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Abstract

The work considers issues in the execution of the Z notation in a logic programming
language. A subset of Z which is capable of being animated is identified, together with
the necessary theoretical foundations for the relationship of Z to its executable form. The
thesis also addresses the transition from research results to potentially useful tools. The

thesis has 4 major parts:

e Tools Survey: A survey of tools which support the animation of Z is presented
and the advantages (and disadvantages) to be gained from an animating system
which uses a logic programming language are discussed. Requirements, particularly
correctness, are described and discussed and weaknesses in the current tools are
identified.

e Correctness — Program Synthesis: If a program can be deduced directly from the
specification, then it is partially correct with respect to the specification. This
method of obtaining a program from a specification is one form of logic program-
ming synthesis. We examine such formal links between a specification (in Z) and
an executable form and also some translation techniques for synthesising a logic
program from a 7 specification. The techniques are illustrated by examples which

reveal important shortcomings.

e Translation Rules to Godel: New techniques for the animation of 7 utilising the
Godel logic programming language are presented which circumvent these shortcom-
ings. The techniques are realised via translation rules known as structure simulation.
Two substantial case studies are examined as proof of concept. These indicate both
the coverage of the Z notation by structure simulation and the practicality of the

rules.

e Correctness — Abstract Approximation: Published criteria for correctness of an
animation are compared and contrasted with the method of Abstract Interpretation
(AI). In AT a concrete semantics is related to an approximate one that explicitly
exhibits an underlying structure present in the richer concrete structure. In our
case, the concrete semantics is Z associated with ZF set theory. The approximate

semantics of the execution are the outputs of Z.

The criteria are applied to a logic programming language (the original was applied
to a functional language). Formal arguments are presented which show that the
structure simulation rules obey the criteria for correctness. Finally, areas of work

which had been omitted by the original authors are presented explicitly.



Acknowledgements

I would first like to thank Paul Mukherjee for his encouragement and super-
vision during the first years of my studies. Next, I would like to thank Graham
Birtwistle for supporting me for the final years leading to writing up of the thesis,
and commenting on numerous drafts.

I worked with Lee McCluskey of the University of Huddersfield on the IMPRESS
project and we co-authored the papers indicated in Declarations on page iii. The
project was challenging and (incidentally) provided a useful background to my thesis.
Thanks are due to him for many fruitful discussions during this time.

Barry Eaglestone (now at the University of Sheffield) originally suggested the
animation of the Z specification by Prolog, and we co-authored the paper indicated
on page iii. I would like to thank him, for the subsequent development of the research
has lead to some extremely interesting and challenging work over the years.

Staff at Leeds and Huddersfield Universities have provided both help and friend-
ship over the years and I would like to thank them.

Lastly, my family have shown me much patience and understanding over the

years of study and I owe them a great debt of gratitude!

ii



Declarations

The following references which I have authored or co-authored were extensively

quoted in Chapter 2:

M. M. West and T. L. McCluskey, “The Application of Machine Learning Tools to
the Validation of An Air Traffic Control Domain Theory”, International Journal on
Artificial Intelligence Tools, Volume 10 Number 4, (December 2001), pp 613 — 637

T. L. McCluskey and M. M. West, “The Automated Refinement of a Requirements
Domain Theory”, Journal of Automated Software Engineering, Special Issue on In-
ductive Programming, Volume 8 , Number 2 , (May 2001), pp 193 — 216

Parts of Chapters 3 and 4 have been published in the following articles, which I have

authored or co-authored:

M M West and B M Eaglestone, “Software Development: Two Approaches to An-
imation of Z Specifications Using Prolog 7, Software Engineering Journal, Volume
7, Number 4, (July 1992) pp 264-276

M M West, “Types and Sets in Godel and Z 7, ZUM’95 — 9th International Conference
of Z User’s, September 1995, Limerick, Ireland, Lecture Notes in Computer Science
967, pp 389-407

iii



Contents

1 Introduction

1.1 Overview. . . .

1.2 Logic Programming Languages for Animation . . .. ... ... ...

1.3 Contributions .
1.4 Thesis Structure

2 Review of Related

Work

2.1 Tools for Verification and Validation . . . . .. ... ... ... ...
2.1.1  An Environment Supporting Validation . . . . . . .. .. ...

2.1.2 Executability of Formal Specifications . . . . . . ... .. ...
2.2 Formal Notations, Methods and Tools. . . . . . . ... ... .. ...
2.2.1 Formal Notations . . . . . . . .. ... .. ... ... .....

2.2.2  Software
2.2.2.1
2.2.2.2
2.2.2.3

Tools which support Formal Methods . . . . . . . ..
The Vienna Development Method . . . . . . . . . ..
The B Abstract Machine Notation . . ... ... ..
The Z Notation . . . . . . ... ... ... ......

2.2.3 Animation of Z (Current Tools) . . . . . . ... ... .. ...

2.2.3.1
2.2.3.2
2.2.3.3

Choice of Language . . . . . . ... .. ... .....
Functional Languages . . . . . .. .. .. ... ...

Logic Programming Languages . . .. .. ... ...

2.2.4 Animation of Z (Requirements) . . . . ... .. ... .. ...

2241
2.24.2
2.24.3

2.3 Summary . ..

Features of Z Animators . . . . . . . . . . . . . ...
Test Strategy . . . . . . . . ... oL

Weaknesses in Existing Tools . . . .. ... .. ...

3 Correctness — Program Synthesis

3.1 The Z Notation

iv

11
12
13
17
19
19
19
19
21
22
24
24
25
27
29
29
29
31
32

35



3.1.1 Small File System Example . .. .. ... ... ... ..... 38

3.2 The Theory of Finite Sets . . . . . . .. .. ... ... ... ... 40
3.3 Logic Programming Synthesis . . . . .. ... ... .. ... ..... 41
3.3.1 Clausal Form Transformation . . .. ... ... ... ..... 42
3.3.2 Lloyd-Topor Transformation . . . . . . .. ... ... ..... 45
3.3.3 Recursive Programs . . . . . . .. ... ... 46
3.4 Summary ... oL L e e 46
Structure Simulation 48
4.1 Introduction . . . . . . . .. ..o 48
4.2 Translation of Z to Prolog . . . . . . .. . ... ... ... ... 49
4.2.1 Comparison with Other Methods . . . . .. .. ... .. ... 49
4.2.2 Advantages of Godel . . . . ... oL oo oo oL 51
4.3 The Godel Programming Language . . . . .. .. ... ... .. ... 52
4.3.1 Overview . . . . . . ..o 52
4.3.2 Typesand Sets . . . .. . . .. . ... ... ... 53
4.3.3 'Translation Architecture and the ‘Lib’ Module . . . . . . . .. 55
4.4  Structure Simulation: Rules . . . . . .. ... ... ... 57
4.4.1 Givensets and Bindings . . . . . . .. ..o 0oL 58
442 Schemas . . . . . . ... 60
4.4.3 Testing Strategy for Animation . . . .. ... ... ... ... 60
4.4.4 Animation of the Small File System . . . . . . ... ... ... 62
4.4.5 Schema Calculus and Schema Referencing . . . .. ... ... 65
4.5 Animation Example 1 . . . .. .. ... ... ... .. ... ... 66
4.5.1 Assembler . . . . . ... 66
4.5.2 Assembler and Machine Requirementsin Z . . . . . ... ... 67
4.5.3 Assembly ProcessinZ . .. ... ... ... .. ........ 68
4.5.4 Translation of Assembly to Gédel . . . . . . . ... ... ... 70
4.5.5 Comparison of Godel and Prolog Versions . . . . . ... ... 74
4.6 Animation Example 2 . . . .. .00 0oL 75
4.6.1 Unix File System . . . . .. ... ... ... 0. 75
4.6.2 Godel Code for the Unix File System . . . . .. ... .. ... 7
4.6.3 Example of Queries to Unix Files . . . . .. . ... ... ... 79
4.7 Conclusion . . . . . . . . .. e e 81



5 Abstract Approximation 83

5.1
5.2

9.3

5.4
9.5

5.6

Introduction . . . . . .. ..o oL 83
Brief Description — Abstract Interpretation . . . . . .. ... ... .. 84
5.2.1 Description . . . . .. ..o 85
5.2.2 Abstract Interpretation: Example . . . . . . .. ... ... .. 88
Brief Description: Abstract Approximation . . . . . . . ... .. ... 90
5.3.1 ZSyntax . . . . ... e 91
5.3.2 TheZDomain . . . .. .. ... ... .. 0o 93
5.3.3 Interpretations of Z Syntax . . . .. ... ... ... 94
5.3.4 Ordering in the Z and Execution Domains . . . . . . .. . .. 96
5.3.5 Rules for Approximation . . . . . ... ... .. ... ..... 97
Comparison of Abstract Interpretation and Abstract Approximation . 99
Formalising Structure Simulation . . . . .. ... ... ... .. ... 101

5.5.1 Parsing the Specification and Applying the Translation Rules 101

5.5.2 Overview . . . . . . ... e e e 102
5.5.3 The Logic Programming Domain . . . . . ... ... .. ... 103
5.5.3.1 Set Objectsinthe LP . . .. .. ... ... ..... 104
5.5.4 Concretisation Functiony . . .. ... ... .. ... ... .. 106
Correctness: Proof Arguments . . . . . . ... ... ... L. 107
5.6.1 Structural Induction: Strategy . . . . . . ... ... ... ... 107
5.6.2 Base Types . . . . . . . . . 109
5.6.3 Numeric and Set Expressions . . . . ... ... ... ..... 111
5.6.3.1 Set Union . . . ... ... ... ... . ........ 111
5.6.3.2 Distributed Union . . .. ... ... ......... 113
5.6.4 Predicate Expressions . . . ... ... ... .. ... ..... 114
5.6.4.1 Infix Predicates . . . . ... ... ... .. ...... 115
5.6.5  Set Comprehension and Variable Declarations . . . . . . . .. 116
5.6.5.1 Variable Declarations . . . . . . . ... ... .. ... 117
5.6.5.2 Interpretation of Set Comprehension . . . . . .. .. 119
5.6.5.3 Set Operations Power Set, Set Intersection . . . . . . 122
5.6.5.4 Quantifiers . . . .. ..o 123
5.6.6 Function Application and Lambda Expressions . . . . . . . .. 124
5.6.7 Interpretation of Schemas and Schema Expressions . . . . .. 125

5.6.7.1 Characteristic Predicate for a Schema Expression . . 126
5.6.7.2 Interpretation of FileSys . . . . . . .. ... .. ... 127
5.6.7.3  Approximation for Schemas . . . ... ... .. ... 129

vi



5.6.7.4  Schema Conjunction and Disjunction . . . . . . . .. 130

5.6.7.5 Schema Reference in a Declaration . . . .. .. ... 132

5.6.7.6 Binding Formationd . . . . . ... .. ... .. ... 132

5.6.7.7 Axiomatic and Generic Definitions . . . .. . .. .. 133

5.7 Summary . .. .. e e e e 133
Summary and Further Work 135
6.1 Summary . . . . ... e 135
6.2 Further Work . . . . . . .. .. .. ... .. 137
6.3 Impact of the Work . . . . . . . .. ... ... ... .. ..., 138
References . . . . . . . . . . L 150
ZF SET THEORY 151
A1 Introduction . . . . . . . .. . ... 151
A2 ZF Axioms . . . . . ... e 152
A.2.1 ZF1 Axiom of Extensionality (Set Equality) . . . . . . . . .. 152
A.2.2 ZF2 Null Set Axiom . . .. ... ... ... .. ........ 152
A.23 7ZF3 Pairing Axiom . . . . . ... .. Lo 152
A24 7ZF4Union Axiom . . . . . . . .. .. .. ... 152
A.2.5 ZF5 Power Set Axiom . . . ... ... ... .. ... .. ... 153
A.2.6 ZF6 The Axiom of Separation . . . . ... ... ........ 153
A2.7 ZF8 Infinity Axiom . . . . . . .. ... ... L. 153
Theory of Finite Sets — Key Axioms 154
Library of Set Code 156
C.1 Introduction . . . . . . . . . . . . . ... 156
C.1.1 Librarycode. . . . . . . . . . L 156
C.1.2 Small File System Code . . . . . .. ... ... .. ...... 161
C.1.3 Assembler Code . . . . . . . .. ... .. ... ... . ..., 168
C.1.4 Unix File Code . . . .. . ... ... .. .. ... ....... 184
Proofs: Abstract Approximation 190
D.1 Induction Process . . . . . . . . . . . .. ... ... ... 190
D.2 Base Types . . . . . . . e 190
D.3 Numerical and Set Expressions . . . .. ... ... .. ........ 192
D.3.1 SetUnion . . ... ... .. ... ... ... 192
D.3.2 Distributed Union . . . . . . . .. ... ... ... .. 194

vii



D.4

D.5

D.6
D.7

Predicate Expressions . . . . . . . ... ... ... ... 196
D.4.1 Infix Predicate: Equality . . . . . ... ... ... ... .... 197
D.4.2 Infix Predicate: Subset . . . . . ... ... ... ... ..... 200
D.4.3 Infix Predicate: Membership . . . . . . . .. .. ... ... .. 202
Set Comprehension and Variable Declarations . . . . . .. ... ... 203
D.5.1 Variable Declarations . . . . . . ... ... ... ........ 204
D.5.2 Interpretation of Set Comprehension . . . . .. ... ... .. 205
D.5.3 Set Operations Power Set, Set Intersection . . . ... .. ... 208
D.5.4 Quantifiers. . . . . . ..o 209
Function Application and Lambda Expressions . . . . . . .. .. ... 210
Interpretation of Schemas and Schema Expressions . . ... ... .. 211
D.7.1 Characteristic Predicate for a Schema Expression . . . . . .. 212
D.7.2 Schema Conjunction and Disjunction . . . . . . ... ... .. 214
D.7.3 Schema Reference in a Declaration . . .. ... ... .. ... 216
D.7.4 Binding Formation § . . . . . .. .. ... ... ... 216
D.7.5 Axiomatic and Generic Definitions . . . . . .. ... .. ... 217

viii



List of Figures

2.1 Flight Data and its Prolog Form . . . . . .. ... ... ... ..... 15
2.2 An Axiom of the CPS and its Executable and Validation Forms . . . 16
5.1 Approximation Diagram for Abstract Interpretation . . . . . . . . .. 88
5.2 ZSyntax . . . ... 92
5.3 TheZ Domain. . . . . . . . . . . . ... ..o 94
5.4 Approximation Diagram for LP and Z domains . . . . ... ... .. 95
5.5 (i) Abstract Interpretation and (ii) Abstract Approximation . . . . . 99
5.6 The Interpretation of Expressions in the LP Domain . . . . .. . .. 105
5.7 vt LPterms . . . . . . . .. Lo 106
5.8 ~: Answer Substitutions . . . . .. ... oo 107

X



List of Tables

2.1
2.2
2.3

4.1

5.1

Formal Notations and Supporting Tools. . . . . . . .. ... .. ... 24
Animation Tools for Z in Functional Languages . . . ... ... ... 27
Animation Tools for Zin Prolog . . . . . ... .. ... ... ... 28
Example of Translation from Assembly to Machine Language . . . . . 67
Notation: Z Syntax . . . . . . . . . ... oo 91



Chapter 1

Introduction

1.1 Background

The public demand for increased safety exists alongside the economic imperative
for manufacturing and servicing institutions to increase functionality at lower costs
and (if possible) with low environmental impact. To achieve the latter, a com-
puter component is frequently included in manufacturing, transport and medical
systems. For example, technological improvements to road transport in Europe and
the United States have involved the significant employment of computer systems in
vehicles, in roadside equipment and in traffic control [116]. The Air Transport In-
dustries make use of computers in, for example, decision support systems for aircraft
flight plans [121, 79], ‘fly-by-wire’ computer systems in aircraft [111] and in colli-
sion avoidance on aircraft [53]. Other high integrity systems involving a computer
component include financial systems, such as on-line banking [107]. The security of
computer systems remains a problem on account of the activities of terrorists and
other criminals [77].

There is an on-going account of computer problems which have resulted in risk
to the general public [87]. One of these was the Therac 25 linear accelerator which
was used for radiation therapy for cancer patients [112]. A computer malfunction
caused overdosing of patients resulting in injuries and deaths. Fortunately, problems

resulting in serious injury or death are rare, but they underline the fact that we
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require assurances that any equipment with safety or reliability implications behaves
as we expect. However if such a system contains software it is unlikely to have been
exhaustively tested because the number of possible states of the system (involving
all conceivable paths through the program for all inputs) would be too large. In
order to provide sufficient confidence in the safety and reliability of a high integrity
system we must rely on an assessment of its development process. Development
must be via a strict stage-by stage process and be accompanied by tangible output
at each stage, that is via a system life-cycle. Such systems should be engineered.

“Traditional’ electro-mechanical systems are developed in two stages, ‘design’ and
‘production’ [61]. The ‘design stage’ consists of requirements, design development
and the prototype creation. Once a prototype is created, the quality of the product is
maintained through its production phase and quality control. However, engineering
processes for systems which have embedded software differ from electro-mechanical
systems in that software does not have a corresponding ‘production’ phase; all the
effort goes into its design. ‘Production’ of multiple copies is straightforward, for the
‘quality’ lies in the design. A typical life-cycle for a computer based system consists
of

1. Systems Requirements and Analysis;
2. Design;
3. Coding;
4. Testing.

This is somewhat of an over-simplification, for the first few stages of the life-cycle
are within a system/engineering environment. Software is always part of a larger
system, sometimes known as the containing system, which can comprise hardware,
humans and frequently an electromechanical system, such as traffic control equip-
ment. The overall system implications are particularly important for high integrity
systems, for failure of a system component may ultimately lead to loss of human
life or significant financial losses. Thus (for example) safety considerations will be
involved in all stages of the life cycle, leading to an enhanced version of the life-cycle
called the safety life cycle [2]. In this case the successful performance of the end-
product depends on adequate Hazard Analysis, and the correct identification and
documentation of any associated safety requirements. Subsequent implementation
of the system must take account of these safety requirements; they add an extra

dimension to system development.
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Two activities which take place throughout the development process are Verifi-
cation and Validation [44]. Validation is derived from the Latin ‘validate’ meaning to
confirm or ratify. It is concerned with demonstrating the consistency and complete-
ness of a description with respect to the initial ideas of what the system should do.
Verification is derived from the Latin ‘veritas’, meaning truth. It is the comparison
of the output of each individual phase of system development with the output of the
previous phase. Verification always requires a comparison to be made, the objective
being to ensure that the output from the new phase fulfils the requirements speci-
fied in the outputs of the previous phase. Informally, validation can be thought of
as answering the question “are we building the right system?” whereas verification
can be thought of as answering the question “are we building the system right?”.
Testing is used as a part of both of these activities. Acceptance tests are agreed
with the user that the system functions in a manner expected. This is an example of
a test for validation. Unit testing (of software components) and integration testing
(of the software component with the whole) are for the purposes of both verification
and validation.

Validation of a computer system involves the establishment of appropriate re-
quirements for the system and this presents problems. Gladden [40] reports experi-
encing 35% of delivered software as not being used because of the distance between it
and the user’s concept of the system. A problem with requirements which are written
in a natural language is that such a specification can be ambiguous. The same is not
true if the specification is formal. The use of formal methods in the development of
computer systems is widely recognised by the software engineering community [33].
Formal methods involves the use of mathematics to model computer systems — just
as in other Engineering disciplines. Formal Methods are recommended by many
standards bodies concerned with Safety-Critical systems (e.g. IEC 1508 [2]) and for
some they are mandatory (e.g. DEFSTAN 00-55 [1]).

Formal methods can be used to aid system development in the following manner:

1. Systems Requirements and Analysis: The functional elements of a computer
system are modelled via a formal specification. Formal reasoning is then used
to attempt to ensure that the specification has desirable functionality but
with no undesired side-effects. A flaw or error in a formal specification is a
part which gives rise to undesired behaviour in the delivered system. However
the correspondence between the formal specification and the requirement ex-
pressed by the customer cannot be proved and a formal specification can never

be said to be correct;
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2. Design: Refinement is the process of moving from abstract specifications to less
abstract or ‘concrete’ specifications, via some data or operation transformation
which allows the behaviour of the abstract system to be replicated by the
refined (concrete) specification. Since the abstract and concrete systems are
both formal objects, the design can be shown to be correct with respect to the

specification. Proof tools are used to aid the formal arguments;

3. Coding: The design is further refined to become code and the latter shown to

be correct with respect to the design;

4. Testing: a version of the specification is executed in order to demonstrate
its functionality and detect flaws. In addition a specification can be used to

generate tests [30].

DEFSTAN 00-55 recommends mature specification languages including the Z nota-
tion [105], a language based on set theory and logic: A particular recommendation
of the standard is for the execution of the formal specification. Since many specifica-
tion languages (including the Z notation) are non-executable, the standard suggests
animation, the translation of a specification to an executable form. Subsequent
animation of the specification then allows its functionality to become apparent.
Non-executable specification languages such as Z allows the specifier to concentrate
his or her effort on expounding what a specification does and are in general easier for
humans to understand. In contrast executable languages must contain information
on how specified functionality should be achieved and the extra information can be
distracting to humans.

Animation is also known as prototyping, for prototyping is also used in other
engineering disciplines to create a working model of the engineered product. The

draft standard IEC 1508 states that the aim of prototyping/animation is:

“To check the feasibility of implementing the system against the given
constraints. To communicate the specifier’s interpretation of the system

to the customer, in order to locate misunderstandings.”

The use of the animation and prototyping tools is somewhat akin to conventional
testing of software through the use of test cases. In addition the test cases can
also be preserved and used for validating the final system [122]; the results of the
animation are compared with the results of the final tests.

Animation and proof are complementary activities [85]. Formal proof compen-

sates for the fact that tests used for animation can seldom be exhaustive. On the
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other hand there is no use in seeking a formal proof of a property of a specification
if counter examples indicate that the property is not present. In summary, although
executable languages are undesirable for a specification, tools which execute a formal
specification are necessary as a means of testing. Although a specification cannot
be proved as correct, tools which animate it can at least make it possible to test to
see that a specification conforms to our intuition in specific cases. The requirements
and development of animation tools for Z form the subject of this thesis, together

with the choice of language for animation.

1.2 Logic Programming Languages for Animation

The executable form of the specification needs to be in a form which “challenges”
the specification [95]. The challenge can take the form of executing the specification
to ensure that it behaves as expected. If a logic programming language is used
for animation purposes [123], the tests can take the form of queries of the “what
if” variety: given predicate Pred(x,y,z,w) the value(s) of w can be established
where x, y, z are ground or (in principle) the value(s) of x, where y, z, w are
ground. For example, in the IMPRESS and FAROAS projects [121, 79, 80], a tool
was developed which successfully supported validation of requirements in an air
traffic control (ATC) domain. A formal specification of the domain requirements
was animated using the logic programming language Prolog and a test set provided
by ATC experts. A set of tools based on machine learning techniques was then used
both to trace any flaws in the specification and to correct them.

The Prolog logic programming language comprises the Horn clause subset of first
order logic and has been presented as suitable for executing the Z notation. Exam-
ples are [119, 70, 67, 69, 68, 29]. This is because of the basis of both languages (Z
and Prolog) in first order logic and the ‘obvious’ translation technique of transform-
ing Z to a set of Horn clauses. However there are difficulties in representing sets in
Prolog as formal objects. Further, Prolog is unsound, for many reasons including
the existence of extra-logical features such as ‘assert’ and ‘cut’ and problems with
negation if the literal is not ground. The logic programming language Gdodel has a
greatly improved declarative semantics compared with Prolog, and supports a set
data type. Apart from some well-defined exceptions, a program in Godel is defined
as a theory in first order logic and an implementation must be sound with respect to
this semantics [56]. Godel has a flexible computation rule that can be constrained

by user-defined control declarations and ensures that all calls to negative literals are



Chapter 1 6 Introduction

ground. This means that it is possible to present some formal arguments that show
the link between the formal specification (in Z) and its executable form and this is
mandatory in DEFSTAN 55.

However little work has been done in establishing such a formal link [17]. One
method is program synthesis, the transformation of Z in its first-order form to a set
of clauses, and hence to a logic program. Another is suggested by [17], who present
the notion of abstract approzimation, whereby a concrete semantics (Z) is related to
an approximate one (the semantics of the animating language). Thus an animation
is ‘correct’ if the program execution underestimates the concrete Z interpretation.
In their paper, the authors have also suggested other requirements for a useful tool
in the animation of Z: coverage (of the Z grammar), sophistication (less likely to
go into an infinite loop), and efficiency (performance of the animation). However,
one requirement for animation which is not identified is the facility of the tool to
trace the source of unexpected results from the animator. In Chapter 2 of this
thesis we survey some of the tools which have been developed for support of formal
specifications. The survey of tools includes those which animate Z specifications and
we look at case studies which have been undertaken, as indicative of the coverage
of Z provided by the tool. The tools performance and efficiency is also surveyed in
so far as this information is available. Correctness issues are also examined. We
found that there are weaknesses in all of these areas, the most significant being the
lack of attention to correctness. Also, the ability of the answers to identify flaws
in the specification is rarely mentioned. Breuer and Bowen present a prototype
animator which adheres to their proposed correctness criteria, however it has not
been used for any case studies, for it does not allow for any sets apart from the
integers. The subject of this thesis is to attempt to address all of these areas, to
produce rules for translation of a Z specification which cover the important features
of Z and which produces an animation which perform well and can be applied to
‘real world’ case studies. We would also wish to be able to trace any flaws discovered
in the specification after animation. For this we chose Gddel, a logic programming
language with an implementation which is sound with respect to the semantics of
first order logic and with sets and types.

The reason for this is that we ultimately show that the rules we present (in
Chapter 4) do adhere to the correctness criteria of Breuer and Bowen so that any

animation is correct. The framework and proofs are in Chapter 5.
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1.3 Contributions

Our research addresses the lack of formal methods technology, the transition from
research results to potentially useful tools. A subset of Z which is capable of being
animated is identified, together with the necessary theoretical foundations for the
relationship of Z to its executable form. The work presented here examines issues
concerned with the execution of the Z notation in a logic programming language.

Contributions to research are described as follows:

(1) Requirements — Animation Tools for Z A survey of tools which animate
Z is presented in Chapter 2 and the strengths and weaknesses identified. Ani-
mation tools are used to discover flaws in formal specifications. However there
is then the necessity to trace and subsequently correct these flaws and this
is rarely discussed in work concerning the tools. This requirement is evident
when examining the achievements of the IMPRESS project which used a logic
programming language to animate a formal specification. The strength of the
logic program is the potential for tracing the source of unexpected results of

the animations;

(2) Correctness — Program Synthesis If a program is deduced directly from
the specification, then it is partially correct with respect to the specification.
This method of obtaining a program from a specification is one form of logic
programming synthesis. This formal link between a specification (in Z) and its
executable form is investigated, together with possible translation techniques
which potentially synthesise a logic program from a Z specification. The tech-
niques are illustrated by examples, and reasons provided as to why this is not
a suitable method. The work is described in Chapter 3 of the thesis;

(3) Structure Simulation New techniques in the animation of Z utilising the
Godel logic programming language are presented. These techniques are re-
alised via translation rules known as structure simulation. Two substantial
case studies are examined, indicating the coverage of the Z notation by struc-
ture simulation and the practicality of the rules. The work is described in
Chapter 4 of the thesis;

(4) Formalisation of Structure Simulation This contribution is presented in
Chapter 5 which contains criteria for correctness of the animation previously
presented by other authors [17]. The criteria are applied to a logic program-

ming language (whereas the original was applied to a functional language).
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Formal arguments are presented which show that the structure simulation
rules obey the criteria for correctness. Furthermore, areas of work which had

been omitted by the original authors are presented explicitly in this thesis.

1.4 Thesis Structure

The structure of this thesis is as follows:

Chapter 2 presents previous work both by ourselves and by other authors. The
chapter involves Contribution 1 of the work presented in this thesis in the
extension of the work of Breuer and Bowen in identifying requirements for

animators of Z.

The chapter commences with an illustrative example of two ATC projects
(FAROAS and IMPRESS). The example is of a tool which has successfully
supported validation of requirements in the air traffic control (ATC) domain.
The previous work of other authors includes examples of software tools which
support formal notations, and in particular tools which support the Z nota-
tion. These are described and discussed and weaknesses in the supporting
methodology are identified. In [17], requirements for tools which animate Z
are presented. However a missing requirement is the potential of the tool to
identify flaws in the specification. The ability to trace and correct flaws in a
specification is the main achievement of the IMPRESS project which used a
logic programming language to animate a formal specification. The strength
of the logic program is the potential for tracing flaws in the specification. The
necessity of tracing and subsequently correcting these flaws is rarely discussed
in work concerning the tools. The advantages (and disadvantages) which ac-
crue from an animating system which utilises a logic programming language

are presented;

Chapter 3 discusses formal program synthesis, the logical derivation of a program
from a specification using (for example) rules of inference such as resolution,
combined with clausal form transformation. Contribution 2 of this thesis
is the identification of the link between finite set theory and Z, the attempt
to exploit this link by using it to synthesise an animation and the reasons
for the failure. Z is based on Zermelo Fraenkel Set Theory (ZF) [36, 22] and

this is compared with the axioms for the theory of finite sets [76] in logic
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programming. The concluding part of the chapter describes the difficulties in

proceeding with the method, and why it was abandoned;

In Chapter 4, the logic programming language Godel is briefly described, together
with its advantages as an animation language. The manner in which Godel im-
plements the finite sets of [76] is also presented. Contribution 3 of this thesis
is structure simulation which is the adaptation of Z schema characteristics so
that the logical structures of the specification are preserved as far as possible
in the resulting model. The rules for the translation of Z via structure simula-
tion are presented using simple examples. Two substantial specifications are

then translated to Godel: the Unix file store and an assembler;

In Chapter 5, abstract interpretation is explained informally, in which a concrete se-
mantics is related to an approximate one that explicitly exhibits an underlying
structure implicitly present in the richer concrete structure. The criteria for
a correct animation of Z are based on abstract approrimation, which itself is
based on abstract interpretation. In abstract approximation the approximate
semantics of the animations of Z is compared with the richer concrete seman-
tics of Z associated with ZF set theory. The criteria are applied to compare
a 7Z specification, and its animated version using structure simulation, using a
subset of Z. Structural induction is used to show that the animated version of
the specification underestimates the Z specification. This covers Contribu-
tion 4 for in order for the comparison to be made, the resolution inference rule
is framed in a novel way. Furthermore, the theory of finite sets is extended to

include the possibility of non-termination when computing a set term;

In Chapter 6 we present a summary of the preceding chapters and some sugges-
tions for further work, including the automation of the tool. Contribution
1 concerned the potential of the tool to trace flaws in the specification. The
suggestions for further work include the development of tools which exploit
the ‘what if’ capabilities of a logic program by enabling flaws in the specifi-
cation to be traced and subsequently corrected. A further suggestion was for

the adoption of a functional logic program for animation;

Appendices A — D are as follows: Appendiz A presents the ZF theory of Sets and
Appendiz B, the theory of finite sets. These support Contribution 2 of
this thesis which was the link which was established between the two theories

in Chapter 3. Appendiz C presents the Godel code which was developed in
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Chapter 4 for the animation of Z for the case studies and this supports Con-
tribution 3. Appendiz D presents the proofs of correctness of the animations
and is a fuller version of the proofs of Chapter 4. This supports Contribution
4.



Chapter 2

Review of Related Work

The term “Formal Methods” is defined on the Formal Methods Europe web page!

“Formal methods are mathematical approaches to software and sys-
tem development which support the rigorous specification, design and
verification of computer systems. The use of notations and languages
with a defined mathematical meaning enable specifications, that is state-
ments of what the proposed system should do, to be expressed with
precision and no ambiguity. The properties of the specifications can be
deduced with greater confidence and replayed to the customers, often
uncovering facets implicit in the stated requirements which they had not
realised. In this way a more complete requirements validation can take

place earlier in the life-cycle, with subsequent cost savings.”

This chapter provides examples of some commonly used formal methods and speci-
fication languages (notations). Support for formal methods includes both validation
and verification, and we discuss the reason why validation is so important and
present an example of an environment which supports it. The environment was
developed in two projects concerning Air Traffic Control (ATC) procedures and
is described. In general, formal notations are not executable, although there are
some directly executable formal notations Larch [49], Spill [65], ObJ [102], Horn
Clauses [27]. This chapter explains why it is preferable for specifications to be

thttp:/ /www.fmeurope.org/
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non-executable. We also explain how it is sometimes possible to execute formal
specification notations via a translation to an executable language: such a transla-
tion is known as an animation. We provide examples of formal notations, together
with generic tools which support them. These notations include ‘Z’: it is noted
that there is a dearth of usable tools which support the animation of the Z formal
notation. Examples of the work of other researchers in the animation of Z are then
provided and compared. Requirements for animations of Z which have been pre-
sented by other authors are extended. The extension draws on the experience of the

ATC domain projects and this forms Contribution 1 of this thesis.

2.1 Tools for Verification and Validation

In Chapter 1 of this thesis we indicated the role of formal methods in all phases of
software development. In a survey of the use of tools by commerce and industry [8],

the main benefits of the use of formal methods are seen as

e the lack of ambiguity of mathematics compared with natural language in spec-

ification and design;
e the potential of mathematics for reasoning and proof.

The participants were asked what they thought were barriers to the use of formal
methods and over 50% cited the lack of usable tools. There are tools for verification
and for wvalidation (or both). Verification tools enable a proof that (for example)
a refinement of a specification is correct with respect to a specification, or that
the code which implements the refinement is also correct. Validation tools aid
the specifier in his/her task of specifying a system which satisfies a user’s (often
informal) requirements. Validation of a formal model has problems and advantages:
it may be harder for a non-computing professional to understand, and be more
detailed than a conventional requirements document [91]. On the other hand, the
formality brings with it the opportunity for powerful tool support. The use of
formal techniques and the production of a formal model of requirements can be said
to produce enhanced quality rather than correctness [15], for the correspondence
between the formal specification and the requirement expressed by the customer
cannot be proved; a formal specification can never be said to be correct.

The problems in coordination of large software system projects are detailed

in [35], which emphasises the importance of requirements analysis and tracking and
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the effect a good quality specification has on subsequent design and implementa-
tion. In [74], 387 software errors uncovered during the development of Voyager and
Galileo space-craft are analysed. This analysis showed that errors in identifying or
understanding functional or interface requirements frequently lead to safety-related
software errors; this is because safety-related functional faults are particularly re-
lated to imprecise or unsystematic specifications. The requirements documentation

for a software system is important because it
e provides primary input to design stage;
e may provide a (legally binding) contract between supplier and client;
e provides a baseline against which acceptance tests are carried out.

In the FAROAS? project, a formal specification in many sorted first order logic (here
called msl) was established for ATC procedures. A later project which built on the
results of the FAROAS project was the IMPRESS? project.

The reasons for the choice of msl for the specification language included its
suitability for the ATC domain and its expressiveness. The choice of formalism
took place early in the project and before the Formal Requirements Engineering
Environment (FREE) was developed. In order to improve the quality and accuracy
of this specification a diverse range of validation strategies were used, and this is

described in the next subsection for illustration purposes.

2.1.1 An Environment Supporting Validation

The FREE is described in full in [80] and supports requirements written in msl. It
was utilised as an aid in validating the formalisation of requirements in an air traffic
control domain, viz the separation standards for aircraft over the eastern North
Atlantic Ocean. Air traffic in airspace over the eastern North Atlantic is controlled
by air traffic control centres in Shannon, Ireland and Prestwick, Scotland. It is the
responsibility of air traffic control officers to ensure that air traffic in this airspace is
separated in accordance with minima laid down by the International Civil Aviation
Organisation. Central to the air traffic control task are the processes of conflict
prediction — the detection of potential separation violations between aircraft flight
profiles and conflict resolution — the planning of new conflict free flight profiles.

The controllers have tool assistance available for their tasks in the form of flight

2Formalisation and Animation of Rules for Oceanic Aircraft Separation
3IMProving the quality of formal REquirements SpecificationS
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data processing system (FDPS) which maintains detailed information about the
controlled airspace. A key component of the FDPS is the ‘conflict software’, that
provides assistance for the processes of conflict prediction and resolution. A new
FDPS is currently being developed and the FAROAS project was chiefly concerned
with requirements capture for the conflict prediction component of the proposed
FDPS. The axioms for the domain were written in msl and denoted the ‘Conflict
Prediction Specification’ (the CPS). The CPS was created to contribute towards
the requirements specification for a decision support system for air traffic controllers.

The functions of the FREE tool included four processes:

e parsing the ‘Theoretical Form’ (TF) of the formal specification and identifying

syntactic errors;

e testing — an ‘Execution Form’ (EF) of the specification was automatically
generated (in the logic programming language Prolog) and batches of expert-
derived test cases were used to compare expected and actual results. The
raw test data was translated to msl via the FREE environment, and hence to

Prolog;

e viewing the specification in non-technical form — a ‘Validation Form’ (VF) of
the specification was generated and was used by Air Traffic Control experts

for visual inspection;

e reasoning about internal consistency — a reduced minimal set of the specifica-

tion axioms were shown to be consistent.

A fragment of data in its msl and Prolog forms is shown in Figure 2.1. The data
comprises part of a segmented flight path of a single aircraft with call sign XXXX,
where the real call sign and some other details are undisclosed for confidentiality
reasons. A non-atomic axiom is given in Figure 2.2, which also contains its exe-
cutable and validation forms. The axiom defines a temporal relation between two
aircraft which at some point are using the same profile track. Variables are uni-
versally quantified by default, and represented by capitalised identifiers, and the
symbol ‘E’ is used for existential quantification. Note that the executable form of
the CPS respects the modular structure of the original, for all or part of each Prolog
clause represents an axiom. Also each Prolog clause logically follows from the orig-
inal axiom in the CPS, following [73]. The process was general enough to cover all
the axioms of the CPS which comprised over 300 non-atomic, quantified msl expres-

sions. The initial form of the C'PS was built up from the existing manual system and
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other documents supplied by ATC experts. The five validation procedures outlined
above were subsequently run in accordance with a test plan [80] and various errors
in the initial encoding of the requirements were identified and removed. However
in a specification of this complexity the manual forms of validation had a limited
(although essential) contribution, and batch testing formed the most dominant part
of validation. The validation processes involving execution of a derived prototype
were fully automated, and therefore could be easily re-executed after maintenance
of the CPS. The ‘testing’ of the specification was achieved by animation. This

included

1. testing of ‘lower level’ axioms. These included ‘auxiliary’ axioms (which de-

fined ATC terms) and also axioms defining trigonometrical relationships;

2. translating to TF (in msl), then to EF (in Prolog) historically generated raw
data from pairs of flight profiles. For each pair there is an expert decision as

to whether the pair are ‘in conflict’ or ‘conflict free’.

The aircraft XXXX is flying at a constant speed of 0.86 Mach and at a height of 35,000 feet
and is planned to enter the first and second segments at 1042hrs and 1122hrs respectively:

%% TF of data fragment

"(the_Segment (profile XXXX, 57 N ; 010 W ; FL 350 ; FL 350 ;
10 42 GMT day 0, 57 N ; 020 W ; FL 350 ; FL 350 ;
11 22 GMT day 0, 0.86) belongs_to profile_XXXX)".

%% EF of data fragment
the_Segment (profile_XXXX,fourD_pt (threeD_pt(twoD_pt(lat_N(57),
long_W(10)),fl_range(£f1(350),f1(350))),time(10,42,0)),
fourD_pt (threeD_pt (twoD_pt (lat_N(57),long_W(20)),
f1_range(£1(350),£1(350))),time(11,22,0)),0.86)

belongs_to profile_XXXX.

Figure 2.1: Flight Data and its Prolog Form
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Theoretical and Executable Forms of axiom

" (Segmentl and Segment2 are_after_a_common_pt_from_which_profile
_tracks_are_same_thereafter)
=>
[ (the_aircraft_on Segmentl precedes_the_aircraft_on Segment2)
<=>
E Segment3
[(Segment3 belongs_to the_Profile_containing(Segment2)) &
the_entry_2D_pt_of (Segment3) = the_entry_2D_pt_of (Segmentl) &
the_exit_2D_pt_of (Segment3) = the_exit_2D_pt_of (Segmentl) &
(the_entry_Time_of (Segment3) is_later_than the_entry_Time_of (Segment1)) 1] "

the_aircraft_on_segmentl_precedes_the_aircraft
_on_segment2(Segmentl,Segment?2) : -

are_after_a_common_pt_from_which_profile_tracks

_are_same_thereafter (Segmentl,Segment2) ,
the_Profile_containing(Segment2,Profilel),
Segment3 belongs_to Profilel,
the_entry_2D_pt_of (Segment3,Two_D_pt1),
the_entry_2D_pt_of (Segmentl,Two_D_pt2),
same_2D_pt (Two_D_pt1l,Two_D_pt2),
the_exit_2D_pt_of (Segment3,Two_D_pt3),
the_exit_2D_pt_of (Segmentl,Two_D_pt4),
same_2D_pt (Two_D_pt3,Two_D_pt4),
the_entry_Time_of (Segment3,Timel),
the_entry_Time_of (Segmentl,Time2),
Timel is_later_than Time2, !.

Validation Form of axiom

‘For any two segments Segmentl and Segment2, in the case where Segment! and
Segment2 occur after a common point from which the tracks of their profiles are the
same, we say that the aircraftl on Segmentl precedes the aircraft? on Segment2 if
there exists a Segment3 in the Profile containing Segment2 such that Segmentl and
Segment8d have the same entry and exit points, and aircraft? enters Segment3 later
than aircraftl enters Segmentl.’

Figure 2.2: An Axiom of the CPS and its Executable and Validation Forms

The expert decision for each pair of aircraft is compared with the results of the
animation run. If the expert decision is at variance with the prototype’s decision it is
evident that there are flaws in the specification which need removing. However where
tests fail it is still very difficult to identify the faulty or incomplete requirements.
For this reason, the FREE tool was later extended (in the IMPRESS project) to
incorporate machine learning and theory revision, for example training examples
were used which had the effect of inductively altering the executable form of the
theory [121, 79]. The fact that this form of the CPS closely followed the structure

of the original was one reason that these tasks were possible.
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2.1.2 Executability of Formal Specifications

The CPS described in Section 2.1.1 is written in ms/ which is itself non-executable.
The issue of executability is examined by Hoare [58], in which three forms of the
greatest common divisor function (ged) are compared. The first version involves
logic, set theory and arithmetic which is (in theory) ‘executable’ via a search of all

proofs. It can be paraphrased:

Greatest Common Divisor: The greatest common divisor z of positive non-zero
integers z,y is such that z is the greatest member of the set of numbers

satisfying z divides z and z divides y;

Divides: “p divides ¢” means “there exists a positive whole number w such that
pw = q7;

Greatest of a Set: “p is the greatest member of a set S” means “p is in S and no

member of S is strictly greater than p”.

The first version is refined and translated to the logic programming language Pro-
log to produce the second version. However the resulting Prolog program would
not terminate because of problems with negation. The third version (which does

terminate) is a functional program:

ged(z,y) = if = =y;
ged(z,y) = ged(z — y,y) if > y;
ged(z,y) = ged(y, z) if = <y.

The gcd of a number pair is calculated as the result of a terminating sequence of
substitutions and this is proved by Hoare. However as can be seen, the ease of under-
standing of the latter is less good than the original version. In other words, clarity
of requirements decreases with executability of the ged function?. The inference of
this paper is that clarity should not be sacrificed for executability. Hoare suggests
that the high level language chosen for program implementation should be as close
as possible to the original specification. In addition it should not be so inefficient
that ‘program tricks’ are necessary to ensure execution. Hoare also suggests the use
of such an implementation for a rapid check on the adequacy of a specification.
Some notations are themselves executable and examples are Larch [49], Spill [65],
ObJ [102], Horn Clauses [27]. Examples of non-executable notations are the Z

“However in current declarative languages such as Godel or Haskell, it is possible to write a ged
function which looks very similar to its definition.
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notation [105], the Vienna Development Method-SL [64], the B Abstract Machine
Notation [5], CSP [57], CCS [82], LOTOS [14]. There are conflicting points of
view about the advisability of a notation being executable. The opposing views
are in [52] and [38]. The former argues against executable specifications in that
implementation details needed to make the specification executable are undesirable.
This is so because there is a tendency for over-specification because of the need
to follow algorithms in the specification. The authors provide several examples to
illustrate. A possible assignment of values of two set-valued variables s1, s2 can be

expressed :

s1,82:=s1Ms2,s1Us2.

This simple, clear expression contrasts with the many procedures involving linked
lists required to specify the same assignment in an executable language. The au-
thors also state their opinion that proving general theorems about properties of the
specification is a more powerful tool for validation, and this procedure is more dif-
ficult with an executable specification. In order to verify that an implementation
meets its specification it is necessary for a comparison to be made but it is hard to
match an executable specification against an implementation. However the authors
end the paper by distinguishing between an executable specification and executable
prototype of the specification, in that an executable prototype is acceptable but
typically has implementation detail.

The argument for executable specifications in [38] is that when a specification
is executed its behaviour can be demonstrated to potential users. Thus validation
problems are tackled before design decisions are made. An example is given of LSL,
a logic programming language which can cope with sets. The authors provide a
translation of U and N to LSL, demonstrating that logic programming languages are
declarative: they are capable of stating what is to be computed, and not dwelling too
much on how. In response to the argument that executable specifications cannot be
reasoned about, they reply that reasoning is limited in its application to validation.

A full discussion and summary of the two opposing views is contained in [42].
It is apparent that although the authors of the two papers disagree on many issues,

there is a consensus:
1. clarity of specification is of great importance;

2. the ability to be able to reason about a specification is an important validation
task;



Chapter 2 19 Review of Related Work

3. the potential is required for showing that a refinement agrees with the original

specification;

4. the ability is also required to demonstrate the functionality of a formal speci-

fication to a customer or user.

In order to achieve consistency between (1) — (4) above, the solution is to utilise a
non-executable formal specification for requirements then translate to an executable
form to demonstrate and to test its functionality as was described in Section 2.1.1
with the FAROAS and IMPRESS projects.

2.2 Formal Notations, Methods and Tools

2.2.1 Formal Notations

The survey described in (8] lists the most popular notations (as used by industries)
as the Z notation [105], the Vienna Development Method Specification Language
(VDM-SL) [64], and the B Abstract Machine Notation (B AMN) [5]. These are
all model-based: they model in terms of mathematical structures such as sets, lists,
sequences, mappings and are based on states of the system. They contrast with
algebraic notations which are based on equational logic/algebra (examples are OBJ,
Larch [39, 48]) and with process algebras which deal with Concurrent and Commu-
nicating systems (examples are CSP [57], CCS [82], LOTOS [14]).

Of the model-based notations, Z is strong on modularity but weak on devel-
opment support. In contrast B AMN is fairly strong on both modularity and de-
velopment support (as it is associated with a method). However B AMN is more
restrictive than Z. VDM-SL is also associated with a method and is strong on de-
velopment support. However it is weak on modularity. The next section describes
some model-based specification notations and the tools which support them. The

notations are restricted to the most popular of the survey in [8].

2.2.2 Software Tools which support Formal Methods
2.2.2.1 The Vienna Development Method

The Vienna Development Method (VDM) [64] is a collection of techniques for the
formal specification and development of computing systems consisting of (i) a spec-

ification language called VDM-SL, (ii) rules for data and operation refinement to
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the level of code, and (iii) a proof theory allowing for rigorous arguments involv-
ing both the properties of specified systems and the correctness of design decisions.
The proof theory involves a form of logic called the logic of partial functions. The
refinement of a specification into a design is called reification in VDM and there are
proof obligations as to whether the design correctly reifies the specification. VDM
arose from research on formal semantics of programming languages at IBM’s Vi-
enna Laboratory in the sixties and seventies [64]. VDM-SL has been standardised
by ISO [89]; it is a model-oriented specification language which also provides basic
types like natural numbers, characters, and type constructors like sets and maps.

Tools which support VDM include the IFAD VDM-SL Toolboz [45, 46], and Mu-
ral [83]. VDM has also been translated to Prolog for the purposes of animation [12].
The IFAD VDM-SL Toolbox [45] is a set of tools that supports the development of
formal specifications using the ISO VDM-SL standard. Although standard VDM-
SL does not support modules, the Toolbox itself supports a structuring mechanism
based on the concept of modules. The VDM-SL Toolbox supports syntax and type
checking of the specification and also the animation of a subset of the specifica-
tion. VDM++ is an object-oriented extension of Standard VDM-SL which includes
concurrency [34] and is supported by the IFAD VDM++ Toolbox.

Two case studies which utilised the IFAD VDM-SL Toolbox are presented in [85].
The case studies involved two specifications: the Single Transferable Vote system
(STV) and the NewSpeak language specification. The Toolbox analysis and ani-
mation facilities were used to validate the specifications and revealed errors. For
example, type analysis exposed the attempted use of subtraction with non-numeric
arguments. A subset of the VDM specification of the STV system was executed via
the utilisation of 13 ‘standard’ test cases. This revealed that a set had been used
inappropriately in part of the specification, as opposed to a sequence, which would
have been correct. There is a discussion in the paper as to whether or not animation
and proof complement each other or overlap. The conclusion is that formal proof
and animation complement each other, whereas informal proof (a proof outline) and
animation can overlap. Several errors in the STV specification were identified by
both informal proof and by animation. However an error detected by formal proof
would have evaded detection by animation. On the other hand formal proof is diffi-
cult and time consuming and time can be saved in attempting to prove a hypothesis
if counter examples indicate it to be false.

Proof support for VDM is described in [10]. For example, the Mural proof

tool was used to aid the development of a VDM specification of a memory model
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(shared memory synchronisation for parallel processing). The tool automatically
translated the VDM specification to its corresponding theory (formal language and
set of inference rules). The proof obligations which were also generated were proved
interactively with the tool. Although the tool will aid the user with suggestions as
to the verification of a line of proof, the thinking comes from the user for the set
of inference rules used by Mural is visible. The proofs were an aid to a simpler
specification, in that the intuition required by the user in discharging the proof led

to a clearer specification.

2.2.2.2 The B Abstract Machine Notation

B AMN [5] is state based and utilises the concept of a ‘state machine’. A central
feature of B AMN is its module structuring capability; a B AMN specification is
composed of several ‘abstract machines’. A typical abstract machine state com-
prises several variables which are constrained by a machine invariant and initialised.
Operations on the state contain explicit preconditions; the postconditions are ex-
pressed as ‘generalised substitutions’, giving the language a ‘program-like feel’. Ma-
chine composition is achieved by (for example) the INCLUDES mechanism which
allows one machine to alter the data of another. B AMN is associated with ‘the B
method’ [98, 125], and there are rules whereby machines can be refined and subse-
quently implemented by code. Support is provided for B AMN and the B method
by the B-Toolkit:

e document preparation: it allows the editing of source files, translation to a

marked-up form (i.e. latex) and viewing and printing of the documents;

e analyser: it allows syntax checking and type checking of the source files. Ma-

chines can call other machines and each called machine is also checked;

e animation: it allows a check that the machine does what is required and it is

for validation;

e proof obligation generation: this generates proof obligations (theorems) for
checking consistency. For example a proof obligation is generated which checks
that the invariant is obeyed initially. If a set is to be a certain type, then this

must be true initially, and the condition must remain true after each operation;

e proof: the proof obligations can be discharged — the theorems are proved using

the automatic, or interactive prover;
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e refinement leading to code: refinement is the process of moving from abstract
specifications to less abstract specifications, via some data or operation trans-
formation which allows the behaviour of the abstract system to be ‘simulated’
by the more refined system. Thus, all behaviour of the abstract specification

is replicated by the refined specification.

The proof engine of the B-Toolkit uses backwards and forwards inference, and rewrit-
ing is treated as a special form of backwards inference and is used for animation.
The B User Trials project which explored the application of the B AMN method
of formal software development is presented in [11] and describes six case studies.
There is a comparison of B AMN with both VDM and Z and some shortcomings of
the B AMN notation are also described. For example the B AMN notation does not
lend itself as easily as VDM and Z to capturing the complex data types required
by the case studies. Also (compared with Z) the mechanism for composing abstract
machines is restrictive, for only one machine can include a particular machine. The
restriction is to facilitate proof. However, although the automatic theorem prover
is a considerable aid, it was found that those theorems which were not provable
automatically were more difficult to prove interactively than in, say, Mural. This
was because, and unlike Mural, in that version of the Toolkit the proof rules were
not visible to the user®.

However, in spite of these limitations, the B AMN notation and Toolkit have been
found to speed up the development of an avionics subsystem. A case study [113]
describes the MIST and SPECTRUM projects. The aim of the MIST project was to
compare the application of the B-Method to the application of conventional software
engineering techniques. The software functions under consideration were coded (and
tested) in Ada using parallel teams, one using a formal approach and the other a
conventional one and it was found that the effort required by the former team was
about 80% of that of the latter.

2.2.2.3 The Z Notation

The initial work in the development of the Z notation was at Oxford University in
the early 1980’s. Its designers’ intention was for the major part of the notation to be
‘conventional’ first order logic and set theory. However the notation has a modular
form: the data types, constraints on data types and the means of updating data

types are grouped into schema which are composed using schema calculus. The no-

5In later versions of the Toolkit the proof rules were made visible.
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tation (like B AMN) supports the concept of a state and processes on it, but it is not
obligatory to structure Z specifications in this way. When a specification is struc-
tured by means of states and associated processes, the proof obligations are similar
to those of B, that the state can exist initially, and that its invariant is preserved
after the operations on it. The notation is in the process of standardisation [90] and
is described more fully in Chapter 3. Supported tools for Z include the Z/EVES
proof tool [81], the FUZZ typechecker [105] and the Formaliser interactive editor
and type checker [37]. The HOL theorem proving system has been used for proof
support [16]. A number of tools exist which integrate Z with a semi-formal method.
Examples are the SAZ system [75], which extracts functional information (which is
subsequently formalised) from SSADM products and [19], which outputs Z schemas
from data flow diagrams and entity relationship models. A recent development is
the ‘Community Z Tools’ (CZT) project® which aims to build an integrated set of
tools for Z which are to be made available over the world wide web.

Z/EVES: The current version of Z/EVES includes a graphical user interface, syntax
and type checker, and an interactive proof tool. In addition to checking whether or
not the ‘standard’ proof obligations can be discharged, the proof checker ascertains
the status of partial function variables, that no schema relies on a result outside the
function domain. This is because Z is based on first order logic where the status of
undefined terms is ambiguous [109]. This is not the case with VDM, whose proof
theory is based on the logic of partial functions.

Z/EVES can be used to generate guards (extra conditions) which ensure that all
elements of a specification are fully defined. This is known as domain checking. Case
studies which utilise Z/EVES are described in [26, 96]. The first study concerns
the Sliding Window Protocol, a model of message dispatch and reception. One
of the purposes of the protocol is the detection of messages which are sent but
subsequently lost and then resent. Analysis of the protocol resulted in the division
of the protocol into sender, receiver, the link for sending messages, the link for
acknowledging messages. Each process has an initial state and the first task of
analysis was to discharge a proof obligation that for each process, its initial state was
valid. Operations of the system which potentially altered the system state included
sending a new message, re-sending a previous message, receiving a message etc. A
further task was to attempt to modify the specification and subsequently attempt
to re-prove the theorem that the invariant still held. The surprising result was that

this theorem was still provable. This led to the further analysis — the result was that

6See URL http://web.comlab.ox.ac.uk/oucl/work/andrew.martin/CZT/.
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Notation | Proof and Type | Animation Support for
Checking Tools System Development

Z Z/EVES, FUZZ | No Supported Tool | Refinement
Formaliser via Proof tools

VDM Mural VDM-SL Toolbox | Mural

B AMN | B-Toolkit B-Toolkit B-Toolkit

Table 2.1: Formal Notations and Supporting Tools

the modification resulted in the safety property being contravened and was therefore
significant. The second case study describes how Z/EVES can be used for domain
checking [96]. This paper describes how many Z specifications have been examined
and those with unprovable guards were found to be in the majority. An example is
the specification of a file editor in [60], where no account is taken that a file might
be empty.

Table 2.1 presents a comparison of the formal notations just described and the
support tools available. In the case of the Z notation the Z/EVES tool just described
supports type checking and proof and is available to the public; the Formaliser
interactive editor supports type checking and is available commercially. Animation
is available in B AMN via the B-Toolkit and in VDM via the Toolbox. The last
column refers to support for specification refinement and reification towards design
and code. This is available in VDM and in B AMN and (to a lesser extent) in Z via
proof tools. However there is a dearth of supported animation tools for Z. Such tools
as do exist, together with research work in their development is presented briefly in

the next subsection.

2.2.3 Animation of Z (Current Tools)
2.2.3.1 Choice of Language

Early work in the animation of Z is presented in [108] which describes a line-by-
line translation of an Access Control System. The animation was via the Prolog
programming language. Since then there have been many tools, both proposed and
actual, for animation of Z. Breuer and Bowen [17], have identified requirements
for an animation (or interpretation of Z as it is sometimes termed). They include
coverage of Z, sophistication (less likely to go into an infinite loop), efficiency (per-
formance) and correctness. The latter requirement arises because the animation and
the specification are both formal objects. The authors make the point that many

animation techniques focus on the first four concepts and have ignored the correct-
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ness of the particular technique. They suggest that an animation be considered
‘correct’ if it accords with set theoretic considerations. They further suggest that
a non-terminating computation is ‘correct’ in the sense that if an answer is never
obtained it can never be incorrect. Inevitably, some techniques which have good
terminating properties will fail to cover some parts of Z and there is a trade-off
between some of these requirements. One of the criteria for correctness is that the
programming language which animates should reflect the recursive structure of Z:
the functional language of Miranda is chosen as an example. The declarative nature
of Z means that the most natural choices for programming languages for animation
of Z are also declarative as opposed to imperative (procedural).

Imperative (or procedural) languages specify explicit sequences of steps to fol-
low to produce a result, while declarative languages describe relationships between
variables in terms of functions or inference rules. An example of animation of Z
by a procedural language is the ZANS tool [62], which utilises the C programming
language. A further proposal for animation by a procedural language describes the
development of a new computation model for Z [43], where the specification is first
translated to a set based expression language (the p Z calculus) and then to Java.
Logic programming languages are the principal form of relational language chosen
for the animation of Z and examples are [29, 32, 119, 117, 55]. Functional languages
include [63, 31, 17, 41, 115, 101, 100, 114].

Logic programming languages involve relations which require the input of one or
more of its parameters and will return as output combinations of alternative value(s)
of its other parameters. A function, in principle, returns a single value, however the
value might be a tuple. Functions can return a partial answer, e.g. part of a list,
thus allowing an unbounded list to represent an infinite set. Logic programming
does not allow this, but does allow backtracking to provide the values one at a time.
It is claimed that a functional logic language for animation can take advantage of
both the logic and functional paradigms and an example is Mercury [124]. The fol-
lowing describes some examples of animation techniques which typify the functional

approach.

2.2.3.2 Functional Languages

Examples of animation using functional languages include Miranda [31, 17, 63, 3],
Haskell [41, 101, 100, 114], and a Lisp like language based on a subset of Z called
Z~~ [115]. The translations to Haskell differ: in [41] the Z specification is translated
without alteration and set theory is provided separately by a module called ZPrelude.



Chapter 2 26 Review of Related Work

The paper presents equivalences between selected operations in Z and operations in
Haskell. However not all operations in Z have a straightforward Haskell equivalent.
Moreover before translation takes place, each expression involving schema calculus
must be expanded out into a full schema. The JaZA animator [114] takes a similar
approach to schema calculus and also makes a particular point of how it deals
with undefined terms: the paper includes a comparison of how other work treats
undefinedness. In [101, 100], the Z specifications are refined to FunZ, an extension
of Haskell with a Z like flavour. The developer is able to prove properties about the
system design using either the Z notation or Haskell. Advantages of the method
as perceived by the authors are that the FunZ document serves as a record of the
design process and the user may prove the final implementation correct with respect
to the initial specification.

The translation from Z to Miranda described in [63] is a straightforward transla-
tion of the given Z, whereas the translation described in [3] refines the Z specification
first in a manner based on model refinement. The refinement is checked with correct-
ness rules. The translation [17] also deals with correctness — however in a converse
manner. The Z specification is proved to be a refinement of the resulting Miranda
code. The proof method is known as abstract approximation and based on the con-
cept of abstract interpretation. There are differences in the two papers in how given
sets are modelled, and how schema calculus is treated. In the former paper given
sets are represented by Miranda types, such as STRING, whereas in the latter, inte-
gers only are represented. Also, in [3], schema calculus is modelled, whereas in [17],
all schema expressions have to be unfolded before animation.

Z~ [115] is a Z-like programming language which is a refinement of the Z no-
tation. Thus specifications in Z must be refined before the translation can take
place. The prototype Z~~ interpreter described in the paper is written in Lisp. The
design intention is for the interpreter to be correct, cover all of Z, be efficient and be
sophisticated enough to cover all directly executable constructions. Sets are of two
kinds; they can either be finite or be potentially infinite. The latter are modelled
by higher order functions.

In [32] there is a table which compares and contrasts the different manner in
which features of Z are modelled in Prolog animators. Table 2.2 presents our sum-
mary of properties of animation tools for Z in functional languages using similar
features to those of [32]. Table 2.2 indicates which tools have been implemented,
how sets are represented, whether the Z specification is first refined and which tool

directly models schema connectives in the animation. The tables roughly replicate
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the criteria of [17] for animation. ‘Set implementation’ and ‘schema calculus’ are
chosen as a rough measure of coverage of Z for most of the other common con-
structs of Z are covered in the animation tools selected in the tables. The modelling
of schema calculus also has other implications, as will be seen. There is also an
indication in the table of whether published case studies have been animated. In
compliance with the views Breuer and Bowen have expressed we have added a ‘Cor-
rectness Issues’ feature to the table which indicates whether correctness issues are

discussed or directly addressed.

Tool Goodman /A Breuer, Abdallah
(1995) Bowen (1993) | et. al. (2000)
Implemented Yes Yes Library No
obtainable
Sets Infinite Infinite Infinite Finite
Refinement No Yes No Yes
of Z
Schema No Yes No Yes
Connectives
Correctness Proof Method Discussed Correctness Correctness
Issues outlined Criteria Criteria
Case ‘small to medium | Mathematical No Birthday
Studies sized’ toolkit in Z Book

Table 2.2: Animation Tools for Z in Functional Languages

2.2.3.3 Logic Programming Languages

The SuZan project described in [67, 68, 69, 29|, utilised ‘pure’ Prolog to try to
ensure that the Prolog correctly represents the Z. In order to find possible answers
to queries a ‘generate and test’ method is used, wherein many possible answers are
generated, and each is tested for compliance with the logical relation. Efficiency
is improved by utilising correctness preserving program re-ordering code and the
removal of duplicate clauses. There is a large library of Prolog for set operators,
but for schema calculus there is only a suggested implementation. The telephone
network system described in [51] is animated in Prolog. Animation of the network
revealed some unexpected results, but the source of this specification flaw is not
identified in the paper, nor is any mention made of any trace mechanism to seek out
the flaw. The EZ project [32] uses similar rules of translation to the SuZan project.
However greater coverage of Z is achieved by the use of Al search systems which
allow for greater efficiency. Answers to queries also use a generate and test strategy.

The paper provides a comparison between EZ and other methods.



Chapter 2 28 Review of Related Work

The approaches just described, of animations of Z via logic programs contrast
with West [119, 117]. In both of the latter publications, specific examples of vari-
ables are provided to interrogate the specification; the philosophy is to test a set of
variables and possibly obtain remaining variable(s) to see if they satisfy particular
requirements. This translation technique was utilised in a case study which iden-
tified safety requirements for Pelican Crossing equipment, described in [118] and
more briefly in [120]. The equipment had been operating in a dangerous manner,
for the audible signal which indicates to blind and partially sighted people when
it is safe to cross had been sounding when the vehicle and pedestrian lights were
not operative. In the case study the states of the system are related to the formal
safety requirements via proof outline(s) and animation. The papers and case study
demonstrate the advantage of the utilisation of a logic programming language with
the philosophy of ‘testing’ variables using some test strategy. The same technique
is adopted by PiZA [55]. However in PiZA, and unlike the animation described
in [119], variable declarations are not converted to Prolog.

Table 2.3 summarises approaches to animation in Prolog of specifications in the
Z notation. It additionally indicates the way in which the predicates are queried to
provide the execution, viz the manner of constraint satisfaction, a property specific

to logic programs.

Tool SuZan EZ West (1992, 1995) PiZA
Implemented Yes Yes No Yes
Sets Finite Finite Finite Finite
Refinement No No No No
of Z
Schema Yes Yes Yes No
Connectives
Constraint Generate Generate Individual Individual
Satisfaction and Test and Test Tests Tests
Correctness Pure Pure Discussed Not
Issues Prolog Prolog Discussed
Case Telephone System, Convex | Assembler, Pelican 300 page
Studies vending machine, lift Hull Controller Malpas translator

Table 2.3: Animation Tools for Z in Prolog



Chapter 2 29 Review of Related Work

2.2.4 Animation of Z (Requirements)
2.2.4.1 Features of Z Animators

Features of Z animators have been presented in Tables 2.2 and 2.3. A further feature
of animation tools is described in [114], the ability of the tool to deal with undefined
terms. (We deal with this in Chapter 5 as a separate issue.) Breuer and Bowen
in [17] have also identified requirements for animation of Z. In this section we link
the requirements of the latter with the features presented in the tables to identify
weaknesses in the tools and their methodology. We also extend the requirements
of Breuer and Bowen in a manner indicated. We first present a discussion, then a
summary in Figure 2.2.4.3.

An important requirement for an animation is the ability to trace the flaw in
the specification after a test has given an unexpected result. This property of an
animation was used to great effect in the ATC projects described in Section 2.1.1.
For traceability, the animation should reflect the modularity of Z. This has implica-
tions (for example) for schema calculus for in that case flaws in a specification are
easier to trace. It can be seen from the tables that each of the Prolog animations
models schema calculus but for two of the functional languages, schema calculus
expressions have to be unfolded prior to animation. However all the functional lan-
guages implement infinite sets, but the Prolog animations implement finite sets only.
Refinement is used to make the Z specifications executable, where ‘refinement first’
is designed to achieve greater efficiency of an animation tool. Similarly, for logic
programs which attempt to satisfy a constraint, the table differentiates between dif-
ferent testing methods. In contrast, the ability to animate published case studies
is seen as a measure of both sophistication and coverage of the tool in question. It
is notable that PiZA was used for validation of a very large case study. An imple-
mentation of a translator capable of translating a subset of the rules of [119] was
developed as an undergraduate project in [13]. However translation from Z to Pro-
log was mainly by hand so case studies other than those indicated were never tried.
For other (implemented) tools it is not clear whether or not an attempt was made

to animate other specifications, nor is the result of any such attempt mentioned.

2.2.4.2 Test Strategy

For animation purposes it is necessary for test data to be translated to a suitable form
(as in the case of flight data in Section 2.1). A further requirement for animation

is a suitable test strategy, such as that adapted for software code. There has been
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a deal of research concerning software testing [86, 94, 93] and the following is a
summary of some of the issues. Computer-based systems are (typically) a mix
of application software, system software, hardware, data and people, and may well
control an electro-mechanical system. Testing the interface(s) of the software with its
containing system is termed black-boz or functional testing, where tests are derived
from the functional specification without regard to the structure of the software.
In contrast, white-box or structural testing examines the structure of the program.
The drawback of black-box testing is that it concentrates on desired functionality
being present and does not deal with the fact that undesired functionality may also
be present. In addition black-box tests may succeed for the wrong reasons. It is
thus necessary to investigate the structure of the program (and underlying design
documentation) to exercise the code as fully as possible.

Black-box tests are for validation and would normally include acceptance tests
supplied by the customer/user of the implemented system. White-box testing ad-

dresses both validation and verification in the sense that it asks

e questions about the structure of the system: “are we building the system
right?”;

e questions about undesired functionality: “are we building the right system?”.
Black-box testing is designed to include tests which check

e cach software function;

non-overlapping classes of input which are treated identically (equivalence

classes);

the boundary values of the equivalence classes for data input;

how the software will cope with invalid input;

input with safety or integrity implications;
e any initial and terminal state(s).

The latter does not consider the structure of the software and this contrasts with
white-box testing which focuses on program structure. Unit testing forms an im-
portant part of this, where lowest level modules are tested first. This is followed by
integration testing which is a check of how the module integrates with the rest of
the system. Thus a module is called from all other directly linked modules and each

module (unit) should be tested regarding
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the module interface;

local and global data structure;

important execution paths;

error handling paths/safety requirements;

boundary conditions.

Tools which generate test cases from state based formal notations have been pro-
posed by Dick and Faivre [30]. VDM-SL specifications are provided for illustrative

purposes and test generation includes

1. partition analysis - the precondition for each operation is transformed so that
disjoint partitions of state values become apparent;

2. test sequencing — partitions of state values are used to construct a Finite State

Automaton and paths through it which cover all required tests;

3. the generation of input values for validation of the implementation. These are

obtained from constraints in the specification.

The method for test generation outlined above covers both black-box and white-
box testing. Test domains can correspond either to abstract specifications or (with
refinement) to concrete implementations. The former leads to validation of the
specification and the latter investigates the structure of the implementation.

Treharne et. al. [113] also use boundary value analysis and equivalence parti-
tioning to generate tests from a formal specification written in B AMN. The formal
specification is then refined and eventually implemented in a development supported
by the B-Toolkit. The test cases (which are in an abstract form) are themselves re-
fined to form test cases for the implementation. The PROST-Objects project [106]
has developed a method for formally specifying tests and describes similar techniques
which are applied to Z specifications.

2.2.4.3 Weaknesses in Existing Tools

The tables and supporting literature indicate weaknesses in existing animation tools

for Z and a summary of these weaknesses are as follows:
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1. There is a lack of methods which can cope with published ‘real’ case studies.
This is particularly so for functional languages. Exceptions are mainly confined
to animation in logic programming languages such as SuZan [29], EZ [32], and
West [119, 117]. However there is little detail about the case studies animated
by EZ in [32], and little detail as to the performance of SuZan in [29]. However
the authors of [17] report their experience in using SuZan that it took “several
minutes to insert a virtual coin into a virtual vending machine”. (It is fair to
point out that computers have improved their execution times greatly since

the tool was first developed.);

2. Correctness issues are rarely discussed in any of the literature, the main ex-
ception being [17], in which correctness criteria are presented in detail. They
are briefly discussed in [119, 117] and [29] where a version of ‘pure’ Prolog is

used in order not to introduce non-declarative features;

3. Animation is a form of testing and strategies for animation can be compared
with those for testing software outlined in Section 2.2.4.2. Tt is important that
the source of an unexpected result can be traced in the animation but this
property is not discussed in any detail in any of the literature supporting the
tools from Tables 2.2 and 2.3. It is dealt with briefly in [119, 120], where it is
mentioned that a logic program can be traced to discover and correct the origin
of the flaw. If schema calculus is implemented, this makes it easier to trace
flaws. Any process which distances an animation from its specification also
makes it harder to trace flaws. Refinement of specifications before animation
is designed to improve executability. However it is likely that it will equally

make flaws harder to trace.

2.3 Summary

We have identified in this chapter some advantages in the use of formal methods in
the development of software systems, for example the lack of ambiguity of math-
ematics compared with natural language, and that mathematics has the potential
for reasoning and proof. However the perceived difficulty of the customer and/or
developer in understanding mathematics can present problems for the validation of
the requirements specification document, which provides primary input to design.
Executing a formal specification to demonstrate its functionality is one solution.
The arguments for and against executability of such a specification have been set
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out, and the conclusion was that the clarity of the specification should supersede its
executability, and furthermore the ability to be able to reason about a specification
is of prime importance. A solution is to specify formally using a non-executable lan-
guage, then animate or interpret the specification using a programming language. In
other words, proof and animation can be used as complementary methods of valida-
tion. Work was then presented by researchers in the animation of Z using functional
and logic programming languages. These declarative languages were deemed most
suitable for animation since they are more capable of capturing the declarative as-
pects of Z.

We argue that there are advantages to be gained from an animating system
which utilises a logic programming language, as opposed to a functional language
for executing Z. Functional programs have the facility for infinite set implementation,
but these present difficulties for logic programs. However logic programs enable a
“what” approach of specification to be modelled via constraint predicates. Queries
of the “what if” variety can then be posed: given predicate Pred(x,y,z,w) the
value(s) of w can be established where x, y, z are ground or (in principle) the
value(s) of x, where y, z, w are ground. This capability (we feel) outweighs the
inability to use infinite sets. Furthermore, the B-Toolkit implements only finite sets
in its animations. Animation tests specific examples (as for the ATC case studies),
while proof mainly involves generalities, and may involve infinite sets.

After a specification is animated, it will be necessary to be able to trace the
sources of any discrepancies between real and expected results. Therefore, the closer
the animation to the specification is the easier it will be able to trace and correct
any flaws. This was the case with the CPS (ATC domain specification), described in
Section 2.1.1, where the structure of the CPS was reflected in its Prolog animation.
Therefore we feel that a specification ought not to be refined before implementation,
for refinement adds extra detail. Also (if possible) the modular form of the specifica-
tion in schema calculus and referencing ought to be retained. The requirement that
it ought to be possible to trace the source of an unexpected result of an animation
forms Contribution 1 of this thesis.

The weaknesses of current animation tools have been indicated, and these par-
ticularly include the lack of tools suitable for ‘real’ case studies, and the lack of
attention to ‘correctness’ of the tools. Although some of the animation tools deal
with case-studies, none of these are known to be correct. Conversely the prototype
animator of [17] is correct but has not been used with any case studies. We address

this lack, by presenting the rule base for a tool which has the potential to animate
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real case studies, and furthermore is correct. Our approach to the animation of Z
via a logic programming language constitutes the major part of the next three chap-
ters. Thus since the proposed animation involves finite sets, Chapter 3 outlines the
semantics of the Z notation and compares this with the theory of finite sets in logic
programming. The CPS utilised a form of logic program synthesis to generate the
animation, and Chapter 3 will also explore the possibility of logic program synthesis
to obtain a logic program from a Z specification. This is with a view to obtaining
a correct animation of a Z specification via logic program synthesis. Godel is a
logic programming language which involves types and sets and Chapter 4 examines
three other requirements for animation tools, first presented in [117], the practical
ones of coverage, efficiency and sophistication and presents two case studies which
animate Z in the logic programming language, Godel. We also examine a possible
test strategy for animation which can be compared with strategies for testing soft-
ware. Chapter 5 explores a different approach to correctness, that described in [17],
where an animation is correct if it abstracts a specification, i.e. does not contain
any unwanted extra information. Some issues concerning undefinedness will also be

discussed in that chapter.
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Correctness — Program Synthesis

This chapter describes methods for deriving a logic program from a specification
using logic program synthesis [28, 59] and is an updated version of West and Ea-
glestone [119]. A sound technique for Z to logic program translation must be based
on some correspondence between the two underlying theories. The semantics of the
Z notation is outlined and differences noted with the Zermelo Fraenkel Set Theory
(ZF) on which it is based [36, 22]. A simple example of a specification in Z is pro-
vided for illustrative purposes. Key axioms for the theory of finite sets [76] in logic
programming are presented (in Appendix B). The transformation of standard logic
to its clausal form and hence to a logic program is explained next and an attempt
is made to transform set theory axioms to their clausal form. The concluding part
of the chapter describes the difficulties in proceeding with the method, and why it
was abandoned. The link between the two formalisms forms Contribution 2 of
this thesis.

3.1 The Z Notation

The Z notation is described fully in [105, 103] and is outlined here. The reduced set
of ZF axioms on which Z is based, known as ZF-without-replacement, is presented
in Appendix A. In contrast to ZF theory where sets are built from the empty set
J, the sets of the Z notation are typed, and a typed set is a carrier of a type. The

notion of typing is used to describe and name sets which are required by a particular

35
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specification. As a consequence, in the Z notation the empty set is not unique, for
a different empty set characterises each type.

The semantics of Z is described by means of a ‘world’ of sets W in which the set-
theoretic operations of Z can take place [103]. The sets of W are the specification
types, and each type must be disjoint. The replacement axiom is omitted from
7 because of consistency problems: this reduced set of axioms is known to have
models [36]. For each of the ZF axioms there is a corresponding operation in Z. It is
necessary for W to be closed under the operations of the specification, and this will
be so for ZF-without-replacement. The set axioms chosen for Z are adequate for our
purposes as they are sufficient to model all the sets we might require, including the
set of real numbers.

The ‘sets as types’ feature means that formulae in ZF containing expressions
such as

Vze A(z)

where A(z) is a wif appears (in Z) as
Ve:7e A(z)

where 7 is some set valued object.

Ordered pairs, such as (a, b), are usually derived from ZF as in [110]:
(a,0) = {{a},{a, b}}.

However this would cause problems with incompatibility if a, b were of different types
and for this reason ordered pairs are defined axiomatically. In a similar manner the
natural numbers are defined by the Peano axioms rather than as a definition arising
from the infinity axiom.

In Z, types are given if we are not interested in their internal structure, or derived
from them using type constructors. Thus if 7; denotes a typed set, further typed

sets can be defined recursively as

(i) Power set of T;, P (T;), whose type variables are subsets of T};

(ii) Cartesian product, T} x Ty...x T,, whose type variables are tuples.
Further derived types are schemas, ariomatic descriptions and free types.

A Schema is a typed set each of whose members is a collection of identifiers, or

named type variables, the set of names being a given type.
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Schemas in Z are defined either vertically or horizontally. The vertical defini-

tion of Schema is as follows:

__Schema
Dy ...; D,

where each D; is a declaration of the form z; : 7;, where 7; is set valued, and
each CP; is a predicate constraining the variables of the schema. If m = 0

then the constraining predicate is true.

The horizontal definition of Schema is

Schema = [Dy; ...; D, | CPy; ...; CPpy).

A binding for a schema provides values of z; which satisfy CP; A ... A CP,,.
Supposing that Schema has N variables, then its binding is represented by

<1 > val,..., oy = valy >

where ‘z; = val;” means that each variable z; is associated with a value val;.

A schema specifies a set of such bindings, denoted by {S e 65};

An Axiomatic description provides the definition of global constants and vari-

ables and has the form

‘ Dy ...; D,
‘ CPy; ...; CPy,
where Dy; ...; D, are declarations and CPy; ...; CP,, are predicates;

A free type isa (possibly recursive) structure involving global constants and types.
Thus

Ti=c|...| em| d{E[TI) |...| dal(E[T]).

The restrictions on the constants c; ... ¢, and variables d; ... d,, are described
fully in [104]. In brief, a sufficient condition for a free type definition to be
consistent is that each of E;[T],... E,[T] is finitary. Examples of finitary ob-

jects are cartesian products, sets of finite sets and finite sequences. Examples
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of objects which are not finitary are power set and infinite sequences.

An example of a free type is a binary tree, and a simple kind of free type can

be used to define an enumerated set. E.g

TrafficLight ::= Red | Amber | Green

The implication is that constants Red, Amber, Green exhaust the set TrafficLight
and are all distinct. We shall not be concerned with free types in this thesis,

apart from the simplest ones.

A further type is a generic definition, where a schema is defined in terms of some
untyped parameters. Some of the mathematical toolkit is defined in terms of these
generic constructs. A sequence of length n of elements from set X can be defined
as a function from 1..7n to X. A non-empty sequence of elements from X has type
denoted by seq; X. The head of the sequence is then defined:

— [X]
head : seq; X — X

Vs:seq X @ head s = s(1)

The double bar denotes a generic description.

3.1.1 Small File System Example

A simple example of a specification of a file system is presented to illustrate the
basic structures of Z. We shall return to the example in Chapters 4 and 5, for

further illustrative purposes. The small file system involves a single given set

[Flileld)

which models the set of file identifiers, whose members are not explicitly provided.
There are a maximum number of files, MazFiles, a natural (non-zero) number which

is defined axiomatically:

‘ MazFiles : N;

and is an axiomatic description in which there is one declaration and zero constrain-

ing predicates.
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We define the file system in terms of its state variables which are Files, the files

on the system, and Count, a count of the files. The state schema is FileSys.

__ FileSys
Files : F Fileld
Count : 0.. MaxFiles

#Files = Count

The finite subsets of Fileld are denoted F Fileld. The declarations of types in the
upper part of the schema box mean that Files is a finite subset of Fileld and Count
is a natural number between 0 and MazFiles inclusive. The predicate constrains the
state variables in that Count is the number of files, # Files. The schema denoting

any change in state variables is, by convention, FileSys’.

__FileSys'
Files' : F Fileld
Count' : 0.. MaxFiles

#Files' = Count’

The variables of FileSys' are primed and denote the values after some operation.
Note that their types and predicate constraint are the same as for the unprimed
version.

In this very simple specification, there is only one way of modifying the file
system. Files are added, one at a time and each time a file is added Count is
incremented. The state variable types and modified values are specified by the
schema AddFID.

__AddFID
FileSys, FileSys'
NewFile? : Fileld

Count < MazxFiles
NewFile? ¢ Files

Files' = Files U { NewFile?}
Count' = Count + 1

The appearance of the schemas FileSys, FileSys' in the declarations of AddFID
means that their declarations are included with the declarations of AddFID and that
their predicates are conjoined with the predicate of AddFID. ‘FileSys, FileSys" is
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usually shortened to ‘AFileSys’. The file to be added is NewFile?, the decoration
? denoting it to be an input variable. The predicate gives the restrictions on the
input and state variables before the operation can take place and also the value of the
variables after the operation. Hence Count is less than MaxFiles, NewFile? is not
already a file and Files' is Files with the new file added. The count is incremented.
A binding of AddFID associates values of the schema variables to their names.
For example if Fileld is {Fidl, Fid2, Fid3, Fid4} a possible value of a binding is

< Files = {Fidl, Fid2}, Files' = {Fid1, Fid2, Fid3},
Count = 2, Count’ = 3, NewFile? = Fid3 > .

The binding of each variable within < ... > is consistent with both the declarations
and predicate of AddFID.

Note that AddFID is in the constructive style where the primed state A FileSys is
expressed explicitly in terms of the unprimed state. An example of an unconstructive

style of specification for AddFID is one containing a predicate of the form:

Files C Files' A
Files = Files' \ { NewFile?}

The next section presents the theory of finite sets, to indicate the similarities and

differences between finite sets and ZF.

3.2 The Theory of Finite Sets

In order for sets to be manipulated mechanically, it is necessary to present them in a
form closer to the level of a computer (such as a list). The axioms for such sets and
set operations are presented in detail in Manna and Waldinger [76]. This presents
the theory of some fundamental structures of computer science as “theories with
induction”, and includes the “theory of finite sets” . There are two unary predicate
symbols element(u), set(z)' and (u o z) denotes a binary insertion function: the
result of inserting element « in set z. The constant symbol & denotes the empty set.
A binary predicate symbol v € z denotes membership. The text uses a distinctive
notation; for example quantification is expressed V set(z) : p(z) and ‘logical and’

is and. We retain the quantification notation, but we write & for conjunction,

Lan element can also be a set
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for compatibility with later chapters. Key axioms of the theory and the induction
principle are in Appendix B and include axioms for set generation, membership, set

equality and set union. For example set equality axioms are
Element multiplicity V element(u) : Vset(z): uo(uoz) = (uox);
Element exchange V element(u) : V element(v) : Vset(z) : uo(voz) =vo(uox).

Sets can be conceptualised as lists where multiplicity and order of elements is irrele-
vant, and there are many representations of the same set. Set operations resembling
those of ZF can be derived from the axioms. For example set equality can be defined

in terms of subset:
Vset(z):Vset(y) : z=ycrCy&yCz

The transformation of logical expressions of this “set as list” theory to their clausal
form and (hence) Prolog formed the basis of the translation technique via program
synthesis and is explained informally in the next subsection. It is the most obvious
strategy, arising from the mathematical relationship between Z and the fact that Z
and Prolog are related in a mathematical way, and this relationship can be realised

by a formal synthesis of the Prolog program code.

3.3 Logic Programming Synthesis

A survey of the techniques for synthesising logic programs from specifications is
provided by Deville and Lau [28]. The concerns of the survey are that

“Given a (non-executable) specification, how do we get an (exe-

cutable) logic program satisfying the program?”
Three main approaches are considered in the survey

1. constructive synthesis (or the ‘proofs-as-programs’ approach) whereby con-
jectures about the specification are constructively proved and the program
is extracted from the proofs. An example is Henson [54], who presents the
constructive set theory TK, which can be employed to derive programs from

proofs of specifications;

2. deductive synthesis whereby the program P is deduced directly from the speci-

fication S. Hogger [59], who also provides a review of literature on the subject,
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describes this relationship as one of partial correctness between program P and
specification S (S = P);

3. inductive synthesis whereby a program can be generalised from a partial spec-
ification. The partial program frequently includes instances of predicates. An

early example of its use is the MIS system as described in [99].

Since Z is based on ZF, a first order theory, and logic programs can be deduced from
logic specifications, the approach in this chapter is confined to deductive synthesis. A
most important advantage of the method is that when a program is derived logically
from a specification, it is partially correct with regard to its specification [59].

Two examples are given to illustrate two methods of program synthesis. The
first method for synthesis of logic programs involves clausal form transformation
combined with resolution and the second is the Lloyd-Topor transformation [73].
A technique of obtaining recursive programs via folding, originated by Burstall and
Darlington [20], is described as being suitable for the kind of program synthesis

which involves list manipulation.

3.3.1 Clausal Form Transformation

Kowalski [71] presents a method whereby programs are deduced from specifications
using rules of inference such as resolution, combined with clausal form transforma-
tion. This use of resolution to synthesise programs contrasts with its more usual
use of running programs. An example which demonstrates the method and some
problems associated with it is provided by the transformation to clausal form of
specifications for member and subset. The full method and discussion is contained
in Kowalski [71] and only a brief outline and the results are given here. We use ‘&’
for conjunction and <— for ‘is implied by’ to distinguish logic programming nota-
tion from Z and ZF. In the clausal form of logic, formulae are restricted to those

with the structure:

LV Ly..V L,

The L; are literals, that is an atom or negation of an atom. Universal quantification
is assumed, and existential quantification eliminated. The programming language
Prolog is based on the Horn clause subset of clausal logic, where formulae contain

at most one positive atom, and thus transform straightforwardly to
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In principle logic formulae can be transformed to their clausal equivalents.
For example, the following is a simplified version of the axioms for set member-

ship and subset of Appendix B:

[a] = Fz:(z € ©);

[b] Vz:Vu:Vv:z € (uov)&S z=uVz€uwv;

[c] Vz:Vy:z2 Cy&eVw(wer=wey).

Splitting the ”if” and ”only if” halves of formula [c], for subset, we obtain

Ve:Vy:zCy«—Vw:(weEzr=wey)

and

Ve:Vy:zCy=>Vw:(wez=wey).

If we repeatedly apply logical equivalences such as

~(AVB)& A& B

and

- dzx: A Vz:— A

to the above formulae we obtain an equivalent set of three clauses [d] - [f]:
[d] z CyVuw(z,y) € z;

e] CyV (w(z,y)¢y);
flzZyVvzegzVzey.

In a similar manner formula [a] becomes
[g] —2€@.

In formulae [d]- [e], universal quantification is assumed, and existential quantifica-
tion has been replaced by the use of an arbitrary function w(x,y), called a skolem
function. However, note that [d] is a not a Horn clause, and that by completely
breaking down the logic to its constituent clauses we have lost its clarity and co-
hesiveness. In order to synthesise the recursive Horn clauses necessary for any set

implementation we require the use of the resolution or other inference rule.
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Resolution matches positive and negative clauses, including appropriate substi-

tution if necessary, so that clauses

- A; VB and Ay Vv C infer Bv C

if we can find substitutions which will match 4; and A, .
By resolving [d] with [g] (substituting z = w(z,y) in [g], and z = & in [d]) we

obtain
[h] @ C y.
The second part of the Horn clause specification for subset is

[i] uovCyvVudyvoZy

and can be obtained, by further resolutions of clauses [d] - [g]. Formulae [h] and
[i] are equivalent to the Prolog clauses for subset, where upper case letters denote
Prolog variables and [1 [A|X] are respectively the empty list and list with head A
and tail X.

subset ([A|X], Y) :- member(A, Y), subset(X, Y).
subset ([1, Y).

The Prolog clauses for set membership can be similarly derived:

member (X, [X|_]1).
member (X, [_]Y]) :- member(X,Y).

Note that the program synthesis just described is “by hand” and relies on human in-
telligence to determine which clauses are most suitable for a resolution step, as there
is no algorithmic method. Also, as noted by Kowalski a more direct derivation is
by a partial conversion of the formulae followed by the application of non-resolution
forms of inference. The limitations of the method just described are summarised in
Hogger, in that it is not possible to decide which procedures are most suitable, for
example which inference rules, for obtaining Horn clauses from logic specifications.

Clausal form transformation relies on the definition of a logic program as a set of
Horn clauses. This view of a logic program is limited in that negative information
can never be deduced. Lloyd [73] describes how an extra inference rule can also
be invoked. This is the closed world assumption (CWA), that if a ground atom A
cannot be deduced, then infer = A. However if the CWA is to be sound then the
failure of A must be finite (the program must terminate) and also A must be ground.

The method below allows the possibility of negative literals.
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3.3.2 Lloyd-Topor Transformation

A systematic method of obtaining a Horn Clause program from arbitrary logic spec-
ification is the Lloyd-Topor transformation [73]. This is more convenient than
“straight” clausal form transformation for it replaces expressions in the form of
Head «— Body to Head «+— New_Body. For example, a version of the set-equality

definition of Section 3.2 is

r=yoVu:uer=>uecey&uey=uécr.

The ‘if’ part transforms as follows:

r=y+—Vu:ucezr=uecy&kuecy=ucz
r=y+—-Ju:m(u€r=>u€y)V-(uEyYy=ucz).

A novel feature of the transformation is the introduction of a new predicate (here

called auz). Thus set equality becomes

=1y — - aur(zr,y)
aur(z,y) «— Ju-(u€z=uecy)Va(u€Ey=uc€z)

with auz defined in the second statement. By splitting the second predicate to two

and re-expressing in Prolog, set equality becomes

set_equ(X,Y) :- not(aux(X,Y)).
aux(X,Y) :- member(U,X), not(member(U,Y)).
aux(X,Y) :- member(U,Y), not(member(U,X)).

with “member” defined as above and an additional clause aux(X,Y) generated.
However running the resulting Prolog presents problems. Prolog queries with in-
stantiated X, Y such as

| ?- set_equ([1, 2, 3, 21, [2, 3, 1, 11).

yes

return expected responses (noting that order and multiplicity of list elements is
irrelevant). However, if either X or Y is unknown, the Prolog system flounders
through trying to satisfy predicates of the form not (p(Z)) where Z is unknown. In

principle there are an infinite number of answers to
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set_equ([1, 2, 31, X)

given the axiom regarding multiplicity of list elements. The problem can be solved

by the simple expedient of adding
set_equ(X, X).

to the clause database, which can be obtained either by observation or by unfolding
of the clauses and further application of resolution.

The above derivation indicates the improvement that the use of the Lloyd-Topor
transformation has over ‘straight’ clause transformation. However it is still limited in
that it again requires human intelligence to obtain a workable program. The problem
lies in the fact that for Prolog predicates involving set operations to succeed in cases
where variables are unknown we need recursion. A method of obtaining recursive

programs is briefly reviewed.

3.3.3 Recursive Programs

The problems of obtaining recursive programs from specifications have been tackled
in Lau [72] who suggest the technique of fold/unfold. The user specifies the form
of the desired recursive calls in the form of a folding problem. The fold/unfold
technique by Burstall and Darlington [20] involves the following: in folding, given
a clause Head «— Body, and suitable substitutions, the occurrence of Body in an
expression is replaced by Head; unfolding is the converse. The derivation of subset
and member clauses in Section 3.3.1 is a generalisation of the fold /unfold technique.
However the techniques for automatically producing recursive logic programs are
still problematic [92]. The latter reference presents a method of program synthesis
which extracts a program from a fold/unfold proof. However the authors remark

that suitable strategies still need to be devised for particular classes of program.

3.4 Summary

The initial work of translation from Z to a logic program involved the search for some
algorithmic procedure for converting Z into clausal form and hence into Prolog. Z is
based on ZF set theory, a theory of first order logic, and programs can be synthesised
from specifications in first order logic, so this would seem the most obvious strategy.
Since Z is based on sets, we require a suitable data model of sets in the logic program.

In order for sets to be manipulated mechanically, it is necessary to present them in
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a form closer to the level of a computer (such as a list). However list manipulation
presents problems in that recursive programs are required for their manipulation -
and these are difficult to synthesise from a specification. We have identified a link
between finite sets in ZF and finite set theory (Contribution 2). However given
the limitations of algorithms for program synthesis outlined previously, a change of
direction was determined on. The change of direction involved Structure Simulation,
which required a “flattening” of Z to a form suitable for a logic program and in this
sense is similar to the the original translation process. However, instead of a formal
transformation, characteristics of Z schema were identified and adapted so that the
logical structures of the specification would be preserved as far as possible in the

resulting logic program model. This method is examined in the next chapter.
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Structure Simulation

4.1 Introduction

The previous chapter described attempts to generate a logic program from a Z
specification using program synthesis. This chapter describes an alternative method
of obtaining a translation of a Z specification, viz. structure simulation, a method
in which ‘Z’ is captured in a manner which is amenable to simulation by a logic
program. Structure simulation was originated by West and Eaglestone [119]. It
involves the translation of a subset of Z to the logic programming language Prolog;
a prototype translator is presented in [13]. However, West and Eaglestone identify
certain shortcomings of the Prolog language and this chapter presents a simulation
by an alternative LP, viz Godel.

In Section 2 of this chapter we briefly describe the previous work of West and
Eaglestone in the use of structure simulation. We also compare the method with
other Prolog animators, and outline its respective advantages and disadvantages.
The advantages in using the logic programming language Godel for the simulation
are then presented. In Section 3, the main features of the Godel language are
outlined and we provide, in particular, details of its type system and of its support
for sets. Section 4 of the chapter describes the structure simulation rules using the
‘small file system’ from Chapter 3 for illustration. The remainder of the chapter is

devoted to two case studies from [51], a simple assembler (Section 5) and the Unix

48
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file system (Section 6). The assembler is an update and extension of [119], which
presented an animation in Prolog of a simple assembler. The updated version is in
Godel, and we demonstrate its improved qualities as an animator for Z. A version of
the Unix file system case study was originally presented in West [117] and includes
a representation in Godel of some of the more complex features of Z. These features
of Z (and the Z toolkit) were not covered by the original Prolog animator; structure
simulation is Contribution 3 of the thesis. The chapter ends with a review of the
case studies and a summary of the advantages the approach has over animation in

Prolog.

4.2 Translation of Z to Prolog

This section describes work done in translating Z to Prolog and includes previous

work done by ourselves.

4.2.1 Comparison with Other Methods

Structure simulation is described in West and Eaglestone [119], in which a subset
of Z is translated to Prolog; it is a translation strategy in which characteristics of Z
schemas are identified and adapted so that the logical structures of the specification
are preserved as far as possible in the resulting Prolog interpretation. The technique
was applied to the translation of a Z specification for an assembler [51]. It was also
applied by West et al. [120] to a real-life example: Pelican Crossing equipment. In
the simulation, Z schemas are represented by predicates and a query to a schema
should result in zero or more bindings satisfying that schema, depending on the
instantiated values. A schema has possible values of its variables established by the

signature and restricted by a predicate. Thus the predicate

Schema <= Signature A Predicate

establishes a logical relationship between a schema and its signature and its predi-
cate. The closed world assumption was briefly discussed in Chapter 3, and one of the
implications of this assumption is that given a definition of a predicate (such as for
Schema) although only the ‘if” part of the definition is provided, this is equivalent
to ‘if and only if’.

The signature provides a means of checking that a binding is as specified; the

strategy is to provide bindings for some of the schema variables, query the program
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and generate the bindings for the rest of the variables. The method is supported by
a library of Prolog code which models the evaluation of set expressions, including
relations and functions. If backtracking is initiated, further bindings are generated
and thus the set of bindings satisfying the schema in the model environment is
presented incrementally. The binding is such that every variable within a schema is
represented by a Prolog variable. Thus specification variables such as time can be
explicitly represented, as was the case for Pelican equipment.

The SuZan project is described in [29], in which a subset of Z is animated in
Prolog. The principal difference between the simulation technique and that of the
SuZan project is the use of predicates in the schema signature to generate data.
In the SuZan project, Schema is used as a means of a generate and test cycle.
The signature type constructor predicates are coded in a manner which generate
values from instantiated given sets, and these values are subsequently tested for

conformance with Predicate. Thus a variable, C, which is declared as follows:

C:PA

translates to powerset (A, Ps), member(C, Ps), where the variable Ps denotes the
power set of given set A. If Ps is not instantiated, the first predicate will generate
it, the second predicate selecting each member of this power set for testing against
other generated variables for conformance with the schema predicate. In contrast,
structure simulation would check if a particular value of C' was a subset of a given
set A before checking it in the predicate.

However for a set A of size a the number of subsets of A is 2%; the data gener-
ated is liable to grow exponentially with respect to the size of the given sets, so the
execution process requires some form of control. The SuZan researchers have used
devices such as “unfolding” [20] and “filter promotion” for such control purposes.
Unfolding replaces a predicate with its logically equivalent set of conjoined predi-
cates, and then removes duplicates. Filter promotion re-orders generating predicates
so that fewer predicates will actually generate data, the rest acting as constraints.
By suitable instantiation, and using appropriate control facilities, a range of “what
if” questions are possible, which are not available in our approach. For example
it is possible to generate type variable values from given set instantiations. The
second major difference between the two approaches is that the SuZan group use a
library of “pure” Prolog to implement set operations. This contains no extra-logical
features such as cut whereas the Prolog library utilised by the simulation contains

some extra-logical features to curtail fruitless backtracking.
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As described in Chapter 2, Breuer and Bowen [17] have identified requirements
for an animation. They include coverage of Z, sophistication, efficiency and correct-
ness. An aim of the simulation presented in [119] was that as much coverage of Z
as possible is attempted, and that the code should be sophisticated. The assem-
bler is a complex and substantial specification which was successfully animated in
Prolog using the simulation technique. Response times to the animation code were
of the order of a second and so far as coverage of Z, sophistication and efficiency
is concerned, the technique was deemed successful. The animator was also applied,
to useful effect, to the Pelican Equipment Study. The method was thought supe-
rior to that described in the SuZan project in that both its performance and its
sophistication were greater.

The issue of correctness of the simulator was limited to an investigation as to
whether program synthesis (described in Chapter 3) was suitable for translation of Z
to Prolog and in any case the decision to use extra-logical features in the simulation
would frustrate any check for correctness. Any implementation of Prolog is unsound
with respect to the semantics of first order logic and this invalidates any attempt
to prove the correctness of a Prolog implementation of Z. It is argued here that a
better technique is to use the Gddel language [56] for the reasons cited in the next

subsection.

4.2.2 Advantages of Godel

Godel is adopted for the following reasons:

1. Prolog clauses are selected by the interpreter in the order they appear. This
limits the “what if” facility of animation; the deduction of any variable from
instantiated variables is not straightforward unless the code is ordered in an
appropriate manner. In contrast Godel has a flexible computation rule that

can be constrained by user-defined control declarations;

2. Prolog has difficulties in dealing with negation if the negative literal is not
ground (see [7, 73]). In that case the program will flounder or, in the case
of some implementations, will issue an error message. The computation rule

used by Godel ensures that all calls to negative literals are ground;

3. Zis based on typed set theory and Prolog lacks support for types or sets. The
Prolog predicate “setof” has no declarative meaning. Godel has been carefully

designed and implemented, and supports both types and sets;
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4. Prolog is unsound, for many reasons including the existence of extra-logical
features such as ‘assert’ and ‘cut’. Also, Prolog has no occur check in the
unification algorithm, although some implementations allow for this to be
checked. Apart from some well-defined exceptions, a program in Godel is
defined as a theory in first order logic and an implementation must be sound

with respect to this semantics;

5. Although it was possible to write code for set operators such as intersection
and union, it was necessary to introduce the non-declarative ‘cut’ extensively
in order to avoid fruitless backtracking. However Godel contains built-in im-

plementations of most of the ZF set operations;

6. The translation of some first order constructs such as quantification was awk-
ward in Prolog. For example universal quantification was achieved only by
writing a separate predicate for each of its occurrences. This predicate in-
cluded the use of ‘set-of’ to build the set over which the quantifier could range.
In contrast, Godel allows the use of both universal and existential quantifica-
tion. The existence of built in set operations, universal quantification and the
ability to form constructs such as ‘ordered pair’ made the Godel code both

easy to write and transparent to read.

The next section introduces the Godel programming language and provides examples

of how its support for types and sets can be utilised in animation.

4.3 The Godel Programming Language

4.3.1 Overview

A full and formal description of the Godel language which also includes tutorial ex-
amples can be found in [56]. A brief introduction to the Gédel language is presented
here. The logic programming language Godel has a greatly improved declarative se-
mantics compared with Prolog, and supports a set data type in a manner described
below. Furthermore, Godel is typed.

To allow for program structuring, the language is modular and modules can be ex-
ported (to modules) and can themselves import (other modules). A Gidel program
is a collection of modules. There are a number of system modules and these include

modules for integer, rational and floating point arithmetic. Further system modules
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provide structured data types such as Set, List, String, Table. Godel pro-
vides special facilities for meta programming and system modules are provided for
reasoning about other Godel programs.

Language declarations include the categories: base, constructor, constant, func-
tion, proposition and predicate. A predicate definition consists of a declaration,
specifying the type(s) of its arguments, and a set of statements of the form

Head <- Body.

where <- in Godel means “if” and in contrast to Prolog, upper case is used for
constants and lower case for variables. Head is an atom with the defining predicate
and Body is a formula in first order logic and may be absent. Besides the usual
first order constructs such as universal and existential quantification, Body can also
contain the construction IF ..THEN..ELSE.

4.3.2 Types and Sets

Many sorted first order logic provides the basis for Godel, whose sorts are then types.
Gddel is strongly typed; each constant, function and predicate must have its type(s)
specified. A Godel program is checked for type correctness during compilation. The
goal is subsequently checked at run-time before execution. The BASE declaration
declares the base types of the module. For example a base FileId can be declared
to represent file identifiers. In addition there are type constructors such as List/1,
so that List(a) is a generic list with parametric type a.

In Godel, sets are supported by the system module Sets. Thus Set (a) constructs
a term whose intended meaning is a set of elements of type a. The set terms of Gddel
can be compared with the “finite sets” of chapter 3. In Gdédel Inc is a mapping
Include with the property Include(d,S) = {d}US, where d are an element and S a
set. Include can thus be compared with o. Braces for sets provide some notational
sugar. For example {1, 2, 3} stands for

Inc(1, Inc(2, Inc(3, Null)))

where Null is the empty set ({ }), and the integers are supplied by Gddel. The
multiplicity and order of elements in a set is irrelevant and the equality of extensional
sets takes this into account:

{6, 6, 73 ={7, 7, 6, 5}.

Set terms can also be intensional:
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s={x :1<x <5}
The precise meaning of this example of an intentional set (term) is
ALL [x] (x In s <> SOME [yl( x =y & 1 <y <b5)).

This semantics for intentional sets was first given in [21]. The Sets module also
provides functions for set union ( + ) and intersection ( * ). Set difference is rep-
resented by ( \ ). Predicate In represents set membership and Subset represents
subset. Both are provided by Sets. Constructors also support the introduction by
the programmer of data types such as trees.

The following presents some queries and answers to a Godel module Demo1, where
‘[Demo1] <- ’is the prompt. The module imports Integers, Sets and Rationals.

[Demol] <- x = {1,2,3,4,5} + {4,5,6,7,8} \ {3,4,5,6}.
x = {1,2,7,8}7

[Demol] <-
IF SOME [x] x = {y : 1 =< y =<5} & x "= {} THEN z = x ELSE z = {0}.

z = {1,2,3,4,5}7

[Demol] <- x Subset {1, 3, 4, 2}.

x={}7;
x={1} 7 ;
x={1,2,4} 7
Yes

The latter query eventually supplies all subsets of {1, 3, 4, 2}. In general the
program supplies a set of answer substitutions. However some of the set may be
undefined:

[Demol] <- (x =0) & ( (y=3+x) \/ (y=6-x)\/ (y =3/x)).
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x =0,
y=67;

Arithmetic exception: division by O.
[Demol] <- (x = 1) \/ ({x, 1, 2, 3} = {1, 2, 3, 4}).

x=17;

Floundered. Unsolved goals are:

Goal: {v_1,1//1,2//1,3//1}={1//1,2//1,3//1,4//1}
Delayed on: v_1

The problem of set equality when part of the set is non-ground arises because of the
under-developed constraint satisfaction properties of Godel. Moreover, if the query
is expressed in a different manner, none of the set may be provided:

[Demol] <- (x =0) & ( (y=3/x) \/ (y=3+x)\/ (y=6-x)).

Arithmetic exception: division by O.

[Demo1] <- ({x, 1, 2, 3} = {1, 2, 3, 4}) \/ (x=1) .
Floundered. Unsolved goals are:

Goal: {v_1,1//1,2//1,3//1}={1//1,2//1,3//1,4//1}
Delayed on: v_1

We examine further the issue of ‘undefinedness’ in Chapter 5.

The [Sets] module is imported by a library of Godel code which implements
relations, functions etc belonging to the Mathematical Toolkit described in [104].
The ‘Lib’ module is described in Section 4.3.3.

4.3.3 Translation Architecture and the ‘Lib’ Module

The ’architecture’ for animation of a Z specification is as follows:
e the Lib module, a library of code which implements the Mathematical Toolkit;

e a module containing predicate definitions of schemas associated with a speci-

fication. This module imports the Lib module.

The full version of Lib is in Appendix C and has an EXPORT and LOCAL part.

However in this chapter the parts are, in the main, merged. The module includes
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the implementation of constructions from the Toolkit such as | A where A is a set

of sets:
UAd={z:X|(3s:Aez € 5)}.

(See also Appendix A.) The characteristic predicate DUnion has two arguments, the
first of which is a set of sets of some item, and the second of which is the set of
items. Its export and local definitions are

PREDICATE DUnion: Set(Set(a)) * Set(a).

% x is a set of sets of some type and y is the
% distributed union of x
DUnion(x, y) <-y ={z : SOME [w] (w In x & z In w) }.

A query and answer to Lib is shown.

[Lib] <- DUnion({{1, 3}, {2, 3}, {5, 1}, {}}, x).
x={1,2,3,6} 7

A partial function f from X to Y is defined in the Toolkit:

{f: XY |Ve:X;y,z:Ye((z—y) ef)AN((z—2) €f)
=y=2)}

In order to implement ordered pairs and relations, the Lib module also includes a
type constructor, OP. This type constructor allows the definition of OrdPair (shown
below). Relations are additionally constrained, for example for functionality.

The predicate PF which is next shown models partial function f and is generic
to sets of any type. The characteristic predicate PF has three arguments, the first of
which is a set of ordered pairs from two sets. The second and third arguments are
the first and second sets. The predicate definition of PF replicates the ZF definition
of partial function. The definition is followed by a query.

CONSTRUCTOR 0OP/2.

FUNCTION OrdPair : a * b -> 0P(a,b).

%hhhkh declaration of partial function %%%h%
PREDICATE PF : Set(0OP(a,b)) * Set(a) =* Set(b).

%%%%% This characteristic predicate determines whether a set is
%hhh%h a function from sl1 to s2 YAILL%
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PF(pf, s1, s2) <- ALL [z,x,y]
(z In pf & (z = OrdPair(x,y))
-> (x Insl) & (y In s2) &
ALL [u] (OrdPair(x, u) In pf -> u = y)).

% query and answer: partial function
[Lib] <- PF({0OrdPair(1,2), OrdPair(3,2)}, {1,2,3}, {1,2,3}).

Yes

Note that since the variables s1, s2 are both sets then these must always be pro-
vided. This is true for all sets including the integers. The Lib module provides other

parts of the Z notation, such as function override, domain and range restriction.

4.4 Structure Simulation: Rules

This section describes a set of rules for animation of Z. The example of the ‘small

file system’ from Chapter 3 is used to illustrate these rules.

[Fileld)
‘ MazFiles : N;

_ FileSys
Files : F Fileld
Count : 0 .. MaxFiles

#Files = Count

_ AddFID
AFileSys
NewFile? : Fileld

Count < MaxFiles
NewFile? ¢ Files

Files' = Files U { NewFile?}
Count’ = Count + 1
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Recall from Chapter 3 the type of an expression in Z, which is either given or derived
using type constructors Power set, Cartesian product. A further derived type is a
schema, a typed set each of whose members is a binding, a collection of named
(bound) type variables. All these features are implemented in a manner which will
be described. The Z schemas in the example are interpreted in a single Godel module
Demo2, which imports predicates from the Lib module.

Schemas are also represented by characteristic predicates, defining the relation-
ship between schema variables. In the main, the animation strategy is to test schema
variables to see if they satisfy the characteristic predicate for that schema. If pos-
sible, other variables are generated associated with bindings for the schema. The
representation in Godel of given sets, schema variables, schemas and schema declara-
tions is presented in a tutorial manner in the next subsection, followed by the small
file system example. The complete code of the latter can be found in Appendix C.

4.4.1 Givensets and Bindings

Given Sets : In order to provide a small model environment, elements of the
given sets are provided as if they were enumerated free types in Z. The given
sets of the specification are declared as one of the base types (in Godel) and
some constants of the base types introduced to model the environment. These
constants are coded into extensional sets, for there is no automatic facility for
obtaining a set of all elements of a particular type. In the example, FileId
is declared as a BASE type and constants F1, F2, F3 declared to be of type
FileId. In addition each of the constants are declared as a member of the
type via the predicate IsFilelId:

PREDICATE IsFileId : Fileld.

The declarations IsFileId(F1), IsFileId(F2), IsFileId(F3) enable the
constants to be collected together via the use of an intentional set, setfid

[Demo2] <- setfid = { g : IsFileId(g) .
setfid = {F1,F2,F3 } 7

The result is the same as if Fileld was defined by the enumerated free type:

Fileld = F1| F2 | F3
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Schema and Variable Names Further BASE types are schema and variables names
and these are modelled by Name, Var respectively'. Note that although it is
desirable as far as possible to replicate Z names in Godel, upper case must be
used as the first character since names are constants. For example, FileSys
is declared as base Name, and the state variable Files, declared as base Var.
Godel functions capture variable and schema “decorations”. Thus DSet is a
function from Var to Var and primes a variable name. In a similar man-
ner IN decorates an input variable, OUT an output: functions IN, OUT have as
their argument a type of Name and return the same type. Examples of this use
of functions are DSet (Count), IN(NewFile) which denote Count', NewFile?

respectively;

Schema and Variable Bindings : A further BASE type is BindVar, used to fa-
cilitate the binding formation of schemas. Lists of type BindVar form a binding
of a schema. Variable names are bound to their values via functions over the
appropriate types. For example:

FUNCTION Bindl : Var * Set(FileId) -> BindVar.

The second argument of Bind1 can be a ground term of the appropriate type,
or a Godel variable, for example Bind1(Files, {F1, F2}). The following list
of BindVar forms the schema binding of FileSys:

[Bind1(Files, files), Bind2(Count, count ) ]
which can take the value:
[Bind1(Files, {F1}), Bind2(Count, 1 ) 1.

The typing restrictions ensure that Godel variables
files, filesl, count, countl,newfile

are all appropriately typed.

In the next subsection it will be shown how the binding function device ensures
that types and identifiers associated with a given schema are completely fixed by
function declarations and schema statement. They also explain how schema decla-

rations and predicates are modelled.

L Although, strictly, schema and variable names are the same Z type Name, it is convenient here
to ascribe them to different types.
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4.4.2 Schemas

Schema Bindings : A schema is modelled by:

SchemaType(binding, name) < Signature(binding_variables)
A Predicate(binding_variables)

where binding is of type List (BindVar) and name is of type Name.
SchemaType(binding, name) is defined by the Gddel predicate:

PREDICATE SchemaType: List(BindVar) * Name.
For example the schema named FileSys has schema clause head as follows:
SchemaType( [ Bind1(Files, files ), Bind2(Count, count )], FileSys)

Schema names are also decorated via Godel functions, thus DSch(FileSys)

primes FileSys;

Variable Declarations : Variables are checked for additional constraints via

Signature(binding_variables), for example if they represent a partial function;

Schema Predicate : Predicate(binding_variables) constrains the declared vari-
ables using predicates and functions provided by the system. Existential and

universal quantification are both provided by Gddel, as are set operations;

Schema Declaration in a Signature: If a schema B is declared in the signature
of schema A, then the clause head for B is conjoined to the signature of A. The
bindings are appended. For example the binding for AddFID is composed of the
binding of Del(FileSys) appended to [ Bind3(IN(NewFile), newfile)].

Given the binding function declarations Bind1, Bind2, the list inside the pred-
icate models @FileSys. The set of all schema bindings is { FileSys e O FileSys} and

the answer substitutions for a given query provide a subset of this set.

4.4.3 Testing Strategy for Animation

The testing strategy for animation is similar to the strategy for software testing.
However the data required is of a more abstract nature and for every test the data

should be checked as part of the typing constraints of the specification. Tests for
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animation purposes can be divided (as in the case of software testing) into black-
box testing and white-box testing. Black-box testing is designed to include tests
which check schemas which model top level functions and which therefore accept
data from the containing system. Testing can be with regard to input in the same
manner as software testing, so that for schemas which model each software function

tests should include

e different classes of input to schemas;
e boundary values for input;
e how the software will cope with invalid input;

e input with safety or integrity implications.
For state based systems, consideration should also be given to

e any initial and terminal state(s);

e state partitioning regarding equivalence classes and their boundary values as
described briefly in Section 2.2.4.2 and more fully in [30, 113, 106].

Equivalence partitioning could be a way of overcoming the problem of infinite sets,
with (for example) an equivalence partition class of numerical values greater than a
particular value tested by using representatives of that class.

White box testing involves the structure of the specification and includes ‘in-
tegration testing’ involving interfaces between schemas, schemas which call other
schemas and ‘unit testing’ of lower level schemas. Testing should include the crite-

ria that every conjunct in a schema predicate is exercised and should also check

e boundary conditions for in-range data;
e system states, that they adhered to any safety and integrity constraints;

e error handling schemas by the use of erroneous data.

Some of the above tests would be in conjunction with proof obligations of the system.
It is easier to show by a few well constructed tests that a proof obligation does not
hold, than to attempt to discharge it, which can be difficult and costly [85]. In
some cases (as for constructive state based specifications), some test variables are
instantiated (e.g. input and state variables) and the code allows the rest of the
variables to be calculated (e.g. output and post-operation variables). In other
cases, most or even all variables require instantiation and the animation provides a
check.
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4.4.4 Animation of the Small File System

The small file system specification is now animated in order to demonstrate the
general method and the simpler of the rules presented in the previous section. The
complete code in Demo2 for the file system is provided in Appendix C. The module is
divided into its export part which declares bases, constants, predicates and functions.
The local part defines the predicates. In this case there are predicates defining data,
IsFileld, and predicates defining schemas FileSys, FileSys', AFileSys and AddFID.
The assumption is that the user of the animator provides a value for MaxFiles of
10, so that the required subset of integers for Count is 1..10. The set Fileld is
obtained via its characteristic predicate IsFileld.

The local part of the module defines the predicates which model schemas where
Godel is used to check the type of the variable (e.g. files, files1 are both subsets
of setFID). The given set Fileld is modelled in a small way, by the intentional set
{x : IsFileId(x)}. The schema predicates are modelled by the library code in
Lib which includes the Sets module. For example

filesl = files + {newfile}

models files' = files U { NewFile?}.
The following provides a fragment of the code which models the small file system
specification.

LOCAL Demo?2.

% schema for state FileSys
SchemaType( [ Bindl(Files, files ), Bind2(Count, count )], FileSys)
<-
setFID = {x : IsFileld(x) } &
files Subset setFID &
count In {y : 0 =< y =< 10} &

Card(files, count).

% schema for state Del FileSys
SchemaType (binding, Del(FileSys)) <-
SchemaType(bl, FileSys) &
SchemaType (b2, DSch(FileSys)) &
Append (b1, b2, binding) .

% DSch(FileSys) is not shown.
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% schema for operation AddFID
SchemaType( binding, AddFID ) <-
SchemaType (bindingl, Del(FileSys)) &
bindingl = [Bind1(Files, files ), Bind2(Count, count ),
Bind1(DSet(Files), filesl ), Bind2(DSet(Count), countl )] &
Append(bindingl, [ Bind3(IN(NewFile), newfile)] , binding) &
count < 10 &
setFID = {x : IsFileld(x) } &
newfile In setFID &
“ ( newfile In files) &
filesl = files + {newfile} &

countl = count + 1.

The following shows some possible queries. The queries are with respect to
the bindings of three schemas, FileSys, AFileSys, AddFID. In each case, none of
the variables is instantiated for it is possible for them to be determined from the
information in the schema declarations and predicate. In this case the schema decla-
rations files Subset setFID and filesl Subset setFID mean that all possible
subsets are generated and the predicate checks their values. The Unix file store case
study of Section 4.6 provides an example of data types which are not so amenable
to generation of uninstantiated values.

Section 3.1.1 describes how the specification of the small file system is con-
structive in that the primed variables are expressed explicitly in terms of the un-
primed variables. A non-constructive schema AddFID1 which expresses the same
constraints as AddFID has been animated. This produces the same results as the
original form and can be seen in Appendix C. This is because files and files1
in AddFID1 are also instantiated from their declarations. (This subject is revisited
in Section 5.6.7.2.) The output eventually provides all schema bindings associated
with the three schemas via sets of answer substitutions. The following (commented)
output provides examples of the kind of testing required to validate a specifica-
tion. These include unit testing of component schemas and integration testing of
components with each other.

% test of schema FileSys

[Demo2] <- SchemaType(b, FileSys).

% the initial state

b = [Bind1(Files,{}),Bind2(Count,0)] ?

% second schema binding - a further state
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b = [Bind1(Files,{F1}),Bind2(Count,1)] ?

Yes
%» the following provides information about integration of
% schema FileSys and DSch(FileSys).
[Demo2] <- SchemaType(b, Del(FileSys) ).
% first schema binding
b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{}),
Bind2(DSet (Count),0)] ? ;
% second schema binding
b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1}),
Bind2(DSet (Count) ,1)] ?

Yes

% the following tests provide information about integration of schema
% Del(FileSys) and also about function of AddFID

[Demo2] <-
SchemaType (b, AddFID).
% first schema binding
b = [Bind1(Files,{}),Bind2(Count,0) ,Bind1(DSet(Files),{F1}),
Bind2(DSet (Count),1) ,Bind3(IN(NewFile) ,F1)] ? ;

% second schema binding

b = [Bind1(Files,{}),Bind2(Count,0),Bindl(DSet(Files) ,{F2}),
Bind2(DSet (Count) ,1) ,Bind3(IN(NewFile) ,F2)] ? ;
b = [Bind1(Files,{F1}),Bind2(Count,1) ,Bindl (DSet(Files),{F1,F3}),

Bind2(DSet (Count) ,2) ,Bind3 (IN(NewFile) ,F3)] 7

The first schema binding for AddFID models

< Files = {}, Count = 0, Files' = {F1},
Count' = 1, NewFile? = F1 > .

The input of error or out of range values can also be modelled:

%% invalid input of F5 which is not a file

[Demo2] <- SchemaType(b, AddFID) & b = [Bindl(Files,{}),Bind2(Count,0),
Bind1(DSet (Files), x), Bind2(DSet(Count),1),Bind3(IN(NewFile),

F5
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Error: undeclared or illegal symbol in term: "F5".
%% out of range value (of 12) for count

[Demo2] <- SchemaType(b, AddFID) & b = [Bindl(Files,{}),Bind2(Count,0),
Bind1 (DSet (Files),x), Bind2(DSet(Count), 12),
Bind3(IN(NewFile),y)].

No

This small animation demonstrates the superiority of Godel over Prolog, for we have
been able to use sets and types here, rather than set-of, as in Prolog. Also the order-
ing of the code has not prevented the eventual output of all the bindings consistent
with the original instantiation. Even a simple specification requires ‘union’ and this
is captured in a straightforward way in Godel and without the use of non-declarative
Prolog control features such as ‘cut’.

All of these features compare favourably with the animation of [119]. The next
subsection briefly describes how other features of Z such as schema expressions and

axiomatic descriptions are modelled.

4.4.5 Schema Calculus and Schema Referencing

Schema Calculus: Conjunction and disjunction of schemas A, B is modelled by
conjunction and disjunction of the Godel predicates of schemas A, B. The
variables are merged; the lists are appended and duplicates removed. Schema
composition and piping is accomplished by conjunction, with appropriate ad-

justment to the variable list in the new schema;

Schema Referencing: As explained the constructed type List (BindVar) of Schema
is equivalent to the binding formation #Schema. Code is provided to form the
set of all bindings for a schema, {S e S}. An example of its use is given in

Section 4.6.2 and the code can be seen in Appendix C;

Axiomatic Descriptions and Generic Definitions: Axiomatic Descriptions are
divided into two types, ones defining a single constant (such as MazFiles) and
one modelled in the same way as a schema. In the first case, their value
would be supplied by the user of the animator (in the same manner as the

instantiation of given sets). In the second case, for more complex axiomatic
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descriptions, suitable names must be generated for them Axioml, Axiom2....
They must then be conjoined to the schemas which refer to them, otherwise
there is no check on the constraints introduced. Generic definitions are treated
in the same way as the parametrised definitions of functions etc, i.e. by using

parameters a,b. . instead of generic sets X;.

Sequences are an example of a generic definition, and their use is demonstrated in
the assembler. They are defined as a partial function from the integers to a set of
items: the first predicate tests whether a term is a sequence, the second finds its
head. The definitions are as follows:

% Example of generic definition- head of sequence.

% First define a sequence

IsSequ(sequ, items, size) <- Size(sequ, size ) &
domseq = {n: 1 =< n =< size} &

TF (sequ, domseq, items).

% Head of sequence- corresponds to OrdPair(1l, item);
% Non-empty sequence
HeadSequ(item, sequ) <- sequ "= {} &

OrdPair(1, item) In sequ.

The two case studies which follow illustrate the rules (and tests).

4.5 Animation Example 1

4.5.1 Assembler

The case study used to illustrate the rules for translation is an assembly process
described in [51]. This illustrates how more features of Z are captured in an ani-
mation, and uses more of the Godel library. It also serves as a useful comparator
between the Prolog and Godel Z animators. The Prolog animation of the assembler
in [119] contained a critique of the method, and one of these was that Prolog does
not properly represent first order logic and so quantification was not properly mod-
elled. Godel does contain quantification and this was found to be in advantage, as
will be seen.

The assembler presented here has been extended to include the two phases con-
tributing to its implementation. None of the schemas involves state change, so the

priming convention does not apply. The only decoration is 7,! for input and output



Chapter 4 67 Structure Simulation

Assembly Language Machine Language
Label Opcode Operand | Location Opcode Operand
vl 100 1 100
v2 4095 2 4095
loop load v2 3 01 2

subn 8 4 03 8

store v2 ) 02 2

compare Vvl 6 50 1

jumple  exit 7 61 9

jump loop 8 71 3
exit return 9 7

Table 4.1: Example of Translation from Assembly to Machine Language

variables. The schemas model ‘constraints between variables’ rather than a state
machine. The specification is (unlike the small file system) not constructive. For
simplicity the computer is regarded as a “one address machine”, in that two integers
(opcode and operand) are located at a single machine address or location in the ma-
chine’s memory. It is analysed by means of the following sample of assembly code
and its machine equivalent (Table 4.1). As can be seen, an assembly instruction
has three fields: label, opcode and operand, and not every instruction has one of
each represented. The machine code’s two fields are related in the following way:
a machine instruction’s opcode determines whether its integer operand is treated
as a value or as an address. If an assembly instruction is labelled, then that la-
bel uniquely determines the instruction, and conversely every referenced label must
appear in the label field of some instruction. The operand mnemonics, when they
appear in the operand field of an assembly instruction, are directly translated to

their numeric value in the corresponding machine operand.

4.5.2 Assembler and Machine Requirements in Z

The “given” sets are of assembly and machine instructions: A and M, and of per-
missible labels and opcodes: SYM and OPSYM.

[A,M,SYM, OPSYM]
The presence or not of symbol, label and opsym fields is modelled by partial functions

lab, op, ref , num,
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in the following way.

The domains of ref and num are disjoint, and since assembly instructions have
either opcode, or operand (the latter being referential or numeric) the union of the
domains of op, ref, num equals A. Two axiomatic descriptions model assembly and

machine language requirements.

lab: A+ SYM Al
op: A+ OPSYM A2
ref : A+ SYM A3
num : A+ N A4
dom ref N dom num = & A5
dom op U dom num Udom ref = A A6
opcode : M + N M1
operand : M - N M2
dom opcode U dom operand = M M3

Axioms M1... M3 will be referred to as ‘Assembly Context2’. Mnemonics for trans-
lation of opcode in assembler to opcode in machine are represented by the following

axiomatic description.

‘ mnem : OPSYM + N M4

This will be referred to as ‘Assembly Context3’.

4.5.3 Assembly Process in Z

Input of assembly instructions and output of machine instructions are sequences
seqa?, seqm! respectively. The mathematical modelling of the assembler is by func-
tions such as those described, and is treated fully in Hayes, while there is only
sufficient detail in this chapter for the specification and subsequent animation to
be understood. For instance, a label must be unique to a position; the composite
seqa?glab is “one-one” and therefore the inverse of seqa?3lab is also a partial function.
The inverse of seqa?§lab is symtab and it plays an important role in maintaining the
integrity of the assembler, determining the operand of machine instructions when
the corresponding assembler operand is referential.

When the assembly operand is numeric, we can form the composite function:
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seqa? $num and it can be seen that the union of seqa? § num and seqa? §ref §symtab

equals the operand of the machine output.

__ Assembly

seqa? : seq A

seqm! : seq M

Jsymtab : SYM + N e S2
symtab = (seqa? g lab)~! S1
ran(sega? g ref) C dom symtab S3
ran(sega? § op) C dom mnem S4
seqm! g operand = (seqa? g ref § symtab) U (seqa? § num) S5
seqm! g opcode = seqa? g op § mnem S6

The specification of the assembler in [51] includes a two-phase implementation.
The first phase is captured by Phasel, where the machine instructions are con-
structed for inputs with numeric operands. Two tables are built: ¢ which records
the positions where symbols are referenced, and st which records the values of the
symbols. The sequence core of machine instructions captures the state of these in-
structions, which are partly constructed during phase one. The information about

this intermediate state is modelled by IS.

IS
st: SYM <+ N
rt : N+ SYM
core : seq M

During Phase 1, rt, st will be constructed and the opcode and numeric fields of the
machine instructions will be provided with their final values in core. (The sequence

core can be thought of as acting as a ‘place-holder’ for the output machine sequence.)
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_ Phasel

seqa? :seq A

IS

st = (inglab)™* P1.1
rt = (seqa? g ref) P1.2
(dom rt) <9 (core § operand) = (seqa? § num) P1.3
(core § operand) = (seqa? § op § mnem) P1.4
ran(sega? § op) C dom mnem P1.5

During Phase 2 the input sequence of assembler code is not accessible and so in-
formation about the symbolic and numeric operand fields is obtained only from the
reference table. During this phase the construction of the operands for the output

machine instructions is completed.

— Phase2

IS

seqm? : seq M

st e SYM +» N P2.1
ran rt C dom st P2.2
(segm! g opcode) = (core § opcode) P2.3
(dom rt) < (seqm! g operand) = (dom rt) < (core § operand) P2.4
(dom rt) < (seqgm! g operand) = (rs § st) P2.5

To obtain the final implementation, the schemas are conjoined and IS is hidden for

the intermediate state is not normally significant:

Implementation = Phasel A Phase2 \ (st, rt, core).

In Hayes, Implementation is expanded out and it is proved that it is the same as
Assembly.

4.5.4 Translation of Assembly to Godel

The three axiomatic definitions:

AssemblyContextl Al .. A6
AssemblyContext2 M1 .. M3
AssemblyContext3 M4
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are declared as schemas, named as above. They are then treated as if they were
declared in the signature of Assembly. The bases, constants and binding functions
are first declared, followed by the predicates required for data and for the four
schemas. Functions Bindl .. Bind8 bind the variable names to Godel variables,
as for the previous examples. The full code is in Appendix C, a fragment only
is presented here. The following shows the given set ‘types’ and an example of a
binding:

% given sets

Sym, A, M, Opsym, Int, Label, Op.

% example of bindings
FUNCTION Bindl : Var * Set(OP(A, Sym)) -> BindVar.

Decorations on Set names, ie priming, input, output are as before. For example
FUNCTION IN : Var -> Var.

Predicates IsSym, IsA etc characterise symbols, assembly etc, for example
PREDICATE IsSym : Sym.

The data and predicate definitions are presented in the local part of module Assembly
where, for example symbols and variables are as follows:

CONSTANT

% symbols

Vi, V2, Loop, Exit, Label : Sym;
% variable names

SeqA, SeqgM, Lab, Op, Ref, Num, Opcode, Operand, Mnem : Var;

To ensure that data types can be collected together as a set, IsA, IsM are predicate
definitions. The given sets are modelled by intentional set definitions, for example

opsym = {x : IsOpSym(x) }

models OPSYM. The natural numbers, N are modelled by a subset, 0..5000. (This
is because the partial function predicate requires a set.) Axioms A1... A6, M1... M4
are modelled by the Assembly Context ‘schemas’, and the code is commented to in-
dicate the correspondence. The header and first few literals of Context 1 are

SchemaType ([ Bindl(Lab,lab), Bind2(0Op,op), Bindl(Ref,ref),
Bind3(Num ,num) ], Assembly_contextl) <-

% given sets associated with declarations
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a={x: IsA(x) } &

sym = {x : IsSym(x) } &
opsym = {x : IsOpSym(x) } &
int = {x : 0 < x < 5000 } &

% The rest of the code capture axioms A5 to A6
The head (only) is shown for Assembly Context 2:

SchemaType ([Bind4 (Opcode , opcode), Bind4(Operand,operand)],
Assembly_context2) <-

The assembler schema is modelled by conjoining Assembly Context schemas to the
variable declarations of the input and output sequences. The sequences are checked
by the Gddel predicate IsSeq, (which presents the lengths of the sequences as un-
knowns). Several auxiliary values are required, for example ‘DomContents’ and
‘RanContents’ for the domains and ranges of the various functions. Other interme-
diate values are also required, e.g. seqaop for seqa? g op.

% Assembler
SchemaType ([Bind6 (IN(SegA) ,seqa), Bind7 (0OUT(SegM) ,seqm), Bindl(Lab,lab),
Bind2(0p,op), Bindl(Ref,ref),
Bind3(Num ,num), Bind4(Opcode , opcode),
Bind4(Operand,operand) ,Bind5(Mnem, mnem)], Assembly) <-
SchemaType ([Bind1(Lab,lab), Bind2(0p,op), Bindl(Ref,ref),

Bind3(Num ,num)], Assembly_contextl) & % A1-A6
SchemaType ([Bind4 (Opcode , opcode), Bind4(Operand,operand)],
Assembly_context2) & % M1-M3

SchemaType ([Bind5(Mnem, mnem)], Assembly_context3) & 7 M4

% The rest of the code capture axioms S51-S6

IS, Phasel, Phase2 and Implementation are modelled in a similar fashion. Phasel
and Phase2 were conjoined to form Implementation, and the values st, rt were hid-
den, but core was necessary for the computation. The head only of Implementation

is shown:

SchemaType ([Bind6 (IN(SegA) ,seqa ), Bind7 (0UT(SegM) ,seqm), Bind7(Core, core),
Bind1(Lab,lab), Bind2(0p,op), Bindl(Ref,ref), Bind3(Num ,num),
Bind4( Opcode , opcode ), Bind4(Operand,operand ),

Bind5( Mnem, mnem )], Implementation) <-
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Queries can be made which interrogate all schemas. In the case of the assembler
and its implementation, all (or most) variables are instantiated and would have to
be supplied in advance. For example, a query to Assembly_contertl has bindings
replicating the values of Table 4.1 and can be found (in full) in Appendix C where

operand has a value represented by

operand = {M1 — 100, M2 — 4095, M3 +— 2, M4 — 8, M5 — 2,
M6 — 1,M7+— 9, M8 — 3}.

The animation shown exercises all the schema predicates. Truncated forms of queries
to Assembly_contertl and Assembly are presented here. These are commented to
indicate their link(s) to software testing:

% This tests a schema component and is a type of unit test.
[Assembly] <-
SchemaType ([Bind1(Lab, {OrdPair(Al, V1) .. OrdPair(A9, Exit)}),
Bind2(0p, {0rdPair(A3, Load) .. OrdPair(A9, Return)}),
Bind3(Num, {OrdPair(A1l, 100) .. OrdPair(A4,8)})],
Assembly_contextl).

Yes.

% Query to the ‘Assembly’ - all data is supplied and

% the response is a check for accuracy.

% This is both a ‘functional’ test (black-box)

% and a test to examine how the component schemas integrate together.
[Assembly] <-

seqa = {0rdPair(1, A1), OrdPair(2, A2), .. ,0rdPair(8, A8), OrdPair(9, A9)} &
seqm = {0rdPair(1, M1), OrdPair(2, M2), .. ,0rdPair(9, M9} &

op = {0rdPair (A3, Load), OrdPair(A4, Subn),.. OrdPair (A9, Return)} &
opcode = {0rdPair(M3,1), .. ,0rdPair(M8, 3)} &
operand = {0rdPair(M1,100), ..,0rdPair(M8,3)} &

mnem = {0rdPair(Load, 1), OrdPair(Subn, 3), .. ,0rdPair(Return, 77)} &
SchemaType ([Bind6 (IN(SeqA) ,seqa), Bind7 (OUT(SegM) ,seqm), Bindl(Lab,lab),
Bind2(0p,op), Bindl(Ref,ref), Bind3 (Num ,num),
Bind4 (Opcode , opcode), Bind4(Operand,operand),
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Bind5(Mnem, mnem)], Assembly).

Yes

It can be seen that the queries check that the output assembly stream correctly
models the input stream; no new values are calculated (apart from intermediate
ones). In each case the answer set is a singleton.

The two phase design of the assembler can also be animated. The code is in
Appendix C. For the first phase, Phasel, the assembly instructions are input, and
also core (because its definition cannot be computed using Lib, as it is implicit). Two
possible values are provided for the machine operand. The first was the intermediate

value, where only ‘numeric’ fields are represented:

operand = {M1 — 100, M2 — 4095, M8 — 3}.

The second was the final value, equivalent to the binding above.

Each value was successful, so although operand need only have numeric fields
represented after the first phase, the final value is also consistent with Phasel. rt
and st are also computed during Phase 1:

rt = {0rdPair(3,V2),0rdPair(5,V2),0rdPair(6,V1),0rdPair(7,Exit),
OrdPair(8,Loop)}
st = {0rdPair(Exit,9),0rdPair (Loop,3),0rdPair(V1i,1),0rdPair(V2,2)}

For Phase 2, the values of rt, st computed by Phase 1 were input, together with
values as for Assembly. As can be seen this phase will only accept the final values
for operand, not the intermediate ones. For Implementation, the values provided
were as for Assembly, with the addition of core. These values are checked and found
to be consistent. In the original case study it is proved that Implementation is
the same as Assembly and these tests provide an alternative demonstration and are
complementary to the proof process in that they ‘make visible’ an assembly process

in an intuitive manner. In contrast, proof is able to provide generality.

4.5.5 Comparison of Godel and Prolog Versions

The Godel animation can be compared with the Prolog animation. The advantages
identified in Section 4.2.2 were all found to exist. In Prolog non declarative features
such as ‘cut’ were used (for example in composition of functions) to aid implementa-
tion of much of the set theory code, compromising its correctness, whereas in Godel

no such devices were necessary. Thus the library implementation in Godel was a
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straightforward replication in first order logic of the Toolkit definitions. The library
implementation in Godel was also more extensive than the Prolog library. This al-
lowed the phase and implementation schemas to be modelled, whereas this was not
possible for the Prolog animation.

The Godel animation allowed a direct translation of existential quantification via

SOME. In the Prolog version the expression:

dsymtab : SYM - Ne ...

was translated by not providing symtab with a name, but relying on the fact that
variables on the right hand side of the implication which do not appear on the left
are assumed existentially quantified.

Also in Godel the ‘types’ OPSYM, OP,SYM etc. are correctly modelled using
‘types’ rather than by ‘setof’ and the Prolog list. The Godel types also allowed the
modelling of the Z bindings by functions Bind;, so that a different binding function
was required for each pair of types, thus ensuring the correct replication of the

bindings in Z.

4.6 Animation Example 2

The Unix file system case study was chosen because it involves ‘state change’ (un-
like the assembler) and also contains more complex Z constructions such as the 6

formation. This allows the coverage of more of the Z syntax.

4.6.1 Unix File System

The second case study involves the animation of a specification of the ‘Unix file
system’. A full account of the original specification is in [84] and only a fragment
is presented here. The file storage system allows files to be stored and retrieved
using file identifiers; the set of all file identifiers is called FID. Further given sets

are channel identifiers CID. A channel identifier is a Unix file descriptor.

[FID, CID)]

In order to support random access to files for reading and writing, a channel is

defined which remembers a file and the current position in the file.
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CHAN
fid : FID
posn : N

CHAN consists of a file identifier, fid and a position within a file, posn. The next

schema shows the channel CHAN' after some operation; each variable is primed.

CHAN'
fid': FID
posn' : N

The following expresses the property that the fid of a channel is never changed.

— ACHAN
CHAN, CHAN'

fid" = fid

A channel storage system allows channels to be stored and retrieved using channel
identifiers taken from CID. The channel storage system is denoted cstore and is
defined by the schema CS, where cstore denotes a partial function between channel
identifiers (the set CID) and the schema CHAN represents a channel.

CS
chtore : CID + CHAN

The schema openCS denotes the opening of a new channel. The old channel store
is updated by the addition of a new channel whose file position is zero, but fid is
unconstrained. The expression {cid! — §CHAN} denotes a mapping from cid! to
the channel binding 6 CHAN ..

__openCS
ACS
CHAN
cid! : CID

cid! € dom cstore
posn = (0
cstore’ = cstore @ {cid! — 0CHAN }
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In the following schema, a channel is closed; the channel must have been previously
open (cid? € dom cstore) and cstore is updated by the removal of c¢id?, the input

channel.

_ closeCS
ACS
cid? : CID

ctd? € dom cstore

cstore’ = {cid?} <4 cstore

4.6.2 Godel Code for the Unix File System

The following shows the base types and functions necessary to produce bindings
within the types. The module imports Lib, the library necessary for functions
and relations, a full version of which is in Appendix C. The code is commented to
facilitate understanding. Schema (names) are decorated via the use of functions
as before. Again, we need extensional sets, for integers form part of the source or
target sets of partial functions.

% code for schema
% In this case, the second component is a binding
FUNCTION Bind4 : Var * Set(0P(Cid, List(BindVar))) -> BindVar.

% Schema referencing
PREDICATE SThetaS: Set(List(BindVar)) * Name.

The code for schemas CHAN, CHAN', ACHAN, CS, and openCS is presented.
Schemas which are included in the signatures of other schemas are modelled via their
conjunction with other variable bindings (if any). The list of bindings is appended
to the list of other variable bindings to become the binding of the schema which
includes them. For example the bindings of CHAN and CHAN' are appended
to become the binding of ACHAN. The relationships between variables in Z in
the schema predicate is modelled by Lib. For example the predicate FunOveride
represents function overriding, @ in Z.

hhhhhhSchema %hhhhh%

SchemaType (binding, Chan) <-
binding = [Bind1(Fid, f), Bind2(Posn,posn) ] &
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% Types of variables, position is a natural number
fid = {x : IsFileId(x) } &
posfile = {x : 0 =< x < 100} &
posn >= 0 &
posn In posfile &
f In fid .

% Forms the set of bindings for a schema in simple cases
% where functions are not involved
SThetaS(val, schname) <-

val = {binding : SchemaType(binding, schname)}.

SchemaType (binding, Cs) <-
binding = [Bind4(Cstore, c)] &
cid = {x : 1IsCid(x) } &

PF(c, cid, schtyp) &
SThetaS(schtyp, Chan).

% The bindings are expanded out:
% Bindl, Bind2 are from declaration of CHAN

% Bind4 vars are from declaration of Cs and Cs’

SchemaType ([Bind1(Fid, f), Bind2(Posn,posn), Bind3(0UT( ChId), outc),
Bind4 (Cstore, cs), Bind4(DSet(Cstore), csl) ], OpenCs ) <-
% declared schemas
SchemaType ([Bind1(Fid, f), Bind2(Posn,posn)], Chan) &
SchemaType([Bind4(Cstore, cs),Bind4(DSet(Cstore), cs1)], Del(Cs)) &
% schema predicate
cid = {x : IsCid(x) } &
posfile = {x : 0 =< x < 100} &
outc In cid &
% cid not in dom cstore
DomContents(cs, domcs) &
“(outc In domcs) &
posn In posfile &
posn = 0 &

% 01d channel store is updated by addition of a new
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% channel whose file position is zero, but Fileld is unconstrained
FunOveride(csl, cs, {0rdPair(outc, [Bind1(Fid, f), Bind2(Posn,posn)])} ).

SchemaType ([Bind3 (IN( ChId), inc),
Bind4 (Cstore, cs), Bind4(DSet(Cstore), csl) ],CloseCs ) <-
SchemaType ([Bind4 (Cstore, cs),Bind4(DSet(Cstore), cs1)], Del(Cs)) &
cid = {x : IsCid(x) } &
inc In cid &
DomContents(cs, domcs) &
inc In domcs &

DomExclude(cs1, {inc}, cs).

4.6.3 Example of Queries to Unix Files

The Unix file system expresses constraints in a constructive manner (like the small
file system). However unlike the latter system, there is much less flexibility as to
instantiation of variables. This is because many of the state variables are functions,
and therefore of a more complex data type than file, file'. For example if cstore’
from schema openCS is not instantiated in the original query, then it will not be
provided with values by its declaration cstore’ : CID + CHAN and will require to
be constructed via the schema predicate. This is the case here where the schema
predicate provides such a construction. However in a non-constructive version of the
specification, many or all of the variables would require instantiation in the original
query, (as for the assembler) otherwise the query would flounder.

A number of possible queries and the responses are presented. The queries shown
here represent black-box testing, of schemas CS, openCS. Tracing the code (as it
is executed) also allows for the structure of the specification to be examined (but
that is not shown). The first query investigates the possible bindings for C'S which

is provided with a binding equivalent to
cstore = {cidl — (fid = F1, posn = 2)}.

[UnixFiles] <- SchemaType ( binding, Cs ) &
binding = [ Bind4 ( Cstore, { OrdPair ( Cidl, [ Bindl ( Fid, F1 ),
Bind2 ( Posn, 2 ) 1)P)].

binding = [Bind4(Cstore,{0rdPair(Cid1, [Bind1(Fid,F1),Bind2(Posn,2)]1)})] 7 ;

There are no other values which satisfy the predicate. A further query shows the
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effect on the channel store, of the opening of a further channel. As before, the
existing channel has file identifier F'1 and position 2. The query provides the value
of CS’', the value after the new channel is opened, and information about the new
channel. The new channel is added and can be any of the remaining (unopened)
ones and the file identifier can be any. The position in the file remains at 0. In this

case the answer set contains more than one binding.

[UnixFiles] <- c¢s = {0rdPair(Cid1, [Bindl(Fid,F1),Bind2(Posn,2)]1)} &
SchemaType([bl,b2,b3,Bind4(Cstore, cs),
Bind4 (DSet (Cstore), csl1) 1, OpenCs ).

bl = Bind1(Fid,F1),

b2 = Bind2(Posn,0),

b3 = Bind3(0UT(ChId),Cid2),

cs = {0rdPair(Cidl, [Bind1(Fid,F1),Bind2(Posn,2)]1)},

csl = {0rdPair(Cid1, [Bind1(Fid,F1) ,Bind2(Posn,2)]),
OrdPair (Cid2, [Bind1(Fid,F1) ,Bind2(Posn,0)]1)} ? ;

Initiating a back track gives a further answer:

bl = Bind1(Fid,F5),

b2 = Bind2(Posn,0),

b3 = Bind3(0UT(ChId),Cid3),

cs = {0rdPair(Cid1i, [Bind1(Fid,F1),Bind2(Posn,2)])},

csl = {0rdPair(Cid1, [Bind1(Fid,F1) ,Bind2(Posn,2)]),
OrdPair (Cid3, [Bind1(Fid,F1) ,Bind2(Posn,0)])} 7

Yes

Thus amongst many possible values we have:

cstore’ = {Cidl — (fid = F1, posn = 2),
Cid2 — (fid = F'1, posn = 0)}.

The new channel can be any except (Cidl and the file remembered by the new
channel, any. Further animations are in Appendix C.

The animation was of a fragment of the Unix file system and was successful.
Again, the translation was sophisticated; the longest wait for a query was of the order
of a second. The perceived disadvantage is the limitation to finite sets. However
the authors of the original Z specification note that file size, directory size “Inodes”,

device capacity and position within a file are bounded. Many specifications require
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only finite sets. Although the specification is small, it covers more advanced features
of Z, including a simple occurrence of the binding formation #. A translation of this

feature was never attempted in the case of Prolog animation.

4.7 Conclusion

This chapter has investigated the structure simulation method and in particular the
use of the LP, Godel, for Z animation. and covers Contribution 3. The two studies

demonstrate

1. The practicality of the method: the studies cover some important features of
the Z notation, and in particular, the animation reflects the modularity of Z.
This means that it will be easier to investigate any flaws in the specification

uncovered by the animation;

2. The sophistication of the method: in the particular case of the assembler, the
code appeared in the same order as the Z it modelled. There was no problem
with floundering on account of the occurrence of non-ground variables. The
translation differed from the equivalent Prolog. For successful execution in
Prolog, either the code required ordering in a particular way or non-declarative

features such as ‘var’ were used;

3. The efficiency of the method: interrogation of the code for the Unix file system
involved complex queries, but response to these on a current SPARC Ultra is

instantaneous;

4. The potential for proving correctness: there is the possibility of proving that
the animation correctly represents the Z specification. Godel is defined as a
theory in first order logic and an implementation must be sound with respect

to this semantics. Also, Godel allows the representation of types and sets.

In short, the use of Godel types replicates the types in Z, and the implementation of
sets and first order logic captures the ZF basis for Z and this builds confidence that
the information provided by the animator does indeed represent the information
which would be provided by the specification if it could be interrogated.
Animation provides a way of testing a specification, and test cases for animation
have been suggested which have a similar purpose to test cases for software. How
much of the data needs to be instantiated and how much supplied depends on the
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application. At the one extreme, the small file system constructs all data from
its declarations and at the other the assembler requires all data to be supplied.
Animation does not replace proof, but complements it in that tests can be used
to make visible the structure of the specification (as in the case of the assembler
and its implementation). Although this is not shown here, it could also be used to
demonstrate that a certain property is not true before the time-consuming effort of
formal proof is attempted [85].

For the user of the animator to have confidence in the tool, assurance in its
correctness is required, and this is the subject of the next chapter. However, for
correctness to be proved, a formal framework is required. Since program synthesis
presented problems, the formal framework is provided by abstract approrimation,
and this is the next subject of the thesis. The work on abstract approximation was
completed after the Prolog animator of [119] was published, and represents a more

recent advance.
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Abstract Approximation

5.1 Introduction

Chapter 4 described structure simulation, a set of animation rules for the translation
of Z to the Godel logic programming language and this chapter, in formalising these
rules covers Contribution 4 of this thesis. Structure simulation has been applied to
two substantial case studies and has a potential for real world applications. The rules
were evolved because an alternative method, program synthesis, proposed in Chapter
3 was found to have problems. The simulation rules were found to be practical, but
lacked the formal framework for proving correctness which exists when synthesising
a program.

This chapter provides a different approach to correctness, abstract approrima-
tion, introduced by Breuer and Bowen [17] to provide a formal framework and some
proof rules for the correct animation of Z. In formalising the animation rules of
Chapter 4, we both modify and strengthen the approximation method. Abstract
approximation is based on the procedures of abstract interpretation, formalised by
Cousot and Cousot in [23]. In this initial paper, abstract interpretation was used
for static analysis of imperative programs. The abstract interpretation of the con-
crete semantics explicitly exhibits an underlying structure; the structure is implicitly
present in the richer concrete structure of program executions. In abstract approx-

imation the approximate semantics of the animations of Z is compared with the

83
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concrete semantics of Z associated with ZF set theory. The approximate semantics
of the programming language underestimates the concrete semantics of Z.

The chapter commences with a brief discussion of abstract interpretation, sup-
ported by simple illustrative examples and this is provided in Section 5.2. Section 5.3
presents the framework and proof rules of [17] in a tutorial fashion and these are
compared with the method and procedures of abstract interpretation (in Section
5.4). Although the work of Breuer and Bowen contains a framework for arbitrary
specifications in Z, their method does not cover the possible existence of non-integer
sets. In their approach, ‘given sets’ are not included and predicate values are based
on {0,1}. Their approach is a generic one based on a suitable declarative language
and the prototype animator is in a lazy functional language (Miranda).

We present in Section 5.5 an animation based on a logic programming language
with types and sets, such as the Gddel language described in Chapter 4. This ap-
proach is adopted because the logic programming language implementation reflects
in a more natural way the first order logic of Z, and the sets and types can be used to
model the data structures of Z. The translation rules from Chapter 4 do include the
possibility of non-integer (given) sets and furthermore have a potential application
to ‘real world’ examples such as the assembler and Unix file system.

Proof arguments for correctness are presented in Section 5.6 and the differences
between our work and the work of Breuer and Bowen is provided where necessary.
The chief difference is, as might be expected, in the interpretation of predicates
and this is presented in Section 5.6.4. Another difference is that we allow for the
structure of schema expressions (for example conjunction and disjunction) to be

directly reflected in the animation, and this is presented in Section 5.6.7.

5.2 Brief Description — Abstract Interpretation

This section provides a brief introduction to the concepts of abstract interpretation
and we commence by presenting some simple examples which provide the basic
intuitions. A more complex example based on the work of the Cousots is described
in Section 5.2.2, which also introduces concepts such as ordering which are used

later in the chapter.
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5.2.1 Description

The notion of relating a concrete semantics to an approximate one is not new. It is
used (for example) to speedily check calculations in arithmetic and the correctness
of physical formulae and these commonly used examples of abstract interpretation

provide the intuitions behind the method.

1. ‘Casting out 9’ is used to check additions and multiplications. The result of
the check is that the calculation is known to be ‘wrong’ or ‘possibly_correct’.
In this case the concrete interpretation of the calculation is Peano arithmetic
and the abstract interpretation of the calculation is the method of ‘casting out
9’. For example when checking the calculation ‘1234 x 32 = 39486’ we take the
‘rest’ r; of 1234 = (1+2+3+4)mod9 = 1, the rest r, of 32 = (3+2)mod9 =5
and the rest r of result 39486 = (3 + 9 + 4 + 8 + 6)mod9 = 3. If we multiply
r1 and 75 and take the rest, p = (1 X m)mod9 = 5. We should obtain
r = p if the calculation is ‘possibly_correct’. In this case r # p and so the
calculation is ‘wrong’. We use ‘possibly’ because even if r = p the calculation
could still be incorrect (e.g. ‘1234 x 32 = 5’). This is a way of ensuring
that the interpretation is ‘safe’. This means that if a property of the concrete
interpretation is promised, then it is guaranteed. In this case the property is

that the answer to the calculation is wrong;

2. ‘Dimensions in physical formulae’ are used as a check that the formula is
‘possibly_correct’ or is ‘wrong’, as in the previous example. The abstraction
is ‘dimension calculus’ which involves taking dimensions of both sides of a
physical formulae. For example the formula for the period, T of a simple

pendulum of length [ is
T = 2n(1/g)"/? where g is gravity.

The dimension of length is [L], the dimension of time [T'], and the dimensions

-2

of acceleration are [L|[T] % and ‘27’ is a scalar quantity and dimensionless.

Thus the dimensions on the right hand side of the formula are
(L] / [L][117%)2

which evaluates to [T, the dimension of the left hand side. This means that
the formula is ‘possibly_correct’. In this case, ‘safeness’ again means that if

we decide a formula is incorrect, it is so.
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Abstract interpretation was formalised in a seminal paper by Cousot and Cousot [23],
who used it for static analysis of imperative programs. The abstract interpretation of
the concrete semantics models the structure which is implicitly present in the richer
concrete structure of program executions. A useful introduction to the concepts of
semantic domains and approximation is contained in [97] and the detailed analysis of
the application of abstract interpretation to ‘casting out 9’ and ‘dimensions’ can be
found in [25]. The latter paper also provides an extension of the dimension calculus
to type checking. Further summaries and applications of abstract interpretation are
in [4, 24, 78].

Since the original paper, the work of the Cousots has been extended to declar-
ative languages, including the application to groundness analysis in logic program-
ming [24]'. In this paper, abstract interpretation is applied to a program analysis
which can be used to prove that a particular predicate is, or will be, bound to ground
terms during program execution. However there may be predicates whose ground-
ness cannot be determined. Abstract interpretation has been applied to many kinds
of static analysis for logic programs. For example [9] describes data flow analysis for
(constraint) logic programs which includes variable sharing and freeness as well as
groundedness. Abstract interpretation is utilised in strictness analysis [4] in func-
tional programming. The objective is to improve program efficiency by detecting
when it is possible to pass arguments ‘by value’ rather than ‘by need’. In this case
the notion of ‘safeness‘, is that an argument must never be detected as strict when
it is not. On the other hand there may be strict arguments which are undetected
by the abstraction.

The example in Section 5.2.2 is based on the seminal work in static analysis of
imperative programs by Cousot and Cousot [23] where finite flowcharts are used to
model the program semantics and abstract interpretation is then used for program
de-bugging. The flowchart is represented by a directed graph, viz. a set Nodes,
and a set Arcs, where Arcs is a subset of Nodes x Nodes. Each program point, or
arc € Arcs, is associated with a possible set of environments, where an environment
is a possible binding for each identifier of the program. In order to accommodate
incomplete information, sets associated with program executions can be ‘lifted’ by
top and bottom elements T, L respectively. In particular the set of program identi-

fiers is augmented by T 74, L4 to become semantic domain Id, where Id is a lattice

!The Cousots have published many papers on abstract interpretation which can be found at
http://www.di.ens.fr/€ousot/COUSOTpapers/.
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with an imposed ordering :

Videlde 1y T Wd T Ty

In future the subscript on 1, T will be omitted. The appropriate domain or sub-
domain for each top and bottom element will be understood by its context.
If the semantic domain of program values (booleans, integers etc.) is represented

by the set Val, then the domain of possible environments Env is defined:

Env == Id — Val.

The bottom value for Env is an environment e where e(z) = L for all z € Id, i.e.
where all identifiers have undefined values, during the initial state of the program
for example. Env is a total continuous function for Env(Ll) = L, Env(z) = L for
z € Id undefined in Env. The set of environments associated with each program

point, or arc € Arcs, is called a contert. We have context € Contexts, where

Contexsts == P Env.

Also associated with program arcs is an abstract context, abs € Abs, which effec-
tively abstracts or approxrimates the context associated with the arc in a manner
described below. (This can be compared with the much simpler abstract interpreta-
tions involved in casting out nine and dimension calculus.) The nodes of a flow chart
are associated with program commands and five types of node are associated with
flow charts. These are entries, exits, assignments, tests and junctions. In general,
the information associated with each arc is propagated through the program via
concrete and abstract interpretations of program commands. However, the example
is confined to an assignment node.

An abstraction function @ maps between the concrete and abstract contexts
associated with the arcs. For every node, the context (whether abstract or concrete)
associated with its output arc(s) depends on the context(s) of its input arc(s). The
program command can be interpreted in an abstract or concrete manner. The figure
below (Figure 5.1) diagrammatically represents the action of the abstraction « and

adjoint v where

o : Contexts — Abs
v : Abs — Contexts.
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The diagram illustrates the fact that abstracting concrete contexts for input arcs

Abs fabs Abs
Iy >~
a: : y
: 'C
Contexts Jeone Contexts

Figure 5.1: Approximation Diagram for Abstract Interpretation

to a node, performing an abstract interpretation of a language construct, then con-
creting the resulting abstract, results in a loss of information compared with the
concrete interpretation of the context. On the other hand, commencing with the
abstract contexts on input arcs, concretising, then performing the concrete interpre-
tation, introduces no loss of information, for the result is the same as if an abstract
interpretation had been directly performed. « and v are monotonic adjoint func-

tions:

a oy = IdentityFunctiongs,
Y o & deone IdentityFunction ope.

An example is provided to illustrate the figure where, for simplicity, attention is
confined to the case where the program has a single integer variable, . The op-
eration of the program determines the value of an expression at the single node.
The example is needed to help explain the procedures of abstract interpretation, for
the latter will, in turn, be compared with the abstract approximation, the principal
subject of the chapter. Some of the concepts introduced in the example will also be
required for abstract approximation. The example illustrates the abstractions of [4],
but the assignment example is new and constructed with the intention of explaining

the concepts in as simple as manner as possible.

5.2.2 Abstract Interpretation: Example

For this simple example, consider a single node, n, associated with an assignment
x := x*x - 2*x + 10. In the case of a single integer variable the context associated

with the input arc to n will be the set of possible values of the integer on the arc.
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We shall consider the abstraction to be the sign of the integer values associated with

the arc. In this case the concrete contexts are

Contexsts == PZ.

The subset ordering is the ordering on the concrete contexts. The top element is Z,

and the bottom the empty set, { }. For the abstract contexts we have:
Abs == { L, plus, zero, minus, +}.

The element L is associated with entry arcs where identifiers are undefined, thus
the abstraction, «, is defined for C' € Contexts:

a(C)=1,C={}

a(C) = zero, C = {0};

a(C) = minus, C = {z:z <0};
a(C) = plus,C ={z:2 >0}
a(C) = +, otherwise

and the concretisation, 7, is defined for A € Abs:

If the input context (possible input values) to n is the set of natural numbers N,
then (from elementary algebra) the context associated with the output arc of n is a
member of the set of natural numbers greater than or equal to 9. Thus the concrete
interpretation of the calculation for the assignment function in the concrete domain

is

{z:2 >9}.
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The abstract interpretation of the calculation is found using the ’rule of signs’ as

follows:

plus x plus = plus; plus X minus = minus; plus X zero = zero;
plus + plus = plus; plus — plus = +; + ++ =+
plus x L = _1; plus+ 1L =_1; plus— L =1

etc.

Since the input value of z in the abstract domain is plus, we see that our output

value is
(plus x plus) — (2 x plus) + 10 = +.

It can be seen that by performing the abstract interpretation we have lost informa-

tion, for by concretising the result of the abstract interpretation:
1(£) =12

we see that the set is larger than that produced by the concrete interpretation for
{z:2>9} CZ.

The above is a simple example which demonstrates the method rather than a
practical application. However it provides enough background to understand the
similarities and differences of this work to the work described in the rest of the
chapter and a comparison will be made in Section 5.4. A more useful and sophisti-
cated version of the method illustrated by this simple example is interval analysis

and this is used as a check on array bounds [24, 25].

5.3 Brief Description: Abstract Approximation

This section provides a brief introduction to the notion of abstract approximation,
posited by [17] to determine the correctness of animations of Z. The section con-
centrates mainly on the generic aspects of abstract approximation. However for
illustrative purposes we shall use logic programming examples, and in particular the
animations of Chapter 4.

This is structured as follows. Abstract approximation compares the interpreta-
tion of Z syntactical objects in both the execution language (in our case the LP) and
in Z. In Section 5.3.1 we present, the subset of the Z syntax which is to be covered

by the animation rules. The Z interpretation is the interpretation we would expect
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Notation Meaning

t, 1 expressions

z, 5, i, X, X;, X} variable names

P, p, pi, p' predicates (in general)
CP, CP;, CPi, GCP, GCP;, GCP! | schema predicates

T T, T, T types

d, d;, d*, D, D;, D' declarations

Sch, Sch;, Sch’ schema names

S, s set names

Table 5.1: Notation: Z Syntax

if we had been evaluating the objects using set theoretic (ZF) considerations. In
addition, the Z domain has been extended to accommodate non-terminating com-
putations and a description of this extended Z domain is presented in Section 5.3.2.
The LP interpretation is according to the implementation of the theory of finite sets
in the LP, however the details of the LP domain are deferred until Section 5.5. A
comparison between abstract and concrete interpretations is in Section 5.3.3. We
next determine the meaning of loss of information in abstracting the Z syntax, and
the concept of ordering is presented in Section 5.3.4. This is in order for a comparison
to be made between the abstracted interpretation and the concrete.

Details of this comparison of LP and Z interpretations are presented in Sec-
tion 5.5. In brief, the comparison is as follows: for finite sets and when the LP
terminates, the interpretations are the same, but for infinite sets, or when the LP
fails to terminate, the LP interpretation underestimates the Z interpretation in a
manner to be explained. Breuer and Bowen have formalised the process of showing
that the abstract interpretation of a given piece of Z syntax always underestimates
the concrete. The formalisation which involves a structural induction process is
presented in Section 5.3.5. In order to aid the reader, a summary of notation used

for Z syntax in the remainder of this chapter is provided in Table 5.1.

5.3.1 Z Syntax

The following is an outline summary of the Z syntax to be interpreted and should
be taken in conjunction with the description of Z in Chapter 4 and in [105]. It
includes those constructs which are explicitly covered by our application of abstract
approximation. The given sets (and names of enumerated free types) are from the
set GIVEN, the set of schema names NAME, and the set of variable names (within a
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expr :=7Z | n € Z the integers and integer values
| t1+ 1ty |ty — tp... | an integer expression
| G; where G; € GIVEN a given set reference
| z; where z; € VAR
| {71 ...z,} an enumerated set
| t1t,, function application
| (t1,...,t,), a tuple
| UL | tnt | UL ...
set union, intersection, distributed union etc.
| “Enum_Type ==z | ... | z,”

where z; € VAR, Enum_Type € GIVEN
an enumerated free type

| Ad | pet where d € decl

Figure 5.2: 7Z Syntax

schema) are VAR. We consider the following four parts of the Z syntax: Expressions,
Predicates, Axiomatic Definitions and Schemas, denoted expr, pred, axdef, schema
respectively. Although declarations are not top-level it is convenient to treat them
as syntactic objects, as suggested in [17].

A declaration can be made up of both variable declarations and schema refer-
ences. However in our work, variable declarations and schema references will be
interpreted separately, as will be seen. The following is the syntax of basic decla-
rations, basic_decl and sequences of basic declarations decl where z; € VAR, t,t; €
expr, Sch € NAME, and Sch is a schema reference:

basic_decl = xy,...,L,:t | Sch

decl w= bdy; ...; bd, where bd; € basic_decl.

The rest of the Z syntax is presented in Figure 5.2 where ¢, t; € ezpr (all k) and

w »

the expressions within are to be treated as complete syntactic objects, where
‘I’ means just that. The syntax includes schema references which are not included
in the version of the syntax presented by Breuer and Bowen for it is assumed they
are expanded and absorbed into the schemas which reference them. The syntax

replicates [17] with the exception that

1. GIVEN are not included by Breuer and Bowen;
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2. we do not cover the arbitrary free types described in Chapter 4.

Predicates have the following syntax, where py, py € pred, e, es € expr:

pred == p1 V pa [ p1 A p2
| “Vd | pep” | “Id| p e py” where d € decl

|€1:62 | €1g€2 |€1€€2.

The syntax for schemas, schema bindings, schema expressions and axiomatic defini-

tions is presented below, where predicate p can be absent.

schema = “Sch=[d|p]”|0Sch|{Sch e 0Sch}
where d € decl,p € pred, Sch € NAME
| “Sch = Sch' A Sch®’ | “Sch = Sch' v Sch*”
where Sch, Scht, Sch? € NAME

axdef — = [d | p}, where d € decl,p € pred.

5.3.2 The Z Domain

In all that follows we are assuming that the specification we are animating is type-
checked, and that (by implication) the animation is also type correct. The contents
of the Z domain are driven by the animation rules of Chapter 4 where in order to
animate given sets the user of the animator is required to instantiate them with
suitable values. For example the set of file identifiers Fileld might be represented
by {F1, F2,F3}. The understanding is that these are all different values: it is as
though Fileld were defined as the free type:

Fileld := F1| F2 | F3.

This is similar to the way ‘deferred sets’ are instantiated in B AMN. The set Fileld
is then represented in the LP by the enumerated set {F1, F2, F3}. This means
that the Z domain D also consists of instantiations of the given sets supplied by the
user of the animator. Thus GIVEN consists of {G*,..., G"} and each G* consists
of distinct gF, ... gk

The concrete domain consists of (i) the standard sets of Z, (ii) the non-standard
sets and (iii) the instantiations of given sets. Requirements (i) - (iii) are formalised
in Figure 5.3. The domain Dy differs from reference [17] which does not include

given sets; in addition the authors treat ‘non-standard sets for ZF’ separately from
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Dy = n(€ Z), an integer
| gF, distinct elements of given sets
where each instantiated gf € G*
| (a1,-..,a,) where a; € Dy, a tuple

)

| “a1 | ... | a,” where a; € VAR, enumerated free type
| s where s € P Dy, a complete set

| suL where s € P Dy, an incomplete set

| {zy — ai,...,2, — a,} where a;, € Dy, 1, € VAR

(a finite symbol table)

Figure 5.3: The Z Domain

Dyz. The symbol table gives bindings of variable names to values and is used to

express the value of a schema. Recall from Chapter 3 that schemas in Z are defined:

Sch=[D|CPy; ...; CP,]

where each D is a declaration, associating n variables z; with their types. The bind-
ing for Sch which follows provides values of z; which satisfy CP;. and is represented

by
<TI0y ny Ty = Gy > .
This object is represented more simply by the symbol table

{ry = ay,..., 2, — ap}

which is part of the existing syntax of Z. This is required so that a binding can be
regarded as a syntactical object in Z, for a set of such bindings is the output of a
schema interpretation in Z and in the LP.

5.3.3 Interpretations of Z Syntax

In abstract approximation, the abstract domain is the domain of the execution, here
denoted Dpp, and the concrete domain Dy the domain of the ZF interpretation.
Given a syntactic expression, €, of the Z notation, this can be interpreted in the
abstract domain, Dyp, and in Dy, as can be seen in Figure 5.4. The interpreted

value in both Dpp, and in Dy, in each case depends on the environment. The
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environments are, respectively, p.p, pz and are assumed to be variables, while the

syntactic expression € is a constant. If p,p : VAR + Dpp is an environment in

PLp Eurle— Dip
yo_ ! Y
{ . 2

Pz Ezle]— Dy,

Figure 5.4: Approximation Diagram for LP and Z domains

the execution domain Dyp, then yo prp : VAR + Dy is an environment in Dj.
If 3, is the set of syntactic Z set and numeric expressions, then the evaluation in

set-theoretic terms of expressions is the interpretation in Dy, D p is respectively:
5Z|[€]I,OZ = az, 5LP|[€]IPLP = arp

where € € ¥, az € Dz and agp € Dpp, a term. For example, the syntactic

expression: ‘z + y’ in a Z environment

{z — 2,y — 4}

evaluates as

Ezlz + y{z — 2,y — 4} =6.
In the LP z + y is interpreted as a term and

ngl[x + y]]{:v —> 2, Yy — 4}

is implemented by
<—-exp=x+y & (x=2) & (y =4)

and evaluated by means of the ground substitution {z/2,y/4} to ‘6’.
Where all the components are ground, a similar diagram can be constructed for
the evaluators Pz[_]— , Prp[—]— which interpret syntactic predicates ‘p € 35’ in

the Z and LP domains where a predicate will interpret its component expressions
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and return an appropriate boolean value. For example, the syntactic predicate
expression: ‘y € {1,2,3}’ in a Z environment {z — 2,y — 3}:

Psly € {1,2,3}{z— 2,y =3} =y € {1,2,3} Az =2) A (y =3)

evaluates to ‘true’. Prply € {1,2,3}]{z — 2,y — 3} becomes the query:
<-yIn{1,2,3} & x=1) & (y = 3)

again resulting in ‘true’. In the above examples all variables are ground; in the
case where some variables are not ground, it is possible that predicate evaluation
will result in the environment being updated and this is examined in Section 5.6.4.
The syntactic objects schemas, schema expressions and axiomatic definitions also
have their interpretation in Z and LP domains and will be treated in a subsequent
section.

The implication of Figure 5.4 that the animation is an abstracted interpretation
holding less information than the concrete is now made explicit. The concrete
interpretation in Dy refines the abstract in Dyp. Integers, sets, tuples etc. in Dpp
correspond to integers, sets, tuples etc. in D, and the comparison is made in D5. For
a particular implementation, a computation (in Dy p) can fail to terminate or provide
an answer while determining the value of a term or predicate. An example can be
seen in Chapter 4 where ‘1/z’ was not evaluated for z = 0. This has the effect that
expressions, predicates, and so on can be incomplete, or contain elements which are
themselves incomplete. Thus in order to accommodate incomplete computations,
the concrete domain also contains 1. The nature of these incomplete elements and
the different manner in which they occur in the work of Breuer and Bowen and in

ours will be made apparent later.

5.3.4 Ordering in the Z and Execution Domains

Figure 5.4 supposes an ordering on the elements of the Z and execution domains.
This ordering will now be made explicit, recalling that the ordering derives from the
possible non-termination of the execution. This ordering is in respect of all types of

domain elements. If a, b are integers then the ordering C is

aCbe (a=1ora=0).

Sets can be incomplete: if set s belongs to the concrete domain, the incomplete set

‘tagged’ with subscript UL denoted s, also belongs to the concrete domain. The
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notion of incomplete sets arises from the fact that a set can be partially output
from an execution and then no more values are provided and this possibility needs
to be represented in Dy also. Where the animation is implemented by a functional
language, incomplete sets model the occurrence of lazy lists. An example of an
incomplete set in a logic programming language which can be seen in Chapter 4
is a set of ‘answer substitutions’ where a set is only partially output. This will be
revisited in Sections 5.6.7 and 5.5.3.

The refinement relation, C on Dy is equality on integers (as above) and co-
ordinatewise on tuples. It uses the following powerdomain orderings on subsets, as
described in [17]. For ‘complete sets’ Dy, Dy € P D:

D, C D&
(leiDloadlez.dlEdg)/\(VdQng.EldliDlongdl).

For example, {1,2,3, 1,4} C {1,2,3,4,5}.

For ‘incomplete sets’:

(D1)uL E Dy & (Dy)uL T (Dy)ur & (Vdi: Dy e3dy: Dye dy T dy).

For example, {1,2,3,4},, C {1,2,3, 1,4,5}.
Equality is defined:

(D1)us E (D2)us, (D1)ur 2 (D2)ur € (D1)ur = (Da)ur-

In general the incomplete sets are ‘non-standard’ with respect to ZF. For example
{1,2,3,4},1 C {1,2,3, 1,4}, and {1,2,3,4},, 3 {1,2,3, 1,4},1 so the two sets
are ‘equal’ — however they do not have the same elements. (It could be said that
the two sets contain the same ‘information’ — see [47].) The following subsection

formalises the approximation condition of Figure 5.4.

5.3.5 Rules for Approximation

The rules which follow are from [17] and they will be used, where appropriate, to
prove that the approximation in the LP is correct. Figure 5.4 represents the fact
that if € is a syntactic Z expression then condition AR1 must hold for a correct
animation of Z in Dp:

Approximation Rule 1 (AR1)

Y(Errlelprr) E Ex[€](v o prp)-



Chapter 5 98 Abstract Approximation

The following conditions form the basis of a structural induction rule in which if
it can be shown that AR1 holds for syntactic variable ¢ = z, then it also holds
for syntactical expression € = fr. For example, f might be the syntactic operator
‘U’ on variable tuple € = (z1,1,). We denote by fz, frp the interpretation in the Z
domain and LP domain respectively of the syntactic expression fr. Thus if fx is set
union, then f;z is the set theoretic evaluation of set union and f;pz is the induced
operation in Dyp of set union. In order to show AR1, the following must hold for

the operators f of Z on variables z:

Condition 1 In order to prove correctness it is necessary to show that the inter-
pretation in Dpp is built recursively for each operator of Z, acting on each

syntactic Z expression.

fLP(gLP |[33]I,OLP) = 5LP|[f$]],0LP

Condition 2 A further condition is a property of Z, i.e. the manner in which

expressions in the Z domain are evaluated:
fz(Ezlz]pz) = Ezfr]pz.

However this condition is only true for complete sets and is not in general true

for incomplete sets;

Condition 3 The third condition is the key one, which encapsulates the approxi-

mating mechanism:

Y(frp(Erplz]orp)) C fz(v(ErplzlpLp)).

Conditions 1-3 provide the basis of a structural induction rule:

Structural Rule for Induction:

If Conditions 1-3 hold for all p,p : VAR + Dyp,z : X, then AR1 for e = z
implies AR1 € = fz.

PROOF

v(Erplz]prr) E E2[2](v 0 prp) [Base Case]

fz(v(Erplalprr)) E f2(Ex[z](y 0 prp))
7 Monotone for environment with complete sets]

[
Y(fer(Erpz]lpLp)) T f2(Ez[x] (v © prp)) [cond. 3, C transitive]
Y(fre(Ere[z]pLr)) E Ez[fx] (v © pLp) [cond. 2, pz =70 pLp]
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Y(Erplfrlprr) E Ex[fz] (v 0 prp) [cond. 1]
O

The base types for induction include integers, instantiations of given sets, sets of
integers and variables. However since Condition 2 is only true for complete sets,
then AR1 can only be used for complete sets. In order to encompass incomplete
sets, we need to extend ZF operations. A further induction rule is presented, as
in [17]: AR2 is implied by AR1, provided that we interpret f; for incomplete sets
in such a way that is is monotonic in the refinement relation for incomplete sets.
Approximation Rule 2 (AR2)

Recall ppp : VAR +» Dpp is an environment in the execution domain Dyp, then
voprp : VAR + Dy is an environment in D, and write p; = v o prp. Consider pf,
environment in Dy which refines py, viz. p; C p,. Then AR2 is

pz € py = v(Erplelprr) T Ex[e] ol

AR2 is stronger than AR1, for if we take p; = p/,, then AR2 becomes AR1.
Conversely, assuming the monotonicity of f;, then AR1 implies AR2.

If Conditions 1-3 hold for all pyp : VAR + Dpp,z : %, and fz is monotone, then
AR2 for ¢ = z implies AR2 for € = fr.

5.4 Comparison of Abstract Interpretation and

Abstract Approximation

The resemblances between abstract interpretation and abstract approximation can
be seen in Figure 5.5, which contains the approximation diagrams for each concept.

Section 5.2 describes the use of abstract interpretation in static analysis of imper-

Abs Jabs Abs PrLP Erple]— Dip
‘ =| ) =|

@, Y Yo— | Ly
: = i -
Contexts feone Contexts Iy Ezle]— Dy

Figure 5.5: (i) Abstract Interpretation and (ii) Abstract Approximation
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ative programs and diagram (i) of Figure 5.5 pictures the abstract interpretation
of program environments at a program node. The abstractions are of the contexts
associated with a program node. The figure indicates the loss of information when
concretising the result of an abstract interpretation. Diagram (ii) of Figure 5.5
represents loss of information when interpreting a piece of Z syntax in an abstract
execution domain as compared with the concrete ‘Z’ domain.

Diagrams (i) and (ii) are similar in that they both represent an abstract and
concrete interpretation of a piece of syntax. However for abstract interpretation,
the abstraction is a set descriptor, whereas for abstract approximation integers,
sets, tuples in the abstract correspond to integers, sets, tuples in the concrete.
However the abstract object may not be as well defined as the associated concrete
object. Abstract approximation also represents loss of information, for the reason
that a program may terminate, or only provide a partial answer. There is also a
difference in the manner in which both represent lack of information. In abstract
interpretation the top element corresponds to the least precise information, the set
Z. The most precise information is given by the empty set, and corresponds to L.
The abstract interpretation is an upper approximation. As pointed out by [78], the
ordering is opposite to the ordering of domain theory; the top element corresponds
to total lack of information. Abstract approximation has the ordering of domain
theory; the bottom element corresponds to total lack of information and it is a lower
approximation.

Abstract interpretation involves two comparisons. First of all the concrete con-
text inputs are abstracted (via «) and an abstract interpretation of a language
construct performed. The resulting abstraction is concreted (via ) then compared
with the concrete interpretation of the context and a loss of information is found.
The second comparison involves commencing with the abstract contexts on input
arcs, concretising, via 7y then performing the concrete interpretation. The result is
the same as if an abstract interpretation had been directly performed: the second
comparison results in no loss of information. On the other hand abstract approx-
imation explicitly involves only one comparison: a syntactic object is interpreted
in an environment in the abstract (execution) domain and the value concreted (via
7). This value is compared to that found by concreting an execution environment
and interpreting the same syntactic object in the resulting concrete environment in
a concrete (Z) domain. In that case the first result underestimates the second. For
abstract approximation the notion of ‘safeness’ is that the abstract approximation

will always provide correct information. However there may be little or no infor-
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mation provided if the program fails to terminate. The principle of safeness means
that we do not want to output the wrong information, for it may mislead.

The remainder of this chapter is restricted to the application of the generics of
abstract approximation to the logic programming domain. Although the examples
supplied are in Gdodel, the framework is intended to apply to any logic programming

language with sound semantics and with sets and types.

5.5 Formalising Structure Simulation

This section formalises the translation of Z syntax to a logic program. The assump-
tion is that the specification has been translated to a logic program and that the
user queries this program, as in the case of the simple example and case studies of
Chapter 4. Section 5.5.1 outlines how a specification might be parsed in order to
apply the rules and explains how a more detailed, formal set of rules are required for
the structure simulation rules of Chapter 4 to be proved correct. The formal rules
are based on the syntax of Z. Section 5.5.2 presents an overview of the animation
approach in initialising and querying the specification. Section 5.5.3 describes the
representation of the expressions and sets of Z in the LP domain and Section 5.5.4
defines the concretisation function + in mapping between the abstract and concrete

domains.

5.5.1 Parsing the Specification and Applying the Transla-

tion Rules

The rules for structure simulation presented in Chapter 4 are of a general nature
and a more detailed set are presented in Section 5.6. In order to translate a Z
specification automatically it needs to be parsed. A report which suggests a suitable
grammar script for Z is [18]. The script is suitable for input to the publically available
PRECC? utility. The authors suggest that PRECC parsers are particularly useful
for Z in that the same concrete symbols can be read by PRECC in different ways
according to their context (as a schema name or as another identifier for example).
The FUZZ type checker [105] also includes a parser.

Both the formal detailed rules for structure simulation and correctness proofs
are based on the syntax of Z. The correctness proofs use structural induction, which

is not based on any particular order of rule application, and hence the translation

2A PREttier Compiler-Compiler
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process is confluent. The parsing and translation would depend on the ‘normal’
syntax of Z. If it was decided to re-define parts of the Z syntax (such as operator

precedence for example) then this would have to be allowed for.

5.5.2 Overview

The user of the animator supplies some values for the constants and sets of the spec-
ification, followed by an initial imposed environment p°. If the initial environment
is consistent with the constraints of the specification, an answer set is output which
provides a set of values for the other schema variables. For example, in Chapter 4
schemas are represented in the LP by characteristic predicates which define the rela-
tionship between schema variables. A schema may have other schemas as references
or be defined in terms of schema expressions (schema conjunction for example). A
top level call to a schema will provide the answer substitution set, which models the

appropriate set of schema bindings, where a single binding is of the form:
<TI0y, Ty > Ay >

or

[Bind (X1, a1), - - ., Bindy( Xy, ay)]

in the LP. The characteristic predicate for the schema (in the LP) is from the
interpreted syntax of the schema definition and includes syntactical objects such as
set expressions, predicates, declarations and references to other schemas. Suppose
Envpp == VAR -+ Dpp is the set of all possible environments associated with a
specification, then pf, € Envpp for the characteristic predicates to succeed. The
user is then supplied with the set of answer substitutions satisfying each schema,
which will have been constrained by its environment p%, € FEnvpp. At the end
of the execution the environment p§, will have been enhanced to one of a set of
environments prp € Envpp and each answer substitution will conform to pyp.

Note that for terminating computations of expressions we are interested either
in a value which terminates with success (and there may be many such values con-
tributing to many schema bindings) orin a finite failure. In Nicholson et al. [88], the
continuation semantics of Prolog is presented. However this is not our approach — we
are not interested in the computational processes (for example backtracking) which
accompanies such a search. We assume that some variables are initially instanti-

ated, and some are initially undefined and are subsequently computed. (Whereas
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Nicholson et al. are concerned with the possible changing values of variables as the
program executes.) Non-termination or floundering occurs when it is not possible
to compute the undefined values.

This section describes how the integers, given sets and derived expressions of Z
are abstracted by the declarative semantics of a logic programming language. The
integers, Z, and instantiated given sets G* form the basis of domains Dyp and Dy.
Syntactic expressions of Z considered are schemas, predicates and expressions such
as arithmetical and set expressions of Figure 5.3. The output is confined to schema
bindings, as in Chapter 4. Thus evaluations of arithmetical, set and expressions
other than these, take place as part of a program execution to determine or check
schema bindings. A description is presented in the next subsection, of how the Z

syntax is interpreted in the LP, and of how the outputs can be ordered.

5.5.3 The Logic Programming Domain

Recall that the given sets are denoted GIVEN, the set of schema names NAME,
and the set of variable names (within a schema) are VAR. The variable and schema
names will subsequently be interpreted as constants in Dyp, which means confining
them to allowed constant names in the programming language. However, in most
of what follows, z;, ..., etc. will be used to ‘stand for’ the variable names.

The proposed abstract domain, D p, includes representations of integer values,
instantiated values, tuples, bindings and sets. n-Tuples are represented by functions
of arity n and sets are represented both as terms and as answer sets. GIVEN is
captured by declaring { G, ..., GV} as bases of the program and for each base G* is
declared the constants gf, ... g*. In order to ‘collect together’ the constants to form
a set, for each base a predicate is constructed denoting membership. For example
predicate IsFileld is applied thus: IsFileId(F1) IsFileId(F2) etc. The set of
file identifiers is formed by set comprehension as in Section 5.2.2.

In the execution domain Dyp, the refinement ordering is generated by:

Vz:Dipe LTz

and by recursion on the representation of sets and tuples. The partial element |
of Dpp represents an incomplete computation, when the program fails to terminate.
The formalisation involves set terms as previously described. It also involves sets of
answer (substitutions), where the latter are only considered in the case of schema

outputs.
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5.5.3.1 Set Objects in the LP

During execution, one or more computations may fail to terminate and this has the
following effect on set objects:

1. Set terms: recall that (finite) set terms are represented by
{a1,a9,...,0a,}, 0r a1 0 (... (a, 0 D))))

where each q; is itself a term. The following set contains an incomplete ele-

ment:
(J_ o (a1 o ( .. (an o @))))

and when a computation of a set term fails to terminate, in an attempt to

evaluate an infinite set for example, we obtain the set:
(a1 0(...(a,0L1))).

In both cases the set evaluates to ‘L’ since functions are strict. This bottom
element is designated | o | to distinguish it as a set and the equivalent of

D1 in Dyz. We have, for all set a:

Note that the above applies to terms in an execution which fails to terminate,
rather than to terms in their initial program state, for these may very well be

undefined;

2. Sets of answer substitutions: recall that for some schema Sch, a binding is
denoted in the LP:

0Sch = [B’L'fldl(Xl, 0,1), ey Bmdn(Xn, an)]
where ay € Dpp, X; € VAR, Sch € NAME

and that the answers to a query concerning the characteristic predicate of Sch

provide a subset of

{Sch e §Sch}
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which depends on the values instantiated. However an answer set can output
some results then fail with an error message. An example would be a schema
with

x=1 \/ {, 1, 2, 3} = {1, 2, 3, 4})

in the predicate as in Chapter 4. Whether the answer set contains some or
indeterminate answers depends on the way it is evaluated (generally it echoes
the code order). Thus there is no way of knowing, from the output, the
nature of the rest of the set. This set is an example of the incomplete set of
Section 5.3.4 where, if b;, (i = 1...k) is a schema binding the incomplete set

of answers can be denoted
{bl, . bk}UJ_

where no more answers are provided after the k* which is followed by the

output of an error message, as in the example.

Figure 5.6 contains the abstract (or LP) representation of Z expressions which

is defined recursively via terms in the logic programming language. Dpp is sup-

Dip ::= m, m an integer

k ko k
| g7, where each g is base G

| Tn(ay, ..., a,) where a5 € Dpp, a tuple
| {a1,...,a,} where a; € Dpp, enumerated free type
| {a1,...,a,} where a; € Dpp, ar, # L, an complete set term

| {a1,...,L,...a,}(= L oLl) where a, € Dp
| {a1,...,a,}u1(= Lo L) where a, € Dyp,
| Bind;(X;, a;) where a; € Dyp, X; € VAR
a single variable binding
| [ Bindi(X1, a1), - .., Bind,(Xy, a,) |, where a; € Dyp, X; € VAR,

a schema type — — a single schema binding

Figure 5.6: The Interpretation of Expressions in the LP Domain

plemented by the following answer set for a schema, of complete and incomplete

schema bindings:

DLP = {b1 e bn} ‘ {bl .. bn}uj_
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where each b; is of the form:

[ Bi’ﬂdl(Xl, af), ey BmdN(Xn, af%) ]

In addition, for each base type G* there is a unary predicate IsG* which is applied to
each constant, gF, of the base®. Bindings of variable names to values, Bind;(X;, a;)

provide an environment, and also interpret schema types, as described.

5.5.4 Concretisation Function vy

Expressions of Dpp are mapped to expressions of Dz, and predicates of Dyp to
predicates of Dy. 1 of Dyp maps to L of Dy. A concretisation function v : Dyp —
D is constructed which maps to Dy from an abstract domain Dyp recursively as
follows: integers in Dyp map to integers in Dy, instantiated values of given sets map
to instantiated values in Dy, set terms map to sets, and functions, Tn(ai, as, ..., a,),
map to n-tuples. If g; is a term in the LP and X; € VAR, G a ‘typical’ base type
representing a given set and g a ‘typical’ member. The mapping v for terms is

defined in Figure 5.7. We now define how « maps the answer substitutions which

v(m) = m,m an integer
v(9) = ¢, constant of base type G is

mapped to instantiated element g

v({a, .., an}) = {v(a),...,7v(an)},
Y(Lo(ao(...(a,09)))) = y(Lol)=0y,

v(ay o (... (a0 1))) = y(Lol)=03u,

Y(Tn(as, ..., az)) = Tn(v(a),...,7(an)),

v([Bind, (X1, a1), ..., Bind,(X,, a,)]) = {Xi = v(a1),...,Xn— v(an)}

a single schema binding
7(1) = 1

Figure 5.7: : LP terms

model schema bindings. A complete (incomplete) set of schema bindings maps to a
complete (incomplete) set of schema bindings. If binding b; is an answer substitution

for : = 1...m then Figure 5.8 shows the mapping of a complete and an incomplete

3Where the meaning is apparent we shall in future remove super and subscript from instantiated
elements and given sets and use g, G, respectively.
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y{br-. bm}) = {e-..cm}
7({b1---bk}UJ_) = {Cl...Ck}UJ_

where
b; = [ Bindy(Xy, ai), ..., Bind,(X,, al) ],
Ci = {Xl = ’Y(G’Da ) Xn = 7(0'2)}’

for 1=1..m

Figure 5.8: 7: Answer Substitutions

set of b;. Where the set is incomplete we obtain the set up to element k, 0 < k < m,

then no more values.

5.6 Correctness: Proof Arguments

The structural induction process is intended to show that the answer set output
from the LP for a given query abstracts or underestimates the answer set expected
from the Z interpretation. We need to determine how a given piece of Z syntax will
be interpreted in the LP and 7Z domains in a given environment. The basis for the

induction is the integers and given sets of the specification.

5.6.1 Structural Induction: Strategy

Evaluation functions in the LP are £;p[_] for numerical and set expressions, Prp[—]
for predicates, Dyp[—] for declarations, and Spp[—] for schemas. Evaluation func-
tions are provided in the Z domain in a similar manner. The proofs that these
correctly approximate the Z domain are outlined. They can be summarised as fol-

lows:

e For any computation, if the memory bounds are exceeded, the computation

results in | and underestimates the Z interpretation;

e For integers and integer expressions, such as addition, subtraction, two cases
are considered, the case where all integers are within the MinlInt, MazInt of
the LP implementation, and the case where they are not. In the case where
the integers exceed these bounds, the LP evaluates to ‘1’ and always under-

estimates the Z interpretation. The details are in Section 5.6.2;
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e Sets are ‘non-standard’ for Z if they are incomplete, for they do not adhere to
the ZF axioms. Sets are ‘non-standard’ for the LP if they contain incomplete
elements or are infinite. For ‘sets as terms’ rule AR1 is sufficient. Where a
program terminates the approximation is exact and the details are contained
in Section 5.6.3. In many cases, it is more convenient to use AR1 directly,
rather than Conditions 1-3;

e Section 5.6.3 also contains the cases where sets have incomplete elements or
are incomplete or are infinite. When this refers to sets and set expressions
involving terms and not to sets of answer substitutions, we treat these together.
This is because in all of these cases they evaluate to Lo L in the LP and always

underestimate the ZF interpretation.

In the case of set union and distributed union, two methods are pursued,
the method where the interpretations of Figure 5.4 are interpreted directly,
and the method utilising AR2. This is for illustrative purposes and because
the interpretation of schemas is formalised in such a way that it depends on
distributed union. However for subsequent proofs, only the direct method is

pursued;

e Predicates can both provide a boolean answer and update the environment,
from ppp, to plp (say). It can happen that the environment can be updated
in a number of different ways, thus providing a set of answer substitutions.
The update is extended to all literals conjoined to the literal being evalu-
ated. This is the result of the resolution inference rule of logic program-
ming (Section 3.3.1). Resolution is presented in a novel way, in the form
of three constraint satisfaction rules. The interpretation of predicates is not
completed until set comprehension is completed, because of the occasional
non-determinism of the updates. However if a computation fails to terminate,
the predicate evaluates to L, which underestimates the Z interpretation. This
is detailed in Section 5.6.4;

e The proofs for set comprehensions and variable declarations are presented in
Section 5.6.5. Variable declarations are treated in a similar manner as pred-
icates, where it is possible for a value to provided for a variable by declaring
it to be (for example) a member of a known set. The interpretation of these

predicates allows the environment to be updated in both Z and the LP;
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e For schema bindings output by the LP which form an answer set, it is possible
to obtain an incomplete set. In that case we cannot assume standard ZF oper-
ations and we cannot use ARJ1 directly. Thus a potential answer substitution
might fail to terminate and in that case the answer set is incomplete and rule
AR2 is used.

The base types for the induction are (i) integers, (ii) sets of integers, (iii) given sets
and their instantiated elements and (iv) variables, so the first task is to show how
their interpretation in the LP underestimates the interpretation in Z. Induction is
over each 7Z construct and is shown in Appendix D. Only the novel or most salient

parts are presented in this chapter. The induction takes place in the following order:
1. Numeric expressions;
2. Set expressions (union and distributed union);
3. Predicate expressions: infix;
4. Set comprehension and variable declarations;
5. Predicates: quantified expressions (which depend on declarations);

6. Schemas and Schema Expressions.

5.6.2 Base Types

(i) Integers
The assumption is that there are largest positive and negative integers available in
the system, MaxInt, MinlInt, which cannot be exceeded. Any attempt to do so may

cause the computation to terminate. Thus for m € Z:

Erp[m]pre = m = Ex[m]pz, — MinInt < m < MazInt
Erp[m]prp = L, m < —Minlnt or m > MazxInt.

(L may be implemented by the output of an error message, or alternatively to the
character co. The latter is suggested by the IEEE floating point standard.) Thus
since y(L) = L:

v(Erp[m]pLp) C Ex[m]pz, m € Z.
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(ii) Sets of integers s
Suppose s is a subset of {i : N | —=MinInt < i < MazInt} and assuming that the
memory bounds are not exceeded, then the abstract interpretation is exact.

Where MinInt, MazInt are exceeded, (for example s = Z) then s is interpreted

as 1 ol in the LP, and therefore underestimates its interpretation in the Z domain.

Y(Erp[{i : —MazInt < i < MazInt},,]prp) =v(Lo L) =31 C EL[Z]pz.

(iii) Given sets and their instantiated elements
Suppose G, g is a given set and typical element. These are interpreted in the LP
by base type G, associated constant g and predicate IsG. In each case the abstract

interpretation is exact for:

Y(Erplglprr) =g
Y(ELp[Glprr) = v({z : IsG(z)}) = G.

(iv) Variables

In section 5.5.2 we explained that schema bindings of variable names to values are
constructed as Bind;(X;, z;), where variable ‘names’ are linked to variables in the
LP. The value of a variable z; can be obtained as a ‘lookup’ in the environment,
where envyp interprets the LP environment prp as in Andrews [6]. Assuming that

the variable has a defined value, the trivial interpretation in the LP is
(z; = a;) «— envp

which can be denoted:
Erplzilprr = a;i & (z; = a;) & true (a; # L1).

If the variable is undefined because of finite failure, the answer returned is false:
Erplzi)prr = L & (a; = L) & false.

If the variable is associated with a schema binding, there are no values which satisfy
the instantiated variables and the schema predicate, so no answer substitutions. For
further discussion see Section 5.6.7.

If the variable is undefined because of non-termination or floundering, the answer
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returned is L:
ngl[xi]]pr =1« (ai = L) & 1.

In either case this is an exact approximation of the interpretation in Dy, since

Pz =7 CPLP-

5.6.3 Numeric and Set Expressions

Details about numerical expressions are in Appendix D where if fr is a numerical

expression:
V(Eeplfzlprr) E Ez1fzlpz,

so the abstract evaluation underestimates the concrete.

We next apply the rules to set expressions, beginning with set union. Set opera-
tors such as intersection and power set are a special case of set comprehensions and
will be treated in Section 5.6.5.

5.6.3.1 Set Union

For tutorial reasons we consider set union directly rather than commencing from (_
and specialising. The syntactic expression ‘z; U 1z’ is interpreted via an equivalent
‘term’ in the LP, denoted ‘z;Upp1y’. (In Godel, ‘union’ is provided by a function ‘+°.)

Consider, first, sets which are complete and with complete elements and suppose:

Iy 01, T2 — G2 € PLp-

The expression ;U p 1, is evaluated using the LP ground substitution {z;/a;, 22/as}
so that (z; Upp 22){z1/a1, 22/ a2} evaluates to (a; Urp az). We assume that Upp is
set-theoretic and implements U for finite sets in the same manner as U for ZF. (See
Appendices B, C.) The interpretation of ZF operations on sets is built recursively.

Condition 1 becomes:
fop(Erpl(z1, 22)]prp) = a1 Upp a2 = Epp[z1 U 2] prp,

which will hold for set operations for terminating computations.
Condition 2

If 7, z, are complete sets, y(z1, 22) in Dy evaluates in the expected way to (y(ay), v(a2))
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and
f2(E2[(z1, 22)]pz) = v(a1) Uz v(a2) = Ez[11 U m]pz.

Since Upp is set-theoretic then y(a; Urp az) = v(a1) Uz v(a2) and Condition 3

becomes:

Y (fLP (5LP[[($1,$2)]]0LP))
=7y(a1 Urp a2) = v(a1) Uz Y(a2) = fz(v(a1, (a2))) = fz(v(Erp(21, 22)]pLP))-

In other words the computation is exact for terminating computations. There are

two ways of extending the result to non terminating computations.

1. The first way is to provide an extension of union to incomplete sets and use
AR2 as the proof rule. This is the rule used by [17] since their implementation
is in Miranda, a functional programming language, which incorporates ‘lazy
lists’. If

I = auL,:ngb,

we define the extension for union:
(auJ_ Uz b) = (a Uz buJ_) = (G Uz b)UJ_

which is pointwise monotonic in the Z domain for non-standard sets. Con-
ditions 1-3 thus hold when ‘f’ is ‘U’, thus: since AR2 holds for z;, 7, then
AR2 holds for € = z; U1y, where U is pointwise monotonic for both standard

and non-standard sets;

2. The second way is to interpret figure 5.4 directly and we see that in Dyp, if x;
is not a standard finite set it can only have the value z; = 1 o L and the left
hand side of AR1 for e = 2; U 5 is

Y ((J_OJ_)ULP b) =7 (J_OJ_) :QUJ_,
since all set terms in the LP involving | o | evaluate to L o L. Then since

z — Dui, x> y(b)
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are both members of environment p;(= v o prp), the right hand side of the

ordering relationship becomes:
D1 Uz v(b)

which will, in any case always exceed &, , whatever its value, provided that it
is still type correct. Since we have established conditions (1 — 3) for complete
sets and AR1 directly for incomplete or infinite sets, then AR1 holds when
Cf’ iS ‘U’.

5.6.3.2 Distributed Union

The interpretation of distributed union (Jz is provided in the example in Sec-
tion 5.2.2. y = (Jz is modelled by DUnion(arga, argb) where the first ar-
gument is a set of sets (input) and the second their union (output). We denote
DUnion(_, _) by ULP and it is defined so that it implements (_J for finite sets
in the same manner as | for ZF. The argument that the LP interpretation un-
derestimates the Z interpretation follows in a similar fashion to the argument for
U.

As will be seen, the set of schema bindings (where non-empty incomplete sets can
occur) is expressed as a distributed union. For this reason we are interested in the
details of incomplete sets and need to look at AR2. Consider, first, the evaluation
of Uz where z = {a;...a,} is a complete, finite set in the LP environment. Then

zisy({ar...a,}) ={v(a1)...7(a,)} in the Z environment.
fLP(gLPII(x)]IpLP) = ULP({al . a'n}) = 5LP|[U éU]]pLP = 5LP|[f37]IPLP-

Thus Condition 1 will hold for set operations for terminating computations.
Condition 2
If z is complete and involves only complete sets, the interpretation in Dy evaluates

in the expected way, v(z) = {v(a1)...7v(a,)} and we have

f2(E21(2)]pz) = U {v(a1) .. . v(an)} = U v({ar... an}) = E2[U ]pz.

Since U is set-theoretic then: v(ULP({al ceGp}) = UZ({fy(al)...fy(an)}) and
Condition 3 becomes:

v (foe (Erp[(z)]pLp))
=7(U,  {a-- an}) =U _{v(a)...7(an)} = fz(v(Epl(2)]prr))-
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Since it is equivalent to the set-theoretic definition then DUnion(arga, argb) ap-
proximates exactly in its interpretation of | z in the case where z is complete. Thus
ARZ1 is true for complete sets.

When the induction process involves only set terms we can use AR1 for incom-
plete or infinite sets, for the left hand side evaluates to @, which always exceeds
the right hand side. However we shall subsequently use | as part of the induction
process, for sets of bindings. Since it is possible to obtain an incomplete set of schema
bindings, we need to extend the operation Uz to incomplete sets or sets containing
incomplete sets. The only restriction is that the extension must be monotonic and

the following extension:

UZ{UUJ_a v, U)} = UZ{U’ v, w}UJ_:
UZ(tUL) = (UZ t)uL

is monotonic. It is then necessary to use AR2 as the proof rule. Thus by ARZ2,
the LP interpretation underestimates the Z interpretation for (J for incomplete
sets. Thus | is interpreted exactly for complete sets and underestimates where sets

involved are infinite or non-standard.

5.6.4 Predicate Expressions

The evaluator Prp interprets syntactic predicates p in the LP domain in the manner
expected, where a predicate evaluates to L when a program flounders or fails to

terminate during its evaluation. Thus if

Booly = {tt, ff, L}
Boolpp = {true, false, 1 }

then
v(true) = tt,y(false) = ff,v(L) = L.

We also have:

PLPI[PI A PQ]]pLP = (PLPIIPI]IPLP & PLPI[PQ]]pLP = tTUG) -
( (Prp[Pi]pLp = true) & (Prp[P2]pLp = true) ).
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The approximation requirement, AR1 for predicates becomes:
Y(Prelelpre) C Pzlel(v o prp).

5.6.4.1 Infix Predicates

In this subsection we treat infix predicates only: =, C, €. Quantification predicates
Vd|peqgand 3d | p e q, where d is a declaration will be treated after we have
treated declarations in Section 5.6.5.1.

In an LP, infix predicates p € ¥ of the form p(z, 22), 21,22 € X1 are interpreted
in such a way that they potentially provide enhancements to the existing environ-
ment as well as evaluating to boolean values. They differ fundamentally from the
functional implementation suggested by [17]. Furthermore, if there are predicates
conjoined to the infix predicates their environments are also enhanced in a manner
which will be described. In order to compare the interpretations in the LP and in Z,
we need to extend the Z interpretation so that it also encompasses constraint satis-
faction. There are three constraint properties associated with predicate evaluation.
Suppose Z is an infix predicate, standing for equality, subset or membership. Then
if either (or both) z; or 1, is undefined or only partially defined they can become
ground through resolution. We call this property:

Constraint Property 1:

Pre[nZzn]pre = Pre[nZz]p),r = true

where o p = prp @ {11 — a1, 1 — a}.
The environments of predicates conjoined to the infix predicates are also en-
hanced:

Constraint Property 2:
Prp[P A (21Z2:)]prp = Pre[(21I72) A Plprp = Pre[PleLp

where ol p = prp & {11 — a1, 15 — a}.
An example which illustrates both properties is

[le] <- ([1: 2’ 3, yj = [1: X, 3, 4]) & z =x + y.

X = 2,
y =4,
z =67 ;

The same constraint properties can be extended to Z.
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An extension of these properties is the case where z; can take many values. The
different values contribute to different answer substitutions. Examples are subset
and membership. We call this:

Constraint Property 3

Pre[nZz]pre = Pre[nZx]p),p = true
Prp[P A (11Zx:)]prp = Pre[(21Z72) A Plprp = Pre[Plotp

where

Prp = prp ©{m = a1} V pip = prp ® {11 — a2} V ...
V ppp = prr @ {11 — an}

where p', p, € Envpp.

The proofs for all the infix predicates are in Appendix D. Where there is only one
way the environment can be enhanced, then we can consider AR1. However where
there is more than one way of enhancing the environment, the values contribute to
a set expression. In that case the comparison between the Z and LP domains will
be deferred to Section 5.6.5.

Thus assuming that the execution terminates, and z;, 7, take unique values, we
can summarise, thus. There are three cases for ;, 25, depending on whether or not
71, o are defined prior to execution of equality function and in each case AR1 is

true.

Equality: If ‘f’ is the syntactic predicate = for variable (z;,22): AR1 holds for

(11 = ;);

Subset If ‘f’ is the syntactic predicate C for variable (z, 25): AR1 holds for (z; C
B);

Membership AR1 is true where ‘f’ is the syntactic predicate € for variable (1, 2»);
the LP interpretation of € underestimates the Z interpretation as required.

5.6.5 Set Comprehension and Variable Declarations

Set Comprehension is defined in terms of declarations Dy; ...; D,, a constraining

predicate p and an expression ¢ involving the declared variables:

Ty T o Ty .. LpiTh | p et
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We first present the interpretation of declarations singly, then within the context of
a set declaration. An example of how this works for the simple schema FileSys is

given later, in Section 5.6.7.2.

5.6.5.1 Variable Declarations

Variable declarations occur within bound expressions with structure: __ d [p et _

where d is a declaration, p is a predicate and ¢ a term. d is of the form:
Ty ITL Lot To) «e. Ty The

These include set comprehensions, quantified expressions, lambda expressions and
schemas. The declaration results in a single tuple of values (zi, ... z,) being gener-
ated (or tested in the case of schemas). Each value is constrained by p and used to
evaluate .

An evaluation function Dyp gives the interpretation in D;p of syntactic decla-
rations z : 7, where z is a variable and 7 is set-valued with value provided by ppp.
The evaluation function is built recursively and interprets in a similar manner to the
infix predicates of Section 5.6.4.1, for variable values generated by the declarations
will update the environment. Since this is so, the declarations are treated as predi-
cates. The declarations considered in this section do not include schema references,

for these are treated separately.

1. 7is a set:
DLPI[-T : T]I,OLP = PLP[[x € T]I,OLP-

‘z : 7 has the effect of either testing a value or updating the environment as

in the case of the membership predicate;
2. 7 is a Power Set, 7 = P71’ say:
Diplz : P prp = Prelz C T']pLp.

‘r: P7" 7 uses a ‘subset’ test rather than a ‘membership of power set’ test for
reasons of efficiency. It has the same effect on the environment as the subset

predicate;
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3. 7 is a Cartesian Product, 1 X To:

DLP|[33 1T X TQ]],OLP = PLP|[$U = ($1 — $2)]I/OLP
& PLP|[$1 S Tl]lpLP) & PLP|[$2 S TQ]],OLP)-

‘T2’ captures a representation of ordered pair (as an example of a tuple) in
the LP. In our Godel library this is ‘OrdPair’. The following shows the imple-

mentation of -+, which illustrates the interpretation of cartesian product.

PF(pf, s1, s2) <- ALL [z,x,y] (z In pf &
(z = OrdPair(x,y))
-> (x In s1) & (y In s2) &
ALL [u] (OrdPair(x, u) In pf -> u = y)).

Thus a single declaration (such as z : 7) has the effect of enhancing the environment

as for the membership predicate:

Drplz : 7]lprp = Prelz € T]porp = Prelz € T]p}p
where if 7 = {a; ... a,} then

Prp=prr @ {z = ari} V pp = prp @ {z = a2}, ... V plp = prr ® {z — an}.
In general, if z : 7 is a declaration, then

Dpplz : T)prr = Prrlz € 7]pLp

where it is possible for p’, to take many values determined by the nature of the
type 7.
A sequence of declarations is evaluated in the LP as a conjunction:

Dip[D1; --.5 Dulprp = Drp[Dilpre & ... & Dip[Dy]prp.

Declarations can be represented in a simpler manner in Z, where again values

are chosen from some set-valued 7. However in this case 7 is a type constructor thus
Dzlz : T]pz = Pz[z € 7],

where 7 is a set, or a power set, P 7', or a cartesian product 7’ x 7" and p/, takes its

values from 7.
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5.6.5.2 Interpretation of Set Comprehension

A set comprehension is
{zy:m; 2 T0; 2y Ty | POt}

where each z; : 7; provides a value which contributes to the tuple (z,...,) which
is used to evaluate ¢. Thus if s = {d | p e t} is a syntactical set comprehension it is
interpreted in Dyp as E,p[s]prp and in Dy as E4[s]pz. Each of these interpretations
is respectively dependent on its constituent Dyp, D where the declarations act as
generators for s. Since declarations in the LP are treated as predicates, then the set

comprehension of s is interpreted in the LP:
Erp[slop = {Drrldlorr & Prrlploip ® Erpltlorp}-

(This way of writing a set comprehension in the LP is chosen so that it resem-
bles set comprehension in Z. It differs from the way it would be coded in Godel
s = {x : p(x)}.) The environment p’, inside the comprehension is the variable
which acts as a set generator, for recall that Dyp[z : T]prr = Prplz € 7]p}p- A
similar interpretation is true for Dj.

Recall from Section 5.5.3.1 that there are two kinds of sets, set terms and sets of
answer substitutions. However for terminating executions they are treated the same.
We assert that for terminating computations, AR1 is true, since the interpretation of
set comprehension is exact. In order to establish this correctness result, the approach
is to initiate an induction process over the set generators (as in [17]). Thus a set
with one generator will be expressed in terms of a set with no set generators, and
we first need to define this object. A set with no set generators, can be defined in
such a way that it evaluates to a singleton when predicate p evaluates to true and

to an empty set when the predicate evaluates to false. In the LP domain:

Erp[{| p @ t}]plp = {ELpt]pp} where Prp[plplp = true
Erp[{| p o t}]pLp = {} where Prp[p]p]p = false.

In the Z domain

Ez[{I p o t}]p'y = {Ez[t]p}, where Pylp]py, = tt
Ez[{| p o t}]p; = {} where Pz[p]p’ = ff-
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Induction is based on the equivalence:
{my im0y g | pett=U{m e {x:m; ...2y T | pet}}
An example of a set with one generator illustrates the equivalence:

{z:7]1<z<4ez%}

where 7 = {1,2,3}. If z is respectively 1,2,3, then p = 1 < z < 4 is false, true, true
and {| p e t} is {}, {8}, {27}. We have

{z:7]1<z<4ez?}={827}={}u{8}u{27}

{z:7]l<z<dez®}=U{z:7e{|l<z<4ez3}}

We first consider terminating computations where the interpretation is proposed as
exact. The induction process depends on showing that if we assume that AR1 holds

for
{zy:m; ;im0 oz Ty [ POt}
then it holds for
{z : 75 Ty i To) o Ty Ty Tpy1 i Tna1 | D @t}

For the induction process we first consider the base case:
Base Case: no set generators
We consider AR1 for the base case where there are no set generators. Conditions

1-2 are true for standard sets since the interpretation is built recursively in both
the LP and Z domains:

Erp[{l p o t}prp = {€1ptlprp} where Prp[plpip = true
Erp[{| p o t}pp = {} where Prp[p]p}p = false

Ezl{l p o t}]p;, = {E2[t]p}, where Pz[plp, = tt

Ezl{l p o t}]ply ={} where Pyp]p; = Jf.

Assuming that the calculation of p,t for environment p}, terminates, the approx-

imation of ‘{| p e t} = f(p,t)’ in the LP domain is exact, since Condition 3
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becomes:
Y(fep(Erpl(p: )]pLp)) = f2(v(Erp[(p, 1)]PLp))-

If the calculation of p,t fails to terminate, then the left hand side of the approxi-
mation evaluates to y(L o 1) = @, and thus underestimates the right hand side,

however it is evaluated.

LHS = y(Erp[f(p,t)]prr) =v(Lo L) =Dy,
RHS = &4[f(p, t)](v © prp)

Set Comprehension — Induction on Declaration Sequence

Induction is based on the equivalence:
{ycm; oy oz [ pett=U{z e {z:m; ...0 7 | p @ t}}

for values of 7, ... 7, in the environment. Write the interpretation of (_J in Z domain
and LP domains as Uz and ULP as in Section 5.6.3.

The equivalence means that the set comprehension with one generator, ‘{z : 7 |
p e t}’, can be evaluated in the LP environment:

Evpl{z 7 pettlorr =U,  Erpl{l p o t}]pLp

where 7 is {a1...a,} in prp and plp = prp ® {z — a;}. The interpretation is
similar for Dy.

For n generators, z; : 71; o : To; ... Ty & T, if 74 — $ € prp, then 71— y(s) € py
and the set comprehensions in both the Z and LP domains can be represented as the

distributed union of a family of sets indexed by i where a; € s, b; € 7y(s) respectively:

Erp[{z:m; .. zp i | DOt} pp =
ULP{ai €so&pl{m :m; ...y | Dot (prp ® {11 — a;})}

Eql{w :m; om0y ok Ty [ Dt pr =
U, {bi € 7(s) @ Ez[{zm : 725 ... tn s T [ p @ 1}](pz © {m > bi})}

For finite sets, the approximation of Condition 3 is exact. Thus since AR1 holds

for the empty sequence and assuming it holds for the sequence

{Ly:70; ...%y 7y | D@t}
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in environments

pz ® {z1 = b}, prp ® {21 — a;}
it then holds for

R HE R P A S X 4

in environments pz, prp. Thus AR1 holds for {z; : 715 @2 : 7o} ... Zp : Tn | p @ t}
since it holds for each of its components 7;, p, t.
For infinite sets, or if any set is non-standard in the LP, the induction process

depends on whether we are addressing set terms or sets of answer substitutions:

e For set terms the LP interpretation of s evaluates to L o | and underestimates

the Z interpretation in the same manner as the ‘no set generator case’;

e For the ‘answer set’ the result depends on distributed union, where incomplete
sets are involved. This is because we can equivalently express a set compre-
hension as a distributed union. Since distributed union underestimates for

incomplete sets, then set comprehension underestimates for incomplete sets.

Thus set comprehension in the LP is an exact interpretation for finite or complete
sets. For infinite or incomplete sets the LP interpretation is an underestimation.

This is true for either set terms or sets of answer substitutions.

5.6.5.3 Set Operations Power Set, Set Intersection

Other set operations € = f(x, 2y, ..., Z, ) can be expressed via set comprehensions.

Examples are set intersection and power set:

Set Intersection s = z; N 1, in the LP is part of the library of set operations.

However N can be expressed as
s ={x : (x In x1) & (x In x2 )}.

where we are assuming that z;, 2, are appropriately typed. In Z this last

condition is expressed explicitly so

s=nNom={z:X|(r€m Nz € 1) @1}
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This is treated as a set comprehension where p = =z € 21 A z € 15. Thus for
terminating computations, the interpretation in the LP approximates exactly,

and for non-terminating computations, the LP interpretation underestimates;

Power Set in the LP, s = Pz can be be expressed in Godel as
s = {z : z Subset x }.

Its generic ‘LP form’ is as a set comprehension with predicate true:

s=&p[{z C z | true ® z}|pLp.

Since ‘power set’ is a type in Z, there is no specific definition for it (see Chapter
3). The power set axiom of ZF (from Appendix A) provides a definition in Z,

for s = Pz is such that

Vze(z€se 2Cux)

and this set and the interpretation in the LP can be shown to be equal. Thus
the interpretation of power set is exact for finite sets. For infinite sets, the LP

interpretation is | o 1 which always underestimates.

The interpretation is exact if the computations terminate. For infinite or incomplete
sets, the interpretation in the LP evaluates to L o 1 and so underestimates the

interpretation in Z.

5.6.5.4 Quantifiers

Universal Quantification

The syntactic predicate ‘Vz : s | p ¢’ is interpreted in the LP :
ALL [x] (x In s <-> p => q )
and in Z as

Vi:s|p=q

and is evaluated for finite sets s on an element by element basis for values of s. Its

interpretation can be denoted in the LP as Ppp[fr]prp, where z is the tuple s, p, ¢
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and ‘f’ the syntactic ‘V’. For terminating computations, Condition 1-2 hold in
the LP and in Z. If ‘Vz : s | p = ¢’ is true then Condition 3 becomes:

LHS = ~(fop(Prel(s, p, ¢)]pLp))
= y(true) = tt
RHS = f;(v(Prel(s, p, 9)lprr)) = tt.

and is thus exact for each p, ¢ in an environment containing s. The result follows
similarly if Vz : s | p e ¢ is false.

For infinite sets the truth value in the LP will be L i.e. it will fail to terminate
and the left hand side of Condition 3 will evaluate to L. For infinite sets, the Z
interpretation of the quantification will result in the value ¢ or ff, and y(L1) = L
and L C ff, L C tt. For cases where s is incomplete, or not fully defined, then
the LP interpretation results in |, which either underestimates the interpretation
in Z, if it is ff, tt, or is exact, if the interpretation in Z is L. Thus in all cases, the
interpretation in the LP of universal quantification adheres to AR1.

Existential Quantification
A similar interpretation is true for 3 where ‘3z : s | p ® ¢’ is interpreted in the LP
by

SOME [x] (x Ins <->p & q ).

and in Z: ‘Gz : s | p A ¢’. The LP interpretation evaluates to true, false, L, which

always underestimates its interpretation in Z, as for V.

5.6.6 Function Application and Lambda Expressions

Function application of ¢; to #, assumes that t; is appropriately typed, as a set

of pairs. It is interpreted in the LP by
ngl[tth]]pLP =a& lbh—a€l.

It is mapped in a similar way in Z. For terminating computations, where set t;
is finite, the interpretation is exact. Where ¢ is infinite or incomplete, the LP

underestimates the Z interpretation for
Erpltit]prp = L.

Lambda expressions require evaluation individually:

ATy P T; .. .Tp T | p @t where t is a term can be expressed (in Z) as a set of
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maplets z — a where the z is a tuple (z,...,,) and a is the term ¢ evaluated at
(1, ..., Ip):
{z1:7m; oz [ Do (21, .,2,) — 1)}

It is interpreted as the equivalent set expression in the LP:

Erp[Am i1y oz T | D@ t]pLp
which is
Erpl{z im; o xp i [ DO (2, 2) = t) oo =

{Drplz1 :711; . 20 : Ta]prp & P[p]
| T2(Tn(z, ..., 2,) — 1)}

An example can be seen in Appendix C. The approximation is exact for terminating

computations and underestimates for the rest.

5.6.7 Interpretation of Schemas and Schema Expressions

Suppose that the syntactic objects schema, axdef € X3 are interpreted in the LP
and in Z by Spp, Sz respectively. A schema can be represented (in its horizontal

form) by the following syntactic object:

Sch=[Dy; ...; D, | CP]

where D; = X; : 7;, and CP ::= CP; A ...\ CP,,.

Sch evaluates to a set expression, of bindings of variable name(s) to values. The
bindings are constrained by the variable declarations and by the schema predicate.
Constants are used to capture variable names in the schema declaration and these
are linked to local variable names via the binding. Suppose GCP is defined as CP

where all the free occurrences of X; ... X, are replaced by z;...z,
GCP(z1,...,2,) = CP(Xy/m1,..., Xp/Tn)

and any bound variables replaced by arbitrary local variables. A set of schema

bindings of Sch can be represented in Z (as suggested in [17]) by a set expression:

{z : 715 ..o ;vn:Tn|GCPO{Xlel,...,Xonn}}.
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There is a similar representation in the LP where [Bind; (X1, z1), . . ., Bind, (X, z,)]
replaces {X; — z,...,X, — z,}. If we assume that the set of bindings is con-
strained by an initial imposed environment p° then the interpretation of the schema

Sch = [D | CP] is the interpretation of a set expression:

SLP|[[X1 STy . Xy T | CP}]]p,”:P
=E&p[{z 15 -5 Tn Ty | GCP e [Bind\ (X1, 11), ..., Bind,(Xp, z,)] H p%p,

where p9 , can contain defined values of all the schema variables (as in the case of the
assembler in Chapter 4) or just some of them (as in the case of the Unix file system
in Chapter 4). The interpretation of schemas and schema expressions is in terms of

a characteristic predicate, providing a single binding for a schema expression.

5.6.7.1 Characteristic Predicate for a Schema Expression

A schema binding is obtained by providing the schema with some initial environ-
ment, p% .. After the schema has been interpreted and if the computation is success-
ful, this environment is updated to p.p, where p;p is such that all schema variables

Ty,... I, have defined values (# L). In its initial state a schema is interpreted by:
SLP|[[X1 2T e X Ty | CPM]p%P

and this evaluates in the LP to bindings of variable names to values. During the
execution the environment has been enhanced by the provision of additional variable
values other than ‘undefined’. The values have been provided by the interpretation

of schema declarations and predicate. This binding is a member of the set defined

previously:
Sppl[ X1 :m; .o Xo 7o | CPlpSp
=E&pl{z :m; -5 Tn T | GCP

e [Bind, (X1, 1), ..., Bind,( Xy, 2,)]| 04 p

where each enhanced environment pyp € Envgp satisfies

Dip[Di; ---; Dalplp & Pre[GCP]plp =
DLPI[DI; Cey Dn]lpr & PLP[[GCP]]pLP.
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The characteristic schema predicate of Sch is as follows:

SchemaType(binding, Sch) <
(binding = [Bind, (X1, 11), ..., Bind,(X,, 1,)]) &
Drp[Dy; -..; Du]prp & Prp[GCP]prp,

where each z; satisfies

DLPI[DI; ey Dn]lpLP & PLPI[GCP]IPLP-

The values z; — a5 ...z, — a, which satisfy SchemaType have either been generated
or were part of the initial environment. In either case this has been achieved by
means of the interpretation of Dy; ...; D, and GCP(zi,...2,). The generated
values have been obtained via the application of Constraint Properties 1 - 3 in
Section 5.6.4.1. Note that although the schema definition in the LP uses ‘if’ (<),
by the CWA, this has the same effect as ‘if an only if’ (<).

The Z interpretation can similarly be represented by a set of bindings where

binding = {X; — v(z1),..., Xp — y(z,) }.

The values v(z;) € ran pz satisfy

Dz[Dy; ...; Dplpz A Pz[GCP]pz.

It is worth investigating how the above would apply to a schema, and the one chosen
is FileSys from Chapter 4 Section 4.4.

5.6.7.2 Interpretation of FileSys

This can be written horizontally as:

FileSys = [Files : F Fileld; Count : 0 .. MaxFiles | #Files = Count] .

Suppose that MaxFiles = 10 is a value provided by the animation user, and that
Fileld is instantiated as {F'1, F2, F3}. Then

Dyrp[Files : F Fileld; Count : 0 .. MazFiles]p$p
= Prplfiles C{F1,F2,F3}]p%p & Prplcount € {1..10}]p%p.
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If we substitute these values, a binding for FileSys is given by:

SchemaType(binding, FileSys) <
(binding = [Bind, (Files, files), Bindy( Count, count]) &
Prplfiles C{F1,F2,F3}]p%p & Prp[count € {1..10}]p%p &
PLp[#files = count ]p4p.

Suppose that initially, p%, = {files — L, count — L}. During the execution, files

is of type F so becomes evaluated through the interpretation of its declaration:

files C{F1,F2, F3}.

Similarly, count becomes evaluated through its declaration as a member of 1..10 .

A binding of FileSys can be expressed:

binding = [Bind, (Files, files), Bindy( Count, count| &
Prplfiles C{F1,F2,F3}]p}p & Prplcount € {1..10}.]p%p &
Pre[#files = count |p5p-

Thus if files evaluates to {F1} (say), then in order to satisfy the schema predicate

and its declaration, count, evaluates to ‘1’ since

#files = count & count € {1..10}.

Substituting these values yields:

binding = [Bind,(Files, {F'1}), Bindy(Count, 1] &
PLPI[{Fl} g {Fl, F2, F3}]I,OLP & PLpl[l € {1 .. 10}]],0[,}:' &
Pre[l = 1]prp,

where prp = {files — {F1}, count — 1} is the enhanced value of the environment

and

binding = [Bind, (Files, { F1}), Bindy(Count,1)]

which was one of the values actually obtained. The full set of bindings can be
obtained from the full set of answer substitutions, as was indicated in Chapter 4.
For the ‘complete’ assembler, the variables were initially all ground, so that p{p

contains no undefined values and the environment is unaltered: prp = pjp, where
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similarly p; = p%. For the Unix file system, and for the two-phase assembler, for
each of the schemas considered some variables are ground in p%p, and some are

determined by the execution.

5.6.7.3 Approximation for Schemas

AR1 can now be considered for schemas and is worth restating. If € is a syntactic Z
expression for a set of schema bindings then condition AR1 must hold for a correct
animation of Z in Dp:

Approximation Rule 1 (AR1)

v(Scrlelprr) E Szle](v o prp)-

where

e={X;:m... X, | CPe{X)—z,... X, — z,} }.

The structural induction rule states that if it can be shown that AR1 holds for
syntactic variable e = z, then it also holds for syntactical expression € = fr, where
in this case, f is a syntactic operator which forms a schema from tuple e = (D, CP),
where D is a declaration and CP is a predicate. We denote by fz, fop the interpre-
tation in the Z domain and LP domain respectively of the syntactic expression fz.
Thus the left hand side of AR1 is

'y(SLpﬂ[Xl ST ey X Ty | CPM]p%P)
=y Ep[{m 1115 .5 T i T | GCP e [Bind, (X1, ), ..., Bindy(Xn, z,)]} p7p)-

The right hand side of AR1 is

S X :7m; oo Xo o7 | CPlp%
=&[{m ;.. Tn:Tn | GOP @ {Xi = m1,..., X, — 2, }}] 0%

These are set comprehension, which have been treated in Section 5.6.5. These inter-
pret exactly where components are finite and complete (as in the case of FileSys).

An example of a schema with an incomplete set of bindings is
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—_UnDef
X,Y:N
Y €{1,2,3}
(X=1)Vv(X=3V({X,1,23}={1,2,3,4}))

The Godel code and queries for UnDef is in Appendix C.1.2. The bindings of UnDef
are interpreted in the LP

{X—1,Y—=1}L{X—=3Y—1}}uo

for the program flounders and the set is incomplete. This is because of the inade-
quate constraint satisfaction for the Godel implementation.
The set of bindings of UnDef is interpreted in Z:

{{X—=»1LY»1}{X=3, Y1} {X—»4 Y1}, {{X—1,Y—2},...}

which demonstrates how the LP interpretation underestimates the Z. In general,

where the answer sets is incomplete the LP interpretation underestimates.

5.6.7.4 Schema Conjunction and Disjunction

We now interpret syntactical objects such as Sch = Sch' A Sch? and Sch = Sch! v
Sch?. Provided that Sch', Sch? have compatible declarations their conjunction and
disjunction can be defined. These are modelled by conjunction and disjunction of
the LP predicates of Sch!, Sch? with lists of bindings appended. This does cause
duplication but has not (so far) been found a practical problem. Suppose Sch' has
predicate CP! and declaration sequence D! where

Di=Xxt:7l . X7l

n

modelled by Godel list by:

[ Bind} (X}, z}),..., Bind: (X}, z}) ]

n»n
and Sch? has a predicate CP? and compatible declaration sequence D? where

D?=XZ:7% ... X2 7P

n
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modelled by Godel list by. Given that the characteristic predicates of Sch, Sch? are

respectively

SchemaType(binding, Sch'), Schema Type(binding, Sch?)

then the characteristic predicate of Sch is

SchemaType(binding, Sch) < (binding = by ™ by) &
Drp[D'; D*p3p & Prp[GCP' A GCP?p4p.

We can show that this interprets exactly the Z interpretation where the program ter-
minates, and provides an incomplete set of answer substitutions when the program
fails to terminate.

First ‘expand out’ the version of Sch = Sch! A Sch? which is interpreted in Z as

Sz[Scht A Sch?pz
= Sz[[ DY; D? | CP' A CP?]]pY.

The above represents the declaration sequences before they are merged, so some
repetitions would be expected. Schema Sch is then expressed as a set comprehension

in the usual way:

1.1 ol b 2.2 L 2.2 1 2

Eql{zt iy oy ahorly wtird o 272 | GCPY A GCP
1 1 1 1. 2 2 2 2

o { X'z, .., X, —ua; X'z, .., X.—z}}]pg-

Then Sch' A Sch? in the LP is

SLpl[SChl N SchZ]]pr

where given that the characteristic predicates of Sch!, Sch? are respectively

SchemaType(binding, Sch'), Schema Type(binding, Sch?)

then the characteristic predicate of Sch evaluates to

SchemaType(binding, Sch) <
(binding = [ Bind} (X}, 1), ..., Bind}(X}, z}),
Bindf (X7, 27), ..., Bindi (X7, 27) ]) &

Dyp[DY; D2plp & PLp[GCPL A GCP2]plp
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which is the same as if the expression had been expanded first. Since this is so, then
the interpretations are exact or not according to the values of their components, as
for Sch defined without conjunction. The criteria for exactness or underestimation
for each of these interpretations has already been discussed. In general, where each
component of an expression is exact, the whole expression is exact, but where one
component underestimates, the whole underestimates.

Schema disjunction is defined in a similar manner. If Sch = Sch' v Sch? then
the bindings are appended and the LP interpretations of the schema predicates
are disjoined. In Chapter 4, the convention for naming variables is further refined,
so that priming, input, output becomes apparent. The formalism is not explored
here. However the naming convention enables schema composition and piping to be
accomplished. An outline is presented in [119].

5.6.7.5 Schema Reference in a Declaration

A declaration can contain a schema reference. If z; € VAR, t,t; € expr,Sch €
NAME, then recall from Section 5.3.1:

basic_decl ::=my,..., 2y : 1 | Sch

where Sch is a schema reference. The interpretation of this in Z is that its decla-
rations are merged with the declarations of the schema which reference it and its

predicate is conjoined. Thus if

Sch; = [Xl 271 ... Xy o Ty Sch | predicate of Schl]

then this is equivalent to Schy = Sch A Schy where

Schy = [X1 1T X i T | predicate of Schl].

Thus if a schema Sch appears as a reference in the declarations of schema Schy, then
this is treated as for schema conjunction above: Sch is removed from the declarations

and conjoined to the predicate of Sch and its remaining declarations.

5.6.7.6 Binding Formation 6

The value of the binding formation §Sch depends on its context. However we inter-
pret it here in the same context as in the Unix file system case study. In that case

study {Sch e 8Sch} was constructed first and #Sch was interpreted as a member of
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that set. The set {Sch e 0Sch} in the LP is the ‘same’ set as Syp[Sch]pLp however
in this case it is a set term and not an answer set. It is the set comprehension S
defined by

S = {SchemaType(binding, Sch) ® binding}

so that the binding formation #Sch € S, where the code can be found in Appendix
C.

This means that if the computation terminates its interpretation is exact, and if
one of the members of s fails to terminate then the output of the whole computation
is L.

5.6.7.7 Axiomatic and Generic Definitions

Axiomatic and Generic Definitions require individual definitions; they are in-
terpreted in such a way that they are exact where the computations terminate.

Axiomatic Definitions are modelled in the same way as schemas, and suitable
names must be generated for them Axiom1, Axiom2.... They must then be conjoined
to the schema which refer to them, as in the assembly case study in Chapter 4. Their
interpretation is the same as for schemas,

Generic definitions are treated in the same way as the parametrised definitions
of partial function etc, ie by using parameters a,b.. They are instantiated when
the set is instantiated, and are defined by a predicate in the LP, as for Sequence in

Appendix C.

5.7 Summary

This chapter has presented an extension of the work of Breuer and Bowen [17] in
determining a formal framework for the correct animation of Z. In formalising the
structure simulation rules of Chapter 4, we have completed Contribution 4 of this

thesis. The contents can be summarised:

1. It has provided a tutorial introduction to the formal framework and proof rules
of abstract approximation. Abstract approximation is based on the procedures
of abstract interpretation, formalised by the Cousots in [23]. A comparison has

been made with the more established procedures of abstract approximation;
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2. It formalises the animation rules of Chapter 4 by applying the correctness
criteria of abstract approximation to the rules. Since these rules are practical,
it is now possible to use correct rules which have been effective for two case

studies;

3. In order to fit the logic program semantics into the correctness criteria it frames
the resolution inference rules in a novel way and models the ‘incomplete set

structure’ using the formalisms of Finite Sets in Appendix B;

4. The rules from Chapter 4 are shown to adhere to the correctness criteria. Since
these rules do include the possibility of non-integer (given) sets and include
important features of Z, the results have a potential application to ‘real world’
examples such as the assembler and Unix file system. Although the possibility
that the program might not terminate was explored in great detail, this very
rarely happened and the examples had to be contrived. The existence of
proven rules for animation provide the user with confidence that the results of

the animation represent Z.



Chapter 6

Summary and Further Work

6.1 Summary

Delivered computer systems are at worst, unusable by their purchasers, and at best
often do not satisfy requirements of functionality and/or safety. The use of formal
methods in the development of computer based systems is seen as addressing these
problems. When a specification is written in a formal mathematical notation, formal
reasoning can be used to ensure that the specification has desirable functionality
but with no undesired side-effects. However it is often difficult for the specifier to
communicate the functionality of the specification to the user of the implemented
system and a proposed method is to animate the specification. It is thought that
a non-executable specification is best for the specifier since it allows the concise
expression of what the system should do with no unwanted details as to how it
should be implemented. Thus for animation, it is necessary that a tool be used to
translate the specification to some executable form and this thesis addresses the lack

of usable tools for the animation of the Z notation. Contributions are as follows:

Contribution 1 is presented in Chapter 2 which contains a survey of current tools
and weaknesses in these tools which have been identified. These are, princi-
pally, that the current tools are not usable (in terms of the ability to be used
on ‘real’ examples) or that their translation rules are not correct, or both.

The advisability of using a declarative language (such as Haskell or Prolog)

135
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is then argued, and in particular the use of a logic programming language is
recommended. This is because of its desirable property of being used for ‘what
if’ queries, where the program can be used to test possible differences between
real and expected test results. The resulting program is then amenable to

analysis via meta-interpreters and techniques of inductive logic as in [79];

Contribution 2 is presented in Chapter 3, in which a formal link between finite
set theory and ZF is investigated. A ‘partially correct’ program is one which
is derived logically from a specification, and this way of obtaining a correct
specification is presented in Chapter 3. Since there were certain shortcomings
in this approach, the work took a different direction and this is presented in
Chapter 4;

Contribution 3 In Chapter 4 previous work by ourselves and other researchers in
the animation of Z by Prolog using structure simulation is presented first [119].
However, it was noted that while the animation was successful in some respects,
several disadvantages were discovered. We argue next that a better technique
is to use the Godel language as described in [117]. Gddel has support for sets,
and a program in Gddel is defined as a theory in first order logic and an im-
plementation must be sound with respect to this semantics. Two case studies
were presented in Chapter 4, the assembler case study (originally animated
in Prolog) and the Unix file system. A test case strategy for animation was
presented, of systematic functional and structural testing similar to that for
testing of software. Animation can be used to make visible the structure of the
specification and, in certain cases, show that a property is not present. This
makes animation complementary to proof, for formal proof can be expensive
and time consuming. Animation tests specific cases and can be made under-
standable to a customer or a user of the implemented system. This means
that potential misunderstandings as to the functionality of the implemented
system can be avoided. However testing can seldom be exhaustive so that

proof provides for the general case.

The animator proved practical and the method sophisticated is enough to
handle the animation of the non-trivial specifications such as the assembler

and the Unix file system;

Contribution 4 is the formalisation of structure simulation and Chapter 5 of this

thesis utilised more recent criteria for correctness for animations of Z first
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proposed by [17], viz. abstract approzimation. The latter paper presented
a functional language (Miranda) for implementation, wherein sets are repre-
sented as lazy lists. Breuer and Bowen suggest that a ‘correct’ interpretation
of Z syntax in the executable language will approximate from below its inter-
pretation via ZF. Thus for example where a set is implemented in a manner
which exceeds memory bounds, non-termination means that the output (L)
is an under-interpretation thus the answer is ‘correct’. Chapter 5 contains a
tutorial presentation of these proof criteria and they are applied to the rules
for animation presented in Chapter 4 for the animation of the assembler and
the Unix file system were proved correct, and in order to do so the logic
program semantics and resolution rules were framed in a novel way. The for-
mal arguments are presented in a tutorial fashion, with illustrative examples

throughout.

6.2 Further Work

Further work includes

1. The extension of the investigation to include more of the Z notation and the

completion of proofs;

2. The development of meta-interpreters and techniques of inductive logic to
trace and correct flaws in the specification discovered when animation returns

an unexpected result, as in [79];

3. Automation of the rules: in order to provide an effective validation technique,
the rules require automation with a suitable interface for user instantiation

and input of queries;

4. Further investigation into a strategy for selecting test cases for animation,

including (where possible) the automatic generation of test cases;

5. The investigation of a functional logic programming language for animation:
an interesting area of work would be the investigation of a functional logic
language for animation purposes as suggested in [124]. A functional logic
language can take advantage of both the logic and functional paradigms. A
first step would be to look at the use in practice, by applying the suggested
rules to a substantial case study, as in the case of Godel;
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6. An ‘embedding’ of Z in HOL is described in [16], where the theorem prover
HOL is used to support proof in Z. A suggestion is to embed Godel in HOL

so that reasoning can be applied to link the two formalisms.

6.3 Impact of the Work

The impact of the work is that a set of rules for the animation of the Z notation has
been presented. The potential of the rules and the animating language, Gédel for
contributing to an effective tool have been demonstrated (Chapter 4). Furthermore,
the rules have been proved correct using correctness criteria developed by others and
techniques developed by ourselves (Chapter 5). The IMPRESS tools has been cited,
as having successfully supported validation of a large system using a logic program-
ming language. These tools have potential implications on the further development
of our own tool, in that techniques of inductive logic and machine learning could
be used to make the animation tool more effective, by facilitating the search, and

correction of, flaws in the Z specification being animated.
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Appendix A

ZF SET THEORY

A.1 Introduction

The axioms of the Zermelo-Fraenkel (ZF) system of axiomatic set theory are nec-
essary for the main part of the thesis and they are outlined here. ZF set theory
was developed because ‘naive’ set theory, introduced by Cantor had given rise to

contradictions. Cantor’s paper begins':

“By a ‘set’(Menge) we are to understand any comprehension (Zusam-
menfassung) into a whole M of definite and separate objects m of our

intuition or our thought”

This ‘comprehension’ was eventually replaced by the abstract idea that every prop-
erty (predicate) gives rise to the set of all things which possess the property. Nev-
ertheless this still gives rise to contradictions, and the ZF system of axiomatic set
avoids these by considering every object to be a set.

ZF is a first order theory with equality where the only terms are variables;
there are no constant or function letters. ZF has primitive relationship € denoting
membership so that z € y is the wif denoting the fact that ‘z is a member of y’.
The system shown here is ‘ZF-without-replacement’ and is taken from [50]. The
replacement axiom is one which can construct a new set as an image of an old, and

this is not included for Z and so not included here.

!The quotation is from [66].
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A.2 ZF Axioms

A.2.1 ZF1 Axiom of Extensionality (Set Equality)

y=w=>Vze(r€yszcuw)

ZF'1 defines equality between two sets, that they are equal if they have the same
members. The definition of subset follows from ZF1.
Definition 1: Subset ( C)

tCys Vwewer=wey).

A.2.2 ZF2 Null Set Axiom

This can be deduced from the other axioms, but is included as it is standard.
dz Vye(—y€ux)

The axiom defines an empty set or & , which can be shown to be unique by ZF1.

A.2.3 7ZF3 Pairing Axiom

VeVy Jw Vze(zews (z=2Vz=y))

Given any sets £ and y there is a set w whose elements are z and y. This ‘unordered
pair’ is usually denoted {z,w}, which is the same as {y,z} from ZF1. By setting
z =y, the set {z,z} (i.e. the singleton set {z}) is obtained.

A.2.4 7ZF4 Union Axiom

Ve Jy Vwe(wey&s Jze(z€x AwE 2))

Given any set x whose elements are sets, there is a set ¥ which has as its elements all
elements of elements of x. The definition of ‘distributed union’ and ‘union’ follows.
Definition 2: Distributed Union (| ) and Union ( U )

The set y from ZF4 is denoted |J z; U is then defined: (a; U ay) = U{a1, a2} or

(zexzUy)sz€xV2zey.
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A.2.5 ZF5 Power Set Axiom

Ve dy Vwe (weys wC i)

Given any set z there is a set y, denoted P(z), the power set of x, which has as its

elements all subsets of x.

A.2.6 ZF6 The Axiom of Separation

Given any wif of ZF (as defined above), denoted A(z) with free variable z,

Ve Jy Vze(z€yezeaxAAlz)).

In other words set y is a subset of x containing those members z of z for which A(z)
holds. This replaces the stronger ZF7 (or replacement axiom), which is omitted.
The definition of intersection of two sets z, y follows from ZF6, in that the wif A(2)
becomes z € w.

Definition 3: Intersection (N)

tNu=yeVze(zecysz€rNzew)
A.2.7 7ZF8 Infinity Axiom

dre(@ecrAVye(yecz=yU{z}ecrx)).

Taken with the previous axioms it can be proved that this constructs the natural
numbers . ZF theory has all sets derivable from the empty set & , and the natural

numbers 0,1,2,... are
@, {2}, {2.{2}}, ...

In other words each number is the set of all smaller natural numbers.
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Theory of Finite Sets — Key

Axioms

The following key axioms are taken from [76]. There are two unary predicate
symbols element(u), set(z)' and (u o z) denotes a binary insertion function: the
result of inserting element u in set . The constant symbol & denotes the empty set.
A binary predicate symbol u € z denotes membership. The text uses a distinctive
notation; for example quantification is expressed V set(z) : p(z) and logical and is
and. We retain the quantification notation, but we write & for conjunction, for
compatibility with later work. The following are examples of axioms in the theory,
for set generation, membership, set equality and set union. There set equality axioms

are additional to the usual equality axioms.

Generation Empty Set set ()

General Case VY element(u) : Vset(z) : set(uoz) .

Membership — Jelement(z) : (z € O)
Velement(z) : V element(u) : Vset(z) : 2z € (uoz) & z=uV z € z.

Set equality The following axioms apply to sets:

element multiplicity V element(u) : Vset(z): uo(uozx) = (uox)

Lan element can also be a set
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element exchange Velement(u) : Velement(v) : Vset(z) : uo(vozx) =

vo (uox).

Induction Principle For each sentence F(z), u not free in z, the following is an

axiom:

if (F{}&
Velement(u) : Vset(z) : F(z) = F(uox))
then Vset(z) : F(z)
Union with empty set Vset(z): Uz =z

Union: insertion V element(u) : Vset(z) : Vset(y)(uoz) Uy =uo(zUy)

Set constructor The general form of the set constructor (unary) function for each
Fu)is{u:u ez & F(u)}
The axioms are as follows:

Empty Set
{utued & Flu)} =
General Case

V element(v) V set(z) :

{u:u€vor & Flu)} =
if F(v)then vo{u:ue€z & F(u)}
else {u:u ez & F(u)}

This yields the set of all elements u of set x such that F(u) is true.

Sets can be conceptualised as lists where multiplicity and order of elements is irrele-
vant, and there are many representations of the same set. Set operations resembling
those of ZF can be derived from the axioms using the induction principle. For

example ‘intersection’ can be obtained from set comprehension. A sample follows:
Set Intersection Vset(z) :Vset(y):zNy={v:u€z & u € y}

Subset Vset(z):Vset(y):z Cy < Velement(w): (w €z = w € y)

Union V element(u)V set(z) :Vset(y):u € (zUy) S uecrVuey

Set equality - derived Vset(z) :Vset(y):z =y Cy&yCux
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Library of Set Code

C.1 Introduction

This appendix includes the Godel code discussed in the main part of the thesis. The
first element of each module is the EXPORT part, and the second is the LOCAL
part.

C.1.1 Library code

This section contains the library code for sets and relations.
Library Code: EXPORT

EXPORT Lib.
IMPORT Sets, Lists, Integers.

CONSTRUCTOR OP/2.

FUNCTION  OrdPair : x * y = OP(x,y).

%% ZF Sets and Relations
%% Distributed union
PREDICATE DUnion: Set(Set(a)) * Set(a).

% Cardinality of a set
PREDICATE Card: Set(a) * Integer.
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%Relation
PREDICATE

Rel : Set(OP(a,b)) * Set(a) * Set(b).

%Partial Punction

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PF : Set(OP(a,b)) * Set(a) x Set(b).
TF : Set(OP(a,b)) * Set(a) * Set(b).
PINJ : Set(OP(a,b)) * Set(a) =* Set(b).
TINJ : Set(OP(a,b)) * Set(a) = Set(b).
PSURJ : Set(OP(a,b)) * Set(a) = Set(b).

TSURJ : Set(OP(a,b)) * Set(a) = Set(b).

TONF : Set(OP(a,b)) = Set(a) =* Set(b).

DomContents : Set(OP(a,b)) * Set(a) .

RanContents : Set(OP(a,b)) x* Set(b) .

Composition : Set(OP(a,b)) * Set(OP(a,c)) * Set(OP(c,b)).
Inverse :

Set(OP(a,b)) * Set(OP(b,a)).

PREDICATE DomRestrict : Set(OP(a,b)) * Set(a) *x Set(OP(a,b)).

PREDICATE RanRestrict : Set(OP(a,b)) * Set(b) * Set(OP(a,b)).

PREDICATE DomExclude :

PREDICATE RanExclude :

PREDICATE FunOveride

Set(OP(a,b)) * Set(a) * Set(OP(a,b)).
Set(OP(a,b)) * Set(b) * Set(OP(a,b)).

: Set(OP(a,b)) * Set(OP(a,b)) * Set(OP(a,b)).

PREDICATE LambdaSquareNo : Set(OP (Integer,Integer)) * Set(Integer).

PREDICATE IsSequ

PREDICATE

: Set(OP(Integer,a)) * Set(a) * Integer.

HeadSequ :a  * Set(OP(Integer,a)).

Library of Set Code
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%% GCD - taken from Hill and Lloyd
PREDICATE Gcd : Integer * Integer * Integer.

PREDICATE CommonDivisor : Integer * Integer x Integer.

Library Code: LOCAL

LOCAL Lib.
IMPORT Sets, Lists, Integers.

% ZF Sets and Relations

% Distributed union
DUnion(x, y) <—y = {z: SOME [w] (wIn x & zIn w) }.
% Cardinality of a set

Card({}, 0).
Card(set, sub_total + 1)
<— x In set & Card(set\{x}, sub_total).

% Relation

Rel(rel, s1, s2) <— ALL [z,x,y]
( z In rel & (z = OrdPair(x,y))
—> (xInsl) & (y In s2)).

% partial function
PF(pf, s1, s2) <— ALL [z,x,y]
(z In pf & (z = OrdPair(x,y))
—> (xInsl) & (y Ins2) &
ALL [u] (OrdPair(x, u) In pf —> u = y)).

% total function
TF(tf, s1, s2) <— ALL [z,x,y]
(zIntf & (z = OrdPair(x,y))
—> (xInsl) & (y Ins2) &
DomContents(tf, s1) &
ALL [u] (OrdPair(x, u) In tf —> u = y)).
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% partial injection
PINJ(pinj, s1, s2) <— ALL [z,x,y]
(z In pinj & (z = OrdPair(x,y))
> (xInsl) & (yIns2) &
ALL [ul] (OrdPair(x, ul) In pinj —> ul = y)
& ALL [u2] (OrdPair(u2, y) In pinj —> u2 = x)).

% total injection
TINJ(tinj, s1, s2) <— PINJ(tinj, s1, s2) & DomContents(tinj,sl).

% partial surjection
PSURJ(psurj, s1, s2) <— PF(psurj, s1, s2) & RanContents(psurj, s2).

DomContents(x, y) <— y = { dom: OrdPair(dom,_) In x}.
RanContents(x, y) <— y = { ran: OrdPair(_,ran) In x}.
Composition(x, y, z) <— x = {OrdPair(a,b):
SOME [u] (OrdPair(a,u) In y & OrdPair(u,b) In z )}.
Inverse (x, y) <— x = {OrdPair(a,b): OrdPair(b,a) In y}.
% Relation z is Relation z with domain restricted to (set) y.
DomRestrict(x, y, z) <—
x = {OrdPair(a,b): OrdPair(a,b) In z & a In y}.
% Relation z is Relation z with range restricted to (set) y.

RanRestrict(x, y, z) <—
x = {OrdPair(a,b): OrdPair(a,b) In z & b In y}.

% Relation z is Relation z with (set) y deleted from its domain.
DomExclude(x, y, z) <—
x = {OrdPair(a,b): OrdPair(a,b) In z & “(a In y)}.

% Relation z is Relation z with (set) y deleted from its range.
RanExclude(x, y, z) <—
x = {OrdPair(a,b): OrdPair(a,b) In z & “(b In y)}.

% Function z is function y overidden by function z
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FunOveride(x, y, z) <— w = {OrdPair(a,b): OrdPair(a,b) In y &

“SOME[u] (OrdPair(a,u) In z)} &

X =W + z.

% Example of lambda expression, x is set of squares of numbers in y
LambdaSquareNo(x, y) <— x = {OrdPair(n, n*n): n In y}.

% Ezxample of generic definition- head of sequence.
% First define a sequence
IsSequ(sequ, items, size) <— Size(sequ, size ) &
domseq = {n: 1 =< n =< size} &
TF(sequ, domseq, items).

% Head of sequence- corresponds to OrdPair(1, item);
% Non-empty sequence
HeadSequ(item, sequ) <— sequ "= {} &
OrdPair(1, item) In sequ.

%% GCD - taken from Hill and Lloyd

%% This works for positive and negative integers, i, j.

Ged(i,j,d)
<— CommonDivisor(i, j, d) &
~ SOME [e] (CommonDivisor(i, j, €) & e > d).

CommonDivisor(i, j, d) <—
IF(i=0\/j=0)

THEN
d = Max(Abs(i), Abs(j))
ELSE
1 =< d =< Min(Abs(i), Abs(j)) &
iModd=0&
j Mod d = 0.

%% [Lib] <- Ged(9,3, z).

%% r=238°%2,;
%% No
%% [Lib] < Ged(18, 5, y).

%%y=17%;
%% No
%% [Lib] <- Ged(18, 2, z).
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%% z=27;
%% No
(%% Lib] <- Ged(-9, 3, x).

%% x =28 72;
%% No
%% [Lib] < Ged(9, -3, ).

%% =238 7;
%% No
%% [Lib] <- Ged(-9, -3, z).

%% x =28 °2;
%% No

C.1.2 Small File System Code

This section contains code for the small file system, FileSys, its unconstructive form

and queries to both. It also contains code for UnDef.

Small File System: EXPORT

EXPORT Demo2.
IMPORT Lib.
BASE

% %meta variables
Name, Var, Fileld, BindVar.
%% given sets
CONSTANT
Files, Count, NewFile, X, Y : Var;
F1, F2, F3 : Fileld;
FileSys, AddFID, AddFID1, UnDef : Name.

% AddFID1 is an unconstructive form of AddFID

% An example of a schema with undefined bindings is also included.

% variables are X, Y, name is UnDef.

% This function interprets the binding of a variable name to

% an integer value
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FUNCTION Bind1 : Var * Set(Fileld) —> BindVar.
FUNCTION Bind2 : Var * Integer —> BindVar.
FUNCTION Bind3 : Var % Fileld —> BindVar.

%% defines variable type of schema is set of BindVar

% %Decorations

%% on Set names, ie priming, input, output
FUNCTION DSet : Var —> Var.
FUNCTION OUT : Var —> Var.
FUNCTION IN : Var — Var.

% %on Schema names, ie priming, del
FUNCTION  DSch : Name —> Name.
FUNCTION  Del : Name —> Name.

PREDICATE SchemaType: List (BindVar ) = Name.
PREDICATE D1 : Integer .
PREDICATE IsFileld : Fileld.

Small File System: LOCAL and code for UnDef

LOCAL Demo?2.
IsFileld(F1). IsFileld(F2). IsFileld(F3).

%% schema for state FileSys
SchemaType( [ Bind1(Files, files ), Bind2(Count, count )], FileSys)
<
setFID = {x : IsFileld(x) } &
files Subset setFID &
count In {y : 0 =<y =< 10} &
Card(files, count).

%% schema for state FileSys’
SchemaType( [ Bind1(DSet(Files), filesl ), Bind2(DSet(Count), countl )],
DSch(FileSys) ) <—
setFID = {x : IsFileld(x) } &
files1 Subset setFID &
countl In {y : 0 =< y =< 10} &
Card(filesl, countl).

%% schema for state Del FileSys
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SchemaType(binding, Del(FileSys)) <—
SchemaType(bl, FileSys) &
SchemaType(b2, DSch(FileSys)) &

Append(bl, b2, binding) .

SchemaType( binding, AddFID ) <—

SchemaType(bindingl, Del(FileSys)) &

bindingl = [Bind1(Files, files ), Bind2(Count, count ),
Bind1(DSet(Files), filesl ), Bind2(DSet(Count), countl )] &

Append(bindingl, [ Bind3(IN(NewFile), newfile)] , binding) &

count < 10 &
setFID = {x : IsFileld(x) } &
newfile In setFID &

~ ( newfile In files) &
filesl = files + {newfile} &

countl = count + 1.

%% queries and response
[Demo2] <— SchemaType(b, FileSys).

b = [Bind1(Files,{}),Bind2(Count,0)] ? ;

b = [Bind1(Files,{F1}),Bind2(Count,1)] ? ;

b = [Bind1(Files,{F1,F2}),Bind2(Count,2)] ? ;

b = [Bind1(Files,{F1,F2}),Bind2(Count,2)] ? ;

b = [Bind1(Files,{F1,F2,F3}),Bind2(Count,3)] ? ;
b = [Bind1(Files,{F1,F2,F3}),Bind2(Count,3)] ? ;

b = [Bind1(Files,{F1,F2,F3}),Bind2(Count,3)] ?
Yes

[Demo2] <— SchemaType(b, Del(FileSys) ).

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{}),
Bind2(DSet(Count),0)] ? ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1}),
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Bind2(DSet(Count),1)] 7 ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1,F2}),
Bind2(DSet(Count),2)] 7 ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1,F2}),
Bind2(DSet(Count),2)] ?
Yes

[Demo2] <— SchemaType(b, AddFID).

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F1)] 7 ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F2}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F2)] 7 ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F3}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F3)] 7 ;

b = [Bind1(Files,{F1}),Bind2(Count,1),Bind1(DSet(Files),{F1,F2}),
Bind2(DSet(Count),2),Bind3(IN(NewFile),F2)] 7 ;

b = [Bind1(Files,{F1}),Bind2(Count,1),Bind1(DSet(Files),{F1,F2}),
Bind2(DSet(Count),2),Bind3(IN(NewFile),F2)] ? ;

b = [Bind1(Files,{F1}),Bind2(Count,1),Bind1(DSet(Files),{F1,F3}),
Bind2(DSet(Count),2),Bind3(IN(NewFile),F3)] ?
Yes

% Queries which instantiate some variables

[Demo2] <— SchemaType(b, AddFID) & b = [Bind1(Files,{}),Bind2(Count,0),
Bind1(DSet(Files), x), Bind2(DSet(Count),1),Bind3(IN(NewFile), F1)].

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1}),
Bind2(DSet(Count),1),Bind3(IN (NewFile),F1)],

x = {F1} 7 ;

No

% Error input
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[Demo2] <— SchemaType(b, AddFID) & b = [Bind1(Files,{}),Bind2(Count,0),
Bind1(DSet(Files), x), Bind2(DSet(Count),1),Bind3(IN(NewFile), F5)].

Error: undeclared or illegal symbol in term: "F5".
SchemaType ( b, AddFID ) & b = [ Bind1 ( Files, { } ),
Bind2 ( Count, 0 ), Bindl ( DSet ( Files ), x ),

Bind2 ( DSet ( Count ), 1 ), Bind3 ( IN ( NewFile ), F5

sxheresx

) ]

[Demo2] <— SchemaType(b, AddFID) & b = [Bind1(Files,{}),Bind2(Count,0),
Bind1(DSet(Files),x), Bind2(DSet(Count),1),Bind3(IN(NewFile),y)].

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1}),
Bind2(DSet(Count),1),Bind3(IN (NewFile),F1)],

x = {F1},

y=F17;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F2}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F2)],

x = {F2},

y=F27;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F3}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F3)],

x = {F3},
y=F37;
No

%% out of range value (of 12) for count

[Demo2] <— SchemaType(b, AddFID) & b = [Bind1(Files,{}),Bind2(Count,0),
Bind1(DSet(Files),x), Bind2(DSet(Count), 12),
Bind3(IN(NewFile),y)].

No
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% Unconstructive form of AddFID
SchemaType( binding, AddFID1 ) <—

SchemaType(bindingl, Del(FileSys)) &
bindingl = [Bind1(Files, files ), Bind2(Count, count ),
Bind1(DSet(Files), filesl ), Bind2(DSet(Count), countl )] &
Append(bindingl, [ Bind3(IN(NewFile), newfile)] , binding) &
count < 10 &
setFID = {x : IsFileld(x) } &
newfile In setFID &
" ( newfile In files) &
files Subset filesl &
files = filesl \ {newfile} &
countl = count + 1.

Zquery to ‘unconstructive’ schema
[Demo2] <— SchemaType(b, AddFID1).

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F1}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F1)] 7 ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F2}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F2)] 7 ;

b = [Bind1(Files,{}),Bind2(Count,0),Bind1(DSet(Files),{F3}),
Bind2(DSet(Count),1),Bind3(IN(NewFile),F3)] 7 ;

b = [Bind1(Files,{F1}),Bind2(Count,1),Bind1(DSet(Files),{F1,F2}),
Bind2(DSet(Count),2),Bind3(IN(NewFile),F2)] ?
Yes
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%%Schema with values undefined
SchemaType( [ Bind2(X, x ), Bind2(Y, y) ], UnDef)
<—yIn{1,2,3} & ((x=1)\/ x=3)\/
({x, 1,2, 3} = {1, 2,3,4}) ).

%% query and response

% [Demo2] <- SchemaType( [ Bind2(X, = ), Bind2(Y, y) |, UnDef).

%z =1,
%y=12;
%z =3,
%y=17%;

% Floundered. Unsolved goals are:
% Goal: {v_1,1,2,8}={1,2,3,4}
% Delayed on: v_1




Appendix C 168 Library of Set Code

C.1.3 Assembler Code

This section contains code for the assembler.
Assembly Code: EXPORT

EXPORT Assembly.
IMPORT Lib.
BASE
% %meta variables
Name, Var, BindVar,
%% given sets
Sym, A, M, Opsym, Int, Op.

FUNCTION  Bindl : Var * Set(OP(A, Sym)) — BindVar.

FUNCTION  Bind2 : Var * Set(OP(A, Opsym)) —> BindVar.

FUNCTION  Bind3 : Var * Set(OP(A, Integer)) —> BindVar.

FUNCTION  Bind4 : Var x Set(OP(M, Integer)) —> BindVar.

FUNCTION  Bind5 : Var * Set(OP(Opsym, Integer)) —> BindVar.
FUNCTION  Bind6 : Var * Set(OP(Integer, A)) —> BindVar. % sequence of A
FUNCTION  Bind7 : Var * Set(OP(Integer, M)) —> BindVar. % sequence of M
FUNCTION  Bind8 : Var % Integer —> BindVar.

FUNCTION  Bind9 : Var * Set(OP(Sym, Integer)) —> BindVar.

FUNCTION  Bind10 : Var #* Set(OP(Integer, Sym)) —> BindVar.

—~ o~~~

% %Decorations

%% on Set names, ie priming, input, output
FUNCTION  DSet : Var —> Var.
FUNCTION OUT : Var —> Var.
FUNCTION IN : Var —> Var.

% %on Schema names, ie priming, del
FUNCTION  DSch : Name —> Name.
FUNCTION  Del : Name —> Name.

PREDICATE SchemaType: List (BindVar ) * Name.
PREDICATE SThetaS: Set(List(BindVar)) * Name.
PREDICATE IsSym : Sym.

PREDICATE IsA : A.
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PREDICATE IsM : M.

PREDICATE IsOpSym : Opsym.

Assembly Code: LOCAL

LOCAL Assembly.
% Assembly Data %

%% for sets a, m, sym, opsym, int
CONSTANT

V1, V2, Loop, Exit : Sym;

A1, A2, A3, A4, A5, A6, A7, A8, A9: A;

M1, M2, M3, M4, M5, M6, M7, M8, M9 : M;

Load, Subn, Store, Compare, Jumple, Jump, Return : Opsym;

SeqA, SeqM, Lab, Op, Ref, Num, Opcode, Operand, Mnem, Rt, St, Core : Var;

Assembly, Assembly_contextl, Assembly_context2, Assembly_context3,

IS, Phasel, Phase2, Implementation : Name.

IsA(A1). IsA(A2). IsA(A3). IsA(A4). IsA(A5). IsA(A6).
IsA(A7). IsA(A8). IsA(A9).

IsM(M1). TsM(M2). IsM(M3). IsM(M4). IsM(M5). IsM(M6). TsM(M7).
IsM(M8). IsM(M9).
IsSym(V1). IsSym(V2). IsSym(Loop). IsSym(Exit).

IsOpSym(Load). IsOpSym(Subn). IsOpSym(Store). IsOpSym(Compare).
IsOpSym(Jumple). IsOpSym(Jump). IsOpSym (Return).

%Schemas

%% Context 1
SchemaType([ Bind1(Lab,lab), Bind2(Op,op), Bind1(Refref),
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Bind3(Num ,num) ], Assembly_contextl) <—
% given sets
% associated with declarations

a={x:IsA(x) } &

sym = {x : IsSym(x) } &

opsym = {x:IsOpSym(x) } &

int ={x:0<x <5000 } &

% wvars, label, op, ref, num, declared */

PF(lab, a, sym) & % Al
PF(op, a, opsym) & % A2
PF(ref, a, sym) & % A3
PF(num , a, int) & % A4

% predicate */
DomContents(op, domop) &
DomContents(ref, domref) &
DomContents(num, domnum) &
domref * domnum = {} & % A5
a = (domref + domnum + domop).
% A6
%% Context 2

SchemaType( [Bind4( Opcode , opcode ), Bind4(Operand,operand )],

Assembly_context2 ) <—
%declarations of opcode, operand
int ={x:0<x <5000} &
m = {x: IsM(x) } & % M1

PF( opcode, m, int ) &

PF(operand , m, int ) & % M3
%predicate

DomContents(opcode, domopcode) &

DomContents(operand, domoperand ) &

m = (domopcode + domoperand). % M4

%% Context 3

SchemaType( [ Bind5( Mnem, mnem )], Assembly_context3 ) <—

int = {x:0<x <5000 } &
opsym = {x : IsOpSym(x) } &
PF( mnem, opsym, int ). % My

[Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm),
Bind1(Lab,lab), Bind2(Op,op),

Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
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Bind4(Operand,operand ),Bind5( Mnem, mnem )],

%% Assembler
% appended list of input, output and three context bindings
SchemaType([Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm),
Bind1(Lab,lab), Bind2(Op,op),
Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem )], Assembly)
<
SchemaType([Bind1(Lab,lab), Bind2(Op,op), Bind1(Ref,ref),
Bind3(Num ,num)], Assembly_contextl ) & % A1-A6
SchemaType([Bind4( Opcode , opcode ), Bind4(Operand,operand )],
Assembly_context2 ) &
% M1-M3
SchemaType([Bind5( Mnem, mnem )], Assembly_context3 ) &
% M/
Append(bl, [Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm)],
[Bind4( Opcode , opcode ), Bind4(Operand,operand )],

a={x:IsA(x) } &

m = {x: IsM(x) } &

sym = {x : IsSym(x) } &

int = {x:0<x <5000 } &

IsSequ(seqa, a, n1) &

IsSequ(seqm, m, n2) &

SOME [symtab]

(PF(symtab, sym, int) &
Composition(seqalab, seqa, lab ) &
Inverse(symtab, seqalab) &
DomContents(symtab, domsymtab) &
Composition( seqaref, seqa, ref ) &
RanContents(seqaref, rangeseqaref) &
rangeseqaref Subset domsymtab & % S3

Composition(seqarefsymtab, seqaref, symtab ) &
Composition(seqaop, seqa, op ) &
RanContents(seqaop, rangeseqaop) &
DomContents(mnem, dommnem ) &

rangeseqaop Subset dommnem & % S4

Composition(seqmoperand, seqm, operand ) &
Composition(seqanum, seqa, num ) &
seqmoperand = seqarefsymtab + seqanum & % S5
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Composition(seqmopcode, seqm, opcode ) &
Composition(seqaopmnem, seqaop, mnem ) &
seqaopmnem = seqmopcode ). % S6

% Two phase assembler

% Intermediate state
SchemaType([ Bind9(St, st ), Bind10(Rt, rt ),Bind7(Core, core)] , IS)

<— int ={x:0<x <5000} &
sym = {x : IsSym(x) } &
Rel( st, sym, int ) &
PF( rt, int, sym) &
m = {x: IsM(x) } &
IsSequ(core, m, n).

%% Assembler Phase 1
SchemaType([Bind6(IN(SeqA),seqa ), Bind9(St, st), Bind10(Rt, rt),
Bind7(Core, core),
% context schemas
Bind1(Lab,lab), Bind2(Op,op),
Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem ) ], Phasel)
<
SchemaType([Bind1(Lab,lab), Bind2(Op,op), Bind1(Ref,ref),
Bind3(Num ,num)], Assembly_contextl ) & % A1-A6
SchemaType([Bind4( Opcode , opcode ), Bind4(Operand,operand )],
Assembly_context2 ) &

% Mi-M3
SchemaType([Bind5( Mnem, mnem )], Assembly_context3 ) &
% MY
a={x:IsA(x) } &
IsSequ(seqa, a, n1) &
Composition(seqalab, seqa, lab ) &
Inverse(st, seqalab) & %% P1.1
Composition( rt, seqa, ref ) & %% P1.2

Composition( coreoperand, core, operand ) &
DomContents(rt, domrt) &
Composition(innum, seqa, num) &
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DomExclude(innum, domrt, coreoperand) & % P1.8

Composition(seqaop, seqa, op ) &
Composition(seqaopmnem, seqaop, mnem ) &
Composition(coreopcode, core, opcode ) &
seqaopmnem = coreopcode & % P1.4

RanContents(seqaop, rangeseqaop) &
DomContents(mnem, dommnem ) &

rangeseqaop Subset dommnem . % P1.5

%% Assembler Phase 2
SchemaType([Bind7(OUT(SeqgM),seqm ), Bind9(St, st), Bind10(Rt, rt),
Bind7(Core, core),
% context schemas
Bind1(Lab,lab), Bind2(Op,op),
Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem ) |, Phase2)
<
SchemaType([Bind1(Lab,lab), Bind2(Op,op), Bind1(Ref,ref),
Bind3(Num ,num)], Assembly_contextl ) & % AI1-A6
SchemaType([Bind4( Opcode , opcode ), Bind4(Operand,operand )],
Assembly_context2 ) &
% MI1-M3
SchemaType([Bind5( Mnem, mnem )], Assembly_context3 ) &
% M4
m = {x: IsM(x) } &
int = {x:0< x <5000} &
sym = {x : IsSym(x) } &
IsSequ(seqm, m, nl) &
PF(st, sym, int) & % P2.1

RanContents(rt, rangert) &
DomContents(st, domst) &
rangert Subset domst & % P2.2

Composition(coreopcode, core, opcode ) &
Composition(seqmopcode, seqm, opcode ) &
seqmopcode = coreopcode & % P1.3

Composition( seqmoperand, seqm, operand ) &
Composition( coreoperand, core, operand ) &
DomContents(rt, domrt) &
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DomExclude(tmpl, domrt, seqmoperand) &

% tmpl is seqmoperand with domain excluded domrt

% which equals coreoperand with domain excl domrt
DomExclude(tmpl, domrt, coreoperand) & % P2.4

Composition(rtst, rt, st ) &
% rtst is seqmoperand with domain restricted to rist

DomRestrict(rtst, domrt, seqmoperand). % P2.5

SchemaType([Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm), Bind7(Core, core),
Bind1(Lab,lab), Bind2(Op,op), Bind1(Ref,ref), Bind3(Num ,num),
Bind4( Opcode , opcode ), Bind4(Operand,operand ),

Bind5( Mnem, mnem )], Implementation )
<
SchemaType([Bind6(IN(SeqA),seqa ), Bind9(St, st), Bind10(R#, rt),
Bind7(Core, core),
Bind1(Lab,lab), Bind2(Op,op),
Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem ) ], Phasel)

&
SchemaType([Bind7(OUT(SeqM),seqm ), Bind9(St, st), Bind10(Rt, rt),
Bind7(Core, core), Bind1(Lab,lab), Bind2(Op,op),
Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem ) ], Phase2).

Assembly Queries

This section contains full queries for the assembler.

% Query to SchemaType assembly context 1:

[Assembly] <—
SchemaType([Bind1( Lab, { OrdPair ( Al, V1 ), OrdPair ( A2, V2),
OrdPair ( A3, Loop ), OrdPair ( A9, Exit ) }),
Bind2(Op, { OrdPair(A3,Load), OrdPair( A4,Subn),
OrdPair( A5,Store),OrdPair( A6,Compare),
OrdPair( A7,Jumple),OrdPair( A8,Jump),OrdPair( A9,Return)}),
Bind1(Ref, {OrdPair(A3,V2),0rdPair(A5,V2),0rdPair(A6,V1),
OrdPair(A7,Exit), OrdPair(A8,Loop)}),
Bind3(Num, {OrdPair(A1,100),0rdPair(A2,4095),0rdPair(A4,8)})],
Assembly_contextl).

Yes.
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% Query to SchemaType assembly context 2:
[Assembly] <—

SchemaType([Bind4( Opcode ,{OrdPair(M3,1),
OrdPair(M4,3),0rdPair(M5,2),0rdPair(M6,50),0rdPair(M7,61),
OrdPair(M8,71),0rdPair(M9,77)}),

Bind4(Operand,{ OrdPair(M1,100),0rdPair(M2,4095),
OrdPair(M3,2),0rdPair(M4,8),
OrdPair(M5,2),0rdPair(M6,1),0rdPair(M7,9),0rdPair(M8,3) })],

Assembly _context2 ).

yes.

% Query to SchemaType assembly context 3:

[Assembly] <—

SchemaType([Bind5( Mnem, {OrdPair(Load,1),0rdPair(Subn,3),0rdPair(Store,2),
OrdPair(Compare,50), OrdPair(Jumple,61),
OrdPair(Jump,71),0rdPair(Return,77)})],

Assembly_context3 ).

yes

% Query to SchemaType assembly
[Assembly] <—

seqa = { OrdPair ( 1, A1 ), OrdPair ( 2, A2 ), OrdPair ( 3, A3 ),
OrdPair ( 4, A4 ), OrdPair ( 5, A5 ), OrdPair ( 6, A6 ),
OrdPair ( 7, A7 ), OrdPair ( 8, A8 ), OrdPair ( 9, A9 ) } &

seqm = { OrdPair ( 1, M1 ), OrdPair ( 2, M2 ), OrdPair ( 3, M3 ),
OrdPair ( 4, M4 ), OrdPair ( 5, M5 ), OrdPair ( 6, M6 ),
OrdPair ( 7, M7 ), OrdPair ( 8, M8 ), OrdPair ( 9, M9 ) } &

lab = { OrdPair ( Al, V1 ), OrdPair ( A2, V2 ), OrdPair ( A3, Loop ),
OrdPair ( A9, Exit ) } &

op = { OrdPair ( A3, Load ), OrdPair ( A4, Subn ), OrdPair ( A5, Store ),
OrdPair ( A6, Compare ), OrdPair ( A7, Jumple ), OrdPair ( A8, Jump ),
OrdPair ( A9, Return ) } &

ref = { OrdPair ( A3, V2 ), OrdPair ( A5, V2 ), OrdPair ( A6, V1 ),
OrdPair ( A7, Exit ), OrdPair ( A8, Loop ) } &

num = { OrdPair ( A1, 100 ), OrdPair ( A2, 4095 ), OrdPair ( A4, 8) } &
opcode = { OrdPair ( M3, 1 ), OrdPair ( M4, 3 ), OrdPair ( M5, 2 ),
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OrdPair ( M6, 50 ), OrdPair ( M7, 61 ), OrdPair ( M8, 71 ),
OrdPair ( M9, 77 ) } &
operand = { OrdPair ( M1, 100 ), OrdPair ( M2, 4095 ), OrdPair ( M3, 2 ),
OrdPair ( M4, 8 ), OrdPair ( M5, 2 ), OrdPair ( M6, 1),
OrdPair ( M7, 9 ), OrdPair ( M8, 3 ) } &
mnem = { OrdPair ( Load, 1 ), OrdPair ( Subn, 3 ), OrdPair ( Store, 2 ),
OrdPair ( Compare, 50 ), OrdPair ( Jumple, 61 ),
OrdPair ( Jump, 71 ), OrdPair ( Return, 77 ) } &

SchemaType([Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm), Bind1(Lab,lab),
Bind2(Op,op),
Bind1(Ref,ref),
Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem )], Assembly).

lab = {OrdPair(A1,V1),0rdPair(A2,V2),0rdPair(A3,Loop),OrdPair(A9,Exit)},
mnem = {OrdPair(Compare,50),0rdPair(Jump,71),0rdPair(Jumple,61),
OrdPair(Load,1),0rdPair(Return,77),0rdPair(Store,?2),
OrdPair(Subn,3)},
num = {OrdPair(A1,100),0rdPair(A2,4095),0rdPair(A4,8)},
op = {OrdPair(A3,Load),OrdPair(A4,Subn),0OrdPair(A5,Store),
OrdPair(A6,Compare),OrdPair(A7,Jumple),OrdPair (A8,Jump),
OrdPair(A9,Return)},
opcode = {OrdPair(M3,1),0rdPair(M4,3),0rdPair(M5,2),0rdPair(M6,50),
OrdPair(M7,61),0rdPair(M8,71),0rdPair(M9,77) },
operand = {OrdPair(M1,100),0rdPair(M2,4095),0rdPair(M3,2),0rdPair(M4,8),
OrdPair(M5,2),0rdPair(M6,1),0rdPair(M7,9),0rdPair(M8,3) },
ref = {OrdPair(A3,V2),0rdPair(A5,V2),0rdPair(A6,V1),0rdPair(A7,Exit),
OrdPair(A8,Loop)},
seqa = {OrdPair(1,A1),0rdPair(2,A2),0rdPair(3,A3),0rdPair(4,A4),
OrdPair(5,A5),0rdPair(6,A6),0rdPair(7,A7),0rdPair(8,A8),0rdPair(9,A9) },
seqm = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),
OrdPair(9,M9)} ?

Yes

% Query 1 to Phasel - operand has intermediate value

[Assembly] <—

seqa = { OrdPair ( 1, Al ), OrdPair ( 2, A2 ), OrdPair ( 3, A3 ),

OrdPair ( 4, A4 ), OrdPair ( 5, A5 ), OrdPair ( 6, A6 ),
OrdPair ( 7, A7 ), OrdPair ( 8, A8 ), OrdPair ( 9, A9 ) } &
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core = { OrdPair ( 1, M1 ), OrdPair ( 2, M2 ), OrdPair ( 3, M3 ),
OrdPair ( 4, M4 ), OrdPair ( 5, M5 ), OrdPair ( 6, M6 ),
OrdPair ( 7, M7 ), OrdPair ( 8, M8 ), OrdPair ( 9, M9 ) } &
lab = { OrdPair ( Al, V1 ), OrdPair ( A2, V2 ), OrdPair ( A3, Loop ),
OrdPair ( A9, Exit ) } &
op = { OrdPair ( A3, Load ), OrdPair ( A4, Subn ), OrdPair ( A5, Store ),
OrdPair ( A6, Compare ), OrdPair ( A7, Jumple ), OrdPair ( A8, Jump ),
OrdPair ( A9, Return ) } &
ref = { OrdPair ( A3, V2 ), OrdPair ( A5, V2 ), OrdPair ( A6, V1 ),
OrdPair ( A7, Exit ), OrdPair ( A8, Loop ) } &

num = { OrdPair ( Al, 100 ), OrdPair ( A2, 4095 ), OrdPair ( A4,8) } &
opcode = { OrdPair ( M3, 1 ), OrdPair ( M4, 3 ), OrdPair ( M5, 2 ),
OrdPair ( M6, 50 ), OrdPair ( M7, 61 ), OrdPair ( M8, 71 ),
OrdPair ( M9, 77 ) } &
% intermediate value
operand = { OrdPair ( M1, 100 ), OrdPair ( M2, 4095 ), OrdPair ( M4, 8 )} &
mnem = { OrdPair ( Load, 1 ), OrdPair ( Subn, 3 ), OrdPair ( Store, 2 ),
OrdPair ( Compare, 50 ), OrdPair ( Jumple, 61 ),
OrdPair ( Jump, 71 ), OrdPair ( Return, 77 ) } &

SchemaType([Bind6(IN(SeqA),seqa ), Bind9(St, st),
Bind10(Rt, rt), Bind7(Core, core), Bind1(Lab,lab),
Bind2(Op,op), Bind1(Refref), Bind3(Num ,num),
Bind4(
Bind5(

Opcode , opcode ), Bind4(Operand,operand ),
Mnem, mnem )], Phasel).

core = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),OrdPair(9,M9) },
lab = {OrdPair(A1,V1),0rdPair(A2,V2),0rdPair(A3,Loop),
OrdPair(A9,Exit) },
mnem = {OrdPair(Compare,50),0rdPair(Jump,71),0rdPair(Jumple,61),
OrdPair(Load,1),0rdPair(Return,77),0rdPair(Store,2),0rdPair(Subn,3) },
num = {OrdPair(A1,100),0rdPair(A2,4095),0rdPair(A4,8)},
op = {OrdPair(A3,Load),OrdPair(A4,Subn),0OrdPair(A5,Store),
OrdPair(A6,Compare),OrdPair(A7,Jumple),OrdPair(A8,Jump),
OrdPair(A9,Return)},
opcode = {OrdPair(M3,1),0rdPair(M4,3),0rdPair(M5,2),0rdPair(M6,50),
OrdPair(M7,61),0rdPair(M8,71),0rdPair(M9,77) },
operand = {OrdPair(M1,100),0rdPair(M2,4095),0rdPair(M4,8)},
ref = {OrdPair(A3,V2),0rdPair(A5,V2),0rdPair(A6,V1),0rdPair(A7,Exit),
OrdPair(A8,Loop)},
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rt = {OrdPair(3,V2),0rdPair(5,V2),0rdPair(6,V1),0rdPair(7,Exit),
OrdPair(8,Loop)},
seqa = {OrdPair(1,A1),0rdPair(2,A2),0rdPair(3,A3),0rdPair(4,A4),
OrdPair(5,A5),0rdPair(6,A6),0rdPair(7,A7),0rdPair(8,A8),0rdPair(9,A9)},
st = {OrdPair(Exit,9),0rdPair(Loop,3),0rdPair(V1,1),0rdPair(V2,2)} ?

% Query 2 to Phasel - operand has final value

[Assembly] <—

seqa = { OrdPair ( 1, Al ), OrdPair ( 2, A2 ), OrdPair ( 3, A3 ),
OrdPair ( 4, A4 ), OrdPair ( 5, A5 ), OrdPair ( 6, A6 ),
OrdPair ( 7, A7 ), OrdPair ( 8, A8 ), OrdPair ( 9, A9 ) } &

core = { OrdPair ( 1, M1 ), OrdPair ( 2, M2 ), OrdPair ( 3, M3 ),
OrdPair ( 4, M4 ), OrdPair ( 5, M5 ), OrdPair ( 6, M6 ),
OrdPair ( 7, M7 ), OrdPair ( 8, M8 ), OrdPair ( 9, M9 ) } &

lab = { OrdPair ( Al, V1 ), OrdPair ( A2, V2 ), OrdPair ( A3, Loop ),
OrdPair ( A9, Exit ) } &

op = { OrdPair ( A3, Load ), OrdPair ( A4, Subn ), OrdPair ( A5, Store ),
OrdPair ( A6, Compare ), OrdPair ( A7, Jumple ), OrdPair ( A8, Jump ),
OrdPair ( A9, Return ) } &

ref = { OrdPair ( A3, V2 ), OrdPair ( A5, V2 ), OrdPair ( A6, V1),
OrdPair ( A7, Exit ), OrdPair ( A8, Loop ) } &

num = { OrdPair ( Al, 100 ), OrdPair ( A2, 4095 ), OrdPair ( A4,8) } &
opcode = { OrdPair ( M3, 1 ), OrdPair ( M4, 3 ), OrdPair ( M5, 2 ),
OrdPair ( M6, 50 ), OrdPair ( M7, 61 ), OrdPair ( M8, 71 ),
OrdPair (M9, 77 ) } &
operand = { OrdPair ( M1, 100 ), OrdPair ( M2, 4095 ), OrdPair ( M3, 2 ),
OrdPair ( M4, 8 ), OrdPair ( M5, 2 ), OrdPair ( M6, 1 ),
OrdPair ( M7, 9 ), OrdPair ( M8, 3 ) } &
mnem = { OrdPair ( Load, 1 ), OrdPair ( Subn, 3 ), OrdPair ( Store, 2 ),
OrdPair ( Compare, 50 ), OrdPair ( Jumple, 61 ),
OrdPair ( Jump, 71 ), OrdPair ( Return, 77 ) } &

SchemaType([Bind6(IN(SeqA),seqa ), Bind9(St, st),
Bind10(R#, rt), Bind7(Core, core), Bind1(Lab,lab),
Bind2(Op,op), Bind1(Refref), Bind3(Num ,num),
Bind4( Opcode , opcode ), Bind4(Operand,operand ),
Bind5( Mnem, mnem )], Phasel).

core = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
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OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),,OrdPair(9,M9) },
lab = {OrdPair(A1,V1),0rdPair(A2,V2),0rdPair(A3,Loop),
OrdPair(A9,Exit)},
mnem = {OrdPair(Compare,50),0rdPair(Jump,71),0rdPair(Jumple,61),
OrdPair(Load,1),0rdPair(Return,77),0rdPair(Store,2) ,OrdPair(Subn,3) },
num = {OrdPair(A1,100),0rdPair(A2,4095),0rdPair(A4,8)},
op = {OrdPair(A3,Load),OrdPair(A4,Subn),0OrdPair(A5,Store),
OrdPair(A6,Compare),OrdPair(A7,Jumple),OrdPair(A8,Jump),
OrdPair(A9,Return)},
opcode = {OrdPair(M3,1),0rdPair(M4,3),0rdPair(M5,2),0rdPair(M6,50),
OrdPair(M7,61),0rdPair(M8,71),0rdPair(M9,77) },
operand = {OrdPair(M1,100),0rdPair(M2,4095),0rdPair(M3,2),
OrdPair(M4,8),0rdPair(M5,2),0rdPair(M6,1),0rdPair(M7,9),
OrdPair(M8,3)},
ref = {OrdPair(A3,V2),0rdPair(A5,V2),0rdPair(A6,V1),0rdPair(A7,Exit),
OrdPair(A8,Loop)},
rt = {OrdPair(3,V2),0rdPair(5,V2),0rdPair(6,V1),0rdPair(7,Exit),
OrdPair(8,Loop)},
seqa = {OrdPair(1,A1),0rdPair(2,A2),0rdPair(3,A3),0rdPair(4,A4),
OrdPair(5,A5),0rdPair(6,A6),0rdPair(7,A7),0rdPair(8,A8),0rdPair(9,A9) },
st = {OrdPair(Exit,9),0rdPair(Loop,3),0rdPair(V1,1),0rdPair(V2,2)} ?

% Query to Phase2 values of rt and st are provided by Phase 1
[Assembly] <—
core = { OrdPair ( 1, M1 ), OrdPair ( 2, M2 ), OrdPair ( 3, M3 ),
OrdPair ( 4, M4 ), OrdPair ( 5, M5 ), OrdPair ( 6, M6 ),
OrdPair ( 7, M7 ), OrdPair ( 8, M8 ), OrdPair ( 9, M9 ) } &

seqm = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),
OrdPair(9,M9)} &

st = {OrdPair(Exit,9),0rdPair(Loop,3),0rdPair(V1,1),0rdPair(V2,2)} &

rt = {OrdPair(3,V2),0rdPair(5,V2),0rdPair(6,V1),0rdPair(7,Exit),
OrdPair(8,Loop)} &

lab = { OrdPair ( Al, V1 ), OrdPair ( A2, V2 ), OrdPair ( A3, Loop ),
OrdPair ( A9, Exit ) } &

op = { OrdPair ( A3, Load ), OrdPair ( A4, Subn ), OrdPair ( A5, Store ),
OrdPair ( A6, Compare ), OrdPair ( A7, Jumple ), OrdPair ( A8, Jump ),
OrdPair ( A9, Return ) } &

ref = { OrdPair ( A3, V2 ), OrdPair ( A5, V2 ), OrdPair ( A6, V1 ),
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OrdPair ( A7, Exit ), OrdPair ( A8, Loop ) } &

num = { OrdPair ( A1, 100 ), OrdPair ( A2, 4095 ), OrdPair ( A4,8) } &
opcode = { OrdPair ( M3, 1 ), OrdPair ( M4, 3 ), OrdPair ( M5, 2 ),
OrdPair ( M6, 50 ), OrdPair ( M7, 61 ), OrdPair ( M8, 71 ),
OrdPair ( M9, 77 ) } &
operand = { OrdPair ( M1, 100 ), OrdPair ( M2, 4095 ), OrdPair ( M3, 2 ),
OrdPair ( M4, 8 ), OrdPair ( M5, 2 ), OrdPair ( M6, 1),
OrdPair ( M7, 9 ), OrdPair ( M8, 3 ) } &
mnem = { OrdPair ( Load, 1 ), OrdPair ( Subn, 3 ), OrdPair ( Store, 2 ),
OrdPair ( Compare, 50 ), OrdPair ( Jumple, 61 ),
OrdPair ( Jump, 71 ), OrdPair ( Return, 77 ) } &

SchemaType([Bind7(OUT(SeqM),seqm ), Bind9(St, st), Bind10(R¢, rt),
Bind7(Core, core), Bindl(Lab,lab), Bind2(Op,op),
Bind1(Ref,ref), Bind3(Num ,num), Bind4( Opcode , opcode ),
Bind4(Operand,operand ),Bind5( Mnem, mnem ) ], Phase2).

core = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),
OrdPair(9,M9)},
lab = {OrdPair(A1,V1),0rdPair(A2,V2),0rdPair(A3,Loop),0OrdPair(A9,Exit)},
mnem = {OrdPair(Compare,50),0rdPair(Jump,71),0rdPair(Jumple,61),
OrdPair(Load,1),0rdPair(Return,77),0rdPair(Store,2),0rdPair(Subn,3) },
num = {OrdPair(A1,100),0rdPair(A2,4095),0rdPair(A4,8)},
op = {OrdPair(A3,Load),OrdPair(A4,Subn),0OrdPair(A5,Store),
OrdPair(A6,Compare),OrdPair(A7,Jumple),OrdPair (A8,Jump),
OrdPair(A9,Return)},
opcode = {OrdPair(M3,1),0rdPair(M4,3),0rdPair(M5,2),0rdPair(M6,50),
OrdPair(M7,61),0rdPair(M8,71),0rdPair(M9,77) },
operand = {OrdPair(M1,100),0rdPair(M2,4095),0rdPair(M3,2),
OrdPair(M4,8),0rdPair(M5,2),0rdPair(M6,1),0rdPair(M7,9),
OrdPair(M8,3)},
ref = {OrdPair(A3,V2),0rdPair(A5,V2),0rdPair(A6,V1),0rdPair(A7,Exit),
OrdPair(A8,Loop)},
rt = {OrdPair(3,V2),0rdPair(5,V2),0rdPair(6,V1),0rdPair(7,Exit),
OrdPair(8,Loop)},
seqm = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),OrdPair(9,M9) },
st = {OrdPair(Exit,9),0rdPair(Loop,3),0rdPair(V1,1),0rdPair(V2,2)} ?

% Query to Implementation with final operand
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[Assembly] <—

seqa = { OrdPair ( 1, A1 ), OrdPair ( 2, A2 ), OrdPair ( 3, A3 ),
OrdPair ( 4, A4 ), OrdPair ( 5, A5 ), OrdPair ( 6, A6 ),
OrdPair ( 7, A7 ), OrdPair ( 8, A8 ), OrdPair ( 9, A9 ) } &

seqm = { OrdPair ( 1, M1 ), OrdPair ( 2, M2 ), OrdPair ( 3, M3 ),
OrdPair ( 4, M4 ), OrdPair ( 5, M5 ), OrdPair ( 6, M6 ),
OrdPair ( 7, M7 ), OrdPair ( 8, M8 ), OrdPair ( 9, M9 ) } &

core = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),
OrdPair(9,M9)} &

lab = { OrdPair ( Al, V1 ), OrdPair ( A2, V2 ), OrdPair ( A3, Loop ),
OrdPair ( A9, Exit ) } &

op = { OrdPair ( A3, Load ), OrdPair ( A4, Subn ), OrdPair ( A5, Store ),
OrdPair ( A6, Compare ), OrdPair ( A7, Jumple ), OrdPair ( A8, Jump ),
OrdPair ( A9, Return ) } &

ref = { OrdPair ( A3, V2 ), OrdPair ( A5, V2 ), OrdPair ( A6, V1 ),
OrdPair ( A7, Exit ), OrdPair ( A8, Loop ) } &

num = { OrdPair ( A1, 100 ), OrdPair ( A2, 4095 ), OrdPair ( A4, 8) } &
opcode = { OrdPair ( M3, 1 ), OrdPair ( M4, 3 ), OrdPair ( M5, 2 ),
OrdPair ( M6, 50 ), OrdPair ( M7, 61 ), OrdPair ( M8, 71 ),
OrdPair (M9, 77 ) } &
operand = { OrdPair ( M1, 100 ), OrdPair ( M2, 4095 ), OrdPair ( M3, 2 ),
OrdPair ( M4, 8 ), OrdPair ( M5, 2 ), OrdPair ( M6, 1 ),
OrdPair ( M7, 9 ), OrdPair ( M8, 3 ) } &
mnem = { OrdPair ( Load, 1 ), OrdPair ( Subn, 3 ), OrdPair ( Store, 2 ),
OrdPair ( Compare, 50 ), OrdPair ( Jumple, 61 ),
OrdPair ( Jump, 71 ), OrdPair ( Return, 77 ) } &

SchemaType([Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm),
Bind7(Core, core),
Bind1(Lab,lab), Bind2(Op,op), Bind1(Ref,ref), Bind3(Num ,num),
Bind4( Opcode , opcode ), Bind4(Operand,operand ),

Bind5( Mnem, mnem )], Implementation) .

core = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),
OrdPair(9,M9)},

lab = {OrdPair(A1,V1),0rdPair(A2,V2),0rdPair(A3,Loop),OrdPair(A9,Exit) },

mnem = {OrdPair(Compare,50),0rdPair(Jump,71),0rdPair(Jumple,61),
OrdPair(Load,1),0rdPair(Return,77),0rdPair(Store,2),0rdPair(Subn,3) },

num = {OrdPair(A1,100),0rdPair(A2,4095),0rdPair(A4,8)},
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op = {OrdPair(A3,Load),OrdPair(A4,Subn),0rdPair(A5,Store),
OrdPair(A6,Compare),OrdPair(A7,Jumple),OrdPair(A8,Jump),OrdPair(A9,Return) },
opcode = {OrdPair(M3,1),0rdPair(M4,3),0rdPair(M5,2),0rdPair(M6,50),
OrdPair(M7,61),0rdPair(M8,71),0rdPair(M9,77) },
operand = {OrdPair(M1,100),0rdPair(M2,4095),0rdPair(M3,2),
OrdPair(M4,8),0rdPair(M5,2),0rdPair(M6,1),0rdPair(M7,9),0rdPair(M8,3) },
ref = {OrdPair(A3,V2),0rdPair(A5,V2),0rdPair(A6,V1),0rdPair(A7,Exit),
OrdPair(A8,Loop)},
seqa = {OrdPair(1,A1),0rdPair(2,A2),0rdPair(3,A3),0rdPair(4,A4),
OrdPair(5,A5),0rdPair(6,A6),0rdPair(7,A7),0rdPair(8,A8),0rdPair(9,A9)},
seqm = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),0OrdPair(9,M9) } ?

Yes

% Query to Implementation with intermediate operand
[Assembly] <— seqa = { OrdPair ( 1, A1 ), OrdPair ( 2, A2 ),
OrdPair ( 3, A3 ),

OrdPair ( 4, A4 ), OrdPair ( 5, A5 ), OrdPair ( 6, A6 ),
OrdPair ( 7, A7 ), OrdPair ( 8, A8 ), OrdPair ( 9, A9 ) } &

seqm = { OrdPair ( 1, M1 ), OrdPair ( 2, M2 ), OrdPair ( 3, M3 ),
OrdPair ( 4, M4 ), OrdPair ( 5, M5 ), OrdPair ( 6, M6 ),
OrdPair ( 7, M7 ), OrdPair ( 8, M8 ), OrdPair ( 9, M9 ) } &

core = {OrdPair(1,M1),0rdPair(2,M2),0rdPair(3,M3),0rdPair(4,M4),
OrdPair(5,M5),0rdPair(6,M6),0rdPair(7,M7),0rdPair(8,M8),
OrdPair(9,M9)} &

lab = { OrdPair ( Al, V1 ), OrdPair ( A2, V2 ), OrdPair ( A3, Loop ),
OrdPair ( A9, Exit ) } &

op = { OrdPair ( A3, Load ), OrdPair ( A4, Subn ), OrdPair ( A5, Store ),
OrdPair ( A6, Compare ), OrdPair ( A7, Jumple ), OrdPair ( A8, Jump ),
OrdPair ( A9, Return ) } &

ref = { OrdPair ( A3, V2 ), OrdPair ( A5, V2 ), OrdPair ( A6, V1 ),
OrdPair ( A7, Exit ), OrdPair ( A8, Loop ) } &

num = { OrdPair ( Al, 100 ), OrdPair ( A2, 4095 ), OrdPair ( A4,8) } &
opcode = { OrdPair ( M3, 1 ), OrdPair ( M4, 3 ), OrdPair ( M5, 2 ),

OrdPair ( M6, 50 ), OrdPair ( M7, 61 ), OrdPair ( M8, 71 ),

OrdPair ( M9, 77 ) } &
operand = { OrdPair ( M1, 100 ), OrdPair ( M2, 4095 ), OrdPair ( M4, 3 ) } &

mnem = { OrdPair ( Load, 1 ), OrdPair ( Subn, 3 ), OrdPair ( Store, 2 ),
OrdPair ( Compare, 50 ), OrdPair ( Jumple, 61 ),
OrdPair ( Jump, 71 ), OrdPair ( Return, 77 ) } &
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SchemaType([Bind6(IN(SeqA),seqa ), Bind7(OUT(SeqM),seqm),
Bind7(Core, core),
Bind1(Lab,lab), Bind2(Op,op), Bind1(Ref,ref), Bind3(Num ,num),
Bind4( Opcode , opcode ), Bind4(Operand,operand ),
Bind5( Mnem, mnem )], Implementation) .

No

% intermediate value is not acceptable

[Xassembly] <—
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C.1.4 Unix File Code

This section contains unix file system code.
Unix File: EXPORT

EXPORT UnixFiles.
IMPORT Lib.
BASE Typevars, SetNames, SchNames, BindVar, Fileld, Cid.

%%CONSTRUCTOR BD)2.

FUNCTION  Bindl : SetNames * Fileld — BindVar.

FUNCTION  Bind2 : SetNames * Integer — BindVar.

FUNCTION  Bind3 : SetNames * Cid —> BindVar.

FUNCTION  Bind4 : SetNames * Set(OP(Cid, List(BindVar)))
—> BindVar.

% Decorations

% on set names, ie priming, imput, output
FUNCTION  DSet : SetNames —> SetNames.
FUNCTION  OUT : SetNames —> SetNames.
FUNCTION  IN : SetNames —> SetNames.
% on Schema names, ie priming, del

FUNCTION  DSch : SchNames —> SchNames.
FUNCTION  Del : SchNames —> SchNames.

PREDICATE SchemaType: List (BindVar ) * SchNames.
PREDICATE SThetaS: Set(List(BindVar)) x SchNames.
PREDICATE IsFileld : Fileld.

PREDICATE IsCid : Cid.
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Unix File: LOCAL

LOCAL UnixFiles.

CONSTANT F1, F2, F3, F5, F7 : Fileld,;
Cid1, Cid2 , Cid3 : Cid;
Fid, Posn, Cstore, Chld : SetNames;
CloseCs, OpenCs, Chan, Cs : SchNames.

%Data%

IsFileId(F1). IsFileld(F2). IsFileld(F3). IsFileld(F5). IsFileld(F7).
IsCid(Cid1). IsCid(Cid2). IsCid(Cid3).

%Schemas%

SchemaType(binding, Chan) <—
binding = [Bind1(Fid, f), Bind2(Posn,posn) | &
fid = {x : IsFileld(x) } &
posfile = {x : 0 =< x < 100} &
% Types of variables
posn >= 0 &
posn In posfile &
f In fid .

SchemaType(binding, DSch( Chan)) <—
binding = [Bind1(DSet(Fid), f), Bind2(DSet(Posn),posn)] &
% Given sets
fid = {x : IsFileld(x) } &
posfile = {x : 0 =< x < 100} &

% Types of variables
posn >= 0 &
posn In posfile &
f In fid .

SThetaS(val, schname) <—
val = {binding : SchemaType(binding, schname)}.

SchemaType(binding, Del(Chan)) <—
SchemaType(bl, Chan) &
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SchemaType(b2, DSch( Chan)) &
Append(bl, b2, binding) &
bl = [Bind1(Fid,f), ] &
b2 = [Bind1(DSet(Fid),f),-] .

SchemaType(binding, Cs) <—
binding = [Bind4(Cstore, cs)] &

cd = {x: IsCid(x) } &
PF(cs, cid, schtyp) &
SThetaS(schtyp, Chan).

SchemaType(binding, DSch( Cs) ) <—
binding = [Bind4(DSet(Cstore), cs1)] &
cd = {x: IsCid(x) } &

PF(cs1, cid, schtyp) &
SThetaS(schtyp, Chan).
% Query:

SchemaType(binding, Del(Cs)) <—
SchemaType(bl, Cs) &
SchemaType(b2, DSch( Cs)) &
Append(bl, b2, binding) .

% Bindl, Bind2 are from delaration of CHAN
% Bindj wvars are from decaration of Cs and Cs’

SchemaType([Bind1(Fid, f), Bind2(Posn,posn), Bind3(OUT( ChId), outc),
Bind4(Cstore, cs), Bind4(DSet(Cstore), csl) ], OpenCs ) <—

SchemaType([Bind1(Fid, f), Bind2(Posn,posn)], Chan) &
SchemaType([Bind4(Cstore, cs),Bind4(DSet(Cstore), cs1)], Del(Cs)) &
cid = {x: IsCid(x) } &
posfile = {x : 0 =< x < 100} &
outc In cid &
DomContents(cs, domcs) &
“(outc In domcs) &
posn In posfile &
posn = 0 &
% Old channel store is updated by addition of a new
% channel whose file position is zero, but Fileld is unconstrained
FunOveride(csl, cs, {OrdPair(outc, [Bind1(Fid, f), Bind2(Posn,posn)])} ).
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SchemaType([Bind3(IN( Chld), inc),
Bind4(Cstore, cs), Bind4(DSet(Cstore), csl) ],CloseCs ) <—
SchemaType([Bind4(Cstore, cs),Bind4(DSet(Cstore), csl)], Del(Cs)) &

cid = {x: IsCid(x) } &
inc In cid &
DomContents(cs, domcs) &
inc In domes &
DomExclude(csl, {inc}, cs).

Unix File Queries

This section contains queries for the unix file system.

% A query to Cs where Fid is F1 and Posn is 2.
% There are no other values which satisfy the predicate.
[UnixFiles] <—
SchemaType ( binding, Cs ) &
binding = [ Bind4 ( Cstore, { OrdPair ( Cidl, [ Bindl ( Fid, F1 ),
Bind2 ( Posn, 2 ) D})]-

binding = [Bind4(Cstore,{ OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])})] ? ;
No

% A query to OpenCS.
% A new channel is added. This can be any of the remaining (unopened) ones and
% the file identifier can be any. The position in the file is 0.

[UnixFiles] <— cs = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])} &
SchemaType([bl,b2,b3,Bind4(Cstore, cs),
Bind4(DSet(Cstore), cs1) ], OpenCs ).

bl = Bind1(Fid,F1),

b2 = Bind2(Posn,0),

b3 = Bind3(OUT(Chld),Cid2),

cs = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])},

csl = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid2,
[Bind1(Fid,F1),Bind2(Posn,0)])} ? ;

bl = Bind1(Fid,F1),

b2 = Bind2(Posn,0),

b3 = Bind3(OUT(Chld),Cid3),

cs = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])},

Il
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csl = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid3,
[Bind1(Fid,F1),Bind2(Posn,0)])} 7 ;

bl = Bind1(Fid,F2),

b2 = Bind2(Posn,0),

b3 = Bind3(OUT(Chld),Cid2),

cs = {OrdPair(Cidl,[Bind1(Fid,F1),Bind2(Posn,2)])},

csl = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid2,
[Bind1(Fid,F2),Bind2(Posn,0)])} ? ;

Il

bl = Bind1(Fid,F2),

b2 = Bind2(Posn,0),

b3 = Bind3(OUT(ChlId),Cid3),

cs = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])},

csl = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid3,
[Bind1(Fid,F2),Bind2(Posn,0)])} 7 ;

bl = Bind1(Fid,F3),

b2 = Bind2(Posn,0),

b3 = Bind3(OUT(Chld),Cid2),

cs = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])},

csl = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid2,
[Bind1(Fid,F3),Bind2(Posn,0)])} ?

Yes

% A query to CloseCs
% There are no other values of channel to close.
% Attempting to close Cid3 will not succeed.

[UnixFiles] <— c¢s = {OrdPair(Cidl,[Bind1(Fid,F1),Bind2(Posn,2)]),
OrdPair(Cid2,[Bind1(Fid,F1),Bind2(Posn,5))) } &

SchemaType ([Bind3(IN( Chld ),inc),Bind4(Cstore, cs ),

Bind4(DSet ( Cstore ), csl)], CloseCs).

¢s = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid2,
[Bind1(Fid,F1),Bind2(Posn,5)])},

csl = {OrdPair(Cid2,[Bind1(Fid,F1),Bind2(Posn,5)])},

inc = Cidl 7 ;

cs = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),0rdPair(Cid2,
[Bind1(Fid,F1),Bind2(Posn,5)])},

csl = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)])},

inc = Cid2 7 ;
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No
[UnixFiles] <— ¢s = {OrdPair(Cid1,[Bind1(Fid,F1),Bind2(Posn,2)]),
OrdPair(Cid2,[Bind1(Fid,F1),Bind2(Posn,5)])} &
SchemaType( [Bind3(IN( Chld ),Cid3),Bind4(Cstore, cs),

Bind4(DSet( Cstore ), csl)], CloseCs).

No
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Proofs: Abstract Approximation

D.1 Induction Process

The base types for the induction are (i) integers, (ii) sets of integers, (iii) given sets
and their instantiated elements and (iv) variables, so the first task is to show how
their interpretation in the LP underestimates the interpretation in Z. Induction is

over each Z construct and includes
1. Numeric expressions
2. Set expressions (union and distributed union)
3. Predicate expressions: infix
4. Set comprehension and variable declarations
5. Predicates: quantified expressions (which depend on declarations)

6. Schemas and Schema Expressions

D.2 Base Types

(i) Integers

The assumption is that there are largest positive and negative integers available in

190
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the system, MaxInt, MinInt, which cannot be exceeded. Any attempt to do so may

cause the computation to terminate. Thus for m € Z:

Erp[m]pre = m = Ex[m]pz, — MinInt < m < MazInt
Erp[m]prp = L, m < —Minlnt or m > MazlInt

(L may be implemented by the output of an error message, or alternatively to the
character co. The latter is suggested by the IEEE floating point standard.) Thus
since y(L) = L:

Y(Erp[mlprp) C Ez[mlpz, m € Z

(ii) Sets of integers s
Suppose s is a subset of {i : N | —MinInt < i < MazInt} and assuming that the
memory bounds are not exceeded, then the abstract interpretation is ezact.

Where MinInt, MazInt are exceeded, (for example s = Z) then s is interpreted

as 1 ol in the LP, and therefore underestimates its interpretation in the Z domain.

Y(Erp[{i : —MazInt < i < MazInt},,|prp) =v(Lo L) =31 C E1[Z]pz,

(iii) Given sets and their instantiated elements
Suppose (G, g is a given set and typical element. The are interpreted in the LP by
base type G, associated constant g and predicate IsG. In each case the abstract

interpretation is exact for:

7(5LP|[9]]pLP) =49
Y(ELp[Glpre) = v({z : IsG(2)}) = G

(iv) Variables
The value of a variable can be obtained as a ‘lookup’ in the environment, where Env
interprets the LP environment as in Andrews [6]. Assuming that the variable has a

defined value, the trivial interpretation in the LP is:
(él?i = ai) — ETLULP
which can be denoted:

Erplzilpre = a;i &
(z; = a;) & true (a; # L).
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If the variable is undefined because of finite failure, the answer returned is false:
Erplzilprr = L & (a; = 1) & false.

If the variable is associated with a schema binding, there are no values which satisfy
the instantiated variables and the schema predicate, so no answer substitutions. For
further discussion see Section D.7.

If the variable is undefined because of non-termination or floundering, the answer

returned is _L:
Erplzlprp =L & (a;=1) & L.

In either case this is an exact approximation of the interpretation in D, since

Pz =7 °pPLp-

D.3 Numerical and Set Expressions

Provided MazInt, MinInt are not exceeded (as in Section D.2) the evaluation is via
the Peano rules of arithmetic, as in the concrete domain, otherwise the expression

evaluates to L. Thus if fr is a numerical expression, evaluating to m:

Erplfr]pre = m = Ez[fr]pz, — MinInt < m < MazInt
Erelfelpre = L5 Ex[fx]lpz = m, m > MaxInt or m < — MinlInt

Thus the abstract evaluation underestimates the concrete and:
Y(Erplfrlprp) C Ez[fr]pz,

We next apply the rules to set expressions, beginning with set union'. Set operators
such as intersection and power set are a special case of set comprehensions and will
be treated in Section D.5.

D.3.1 Set Union

Consider the syntactic expression ‘r; U 2" which is interpreted via an equivalent

‘term’ in the LP, denoted ‘z; Urp z,’. (Recall that in Godel, ‘union’ is provided by

!The reason for following this route rather than commencing from (_J and specialising is that
U is easier to demonstrate.
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a function ‘+.)

Suppose sets are complete and with complete elements:

Ty > G1, 2 > Qg € PLPp.

The expression ;U p 1, is evaluated using the LP ground substitution {z;/a;, 22/ as}
so that (z; Upp 22){z1/ a1, 22/ az} evaluates to (a; Upp az). We assume that Ugp is
set-theoretic and implements U for finite sets in the same manner as U for ZF. (See
Appendices B, C.)

Condition 1 becomes:
fop(Erpl(z1, 22)]prp) = a1 Urp a2 = Epp[z1 U 2] prp-

which will hold for set operations for terminating computations. That is the inter-
pretation of ZF operations on sets is built recursively.

Condition 2

If z;, 2, are complete sets, v(z1, 2) in Dy evaluates in the expected way to (y(a;), v(a2))

and
f2(Ez[(z1, 12)]pz) = v(a1) Uz v(a2) = Ez[z1 U 2] pz.

Since Upp is set-theoretic then vy(a; Upp ag) = v(a1) Uz v(az2) and Condition 3

becomes:

i (fLP (5LP[[(3?1,372)]]0LP))
=7y(a Urp a2) = v(a1) Uz v(a2) = fz(v(a, (a))) =
f2(v(Erpl(m1, 2)]pLP))-

In other words the computation is exact for terminating computations. There are

two ways of extending the result to non terminating computations.

1. Provide an extension of union to incomplete sets and use AR2 as the proof
rule. If

T = ayL, T =0,

we define the extension for union:

(CLUJ_UZ b):(CLUZ buL):(aUZ b)UJ_
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which is pointwise monotonic in the Z domain for non-standard sets. Con-
ditions 1-3 thus hold when ‘f’ is ‘U’, thus: since AR2 holds for z, 25, then
AR2 holds for € = z; U1,, where U is pointwise monotonic for both standard

and non-standard sets.

2. Interpret figure 5.4 directly and we see that in Dpp, if z; is not a standard
finite set it can only have the value z; = 1 o L and the left hand side of AR1

for e = 2 U 25 is
Y ((LOJ_)ULP b) =7 (J_OL) :QUJ_,
since all set terms in the LP involving | o | evaluate to 1. o L. Then since

T — By, 2 — y(b)

are both members of environment p;(= v o prp), the right hand side of the
ordering relationship becomes:

By Uz v(b)

which will, in any case always exceed &, , whatever its value, provided that it
is still type correct. Since we have established conditions (1 — 3) for complete
sets and AR1 directly for incomplete or infinite sets, then AR1 holds when
(f’ iS ‘U’.

D.3.2 Distributed Union

We denote distributed union in the LP by ULP and it is defined so that it implements
J for finite sets in the same manner as |J for ZF. The argument that the LP
interpretation underestimates the Z interpretation follows in a similar fashion to the
argument for U.

Consider, first, the evaluation of | Jz where z = {a; ... a,} is a complete, finite
set in the LP environment. Then z is v({a;...a,}) = {7(a1)...7(a,)} in the Z

environment.
fup(Erpl(2)prr) = U, (a1 ... an}) = Ep[U z]prr = Erplfe]prr.

Thus Condition 1 will hold for set operations for terminating computations.
Condition 2
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If z is complete and involves only complete sets, the interpretation in D, evaluates

in the expected way, v(z) = {v(a1) ...7v(a,)} and we have

f2(E21(2)lpz) = U {v(a1) .. . v(an)} = U v({ar... an}) = E2[U 2] pz.

Since U is set-theoretic then: v(ULP({al ceGp}) = UZ({fy(al) ...7(a,)}) and
Condition 3 becomes:

v (fup (Erp[(z)]pLp))
=v(U, o ..an}) =U_{v(@) ... v(an)} = f2(v(ELp[()]prr)).

Since it is equivalent to the set-theoretic definition then ULP approximates exactly
in its interpretation of | z in the case where z is complete. Thus AR1 is true for
complete sets.

In [17], the operation Uz is extended to incomplete sets or sets containing in-

complete sets so

UZ{UUJ_a v, U)} = UZ{U’ v, w}UJ_:
U, (tu) = (U, tus

and is thus monotonic.

The case for incomplete sets follows for ULP r = 1 o L for £ non-standard for
the LP and we use the direct method rather than AR1. Evaluating left and right
hand sides ULP z, where z is incomplete, contains incomplete elements or is infinite.
Thus if (z — L o 1) € prp, then

LHS = y(&rp[Uz]pLp)

= (U, 1) = (Lo L) =0,
RHS = &5[Uz](y 0 prp)

= UZ DyL

and the LP interpretation underestimates whatever the value of the right hand side
of the order relationship AR1.
Thus U is interpreted exactly for complete sets and underestimates where sets

involved are infinite or non-standard.
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D.4 Predicate Expressions

The evaluator Ppp interprets syntactic predicates p in the LP domain in the manner
expected, where a predicate evaluates to | when a program flounders or fails to

terminate during its evaluation. Thus if

Booly = {tt, ff, L}
Boolyp = {true, false, 1 }

then
v(true) = tt,y(false) = ff,y(L) = L.
We also have:

PLPI[PI A P2]],0LP = (PLPl[Pl]lpLP & PLPI[PQ]]pLP = true) =
( (Prp[Pilprp = true) & (Prp[PelpLr = true) )

The approximation requirement, AR1 for predicates becomes:
V(Prrlelprr) E Pzlel(y o prrp).

Examples of predicates to be interpreted are infix predicates =, C and €. Quan-
tification predicates VD | p @ ¢ and 3D | p e ¢, where D is a declaration will be
treated later, after we have covered declarations.

In an LP, infix predicates p € X5 of the form p(z1, %), 21, 22 € X1 are interpreted
in such a way that they potentially provide enhancements to the existing environ-
ment as well as evaluating to boolean values. There are three constraint properties
associated with predicate evaluation. Suppose Z is an infix predicate, standing for
equality, subset or membership. Then if either (or both) z; or z, is undefined or only
partially defined they can become ground through resolution. We call this property:
Constraint Property 1:

Pre[nZz]pre = Pre[nZx]p)p = true

where o) p = prp ® {11 — a1, 1 — a9}
The environments of predicates conjoined to the infix predicates are also enhanced:
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Constraint Property 2:
PrelP A (21Z2)]prp = Pre[(21Z22) A Plpre = Pre[Plptp

where pfp = prp ® {1 — a1,75 — az}. The same constraint properties can be

extended to Z: Constraint Property 1:

PrluiZx)pz = PzlriTxs)p), = true

where pl; = pz @& {21 = (@), 22 = v(a2)}.
The environments of predicates conjoined to the infix predicates are also enhanced:

Constraint Property 2:

Pz[P A (1Z2)]pz = Pz[(m1Z22) A Plpz = Pz[Ploy

where pl; = pz @ {z1 = v(a1), 22 — v(a2) }.

An extension of these properties is the case where z; can take many values. We
call this:
Constraint Property 3

Pre[niZz]prp = Pre[niZz]p)p = true
Prp[P A (m1Zm:)]prp = Pre[(:1Z12) A Plprp = Pre[Plop

where

Prp=prp ®{z1—= ai} V pip = prr & {z = a2} V...
V ppp = prp @ {21 an}

where p}p € Envpp. Constraint Property 3 can similarly be applied to the Z
interpretation. The first infix predicate we shall examine is equality, which considers

the equality or otherwise of expressions z;, zs.

D.4.1 Infix Predicate: Equality

The interpretation of x; = 25 in the LP not only evaluates to true or false but also
potentially provides values for the environment. We need to examine three cases,
where both (z, ;) are defined, where only one is defined and where neither are
defined.

(i) Both (21, 125) defined:
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We assume that both (1, 2») are defined, or that there is sufficient information in
pLp for their evaluation. The truth or falsity of ; = x5 in both the LP and in Z is

determined by the value of both expressions:

'PLP[[JIH = 332]|/0LP g (5LP[[5L‘1]],0LP = 5LP|[£U2]|pLP)
Pzlz = m]pz < (Ez[mlpz = Ez[2]p2)

When both variables are defined, it is appropriate to consider AR1.
Condition 1 will hold for set operations for terminating computations, for if ‘f’ is

equality, then
fLP(gLP |[$1]IPLP, ELp |[$2]],0LP)
is the boolean value of
(Erplm)prr = Erplm]prr)
and so

fLP(PLP[[(xla xz)]lPLP) = fLP(gLP[[ﬂTﬂ]PLP, 5LP|[$2]],0LP)
=Prp |[3?1 = 372]],0LP-

Condition 2 follows in a similar manner because if ‘f’ is equality, then
[2(Ezlm]pz, Exl2]pz) & (Ezlm]pz = Ex[22]p2)

and so

f2(Pz(21, m)]pz) = f2(Ez[mi]pz, Ez[w2] 02)
= Pz[[xl = LL'Q]]pZ.

Condition 3:

We require for f syntactic infix ‘="
Y(foe(Prel(z1, 22)prp)) = f2(v(Pre[(z1, 2)]pLp))-

Suppose that (a; = ay) evaluates to true and since from finite theory of sets, equality

is set-theoretic for finite sets, then (y(a;) = 7(az)) evaluates to t¢ and we have

V(a1 = ap) = y(true)
=tt =y(a) = v(a2) = fz(v(a1),7(a2)).
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The same holds if (¢; = ap) evaluates to false. Thus when 1z, 7o are both defined
and termination is successful, the predicate evaluation in the LP is an exact approx-
imation to evaluation in the Z domain.
(ii) One of (z;, 1,) defined:
Supposing that z; is undefined, z; — 1 € prp and z, — a then the equality pred-
icate results in the evaluation of z; via unification (and we obtain a similar result
for z; defined, z, undefined).

If either of z;, 2, is undefined, it is more appropriate to consider AR1 directly.
Thus assuming that the execution terminates, and Constraint Property 1 applies,
then the approximation is again exact, for the left and right hand sides of AR1 are

equal:

LHS of AR1 = y((Prp[(z1 = 12)]pLp))
= vy(true) = tt
RHS of AR1 = (Pz[(z1 = »)]pz)) = tt

It is possible that the computation fails to terminate and the LHS to evaluate to L.
In that case the execution underestimates the Z interpretation.
(iii) Both (z,, 22) undefined:
If both z;, 2o are undefined or incomplete, then it is still possible for the environment
to be enhanced since both of z;, 2, may become ground through unification. This is
another example of Constraint Property 1 : where z;, 7o both unify to the same
ground term a and pp = prp & {1 — a, 15 — a}.

AR1 can be evaluated for the case where 1,2, are undefined, and there are

three possibilities:

Program terminates This occurs when both z;, 2 become ground through uni-
fication, as explained above. Conditions 1-3 hold in the same manner as

when 1, is defined and the approximation is exact.

Execution does not terminate, but variables become ground in Z This oc-
curs when (for example) constraint properties on sets are such that z;, 2, in

Z, but non-ground in the LP. The approximation underestimates for

LHS of AR1 = v((Pre[(z1 = 22)]prpr))
=7(L) =1
RHS of AR1 = (Pzﬂ(l'l = .’132)]]pz)) =1t
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Execution does not terminate and neither variable becomes ground in Z

In that case the approximation is exact for

LHS of AR1=~(1) =1

We can summarise, thus. Three cases have been examined, depending on whether
or not z1, 1, are defined prior to execution of equality function and in each case
ARI1 is true where ‘f’ is the syntactic predicate = for variable (z;, 7o): AR1 holds

for (.721 = .1132).

D.4.2 Infix Predicate: Subset

The proof of correctness for predicate C z where z = (7, 22) follows a similar struc-
ture to that for =. However the subset predicate potentially provides more than one
possible value for the environment. In this case we must have z, defined. However,
before the computation commences it may be the case that z; — L € ppp. After
the computation, z; takes values from set z,. The proof follows that for equality,
with the difference that z; can take many values. The different values contribute
to different answer substitutions. It can be shown that the predicate evaluation in
the LP underestimates the evaluation in the Z domain. Again there are three cases,
where we shall assume that the environment does not include incomplete sets and
that sets are finite

(i) Both (z;,1,) defined:

Condition 1-2 will hold for set operations for terminating computations: the in-

terpretation of ZF predicates on sets is built recursively in both the LP and Z.

fLP(PLP[[($1, 332)]]PLP) = fLP(gLP[[SUﬂ]PLP, 5LP|[$2]]PLP)
= (&rplzi]pre Cip Erpl22]prp) = Prr[z C 2]pLp.

f2(Pz[(z1, 1)) pz) = f2(Ez[11] 02, E2[72]P2)
= (&zlmlpz Cz Ez[mlpz) = Pzlz. C m]pz.

Condition 3:

We require for f syntactic infix ‘C’:

Y(fer(Erp[(z1, 22)]pLp)) C f2(v(Erpl(z1, 22)] prp))-
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Suppose that (a; Cpp ag) evaluates to true and since ‘subset’ for finite sets in the

LP is set-theoretic, then (y(a;) Cz v(az)) evaluates to ¢t and we have

v(a1 Crp az) = y(true)
=tt =v(a) Cz v(a) = fz(7v(a1),7(a2)).

The same holds if (a; Cpp ag) evaluates to false. Thus when termination is success-
ful, the predicate evaluation in the LP is an exact approximation to evaluation in
the Z domain.

(ii) Variable z; undefined

If variable z; is undefined, then we have an example of Constraint Property 3

for suppose {a; ... a,} are subsets of 25 in the LP then

Prelzi C ]prp = Pre[z C m]p)p = true
Pre[P A (21 C m)]prp = Prel(z € 1) A Plprp = Pre[P]oLp

where

Prp=prp ®{z—= ai} V pp = prr ©{z = @} V...
V ppp = prr @ {11 — an}.

In a similar fashion suppose {7y(a;)...7v(a,)} are subsets of z, in Z then

Pzl C 1]pz = Pzl C x]p, = true
Pz[P A (21 C 32)]pz = Pz[(m1 C 3) A Plpz = Pz[P]p,

where

Py =pz ®{m = v(a)} V ply = pz & {m = v(az)} V ...
V ply = pz ® {z1 — v(an)}-

Where there is only one way the environment can be enhanced, then we can consider
AR1. However where there is more than one way of enhancing the environment,
the comparison between the Z and LP domains will be deferred to Section D.5 for
in that case the values contribute to a set expression.

Thus assuming that the execution terminates, and z;, 2, take unique values then
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the left and right hand sides of AR1 are as follows

LHS of AR1 = v((Pre[(m C 2)]p%p))
= v(true) = tt
RHS of AR1 = (Pz[(z1 C )]p)) = tt

(iii) Both Variables z;, 2, undefined
If both z;, 2, are undefined, then the computation in an LP such as Gdédel will fail

to terminate:

LHS of AR1 = v((Prp[(z: C )]pLp))
= fy(J_) =_1

which will underestimate the RHS. Thus the interpretation in the LP underestimates
the interpretation in Z for all three cases above.

If either of z;, 7, are incomplete sets, then z; C z, evaluates to ‘L’ in the LP.
which underestimates the interpretation in Z. Thus AR1 is true where ‘f’ is the
syntactic predicate C for variable (11, 75), and the LP interpretation of C underes-

timates the Z interpretation.

D.4.3 Infix Predicate: Membership

The last infix predicate is membership, z; € 2, and the proof follows that for C. If
T; € 1o then z; has potentially many values for z» defined and not empty. The three
cases can be summarised:

(i) Both z1, 1, are defined

Pre[r € m]prp = true

where z; € 1. Otherwise the value if false. The predicate is interpreted as tt, ff
respectively when evaluated in Dy for z; € 2y, 11 & 5.

If the computation terminates then the approximation is exact, as for = and C.
The result follows similarly for Z, where as before we extend the interpretation of

predicates in Dy to cover constraint satisfaction. Thus for z, defined and not empty:
Pzlz € 12)pz = Pz[n1 € 2]p, & true

where p%p = prp ® {21 — a}, a € 2. If 2, is defined and empty, then the predicate
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evaluates to ff in Z:
le[xl € @]],OZ = ’Pz[[.’lil c :UQ]]pZ & _ﬁ

Thus the approximation for € is exact for both z;, 7, defined

(ii) for z; undefined and z, defined.

Constraint Properties 2-3 apply also for ‘membership’: Suppose 2, = {a; ... a, },
then

PLP|[$1 S 3?2]]pr = PLP|[$1 S 332]],0le
Prp[P A (21 € m)]prp = Prp[(m1 € 1) A Plprp = Prp[P]oLp

where
prp = prp &Lz = a} V pp = prp © {11 = a2}, ... V plp = prp © {21 = an}.

Thus assuming that the execution terminates, the situation is the same as for subset
in that the choice of the binding for z; is non-deterministic for sets with more than

one member. Where the choice is deterministic then

LHS of AR1 = ’Y((,PLPII(-TI € .’13‘2)]]pr))
= vy(true) = tt
RHS of AR1 = (Pz[(z1 € :)]pz)) = tt

(iii) Both z;, 7, undefined
For 7, undefined the LP interpretation results in L and underestimates the Z inter-
pretation, however it evaluates.

We have examined all possibilities for values of z;, 2 and in all cases AR1 is
true where ‘f’ is the syntactic predicate € for variable (z1, 2,); the LP interpretation

of € underestimates the Z interpretation as required.

D.5 Set Comprehension and Variable Declara-

tions

Set Comprehension is defined in terms of declarations Dy; ...; D,, a constraining

predicate p and an expression ¢ involving the declared variables:

Ty T T Tl .- IpiTp | pet
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We first present the interpretation of declarations, then within the context of a set

declaration.

D.5.1 Variable Declarations

Variable declarations occur within bound expressions with structure: _ D |p et

where D is a declaration,p is a predicate and ¢ a term. D is of the form:
{zy :m; 2y im0y o2y Ty}

These include set comprehensions, quantified expressions, lambda expressions and
schemas. The declaration results in a single tuple of values (zi,...z,) being gener-
ated (or tested in the case of schemas). Each value is constrained by p and used to
evaluate ¢.

An evaluation function Dy p gives the interpretation in Dyp of syntactic declara-
tions z : 7, where z is a variable and 7 is set-valued with value provided by p;p. The
declarations considered in this section do not include schema references, for these

are treated separately.

1. 71is a set:
Drplz : Tlpre = Prelz € T]pLp

‘z : 77 has the effect of either testing a value or updating the environment as

in the case of the membership predicate.

2. 7 is a Power Set, 7 = P71’ say:
Diplz : Pr']prp = Prplz C m']pLp

‘r: P7' 7 uses a ‘subset’ test rather than a ‘membership of power set’ test for
reasons of efficiency. It has the same effect on the environment as the subset

predicate.

3. 7 is a Cartesian Product, 1 X To:

DLP|[33 1T X TQ]],OLP = PLP|[$U = ($1 — $2)]I/OLP
& Prp[z € 1i]prr) & Prp[z2 € m2]pLp)

‘T2’ captures a representation of ordered pair (as an example of a tuple) in
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the LP. In our Godel library this is ‘OrdPair’. The following shows the imple-

mentation of +, which illustrates the interpretation of cartesian product.

PF(pf, s1, s2) <- ALL [z,x,y] (z In pf &
(z = OrdPair(x,y))
-> (x In s1) & (y In s2) &
ALL [u] (OrdPair(x, u) In pf -> u =y)).

Thus a single declaration (such as z : 7) has the effect of enhancing the environment

as for the membership predicate:

Drplz : 7lprp = Prelr € 7]prp = Prelz € 7]pLp
where if 7 = {a;...a,} then

Prp = prr ®{z = a1} V pip = prp ® {7 as},... V ppp = prp © {z > a,}.
In general, if z : 7 is a declaration, then

Drelz : Tlpre = Pre[z € 7]p7p

where it is possible for p), to take many values determined by the nature of the
type 7.

A sequence of declarations is evaluated in the LP as a conjunction
Drp[Ds; ---; Dulprp = Drp[Di]pre & .. & Drp[Dy]pLp-

Declarations can be represented in a simpler manner in Z, where again values

are chosen from some set-valued 7. However in this case 7 is a type constructor thus
Dylz : T]pz = Pzlz € 7]

where 7 is a set, or a power set, P 7', or a cartesian product 7’ x 7" and p', takes its

values from 7.

D.5.2 Interpretation of Set Comprehension

A set comprehension is

{oy:m; 2725 Ty Ty | POt}
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where each z; : 7; provides a value which contributes to the tuple (1, ...z,) which
is used to evaluate t. Thus if s = {d | p e t} is a syntactical set comprehension it
is interpreted in Dpp as Epp[s]prp and in Dy as £z[s]pz. Since declarations in the
LP are treated as predicates, then the set comprehension of s is interpreted in the
LP

Erpls]otp = {Dreld]lptp & PrelploLp @ Erplt]oyp}

The environment pp inside the comprehension is the variable which acts as a set
generator, for recall that Dyp[z : T]prp = Pre[z € 7]p}p- A similar interpretation
is true for Dy.

We assert that for terminating computations, AR1 is true, since the interpre-
tation of set comprehension is exact. We initiate an induction process over the set
generators (as in [17]).

A set with no set generators, is defined in the LP domain:

Erp[{| p o t}]php = {€Lp[tlpp} where Prp[p]plp = true
Evp[{| p o t}1pLp = {} where Prp[p]pLp = false

In the Z domain

Ezl{| p o t}]p; = {E2[t]p}, where Pz[plp, = tt
Exl{l p o t}py = {} where Pz[plo; = ff

Induction is based on the equivalence:
{my iy mim; ooz [ pett=U{m e {z:m; ...z T | pet}}

We first consider terminating computations where the interpretation is proposed as
exact. The induction process depends on showing that if we assume that AR1 holds

for
{zy:m; ;i mo; oz Ty | POt}
then it holds for
{m :7; T T o Ty Ty Tpg1 i Tna1 | D@t}

For the induction process we first consider the base case
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Base Case: no set generators

We consider AR1 for the base case where there are no set generators. Conditions
1-2 are true for standard sets since the interpretation is built recursively in both
the LP and Z domains:

Erp[{| p o t}prp = {€1pt]prp} where Prp[plpip = true
Erp[{| p o t}]plp = {} where Prp[p]pp = false

Exl{l p ot} = {€21tlps}, where Pz[plp, =1t

Ez[{| p o t}]p%; = {} where Pz[p]p; = ff

Assuming that the calculation of p,t for environment p}, terminates, the approx-
imation of ‘{| p @ t} = f(p,t)’ in the LP domain is exact, since Condition 3

becomes:

Y(ep(Erpl(p, )1PLp)) = F2(v(Errl(p, )]PLp))-

If the calculation of p,t¢ fails to terminate, then the LHS of the approximation
evaluates to y(L o L) = &, and thus underestimates the RHS, however it is

evaluated.

LHS = y(Ere[f(p, )]lprp) = v(Lo L) =3y,
RHS = &4 (p, 1)](v 0 prp)

Set Comprehension — Induction on Declaration Sequence

Induction is based on the equivalence:
{yim; oy oz [ pett=U{z e {z:m; ...z : T | p @ t}}

for values of 7, ... 7, in the environment. Write the interpretation of (_J in Z domain
and LP domains as Uz and ULP as in Section D.3.

The equivalence means that the set comprehension with one generator, ‘{z : 7 |
p e t}’, can be evaluated in the LP environment:

Eurl{z 7| p o Hpur = U Euell] p o )10

where 7 is {a1...a,} in prp and pYp = prp ® {z — a;}. The interpretation is
similar for Dy.
For n generators, z; : 71; g : To; ... Ty & Ty, if 74 — § € prp, then 71 = y(s) € py

and the set comprehensions in both the Z and LP domains can be represented as the
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distributed union of a family of sets indexed by i where a; € s, b; € (s) respectively:

Erpl{ :m; - xy T | DOt} prp =
ULP{a,- Esolpl{ry:m; ...xy:mn | p et} (prp ® {1 — a;})}

gZI[{Q:l 1T, Lo T ... Xy Ty |p ° t}]]pz =
UZ{bi Ey(s)oEz[{m o .. kT | DOt} (pz ®{z1— bi})}

For finite sets, the approximation of Condition 3 is exact. Thus since AR1 holds

for the empty sequence and assuming it holds for the sequence
{zy:1m0; .2y 7y | D@t}

in environments
pz ®{z — b}, prp ® {21 — a;}

it then holds for
{zy:m; ;i m0; oz Ty | POt}

in environments pz, prp. Thus AR1 holds for {z; : 7; 2o : 7o; ...z, : T | p ® t}
since it holds for each of its components 7;, p, t.
For infinite sets, or if any set is non-standard in the LP, the induction process

depends on whether we are addressing set terms or sets of answer substitutions:

e For set terms the LP interpretation of s evaluates to 1o L and underestimates

the Z interpretation in the same manner as the ‘no set generator case’.

e For the ‘answer set’ the result depends on distributed union, where incomplete
sets are involved. This is because we can equivalently express a set compre-
hension as a distributed union. We see that this underestimates for incomplete

sets.

Thus set comprehension in the LP is an exact interpretation for finite or complete
sets. For infinite or incomplete sets the LP interpretation is an underestimation.

This is true for either set terms or sets of answer substitutions.

D.5.3 Set Operations Power Set, Set Intersection

Other set operations € = f(z, 2y, ..., 2z, ) can be expressed via set comprehensions.

Examples are set intersection and power set:
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Set Intersection s = z; N 1, in the LP is part of the library of set operations.

However N can be expressed as
s =9{x : (xInx1) & (x In x2 )}.

where we are assuming that z;, 2, are appropriately typed. In Z this last

condition is expressed explicitly so

s=pNom={z:X|(r€m Nz €n) e}

This is treated as a set comprehension where p = ¢ € 2y A x € 2 Thus for
terminating computations, the interpretation in the LP approximates exactly,

and for non-terminating computations, the LP interpretation underestimates.

Power Set in the LP, s = Pz can be be expressed in Godel as
s = {z : z Subset x }.

Its generic ‘LP form’ is as a set comprehension with predicate true:

s=&p[{z C z | true ® z}|pLp.

Since ‘power set’ is a type in Z, there is no specific definition for it (see Chapter
3). The power set axiom of ZF (from Appendix A) provides a definition in Z:

The power set set s = Pz is such that

Vze(z€ss 2z Cux)

and this set and the interpretation in the LP can be shown to be equal. Thus
the interpretation of power set is exact for finite sets. For infinite sets, the LP

interpretation is | o 1 which always underestimates.

The interpretation is exact if the computations terminate. For infinite or incomplete
sets, the interpretation in the LP evaluates to L o 1 and so underestimates the

interpretation in Z.

D.5.4 Quantifiers

Universal Quantification

The syntactic predicate ‘Vz : s | p ¢’ is interpreted in the LP :
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ALL [x] (x In s <> p => q )

and in ZVz :s | p= ¢ and is evaluated for finite sets s on an element by element
basis for values of s. Its interpretation can be denoted in the LP as Prp[fz]pLp,
where z is the tuple s, p, ¢ and ‘f’ the syntactic ‘V’. For terminating computations,
Condition 1-2 hold in the LP and in Z. If Vz : s | p = ¢’ is true then Condition

3 becomes

LHS = (frp(Prrl(s, p, 9)lprr))
= y(true) = tt
RHS = f,(v(Prrl(s, p, 9)]pLr)) = tt.

and is thus exact for each p, ¢ in an environment containing s. The result follows
similarly if ‘Vz :s|pe ¢ is false.

For infinite sets the truth value in the LP will be L i.e. it will fail to terminate and
the LHS of Condition 3 will evaluate to L. For infinite sets, the Z interpretation of
the quantification will result in the value ¢t or ff, and v(L) = L and L C ff, L C .
For cases where s is incomplete, or not fully defined, then the LP interpretation
results in 1, which either underestimates the interpretation in Z, if it is ff, ¢, or is
exact, if the interpretation in Z is 1. Thus in all cases, the interpretation in the LP
of universal quantification adheres to AR1.

Existential Quantification

A similar interpretation is true for 3 where ‘Iz : s | p ® ¢’ is interpreted in the LP
SOME [x] (x In s <> p & q )

and in Z: 3z : s | p A ¢ The LP interpretation evaluates to true, false, L, which

always underestimates its interpretation in Z, as for V.

D.6 Function Application and Lambda Expres-

sions

Function application of ¢; to #, assumes that t; is appropriately typed, as a set

of pairs. It is interpreted in the LP by

gLPI[tth]],OLP =a&S bh—a€lh

It is mapped in a similar way in Z. For terminating computations, where set t;

is finite, the interpretation is exact. Where ¢ is infinite or incomplete, the LP
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underestimates the Z interpretation for
Erpltite] prr = L.

Lambda expressions require evaluation individually:

Axy : Ty ... Ty ¢ T, | p @t where t is a term can be expressed (in Z) as a set of
maplets z — a where the z is a tuple (z,...,,) and a is the term ¢ evaluated at
(.’E]_, ceey CEn)Z

{zy:m; ooz [ pe(2y,...,2,) — 1)}

It is interpreted as the equivalent set expression in the LP:

Erp[Amim; .o xy i Th | p @ t]prp =
Erpl{z im; oo xy i [ e (2. 2) = t)}prp =
{Drp[z1 : 75 . zp : a]pre & Plp] | T2(Tn(zy, ..., 2,) — 1)}

An example can be seen in Appendix C. The approximation is exact for terminating

computations and underestimates for the rest.

D.7 Interpretation of Schemas and Schema Ex-

pressions

Suppose that the syntactic objects schema, axdef € X3 are interpreted in the LP
and in Z by Spp, Sz respectively. A schema can be represented (in its horizontal
form) by the following syntactic object:

Sch=[Dy; ...; Dy | CP]

where D; = X; : 7;, and CP ::= CP;{ A ...\ CP,,.

Sch evaluates to a set expression, of bindings of variable name(s) to values. The
bindings are constrained by the variable declarations and by the schema predicate.
Suppose GCP is defined as CP where all the free occurrences of X; ... X, are re-
placed by z; ...z,

GCP(l‘l,...,.’I)n) = CP(Xl/.Tl,,Xn/.’En)

and any bound variables replaced by arbitrary local variables. A set of schema
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bindings of Sch can be represented in Z (as suggested in [17]) by a set expression:
{m:m; o Ty Tn | GOP @ {Xy = 1y, .., Xy = 70 }}

There is a similar representation in the LP where [Bind; (X1, 1), ..., Bind,(Xn, 2n)]
replaces {X; — z1,...,X, — z,}. If we assume that the set of bindings is con-
strained by an initial imposed environment p° then the interpretation of the schema

Sch = [D | CP] is the interpretation of a set expression

SLP|[[X1 2T e Xy Ty | CP}]]p%P
=E&p[{m 15 -5 Tn i Th | GCP
e [Bind, (X1, 11), ..., Bind,( Xy, z,)]|} 0% p

The interpretation of schemas and schema expressions is in terms of a characteristic

predicate, providing a single binding for a schema expression.

D.7.1 Characteristic Predicate for a Schema Expression

A schema binding is obtained by providing the schema with some initial environ-

ment, pY ,. In its initial state a schema is interpreted as:
Seel[Xi:m; oo Xo:ma | CPl0%p

and this evaluates in the LP to bindings of variable names to values. During the
execution the environment has been enhanced to p This binding is a member of the

set defined previously:

5LP|[[X1 2T e Xt Ty | CP]HP%P
=&p[{z1 :m; - T Ty | GCP
e [Bind, (X1, 1), ..., Bind,( Xy, z,)]| ] p4p

where each z; satisfies

DLPI[DI; ceey Dn]lpLP & PLPI[GCP]IPLP-
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where each enhanced environment ppp € Envpp. The characteristic schema predi-

cate of Sch is as follows:

SchemaType(binding, Sch) <
(binding = [Bind (X1, 11), . .., Bind,(X,, 1,)]) &
Drp[Dy; ...5 Dylprr & PrLe[GCP]pLp.

The values z; — a; ...z, — a, which satisfy SchemaType have been either generated
or were part of the initial environment. Note that although the schema definition
in the LP uses ‘if’ (<), by the CWA, this has the same effect as ‘if an only if’ ().

The Z interpretation can similarly be represented by a set of bindings where
binding = {Xl = 7(3:1)’ Tt Xn = 7($n)}

The values v(z;) € ran py satisfy
(Dzlz : milpz) & ... (Dzlzn : Ta]pz) & Pz[GCP]pz.

ARI1 can now be considered for schemas and is worth restating. If € is a syntactic
Z expression for a set of schema bindings then condition AR1 must hold for a correct
animation of Z in Dy p:
Approximation Rule 1 (AR1)

Y(Seelelprr) E Szlel(v o pre)-

where

€:{X1:T1...Xn7'n | CP.{Xll—)ZL'l,an—)ZL'n}}

The structural induction rule states that if it can be shown that AR1 holds for
syntactic variable e = z, then it also holds for syntactical expression € = fr, where
in this case, f is a syntactic operator which forms a schema from tuple ¢ = (D, CP),
where D is a declaration and CP is a predicate. We denote by f, frp the interpre-

tation in the Z domain and LP domain respectively of the syntactic expression fz.
Thus the left hand side of AR1 is

’Y(SLPHXl (T e Xn Ty | CP]HP%P)
= Epl{z1 i 715 - Ty T | GCP e [Bind\(X1,11), ..., Bind,( Xy, z,)|}Hp%p)
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The right hand side of AR1 is:

SZ|[[X1 2T . Xp i Th | CP]]]p%
=&z :m; o5 Ty Ty | GCP o {X; — z1,..., X, = z,}}] 0%

These are set comprehension, which have been treated in Section D.5. These inter-
pret exactly where components are finite and complete. Where the answer sets is

incomplete the LP interpretation underestimates.

D.7.2 Schema Conjunction and Disjunction

We now interpret syntactical objects such as Sch = Sch! A Sch? and Sch = Sch! v
Sch?. Provided that Sch', Sch? have compatible declarations their conjunction and
disjunction can be defined. These are modelled by conjunction and disjunction of
the LP predicates of Sch', Sch? with lists of bindings appended. This does cause
duplication but has not (so far) been found a practical problem. Suppose Sch' has

predicate CP' and declaration sequence D! where

D'=X}:r; .. X1}

modelled by Godel list b;:

[ Bind} (X}, i), ..., Bind} (X}, z}) ]

n’n
and Sch? has a predicate CP? and compatible declaration sequence D? where

D?=XZ:7% ... X2 7P

n

modelled by Gédel list by. Given that the characteristic predicates of Sch', Sch? are

respectively

SchemaType(binding, Sch'), Schema Type(binding, Sch?)

then the characteristic predicate of Sch is

SchemaType(binding, Sch) < (binding = by ™ by) &
DLPI[DI; D2]]p%P & PLP[[GCP1 AN GCP2]]/0%P

We show that this interprets exactly the Z interpretation where the program ter-

minates, and provides an incomplete set of answer substitutions when the program
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fails to terminate.
We show this by showing that the above definition gives the same value(s) as
the value(s) obtained by ‘expanding out’ the version of Sch = Sch! A Sch?. which

is interpreted in Z as

Sz[Scht A Sch?]pz
= Sz[[ DY; D? | CP' A CP?]]p),

The above represents the declaration sequences before they are merged, so some
repetitions would be expected. The above represents the declaration sequences
before they are merged, so some repetitions would be expected. Sch is then expressed

as a set comprehension in the usual way:

1.1, Lol 1 2.2 L 2. 2 1 2

Ezl{z) :rls oy xh o)y w2l o 2272 | GCPY A GCP
1 1 1 1. 2 2 2 2

e { X\ =z, .. . Xy, X, X7z} ey

Then Sch' A Sch? in the LP is:

SLPIISChl A Sch2]]pr

where given that the characteristic predicates of Sch', Sch? are respectively

SchemaType(binding, Sch'), SchemaType(binding, Sch?).

then the characteristic predicate of Sch evaluates to

SchemaType(binding, Sch) <
(binding = | Bind} (X}, 1), ..., Bind} (X}, z}),
Bind?(X?,1?), ..., Bind?(X?, z2)] )

& Dyp[DY; D?]p%p & PLp[GCPL A GCP2]p%p

which is the same as if the expression had been expanded first. The criteria for exact-
ness or underestimation for each of these interpretations has already been discussed.
In general, where each component of an expression is exact, the whole expression is
exact,but where one component underestimates, the whole underestimates.
Schema disjunction is defined in a similar manner. If Sch = Sch! v Sch? then
the bindings are appended and the LP interpretations of the schema predicates are
disjoined. In Chapter 4, the convention for naming variables is further refined, so

that priming, input, output becomes apparent. The formalism is not explored here.
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However the naming convention enables schema composition and piping to be

accomplished. An outline is presented in [119].

D.7.3 Schema Reference in a Declaration

A declaration can contain a schema reference. If z; € VAR, t, t; € expr,S; € NAME,

where Sch is a schema reference then recall from Section 5.3.1
basic_decl ::=1,..., 2, : 1| Sch

The interpretation of this in Z is that its declarations are merged with the declara-

tions of the schema which reference it and its predicate is conjoined. Thus if

Schy = [X1 T e Xy T S | predicate of Schl]

Then this is equivalent to Schy = Sch A Schy where

Schy = [Xl 2T Xy i T | predicate of Schl]

Thus if a schema Sch appears as a reference in the declarations of schema Schy, then
this is treated as for schema conjunction above: Sch is removed from the declarations

and conjoined to the predicate of Sch and its remaining declarations.

D.7.4 Binding Formation 6

The binding formation #Sch can be used to form a binding. Its value depends on
the environment. However we interpret it here in the same context as in the Unix
file system case study. In that case study {Sch e #Sch} was constructed first and
6Sch was interpreted as a member of that set. The set {Sch e 6Sch} in the LP
is the ‘same’ set as Spp[Sch]prp however in this case it is a set term and not an

answer set. It is the set comprehension S defined by
S = {SchemaType(binding, Sch) ® binding}

so that the binding formation §Sch € S where the code can be found in Appendix
C.

This means that if the computation terminates its interpretation is exact, and if
one of the members of s fails to terminate then the output of the whole computation
is L.
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D.7.5 Axiomatic and Generic Definitions

Axiomatic and Generic Definitions require individual definitions; they are in-
terpreted in such a way that they are exact where the computations terminate.

Axiomatic Definitions are modelled in the same way as a schema, and suitable
names must be generated for them Axioml, Axiom2.... They must then be conjoined
to the schema which refer to them, as in the assembly case study in Chapter 4. Their
interpretation is the same as for schemas,

Generic definitions are treated in the same way as the parametrised definitions
of partial function etc, ie by using parameters a,b.. They are instantiated when
the set is instantiated, and are defined by a predicate in the LP, as for Sequence in

Appendix C.



