃
j=1

(ui, v j) : ui ∈ E(G1) ∧ v j ∈ E(G2) ∧ matches(ui, v j)

where G1 and G2 are two molecular graphs, E(G1) is the set of edges of G1, and matches is a function

that checks if the weights of the two edges are compatible (i.e. bond order), and whether a bijective
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mapping of the node labels of the two edges exists (or more ambiguously, the labels of the atoms

match).

The edge set of the modular product, E(G), is defined as

E(G) =

|V(G)|⋃
i=1

|V(G)|⋃
j=1

(ui, v j) :
(
ad j(ui1, v j1) ∧ ad j(ui2, v j2)

)
∨

(
¬ad j(ui1, v j1) ∧ ¬ad j(ui2, v j2)

)
where ad j is a function which tests if a common vertex exists between two edges in the relevant

molecular graph (G1 or G2). If a common vertex exists for each of the two specified modular product

nodes in their respective molecular graphs, then the common vertices must be compatible (i.e. have

the same label).

When constructing the tdMCS (as detailed in Chapter 2), the topological distance difference constraint

is applied when building edges in the modular product, using a topological distance limit of θ. The

Floyd-Warshall algorithm (Floyd, 1962) is used to calculate minimum path distances in molecules

(between edges). If a pair of modular product nodes (or molecule edge pairs) has a topological

distance difference that exceeds θ, then no edge is created between the two nodes.

In implementations here, unless otherwise explained, modular products have been represented as

bitstring adjacency matrices. This is primarily inspired by the work of Depolli et al. (2013), due to

the extensive requirement for setwise AND and OR operations in the clique detection algorithms, for

which computer processors are well suited. This has not been used in Carraghan-Pardalos’ algorithm,

where an integer-based adjacency matrix is used instead. Whilst we could have re-designed this al-

gorithm to use bitstrings, we felt that this would have deviated too far from the original specification

of the algorithm.

6.2.3 Modular Product Simplification Heuristics

The node and edge “deletion” heuristics described by Raymond et al. (2002a) have been implemented,

with a few changes to further improve search times. The rationale for implementing said heuristics

was to improve MCS algorithm search speed (for methods which use the modular product), whilst

minimising reductions in the size of the MCS obtained. Although referred to as “deletion” heuristics,

it is better to think of these heuristics as additional rules for determining the creation of nodes and

edges in the modular product. From here on, an MCS algorithm which uses these heuristics will

retrieve a dMCS referred to as hMCS (heuristic-MCS). Although the same heuristics can be applied
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with other MCS types (such as the tdMCS), we have only applied the heuristics for simplifying the

dMCS problem. New edge heuristics for creating the hMCS, which were not featured in the original

heuristic set (Raymond et al., 2002a), are introduced here. These new additions all utilise topological

distance constraints when considering edge creation, the specific details of which can be found in

Appendix H.

6.2.4 Compound Datasets

A number of compound sets were designed which we believe serve as informative benchmarks for

the MCS algorithms presented here. Of main interest concerning this study is the time taken to

retrieve a given (maximum) common substructure, as well as the number of bonds in the common

substructure. Factors known to influence search time include the sizes of graphs being compared,

symmetry, and the average degree of the graphs. The latter point is worth mentioning in light of the

clique detection algorithms, where the modular product graphs created are particularly dense - owing

to the low average degree in 2D chemical graphs.

The first set of compounds consists of symmetric compounds, which was chosen for testing in light

of the remarks on symmetric compounds by Raymond et al. (2002a), who showed that the amount

of symmetry in graphs being compared was related to the time taken to calculate the MCS. This set

is shown in Table 6.2, the bonds in bold belonging to the MCS between each compound pair. S1

and S2 are examples that were historically used to test RASCAL. The next three pairs are somewhat

flexible molecules where the first and second compounds are of similar sizes. These three pairs were

introduced to test the performance of the flexible bond-based modular heuristics. The last example,

S6, is being used due to the highly aromatic and inflexible nature of the compounds.

The next set of compounds in Table 6.3 has been chosen on the basis of having no rings. This is

mainly to check the performance of the non-ring based heuristics implemented here. Notably the

MCSs are rather fragmented, thus topological distance-dependent heuristics are not expected to work

well. It is worth mentioning that the compounds in N1 are symmetric, yet the reported MCS is not

(the reported MCS was retrieved by ChemAxon’s MCS algorithm, which evidently found a mapping

larger than or equivalent in size to a symmetric mapping).

A miscellaneous set is presented in Table 6.4. The first two compounds have been selected on the

basis of being topologically non-planar. Non-planar graphs are those which cannot be drawn in

2D without causing edges to overlap. Although non-planar chemicals are rare occurrences, several

147



Edmund Duesbury Chapter 6: Evaluation of MCS algorithms for Alignment and Virtual Screening

algorithms make assumptions about the planarity of graphs, including isomorphism, automorphism

(Faulon, 1998) and subgraph isomorphism (Adler, Dorn, Fomin, Sau, & Thilikos, 2010). It would

interesting to see if non-planar molecular graphs yield different performance statistics from planar

graphs (Dalke, 2012). The final case, M3, has been selected as a stress test to see how well the

algorithms handle large rigid molecular graphs.

The next dataset was designed by Franco, Porta, Holliday, and Willett (2014) to yield one hundred

pairs of compounds with differing degrees of similarity. The original purpose of this dataset was to

assess the abilities of experts (at the European Medicines Agency), in judging chemical similarity. We

have selected a subset of the 100 compound pairs, where every fourth compound has been chosen,

after sorting the 100 pairs in descending order of RDKit Morgan Fingerprint similarity, at a radius of

2. From here, this fingerprint is referred to as mECFP4. These compounds are shown in Table 6.5.

The final benchmark concerns the use of the MCS in virtual screening. This experiment has been

designed to address three questions:

• Whether the use of an exact algorithm is necessary in MCS similarity searching

• What influence the type of MCS has (i.e. dMCS, cMCS and tdMCS)

• How MCS group fusion compares to fingerprint group fusion.

We focus on a small selection of the ChEMBL compound sets in Riniker and Landrum (2013). The

ChEMBL datasets here are interesting for virtual screening as each activity class has 100 active com-

pounds, yet a single set of 10 000 inactives is re-used for each activity class. The classes also possess

a wide range of intra-set similarities and, more importantly, have highly variable performances on

fingerprint searches. The subset focused on is shown in Table 6.6. These classes have been chosen

on the basis of the authors’ reported fingerprint performance. Two datasets with a high mean intra-set

similarity (S̄ AA) were noted to be high-recall classes for fingerprints (Somatostatin receptor 5 and C5a

receptor). Two other classes with a low intra-set similarity and a high number of unique frameworks

have also been chosen (Cytochrome P450 2C9 and beta-2 adrenergic receptor). The authors noted

that the AUC ROC values for these two classes were close, if not below, the random threshold of

0.5. The final two classes in the table, have been chosen on the basis of having intermediate virtual

screening performances (from supplementary data in the author’s publication, these two classes had

BEDROC scores close to the median BEDROC value).
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Number Compound 1 Compound 2 Reference(s)

S1

O       

O       

O       

O       

O       O       

O       

O       

O       

O       

O       

O       

O       

O       

O       
O       

O       

O       

O       

O       (Raymond et al., 2002b)

S2

O       

O       

O       

O       

O       O       

O       

O       

O       

O       

O       

O       

O       

O       

NH       

N       N       

HN       

O       

O       

O       
O       

(Raymond et al., 2002a)

S3

H       
N       

O       

N       
H       

O       

O       

OH       

OH       

O       

O       

H       
N       

O       

N       
H       

H       
N       

O       

N       
H       

O       

O       

OH       

OH       

O       

O       

H       
N       

O       

N       
H       

(Ersmark et al., 2003)

S4
OH       

OH       

O       

O       

N       
H       

OH       
O       

O       

H       
N       

HO       

H       
N       

O       

N       
H       

O       

O       

OH       

OH       

O       

O       

H       
N       

O       

N       
H       

(Ersmark et al., 2003)

S5
OH       

O       

N       
H       HO       

O       

N       
H       OH       H       

N       

O       

OH       

O       

H       
N       

O       

N       
H       

N       

NH       

O       

N       
H       

N       

HN       

(Bone, Vacca, Anderson,
& Holloway, 1991)

S6

N       

NH       

N       

HN       

N       +       
N       

+       

N       

NH       

N       

HN       

N       N       

N       N       
(Libby, Munson, Fiel, &
Porter, 1995)

Table 6.2
Pairs of symmetric compounds to be evaluated
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Number Compound 1 Compound 2 ChEMBL IDs

N1
OH       

O       

N       
H       

O       

H       
N       

O       

O       

O       

N       
H       

O       

H       
N       

O       

O       

N       
H       

O       

O       

OH       

N       
H       

OH       

N       
H       

O       

O       

CHEMBL39130,
CHEMBL46316

N2

O       

O       

O       

O       

O       
O       

NH       

OH       

CHEMBL26440,
CHEMBL15848

N3

H       
N       

O       

N       
H       

O       

NH       2       

HS       

O       

N       
H       

S       

O       HO       
P       

O       

HO       OH       

P       

O       

HO       
P       

O       HO       

OH       

CHEMBL55423,
CHEMBL1204752

Table 6.3
Pairs of non-ring compounds to be evaluated
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Number Compound 1 Compound 2 References

M1

O       

O       

O       OH       

O       

O       

O       O       

OH       

O       

N       O       

N       

H       
H       

(Kariba, Houghton,
& Yenesew, 2002),
(C. Huang et al., 2014)

M2

O       
O       

O       

H       

H       H       

O       

H       

O       
H       

O       

H       H       OH       O       

O       

N       

OH       

(Li et al., 2007), (Maurer
& Rapoport, 1987)

M3

OH       

N       

OH       

N/A

Table 6.4
Pairs of miscellaneous compounds to be evaluated
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Number Compound 1 Compound 2 Similarity

F80a 1.000

F89a 0.824

F2a 0.739

152



Edmund Duesbury Chapter 6: Evaluation of MCS algorithms for Alignment and Virtual Screening

F57a 0.723

F92a 0.678

F31a 0.636

F19a 0.587

153



Edmund Duesbury Chapter 6: Evaluation of MCS algorithms for Alignment and Virtual Screening

F100a 0.544

F91a 0.500

F94a 0.481

F72a 0.444
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F18a 0.415

F34a 0.391

F47a 0.366

F69a 0.279
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F28a 0.214

F96a 0.186

F50a 0.170

F8a 0.152
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F13a 0.138

F45a 0.134

F12a 0.129

F30a 0.117
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F20a 0.105

F88a 0.091

Table 6.5
Franco compound pairs to be evaluated, sorted in descending order of mECFP4 similarity (as de-

picted in the “Similarity” column). “Number” represents the name of the compound pair that the
authors originally assigned.

ChemblID Name S̄ AA S σ
AA S̄ AI S σ

AI Frameworks

CHEMBL1792 Somatostatin receptor 5 0.268 0.067 0.144 0.021 59
CHEMBL3397 Cytochrome P450 2C9 0.120 0.014 0.125 0.021 96
CHEMBL2373 C5a anaphylatoxin chemotactic receptor 0.283 0.063 0.142 0.013 45
CHEMBL5414 beta-2 adrenergic receptor 0.137 0.020 0.132 0.020 94
CHEMBL1889 Vasopressin V1a receptor 0.168 0.023 0.135 0.014 87
CHEMBL1957 Insulin-like growth factor I receptor 0.162 0.026 0.128 0.015 86

Table 6.6
Similarity statistics for the classes used in the ChEMBL-derived datasets, using RDKit standard Mor-
gan fingerprints at a radius of 2 as the descriptor. S̄ represents the mean pairwise similarity (MPS)
and S σ is the standard deviation of similarity values. Subscript AA denotes similarity between active
molecules in the class, and AI is the inter-similarity between actives and inactives. “Frameworks”
refers to the number of unique Bemis-Murcko frameworks as calculated with RDKit (as detailed in
the methodology of Chapter 4).
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6.2.5 Benchmarks

6.2.5.1 Size and Time Performance on Compound Pairs. Our tests on the compound pairs de-

scribed (including the Franco set) are concerned with algorithm run-time and the size of the common

subgraph retrieved. We are fundamentally testing four MCS types - dMCS, tdMCS, hMCS and cMCS.

Details on what MCS type applies to a given algorithm are shown in Table 6.1. The algorithms in the

“All” category of MCS type will be tested on the dMCS, hMCS and tdMCS (with θ values of 0 and

2).

Obtaining accurate time benchmarks using Java programs is a non-trivial task. Java is both a compiled

and interpreted language, whereby the source code is compiled to Java byte code, which is then either

interpreted, or compiled to machine code, by a Java Virtual Machine. Several optimisations are built

into the compilation process in order to speed up program run time, which includes elements like dead

code elimination and loop unrolling. In addition, not all the byte code is converted to machine code.

The Java Just-In-Time compiler only compiles a code path when it knows that a given code path is

about to be executed. More recently, only frequently-executed code paths are compiled; such dynamic

compilation requires that the code is executed a number of times. Benchmarkers thus may attempt to

“warm-up” their code by performing progressive executions and compilations in order to get the most

out of this dynamic compilation process. However, this also means that benchmarking will often not

reflect the actual time performance observed by the majority of users (Goetz, 2004, 2005). In this

work we have not taken any steps to account for said compilation optimisations. Unfortunately, this

can give rise to a large amount of error in measured time performances. This is why in this study,

we have calculated median times (and associated statistics), instead of mean times, due to the high

likelihood of outlying results.

For each pair of compounds, the MCS search was performed 10 times, and the median time and me-

dian absolute deviation (mad) was calculated. The method for calculating mad was the methodology

as used in R, where for a given numeric set X,

mad = median
(∣∣∣x − median(X) ∀x ∈ X

∣∣∣) × 1.4826

the constant of 1.4826 being used to estimate the standard deviation (assuming that X is normally

distributed).

To prevent excessive run times, a limit of 300 seconds has been applied for each algorithm. A run

that exceeds said time limit is referred to as a “non-completion” for the rest of this chapter, as the
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solution is not guaranteed to be the optimum for the algorithm. As a result of the cut-off, some exact

algorithms will not yield exact solutions in the results.

6.2.5.2 Virtual Screening. For each activity class of the compounds from Riniker and Landrum

(2013), 5 reference structures have been chosen to use for both mECFP4-based group fusion, and

MCS-based group fusion using a subset of the described MCS algorithms (as described in the results

and discussion). The group fusion in question was the application of the MAX rule on the similarity

scores. The idea behind using a subset of MCS algorithms is to avoid algorithm redundancy (that

is, to avoid algorithms which yield the same answer but at a worse time performance). The subset

consists of:

• The fastest exact clique detection method, used to calculate hMCS, and tdMCS (θ ranging

from 0 to 2 as tested by Kawabata (2011)). dMCS will be excluded on the basis that it is

computationally too slow to calculate.

• The fastest exact cMCS method

• The three approximate dMCS methods, all of which are used (instead of the one that yields the

largest MCS) due to their fundamentally different methods for obtaining the MCS.

The Tanimoto coefficient has been used to calculate similarity as used in Chapter 4. The BEDROC

statistic with a value of 160.9 for α was used to assess the virtual screening ability of a method. We

note that the weak and strong ring heuristics can yield some reductions in MCS size when comparing

rings of different sizes (Figure H.4). Due to this potential problem, the hMCS was tested with the

fastest clique detection algorithm separately; where the ring heuristics were either on, or off. As

these tests involved the comparisons of thousands of pairs of molecules, we set the time cutoff to 10

seconds. This should be an adequate cutoff, noting that we ultimately want a technique that is not

unfeasibly slower than fingerprints for large-scale similarity searching.
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Algorithm cMCS dMCS hMCS tdMCS (θ = 0) tdMCS (θ = 2)
VFLibMCS K.5, L.5

CDKMCS K.5, L.5
SMSD K.5, L.5
fMCS K.5, L.5

MaxCliqueSeq K.1, L.1 K.2, L.2 K.4, L.4 K.3, L.3
BK K.5, L.5 K.1, L.1 K.2, L.2 K.4, L.4 K.3, L.3
CP K.1, L.1 K.2, L.2 K.4, L.4 K.3, L.3

RASCAL K.1, L.1 K.2, L.2 K.4, L.4 K.3, L.3
kcombu K.5, L.5 K.1, L.1 K.2, L.2 K.4, L.4 K.3, L.3

consR K.1, L.1
ChemAxon_MCS K.5, L.5 K.1, L.1

Table 6.7
References to raw data for an MCS algorithm. Each cell in the table points to the table of results
relevant to the type-algorithm combination, which displays performances for individual compound
pairs. For each cell, the first table identifier relates to results for the S, N and M compound pairs,
whereas the second refers to the Franco set.

6.3 Results and Discussion

Due to the large number of tables of raw data shown in this chapter, Table 6.7 has been created to

direct the reader to the relevant table(s) for a given algorithm. Statistics-derived figures and tables,

however, are not referenced in this table.

6.3.1 S, N and M Compound Pairs

For the algorithms which have been tested on the dMCS, hMCS and tdMCS types (being BK, CP,

RASCAL, MaxCliqueSeq and kcombu), median times and sizes are shown in 6.8, which details

the influence of the MCS type on the search results, for a given algorithm. In this table, Kendall’s

W tests have been performed to quantify the agreement amongst algorithm rankings per compound

pair. The W statistic and p-value are displayed in these tables, where a significant p value indicates

that the mean ranks are informative for comparing relative algorithm and MCS type performance.

Performance information for each pair of compounds is shown for the applicable algorithms for each

MCS type, in Tables K.1, K.2, K.3, K.4 and K.5 (in Appendix K) for dMCS, hMCS, tdMCS (θ = 2),

tdMCS (θ = 0) and cMCS respectively (where the terminology is explained in the first of these tables).

Modular product size, density and construction time for each pair of compounds, for each MCS type

(excluding cMCS) are shown in Table J.1.

The charts in Figure 6.1 show respectively for each MCS algorithm (and for each MCS type per

algorithm where applicable):
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• A violin plot representing the time distributions for each algorithm-MCS type combination. A

violin plot is an extension of the box-and-whisker plot, where each “violin” is a plot of the

density function of a histogram produced from the data (Hintze & Nelson, 1998). This has

some advantages over simple box plots, for it shows how the data are distributed (for example,

a box plot would not distinguish a bimodal distribution from a uniform one). In this work, the

maximum width for each “violin” is constant, the width representing the probability density at a

given point. Maxima and minima of the compound times are represented by the corresponding

extremes for each “violin.” The black dots represent the median of the data. The box-and-

whisker plots have themselves been omitted from these violin plots as they complicate the

visualisation, and will not add much useful information that the frequency distributions do not

already show.

• A violin plot (as explained above) for MCS sizes

• A bar chart depicting the number of compound pairs for which a non-completion occurred.

In addition, a summary chart depicts the compromise between size and time performance for each

method (Figure 6.2). The mean ranks in this plot are calculated using the medians of size or time, per

compound pair.

6.3.1.1 Modular Product Observations. It is expected that as the modular product is further

simplified (in descending order of complexity: dMCS; hMCS; θ = 2; θ = 0) the performance of all

clique-based algorithms improve in terms of time. Table 6.8 effectively summarises this point, where

the median times also decrease in the mentioned order of complexity. The rankings of the median

times were significant, as shown by the (column-wise) Kendall’s W statistics. It is clear that imposing

topological constraints had an effect on the MCS search, seeing that the modular product density

was reduced, comparing Tables K.1 and K.4 (yet the number of nodes remained unchanged). This

means that practically all MCS searches ran quicker, though larger graphs were still hard to solve the

MCS for, noting that when θ = 2, larger compound pairs like M3, S5 and S6 were slow, even when

using the faster performing algorithms. It is interesting to note that kcombu (an inexact algorithm)

had different time performance trends. The Kendall’s W result (column-wise) is not significant for

kcombu, implying that MCS type has little influence on kcombu’s search time, which is not surprising

given that kcombu runs for a fixed number of iterations per MCS. From the violin plots, it can be seen

that most of the time distributions are normally distributed. There are some exceptions - for instance,
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(a) Time taken

(b) MCS size

(c) Number of non completions for a method.
Figure 6.1. Charts showing performance information of each algorithm (including the same algorithm
ran on different MCS types) for S, N and M compound pairs.
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the time performances from kcombu are more uniform than normal, and the dMCS distribution for

MaxCliqueSeq being bimodal. It can also be observed, that the ranges of the distributions differ for

each modular product type. Notably, tdMCS (θ = 0) for MaxCliqueSeq and RASCAL has a more

restricted range than for dMCS. This would be expected for all the exact algorithms, but due to the

time constraints imposed for each compound pair, this is not properly observable in this work. By

contrast, when looking at the time distributions for kcombu, the distributions become progressively

more normal in descending order of modular product complexity.

When looking at MCS size, a similar descending order can be observed as was for size (dMCS;

hMCS; θ = 2; θ = 0). Ideally, hMCS is supposed to have as little difference in size from dMCS as

possible. The average size of hMCS was generally between the sizes of dMCS and tdMCS (θ = 2).

The significance of the algorithm performance results however (both in size and time) decreased

as the modular product simplification increased. For example, with tdMCS (θ = 0), there was no

significant consensus in size rankings - implying that all algorithms had similar performances in

MCS size for this MCS type. This was most likely due to the time cutoff not being exceeded, thus

a greater proportion of exact solutions have been obtained. From the violin plots for size, a pattern

can be observed where as the complexity of the modular product decreased, the size distributions

become more skewed towards a shorter time, yet the ranges in size performance increase (the upper

end reflecting compound pair S6, whose MCS size was the same for all modular product variations).

The effects that hMCS had are more complicated to explain. Looking at the compound classes (sym-

metric, non-ring and miscellaneous types), hMCS consistently improves the search speed (Compare

Tables K.1 and K.2). This is partly because of the presence of ring systems which the heuristics

act on, noting a particularly dramatic effect with S6 (where a sharp drop in modular product den-

sity is observed, as shown in Table J.1). An effect is even observed in S5, where despite the pair of

molecules having different longest chain sizes (a large difference in longest chain sizes will reduce the

effect of the chain topological distance difference heuristic), a reduction in time taken still occurred

in all the algorithms which ran to completion. Unsurprisingly, there was a smaller improvement in

performance associated with the N compounds, noting for a start that no nodes were deleted in their

modular products by the heuristics. The C-C and non-ring induced subgraphs, as well as the chain

topological distance difference heuristic, were the heuristics which acted on these compound pairs,

due to the absence of rings and dominance of rotatable bonds. Note that the sizes of N1 and N2 MCSs

in the hMCS results are smaller than for dMCS as a result of these heuristics. It is disappointing to

see that whilst the non-planar compounds (M1 and M2) had large speed improvements, the sizes of
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the hMCS were smaller than the dMCS equivalents. More work needs to be done to tune the ring and

rigid-bond based heuristics to account for such compounds. The hMCS of M3 however, was achieved

quickly with no difference in size between dMCS and hMCS.

6.3.1.2 Algorithm Observations. On looking at time results, BK was the slowest algorithm in all

MCS cases tested here, an unsurprising result considering that BK is supposed to retrieve all maximal

cliques, rather than one maximum clique. The only test case where it actually completed in less

than 300 seconds most of the time was when θ = 0, where it still failed in 2 cases. By contrast,

ChemAxon’s algorithm (dMCS) generally outperformed all others in terms of size, and to a slightly

lesser extent was superior in time as well (Figure 6.2). A Wilcoxon signed-rank test comparing

the results of ChemAxon_MCS and MaxCliqueSeq (dMCS) showed that the former was faster (p

< 0.05). This speed result is impressive given the difficulty of the compounds, though unsurprising

considering the fixed number of iterations (and thus, relatively fixed maximum runtime) of this al-

gorithm. This implies that the ChemAxon heuristics used are very important in guiding the MCS

search. RASCAL and MaxCliqueSeq were the fastest of the exact “All” algorithms. MaxCliqueSeq

almost always outperformed RASCAL in both size and time, even on dMCS. Generally CP was the

slowest maximum (not maximal) clique algorithm, noting that for dMCS it only obtained a complete

solution for one compound pair (BK failing for all 12 pairs). Interestingly, CP seemed to somewhat

outperform RASCAL for some pairs when calculating the tdMCS (θ = 0), possibly as each iteration

of RASCAL requires more computation time than CP. One would infer from this observation, that

RASCAL normally needs less iterations than CP to converge (though this has not been tested in this

study), though RASCAL generally remains the faster of the two algorithms, based on median time.

Generally, kcombu was the fastest performing of the five “All” algorithms; its time not exceeding

one second per comparison in this dataset (an unsurprising result given its inexact nature). consR by

contrast, was the slowest of all the approximate dMCS algorithms. Looking at the time distributions

(violin plots) for each algorithm, it can generally be said that the inexact algorithms have shorter

ranged distributions than the exact ones. No other apparent patterns however, have been found.

Amongst the cMCS algorithms, fMCS performed considerably faster than the the SMSD and

VFLibMCS cMCS algorithms. CDKMCS was the fastest of all the CDK algorithms (the other

CDK algorithms being VFLibMCS and SMSD), and was somewhat competitive with fMCS and

ChemAxon_MCS on cMCS mode (generally performing slower, though with some exceptions from

individual compound pairs). kcombu (cMCS and other MCS types) was slightly slower in speed to

fMCS. ChemAxon_MCS on cMCS mode however, was the fastest cMCS method in general. BK
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(cMCS) had an intermediate median time performance of the cMCS algorithms, though like fMCS

it had a considerably large range and spread of times. ChemAxon’s algorithm by contrast, with its

comparatively small range and deviation was evidently the least compound-dependent (and otherwise

most robust) method when concerning time, with CDKMCS not far behind.

BK was the worst-performing algorithm when θ , 0 (Figure 6.1), in terms of the size of MCS re-

trieved. CP was the second worst in terms of size for the “All” category of algorithms. MaxCliqueSeq

and RASCAL by contrast generally obtained the largest MCS (for dMCS, tdMCS and hMCS). consR,

despite being a dMCS algorithm, was generally outperformed by all the other dMCS algorithms in

terms of size. ChemAxon_MCS on dMCS mode, retrieved the largest dMCS of all the inexact meth-

ods, in many cases obtaining equivalent if not larger common substructures than the best results from

the exact methods (p > 0.05 with a Wilcoxon signed-rank test compared with size results from Max-

CliqueSeq ran for dMCS). An exception is the compound pair N1, where MaxCliqueSeq retrieved a

larger dMCS result than Chemaxon_MCS did. It is noteworthy that the size performance of kcombu

was often better than BK and CP, and often retrieved similar sizes to RASCAL and MaxCliqueSeq in

hMCS. However, it was still outperformed by ChemAxon_MCS.

Despite being inexact, CDKMCS had little difference in MCS size from the other two CDK algo-

rithms, and thus represents the method of choice for time when using only CDK algorithms. The

compound pair S6 however was an exception (CDKMCS cMCS yielded 40 bonds, whereas the largest

cMCS is actually 52), which explains the lower maximum for CDKMCS than the other cMCS algo-

rithms. VFLibMCS and SMSD of note, failed to find a solution for M3, which is why the reported

number of bonds is 0 for that pair. BK and fMCS both were the best-performing algorithms in terms

of size. Being an approximate method, kcombu (on cMCS mode) retrieved slightly smaller common

subgraphs than the exact cMCS algorithms. ChemAxon_MCS on cMCS mode was the fastest cMCS

method, though in a number of cases in the individual compound pairs, it falls short of the sizes

retrieved by fMCS. fMCS is therefore the method of choice for cMCS searching in this work, for it

was the fastest of the exact methods, and had a comparable time performance with the inexact cMCS

methods overall.

6.3.2 Franco Compounds

Tables L.1, L.2, L.3, L.4 and L.5 show performance information for dMCS, hMCS, tdMCS (θ = 2),

tdMCS (θ = 0) and cMCS respectively (in Appendix L). Median times and sizes for the “All” category

algorithms are shown in 6.9, along with W statistics as mentioned in the previous section. Summary
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row ID BK CP kcombu MaxCliqueSeq RASCAL W p

dMCS > 300 > 300 5.65 ·10−2 1.19 ·101 2.17 ·102 0.85 3.29 · 10−8

hMCS > 300 1.81 ·102 6.10 ·10−2 6.50 ·10−1 4.96 ·100 0.86 2.45 · 10−8

tdMCS (θ = 0) 3.43 ·100 6.73 ·10−2 4.85 ·10−2 2.02 ·10−2 5.97 ·10−2 0.69 1.02 · 10−6

tdMCS (θ = 2) > 300 2.70 ·102 5.73 ·10−2 1.41 ·10−1 7.60 ·10−1 0.86 2.14 · 10−8

W 0.73 0.81 0.05 0.76 0.87
p 8.37 ·10−6 2.07 ·10−6 6.36 ·10−1 4.85 ·10−6 7.73 ·10−7

(a) Median search times (in seconds)

row ID BK CP kcombu MaxCliqueSeq RASCAL W p

dMCS 21.0 24.0 24.5 28.5 28.0 0.58 1.34 · 10−5

hMCS 17.0 26.5 25.5 28.5 28.0 0.42 4.51 · 10−4

tdMCS (θ = 0) 15.5 22.0 21.0 22.0 22.0 0.26 1.45 · 10−2

tdMCS (θ = 2) 15.0 24.5 24.5 26.5 26.0 0.57 1.60 · 10−5

W 0.18 0.18 0.45 0.50 0.57
p 9.32 ·10−2 9.54 ·10−2 1.01 ·10−3 4.19 ·10−4 1.25 ·10−4

(b) Median MCS sizes

Table 6.8
Comparisons between MCS types (or modular product modifications) for the S, N and M compound
pairs, where an algorithm has results for dMCS, hMCS and tdMCS types. Kendall’s W information
row-wise, shows the agreement between ranks of MCS algorithms that the judges (different com-
pounds for a given MCS type) have assigned. There are 12 judges (being 12 compounds in this case)
and 5 objects (the MCS algorithms). Column-wise W information by contrast, shows the reverse
information. Thus, there are 5 judges (MCS algorithms) and 12 objects (different compounds for an
MCS type).

statistics for all the algorithms for each applicable MCS type are displayed in Figure 6.3. Modular

product information can be seen in Table J.2.

In general, the patterns observed in Figure 6.3 reflect those observed in the previous dataset. The time

performances were in general faster than the S, N and M pairs, usually with less non-completions

occurring. There is little difference in performance patterns compared to the other set of compounds,

for both approximate and exact algorithms. In this dataset, the searches were very fast, as this is a

more trivial compound set (smaller compounds with less flexible bonds and symmetry) than the S,

M and N benchmark set. As this set was more trivial to search than the S, M and N set, it can be

more clearly observed that as the complexity of the modular product decreases, the distributions for

the exact algorithms’ time performances tend to have smaller ranges.

It is noteworthy that the Kendall’s W values for MCS size were consistently lower in this set than in

the S, M and N compounds, particularly for the W test results comparing algorithm ranks (as opposed
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Figure 6.2. Plot showing algorithm-MCS types comparing mean size ranks and time, over each of the
S, N and M pairs. A larger rank implies better performance (so lower time and larger MCS size).

to MCS type influence). This implies that for this dataset, there was less of a benefit in using a more

powerful algorithm. Apart from tdMCS (θ = 0) however the rankings were still significant. For both

time and size performance, MaxCliqueSeq was once again consistently superior to other exact clique

detection algorithms in terms of size and time. Unlike in the S, N and M set, MaxCliqueSeq actually

outperformed ChemAxon_MCS in terms of size, though in dMCS mode was still outperformed for

time. The CP algorithm interestingly has an improved profile compared to the S, M and N com-

pounds, nearing the other two high-performance algorithms in size and time performance (although

it has more non-completions). In particular, CP outperformed all the other applicable algorithms in

168



Edmund Duesbury Chapter 6: Evaluation of MCS algorithms for Alignment and Virtual Screening

row ID BK CP kcombu MaxCliqueSeq RASCAL W p

dMCS > 300 6.45 ·10−1 1.00 ·10−2 7.00 ·10−3 3.65 ·10−2 0.75 1.64 · 10−15

hMCS 1.53 ·100 1.40 ·10−2 9.00 ·10−3 4.50 ·10−3 1.30 ·10−2 0.60 2.79 · 10−12

tdMCS (θ = 0) 4.15 ·10−2 3.00 ·10−3 1.15 ·10−2 3.00 ·10−3 4.00 ·10−3 0.77 6.78 · 10−16

tdMCS (θ = 2) 5.22 ·100 1.40 ·10−2 1.75 ·10−2 5.00 ·10−3 1.55 ·10−2 0.55 3.52 · 10−11

W 0.75 0.75 0.30 0.66 0.79
p 3.13 ·10−12 3.31 ·10−12 4.51 ·10−5 9.30 ·10−11 8.90 ·10−13

(a) Median search times (in seconds)

row ID BK CP kcombu MaxCliqueSeq RASCAL W p

dMCS 14.0 17.0 15.0 17.0 17.0 0.46 2.46 · 10−9

hMCS 15.0 17.0 16.0 17.0 17.0 0.29 9.72 · 10−6

tdMCS (θ = 0) 16.0 16.0 15.0 16.0 16.0 0.09 6.11 · 10−2

tdMCS (θ = 2) 15.0 17.0 15.0 17.0 17.0 0.22 2.45 · 10−4

W 0.02 0.21 0.03 0.42 0.42
p 6.64 ·10−1 1.29 ·10−3 5.52 ·10−1 6.40 ·10−7 7.21 ·10−7

(b) Median MCS sizes

Table 6.9
Comparisons between MCS types (or modular product modifications) for the Franco compounds,
formatted in the same way as in Table K.2.

time performance for tdMCS (θ = 0), implying that CP is better suited to more trivial MCS solutions

(where the modular product is simplified) than RASCAL and MaxCliqueSeq. This is in contrast to

the S, N and M dataset where for tdMCS (θ = 0), CP sometimes outperformed the other algorithms,

but in general was not the fastest. Other than these points however, the conclusions from this dataset

compared to the S, M and N compounds are otherwise the same.
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(a) Time taken

(b) MCS size

(c) Number of non completions for a method.
Figure 6.3. Charts showing performance information of each algorithm (including the same algorithm
ran on different MCS types) for the Franco compound pairs.
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Figure 6.4. Plot showing algorithm-MCS types comparing mean size ranks and time, over each of the
Franco pairs. A larger rank implies better performance (so lower time and larger MCS size).
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Figure 6.5. Median BEDROC scores for each MCS method (and fingerprints), for each activity class on the virtual screening dataset. Error bars
represent 1 median absolute deviation, from the median. Highlighted bars with bold borders indicate that the method is significantly different from
that of FP (p ≤ 0.05), as determined by a paired 2-tailed Wilcoxon signed-rank test. Kendall’s W statistics (W and p) are included with the mean ranks
(for each method across the classes, where a higher rank indicates better performance). The W test used the results from each activity class as the
judges, and the algorithms as the objects.
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Figure 6.6. Median BEDROC scores for each MCS method (and fingerprints) on the virtual screening dataset, where each method is fused with
mECFP4 fingerprints (apart from the fingerprints themselves).
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Figure 6.7. Median times scores for each MCS method, on the virtual screening dataset. For the mean ranks shown, a higher rank indicates a shorter
time.
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6.3.3 Virtual Screening

Median results for BEDROC, BEDROC for the fingerprint-fused algorithms, and times are shown in

Figures 6.5, 6.6 and 6.7 respectively. The same figures also show the mean ranks associated with the

results. Reflecting back on the methodology section, in addition the the best-performing algorithms

from the comparisons of algorithms on the two sets of compound pairs (particular consideration to

Figures 6.2 and 6.4), our algorithm choices were as follows for virtual screening:

• MaxCliqueSeq as the exact clique detection method.

• fMCS as the exact cMCS method

• The three approximate dMCS methods.

kcombu was executed using hMCS, as from the results of the other datasets, hMCS was generally

larger than dMCS for kcombu. As noted in the methodology section, the weak and strong ring heuris-

tics influence the MCS, and hence hMCS has been tested with and without them.

Some interesting conclusions can be drawn from these results. Of immediate relevance is that finger-

prints represent the best technique in terms of recall, though tdMCS runs (θ values of 0 and 1) were

competitive with fingerprint BEDROC scores (judging from the similar ranks between some MCS

algorithms and fingerprints, as well as the high number of insignificant differences from fingerprints

shown in Figure 6.5). One should also note that the θ values of 0 and 1 were comparable to, if not

quicker in time to the other MCS algorithms. The performance of tdMCS over conventional dMCS

has been previously observed by Kawabata (2011), where it was found to give better correspondences

than the dMCS, to alignments derived from receptor-ligand complexes. Klinger and Austin (2005)

also showed that applying topological constraints in MCS searching yielded better active compound

recall than without said constraints. The hMCS, from these results, is evidently unsuitable for vir-

tual screening, perhaps due to the presence of unusual ring systems being compared or a neglect of

flexible chains. As shown from the BEDROC results, disabling the weak and strong ring heuristics

consistently improved active compound retrieval at a cost in time performance when hMCS was used.

The cMCS method was outperformed by tdMCS, though interestingly outranked the dMCS methods

tested here. This makes the cMCS a potentially viable option in virtual screening when imposing

topological constraints is unfeasible.
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Similarity fusion (SUM rule, using the rank of the best-ranked compound from each of the finger-

print and MCS method) was also performed, the BEDROC results being shown in Figure 6.6. All

the tdMCS-fingerprint results, in addition to cMCS-fingerprints, outranked fingerprints alone. tdMCS

with θ = 0 however is the result that most consistently outranked fingerprints, where in four of 6 cases,

it outperformed them (the other 2 cases had no significant difference from fingerprints). Combined

with having the highest rank of all the fusion techniques (as well as being the fastest MCS technique

in this study), tdMCS with θ = 0 appears to be the best MCS method to fuse with fingerprints,

in order to achieve a slight, but significant and consistent improvement in active compound recall.

cMCS-fingerprints fusion, whilst often outranking fingerprints alone, rarely did so on a statistically

significant level. Still, when imposing topological constraints is unviable, this cMCS-fingerprint fu-

sion method looks like a potential alternative for improved virtual screening recall.

We note that the performance of the inexact algorithms was often better than exact hMCS calculation

(with MaxCliqueSeq), despite the inexact solutions often having smaller sizes (implied from results

of the S, N and M pairs, as well as with the Franco pairs). This implies that contrary to intuition

- a larger MCS does not necessarily convey a more sensible similarity when translating to biolog-

ical activity. One notable example is comparing ChemAxon’s method with consR, where despite

ChemAxon’s method generally retrieving larger common substructures, the difference in BEDROC

scores are small (noting their similar mean ranks). An extreme example using the same algorithms is

shown in Figure 6.8, noting that ChemAxon’s MCS method yielded a very large MCS whereas consR

yielded a very small one (which considering an active-inactive comparison, is more realistic). The

same can be seen with a tdMCS, which is also considerably smaller than ChemAxon’s result. This

is an important observation - if one considers using the MCS for virtual screening, then chemical

feasibility should be taken into account. Although the exact dMCS was not calculated in this study,

the data here suggest that it is not worth finding it when performing virtual screening, and that inexact

algorithms are viable alternatives.

It is promising to note that several of the methods tested here were fast enough to warrant screening

of large compound datasets (approaching one million compounds). In effect, for each activity class

there were 50475 comparisons performed, being that there are 10095 compounds (10000 decoys and

100 actives, without the 5 reference actives) tested against each reference compound. This implies

that ChemAxon’s method, using the C5a class as an example, needed no more than 2.29 milliseconds

per comparison (115 687 milliseconds divided by 50745 comparisons). Of course, this has been

performed using 8 cores in parallel and thus will vary across different computers, but otherwise we
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Figure 6.8. MCES of a Vasopressin V1a receptor active compound (CHEMBL1837022, left) against
an inactive molecule (ZINC09507552), using different MCS algorithms.
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see this as a positive result.
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6.4 Conclusions

We have identified the fastest-performing MCS algorithms in this work for dMCS (and hMCS),

tdMCS and cMCS. MaxCliqueSeq was the fastest exact algorithm for disconnected MCS types

whereas fMCS, as tested here, was the quickest exact cMCS algorithm (ChemAxon_MCS on cMCS

mode, was the fastest approximate cMCS algorithm). Imposing progressively stricter topological

distance constraints improved the speed of algorithm convergence considerably, at a cost in MCS

size. As seen from virtual screening results however - the size is not necessarily important, seeing

that topological distance limits of 0 and 1 generally yielded results superior to the dMCS approx-

imations used here. Notably, the tdMCS at these two distance limits were competitive with the

ChemAxon dMCS algorithm for time performance. ChemAxon’s algorithm however remains the

method of choice for calculating (the nearest approximation to) the dMCS. hMCS, whilst certainly

improving MCS calculation speeds, possesses some flaws that affect the size of the MCS retrieved,

and thus requires refinements for determining sensible chemical similarity. Immediate areas to look

at are treatment of rigid and flexible systems by the deletion heuristics, as well as for complex ring

systems. It is advised that the weak and strong heuristics originally developed by Raymond et al.

(2002a), are not used for virtual screening.

As mentioned in Chapter 4, fusion of ChemAxon’s dMCS with extended connectivity fingerprints

improved active compound recall. In this work, we have shown that fusing the tdMCS with extended

connectivity fingerprints actually outperformed extended connectivity fingerprints alone; something

which dMCS-fingerprint fusion did not do. This was more noticable as the topological constraints

imposed were progressively stricter. Combined with the fast speed of calculating the tdMCS, this

represents a new and superior virtual screening technique.

This work also sheds light on the question of what a useful MCS actually is, seeing that inexact algo-

rithms actually were not much worse than exact methods in active compound retrieval. It is advisable

for future MCS methods, if tailored for virtual screening, to focus more on sensible chemical (and

biological) similarity, than MCS size. Some relevant improvements are suggested in Chapter 7.

In summary, we hope that the work here presents the MCS as a viable complement to fingerprint

similarity searching and virtual screening.
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Chapter 7

Conclusions

7.1 Summary

This work has explored the use of the MCS in similarity searching, comparing group fusion with

various forms of hyperstructure searches. The three objectives outlined in the introduction will each

be answered.

7.1.1 MCS-based Hyperstructure Construction

Following the methodology of R. D. Brown, Downs, et al. (1994), a method was devised for deter-

ministically calculating highly-compressed hyperstructures, as presented in chapter 4. It would have

been desirable to test alternative orderings of molecules using different MCS types, though the main

focus of the work was on similarity searching rather than hyperstructure construction. As shown in

chapter 5, a method for constructing frequency-weighted hyperstructures was also devised, as well

as the encoding of bond origin information (for ghost substructure elucidation), and the encoding of

topology type for a bond (ring or chain type, depending on the properties of the bonds overlapped to

form the hyperstructure bond).

7.1.2 Evaluation of MCS Algorithms and Hyperstructures in Similarity Searching

The MCS algorithm used for hyperstructure studies in chapters 4 and 5 was a high performance

inexact algorithm developed by ChemAxon. Using this MCS algorithm, it was significantly faster

to perform searches with a hyperstructure as opposed to MCS group fusion, using 10 reference

molecules. It remains to be seen whether this is also the case with other MCS algorithms, noting
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that the ChemAxon algorithm terminates after 1000 iterations - suggesting that larger molecule pairs

are searched less thoroughly than smaller ones (Englert & Kovács, 2015).

Several MCS algorithms and MCS types were compared for time and size performance in chapter

6. The fastest exact clique detection algorithm was that from Depolli et al. (2013), particularly when

used with a set of modular product simplification heuristics - attaining satisfactory performances on

an internally collated set of challenging molecules for MCS algorithms, though in some cases with

a decrease in MCS size compared to the dMCS solutions identified. Applying strict topological

distance constraints (tdMCS) significantly reduced computation time of the MCS in clique detection

algorithms, though understandably would often result in smaller solutions than the dMCS. fMCS was

found to be the fastest exact cMCS algorithm, surpassing all of the cMCS algorithms currently found

in CDK.

7.1.3 Comparing Virtual Screening Ability of MCS techniques with Fingerprints

The work in chapter 4 showed that our hyperstructure methodology was inferior in virtual screening

to conventional fingerprint group fusion, and even to ChemAxon dMCS group fusion. All three

approaches were complementary however, in that each retrieved non-overlapping sets of active com-

pounds. Similarity fusion of the fingerprint and MCS techniques generally resulted in an improve-

ment in active compound recall - a finding also noted by Raymond and Willett (2002a). Asymmetric

similarity biased towards substructure similarity was found to be significantly preferable to sym-

metric similarity when concerning hyperstructure similarity - likely due to the hyperstructure being

bigger than the vast majority of database structures aligned to it. In chapter 5, a logarithmic frequency

weighting scheme was identified as being somewhat superior to binary weighting for active compound

recall, though this still did not bring the technique on a par with fingerprint performance. Our results

contrasted with the work of Klinger and Austin (2006), who showed that a weighted hyperstructure

performed no worse than an unweighted one, and that it also yielded comparable results to MCS

group fusion. However, their study also used the tdMCS (θ = 0), which as shown in chapter 6 has

preferable virtual screening properties to the dMCS. Presumably the application of the tdMCS yields

less unhelpful ghost substructures which allow the retrieval of irrelevant compounds. In addition,

their study only used a linear weighting scheme, instead of comparing five weighting schemes as

performed here. Simple frequency weighting we note (referred to as W2 in chapter 5) performed

worse than binary weighting.

Chapter 6 demonstrated that the only MCS technique competitive with fingerprint group fusion in
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virtual screening, was the tdMCS, with the cMCS and dMCS having significantly worse recall statis-

tics. In addition, an exact algorithm was found not to be necessary for virtual screening, since inexact

algorithms were found in some cases to outperform exact algorithms. Fusion of tdMCS, cMCS and

dMCS results with fingerprints however improved recall, noting that tdMCS-fingerprint fusion was

significantly (albeit slightly) better than fingerprints alone, particularly when the topological distance

constraint was made stricter.

7.2 Limitations

Some questions arose as to why hyperstructures were outperformed by both fingerprint and MCS

group fusion. Chapter 4 highlighted that hyperstructures fail to retrieve analogues of compounds,

which the MCS and fingerprints are far better suited to retrieving. However, why is it that even the

MCS was outperformed by fingerprints in similarity searching, when the MCS seems like a more

intuitive similarity method? Again, this highlights the fact that structural similarity doesn’t perfectly

correlate with biological “similarity.” Using an example where a Vasopressin V1a receptor active

compound has been mapped to an inactive compound (Figure 7.1), one will see that there is a large

overlap despite the difference in activity. Several non-specific features exist in druglike molecules

which may otherwise be irrelevant to specific activity. For example, three benzene rings are in the

MCS, which often are responsible for hydrophobic (and otherwise non-specific) interactions in bind-

ing sites. An extended connectivity fingerprint would only encode a benzene ring (or any substruc-

ture) once, reducing the effect of redundant features. The same problem exists with hyperstructures,

though as hyperstructures are bigger than their input molecules, there is a greater chance for non-

specific features to match another molecule. This emphasises the importance of avoiding simply

using the dMCES to represent similarity. Even the cMCES may be a better option, simply because it

is smaller (and noting that it generally outperformed ChemAxon’s dMCES method in chapter 6).

It should be noted that although fingerprints and graph theoretic techniques (like the MCS) are gen-

erally adequate similarity searching techniques, they ultimately do not capture all the information

required for determining the activity of a compound when it concerns the binding of a receptor. Both

techniques rely on topological, as opposed to geometrical information to estimate activity. Physico-

chemical properties such as the enthalpy of binding, the entropy of the system and solvation effects are

ultimately ignored by both techniques, yet they are often crucial for accurate activity determination.

Ultimately this is why such techniques are better geared towards the finding of analogues, as opposed

to scaffold hopping (as shown in chapter 4). This does not mean the techniques should be avoided in
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Figure 7.1. MCES of an inactive molecule (ZINC19834655, left) against a Vasopressin V1a receptor
active compound (CHEMBL242516).

similarity searching however, for both techniques are often faster than 3D techniques. As an example,

the MCS can be used to aid 3D coordinate generation. The work of Kawabata and Nakamura (2014)

presents a relevant use of the MCIS in 3D coordinate generation, where torsion angles were copied

from a bioactive conformation, to a query molecule. The MCIS was used as a basis for determining

which torsion angles to copy to which atoms on the query. By analogy, the MCS could be used

to copy coordinates for other 3D techniques, such as docking - where the geometry of a common

scaffold could be inferred via the MCS.

7.3 Recommendations for Future Investigations

Although fingerprints are generally a powerful 2D technique for virtual screening, there have been

several cases where both fingerprint and MCS techniques have yielded poor recalls in this thesis,

particularly when concerning heterogenous activity classes. This stems from the lack of receptor

information that is necessary to accurately predict bioactivity, for as discussed in chapter 3, structural

similarity does not always accurately predict biological similarity. A number of adjustments to the

hyperstructure and MCS techniques have been proposed below, which we have not discussed in depth

elsewhere in the thesis.
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7.3.1 Weighted MCS

The thesis of John Raymond (Raymond, 2002) suggested the idea of allowing bonds of differing

atom types and bond types to match. The resulting bond pairs from the MCS would then be assigned

weights from a bond substitution table, where different bonds would be assigned weights based on

their chemical similarity. Weights can be assigned using a pre-calculated substitution table, as done

by Berglund and Head (2010) and Teixeira and Falcao (2013). In the case of finding active molecules

however, it would be more useful to empirically determine weights for matching bond types, based

on their relative occurrences in active and inactive compound alignments. This of course would

require a set of reference alignments to calculate such weights. It is an idea that is similar to that

used by the PAM and BLOSUM amino acid substitution matrices in protein sequence alignment

(Henikoff & Henikoff, 1992). The BLOSUM matrices are of particular interest as they are derived

from local alignments of conserved regions found in proteins of the same family. Translating to a

chemoinformatics perspective - this would involve deriving weights from MCS alignments of local

regions in active compounds (for instance, the scaffolds of the compounds). Said weights could then

be used in a similarity coefficient, such as the Tanimoto coefficient, to yield a modified similarity.

Weights calculated in this fashion should act not only to upweight important features found in active

molecules, but also to downweight common features found in both actives and inactives (such as

benzene rings, which are almost ubiquitous in drug-like molecules). On a related note, one does not

necessarily need to represent atoms via atomic number. A suitable alternative would be functional

(also known as pharmacophore) classes, as defined by Rogers and Hahn (2010).

7.3.2 Improvement of Clique Detection Algorithm

Although the clique detection algorithm of Depolli et al. (2013) was shown to be fast in this thesis, it

could still be made faster for the computation of certain difficult cases, particularly when one wishes

to find the MCS for large compounds. The algorithm in question notably uses no chemical knowledge

to improve the speed of the algorithm.

7.3.2.1 Graph colouring. The first adjustment to try is to use the partitioning method in RAS-

CAL, instead of the greedy colouring algorithm in the original algorithm, which from internal tests

we found to use consistently less “colours” than the greedy algorithm. In addition, the label-based up-

per bound of RASCAL derived from the modular product would yield a more accurate upper bound

than the colouring algorithm. This is in light of the fact that Raymond et al. (2002b) noted that a
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greedy colouring algorithm became progressively inaccurate as an upper bounding procedure outside

the range of 125 to 175 nodes in a given graph.

7.3.2.2 Initial Lower Bound. The original algorithm derived an initial lower bound upon finish-

ing the vertex ordering procedure - where the identification of an initial clique would result. Whilst

this is an efficient process, it may be worth using the result from an inexact algorithm as an initial

lower bound instead. A suitable candidate would be kcombu, which often would obtain the MCS

anyway as observed in chapter 6. The sharper lower bound will otherwise improve the speed of the

exact algorithm, despite the slight overhead from running the inexact algorithm first. Alternatively, if

one does not wish to use chemical information, then a maximum clique derived from the minimum

vertex cover of a complement graph could be used as an alternative lower bound (as explained in

chapter 2).

7.3.2.3 Ordering of Search Tree. Modular product nodes were originally ordered in descending

order of degree and ex-degree. Englert and Kovács (2015) noted that employing a form of ECFP

fingerprint-based similarity to select nodes in clique detection improved the search speed and result

size. We suggest to use fingerprint similarity to order the nodes in the modular product, even when

matching atoms and bonds of different labels. One way this could be performed is by taking the

neighbourhoods around the atom/bond pair, and calculating the similarity of each neighbourhood.

Nodes with high similarities would be ordered first. We would recommend comparing the neighbour-

hoods using path-based fingerprints instead of radial fingerprints to ignore the topology matching

effect (i.e. we want rings and chains to match). Tanimoto similarity should suffice for neighbourhood

comparisons, but alternative coefficients could be used instead. Likewise, the bias towards c-edges

suggested by the same authors could be exploited, though we suggest that c-edge number is calculated

to select nodes during clique expansion, rather than for ordering the nodes in the modular product.

7.3.3 Hyperstructure Improvements

The thesis of Nathan Brown (N. Brown, 2002) had a number of interesting suggestions on future work

for the hyperstructure concept. This included the application of hyperstructures via reduced graphs

(specifically, the creation of reduced hyperstructures via the overlap of reduced graphs).

7.3.3.1 Effects of other MCS types. We already know that applying topological constraints im-

proves the search performance of hyperstructures, though it would be interesting to vary the strictness

of the tdMCS applied in both hyperstructure construction, and application (Klinger & Austin, 2006).
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This could be translated not only to similarity searching, but also to QSAR modelling based on MCS

alignment (Palyulin et al., 2000) - particularly amongst molecules of different chemical series, which

to our knowledge has not been attempted with hyperstructures yet. An example of the benefits with us-

ing the tdMCS is demonstrated in Figure 7.2. The hyperstructure resulting from the tdMCS is clearly

more chemically feasible than the dMCS one. Granted that chemical feasibility is not necessarily

a concern in hyperstructures, one should appreciate the fact that the tdMCS yields a better-quality

alignment.

When using the tdMCS to map molecules to hyperstructures, one should be aware that simply using

the topological distances derived from the hyperstructure can cause complications; the shortest path

from two features obtained in a reference molecule compared to the shortest path of its matching

features in its hyperstructure, may be different lengths. Consider the example in Figure 7.3. The

bonds marked as *, † and ‡ between each of the 3 molecules correspond to each other, respectively

(i.e. The bond * in G1 matches * in G2, which in turn matches * in the hyperstructure GH). In G1,

the topological distance (using the shortest path) between * and † is 9. In GH as well as G2 however,

it is 7. If using a strict tdMCS (for instance, where θ = 0), then G1 will not be treated as subgraph

isomorphic to GH due to the path distance differences. Therefore, when constructing a hyperstructure,

path distances from the original graph(s) between two bonds should be kept in addition to the distance

between them in the hyperstructure. Thus, for the bonds * and † the distances stored should be {7, 9}

when calculating a topologically constrained MCS. Likewise for the pairs * and ‡ the distance in G1

is 7, whereas in GH it is 5, thus in the hyperstructure the distance stored should be {5, 7}.

No form of penalisation has been imposed to take into account the number of fragments present in

the dMCES, yet chemically it is more realistic to say that two molecules are more similar when they

share a large fragment in common, as opposed to several disconnected fragments (Figure 7.4). When

used by Raymond and Willett (2002a), fragment penalisation slightly but nevertheless consistently

improved active compound. This idea has so far not been implemented due to the inexact nature of

the MCS algorithm used in this work. However, the exact MCS algorithm proposed by Hariharan et

al. (2011) which seeks to find the MCS with the lowest number of fragments, may be of significant

aid in fragment penalisation. In relation to this idea, it may be worth just using the cMCES instead

of the dMCES currently used to compute similarity, avoiding the penalisation problem by using only

the largest fragment in common. This however is expected to yield worse results as the potential for

scaffold hopping could be hampered.
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(b) Hyperstructure constructed using a dMCES
(ChemAxon’s dMCES method)
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(c) Hyperstructure constructed using a tdMCES
where θ = 1 (calculated with MaxCliqueSeq)

Figure 7.2. Two hyperstructures from the S6 pair in chapter 6, where the MCS used to produce the
hyperstructure originates from the different methods, yet both MCSs have the same number of bonds.

7.3.3.2 Ghost Substructures. Chapter 5 showed that the proportion of ghost substructures found

in the MCS between hyperstructures and database molecules is different between active and inactive

compounds. It would be worth exploring this further to attempt to observe more effects of ghost sub-

structures, as well as seeing whether different MCS types affect the proportions of ghost substructures

identified (for both the purposes of hyperstructure construction, and similarity searching). In addition,
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Figure 7.3. Example adapted from the hyperstructure construction figure in chapter 4, to illustrate
topological distance complications in hyperstructures.
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Figure 7.4. Two pairs of molecules where the bonds in the MCES are shown in bold, both pairs
having 18 bonds in the MCES. The pair in (7.4a) are chemically more similar in this example than the
other pair, for the MCES consists of one large connected fragment, whereas the other pair consists of
3 connected fragments.

mapping of database molecule edges to ghost substructures for example, could be penalised. Ghost

substructure occurrences could also be reduced by allowing atoms to map to other atoms of different

labels (and likewise for bonds).

7.3.3.3 Labelling. Although this also concerns MCS alignments, it would be a wise idea to ex-

periment with alternative graph labelling and weighting. The MCSs calculated here used atomic
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number and bond type for labelling and weighting respectively, yet one could instead use functional

or pharmacophoric atom types (Rogers & Hahn, 2010), and bond lengths instead of bond order. Hy-

perstructures of course could be constructed from such alternatively-labelled molecules, and would

be expected to perform differently in similarity searching compared to the hyperstructures currently

used in this work. Likewise, we have only considered mapping bonds of different weights (or orders)

to each other, yet we have not considered the mapping of different atom labels.

7.3.3.4 Fingerprints. Hyperstructures to date have not been represented in any form using finger-

prints. It may be preferable to actually perform similarity searching by abstracting the hyperstructure

into path-based fingerprints. Radial fingerprints would represent a bad choice of fingerprint as rings

in hyperstructures have the potential to reach infinitely large sizes. Due to the large degrees that some

nodes exhibit in hyperstructures (as well as their general complexity), fingerprints produced would

be much denser than with conventional molecules. This point could potentially give rise to erroneous

results due to a greater potential for yielding ambiguous bits, in addition to giving a slower search

time.

7.4 Final Remarks

Several variations of the MCS exist in chemoinformatics, tailored towards different uses. Although

the elucidation of the MCS is an NP-complete problem, much recent progress has been made in

algorithm development to quicken the finding of an MCS, which in turn has made it more viable for

similarity searching. Although the hyperstructure (via dMCES mapping) has proved to be relatively

unsuccessful in similarity-based virtual screening in this thesis, it remains to be seen as to how alter-

native MCS types will affect its performance. In addition, the tdMCS and cMCS have been shown

here to be superior to the (exact) dMCS in active compound recall, and fusion of the tdMCS with

fingerprints outperforms fingerprints alone.

It is hoped that the work of this thesis will guide others who are exploring the hyperstructure concept,

both in and outside of similarity searching. It is also hoped that this will highlight which MCS type

and algorithm to use for similarity searches, in addition to non-similarity based methods (namely

reaction mapping and molecular alignment).
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Appendix A

Hyperstructure Construction Algorithm

Data: Hyperstructure G1, Molecule G2, Vertex Mapping between the two graphs Mv, edge

mapping Me

Result: Novel Hyperstructure H

Function createHyperstructure(Mv,Me):

H = G1 ; // copy G1 to H

for edge e2 ∈ G2 do

vq1 = e2[1] ; // Obtain atom 1 from non-hyperstructure bond

vq2 = e2[2] ; // Obtain atom 2 from non-hyperstructure bond

// Translate non-hyperstructure atoms to hyperstructure atoms

vh1 = Mv[vq1] ;

vh2 = Mv[vq2] ;

if e2 < Me then

if vh1 = null then
vh1 = allocateAtom ( Mv, vq1 ) ;

end

if vh2 = null then
vh2 = allocateAtom ( Mv, vq2 ) ;

end

allocateBond ( Me, eq, vh1, vh2 ) ;

end

else

if ¬vh1 ∼ vq1 then // The two atoms vh1 and vq1 do not match

G1 = G1 \ vh1 ;

vh1 = allocateAtom(Mv, vq1) ;

end

if ¬vh2 ∼ vq2 then
G1 = G1 \ vh2 ;

vh2 = allocateAtom(Mv, vq2) ;

end

eh = Me[eq];

if ¬eh ∼ eq then // The two bonds eh and eq do not match

eh = allocateBond ( Me, eq, vh1, vh2 ) ;

end

end

end
Algorithm 3: Hyperstructure construction algorithm, given an MCES and two graphs. The MCES

is represented by a vertex mapping Mv, and an edge mapping Me.
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Function allocateAtom(Mv, vq):
vh = createAtom(vq) ; // creates new hyperstructure atom from G2 atom

Mv = Mv ∪ vh ;
G1 = G1 ∪ vh ;
return (vh) ;

Function allocateBond(Me, eq, vh1, vh2):
vh = createBond(eq, vh1, vh2) ; // creates new hyperstructure bond from G2 bond and

the two specified atoms

Me = Me ∪ eh ;
G1 = G1 ∪ eh ;
return (eh) ;

Algorithm 4: Additional functions used in the hyperstructure construction process.
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Appendix B

Diversity Statistics Bar Charts
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Figure B.1. EFFF1% values for the search methods, per activity class, for MDDR
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Figure B.2. EFFF1% values for the search methods, per activity class, for WOMBAT
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Figure B.3. EFFF1% values for the search methods, per activity class, for MUV
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Figure B.4. x̄F1 values for the search methods, per activity class, for MDDR
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Figure B.5. x̄F1 values for the search methods, per activity class, for WOMBAT
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Figure B.6. x̄F1 values for the search methods, per activity class, for MUV
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Appendix C

Similarity Search Method

Complementarity
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(a) 5HT3 Antagonist

(b) 5HT1A Agonist
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(a) 5HT Reuptake Inhibitor

(b) D2 Antagonist
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(a) Renin Inhibitor

(b) Angiotensin II AT1 Antagonist

232



Edmund Duesbury Appendices

(a) Thrombin Inhibitor

(b) Substance P Antagonist
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(a) HIV-1 Protease Inhibitor

(b) Cyclooxygenase Inhibitor
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(a) Protein Kinase C Inhibitor
Figure C.1. Heat maps representing the numbers of matched pairs for the ranks of the MDDR com-
pounds tested with the methods shown. Red corresponds to low overlap, whereas green corresponds
to high overlap.
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Appendix D

Tabulated Results of Search Methods

class β EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

5HT3 Antagonist 0.90 7.116 0.257 8.971 1.708 1.220 0.204
5HT1A Agonist 0.80 7.173 0.282 13.552 1.689 2.013 0.223
5HT Reuptake Inhibitor 0.95 7.794 0.259 8.326 2.045 1.676 0.170
D2 Antagonist 0.90 5.143 0.195 12.413 1.158 0.370 0.228
Renin Inhibitor 0.90 14.518 0.540 23.791 1.932 2.962 0.347
Angiotensin II AT1 Antagonist 0.70 8.832 0.325 13.268 1.654 1.195 0.292
Thrombin Inhibitor 0.80 8.953 0.349 17.965 1.645 1.755 0.237
Substance P Antagonist 0.95 6.537 0.249 8.165 1.609 1.517 0.192
HIV-1 Protease Inhibitor 0.50 8.838 0.317 12.127 1.474 0.977 0.218
Cyclooxygenase Inhibitor 0.95 3.898 0.134 4.036 2.100 1.447 0.135
Protein Kinase C Inhibitor 0.95 3.160 0.120 2.281 2.273 1.794 0.177

Table D.1
Hyperstructure similarity search results for the MDDR dataset, where for each class, the β of the
Tversky coefficient is reported which yields the greatest BEDROC score.
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class EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

5HT3 Antagonist 9.811 0.424 23.007 2.182 2.340 0.171
5HT1A Agonist 6.659 0.258 8.731 2.096 1.752 0.140
5HT Reuptake Inhibitor 9.284 0.370 13.400 3.129 3.810 0.139
D2 Antagonist 7.325 0.294 16.790 1.617 1.074 0.185
Renin Inhibitor 12.732 0.521 15.547 2.898 5.016 0.290
Angiotensin II AT1 Antagonist 13.848 0.541 21.016 2.527 3.701 0.309
Thrombin Inhibitor 9.231 0.381 16.752 2.136 2.991 0.203
Substance P Antagonist 5.906 0.269 7.619 3.197 6.177 0.195
HIV-1 Protease Inhibitor 5.514 0.231 10.553 1.759 1.261 0.194
Cyclooxygenase Inhibitor 5.080 0.222 10.487 2.714 3.073 0.128
Protein Kinase C Inhibitor 9.977 0.440 16.198 3.705 4.338 0.186

Table D.2
MCS MAX similarity search results for the MDDR dataset.

class EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

5HT3 Antagonist 13.854 0.592 30.264 2.364 3.072 0.170
5HT1A Agonist 9.523 0.384 16.293 2.216 2.714 0.189
5HT Reuptake Inhibitor 9.456 0.393 19.662 2.255 2.326 0.139
D2 Antagonist 9.974 0.404 25.821 1.700 1.418 0.193
Renin Inhibitor 19.750 0.816 31.437 2.682 5.610 0.313
Angiotensin II AT1 Antagonist 19.657 0.808 32.869 2.736 4.449 0.341
Thrombin Inhibitor 12.383 0.495 21.294 2.189 3.151 0.217
Substance P Antagonist 6.553 0.288 13.504 2.208 2.802 0.168
HIV-1 Protease Inhibitor 15.243 0.614 32.193 1.856 2.210 0.227
Cyclooxygenase Inhibitor 6.166 0.267 13.470 2.644 2.756 0.128
Protein Kinase C Inhibitor 9.932 0.385 19.689 2.417 2.751 0.165

Table D.3
FP MAX similarity search results for MDDR.
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class β EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

5HT3 Antagonist (rat) 0.90 18.922 0.721 39.904 2.510 3.163 0.322
5HT1A Agonist (rat) 0.90 7.708 0.298 12.987 2.439 2.627 0.187
D2 Antagonist (rat) 0.95 8.927 0.321 14.097 1.872 2.682 0.234
Renin Inhibitor (human) 0.95 4.769 0.156 3.837 1.500 0.972 0.282
Angiotensin II AT1 Antagonist (rat) 0.95 5.225 0.172 3.619 2.000 1.483 0.272
Thrombin Inhibitor (human) 0.95 12.286 0.506 25.969 3.103 3.895 0.223
Substance P Antagonist (human) 0.95 16.667 0.762 49.155 5.222 9.789 0.382
HIV-1 Protease Inhibitor (human) 0.90 5.154 0.212 15.962 1.979 2.382 0.221
Cyclooxygenase Inhibitor (human) 0.95 9.124 0.260 1.702 2.667 3.172 0.285
Protein Kinase C Inhibitor (rat) 0.70 10.168 0.342 14.945 1.932 2.102 0.200
Acetylcholine esterase inhibitor (human) 1.00 3.156 0.110 1.053 2.000 1.414 0.195
Factor Xa inhibitor (human) 0.90 9.620 0.373 17.404 2.318 2.121 0.200
Matrix metalloprotease inhibitor (human) 0.95 6.366 0.246 6.310 6.842 19.791 0.252
Phosphodiesterase inhibitor (human) 0.90 7.938 0.285 10.433 2.526 3.516 0.208

Table D.4
Hyperstructure similarity search results for the WOMBAT dataset.

class EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

5HT3 Antagonist (rat) 19.914 0.935 65.869 2.890 5.390 0.324
5HT1A Agonist (rat) 10.426 0.433 8.273 5.091 6.049 0.153
D2 Antagonist (rat) 8.587 0.341 10.525 3.531 6.347 0.245
Renin Inhibitor (human) 13.236 0.571 30.768 2.875 4.229 0.222
Angiotensin II AT1 Antagonist (rat) 12.163 0.533 27.676 3.810 6.068 0.237
Thrombin Inhibitor (human) 17.238 0.735 43.144 3.357 4.642 0.186
Substance P Antagonist (human) 20.000 0.986 59.296 6.286 11.051 0.363
HIV-1 Protease Inhibitor (human) 8.771 0.397 24.078 2.704 4.574 0.159
Cyclooxygenase Inhibitor (human) 13.212 0.561 15.225 5.511 7.531 0.184
Protein Kinase C Inhibitor (rat) 9.976 0.450 21.086 3.700 6.421 0.189
Acetylcholine esterase inhibitor (human) 8.133 0.294 14.670 2.771 3.657 0.183
Factor Xa inhibitor (human) 13.889 0.572 31.701 2.817 3.687 0.217
Matrix metalloprotease inhibitor (human) 9.424 0.455 10.355 13.577 50.458 0.231
Phosphodiesterase inhibitor (human) 9.278 0.358 14.130 3.442 4.692 0.182

Table D.5
MCS MAX similarity search results for the WOMBAT dataset.
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class EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

5HT3 Antagonist (rat) 20.000 0.923 65.768 2.816 5.325 0.325
5HT1A Agonist (rat) 14.726 0.640 35.489 2.842 3.942 0.151
D2 Antagonist (rat) 13.023 0.510 17.035 3.708 6.276 0.232
Renin Inhibitor (human) 13.771 0.524 18.711 3.191 4.739 0.235
Angiotensin II AT1 Antagonist (rat) 19.157 0.722 33.080 3.844 6.416 0.243
Thrombin Inhibitor (human) 19.333 0.901 62.191 3.368 5.321 0.188
Substance P Antagonist (human) 20.000 0.991 59.296 6.286 11.051 0.363
HIV-1 Protease Inhibitor (human) 15.119 0.671 41.933 2.833 3.706 0.159
Cyclooxygenase Inhibitor (human) 11.569 0.388 4.482 5.095 5.770 0.223
Protein Kinase C Inhibitor (rat) 15.000 0.635 31.943 3.560 6.332 0.203
Acetylcholine esterase inhibitor (human) 6.222 0.218 7.528 2.419 2.446 0.248
Factor Xa inhibitor (human) 16.287 0.639 30.543 2.686 3.412 0.236
Matrix metalloprotease inhibitor (human) 10.325 0.462 17.109 8.590 29.306 0.205
Phosphodiesterase inhibitor (human) 13.711 0.537 25.820 2.931 5.198 0.187

Table D.6
FP MAX similarity search results for WOMBAT.

class β EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

sphingosine-1-phosphate 1 receptor potentiators 0.95 3.000 0.073 5.000 1.000 0.000 1.000
protein kinase A inhibitors 1.00 3.000 0.059 0.000 0.000 0.000 0.000
steroidogenic factor 1 inhibitors 0.90 4.000 0.116 6.250 1.000 0.000 1.000
rho kinase 2 inhibitors 1.00 3.000 0.125 8.347 1.000 0.000 0.547
HIV reverse transcriptase RNase 0.95 2.000 0.047 0.000 0.000 0.000 0.000
ephrin type-A receptor 4 antagonist inhibitors 0.90 3.000 0.092 0.000 0.000 0.000 0.000
steroidogenic factor 1 activators 0.95 1.000 0.028 0.000 0.000 0.000 0.000
heat shock protein 90 kDa alpha inhibitors 0.95 3.000 0.132 10.526 1.000 0.000 0.611
estrogen receptor-alpha coactivator binding inhibitors 0.30 1.000 0.022 0.000 0.000 0.000 0.000
estrogen receptor-beta coactivator binding inhibitors 0.50 2.000 0.033 0.000 0.000 0.000 0.000
estrogen receptor-alpha coactivator binding potentiators 0.70 5.000 0.099 0.000 0.000 0.000 0.000
focal adhesion kinase inhibitors 0.30 5.000 0.182 11.111 1.000 0.000 0.582
Cathepsin G 0.90 11.000 0.394 20.603 1.250 0.500 0.385
factor XIa 0.70 6.000 0.274 13.745 1.667 1.155 0.424
factor XIIa 1.00 4.000 0.128 1.457 1.000 0.000 1.000
dopamine receptor D1 allosteric modulators 0.95 2.000 0.122 11.111 1.000 0.000 0.565
muscarinic receptor M1 allosteric modulators 0.30 4.000 0.164 15.000 1.000 0.000 0.441

Table D.7
Hyperstructure similarity search results for the MUV dataset. Due to the low number of actives in the
MUV sets, no diversity statistics have been reported.
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class EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

sphingosine-1-phosphate 1 receptor potentiators 3.000 0.124 5.000 1.000 0.000 1.000
protein kinase A inhibitors 8.000 0.233 2.956 1.000 0.000 1.000
steroidogenic factor 1 inhibitors 6.000 0.204 9.391 1.500 0.707 0.480
rho kinase 2 inhibitors 3.000 0.126 2.792 2.000 0.000 0.764
HIV reverse transcriptase RNase 2.000 0.080 5.263 1.000 0.000 1.000
ephrin type-A receptor 4 antagonist inhibitors 2.000 0.096 5.000 1.000 0.000 1.000
steroidogenic factor 1 activators 3.000 0.090 5.000 1.000 0.000 1.000
heat shock protein 90 kDa alpha inhibitors 3.000 0.122 5.263 1.000 0.000 1.000
estrogen receptor-alpha coactivator binding inhibitors 2.000 0.083 5.000 1.000 0.000 1.000
estrogen receptor-beta coactivator binding inhibitors 8.000 0.233 10.000 1.000 0.000 0.548
estrogen receptor-alpha coactivator binding potentiators 5.000 0.165 10.000 1.000 0.000 0.565
focal adhesion kinase inhibitors 3.000 0.106 11.111 1.000 0.000 0.545
Cathepsin G 12.000 0.538 41.206 1.250 0.463 0.283
factor XIa 9.000 0.441 37.275 1.286 0.756 0.283
factor XIIa 3.000 0.124 7.143 1.000 0.000 1.000
dopamine receptor D1 allosteric modulators 5.000 0.174 11.111 1.000 0.000 0.560
muscarinic receptor M1 allosteric modulators 4.000 0.117 5.000 1.000 0.000 1.000

Table D.8
MCS MAX similarity search results for MUV.

class EF BEDROC EFFF1% x̄F1% sF1% S̄ 1%

sphingosine-1-phosphate 1 receptor potentiators 4.000 0.160 10.000 1.000 0.000 0.560
protein kinase A inhibitors 7.000 0.302 11.794 1.333 0.577 0.579
steroidogenic factor 1 inhibitors 7.000 0.265 12.531 1.333 0.577 0.367
rho kinase 2 inhibitors 8.000 0.187 8.347 1.000 0.000 0.539
HIV reverse transcriptase RNase 2.000 0.100 5.263 1.000 0.000 1.000
ephrin type-A receptor 4 antagonist inhibitors 6.000 0.252 20.000 1.000 0.000 0.345
steroidogenic factor 1 activators 3.000 0.128 15.000 1.000 0.000 0.428
heat shock protein 90 kDa alpha inhibitors 5.000 0.168 7.908 1.000 0.000 0.546
estrogen receptor-alpha coactivator binding inhibitors 2.000 0.114 10.000 1.000 0.000 0.555
estrogen receptor-beta coactivator binding inhibitors 3.000 0.139 15.000 1.000 0.000 0.452
estrogen receptor-alpha coactivator binding potentiators 3.000 0.138 10.000 1.000 0.000 0.565
focal adhesion kinase inhibitors 7.000 0.271 19.458 1.250 0.500 0.328
Cathepsin G 14.000 0.579 47.088 1.222 0.441 0.259
factor XIa 13.000 0.575 40.231 1.250 0.707 0.268
factor XIIa 12.000 0.422 8.600 3.000 2.828 0.571
dopamine receptor D1 allosteric modulators 5.000 0.223 13.903 1.333 0.577 0.395
muscarinic receptor M1 allosteric modulators 2.000 0.059 5.000 1.000 0.000 1.000

Table D.9
FP MAX similarity search results for MUV.
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Appendix E

Summary performances of Search

Methods

method

FP MAX
FPMAX HS90
MCSMAX HS90
FPMAX MCSMAX
FPMAX MCSMAX HS90
p_FPMAX HS90
p_MCSMAX HS90
p_FPMAX MCSMAX
p_FPMAX MCSMAX HS90

BEDROC EF

0.495 12.045
0.412 10.528
0.330 8.711
0.485 11.877
0.443 11.336
0.042 0.320
0.003 0.019
0.898 1.000
0.278 0.700

(a) MDDR

BEDROC EF

0.626 14.875
0.499 12.566
0.464 11.567
0.656 15.042
0.583 14.238
0.000 0.005
0.002 0.002
0.358 0.969
0.258 0.364

(b) WOMBAT

BEDROC EF

0.240 6.059
0.162 4.412
0.137 3.588
0.216 5.824
0.178 5.000
0.000 0.003
0.000 0.003
0.171 0.549
0.002 0.055

(c) MUV

Table E.1
General comparisons between virtual screening statistics, comparing the data fusion methods to FP
MAX, for the three datasets mentioned. The first set of rows quote the mean statistic scores obtained
for the activity classes a method is tested on. The other rows prefixed with p_ show the p-value
obtained from the paired Wilcoxon signed-rank test of the method, compared with FP MAX.
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method EFFF1% x̄F1% S̄ 1%

FP MAX 23.318 2.297 0.205
FPMAX HS90 18.163 2.067 0.210
MCSMAX HS90 12.835 1.999 0.210
FPMAX MCSMAX 21.535 2.434 0.195
FPMAX MCSMAX HS90 18.507 2.201 0.201
p_FPMAX HS90 0.024 0.001 0.465
p_MCSMAX HS90 0.001 0.001 0.594
p_FPMAX MCSMAX 0.175 0.413 0.068
p_FPMAX MCSMAX HS90 0.005 0.041 0.760

(a) MDDR

method EFFF1% x̄F1% S̄ 1%

FP MAX 32.209 3.869 0.228
FPMAX HS90 25.004 3.049 0.239
MCSMAX HS90 23.564 3.382 0.252
FPMAX MCSMAX 32.315 4.240 0.220
FPMAX MCSMAX HS90 29.163 3.664 0.239
p_FPMAX HS90 0.002 0.011 0.124
p_MCSMAX HS90 0.013 0.025 0.096
p_FPMAX MCSMAX 0.944 0.069 0.053
p_FPMAX MCSMAX HS90 0.296 0.326 0.245

(b) WOMBAT

method EFFF1% x̄F1% S̄ 1%

FP MAX 15.301 1.219 0.515
FPMAX HS90 9.019 0.776 0.475
MCSMAX HS90 8.267 0.778 0.496
FPMAX MCSMAX 13.330 1.130 0.628
FPMAX MCSMAX HS90 10.285 0.810 0.479
p_FPMAX HS90 0.001 0.006 1.000
p_MCSMAX HS90 0.001 0.009 0.705
p_FPMAX MCSMAX 0.230 0.675 0.068
p_FPMAX MCSMAX HS90 0.007 0.008 0.856

(c) MUV

Table E.2
General comparisons between diversity results, comparing the data fusion methods to FP MAX. The
first set of rows quote the mean statistic scores obtained for the activity classes a method is tested on.
The other rows prefixed with p_ show the p-value obtained from the paired Wilcoxon signed-rank test
of the method, compared with FP MAX.
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Appendix F

Mean Ranks of Methods
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method BEDROC

Tversky HS 30 1.545
Tversky HS 50 2.636
Tversky HS 100 2.727
Tversky HS 70 4.636
Tversky HS 95 5.455
Tversky HS 80 6.182
MCS AVG 6.727
Tversky HS 90 7.091
MCSMAX HS90 9.182
MCS MAX 10.091
FPMAX HS90 11.591
FPMAX MCSMAX HS90 12.227
FP AVG 12.773
FPMAX MCSMAX 13.273
FP MAX 13.864
W 0.870
p 1.124 · 10−21

(a) MDDR

method BEDROC

Tversky HS 30 1.536
Tversky HS 50 2.964
Tversky HS 100 3.000
Tversky HS 70 4.429
Tversky HS 80 5.857
Tversky HS 95 6.179
Tversky HS 90 6.429
MCS AVG 7.214
MCSMAX HS90 9.143
FPMAX HS90 9.964
MCS MAX 11.714
FPMAX MCSMAX HS90 11.786
FP MAX 12.714
FP AVG 13.000
FPMAX MCSMAX 14.071
W 0.835
p 1.247 · 10−27

(b) WOMBAT

method BEDROC

Tversky HS 95 4.471
Tversky HS 100 4.735
Tversky HS 30 5.118
Tversky HS 50 5.412
Tversky HS 90 5.412
MCS AVG 5.765
Tversky HS 70 6.500
Tversky HS 80 7.324
MCSMAX HS90 8.324
FPMAX HS90 9.588
FPMAX MCSMAX HS90 9.735
FP AVG 10.265
MCS MAX 11.500
FPMAX MCSMAX 12.912
FP MAX 12.941
W 0.455
p 1.218 · 10−16

(c) MUV

Table F.1
Mean rankings of the BEDROC scores (a lower rank value indicating worse performance) of the
methods, sorted in ascending order. Values for Kendall’s W and the associated p value are given for
each dataset, where Kendall’s W quantifies the agreement in rankings between the activity classes of
the dataset for a search method.
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method EFFF1%

Tversky HS 100 2.182
Tversky HS 30 2.227
Tversky HS 50 3.818
Tversky HS 95 4.091
Tversky HS 70 5.955
MCS AVG 6.727
Tversky HS 90 6.909
Tversky HS 80 7.091
MCSMAX HS90 8.455
MCS MAX 8.636
FPMAX HS90 11.909
FPMAX MCSMAX HS90 12.273
FPMAX MCSMAX 12.636
FP AVG 13.182
FP MAX 13.909
W 0.804
p 1.087 · 10−19

(a) MDDR

method EFFF1%

Tversky HS 100 2.071
Tversky HS 30 2.321
Tversky HS 50 3.679
Tversky HS 95 5.429
Tversky HS 70 5.500
Tversky HS 80 6.286
Tversky HS 90 6.500
MCS AVG 6.786
MCSMAX HS90 9.107
MCS MAX 10.357
FPMAX HS90 10.393
FPMAX MCSMAX HS90 11.929
FP MAX 12.857
FPMAX MCSMAX 13.286
FP AVG 13.500
W 0.776
p 2.859 · 10−25

(b) WOMBAT

method EFFF1%

Tversky HS 100 4.647
Tversky HS 95 5.118
Tversky HS 30 5.882
Tversky HS 90 5.941
MCS AVG 6.059
Tversky HS 80 6.118
Tversky HS 70 6.471
Tversky HS 50 6.647
MCSMAX HS90 7.971
FPMAX HS90 9.441
FPMAX MCSMAX HS90 9.735
MCS MAX 10.500
FP AVG 10.971
FPMAX MCSMAX 12.176
FP MAX 12.324
W 0.416
p 7.202 · 10−15

(c) MUV

Table F.2
Mean rankings of EFFF1% of the methods, sorted in ascending order. Here, a higher rank corresponds
to a higher value of EFFF1%, and thus a better performance
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method x̄F1%

FP MAX 2.909
FPMAX MCSMAX 3.091
MCS MAX 3.818
FPMAX MCSMAX HS90 4.818
FP AVG 5.000
FPMAX HS90 6.182
MCSMAX HS90 7.000
MCS AVG 7.591
Tversky HS 95 9.636
Tversky HS 90 9.818
Tversky HS 100 10.045
Tversky HS 80 10.364
Tversky HS 50 12.773
Tversky HS 70 12.909
Tversky HS 30 14.045
W 0.681
p 5.604 · 10−16

(a) MDDR

method x̄F1%

Tversky HS 30 3.429
Tversky HS 50 3.571
Tversky HS 70 3.786
Tversky HS 80 4.821
Tversky HS 100 5.786
Tversky HS 95 6.107
Tversky HS 90 6.179
FPMAX HS90 8.714
MCSMAX HS90 9.357
MCS AVG 9.679
FPMAX MCSMAX HS90 10.143
FP AVG 10.929
FP MAX 11.786
FPMAX MCSMAX 12.607
MCS MAX 13.107
W 0.577
p 1.396 · 10−17

(b) WOMBAT

method x̄F1%

Tversky HS 100 5.765
MCS AVG 6.176
Tversky HS 30 6.324
Tversky HS 80 6.500
Tversky HS 90 6.500
Tversky HS 95 6.794
Tversky HS 70 6.941
Tversky HS 50 7.559
FPMAX MCSMAX HS90 8.235
FP AVG 8.324
FPMAX HS90 9.059
MCSMAX HS90 9.294
FP MAX 10.500
MCS MAX 10.853
FPMAX MCSMAX 11.176
W 0.246
p 2.049 · 10−7

(c) MUV

Table F.3
Mean rankings of x̄F1 of the methods, sorted in ascending order. Here, a lower rank corresponds to a
higher value of x̄F1, and thus a worse performance
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Appendix G

Activity Class performance on Weighting

Schemes
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Activity Class Mean Rank Wilcoxon p

Method 1 2 3 4 5 6 7 8 9 10 11 Weights All vs w1 vs FP MAX

HS 90 w1 0.434 0.288 0.235 0.203 0.393 0.312 0.281 0.333 0.295 0.089 0.183 4.182 4.545 1.00 9.77 · 10−4

HS 90 w2 0.062 0.061 0.08 0.087 0.453 0.201 0.105 0.172 0.262 0.046 0.256 1.818 1.818 1.86 · 10−2 9.77 · 10−4

HS 90 w3 0.297 0.215 0.228 0.194 0.452 0.274 0.236 0.252 0.225 0.082 0.204 3.182 3.364 5.37 · 10−2 9.77 · 10−4

HS 90 w4 0.204 0.172 0.183 0.187 0.563 0.311 0.209 0.25 0.318 0.069 0.251 3.091 3.364 0.28 9.77 · 10−4

HS 90 w5 0.417 0.274 0.256 0.182 0.245 0.203 0.214 0.241 0.166 0.092 0.165 2.727 3 2.07 · 10−2 9.77 · 10−4

FP HS90 w1 0.635 0.473 0.39 0.324 0.691 0.637 0.558 0.476 0.436 0.23 0.307 3.636 8.909 1.00 8.30 · 10−2

FP HS90 w2 0.198 0.192 0.236 0.238 0.73 0.546 0.333 0.316 0.458 0.11 0.363 1.818 6.182 1.37 · 10−2 4.88 · 10−3

FP HS90 w3 0.53 0.403 0.377 0.338 0.759 0.621 0.495 0.392 0.408 0.219 0.34 3 8.182 0.18 4.88 · 10−3

FP HS90 w4 0.418 0.34 0.318 0.305 0.823 0.649 0.454 0.393 0.482 0.168 0.376 3.182 8.364 0.21 2.44 · 10−2

FP HS90 w5 0.638 0.49 0.421 0.341 0.52 0.53 0.497 0.432 0.31 0.257 0.267 3.364 8.455 0.12 1.37 · 10−2

FP 0.594 0.549 0.418 0.399 0.84 0.795 0.646 0.379 0.4 0.353 0.356 1 9.818 1.00 1.00

Table G.1
BEDROC results for the MDDR dataset. Cells in bold typeface indicate that the weighting scheme that performed best for a given activity class. Cells
shaded in grey indicate which method performed best for the particular column of the table. For the “Mean Rank” columns, the one titled “weights”
displays the mean of the ranks comparing the weighting schemes for a given search method (thus identifying the performance of a weighting scheme
for a given search method). The “all” column by contrast shows the mean of the ranks, of all the methods (thus identifying the best combination of
search method and weight). The “Wilcoxon p” columns presents the p-values for two-tailed Wilcoxon signed-rank tests, “vs w1” for the method being
tested against the w1 equivalent, and “vs FP MAX” for the given method against FP MAX.
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Activity Class Mean Rank Wilcoxon p
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Weights All vs w1 vs FP MAX

HS 90 w1 0.044 0.097 0.05 0.043 0 0.079 0.006 0.055 0.003 0.006 0 0 0.116 0.073 0.046 0 0 1.529 1.941 1.00 1.53 · 10−5

HS 90 w2 0.104 0.001 0.13 0.035 0.022 0.095 0.007 0.103 0.077 0.016 0.004 0.098 0.189 0.051 0.036 0.021 0.105 2.765 3.706 3.51 · 10−2 7.63 · 10−5

HS 90 w3 0.11 0.093 0.111 0.074 0.041 0.128 0.039 0.104 0.055 0.033 0.017 0.009 0.362 0.053 0.038 0.057 0.065 3.647 4.794 3.81 · 10−4 5.48 · 10−4

HS 90 w4 0.112 0.035 0.117 0.079 0.013 0.13 0.037 0.098 0.053 0.036 0.029 0.041 0.267 0.047 0.049 0.037 0.095 3.412 4.529 2.58 · 10−3 6.52 · 10−4

HS 90 w5 0.064 0.164 0.098 0.082 0.032 0.087 0.059 0.137 0.057 0.019 0.007 0.002 0.305 0.117 0.126 0.045 0.029 3.647 4.941 1.53 · 10−5 3.05 · 10−5

FP HS90 w1 0.14 0.131 0.162 0.057 0.015 0.067 0 0.088 0.134 0 0.032 0.001 0.346 0.202 0.148 0.105 0.001 1.529 4.471 1.00 1.53 · 10−5

FP HS90 w2 0.125 0.035 0.185 0.125 0.042 0.161 0.003 0.132 0.171 0.033 0.074 0.181 0.433 0.069 0.071 0.08 0.101 2.647 6.882 0.17 1.53 · 10−4

FP HS90 w3 0.163 0.19 0.205 0.161 0.066 0.154 0.008 0.183 0.119 0.025 0.095 0.09 0.543 0.154 0.162 0.135 0.073 3.588 8.294 8.39 · 10−4 2.14 · 10−4

FP HS90 w4 0.152 0.135 0.185 0.125 0.047 0.158 0.002 0.139 0.153 0.036 0.123 0.133 0.49 0.127 0.094 0.108 0.098 3.176 7.794 1.06 · 10−2 2.90 · 10−4

FP HS90 w5 0.16 0.346 0.234 0.214 0.076 0.132 0.01 0.204 0.18 0.007 0.063 0.099 0.537 0.294 0.249 0.177 0.017 4.059 8.529 1.53 · 10−5 1.51 · 10−3

FP 0.266 0.309 0.284 0.44 0.128 0.142 0.035 0.167 0.256 0.206 0.132 0.295 0.595 0.404 0.464 0.204 0.057 1 10.118 1.00 1.00

Table G.2
BEDROC results for the MUV dataset.

Activity Class Mean Rank Wilcoxon p
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Weights All vs w1 vs FP MAX

HS 90 w1 0.372 0.255 0.188 0.383 0.076 0.303 0.472 0.145 0.037 0.21 0 0.225 0.12 0.197 1.857 1.857 1.00 1.22 · 10−4

HS 90 w2 0.314 0.133 0.203 0.225 0.072 0.294 0.377 0.195 0.089 0.204 0.04 0.159 0.029 0.149 1.429 1.5 7.85 · 10−2 1.22 · 10−4

HS 90 w3 0.602 0.305 0.355 0.436 0.162 0.57 0.749 0.232 0.347 0.295 0.155 0.305 0.162 0.283 4.321 4.821 1.22 · 10−4 1.22 · 10−4

HS 90 w4 0.527 0.228 0.28 0.421 0.109 0.517 0.546 0.243 0.139 0.309 0.015 0.263 0.081 0.278 3.286 3.429 3.05 · 10−3 1.22 · 10−4

HS 90 w5 0.511 0.378 0.359 0.436 0.227 0.423 0.773 0.187 0.391 0.235 0.081 0.338 0.21 0.271 4.107 4.607 1.22 · 10−4 1.22 · 10−4

FP HS90 w1 0.727 0.38 0.497 0.532 0.25 0.595 0.727 0.298 0.094 0.472 0.001 0.365 0.34 0.306 1.643 6 1.00 1.22 · 10−4

FP HS90 w2 0.669 0.34 0.634 0.484 0.249 0.575 0.775 0.343 0.251 0.471 0.128 0.363 0.185 0.329 1.571 6.214 0.78 1.22 · 10−4

FP HS90 w3 0.875 0.465 0.654 0.707 0.449 0.805 0.873 0.395 0.538 0.578 0.32 0.512 0.434 0.455 4.321 9.536 1.22 · 10−4 5.80 · 10−2

FP HS90 w4 0.833 0.383 0.66 0.658 0.325 0.749 0.793 0.401 0.31 0.579 0.091 0.449 0.292 0.455 3.464 8.321 3.66 · 10−4 2.44 · 10−4

FP HS90 w5 0.79 0.537 0.632 0.702 0.556 0.764 0.923 0.357 0.545 0.505 0.177 0.524 0.484 0.431 4 9.143 1.22 · 10−4 2.02 · 10−2

FP 0.923 0.665 0.748 0.627 0.716 0.832 0.991 0.56 0.427 0.643 0.228 0.542 0.59 0.5 1 10.571 1.00 1.00

Table G.3
BEDROC results for the WOMBAT dataset.
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Appendix H

Modular Product Heuristics

H.0.0.1 Induced Subgraphs. The Induced subgraph heuristic was originally proposed by Ray-

mond et al. (2002a). Induced subgraph heuristics rely on applying a topological distance constraint to

bonds that occur in identical subgraphs (or fragments), the fragments of which are defined by certain

rules (explained later). By imposing topological distance constraints within fragments, the creation

of redundant edges between modular product edges can be avoided. Consider two nodes n1 and n2

in the modular product, where n1 = (ui, vi) and n2 = (u j, v j), ui and u j are different bonds in the

first molecular graph G1, and vi and v j are different bonds in the second molecular graph G2. When

considering the creation of an edge between n1 and n2 in the modular product, the following rules

must apply when using the induced subgraph heuristic:

• ui and u j must be a member of exactly one induced subgraph in G1

• vi and v j must be a member of exactly one induced subgraph in G2

If these two rules apply, then an edge is only created between nodes n1 and n2 if the topological

distance difference is 0 (unless they are on rings of differing sizes, which is explained later). If at

least one of the two above rules are violated, the induced subgraph heuristic does not apply and thus

an edge can be created anyway (subject to other heuristics).

An example is depicted with C-C induced subgraphs in Figure H.1, in which the subgraphs consist

only of carbon atoms bound with single bonds. Here, G1 has two induced C-C subgraphs containing

the bonds {3, 4, 5, 6, 8} and {10, 11, 12, 13, 14, 15} respectively. G2 has two C-C induced subgraphs

containing bonds {3′, 4′, 5′, 6′, 8′} and {10′, 11′, 15′} respectively. The following situations will help

illustrate the workings of this heuristic:
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• Consider the two modular product nodes (3, 3’) and (6, 6’).

– bonds 3 and 6 are both present on the same subgraph in G1

– bonds 3’ and 6’ are both present on the same subgraph in G2

– the bond pairs (3,6) and (3’,6’) have a topological distance difference of 0, thus an edge

is created between the modular product nodes.

• Consider another two nodes (4, 10’) and (8, 11’).

– bonds 4 and 8 are both present on the same subgraph in G1

– bonds 10’ and 11’ are both present on the same subgraph in G2

– the bond pairs (4,8) and (10’,11’) also have a topological distance difference of 0, thus an

edge is created between the modular product nodes.

• Consider the two nodes (8, 8’) and (11,15’).

– bonds 8 and 11 are present on different subgraphs in G1. As the heuristic does not apply,

an edge is formed between the two nodes, regardless of topological distance difference.

• Consider the two nodes (3, 4’) and (4, 6’).

– bonds 3 and 4 are both present on the same subgraph in G1

– bonds 4’ and 6’ are both present on the same subgraph in G2

– the bond pairs (3,4) and (4’,6’) have a topological distance difference of 1, thus an edge

is not created between the modular product nodes.

N       1

2

3 4

5

67

8 9 10

11

12
13

1415

(a) G1

N       

NH       

NH       

1'

2'

3' 4'

5'

6'7'

8' 9' 10'

11'

12'

13'

14'
15'

(b) G2

Figure H.1. Two Molecular graphs, each with two C-C induced subgraphs. Bonds comprising the
subgraphs are shown in bold.

In this work, three different methods for creating induced subgraphs are defined. The first uses C-C

induced subgraphs, as previously mentioned (Figure H.2b), but two additional methods for creating
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induced subgraphs have also been devised. The first of these is a “rigid bond subgraph” method,

which identifies and uses subgraphs which consist of ring and/or non-rotatable bonds (Figure H.2c).

Bonds where both atoms are in an aromatic ring, but where the bond itself is not in a ring, are also

included, as well as terminal bonds (where one atom belongs to a ring) .

By contrast, a “non-ring bond subgraph” heuristic has been devised which acts on chains (i.e. non-

ring bonds, regardless of bond order or environment), as many molecules exist with long flexible

chains (Figure H.2d). The maximum path length allowed in this heuristic is the difference in the size

of the longest chain (or largest shortest path length) between the two subgraphs. If this difference

exceeds the size of the longest chain in either of the two subgraphs, then the maximum difference

is set at the size of the shorter of the two chains. It should be noted that this does not account for

branches (i.e. all bonds are included in a fragment, regardless of whether the fragment is one chain

or many chains). Whilst fragments in this case could be represented as chains, instead of non-ring

features with all branches included, such functionality was not implemented. We did not see the need

for aligning distant branched flexible features, noting that rigid molecules have a tendency to bind

proteins with greater preference to flexible molecules.

In all three of the induced subgraph heuristics, single bonds are excluded from being potential sub-

graphs. This is because pairs of edges are being compared for acceptance/deletion in the modular

product, thus single bond subgraphs would only hinder the speed of the deletion process.

H.0.0.2 Chain Topological Distance Difference. An additional heuristic has been implemented,

which simply requires that the maximum topological distance between any non-ring bond pair in a

molecule cannot exceed that of the size of the longest chain in the molecule. This was implemented

in an attempt to minimise redundant chain mapping (that is, bonds on one chain should only map to

one other chain and not across distant chains).

H.0.0.3 Ring Heuristics. Raymond et al. (2002a) introduced the weak and strong ring heuristics

as “edge deletion” heuristics. These relied on the presence of ring systems in compounds to sim-

plify the MCS search. The weak ring heuristic would take effect between two nodes n1 and n2 in

the modular product, where n1 = (ui, vi) and n2 = (u j, v j) (as described in the Induced Subgraphs

subsubsection), if the following conditions were satisfied:

1. ui and u j are ring bonds in the same ring (in G1). The original methodology required that the

ring had seven members or less, though we have omitted this size restriction.
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(b) C-C induced subgraphs

CH3
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(c) Rigid bond induced subgraphs

CH3

NN

F

N

N

N

NH

CH3

H3C CH3

(d) Non-ring induced subgraphs
Figure H.2. Induced subgraph heuristic types used in this work. Bold edges are those that comprise
the relevant induced subgraphs.

2. either ui or u j is an unfused bond (meaning that the two bonds correspond to a single unam-

biguous ring).
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3. vi and v j are ring bonds. This is regardless of whether they are in the same ring, or not (in G2).

4. either vi or v j is an unfused bond.

N       
N       

HN       

1

2 3

4

(a) G1

O       

O       

N       

H       
N       

O       

N       

N       

S       

1'

2'
3' 4'

(b) G2

Figure H.3. An example involving the ring heuristics.

If these requirements have been met for the node pairs, the weak ring heuristic states that vi and v j

must also be in the same ring. If this is not the case, then no edge is formed between the two node

pairs in the modular product. If the weak ring heuristic is passed and both rings are aromatic, the

strong ring heuristic is passed if the topological distance difference between the node pairs, is 0.

Figure H.3 can be used to demonstrate the workings of the ring heuristics.

Consider the two modular product nodes (1, 1’) and (2, 2’):

• bonds 1 and 2 are in the same ring in G1, and whilst 2 is a fused bond, 1 is not, thus the heuristic

can still be used.

• bonds 1’ and 2’ are also both ring bonds, and are not fused bonds.

• as 1’ and 2’ are on the same ring in G2, the weak ring heuristic is passed.

• the strong ring heuristic does not apply as both rings need to be aromatic (of which neither is).
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Next, Consider the two modular product nodes (2, 1’) and (3, 2’):

• bonds 2 and 3 are in the same ring in G1. However, bonds 2 and 3 are both fused, so the

heuristic may not apply

Finally, Consider the two modular product nodes (3, 3’) and (4, 4’):

• bonds 3 and 4 are in the same ring in G1, and only bond 3 is a fused bond.

• bonds 3’ and 4’ are ring bonds, and only bond 3’ is a fused bond.

• bonds 3’ and 4’ are in the same ring in G2, and thus the weak ring heuristic is passed

• however, the strong ring heuristic is failed, as the topological distance between the two node

pairs are not equal. The distance between the bonds 3 and 4 is 1, whereas between 3’ and 4’, it

is 2.

A short-coming in the strong ring heuristic arises when rings of different sizes are compared, as

shown in Figure H.4. The assumption that the aromatic ring bonds must have the same path lenth in

the strong ring heuristic, severely reduces the size of the MCES obtained in this example, as shown in

Figure H.4b. To remedy this, the topological difference allowed is set to be equivalent to the difference

in size (in bonds) between the two rings, rather than 0, as shown in Figure H.4c, where the distance

constraint is now 1. The same situation is applied in all forms of induced subgraph heuristics where

the bonds being compared are in rings of different sizes.
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(a) dMCES

(b) MCES obtained using the original heuristics by Ray-
mond et al. (2002a).

(c) MCES obtained using the modified ring-based
heuristics.

Figure H.4. Various MCESs retrieved using modular product deletion heuristics. Most bonds which
are unmatched in H.4b compared to the dMCES, are due to a topological distance greater than 0.
The dotted red bond is not part of the MCES in H.4c as this bond pair does not satisfy the weak ring
heuristic (the bonds originate from different rings in each molecule).
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Appendix I

MCS algorithm implementation

information

I.0.0.1 VFLibMCS. The unaltered code has been used from CDK for this algorithm.

I.0.0.2 SMSD. The unaltered code has been used from CDK for this algorithm.

I.0.0.3 fMCS. This has been coded from Andrew Dalke’s original implementation in Python (us-

ing RDKit). We used the VF2 subgraph isomorphism algorithm as implemented in CDK to verify if

a subgraph in fMCS was isomorphic. Given the speed of this subgraph isomorphism algorithm, it is

uncertain if using canonical SMARTS would actually provide a speed benefit, therefore non-canonical

SMARTS was stored instead of the semi-canonical SMARTS that featured in the Python implemen-

tation. SMARTS in this work was determined using AMBIT-SMARTS (Jeliazkova & Kochev, 2011),

due to its high speed of processing and inherent design for use with CDK.

I.0.0.4 MaxCliqueSeq. This algorithm was coded using the original C++ source code as a guide.

Whilst there are no changes to mention, it is important to note an effective lower bound that is es-

tablished in the re-ordering process. As the node ordering process successively removes nodes of

minimal degree first and adjusts the degrees of the other nodes accordingly with each removal, there

will be a small set of nodes at the end of the processes with equal degree values. This set of vertices of

equal degree forms a clique, thus presenting an initial lower bound which hastens the clique detection

process. The authors in their same publication also described a parallel implemation, MaxCliquePara.

This has not been implemented.

I.0.0.5 Bron-Kerbosch. The Bron-Kerbosch algorithm has been implemented in the recursive

form using pivot vertices as described by Cazals and Karande (2008).
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I.0.0.6 Carraghan-Paralos. This was translated from the FORTRAN code as provided by the

original authors in their appendices.

I.0.0.7 RASCAL. Implementing RASCAL proved to be a challenge due to the multitude of ways

in which the original methodology could be interpreted. It was implemented in this work recursively.

The Minimum Similarity Index lower bound was removed from consideration as it gave some un-

realistic estimates for a lower bound (i.e. the estimate would exceed the size of one of the two

graphs being compared). As we wanted the MCES between any pair of molecules regardless of their

structural similarity, the lower bound in the algorithm was set to be the size of the maximum clique

discovered by the algorithm at a given stage. Although we could have devised a sharper lower bound

(such as one derived from path-based fingerprints), we did not do this to keep to the methodology of

the original algorithm.

The initial vertex partitioning method used in the original work was not mentioned clearly. We made

the assumption that each initial partition contains nodes that cannot possibly be neighbours. In this

case, a partition would contain all the nodes where all the nodes in the partition would correspond to

one bond in G1. There would therefore be a number of partitions equal to the number of bonds in G1.

This process is outlined in Algorithm 5. Other partition-related functions have been kept as described

in the original algorithm. We note however that in internal tests, the colouring algorithm has almost

no effect on the upper bound (that is, the partitioning method is superior), though we still use the

colouring algorithm to keep to RASCAL’s original methodology. Each partition is represented as an

array, so unfortunately the advantage that would have been gained using Bitstring representations is

lost.

Data: Modular Product G, Molecular graph G1

Result: Partition Set P

Function initialisePartitions(G,G1):

P = � ;

for n in 1..|E(G1)| do

Pn = {v ∈ V(G) : v1 = E(G1)n} ;

end
Algorithm 5: Initial partitioning algorithm. v ∈ E(G1)n refers to the modular product node (or edge

pair) v containing the identified edge in G1.

We have also not implemented Kikusts pruning and equivalence class pruning. In our implementa-

tion we saw no benefit in time performance when Kikusts pruning was used (if anything, it slowed

262



Edmund Duesbury Appendices

the progress down). Whilst the importance of equivalence class pruning becomes apparent when

comparing molecules with large amounts of global symmetry, we simply did not have enough time to

implement the heuristic.

I.0.0.8 CDKMCS. The unaltered code has been used from CDK for this algorithm.

I.0.0.9 kcombu. The authors’ implementation of the algorithm sought the MCIS, whereas we are

interested in the MCES, thus several adjustments were made to correct for this. The main adjust-

ment is that bond pairs are being sought as opposed to atom pairs. The “Bond_Equivalence” and

“Bond_Connection” functions have been adjusted to test for adjacent bonds, not adjacent vertices.

The heuristic score dneighbor has been modified to count the number of different bonds around a bond’s

neighbourhood, as in Algorithm 6.

Data: Bond a from G1, Bond b from G2

Result: score S

Function dneighbor(a, b):

for an in N(a) do

S = 0 ;

if ¬∃bn ∈ N(b) such that bn ∼ an then
S = S + 1 ;

end

end
Algorithm 6: modified dneighbor function. N(a) represents the adjacent bonds to bond a, and ∼

represents a match between two bonds.

The “Nonredundancy_By_Selection_Score” function however has been implemented largely the

same as in the original work, noting that atom label frequencies are still compared (as opposed to

modifying the function to account for bond label frequencies, which wasn’t necessary as a match list

contains both atoms and bonds).

For the dec heuristic score, the initial values assigned to bonds are the number of bonds adjacent to

them, though the rest of the algorithm otherwise continues as expected. All containers containing

bond pairs are implemented as arrays. The value of the constant K (the maximum number of identi-

fied common subgraphs at any one stage in the algorithm) is set to 40, as used in their original work

(Kawabata, 2011).

I.0.0.10 ChemAxon_MCS. Although this is a proprietary algorithm, we note that there is an

additional overhead in converting molecules from CDK format to ChemAxon format. For any time
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statistics quoted, we quote the time taken excluding this additional overhead. To reduce the time

required at this stage we use SMILES (or SMARTS for queries), though when the actual bond cor-

respondences are required (as opposed to just the size of the MCS), we use SDF format. When

using SMILES notation (as in this chapter), from internal testing, the impact on time performance is

minimal.

I.0.0.11 consR. This implementation has a great number of differences from the original imple-

mentation in order to make it functional for molecular graphs. Eigendecomposition in this case was

implemented using CERN’s “Colt” Java API (CERN, 2004). Most changes were implemented on

suggestion of the authors, post-publication (Zhu & Yu, 2013).

The local similarity of two vertices, S l[u, v] has undergone some modifications, as shown in the

equations below.

S l[u, v] =
(nmin + D(u, v))2(

|(V(Gk
u)| + dsum(Gk

u)
)
×

(
|(V(Gk

v)| + dsum(Gk
v)
)

D[u, v] = |L(u) ∩ L(v)| +
∑

(u′,v′)∈Muv

w(u′, v′)

dsum(G) =
∑
u∈G

d(u)

Note that the local similarity has been adapted to account for labels, though as we wanted to al-

low for SMARTS matching the algorithm was modified. Notably, this manifests in the statements

|L(u) ∩ L(v)| and any similar statement reflecting multisets. L(u) would be the multiset of labels

for the atoms in N(u) (i.e. the vertices adjacent to u). The main change is that rather than using

multisets for each matching attempt of two node neighbourhoods, a count of the matches is made for

the neighbourhoods, in a similar fashion to dneighbour in the kcombu algorithm except that atoms are
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matched instead of bonds. This process is detailed in Algorithm 7.

Data: Atom a from G1, Atom b from G2

Result: weight w

Function compareNeighbourLabels(a, b):

B = N(b) ; // set copy

for a′ in N(a) do

w = 0 ;

if ∃b′ ∈ B such that b′ ∼ a′ then

w = w + 1 ;

B = B \ b′ ; // remove b′ from B

end

end
Algorithm 7: replacement for the statement |L(u) ∩ L(v)|. N(a) represents the adjacent bonds to

bond a, and ∼ represents a match between two bonds.

The anchor selection process has been modified. Firstly, we did not specify an arbitrary similarity

threshold to select pairs as anchors (what if the threshold is high to the point where no pairs are suit-

able?). Thus, the pairs are instead sorted in descending order and the top few are chosen (specified

by an arbitrary constant). Secondly, the larger average degree constraint δ, is highly unsuitable when

comparing graphs with highly different edge densities. Thus, if the value of δ exceeds the maximum

degree of a node in one of the two graphs, it is set to said maximum degree.

After one round of anchor expansion, there may be some nodes in both graphs which are unmatched.

A modification implemented involves selecting the unmatched pair with the highest local similarity,

and adding it to the candidate list, so that the expansion process can continue. This process continues

until there are no unmatched nodes in one of the two graphs.

The random minimal vertex cover algorithm was replaced with a more recent algorithm for finding a

minimum vertex cover (Ugurlu, 2012). The goal of using this was simply to remove the sole cause of

random error in the original work, and thus minimising the number of iterations required for finding

vertex covers. This vertex cover algorithm has also shown to yield accurate approximations of the

minimum vertex cover in very small time frames for even large graphs (less than one second).

On running the algorithm for MCS finding, the algorithm is executed for 1, 2 and then for 3 anchors,

with a value of 2 for the neighbourhood size constant k when determining the local similarity.
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dMCS hMCS tdMCS (θ = 2) tdMCS (θ = 0)
pair Nodes Density Time Nodes Density Time Nodes Density Time Nodes Density Time
M1 416 0.675 0.010 ± 0.001 416 0.319 0.026 ± 0.002 416 0.496 0.011 ± 0.002 416 0.144 0.009 ± 0.003
M2 512 0.711 0.014 ± 0.001 512 0.303 0.034 ± 0.003 512 0.549 0.012 ± 0.001 512 0.163 0.013 ± 0.002
M3 2,257 0.805 0.234 ± 0.050 2,257 0.085 0.928 ± 0.122 2,257 0.374 0.174 ± 0.021 2,257 0.087 0.154 ± 0.019
N1 630 0.793 0.021 ± 0.001 630 0.572 0.034 ± 0.009 630 0.274 0.021 ± 0.001 630 0.064 0.019 ± 0.004
N2 264 0.738 0.004 ± 0.000 264 0.352 0.006 ± 0.003 264 0.223 0.004 ± 0.000 264 0.055 0.004 ± 0.001
N3 336 0.734 0.007 ± 0.001 336 0.603 0.010 ± 0.001 336 0.247 0.007 ± 0.002 336 0.059 0.006 ± 0.001
S1 416 0.805 0.012 ± 0.003 408 0.697 0.017 ± 0.001 416 0.309 0.010 ± 0.001 416 0.087 0.008 ± 0.003
S2 448 0.837 0.011 ± 0.001 440 0.764 0.021 ± 0.004 448 0.311 0.012 ± 0.001 448 0.083 0.011 ± 0.003
S3 341 0.778 0.007 ± 0.001 341 0.095 0.010 ± 0.001 341 0.361 0.008 ± 0.001 341 0.095 0.007 ± 0.002
S4 457 0.828 0.012 ± 0.002 361 0.760 0.014 ± 0.001 457 0.349 0.013 ± 0.002 457 0.085 0.011 ± 0.001
S5 1,015 0.867 0.053 ± 0.006 617 0.810 0.033 ± 0.004 1,015 0.267 0.054 ± 0.004 1,015 0.061 0.039 ± 0.007
S6 1,520 0.869 0.121 ± 0.014 812 0.271 0.110 ± 0.009 1,520 0.378 0.118 ± 0.011 1,520 0.085 0.066 ± 0.004

Table J.1
Modular product information for the S, N and M compound pairs. Construction time, as well as the number of nodes and the density of the modular
product, are shown per pair, for each MCS type (dMCS, hMCS and the two tdMCS types). Time (mean ± standard deviation) is displayed in seconds,
although they have been recorded to millisecond precision. The bold value per row indicates the best size, or fastest time, achieved out of the
algorithms.
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dMCS hMCS tdMCS (θ = 2) tdMCS (θ = 0)
pair Nodes Density Time Nodes Density Time Nodes Density Time Nodes Density Time
80a 99 0.706 0.001 ± 0.000 69 0.518 0.001 ± 0.000 99 0.612 0.001 ± 0.000 99 0.232 0.001 ± 0.000
89a 287 0.790 0.004 ± 0.001 287 0.652 0.011 ± 0.003 287 0.429 0.004 ± 0.000 287 0.122 0.003 ± 0.001
2a 278 0.794 0.004 ± 0.000 278 0.717 0.008 ± 0.003 278 0.385 0.004 ± 0.001 278 0.119 0.004 ± 0.001
57a 267 0.668 0.003 ± 0.001 267 0.250 0.008 ± 0.001 267 0.568 0.004 ± 0.001 267 0.192 0.003 ± 0.001
92a 525 0.703 0.013 ± 0.003 525 0.242 0.024 ± 0.008 525 0.506 0.011 ± 0.002 525 0.149 0.009 ± 0.001
31a 263 0.663 0.004 ± 0.001 263 0.260 0.009 ± 0.001 263 0.572 0.004 ± 0.001 263 0.195 0.003 ± 0.001
19a 103 0.670 0.001 ± 0.000 48 0.574 0.001 ± 0.000 103 0.481 0.001 ± 0.000 103 0.175 0.001 ± 0.000
100a 654 0.746 0.018 ± 0.003 654 0.387 0.028 ± 0.005 654 0.479 0.020 ± 0.005 654 0.131 0.015 ± 0.004
91a 176 0.676 0.001 ± 0.000 90 0.279 0.002 ± 0.000 176 0.503 0.002 ± 0.000 176 0.149 0.001 ± 0.000
94a 115 0.691 0.001 ± 0.000 103 0.623 0.001 ± 0.000 115 0.412 0.001 ± 0.000 115 0.138 0.001 ± 0.000
72a 142 0.747 0.002 ± 0.001 126 0.642 0.002 ± 0.000 142 0.612 0.001 ± 0.000 142 0.201 0.002 ± 0.000
18a 113 0.696 0.001 ± 0.000 58 0.509 0.001 ± 0.000 113 0.464 0.001 ± 0.000 113 0.161 0.001 ± 0.000
34a 80 0.611 0.000 ± 0.000 50 0.387 0.001 ± 0.000 80 0.295 0.000 ± 0.000 80 0.131 0.000 ± 0.000
47a 179 0.751 0.002 ± 0.000 161 0.432 0.004 ± 0.001 179 0.446 0.002 ± 0.000 179 0.139 0.002 ± 0.000
69a 172 0.715 0.002 ± 0.000 142 0.568 0.002 ± 0.001 172 0.424 0.002 ± 0.000 172 0.130 0.001 ± 0.000
28a 97 0.620 0.001 ± 0.000 37 0.584 0.000 ± 0.000 97 0.292 0.001 ± 0.000 97 0.108 0.001 ± 0.000
96a 646 0.736 0.020 ± 0.006 646 0.348 0.035 ± 0.010 646 0.482 0.017 ± 0.003 646 0.131 0.015 ± 0.005
50a 96 0.594 0.001 ± 0.000 42 0.616 0.001 ± 0.000 96 0.417 0.001 ± 0.000 96 0.153 0.000 ± 0.000
8a 147 0.649 0.001 ± 0.000 47 0.710 0.001 ± 0.000 147 0.438 0.001 ± 0.000 147 0.123 0.001 ± 0.000
13a 91 0.540 0.000 ± 0.000 31 0.647 0.001 ± 0.000 91 0.271 0.001 ± 0.000 91 0.106 0.001 ± 0.001
45a 68 0.603 0.000 ± 0.000 68 0.578 0.001 ± 0.000 68 0.447 0.001 ± 0.000 68 0.167 0.000 ± 0.000
12a 152 0.692 0.001 ± 0.000 122 0.539 0.002 ± 0.000 152 0.311 0.001 ± 0.000 152 0.110 0.001 ± 0.000
30a 92 0.676 0.001 ± 0.000 62 0.542 0.001 ± 0.000 92 0.218 0.001 ± 0.000 92 0.084 0.001 ± 0.000
20a 345 0.659 0.005 ± 0.000 345 0.207 0.012 ± 0.003 345 0.508 0.007 ± 0.000 345 0.158 0.005 ± 0.001
88a 27 0.524 0.000 ± 0.000 27 0.484 0.000 ± 0.000 27 0.459 0.000 ± 0.000 27 0.160 0.000 ± 0.000

Table J.2
Modular product information for the Franco compound pairs.

269



Edmund Duesbury Appendices

270



Edmund Duesbury Appendices

Appendix K

S, N and M Compound Pair

Performances

271



E
dm

und
D

uesbury
A

ppendices
BK CP MaxCliqueSeq RASCAL kcombu consR CA_MCS

pair Size Time Size Time Size Time Size Time Size Time Size Time Size Time
M1 12 >300 16 >300 16 0.142 ± 0.016 16 133.986 ± 4.816 12 0.038 ± 0.016 11 0.043 ± 0.017 16 0.053 ± 0.004
M2 18 >300 19 >300 20 22.892 ± 1.174 20 111.823 ± 8.272 15 0.074 ± 0.007 11 0.066 ± 0.023 20 0.065 ± 0.004
M3 18 >300 18 >300 24 >300 25 >300 14 0.227 ± 0.029 16 0.083 ± 0.016 24 0.210 ± 0.025
N1 19 >300 23 >300 25 >300 24 >300 22 0.088 ± 0.010 19 0.048 ± 0.010 24 0.099 ± 0.012
N2 12 >300 16 191.712 ± 8.708 16 0.346 ± 0.027 16 2.282 ± 0.184 14 0.028 ± 0.004 11 0.019 ± 0.004 16 0.009 ± 0.004
N3 11 >300 12 >300 12 0.961 ± 0.061 11 >300 11 0.037 ± 0.013 7 0.041 ± 0.010 12 0.041 ± 0.006
S1 24 >300 32 >300 32 0.224 ± 0.038 32 0.306 ± 0.070 32 0.014 ± 0.007 21 0.045 ± 0.027 32 0.026 ± 0.007
S2 24 >300 33 >300 35 0.447 ± 0.062 35 0.277 ± 0.085 34 0.025 ± 0.004 31 0.080 ± 0.017 35 0.014 ± 0.004
S3 23 >300 33 >300 33 0.049 ± 0.004 33 0.102 ± 0.019 33 0.013 ± 0.004 33 0.065 ± 0.011 33 0.007 ± 0.002
S4 26 >300 25 >300 33 138.095 ± 3.898 31 >300 27 0.111 ± 0.025 24 0.071 ± 0.012 33 0.044 ± 0.011
S5 26 >300 33 >300 44 >300 42 >300 45 0.119 ± 0.021 29 0.137 ± 0.019 45 0.098 ± 0.010
S6 28 >300 43 >300 54 >300 54 >300 54 0.186 ± 0.040 40 0.180 ± 0.027 54 0.061 ± 0.021

Table K.1
dMCS performance information for the S, N and M compound pairs. Modular product information and algorithm performance for each compound
pair. The columns under the “Modular Product” heading show the time taken to construct the modular product between a pair of molecular graphs,
as well as the number of nodes and the density of the modular product. Subsequent headings denote the MCS algorithm, where search time and MCS
size are shown. Time (mean ± standard deviation) is displayed in seconds, although they have been recorded to millisecond precision. The bold value
per row indicates the best size, or fastest time, achieved out of the algorithms. If a time quoted is in italic font, then the mean was calculated excluding
any results which failed to run to completion. Results which only possess non-completions are also in italic font (the standard deviation being fixed to
0 as it was not calculated).

BK CP MaxCliqueSeq RASCAL kcombu
pair Size Time Size Time Size Time Size Time Size Time
M1 12 >300 12 0.966 ± 0.053 12 0.056 ± 0.011 12 4.814 ± 0.269 12 0.044 ± 0.006
M2 12 >300 16 2.530 ± 0.100 16 0.082 ± 0.018 16 6.412 ± 0.614 15 0.081 ± 0.008
M3 25 >300 25 1.723 ± 0.114 25 1.250 ± 0.199 24 5.115 ± 0.421 14 0.246 ± 0.032
N1 16 >300 22 >300 23 77.904 ± 0.633 23 22.453 ± 2.302 22 0.079 ± 0.008
N2 14 87.373 ± 1.200 14 0.402 ± 0.023 14 0.025 ± 0.011 14 0.142 ± 0.024 14 0.027 ± 0.011
N3 11 >300 12 62.151 ± 2.076 12 2.092 ± 0.400 12 88.531 ± 2.643 11 0.038 ± 0.003
S1 17 >300 32 >300 32 0.157 ± 0.021 32 0.200 ± 0.039 32 0.010 ± 0.003
S2 21 >300 33 >300 35 3.832 ± 0.669 35 0.160 ± 0.033 34 0.042 ± 0.014
S3 33 0.184 ± 0.023 33 0.095 ± 0.013 33 0.017 ± 0.006 33 0.022 ± 0.005 33 0.013 ± 0.003
S4 27 >300 28 >300 33 1.111 ± 0.165 33 135.161 ± 6.429 29 0.077 ± 0.021
S5 32 >300 34 >300 45 18.756 ± 0.275 43 >300 45 0.095 ± 0.027
S6 17 >300 54 >300 54 0.189 ± 0.024 54 0.894 ± 0.053 54 0.086 ± 0.013

Table K.2
hMCS modular product and MCS performance information for the S, N and M compound pairs.
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BK CP MaxCliqueSeq RASCAL kcombu
pair Size Time Size Time Size Time Size Time Size Time
M1 12 >300 14 10.785 ± 0.391 14 0.233 ± 0.019 14 10.541 ± 1.024 12 0.044 ± 0.010
M2 17 >300 18 >300 18 2.655 ± 0.253 18 29.346 ± 1.610 16 0.070 ± 0.010
M3 17 >300 24 >300 24 >300 23 >300 22 0.425 ± 0.036
N1 18 >300 21 240.155 ± 11.710 21 0.317 ± 0.082 21 1.096 ± 0.071 19 0.116 ± 0.030
N2 14 11.088 ± 0.472 14 0.055 ± 0.018 14 0.012 ± 0.002 14 0.035 ± 0.012 13 0.025 ± 0.003
N3 11 53.913 ± 1.517 11 0.068 ± 0.004 11 0.021 ± 0.006 11 0.171 ± 0.035 9 0.037 ± 0.009
S1 12 >300 32 >300 32 0.042 ± 0.014 32 0.083 ± 0.024 32 0.019 ± 0.001
S2 11 >300 32 >300 34 0.049 ± 0.006 34 0.180 ± 0.041 34 0.040 ± 0.011
S3 16 >300 33 59.266 ± 3.943 33 0.027 ± 0.002 33 0.035 ± 0.011 33 0.013 ± 0.005
S4 15 >300 29 104.672 ± 2.360 29 0.041 ± 0.017 29 0.424 ± 0.060 27 0.118 ± 0.010
S5 15 >300 25 >300 37 0.264 ± 0.036 37 2.369 ± 0.225 36 0.140 ± 0.013
S6 26 >300 48 >300 54 215.023 ± 6.062 54 8.441 ± 2.093 54 0.145 ± 0.022

Table K.3
tdMCS (θ = 2) modular product and MCS performance information for the S, N and M compound pairs.

BK CP MaxCliqueSeq RASCAL kcombu
pair Size Time Size Time Size Time Size Time Size Time
M1 10 3.413 ± 0.133 10 0.018 ± 0.006 10 0.017 ± 0.003 10 0.071 ± 0.018 9 0.043 ± 0.012
M2 14 13.540 ± 1.116 14 0.037 ± 0.010 14 0.032 ± 0.004 14 0.137 ± 0.019 11 0.052 ± 0.007
M3 25 >300 25 1.202 ± 0.211 25 0.400 ± 0.024 24 2.453 ± 0.047 20 0.517 ± 0.039
N1 13 2.801 ± 0.061 13 0.052 ± 0.013 13 0.032 ± 0.005 13 0.091 ± 0.016 13 0.074 ± 0.019
N2 13 0.040 ± 0.012 13 0.005 ± 0.001 13 0.007 ± 0.001 13 0.006 ± 0.001 13 0.029 ± 0.015
N3 7 0.099 ± 0.007 7 0.009 ± 0.001 7 0.010 ± 0.003 7 0.013 ± 0.002 6 0.030 ± 0.005
S1 22 3.444 ± 0.251 22 0.729 ± 0.149 22 0.019 ± 0.009 22 0.041 ± 0.010 22 0.032 ± 0.012
S2 22 4.561 ± 0.397 22 0.613 ± 0.110 22 0.021 ± 0.010 22 0.048 ± 0.007 22 0.045 ± 0.014
S3 33 0.181 ± 0.013 33 0.078 ± 0.023 33 0.013 ± 0.005 33 0.018 ± 0.007 33 0.017 ± 0.003
S4 25 0.503 ± 0.007 25 0.057 ± 0.026 25 0.019 ± 0.007 25 0.036 ± 0.002 24 0.091 ± 0.035
S5 17 15.803 ± 2.855 35 12.749 ± 0.317 35 0.070 ± 0.017 35 0.128 ± 0.028 35 0.110 ± 0.012
S6 10 >300 54 229.991 ± 5.440 54 0.184 ± 0.039 54 0.243 ± 0.037 54 0.176 ± 0.016

Table K.4
tdMCS (θ = 0) modular product and MCS performance information for the S, N and M compound pairs.
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VFLibMCS SMSD fMCS CDKMCS BK kcombu CA_MCS
pair Size Time Size Time Size Time Size Time Size Time Size Time Size Time
M1 13 1.984 ± 0.730 13 2.809 ± 1.071 13 0.018 ± 0.005 12 0.398 ± 0.265 13 0.650 ± 0.296 13 0.069 ± 0.014 13 0.023 ± 0.001
M2 19 11.280 ± 3.182 19 11.464 ± 4.162 19 2.595 ± 0.054 20 0.388 ± 0.317 20 7.739 ± 0.552 12 0.114 ± 0.019 20 0.044 ± 0.007
M3 0 >300 0 >300 25 0.011 ± 0.008 24 1.059 ± 0.151 25 >300 23 0.865 ± 0.122 24 0.136 ± 0.009
N1 7 6.179 ± 1.350 7 5.876 ± 1.416 9 0.047 ± 0.003 9 0.160 ± 0.012 9 0.082 ± 0.047 8 0.080 ± 0.014 8 0.028 ± 0.007
N2 5 1.316 ± 0.657 5 1.309 ± 0.463 5 0.001 ± 0.000 5 0.013 ± 0.004 5 0.009 ± 0.003 5 0.013 ± 0.002 5 0.008 ± 0.001
N3 4 1.725 ± 0.554 4 1.909 ± 1.004 4 0.002 ± 0.000 4 0.016 ± 0.005 4 0.024 ± 0.007 3 0.025 ± 0.008 2 0.008 ± 0.001
S1 17 1.456 ± 0.469 17 1.821 ± 0.524 17 0.102 ± 0.019 17 0.128 ± 0.063 17 0.092 ± 0.016 17 0.018 ± 0.010 17 0.017 ± 0.003
S2 14 2.918 ± 0.612 14 3.401 ± 1.222 14 0.003 ± 0.001 14 0.155 ± 0.073 14 0.065 ± 0.027 14 0.017 ± 0.003 14 0.019 ± 0.004
S3 33 2.463 ± 0.931 33 2.292 ± 0.846 33 0.004 ± 0.001 33 0.020 ± 0.001 33 3.846 ± 0.321 33 0.016 ± 0.000 33 0.004 ± 0.001
S4 25 6.157 ± 1.976 25 4.498 ± 0.943 25 15.778 ± 2.931 25 0.165 ± 0.072 25 0.227 ± 0.059 24 0.065 ± 0.011 25 0.023 ± 0.001
S5 37 12.464 ± 5.604 37 14.340 ± 6.429 37 2.267 ± 0.202 37 0.339 ± 0.087 37 18.554 ± 3.036 37 0.101 ± 0.025 37 0.049 ± 0.015
S6 52 74.290 ± 52.748 52 84.144 ± 35.562 52 0.534 ± 0.068 40 0.714 ± 0.341 52 >300 52 0.148 ± 0.012 52 0.072 ± 0.015

Table K.5
cMCS performance information for the S, N and M compound pairs. CA_MCS refers to ChemAxon_MCS, and kcombu was used to calculate the
cMCES.
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BK CP MaxCliqueSeq RASCAL kcombu consR CA_MCS
pair Size Time Size Time Size Time Size Time Size Time Size Time Size Time
80a 19 21.270 ± 0.603 19 0.029 ± 0.001 19 0.004 ± 0.001 19 0.004 ± 0.001 19 0.004 ± 0.001 19 0.007 ± 0.001 19 0.004 ± 0.001
89a 23 >300 32 >300 32 0.026 ± 0.005 32 0.062 ± 0.016 32 0.009 ± 0.004 28 0.022 ± 0.003 32 0.006 ± 0.001
2a 24 >300 31 >300 34 0.024 ± 0.006 34 0.043 ± 0.015 33 0.028 ± 0.011 34 0.029 ± 0.008 34 0.006 ± 0.003

57a 20 >300 23 32.364 ± 0.963 23 0.024 ± 0.004 23 0.033 ± 0.010 20 0.010 ± 0.002 23 0.013 ± 0.003 23 0.005 ± 0.000
92a 15 >300 21 >300 28 0.143 ± 0.030 27 0.878 ± 0.222 28 0.025 ± 0.009 28 0.025 ± 0.010 28 0.008 ± 0.002
31a 14 >300 23 28.081 ± 1.382 23 0.024 ± 0.005 23 0.036 ± 0.009 23 0.010 ± 0.003 23 0.021 ± 0.010 23 0.005 ± 0.001
19a 15 9.475 ± 0.185 15 0.021 ± 0.001 15 0.004 ± 0.001 15 0.022 ± 0.009 14 0.006 ± 0.001 14 0.011 ± 0.005 15 0.004 ± 0.001
100a 16 >300 24 >300 33 0.324 ± 0.038 33 14.422 ± 0.471 29 0.055 ± 0.010 33 0.035 ± 0.009 33 0.051 ± 0.007
91a 19 >300 21 1.183 ± 0.095 21 0.009 ± 0.003 21 0.015 ± 0.005 21 0.015 ± 0.004 21 0.011 ± 0.004 21 0.004 ± 0.001
94a 13 31.797 ± 0.658 17 0.066 ± 0.011 17 0.005 ± 0.002 17 0.007 ± 0.003 15 0.005 ± 0.001 14 0.009 ± 0.002 17 0.003 ± 0.001
72a 18 >300 25 0.645 ± 0.050 25 0.006 ± 0.001 25 0.024 ± 0.004 21 0.013 ± 0.004 25 0.021 ± 0.006 25 0.008 ± 0.003
18a 13 41.554 ± 0.323 15 0.083 ± 0.007 15 0.004 ± 0.001 15 0.011 ± 0.001 13 0.009 ± 0.001 12 0.012 ± 0.003 15 0.003 ± 0.001
34a 12 0.249 ± 0.005 12 0.003 ± 0.000 12 0.002 ± 0.001 12 0.003 ± 0.001 12 0.004 ± 0.001 6 0.007 ± 0.001 12 0.002 ± 0.001
47a 16 >300 20 8.785 ± 0.671 20 0.021 ± 0.001 20 0.253 ± 0.063 19 0.026 ± 0.005 20 0.017 ± 0.004 20 0.018 ± 0.001
69a 19 >300 19 5.495 ± 0.466 19 0.033 ± 0.008 19 0.611 ± 0.056 16 0.019 ± 0.005 13 0.011 ± 0.001 19 0.017 ± 0.002
28a 10 1.616 ± 0.081 10 0.013 ± 0.000 10 0.003 ± 0.001 10 0.005 ± 0.002 10 0.009 ± 0.002 10 0.008 ± 0.003 10 0.007 ± 0.001
96a 17 >300 24 >300 29 4.017 ± 0.550 29 1.063 ± 0.153 18 0.093 ± 0.019 27 0.026 ± 0.003 29 0.045 ± 0.003
50a 11 1.262 ± 0.053 11 0.008 ± 0.000 11 0.003 ± 0.001 11 0.004 ± 0.002 8 0.003 ± 0.001 6 0.009 ± 0.002 11 0.003 ± 0.001
8a 11 62.522 ± 1.518 13 0.234 ± 0.003 13 0.007 ± 0.002 13 0.301 ± 0.021 13 0.013 ± 0.004 11 0.011 ± 0.003 13 0.013 ± 0.003

13a 8 0.142 ± 0.009 8 0.004 ± 0.001 8 0.003 ± 0.001 8 0.051 ± 0.013 6 0.005 ± 0.001 5 0.007 ± 0.001 8 0.006 ± 0.001
45a 9 0.390 ± 0.036 9 0.003 ± 0.000 9 0.002 ± 0.000 9 0.002 ± 0.000 8 0.005 ± 0.001 4 0.008 ± 0.001 8 0.006 ± 0.002
12a 12 >300 14 1.587 ± 0.021 14 0.014 ± 0.004 14 1.848 ± 0.290 13 0.018 ± 0.006 7 0.010 ± 0.003 14 0.013 ± 0.001
30a 10 4.870 ± 0.302 10 0.024 ± 0.001 10 0.004 ± 0.001 10 0.080 ± 0.021 8 0.009 ± 0.004 6 0.011 ± 0.001 10 0.008 ± 0.001
20a 14 >300 16 98.177 ± 6.472 16 0.279 ± 0.022 16 16.244 ± 1.107 12 0.024 ± 0.002 10 0.020 ± 0.006 16 0.031 ± 0.004
88a 6 0.002 ± 0.001 6 0.001 ± 0.001 6 0.001 ± 0.000 6 0.001 ± 0.000 6 0.001 ± 0.000 4 0.003 ± 0.001 5 0.002 ± 0.000

Table L.1
dMCS modular product and MCS performance information for the Franco compound pairs.
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BK CP MaxCliqueSeq RASCAL kcombu
pair Size Time Size Time Size Time Size Time Size Time
80a 19 0.053 ± 0.006 19 0.002 ± 0.001 19 0.002 ± 0.001 19 0.004 ± 0.001 19 0.003 ± 0.001
89a 21 >300 32 21.107 ± 4.134 32 0.027 ± 0.007 32 0.042 ± 0.004 32 0.013 ± 0.001
2a 20 >300 34 51.832 ± 4.314 34 0.026 ± 0.004 34 0.031 ± 0.006 33 0.024 ± 0.001

57a 23 4.038 ± 0.346 23 0.022 ± 0.002 23 0.012 ± 0.003 22 0.013 ± 0.003 20 0.011 ± 0.004
92a 17 >300 28 0.182 ± 0.033 28 0.049 ± 0.009 28 0.055 ± 0.009 28 0.016 ± 0.001
31a 23 3.078 ± 0.351 23 0.023 ± 0.007 23 0.015 ± 0.006 23 0.015 ± 0.005 23 0.008 ± 0.001
19a 15 0.011 ± 0.004 15 0.001 ± 0.000 15 0.002 ± 0.001 15 0.002 ± 0.001 15 0.003 ± 0.001
100a 15 >300 33 >300 33 0.101 ± 0.016 33 0.567 ± 0.039 29 0.065 ± 0.015
91a 21 0.032 ± 0.004 21 0.002 ± 0.001 21 0.004 ± 0.001 20 0.004 ± 0.001 21 0.009 ± 0.003
94a 17 2.731 ± 0.134 17 0.014 ± 0.001 17 0.004 ± 0.002 17 0.005 ± 0.001 16 0.009 ± 0.002
72a 25 18.715 ± 1.418 25 0.030 ± 0.003 25 0.006 ± 0.003 25 0.014 ± 0.006 23 0.013 ± 0.001
18a 15 0.015 ± 0.001 15 0.002 ± 0.000 15 0.002 ± 0.001 15 0.003 ± 0.000 15 0.003 ± 0.000
34a 12 0.002 ± 0.000 12 0.001 ± 0.000 12 0.002 ± 0.001 12 0.002 ± 0.000 12 0.003 ± 0.001
47a 20 12.389 ± 0.548 20 0.029 ± 0.005 20 0.009 ± 0.001 20 0.020 ± 0.007 20 0.024 ± 0.002
69a 15 6.213 ± 0.265 19 0.023 ± 0.003 19 0.006 ± 0.001 19 0.169 ± 0.031 16 0.022 ± 0.008
28a 9 0.005 ± 0.001 9 0.001 ± 0.000 9 0.001 ± 0.000 9 0.003 ± 0.002 10 0.005 ± 0.001
96a 27 >300 29 35.001 ± 4.822 29 0.092 ± 0.012 29 0.340 ± 0.030 18 0.093 ± 0.020
50a 10 0.028 ± 0.013 10 0.001 ± 0.000 10 0.001 ± 0.000 10 0.002 ± 0.001 8 0.002 ± 0.001
8a 13 0.070 ± 0.007 13 0.002 ± 0.000 13 0.002 ± 0.000 13 0.016 ± 0.003 11 0.007 ± 0.001

13a 8 0.003 ± 0.000 8 0.001 ± 0.000 8 0.001 ± 0.000 8 0.002 ± 0.001 6 0.002 ± 0.001
45a 9 0.303 ± 0.043 9 0.003 ± 0.001 9 0.002 ± 0.001 9 0.002 ± 0.001 8 0.006 ± 0.002
12a 14 1.529 ± 0.072 14 0.015 ± 0.002 14 0.004 ± 0.001 14 0.165 ± 0.017 12 0.012 ± 0.003
30a 8 0.046 ± 0.002 8 0.002 ± 0.000 8 0.002 ± 0.001 8 0.007 ± 0.002 7 0.006 ± 0.001
20a 13 4.536 ± 0.214 13 0.032 ± 0.004 13 0.018 ± 0.003 13 0.124 ± 0.028 12 0.031 ± 0.012
88a 6 0.002 ± 0.000 6 0.001 ± 0.000 6 0.001 ± 0.000 6 0.001 ± 0.000 6 0.002 ± 0.001

Table L.2
hMCS modular product and MCS performance information for the Franco compound pairs.
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pair Size Time Size Time Size Time Size Time Size Time
100a 16 >300 20 >300 33 0.101 ± 0.028 33 0.190 ± 0.014 29 0.096 ± 0.007
12a 11 2.197 ± 0.100 11 0.014 ± 0.001 11 0.005 ± 0.001 11 0.024 ± 0.007 11 0.028 ± 0.010
13a 7 0.029 ± 0.004 7 0.002 ± 0.001 7 0.002 ± 0.000 7 0.005 ± 0.003 7 0.006 ± 0.001
18a 15 0.955 ± 0.099 15 0.006 ± 0.003 15 0.003 ± 0.001 15 0.005 ± 0.001 15 0.015 ± 0.001
19a 15 0.688 ± 0.080 15 0.004 ± 0.001 15 0.004 ± 0.000 15 0.015 ± 0.005 15 0.012 ± 0.004
20a 12 >300 15 5.349 ± 0.076 15 0.211 ± 0.033 15 2.994 ± 0.760 11 0.043 ± 0.013
28a 8 0.088 ± 0.011 8 0.002 ± 0.000 8 0.003 ± 0.001 8 0.002 ± 0.000 8 0.007 ± 0.001
2a 31 >300 34 >300 34 0.018 ± 0.003 34 0.017 ± 0.002 34 0.024 ± 0.005
30a 8 0.027 ± 0.001 8 0.002 ± 0.000 8 0.003 ± 0.001 8 0.003 ± 0.001 8 0.018 ± 0.008
31a 20 >300 23 1.298 ± 0.103 23 0.017 ± 0.003 23 0.026 ± 0.002 23 0.011 ± 0.004
34a 12 0.064 ± 0.007 12 0.001 ± 0.000 12 0.002 ± 0.001 12 0.002 ± 0.000 12 0.004 ± 0.001
45a 9 0.070 ± 0.016 9 0.001 ± 0.000 9 0.002 ± 0.001 9 0.002 ± 0.001 6 0.005 ± 0.001
47a 20 32.289 ± 1.378 20 0.075 ± 0.004 20 0.006 ± 0.002 20 0.026 ± 0.006 20 0.032 ± 0.006
50a 10 0.336 ± 0.054 10 0.002 ± 0.000 10 0.003 ± 0.001 10 0.004 ± 0.001 9 0.010 ± 0.001
57a 21 >300 23 1.570 ± 0.088 23 0.021 ± 0.006 23 0.022 ± 0.007 23 0.020 ± 0.007
69a 19 44.139 ± 1.698 19 0.039 ± 0.007 19 0.006 ± 0.002 19 0.085 ± 0.022 15 0.021 ± 0.001
72a 25 67.726 ± 3.517 25 0.050 ± 0.004 25 0.005 ± 0.000 25 0.011 ± 0.004 25 0.026 ± 0.010
80a 19 5.223 ± 0.105 19 0.011 ± 0.004 19 0.003 ± 0.000 19 0.004 ± 0.001 19 0.004 ± 0.000
88a 6 0.002 ± 0.000 6 0.001 ± 0.000 6 0.001 ± 0.000 6 0.001 ± 0.000 6 0.003 ± 0.001
89a 28 >300 32 4.042 ± 0.378 32 0.015 ± 0.003 32 0.021 ± 0.004 32 0.010 ± 0.004
8a 11 3.010 ± 0.338 11 0.011 ± 0.001 11 0.004 ± 0.001 11 0.025 ± 0.007 11 0.018 ± 0.006
91a 21 21.189 ± 0.333 21 0.043 ± 0.005 21 0.009 ± 0.003 21 0.009 ± 0.001 21 0.018 ± 0.010
92a 22 >300 28 189.211 ± 19.031 28 0.062 ± 0.007 28 0.066 ± 0.010 28 0.050 ± 0.019
94a 17 0.853 ± 0.032 17 0.004 ± 0.001 17 0.004 ± 0.001 17 0.004 ± 0.001 17 0.008 ± 0.001
96a 13 >300 23 >300 27 0.222 ± 0.055 27 1.155 ± 0.178 23 0.166 ± 0.025

Table L.3
tdMCS (θ = 2) modular product and MCS performance information for the Franco compound pairs.
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80a 19 0.020 ± 0.010 19 0.003 ± 0.001 19 0.002 ± 0.000 19 0.003 ± 0.001 19 0.005 ± 0.002
89a 32 0.394 ± 0.056 32 0.017 ± 0.001 32 0.009 ± 0.004 32 0.013 ± 0.004 32 0.011 ± 0.002
2a 34 2.098 ± 0.569 34 0.280 ± 0.027 34 0.009 ± 0.004 34 0.010 ± 0.001 34 0.018 ± 0.004

57a 23 2.042 ± 0.460 23 0.007 ± 0.001 23 0.010 ± 0.001 22 0.009 ± 0.002 23 0.011 ± 0.004
92a 28 13.655 ± 1.289 28 0.019 ± 0.004 28 0.023 ± 0.003 28 0.028 ± 0.004 28 0.025 ± 0.006
31a 23 2.058 ± 0.426 23 0.007 ± 0.002 23 0.009 ± 0.004 22 0.009 ± 0.002 23 0.019 ± 0.003
19a 15 0.021 ± 0.006 15 0.002 ± 0.001 15 0.001 ± 0.000 15 0.002 ± 0.001 15 0.007 ± 0.001
100a 32 28.311 ± 3.099 32 0.068 ± 0.013 32 0.037 ± 0.005 32 0.053 ± 0.013 14 0.076 ± 0.016
91a 21 0.062 ± 0.016 21 0.004 ± 0.001 21 0.003 ± 0.001 20 0.004 ± 0.000 21 0.013 ± 0.004
94a 17 0.012 ± 0.003 17 0.002 ± 0.001 17 0.002 ± 0.000 17 0.003 ± 0.001 17 0.013 ± 0.004
72a 23 0.075 ± 0.008 23 0.004 ± 0.002 23 0.004 ± 0.001 23 0.004 ± 0.001 23 0.011 ± 0.003
18a 15 0.029 ± 0.016 15 0.001 ± 0.000 15 0.002 ± 0.001 15 0.003 ± 0.001 15 0.011 ± 0.002
34a 12 0.005 ± 0.002 12 0.001 ± 0.000 12 0.001 ± 0.000 12 0.001 ± 0.000 12 0.004 ± 0.001
47a 19 0.089 ± 0.025 19 0.004 ± 0.002 19 0.005 ± 0.003 19 0.008 ± 0.001 19 0.027 ± 0.009
69a 16 0.097 ± 0.040 16 0.004 ± 0.001 16 0.004 ± 0.001 16 0.006 ± 0.003 16 0.025 ± 0.010
28a 8 0.009 ± 0.001 8 0.002 ± 0.001 8 0.002 ± 0.001 8 0.002 ± 0.001 8 0.006 ± 0.003
96a 26 27.602 ± 2.488 26 0.030 ± 0.006 26 0.033 ± 0.006 26 0.050 ± 0.006 26 0.145 ± 0.030
50a 10 0.016 ± 0.002 10 0.001 ± 0.001 10 0.001 ± 0.000 10 0.002 ± 0.001 10 0.005 ± 0.001
8a 10 0.031 ± 0.016 10 0.002 ± 0.001 10 0.003 ± 0.001 10 0.004 ± 0.001 7 0.007 ± 0.002

13a 7 0.009 ± 0.003 7 0.001 ± 0.000 7 0.002 ± 0.001 7 0.002 ± 0.001 7 0.005 ± 0.001
45a 6 0.005 ± 0.002 6 0.001 ± 0.000 6 0.001 ± 0.000 6 0.002 ± 0.001 6 0.005 ± 0.002
12a 8 0.042 ± 0.022 8 0.002 ± 0.001 8 0.003 ± 0.001 8 0.005 ± 0.001 8 0.012 ± 0.003
30a 6 0.014 ± 0.001 6 0.001 ± 0.000 6 0.002 ± 0.001 6 0.002 ± 0.001 6 0.006 ± 0.001
20a 13 2.397 ± 0.589 13 0.010 ± 0.004 13 0.012 ± 0.003 13 0.033 ± 0.007 11 0.025 ± 0.004
88a 5 0.001 ± 0.000 5 0.000 ± 0.000 5 0.001 ± 0.000 5 0.001 ± 0.000 5 0.001 ± 0.000

Table L.4
tdMCS (θ = 0) modular product and MCS performance information for the Franco compound pairs.
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pair Size Time Size Time Size Time Size Time Size Time Size Time Size Time
80a 19 0.007 ± 0.004 19 0.007 ± 0.004 19 0.001 ± 0.000 19 0.002 ± 0.001 19 0.077 ± 0.009 19 0.004 ± 0.001 19 0.001 ± 0.000
89a 32 0.058 ± 0.027 32 0.441 ± 0.560 32 0.002 ± 0.000 32 0.011 ± 0.004 32 6.292 ± 0.308 32 0.008 ± 0.003 32 0.003 ± 0.001
2a 34 0.047 ± 0.018 34 0.067 ± 0.035 34 0.003 ± 0.001 34 0.008 ± 0.002 34 15.690 ± 2.118 34 0.012 ± 0.001 34 0.003 ± 0.001
57a 23 0.937 ± 0.664 23 0.030 ± 0.010 23 0.002 ± 0.001 23 0.011 ± 0.003 23 1.837 ± 0.310 23 0.025 ± 0.005 23 0.003 ± 0.001
92a 29 3.204 ± 1.791 29 3.632 ± 1.683 28 0.008 ± 0.003 28 0.060 ± 0.016 28 21.349 ± 2.430 28 0.053 ± 0.005 28 0.005 ± 0.001
31a 23 1.020 ± 0.769 23 0.806 ± 0.325 23 0.002 ± 0.001 23 0.012 ± 0.002 23 1.714 ± 0.195 23 0.021 ± 0.002 23 0.002 ± 0.000
19a 15 0.447 ± 0.067 15 0.443 ± 0.058 15 0.004 ± 0.002 15 0.002 ± 0.001 15 0.015 ± 0.006 15 0.008 ± 0.003 15 0.001 ± 0.000
100a 33 1.018 ± 0.355 33 2.925 ± 1.782 32 0.045 ± 0.008 16 0.158 ± 0.098 33 222.855 ± 8.435 33 0.097 ± 0.010 33 0.038 ± 0.007
91a 21 0.691 ± 0.384 21 0.600 ± 0.268 21 0.001 ± 0.000 21 0.005 ± 0.003 21 0.144 ± 0.024 21 0.030 ± 0.008 21 0.002 ± 0.000
94a 17 0.424 ± 0.082 17 0.497 ± 0.131 17 0.001 ± 0.000 17 0.003 ± 0.001 17 0.014 ± 0.003 16 0.005 ± 0.001 17 0.001 ± 0.000
72a 23 0.460 ± 0.079 23 1.448 ± 0.821 23 0.035 ± 0.013 23 0.035 ± 0.012 23 0.361 ± 0.021 23 0.013 ± 0.002 23 0.007 ± 0.001
18a 15 0.674 ± 0.388 15 0.454 ± 0.067 15 0.029 ± 0.007 15 0.003 ± 0.001 15 0.013 ± 0.003 15 0.007 ± 0.002 15 0.001 ± 0.000
34a 12 0.003 ± 0.000 12 0.003 ± 0.001 12 0.001 ± 0.000 12 0.001 ± 0.000 12 0.004 ± 0.001 12 0.004 ± 0.001 12 0.001 ± 0.000
47a 20 0.886 ± 0.651 20 0.947 ± 0.628 20 0.040 ± 0.008 20 0.050 ± 0.010 20 0.050 ± 0.012 18 0.015 ± 0.005 20 0.007 ± 0.001
69a 17 0.819 ± 0.420 17 1.016 ± 0.796 17 0.007 ± 0.002 17 0.035 ± 0.008 17 0.042 ± 0.011 17 0.021 ± 0.004 17 0.008 ± 0.000
28a 7 0.419 ± 0.062 7 0.459 ± 0.307 7 0.002 ± 0.001 7 0.004 ± 0.001 7 0.003 ± 0.001 7 0.005 ± 0.002 7 0.004 ± 0.001
96a 28 3.043 ± 2.061 28 2.555 ± 1.503 27 0.030 ± 0.005 26 0.110 ± 0.077 27 27.127 ± 5.218 27 0.128 ± 0.025 27 0.042 ± 0.005
50a 10 0.402 ± 0.047 10 0.418 ± 0.053 10 0.001 ± 0.000 10 0.002 ± 0.000 10 0.004 ± 0.001 8 0.004 ± 0.002 8 0.004 ± 0.001
8a 7 0.478 ± 0.053 7 0.896 ± 0.268 7 0.003 ± 0.001 7 0.005 ± 0.001 7 0.005 ± 0.001 7 0.008 ± 0.001 7 0.005 ± 0.002
13a 6 0.405 ± 0.032 6 0.404 ± 0.043 7 0.002 ± 0.000 7 0.002 ± 0.000 7 0.003 ± 0.000 7 0.004 ± 0.001 3 0.003 ± 0.000
45a 4 0.398 ± 0.031 4 0.404 ± 0.018 4 0.002 ± 0.001 4 0.002 ± 0.000 6 0.003 ± 0.001 4 0.003 ± 0.000 4 0.003 ± 0.001
12a 7 0.666 ± 0.281 7 0.697 ± 0.320 7 0.002 ± 0.000 7 0.040 ± 0.010 7 0.013 ± 0.005 7 0.015 ± 0.004 7 0.007 ± 0.000
30a 6 0.493 ± 0.156 6 0.486 ± 0.300 6 0.002 ± 0.001 6 0.003 ± 0.000 6 0.003 ± 0.000 6 0.007 ± 0.001 6 0.003 ± 0.000
20a 12 2.151 ± 1.193 12 2.528 ± 1.202 16 0.124 ± 0.027 16 0.772 ± 0.610 16 0.496 ± 0.104 14 0.037 ± 0.010 15 0.029 ± 0.010
88a 2 0.427 ± 0.064 2 0.438 ± 0.052 3 0.001 ± 0.001 3 0.000 ± 0.000 3 0.001 ± 0.000 3 0.001 ± 0.000 3 0.001 ± 0.000

Table L.5
cMCS performance information for the Franco compound pairs. CA_MCS refers to ChemAxon_MCS, and kcombu was used to calculate the cMCES.
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